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Abstract—The quantized redshifts observed from galaxies in the local supercluster have recently been shown
to be well described by stimulated Stokes Raman processes in intergal actic Rydberg matter (RM). The size of
the quanta corresponds to transitions in the planar clusters forming the RM, of the order of 6 x 10 cm ™. A
stimulated Stokes Raman process gives redshifts that are independent of the wavelength of the radiation, and it
allows the radiation to proceed without deflection, in agreement with observation. Such redshifts must also be
additive during the passage through space. Rydberg matter is common in space and explains the observed Fara-
day rotation in intergalactic space and the spectroscopic signatures called unidentified infrared bands (UIBs) and
diffuse interstellar bands (D1Bs). Rydberg matter was also recently proposed to be baryonic dark matter. Experi-
ments now show directly that IR light is redshifted by a Stokes stimulated Raman process in cold RM. Shifts of
0.02 cmi ! are regularly observed. It is shown by detailed calculations based on the experimental results that the
redshifts due to Stokes scattering are of at least the same magnitude as observations. © 2005 Plelades Publishing,

Inc.

1. INTRODUCTION

The redshifts observed from distant extragalactic
sources in space are quite intriguing, and their origin
has been debated by many authors. The important
reportsthat the redshiftsare quantized [1, 2] are at vari-
ance with the accepted interpretation of the redshifts.
The quantization of galactic redshifts was recently
shown to agree with the expected stimulated Raman
process in intergal actic Rydberg matter (RM) [3]. That
intergalactic matter exists at nonnegligible densities is
shown, for example, by the observation of a Faraday
rotation effect at radiofrequenciesin intergalactic space
[4]. This effect is well described by very low densities
of RM, with its high electron density and inherent mag-
netic field [5]. It is also proposed that RM is the (bary-
onic) dark matter in space[6]. The propertiesof RM are
such that it is an excellent candidate for the missing
dark matter. For example, ahydrogen atom in RM takes
up avolume 5 x 102 times larger than a ground-state
hydrogen atom.

Rydberg matter is a special form of matter, whichis
built up of weakly interacting, highly excited atoms or
molecules in circular, metastable Rydberg states. It has
metallic properties due to the delocalized el ectrons and
a very low density under the conditions in space. We
have shown that low-density RM can be conveniently
studied by laser fragmentation and time-of-flight meth-

T This article was submitted by author in English.

ods [7-9]. Rydberg matter can be built up from akali
atoms and also from small gasmoleculeslikeH, and N,
[8, 10, 11]. It can also be formed from H atoms[12, 13].
The existence and structure of RM was predicted by
Manykin, Ozhovan and Poluéktov [14, 15] more than
20 years ago, and by 1991, the first experimental stud-
ies of a macroscopic Cs Rydberg matter phase were
performed [16, 17]. These early studies of RM have
recently been independently confirmed [18]. Improved
quantum mechanical calculations of the properties of
RM built up by Cswere also published [19, 20]. Later,
studies by time-of-flight methods [7, 10, 21] identified
the specia planar cluster shapes predicted by theory
[22]. The distance between the ions in the RM can be
measured by the repulsion energy released in Coulomb
explosions in the matter [8, 9, 11, 12]. This bond dis-
tance is a few nanometers at the relatively low excita-
tion levels studied by this technique.

Due to the extremely large polarizability of RM,
Raman spectroscopic studies will be very useful to find
information on the properties of RM. A blueshift of sin-
glemode IR laser light passing through RM was
observed and interpreted as an anti-Stokes stimulated
electronic Raman effect (ASERS) [23]. Experiments
have also directly observed anti-Stokes Raman scatter-
ing from RM surface layers. Transitionsin K Rydberg
atoms [24] and bands from H, and other small mole-
cules, and bands from transitions in the RM [25] were
observed. The stimulated Raman effect wasalso used in
amicro-Raman spectroscopy study of the interaction of
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water molecules with one of the solid materials used to
emit RM in laboratory [26]. A recent study interpreted
the interaction observed between laser modes observed
in transmission and reflection of IR lasers in RM as
being due to the stimulated Raman effect [27]. Another
method recently employed for the study of RM is stim-
ulated emission, which works well due to extremely
long lifetimes of the electronically excited states in
RM. In fact, the first thermally excited laser was
recently demonstrated in the IR range [28, 29]. This
CW laser istunable over the range 800—14000 nm. The
numerous bands observed in the stimulated transitions
agree with the transitions expected in RM.

The lifetime of RM is very long in space, which
allows its rate of formation to be very low. Extrapola-
tion from the theoretical resultsin[20] givesaradiative
lifetime of undisturbed RM of the order of the lifetime
of the universe. That RM isacommon type of matter in
spaceis shown by theinterpretation [30] of the uniden-
tified infrared bands (UIR, UIB) as being due to transi-
tions in RM, in fact, the same transitions experimen-
tally studied by stimulated emission [29] and by a few
stimulated Raman experiments [24, 25]. Further evi-
dence comes from the Faraday rotation observationsin
intergal actic space and their interpretation as being due
to RM [5]. More evidence aso exists. A large number
(at least 60) of the so-caled diffuse interstellar bands
(DIBs) have been calculated accurately using a theory
based on the RM concept [31].

Because the conduction band in RM is not filled,
almost continuous electronic excitations are possible.
In a stimulated electronic Raman process, a photon
gains or loses some energy from the interaction with
matter, and RM may then change the frequency of radi-
ation passing through it by very small amounts, in the
form of ared or blue shift (Stokes or anti-Stokes shifts)
of theradiation. A blueshift was observed in the exper-
iments in [23], where the RM used was electronically
excited by its formation process and by the high tem-
perature of the surrounding equipment. This shift is
expected to change to a redshift asin Stokes scattering
in cold RM in space. Further experiments using the
same technique have recently been published [32]. In
that study, redshifts were observed in reflection from a
layer of cold RM deposited on awindow. We now dem-
onstrate directly that a redshift is observed in cold RM
even in transmission. Redshifts of the radiation from
distant galaxies are found from the interaction between
radiation and RM, as explained in [3].

2. THEORY
In what follows, the term light is used for simplicity

in many places where the term electromagnetic radia-
tion could be used instead.
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2.1. Estimated Gain

An important process for the interaction between
light and RM is the stimulated electronic Raman scat-
tering of the Stokes or anti-Stokes type (SERS,
ASERS) [33]. Anti-Stokes Raman scattering and simi-
lar processes in RM have been observed in different
types of experiments [24, 25, 34], even at low light
intensities [23, 26, 27]. For cold ground-state RM,
Stokes scattering should be observed instead. There is
no phase matching condition for this type of process
[33], and the Raman-scattered light proceeds in the
same direction as theincident light.

It isnecessary to estimate the magnitude of the stim-
ulated Raman effect in the case of an RM material. For
this, we use the ordinary classical steady-state gain fac-
tor derived for molecular vibrational transitions. The
formulas are given for the Stokes scattering, which is
the case of interest for astrophysical processes. The
equations are identical in form for the anti-Stokes (as)
and Stokes (s) cases. The incident light frequency isw,
and the generated Stokes wave has afrequency ws. The
difference

W —Ws = W

istheresulting el ectronic excitation in the RM material.
For the Stokes wave, the steady-state gain factor G at
its maximum is given by [35]

Ndks

_ 00 |- 2
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In this expression Ny is the density of the dipoles cre-
ated by the incident light wave, here chosen to corre-
spond to the number of electrons in the RM; k; is the
wavenumber for the Stokes wave; mis the mass of the
driven oscillator, in this case, one electron mass; € =
€€y is the permittivity of the medium, which is
unknown but probably has €, on the order of unity; yis
the coupling constant for the electronic excitationin the
intermediate state to other degrees of freedom; da/dqis
the variation of the polarizability with the coordinate
describing the excited motion, here the electronic
motion; and E, isthe eectric field strength of the inci-
dent light.

The gain factor G can be large even at low light
intensities dueto the very large polarizability of the RM
and an arbitrarily small value of the difference w, — w..
Thereason for this small valueisthe almost continuous
nature of the energy levels in RM. Another factor of
great importance is the coupling (dephasing) constant
y, which is much smaller than in the case of ordinary
matter because the coupling of the electronic motionin
RM to other modes of motion isweak. From the exper-
iments with IR lasers, it was concluded that y is on the
order of 10° s or smaller [23]. Thiswould give alower
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limit on the magnitude of the electronic excitationsin
terms of wavenumbers from

CAV = we >y as AV > 3x10° cm ™,
The quantized redshifts interpreted in [3] give
AV=6x10"°cm™

in agreement with the experimentally found lower limit
for y. We use this value as a reasonable quantum mag-
nitude of the electronic excitation in RM above each
metastable state with a certain excitation level n. Life-
time measurements of RM both at 77 K [36] and at
800 K [16, 37] and calculations at low excitation levels
[20] seem to indicate a much smaller value of y, maybe
on the order of 102 s [23, 34]. However, these life-
times probably correspond to deexcitation from an
excitation level n down to the fully dissociated ground
state consisting of separate atoms or molecules.

To estimate reasonable values of the quantities in
Eqg. (1), we use aphase of RM with the excitation state
n = 80, which is the average value deduced from the
study in [30]. Each Rydberg atom is then considered a
polarizable particle. With interatomic distances of
0.5um at n = 80, the density is found to be approxi-
mately 10'® m=3. The wavenumber k, is on the order of
2x10*cmt or 2 x 10° m~ in the visible range, and the
difference of the frequencies w, — w is assumed to be
10 cm™ or 10* mrL. In fact, with RM, this value is
probably even smaller. The mass misthe electron mass
and e isthe dielectric constant e, times €;,. The polariz-
ability variation da/dq is estimated asthe volume added
for achangein theradial distance for the Rydberg elec-
tron (times g, to give the right dimension) and becomes
4.4 x 100 As m VL. Findly, the field strength due to
light is estimated for the power density 1 mW cm?, giv-
ing E=90V m. Thisgives

_3x10"

GSS ery

)

withyins™and e, on the order of unity. Even for rather
large values of y, the G factor is large, which means
that the stimulated Raman effect is strong and an effi-
cient conversion to the Stokes wave takes place in a
short distance. It may be assumed that y is of the order
of 10° s. This means that the G4 factor is very large
and givesrise to a strong stimulated effect by the equa-
tion for the Stokes field strength [33, 35]

E. = Eo(0)exp(GeX), 3)
where the index f indicates aforward wave, E0) isthe

Stokes wave at position zero (noise photons), and x is
the distance along the laser beam. Thus, it is obvious
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that stimulated Raman effects should be observable
even for low light intensities, especidly if x is very
large asin intergal actic space.

2.2. Continuous Excitations

The form of Eq. (1) is best suited for molecular
vibrational Raman problems. Other forms of this equa-
tion exist (as, eg., in [38]) which in general are better
suited for electronic excitations. However, the theory of
RM shows that the delocalized electrons, asin ordinary
Rydberg states, are close to the classical limit. For
example, in [22], the bond energies and electronic lev-
els of RM are calculated from electrostatic formulas,
only with the addition of the electron correlation as a
guantum mechanical effect. The transitions of interest
here, between trandational states of the RM electrons
in the RM clusters, have very small quanta and are
almost classical in nature. Thismeansthat adescription
of the interaction between the light wave and the
molecular system in terms of motion of point particles,
like in the vibrational Raman transitions, is quite well
adapted to RM electronic excitations.

In the case of stimulated Raman scattering, well-
defined Raman transitions are normally studied, and
not a continuous range of wavenumbers wg. Because
one well-defined Stokes (or anti-Stokes) frequency
usually dominates and gives the Raman wave, it is not
directly clear what happens if arange of transitions is
possible. In the present case, consecutive Stokes com-
ponents are formed aong the laser beam, as shown, for
example, in [33, 39]. If arange of frequenciesis possi-
ble, this could be thought to |ead to a broadening of the
Stokes wavevector and a less well-defined stimulated
Raman appearance. From Eq. (3), however, one can see
that the switch from one Stokes component to the next
occurs when the exponent Ggx is sufficiently large.
Because

X
G x ~

E

asmaller value of we gives the same value of the expo-
nent in a proportionally shorter distance x. This means
that if a smaller we takes over, it switches over to the
next Stokes component faster, keeping the resulting
shift after a larger distance constant, independently of
which we actually dominates. This shows that the
detailed process of the Stokes component switching
with a continuous range of transitions is of no great
concern, because the result is the same.

2.3. Intensity Dependence

The small value of y means that the form of Gg
given by Eq. (1) isnot strictly valid. Assuming that this
effect does not change the theoretical formulas com-
pletely, one can still use the treatment by Shen and
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Bloembergen [39] and Shen [38] to find a more com-
plete description of the Raman signal. For asmall wave
vector momentum mismatch along the light direction
(the x-direction)

Ak = 2kL(x) - kS(X) - kas(x)’

the gainisobserved to decreaselinearly towards zero as
Ak — 0. The plots for this effect are given as reduced
plotsin [39] and also in [23], where the scales of both
axes are in reduced quantities, relative to G,. Because
G isproportional to |E, |°, anincreasein thelight inten-
sity increases G, and thus moves a point on the curve
downwards, for constant Ak. This means that the rela-
tive gain decreases by the same factor, keeping the real
gain G constant. Thus, the gain G varies linearly with
the mismatch Ak. The gain G isthen independent of the
light intensity for constant Ak in the region of small
momentum mismatch, which probably is the range of
interest for space. Because the value of Gy isextremely
large, as described above, the resulting gain can still be
substantial. The analysisin [38, 39] shows further that
the anti-Stokes wave formed together with the Stokes
wave has a lower intensity at relatively small values
of Ak.

3. RESULTS
3.1. Cold Rydberg Matter in the Laboratory

Rydberg matter can be produced by severa tech-
nigues in the laboratory in different surroundings and
from different starting materials [40]. Usually, the for-
mation process involves relatively high temperatures,
from 300 K up to 1500 K depending on the technique
used. This means that the RM produced isin an elec-
tronically excited state with electron translation in the
RM cluster above its ground state, which is character-
ized by acertain principal quantum number n. The rea

Vacuum
chamber

Emitter
with RM cloud

Water cooled
isolated box

Cryostat

g I L I
[N D]
7 Parallel beam
Chc?pper Fabry-Perot
and interferometer
focusing
MCT
detector

Fig. 1. Block diagram of the experimental setup for atrans-
mission measurement. The RM cloud around the hot emitter
isindicated.
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son for the excitation is that the RM is formed in the
experiments by condensation of excited clusters, mole-
cules, and atoms in Rydberg states. The excess energy
inthe RM clusters comes from the condensation energy
and from collisions with an excitation energy transfer
from the Rydberg species. However, a cooling process
can be applied to reach lower electronic temperatures.
At RM densities of interest in space, the condensed
phase consists mainly of hexagona planar clusters
with the magic number (number of membersin astable
cluster) N =7, 19, 37, 61, and 91 as observed experi-
mentally [7, 11].

In the present stimulated Raman experiment, an
amost single-mode CW laser with mW power is used
inthelR range, with wy closeto 1100 cm2. The slope of
the laser modes is approximately 7 x 102 cmr® mA—=
The setup is similar to the one used in [23, 32] with an
air-spaced Fabry—Perot interferometer (FPI) with ZnSe
mirrors between the RM chamber and the detector. A
mirror is used inside the RM chamber to reflect the
laser beam passing below the RM emitter. See Fig. 1.
After formation, the RM cloud is alowed to cool itself
with the RM emitter turned off. The lifetime of RM in
the laboratory under these conditions is of the order of
afew hours. Asobserved directly in laser fragmentation
experiments, the cold RM gives translational tempera-
tures of afew K for large clusters[9, 11]. This cooling
is probably driven by stimulated emission in the IR
range [29]. The result of this cooling process is that a
redshift of the light passing through the RM cloud can
be detected with the interferometer.

A typical result with blueshifting (leftshift) at ahigh
emitter temperature due to the formation of a cloud of
warm RM is shown in Fig. 2. At the end of the experi-
ment, aredshift (rightshift) is observed after cooling of
the RM. A complete run with less blueshifting due to
colder RM (exhausted RM emitter) is shown in Fig. 3.
Time and FPI temperature are given in the figure. A
temperature-stable (often water-cooled) FPI with an
Invar base, usualy in a well insulated box was used,
with afree spectral range of 0.19 cmr ™. Thetemperature
coefficient of the FPI is determined to be less than
1.5 x 102 cm K-L. Thisgivesan elongation of the cav-
ity with increasing temperature and a drift of the peaks
(fringes) to the left in the figure. Thus, the true redshift
in the figures (rightshift) is slightly larger than directly
observed because the temperature of the FPI increased
during the experiment. The redshift observed is of the
order of 0.02 cm™ for a passage with length of the order
of 25 cm through RM in a surrounding air pressure of
104 mbar. It isestimated that the density of RM isclose
to the gas density in the chamber. This gives a value of
10 m3if RM fillsthe volume almost completely, with
the excitation level n = 80. Due to the planar cluster
structure of RM, afilling factor of 10% is more likely,
giving the density 10*” m=3 in the experiments.
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A redshifting of the interferometer fringes can also
be observed with cold RM deposited on the inner sur-
face of the ZnSe window used in the RM chamber. The
window is antireflection-coated on the outer surface,
and the reflection on the inner surfaceis observed. This
effect was demonstrated in [32]. In this configuration,
only the evanescent wave interacts with the cold RM on
the inner surface. A similar configuration was shown to
work well in stimulated emission experiments using
RM [41], wherethe coupling to the external laser cavity
took place viathe evanescent wave. The results from a
reflection experiment are shown in Fig. 4. The noisein
thesignal isrelatively high becausejust afraction of the
laser beam intensity is reflected. The time for the scans
and the temperature of the mirror holder in the FPI are
shown. A redshift (rightshift) is seen, caused by the
deposition of RM on the window during heating of the
RM emitter. After return to room temperature, the red-
shift gradually disappears and after two hours, the shift
is zero. We note that the FPI temperature is still higher
thaninitially and that the drift of the fringes due to tem-
perature changes of the FPI isthus small. A more com-
plete discussion of the influence of temperature
changes of the FPI isgivenin [32].

3.2. Cold Rydberg Matter in Space

In space, Rydberg matter can exist both at low tem-
peratures and very low densities, and at higher temper-
atures of the order of 300-600 K and higher local den-
sities, for example, surrounding particlesin interstellar
space. The excitation levels observed from the so-
called unidentified infrared bands [30] have the most
probable value close to n = 80. A comparison with the
parameter values appropriate for the laboratory studies
of cold RM shows that the density N, is several orders
of magnitude smaller in space than in laboratory exper-
iments. On the other hand, for visible light, the wave-
number kg is approximately 50 times larger than for the
IR studies described here.

Equation (3) shows that a shift due to the stimulated
Raman effect exists if the product G.x is larger than
unity. With Eq. (1) used for G and with reasonable val -
ues also used for estimation of this factor above, it is
possibleto find a condition on the electric field strength
of thelight field. The distance covered by light in space
is denoted by |. Then the inequality

ks [@_GDZ > A\7
8meyclodH, = N,I|E,|?

(4)

should be valid for the effect to exist. In thisinequality,
the space-related quantities are collected in the right

hand side. The difference w, — wwasreplaced by cAv ,
where Av is in wavenumbers. Assuming conserva-
tively that y is as large as the upper experimental limit
found, 10% s, wefind that the left-hand sideis equal to
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Fig. 2. Initial blueshift due to warm RM and final redshift

due to cold RM of light from a diode laser at 1100 cm™
passing through the RM cloud. Thelower traceistaken with
the RM emitter at room temperature, while the top one is
after heating to 1240 K and subsequent cooling, at an air
pressure of 10~* mbar in the RM chamber. Note the blue-
shift at 1240 K and the redshift (rightshift) in the top curve.
The same dataasin[32].
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Fig. 3. Redshift of light from a diode laser at 1100 cmi
passing through cold RM (in the top part of the figure).
Time and the temperature of the water cooled interferome-
ter base as well as the RM emitter temperature are given.

The experiment was done at the air pressure 10~* mbar in
the RM chamber. The curves are consecutively shifted
upwards to increase visibility.

2 x 102 m3® V-2, with the other parameter values esti-
mated as before. With the experimental values from the

study of the cold RM described here, Av = 0.02 cm,
Ng=10"m=3,1=0.25m, and E, =90V m™, theright-
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Fig. 4. Redshift of light from a diode laser at 1100 cmt
reflected from alayer of RM on theinner face of the vacuum
window. Time and the temperature of the FPI mirror holder
and the RM emitter temperature are given. The experiment

was conducted at an air pressure of 10~ mbar in the RM
chamber. The curves are consecutively shifted upwards to
increase visibility. RM is slowly deexcited on the window
when RM deposition is cancelled (at room temperature).

hand side becomes 1 x 10 m?® V=2 This is many
orders of magnitude smaller than the left-hand side, as
required by Eqg. (4). Because some of the quantities are
anyway somewhat uncertain, we may assume that the
right-hand side of Eq. (4) in space should be as small as
this value in experiments. (This is a very conservative
estimate) Then AV = 10* cm? (the typica total
summed shift in observations), Ny = 106 m= [42], and
| =8 x 10° pc = 2.5 x 10%° m may be used, giving E, =
3x 1023V m™ Thedistance | used is smaller than the
radius of the observable universe by about a factor of
10. Thisgives alight intensity of 2 x 108 W m= asthe
minimum intensity required to make the stimulated
Raman process work, corresponding to the intensity of
light from the Sun at our nearest star a Centauri. This
is a very conservative estimate, based on the experi-
mental results. If we instead use the condition that the
right-hand side in Eq. (4) should only be smaller than
the estimated value 2 x 107 m3 V2 of the left-hand
side, therequired light intensity may even be afactor of
10° smaller, thus larger than 2 x 10Y W m corre-
sponding to the field strength E, = 10"V m™. Thisis

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

HOLMLID

the same asthe intensity of the light from the Sun at the
distance 4 x 10% pc, i.e., on the other side of our galaxy.
Thus, a redshift due to stimulated Raman scattering
develops even at very large distances from the source.

3.3. Redsnifts

Itis possible that the stimulated Raman process dis-
cussed here operates at the very low intensity levelsin
space, due to the extreme properties of intergalactic
RM. It is of course interesting to investigate whether
such an effect gives the behavior of ordinary redshifts,
for example, whether the shift varies correctly with
wavelength as

v ©

which should be constant for a certain astronomical
object independently of which spectral lineis used for
the determination. Thus, it is required that relation (5)
is a constant, or that AMA, is a constant. This may be
compared with the predictions from stimulated Raman
theory. From Eq. (1), it follows that

k A
G U > -1 > -1
- M A
)\S_)\L A)\

holds, or that the observed behavior of the redshift is
consistent with the stimul ated Raman effect with acon-
stant gain factor. The G factor is not the real gain, as
shown in [39] and cited above, but it is modified to the
gain G that is nevertheless proportiona to G. This
gain is constant independently of the shifting light
intengities, e.q., for different spectral lines with differ-
ent emitted intensities. Thus, the stimulated Raman
effect gives the correct observed behavior.

From the description given here, it is also clear that
the redshifting by the stimulated Raman processin RM
is an additive process, given by the distance covered by
light in the RM phase.

4. DISCUSSION
4.1. Quantum Effects

The main effect that may prevent the stimulated
Raman effect from shifting the frequency of light con-
tinuously, as described above, is the quantal nature of
excitationsin the RM and the quantal nature of light. A
finite lower bound to the size of the possible excitations
in RM tends to prevent G from reaching extremely
large values, as can be seen from Eq. (1). The experi-
mental redshifts or blueshifts are not observed to be
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quantized at alevel of 102 cm™ or larger. This means
that the quantum sizeis small. It isrelevant to note that
quantized redshifts arein fact observed, both for galax-
ies[1] and for quasars[2].

From the description in the theoretical section, a
lower limit of the size of the quantized shifts could be
3 x 108 cm. The quantized redshiftsfor nearby galax-
ies[1] instead suggest a quantum size of 6 x 10° cm
[3]. We use thisvalue to make conservative estimates of
the quantum effects. With the total summed shift
10* cm™ in the visible range, the total number of shifts
is then on the order of 10°. If the distance traveled by
the light is on the order of 10% m, this means a shift of
6 x 106 cm™ per 6 x 10'> m on average. Therefore, the
shifts are very uncommon events. If the number of
shiftsis 109, the statistical variation in this number, the
square root of this, is 3 x 10* on average. The statistical
nature of the shiftsis then not observed, but all light is
shifted the same amount with an uncertainty on the
order of 3 x 105, Thisgives 0.3 cm™ in atotal shift of
10* cm. Typical uncertainties in optica redshifts are
+0.001 in z [43], giving £20 cm* for a typical optical
line. Thus, the width of the observed lines are much
larger than the widths resulting from the statistics of the
redshift quanta.

4.2. Cosmological Arguments

In arecent book on cosmology [44], thefour general
cases of possible explanations of the redshifts of distant
astronomical objects are summarized, with the fourth
possibility “interaction (scattering, absorption)” being
most relevant to the present discussion. It should be
noted that stimulated Raman scattering was not consid-
ered explicitly, but only more “normal” scattering
events were considered. The main arguments against
the interaction processes given in [4] are as follows:
(@) the resulting redshift should have an exponential
dependence on distance, (b) the redshift AAA would
not be independent of frequency, and (c) a scattering
process would smear out the light from distant sources,
which is at variance with observations. The present
model, based on the known physics of stimulated
Raman processes, gives not an exponential but a linear
dependence of the redshift on distance. As shown
above, the redshift AA/A should be frequency-indepen-
dent for the stimulated Raman process. The stimul ated
Raman process does not change the direction of light,
and hencethe final argument against a scattering mech-
anism of the stimulated Raman type is not valid either.

5. CONCLUSIONS

We conclude that the stimulated Raman mechanism
for redshifting radiation in RM in space is a possible
process to explain at least a part of the redshifts
observed from distant astronomical objects. It givesthe
correct behavior, for example, concerning the fre-
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guency variation, the distance variation, and the direc-
tion of scattering. Further, the observed redshifts in
cold RM inthe laboratory are recal cul ated to astronom-
ical distances and found to easily cover the range of the
observed redshifts.
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Abstract—As an archetype reaction for pQCD multigluon hard processes in collisions of ultrarelativistic
nuclei, we analyze generic features of lepton pair production viamultiphoton processesin peripheral heavy ion
scattering. We report explicit results for collisions of two photons from one nucleus with two photons from the
other nucleus, 2y + 2y — I*I~. The results suggest that the familiar eikonalization of Coulomb distortions
breaks down for oppositely moving Coulomb centers. The breaking of eikonalizationin QED suggeststhat mul-
tigluon pQCD processes cannot be described in terms of collective nuclear gluon distributions. We discuss a
logarithmic enhancement of the contribution from the 2y + 2y — 1"~ process to production of lepton pairs
with large transverse momentum; similar enhancement is absent for the ny + my — I*I~ processes with m,
n > 2. We comment on the general structure of multiphoton collisions and properties of higher-order terms that

cannot be eikonalized. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The exact theory of Coulomb distortions of the
spectrum of ultrarel ativistic lepton pairs photoproduced
in the Coulomb field of a nucleus has been developed
by Bethe and Maximon [1]. It is based on the descrip-
tion of leptons by exact solutions of the Dirac equation
in the Coulomb field (see, e.g., [2]). In Feynman dia-
gram language, one has to sum multiphoton exchanges
between the produced electrons and positrons and the
target nucleus. For ultrarelativistic leptons, the result of
this summation is the eikonal factors in the impact
parameter representation. In the momentum space, the
same eikonal form leads to simple recursive relations
between the (n + 1)- and n-photon exchange ampli-
tudes [ 3], where the incoming photon can be either real
or virtual. There are two fundamental points behind
these simple results.

(i) The lightcone momenta of ultrarelativistic lep-
tons are conserved in amultiple scattering process (i.e.,
if the nucleus moves along the n_-lightcone and the pro-
duced leptons move along the n,-lightcone, then the
p.-components of the lepton momenta are conserved).

T This article was submitted by the authors in English.

(if) The s-channel helicity of leptonsis conserved in
high-energy QED (see [2]). It is the latter property by
which distortions reduce to a ssimple eikonal factor.

The same properties alow one to express the pair
production cross section in the dipole representation [4].
They aso underlie the color dipole perturbative Quan-
tum Chromo Dynamics (pQCD) analysis of nuclear
distortions and the derivation of nonlinear k-factoriza-
tion for multijet hard processesin DIS off nuclei [5].

As shown in [6], the so-called Abelianization takes
place in certain cases of practical interest. Specifically,
the hard dijet production in a hadron-nucleus collision
is dominated by a hard collision of an isolated parton
from the beam hadron simultaneously with many glu-
ons from the nucleus, which belong to different nucle-
onsof atarget nucleus. Nevertheless, at least for single-
particle spectra, the interaction with alarge number of
nuclear gluons can be reduced to that with a single
gluon from the collective gluon field of anucleus; i.e.,
the nonlinear k factorization reduces to the linear one,
and in terms of the collective glue, one only needs to
evaluate the familiar Born cross sections. Extending the
nonlinear k; factorization for hard processes from had-
ron-nucleus collisions to collisions of ultrarelativistic
nuclei is a formidable task that has not been properly

1063-7761/05/10004-0645%$26.00 © 2005 Pleiades Publishing, Inc.
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addressed so far. The lightcone QED and QCD share
many properties, and we here address a much simpler,
Abelian problem of Coulomb distortions of lepton pairs
produced in peripheral collisions of relativistic nuclei.

The process of lepton pair production in the Cou-
lomb fields of two colliding ultrarelativistic heavy ions
was intensely investigated recently [7-14]. Such an
activity is mainly connected with new practical interest
in pair production opened with operation of the facili-
ties such as the RHIC and the LHC. Despite the high
activity in this area, the issue of correct allowance for
the final-state interaction of produced Ieptons with the
colliding ion Coulomb field remains open. The main
results obtained so far in this direction are as follows.

(i) The produced high-energy lepton pair interacts
strongly with the Coulomb field of heavy ions, and the
corresponding corrections have a noticeable impact on
the cross section of the process [10].

(i) The perturbation series corresponding to multi-
ple interaction of a produced pair with Coulomb fields
can be summed and the result can be expressed in an
eikonal-like form [14] if one restricts oneself to terms
growing with energy in the cross section [12]. In QED,
such an approximation can be considered satisfactory,
but it is not warranted in QCD, and the problem of
higher-order corrections in pair production requires
further investigation.

In our paper [12], we cited the amplitude M),

which is irrelevant in the leading and next-to-leading
logarithmic approximations in QED. Nevertheless,
knowledge of contributions of this type becomes
important for similar processes in QCD with multi-
gluon exchanges between the color constituents of each
of the coalliding hadrons and the created quark—anti-
quark pair. Thisisthe main motivation for our interest
in multiple exchanges and their impact on the lepton
pair yield in the ultrarelativistic heavy ion collisions,
an issue that is not only useful in understanding the
electromagnetic processes but also broadly applicable
in QCD.

We skip the previously studied case where one of
the ions radiates a single photon and the other radiates
an arbitrary number of photons absorbed by the created
pair [14]. The photon exchanges between theions were
not taken into account either [13].

This paper is organized as follows. In Section 2, we
consider the case where each of the colliding ions radi-
ates two photons, which create alepton pair. We derive

the relevant amplitude Mg; using the powerful Suda-

kov technique, well suited for calculations of processes
at high energies. In Section 3, we study the wide-angle
limit in pair production kinematics corresponding to
the case of large transverse momenta of pair compo-
nents. In this limit, the results are much more transpar-
ent than in the general case, as can be seen from the
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form of the differential cross section given below. In
Section 4, we discuss the generalization of the process
under consideration to the case where the number of
photons exchanged by each ion exceeds two.

2. LEPTON PAIR PRODUCTION

We are interested in the process of lepton pair pro-
duction in the collision of two relativistic nuclei A and
B with the charge numbers Z, and Z,,

A(py) +B(p2) — 17(a) +17(a.)

. . (1)
+A(py) +B(p2),
with the kinematical invariants
s=(p+p)° = (pi-P)’
B = (P2—po)° s = (G +q) @)
p=p = M5, po=py=M3 o =n

We are interested in peripheral kinematics, i.e.,

s> M5 M3, |, o > n?, €)

which corresponds to small scattering angles of ions A
and B.

It isconvenient to use the Sudakov parameterization
for al 4-momenta entering process (1),

Qo = &P, +byPy+ayp,

Qo = &P, + boPy + Gy,
Ky = 0Pz + ByPy+ Ky, (4)
ko = 0P, + BoPy + kop,

Qe = 0Pp+ By + Uy

with lightcone 4- vectors p, , obeying the conditions

fﬁ=f)§=0. 51,2315:0. 2p,[h, = s.

2.1. The Pair Production by 4-Photons

We consider the creation of alepton pair from four
virtual photons (Fig. 1). The photons with momenta k;
and g; —k; (referred to as photons 1 and 2 hereafter) are
emitted by ion A and the photons with momenta k, and
g, — k; (referred as the photons 3 and 4) by ion B. The
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leading contribution to the cross section comes from
the following regions of the Sudakov variables:

a; < B, 0b;, B,+B.= Dby,
B, < 0,00, a,+d_ = a,,
lag] <@, [by <by, Qg = q ®)
q:+0, = Q. +Q.,
2
_ Y 2y 2
a, = R qs > m'.

Hereinafter, the boldface q;, denotes the two-dimen-
sional transverse part of any considered 4-momentum.
For definiteness, we assume 3,, B_ > 0, which corre-
sponds to the situation where the pair moves along the
momentum of ion A (the momentum p,). With a possi-
ble extension to pQCD in mind, we neglect the lepton
masses whenever appropriate.

The contribution to the matrix element of such a set
of the Feynman diagrams (FD) is given by

M3 = M
(2m)®
d’k d4k2
Ik kz(ql 1)2(q2 - k2)2 (6)

0"(pp) O} *u"(py) T (p2) 05U’ (p,)

U)IH

x 0(q) "’ v () 9y, Buv,90p, 9o,

where u and v are the leptonic Dirac bispinorsand O,
0O,, and T are the corresponding tensors of the upper,
down, and pair production blocks. To see the propor-
tionality of matrix element (6) to theinvariant energy s,
we use the Gribov representation for the virtual photon
Green functions

glililgVVlgPplgcol

4 (7
= % P1yP1y P1p, P1o, P2y, P2y, P2p Pag-

The numerators of the Green functions of nucleusA can
be written as s°N; with

1n, o\a
N; = gu”(pl)pzu”(pl), Z|N1|2 =
n
and a similar expression exists for nucleus B. The

denominators of the virtual photon Green functions in
the considered kinematics depend only on the trans-
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Fig. 1. Typical Feynman diagram for amplitude Mg; .

verse components of the corresponding 4-vectors, and
therefore

kika(ay — ki) (o —ko)® = Kik3(a;—k1)(q,—kp)*.

There are 24 FD contributing to M{3) . Instead of them,
it is convenient to consider 24 - 2 - 2 = 96 FD with al
possible permutations of emission and absorption
points of the photons exchanged by the nuclei (Fig. 2).
Then the result must be divided by (2!)2. Thistrick [15]
provides the convergence of integrals over [3,,

1 S S _
frﬁfdﬁz[sgz—c+io+-ssz-(d+ioﬂ =1®

and of a similar integral over a,. After al operations,
we can write the matrix element as

(16T[0( Z,7,)°N;N,
(2)?
d’k,d’k,  T(q)Rv(q.)
g k(a1 —k1)*(d—k,)?

M =
©

where

d[31d0(2

SI 2 P1P1y P2y Poe THP7.

2.2. Classification of Feynman Diagrams

It is convenient to classify FDs by the ordering of
the exchanged photons absorbed by the lepton world

line (Fig. 3). We label them as R, R Rijk » with
pairwise distinct integers i, j, k, | from one to four,
counting from a negative lepton emission point.

() We first consider the set of four FDs (Fig. 4a),
labeled Ryp34, Ro134, Rigas, aNd Ry143, in Which the inter-
actions with two nuclei are ordered consecutively

against the lepton line direction. The sum of the rele-
vant contributions provides the convergence of the 3,
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—9 = % % + all permutations

Fig. 2. Notation for permutations of n virtual photons emitted by a heavy ion.

n @ pop ® o, @,

NI
BTN AN I

P2 P2 P2 P2 12 P2

Fig. 3. Set of basic Feynman diagrams for amplitude M% .

Fig. 4. Feynman diagrams for amplitude M% .

and a, integrations. After a standard calculation, we The last equality in Eq. (10) is the result of the Dirac

obtain equation for massless particles,
Rizas + Ro1as + Rizus + Rowss
B-p(@-8)s Py B@Z u(q)B_p.p2 = —0(9) G- (11)
B.aZ+B(q-—qy)” S s’ (10)
A (A A result similar to Eq. (10) is obtained for the set of
q.0(9- -8y

= > > the crossing diagrams (Fig. 4b) corresponding to the
B+q— + B—(q— - ql) R34]_2, R3421, R43]_2, and R4321 '[el’ms | n the ampl |tude, Wlth
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only the replacement B —» B, where

_ _(=8+9)0c (12)

B9 +B.(a,—a.)

[wski

(b) We next consider the set of diagrams Ryz4, Ris,

Rosat, Roszn (Fig. 4c) and Rapps, Rapisr Rarzss Razis
(Fig. 4d), where exchanges with ion B (A) are attached
to thelepton line between theinteractionswithionA (B).

For definiteness, we consider the sum Ry34, + Ry43.
Using the relevant denominators of the lepton line, we
obtain the following integrals over 3, and a:

dB, 1
/ 2Misg_(B_—B,) —(g_—ky)*+i0

1
—s0,(B_—By) —(—q, +a; —ky)*+i0
] S(B.—By) 13
Jzni S(B_—By)(a_—a,) —(q_—ky)*+i0
+ S(B_—By) }
S(B_—B)(—0, + ap) —(—q, + gy — k) +i0

The second integral after closing the integration con-
tour in the lower haf-plane gives the function
sgn(B- - B,), and hence Eg. (13) becomes

Id_& sgn(B,—B.)
2T sa_(B_— Bl)l— (d-—ky)*+i0 1
" S (B—B) — (-, + ko) +10
Using the relation
dx sgnx
_J:°2ni(—ax—b+i0)(cx—d+i0) (15)

R S
mi(ad +bc) bc’

we obtain the result
Riza + Rigzo + Rogan + Rom

_ b (@ —k)o(=8 8 —ki)g
TS| o, (. —ky)* + a_(=q, + g, —K,)?

a,(q_—k,)?
a_(=q, +qy—ky)?

x n
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o (8 =G +ka)o(=8 + k)
0.(d_~ 01 + k)" + o (=, +ky)*
G klz)z}
a(~g. +ky) (16)

R4 + Rapia + Ragos + Rapas

_pg[ (60— ka)o(= 8. + G2 —ko)g
TS| B,(q_—kp)*+ B_(~q. + dr—k;)°

< i B(= G+ dp—ky)”
2
B.(q-—ky)
(8= G + ko) (= §. + ko)
B.(9_— 0y + k) + B(—0. + k)

+

< i B ko)’ }
B.(d_—q,+ky)*

We note that the expressions (16) are purely imaginary,
and therefore their interference with the Born term in
the cross section is zero.

(c) We now consider the case of interactions with
different nuclel aternating along the lepton line, for
instance, the amplitude R;,4 (Fig. 4€). After somealge-
bra, we obtain the relevant numerator

Niss = SP1P2(0.— Rl)D
x (6. —ka— ko) (8. — & —ka) .,

which is very different from the numerators of Born-
like amplitudes. Specifically, itisahigher-order termin
the running transverse momentak; .

(17)

The relevant denominators are given by
{3 =(a.~k) +i0
= s(B_—By)o_—(d.—k,)" +i0,

{2 =(q.—k;—ky)*+i0
= s(B_—B)(a_—ay) —(a_—k;, —kp)* +i0,

{3 =(-q.+q—kp)*+i0

(18)

= s(-B.)(a_—0,) = (— 0. + d, —k,) +i0.

The nonvanishing contribution only emerges if the
poles are located in different a, half-planes, which
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Coefficientsin formula (23). The brackets denote index permutation, e.g., (12) =12 + 21

n Rij ay by Cn dn
1 Ri12)(39) a Q-0 - -
2 Rz 01— 0+ 0 - -
3 Ri324 a q—k . —k—ko q—dr—k
4 Ri423 aq a-—ky q—gt+k—k O + ko
S Ro314 q- 0-—0r+k . —a;+ ki —k 0+ -k
6 Roa13 q -0tk —0 + kg tko —O: + ko
7 Raza1 -Gtk =tk + ko —0, + kg s
8 Ra241 -k -tk —k —0 + kg g+
9 Raiz d -Gtk -G +ko—ky O+ — kg g+
10 Ra142 ad—ko -k -k O+ — kg g+
11 Ra(12)4 q—ky O+ -k - -
12 Ra(12)3 -Gtk 0 + ko - -

takes place only if B; < B_ (B, > 0). Taking the residue
at pole{2}, wefind

J.st( 2
21 {2 (3
8(B_~B) (19)

(Bi—B(= 0 + A2 —Kz)? — Bu(G_—ky — k)

Further integration over 3, can be performed using the
relation

ax 6(x)
IZni(ax—b+ i0)(cx+d+i0)
o (20)
_ i.ad]
“3(ad+ bc)E’TL n'”bdﬂ
with the result
_ _B—N1324%]_ adj
1324 7 25D a0 n Nod
Digs = B(G-—K) (- +ao—k)*  (21)

+B.q%(q.—k, —ky)? = ad + bc.

The highly nonlinear denominator given by Eq. (21)
makes the contribution of the considered case dramati-
cally different from the Born amplitude and corrections
to it from the higher-order processesin which only one
photon is emitted by one of the ions [12]. Technically,
the nonlinearity is not surprising because of the related
nonlinearity of the numerator. The principal difference
from the Born-like amplitude is that with the alternat-
ing ordering of interactions, we have the situation in

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

which the p, component of the lightcone momentum-is
conserved in the scattering on one ion but is not con-
served in the scattering on the second ion. Depending
on the ordering of interaction vertices and the order of
integrations, we encounter a sequence of vertices with
conservation and nonconservation of the p_-component
of the lightcone momentum.

Similar results can be obtained for other contribu-
tions of these types.

(d) Thefinal result is given by (seetable)

Mg; = E—ZITS)_Z(]-GT[GZZlZz)ZNlNz

i (22)
. (Fkdk, a(@)RGPv(a.)
T T skika(a;, —ky)*(gz— ko)
2
(g) z [a bn][|
Re = . B_b2+ B,
A PR
Za&ﬁﬁ+&£ﬂ 23

( 1)n+1 B b d%
n [3+acD

><Eﬂ.+|

(1"t [&.bi Bb
T B.bi+B.a; B+

To verify gauge invariance, we give the explicit
form for the real part of the amplitude:

+z|

n=11
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(@@ -, |, [(-8.+8)8]
B.q°+B(a.—a))® Ba+PB.(q.—0y)’

(2 _

B [6.(6—ki)(8— ki —k2) (8. - 8 —k2)]
2[B_(a_— k1)’ (=G + Ao — ko) + B.a2(q_—k; —ky)]

08— k) (8= G + ke —ka) (- 8. + k2)] 5
2[B(A_—K)*(—ds + K)* + B.0%(a-—Gp + Ko — K1) 7]

180 -G k) (6 -8+ ki —ko) (=8, + G —ke)]
2[B(A_— 01+ K1)’ (— s + Uy —K,)* + B0%(a_— 01 + Ky —K5)7]

188 =G+ k) (=G, + ka + ko) (-8, + ko)
2[B_(q-—qy + k1)*(— 0, + ko)? + Boa’(— . + Ky + k)]

0=t ko) (=8, kit ko) (-8 + ko)A
2[B_02(~q, + Ky + ;)" + Bo(= 0, +k1)*(9— 0 + ky)]

[ =k (6 =8 + k= ko) (= G, + k1) 8]
2[B_02(a_— s+ ky —Ko)" + Bu(= 0. + ki)*(a_~ky)7]

(=8t ko) (8= Gt ko —ka) (=8, + 8 — k1) @] -
2[B_G3(a_— 0z + Ko —kq)* + Bo(0_— 0y + Kp) (=0, + Gy —K)7]

k)@ -k-k) b+ 0-k)8]y
2[B_a%(q_—ky—kp)* + Bo(=q. + a, — k) *(q_—k,)7]

We can then verify that the following condition is  This fact is also correct for the whole amplitude (23).

satisfied: This property (24) is crucial for the gauge invariance
and infrared convergence of integrations over d?k;.

2 _ In the loop integration, we can shift the integration

ReR; = 0 if k; =0 (24) variable as k; — q; — k;. Then expression (23) for

or k, =0or k;, =q, or k, = Q,. ReRgg can be simplified to

0.0(0--a)p + (=G4 +01) 0.0
B.a’+B(a_—a))* B.a:+P.(a:—a.)°
~ [0.(8-— ki) (8 — ki —k2) (6. — 8, = k2)] 5
B_(q_—Kq)*(— 0 + Ao —ky)* + B.a’(q_—k, —k,)°
o (=G + 8+ k) (= 8+ kit ko) (= G + k)8
B.a2(=q. + Ky +ky)*+ B, (=q, + ki) *(q_— G, + ko)

(2) _
ReR®) =

(25)
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Although the gauge invariance property is not mani-
fested here, asin the previous case, thefinal results after
integration over k; coincide.

3. THE WIDE-ANGLE LIMIT
OF THE M{3) AMPLITUDE

We consider the behavior of expression (25) in the
case where the transverse component of lepton
momentais large compared to the momenta transferred
to theions,

q.=—-0. = q, g >1qy. (26)

The main contribution to the matrix element is then
given by the region

lai| < |ki| <Iql. (27)
The amplitude M3} is
8ma)’N,N,Z,Z R
MEB =l ( ) 2 2 2_(q—)%v(q+),
192
. q-0q; . a,—0. .
RY = p——5ph+ p——p (28)
(9.—qy)° (th—0.)°
= (B-B)p,.
For wide-angle kinematics, we have
1 o 1 ~n
R = 2L _2q (0,0, + 28.q 1)
HED) (29)
+9°(by8ulp + 2B, [0,) ],

where 3; = B_+ B, 9 =q_=—q,, and g, , ae the
momenta transferred to ions.

For the matrix element M(z) we have (in agreement
with the result obtained in paper [16])

7n2a Z 22N N,
Q1

. (I ko0(a)Re)Pov (a4
T ski(q,—ky)’

(1 _
M@ =
(30)
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where
= B e h T
) —A—A1A2A +0-—K3 (31)
(8, —ka—81)0(8. —ka)g
B.(A-— 02+ Ko)* + (0, —ko)°
In the considered limit, this expression becomes
@~ 1 A A
R O—— (2B.q_ (1, +8.0,)
b.q
(0. Tky)" Ekz) %
S @y (a?)° (32)

2q_

2 (kaly, + 2B kthl)}(s —-B.),

ko > |dal.

Thisexpression vanishes after angular averaging. It can

be shown that the quantity M3 also vanishes in the

limit of wide-angle pair production and is proportional
to [g,)/|q| <€ 1, which isin agreement with [3].

For the amplitude MEZ) in Eg. (22), the quantity

gg plays the role of a cut-off parameter in the region

|k;| > |a]. From very general arguments, it can be writ-
ten in the form

[ki(a, — )kz(qz k2) ]DR

(@)’

with some dimensionless tensor matrix R,,s indepen-
dent of k; and q;. Expanding expression (25), we obtain

(2) -
ReR ) =

(33)

Hvap»

d’k,d’k, ReR)
| —a tk3(a: — k1)’ a(a, —k,)*
1 4(B.-B) B) qmaxl qmax
(q) *B.+B)* 9 g

where | is the unit matrix and g, = /R is the upper
integration limit, with R being the nucleus radius. Such
a logarithmic enhancement is absent if the number of
the exchanged photons from each ion exceeds two
(Fig. 5). In fact, the amplitudes M{%), M{3), n > 2 con-
tain only the first power of the largelogarithm, whereas
M, m, n > 2 do not contain such a factor at all

because the corresponding loop momenta integrals are

(34)
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(a)
P1

653

P2

Fig. 5. Some Feynman diagrams for amplitudes of the type M% @, MES% (b), and MEnm)) (c) withm,n= 2.

convergent in both infrared and ultraviolet regions and
we can safely put |q)| = 0 in loop integrations.

Thus, the differential cross section for the consid-
ered kinematics is determined by the interference term

(M&))* M), which has the form (for comparison, we
also present the Born term)

do, _ 16(Z,2,a%)’
db,dx i
X+ (=%

92950 b,

(3%)
d’q,d’q,d’q,

doy _ 16(Z12,0%)°1—2x

dbidx — g’qlq’g® b

(36)
q2 q2 2. 2. 2
x In—+In—*Qd"q,d"q,d"q_,

1 a.

where

_ 9-[Ha.-q.)
(1-X)0”+x(d_—qy)°
q. {g.—-q,)
xq: + (1-x)(d; —.)*

+

_B _ 4m’x(1—x)
= -, € = ——.
b,

X
2
Qs

€e<X, b;<l-g,

We note that expression (36) is symmetric under simul-
taneous substitutions g, ~— g_ and 3, ~— B_dueto
the C-even nature of the interference.

Finally, from a very straightforward generalization
of (33), it can be shown that the set of amplitudes with
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an odd number of exchanges with one or both nuclei is
suppressed in the limit of wide-angle production:

(2m)
I\/|(2n+ 1

|:|q 1|D (2m+1) [hCI2|D
9|92 7
wr: ool

4. MULTIPHOTON EXCHANGE

We now generalize the above picture to the case of
multiple photon exchanges (m, n > 2). Using the relation

I = i
n n-1
d’k,...d%k 9
1.-. n_l

X
I(ki+A2>...(k§_1+xz)[(q—kl—... —Kn_1)?+A]
_ nin""(g’/A%)
q2

and taking the combinatorial factor 1/n! coming from
the symmetric integration over a; and 3; into account,
we have to replace any single photon exchange with an
infinite set of photons by multiplying the amplitude by
eikonal factors of the type exp{i$;(q?} with the phase
$i(g?) = +xaZzIn(g%A?). The scattering amplitudes of an
electron and a positron differ only by the sign of the
phase (whichispositivefor electrons) [9]. Thisreplace-
ment is shown in Fig. 6, where the double photon line
corresponds to infinitely many photons.

Using the same technique asin [17], we can see that
the amplitude relevant to Fig. 7a and Fig. 7b can be
written as

R = Bexp{-i[0:(q?) —d,(aD)]}
+Bexp{i[0(a}) —d,(aD)]} -

Theinteractions of the electron and the positron with the
Coulomb field differ only by signs. Although thisexpres-

(39)
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P1 D1 12 P1
P2 12 P2 P>

Fig. 6. Representation of all eikonal exchanges.

Fig. 7. Feynman diagrams for amplitudes with many photon
exchanges. The double photon line represents any number
of exchanged photons, the double zigzag line represents
only an odd number of exchanged photons.

sion is infrared-unstable in the case where Z; # Z, the
regularization parameter A entersit in astandard way.

We now consider the class of diagrams shown in
Fig. 7c. In Subsection 2.2, we obtained expressions (16)
in the case where m = n = 2, with ReRy 3, = 0. It can
be shown that higher-order termswith any even number
of photons from the same nucleus attached to the lepton
world line between two photons from other nuclei do
not contribute to the amplitude of the process under
consideration. This follows from the relation
(sgna)®+*1 = ggna.

The genera structure of the amplitude correspond-
ing to Fig. 7c can be constructed using the lowest-order
truncated amplitude (without single-photon propaga-

tors) R3),
2
~ cos
Rg; - (¢12(CI1))R(1)

(2)
1

x exp{i[92(k*) —d,((a,—K))]} ,
1 (B -8+ ko(-8.+k):
ITB_(q, —k)*+ B.(9_—q, + k)*
B0 = G+ )
B_(d. k)

w_ 1 (40)

2 ~
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The subsequent generaization is obvious. For
instance, we give the expression corresponding to the
diagramin Fig. 7d,

R = cos(91(k2))exp[—id1((a; —k;)*)]

x c0S(9,(K3)) explid,((ds —K2)*)] Ryzpa-

From the above consideration, we conclude that it
can therefore be written as the genera structure of the
matrix element MEnm)) corresponding to m photon
exchanges from one ion (with 4-momenta k) and n
exchanges from the other (with 4-momenta k;) can be
schematically written as

(41)

m B m n T[2
My = 1sNaN(Z30)™(Zo0) "1
y d’k, d’k,_,dk; dk,_, 1 42)
o B
1 =mp
x —=—0(d) Ry = v (a.),
S
Ki... K,

where m and n satisfy the condition [m—n| < 1. At this

stage, we omit phase factors in the structure REnm)) (in
order to understand the problem clearly), and it can
therefore be written as

=0, 50, 52 . 52, 52
Rw) *+ R + Ry + R + R

=(3) , 5(R , 5L
+Reo+Re +tRa -

=(m)
R =
(n) (43)

where

=2 1 (B-Ro(-8.+8&-k)
(1) ~

IMa_(—q, +q,-k)*+a.(q_—k)?
a,(q_—k)’
a_(—0. + 0, —k)*

=(2 =(3
R& = R3 =0,

xIn

_ c
RE" = — [i+lln2—1},
C,+tCl2 2 ¢

¢, = B(g-—kp)*(q_—k; —k,—xy)?
X(-0,+ Q2—K1—K2)2’

¢, = B9 (9-—k; — k)

2 (44)
X(g.—k;—k,—x; —K,)%,

RE) = L[T_[Z+1'|n2%':|
d,+d, 2 2" 4d,)
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d; = B.(g-— %) (g — K, — K, —ky)’

x(q—_Kl_KZ_KS_kl_kZ)Za

d, = B.(q_—x;—ky)’

x (q—_Kl_KZ_kl_kZ)z
X(-q,+ qZ_Kl_KZ_K3)2'

Here, ﬁ% isonly the second termin theright-hand side

in Eg. (23) and the index R(L) denotes two possible

configurations of photons for I?{E%R (Fig. 7€) and ﬁg;L

(Fig. 7f).

Thus, the general algorithm for constructing an arbi-
trary term is transparent. Unfortunately, we cannot
obtain a compact expression for the whole amplitude.
The reason is the increasing nonlinearity of the propa
gators with the order of interaction. The behavior of the
above denominators is very different from the Born-
like case, where the simplicity of propagators allows
one to obtain eikonal-like expressions.

The result of partial summation like (41) suffers
from infrared divergences and cannot be considered
final. On the other hand, the final result (44) impliesthe

summation over the classes REnm)) of FD and must con-

tain al the dependence on the “photon mass’ A in the
form of ageneral phase factor, proving theinfrared sta-
bility of the cross section. We believe that this question
will be the subject of a separate investigation.

5. CONCLUSIONS

The wide-angle lepton pair production in peripheral
interactions of ultrarelativistic heavy ions is an arche-
type reaction for hard processes in central hadronic
hard collisions of heavy nuclei. In the electromagnetic
case, the expansion parameter Z; ,o ~ 1 makesthe mul-
tiple photon collisions my + ny — |*I- potentially
important, and similarly, the effect of multiple gluon
collisions in central collisions is enhanced by a large
number of nucleons at the same impact parameter. The
crucial issueiswhether such multiple photon collisions
can be described by the Born cross section in terms of
the collective photon fields of colliding nuclei. We have
obtained the expression for the amplitude for the 2y +
2y — I*1= process and have shown that its contribution
is dominant in the wide-angle limit. Our principal find-
ing is that the amplitude is manifestly of a non-Born
nature, which is suggestive of complete failure of the
linear k; factorization even in the Abelian case.

The leading term of the multiphoton collision con-
tribution to the amplitude of the production of high
transverse momentum leptons, 2y + 2y — I*I-, is
found to have a logarithmic enhancement, while such
an enhancement is absent in higher-order terms. We
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presented the algorithm that allows constructing the full
amplitudein all orders. Theresults can be useful in appli-
cation to the QCD process of producing high-k; jets as
well as the bound state creation (positronium, charmo-
nium), the issue which will be investigated el sawhere.
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Abstract—We numerically study particle acceleration by the electric field induced near the horizon of arotat-
ing supermassive (M ~ 10°-10'°M,,) black hole embedded in the magnetic field B. We find that accel eration of

protons to the energy E ~ 10% eV is possible only at extreme values of M and B. We also find that the acceler-
ationisvery inefficient and is accompanied by a broad-band MeV-TeV radiation whose total power exceedsthe
total power emitted in ultrahigh energy cosmic rays (UHECRS) at least by afactor of 1000. Thisimpliesthat if
O(10) nearby quasar remnants were sources of proton events with an energy E > 10%° eV, then each quasar rem-
nant would, e.g., overshine the Crab Nebula by more than two orders of magnitude in the TeV energy band.
Recent TeV observations exclude this possibility. A model in which O(100) sources are situated at 100—
1000 Mpc isnot ruled out and can be experimentally tested by present TeV y-ray tel escopes. Such amodel can
explain the observed UHECR flux at moderate energies E = (4-5) x 10'° eV. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The conventional hypothesis of ultrahigh-energy
cosmic ray (UHECR) acceleration in extragalactic
astrophysical abjects has two important consequences.
First, it predicts the Greisen—Zatsepin—-Kuzmin (GZK)
cutoff [1] in the spectrum of UHECRs at an energy on
the order of 5 x 109 eV. Whether such a cutoff indeed
exists in nature is currently an open question [2, 3].
Second, it implies that the observed highest-energy
cosmic rayswith E > 10%° eV should come from within
aGZK distance of ~50 Mpc. Moreover, under plausible
assumptions about extragalactic magnetic fields sup-
ported by recent simulations [4], the propagation of
UHE protons over the GZK distance is rectilinear and
the observed events should point back to their sources.
While sub-GZK UHECRswere found to correlate with
BL Lacertae objects [5, 6], no significant correlations
of cosmic rays with energies of E = 10%° eV with
nearby sources were found [7].

In view of the last problem, a question arises
whether there exist UHECR accelerators that can pro-
duce super-GZK protons and are quiet in the electro-
magnetic (EM) channel. If such quiet accelerators
existed, they could explain the apparent absence of
sources within ~50 Mpc in the direction of the highest-
energy events. This idea was advocated, eg., in [§],
where sources of UHE protons were associated with
supermassive black holes in quiet galactic nuclei (so-
called “dead quasars’). However, it was pointed out

T This article was submitted by the authors in English.

in[9] that most of the energy available for particle
acceleration in such an environment is spent for EM
radiation by the accelerated particles. As a conse-
quence, the flux of TeV y-rays produced by such an
accelerator may be at a detectable level.

Recent observations by HEGRA/AIROBICC [10],
MILAGRO [11] and TIBET [12] arrays substantialy
improved the upper limits on the flux of 7-rays above
10 TeV from point sourcesin the Northern Hemisphere.
Thismay completely exclude the possibility of explain-
ing observed super-GZK cosmic rays by the accelera
tion near supermassive black holes. The purpose of this
paper isto analyze this question quantitatively. For this,
we numerically study particle acceleration near the
black hole horizon. Following [8, 9], we restrict our-
selves to the case of protons. The case of heavy nuclei
acceleration, propagation, and detection is phenomeno-
logically very different and requires separate consider-
ation. In particular, heavy nuclei can easily desintegrate
as early as the acceleration stage.

We stress that our purposeis not to construct areal-
istic model of acompact UHE proton accel erator, but to
find whether quiet compact accelerators can exist, even
if the most favorable conditions for the acceleration are
provided. For this, we minimize the energy losses of
accelerated particles by considering acceleration in the
ordered electromagnetic field and neglect all possible
losses related to scattering of the accelerated particles
on matter and radiation present in the acceleration site.
However, we self-consistently take into account the
synchrotron—curvature radiation losses, which are

1063-7761/05/10004-0656$26.00 © 2005 Pleiades Publishing, Inc.
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intrinsic to the acceleration process. Clearly, this
approximation corresponds to the most favorable con-
ditionsfor particle acceleration. In realistic models, the
resulting particle energy must be smaller and the emit-
ted EM power larger. Therefore, our results should be
considered as alower bound on theratio of the electro-
magnetic to UHECR power of a cosmic ray accelerator
based on arotating supermassive black hole.

We find that the flux produced by a nearby UHE
proton accelerator of super-GZK cosmic rays in the
energy band E, > 10 TeV should be at least 100-1000
timeslarger than that of the Crab Nebula. The existence
of such sources is indeed excluded by recent observa-
tions [10, 11]. At the same time, the constraints on the
sources of sub-GZK cosmic rays are weaker or absent
(see Section 7 for details).

This paper is organized as follows. In Section 2, we
describe our minimum-loss model in more detail. In
Section 3, we present an analytical estimate and the
numerical calculation of the maximum particle energy.
In Section 4, we consider the self-consistency con-
straints on the parameters of this model that arise from
the requirement on the absence of on-site e*e™ pair pro-
duction caused by emitted radiation. In Section 5, the
calculation of the EM luminosity of the accelerator is
presented. In Section 6, observational constraints are
derived. Section 7 contains a discussion of the results
and concluding remarks.

2. THE MODEL

The model that we consider is based on a rotating
supermassive black hole embedded in a uniform mag-
netic field. Because of the rotational drag of magnetic
field lines, an eectric field is generated, leading to
acceleration of particles. In the absence of matter, the
corresponding solution of the Einstein-Maxwell equa-
tions is known analyticaly at an arbitrary inclination
angle of the black hole rotation axis with respect to the
magnetic field [13, 14]. We assume low accretion rate
and small matter and radiation density near the black
hole, and neglect their back reaction on the EM and
gravitational fields. We also neglect the effect of matter
on propagation of the accelerated protons. This corre-
sponds to the most favorable conditions for particle
acceleration, and therefore leads to a maximum proton
energy and minimum EM radiation.

The model has three parameters: the black hole
mass M, the strength of the magnetic field B, and the
inclination angle x. We consider a maximally rotating
black hole with arotation moment per unit massa = M.
This maximizes the strength of the rotation-induced
eectric field. For a given injection rate and geometry,
the above parameters completely determine the trajec-
tories of accelerated particles and, therefore, their final
energies and the emitted radiation. We reconstruct par-
ticletrajectories numerically, keeping track of the emit-
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ted radiation and taking its back reaction onto particle
propagation into account.

We assume that protons flow into the acceleration
volume from the accretion disk that is situated at larger
radii. We model this accretion by injecting nonrelativ-
istic particles uniformly over the sphere of the
Schwarzschild radius Rg = 2GM, which is two times
larger than the horizon of the maximally rotating black
hole. We follow the trgjectories of particles that propa-
gate toward the horizon and that are then expelled from
the vicinity of the black holewith high energies. It turns
out that such trgjectories exist only if the inclination
angle of the magnetic field with respect to the rotation
axisis sufficiently large, x = 10°. For smaller inclina-
tion angles, al particlesthat propagate toward the hori-
zon are finally absorbed by the black hole. This means
that the stationary regime in which particles accreted
onto the black hole are subsequently accelerated and
gjected with high energiesexistsonly at x = 10°. Inthis
regime, changes of the inclination angle and the injec-
tion radius do not strongly affect the maximum energies
of particles.

3. MAXIMUM PARTICLE ENERGIES
IN THE STATIONARY REGIME

In the absence of matter and radiation backgrounds,
particle energies are limited by theradiation lossintrin-
sic to the acceleration process. For a general electric
and magnetic field configuration, the energy lossin the
ultrarelativistic limit is given by [15]

d¢ _ 26'¢’
dt 3m4

[((E+vxB)Y’—(EDV)T, (1)

where m, e, and v are particle mass, charge, and veloc-
ity, respectively. We use this equation in our numerical
modeling to calculate the electromagnetic radiation
produced by the accel erated particles and to account for
the back reaction of this radiation on particle trgjec-
tories.

Before presenting the numerical results, it is useful
to summarize some simple qualitative estimates (see,
e.g. [9, 16, 17]). We consider particle acceleration by a
generic electromagnetic field obeying |E| ~ |B|. If the
energy losses can be neglected, energies of accelerated
particles are estimated as

B M

€ = eBR= 10" —————¢
10* G10*°M,

)

where we assume that the size R of the acceleration
region is of the order of the gravitational radius of the
black hole, R=2GM. But if the magnetic field strength
is high, the synchrotron/curvature energy losses cannot
be neglected.
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Fig. 1. The results of numerical calculation of maximum
energies of accelerated protons and accompanying y-rays
are shown by crosses (solid lines are fits to numerical data).
The dashed line is estimate (9) of the proton energiesin the
curvature-loss dominated regime. The shaded region corre-
spondsto the magnetic field strength exceeding the pair pro-
duction threshold by the curvature y-rays. The black hole

massisM = 101°M,.

If no special relative orientation of the three vectors
E, B, and v is assumed, Eq. (1) becomes
dé _ 2e'B*&°

dt 3m4

: ©)

which is the standard formula for the synchrotron
energy loss. Equating the rate of energy gain dé/dt =
eE ~ eB to the rate of energy loss, we find that in the
synchrotron-loss-saturated regime, the maximum
energy isgiven by (see, e.g., [18])

1/2

O3m* 0 18[] B 7?2
Esn = ——01 =16x10 ev. (4
7 2e’BO Lot &

Here, we assume that accelerated particles are protons,
for electrons, the maximum energy is much smaller.

Thecritical magnetic field strength at which the syn-
chrotron energy loss becomes important can be found
from the condition that estimates (2) and (4) give the
same result,

3m’ Dl/s 0 M g2

—0 =30 G. (5)
e rH Hom D
Here, it isassumed that R~ Rs. Thiscritical field corre-
sponds to the particle energy

Bcrit =

1] M ¥
otom -

€y =3x10 ev, (6)
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which is the maximum energy attainable in the syn-
chrotron-loss-saturated regime for a given black hole
mass.

Acceleration ismoreefficient (loss (1) can be orders
of magnitude smaller) in the special case where E, B,
and v are nearly aligned. These conditions may be
approximately satisfied in some regions around the
black hole. In this case, particles closely follow the
curved field lines and the curvature radiation |0ss,

dg _ 2e"¢*

dt 3m'R?
becomes the main energy loss channel for high-energy
particles. For an order-of-magnitude estimate, we can
assume that the curvature scale of the magnetic field
lines is on the order of the size of the acceleration
region, R = 2GM. This trandates into the maximum
energy

(7)

4 ~2 1/4
mR
o = BRI ®)
which gives
1/2 1/4
€ = 11x10°0M 00 B 0%y, (g

bom P Hot -

for protons, where we again set R = Rs. The range of
applicability of Egs. (8) and (9) is given by the same
condition B > B;.

In the numerical simulations, we injected protons
uniformly over the sphere surrounding the black hole.
We disregarded trajectories that start at the injection
sphere and move outward. Among protons that
approach the horizon and are then expelled to infinity,
we selected those which have the maximum final
energy. For ablack hole mass M = 10'° M, the depen-
dence of this maximum energy on the magnetic field
strength is shown in Fig. 1 (upper curve). For energies
on the order 10%° eV and higher, the numerically calcu-
lated curve approaches limit (9), which corresponds to
the curvature-loss-saturated regime. The acceleration to
these energies requires magnetic fields in excess of
10* G. The necessary magnetic field iseven stronger for
smaller black hole masses, cf. Eg. (9). The maximum
energies of protons do not depend strongly on theincli-
nation angle in awide range of X.

4. CONSTRAINTS FROM PAIR PRODUCTION

There is an important self-consistency constraint
that does not alow increasing B and M independently
in order to reach higher energies. The reason is as fol-
lows. In our model, it was assumed that the acceleration
proceeds in the vacuum. However, at a sufficiently
strong magnetic field, photons of curvature radiation
may produce e*e” pairs. Electrons and positrons are in
turn accelerated and produce more photons, which
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again produce e'e pairs, etc. The plasma created by
this cascade then neutralizes the electric field and pre-
vents further acceleration of particles. For consistency
of the model, we have to require that the cascade does
not develop.

We consider this process in more detail. The energy
€, of the curvature photons in the regime when particle
energies are limited by curvature lossesis estimated as

— Sc(ggur 0 B3/4M1/2
2m°R

(cf. Eq. (8)). Remarkably, the photon energy is inde-
pendent of the particle mass. This means that proton-
originated and electron-originated photons have the
same energy. Numerically, we have

€ =

3/4 1/2
~14DB 00 M 0% oy

ho*cd? Hom

If this energy is enough to produce more than one e*e-
pair within the acceleration site, the instability may
develop.

Therefore, for the stationary operating accelerator,
the mean free path d of a y-ray in the background of a
strong magnetic field (see[19]) hasto belarger than the
Size of the acceleration region

(10)

10° G

d=100=¢ expEB BeDcm>RS (11)
This requirement leads to the condition
OlOM 217
B<3.6x 10“%1 Y H G (12)

on the magnetic field in the vicinity of the horizon.

In the numerical calculation of proton trajectories,
we kept track of the emitted photons. For given param-
eters of the accelerator, we determined the maximum
photon energy. The dependence of this energy on the
magnetic field strength is shown in Fig. 1 (the lower
curve). Substituting the calculated photon energy in
Eqg. (11), we can check whether the accelerator isin the
stationary regime. The shaded region in Fig. 1 corre-
sponds to nonnegligible pair production. The results of
numerical calculation are in good agreement with
Eqg. (12).

From Fig. 1, we conclude that acceleration of pro-
tons to energies higher than 10% eV is marginally pos-
sible in a small region of the parameter space (M, B).
The magnetic field strength B must be close to the pair
production threshold. The black hole mass M must be
larger than 10°M. Such black holes are rare. For
example, in [20], it is found that supermassive black
holes in AGNSs range within 106°-10'%2M,, with the
mean mass being 10%°M,. The list of nearby (within
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40 Mpc) candidates for quasar remnants [21] does not
contain black holes with masses above 5 x 108M.

Under reasonable assumptions about the black hole
mass, the acceleration to energies above 10%° eV is
impossiblein the stationary regime discussed above (no
particle production in the acceleration volume). How-
ever, although the accelerator cannot operate perma-
nently, it is possible that UHECR are produced during
“flares,” or short episodes of activity of the accelerator,
interrupted by discharges. The natural duration of one
flare is about the time needed for the charge redistribu-
tion and neutralization of the electric field in the accel-
eration volume to establish. This can be roughly esti-
mated as the light-crossing time Tj,. ~ RJc = 10 hours
for the 3 x 10°M, black hole. During such flares, the
electromagnetic luminosity of the accelerator must be
much higher than the luminosity produced in the sta-
tionary regime, because the electromagnetic flux is
dominated by the radiation produced by e‘e pairs
whose number density is much higher than the density
of theinitial protons. Because we are interested in the
possibility of having a“quiet” UHE proton accelerator,
we concentrate in the next section on the case of the sta-
tionary regime, with the parameters of the model tuned
toB=3x 10* G, M = 10°M_.

5. ELECTROMAGNETIC LUMINOSITY
OF THE ACCELERATOR

Itisclear from Fig. 1 that the accel eration of protons
to energies above 10%° eV proceeds in the curvature-
loss-saturated regime. In this regime, most of the work
done by the accelerating electric field is spent on the
emission of curvature radiation rather than on the
increase in particle energy. The ratio of the dissipated
energy to the final energy of aprotonis

BR o] M 2 B P4
R=22x10
cur Eh.oloM@ EéXlO d

Thus, the energy carried away by photons is at least a
hundred times higher than the energy carried by cosmic
rays. Because only a small fraction of the accelerated
protons reaches the UHECR energies € > 10% eV, the
ratio of the electromagnetic luminosity of the accelera-
tor toitsluminosity in UHECR withE>10% eV iseven
higher.

Numerically, we calculated thisratio as follows. We
summed energies of those protons which were acceler-
ated above 10%° eV, and summed the energy emitted in
synchrotron—curvature radiation (including the radia-
tion emitted by protons that did not acquire sufficient
energy while being expelled to infinity). We then took
theratio of the two sums.

The results of numerical calculation of the ratio of
the electromagnetic and UHECR luminosities in the
stationary regime are shown in Fig. 2 by crosses. Vari-
ations are due to fluctuations in the precise positions of

. (13)
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Fig. 2. Numerically calculated ratio of the electromagnetic
luminosity of the accelerator to the luminosity emitted in

particles with energies € > 10%° eV is shown by crosses,
with the solid line being the fit to the numerical results. The
shaded region corresponds to the magnetic field strength
above the threshold of pair production by the curvature

y-rays. The black hole massis M = 101%M.

the injection points.! The qualitative behavior of the
numerical results is easy to understand. Close to the
“threshold” € = 10%° eV, the accelerator emits a finite
power Lg, but does not produce UHECR with € >
102 eV. Therefore, the ratio Lgy/Lynecr diverges as
€ — 10% eV. If the magnetic field is large, the maxi-
mum energies of particlesincrease aswell. But theratio
%R dsoincreasesfor each particle according to Eq. (13),
and so does Lgy/Lypeck- The minimal value of
Lem/Lunecrisreached at € = 1.5 x 10%° eV. The numer-
ically calculated minimum of Lgy/Lynecr iSlarger than
estimate (13) by afactor of 10.

In obtaining theresultsin Fig. 2, we have taken only
the curvature radiation produced by protons into
account. For the magnetic field strength above the pair
production threshold ~3 x 10* G (and, correspondingly,
Emax > 1.3 x 107 eV, see Fig. 1), our results give the
lower bound on the electromagnetic luminosity of the
compact accelerator.

We can see from Fig. 2 that the electromagnetic
luminosity of the UHE proton accelerator based on a
rotating supermassive black holeis

Lem = 103LUHECR' (14)

Because the typical energy of photons of curvature
radiationisabout 10 TeV (see Eg. (10)), the aboverela
tion implies that such a source of UHE protons would

1 For this calculation, we performed injection in 10° randomly cho-
sen points uniformly distributed over the sphere.
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be much more powerful in the 10 TeV band than in the
UHECR channel.

6. OBSERVATIONAL CONSTRAINTS

Thefact that production of UHE protonsina*“quiet”
accelerator is accompanied by the emission of the TeV
y-ray flux enables us to put strong constraints on the
possibility of existence of such accelerators in the
nearby Universe. Following [8], we assume that there
are about N ~ 10 nearby UHECR accelerators not far-
ther than Dg,x ~ 50 Mpc from the Earth. If these
sources give the major contribution to the flux of cos-
mic rays above 10 eV [22],

11 erg

2 k)
cm s

the mean energy flux produced by each sourceis

tot

F i}
Funecr I—2ERT) (2-6) x 107220
N cm’'s

Fohecr 0(2-6) x 10

(15

We have seen in the previous section that the lower
bound on the ratio of the electromagnetic and UHECR
luminosities of such a source is % > 10°. This means
that the electromagnetic flux from the source must be

910 erg

Few > (2-6) x 10 > (16)
Nem? s
which implies the total luminosity larger than
Lgy 010 erg/s (17)

at adistance of Dgz. This must be an extremely pow-
erful source of TeV radiation. For comparison, the flux
of the Crab Nebula at energies above 15 TeV isFq 4 ~
10 erg/(cm? s) [10]. Thus, the hypothetical “quiet”
cosmic ray sources, which would explain the observed
UHECR flux, should be 100-1000 times brighter in the
TeV band than the Crab Nebula.

The possibility of the existence of persistent point
sources of this type in the Northern Hemisphere is
excluded by the measurements of the HEGRA
AIROBICC Array [10] and by the MILAGRO experi-
ment [11, 23]. The upper limit on the energy flux from
an undetected point source of ~15 TeV y-rays provided
by HEGRA/AIROBICC group [10] is a a level of
Fuecra = (2-3)Fc- A much tighter upper limit was
published recently by the MILAGRO Callaboration,
FumiLacro = (0.3-0.6)F ¢4 [23].

7. DISCUSSION

The above model of particle acceleration near the
horizon of a supermassive black hole is based on a
number of assumptions: the maximum rotation moment
of the black hole, alow matter and radiation density in
the acceleration volume, the absence of back reaction
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of the accelerated particles and their radiation on the
EM field, and the uniform magnetic field at large dis-
tance from the black hole. These assumptions have one
common feature: they facilitate acceleration to higher
energies and minimize losses (and, therefore, the radia-
tion produced). We have found that even under these
idealized conditions, the acceleration of protons to the
energy E = 10% eV requires extreme values of parame-
ters, M = 10'°M,, and B = 3 x 10* G. Moreover, the
acceleration is very inefficient: the total power emitted
in TeV gamma rays is 100-1000 times larger than in
UHECR. In view of recent TeV observations, thisrules
out some UHECR models based on this acceleration
mechanism, e.g., the model of severa nearby dormant
galactic nuclei (dead quasars), the goal of which wasto
explain the observed UHECR flux having an energy of
E>10%0eV.

In a more redlistic case, the above conditions may
not be satisfied completely, and the acceleration of pro-
tonsto an energy E ~ 10%° eV in the continuous regime
may not be possible. The synchrotron losses due to the
presence of arandom component B, 4 of the magnetic
field can be neglected if

Bm ~ 10—2m B,

Rm, m,,
where R isgiven by (13). This meansthat the presence
of atiny (1% level) random magnetic field leads to a
decrease in the maximum energies of accelerated pro-
tons and an increase in the electromagnetic luminosity
of the accelerator. We note that the synchrotron radia-
tion isemitted in this case at the energies

m B m B
€ <S——=01——TeV.
ynen 62 Brand mp Brand

Brand < (18)

(19)

The power is still given by Eq. (14).

Even if the strength of the random component of the
magnetic field isassmall as10-° B, for electrons, which
are inevitably present in the accelerator, the synchro-
tron losses dominate over the curvature losses. The
electromagnetic power emitted by electrons is then in
the 100 MeV-10 TeV energy band (see Eq. (19).
Assuming that the density of electrons is on the same
order asthe density of protons, we obtain the same esti-
mate (14) for the 100 MeV luminosity of the accelera-
tor. This means that such an accelerator is not only a
powerful TeV source, but also an extremely powerful
EGRET source.

Even if the idealized conditions are realized in
nature, the corresponding objects must be extremely
rare. Thus, only avery small fraction of (active or quiet)
galactic nuclei could be stationary sources of UHE pro-
tons with energies above 10 eV.

If the parameters of the model are not precisely
tuned to their optimal values, it is expected that the
maximum energies of accelerated protons should be
somewhat below 10%° eV. It is therefore interesting to
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note that most of the correlations of UHECRs with BL
Lacertae objects come from the energy range (4-5) x
10%° eV. The central engine of BL Lacs is thought to
consist of a supermassive black hole; it is possible that
the accel eration mechanism considered above operates
in these objects.? This mechanism may also operate in
the centers of other galaxies that may have (super)mas-
sive black holes, including our own Galaxy, where it
may be responsiblefor the production of cosmic rays of
energies up to ~10* eV [13, 25].

The constraints from TeV observations are different
in this case. First, cosmic rays of lower energies propa
gate over cosmologica distances; hence the UHECR
flux is collected from a much larger volume and the
number of sources may be larger. Correspondingly, the
TeV luminosity of each source is smaller. Second, the
TeV radiation attenuates substantially over several hun-
dred megaparsecs. Third, at E < 10% eV, the ratio
Lem/Lunecr is smaller. For example, we consider the
case of O(100) sources located at z= 0.1 with atypical
maximal energy at the accelerator E = 5 x 10%° eV.
According to Fig. 1, the typical energy of produced
y-raysisthen =4 TeV. The flux of y-raysin this energy
rangeis attenuated by afactor 10-100, while according
to Eq. (13), Lem/Lynecr = 50. Therefore, we may expect
Fem = (0.01-0.1)F,,, for the TeV flux from each of
these sources. This is within the range of accessihility
of modern telescopes. For example, the TeV flux from
the nearby (z = 0.047) BL Lac 1ES 1959 + 650, which
correlateswith the arrival directions of UHECRs[6, 26],
isat alevel of 0.06F,,, during the quiet phase and rises
up to 2.9F,,, during flares. Several other BL Lacs,
which are confirmed TeV sources, have fluxes of
=0.03F ¢4, (see, e.q., [27]).

This paper mainly concernsthe stationary regime of
acceleration when the acceleration volume is not pol-
luted by the creation of e*e™ pairs. To ensure this condi-
tion, we required that the magnetic field not exceed the
critical value (12). If the magnetic field is larger, the
acceleration by the mechanism considered here can
only occur during flares, which are interrupted by the
creation of ee” plasma and neutralization of the elec-
tric field as discussed at the end of Section 4. Although
we do not have a quantitative model of a flare, some
features of this regime and its consequences for the
UHECR production can be understood qualitatively.
Because there is ho constraint on the magnetic field in
this regime, the maximum energies of the accelerated
protons may exceed 10%° eV. However, the efficiency of
the accel eration during flares must be much lower than
in the stationary case. First, as follows from Fig. 2, the
Lem/Lunecr ratioislarger at large B. Second, the domi-
nant part of the EM radiation is produced by the created
electrons and positrons, whose humber density by far

2We note that if the accelerated particles interact with the photon
background outside the central engine, the same mechanism may
be responsible for “photon jets” discussed in [24].
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exceedsthe number density of protons. Thus, we expect
that the Lgy/Lypecr ratio for this sourcesis much larger
thanin Eq. (14).

UHECR accelerators operating in the flaring regime
would produce an approximately constant UHECR flux
at the Earth. Thereason isthetime delay of protons due
to random deflections in the extragalactic magnetic
fields. Thisdelay is on the order of ~10°[a/1°]? yr for a
source at 100 Mpc, where a is the deflection angle.
Because the time scale of flares (light crossing time) is
on the order of more than a day, the variations of
UHECR flux would disappear upon averaging. On the
contrary, the TeV radiation from such a source would
be highly variable, with powerful TeV bursts and an
average energy flux in the TeV band exceeding that in
UHECRsby afactor of 10* or higher. We note that there
exist tight constraints on transient TeV sources: the
energy flux of aTeV burst having aduration of 10° shas
to be less than 1071° erg/(cm? s) ~ 10F ¢, [11, 12]. As
in the case of a stationary accelerator, this constraint
excludes the possibility of explaining the observed
UHECR flux by afew nearby proton accel erators oper-
ating in the flaring regime. The hypothesis of severa
hundred remote sources is not constrained by TeV
observations.

To summarize, the model of compact UHE proton
acceleratorsthat operate near the horizons of supermas-
sive black holesin galactic nuclei can explain only the
sub-GZK flux. A large number (several hundreds) of
sources situated at cosmological distances. Production
of UHECRS in such sources may be associated with
blazar-type activity, TeV y-radiation being an important
signature of the model, testable by existing y-ray tele-
SCOopes.
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Abstract—A vast program of the experimental investigation of muon-catalyzed dt fusion was performed on
the Joint Institute for Nuclear Research phasotron. Parameters of the dt cycle were obtained in awide range of
the D/T mixture conditions: temperatures of 20-800 K, densities of 0.2-1.2 of the liquid hydrogen density
(LHD), and tritium concentrations of 15-86%. In this paper, the results obtained are summarized. © 2005 Ple-

iades Publishing, Inc.

1. INTRODUCTION

Investigation of the muon-catalyzed fusion (MCF)
process is a unique independent direction in modern
physics relevant to molecular, atomic, and nuclear
physics [1-6] and to astrophysics [7]. Study of nuclear
fusion reactions from the bound states of amuonic mol-
eculeis of great importance for determining properties
of the lightest nuclei, including various exotic nuclear
systems. In addition, the high neutron yield of MCF can
be effectively used for solving different practical prob-
lems such as the construction of an intense 14-MeV
neutron source [8] and a nuclear fuel breeder [9].

That iswhy the process of MCF in hydrogen isotope
mixtures has been under active study in many laborato-
ries worldwide over the last several decades. Within
this period, many experimental results were obtained
by investigating muon-induced processes in different
mixtures of hydrogen, deuterium, and tritium, as well
as in pure isotopes; most of these experimental results
are in good agreement with theory. The most impres-
sive achievement is the precise agreement between
experiment and theory in the temperature dependence
of the ddp-molecule formation rate in gaseous deute-
rium [4, 10, 11]. This allowed the binding energy of

T This article was submitted by the authors in English.

the loosely bound state of ddu to be determined with

avery high accuracy, €5 = -1962.56..> meV [10],
which should be compared with the theoretical value

theor

€™ = _1964.83 meV [4].

In comparison with pure deuterium, the MCF pro-
cess in a D/T mixture manifests much richer physical
phenomena (the muon transfer d — t from the ground
and excited states of the du-atom, epithermal, and
many-body effects in the dtpy-molecule formation).
Theory predicts a significant increase of the dtp-mole-
culeformation rate on the D, and DT molecule with the
rise of temperature and density of the mixture[12, 13].
Therefore, complete theoretical analysis requires mea-
suring temperature and density dependences of the
d + t cycle parametersin rangesthat are aslarge as pos-
sible. Finally, the results of an experimental and theo-
retic study of MCF processes in a double D/T mixture
will be rather helpful for investigation and explanation
of the most difficult case of the triple H/D/T mixture.

Previoudly, atruly systematic experimental study of
M CF process was performed at PSI only for alow-den-
sity (¢ = 0.1 LHD, with aliquid hydrogen nuclei den-
sity of LHD = 4.25 x 10 cm3), low-temperature (T <
300 K) gaseous D/T mixture [14]. The same group, as
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Fig. 1. Experimental conditions (density and temperature)
for the MCF process study in the D/T mixtures.

well as the RIKEN-RAL team, performed measure-
ments with liquid and solid D/T mixtures[15, 16]. The
only group that investigated MCF in the high-density
(6 = 1 LHD), high-temperature (T < 600 K) mixtures
was the LAMPF team [17, 18]. But its measurements
had a hasty character and caused alot of questions con-
cerning the analysis. We therefore decided to conduct a
full set of measurements in awide region of the exper-
imental conditions spanning adensity range of ¢ =0.2—
1.2 LHD and temperature range of T = 20-800 K.

The Dzhelepov Laboratory of Nuclear Problems
made a prominent contribution to the M CF experimen-
tal study. The Dubna group discovered the phenomenon
of ddu-molecule resonance formation [19] and later

BOM et al.

directly confirmed its existence by measurements of the
temperature dependence of the ddu-molecule forma-
tionrate[20]. Thisgroup wasthefirst to experimentally
investigate [21] muon-catalyzed fusion,

dtp—» “He(3.5 MeV) +n(14.1 MeV) + 1,

and to confirm the theoretical predictions [22] of the
high intensity of this process, which induced the activ-
ity in the study of MCF worldwide.

Since 1997, our collaboration has been carrying out
alarge program in the investigation of MCF processes
in D/T on the JNR phasotron. The distinctive charac-
teristic of our study isthe use of novel methods both in
measurements and in experimental dataanalysis, which
allows us to obtain accurate and reliable data no worse
than those obtained at meson facilities. The experimen-
tal method that we used made it possible to measurethe
MCEF cycle parametersin the D/T mixture under awide
variety of mixture conditions [23].

This paper is a report on the most comprehensive
measurements of the MCF parameters in the D/T mix-
ture. The preliminary data were published in [23-26].
Figure 1 shows the condition ranges of the experiments
conducted up to now. The accumulated data and the
MCEF cycle parameters cover wide ranges of D/T mix-
ture conditions:

(1) temperatures of 20800 K;
(2) tritium concentrations of 15-86%;
(3) densities of 0.2-1.2 LHD.

F=3/2
1-wy
NaasC Y EA L
du Npoip A3 R ddy -L~|3He + n + M-
SHep + n
F=1/2
)\dzcr
Al 4He+2n+p.——1—_—0%—-»
- ==
i “Hep + 2n
F=1 L
// )‘npcz
7/
e
M M_o | | Mot e [(dip)dee] l—w
AaCor )\\ ‘He+n+p ———=
f/ ‘Hepl + n
F=0 [(dip)tee]

Fig. 2. Scheme of the MCF kineticsin the double D/T mixture.
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2. GENERAL DESCRIPTION
OF THE PROCESS

The simplified scheme of MCF kinetics in a double
D/T mixture is shown in Fig. 2. Muons stopped in the
mixture form du- and tu-atoms in their ground states
with the respective probabilities

Wy, = Cylss
and
Wy, = G+ Cy(1-0qs5) = 1-Cyass,

where C, and C, are relative hydrogen isotope concen-
trations and q,g is the fraction of du-atoms in the
ground state after muon cascade processes, with the
muon transfer (d),, — (tW),, from du to tu during the
deexcitation cascade taken into account [27-29]:

_ )\dex
Ois = At (1)

Here, Ay and A, are the rates of deexcitation and muon
transfer averaged over the d-atom excited states. One
should expect strong dependence of g;5 on C, and ¢
[30, 31].

The “standard” cascade model, in which the initia
U-atom energies are distributed around E, = 1-2 eV, is
apparently valid only at very low densities¢ < 102 LHD.
Now, it is known that, during the cascade, muonic
atoms can be both thermalized and accelerated, obtain-
ing an energy as high astensof eV (seeg, e.g., [32-34]).
But, until now, the problem of determining the initial
energy distribution of muonic atoms after the cascade
has not been solved definitely.

Being in the du-atom ground state, the muon can be
transferred to tritium in the collisional process

du+t—tpu+d (2

witharateof Ay =2.8 x 108 s - ¢ [18, 21, 35, 36]. In
transfer process (2), the tp-atom acquires an energy of
19 eV. The atoms tu are formed in two hyperfine states
with a total spin of F = 1 (weight 0.75) and F = 0
(weight 0.25) and can take part in the spin-flip pro-
cesses

(tW)p=y+t— (-0 +t. )

Muonic atoms ty can form dtp- and ttpu-molecules,
and du-atoms can form ddp-molecules. In these p-mol-
ecules, fusion reactions occur in which the muon can be
either released and stimulate the next MCF cycle or
stick to helium produced in the reactions. The notation
for the rates of muonic formation and fusion reactions,
aswell asfor the sticking probabilities, isintroduced in
Fig. 2. Being bound in a p-atom or a p-molecule or
being free, the muon disappears at arate of A, = 4.55 x
10°s™.

The specific feature of the ddp- and dtp-molecule
formation processes is their resonance character; that
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is, the muonic molecular formation rates Aqq, and Ay,
turn out to depend on the p-atom kinetic energy [3].
The MCF d + d cycle has been studied very well. The
measured temperature dependence Aqq,(T) isin excel-
lent agreement with theory [13].

Quite a different situation occurs for the MCF d + t
cycle. In fact, this process has been studied in detail in
the parameter region (low temperatures), where the
“standard” theory predictsitsrelatively low intensity. It
follows from experiment that, just in this region, the
MCF processis very effective. Modern theory explains
thisonly qualitatively.

It follows from the original Vesman consideration
[37] that the resonance dtp-molecule formation occurs
in the interaction of the tu-atom with D,, DT, or HD
molecul es according to the scheme [22]

ti+ (DX)y, — [(dtn), X, 2€],, ¢,
X =H,D,T,

where the energy released under dtp formation together
with the tu-atom kinetic energy E,, is transferred to
excite the vibration—rotational state of the molecular
complex [(dtp), X, 2€]. Here, K; and K; are the respec-
tive rotational quantum numbers of the “initial” mole-
cule DX and the “final” complex. The set of the reso-
nance ty-atom energies

E:u = AE, ¢

corresponds to different transitionsv = 3, 4, 5; K, —
K:. Indeed, the spin states of the tp-atom and the dtp-
molecule should be taken into account for determina-

tion of Ey, . In addition, the position and intensity of the
resonances depend on the type of themolecule (D,, DT,
and HD) and the temperature of the mixture influencing
the population of the rotational states of these mole-
cules.

Once formed, the complex [(dty), X, 2€] either
undergoes back decay

X = p,d,t, @

[(dtu), x, 2€] — tp + DX,
or the fusion reactions
dtp — 4He+n+u, 5)

dtp— “Hep +n (6)

take place in it (with the high rate A; = 10* s [38]).
The muon-to-helium sticking probability is ws = 0.5%.

The resonance dependences Ay, _p g i(Ey) for a
tu-atom of spin F = 0 are shown in Fig. 3; the calcula-
tions presented there are based on the evaluation
scheme developed in [13]. The following remarkable
features are evident from this figure.

(1) Resonance formation of the dtp-molecule on HD
molecules is the most intensive.
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Fig. 3. The dtp-molecule formation rates on D,, DT, and
HD moleculesfor thetp-atom spin F = 0 asafunction of Eg,
for T= 30K (calculations based on [13]).
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Fig. 4. The dependence of Agy, _q (&) and Aqy, ¢ (b) onthe
tu-atom energy for T =300 K. The Maxwell distribution is
shown in the bottom picture.

(2) The resonance positions correspond to relatively
high tu-atom energies, that is, to high temperatures
(T ~ 102 K) for the thermalized muonic atoms.

(3) The positions of the resonances of each type cor-
respond to various vibration levels of the complex v =
3, 4, 5. The nearest resonance for )\gtp_d is placed at
E, = 0.5eV. Thismeansthat the nearest “subthreshold”

resonance (corresponding tov = 2) iscloseto zero at a
negative tu-atom energy of E;, = -10-12) meV. Nega-
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tive energy implies that, for the most intensive dipole
transitions |K; — K;| = 1, an excess energy arises that
cannot be transferred in two-particle reaction (4).

For the highest multiple transitions (v = 2; K; = 0,
1— K;=2, 3, 4), process (4) becomes possible, but
itsintensity is two orders of magnitude lower than that
of the main transitions. However, in contradiction to the
standard theory, experiment manifests high MCF inten-
sity in the low-temperature D/T mixture and reveals a
nontrivial density dependence of its cycling rate. We
note that the highest value of the cycling rate A, =
185 + 13 ps* was measured at PSI [15] in asolid D/T
mixture.

This can be qualitatively explained in the modern
theory [39], according to which the influence of the
subthreshold resonance turns out to be much stronger
due to the mechanism of triple collisions. According to
the theory, the resonance dtu formation at low temper-
atures occurs at subthreshold resonance in the triple
collision process

tu+D,+M — [(dtp), d, 2] + M",

.

M = D,, DT, T,. @)
The “additional” second molecule M plays the role of
a spectator that carries away the excess energy.
Because (7) is athree-particle process, it must depend
on the density of molecules M.

Qualitatively, the scheme in (7) explains both the
high values of Ay, 4 and its density dependence
observed in experiment. However, despite many
attempts undertaken to calculate its intensity (see,
e.g., [40, 41]), the quantitative explanation is not yet
obtained.

With increasing temperature, the resonance pictures
are modified due to the change in the population of the
DX molecule rotational states and the thermal motion
of the molecule. The calculated rates Ay, g and Agy,
asfunctionsof Ey, for T=300K are presentedin Fig. 4.
The Maxwell distribution for the thermalized tu-atoms
is shown in one of them (Ay, (). Asis seen, this distri-
bution only dightly overlaps the nearest resonance.

The resonances for Ay, a T= 1000 K are presented
in Fig. 5. In this case, the Maxwel| distribution consid-
erably overlaps the most intensive resonances for the
dtu formation on D,, DT, and HD molecules. Unfortu-
nately, this high temperature is not yet achieved in
experiment. Thetemperature T = 800 K isthe highest at
which the measurements were made (in Dubna).

As we have mentioned, a substantial part of tu has
aninitia (after cascade) energy of Ey, > 1 eV. In elastic
collisions ty + t, tu + d, these atoms are quickly ther-
malized. The thermalization time is approximately
equal to nsfor the 1 LHD of amixture. Accordingly, the
time distribution of the fusion reaction products (neu-
trons) should have two components. a quick “spike”
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corresponding to the first pass through the resonances
and a much slower “ steady-state” component.

Due to shortness of the epithermal spike and ambi-
guity in the initial energy of the tp-atom, it is difficult
to interpret this effect. That is why the main efforts of
different experimental groupswere concentrated on the
steady-state study, for which the tu-atom energy spec-
trum isaMaxwell distribution.

For convenience, the comparison of the measure-
ments with the theoretical calculationsis performed for
the so-called “ effective’ dtp-moleculeformation rate as
a function of temperature. It is obtained by integrating
over all possible initial states, averaging over al final
states, and convolving with the Maxwell spectrum
W(E,,, T). Such calculations for the D/T mixture were
madein [13].

For the steady state, the time distribution of fusion
neutrons has the form

dN

—n =
dt
where A; = A0, €, is the neutron detection efficiency,
N, isthe number of muons stopped in the D/T mixture,
and w is the muon loss in the cycle, which is the prob-
ability of muon sticking to helium in fusion reactions,
mainly ind +t (wy), and also, with lower weight, in the
accompanying reactionsd + d andt +t. Thecycling rate
N\, means the inverse of the average time between the
closest cycles. It involves mainly the time of du — tu
transfer (2), tu-atom spin-flip process (3), and dtp-mol-
ecule formation (4). The neutron yield Y,, is limited by

wand Ay

Npen/\cexp(_)\nt)f >\n = )\O+w/\c1 (8)

Yo = w+ e (9)

The expression for A, corresponding to the kinetic
scheme of Fig. 2, is

l:%scd_'_ 0.75 N 1
Ao ACi A1_0Ct Adu-dCop * Adtu-tCor’

(10)

To extract the values Ay, _q and A, _, one should use
formula (10) to analyze the experimental values of A,
measured at different tritium concentrations changing
the relative population of D, and DT molecules.

The expression for wis

W= o, + Aty G0y
Adtu-dCop + Mgty Cor + Aty Gy
2 (12)
qlSCdé)\gszucDDwddr ALC
+ + ~7

3/2 !
AatCt + Ay Cop + Ag2-1/2Cq A
where A isthe rate of muon transfer to possible admix-

tures with Z > 1, having concentration C,, A, is the
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for T = 1000 K (calculations based on [13]) and the Max-
well distribution.

rate of ddp-molecule formation from the du-atom state
with spin F = 3/2, and r is the branching ratio of the dd
fusion channels (*He + n) and (t + p); the other variables
aredefinedinFig. 2. It followsfrom Eq. (11) that themin-
imum vaue of wis achieved a highest A, (large A4 and
Mgty —q 1), Where wis closeto its natura limit w, = 0.5%.

We notethat, in expressions (10) and (11) and in what
follows, the cycling rate and all collisional rates are nor-
malized to the nuclear density ¢ of the D/T mixture.

3. EXPERIMENTAL METHOD

All experimental runs were made at the installation
“Triton” mounted on the muon channel [42] of the
JINR phasotron. The experimental setup is schemati-
cally shown in Fig. 6. The novel experimental method
in [23] was used. Based on measurements of the total
charge produced by the fusion neutrons in a detector, it
allowed us to avoid the distortions in the neutron time
spectra caused by the pileup and thus to use a high-effi-
ciency detection system.

Incoming muons are detected by scintillation
counters 1, 2, 3, a proportional wire counter 4 and
stopped in the target. Neutrons from the d—t reaction are
detected by two full-absorption neutron detectors ND1
and ND2. Electrons from the decay of muons stopped
in the target are registered by the proportional wire
counter 5 and scintillation detectors 1-e and 2-e.

3.1. The Specific Features of the Method

The following important features characterize the
method used.
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Fig. 6. Experimental layout.

(1) Unique targets and tritium handling system were
used, which allowed measurements in a wide range of
the D/T mixture densities and temperatures.

(2) A high-efficiency neutron detection system was
used in the geometry close to 41t It provided a high
counting rate and low accidental background.

(3) A specidly designed proportional counter was
used for muon and el ectron detection; having alow sen-
sitivity to neutrons, it allowed reliable electron identifi-
cation.

(4) Time distributions of charge were measured
instead of the usually registered time spectra of the
number of events. Flash ADC were used for this aim.
Thisallowed usto avoid distortionsin the neutron time
spectra and thus to use a high-efficiency detection
system.

(5) The novel analysis methods were used, which
turned out to be most effective for the high neutron
multiplicity realized in the experiment. In addition to
the usually measured neutron time distribution, we

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

measured and analyzed the neutron multiplicity distri-
bution and the spectra of the time between the pu-decay
electron and the last neutron in the series. This allowed
us to decrease systematic errors and to obtain reliable
data.

3.2. Targets and Gas Handling System

A set of targets [43-45] with the working volume
10-18 cm?® depending on the tritium content was used
in the experiments. The targets allowed the following
measurements:

(1) with liquid D/T (liquid tritium target (LTT) [43]
of 18 cm?, working temperature 20—40 K, pressure up
to 20 bar);

(2) with hot gaseous D/T (high-pressure tritium tar-
get (HPTT) [44] of 16 cm?, working temperature 300—
800 K, pressure up to 1600 bar);
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(3) with cold gaseous D/T (two high-pressure tri-
tium targets (HPTT) [45] of 8 and 16 cm?, working
temperature 40-200 K, pressure up to 2500 bar).

The special cryogenic system [43] (for the LTT and
HPTT) and the cryorefrigerator (for the HPTT) were
used at low temperatures (T < 300 K), and the system
of special heaters was used at high temperatures to
maintain the needed temperature regime. Cryogenic
filling was used for all targets.

A special preparation system based on palladium fil-
ters [46] provided the gas of the required composition
and purified of impurities at the level less than 107 of
volume parts. The molecular composition of the mix-
tures was monitored with the aid of chromatography.

3.3. Detectors and Electronics

The target was surrounded by a set of detectors.
Scintillation counters 1-3 detected incoming muons. A
cylinder-shaped proportional counter (PC, analogous
to [47]) with wires grouped in two parts (4, 5) served to

select muon stopsin the target (signal 1-2-3-4:5)
and to detect electrons from the muon decay. Specialy
designed cylinder-shaped scintillation counters (SC)
1-e and 2-e were used to detect p-decay electrons in
coincidence with counter 5 (signals5 - 1-eand 5 - 2-e
were considered as a p-decay electron). The full-
absorption neutron spectrometer [48, 49] consisting of
two large detectors (ND1 and ND2) with the volume
12.51 each wasthe basis of the detection system. It was
aimed at detecting neutrons from reactions (5), (6). A
plastic scintillator with dimensions (031 x 17) cm was
used in each detector. It was viewed by four PMs XP
2040. Thedirect contact of the PMswith the scintillator
and Teflon used as an optical reflector provided excel-
lent spectrometric properties of the detector. Its energy
resolution was

Orwum = 0.09(1 + 1/./E, [MeV]).

Thetotal solid angle covered by two detectorswas Q =
70%, which corresponded to the total neutron detection
efficiency €, = 2 x 15%. The time resolution of ND was
dictated by the light collection process and electronics
and was At = 67 ns.

The trigger [50] allows recording only those events
for detection that are connected to electron detection.
Because the intensity of the process under study was
high, these events were accompanied by neutron detec-
tion in nearly every case.

The trigger requirements included the presence of

muon stop signals (1, 2, 3, 4, 5) and electron signals
(5, 1-eor 5, 2-€) during atime window of 20 us, set off
by the incoming muon signal (1, 2). Insertion of the
electron signal in the trigger makes it possible to radi-
cally suppress the background connected with the
muon stopsin thetarget walls, where amuon undergoes

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

669

300 T T T T
200k ND1 1

100+
,L

0 lhl.hrﬂhjllnﬂ.k

300
200

et L |

300 . . : :
2001 S€ i
1001 n —

0 T T T T

ND2

40+ PC

20
> n

T T T
0 100 200 300 400

Fig. 7. Flash ADC signals for asingle muon.

predominately (90%) nuclear capture without electron
escape. Additional suppression of this background is
achieved under the condition that only delayed electrons
(later than 0.2 s after the gate start) are permitted.

Another important advantage of this is that direct
normalization to the electron number becomes possible
without the necessity to determine the number of muon
stops in hydrogen. This method was first employed by
usin thefirst experiment onthe MCF d + t reaction [21]
and allows successful accomplishment of this funda-
mental work.

Pulses from the neutron spectrometer are registered
by the flash ADC (8 bits x 2048 samples, 100 Mc/s)
producing a time distribution of the ND1, ND2 signal
amplitude for each single muon. To provide correct
time measurements, the signals of the detector for
incoming muons and the electron counter are also ana-
lyzed by the flash ADC. An example of “oscillograms”
observed at the flash ADC is shown in Fig. 7. During
each run, on-line monitoring of data accumulation was
conducted.

4. EXPERIMENTAL CONDITIONS

A total of 81 exposureswith D/T mixtureswere car-
ried out. The conditions (density, temperature, and tri-
tium concentration) of each run are presented in
Table 1. In each exposure (duration of 610 h), at least
20000 electrons from the decay of muons stopped in
thetarget were accumulated. In practically all cases, the
neutron statistics was sufficiently large. The specia
exposures with empty targets were carried out to mea-
sure the background of electrons from muons stopped
in the target walls.
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Table 1. Normalized cycling rates A, muon loss probabilities w, and neutron yields per muon Y,,. For A, the uncertainties
due to statistics, density (A¢), charge calibration procedure (Aqg), and the total uncertainty are indicated. For all parameters,
the total errorsinclude the systematic uncertainty in the determination of neutron detection efficiency (Ae,, = 6%)

Conditions Error contributions, %
No. w, % Y, Ao st
¢, LHD C, % stat. Ad Aq total
T=22.0+0.7K (liquid)
1 1.19 18.1(1.5) 0.77(0.07) 68.9(5.9) 61.5 0.4 2.1 31 77
2 1.20 33.4(1.0) 0.72(0.06) 96.6(7.9) 117.7 0.2 2.1 31 77
3 1.19 35.2(1.0) 0.63(0.05) | 102.9(8.6) 117.9 0.3 2.1 31 77
4 1.23 63.5(2.0) 0.76(0.07) 82.5(6.9) 84.6 0.4 2.4 31 7.8
5 1.24 85.5(2.5) 1.40(0.11) 34.2(2.8) 20.8 0.6 2.4 31 7.8
T=385+20K

6 0.143 | 57.0(2) | 1.03(0.08) | 10.1(0.8) | 311 | 15 | 33 | 31 | 8.2

T=45+2K
7 0.237 31.4(0.5) 0.77(0.06) 32.0(2.6) 80.5 1.0 34 34 8.3
8 0.449 16.7(0.5) 0.81(0.06) 39.4(3.2) 59.9 1.0 3.0 32 8.1
9 0.450 31.4(0.5) 0.68(0.05) 54.2(4.5) 88.7 0.9 33 34 8.3
10 0.448 50.6(0.5) 0.81(0.06) 43.8(3.6) 73.1 1.3 3.0 32 8.1
11 0.445 71.1(0.5) 1.46(0.11) 19.0(1.6) 30.6 1.3 29 32 8.1
12 0.689 16.3(0.5) 1.12(0.09) 46.1(3.7) 64.2 0.9 3.0 31 8.0
13 0.643 31.1(0.5) 0.74(0.06) 69.9(5.8) 101.2 0.7 33 34 8.2
14 0.704 52.7(0.5) 1.11(0.09) 53.4(4.2) 84.0 0.7 3.0 31 8.0
15 0.766 71.2(0.5) 1.89(0.15) 27.5(2.2) 34.7 13 3.0 31 8.1
16 1.022 16.3(0.5) 1.55(0.12) 45.0(3.5) 65.2 1.0 3.0 31 8.0
17 0.912 31.1(0.5) 0.89(0.07) 76.0(6.3) 1185 0.8 32 34 8.2
18 1.024 52.7(0.5) 1.12(0.09) 64.2(5.0) 97.7 0.8 3.0 31 8.0
19 1.018 71.2(0.5) 1.83(0.14) 34.2(2.7) 40.6 1.1 3.0 31 8.1

T=75+2K
20 0.234 31.4(0.5) 0.85(0.07) 29.8(2.5) 81.2 1.0 3.0 34 8.2
21 0.445 31.4(0.5) 0.87(0.07) 50.4(4.2) 92.1 0.9 29 34 8.1
22 0.635 31.4(0.5) 0.94(0.07) 69.9(5.8) 101.6 0.7 3.0 34 8.1
23 0.897 31.1(0.5) 0.91(0.07) 75.5(6.2) 1195 0.8 3.0 34 8.1

T=158+2K
24 0.230 31.4(0.5) 0.94(0.07) 28.6(2.4) 79.3 1.1 3.0 34 8.2
25 0.438 16.7(0.5) 1.41(0.11) 31.0(2.5) 58.7 1.1 3.0 32 8.1
26 0.424 31.0(0.5) 0.99(0.08) 45.4(3.7) 88.8 1.0 31 32 8.1
27 0.436 31.4(0.5) 0.88(0.07) 48.1(4.0) 90.9 0.9 3.0 34 8.1
28 0.433 50.6(0.5) 1.00(0.08) 39.2(3.2) 745 1.3 3.0 32 8.1
29 0.430 71.1(0.5) 2.01(0.15) 17.3(1.4) 29.5 1.3 3.0 32 8.1
30 0.607 16.3(0.5) 1.94(0.15) 31.7(2.5) 63.2 1.4 3.0 31 8.1
31 0.620 31.1(0.5) 0.98(0.08) 57.9(4.8) 100.1 0.9 31 34 8.2
32 0.621 52.7(0.5) 1.14(0.09) 48.9(3.9) 82.9 0.8 31 31 8.1
33 0.688 71.2(0.5) 1.64(0.13) 27.1(2.1) 35.4 1.3 31 31 8.1
34 0.905 16.3(0.5) 1.89(0.15) 36.9(2.9) 64.7 1.3 3.0 31 8.1
35 0.876 31.1(0.5) 0.90(0.07) 72.4(6.0) 119.6 0.8 3.0 34 8.1
36 0.907 52.7(0.5) 1.09(0.08) 66.3(5.2) 1017 0.8 3.0 31 8.0
37 0.902 71.2(0.5) 1.62(0.12) 34.9(2.8) 40.6 11 3.0 31 8.1
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Table 1. (Contd.)
Conditions Error contributions, %
No. w, % Y, A ust

¢, LHD | C. % stat. | Ad | Aq | total

T=300+£3K
38 0.204 31.4(0.5) 1.23(0.10) 28.2(2.3) 91.4 1.7 34 35 85
39 0.303 17.9(0.5) 2.13(0.16) 21.6(1.7) 67.2 11 33 31 8.1
40 0.302 36.1(0.5) 1.14(0.09) 36.7(3.0) 101.1 0.9 34 31 8.2
41 0.312 52.0(0.5) 1.27(0.10) 30.3(2.5) 787 1.0 32 31 8.1
42 0.312 68.8(0.5) 1.25(0.10) 21.4(1.7) 47.6 1.0 3.2 31 8.1
43 0.434 15.4(0.5) 0.97(0.07) 35.4(2.9) 59.3 0.9 3.2 31 8.1
44 0.411 31.0(0.5) 1.08(0.08) 43.7(3.6) 96.0 1.0 3.2 32 8.1
45 0.425 32.7(0.5) 0.95(0.07) 49.4(4.0) 99.9 0.7 33 31 8.1
46 0.443 35.0(1.0) 0.89(0.07) 53.6(4.4) 104.4 0.5 34 32 8.2
47 0.409 47.7(0.8) 0.97(0.07) 44.0(3.6) 89.3 0.7 34 31 8.1
48 0.411 68.5(0.5) 1.21(0.09) 27.7(2.2) 50.3 0.8 32 31 8.1
49 0.515 18.2(0.5) 1.95(0.15) 30.2(2.4) 745 11 37 31 8.3
50 0.518 35.2(0.5) 1.38(0.10) 46.8(3.8) 109.2 0.8 3.7 31 8.3
51 0.532 52.8(0.5) 1.01(0.08) 50.0(4.0) 92.8 0.7 3.6 31 8.2
52 0.787 33.0(1.0) 0.80(0.06) 76.8(6.3) 123.2 0.5 3.0 3.2 8.1
53 0.781 33.7(0.5) 1.19(0.09) 57.1(4.7) 118.4 11 31 35 8.3

T=500£6K
54 0425 | 350(1.0) 0.88(0.07) 58.9(4.8) | 130.0 0.6 31 32 8.2

T=550+6K
55 0.201 33.7(0.5) 1.25(0.10) 30.2(2.5) 113.3 1.6 35 35 85
56 0.293 17.9(0.5) 1.92(0.15) 23.1(1.9) 73.5 1.1 35 31 8.2
57 0.285 36.1(0.5) 1.14(0.09) 42.8(3.5) 130.1 0.9 3.6 31 8.2
58 0.287 52.0(0.5) 1.07(0.08) 43.3(3.5) 135.6 0.9 35 31 8.2
59 0.292 68.8(0.5) 1.06(0.08) 38.7(3.1) 104.3 0.8 35 31 8.2
60 0.407 15.4(0.5) 0.93(0.07) 37.4(3.0) 66.1 0.9 34 32 8.2
61 0.399 32.7(0.5) 0.97(0.07) 35.4(2.9) 128.7 0.7 35 31 8.2
62 0.383 47.7(0.8) 0.87(0.07) 56.3(4.6) 133.1 0.7 36 31 8.2
63 0.390 68.5(0.5) 1.00(0.08) 45.8(3.7) 1035 0.9 34 31 8.2
64 0.505 18.2(0.5) 1.81(0.14) 32.4(2.6) 79.8 11 38 31 8.4
65 0.490 35.2(0.5) 1.25(0.09) 50.3(4.1) 138.0 0.7 3.9 31 8.4
66 0.502 52.8(0.5) 0.93(0.07) 62.4(5.1) 141.8 1.2 38 31 8.4
67 0.604 51.5(0.5) 0.93(0.07) 68.0(5.5) 142.1 11 38 31 8.4

T=635+6K
68 0597 | 515(0.5) 0.94(0.07) 68.5(55) | 1555 05 4.0 31 8.4

T=800+10K
69 0.191 33.7(0.5) 1.28(0.10) 36.2(3.0) 134.9 1.8 39 35 8.7
70 0.279 17.9(0.5) 1.88(0.14) 23.6(1.9) 78.8 1.2 43 31 8.6
71 0.275 36.1(0.5) 1.13(0.09) 40.2(3.3) 150.1 0.9 4.4 31 8.6
72 0.278 52.0(0.5) 1.16(0.09) 46.8(3.8) 165.2 0.8 4.0 31 8.4
73 0.278 68.8(0.5) 1.24(0.09) 39.7(3.2) 139.9 0.9 4.0 31 8.4
74 0.410 18.2(0.5) 1.93(0.15) 29.8(2.4) 84.5 1.0 4.0 31 85
75 0.400 35.0(0.5) 0.92(0.07) 60.2(4.9) 152.0 0.6 4.0 3.2 85
76 0.385 35.2(0.5) 1.50(0.11) 45.6(3.7) 150.3 1.0 43 31 8.6
77 0.405 51.5(0.5) 1.23(0.09) 51.9(4.2) 164.8 0.6 4.0 31 8.4
78 0.375 68.5(0.5) 1.25(0.09) 47.0(3.8) 145.0 0.8 3.9 31 8.4
79 0.484 18.2(0.5) 1.84(0.14) 32.7(2.6) 84.2 0.9 43 31 8.6
80 0.484 35.2(0.5) 1.29(0.10) 50.2(4.1) 155.3 0.7 4.3 31 8.6
81 0.491 51.5(0.5) 1.14(0.09) 59.4(4.8) 173.0 0.6 43 31 8.6
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4.1. Temperature and Pressure Control

Temperature of liquid D/T was determined by mea-
suring the D/T vapor pressure with tensometric gauges
having an accuracy of 0.5%. Hence, the D/T tempera-
ture was determined with an accuracy of 0.1 K. The
temperature of gaseous D/T was measured by specia
thermocouples. During the experimental runs, a small
temperature gradient existed in the D/T mixture, which
was taken into account in the determination of temper-
ature and its error. The accuracy of determining the
temperature was 3-10 K in the 40-800 K range. Pres-
sure was measured with the use of strain pressure
gauges having a calibration error of 3%.

4.2. DIT Mixture Density

Nuclear density of liquid D/T was determined using
the cryogenic data on deuterium and tritium [51] taking
the mixture content into account. Errors in density
were 2%.

Nuclear density of gaseous D/T was determined by
two ways. The first was the use of the deuterium (tri-
tium) equation of state [52], with the gas temperature
and pressure known from measurements. Some correc-
tions for the presence of the buffer volume being at
room temperature were made. The second way was
density determination viathe quantity of gasin the tar-
get of a known volume. Both methods gave identical
results within an accuracy of 4%. Thefinal error of gas
density was 3—4%.

In addition, we have another way to check the mix-
ture density. If the muon beam intensity is stable, the
number of muon stops in the mixture per time unit is
proportional to the mixture density. In several cases, we
made some corrections (a few percent) to the mixture
density based on this method.

4.3. Measurements of | sotope
and Molecular Gas Composition

The chromatographical method [53] was used to
control the isotope and molecular composition of the
mixtures. In addition, an ionization chamber was used
to obtain the D/T and T, content. Measurements were
made beforefilling of the target and after evacuation of
the mixture from it.

The chromatographical analysis showed the molec-
ular compositions to be very close to the equilibrium
ones,

Cop : Cor: Crr = C; : 2C,C, @ C7,
Ci+Cy=1,

for each gaseous mixture exposed to a muon beam.
However, for liquid mixtures, the molecular content
can differ from equilibrium due to the dynamic effects
in evaporation of a multicomponent liquid, which was
investigated by us under the conditions of our target
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in[54]. The deviation from the equilibrium state
becomes naticeable for a high tritium concentration of
C, > 50%. Appropriate correctionsto the molecular and
isotope concentrations of the liquid mixture were made
in [55]. We note that the quantity of protium in D/T
mixtures did not exceed 1%.

4.4. DIT Mixture Purity and *He Accumulation

As follows from Eq. (10), the expression for the
cycling rate is independent of the muon loss, including
the effect of impuritieswith Z > 1. Contrary to this, the
muon losses depend on the cycling rate (Ag, and Ag).
The larger the cycling rate, the closer the muon losses
areto their natural limit, which is equal to the probabil-
ity w.

As is seen from Eq. (11), the muon transfer to the
possible impurities affects the value of w. That is why
the impurity level must be made as small as possible.
Indeed, the condition

A,Cy < WA, (12)

must be ensured.

It isnecessary to distinguish two sorts of impurities:
impurities with Z > 2 and He admixtures.

4.4.1. Impuritieswith Z > 2 and “He. These impu-
rities are predominantly helium-4, carbon, oxygen, and
nitrogen originating from imperfect purification of the
mixture before filling the target and removal of resid-
ual gaseous elements from the target walls during the
exposure.

The special preparation system based on palladium
filters [46] provides filling of atarget with gas purified
at alevel of C, < 107 of volume parts. As the outgas-
sing effect increased with temperature, the mixture
purity varied from C, < 10~ for T=20K to C, = 10°-
10 for T = 800 K. The rate of muon transfer from the
tu-atom to the pointed admixturesis A, ~ 10t s for
nuclei withZ > 2[56] and A,,_~ (1-5) x 10° s™ for “He
[57, 58]. Therefore, condition (12) is satisfied only for
a ligquid D/T mixture where the cycling rate is rather
high (A, = 50-120 ps* depending on the tritium con-
centration) and most impurities (excluding helium) are
solid and freezed out on the target walls.

4.4.2. *He admixture. The tritium handling system
provides an initial concentration of C,,, of *He in the
mixture before being poured into a target at a level of

10~". However, due to the tritium [3-decay, *He is accu-
mulated in atarget according to relation

Che(1) = C1—exp(-AyT)],
where Ayi; = 6.4 x 105 ht is the tritium decay rate.

Hence, the process of muon transfer from the tp-atom
to °He (with the rate A =2 x 10° s™* [57]) can sub-

stantialy affect the muon losses.
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The *He accumulation effect is quite different for lig-
uid and gaseous D/T. It was shown in experiment [58]
that *He in liquid D/T diffuses and exits to the vapor
gas. Our cooling system of the LTT [43] ensured pas-
sage of the entire D/T mixture through the vapor phase
in approximately 1 h, which led to *He escape from lig-
uid D/T. In experiments with liquid D/T, we therefore
had no problem with D/T purity.

In experiments with gaseous D/T, we were forced to
refill thetarget every 1040 h (depending on the tritium
content in D/T) to avoid accumulation of 3He larger
than the “critical value’ C, = 107.

5. DATA TREATMENT

The data processing included the following stages.

(1) Selection of events. By an event, we mean an
occurrence of the processes caused by a single muon
beginning with the muon stop in the target and ending
with the muon decay. An example of the event as seen
by the detectorsis presented in Fig. 7. The most impor-
tant criteria for the event to be accepted were presence
of areliable signal for the p-decay electron.

(2) Creation of the charge and time spectrafor neu-
trons from the d + t reaction and for electrons from the
U-decay.

(3) Fit of these spectrato determine the “ effective’
MCF parameters A, w, and Y,,.

(4) Analysis of these parameters as functions of the
tritium concentration to obtain the dtp formation rates
Agu—g and Ay, and the muon-to-helium sticking
probability w.

5.1. Analysis Methods

The most popular and practically the only method
used by most groups involved in the study of the MCF
d + t process is the so-caled standard method, where
the yield and time distribution of all detected neutrons
from reactions (5), (6) are recorded and analyzed. This
distribution has the well-known one-exponent form (8).
The number of p-decay electrons N, isused for normal-
ization,

€./\;
Ao+ WA

The decay rate A, of the exponential in (8) and the nor-
malized neutron yield Y,, are the measured parameters.
The values of A;, w, and Y, are extracted from (8), (9),
and (13):

Ny _
Ne (13)

w _ )\n _}\O _ Mw
s €Y, = N, (14
In the Dubna experiments, we also used the standard
method. To obtain spectrum (8), we created atime dis-
tribution of the neutron detector charge Q(t). For this,

N,
enq))\c - We)\nl
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we summed the amplitude spectra for each neutron
detector ND1 and ND2. Then, the spectrum Q(t) was
transformed to the time distribution of the number of
events

Na(t) = Q(t)/g

using the unit charge q [59]. The latter was measured
under specia conditions providing alow neutron mul-
tiplicity, where each charge pulse corresponded to one
neutron. Charge distributions obtained in such
exposures were compared with the calculated ones to
obtain the experimental value of €, as afunction of the
threshold.

The number of electrons N, was obtained from an
analysis of the electron time spectraNg(t) using the dis-
tribution Bgny, (t) measured with an empty target,

NE?(t) = KBy (t) + Acexp(-Act) +F,  (15)

where A, is the muon disappearance rate and F is the
accidental background. In thisfit, k, A,, A., and F are
parameters. The observed muon disappearance rates A,
are close to the muon decay rate A\, = 0.455 ps* and
depend on the mixture purity. In exposures with liquid
D/T, where the purity is maximum, A is obtained equal
to Ay within 1%.

A typical example of the fitted time distributions of
decay electrons and fusion neutrons for the D/T filled
target is shown in Fig. 8. The dashed line corresponds
to the electrons from decays of muons stopped in the
target walls (empty target).

The principal disadvantage of the standard method
is that the main MCF parameters (cycling rate and
effective muon losses) are not obtained directly; only
their product is measured directly. In our measure-
ments, we employed two novel independent methods
proposed and devel oped in Dubna[60, 61]. These anal-
ysis methods make it possible to directly measure the
values of A, and .

A proposal in [60] was to measure the distribution
Nq(t) which was a function of the interval t = t, — t,
between the last detected neutron of the series and the
p-decay electron. This distribution has the form of a
sum of two exponentials with significantly different
slopes[60, 61],

dN,. _ Ag
dt An (16)
X [wAeXp(—Aot) + €nAc(1—w)exp(—(Ao +Ap)t)],

where A, is expressed as

An = (et W—€ WA, a7

Thefirst (“slow”) exponential correspondsto the events
with muon sticking and the second (“fast”) one to the
events without sticking. The cycling rate is determined
from the fast component slope, and the muon loss is

No. 4 2005



674

BOM et al.

Counts

1035"'»‘

102§

10*
(b)

103

107 3
105 i
H 10 E
1
H 1 1 1 1 1 =
0 0 2 4 6 8 10
Time, Ms

Fig. 8. Example of electron (a) and neutron (b) time distributions. Solid lines are the optimum fits with expressions (15) (a) and
(8) (b); the dashed line corresponds to the electrons from empty target.
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Fig. 9. Electron-ast neutron timing spectra measured with a liquid D/T mixture. Spectrum (&) corresponds to the exposure with
C; = 35.2%, and variant (b) was selected for C; = 85.5%. Lines represent the fits with expressions (16) and (17) and the optimum

parameters €,/\; and w/€,,.

obtained from the ratio between the amplitudes of the
slow and fast exponentials:

Al _ o

Af €n(l - (A)) )
Examples of such distributions obtained in aliquid D/T
mixture are presented in Fig. 9. Asis seen from the fig-
ures, the events with and without sticking are clearly

separated. Different slopes of the fast components of
the spectrareflect the different values of the cycling rate
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realized for tritium concentrations of C, = 35.2% and
C, = 85.5%. The advantage of the method isthat charge
calibration is not necessary in this case.

Another idea [61] was to measure the neutron mul-
tiplicity distribution (the number k of detected neutrons
per muon) in some definite time interval T. If one
selects the events for which the muon does not decay in
this interval, then this distribution is a sum of two
terms. One of them, which is Gaussian (Poisson) with a
mean of m = e A\.T, corresponds to the events without
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Fig. 10. Multiplicity distributionsin timeinterval T =1 ps: () distribution without sticking events, (b) with sticking events. Curves

are the optimum fits.

sticking, and the other, depending on w and falling with
k, isthe distribution of events with muon sticking.

The rigorous expression for the multiplicity distri-
bution was obtained in [62]. It has the form

[e,(1-w)]"
(En + (’o_enw)k
)

k
(en T Ww-— en("))

f(k) = P(K)

(18)

F(k),

where P(K) is the Poisson distribution with the mean
m=A.T,

N e
P(m) = ==e
e (AT
F(k) = 1-e z|—|

i=0
and A, is given by formula (17).

Formula (18) corresponds to the “event mode”
where the number of detected neutrons was considered.
Actually measured in experiments were the distribu-
tions of the neutron detector charge; they were divided
by the unit charge to obtain a multiplicity distribution.
Thereal response function of the detector resultsin dif-
fusion of the measured spectra as compared with the
ones obtained in the event mode. It turns out that, in a
good approximation (with an accuracy of 2-3% in the
cycling rate), the real distribution can be obtained as a
convolution of formula (18) with a Gaussian function.
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The Gaussian width is varied to obtain the best agree-
ment between experiment and cal culations.

We can also select only nonsticking events. For this,
we must exclude the requirement of the electron signal
inthetrigger and select only those neutron serieswhose
duration is larger than the chosen interval T. Plotting
and anayzing the multiplicity distribution of such
events, we can directly obtain the cycling rate. The
advantage of thismethod isthat we do not need the fact
of the p-decay electron existence. Of course, only A
can be determined in this case, because events without
muon sticking to helium are accepted. The examples of
fitted multiplicity distributions are presented in Fig. 10.

The comparison of all methods that we used in the
analysis is given in Table 2. The statistical power is
practically the samefor all methods. Indeed, inthe stan-
dard method, the main factor for the statistical accuracy
is the limited number of e ectrons; the number of neu-
trons is much higher under real experimental condi-
tions. In two other methods, the full statistics is the
number of the first or last neutrons, which are also
approximately equal to the electron number.

In our investigations, we use al the three methods
mentioned. This allows us to reliably analyze the data,
with minimum systematic uncertainties. Of course, the
full analysis is rather complicated and includes many
tests with different selection rules for events to be
accepted.

5.2. Electron |dentification

A serious problem in the MCF data analysis is how
to distinguish the real electron from afalse one. Under
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Table 2. Comparison of different methods used in the MCF
study

Ae W deter- Charge Electron
Method mination calibration detection
Standard Indirect Necessary Necessary
te—t, Direct Not necessary | Necessary
Multiplicity | Direct Necessary Not necessary

the conditions where one muon can cause up to
100 reactions (5), it is possible to detect a neutron by
the electron detector and accept it as an electron. Con-
trary to the measurements of other groups, we detect
electrons with a proportional wire counter, having a
very low sensitivity to neutrons. However, even in this
case, afraction of false electrons caused by the neutron
counts was noticeable.

Only thelast (in time) electron signal is accepted as
real. It would be enough to exclude the false electrons
if the electron detection efficiency would be €, = 100%.
However, for different reasons (see [63]), this effi-
ciency is not equal to unity. Thus, the situation can
occur where areal electron is not detected and a false
one is interpreted as real. The presence of false elec-
trons results in distortion of A, w, and Y,,. The cycling
rate determined according to formula (14) is distorted
due to the error in N, and N,, and A, extracted from
expressions (8) and (15) senses the error in A.. On the
other hand, confusion of the real and false electrons
leads to distortion in the relation between “ stick” series
(interrupted due to muon sticking) and “ no-stick” series
(ending with p-decay). The latter are accepted more
effectively. Thus, the results for the muon losses are
also distorted. Finally, the distortion of the slope of the
electron time distribution does not make it possible to
correct the estimate of the D/T mixture purity and thus
to check the parameters of the purification system.

Fortunately, the cycling rate determined from the
peak position in the multiplicity spectrum is free of
false electrons. This is a very important circumstance
allowing reliable data on the cycling rate to serve as a
source of “elementary” process parameters such as the
dtp-moleculeformation rate. Of course, it isvery desir-
able to obtain a correct value for A, by different inde-
pendent methods. Moreover, obtaining correct data on
muon losses is an important independent task.

5.2.1. Selection by the energy lossin the neutron
detector. An effective way to reject fal se electrons was
elaborated and used in our work [23]. For this, we
required the following when selecting events.

(1) Electron signals from the PC and ND1 or ND2
should coincide.

(2) The energy that the electron releases in the neu-
tron detector should be greater than the maximum pos-
sible energy released by a 14 MeV neutron in this
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detector. This allows reliable discrimination of false
electrons. The use of these selection criteriaalowed us
to obtain the data on A, and w coinciding for all three
analysis methods within 5% [23].

The disadvantage of this selection is a decrease in
the statistics because an essential part of the useful
events are rejected. This decrease becomes much more
important in experiments with a high-pressure gaseous
target having rather thick walls, for which the “ output”
el ectron energy spectraare noticeably distorted and the
transparency of the target walls for electrons is notice-
ably smaller than for the liquid target. Therefore, for a
gaseous target, reliable neutron—electron separation
was connected with larger statistical losses than for a
liquid target.

5.2.2. Selection by the time position of the elec-
tron signal relative to neutron series. To avoid losing
statistics, we developed a new method [63] for false
electron discrimination, which is most effective for the
large neutron detection efficiency realized in our exper-
iments. We now impose the criterion “electron inside
neutron series.” For this, we consider the neutron detec-
tor charge Q (the sum of the amplitudes) on sometime
interval (AT) close to the electron signal and delayed
relative to it by At. The events were accepted under the
condition that the charge Q is smaller than the thresh-
old: Q < Qy, Our examination [63] shows that the
proper values are At = 60 nsand AT = 500 ns. The larg-
est values of Qy, correspond to events without selection
for the false electron. In this case, the distortion in the
electron yield and time spectrum (15) isthelargest. The
opposite case (low Qy,) corresponds to the smallest dis-
tortions for electrons and to the minimum value of the
electron time slope A, which nearly coincides with the
one determined using selection by electron energy in
the neutron detector.

The opposite situation occurs for the slope of neu-
tron time distribution (8). In the case where the real
electron is not detected, afalse oneis accepted as elec-
tron. This means that the long neutron series are pre-
dominantly detected, because the appearance of afalse
electron is most probable just in those series. Indeed,
our considerations [63] show that the minimum Qy,
(maximum false electron rejection) leads to the maxi-
mum slope A,,. Again, the “correct” value of A, isin
agreement with the one obtai ned with selection by elec-
tron energy in the neutron detector.

The main MCF parameters obtained under two dif-
ferent selection options coincide within an accuracy of
3-4%. The reliability of the data is confirmed by the
fact that the value of the cycling rate determined by the
standard method is identical to the one yielded by the
multiplicity method, where it is independent of the
selection criteria. The method considered gives statis-
tics 4-5 times larger than in the case with energy dis-
crimination (Section 5.2.1). Thisindicates that we have
found the way, described in detail in [63], for correctly
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obtaining the M CF parameters without essential lossin
statistics.

5.3. Neutron Detection Efficiency

All methods discussed above give values of A e, and
w/e,. To obtain the MCF parameters A, and w, we must
know the neutron detection efficiency e,,.

Determining e, for organic scintillation countersisa
nontrivial task, because it is influenced by factors like
the geometry of the surrounding material, generation of
light by various reaction products, and because many
energy-dependent cross sections are involved. Because
of the lack of neutron calibration sources with well-
known intensity and sufficiently large energy, the effi-
ciency had to be calculated. The Monte Carlo technique
was used.

Calculations of €, for neutrons detected by the ND
in the Dubna experiments are described in [64]. The
CERN package GEANT was used in [64] for the smu-
lation calculations. Because it lacks the appropriate
low- and fast-neutron interaction cross-sections,
GEANT was linked with the MICAP package. MICAP
uses experimental neutron cross-sections from the
ENDF/B-VI database from 20 MeV down to thermal
energies (10° eV). Thisincludes partial cross-sections,
angular distributions, and energy distributions of reac-
tion products and deexcitation photons. The prepro-
cessed ENDF/B-VI data represent the experimental
data within 2%.

After the calculation of the energy deposited inside
the scintillator, the electronic output signal was
obtained by first converting the energy into scintillation
light considering the particle type, and then converting
thetotal light output into an electric signal by applying
the detector response function [49]. Thisfunction takes
severa factors into account, such as nonuniform light
collection depending on the position of light generation
inside the scintillator and photon statistics. The results
of calculations [64] for 14 MeV neutrons from reac-
tions (5), (6) are presented in Fig. 11 together with the
measured spectra.

One neutron detected in a scintillator may generate
aresponse from one detector or, due to scattering or to
generated gamma-rays, from both detectors. Thisleads
to asingle and coincident rate. The corresponding spec-
tra are shown in Fig. 11 together with the measured
ones. As can be seen, there is good agreement between
the measurements and the calculations in both cases
(single and coincident). The intensity and amplitude
calibration of the calculated single spectrum was nor-
malized to single data. The normalization thus obtained
is then applied to the calculated coincident spectrum,
which then neatly coincides with the corresponding
data. This means that the single-to-coincident ratio is
well predicted, which should be considered as a sensi-
tivevalidation check for the cal culations. The estimated
relative uncertainty in e, is no worse than 5—7%.
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Fig. 11. Charge distribution for 14 MeV neutrons measured
in [23] with the ND (histograms). Distributions are plotted
for single (&) and coincident (b) events. Lines represent the
Monte Carlo calculations [64].

The problem is how the neutron detection efficiency
depends on the neutron multiplicity (cycling rate). The
main ideaof using theflash ADC isthat thetotal charge
per number of neutronsis conserved even when the ND
signals mostly overlap. However, it istrue only for zero
charge threshold. In fact, the cluster charge should be
limited to reduce the low-energy background. At ahigh
neutron multiplicity, small-charge clusters can overlap
with one or more other clusters and, hence, can be
accepted (a noneffective threshold). Obviously, this
results in an increase of the detection efficiency com-
pared with the low neutron multiplicity. The actual
increase depends on several factors, such as the shape
of the ND signal, the form of the response function, the
magnitude of the threshold, and the measured cycling
rate. Because one would expect an essential correction
to the value of ¢, the problem required special consid-
eration.

This was made in [65], where the fusion neutron
registration was Monte Carlo simulated for a wide
cycling rate range. All the three analysis methods were
considered. It turned out that, in the standard and mul-
tiplicity methods, the corresponding corrections to the
efficiency were not very large: even for the maximum
possible measured cycling rate e /A, = 40 pus™, they are
only 12%.

6. RESULTS
6.1. The Effective MCF Parameters

The effective MCF parameters A., w, and Y, were
obtained from the fit of the distributions considered in
the “standard”, “multiplicity”, and “t, — t,” analysis
methods. Although the first two methods are more reli-
able, the results obtained by three different methods
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Fig. 12. (a) Normalized cycling rates as a function of temperature for the gaseous D/T mixture at C, = 33% and different densities
¢ =0.88-0.91 (0), 0.62-0.64 (¥), 0.49-0.52 (a), 0.39-0.45 (m), 0.19-0.24 (@) LHD. (b) Normalized cycling rates as afunction of
density for the gaseous D/T mixture at C; = 33% and different temperatures T = 800 K, C; = 0.34-0.36 (¥); T=550K, C; = 0.33—
0.36 (a); T=300K, C; =0.31-0.36 (m); T = 158 K, C; = 0.31 (®). The curves are obtained with optimum parameters.

were in agreement with an accuracy 3-4%. They are
presented in Table 1 and Fig. 12.

The statistical uncertainty in the results is deter-
mined by the number of events and the fit accuracy. In
both main methods (standard and multiplicity), the sta-
tistics ensures that this error is not higher than 2%. We
notethat, in the multiplicity method, we do not need the
muon number normalization.

Thefollowing factors contribute to systematic error.

(1) Uncertainty in the neutron detection efficiency
makes the maximum contribution to systematic error. It
was estimated from the calculation of €, and the accu-
racy in the energy threshold determination andis6%in
total.

(2) Uncertainty of the charge calibration procedure
gives an error smaller than 3%.

(3) Uncertainty of the gas and liquid density (for
normalized cycling rate) is about 3—4 and 2%, respec-
tively.

(4) Uncertainty of the time zero position (only for
the standard method) gives a systematic error smaller
than 0.5%.

(5) Uncertainty due to the correct selection of muon
decay electrons (only for the standard method; see Sec-
tion 5.2) is 2%.

(6) Uncertainty caused by possible instability of
detectors and electronics does not exceed 2%.
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Therefore, the total uncertainty in w, Y, and the
absolute values of A did not exceed 9%. Obviously,
the relative dependences of the cycling rate on tem-
perature and density are known with a better accuracy
(4.5-5.5%).

6.2. The dtp-molecule Formation Rate
and Muon Sticking Probability

The usual way to determine the “physical” values
Agy @d @ is an analysis of the “effective” parameters
A and wthe use of expressions(10) and (11), represent-
ing their dependence on tritium concentration and den-
sity. For this purpose, it is, first of al, necessary to
express ;s as a function of C, and ¢. With the general
expression (1) and the theoretical predictionsin [32, 34,
66], as well as experimental results in [17, 35] taken
into account, the parametrization of g;5was chosen in
the form

1

qlS(Ct’ ¢) - 1+ (b+ Cq))ct' (19)

6.2.1. Fit of the liquid D/T data. Muon sticking
probability m.. As we have noted, the most expedient
condition for the w, measurement is aliquid D/T mix-
ture, where A is high and the admixture content is neg-
ligible. Our first data for the liquid D/T mixture were
givenin [23]. In this paper, we correct the values of the
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Fig. 13. Normalized cycling rates (a) and muon loss probability (b) as a function of the tritium concentration for the liquid D/T
mixture (T=22K, ¢ = 1.22 LHD). Solid lines are optimum fits. The dashed line is the value (23).

molecular concentrations and, in addition, perform
the common fit of A, and win liquid D/T using formu-
las (10) and (11). As for all liquid points, the density
values were very close to each other, the parametriza-
tion for g, was chosen as

dis(C) = (L+aC)™, (20)
wherea=b + c$ from (19). We have performed a set of
fits, varying different parameters according to the
known theoretical and experimental data for A, _, [68,
69], Ay, [70-72], and Ay, _, [14, 17, 18, 70]. Such a
variation does not lead to a significant change in the
results. The systematic error Ae,, (the samefor all liquid
data) was excluded from the data errors in thesefits. In
Table 3, the values used for the MCF cycle parameters
and the results of one of the fits are shown.

Thefit resultsare shown in Fig. 13 and Table 3. The
main results for the liquid (T = 22 K, ¢ = 1.22 LHD)
D/T mixture are

Mg = (685355 +41%%) ™, (21)
Mgt = (182 6% £11%%) ps™, (22)
W, = (0.573+0.021%% + 0.032¥%) %. (23)

Our vaueof Ay, _qin (21) isessentialy higher than
the PSI group data [14] but is in agreement with the
LAMPF results [17] (see Fig. 15). The value of Ay,

in (22) is in satisfactory agreement with the values
obtained in [17, 18], Ay, = 20 us?, and [70], Ay, _ =

11if1 us™. An unexpectedly high rate Ay, _, = 160 us™
was obtained by the RIKEN group [16, 73]. Fixing this
value, we do not achieve any satisfactory agreement of
fit to our data, and we therefore conclude that thisvalue
is uprated by about afactor of 5.

Table 3. Resultsof onefrom the set of common fits of the data
for liquid D/T. Fixed parameters are given with references

Parameter Value Ref.
a 29+04 free
A,Cy, ust 0.08+ 0.03 free
Agp, U 280 [18, 21, 35, 36]
Ao ps 1200 [68, 69]
A » B 35 [11]
Ago-yz M 36 [11]
AV, pst 14 [72]
g, %0 0.13 [11]
r 0.51 [11]
Ay Gy, MS™ 0.28+0.15 free
)\dtu—d’ I..ls_l 650 + 40 free
T 21+8 free
W, % 0.574 £ 0.022 free
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Fig. 14. Common fit of the normalized cycling rates as afunction of the tritium concentration for al (76 points) datafor the gaseous
D/T mixture (T = 37-800 K, ¢ = 0.143-1.024 LHD). Lines are the optimum fit.

The probability w of the effective muon-to-helium
sticking in dt-fusion is one of the most important MCF
characteristics, because it limits the number of fusions
per muon. In theory, w is considered as the product

W, = W(1-R),

where wg is the “initial” sticking probability directly
after fusion and R is the probability of the muon-from-
helium stripping during the Hep thermalization stage.
R is density-dependent, and, hence, the theory predicts
a dow, close to linear, decrease of w, with density.
Comparison of different theoretical and experimental
results on w is presented in Table 4.
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The mean value A,C, = 0.08 + 0.03 us obtained in

thefitsisin agreement with the estimate 0.08 + 0.04 us*
based on the analysis of the electron time spectra. The
product Ay, wy, being free, was obtained as 0.28 + 0.15,
which agrees with [70-72].

6.2.2. Low-temperature gaseous D/T data. Here,
we present new data related to the mixture temperature
T = 45 and 158 K and different densities ¢ =
0.2-1LHD. It is primarily interesting from the stand-
point of the density dependence of the dtu-molecule
formation rate on D, molecules.

For all values of ¢, approximation (20) for g;5 was
used in thefit. Theresults are presented in Table 5. The
data for T = 300 K recently presented in [26] is also
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included. As can be seen, the data obtained for Ay, _q
demonstrate a strong density dependence and demon-
strate practically no sensitivity to the mixture tempe-
rature.

6.2.3. High-temperature gaseous D/T data. Mea-
surementsfor high temperatures (T = 300 K) areimpor-
tant for the determination of the dtp-molecule forma-
tion rate on DT molecules. According to the “ standard”
theory, the Maxwell distribution for the tu-energy (Ey,)
overlapsthe nearest resonance Ay, _((Ey,) inthisregion.
In addition, it isinteresting to clarify for which temper-
atures Ay, _ 4 remains density-dependent and what isits
temperature dependence.

The preliminary datafor T = 300, 550, 800 K were
presented in [26]. We now present the final data
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obtained from the common fit of the experimenta
dependences A (b, T). The dtpu-molecule formation
rates on D, and DT molecules were assumed indepen-
dent of density at temperatures T > 300 K. They are pre-
sented in Table 6.

The following conclusions can be made from their
consideration.

(1) According to theory, Aq,_; rises with tempe-
rature.

(2) Contrarily this, Ay, 4 does not reveal atemper-
ature dependence.

6.2.4. Common fit of gaseous D/T data. Toreliably
extract Ay, for given T and ¢, each set of A(¢, T, C)
should contain sufficient points corresponding to a
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Fig. 15. (&) Agty, —q as afunction of density for T < 300 K. Filled circles are our points for gas; empty circles are the results of

LAMPF [17]; the square is the result of the present paper for liquid (21). Solid lines are the permissible values found from the fit.
Dashed lines are limits for the Ay, _ 4 region obtained in [14]. (b) Aqy, _t as afunction of temperature. Filled circles are our points;

empty circles are the results of LAMPF [17]. The solid lineis the theory result [13] for Agtu_t . Dashed lines are limits of param-

etrization (25).

wide range of C,;. Not al our data satisfied this condi-
tion. We could not conduct measurements with high C,
at “extreme” ¢ and T. Nevertheless, we could include
al datain the analysis, making certain assumptions on
the A, density and temperature dependences.

Table 4. Comparison of the results on the w, obtained in dif-
ferent experimental and theoretical investigations

W, % Ref. Comment
0.58 [74] | Theory for ¢ =1.2LHD
0.58 [75] | Theoryfor ¢ =1.2LHD
0.65 [76] | Theory for ¢ =1.2LHD
0.43+0.05 £ 0.06 [77] | LAMPF experiment
for¢g =1.2LHD
048+ 0.02+0.04 [78] | PSI experiment
for¢ =1.2LHD
0.532 £ 0.030 [79] | RIKEN experiment
for¢ =1.2LHD
0.505 + 0.029 [10] | PSI experiment
for ¢ =1.45LHD
0.573 + 0.0215 + This experiment
0.0329¢ for¢ =1.22LHD
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Based on our preliminary analysis[26, 67] and tem-
perature and density dependences of A. obtained from
the analysis of the total data, we can conclude that:

(i) Agy—q rises linearly with density in a wide tem-
peraturerangeup to T = 300 K;

(ii) at temperatures T = 300-800 K, Ay, _ is very
close to alinear function of temperature and does not
depend on density.

We therefore chose the simplest linear parametriza-
tion for the temperature and density dependences of the
formation rates:

Aau—a(9) = Ag+Byd a T = 37-300K;

(24)
Agg_a = Cq @ T>300K,

Agu—(T) = A+ BT a T=200K,

25
¢ = 0.2-0.9. (29)
The general expression (19) was used for g;s, including
the density-dependence term.

A total of 76 gaseous points of A, were under fitting
by using formula (10). The systematic error due to the
neutron detection efficiency Ae, (the same for all data)
was excluded from the errors in the course of fitting.
Theresults are presented in Table 6 and Figs. 14-16.
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Figure 14 shows how the experimental values of A,
are described by formula (10) with our parametrization
of gys and Ay, . It follows from the fit that the experi-
mental data are in satisfactory agreement with the used
approximation: x? = 84 for 76 points and six variable
parameters. The optimum values of our approximation
are presented in Table 7. We note that g5 turned out to
be density-independent. The samewas obtained in[14],
but our values of ;5 are somewhat lower than in that
study (see Fig. 16).

Figure 15 representsthefit resultsfor the low-temper-
ature (T < 300 K) datafor Ay, () (8) and Ay, —(T) ().
The area limited by the straight lines corresponds to
permissible values found from the fit with taking the
uncertainties in density and temperature into account.
The obtained fit accuracy turned out to be

6()\dtp—d) = 8-9%,
O(Agru—t) = 20%(T = 300 K)—-9%(T = 800 K).

A systematic error of &y = 7% should be taken into
account in comparing our data with theory and other
measurements.

7. DISCUSSION
7.1. Muon Sticking Probability

As can be seen from Table 4, the experimental val-
ues of w, obtained by different experimental groups are
in satisfactory agreement with each other. The value
obtained by the direct method remarkably coincides
with the one determined from the analysis of the muon
losses as a function of the tritium concentration. At the

Table 5. Results of thefit of the datafor gaseous D/T at low
temperatures (45-300 K) (a isthe parameter of formula (20)
for the ;5 approximation)

683

0 0.2 04 0.6 0.8 1.0

Fig. 16. 0,5 as afunction of the tritium concentration. The

vertical shading is the parametrization obtained by the cur-
rent fit. The horizontal shading is the PSI result [14] based
on the measurements at low temperature <40 K.

same time, some disagreement between experiment
and theory remains.

7.2. thsand Agy,

Analysis of the experimental data confirms the the-
oretical conclusion about the significant role of the

Table 6. Resultsof thefit of the datafor gaseous D/T at high
temperatures (300-800 K)

Parameter Value Conditions
Parameter Value Conditions
a 8.5+ 2.8free T K o, LHD
a 7.1+ 2.5free T K ®, LHD
1 Adtyt MS™ 56 + 14 free 300 0.2-0.8
Adty—ch S~ 326 + 27 free 45 0.45
403 + 32 free 45 0.67 190 + 81 free 500 0.2-0.8
490 : 36 free 45 o. o5 198 + 28 free 550 0.2-0.8
320 + 26 free 158 0.43 270 + 53 free 635 0.2-0.8
402 + 32 free 158 0.66 328 + 34 free 800 0.2-0.8
499+37free | 158 0.90 Ay MS™ | 251:%36free | 300 0.20
292 + 29 free 300 031 277 + 30 free 300 0.31
313+ 30 free 300 0.42 293 + 31 free 300 0.42
380 + 33 free 300 0.52 354 + 34 free 300 0.52
Adtysy HS™ 7+ 4free 45160 | 0.4-1.0 420 + 44 free 300 0.78
52 + 14 free 300 0.3-05 319+ 45free | 500-800 | 0.19-0.60
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Table 7. Results of the common fit of all the data for gas-
eous DIT

Parameter Fit result

Ois: b 72+29 free

o 0x1 free
Ao ust 280[18,21, 35,36] fixed
AM_g ust 1200 [68, 69] fixed
Adtu—d: Ag (T < 300K), ps? 156+ 14 free
By (T <300K), LHD™ 384+21 free
Cq (T>300K), us? 331+ 32 free
Mgyt (T < 200K), ps™ 6+6 free
A (T=200K), us* -117+9 free
B, (T=200K), K™ 0.577+0.028 free

muon transfer from the excited du-atom states. Accord-
ing to the theory, the intensity of this process turns out
to depend on the tritium concentration. The probability
0,5 of a muon reaching the du-atomic 1S state is suc-
cessfully described by rather simple expression (20)
with the same parameter a for different C,. At the same
time, contrary to the theoretical predictions, g, does not
show a noticeable density dependence. These conclu-
sions coincide with those made in the PS| paper [14].

Asfollowsfrom thetheory, at low temperatures (T <
300 K), the process of the dtu formation on D, mole-
cules dominates. A nontrivial density dependence
Ay -a(9) evidences in favor of the triple collision
mechanism (7). Unfortunately, there is still no qualita-
tive agreement between experiment and theory on the
intensity of this process. It seems that the absence of a
noticeable dependence of Ay, _ 4 on temperature is dif-
ficult to reconcile with the mechanism of dtp formation
on the “negative’ resonance.

The experimental data on the dependence Ay, _4()
obtained by different experimental groups are in satis-
factory agreement. We note that the parametrization of
this dependence suggested by the PSI group is not
appropriate for the entire data set.

According to the theoretical predictions about the
resonance positions, the process of the dtp-molecule
formation on DT molecules manifests itself at high
temperatures T = 300 K and rises with temperature.
However, both the present results and the LAMPF data
0N Ay, —(T) turned out to be significantly lower than the
calculated ones. This means that the intensity of the
appropriate resonances is overestimated by the theory.
The same conclusion follows from the analysis of the
epithermal effectsin the dtp formation made by the PSI
group [80]. At the sametime, the TRIUMF group, mak-
ing the TOF measurements of the MCF d + t reaction
yield as a function of the tu-atom energy [81], con-
cluded that their data are in a satisfactory agreement
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with the theory. One should note, however, that the
analysis in [81] is very complicated and can involve
some systematic uncertainties. To clarify the situation,
it isvery important to make steady-state measurements
at the highest temperatures T = 1000-2000 K, where
the Maxwell distribution of the tp-atom energy over-
laps the most intensive resonances.

7.3. Possible Influence of Epithermal Effects

The parameters obtained are related to the steady-
state regime, when the tu-atoms formed with the initial
energy E > 1 eV have already passed through the reso-
nances and are thermalized. However, each time after
muon regeneration in the fusion reaction, the p-atoms
go through the deceleration stage, again feeling the
effect of the resonances. Obvioudly, this leads to an
increase in the cycling rate compared to values related
to the Maxwell-distributed p-atoms. This is similar to
the well-studied p-catalysis in low-temperature deute-
rium related to the two du-atom spin states [82]. Asin
that case, there are “upper” and “lower” states with
sharply different cycling rates and quick degradation of
the “upper” state. By analogy, one can express the

steady-state cycling rate A>° as

Ae = A (1+9),

where A, isthe “bare” value.

A relative increase in the cycling rate o can be esti-
mated as

3= OgpAg/ A, (26)
where o, is the fraction of the tu-atoms passing

through the resonances during thermalization, Agg, is

the effective dtpy-molecule formation rate in the reso-
nance region, and A4 is the rate with which tu-atoms
leave the resonance (thermalization and back decay
after the dtp formation).

Estimations made from the calculated values of
Agu(Ey) [13] and the scattering cross sections
Oy +am+t [83] are evidence that the corrections to the
steady state can be as large as tenths of a percent. One
can expect that the correction & should be smallest for a
low tritium concentration, because the decel eration rate
inty + d collisionsis significantly larger than in ty + t
collisions predominant at high C,.

As a consequence, there arises a problem of cor-
rectly extracting the dtp-molecule formation rate from
the dependence A (C,) given by formula (10). The obvi-
ous conclusion is an overestimation of Ay, ascompared
with the thermalized tp-atom situation. In addition, sys-
tematic errorsin the parameters of (10) can occur. For-
tunately, asis seen from Figs. 13 and 14, there is satis-
factory agreement between the experimental values of
A and expression (10). Thus, it is believed that the cor-
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Fig. 17. Normalized cycling rate dependences on the D/T mixture conditions plotted with the use of optimum parametrizations
obtained from the fit. (Ieft) Normalized cycling rate as a function of tritium concentration and temperature for ¢ = 0.4 LHD.
(right) Normalized cycling rate as a function of temperature and density for C; = 0.35. The temperature region 160-300 K is

smoothed.

responding distortions are not as large. According to
our estimations, the appropriate corrections to Ay, in
the region C, = 20-70% are & = 10-20%.

8. CONCLUSIONS

The systematic experimental investigations of the
MCEF process in the D/T mixture have been conducted
at the JINR phasotron by the novel method. Measure-
ments were made in awide range of the mixture param-
eters: density, temperature, and tritium concentration.
The variety of the experimental conditions can be seen
in Fig. 17, showing the cycling rate vs. mixture condi-
tions.

Analysis of the data allows usto determine the basic
MCF parameters. In general, they are in agreement
with the ones obtained by other groups in the region
where the experimental conditions were similar. Com-
parison of the experimental data with the theory con-
firmsthe efficiency of the main mechanisms considered
in the MCF theory, but afull qualitative description of
the process has not yet been achieved.

In our opinion, it will be very important to make
measurements with a D/T mixture at the highest tem-
peratures of T = 1000-2000 K, where the main reso-
nances manifest themselves most effectively.
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Abstract—The high-pressure magnetic states of iron borate 5’FeBO; single-crystal and powder samples have
been investigated in diamond anvil cells by nuclear forward scattering (NFS) of synchrotron radiation at differ-
ent temperatures. In the low-pressure (0 < P < 46 GPa) antiferromagnetic phase, an increase of the Neél tem-
perature from 350 to 595 K induced by pressure was found. At pressures 46-49 GPa, atransition from the anti-
ferromagnetic to a new magnetic state with aweak magnetic moment (magnetic collapse) was discovered. It is
attributed to the electronic transition in Fe** ions from the high-spin 3d° (S=5/2, °A, ) to the low-spin (S= 1/2,

2ng) state (spin crossover) due to the insulator—semiconductor-type transition with extensive suppression of
strong d—d el ectron correlations. At low temperatures, NFS spectra of the high-pressure phaseindicate magnetic
correlations in the low-spin system with a magnetic ordering temperature of about 50 K. A tentative magnetic
P—T phase diagram of FeBO; is proposed. An important feature of this diagram is the presence of two triple
points where magnetic and paramagnetic phases of the high-spin and low-spin states coexist. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

Iron borate FeBO; isarare magnetic material that is
transparent in the visible range and possesses spontane-
ous magnetization at room temperature. Light modula-
tion by magneto-optical effectsis possiblein this crys-
tal. Thecrysta lattice of FeEBO; hasrhombohedral sym-

metry of the calcite type with the space group R3c

(D2,) and with the lattice parameters a = 4.612 A and

c=14.47 A [1, 2]. Ironions Fe** arein oxygen octahe-
dra, and the interionic distances are (Fe-O) = 2.028 A
and (Fe-Fe) = 3.601 A, while the angles of the bonds
(O—+Fe-0) are 91.82° and 88.18° [2]. Thus, the oxygen
surrounding of Fe is amost cubic. At ambient condi-
tions, FeBO; is an easy-plane antiferromagnet with
weak ferromagnetism and with a Neél temperature of
about 348 K [3, 4]. Magnetic moments of two iron sub-
lattices and the weak ferromagnetic moment lie in the
basal (111) plane[5, 6].

At ambient pressure, iron borate is an insulator with
an optical gap value of 2.9 eV [5]. Recently, adrop in
the optical absorption edge approximately from 3 to
0.8 eV has been found in optical spectra at pressures
near 46 GPa[7]. It was concluded from direct measure-
ments of electroresistivity that a transition of the insu-
lator—semi conductor type occurs at this pressure [7].

T This article was submitted by the authors in English.

In the present paper, iron borate 5’FeBO; single
crystals and powder samples are studied under high
pressures in a diamond-anvil cell by the technique of
nuclear forward scattering (NFS) of synchrotron radia-
tion (SR) in the temperature range 3.5-300 K. At pres-
sures of P = 46-49 GPa, the sharp transition from the
antiferromagnetic to a new magnetic state with a weak
magnetic moment was discovered. The pressure depen-
dence of the Neél temperature was calculated from the
experimental data, and the magnetic P-T phase dia-
gram was plotted and analyzed theoretically.

2. EXPERIMENTAL

The perfect quality light-green colored single crys-
tals of FeBO; enriched with the 5’Fe isotope up to 96%
were grown by the flux method. The crystals were
plate-shaped, and the plane of the plate was the basal
(111) plane. The thickness of the plates was about 10—
40 um with dimensions of about 8 x 8 mm?. The NFS
experiments were performed with both single crystals
and powder samples obtained by grinding an 5’FeBO,
single crystal.

The experiments with nuclear forward scattering of
SR were performed with the ’FeBO; samples at high
pressures of up to 65 GPa created in diamond-anvil
cells at temperatures in the range 3.5-300 K. The mea-
surements were performed with D18 nuclear reso-

1063-7761/05/10004-0688%$26.00 © 2005 Pleiades Publishing, Inc.
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nance scattering equipment [8] at the European Syn-
chrotron Radiation Facility (ESRF), Grenoble, France.

Two types of samples were used: asingle crystal at
room temperature and a powdered sample (a crushed
single crystal) at low temperature. At room tempera-
ture, a%’FeBO; single crystal with dimensions of about
80 x 40 x 4 um?3 was placed into a high-pressure dia-
mond-anvil cell. The diameter of the working surface of
diamonds in the cell was about 300 um, and the diam-
eter of the hole in the rhenium gasket where the sample
was placed was about 100 pum. In the low-temperature
experiment, the gasket hole was filled with the sasmple
powder to about one-third to ensure that al powder
grains were surrounded by pressure liquid. To create
guasi-hydrostatic pressure, the working volume of the
cell wasfilled with PES-5 polyethylsilacsanic liquid. A
standard technique of the shift of ruby fluorescence was
used to measure the pressure value. For that, several
crumbled ruby crystals with dimensions of about 5 um
were placed into the cell aong with the sample. They
were placed at different distances from the center of the
working volumein order to evaluate the pressure gradi-
ent in the chamber. The accuracy in the pressure mea-
surements was about 3-4 GPa.

In the NFS experiments, the pressure value was var-
ied up to 65 GPa. The basal plane (111) of the >’FeBO,
single crystal was oriented perpendicular to the syn-
chrotron radiation beam, and the vector of polarization
of gammarays was in the sample plane. At every pres-
sure value, the NFS spectra of the powdered sample
were measured in the temperature range from 3.5 to
300 K. The Méssbauer time spectra of resonance for-
ward scattering from >’Fe nuclei were measured with-
out an external magnetic field at the sample. The mea-
surements were made in the 16-branch regime.

3. RESULTS AND DISCUSSION
3.1. The Room-Temperature NFS Spectra

Time spectra of the NFS from 5Fe nuclel in
5’FeBO; have been recorded at different pressures in
the temperature range 3.5-300 K. Figure 1 shows the
room-temperature spectra. The spectra represent the
intensity of scattered radiation depending on the time
following the SR impulse. The damped decay of a
nuclear excitation is modulated in time by quantum and
dynamic beats. The quantum beats appear due to split-
ting of nuclear levels by a hyperfine interaction as a
result of interference between scattered radiation com-
ponents of sublevels with different frequencies. The
period of quantum beatsisinversely proportional to the
value of hyperfine splitting energy, and in our case, to
the magnetic field value at the iron nuclei. The dynamic
beats are due to multiple processes of scattering in a
“thick” sample (see detailsin[9]).

At pressures below 46 GPa, the main feature of the
spectra is the evident quantum beats (Fig. 1). Because
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Time, ns

Fig. 1. Room-temperature NFS spectra of the °’FeBOg sin-

gle crystal at different pressures. Symbols, experimental
points; lines, the result of fitting to the MOTIF model.

we used a thin sample, the dynamic beats are not
present in the spectra. The NFS spectra were measured
with different mutual orientations of the polarization
vector of the SR beam and the crystal magnetization.
The period of beats is about 8 nsin the case of random
orientation of the (111) crystal plane with respect to the
direction of the SR-beam polarization and about 15 ns
when the crystal isrotated in the basal plane by 90° rel-
ative to thefirst (“random”) orientation. The beats with
a 15-ns period are 100% modul ated, which means that
the intensity of scattering in the beats minimum tends
to zero. Thisindicatesthat, at al pressuresin the range
0 <P <46 GPg, the orientation of magnetic fields at the
nucle of iron ions remains in the basal (111) plane of
the crystal normal to the radiation beam. At pressures of
P > 46 GPa, the quantum beats disappear abruptly,
showing a drop to zero of the hyperfine magnetic field
at >’Fe nuclei.

At ambient pressure, our NFS spectrum issimilar to
that obtained by Mitsui et al. [10] iniron borate. Some
distinctions are due to a different thickness of the sam-
plesand the absence of an external magnetic fieldin our
measurements.

At P < 44 GPa (in the low-pressure (LP) phase of
FeBO,), the spectrawere processed by the MOTIF pro-
gram developed by Shvyd' ko [11]. A large number of
guantum beats in each spectrum (more than 15) pro-
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Fig. 2. Pressure dependences of the hyperfine magnetic
field Hyy at °’Fenuclei in FeBOj, at different temperatures.

vides high accuracy in determination of the hyperfine
magnetic field Hy; at iron nuclei (with an error in the
range 0.1 T). The H,; values measured at the “random”
orientation of thesingle crystal and after its 90° rotation
are the same.

3.2. Magnetic Collapse

The pressure dependences of the hyperfine magnetic
field H,; at theiron nuclei are shownin Fig. 2 for differ-
ent temperatures. At room temperature, the field H;
increases nonlinearly from 34.1 T to its maximum
valueof 48.1 T asthe pressurerisesintherange0< P <
44 GPa. At P = 4647 GPa, thefield H,; drastically falls
down to zero, indicating a magnetic-to-nonmagnetic
phase transition (magnetic collapse), obviously of the
first-order type. At the transition, the parameter of the
guadrupole interaction, which is near zero at P <
44 GPa, increases significantly up to 2.1 mmy/s.

From the M 6ssbauer absorption spectraof >’FeBO;,
we have found that the isomer shift IS and quadrupole
splitting QS of the spectradrastically change at the crit-
ical pressure P, along with the disappearance of the
magnetic field H,;(see detailsin [12]). At P < 46 GPain
the low-pressure (LP) phase, the parameters Hy;, 1S
and QS are typica of the high-spin (S = 5/2) state of
Fe** ions. At P > 48 GPa in the high-pressure (HP)
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phase of FeEBO;, the IS and QS values become typical
of the low-spin state of the Fe** ions (S= 1/2). No indi-
cation of the appearance of Fe?* ions was found in the
M 6sshauer absorption spectra [12]. Thus, the origin of
the magnetic collapse at P = P, isthe high-spin (HS) to
low-spin (LS) transition of Fe** ions. A similar conclu-
sion was obtained theoretically in the multielectron
model [13], where it was shown that an increase of the
crystal field with pressure results in the high-spin- ow-
spin crossover and an insulator—semiconductor tran-
sition.

The NFS spectra at temperatures 77 and 3.5 K are
shown in Fig. 3 for different pressures. At P > 48 GPa,
the effect of the disappearance of quantum beats is
clearly seen in the low-temperature spectra. This indi-
cates that the pressure-induced magnetic collapseis not
an effect of the temperature but is due to changesin the
electronic structure of iron ions. We also observed that,
after thistransition, the light-green color of the>’FeBO,
crystal, typical of ambient pressure, disappeared and
the crystal became opaque, which suggests an abrupt
drop in the optical absorption gap. The drop of the opti-
cal absorption edge has been found recently in optical
spectra at pressures just near 46 GPa[7].

At P < 46 GPa, the quantum beatsin the NFS spec-
tra of the powder sample cannot be fit perfectly to the
calculated curves (Fig. 3) asfor the single-crystal sam-
ple (Fig. 1). Thisis because the MOTIF program is not
developed enough for powder samples when a distribu-
tion of magnetic moment and crystal field directions
occurs in powder particles. Nevertheless, the frequen-
cies of beats and, hence, the values of the hyperfine
magnetic field H,; at iron nuclei can be obtained with a
rather high accuracy (with an error intherange of 0.4 T,
which iswithin the limit of asymbol sizein Fig. 2).

The pressure dependences of the field H,; at low
temperatures are shown in Fig. 2. Contrary to the room-
temperature behavior, the field Hi; a T = 3.5 K in the
LP phase is dmost constant at a saturation value of
about 55.5 T. In fact, the value of H; even decreases
dlightly as the pressure increases. This effect can be
easily explained by an increase of the covalence contri-
bution to H,; due to decreasing interionic Fe-O dis-
tances. It wasfound that the critical pressure value P, at
which the magnetic transition occurs varies dlightly
with temperature and P, becomes somewhat larger at
helium temperature.

3.3. Pressure Dependence of the Nedl Temperature
in the Low-Pressure Phase

In the low-pressure phase of FeBO;, the room-tem-
perature NFS spectra show an increase of the field Hy;
asthe pressure increases. The magnetic field increaseis
naturally connected with an increase of the exchange
interaction, which, in turn, must correlate with the
increase in the Ned temperature Ty. In genera, the
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Fig. 3. NFS spectraof the 57FeBO3 powder sample at different pressures: (a) T= 77K, (b) T = 3.5K. Symbols, experimental points;

lines, the result of fitting to the MOTIF model.

pressure dependence of H,; at room temperature is
under the influence of two effects: the changes in Ty
and a possible change of the saturation value of Hy; at
0 K [H0)]. The NFS spectrain the LP phase indicate
that, at 3.5 K, the H+(0) value only dlightly depends on
pressure. Then, starting with the room-temperature
H,; = f(P) dependence and using the ambient-pressure
H,; = F(T) dependence (which has been studied in
detail by Eibschuts and Lines[6]), we can calcul ate the
dependence of Ty on pressure. For that, we used an
extrapolation procedure first suggested in [14, 15] and
successfully applied to many experimental results.

We take H,4(P, T) asthe empirical function

Hne (P, T) = Hy (P, 0)

xexpla—t—q_ T T @)
PTIE Fy TP

The parameters a and 3 can be found from thefit of (1)
to the experimental dependence H,(T) at ambient pres-
sure. Using the H(T) values for FeBO; in [6], we
found a =-0.371 and 3 = 0.4308. Then, we assume that
o and B are independent of the pressure and take the
experimental value H;(P, 0) = 55.5 T. For each experi-
mental value of pressure and the corresponding values
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of H«(P, T), Eq. (1) can be solved graphically for Ty.
Figure 4 illustrates the calculation procedure, and the
obtained pressure dependence of Tyis shown in Fig. 5.

He, kOe
600
500 .
400
300 .
. e [6] v
200~ NFS at 0 GPa 0 GPa v
— Fitting curve \
100k & NFES at 48.6 GPa \
— — Empirical model ‘l
1 1 1 1 1 !
0 100 200 300 400 500 600
T,K

Fig. 4. Procedure for calculating the Nedl temperature of
FeBOs at different pressures by fitting the empirical func-

tion to the experimental temperature dependence of the
hyperfine magnetic field at °’Fe nuclei.
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Tn. K
600 T T
A
550 .
500 .
450 -
400 /\ Extrapolation from NFS
€ Raman [17]
® Magnetization [16]
350 — Linear fit |
1 1 1 1 1 1
0 10 20 30 40 50

Pressure, GPa

Fig. 5. Pressure dependence of the Nedl temperature of
FeBO5 from NFS, Raman scattering, and magnetization

experiments (symbols). The solid curve corresponds to the
pressure slope dTy/dP = 5.14 K/GPa

In the pressure range 0 < P < 46 GPa, the depen-
dence Ty (P) can bewell fit to alinear function Ty(P) =
Ty(0) + P(dT,/dP), with the parameters Ty (0) = 355.0 +
15 K and dT,/dP = 5.14 + 0.10 K/GPa. The arrow
value follows from the least-square fit. The maximum
value of Ty, attained just before the magnetic collapse,
isabout 595 K.

From the magnetization measurements of FeBO; in
the range of 0-3 kbar, Wilson and Broersma [16] have
found that Ty grows linearly with the slope dT\/dP =
5.3 K/GPa, which is close to our value. Massey et al.
[17] measured the shift of the two-magnon Raman fre-
guency Q with the pressure increase in FeBO; at 99 K.
In the range 0-13 GPa, the frequency shift can be
approximated by a linear law Q(P) = Q(0) + dQ/dP,
where Q(0) = 530 + 20 cm™ and dQ/dP = 8.15 +
0.7 cm/GPa.

It isinteresting to compare the pressure behavior of
Q and Ty. We found that, below 13 GPa, the relative
slopes of Q and T are very close: [1/Q(0)]dQ/dP =
0.0148 GPa?! and [1/Ty(0)]dT/dP = 0.0150 GPa™.
This means that both these parameters are most proba-
bly proportional to the superexchange integral J. The
Ty (P) data obtained from the magnetization and Raman
measurements are also shown in Fig. 5, and they arein
good agreement with our studies.
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3.4. Magnetic Properties
of the High-Pressure Phase

After the magnetic transition, at pressures P > P,
the low-spin state of Fe** (S= 1/2) is not diamagnetic,
and one can expect some kind of magnetic correlations
at low temperatures. For the HP phase of FeBO;, the
recent theoretical calculations of Parlinski [18] pre-
dicted a small magnetic moment at iron ions, which is
about four times lower than that in the LP phase.

Figure 6 shows our NFS spectra of the powder sam-
ple of >FeBO; taken at different temperatures with
fixed pressuresin the HP state (at P > P,). The spectra
in Fig. 6¢c above 50 K are typical of a pure quadrupole
interaction without any trace of magnetic modulations.
However, at low temperatures, an anomaly appears in
the spectra, which cannot be fit to the quadrupol e inter-
action. We tried to fit the NFS spectraat T < 50 K with
different approximations and have found that the most
appropriate is the model of magnetic correlations of
Fe** ions with spin S= 1/2, and the magnetic state can
be represented as a nonhomogeneous magnetic order-
ing with a distribution of the H field values.

The theoretical calculations in [18] predicted a
homogeneous antiferromagnetic ordering at low tem-
peratures for the low-spin HP phase of FeEBO;. A non-
homogeneous magnetic state (the low-spin magnetic
ordering, LS-MO) found in our experiment may be
related to a powder state of the sample due to specific
magnetic properties of small particles of FeBO; at high
pressures.

To find the precise temperature of the magnetic
ordering in the HP phase, the following procedure was
suggested. We fit all spectrain Fig. 6 to the model of
pure quadrupole interaction and plot the obtained qua-
drupole splitting parameter QS as a function of temper-
ature (see Fig. 7). In the pure paramagnetic state, at T >
50 K, the QSvalueis constant. When magnetic correla-
tion appears, the “QS value’ found this way starts to
increase (Fig. 7), showing a deviation from the model.
The point of deviation of QSfrom the constant valueis
then taken as the magnetic ordering temperature T, of
the low-spin HP phase.

3.5. Magnetic P-T Phase Diagram of FeBO,

On the basis of all the data obtained, we can plot a
tentative magnetic P-T phase diagram (Fig. 8), which
shows various magnetic states of FeBO; at different
pressures and temperatures. The almost vertical line at
P = P, separates the left-hand HS insulating low-pres-
sure phase and the right-hand L S semiconducting high-
pressure phase. At P < 46 GPa, in the high-spin low-
pressure phase, the Ty line separatesthe T < T, antifer-
romagnetic (AF) state and the T > T, paramagnetic
(PM) state. At P > 49 GPa, in the high-pressure phase,
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Fig. 6. NFS spectraof apowder >’FeBO5 sample for different temperatureswith the pressure val ues fixed at 48.6, 50.5, and 55 GPa.

In the HP phase at 55 GPa, the spectraat 3.5, 9.5, and 25 K werefitted to the model of honhomogeneous magnetic ordering of Fe3*
ions with spin S= 1/2, and with a distribution of the Hy field values.

the T, line separates the T < T,,, low-spin magnetically  where three phases coexist. At the first point, the high-

ordered state and the T > T,, paramagnetic low-spin  spin antiferromagnetic (HS-AF) and high-spin para-

state. magnetic (HS-PM) phases coexist with the low-spin

paramagnetic (LS-PM) phase. At the second point, the

An important conclusion follows from the diagram:  low-spin magnetically-ordered (LS-MO) and low-spin

one can expect two triple points with the coordinates  paramagnetic (LS-PM) phases coexist with the high-
(P=46 GPa, T=600K) and (P =49 GPa, T= 50K), spin antiferromagnetic (HS-AF) phase.
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4. THEORETICAL APPROACH

Because the crystal is a semiconductor in the HP
phase of FeBO;, its magnetic properties can be
described in an approximation of the Hei senberg model
both below and above the critical pressure P, In the
mean-field approximation,

Ty = JzS(S+1)/3, )

where z = 6 isthe number of nearest-neighbors of Fe**,

08§, mm/s
T T T T T T
23
22
2.1F
201 0 55.2 GPa .
A 50.5 GPa FeBO;
048.6 GPa
1.9 1 1 1 1 1 1
0 50 100 150 200 250

Temperature, K

Fig. 7. Temperature dependences of the quadrupole split-
ting parameter at different pressures in the high-pressure
phase of FeBO3 from thefit of the NFS data to the pure qua-
drupole-interaction model. The point T,, of the deviation
from the straight line corresponds to the onset of magnetic
ordering of the low-spin HP phase.

T,K
T T T T T s T T T T
800 - FeBO3 // -
/
- _ /
oof M _ah .
T
1
L T | HP-PM-SC
4004 A N |
200 LP-AF-1 .
T,
- W{IPTMT) ScT T T

1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Pressure, GPa

Fig. 8. Tentative magnetic P-T phase diagram of FeBOs.
LP-AF-I is the low-pressure antiferromagnetic insulating
phase, LP-PM-I isthelow-pressure paramagnetic insulating
phase, HP-MO-SC is the high-pressure magnetically
ordered low-spin semiconducting phase, HP-PM-SC is the
high-pressure paramagnetic semiconducting phase. We note
the existence of two triple points where three different
phases coexist.
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the spin S=5/2 characterizesthe LP phase, and S= 1/2
is the iron spin in the HP phase. The pressure-depen-
dent exchange integral is J = 2t%Uy, where t is the
parameter of the electron jump between nearest Fe**
ions governing the half-width of the d-band, W, = #,
and Uy = Q. — Q, is the effective Hubbard parameter
representing the gap between the upper Q. (conductiv-
ity) and lower Q, (valence) Hubbard bands. Here, the
upper Hubbard band is the extra electron band due to
d® — db excitations and the lower Hubbard band isthe
electron removal band dueto d® — d* excitations[19].
In the LP phase, both t and Uy parameters depend on
pressure as

t(P) = t,+a,P,

_ ©)
Ugi(P) = Ug—0a,P,

where t, = 0.076 eV and Uy = 4.2 eV are the ambient
pressure parameters [19]. The value of the pressure
derivative of the crystal field A, a, = dA/P =
0.018 eV/GPa, isfound from the condition of crossover
of the high-spin 6A; and low-spin 2T, terms at P = P,
and the a, = dt/dP = 0.00046 eV/GPa value is found
from the rise of Ty from 350 up to 600 K in the LP
phase. These values of the derivatives ensure the
increase of Ty in the LP phase and the collapse of the
Fe** magnetic moment at P,.

We now consider the change in magnetic properties
of FeBO; under transition into the HP phase. Near P,
a structural transition occurs with a jump of unit-cell
parameters [20], and, therefore, ajump inthet and U
values can be expected.

Weuse*“+” to denotethe values of parameterson the
right-hand side of P, and “~" to denote those on the | eft-
hand side. Then,

t = t,+0,P, +dt,

“ 4
Ugi = Ug—0,P.—0U.
Because the a- and c-unit-cell parameters decrease at
the transition [20], the ot and dU values must be posi-
tive. Assuming dt/ty < 1 and dU/U, < 1, we write the
exchange integral just after the transition as

) _ (R0, , O ot 6U}
= 1+ 5=—+ —P. . +2—+ —
R et v

where

\]OZU_O.
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The ratio of Ty above and below the transition is then
given by

IO
T _ 3V m2mi2 _ 3 +2_6'[+6_U% ©)
Uo

TO O BTt
where
T = 600 K.

If the jumpsin ot and dU are negligible and the change
in Ty isonly connected with the spinjump 5/2 — 1/2,
we can evaluate the magnetic ordering temperature of
the HP phase as

T = 31135 = 51 K. )

Taking ot and dU into account could only increase the
Tfj’ value. Thus, (7) is an estimate from below, that is,

T = 51 K. It turns out that the experimental value of

T evaluated in Section 3.4 is about 50 K. This sug-
gests that the ot and dU values are negligibly small.

In the HP phase, Uy depends only on the electron
transfer and does not depend on the crystal field and

pressure [21], and therefore the pressure dependence of
Ty isdifferent from that in the LP phase,

To(P)TY) = 1+ 20,(P-P)/t,. (8)
The slope of Ty(P) in the LP phase

dTy(P)/Ty(0) _ 20, o _ 1
s =T 0016 = (9)

is different from that in the HP phase

dTu(P)/TY (P _ 20, _ 1
P =3 C 0.012 ==.

(10)

Thus, the sloperatio is 4/3.

Now, the question is: How far isexpression (8) valid
as the pressure increases further, and what happens
above Ty? Inthe HP phaseat P > P.and T > Ty, the
FeBO; crystal is a paramagnetic semiconductor with
iron ions Fe** in the low-spin state (S= 1/2). However,
with a further pressure increase, the semiconducting
gap decreases, and it tendsto zero at P = Py, where Py,
isthe point of the transition into the metallic state. The
experimental value of Py, evaluated from the thermoac-
tivation gap is approximately 210 GPa[7].

The same value of P,, was found theoretically [21]
in extrapolating the level Q. down to the crossing with
the top of the valence band €, . The corresponding dia-
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Fig. 9. Diagram of the density of states of FeBOs at high

pressures below (a) and above (b) the semiconductor—-metal
transition.
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i
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c

Fig. 10. Supposed phase diagram of FeBOs at high pres-

sures. AFM, antiferromagnet; PM, paramagnet; HS-, Fe3*
high-spin insulator; LS-SC, low-spin semiconductor;
NM-KLM, nonmagnetic Kondo-lattice metal; SC, super-
conductor.

gram of the electron structure below and above Py, is
shownin Fig. 9. Here, the Q. level isrelated to the tran-
sitions [Fe®)(d®), S= 1/2] ~—— [Fe?)(d6), S= 0], and
itissmeared into anarrow band due to electron hopping
(Fig. 9a). The spin—polaron effect in the antiferromag-
netic phase gives rise to a sharp suppression of the
d-band width [22].

Above Py, there are two types of carriers. oxygen
holes at the top of the valence band and heavy electrons
at the bottom of the d-band. Theironionisin an inter-
mediate valence state as a mixture of the pd® and p°d®
configurations (Fig. 9b). Because each hole at oxygen
gives rise to the S = 0 state of the d® configuration in
iron, one may consider the situation as a peculiar
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Kondo effect, when carriers screen the iron spin.
Because spins are located regularly, the system can be
attributed to a Kondo lattice. At higher temperatures,
one can expect a nonmagnetic Kondo metal state; at
low temperatures, acompetition between antiferromag-
netism and superconductivity induced by spin fluctua-
tions can be dominant [23, 24]. The corresponding
phase diagram is shown in Fig. 10. Only the magnetic
and electron properties of FeBO; are shown in the dia-
gram, and the structural transitions are not discussed
here. We note that, from the standpoint of modern ter-
minology, the Py, point in the diagram of Fig. 10 isa
typical quantum critical point.

5. CONCLUSIONS

Both experimentally and theoretically, we have
shown that the magnetic collapse in FeEBO; at high
pressure does not transform the material into anonmag-
netic state with the disappearance of magnetic proper-
ties. At the transition, the low-pressure phase with a
strong magnetic interaction transforms into the high-
pressure phase with a weak magnetic interaction, and
this transformation is accompanied by an insulator—
semiconductor transition. The forthcoming metalliza-
tion and unusual properties of the Kondo lattice metal
state are subjects for future experimental study.
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Abstract—We demonstrate the existence of asimple physical picture of superconductivity for extremely over-
doped CuO, planes. It has all the characteristic features of HTS, such as a high superconducting transition tem-

perature, the dxz_y2 symmetry of the order parameter, and the coexistence of a single-electron Fermi surface

and a pseudogap in the normal state. The values of the pseudogap are calculated for different doping levels.
Orbital paramagnetism of preformed pairsis predicted. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In thiswork (also see earlier Letter [1]), we demon-
strate that in the phase diagram of cuprate high-temper-
ature superconductors (HTS), a small region exists
where the characteristic features of HTS can be easily
understood on the base of a simple theory. These char-
acteristic features include a high superconducting tran-

sition temperature, the dxz_yz symmetry of the order

parameter (see [2]), and the coexistence of a single-
electron Fermi surface and a pseudogap in the normal
state [3]. The last phenomenon is usually attributed to
the presence of preformed (i.e., normal-state) electron
pairs (in particular, bipolarons [4-8]).

The aforementioned small region in the phase dia-
gram is situated in the vicinity of the maximal hole-
doping level x = x. compatible with superconductivity.
The superconducting transition temperature T, is zero
for x = x;, and hence it islow in our region near X = x;.
However, T, increases with decreasing x for X < X, such
that it is quite high at the boundary of the region (i.e.,
for X, —x ~1).

Two features of our small region are important to
make a simple physical picture possible. These are rel-
atively low T, and the clear nature of the normal state as
amostly conventional Fermi liquid.

We calculate the pseudogap. With increasing x, the
pseudogap decreases for x < x.. As well as T, the
pseudogap disappears at x = x.. However, it reappears
for larger doping levels x > X..

As a new prediction, we show the existence of an
unusual orbital paramagnetism of the preformed (sin-
glet) pairs, which can probably be experimentally sep-
arated from the Pauli spin paramagnetism of single

T This article was submitted by the author in English.

electrons and the Landau diamagnetism of single elec-
trons and pairs.

2. PAIR QUASIPARTICLES

The key point is the existence of very mobile pair
guasiparticlesin crystals under the tight-binding condi-
tions, i.e., if the energy of the el ectron—electron interac-
tion at a distance on the order of the atomic spacing
considerably exceeds the electron tunneling amplitude
to neighboring lattice cites. Quasiparticles of this type
were studied earlier [9] in helium quantum crystals and
more recently by Alexandrov and Kornilovitch [7] asa
model of bipolaronsin HTS (also see[10]).

We consider two electrons localized at neighboring
(1and 2inthefigure) copper atoms (to be more precise,
in unit cells containing these atoms) forming a square
lattice in the CuO, plane. The electron tunneling from
2 to 4 or 6 does not change the energy of the systemin
view of the crystal lattice symmetry. The same is true
for the electron tunneling from 1to 3 or 5. Owing to this
type of transitions, an electron pair can move asawhole
over the entire plane, becausethe 2 — 4 transition can
be followed by the transition 1 — 7 or 1 — 3, and
so on. Because the transitions do not change the energy
of the system, the motion is fully coherent. An electron
pair behaves as a delocalized Bose quasiparticle.

o7 X o4 x @3
X X X
e X el x e2
X X X

e X o6 X o5

CuO, plane: @, Cu atoms and x, O atoms.

1063-7761/05/10004-0697$26.00 © 2005 Pleiades Publishing, Inc.
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To calculate the quasi parti cle spectrum, we consider
the localized states of apair,

Ir,r, aB0= ciyCrglO0) )

where ¢, are the electron creation operators with a

spin projectiona = 1, | at apoint r and |0Cis the elec-
tron vacuum.

The effective tunneling Hamiltonian H; is defined
by the matrix elements of the operator

H = tzcr'acrua (2)
rr'a

which correspond to the transitions of one of the elec-
tronsto copper atomsthat are next-to-nearest neighbors
of theinitial atom, such that the energy of the system of
two electrons remains unchanged. Here, t is the tunnel-
ing amplitude, which is known to be positive (see [2,
p. 1004]).

Leta, (n=X, y) bethe square-lattice periods directed
from point 1 to point 2 and from point 1 to point 4,
respectively. We have

Helr, r +a,, aB0= t(Jr +a,+a, r +a, af]

+r+ ag—a, r+a,, o |r,r + a, aBO
+|r,r—a, a0 = t(-r +a,r +a,+a,Bald (3)
+|r+a,—a,r+a, afd
+|r,r +a,aB0-|r—a,r,Bal,

where we used the antisymmetry of quantities (1) with
respect to the arguments (r, a) and (r', B). Analogously,

Helr, r +a, ap0= t(-r +a,,r +a,+a, fal
+|r—a,+a,r+a,apf (@]
+|r,r+a,aBC|r-a,r,pal.

The complete set of localized states of an electron
pair is determined by the state vectors

Ir,n,aBCE|r,r +a, apl 5)

wherer labels unit cells of the square lattice.

The problem obviously splits into two independent
problemsfor singlet and triplet pairs that are character-
ized by quantities (5), which are respectively antisym-
metric and symmetric in the spin indices a, 3. Assum-
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ing that the required stationary states of a pair are
superpositions of localized states,

> WepeIr.n, ap0l (6)

with coefficients Y independent of r (this corre-

sponds to a definite quasimomentum k), we obtain

(E(k)—eo)q_j(x) = tlIJ(y)(lie_ik‘)(lie‘KV), .
(E(k)_eo)w(y) = tw(x)(lieikx)(lie_i‘(y)’

where the upper or lower sign corresponds to a singlet
or triplet state, respectively. The conditions for the
existence of anontrivial solution g®, Y& of system (7)
determine the energy E(k) of apair quasiparticle. Here,
€y isthe energy of theinitia localized state; K, =k - a,
and K, = k - a,. Everywhere in formulas (7), we omit
identical spinindices ap.

Theminimal energy €,,= minE(k) = e;—4t of asin-
glet pair is attained at K, = K, = 0. The same minimal
energy of atriplet pair is attained at the nonzero quasi-
momentum K, = K, = Tt This degeneracy is removed by
taking the electron exchangein theinitial localized pair
into account. It is well known that this exchange is of
an antiferromagnetic nature, and hence singlet pairs
have the minimal energy.

Thus, solitary Bose quasiparticles can exist in the
CuO, plane; these particles are characterized by a dou-
bled electric charge and by zero momentum and spinin
the ground state. It readily can be seen from Egs. (7)
that the effective mass of quasiparticles is m = 72/ta?,
where a = |a,| = [a,|. In addition, quasiparticles have a
specific quantum number n =X, y, which determinesthe
orientation of atwo-electron “dumb-bell.” Substituting
E(k) =enandk =0in Egs. (7), we obtain g® =—® in
the ground state. Because the orientationsn=xand n =
y are transformed into each other under lattice rotation
through the angle 12 and under reflection in the diago-
nal plane passing through points 1 and 3 in the figure,
the ground-state wavefunction @ = P® = O of qua-
siparticlestransforms in accordance with the nontrivial
1D representation (usually denoted by dxz_yz) of the

symmetry group of the CuO, plane (see[2)]).

3. SUPERCONDUCTIVITY

We further assumethat all other two-electron, three-
electron, etc., configurations localized at distances on
the order of the atomic spacing are energetically disad-
vantageous compared to the pair configuration consid-
ered above. In addition, we assume that electrons are
repulsed at large distances such that the electron—elec-
tron interaction energy is on the order of the one-elec-
tron tunneling amplitude. Under these conditions, only
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single-electron Fermi particles and the pair Bose parti-
cles considered above play a significant role.

Finaly, we assume that the minimal energy e,, of
pair quasiparticlesis such that e,/2 iswithin the single-
electron energy band. We note the following. Under
tight-binding conditions, there are two different situa-
tions in which €.,/2 can be within the single-electron
energy band. First, if single electrons and electrons in
pairs correspond to the same energy band, the single-
electron tunneling amplitude must be on the order of
the electron—electron interaction energy in the pairs,
while the one-electron tunneling amplitude t in pairs
introduced in Section 2 must be much smaller than the
interaction. The latter condition, which is the condition
of the applicability of the procedure used in Section 2,
can be aresult of the large polaron effect in pairs. Sec-
ond, if single electrons and electrons in pairs corre-
spond to different bands, both one-electron amplitudes
can be of the same order. The analysis carried out by
Alexandrov and Kornilovitch in [ 7] showsthat the con-
ditions formulated above are likely to be realistic.

We now trace the change of the state of the system
at T = 0 asthe number of electronsincreases (the hole-
doping level decreases). Until €,/2 > €, only single-
electron quasiparticles are present and the system
behaves as an ordinary Fermi liquid. The condition
€./2= €z determines the minimal hole-doping level
compatible with the state of anormal Fermi liquid. Let
n. denote the corresponding el ectron density n. Upon a
further decrease in the hole-doping level, all additional
n—n, electrons passinto aBose-Einstein (BE) conden-
sate of pair quasiparticles (we everywhere consider the
case of small n—n, values, for which the concentration
of pairsislow and their interaction can be disregarded).
The system becomes a superconductor. The supercon-
ducting order parameter is given by the boson ground
state wavefunction ) = y® normalized by the condition
|WP = (n—n,)/2; the wavefunction transforms in accor-

dance with the dxz_yz representation of the symmetry
group of the CuO, plane.

It is important to note the following. In the system
ground state (i.e., for complete filling of all fermion
states with energies smaller than eg), the uncertainty in
the energy of a boson quasiparticle with a low excita-
tion energy e = k?%/2m arising due to its collisions with
single-electron Landau quasiparticles is proportional
to €2. As in the conventional theory of a Fermi liquid,
thisis, first, because of alow density of fermionsin an
order-e neighborhood of ez, with which the given
boson can collide due to energy conservation. Second,
the statistical weight of the final states to which fermi-
onic transitions are possibleis small. The probability of
boson decay into two fermions per unit of timeis aso
small: as suggested at the beginning of this section, the
boson must overcome a significant energy barrier.
Thus, the proposed picture of superconductivity in the
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vicinity of the maximal doping level remainsvalid even
in the region of appreciable densities of fermions,
where the interaction between bosons and fermions is
significant. The critical electron density n, is deter-
mined from the condition that the electron chemical
potential is equal to half the minimal boson energy. In
the genera case, this energy is a functional of the dis-
tribution function for single-electron Landau quasi par-
ticles.

In calculating the superconducting transition tem-
perature, the fermion distribution function may be con-
sidered as corresponding to T = 0, because the temper-
ature corrections (proportional to T?) to the thermody-
namic functions of the Fermi liquid are considerably
smaller than the corrections included bel ow.

The density of uncondensed bosons at a finite tem-
perature T< T, is

2nkdk 1 mT IogI. ®)

N' = =
I(2nﬁ)2eE/T—1 omh’ T

Theintegral in Eq. (8) diverges at small € and is there-
fore cut off at € ~ T, where T isasmall tunneling ampli-
tude of electrons in the direction perpendicular to the
CuO, plane.

The excess number n — n, of electronsin the system
isequal to the doubled sum of N' and the number N, of
bosons in the condensate. This|leads to the dependence
of the superconducting transition temperature on the
doping level for small values of n—n:

T.OT
mﬁglogf. ©
TT

n-n, =

The number of pairsin the condensate,

_N-neg T logT/ih
No = =3 %L T.logT./J

(10)

determinesthe modulus of the order parameter [P =N,
at finite temperatures. The superconducting transition
temperature defined by Eq. (9) is quite high. To within
the logarithmic term, thistemperatureis on the order of
the one-electron tunneling amplitude t at the boundary
of the applicability region (i.e., for n — n,~ a?). The
possibility that the superconducting transition tempera-
ture may have such an order of magnitude was pointed
out in the aforementioned paper by Alexandrov and
Kornilovitch [7].

Theinteraction of fermions with the BE condensate
(effective electron—€lectron interaction), which is
described by the order parameter (), creates an effective
potential A, acting on fermions as in conventional
superconductors:

Hip = Z(Akczrctki +H.c) (11)
K
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In view of the symmetry of (), we have

A = V(ke—kp)w, (12)

where k = k/lk| and V isinvariant under the symmetry
group.

Owing to thisinteraction, fermions in the supercon-
ducting state considered acquire features typical of an
ordinary superconductor with the dxz_yz symmetry.

4. NORMAL STATE THERMODYNAMICS.
THE PSEUDOGAP

The total number of pairsfor T < T, is independent
of the temperature and is equal to (n — n.)/2. The elec-
tron chemical potential for T < T, is aso temperature-
independent and equal to p = p(n,) = €,(ny)/2, where
€m = €(N) isthe pair minimal energy, which dependson
the fermion density, as shown above.

For T > T, the fermion distribution function, as
above, correspondsto T = 0, but with the temperature-
dependent chemical potential. The pair energy spec-
trumisE = €,(l) + €, where e = k%/2m. The pair density
above T, isgiven by

andk 1 mT 1
= lo . (13
I(Znﬁ)z €+OT_q " o2 gl— = (13)
The parameter (¢ > 1) isdefined by
Oe,,
(= é—géu—Zéu, (14)

where o = U — p(ny). With changing temperature, the
total electron number conservation gives

n-n, = 2N+@6u

o (15

From the last equation, wefind { = {(T) and then al the
other quantities.

For n > n, and not too high temperature T <
T.log(T_ /1), the pair density is determined by

N(T) =N(T) _ an/op AT
NT) - 2¢-dejopy) ¢ 0 (19
where N(T,) = (n-ny)/2 and
A, = Tclog% - @(n n.) (17)
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is the pseudogap for n > n.. Aswell as T, it is zero at
the critical value of the doping level n=n.. For ahigher
doping level n < n. (T, = 0), we have
N(T) = mT —A'p/T,
21h°

(18)

where

0 Oe
b= =1 —n)

P on (19)

is the pseudogap for n < n,. Equation (18) holdsin the
low-temperature region T < A,. For n < n, the
pseudogap A, isthe gap in the energy spectrum of the
pair quasiparticles. For high temperatures T > A, A,

(but T < t), the pair density is alinear function of tem-
perature,

zon/ou

N(T) = 22 ae. jam)

(20)

where zis the solution of the equation Az = e with

T’ dn/ap
m 2—0e, /Ol

The entropy of pairsis determined by the equation

A= (21)

0

XT) = 2:ﬁz —flogf}, (22)

wheref ={&€*9T-1)}-L. For n> n, in the low-temper-
atureregion T < A, we have

T) 8

m A, a7

= ———¢ , 23

T OB om?T #)
where

ESH _ 1m 5

H = ) 4

Dby, 12#° 29

The function T) is amost linear in T, with exponen-
tially small deviations. For n < n., the pair entropy is

exponentially small at low temperatures T < A

—A'/T
T) = o (25)
21th”
At high temperatures T > A, A, the entropy is
T) = : (26)
2 ﬁ
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The temperature-independent factor ¢ is determined by

[

_ Xdx
o= J’ex_l—)\zz.

(27)
The entropy is again alinear function of temperature.

5. ORBITAL PARAMAGNETISM OF PAIRS

In this section, we show that the orbital motion of
electrons inside the pairs cause a peculiar paramagnet-
ism. Let apair be at rest as a, whole. For singlet pairs at
k =0, the Hamiltonian in Egs. (3) and (4) can bewritten
asthe 2 x 2 matrix

Op 10U
H = 40" ~0=4to,, (28)
0100
acting on a state vector
« D

DOD 1D

where ™, n = x, y are quantum amplitudes of two ori-
entations of the two-electron dumb-bell and o is a
Pauli matrix.

In the x state, coordinates of two electrons (with
respect to the center of gravity of the pair) arex, = —a/2,
y, =0and x, = a/2, y, = 0, respectively. In the y state,
wehavex; =0,y; =—a/2and x, =0, y, = a/2. From this,
we find the coordinate operators for both electrons:

04 a0
_210p
20000

(30)
alq o0
v =y, = 5090
goiln

The velocity operators are determined by the commuta-
tors

. i
M1 = %[H’rl,z]- (31)
Simple calculation gives
. . 2atdo i U_ 2at
Xy = =Xy ==y = Y2——TDO ID——702 (32
Oi 00O

The operator of the pair magnetic moment, which is
directed along the z axis, is

eta’

e ooy eta
Z—C;(xy—yX) = 202

where e isthe electron charge and c is the velocity of

HEH, = (33)
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In the presence of an external magnetic field B=B,,
the Hamiltonian of the pair is

H = 4to, —uB. (34)
The energy eigenvalues are
Eﬁa 2_1/2
E = eo:4t[1+ == } (35)
In weak fields, the minimal energy is
2 4
— ea 2
Enn = € _4t_t8ﬁ2028 . (36)
The average magnetic moment of the pair is
— aEmin —
o= ——2% = aB, (37)
where
2_4 2_2
a=2t=22 (38)
4h°c 4mc

isthe pair paramagnetic polarizability.

We note that pairs with k = 0 in the upper energy
band (the lower sign in (35)) are diamagnetic.

The pair contribution to the paramagnetic suscepti-
bility of a3D sampleis

Nw (39)

4mc

where N® = N(T)/L isthe 3D density of pairs and N(T)
is the 2D density determined by formulas (16), (18),
and (20). Here, L is the distance between neighboring
CuO, planes.

Generally, we have three competing contributionsto
the magnetic susceptibility: the orbital paramagnetism
of pairs considered above, the Pauli spin susceptibility
of single electrons (pairs are singlet), and the Landau
diamagnetism of single electrons and pairs. Spin sus-
ceptibility isisotropic. Orbital paramagnetism and Lan-
dau diamagnetism are both strongly anisotropic (the
magnetic moment is directed along the z axis indepen-
dently of the direction of the magnetic field) because of
a 2D character of single electrons and pairs. However,
Landau diamagnetism, especially in the 2D case, is
very sensitive to inhomogeneities. For example, it is
easily suppressed by localization of charge carriers.
Orbital paramagnetismisfiniteat zero velocity of apair
as a whole. Therefore, it has to be much more stable
against inhomogeneities. We hope that orbital para-
magnetism can be experimentaly separated from the
other two contributions to susceptibility.
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Abstract—The electronic structure of compounds is studied taking into account the Hubbard energy as the
largest energy parameter. The conditions for the emergence of Cooper instability are obtained. The phase dia-
gram for the superconducting state is calculated for various degrees of filling of the d and p shells of transition
and nontransition elements. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The classical Hubbard model, in which direct hop-
ping between the nearest cations of the t- and e-shells
of atransient element is taken into account, makes it
possible to correctly describe the electron properties of

superconductors of the Lny" M3 CuO, type [1, 2].
With increasing concentration x of the tetravalent cat-
ion M#*, the upper half of the Hubbard subband, which
corresponds to collectivization of the (x* — y?) states of
copper, is populated. In this case, the 2p® shell of oxy-
gen remains completely filled, which corresponds to
the assumption on the high energy of hole p excitations
as compared to the energy of the hole states in the 3d'°
shell of Cu.

For other compounds such as LngtxM §+Cu04,
Y B,Cu;0;,_5, and Sr,RuQ,, the assumption concern-
ing complete filling of the p shell of O* anions should
be rejected, and hopping between the oxygen anions
and copper cations should be taken into account explic-
itly [3, 4]. The energy shift of the hole states of oxygen
with energy e, relative to cation states with energy €4 is
assumed to be preset (r = €, — €;) so that r > U corre-
sponds to the classical Hubbard model. The real situa-
tion corresponds to the opposite limit, when Hubbard
energy U is larger than or on the order of the energy
shift r. Inthis study, the X operator method isused inthe
so-caled p—d model. The main assumption made in
choosing the Hamiltonian isthat the Hubbard energy as
a function of the principal quantum number n can be
estimated by the formula U(n) = U(1)/n, where U(1) is
the Hubbard energy of s electrons, which is equal to
17 eV. Consequently, the corresponding values for the
2p electrons of oxygen and for 3d electrons of copper
are 8.5 and 5.67 eV, respectively.

In accordance with these estimates, we can assume
that the Hubbard energy for the d aswell as p electrons
is higher than the hopping energy t,,,. For thisreason, a
correct choice of the zeroth approximation and atransi-

tion to the X operators make it possible to obtain the
scattering amplitude on the order of t4(p) both in the
case of (d—d) and (p—p) scattering. The same method
allows usto write the equation of stete, i.e., to establish
the relation between the chemical potential, parameter
A = e, — €4, and the number of holesin the 2p° and 3d°
shells of oxygen and copper.

As regards the value of Uy (i.e., the Coulomb
energy of the interaction between electrons belonging
to neighboring copper cations and oxygen anions), all
these matrix electrons are assumed to be small and will
not be considered here together with the energy of
interactions between electrons (V4 and V,,,) belonging
to adjacent atoms.

Here, the Emery parameter r = €, —eg4isarbitrary. As
amatter of fact, it contains the contribution to the crys-
tal field due to the difference in the potentials at the
sites occupied by copper cations and oxygen anions;
this contribution has not been reasonably estimated so
far due to screening effects.

In such a formulation, our task is to construct the
phase diagram depending on two parameters, viz., r =
€, — €4 and chemical potential P = (e, — €4)/2. The
equations of state make it possible to transform the
resultant phase diagram to variables h, and hy.

Experiments on studying the resistance in com-
pounds Sr,RuO, and Ndj",Ce; Cu0,0; reveal a
quadratic temperature dependence [5], indicating the
weakness of the electron—phonon interaction. The char-
acteristic value of energy, which determines the super-
conducting transition temperature by the BCS formula
for the Nd, _,Ce CuO, compound, has the same order
of magnitude as the well-known compound
Lay" MeZ"CuO, doped with bivalent Ba, Sr, or Hg
cations. These factsindicate that the key role is played
by the electron—electron interaction, whose intensity
considerably exceeds the width of the g, shell being
popul ated.
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In the SrRuO, compound, the Hubbard energy of 4d
electrons of ruthenium is found to be lower than the
Hubbard energy of 3d electrons of copper; however, it
ishigher, asbefore, than the width of underpopulatedt,,
shell.

The number of holes (h,) in the 2p° shell of oxygen
in the plane of the CuO, layer is connected with the

number of holes in the 3d™X shell of Cu cations via the
electroneutrality condition

2h, +hy = 1-xfor Nd,_,Ce,CuQ,, (1a)

2h, +hy = 1+ xfor La,_,Me{'CuO,.  (1b)

The energy of the 4s statesis higher than the energy of
the 3d states. Accordingly, 0 < hy < 2, and we must trace
the extent of underpopulation of the p, , shells of oxy-
gen inthe CuO, plane, taking into account their twofold
degeneracy and noting that the Hubbard energy is sub-
stantialy higher than the Fermi energy.

An analogous situation takes placein the Sr?RuO4
compound, in which the degenerate 4t,, and 4t,, shells
arefilled, while the population of the 4t,, shell depends
on the number of holes in the 2p® shells of oxygen
anionslying in the RuO, plane. Taking into account the
electroneutrality condition, we can write the relation
between the number of holes h, in the t,, shell of ruthe-
nium cations and the number of holes h, in oxygen
anions:

2h, +h, = 2 for Sr,RuUO,. (1c)

The crystal structure of Sri+ RuQ, is the same as the

structure of La‘;_’+CuO4; consequently, the phase dia-

grams of these compounds are identical. The main dif-
ference is determined by different arrangements of
electroneutrality lines (1b) and (1c).

2. HAMILTONIAN AND FORMULATION
OF THE PROBLEM

For simplicity, we assume that this energy is infi-
nitely large as compared to hopping integralstik(r), t'(r),
and 1(r) appearing in the definition of the Hamiltonian:

~

-3

i,j,r,ro;r#r

Brr o Djrot™(r =r')

+ Y [Pt (r-r) +hel
ir,r',o
o 2
+ z é—:cé-r'c-[(r —I")
r,r,o;r#r

At A At A
+ Ep pircpiro + €4 Z aroaro'

i,r,o i,r,o
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Here, i, j are the vector indices corresponding to thet;,
states and €, and e, are the energies of one-holep and d
states.

If the mean occupation numbers h, and hy are
smaller than unity, it is sufficient to consider transitions
between completely filled and four possible one-hole
states. Accordingly, we express the creation and annihi-
lation operatorsin terms of the X operators correspond-
ing to transitions between the completely filled and
one-hole states:

0,0

éirozx )

At &,0,0
aro =X '
&, ko, 0 (3)

~t , &0 ko
pkrc - Xf '

bkrc = Xf

Here, k = %, y and indices (koa, 0) and (0, ko) denote
transitions between the completely filled 2p® shell and
one-hole [p, . ;Lstates (and back).

For region 1 < hy < 2, we must consider transitions

between two one-hole (x* — y?) states and a two-hole
state with zero total spin.

Emery [3] was the first to note that the matrix ele-
ments w of hopping between oxygen and copper play
the main role in the formation of the elementary excita-
tion spectrum of the CuO, complex. The matrix ele-
ments proportiona to w, and wy are smaller and have a
complex angular dependence on quasi-momentum. For
the latter reason, to simplify our analysis, we will
assume that the diagonal matrix elements p—p and p—d
are proportiona to the same dimensionless function t,,.

On account of these simplifications, we can write
the reciprocal one-particle Green function, which has
the following form in the zero-loop approximation of
the self-consistent field (Hubbard I) for U, Uy = +oo:

(0,0)
(ax)
Gu(p) = (by)
(ay)
(bx)
0 e o fayp) 0 05 @
H-fowti(p)  Qu(p) 0 00
x%—prT§(p) 0 Q,p) O o%-
E 0 0 0 Q, 0 %
o o 0 0 0 Q,0

Here, the following convenient notation has been
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introduced:
W, = (2n + )T,
QD = i(k)—Ep, d(p) = iw—Wdfdtp_Ed (5)
Qp(p) = iw—w,ft,—¢,.

Thesum e, + T,ft, consists of two anisotropic branches
Py y Of degenerate states. The other two branches are not
collectivized and have energy «,.

For an infinitely large Hubbard energy, the end fac-
torsf, and f4 are linear functions of h, 4[6]. At the ends
of theintegral interval k< h(k <k+ 1, thesefactorsare

egual to the reciprocal degeneracy of the lower k-hole
state or the (k + 1) hole state:

L he

£ = > 0<ng<1;
fo= 1—§1hp, 0<n,<1,
(6)

f(l)_hd 1<h. <2

d - E! d ]

h +2
1 _
f 12 , 1<hp<2.

In the subsequent analysis, we will confine ourselvesto
theregion0<hy<2,0< hp< 1.

3. EQUATIONS OF STATE

Apart from two noncollectivized p, , branches,
which have the same energy E* 2 = ¢, the poles of

one-particle Green function (4) define three more
branches:

s E(p) + E(d)
Eés) = Eép) = Wpfply + €, Eé) = 2 ;
1 2
£SIEP &)+ 4w’ ol (7)
where
t,° = tp)* + |t ().

Using the one-loop approximation, we can find the
relation between the chemical potential = —(e4 + €)/2,
the temperature, and the mean numbers of particles per
unit cell. Taking into account the degeneracy in spin
and crystallographic indices, we obtain the following
expression for the sums of the diagonal matrix elements
of the one-particle Green function:

hy = 2f,Ty GG (p)exp(idw),
w p

(8)

2 U .
wt Gy + iu)—eEeXp(léw)'
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The reason for the disappearance of factor 2 in front of
the sum over p electronic states of the diatomic CuO,
molecule is that h, is the mean number of p electrons
corresponding to an oxygen anion and not to the entire
unit cell.

Using the explicit expression for reciprocal Green
function (4), we obtain

- 1
Gy = AT —,
dd Z P i, — Eg\)

yy 2(I00 E(p)) ZZ (A) ()\)’ 9)

() _ g(d)
Ap = §|:li Ep Ep i|
d)y2 2
JEP -8 + 4wt oty
Asaresult of substitution and summation over iw,, we

obtain the equations of state expressed in terms of sums
of the Fermi function nc(e).

For the d-hole states, it is necessary to consider the
following two regions:

hy = 2f5 3 ATNe(E)),

+_ 1

pA==%

hy

fOI’ O<hd<l, fd = 1—‘5,

(10a)

hy=1+fs 5 ATne(E),
pA==

hy

for 1<hy<2, f4= >

For the p-hole states, it is sufficient to consider the
region 0 < hp < 1, for which we have fp =1- 3hp/4,

l
hy = fp%QnF(ep)
(10b)

+ Z{np(ié”)) +y A“’m(&“)ﬁ
p

A==

On account of the sgquare symmetry, we can expressthe
hopping integralsin terms of the single function e(p) of
guasi-momenta:

é)p) = Wye(p), ( ) = = Wqe(p),

wlt,® = wf(l—e(p)).

For this function, we can define the initia functions of
the density of states,

Po(e) = S d(e—e(p)),
P
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©.+ ¢ O O hle commutator { X° [X*FA]}. Ultimately, this relation
o) 2o can be expressed in terms of structural constants Njg
’ | of the corresponding superalgebra[1, 2]:
0,-) O ) (0,-) 0, +) SO B ngE OB
[Xr, Xr]ls = Ny pgXr "0 . (12)
(0, A+) OA) (0, ) 0,-) o
In our case, Hamiltonian (2) can be represented as the
sum of the products of Fermi operators corresponding
*+.0 *-0) to different unit cells:
(0, M) 0, +) 0, A-) 0, A\ +)

Fig. 1. Born amplitudes of the kinematic interaction for
ng < 1; for the upper Hubbard subband (ny > 1), the substi-

tution (0, d) — (-0, 2) should be carried out.

after which the equations of state can be represented in
the form of single integrals.

The classicadl Emery model corresponds to the
approximation w > w, ~ Wy, however, amore realistic
situation corresponds to the inequalities w ~ wj, > wy.

4. SUPERCONDUCTIVITY CRITERION

For an infinitely large Hubbard energy, the interac-
tion between the s and t excitations is manifested in
scattering and a strong dependence of the scattering
amplitude on the position of the Fermi level. We can
find the Cooper instability from the condition for the
emergence of singularity in the two-particle Green
function [7]. In the ladder approximation, the problem
is reduced to determining the conditions for nonvanish-
ing solutions in the corresponding homogeneous sys-
tem of equations. For zero values of the total momen-
tum, total projection of spin, and energy, this systemin
our problem has the form

rad; \N(p) = gaﬁ; vv(p)

y 11
= S G KON s@), D

p.B.B

where
Kgm)—TzG@(meﬁwy

Indicesa and @ correspond to transitions with oppo-
Site signs of the variation of the spin projection. The
components of Green function G&B (p) can be defined
in terms of reciprocal matrix (4). According to Dyson[§],
the scattering amplitude g, 8 is defined by the dou-
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z (t(r,r‘)V’B)AC)A(E+t(r,r) PRIK E) (13)

rr,rzr

Here, the subscripts with bars (e.g., @) indicate transi-
tions with the reverse sign of the spin projection (rela-
tiveto a).

Direct calculation leads to the expressions

XLF =Y NG, )" PXE X
v, B r#r (14)
+ z NG ot(r, )" PXE KR,
roULB T
{ XX, AL
- Ng oo Nt 1) PR K0 (15)
v, B rEr
= Y NoanNaot(r)” Bgerarige,
rou,Br#r

In our case, for transitions between states with com-
pletely filled shells and one-hole states, we can easily
calculate the double commutators. Figure 1 shows the
graphic representation of the Born amplitudes.

In the case of the (d—d) scattering, using Hamilton (2),
we obtain

(0 -0) 0,0) o

[Xi {W”m]—zx Pre_ot(r 1)

z KON Or —pry (16)
-
- Z X(OO)Ar O'T(r_r')_ Z T, GXEO_G) ( _r')-
r;ri#r r';r#r'
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In the case of the (p—) scattering, we have

(0;i,—0)

[X (0;1i,0)
r

{7 H]

SR o)

=3 Pk %O -r) (17)

oD IR A T (R )

o r#r

A (05 0,-0,1) (i '
- z PjroX R (Y
j,ryo;r#r
After thetransition to Fourier componentsand to the
center-of-mass system, it turns out that the scattering
amplitudes depend only on the momentum of scattered

particles and differ from hopping integrals t® #(p) only
by factors:

g(x,a;yv(p; pl) = _60(,y{ ta'v(p‘) +tu,v(_p.)}
=8 {7 () + (P}

Here, indicesa, y, and v arethe numbers of one-particle
trangitions (d, X, y).

(18)

Subsequent simplification of the kernel of integral
equation (11) are associated with the possibility of car-

rying out summation over internal indices3 and 3. For
this purpose, we write the Dyson equation that was
used for determining reciprocal Green function (10). In
the one-loop approximation (Hubbard 1), we have

Y ft"8(PIGE"(P) = 8,y ~[(ES) Gul(P)]y; (199

£ (—p)G%Y (—p)
Z ' (19b)

= &, ~ (6 "G (-5

Multiplying relation (16) by [G_w(—p)]s and rela

tion (17) by [Gw(p)]B, we will be able to exclude the

sumsover the number of transitions containing hopping
Y
(

—P).

Excluding these sums and ignoring nonlogarithmic
terms containing the first powers of Green functions,

integralst¥ B(p) and t
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we arrive at the following system of equations:
[ aa;vi(P) = Gaa; vi(P)
+T Y D—[(fo)) Cu(PY[Ga(-P)]§  (20)

w, p', B, [3
IRRICHREREH (K = )

To determine the conditions for the emergence of Coo-
per instability, it is sufficient to consider the system of
homogeneous equations corresponding to inhomoge-
neous system (20):

,—TZ

wPVY

[(Gfi”) Gu(P)]y[Gs(-P)]
(21)
RN LN )i g

In zero magnetic field, all matrix elements are indepen-
dent of the value of the spin projection. The reciprocal
zeroth Green function has only diagonal matrix ele-

ments [(G(ff,) ]a = iw — € consequently, in the

framework of the logarithmic approximation used here,
the problem of determining the superconducting transi-
tion temperature is reduced to writing the solvahility
condition of the homogeneous system of algebraic
equations

Mo = —2 T Z [Gw(p)]v[G—w( p)]v

P,y

(22)

Thus, the problem of determining the superconducting
transition temperatureis reduced to determining the solv-
ability condition for system of algebraic equations (22).

The kernel of this equation has strong degeneracy in
indices a and y. Direct calculations show that the final
solvability condition does not contain the products of
nondiagonal minors of the matrix of the operator on the
right-hand side of Eq. (22). As regards the diagonal
components, the solvability condition can be expressed
in terms of the ssimplest sum of diagonal components:

€4 - ap A a
1= —ZZf—GTpr[Gw(p)]a[Gﬂ(—p)]a- (23)

It is convenient to express the diagonal components of
the one-particle Green functions in terms of normal
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coordinates and eigenvalues of the corresponding
reciprocal matrix:

()
(Gulpl; =y T
n— Sp

A

V= -p,  (24)

where eg are the eigenvalues of reciprocal matrix (4).

In substituting thisexpansion into Eq. (23), it should
be noted that, to within the logarithmic accuracy
adopted here, we must omit the terms with different
number of pole addends:

(?\) (A)
(p)A (—p)
z Z E.O\))
()\)(m)pA()\)( ) () (25)
P P tanh[fE

=5 7 Z £0) ST
kA

Thus, for a given number of the energy band, we have

aset of singular terms determining the superconducting

transition temperature. In other words, in the metal con-

duction range, for a given value of the chemical poten-

tial, a fixed number A exists, for which the condition

£ = 0 defines the Fermi surface.

Separating such terms, we can rewrite the Cooper
instability condition for the given number of energy
band A:

€

P

()\) ) \)
ACPACP) o fp [
=T, S e

k p

(26)

—n

This relation can be written in the classical BCS form:
T, = € exp(-UN), where

——22 %Aﬁ”(p)Aﬁ”(—p)a(eg). (27)

In our simplest case, when the lower Hubbard subband
is populated (hy < 1), the normal coordinates and the
eigenfunctions can be determined using relations (9).
As aresult, for a given A, we can determine the BCS
constant and the condition for the existence of super-
conductivity at T = 0: A, > 0, where

€ _
Aoy = =22 (A(P))°8(E)
d
P (28)
€
-5 (A(P)B(E)-
P p
It can easily be traced that, as we pass to filling of the
upper Hubbard subband, the superconductivity condi-
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tion has the same form (28), but with the reverse sign
of e4:

Aoy = 2755 (A7) 8(E)
P (29)
(AN (p))3(EM).

p
In both cases, A = —1 for filling of the lower hybridiza-
tion subband and A = +1 for filling of the upper hybrid-
ization subband.
The condition for the existence of superconductivity
for independent filling of the nonhybridized p band has
theforme, < 0.

5. EMERY-HIRSH MODEL

L et us consider the most simplified model, in which
we can disregard direct jumps w, and wy altogether as
compared to the jumps between 3d electrons of copper
and p, , electrons of oxygen.

Such aformulation of the problem was proposed by
Emery [3], aswell asHirsh [4], who studied the system
with preset one-particle energies e, and €4, which cor-
responds to the Hamiltonian

FI = Z [b:c,)\é—r',c"-h-c-]

r,r',A,o

(30)
te Z prc)\prc)\+€dzar carc

rAo

Here, P/ ., and & , are the creation operators for

hole p- and d-excitations in the r cell with spin projec-
tion o and with orbital constantsA =X, y.

We assume that the energy of electrostatic repulsion
of electrons belonging to the same atom is high as com-
pared to the energy €, 4 of one-electrons states and as
compared to hopping integral t.

The eguation for determining the one-particle exci-
tation spectrum can be derived from the poles of four-
component Green functions, which will be defined in
terms of the reciprocal matrix

(0; o) % Q 0 ¥ E
Gop= (25 0 @ =®9g @
(0; j’c)%—Tff‘o’ (02 B(j,k)QpE
For the CuO, layer, we have
T, = tho(1-exp(ipy),
9 = tf,(1-exp(-ip;)).
No.4 2005
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Crystallographic indices k and j independently run
through two values (x and y). For the particular case of
a sguare unit cell, the end factors for p electrons are
independent of the crystallographic index f; = f, = 1 -
3hy/4. As regards the (X2 — y?)) hole states, these states
differ substantially for the lower and upper Hubbard
subbands; consequently, we have

fo=1-hy2, f,= hy2.

In the zero-loop Hubbard | approximation, the aver-
age occupation numbers are defined self-consistently in
terms of the products of the virtual Green function at
coinciding points and the corresponding end factors.
For example, for the average number of (x? —y?) holes,
we have

hy = ZTZ exp(iwd)Qy(foQ,+ F,Q)0™. (32

®,p

For the average number of p holes, we can write

0 _ O
h, = fpgsnF(ep)wz exp(iwd)QuQ,d E. (33)

,p

The determinant of matrix (31) gives the equation for
the elementary excitation spectrum @ (p) = 0, where

D = QuQ,Q,— fta(foQ, + F,Q),

O O (34)
= 2@ - z cospl.
O 4 O
Introducing chemical potential 1, we obtain
. U , U
Qp = iw+=+y, Q, =iw—=+Y,
0 > H 2 > H (35)

Q, = lw—¢,.

In the case of extremely high energy €,, when Q, —
—o0, We obtain the equations for the excitation spec-
trum, which can be reduced to the classical Hubbard

model with the effective hopping integral 1, = tﬁ le,.
In the limiting case of the extremely high Hubbard
energy of d electrons (Q, —= —»), we arrive at the ver-

sion with simultaneous population of the p and d lower
Hubbard subband with the spectrum

2
g =4 /%0+ fof 2=l hy<1,

U

ro = €p+§,

(36)

m

Ho = U—‘Z'-
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In thislimit, the equations of state can be written in the
form

= B+ 3 AN I, @74

p;A=%

he = 2fs 5 AT (P)N(EV(p)).
piA==+

If the lower Hubbard band is filled and the upper is
populated simultaneously with the p states, we have
Qy, — +o0, and we again have two branches,

2
g im—uz, L<hg<2 (39

where

(37b)

U €
2= €p—=5, W2 = U—‘ZE-

In this limit, the equations of state have the form

h, = prBnF(ep) i, [A“(p)n;(&“(p))}@,(Bga)
p;A=%

hy =1+t 5 APV (p).  (3%b)
p;A=%
In both limiting cases, the normal coordinates are inde-
pendent of the chemical potential and are defined as

(40)

A(i):l'li;_
S R < TI:.
r pldtp

The condition for the emergence of the supercon-
ducting state is determined from the requirement of the
emergence of singularity in the two-particle vertex part
Iy, g for zero total frequency, momentum, and spin.

Using the ladder approximation, we obtain a linear
inhomogeneous integral equation for ', 5. The point
of emergence of asingularity correspondsto the possi-
bility of solving the system of homogeneous equa-
tions, which corresponds to the system of integral
equations (11).

For any two Hubbard operators X: , we have the
identity
[, XFXP] = —XPLA, X7
o op e (41
+XCTH, KB+ A, XX
If we take into consideration that X; are the creation
operators for one-hole Fermi excitations and act on the
wave function of the ground state by the left-hand side
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of Eq. (41), we obtain the energy of two-hole excita
tions plus the additional energy stemming from the
third term on the right-hand side of Eq. (41). Thisterm
precisely determines the Born amplitudes of the kine-
matic interaction.

Let us express Hamiltonian (30) in terms of the
Hubbard operators,

(A, 0) & (0,0)

pro)\_XFG- ro—xr (42)

and then substitute it into the last term of relation (41).
Asaresult, we obtain the following nonzero amplitudes
for scattering with opposite val ues of spin projection o:

(o, O):| X|("_0’ 0)} — _5 '

2,
+oX* 7,

{[H, X

(A, 0) & (0,0)

ZtA(rz, (XKD g0 (0.

(A, 0)

(A SO 5% = 55,

(43)

(0,0) & (A, 0) (-0,0) &

(A, 0)y,
Xio - XS

ztx(rz-r)(x Xro');

(2,-0) (2 0

(AKX =8, .3 ()
[P

(A, 0) ¢ (2, 0)

O'XI‘

(A,0) &(2,-0)

X (X —sz o X )

Passing to the momentum representation X; =

o )A(E,a) exp(ip - r), wefind that each term on the right-

hand side of Eq. (43) gives the Born amplitude of the
kinematic interaction g, ¢ v(p). Pairs (a, ) corre-
spond to the initial sates on the left-hand side of
Eq. (43):
[(=0,0),(0,01; [(A,0),(A0)]; [(2-0), (2 0).
Indices A and v correspond to all possible two-particle
states on the right-hand side of Eq. (43).

Combining al possible pairs of transitions, we
obtain six algebraic equationsin all. Thissimplification
stems from the fact that the amplitudes of kinematic
interaction (41) differ from zero only for transitions
with identical crystallographic indices A and for coin-
ciding cells (see Fig. 1).

For unknown vertex partsl gy, Moo, Mo, [gp, @A Ty,
we have three relations,

[y = rp! 20 = Too—T g = =20 . (44)
The solvability condition for the resulting equations
can be written so that the following relation holds

between vertices M, and [ y: Too/T 5o = —F5 85 /,85.
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The final system of equations for 'y and I =
[ o0& lfy = = &5 1f, has the form

r=215¢ [tzfz(Qz O)Efggz fsgdﬂr
wp 0 2
+QpQSQ§rp}|¢w(p)|;
(45)
_ 22 |:|f QZ f Qd]
r,= 2prz[tpfp(Qz Q) £
w,p 2
Q. Q2032
+%2rp}|¢w(p>|,
p

where
-2
Dy (p) = [QeQoQp— (Qof o+ Qo) ft7]

The solvability conditions for the system of equations
derived above has the form

DfOQZ szd:l
2f TZ[ f(Q,-Q +5-4
(46)
Q05
+Q, ) = 1.
e }I o(P) =

Taking into account condition Q, —
ing that

Q, = U and assum-

o FoQ, + F,Q0) = QoQ,Q,,
Qv :_Ev (V = 01 21 p)!

we obtain the conditions for the existence of the super-
conducting state:

E2(Fols+ f,E0)
PTTTENE,

Inthe limiting case &, > U, we derive from relation (47)
the BCS formula T, 0 exp(—=L/A\g), which contains con-
stant Ay, coinciding with the general expression
derived in our recent publication [2]:
U(U%-4p)
Tu(-n) 21"

where 1 — n = x isthe extent of underpopulation of the
lower Hubbard subband and p, is the initial density of

. . . . 2
states with the effective hopping integral -t /e;,.

The case when the excitation energy lies within the
correlation gap is of special importance. In the limiting

2U f +&,(f,€0+ 10€,)°<0. (47)

Ny = 2p

(48)
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case U — oo, when the lower Hubbard subbands are
populated simultaneously both for d and for p excita
tions, we have spectrum (36), n, 4 < 1, and supercon-
ductivity condition (47) can be transformed to [9]
€4 €t €q

i —_— = —_ = —
f0+2fp<0, r=e€,—€g, M

It should be noted that this condition is satisfied only if
the upper & subband (36) is filled. Using the equa-
tions of state in form (37), we observe that supercon-

ductivity can exist under these conditions only for val-
ues of h, sufficiently close to unity:

4(8—5hy)/(32-19hg) <h, <1, O0<hy<1. (50)

If thelower d Hubbard subband isfilled and the p states
are populated simultaneously with the upper subband
1< hy< 2, wehave,=-U — —, while supercon-
ductivity condition (47) is transformed to a condition
analogous to (49):

(49)

€ € €, te
L2+ -2<0, r=e,—¢ = et
T, 2f, e H 2

In this region, superconductivity can set in both during
filling of £ and during filling of £\ (see Fig. 2).

If, however, the energy of p states exceeds the
energy of one-particle states in the upper d subband
(€p > €g), superconductivity exists for hy > 4/3 in the

. (50

entire EE{’ subband:
0<h,<4(2-hy)/(6+hy), 4/3<hy<2. (52)

In the case when the energy of p states lies within the
correlation gap (1 < hy < 4/3), €, < €4, the boundary in
h, is determined by relation (52) and is observed only

for the lower part of the EE,_) subband.

The corresponding curve h, = hy(hy), which was
obtained in the plane band model, begins from point
hy= 1, h, = 0, attains its maximum value hj> = 0.39
for hy=1.23, and istransformed into curve (52) at point
hy = 4/3, h, = 4/11 (Fig. 2).

In this region, the number of p excitations is quite
small, their scattering amplitude is positive, and super-
conductivity is due to the kinematic interaction of d
excitations. As the number of p excitations increases;
their “repulsive’ role increases, setting alimit in h, on
the region of existence of superconducting solutions.

It should also be noted that superconductivity condi-
tion (49) is also observed for hy > 4/3, hy= 1, i.e, for
filling of the upper subband (38). However, in this con-
centration range, the charge Q = 2h, + hy — 3 of the
CuO, complex is positive everywhere, which makes
this region uninteresting for physical analysis.

An important property of the phase diagram
obtained hereisthe absence of symmetry relativeto the
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0 0.5 1.0 1.5 2.0
hq

Fig. 2. Phase diagram for the CuO, layer at T =0, calculated
in the limit of an infinitely large Hubbard energy and with a
rectangular density of states. The following electroneutral-
ity linesare shown: 2hy, + hy =1 (LnyCuOy) (1), 2h, + hy=
4/3 (YBa,Cu307) (2); 2h, + hg =1 (YBayCuz0g 5 (3), and
2hy + g =2 (SrpRUO,) (4).

particle-hole transformation hy —= 2 — h, for a preset
number h,, of p holes. Superconductivity turns out to be
most effective in the region hy > 1, while in the region
hy < 1, h, <0.9 it is absent altogether.

This dituation qualitatively corresponds to the

experiment on LngixM e,CuO, . When this compound

is doped with bivalent Me?* cations at T = 0, supercon-
ductivity appears and exists in a wide concentration
range of 0.04 <x< 2/3.

In the case of yttrium-based Y3*Ba,Cu;0,_5 com-
pounds, the value of hy is greater than or equal to unity
for al values of d < 1/2 attainable in experiments; this
corresponds to hole-type superconductivity. The sto-
ichiometric compound Y Ba,Cu;0; has the highest pos-
sible T, which is in qualitative agreement with our
results.

For the ruthenium-based compound Sr,RuQ,, the
electroneutrality line passes near the right boundary of
the superconducting phase; this explains the fairly low
superconducting transition temperature (T, = 1 K).

In the case of doping with tetravalent Me** cations,
superconductivity is observed in a narrow concentra-
tion range of 0.14 < x < 0.18. The existence of this
effect (so-caled electron-type superconductivity),
which is not manifested in the Emery model, should be
attributed to direct hopping between copper cations.

6. PHASE DIAGRAM
BASED ON GENERALIZED p-d MODEL

To obtain a phase diagram of the general form,
which would be applicable for comparison with exper-
iments associated with doping with trivalent and tet-
ravalent cations, we must take into account not only
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direct oxygen-oxygen jumps w,, but also jumps
between copper cations wy.

To construct the phase diagram, it is sufficient to
note that the condition A = 0 establishes the relation
between the energy differencer = €, — €4 and the chem-
ical potential (e, + €4)/2. Substitution of this relation
into equation of state (10) leads to the emergence of a
dependence between hy, and hy, which corresponds to
the superconducting phase diagram.

For subsequent calculations, it is convenient to
introduce instead of two end factorsf, and f; the dimen-
sionless variablesu and v:

s Wale—Wefe _ 4W2fpfd.
T 2

From these equations, we obtain the quantities wf,
and wfy:

(539)

o u 172 U
w,f, = |r|%+§ u +avE, -

O O
Wyfq = G- 2+ 2+ avg,
02 2 O
where a = wwy/w2.
Instead of the chemical potential at T=0wewill use
a dimensionless variable y, which can be determined
from the condition £®)(y) = 0.
This relation, which is written in new variables
using the explicit form of excitation spectrum (7), has
the form

(54)

+ %J(l +uysgnr)® + v(1-y).
As aresult, the chemical potential, aswell ase, and g,

arefunctions of variablesu, v, 1, .

After elementary calculations using formulas (53)
and (54), we obtaine, =1 +r/2and ey =1 —r/2, or

o = —%A/u%av
S+ uysgnn)? +v(1-y) +5,

4= —%A/uz +av

3l |J(1+uysgnr) +v(1l- y)——

It
"2 (55)

where a = wywy/W? and the upper and lower sign corre-
spond to the upper and lower hybridization subbands,
respectively.
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The end factors and average occupation numbers
can also be written in terms of variables u, v, y. For
example, for filling of the lower hybridization subband
and at T =0, we have

hy = 4K, ’ _ 4
273K, 173K,
(O<h,<1),
L= 2K 4 (- 1
1+Ke 1+Ky (56)
(0<hy<1),
hy = —2 -1
d — ’ -
2=Ke 2+ K
(1<h,<2).

Quantities K, introduced here are generally functions
of four parameters (u, v, y, r). However, in the limiting
case when T = 0, quantities K, depend only on three
variables (u, v, y).

In the limit T = 0 and in the case of filling of the
lower hybridization subband, we have the following
definitions:

y

Kep(uv,y) = [AY(u v, xpo(xdx. (57)

Here, we have introduced the normalized initial density
of states py(e); the normal coordinates are found to be
independent of the energy differencer = e, — ey

A®(u, v,x) = %
(58)
x[li sgnr 1+ uxsgnr }

(1+uxsgnr)® + v (1-x)
In the simplest case of aplane band, when py(e) = 6(1 —

€?)/2, at T = 0, we find the following expressions for
functions K.(u, v, y):

10 v
Ki(u,v,y) = ZE’t?

" [2u(1+uy) v+ 2Jul/(1+uy)*+ v(1- y)}

2u(1—u)—v + 2Ju[/(L—u)®+2v

+(1+y) =20+ )+ v(L-y)

_Ja—uiravg
0

Thus, for preset values of three dimensionless ener-
gies wy/Ir|, wy/r|, and a = w,wy/w?, Egs. (54) together

(59)
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with relations (56)—59) make it possible to determine
variablesu, v, aswell asthe mean occupation numbers
hg, hy,, as functions of only one parameter y.

To construct the superconducting phase diagram,
wefirst eliminate variable |r| from Egs. (53):

wyfglu+ Ju?+av] = wyf [—u+.Ju®+av]. (60)

Further, we use condition (29) for the emergence of
superconductivity for the lower hybridization subband:
Ay = 0. When written in variables e,/r and e4/r, this
condition will depend only onu, v, y:

A, v, )’ =0.

(61)
Here, the upper and lower signs correspond to regions
O<hy<landl<hy<2, respectively.

The explicit dependence of quantities €,/r and ey/r
on u, v, Yy, which is obtained from the definition of
chemical potential, has the form

A/U +av

A, v, y))’ - 2

_~ €4
22—
G G

ep=

I‘

F= J(1+uysgnr) +v(1l- y)+Sgnr

Sd A/u +av

i

(62)

$%A/(l+ uysgnr)2+ v(l—y)—%.

Thus, the system of equations (60) and (61) makes it
possible to determine two quantities as functions of the
third quantity (e.g., u=u(y) and v = v(y)).
Substituting these functions into equations of
state (56)—(58) makes it possible to determine the form
of the phase diagram in variables h,,, hy (Figs. 3 and 4).

The general relation is valid provided that h, < 1.
Superconductivity exists when A, > 0.

In the limiting case v = 0, the subbands are popu-
lated independently when the chemical potentials cor-
responding to the p and d hole states are identical. In
this case, the symmetry of the phase diagram relative to
the particle-hole transformation hy — 2 — hy is pre-
served.

If we assume that direct jumps are small as com-
pared to p—d jumps between oxygen anions and copper
cations, we must set u = 0. In this limiting case, we
obtain the results pertaining to the classica Emery
model. The phase diagram exhibits the maximal asym-
metry in this case. Superconductivity is absent in the
range of small values of h, and for hy < 1. However, for
a small number h, and for hy > 1, superconductivity
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Fig. 3. Phase diagram in the generalized Emery model for
hopping integralsw = w, =wy at T = 0: 2h, + hy = 0.9 (1),

r=0(2),r=25w,(3), f =0(4),and 2h,+hy=2(5).
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Fig. 4. Phase diagram in the generalized Emery model for
hopping integralsw =w, =wg at T = 0: 2h, + hy = 0.9 (1),
r=0(2),r=wy(3),r=0(4),r=w,(5),and2h, +hg =
2(6).

exists in awide range of variation of variables 1 < hy <
2 (seeFig. 2).

7. RESULTS

In the previous section, we have considered the most
realistic case when direct jJumps between copper cat-
ions are small as compared to direct jumps between
oxygen anions. Calculations are made for the plane
band model.

It can be seen from Figs. 3 and 4 that, for h, <1 and
hy < 1, superconductivity existsonly in anarrow region
adjoining the band 2/3 < hy < 1, hy < 1. Asregards the
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region 1 < hy < 2, superconductivity is absent only for
small electron concentrations2 —hy < 1, h, < 1.

It should be noted in conclusion that the substantial
dependence of T, on the concentration of doping impu-
rity, which is observed for the compounds being studied
as well as for al high-temperature superconductor, is
completely due to the strong dependence of the elec-
tron—electron scattering amplitude on the position of
the Fermi level relative to the middle of the conduction
band. The characteristic energy determining the value
of T. is on the order of the hopping integral equal to
10° K. Dimensionless constant A\, appearinginthe BCS
formula and defined by formula (29) does not exceed
1/4. It strongly depends on the number of p and d elec-
trons scattered at energies closeto the Fermi energy. Al
these facts are in qualitative agreement with experi-

ments on the Lny-,Me,CuO,, YBaCu0,_ 5, and
Sr,RuO, compounds.

8. CONCLUSIONS

This study is in fact a continuation and generaliza-
tion of the previous publication [2] of the author, where
the limiting case Uy > t,4 is considered and the scatter-
ing amplitude for two electrons with opposite spins is
calculated. It was found that this amplitude is positive
for small energies (in the gaseous phase); however, as
the Fermi energy increases, it changes sign, which cor-
responds to the Ramsauer effect in the lattice. It should
be noted that this result was obtained by the author in
1976 [6] using the Hubbard model for the gas phase. In
the same article, the equivalence of the standard scatter-
ing theory and the method of the X operators corre-
sponding to an infinitely high Hubbard energy was
proved. Similar results were also obtained in the so-
called t—J model [10], in which the scattering amplitude
was cal culated with the help of the T matrix and then a
transition to the limit Uy, — o0 was carried out.

The main result of the present study is the construc-
tion of the phase diagram both for the upper and the
lower bands of the (x? —y?) electrons for aweak under-
population of the 2p® shell of oxygen anions. In this
case, the main difference between the phase diagram of
the Emery model and the classical Hubbard model is
observed; this difference lies in partial breaking of the
particle-hole symmetry of the d electron subsystem for
a preset number of p holes. This result corresponds to
the asymmetry observed upon atransition from lantha-
num-strontium to neodymium—cerium cuprates. All
these results were obtained from the Emery—Hirsh
Hamiltonian [3, 4] for zero values of intercellular Cou-
lomb matrix elements: Uy = 0, Vgq = 0, and V,,, = 0. It
is sufficient to assume that the Hubbard energy is the
largest energy parameter.
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It should be noted that the calculation of the super-
conducting transition temperature in the t—=J model [11]
IS not consistent because it takes into account the sec-
ond-order correctionsin the hopping integral (sinceJ ~
t?/U), while the expansion of the scattering amplitude
for U > [t| beginswith first-order termsint,y. The same
drawback is inherent in the Zhang—Rice theory [12] in
which analysis is carried out under the following two
assumptions: (i) [ty < r =€, —eqand (ii) Ugy > r. Inthe
present study, assumption (ii) is also used, but the
expansion of the scattering amplitude isfound to belin-
ear in parameter t;.

The application of the ladder approximation for
determining the conditions for the emergence of Coo-
per instability can be substantiated rigorously. In the
Emery model, the corrections of the parquet type do not
contain logarithmic divergences since the necessary
nesting condition is not fulfilled in the given problem
for any location of the Fermi level. The non-Born cor-
rections to the kernel of the integral Gor’kov equations
lead to the emergence of a finite relaxation time with
spin flip. The corresponding reciprocal relaxation time
is proportional to the second power of temperature.
Hence, it can be concluded that the above-mentioned
corrections are insignificant at T = 0. As regards the
paramagnetic corrections of the Ruderman—Kittel type,
their effect is substantial precisely in the region when
Cooper instability isabsent. The proof of this statement
forms the subject of a special study.
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Abstract—The electric conductivity is calculated for regular inhomogeneous two-component isotropic
medium in which droplets of one phase with conductivity g, are embedded in another, with conductivity o;.
An expression is formulated that can be used in many different situations and is of particular relevance in the
case where the rel ative proportion of the components is temperature-dependent and varies over awide range.
Behavior of the effective conductivity depends on the spatial arrangements and the shape of the inclusions.
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1. INTRODUCTION

Determination of the effective conductivity o of
spatially inhomogeneous heterophase systems is an
old, but increasingly important problem of theoretical
physics. With the advent of new nanoscale probes of
condensed matter systems, it has become apparent that
many very diverse systems that were previousy
thought to be homogeneous are in fact either statically
or dynamically inhomogeneous. The effective conduc-
tivity in such cases cannot be dealt with in terms of
homogeneous medium theory, is not trivial, and solu-
tions are presently known only in some rather special
cases. Different aspects of the theory and different lim-
iting cases are extensively discussed in [1].

In this paper, we focus on the problem of calculating
the effective conductivity of an inhomogeneous two-
dimensional (2D) plane. The classical problem can be
formulated as follows. We assume that a 2D system
contains a mixture of N (N = 2) different phases or
materials with different conductivitieso;, i =1, 2, ...,
N. The arrangements of different phases can be random
or regular. The question that we wish to address is how
the effective conductivity of the plane depends on the
conductivities of the phases, their concentration, and
the spatial arrangements.

In the past, a number of different approaches have
been used to tackle this problem. The exact result for
the effective conductivity of a two-component system
with a symmetric and isotropic distribution of compo-
nents was obtained by Dykhne [2]. He found that the
effective conductivity of the system is determined by
the simple relation

Ot = A/0,0,.

T This article was submitted by the authors in English.

A symmetric distribution used in this problem amounts
to the case where the two components can be inter-
changed without changing the end result. Obvioudly,
one requirement for asymmetric distribution isthat the
two components have equa proportions, but it aso
means that more general cases cannot be considered
with this mode.

Further investigations have shown that a more gen-
eral duality relation isvalid for 2D heterogeneous con-
ductors than that initially considered by Keller and
Dykhne [1]. More recently, it was shown that a more
general relation for the effective conductivity tensor
exists that is valid for multicomponent and anisotropic
systems [3, 4]. The effective conductivity of severa
examples of ordered two-component systems was also
calculated exactly [5-7]. It was shown in [5, 6] that for
achessboard plane and for a plane constructed of trian-
gles, the relation derived by Dykhne is aso valid.

A similar relation to the Dykhne formula for the
effective conductivity of a system consisting of ran-
domly distributed metallic and dielectric regions near a
metal-to-insulator transition was derived by Efros and
Shklovskii [8]. They generalized the expression of
Dykhne on the basis of scaling argumentsto the case of
arbitrary concentrations of the two phases near aperco-
lation threshold, such that the effective conductivity
becomes

Ogr = 01(02/01)5, (1)

where sis a universal scaling exponent. Critical expo-
nentsare also relatively well-known for thistype of sys-
tems [9]. This relation is not applicable when the
system is driven away from the percolation threshold
and the general solution of the effective conductivity of
an inhomogeneous medium thus remains an open
problem.

1063-7761/05/10004-0715$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Spatial arrangements of phases with conductivities 0, = 1 and o, = o for four considered cases.

Sen and Torguato [10] derived an expression that
allows an explicit calculation of the effective conduc-
tivity tensor from the n-point probability functions
S(rq, ..., ry). These functions give the probability of
the pointsat ry, ..., r, of belonging to the same phase,
and are therefore uniquely determined by the spatial
distribution of the phases. Unfortunately, the applica-
tion of this method is limited because the computations
with n > 5 are fairly time-consuming.

Different expansions of the effective conductivity
in termsof asmall parameter have been used in the past
[1, 11, 12]. In most cases, the low-order terms depend
weakly on the microgeometry. A diagrammatic expan-
sion for the effective conductivity developed by Khalat-
nikov and Kamenshchik [13] promises to give more
generally applicable results. The perturbative approach
seems to be quite effective because it allows analyzing
random and nonsymmetric distributions with different
conductivities.

The problem was also discussed in the case where
N =2 and N = 3 on the basis of numerical calculations
[3, 14]. It was shown that the effective conductivity for

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

N = 3 is not universal and depends on the spatial
arrangements of the phases. We have employed bound-
ary element method for efficient numerical treatment of
two-dimensional multiphase systems with an arbitrary
arrangement of phases. More details on the method and
its results can be found in [15].

In this paper, we consider the conductivity of atwo-
phase system in two dimensions for a wide range of
concentrations and conductivities. One phase is
assumed to be composed of droplets (of different
shapes) with conductivity o, embedded within a
medium of conductivity o, (see Fig. 1). We begin with
calculating the effective conductivity o4 using a per-
turbation theory approach with the two phases having
the respective volume fractions (1 — v) and v. Because
the problem islinear, we can introduce a dimensionless
conductivity o, measured in units of o; = 1, and the
effective conductivity oy is afunction of o = 0,/0; =
0, and v. The volume-averaged conductivity

0= \%J'odv
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isgiven by
0 = (1-v)+vo. 2

If the conductivities of the two phases are not vastly
different,

lo-1] < 1,

the effective conductivity can be calculated by pertur-
bation theory [13]. To apply perturbation theory, we
rewrite the spatial dependence of the conductivity as

o(r) = o(1-a(r)), (©)
where

a(r) = 0———————(%_6.

Assuming that the spatial distribution of conductivity is
uncorrelated, we then obtain

J’dra(r)a(r +r') = (0_1)2(1_\})50')- (4)
G

A straightforward calcul ation shows that up to the sec-
ond order in a, the conductivity is given by

2
Oy = 6_(0_1)2\(—);(1_\})' )

This result has been known for many years and was
derived for the dielectric function of dielectric mix-
tures [16]. In [11, 12], it was also derived using a sys-
tematic perturbative expansion, which showed it to be
exact to the second order in a. The second term in
Eq. (5) represents the first nonvanishing contribution
due to the inhomogeneity of the distribution of the
phases. In the case where v = 0.5, the result coincides
with the expansion of the exact expression for the con-
ductivity up to the second order in (o, — ;) [2]:

Ot = 4/0105. (6)

2. CONDUCTIVITY
OF A REGULAR ISOTROPIC TWO-COMPONENT
SYSTEM IN TWO DIMENSIONS

Next, we exactly cal culate the effective conductivity
of the plane with different regular isotropic distribu-
tions. As before, we consider a 2D plane constructed
from two different phases with different conductivities
0, =1 and g, = 0. Theregions with the conductivity o,
have a circular shape with radius R and form a regular
square lattice with the period a as shown in Fig. la
Changing theradius Rfrom 0 to &/2, we can change the
volume fraction of the second phase from v = 0 to the
critical concentration v, = 0.785, whereafter theregions

cosBsin(2rtr (cosB' — cosB)) + sinBsinh[21(n + r(sin@' — sinB))]

717

with the conductivity o, start to overlap and a percola-
tion threshold is reached. In the case of metallic drop-
lets, thetotal charge density must be zero, while afinite
charge density can accumulate on the surface between
different phases. This allows us to formulate the inte-
gral equation for the surface charge density [5, 6]. We
define the surface charge density by the relation

P(B)Rd6 = dp(6),

where dp(0) isthe charge on asmall part of the surface
between the two components with the length

dl = Rd®6.

We recall that the scalar potential at the point r is deter-
mined by the relation

¢ = on—ZIdzr'Inlr—r'lp(r‘), 7

where Inr — r'[/21t is the 2D Green function. The

boundary conditions on the surface between two
phases are [16]
E,—E; = 4mtp(9), ®)
0.E, = O,E;. ©)
Substituting

r' = i(ma+ Rcos@') + j(na+ Rsin@'),
r = iRcosB + jRsinO

in Egs. (7)—(9), we obtain an integral equation for the
surface charge density in the form

p(8) = %{ Eqcos0+2r 3 [de'p(®)
n.m=—="n (10)
O exp(i6) 0
RO+ 1(cos®' — cosB) + (n + r(Sn@ — SnB) |
where
r=R (=10
T a’ T 1+0

As shown in the Appendix, the sum over m can be cal-
culated exactly and the integral equation for the surface
charge density is reduced to the form

P(6)

_ K . N | (1)
= 5 E,cosO + 2r Z_ J‘de K(n,e,e)p(e)},

where

K(n,8,0) =T

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

cosh[211(n + r(sin®' — sinB))] — cos(27tr (cosB' — cosh))

(12)
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Expanding the surface density p(0) in terms of Leg-
endre polynomials P,(cosB) and taking into account
that

p(=6) = p(0),
where

p(mt—6) = —p(0),

p(0) = ZC2|—1P2|—1(0059)1 (13

we obtain the linear set of algebraic equations for the
coefficients ¢, _;

KABANOV et al.

Solving Eq. (14) with a finite number of Legendre
polynomials taken into account, we obtain the surface
chargedensity in Eq. (13). Asaresult, the effective con-
ductivity is evaluated by calculating the total current

through the semicircular surface with aradius R = a/2
(see Fig. 1a). Caculations similar to that of Eq. (12)
lead to the expression for the effective conductivity

2C_1 _ K ZE 5 . +2r . c.. <K (14) K "

h -2
where Cn (16)

o o X[cose+% S [doK(ne, 9‘)p(6')},
Kik = Z do'[deK(n, 6, 6") On =2
2
x SiNBP, _41(cosB) P, _,(cosb'). where

K'(n, 8, 8) = ncosOsn(Zn(rcose'—(1/2)cose))+ sinBsinh(2m(n +rsin®' —(1/2)sinB)) (17)

Theresult above appliesto the case of auniform dis-
tribution of circular droplets within the plane. To see
how the effective conductivity depends on the shape of
the regions with conductivity o,, we performed calcu-
lations in the case where circular droplets were
replaced with squares, triangles, and rhombuses with
the ratio of diagonals tana = a/b, where a and b are
tranglation vectors along the x and y axes, respectively
(see Figs. 1b-1d). In all these cases, Egs. (10)—<17) are
slightly modified because in a polar coordinate system,
r(0) isafunction of the angle. Unlike in the case of cir-
cles, the percolation threshold for cases b, ¢, and d is
V. = 0.5. We note that in the case of rhombuses, the lat-

tice is anisotropic and oy # G .

3. DISCUSSION

The results of the calculations of the effective con-
ductivity are presented in Fig. 2 as afunction of ¢V for
different values of the volume fraction v. It is easy to
check that the results satisfy the generalized duality
relation [3, 4]

oui(0,, 0,)0%(1/0,, 1/0,) = 1. (18)

For circles, squares, and triangles,

22 11
o =0 .

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

cosh(2m(n +r(sin® —(1/2)sinB)) — cos(2m(r cos6' — (1/2) cosh))

For rhombuses,
o?(a) = o (1W2-0).

Figures 2a—2d show that for small K, perturbation the-
ory [11-13] (Eg. (5)) gives the correct result indepen-
dent of the geometry.

3.1. Approximate Expression
for Effective Conductivity

Although the predictions in Fig. 2 represent the
results of precise numerical calculation, they are not
very tractable when it comes to comparing with exper-
imental data, being the result of numerical calculations.
It istherefore helpful to try to obtain afunctional form
for describing the behavior predicted in Fig. 2, which
also includes al the relevant parameters, such as the
volume fraction v and the two conductivities o, and o,.
Such an expression can then be used in awide range of
problems, provided the validity range is taken into
account. We describe the properties of such a heuristi-
cally determined function and determine its validity
range in terms of the parametersv, o,, and o,.

As can be seen from Fig. 2, the dependence of the
effective conductivity on o shows similar behavior
independently of the particular geometry of the phases.
First, we observe that when k issmall, al the curvesare
linear in oV with the same slope. In the relatively wide
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Fig. 2. Effective conductivity of the plane as afunction of ¢¥ for different volume fractions and four considered geometries.

interval 0.1 < o < 10, the effective conductivity is deter-
mined by the equation

O0g4(0) = 0(11_\})0\2/-

(19)
The range of applicability of this formula becomes
wider as we approach the percolation threshold v..
When ¢ = 0,/0, > 1, the effective conductivity satu-
rates at oy;. The value of oy is not universa and
depends on the geometry. It was pointed out recently
that in the case of circleswithv <0.5intheentirerange
of o, the effective conductivity may be approximated
by the formula[18]

1-vK

Trur (20)

Our(K) =

To derive an approximate expression for the effective
conductivity, we assume that Eg. (20) remains correct
if we replace v with the effective volume fraction
Vg(K, V). We require that

Vgi(K,V)=V as K — 0

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

or
v —0,
and
\)
11-0°
Vgi(K, V) == - 8 V-—V,
Ki+o®

to satisfy Eq. (19), whichisvalidatv = v.. Itiseasy to
see that the function

Vgr(K,V) =V +%

_ = -pW))k"
M+ (1 p(v))xd

L+ [L=(1= V)K"
L+ (1= p(v))K-

wherep(v) — Oasv — v, and p(v) — lasv —
0, satisfies all the above requirements. The function
p(v) is not universal and depends on the geometric
shape of the region with conductivity o and on the par-
ticular arrangement of theseinclusionsin the 2D plane.

1 (21)

—(1=p(V))Vve,
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Fig. 4. Saturated effective conductivity as 0 — o for
cases a, b, and c. Full, dotted, and dashed lines show
different analytic asymptotic behavior for these cases:

1—(12 + arcsin((v/v.)%) (1 - viv) Y2 — 172 (case a),

2—1.3In(U(1 — (Vvg)¥?)) (case b), 3—./2In(2/(/3(1-
(Vv)Y?)) (case o).

InFig. 3, we plot p(v) asafunction of 1 —v/v.in cases
a, b, and c. Case d isdifferent because the effective con-
ductivity is anisotropic. Asis clearly seen from Fig. 3,
the behavior of the function p(v) for circles (case a) is
different from the cases of squares and triangles (cases
b and c). On the other hand, in casesb and c, p(v) shows
asimilar behavior.

3.2. Shape Dependence of Effective Conductivity
The function p(v) isrelated to the value of
o = 1+vg(k =1,v)
T l—vg(k =1,v)
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Therefore, the behavior of p(v) close to the percolation
threshold should be different for different geometries.
In Fig. 4, we plot the value of oy as a function of
(2 -v/v,) in the case of circles, squares, and triangles.
There is an important difference between these two
cases. In the case of circles, og, has a power-like diver-
gence (1 —v/v)™ (k = 0.5). For squares and triangles,
this behavior islogarithmic. In both cases, close to per-
colation threshold, o, is proportional to the average
inverse distance between boundaries of the neighboring
circles or squares,

dy
% U [T 510y

where

fly) = JrP =y

for circlesand

f(y) = r—ly

for squares. We here assume that the period of the sys-
temis 1, and the dimensionless size of the circleand the
square is r. Direct integration leads to the following
results:

/2 arccos((1-v/vy)™®

w2
(1-viv)"?

Oy U

(22)
for circlesand

0w O=In(1=(vIv)") (23)
for squares (Fig. 4). For triangles (c), the asymptotic
formula is smilar to Eq. (23) with different numeric
coefficients. Interestingly, this observation suggests
that behavior of thefunction p(v) isdifferent depending
on the curvature of the embedded regions.

4. CONCLUSIONS

From calculations of the effective conductivity of
inhomogeneous two-phase systems in two dimensions,
we find that the results of precise numerical calcula-
tions can be approximated by a universal function for
Ogi, EQs. (20) and (21), where the function p(v)
depends on the spatial arrangements of the 2D plane
and on the shape of the inclusions with conductivity o.
Itisshown that in alargeinterval of the conductivity g,
the effective conductivity o is determined by the spa-
tial average of the logarithm of individual conductivi-
ties. The closer the system is to the percolation thresh-
old, thelarger the validity range of thisresult. For large
values of the conductivity 0, O; iS saturated at a value
aog;. Thevalue of oy near the percolation threshold is
determined by the average inverse distance between
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boundaries of neighboring regions with the conductiv-
ity o in the direction of thefield (Egs. (22) and (23)).

The model that we have devel oped isquite generally
applicable and can be applied in some interesting situ-
ations, such as cuprates and other two-dimensional
complex transition metal oxidesthat exist near a phase-
separation threshold. Importantly, there appearsto be a
significant amount of experimental evidence that many
anomalous properties of oxides are associated with the
coexistence of two or more phases. The application of
the presented model may help understanding the trans-
port properties of such systems.

APPENDIX

Here, we show how the sum over min Eq. (10) can
be calculated exactly. We represent the sum as

U exp(if) U

St 2 R priay

m= —o
where

B = r(cosB' —cosB), a = n+r(sind —sinb).

The sum over mis calculated using the definition of the
digamma function. As aresult, we express the sum as
S = Re{exp(i0)[Y(—=B—ia)—Y(1+P+ia)l}
= miRe{ exp(iB) cot(Ty(B+ia))} .
Calculating the imaginary part of the previous equa-
tion, we abtain the result in Eq. (12),

cosOsin(2mP) + sinBsinh(21a)
cosh(2ma) — cos(21 )

S=T11
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Abstr act—The temperature and magnetic-field dependences of the conductivity associated with hopping trans-
port of holesover a2D array of Ge/Si(001) quantum dotswith variousfilling factors are studied experimentally.

A transition from the Efros-Shklovskii law for the temperature dependence of hopping conductivity to the
Arrheniuslaw with an activation energy equal to 1.0-1.2 meV is observed upon a decrease in temperature. The
activation energy for the low-temperature conductivity increases with the magnetic field and attains saturation
infields exceeding 4 T. It isfound that the magnetoresistance in layers of quantum dots is essentially anisotro-
pic: the conductivity decreasesin an increasing magnetic field oriented perpendicularly to a quantum dot layer
and increases in a magnetic field whose vector lies in the plane of the sample. The absolute values of magne-
toresistancefor transverse and longitudinal field orientations differ by two orders of magnitude. The experimen-
tal results are interpreted using the model of many-particle correlations of holes localized in quantum dots,
which lead to the formation of electron polaronsin a 2D disordered system. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

If the resistance of a 2D disordered system is much
higher than the value determined by the resistance
quantum h/e?, where h is the Planck constant and e is
the elementary charge, the system is on the insulator
side of the metal-insulator transition and conductivity
o of the system tends to zero upon a decrease in tem-
perature T. The effect of the electron—electron interac-
tion on the conductivity of 2D systems, which remains
an important problem, has become of special interest
after a recent heated discussion concerning the exist-
ence of the metal—insulator transition in the 2D case.
The role of correlation effects must be especialy sig-
nificant on the insulator side of the metal—insulator
transition since localized electron states are ineffective
in screening processes as compared to extended states.

Analysis of fundamental aspects of charge transport
as well as Coulomb and spin correlations in semicon-
ducting nanostructures form the basis for the develop-
ment of nanoel ectronics—one of the latest trendsin the
physics and technology of nanometer-size electronic
devices. The layers of self-organizing quantum dots
(QD) aobtained as aresult of heteroepitaxy of elastically
stresses system are the most suitable objects for deter-
mining the main regularities in the processes of 2D
charge transfer as well as the role of Coulomb correla-
tions in a system of localized electrons. Thisis due to
the fact that (i) QDs lie exactly in the same (growth)
planein view of peculiar epitaxy and the disorder factor

associated with disorder in the vertical direction of the
nanostructure (growth direction) is absent; (ii) intro-
ducing electrons or holesinto QDs, it is possibleto con-
trollably obtain ensembles of localized charge carriers
inapriori known quantum states with preset wavefunc-
tions; (iii) in contrast to most of impurities in semicon-
ductors, QD arrays may behave as a system of multiply
charged localization centers, in which the role of Cou-
lomb and spin correlations is most significant; and
(iv) since, asarule, theratio of the height to the lateral
sizein self-organizing QDsis much smaller than unity,
the wavefunctions of charge carriers in QDs are
strongly anisotropic and two-dimensional in contrast to
those for impurities.

The simplest manifestation of correlation effectsis
the formation of a Coulomb gap in the spectrum of
localized states of a disordered system owing to the
long-range part of the electron—electron interaction [1].
However, the Efros-Shklovskii one-electron model
ignored possible many-particle correlations in electron
hopping in the case when, for exampl e, simultaneous or
consecutive jumps of some electrons over small dis-
tances facilitate the motion of other electrons over long
distances, lowering the corresponding energy barriers
on the path of current by their Coulomb potential. One
of the possible manifestations of many-particle excita-
tions is the formation of electron polarons in the sys-
tem, viz., a“coat” of polarized pairs of localized states,
which is entrained by an electron moving over a perco-
lation cluster [2, 3].

1063-7761/05/10004-0722$26.00 © 2005 Pleiades Publishing, Inc.
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In this study, we analyze hopping transport of holes
in 2D arrays of Ge/Si(001) QDs. Analysis of the tem-
perature and magnetic-field dependences of low-tem-
perature conductivity revealsthe presence of many-par-
ticle Coulomb corréelations of holes localized in QDs.

2. EXPERIMENTAL TECHNIQUE

Figure 1 shows a schematic diagram of the struc-
tures on which experiments were carried out. The sam-
ples were grown by molecular-beam epitaxy on a
Katun’-type setup designed at the I nstitute of Semicon-
ductor Physics, Siberian Division, Russian Academy of
Sciences. The substrates were Si plates with the (001)
orientation and a resistivity of 20 Q cm, which were
doped with boron to a concentration of approximately
to 10¥ cm=. Before their loading into the epitaxial
chamber, the substrates were degreased in acetone and
coated with alayer of surface oxide having athickness
of about 10 A by etchinginan H,0, : HNO; : H,O solu-
tion. After loading into the epitaxial chamber, the plates
were heated to 800°C and held for 3 min in a silicon
flow of approximately 10* atm/(cm? s). The surface
purity was monitored using diffraction of fast electrons.
After the preepitaxial treatment, the substrates were
reloaded to the growing vessel.

A Ge layer with a thickness of eight monolayers
(10 A) was introduced into a Si layer grown on a
250-nm substrate at 300°C at adistance of 200 nm from
its surface. Judging from the reflection high-energy
electron diffraction pattern from the surface of the Ge
isand film, germanium nanoclusters that formed
according to the Stranski—Krastanov growth mecha-
nism had the shape of pyramids. Structural analysis
using high-resolution electron microscopy revealed
that the mean size of the base of Ge nanoclustersin the
growth plane was 12 nm, the height was approximately
2 nm, and the nanocluster layer density was Nyg = 3 x

10 cm2. Figure 2 showstheimage of the cross section
of a Ge/Si heterostructure, obtained with the help of
high-resolution electron microscopy.

The controllablefilling of Geislandswith holeswas
carried out by introducing into the sample a Si layer
0-doped with boron at a distance of 10 nm below the
layer of Ge idlands. Since the ionization energy Eg of
boron impurities in silicon amounts to only 45 meV,
and the energies E; corresponding to the first ten layers
of holes in germanium QDs of such a size, which are
measured from the top of the valence band in Si, range
between 200 and 320 meV [4], the holes leaving impu-
rity sites below room temperature populate the levelsin
QDs. The boron concentration in the &-layers of two
prepared experimental samples with QDs was approxi-
mately 6.9 x 10 and 8.4 x 10 cm™2, respectively. Cal-
culations based on solving the system of the Poisson
and electroneutrality equations as well as on statistical
distribution of holes over the energy levels in the sys-
tem proved that the average number of holes (filling
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10 cm™3 v

Fig. 1. Schematic diagram of the samples used for measure-
ments of the conductivity of QD layers.

Fig. 2. Image of the structure cross section, obtained using
high-resolution electron microscopy. Dark regions are Ge
islands.

factor v) per QD was 2.3 and 2.8 for two different sam-
ples. The system formed by the charged QD layer and
the charged o-Si:B layer was simulated by a parallel-
plate capacitor with distance d between the plates equal
to the spacing between the QD and 8-Si:B layers. In cal-
culating filling factor v, wetook into account thefirst five
states of holes in QDs, which were determined earlier
in[4, 5]. In addition, we assumed that the temperatures
are so low (kT << E) that free holes are absent in the
valence band. We solved the system of equations

_ Ng
e = 15 05exp[—(Es—£)/KaT]’

N = 2qu
« Zl+exp[(Ei—8F+U)/kBT]’
1<i<5
Nyq€
— _qd™d —
= ——, Ngg*+Ng = Ng,
KE, qd B B
Vol. 100 No. 4 2005



724
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Ng, 10'2 cm2

Fig. 3. Calculated dependence of the factor of filling of QDs
with holes on the boron concentration in the & layer. The
distance between the Ge QD layer and the 4 layer is 10 nm.

The results are independent of temperatureat T < 20 K.

ol, Q'K
10735 T T T 3
g ©36x102cm?2
10-4L 03.0x%x 102 cm™2 4
m25x%x102%cm™2 E
0 1.8x102% cm™2 ]
1075 E _E
107k E
10772' E
10782' E
10_92- 3
—10 I 1 1 1 i
10 0.2 0.4 0.6 0.8

T- 12 K—l/2

Fig. 4. Dependence of quantity o T, where o is the conduc-

tivity and T is the temperature, on T-Y2 for check &-Si:B
samplesfree of germanium QDs. The experimental dataare
plotted in semilogarithmic coordinates.

where kg is the Boltzmann constant, ng is the concen-
tration of holes remaining at boron impurity atoms, Ngy
is the hole concentration in the QD layer, N is the
boron concentration in the & layer, € isthe Fermi layer,
u isthe electrostatic potential of the QD layer, and €, =
8.87 x 1012 F/m isthe absol ute permittivity of vacuum.
The results of calculations are depicted in Fig. 3. The
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factor of QD filling with holesfor the prepared samples
was calculated using precisely thisfigure.

The structures were prepared photolithographically
in the form of Hall bridges. Contacts were formed by
etching the Si layer to adepth of 0.15 pum. Then an alu-
minum layer was deposited in vacuum and annealing
was carried out at atemperature of 600°C.

The monitoring of the composition of Ge islands
with the help of Raman spectrascopy showed that the
fraction of Ge in the islands was approximately 70%.
The concentration of doping impurity was determined
using secondary-ion mass spectrometry.

In addition to samples containing Ge QDs, a batch
of check samples free of a Ge layer was grown. The
boron concentration in the &-doped Si layer in check
samples varied from 1.8 x 10> cm2to 4.2 x 10'? cm.

Conductivity measurements were carried out in pla-
nar geometry (along the QD layer) using the dc four-
point technique in a temperature range of 1.5-20 K.
The magnetoresistance was measured in a constant
magnetic field upto 5.5 T, which was perpendicular (Hy
orientation) or parallel (H, orientation) to the plane of
the structure. In the latter case, the magnetic field was
directed parallel or perpendicular to the electric current.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

3.1. Temperature Dependence of Conductivity
and Magnetic Transport in 6-S:B Srructures

Our measurements show that the dependence of
conductivity o on temperature T for all check samples
free of Ge nanoclusters obeys the Efros—Shklovskii law

1/2
o(T) = _%_exp[—%%% } (1)

where y = (0.3-3) x 102 K/Q and T, = 600-1000 K
(Fig. 4). This law indicates the emergence of variable
range hopping conduction mechanism provided that a
“soft” Coulomb gap exists in the density of impurity
states of a 2D disordered system [6]. The S layer
0-doped with boron apparently plays the role of such a
2D system.

Figure 5 shows the typical magnetic-field depen-
dences of the resistance for one of the test samples
(with a boron concentration in the d-doped layer of
3.6 x 10% cm?). Although the magnetoresistance dif-
fersinsignificantly for different field orientations, it is
till not the same and is a combination of two contribu-
tions of opposite signs. The negative magnetoresi stance
is apparently associated with suppression of “destruc-
tive” interference of various tunneling “traectories’ in
a magnetic field, which include subbarrier scattering
events[7, 8]. Thismechanism essentially resemblesthe
negative magnetoresistance mechanism in the case of
diffusion charge transfer under weak localization con-
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ditions and is associated with a change in the phase of
the wavefunction under the conditions when we can
speak of coherence of tunneling with alowance for
scattering from impurities. The positive contribution is
dueto “compression” of the wavefunctions of localized
charge carriers in directions perpendicular to the
magnetic field [9, 10]. Asaresult of such compression,
the degree of overlapping of the wavefunctions of car-
riers at different sites separated by long distances
becomes|ower and the percolation threshold in the sys-
tem is shifted towards higher values. Additional exper-
iments revealed that magnetoresistance anisotropy
increases upon cooling; however, since the relative
magnetoresistance of the check samplesissmall (onthe
order of afew percent), the problem of temperature sta-
bilization arises in obtaining correct experimental
resultsat T<4K.

3.2. Temperature Dependence of Conductivity
in Ge/&-S:B Samples with Quantum Dots

Our measurements of the temperature dependence
of conductivity made for samples with Ge QDs proved
that the conductivity of these samples above T, = 4-5K
obeys the Efros-Shklovskii law

o(T) = oeexp[~(Ty/T)"}

with a temperature-independent preexponential factor
0, on the order of €?/h. For example, g, = 2.5¢?/h and
T, =220 K for asample with afilling factor of v = 2.3,
while o, = €2/h and T, = 100 K for a sample with v =
2.8. Figure 6 shows an example of such a behavior of
the sample with v = 2.8. The universal value of the pre-
exponential factor (on the order of €%/h) was predicted
earlier by Kozub et al. [11] and was one of indications
of the existence of consecutive many-electron Coulomb
correlationsin the system.

As the temperature decreases, the temperature
dependence of conductivity becomes stronger; at
T <T,, a transition from the Efros—Shklovskii to the
Arrhenius law

o(T) = 0oexp(-Es/ksT)

takes place. This phenomenon can be traced most
clearly on the temperature dependence of thelocal con-
ductivity activation energy (Fig. 7). In the general case,
the temperature dependence of hopping conductivity is
described by the law

o(T) O exp[—~(T/T).
The activation energy is defined as

_ 0dlno
W= a(1/kgT)

With such an approach, we have

logW(T) = A+ (1-x)logT and A = log(xksT3).

= xkg T"T7. 2
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Fig. 5. Relative variation of the resistancein magnetic fields
of different orientations for one of test samples free of Ge
QDs. The measuring temperature is 4.2 K. The boron con-

centration in the 3-doped layer is 3.6 x 1022 cm™.
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Fig. 6. Dependence of the logarithm of conductivity on
TY2 (upper abscissaaxis) and T (lower abscissa axis) for
asample with Ge QDs and with filling factor v = 2.8.

Plotting logW(T) asafunctionof logT , we can deter-
mine the exponent x describing the temperature depen-
dence of conductivity from the slope of the straight
line. It can be seen from Fig. 7 that the activation energy
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Fig. 7. Temperature dependence of the hopping conduction
activation energy W= 0Ino/o(L/kgT) = kaTl‘XTi plotted

in the log-og coordinates. Solid lines describe the approx-
imation of experimental data on W(T) by formula (2).
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Fig. 8. Relative variation of the resistance in a magnetic

field at various temperatures for a Ge/Si sample with Ge
QDsand QD filling factor v = 2.8.
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at high temperatures decreases with T, i.e., the variable
range hopping conduction mode isrealized. At temper-
atures below T, = 4 K for the sample with v = 2.3 and
T. =5 K and for the sample with v = 2.8, the activation
energy becomes virtually independent of temperature.
This is manifested most clearly in the latter case.
Approximation of experimental data on W(T) by for-
mula(2) at T> T, (solid linesin Fig. 7) gives exponents
x =0.52 + 0.03 and x = 0.50 = 0.03 for samples with
v = 2.3 and 2.8, respectively. This means that the value
of x changesindeed from x = 1/2 to x = 1 upon system
cooling.

3.3. Magnetoresistance in Ge/3-9:B Samples
with Quantum Dots

The magnetoresistance for the Ge/d-Si:B sample
with v = 2.8 isshown in Fig. 8. An analogous behavior
is aso observed for the structure with v = 2.3. The fol-
lowing two circumstances are worth noting here. First,
the magnetoresistance is positive in a transverse mag-
netic field and negative in alongitudinal magnetic field
for both field orientations relative to the current in the
latter case. Therelative magnetoresistance for thetrans-
verse orientation of the magnetic field is aimost two
orders of magnitude higher than the value of
|[AR(H)/R(0)| for fields parallel to the plane of the struc-
ture. Such a giant anisotropy indicates an “ideal” 2D
nature of hopping chargetransfer in QD layers. Second,
for the Hy orientation, the magnetoresistance of the
structure with QDs is much higher than the magnetore-
sistance of a check sample without QDs, which indi-
cates a decisive role of the QD ensemble in the
observed features of magnetic transport. In the subse-
guent analysis, we will confine ourselves to the discus-
sion of experimental data for the transverse magnetic
field orientation only.

A detailed analysis shows that the magnetic-field
dependences R(H) of the resistance for samples with
QDs in the region of weak fields can be approximated
by the expression

In(R(H)/R(0)) = H%/BS —H/H* 3)

(dashed lines in Fig. 9). The negative term linear in H
takes into account the presence of a negative magne-
toresistancein thevicinity of zero; asthe magnetic field
increases, the magnetoresistance rapidly changes its
sign and becomes positive (see Fig. 9). The values of
characteristic fields B, are shown in Fig. 10. It was
found that parameter B, for both samplesisanearly lin-
ear function of temperature.

3.4. Activation Energy
of Low-Temperature Conduction in a Magnetic Field

Figure 11 shows the temperature dependences of
conductivity in the region where the Arrhenius law

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100 No.4 2005



HOPPING CONDUCTIVITY AND COULOMB CORRELATIONS IN 2D ARRAYS

holds (at T < T,) in various magnetic fields. It can be
seen that the activation nature of chargetransport isalso
preserved in amagnetic field. Figure 12 shows the con-
duction activation energy E, determined from the slope
of the experimental curves. It turns out that the value of
E, increasesin amagnetic field and attains saturation in
fieldsH>Hy =4T.

3.5. Discussion of Experimental Results

The activation dependence of the type o(T) =
0oexp(—E4/ksT) observed in the region of hopping
charge transfer is attributed as a rule to hopping con-
duction over nearest neighbors [1]. In our case, this
conduction mechanism cannot explain the experimen-
tal results for the following reasons.

First, the mechanism of conduction over the nearest
neighbors must change to the variable range hopping
conduction upon cooling. Our experiments reveal the
reverse.

Second, in the mechanism of hopping over the near-
est neighbors, the characteristic magnetic field By is
independent of temperature [9]. However, Ge/Si sam-
ples with QDs exhibit alinear relation between B, and
T (see Fig. 10).

Third, the value of activation energy €5 of hopping
conduction over the nearest neighbors can be estimated
as €5 = €?/kl, where | is the distance between the QD
layer and the 6-doped Si layer [12]. For | = 10 nm and
K = 12, we obtain g5 = 12 meV, which is an order of
magnitude higher than the experimental value of E,.

The above arguments suggest that the energy states
of holes are absent in the vicinity of the Fermi level in
a band of width 2E,; in other words, the spectrum of
states contains a “hard” energy gap. With decreasing
temperature, the energy band that contains the energy
levels ensuring optimal jumps of holes between QDs at
agiven temperature becomes narrower. Beginning with
a certain temperature, at which the energy bandwidth
becomes equal to the gap, the conduction activation
energy and the hopping range become independent of
temperature, which explains the transition from the
Efros-Shklovskii law to the Arrhenius law. It should be
noted that this gap cannot be due to formation of amag-
netic polaron in the system since in this case it should
vanish in a magnetic field due to screening of the
exchange interaction [13-15].

We believe that the observed effects (such as the
transition from the Efros—Shklovskii to the Arrhenius
law upon system cooling and the increase on activation
energy E, in a magnetic field) are experimenta evi-
dence of the presence of a hard gap in the spectrum of
hole states, which is associated with the formation of
electron polarons[3]. To interpret this phenomenon, we
must recollect that a disordered system contains, in
addition to sites forming athrough system of routes for
the passage of current from siteto site, compact pairs of
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Fig. 9. Dependence of magnetoresistance for a Ge/Si sam-
ple with Ge QDs and QD filling factor v = 2.8 on HZinthe
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Fig. 10. Values of characteristic magnetic field By obtained

by approximating the experimental data by formula (3) for
various temperatures. Solid lines show the results of
approximation of experimental Bg(T) dependences by a
power function.

sites with a low excitation energy and a small spacing
in a pair. Such compact pairs are separated by rather
long distances. Transitions between such pairs do not
occur; consequently, these pairs cannot participate in
static conduction, but can affect the electrons moving
over apercolation cluster through their dipole potential
emerging during transitions in a pair. Let an electron
hopping occur from afilled siteto sitei in apercolation
cluster (Fig. 13a). Then it would be advantageous for
many compact pairs in the vicinity of sitei to transfer
an electron from one site in a pair to the other site to
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Fig. 11. Temperature dependences of conductivity at T <
5K plotted in the Arrhenius coordinates in various mag-
netic fields. Symbols indicate the experimental data. The
values of magnetic field H for the upper figure from top to
bottom: 0, 1, 1.5, 2, 2.5, 3, 35, 4, 45, 5, and 5.3 T; lower
figuree H=0,1,15,2,25,3,35,4,45,5 and55T.

reduce the Coulomb repulsion of electronsand to lower
the energy of an arriving electron. The “coat” of polar-
ized pairs emerging in this case around the ith site and
entrained by the electrons tunneling to the next siteis
known as an electron polaron. This phenomenon
resemblesin many respects the emergence of a polaron
in ionic crystals, when a conduction electron moving
over the lattice causes a redistribution of relative posi-
tions of positive and negative ions in the lattice. How-
ever, polarization in our case emerges not due to dis-
placement of ions, but as a result of a redistribution of
electrons in compact pairs.
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Fig. 12. Magnetic field dependence of the low-temperature
conduction activation energy.

Theoretical calculations show that, as aresult of the
polaron effect, filled states of electrons must be sepa-
rated from empty states by a polaron gap of 2A,
(Fig. 13b) [2, 3]. If thedisorder inthe systemisnot very
strong and the energies of compact pairsin the vicinity
of all sitesdiffer insignificantly, the polaron gap is hard
in the sense that it does not contain any states alto-
gether. In systems with a strong disorder, the probabil-
ity that a polaron shift in the vicinity of certain sitesis
small differs from zero; in this case, the density of
states in the polaron gap turns zero in accordance with
an exponential law [2, 3].

Anincreasein the activation energy of hopping con-
duction in a magnetic field can be interpreted on the
basis of the following considerations. The magnetic
field deforms the electron wavefunctions at alarge dis-
tance so that the overlap integral for electrons at remote
sites decreases. In turn, the decrease in the overlap inte-
gral for the electron wavefunctions in compact pairs
with remote sites leads to a decrease in the energy of
electron transitions in pairs [16], which increases the
possible number of pairs participating in the formation
of an electron polaron. Thefield hardly affectsthe over-
lap integrals inside the pairs. Formally speaking, den-
sity of states g, [17] and, hence, the Coulomb [1] and
polaron gaps increase in the magnetic field (the polaron
gap widthisproportional to the Coulomb gap width[3],
at least, for a 3D system).

Unfortunately, analytic models of the polaron effect,
which would make it possible to calculate numerically
the polaron gap expected for our samples, have not
been developed as yet. However, to calculate A,, we
can use the results of simulation obtained in [3] and
indicating that the polaron gap (at least, for a 3D disor-
dered system) is smaller than the Coulomb gap Ac
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approximately by afactor of 5. In turn, the value of A
can be estimated from the relation Az ~ kg(T*T,)¥?,
where T* is the temperature above which the Efros-
Shklovskii law is violated [18]. For our samples, T* =
10-15 K [19]. Setting T* = 15 K and T, = 200 K, we
find that Ac ~ 5 meV and A, ~1meV, which isindeed
close to the experimental value of E, = 1.0-1.2 meV.

At first glance, the tendency in the conduction acti-
vation energy to saturation in strong fields appears as
unexpected (Fig. 12). However, this phenomenon can
also be explained on the basis of concepts of electron
polarons. Following Raikh [16], let us consider the
transition of an electron from site 1 to site 2 in a com-
pact pair in the presence of filled center 3 near site 1.
The energy required for thistransition is defined by the
formula

Vig®

N, =€,—€, + ,
12 2T ¢ )

where energies €;, €,, and &; of the sites are measured
from the Fermi energy and their spread is determined
by topological, composition, or Coulomb disorder in
the system aswell as by the overlap integralsfor sites 1
and 2. The second termin thisexpression isjust the cor-
rection associated with overlapping of the wavefunc-
tionsof holesat sites 1 and 3 and |V;5| isthe correspond-
ing overlap integral. In a magnetic field, the overlap
integral decreases and the energy of electron transitions
in compact pairstendsto avalue determined by theval-
ues of €, and &, alone. Consequently, the difference
E.(H = Hy) — E,(H = 0) is an estimate of the typical
overlap integral |V| between neighboring QDs. It can be
seen from Fig. 12 that |V| = 0.2-0.4 meV. On the other
hand, the overlap integral can be written in the form

Voa

Vol o
- @

where V, is the binding energy of a charge carrier at a
site(in out case, it isthe depth of alevel inthe quantum
well) and r is the mean distance between QDs. Setting
Vy ~ 300 meV [4], V| ~ 0.3 meV, and ry = 20 nm, we
obtain from relation (4) an estimate a ~ 4 nm for the
radius of localization of a hole in an excited state,
which is close to the value (approximately equal to
3 nm) obtained in [20] as aresult of numerical simula-
tion of the electron structure of hole states for analo-
gous Ge/Si(001) QD layers.

After the manuscripts had been prepared, we
learned that Dubrovskii et al., who studied the tunnel-
ing between two disordered systems in a transverse
magnetic field [21], observed the formation of a hard
gap in the density of localized states in strong fields.
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Fig. 13. (a) Formation of an electron polaron by placing an
electron at theith site. (b) Energy dependence of the density
of states: €¢ isthe Fermi level, A¢ is the Coulomb gap, and

Ay isthe polaron gap in the spectrum of states.

Probably, the mechanisms of this phenomenon and the
processes described above are of the same nature.
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Abstract—Analytic properties of the dimensionless static effective dielectric constant f(p, h) of atwo-dimen-
sional Rayleigh model (p is the concentration and h is the ratio of the dielectric constants of components) are
considered as afunction of the complex variable h. It is shown that the only singularities of the function f(p, h)
arefirst-order polesfor real h=h,<0(n=1, 2, ...) with the condensation point h = -1, which form an infinite
discrete (countable) set. The positions of thefirst ten poles of the function f(p, h) and the residues at these points
are calculated and represented graphically versus the concentration. Based on the results obtained, a pole-type
approximate formulais proposed that describes the behavior of the function f(p, h) over awide range of p and

complex h. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The experiments carried out in [1, 2] revealed an
anomalous growth in the diel ectric constant of samples
when approaching a metal-insulator phase-transition
point. Thisfact has stimulated interest in the more gen-
eral problem, the study of the low-frequency electro-
physical properties of such systems (in particular, of
binary composites). Theoretical analysis of this problem
was carried out within the similarity hypothesis [3, 4]
and by the method of the effective-medium theory [5].
In [6], the low-frequency dispersion of the conductivity
of adisordered two-component lattice model was ana-
lyzed by numerica methods. The studies of [4-6]
revealed a number of essential features of this phenom-
enon and showed that investigating the dispersion of
the dielectric constant (or the conductivity) of such sys-
temsisimportant, in particular, to gain a deeper insight
into the metal—insulator phase transition.

In[7], amore general approach (compared with that
of [4, 5]) has been applied to the problem of low-fre-
guency dispersion of the dielectric constant of binary
composites; the application of this approach is not
restricted by the applicability domain of approximate
methods, such asthe similarity hypothesis or the effec-
tive-medium theory. This approach requires that one
should know the properties of the dimensionless static
effective dielectric constant f(p, h) of acomposite (pis
the concentration and histheratio of the diel ectric con-
stants of the components) for complex values of the
variable h. Thisisassociated with thefact that, in alow-
frequency (quasi-stationary [8]) electric field, the
dielectric constants of individual components, as well
as of the composite as awhole, are complex quantities.

The function f(p, h), considered as a function of
complex frequency w, is analytic in the upper half-
plane Imw > 0, while its singularities lie in the half-
plane Imw< 0. However, anatural independent variable
for f is h rather than the frequency w; we denote the
complex value of h by {. It turns out that the static
effective dielectric constant f(p, ¢), considered as a
function of ¢, isanalytic in the whole complex plane {
except for the negative real half-line (Re{ <0, Im¢ = 0)
(see [7]). Thus, al singularities of the function f(p, {)
lie on this half-line (and, possibly, at the infinite point
(=) [7].

Knowledge of these singularities allows us to write
out a dispersion relation. Using this relation, one can
express the function f(p, ¢) with arbitrary complex { in
terms of itsimaginary part on the negative real half-line
(more precisely, for Re( < 0and Im¢ =i0). Notethat the
type of the singularities of f(p, ¢) is not universal but
depends on the specific structure of a composite. For
instance, according to [9, 10], the function f(p, ¢) has
only adiscrete set of first-order polesfor finite samples.
One may assume that infinite periodic systems also
have a discrete set of such poles (which is confirmed,
for example, by the results of the present study). For
composites with a random distribution of components,
one should expect that the poles mergeinto acut Rel <
0 and Im¢ = 0, so that, on the upper (or lower) bank of
thiscut, Imf(p, ¢), considered asafunction of t = —Re(,
is generally different from zero in the whole interval
0 <t<oo(seg for example, [11]).

The study of the analytic properties of f(p, {) for
concrete models faces difficulties associated with the
absence of exact solutions for binary systems with
finite (nonzero) values of the dielectric constants of

1063-7761/05/10004-0731$26.00 © 2005 Pleiades Publishing, Inc.
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both components. An exception is given by the follow-
ing model, which was first proposed by Rayleigh [12]:
atwo-dimensional matrix with adoubly periodic distri-
bution of circular inclusions. In [12], Rayleigh actually
found only thefirst few terms of avirial decomposition
(for asmall concentration of inclusions) for the effec-
tive dielectric constant of such asystem. A full solution
to this prablem is given, for example, in[13, 14].

In the present paper, we apply the results obtained
in[13, 14], which can also be applied in a complex
domain, to study the analytic properties of the effective
static dielectric constant of the two-dimensional Ray-
leigh model. We show that, according to the general
considerationsgivenin [7], al singularities of the func-
tion f(p, ¢) are concentrated on the negative real half-
line and constitute an infinite discrete (countable) set of
simple poles. In this paper, we determine the positions
of thefirst ten poles and the residues at these poles as a
function of the concentration of inclusions. To this end,
we solve the basic equations from [13, 14] by numeri-
cal methods. In specific calculations, we single out a
subset of 40 equations from the infinite set of these
equations.

In the case of the periodic model considered here,
the function f(p, ) is represented as an infinite sum of
polar terms. Taking into account a finite number of
terms, we obtain a relatively simple approximate for-
mulafor f(p, {). In this case, the complex three-param-
eter function f(p, ) is reduced to a rea function of a
single variable (the concentration). The calculation of
the position of thefirst few poles and the corresponding
residues as afunction of the concentration of inclusions
allows us to describe f(p, {) over a wide range of the
variablesp and C.

The model under discussion is investigated within
the dielectric-constant problem (with the use of appro-
priate terminology). Similar problems concerning the
conductivity, thermal conductivity, steady-state diffu-
sion, etc., differ from the dielectric-constant problem
by an obvious change of notation, and the solutions to
these problems (for a given model) are expressed in
terms of the same function f(p, {).

2. PRELIMINARY REMARKS

L et us express the static effective dielectric constant
€. of an isotropic binary composite as

€ = €(P; €1, &) = & f(p, h);
h = D
= g,/¢g;.

Here, p is the concentration of the first component and
& (i = 1, 2) isthe dielectric constant of the ith compo-
nent; the type of the function f(p, h)—the dimension-
less effective static diel ectric constant—depends on the
specific structure of the composite. Note that, in the
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two-dimensional case, the function f(p, h) satisfies the
reciprocity relation [15] (seeaso [7])

f(p,h)f(p,1/h) = 1, (2

which isvalid for isotropic two-dimensional, two-com-
ponent systems of arbitrary structure.

In a low-frequency (quasi-stationary [8]) electric
field, the expression for the effective diel ectric constant
remainsthe same as (1); however, the parameters e, and
€ are now complex functions of frequency w. In this
case, the argument h = h(w) of the function f(p, h) is
also complex. For instance, for “poor” conductors (say,
for semiconductors), it is reasonable to introduce the
conductivity o and the dielectric constant € simulta-
neoudly [8]. This is conveniently done by introducing
the complex dielectric constant g(w) [8]

_ Ao
e(w) = s+|7. 3

One of the conditions of quasi-stationarity is the inde-
pendence of € and o of frequency [8], which we assume
to be satisfied. In this case, by € and o are meant the
static values of these quantities.

As pointed out above, the determination of the
effective low-frequency electrophysical characteristics
of a medium (a composite) in the quasi-stationary
approximation differs from that in the static case only
by the change of the dielectric constant € in (1) by the
complex dielectric constant €(w). In this case, we
obtain the following expression for £(w) given by (3):

Ano, _ ATIO
eti—r = guti——gf(p.h(w), @)

h(w) = B+ i%%/%H iﬂgi%. 5)

Hence, we obtain

T mi (p, h(w),  ©

€. = g,Ref(p, h(w)) —

o. = o.Ref(p, h(w))+21—:[olmf(p, h(w)) (7

with h(w) from (5). Note that, in contrast to € and o;,
the effective characteristics €, and o, depend on fre-
quency .

Thus, knowledge of the properties of the static func-
tion f(p, ¢) in the plane of the complex variable  alows
usto apply formula (1) even for w# 0 provided that we
make the substitution

{ — h(w) = g;(w)/ei(w). (8)
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For systemswith a metal—insulator phase transition,
the behavior of the function f(p, h) in the critical
domain is usually described within the similarity
hypothesis [4]. The application of appropriate expres-
sions (more precisely, their analytic continuations) for
f(p, h) allows us to describe, in this approximation, the
behavior of the effective parameters €, and o, as func-
tions of frequency w in the entire critical domain
(see[4, 7]. On the other hand, the substitution of the
expression for f(p, h) calculated within the effective-
medium theory [16] into formulas (4)—7) reproduces
the theoretical results of [5].

3. ANALYTIC PROPERTIES
OF THE FUNCTION f(p, )

It iswell known that the dielectric constant, consid-
ered as a function of complex frequency w, is analytic
in the upper half-plane Imw > 0 (see [8, Section 82]).
Moreover, according to [8], the dielectric constant has
no zeros for Imw > 0 and finite w. Therefore, the func-
tion f = g(w)/e,(w) is also anaytic in the upper half
plane of w. To determine the analytic properties of
f(p, {) as a function of the complex variable ¢, one
should know to what domain of the plane C the trans-
form ¢ = h(w) with h(w) from (8) maps the upper half-
plane Imw > 0. A consideration of specific transforms
shows [7] that the half-plane Im{ > O is generally
mapped to the whole plane ¢ with the removed negative
real half-line (Re < 0, Im¢ = 0). Hence, the function
f(p, ¢) isanalyticin thisdomain of the plane {, whilethe
singularities of this function lie on the above-men-
tioned half-ling; in particular, the imaginary part of f
has a discontinuity on this half-line. The infinite point
{ = requires separate consideration. In the two-
dimensional case considered here, the function f(p, ¢)
with { = o either isfinite, or hasafirst-order pole[7] if
the concentration p isdifferent fromthe critical concen-
tration (p # p,). Note aso that, according to [7], thefol-
lowing equality holds:

f(p. ¢*) = £*(p ), )
where the star denotes complex conjugation.

Knowledge of the analytic properties of f(p, ()
allowsusto write out adispersion relation. For definite-
ness, consider atwo-dimensional case (D = 2) and the
domain of concentrations p > p. when there is no per-
colation in the second component, so that the function
f(p, ) takesafinite value f(p, ) as{ — 0. According
to [7], under these conditions, the dispersion relation
has the form

® )
(p.0) = f(p.o0) [T ar,

0
where f*)(p, —t) = f(p, -t + i0). Hence, to determine
f(p, ¢) on the whole plane of ¢, it suffices to know the
imaginary part of f*) and the quantity f(p, ).

(10)
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Note that the real part of impedancein the so-called
LC model isexpressed in terms of theimaginary part of
f*); one component of this model has inductive reac-
tance, and the other has purely capacitive reactance
(see[7]). According to [8], the real part of the imped-
ance is nonnegative, so that [7, 11]

Imf®(p,—t) = 0. (11)
As pointed out in [15] (see dso [7]), the fact that the
real part of the effective impedance is different from
zero (i.e., the presence of real absorption of energy) is
associated with the existence of impurity levels (local
oscillations) in the LC model whose resonant excitation
is responsible for the energy dissipation. Thus, the
mathematical singularities of the function f(p, ¢) in the
complex plane  are directly related to a physical phe-
nomenon—the presence of local oscillationsin the LC
model.

In periodic systems, the polar termsin f correspond
to resonances at certain natural frequencies w, in the
LC model, which are expected to form a discrete spec-
trum. The frequencies w, correspond to real values
(eigenvalues) h,, = h(w,) < 0 with h(w) = —w/Q? [7],
where Q is the Thomson frequency (the resonance fre-
guency of the LC circuit). At { = h,,, thefunction f(p, {)
has poles. The eigenvalues h,,, which aso form a dis-
crete spectrum in the case of aperiodic system, depend
only on the structure (i.e., on the geometrical character-
istics) of a composite and are independent of the spe-
cific character of the problem (cf. [17]). Therefore, the
values h,,, which represent dimensionless numbers, are
the same (for a given structure of the composite) both
for a frequency-dependent LC model and for static
problems (problems of dielectric constant, conductiv-
ity, thermal conductivity, etc.). In this case, the eigen-
values h,, are primary quantities that characterize the
geometry of the composite, while, for example, the res-
onance frequencies w, of the LC model are secondary

guantities, which are expressed in terms of h,; wﬁ =
-h,Q2> 0.

4. PERIODIC MODELS

As pointed out above, one should expect that, in
periodic systems, the eigenvalues h, (and, hence, the
poles of the function f) form adiscrete spectrum. There-
fore, if we consider, asin the previous section, the two-
dimensional case and the domain of concentrations
p > p. (which corresponds to R < a in the Rayleigh
model), we obtain the following expression for the
function f(p, ¢):

_ F
f(p. Q) = f(p, W)—ZZ_“h ,

(12)
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where h,, < 0. Hence, the imaginary part of f(p, ¢) for
(=—t +i0 (wheretisrea and positive) is represented
by a sum of deltafunctions:

Imf®(p,—t) = Ty Fod(t+hy). (13)
n=1
Formula (13) and inequality (11) imply that
F,=0. (14

The function f(p, ¢) given by (12) has all the proper-
ties established in Section 3; in particular, it satisfies
equality (9) because f(p, »), F,, and h, are real. Note
also that the substitution of (13) into (10) reproduces
formula (12).

Sincef =1for { = h =1 (a homogeneous medium),
the following equality must hold:

~ F
f(po) = 1+ % +—+ (15)

For { =h — 1, expansion (12) up to the term (1 —h)?
inclusive, combined with (15), yields

f(ph) = 1-(1- h)z(l_ Y
(16)

-y Z(1 -

Comparing (16) with the general expression for a
weakly inhomogeneous isotropic two-dimensional
binary system (see, for example, [11])

f(p,h) = 1—c(1—h)—%c(1—c)(1—h)2+..., (17)
we arrive at the two identities
- F
" - c=1-p, 18
2y CTP o
_ F, 1 1
3 it 30 = geA-p. (9

where c is the concentration (for D = 2, the area frac-
tion) of the second component.
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Setting ¢ =01in (12), we obtain the relation

(p.0)~1(p,) = zE— (20)

which implies the obvious inequality f(p, 0) < f(p, )
because F,, > 0 and h,, < 0. Eliminating f(p, ) from (12)
with the use of (20), we obtain

(PO = P.O-TY ity @D

Using (12) with { = h, we expand f(p, h) and f(p, 1/h)
in powers of h and substitute the result into reciprocity
relation (2). Taking into account (20), we obtain thefol-
lowing relation in the linear approximation in h:

f(p,O)zF - f(p,oo>z—“.

nln

(22)

The functions f(p, 0) and f(p, «) are related by the
formula

f(p,0)f(p, ) =1,

which also follows from (2) for h —= 0. Eliminating
f(p, o) from (22) with the use of (23), we obtain

(23)

(2] Fn 00
(PO = 5 23 Fo (24)
n=1 hn n=1
Differentiating (12) with respect to ¢, wefind
af ,
Hence, for real { = h, we have
of (a% DI (26)
for positive h and
oRef ,h

for negative h. For h < 0, Ref(p, h) monotonically
increases (as h increases) in any interval bounded by
two neighboring poles.
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The substitution of (15) into (12) yields the follow-
ing expression for f(p, {):

(-1

Ty @

f(pY) =1+5F
n=1

which contains only the quantitiesh,, and F,,. When { =
0, expression (28) implies the foll owing representation
for f(p, 0):

f(p,0) = 1+Zﬁ' (29)

Note that formulas (15), (18)—20), (22)—(24), and
(29) can be applied to control the correct determination
of h, and F,, when studying specific two-dimensional
periodic models.

5. THE RAYLEIGH MODEL

The model investigated in the present study repre-
sentsatwo-dimensional isotropic matrix with dielectric
constant €, that contains circular inclusions of radius R
with dielectric constant €,. The inclusions form aregu-
lar structure: the centers of inclusions are situated at the
nodes of a square lattice with period 2a (Fig. 1). The
problem of calculating the effective dielectric constant
€, of such a model was first considered by Rayleigh
in [12], where he determined the first few terms of the
corresponding virial decomposition. A full solution
within the conductivity problem is given, for example,
in[13, 14].

According to [13, 14], outside inclusions, the com-

plex potential of the problem is given by the expression
(z=x+1iy)

o) = P+ ¥ Bd™@0  (20)
U

k=0

with real coefficients B and B,,. The function (29(z)
in (30) is the 2kth-order derivative of the Weierstrass
zetafunction [18]

(31)

The summationin (31) is performed over all (both pos-
itive and negative) integers | and m, except for the | =
m=0.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

735

SO D

N
i

S\ AN T
oo

Fig. 1. Two-dimensional Rayleigh model.

For small z, the following expansion is valid for the
function {(2) [18]:

_ 1 z Cok  _4ak-1
(@=3-2 1% - (32)
k=1
Here,
_9 1 2
C, = 9‘52), Cy = §92, Cs = rmg?’, , (39)
where
_ 1[ Dlm]“
= =k 34
gz a4 D/\/—é:l ( )

is an invariant of the Weierstrass zeta function [18].
In (34), K(1//2) = 1.85407... is the complete elliptic

integral of the first kind K(k) with modulus k = 1/./2.
The coefficients ¢, for k = 2 can be found from the
recurrence relation [18]

k-1

_ 3
Co = (4k+ 1)(2k_3)mz ComCok—2m (k22) (35)

=1

Note that expansion (32) does not contain coefficients
with odd indices, so that, for the square lattice consid-
ered here (a lemniscatic case [18]), the coefficients
Co+ 1 Vanish.

The coefficients B, (k= 0, 1, 2, ...) in (30) satisfy
the infinite system of equations from [13, 14]. If,

No. 4 2005



736

instead of B,, we introduce “variables’ &, by the
formulas

R2k+26 1-h

then this system takes the form [14]

- &
h - 81’(36)

&t ZSkIEI =Qp (k=0,1,2,...), (37)
=0

where &, is the Kronecker deltaand

g = @R e,
2K (2k+ D221 + 1)

(38)

The coefficients ¢ .| . 1 are defined in (32)—(35), and o
is defined in (36). The matrix S, is symmetric and is
different from zero only when the indices k and | have
different parities. In particular, S, = 0 because ¢, = 0.

According to [13], the dimensionless effective
dielectric constant f = £/¢; of the model under consid-
eration is given by

_1-c€yd
where
c = mR’/4a° (40)

is the concentration of inclusions. The roots of the
equation

& +¢d =0 (41)

determinethe positions of the polesh,,. Ash— h,, the
function f takes the form

f=—r fh (42)
where
20d(E8) O
Fo = —Eﬁw}h: hH (43)

isthe residue, taken with opposite sign, of the function
f at thepoleh =h,.

Equations (37) remain valid for arbitrary complex h,
including real h < 0. The sought-for quantitiesh,,and F,,
are obtained by subgtituting &, = &,(h), which is deter-
mined from system (37) for negative h, into (41) and (43).
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6. CALCULATION OF h, AND F,

For anisotropic two-dimensional system with circu-
lar inclusions, we have

_ 1-h
f = 1—201+h

(44)
in the linear approximation in the concentration of
inclusions (cf. a similar formula in the three-dimen-
sional case[8]). Expression (44), whichisvalid for any
(either random or periodic) distribution of disks, has a
single pole at h = —1. This is associated with the fact
that, in deriving (44), we actually considered an iso-
lated inclusion. At the same time, h = —1 isan infinite-
fold degenerate eigenvalue for a disk, and only “inter-
action” with other disks removes the degeneracy. For
instance, in the case of apair of disks of radiusR, there
are two sets of eigenvalues [7]

h,,, = —tanhnp,,
h,, = —cothny, (n=1,2,...),

P+ /PP—4R?
Mo = In————A/2R )

(45)

where P is the distance between the centers of the

disks. In this case, h = —1 is a condensation point (as
n— o) of hy, and h,,. Note that the eigenvalues
of (45) correspond to the poles of the polarizability of a
pair of disks (circular cylinders) [11].

A similar situation occurs in the Rayleigh model: a
whole spectrum of poles arises for the function f in
higher order approximations in the concentration. In
this case, to evaluate h, and F,, for ¢ < 1, we will solve
a finite subset of N equations for increasing N instead
of (37). For further analysis, it is convenient to factor
out the coefficient & from the matrix S, defined in (38):

Se = Aud. (46)
Taking into account (46), we obtain the following
expressions from (38):

Ag = %302R41 Ay, = J15¢,R’,
. (47)
Ags = T7C4R8, Az = 643BCR™, ..,

where ¢, is defined in (32)—(35).

If we restrict the analysis to a single equation (for
k=0) in (37), then &, = 1. In this case, (41) implies
O,=-1c,sothaah,=—(1+2c+2c2+..)and F, =
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60
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Fig. 2. Ref(p, h) asafunction of h on the negative real half-
line for the concentration of inclusionsc=1-p=0.5. The
figure represents only the first four poles; the remaining

infinite family of polesis concentrated between hz and hy.

(1/mImfD(p, h)

0.5

04

0.3

0.2

0.1

n=3

9 g0

7
I

4
|

c=0.7

2

-2.0

-1.5

-1.0
h

-0.5

0

Fig.3.1m f(+)(p, h) asafunctionof hforc=1-p=0.7. The
height of each peak is proportional to the “force” F,, of the

corresponding delta function (see formula (13)).

4c(1+ 2c+ ...) for c < 1. Inthe next order of approxi-
mation (k=0,1and | =0, 1), we have

N=2 &' =1-A%. (48)

The subgtitution of (48) into (41) yields a second-order
agebraic equationin dthat hastwo real roots. Using these
roots, we obtain the following expressonsfor ¢ < 1:

h, = —%L+2c+2c2+2c3+§A§1+ U (9

5
1,2 O

F, = 4cl+2c+3c = =A% + .0, (50)
1 %L 2 O

2
h, = —E*TL—EA§1+..%, (51)
4
F, = EAél+.... (52)

Forc — 0,wehave|h, + 1|~ F; ~¢c, |h, + 1|~ F ~ ¢,
and |5, ~ 1/c3.

25 T T T T T T T

20 n

15+ .

1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09
c

Fig. 4. t; = —h, asafunction of concentration c. The dashed
line represents t; as afunction of c in the approximation of
four equations. Here, ¢y = 174 = 0.785 isthe critical concen-
tration (for R=a).
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~

| | | | | | | |
0 0.1 02 03 04 05 06 0.7 08 09
c

Fig. 5. t,=-h, (n=3, 5, 7, 9) asfunctions of concentration
. The dashed line represents t3 as a function of ¢ in the
approximation of four equations.

The set of three equations (in &g, &,, and &,) yields
N = 3:
o = [1-(Ag +AL)S]/(1- ALY,

In this case, the substitution of (53) into (41) yields an
equation of the third degree. In thisway, we can obtain
(for ¢ < 1) corrections of orders ¢* and c® inclusive to
guantities (49)—(52). For the third (n = 3) pole, we find

(53)

hy = 1+2c(Ap/Ay) +...], (54)
Fa = 4c(Ap/Ag)’ + ..., (55)
sothat |h; + 1|~ F;~c®and [§;] ~ 1/casc — O.
For n =4, we have
&' = {1-(Aq+ AL+ Ag+ Ay)d
+ (AL AL + AL AL — 2A0nALAGAL)S' Y (56)

x[1— (A2, + A%)8]
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0 0.1

| | | | | |

02 03 04 05 06 0.7
c

Fig. 6.t,=-, (n=2,4, 6, 8, 10) asfunctions of concentra-

tion ¢. The dashed lines represent t, and t, as functions of ¢
in the approximation of four equations.

which correspondsto afourth-degree equationin . For
h, and F,, we obtain rather cumbersome expressions
evenfor ¢ < 1; wedo not present them here. Note, how-
ever, that |h, + 1| ~F, ~c’ and |§,| ~ /c"asc — O.
Higher order (N = 5) approximations can be considered
analogously.

The analysis performed leads to the following con-
clusions. Choosing a subset of N equations, we obtain
an algebraic equation of the Nth degree in & that has N
real roots 8, (N =1, 2, ..., N). This alows us to deter-
mine approximate positions of thefirst N poles (aswell
astheresidues at these poles) of the function f(p, ); the
accuracy of calculating h, and F,, for fixed n increases
with N. As N increases, the poles arise in a definite
order: the poles with odd numbers lie to the left of the
point h=-1, and the poleswith even numbers, to theright
of this point. For small ¢, we have the following esti-
mates. |h,+ 1 ~F,~c 1< land|§|~ V1> 1
(n=1, 2, ...). Thus, h, — -1 as n — oo, s0 that
h = -1 isacondensation point of the poles. The quanti-
tiesF, rapidly decrease as n increases; this alows usto
restrict the summation in expansions (12), (21), and
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1 1 1 1 1 1 1
02 03 04 05 06 07 08 09

c

Fig. 7.

(28) for the function f(p, {) to afinite number of terms
(outside a certain domain in the vicinity of the point
¢ =-1inthe complex plane ().

To determine h, and F, for large concentrations c,
we solved system (37) by numerical methods. For con-
venience, we introduced, instead of &,,, the variables
X, = &0 that satisfy the following set of equations

[

+ ZS<|X| = 0Q0.

=0

(57)
In this case, the positions of the poles h,, are determined
by the equation

Xo =—1/c, (58)
and F, is determined by the following equality derived

from (43):
fedaenfE, e
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L L X il
02 03 04 05 06 0.7 08 09
C

Fig. 8.

where we took into account that x, is a function of the
variable d.

Let us differentiate (57) with respect to o:

dx dx
k Zdeél azswxlz ko (60)
Hence, taking into account (57), we obtain
dx dx, X
=+ stl =3 (61)

The set of equations (61) has the same structure as (57)
and differsfrom the | atter only by the form of the right-
hand side. Substituting the values of x, determined
from (57) into the right-hand side of (61) and solving
the set of equations obtained by the same method as
that applied for solving (57), we determine the deriva-
tive dx,/dd. The relevant cal culations can be performed
for a given h = h, (i.e, for & = §,). This approach
enables one to avoid numerical differentiation when
determining F,.
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Fig.9.F,(n=2,4,6, 8, 10) asafunction of concentration c.

f(p7 00) Co
20 T T T T T T T T

15
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0 0.1
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02 03 04 05 06 07 08 09
c

Fig. 10. f(p, =) as afunction of concentrationc=1—p.

In specific calculations, we singled out a subset of
40 equations from (57) and (61). For h < 0, we deter-
mined al x (k=0, 1, 2, ..., 39) as functions of h for a
fixed concentration c (i.e., for agiven ratio R/a). From
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Eq. (58), we determined the positions of the ten poles
h,(n=1, 2, ..., 10). For example, for the first four h,,,
we obtained the following values:

h,=-3.345, h,=-0.823,
(62)
h;=-1.136, h,=-0.981
for Rla=0.8 (c = 0.503) and
h,=-5.978, h,=-0.594,
(63)
hy=-1.484, h,=-0.873

for Rla=0.9 (c = 0.636).

Then, we determined the derivative dxy/dd for h=h,
and, applying formula (59), calculated F, (n=1, 2, ...,
10). The application of a similar procedure for several
values of concentration allowed us to determine h, and
F,asafunction of c. Using formula (39), we calculated
f(p, 0) and f(p, ) asfunctionsof c = 1—p and Ref(p, h)
as afunction of h for afixed concentration. To control
the correctness of calculations at all stages, we used
formulas (15), (18)—(20), (22)—(24), and (29).

The results of the study of the analytic properties of
the function f(p, {) carried out with the use of 40 equa-
tions form systems (57) and (61) are presented in
Figs. 2-10 in graphica form. For comparison, we
solved afourth-degree algebraic equation in d that was
obtained by substituting &, from (56) into (41). The
dependence of h,, h,, hs, and h, on the concentration c
in this approximation is shown by dashed lines in
Figs. 4-6. Note that the main conclusions made for
¢ < 1 (see above) remain valid for large concentrations
c. The neighborhood of the metal—insulator phase-tran-
sition point ¢, = 1—p. =14 =0.785 (for R=a) requires
special  consideration; here, one should take
into account the larger number of equations from sys-
tems (59) and (61), the closer the concentration c to ¢,.

Note that the comparison of truncated (for n < 10)
formulas (12), (21), and (28) with the results of the
numerical analysis of f(p, ¢) with ¢ = h > 0 shows that
the difference between them is no greater than about
1% for the concentration of inclusions of ¢ < 0.73 for
any 0 < h< oo, Thisallows usto use such an approxima-
tion to calculate f(p, h) in awide range of variables p
and h. Moreover, one may assume that, for given con-
straints on the concentration, this formulawill satisfac-
torily describe the function f(p, ¢) also for complex
(except for a certain neighborhood of the point { =-1).
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Abstract—Epitaxial GaMnSh films with Mn contents up to about 10 at. % were obtained by deposition from
alaser plasmain vacuum. The growth temperature T, during deposition was varied from 440 to 200°C, which

changed the concentration of holes from 3 x 10'%to 5 x 10%° cm™3, respectively. Structure studies showed that,
apart from Mn ions substituting Ga, the GaMnSh layers contained ferromagnetic clusters with Mn and shallow
acceptor defects of the Gag, type controlled by the T, value. Unlike single-phase GaMnSh systems studied ear-
lier with negative anomal ous Hall effect values and Curie temperatures not exceeding 30 K, the films obtained
inthiswork exhibited a positive anomal ous Hall effect, whose hysteresis character manifested itself up to room
temperature and was the more substantial the higher the concentration of holes. The unusual behavior of this
effect wasinterpreted in terms of the interaction of charge carriers with ferromagnetic clusters, which wasto a
substantial extent determined by the presence of Schottky barriers at the boundary between the clusters and the
semiconducting matrix; thisinteraction increased as the concentration of holes grew. The absence of this effect
in semi conducting compounds based on | 11-V Group elementswith MnSh or MnAsferromagnetic clusterswas
discussed in the literature; we showed that this absence was most likely related to the low hole concentrations

in these objects. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Diluted magnetic semiconductors containing mag-
netic impurities in high concentrations are disordered
media, and their properties are therefore determined by
disorder to a considerable extent (see review [1]). An
enormous humber of works have been concerned with
disordered media in the presence of only Coulomb
interaction, whereas such media under the conditions of
joint magnetic and Coulomb interactions remain vir-
tually unstudied, in spite of a fairly strong interest in
them[1]. Solid solutions of manganesein semiconduct-
ing Group |11 and V element compounds (in particular,
GaMnAs and GaMnSh) [2, 3] are among the diluted
magnetic semiconductorsthat are most intensely devel -
oped and studied. The reason for this is comparatively
high Curie temperatures of such semiconductors; they
can be prepared as heteroepitaxial compositionson sin-
glecrystalline substrates of the GaAstype, which offers
prospects for their integration with instruments tradi-
tionaly used in semiconducting micro- and optoelec-
tronics [3, 4]. In these materials, Mn is an acceptor
impurity; that is, theintroduction of Mn into asemicon-
ductor results in the appearance of both local magnetic
moments and freeholes, which can cause carrier-

induced ferromagnetism [5].1 It was, however, found [5]
that the attainment of high Curie temperatures T in
these materials (T = 77 K) required the introduction of
Mn ions in a semiconducting matrix in concentrations
of 10%°-10** cm~3, which was much higher than the
limit of the equilibrium solubility of Mn. The success-
ful preparation of supersaturated solid solutions of Mn
in 1=V compound semiconductors was performed
using nonequilibrium methods for growing them. The
most important among these islow-temperature mol ec-
ular beam epitaxy at about 250°C [3, 4]. It was shown
for the example of Ga, _,Mn,Aslayers[3] that thereis
an optimum manganese content x (0.05-0.06) at which
single-phase monacrystalline films with a zinc blende
structure were formed. In these films, Mn atoms substi-
tute Ga at lattice sites and play the role of acceptors.
The Curie temperature then increases to about 110K at
a concentration of holes p = 3.5 x 10®° cm™ [3].
Recently, a special technique for decreasing the con-
centration of donors was used to reach T = 159 K [6],

1 Direct exchange between Mn ions in these systems is antiferro-
magnetic in character. The introduction of compensating donors
therefore results in the complete suppression of ferromagnetism
inthem [3].
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which was close to the theoretically possible limit [7].
The Curie temperatures of similar layers of single-
phase solid solutions of Mn in GaSb, where Mn atoms
al so predominantly occupy gallium sites and are accep-
tors, do not exceed 30 K [8]. The T value of so-called
digital GaSb/Mn alloys (periodic structures) prepared
likewise was 80 K [9]. High Curie temperatures can in
principle be attained in digital alloysbased on supersat-
urated solid solutions of Mn in I11-V compounds
(IMM-Mn-V) (e.g., see[9]). At the same time, at a high
manganese content x and/or high growth temperatures,
solid solution decay effects are observed and an addi-
tiona magnetic phase is formed, whose nature is
actively discussed at present [9, 10]. Most often, MnAs
or MnSb ferromagnetic clusterswith aNiAs (T = 318
and 587 K, respectively [11]) or zinc blende [9] struc-
ture play the role of the additional phase.

A key role in studies of the magnetic properties of
diluted magnetic semiconductors based on 1HI-Mn-V
compoundsis played by revealing and studying the spe-
cia features of the behavior of the anomalous Hall
effect, whichis, asiswell known, proportional to mag-
netization M for ferromagnetic metals and is related to
the influence of spin—orbit coupling on the scattering of
spin-polarized electrons [12]. The caculations per-
formed recently [13] show that the anomalous Hall
effect in 11I-Mn-V semiconductors can be caused by
corrections to the velocity of carriers related to the so-
called Berry phase. The anomalous Hall effect is then
also determined by the exchange splitting of spin hole
subbands, is proportional to magnetization, and, there-
fore, the Hall resistance R, asin ferromagnetic metals,
obeys the equation [ 3]

_ R R
Ry . B+ . M, Q)
where d is the thickness of the diluted magnetic semi-
conductor layer; R, is the constant of the ordinary Hall
effect caused by the Lorentz force, which is propor-
tional to the magnetic induction B; and R is the anom-
alous Hall effect constant.

The anomalous Hall effect plays an important role
in studies of ferromagnetism in diluted magnetic semi-
conductors because it is the most direct method for
investigating the interaction of charge carriers with the
magnetic subsystem. In addition, for thin films, when
the influence of a diamagnetic substrate is strong, the
anomalous Hall effect can more effectively be used to
study magnetic ordering than magnetization measure-
ments [3, 14, 15]. Another and more important reason
for using the anomalous Hall effect is the complex
character of the magnetic phase that may appear in 111—-
Mn-V materias [9, 10]. For instance, Ga, _,Mn,Sh
crystals grown by the Bridgman method (x = 0.03—
0.14) were reported [16] to exhibit the Curie tempera-
ture T¢ = 540 K, which was close to T = 587 K for
MnSh clusters; this result was obtained by studying the
temperature dependence of magnetization. It is perti-
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nent to mention that the magnetic field dependences of
the Hall effect (which werevirtualy linear) and magne-
tization presented in [16] were substantially different.
In addition, there was no anomalous Hall effect mani-
festations of MnSh- or MnAs-type ferromagnetic clus-
ters in GaMnSh [8] and GaMnAs [3], respectively,
although the contribution of the clusters to magnetiza-
tion was considerable and observable up to room tem-
peratures. At the same time, the “Curie temperatures’
obtained for these systems by measuring the anomalous

Hall effect (TZ) were noticeably lower than room

temperatures (T¢ < 10K for GaMnSb with MnSb clus-
ters[8]). Accordingly, it iscommonly supposed that the
& parameter obtained from anomalous Hall effect

measurements for multiphase solutions of Mnin 111-V
compounds characterizes magnetic ordering of only
part of the magnetic subsystem, which nevertheless
largely determines the spin polarization of carriers and
is of the greatest importance for diluted magnetic
semiconductor applications in spintronics. It is there-
fore no mere chance that, in recent works [6, 8, 14],
preference is given to anomalous Hall effect measu-
rements as a method for the observation of spin-polar-
ized carriers and the determination of the magnetic
state of I11-Mn-V systems at various temperatures. For
single-phase solutions, these measurements give the
same T temperatures as those obtained in magnetiza-
tion studies[3, 6].

In spite of the important role played by the anoma-
lous Hall effect in [1I-Mn—-V materias, the question of
its nature remains open. It was shown recently [17] that
the anomalous Hall effect value in GaMnAsisin close
agreement with the calculation results [13], and itssign
(positive) coincides with the sign of the ordinary Hall
effect, in agreement with [13]. The GaMnSb system,
however, exhibits a negative Hall effect, whose sign is
oppositeto that of the ordinary Hall effect [4, 8, 9]. The
theory described in [13] does in principle predict a
change in the sign of the anomalous Hall effect; this,
however, requires that the Fermi energy be close to the
top of the I'; band split off because of spin-orbit cou-
pling [18] (in GaSh, Ay = 0.75 eV [19]), which is at
variance with the experimental data [8, 9] 2The ques-
tion why MnSh- and MnAs-type clustersin the systems
under consideration do not influence the anomalous
Hall effect also remains open. Indeed, the anomalous
Hall effect is observed quite distinctly in diluted ferro-
magnetic granulated alloys (nanoparticles of ferromag-
netic metals in nonmagnetic metallic matrices) and
substantially exceeds the ordinary Hall effect compo-
nent [20]. The Curie temperatures of single-phase

2|tis shown in [18] that the calculations made in [13] are equiva-
lent to the consideration of the anomalous Hall effect in terms of
the so-called side-jump model, in which the sign of the anoma
lous Hall effect should coincide with the sign of carriers. In the
skew scattering model, the sign of the anomalous Hall effect can
in principle be arbitrary [18].
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Fig. 1. X-ray diffraction spectra of GaSb/GaAs structures
formed by depositing at Tg = 440°C: (1) undoped and
(2) doped with manganese. For clarity, the spectra are
spaced along theintensity axis: theinitial spectrum of struc-
ture 2 was multiplied by 100.

diluted magnetic semiconductors are fairly low but can
substantially exceed room temperatures in diluted fer-
romagnetic granulated aloys. It is therefore of interest
to study supersaturated solid solutions of Mn in I11-V
semiconductors and, in particular, their galvanomag-
netic properties.

The purpose of this work was to study the special
features of the behavior of the Hall effect in Mn-super-
saturated GaMnSb layers deposited by laser sputtering
of undoped GaSh and metal Mn targets in a vacuum. It
was found that acceptor-type defects were largely
formed in the films prepared by laser plasma deposi-
tion. Moreover, the concentration of acceptor defects
and, accordingly, the concentration of holes p could
easily be controlled by changing the temperature of the
substrate, which allowed p to be varied from 10'° to 5 x
10%° cm3. As distinct from the earlier results, we
observed a positive high-temperature anomalous Hall
effect that exhibited hysteresis up to room temperatures
in the layers under study. Anomalous Hall effect data
processing according to Belov and Arrott [21] allowed

us to determine the value of Tg that characterized
spontaneous manifestation of the (in the absence of a
magnetic field) anomalous Hall effect. The T reached
330K at p=5x10%° cm and decreased as the concen-
tration of holes lowered. Physical reasons for the
observed anomalous Hall effect characteristics and for

its absence in similar structures that had been studied
earlier will be considered.

2. EXPERIMENTAL PROCEDURE

GaMnSh films were deposited using a pulsed
yttrium aluminum garnet laser operating in the
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Q-switching mode at 1.06 um. We used arotating com-
bined target consisting of a plate of single crystalline
undoped GaSb covered in part by a high-purity Mn
metal. The trace of material vaporization with the laser
was a circle, and the ratio between the lengths of the
arcs of sputtered GaSb and Mn therefore determined
the level of growing layer doping. The films were
deposited on a plate of semi-insulating GaAs with the
(100) orientation, and the substrate temperature T, was
varied from 200 to 440°C. The resulting films were
40-140 nm thick.

Thestructural characteristics and composition of the
films were studied by X-ray diffraction on a DRON-4
instrument using the two-crystal scheme and Cu K;
radiation filtered with a Ge(400) monochromator,
X-ray photoel ectron spectroscopy on aMicroLab MK |1
unit (VG Scientific) using nonmonochromatized
Al K, radiation, and electron probe microanalysis on a
GAMEBAX unit. The magnetization of the films was
measured by a BHV-50 vibrating-coil magnetometer
with a sensitivity no worse than 10-° emu.

The samplesfor Hall effect measurementswere pre-
pared by photolithography, as mesostructures with the
standard double cross form (the width and length of the
conduction channel wereW=0.5mmand L = 4.5 mm,
respectively). Hall effect measurements in fields up to
1 T were performed using an automated unit by the
method of digital filtration and signal accumulation.
The voltage between the Hall (V) and potentia (V,)
probes and current |, that passed through the sample
were synchronously recorded under constant voltage
conditions at positive and negative magnetic field B val-
ues, the field was applied normally to the film surface
(along the z axis). The measurement results were used
to determine the resistance of the sample between the
potential probes R, = V,/I, and transverse resistance
Ry = V/1,. Preliminary experiments showed that trans-
verse resistance could exhibit hysteresis and the mag-
netic field dependence of longitudinal resistance was
negligibly small (the magnetoresistance of the films
under study did not exceed 0.1%). Considering possible
hysteresis, the Hall resistance R, was determined by
subtracting the even signal component from R,, (the
even component appeared because of asymmetry inthe

arrangement of Hall probes); that is, Ry = Ry, — (R, +

Ry )2, where R;y and R,, are the transverse resis-

tance val ues corresponding to the positive and negative
magnetic field directions obtained, for instance, in
scanning over the field as it decreased in magnitude
(from1toOT).

3. RESULTS AND DISCUSSION
The X-ray diffraction 6/26 spectra of the
GaSh/GaAs structures deposited at a 440°C substrate
temperature are shown in Fig. 1. The spectrum of the
structure with a GaSb layer undoped by Mn (curve 1)
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contains asubstrate peak at 20 = 66.05° (the GaA s(400)
reflection) and a layer peak at 60.74° (the GaSh(400)
reflection). The Bragg angles of the 20 peaks from the
layer and substrate were refined in two stages. At the
first stage, we refined the angle of crystal rotation with
abroad dlit in front of the detector (w scan). At the sec-
ond stage, the angle of detector rotation was determined
with a narrow dlit while the sample rotation angle was
fixed at a value corresponding to maximum intensity
(6 scan). The substrate was used as a reference to cor-
rect the 26 angle of the layer.

Calculations of the lattice parameter of undoped
Gasb from the 20 angle gave a; = 0.6096 nm, which
coincided with the value known from the literature [19].
The integral characteristic of the structural perfection
of the layer was the rocking curve width (full width at
half maximum, FWHM) measured from the w-scan
spectrum according to [22]. The FWHM value for the
peak from the GaSb layer wasAw= 0.4°. It follows that
GaSh is a mosaic single crystalline film, although the
fairly large Aw value may be evidence of nonideality of
the crystal structure of the film likely caused by the dif-
ference in the lattice constants of GaSb and GaAs
exceeding 7%.

The X-ray diffraction 6/26 spectrum of the structure
with aGaMnSb layer also deposited at 440°C is shown
by curve 2 in Fig. 1. This spectrum is similar to that of
GaSb free of Mn (curve 1). It follows that the introduc-
tion of Mn by laser plasma deposition does not cause
noticeable structural imperfection of the deposited lay-
ers. With GaMnSb, the procedurefor refining the Bragg
angle of the 26 peak GaSh(400) with the use of w and
0 scans, however, givesavaue of 20 = 60.76°, whichis
somewhat larger than that of the undoped layer. We
used the equation a(x) = a; —0.00528%, where a; is the
|attice constant of undoped GaSh, for the lattice param-
eter of Ga,_,Mn,Sb with a zinc blende structure [23]
and the 206 = 60.76° value obtained for GaMnSb layers
grown at T, = 350-440°C to estimate the content of Mn,
x=0.04 £ 0.01.

The FWHM value monotonically increases from
0.4° at T, = 440°C to 0.5° at T, = 300°C as the temper-
ature of GaMnSb layer growth lowers. The GaSh(400)
peak, although low-intensity, is observed even at T, =
200°C. Thisisevidencethat the presence of manganese
in a layer of gallium antimonide in the concentration
specified above has no substantial influence on the
character of its growth during laser plasma deposition
over the temperature range 200—440°C.

The composition of the films was studied by elec-
tron-probe microanalysis with a spatial resolution of
order 1 um. The results showed that Mn was fairly uni-
formly distributed over the area of the samples (the
spread of x values was about 1%). The thickness of the
films was much less than the region of X-ray radiation
excitation by accelerated electrons in the structure,
which prevented exact calculations of manganese con-
tents from the data obtained this way. Estimates, how-
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ever, show that the content of Mn in GaSb films was
x=0.10. This is larger than the value obtained from
X-ray diffraction. This discrepancy can arise because
€l ectron-probe microanalysis measurements determine
the chemical composition of the films, whereas X-ray
diffraction is sensitive to changes in the GaSb lattice
parameter caused by the insertion of Mn ionsinto gal-
lium sublattice sites. When a nonequilibrium method
for depositing layers is used, manganese atoms can
enter into other lattice sites (for instance, into inter-
stices) and form clusters. It follows that the x = 0.10
valueis moreredlistic.

The suggestion of the possible presence of clusters
is substantiated by the X-ray photoelectron spectra of
the samples. The X-ray photoelectron spectra of
GaMnSh/GaAs structures are presented in Fig. 2. The
Mn 2p line spectrum is shown in Fig. 2a. Thisline has
a complex structure, in which at least two chemical
states of manganese atoms are distinctly seen. The posi-
tions of the Mn 2p;, peaks for these two states are
denoted by A and B in the figure. The actual positions
of peaks in the spectra of compounds is determined by
severa factors, in particular, by changes in the energy
levels caused by chemical interaction (the so-called
chemical shift [24]) and exchange interaction [25] in
magnetic materials. The experimental (Fig. 2a) Eg val-
uesfor the Mn 2p,, linein states A and B are 638.9 and
640.8 eV, respectively. Thefirst value coincideswith Eg
for Mn metal (638.9 eV [26]). A similar splitting of the
Mn 2p5, peak was observed in [25] for ternary aloys
containing Mn and Sh. The first peak in [25] coincided
with the manganese metal peak. The second peak at
larger Eg values was split off by approximately 2 eV in
a situation close to that considered in this work. It
appeared in compounds probably because of exchange
interactions caused by the chemical state of manganese
atoms in which they have a large local magnetic
moment [25]. It followsthat there are at |east two states
of Mn atoms in GaMnSh films, one characteristic of
bonds between Mn and Sb atoms and the other similar
to the state of Mn in Mn metal (Mn—Mn bonds). The
conclusion can be drawn that the films under consider-
ation are supersaturated solid solutions of Mn in GaSb
that contain the GaSb matrix with 4% of Gareplaced by
manganese and manganese-containing clusters, whose
influence on the magnetic and gal vanomagnetic proper-
ties of the layersis discussed below.

Another special feature of the GaMnSb filmsistheir
primordially p-type conduction, even in the absence of
doping, in particular, with manganese. This is likely
related to the formation of antisite Gag, defects
(Gaatoms in Sb sites) during film growth, which are
shallow acceptors in GaSb [19]. Indeed, as follows
from the X-ray photoelectron spectra of GaMnSb lay-
ers shown in Fig. 2b (Ga 3d and Sb 4d lines) and 2c
(two Sb 3d lines) (spectra 2 and 3) in comparison with
the corresponding X-ray photoelectron spectra of sin-
gle crystalline undoped GaSb (Fig. 2, spectrum 1), the

No. 4 2005



746 RYLKOV et al.
[, arb. units I, arb. units
T T T T T T T T 1.2 T T T T T T T
06 @ 1 1.0f ®) Sb i
Mn B A

0.4

2pip 2p3p

0.2

0.8

0.6

04

0.2

| | | | |
70 665 660 655 650 645 640

6
8 T T T T T
© 3dsp |\ 1
6 3dzp —2 .

Il 1
535 530

EB, eV

1 1
545 540 525

Eg, eV

Fig. 2. X-ray photoelectron spectra: (a) Mn 2p line for a GaMnSb layer, To = 200°C; (b) Ga 3d and Sb 4d lines for (1) single crys-
talline GaSh, (2) aGaMnSb layer, T;=440°C, and (3) aGaMnSb layer, Tg= 200°C; and (c) Sb 3d linesfor three types of structures,

see (b).

content of Ga atoms in the films is higher than that of
Sb atoms (Cg/Cq, > 1). The nonstoichiometry of
deposited layers (the Cg/Cg, ratio) increases as the
deposition temperature T, decreases. According to the
measurements performed at 300 K, theresistivity of the
films p decreasesfrom p =4 x 102 Q cm at T, = 440°C
top=3x102Q cmat T, = 200°C, which is evidence
of anincrease in the concentration of holes.

M easurements of the magnetization of the GaMnSh
films grown at various temperatures gave the results
shown in Fig. 3. We see that, in spite of the substantial
differences in the conductivities of the layers deposited
at various T, (differences in hole concentrations), the
films exhibit ferromagnetic behavior, and their satura-
tion magnetizations do not vary strongly, from M, =
53 mT at T,=200°C to M= 3.6 mT at T, = 440°C. We
assume that the magnetic moment of the filmsis deter-
mined by Mn?* ions [3] (g-factor = 2 and the total spin
S=5/2). On this assumption, calculations give Mnion
concentrations of Ny, = 1.1 x 10?* cm (T, = 200°C)
and Ny, = 7.8 x 10%° cm3 (T, = 440°C), which isin
agreement with maximum estimates of the concentra-
tion of Mn atomsasan impurity that replaces Ga, Ny, =
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7.1 x 107°-1.8 x 10%* cm3 at x = 0.04-0.10. However
note that if the magnetic properties of 111-Mn-V semi-
conductors weakly depend on the concentration of
holes, they are usualy related to the presence of MnSh-
or MnAs-type ferromagnetic clusters[3, 8].
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Fig. 3. Applied magnetic field dependences of magnetiza-
tion for GaMnSb layers d = 40 nm thick, Tg = 200°C (solid
line), and d = 140 nm thick, Tg = 440°C (dots).
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As distinct from magnetization, the behavior of the
Hall effect strongly depends on the concentration of
holes (on the deposition temperature T,). The magnetic
field dependences of the Hall resistance R,(B) obtained
a T =77 and 293 K are shown in Figs. 4a and 4b,
respectively, for samples 1-3 with hole concentrations
p =5 x10% cm= (curve 1), 1.5 x 10?%° cm (curve 2),
and 3 x 10'° cm3 (curve 3). The concentration of carri-
ers was determined from the dope of the R,(B) depen-
dence in fields B > 0.4-0.5 T. The linear character of
this dependence for sample 1 over the specified field
rangeisillustrated by the upper inset to Fig. 4b. On the
wholeg, it followsfrom Fig. 4 that the Hall effect in sam-
ples 1 and 2 is essentially anomalous in character over
the temperature range T = 77-300 K, whereas the Hall
effect in sample 3 with the lowest concentration of
holes (T, = 440°C) is ordinary. Indeed, the Hall resis-
tance of this samplelinearly dependson B over thefield
range 0-0.9 T, although its magneti zation reaches satu-
rationalready at B> 0.2 T (Fig. 3). A comparison of the
data on samples 1 and 2 presented in Fig. 4 shows that
the hysteresis character of the behavior of the anoma-
lous Hall effect al so becomes suppressed as the concen-
tration of holes decreases. For instance, for sample 1
(p=5 x 10?%° cmd), the coercive field reaches B, =
0.29T at T = 77 K and the anomalous Hall effect hys-
teresis manifests itself up to room temperature (B, =
6.5 mT, see the lower inset to Fig. 4b). At the same
time, for sample 2 (p=1.5x 10 cm3), B,=0.058 T at
T = 77 K and no anomalous Hall effect hysteresis is
observed at T = 300 K.

Asthe Hall resistivity is proportional to magnetiza-
tion M when the anomalous Hall effect predominates
(see (1)), it was suggested in [3, 15] that the procedure
developed by Belov and Arrott [21] (the construction of
the dependence of M2 on B/M) can be used to determine
the spontaneous Hall resistance R}, , which is propor-
tional to the spontaneous magnetization M, characteris-
tic of ferromagnetic system ordering. According
to[21], we must construct the dependence of Rﬁ' on
B/R, and extrapolate its linear portion to the intersec-

tion with the axis of ordinates to determine R}, for our
systems.

Examples of the dependences of Rﬁ on B/R, for

sample 1 at severa measurement temperatures are
shown in Fig. 5. At 267 and 293 K, the linear extrapo-

lation of RY, to B = 0 gives (R}, )? > 0, whereas linear
extrapolation at T= 335K givesanegative (R}, )2 value,

which means that there is no ferromagnetic ordering at
this temperature. The temperature dependences of the

spontaneous Hall resistance R}, obtained using the pro-
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Fig. 4. Applied magnetic field dependences of Hall resis-
tance for three GaMnSb/GaAs structure samples: (1) p =
5x 10 cm™, T, = 200°C, d = 40 nm; (2) p = 1.5 x
10%° em 3, T,=200°C, d = 70 nm; and (3) p = 3 x 101 cm >,
Ts=440°C, d = 140 nm. Curve numbers correspond to sam-

ple numbers. Measurement temperatures: (a) 77 K and
(b) 293 K. The upper inset to Fig. 4b contains the Ry(B)

dependence for sample 1 at B > 0.4 T, and the lower inset,
the Ry(B) dependence for sample1at-0.2<B<0.2T.

cedure suggested in [21] and the coercive field B, are
shownin Fig. 6 for sample 1. Theseresults are evidence
that the spontaneous Hall resistance in this sample per-

sists up to the temperature T¢ = 330 K.

The T¢ parameter of single-phase I1I-Mn-V mate-

rials coincides with the Curie temperature T [3, 6].
Thisvalue can be determined by analyzing the behavior
of the anomalous Hall effect in the paramagnetic tem-
perature region [3, 14]. Indeed, the anomalous Hall
effect constant is R, = cR,, [12], where c is a tempera-
ture-independent coefficient, if the anomalous Hall
effect is determined by the mechanism of skew scatter-
ing of carriers. For this reason, the ratio between the
Hall R, and longitudinal resistance R is, according
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Fig. 5. Dependence of RZH on B/Ry for sample 1 (p

5 x 10%° cm3). Measurement temperatures (1) 267, (2) 293,
and (3) 335 K.

to (1), Ry/R, = cM/d. It follows that, in the paramag-
netic region, the magnetic susceptibility is

X O [d(Ry/R)/B] 5 -,

and the Curie-Weiss law (1/x) O (T — T¢) can be used
to determine Tc.. It was shown in [3] for the exampl e of
GaMnAs that this approach gave the same T value as
that obtained by analyzing the anomal ous Hall effect in
the ferromagnetic region.

The Arrott dependences for sample 2 (p = 1.5 x
10%° cm~3) over the range of temperatures T> 160K are

RYLKOV et al.

shown in Fig. 7. The linear extrapolation of these
dependences gives their intersection with the origin at
T=180K; that is, we can expect, by analogy with sin-
gle-phase diluted magnetic semiconductors, that the
Curie temperature of this sample is T = 180 K, and,
starting with this temperature, the sample turns para-
magnetic. The dependence of the Hall resistance on the
longitudinal resistance obtained at B = 0.75 T is shown
in the inset to Fig. 7 in the double logarithmic coordi-
nates. The R, resistance of this sampleincreases asthe
temperature lowers. It follows from the data given in
the inset to Fig. 7 that the slope of the dependence of
InR, on InR,, in the region of low temperatures, where
magnetization should weakly depend on T, is close to
one; that is, the suggestion of the predominant role
played by the mechanism of skew scattering of carriers
inthe anomalous Hall effect isjustified for our systems.
Seemingly, the slope of the dependence of R,/R,, on B
in low fields, which is proportional to X, should then
increase as the temperature lowers. However, in reality,
this slope is virtually independent of the temperature
(see Fig. 8), which distinguishes our systems from sin-
gle-phase diluted magnetic semiconductors of the
GaMnAs type [3] (see the data presented in Fig. 3 and
borrowed from [3]).

More substantial differences become evident when
the special features of the anomalous Hall effect
described above are compared with an anal ogous effect
in GaMnSh layers prepared by molecular beam epitaxy
at various growth temperatures [8]. It was found in [8]
that Mn is amost fully contained in ferromagnetic
MnSb clustersin layers grown at high temperatures of
T, = 560°C. The concentration of holes in the GaSb

matrix is then 2.4 x 10'° cm~2 (in the sample with the

R, Q
B, Rii. 40
: : | | | 1.4 . IRy, [Q]I T T T T
300+ 3.5k '1=77K==
—1.2 T=
3.0 |07 3
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i 2.510.5F A
200 —40.8 8.2 8{3 8?4 '
20 I~ lnR.\'x [Q] n
150+ —40.6
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501 10.2 0.5 }
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Fig. 6. Measurement temperature dependences of the coer-
cive force of magnetization By, (the left curve) and sponta-

neous Hall resistance component RZ (the right curve) for
sample 1.
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Fig. 7. Dependence of R2H on B/Ry for sample2 (p = 1.5 x
10%° cm3). Measurement temperatures (1) 254, (2) 226,
(3) 180, and (4) 160 K; the relation between Ry and Ry is
shown in the inset to the double logarithmic coordinates.
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total content of Mn x = 0.013), and the ordinary compo-
nent predominatesin the Hall effect to T= 10 K. In our
systems, the Hall effect is only ordinary in sample 3
with a similar hole concentration (p = 3 x 10%° cmd),
which is substantially lower than that in samples 1
and 2. The layers obtained in [8] at T, = 250°C had the
structure of zinc blende, in which Mn atoms largely
replace Ga and play the role of acceptors. A well-
defined negative anomalous Hall effect was then
observed at low measurement temperatures (its sign
was opposite to that of the ordinary Hall effect). The

Belov—Arrott procedure was used in [8] to obtain T¢ =

25 K at the hole concentration p = 1.3 x 10%° cm=3 (for
the sample with the content of Mn x = 0.016). At the
same time, sample 2 with approximately the same con-

centration of holes (p = 1.5 x 10° cm™®) had T¢ =
180 K, and its anomalous Hall effect was positive.

Let us discuss the experimental data presented
above. Notethat, asin the samples studied in thiswork,
the sign of the anomalous Hall effect in continuous
MnSb films was positive [27]. It is reasonable to sug-
gest that the sign of the anomalous Hall effect remains
unchanged in passing from continuous to broken films.
Indeed, we recently showed for the example of Fe
nanoparticles in a SiO, matrix (the sign of the anoma
lous Hall effect in Fe was also positive) that the sign of
the anomalous Hall effect did not change in the passage
through the percolation threshold to tunnel conduction
conditions [28]. The invariability of the sign of the
anomalous Hall effect follows from the effective
medium model [29]. Note also that, at the growth tem-
peratures used (T, = 200-440°C), the films contained a
ferromagnetic phase in approximately equal concentra-
tions (see the magnetization data given in Fig. 3).

The observations described above lead us to con-
clude that the anomalous Hall effect in the GaMnSh
samplesis related to the presence of MnSb-type clus-
ters in them. The volume content of the ferromagnetic
phase recalculated to MnSb (Mg = 71 mT [6]) is about
0.07, whichisfar below thecritical value (0.6 [28]) cor-
responding to the metal—insulator percolation transi-
tion. The cardina difference between our abjects (the
predominance of the anomalous Hall effect at fairly
high temperatures) and samples with MnSb clusters[8]
is the much higher concentration of holes in the GaSb
matrix, which is related to the generation of acceptor-
type defects (antisite Gag, defects) during film growth
by the laser plasma deposition method. Thisisin agree-
ment with the observed strong dependence of the
behavior of the anomalous Hall effect on the concentra-
tion of carriers at a constant ferromagnetic phase con-
centration (see Fig. 4). We can therefore naturally sug-
gest that the interaction of carriers with ferromagnetic
clusters in semiconductors with magnetic impuritiesis
to a considerable extent determined by the presence of
Schottky barriers at the boundary between the clusters
and the semiconducting matrix (in our system, at the
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Fig. 8. Applied magnetic field dependences of the Ry/Ry

ratio for sample 2 at various measurement temperatures:
(1) 293, (2) 254, (3) 226, and (4) 180 K.

MnSh/GaSb boundary). Accordingly, this interaction
depends not only on the content of the ferromagnetic
phase but also on the concentration of holes, whose
increase decreases the width of the Schottky barriers.
Estimates show that the expected Schottky barrier

width must beabout 2 nmat an N, =p=10%° cm3 con-

centration of ionized acceptors. This estimate was
obtained on the assumption that the height of the Schot-
tky barriers ¢ was determined by the position of the
maximum of the density of surface states in the forbid-
den band of GaSh. In the majority of covalent semicon-
ductors, this maximum is shifted from the valence band
edge by one-third of the forbidden bandwidth Eg [30]
(Eg=0.7eV for GaSb [19]). At the sametime, for these
conditions, the effective depth |, of a decrease in the
wavefunction of heavy holes (m,, = 0.23my) under the
barrier can be estimated at 1.3-2.5 nm; that is, it can
even be larger than the Schottky barrier width at p =
10%° cmand ¢ = (1/3)E,. We can then naturally expect
strong tunnel exchange between matrix carriers and
ferromagnetic clusters.® (The estimates for l, were
obtained using the equation for the transparency of a
triangular barrier [30]; the lower estimate corresponds
to the mean electric field in the region of the spatial
charge of the Schottky layer, and the upper, to the max-
imum field.)

The temperature at which there is no anomalous
Hall effect hysteresisisinterpreted asthe blocking tem-
perature of ferromagnetic granulated alloys[20]; at this
temperature, the transition to the superparamagnetic

3 Note that the mean distance between ionized acceptors at p =
10%° cm3 is also about 2 nm. This leads us to conclude that the
above estimates are actually evidence of the absence of Schottky
barriers. The origin of the anomalous Hall effect isthen similar to
that in magnetic granulated alloys [20].

No. 4 2005



750

limit occurs. Estimates show that MnSb clusters of size
a. = 10 nm give blocking temperatures of order 200—
300 K observed as Curie temperatures in our experi-
ments (the estimates were obtained only taking into
account the magnetic anisotropy energy related to the
shape of the clusters [31]). Also note that the spread of
the clustersin shape and size substantially weakens the
temperature dependence of magnetization [32], which
probably explains the absence of temperature effectson
the paramagnetic behavior of the anomalous Hall effect
in low fields (the weak dependence x(T) O
[d(Ry/R)/dB]g =) Observed for sample 2 (Fig. 8).

At the same time, it should be noted that the inter-
pretation of the data on the anomalous Hall effect in
terms of isolated (noninteracting) MnSh clusters and
blocking temperatures encounters obvious difficulties.
Indeed, an increase in the growth temperature T,
accompanied by a decrease in the concentration of
holes should cause the enlargement of clusters. The
high coercive force val ues observed experimentally are
evidence that the clusters are single-domain; the coer-
cive field is then the higher the larger the size of the
clusters[33]. For thisreason, increasing T, should make
the hysteresis character of the behavior of the anoma-
lous Hall effect more manifest, which has not been
observed experimentally, although the contribution of
the ordinary component to the Hall effect increases
because of a decrease in the concentration of current
carriers. This leads us to suggest that the size of MnSb
clusters (and, accordingly, the distance between them)
is noticeably smaller than 10 nm and that these clusters
interact with each other. Thisinteraction is mediated by
carriers in the paramagnetic GasSbh:Mn matrix. This
results in an effective enlargement of the clusters and,
simultaneously, increases hole spin polarization, which
determines the anomalous Hall effect.

4. CONCLUSIONS

To summarize, we prepared epitaxial films of a
supersaturated solid solution of Mn in GaSh by laser
plasma deposition. The special feature of the layers
grown was the presence of dissolved Mn atomsand fer-
romagnetic Mn-containing inclusions. The layers also
contained acceptor-type defects controlled by the
growth temperature. These defects to a substantia
extent determined the concentration of holes in the
GaSb matrix, which increased as the growth tempera-
ture lowered and reached 5 x 10° cm3 at T, = 200°C.
Unlike single-phase GaMnSb systems, the films exhib-
ited a positive anomalous Hall effect. Its hysteresis
character strongly depended on the concentration of
holes and could be observed up to room temperatures.

We believe that the special features of the behavior
of the anomalous Hall effect in our systems are related
to the interaction of charge carriers with ferromagnetic
clusters, determined to a significant extent by the pres-
ence of Schottky barriers at the boundaries between the
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clusters and the semiconducting matrix. The role
played by these barriers becomes less important as the
concentration of holes increases. It can be thought that
the enigmatic absence of the anomalous Hall effect in
diluted magnetic semiconductors with ferromagnetic
inclusions (MnSb or MnAs clusters with high Curie
temperatures) discussed in the literature is most likely
related to the presence of Schottky barriers at the
boundaries between the clusters and semiconducting
matrices. At low carrier concentrations (10'° cm=), the
Schottky barriers are fairly wide and prevent the inter-
action of carriers with the ferromagnetic clusters.

Further studies are, however, necessary to elucidate
the nature of ferromagnetic inclusions in the synthe-
sized layers and the mechanism of their interaction
mediated by the semiconducting matrix, which con-
tains free carriers and magnetic ions in considerable
concentrations. Such studieswould certainly be of fun-
damental interest, especialy in light of therecently dis-
covered long-range character of exchange interactions
between thin ferromagnetic layers through a semicon-
ducting spacer [34].
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Abstract—The results of precision measurements of the resistivity, thermopower, volume, and thermal con-
ductivity of the compound SmTe under truly hydrostatic pressure conditions at room temperature are reported.
High quality stoichiometric and doped (n-type, n = 8 x 10 cm) single crystals are studied. It is found that
the valence transition occurs as consecutive stages of rearrangement of the electron subsystem and the crystal
lattice, which take place under different pressures. At theinitial stage of thetransition, metallization is observed,
which is accompanied by anomaliesin kinetic coefficients; the curve describing the pressure dependence of the
volume deviates from the curve corresponding to the initial semiconductor phase only dlightly. The next stage
isaccompanied by a substantial change in the sample volume (lattice collapse); in this pressure range, however,
the resistivity and thermopower become independent of pressure. At thefinal stage of the transition, the sample
compressibility decreases; the resistivity and thermopower become again functions of pressure; and a state
emerging in the sample in this case corresponds to the “golden” phase of SmSin all the properties being mea-

sured. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The phenomenon of intermediate valence, which is
inherent in rare-earth compounds and is manifested
when the energy of localized f states becomes close to
the energy of conducting d states, has been an object of
intense study for more than three decades. This phe-
nomenon was studied in ahuge number of publications
(see, for example, [1] for areview). The most striking
manifestations of the intermediate-valence state are an
intermediate value of the crystal lattice parameter and a
specific peculiarity in the quasi particle spectrum of car-
riers in the vicinity of the Fermi level in the form of
peakswith agiant density of states, which are separated
by a narrow (of a few millielectronvolts) gap. Samar-
ium chalcogenides (in particular, SmTe) are classical
objects for studying the intermediate-valence state.
Under normal conditions, these compounds are semi-
conductors in which the gap is formed by 4f ¢ states of
samarium ions with the conduction band formed by 5d
states of samarium ions. The intermediate-val ence state
in samarium chalcogenides can be induced by a high
pressure, leading to an increase in the 5d bandwidth
and, ultimately, to overlapping of the energies of the
4f 65d° and 4f 55d* configurations. Another widely used
method for obtaining the intermediate-valence state is
the substitution of other rare-earth metals (such as lan-
thanum, yttrium, and cerium) for samarium. The substi-
tution of a trivalent smaller-radius ion for the bivalent
samarium ion in the compound gives rise to an addi-

tional “chemical” pressure. This method has made it
possible to study intermediate-valence state using a
wide set of experimental methods without specific lim-
itations associated with high pressures. The given
method for obtaining such statesis not equivalent to the
application of a high pressure (which was repeatedly
noted in the literature; see, for example, [2]) since, in
addition to the chemical pressure, electrons are sup-
plied to the conduction band of the system. At early
stages of investigations, this noneguivalence led to
overestimation of the effects of the f—d hybridizationin
the theoretical description of intermediate-valence
state. The concepts of the exciton origin of thisstate are
also being developed [3-7].

At the same time, some aspects of the phenomenon
have not been interpreted adequately as yet. We are
talking about the interrelation between the rearrange-
ment of the electron spectrum under pressure and vol-
ume anomalies in the region of a transition with a
change in valence. These aspects are either ignored in
publications atogether, or it is assumed that both pro-
cesses occur synchronously since the effects associated
with exciton condensation (T = 70 K) should not play a
significant role at room temperature. Such a disregard
of this problem is apparently due to the fact that the
electron spectrum and the volume were studied on dif-
ferent samples using different high-pressure setups (the
choice was dictated by the relevant experimental meth-
ods) and the problem of establishing the correlation in

1063-7761/05/10004-0752$26.00 © 2005 Pleiades Publishing, Inc.
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the behavior of electron properties and the crystal lat-
tice in the transition region was not specially posed. In
our earlier publication [8], it was shown that transitions
in the electron subsystems of SmSe and SmTe are not
synchronous to the lattice collapse, but a satisfactory
interpretation of this effect was not proposed.

Here, we attempt at adetailed study of theinterrela-
tion between the rearrangement in the electron spec-
trum and the volume anomaly during a valence transi-
tion in SmTe. The study is based on precision measure-
ment of the volume and transport parameters
(resistivity, thermopower, and thermal conductivity) of
monocrystalline samples under the idea hydrostatic
conditions with a rigorously controlled pressure. The
use of the doping (generally speaking, self-doping, i.e.,
a slight deviation from stoichiometry) as an additional
parameter is aimed at studying the effect of conduction
electrons on the process of transition in the absence of
accompanying chemical pressure emerging in substi-
tuted solutions.

2. EXPERIMENT

High-pressure experiments were carried out on a
Toroid-type device [9] with a central hole diameter of
25 mm (the useful volume was approximately 1 cm?3).
The design of high-pressure apparatuses of this type
ensured reliable operation of an ampoule with aliquid
and 12-14 electric leads during an increase and
decrease in pressure and, hence, makes it possible to
implement various experimental techniques in a pres-
sure range up to 9 GPa under ideal hydrostatic condi-
tions. The design of the hydrostatic ampoule and its
content are determined by the purpose of a specific
experiment. By way of example, Fig. 1la shows an
ampoul e intended for high-temperature measurements.
A partition separates two compartments of the ampoule
filled with different liquids. The “hot” compartment
contains a heater with an assembly for measuring resis-
tance (Fig. 1b) or a sample with a strain gauge glued to
it (Fig. 1c). The“cold” compartment contains a manga:
nite pressure gauge. The experimental cell for room-
temperature experiments has a simple design without
the partition and the heater. The experimental tech-
niques were described in detail in our earlier publica-
tions[10, 11]. Since we compare here the properties of
the samples measured in different experiments, some
remarks concerning the precision of pressure mea
surements will be appropriate. As a rule, an error of
0.2-0.3 GPafor a pressure range of 10 GPais usualy
regarded as quite satisfactory. With such a precision of
pressure measurements, a difference of a few kilobars
in the positions of anomalies in various properties is
attributed by some authors to shear stresses and to
errors in pressure measurements. Comparison of the
results obtained using high-pressure apparatuses of dif-
ferent types is even more difficult. In this study, all
experimental results are obtained under hydrostatic
conditions (i.e., in the absence of shear stresses in the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

753

(a) 2

XA
\}1}?999&
L
e \e e
€ e\ e
CRR '
.
U}
€\ ¢
~

7
ORI
0
Y&
€
. « |e
«
o

SRR 5

Fig. 1. Hydrostatic cell for electric measurements at high
temperaturesin Toroid-type apparatuses. (a) Schematic dia-
gram: 1l—gasket (lithographic stone), 2—ampoule lid
(brass), 3—ampoule shell (Teflon), 4—thermal insulation
(mineral wool), 5—pressure gauge (manganin), 6—eads,
7—heater with a sample and athermocouple. (b) Assembly
for resistivity measurements. (c) Sample with a strain
gauge.

sample). Thereproducibility of the pressure scalein our
experiments was at alevel of 0.01 GPa (100 bar!). The
absolute error of pressure measurements (about 1%) is
determined by the accuracy of the reference scale (to
calibrate the manganite pressure gauges, we used resis-
tivity jumps during transitions in bismuth at 2.54 and
7.7 GPa).

We choose thermal conductivity asaproperty sensi-
tive to variations in the phonon subsystem. Serious dif-
ficulties in studying this kinetic coefficient are associ-
ated with the fact that it is difficult to measure this
parameter and even more difficult to interpret the
results. The only advantage of therma conductivity
measurementsin this study isthe possibility of carrying
out these measurements with our high-pressure setup
on the same sampl es and with the same pressure scale.
Since SmTe is a brittle material, the installment of a
heater “inside” the sample (standard cylindrical geom-
etry) appeared problematic. For our purposes, it was
sufficient to measure the thermal conductivity on qual-
itative level (tendenciesin variation, positions of anom-
alies, etc.); for thisreason, we chose arelatively simple
measuring technique.

Figure 2ashowsacell for thermal conductivity mea-
surements; Fig. 2b illustrates the design of the assem-
bly. To reduce the errors associated with heat fluxes
through the lateral surface of the sample, we used sam-
ples of a nearly cubic shape. The typica size of the
samplesin atest serieswaswithin 1.8-2.2 mm. Theend
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Fig. 2. Hydrogtatic cell for therma conductivity measure-
ments. (a) Schematic diagram: 1—pressure gauge, 2—hegter,
3—sample. (b) Schematic of the assembly: 4—copper
thermal screen, 5—insulation made of capacitor paper,
6—heater, 7—Wood alloy, 8—indium, 9—sample.

faces of sample 9 (Fig. 2b) were thoroughly tinned with
indium 8, into which a copper-constantan thermocou-
ple made of a 50-um wire were soldered. Heater 6 was
in the form of a 50-um constantan wire wound on a
strip of paper. Current and potential copper leads
(40-um) were soldered to the heater ends. The heater,
which has an insulation of capacitor paper 5, was sur-
rounded by copper screen 4 and the entire structure was
impregnated with epoxy adhesive. The sample was sol-
dered to the heater and the heat sink (ampoule lid) by
Wood alloy 7. To suppress convective flows in the lig-
uid, the entire assembly was coated with mineral wool
(not shown in the figure).

With such a design of the measuring cell, a consid-
erable part of the heat flux passes through the liquid
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transmitting pressure to the sample. The pressure
dependence of the heat flux through theliquid was mea-
sured in the same cell but without a sample. The heat
flux through conducting leads (which was measured
separately) amounted to a few percent of the total flux
and was regarded as independent of pressure in data
processing. At the beginning of the experiment (before
the liquid was poured into the ampoule), we measured
the initial thermal conductivity of the sample taking
into account the heat flux in the leads. Then the
ampoule was filled with the liquid and one more mea-
surement was made under zero pressure. The initial
heat flux through the liquid was determined as the dif-
ference between the results of these two measurements.
To find the thermal conductivity of the sample under
pressure, we must subtract the thermal conductivity of
the leads and that of the liquid (calculated from the
measured initial value and the known pressure depen-
dence) from the measured overall value. The thermal
conductivity coefficient was calculated with respect to
the initial sample size (the sample compressibility was
ignored). To reduce the influence of thermal effects in
the liquid (which, however, were taken into account in
data processing) during variation of pressure, measure-
ments were made for a comparatively large (5-7 K)
temperature difference at the end faces of the sample.
Without going further into the analysis of experimental
errors, it should be noted that, according to our esti-
mates, apossible systematic error inthermal conductiv-
ity measurements amounts approximately to 30% for
the maximal pressure. Asregardsthe authenticity of the
observed anomalies in the therma conductivity of
SmTe, it is beyond any doubt since the thermal conduc-
tivity of aliquid is a monotonic smooth curve without
any peculiarities.

We used 4 : 1 methanol-ethanol and 1 : 1 pentane-
petroleum ether mixtures as the pressure-transmitting
medium. The second mixture has a hydrostatic limit
approximately at 5 GPa, but is a good insulator. It was
used only for measurements on a stoichiometric SmTe
sample under pressures below 4 GPa. The mixture of
alcohols exhibits a noticeable electrical conductivity,
which affects the accuracy of resistivity and ther-
mopower measurements on the stoichiometric sample
under a pressure below 2.5 GPa because of shunting
and electrochemical effects (this information has been
removed from the graphs). In the intermediate pressure
range (2.5-4 GPa), the results of measurementsin var-
ious liquids coincide to a high degree of accuracy.

The samplesof SmTewere synthesized and certified
at the loffe Physicotechnical Institute, Russian Acad-
emy of Sciences. The initial samples were in the form
of coarse (about 5 mm in size) single crystals, from
which the samples of the required shape were cleaved
for measurements. A single crystal of doped SmTe was
obtained from the initial stoichiometric sample by
annealing in samarium vapor. The charge carrier con-
centration in this sampleswas n = 8 x 10'® cm accord-
ing to the results of Hall measurements. The contacts
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were soldered by rubbing molten indium into a fresh
chip on the sample surface.

3. RESULTS

Figure 3 shows the results of measurement of the
sample resistance. The resistivity was calculated using
the initial size of the samples; i.e., the compressibility
is disregarded (the correction for compressibility
amountsto about 7% under maximal pressure). In addi-
tion, an error of about 5% may appear in the calculated
values of p in determining the geometrical factor dueto
finite sizesof potential contactsto the sample. Theinset
shows the pressure dependence of activation energy E,
of conduction (thermal gap) for a stoichiometric sam-
ple. The curve was obtained from the slopes of the tem-
perature dependences of resistance Rin thetemperature
range 290-390 K. In the vicinity of 4 GPa, the temper-
ature range narrows to 290-350 K due to a noticeable
nonlinearity of the dependences. We assumed that the
resistance is given by

E
RO expgi—_r%,

where e is the electron charge and activation energy E,
is expressed in electronvolts. This gives

_ kd(InR)
2~ ed(UT)’

A conventional error in determining the thermal gap is
disregard of the variation of pressure under achangein
the sample temperature. The error becomes especialy
large when the sampleresistanceisindependent of tem-
perature (E, = 0) and depends only on pressure, but a
“fictitious gap” appears due to an increase in pressure
in the cell during heating. In this study, the thermal gap
is determined correctly from methodical point of view.
The current value of pressure P, was measured at each
point n of the temperature dependence of theresistance,
and the quantity

dInR(P, Ty)
dP

was calculated. TheInR(P, T,) dependencein thevicin-

ity of Py a room temperature T, was determined in the

same experiment. Then, for each point, we determined
the value of

INR(P,, Tg) = IN[R(Pg, To)] + (Pn—Po)

kINR(Py, To) = INR(P,, To)
e UT,— 1T,

Ea(Pn) =

and averaged the set of E,(P,) valueswith weight factor
(UTy—=UT)(UTy— UT, ), Where T, is the maximal
temperature in a given measurement.
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Fig. 3. Resistivity of SmTe samples at room temperature:
1—doped sample upon an increase (o) and adecrease (o) in
pressure; 2—stoichiometric sample (results of three experi-
ments with different liquid). The inset shows the activation
energy for the stoichiometric sample.

It should be noted that the pressure dependences of
resistivity obtained with increasing and decreasing
pressure (see Fig. 3) coincided to ahigh degree of accu-
racy. No hysteresis loops or irreversible behavior were
observed. In the low-pressure range (P < 2 GPa), the
conductivity of the stoichiometric sampleisensured by
an insignificant amount of p-type impurities and varies
insignificantly under pressure. For a pressure of
2-4 GPa, an intrinsic conductivity region is observed,
in which the logarithm of resistivity and the activation
energy linearly decrease with increasing pressure (the
conduction of the doped sampleis of the impurity type
in the entire range of pressure P < 4 GPa). It isimpor-
tant for subsequent analysis to note the following cir-
cumstance. Under a pressure of about 4 GPg, the value
of E, determined using the above technique vanishes. In
the case of aclassical semiconductor, the disappearance
of the gap should lead to a strong anomaly on the
logp(P) curve and to a pressure-independent resis-
tance (on the given scale of the graph) in the “metallic”
state. However, the experiment showsthat the logp(P)
curve exhibits only a small kink in the vicinity of
4 GPg; at ahigher pressure (up to 5.5 GPa), the value of
this quantity decreases exponentially with increasing
pressurein spite of the metallic temperature behavior of
resistivity. A similar anomaly is also observed for the
doped sample. In the pressure range 4.5-5.5 GPa, the
sampleresistivity decreases exponentially with increas-
ing pressure in spite of the metallic type of its tempera-
ture dependence. At a pressure of ~5.5 GPa, the resis-
tivity of both samplesattainsalevel of 2.45x 104 Q cm
[(2.35+0.1) x 10 Q cmwith allowance for the correc-
tion for compressibility] and varies only slightly upon a
further increase in pressure.
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Fig. 4. Thermopower of a doped (1) and a stoichiometric
(2) SmTe sample at room temperature upon an increase
(dark symbols) and a decrease (light symbols) in pressure.
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Fig. 5. Volume of adoped (@, ©) and astoichiometric (m, 0)
SmTe sample upon an increase (@, m) and a decrease (O, O)

in pressure. The solid line, V!'(P)/V, describesthefitting of
the data on V(P)/Vq for P < 4 GPa to the Murnaghan equa-
tion with fitting parameters K = 34.575 + 0.052, K' =
3.170 + 0.034, x2 = 0.0004.
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Fig. 6. Therma conductivity of a stoichiometric (1) and a
doped (2) SmTe sample at room temperature upon an
increase (dark symbols) and a decrease (light symbols) in
pressure.
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Figure 4 shows the dependences of thermopower S
on pressure P at room temperature. We al so note a non-
hysteretic behavior of the curves obtained upon an
increase and a decrease in pressure (insignificant irre-
versibility at P < 2 GPa is apparently associated with
the rearrangement of impurity states, however, these
details are beyond the scope of this study). The varia-
tions of thermopower and resistivity with pressure in
the semiconductor state (P < 4 GPa) occur in accor-
dance with the same scenario. For low pressures, the
valuesof p, S and E, are determined by the initial con-
centration of p-type impurities and depend on pressure
only slightly. With increasing pressure, the width of the
5d band increases, leading to a decrease in the forbid-
den gap and to anincrease in the intrinsic charge carrier
concentration. On account of the difference in the
mobilities of 4f holes and 5d electrons, transport phe-
nomenafor P > 2 GPa can be assumed to be determined
by conduction electrons alone. Their concentration
increases exponentially with pressure (E, decreaseslin-
early), which leads to a linear decrease in logp(P) .
The thermopower curve in the vicinity of 2 GPaexhib-
its “switching” from the impurity-type conduction to
the intrinsic electron type. Behind the minimum in the
vicinity of 2.7 GPa, the thermopower is determined
only by intrinsic charge carriers and decreases with
increasing concentration of these carriers (upon a
decreasein E,). In the vicinity of 4 GPa, the S(P) curve
has asmall kink due to “metallization,” after which the
thermopower continues to increase up to a pressure of
5.15 GPa. The corresponding anomaly in thermopower
is also observed for the doped sample in a pressure
range of 4.50-5.35 GPa.

Figure 5 shows the pressure dependences of the vol-
ume obtained from strain measurements upon an
increase and a decrease of pressure. Under a pressure
below 4 GPa, the V(P) dependence is of the semicon-
ductor type. Anomalous behavior of the volume begins
at P > 4 GPain the form of asmoothly increasing devi-
ation from the initial dependence. Figure 7c below
shows the difference between the measured volume V
of the samples and the extrapolated pressure depen-
dence V!'(P) of the volume for the semiconductor
phase. The most substantial change in the volume,
which is usually associated with the departure of an
electron from the 4f € level, is observed in the region of
5.5-7 GPa, athough the compressibility remains
anomalously high for higher pressures also.

It is appropriate to emphasize once again that the
main variation of the volume begins only a P =
5.5 GPa, whilethe main variations of the electron prop-
erties have finished at this pressure.

Figure 6 shows the curves describing the pressure
dependence of the thermal conductivity of SmTe sam-
ples. Asin the case of resistivity, the initial size of the
samples was used for calculating the specific value.
Allowance for compressibility increases the size of the
anomaly and slightly shifts the positions of the minima
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towards higher pressures;, however, this is immaterial
for the subsequent discussion. In spite of their low
accuracy (the systematic error is estimated at approxi-
mately 30% for 9 GPa), the thermal conductivity data
nevertheless make it possible to judge the heat conduc-
tion mechanism and anomaliesin the phonon spectrum.
For P < 4 GPa, the heat conduction of the stoichiomet-
ric sampleis of the phonon type; with increasing pres-
sure, the thermal conductivity increases due to harden-
ing of the phonon spectrum without a noticeable
change in anharmonism. In the doped sample, part of
the heat is transferred by conduction electrons. The
faster increase in the thermal conductivity under pres-
sure is due to the electron component and matches the
decrease in the resistance of the doped sample in this
pressure range (see Fig. 3). Metallization of the sample
in the vicinity of 4 GPa is unnoticeable on the thermal
conductivity curve. Asin the case of the V(P) depen-
dence, the smooth deviation of the thermal conductivity
from the initial dependence apparently increases, but
cannot be noticed in view of insufficient accuracy of
measurements (the opposite tendencies, viz., an
increase in the electron component and an enhance-
ment of scattering, probably compete in this case).

At this stage of the discussion, the following
remarks can be made.

(i) In the pressure range where a decrease in the
resistivity is observed, the thermal conductivity does
not increase (owing to the electron component), but
sharply decreases, the anomaly for the doped sample
being noticeably larger. (ii) The minimum of the ther-
mal conductivity corresponds to the maximum of com-
pressibility. (iii) In the entire pressure range (including
the region above 7 GPa), the heat conduction appar-
ently remains mainly of the phonon type.

Generally speaking, it is impossible at present to
unambiguously interpret the behavior of the thermal
conductivity in such a complicated case. The increase
in the thermal conductivity for P > 6 GPa can also be
explained by an increase in the electron component;
however, it is an order of magnitude smaller than the
thermal conductivity of normal metalseveninthiscase.

To give a visua idea on the mutual positions of
anomalies, al measured dependences are presented in
Fig. 7 on amagnified scale.

4. DISCUSSION

An attempt at constructing a consistent explanation
of experimental results (especially the above-men-
tioned separation of the “electron transition” and lattice
collapse, the decrease in thermal conductivity upon an
increase in eectrical conductivity, and strange metalli-
zation followed by a decrease in p(P) by almost two
orders of magnitude) requires the acceptance of some
model concepts on the mechanism of the valence tran-
sition. Unfortunately, it is impossible to directly com-
pare the experiment with the results of calculations
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based on various theoretical models at the present
stage. Even the calculation of resistivity (not to mention
thermopower and thermal conductivity) requirestaking
into account various scattering mechanisms based on
exact information on the phonon spectrum and the ele-
mentary excitation spectrum for charge carriers, which
cannot be interpreted in the framework of the one-elec-
tron approximation. In this sense, experimental data on
transport phenomena are “inconvenient” for estimating
the adequacy of theoretical models. On the other hand,
electric measurements can be carried out under ideal
hydrostatic conditions with a high degree of accuracy
and with asmall pressure step, which provides detailed
information on the interrelation between various stages
of the transition. This is difficult and even impossible
when “convenient” experimental methods are used
(such as obtaining the phonon spectrum using the
inelastic neutron scattering technique). With such an
approach, we can try to estimate the adequacy of athe-
oretical model not by comparing the specific values of
resistivity, thermopower, etc., with the results of calcu-
lations, but using a consistent qualitative description of
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all the stages of the transition in the framework of this
model.

Inour opinion, it isdifficult to explain the plateau on
the thermopower and resistivity curves in the maximal
compressibility region as well as other experimentally
observed peculiarities in the framework of the model
based on the concept of electron fluctuations between
the 4f5d° and 4f55d' configurations (promotion
model; see, for example, [1]). In this model, volume
variations are usually attributed to the variation of the
number of electrons in the conduction band. Upon a
smooth variation of the volume in the pressure range
5.5-7 GPa, the corresponding variations of the electron
kinetic coefficients must be observed. However, the
p(P) and SP) curves (seeFigs. 7aand 7b) display apla-
teau-type anomaly in this pressure range.

Exciton models based of the presence of “shallow”
(1020 meV) exciton levels also fail to explain the
experimental results since such models do not predict
localized electron states in the high-temperature range
(300 K = 25 meV).

In the case of the intermediate-valence state, exci-
tons with a structure strongly depending on the rear-
rangement of the phonon spectrum may exist. In the
exciton models[4, 5, 7], avalence transition (a smooth
transition asin SmSe, SmTe or an abrupt transition as
in SmS) occursasaresult of softening of the fully sym-
metric exciton mode. This vibration (“breathing”
mode) can be described as a radial displacement of
anions closest to a given samarium cation. This process
simultaneously involves the electron and phonon sub-
systems, which leads to a strong (resonant) electron—
phonon interaction resulting in aradical rearrangement
of the electron and phonon spectrafor acertain relation
between the energy parameters. In such avibration, an
electron excited from the 4f°® state does not reach the
conduction band, but is localized on an orbital con-
structed from the 5d states of the nearest cations with
the preserved symmetry of the ground state. The effec-
tive potential relief of atomic vibrations acquires sev-
eral minima corresponding to severa vibrationa
modes with different equilibrium positions and fre-
guencies. Subsequent analysis of our experimental data
requires allowance for an additional hard resonance
mode in the high-temperature range, which was
explained in [7]. In our opinion, our experimental
results permit a consistent description based on the
exciton model including two types of exciton excita-
tions, viz., ordinary “shallow” excitons (playing a sig-
nificant role at the beginning and at the end of the pro-
cess) and “hard” excitons corresponding to the high-
temperature resonance vibrational mode and determin-
ing the behavior of the system in the maximal anhar-
monism (maximal compressibility) regionin apressure
range of 5.5-7 GPa.

Returning to the discussion of the results, we note

that all experimental dependences obtained for the
doped sample for P > 4 GPavirtually repeat the curves
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for the stoichiometric sample with a slight (about
0.2 GPa) shift towards high pressures. In formulating
the problem, we assumed that the transition is “con-
trolled” by the carrier concentration in the conduction
band. The observed effect turned out to be opposite. It
was found that excess electronsin the conduction band
hamper the formation of exciton instability probably
due to screening effects (although other explanations
can also exist). An important result isthat the transition
is determined by the pressure dependence of the forbid-
den gap Eg, but it is exciton instability and not the tran-
sition of electrons to the conduction band that plays a
decisiverole.

Let us now consider al the “stages’ of this transi-
tion, beginning with a strange “metallic’ state formed
under a pressure of 4 GPa. We can estimate the differ-
ence between the values of E, (the gap between the 4f
and 5d states obtained from optical measurements) and
E, (obtained from the temperature dependence of resis-
tivity). According to Bucher et al. [12], E;= 0.63 eV at
zero pressure; with increasing pressure, the value of E
decreases at arate dEy/dP = —120 meV/GPa (extrapola-
tion to zero gives 5.2 GPa). According to our results,
dE,/dP = —145 meV/GPa, E, = 0 for P = 3.97 GPg;
extrapolation to zero pressure gives E,(0) = 575 meV;
i.e., Eg—E, = (55-150) meV. Thus, the metal-type con-
ductionfor P > 4 GPais apparently associated with cer-
tain conducting states lying below the bottom of the 5d
conduction band. If we assume that these states corre-
spond to ionization of low-energy excitons, their concen-
tration must be determined by theratio E/A, (Where Ay,
isthe exciton energy equal approximately to 30 meV (in
accordance with the estimate aw/A, = 0.15 [5]) or
20 meV (the energy of the f—f transition [13])),

N0 exp(—Ey/Aey).

If we assume that E; = 0 for P = 5.5 GPa (second kink
on the p(P) curve), arough estimate gives

Inp(4 GPa) — Inp(5.5 GPa)
= 2.3[logp(4 GPa) — logp(5.5 GPa)] = 3.7.

Then E4(4 GPa) = 3.7A, = (70-110) meV, whichisin
satisfactory agreement with the above estimate of the
difference E; — E,. The (V — V")(P) dependence
depicted in Fig. 7c displays a smoothly increasing
defect of volume in this region, which isin qualitative
agreement with the proposed interpretation. The anom-
aly of thermal conductivity A (the peak near 4.5 GPa
followed by adecreaseinitsvalue; seeFig. 7d) can also
be explained by an increase in the number of fluctuating
atoms. It was noted above that the heat conduction of
the samplesis of the phonon type with an insignificant
(10-20%) electron contribution for the doped sample.
Like the anomaly on the V(P) curve, the thermal con-
ductivity anomaly can be interpreted as a smoothly
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increasing deviation from thelinear dependence, begin-
ning a P = 4 GPga; in this case, both the phonon—
phonon and the electron—phonon scattering increases
(theanomaly for the doped sampleis noticeably larger).
In this pressure range, the behavior of the kinetic coef-
ficients can be explained equally well in the framework
of hybridization (promotion) models since it is appar-
ently impossible to separate shallow excitons from
variations of the electron spectrum dueto hybridization
at T = 300 K. The above description of the 4-5.5 GPa
region should be treated not as a proof of the aptitude
of the exciton model, but as a possibility of describing
the experimental data using this model also.

The next stage of the transition corresponds to the
pressure range 5.5-7 GPa, in which the V(P) depen-
dence changes substantially (anomalous compressibil-
ity and lattice collapse are observed), while the p(P)
and S(P) curves acquire aplateau (a plateau on the S(P)
curve in the anomalous compressibility region was
detected earlier in [8]). In fact, in the pressure rangein
which the major part of electrons|eave the 4f 6 state, the
density of states at the Fermi level and its derivative
remain unchanged (the version of matched variation of
the density of states and scattering from phonons is
improbable since the thermal conductivity curves do
not display the corresponding anomaly). In the frame-
work of the exciton model [7], this effect can be
explained by the fact that the maximal compressibility
region corresponds to the maximal anharmonism in
atomic vibrations. As a result of enhanced anharmon-
ism, aresonant vibration is induced, which is simulta-
neously alattice vibration and a charge density oscilla-
tion (hard exciton). Lattice collapse corresponds to a
changein the position of the potential energy minimum
of this vibrational mode, but the number of free charge
carriers remains unchanged in this case (in other words,
the electrons leaving the f level are involved in this
vibrational process and do not make a substantial con-
tribution to transport phenomena).

The final stage of the transition (P > 7 GPa) has no
clearly defined boundaries. Since the term “valence
transition” does not define the final state of the system,
the question of “completion” of thetransition should be
treated as a matter of terminology. In the pressure range
above 7 GPg, the resistivity begins decreasing, the ther-
mopower increases, tending to the range of positive val-
ues, while the compressibility gradually decreases,
remaining anomalously high. On quantitative and qual-
itative levels, these characteristics correspond to a sta-
ble intermediate-val ence state analogous to the golden
phase of SmS, which has been studied in detail.
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It should be noted in conclusion that the proposed
description of the transition in SmTe based on the exci-
ton model of the intermediate-val ence state should not
be treated as the best possible and unigue. Our main
task was rather to formulate the problems concerning
the interrelation of the stages in the valence transition
and to obtain experimental data that can be useful for
the development of theoretical concepts concerning the
intermediate-val ence state.
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Abstract—The optical Raman and photoluminescence (PL) spectra of the high-pressure hydrogenated
fullerene Cgq are studied at normal conditions and at high pressure. The Raman spectrum of the most stable
hydrofullerene CgoHazg contains alarge number of peaks related to various isomers of this molecule. Compari-
son of the experimental datawith the resultsof cal culations showsthat the most abundant isomers have the sym-
metries S;, T, and D3y. The Raman spectrum of deuterofullerene CgD4g is Similar to that of CgyHsgg, but the
frequencies of the C—H stretching and bending modes are shifted due to the isotopic effect. The PL spectrum
of hydrofullerene CgoH4g is shifted to higher energies by approximately 1 eV with respect to that of pristine
Ceo- The effect of hydrostatic pressure on the Raman and PL spectra of CggHsg has been investigated up to
12 GPa. The pressure dependence of the phonon frequencies exhibits peculiarities at approximately 0.6 and 6 GPa.
The changes observed at approximately 0.6 GPa are probably related to a phase transition from the initial ori-
entationally disordered body-centered cubic structure to an orientationally ordered structure. The peculiarity at
approximately 6 GPa may be related to a pressure-driven enhancement of the C—H interaction between the
hydrogen and carbon atoms bel onging to neighboring molecular cages. The pressure-induced shift of the pho-
toluminescence spectrum of CgyHgg is very small up to 6 GPa, and a negative pressure shift was observed at
higher pressure. All the observed pressure effects are reversible with pressure. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Hydrofullerenes have attracted considerable inter-
est, particularly in relation to their potential use as
hydrogen storage materials [1]. The existence of
severa hydrofullerenes has been predicted by theoreti-
cal caculations and some of them have been synthe-
sized [2-5]. The most stable member, CgH4g, is the
hydrogenated derivative of the pristine Cz, molecule,
which can be prepared using either the high-pressure
hydrogenation [6] or the hydrogen-atom transfer to Cq,
from other reagents in solution [7]. Hydrofullerene
samples prepared by the use of both methods are usu-
ally rather nonuniform and may contain hydrides with
various mass weights, as well as a small amount of
reagents. Characterization of the hydrogenation reac-
tion products is therefore of great importance and vari-
ous methods such as electron, X-ray, and neutron dif-
fraction; nuclear magnetic resonance; infrared spec-
troscopy; and laser desorption mass spectrometry have
been used for this purpose [4-6, 8-10].

The CgyH3s molecule can exist in a great number of
isomeric forms, but only a small number of them are

T This article was submitted by the authors in English.

stable[11]. Theisomeric form with the highest symme-
try, T,,, has 12 double bonds, arranged as far apart as
possible on its surface, while the form having the dou-
ble bonds in four isolated aromatic six-member rings
lacking hydrogen atoms and located at the corners of a
tetrahedron has a T-symmetry structure. Between these
two extremes are the isomers with the symmetry Dy
and S;, which have two six-member rings at the three-
fold axis poles of the molecule, with the other six dou-
ble bonds isolated in six pentagons. The presence of
various isomers in the CgHss specimens most likely
depends on the preparation method and on the kinetic
parameters controlling the hydrogen addition reaction.
Thus, CgHgs prepared by transfer hydrogenation of Cg,
contains a mixture of the principal isomers D5y and S;
while CzH4s prepared by zinc reduction of Cg, in aro-
matic solvents contains the S; isomer as the most abun-
dant [12-14]. Concerning the solid-state phase of
CeoHss, Hall et al. [9] have suggested the body-centered
cubic structure (BCC) with the cell parameter 11.785 +
0.015 A for the packing of the molecules in the crys-
talline state. Furthermore, they suppose, at least for the
Dy isomer, that the BCC crystal structure transforms
into a body-centered tetragonal one at low temperatures.

1063-7761/05/10004-0760$26.00 © 2005 Pleiades Publishing, Inc.
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The optical characterization of hydrofullerenesis of
great importance and Raman scattering was success-
fully used for studying the vibrational spectrum
of CqoHss prepared by the transfer hydrogenation
method [12]. The incorporation of 36 hydrogen atoms
in the Cg, cage lowers the molecular symmetry and
activates Raman scattering from a variety of initially
forbidden phonon modes. In addition, the appearance
of the C—H stretching and bending modes and those
related to various isomers of CgyHgg results in a very
rich Raman spectrum [12]. The comparison of the
phonon frequenciesfor five principal isomers of CgyHgg
obtained by molecular dynamics calculations with the
experimentally observed phonon frequencies hasled to
the conclusion that the material prepared by thetransfer
hydrogenation method mainly contains two isomers,
those with the symmetries D4y and S [12].

In this paper, we study the optical Raman and PL
spectra of the hydro- and deuterofullerene CgH4s and
CeoDs3s, respectively, prepared by high-pressure hydro-
genation. The aim wasto identify the phonon and elec-
tron energy spectra of the high-pressure hydrogenated
fullerene, to clarify the isomer composition and homo-
geneity of samples, and to study the isotopic effectsin
the vibrational spectra. The Raman spectra of the high-
pressure hydrogenated samples were compared with
those obtained by transfer hydrogenation and with the
molecular dynamics calculation data [12]. The Raman
data show the presence of all principal isomers in the
high-pressure hydrogenated fullerenes and a large iso-
topic shift for the C—H stretching mode, whereas the
shift of the modes related to the fullerene molecular
cage is negligible. We have also studied the pressure
behavior of the Raman and PL spectra of CgH4g at
pressure up to 12 GPain order to obtain information
about the structural and chemical stability of the mate-
rial a high pressure. The incorporation of hydrogen in
the fullerene molecular cage may play an important
rolein the stability of the material, in particular, it may
prevent the pressure-induced polymerization that is
typical of pristine Cg, under high-pressure and high-
temperature treatment [15]. The incorporation of
hydrogen may also affect the pressure-induced phase
transition of the rotational disorder—order nature analo-
gously to the case of pristine Cg,. We have studied the
pressure behavior of phonon frequencies and the pres-
sure-induced shift of electronic bands. The pressure
coefficients of the phonon modes are positive and dem-
onstrate singularities at approximately 0.6 and 6 GPa.
The pressure shift of the luminescence spectrum is
unusually small and increases somehow at P = 6 GPa.
All the observed features are reversible with pressure,
and CgH44 is stable in the pressure region investigated.

2. EXPERIMENTAL

The commercial material, Cq, 0f 99.99% purity, was
sublimed twice in vacuum better than 10° Torr at
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800 K and was then compacted into pellets 12 mm in
diameter and 1 mm in thickness. Each pellet was placed
into a copper capsule, covered with adisc of 0.01-mm
thick Pd foil, and then annealed in vacuum at 620 K for
2 h to expel desorbed gases. The remaining volume in
the capsule was filled with AIH; or AlD; for hydroge-
nation or deuteration, respectively, and tightly plugged
with a copper lid using gallium as a solder. This encap-
sulation procedure effectively prevents hydrogen or
deuterium losses during subsequent treatment, because
both Cu and Ga are largely impermeabl e to hydrogen.

The assembled capsules were pressurized to
3.0 GPa in atoroid-type high-pressure cell and main-
tained at 650 + 10 K or 700 + 10 K for atime of 24 or
48 h. AlH; decomposes above 400 K [16], producing
hydrogen that reacts with the fullerite after permeating
the Pd foil, which isolates the fullerite from chemically
active Al. The amount of the hydrogen gas produced
inside the capsule corresponds to a particle ratio of
H/Cg, = 90. Therefore, the available hydrogen quantity
is always in excess of the number of Cg, particles dur-
ing the hydrogenation experiments. The hydrogenation
procedure was repeated for asecond run, with the prod-
uct of thefirst run taken as the starting material for the
second run. Preliminary mass-spectrometry data show
that at least 95% of the material in the capsule is
hydrofullerene CgH4g, While the remaining 5% con-
tainspartially hydrogenated fullerenes. The X-ray anal-
ysis of the obtained material shows that it hasthe BCC
structure, typical of CgHss [9], with alattice parameter
of 11.83A.

For optical measurements, visually uniform, color-
less, and transparent specimens were selected. Raman
spectra were recorded using a DILOR XY-500 triple
monochromator equipped with a CCD liquid-nitrogen-
cooled detector system. The spectra were taken in the
backscattering geometry by the use of the micro-
Raman system comprising an OLY MPUS microscope
equipped with an MSPlan100 objective with magnifi-
cation 100 and gspatial resolution approximately
1.7 um. The spectral width of the system was approxi-
mately 2.0 cm. The Raman frequencies were cali-
brated by the use of the low-pressure Ne lamp with the
accuracy better than 0.2 cm™. To avoid interference
from luminescence, the sample was excited by the
676.4 nm line of the Kr* laser, whose energy is below
the fundamental absorption gap of the material. The
laser power was varied from 5 to 10 mW, measured
directly before the sample, to avoid the destruction of
the samples by laser heating. The phonon frequencies
were obtained by fitting Gaussian line shapes to the
experimental Raman spectra. The PL spectra were
recorded using a single JOBIN YVON THR-1000
monochromator equipped with a CCD liquid-nitrogen-
cooled detector system. The 457.9 nm line of an Ar*
laser was used for excitation of the luminescence spec-
tra. Thelaser power was about 2 mW measured directly
in front of the high-pressure cell; the spectral width of
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Fig. 1. Raman spectra of the CggHsg (8) and CgoD3g (b) samples taken at ambient conditions in the energy range 50-3100 cmi™.
The samples were prepared by means of high-pressure hydrogenation at P = 3.0 GPaand T = 700 K over areaction time of about

24 h.

the system was approximately 1.0 cm. The measure-
ments at high pressure were carried out using the dia-
mond anvil cell (DAC) of the Mao—Bell type [17].
A 4 : 1 methanol—ethanol mixture was used as a pres-
sure-transmitting medium, and the ruby fluorescence
technique was used for pressure calibration [18]. The
samples used for the high-pressure measurements had
typical dimensions of approximately 100 pum.

3. RESULTS AND DISCUSSION

3.1. Isomeric Composition
and Isotopic Effect in CggH36

The Raman spectra of CgyHas and CgyD4g taken in

the frequency region 50-3150 cm at ambient condi-
tions are shown in Fig. 1a and Fig. 1b, respectively.
Both samples were synthesized at the pressure 3.0 GPa,
temperature 700 K and reaction time approximately
24 hours. The spectrum in Fig. 1a consists of 126 sharp
peaks with the lowest mode located at 86 cmr™ and the
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highest at 2912 cm. For comparison, the Raman spec-
trum of pristine Cg, contains only ten active modes,
Hg(1) — Hy(8) and Ay(1) — A(2), with frequencies
located in the region 273-1726 cm™ [19]. The spec-
trumin Fig. lawastaken at the best site of the best sam-
ple, selected from the content of the ampule by prelim-
inary micro-Raman probing as having the lowest back-
ground and the clearest Raman signal. A number of
rather good samples, taken from the same ampule,
show less intense Raman peaks with respect to the rel-
atively large background. The higher background is
probably aresult of ahigher concentration of structural
defects and impuritiesin the sample under study. These
impurities may be microscopic amounts of partially
hydrogenated fullerenes, which fluoresce under Kr-
laser excitation in the spectral region under investiga-
tion. The majority of the sel ected samplesfrom the con-
tent of the ampule show a Raman signal similar to that
of the best one, but there are also many samples that
give a large background obscuring the structure of the
Raman spectrum. The samples obtained by high-pres-
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sure hydrogenation are rather nonuniform, and great
care should be exercised in sample selection. Using the
micro-Raman probe, we checked a number of samples
from different ampulesin order to examinetheir quality
in relation to the hydrogenation parameters, namely,
temperature and reaction time. The results show that
the sample quality does not depend significantly on the
reaction time; on the contrary, temperature drastically
affects their optical quality. Samples hydrogenated at
700 K show a better optical quality, and their Raman
spectra show a rich structure, well-resolved intense
peaks, and relatively small background.

The Raman spectrum of CgH4 differs drastically
from that of pristine Cg. The most important differ-
encesin their spectraare asfollows:

(i) The number of the Raman-active modes incre-
ases dramaticaly.

(ii) The low-energy radia modes (200-600 cm2)
exhibit a considerable intensity enhancement with
respect to the high-energy tangential modes (1400—
1700 cm™Y). In addition, anumber of new modes appear
that are related to the C—H bending (1150-1350 cm2)
and stretching (2800-3000 cm™2) vibrations.

The vibrational data related to the Raman spectrum
of CgoHas @re summarized in Table 1. Thefirst three col-
umns of Table 1 contain the data related to the number,
position, and intensity of the Raman peaks. The next
two columns contain experimental results related to the
positions and intensities of the Raman peaks of CgyHgg
reported in previous studies[12, 13]. Thelast three col-
umns of Table 1 are related to the frequency, Raman
cross section, and symmetry of the Raman-active
modes of various isomers of the CgHgs molecule
according to calculations [12] using the modified
MNDO method. The comparison of the present experi-
mental datawith thosein [12, 13] showsthat the Raman
spectrum of high-pressure hydrogenated CgzHss IS
more than five times richer than that of transfer hydro-
genated CgHss. The majority of the experimentally
observed Raman peaks (86 out of atotal of 126 peaks)
are very close, to an accuracy of approximately 5 cm=,
to the calculated frequencies and cross sections of the
Raman-active modes (their total number is approxi-
mately 400) [12]. The peaks that are close to the calcu-
lated frequencies are assigned to all principal isomers,
but a mgjority of them belong to isomers with the sym-
metries S;, T, and D4,. We emphasize that the complex-
ity of the calculated vibrational spectrum, the large
number of isomers, and the accuracy of the molecular
dynamics calculations might sometimes result in an
accidental agreement (disagreement) of the experimen-
tal and calculated data. The peaks that are rather far
from the calculated Raman frequencies belong mainly
to the low-energy radial modes of the fullerene cage
and are probably related to the presence of other iso-
mers of CgyHsg in the samples under study.
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The Raman spectrum of deuterofullerene CyD4g
taken at ambient conditions, isshown in Fig. 1b. A first
glance at the Raman spectra of hydro- and deuterof-
ullereneindicatesthat they have several similarities, but
an important difference is also apparent. The spectrum
islessrich in structure than that of CgHsg. It contains
about 80 peaks, probably dueto adifferent isomer com-
position of CyD4 samples. The positions of the C-D
stretching modes are shifted towards lower energies
with respect to the C-H stretching modes. The related
Raman peaks are located in the frequency regions
2113-2209 cm™ and 2827-2912 cm for CgD4s and
CeoHag, respectively. A similar shift isalso observed for
the C-D bending modes, which are located in the fre-
quency regions 800-1200 cm™ and 1150-1350 cm
for CgDgg and CgoHsg, respectively. We note that the
Raman spectrum of Cg D4 also contains severa very
weak peaks near 2900 cmL, which are coincident with
C—H stretching modes of CgyHgs. Thisis related to the
isotopic contamination of the samples under study,
which contain a small amount of CgzH4 caused by ini-
tial isotopic contamination of the deuterium provider
(AlD3) used for high-pressure synthesis.

The shift of the C—H stretching and bending modes
is related to the isotopic effect on the vibrational fre-
guencies caused by substitution of hydrogen by deute-
rium. Theisotopic shift of the stretching mode frequen-
cies can be estimated from the formula

QH |:MQD|:|1/2
QDDDVIQHD ’ @)

where Q,, and Q,, are the respective frequencies of the
CeoHsg and CgyD 45 molecules and Mg, and Mg are the
reduced masses involved in the vibrations. The large
difference between the masses of the hydrogen atom
and the Cg, molecule indicates that the C—H stretching
mode is mainly related to displacements of the hydro-
gen atom along the bond direction, whereas the Cqg,
molecule remains practically stationary. Thus, the iso-
topic shift of the C—H stretching mode is expected to be
close to the square root of the deuterium-to-hydrogen
mass ratio. The same is also expected for the isotopic
shift of the C-H bending mode. The frequencies and
isotopic shifts of a number of intense modes related to
the full erene cage vibrations and to the C—H stretching
vibrations are tabulated in Table 2. The largest isotopic
shifts [Q,,/Qp]? were observed for the C—H stretching
modes that vary in the region 1.73-1.79. These values
are close to the mass ratio of deuterium and hydrogen,
Mp/My = 2. The isotopic shift for the modes related to
the fullerene cage vibrationsis small with respect to the
C—H stretching modes and varies within 1-1.032. The
difference in the isotopic shifts between the stretching
modes and the fullerene cage modes is related to the
fact that the hydrogen atoms essentially do not partici-
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Table 1. Freguencies and intensities of the observed and calculated Raman peaks in CggHzg

MELETOV, KOUROUKLIS

Experiment Theory
present work ref. [12] ref. [13] ref. [12]
no. cmt intensity* cmt cm cm?t ot isomer

1 86.0 VW 85

2 1011 w 128

3 165.7 m 136

4 176.6 VS 175 180 176 7 T

5 192.3 s 194 7 Day

6 196.9 VS 198 14 Th

7 206.6 VS 207 206 21 T

8 212.4 VS 211 214 22 Th

9 230.6 s 229 18 Day
10 239.3 s 239
11 245.3 m
12 253.6 m
13 261.3 m 264
14 291.0 m
15 298.7 S 294 11 T
16 305.5 S
17 311.8 m 313
18 317.8 S
19 326.4 m 325 3 Daq
20 339.6 s 341 14 Daq
21 347.2 s 346 8 S
22 360.3 S 365 10 S
23 366.9 s 367 10 Day(c—K)
24 381.8 m 379 1 T
25 396.3 s 395 395 395 7 Dy
26 404.3 m 404 2 Day
27 415.3 m 415 7 Day(c—K)
28 423.0 m 422 9 S
29 429.4 m 427 4 Day
30 443.0 S 444 442 3 T
31 4438.4 VS 448
32 458.6 S 458 460 17 S
33 465.6 s 465 1 Day
34 473.2 S 473 1 T
35 484.4 VS 484 484 488 44 T
36 491.3 VS 496 14 S
37 501.9 S
38 509.9 s 509 31 S
39 522.0 m 522 1 T
40 531.0 m
41 537.0 m
42 5414 m 545 1 T
43 549.9 S
44 554.9 m
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Table 1. (Contd.)
Experiment Theory
present work ref. [12] ref. [13] ref. [12]

no. cm? intensity* cmt cm? cm? ot isomer
45 565.0 s 569 14 T
46 573.1 m 570 11 Dag(c—K)
47 577.6 m 579 30 S
48 580.6 m 581 7 S
49 585.7 s 586 6 Dy
50 590.7 m
51 596.3 m 597 52 D34(c—K)
52 622.6 w
53 632.4 w 634 1 D34(c—K)
54 642.5 w 647 2 S
55 653.3 w 653 3 T
56 657.7 w
57 662.0 w 663 1 Dy
58 669.5 w 671 4 S
59 685.0 m
60 696.3 w 699 11 Dy
61 711.6 m
62 720.6 m 719 4 T
63 731.6 m 731 36 Dy
64 744.5 w
65 752.3 w 753
66 761.1 w
67 774.2 w
68 781.3 w
69 791.3 m 796 2 Th
70 795.9 m 796 4 Dy
71 817.2 w
72 8324 w 828 1 T
73 849.5 m 852 7 S
74 861.7 w 860 2 T
75 869.2 m
76 880.4 m 875 2 T
77 922.2 w 921 3 Th
78 940.2 w 939 1 T
79 951.1 w 948 1 S
80 960.8 w 959 5 T,
81 972.3 w 972 1 T
82 985.6 vw
83 991.4 w 988 5 T,
84 1015.1 w 1015 1008 1018 2 $
85 1032.4 m 1039 1039
86 1054.1 w 1053 4 $
87 1064.0 m
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Table 1. (Contd.)

MELETOV, KOUROUKLIS

Experiment Theory
present work ref. [12] ref. [13] ref. [12]
no. cmt intensity* cm? cm cm? ot isomer
88 1073.2 w 1073 2 T,
89 1088.6 w 1087 1 $
90 1125.2 w 1126 1 T
91 1154.0 m 1154 1154 16 Dsg(c—K)
92 1173.9 m 1172 18 T
93 1181.3 m 1182 12 T
94 1189.7 m 1186 1191 2 Dy
95 1207.7 m 1209 9 Day
96 1212.6 S 1212 1213 1213 44 T
97 1218.7 S 1217 23 S
98 1227.2 m 1228 5 T
99 1231.8 m 1232 1 S
100 1240.3 S 1238 36 T
101 1250.3 S 1252 22 Dsy(c—K)
102 1256.9 m 1258 19 S
103 1263.2 S 1262 1263 42 Day
104 1274.0 S 1276 1274 74 Dy
105 1283.8 m 1284 12 Dsq(c—K)
106 1306.1 w 1304 2 $
107 1314.4 m 1313 29 T
108 1319.6 S 1318 22 Ds4(c—K)
109 1328.3 m 1326 33 $
110 1334.9 S 1330 27 S
111 1348.3 m
112 1353.2 S
113 1362.9 S 1363 9 Dy
114 1369.4 m 1386 1370 11 S
115 1430.6 m 1402 1429 5 Dy
116 1457.0 S 1462 1462
117 1496.6 w 1508 1497
118 1653.8 w
119 1674.8 m 1671 401 S
120 1714.0 S 1714 1712 211 D34(c—K)
121 1724.5 w
122 1739.4 S 1736 1739 333 Ds4(c—K)
123 2826.8 S 2830 2829
124 2852.5 S 2853 2852 2856 55 Dy
125 29119 S 2913 2911 2911 180 Dy
126 2931.2 m 8
Note: D34(c—K) isthe lowest energy isomer with D34 symmetry [13].
* |Intensity characterization: very weak (vw), weak (w), medium (m), strong (s), and very strong (vs).
T Raman cross section (A%amu) [12].
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(a) Upstroke CooHs6 (b) Downstroke
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Fig. 2. Raman spectra of CgoH3g recorded at room temperature during increasing (a) and decreasing (b) pressure cycle in the fre-
quency range 100-1800 cm. The frequency range containing the strong diamond Raman line is excluded.

pate in the cage vibrations. These results are very close
to those abtained by means of surface-enhanced Raman
scattering of hydrogen and deuterium chemisorbed on
a diamond (100) surface [21]. The frequencies of the
C—H and C-D stretching modesin [21] are 2830, 2865,
2928 cmt and 2102, 2165, 2195 cm 2, respectively, and
the isotopic shift varies within 1.32-1.35. Thus, the
parameters of the C—H stretching modes of hydrof-
ullerene could be similar to those of hydrogen, bonded
with carbon atoms on the diamond surface. This simi-
larity is related to the large difference between the
masses of the hydrogen atom and the fullerene mole-
cule or the carbon network in diamond. In addition, the
C—H bonding in both cases takes place with sp? coordi-
nated carbon atoms.

3.2. Pressure Behavior of Raman Spectra
and Stability of CgyHsg at High Pressure

The Raman spectra of CgHss recorded in the
regions 100-800 cm™ and 1400-1750 cm™ at room
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temperature and high pressure are shown in Fig. 2 for
increasing (a) and decreasing (b) pressure runs, respec-
tively. The Raman modes appearing in this frequency

Table 2. Molecular cage vibrations and C-H stretching
modes with their isotopic shift ratio

CeoHas CeoD3s
Qu/Qp [(QH/Qp)?
1| Inten- 1| Inten- H'=°D H'>“D
Q, cm sity* Q, cm sity*
206.6 | vs 203.4 | vs 1.016 1.032
2124 | vs 209.7 | vs 1.013 1.026
464.2 VS 464.2 VS 1 1
4844 | vs 4844 | vs 1 1
28268 | s 21136 | s 1.337 1.789
28525 | s 2169.7 | s 1.315 1.728
29119 | s 22093 | s 1.318 1.737

* Intensity characterization: strong (s) and very strong (vs).
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Fig. 3. Raman spectra of CggH3g recorded in the frequency

range of the C-H stretching mode at ambient temperature
and various pressures for increasing pressure. The spectrum
in the upper frame, at 0.2 GPa, is recorded upon pressure
release.

region are related mainly to the vibrations of the
fullerene molecular cage. The spectral region wherethe
strong diamond vibration islocated is excluded. As can
be seen from Fig. 2, arich Raman spectrum, with well-
defined structuresin the low-frequency region, can eas-
ily be followed with pressure. On the contrary, the
structures in the spectral region 1400-1750 cm™ are
broad and weak, but still they can be traced up to the
highest pressure studied. At first glance, the application
of pressure seems to have the expected effect in the
Raman spectrum, i.e., an overall positive shift in the
frequencies of the Raman modes and arelative increase
in their line widths. But the situation differs signifi-
cantly for the part of the Raman spectrum containing
the hydrogen stretching vibrations. As can be seen in
Fig. 3, where the C—H stretching vibrations are pre-
sented, theinitially well-separated structuresin the cor-
responding spectraare gradually washed out, becoming
avery broad structurefor pressures higher than approx-
imately 2.0 GPa. We note that despite a considerable
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broadening of the Raman structures, the pressure effect
is fully reversible upon releasing pressure, as can be
seen from Fig. 2 and the top framein Fig. 3.

The pressure dependence of the Raman frequencies
isshown in Figs. 4 and 5 for pressure up to 12 GPaand
at room temperature. The different open (closed) sym-
bols correspond to pressure increase (decrease) in dif-
ferent pressure runs, while the solid lines through the
experimental points represent linear least-square fit-
tings. The shaded areas near the pressure approxi-
mately 0.6 and 6.0 GPa denote the pressure regions
where the change in the slope of the pressure depen-
dence or the disappearance of some Raman peaks
occur. The parameters of linear |east-squarefittings and
a tentative mode assignment of the observed Raman
modes are compiled in Table 3. In the mode assignment
column, we indicate the isomeric form to which this
mode most likely belongs. The data related to pristine
Cgo are aso included in Table 3 for comparison. The
pressure dependence presented in Figs. 4 and 5 and
numerical data in Table 1 show that all the observed
modes have positive pressure coefficients and at least
four Raman peaks disappear for pressures higher than
approximately 6 GPa. Furthermore, the majority of
Raman modes exhibit a change in the slope of their
pressure dependence at approximately 0.6 and 6 GPa.
These peculiarities were observed for both increasing
and decreasing pressure runs, and therefore the pres-
sure dependence of the Raman mode frequencies
exhibits fully reversible behavior.

The pressure dependence of the stretching C—H
vibrations, where a dramatic broadening occurs with
increasing pressure, is the most striking pressure effect
on the Raman spectra of CgHzs. IN our opinion, the
abnormal broadening of theinitially sharp peaksin the
Raman spectra of GgyH3s may berelated to the presence
of various isomers in the samples under study. Numer-
ical calculationsin [12] show that there are many iden-
tical Raman modesrelated to variousisomers of CyoHgg
with very close frequencies. We believe that any differ-
ence in their pressure coefficients, even small, may
result in additional pressure-induced broadening of
these peaks, which gradually obscures the initialy
sharp Raman structure. A similar broadening of the
Raman spectra at high pressure was also observed in
the isomeric mixture of Cg, fullerene samples[22]. It is
important to note that this kind of broadening is
expected to be reversible with pressure, and this behav-
ior is indeed observed in our experiments. Bearing in
mind that the number of the main C-H Raman modes
of CgoH3s does not change with pressure, we have fitted
the experimental data in this region by keeping the
same number of peaks at any pressure. The pressure
behavior obtained in thisway is displayed in Fig. 6, in
which open (closed) circles denote increasing (decreas-
ing) pressure runs. Despite the crudeness of the proce-
dure, the pressure dependences of the C—H Raman peak
positions show a behavior that is compatible with that
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Fig. 4. Pressure dependence of Raman-active modes of CggHag in the frequency ranges 180-390 cm? (a) and 440-560 cm? (b).

Different open (closed) symbols correspond to increasing (decreasing) pressurein different pressure runs. Solid lines represent lin-
ear least-square fits. The shaded areas at P ~ 0.6 and approximately 6.0 GPa denote the regions of possible phase transitions.

of the Raman modes of the fullerene molecular cage up
to approximately 6 GPa. In particular, these peaks
exhibit an overall positive shift up to approximately
6 GPa as well as changes in the slopes of the pressure
behavior of the Raman mode frequencies at approxi-
mately 0.6 GPa. However, their pressure dependenceis
different for pressures above 6 GPa, where a softening
in the C—H dtretching vibrations is observed. It is
important to note that even if we follow the pressure
dependence of the “center-of-gravity” frequency of the
overall C-H Raman band region, we also find a change
in the slope of the pressure dependence at approxi-
mately 6 GPa. This dependence is shown in Fig. 6 by
solid stars, which represent both the pressure increase
and decrease runs.

The observed peculiarities in the pressure depen-
dence of the Raman modes of CgHss may be under-
stood by invoking the corresponding behavior of pris-
tine Cqy and Cy, at high pressure. It isknown that under
hydrostatic pressure at room temperature, Cq, trans-
forms, at 0.4 GPaor at 259 K, from the FCC-structure,
where the Cg, molecules are orientationally disordered
due to chaotic rotations, to the SC-structure, where the
molecular rotations are partially ordered [23, 24]. Sim-
ilarly, under pressure, C,, undergoes an orientational
ordering phase transition from an FCC structure to a
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rhombohedral phase at approximately 0.35 GPa or at
280 K [25, 26]. Furthermore, Hall et al. [9] found that
the distortion of the molecules brought about by hydro-
genation a ong with the hydrogen atoms bonded around
the equator gives the molecule a strongly oblate shape.
The BCC-structure allows effective packing of oblate
spheroidsif the polar axes of the molecules are aligned.
The longer second-nearest-neighbor distance then pre-
vents close approaches of the equatorial hydrogen
atoms. If this alignment actually occurs, then there
should be atendency to form atetragonal structurewith
aratio ¢/a < 1. Therefore, they predict that at suffi-
ciently low temperatures, the BCC-structure must
transform into a body-centered tetragonal structure.
Thus, keeping in mind the pressure-induced orienta-
tiona ordering of Cg, and C,, and the finding by Hall
et al. [9], we might speculate that the observed pecu-
liarity at approximately 0.6 GPain the pressure depen-
dence of Raman modes can be assigned to an orienta-
tion ordering structural phase transition.

The changes in the pressure dependence of the
Raman frequencies at approximately 6 GPa, especially
the behavior of the C—H stretching modes, could be
attributed to a possible phase transition in which the
hydrogen bonds may be involved. It is known that the
intermolecular and intramolecular distancesin fullerene
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Fig. 5. Pressure dependence of Raman-active modes of CggH3g in the frequency ranges 570-770 cm? (a) and 1450-1770 cmt (b).

Different open (closed) symbols correspond to increasing (decreasing) pressurein different pressure runs. Solid lines represent lin-
ear least-square fits. The shaded areas at P ~ 0.6 and approximately 6.0 GPa denote the regions of possible phase transitions.

become comparable at sufficiently high pressure. There-
fore, the hydrogen atoms in the CgH45 molecule, which
initially form terminal C—H bonds, can interact with car-
bon atoms belonging to neighboring molecular cages.
Thisinteraction may result in the formation of the bridg-
ing C-H-C hydrogen bonds when the decrease in the
intermolecular distances becomes appropriate. As a
result, the bulk modulus of the crystal increases, which
is manifested by a decrease in the slope of the pressure
dependence of the Raman frequencies. In addition, the
formation of the bridging hydrogen bonds resultsin a
certain elongation of the involved terminal C—H bonds.
The increase in the C—H terminal bond lengths results
in mode softening, which increases with a further
increase of pressure. The presence of the bridging
C-D—C modesin the C4D, sampleswasfound recently
even at ambient pressure by means of NMR investiga-
tion of deuterofullerene [27]. Similar pressure behavior
of hydrogen bonds was also found in other molecular
materials that exhibit a softening in their C—H stretch-
ing mode frequency under pressure [28].

3.3. Pressure Behavior
of the Photoluminescence Spectra of CgoHsg

The photoluminescence spectra of CgyHg, at normal
pressure and various temperatures are depicted in
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Fig. 7. The spectrum at room temperature contains two
broad peaks and two shoulders, located near the lower
and higher energy sides of the spectrum. The structure
of the PL spectrum isreminiscent of that of pristine Cg,
at room temperature, but the intensity of luminescence
is considerably higher. The onset of the spectrum is
located near 2.5 eV, which is higher than the onset of the
PL spectrum in pristine Cg, by approximately 1 eV [29].
As the temperature drops to 80 K and below to the lig-
uid helium temperature, the PL spectrum becomes
more resolved, as shown in Figs. 7b and 7c. The PL
spectrum at the lowest temperature (10 K) contains a
number of sharp and well-resolved peaks, located near
itsonset. The relatively high PL intensity in CgoHgg, in
comparison to pristine Cg, is mainly associated with
small luminescence quantum yield in pristine Cq, due
to the dipole-forbidden transitions from the lowest
exited state [30]. The fine structure of the PL spectrum
in CgoH4g at low temperature resembles the well-devel -
oped structure in the PL spectrum of the Cg single
crystals at the liquid helium temperature. This structure
is related to the shallow defect levels [31], while the
fine structure of the PL spectrum in the CgyHs5 may be
related to the abundant isomer composition of the sam-
ples under study.
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Table 3. The phonon frequency, assignment and their pressure coefficients for the CgyHzg Raman-active modes. The corre-
sponding values for Cg, are also included for comparison

CeoH3s Cé
Mode 0-0.6 GPa 0.6-6 GPa 6-12 GPa 0.4-2.4 GPa
. 0w, /0P, 0w, /0P, 0w, /0P, . 0wy /0P,
1 1
@, cm cm Y/GPa cmYGPa cmYGPa G cm cmYGPa
T4(T) 180.6 56+0.1 6.4+0.1
Ey(Tr) 196.0 47+06 31+04 06+0.1
Ey(T) 206.6 27403 22401 1.6+0.1
Tg(Th) 212.6 2.3+0.3 26+0.1 1.7+£0.2
Eg(ng) 230.6 35+0.1 29+0.1 1.2+0.2
239.1 3.2+0.2 26+0.2 15+02
261.1 21+0.1 1.3+£0.1 04+0.2 272Hg(1) 3.2
305.2 22+0.2 1.8+0.2 1.2+0.2 2940 25
317.8 31+0.1 19+0.1 1.0+0.2
Eg(ng) 339.6 21+0.1 14+0.1 09+0.1
AS) 347.1 27+01 16+0.1 11+0.1 34503, 2.9
Eg(Th) 366.7 3.2+0.2 05+0.2 1.7+£0.3
Ag(T) 484.2 46+0.2 05+0.2 3.3+0.2
Af(S) 491.0 33401 27+01 495H,(2) 42
501.8 20+0.1 2.7+0.1 3.3+x0.1
Eg(SS) 530.6 2.7+0.2 1.7+0.2 24+0.2 5220 1.0
Eg(D3d) 585.7 26+0.2 20+0.2 09+0.2
Eg(%) 598.6 2.3+0.2 19+0.2 09+0.2
Tg(Th) 622.6 29+0.2 20+£0.2 23+0.2 6240, 15
Eg(D3d) 632.5 24+0.1 20+0.1 2.1+0.3
E4(Dag) 642.5 19402 15402 25+02
T4(T) 655.8 12402 17402 12+02
Ey(Tr) 669.3 1.9+0.1 13201
Ag(D3g) 695.6 18+0.1 16+0.1 20+04
Alg(D3d) 730.9 14+0.2 25+0.2 2.3+0.2 7290 -2.9
T4 1459.5 9.0+0.2 6.6+0.2 44%04 1467A4(2) 55
Ey(S)? 14945 9.6+03 48403 5.1+ 0.4
Ag(Sﬁ) 1674.6 46+0.3 7.2+0.3 6.9+04
AT 1712.5 52+0.3 3.6+0.3 2.8+05

Note: Datataken from [35].
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Fig. 6. Pressure dependence of the Raman-active modes of
CeoH3g in the range of the C—H stretching modes. Open
(closed) circles correspond to the increasing (decreasing)
pressure runs, whilethe peak positionswere obtained by fit-
ting Gaussians lineshapes to four experimental peaks at any
pressure. The stars correspond to the frequency of the “ center
of gravity” of the C-H Raman band as afunction of pressure.
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Fig. 7. Photoluminescence spectra of CggHag at ambient
pressure and various temperatures.

According to numerical local-density functional
calculations of the electronic structure, the gap between
the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) is
different for the five most stable isomers and varies
between 3.84 and 3.91 eV [32]. These calculations are
related to the isolated CgyH45 molecule and their results
should be compared with the experimental absorption
spectra of the CyyH4s solutions. The absorption spectra
of the CgHg solutions in methylene dichloride and
benzene [13] show that the onset of the absorption
spectrum is located between 2.96 and 3.24 eV. Con-
cerning the HOMO-LUMO gap calculations for the
solid CgHg, there are no available data to compare
with the present experimental results. Asis known, the
calculations of the HOMO-LUMO gap for various
molecular solids show that the gap is shifted to lower
energies with respect to the isolated molecules due to
the vapor-crystal shift of the electron energy spectrum.
In any case, the onset of the photoluminescence spec-
trum in solid CgH4s Observed in the present work is
considerably smaller than the HOMO-LUMO gap for
an isolated molecule [32].

The PL spectra of CgyHs taken at room temperature
and various pressures are shown in Fig. 8. The initial
spectrum taken at 0.5 GPa gradually broadens upon
increasein pressure up to 12 GPa, while the shift of the
spectrum is not apparent. The pressure-induced shift of
the spectrum is unusually small as it follows from the
pressure dependence of the band frequencies obtained
by fitting Gaussian band shapesto the main peaksin the
PL spectrum. The pressure dependence of the two main
bands of the PL spectrum of CgyHsg isshown in Fig. 9.
The pressure coefficients for these bands are close to
zero at pressure up to approximately 6.5 GPa, but they
increase in the absolute value at higher pressures, to
=75 and -9 meV/GPa, respectively. The pressure
behavior of the electronic states in CgyH44 iS NOt typical
of molecular crystals, whose electronic levels usually
exhibit large negative pressure shifts, rapidly decreas-
ing with pressure [33]. It is known that the pressure-
induced shift of the electronic levelsin molecular crys-
tals is negative for the majority of the materials that
have a center of symmetry, whereas it may be positive
for materialsin which the molecules do not have acen-
ter of symmetry [34]. The samples under study contain
the T isomer in abundance, which does not have a cen-
ter of symmetry. This means that at least a part of the
PL spectrum related to thisisomer may have a positive
pressure-induced shift, while at the same time, we have
a negative pressure-induced shift originating from iso-
mers having a center of symmetry. The unusual pres-
sure behavior up to 6.5 GPa may be associated with
mutual compensation of the opposite shifts from the
two parts of the luminescence spectrum, originating
from electronic states of various isomers. At higher
pressure, however, the luminescence related to isomers
that have a center of symmetry dominates. their elec-
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Fig. 8. Photoluminescence spectra of CggHzg @ ambient
temperature and various pressures.

tronic states are downshifted in energy to the lowest
positions, and we therefore have an overall negative
pressure shift.

4. CONCLUSIONS

The Raman spectrum of hydrofullerene CgoHg pre-
pared by high-pressure hydrogenation has a very rich
structure and contains about five times more peaks than
that of transfer hydrogenated CyyH4s. The comparison
of experimental Raman peaks with the results of calcu-
lation of the molecular dynamics shows the presence of
five principal isomers in the samples under study. The
majority of the experimentally observed Raman peaks
belong tothe S;, T, and D4y isomers. The micro-Raman
probing of several samples, prepared under different
reaction parameters, shows that the homogeneity of the
sampl es depends strongly on the reaction temperature.
The Raman spectrum of deutero-fullerene CgD4g pre-
pared by the same method isin general similar to that
of CgHss. The important difference between the two
spectra is a large isotopic shift of the C-D stretching
modes with respect to the corresponding C—H ones.
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Fig. 9. Pressure dependence of the two main bandsin the PL
spectrum of CggHzg.

The isotopic shift in the modes associated with the
fullerene molecular cage isvery small. Thisisastrong
indication that the hydrogen atoms do not play an
important rolein the C4H45 molecular cage vibrations.

The pressure behavior of the optical Raman and PL
spectraof CgyH4g isnot typical of fullerene-based mate-
rials because they become rather diffuse, even at rela
tively small pressure. The pressure dependence of the
phonon frequencies is reversible with pressure and
exhibits peculiarities at approximately 0.6 and 6 GPa.
Thefirst peculiarity is probably related to a phase tran-
sition from the initial orientationally disordered BCC-
structure to an orientationally ordered structure. The
peculiarity at approximately 6 GPa may be related to a
pressure-driven enhancement of the C—H interaction
between the hydrogen and carbon atoms belonging to
neighboring molecular cages.

The PL spectrum of CgH4g is shifted to higher
energy by about 1 eV with respect to that of pristine
Ceo- The spectrum at room temperature consists of two
broad peaks and becomes more structured at 10 K. The
pressure-induced shift of the PL spectrum of CggHyg i
close to zero up to 6.5 GPa, while at higher pressure, a
negative pressure shift was observed. The unusual pres-
sure behavior of the PL spectrum is related to the iso-
mer composition of the high-pressure hydrogenated
fullerene samples.
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Abstract—The singularities of the time autocorrelation functions (ACFs) for a heteronuclear spin system of a
crystal are investigated. Exact expressions are obtained for ten moments of the spectra of ACFs in the approx-
imation of a self-consistent fluctuating field (SCFF) with arbitrary axial symmetry. These expressions are
applied to determine the coordinate of the lowest singular point of these functions on the imaginary-time axis
for a spin system with a dipole-dipole interaction (DDI). The leading corrections to this coordinate due to the
correlation of local fieldsin real crystals are calculated. These corrections are determined by lattice sums with
triangles of four bonds and pairs of four bonds. Numerical values of the coordinate are obtained for aLiF crystal
in a magnetic field directed along three crystallographic axes. An increase in the coordinate of the singular
point, which follows from the theory and |eads to a faster falloff of the wings of the ACF spectra, qualitatively
agrees with experiment. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Nuclear magnetic systems with controllable states
whose variations can be observed by an NMR method
[1] are of great interest for nonequilibrium statistical
physics. Heteronuclear systems (i.e., systems that
consist of nuclei with different Larmor frequenciesin
a strong magnetic field) open up new possibilities for
studying relaxation processes. This fact was demon-
strated in [2] with an example of cross relaxation
between subsystems. It is also important that hetero-
nuclear systems are encountered more frequently than
homonuclear systems and that there are many
methods developed for studying them; the informa-
tiveness of these methods depends on the devel opment
level of thetheory. Finally, systems consisting of nuclei
with different resonance frequencies have recently
attracted the attention of researchers in relation to
the problem of addressing spins in guantum computa-
tion [3].

The modern dynamic theory of dense spin systems
in solids is based on the concept of a time-fluctuating
random local magnetic field [4-9] whose properties are
close to those of a Gaussian random field. In heteronu-
clear systems, this field has several (according to the
number of different types of nuclel) components. This
fact complicatesthe construction of atheory. The use of
the self-consistency conditions[5] for the time correla-
tion functions of thefield and the spins has made it pos-
sible to construct a theory [10, 11] that qualitatively

explains many experimental data. This theory implies
that the spin correlation functions have singul arities on
the imaginary-time axis that are responsible for the
exponential wings of the spectra of these functions,
which are observed by magnetic-resonance methods.
An important consequence of this result is that the
wings of the spectra of different types of nuclel are uni-
versal because the coordinates of the singular points of
the time correlation functions, which are coupled dueto
the interaction, must coincide. A comparison with
experiment has shown that the correlation of local fields
weakens their fluctuation; in particular, it increases the
coordinate of the singular point. In[11], such acorrela-
tion was taken into account phenomenologically.

In the present paper, we develop a microscopic
approach to the calculation of correlation phenomena
in the theory of a self-consistent fluctuating field
(SCFF). The validity of this approach has recently been
demonstrated by a simpler example of a homonuclear
system [12]. First of all, we obtain general expressions
for moments up to the tenth order inclusive after gen-
eralizing a diagrammatic series for the memory func-
tion [6] to the heteronuclear case. Then, based on these
moments, we cal cul ate the coordinate of the lowest sin-
gular point of the correlation functions on the imagi-
nary-time axis. Finally, we determine a correction to
the moments due to the correlation of local fields and
apply them to calculate the corresponding shift in the
coordinate of the singular paint.

1063-7761/05/10004-0775$26.00 © 2005 Pleiades Publishing, Inc.
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2. EQUATIONS
FOR AUTOCORRELATION FUNCTIONS

Equations for the autocorrelation functions (ACFs)
of aspin precessing in an anisotropic Gaussian random
field werederivedin [6]. If wetake into account that, in
the case of a heteronuclear spin system, such equations
should be written out for spins of each type, we arrive
at the system of integral equations

t

d
at_lraq(t) = _IGaq(t_tl)ruq(tl)dt! (1)
0

where the subscript a denotes the spin projections x, y,
and z and g enumerates the subsystems. The memory
functions G,(t) are represented as seriesin irreducible
dressed skeleton diagrams with increasing number of
vertices:

Gug(t) = Y Gaalt). e

For the case of a field with arbitrary anisotropy in a
homonuclear system, al diagrams with 2, 4, 6, and
8 vertices are presented in [6]. In the heteronuclear
case, the form of adiagram remains the same; however,
in the explicit expressions for these diagrams, one
should associate with the zz lines (dashed lines) a sum
over contributionsto the longitudinal field rather than a
single term:

0ig(t) =Y Al zp(0)- (3)
p

The xx and yy lines correspond to a single contribution

ZOBOV, POPOV

as before, but this contribution is different for different
types of nuclei:

Oxq(D) = D2Myq(t),  Gyg(t) = AT (1)

Here, we express the correlation functions of a Gauss-
ian random field in terms of the time-dependent spin
ACFs T (1), Tyo(1), and T 4(t) in a self-consistent way.
At high temperatures, the ACF of the a component of
the spin located at sitei of the lattice is given by

i % (a) i (a
ruq(t) = Sp{ eXp(l t)llul(j)xg}( | t)lm ’ (4)
Sp{ (i)

where 7 is the Hamiltonian of the secular part of the
dipole—dipole interaction (DDI) [1, 2] in astrong mag-
netic field. The mean sgquares of different contributions
to thelongitudinal field are

4 2
Aép - I(p)(l(P)+l)§z bl(gp)1
“ ®)
h
b = quLg(l—scosze”),
i

where 6; isthe angle between the internuclear vector r;;
and the direction of the static magnetic field. In the axi-
ally symmetric case, we have

2 _ a2 _ a2
AL, = D, = A2 4. (6)

Each term of series(2) isexpressed in terms of amulti-
pletimeintegral of the products of ACFs[6].

Table 1. Exact values of the ACF momentsin aLiF crystal in the SCFF approximation when the magnetic field is applied

along three crystallographic axes (X5 = M, A2"

-2n

(@ — pp(@)
and Zpn = Maynzle )

Ho || [111] Ho || [110] Ho | [100]
F Li F Li F Li

X5 1.5565 0.243175 3.2059 0.573075 10.9709 2.126295
X4 7.2621246 0.2062389 30.122726 1.1550313 357.05369 14.396791
Xs 60.240334 0.4462115 476.06509 5.7148923 19329.186 193.62608
Xg 785.97935 2.6795506 10916.055 73.047633 1469814.4 5748.5288
X10 15296.507 36.221363 342734.27 2018.0911 144788238 429421.26
Zy 05 0.07275 05 0.07275 05 0.07275
Zy 1.9315 0.0433208 3.5809 0.0913213 11.3459 0.3173148
Zg 17.917389 0.0669163 67.435923 0.3356018 739.17481 4.1540520
Zg 277.83143 0.1998922 2104.5260 2.4024558 80039.257 96.558982
Zyg 6249.6440 1.1415668 92520.012 31.813793 12125388 3612.1025

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100 No.4 2005



THE COORDINATE OF A SINGULAR POINT OF THE TIME CORRELATION FUNCTIONS

ACFs (4) can be expanded in power series,

00

OEDY

n=0

(=1)"Mont”"
(2n)2! ' ("

Itiswell known [1] that M{?. isamoment on the order

of 2n of the spectral density of the corresponding ACF.
From similar equations for the homonuclear case [6],
after appropriate modifications according to (3), we
obtained recurrence equations for the moments for the
heteronuclear case. Henceforth, we will assume for
definiteness that there are only two types of spinsin the
system. Inthe Appendix, we present expressions for the
moments of the tenth order inclusive for a general axi-
ally symmetric case. As an example, we calculated the
moments for a LiF crysta (see Table 1); the contribu-

tions AZ, (5) for this crystal were taken from Table 2.

Equations (1) were derived for an interaction with
arbitrary magnetic anisotropy. The application of an
axially symmetric Hamiltonian of the DDI essentialy
improves the convergence of the series for the memory
function [10-15]. Therefore, it is expedient to trans-
form Egs. (1) in order to maximally take into consider-
ation the longitudinal component of the local field and
minimally take into account the transverse component.
In this approximation, we obtain the following system
of nonlinear integral equations for the ACFs of a LiF
crystal:

ra() = 1-308%

tt

x {{dt'dt"FiL(t'—t")FzL(t"),

t

K
M () = Tac(t) = Z A0 [dT o (t-1)
0

xfdt" M (U =) (P =)0 (1),
0 (8
1

Me(t) = 1-50%

tt

X {{dt'dt"riF(t'—t")rzF(t"),

t

k
Me(t) = rAF(t)—fAiFIdt'rAF(t—tv
0

t

xJ'dt"er(t' — ) (U - 1) e(t),
0
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Table 2. Mean sguares of homo- and heteronuclear contri-
butions to the longitudinal local fields, renormalization
parameters, and the coordinates of the singular point of the
ACFin LiF for amagnetic field directed along three crystal-
lographic axes

Ho [[[111] | Ho|l[110] | HolI[100]

AZ. , (rad/s)? 2838106 | 2581-10° | 1809 - 10°

2 2
DZ 1D 0.3065 1.9559 9.7209
N 0.0613 0.3912 1.94442

2 2
A IDE 0.1455 0.1455 0.1455
ToAg = DA 2.372 1.843 1.127
To(A; =5/4)Age | 2263 1.783 1.113
Ae 1.101 1.0911 1.0855
AL 1.099 1.0896 1.0850
ToA) e 2.33 1.82 112
To(Ag) /Mr 372 374 3.87
31d1o 0.158 0.215 0.161
To(Ag) + 0T, Us 51 44 31
TdAg) /Mr 4.31 453 450
where

tt

M (t) = exp%i—)\fAfL IIdt'dt"FZL(t")
00

tt
—N2L J’J’dt‘dt"FzF(t") E;
00 (9)

tt

0l
[ ae(t) = exp%ma ffeatTa ()
00

tt

2 . W
—AEAFFﬂdt dt"rLe(t") O
00 D

is the ACF of a spin rotating in the local field that has
only alongitudinal component, similar to the function
used in Anderson’s model [4]. Unlike the previous
work [11], we introduce a renormalization parameter
for thelongitudinal local field into Eq. (9). The value of
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Ratios of moments (12) for the ACF of the x components of
the spins of fluorine (circles) and lithium (triangles) nuclei
in a LiF crystal when the magnetic field is applied along
three crystallographic axes indicated in the figure. The
results obtained by the moments of solutionsto Egs. (8) and
(9) areindicated by open symbols, and the results obtained
by the moments from Table 1 are indicated by closed sym-
bols connected by straight lines.

this parameter is determined from the moments. The
correctness of the second momentsis guaranteed by the
strict relation between the parameters k, and A, that
enter Egs. (8) and (9):

_ 2
ky = 5—4A2,

Let us determine the fourth moment of the solution to
Egs. (8) and (9):

From the equality of thismoment to its exact value (A1),
we determine the parameters

15 3D,

16]D1/2

4%D —D +

whereDg = AZ, /A% andD, = AZ./A?, . Thevauesof

the parameters cal culated by formula (10) are presented
in Table 2.

The solutions of Egs. (8) and (9) have singular
points on the imaginary-time axis. The principal parts
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of the ACFs in the neighborhoods of these points are
given by

0= )= =
(1 I)C (orin™
Mag(t) = ——= (q=F,Li).
(To+ )"

The exponents were determined in [10] by the Painelvé
method for three orientations of aLiF crystal. For the F
nuclei, all exponents equal 2, whereas, for the Li nuclel,
only the exponentsfor the orientation [100] are equal to
2; for two other orientations, the exponents are as fol-
lows: d=x =0.123for[111] and =X =0.784 for [110]
(we do not need the exponent ().

For aknown value of the exponent of the lowest sin-
gular point, its coordinate, equal to the convergence
radius with respect to moments (7), can be evaluated as
the limit of the sequence of relations

2 MZ(n nal (2n+X)
on —
MSr (2n—2+X)’

(12)

asn —» oo, where I'(X) is the gamma function. These
sequences are shown in the figure. The calculations are
performed by the exact values of ten moments from
Table 1 and by 50 moments of the solutions to approx-
imate Egs. (8) and (9) for the values of the parameters
Aq given in Table 2. In the homonuclear case, the con-
vergence of the sequence of relations is better [6]; this
allowed usto determine 1, by the first ten momentsto a
sufficiently high degree of accuracy. In the heteronu-
clear case, the convergence deteriorates because the

interaction between lithium nuclei is weak (AfL =

0.15AﬁF ). Therefore, it takes some time for the system

of Li nuclei to adjust to the system of F nuclei. Thefig-
ure shows that the first terms in the sequence of the
ratios of moments of the solution to system (8), (9) are
close to the ratios of exact moments. The approximate
equations have allowed us to follow up how the ratios
of moments pass to the limit (see Table 2). This
approach represents the development of the simple esti-
mate of [6]. Applying it to the homonuclear casefor A =
1.105, we arrive at the value 1A, = 2.48, which was
determined earlier by ten moments. Note that an esti-
mate for 1, was obtained in [10] by using Egs. (8) and
(9) for A =1 (which isalso shownin Table 2). The vari-
ation of A, from 1 to 1.1 leads to variation of the coor-
dinate 1, by less than 2%, which is indicative of the
accuracy of its determination.
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3. CALCULATION OF A CORRECTION
TO THE COORDINATE OF A SINGULAR POINT
OF THE CORRELATION FUNCTIONS

The SCFF approximation corresponds to the limit
d — 0. Asisshown in [12] by an example of homo-
nuclear systems, for d = 3, the coordinate of the singu-
lar point of the ACF on the imaginary-time axis
increases due to the correlation of local fields,

T. = TO+6TC! (13)

and the main contribution to 31, is given by the correc-
tions to the moments that can be represented by trees of
double bonds with abuilt-in pair of fourfold interaction
or triangle of four bonds. In the heteronuclear case, the
degree of correlation is characterized by the following
ratios of lattice sums:

S/(S)% SIS’ S/(S): S(SS),

where

S = szizj’ S = Zbiﬂ}’ S = kzjbijbikbji (15

(14)

with summation over the sites occupied by nuclei of
onetypewith anucleusat sitei. In the primed sums, the
summation is performed over the sites occupied
by nuclei of another type. The numerical values of
ratios (14) for three orientationsof aLiF crystal are pre-
sented in [11]. The small value of these ratios corre-
sponds to the real smallness parameter. For conve-
nience, we introduce aformal parameter €; infinite for-
mulas, we set this parameter equal to zero.
Contributions with lattice sums (14) are aready con-
tained in the fourth moment (A.3). The corresponding
decrease in M,, can be ascribed to the SCFF if one
reduces A,. For example, for the orientation [110], we
obtain Ar = 0.94 and A\, = 0.75. Such a variation leads
to an increase in the coordinate 1, by about 2%. Asis
shownin[12, 16] in the homonuclear case, the incorpo-
ration of such fragments of (14) into large trees of
bonds corresponding to higher order moments pro-
duces a more significant effect. Such contributions can
be determined from Egs. (1) for the ACFs.

Assuming that the correction €91, is small, we esti-
mate it by taking a ssmplified version of equations in
which the zz interactions are predominant. Take

r(xq(t) = raqo(t)_er(qu(t)

and substituteit into an integral equation with appropri-
ate correction terms for the memory function

Guq(t) = Gaqo(t) _gGaql(t)-
In view of the form of the equations, it is more conve-
nient to pass to an equation for the squared transverse
ACF:

F2a(D) = Yo(t) = Yoo(t) —€Yqu(t). (16)
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For the first correction Y (t), we find the equation

t

d
d_tYFl(t) = ZEFFDYFl(t)IrzFo(tl)dtl
0

t

+2[F LDYFl(t)JT zro(ty)dt;
0

thty

4
+ E [FFDYFo(t)IIIYFl(ts)dtldtzdts
000

tht,
4
+ 5 [F L[NFO(t)J]].YLl(tB) dt, dt,dt;

000

t tly

+2 [FLD?S'ZYFO(t)J’r zLo(tl)dtlj I o(tp)dt,dt,
0 00

t tly

+25,LF FE%YFo(t)J’r zro(t1) dtlI [ 2ro(tz) dtydt,
0 00

thty

+ 2RF(S, + ) Veolt) [ Yeolte)tuctct
000

thty

4
+ 5 D_ Fl:”:l_ L[&YFO(t)IIIYLO(tB) dtldtzdts

000 a7

+ FFIEEES, + SEYo(t)

thty 3ty

x J’J’J’YFO(tS)dtldtzdt3 J-J-rz,:o(t5)dt4dt5
00

000

+ LR D:Ltg(sz +5)Yeolt)

ttity 3ty

X IIIYLO(t3) dtldtzdtsj. I, o(ts)dt,dts

000 00
+ ELLDD:LDELF[E'(S'Q +25) Yeo(t)

thht 3ty

X IIIYLo(ts) dtldtzdtsj' [ 2ro(ts) dt,dts

000 00

+ [FFCT EFLE@%YFO(t)
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t tit, tat,

.UIYFO(t 3)dt, dtzdtgj’ I, o(ts)dt,dts — Re(1),

000
in which we introduced dimensionless imaginary time
t' = —it(5 A% /4)Y2; omitted the prime; denoted

40
[FFO= 1, [FLO= —*,
FF
A an¢
OL0= =, 0OF0= —F
FF SAge

and denoted ratios (14) by S,, S, S;, S;. Equation (17)
differsfrom that considered in the homonuclear case[12]
by the contributions of nuclei of different types and by
the change in the form of the correction R(t) (because
lithium nuclei have spin 3/2) due to the permissible
fourfold interaction of nearest neighbors:

t

Re(t) = 25, EFFD?YFO(t)JTZFO(t_tl)dtl
0

4itp

XIIrzFo(ts) dt,dt;
00

t

+2S, EFLEFYFO(t)IrzLO(t —ty)dt,

U [ 15 ZLO(tl‘tz)} a.0(ts)dtz0ts,

t

RJU==2$ELHmeaUTEav4adu

4ty

X IIrzFo(t3) dt,dt,
00

t

+2S, D—LU—’YLO(t)IrzLO(t —t,)dt,

4tp
16
x J;J;[l + 72T wolls —tz)}rm(tg)dtzdta_

A changein the remaining part of Eq. (17) when pass-
ingto Y, ;(t) reducesto achangein the subscriptsF —
L and L — F. For the functions Yyo(t) and I",q(t) of
zeroth-order approximation, we use asimple set of four
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equations that is obtained from (8) for )\é =5/4. More-
over, we neglect the time variation (I 4(t") ~ I 4(0) = 1)
compared with ((t' — t"))? in the integrand; as is
shown in [12], this leads to a dlight decrease in the
moments but significantly simplifies the calculations.
For comparison, the coordinate of the singular point

To()\é = 5/4)Age of the solution to such a system is

shown in Table 2. We had to simplify the equation in
order to increase the numerical positions up to 50. In
turn, such a large mantissa is required to sum up the
moments that strongly differ in magnitude.

Using the equations, we calculate the moments of
functions (16) up to n = 70. The coordinate of the sin-
gular point is determined from the ratio of moments:

(0)
2 _ 2. 1—€Y 2(n 1)/YF2(n nt
T, = Tplim D) o0
noo 1—eYen/Yeo t.
Then,
(1) (1)
26TC — Iiml:szn YFZ(n 1!‘] (18)

o (0) (0)
To N=*¥eon  Yez(n-1H

Extrapol ating the ratios obtained, we determine the val -
ues presented in Table 2.

Let us compare the results for hetero- and homonu-
clear systems. In the homonuclear case, we have 1,4, =
2.48 for any orientation, wheresas, in the heteronuclear
case, Table 2 showsthat 1,Axr decreases by afactor of 2
under rotation from [111] to [100]. Using the units of
the total moment of the NMR spectrum of fluorine
nuclei,

My = AZ(1+ XP)),

we obtain 1,,/M,r = 3.72 for the [111] orientation.

Thisresult coincideswith that in the homonuclear case,
where the coordinate increases to 3.87 under the rota-
tion to the [100] orientation. Such anincreaseis associ-
ated with an increase in the contribution of the hetero-
nuclear zz interaction to M. In the homonuclear case,
asimilar increasein the coordinate of the singular point

of the ACF with theratio A3 /A% was observed in [17].

Let us pass to the correction d1.. We calculated
01./1, for ahomonuclear face-centered cubic lattice by
the formula obtained in [12] for three orientations and
obtained the following results: 0.17 for [111], 0.37 for
[110], and 0.22 for [100]. A comparison of these results
with the values presented in Table 2 shows that, in both
cases, the correction attains its maxima value for the
[110] orientation and is primarily associated with the
large value of the parameter S)/(S,)? = 0.225. The addi-
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tion of a heteronuclear interaction reduces the correc-
tion and smoothes out its dependence on orientation.

Thus, we have obtained, theoretically, the required
increase in the coordinate of the singular point of an
ACF due to the correlation of local fields, which was
revealed in [11] by analyzing experimental spectra
from the viewpoint of the SCFF theory. A quantitative
comparison of the theory and experiment requires that
one should determine a variation in the preexponential
factor due to the correlation in the motion of spins. An
appreciable effect of thisfactor wasaso shownin[11],
which testifies to the fact that the observed detuning
from the center of the spectrum is less than the mathe-
matical asymptotics. Finally, publications do not con-
tain al experimental conditions that are necessary for a
successful comparison of the results.

In conclusion, note that we have performed calcula-
tionsfor aLiF crystal when amagnetic field is directed
along three crystallographic axes. The theory alows us
to obtain results for other heteronuclear systems and
orientations. To this end, one should substitute the | at-
tice sums and the contributions to the squared local
fields into the formulas and perform the calculations
described in this paper.
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APPENDIX

Here, we present expressions for the moments up to
the tenth order for a system consisting of two types of

spins for an axially symmetric case A, = A%, with an

arbitrary relation between Ay, and AZ, (below, for def-

initeness, wewill use subscripts“F’ and “L” in place of
g and p). The moments are cal culated by the recurrence
relations obtained from the equations of the homonu-
clear case [6] after the above-mentioned modifications.
Theresults are exact in the SCFF approximation, which
corresponds to infinite-dimensional lattices:

MY = Afe+ A7 + AL,
MY = 3AF +3ARe + (40%¢ + BAZ: + 205 )AF
+ 50y + BAFDr,
ME) = 15A% + 15A% + (21A%, + 4572,
+ 3005, )AL + S1A%: + T30F AL + 55ARARE

+ (4505 + 45A1. + 100y, + 7602 A%
+ 300705, + DT EAL + AAT Dy + 18A% AL A7

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

781

ME) = 10542 + (1440% + 42002 + 4200%, )AL,
+ (11205 A7 + 4480y + 11205 A ¢ + 6301,

+840AZ:A%, + 360A% A%, + 4200y,
+ 98BN AL )AL, +{1678AZ Ay + 9203,

+ 154408 Ny + 42005, + 2405 A},
+ (720505, + T80y, + 4805, AZp + 11277 AL )AL

+ 11202 Ao AN ¢ + 2405 A - + 180A5 Ay,
+ 284N Dy + BABALEAL DY + TOA Al

+80AL A% A2+ 9145 + 280A2 Ay,
+420Ape A5, YAE, + 1ATONZAS - + 861A5

8 6 2
+105A% + 13782 Ay ¢ + TO0AL AL,

ME) = (1245A%; + 4725A% + 6300A% )AL,
+ (252005 A, + 5856y + 252005, A ¢

+ 94507+ + 18900AZ- A%, + 6060A% A%,
+ 126000y, + 15120A%-A%F )AL, +{ 36858A-Ax e

+ 48300y A + 8340A2, + 37890Ar-A -
+ 94502 + 1080A% A} + (228005 A%,

+5190Ay, + 2160A%, AC ¢ + 5040AZ-A%, VAZ,
+ 504002 A% A ¢ + 166760 + 1080A%, Al -

+ 828005 Ay, + 9140A% Ay, + 2700AZ A% Ay,
+ 26565 A5 A ¢ + 18900A2 Ay,

+ 1890001 A%, AT +{ 276435  + 1442175
+ 578580 A2y + BATAANy Ape + 3540005 A

+ 472508 + 1080A%, AZA; - + 414005, AZe

+ 285205 A2, + 630005, Al + TA2NS AL,
+ 25205 AfeA ¢ + 994005 NG A2,

+ 31500y AZA ¢ + 435205 A% N2AY.  (AD)

No. 4 2005



782 ZOBOV, POPOV

+ 2094005 D5 Dt + 153205, A2,
+ 24005 AL - + 24005 A, + T56A%, A ¢
+ 6300A%, Ape + 45600 Ay,
+ 24180y Na e ¢+ 98ANS AL AL

+ 211205 A5 A ¢ + 189965 (A% A2,
+(3976A% A% A2 + 72005 A

+ 182405 A%, + 252005 Ape + 216005, A2 N
+ 176875 A + 351005, A2

+ 172805 A5 A p + 182005, + 241805 Ay, )AF |
+ (1080A% AZ: + 101245, + 72005 AZ;

+ TAADG Dy )AL A EL + 945AF + 43980A7 A5
+21847A + 945A + A8498AL NS,

+ 3374207 Dy + 113850705,
MY = 20%,
MY = AALAZ, + 10A%: + 402 A,

M = 2403eAF + 9205 + T8AZAKe
4 a2 4 2 a2 2 a2 2
+ 240y e + (T0AxE + 4BAReAx e + BAKAY ) AR,

M) = 240A3 A%, + (24002 NG, + 75605,
+ 72005 A2 AL+ (T2005 - Afe + 176805 A2,

+ 1605 A 0y, + 16A5 A Ao + 153205
+ 2480y Dy, + 24005 AZEAS + A0AL Ay, JAF

+ 1820A% A2 + 101205 At

+ 24005 A2 + 144215
M) = 3360A%.A%, + (67200502, + 10956/,
+ 134400502 ) A8, + (201600508 (A.2)

+ 405800y A2y + 89602 A2 AL,
+896AL A Ao, + 2875205 - + 1151645 A%,
+ 1344005 D2 N + 336005 Dy, )AL
+{ 1344005 A% + 368A5 A2,
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+ 896 A A2LAZ - + 482920y Ape
+ 4670205 ¢ + 840Ny Ao A ¢

+ 72348NS A2 + 1378805 Do A2
+ 672005 A5 Dpe + (19205 (A5 A2 + 8080y Ly,

+ 31205 Ay + 8IBAY AL A )AL
+ 224005 Dy A2 + 90481 NG,

+9BAL AR AL + 9BALEAY A F + 28005 Ay Afr
+ 202005 Ay, YAZ, + 186680 A2 + 58138A% A2,

+ 3360A% AL, + 44TA8NS At + 3549205 .

Expressionsfor the moments of the nuclel of the second
type are abtained by changing the subscripts F — L
andL — F.

For comparison, we present an exact expression for
the fourth moment of the ACF I'(t) (4) for a system
consisting of nuclei of two types with aDDI for aread
LiF crystal, which was derived from the results for a
similar moment of the NMR spectrum [18], and an
expression for the fourth moment of the ACF of a
homonuclear system [19]:

My _77 95, S
Afe 16 45! 25
AZ AZ D AZDD
Wham, b, S 5 A (A.3)

A0 202, 2SS0 AT

2 2
B ws
DT (5)

A similar moment for the Li nuclei is obtained by the
change of the subscripts F — L and L — F and by
the simultaneous change of the numerical coefficients:

9S,/4S. to 1.27S/S; and 34S,/(5S,)? to 2S,/(S,)?,
which isassociated with the differencein the spin quan-
tum numbers of the F and Li nuclei.
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Abstract—We consider chaotic oscillator synchronization and propose a new approach for detecting the syn-
chronized behavior of chaotic oscillators. This approach isbased on analysis of different time scalesin thetime
series generated by coupled chaotic oscillators. We show that compl ete synchroni zation, phase synchroni zation,
lag synchronization, and generalized synchronization are particular cases of the synchronized behavior called
time-scale synchronization. A quantitative measure of chaotic oscillator synchronous behavior is proposed.
This approach is applied to coupled Rissler systems. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Synchronization of chaotic oscillators is one of the
fundamental phenomena in nonlinear dynamics. It
occursin many physical [1-6] and biological [7-9] pro-
cesses. It seems to play an important role in the ability
of biological oscillators, such as neurons, to act cooper-
atively [10-12].

Several different types of synchronization of cou-
pled chaotic oscillators have been described theoreti-
cally and observed experimentally [13-16]. Complete
synchronization implies the coincidence of states of
coupled oscillators, x;(t) = Xx,(t), with the difference
between state vectors of coupled systems converging to
zero in the limit ast — oo [17-20]. It occurs when
interacting systems are identical. If the parameters of
coupled chaotic oscillators slightly mismatch, the state
vectors are close, [x;(t) —X,(t)| = 0, but differ from each
other. Another type of synchronized behavior of cou-
pled chaotic oscillators with dlightly mismatched
parameters is lag synchronization: this is the case
where state vectors coincide with each other after a
time shift, x,(t + 1) = X,(t). As the coupling between
oscillators increases, the time lag T decreases and the
synchronization regime tends to the complete synchro-
nization described in [21-23]. Generalized synchroni-
zation [24-26], introduced for drive-response systems,
means that there is some functional relation between
coupled chaotic oscillators, i.e., X,(t) = F[Xy(t)].

We mention finally the phase synchronization
regime. To describe the phase synchronization, the
instantaneous phase @(t) of a chaotic continuous time
seriesis usualy introduced [13-16, 27, 28]. The phase
synchronization means the entrainment of phases of
chaotic signals, with their amplitudes remaining cha-
otic and uncorrelated.

T This article was submitted by the authors in English.

All synchronization types mentioned above are
related to each other (see[1, 22, 24] for details), but the
relation between them has not yet been completely clar-
ified. For each type of synchronization, there are spe-
cific ways of detecting synchronized behavior of cou-
pled chaotic oscillators. Complete synchronization can
be detected by comparing system state vectors x,(t) and
X,(1), whereas lag synchronization can be determined
by means of a similarity function [21]. The case of the
generalized synchronization is more intricate because
the functional relation F[...] can be very complicated,
but there are several methods for detecting synchro-
nized behavior of coupled chaotic oscillators, such as
the auxiliary system approach [29] or the method of
nearest neighbors [24, 30].

Finally, phase synchronization of two coupled cha-
otic oscillators occurs if the difference between the
instantaneous phases @(t) of chaotic signals x; ,(t) is
bounded by some constant:

|@u(t) — @(1)] < const. D

It is possible to define the mean frequency of the cha-
otic signal,

o= Iimg(ft—) = Tip(t)] @)

t -

which is the same for both coupled chaotic systems;
i.e., phase locking leads to frequency entrainment. We
note that for the results to be correct, the mean fre-

guency Q a of chaotic signal x(t) must coincide with
the main frequency Q, = 21, of the Fourier spectrum
(see [31] for details). Thereis no general way to intro-
ducethe phase for chaotic time series. There are severa
approaches that alow defining the phase for “good”
systems with a simple topology of a chaotic attractor
(the so-called phase coherent attractor), whose Fourier
spectrum contains a single main frequency f,.

1063-7761/05/10004-0784$26.00 © 2005 Pleiades Publishing, Inc.
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First of al, a plane in the system phase space may
exist such that the projection of the chaotic attractor on
it looks like a circular band. For such a plane, coordi-
nates x and y can be introduced with the origin placed
somewhere near the center of the chaotic attractor pro-
jection. The phase can then beintroduced asan anglein
this coordinate system [32, 21], but thisrequiresal tra-
jectories of the chaotic attractor projection on the (X, y)
plane to revolve around the origin. A coordinate trans-
formation can be sometimes used to obtain a proper
projection [32, 13]. If the projections of chaotic trajec-
torieson the plane (x, y) always rotate around the ori-
gin, velocities x and y can also be used; in some cases,
this approach is more suitable [33, 34]. Another way to
define the phase @(t) of a chaotic time series x(t) is to
construct the analytical signal [14, 27] using the Hilbert
transform. Moreover, the Poincaré secant surface can
be used to introduce the instantaneous phase of a cha
otic dynamical system [14, 27]. Finally, the phase of a
chaotic time series can be introduced by means of the
continuous wavelet transform [35], but the appropri-
ate wavel et function and its parameters should be cho-
sen [36].

All these approaches give correct results for “ good”
systems with well-defined phase, but fail for oscillators
with nonrevolving trajectories. Such chaotic oscillators
are often called “systems with ill-defined phase” or
“systems with the funnel attractor.” Introducing the
phase via the above-mentioned approaches usualy
leads to incorrect results for a system with ill-defined
phase [31]. Therefore, the phase synchronization of
such systems can be usually detected by means of indi-
rect indications [32, 37] and measurements [33].

In this paper, we propose anew approach for detect-
ing the synchronization between two coupled chaotic
oscillators. The main idea of this approach consists in
analyzing the system behavior on different time scales,
which allows usto consider different cases of synchro-
nization from a universal standpoint [38]. Using the
continuous wavelet transform [39-42], we introduce
the continuous set of time scal es sand the instantaneous
phases @(t) associated with them. In other words, @(t)
is a continuous function of time t and time scale s. As
we show in what follows, if two chaotic oscillators
demonstrate any type of synchronized behavior men-
tioned above, the time series x; ,(t) generated by these
systemsinvolvetime scales sthat are necessarily corre-
lated and satisfy the phase locking condition

|9 (1) — @s(t)] < const. ©)

In other words, complete, lag, phase, and generalized
synchronizations are the particular cases of the syn-
chronous coupled chaotic oscillator behavior called
“time-scale synchronization.”

The structure of this paper isasfollows. In Section 2,
we discuss the continuous wavelet transform and the
method of time scales s, and define the phases @(t)
associated with them. In Section 3, we consider the
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phase synchronization of two coupled Rossler systems.
We demonstrate the application of our method and dis-
cuss its relation to traditional approaches. Section 4
deals with synchronization of two coupled Rossler sys-
tems with funnel attractors. In this case, the traditional
methods for introducing the phase fail and it isimpos-
sible to detect the phase synchronization regime. Syn-
chronization between systems can be revealed here
only by means of indirect measurements (see [33] for
details). We demonstrate the efficiency of our method
for such cases and discussthe correl ation between phase,
lag, and complete synchronizations. In Section 5, we
apply our method to the unidirectional coupled Rossler
systems with phase-coherent attractors in which gener-
alized synchronization is observed. The quantitative
measure of synchronization is described in Section 6.
The conclusions are presented in Section 7.

2. CONTINUOUS WAVELET TRANSFORM

The continuous wavel et transform is a powerful tool
for analyzing the behavior of nonlinear dynamical sys-
tems. In particular, the continuous wavelet analysis has
been used for the detection of synchronization of cha-
otic oscillations in the brain [35, 43, 44] and chaotic
laser array [45]. It has also been used to detect the basic
frequency of oscillationsin nephron autoregulation [46].
We propose to analyze the dynamics of coupled chaotic
oscillators by considering system behavior at different
time scales s, each of which is characterized by its own
phase @(t). In defining the continuous set of instanta-
neous phases @(t), the continuous wavelet transform is
a convenient mathematical tool.

We consider the continuous wavel et transform of a
chaotic time series x(t),

00

W(s to) = J'X(t)llJito(t)dt, (4)

where g (t) is the wavelet function related to the
mother-wavel et function Yy(t) as

_ 1. .d-tg
We (1) = Tsw 0s O ()
Thetime scale s corresponds to the width of thewavelet
function Y, (1), t, is the shift of the wavelet along the

time axis, and the “*” symbol in (4) denotes complex
conjugation. We note that the time scale s is typically
used instead of the Fourier-transform frequency f and
can be considered as the quantity inversed to it.

The Morlet wavelet [47]
1o 0Ny
Wo(n) = %GXP(JQOH)GXDD—ED (6)

has been used as amother-wavel et function. The choice
of the parameter value Q, = 2t providestheredation s=
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Fig. 1. (8) A phase coherent attractor and (b) the Fourier spectrum for the first Rossler system (10). The coupling parameter €

between the oscillators is zero.

1/f between the time scale s of the wavelet transform
and the frequency f of the Fourier transform.

The wavelet surface
W(s, to) = |W(s, to)| exp[[j s(to)] (7)

describes the system dynamics on every time scale s at
the time instant t,. The value of |W(s, ty)| indicates the
presence and intensity of the time scale s mode in the
time series x(t) at the time instant t,. The quantities

E(s o) = [W(s to)|° (®)
and
[E(s)0 = J‘|W(s, to)|*dto (9)
are the instantaneous and integral energy distributions
on time scales, respectively.

The phase @y(t) = argW (s, t) is naturally introduced
for every time scale s. This means that the behavior of
each time scale s can be described by means of its own
phase @(t). If two interacting chaotic oscillators are
synchronized, the corresponding time series x,(t) and
X,(t) involve scales s correlated with each other. This

correlation can be detected by examining condition (3),
which must be satisfied for synchronized time scales.

3. PHASE SYNCHRONIZATION
OF TWO ROSSLER SYSTEMS

We first consider two coupled Rdssler systems with
dlightly mismatched parameters [27, 28],

X1 = =Wy ,Y12—21 2+ E(Xy 1 =Xy 2),
Y12 = Wy X2+ aY; 5,

21, = Ptz ,(X,,—C),
where a = 0.165, p = 0.2, and ¢ = 10. The parameters

(10)
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Wy = Wy £ A determine the parameter detuning and €
is the coupling parameter (w, = 0.97, A = 0.02). It was
shown [21] that the phase synchronization is observed
for these control parameter values and a coupling
parameter of € = 0.05.

In this case, the phase of the chaotic signal can be
easily introduced in one of the ways mentioned above,
because the phase coherent attractor with rather simple
topological properties is reaized in the system phase
space. The attractor projection on the (x, y) plane
resembles the smeared limit cycle where the phase
point always rotates around the origin (Fig. 1a). The
Fourier spectrum (f) contains the basic frequency peak
fo = 0.163 (see Fig. 1b), which coincides with the mean

frequency f = Q/2m determined from the instanta-
neous phase @(t) dynamics (2). Therefore, the phase
synchronization regime can be detected in two coupled
Rossler systems (10) by means of traditiona
approaches without complications.

When the coupling parameter € is equal to 0.05, the

phase synchronization between chaotic oscillators is
observed. Phase locking condition (1) is satisfied and

the mean frequencies Q; , are entrained. Hence, the
time scales s, = 6 of both chaotic systems correspond-

ing to the mean frequencies Q;,» should be correlated
with each other. Correspondingly, the phases @ »(t)
associated with these time scales s should be locked and
condition (3) should be satisfied. The time scales that
are nearest to thetime scale s, should a so be correl ated,
but theinterval of the correlated time scales depends on
the coupling strength. At the same time, there should be
time scales that remain uncorrelated. These uncorre-
lated time scales cause a difference between chaotic
oscillations of coupled systems.

Figure 2 illustrates the behavior of different time
scales for two coupled Réssler systems (10) with phase
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Fig. 2. (a) Wavelet power spectra [E(s)for the first (solid line) and the second (dashed line) Rossler systems (10). (b) The depen-
dence of the phase difference @ (t) — @ (t) on timet for different time scales s. The coupling parameter between the oscillators is

€ = 0.05. Phase synchronization for two coupled chaotic oscillators is observed.

coherent attractors. It is clear that the phase difference
@4 (t) — @u(1) for scales s, = 6 is bounded, and therefore
time scales s, = 6 corresponding to the main frequency
fo of the Fourier spectrum are synchronized. It isimpor-
tant to note that the wavel et power spectra [, ,(s)[hat
are close to each other (Fig. 2a) and time scales s char-
acterized by alarge value of energy (e.g., s=5) closeto
the main time scale s, = 6.0 are also correlated. There
are also time scales that are not synchronized, for
example, s= 3.0, s=4.0 (Fig. 2b).

Therefore, phase synchronization of two coupled
chaotic oscillators with phase coherent attractors man-
ifestsitself asasynchronous behavior of thetime scales
S (and time scales s close to ) corresponding to the

chaotic signal mean frequency Q .

4. SYNCHRONIZATION
OF TWO ROSSLER SYSTEMS
WITH FUNNEL ATTRACTORS

We consider a more complicated example where it
is impossible to correctly introduce the instantaneous
phase @(t) of the chaotic signal x(t). It is clear that in
such cases, the traditional methods of detecting phase
synchronization fail and it is necessary to use the other
techniques, e.g., indirect measurements [33]. On the
contrary, our approach gives correct results and allows
detection of the synchronization between chaotic oscil-
lators as easily as before.

As an illustration, we consider two nonidentica
coupled Rossler systems with funnel attractors (Fig. 3),

X12 = =Wy oY1 2—2Z 2+ (X1 —Xq 2),
Yi2 = Wy X2t aY; o+ €(Yo1—Y1,2),

21, = P+2y,(%,,—0),

(11)
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where € is a coupling parameter and w; = 0.98, w, =
1.03. The control parameter values have been selected
analogously to[33] asa=0.22, p=0.1, and c=8.5. We
note that under these control parameter values, none of
the methods mentioned above all ows defining the phase
of the chaotic signal correctly in entire range of the cou-
pling parameter € variation. Therefore, nobody can
determine by means of direct measurements whether
the synchronization regime occurs for several values
of €. On the other hand, our approach permits easy
detection of synchronization between the coupled
oscillatorsunder consideration for al values of the cou-
pling parameter.

In [33], it was shown by means of indirect measure-
ments that for a coupling parameter value of € = 0.05,
synchronization of two coupled Réssler systems (11)
occurs. Our approach based on the anaysis of the
dynamics of different time scales s gives analogous
results. The behavior of the phase difference @y(t) —
@(t) for this case is presented in Fig. 4b. One can see
that phase locking occurs for time scales s = 5.25,
which are characterized by the largest energy value in
the wavel et power spectra [E(s)[(Fig. 4a).

We note that the phase difference @u(t) — @u(t) is
also bounded at thetime scalescloseto s=5.25. Wecan
say that the time scales s = 5.25 (and close to them) of
two oscillators are synchronized with each other. At the
same time, other time scales (e.g., s= 4.5, 6.0) remain
uncorrelated. For such time scales, phase locking was
not observed (see Fig. 4b).

It isclear that the mechanism of synchronization of
coupled chaotic oscillators is the same in both cases
considered in Sections 3 and 4. The synchronization
phenomenon is caused by the existence of time scales s
in system dynamics correlated with each other. There-
fore, there is no reason to divide the considered syn-
chronization examples into different types.
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Fig. 3. (a) A phase picture and (b) the power spectrum of oscillation for the first Rossler system (11). The coupling parameter € is
equal to zero.
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Fig. 4. (8) The normalized energy distribution in the wavelet spectrum [E(s)Cfor the first (line 1) and the second (line 2) Rossler
systems (11); (b) the phase difference @ (t) — @s(t) for two coupled Rossler systems. The value of the coupling parameter is selected
ase = 0.05. Thetime scales s = 5.25 are correlated with each other and synchronization is observed.

It has been shown [21] that thereisacertain relation
between phase, lag, and compl ete synchronizations for
chaotic oscillators with slightly mismatched parame-
ters. With theincrease of the coupling strength, the sys-
tems undergo the transition from unsynchronized cha-
otic oscillations to phase synchronization. With a fur-
ther increase in the coupling, lag synchronization is
observed. As the coupling parameter increases further,
thetimelag decreases and both systemstend to have the
complete synchronization regime.

We consider the dynamics of different time scales s
of two nonidentical coupled Rossler systems (11) when
the coupling parameter value increases. If there is no
phase synchronization between the oscillators, their
dynamics remain uncorrelated for all time scaless. Fig-
ure 5 illustrates the dynamics of two coupled Rossler
systems when the coupling parameter € is sufficiently

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

small (€ = 0.025). The power spectra[EE(s)[bf thewave-
let transform for Rossler systems differ from each other
(Fig. 5a), but the maximum values of the energy corre-
spond approximately to the same time scale s in both
systems. It is clear that the phase difference @y(t) —
@(t) isnot bounded for almost all time scales (Fig. 5b).
One can see that the phase difference @u(t) — @u(t)
increases for time scale s = 3.0, but decreases for s =
4.5. This means that there should be atime scale 3.0 <
s* < 45 a which the phase difference remains
bounded. This time scale s* plays the role of a point
separating the time scale areas with the phase differ-
ence increasing and decreasing, respectively. In this
case, the measure of time scales at which the phase dif-
ference remains bounded is zero and we cannot talk
about the synchronous behavior of coupled chaotic
oscillators (see also Section 6).
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Fig. 5. (a) The normalized energy distribution in the wavelet spectrum E(s)for the first (line 1) and the second (line 2) Rossler
systems; (b) the phase difference @ (t) — @so(t) for two coupled Rdssler systems. The value of the coupling parameter is selected as

€ = 0.025. There is no phase synchronization between the systems.
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Fig. 6. (a) The normalized energy distribution in the wavelet spectrum E(s)for the first (line 1) and the second (line 2) Rossler
systems; (b) the phase difference @ (t) — @o(t) for two coupled Réssler systems. The value of coupling parameter is selected as

€=0.07.

As soon as any of the time scales of thefirst chaotic
oscillator becomes correlated with another time scale
of the second oscillator (e.g., when the coupling param-
eter increases), phase synchronization occurs (see
Fig. 4). The time scales s characterized by the largest
value of energy in the wavelet spectrum [E(s)Care more
likely to be correlated first. The other time scalesremain
uncorrelated as before. The phase synchronization
between chaotic oscillators leads to phase locking (3) at
the correlated time scales s.

As the parameter of coupling between the chaotic
oscillators increases, more and more time scales
become correlated and one can say that the degree of
synchronization grows. Therefore, with the further
increase of the coupling parameter value (e.g., € = 0.07)
in coupled Rossler systems (11), the time scales that
were uncorrelated before become synchronized

(Fig. 6b). It is evident that the time scales s = 4.5 are
synchronized in comparison with the previous case (€ =
0.05, Fig. 4b) when these time scales were uncorre-
lated. The number of time scales s demonstrating phase
locking increases, but there are nonsynchronized time
scales as before (e.g., thetime scaless=3and s=6
remain nonsynchronized).

The occurrence of lag synchronization [21] between
oscillators means that all time scales are correlated.
Indeed, the lag synchronization condition x;(t — 1) =
Xo(t) implies that W,(s, t — 1) = W,(t, s) and therefore
@4 (t—T) = @y(t). Inthiscase, phaselocking condition (3)
isobviously satisfied for all time scales s. For instance,
when the coupling parameter of chaotic oscillators (11)
becomes sufficiently large (s = 0.25), lag synchroniza-
tion of two coupled oscillators occurs. In this case, the
power spectra of the wavelet transform coincide with
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Fig. 7. (d) The normalized energy distribution in the wavelet spectrum [E(s)for the Rossler system; (b) the phase difference
@s1(t) — @o(t) for two coupled Rossler systems. The value of the coupling parameter is selected as€ = 0.25. Lag synchronization is

observed, all time scales are synchronized.

each other (see Fig. 7a) and phase locking takes place
for al time scales s (Fig. 7b). We note that the phase
difference @y (t) — @u(t) is not equal to zero in the case
of lag synchronization. It is clear that this difference
depends on thetimelag 1.

A further increase of the coupling parameter leadsto
a decrease of thetime lag T [21]. Both systems tend to
have the compl ete synchronization regime X, (t) = X,(t),
and hence the phase difference @4 (t) — @u(t) tendsto be
zero for al time scales.

The dependence of the synchronized time scale
range [S, S,] on the coupling parameter is shown in
Fig. 8. The range [s,; S,] of synchronized time scales
appears a € = 0.039. The appearance of the synchro-
nized time scale range corresponds to the phase syn-
chronization regime. As the coupling parameter value
increases, the range of synchronized time scales
expands until all time scales become synchronized.
Synchronization of all time scales means the presence
of the lag synchronization regime.

We can therefore say that the time-scale synchroni-
zation is the most general synchronization type unify-
ing (at least) phase, lag, and complete synchronization
regimes.

5. GENERALIZED SYNCHRONIZATION REGIME

We consider another type of synchronized behavior,
the so-called generalized synchronization. It has been
shown above that phase, lag, and complete synchroni-
zations are naturally related to each other and the syn-
chronization type depends on the number of synchro-
nized time scales. The details of the relations between
phase and generalized synchronizations are not at al
clear. There are several works [1, 22] dealing with the
problem of how phase and generalized synchroniza-
tions are correlated with each other. For instance, it has

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

been reported in [22] that two unidirectional coupled
Rossler systems can demonstrate the generalized syn-
chronization, while the phase synchronization has not
been observed. This case can easily be explained by
means of the time scale analysis. The equations of the
coupled Rossler system are

—WY1—7,
WX, +ays,

y1 =
z; = p+2z(x;—c)

. (12)
Xy = — WY, =2, + €(X1—Xy),

Y2 = WXy +ay,,
2, = p+2z(x,—-c),
where X, = (X, Y1, )" and X, = (X, Yo, 2)" are the
respective state vectors of the first (drive) and the sec-

ond (response) Rossler systems. The control parameter
values are chosen as w; = 0.8, w, =1.0,a=0.15,p =

s, =30.5
s ! h.

€

Fig. 8. The dependence of the synchronized time scale
range [Sy; Syl on the coupling strength € for two coupled

Rosdler systems (11) with funnel attractors.
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Fig. 10. (a) Normalized energy distribution in the wavelet spectrum [E(s)Cfor thefirst (line 1) and the second (line 2) Rossler sys-
tems. The time scales indicated with arrows correspond to the frequencies f; = 0.125 and f, = 0.154; (b) the phase difference
@s1(t) — @so(t) for two coupled Rossler systems. Generalized synchronization is observed.

0.2, ¢ =10, and € = 0.2. Generalized synchronization
occursin this case (see [22] for details). Thetime scale
analysis explains why it is impossible to detect phase
synchronization in system (12) despite generalized syn-
chronization being observed.

We consider Fourier spectra of coupled chaotic
oscillators (Fig. 9). There are two main spectral compo-
nents with the frequencies f, = 0.125 and f, = 0.154 in
these spectra. The analysis of the behavior of time
scales shows that both the time scales s, = 1/f; = 8.0 of
the coupled oscillators corresponding to the frequency
f, and time scalescloseto s; are synchronized, whilethe
time scales s, = 1/f, = 6.5 and those close to this value
do not demonstrate synchronous behavior (Fig. 10b).

The source of such behavior of time scales becomes
clear from the wavel et power spectra [EE(s) Cbf both sys-
tems (see Fig. 10a). The time scale s; of the drive
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Rossler system is characterized by a large value of
energy, while the part of energy associated with this
scale of the response system is quite small. Therefore,
the drive system dictates its own dynamics at the time
scale s, to the response system. The opposite situation
occurs for the time scales s, (Fig. 10a). The drive sys-
tem cannot dictate its dynamics to the response system
because the part of energy associated with this time
scale is small in the first Rossler system and large
enough in the second one. Therefore, time scales s, are
not synchronized.

Thus, the generalized synchronization of the unidi-
rectional coupled Rossler systems appears as the time
scale synchronized dynamics, similarly to other syn-
chronization types. It is aso clear why the phase syn-
chronization was not observed in this case. Figure 9
shows that the instantaneous phases @, ,(t) of chaotic
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Fig. 11. Dependence of the synchronization measure p4 for
thefirst Rossler system (11) on the coupling strength €. The
measure p, for the second Rosder oscillator behaves in a

similar manner (not shown in the figure).

signals X, ,(t) introduced by means of traditional
approaches are determined by both frequencies, f; and
f,, but only the spectral components with the frequency
f, are synchronized. Therefore, observation of the
instantaneous phases ¢, ,(t) does not allow detection of
phase synchronization in this case, athough the syn-
chronization of time scales takes place.

Thus, one can see that there is a close relation
between different types of chaotic oscillator synchroni-
zation. According to the results mentioned above, we
can say that phase, lag, complete, and generalized syn-
chronizations are particular cases of time-scale syn-
chronization. Therefore, it is possible to consider dif-
ferent types of synchronized behavior from the univer-
sal standpoint. Unfortunately, it is not clear how one
can distinguish phase synchronization! and generalized
synchronization using only the results obtained from
the analysis of the time scale dynamics.

6. MEASURE OF SYNCHRONIZATION

From the exampl es given above, we can seethat any
type of synchronous behavior of coupled chaotic oscil-
lators leads to the occurrence of synchronized time
scales. Therefore, the measure of synchronization can
beintroduced. Thismeasure p can be defined asthe part
of the wavelet spectrum energy associated with the syn-
chronized time scales,

Sb

-1
P12 = E, 2.[ [E; »(s)Us, (13)
Sm

1 We mean here that phase synchronization between chaotic oscil-
lators occurs if the instantaneous phase @(t) of the chaotic signal
may be correctly introduced by means of traditional approaches
and phase locking condition (1) is satisfied.
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where[s,; s;] isthe range of time scalesfor which con-
dition (1) is satisfied and

00

Ei, = J-Dzl,z(s)tds (14)
0

is the total energy of the wavelet spectrum. This mea-
sure p is zero for nonsynchronized oscillations, and
unity for the complete and lag synchronization regimes.
If the phase synchronization regime is observed, p
takes a value between zero and unity depending on the
part of energy associated with the synchronized time
scales. Hence, the synchronization measure p makes it
possible not only to distinguish synchronized and non-
synchronized oscillations, but aso to characterize the
degree of time scale synchronization quantitatively.

Figure 11 presents the dependence of time-scale
synchronization measure p, for thefirst Rosser oscilla-
tor of system (11) considered in Section 4 on the cou-
pling parameter €. It is clear that the part of the energy
associated with the synchronized time scales grows
monotonically with increasing coupling strength. Sim-
ilar results have been obtained for the generalized syn-
chronization of two coupled Rossler systems consid-
ered in Section 5.

We have already mentioned that when the coupled
oscillators do not demonstrate synchronous behavior,
there are time scales s at which the phase difference
@4 (t) — @u(t) isbounded. Such time scales play therole
of points separating the time scale areas where the
phase difference increases and decreases, respectively
(see also Section 4). Nevertheless, the presence of such
time scales does not mean the occurrence of chaotic
synchronization, because the part of energy associated
with them is equal to zero. Therefore, the synchroniza-
tion measure p of such oscillations is zero, and the
dynamical regime realized in the system in this case
should be classified as nonsynchronous.

7. CONCLUSIONS

Summarizing this work, we note severa principa
aspects. First, we have proposed considering the time
scale dynamics of coupled chaotic oscillators. It allows
usto examine the different types of behavior of coupled
oscillators (such as complete synchronization, lag syn-
chronization, phase synchronization, generalized syn-
chronization, and nonsynchronized oscillations) from
the universal standpoint. In this case, time scale syn-
chronization is the most common type of synchronous
coupled chaotic oscillator behavior. Therefore, the
other types of synchronous oscillations (phase, lag,
complete, and generalized) may be considered particu-
lar cases of time-scale synchronization. The quantita-
tive characteristic p of the synchronization measure has
also been introduced. It is important to note that our
method (with insignificant modifications) can also be
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applied to dynamical systems synchronized by the
external (e.g., harmonic) signal.

Second, the traditional approach for the phase syn-
chronization detecting based on the introduction of the
instantaneous phase @(t) of the chaotic signal issuitable
and correct for such time series characterized by the
Fourier spectrum with a single main frequency fy. In
this case, the phase @, associated with thetime scale s,
corresponding to the main frequency f, of the Fourier
spectrum coincides approximately with the instanta-
neous phase @(t) of the chaotic signal introduced by
means of the traditional approaches (see also [36]).
Indeed, because the other frequencies (the other time
scales) do not play asignificant rolein the Fourier spec-
trum, the phase @(t) of the chaotic signal is close to the
phase @(t) of the main spectral frequency f, (and the
main time scale s, respectively). It is obvious that in

this case, the mean frequencies f = Cp(t)Z2m and

fso = Cipso (t) 211 should coincide with each other and
with the main frequency f,, of the Fourier spectrum (see
also [31]),

f=fso=f, (a5)
If the chaotic time seriesis characterized by the Fourier
spectrum without a single basic frequency (like the
spectrum shown in Fig. 3b), the traditional approaches
fail. One has to consider the dynamics of the system at
all time scales, but this cannot be done by means of the
instantaneous phase @(t). On the contrary, our approach
based on the analysis of time scale dynamics can be
used for both types of chaotic signals.

Finally, our approach can be easily applied to the
experimental data because it does not require any apri-
ori information on the dynamical systems considered.
Moreover, in several cases, the influence of noise can be
reduced by means of the wavel et transform (see[39, 48,
49] for details). We believe that our approach will be
useful and effective for the analysis of physical, biolog-
ical, physiological, and other data, such as described
in[9, 10, 36, 35].
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Abstract—The dependence of the threshold parameters and the period of the electric-field-induced spatially
periodic reorientation of the director in aflexoelectric nematic liquid crystal (NLC) on the anchoring conditions
at the surface of a planar NLC cell has been studied. The threshold electric field and the corresponding wave-
number of the periodic structure of the director field have been numerically calculated for arbitrary values of
the anchoring energy. In the case of strong anchoring, the corresponding analytical expressions are obtained in
asingle-constant approximation. A decrease in the azimuthal anchoring energy leadsto an increasein theinter-
vals of possible values of the flexoelectric parameter v and the ratio K,/K; of the Frank elastic constants. A
decreasein the polar anchoring energy leads to narrowing of these intervals as compared to the case of infinitely
strong anchoring at the NLC cell surface. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Considerable interest in the physics of phenomena
in liquid crystal cells under the action of external
fields—in particular, in the process of threshold reori-
entation of the director of a nematic liquid crysta
(NLC) in the applied electric field (known as the Frée-
dericksz effect)—are related to the wide use of such
cellsin various electrooptical devices [1-3]. Although
the threshold reorientation of the NLC director isavol-
ume effect, important characteristics such asthe thresh-
old current and the degree of the director reorientation
significantly depend on the interaction between the lig-
uid crystal and the cell surface. The effect of the cell
surface on these characteristics is so strong that even a
spontaneous Fréedericksz transition (in fact, stimulated
by a change in conditions at this surface) may take
place [4—7]. One of the most important parameters
determining the conditions at the NLC cell surface and
influencing the NL C director behavior is the anchoring
energy. The model of infinitely strong anchoring offers
the simplest case, while allowance for a finite anchor-
ing energy significantly complicates description of this
system.

It was established that, under certain conditions, a
threshold reorientation of the NLC director is accompa
nied by theformation of aperiodic spatia structureinthe
plane of the NLC cell. Previoudly, Bobylev et al. [8, 9]
described this phenomenon in a planar-oriented cell of
a flexoelectric NLC with absolutely rigid (infinitely
strong anchoring) boundary conditions. Romanov and
Sklyarenko [10] studied the influence of the surface
conditions on the electric-field-induced threshold peri-
odic structure of the director field, but only in ahomeo-

tropically oriented cell of aflexoelectric NLC. Theval-
ues of the threshold electric field and the spatial period
in the director reorientation were determined as func-
tions of the anchoring energy and the flexoel ectric coef-
ficients of the NLC. Recently, Barbero and Lelidis[11]
studied the possibility of the formation of periodic
structures of flexoelectric origin in a homeotropic
NLC cell.

Lonberg and Meyer [12] showed that aperiodic spa
tial structure of the director field can arise in a homeo-
tropic NLC cell with absolutely rigid boundary condi-
tions even in the absence of the flexoelectric polariza-
tion, depending only on the ratio of the Frank elastic
constants K; and K,. When K,/K; <r, = 0.3, the system
exhibits a Fréedericksz transition with the formation of
a periodic spatial structure, whereas only a homoge-
neous Fréedericksz transition is possible for K,/K; > .
It was demonstrated [13-15] that the character of the
periodic structure formed in this geometry strongly
depends on the anchoring energy.

Sim0es et al. [16, 17] theoretically and experimen-
tally investigated periodic structures appearing in the
cells of lyotropic NLCs when the external magnetic
field exceeded a threshold for the Fréedericksz transi-
tion. The influence of the elastic constant K,, on the
spontaneous periodic distortions in a planar NLC cell
was studied in [18-21], while a relationship between
K,, and the parameters of a periodic structure formed
during the Fréedericksz transition in the external mag-
netic field was analyzed in [22].

1063-7761/05/10004-0795$26.00 © 2005 Pleiades Publishing, Inc.
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The aim of this study was to consider the effect of
the anchoring energy on the periodic spatial structure of
the director field in a planar flexoelectric NLC cell.

2. EQUATIONS DESCRIBING
THE DIRECTOR FIELD

Let us consider a plane-parallel flexoelectric NLC
cell bounded by the planes z=-L/2 and z = +L/2 with
an initial planar director orientation along the x axis.
Thecell isexposed to an external homogeneous electric
field E = (0, O, E). Thefree energy of thisNLC cell can
be expressed as

F=Fg+Fe+Fq+Fs,
_1 N2 2
Fo = EJ’{ K, (divn)“ + K,(n Cturln)

+K,[n x curln]?}dVv,

- = 5[0 E)QV, @
Fo = ~f{ey(n CE)divn + e;([curin xn] [E)} dV,

W,
= _¢ _ T 2
Fs 2J’ cos q)dS > J'cos ads,
Si2 Si»
W, >0, W,>0.

Here, n is the NLC director; F4 is the Frank elastic
energy; Fg and F, are the anisotropic and flexoelectric
contributions to the energy of NL C interaction with the
electric field; Fgisthe free surface energy of the NLC;
€, = §,— €& > Oisthe anisotropy of the static permittiv-
ity; e, and e; are the flexoelectric coefficients; W, and
W, are the polar and azimuthal anchoring energies at
the cell surface, respectively; and 6 and ¢ are the direc-
tor tilt angles in the xz and xy planes, respectively.

It should be noted that, since we are interested in the
influence of afinite anchoring energy of the NLC at the
cell surface, the surface free energy in Egs. (1) has been
written in terms of the simplest (but still most fre-
guently used) Rapini—Papoular model [23]. According
to this, the energy of the NLC—surface interaction is
proportional to square of the angle between the director
and its easy axis on the cell surface. However, we have
also taken into account that a change in the surface
energy can bedifferent for director rotation relative to the
easy axisin the azimuthal and polar directions[24].

Since the threshold reorientation of the director in
the planar geometry leads to the appearance of a peri-
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odic spatial structure along they axis[8, 9], we seek the
director in the following form:

n = icos(y, z)cosd(y, 2)

+jcosB(y, 2)sind(y, z) + ksinb(y, 2), @

wherei, j, k are the unit vectors of the Cartesian coor-
dinate system.

In the case of small distortions of the director field
(I9], 18] < 1), minimization of the free energy (1) with
respect to (6, ¢ givesthe set of stationary equations

0’0 . 9°0 ¢ b _
r—+-—+ €E’0+(1—r1 +eE=—+ = 0,
ay 97 ( )662 oy
2’0 00 _
ayoz an_o

©)

and the corresponding boundary conditions

We _ [@9 5¢D} _
Fe,E0+ =0,

[ EE Loz~ oyl ..

Wo, , @9 0967 _
|: ¢ * rEBZ ay[li|z *L/2 B 0'
where

= Sa r = K_2
AT, K’

e —e€
e:—l 3 eoz

e +e;
Ky ' '

Ky
Taking into account the symmetry of Egs. (3), a

solution to this system can be found in the following
form:

0(y, 2) = cos(qy)81(2), ¢(y,2) = sin(ay)$.(2), (5)
where the functions 8,(2) and ¢,(2) meet the condition

E &+ eE? (1-ngd +eE B
0 g2 '@ 93z " *90
0 0
JeEq—(1-1) ¢ ¢
e —r r— —
R a2 dz’ 0 ©)
[l [l
XDel(Z) 0=0
Ué.(2) 0
Substituting in these relations
O O O 0
%@ g = &g Op 7)
0¢,(20 O¢400
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we abtain a homogeneous system of two algebraic
equations for determining the unknown coefficients 6,
and ¢4,. This system has a nontrivial solution provided
that

(A=) +eEX(A* =)

~2[eE’(1-r) + (eEq)] = O, ©

r#0.

Solving Eg. (8), we obtain A = ip, and £p,, where
p, and p, are real quantities given by the formulas

p, = EI%[EEZ + geEZ)2

/2
+4q°€eE

21—r+1/v}"? 2
r O }—q

OO,

9)

_ U 1 2 2,2
p, = —§|:€E —%GE)

21—r+1/v}?
r 0 }

DED

Dl/2
+4q°eE o,
0
and v = e/e
Equations (6) yield

b _
010

eEq-— (1—r)q)\
q 21\’

Taking this into account, the total solution of Egs. (6)
can be written as

0.(2) = a,cos(p,2) +a,sin(p,2)
+Db, cosh(p,2z) + b,sinh(p,2),
¢.(2) = a(a,cos(p,2) —B,sin(p;2))

. (20
+a,(a;sin(p,2z) + B,cos(p;z))
+ b, (a,cosh(p,z) + B,sinh(p,2))
+b,(a,sinh(p,z) + B,cosh(p,2)),
where
eE eE
Gl = 2 q 21 02 = q 2! (11)
q +rp; q —Ip;
1-r 1-r
B, = ( - )qgl’ B, = ( )qu’ (12)
q +rp; q —Ip;
and a, b; (i = 1, 2) are arbitrary constants whose values

are determined from the boundary conditions (4).
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3. DEPENDENCE OF THE DIRECTOR
REORIENTATION THRESHOLD
ON THE AZIMUTHAL ANCHORING ENERGY

L et us assume that the polar anchoring energy at the
cell surface isinfinitely large (W = ), while the azi-
muthal energy W, may have an arbitrary value. In this
case, the boundary conditions (4) take the following
form:
=0,

el|z—+L/2

d¢1}
+r =0
|: q)l dZ z==L/2

Substituting solution (10) into the boundary condi-
tions (13), we obtain a homogeneous system of four
algebraic equations for determining the unknown coef-
ficients g, by (i = 1, 2). This system has a nontrivial
solution provided that

p,L |jN¢ pZLD
[Bzcot 5 DK + r p,coth—=— 51

(13)

+ B, coth=%- p2 [W¢ +rp, cot 2"%}

[ W coth— + rpZD

—BlEW“’ cot——— —rp]D}

LW (14)
Pl WV poL 0
[cx cot 2 DKl(:oth + P
PoL W,
—a,coth—= DK cot —rplD}

[O(lEW"’ +rp,cot ZLE

_azgﬁ’ +rpzcothp§|'%} = 0.

Solving Eq. (14), we find the electric field E as a func-
tion of the parameter g. A minimum on the E(q) curve
determines the threshold (critical) field E; for the onset
of instability.

In the general case, Eq. (14) admits only numerical
solution. It should be noted that a necessary condition
for the spatially periodic reorientation of the director is

dE| <o, (15)
dq q=0
No. 4 2005
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Fig. 1. Plots of (a) the dimensionless critical field E;, and
(b) the dimensionless critical wavenumber Q. versus azi-
muthal anchoring energy €, in the absence of flexoelectric
polarization (v = ) for r = 0.1 (1), 0.15 (2), 0.2 (3),
0.25 (4), 0.3 (5), 0.35 (6), and 0.4 (7).

Differentiating Eq. (14) with respect to g, we obtain
an expression for dE/dql,-, and, taking into account
condition (15), we arrive at the following relation
between the NLC parametersr, v, and € = W¢L/K1 in
an NLC featuring a periodic spatia structure of the
director field:

1 4rg

ZrD
5<
v vsq,D 0.

(1-r) ——%L 2r += (16)

(8) NLC cell in the absence of flexoelectric polar-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

LEDNEY, PINKEVICH

ization. In this case, Eq. (14) simplifiesto

B, cot— EW"’ + 1 p,coth p;"%
l

17)
+ 3, coth—=— p2 EW“’ +rpcotP Pl _
20~

Solving this equatlon, we determine the values of the

critical eectric field E. and the corresponding wave-

number g, for arbitrary values of the dimensionless azi-

muthal anchoring energy €, and theratio r of the Frank
elastic constants.

Figure 1 shows the calculated dependences of the

dimensionless critical electric field E; = Je E.L and
the corresponding dimensionless wavenumber Q. = g.L
on the azimuthal anchoring energy €, for various values
of the parameter r. As can be seen, critical electric field
increases with the azimuthal anchoring energy &,.

As can be seen, the period A, = 2170, of the spatial
structure of the director field decreases with increasing
&, for r = 0.2 and increases for greater values of this
parameter. The values of A tend to acertain finite level
asgy, — o, provided that

T
r<r, = 1——+— na

-8=0.3.
For each r from the interval r, <r < 0.5, relation (16)
givesacertain limiting (threshold) azimuthal anchoring

energy
_ _ 2rfr(1-2r)
Eoulr) 8(1—r)?—18(1-2r)

For &, < €4, the NLC cell exhibits a Fréedericksz tran-
sition with the formation of a periodic spatial structure,
whilefor g, > g, only a Fréedericksz transition with a
uniform (along the y axis) director distribution can take
place. For values of parameter r = 0.5, only a homoge-
neous Fréedericksz transition is possible in agreement
with the results of Oldano [13].

Figure 2 shows the plots of the threshold electric
field E; and the dimensionless wavenumber Q. versus
theratio r of the Frank elastic constants for various val-
ues of the azimuthal anchoring energy €,. As can be
seen, both the critical electric field and the correspond-
ing period A of the arising structure of the director field
increase with the parameter r. For each given value of
the azimuthal anchoring energy &,, relation (16) gives
acertain threshold ratio of the Frank elastic constants

(18)

rth(eq,)—El—— g 3T S—ED
(19)
T[ZD—l
_%l 2¢] %L } %l 2e,0
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0 0.1 0.2 0.3 0.4 0.5
r

Fig. 2. Plots of (a) the critical field E_ and (b) the critical

wavenumber Q. versus parameter r in the absence of flexo-

electric polarization (v = ) for the azimuthal anchoring
energy &, =50 (1), 5(2), 1(3), and 0.1 (4).

For r <ry,, the NLC cell exhibits a Fréedericksz transi-
tion with the formation of a periodic spatial structure,
whilefor r >ry, only ahomogeneous Fréedericksz tran-
sition is possible in agreement with the results obtained
in [13, 15]. In the limiting case of the infinitely strong
anchoring (g, —= ), formula(19) showsthat thethresh-
old ratio of the Frank elastic constantsisr, =r,[12].

(b) NLC cell with flexoelectric polarization. Inthe
case of strong (but not infinitely strong) azimuthal
anchoring (g, > 1), solving Eq. (14) inasingle constant
approximation (K, = K,) yieldsthe critical electric field

£ = E@) = gy ey @
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0 5 10 15 20

Fig. 3. Plots of (a) the critical field E_ and (b) the critical

wavenumber Q. versus azimuthal anchoring energy g, for
r=0.75and v =02 (1), 0.5 (2), 0.7 (3), 0.9 (4), 1.5 (5),
2.0(6), 2.2 (7), 2.5 (8), 2.8 (9), and 3.0 (10).

The corresponding wavenumber is

=T AvE.

forv <landegy(l-v) < 1, and this wavenumber is

13v
g 1- VD’

for|1-v| < L

For arbitrary values of the dimensionless azimuthal
anchoring energy €, and the K; # K,, Eq. (14) was
solved by numerical methods. Figure 3 shows the cal-
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Fig. 4. Plots of (a) the critical field E;, and (b) the critical

wavenumber Q. versus parameter r for g, = 10 and v =
0.5(1),0.7 (2),0.9(3), 1.5(4), 20(5), 3.0 (6), and = (7).

culated dependences of the dimensionless critical elec-
tric field E; and the corresponding wavenumber Q. on
the azimuthal anchoring energy ¢, for various values of
the flexoelectric parameter v. For certainty, the ratio of
the Frank elastic constants was assumed to ber = 0.75.
As expected, the critica electric field grows with
increasing azimuthal anchoring energy €, and the flex-
oelectric parameter v. However, the period A, of the
spatial structure of the director field can be anonmono-
tonic function of &, (Fig. 3b). As the flexoelectric
parameter v increases, the critical period A, grows. For
each v value obeying the condition

v > U ,
8(1—r)*—1f(1-2r)
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thereisacertain limiting (threshold) azimuthal anchor-
ing energy which monotonically decreases with
increasing v and, asv —» o, tends to the g,,(r) value
given by formula (18).

Figure 4 shows the plots of the critical electric field

E. and the dimensionless wavenumber Q. versus the

ratio r of the Frank elastic constants for several values
of the flexoel ectric parameter v at an azimuthal anchor-
ing energy of €, = 10. Both the critical electric field and
the corresponding period A, of the arising structure of
the director field increase with the parameter r. As can
be seen from Fig. 4b, the threshold ratio of the Frank
elastic constants decreaseswith increasing v and, in the
limiting case corresponding to the absence of the flexo-
electric polarization (curve 7), acquires the value given
by formula (19).

It should be noted that, as the parameter r increases,
the critical electric field E; tends to the limiting value

EJ(ry) = T.JeL, which depends neither on the azi-
muthal anchoring energy €, nor on the flexoelectric
parameter v.

As can be seen from Figs. 1-4, the domain of exist-
ence of a periodic structure of the director field with
respect to both r (the ratio of the Frank elastic con-
stants) and v (flexoelectric parameter) values expands
at afinite value of the azimuthal anchoring energy €, as
compared to the case of infinitely strong anchoring.

4. DEPENDENCE OF THE DIRECTOR
REORIENTATION THRESHOLD
ON THE POLAR ANCHORING ENERGY

Now let us consider the opposite case, whereby the
azimuthal polar anchoring energy at the cell surfaceis
infinitely large (W, = =), while the polar anchoring
energy W, isarbitrary. In this case, the boundary condi-
tions (4) take the following form:

We do _
[EES et Eﬂz:iuz -0 (21)

¢1|z=¢u2 =

Substituting solution (10) into boundary condi-
tions (21), we obtain a homogeneous system of four
algebraic equations for determining the unknown coef-
ficientsa;, b, (i = 1, 2). The condition that this system
has a nontrivial solution yields a determinant equation
that determines the dispersion dependence E(q), which
isnot presented here dueto its being very cumbersome.
The domain of the existence of a periodic spatial struc-
ture of the director field is determined, in accordance
with condition (15), by the following inequality:

A(L—r)?+ B(l—r)—%Cu%l—Zr +\—}1E—D <0, (22)
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which is valid for all values of the polar (dimension-
less) anchoring energy €5 = WL/K;. In thisrelation,

€y + 2ucotu

A=2
ucotu

(1—ucotu),

B= 3
’ JVV,

C = [ € +%se+2ucotu 4u

“Sin'u B

ggCOtU—2U
_2_9_________%:

.2
u v,Sin“u

otu—

u
sinzdj’

€y + 2ucotu
cotu — g4 cot U——

1[8
V [0}
€gCOtU—2U

_(89"'2) u O

and u is the minimum positive root of the transcenden-
tal equation

2
A:}—ucotu = (ggcOtu—2u)(gq + 2ucotu).

[o]

(&) NLC cdll in the absence of flexoelectric polar-
ization. In this case, the equation for determining the
critical field isasfollows:

p,L

cot————p1D+[31 U=

coth p2 +pg =

BZEK (23)

Figure 5a shows the calculated dependences of the
wavenumber Q. of the periodic structure of the director
field on the polar anchoring energy €, for variousvalues
of the parameter r, which were obtained by solving
Eq. (23). As can be seen, the period A, = 217, mono-
tonically decreases with increasing €4. For each value
of the parameter r in theinterval r < 0.5, relation (22)
gives a certain threshold polar anchoring energy €g,(r)
such that for g4 < €gy,, the NLC cell exhibits a homoge-
neous Fréedericksz transition, while for g5 > &g, a
Fréedericksz transition with the formation of aperiodic
spatial structure takes place. For r > 0.5, in this case (as
well as for the infinite polar and a finite azimuthal
anchoring energy), only a homogeneous Fréedericksz
transition is possible in the NLC cell.

Figure 5b shows the plots of the wavenumber Q. on
theratior of the Frank € astic constants for various val-
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Fig. 5. Plots of the critical wavenumber Q. in the absence of
flexoelectric polarization (a) versus polar anchoring energy
ggforr=0.1(1),0.15(2),0.2(3), 0.22 (4), and 0.25 (5) and
(b) versus parameter r for gg = 50 (1), 10 (2), 5 (3), 2 (4),
and 1 (5).

ues of the polar anchoring energy €g4. The critical value
of r according to relation (22) is

u2 u2
rn(€e) = 1- -=
2sin® u, Ee

(24)

2 2 12

L E U +E% wooou

— 2 .2 T s ,
[2sin‘u, €1 2sin‘u, €

where u, is the minimum positive root of the equation

cotu, = 2uy/gq. Forr <ry,, the NLC cell exhibitsaFrée-
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dericksz transition with the formation of a periodic spa-
tial structure, while for r > ry, only a homogeneous
Fréedericksz transition is possible.

Similar to the case of a finite azimuthal anchoring
energy, the critical electric field monotonically grows
with increasing polar anchoring energy €, and parame-
ter r. However, in the latter case, E. tends to different

limiting values E(ry) = 2uy/ /e L dependent on the
polar anchoring energy &g.

As can be seen from Fig. 5b, the finite polar anchor-
ing energy &, leadsto narrowing of the domain of exist-
ence of a periodic structure of the director field with
respect to the parameter r as compared to the case of the
infinitely strong anchoring.

(b) NLC cell with flexoelectric polarization. Inthe
case of strong polar anchoring (¢4 > 1), the critical
electric field in asingle constant approximation is

_ _ 21 1+vg
B = B@) = gt e, 0

The corresponding wavenumber is

- mjl-vp _1l+wgy
9% =T 1+v%' gg1—v0

forv <1 and gg(1-v) > 1, and this wavenumber is

(25

for|1-v| < L

For arbitrary values of the polar anchoring energy €,
and the parameter r, the problem in this case (aswell as
in that considered above) has to be solved by numerical
methods. The results of numerical calculations show
that the critical electric field E; in a flexoelectric NLC
with r # 1 grows monotonically with increasing € and
r for all values of the flexoelectric parameter v. The
period A, of the spatial structure of the director mono-
tonically decreases with increasing €5 and monotoni-
cally increases with increasing r, also for al values
of v. Thethreshold value of the polar anchoring energy
increases with the parameter v for al r, in contrast to
the case of finite azimuthal anchoring. The threshold
value of r monotonically decreases with increasing v
and approaches (asv — ) afinite valuery,(€q) deter-
mined by formula (24).

Inatypical NLC with parametersof €,=0.2,r =0.4,
and K, =5.5 x 107 dyn and infinitely strong anchoring
(W, = W, = ) in the absence of flexoelectric polariza-
tion, the cell exhibits only the Fréedericksz transition
with a homogeneous director distribution along the y
axis. However, if the azimuthal anchoring energy is

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

LEDNEY, PINKEVICH

finite, for example, €, = 0.1 (but W, = ), the NLC cell
exhibits a Fréedericksz transition with the formation of
a periodic spatial structure with A, = 4.6L, whereas a
finite polar anchoring with g5 = 0.1 (but W, = ) still
admits only the homogeneous Fréedericksz transition.
By the sametoken, aflexoelectric NLC withv = 0.5 and
v, = 0.1 (corresponding to the flexoel ectric coefficients
g, and e; within (0.7-2.5) x 10 dyn 2 [3]) shows a
spatialy periodic director field with A, = 2.3L for infi-
nitely strong anchoring and with A, = 3.4L for g, = 0.1
(but Wy = ), while exhibiting only a homogeneous
Fréedericksz transition for €5 = 0.1 (but W, = ). Thus,
the period of the spatial structure of the director field
depends much stronger on the azimuthal anchoring
(this circumstance can be used for evaluating this
energy), whereas the critical field in the general case
depends more significantly on the polar anchoring.

In concluding, it should be emphasized that, in NLC
cells with planar director, the finite anchoring signifi-
cantly influences both the critical field and the period of
a gpatialy periodic structure of the director field, as
well astheintervals of the flexoel ectric parameter v and
the ratio of the Frank elastic constants admitting the
formation of such periodic structure. In the case of a
finite azimuthal anchoring, the domain of existence of
the periodic director field with respect to r and v
expands, whereas for a finite polar anchoring this
domain contracts as compared to the case of infinitely
strong anchoring.

REFERENCES

1. P. de Gennes, The Physics of Liquid Crystals (Claren-
don, Oxford, 1974; Mir, Moscow, 1977).

2. L. M. Blinov, Electro-Optical and Magneto-Optical
Properties of Liquid Crystals (Nauka, Moscow, 1978;
Wiley, New York, 1983).

3. A. S. Sonin, Introduction to the Physics of Liquid Crys-
tals (Nauka, Moscow, 1983) [in Russian].

4. A. N. Chuvyrov, Kristallografiya 25, 326 (1980) [Sov.
Phys. Crystallogr. 25, 188 (1980)].

5. L. M. Blinov and A. A. Sonin, Zh. Eksp. Teor. Fiz. 87,
476 (1984) [Sov. Phys. JETP 60, 272 (1984)].

6. V. G. Nazarenko and O. D. Lavrentovich, Phys. Rev. E
49, 990 (1994).

7. 1. P. Pinkevich and M. F. Lednei, Proc. SPIE 2651, 167
(1996).

8. Yu. P. Bobylev and S. A. Pikin, Zh. Eksp. Teor. Fiz. 72,
369 (1977) [Sov. Phys. JETP 45, 195 (1977)].

9. Y. P.Bobylev, V. G. Chigrinov, and S. A. Pikin, J. Phys.
Collog. 40, C3-331 (1979).

10. V. P. Romanov and G. K. Sklyarenko, Zh. Eksp. Teor.
Fiz. 116, 543 (1999) [JETP 89, 288 (1999)].

11. G. Barbero and I. Ldlidis, Phys. Rev. E 67, 061708
(2003).

No. 4 2005



12

13
14

15

16

17

18
19

INHOMOGENEOUS THRESHOLD DIRECTOR REORIENTATION 803

. F. Lonberg and R. B. Meyer, Phys. Rev. Lett. 55, 718 20. A. L. Alexe-lonescu, G. Barbero, and I. Lélidis, Phys.

(1985). Rev. E 66, 061705 (2002).
. C. Oldano, Phys. Rev. Lett. 56, 1098 (1986). 21. G. Barbero, L. R. Evangelista, and I. Lelidis, Phys. Rev.
. W. Zimmermann and L. Kramer, Phys. Rev. Lett. 56, E 67, 051708 (2003).

2655 (1986). 22. A. D. Kiselev and V. Yu. Reshetnyak, Mol. Cryst. Lig.
. E. Mirddi, C. Oldano, and A. Strigazzi, Phys. Rev. A 34, Cryst. 321, 133 (1998).

4348 (1986). -

23. A. Rapini and M. Papolar, J. Phys. Callog. 30 (C4), 54

. M. Simd@es, A. J. Palangana, and L. R. Evangelista, Phys. (1963)[)_I I Fep Y 930 (C4)

Rev. E 54, 3765 (1996).

_— . 24. W. Zhao, C.-X. Wu, and M. Iwamoto, Phys. Rev. E 65,
. A. J. Pdangana, M. Simdes, L. R. Evangelista, and 031709 (2002).

A.A.Arrotéia, Phys. Rev. E 56, 4282 (1997).
. V. M. Pergamenshchik, Phys. Rev. E 47, 1881 (1993).
. V. M. Pergamenshchik, Phys. Rev. E 61, 3936 (2000). Tranglated by P. Pozdeev

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100 No. 4 2005



Journal of Experimental and Theoretical Physics, Vol. 100, No. 4, 2005, pp. 804-810.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 127, No. 4, 2005, pp. 907-914.
Original Russian Text Copyright © 2005 by Pasechnik, Krekhov, Shmeleva, Nasibullaev, Tsvetkov.

STATISTICAL, NONLINEAR,
AND SOFT MATTER PHYSICS

Orientational Instability in a Nematic Liquid Crystal
In a Decaying Poiseuille Flow

S. V. Pasechnik®*, A. P. Krekhov?, D. V. Shmeleva®,
. Sh. Nasibullaev®, and V. A. T svetkov?
a3tate Academy of | nstrument-Making and Informatics, Moscow, 107846 Russia
bInstitute of Molecular and Crystal Physics, Ural Research Center, Russian Academy of Sciences, Ufa, 450075 Russia
*e-mail: s-p-a-s-m@hotmail.ru
Received August 9, 2004

Abstract—The results of studies of orientational dynamics and instability in an MBBA nematic liquid crystal
in adecaying Poiseuilleflow are considered. The experimentswere made on awedge cell with agap width vary-
ing in adirection perpendicular to the flow. Confining surfaces ensured homeotropic adhesion of the nematic
to the surface. Above a certain critical value of the initial pressure drop, a uniform orientational instability is
observed, which corresponds to the emergence of the director from the plane of the flow. The dependence of
the critical pressure drop on thelocal thickness of the liquid crystal layer and on the external destabilizing elec-
tric field is determined. Simulation of nematodynamics equations is carried out. The results of theoretical
calculations arein qualitative and quantitative agreement with the experimental data. © 2005 Pleiades Publish-

ing, Inc.

1. INTRODUCTION

Nematic liquid crystals are anisotropic liquids char-
acterized by orientational ordering of molecules. These
bodies can serve asamodel system for studying univer-
sal regularities of rheological behavior of various com-
plex liquids such as liquid-crystal polymers, lamellar
phases of solutions of surfactants, and melts of block-
copolymers. Specific featuresin the behavior of aliquid
crystal in a flow are determined by anisotropy of vis-
coelastic properties and by the interaction between the
field of velocity v and the average local orientation of
molecules, which is described by a unit vector (direc-
tor) n. Orientational instabilitiesin anematic flow have
been studied most comprehensively for the case when
theinitial orientation of the director is perpendicular to
the plane of the flow [1-3]. Theoretical analysis of a
steady-state Poiseuille flow with a homeotropic orien-
tation of the director at the boundary surfaces of the
layer (vector n is perpendicular to the surface) shows
that an increase in the gradient of pressure applied
along the layer above a certain critical value leads to
uniform orientational instability accompanied by the
emergence of thedirector from the plane of theflow [4].
An analogous instability, which was predicted for an
oscillating Poiseuille flow [5], was observed earlier
and studied experimentally at frequencies from 1 to
20 Hz[6]. At small amplitudes of adecaying Poiseuille
flow in aliquid crystal with an initial homeotropic ori-
entation, the director field in the plane of theflow isdis-
torted [7]. However, the stability of such astate upon an
increaseintheinitia pressure drop has not been studied
experimentally as yet.

Here, we report on the results of a study of the ori-
entational behavior and instabilities in an MBBA
(n-metoxybenzylidene-n-butylaniline) nematic liquid
crystal under the action of a decaying Poiseuille flow.
The effect of a destabilizing electric field on the orien-
tational instability threshold isinvestigated.

2. EXPERIMENT

The experimental cell is shown schematically in
Fig. 1. A capillary with a wedge gap was formed by
glass plates with inner surfaces coated with a thin con-
ducting SnO, layer, which made it possible to apply an
electricfield to theliquid crystal layer. The treatment of
the surfaces with chromolane ensured a homeotropic
(perpendicular to the surface) orientation of the nematic
on the substrates. The main feature of the cell was
wedge-shaped with alocal layer width h varying along
they axis. The linearity of the h(y) dependence and the
absolute values of local width h were monitored from
the variation of the phase difference between the ordi-
nary and extraordinary rays caused by a decrease in the
aternating voltage (U, = 45V, a frequency of 5 kHz)
applied to the MBBA layer to zero [8]. The absolute
error in determining the local width h was approxi-
mately 2—3 um. Prior to the experiment, the cell was
mounted vertically and wasfilled with theliquid crystal
so that the material filled the capillary, filling channels,
and a part of expansion vessels (cylindrical pipes of
diameter D). Decaying Poiseuille flow (along the x
axis) was produced because of introduction of the crys-
tal into one of expansion vessels. The initial pressure

1063-7761/05/10004-0804$26.00 © 2005 Pleiades Publishing, Inc.
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drop AP, created in this case and proportional to theini-
tial difference AH, inthelevelsof theliquid crystal was
calculated to within 5% from the mass of the crysta
introduced in the cell and the diameter of the expansion
vessels. The experiments were carried out at tempera-
ture T =22+ 0.5°C.

For asmall wedging,
(hmax —ho)/A=0.002,

the capillary can be treated as a set of channels having
different widths and parallel to the x axis, to which the
same pressure gradient AP/L is applied. In addition, in
view of the large aspect ratio of the cell,

A L
(#0072~ 0 (et R)2
we can expect that a plane Poiseuille flow aong the x
axisisformed in the capillary (except for the boundary
regions at the ends of the cell); this is confirmed by
observations of movement of small impurity particles
(2-4 pmin diameter) added to the nematic.

The intensity I(t) of light with a wavelength of
628 nm (He-Ne laser) transmitted (along the z axis)
through the capillary was detected from an area of
diameter D = 0.3 mm by a photodiode and recorded in
digital form (with the help of A to D converter) on the
hard disk of a computer. Two versions of positions of
the polarizer and the analyzer were used in the experi-
ment: crossed polaroids oriented at an angle of a = 45°
to the direction of the flow (geometry a) and at an angle
of a = 0° (geometry b). Geometry b madeit possibleto
detect the emergence of the director from the xz plane
of the flow. Shadow images of the cell in crossed
polaroidsin geometries a and b were recorded simulta-
neously with the help of adigital camera.

3. EXPERIMENTAL RESULTS

For small initial pressure drops (AP, < 6 Pa) in the
entire range of local cell thicknesses hy < h < h,5, N0
changes in the intensity of transmitted light were
detected in the b geometry; consequently, the director
preserved its orientation in the plane of the flow. In the
a geometry, this regime corresponds to the shadow
image of the cell, consisting of dark and bright fringes
arranged along the direction of the flow and formed as
a result of interference of the ordinary and extraordi-
nary rays. The phase delay appears as a result of a
change in the refractive index, which isin turn associ-
ated with a deviation of the director from the initial
homeotropic orientation. The dynamics of the interfer-
ence fringes is as follows: the formation of the fringe
structure in the region of large local thicknesses begins
immediately after the emergence of theinitial pressure
difference; after this, the system of fringes moves

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

805
D a-a
| |
I I !
| o
ho [l
T T
| i
| i
| i fn I
| T I
| BN I
| ] I
| ] I
| ] I
| B I
| R I
| R I
| K I
oo
MO gl
| Th |
R B R )
| i I
| i I
| il b I
| ARt I
| ARl I
| il I
| | I
| b I
| Al I
| 0 I
| ) I
| b I
| o I
A N
Finax |1 |
y : ! |
l—‘ t
z X

Fig. 1. Geometry of a wedge-shaped cell: A=10cm, L =
1cm, hypgx = 210 pm, hg =33 um, and D = 1.5 cm.

towards smaller thicknesses. In the steady-state decay-
ing Poisedille flow, the fringes slowly move towards
larger thicknesses.

Recording the intensity of transmitted light locally
in the a geometry,

1(t) = 1,sin’[8(t)/2],

where |, is the input intensity, we found that the phase
lag &(t) decreases exponentially with time (curve 1 in
Fig. 2). For small deviations of the director (in the plane
of the flow) from the initial homeotropic orientation,
we can derive the following time dependence of the

phase lag [7]:

O(t) = doexp(—t/T5), T = Npom/ PYKo,

D
ko = A(Na + ho) (o + h2)/3TDL,

where §, is the maximal value of the phase lag at the

No. 4 2005



806

0.1

I I '
300 400 500

fs

1 1
0 100 200 600

Fig. 2. Time dependence of the phase lag (t). Experimental
data (solid curves) and results of simulation (dashed
curves): APy = 1.5 Pa, h = 164 pm (1), APy = 9.4 Pa, h =
70 um (2), APy =12.8 Pa, h=70 pm (3), and APy = 15.5 Pa,
h =70 um (4).

instant of stabilization of the decaying flow,

_ —O*ta,+ds
I’]hom - 2

is the viscosity of the homeotropically oriented liquid
crystal, p isthe density of the nematic, g isthe acceler-
ation dueto gravity, and k, is a quantity constant for the
given cell and depending on the geometrical size. The
experimental data for o(t) are correctly described by
dependence (1) using Nyom as a fitting parameter. The
value of 1o, = 0.16 = 0.02 Pas obtained for MBBA is
in good agreement with the results of independent mea-
surements[9, 10]. Our experiments suggest anew sim-
ple and reliable technique for measuring the viscosity
coefficients of nematic liquid crystals, which is based
on the recording of the time dependence of the phase
lag in a decaying Poiseuille flow. If the cells used in
experiments ensure the planar boundary conditions (the
director isoriented parallel to the substratesin the plane
of the flow), it is possible to measure the viscosity

— Oz+0,+ 04
r]plan - 2 .

With increasing initia pressure drop (AP, > 6 Pa),
the signa intensity I(t) of transmitted light in the b
geometry, which isrecorded in the range of large thick-
nesses of the cell, exhibits two peaks (curve 2 in
Fig. 3a), indicating the emergence of the director from
the plane of the flow. Figure 3b shows the theoretical
dependences I(t) in geometries a and b as well as the
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angle @,(t) of deviation of the director from the plane
of theflow at the center of thelayer. The nonlinear nem-
atodynamics equations[11] for a planar layer, when the
director and the velocity are functions of coordinate z
and time t [12], were solved numerically using the
material parameters for MBBA [10, 13]. The intensity
of transmitted light was calculated using the Jones
matrix method [14, 15]. Angle ¢, characterizes the ori-
entation of the director at the center of the layer:

n, = (0, sing,, cosQ,,).

The director distribution at the instant corresponding to
@, = 60° is shown in Fig. 3c. The first peak of the I(t)
signa in the b geometry is associated with the emer-
gence of the director from the plane of the flow in the
case of a large initial pressure drop. As the pressure
drop AP(t) decreases below the threshold value, the
director returnsto the plane of the flow (second peak on
the I(t) curve in the b geometry) and relaxes over long
time periods to the uniform homeotropic orientation.

The transition associated with the emergence of the
director from the plane of the flow is observed most
clearly in the shadow image of the cell (Fig. 4). Intheb
geometry (Fig. 4b), the shadow imageis (intheincreas-
ing order of the local layer thickness) dark field I in the
range of smaller thicknesses, light fringe I, and the
low-intensity region Ill. In the a geometry (Fig. 44a),
two regions can be clearly distinguished on the shadow
image: region | + 11, corresponding to relatively small
thicknesses, in which wide interference fringes parall el
to the direction of the flow are observed, and region 111,
corresponding to large thicknesses, where narrow inter-
ference fringes are transformed into wide fringes.

The polarization and optical analysis, as well as a
comparison of microphotographs (Fig. 4) with thetime
dependences of transmitted light (Fig. 3a), makeit pos-
sible to unambiguoudly identify al regions on the
shadow image of the cell: region | (thedirector isin the
plane of the flow, the azimuth angle @,, of deviation of
the director at the center of the layer is zero); region Il
(the director emerges from the plane of the flow (0 <
@, < 20°), and region |11 (the director is oriented almost
perpendicularly to the plane of the flow, ¢,, — 90°).

Therecording of shadow images and theintensity of
transmitted light in the b geometry made it possible to
clarify the nature of formation of the region corre-
sponding to the emergence of the director from the
plane of the flow. Immediately after the application of
theinitial pressure gradient (for 10-15 s) in the range of
large values of local thicknesses of the nematic layer,
light fringe Il is formed, which subsequently moves
along they axistowards smaller thicknesses over atime
of approximately 30-40 s. After approximately
50-60 s, the position of the light fringe stabilizes, and
the fringe begins to move slowly in the direction of
increasing layer thickness. This stage correspondsto a
steady-state decaying Poiseuille flow. The boundary vy,
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Fig. 3. Time dependences of the intensity of transmitted light, I(t), in geometry a (curves 1) and b (curves 2) and of the angle of
deviation of the director from the plane of the flow at the center of the layer, @(t) (curve 3). (8) Experimental data: APy = 20 Pa,

h =86 um; (b) theoretical calculations: APy = 21 Pa, h = 90 um; (c) schematic diagram of orientation of the director at the instant

corresponding to @, = 60°.

between regions Il and 111 can be seen most clearly,
while the boundary between regions | and Il becomes
less clear as fringe |1 moves towards large thicknesses.
Thewidth of region Il attainsits minimal value when it
begins its reverse motion and increases as fringe |l
moves towards large local thicknesses. The presence of
two peaksin the I(t) signal in the b geometry (Fig. 3a)
isduetothefact that light fringe 1l passestwicethrough
the point of observation.

At the stage corresponding to a steady-state decay-
ing Poiseuille flow, we recorded the time dependence
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Y(t) of the position of the boundary between regions |
and 111 since this boundary remains the clearest during
the entire experiment. The simultaneous recording of
the phaselag &(t) in the a geometry in the range of small
local widths of theliquid crystal layer makesit possible
to reconstruct the time dependence of the pressure
drop, AP(t). Since the director is oriented in the plane
of thelayer intherange of small local thicknesses of the
layer (the absence of signal I(t) in the b geometry) and
deviations from the homeotropic orientation are small,
the measured phase lag is proportional to the square of
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(@) (b)

Fig. 4. Shadow images of the cell in crossed polaroids at
instant t = 30 sfor APy = 15.5 Pa: (a) in geometry a; (b) in
geometry b.
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Fig. 5. The threshold pressure drop AP, corresponding to

the emergence of the director from the plane of the flow as
afunction of thelocal layer thickness h,. Experimental data

are shown by symbols and the results of calculations are
given by curves. U = 0: APy = 9.4 Pa (a and 1a), APy =
12.8 Pa (e and 2a), APy = 15.5 Pa (m and 3a); U = 3 V:
APy = 8.7 Pa (a and 1b), APy = 10.8 Pa (@ and 2b), and
APy = 14.1 Pa (m and 3b). Curves 4a and 4b correspond to
calculations for the case of a steady-state Poiseuille flow for
U =0and 3V, respectively.

the pressure drop [16],

3(t) O[AP(1)]?,

which makesit possibleto calculate AP(t) from the cor-
responding dependence &(t). It should be noted that, for
large initial pressure gradients, the time dependences
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o(t) of the phaselag differ substantially from the smple
exponentia law (1) (curves 2, 3, and 4 in Fig. 2). This
isdueto thefact that, after the application of alargeini-
tial pressure gradient, the orientation of the director
becomes almost perpendicular to the plane of the flow
in the major part of the cell, and the director returns to
the plane of the flow in the course of deceleration, after
which it acquires the equilibrium homeotropic orienta-
tion; as a result, the effective viscosity of the nematic
varies with time. For this regime of the flow, we can
derive the following semi-empirical expression for d(t):

o(t) = doexp[—t/Ts(1)],

om om — Mper) €X —t/t (2)
() = b (Mn p;so) P(=U/To)

with a dlowly varying relaxation time 15(t). In expres-
sion (2),

Nper = 01412

isthe viscosity of theliquid crystal oriented perpendic-
ularly to the plane of the flow and 1, is afitting param-
eter. The relative variation of the relaxation time,

15(0) _ Mper
TB(OO) r] hom ,

is associated with the change in the orientation of the
director from the orientation perpendicular to the plane
of the flow to the homeotropic orientation. For MBBA
a T = 22°C, we have Nye/Nnom = 0.31 [10]. It can be
seenfromFig. 2 (curves 2, 3, and 4) that the experimen-
tal data are correctly described by dependence (2) for
various initial pressure gradients.

Thus, using the data on the time dependence y,(t) of
the position of the boundary and the dependence AP(t)
reconstructed from &(t), we can associate the value of
pressure drop with the position of boundary v, recorded
in the experiment, thus establishing the dependence of
the critical pressure gradient AP, corresponding to the
emergence of the director from the plane of the flow, on
local thickness h, of the liquid crystal layer. Figure 5
(curves marked by a) shows the AP, (h,) dependence
obtained for various values of the initial pressure drop
AP,. 1t can be seen from the figure that, for large values
of h, the curves obtained for different values of AP,
almost coincide. Thisis dueto the fact that large thick-
nesses correspond to large time intervals following the
application of the initial pressure drop, when a quasi-
stationary flow sets in the cell. The velocity varies
slowly with time and the director can follow the varia-
tion of pressure. Accordingly, the position of the
boundary vy, in such a flow regime is determined only
by the current value of AP and does not depend on AP,,.
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The results of analysis of the effect of an electric
field applied along the z axis on the threshold for the
emergence of the director from the plane of theflow are
given by curves marked by b in Fig. 5. The reduction of
the critical value AP.(h,) isdueto the fact that the el ec-
tric field exerts a destabilizing effect (in addition to the
flow) on the homeotropically oriented MBBA layer
(negative anisotropy of permittivity).

Figure 5 aso shows the theoretical AP.(h,) depen-
dences obtained from the results of simulation of the
nonlinear nematodynamics equations [11] for the case
when the director and velocity are functions of coordi-
nate z and time t [12] using the material parameter of
MBBA [10, 13]. For anumber of values of thickness of
a planar layer of the liquid crystal, the orientational
dynamics of the director was calculated using the
experimentally determined time dependence AP(t) of
the pressure drop. At the initia instant, the director is
oriented homeotropically and emerges from the plane
of the flow when the value of AP exceeds a certain crit-
ical value (depending on the thickness). Asthe pressure
decays, the director returnsto the plane of the flow. The
threshold value AP, corresponds to the instantaneous
value AP(t) at which the return of the director to the
plane of the flow is registered. The results are in good
agreement with the experimental data considering that
the wedge-shape cell was simulated in numerical calcu-
lations by aset of planar capillaries, taking into account
experimental errorsin determining AP, and h,,.

Figure 5 aso shows for comparison the depen-

dences AP (h) of the critical pressure drop corre-

sponding for the emergence of the director from the
plane of the flow, which were calculated for a steady-
state Poiseuilleflow (curves4). Thecritical value of the
pressure drop for a steady-state Poiseuille flow,

APZ O1/h°,

systematically exceedsthe corresponding values of AP,
for adecaying flow. Thisisdueto thefact that thereturn
of the director to the plane of the decaying flow occurs

upon a decrease in pressure AP(t) below AP over a

finitetime (on the order of the director relaxation time),
during which the pressure continues to decrease.

The wedge-shaped structure of the cell enabled usto
observe the behavior of aliquid crystal in awide range
of thicknessesin the same experiment. It wasfound that
at thicknesses exceeding the threshold values for the
emergence of the director from the plane of the flow,
regions (domains) of various shape and size were
formed. A characteristic feature of these domains is
their long lifetime. For example, for a layer having a
thickness of about 130 um and AP, = 25 Pa, the time of
relaxation of the director to the original homeotropic
orientation in these domains is longer than 3 h, which
exceeds the characteristic time of flow decay (<10 min)
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and the time of restoration of theinitia orientation out-
side these domains.

In polarized monochromatic light, in the a geome-
try, the interference pattern in the domainsis similar to
that described above, but inclined interference fringes
in this case move at a much lower velocity. In the b
geometry, these domains have an average illuminance
higher than that of neighboring regions of the cell. At
times exceeding the flow decay time, the domains are
successfully visualized against the background of the
dark field corresponding to the homeotropic orientation
and are separated from the latter by a bright threadlike
boundary (domainwall). The boundary of theregionsis
also observed for the position of both polaroids parallel
to the direction of theflow. In this case, it separatestwo
regions with equal illuminances.

The domains were formed over approximately
1-2 minutes after the generation of the flow in theform
of one or several formations oriented along the flow.
The area of the domainsisthe larger, the higher the ini-
tial pressure drop AP,. For large values of the initial
pressure gradient, a single region occupying a substan-
tial part of the cell was formed.

It should be noted that domains are formed for
thicknesses h > hy, i.e, at velocities exceeding the
threshold value for the emergence of the director from
the plane of the flow. Consequently, the formation of
domains can be treated as the result of secondary
hydrodynamic instabilities developing against the
background of a strongly deformed structure of the
layer associated with the primary instability. In the cen-
tral regions of the layer, for large pressure drops, adis-
tribution close to that perpendicular to the plane of the
flow is formed for the director as a result of primary
instability (Fig. 3c). For such an orientation, the same
mechanisms affect the stability of the director as those
considered in [2, 17] for the initial orientation perpen-
dicular to the plane of the flow. However, the mecha-
nism of formation of these domains with anomalously
long lifetime remains unclear and requires further
investigations.

4. CONCLUSIONS

Orientational instability formed in a nematic liquid
crystal under the action of a decaying Poiseuille flow
and accompanied by the emergence of the director from
the plane of the flow is detected experimentaly and
studied for thefirst time. The development of instability
is visualized in a wedge-shaped cell in the form of a
sharp boundary (domain wall) separating spatial
regions in which the orientation of the director isin the
plane of the flow and outside this plane. Analysis of the
dynamics of mation of the domain wall in a decaying
flow made it possible to determine the dependence of
the threshold pressure drop on the thickness of the lig-
uid crystal layer. It isfound that the additional action of
an eectric field on the nematic layer with a negative
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anisotropy of the permittivity lowers the threshold for
the emergence of the director from the plane of the flow.
The results of theoretical calculations of the critical
pressure drop are in quantitative agreement with the
experimental data. The analysis of the orientational
behavior of the director in a decaying Poiseuille flow
has demonstrated the possibility of determining thevis-
cosity coefficients of the nematic to a high degree of
accuracy from the dataon the optical responsefor small
initial pressure gradients.
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Abstract—A two-parameter family of smooth Hamiltonian systems perturbed by a piecewise linear force is
analyzed. The systems are represented both as maps and as dynamical systems. Currently available analytical
and numerical results concerning the onset of chaos and global diffusion in such systems are reviewed. Dynam-
ical behavior that has no analogsin the class of systems with analytic Hamiltoniansis described. A comparison
with the well-studied dynamics of a driven pendulum is presented, and essential differences in dynamics
between smooth and analytic systems are highlighted. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION
Two-dimensional canonical maps of the form

p = p+Kf(x),

where K is the perturbation strength, have been widely
used in nonlinear physics as very useful and informa:
tive models [1-3].

Map (1.1) is equivalent to an explicitly time-depen-
dent Hamiltonian dynamical system perturbed by kick-
ing [1-3]:

X =x+p (mod1l), (1.1

2
H(x, p,t) = % + KV(X)3,(t) 12)

= Ho(x, p) + Ha(x 1),
where V(X) = —If (x) dxisaforce potential and
O, (t) =1+2 Z cos(2mmnt)

nx1

isthe deltafunction of period 1.
The unperturbed termin (1.2),

2

H, = % +KV(x), (1.3)

represents the main (integer) resonance, while
Hi(x 1) = KV(x)(8,(t) —1) (1.4)

is treated as a perturbation with period T = 1 and fre-
guency Q = 21T = 21T

The system defined by resonant Hamiltonian (1.3) is
integrable and does not exhibit any attributes of chaos.
Its phase portrait has the following basic structure.
There exists a saddle point, which should be classified
as adistinct trgjectory (unperturbed pendulum remains
at this point for an indefinitely long time). Two oppo-
sitely directed separatrices emanate from the saddle
point and loop back toward it in the long-time limit.
They separate the regions where phase rotates (outside
resonance) from those where phase oscillates (inside
resonance). Note that both separatrices are combina
tions of two similar trajectories corresponding to for-
ward and backward time evolution. It is well known
that each separatrix is split by perturbationinto two dis-
tinct trgectories that intersect at the so-caled
homoaclinic points.

Generally, perturbed system (1.2) is not integrable,
and its phase space is divided into chaotic and regular
regions. One problem of practical importance is an
overlap criterion for the chaotic regions, i.e., conditions
for the onset of globa chaos. These conditions criti-
cally depend on the properties of the potential function
V(x) of the main resonance.

The founders of the Kolmogorov-Arnold—Moser
(KAM) theory noted from the very start that the onset
of global chaos (the possibility of unbounded diffusion
in overlapping chaotic regions) depends not only on the
perturbation strength, but also on the smoothness of the
system, which iswell characterized in terms of its Fou-
rier spectrum. In the case of an analytic perturbation,
the Fourier amplitudes decay exponentially and there
exists a critical value K, such that global chaos devel-
opsonly whenK = K. If K = K, then chaosislocal-
ized in relatively narrow layers (which exist for any
K> 0), and global diffusion isimpossible for a conser-
vative system having less than two degrees of freedom.

1063-7761/05/10004-0811$26.00 © 2005 Pleiades Publishing, Inc.
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Essentialy different dynamical behavior is observed
when the nth Fourier amplitude of a smooth potential
V(x) decays astheinverse of n raised to acertain power
B + 1 (see[4] and referencestherein). For atwo-dimen-
sional map, a simple estimate was used in [4] to show
that there exists K, > 0 corresponding to the onset of
global chaos if B > B, = 3. This critical degree of
smoothness should be verified in numerical experi-
ments. A rigorous proof was found only for B, = 5
(see[5], where it was also conjectured that the correct
valueis B, =4).

Map (1.1) has been analyzed for both analytic and
smooth forcing functions. For example, the analytic
function f(X) = sin(2mx) is associated with Chirikov’'s
standard map. Extensive studies of the standard map
and its dynamical analog (driven pendulum) have sig-
nificantly contributed to progress in modern nonlinear
dynamics.

Moreover, dynamical behavior of a new type not
observed under analytic forcing has been discovered
for systems with smooth potentia functions (see dis-
cussion below).

This paper focuses on a Hamiltonian in which a
smooth (sinusoidal) perturbation isreplaced by a piece-
wise linear force (sawtooth pulsetrain) with 3 = 2 (see
Section 2). Since the dynamical behavior correspond-
ing to this particular degree of smoothness has long
remained unclear, a brief background review is pre-
sented here.

Even early numerical experiments on systems with
B < B = 3 demonstrated that both global diffusion and
trajectories restricted to bounded regions of the phase
space can be observed in long-time simulations [6, 7].
Whereas those observations provided indirect evidence
of suppressed or weakened diffusion, it was established
in [8] that the phase space of a symmetric, piecewise
linear two-dimensional (SPL2D) map with 3 = 2 con-
tains global invariant curves with both irrational and
rational winding numbers (see also [9]). Global invari-
ant curves span the entire phase domain, which pre-
cludes unbounded diffusion in action.

It was originally shown in [8] that the invariant
curves with rational winding numbers include persis-
tent integer- and fractional -resonance separatrices. Of
particular importance isthefact that the system remains
nonintegrable, i.e., global diffusion is blocked by per-
sistent separatrices even if local dynamics is strongly
chaotic.

For some obscure reason, Bullett's important and
interesting study was not widely acknowledged at the
time of publication. In asimilar theorem independently
proved much later by Ovsyannikov for the same
SPL 2D map [10], acountable set of K values wasfound
for which integer-resonance separatrices persist despite
local chaos. Thisfinding motivated the systematic anal-
ysis of the SPL2D map and its modifications presented
in [11-17]. Since Ovsyannikov's theorem had never
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been published, its complete statement was included in
appendices to [12, 13] with the author's permission.
Bullett’s paper was not mentioned in my first publica-
tions on the subject [11, 12] for the mere reason that |
was not aware of it at the time.

It should be stressed here that the analyses per-
formed by Bullett and Ovsyannikov were focused on
the invariant curves of new type, because the pairs of
orbits that result from separatrix splitting exhibit cha-
otic behavior are not amenable to analytical methods
(i.e., they can be studied only in numerical [11-17] or
physical experiments).

Every invariant curve of an SPL2D map is associ-
ated with a specific value of K. In [11], these values
were called critical numbers and denoted by K, ,,
where Q isthe resonance order (Q=1and Q = 2 corre-
spond to integer and fractional resonances, respec-
tively) and nistheindex of acritical number. By Ovsy-
annikov's theorem, the critical number corresponding
to an integer resonanceis

. 20,
Ky, = S|n2—2—, n=12, ..., (1.5)
where a,, isthe least positive root of the equation
. na _ a
ﬁsn7 = cos3. (1.6)

In [11-14], the values of K, , were found numerically
by using the fact that these numbers correspond to zero
angle of intersection between the split trgjectories at the
central homoclinic point (the angle changes sign
smoothly and discontinuously for odd and even n,
respectively). It has been noted that, among 4l
attributes of chaos, only this angle can be measured to
arbitrary accuracy [14]. Note also that a vanishing
angle of intersection between separatrices does not nec-
essarily imply their persistence. In an example consid-
ered in [17], the trgjectories that result from separatrix
splitting are mutually tangent (have kinks) at the
homoclinic point.

Thecritical numbers make up a Cantor set, and there
must exist intervals of K corresponding to global diffu-
sion. One of these intervals was found in [8]: 0.2295 <
K < 0.2500 for d = 1/2 (see below).

Further analysis showed that each global invariant
curve of the type discovered by Bullett (including the
persistent integer- and fractional-resonance separa
trices) strongly modifies the structure of the phase
plane in a finite neighborhood of the corresponding
Ko, n- Based on this observation, thetermvirtual invari-
ant curve was coined. These virtual curves are associ-
ated with extremely complicated motions of smooth
systems, which were called fractal diffusionin[15, 16].
Recent studies of these motions raised numerous ques-
tions that call for special analyses. Their discussion is
left outside the scope of thisreview.
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The important role played by the standard map and
its dynamical analog (driven pendulum) in nonlinear
dynamics is mentioned above. When developing the
theory of stochastic layer in a driven pendulum, Chir-
ikov introduced and widely used the Melnikov—Arnold
integral to determine the amplitude of the separatrix
map responsible for the generation of a stochastic layer
by perturbation of any frequency [1].

Analysis of smooth systems driven by a piecewise
linear forceisfacilitated if map (1.1) is studied in con-
junction with a Hamiltonian dynamical system
(see Section 2). The first analytical expressions for the
corresponding  Melnikov—Arnold  integras  were
obtained in [13, 17]. They characterize the specific
dynamics of the systems, including the existence of
both critica numbers and separatrices that persist
despite local chaos. These integrals are used in Section
3 to elucidate the details of the onset of chaos.

In Sections 4 and 5, the results obtained for a
dynamical system driven by apiecewiselinear forceare
compared with the well-studied dynamics of a driven
pendulum, and both analogies and differences in the
dynamical behavior of these systems are highlighted.

2. HAMILTONIAN DYNAMICAL SYSTEM

In conjunction with (1.1), consider the biharmoni-
cally driven dynamical system described by a Hamilto-
nian of the form

H(x, p,t) = Ho(x, p) +U(x, 1),

2 (2.1)
Ho(x p) = 5+ wjv ().
In the general case,
U(x,t) = g,cos(2mm,x —Q,t
(x, 1) = g,cos(2mm, 1t) 22)

+ €,00S(21mM,X — Q,t)

is an asymmetric perturbation with integer m; and m,
ande;, &, < L.

Both harmonicsin (2.2) are assumed to be resonant.
Furthermore, it is assumed that Q, > 0, and the first
term is called the upper harmonic (the corresponding
trajectory lies above the main-resonance separatrix in
the phase plane). It is also assumed that Q, < 0, and the
second term in (2.2) is called the lower harmonic
accordingly.

In (2.1), the potential function

V(x) = i—J’f(x)dx
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is associated with a piecewise linear force of period 1.

f(x) = [0 , < X< ,
B d 2 2

%LX—_—Q, 1+d<x<l1.

0l-d

The corresponding Fourier seriesis[15]

V() = 3+ 5

f,
B+1
nZl21Tn

_ 2 cos(nm)sin(nmd)

7 dl-d)

cos(21nXx),
(2.4
f, =

where 3 = 2 isthe degree of smoothness.

Varying the parameter d in expressions (2.3) and
(2.4), one can analyze the dynamics of any system
driven by aperturbation bel onging to the family of saw-
tooth functions[8, 14]. To date, the system withd = 1/2
has been studied most thoroughly. Note that systems
with 0 < d < 1 exhibit the dynamical behavior associ-
ated with the existence of global invariant curves
revealed and analyzed in [8, 10-17] if the parameter K
in (1.1) satisfies the following condition found in [8]:

2d?

K< Ke(d) = 5.

(2.5)

If K> Kg, then system (1.1), (2.3) has no global invari-
ant curves.

In the limit case of forcing by a discontinuous saw-
tooth function (d = 0), the Fourier series expansion
analogous to (2.4) is characterized by

fo= —%cos(nn), B =1 (2.6)

This degree of smoothness is lower by unity than that
corresponding to 0 < d < 1, and both values of (3 are
obvioudy less than B, = 3. In this case, the system is
ergodic; i.e., there are no invariant curves, and global
diffusion occurs at any K > 0. The regular motion cor-
responding to the opposite limit case of d = 1 [14] is of
no interest for the present study.

The period of the force defined by (2.3) includes
“eliptic’ and “hyperbolic” intervals, where df/dx is
negative and positive, respectively. The derivative is
discontinuous across the boundaries of these intervals.

The motion along the upper unperturbed separatrix
(when g, = €, = 0) is described by the following func-
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tion of the dimensionless time ) = 2wt:

[l
Ws o .

%Adexp 2(1—d)1 <L|Js< l-I'ls,l!
Xs(q*'s) = §%+“/agn%3%1 —lIJmSLleSlIJs(lz’ 7)

O .

UR ]
El—AdexpE——, Pg1<YPg<oo.
o J2(1—d)

The corresponding momentum is ps = X = 2u,0x/dys,
where

Ws, = +2darcsin./d,

1—d l-psl
Ay = ex ' .
T2 P eaog

The relative energy deviation from the unperturbed
separatrix isw = Hy/Hy s— 1, where Hy s = we/4isthe
value of the Hamiltonian on the separatrix. The period

of motion in the vicinity of the separatrix can be calcu-
lated as

(2.8)

1 | 4,/1—dcos(w; Ty 1)

To(w) = 2T, +—=In , (2.9
O( ) s 1 (*)2 |W| ( )
where
2 2
" ‘*’ﬁl ©2 = %, [T7g
(2.10)
_ arcsin./d
Tsl - —-
, o,

The stochastic-layer width is calculated by using the
relation between w and T, given by theinverse of (2.9):

W(T,) = 4/1—dcos(w;Ts )
x exp(—wy(To—2T4 ).

Expressions (2.7)—(2.11) were derived in [17].

In the sections that follow, the onset of chaos in
smooth systems of the type defined in this section is
compared with the well-studied dynamics of the driven
pendulum described by the Hamiltonian

(2.11)

2

H(x p,t) = % + cosx + U(x, 1), (2.12)

where the frequency of small-amplitude oscillation is
set to unity and the perturbation term is given by (2.2)
in the genera case.
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3. MELNIKOV-ARNOLD INTEGRAL FOR (2.1)

Generally, the stochastic layer that develops when
the main-resonance separatrices are broken by pertur-
bation consists of three parts: an upper part of width w,
(where the phase rotates so that p > 0), amiddle one of
width w,,, (where the phase oscillates), and alower one
of width w; (where the phase rotates so that p < 0). In
the case of an asymmetric perturbation, the individual
parts of the layer may have substantially different
widths. Note that the upper and lower parts of the layer
are mainly generated by the upper and lower resonant
harmonics, respectively, while the middle one develops
as a result of their combined effect [17]. The present
analysisis mainly focused on the upper part of the sto-
chastic layer.

Following the approach described in [1], consider
the change in energy per oscillation half-period or rota-
tion period relative to Hy:

00

©aU
AHo = [{H.Hg dt = =, [ p()g ot

00

= 2nmslj p(t)sin(2rmx — T —T,)dt

= 21im,€,SINT,W,,,

where{,} denotes the Poisson bracket, T = Q,t, and

00

Wy = — I ps(t) cos[21tm, x¢(t) — Q,t] dt (3.1

is the Menikov-Arnold integral. Here, only the even
functionisretained in theexpansion of SiN(2rmmx—Tt—1)
for amotion localized in the vicinity of the unperturbed
separatrix.

Note that the normalization required to suppress the
oscillationin (3.1) is provided by p.: this factor asymp-
totically vanishes at both infinite limits of integration
along the unperturbed separatrix (see detailsin [1, Sec-
tion 4.4]).

The amplitude of the separatrix-map harmonic with
frequency Q isdetermined by the properties and behav-
ior of the Melnikov—Arnold integral:

AH
W = tmax|w—-w = +—2 = S—HTS
HO,S (.00

Wya.  (3.2)

Rewriting integral (3.1) along unperturbed separa-
trix (2.7) in terms of the dimensionless time Y = 2wyt,
one finds that the contribution of the upper harmonic to

No. 4 2005



DYNAMICS OF HAMILTONIAN SYSTEMS UNDER PIECEWISE LINEAR FORCING

the motion in the upper part of the stochastic layer is

determined by the expression
ws 1

Wya(A,>0) = ——J’ COSJ_(j

x cos[nmlgl + A/asin%d%—)\llp}dw
2 .0 W [ 43
_AdA/;q{lexpoD
><cos;[2nmlAdexpD mﬂ lw} W,
where A; = Q4/2wy, is an adiabaticity parameter [1].

Similarly, the contribution of the lower harmonic to
the motion in the upper part of the stochastic layer can
be expressed as

L|J5_ 1

Wya(A,<0) = ,\/_J.COS,\/_d

x cos[rtngl + Jﬂsinj%%+ A, l]J}dljJ
_— . (3.4)
< 0 —Y O
+ Ay ll—dJ-eXpDA/z(li_d)D
Ws 1

- 4w |,

X cos[anzAd exp 0

A/2(1 dy-

where A, = Q,/2w),.

The total separatrix-map amplitude for the upper
part of the layer is given by (3.2) asthe sum of the con-
tributions of all perturbing harmonics. In the next two
sections, the expressions obtained here are used to ana-
lyze the behavior of system (2.1) under symmetric and
asymmetric perturbations (2.2).

4. SYMMETRIC PERTURBATION
Perturbation (2.2) is symmetric if
€, =€ =€ m=m, =m,
Q,=-Q,=0Q.

First, recall that the frequency dependence of the onset
of chaos for driven pendulum (2.12) under symmetric
forcing can be examined by tentatively dividing the fre-
guency domain into low-, intermediate-, and high-fre-
guency intervals. An analysis presented in [1] showed
that both separatrix-map amplitude W and energy width
of the stochastic layer exponentially decrease with

(4.)
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increasing frequency and the three parts of the layer
tend to have equal widthsas Q —» co:

Wy = Wy = w = AW, 4.2
where A = Q and w = p%2 + cosx — 1 is the relative
energy deviation from the unperturbed separatrix for
pendulum (2.12).

In arecent analysis of the low-frequency asymptotic
behavior in the limit of Q — 0[18], it was found that
the separatrix-map amplitude linearly increases with
frequency, whereas the layer width is independent of
frequency.

The asymptotic behavior isrelatively simplein both
limits (Q > 1and Q < 1). The most difficult to analyze
is the case of intermediate-frequency forcing, when
neither asmall nor large adiabaticity parameter can be
introduced. The key difficulty here lies in the dis-
continuity of the stochastic-layer width as a function
of W[19]. In modern theory, it is explained by succes-
sive breakdown of invariant curves characterized by
irrational winding numbers with increasing W as the
curve separating the main stochastic layer from the
nearest resonance of the separatrix map breaks down,
the finite-sized region occupied by the resonance is
added to the layer.

The so-called resonance invariants can be used to
analyze chaotic behavior inthisinterval, sincethey ade-
quately represent the topology of individual reso-
nances. A technique for constructing resonance invari-
ants of the first to third order (corresponding to the
1:1,1:2 and1: 3resonances) and examples of their
use were presented in [20] for Chirikov’s standard map
and in [19] for asingle-frequency separatrix map.

Now, consider the onset of chaosin asmooth system
in the low- and high-frequency limits. The sum of the
contributions of both harmonics to the Melnikov—
Arnold integral for the upper part of the layer is

lpsl

Wya(A) = 42 i cos—JqZJ;a

x sm[nm%L Jasnrd]}

X SN(AW)d + 2A, ll—fd

v 0

X ex
w.[ POa—a.

(4.3)

X sin [anAd exp

Dm} n(AY)dy,

where A = Q/2wy,. The first and second summands in
this expression represent the contributions of the “ ellip-
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Fig. 1. Asymptotic behavior of system (2.1) under symmet-
ric forcing at Q — O: circles and crosses represent com-
puted amplitudes of the separatrix map and widths of the
upper part of the stochastic layer found by iterating the map;
sloped lineis Melnikov—Arnold integral (4.3) multiplied by
afitting factor of 0.75.

Wyia X N

5 T T T T T T T
4 ]
3
2

TAARARF
;V VV VV

25 30 35 40 45
A

Fig. 2. Asymptotic behavior of system (2.1) under symmet-
ric forcing at Q — oo: curves with large, intermediate,
and small amplitudes represent thejoint contributions of the
upper and lower harmonics, the contribution of the upper
one, and that of the lower one, respectively.

tic” interval in (2.3) and the remaining part of the per-
turbation period, respectively.

First, consider the limit of A — 0. Replacing
sin(AY) with Ay and factoring A out of theintegral, one
finds that the low-frequency Melnikov—Arnold integral
(and, therefore, the separatrix-map amplitude W) lin-
early increases with frequency:

WO W, A. (4.4)
Note that the use of infinite integration limits in (4.3)
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does not change this result, because momentum asymp-
totically vanishes at the endpoints of the unperturbed
separatrix (see above).

It was shown in [18] that the stochastic-layer width
isindependent of frequency if the separatrix-map ampli-
tude linearly increases with frequency. Figure 1 illus-
trates this fact for symmetrically perturbed system (2.1),
(2.2) with g; = &, = 0.01. Thus, the behavior of the sys-
tem driven by a piecewise linear force is qualitatively
similar to that of a driven pendulum.

System (2.1) isremarkablein that the corresponding
separatrix map contains both single- and double-fre-
guency harmonicswhen A < 1. In the case of interme-
diate-frequency perturbation, the latter harmonic van-
ishes, i.e., the separatrix map contains only one har-
monic. Recall that a driven pendulum exhibits opposite
behavior: the double-frequency contribution is signifi-
cant only under intermediate-frequency forcing and
vanishesasA —= 0or A — oo [21].

In the limit of Q — o0, a qualitatively different
behavior is observed. In this case, both summands
in (4.3) change sign, oscillating almost in antiphase
with one another. The resultant function Wy, (A) aso
oscillates and changes sign (see Fig. 2).

Asymptotic estimates for Melnikov—Arnold inte-
gras (3.3) and (3.4) performed in the limit of A — oo
(see [17]) lead to the following results.

When A > 1, the integrals are periodic functions

of A,
Wy () = (1) L=
MA 4d N 2

« Qe (5 Psin(rmd ¥ A, )

(4.5)

(upper sign corresponds to the upper harmonic), with
the period

2T Tt f
T, = - = = 4.6
? qu,l arcsm/a d ( )

Figure 2 shows the normalized Melnikov—Arnold
integral Wi, = WyaAS calculated for d = 1/2 (symmet-
ric sawtooth function). Similar graphs are obtained for
d# 1/2, except for a phase shift between the harmonics.
It is clear that expression (4.5) is qualitatively correct,
even though numerical corrections are required to
improve its accuracy.

In [13], a separatrix map with amplitudes given by
the Melnikov—Arnold integral was iterated to show
that relation (4.2) between the stochastic-layer width
and the separatrix-map amplitude W holds for asmooth
system as well,

w, = AW, (4.7)
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even in the neighborhoods of the zeros of W, In partic-
ular, 0.94 < w,/A\W| < 1.3 for A = Q/2wy, > 10.

The results obtained above for smooth dynamical
system (2.1) can be associated with characteristics of
map (1.1) in a straightforward manner as follows [13].
Define critical A, (N =1, 2, ...) as the zeros of the
Melnikov—Arnold integral (the first index refers to the
main resonance). Then, dynamical system (2.1) param-
eterized by A is equivalent to map (1.1) parameterized
by K, and vice versa, because the relation

_ .2 _ I
K - (.k)o - D\TD y

can be used to calculate the critical numbers of the map
by substituting A; ,. Indeed, the result of a comparison
of

n=1,2,...

2
K* - DT[D ,
L |:}\1,nD

with K , given by (1.5) and (1.6) can be accurately rep-
resented by the approximate formula

n=12...

K y
—L0=1+0676n"%°, n=1,2, ..

1Ln

Since each KT , tends to the corresponding K; ,, in the

limit of n > 1, the results obtained here can be applied
tomap (1.1).

In the limit of Q > 1, the periodic behavior of the
Melnikov—Arnold function obtained here, with an
amplitude decreasing as A3, contrasts with the mono-
tonic behavior of the exponentially decreasing Wya(A)
for an analytic potential function. Moreover, the contri-
bution of the lower harmonic to the upper part of the
stochastic layer in the latter case is smaller by a factor
of exp(-Tt|A\) as compared to the contribution of the
upper harmonic [1], whereas the contributions of the
upper and lower harmonics are asymptotically equal for
the system driven by apiecewiselinear force. The dras-
tic difference between systems of the two types dis-
cussed here may be explained by different location of
the singularities of the Melnikov—Arnold integral: they
lieon thereal axisand inthe complex planein the cases
of smooth potential and driven pendulum, respectively.

5. ASYMMETRIC PERTURBATION

Asymmetric perturbation (2.2) with Qq, |Q,] > 1
was originally analyzed in [22, 23] for the driven pen-
dulum described by Hamiltonian (2.12). In this case, it
was found that the perturbed motion has secondary har-
monics with amplitudes proportional to €;&, and fre-
guencies equal to the sum and difference of the primary
frequencies:

AQ+ = Q1+Qz, AQ_ = QZ_Ql' (51)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

817

Moreover, it was found that the secondary harmonicsare
much weaker than the primary oneswheng,, €, < 1.

Even the first numerical experiments revealed the
seemingly surprising fact that these weak harmonics
determine both the amplitude of the separatrix map and
width of the chaotic layer under certain conditions.

In the example considered in [23], the system had
the parameters €, = €, = 0.075, Q, = 13, and Q, =-10.
The amplitude of the sum-frequency harmonic of the
perturbed motion (with AQ, = 3) was € = 4.5 x 1075,
which is smaller than the primary-harmonic amplitude
by afactor of about 1700. However, its contribution to
the separatrix-map amplitude corresponding to the
upper part of the layer (responsible for the onset of
chaos) exceeded the total contribution of the primary
harmonics by afactor of almaost 400, while the individ-
ual parts of the layer had substantially different widths.
This is explained by the exponential dependence of
layer width on frequency at Q > 1, which leads to a
dominant effect of weak low-frequency harmonics on
the onset of chaos.

In smooth systems, asimilar role is played by sum-
frequency secondary harmonics, whereas the effect of
difference-frequency harmonics is much weaker as
compared to that in a driven pendulum [17].

The secondary-harmonic amplitudes are not known
a priori, and no rigorous method for finding them is
available to this day. In [22], a generd approach to the
problem was proposed, and approximate analytical esti-
mates were obtained. In this approach (see dlso [17]), a
change from the coordinate x(t) and momentum p(t) to
the deviationsfrom x(t) (given by (2.7)) and p(t) onthe
unperturbed separatrix is performed in (2.1) and (2.2).
By assuming that the deviations are small and dropping
the terms of order higher than two, it can be shown that
the perturbation contains both the sum-frequency sec-
ondary harmonic

€,.cos(2rmm, x,—AQ,t) (5.2)

with

m
€, = —2T[25182m1m2Eg—§ + g—)—%
1

and m, = m; + m,, and the difference-frequency har-

monic
€_cos(2mm_x,—AQ_t) (5.3

with

m
g = —2T[28182m1m2%—9—?§,

and m. = m, — my. (These expressions were derived for
|y, o > 21y 5P max-)
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Fig. 3. Separatrix map for system (2.1) under asymmetric
forcing defined by (5.5): symbols and curve represent
numerical results and their least-squares approximation,
respectively.

The analysis that follows is restricted to the most
interesting case of sum-frequency harmonic. When the
primary harmonics have amost equal frequencies (in
absolute value), it has a low frequency. Therefore, one
should find out if the system follows the behavior char-
acteristic of the primary harmonics when A < 1 under
symmetric forcing (see preceding section).

Asalfirst step, an analysisof system (2.1), (2.2) isper-
formed for a high-frequency symmetric perturbation:

w, =009, & =¢, =005 m=m,

1 (5.4
Q, = 300, Q, = -30.
The graph of the corresponding separatrix map is a per-
fectly sinusoidal curve with an amplitude of 1.65 x 10
(see [22] for details). By iterating the map, it has been
shown that w, = |w,,,| = w, = 0.013.

Now, suppose that a low-frequency secondary har-
monic is generated by dlightly changing the lower har-
monic frequency:

Q, =300, Q,=-295 AQ, =05 (55
Figure 3 shows the separatrix map calculated numeri-
cally for system (2.1), (5.5) at the instants t; when the
system passes through the stable equilibrium point at
X = 0.5 (see [22]). Note that the sinusoidal curve
obtained by least-squares fitting has an amplitude of
6.91 x 103 and, most importantly, the totally different
frequency AQ, = 0.5. Note also that w, = 0.50, i.e,, is
greater by afactor of almost 40. A spectral analysis has
shown that the total contribution of the primary har-
monics is less than two percent. The system behaves as
if the perturbation contains a single low-frequency har-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

VECHESLAVOV

monic rather than two high-frequency ones (as corrob-
orated numerically in [23]).

It is clear that this dynamical behavior is qualita-
tively similar to that characteristic of pendulum dynam-
ics. even a weak low-frequency secondary harmonic
“outdoes’ the primary ones as a factor contributing to
the onset of chaos.

Additional analysis has shown that the separatrix-
map amplitude scales linearly with frequency for asys-
tem characterized by a very low secondary-harmonic
frequency, asin the case of symmetric perturbation, and
the upper part of the stochastic layer has an amost fre-
guency-independent width.

6. CONCLUSIONS

An analysis of afamily of smooth Hamiltonian sys-
temsdriven by a piecewise linear force performed asan
extension of Bullett’s pioneering study [8] has revealed
quite unexpected dynamics.

Persistence of the separatrices of nonlinear reso-
nances in a chaotic sea, complete suppression of diffu-
sion in critical regimes, fractal diffusion in the neigh-
borhoods of these regimesin the parameter space, peri-
odic and power-law behavior of the Melnikov—Arnold
integral as a function of frequency, and other phenom-
ena have no analogs in the dynamics of systems with
analytic Hamiltonian functions. The discovery of these
phenomena challenges certain seemingly well-estab-
lished views. In particular, it iscommonly believed that
the separatrices of nonlinear resonances with rational
winding numbers are the least stable under forcing,
whereas invariant curves with irrational winding num-
bers are the last to break down. As noted in the Intro-
duction, a particularly wide variety of challenging
guestions are raised in the ongoing studies of fractal
diffusion.

Continued research is required to answer these
guestions and find other systems exhibiting dynamical
behavior of the type reviewed here.
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