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Abstract—The quantized redshifts observed from galaxies in the local supercluster have recently been shown
to be well described by stimulated Stokes Raman processes in intergalactic Rydberg matter (RM). The size of
the quanta corresponds to transitions in the planar clusters forming the RM, of the order of 6 × 10–6 cm–1. A
stimulated Stokes Raman process gives redshifts that are independent of the wavelength of the radiation, and it
allows the radiation to proceed without deflection, in agreement with observation. Such redshifts must also be
additive during the passage through space. Rydberg matter is common in space and explains the observed Fara-
day rotation in intergalactic space and the spectroscopic signatures called unidentified infrared bands (UIBs) and
diffuse interstellar bands (DIBs). Rydberg matter was also recently proposed to be baryonic dark matter. Experi-
ments now show directly that IR light is redshifted by a Stokes stimulated Raman process in cold RM. Shifts of
0.02 cm–1 are regularly observed. It is shown by detailed calculations based on the experimental results that the
redshifts due to Stokes scattering are of at least the same magnitude as observations. © 2005 Pleiades Publishing,
Inc. 
1. INTRODUCTION

The redshifts observed from distant extragalactic
sources in space are quite intriguing, and their origin
has been debated by many authors. The important
reports that the redshifts are quantized [1, 2] are at vari-
ance with the accepted interpretation of the redshifts.
The quantization of galactic redshifts was recently
shown to agree with the expected stimulated Raman
process in intergalactic Rydberg matter (RM) [3]. That
intergalactic matter exists at nonnegligible densities is
shown, for example, by the observation of a Faraday
rotation effect at radiofrequencies in intergalactic space
[4]. This effect is well described by very low densities
of RM, with its high electron density and inherent mag-
netic field [5]. It is also proposed that RM is the (bary-
onic) dark matter in space [6]. The properties of RM are
such that it is an excellent candidate for the missing
dark matter. For example, a hydrogen atom in RM takes
up a volume 5 × 1012 times larger than a ground-state
hydrogen atom.

Rydberg matter is a special form of matter, which is
built up of weakly interacting, highly excited atoms or
molecules in circular, metastable Rydberg states. It has
metallic properties due to the delocalized electrons and
a very low density under the conditions in space. We
have shown that low-density RM can be conveniently
studied by laser fragmentation and time-of-flight meth-
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ods [7–9]. Rydberg matter can be built up from alkali
atoms and also from small gas molecules like H2 and N2
[8, 10, 11]. It can also be formed from H atoms [12, 13].
The existence and structure of RM was predicted by
Manykin, Ozhovan and Poluéktov [14, 15] more than
20 years ago, and by 1991, the first experimental stud-
ies of a macroscopic Cs Rydberg matter phase were
performed [16, 17]. These early studies of RM have
recently been independently confirmed [18]. Improved
quantum mechanical calculations of the properties of
RM built up by Cs were also published [19, 20]. Later,
studies by time-of-flight methods [7, 10, 21] identified
the special planar cluster shapes predicted by theory
[22]. The distance between the ions in the RM can be
measured by the repulsion energy released in Coulomb
explosions in the matter [8, 9, 11, 12]. This bond dis-
tance is a few nanometers at the relatively low excita-
tion levels studied by this technique.

Due to the extremely large polarizability of RM,
Raman spectroscopic studies will be very useful to find
information on the properties of RM. A blueshift of sin-
gle-mode IR laser light passing through RM was
observed and interpreted as an anti-Stokes stimulated
electronic Raman effect (ASERS) [23]. Experiments
have also directly observed anti-Stokes Raman scatter-
ing from RM surface layers. Transitions in K Rydberg
atoms [24] and bands from H2 and other small mole-
cules, and bands from transitions in the RM [25] were
observed. The stimulated Raman effect was also used in
a micro-Raman spectroscopy study of the interaction of
© 2005 Pleiades Publishing, Inc.
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water molecules with one of the solid materials used to
emit RM in laboratory [26]. A recent study interpreted
the interaction observed between laser modes observed
in transmission and reflection of IR lasers in RM as
being due to the stimulated Raman effect [27]. Another
method recently employed for the study of RM is stim-
ulated emission, which works well due to extremely
long lifetimes of the electronically excited states in
RM. In fact, the first thermally excited laser was
recently demonstrated in the IR range [28, 29]. This
CW laser is tunable over the range 800–14000 nm. The
numerous bands observed in the stimulated transitions
agree with the transitions expected in RM.

The lifetime of RM is very long in space, which
allows its rate of formation to be very low. Extrapola-
tion from the theoretical results in [20] gives a radiative
lifetime of undisturbed RM of the order of the lifetime
of the universe. That RM is a common type of matter in
space is shown by the interpretation [30] of the uniden-
tified infrared bands (UIR, UIB) as being due to transi-
tions in RM, in fact, the same transitions experimen-
tally studied by stimulated emission [29] and by a few
stimulated Raman experiments [24, 25]. Further evi-
dence comes from the Faraday rotation observations in
intergalactic space and their interpretation as being due
to RM [5]. More evidence also exists. A large number
(at least 60) of the so-called diffuse interstellar bands
(DIBs) have been calculated accurately using a theory
based on the RM concept [31].

Because the conduction band in RM is not filled,
almost continuous electronic excitations are possible.
In a stimulated electronic Raman process, a photon
gains or loses some energy from the interaction with
matter, and RM may then change the frequency of radi-
ation passing through it by very small amounts, in the
form of a red or blue shift (Stokes or anti-Stokes shifts)
of the radiation. A blueshift was observed in the exper-
iments in [23], where the RM used was electronically
excited by its formation process and by the high tem-
perature of the surrounding equipment. This shift is
expected to change to a redshift as in Stokes scattering
in cold RM in space. Further experiments using the
same technique have recently been published [32]. In
that study, redshifts were observed in reflection from a
layer of cold RM deposited on a window. We now dem-
onstrate directly that a redshift is observed in cold RM
even in transmission. Redshifts of the radiation from
distant galaxies are found from the interaction between
radiation and RM, as explained in [3].

2. THEORY

In what follows, the term light is used for simplicity
in many places where the term electromagnetic radia-
tion could be used instead.
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2.1. Estimated Gain 

An important process for the interaction between
light and RM is the stimulated electronic Raman scat-
tering of the Stokes or anti-Stokes type (SERS,
ASERS) [33]. Anti-Stokes Raman scattering and simi-
lar processes in RM have been observed in different
types of experiments [24, 25, 34], even at low light
intensities [23, 26, 27]. For cold ground-state RM,
Stokes scattering should be observed instead. There is
no phase matching condition for this type of process
[33], and the Raman-scattered light proceeds in the
same direction as the incident light.

It is necessary to estimate the magnitude of the stim-
ulated Raman effect in the case of an RM material. For
this, we use the ordinary classical steady-state gain fac-
tor derived for molecular vibrational transitions. The
formulas are given for the Stokes scattering, which is
the case of interest for astrophysical processes. The
equations are identical in form for the anti-Stokes (as)
and Stokes (s) cases. The incident light frequency is ωL

and the generated Stokes wave has a frequency ωs . The
difference

is the resulting electronic excitation in the RM material.
For the Stokes wave, the steady-state gain factor Gss at
its maximum is given by [35]

(1)

In this expression Nd is the density of the dipoles cre-
ated by the incident light wave, here chosen to corre-
spond to the number of electrons in the RM; ks is the
wavenumber for the Stokes wave; m is the mass of the
driven oscillator, in this case, one electron mass; e =
ere0 is the permittivity of the medium, which is
unknown but probably has er on the order of unity; γ is
the coupling constant for the electronic excitation in the
intermediate state to other degrees of freedom; ∂α/∂q is
the variation of the polarizability with the coordinate
describing the excited motion, here the electronic
motion; and EL is the electric field strength of the inci-
dent light.

The gain factor Gss can be large even at low light
intensities due to the very large polarizability of the RM
and an arbitrarily small value of the difference ωL – ωs .
The reason for this small value is the almost continuous
nature of the energy levels in RM. Another factor of
great importance is the coupling (dephasing) constant
γ, which is much smaller than in the case of ordinary
matter because the coupling of the electronic motion in
RM to other modes of motion is weak. From the exper-
iments with IR lasers, it was concluded that γ is on the
order of 103 s–1 or smaller [23]. This would give a lower
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limit on the magnitude of the electronic excitations in
terms of wavenumbers from

The quantized redshifts interpreted in [3] give

in agreement with the experimentally found lower limit
for γ. We use this value as a reasonable quantum mag-
nitude of the electronic excitation in RM above each
metastable state with a certain excitation level n. Life-
time measurements of RM both at 77 K [36] and at
800 K [16, 37] and calculations at low excitation levels
[20] seem to indicate a much smaller value of γ, maybe
on the order of 10–3 s–1 [23, 34]. However, these life-
times probably correspond to deexcitation from an
excitation level n down to the fully dissociated ground
state consisting of separate atoms or molecules.

To estimate reasonable values of the quantities in
Eq. (1), we use a phase of RM with the excitation state
n = 80, which is the average value deduced from the
study in [30]. Each Rydberg atom is then considered a
polarizable particle. With interatomic distances of
0.5 µm at n = 80, the density is found to be approxi-
mately 1018 m–3. The wavenumber ks is on the order of
2 × 104 cm–1 or 2 × 106 m–1 in the visible range, and the
difference of the frequencies ωL – ωs is assumed to be
10–6 cm–1 or 10–4 m–1. In fact, with RM, this value is
probably even smaller. The mass m is the electron mass
and e is the dielectric constant er times e0. The polariz-
ability variation ∂α/∂q is estimated as the volume added
for a change in the radial distance for the Rydberg elec-
tron (times e0 to give the right dimension) and becomes
4.4 × 10–24 As m V–1. Finally, the field strength due to
light is estimated for the power density 1 mW cm–2, giv-
ing E = 90 V m–1. This gives

(2)

with γ in s–1 and er on the order of unity. Even for rather
large values of γ, the Gss factor is large, which means
that the stimulated Raman effect is strong and an effi-
cient conversion to the Stokes wave takes place in a
short distance. It may be assumed that γ is of the order
of 103 s–1. This means that the Gss factor is very large
and gives rise to a strong stimulated effect by the equa-
tion for the Stokes field strength [33, 35]

(3)

where the index f indicates a forward wave, Es(0) is the
Stokes wave at position zero (noise photons), and x is
the distance along the laser beam. Thus, it is obvious

c∆ν̃ ωE @ γ as ∆ν̃  @ 3 10 8–  cm 1– .×=

∆ν̃ 6 10 6–  cm 1–×≈

Gss
3 1017×

erγ
------------------- m 1–=
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that stimulated Raman effects should be observable
even for low light intensities, especially if x is very
large as in intergalactic space.

2.2. Continuous Excitations 

The form of Eq. (1) is best suited for molecular
vibrational Raman problems. Other forms of this equa-
tion exist (as, e.g., in [38]) which in general are better
suited for electronic excitations. However, the theory of
RM shows that the delocalized electrons, as in ordinary
Rydberg states, are close to the classical limit. For
example, in [22], the bond energies and electronic lev-
els of RM are calculated from electrostatic formulas,
only with the addition of the electron correlation as a
quantum mechanical effect. The transitions of interest
here, between translational states of the RM electrons
in the RM clusters, have very small quanta and are
almost classical in nature. This means that a description
of the interaction between the light wave and the
molecular system in terms of motion of point particles,
like in the vibrational Raman transitions, is quite well
adapted to RM electronic excitations.

In the case of stimulated Raman scattering, well-
defined Raman transitions are normally studied, and
not a continuous range of wavenumbers ωE . Because
one well-defined Stokes (or anti-Stokes) frequency
usually dominates and gives the Raman wave, it is not
directly clear what happens if a range of transitions is
possible. In the present case, consecutive Stokes com-
ponents are formed along the laser beam, as shown, for
example, in [33, 39]. If a range of frequencies is possi-
ble, this could be thought to lead to a broadening of the
Stokes wavevector and a less well-defined stimulated
Raman appearance. From Eq. (3), however, one can see
that the switch from one Stokes component to the next
occurs when the exponent Gssx is sufficiently large.
Because

a smaller value of ωE gives the same value of the expo-
nent in a proportionally shorter distance x. This means
that if a smaller ωE takes over, it switches over to the
next Stokes component faster, keeping the resulting
shift after a larger distance constant, independently of
which ωE actually dominates. This shows that the
detailed process of the Stokes component switching
with a continuous range of transitions is of no great
concern, because the result is the same.

2.3. Intensity Dependence 

The small value of γ means that the form of Gss

given by Eq. (1) is not strictly valid. Assuming that this
effect does not change the theoretical formulas com-
pletely, one can still use the treatment by Shen and

Gssx
x

ωE

------,∝
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Bloembergen [39] and Shen [38] to find a more com-
plete description of the Raman signal. For a small wave
vector momentum mismatch along the light direction
(the x-direction)

the gain is observed to decrease linearly towards zero as
∆k  0. The plots for this effect are given as reduced
plots in [39] and also in [23], where the scales of both
axes are in reduced quantities, relative to Gss . Because
Gss is proportional to |EL|2, an increase in the light inten-
sity increases Gss and thus moves a point on the curve
downwards, for constant ∆k. This means that the rela-
tive gain decreases by the same factor, keeping the real
gain G constant. Thus, the gain G varies linearly with
the mismatch ∆k. The gain G is then independent of the
light intensity for constant ∆k in the region of small
momentum mismatch, which probably is the range of
interest for space. Because the value of Gss is extremely
large, as described above, the resulting gain can still be
substantial. The analysis in [38, 39] shows further that
the anti-Stokes wave formed together with the Stokes
wave has a lower intensity at relatively small values
of ∆k.

3. RESULTS

3.1. Cold Rydberg Matter in the Laboratory

Rydberg matter can be produced by several tech-
niques in the laboratory in different surroundings and
from different starting materials [40]. Usually, the for-
mation process involves relatively high temperatures,
from 300 K up to 1500 K depending on the technique
used. This means that the RM produced is in an elec-
tronically excited state with electron translation in the
RM cluster above its ground state, which is character-
ized by a certain principal quantum number n. The rea-

∆k 2kL x( ) ks x( )– kas x( ),–=
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interferometer

MCT
detector

Fig. 1. Block diagram of the experimental setup for a trans-
mission measurement. The RM cloud around the hot emitter
is indicated.
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son for the excitation is that the RM is formed in the
experiments by condensation of excited clusters, mole-
cules, and atoms in Rydberg states. The excess energy
in the RM clusters comes from the condensation energy
and from collisions with an excitation energy transfer
from the Rydberg species. However, a cooling process
can be applied to reach lower electronic temperatures.
At RM densities of interest in space, the condensed
phase consists mainly of hexagonal planar clusters
with the magic number (number of members in a stable
cluster) N = 7, 19, 37, 61, and 91 as observed experi-
mentally [7, 11].

In the present stimulated Raman experiment, an
almost single-mode CW laser with mW power is used
in the IR range, with ωL close to 1100 cm–1. The slope of
the laser modes is approximately 7 × 10–3 cm–1 mA–1.
The setup is similar to the one used in [23, 32] with an
air-spaced Fabry–Perot interferometer (FPI) with ZnSe
mirrors between the RM chamber and the detector. A
mirror is used inside the RM chamber to reflect the
laser beam passing below the RM emitter. See Fig. 1.
After formation, the RM cloud is allowed to cool itself
with the RM emitter turned off. The lifetime of RM in
the laboratory under these conditions is of the order of
a few hours. As observed directly in laser fragmentation
experiments, the cold RM gives translational tempera-
tures of a few K for large clusters [9, 11]. This cooling
is probably driven by stimulated emission in the IR
range [29]. The result of this cooling process is that a
redshift of the light passing through the RM cloud can
be detected with the interferometer.

A typical result with blueshifting (leftshift) at a high
emitter temperature due to the formation of a cloud of
warm RM is shown in Fig. 2. At the end of the experi-
ment, a redshift (rightshift) is observed after cooling of
the RM. A complete run with less blueshifting due to
colder RM (exhausted RM emitter) is shown in Fig. 3.
Time and FPI temperature are given in the figure. A
temperature-stable (often water-cooled) FPI with an
Invar base, usually in a well insulated box was used,
with a free spectral range of 0.19 cm–1. The temperature
coefficient of the FPI is determined to be less than
1.5 × 10–2 cm–1 K–1. This gives an elongation of the cav-
ity with increasing temperature and a drift of the peaks
(fringes) to the left in the figure. Thus, the true redshift
in the figures (rightshift) is slightly larger than directly
observed because the temperature of the FPI increased
during the experiment. The redshift observed is of the
order of 0.02 cm–1 for a passage with length of the order
of 25 cm through RM in a surrounding air pressure of
10–4 mbar. It is estimated that the density of RM is close
to the gas density in the chamber. This gives a value of
1018 m–3 if RM fills the volume almost completely, with
the excitation level n = 80. Due to the planar cluster
structure of RM, a filling factor of 10% is more likely,
giving the density 1017 m–3 in the experiments.
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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A redshifting of the interferometer fringes can also
be observed with cold RM deposited on the inner sur-
face of the ZnSe window used in the RM chamber. The
window is antireflection-coated on the outer surface,
and the reflection on the inner surface is observed. This
effect was demonstrated in [32]. In this configuration,
only the evanescent wave interacts with the cold RM on
the inner surface. A similar configuration was shown to
work well in stimulated emission experiments using
RM [41], where the coupling to the external laser cavity
took place via the evanescent wave. The results from a
reflection experiment are shown in Fig. 4. The noise in
the signal is relatively high because just a fraction of the
laser beam intensity is reflected. The time for the scans
and the temperature of the mirror holder in the FPI are
shown. A redshift (rightshift) is seen, caused by the
deposition of RM on the window during heating of the
RM emitter. After return to room temperature, the red-
shift gradually disappears and after two hours, the shift
is zero. We note that the FPI temperature is still higher
than initially and that the drift of the fringes due to tem-
perature changes of the FPI is thus small. A more com-
plete discussion of the influence of temperature
changes of the FPI is given in [32].

3.2. Cold Rydberg Matter in Space

In space, Rydberg matter can exist both at low tem-
peratures and very low densities, and at higher temper-
atures of the order of 300–600 K and higher local den-
sities, for example, surrounding particles in interstellar
space. The excitation levels observed from the so-
called unidentified infrared bands [30] have the most
probable value close to n = 80. A comparison with the
parameter values appropriate for the laboratory studies
of cold RM shows that the density Nd is several orders
of magnitude smaller in space than in laboratory exper-
iments. On the other hand, for visible light, the wave-
number ks is approximately 50 times larger than for the
IR studies described here.

Equation (3) shows that a shift due to the stimulated
Raman effect exists if the product Gssx is larger than
unity. With Eq. (1) used for Gss and with reasonable val-
ues also used for estimation of this factor above, it is
possible to find a condition on the electric field strength
of the light field. The distance covered by light in space
is denoted by l. Then the inequality

(4)

should be valid for the effect to exist. In this inequality,
the space-related quantities are collected in the right
hand side. The difference ωL – ωs was replaced by c∆ ,
where ∆  is in wavenumbers. Assuming conserva-
tively that γ is as large as the upper experimental limit
found, 103 s–1, we find that the left-hand side is equal to
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2 × 10–12 m3 V–2, with the other parameter values esti-
mated as before. With the experimental values from the
study of the cold RM described here, ∆  = 0.02 cm–1,
Nd = 1017 m–3, l = 0.25 m, and EL = 90 V m–1, the right-
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hand side becomes 1 × 10–20 m3 V–2. This is many
orders of magnitude smaller than the left-hand side, as
required by Eq. (4). Because some of the quantities are
anyway somewhat uncertain, we may assume that the
right-hand side of Eq. (4) in space should be as small as
this value in experiments. (This is a very conservative
estimate.) Then ∆  ≈ 104 cm–1 (the typical total
summed shift in observations), Nd = 106 m–3 [42], and
l = 8 × 108 pc = 2.5 × 1025 m may be used, giving EL =
3 × 10–3 V m–1. The distance l used is smaller than the
radius of the observable universe by about a factor of
10. This gives a light intensity of 2 × 10–8 W m–2 as the
minimum intensity required to make the stimulated
Raman process work, corresponding to the intensity of
light from the Sun at our nearest star α Centauri. This
is a very conservative estimate, based on the experi-
mental results. If we instead use the condition that the
right-hand side in Eq. (4) should only be smaller than
the estimated value 2 × 10–12 m3 V–2 of the left-hand
side, the required light intensity may even be a factor of
109 smaller, thus larger than 2 × 10–17 W m–2 corre-
sponding to the field strength EL = 10–7 V m–1. This is
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the same as the intensity of the light from the Sun at the
distance 4 × 104 pc, i.e., on the other side of our galaxy.
Thus, a redshift due to stimulated Raman scattering
develops even at very large distances from the source.

3.3. Redshifts 

It is possible that the stimulated Raman process dis-
cussed here operates at the very low intensity levels in
space, due to the extreme properties of intergalactic
RM. It is of course interesting to investigate whether
such an effect gives the behavior of ordinary redshifts,
for example, whether the shift varies correctly with
wavelength as

(5)

which should be constant for a certain astronomical
object independently of which spectral line is used for
the determination. Thus, it is required that relation (5)
is a constant, or that ∆λ/λL is a constant. This may be
compared with the predictions from stimulated Raman
theory. From Eq. (1), it follows that

(6)

holds, or that the observed behavior of the redshift is
consistent with the stimulated Raman effect with a con-
stant gain factor. The Gss factor is not the real gain, as
shown in [39] and cited above, but it is modified to the
gain G that is nevertheless proportional to Gss . This
gain is constant independently of the shifting light
intensities, e.g., for different spectral lines with differ-
ent emitted intensities. Thus, the stimulated Raman
effect gives the correct observed behavior.

From the description given here, it is also clear that
the redshifting by the stimulated Raman process in RM
is an additive process, given by the distance covered by
light in the RM phase.

4. DISCUSSION

4.1. Quantum Effects 

The main effect that may prevent the stimulated
Raman effect from shifting the frequency of light con-
tinuously, as described above, is the quantal nature of
excitations in the RM and the quantal nature of light. A
finite lower bound to the size of the possible excitations
in RM tends to prevent Gss from reaching extremely
large values, as can be seen from Eq. (1). The experi-
mental redshifts or blueshifts are not observed to be
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quantized at a level of 10–2 cm–1 or larger. This means
that the quantum size is small. It is relevant to note that
quantized redshifts are in fact observed, both for galax-
ies [1] and for quasars [2].

From the description in the theoretical section, a
lower limit of the size of the quantized shifts could be
3 × 10–8 cm–1. The quantized redshifts for nearby galax-
ies [1] instead suggest a quantum size of 6 × 10–6 cm–1

[3]. We use this value to make conservative estimates of
the quantum effects. With the total summed shift
104 cm–1 in the visible range, the total number of shifts
is then on the order of 109. If the distance traveled by
the light is on the order of 1025 m, this means a shift of
6 × 10–6 cm–1 per 6 × 1015 m on average. Therefore, the
shifts are very uncommon events. If the number of
shifts is 109, the statistical variation in this number, the
square root of this, is 3 × 104 on average. The statistical
nature of the shifts is then not observed, but all light is
shifted the same amount with an uncertainty on the
order of 3 × 10–5. This gives 0.3 cm–1 in a total shift of
104 cm–1. Typical uncertainties in optical redshifts are
±0.001 in z [43], giving ±20 cm–1 for a typical optical
line. Thus, the width of the observed lines are much
larger than the widths resulting from the statistics of the
redshift quanta.

4.2. Cosmological Arguments 

In a recent book on cosmology [44], the four general
cases of possible explanations of the redshifts of distant
astronomical objects are summarized, with the fourth
possibility “interaction (scattering, absorption)” being
most relevant to the present discussion. It should be
noted that stimulated Raman scattering was not consid-
ered explicitly, but only more “normal” scattering
events were considered. The main arguments against
the interaction processes given in [4] are as follows:
(a) the resulting redshift should have an exponential
dependence on distance, (b) the redshift ∆λ/λ would
not be independent of frequency, and (c) a scattering
process would smear out the light from distant sources,
which is at variance with observations. The present
model, based on the known physics of stimulated
Raman processes, gives not an exponential but a linear
dependence of the redshift on distance. As shown
above, the redshift ∆λ/λ should be frequency-indepen-
dent for the stimulated Raman process. The stimulated
Raman process does not change the direction of light,
and hence the final argument against a scattering mech-
anism of the stimulated Raman type is not valid either.

5. CONCLUSIONS

We conclude that the stimulated Raman mechanism
for redshifting radiation in RM in space is a possible
process to explain at least a part of the redshifts
observed from distant astronomical objects. It gives the
correct behavior, for example, concerning the fre-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
quency variation, the distance variation, and the direc-
tion of scattering. Further, the observed redshifts in
cold RM in the laboratory are recalculated to astronom-
ical distances and found to easily cover the range of the
observed redshifts.
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Abstract—As an archetype reaction for pQCD multigluon hard processes in collisions of ultrarelativistic
nuclei, we analyze generic features of lepton pair production via multiphoton processes in peripheral heavy ion
scattering. We report explicit results for collisions of two photons from one nucleus with two photons from the
other nucleus, 2γ + 2γ  l+l–. The results suggest that the familiar eikonalization of Coulomb distortions
breaks down for oppositely moving Coulomb centers. The breaking of eikonalization in QED suggests that mul-
tigluon pQCD processes cannot be described in terms of collective nuclear gluon distributions. We discuss a
logarithmic enhancement of the contribution from the 2γ + 2γ  l+l– process to production of lepton pairs
with large transverse momentum; similar enhancement is absent for the nγ + mγ  l+l– processes with m,
n > 2. We comment on the general structure of multiphoton collisions and properties of higher-order terms that
cannot be eikonalized. © 2005 Pleiades Publishing, Inc. 

s
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1. INTRODUCTION

The exact theory of Coulomb distortions of the
spectrum of ultrarelativistic lepton pairs photoproduced
in the Coulomb field of a nucleus has been developed
by Bethe and Maximon [1]. It is based on the descrip-
tion of leptons by exact solutions of the Dirac equation
in the Coulomb field (see, e.g., [2]). In Feynman dia-
gram language, one has to sum multiphoton exchanges
between the produced electrons and positrons and the
target nucleus. For ultrarelativistic leptons, the result of
this summation is the eikonal factors in the impact
parameter representation. In the momentum space, the
same eikonal form leads to simple recursive relations
between the (n + 1)- and n-photon exchange ampli-
tudes [3], where the incoming photon can be either real
or virtual. There are two fundamental points behind
these simple results.

(i) The lightcone momenta of ultrarelativistic lep-
tons are conserved in a multiple scattering process (i.e.,
if the nucleus moves along the n–-lightcone and the pro-
duced leptons move along the n+-lightcone, then the
p+-components of the lepton momenta are conserved).

¶ This article was submitted by the authors in English.
1063-7761/05/10004- $26.000645
(ii) The s-channel helicity of leptons is conserved in
high-energy QED (see [2]). It is the latter property by
which distortions reduce to a simple eikonal factor.

The same properties allow one to express the pair
production cross section in the dipole representation [4].
They also underlie the color dipole perturbative Quan-
tum Chromo Dynamics (pQCD) analysis of nuclear
distortions and the derivation of nonlinear k⊥ -factoriza-
tion for multijet hard processes in DIS off nuclei [5].

As shown in [6], the so-called Abelianization takes
place in certain cases of practical interest. Specifically,
the hard dijet production in a hadron-nucleus collision
is dominated by a hard collision of an isolated parton
from the beam hadron simultaneously with many glu-
ons from the nucleus, which belong to different nucle-
ons of a target nucleus. Nevertheless, at least for single-
particle spectra, the interaction with a large number of
nuclear gluons can be reduced to that with a single
gluon from the collective gluon field of a nucleus; i.e.,
the nonlinear k⊥  factorization reduces to the linear one,
and in terms of the collective glue, one only needs to
evaluate the familiar Born cross sections. Extending the
nonlinear k⊥  factorization for hard processes from had-
ron-nucleus collisions to collisions of ultrarelativistic
nuclei is a formidable task that has not been properly
 © 2005 Pleiades Publishing, Inc.
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addressed so far. The lightcone QED and QCD share
many properties, and we here address a much simpler,
Abelian problem of Coulomb distortions of lepton pairs
produced in peripheral collisions of relativistic nuclei.

The process of lepton pair production in the Cou-
lomb fields of two colliding ultrarelativistic heavy ions
was intensely investigated recently [7–14]. Such an
activity is mainly connected with new practical interest
in pair production opened with operation of the facili-
ties such as the RHIC and the LHC. Despite the high
activity in this area, the issue of correct allowance for
the final-state interaction of produced leptons with the
colliding ion Coulomb field remains open. The main
results obtained so far in this direction are as follows.

(i) The produced high-energy lepton pair interacts
strongly with the Coulomb field of heavy ions, and the
corresponding corrections have a noticeable impact on
the cross section of the process [10].

(ii) The perturbation series corresponding to multi-
ple interaction of a produced pair with Coulomb fields
can be summed and the result can be expressed in an
eikonal-like form [14] if one restricts oneself to terms
growing with energy in the cross section [12]. In QED,
such an approximation can be considered satisfactory,
but it is not warranted in QCD, and the problem of
higher-order corrections in pair production requires
further investigation.

In our paper [12], we cited the amplitude ,
which is irrelevant in the leading and next-to-leading
logarithmic approximations in QED. Nevertheless,
knowledge of contributions of this type becomes
important for similar processes in QCD with multi-
gluon exchanges between the color constituents of each
of the colliding hadrons and the created quark–anti-
quark pair. This is the main motivation for our interest
in multiple exchanges and their impact on the lepton
pair yield in the ultrarelativistic heavy ion collisions,
an issue that is not only useful in understanding the
electromagnetic processes but also broadly applicable
in QCD.

We skip the previously studied case where one of
the ions radiates a single photon and the other radiates
an arbitrary number of photons absorbed by the created
pair [14]. The photon exchanges between the ions were
not taken into account either [13].

This paper is organized as follows. In Section 2, we
consider the case where each of the colliding ions radi-
ates two photons, which create a lepton pair. We derive

the relevant amplitude  using the powerful Suda-
kov technique, well suited for calculations of processes
at high energies. In Section 3, we study the wide-angle
limit in pair production kinematics corresponding to
the case of large transverse momenta of pair compo-
nents. In this limit, the results are much more transpar-
ent than in the general case, as can be seen from the

M 2( )
2( )

M 2( )
2( )
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form of the differential cross section given below. In
Section 4, we discuss the generalization of the process
under consideration to the case where the number of
photons exchanged by each ion exceeds two.

2. LEPTON PAIR PRODUCTION

We are interested in the process of lepton pair pro-
duction in the collision of two relativistic nuclei A and
B with the charge numbers Z1 and Z2,

(1)

with the kinematical invariants

(2)

We are interested in peripheral kinematics, i.e.,

(3)

which corresponds to small scattering angles of ions A
and B.

It is convenient to use the Sudakov parameterization
for all 4-momenta entering process (1),

(4)

with lightcone 4- vectors  obeying the conditions

2.1. The Pair Production by 4-Photons 

We consider the creation of a lepton pair from four
virtual photons (Fig. 1). The photons with momenta k1
and q1 – k1 (referred to as photons 1 and 2 hereafter) are
emitted by ion A and the photons with momenta k2 and
q2 – k2 (referred as the photons 3 and 4) by ion B. The

A p1( ) B p2( ) l– q–( ) l+ q+( )+ +

+ A p1'( ) B p2'( ),+

s p1 p2+( )2, q1
2 p1 p1'–( )2

,= =

q2
2 p2 p2'–( )2

, s1 q+ q–+( )2,= =

p1
2 p1'

2
M1

2, p2
2 p2'

2
M2

2, q±
2 m2.= = = = =

s @ M1
2 M2

2 q1
2 q2

2
 @ m2,, , ,

q1 a1 p̃2 b1 p̃1 q1⊥ ,+ +=

q2 a2 p̃2 b2 p̃1 q2⊥ ,+ +=

k1 α1 p̃2 β1 p̃1 k1⊥ ,+ +=

k2 α2 p̃2 β2 p̃1 k2⊥ ,+ +=

q± α± p̃2 β± p̃1 q±⊥ ,+ +=

p̃1 2,

p̃1
2 p̃2

2 0, p̃1 2, q⊥⋅ 0, 2 p̃1 p̃2⋅ s.= = = =
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leading contribution to the cross section comes from
the following regions of the Sudakov variables:

(5)

Hereinafter, the boldface qi , denotes the two-dimen-
sional transverse part of any considered 4-momentum.
For definiteness, we assume β+, β– > 0, which corre-
sponds to the situation where the pair moves along the
momentum of ion A (the momentum p1). With a possi-
ble extension to pQCD in mind, we neglect the lepton
masses whenever appropriate.

The contribution to the matrix element of such a set
of the Feynman diagrams (FD) is given by

(6)

where u and v  are the leptonic Dirac bispinors and O1,
O2, and T are the corresponding tensors of the upper,
down, and pair production blocks. To see the propor-
tionality of matrix element (6) to the invariant energy s,
we use the Gribov representation for the virtual photon
Green functions

(7)

The numerators of the Green functions of nucleus A can
be written as s2N1 with

and a similar expression exists for nucleus B. The
denominators of the virtual photon Green functions in
the considered kinematics depend only on the trans-

α1 ! β1 b1, β+ β–+∼ b1,=

β2 ! α2 α2, α+ α–+∼ a2,=

a1  ! a2, b2  ! b1, qi⊥ qi,=

q1 q2+ q+ q–,+=

α±
q±

2

sβ±
--------, q±

2
 @ m2.=

M 2( )
2( ) is

Z1Z2( )2 4πα( )4

2π( )8
------------------------------------=

×
d4k1d4k2

k1
2k2

2 q1 k1–( )2 q2 k2–( )2
--------------------------------------------------------∫

× 1
s
---uη p1'( )O1

µ1ν1uη p1( )uλ p2'( )O2
ρ1σ1uλ p2( )

× u q–( )Tµνρσv q+( )gµµ1
gνν1

gρρ1
gσσ1

,

gµµ1
gνν1

gρρ1
gσσ1

≈ 2
s
--- 

 
4

p1µ p1ν p1ρ1
p1σ1

p2µ1
p2ν1

p2ρ p2σ.

N1
1
s
---uη p1'( ) p̂2uη p1( ), N1

2

η
∑ 2,= =
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verse components of the corresponding 4-vectors, and
therefore

There are 24 FD contributing to . Instead of them,
it is convenient to consider 24 · 2 · 2 = 96 FD with all
possible permutations of emission and absorption
points of the photons exchanged by the nuclei (Fig. 2).
Then the result must be divided by (2!)2. This trick [15]
provides the convergence of integrals over β2,

(8)

and of a similar integral over α1. After all operations,
we can write the matrix element as

(9)

where

2.2. Classification of Feynman Diagrams 

It is convenient to classify FDs by the ordering of
the exchanged photons absorbed by the lepton world
line (Fig. 3). We label them as Rijkl , R = , with
pairwise distinct integers i, j, k, l from one to four,
counting from a negative lepton emission point.

(a) We first consider the set of four FDs (Fig. 4a),
labeled R1234, R2134, R1243, and R2143, in which the inter-
actions with two nuclei are ordered consecutively
against the lepton line direction. The sum of the rele-
vant contributions provides the convergence of the β1

k1
2k2

2 q1 k1–( )2 q2 k2–( )2 k1
2k2

2 q1 k1–( )2 q2 k2–( )2.=

M 2( )
2( )

1
2πi
-------- β2

s
sβ2 c– i0+
---------------------------- s

sβ2– d i0+( )–
-------------------------------------+d

∞–

∞

∫ 1,–=

M 2( )
2( ) is

16πα2Z1Z2( )2
N1N2

2!( )2
------------------------------------------------=

×
d2k1d2k2

π2
---------------------

u q–( )Rv q+( )
k1

2k2
2 q1 k1–( )2 q2 k2–( )2

-----------------------------------------------------------,∫

R
1
s
---

β1 α2dd

2πi( )2
----------------- p1µ p1ν p2ρ p2σTµνρσ.∫=

Rijkl∑

p'1p1

k1

k2

p2 p'2

µ1

µ

ν1

σ

σ1

νρ

ρ1

q1 – k1

q2 – k2

q–

–q+

Fig. 1. Typical Feynman diagram for amplitude .M 2( )
2( )
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–q+ q–j i
kl

p1 p'1

p'2p2

–q+ q–j i
l k

p'1p1

p'2p2

p1 p'1

p'2p2

–q+ j
l k

i q–

(a) (b) (c)

Fig. 3. Set of basic Feynman diagrams for amplitude .M 2( )
2( )

p1 p'1 p'1p1 p1 p'1

p1 p1p'1 p'1

k1 k1 k1

k1k1

q1 – k1 q1 – k1 q1 – k1

q1 – k1q1 – k1

q2 – k2 q2 – k2 q2 – k2

q2 – k2q2 – k2

k2 k2 k2

k2k2

p2 p'2 p'2p2 p2 p'2

p2 p'2 p'2p2

q–

q–

q–

q–q–

–q+

–q+

–q+

–q+–q+

(a) (b) (c)

(d) (e)

Fig. 4. Feynman diagrams for amplitude .M 2( )
2( )

…

1 n

…

n1

≡ + all permutations

Fig. 2. Notation for permutations of n virtual photons emitted by a heavy ion.
and α2 integrations. After a standard calculation, we
obtain

(10)

R1234 R2134 R1243 R2143+ + +

=  
β p̂1 q̂– q̂1–( )⊥–

β+q–
2 β– q– q1–( )2+

-----------------------------------------------
p̂2

s
----- B

p̂2

s
-----,–=

B
q̂–⊥ q̂– q̂1–( )⊥

β+q–
2 β– q– q1–( )2+

-----------------------------------------------.=
JOURNAL OF EXPERIMENTAL 
The last equality in Eq. (10) is the result of the Dirac
equation for massless particles,

(11)

A result similar to Eq. (10) is obtained for the set of
the crossing diagrams (Fig. 4b) corresponding to the
R3412, R3421, R4312, and R4321 terms in the amplitude, with

u q–( )β– p̂1 p̂2 u q–( )q̂–⊥ p̂2.–=
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only the replacement B  , where

(12)

(b) We next consider the set of diagrams R1342, R1432,
R2341, R2431 (Fig. 4c) and R3124, R3214, R4123, R4213
(Fig. 4d), where exchanges with ion B (A) are attached
to the lepton line between the interactions with ion A (B).

For definiteness, we consider the sum R1342 + R1432.
Using the relevant denominators of the lepton line, we
obtain the following integrals over β1 and α2:

(13)

The second integral after closing the integration con-
tour in the lower half-plane gives the function
sgn(β− − β1), and hence Eq. (13) becomes

(14)

Using the relation

(15)

we obtain the result

B̃

B̃
q̂+– q̂1+( )⊥ q̂+⊥

β–q+
2 β+ q1 q+–( )2+

-----------------------------------------------.=

β1d
2πi
-------- 1

sα– β– β1–( ) q– k1–( )2– i0+
-----------------------------------------------------------------------∫

× 1

sα+ β– β1–( )– q+– q1 k1–+( )2– i0+
--------------------------------------------------------------------------------------------

×
α2d

2πi
--------

s β– β1–( )
s β– β1–( ) α– α2–( ) q– k1–( )2– i0+
----------------------------------------------------------------------------------------∫

+
s β– β1–( )

s β– β1–( ) α+– α2+( ) q+– q1 k1–+( )2– i0+
------------------------------------------------------------------------------------------------------------- .

β1d
2πi
--------

β1 β––( )sgn

sα– β– β1–( ) q– k1–( )2– i0+
-----------------------------------------------------------------------∫

× 1

sα+ β– β1–( )– q+– q1 k1–+( )2– i0+
--------------------------------------------------------------------------------------------.

xd
2πi
-------- xsgn

ax– b– i0+( ) cx d i0+–( )
------------------------------------------------------------------

∞–

∞

∫

=  
1

πi ad bc+( )
----------------------------- ad

bc
------,ln

R1342 R1432 R2341 R2431+ + +

=  
p̂1

iπs
-------

q̂– k̂1–( )⊥ q̂+– q̂1 k̂1–+( )⊥

α+ q– k1–( )2 α– q+– q1 k1–+( )2+
-----------------------------------------------------------------------------------

×
α+ q– k1–( )2

α– q+– q1 k1–+( )2
----------------------------------------------ln
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(16)

We note that the expressions (16) are purely imaginary,
and therefore their interference with the Born term in
the cross section is zero.

(c) We now consider the case of interactions with
different nuclei alternating along the lepton line, for
instance, the amplitude R1324 (Fig. 4e). After some alge-
bra, we obtain the relevant numerator

(17)

which is very different from the numerators of Born-
like amplitudes. Specifically, it is a higher-order term in
the running transverse momenta ki .

The relevant denominators are given by

(18)

The nonvanishing contribution only emerges if the
poles are located in different α2 half-planes, which

+
q̂– q̂1– k̂1+( )⊥ q̂+– k̂1+( )⊥

α+ q– q1– k1+( )2 α– q+– k1+( )2+
-----------------------------------------------------------------------------------

×
α+ q– q1– k1+( )2

α– q+– k1+( )2
------------------------------------------ ,ln

R3124 R3214 R4123 R4213+ + +

=  
p̂2

iπs
-------

q̂– k̂2–( )⊥ q̂+– q̂2 k̂2–+( )⊥

β+ q– k2–( )2 β– q+– q2 k2–+( )2+
----------------------------------------------------------------------------------

×
β– q+– q2 k2–+( )2

β+ q– k2–( )2
----------------------------------------------ln

+
q̂– q̂2– k̂2+( )⊥ q̂+– k̂2+( )⊥

β+ q– q2– k2+( )2 β– q+– k2+( )2+
----------------------------------------------------------------------------------

×
β– q+– k2+( )2

β+ q– q2– k2+( )2
----------------------------------------- .ln

N1324 s p̂1 p̂2 q̂– k̂1–( )⊥=

× q̂– k̂1– k̂2–( )⊥ q̂– q̂1– k̂2–( )⊥ ,

1{ } q– k1–( )2 i0+≡

=  s β– β1–( )α– q– k1–( )2– i0,+

2{ } q– k1– k2–( )2 i0+≡

=  s β– β1–( ) α– α2–( ) q– k1– k2–( )2– i0,+

3{ } q+– q2 k2–+( )2 i0+≡

=  s β+–( ) α– α2–( ) q+– q2 k2–+( )2– i0.+
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Coefficients in formula (23). The brackets denote index permutation, e.g., (12) ≡ 12 + 21

n Rijkl an bn cn dn

1 R(12)(34) q– q– – q1 – –

2 R(34)(12) q1 – q+ q+ – –

3 R1324 q– q– – k1 q– – k1 – k2 q– – q1 – k2

4 R1423 q– q– – k1 q– – q2 + k2 – k1 –q+ + k2

5 R2314 q– q– – q1 + k1 q– – q1 + k1 – k2 –q+ + q2 – k2

6 R2413 q– q– – q1 + k1 –q+ + k1 + k2 –q+ + k2

7 R4231 q– – q2 + k2 –q+ + k1 + k2 –q+ + k1 q+

8 R3241 q– – k2 q– – q1 + k1 – k2 –q+ + k1 q+

9 R4132 q– – q2 + k2 q– – q2 + k2 – k1 –q+ + q1 – k1 q+

10 R3142 q– – k2 q– – k1 – k2 –q+ + q1 – k1 q+

11 R3(12)4 q– – k2 –q+ + q2 – k2 – –

12 R4(12)3 q– – q2 + k2 –q+ + k2 – –
takes place only if β1 < β– (β± > 0). Taking the residue
at pole {2}, we find

(19)

Further integration over β1 can be performed using the
relation

(20)

with the result

(21)

The highly nonlinear denominator given by Eq. (21)
makes the contribution of the considered case dramati-
cally different from the Born amplitude and corrections
to it from the higher-order processes in which only one
photon is emitted by one of the ions [12]. Technically,
the nonlinearity is not surprising because of the related
nonlinearity of the numerator. The principal difference
from the Born-like amplitude is that with the alternat-
ing ordering of interactions, we have the situation in

s α2d
2πi
----------- 1

2{ } 3{ }
-------------------∫

=  
θ β– β1–( )

β1 β––( ) q+– q2 k2–+( )2 β+ q– k1– k2–( )2–
-------------------------------------------------------------------------------------------------------------.–

xd
2πi
-------- θ x( )

ax b– i0+( ) cx d i0+ +( )
--------------------------------------------------------------

∞–

∞

∫

=  
1

2 ad bc+( )
-------------------------- 1

i
π
--- ad

bc
------ln+ 

  ,–

R1324

β–N1324

2sD1324
------------------ 1

i
π
--- ad

bc
------ln+ 

  ,–=

D1324 β– q– k1–( )2 q+– q2 k2–+( )2=

+ β+q–
2 q– k1– k2–( )2 ad bc.+=
JOURNAL OF EXPERIMENTAL A
which the p+ component of the lightcone momentum-is
conserved in the scattering on one ion but is not con-
served in the scattering on the second ion. Depending
on the ordering of interaction vertices and the order of
integrations, we encounter a sequence of vertices with
conservation and nonconservation of the p–-component
of the lightcone momentum.

Similar results can be obtained for other contribu-
tions of these types.

(d) The final result is given by (see table)

(22)

(23)

To verify gauge invariance, we give the explicit
form for the real part of the amplitude:

M 2( )
2( ) is

2!( )2
----------- 16πα2Z1Z2( )2

N1N2=

×
d2k1

π
----------

d2k2

π
----------

u q–( )R 2( )
2( ) p̂2v q+( )

sk1
2k2

2 q1 k1–( )2 q2 k2–( )2
--------------------------------------------------------------,∫

R 2( )
2( ) ânb̂n[ ] ⊥

β–bn
2 β+an

2+
----------------------------

n 1=

2

∑=

–
ânb̂nĉnd̂n[ ] ⊥

2 β–bn
2dn

2 β+an
2cn

2+[ ]
-----------------------------------------------

n 3=

10

∑

× 1 i
1–( )n 1+

π
-------------------

β–bn
2dn

2

β+an
2cn

2
-----------------ln+

 
 
 

+ i
1–( )n 1+

π
-------------------

ânb̂n[ ] ⊥

β–bn
2 β+an

2+
----------------------------

β–bn
2

β+an
2

-----------.ln
n 11=

12

∑
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ReR 2( )
2( ) q̂– q̂– q̂1–( )[ ] ⊥

β+q–
2 β– q– q1–( )2+

-----------------------------------------------
q̂+– q̂1+( )q̂+[ ] ⊥

β–q+
2 β+ q+ q1–( )2+

-----------------------------------------------+=

–
q̂– q̂– k̂1–( ) q̂– k̂1– k̂2–( ) q̂– q̂1– k̂2–( )[ ] ⊥

2 β– q– k1–( )2 q+– q2 k2–+( )2 β+q–
2 q– k1– k2–( )2+[ ]

-----------------------------------------------------------------------------------------------------------------------------------

–
q̂– q̂– k̂1–( ) q̂– q̂2– k̂2 k̂1–+( ) q̂+– k̂2+( )[ ] ⊥

2 β– q– k1–( )2 q+– k2+( )2 β+q–
2 q– q2– k2 k1–+( )2+[ ]

------------------------------------------------------------------------------------------------------------------------------------

–
q̂– q̂– q̂1– k̂1+( ) q̂– q̂1– k̂1 k̂2–+( ) q̂+– q̂2 k̂2–+( )[ ] ⊥

2 β– q– q1– k1+( )2 q+– q2 k2–+( )2 β+q–
2 q– q1– k1 k2–+( )2+[ ]

-----------------------------------------------------------------------------------------------------------------------------------------------------------

–
q̂– q̂– q̂1– k̂1+( ) q̂+– k̂1 k̂2+ +( ) q̂+– k̂2+( )[ ] ⊥

2 β– q– q1– k1+( )2 q+– k2+( )2 β+q–
2 q+– k1 k2+ +( )2+[ ]

-----------------------------------------------------------------------------------------------------------------------------------------

–
q̂– q̂2– k̂2+( ) q̂+– k̂1 k̂2+ +( ) q̂+– k̂1+( )q̂+[ ] ⊥

2 β–q+
2 q– + k1 k2+ +( )2 β+ q+– k1+( )2 q– q2– k2+( )2+[ ]

----------------------------------------------------------------------------------------------------------------------------------------

–
q̂– k̂2–( ) q̂– q̂1– k̂1 k̂2–+( ) q̂+– k̂1+( )q̂+[ ] ⊥

2 β–q+
2 q– q1 k+ 1– k2–( )2 β+ q+– k1+( )2 q– k2–( )2+[ ]

------------------------------------------------------------------------------------------------------------------------------------

–
q̂– q̂2– k̂2+( ) q̂– q̂2– k̂2 k̂1–+( ) q̂+– q̂1 k̂1–+( )q̂+[ ] ⊥

2 β–q+
2 q– q2– k2 k1–+( )2 β+ q– q2– k2+( )2 q+– q1 k1–+( )2+[ ]

-----------------------------------------------------------------------------------------------------------------------------------------------------------

–
q̂– k̂2–( ) q̂– k̂1– k̂2–( ) q̂+– q̂1 k̂1–+( )q̂+[ ] ⊥

2 β–q+
2 q– k1– k2–( )2 β+ q+– q1 k1–+( )2 q– k2–( )2+[ ]

------------------------------------------------------------------------------------------------------------------------------------.
We can then verify that the following condition is
satisfied:

(24)
ReR 2( )

2( ) 0 if k1 0= =

or k2 0 or k1 q1 or k2 q2.= = =
RIMENTAL AND THEORETICAL PHY
This fact is also correct for the whole amplitude (23).
This property (24) is crucial for the gauge invariance
and infrared convergence of integrations over d2ki .

In the loop integration, we can shift the integration
variable as ki  qi – ki . Then expression (23) for

Re  can be simplified toR 2( )
2( )
(25)

ReR 2( )
2( ) q̂–⊥ q̂– q̂1–( )⊥

β+q–
2 β– q– q1–( )2+

-----------------------------------------------
q̂+– q̂1+( )⊥ q̂+⊥

β–q+
2 β+ q1 q+–( )2+

-----------------------------------------------+=

– 2
q̂– q̂– k̂1–( ) q̂– k̂1– k̂2–( ) q̂– q̂1– k̂2–( )[ ] ⊥

β– q– k1–( )2 q+– q2 k2–+( )2 β+q–
2 q– k1– k2–( )2+

---------------------------------------------------------------------------------------------------------------------------

– 2
q̂+– q̂1 k̂2+ +( ) q̂+– k̂1 k̂2+ +( ) q̂+– k̂1+( )q̂+[ ] ⊥

β–q+
2 q+– k1 k2+ +( )2 β+ q+– k1+( )2 q– q2– k2+( )2+

---------------------------------------------------------------------------------------------------------------------------------.
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Although the gauge invariance property is not mani-
fested here, as in the previous case, the final results after
integration over ki coincide.

3. THE WIDE-ANGLE LIMIT 

OF THE  AMPLITUDE

We consider the behavior of expression (25) in the
case where the transverse component of lepton
momenta is large compared to the momenta transferred
to the ions,

(26)

The main contribution to the matrix element is then
given by the region

(27)

The amplitude  is

(28)

For wide-angle kinematics, we have

(29)

where β1 = β– + β+, q = q– ≈ –q+, and q1, 2 are the
momenta transferred to ions.

For the matrix element  we have (in agreement
with the result obtained in paper [16])

(30)

M 2( )
2( )

q– q+–≈ q, q  @ q1 2, .=

qi  ! ki  ! q .

M 1( )
1( )

M 1( )
1( ) is

8πα( )2N1N2Z1Z2

q1
2q2

2
-------------------------------------------u q–( )

R 1( )
1( )

s
---------v q+( ),–=

R 1( )
1( ) p̂1

q̂– q̂1–

q– q1–( )2
----------------------- p̂2 p̂2

q̂1 q̂+–

q1 q+–( )2
----------------------- p̂1+=

=  B B̃–( ) p̂2.

1
s
---R 1( )

1( ) p̂2

s
----- 1

b1
2 q2( )2

----------------- 2q q2 b1q̂q̂1 2β–q+ q1⋅( )⋅[=

+ q2 b1q̂1q̂2 2β+q1+ q2⋅( ) ] ,

M 2( )
1( )

M 2( )
1( ) s

27π2α3Z1Z2
2N1N2

q1
2

-------------------------------------------–=

×
d2k2

π
----------

u q–( )R 2( )
1( ) p̂2v q+( )

sk2
2 q2 k2–( )2

-------------------------------------------,∫
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where

(31)

In the considered limit, this expression becomes

(32)

This expression vanishes after angular averaging. It can

be shown that the quantity  also vanishes in the
limit of wide-angle pair production and is proportional
to |q2 |/|q | ! 1, which is in agreement with [3].

For the amplitude  in Eq. (22), the quantity

 plays the role of a cut-off parameter in the region
|ki | > |q |. From very general arguments, it can be writ-
ten in the form

(33)

with some dimensionless tensor matrix Rµναβ indepen-
dent of ki and qi . Expanding expression (25), we obtain

(34)

where I is the unit matrix and qmax ≈ 1/R is the upper
integration limit, with R being the nucleus radius. Such
a logarithmic enhancement is absent if the number of
the exchanged photons from each ion exceeds two

(Fig. 5). In fact, the amplitudes , , n > 2 con-
tain only the first power of the large logarithm, whereas

, m, n > 2 do not contain such a factor at all
because the corresponding loop momenta integrals are

R 2( )
1( ) B B̃

q̂– k̂2–( )⊥ q̂– q̂1– k̂2–( )⊥

β– q– q1– k2–( )2 β+ q– k2–( )2+
-----------------------------------------------------------------------------–+=

–
q̂+ k̂2– q̂1–( )⊥ q̂+ k̂2–( )⊥

β+ q– q2– k2+( )2 β– q+ k2–( )2+
-----------------------------------------------------------------------------.

R 2( )
1( ) 1

b1q2
---------- 2β–q– q1 q̂–q̂1+⋅( )∼

×
4 q– k2⋅( )2

q2( )2
-------------------------

k2
2

q2
-----–

 
 
 

–
2q– k2⋅

q2
------------------ k̂2q̂1 2β–k2+ q1⋅( ) β– β+( ),+

k2  @ q2 .

M 3( )
1( )

M 2( )
2( )

R 2( )
2( )

ReR 2( )
2( ) k1

µ q1 k1–( )νk2
α q2 k2–( )β[ ] ⊥

q2( )2
-----------------------------------------------------------------Rµναβ ,≈

d2k1d2k2

π2
---------------------

ReR 2( )
2( )

k1
2k2

2 q1 k1–( )2q q2 k2–( )2
--------------------------------------------------------------∫

≈ I

q2( )2
------------

4 β+ β––( )
β– β++( )2

-------------------------
qmax

2

q1
2

----------
qmax

2

q2
2

----------,lnln

M n( )
2( ) M 2( )

n( )

M n( )
m( )
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p1 p'1 p1 p'1 p'1p1

p2 p'2 p'2p2 p2 p'2

q– q– q–

–q+–q+–q+

…

… …

…

m m

nn

(a) (b) (c)

Fig. 5. Some Feynman diagrams for amplitudes of the type  (a),  (b), and  (c) with m, n ≥ 2.M n( )
2( )

M 2( )
n( )

M n( )
m( )
convergent in both infrared and ultraviolet regions and
we can safely put |q1(2) | = 0 in loop integrations.

Thus, the differential cross section for the consid-
ered kinematics is determined by the interference term

( )* , which has the form (for comparison, we
also present the Born term)

(35)

(36)

where

We note that expression (36) is symmetric under simul-
taneous substitutions q+  q– and β+  β– due to
the C-even nature of the interference.

Finally, from a very straightforward generalization
of (33), it can be shown that the set of amplitudes with

M 1( )
1( ) M 2( )

2( )

dσ0

db1dx
---------------

16 Z1Z2α
2( )2

π4
-------------------------------=

× x2 1 x–( )2+

q1
2q2

2 q2( )2
b1

------------------------------d2q1d2q2d2q,

dσint

db1dx
---------------

16 Z1Z2α
2( )3

q1
2q2

2q+
2q–

2
-------------------------------1 2x–

b1
---------------=

×
qmax

2

q1
2

----------
qmax

2

q2
2

----------Qd2q1d2q2d2q–,lnln

Q
q– q1 q––( )⋅

1 x–( )q–
2 x q– q1–( )2+

-------------------------------------------------------=

+
q+ q+ q1–( )⋅

xq+
2 1 x–( ) q1 q+–( )2+

--------------------------------------------------------,

x
β–

b1
-----, e x, b1 1 e, e–< < 4m2x 1 x–( )

q±
2

------------------------------.= =

                                 
L OF EXPERIMENTAL AND THEORETICAL PHY
an odd number of exchanges with one or both nuclei is
suppressed in the limit of wide-angle production:

(37)

4. MULTIPHOTON EXCHANGE

We now generalize the above picture to the case of
multiple photon exchanges (m, n > 2). Using the relation

(38)

and taking the combinatorial factor 1/n! coming from
the symmetric integration over αi and βi into account,
we have to replace any single photon exchange with an
infinite set of photons by multiplying the amplitude by
eikonal factors of the type exp{iϕi(q2)} with the phase
ϕi(

 

q

 

2

 

) = 

 

±α

 

Z

 

i

 

ln(

 

q

 

2

 

/

 

λ

 

2

 

). The scattering amplitudes of an
electron and a positron differ only by the sign of the
phase (which is positive for electrons) [9]. This replace-
ment is shown in Fig. 6, where the double photon line
corresponds to infinitely many photons.

Using the same technique as in [17], we can see that
the amplitude relevant to Fig. 7a and Fig. 7b can be
written as

(39)

The interactions of the electron and the positron with the
Coulomb field differ only by signs. Although this expres-

M 2n 1+( )
2m( ) O

q1

q
-------- 

  , M 2n( )
2m 1+( ) O

q2

q
-------- 

  ,∼ ∼

M 2n 1+( )
2m 1+( ) O

q1 q2

q2
----------------- 

  .∼

In
1

πn 1–
-----------=

×
d2k1…d2kn 1–

k1
2 λ2+( )… kn 1–

2 λ2+( ) q k1– …– kn 1––( )2 λ2+[ ]
----------------------------------------------------------------------------------------------------------------------------∫

=  
n q2/λ2( )ln

n 1–

q2
----------------------------------

R̃ 1( )
1( )

B i ϕ1 q1
2( ) ϕ2 q2

2( )–[ ]–{ }exp=

+ B̃ i ϕ1 q1
2( ) ϕ2 q2

2( )–[ ]{ } .exp
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sion is infrared-unstable in the case where Z1 ≠ Z2 the
regularization parameter λ enters it in a standard way.

We now consider the class of diagrams shown in
Fig. 7c. In Subsection 2.2, we obtained expressions (16)
in the case where m = n = 2, with ReR1(34)2 = 0. It can
be shown that higher-order terms with any even number
of photons from the same nucleus attached to the lepton
world line between two photons from other nuclei do
not contribute to the amplitude of the process under
consideration. This follows from the relation
(sgnα)2k + 1 = sgnα.

The general structure of the amplitude correspond-
ing to Fig. 7c can be constructed using the lowest-order
truncated amplitude (without single-photon propaga-

tors) ,

(40)

R 2( )
1( )

R̃ 2( )
1( ) ϕ1 q1

2( )( )cos

q1
2

------------------------------R 2( )
1( )=

× i ϕ2 k2( ) ϕ2 q2 k–( )2( )–[ ]{ } ,exp

R 2( )
1( ) 1

iπ
-----

q̂– q̂2– k̂+( )⊥ q̂+– k̂+( )⊥

β– q+ k–( )2 β+ q– q2– k+( )2+
-------------------------------------------------------------------------=

×
β+ q– q2– k+( )2

β– q+ k–( )2
---------------------------------------.ln

p1 p'1 p'1p1 p1 p'1

p1 p'1 p'1p1 p1 p'1

p2 p'2 p'2p2 p2 p'2

p2 p'2 p'2p2 p2 p'2

(a) (b) (c)

(d) (e) (f)

–q+ –q+ –q+

–q+ –q+ –q+

q– q– q–

q–q–q–

Fig. 7. Feynman diagrams for amplitudes with many photon
exchanges. The double photon line represents any number
of exchanged photons, the double zigzag line represents
only an odd number of exchanged photons.

p1 p'1 p'1p1

p2 p'2 p'2p2

i 1=

∞

∑≡ …

Fig. 6. Representation of all eikonal exchanges.
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The subsequent generalization is obvious. For
instance, we give the expression corresponding to the
diagram in Fig. 7d,

(41)

From the above consideration, we conclude that it
can therefore be written as the general structure of the

matrix element  corresponding to m photon
exchanges from one ion (with 4-momenta ki) and n
exchanges from the other (with 4-momenta κi) can be
schematically written as

(42)

where m and n satisfy the condition |m – n | ≤ 1. At this

stage, we omit phase factors in the structure  (in
order to understand the problem clearly), and it can
therefore be written as

(43)

where

(44)

R̃ 2( )
2( ) ϕ1 k1

2( )( ) iϕ1 q1 k1–( )2( )–[ ]expcos=

× ϕ2 k2
2( )( ) iϕ2 q2 k2–( )2( )[ ] R1324.expcos
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------------------∫

× 1
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2…kn

2
------------------u q–( )R n( )
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s
-----v q+( ),

R n( )
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R n( )
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R 1( )
1( )

R 2( )
1( )

R 1( )
2( )

R 2( )
2( )

R 3( )
2( )

+ + + +=

+ R 2( )
3( )

R 3( )
3( )R

R 3( )
3( )L…,+ +
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2( ) 1

iπ
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α– q+– q1 k–+( )2 α+ q– k–( )2+
------------------------------------------------------------------------------=

×
α+ q– k–( )2
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--------------------------------------------,ln
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3( )R 1

c1 c2+
--------------- π2

2
-----

1
2
---

c1

c2
----ln
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Here,  is only the second term in the right-hand side
in Eq. (23) and the index R(L) denotes two possible

configurations of photons for  (Fig. 7e) and 
(Fig. 7f).

Thus, the general algorithm for constructing an arbi-
trary term is transparent. Unfortunately, we cannot
obtain a compact expression for the whole amplitude.
The reason is the increasing nonlinearity of the propa-
gators with the order of interaction. The behavior of the
above denominators is very different from the Born-
like case, where the simplicity of propagators allows
one to obtain eikonal-like expressions.

The result of partial summation like (41) suffers
from infrared divergences and cannot be considered
final. On the other hand, the final result (44) implies the

summation over the classes  of FD and must con-
tain all the dependence on the “photon mass” λ in the
form of a general phase factor, proving the infrared sta-
bility of the cross section. We believe that this question
will be the subject of a separate investigation.

5. CONCLUSIONS

The wide-angle lepton pair production in peripheral
interactions of ultrarelativistic heavy ions is an arche-
type reaction for hard processes in central hadronic
hard collisions of heavy nuclei. In the electromagnetic
case, the expansion parameter Z1, 2α ~ 1 makes the mul-
tiple photon collisions mγ + nγ  l+l– potentially
important, and similarly, the effect of multiple gluon
collisions in central collisions is enhanced by a large
number of nucleons at the same impact parameter. The
crucial issue is whether such multiple photon collisions
can be described by the Born cross section in terms of
the collective photon fields of colliding nuclei. We have
obtained the expression for the amplitude for the 2γ +
2γ  l+l– process and have shown that its contribution
is dominant in the wide-angle limit. Our principal find-
ing is that the amplitude is manifestly of a non-Born
nature, which is suggestive of complete failure of the
linear k⊥  factorization even in the Abelian case.

The leading term of the multiphoton collision con-
tribution to the amplitude of the production of high
transverse momentum leptons, 2γ + 2γ  l+l–, is
found to have a logarithmic enhancement, while such
an enhancement is absent in higher-order terms. We

d1 β+ q– k1–( )2 q– k1– k2– k1–( )2=

× q– k1– k2– k3– k1– k2–( )2,

d2 β– q– k1– k1–( )2=

× q– k1– k2– k1– k2–( )2

× q+– q2 k1– k2– k3–+( )2.

R 2( )
2( )

R 3( )
3( )R

R 3( )
3( )L

R n( )
m( )
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presented the algorithm that allows constructing the full
amplitude in all orders. The results can be useful in appli-
cation to the QCD process of producing high-k⊥  jets as
well as the bound state creation (positronium, charmo-
nium), the issue which will be investigated elsewhere.
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Abstract—We numerically study particle acceleration by the electric field induced near the horizon of a rotat-
ing supermassive (M ~ 109–1010M() black hole embedded in the magnetic field B. We find that acceleration of
protons to the energy E ~ 1020 eV is possible only at extreme values of M and B. We also find that the acceler-
ation is very inefficient and is accompanied by a broad-band MeV-TeV radiation whose total power exceeds the
total power emitted in ultrahigh energy cosmic rays (UHECRs) at least by a factor of 1000. This implies that if
O(10) nearby quasar remnants were sources of proton events with an energy E > 1020 eV, then each quasar rem-
nant would, e.g., overshine the Crab Nebula by more than two orders of magnitude in the TeV energy band.
Recent TeV observations exclude this possibility. A model in which O(100) sources are situated at 100–
1000 Mpc is not ruled out and can be experimentally tested by present TeV γ-ray telescopes. Such a model can
explain the observed UHECR flux at moderate energies E ≈ (4–5) × 1019 eV. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The conventional hypothesis of ultrahigh-energy
cosmic ray (UHECR) acceleration in extragalactic
astrophysical objects has two important consequences.
First, it predicts the Greisen–Zatsepin–Kuzmin (GZK)
cutoff [1] in the spectrum of UHECRs at an energy on
the order of 5 × 1019 eV. Whether such a cutoff indeed
exists in nature is currently an open question [2, 3].
Second, it implies that the observed highest-energy
cosmic rays with E > 1020 eV should come from within
a GZK distance of ~50 Mpc. Moreover, under plausible
assumptions about extragalactic magnetic fields sup-
ported by recent simulations [4], the propagation of
UHE protons over the GZK distance is rectilinear and
the observed events should point back to their sources.
While sub-GZK UHECRs were found to correlate with
BL Lacertae objects [5, 6], no significant correlations
of cosmic rays with energies of E * 1020 eV with
nearby sources were found [7].

In view of the last problem, a question arises
whether there exist UHECR accelerators that can pro-
duce super-GZK protons and are quiet in the electro-
magnetic (EM) channel. If such quiet accelerators
existed, they could explain the apparent absence of
sources within ~50 Mpc in the direction of the highest-
energy events. This idea was advocated, e.g., in [8],
where sources of UHE protons were associated with
supermassive black holes in quiet galactic nuclei (so-
called “dead quasars”). However, it was pointed out

¶ This article was submitted by the authors in English.
1063-7761/05/10004- $26.000656
in [9] that most of the energy available for particle
acceleration in such an environment is spent for EM
radiation by the accelerated particles. As a conse-
quence, the flux of TeV γ-rays produced by such an
accelerator may be at a detectable level.

Recent observations by HEGRA/AIROBICC [10],
MILAGRO [11] and TIBET [12] arrays substantially
improved the upper limits on the flux of 7-rays above
10 TeV from point sources in the Northern Hemisphere.
This may completely exclude the possibility of explain-
ing observed super-GZK cosmic rays by the accelera-
tion near supermassive black holes. The purpose of this
paper is to analyze this question quantitatively. For this,
we numerically study particle acceleration near the
black hole horizon. Following [8, 9], we restrict our-
selves to the case of protons. The case of heavy nuclei
acceleration, propagation, and detection is phenomeno-
logically very different and requires separate consider-
ation. In particular, heavy nuclei can easily desintegrate
as early as the acceleration stage.

We stress that our purpose is not to construct a real-
istic model of a compact UHE proton accelerator, but to
find whether quiet compact accelerators can exist, even
if the most favorable conditions for the acceleration are
provided. For this, we minimize the energy losses of
accelerated particles by considering acceleration in the
ordered electromagnetic field and neglect all possible
losses related to scattering of the accelerated particles
on matter and radiation present in the acceleration site.
However, we self-consistently take into account the
synchrotron–curvature radiation losses, which are
 © 2005 Pleiades Publishing, Inc.
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intrinsic to the acceleration process. Clearly, this
approximation corresponds to the most favorable con-
ditions for particle acceleration. In realistic models, the
resulting particle energy must be smaller and the emit-
ted EM power larger. Therefore, our results should be
considered as a lower bound on the ratio of the electro-
magnetic to UHECR power of a cosmic ray accelerator
based on a rotating supermassive black hole.

We find that the flux produced by a nearby UHE
proton accelerator of super-GZK cosmic rays in the
energy band Eγ > 10 TeV should be at least 100–1000
times larger than that of the Crab Nebula. The existence
of such sources is indeed excluded by recent observa-
tions [10, 11]. At the same time, the constraints on the
sources of sub-GZK cosmic rays are weaker or absent
(see Section 7 for details).

This paper is organized as follows. In Section 2, we
describe our minimum-loss model in more detail. In
Section 3, we present an analytical estimate and the
numerical calculation of the maximum particle energy.
In Section 4, we consider the self-consistency con-
straints on the parameters of this model that arise from
the requirement on the absence of on-site e+e– pair pro-
duction caused by emitted radiation. In Section 5, the
calculation of the EM luminosity of the accelerator is
presented. In Section 6, observational constraints are
derived. Section 7 contains a discussion of the results
and concluding remarks.

2. THE MODEL

The model that we consider is based on a rotating
supermassive black hole embedded in a uniform mag-
netic field. Because of the rotational drag of magnetic
field lines, an electric field is generated, leading to
acceleration of particles. In the absence of matter, the
corresponding solution of the Einstein–Maxwell equa-
tions is known analytically at an arbitrary inclination
angle of the black hole rotation axis with respect to the
magnetic field [13, 14]. We assume low accretion rate
and small matter and radiation density near the black
hole, and neglect their back reaction on the EM and
gravitational fields. We also neglect the effect of matter
on propagation of the accelerated protons. This corre-
sponds to the most favorable conditions for particle
acceleration, and therefore leads to a maximum proton
energy and minimum EM radiation.

The model has three parameters: the black hole
mass M, the strength of the magnetic field B, and the
inclination angle χ. We consider a maximally rotating
black hole with a rotation moment per unit mass a = M.
This maximizes the strength of the rotation-induced
electric field. For a given injection rate and geometry,
the above parameters completely determine the trajec-
tories of accelerated particles and, therefore, their final
energies and the emitted radiation. We reconstruct par-
ticle trajectories numerically, keeping track of the emit-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ted radiation and taking its back reaction onto particle
propagation into account.

We assume that protons flow into the acceleration
volume from the accretion disk that is situated at larger
radii. We model this accretion by injecting nonrelativ-
istic particles uniformly over the sphere of the
Schwarzschild radius RS = 2GM, which is two times
larger than the horizon of the maximally rotating black
hole. We follow the trajectories of particles that propa-
gate toward the horizon and that are then expelled from
the vicinity of the black hole with high energies. It turns
out that such trajectories exist only if the inclination
angle of the magnetic field with respect to the rotation
axis is sufficiently large, χ * 10°. For smaller inclina-
tion angles, all particles that propagate toward the hori-
zon are finally absorbed by the black hole. This means
that the stationary regime in which particles accreted
onto the black hole are subsequently accelerated and
ejected with high energies exists only at χ * 10°. In this
regime, changes of the inclination angle and the injec-
tion radius do not strongly affect the maximum energies
of particles.

3. MAXIMUM PARTICLE ENERGIES
IN THE STATIONARY REGIME

In the absence of matter and radiation backgrounds,
particle energies are limited by the radiation loss intrin-
sic to the acceleration process. For a general electric
and magnetic field configuration, the energy loss in the
ultrarelativistic limit is given by [15]

(1)

where m, e, and v are particle mass, charge, and veloc-
ity, respectively. We use this equation in our numerical
modeling to calculate the electromagnetic radiation
produced by the accelerated particles and to account for
the back reaction of this radiation on particle trajec-
tories.

Before presenting the numerical results, it is useful
to summarize some simple qualitative estimates (see,
e.g., [9, 16, 17]). We consider particle acceleration by a
generic electromagnetic field obeying |E| ~ |B|. If the
energy losses can be neglected, energies of accelerated
particles are estimated as

(2)

where we assume that the size R of the acceleration
region is of the order of the gravitational radius of the
black hole, R ≈ 2GM. But if the magnetic field strength
is high, the synchrotron/curvature energy losses cannot
be neglected.

d%
dt
-------

2e4%2

3m4
--------------- E v B×+( )2 E v⋅( )2–[ ] ,–=

% eBR= 1022 B

104 G
-------------- M

1010M(

------------------- eV,≈
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If no special relative orientation of the three vectors
E, B, and v is assumed, Eq. (1) becomes

(3)

which is the standard formula for the synchrotron
energy loss. Equating the rate of energy gain d%/dt =
eE ~ eB to the rate of energy loss, we find that in the
synchrotron-loss-saturated regime, the maximum
energy is given by (see, e.g., [18])

(4)

Here, we assume that accelerated particles are protons;
for electrons, the maximum energy is much smaller.

The critical magnetic field strength at which the syn-
chrotron energy loss becomes important can be found
from the condition that estimates (2) and (4) give the
same result,

(5)

Here, it is assumed that R ~ RS . This critical field corre-
sponds to the particle energy

(6)

d%
dt
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Fig. 1. The results of numerical calculation of maximum
energies of accelerated protons and accompanying γ-rays
are shown by crosses (solid lines are fits to numerical data).
The dashed line is estimate (9) of the proton energies in the
curvature-loss dominated regime. The shaded region corre-
sponds to the magnetic field strength exceeding the pair pro-
duction threshold by the curvature γ-rays. The black hole
mass is M = 1010M(.
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which is the maximum energy attainable in the syn-
chrotron-loss-saturated regime for a given black hole
mass.

Acceleration is more efficient (loss (1) can be orders
of magnitude smaller) in the special case where E, B,
and v are nearly aligned. These conditions may be
approximately satisfied in some regions around the
black hole. In this case, particles closely follow the
curved field lines and the curvature radiation loss,

(7)

becomes the main energy loss channel for high-energy
particles. For an order-of-magnitude estimate, we can
assume that the curvature scale of the magnetic field
lines is on the order of the size of the acceleration
region, R ≈ 2GM. This translates into the maximum
energy

(8)

which gives

(9)

for protons, where we again set R = RS . The range of
applicability of Eqs. (8) and (9) is given by the same
condition B > Bcrit .

In the numerical simulations, we injected protons
uniformly over the sphere surrounding the black hole.
We disregarded trajectories that start at the injection
sphere and move outward. Among protons that
approach the horizon and are then expelled to infinity,
we selected those which have the maximum final
energy. For a black hole mass M = 1010 M( , the depen-
dence of this maximum energy on the magnetic field
strength is shown in Fig. 1 (upper curve). For energies
on the order 1020 eV and higher, the numerically calcu-
lated curve approaches limit (9), which corresponds to
the curvature-loss-saturated regime. The acceleration to
these energies requires magnetic fields in excess of
104 G. The necessary magnetic field is even stronger for
smaller black hole masses, cf. Eq. (9). The maximum
energies of protons do not depend strongly on the incli-
nation angle in a wide range of χ.

4. CONSTRAINTS FROM PAIR PRODUCTION

There is an important self-consistency constraint
that does not allow increasing B and M independently
in order to reach higher energies. The reason is as fol-
lows. In our model, it was assumed that the acceleration
proceeds in the vacuum. However, at a sufficiently
strong magnetic field, photons of curvature radiation
may produce e+e– pairs. Electrons and positrons are in
turn accelerated and produce more photons, which

d%
dt
-------

2e2%4

3m4R2
----------------,–=

%cur
3m4R2B

2e
-------------------- 

 
1/4
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again produce e+e– pairs, etc. The plasma created by
this cascade then neutralizes the electric field and pre-
vents further acceleration of particles. For consistency
of the model, we have to require that the cascade does
not develop.

We consider this process in more detail. The energy
eγ of the curvature photons in the regime when particle
energies are limited by curvature losses is estimated as

(cf. Eq. (8)). Remarkably, the photon energy is inde-
pendent of the particle mass. This means that proton-
originated and electron-originated photons have the
same energy. Numerically, we have

(10)

If this energy is enough to produce more than one e+e–

pair within the acceleration site, the instability may
develop.

Therefore, for the stationary operating accelerator,
the mean free path d of a γ-ray in the background of a
strong magnetic field (see [19]) has to be larger than the
size of the acceleration region

(11)

This requirement leads to the condition

(12)

on the magnetic field in the vicinity of the horizon.
In the numerical calculation of proton trajectories,

we kept track of the emitted photons. For given param-
eters of the accelerator, we determined the maximum
photon energy. The dependence of this energy on the
magnetic field strength is shown in Fig. 1 (the lower
curve). Substituting the calculated photon energy in
Eq. (11), we can check whether the accelerator is in the
stationary regime. The shaded region in Fig. 1 corre-
sponds to nonnegligible pair production. The results of
numerical calculation are in good agreement with
Eq. (12).

From Fig. 1, we conclude that acceleration of pro-
tons to energies higher than 1020 eV is marginally pos-
sible in a small region of the parameter space (M, B).
The magnetic field strength B must be close to the pair
production threshold. The black hole mass M must be
larger than 1010M( . Such black holes are rare. For
example, in [20], it is found that supermassive black
holes in AGNs range within 106.5–1010.2M(, with the
mean mass being 108.9M(. The list of nearby (within

eγ
3%cur

3

2m3R
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eγ 14
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-------------- 

  3/4 M
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------------------- 
  1/2
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B
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8me
3

3eBeγ
--------------- 

   cm RS.>exp≈

B 3.6 104 1010M(

M
------------------- 

 
2/7

 G×<
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40 Mpc) candidates for quasar remnants [21] does not
contain black holes with masses above 5 × 108M(.

Under reasonable assumptions about the black hole
mass, the acceleration to energies above 1020 eV is
impossible in the stationary regime discussed above (no
particle production in the acceleration volume). How-
ever, although the accelerator cannot operate perma-
nently, it is possible that UHECR are produced during
“flares,” or short episodes of activity of the accelerator,
interrupted by discharges. The natural duration of one
flare is about the time needed for the charge redistribu-
tion and neutralization of the electric field in the accel-
eration volume to establish. This can be roughly esti-
mated as the light-crossing time Tflare ~ RS/c ≈ 10 hours
for the 3 × 109M( black hole. During such flares, the
electromagnetic luminosity of the accelerator must be
much higher than the luminosity produced in the sta-
tionary regime, because the electromagnetic flux is
dominated by the radiation produced by e+e– pairs
whose number density is much higher than the density
of the initial protons. Because we are interested in the
possibility of having a “quiet” UHE proton accelerator,
we concentrate in the next section on the case of the sta-
tionary regime, with the parameters of the model tuned
to B ≈ 3 × 104 G, M ≈ 1010M(.

5. ELECTROMAGNETIC LUMINOSITY
OF THE ACCELERATOR

It is clear from Fig. 1 that the acceleration of protons
to energies above 1020 eV proceeds in the curvature-
loss-saturated regime. In this regime, most of the work
done by the accelerating electric field is spent on the
emission of curvature radiation rather than on the
increase in particle energy. The ratio of the dissipated
energy to the final energy of a proton is

(13)

Thus, the energy carried away by photons is at least a
hundred times higher than the energy carried by cosmic
rays. Because only a small fraction of the accelerated
protons reaches the UHECR energies % ≥ 1020 eV, the
ratio of the electromagnetic luminosity of the accelera-
tor to its luminosity in UHECR with E > 1020 eV is even
higher.

Numerically, we calculated this ratio as follows. We
summed energies of those protons which were acceler-
ated above 1020 eV, and summed the energy emitted in
synchrotron–curvature radiation (including the radia-
tion emitted by protons that did not acquire sufficient
energy while being expelled to infinity). We then took
the ratio of the two sums.

The results of numerical calculation of the ratio of
the electromagnetic and UHECR luminosities in the
stationary regime are shown in Fig. 2 by crosses. Vari-
ations are due to fluctuations in the precise positions of

5
eBR
%cur

---------- 2 102 M

1010M(

------------------- 
  1/2 B

3 104 G×
----------------------- 

  3/4

.×≈ ≈
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the injection points.1 The qualitative behavior of the
numerical results is easy to understand. Close to the
“threshold” % = 1020 eV, the accelerator emits a finite
power LEM but does not produce UHECR with % >
1020 eV. Therefore, the ratio LEM/LUHECR diverges as
%  1020 eV. If the magnetic field is large, the maxi-
mum energies of particles increase as well. But the ratio
5 also increases for each particle according to Eq. (13),
and so does LEM/LUHECR . The minimal value of
LEM/LUHECR is reached at % ≈ 1.5 × 1020 eV. The numer-
ically calculated minimum of LEM/LUHECR is larger than
estimate (13) by a factor of 10.

In obtaining the results in Fig. 2, we have taken only
the curvature radiation produced by protons into
account. For the magnetic field strength above the pair
production threshold ~3 × 104 G (and, correspondingly,
%max > 1.3 × 1020 eV, see Fig. 1), our results give the
lower bound on the electromagnetic luminosity of the
compact accelerator.

We can see from Fig. 2 that the electromagnetic
luminosity of the UHE proton accelerator based on a
rotating supermassive black hole is

(14)

Because the typical energy of photons of curvature
radiation is about 10 TeV (see Eq. (10)), the above rela-
tion implies that such a source of UHE protons would

1 For this calculation, we performed injection in 103 randomly cho-
sen points uniformly distributed over the sphere.
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Fig. 2. Numerically calculated ratio of the electromagnetic
luminosity of the accelerator to the luminosity emitted in
particles with energies % ≥ 1020 eV is shown by crosses,
with the solid line being the fit to the numerical results. The
shaded region corresponds to the magnetic field strength
above the threshold of pair production by the curvature
γ-rays. The black hole mass is M = 1010M(.
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be much more powerful in the 10 TeV band than in the
UHECR channel.

6. OBSERVATIONAL CONSTRAINTS

The fact that production of UHE protons in a “quiet”
accelerator is accompanied by the emission of the TeV
γ-ray flux enables us to put strong constraints on the
possibility of existence of such accelerators in the
nearby Universe. Following [8], we assume that there
are about N ~ 10 nearby UHECR accelerators not far-
ther than DGZK ~ 50 Mpc from the Earth. If these
sources give the major contribution to the flux of cos-
mic rays above 1020 eV [22],

the mean energy flux produced by each source is

(15)

We have seen in the previous section that the lower
bound on the ratio of the electromagnetic and UHECR
luminosities of such a source is 5 > 103. This means
that the electromagnetic flux from the source must be

(16)

which implies the total luminosity larger than

(17)

at a distance of DGZK . This must be an extremely pow-
erful source of TeV radiation. For comparison, the flux
of the Crab Nebula at energies above 15 TeV is FCrab ~
10–11 erg/(cm2 s) [10]. Thus, the hypothetical “quiet”
cosmic ray sources, which would explain the observed
UHECR flux, should be 100–1000 times brighter in the
TeV band than the Crab Nebula.

The possibility of the existence of persistent point
sources of this type in the Northern Hemisphere is
excluded by the measurements of the HEGRA
AIROBICC Array [10] and by the MILAGRO experi-
ment [11, 23]. The upper limit on the energy flux from
an undetected point source of ~15 TeV γ-rays provided
by HEGRA/AIROBICC group [10] is at a level of
FHEGRA & (2–3)FCrab. A much tighter upper limit was
published recently by the MILAGRO Collaboration,
FMILAGRO & (0.3–0.6)FCrab [23].

7. DISCUSSION

The above model of particle acceleration near the
horizon of a supermassive black hole is based on a
number of assumptions: the maximum rotation moment
of the black hole, a low matter and radiation density in
the acceleration volume, the absence of back reaction

FUHECR
tot 2–6( ) 10 11– erg

cm2 s
--------------,×∼

FUHECR

FUHECR
tot

N
----------------- 2–6( ) 10 12– erg

cm2 s
--------------.×∼ ∼

FEM 2–6( ) 10 9– 10
N
------ erg

cm2 s
--------------,×>

LEM 1044 erg/s∼
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of the accelerated particles and their radiation on the
EM field, and the uniform magnetic field at large dis-
tance from the black hole. These assumptions have one
common feature: they facilitate acceleration to higher
energies and minimize losses (and, therefore, the radia-
tion produced). We have found that even under these
idealized conditions, the acceleration of protons to the
energy E = 1020 eV requires extreme values of parame-
ters, M ≈ 1010M( and B ≈ 3 × 104 G. Moreover, the
acceleration is very inefficient: the total power emitted
in TeV gamma rays is 100–1000 times larger than in
UHECR. In view of recent TeV observations, this rules
out some UHECR models based on this acceleration
mechanism, e.g., the model of several nearby dormant
galactic nuclei (dead quasars), the goal of which was to
explain the observed UHECR flux having an energy of
E > 1020 eV.

In a more realistic case, the above conditions may
not be satisfied completely, and the acceleration of pro-
tons to an energy E ~ 1020 eV in the continuous regime
may not be possible. The synchrotron losses due to the
presence of a random component Brand of the magnetic
field can be neglected if

(18)

where 5 is given by (13). This means that the presence
of a tiny (1% level) random magnetic field leads to a
decrease in the maximum energies of accelerated pro-
tons and an increase in the electromagnetic luminosity
of the accelerator. We note that the synchrotron radia-
tion is emitted in this case at the energies

(19)

The power is still given by Eq. (14).
Even if the strength of the random component of the

magnetic field is as small as 10–5 B, for electrons, which
are inevitably present in the accelerator, the synchro-
tron losses dominate over the curvature losses. The
electromagnetic power emitted by electrons is then in
the 100 MeV–10 TeV energy band (see Eq. (19).
Assuming that the density of electrons is on the same
order as the density of protons, we obtain the same esti-
mate (14) for the 100 MeV luminosity of the accelera-
tor. This means that such an accelerator is not only a
powerful TeV source, but also an extremely powerful
EGRET source.

Even if the idealized conditions are realized in
nature, the corresponding objects must be extremely
rare. Thus, only a very small fraction of (active or quiet)
galactic nuclei could be stationary sources of UHE pro-
tons with energies above 1020 eV.

If the parameters of the model are not precisely
tuned to their optimal values, it is expected that the
maximum energies of accelerated protons should be
somewhat below 1020 eV. It is therefore interesting to

Brand ! 
B
5
----- m

mp

------ 10 2– m
mp

------B,≈

esynch
m

e2
---- B

Brand
---------- 0.1

m
mp

------ B
Brand
---------- TeV.≈≤
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note that most of the correlations of UHECRs with BL
Lacertae objects come from the energy range (4–5) ×
1019 eV. The central engine of BL Lacs is thought to
consist of a supermassive black hole; it is possible that
the acceleration mechanism considered above operates
in these objects.2 This mechanism may also operate in
the centers of other galaxies that may have (super)mas-
sive black holes, including our own Galaxy, where it
may be responsible for the production of cosmic rays of
energies up to ~1018 eV [13, 25].

The constraints from TeV observations are different
in this case. First, cosmic rays of lower energies propa-
gate over cosmological distances; hence the UHECR
flux is collected from a much larger volume and the
number of sources may be larger. Correspondingly, the
TeV luminosity of each source is smaller. Second, the
TeV radiation attenuates substantially over several hun-
dred megaparsecs. Third, at E < 1020 eV, the ratio
LEM/LUHECR is smaller. For example, we consider the
case of O(100) sources located at z ≈ 0.1 with a typical
maximal energy at the accelerator E ≈ 5 × 1019 eV.
According to Fig. 1, the typical energy of produced
γ-rays is then ≈4 TeV. The flux of γ-rays in this energy
range is attenuated by a factor 10–100, while according
to Eq. (13), LEM/LUHECR ≈ 50. Therefore, we may expect
FEM ≈ (0.01–0.1)FCrab for the TeV flux from each of
these sources. This is within the range of accessibility
of modern telescopes. For example, the TeV flux from
the nearby (z = 0.047) BL Lac 1ES 1959 + 650, which
correlates with the arrival directions of UHECRs [6, 26],
is at a level of 0.06FCrab during the quiet phase and rises
up to 2.9FCrab during flares. Several other BL Lacs,
which are confirmed TeV sources, have fluxes of
≈0.03FCrab (see, e.g., [27]).

This paper mainly concerns the stationary regime of
acceleration when the acceleration volume is not pol-
luted by the creation of e+e– pairs. To ensure this condi-
tion, we required that the magnetic field not exceed the
critical value (12). If the magnetic field is larger, the
acceleration by the mechanism considered here can
only occur during flares, which are interrupted by the
creation of e+e– plasma and neutralization of the elec-
tric field as discussed at the end of Section 4. Although
we do not have a quantitative model of a flare, some
features of this regime and its consequences for the
UHECR production can be understood qualitatively.
Because there is no constraint on the magnetic field in
this regime, the maximum energies of the accelerated
protons may exceed 1020 eV. However, the efficiency of
the acceleration during flares must be much lower than
in the stationary case. First, as follows from Fig. 2, the
LEM/LUHECR ratio is larger at large B. Second, the domi-
nant part of the EM radiation is produced by the created
electrons and positrons, whose number density by far

2 We note that if the accelerated particles interact with the photon
background outside the central engine, the same mechanism may
be responsible for “photon jets” discussed in [24].
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exceeds the number density of protons. Thus, we expect
that the LEM/LUHECR ratio for this sources is much larger
than in Eq. (14).

UHECR accelerators operating in the flaring regime
would produce an approximately constant UHECR flux
at the Earth. The reason is the time delay of protons due
to random deflections in the extragalactic magnetic
fields. This delay is on the order of ~105[α/1°]2 yr for a
source at 100 Mpc, where α is the deflection angle.
Because the time scale of flares (light crossing time) is
on the order of more than a day, the variations of
UHECR flux would disappear upon averaging. On the
contrary, the TeV radiation from such a source would
be highly variable, with powerful TeV bursts and an
average energy flux in the TeV band exceeding that in
UHECRs by a factor of 104 or higher. We note that there
exist tight constraints on transient TeV sources: the
energy flux of a TeV burst having a duration of 105 s has
to be less than 10–10 erg/(cm2 s) ~ 10FCrab [11, 12]. As
in the case of a stationary accelerator, this constraint
excludes the possibility of explaining the observed
UHECR flux by a few nearby proton accelerators oper-
ating in the flaring regime. The hypothesis of several
hundred remote sources is not constrained by TeV
observations.

To summarize, the model of compact UHE proton
accelerators that operate near the horizons of supermas-
sive black holes in galactic nuclei can explain only the
sub-GZK flux. A large number (several hundreds) of
sources situated at cosmological distances. Production
of UHECRs in such sources may be associated with
blazar-type activity, TeV γ-radiation being an important
signature of the model, testable by existing γ-ray tele-
scopes.
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Abstract—A vast program of the experimental investigation of muon-catalyzed dt fusion was performed on
the Joint Institute for Nuclear Research phasotron. Parameters of the dt cycle were obtained in a wide range of
the D/T mixture conditions: temperatures of 20–800 K, densities of 0.2–1.2 of the liquid hydrogen density
(LHD), and tritium concentrations of 15–86%. In this paper, the results obtained are summarized. © 2005 Ple-
iades Publishing, Inc. 
1. INTRODUCTION

Investigation of the muon-catalyzed fusion (MCF)
process is a unique independent direction in modern
physics relevant to molecular, atomic, and nuclear
physics [1–6] and to astrophysics [7]. Study of nuclear
fusion reactions from the bound states of a muonic mol-
ecule is of great importance for determining properties
of the lightest nuclei, including various exotic nuclear
systems. In addition, the high neutron yield of MCF can
be effectively used for solving different practical prob-
lems such as the construction of an intense 14-MeV
neutron source [8] and a nuclear fuel breeder [9].

That is why the process of MCF in hydrogen isotope
mixtures has been under active study in many laborato-
ries worldwide over the last several decades. Within
this period, many experimental results were obtained
by investigating muon-induced processes in different
mixtures of hydrogen, deuterium, and tritium, as well
as in pure isotopes; most of these experimental results
are in good agreement with theory. The most impres-
sive achievement is the precise agreement between
experiment and theory in the temperature dependence
of the ddµ-molecule formation rate in gaseous deute-
rium [4, 10, 11]. This allowed the binding energy of

¶ This article was submitted by the authors in English.
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the loosely bound state of ddµ to be determined with

a very high accuracy,  = −  meV [10],
which should be compared with the theoretical value

 = –1964.83 meV [4].

In comparison with pure deuterium, the MCF pro-
cess in a D/T mixture manifests much richer physical
phenomena (the muon transfer d  t from the ground
and excited states of the dµ-atom, epithermal, and
many-body effects in the dtµ-molecule formation).
Theory predicts a significant increase of the dtµ-mole-
cule formation rate on the D2 and DT molecule with the
rise of temperature and density of the mixture [12, 13].
Therefore, complete theoretical analysis requires mea-
suring temperature and density dependences of the
d + t cycle parameters in ranges that are as large as pos-
sible. Finally, the results of an experimental and theo-
retic study of MCF processes in a double D/T mixture
will be rather helpful for investigation and explanation
of the most difficult case of the triple H/D/T mixture.

Previously, a truly systematic experimental study of
MCF process was performed at PSI only for a low-den-
sity (ϕ ≈ 0.1 LHD, with a liquid hydrogen nuclei den-
sity of LHD = 4.25 × 1022 cm–3), low-temperature (T <
300 K) gaseous D/T mixture [14]. The same group, as

e11
exp 1962.56 47–

+32

e11
theor
© 2005 Pleiades Publishing, Inc.
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well as the RIKEN-RAL team, performed measure-
ments with liquid and solid D/T mixtures [15, 16]. The
only group that investigated MCF in the high-density
(ϕ ≈ 1 LHD), high-temperature (T ≤ 600 K) mixtures
was the LAMPF team [17, 18]. But its measurements
had a hasty character and caused a lot of questions con-
cerning the analysis. We therefore decided to conduct a
full set of measurements in a wide region of the exper-
imental conditions spanning a density range of ϕ = 0.2–
1.2 LHD and temperature range of T = 20–800 K.

The Dzhelepov Laboratory of Nuclear Problems
made a prominent contribution to the MCF experimen-
tal study. The Dubna group discovered the phenomenon
of ddµ-molecule resonance formation [19] and later

1.2

1.0

0.8

0.6

0.4

0.2

0 100 200 300 400 500 600 700 800 900

T, K

ϕ, LHD

Ct = 0.15–0.86

Fig. 1. Experimental conditions (density and temperature)
for the MCF process study in the D/T mixtures.
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directly confirmed its existence by measurements of the
temperature dependence of the ddµ-molecule forma-
tion rate [20]. This group was the first to experimentally
investigate [21] muon-catalyzed fusion,

,

and to confirm the theoretical predictions [22] of the
high intensity of this process, which induced the activ-
ity in the study of MCF worldwide.

Since 1997, our collaboration has been carrying out
a large program in the investigation of MCF processes
in D/T on the JINR phasotron. The distinctive charac-
teristic of our study is the use of novel methods both in
measurements and in experimental data analysis, which
allows us to obtain accurate and reliable data no worse
than those obtained at meson facilities. The experimen-
tal method that we used made it possible to measure the
MCF cycle parameters in the D/T mixture under a wide
variety of mixture conditions [23].

This paper is a report on the most comprehensive
measurements of the MCF parameters in the D/T mix-
ture. The preliminary data were published in [23–26].
Figure 1 shows the condition ranges of the experiments
conducted up to now. The accumulated data and the
MCF cycle parameters cover wide ranges of D/T mix-
ture conditions:

(1) temperatures of 20–800 K;

(2) tritium concentrations of 15–86%;

(3) densities of 0.2–1.2 LHD.

dtµ He4 3.5 MeV( ) n 14.1 MeV( ) µ+ +
F = 3/2

F = 1/2

F = 1

F = 0

dµ

tµ

µ

q1SCd

1 – q1SCd

λdtCt

λ3/2 – 1/2 λ1/2 – 3/2

λ0 – 1λ1 – 0

λddµCDD

λttµCt

λdtµ – dCDD

λdtµ – tCDT

ddµ

ttµ

[(dtµ)dee]

[(dtµ)tee]

λf
t

λf

λf
d t + p + µ

3He + n + µ
3Heµ + n

4Heµ + 2n

4He + 2n + µ

4He + n + µ
4Heµ + n

1 – ωdd

1 – ωtt

1 – ωs

Fig. 2. Scheme of the MCF kinetics in the double D/T mixture.
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2. GENERAL DESCRIPTION 
OF THE PROCESS

The simplified scheme of MCF kinetics in a double
D/T mixture is shown in Fig. 2. Muons stopped in the
mixture form dµ- and tµ-atoms in their ground states
with the respective probabilities

and

where Cd and Ct are relative hydrogen isotope concen-
trations and q1S is the fraction of dµ-atoms in the
ground state after muon cascade processes, with the
muon transfer (dµ)n  (tµ)n from dµ to tµ during the
deexcitation cascade taken into account [27–29]:

(1)

Here, λdex and λtr are the rates of deexcitation and muon
transfer averaged over the dµ-atom excited states. One
should expect strong dependence of q1S on Ct and ϕ
[30, 31].

The “standard” cascade model, in which the initial
µ-atom energies are distributed around E0 = 1–2 eV, is
apparently valid only at very low densities ϕ ≤ 10–3 LHD.
Now, it is known that, during the cascade, muonic
atoms can be both thermalized and accelerated, obtain-
ing an energy as high as tens of eV (see, e.g., [32–34]).
But, until now, the problem of determining the initial
energy distribution of muonic atoms after the cascade
has not been solved definitely.

Being in the dµ-atom ground state, the muon can be
transferred to tritium in the collisional process

(2)

with a rate of λdt = 2.8 × 108 s–1 · ϕ [18, 21, 35, 36]. In
transfer process (2), the tµ-atom acquires an energy of
19 eV. The atoms tµ are formed in two hyperfine states
with a total spin of F = 1 (weight 0.75) and F = 0
(weight 0.25) and can take part in the spin-flip pro-
cesses

(3)

Muonic atoms tµ can form dtµ- and ttµ-molecules,
and dµ-atoms can form ddµ-molecules. In these µ-mol-
ecules, fusion reactions occur in which the muon can be
either released and stimulate the next MCF cycle or
stick to helium produced in the reactions. The notation
for the rates of muonic formation and fusion reactions,
as well as for the sticking probabilities, is introduced in
Fig. 2. Being bound in a µ-atom or a µ-molecule or
being free, the muon disappears at a rate of λ0 = 4.55 ×
105 s–1.

The specific feature of the ddµ- and dtµ-molecule
formation processes is their resonance character; that

wdµ Cdq1S=

wtµ Ct Cd 1 q1S–( )+ 1 Cdq1S,–= =

q1S

λdex

λdex λ tr+
---------------------.=

dµ t tµ d+ +

tµ( )F 1= t tµ( )F 0= t.++
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is, the muonic molecular formation rates λddµ and λdtµ
turn out to depend on the µ-atom kinetic energy [3].
The MCF d + d cycle has been studied very well. The
measured temperature dependence λddµ(T) is in excel-
lent agreement with theory [13].

Quite a different situation occurs for the MCF d + t
cycle. In fact, this process has been studied in detail in
the parameter region (low temperatures), where the
“standard” theory predicts its relatively low intensity. It
follows from experiment that, just in this region, the
MCF process is very effective. Modern theory explains
this only qualitatively.

It follows from the original Vesman consideration
[37] that the resonance dtµ-molecule formation occurs
in the interaction of the tµ-atom with D2, DT, or HD
molecules according to the scheme [22]

(4)

where the energy released under dtµ formation together
with the tµ-atom kinetic energy Etµ is transferred to
excite the vibration–rotational state of the molecular
complex [(dtµ), x, 2e]. Here, Ki and Kf are the respec-
tive rotational quantum numbers of the “initial” mole-
cule DX and the “final” complex. The set of the reso-
nance tµ-atom energies

corresponds to different transitions ν = 3, 4, 5; Ki 
Kf . Indeed, the spin states of the tµ-atom and the dtµ-
molecule should be taken into account for determina-

tion of . In addition, the position and intensity of the
resonances depend on the type of the molecule (D2, DT,
and HD) and the temperature of the mixture influencing
the population of the rotational states of these mole-
cules.

Once formed, the complex [(dtµ), x, 2e] either
undergoes back decay

,

or the fusion reactions

(5)

(6)

take place in it (with the high rate λf ≈ 1012 s–1 [38]).
The muon-to-helium sticking probability is ωs ≈ 0.5%.

The resonance dependences λdtµ – p, d, t(Etµ) for a
tµ-atom of spin F = 0 are shown in Fig. 3; the calcula-
tions presented there are based on the evaluation
scheme developed in [13]. The following remarkable
features are evident from this figure.

(1) Resonance formation of the dtµ-molecule on HD
molecules is the most intensive.

tµ DX( )Ki
dtµ( ) x 2e, ,[ ] ν K f,+

X H D T, x, , p d t,, ,= =

Etµ
r ∆Eν K,=

Etµ
r

dtµ( ) x 2e, ,[ ] tµ DX+

dtµ He4 n µ,+ +

dtµ He4 µ n+
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(2) The resonance positions correspond to relatively
high tµ-atom energies, that is, to high temperatures
(T ~ 103 K) for the thermalized muonic atoms.

(3) The positions of the resonances of each type cor-
respond to various vibration levels of the complex ν =

3, 4, 5. The nearest resonance for  is placed at
Etµ ≈ 0.5 eV. This means that the nearest “subthreshold”
resonance (corresponding to ν = 2) is close to zero at a
negative tµ-atom energy of Etµ ≈ –(10–12) meV. Nega-

λdtµ d–
0

100

80

60

20

0 0.2 0.4 0.6 0.8 1.0 1.2
tµ-atom energy, eV

λdtµ – X
0 , 108 s–1

(tµ)F = 0 + DX → [(dtµ)xee]

40

T = 30 K

t

p

d

Fig. 3. The dtµ-molecule formation rates on D2, DT, and
HD molecules for the tµ-atom spin F = 0 as a function of Etµ
for T = 30 K (calculations based on [13]).

10

0 0.2 0.4 0.6 0.8 1.0

λdtµ – d
F , 108 s–1

20  300 K

F = 1 F = 0

(a)

10

0 0.2 0.4 0.6 0.8 1.0

Etµ, eV

λdtµ – t
F , 108 s–1

20  300 KF = 1

F = 0

(b)

Fig. 4. The dependence of λdtµ – d (a) and λdtµ – t (b) on the
tµ-atom energy for T = 300 K. The Maxwell distribution is
shown in the bottom picture.
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tive energy implies that, for the most intensive dipole
transitions |Kf – Ki | = 1, an excess energy arises that
cannot be transferred in two-particle reaction (4).

For the highest multiple transitions (ν = 2; Ki = 0,
1  Kf = 2, 3, 4), process (4) becomes possible, but
its intensity is two orders of magnitude lower than that
of the main transitions. However, in contradiction to the
standard theory, experiment manifests high MCF inten-
sity in the low-temperature D/T mixture and reveals a
nontrivial density dependence of its cycling rate. We
note that the highest value of the cycling rate Λc =
185 ± 13 µs–1 was measured at PSI [15] in a solid D/T
mixture.

This can be qualitatively explained in the modern
theory [39], according to which the influence of the
subthreshold resonance turns out to be much stronger
due to the mechanism of triple collisions. According to
the theory, the resonance dtµ formation at low temper-
atures occurs at subthreshold resonance in the triple
collision process

(7)

The “additional” second molecule M plays the role of
a spectator that carries away the excess energy.
Because (7) is a three-particle process, it must depend
on the density of molecules M.

Qualitatively, the scheme in (7) explains both the
high values of λdtµ – d and its density dependence
observed in experiment. However, despite many
attempts undertaken to calculate its intensity (see,
e.g., [40, 41]), the quantitative explanation is not yet
obtained.

With increasing temperature, the resonance pictures
are modified due to the change in the population of the
DX molecule rotational states and the thermal motion
of the molecule. The calculated rates λdtµ – d and λdtµ – t
as functions of Etµ for T = 300 K are presented in Fig. 4.
The Maxwell distribution for the thermalized tµ-atoms
is shown in one of them (λdtµ – t). As is seen, this distri-
bution only slightly overlaps the nearest resonance.

The resonances for λdtµ at T = 1000 K are presented
in Fig. 5. In this case, the Maxwell distribution consid-
erably overlaps the most intensive resonances for the
dtµ formation on D2, DT, and HD molecules. Unfortu-
nately, this high temperature is not yet achieved in
experiment. The temperature T = 800 K is the highest at
which the measurements were made (in Dubna).

As we have mentioned, a substantial part of tµ has
an initial (after cascade) energy of Etµ > 1 eV. In elastic
collisions tµ + t, tµ + d, these atoms are quickly ther-
malized. The thermalization time is approximately
equal to ns for the 1 LHD of a mixture. Accordingly, the
time distribution of the fusion reaction products (neu-
trons) should have two components: a quick “spike”

tµ D2 M dtµ( ) d 2e, ,[ ] M',++ +

M D2 DT T2., ,=
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corresponding to the first pass through the resonances
and a much slower “steady-state” component.

Due to shortness of the epithermal spike and ambi-
guity in the initial energy of the tµ-atom, it is difficult
to interpret this effect. That is why the main efforts of
different experimental groups were concentrated on the
steady-state study, for which the tµ-atom energy spec-
trum is a Maxwell distribution.

For convenience, the comparison of the measure-
ments with the theoretical calculations is performed for
the so-called “effective” dtµ-molecule formation rate as
a function of temperature. It is obtained by integrating
over all possible initial states, averaging over all final
states, and convolving with the Maxwell spectrum
W(Etµ, T). Such calculations for the D/T mixture were
made in [13].

For the steady state, the time distribution of fusion
neutrons has the form

(8)

where Λc = λcϕ, en is the neutron detection efficiency,
Nµ is the number of muons stopped in the D/T mixture,
and ω is the muon loss in the cycle, which is the prob-
ability of muon sticking to helium in fusion reactions,
mainly in d + t (ωs), and also, with lower weight, in the
accompanying reactions d + d and t + t. The cycling rate
Λc means the inverse of the average time between the
closest cycles. It involves mainly the time of dµ  tµ
transfer (2), tµ-atom spin-flip process (3), and dtµ-mol-
ecule formation (4). The neutron yield Yn is limited by
ω and λ0:

(9)

The expression for λc , corresponding to the kinetic
scheme of Fig. 2, is

(10)

To extract the values λdtµ – d and λdtµ – t , one should use
formula (10) to analyze the experimental values of λc

measured at different tritium concentrations changing
the relative population of D2 and DT molecules.

The expression for ω is

(11)

where λZ is the rate of muon transfer to possible admix-

tures with Z > 1, having concentration CZ ,  is the
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rate of ddµ-molecule formation from the dµ-atom state
with spin F = 3/2, and r is the branching ratio of the dd
fusion channels (3He + n) and (t + p); the other variables
are defined in Fig. 2. It follows from Eq. (11) that the min-
imum value of ω is achieved at highest 

 

λ
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 (large 

 

λ
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 and
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), where 
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 is close to its natural limit 
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s

 

 

 

≈

 

 0.5%.

We note that, in expressions (10) and (11) and in what
follows, the cycling rate and all collisional rates are nor-
malized to the nuclear density 

 

ϕ

 

 of the D/T mixture.

3. EXPERIMENTAL METHOD

All experimental runs were made at the installation
“Triton” mounted on the muon channel [42] of the
JINR phasotron. The experimental setup is schemati-
cally shown in Fig. 6. The novel experimental method
in [23] was used. Based on measurements of the total
charge produced by the fusion neutrons in a detector, it
allowed us to avoid the distortions in the neutron time
spectra caused by the pileup and thus to use a high-effi-
ciency detection system.

Incoming muons are detected by scintillation
counters 

 

1

 

, 

 

2

 

, 

 

3

 

, a proportional wire counter 

 

4 

 

and
stopped in the target. Neutrons from the 

 

d

 

–

 

t

 

 reaction are
detected by two full-absorption neutron detectors 

 
ND1

 and  ND  2. Electrons from the decay of muons stopped
in the target are registered by the proportional wire
counter 

 

5

 

 and scintillation detectors 

 

1

 

-e and

 

 2

 

-e.

 

3.1. The Specific Features of the Method 

 

The following important features characterize the
method used.
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-molecule formation rates on D
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, DT, and
HD molecules for the 
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= 0 as a function of 
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for 
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= 1000 K (calculations based on [13]) and the Max-
well distribution.
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Fig. 6. Experimental layout.
                 
(1) Unique targets and tritium handling system were
used, which allowed measurements in a wide range of
the D/T mixture densities and temperatures.

(2) A high-efficiency neutron detection system was
used in the geometry close to 4π. It provided a high
counting rate and low accidental background.

(3) A specially designed proportional counter was
used for muon and electron detection; having a low sen-
sitivity to neutrons, it allowed reliable electron identifi-
cation.

(4) Time distributions of charge were measured
instead of the usually registered time spectra of the
number of events. Flash ADC were used for this aim.
This allowed us to avoid distortions in the neutron time
spectra and thus to use a high-efficiency detection
system.

(5) The novel analysis methods were used, which
turned out to be most effective for the high neutron
multiplicity realized in the experiment. In addition to
the usually measured neutron time distribution, we
JOURNAL OF EXPERIMENTAL A
            

measured and analyzed the neutron multiplicity distri-
bution and the spectra of the time between the µ-decay
electron and the last neutron in the series. This allowed
us to decrease systematic errors and to obtain reliable
data.

3.2. Targets and Gas Handling System 

A set of targets [43–45] with the working volume
10–18 cm3 depending on the tritium content was used
in the experiments. The targets allowed the following
measurements:

(1) with liquid D/T (liquid tritium target (LTT) [43]
of 18 cm3, working temperature 20–40 K, pressure up
to 20 bar);

(2) with hot gaseous D/T (high-pressure tritium tar-
get (HPTT) [44] of 16 cm3, working temperature 300–
800 K, pressure up to 1600 bar);
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(3) with cold gaseous D/T (two high-pressure tri-
tium targets (HPTT) [45] of 8 and 16 cm3, working
temperature 40–200 K, pressure up to 2500 bar).

The special cryogenic system [43] (for the LTT and
HPTT) and the cryorefrigerator (for the HPTT) were
used at low temperatures (T < 300 K), and the system
of special heaters was used at high temperatures to
maintain the needed temperature regime. Cryogenic
filling was used for all targets.

A special preparation system based on palladium fil-
ters [46] provided the gas of the required composition
and purified of impurities at the level less than 10–7 of
volume parts. The molecular composition of the mix-
tures was monitored with the aid of chromatography.

3.3. Detectors and Electronics 

The target was surrounded by a set of detectors.
Scintillation counters 1–3 detected incoming muons. A
cylinder-shaped proportional counter (PC, analogous
to [47]) with wires grouped in two parts (4, 5) served to

select muon stops in the target (signal 1 · 2 · 3 · 4 · )
and to detect electrons from the muon decay. Specially
designed cylinder-shaped scintillation counters (SC)
1-e and 2-e were used to detect µ-decay electrons in
coincidence with counter 5 (signals 5 · 1-e and 5 · 2-e
were considered as a µ-decay electron). The full-
absorption neutron spectrometer [48, 49] consisting of
two large detectors (ND1 and ND2) with the volume
12.5 l each was the basis of the detection system. It was
aimed at detecting neutrons from reactions (5), (6). A
plastic scintillator with dimensions (∅ 31 × 17) cm was
used in each detector. It was viewed by four PMs XP
2040. The direct contact of the PMs with the scintillator
and Teflon used as an optical reflector provided excel-
lent spectrometric properties of the detector. Its energy
resolution was

The total solid angle covered by two detectors was Ω ≈
70%, which corresponded to the total neutron detection
efficiency en ≈ 2 × 15%. The time resolution of ND was
dictated by the light collection process and electronics
and was ∆t = 6–7 ns.

The trigger [50] allows recording only those events
for detection that are connected to electron detection.
Because the intensity of the process under study was
high, these events were accompanied by neutron detec-
tion in nearly every case.

The trigger requirements included the presence of

muon stop signals (1, 2, 3, 4, ) and electron signals
(5, 1-e or 5, 2-e) during a time window of 20 µs, set off
by the incoming muon signal (1, 2). Insertion of the
electron signal in the trigger makes it possible to radi-
cally suppress the background connected with the
muon stops in the target walls, where a muon undergoes

5

σFWHM 0.09 1 1/ Ee MeV[ ]+( ).=

5
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predominately (90%) nuclear capture without electron
escape. Additional suppression of this background is
achieved under the condition that only delayed electrons
(later than 0.2 µs after the gate start) are permitted.

Another important advantage of this is that direct
normalization to the electron number becomes possible
without the necessity to determine the number of muon
stops in hydrogen. This method was first employed by
us in the first experiment on the MCF d + t reaction [21]
and allows successful accomplishment of this funda-
mental work.

Pulses from the neutron spectrometer are registered
by the flash ADC (8 bits × 2048 samples, 100 Mc/s)
producing a time distribution of the ND1, ND2 signal
amplitude for each single muon. To provide correct
time measurements, the signals of the detector for
incoming muons and the electron counter are also ana-
lyzed by the flash ADC. An example of “oscillograms”
observed at the flash ADC is shown in Fig. 7. During
each run, on-line monitoring of data accumulation was
conducted.

4. EXPERIMENTAL CONDITIONS

A total of 81 exposures with D/T mixtures were car-
ried out. The conditions (density, temperature, and tri-
tium concentration) of each run are presented in
Table 1. In each exposure (duration of 6–10 h), at least
20000 electrons from the decay of muons stopped in
the target were accumulated. In practically all cases, the
neutron statistics was sufficiently large. The special
exposures with empty targets were carried out to mea-
sure the background of electrons from muons stopped
in the target walls.
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Fig. 7. Flash ADC signals for a single muon.
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Table 1.  Normalized cycling rates λc, muon loss probabilities ω, and neutron yields per muon Yn. For λc, the uncertainties
due to statistics, density (∆ϕ), charge calibration procedure (∆q), and the total uncertainty are indicated. For all parameters,
the total errors include the systematic uncertainty in the determination of neutron detection efficiency (∆en = 6%)

No.
Conditions

ω, % Yn λc, µs–1
Error contributions, %

ϕ, LHD Ct, % stat. ∆ϕ ∆q total

T = 22.0 ± 0.7 K (liquid)

1 1.19 18.1(1.5) 0.77(0.07) 68.9(5.9) 61.5 0.4 2.1 3.1 7.7

2 1.20 33.4(1.0) 0.72(0.06) 96.6(7.9) 117.7 0.2 2.1 3.1 7.7

3 1.19 35.2(1.0) 0.63(0.05) 102.9(8.6) 117.9 0.3 2.1 3.1 7.7

4 1.23 63.5(2.0) 0.76(0.07) 82.5(6.9) 84.6 0.4 2.4 3.1 7.8

5 1.24 85.5(2.5) 1.40(0.11) 34.2(2.8) 20.8 0.6 2.4 3.1 7.8

T = 38.5 ± 2.0 K

6 0.143 57.0(2) 1.03(0.08) 10.1(0.8) 31.1 1.5 3.3 3.1 8.2

T = 45 ± 2 K

7 0.237 31.4(0.5) 0.77(0.06) 32.0(2.6) 80.5 1.0 3.4 3.4 8.3

8 0.449 16.7(0.5) 0.81(0.06) 39.4(3.2) 59.9 1.0 3.0 3.2 8.1

9 0.450 31.4(0.5) 0.68(0.05) 54.2(4.5) 88.7 0.9 3.3 3.4 8.3

10 0.448 50.6(0.5) 0.81(0.06) 43.8(3.6) 73.1 1.3 3.0 3.2 8.1

11 0.445 71.1(0.5) 1.46(0.11) 19.0(1.6) 30.6 1.3 2.9 3.2 8.1

12 0.689 16.3(0.5) 1.12(0.09) 46.1(3.7) 64.2 0.9 3.0 3.1 8.0

13 0.643 31.1(0.5) 0.74(0.06) 69.9(5.8) 101.2 0.7 3.3 3.4 8.2

14 0.704 52.7(0.5) 1.11(0.09) 53.4(4.2) 84.0 0.7 3.0 3.1 8.0

15 0.766 71.2(0.5) 1.89(0.15) 27.5(2.2) 34.7 1.3 3.0 3.1 8.1

16 1.022 16.3(0.5) 1.55(0.12) 45.0(3.5) 65.2 1.0 3.0 3.1 8.0

17 0.912 31.1(0.5) 0.89(0.07) 76.0(6.3) 118.5 0.8 3.2 3.4 8.2

18 1.024 52.7(0.5) 1.12(0.09) 64.2(5.0) 97.7 0.8 3.0 3.1 8.0

19 1.018 71.2(0.5) 1.83(0.14) 34.2(2.7) 40.6 1.1 3.0 3.1 8.1

T = 75 ± 2 K

20 0.234 31.4(0.5) 0.85(0.07) 29.8(2.5) 81.2 1.0 3.0 3.4 8.2

21 0.445 31.4(0.5) 0.87(0.07) 50.4(4.2) 92.1 0.9 2.9 3.4 8.1

22 0.635 31.4(0.5) 0.94(0.07) 69.9(5.8) 101.6 0.7 3.0 3.4 8.1

23 0.897 31.1(0.5) 0.91(0.07) 75.5(6.2) 119.5 0.8 3.0 3.4 8.1

T = 158 ± 2 K

24 0.230 31.4(0.5) 0.94(0.07) 28.6(2.4) 79.3 1.1 3.0 3.4 8.2

25 0.438 16.7(0.5) 1.41(0.11) 31.0(2.5) 58.7 1.1 3.0 3.2 8.1

26 0.424 31.0(0.5) 0.99(0.08) 45.4(3.7) 88.8 1.0 3.1 3.2 8.1

27 0.436 31.4(0.5) 0.88(0.07) 48.1(4.0) 90.9 0.9 3.0 3.4 8.1

28 0.433 50.6(0.5) 1.00(0.08) 39.2(3.2) 74.5 1.3 3.0 3.2 8.1

29 0.430 71.1(0.5) 2.01(0.15) 17.3(1.4) 29.5 1.3 3.0 3.2 8.1

30 0.607 16.3(0.5) 1.94(0.15) 31.7(2.5) 63.2 1.4 3.0 3.1 8.1

31 0.620 31.1(0.5) 0.98(0.08) 57.9(4.8) 100.1 0.9 3.1 3.4 8.2

32 0.621 52.7(0.5) 1.14(0.09) 48.9(3.9) 82.9 0.8 3.1 3.1 8.1

33 0.688 71.2(0.5) 1.64(0.13) 27.1(2.1) 35.4 1.3 3.1 3.1 8.1

34 0.905 16.3(0.5) 1.89(0.15) 36.9(2.9) 64.7 1.3 3.0 3.1 8.1

35 0.876 31.1(0.5) 0.90(0.07) 72.4(6.0) 119.6 0.8 3.0 3.4 8.1

36 0.907 52.7(0.5) 1.09(0.08) 66.3(5.2) 101.7 0.8 3.0 3.1 8.0

37 0.902 71.2(0.5) 1.62(0.12) 34.9(2.8) 40.6 1.1 3.0 3.1 8.1
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Table 1.  (Contd.)

No.
Conditions

ω, % Yn λc, µs–1
Error contributions, %

ϕ, LHD Ct, % stat. ∆ϕ ∆q total

T = 300 ± 3 K
38 0.204 31.4(0.5) 1.23(0.10) 28.2(2.3) 91.4 1.7 3.4 3.5 8.5
39 0.303 17.9(0.5) 2.13(0.16) 21.6(1.7) 67.2 1.1 3.3 3.1 8.1
40 0.302 36.1(0.5) 1.14(0.09) 36.7(3.0) 101.1 0.9 3.4 3.1 8.2
41 0.312 52.0(0.5) 1.27(0.10) 30.3(2.5) 78.7 1.0 3.2 3.1 8.1
42 0.312 68.8(0.5) 1.25(0.10) 21.4(1.7) 47.6 1.0 3.2 3.1 8.1
43 0.434 15.4(0.5) 0.97(0.07) 35.4(2.9) 59.3 0.9 3.2 3.1 8.1
44 0.411 31.0(0.5) 1.08(0.08) 43.7(3.6) 96.0 1.0 3.2 3.2 8.1
45 0.425 32.7(0.5) 0.95(0.07) 49.4(4.0) 99.9 0.7 3.3 3.1 8.1
46 0.443 35.0(1.0) 0.89(0.07) 53.6(4.4) 104.4 0.5 3.4 3.2 8.2
47 0.409 47.7(0.8) 0.97(0.07) 44.0(3.6) 89.3 0.7 3.4 3.1 8.1
48 0.411 68.5(0.5) 1.21(0.09) 27.7(2.2) 50.3 0.8 3.2 3.1 8.1
49 0.515 18.2(0.5) 1.95(0.15) 30.2(2.4) 74.5 1.1 3.7 3.1 8.3
50 0.518 35.2(0.5) 1.38(0.10) 46.8(3.8) 109.2 0.8 3.7 3.1 8.3
51 0.532 52.8(0.5) 1.01(0.08) 50.0(4.0) 92.8 0.7 3.6 3.1 8.2
52 0.787 33.0(1.0) 0.80(0.06) 76.8(6.3) 123.2 0.5 3.0 3.2 8.1
53 0.781 33.7(0.5) 1.19(0.09) 57.1(4.7) 118.4 1.1 3.1 3.5 8.3

T = 500 ± 6 K
54 0.425 35.0(1.0) 0.88(0.07) 58.9(4.8) 130.0 0.6 3.1 3.2 8.2

T = 550 ± 6 K
55 0.201 33.7(0.5) 1.25(0.10) 30.2(2.5) 113.3 1.6 3.5 3.5 8.5
56 0.293 17.9(0.5) 1.92(0.15) 23.1(1.9) 73.5 1.1 3.5 3.1 8.2
57 0.285 36.1(0.5) 1.14(0.09) 42.8(3.5) 130.1 0.9 3.6 3.1 8.2
58 0.287 52.0(0.5) 1.07(0.08) 43.3(3.5) 135.6 0.9 3.5 3.1 8.2
59 0.292 68.8(0.5) 1.06(0.08) 38.7(3.1) 104.3 0.8 3.5 3.1 8.2
60 0.407 15.4(0.5) 0.93(0.07) 37.4(3.0) 66.1 0.9 3.4 3.2 8.2
61 0.399 32.7(0.5) 0.97(0.07) 35.4(2.9) 128.7 0.7 3.5 3.1 8.2
62 0.383 47.7(0.8) 0.87(0.07) 56.3(4.6) 133.1 0.7 3.6 3.1 8.2
63 0.390 68.5(0.5) 1.00(0.08) 45.8(3.7) 103.5 0.9 3.4 3.1 8.2
64 0.505 18.2(0.5) 1.81(0.14) 32.4(2.6) 79.8 1.1 3.8 3.1 8.4
65 0.490 35.2(0.5) 1.25(0.09) 50.3(4.1) 138.0 0.7 3.9 3.1 8.4
66 0.502 52.8(0.5) 0.93(0.07) 62.4(5.1) 141.8 1.2 3.8 3.1 8.4
67 0.604 51.5(0.5) 0.93(0.07) 68.0(5.5) 142.1 1.1 3.8 3.1 8.4

T = 635 ± 6 K
68 0.597 51.5(0.5) 0.94(0.07) 68.5(5.5) 155.5 0.5 4.0 3.1 8.4

T = 800 ± 10 K
69 0.191 33.7(0.5) 1.28(0.10) 36.2(3.0) 134.9 1.8 3.9 3.5 8.7
70 0.279 17.9(0.5) 1.88(0.14) 23.6(1.9) 78.8 1.2 4.3 3.1 8.6
71 0.275 36.1(0.5) 1.13(0.09) 40.2(3.3) 150.1 0.9 4.4 3.1 8.6
72 0.278 52.0(0.5) 1.16(0.09) 46.8(3.8) 165.2 0.8 4.0 3.1 8.4
73 0.278 68.8(0.5) 1.24(0.09) 39.7(3.2) 139.9 0.9 4.0 3.1 8.4
74 0.410 18.2(0.5) 1.93(0.15) 29.8(2.4) 84.5 1.0 4.0 3.1 8.5
75 0.400 35.0(0.5) 0.92(0.07) 60.2(4.9) 152.0 0.6 4.0 3.2 8.5
76 0.385 35.2(0.5) 1.50(0.11) 45.6(3.7) 150.3 1.0 4.3 3.1 8.6
77 0.405 51.5(0.5) 1.23(0.09) 51.9(4.2) 164.8 0.6 4.0 3.1 8.4
78 0.375 68.5(0.5) 1.25(0.09) 47.0(3.8) 145.0 0.8 3.9 3.1 8.4
79 0.484 18.2(0.5) 1.84(0.14) 32.7(2.6) 84.2 0.9 4.3 3.1 8.6
80 0.484 35.2(0.5) 1.29(0.10) 50.2(4.1) 155.3 0.7 4.3 3.1 8.6
81 0.491 51.5(0.5) 1.14(0.09) 59.4(4.8) 173.0 0.6 4.3 3.1 8.6
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005



672 BOM et al.
4.1. Temperature and Pressure Control 

Temperature of liquid D/T was determined by mea-
suring the D/T vapor pressure with tensometric gauges
having an accuracy of 0.5%. Hence, the D/T tempera-
ture was determined with an accuracy of 0.1 K. The
temperature of gaseous D/T was measured by special
thermocouples. During the experimental runs, a small
temperature gradient existed in the D/T mixture, which
was taken into account in the determination of temper-
ature and its error. The accuracy of determining the
temperature was 3–10 K in the 40–800 K range. Pres-
sure was measured with the use of strain pressure
gauges having a calibration error of 3%.

4.2. D/T Mixture Density 

Nuclear density of liquid D/T was determined using
the cryogenic data on deuterium and tritium [51] taking
the mixture content into account. Errors in density
were 2%.

Nuclear density of gaseous D/T was determined by
two ways. The first was the use of the deuterium (tri-
tium) equation of state [52], with the gas temperature
and pressure known from measurements. Some correc-
tions for the presence of the buffer volume being at
room temperature were made. The second way was
density determination via the quantity of gas in the tar-
get of a known volume. Both methods gave identical
results within an accuracy of 4%. The final error of gas
density was 3–4%.

In addition, we have another way to check the mix-
ture density. If the muon beam intensity is stable, the
number of muon stops in the mixture per time unit is
proportional to the mixture density. In several cases, we
made some corrections (a few percent) to the mixture
density based on this method.

4.3. Measurements of Isotope 
and Molecular Gas Composition 

The chromatographical method [53] was used to
control the isotope and molecular composition of the
mixtures. In addition, an ionization chamber was used
to obtain the D/T and T2 content. Measurements were
made before filling of the target and after evacuation of
the mixture from it.

The chromatographical analysis showed the molec-
ular compositions to be very close to the equilibrium
ones,

CDD : CDT : CTT =  : 2CdCt : ,

Ct + Cd = 1,

for each gaseous mixture exposed to a muon beam.
However, for liquid mixtures, the molecular content
can differ from equilibrium due to the dynamic effects
in evaporation of a multicomponent liquid, which was
investigated by us under the conditions of our target

Cd
2 Ct

2
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in [54]. The deviation from the equilibrium state
becomes noticeable for a high tritium concentration of
Ct > 50%. Appropriate corrections to the molecular and
isotope concentrations of the liquid mixture were made
in [55]. We note that the quantity of protium in D/T
mixtures did not exceed 1%.

4.4. D/T Mixture Purity and 3He Accumulation 

As follows from Eq. (10), the expression for the
cycling rate is independent of the muon loss, including
the effect of impurities with Z > 1. Contrary to this, the
muon losses depend on the cycling rate (λdtµ and λdt).
The larger the cycling rate, the closer the muon losses
are to their natural limit, which is equal to the probabil-
ity ωs .

As is seen from Eq. (11), the muon transfer to the
possible impurities affects the value of ω. That is why
the impurity level must be made as small as possible.
Indeed, the condition

(12)

must be ensured.
It is necessary to distinguish two sorts of impurities:

impurities with Z > 2 and He admixtures.
4.4.1. Impurities with Z > 2 and 4He. These impu-

rities are predominantly helium-4, carbon, oxygen, and
nitrogen originating from imperfect purification of the
mixture before filling the target and removal of resid-
ual gaseous elements from the target walls during the
exposure.

The special preparation system based on palladium
filters [46] provides filling of a target with gas purified
at a level of CZ < 10–7 of volume parts. As the outgas-
sing effect increased with temperature, the mixture
purity varied from CZ < 10–7 for T = 20 K to CZ = 10–5–
10–6 for T = 800 K. The rate of muon transfer from the
tµ-atom to the pointed admixtures is λZ ~ 1011 s–1 for
nuclei with Z > 2 [56] and ~ (1–5) × 109 s–1 for 4He

[57, 58]. Therefore, condition (12) is satisfied only for
a liquid D/T mixture where the cycling rate is rather
high (λc = 50–120 µs–1 depending on the tritium con-
centration) and most impurities (excluding helium) are
solid and freezed out on the target walls.

4.4.2. 3He admixture. The tritium handling system
provides an initial concentration of CHe of 3He in the
mixture before being poured into a target at a level of
10–7. However, due to the tritium β-decay, 3He is accu-
mulated in a target according to relation

where λtrit = 6.4 × 10–6 h–1 is the tritium decay rate.
Hence, the process of muon transfer from the tµ-atom
to 3He (with the rate  ≈ 2 × 108 s–1 [57]) can sub-

stantially affect the muon losses.

λZCZ ! ωsλ c

λ
He

4

CHe τ( ) Ct 1 λ tritτ–( )exp–[ ] ,=

λ
He

3
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The 3He accumulation effect is quite different for liq-
uid and gaseous D/T. It was shown in experiment [58]
that 3He in liquid D/T diffuses and exits to the vapor
gas. Our cooling system of the LTT [43] ensured pas-
sage of the entire D/T mixture through the vapor phase
in approximately 1 h, which led to 3He escape from liq-
uid D/T. In experiments with liquid D/T, we therefore
had no problem with D/T purity.

In experiments with gaseous D/T, we were forced to
refill the target every 10–40 h (depending on the tritium
content in D/T) to avoid accumulation of 3He larger
than the “critical value”  ≈ 10–5.

5. DATA TREATMENT
The data processing included the following stages.
(1) Selection of events. By an event, we mean an

occurrence of the processes caused by a single muon
beginning with the muon stop in the target and ending
with the muon decay. An example of the event as seen
by the detectors is presented in Fig. 7. The most impor-
tant criteria for the event to be accepted were presence
of a reliable signal for the µ-decay electron.

(2) Creation of the charge and time spectra for neu-
trons from the d + t reaction and for electrons from the
µ-decay.

(3) Fit of these spectra to determine the “effective”
MCF parameters λc , ω, and Yn .

(4) Analysis of these parameters as functions of the
tritium concentration to obtain the dtµ formation rates
λdtµ – d and λdtµ – t and the muon-to-helium sticking
probability ωs .

5.1. Analysis Methods 

The most popular and practically the only method
used by most groups involved in the study of the MCF
d + t process is the so-called standard method, where
the yield and time distribution of all detected neutrons
from reactions (5), (6) are recorded and analyzed. This
distribution has the well-known one-exponent form (8).
The number of µ-decay electrons Ne is used for normal-
ization,

(13)

The decay rate λn of the exponential in (8) and the nor-
malized neutron yield Yn are the measured parameters.
The values of Λc, ω, and Yn are extracted from (8), (9),
and (13):

(14)

In the Dubna experiments, we also used the standard
method. To obtain spectrum (8), we created a time dis-
tribution of the neutron detector charge Q(t). For this,

C
He

3

Nn

Ne

------
enΛc

λ0 ωΛc+
----------------------.=

enϕλ c

Nn

Ne

------λn,
ω
en

----
λn λ0–
enϕλ c

----------------, enYn

Nn

Ne

------.= = =
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we summed the amplitude spectra for each neutron
detector ND1 and ND2. Then, the spectrum Q(t) was
transformed to the time distribution of the number of
events

using the unit charge  [59]. The latter was measured
under special conditions providing a low neutron mul-
tiplicity, where each charge pulse corresponded to one
neutron. Charge distributions obtained in such
exposures were compared with the calculated ones to
obtain the experimental value of en as a function of the
threshold.

The number of electrons Ne was obtained from an
analysis of the electron time spectra Ne(t) using the dis-
tribution Bempty(t) measured with an empty target,

(15)

where λe is the muon disappearance rate and F is the
accidental background. In this fit, k, Ae , λe , and F are
parameters. The observed muon disappearance rates λe

are close to the muon decay rate λ0 = 0.455 µs–1 and
depend on the mixture purity. In exposures with liquid
D/T, where the purity is maximum, λe is obtained equal
to λ0 within 1%.

A typical example of the fitted time distributions of
decay electrons and fusion neutrons for the D/T filled
target is shown in Fig. 8. The dashed line corresponds
to the electrons from decays of muons stopped in the
target walls (empty target).

The principal disadvantage of the standard method
is that the main MCF parameters (cycling rate and
effective muon losses) are not obtained directly; only
their product is measured directly. In our measure-
ments, we employed two novel independent methods
proposed and developed in Dubna [60, 61]. These anal-
ysis methods make it possible to directly measure the
values of λc and ω.

A proposal in [60] was to measure the distribution
Nne(t) which was a function of the interval t = te – tn

between the last detected neutron of the series and the
µ-decay electron. This distribution has the form of a
sum of two exponentials with significantly different
slopes [60, 61],

(16)

where λn is expressed as

(17)

The first (“slow”) exponential corresponds to the events
with muon sticking and the second (“fast”) one to the
events without sticking. The cycling rate is determined
from the fast component slope, and the muon loss is

Nn t( ) Q t( )/q=

q

Ne
total t( ) kBempty t( ) Ae λ et–( )exp F,+ +=

dNne

dt
------------

λ0

λn

-----=

× ωΛc λ0t–( )exp enΛc 1 ω–( ) λ0 λn+( )t–( )exp+[ ] ,

λn en ω enω–+( )Λc.=
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Fig. 8. Example of electron (a) and neutron (b) time distributions. Solid lines are the optimum fits with expressions (15) (a) and
(8) (b); the dashed line corresponds to the electrons from empty target.
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Fig. 9. Electron–last neutron timing spectra measured with a liquid D/T mixture. Spectrum (a) corresponds to the exposure with
Ct = 35.2%, and variant (b) was selected for Ct = 85.5%. Lines represent the fits with expressions (16) and (17) and the optimum
parameters enΛc and ω/en .
obtained from the ratio between the amplitudes of the
slow and fast exponentials:

Examples of such distributions obtained in a liquid D/T
mixture are presented in Fig. 9. As is seen from the fig-
ures, the events with and without sticking are clearly
separated. Different slopes of the fast components of
the spectra reflect the different values of the cycling rate

As

A f

------
ω

en 1 ω–( )
-----------------------.=
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realized for tritium concentrations of Ct = 35.2% and
Ct = 85.5%. The advantage of the method is that charge
calibration is not necessary in this case.

Another idea [61] was to measure the neutron mul-
tiplicity distribution (the number k of detected neutrons
per muon) in some definite time interval T. If one
selects the events for which the muon does not decay in
this interval, then this distribution is a sum of two
terms. One of them, which is Gaussian (Poisson) with a
mean of m = enΛcT, corresponds to the events without
AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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Fig. 10. Multiplicity distributions in time interval T = 1 µs: (a) distribution without sticking events, (b) with sticking events. Curves
are the optimum fits.
sticking, and the other, depending on ω and falling with
k, is the distribution of events with muon sticking.

The rigorous expression for the multiplicity distri-
bution was obtained in [62]. It has the form

(18)

where P(k) is the Poisson distribution with the mean
m = λnT,

and λn is given by formula (17).

Formula (18) corresponds to the “event mode”
where the number of detected neutrons was considered.
Actually measured in experiments were the distribu-
tions of the neutron detector charge; they were divided
by the unit charge to obtain a multiplicity distribution.
The real response function of the detector results in dif-
fusion of the measured spectra as compared with the
ones obtained in the event mode. It turns out that, in a
good approximation (with an accuracy of 2–3% in the
cycling rate), the real distribution can be obtained as a
convolution of formula (18) with a Gaussian function.
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The Gaussian width is varied to obtain the best agree-
ment between experiment and calculations.

We can also select only nonsticking events. For this,
we must exclude the requirement of the electron signal
in the trigger and select only those neutron series whose
duration is larger than the chosen interval T. Plotting
and analyzing the multiplicity distribution of such
events, we can directly obtain the cycling rate. The
advantage of this method is that we do not need the fact
of the µ-decay electron existence. Of course, only λc

can be determined in this case, because events without
muon sticking to helium are accepted. The examples of
fitted multiplicity distributions are presented in Fig. 10.

The comparison of all methods that we used in the
analysis is given in Table 2. The statistical power is
practically the same for all methods. Indeed, in the stan-
dard method, the main factor for the statistical accuracy
is the limited number of electrons; the number of neu-
trons is much higher under real experimental condi-
tions. In two other methods, the full statistics is the
number of the first or last neutrons, which are also
approximately equal to the electron number.

In our investigations, we use all the three methods
mentioned. This allows us to reliably analyze the data,
with minimum systematic uncertainties. Of course, the
full analysis is rather complicated and includes many
tests with different selection rules for events to be
accepted.

5.2. Electron Identification 

A serious problem in the MCF data analysis is how
to distinguish the real electron from a false one. Under
SICS      Vol. 100      No. 4      2005
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the conditions where one muon can cause up to
100 reactions (5), it is possible to detect a neutron by
the electron detector and accept it as an electron. Con-
trary to the measurements of other groups, we detect
electrons with a proportional wire counter, having a
very low sensitivity to neutrons. However, even in this
case, a fraction of false electrons caused by the neutron
counts was noticeable.

Only the last (in time) electron signal is accepted as
real. It would be enough to exclude the false electrons
if the electron detection efficiency would be ee = 100%.
However, for different reasons (see [63]), this effi-
ciency is not equal to unity. Thus, the situation can
occur where a real electron is not detected and a false
one is interpreted as real. The presence of false elec-
trons results in distortion of λc , ω, and Yn . The cycling
rate determined according to formula (14) is distorted
due to the error in Nn and Ne , and λn extracted from
expressions (8) and (15) senses the error in λc . On the
other hand, confusion of the real and false electrons
leads to distortion in the relation between “stick” series
(interrupted due to muon sticking) and “no-stick” series
(ending with µ-decay). The latter are accepted more
effectively. Thus, the results for the muon losses are
also distorted. Finally, the distortion of the slope of the
electron time distribution does not make it possible to
correct the estimate of the D/T mixture purity and thus
to check the parameters of the purification system.

Fortunately, the cycling rate determined from the
peak position in the multiplicity spectrum is free of
false electrons. This is a very important circumstance
allowing reliable data on the cycling rate to serve as a
source of “elementary” process parameters such as the
dtµ-molecule formation rate. Of course, it is very desir-
able to obtain a correct value for λc by different inde-
pendent methods. Moreover, obtaining correct data on
muon losses is an important independent task.

5.2.1. Selection by the energy loss in the neutron
detector. An effective way to reject false electrons was
elaborated and used in our work [23]. For this, we
required the following when selecting events.

(1) Electron signals from the PC and ND1 or ND2
should coincide.

(2) The energy that the electron releases in the neu-
tron detector should be greater than the maximum pos-
sible energy released by a 14 MeV neutron in this

Table 2.  Comparison of different methods used in the MCF
study

Method λc, ω deter-
mination

Charge
calibration

Electron
detection

Standard Indirect Necessary Necessary

te–tn Direct Not necessary Necessary

Multiplicity Direct Necessary Not necessary
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detector. This allows reliable discrimination of false
electrons. The use of these selection criteria allowed us
to obtain the data on λc and ω coinciding for all three
analysis methods within 5% [23].

The disadvantage of this selection is a decrease in
the statistics because an essential part of the useful
events are rejected. This decrease becomes much more
important in experiments with a high-pressure gaseous
target having rather thick walls, for which the “output”
electron energy spectra are noticeably distorted and the
transparency of the target walls for electrons is notice-
ably smaller than for the liquid target. Therefore, for a
gaseous target, reliable neutron–electron separation
was connected with larger statistical losses than for a
liquid target.

5.2.2. Selection by the time position of the elec-
tron signal relative to neutron series. To avoid losing
statistics, we developed a new method [63] for false
electron discrimination, which is most effective for the
large neutron detection efficiency realized in our exper-
iments. We now impose the criterion “electron inside
neutron series.” For this, we consider the neutron detec-
tor charge Q (the sum of the amplitudes) on some time
interval (∆T) close to the electron signal and delayed
relative to it by ∆t. The events were accepted under the
condition that the charge Q is smaller than the thresh-
old: Q < Qth  Our examination [63] shows that the
proper values are ∆t = 60 ns and ∆T = 500 ns. The larg-
est values of Qth correspond to events without selection
for the false electron. In this case, the distortion in the
electron yield and time spectrum (15) is the largest. The
opposite case (low Qth) corresponds to the smallest dis-
tortions for electrons and to the minimum value of the
electron time slope λe , which nearly coincides with the
one determined using selection by electron energy in
the neutron detector.

The opposite situation occurs for the slope of neu-
tron time distribution (8). In the case where the real
electron is not detected, a false one is accepted as elec-
tron. This means that the long neutron series are pre-
dominantly detected, because the appearance of a false
electron is most probable just in those series. Indeed,
our considerations [63] show that the minimum Qth
(maximum false electron rejection) leads to the maxi-
mum slope λn . Again, the “correct” value of λn is in
agreement with the one obtained with selection by elec-
tron energy in the neutron detector.

The main MCF parameters obtained under two dif-
ferent selection options coincide within an accuracy of
3–4%. The reliability of the data is confirmed by the
fact that the value of the cycling rate determined by the
standard method is identical to the one yielded by the
multiplicity method, where it is independent of the
selection criteria. The method considered gives statis-
tics 4–5 times larger than in the case with energy dis-
crimination (Section 5.2.1). This indicates that we have
found the way, described in detail in [63], for correctly
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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obtaining the MCF parameters without essential loss in
statistics.

5.3. Neutron Detection Efficiency 

All methods discussed above give values of λcen and
ω/en . To obtain the MCF parameters λc and ω, we must
know the neutron detection efficiency en .

Determining en for organic scintillation counters is a
nontrivial task, because it is influenced by factors like
the geometry of the surrounding material, generation of
light by various reaction products, and because many
energy-dependent cross sections are involved. Because
of the lack of neutron calibration sources with well-
known intensity and sufficiently large energy, the effi-
ciency had to be calculated. The Monte Carlo technique
was used.

Calculations of en for neutrons detected by the ND
in the Dubna experiments are described in [64]. The
CERN package GEANT was used in [64] for the simu-
lation calculations. Because it lacks the appropriate
low- and fast-neutron interaction cross-sections,
GEANT was linked with the MICAP package. MICAP
uses experimental neutron cross-sections from the
ENDF/B-VI database from 20 MeV down to thermal
energies (10–5 eV). This includes partial cross-sections,
angular distributions, and energy distributions of reac-
tion products and deexcitation photons. The prepro-
cessed ENDF/B-VI data represent the experimental
data within 2%.

After the calculation of the energy deposited inside
the scintillator, the electronic output signal was
obtained by first converting the energy into scintillation
light considering the particle type, and then converting
the total light output into an electric signal by applying
the detector response function [49]. This function takes
several factors into account, such as nonuniform light
collection depending on the position of light generation
inside the scintillator and photon statistics. The results
of calculations [64] for 14 MeV neutrons from reac-
tions (5), (6) are presented in Fig. 11 together with the
measured spectra.

One neutron detected in a scintillator may generate
a response from one detector or, due to scattering or to
generated gamma-rays, from both detectors. This leads
to a single and coincident rate. The corresponding spec-
tra are shown in Fig. 11 together with the measured
ones. As can be seen, there is good agreement between
the measurements and the calculations in both cases
(single and coincident). The intensity and amplitude
calibration of the calculated single spectrum was nor-
malized to single data. The normalization thus obtained
is then applied to the calculated coincident spectrum,
which then neatly coincides with the corresponding
data. This means that the single-to-coincident ratio is
well predicted, which should be considered as a sensi-
tive validation check for the calculations. The estimated
relative uncertainty in en is no worse than 5–7%.
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The problem is how the neutron detection efficiency
depends on the neutron multiplicity (cycling rate). The
main idea of using the flash ADC is that the total charge
per number of neutrons is conserved even when the ND
signals mostly overlap. However, it is true only for zero
charge threshold. In fact, the cluster charge should be
limited to reduce the low-energy background. At a high
neutron multiplicity, small-charge clusters can overlap
with one or more other clusters and, hence, can be
accepted (a noneffective threshold). Obviously, this
results in an increase of the detection efficiency com-
pared with the low neutron multiplicity. The actual
increase depends on several factors, such as the shape
of the ND signal, the form of the response function, the
magnitude of the threshold, and the measured cycling
rate. Because one would expect an essential correction
to the value of en , the problem required special consid-
eration.

This was made in [65], where the fusion neutron
registration was Monte Carlo simulated for a wide
cycling rate range. All the three analysis methods were
considered. It turned out that, in the standard and mul-
tiplicity methods, the corresponding corrections to the
efficiency were not very large: even for the maximum
possible measured cycling rate enΛc = 40 µs–1, they are
only 12%.

6. RESULTS

6.1. The Effective MCF Parameters 

The effective MCF parameters λc , ω, and Yn were
obtained from the fit of the distributions considered in
the “standard”, “multiplicity”, and “te – tn” analysis
methods. Although the first two methods are more reli-
able, the results obtained by three different methods
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Fig. 11. Charge distribution for 14 MeV neutrons measured
in [23] with the ND (histograms). Distributions are plotted
for single (a) and coincident (b) events. Lines represent the
Monte Carlo calculations [64].
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Fig. 12. (a) Normalized cycling rates as a function of temperature for the gaseous D/T mixture at Ct ≈ 33% and different densities
ϕ = 0.88–0.91 (s), 0.62–0.64 (.), 0.49–0.52 (m), 0.39–0.45 (j), 0.19–0.24 (d) LHD. (b) Normalized cycling rates as a function of
density for the gaseous D/T mixture at Ct ≈ 33% and different temperatures T = 800 K, Ct = 0.34–0.36 (.); T = 550 K, Ct = 0.33–
0.36 (m); T = 300 K, Ct = 0.31–0.36 (j); T = 158 K, Ct = 0.31 (d). The curves are obtained with optimum parameters.
were in agreement with an accuracy 3–4%. They are
presented in Table 1 and Fig. 12.

The statistical uncertainty in the results is deter-
mined by the number of events and the fit accuracy. In
both main methods (standard and multiplicity), the sta-
tistics ensures that this error is not higher than 2%. We
note that, in the multiplicity method, we do not need the
muon number normalization.

The following factors contribute to systematic error.

(1) Uncertainty in the neutron detection efficiency
makes the maximum contribution to systematic error. It
was estimated from the calculation of en and the accu-
racy in the energy threshold determination and is 6% in
total.

(2) Uncertainty of the charge calibration procedure
gives an error smaller than 3%.

(3) Uncertainty of the gas and liquid density (for
normalized cycling rate) is about 3–4 and 2%, respec-
tively.

(4) Uncertainty of the time zero position (only for
the standard method) gives a systematic error smaller
than 0.5%.

(5) Uncertainty due to the correct selection of muon
decay electrons (only for the standard method; see Sec-
tion 5.2) is 2%.

(6) Uncertainty caused by possible instability of
detectors and electronics does not exceed 2%.
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Therefore, the total uncertainty in ω, Yn , and the
absolute values of λc did not exceed 9%. Obviously,
the relative dependences of the cycling rate on tem-
perature and density are known with a better accuracy
(4.5–5.5%).

6.2. The dtµ-molecule Formation Rate
and Muon Sticking Probability 

The usual way to determine the “physical” values
λdtµ and ωs is an analysis of the “effective” parameters
λc and ω the use of expressions (10) and (11), represent-
ing their dependence on tritium concentration and den-
sity. For this purpose, it is, first of all, necessary to
express q1S as a function of Ct and ϕ. With the general
expression (1) and the theoretical predictions in [32, 34,
66], as well as experimental results in [17, 35] taken
into account, the parametrization of q1S was chosen in
the form

(19)

6.2.1. Fit of the liquid D/T data. Muon sticking
probability ws. As we have noted, the most expedient
condition for the ωs measurement is a liquid D/T mix-
ture, where λc is high and the admixture content is neg-
ligible. Our first data for the liquid D/T mixture were
given in [23]. In this paper, we correct the values of the

q1S Ct ϕ,( ) 1
1 b cϕ+( )Ct+
-----------------------------------.=
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Fig. 13. Normalized cycling rates (a) and muon loss probability (b) as a function of the tritium concentration for the liquid D/T
mixture (T = 22 K, ϕ ≈ 1.22 LHD). Solid lines are optimum fits. The dashed line is the value (23).
molecular concentrations and, in addition, perform
the common fit of λc and ω in liquid D/T using formu-
las (10) and (11). As for all liquid points, the density
values were very close to each other, the parametriza-
tion for q1S was chosen as

(20)

where a ≡ b + cϕ from (19). We have performed a set of
fits, varying different parameters according to the
known theoretical and experimental data for λ1 – 0 [68,
69], λttµ [70–72], and λdtµ – t [14, 17, 18, 70]. Such a
variation does not lead to a significant change in the
results. The systematic error ∆en (the same for all liquid
data) was excluded from the data errors in these fits. In
Table 3, the values used for the MCF cycle parameters
and the results of one of the fits are shown.

The fit results are shown in Fig. 13 and Table 3. The
main results for the liquid (T ≈ 22 K, ϕ ≈ 1.22 LHD)
D/T mixture are

(21)

(22)

(23)

Our value of λdtµ – d in (21) is essentially higher than
the PSI group data [14] but is in agreement with the
LAMPF results [17] (see Fig. 15). The value of λdtµ – t

q1S Ct( ) 1 aCt+( ) 1– ,=

λdtµ d– 685 35stat 41syst±±( ) µs
1–
,=

λdtµ t– 18 6stat 11syst±±( ) µs 1– ,=

ωs 0.573 0.021stat± 0.032syst±( ) %.=
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in (22) is in satisfactory agreement with the values
obtained in [17, 18], λdtµ – t = 20 µs–1, and [70], λdtµ – t =

 µs–1. An unexpectedly high rate λdtµ – t = 160 µs–1

was obtained by the RIKEN group [16, 73]. Fixing this
value, we do not achieve any satisfactory agreement of
fit to our data, and we therefore conclude that this value
is uprated by about a factor of 5.

11 11–
+6

Table 3.  Results of one from the set of common fits of the data
for liquid D/T. Fixed parameters are given with references

Parameter Value Ref.

a 2.9 ± 0.4 free

λZCZ, µs–1 0.08 ± 0.03 free

λdt, µs–1 280 [18, 21, 35, 36]

λ1 – 0, µs–1 1200 [68, 69]

, µs–1 3.5 [11]

λ3/2–1/2, µs–1 36 [11]

, µs–1 14 [72]

ωdd, % 0.13 [11]

r 0.51 [11]

λttµωtt, µs–1 0.28 ± 0.15 free

λdtµ–d, µs–1 650 ± 40 free

λdtµ–t, µs–1 21 ± 8 free

ωs, % 0.574 ± 0.022 free

λddµ
3/2

λ f
tt
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Fig. 14. Common fit of the normalized cycling rates as a function of the tritium concentration for all (76 points) data for the gaseous
D/T mixture (T = 37–800 K, ϕ = 0.143–1.024 LHD). Lines are the optimum fit.
The probability ωs of the effective muon-to-helium
sticking in dt-fusion is one of the most important MCF
characteristics, because it limits the number of fusions
per muon. In theory, ωs is considered as the product

where  is the “initial” sticking probability directly
after fusion and R is the probability of the muon-from-
helium stripping during the Heµ thermalization stage.
R is density-dependent, and, hence, the theory predicts
a slow, close to linear, decrease of ωs with density.
Comparison of different theoretical and experimental
results on ωs is presented in Table 4.

ωs ωs
0 1 R–( ),=

ωs
0
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The mean value λZCZ = 0.08 ± 0.03 µs–1 obtained in
the fits is in agreement with the estimate 0.08 ± 0.04 µs–1

based on the analysis of the electron time spectra. The
product λttµωtt , being free, was obtained as 0.28 ± 0.15,
which agrees with [70–72].

6.2.2. Low-temperature gaseous D/T data. Here,
we present new data related to the mixture temperature
T = 45 and 158 K and different densities ϕ =
0.2−1 LHD. It is primarily interesting from the stand-
point of the density dependence of the dtµ-molecule
formation rate on D2 molecules.

For all values of ϕ, approximation (20) for q1S was
used in the fit. The results are presented in Table 5. The
data for T = 300 K recently presented in [26] is also
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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included. As can be seen, the data obtained for λdtµ – d
demonstrate a strong density dependence and demon-
strate practically no sensitivity to the mixture tempe-
rature.

6.2.3. High-temperature gaseous D/T data. Mea-
surements for high temperatures (T ≥ 300 K) are impor-
tant for the determination of the dtµ-molecule forma-
tion rate on DT molecules. According to the “standard”
theory, the Maxwell distribution for the tµ-energy (Etµ)
overlaps the nearest resonance λdtµ – t(Etµ) in this region.
In addition, it is interesting to clarify for which temper-
atures λdtµ – d remains density-dependent and what is its
temperature dependence.

The preliminary data for T = 300, 550, 800 K were
presented in [26]. We now present the final data
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
obtained from the common fit of the experimental
dependences λc(ϕ, T). The dtµ-molecule formation
rates on D2 and DT molecules were assumed indepen-
dent of density at temperatures T > 300 K. They are pre-
sented in Table 6.

The following conclusions can be made from their
consideration.

(1) According to theory, λdtµ – t rises with tempe-
rature.

(2) Contrarily this, λdtµ – d does not reveal a temper-
ature dependence.

6.2.4. Common fit of gaseous D/T data. To reliably
extract λdtµ for given T and ϕ, each set of λc(ϕ, T; Ct)
should contain sufficient points corresponding to a
SICS      Vol. 100      No. 4      2005
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Fig. 15. (a) λdtµ – d as a function of density for T ≤ 300 K. Filled circles are our points for gas; empty circles are the results of
LAMPF [17]; the square is the result of the present paper for liquid (21). Solid lines are the permissible values found from the fit.
Dashed lines are limits for the λdtµ – d region obtained in [14]. (b) λdtµ – t as a function of temperature. Filled circles are our points;

empty circles are the results of LAMPF [17]. The solid line is the theory result [13] for . Dashed lines are limits of param-

etrization (25).

λdtµ t–
0

wide range of Ct . Not all our data satisfied this condi-
tion. We could not conduct measurements with high Ct

at “extreme” ϕ and T. Nevertheless, we could include
all data in the analysis, making certain assumptions on
the λdtµ density and temperature dependences.

Table 4.  Comparison of the results on the ωs obtained in dif-
ferent experimental and theoretical investigations

ωs, % Ref. Comment

0.58 [74] Theory for ϕ = 1.2 LHD

0.58 [75] Theory for ϕ = 1.2 LHD

0.65 [76] Theory for ϕ = 1.2 LHD

0.43 ± 0.05 ± 0.06 [77] LAMPF experiment
for ϕ = 1.2 LHD

0.48 ± 0.02 ± 0.04 [78] PSI experiment
for ϕ = 1.2 LHD

0.532 ± 0.030 [79] RIKEN experiment
for ϕ = 1.2 LHD

0.505 ± 0.029 [10] PSI experiment
for ϕ = 1.45 LHD

0.573 ± 0.021stat ± 
0.032syst

This experiment
for ϕ = 1.22 LHD
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Based on our preliminary analysis [26, 67] and tem-
perature and density dependences of λc obtained from
the analysis of the total data, we can conclude that:

(i) λdtµ – d rises linearly with density in a wide tem-
perature range up to T = 300 K;

(ii) at temperatures T = 300–800 K, λdtµ – t is very
close to a linear function of temperature and does not
depend on density.

We therefore chose the simplest linear parametriza-
tion for the temperature and density dependences of the
formation rates:

(24)

(25)

The general expression (19) was used for q1S , including
the density-dependence term.

A total of 76 gaseous points of λc were under fitting
by using formula (10). The systematic error due to the
neutron detection efficiency ∆en (the same for all data)
was excluded from the errors in the course of fitting.
The results are presented in Table 6 and Figs. 14–16.

λdtµ d– ϕ( ) Ad Bdϕ at T+ 37–300 K;= =

λdtµ d– Cd at T 300 K,>=

λdtµ t– T( ) At BtT at T 200 K,≥+=

ϕ 0.2–0.9.=
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Figure 14 shows how the experimental values of λc

are described by formula (10) with our parametrization
of q1S and λdtµ . It follows from the fit that the experi-
mental data are in satisfactory agreement with the used
approximation: χ2 = 84 for 76 points and six variable
parameters. The optimum values of our approximation
are presented in Table 7. We note that q1S turned out to
be density-independent. The same was obtained in [14],
but our values of q1S are somewhat lower than in that
study (see Fig. 16).

Figure 15 represents the fit results for the low-temper-
ature (T ≤ 300 K) data for λdtµ – d(ϕ) (a) and λdtµ – t(T) (b).
The area limited by the straight lines corresponds to
permissible values found from the fit with taking the
uncertainties in density and temperature into account.
The obtained fit accuracy turned out to be

A systematic error of δsyst = 7% should be taken into
account in comparing our data with theory and other
measurements.

7. DISCUSSION

7.1. Muon Sticking Probability 

As can be seen from Table 4, the experimental val-
ues of ωs obtained by different experimental groups are
in satisfactory agreement with each other. The value
obtained by the direct method remarkably coincides
with the one determined from the analysis of the muon
losses as a function of the tritium concentration. At the

δ λdtµ d–( ) 8–9%,=

δ λdtµ t–( ) 20% T 300 K=( )–9% T 800 K=( ).=

Table 5.  Results of the fit of the data for gaseous D/T at low
temperatures (45–300 K) (a is the parameter of formula (20)
for the q1S approximation)

Parameter Value Conditions

a 7.1 ± 2.5 free T, K ϕ, LHD

λdtµ–d, µs–1 326 ± 27 free 45 0.45

403 ± 32 free 45 0.67

490 ± 36 free 45 0.95

320 ± 26 free 158 0.43

402 ± 32 free 158 0.66

499 ± 37 free 158 0.90

292 ± 29 free 300 0.31

313 ± 30 free 300 0.42

380 ± 33 free 300 0.52

λdtµ–t, µs–1 7 ± 4 free 45–160 0.4–1.0

52 ± 14 free 300 0.3–0.5
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same time, some disagreement between experiment
and theory remains.

7.2. q1S and λdtµ 

Analysis of the experimental data confirms the the-
oretical conclusion about the significant role of the

Table 6.  Results of the fit of the data for gaseous D/T at high
temperatures (300–800 K)

Parameter Value Conditions

a 8.5 ± 2.8 free T, K ϕ, LHD

λdtµ–t, µs–1 56 ± 14 free 300 0.2–0.8

190 ± 81 free 500 0.2–0.8

198 ± 28 free 550 0.2–0.8

270 ± 53 free 635 0.2–0.8

328 ± 34 free 800 0.2–0.8

λdtµ–d, µs–1 251 ± 36 free 300 0.20

277 ± 30 free 300 0.31

293 ± 31 free 300 0.42

354 ± 34 free 300 0.52

420 ± 44 free 300 0.78

319 ± 45 free 500–800 0.19–0.60

q1S

0 0.2 0.80.4 0.6 1.0

1.0

0.8

0.2

0.4

0.6

Ct

Fig. 16. q1S as a function of the tritium concentration. The
vertical shading is the parametrization obtained by the cur-
rent fit. The horizontal shading is the PSI result [14] based
on the measurements at low temperature ≤40 K.
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muon transfer from the excited dµ-atom states. Accord-
ing to the theory, the intensity of this process turns out
to depend on the tritium concentration. The probability
q1S of a muon reaching the dµ-atomic 1S state is suc-
cessfully described by rather simple expression (20)
with the same parameter a for different Ct . At the same
time, contrary to the theoretical predictions, q1S does not
show a noticeable density dependence. These conclu-
sions coincide with those made in the PSI paper [14].

As follows from the theory, at low temperatures (T <
300 K), the process of the dtµ formation on D2 mole-
cules dominates. A nontrivial density dependence
λdtµ − d(ϕ) evidences in favor of the triple collision
mechanism (7). Unfortunately, there is still no qualita-
tive agreement between experiment and theory on the
intensity of this process. It seems that the absence of a
noticeable dependence of λdtµ – d on temperature is dif-
ficult to reconcile with the mechanism of dtµ formation
on the “negative” resonance.

The experimental data on the dependence λdtµ – d(ϕ)
obtained by different experimental groups are in satis-
factory agreement. We note that the parametrization of
this dependence suggested by the PSI group is not
appropriate for the entire data set.

According to the theoretical predictions about the
resonance positions, the process of the dtµ-molecule
formation on DT molecules manifests itself at high
temperatures T ≈ 300 K and rises with temperature.
However, both the present results and the LAMPF data
on λdtµ – t(T) turned out to be significantly lower than the
calculated ones. This means that the intensity of the
appropriate resonances is overestimated by the theory.
The same conclusion follows from the analysis of the
epithermal effects in the dtµ formation made by the PSI
group [80]. At the same time, the TRIUMF group, mak-
ing the TOF measurements of the MCF d + t reaction
yield as a function of the tµ-atom energy [81], con-
cluded that their data are in a satisfactory agreement

Table 7.  Results of the common fit of all the data for gas-
eous D/T

Parameter Fit result

q1S: b 7.2 ± 2.9 free

c 0 ± 1 free

λdt, µs–1 280 [18, 21, 35, 36] fixed

λ1 – 0, µs–1 1200 [68, 69] fixed

λdtµ–d: Ad (T ≤ 300 K), µs–1 156 ± 14 free

Bd (T ≤ 300 K), LHD–1 384 ± 21 free

Cd (T > 300 K), µs–1 331 ± 32 free

λdtµ–t (T ≤ 200 K), µs–1 6 ± 6 free

At (T ≥ 200 K), µs–1 –117 ± 9 free

Bt (T ≥ 200 K), K–1 0.577 ± 0.028 free
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with the theory. One should note, however, that the
analysis in [81] is very complicated and can involve
some systematic uncertainties. To clarify the situation,
it is very important to make steady-state measurements
at the highest temperatures T = 1000–2000 K, where
the Maxwell distribution of the tµ-atom energy over-
laps the most intensive resonances.

7.3. Possible Influence of Epithermal Effects 

The parameters obtained are related to the steady-
state regime, when the tµ-atoms formed with the initial
energy E ≥ 1 eV have already passed through the reso-
nances and are thermalized. However, each time after
muon regeneration in the fusion reaction, the µ-atoms
go through the deceleration stage, again feeling the
effect of the resonances. Obviously, this leads to an
increase in the cycling rate compared to values related
to the Maxwell-distributed µ-atoms. This is similar to
the well-studied µ-catalysis in low-temperature deute-
rium related to the two dµ-atom spin states [82]. As in
that case, there are “upper” and “lower” states with
sharply different cycling rates and quick degradation of
the “upper” state. By analogy, one can express the

steady-state cycling rate  as

where λc is the “bare” value.
A relative increase in the cycling rate δ can be esti-

mated as

(26)

where αep is the fraction of the tµ-atoms passing

through the resonances during thermalization,  is
the effective dtµ-molecule formation rate in the reso-
nance region, and λd is the rate with which tµ-atoms
leave the resonance (thermalization and back decay
after the dtµ formation).

Estimations made from the calculated values of
λdtµ(Etµ) [13] and the scattering cross sections
σtµ + d,tµ + t [83] are evidence that the corrections to the
steady state can be as large as tenths of a percent. One
can expect that the correction δ should be smallest for a
low tritium concentration, because the deceleration rate
in tµ + d collisions is significantly larger than in tµ + t
collisions predominant at high Ct .

As a consequence, there arises a problem of cor-
rectly extracting the dtµ-molecule formation rate from
the dependence λc(Ct) given by formula (10). The obvi-
ous conclusion is an overestimation of λdtµ as compared
with the thermalized tµ-atom situation. In addition, sys-
tematic errors in the parameters of (10) can occur. For-
tunately, as is seen from Figs. 13 and 14, there is satis-
factory agreement between the experimental values of
λc and expression (10). Thus, it is believed that the cor-

λ c
ss

λ c
ss λ c 1 δ+( ),=

δ αepλdtµ
res /λd,≈

λdtµ
res
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Fig. 17. Normalized cycling rate dependences on the D/T mixture conditions plotted with the use of optimum parametrizations
obtained from the fit. (left) Normalized cycling rate as a function of tritium concentration and temperature for ϕ = 0.4 LHD.
(right) Normalized cycling rate as a function of temperature and density for Ct = 0.35. The temperature region 160–300 K is
smoothed.
responding distortions are not as large. According to
our estimations, the appropriate corrections to λdtµ in
the region Ct = 20–70% are δ ≈ 10–20%.

8. CONCLUSIONS

The systematic experimental investigations of the
MCF process in the D/T mixture have been conducted
at the JINR phasotron by the novel method. Measure-
ments were made in a wide range of the mixture param-
eters: density, temperature, and tritium concentration.
The variety of the experimental conditions can be seen
in Fig. 17, showing the cycling rate vs. mixture condi-
tions.

Analysis of the data allows us to determine the basic
MCF parameters. In general, they are in agreement
with the ones obtained by other groups in the region
where the experimental conditions were similar. Com-
parison of the experimental data with the theory con-
firms the efficiency of the main mechanisms considered
in the MCF theory, but a full qualitative description of
the process has not yet been achieved.

In our opinion, it will be very important to make
measurements with a D/T mixture at the highest tem-
peratures of T = 1000–2000 K, where the main reso-
nances manifest themselves most effectively.
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IN CONDENSED SYSTEMS

                                                                                                                
High-Pressure Magnetic Properties
and P–T Phase Diagram of Iron Borate¶

A. G. Gavriliuka,b, I. A. Trojana, I. S. Lyubutinb, S. G. Ovchinnikovc, and V. A. Sarkissianb

aInstitute for High-Pressure Physics, Troitsk, Moscow oblast, 142190 Russia
bInstitute of Crystallography, Russian Academy of Sciences, Moscow, 119333 Russia

cKirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
e-mail: lyubutin@ns.crys.ras.ru

Received July 6, 2004

Abstract—The high-pressure magnetic states of iron borate 57FeBO3 single-crystal and powder samples have
been investigated in diamond anvil cells by nuclear forward scattering (NFS) of synchrotron radiation at differ-
ent temperatures. In the low-pressure (0 < P < 46 GPa) antiferromagnetic phase, an increase of the Neél tem-
perature from 350 to 595 K induced by pressure was found. At pressures 46–49 GPa, a transition from the anti-
ferromagnetic to a new magnetic state with a weak magnetic moment (magnetic collapse) was discovered. It is
attributed to the electronic transition in Fe3+ ions from the high-spin 3d5 (S = 5/2, 6A1g) to the low-spin (S = 1/2,
2T2g) state (spin crossover) due to the insulator–semiconductor-type transition with extensive suppression of
strong d–d electron correlations. At low temperatures, NFS spectra of the high-pressure phase indicate magnetic
correlations in the low-spin system with a magnetic ordering temperature of about 50 K. A tentative magnetic
P–T phase diagram of FeBO3 is proposed. An important feature of this diagram is the presence of two triple
points where magnetic and paramagnetic phases of the high-spin and low-spin states coexist. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

Iron borate FeBO3 is a rare magnetic material that is
transparent in the visible range and possesses spontane-
ous magnetization at room temperature. Light modula-
tion by magneto-optical effects is possible in this crys-
tal. The crystal lattice of FeBO3 has rhombohedral sym-

metry of the calcite type with the space group R c

( ) and with the lattice parameters a = 4.612 Å and
c = 14.47 Å [1, 2]. Iron ions Fe3+ are in oxygen octahe-
dra, and the interionic distances are (Fe–O) = 2.028 Å
and (Fe–Fe) = 3.601 Å, while the angles of the bonds
(O–Fe–O) are 91.82° and 88.18° [2]. Thus, the oxygen
surrounding of Fe is almost cubic. At ambient condi-
tions, FeBO3 is an easy-plane antiferromagnet with
weak ferromagnetism and with a Neél temperature of
about 348 K [3, 4]. Magnetic moments of two iron sub-
lattices and the weak ferromagnetic moment lie in the
basal (111) plane [5, 6].

At ambient pressure, iron borate is an insulator with
an optical gap value of 2.9 eV [5]. Recently, a drop in
the optical absorption edge approximately from 3 to
0.8 eV has been found in optical spectra at pressures
near 46 GPa [7]. It was concluded from direct measure-
ments of electroresistivity that a transition of the insu-
lator–semiconductor type occurs at this pressure [7].

3

D3d
6
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In the present paper, iron borate 57FeBO3 single
crystals and powder samples are studied under high
pressures in a diamond-anvil cell by the technique of
nuclear forward scattering (NFS) of synchrotron radia-
tion (SR) in the temperature range 3.5–300 K. At pres-
sures of P = 46–49 GPa, the sharp transition from the
antiferromagnetic to a new magnetic state with a weak
magnetic moment was discovered. The pressure depen-
dence of the Neél temperature was calculated from the
experimental data, and the magnetic P–T phase dia-
gram was plotted and analyzed theoretically.

2. EXPERIMENTAL

The perfect quality light-green colored single crys-
tals of FeBO3 enriched with the 57Fe isotope up to 96%
were grown by the flux method. The crystals were
plate-shaped, and the plane of the plate was the basal
(111) plane. The thickness of the plates was about 10–
40 µm with dimensions of about 8 × 8 mm2. The NFS
experiments were performed with both single crystals
and powder samples obtained by grinding an 57FeBO3
single crystal.

The experiments with nuclear forward scattering of
SR were performed with the 57FeBO3 samples at high
pressures of up to 65 GPa created in diamond-anvil
cells at temperatures in the range 3.5–300 K. The mea-
surements were performed with ID18 nuclear reso-
 © 2005 Pleiades Publishing, Inc.
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nance scattering equipment [8] at the European Syn-
chrotron Radiation Facility (ESRF), Grenoble, France.

Two types of samples were used: a single crystal at
room temperature and a powdered sample (a crushed
single crystal) at low temperature. At room tempera-
ture, a 57FeBO3 single crystal with dimensions of about
80 × 40 × 4 µm3 was placed into a high-pressure dia-
mond-anvil cell. The diameter of the working surface of
diamonds in the cell was about 300 µm, and the diam-
eter of the hole in the rhenium gasket where the sample
was placed was about 100 µm. In the low-temperature
experiment, the gasket hole was filled with the sample
powder to about one-third to ensure that all powder
grains were surrounded by pressure liquid. To create
quasi-hydrostatic pressure, the working volume of the
cell was filled with PES-5 polyethylsilacsanic liquid. A
standard technique of the shift of ruby fluorescence was
used to measure the pressure value. For that, several
crumbled ruby crystals with dimensions of about 5 µm
were placed into the cell along with the sample. They
were placed at different distances from the center of the
working volume in order to evaluate the pressure gradi-
ent in the chamber. The accuracy in the pressure mea-
surements was about 3–4 GPa.

In the NFS experiments, the pressure value was var-
ied up to 65 GPa. The basal plane (111) of the 57FeBO3
single crystal was oriented perpendicular to the syn-
chrotron radiation beam, and the vector of polarization
of gamma rays was in the sample plane. At every pres-
sure value, the NFS spectra of the powdered sample
were measured in the temperature range from 3.5 to
300 K. The Mössbauer time spectra of resonance for-
ward scattering from 57Fe nuclei were measured with-
out an external magnetic field at the sample. The mea-
surements were made in the 16-branch regime.

3. RESULTS AND DISCUSSION

3.1. The Room-Temperature NFS Spectra 

Time spectra of the NFS from 57Fe nuclei in
57FeBO3 have been recorded at different pressures in
the temperature range 3.5–300 K. Figure 1 shows the
room-temperature spectra. The spectra represent the
intensity of scattered radiation depending on the time
following the SR impulse. The damped decay of a
nuclear excitation is modulated in time by quantum and
dynamic beats. The quantum beats appear due to split-
ting of nuclear levels by a hyperfine interaction as a
result of interference between scattered radiation com-
ponents of sublevels with different frequencies. The
period of quantum beats is inversely proportional to the
value of hyperfine splitting energy, and in our case, to
the magnetic field value at the iron nuclei. The dynamic
beats are due to multiple processes of scattering in a
“thick” sample (see details in [9]).

At pressures below 46 GPa, the main feature of the
spectra is the evident quantum beats (Fig. 1). Because
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
we used a thin sample, the dynamic beats are not
present in the spectra. The NFS spectra were measured
with different mutual orientations of the polarization
vector of the SR beam and the crystal magnetization.
The period of beats is about 8 ns in the case of random
orientation of the (111) crystal plane with respect to the
direction of the SR-beam polarization and about 15 ns
when the crystal is rotated in the basal plane by 90° rel-
ative to the first (“random”) orientation. The beats with
a 15-ns period are 100% modulated, which means that
the intensity of scattering in the beats' minimum tends
to zero. This indicates that, at all pressures in the range
0 < P < 46 GPa, the orientation of magnetic fields at the
nuclei of iron ions remains in the basal (111) plane of
the crystal normal to the radiation beam. At pressures of
P > 46 GPa, the quantum beats disappear abruptly,
showing a drop to zero of the hyperfine magnetic field
at 57Fe nuclei.

At ambient pressure, our NFS spectrum is similar to
that obtained by Mitsui et al. [10] in iron borate. Some
distinctions are due to a different thickness of the sam-
ples and the absence of an external magnetic field in our
measurements.

At P < 44 GPa (in the low-pressure (LP) phase of
FeBO3), the spectra were processed by the MOTIF pro-
gram developed by Shvyd’ko [11]. A large number of
quantum beats in each spectrum (more than 15) pro-

0

FeBO3, T = 294 K

Time, ns

P =
46.5

43.7

36.4

30.9

14.6

10.3

8.1

5.5

0 GPa

40 80 120 160

Fig. 1. Room-temperature NFS spectra of the 57FeBO3 sin-
gle crystal at different pressures. Symbols, experimental
points; lines, the result of fitting to the MOTIF model.
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vides high accuracy in determination of the hyperfine
magnetic field Hhf at iron nuclei (with an error in the
range 0.1 T). The Hhf values measured at the “random”
orientation of the single crystal and after its 90° rotation
are the same.

3.2. Magnetic Collapse 

The pressure dependences of the hyperfine magnetic
field Hhf at the iron nuclei are shown in Fig. 2 for differ-
ent temperatures. At room temperature, the field Hhf

increases nonlinearly from 34.1 T to its maximum
value of 48.1 T as the pressure rises in the range 0 < P <
44 GPa. At P = 46–47 GPa, the field Hhf drastically falls
down to zero, indicating a magnetic-to-nonmagnetic
phase transition (magnetic collapse), obviously of the
first-order type. At the transition, the parameter of the
quadrupole interaction, which is near zero at P <
44 GPa, increases significantly up to 2.1 mm/s.

From the Mössbauer absorption spectra of 57FeBO3,
we have found that the isomer shift IS and quadrupole
splitting QS of the spectra drastically change at the crit-
ical pressure Pc along with the disappearance of the
magnetic field Hhf(see details in [12]). At P < 46 GPa in
the low-pressure (LP) phase, the parameters Hhf , IS,
and QS are typical of the high-spin (S = 5/2) state of
Fe3+ ions. At P > 48 GPa in the high-pressure (HP)

600

0

HFe, kOe

Pressure, GPa

500

400

300

200

100

0

10 20 30 40 50 60

3.5 K

FeBO3

190 K

294 K

Empirical model
NFS at 294 K
Mössbauer at 294 K
NFS at 3.5 K
NFS at 190 K

Fig. 2. Pressure dependences of the hyperfine magnetic
field Hhf at 57Fe nuclei in FeBO3 at different temperatures.
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phase of FeBO3, the IS and QS values become typical
of the low-spin state of the Fe3+ ions (S = 1/2). No indi-
cation of the appearance of Fe2+ ions was found in the
Mössbauer absorption spectra [12]. Thus, the origin of
the magnetic collapse at P = Pc is the high-spin (HS) to
low-spin (LS) transition of Fe3+ ions. A similar conclu-
sion was obtained theoretically in the multielectron
model [13], where it was shown that an increase of the
crystal field with pressure results in the high-spin–low-
spin crossover and an insulator–semiconductor tran-
sition.

The NFS spectra at temperatures 77 and 3.5 K are
shown in Fig. 3 for different pressures. At P > 48 GPa,
the effect of the disappearance of quantum beats is
clearly seen in the low-temperature spectra. This indi-
cates that the pressure-induced magnetic collapse is not
an effect of the temperature but is due to changes in the
electronic structure of iron ions. We also observed that,
after this transition, the light-green color of the 57FeBO3
crystal, typical of ambient pressure, disappeared and
the crystal became opaque, which suggests an abrupt
drop in the optical absorption gap. The drop of the opti-
cal absorption edge has been found recently in optical
spectra at pressures just near 46 GPa [7].

At P < 46 GPa, the quantum beats in the NFS spec-
tra of the powder sample cannot be fit perfectly to the
calculated curves (Fig. 3) as for the single-crystal sam-
ple (Fig. 1). This is because the MOTIF program is not
developed enough for powder samples when a distribu-
tion of magnetic moment and crystal field directions
occurs in powder particles. Nevertheless, the frequen-
cies of beats and, hence, the values of the hyperfine
magnetic field Hhf at iron nuclei can be obtained with a
rather high accuracy (with an error in the range of 0.4 T,
which is within the limit of a symbol size in Fig. 2).

The pressure dependences of the field Hhf at low
temperatures are shown in Fig. 2. Contrary to the room-
temperature behavior, the field Hhf at T = 3.5 K in the
LP phase is almost constant at a saturation value of
about 55.5 T. In fact, the value of Hhf even decreases
slightly as the pressure increases. This effect can be
easily explained by an increase of the covalence contri-
bution to Hhf due to decreasing interionic Fe–O dis-
tances. It was found that the critical pressure value Pc at
which the magnetic transition occurs varies slightly
with temperature and Pc becomes somewhat larger at
helium temperature.

3.3. Pressure Dependence of the Neél Temperature
in the Low-Pressure Phase 

In the low-pressure phase of FeBO3, the room-tem-
perature NFS spectra show an increase of the field Hhf

as the pressure increases. The magnetic field increase is
naturally connected with an increase of the exchange
interaction, which, in turn, must correlate with the
increase in the Neél temperature TN. In general, the
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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Fig. 3. NFS spectra of the 57FeBO3 powder sample at different pressures: (a) T = 77 K, (b) T = 3.5 K. Symbols, experimental points;
lines, the result of fitting to the MOTIF model.
pressure dependence of Hhf at room temperature is
under the influence of two effects: the changes in TN

and a possible change of the saturation value of Hhf at
0 K [Hhf(0)]. The NFS spectra in the LP phase indicate
that, at 3.5 K, the Hhf(0) value only slightly depends on
pressure. Then, starting with the room-temperature
Hhf = f(P) dependence and using the ambient-pressure
Hhf = F(T) dependence (which has been studied in
detail by Eibschuts and Lines [6]), we can calculate the
dependence of TN on pressure. For that, we used an
extrapolation procedure first suggested in [14, 15] and
successfully applied to many experimental results.

We take Hhf(P, T) as the empirical function

(1)

The parameters α and β can be found from the fit of (1)
to the experimental dependence Hhf(T) at ambient pres-
sure. Using the Hhf(T) values for FeBO3 in [6], we
found α = –0.371 and β = 0.4308. Then, we assume that
α and β are independent of the pressure and take the
experimental value Hhf(P, 0) = 55.5 T. For each experi-
mental value of pressure and the corresponding values

Hhf P T,( ) Hhf P 0,( )=

× α T
TN P( )
---------------– 

  1 T
TN P( )
---------------–

β
.exp
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of Hhf(P, T), Eq. (1) can be solved graphically for TN.
Figure 4 illustrates the calculation procedure, and the
obtained pressure dependence of TNis shown in Fig. 5.

600

0

HFe, kOe

T, K

500

400
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100

100 200 300 400 500 600

FeBO3

0 GPa[6]
NFS at 0 GPa
Fitting curve

Empirical model
NFS at 48.6 GPa

48.6 GPa

Fig. 4. Procedure for calculating the Neél temperature of
FeBO3 at different pressures by fitting the empirical func-
tion to the experimental temperature dependence of the
hyperfine magnetic field at 57Fe nuclei.
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In the pressure range 0 < P < 46 GPa, the depen-
dence TN(P) can be well fit to a linear function TN(P) =
TN(0) + P(dTN/dP), with the parameters TN(0) = 355.0 ±
1.5 K and dTN/dP = 5.14 ± 0.10 K/GPa. The arrow
value follows from the least-square fit. The maximum
value of TN, attained just before the magnetic collapse,
is about 595 K.

From the magnetization measurements of FeBO3 in
the range of 0–3 kbar, Wilson and Broersma [16] have
found that TN grows linearly with the slope dTN/dP =
5.3 K/GPa, which is close to our value. Massey et al.
[17] measured the shift of the two-magnon Raman fre-
quency Ω with the pressure increase in FeBO3 at 99 K.
In the range 0–13 GPa, the frequency shift can be
approximated by a linear law Ω(P) = Ω(0) + dΩ/dP,
where Ω(0) = 530 ± 20 cm–1 and dΩ/dP = 8.15 ±
0.7 cm–1/GPa.

It is interesting to compare the pressure behavior of
Ω and TN. We found that, below 13 GPa, the relative
slopes of Ω and TN are very close: [1/Ω(0)]dΩ/dP =
0.0148 GPa–1 and [1/TN(0)]dTN/dP = 0.0150 GPa–1.
This means that both these parameters are most proba-
bly proportional to the superexchange integral J. The
TN(P) data obtained from the magnetization and Raman
measurements are also shown in Fig. 5, and they are in
good agreement with our studies.

0

TN, K

Pressure, GPa

600

550

500

450

400

350

10 20 30 40 50

FeBO3

Extrapolation from NFS
Raman [17]
Magnetization [16]
Linear fit

Fig. 5. Pressure dependence of the Neél temperature of
FeBO3 from NFS, Raman scattering, and magnetization
experiments (symbols). The solid curve corresponds to the
pressure slope dTN/dP = 5.14 K/GPa.
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3.4. Magnetic Properties 
of the High-Pressure Phase 

After the magnetic transition, at pressures P > Pc ,
the low-spin state of Fe3+ (S = 1/2) is not diamagnetic,
and one can expect some kind of magnetic correlations
at low temperatures. For the HP phase of FeBO3, the
recent theoretical calculations of Parlinski [18] pre-
dicted a small magnetic moment at iron ions, which is
about four times lower than that in the LP phase.

Figure 6 shows our NFS spectra of the powder sam-
ple of 57FeBO3 taken at different temperatures with
fixed pressures in the HP state (at P > Pc). The spectra
in Fig. 6c above 50 K are typical of a pure quadrupole
interaction without any trace of magnetic modulations.
However, at low temperatures, an anomaly appears in
the spectra, which cannot be fit to the quadrupole inter-
action. We tried to fit the NFS spectra at T < 50 K with
different approximations and have found that the most
appropriate is the model of magnetic correlations of
Fe3+ ions with spin S = 1/2, and the magnetic state can
be represented as a nonhomogeneous magnetic order-
ing with a distribution of the Hhf field values.

The theoretical calculations in [18] predicted a
homogeneous antiferromagnetic ordering at low tem-
peratures for the low-spin HP phase of FeBO3. A non-
homogeneous magnetic state (the low-spin magnetic
ordering, LS-MO) found in our experiment may be
related to a powder state of the sample due to specific
magnetic properties of small particles of FeBO3 at high
pressures.

To find the precise temperature of the magnetic
ordering in the HP phase, the following procedure was
suggested. We fit all spectra in Fig. 6 to the model of
pure quadrupole interaction and plot the obtained qua-
drupole splitting parameter QS as a function of temper-
ature (see Fig. 7). In the pure paramagnetic state, at T >
50 K, the QS value is constant. When magnetic correla-
tion appears, the “QS value” found this way starts to
increase (Fig. 7), showing a deviation from the model.
The point of deviation of QS from the constant value is
then taken as the magnetic ordering temperature Tm of
the low-spin HP phase.

3.5. Magnetic P–T Phase Diagram of FeBO3 

On the basis of all the data obtained, we can plot a
tentative magnetic P–T phase diagram (Fig. 8), which
shows various magnetic states of FeBO3 at different
pressures and temperatures. The almost vertical line at
P = Pc separates the left-hand HS insulating low-pres-
sure phase and the right-hand LS semiconducting high-
pressure phase. At P < 46 GPa, in the high-spin low-
pressure phase, the TN line separates the T < TN antifer-
romagnetic (AF) state and the T > TN paramagnetic
(PM) state. At P > 49 GPa, in the high-pressure phase,
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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Fig. 6. NFS spectra of a powder 57FeBO3 sample for different temperatures with the pressure values fixed at 48.6, 50.5, and 55 GPa.

In the HP phase at 55 GPa, the spectra at 3.5, 9.5, and 25 K were fitted to the model of nonhomogeneous magnetic ordering of Fe3+

ions with spin S = 1/2, and with a distribution of the Hhf field values.
the Tm line separates the T < Tm low-spin magnetically
ordered state and the T > Tm paramagnetic low-spin
state.

An important conclusion follows from the diagram:
one can expect two triple points with the coordinates
(P = 46 GPa, T = 600 K) and (P = 49 GPa, T = 50 K),
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where three phases coexist. At the first point, the high-
spin antiferromagnetic (HS-AF) and high-spin para-
magnetic (HS-PM) phases coexist with the low-spin
paramagnetic (LS-PM) phase. At the second point, the
low-spin magnetically-ordered (LS-MO) and low-spin
paramagnetic (LS-PM) phases coexist with the high-
spin antiferromagnetic (HS-AF) phase.
SICS      Vol. 100      No. 4      2005
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4. THEORETICAL APPROACH

Because the crystal is a semiconductor in the HP
phase of FeBO3, its magnetic properties can be
described in an approximation of the Heisenberg model
both below and above the critical pressure Pc  In the
mean-field approximation,

(2)

where z = 6 is the number of nearest-neighbors of Fe3+,

TN JzS S 1+( )/3,=

2.0

1.9
0

QS, mm/s

Temperature, K
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0
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T m

P, GPa
55

50
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2.3

50 100 150 200 250
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FeBO350.5 GPa

48.6 GPa

Fig. 7. Temperature dependences of the quadrupole split-
ting parameter at different pressures in the high-pressure
phase of FeBO3 from the fit of the NFS data to the pure qua-
drupole-interaction model. The point Tm of the deviation
from the straight line corresponds to the onset of magnetic
ordering of the low-spin HP phase.
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Fig. 8. Tentative magnetic P–T phase diagram of FeBO3.
LP-AF-I is the low-pressure antiferromagnetic insulating
phase, LP-PM-I is the low-pressure paramagnetic insulating
phase, HP-MO-SC is the high-pressure magnetically
ordered low-spin semiconducting phase, HP-PM-SC is the
high-pressure paramagnetic semiconducting phase. We note
the existence of two triple points where three different
phases coexist.

TN
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the spin S = 5/2 characterizes the LP phase, and S = 1/2
is the iron spin in the HP phase. The pressure-depen-
dent exchange integral is J = 2t2/Ueff , where t is the
parameter of the electron jump between nearest Fe3+

ions governing the half-width of the d-band, Wd = zt,
and Ueff = Ωc – Ωv is the effective Hubbard parameter
representing the gap between the upper Ωc (conductiv-
ity) and lower Ωv (valence) Hubbard bands. Here, the
upper Hubbard band is the extra electron band due to
d5  d6 excitations and the lower Hubbard band is the
electron removal band due to d5  d4 excitations [19].
In the LP phase, both t and Ueff parameters depend on
pressure as

(3)

where t0 = 0.076 eV and U0 = 4.2 eV are the ambient
pressure parameters [19]. The value of the pressure
derivative of the crystal field ∆, α∆ = d∆/dP =
0.018 eV/GPa, is found from the condition of crossover
of the high-spin 6A1 and low-spin 2T2 terms at P = Pc ,
and the αt = dt/dP = 0.00046 eV/GPa value is found
from the rise of TN from 350 up to 600 K in the LP
phase. These values of the derivatives ensure the
increase of TN in the LP phase and the collapse of the
Fe3+ magnetic moment at Pc .

We now consider the change in magnetic properties
of FeBO3 under transition into the HP phase. Near Pc ,
a structural transition occurs with a jump of unit-cell
parameters [20], and, therefore, a jump in the t and Ueff
values can be expected.

We use “+” to denote the values of parameters on the
right-hand side of Pc and “–” to denote those on the left-
hand side. Then,

(4)

Because the a- and c-unit-cell parameters decrease at
the transition [20], the δt and δU values must be posi-
tive. Assuming δt/t0 ! 1 and δU/U0 ! 1, we write the
exchange integral just after the transition as

(5)

where

t P( ) t0 α tP,+=

Ueff P( ) U0 α∆P,–=

tc
+( ) t0 α tPc δt,+ +=

Ueff
+( ) U0= α∆Pc– δU .–

Jc
+( ) J0 1

2α t

t0
--------

α∆

U0
------+ 

  Pc 2
δt
t0
----- δU

U0
-------+ + + ,=

J0

2t0
2

U0
-------.=
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The ratio of TN above and below the transition is then
given by

(6)

where

If the jumps in δt and δU are negligible and the change
in TN is only connected with the spin jump 5/2  1/2,
we can evaluate the magnetic ordering temperature of
the HP phase as

(7)

Taking δt and δU into account could only increase the

 value. Thus, (7) is an estimate from below, that is,

 ≥ 51 K. It turns out that the experimental value of

 evaluated in Section 3.4 is about 50 K. This sug-
gests that the δt and δU values are negligibly small.

In the HP phase, Ueff depends only on the electron
transfer and does not depend on the crystal field and
pressure [21], and therefore the pressure dependence of
TN is different from that in the LP phase,

(8)

The slope of TN(P) in the LP phase

(9)

is different from that in the HP phase

(10)

Thus, the slope ratio is 4/3.
Now, the question is: How far is expression (8) valid

as the pressure increases further, and what happens
above TN? In the HP phase at P > Pc and T > TN, the
FeBO3 crystal is a paramagnetic semiconductor with
iron ions Fe3+ in the low-spin state (S = 1/2). However,
with a further pressure increase, the semiconducting
gap decreases, and it tends to zero at P = PM , where PM

is the point of the transition into the metallic state. The
experimental value of PM evaluated from the thermoac-
tivation gap is approximately 210 GPa [7].

The same value of PM was found theoretically [21]
in extrapolating the level Ωc down to the crossing with
the top of the valence band εv . The corresponding dia-

TN
+( )

TN
–( )--------- J +( ) 1/2 3/2⋅ ⋅

J –( ) 5/2 7/2⋅ ⋅
----------------------------------

3
35
------ 1 2δt

t0
-------- δU

U0
-------+ + 

  ,= =

TN
–( ) 600 K.=

TN
+( ) 3TN

–( )/35 51 K.= =

TN
+( )

TN
+( )

TN
+( )

TN P( )/TN
+( ) 1 2α t P Pc–( )/t0.+=

dTN P( )/TN 0( )
dP

------------------------------------
2α t

t0
--------

α∆

U0
------+ 0.016  

1
GPa
----------= =

dTN P( )/TN
+( ) Pc( )

dP
-----------------------------------------

2α t

t0
-------- 0.012  

1
GPa
----------.= =                             
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gram of the electron structure below and above PM is
shown in Fig. 9. Here, the Ωc level is related to the tran-
sitions [Fe(3+)(d5), S = 1/2]  [Fe(2+)(d6), S = 0], and
it is smeared into a narrow band due to electron hopping
(Fig. 9a). The spin–polaron effect in the antiferromag-
netic phase gives rise to a sharp suppression of the
d-band width [22].

Above PM , there are two types of carriers: oxygen
holes at the top of the valence band and heavy electrons
at the bottom of the d-band. The iron ion is in an inter-
mediate valence state as a mixture of the p
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Kondo effect, when carriers screen the iron spin.
Because spins are located regularly, the system can be
attributed to a Kondo lattice. At higher temperatures,
one can expect a nonmagnetic Kondo metal state; at
low temperatures, a competition between antiferromag-
netism and superconductivity induced by spin fluctua-
tions can be dominant [23, 24]. The corresponding
phase diagram is shown in Fig. 10. Only the magnetic
and electron properties of FeBO3 are shown in the dia-
gram, and the structural transitions are not discussed
here. We note that, from the standpoint of modern ter-
minology, the PM point in the diagram of Fig. 10 is a
typical quantum critical point.

5. CONCLUSIONS

Both experimentally and theoretically, we have
shown that the magnetic collapse in FeBO3 at high
pressure does not transform the material into a nonmag-
netic state with the disappearance of magnetic proper-
ties. At the transition, the low-pressure phase with a
strong magnetic interaction transforms into the high-
pressure phase with a weak magnetic interaction, and
this transformation is accompanied by an insulator–
semiconductor transition. The forthcoming metalliza-
tion and unusual properties of the Kondo lattice metal
state are subjects for future experimental study.
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Abstract—We demonstrate the existence of a simple physical picture of superconductivity for extremely over-
doped CuO2 planes. It has all the characteristic features of HTS, such as a high superconducting transition tem-
perature, the  symmetry of the order parameter, and the coexistence of a single-electron Fermi surface

and a pseudogap in the normal state. The values of the pseudogap are calculated for different doping levels.
Orbital paramagnetism of preformed pairs is predicted. © 2005 Pleiades Publishing, Inc. 
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1. INTRODUCTION

In this work (also see earlier Letter [1]), we demon-
strate that in the phase diagram of cuprate high-temper-
ature superconductors (HTS), a small region exists
where the characteristic features of HTS can be easily
understood on the base of a simple theory. These char-
acteristic features include a high superconducting tran-
sition temperature, the  symmetry of the order

parameter (see [2]), and the coexistence of a single-
electron Fermi surface and a pseudogap in the normal
state [3]. The last phenomenon is usually attributed to
the presence of preformed (i.e., normal-state) electron
pairs (in particular, bipolarons [4–8]).

The aforementioned small region in the phase dia-
gram is situated in the vicinity of the maximal hole-
doping level x = xc compatible with superconductivity.
The superconducting transition temperature Tc is zero
for x ≥ xc , and hence it is low in our region near x = xc .
However, Tc increases with decreasing x for x < xc such
that it is quite high at the boundary of the region (i.e.,
for xc – x ~ 1).

Two features of our small region are important to
make a simple physical picture possible. These are rel-
atively low Tc and the clear nature of the normal state as
a mostly conventional Fermi liquid.

We calculate the pseudogap. With increasing x, the
pseudogap decreases for x < xc . As well as Tc , the
pseudogap disappears at x = xc . However, it reappears
for larger doping levels x > xc .

As a new prediction, we show the existence of an
unusual orbital paramagnetism of the preformed (sin-
glet) pairs, which can probably be experimentally sep-
arated from the Pauli spin paramagnetism of single

d
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y
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electrons and the Landau diamagnetism of single elec-
trons and pairs.

2. PAIR QUASIPARTICLES

The key point is the existence of very mobile pair
quasiparticles in crystals under the tight-binding condi-
tions, i.e., if the energy of the electron–electron interac-
tion at a distance on the order of the atomic spacing
considerably exceeds the electron tunneling amplitude
to neighboring lattice cites. Quasiparticles of this type
were studied earlier [9] in helium quantum crystals and
more recently by Alexandrov and Kornilovitch [7] as a
model of bipolarons in HTS (also see [10]).

We consider two electrons localized at neighboring
(1 and 2 in the figure) copper atoms (to be more precise,
in unit cells containing these atoms) forming a square
lattice in the CuO2 plane. The electron tunneling from
2 to 4 or 6 does not change the energy of the system in
view of the crystal lattice symmetry. The same is true
for the electron tunneling from 1 to 3 or 5. Owing to this
type of transitions, an electron pair can move as a whole
over the entire plane, because the 2  4 transition can
be followed by the transition 1  7 or 1  3, and
so on. Because the transitions do not change the energy
of the system, the motion is fully coherent. An electron
pair behaves as a delocalized Bose quasiparticle.

CuO2 plane: d, Cu atoms and ×, O atoms.

1 2

34

56

7
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To calculate the quasiparticle spectrum, we consider
the localized states of a pair,

(1)

where  are the electron creation operators with a
spin projection α = ↑ , ↓ at a point r and |0〉  is the elec-
tron vacuum.

The effective tunneling Hamiltonian Heff is defined
by the matrix elements of the operator

(2)

which correspond to the transitions of one of the elec-
trons to copper atoms that are next-to-nearest neighbors
of the initial atom, such that the energy of the system of
two electrons remains unchanged. Here, t is the tunnel-
ing amplitude, which is known to be positive (see [2,
p. 1004]).

Let an (n = x, y) be the square-lattice periods directed
from point 1 to point 2 and from point 1 to point 4,
respectively. We have

(3)

where we used the antisymmetry of quantities (1) with
respect to the arguments (r, α) and (r', β). Analogously,

(4)

The complete set of localized states of an electron
pair is determined by the state vectors

(5)

where r labels unit cells of the square lattice.
The problem obviously splits into two independent

problems for singlet and triplet pairs that are character-
ized by quantities (5), which are respectively antisym-
metric and symmetric in the spin indices α, β. Assum-

r r' αβ, ,| 〉 crα
+ cr'β

+ 0| 〉 ,=

crα
+

H t cr'α
+ crα ,

rr'α
∑=

Heff r r ax+ αβ, ,| 〉 t r ax ay r ax αβ,+,+ +| 〉(=

+ r ax ay r ax αβ,+,–+| 〉 r r ay αβ,+,| 〉+

+ r r ay αβ,–,| 〉 ) t r ax r ax ay βα,+ +,+| 〉–(=

+ r ax ay r ax αβ,+,–+| 〉

+ r r ay αβ,+,| 〉 r ay r βα, ,–| 〉– ),

Heff r r ay αβ,+,| 〉 t r ay r ax ay βα,+ +,+| 〉–(=

+ r ax ay+ r ay+ αβ, ,–| 〉

+ r r ax αβ,+,| 〉 r ax r βα, ,–| 〉– ).

r n αβ, ,| 〉 r r an αβ,+,| 〉 ,≡
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ing that the required stationary states of a pair are
superpositions of localized states,

(6)

with coefficients  independent of r (this corre-
sponds to a definite quasimomentum k), we obtain

(7)

where the upper or lower sign corresponds to a singlet
or triplet state, respectively. The conditions for the
existence of a nontrivial solution ψ(x), ψ(y) of system (7)
determine the energy E(k) of a pair quasiparticle. Here,
e0 is the energy of the initial localized state; κx = k · ax

and κy = k · ay . Everywhere in formulas (7), we omit
identical spin indices αβ.

The minimal energy em = minE(k) = e0 – 4t of a sin-
glet pair is attained at κx = κy = 0. The same minimal
energy of a triplet pair is attained at the nonzero quasi-
momentum κx = κy = π. This degeneracy is removed by
taking the electron exchange in the initial localized pair
into account. It is well known that this exchange is of
an antiferromagnetic nature, and hence singlet pairs
have the minimal energy.

Thus, solitary Bose quasiparticles can exist in the
CuO2 plane; these particles are characterized by a dou-
bled electric charge and by zero momentum and spin in
the ground state. It readily can be seen from Eqs. (7)
that the effective mass of quasiparticles is m = "2/ta2,
where a = |ax| = |ay|. In addition, quasiparticles have a
specific quantum number n = x, y, which determines the
orientation of a two-electron “dumb-bell.” Substituting
E(k) = em and k = 0 in Eqs. (7), we obtain ψ(x) = –ψ(y) in
the ground state. Because the orientations n = x and n =
y are transformed into each other under lattice rotation
through the angle π/2 and under reflection in the diago-
nal plane passing through points 1 and 3 in the figure,
the ground-state wavefunction ψ ≡ ψ(x) = –ψ(y) of qua-
siparticles transforms in accordance with the nontrivial
1D representation (usually denoted by ) of the

symmetry group of the CuO2 plane (see [2]).

3. SUPERCONDUCTIVITY
We further assume that all other two-electron, three-

electron, etc., configurations localized at distances on
the order of the atomic spacing are energetically disad-
vantageous compared to the pair configuration consid-
ered above. In addition, we assume that electrons are
repulsed at large distances such that the electron–elec-
tron interaction energy is on the order of the one-elec-
tron tunneling amplitude. Under these conditions, only

ψαβ
n( )eikr r n αβ, ,| 〉

r n,
∑

ψαβ
n( )

E k( ) e0–( )ψ x( ) tψ y( ) 1 e
ikx–

±( ) 1 e
iκ y±( ),=

E k( ) e0–( )ψ y( ) tψ x( ) 1 e
ikx±( ) 1 e

i– κ y±( ),=
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single-electron Fermi particles and the pair Bose parti-
cles considered above play a significant role.

Finally, we assume that the minimal energy em of
pair quasiparticles is such that em/2 is within the single-
electron energy band. We note the following. Under
tight-binding conditions, there are two different situa-
tions in which em/2 can be within the single-electron
energy band. First, if single electrons and electrons in
pairs correspond to the same energy band, the single-
electron tunneling amplitude must be on the order of
the electron–electron interaction energy in the pairs,
while the one-electron tunneling amplitude t in pairs
introduced in Section 2 must be much smaller than the
interaction. The latter condition, which is the condition
of the applicability of the procedure used in Section 2,
can be a result of the large polaron effect in pairs. Sec-
ond, if single electrons and electrons in pairs corre-
spond to different bands, both one-electron amplitudes
can be of the same order. The analysis carried out by
Alexandrov and Kornilovitch in [7] shows that the con-
ditions formulated above are likely to be realistic.

We now trace the change of the state of the system
at T = 0 as the number of electrons increases (the hole-
doping level decreases). Until em/2 > eF , only single-
electron quasiparticles are present and the system
behaves as an ordinary Fermi liquid. The condition
em/2 = eF determines the minimal hole-doping level
compatible with the state of a normal Fermi liquid. Let
nc denote the corresponding electron density n. Upon a
further decrease in the hole-doping level, all additional
n – nc electrons pass into a Bose–Einstein (BE) conden-
sate of pair quasiparticles (we everywhere consider the
case of small n – nc values, for which the concentration
of pairs is low and their interaction can be disregarded).
The system becomes a superconductor. The supercon-
ducting order parameter is given by the boson ground
state wavefunction ψ ≡ ψ(x) normalized by the condition
|ψ|2 = (n – nc)/2; the wavefunction transforms in accor-
dance with the  representation of the symmetry

group of the CuO2 plane.

It is important to note the following. In the system
ground state (i.e., for complete filling of all fermion
states with energies smaller than eF), the uncertainty in
the energy of a boson quasiparticle with a low excita-
tion energy e = k2/2m arising due to its collisions with
single-electron Landau quasiparticles is proportional
to e2. As in the conventional theory of a Fermi liquid,
this is, first, because of a low density of fermions in an
order-e neighborhood of eF , with which the given
boson can collide due to energy conservation. Second,
the statistical weight of the final states to which fermi-
onic transitions are possible is small. The probability of
boson decay into two fermions per unit of time is also
small: as suggested at the beginning of this section, the
boson must overcome a significant energy barrier.
Thus, the proposed picture of superconductivity in the

d
x

2
y

2–
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vicinity of the maximal doping level remains valid even
in the region of appreciable densities of fermions,
where the interaction between bosons and fermions is
significant. The critical electron density nc is deter-
mined from the condition that the electron chemical
potential is equal to half the minimal boson energy. In
the general case, this energy is a functional of the dis-
tribution function for single-electron Landau quasipar-
ticles.

In calculating the superconducting transition tem-
perature, the fermion distribution function may be con-
sidered as corresponding to T = 0, because the temper-
ature corrections (proportional to T2) to the thermody-
namic functions of the Fermi liquid are considerably
smaller than the corrections included below.

The density of uncondensed bosons at a finite tem-
perature T < Tc is

(8)

The integral in Eq. (8) diverges at small e and is there-
fore cut off at e ~ τ, where τ is a small tunneling ampli-
tude of electrons in the direction perpendicular to the
CuO2 plane.

The excess number n – nc of electrons in the system
is equal to the doubled sum of N' and the number N0 of
bosons in the condensate. This leads to the dependence
of the superconducting transition temperature on the
doping level for small values of n – nc:

(9)

The number of pairs in the condensate,

(10)

determines the modulus of the order parameter |ψ|2 = N0
at finite temperatures. The superconducting transition
temperature defined by Eq. (9) is quite high. To within
the logarithmic term, this temperature is on the order of
the one-electron tunneling amplitude t at the boundary
of the applicability region (i.e., for n – nc ~ a–2). The
possibility that the superconducting transition tempera-
ture may have such an order of magnitude was pointed
out in the aforementioned paper by Alexandrov and
Kornilovitch [7].

The interaction of fermions with the BE condensate
(effective electron–electron interaction), which is
described by the order parameter ψ, creates an effective
potential ∆k acting on fermions as in conventional
superconductors:

(11)

N'
2πk kd

2π"( )2
----------------- 1

ee/T 1–
-----------------∫ mT

2π"
2

------------ T
τ
---.log= =

n nc–
mTc

π"
2

----------
Tc

τ
-----.log=

N0

n nc–
2

------------- 1
T
Tc

----- T /τlog
Tc/τlog

-------------------– 
 =

H int ∆kck↑
+ c–k↓

+ H.c.+( )
k

∑=
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In view of the symmetry of ψ, we have

(12)

where  = k/|k| and V is invariant under the symmetry
group.

Owing to this interaction, fermions in the supercon-
ducting state considered acquire features typical of an
ordinary superconductor with the  symmetry.

4. NORMAL STATE THERMODYNAMICS.
THE PSEUDOGAP

The total number of pairs for T < Tc is independent
of the temperature and is equal to (n – nc)/2. The elec-
tron chemical potential for T < Tc is also temperature-
independent and equal to µ = µ(nc) = em(nc)/2, where
em = em(n) is the pair minimal energy, which depends on
the fermion density, as shown above.

For T > Tc , the fermion distribution function, as
above, corresponds to T = 0, but with the temperature-
dependent chemical potential. The pair energy spec-
trum is E = em(µ) + e, where e = k2/2m. The pair density
above Tc is given by

(13)

The parameter ζ (ζ @ τ) is defined by

(14)

where δµ = µ – µ(nc). With changing temperature, the
total electron number conservation gives

(15)

From the last equation, we find ζ = ζ(T) and then all the
other quantities.

For n > nc and not too high temperature T !

Tc , the pair density is determined by

(16)

where N(Tc) = (n – nc)/2 and

(17)

∆k V k̂x
2

k̂y
2

–( )ψ,=

k̂

d
x

2
y

2–

N
2πk kd

2π"( )2
----------------- 1

e e ζ+( )/T 1–
--------------------------

0

∞

∫ mT

2π"
2

------------ 1

1 e ζ /T––
-------------------.log= =

ζ
∂em

∂µ
--------δµ 2δµ,–=

n nc– 2N
∂n
∂µ
------δµ.+=

Tc/τ( )log

N T( ) N Tc( )–
N Tc( )

----------------------------------
∂n/∂µ

2 2 ∂em/∂µ–( )
-----------------------------------Te

∆p/T–
,=

∆p Tc

Tc

τ
-----log

π"
2

m
--------- n nc–( )= =
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is the pseudogap for n > nc . As well as Tc , it is zero at
the critical value of the doping level n = nc . For a higher
doping level n < nc  (Tc = 0), we have

(18)

where

(19)

is the pseudogap for n < nc . Equation (18) holds in the
low-temperature region T ! . For n < nc , the

pseudogap  is the gap in the energy spectrum of the

pair quasiparticles. For high temperatures T @ ∆p, 
(but T ! t), the pair density is a linear function of tem-
perature,

(20)

where z is the solution of the equation λz = e–z with

(21)

The entropy of pairs is determined by the equation

(22)

where f = {e(e + ζ)/T – 1)}–1. For n > nc in the low-temper-
ature region T ! ∆p , we have

(23)

where

(24)

The function S(T) is almost linear in T, with exponen-
tially small deviations. For n < nc , the pair entropy is
exponentially small at low temperatures T ! :

(25)

At high temperatures T @ ∆p, , the entropy is

(26)
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The temperature-independent factor σ is determined by

(27)

The entropy is again a linear function of temperature.

5. ORBITAL PARAMAGNETISM OF PAIRS

In this section, we show that the orbital motion of
electrons inside the pairs cause a peculiar paramagnet-
ism. Let a pair be at rest as a, whole. For singlet pairs at
k = 0, the Hamiltonian in Eqs. (3) and (4) can be written
as the 2 × 2 matrix

(28)

acting on a state vector

(29)

where ψ(n), n = x, y are quantum amplitudes of two ori-
entations of the two-electron dumb-bell and σ1 is a
Pauli matrix.

In the x state, coordinates of two electrons (with
respect to the center of gravity of the pair) are x1 = –a/2,
y1 = 0 and x2 = a/2, y2 = 0, respectively. In the y state,
we have x1 = 0, y1 = –a/2 and x2 = 0, y2 = a/2. From this,
we find the coordinate operators for both electrons:

(30)

The velocity operators are determined by the commuta-
tors

(31)

Simple calculation gives

(32)

The operator of the pair magnetic moment, which is
directed along the z axis, is

(33)

where e is the electron charge and c is the velocity of

σ x xd
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∞
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In the presence of an external magnetic field B ≡ Bz ,
the Hamiltonian of the pair is

(34)

The energy eigenvalues are

(35)

In weak fields, the minimal energy is

(36)

The average magnetic moment of the pair is

(37)

where

(38)

is the pair paramagnetic polarizability.
We note that pairs with k = 0 in the upper energy

band (the lower sign in (35)) are diamagnetic.
The pair contribution to the paramagnetic suscepti-

bility of a 3D sample is

(39)

where N(3) = N(T)/L is the 3D density of pairs and N(T)
is the 2D density determined by formulas (16), (18),
and (20). Here, L is the distance between neighboring
CuO2 planes.

Generally, we have three competing contributions to
the magnetic susceptibility: the orbital paramagnetism
of pairs considered above, the Pauli spin susceptibility
of single electrons (pairs are singlet), and the Landau
diamagnetism of single electrons and pairs. Spin sus-
ceptibility is isotropic. Orbital paramagnetism and Lan-
dau diamagnetism are both strongly anisotropic (the
magnetic moment is directed along the z axis indepen-
dently of the direction of the magnetic field) because of
a 2D character of single electrons and pairs. However,
Landau diamagnetism, especially in the 2D case, is
very sensitive to inhomogeneities. For example, it is
easily suppressed by localization of charge carriers.
Orbital paramagnetism is finite at zero velocity of a pair
as a whole. Therefore, it has to be much more stable
against inhomogeneities. We hope that orbital para-
magnetism can be experimentally separated from the
other two contributions to susceptibility.
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Abstract—The electronic structure of compounds is studied taking into account the Hubbard energy as the
largest energy parameter. The conditions for the emergence of Cooper instability are obtained. The phase dia-
gram for the superconducting state is calculated for various degrees of filling of the d and p shells of transition
and nontransition elements. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The classical Hubbard model, in which direct hop-
ping between the nearest cations of the t- and e-shells
of a transient element is taken into account, makes it
possible to correctly describe the electron properties of

superconductors of the  type [1, 2].
With increasing concentration x of the tetravalent cat-
ion M4+, the upper half of the Hubbard subband, which
corresponds to collectivization of the (x2 – y2) states of
copper, is populated. In this case, the 2p6 shell of oxy-
gen remains completely filled, which corresponds to
the assumption on the high energy of hole p excitations
as compared to the energy of the hole states in the 3d10

shell of Cu+.

For other compounds such as ,
YB2Cu3O7 – δ, and Sr2RuO4, the assumption concern-
ing complete filling of the p shell of O2– anions should
be rejected, and hopping between the oxygen anions
and copper cations should be taken into account explic-
itly [3, 4]. The energy shift of the hole states of oxygen
with energy ep relative to cation states with energy ed is
assumed to be preset (r = ep – ed) so that r @ U corre-
sponds to the classical Hubbard model. The real situa-
tion corresponds to the opposite limit, when Hubbard
energy U is larger than or on the order of the energy
shift r. In this study, the X operator method is used in the
so-called p–d model. The main assumption made in
choosing the Hamiltonian is that the Hubbard energy as
a function of the principal quantum number n can be
estimated by the formula U(n) ≈ U(1)/n, where U(1) is
the Hubbard energy of s electrons, which is equal to
17 eV. Consequently, the corresponding values for the
2p electrons of oxygen and for 3d electrons of copper
are 8.5 and 5.67 eV, respectively.

In accordance with these estimates, we can assume
that the Hubbard energy for the d as well as p electrons
is higher than the hopping energy tpd . For this reason, a
correct choice of the zeroth approximation and a transi-

Ln2 x–
3+ Mx

4+CuO4

Ln2 x–
3+ Mx

2+CuO4
1063-7761/05/10004- $26.000703
tion to the X operators make it possible to obtain the
scattering amplitude on the order of tpd(p) both in the
case of (d–d) and (p–p) scattering. The same method
allows us to write the equation of state, i.e., to establish
the relation between the chemical potential, parameter
∆ = ep – ed , and the number of holes in the 2p6 and 3d10

shells of oxygen and copper.

As regards the value of Upd (i.e., the Coulomb
energy of the interaction between electrons belonging
to neighboring copper cations and oxygen anions), all
these matrix electrons are assumed to be small and will
not be considered here together with the energy of
interactions between electrons (Vdd and Vpp) belonging
to adjacent atoms.

Here, the Emery parameter r = ep – ed is arbitrary. As
a matter of fact, it contains the contribution to the crys-
tal field due to the difference in the potentials at the
sites occupied by copper cations and oxygen anions;
this contribution has not been reasonably estimated so
far due to screening effects.

In such a formulation, our task is to construct the
phase diagram depending on two parameters, viz., r =
ep – ed and chemical potential µ = –(ep – ed)/2. The
equations of state make it possible to transform the
resultant phase diagram to variables hp and hd .

Experiments on studying the resistance in com-

pounds Sr2RuO4 and  reveal a
quadratic temperature dependence [5], indicating the
weakness of the electron–phonon interaction. The char-
acteristic value of energy, which determines the super-
conducting transition temperature by the BCS formula
for the Nd2 – xCexCuO4 compound, has the same order
of magnitude as the well-known compound

 doped with bivalent Ba, Sr, or Hg
cations. These facts indicate that the key role is played
by the electron–electron interaction, whose intensity
considerably exceeds the width of the eg shell being
populated.

Nd2 x–
3+ Cex

4+CuO2O2
2–

La2 x–
3+ Mex

2+CuO4
 © 2005 Pleiades Publishing, Inc.
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In the SrRuO4 compound, the Hubbard energy of 4d
electrons of ruthenium is found to be lower than the
Hubbard energy of 3d electrons of copper; however, it
is higher, as before, than the width of underpopulated txy

shell.
The number of holes (hp) in the 2p6 shell of oxygen

in the plane of the CuO2 layer is connected with the
number of holes in the 3d10 shell of Cu cations via the
electroneutrality condition

(1a)

(1b)

The energy of the 4s states is higher than the energy of
the 3d states. Accordingly, 0 < hd < 2, and we must trace
the extent of underpopulation of the px, y shells of oxy-
gen in the CuO2 plane, taking into account their twofold
degeneracy and noting that the Hubbard energy is sub-
stantially higher than the Fermi energy.

An analogous situation takes place in the 
compound, in which the degenerate 4tzx and 4tyz shells
are filled, while the population of the 4txy shell depends
on the number of holes in the 2p6 shells of oxygen
anions lying in the RuO2 plane. Taking into account the
electroneutrality condition, we can write the relation
between the number of holes ht in the txy shell of ruthe-
nium cations and the number of holes hp in oxygen
anions:

(1c)

The crystal structure of  is the same as the

structure of ; consequently, the phase dia-
grams of these compounds are identical. The main dif-
ference is determined by different arrangements of
electroneutrality lines (1b) and (1c).

2. HAMILTONIAN AND FORMULATION 
OF THE PROBLEM

For simplicity, we assume that this energy is infi-
nitely large as compared to hopping integrals tik(r), ti(r),
and τ(r) appearing in the definition of the Hamiltonian:

(2)

2hp hd+ 1 x for Nd2 x– CexCuO4,–=

2hp hd+ 1 x for La2 x– Mex
2+CuO4.+=

Sr2
2+RuO4

2hp ht+ 2 for Sr2RuO4.=

Sr2
2+RuO4

La2
3+CuO4

Ĥ p̂ir σ
+ p̂ jr'σt ij( ) r r'–( )

i j r r' σ; r r'≠, , , ,
∑=

+ ârσ
+ p̂ir'σt i( ) r r'–( ) h.c.+[ ]

i r r' σ, , ,
∑

+ ârσ
+ âr'στ r r'–( )

r r' σ; r r'≠, ,
∑

+ ep p̂irσ
+ p̂irσ ed ârσ

+ ârσ.
i r σ, ,
∑+

i r σ, ,
∑
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Here, i, j are the vector indices corresponding to the t1u
states and ep and ed are the energies of one-hole p and d
states.

If the mean occupation numbers hp and hd are
smaller than unity, it is sufficient to consider transitions
between completely filled and four possible one-hole
states. Accordingly, we express the creation and annihi-
lation operators in terms of the X operators correspond-
ing to transitions between the completely filled and
one-hole states:

(3)

Here, k = x, y and indices (kσ, 0) and (0, kσ) denote
transitions between the completely filled 2p6 shell and
one-hole |px, y; σ〉  states (and back).

For region 1 < hd < 2, we must consider transitions
between two one-hole (x2 – y2) states and a two-hole
state with zero total spin.

Emery [3] was the first to note that the matrix ele-
ments w of hopping between oxygen and copper play
the main role in the formation of the elementary excita-
tion spectrum of the CuO2 complex. The matrix ele-
ments proportional to wp and wd are smaller and have a
complex angular dependence on quasi-momentum. For
the latter reason, to simplify our analysis, we will
assume that the diagonal matrix elements p–p and p–d
are proportional to the same dimensionless function tp .

On account of these simplifications, we can write
the reciprocal one-particle Green function, which has
the following form in the zero-loop approximation of
the self-consistent field (Hubbard I) for Up , Ud = +∞:

(4)

Here, the following convenient notation has been

ârσ
+ X̂

σ 0,
, ârσ X̂

0 σ,
,= =

p̂krσ
+ X̂r

kσ 0,
, p̂krσ X̂r

0 kσ,
.= =

Gω
1– p( )

0 σ,( )
ax( )
by( )
ay( )
bx( )

=

×

Ωd p( ) f dwτ x p( )– f dwτ y p( )– 0 0

f pwτ x* p( )– Ωp p( ) 0 0 0

f pwτ y* p( )– 0 Ωp p( ) 0 0

0 0 0 Ωp 0

0 0 0 0 Ωp 
 
 
 
 
 
 
 
 

.
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introduced: 
ωn = (2n + 1)πT,

(5)

The sum ep + τpfptp consists of two anisotropic branches
px, y of degenerate states. The other two branches are not
collectivized and have energy ep .

For an infinitely large Hubbard energy, the end fac-
tors fp and fd are linear functions of hp, d [6]. At the ends

of the integral interval k <  < k + 1, these factors are
equal to the reciprocal degeneracy of the lower k-hole
state or the (k + 1) hole state: 

(6)

In the subsequent analysis, we will confine ourselves to
the region 0 < hd < 2, 0 < hp < 1.

3. EQUATIONS OF STATE
Apart from two noncollectivized px, y branches,

which have the same energy E(1, 2) = ep , the poles of
one-particle Green function (4) define three more
branches:

(7)

where

Using the one-loop approximation, we can find the
relation between the chemical potential µ = –(ed + ep)/2,
the temperature, and the mean numbers of particles per
unit cell. Taking into account the degeneracy in spin
and crystallographic indices, we obtain the following
expression for the sums of the diagonal matrix elements
of the one-particle Green function:

(8)
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-----------------+ +
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The reason for the disappearance of factor 2 in front of
the sum over p electronic states of the diatomic CuO2
molecule is that hp is the mean number of p electrons
corresponding to an oxygen anion and not to the entire
unit cell.

Using the explicit expression for reciprocal Green
function (4), we obtain

(9)

As a result of substitution and summation over iωn , we
obtain the equations of state expressed in terms of sums
of the Fermi function nF(e).

For the d-hole states, it is necessary to consider the
following two regions:

(10a)

For the p-hole states, it is sufficient to consider the
region 0 < hp < 1, for which we have fp = 1 – 3hp/4,

(10b)

On account of the square symmetry, we can express the
hopping integrals in terms of the single function e(p) of
quasi-momenta:

For this function, we can define the initial functions of
the density of states,
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after which the equations of state can be represented in
the form of single integrals.

The classical Emery model corresponds to the
approximation w @ wp ~ wd; however, a more realistic
situation corresponds to the inequalities w ~ wp @ wd .

4. SUPERCONDUCTIVITY CRITERION

For an infinitely large Hubbard energy, the interac-
tion between the s and t excitations is manifested in
scattering and a strong dependence of the scattering
amplitude on the position of the Fermi level. We can
find the Cooper instability from the condition for the
emergence of singularity in the two-particle Green
function [7]. In the ladder approximation, the problem
is reduced to determining the conditions for nonvanish-
ing solutions in the corresponding homogeneous sys-
tem of equations. For zero values of the total momen-
tum, total projection of spin, and energy, this system in
our problem has the form

(11)

where

Indices α and  correspond to transitions with oppo-
site signs of the variation of the spin projection. The

components of Green function (p) can be defined
in terms of reciprocal matrix (4). According to Dyson [8],
the scattering amplitude  is defined by the dou-

Γαα ; νν p( ) gαα ; νν p( )=

– gαα ; ββ p'( )Kβ β,
γ γ, p'( )Γγ γ; ν ν, p'( ),

p' β β, ,

∑

Kβ β,
γ γ, p'( ) T G ω–

βγ p'–( )Gω
βγ p'( ).

ω
∑=

α

Gω
αβ

gαα ; ββ

(0, +)

(0, –)

(0, +)

(+, 0)

(0, –) (0, +)

(0, –) (0, +)

(–, 0)

(0, λ–)

(0, λ+)

(0, λ–)

(λ+, 0)

(0, λ–) (0, λ+)

(0, λ–) (0, λ+)

(λ–, 0)

(0, –)

(0, λ+)

Fig. 1. Born amplitudes of the kinematic interaction for
nd < 1; for the upper Hubbard subband (nd > 1), the substi-
tution (0, σ)  (–σ, 2) should be carried out.
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ble commutator { [ ]}. Ultimately, this relation

can be expressed in terms of structural constants 
of the corresponding superalgebra [1, 2]:

(12)

In our case, Hamiltonian (2) can be represented as the
sum of the products of Fermi operators corresponding
to different unit cells:

(13)

Here, the subscripts with bars (e.g., ) indicate transi-
tions with the reverse sign of the spin projection (rela-
tive to α).

Direct calculation leads to the expressions

(14)

(15)

In our case, for transitions between states with com-
pletely filled shells and one-hole states, we can easily
calculate the double commutators. Figure 1 shows the
graphic representation of the Born amplitudes.

In the case of the (d–d) scattering, using Hamilton (2),
we obtain

(16)

X̂r
α

X̂r
α
Ĥ

Nα β,
±

X̂r
α

X̂r'
β,[ ] ± Nα β,

± X̂r
α β+ δr r', .=

Ĥ t r r',( )ν β, X̂r
ν
X̂r'

β
t r r',( )ν β, X̂r

ν
X̂r'

β
+( ).

r r' ; r r'≠,
∑=

α

Xr
α Ĥ,[ ] Nα ν,

+ t r r',( )ν β,
X̂r

α ν+
X̂r'

β

r' ν β; r', , r≠
∑=

+ Nα ν,
+ t r r',( )ν β, X̂r

α ν+
X̂r'

β
.

r' ν β; r' r≠, ,

∑

X̂r
α

X̂r
α

Ĥ,[ ]{ }

=  Nα α ν+,
– Nα ν,

+ t r r',( )ν β,
X̂r

α α ν+ +
X̂r'

β

r' ν β; r', , r≠
∑

=  Nα α ν+,
– Nα ν,

+
t r r',( )ν β, X̂r

α α ν+ +
X̂r'

β
.

r' ν β; r' r≠, ,

∑

X̂r
0 σ–,( )

X̂r
0 σ,( )

Ĥ,{ }[ ] X̂r
0 σ,( )

p̂ir' σ– t i( ) r r'–( )
i r',
∑–=

– p̂ir'σ X̂r
0 σ–,( )

t i( ) r r'–( )
i r',
∑

– X̂r
0 σ,( )

âr' σ– τ r r'–( )
r' ; r' r≠
∑ âr' σ, X̂r

0 σ–,( )τ r r'–( ).
r' ; r r'≠
∑–
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In the case of the (p–p) scattering, we have

(17)

After the transition to Fourier components and to the
center-of-mass system, it turns out that the scattering
amplitudes depend only on the momentum of scattered
particles and differ from hopping integrals tα, β(p) only
by factors:

(18)

Here, indices α, γ, and ν are the numbers of one-particle
transitions (d, x, y).

Subsequent simplification of the kernel of integral
equation (11) are associated with the possibility of car-

rying out summation over internal indices β and . For
this purpose, we write the Dyson equation that was
used for determining reciprocal Green function (10). In
the one-loop approximation (Hubbard I), we have

(19a)

(19b)

Multiplying relation (16) by  and rela-

tion (17) by , we will be able to exclude the
sums over the number of transitions containing hopping

integrals tν, β(p) and (–p).

Excluding these sums and ignoring nonlogarithmic
terms containing the first powers of Green functions,

X̂r
0; i σ–,( )

X̂r
0; i σ,( )

Ĥ,{ }[ ]

=  X̂r
0; i σ,( )

p̂ik' σ– t i( ) r r'–( )
r'

∑–

– p̂ir'σ X̂r
0; i σ–( )

t i( ) r r'–( )
r'

∑

– X̂r
0; i σ,( )

p̂ jr' σ–, t ij( ) r r'–( )
j r' σ; r' r≠, ,

∑

– p̂ jr'σ X̂
0; i σ r,–,( )

t ij( ) r r'–( ).
j r' σ; r' r≠, ,

∑

gα α ; γν, p; p'( ) δα γ, tα ν, p'( ) tα ν, p'–( )+{ }–=

– δα ν, tα γ, p'( ) tα γ, p'–( )+{ } .

β

f νtν β, p( )Gω
β γ, p( )

β
∑ δν γ, Ĝω

0( )( )
1–
Ĝω p( )[ ] γ

ν
;–=

f λ tλ ν, p–( )G ω–
ν γ, –p( )

ν
∑

=  δλ γ, Ĝ ω–
0( )( )

1–
Ĝ ω– p–( )[ ] γ

λ
.–

G ω– p–( )[ ] γ
β

Gω p( )[ ] γ
β

t λ ν,–
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we arrive at the following system of equations:

(20)

To determine the conditions for the emergence of Coo-
per instability, it is sufficient to consider the system of
homogeneous equations corresponding to inhomoge-
neous system (20):

(21)

In zero magnetic field, all matrix elements are indepen-
dent of the value of the spin projection. The reciprocal
zeroth Green function has only diagonal matrix ele-

ments  = iω – eα; consequently, in the
framework of the logarithmic approximation used here,
the problem of determining the superconducting transi-
tion temperature is reduced to writing the solvability
condition of the homogeneous system of algebraic
equations

(22)

Thus, the problem of determining the superconducting
transition temperature is reduced to determining the solv-
ability condition for system of algebraic equations (22).

The kernel of this equation has strong degeneracy in
indices α and γ. Direct calculations show that the final
solvability condition does not contain the products of
nondiagonal minors of the matrix of the operator on the
right-hand side of Eq. (22). As regards the diagonal
components, the solvability condition can be expressed
in terms of the simplest sum of diagonal components:

(23)

It is convenient to express the diagonal components of
the one-particle Green functions in terms of normal

Γαα ; νν p( ) gαα ; νν p( )=

+ T
1
f α
------ Ĝω

0( )( )
1–
Ĝω p( )[ ] γ

α
Ĝ ω– p–( )[ ] γ

α





ω p' β β, , ,

∑

+
1
f α
------ Ĝ ω–

0( )( )
1–
Ĝ ω– p–( )[ ] γ

α
Ĝω p( )[ ] γ

α




Γγ γ; ν ν, p'( ).

Γαα T
1
f α
------ Ĝω

0( )( )
1–
Ĝω p( )[ ] γ

α
Ĝ ω– p–( )[ ] γ

α





ω p' γ γ, , ,
∑=

+
1
f α
------ Ĝ ω–

0( )( )
1–
Ĝ ω– p–( )[ ] γ

α
Ĝω p( )[ ] γ

α




Γγ γ.

Ĝ ω–
0( )( )

1–
[ ] α

α

Γα 2
eα

f α
------T Ĝω p( )[ ] γ

α
Ĝ ω– p–( )[ ] γ

αΓγ.
ω p' γ, ,
∑–=

1 2
eα

f α
------T Ĝω p( )[ ] α

α
Ĝ ω– p–( )[ ] α

α
.

ω p,
∑

α
∑–=
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coordinates and eigenvalues of the corresponding
reciprocal matrix:

(24)

where  are the eigenvalues of reciprocal matrix (4).

In substituting this expansion into Eq. (23), it should
be noted that, to within the logarithmic accuracy
adopted here, we must omit the terms with different
number of pole addends:

(25)

Thus, for a given number of the energy band, we have
a set of singular terms determining the superconducting
transition temperature. In other words, in the metal con-
duction range, for a given value of the chemical poten-
tial, a fixed number λ exists, for which the condition

 = 0 defines the Fermi surface.

Separating such terms, we can rewrite the Cooper
instability condition for the given number of energy
band λ:

(26)

This relation can be written in the classical BCS form:
Tc = exp(–1/Λ), where

(27)

In our simplest case, when the lower Hubbard subband
is populated (hd < 1), the normal coordinates and the
eigenfunctions can be determined using relations (9).
As a result, for a given λ, we can determine the BCS
constant and the condition for the existence of super-
conductivity at T = 0: Λ(λ) > 0, where

(28)

It can easily be traced that, as we pass to filling of the
upper Hubbard subband, the superconductivity condi-

Ĝω p( )[ ] k
k Ak

λ( ) p( )
iωn ξp

λ( )–
----------------------, ξp

λ( )

λ
∑ ep

λ µ,–= =

ep
λ

1 2
ek

f k

-----T
Ak

λ( ) p( )Ak
λ( ) p–( )

ωn
2 ξp

λ( )( )2
+

---------------------------------------
ω p,
∑

kλ
∑–=

=  
ek

f k

-----
Ak

λ( ) p( )Ak
λ( ) p–( )

ξp
λ( )---------------------------------------

ξp
λ( )

2Tc

-------- 
  .tanh

p

∑
kλ
∑–

ξp
λ( )

1
ek

f k

-----
Ak

λ( ) p( )Ak
λ( ) p–( )

ξp
λ( )---------------------------------------

ξp
λ( )

2Tc

-------- 
  .tanh

p

∑
k

∑–=

e

Λ 2
ek

f k

----- Ak
λ( ) p( )Ak

λ( ) p–( )δ ξp
λ( ).

p

∑
k

∑–=

Λ λ( ) 2
ed

f d

----- Ak
λ–( ) p( )( )2δ ξp

λ( )( )
p

∑–=

–
ep

f p

----- Ak
λ( ) p( )( )2δ ξp

λ( )( ).
p

∑
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tion has the same form (28), but with the reverse sign
of ed:

(29)

In both cases, λ = –1 for filling of the lower hybridiza-
tion subband and λ = +1 for filling of the upper hybrid-
ization subband.

The condition for the existence of superconductivity
for independent filling of the nonhybridized p band has
the form ep < 0.

5. EMERY–HIRSH MODEL

Let us consider the most simplified model, in which
we can disregard direct jumps wp and wd altogether as
compared to the jumps between 3d electrons of copper
and px, y electrons of oxygen.

Such a formulation of the problem was proposed by
Emery [3], as well as Hirsh [4], who studied the system
with preset one-particle energies ep and ed , which cor-
responds to the Hamiltonian

(30)

Here,  and  are the creation operators for
hole p- and d-excitations in the r cell with spin projec-
tion σ and with orbital constants λ = x, y.

We assume that the energy of electrostatic repulsion
of electrons belonging to the same atom is high as com-
pared to the energy ep, d of one-electrons states and as
compared to hopping integral t.

The equation for determining the one-particle exci-
tation spectrum can be derived from the poles of four-
component Green functions, which will be defined in
terms of the reciprocal matrix

(31)

For the CuO2 layer, we have

Λ λ( ) 2
ed

f d

----- Ak
λ–( ) p( )( )2δ ξp

λ( )( )
p

∑=

–
ep

f p

----- Ak
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λ( )( ).
p

∑

Ĥ t p̂r σ λ, ,
+ âr' σ, h.c.+[ ]

r r' λ σ, , ,
∑–=

+ ep p̂r σ λ, ,
+ p̂r σ λ, , ed âr σ,

+ âr σ, .
r σ,
∑+

r λ σ, ,
∑

p̂r σ λ, ,
+ âr σ,

+

Gω
1– p

0; σ( )
σ; 2( )

0; j σ,( )

Ω0   0  τ p 
0
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0  Ω 2 τ p 
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,( ) – 
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–   τ p 
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,( )  –  δ j k ,( ) Ω p  

 
 
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 

 

.=

τp
α k,( ) t f α 1 i pk( )exp–( ),=

τp
jα( ) t f j 1 i– p j( )exp–( ).=
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Crystallographic indices k and j independently run
through two values (x and y). For the particular case of
a square unit cell, the end factors for p electrons are
independent of the crystallographic index fj = fp = 1 –
3hp/4. As regards the (x2 – y2)) hole states, these states
differ substantially for the lower and upper Hubbard
subbands; consequently, we have

In the zero-loop Hubbard I approximation, the aver-
age occupation numbers are defined self-consistently in
terms of the products of the virtual Green function at
coinciding points and the corresponding end factors.
For example, for the average number of (x2 – y2) holes,
we have

(32)

For the average number of p holes, we can write

(33)

The determinant of matrix (31) gives the equation for
the elementary excitation spectrum Φ–iω(p) = 0, where

(34)

Introducing chemical potential µ, we obtain

(35)

In the case of extremely high energy ep , when Ωp 
–∞, we obtain the equations for the excitation spec-
trum, which can be reduced to the classical Hubbard

model with the effective hopping integral –τp = /ep .

In the limiting case of the extremely high Hubbard
energy of d electrons (Ω2  –∞), we arrive at the ver-
sion with simultaneous population of the p and d lower
Hubbard subband with the spectrum

(36)

where

f 0 1 hd/2, f 2– hd/2.= =

hd 2T iωδ( )Ωp f 0Ω2 f 2Ω0+( )Φ 1– .exp
ω p,
∑=

hp f p 3nF ep( ) T iωδ( )Ω0Ω2Φ
1–exp

ω p,
∑+

 
 
 

.=

Φ Ω0Ω2Ωp f ptp
2 f 0Ω2 f 2Ω0+( ),–=

tp
2 2t2 2 pkcos

k

∑–
 
 
 

.=

Ω0 iω U
2
---- µ, Ω2+ + iω U

2
---- µ,+–= =

Ωp iω ep.–=
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2

ξp
± r0

2

4
---- f 0 f ptp

2
+ µ0, hd 1,<–±=

r0 ep
U
2
----, µ0+ µ

ep

2
-----.–= =
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In this limit, the equations of state can be written in the
form

(37a)

(37b)

If the lower Hubbard band is filled and the upper is
populated simultaneously with the p states, we have
Ω0  +∞, and we again have two branches,

(38)

where 

In this limit, the equations of state have the form

(39a)

(39b)

In both limiting cases, the normal coordinates are inde-
pendent of the chemical potential and are defined as

(40)

The condition for the emergence of the supercon-
ducting state is determined from the requirement of the
emergence of singularity in the two-particle vertex part
Γα, β for zero total frequency, momentum, and spin.

Using the ladder approximation, we obtain a linear
inhomogeneous integral equation for Γα, β. The point
of emergence of a singularity corresponds to the possi-
bility of solving the system of homogeneous equa-
tions, which corresponds to the system of integral
equations (11).

For any two Hubbard operators , we have the
identity

(41)

If we take into consideration that  are the creation
operators for one-hole Fermi excitations and act on the
wave function of the ground state by the left-hand side
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α
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of Eq. (41), we obtain the energy of two-hole excita-
tions plus the additional energy stemming from the
third term on the right-hand side of Eq. (41). This term
precisely determines the Born amplitudes of the kine-
matic interaction.

Let us express Hamiltonian (30) in terms of the
Hubbard operators,

(42)

and then substitute it into the last term of relation (41).
As a result, we obtain the following nonzero amplitudes
for scattering with opposite values of spin projection σ:

(43)

Passing to the momentum representation  =

exp(ip · r), we find that each term on the right-
hand side of Eq. (43) gives the Born amplitude of the
kinematic interaction gα, β, λ, ν(p). Pairs (α, β) corre-
spond to the initial sates on the left-hand side of
Eq. (43):

Indices λ and ν correspond to all possible two-particle
states on the right-hand side of Eq. (43).

Combining all possible pairs of transitions, we
obtain six algebraic equations in all. This simplification
stems from the fact that the amplitudes of kinematic
interaction (41) differ from zero only for transitions
with identical crystallographic indices λ and for coin-
ciding cells (see Fig. 1).

For unknown vertex parts Γ00, Γ22, Γ20, Γ02, and Γλλ ,
we have three relations,

(44)

The solvability condition for the resulting equations
can be written so that the following relation holds

between vertices Γ00 and Γ22: Γ00/Γ22 = –f0 /f2 .
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The final system of equations for Γp and Γ =

Γ00 /f0 = –Γ22 /f0 has the form

(45)

where

The solvability conditions for the system of equations
derived above has the form

(46)

Taking into account condition Ω0 – Ω2 = U and assum-
ing that

we obtain the conditions for the existence of the super-
conducting state:

(47)

In the limiting case ξp @ U, we derive from relation (47)
the BCS formula Tc ∝  exp(–1/Λ0), which contains con-
stant Λ0, coinciding with the general expression
derived in our recent publication [2]:

(48)

where 1 – n = x is the extent of underpopulation of the
lower Hubbard subband and ρ0 is the initial density of

states with the effective hopping integral – /ep .

The case when the excitation energy lies within the
correlation gap is of special importance. In the limiting

ξ2
2 ξ2

2

Γ 2T tp
2 tp

2 f p
2 Ω2 Ω0–( )

f 0Ω2

Ω0
------------

f 2Ω0

Ω2
------------+ 

  Γ
ω p,
∑=

∫ + ΩpΩ0
2Ω2

2Γ p Φω p( ) ;

Γ p 2 f pT tp
2 f p

2 Ω2 Ω0–( )
f 0Ω2

Ω0
------------

f 2Ω0

Ω2
------------+ 

  Γ
ω p,
∑=

+
ΩpΩ0

2Ω2
2

f p
2

---------------------Γ p Φω p( ) ,

Φω p( ) Ω0Ω2Ωp Ω0 f 2 Ω2 f 0+( ) f ptp
2–[ ] 2–

.=

2 f pT tp
4 f p Ω2 Ω0–( )

f 0Ω2

Ω0
------------

f 2Ω0

Ω2
------------+ 

 
ω p,
∑

+ Ωp

Ω0
2Ω2

2

2 f p
2

------------- Φω p( ) 1.=

tp
2 f 0 f 0Ω2 f 2Ω0+( ) Ω0Ω2Ωp,≈

Ων ξν ν 0 2 p, ,=( ),–≈

2U f p

ξ p
2 f 0ξ2

2 f 2ξ0
2+( )

ξ0ξ2
-------------------------------------- ξ p f 2ξ0 f 0ξ2+( )2 0.<+

Λ0 2ρ0
U U2 4µ2–( )

U 1 n–( ) 2µ–[ ] 2
-----------------------------------------,=

t p
2

ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005



SUPERCONDUCTIVITY IN A SYSTEM OF p–d ELECTRONS 711
case U  ∞, when the lower Hubbard subbands are
populated simultaneously both for d and for p excita-
tions, we have spectrum (36), np, d < 1, and supercon-
ductivity condition (47) can be transformed to [9]

(49)

It should be noted that this condition is satisfied only if

the upper  subband (36) is filled. Using the equa-
tions of state in form (37), we observe that supercon-
ductivity can exist under these conditions only for val-
ues of hp sufficiently close to unity:

(50)

If the lower d Hubbard subband is filled and the p states
are populated simultaneously with the upper subband
1 < hd < 2, we have ξ0 ≈ –U  –∞, while supercon-
ductivity condition (47) is transformed to a condition
analogous to (49):

(51)

In this region, superconductivity can set in both during

filling of  and during filling of  (see Fig. 2).

If, however, the energy of p states exceeds the
energy of one-particle states in the upper d subband
(ep > ed), superconductivity exists for hd > 4/3 in the

entire  subband:

(52)

In the case when the energy of p states lies within the
correlation gap (1 < hd < 4/3), ep < ed , the boundary in
hp is determined by relation (52) and is observed only

for the lower part of the  subband.

The corresponding curve hp = hp(hd), which was
obtained in the plane band model, begins from point

hd = 1, hp = 0, attains its maximum value  = 0.39
for hd ≈ 1.23, and is transformed into curve (52) at point
hd = 4/3, hp = 4/11 (Fig. 2).

In this region, the number of p excitations is quite
small, their scattering amplitude is positive, and super-
conductivity is due to the kinematic interaction of d
excitations. As the number of p excitations increases;
their “repulsive” role increases, setting a limit in hp on
the region of existence of superconducting solutions.

It should also be noted that superconductivity condi-
tion (49) is also observed for hd > 4/3, hp ≈ 1, i.e., for
filling of the upper subband (38). However, in this con-
centration range, the charge Q = 2hp + hd – 3 of the
CuO2 complex is positive everywhere, which makes
this region uninteresting for physical analysis.

An important property of the phase diagram
obtained here is the absence of symmetry relative to the

ep

f 0
-----

ed

2 f p

--------- 0, r<+ ep ed, µ–
ep ed+

2
----------------.–= =

ξp
+( )

4 8 5hd–( )/ 32 19hd–( ) hp 1, 0 hd 1.< << <

ep

f 2
-----–

ed

2 f p

--------- 0, r<+ ep ed, µ–
ep ed+

2
----------------.–= =

ξp
–( ) ξp

+( )

ξp
–( )

0 hp 4 2 hd–( )/ 6 hd+( ), 4/3 hd 2.< << <

ξp
–( )

hp
max
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particle–hole transformation hd  2 – hd for a preset
number hp of p holes. Superconductivity turns out to be
most effective in the region hd > 1, while in the region
hd < 1, hp < 0.9 it is absent altogether.

This situation qualitatively corresponds to the

experiment on . When this compound
is doped with bivalent Me2+ cations at T = 0, supercon-
ductivity appears and exists in a wide concentration
range of 0.04 < x < 2/3.

In the case of yttrium-based Y3+Ba2Cu3O7 – δ com-
pounds, the value of hd is greater than or equal to unity
for all values of δ ≤ 1/2 attainable in experiments; this
corresponds to hole-type superconductivity. The sto-
ichiometric compound YBa2Cu3O7 has the highest pos-
sible Tc , which is in qualitative agreement with our
results.

For the ruthenium-based compound Sr2RuO4, the
electroneutrality line passes near the right boundary of
the superconducting phase; this explains the fairly low
superconducting transition temperature (Tc ≈ 1 K).

In the case of doping with tetravalent Me4+ cations,
superconductivity is observed in a narrow concentra-
tion range of 0.14 < x < 0.18. The existence of this
effect (so-called electron-type superconductivity),
which is not manifested in the Emery model, should be
attributed to direct hopping between copper cations.

6. PHASE DIAGRAM 
BASED ON GENERALIZED p–d MODEL

To obtain a phase diagram of the general form,
which would be applicable for comparison with exper-
iments associated with doping with trivalent and tet-
ravalent cations, we must take into account not only

Ln2 x–
3+ MexCuO4

~ ~~ ~~~

1.00
0.92

0.48
0.40
0.32
0.24
0.16
0.08

0 0.5 1.0 1.5 2.0

hp

hd

1
2

3

4

Fig. 2. Phase diagram for the CuO2 layer at T = 0, calculated
in the limit of an infinitely large Hubbard energy and with a
rectangular density of states. The following electroneutral-
ity lines are shown: 2hp + hd = 1 (Ln2CuO4) (1), 2hp + hd =
4/3 (YBa2Cu3O7) (2); 2hp + hd = 1 (YBa2Cu3O6.5 (3), and
2hp + hd = 2 (Sr2RuO4) (4). 
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direct oxygen–oxygen jumps wp , but also jumps
between copper cations wd .

To construct the phase diagram, it is sufficient to
note that the condition Λ = 0 establishes the relation
between the energy difference r = ep – ed and the chem-
ical potential –(ep + ed)/2. Substitution of this relation
into equation of state (10) leads to the emergence of a
dependence between hp and hd , which corresponds to
the superconducting phase diagram.

For subsequent calculations, it is convenient to
introduce instead of two end factors fp and fd the dimen-
sionless variables u and v :

(53a)

From these equations, we obtain the quantities wpfp

and wdfd:

(53b)

where a = wpwd/w2.
Instead of the chemical potential at T = 0 we will use

a dimensionless variable y, which can be determined
from the condition ξ(±)(y) = 0.

This relation, which is written in new variables
using the explicit form of excitation spectrum (7), has
the form

(54)

As a result, the chemical potential, as well as ep and ed ,
are functions of variables u, v, r, y.

After elementary calculations using formulas (53)
and (54), we obtain ep = –µ + r/2 and ed = –µ – r/2, or

(55)

where a = wpwd/w2 and the upper and lower sign corre-
spond to the upper and lower hybridization subbands,
respectively.
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The end factors and average occupation numbers
can also be written in terms of variables u, v, y. For
example, for filling of the lower hybridization subband
and at T = 0, we have

(56)

Quantities K± introduced here are generally functions
of four parameters (u, v, y, r). However, in the limiting
case when T = 0, quantities K± depend only on three
variables (u, v, y).

In the limit T = 0 and in the case of filling of the
lower hybridization subband, we have the following
definitions:

(57)

Here, we have introduced the normalized initial density
of states ρ0(e); the normal coordinates are found to be
independent of the energy difference r = ep – ed: 

(58)

In the simplest case of a plane band, when ρ0(e) = θ(1 –
e2)/2, at T = 0, we find the following expressions for
functions K±(u, v, y):

(59)

Thus, for preset values of three dimensionless ener-
gies wp/|r|, wd/|r|, and a = wpwd/w2, Eqs. (54) together
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with relations (56)–(59) make it possible to determine
variables u, v, as well as the mean occupation numbers
hd, hp, as functions of only one parameter y.

To construct the superconducting phase diagram,
we first eliminate variable |r| from Eqs. (53):

(60)

Further, we use condition (29) for the emergence of
superconductivity for the lower hybridization subband:
Λ(–) = 0. When written in variables ep/r and ed/r, this
condition will depend only on u, v, y:

(61)

Here, the upper and lower signs correspond to regions
0 < hd < 1 and 1 < hd < 2, respectively.

The explicit dependence of quantities ep/r and ed/r
on u, v, y, which is obtained from the definition of
chemical potential, has the form

(62)

Thus, the system of equations (60) and (61) makes it
possible to determine two quantities as functions of the
third quantity (e.g., u = u(y) and v  = v (y)).

Substituting these functions into equations of
state (56)–(58) makes it possible to determine the form
of the phase diagram in variables hp, hd (Figs. 3 and 4).

The general relation is valid provided that hp < 1.
Superconductivity exists when Λk > 0.

In the limiting case v  = 0, the subbands are popu-
lated independently when the chemical potentials cor-
responding to the p and d hole states are identical. In
this case, the symmetry of the phase diagram relative to
the particle–hole transformation hd  2 – hd  is pre-
served.

If we assume that direct jumps are small as com-
pared to p–d jumps between oxygen anions and copper
cations, we must set u = 0. In this limiting case, we
obtain the results pertaining to the classical Emery
model. The phase diagram exhibits the maximal asym-
metry in this case. Superconductivity is absent in the
range of small values of hp and for hd < 1. However, for
a small number hp and for hd > 1, superconductivity
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exists in a wide range of variation of variables 1 < hd <
2 (see Fig. 2).

7. RESULTS

In the previous section, we have considered the most
realistic case when direct jumps between copper cat-
ions are small as compared to direct jumps between
oxygen anions. Calculations are made for the plane
band model.

It can be seen from Figs. 3 and 4 that, for hp < 1 and
hd < 1, superconductivity exists only in a narrow region
adjoining the band 2/3 < hd < 1, hp ! 1. As regards the
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Fig. 3. Phase diagram in the generalized Emery model for
hopping integrals w = wp = wd at T = 0: 2hp + hd = 0.9 (1),

r = 0 (2), r = 2.5wp (3),  = 0 (4), and 2hp + hd = 2 (5). r̃
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Fig. 4. Phase diagram in the generalized Emery model for
hopping integrals w = wp = wd at T = 0: 2hp + hd = 0.9 (1),
r = 0 (2), r = wp (3), r = 0 (4), r = wp (5), and 2hp + hd =
2 (6).
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region 1 < hd < 2, superconductivity is absent only for
small electron concentrations 2 – hd ! 1, hp < 1.

It should be noted in conclusion that the substantial
dependence of Tc on the concentration of doping impu-
rity, which is observed for the compounds being studied
as well as for all high-temperature superconductor, is
completely due to the strong dependence of the elec-
tron–electron scattering amplitude on the position of
the Fermi level relative to the middle of the conduction
band. The characteristic energy determining the value
of Tc is on the order of the hopping integral equal to
103 K. Dimensionless constant Λk appearing in the BCS
formula and defined by formula (29) does not exceed
1/4. It strongly depends on the number of p and d elec-
trons scattered at energies close to the Fermi energy. All
these facts are in qualitative agreement with experi-

ments on the , YBa2Cu3O7 – δ, and
Sr2RuO4 compounds.

8. CONCLUSIONS

This study is in fact a continuation and generaliza-
tion of the previous publication [2] of the author, where
the limiting case Udd @ tdd is considered and the scatter-
ing amplitude for two electrons with opposite spins is
calculated. It was found that this amplitude is positive
for small energies (in the gaseous phase); however, as
the Fermi energy increases, it changes sign, which cor-
responds to the Ramsauer effect in the lattice. It should
be noted that this result was obtained by the author in
1976 [6] using the Hubbard model for the gas phase. In
the same article, the equivalence of the standard scatter-
ing theory and the method of the X operators corre-
sponding to an infinitely high Hubbard energy was
proved. Similar results were also obtained in the so-
called t–J model [10], in which the scattering amplitude
was calculated with the help of the T matrix and then a
transition to the limit Udd  ∞ was carried out.

The main result of the present study is the construc-
tion of the phase diagram both for the upper and the
lower bands of the (x2 – y2) electrons for a weak under-
population of the 2p6 shell of oxygen anions. In this
case, the main difference between the phase diagram of
the Emery model and the classical Hubbard model is
observed; this difference lies in partial breaking of the
particle–hole symmetry of the d electron subsystem for
a preset number of p holes. This result corresponds to
the asymmetry observed upon a transition from lantha-
num–strontium to neodymium–cerium cuprates. All
these results were obtained from the Emery–Hirsh
Hamiltonian [3, 4] for zero values of intercellular Cou-
lomb matrix elements: Upd = 0, Vdd = 0, and Vpp = 0. It
is sufficient to assume that the Hubbard energy is the
largest energy parameter.

Ln2 x–
3+ MexCuO4
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It should be noted that the calculation of the super-
conducting transition temperature in the t–J model [11]
is not consistent because it takes into account the sec-
ond-order corrections in the hopping integral (since J ~
t2/U), while the expansion of the scattering amplitude
for U @ |t| begins with first-order terms in tpd . The same
drawback is inherent in the Zhang–Rice theory [12] in
which analysis is carried out under the following two
assumptions: (i) |tpd| ! r = ep – ed and (ii) Udd @ r. In the
present study, assumption (ii) is also used, but the
expansion of the scattering amplitude is found to be lin-
ear in parameter tpd .

The application of the ladder approximation for
determining the conditions for the emergence of Coo-
per instability can be substantiated rigorously. In the
Emery model, the corrections of the parquet type do not
contain logarithmic divergences since the necessary
nesting condition is not fulfilled in the given problem
for any location of the Fermi level. The non-Born cor-
rections to the kernel of the integral Gor’kov equations
lead to the emergence of a finite relaxation time with
spin flip. The corresponding reciprocal relaxation time
is proportional to the second power of temperature.
Hence, it can be concluded that the above-mentioned
corrections are insignificant at T = 0. As regards the
paramagnetic corrections of the Ruderman–Kittel type,
their effect is substantial precisely in the region when
Cooper instability is absent. The proof of this statement
forms the subject of a special study.
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Abstract—The electric conductivity is calculated for regular inhomogeneous two-component isotropic
medium in which droplets of one phase with conductivity σ2 are embedded in another, with conductivity σ1.
An expression is formulated that can be used in many different situations and is of particular relevance in the
case where the relative proportion of the components is temperature-dependent and varies over a wide range.
Behavior of the effective conductivity depends on the spatial arrangements and the shape of the inclusions.
© 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Determination of the effective conductivity σeff of
spatially inhomogeneous heterophase systems is an
old, but increasingly important problem of theoretical
physics. With the advent of new nanoscale probes of
condensed matter systems, it has become apparent that
many very diverse systems that were previously
thought to be homogeneous are in fact either statically
or dynamically inhomogeneous. The effective conduc-
tivity in such cases cannot be dealt with in terms of
homogeneous medium theory, is not trivial, and solu-
tions are presently known only in some rather special
cases. Different aspects of the theory and different lim-
iting cases are extensively discussed in [1].

In this paper, we focus on the problem of calculating
the effective conductivity of an inhomogeneous two-
dimensional (2D) plane. The classical problem can be
formulated as follows. We assume that a 2D system
contains a mixture of N (N ≥ 2) different phases or
materials with different conductivities σi, i = 1, 2, …,
N. The arrangements of different phases can be random
or regular. The question that we wish to address is how
the effective conductivity of the plane depends on the
conductivities of the phases, their concentration, and
the spatial arrangements.

In the past, a number of different approaches have
been used to tackle this problem. The exact result for
the effective conductivity of a two-component system
with a symmetric and isotropic distribution of compo-
nents was obtained by Dykhne [2]. He found that the
effective conductivity of the system is determined by
the simple relation

σeff σ1σ2.=

¶ This article was submitted by the authors in English.
1063-7761/05/10004- $26.00 0715
A symmetric distribution used in this problem amounts
to the case where the two components can be inter-
changed without changing the end result. Obviously,
one requirement for a symmetric distribution is that the
two components have equal proportions, but it also
means that more general cases cannot be considered
with this model.

Further investigations have shown that a more gen-
eral duality relation is valid for 2D heterogeneous con-
ductors than that initially considered by Keller and
Dykhne [1]. More recently, it was shown that a more
general relation for the effective conductivity tensor
exists that is valid for multicomponent and anisotropic
systems [3, 4]. The effective conductivity of several
examples of ordered two-component systems was also
calculated exactly [5–7]. It was shown in [5, 6] that for
a chessboard plane and for a plane constructed of trian-
gles, the relation derived by Dykhne is also valid.

A similar relation to the Dykhne formula for the
effective conductivity of a system consisting of ran-
domly distributed metallic and dielectric regions near a
metal-to-insulator transition was derived by Efros and
Shklovskii [8]. They generalized the expression of
Dykhne on the basis of scaling arguments to the case of
arbitrary concentrations of the two phases near a perco-
lation threshold, such that the effective conductivity
becomes

(1)

where s is a universal scaling exponent. Critical expo-
nents are also relatively well-known for this type of sys-
tems [9]. This relation is not applicable when the
system is driven away from the percolation threshold
and the general solution of the effective conductivity of
an inhomogeneous medium thus remains an open
problem.

σeff σ1 σ2/σ1( )s,=
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Spatial arrangements of phases with conductivities σ1 = 1 and σ2 = σ for four considered cases.
Sen and Torquato [10] derived an expression that
allows an explicit calculation of the effective conduc-
tivity tensor from the n-point probability functions
Sn(r1, …, rn). These functions give the probability of
the points at r1, …, rn of belonging to the same phase,
and are therefore uniquely determined by the spatial
distribution of the phases. Unfortunately, the applica-
tion of this method is limited because the computations
with n > 5 are fairly time-consuming.

Different expansions of the effective conductivity
in terms of a small parameter have been used in the past
[1, 11, 12]. In most cases, the low-order terms depend
weakly on the microgeometry. A diagrammatic expan-
sion for the effective conductivity developed by Khalat-
nikov and Kamenshchik [13] promises to give more
generally applicable results. The perturbative approach
seems to be quite effective because it allows analyzing
random and nonsymmetric distributions with different
conductivities.

The problem was also discussed in the case where
N = 2 and N = 3 on the basis of numerical calculations
[3, 14]. It was shown that the effective conductivity for
JOURNAL OF EXPERIMENTAL 
N = 3 is not universal and depends on the spatial
arrangements of the phases. We have employed bound-
ary element method for efficient numerical treatment of
two-dimensional multiphase systems with an arbitrary
arrangement of phases. More details on the method and
its results can be found in [15].

In this paper, we consider the conductivity of a two-
phase system in two dimensions for a wide range of
concentrations and conductivities. One phase is
assumed to be composed of droplets (of different
shapes) with conductivity σ2 embedded within a
medium of conductivity σ1 (see Fig. 1). We begin with
calculating the effective conductivity σeff using a per-
turbation theory approach with the two phases having
the respective volume fractions (1 – ν) and ν. Because
the problem is linear, we can introduce a dimensionless
conductivity σ, measured in units of σ1 = 1, and the
effective conductivity σeff is a function of σ = σ2/σ1 =
σ2 and ν. The volume-averaged conductivity

σ 1
V
--- σ Vd∫=
AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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is given by

(2)

If the conductivities of the two phases are not vastly
different,

the effective conductivity can be calculated by pertur-
bation theory [13]. To apply perturbation theory, we
rewrite the spatial dependence of the conductivity as

(3)

where

Assuming that the spatial distribution of conductivity is
uncorrelated, we then obtain

(4)

A straightforward calculation shows that up to the sec-
ond order in a, the conductivity is given by

(5)

This result has been known for many years and was
derived for the dielectric function of dielectric mix-
tures [16]. In [11, 12], it was also derived using a sys-
tematic perturbative expansion, which showed it to be
exact to the second order in α. The second term in
Eq. (5) represents the first nonvanishing contribution
due to the inhomogeneity of the distribution of the
phases. In the case where ν = 0.5, the result coincides
with the expansion of the exact expression for the con-
ductivity up to the second order in (σ2 – σ1) [2]:

(6)

2. CONDUCTIVITY 
OF A REGULAR ISOTROPIC TWO-COMPONENT 

SYSTEM IN TWO DIMENSIONS
Next, we exactly calculate the effective conductivity

of the plane with different regular isotropic distribu-
tions. As before, we consider a 2D plane constructed
from two different phases with different conductivities
σ1 = 1 and σ2 = σ. The regions with the conductivity σ2
have a circular shape with radius R and form a regular
square lattice with the period a as shown in Fig. 1a.
Changing the radius R from 0 to a/2, we can change the
volume fraction of the second phase from ν = 0 to the
critical concentration νc = 0.785, whereafter the regions

σ 1 ν–( ) νσ.+=

σ 1–  ! 1,

σ r( ) σ 1 α r( )–( ),=

α r( ) σ r( ) σ–
σ

---------------------.=

rα r( )α r r'+( )d∫ σ 1–( )2ν 1 ν–( )
σ2

----------------------------------------δ r'( ).=

σeff σ σ 1–( )2ν 1 ν–( )
2σ

----------------------------------------.–=

σeff σ1σ2= .
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with the conductivity σ2 start to overlap and a percola-
tion threshold is reached. In the case of metallic drop-
lets, the total charge density must be zero, while a finite
charge density can accumulate on the surface between
different phases. This allows us to formulate the inte-
gral equation for the surface charge density [5, 6]. We
define the surface charge density by the relation

where dρ(θ) is the charge on a small part of the surface
between the two components with the length

We recall that the scalar potential at the point r is deter-
mined by the relation

(7)

where ln|r – r'|/2π is the 2D Green function. The
boundary conditions on the surface between two
phases are [16]

(8)

(9)

Substituting

in Eqs. (7)–(9), we obtain an integral equation for the
surface charge density in the form

(10)

where

As shown in the Appendix, the sum over m can be cal-
culated exactly and the integral equation for the surface
charge density is reduced to the form

(11)

where

ρ θ( )Rdθ dρ θ( ),=

dl Rdθ.=

φ E0x 2 d2r' r r'– ρ r'( ),ln∫–=

En
1

En
2– 4πρ θ( ),=

σ1En
1 σ2En

2
.=

r' i ma R θ'cos+( ) j na R θ'sin+( ),+=

r iR θ  +  j R θ sincos=

ρ θ( ) κ
2π
------ E0 θ 2r θ'ρ θ'( )d

π–

π

∫
n m, ∞–=

∞

∑+cos=

× Re
iθ( )exp

m r θ' θcos–cos( ) i n r θ' θsin–sin( )+( )+ +
------------------------------------------------------------------------------------------------------------

 
 
 

,

r
R
a
---, κ 1 σ–

1 σ+
------------.= =

ρ θ( )

=  
κ

2π
------ E0 θcos 2r θ'K n θ θ', ,( )ρ θ'( )d

π–

π

∫
n ∞–=

∞

∑+ ,
(12)K n θ θ', ,( ) π θ 2πr θ'cos θcos–( )( )sincos θ 2π n r θ' θsin–sin( )+( )[ ]sinhsin+
[2π n r θ'sin θsin–( )+( ) ]cosh 2πr θ' θcos–cos( )( )cos–

------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
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Expanding the surface density ρ(θ) in terms of Leg-
endre polynomials Pl(cosθ) and taking into account
that

where

(13)

we obtain the linear set of algebraic equations for the
coefficients c2l – 1

(14)

where

(15)

ρ θ–( ) ρ θ( ), ρ π θ–( ) ρ θ( ),–= =

ρ θ( ) c2l 1– P2l 1– θcos( ),
i 1=

∞

∑=

2c2l 1–

4l 1–
---------------

κ
2π
------ 2

3
---E0δl 1, 2r c2k 1– Kl k,

k 1=

∞

∑+ ,=

Kl k, θ' θK n θ θ', ,( )d

0

π

∫d

0

π

∫
n ∞–=

∞

∑=

× θP2l 1– θcos( )P2k 1– θ'cos( ).sin
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Solving Eq. (14) with a finite number of Legendre
polynomials taken into account, we obtain the surface
charge density in Eq. (13). As a result, the effective con-
ductivity is evaluated by calculating the total current

through the semicircular surface with a radius R' = a/2
(see Fig. 1a). Calculations similar to that of Eq. (12)
lead to the expression for the effective conductivity

(16)

where

j σ1En En= =

σeff
κ

4π
------ θd

π/2–

π/2

∫=

× θ 2r
E0
----- θ'K' n θ θ', ,( )ρ θ'( )d

π–

π

∫
n ∞–=

∞

∑+cos ,
(17)K' n θ θ', ,( ) π θ 2π r θ'cos 1/2( ) θcos–( )( )sincos θ 2π n r θ' 1/2( ) θsin–sin+( )( )sinhsin+
2π n r θ'sin 1/2( ) θsin–( )+( )(cosh 2π r θ' 1/2( ) θcos–cos( )( )cos–

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
The result above applies to the case of a uniform dis-
tribution of circular droplets within the plane. To see
how the effective conductivity depends on the shape of
the regions with conductivity σ2, we performed calcu-
lations in the case where circular droplets were
replaced with squares, triangles, and rhombuses with
the ratio of diagonals  = a/b, where a and b are
translation vectors along the x and y axes, respectively
(see Figs. 1b–1d). In all these cases, Eqs. (10)–(17) are
slightly modified because in a polar coordinate system,
r(θ) is a function of the angle. Unlike in the case of cir-
cles, the percolation threshold for cases b, c, and d is
νc = 0.5. We note that in the case of rhombuses, the lat-

tice is anisotropic and  ≠ .

3. DISCUSSION

The results of the calculations of the effective con-
ductivity are presented in Fig. 2 as a function of σν for
different values of the volume fraction ν. It is easy to
check that the results satisfy the generalized duality
relation [3, 4]

(18)

For circles, squares, and triangles,

αtan

σeff
11 σeff

22

σeff
11 σ1 σ2,( )σeff

2 1/σ1 1/σ2,( ) 1.=

σ22 σ11.=
For rhombuses,

Figures 2a–2d show that for small κ, perturbation the-
ory [11–13] (Eq. (5)) gives the correct result indepen-
dent of the geometry.

3.1. Approximate Expression 
for Effective Conductivity 

Although the predictions in Fig. 2 represent the
results of precise numerical calculation, they are not
very tractable when it comes to comparing with exper-
imental data, being the result of numerical calculations.
It is therefore helpful to try to obtain a functional form
for describing the behavior predicted in Fig. 2, which
also includes all the relevant parameters, such as the
volume fraction ν and the two conductivities σ1 and σ2.
Such an expression can then be used in a wide range of
problems, provided the validity range is taken into
account. We describe the properties of such a heuristi-
cally determined function and determine its validity
range in terms of the parameters ν, σ1, and σ2.

As can be seen from Fig. 2, the dependence of the
effective conductivity on σ shows similar behavior
independently of the particular geometry of the phases.
First, we observe that when κ is small, all the curves are
linear in σν with the same slope. In the relatively wide

σ22 α( ) σ11 π/2 α–( ).=
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Fig. 2. Effective conductivity of the plane as a function of σν for different volume fractions and four considered geometries.
     
interval 0.1 < σ < 10, the effective conductivity is deter-
mined by the equation

(19)

The range of applicability of this formula becomes
wider as we approach the percolation threshold νc .
When σ = σ2/σ1 @ 1, the effective conductivity satu-
rates at σsat . The value of σsat is not universal and
depends on the geometry. It was pointed out recently
that in the case of circles with ν < 0.5 in the entire range
of σ, the effective conductivity may be approximated
by the formula [18]

(20)

To derive an approximate expression for the effective
conductivity, we assume that Eq. (20) remains correct
if we replace ν with the effective volume fraction
νeff(κ, ν). We require that

σeff σ( ) σ1
1 ν–( )σ2

ν.=

σeff κ( ) 1 νκ–
1 νκ+
----------------.=

νeff κ ν,( ) ν as κ 0≈
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or

and

to satisfy Eq. (19), which is valid at ν = νc . It is easy to
see that the function

(21)

where p(ν)  0 as ν  νc and p(ν)  1 as ν 
0, satisfies all the above requirements. The function
p(ν) is not universal and depends on the geometric
shape of the region with conductivity σ and on the par-
ticular arrangement of these inclusions in the 2D plane.

ν           0,

νeff κ ν,( ) 1
κ
--- 1 σ

νc–

1 σ
νc+

---------------- as ν νc≈

νeff κ ν,( ) ν 1
κ
---+=

×
1

1 1 p ν( )–( )κ–
1 1 p ν( )–( )κ+
-------------------------------------- 

 
νc

–

1
1 1 p ν( )–( )κ–
1 1 p ν( )–( )κ+
-------------------------------------- 

 
νc

+

--------------------------------------------------------- 1 p ν( )–( )νc,–
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In Fig. 3, we plot p(ν) as a function of 1 – ν/νc in cases
a, b, and c. Case d is different because the effective con-
ductivity is anisotropic. As is clearly seen from Fig. 3,
the behavior of the function p(ν) for circles (case a) is
different from the cases of squares and triangles (cases
b and c). On the other hand, in cases b and c, p(ν) shows
a similar behavior.

3.2. Shape Dependence of Effective Conductivity 

The function p(ν) is related to the value of

σsat

1 νeff κ 1 ν,=( )+
1 νeff κ 1 ν,=( )–
-----------------------------------------.=

10–2 10–1 1
1 – ν/νc

10–2

10–1

1
p(ν)

Fig. 3. Dependence of the function p(ν) on 1 – ν/νc for
cases a (circles), b (squares), and c (triangles).

10–310–4 10–2 10–1 1
1 – ν/νc

1

10

σeff

1

2

3

Fig. 4. Saturated effective conductivity as σ  ∞ for
cases a, b, and c. Full, dotted, and dashed lines show
different analytic asymptotic behavior for these cases:

1—(π/2 + )/(1 – ν/νc)
1/2 – π/2 (case a),

2—1.3ln(1/(1 – (ν/νc)
1/2)) (case b), 3— ln(2/( (1 –

(ν/νc)
1/2))) (case c).

ν/νc( )1/2( )arcsin

2 3
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Therefore, the behavior of p(ν) close to the percolation
threshold should be different for different geometries.
In Fig. 4, we plot the value of σsat as a function of
(1 − ν/νc) in the case of circles, squares, and triangles.
There is an important difference between these two
cases. In the case of circles, σsat has a power-like diver-
gence (1 – ν/νc)–k (k ≈ 0.5). For squares and triangles,
this behavior is logarithmic. In both cases, close to per-
colation threshold, σsat is proportional to the average
inverse distance between boundaries of the neighboring
circles or squares,

where

for circles and

for squares. We here assume that the period of the sys-
tem is 1, and the dimensionless size of the circle and the
square is r. Direct integration leads to the following
results:

(22)

for circles and

(23)

for squares (Fig. 4). For triangles (c), the asymptotic
formula is similar to Eq. (23) with different numeric
coefficients. Interestingly, this observation suggests
that behavior of the function p(ν) is different depending
on the curvature of the embedded regions.

4. CONCLUSIONS

From calculations of the effective conductivity of
inhomogeneous two-phase systems in two dimensions,
we find that the results of precise numerical calcula-
tions can be approximated by a universal function for
σeff , Eqs. (20) and (21), where the function p(ν)
depends on the spatial arrangements of the 2D plane
and on the shape of the inclusions with conductivity σ.
It is shown that in a large interval of the conductivity σ,
the effective conductivity σeff is determined by the spa-
tial average of the logarithm of individual conductivi-
ties. The closer the system is to the percolation thresh-
old, the larger the validity range of this result. For large
values of the conductivity σ, σeff is saturated at a value
a σsat . The value of σsat near the percolation threshold is
determined by the average inverse distance between

σsat
yd

1 2 f y( )–
-----------------------,∫∝

f y( ) r2 y2–=

f y( ) r y–=

σsat
π/2 1 ν/νc–( )1/2(arccos–

1 ν/νc–( )1/2
--------------------------------------------------------------- π/2–∝

σsat – 1 ν/νc( )1/2–( )ln∝
AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005



ELECTRIC CONDUCTIVITY OF INHOMOGENEOUS TWO-COMPONENT MEDIA 721
boundaries of neighboring regions with the conductiv-
ity σ in the direction of the field (Eqs. (22) and (23)).

The model that we have developed is quite generally
applicable and can be applied in some interesting situ-
ations, such as cuprates and other two-dimensional
complex transition metal oxides that exist near a phase-
separation threshold. Importantly, there appears to be a
significant amount of experimental evidence that many
anomalous properties of oxides are associated with the
coexistence of two or more phases. The application of
the presented model may help understanding the trans-
port properties of such systems.

APPENDIX

Here, we show how the sum over m in Eq. (10) can
be calculated exactly. We represent the sum as

where

The sum over m is calculated using the definition of the
digamma function. As a result, we express the sum as

Calculating the imaginary part of the previous equa-
tion, we obtain the result in Eq. (12),

S Re
iθ( )exp

m β iα+ +
--------------------------

 
 
 

,
m ∞–=

∞

∑+

β r θ' θcos–cos( ), α n r θ' θsin–sin( ).+= =

S Re iθ( ) ψ β– iα–( ) ψ 1 β iα+ +( )–[ ]exp{ }=

=  πRe iθ( ) π β iα+( )( )cotexp{ } .

S π θ 2πβ( )sincos θ 2πα( )sinhsin+
2πα( )cosh 2πβ( )cos–

-------------------------------------------------------------------------------.=
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Abstract—The temperature and magnetic-field dependences of the conductivity associated with hopping trans-
port of holes over a 2D array of Ge/Si(001) quantum dots with various filling factors are studied experimentally.
A transition from the Éfros–Shklovskiœ law for the temperature dependence of hopping conductivity to the
Arrhenius law with an activation energy equal to 1.0–1.2 meV is observed upon a decrease in temperature. The
activation energy for the low-temperature conductivity increases with the magnetic field and attains saturation
in fields exceeding 4 T. It is found that the magnetoresistance in layers of quantum dots is essentially anisotro-
pic: the conductivity decreases in an increasing magnetic field oriented perpendicularly to a quantum dot layer
and increases in a magnetic field whose vector lies in the plane of the sample. The absolute values of magne-
toresistance for transverse and longitudinal field orientations differ by two orders of magnitude. The experimen-
tal results are interpreted using the model of many-particle correlations of holes localized in quantum dots,
which lead to the formation of electron polarons in a 2D disordered system. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

If the resistance of a 2D disordered system is much
higher than the value determined by the resistance
quantum h/e2, where h is the Planck constant and e is
the elementary charge, the system is on the insulator
side of the metal–insulator transition and conductivity
σ of the system tends to zero upon a decrease in tem-
perature T. The effect of the electron–electron interac-
tion on the conductivity of 2D systems, which remains
an important problem, has become of special interest
after a recent heated discussion concerning the exist-
ence of the metal–insulator transition in the 2D case.
The role of correlation effects must be especially sig-
nificant on the insulator side of the metal–insulator
transition since localized electron states are ineffective
in screening processes as compared to extended states.

Analysis of fundamental aspects of charge transport
as well as Coulomb and spin correlations in semicon-
ducting nanostructures form the basis for the develop-
ment of nanoelectronics—one of the latest trends in the
physics and technology of nanometer-size electronic
devices. The layers of self-organizing quantum dots
(QD) obtained as a result of heteroepitaxy of elastically
stresses system are the most suitable objects for deter-
mining the main regularities in the processes of 2D
charge transfer as well as the role of Coulomb correla-
tions in a system of localized electrons. This is due to
the fact that (i) QDs lie exactly in the same (growth)
plane in view of peculiar epitaxy and the disorder factor
1063-7761/05/10004- $26.000722
associated with disorder in the vertical direction of the
nanostructure (growth direction) is absent; (ii) intro-
ducing electrons or holes into QDs, it is possible to con-
trollably obtain ensembles of localized charge carriers
in a priori known quantum states with preset wavefunc-
tions; (iii) in contrast to most of impurities in semicon-
ductors, QD arrays may behave as a system of multiply
charged localization centers, in which the role of Cou-
lomb and spin correlations is most significant; and
(iv) since, as a rule, the ratio of the height to the lateral
size in self-organizing QDs is much smaller than unity,
the wavefunctions of charge carriers in QDs are
strongly anisotropic and two-dimensional in contrast to
those for impurities.

The simplest manifestation of correlation effects is
the formation of a Coulomb gap in the spectrum of
localized states of a disordered system owing to the
long-range part of the electron–electron interaction [1].
However, the Éfros–Shklovskiœ one-electron model
ignored possible many-particle correlations in electron
hopping in the case when, for example, simultaneous or
consecutive jumps of some electrons over small dis-
tances facilitate the motion of other electrons over long
distances, lowering the corresponding energy barriers
on the path of current by their Coulomb potential. One
of the possible manifestations of many-particle excita-
tions is the formation of electron polarons in the sys-
tem, viz., a “coat” of polarized pairs of localized states,
which is entrained by an electron moving over a perco-
lation cluster [2, 3].
 © 2005 Pleiades Publishing, Inc.
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In this study, we analyze hopping transport of holes
in 2D arrays of Ge/Si(001) QDs. Analysis of the tem-
perature and magnetic-field dependences of low-tem-
perature conductivity reveals the presence of many-par-
ticle Coulomb correlations of holes localized in QDs.

2. EXPERIMENTAL TECHNIQUE

Figure 1 shows a schematic diagram of the struc-
tures on which experiments were carried out. The sam-
ples were grown by molecular-beam epitaxy on a
Katun’-type setup designed at the Institute of Semicon-
ductor Physics, Siberian Division, Russian Academy of
Sciences. The substrates were Si plates with the (001)
orientation and a resistivity of 20 Ω cm, which were
doped with boron to a concentration of approximately
to 1014 cm–3. Before their loading into the epitaxial
chamber, the substrates were degreased in acetone and
coated with a layer of surface oxide having a thickness
of about 10 Å by etching in an H2O2 : HNO3 : H2O solu-
tion. After loading into the epitaxial chamber, the plates
were heated to 800°C and held for 3 min in a silicon
flow of approximately 1013 atm/(cm2 s). The surface
purity was monitored using diffraction of fast electrons.
After the preepitaxial treatment, the substrates were
reloaded to the growing vessel.

A Ge layer with a thickness of eight monolayers
(∼ 10 Å) was introduced into a Si layer grown on a
250-nm substrate at 300°C at a distance of 200 nm from
its surface. Judging from the reflection high-energy
electron diffraction pattern from the surface of the Ge
island film, germanium nanoclusters that formed
according to the Stranski–Krastanov growth mecha-
nism had the shape of pyramids. Structural analysis
using high-resolution electron microscopy revealed
that the mean size of the base of Ge nanoclusters in the
growth plane was 12 nm, the height was approximately
2 nm, and the nanocluster layer density was Nqd ≈ 3 ×
1011 cm–2. Figure 2 shows the image of the cross section
of a Ge/Si heterostructure, obtained with the help of
high-resolution electron microscopy.

The controllable filling of Ge islands with holes was
carried out by introducing into the sample a Si layer
δ-doped with boron at a distance of 10 nm below the
layer of Ge islands. Since the ionization energy EB of
boron impurities in silicon amounts to only 45 meV,
and the energies Ei corresponding to the first ten layers
of holes in germanium QDs of such a size, which are
measured from the top of the valence band in Si, range
between 200 and 320 meV [4], the holes leaving impu-
rity sites below room temperature populate the levels in
QDs. The boron concentration in the δ-layers of two
prepared experimental samples with QDs was approxi-
mately 6.9 × 1011 and 8.4 × 1011 cm–2, respectively. Cal-
culations based on solving the system of the Poisson
and electroneutrality equations as well as on statistical
distribution of holes over the energy levels in the sys-
tem proved that the average number of holes (filling
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
factor ν) per QD was 2.3 and 2.8 for two different sam-
ples. The system formed by the charged QD layer and
the charged δ-Si:B layer was simulated by a parallel-
plate capacitor with distance d between the plates equal
to the spacing between the QD and δ-Si:B layers. In cal-
culating filling factor ν, we took into account the first five
states of holes in QDs, which were determined earlier
in [4, 5]. In addition, we assumed that the temperatures
are so low (kBT ! Ei) that free holes are absent in the
valence band. We solved the system of equations

nB

NB

1 0.5 EB εF–( )/kBT–[ ]exp+
--------------------------------------------------------------------,=

nqd

2Nqd

1 Ei εF u+–( )/kBT[ ]exp+
-----------------------------------------------------------------,

1 i 5≤ ≤
∑=

u
nqded

κε0
------------, nqd nB+ NB,= =

Ge islands

Al Al

200 nm i-Si

10 nm i-Si

δ-Si:B

50 nm i-Si

Si(001) substrate
1014 cm–3 V

Fig. 1. Schematic diagram of the samples used for measure-
ments of the conductivity of QD layers.

10 nm

Fig. 2. Image of the structure cross section, obtained using
high-resolution electron microscopy. Dark regions are Ge
islands.
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where kB is the Boltzmann constant, nB is the concen-
tration of holes remaining at boron impurity atoms, nqd

is the hole concentration in the QD layer, NB is the
boron concentration in the δ layer, εF is the Fermi layer,
u is the electrostatic potential of the QD layer, and ε0 =
8.87 × 10–12 F/m is the absolute permittivity of vacuum.
The results of calculations are depicted in Fig. 3. The

10 2 3 4
NB, 1012 cm–2

1

2

3

4

5

6
ν

Fig. 3. Calculated dependence of the factor of filling of QDs
with holes on the boron concentration in the δ layer. The
distance between the Ge QD layer and the δ layer is 10 nm.
The results are independent of temperature at T < 20 K.
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σT, Ω–1 K

3.6 × 1012 cm–2

3.0 × 1012 cm–2

2.5 × 1012 cm–2

1.8 × 1012 cm–2

Fig. 4. Dependence of quantity σT, where σ is the conduc-
tivity and T is the temperature, on T–1/2 for check δ-Si:B
samples free of germanium QDs. The experimental data are
plotted in semilogarithmic coordinates.
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factor of QD filling with holes for the prepared samples
was calculated using precisely this figure.

The structures were prepared photolithographically
in the form of Hall bridges. Contacts were formed by
etching the Si layer to a depth of 0.15 µm. Then an alu-
minum layer was deposited in vacuum and annealing
was carried out at a temperature of 600°C.

The monitoring of the composition of Ge islands
with the help of Raman spectroscopy showed that the
fraction of Ge in the islands was approximately 70%.
The concentration of doping impurity was determined
using secondary-ion mass spectrometry.

In addition to samples containing Ge QDs, a batch
of check samples free of a Ge layer was grown. The
boron concentration in the δ-doped Si layer in check
samples varied from 1.8 × 1012 cm–2 to 4.2 × 1012 cm–2.

Conductivity measurements were carried out in pla-
nar geometry (along the QD layer) using the dc four-
point technique in a temperature range of 1.5–20 K.
The magnetoresistance was measured in a constant
magnetic field up to 5.5 T, which was perpendicular (H⊥
orientation) or parallel (H|| orientation) to the plane of
the structure. In the latter case, the magnetic field was
directed parallel or perpendicular to the electric current.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

3.1. Temperature Dependence of Conductivity 
and Magnetic Transport in δ-Si:B Structures 

Our measurements show that the dependence of
conductivity σ on temperature T for all check samples
free of Ge nanoclusters obeys the Éfros–Shklovskiœ law

, (1)

where γ = (0.3–3) × 10–2 K/Ω and T1 = 600–1000 K
(Fig. 4). This law indicates the emergence of variable
range hopping conduction mechanism provided that a
“soft” Coulomb gap exists in the density of impurity
states of a 2D disordered system [6]. The Si layer
δ-doped with boron apparently plays the role of such a
2D system.

Figure 5 shows the typical magnetic-field depen-
dences of the resistance for one of the test samples
(with a boron concentration in the δ-doped layer of
3.6 × 1012 cm–2). Although the magnetoresistance dif-
fers insignificantly for different field orientations, it is
still not the same and is a combination of two contribu-
tions of opposite signs. The negative magnetoresistance
is apparently associated with suppression of “destruc-
tive” interference of various tunneling “trajectories” in
a magnetic field, which include subbarrier scattering
events [7, 8]. This mechanism essentially resembles the
negative magnetoresistance mechanism in the case of
diffusion charge transfer under weak localization con-

σ T( ) γ
T
---

T1

T
----- 

 
1/2

–exp=
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005



HOPPING CONDUCTIVITY AND COULOMB CORRELATIONS IN 2D ARRAYS 725
ditions and is associated with a change in the phase of
the wavefunction under the conditions when we can
speak of coherence of tunneling with allowance for
scattering from impurities. The positive contribution is
due to “compression” of the wavefunctions of localized
charge carriers in directions perpendicular to the
magnetic field [9, 10]. As a result of such compression,
the degree of overlapping of the wavefunctions of car-
riers at different sites separated by long distances
becomes lower and the percolation threshold in the sys-
tem is shifted towards higher values. Additional exper-
iments revealed that magnetoresistance anisotropy
increases upon cooling; however, since the relative
magnetoresistance of the check samples is small (on the
order of a few percent), the problem of temperature sta-
bilization arises in obtaining correct experimental
results at T < 4 K.

3.2. Temperature Dependence of Conductivity
in Ge/δ-Si:B Samples with Quantum Dots 

Our measurements of the temperature dependence
of conductivity made for samples with Ge QDs proved
that the conductivity of these samples above Tc = 4–5 K
obeys the Éfros–Shklovskiœ law

with a temperature-independent preexponential factor
σ0 on the order of e2/h. For example, σ0 = 2.5e2/h and
T1 = 220 K for a sample with a filling factor of ν = 2.3,
while σ0 = e2/h and T1 = 100 K for a sample with ν =
2.8. Figure 6 shows an example of such a behavior of
the sample with ν = 2.8. The universal value of the pre-
exponential factor (on the order of e2/h) was predicted
earlier by Kozub et al. [11] and was one of indications
of the existence of consecutive many-electron Coulomb
correlations in the system.

As the temperature decreases, the temperature
dependence of conductivity becomes stronger; at
T < Tc , a transition from the Éfros–Shklovskiœ to the
Arrhenius law

takes place. This phenomenon can be traced most
clearly on the temperature dependence of the local con-
ductivity activation energy (Fig. 7). In the general case,
the temperature dependence of hopping conductivity is
described by the law

The activation energy is defined as

(2)

With such an approach, we have

σ T( ) σ0 T1/T( )1/2–[ ]exp=

σ T( ) σ0 Ea/kBT–( )exp=

σ T( ) T1/T( )x–[ ] .exp∝

W
∂ σln

∂ 1/kBT( )
----------------------- xkBT1 x– T1

x.= =

W T( )log A 1 x–( ) T and Alog+ xkBT1
x( ).log= =
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Plotting  as a function of , we can deter-
mine the exponent x describing the temperature depen-
dence of conductivity from the slope of the straight
line. It can be seen from Fig. 7 that the activation energy

W T( )log Tlog

10 2 3
H, T

–0.03

–0.02

–0.01

0
∆R(H)/R(0)

T = 4.2 K

H⊥

H||

Fig. 5. Relative variation of the resistance in magnetic fields
of different orientations for one of test samples free of Ge
QDs. The measuring temperature is 4.2 K. The boron con-
centration in the δ-doped layer is 3.6 × 1012 cm–2.
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Fig. 6. Dependence of the logarithm of conductivity on
T−1/2 (upper abscissa axis) and T–1 (lower abscissa axis) for
a sample with Ge QDs and with filling factor ν = 2.8.
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Fig. 7. Temperature dependence of the hopping conduction

activation energy W = ∂lnσ/∂(1/kBT) = xkBT1 – x  plotted

in the log–log coordinates. Solid lines describe the approx-
imation of experimental data on W(T) by formula (2).
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Fig. 8. Relative variation of the resistance in a magnetic
field at various temperatures for a Ge/Si sample with Ge
QDs and QD filling factor ν = 2.8.
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at high temperatures decreases with T; i.e., the variable
range hopping conduction mode is realized. At temper-
atures below Tc = 4 K for the sample with ν = 2.3 and
Tc = 5 K and for the sample with ν = 2.8, the activation
energy becomes virtually independent of temperature.
This is manifested most clearly in the latter case.
Approximation of experimental data on W(T) by for-
mula (2) at T > Tc (solid lines in Fig. 7) gives exponents
x = 0.52 ± 0.03 and x = 0.50 ± 0.03 for samples with
ν = 2.3 and 2.8, respectively. This means that the value
of x changes indeed from x = 1/2 to x ≈ 1 upon system
cooling.

3.3. Magnetoresistance in Ge/δ-Si:B Samples
with Quantum Dots 

The magnetoresistance for the Ge/δ-Si:B sample
with ν = 2.8 is shown in Fig. 8. An analogous behavior
is also observed for the structure with ν = 2.3. The fol-
lowing two circumstances are worth noting here. First,
the magnetoresistance is positive in a transverse mag-
netic field and negative in a longitudinal magnetic field
for both field orientations relative to the current in the
latter case. The relative magnetoresistance for the trans-
verse orientation of the magnetic field is almost two
orders of magnitude higher than the value of
|∆R(H)/R(0)| for fields parallel to the plane of the struc-
ture. Such a giant anisotropy indicates an “ideal” 2D
nature of hopping charge transfer in QD layers. Second,
for the H⊥  orientation, the magnetoresistance of the
structure with QDs is much higher than the magnetore-
sistance of a check sample without QDs, which indi-
cates a decisive role of the QD ensemble in the
observed features of magnetic transport. In the subse-
quent analysis, we will confine ourselves to the discus-
sion of experimental data for the transverse magnetic
field orientation only.

A detailed analysis shows that the magnetic-field
dependences R(H) of the resistance for samples with
QDs in the region of weak fields can be approximated
by the expression

(3)

(dashed lines in Fig. 9). The negative term linear in H
takes into account the presence of a negative magne-
toresistance in the vicinity of zero; as the magnetic field
increases, the magnetoresistance rapidly changes its
sign and becomes positive (see Fig. 9). The values of
characteristic fields B0 are shown in Fig. 10. It was
found that parameter B0 for both samples is a nearly lin-
ear function of temperature.

3.4. Activation Energy 
of Low-Temperature Conduction in a Magnetic Field 

Figure 11 shows the temperature dependences of
conductivity in the region where the Arrhenius law

R H( )/R 0( )( )ln H2/B0
2

H/H*–=
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holds (at T < Tc) in various magnetic fields. It can be
seen that the activation nature of charge transport is also
preserved in a magnetic field. Figure 12 shows the con-
duction activation energy Ea determined from the slope
of the experimental curves. It turns out that the value of
Ea increases in a magnetic field and attains saturation in
fields H > Hsat = 4 T.

3.5. Discussion of Experimental Results 

The activation dependence of the type σ(T) =
σ0exp(–Ea/kBT) observed in the region of hopping
charge transfer is attributed as a rule to hopping con-
duction over nearest neighbors [1]. In our case, this
conduction mechanism cannot explain the experimen-
tal results for the following reasons.

First, the mechanism of conduction over the nearest
neighbors must change to the variable range hopping
conduction upon cooling. Our experiments reveal the
reverse.

Second, in the mechanism of hopping over the near-
est neighbors, the characteristic magnetic field B0 is
independent of temperature [9]. However, Ge/Si sam-
ples with QDs exhibit a linear relation between B0 and
T (see Fig. 10).

Third, the value of activation energy ε3 of hopping
conduction over the nearest neighbors can be estimated
as ε3 = e2/κl, where l is the distance between the QD
layer and the δ-doped Si layer [12]. For l = 10 nm and
κ = 12, we obtain ε3 = 12 meV, which is an order of
magnitude higher than the experimental value of Ea .

The above arguments suggest that the energy states
of holes are absent in the vicinity of the Fermi level in
a band of width 2Ea; in other words, the spectrum of
states contains a “hard” energy gap. With decreasing
temperature, the energy band that contains the energy
levels ensuring optimal jumps of holes between QDs at
a given temperature becomes narrower. Beginning with
a certain temperature, at which the energy bandwidth
becomes equal to the gap, the conduction activation
energy and the hopping range become independent of
temperature, which explains the transition from the
Éfros–Shklovskiœ law to the Arrhenius law. It should be
noted that this gap cannot be due to formation of a mag-
netic polaron in the system since in this case it should
vanish in a magnetic field due to screening of the
exchange interaction [13–15].

We believe that the observed effects (such as the
transition from the Éfros–Shklovskiœ to the Arrhenius
law upon system cooling and the increase on activation
energy Ea in a magnetic field) are experimental evi-
dence of the presence of a hard gap in the spectrum of
hole states, which is associated with the formation of
electron polarons [3]. To interpret this phenomenon, we
must recollect that a disordered system contains, in
addition to sites forming a through system of routes for
the passage of current from site to site, compact pairs of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sites with a low excitation energy and a small spacing
in a pair. Such compact pairs are separated by rather
long distances. Transitions between such pairs do not
occur; consequently, these pairs cannot participate in
static conduction, but can affect the electrons moving
over a percolation cluster through their dipole potential
emerging during transitions in a pair. Let an electron
hopping occur from a filled site to site i in a percolation
cluster (Fig. 13a). Then it would be advantageous for
many compact pairs in the vicinity of site i to transfer
an electron from one site in a pair to the other site to
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4.20 K

Fig. 9. Dependence of magnetoresistance for a Ge/Si sam-
ple with Ge QDs and QD filling factor ν = 2.8 on H2 in the
range of weak magnetic fields.
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Fig. 10. Values of characteristic magnetic field B0 obtained
by approximating the experimental data by formula (3) for
various temperatures. Solid lines show the results of
approximation of experimental B0(T) dependences by a
power function.
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reduce the Coulomb repulsion of electrons and to lower
the energy of an arriving electron. The “coat” of polar-
ized pairs emerging in this case around the ith site and
entrained by the electrons tunneling to the next site is
known as an electron polaron. This phenomenon
resembles in many respects the emergence of a polaron
in ionic crystals, when a conduction electron moving
over the lattice causes a redistribution of relative posi-
tions of positive and negative ions in the lattice. How-
ever, polarization in our case emerges not due to dis-
placement of ions, but as a result of a redistribution of
electrons in compact pairs.

0.30.2 0.4 0.5 0.6 0.7 0.8

T–1, K–1

4 3 2 1.5
T, K
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H = 0

5.3 T
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10–9
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10–7

σ,
 Ω

–
1

Fig. 11. Temperature dependences of conductivity at T <
5 K plotted in the Arrhenius coordinates in various mag-
netic fields. Symbols indicate the experimental data. The
values of magnetic field H for the upper figure from top to
bottom: 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, and 5.3 T; lower
figure: H = 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, and 5.5 T.
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Theoretical calculations show that, as a result of the
polaron effect, filled states of electrons must be sepa-
rated from empty states by a polaron gap of 2∆p

(Fig. 13b) [2, 3]. If the disorder in the system is not very
strong and the energies of compact pairs in the vicinity
of all sites differ insignificantly, the polaron gap is hard
in the sense that it does not contain any states alto-
gether. In systems with a strong disorder, the probabil-
ity that a polaron shift in the vicinity of certain sites is
small differs from zero; in this case, the density of
states in the polaron gap turns zero in accordance with
an exponential law [2, 3].

An increase in the activation energy of hopping con-
duction in a magnetic field can be interpreted on the
basis of the following considerations. The magnetic
field deforms the electron wavefunctions at a large dis-
tance so that the overlap integral for electrons at remote
sites decreases. In turn, the decrease in the overlap inte-
gral for the electron wavefunctions in compact pairs
with remote sites leads to a decrease in the energy of
electron transitions in pairs [16], which increases the
possible number of pairs participating in the formation
of an electron polaron. The field hardly affects the over-
lap integrals inside the pairs. Formally speaking, den-
sity of states g0 [17] and, hence, the Coulomb [1] and
polaron gaps increase in the magnetic field (the polaron
gap width is proportional to the Coulomb gap width [3],
at least, for a 3D system).

Unfortunately, analytic models of the polaron effect,
which would make it possible to calculate numerically
the polaron gap expected for our samples, have not
been developed as yet. However, to calculate ∆p , we
can use the results of simulation obtained in [3] and
indicating that the polaron gap (at least, for a 3D disor-
dered system) is smaller than the Coulomb gap ∆C
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Fig. 12. Magnetic field dependence of the low-temperature
conduction activation energy.
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approximately by a factor of 5. In turn, the value of ∆C

can be estimated from the relation ∆C ~ kB(T*T1)1/2,
where T* is the temperature above which the Éfros–
Shklovskiœ law is violated [18]. For our samples, T* =
10–15 K [19]. Setting T* = 15 K and T1 = 200 K, we
find that ∆C ~ 5 meV and ∆p ~ 1 meV, which is indeed
close to the experimental value of Ea = 1.0–1.2 meV.

At first glance, the tendency in the conduction acti-
vation energy to saturation in strong fields appears as
unexpected (Fig. 12). However, this phenomenon can
also be explained on the basis of concepts of electron
polarons. Following Raikh [16], let us consider the
transition of an electron from site 1 to site 2 in a com-
pact pair in the presence of filled center 3 near site 1.
The energy required for this transition is defined by the
formula

where energies ε1, ε2, and ε3 of the sites are measured
from the Fermi energy and their spread is determined
by topological, composition, or Coulomb disorder in
the system as well as by the overlap integrals for sites 1
and 2. The second term in this expression is just the cor-
rection associated with overlapping of the wavefunc-
tions of holes at sites 1 and 3 and |V13| is the correspond-
ing overlap integral. In a magnetic field, the overlap
integral decreases and the energy of electron transitions
in compact pairs tends to a value determined by the val-
ues of ε1 and ε2 alone. Consequently, the difference
Ea(H = Hsat) – Ea(H = 0) is an estimate of the typical
overlap integral |V | between neighboring QDs. It can be
seen from Fig. 12 that |V | ≈ 0.2–0.4 meV. On the other
hand, the overlap integral can be written in the form

(4)

where V0 is the binding energy of a charge carrier at a
site (in out case, it is the depth of a level in the quantum
well) and r0 is the mean distance between QDs. Setting
V0 ~ 300 meV [4], |V | ~ 0.3 meV, and r0 = 20 nm, we
obtain from relation (4) an estimate a ~ 4 nm for the
radius of localization of a hole in an excited state,
which is close to the value (approximately equal to
3 nm) obtained in [20] as a result of numerical simula-
tion of the electron structure of hole states for analo-
gous Ge/Si(001) QD layers.

After the manuscripts had been prepared, we
learned that Dubrovskii et al., who studied the tunnel-
ing between two disordered systems in a transverse
magnetic field [21], observed the formation of a hard
gap in the density of localized states in strong fields.

∆12 ε2 ε1–
V13
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ε3 ε1–
---------------,+=

V
V0a
r0
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r0

a
----– 

  ,exp=
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Probably, the mechanisms of this phenomenon and the
processes described above are of the same nature.
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Abstract—Analytic properties of the dimensionless static effective dielectric constant f(p, h) of a two-dimen-
sional Rayleigh model (p is the concentration and h is the ratio of the dielectric constants of components) are
considered as a function of the complex variable h. It is shown that the only singularities of the function f(p, h)
are first-order poles for real h = hn < 0 (n = 1, 2, …) with the condensation point h = –1, which form an infinite
discrete (countable) set. The positions of the first ten poles of the function f(p, h) and the residues at these points
are calculated and represented graphically versus the concentration. Based on the results obtained, a pole-type
approximate formula is proposed that describes the behavior of the function f(p, h) over a wide range of p and
complex h. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The experiments carried out in [1, 2] revealed an
anomalous growth in the dielectric constant of samples
when approaching a metal–insulator phase-transition
point. This fact has stimulated interest in the more gen-
eral problem, the study of the low-frequency electro-
physical properties of such systems (in particular, of
binary composites). Theoretical analysis of this problem
was carried out within the similarity hypothesis [3, 4]
and by the method of the effective-medium theory [5].
In [6], the low-frequency dispersion of the conductivity
of a disordered two-component lattice model was ana-
lyzed by numerical methods. The studies of [4–6]
revealed a number of essential features of this phenom-
enon and showed that investigating the dispersion of
the dielectric constant (or the conductivity) of such sys-
tems is important, in particular, to gain a deeper insight
into the metal–insulator phase transition.

In [7], a more general approach (compared with that
of [4, 5]) has been applied to the problem of low-fre-
quency dispersion of the dielectric constant of binary
composites; the application of this approach is not
restricted by the applicability domain of approximate
methods, such as the similarity hypothesis or the effec-
tive-medium theory. This approach requires that one
should know the properties of the dimensionless static
effective dielectric constant f(p, h) of a composite (p is
the concentration and h is the ratio of the dielectric con-
stants of the components) for complex values of the
variable h. This is associated with the fact that, in a low-
frequency (quasi-stationary [8]) electric field, the
dielectric constants of individual components, as well
as of the composite as a whole, are complex quantities.
1063-7761/05/10004- $26.000731
The function f(p, h), considered as a function of
complex frequency ω, is analytic in the upper half-
plane Imω > 0, while its singularities lie in the half-
plane Imω ≤ 0. However, a natural independent variable
for f is h rather than the frequency ω; we denote the
complex value of h by ζ. It turns out that the static
effective dielectric constant f(p, ζ), considered as a
function of ζ, is analytic in the whole complex plane ζ
except for the negative real half-line (Reζ ≤ 0, Imζ = 0)
(see [7]). Thus, all singularities of the function f(p, ζ)
lie on this half-line (and, possibly, at the infinite point
ζ = ∞) [7].

Knowledge of these singularities allows us to write
out a dispersion relation. Using this relation, one can
express the function f(p, ζ) with arbitrary complex ζ in
terms of its imaginary part on the negative real half-line
(more precisely, for Reζ < 0 and Imζ = i0). Note that the
type of the singularities of f(p, ζ) is not universal but
depends on the specific structure of a composite. For
instance, according to [9, 10], the function f(p, ζ) has
only a discrete set of first-order poles for finite samples.
One may assume that infinite periodic systems also
have a discrete set of such poles (which is confirmed,
for example, by the results of the present study). For
composites with a random distribution of components,
one should expect that the poles merge into a cut Reζ ≤
0 and Imζ = 0, so that, on the upper (or lower) bank of
this cut, Imf(p, ζ), considered as a function of t = –Reζ,
is generally different from zero in the whole interval
0 < t < ∞ (see, for example, [11]).

The study of the analytic properties of f(p, ζ) for
concrete models faces difficulties associated with the
absence of exact solutions for binary systems with
finite (nonzero) values of the dielectric constants of
 © 2005 Pleiades Publishing, Inc.



 

732

        

BALAGUROV, KASHIN

                                      
both components. An exception is given by the follow-
ing model, which was first proposed by Rayleigh [12]:
a two-dimensional matrix with a doubly periodic distri-
bution of circular inclusions. In [12], Rayleigh actually
found only the first few terms of a virial decomposition
(for a small concentration of inclusions) for the effec-
tive dielectric constant of such a system. A full solution
to this problem is given, for example, in [13, 14].

In the present paper, we apply the results obtained
in [13, 14], which can also be applied in a complex
domain, to study the analytic properties of the effective
static dielectric constant of the two-dimensional Ray-
leigh model. We show that, according to the general
considerations given in [7], all singularities of the func-
tion f(p, ζ) are concentrated on the negative real half-
line and constitute an infinite discrete (countable) set of
simple poles. In this paper, we determine the positions
of the first ten poles and the residues at these poles as a
function of the concentration of inclusions. To this end,
we solve the basic equations from [13, 14] by numeri-
cal methods. In specific calculations, we single out a
subset of 40 equations from the infinite set of these
equations.

In the case of the periodic model considered here,
the function f(p, ζ) is represented as an infinite sum of
polar terms. Taking into account a finite number of
terms, we obtain a relatively simple approximate for-
mula for f(p, ζ). In this case, the complex three-param-
eter function f(p, ζ) is reduced to a real function of a
single variable (the concentration). The calculation of
the position of the first few poles and the corresponding
residues as a function of the concentration of inclusions
allows us to describe f(p, ζ) over a wide range of the
variables p and ζ.

The model under discussion is investigated within
the dielectric-constant problem (with the use of appro-
priate terminology). Similar problems concerning the
conductivity, thermal conductivity, steady-state diffu-
sion, etc., differ from the dielectric-constant problem
by an obvious change of notation, and the solutions to
these problems (for a given model) are expressed in
terms of the same function f(p, ζ).

2. PRELIMINARY REMARKS

Let us express the static effective dielectric constant
εe of an isotropic binary composite as

(1)

Here, p is the concentration of the first component and
εi (i = 1, 2) is the dielectric constant of the ith compo-
nent; the type of the function f(p, h)—the dimension-
less effective static dielectric constant—depends on the
specific structure of the composite. Note that, in the

εe εe p; ε1 ε2,( ) ε1 f p h,( );= =

h ε2/ε1.=
JOURNAL OF EXPERIMENTAL A
two-dimensional case, the function f(p, h) satisfies the
reciprocity relation [15] (see also [7])

(2)

which is valid for isotropic two-dimensional, two-com-
ponent systems of arbitrary structure.

In a low-frequency (quasi-stationary [8]) electric
field, the expression for the effective dielectric constant
remains the same as (1); however, the parameters εe and
εi are now complex functions of frequency ω. In this
case, the argument h = h(ω) of the function f(p, h) is
also complex. For instance, for “poor” conductors (say,
for semiconductors), it is reasonable to introduce the
conductivity σ and the dielectric constant ε simulta-
neously [8]. This is conveniently done by introducing
the complex dielectric constant ε(ω) [8]

(3)

One of the conditions of quasi-stationarity is the inde-
pendence of ε and σ of frequency [8], which we assume
to be satisfied. In this case, by ε and σ are meant the
static values of these quantities.

As pointed out above, the determination of the
effective low-frequency electrophysical characteristics
of a medium (a composite) in the quasi-stationary
approximation differs from that in the static case only
by the change of the dielectric constant ε in (1) by the
complex dielectric constant ε(ω). In this case, we
obtain the following expression for ε(ω) given by (3):

(4)

(5)

Hence, we obtain

(6)

(7)

with h(ω) from (5). Note that, in contrast to εi and σi ,
the effective characteristics εe and σe depend on fre-
quency ω.

Thus, knowledge of the properties of the static func-
tion f(p, ζ) in the plane of the complex variable ζ allows
us to apply formula (1) even for ω ≠ 0 provided that we
make the substitution

(8)

f p h,( ) f p 1/h,( ) 1,=

ε ω( ) ε i
4πσ
ω

----------.+=

εe i
4πσe

ω
------------+ ε1 i

4πσ1

ω
------------+ 

  f p h ω( ),( ),=

h ω( ) ε2 i
4πσ2

ω
------------+ 

     ε 1 i 
4

 
πσ

 
1 ω ------------+  

  .=

εe ε1Re f p h ω( ),( )
4πσ1

ω
------------Im f p h ω( ),( ),–=

σe σ1Re f p h ω( ),( )
ε1ω
4π
---------Im f p h ω( ),( )+=

ζ h ω( ) ε2 ω( )/ε1 ω( ).=
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For systems with a metal–insulator phase transition,
the behavior of the function f(p, h) in the critical
domain is usually described within the similarity
hypothesis [4]. The application of appropriate expres-
sions (more precisely, their analytic continuations) for
f(p, h) allows us to describe, in this approximation, the
behavior of the effective parameters εe and σe as func-
tions of frequency ω in the entire critical domain
(see [4, 7]. On the other hand, the substitution of the
expression for f(p, h) calculated within the effective-
medium theory [16] into formulas (4)–(7) reproduces
the theoretical results of [5].

3. ANALYTIC PROPERTIES
OF THE FUNCTION f(p, ζ)

It is well known that the dielectric constant, consid-
ered as a function of complex frequency ω, is analytic
in the upper half-plane Imω > 0 (see [8, Section 82]).
Moreover, according to [8], the dielectric constant has
no zeros for Imω > 0 and finite ω. Therefore, the func-
tion f = εe(ω)/ε1(ω) is also analytic in the upper half
plane of ω. To determine the analytic properties of
f(p, ζ) as a function of the complex variable ζ, one
should know to what domain of the plane ζ the trans-
form ζ = h(ω) with h(ω) from (8) maps the upper half-
plane Imω > 0. A consideration of specific transforms
shows [7] that the half-plane Imζ > 0 is generally
mapped to the whole plane ζ with the removed negative
real half-line (Reζ < 0, Imζ = 0). Hence, the function
f(p, ζ) is analytic in this domain of the plane ζ, while the
singularities of this function lie on the above-men-
tioned half-line; in particular, the imaginary part of f
has a discontinuity on this half-line. The infinite point
ζ = ∞ requires separate consideration. In the two-
dimensional case considered here, the function f(p, ζ)
with ζ = ∞ either is finite, or has a first-order pole [7] if
the concentration p is different from the critical concen-
tration (p ≠ pc). Note also that, according to [7], the fol-
lowing equality holds:

(9)

where the star denotes complex conjugation.
Knowledge of the analytic properties of f(p, ζ)

allows us to write out a dispersion relation. For definite-
ness, consider a two-dimensional case (D = 2) and the
domain of concentrations p > pc when there is no per-
colation in the second component, so that the function
f(p, ζ) takes a finite value f(p, ∞) as ζ  ∞. According
to [7], under these conditions, the dispersion relation
has the form

(10)

where f(+)(p, –t) = f(p, –t + i0). Hence, to determine
f(p, ζ) on the whole plane of ζ, it suffices to know the
imaginary part of f(+) and the quantity f(p, ∞).

f p ζ*,( ) f * p ζ,( ),=

f p ζ,( ) f p ∞,( ) 1
π
--- Im f +( ) p t–,( )

t ζ+
-------------------------------- t,d

0

∞

∫–=
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Note that the real part of impedance in the so-called
LC model is expressed in terms of the imaginary part of
f(+); one component of this model has inductive reac-
tance, and the other has purely capacitive reactance
(see [7]). According to [8], the real part of the imped-
ance is nonnegative, so that [7, 11]

(11)

As pointed out in [15] (see also [7]), the fact that the
real part of the effective impedance is different from
zero (i.e., the presence of real absorption of energy) is
associated with the existence of impurity levels (local
oscillations) in the LC model whose resonant excitation
is responsible for the energy dissipation. Thus, the
mathematical singularities of the function f(p, ζ) in the
complex plane ζ are directly related to a physical phe-
nomenon—the presence of local oscillations in the LC
model.

In periodic systems, the polar terms in f correspond
to resonances at certain natural frequencies ωn in the
LC model, which are expected to form a discrete spec-
trum. The frequencies ωn correspond to real values
(eigenvalues) hn = h(ωn) < 0 with h(ω) = –ω2/Ω2 [7],
where Ω is the Thomson frequency (the resonance fre-
quency of the LC circuit). At ζ = hn , the function f(p, ζ)
has poles. The eigenvalues hn , which also form a dis-
crete spectrum in the case of a periodic system, depend
only on the structure (i.e., on the geometrical character-
istics) of a composite and are independent of the spe-
cific character of the problem (cf. [17]). Therefore, the
values hn , which represent dimensionless numbers, are
the same (for a given structure of the composite) both
for a frequency-dependent LC model and for static
problems (problems of dielectric constant, conductiv-
ity, thermal conductivity, etc.). In this case, the eigen-
values hn are primary quantities that characterize the
geometry of the composite, while, for example, the res-
onance frequencies ωn of the LC model are secondary

quantities, which are expressed in terms of hn:  =
−hnΩ2 > 0.

4. PERIODIC MODELS

As pointed out above, one should expect that, in
periodic systems, the eigenvalues hn (and, hence, the
poles of the function f) form a discrete spectrum. There-
fore, if we consider, as in the previous section, the two-
dimensional case and the domain of concentrations
p > pc (which corresponds to R < a in the Rayleigh
model), we obtain the following expression for the
function f(p, ζ):

(12)

Im f +( ) p t–,( ) 0.≥

ωn
2

f p ζ,( ) f p ∞,( )
Fn

ζ hn–
--------------,

n 1=

∞

∑–=
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where hn < 0. Hence, the imaginary part of f(p, ζ) for
ζ = –t + i0 (where t is real and positive) is represented
by a sum of delta functions:

(13)

Formula (13) and inequality (11) imply that

Fn ≥ 0. (14)

The function f(p, ζ) given by (12) has all the proper-
ties established in Section 3; in particular, it satisfies
equality (9) because f(p, ∞), Fn , and hn are real. Note
also that the substitution of (13) into (10) reproduces
formula (12).

Since f = 1 for ζ = h = 1 (a homogeneous medium),
the following equality must hold:

(15)

For ζ = h  1, expansion (12) up to the term (1 – h)2

inclusive, combined with (15), yields

(16)

Comparing (16) with the general expression for a
weakly inhomogeneous isotropic two-dimensional
binary system (see, for example, [11])

(17)

we arrive at the two identities

(18)

(19)

where c is the concentration (for D = 2, the area frac-
tion) of the second component.

Im f +( ) p t–,( ) π Fnδ t hn+( ).
n 1=

∞

∑=

f p ∞,( ) 1
Fn

1 hn–
--------------.

n 1=

∞

∑+=

f p h,( ) 1 1 h–( )
Fn

1 hn–( )2
---------------------

n 1=

∞

∑–=

– 1 h–( )2 Fn

1 hn–( )3
--------------------- … .+

n 1=

∞

∑

f p h,( ) 1 c 1 h–( )–
1
2
---c 1 c–( ) 1 h–( )2– … ,+=

Fn

1 hn–( )2
---------------------

n 1=

∞

∑ c 1 p,–= =

Fn

1 hn–( )3
---------------------

n 1=

∞

∑ 1
2
---c 1 c–( ) 1

2
--- p 1 p–( ),= =
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Setting ζ = 0 in (12), we obtain the relation

(20)

which implies the obvious inequality f(p, 0) < f(p, ∞)
because Fn > 0 and hn < 0. Eliminating f(p, ∞) from (12)
with the use of (20), we obtain

(21)

Using (12) with ζ = h, we expand f(p, h) and f(p, 1/h)
in powers of h and substitute the result into reciprocity
relation (2). Taking into account (20), we obtain the fol-
lowing relation in the linear approximation in h:

(22)

The functions f(p, 0) and f(p, ∞) are related by the
formula

(23)

which also follows from (2) for h  0. Eliminating
f(p, ∞) from (22) with the use of (23), we obtain

(24)

Differentiating (12) with respect to ζ, we find

(25)

Hence, for real ζ = h, we have

(26)

for positive h and

(27)

for negative h. For h < 0, Ref(p, h) monotonically
increases (as h increases) in any interval bounded by
two neighboring poles.

f p 0,( ) f p ∞,( )–
Fn

hn

-----,
n 1=

∞

∑=

f p ζ,( ) f p 0,( ) ζ
Fn

hn ζ hn–( )
------------------------.

n 1=

∞

∑–=

f p 0,( ) Fn

n 1=

∞

∑ f p ∞,( )
Fn

hn
2

-----.
n 1=

∞

∑=

f p 0,( ) f p ∞,( ) 1,=

f p 0,( )[ ] 2 Fn

hn
2

-----    F n . 

n

 

1=

 

∞

 ∑  

n

 

1=

 

∞

 ∑  =

∂f p ζ,( )
∂ζ

--------------------
Fn

ζ hn–( )2
--------------------.

n 1=

∞

∑=

∂f p h,( )
∂h

-------------------- 0>

∂Re f p h,( )
∂h

---------------------------- 0>
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The substitution of (15) into (12) yields the follow-
ing expression for f(p, ζ):

(28)

which contains only the quantities hn and Fn . When ζ =
0, expression (28) implies the following representation
for f(p, 0):

(29)

Note that formulas (15), (18)–(20), (22)–(24), and
(29) can be applied to control the correct determination
of hn and Fn when studying specific two-dimensional
periodic models.

5. THE RAYLEIGH MODEL

The model investigated in the present study repre-
sents a two-dimensional isotropic matrix with dielectric
constant ε1 that contains circular inclusions of radius R
with dielectric constant ε2. The inclusions form a regu-
lar structure: the centers of inclusions are situated at the
nodes of a square lattice with period 2a (Fig. 1). The
problem of calculating the effective dielectric constant
εe of such a model was first considered by Rayleigh
in [12], where he determined the first few terms of the
corresponding virial decomposition. A full solution
within the conductivity problem is given, for example,
in [13, 14].

According to [13, 14], outside inclusions, the com-
plex potential of the problem is given by the expression
(z = x + iy)

(30)

with real coefficients β and B2k . The function ζ(2k)(z)
in (30) is the 2kth-order derivative of the Weierstrass
zeta function [18]

(31)

The summation in (31) is performed over all (both pos-
itive and negative) integers l and m, except for the l =
m = 0.

f p ζ,( ) 1 Fn
ζ 1–

1 hn–( ) ζ hn–( )
--------------------------------------,

n 1=

∞

∑+=

f p 0,( ) 1
Fn

hn 1 hn–( )
------------------------.

n 1=

∞

∑+=

Φ z( ) β z B2kζ
2k( ) z( )

k 0=

∞

∑+
 
 
 

=

ζ z( ) 1
z
--- '

l m,
∑ 1

z zlm–
-------------- 1

zlm

------ z

zlm
2

------+ + ,+=

zlm 2 l im+( )a.=
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For small z, the following expansion is valid for the
function ζ(z) [18]:

(32)

Here,

(33)

where

(34)

is an invariant of the Weierstrass zeta function [18].

In (34), K(1/ ) = 1.85407… is the complete elliptic

integral of the first kind K(k) with modulus k = 1/ .
The coefficients c2k for k ≥ 2 can be found from the
recurrence relation [18]

(35)

Note that expansion (32) does not contain coefficients
with odd indices, so that, for the square lattice consid-
ered here (a lemniscatic case [18]), the coefficients
c2k + 1 vanish.

The coefficients B2k (k = 0, 1, 2, …) in (30) satisfy
the infinite system of equations from [13, 14]. If,

ζ z( ) 1
2
---

c2k

4k 1–
---------------z4k 1– .

k 1=

∞

∑–=

c2 g
g2

20
------, c4≡ 1

3
---g2, c6

2
3 13⋅
-------------g3 …,,= = =

g2
1

a4
----- K

1

2
------- 

  4

=

2

2

c2k
3

4k 1+( ) 2k 3–( )
---------------------------------------- c2mc2k 2m– k 2≥( ).

m 1=

k 1–

∑=

x

y

Fig. 1. Two-dimensional Rayleigh model.
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instead of B2k , we introduce “variables” ξk by the
formulas

, (36)

then this system takes the form [14]

(37)

where δk0 is the Kronecker delta and

(38)

The coefficients ck + l + 1 are defined in (32)–(35), and δ
is defined in (36). The matrix Skl is symmetric and is
different from zero only when the indices k and l have
different parities. In particular, S00 = 0 because c1 ≡ 0.

According to [13], the dimensionless effective
dielectric constant f = εe/ε1 of the model under consid-
eration is given by

(39)

where

(40)

is the concentration of inclusions. The roots of the
equation

(41)

determine the positions of the poles hn . As h  hn , the
function f takes the form

(42)

where

(43)

is the residue, taken with opposite sign, of the function
f at the pole h = hn .

Equations (37) remain valid for arbitrary complex h,
including real h < 0. The sought-for quantities hn and Fn

are obtained by substituting ξ0 = ξ0(h), which is deter-
mined from system (37) for negative h, into (41) and (43).

B2k
R2k 2+ δ

2k( )! 2k 1+( )!
---------------------------------------ξk, δ 1 h–

1 h+
------------, h

ε2

ε1
----= = =

ξk Sklξ l

l 0=

∞

∑+ δk0 k 0 1 2 …, , ,=( ),=

Skl

2l 2k+( )!R2 k l 1+ +( )ck l 1+ +

2k( )! 2k 1+( )! 2l( )! 2l 1+( )!
-------------------------------------------------------------------------δ.=

f
1 cξ0δ–
1 cξ0δ+
--------------------,=

c πR2/4a2=

ξ0
1– cδ+ 0=

f
Fn

h hn–
--------------,–≈

Fn
2
c
---

d ξ0δ( )
dh

----------------
h hn= 

 
 

1–

–=
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6. CALCULATION OF hn AND Fn

For an isotropic two-dimensional system with circu-
lar inclusions, we have

(44)

in the linear approximation in the concentration of
inclusions (cf. a similar formula in the three-dimen-
sional case [8]). Expression (44), which is valid for any
(either random or periodic) distribution of disks, has a
single pole at h = –1. This is associated with the fact
that, in deriving (44), we actually considered an iso-
lated inclusion. At the same time, h = –1 is an infinite-
fold degenerate eigenvalue for a disk, and only “inter-
action” with other disks removes the degeneracy. For
instance, in the case of a pair of disks of radius R, there
are two sets of eigenvalues [7]

(45)

where  is the distance between the centers of the
disks. In this case, h = –1 is a condensation point (as
n  ∞) of h1n and h2n . Note that the eigenvalues
of (45) correspond to the poles of the polarizability of a
pair of disks (circular cylinders) [11].

A similar situation occurs in the Rayleigh model: a
whole spectrum of poles arises for the function f in
higher order approximations in the concentration. In
this case, to evaluate hn and Fn for c ! 1, we will solve
a finite subset of N equations for increasing N instead
of (37). For further analysis, it is convenient to factor
out the coefficient δ from the matrix Skl defined in (38):

Skl = Aklδ. (46)

Taking into account (46), we obtain the following
expressions from (38):

(47)

where c2k is defined in (32)–(35).

If we restrict the analysis to a single equation (for
k = 0) in (37), then ξ0 = 1. In this case, (41) implies
δ1 = –1/c, so that h1 = –(1 + 2c + 2c2 + …) and F1 =

f 1 2c
1 h–
1 h+
------------–=

h1n nµ0,tanh–=

h2n nµ0 n 1 2 …, ,=( ),coth–=

µ0

2 4R2–+
2R

---------------------------------ln ,=
ζρζρ

ζρ

A01
1

3
-------c2R4, A12 15c4R8,= =

A03
1

7
-------c4R8, A23 6 35c6R12 … ,,= =
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Fig. 2. Ref(p, h) as a function of h on the negative real half-
line for the concentration of inclusions c = 1 – p = 0.5. The
figure represents only the first four poles; the remaining
infinite family of poles is concentrated between h3 and h4.
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Fig. 3. Im f (+)(p, h) as a function of h for c = 1 – p = 0.7. The
height of each peak is proportional to the “force” Fn of the
corresponding delta function (see formula (13)).
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4c(1 + 2c + …) for c ! 1. In the next order of approxi-
mation (k = 0, 1 and l = 0, 1), we have

(48)

The substitution of (48) into (41) yields a second-order
algebraic equation in δ that has two real roots. Using these
roots, we obtain the following expressions for c ! 1:

(49)

(50)

(51)

. (52)

For c  0, we have |h1 + 1| ~ F1 ~ c, |h2 + 1| ~ F ~ c3,
and |δ2| ~ 1/c3.

N 2: ξ0
1– 1 A01

2 δ2.–= =

h1 1 2c 2c2 2c3 2
c
---A01

2 …+ + + + + 
  ,–=

F1 4c 1 2c 3c2 1

c2
----A01

2– …+ + + 
  ,=

h2 1
2
c
---A01

2– …+ 
  ,–=

F2
4
c
---A01

2 …+=
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10

5

Fig. 4. t1 = –h1 as a function of concentration c. The dashed
line represents t1 as a function of c in the approximation of
four equations. Here, c0 = π/4 ≈ 0.785 is the critical concen-
tration (for R = a).
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The set of three equations (in ξ0, ξ0, and ξ2) yields

(53)

In this case, the substitution of (53) into (41) yields an
equation of the third degree. In this way, we can obtain
(for c ! 1) corrections of orders c4 and c5 inclusive to
quantities (49)–(52). For the third (n = 3) pole, we find

(54)

(55)

so that |h3 + 1| ~ F3 ~ c5 and |δ3| ~ 1/c5 as c  0.
For n = 4, we have

(56)

N 3:=

ξ0
1– 1 A01

2 A12
2+( )δ2–[ ] / 1 A12

2 δ2–( ).=

h3 1 2c A12/A01( )2 …+ +[ ] ,–=

F3 4c A12/A01( )2 …,+=

ξ0
1– 1 A01

2 A12
2 A03

2 A23
2+ + +( )δ2–{=

+ A01
2 A23

2 A12
2 A03

2 2A01A12A03A23–+( )δ4 }

× 1 A12
2 A23

2+( )δ2–[ ] 1–
,

6
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c
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2

1

tn

n = 3

7
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5

Fig. 5. tn = –hn (n = 3, 5, 7, 9) as functions of concentration
c. The dashed line represents t3 as a function of c in the
approximation of four equations.
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which corresponds to a fourth-degree equation in δ. For
h4 and F4, we obtain rather cumbersome expressions
even for c ! 1; we do not present them here. Note, how-
ever, that |h4 + 1| ~ F4 ~ c7 and |δ4| ~ 1/c7 as c  0.
Higher order (N ≥ 5) approximations can be considered
analogously.

The analysis performed leads to the following con-
clusions. Choosing a subset of N equations, we obtain
an algebraic equation of the Nth degree in δ that has N
real roots δn (n = 1, 2, …, N). This allows us to deter-
mine approximate positions of the first N poles (as well
as the residues at these poles) of the function f(p, ζ); the
accuracy of calculating hn and Fn for fixed n increases
with N. As N increases, the poles arise in a definite
order: the poles with odd numbers lie to the left of the
point h = –1, and the poles with even numbers, to the right
of this point. For small c, we have the following esti-
mates: |hn + 1| ~ Fn ~ c2n – 1 ! 1 and |δn| ~ 1/c2n – 1 @ 1
(n = 1, 2, …). Thus, hn  –1 as n  ∞, so that
h = −1 is a condensation point of the poles. The quanti-
ties Fn rapidly decrease as n increases; this allows us to
restrict the summation in expansions (12), (21), and

0.8

0.6

0.1 0.4 0.6 0.9
c

c0

0.2 0.3 0.5 0.7 0.80

0.4

0.2

tn

n = 2

8

4
6

1.0
10

Fig. 6. tn = –hn (n = 2, 4, 6, 8, 10) as functions of concentra-
tion c. The dashed lines represent t2 and t4 as functions of c
in the approximation of four equations.
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(28) for the function f(p, ζ) to a finite number of terms
(outside a certain domain in the vicinity of the point
ζ = –1 in the complex plane ζ).

To determine hn and Fn for large concentrations c,
we solved system (37) by numerical methods. For con-
venience, we introduced, instead of ξn , the variables
xn = ξnδ that satisfy the following set of equations

(57)

In this case, the positions of the poles hn are determined
by the equation

x0 = –1/c, (58)

and Fn is determined by the following equality derived
from (43):

(59)

xk Sklxl

l 0=

∞

∑+ δδk0.=

Fn
1
c
--- 1 h+( )2   

dx
 

0 
d
 δ 

-------- 
h h

 

n
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 ,=                               
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where we took into account that x0 is a function of the
variable δ.

Let us differentiate (57) with respect to δ:

(60)

Hence, taking into account (57), we obtain

(61)

The set of equations (61) has the same structure as (57)
and differs from the latter only by the form of the right-
hand side. Substituting the values of xk determined
from (57) into the right-hand side of (61) and solving
the set of equations obtained by the same method as
that applied for solving (57), we determine the deriva-
tive dx0/dδ. The relevant calculations can be performed
for a given h = hn (i.e., for δ = δn). This approach
enables one to avoid numerical differentiation when
determining Fn .

dxk
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∞

∑+ δk0.=

dxk

dδ
-------- Skl

dxl

dδ
-------

l 0=

∞

∑+
xk

δ
----.=

      

0.8

0.6

0.1 0.4 0.6 0.9

 

c

c

 

0

 

0.2 0.3 0.5 0.7 0.80

0.4

0.2

 

F

 

n

 

n 

 

= 3

5

1.0

9
7

 

Fig. 8. 

  
SICS      Vol. 100      No. 4      2005



740 BALAGUROV, KASHIN

                 
In specific calculations, we singled out a subset of
40 equations from (57) and (61). For h < 0, we deter-
mined all xk (k = 0, 1, 2, …, 39) as functions of h for a
fixed concentration c (i.e., for a given ratio R/a). From

15

0.1 0.4 0.6 0.9
c

c0

0.2 0.3 0.5 0.7 0.80

10

5

f(p, ∞)

20

Fig. 10. f(p, ∞) as a function of concentration c = 1 – p.
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10
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Fig. 9. Fn (n = 2, 4, 6, 8, 10) as a function of concentration c.
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Eq. (58), we determined the positions of the ten poles
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= 1, 2, …, 10). For example, for the first four 
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,
we obtained the following values:

(62)

for 

 

R

 

/

 

a

 

 = 0.8 (

 

c

 

 

 

≈

 

 0.503) and

(63)

for 

 

R

 

/

 

a = 0.9 (c ≈ 0.636).

Then, we determined the derivative dx0/dδ for h = hn

and, applying formula (59), calculated Fn (n = 1, 2, …,
10). The application of a similar procedure for several
values of concentration allowed us to determine hn and
Fn as a function of c. Using formula (39), we calculated
f(p, 0) and f(p, ∞) as functions of c = 1 – p and Ref(p, h)
as a function of h for a fixed concentration. To control
the correctness of calculations at all stages, we used
formulas (15), (18)–(20), (22)–(24), and (29).

The results of the study of the analytic properties of
the function f(p, ζ) carried out with the use of 40 equa-
tions form systems (57) and (61) are presented in
Figs. 2–10 in graphical form. For comparison, we
solved a fourth-degree algebraic equation in δ that was
obtained by substituting ξ0 from (56) into (41). The
dependence of h1, h2, h3, and h4 on the concentration c
in this approximation is shown by dashed lines in
Figs. 4–6. Note that the main conclusions made for
c ! 1 (see above) remain valid for large concentrations
c. The neighborhood of the metal–insulator phase-tran-
sition point c0 = 1 – pc = π/4 ≈ 0.785 (for R = a) requires
special consideration; here, one should take
into account the larger number of equations from sys-
tems (59) and (61), the closer the concentration c to c0.

Note that the comparison of truncated (for n ≤ 10)
formulas (12), (21), and (28) with the results of the
numerical analysis of f(p, ζ) with ζ = h > 0 shows that
the difference between them is no greater than about
1% for the concentration of inclusions of c ≤ 0.73 for
any 0 ≤ h ≤ ∞. This allows us to use such an approxima-
tion to calculate f(p, h) in a wide range of variables p
and h. Moreover, one may assume that, for given con-
straints on the concentration, this formula will satisfac-
torily describe the function f(p, ζ) also for complex ζ
(except for a certain neighborhood of the point ζ = –1).
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Abstract—Epitaxial GaMnSb films with Mn contents up to about 10 at. % were obtained by deposition from
a laser plasma in vacuum. The growth temperature Ts during deposition was varied from 440 to 200°C, which
changed the concentration of holes from 3 × 1019 to 5 × 1020 cm–3, respectively. Structure studies showed that,
apart from Mn ions substituting Ga, the GaMnSb layers contained ferromagnetic clusters with Mn and shallow
acceptor defects of the GaSb type controlled by the Ts value. Unlike single-phase GaMnSb systems studied ear-
lier with negative anomalous Hall effect values and Curie temperatures not exceeding 30 K, the films obtained
in this work exhibited a positive anomalous Hall effect, whose hysteresis character manifested itself up to room
temperature and was the more substantial the higher the concentration of holes. The unusual behavior of this
effect was interpreted in terms of the interaction of charge carriers with ferromagnetic clusters, which was to a
substantial extent determined by the presence of Schottky barriers at the boundary between the clusters and the
semiconducting matrix; this interaction increased as the concentration of holes grew. The absence of this effect
in semiconducting compounds based on III–V Group elements with MnSb or MnAs ferromagnetic clusters was
discussed in the literature; we showed that this absence was most likely related to the low hole concentrations
in these objects. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Diluted magnetic semiconductors containing mag-
netic impurities in high concentrations are disordered
media, and their properties are therefore determined by
disorder to a considerable extent (see review [1]). An
enormous number of works have been concerned with
disordered media in the presence of only Coulomb
interaction, whereas such media under the conditions of
joint magnetic and Coulomb interactions remain vir-
tually unstudied, in spite of a fairly strong interest in
them [1]. Solid solutions of manganese in semiconduct-
ing Group III and V element compounds (in particular,
GaMnAs and GaMnSb) [2, 3] are among the diluted
magnetic semiconductors that are most intensely devel-
oped and studied. The reason for this is comparatively
high Curie temperatures of such semiconductors; they
can be prepared as heteroepitaxial compositions on sin-
gle crystalline substrates of the GaAs type, which offers
prospects for their integration with instruments tradi-
tionally used in semiconducting micro- and optoelec-
tronics [3, 4]. In these materials, Mn is an acceptor
impurity; that is, the introduction of Mn into a semicon-
ductor results in the appearance of both local magnetic
moments and free holes, which can cause carrier-
1063-7761/05/10004- $26.000742
induced ferromagnetism [5].1 It was, however, found [5]
that the attainment of high Curie temperatures TC in
these materials (TC ≥ 77 K) required the introduction of
Mn ions in a semiconducting matrix in concentrations
of 1020–1021 cm–3, which was much higher than the
limit of the equilibrium solubility of Mn. The success-
ful preparation of supersaturated solid solutions of Mn
in III–V compound semiconductors was performed
using nonequilibrium methods for growing them. The
most important among these is low-temperature molec-
ular beam epitaxy at about 250°C [3, 4]. It was shown
for the example of Ga1 – xMnxAs layers [3] that there is
an optimum manganese content x (0.05–0.06) at which
single-phase monocrystalline films with a zinc blende
structure were formed. In these films, Mn atoms substi-
tute Ga at lattice sites and play the role of acceptors.
The Curie temperature then increases to about 110 K at
a concentration of holes p = 3.5 × 1020 cm–3 [3].
Recently, a special technique for decreasing the con-
centration of donors was used to reach TC = 159 K [6],

1 Direct exchange between Mn ions in these systems is antiferro-
magnetic in character. The introduction of compensating donors
therefore results in the complete suppression of ferromagnetism
in them [3].
 © 2005 Pleiades Publishing, Inc.
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which was close to the theoretically possible limit [7].
The Curie temperatures of similar layers of single-
phase solid solutions of Mn in GaSb, where Mn atoms
also predominantly occupy gallium sites and are accep-
tors, do not exceed 30 K [8]. The TC value of so-called
digital GaSb/Mn alloys (periodic structures) prepared
likewise was 80 K [9]. High Curie temperatures can in
principle be attained in digital alloys based on supersat-
urated solid solutions of Mn in III–V compounds
(III−Mn–V) (e.g., see [9]). At the same time, at a high
manganese content x and/or high growth temperatures,
solid solution decay effects are observed and an addi-
tional magnetic phase is formed, whose nature is
actively discussed at present [9, 10]. Most often, MnAs
or MnSb ferromagnetic clusters with a NiAs (TC = 318
and 587 K, respectively [11]) or zinc blende [9] struc-
ture play the role of the additional phase.

A key role in studies of the magnetic properties of
diluted magnetic semiconductors based on III–Mn–V
compounds is played by revealing and studying the spe-
cial features of the behavior of the anomalous Hall
effect, which is, as is well known, proportional to mag-
netization M for ferromagnetic metals and is related to
the influence of spin–orbit coupling on the scattering of
spin-polarized electrons [12]. The calculations per-
formed recently [13] show that the anomalous Hall
effect in III–Mn–V semiconductors can be caused by
corrections to the velocity of carriers related to the so-
called Berry phase. The anomalous Hall effect is then
also determined by the exchange splitting of spin hole
subbands, is proportional to magnetization, and, there-
fore, the Hall resistance RH , as in ferromagnetic metals,
obeys the equation [3]

(1)

where d is the thickness of the diluted magnetic semi-
conductor layer; R0 is the constant of the ordinary Hall
effect caused by the Lorentz force, which is propor-
tional to the magnetic induction B; and Rs is the anom-
alous Hall effect constant.

The anomalous Hall effect plays an important role
in studies of ferromagnetism in diluted magnetic semi-
conductors because it is the most direct method for
investigating the interaction of charge carriers with the
magnetic subsystem. In addition, for thin films, when
the influence of a diamagnetic substrate is strong, the
anomalous Hall effect can more effectively be used to
study magnetic ordering than magnetization measure-
ments [3, 14, 15]. Another and more important reason
for using the anomalous Hall effect is the complex
character of the magnetic phase that may appear in III–
Mn–V materials [9, 10]. For instance, Ga1 – xMnxSb
crystals grown by the Bridgman method (x = 0.03–
0.14) were reported [16] to exhibit the Curie tempera-
ture TC ≈ 540 K, which was close to TC ≈ 587 K for
MnSb clusters; this result was obtained by studying the
temperature dependence of magnetization. It is perti-

RH

R0

d
-----B

Rs

d
-----M,+=
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nent to mention that the magnetic field dependences of
the Hall effect (which were virtually linear) and magne-
tization presented in [16] were substantially different.
In addition, there was no anomalous Hall effect mani-
festations of MnSb- or MnAs-type ferromagnetic clus-
ters in GaMnSb [8] and GaMnAs [3], respectively,
although the contribution of the clusters to magnetiza-
tion was considerable and observable up to room tem-
peratures. At the same time, the “Curie temperatures”
obtained for these systems by measuring the anomalous
Hall effect ( ) were noticeably lower than room

temperatures (  < 10 K for GaMnSb with MnSb clus-
ters [8]). Accordingly, it is commonly supposed that the

 parameter obtained from anomalous Hall effect
measurements for multiphase solutions of Mn in III–V
compounds characterizes magnetic ordering of only
part of the magnetic subsystem, which nevertheless
largely determines the spin polarization of carriers and
is of the greatest importance for diluted magnetic
semiconductor applications in spintronics. It is there-
fore no mere chance that, in recent works [6, 8, 14],
preference is given to anomalous Hall effect measu-
rements as a method for the observation of spin-polar-
ized carriers and the determination of the magnetic
state of III−Mn−V systems at various temperatures. For
single-phase solutions, these measurements give the
same TC temperatures as those obtained in magnetiza-
tion studies [3, 6].

In spite of the important role played by the anoma-
lous Hall effect in III–Mn–V materials, the question of
its nature remains open. It was shown recently [17] that
the anomalous Hall effect value in GaMnAs is in close
agreement with the calculation results [13], and its sign
(positive) coincides with the sign of the ordinary Hall
effect, in agreement with [13]. The GaMnSb system,
however, exhibits a negative Hall effect, whose sign is
opposite to that of the ordinary Hall effect [4, 8, 9]. The
theory described in [13] does in principle predict a
change in the sign of the anomalous Hall effect; this,
however, requires that the Fermi energy be close to the
top of the Γ7 band split off because of spin-orbit cou-
pling [18] (in GaSb, ∆0 = 0.75 eV [19]), which is at
variance with the experimental data [8, 9].2 The ques-
tion why MnSb- and MnAs-type clusters in the systems
under consideration do not influence the anomalous
Hall effect also remains open. Indeed, the anomalous
Hall effect is observed quite distinctly in diluted ferro-
magnetic granulated alloys (nanoparticles of ferromag-
netic metals in nonmagnetic metallic matrices) and
substantially exceeds the ordinary Hall effect compo-
nent [20]. The Curie temperatures of single-phase

2 It is shown in [18] that the calculations made in [13] are equiva-
lent to the consideration of the anomalous Hall effect in terms of
the so-called side-jump model, in which the sign of the anoma-
lous Hall effect should coincide with the sign of carriers. In the
skew scattering model, the sign of the anomalous Hall effect can
in principle be arbitrary [18].

TC*

TC*

TC*
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diluted magnetic semiconductors are fairly low but can
substantially exceed room temperatures in diluted fer-
romagnetic granulated alloys. It is therefore of interest
to study supersaturated solid solutions of Mn in III–V
semiconductors and, in particular, their galvanomag-
netic properties.

The purpose of this work was to study the special
features of the behavior of the Hall effect in Mn-super-
saturated GaMnSb layers deposited by laser sputtering
of undoped GaSb and metal Mn targets in a vacuum. It
was found that acceptor-type defects were largely
formed in the films prepared by laser plasma deposi-
tion. Moreover, the concentration of acceptor defects
and, accordingly, the concentration of holes p could
easily be controlled by changing the temperature of the
substrate, which allowed p to be varied from 1019 to 5 ×
1020 cm–3. As distinct from the earlier results, we
observed a positive high-temperature anomalous Hall
effect that exhibited hysteresis up to room temperatures
in the layers under study. Anomalous Hall effect data
processing according to Belov and Arrott [21] allowed
us to determine the value of  that characterized
spontaneous manifestation of the (in the absence of a
magnetic field) anomalous Hall effect. The  reached
330 K at p = 5 × 1020 cm–3 and decreased as the concen-
tration of holes lowered. Physical reasons for the
observed anomalous Hall effect characteristics and for
its absence in similar structures that had been studied
earlier will be considered.

2. EXPERIMENTAL PROCEDURE

GaMnSb films were deposited using a pulsed
yttrium aluminum garnet laser operating in the

TC*

TC*

61°60° 62° 63° 64° 65° 66°
2θ

I, pulse/s

1

2

Fig. 1. X-ray diffraction spectra of GaSb/GaAs structures
formed by depositing at Ts = 440°C: (1) undoped and
(2) doped with manganese. For clarity, the spectra are
spaced along the intensity axis: the initial spectrum of struc-
ture 2 was multiplied by 100.
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Q-switching mode at 1.06 µm. We used a rotating com-
bined target consisting of a plate of single crystalline
undoped GaSb covered in part by a high-purity Mn
metal. The trace of material vaporization with the laser
was a circle, and the ratio between the lengths of the
arcs of sputtered GaSb and Mn therefore determined
the level of growing layer doping. The films were
deposited on a plate of semi-insulating GaAs with the
(100) orientation, and the substrate temperature Ts was
varied from 200 to 440°C. The resulting films were
40−140 nm thick.

The structural characteristics and composition of the
films were studied by X-ray diffraction on a DRON-4
instrument using the two-crystal scheme and Cu Kα1
radiation filtered with a Ge(400) monochromator,
X-ray photoelectron spectroscopy on a MicroLab MK II
unit (VG Scientific) using nonmonochromatized
Al Kα radiation, and electron probe microanalysis on a
GAMEBAX unit. The magnetization of the films was
measured by a BHV-50 vibrating-coil magnetometer
with a sensitivity no worse than 10–5 emu.

The samples for Hall effect measurements were pre-
pared by photolithography, as mesostructures with the
standard double cross form (the width and length of the
conduction channel were W = 0.5 mm and L = 4.5 mm,
respectively). Hall effect measurements in fields up to
1 T were performed using an automated unit by the
method of digital filtration and signal accumulation.
The voltage between the Hall (Vy) and potential (Vx)
probes and current Ix that passed through the sample
were synchronously recorded under constant voltage
conditions at positive and negative magnetic field B val-
ues; the field was applied normally to the film surface
(along the z axis). The measurement results were used
to determine the resistance of the sample between the
potential probes Rxx = Vx/Ix and transverse resistance
Rxy = Vy/Ix . Preliminary experiments showed that trans-
verse resistance could exhibit hysteresis and the mag-
netic field dependence of longitudinal resistance was
negligibly small (the magnetoresistance of the films
under study did not exceed 0.1%). Considering possible
hysteresis, the Hall resistance RH was determined by
subtracting the even signal component from Rxy (the
even component appeared because of asymmetry in the

arrangement of Hall probes); that is, RH = Rxy – (  +

)/2, where  and  are the transverse resis-
tance values corresponding to the positive and negative
magnetic field directions obtained, for instance, in
scanning over the field as it decreased in magnitude
(from 1 to 0 T).

3. RESULTS AND DISCUSSION
The X-ray diffraction θ/2θ spectra of the

GaSb/GaAs structures deposited at a 440°C substrate
temperature are shown in Fig. 1. The spectrum of the
structure with a GaSb layer undoped by Mn (curve 1)

Rxy
+

Rxy
– Rxy

+ Rxy
–
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contains a substrate peak at 2θ = 66.05° (the GaAs(400)
reflection) and a layer peak at 60.74° (the GaSb(400)
reflection). The Bragg angles of the 2θ peaks from the
layer and substrate were refined in two stages. At the
first stage, we refined the angle of crystal rotation with
a broad slit in front of the detector (ω scan). At the sec-
ond stage, the angle of detector rotation was determined
with a narrow slit while the sample rotation angle was
fixed at a value corresponding to maximum intensity
(θ scan). The substrate was used as a reference to cor-
rect the 2θ angle of the layer.

Calculations of the lattice parameter of undoped
GaSb from the 2θ angle gave a0 = 0.6096 nm, which
coincided with the value known from the literature [19].
The integral characteristic of the structural perfection
of the layer was the rocking curve width (full width at
half maximum, FWHM) measured from the ω-scan
spectrum according to [22]. The FWHM value for the
peak from the GaSb layer was ∆ω ≈ 0.4°. It follows that
GaSb is a mosaic single crystalline film, although the
fairly large ∆ω value may be evidence of nonideality of
the crystal structure of the film likely caused by the dif-
ference in the lattice constants of GaSb and GaAs
exceeding 7%.

The X-ray diffraction θ/2θ spectrum of the structure
with a GaMnSb layer also deposited at 440°C is shown
by curve 2 in Fig. 1. This spectrum is similar to that of
GaSb free of Mn (curve 1). It follows that the introduc-
tion of Mn by laser plasma deposition does not cause
noticeable structural imperfection of the deposited lay-
ers. With GaMnSb, the procedure for refining the Bragg
angle of the 2θ peak GaSb(400) with the use of ω and
θ scans, however, gives a value of 2θ = 60.76°, which is
somewhat larger than that of the undoped layer. We
used the equation a(x) = a0 – 0.00528x, where a0 is the
lattice constant of undoped GaSb, for the lattice param-
eter of Ga1 – xMnxSb with a zinc blende structure [23]
and the 2θ = 60.76° value obtained for GaMnSb layers
grown at Ts = 350–440°C to estimate the content of Mn,
x ≈ 0.04 ± 0.01.

The FWHM value monotonically increases from
0.4° at Ts = 440°C to 0.5° at Ts = 300°C as the temper-
ature of GaMnSb layer growth lowers. The GaSb(400)
peak, although low-intensity, is observed even at Ts =
200°C. This is evidence that the presence of manganese
in a layer of gallium antimonide in the concentration
specified above has no substantial influence on the
character of its growth during laser plasma deposition
over the temperature range 200–440°C.

The composition of the films was studied by elec-
tron-probe microanalysis with a spatial resolution of
order 1 µm. The results showed that Mn was fairly uni-
formly distributed over the area of the samples (the
spread of x values was about 1%). The thickness of the
films was much less than the region of X-ray radiation
excitation by accelerated electrons in the structure,
which prevented exact calculations of manganese con-
tents from the data obtained this way. Estimates, how-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ever, show that the content of Mn in GaSb films was
x ≈ 0.10. This is larger than the value obtained from
X-ray diffraction. This discrepancy can arise because
electron-probe microanalysis measurements determine
the chemical composition of the films, whereas X-ray
diffraction is sensitive to changes in the GaSb lattice
parameter caused by the insertion of Mn ions into gal-
lium sublattice sites. When a nonequilibrium method
for depositing layers is used, manganese atoms can
enter into other lattice sites (for instance, into inter-
stices) and form clusters. It follows that the x ≈ 0.10
value is more realistic.

The suggestion of the possible presence of clusters
is substantiated by the X-ray photoelectron spectra of
the samples. The X-ray photoelectron spectra of
GaMnSb/GaAs structures are presented in Fig. 2. The
Mn 2p line spectrum is shown in Fig. 2a. This line has
a complex structure, in which at least two chemical
states of manganese atoms are distinctly seen. The posi-
tions of the Mn 2p3/2 peaks for these two states are
denoted by A and B in the figure. The actual positions
of peaks in the spectra of compounds is determined by
several factors, in particular, by changes in the energy
levels caused by chemical interaction (the so-called
chemical shift [24]) and exchange interaction [25] in
magnetic materials. The experimental (Fig. 2a) EB val-
ues for the Mn 2p3/2 line in states A and B are 638.9 and
640.8 eV, respectively. The first value coincides with EB

for Mn metal (638.9 eV [26]). A similar splitting of the
Mn 2p3/2 peak was observed in [25] for ternary alloys
containing Mn and Sb. The first peak in [25] coincided
with the manganese metal peak. The second peak at
larger EB values was split off by approximately 2 eV in
a situation close to that considered in this work. It
appeared in compounds probably because of exchange
interactions caused by the chemical state of manganese
atoms in which they have a large local magnetic
moment [25]. It follows that there are at least two states
of Mn atoms in GaMnSb films, one characteristic of
bonds between Mn and Sb atoms and the other similar
to the state of Mn in Mn metal (Mn–Mn bonds). The
conclusion can be drawn that the films under consider-
ation are supersaturated solid solutions of Mn in GaSb
that contain the GaSb matrix with 4% of Ga replaced by
manganese and manganese-containing clusters, whose
influence on the magnetic and galvanomagnetic proper-
ties of the layers is discussed below.

Another special feature of the GaMnSb films is their
primordially p-type conduction, even in the absence of
doping, in particular, with manganese. This is likely
related to the formation of antisite GaSb defects
(Ga atoms in Sb sites) during film growth, which are
shallow acceptors in GaSb [19]. Indeed, as follows
from the X-ray photoelectron spectra of GaMnSb lay-
ers shown in Fig. 2b (Ga 3d and Sb 4d lines) and 2c
(two Sb 3d lines) (spectra 2 and 3) in comparison with
the corresponding X-ray photoelectron spectra of sin-
gle crystalline undoped GaSb (Fig. 2, spectrum 1), the
SICS      Vol. 100      No. 4      2005
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Fig. 2. X-ray photoelectron spectra: (a) Mn 2p line for a GaMnSb layer, Ts = 200°C; (b) Ga 3d and Sb 4d lines for (1) single crys-
talline GaSb, (2) a GaMnSb layer, Ts = 440°C, and (3) a GaMnSb layer, Ts = 200°C; and (c) Sb 3d lines for three types of structures,
see (b).
content of Ga atoms in the films is higher than that of
Sb atoms (CGa/CSb > 1). The nonstoichiometry of
deposited layers (the CGa/CSb ratio) increases as the
deposition temperature Ts decreases. According to the
measurements performed at 300 K, the resistivity of the
films ρ decreases from ρ = 4 × 10–2 Ω cm at Ts = 440°C
to ρ = 3 × 10–3 Ω cm at Ts = 200°C, which is evidence
of an increase in the concentration of holes.

Measurements of the magnetization of the GaMnSb
films grown at various temperatures gave the results
shown in Fig. 3. We see that, in spite of the substantial
differences in the conductivities of the layers deposited
at various Ts (differences in hole concentrations), the
films exhibit ferromagnetic behavior, and their satura-
tion magnetizations do not vary strongly, from Ms =
5.3 mT at Ts = 200°C to Ms = 3.6 mT at Ts = 440°C. We
assume that the magnetic moment of the films is deter-
mined by Mn2+ ions [3] (g-factor = 2 and the total spin
S = 5/2). On this assumption, calculations give Mn ion
concentrations of NMn = 1.1 × 1021 cm–3 (Ts = 200°C)
and NMn = 7.8 × 1020 cm–3 (Ts = 440°C), which is in
agreement with maximum estimates of the concentra-
tion of Mn atoms as an impurity that replaces Ga, NMn =
JOURNAL OF EXPERIMENTAL A
7.1 × 1020–1.8 × 1021 cm–3 at x = 0.04–0.10. However
note that if the magnetic properties of III–Mn–V semi-
conductors weakly depend on the concentration of
holes, they are usually related to the presence of MnSb-
or MnAs-type ferromagnetic clusters [3, 8].
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Fig. 3. Applied magnetic field dependences of magnetiza-
tion for GaMnSb layers d = 40 nm thick, Ts = 200°C (solid
line), and d = 140 nm thick, Ts = 440°C (dots).
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As distinct from magnetization, the behavior of the
Hall effect strongly depends on the concentration of
holes (on the deposition temperature Ts). The magnetic
field dependences of the Hall resistance RH(B) obtained
at T = 77 and 293 K are shown in Figs. 4a and 4b,
respectively, for samples 1–3 with hole concentrations
p = 5 × 1020 cm–3 (curve 1), 1.5 × 1020 cm–3 (curve 2),
and 3 × 1019 cm–3 (curve 3). The concentration of carri-
ers was determined from the slope of the RH(B) depen-
dence in fields B > 0.4–0.5 T. The linear character of
this dependence for sample 1 over the specified field
range is illustrated by the upper inset to Fig. 4b. On the
whole, it follows from Fig. 4 that the Hall effect in sam-
ples 1 and 2 is essentially anomalous in character over
the temperature range T = 77–300 K, whereas the Hall
effect in sample 3 with the lowest concentration of
holes (Ts = 440°C) is ordinary. Indeed, the Hall resis-
tance of this sample linearly depends on B over the field
range 0–0.9 T, although its magnetization reaches satu-
ration already at B > 0.2 T (Fig. 3). A comparison of the
data on samples 1 and 2 presented in Fig. 4 shows that
the hysteresis character of the behavior of the anoma-
lous Hall effect also becomes suppressed as the concen-
tration of holes decreases. For instance, for sample 1
(p = 5 × 1020 cm–3), the coercive field reaches Bc =
0.29 T at T = 77 K and the anomalous Hall effect hys-
teresis manifests itself up to room temperature (Bc =
6.5 mT, see the lower inset to Fig. 4b). At the same
time, for sample 2 (p = 1.5 × 1020 cm–3), Bc = 0.058 T at
T = 77 K and no anomalous Hall effect hysteresis is
observed at T = 300 K.

As the Hall resistivity is proportional to magnetiza-
tion M when the anomalous Hall effect predominates
(see (1)), it was suggested in [3, 15] that the procedure
developed by Belov and Arrott [21] (the construction of
the dependence of M2 on B/M) can be used to determine

the spontaneous Hall resistance , which is propor-
tional to the spontaneous magnetization Ms characteris-
tic of ferromagnetic system ordering. According

to [21], we must construct the dependence of  on
B/RH and extrapolate its linear portion to the intersec-

tion with the axis of ordinates to determine  for our
systems.

Examples of the dependences of  on B/RH for
sample 1 at several measurement temperatures are
shown in Fig. 5. At 267 and 293 K, the linear extrapo-

lation of  to B = 0 gives ( )2 > 0, whereas linear

extrapolation at T = 335 K gives a negative ( )2 value,
which means that there is no ferromagnetic ordering at
this temperature. The temperature dependences of the

spontaneous Hall resistance  obtained using the pro-
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cedure suggested in [21] and the coercive field Bc are
shown in Fig. 6 for sample 1. These results are evidence
that the spontaneous Hall resistance in this sample per-
sists up to the temperature  ≈ 330 K.

The  parameter of single-phase III–Mn–V mate-
rials coincides with the Curie temperature TC [3, 6].
This value can be determined by analyzing the behavior
of the anomalous Hall effect in the paramagnetic tem-
perature region [3, 14]. Indeed, the anomalous Hall
effect constant is Rs = cRxx [12], where c is a tempera-
ture-independent coefficient, if the anomalous Hall
effect is determined by the mechanism of skew scatter-
ing of carriers. For this reason, the ratio between the
Hall RH and longitudinal resistance Rxx is, according
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Fig. 4. Applied magnetic field dependences of Hall resis-
tance for three GaMnSb/GaAs structure samples: (1) p =
5 × 1020 cm–3, Ts = 200°C, d = 40 nm; (2) p = 1.5 ×
1020 cm−3, Ts = 200°C, d = 70 nm; and (3) p = 3 × 1019 cm–3,
Ts = 440°C, d = 140 nm. Curve numbers correspond to sam-
ple numbers. Measurement temperatures: (a) 77 K and
(b) 293 K. The upper inset to Fig. 4b contains the RH(B)
dependence for sample 1 at B > 0.4 T, and the lower inset,
the RH(B) dependence for sample 1 at –0.2 < B < 0.2 T.
SICS      Vol. 100      No. 4      2005



748 RYLKOV et al.
to (1), RH/Rxx ≈ cM/d. It follows that, in the paramag-
netic region, the magnetic susceptibility is

and the Curie–Weiss law (1/χ) ∝  (T – TC) can be used
to determine TC . It was shown in [3] for the example of
GaMnAs that this approach gave the same TC value as
that obtained by analyzing the anomalous Hall effect in
the ferromagnetic region.

The Arrott dependences for sample 2 (p = 1.5 ×
1020 cm–3) over the range of temperatures T ≥ 160 K are

χ d RH/Rxx( )/dB[ ] B 0= ,∝
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3
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Fig. 5. Dependence of  on B/RH for sample 1 (p =

5 × 1020 cm–3). Measurement temperatures (1) 267, (2) 293,
and (3) 335 K.
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shown in Fig. 7. The linear extrapolation of these
dependences gives their intersection with the origin at
T ≈ 180 K; that is, we can expect, by analogy with sin-
gle-phase diluted magnetic semiconductors, that the
Curie temperature of this sample is TC ≈ 180 K, and,
starting with this temperature, the sample turns para-
magnetic. The dependence of the Hall resistance on the
longitudinal resistance obtained at B = 0.75 T is shown
in the inset to Fig. 7 in the double logarithmic coordi-
nates. The Rxx resistance of this sample increases as the
temperature lowers. It follows from the data given in
the inset to Fig. 7 that the slope of the dependence of
lnRH on lnRxx in the region of low temperatures, where
magnetization should weakly depend on T, is close to
one; that is, the suggestion of the predominant role
played by the mechanism of skew scattering of carriers
in the anomalous Hall effect is justified for our systems.
Seemingly, the slope of the dependence of RH/Rxx on B
in low fields, which is proportional to χ, should then
increase as the temperature lowers. However, in reality,
this slope is virtually independent of the temperature
(see Fig. 8), which distinguishes our systems from sin-
gle-phase diluted magnetic semiconductors of the
GaMnAs type [3] (see the data presented in Fig. 3 and
borrowed from [3]).

More substantial differences become evident when
the special features of the anomalous Hall effect
described above are compared with an analogous effect
in GaMnSb layers prepared by molecular beam epitaxy
at various growth temperatures [8]. It was found in [8]
that Mn is almost fully contained in ferromagnetic
MnSb clusters in layers grown at high temperatures of
Ts = 560°C. The concentration of holes in the GaSb
matrix is then 2.4 × 1019 cm–3 (in the sample with the
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shown in the inset to the double logarithmic coordinates.
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total content of Mn x = 0.013), and the ordinary compo-
nent predominates in the Hall effect to T ≈ 10 K. In our
systems, the Hall effect is only ordinary in sample 3
with a similar hole concentration (p = 3 × 1019 cm–3),
which is substantially lower than that in samples 1
and 2. The layers obtained in [8] at Ts = 250°C had the
structure of zinc blende, in which Mn atoms largely
replace Ga and play the role of acceptors. A well-
defined negative anomalous Hall effect was then
observed at low measurement temperatures (its sign
was opposite to that of the ordinary Hall effect). The
Belov–Arrott procedure was used in [8] to obtain  ≈
25 K at the hole concentration p = 1.3 × 1020 cm–3 (for
the sample with the content of Mn x = 0.016). At the
same time, sample 2 with approximately the same con-
centration of holes (p = 1.5 × 1020 cm–3) had  ≈
180 K, and its anomalous Hall effect was positive.

Let us discuss the experimental data presented
above. Note that, as in the samples studied in this work,
the sign of the anomalous Hall effect in continuous
MnSb films was positive [27]. It is reasonable to sug-
gest that the sign of the anomalous Hall effect remains
unchanged in passing from continuous to broken films.
Indeed, we recently showed for the example of Fe
nanoparticles in a SiO2 matrix (the sign of the anoma-
lous Hall effect in Fe was also positive) that the sign of
the anomalous Hall effect did not change in the passage
through the percolation threshold to tunnel conduction
conditions [28]. The invariability of the sign of the
anomalous Hall effect follows from the effective
medium model [29]. Note also that, at the growth tem-
peratures used (Ts = 200–440°C), the films contained a
ferromagnetic phase in approximately equal concentra-
tions (see the magnetization data given in Fig. 3).

The observations described above lead us to con-
clude that the anomalous Hall effect in the GaMnSb
samples is related to the presence of MnSb-type clus-
ters in them. The volume content of the ferromagnetic
phase recalculated to MnSb (Ms = 71 mT [6]) is about
0.07, which is far below the critical value (0.6 [28]) cor-
responding to the metal–insulator percolation transi-
tion. The cardinal difference between our objects (the
predominance of the anomalous Hall effect at fairly
high temperatures) and samples with MnSb clusters [8]
is the much higher concentration of holes in the GaSb
matrix, which is related to the generation of acceptor-
type defects (antisite GaSb defects) during film growth
by the laser plasma deposition method. This is in agree-
ment with the observed strong dependence of the
behavior of the anomalous Hall effect on the concentra-
tion of carriers at a constant ferromagnetic phase con-
centration (see Fig. 4). We can therefore naturally sug-
gest that the interaction of carriers with ferromagnetic
clusters in semiconductors with magnetic impurities is
to a considerable extent determined by the presence of
Schottky barriers at the boundary between the clusters
and the semiconducting matrix (in our system, at the

TC*

TC*
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MnSb/GaSb boundary). Accordingly, this interaction
depends not only on the content of the ferromagnetic
phase but also on the concentration of holes, whose
increase decreases the width of the Schottky barriers.
Estimates show that the expected Schottky barrier

width must be about 2 nm at an  ≈ p = 1020 cm–3 con-
centration of ionized acceptors. This estimate was
obtained on the assumption that the height of the Schot-
tky barriers ϕ was determined by the position of the
maximum of the density of surface states in the forbid-
den band of GaSb. In the majority of covalent semicon-
ductors, this maximum is shifted from the valence band
edge by one-third of the forbidden bandwidth Eg [30]
(Eg = 0.7 eV for GaSb [19]). At the same time, for these
conditions, the effective depth lψ of a decrease in the
wavefunction of heavy holes (mhh = 0.23m0) under the
barrier can be estimated at 1.3–2.5 nm; that is, it can
even be larger than the Schottky barrier width at p =
1020 cm–3 and ϕ = (1/3)Eg . We can then naturally expect
strong tunnel exchange between matrix carriers and
ferromagnetic   clusters.3 (The estimates for lψ were
obtained using the equation for the transparency of a
triangular barrier [30]; the lower estimate corresponds
to the mean electric field in the region of the spatial
charge of the Schottky layer, and the upper, to the max-
imum field.)

The temperature at which there is no anomalous
Hall effect hysteresis is interpreted as the blocking tem-
perature of ferromagnetic granulated alloys [20]; at this
temperature, the transition to the superparamagnetic

3 Note that the mean distance between ionized acceptors at p =
1020 cm–3 is also about 2 nm. This leads us to conclude that the
above estimates are actually evidence of the absence of Schottky
barriers. The origin of the anomalous Hall effect is then similar to
that in magnetic granulated alloys [20].
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limit occurs. Estimates show that MnSb clusters of size
ac ≈ 10 nm give blocking temperatures of order 200–
300 K observed as Curie temperatures in our experi-
ments (the estimates were obtained only taking into
account the magnetic anisotropy energy related to the
shape of the clusters [31]). Also note that the spread of
the clusters in shape and size substantially weakens the
temperature dependence of magnetization [32], which
probably explains the absence of temperature effects on
the paramagnetic behavior of the anomalous Hall effect
in low fields (the weak dependence χ(T) ∝
[d(RH/Rxx)/dB]B = 0) observed for sample 2 (Fig. 8).

At the same time, it should be noted that the inter-
pretation of the data on the anomalous Hall effect in
terms of isolated (noninteracting) MnSb clusters and
blocking temperatures encounters obvious difficulties.
Indeed, an increase in the growth temperature Ts

accompanied by a decrease in the concentration of
holes should cause the enlargement of clusters. The
high coercive force values observed experimentally are
evidence that the clusters are single-domain; the coer-
cive field is then the higher the larger the size of the
clusters [33]. For this reason, increasing Ts should make
the hysteresis character of the behavior of the anoma-
lous Hall effect more manifest, which has not been
observed experimentally, although the contribution of
the ordinary component to the Hall effect increases
because of a decrease in the concentration of current
carriers. This leads us to suggest that the size of MnSb
clusters (and, accordingly, the distance between them)
is noticeably smaller than 10 nm and that these clusters
interact with each other. This interaction is mediated by
carriers in the paramagnetic GaSb:Mn matrix. This
results in an effective enlargement of the clusters and,
simultaneously, increases hole spin polarization, which
determines the anomalous Hall effect.

4. CONCLUSIONS

To summarize, we prepared epitaxial films of a
supersaturated solid solution of Mn in GaSb by laser
plasma deposition. The special feature of the layers
grown was the presence of dissolved Mn atoms and fer-
romagnetic Mn-containing inclusions. The layers also
contained acceptor-type defects controlled by the
growth temperature. These defects to a substantial
extent determined the concentration of holes in the
GaSb matrix, which increased as the growth tempera-
ture lowered and reached 5 × 1020 cm–3 at Ts = 200°C.
Unlike single-phase GaMnSb systems, the films exhib-
ited a positive anomalous Hall effect. Its hysteresis
character strongly depended on the concentration of
holes and could be observed up to room temperatures.

We believe that the special features of the behavior
of the anomalous Hall effect in our systems are related
to the interaction of charge carriers with ferromagnetic
clusters, determined to a significant extent by the pres-
ence of Schottky barriers at the boundaries between the
JOURNAL OF EXPERIMENTAL A
clusters and the semiconducting matrix. The role
played by these barriers becomes less important as the
concentration of holes increases. It can be thought that
the enigmatic absence of the anomalous Hall effect in
diluted magnetic semiconductors with ferromagnetic
inclusions (MnSb or MnAs clusters with high Curie
temperatures) discussed in the literature is most likely
related to the presence of Schottky barriers at the
boundaries between the clusters and semiconducting
matrices. At low carrier concentrations (1019 cm–3), the
Schottky barriers are fairly wide and prevent the inter-
action of carriers with the ferromagnetic clusters.

Further studies are, however, necessary to elucidate
the nature of ferromagnetic inclusions in the synthe-
sized layers and the mechanism of their interaction
mediated by the semiconducting matrix, which con-
tains free carriers and magnetic ions in considerable
concentrations. Such studies would certainly be of fun-
damental interest, especially in light of the recently dis-
covered long-range character of exchange interactions
between thin ferromagnetic layers through a semicon-
ducting spacer [34].
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Abstract—The results of precision measurements of the resistivity, thermopower, volume, and thermal con-
ductivity of the compound SmTe under truly hydrostatic pressure conditions at room temperature are reported.
High quality stoichiometric and doped (n-type, n ≈ 8 × 1018 cm–3) single crystals are studied. It is found that
the valence transition occurs as consecutive stages of rearrangement of the electron subsystem and the crystal
lattice, which take place under different pressures. At the initial stage of the transition, metallization is observed,
which is accompanied by anomalies in kinetic coefficients; the curve describing the pressure dependence of the
volume deviates from the curve corresponding to the initial semiconductor phase only slightly. The next stage
is accompanied by a substantial change in the sample volume (lattice collapse); in this pressure range, however,
the resistivity and thermopower become independent of pressure. At the final stage of the transition, the sample
compressibility decreases; the resistivity and thermopower become again functions of pressure; and a state
emerging in the sample in this case corresponds to the “golden” phase of SmS in all the properties being mea-
sured. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The phenomenon of intermediate valence, which is
inherent in rare-earth compounds and is manifested
when the energy of localized f states becomes close to
the energy of conducting d states, has been an object of
intense study for more than three decades. This phe-
nomenon was studied in a huge number of publications
(see, for example, [1] for a review). The most striking
manifestations of the intermediate-valence state are an
intermediate value of the crystal lattice parameter and a
specific peculiarity in the quasiparticle spectrum of car-
riers in the vicinity of the Fermi level in the form of
peaks with a giant density of states, which are separated
by a narrow (of a few millielectronvolts) gap. Samar-
ium chalcogenides (in particular, SmTe) are classical
objects for studying the intermediate-valence state.
Under normal conditions, these compounds are semi-
conductors in which the gap is formed by 4f 6 states of
samarium ions with the conduction band formed by 5d
states of samarium ions. The intermediate-valence state
in samarium chalcogenides can be induced by a high
pressure, leading to an increase in the 5d bandwidth
and, ultimately, to overlapping of the energies of the
4f 65d0 and 4f 55d1 configurations. Another widely used
method for obtaining the intermediate-valence state is
the substitution of other rare-earth metals (such as lan-
thanum, yttrium, and cerium) for samarium. The substi-
tution of a trivalent smaller-radius ion for the bivalent
samarium ion in the compound gives rise to an addi-
1063-7761/05/10004- $26.000752
tional “chemical” pressure. This method has made it
possible to study intermediate-valence state using a
wide set of experimental methods without specific lim-
itations associated with high pressures. The given
method for obtaining such states is not equivalent to the
application of a high pressure (which was repeatedly
noted in the literature; see, for example, [2]) since, in
addition to the chemical pressure, electrons are sup-
plied to the conduction band of the system. At early
stages of investigations, this nonequivalence led to
overestimation of the effects of the f–d hybridization in
the theoretical description of intermediate-valence
state. The concepts of the exciton origin of this state are
also being developed [3–7].

At the same time, some aspects of the phenomenon
have not been interpreted adequately as yet. We are
talking about the interrelation between the rearrange-
ment of the electron spectrum under pressure and vol-
ume anomalies in the region of a transition with a
change in valence. These aspects are either ignored in
publications altogether, or it is assumed that both pro-
cesses occur synchronously since the effects associated
with exciton condensation (T ≈ 70 K) should not play a
significant role at room temperature. Such a disregard
of this problem is apparently due to the fact that the
electron spectrum and the volume were studied on dif-
ferent samples using different high-pressure setups (the
choice was dictated by the relevant experimental meth-
ods) and the problem of establishing the correlation in
 © 2005 Pleiades Publishing, Inc.
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the behavior of electron properties and the crystal lat-
tice in the transition region was not specially posed. In
our earlier publication [8], it was shown that transitions
in the electron subsystems of SmSe and SmTe are not
synchronous to the lattice collapse, but a satisfactory
interpretation of this effect was not proposed.

Here, we attempt at a detailed study of the interrela-
tion between the rearrangement in the electron spec-
trum and the volume anomaly during a valence transi-
tion in SmTe. The study is based on precision measure-
ment of the volume and transport parameters
(resistivity, thermopower, and thermal conductivity) of
monocrystalline samples under the ideal hydrostatic
conditions with a rigorously controlled pressure. The
use of the doping (generally speaking, self-doping, i.e.,
a slight deviation from stoichiometry) as an additional
parameter is aimed at studying the effect of conduction
electrons on the process of transition in the absence of
accompanying chemical pressure emerging in substi-
tuted solutions.

2. EXPERIMENT

High-pressure experiments were carried out on a
Toroid-type device [9] with a central hole diameter of
25 mm (the useful volume was approximately 1 cm3).
The design of high-pressure apparatuses of this type
ensured reliable operation of an ampoule with a liquid
and 12–14 electric leads during an increase and
decrease in pressure and, hence, makes it possible to
implement various experimental techniques in a pres-
sure range up to 9 GPa under ideal hydrostatic condi-
tions. The design of the hydrostatic ampoule and its
content are determined by the purpose of a specific
experiment. By way of example, Fig. 1a shows an
ampoule intended for high-temperature measurements.
A partition separates two compartments of the ampoule
filled with different liquids. The “hot” compartment
contains a heater with an assembly for measuring resis-
tance (Fig. 1b) or a sample with a strain gauge glued to
it (Fig. 1c). The “cold” compartment contains a manga-
nite pressure gauge. The experimental cell for room-
temperature experiments has a simple design without
the partition and the heater. The experimental tech-
niques were described in detail in our earlier publica-
tions [10, 11]. Since we compare here the properties of
the samples measured in different experiments, some
remarks concerning the precision of pressure mea-
surements will be appropriate. As a rule, an error of
0.2–0.3 GPa for a pressure range of 10 GPa is usually
regarded as quite satisfactory. With such a precision of
pressure measurements, a difference of a few kilobars
in the positions of anomalies in various properties is
attributed by some authors to shear stresses and to
errors in pressure measurements. Comparison of the
results obtained using high-pressure apparatuses of dif-
ferent types is even more difficult. In this study, all
experimental results are obtained under hydrostatic
conditions (i.e., in the absence of shear stresses in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sample). The reproducibility of the pressure scale in our
experiments was at a level of 0.01 GPa (100 bar!). The
absolute error of pressure measurements (about 1%) is
determined by the accuracy of the reference scale (to
calibrate the manganite pressure gauges, we used resis-
tivity jumps during transitions in bismuth at 2.54 and
7.7 GPa).

We choose thermal conductivity as a property sensi-
tive to variations in the phonon subsystem. Serious dif-
ficulties in studying this kinetic coefficient are associ-
ated with the fact that it is difficult to measure this
parameter and even more difficult to interpret the
results. The only advantage of thermal conductivity
measurements in this study is the possibility of carrying
out these measurements with our high-pressure setup
on the same samples and with the same pressure scale.
Since SmTe is a brittle material, the installment of a
heater “inside” the sample (standard cylindrical geom-
etry) appeared problematic. For our purposes, it was
sufficient to measure the thermal conductivity on qual-
itative level (tendencies in variation, positions of anom-
alies, etc.); for this reason, we chose a relatively simple
measuring technique.

Figure 2a shows a cell for thermal conductivity mea-
surements; Fig. 2b illustrates the design of the assem-
bly. To reduce the errors associated with heat fluxes
through the lateral surface of the sample, we used sam-
ples of a nearly cubic shape. The typical size of the
samples in a test series was within 1.8–2.2 mm. The end

(a)

(b) (c)
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Fig. 1. Hydrostatic cell for electric measurements at high
temperatures in Toroid-type apparatuses. (a) Schematic dia-
gram: 1—gasket (lithographic stone), 2—ampoule lid
(brass), 3—ampoule shell (Teflon), 4—thermal insulation
(mineral wool), 5—pressure gauge (manganin), 6—leads,
7—heater with a sample and a thermocouple. (b) Assembly
for resistivity measurements. (c) Sample with a strain
gauge.
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faces of sample 9 (Fig. 2b) were thoroughly tinned with
indium 8, into which a copper-constantan thermocou-
ple made of a 50-µm wire were soldered. Heater 6 was
in the form of a 50-µm constantan wire wound on a
strip of paper. Current and potential copper leads
(40-µm) were soldered to the heater ends. The heater,
which has an insulation of capacitor paper 5, was sur-
rounded by copper screen 4 and the entire structure was
impregnated with epoxy adhesive. The sample was sol-
dered to the heater and the heat sink (ampoule lid) by
Wood alloy 7. To suppress convective flows in the liq-
uid, the entire assembly was coated with mineral wool
(not shown in the figure).

With such a design of the measuring cell, a consid-
erable part of the heat flux passes through the liquid

(a)

(b)

1

2

3

4

5

6

7

8

9

8

7

Fig. 2. Hydrostatic cell for thermal conductivity measure-
ments. (a) Schematic diagram: 1—pressure gauge, 2—heater,
3—sample. (b) Schematic of the assembly: 4—copper
thermal screen, 5—insulation made of capacitor paper,
6—heater, 7—Wood alloy, 8—indium, 9—sample.
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transmitting pressure to the sample. The pressure
dependence of the heat flux through the liquid was mea-
sured in the same cell but without a sample. The heat
flux through conducting leads (which was measured
separately) amounted to a few percent of the total flux
and was regarded as independent of pressure in data
processing. At the beginning of the experiment (before
the liquid was poured into the ampoule), we measured
the initial thermal conductivity of the sample taking
into account the heat flux in the leads. Then the
ampoule was filled with the liquid and one more mea-
surement was made under zero pressure. The initial
heat flux through the liquid was determined as the dif-
ference between the results of these two measurements.
To find the thermal conductivity of the sample under
pressure, we must subtract the thermal conductivity of
the leads and that of the liquid (calculated from the
measured initial value and the known pressure depen-
dence) from the measured overall value. The thermal
conductivity coefficient was calculated with respect to
the initial sample size (the sample compressibility was
ignored). To reduce the influence of thermal effects in
the liquid (which, however, were taken into account in
data processing) during variation of pressure, measure-
ments were made for a comparatively large (5–7 K)
temperature difference at the end faces of the sample.
Without going further into the analysis of experimental
errors, it should be noted that, according to our esti-
mates, a possible systematic error in thermal conductiv-
ity measurements amounts approximately to 30% for
the maximal pressure. As regards the authenticity of the
observed anomalies in the thermal conductivity of
SmTe, it is beyond any doubt since the thermal conduc-
tivity of a liquid is a monotonic smooth curve without
any peculiarities.

We used 4 : 1 methanol-ethanol and 1 : 1 pentane–
petroleum ether mixtures as the pressure-transmitting
medium. The second mixture has a hydrostatic limit
approximately at 5 GPa, but is a good insulator. It was
used only for measurements on a stoichiometric SmTe
sample under pressures below 4 GPa. The mixture of
alcohols exhibits a noticeable electrical conductivity,
which affects the accuracy of resistivity and ther-
mopower measurements on the stoichiometric sample
under a pressure below 2.5 GPa because of shunting
and electrochemical effects (this information has been
removed from the graphs). In the intermediate pressure
range (2.5–4 GPa), the results of measurements in var-
ious liquids coincide to a high degree of accuracy.

The samples of SmTe were synthesized and certified
at the Ioffe Physicotechnical Institute, Russian Acad-
emy of Sciences. The initial samples were in the form
of coarse (about 5 mm in size) single crystals, from
which the samples of the required shape were cleaved
for measurements. A single crystal of doped SmTe was
obtained from the initial stoichiometric sample by
annealing in samarium vapor. The charge carrier con-
centration in this samples was n ≈ 8 × 1018 cm–3 accord-
ing to the results of Hall measurements. The contacts
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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were soldered by rubbing molten indium into a fresh
chip on the sample surface.

3. RESULTS

Figure 3 shows the results of measurement of the
sample resistance. The resistivity was calculated using
the initial size of the samples; i.e., the compressibility
is disregarded (the correction for compressibility
amounts to about 7% under maximal pressure). In addi-
tion, an error of about 5% may appear in the calculated
values of ρ in determining the geometrical factor due to
finite sizes of potential contacts to the sample. The inset
shows the pressure dependence of activation energy Ea

of conduction (thermal gap) for a stoichiometric sam-
ple. The curve was obtained from the slopes of the tem-
perature dependences of resistance R in the temperature
range 290–390 K. In the vicinity of 4 GPa, the temper-
ature range narrows to 290–350 K due to a noticeable
nonlinearity of the dependences. We assumed that the
resistance is given by

where e is the electron charge and activation energy Ea

is expressed in electronvolts. This gives

A conventional error in determining the thermal gap is
disregard of the variation of pressure under a change in
the sample temperature. The error becomes especially
large when the sample resistance is independent of tem-
perature (Ea = 0) and depends only on pressure, but a
“fictitious gap” appears due to an increase in pressure
in the cell during heating. In this study, the thermal gap
is determined correctly from methodical point of view.
The current value of pressure Pn was measured at each
point n of the temperature dependence of the resistance,
and the quantity

was calculated. The lnR(P, T0) dependence in the vicin-
ity of P0 at room temperature T0 was determined in the
same experiment. Then, for each point, we determined
the value of

and averaged the set of Ea(Pn) values with weight factor
(1/T0 – 1/Tn)/(1/T0 – 1/Tmax), where Tmax is the maximal
temperature in a given measurement.

R
eEa
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It should be noted that the pressure dependences of
resistivity obtained with increasing and decreasing
pressure (see Fig. 3) coincided to a high degree of accu-
racy. No hysteresis loops or irreversible behavior were
observed. In the low-pressure range (P < 2 GPa), the
conductivity of the stoichiometric sample is ensured by
an insignificant amount of p-type impurities and varies
insignificantly under pressure. For a pressure of
2−4 GPa, an intrinsic conductivity region is observed,
in which the logarithm of resistivity and the activation
energy linearly decrease with increasing pressure (the
conduction of the doped sample is of the impurity type
in the entire range of pressure P < 4 GPa). It is impor-
tant for subsequent analysis to note the following cir-
cumstance. Under a pressure of about 4 GPa, the value
of Ea determined using the above technique vanishes. In
the case of a classical semiconductor, the disappearance
of the gap should lead to a strong anomaly on the

 curve and to a pressure-independent resis-
tance (on the given scale of the graph) in the “metallic”
state. However, the experiment shows that the 
curve exhibits only a small kink in the vicinity of
4 GPa; at a higher pressure (up to 5.5 GPa), the value of
this quantity decreases exponentially with increasing
pressure in spite of the metallic temperature behavior of
resistivity. A similar anomaly is also observed for the
doped sample. In the pressure range 4.5–5.5 GPa, the
sample resistivity decreases exponentially with increas-
ing pressure in spite of the metallic type of its tempera-
ture dependence. At a pressure of ~5.5 GPa, the resis-
tivity of both samples attains a level of 2.45 × 10–4 Ω cm
[(2.35 ± 0.1) × 10–4 Ω cm with allowance for the correc-
tion for compressibility] and varies only slightly upon a
further increase in pressure.

ρ P( )log

ρ P( )log

10 2 3 4
P, GPa

100

200

300

E
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 m
eV

0 2 4 6 8
P, GPa
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–4

0

2

4
logρ [Ω cm]

1

2

Fig. 3. Resistivity of SmTe samples at room temperature:
1—doped sample upon an increase (d) and a decrease (s) in
pressure; 2—stoichiometric sample (results of three experi-
ments with different liquid). The inset shows the activation
energy for the stoichiometric sample.
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Fig. 4. Thermopower of a doped (1) and a stoichiometric
(2) SmTe sample at room temperature upon an increase
(dark symbols) and a decrease (light symbols) in pressure.
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Fig. 5. Volume of a doped (d, s) and a stoichiometric (j, h)
SmTe sample upon an increase (d, j) and a decrease (s, h)
in pressure. The solid line, VII(P)/V0, describes the fitting of
the data on V(P)/V0 for P < 4 GPa to the Murnaghan equa-
tion with fitting parameters K = 34.575 ± 0.052, K' =
3.170 ± 0.034, χ2 = 0.0004.
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Fig. 6. Thermal conductivity of a stoichiometric (1) and a
doped (2) SmTe sample at room temperature upon an
increase (dark symbols) and a decrease (light symbols) in
pressure.
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Figure 4 shows the dependences of thermopower S
on pressure P at room temperature. We also note a non-
hysteretic behavior of the curves obtained upon an
increase and a decrease in pressure (insignificant irre-
versibility at P < 2 GPa is apparently associated with
the rearrangement of impurity states; however, these
details are beyond the scope of this study). The varia-
tions of thermopower and resistivity with pressure in
the semiconductor state (P < 4 GPa) occur in accor-
dance with the same scenario. For low pressures, the
values of ρ, S, and Ea are determined by the initial con-
centration of p-type impurities and depend on pressure
only slightly. With increasing pressure, the width of the
5d band increases, leading to a decrease in the forbid-
den gap and to an increase in the intrinsic charge carrier
concentration. On account of the difference in the
mobilities of 4f holes and 5d electrons, transport phe-
nomena for P > 2 GPa can be assumed to be determined
by conduction electrons alone. Their concentration
increases exponentially with pressure (Ea decreases lin-
early), which leads to a linear decrease in .
The thermopower curve in the vicinity of 2 GPa exhib-
its “switching” from the impurity-type conduction to
the intrinsic electron type. Behind the minimum in the
vicinity of 2.7 GPa, the thermopower is determined
only by intrinsic charge carriers and decreases with
increasing concentration of these carriers (upon a
decrease in Ea). In the vicinity of 4 GPa, the S(P) curve
has a small kink due to “metallization,” after which the
thermopower continues to increase up to a pressure of
5.15 GPa. The corresponding anomaly in thermopower
is also observed for the doped sample in a pressure
range of 4.50–5.35 GPa.

Figure 5 shows the pressure dependences of the vol-
ume obtained from strain measurements upon an
increase and a decrease of pressure. Under a pressure
below 4 GPa, the V(P) dependence is of the semicon-
ductor type. Anomalous behavior of the volume begins
at P > 4 GPa in the form of a smoothly increasing devi-
ation from the initial dependence. Figure 7c below
shows the difference between the measured volume V
of the samples and the extrapolated pressure depen-
dence VII(P) of the volume for the semiconductor
phase. The most substantial change in the volume,
which is usually associated with the departure of an
electron from the 4f 6 level, is observed in the region of
5.5–7 GPa, although the compressibility remains
anomalously high for higher pressures also.

It is appropriate to emphasize once again that the
main variation of the volume begins only at P =
5.5 GPa, while the main variations of the electron prop-
erties have finished at this pressure.

Figure 6 shows the curves describing the pressure
dependence of the thermal conductivity of SmTe sam-
ples. As in the case of resistivity, the initial size of the
samples was used for calculating the specific value.
Allowance for compressibility increases the size of the
anomaly and slightly shifts the positions of the minima

ρ P( )log
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towards higher pressures; however, this is immaterial
for the subsequent discussion. In spite of their low
accuracy (the systematic error is estimated at approxi-
mately 30% for 9 GPa), the thermal conductivity data
nevertheless make it possible to judge the heat conduc-
tion mechanism and anomalies in the phonon spectrum.
For P < 4 GPa, the heat conduction of the stoichiomet-
ric sample is of the phonon type; with increasing pres-
sure, the thermal conductivity increases due to harden-
ing of the phonon spectrum without a noticeable
change in anharmonism. In the doped sample, part of
the heat is transferred by conduction electrons. The
faster increase in the thermal conductivity under pres-
sure is due to the electron component and matches the
decrease in the resistance of the doped sample in this
pressure range (see Fig. 3). Metallization of the sample
in the vicinity of 4 GPa is unnoticeable on the thermal
conductivity curve. As in the case of the V(P) depen-
dence, the smooth deviation of the thermal conductivity
from the initial dependence apparently increases, but
cannot be noticed in view of insufficient accuracy of
measurements (the opposite tendencies, viz., an
increase in the electron component and an enhance-
ment of scattering, probably compete in this case).

At this stage of the discussion, the following
remarks can be made.

(i) In the pressure range where a decrease in the
resistivity is observed, the thermal conductivity does
not increase (owing to the electron component), but
sharply decreases, the anomaly for the doped sample
being noticeably larger. (ii) The minimum of the ther-
mal conductivity corresponds to the maximum of com-
pressibility. (iii) In the entire pressure range (including
the region above 7 GPa), the heat conduction appar-
ently remains mainly of the phonon type.

Generally speaking, it is impossible at present to
unambiguously interpret the behavior of the thermal
conductivity in such a complicated case. The increase
in the thermal conductivity for P > 6 GPa can also be
explained by an increase in the electron component;
however, it is an order of magnitude smaller than the
thermal conductivity of normal metals even in this case.

To give a visual idea on the mutual positions of
anomalies, all measured dependences are presented in
Fig. 7 on a magnified scale.

4. DISCUSSION

An attempt at constructing a consistent explanation
of experimental results (especially the above-men-
tioned separation of the “electron transition” and lattice
collapse, the decrease in thermal conductivity upon an
increase in electrical conductivity, and strange metalli-
zation followed by a decrease in ρ(P) by almost two
orders of magnitude) requires the acceptance of some
model concepts on the mechanism of the valence tran-
sition. Unfortunately, it is impossible to directly com-
pare the experiment with the results of calculations
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
based on various theoretical models at the present
stage. Even the calculation of resistivity (not to mention
thermopower and thermal conductivity) requires taking
into account various scattering mechanisms based on
exact information on the phonon spectrum and the ele-
mentary excitation spectrum for charge carriers, which
cannot be interpreted in the framework of the one-elec-
tron approximation. In this sense, experimental data on
transport phenomena are “inconvenient” for estimating
the adequacy of theoretical models. On the other hand,
electric measurements can be carried out under ideal
hydrostatic conditions with a high degree of accuracy
and with a small pressure step, which provides detailed
information on the interrelation between various stages
of the transition. This is difficult and even impossible
when “convenient” experimental methods are used
(such as obtaining the phonon spectrum using the
inelastic neutron scattering technique). With such an
approach, we can try to estimate the adequacy of a the-
oretical model not by comparing the specific values of
resistivity, thermopower, etc., with the results of calcu-
lations, but using a consistent qualitative description of

(a)

(b)

(c)

(d)

54 6 7 8 9
P, GPa

8

12

16

–4

–2

0
–120

–80

–40

0

–3.8

–3.6

–3.4

–3.2

lo
g

ρ 
[Ω

 c
m

]

1

2

1

1

1

2

2

2

S,
 µ

V
/K

(V
 –

 V
II
)/

V
0,

 %
λ,

 W
/(

m
 K

)

Fig. 7. Electron and lattice properties of a stoichiometric (1)
and a doped (2) SmTe samples in the region of valence tran-
sition upon an increase (dark symbols) and a decrease (light
symbols) in pressure.
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all the stages of the transition in the framework of this
model.

In our opinion, it is difficult to explain the plateau on
the thermopower and resistivity curves in the maximal
compressibility region as well as other experimentally
observed peculiarities in the framework of the model
based on the concept of electron fluctuations between
the 4f 65d0 and 4f 55d1 configurations (promotion
model; see, for example, [1]). In this model, volume
variations are usually attributed to the variation of the
number of electrons in the conduction band. Upon a
smooth variation of the volume in the pressure range
5.5–7 GPa, the corresponding variations of the electron
kinetic coefficients must be observed. However, the
ρ(P) and S(P) curves (see Figs. 7a and 7b) display a pla-
teau-type anomaly in this pressure range.

Exciton models based of the presence of “shallow”
(10–20 meV) exciton levels also fail to explain the
experimental results since such models do not predict
localized electron states in the high-temperature range
(300 K ≈ 25 meV).

In the case of the intermediate-valence state, exci-
tons with a structure strongly depending on the rear-
rangement of the phonon spectrum may exist. In the
exciton models [4, 5, 7], a valence transition (a smooth
transition as in SmSe, SmTe or an abrupt transition as
in SmS) occurs as a result of softening of the fully sym-
metric exciton mode. This vibration (“breathing”
mode) can be described as a radial displacement of
anions closest to a given samarium cation. This process
simultaneously involves the electron and phonon sub-
systems, which leads to a strong (resonant) electron–
phonon interaction resulting in a radical rearrangement
of the electron and phonon spectra for a certain relation
between the energy parameters. In such a vibration, an
electron excited from the 4f 6 state does not reach the
conduction band, but is localized on an orbital con-
structed from the 5d states of the nearest cations with
the preserved symmetry of the ground state. The effec-
tive potential relief of atomic vibrations acquires sev-
eral minima corresponding to several vibrational
modes with different equilibrium positions and fre-
quencies. Subsequent analysis of our experimental data
requires allowance for an additional hard resonance
mode in the high-temperature range, which was
explained in [7]. In our opinion, our experimental
results permit a consistent description based on the
exciton model including two types of exciton excita-
tions, viz., ordinary “shallow” excitons (playing a sig-
nificant role at the beginning and at the end of the pro-
cess) and “hard” excitons corresponding to the high-
temperature resonance vibrational mode and determin-
ing the behavior of the system in the maximal anhar-
monism (maximal compressibility) region in a pressure
range of 5.5–7 GPa.

Returning to the discussion of the results, we note
that all experimental dependences obtained for the
doped sample for P > 4 GPa virtually repeat the curves
JOURNAL OF EXPERIMENTAL A
for the stoichiometric sample with a slight (about
0.2 GPa) shift towards high pressures. In formulating
the problem, we assumed that the transition is “con-
trolled” by the carrier concentration in the conduction
band. The observed effect turned out to be opposite. It
was found that excess electrons in the conduction band
hamper the formation of exciton instability probably
due to screening effects (although other explanations
can also exist). An important result is that the transition
is determined by the pressure dependence of the forbid-
den gap Eg , but it is exciton instability and not the tran-
sition of electrons to the conduction band that plays a
decisive role.

Let us now consider all the “stages” of this transi-
tion, beginning with a strange “metallic” state formed
under a pressure of 4 GPa. We can estimate the differ-
ence between the values of Eg (the gap between the 4f
and 5d states obtained from optical measurements) and
Ea (obtained from the temperature dependence of resis-
tivity). According to Bucher et al. [12], Eg = 0.63 eV at
zero pressure; with increasing pressure, the value of Eg

decreases at a rate dEg/dP = –120 meV/GPa (extrapola-
tion to zero gives 5.2 GPa). According to our results,
dEa/dP = –145 meV/GPa, Ea = 0 for P = 3.97 GPa;
extrapolation to zero pressure gives Ea(0) = 575 meV;
i.e., Eg – Ea ≈ (55–150) meV. Thus, the metal-type con-
duction for P > 4 GPa is apparently associated with cer-
tain conducting states lying below the bottom of the 5d
conduction band. If we assume that these states corre-
spond to ionization of low-energy excitons, their concen-
tration must be determined by the ratio Eg/∆ex (where ∆ex
is the exciton energy equal approximately to 30 meV (in
accordance with the estimate "ω/∆ex ≈ 0.15 [5]) or
20 meV (the energy of the f–f transition [13])),

If we assume that Eg = 0 for P = 5.5 GPa (second kink
on the ρ(P) curve), a rough estimate gives

Then Eg(4 GPa) ≈ 3.7∆ex ≈ (70–110) meV, which is in
satisfactory agreement with the above estimate of the
difference Eg – Ea . The (V – VII)(P) dependence
depicted in Fig. 7c displays a smoothly increasing
defect of volume in this region, which is in qualitative
agreement with the proposed interpretation. The anom-
aly of thermal conductivity λ (the peak near 4.5 GPa
followed by a decrease in its value; see Fig. 7d) can also
be explained by an increase in the number of fluctuating
atoms. It was noted above that the heat conduction of
the samples is of the phonon type with an insignificant
(10–20%) electron contribution for the doped sample.
Like the anomaly on the V(P) curve, the thermal con-
ductivity anomaly can be interpreted as a smoothly

n Eg/∆ex–( ).exp∝

ρ 4 GPa( )ln ρ 5.5 GPa( )ln–

=  2.3 ρ 4 GPa( )log ρ 5.5 GPa( )log–[ ] 3.7.=
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increasing deviation from the linear dependence, begin-
ning at P = 4 GPa; in this case, both the phonon–
phonon and the electron–phonon scattering increases
(the anomaly for the doped sample is noticeably larger).
In this pressure range, the behavior of the kinetic coef-
ficients can be explained equally well in the framework
of hybridization (promotion) models since it is appar-
ently impossible to separate shallow excitons from
variations of the electron spectrum due to hybridization
at T ≈ 300 K. The above description of the 4–5.5 GPa
region should be treated not as a proof of the aptitude
of the exciton model, but as a possibility of describing
the experimental data using this model also.

The next stage of the transition corresponds to the
pressure range 5.5–7 GPa, in which the V(P) depen-
dence changes substantially (anomalous compressibil-
ity and lattice collapse are observed), while the ρ(P)
and S(P) curves acquire a plateau (a plateau on the S(P)
curve in the anomalous compressibility region was
detected earlier in [8]). In fact, in the pressure range in
which the major part of electrons leave the 4f 6 state, the
density of states at the Fermi level and its derivative
remain unchanged (the version of matched variation of
the density of states and scattering from phonons is
improbable since the thermal conductivity curves do
not display the corresponding anomaly). In the frame-
work of the exciton model [7], this effect can be
explained by the fact that the maximal compressibility
region corresponds to the maximal anharmonism in
atomic vibrations. As a result of enhanced anharmon-
ism, a resonant vibration is induced, which is simulta-
neously a lattice vibration and a charge density oscilla-
tion (hard exciton). Lattice collapse corresponds to a
change in the position of the potential energy minimum
of this vibrational mode, but the number of free charge
carriers remains unchanged in this case (in other words,
the electrons leaving the f level are involved in this
vibrational process and do not make a substantial con-
tribution to transport phenomena).

The final stage of the transition (P > 7 GPa) has no
clearly defined boundaries. Since the term “valence
transition” does not define the final state of the system,
the question of “completion” of the transition should be
treated as a matter of terminology. In the pressure range
above 7 GPa, the resistivity begins decreasing, the ther-
mopower increases, tending to the range of positive val-
ues, while the compressibility gradually decreases,
remaining anomalously high. On quantitative and qual-
itative levels, these characteristics correspond to a sta-
ble intermediate-valence state analogous to the golden
phase of SmS, which has been studied in detail.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
It should be noted in conclusion that the proposed
description of the transition in SmTe based on the exci-
ton model of the intermediate-valence state should not
be treated as the best possible and unique. Our main
task was rather to formulate the problems concerning
the interrelation of the stages in the valence transition
and to obtain experimental data that can be useful for
the development of theoretical concepts concerning the
intermediate-valence state.
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Abstract—The optical Raman and photoluminescence (PL) spectra of the high-pressure hydrogenated
fullerene C60 are studied at normal conditions and at high pressure. The Raman spectrum of the most stable
hydrofullerene C60H36 contains a large number of peaks related to various isomers of this molecule. Compari-
son of the experimental data with the results of calculations shows that the most abundant isomers have the sym-
metries S6, T, and D3d . The Raman spectrum of deuterofullerene C60D36 is similar to that of C60H36, but the
frequencies of the C–H stretching and bending modes are shifted due to the isotopic effect. The PL spectrum
of hydrofullerene C60H36 is shifted to higher energies by approximately 1 eV with respect to that of pristine
C60. The effect of hydrostatic pressure on the Raman and PL spectra of C60H36 has been investigated up to
12 GPa. The pressure dependence of the phonon frequencies exhibits peculiarities at approximately 0.6 and 6 GPa.
The changes observed at approximately 0.6 GPa are probably related to a phase transition from the initial ori-
entationally disordered body-centered cubic structure to an orientationally ordered structure. The peculiarity at
approximately 6 GPa may be related to a pressure-driven enhancement of the C–H interaction between the
hydrogen and carbon atoms belonging to neighboring molecular cages. The pressure-induced shift of the pho-
toluminescence spectrum of C60H36 is very small up to 6 GPa, and a negative pressure shift was observed at
higher pressure. All the observed pressure effects are reversible with pressure. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Hydrofullerenes have attracted considerable inter-
est, particularly in relation to their potential use as
hydrogen storage materials [1]. The existence of
several hydrofullerenes has been predicted by theoreti-
cal calculations and some of them have been synthe-
sized [2–5]. The most stable member, C60H36, is the
hydrogenated derivative of the pristine C60 molecule,
which can be prepared using either the high-pressure
hydrogenation [6] or the hydrogen-atom transfer to C60
from other reagents in solution [7]. Hydrofullerene
samples prepared by the use of both methods are usu-
ally rather nonuniform and may contain hydrides with
various mass weights, as well as a small amount of
reagents. Characterization of the hydrogenation reac-
tion products is therefore of great importance and vari-
ous methods such as electron, X-ray, and neutron dif-
fraction; nuclear magnetic resonance; infrared spec-
troscopy; and laser desorption mass spectrometry have
been used for this purpose [4–6, 8–10].

The C60H36 molecule can exist in a great number of
isomeric forms, but only a small number of them are

¶ This article was submitted by the authors in English.
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stable [11]. The isomeric form with the highest symme-
try, Th , has 12 double bonds, arranged as far apart as
possible on its surface, while the form having the dou-
ble bonds in four isolated aromatic six-member rings
lacking hydrogen atoms and located at the corners of a
tetrahedron has a T-symmetry structure. Between these
two extremes are the isomers with the symmetry D3d

and S6, which have two six-member rings at the three-
fold axis poles of the molecule, with the other six dou-
ble bonds isolated in six pentagons. The presence of
various isomers in the C60H36 specimens most likely
depends on the preparation method and on the kinetic
parameters controlling the hydrogen addition reaction.
Thus, C60H36 prepared by transfer hydrogenation of C60

contains a mixture of the principal isomers D3d and S6

while C60H36 prepared by zinc reduction of C60 in aro-
matic solvents contains the S6 isomer as the most abun-
dant [12–14]. Concerning the solid-state phase of
C60H36, Hall et al. [9] have suggested the body-centered
cubic structure (BCC) with the cell parameter 11.785 ±
0.015 Å for the packing of the molecules in the crys-
talline state. Furthermore, they suppose, at least for the
D3d isomer, that the BCC crystal structure transforms
into a body-centered tetragonal one at low temperatures.
 © 2005 Pleiades Publishing, Inc.
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The optical characterization of hydrofullerenes is of
great importance and Raman scattering was success-
fully used for studying the vibrational spectrum
of C60H36 prepared by the transfer hydrogenation
method [12]. The incorporation of 36 hydrogen atoms
in the C60 cage lowers the molecular symmetry and
activates Raman scattering from a variety of initially
forbidden phonon modes. In addition, the appearance
of the C–H stretching and bending modes and those
related to various isomers of C60H36 results in a very
rich Raman spectrum [12]. The comparison of the
phonon frequencies for five principal isomers of C60H36
obtained by molecular dynamics calculations with the
experimentally observed phonon frequencies has led to
the conclusion that the material prepared by the transfer
hydrogenation method mainly contains two isomers,
those with the symmetries D3d and S6 [12].

In this paper, we study the optical Raman and PL
spectra of the hydro- and deuterofullerene C60H36 and
C60D36, respectively, prepared by high-pressure hydro-
genation. The aim was to identify the phonon and elec-
tron energy spectra of the high-pressure hydrogenated
fullerene, to clarify the isomer composition and homo-
geneity of samples, and to study the isotopic effects in
the vibrational spectra. The Raman spectra of the high-
pressure hydrogenated samples were compared with
those obtained by transfer hydrogenation and with the
molecular dynamics calculation data [12]. The Raman
data show the presence of all principal isomers in the
high-pressure hydrogenated fullerenes and a large iso-
topic shift for the C–H stretching mode, whereas the
shift of the modes related to the fullerene molecular
cage is negligible. We have also studied the pressure
behavior of the Raman and PL spectra of C60H36 at
pressure up to 12 GPa in order to obtain information
about the structural and chemical stability of the mate-
rial at high pressure. The incorporation of hydrogen in
the fullerene molecular cage may play an important
role in the stability of the material, in particular, it may
prevent the pressure-induced polymerization that is
typical of pristine C60 under high-pressure and high-
temperature treatment [15]. The incorporation of
hydrogen may also affect the pressure-induced phase
transition of the rotational disorder–order nature analo-
gously to the case of pristine C60. We have studied the
pressure behavior of phonon frequencies and the pres-
sure-induced shift of electronic bands. The pressure
coefficients of the phonon modes are positive and dem-
onstrate singularities at approximately 0.6 and 6 GPa.
The pressure shift of the luminescence spectrum is
unusually small and increases somehow at P ≥ 6 GPa.
All the observed features are reversible with pressure,
and C60H36 is stable in the pressure region investigated.

2. EXPERIMENTAL

The commercial material, C60 of 99.99% purity, was
sublimed twice in vacuum better than 10–5 Torr at
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
800 K and was then compacted into pellets 12 mm in
diameter and 1 mm in thickness. Each pellet was placed
into a copper capsule, covered with a disc of 0.01-mm
thick Pd foil, and then annealed in vacuum at 620 K for
2 h to expel desorbed gases. The remaining volume in
the capsule was filled with AlH3 or AlD3 for hydroge-
nation or deuteration, respectively, and tightly plugged
with a copper lid using gallium as a solder. This encap-
sulation procedure effectively prevents hydrogen or
deuterium losses during subsequent treatment, because
both Cu and Ga are largely impermeable to hydrogen.

The assembled capsules were pressurized to
3.0 GPa in a toroid-type high-pressure cell and main-
tained at 650 ± 10 K or 700 ± 10 K for a time of 24 or
48 h. AlH3 decomposes above 400 K [16], producing
hydrogen that reacts with the fullerite after permeating
the Pd foil, which isolates the fullerite from chemically
active Al. The amount of the hydrogen gas produced
inside the capsule corresponds to a particle ratio of
H/C60 ≈ 90. Therefore, the available hydrogen quantity
is always in excess of the number of C60 particles dur-
ing the hydrogenation experiments. The hydrogenation
procedure was repeated for a second run, with the prod-
uct of the first run taken as the starting material for the
second run. Preliminary mass-spectrometry data show
that at least 95% of the material in the capsule is
hydrofullerene C60H36, while the remaining 5% con-
tains partially hydrogenated fullerenes. The X-ray anal-
ysis of the obtained material shows that it has the BCC
structure, typical of C60H36 [9], with a lattice parameter
of 11.83 Å.

For optical measurements, visually uniform, color-
less, and transparent specimens were selected. Raman
spectra were recorded using a DILOR XY-500 triple
monochromator equipped with a CCD liquid-nitrogen-
cooled detector system. The spectra were taken in the
backscattering geometry by the use of the micro-
Raman system comprising an OLYMPUS microscope
equipped with an MSPlan100 objective with magnifi-
cation 100 and spatial resolution approximately
1.7 µm. The spectral width of the system was approxi-
mately 2.0 cm–1. The Raman frequencies were cali-
brated by the use of the low-pressure Ne lamp with the
accuracy better than 0.2 cm–1. To avoid interference
from luminescence, the sample was excited by the
676.4 nm line of the Kr+ laser, whose energy is below
the fundamental absorption gap of the material. The
laser power was varied from 5 to 10 mW, measured
directly before the sample, to avoid the destruction of
the samples by laser heating. The phonon frequencies
were obtained by fitting Gaussian line shapes to the
experimental Raman spectra. The PL spectra were
recorded using a single JOBIN YVON THR-1000
monochromator equipped with a CCD liquid-nitrogen-
cooled detector system. The 457.9 nm line of an Ar+

laser was used for excitation of the luminescence spec-
tra. The laser power was about 2 mW measured directly
in front of the high-pressure cell; the spectral width of
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Fig. 1. Raman spectra of the C60H36 (a) and C60D36 (b) samples taken at ambient conditions in the energy range 50–3100 cm–1.
The samples were prepared by means of high-pressure hydrogenation at P = 3.0 GPa and T = 700 K over a reaction time of about
24 h.
the system was approximately 1.0 cm–1. The measure-
ments at high pressure were carried out using the dia-
mond anvil cell (DAC) of the Mao–Bell type [17].
A 4 : 1 methanol–ethanol mixture was used as a pres-
sure-transmitting medium, and the ruby fluorescence
technique was used for pressure calibration [18]. The
samples used for the high-pressure measurements had
typical dimensions of approximately 100 µm.

3. RESULTS AND DISCUSSION

3.1. Isomeric Composition
and Isotopic Effect in C60H36 

The Raman spectra of C60H36 and C60D36 taken in
the frequency region 50–3150 cm–1 at ambient condi-
tions are shown in Fig. 1a and Fig. 1b, respectively.
Both samples were synthesized at the pressure 3.0 GPa,
temperature 700 K and reaction time approximately
24 hours. The spectrum in Fig. 1a consists of 126 sharp
peaks with the lowest mode located at 86 cm–1 and the
JOURNAL OF EXPERIMENTAL 
highest at 2912 cm–1. For comparison, the Raman spec-
trum of pristine C60 contains only ten active modes,
Hg(1) – Hg(8) and Ag(1) – Ag(2), with frequencies
located in the region 273–1726 cm–1 [19]. The spec-
trum in Fig. 1a was taken at the best site of the best sam-
ple, selected from the content of the ampule by prelim-
inary micro-Raman probing as having the lowest back-
ground and the clearest Raman signal. A number of
rather good samples, taken from the same ampule,
show less intense Raman peaks with respect to the rel-
atively large background. The higher background is
probably a result of a higher concentration of structural
defects and impurities in the sample under study. These
impurities may be microscopic amounts of partially
hydrogenated fullerenes, which fluoresce under Kr-
laser excitation in the spectral region under investiga-
tion. The majority of the selected samples from the con-
tent of the ampule show a Raman signal similar to that
of the best one, but there are also many samples that
give a large background obscuring the structure of the
Raman spectrum. The samples obtained by high-pres-
AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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sure hydrogenation are rather nonuniform, and great
care should be exercised in sample selection. Using the
micro-Raman probe, we checked a number of samples
from different ampules in order to examine their quality
in relation to the hydrogenation parameters, namely,
temperature and reaction time. The results show that
the sample quality does not depend significantly on the
reaction time; on the contrary, temperature drastically
affects their optical quality. Samples hydrogenated at
700 K show a better optical quality, and their Raman
spectra show a rich structure, well-resolved intense
peaks, and relatively small background.

The Raman spectrum of C60H36 differs drastically
from that of pristine C60. The most important differ-
ences in their spectra are as follows:

(i) The number of the Raman-active modes incre-
ases dramatically.

(ii) The low-energy radial modes (200–600 cm–1)
exhibit a considerable intensity enhancement with
respect to the high-energy tangential modes (1400–
1700 cm–1). In addition, a number of new modes appear
that are related to the C–H bending (1150–1350 cm–1)
and stretching (2800–3000 cm–1) vibrations.

The vibrational data related to the Raman spectrum
of C60H36 are summarized in Table 1. The first three col-
umns of Table 1 contain the data related to the number,
position, and intensity of the Raman peaks. The next
two columns contain experimental results related to the
positions and intensities of the Raman peaks of C60H36
reported in previous studies [12, 13]. The last three col-
umns of Table 1 are related to the frequency, Raman
cross section, and symmetry of the Raman-active
modes of various isomers of the C60H36 molecule
according to calculations [12] using the modified
MNDO method. The comparison of the present experi-
mental data with those in [12, 13] shows that the Raman
spectrum of high-pressure hydrogenated C60H36 is
more than five times richer than that of transfer hydro-
genated C60H36. The majority of the experimentally
observed Raman peaks (86 out of a total of 126 peaks)
are very close, to an accuracy of approximately 5 cm–1,
to the calculated frequencies and cross sections of the
Raman-active modes (their total number is approxi-
mately 400) [12]. The peaks that are close to the calcu-
lated frequencies are assigned to all principal isomers,
but a majority of them belong to isomers with the sym-
metries S6, T, and D3d . We emphasize that the complex-
ity of the calculated vibrational spectrum, the large
number of isomers, and the accuracy of the molecular
dynamics calculations might sometimes result in an
accidental agreement (disagreement) of the experimen-
tal and calculated data. The peaks that are rather far
from the calculated Raman frequencies belong mainly
to the low-energy radial modes of the fullerene cage
and are probably related to the presence of other iso-
mers of C60H36 in the samples under study.
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The Raman spectrum of deuterofullerene C60D36
taken at ambient conditions, is shown in Fig. 1b. A first
glance at the Raman spectra of hydro- and deuterof-
ullerene indicates that they have several similarities, but
an important difference is also apparent. The spectrum
is less rich in structure than that of C60H36. It contains
about 80 peaks, probably due to a different isomer com-
position of C60D36 samples. The positions of the C–D
stretching modes are shifted towards lower energies
with respect to the C–H stretching modes. The related
Raman peaks are located in the frequency regions
2113–2209 cm–1 and 2827–2912 cm–1 for C60D36 and
C60H36, respectively. A similar shift is also observed for
the C–D bending modes, which are located in the fre-
quency regions 800–1200 cm–1 and 1150–1350 cm–1

for C60D36 and C60H36, respectively. We note that the
Raman spectrum of C60D36 also contains several very
weak peaks near 2900 cm–1, which are coincident with
C–H stretching modes of C60H36. This is related to the
isotopic contamination of the samples under study,
which contain a small amount of C60H36 caused by ini-
tial isotopic contamination of the deuterium provider
(AlD3) used for high-pressure synthesis.

The shift of the C–H stretching and bending modes
is related to the isotopic effect on the vibrational fre-
quencies caused by substitution of hydrogen by deute-
rium. The isotopic shift of the stretching mode frequen-
cies can be estimated from the formula

(1)

where ΩH and ΩD are the respective frequencies of the
C60H36 and C60D36 molecules and MΩH and MΩD are the
reduced masses involved in the vibrations. The large
difference between the masses of the hydrogen atom
and the C60 molecule indicates that the C–H stretching
mode is mainly related to displacements of the hydro-
gen atom along the bond direction, whereas the C60
molecule remains practically stationary. Thus, the iso-
topic shift of the C–H stretching mode is expected to be
close to the square root of the deuterium-to-hydrogen
mass ratio. The same is also expected for the isotopic
shift of the C–H bending mode. The frequencies and
isotopic shifts of a number of intense modes related to
the fullerene cage vibrations and to the C–H stretching
vibrations are tabulated in Table 2. The largest isotopic
shifts [ΩH/ΩD]2 were observed for the C–H stretching
modes that vary in the region 1.73–1.79. These values
are close to the mass ratio of deuterium and hydrogen,
MD/MH = 2. The isotopic shift for the modes related to
the fullerene cage vibrations is small with respect to the
C–H stretching modes and varies within 1–1.032. The
difference in the isotopic shifts between the stretching
modes and the fullerene cage modes is related to the
fact that the hydrogen atoms essentially do not partici-

ΩH

ΩD

-------
MΩD

MΩH

----------- 
 

1/2

,∼
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Table 1.  Frequencies and intensities of the observed and calculated Raman peaks in C60H36

Experiment Theory

present work ref. [12] ref. [13] ref. [12]

no. cm–1 intensity* cm–1 cm–1 cm–1 σ† isomer

1 86.0 vw 85
2 101.1 w 128
3 165.7 m 136
4 176.6 vs 175 180 176 7 T
5 192.3 s 194 7 D3d

6 196.9 vs 198 14 Th

7 206.6 vs 207 206 21 T
8 212.4 vs 211 214 22 Th

9 230.6 s 229 18 D3d

10 239.3 s 239
11 245.3 m
12 253.6 m
13 261.3 m 264
14 291.0 m
15 298.7 s 294 11 T
16 305.5 s
17 311.8 m 313
18 317.8 s
19 326.4 m 325 3 D3d

20 339.6 s 341 14 D3d

21 347.2 s 346 8 S6

22 360.3 s 365 10 S6

23 366.9 s 367 10 D3d(c – k)
24 381.8 m 379 1 T
25 396.3 s 395 395 395 7 D3d

26 404.3 m 404 2 D3d

27 415.3 m 415 7 D3d(c – k)
28 423.0 m 422 9 S6

29 429.4 m 427 4 D3d

30 443.0 s 444 442 3 T
31 448.4 vs 448
32 458.6 vs 458 460 17 S6

33 465.6 s 465 1 D3d

34 473.2 s 473 1 T
35 484.4 vs 484 484 488 44 T
36 491.3 vs 496 14 S6

37 501.9 s
38 509.9 s 509 31 S6

39 522.0 m 522 1 T
40 531.0 m
41 537.0 m
42 541.4 m 545 1 T
43 549.9 s
44 554.9 m
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Table 1.  (Contd.)

Experiment Theory

present work ref. [12] ref. [13] ref. [12]

no. cm–1 intensity* cm–1 cm–1 cm–1 σ† isomer

45 565.0 s 569 14 T

46 573.1 m 570 11 D3d(c – k)
47 577.6 m 579 30 S6

48 580.6 m 581 7 S6

49 585.7 s 586 6 D3d

50 590.7 m
51 596.3 m 597 52 D3d(c – k)
52 622.6 w
53 632.4 w 634 1 D3d(c – k)
54 642.5 w 647 2 S6

55 653.3 w 653 3 T

56 657.7 w
57 662.0 w 663 1 D3d

58 669.5 w 671 4 S6

59 685.0 m
60 696.3 w 699 11 D3d

61 711.6 m
62 720.6 m 719 4 T

63 731.6 m 731 36 D3d

64 744.5 w
65 752.3 w 753
66 761.1 w
67 774.2 w
68 781.3 w
69 791.3 m 796 2 Th

70 795.9 m 796 4 D3d

71 817.2 w
72 832.4 w 828 1 T

73 849.5 m 852 7 S6

74 861.7 w 860 2 T

75 869.2 m
76 880.4 m 875 2 T

77 922.2 w 921 3 Th

78 940.2 w 939 1 T

79 951.1 w 948 1 S6

80 960.8 w 959 5 Th

81 972.3 w 972 1 T

82 985.6 vw
83 991.4 w 988 5 Th

84 1015.1 w 1015 1008 1018 2 S6

85 1032.4 m 1039 1039
86 1054.1 w 1053 4 S6

87 1064.0 m
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Table 1.  (Contd.)

Experiment Theory

present work ref. [12] ref. [13] ref. [12]

no. cm–1 intensity* cm–1 cm–1 cm–1 σ† isomer

88 1073.2 w 1073 2 Th

89 1088.6 w 1087 1 S6

90 1125.2 w 1126 1 Th

91 1154.0 m 1154 1154 16 D3d(c – k)

92 1173.9 m 1172 18 T

93 1181.3 m 1182 12 T

94 1189.7 m 1186 1191 2 D3d

95 1207.7 m 1209 9 D3d

96 1212.6 s 1212 1213 1213 44 Th

97 1218.7 s 1217 23 S6

98 1227.2 m 1228 5 T

99 1231.8 m 1232 1 S6

100 1240.3 s 1238 36 T

101 1250.3 s 1252 22 D3d(c – k)

102 1256.9 m 1258 19 S6

103 1263.2 s 1262 1263 42 D3d

104 1274.0 s 1276 1274 74 D3d

105 1283.8 m 1284 12 D3d(c – k)

106 1306.1 w 1304 2 S6

107 1314.4 m 1313 29 Th

108 1319.6 s 1318 22 D3d(c – k)

109 1328.3 m 1326 33 S6

110 1334.9 s 1330 27 S6

111 1348.3 m

112 1353.2 s

113 1362.9 s 1363 9 D3d

114 1369.4 m 1386 1370 11 S6

115 1430.6 m 1402 1429 5 D3d

116 1457.0 s 1462 1462

117 1496.6 w 1508 1497

118 1653.8 w

119 1674.8 m 1671 401 S6

120 1714.0 s 1714 1712 211 D3d(c – k)

121 1724.5 w

122 1739.4 s 1736 1739 333 D3d(c – k)

123 2826.8 s 2830 2829

124 2852.5 s 2853 2852 2856 55 D3d

125 2911.9 s 2913 2911 2911 180 D3d

126 2931.2 m 8

Note: D3d(c – k) is the lowest energy isomer with D3d symmetry [13].
* Intensity characterization: very weak (vw), weak (w), medium (m), strong (s), and very strong (vs).
† Raman cross section (Å4/amu) [12].
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Fig. 2. Raman spectra of C60H36 recorded at room temperature during increasing (a) and decreasing (b) pressure cycle in the fre-

quency range 100–1800 cm–1. The frequency range containing the strong diamond Raman line is excluded.

Downstroke
pate in the cage vibrations. These results are very close
to those obtained by means of surface-enhanced Raman
scattering of hydrogen and deuterium chemisorbed on
a diamond (100) surface [21]. The frequencies of the
C–H and C–D stretching modes in [21] are 2830, 2865,
2928 cm–1 and 2102, 2165, 2195 cm–1, respectively, and
the isotopic shift varies within 1.32–1.35. Thus, the
parameters of the C–H stretching modes of hydrof-
ullerene could be similar to those of hydrogen, bonded
with carbon atoms on the diamond surface. This simi-
larity is related to the large difference between the
masses of the hydrogen atom and the fullerene mole-
cule or the carbon network in diamond. In addition, the
C–H bonding in both cases takes place with sp3 coordi-
nated carbon atoms.

3.2. Pressure Behavior of Raman Spectra
and Stability of C60H36 at High Pressure 

The Raman spectra of C60H36 recorded in the
regions 100–800 cm–1 and 1400–1750 cm–1 at room
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
temperature and high pressure are shown in Fig. 2 for
increasing (a) and decreasing (b) pressure runs, respec-
tively. The Raman modes appearing in this frequency

Table 2.  Molecular cage vibrations and C–H stretching
modes with their isotopic shift ratio

C60H36 C60D36

ΩH/ΩD (ΩH/ΩD)2

Ω, cm–1 Inten-
sity* Ω, cm–1 Inten-

sity*

206.6 vs 203.4 vs 1.016 1.032

212.4 vs 209.7 vs 1.013 1.026

464.2 vs 464.2 vs 1 1

484.4 vs 484.4 vs 1 1

2826.8 s 2113.6 s 1.337 1.789

2852.5 s 2169.7 s 1.315 1.728

2911.9 s 2209.3 s 1.318 1.737

* Intensity characterization: strong (s) and very strong (vs).
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region are related mainly to the vibrations of the
fullerene molecular cage. The spectral region where the
strong diamond vibration is located is excluded. As can
be seen from Fig. 2, a rich Raman spectrum, with well-
defined structures in the low-frequency region, can eas-
ily be followed with pressure. On the contrary, the
structures in the spectral region 1400–1750 cm–1 are
broad and weak, but still they can be traced up to the
highest pressure studied. At first glance, the application
of pressure seems to have the expected effect in the
Raman spectrum, i.e., an overall positive shift in the
frequencies of the Raman modes and a relative increase
in their line widths. But the situation differs signifi-
cantly for the part of the Raman spectrum containing
the hydrogen stretching vibrations. As can be seen in
Fig. 3, where the C–H stretching vibrations are pre-
sented, the initially well-separated structures in the cor-
responding spectra are gradually washed out, becoming
a very broad structure for pressures higher than approx-
imately 2.0 GPa. We note that despite a considerable

2800 2900 3000
Raman shift, cm–1

Downstroke0.2 GPa

11.7 GPa

7.6 GPa

2.8 GPa

0.1 GPa

In
te

ns
ity

1.7 GPa

Fig. 3. Raman spectra of C60H36 recorded in the frequency
range of the C–H stretching mode at ambient temperature
and various pressures for increasing pressure. The spectrum
in the upper frame, at 0.2 GPa, is recorded upon pressure
release.
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broadening of the Raman structures, the pressure effect
is fully reversible upon releasing pressure, as can be
seen from Fig. 2 and the top frame in Fig. 3.

The pressure dependence of the Raman frequencies
is shown in Figs. 4 and 5 for pressure up to 12 GPa and
at room temperature. The different open (closed) sym-
bols correspond to pressure increase (decrease) in dif-
ferent pressure runs, while the solid lines through the
experimental points represent linear least-square fit-
tings. The shaded areas near the pressure approxi-
mately 0.6 and 6.0 GPa denote the pressure regions
where the change in the slope of the pressure depen-
dence or the disappearance of some Raman peaks
occur. The parameters of linear least-square fittings and
a tentative mode assignment of the observed Raman
modes are compiled in Table 3. In the mode assignment
column, we indicate the isomeric form to which this
mode most likely belongs. The data related to pristine
C60 are also included in Table 3 for comparison. The
pressure dependence presented in Figs. 4 and 5 and
numerical data in Table 1 show that all the observed
modes have positive pressure coefficients and at least
four Raman peaks disappear for pressures higher than
approximately 6 GPa. Furthermore, the majority of
Raman modes exhibit a change in the slope of their
pressure dependence at approximately 0.6 and 6 GPa.
These peculiarities were observed for both increasing
and decreasing pressure runs, and therefore the pres-
sure dependence of the Raman mode frequencies
exhibits fully reversible behavior.

The pressure dependence of the stretching C–H
vibrations, where a dramatic broadening occurs with
increasing pressure, is the most striking pressure effect
on the Raman spectra of C60H36. In our opinion, the
abnormal broadening of the initially sharp peaks in the
Raman spectra of G60H36 may be related to the presence
of various isomers in the samples under study. Numer-
ical calculations in [12] show that there are many iden-
tical Raman modes related to various isomers of C60H36
with very close frequencies. We believe that any differ-
ence in their pressure coefficients, even small, may
result in additional pressure-induced broadening of
these peaks, which gradually obscures the initially
sharp Raman structure. A similar broadening of the
Raman spectra at high pressure was also observed in
the isomeric mixture of C84 fullerene samples [22]. It is
important to note that this kind of broadening is
expected to be reversible with pressure, and this behav-
ior is indeed observed in our experiments. Bearing in
mind that the number of the main C–H Raman modes
of C60H36 does not change with pressure, we have fitted
the experimental data in this region by keeping the
same number of peaks at any pressure. The pressure
behavior obtained in this way is displayed in Fig. 6, in
which open (closed) circles denote increasing (decreas-
ing) pressure runs. Despite the crudeness of the proce-
dure, the pressure dependences of the C–H Raman peak
positions show a behavior that is compatible with that
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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Fig. 4. Pressure dependence of Raman-active modes of C60H36 in the frequency ranges 180–390 cm–1 (a) and 440–560 cm–1 (b).
Different open (closed) symbols correspond to increasing (decreasing) pressure in different pressure runs. Solid lines represent lin-
ear least-square fits. The shaded areas at P ~ 0.6 and approximately 6.0 GPa denote the regions of possible phase transitions.
of the Raman modes of the fullerene molecular cage up
to approximately 6 GPa. In particular, these peaks
exhibit an overall positive shift up to approximately
6 GPa as well as changes in the slopes of the pressure
behavior of the Raman mode frequencies at approxi-
mately 0.6 GPa. However, their pressure dependence is
different for pressures above 6 GPa, where a softening
in the C–H stretching vibrations is observed. It is
important to note that even if we follow the pressure
dependence of the “center-of-gravity” frequency of the
overall C–H Raman band region, we also find a change
in the slope of the pressure dependence at approxi-
mately 6 GPa. This dependence is shown in Fig. 6 by
solid stars, which represent both the pressure increase
and decrease runs.

The observed peculiarities in the pressure depen-
dence of the Raman modes of C60H36 may be under-
stood by invoking the corresponding behavior of pris-
tine C60 and C70 at high pressure. It is known that under
hydrostatic pressure at room temperature, C60 trans-
forms, at 0.4 GPa or at 259 K, from the FCC-structure,
where the C60 molecules are orientationally disordered
due to chaotic rotations, to the SC-structure, where the
molecular rotations are partially ordered [23, 24]. Sim-
ilarly, under pressure, C70 undergoes an orientational
ordering phase transition from an FCC structure to a
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rhombohedral phase at approximately 0.35 GPa or at
280 K [25, 26]. Furthermore, Hall et al. [9] found that
the distortion of the molecules brought about by hydro-
genation along with the hydrogen atoms bonded around
the equator gives the molecule a strongly oblate shape.
The BCC-structure allows effective packing of oblate
spheroids if the polar axes of the molecules are aligned.
The longer second-nearest-neighbor distance then pre-
vents close approaches of the equatorial hydrogen
atoms. If this alignment actually occurs, then there
should be a tendency to form a tetragonal structure with
a ratio c/a < 1. Therefore, they predict that at suffi-
ciently low temperatures, the BCC-structure must
transform into a body-centered tetragonal structure.
Thus, keeping in mind the pressure-induced orienta-
tional ordering of C60 and C70 and the finding by Hall
et al. [9], we might speculate that the observed pecu-
liarity at approximately 0.6 GPa in the pressure depen-
dence of Raman modes can be assigned to an orienta-
tion ordering structural phase transition.

The changes in the pressure dependence of the
Raman frequencies at approximately 6 GPa, especially
the behavior of the C–H stretching modes, could be
attributed to a possible phase transition in which the
hydrogen bonds may be involved. It is known that the
intermolecular and intramolecular distances in fullerene
SICS      Vol. 100      No. 4      2005
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Fig. 5. Pressure dependence of Raman-active modes of C60H36 in the frequency ranges 570–770 cm–1 (a) and 1450-1770 cm–1 (b).
Different open (closed) symbols correspond to increasing (decreasing) pressure in different pressure runs. Solid lines represent lin-
ear least-square fits. The shaded areas at P ~ 0.6 and approximately 6.0 GPa denote the regions of possible phase transitions.
become comparable at sufficiently high pressure. There-
fore, the hydrogen atoms in the C60H36 molecule, which
initially form terminal C–H bonds, can interact with car-
bon atoms belonging to neighboring molecular cages.
This interaction may result in the formation of the bridg-
ing C–H–C hydrogen bonds when the decrease in the
intermolecular distances becomes appropriate. As a
result, the bulk modulus of the crystal increases, which
is manifested by a decrease in the slope of the pressure
dependence of the Raman frequencies. In addition, the
formation of the bridging hydrogen bonds results in a
certain elongation of the involved terminal C–H bonds.
The increase in the C–H terminal bond lengths results
in mode softening, which increases with a further
increase of pressure. The presence of the bridging
C−D–C modes in the C60Dx samples was found recently
even at ambient pressure by means of NMR investiga-
tion of deuterofullerene [27]. Similar pressure behavior
of hydrogen bonds was also found in other molecular
materials that exhibit a softening in their C−H stretch-
ing mode frequency under pressure [28].

3.3. Pressure Behavior 
of the Photoluminescence Spectra of C60H36 

The photoluminescence spectra of C60H36 at normal
pressure and various temperatures are depicted in
JOURNAL OF EXPERIMENTAL A
Fig. 7. The spectrum at room temperature contains two
broad peaks and two shoulders, located near the lower
and higher energy sides of the spectrum. The structure
of the PL spectrum is reminiscent of that of pristine C60

at room temperature, but the intensity of luminescence
is considerably higher. The onset of the spectrum is
located near 2.5 eV, which is higher than the onset of the
PL spectrum in pristine C60 by approximately 1 eV [29].
As the temperature drops to 80 K and below to the liq-
uid helium temperature, the PL spectrum becomes
more resolved, as shown in Figs. 7b and 7c. The PL
spectrum at the lowest temperature (10 K) contains a
number of sharp and well-resolved peaks, located near
its onset. The relatively high PL intensity in C60H36, in
comparison to pristine C60, is mainly associated with
small luminescence quantum yield in pristine C60 due
to the dipole-forbidden transitions from the lowest
exited state [30]. The fine structure of the PL spectrum
in C60H36 at low temperature resembles the well-devel-
oped structure in the PL spectrum of the C60 single
crystals at the liquid helium temperature. This structure
is related to the shallow defect levels [31], while the
fine structure of the PL spectrum in the C60H36 may be
related to the abundant isomer composition of the sam-
ples under study.
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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Table 3.  The phonon frequency, assignment and their pressure coefficients for the C60H36 Raman-active modes. The corre-
sponding values for C60 are also included for comparison

Mode

C60H36

0–0.6 GPa 0.6–6 GPa 6–12 GPa 0.4–2.4 GPa

ω, cm–1 ∂ωi/∂P,
cm–1/GPa

∂ωi/∂P,
cm–1/GPa

∂ωi/∂P,
cm–1/GPa

ω, cm–1 ∂ωi/∂P,
cm–1/GPa

Tg(T) 180.6 5.6 ± 0.1 6.4 ± 0.1

Eg(Th) 196.0 4.7 ± 0.6 3.1 ± 0.4 0.6 ± 0.1

Eg(T) 206.6 2.7 ± 0.3 2.2 ± 0.1 1.6 ± 0.1

Tg(Th) 212.6 2.3 ± 0.3 2.6 ± 0.1 1.7 ± 0.2

Eg(D3d) 230.6 3.5 ± 0.1 2.9 ± 0.1 1.2 ± 0.2

239.1 3.2 ± 0.2 2.6 ± 0.2 1.5 ± 0.2

261.1 2.1 ± 0.1 1.3 ± 0.1 0.4 ± 0.2 272Hg(1) 3.2

305.2 2.2 ± 0.2 1.8 ± 0.2 1.2 ± 0.2 294ω1 2.5

317.8 3.1 ± 0.1 1.9 ± 0.1 1.0 ± 0.2

Eg(D3d) 339.6 2.1 ± 0.1 1.4 ± 0.1 0.9 ± 0.1

A(S6) 347.1 2.7 ± 0.1 1.6 ± 0.1 1.1 ± 0.1 345ω2 2.9

Eg(Th) 366.7 3.2 ± 0.2 0.5 ± 0.2 1.7 ± 0.3

Ag(T) 484.2 4.6 ± 0.2 0.5 ± 0.2 3.3 ± 0.2

Ag(S6) 491.0 3.3 ± 0.1 2.7 ± 0.1 495Hg(2) 4.2

501.8 2.0 ± 0.1 2.7 ± 0.1 3.3 ± 0.1

Eg(S6) 530.6 2.7 ± 0.2 1.7 ± 0.2 2.4 ± 0.2 522ω5 1.0

Eg(D3d) 585.7 2.6 ± 0.2 2.0 ± 0.2 0.9 ± 0.2

Eg(S6) 598.6 2.3 ± 0.2 1.9 ± 0.2 0.9 ± 0.2

Tg(Th) 622.6 2.9 ± 0.2 2.0 ± 0.2 2.3 ± 0.2 624ω1 1.5

Eg(D3d) 632.5 2.4 ± 0.1 2.0 ± 0.1 2.1 ± 0.3

Eg(D3d) 642.5 1.9 ± 0.2 1.5 ± 0.2 2.5 ± 0.2

Tg(T) 655.8 1.2 ± 0.2 1.7 ± 0.2 1.2 ± 0.2

Eg(Th) 669.3 1.9 ± 0.1 1.3 ± 0.1

A1g(D3d) 695.6 1.8 ± 0.1 1.6 ± 0.1 2.0 ± 0.4

A1g(D3d) 730.9 1.4 ± 0.2 2.5 ± 0.2 2.3 ± 0.2 729ω8 –2.9

Tg(T) 1459.5 9.0 ± 0.2 6.6 ± 0.2 4.4 ± 0.4 1467Ag(2) 5.5

Eg(S6)? 1494.5 9.6 ± 0.3 4.8 ± 0.3 5.1 ± 0.4

Ag(S6) 1674.6 4.6 ± 0.3 7.2 ± 0.3 6.9 ± 0.4

Ag(Th) 1712.5 5.2 ± 0.3 3.6 ± 0.3 2.8 ± 0.5

Note: Data taken from [35].

C60
a
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Fig. 6. Pressure dependence of the Raman-active modes of
C60H36 in the range of the C–H stretching modes. Open
(closed) circles correspond to the increasing (decreasing)
pressure runs, while the peak positions were obtained by fit-
ting Gaussians lineshapes to four experimental peaks at any
pressure. The stars correspond to the frequency of the “center
of gravity” of the C–H Raman band as a function of pressure.
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Fig. 7. Photoluminescence spectra of C60H36 at ambient
pressure and various temperatures.
JOURNAL OF EXPERIMENTAL 
According to numerical local-density functional
calculations of the electronic structure, the gap between
the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) is
different for the five most stable isomers and varies
between 3.84 and 3.91 eV [32]. These calculations are
related to the isolated C60H36 molecule and their results
should be compared with the experimental absorption
spectra of the C60H36 solutions. The absorption spectra
of the C60H36 solutions in methylene dichloride and
benzene [13] show that the onset of the absorption
spectrum is located between 2.96 and 3.24 eV. Con-
cerning the HOMO–LUMO gap calculations for the
solid C60H36, there are no available data to compare
with the present experimental results. As is known, the
calculations of the HOMO–LUMO gap for various
molecular solids show that the gap is shifted to lower
energies with respect to the isolated molecules due to
the vapor-crystal shift of the electron energy spectrum.
In any case, the onset of the photoluminescence spec-
trum in solid C60H36 observed in the present work is
considerably smaller than the HOMO–LUMO gap for
an isolated molecule [32].

The PL spectra of C60H36 taken at room temperature
and various pressures are shown in Fig. 8. The initial
spectrum taken at 0.5 GPa gradually broadens upon
increase in pressure up to 12 GPa, while the shift of the
spectrum is not apparent. The pressure-induced shift of
the spectrum is unusually small as it follows from the
pressure dependence of the band frequencies obtained
by fitting Gaussian band shapes to the main peaks in the
PL spectrum. The pressure dependence of the two main
bands of the PL spectrum of C60H36 is shown in Fig. 9.
The pressure coefficients for these bands are close to
zero at pressure up to approximately 6.5 GPa, but they
increase in the absolute value at higher pressures, to
−7.5 and −9 meV/GPa, respectively. The pressure
behavior of the electronic states in C60H36 is not typical
of molecular crystals, whose electronic levels usually
exhibit large negative pressure shifts, rapidly decreas-
ing with pressure [33]. It is known that the pressure-
induced shift of the electronic levels in molecular crys-
tals is negative for the majority of the materials that
have a center of symmetry, whereas it may be positive
for materials in which the molecules do not have a cen-
ter of symmetry [34]. The samples under study contain
the T isomer in abundance, which does not have a cen-
ter of symmetry. This means that at least a part of the
PL spectrum related to this isomer may have a positive
pressure-induced shift, while at the same time, we have
a negative pressure-induced shift originating from iso-
mers having a center of symmetry. The unusual pres-
sure behavior up to 6.5 GPa may be associated with
mutual compensation of the opposite shifts from the
two parts of the luminescence spectrum, originating
from electronic states of various isomers. At higher
pressure, however, the luminescence related to isomers
that have a center of symmetry dominates: their elec-
AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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tronic states are downshifted in energy to the lowest
positions, and we therefore have an overall negative
pressure shift.

4. CONCLUSIONS

The Raman spectrum of hydrofullerene C60H36 pre-
pared by high-pressure hydrogenation has a very rich
structure and contains about five times more peaks than
that of transfer hydrogenated C60H36. The comparison
of experimental Raman peaks with the results of calcu-
lation of the molecular dynamics shows the presence of
five principal isomers in the samples under study. The
majority of the experimentally observed Raman peaks
belong to the S6, T, and D3d isomers. The micro-Raman
probing of several samples, prepared under different
reaction parameters, shows that the homogeneity of the
samples depends strongly on the reaction temperature.
The Raman spectrum of deutero-fullerene C60D36 pre-
pared by the same method is in general similar to that
of C60H36. The important difference between the two
spectra is a large isotopic shift of the C–D stretching
modes with respect to the corresponding C–H ones.

2.01.8 2.2 2.4 2.6
Energy, eV

12.2 GPa

10.0 GPa

8.0 GPa

5.8 GPa

3.4 GPa

0.5 GPa

PL
 in

te
ns

ity

Fig. 8. Photoluminescence spectra of C60H36 at ambient
temperature and various pressures.
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The isotopic shift in the modes associated with the
fullerene molecular cage is very small. This is a strong
indication that the hydrogen atoms do not play an
important role in the C60H36 molecular cage vibrations.

The pressure behavior of the optical Raman and PL
spectra of C60H36 is not typical of fullerene-based mate-
rials because they become rather diffuse, even at rela-
tively small pressure. The pressure dependence of the
phonon frequencies is reversible with pressure and
exhibits peculiarities at approximately 0.6 and 6 GPa.
The first peculiarity is probably related to a phase tran-
sition from the initial orientationally disordered BCC-
structure to an orientationally ordered structure. The
peculiarity at approximately 6 GPa may be related to a
pressure-driven enhancement of the C–H interaction
between the hydrogen and carbon atoms belonging to
neighboring molecular cages.

The PL spectrum of C60H36 is shifted to higher
energy by about 1 eV with respect to that of pristine
C60. The spectrum at room temperature consists of two
broad peaks and becomes more structured at 10 K. The
pressure-induced shift of the PL spectrum of C60H36 is
close to zero up to 6.5 GPa, while at higher pressure, a
negative pressure shift was observed. The unusual pres-
sure behavior of the PL spectrum is related to the iso-
mer composition of the high-pressure hydrogenated
fullerene samples.
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Fig. 9. Pressure dependence of the two main bands in the PL
spectrum of C60H36.
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Abstract—The singularities of the time autocorrelation functions (ACFs) for a heteronuclear spin system of a
crystal are investigated. Exact expressions are obtained for ten moments of the spectra of ACFs in the approx-
imation of a self-consistent fluctuating field (SCFF) with arbitrary axial symmetry. These expressions are
applied to determine the coordinate of the lowest singular point of these functions on the imaginary-time axis
for a spin system with a dipole–dipole interaction (DDI). The leading corrections to this coordinate due to the
correlation of local fields in real crystals are calculated. These corrections are determined by lattice sums with
triangles of four bonds and pairs of four bonds. Numerical values of the coordinate are obtained for a LiF crystal
in a magnetic field directed along three crystallographic axes. An increase in the coordinate of the singular
point, which follows from the theory and leads to a faster falloff of the wings of the ACF spectra, qualitatively
agrees with experiment. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Nuclear magnetic systems with controllable states
whose variations can be observed by an NMR method
[1] are of great interest for nonequilibrium statistical
physics. Heteronuclear systems (i.e., systems that
consist of nuclei with different Larmor frequencies in
a strong magnetic field) open up new possibilities for
studying relaxation processes. This fact was demon-
strated in [2] with an example of cross relaxation
between subsystems. It is also important that hetero-
nuclear systems are encountered more frequently than
homonuclear systems and that there are many
methods developed for studying them; the informa-
tiveness of these methods depends on the development
level of the theory. Finally, systems consisting of nuclei
with different resonance frequencies have recently
attracted the attention of researchers in relation to
the problem of addressing spins in quantum computa-
tion [3].

The modern dynamic theory of dense spin systems
in solids is based on the concept of a time-fluctuating
random local magnetic field [4–9] whose properties are
close to those of a Gaussian random field. In heteronu-
clear systems, this field has several (according to the
number of different types of nuclei) components. This
fact complicates the construction of a theory. The use of
the self-consistency conditions [5] for the time correla-
tion functions of the field and the spins has made it pos-
sible to construct a theory [10, 11] that qualitatively
1063-7761/05/10004- $26.000775
explains many experimental data. This theory implies
that the spin correlation functions have singularities on
the imaginary-time axis that are responsible for the
exponential wings of the spectra of these functions,
which are observed by magnetic-resonance methods.
An important consequence of this result is that the
wings of the spectra of different types of nuclei are uni-
versal because the coordinates of the singular points of
the time correlation functions, which are coupled due to
the interaction, must coincide. A comparison with
experiment has shown that the correlation of local fields
weakens their fluctuation; in particular, it increases the
coordinate of the singular point. In [11], such a correla-
tion was taken into account phenomenologically.

In the present paper, we develop a microscopic
approach to the calculation of correlation phenomena
in the theory of a self-consistent fluctuating field
(SCFF). The validity of this approach has recently been
demonstrated by a simpler example of a homonuclear
system [12]. First of all, we obtain general expressions
for moments up to the tenth order inclusive after gen-
eralizing a diagrammatic series for the memory func-
tion [6] to the heteronuclear case. Then, based on these
moments, we calculate the coordinate of the lowest sin-
gular point of the correlation functions on the imagi-
nary-time axis. Finally, we determine a correction to
the moments due to the correlation of local fields and
apply them to calculate the corresponding shift in the
coordinate of the singular point.
 © 2005 Pleiades Publishing, Inc.
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2. EQUATIONS 
FOR AUTOCORRELATION FUNCTIONS

Equations for the autocorrelation functions (ACFs)
of a spin precessing in an anisotropic Gaussian random
field were derived in [6]. If we take into account that, in
the case of a heteronuclear spin system, such equations
should be written out for spins of each type, we arrive
at the system of integral equations

(1)

where the subscript α denotes the spin projections x, y,
and z and q enumerates the subsystems. The memory
functions Gαq(t) are represented as series in irreducible
dressed skeleton diagrams with increasing number of
vertices:

(2)

For the case of a field with arbitrary anisotropy in a
homonuclear system, all diagrams with 2, 4, 6, and
8 vertices are presented in [6]. In the heteronuclear
case, the form of a diagram remains the same; however,
in the explicit expressions for these diagrams, one
should associate with the zz lines (dashed lines) a sum
over contributions to the longitudinal field rather than a
single term:

(3)

The xx and yy lines correspond to a single contribution

d
dt1
-------Γαq t( ) Gαq t t1–( )Γαq t1( ) t,d

0

t

∫–=

Gαq t( ) Gαq
2m t( ).

m 1=

∞

∑=

gzq t( ) ∆qp
2 Γ zp t( ).

p

∑=
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as before, but this contribution is different for different
types of nuclei:

Here, we express the correlation functions of a Gauss-
ian random field in terms of the time-dependent spin
ACFs Γxq(t), Γyq(t), and Γzq(t) in a self-consistent way.
At high temperatures, the ACF of the α component of
the spin located at site i of the lattice is given by

(4)

where * is the Hamiltonian of the secular part of the
dipole–dipole interaction (DDI) [1, 2] in a strong mag-
netic field. The mean squares of different contributions
to the longitudinal field are

(5)

where θij is the angle between the internuclear vector rij

and the direction of the static magnetic field. In the axi-
ally symmetric case, we have

(6)

Each term of series (2) is expressed in terms of a multi-
ple time integral of the products of ACFs [6].

gxq t( ) ∆xq
2 Γ xq t( ), gyq t( ) ∆yq

2 Γ yq t( ).= =

Γαq t( )
Sp i*t( )Iiα

q( ) i*t–( )Iiα
q( )expexp{ }

Sp Iiα
q( )( )2{ }

--------------------------------------------------------------------------------,=

∆qp
2 I p( ) I p( ) 1+( )4

3
--- bik

qp( )2

,
k

∑=

bij
qp( ) γqγp"

2rij
3

-------------- 1 3 θijcos
2

–( ),=

∆xq
2 ∆yq

2 ∆qq
2 /4.= =
Table 1.  Exact values of the ACF moments in a LiF crystal in the SCFF approximation when the magnetic field is applied

along three crystallographic axes (  =  and  = )

H0 || [111] H0 || [110] H0 || [100]

F Li F Li F Li

X2 1.5565 0.243175 3.2059 0.573075 10.9709 2.126295

X4 7.2621246 0.2062389 30.122726 1.1550313 357.05369 14.396791

X6 60.240334 0.4462115 476.06509 5.7148923 19329.186 193.62608

X8 785.97935 2.6795506 10916.055 73.047633 1469814.4 5748.5288

X10 15296.507 36.221363 342734.27 2018.0911 144788238 429421.26

Z2 0.5 0.07275 0.5 0.07275 0.5 0.07275

Z4 1.9315 0.0433208 3.5809 0.0913213 11.3459 0.3173148

Z6 17.917389 0.0669163 67.435923 0.3356018 739.17481 4.1540520

Z8 277.83143 0.1998922 2104.5260 2.4024558 80039.257 96.558982

Z10 6249.6440 1.1415668 92520.012 31.813793 12125388 3612.1025

X2n
q( ) M2nX

q( ) ∆FF
2n– Z2n

q( ) M2nZ
q( ) ∆FF

2n–
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ACFs (4) can be expanded in power series,

(7)

It is well known [1] that  is a moment on the order
of 2n of the spectral density of the corresponding ACF.
From similar equations for the homonuclear case [6],
after appropriate modifications according to (3), we
obtained recurrence equations for the moments for the
heteronuclear case. Henceforth, we will assume for
definiteness that there are only two types of spins in the
system. In the Appendix, we present expressions for the
moments of the tenth order inclusive for a general axi-
ally symmetric case. As an example, we calculated the
moments for a LiF crystal (see Table 1); the contribu-

tions  (5) for this crystal were taken from Table 2.

Equations (1) were derived for an interaction with
arbitrary magnetic anisotropy. The application of an
axially symmetric Hamiltonian of the DDI essentially
improves the convergence of the series for the memory
function [10–15]. Therefore, it is expedient to trans-
form Eqs. (1) in order to maximally take into consider-
ation the longitudinal component of the local field and
minimally take into account the transverse component.
In this approximation, we obtain the following system
of nonlinear integral equations for the ACFs of a LiF
crystal:

(8)

Γαq t( )
1–( )nM2nα

q( ) t2n

2n( )!
--------------------------------.

n 0=

∞

∑=

M2nα
q( )

∆qp
2

Γ zL t( ) 1
1
2
---∆LL

2–=

× t' t''Γ xL
2 t' t''–( )Γ zL t''( ),dd

0

t'

∫
0

t

∫

Γ xL t( ) Γ AL t( )
kL

4
-----∆LL

2 t'Γ AL t t'–( )d

0

t

∫–=

× t''Γ xL t' t''–( )Γ zL t' t''–( )Γ xL t''( ),d

0

t'

∫

Γ zF t( ) 1
1
2
---∆FF

2–=

× t' t''Γ xF
2 t' t''–( )Γ zF t''( ),dd

0
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∫
0

t

∫

Γ xF t( ) Γ AF t( )
kF

4
-----∆FF

2 t'Γ AF t t'–( )d

0

t
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× t''Γ xF t' t''–( )Γ zF t' t''–( )Γ xF t''( ),d

0

t'

∫
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where

(9)

is the ACF of a spin rotating in the local field that has
only a longitudinal component, similar to the function
used in Anderson’s model [4]. Unlike the previous
work [11], we introduce a renormalization parameter
for the longitudinal local field into Eq. (9). The value of

Γ AL t( ) λL
2 ∆LL

2 t' t''Γ zL t''( )dd

0

t'

∫
0

t

∫–




exp=

– ∆LF
2 t' t''Γ zF t''( )dd

0

t'

∫
0

t

∫ 



,

Γ AF t( ) ∆FL
2 t' t''Γ zL t''( )dd

0

t'

∫
0

t

∫–




exp=

– λF
2∆FF

2
t' t''Γ zF t''( )dd

0

t'

∫
0

t

∫ 



Table 2.  Mean squares of homo- and heteronuclear contri-
butions to the longitudinal local fields, renormalization
parameters, and the coordinates of the singular point of the
ACF in LiF for a magnetic field directed along three crystal-
lographic axes

H0 || [111] H0 || [110] H0 || [100]

, (rad/s)2 2838 · 106 2581 · 106 1809 · 106

0.3065 1.9559 9.7209

0.0613 0.3912 1.94442

0.1455 0.1455 0.1455

τ0(λq = 1)∆FF 2.372 1.843 1.127

τ0(  = 5/4)∆FF 2.263 1.783 1.113

λF 1.101 1.0911 1.0855

λL 1.099 1.0896 1.0850

τ0(λq)∆FF 2.33 1.82 1.12

τ0(λq) 3.72 3.74 3.87

δτc/τ0 0.158 0.215 0.161

τ0(λq) + δτc, µs 51 44 31

τc(λq) 4.31 4.53 4.50

∆FF
2

∆FL
2 /∆FF

2

∆LF
2 /∆FF

2

∆LL
2 /∆FF

2

λq
2

M2F

M2F
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this parameter is determined from the moments. The
correctness of the second moments is guaranteed by the
strict relation between the parameters kq and λq that
enter Eqs. (8) and (9):

Let us determine the fourth moment of the solution to
Eqs. (8) and (9):

From the equality of this moment to its exact value (A1),
we determine the parameters

(10)

where DF = /  and DL = / . The values of
the parameters calculated by formula (10) are presented
in Table 2.

The solutions of Eqs. (8) and (9) have singular
points on the imaginary-time axis. The principal parts

kq 5 4λq
2.–=

M4x
q( )

∆qq
4

---------- 2λq
2 5

4
---λq–

15
4
------+=

+
∆qp

2

∆qq
2

-------- 3λq
15
4
------

∆pp
2

2∆qq
2

-----------+ +
 
 
 

3
∆qp

2

∆qq
2

--------
 
 
 

2

.+

λq
15
6
------

3Dq

4
---------–

1
4
--- 9Dq

2 47
2
------Dq

161
16
---------+ + 

 
1/2

,+=

∆FL
2 ∆FF

2 ∆LF
2 ∆LL

2

2.5

0 0.1

τ0n

1/n

3.0

2.0

1.5

1.0

0.2 0.3 0.4 0.5

[111]

[110]

[100]

Ratios of moments (12) for the ACF of the x components of
the spins of fluorine (circles) and lithium (triangles) nuclei
in a LiF crystal when the magnetic field is applied along
three crystallographic axes indicated in the figure. The
results obtained by the moments of solutions to Eqs. (8) and
(9) are indicated by open symbols, and the results obtained
by the moments from Table 1 are indicated by closed sym-
bols connected by straight lines.
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of the ACFs in the neighborhoods of these points are
given by

(11)

The exponents were determined in [10] by the Painelvé
method for three orientations of a LiF crystal. For the F
nuclei, all exponents equal 2, whereas, for the Li nuclei,
only the exponents for the orientation [100] are equal to
2; for two other orientations, the exponents are as fol-
lows: δ = χ = 0.123 for [111] and δ = χ = 0.784 for [110]
(we do not need the exponent ζ).

For a known value of the exponent of the lowest sin-
gular point, its coordinate, equal to the convergence
radius with respect to moments (7), can be evaluated as
the limit of the sequence of relations

(12)

as n  ∞, where Γ(x) is the gamma function. These
sequences are shown in the figure. The calculations are
performed by the exact values of ten moments from
Table 1 and by 50 moments of the solutions to approx-
imate Eqs. (8) and (9) for the values of the parameters
λq given in Table 2. In the homonuclear case, the con-
vergence of the sequence of relations is better [6]; this
allowed us to determine τ0 by the first ten moments to a
sufficiently high degree of accuracy. In the heteronu-
clear case, the convergence deteriorates because the

interaction between lithium nuclei is weak (  =

0.15 ). Therefore, it takes some time for the system
of Li nuclei to adjust to the system of F nuclei. The fig-
ure shows that the first terms in the sequence of the
ratios of moments of the solution to system (8), (9) are
close to the ratios of exact moments. The approximate
equations have allowed us to follow up how the ratios
of moments pass to the limit (see Table 2). This
approach represents the development of the simple esti-
mate of [6]. Applying it to the homonuclear case for λ =
1.105, we arrive at the value τ0∆Z = 2.48, which was
determined earlier by ten moments. Note that an esti-
mate for τ0 was obtained in [10] by using Eqs. (8) and
(9) for λ = 1 (which is also shown in Table 2). The vari-
ation of λq from 1 to 1.1 leads to variation of the coor-
dinate τ0 by less than 2%, which is indicative of the
accuracy of its determination.

Γ zq t( )
Czq

τ0 it+( )
ζq

-----------------------, Γ xq t( )
Cxq

τ0 it+( )
χq

-----------------------,≈ ≈

Γ Aq t( )
CAq

τ0 it+( )
δq

----------------------- q F Li,=( ).≈

τ0n
2 M2 n 1–( )α
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2
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3. CALCULATION OF A CORRECTION
TO THE COORDINATE OF A SINGULAR POINT 

OF THE CORRELATION FUNCTIONS

The SCFF approximation corresponds to the limit
d  ∞. As is shown in [12] by an example of homo-
nuclear systems, for d = 3, the coordinate of the singu-
lar point of the ACF on the imaginary-time axis
increases due to the correlation of local fields,

(13)

and the main contribution to δτc is given by the correc-
tions to the moments that can be represented by trees of
double bonds with a built-in pair of fourfold interaction
or triangle of four bonds. In the heteronuclear case, the
degree of correlation is characterized by the following
ratios of lattice sums:

(14)

where

(15)

with summation over the sites occupied by nuclei of
one type with a nucleus at site i. In the primed sums, the
summation is performed over the sites occupied
by  nuclei of another type. The numerical values of
ratios (14) for three orientations of a LiF crystal are pre-
sented in [11]. The small value of these ratios corre-
sponds to the real smallness parameter. For conve-
nience, we introduce a formal parameter ε; in finite for-
mulas, we set this parameter equal to zero.
Contributions with lattice sums (14) are already con-
tained in the fourth moment (A.3). The corresponding
decrease in M4x can be ascribed to the SCFF if one
reduces λq . For example, for the orientation [110], we
obtain λF = 0.94 and λL = 0.75. Such a variation leads
to an increase in the coordinate τ0 by about 2%. As is
shown in [12, 16] in the homonuclear case, the incorpo-
ration of such fragments of (14) into large trees of
bonds corresponding to higher order moments pro-
duces a more significant effect. Such contributions can
be determined from Eqs. (1) for the ACFs.

Assuming that the correction εδτc is small, we esti-
mate it by taking a simplified version of equations in
which the zz interactions are predominant. Take

and substitute it into an integral equation with appropri-
ate correction terms for the memory function

In view of the form of the equations, it is more conve-
nient to pass to an equation for the squared transverse
ACF:

(16)

τc τ0 δτc,+=

S2/ S1( )2, S2' / S1( )2, S3/ S1( )2, S3' / S1S1'( ),

S1 bij
2 , S2

j

∑ bij
4 , S3

j

∑ bkj
2 bikb ji

k j,
∑= = =

Γαq t( ) Γαq0 t( ) εΓαq1 t( )–=

Gαq t( ) Gαq0 t( ) εGαq1 t( ).–=

Γ xq
2 t( ) Yq t( ) Yq0 t( ) εYq1 t( ).–= =
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For the first correction YF1(t), we find the equation

(17)

d
dt
-----YF1 t( ) 2 FF〈 〉 YF1 t( ) Γ zF0 t1( ) t1d

0

t

∫=

+ 2 FL〈 〉 YF1 t( ) Γ zF0 t1( ) t1d

0

t

∫

+
4
5
--- FF〈 〉 YF0 t( ) YF1 t3( ) t1 t2 t3ddd

0

t2

∫
0

t1

∫
0

t

∫

+
4
5
--- FL〈 〉 YF0 t( ) YL1 t3( ) t1 t2 t3ddd

0

t2

∫
0

t1

∫
0

t

∫

+ 2 FL〈 〉 2S2' YF0 t( ) Γ zL0 t1( ) t1 Γ zL0 t2( ) t1 t2dd

0

t1

∫
0

t

∫d

0

t

∫

+ 2S2 FF〈 〉 2YF0 t( ) Γ zF0 t1( ) t1 Γ zF0 t2( ) t1 t2dd

0

t1

∫
0

t

∫d

0

t

∫

+
4
5
--- FF〈 〉 2 S2 S3+( )YF0 t( ) YF0 t3( ) t1 t2 t3ddd

0

t2

∫
0

t1

∫
0

t

∫

+
4
5
--- LF〈 〉 LL〈 〉 S3' YF0 t( ) YL0 t3( ) t1 t2 t3ddd

0

t2

∫
0

t1

∫
0

t

∫

+ FF〈 〉 38
5
--- 3

2
---S2 S3+ 

  YF0 t( )

× YF0 t3( ) t1 t2 t3 Γ zF0 t5( ) t4 t5dd

0

t4

∫
0

t3

∫ddd

0

t2

∫
0

t1

∫
0

t

∫

+ LL〈 〉 2 FL〈 〉 8
5
--- S2 S3+( )YF0 t( )

× YL0 t3( ) t1 t2 t3 Γ zL0 t5( ) t4 t5dd

0

t4

∫
0

t3

∫ddd

0

t2

∫
0

t1

∫
0

t

∫

+ LL〈 〉 FL〈 〉 LF〈 〉 4
5
--- S2' 2S3'+( )YF0 t( )

× YL0 t3( ) t1 t2 t3 Γ zF0 t5( ) t4 t5dd

0

t4

∫
0

t3

∫ddd

0

t2

∫
0

t1

∫
0

t

∫

+ FF〈 〉 2 FL〈 〉 8
5
---S3' YF0 t( )
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in which we introduced dimensionless imaginary time

t' = –it(5 /4)1/2; omitted the prime; denoted

and denoted ratios (14) by S2, , S3, . Equation (17)
differs from that considered in the homonuclear case [12]
by the contributions of nuclei of different types and by
the change in the form of the correction Rq(t) (because
lithium nuclei have spin 3/2) due to the permissible
fourfold interaction of nearest neighbors:

A change in the remaining part of Eq. (17) when pass-
ing to YL1(t) reduces to a change in the subscripts F 
L and L  F. For the functions Yq0(t) and Γzq0(t) of
zeroth-order approximation, we use a simple set of four

× YF0 t3( ) t1 t2 t3 Γ zL0 t5( ) t4 t5 RF t( ),–dd

0

t4

∫
0

t3

∫ddd

0

t2

∫
0

t1

∫
0

t

∫

∆FF
2

FF〈 〉 1, FL〈 〉
4∆FL

2

5∆FF
2

-----------,= =

LL〈 〉
∆LL

2

∆FF
2

--------, LF〈 〉
4∆LF

2

5∆FF
2

-----------,= =

S2' S3'

RF t( ) 2S2 FF〈 〉 2YF0 t( ) Γ zF0 t t1–( ) t1d

0

t

∫=

× ΓzF0 t3( ) t2 t3dd

0

t2

∫
0

t1

∫

+ 2S2' FL〈 〉 2YF0 t( ) Γ zL0 t t1–( ) t1d

0

t

∫

× 1
16
15
------Γ zL0 t1 t2–( )+ Γ zL0 t3( ) t2 t3,dd

0

t2

∫
0

t1

∫

RL t( ) 2S2' LF〈 〉 2YL0 t( ) Γ zF0 t t1–( ) t1d

0

t

∫=

× ΓzF0 t3( ) t2 t3dd

0

t2

∫
0

t1

∫

+ 2S2 LL〈 〉 2YL0 t( ) Γ zL0 t t1–( ) t1d

0

t

∫

× 1
16
15
------Γ zL0 t1 t2–( )+ Γ zL0 t3( ) t2 t3.dd

0

t2

∫
0

t1

∫
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equations that is obtained from (8) for  = 5/4. More-
over, we neglect the time variation (Γzq(t'') ~ Γzq(0) = 1)
compared with (Γxq(t' – t''))2 in the integrand; as is
shown in [12], this leads to a slight decrease in the
moments but significantly simplifies the calculations.
For comparison, the coordinate of the singular point

τ0(  = 5/4)∆FF of the solution to such a system is
shown in Table 2. We had to simplify the equation in
order to increase the numerical positions up to 50. In
turn, such a large mantissa is required to sum up the
moments that strongly differ in magnitude.

Using the equations, we calculate the moments of
functions (16) up to n = 70. The coordinate of the sin-
gular point is determined from the ratio of moments:

Then,

(18)

Extrapolating the ratios obtained, we determine the val-
ues presented in Table 2.

Let us compare the results for hetero- and homonu-
clear systems. In the homonuclear case, we have τ0∆Z =
2.48 for any orientation, whereas, in the heteronuclear
case, Table 2 shows that τ0∆FF decreases by a factor of 2
under rotation from [111] to [100]. Using the units of
the total moment of the NMR spectrum of fluorine
nuclei,

we obtain τ0  = 3.72 for the [111] orientation.
This result coincides with that in the homonuclear case,
where the coordinate increases to 3.87 under the rota-
tion to the [100] orientation. Such an increase is associ-
ated with an increase in the contribution of the hetero-
nuclear zz interaction to M2F. In the homonuclear case,
a similar increase in the coordinate of the singular point

of the ACF with the ratio /  was observed in [17].

Let us pass to the correction δτc . We calculated
δτc/τ0 for a homonuclear face-centered cubic lattice by
the formula obtained in [12] for three orientations and
obtained the following results: 0.17 for [111], 0.37 for
[110], and 0.22 for [100]. A comparison of these results
with the values presented in Table 2 shows that, in both
cases, the correction attains its maximal value for the
[110] orientation and is primarily associated with the
large value of the parameter S2/(S1)2 = 0.225. The addi-

λq
2

λq
2

τc
2 τ0

2 1 εYF2 n 1–( )
1( ) /YF2 n 1–( )

0( ) …+–

1 εYF2n
1( ) /YF2n

0( )– …+
----------------------------------------------------------------.

n ∞→
lim=

2
δτc

τ0
-------

YF2n
1( )

YF2n
0( )----------

YF2 n 1–( )
1( )

YF2 n 1–( )
0( )-------------------–

 
 
 

.
n ∞→
lim=

M2F ∆FF
2 1 X2

F( )+( ),=

M2F

∆Z
2 ∆X

2
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tion of a heteronuclear interaction reduces the correc-
tion and smoothes out its dependence on orientation.

Thus, we have obtained, theoretically, the required
increase in the coordinate of the singular point of an
ACF due to the correlation of local fields, which was
revealed in [11] by analyzing experimental spectra
from the viewpoint of the SCFF theory. A quantitative
comparison of the theory and experiment requires that
one should determine a variation in the preexponential
factor due to the correlation in the motion of spins. An
appreciable effect of this factor was also shown in [11],
which testifies to the fact that the observed detuning
from the center of the spectrum is less than the mathe-
matical asymptotics. Finally, publications do not con-
tain all experimental conditions that are necessary for a
successful comparison of the results.

In conclusion, note that we have performed calcula-
tions for a LiF crystal when a magnetic field is directed
along three crystallographic axes. The theory allows us
to obtain results for other heteronuclear systems and
orientations. To this end, one should substitute the lat-
tice sums and the contributions to the squared local
fields into the formulas and perform the calculations
described in this paper.
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APPENDIX

Here, we present expressions for the moments up to
the tenth order for a system consisting of two types of

spins for an axially symmetric case  =  with an

arbitrary relation between  and  (below, for def-
initeness, we will use subscripts “F” and “L” in place of
q and p). The moments are calculated by the recurrence
relations obtained from the equations of the homonu-
clear case [6] after the above-mentioned modifications.
The results are exact in the SCFF approximation, which
corresponds to infinite-dimensional lattices:

∆xq
2 ∆yq

2

∆xq
2 ∆qq

2

M2X
F( ) ∆FF

2 ∆FL
2 ∆XF

2 ,+ +=

M4X
F( ) 3∆FL

4 3∆FF
4 4∆XF

2 6∆FF
2 2∆XL

2+ +( )∆FL
2++=

+ 5∆XF
4 6∆FF

2 ∆XF
2 ,+

M6X
F( ) 15∆FL

6 15∆FF
6 21∆XF

2 45∆FF
2+(++=

+ 30∆XL
2 )∆FL

4 51∆XF
6 73∆FF

2 ∆XF
4 55∆FF

4 ∆XF
2+ + +

+ 45∆XF
4 45∆FF

4 10∆XL
4 76∆FF

2 ∆XF
2+ + +(

+ 30∆FF
2 ∆XL

2 4∆LF
2 ∆XL

2 4∆LL
2 ∆XL

2 18∆XF
2 ∆XL

2 )∆FL
2 ,+ + +
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(A.1)

M8X
F( ) 105∆FL

8 144∆XF
2 420∆FF

2 420∆XL
2+ +( )∆FL

6+=

+ 112∆XL
2 ∆LL

2 448∆XF
4 112∆XL

2 ∆LF
2 630∆FF

4+ + +(

+ 840∆FF
2 ∆XL

2 360∆XF
2 ∆XL

2 420∆XL
4+ +

+ 988∆FF
2 ∆XF

2 )∆FL
4 1678∆FF

2 ∆XF
4 92∆XL

6+{+

+ 1544∆FF
4 ∆XF

2 420∆XL
6 24∆XL

2 ∆LL
4+ +

+ 72∆XF
2 ∆XL

2 78∆XL
4 48∆XL

2 ∆LF
2 112∆FF

2 ∆XL
2+ + +( )∆LL

2

+ 112∆FF
2 ∆XL

2 ∆LF
2 24∆XL

2 ∆LF
4 180∆XF

2 ∆XL
4+ +

+ 284∆XF
4 ∆XL

2 648∆FF
2 ∆XF

2 ∆XL
2 70∆XL

4 ∆LF
2+ +

+ 80∆XF
2 ∆XL

2 ∆LF
2 914∆XF

6 280∆FF
2 ∆XL

4+ +

+ 420∆FF
4 ∆XL

2 }∆ FL
2 1470∆FF

2 ∆XF
6 861∆XF

8+ +

+ 105∆FF
8 1378∆FF

4 ∆XF
4 700∆FF

6 ∆XF
2 ,++

M10X
F( ) 1245∆XF

2 4725∆FF
2 6300∆XL

2+ +( )∆FL
8=

+ 2520∆XL
2 ∆LL

2 5856∆XF
4 2520∆XL

2 ∆LF
2+ +(

+ 9450∆FF
4 18900∆FF

2 ∆XL
2 6060∆XF

2 ∆XL
2+ +

+ 12600∆XL
4 15120∆FF

2 ∆XF
2+ )∆FL

6 36858∆FF
2 ∆XF

4{+

+ 4830∆XL
4 ∆LF

2 8340∆XL
6 37890∆FF

4 ∆XF
2+ +

+ 9450∆FF
6 1080∆XL

2 ∆LL
4 2280∆XF

2 ∆XL
2(+ +

+ 5190∆XL
4 2160∆XL

2 ∆LF
2 5040∆FF

2 ∆XL
2+ + )∆LL

2

+ 5040∆FF
2 ∆XL

2 ∆LF
2 16676∆XF

6 1080∆XL
2 ∆LF

4+ +

+ 8280∆XF
2 ∆XL

4 9140∆XF
4 ∆XL

2 2700∆FF
2 ∆XF

2 ∆XL
2+ +

+ 2656∆XF
2 ∆XL

2 ∆LF
2 18900∆FF

2 ∆XL
4+

+ 18900∆FF
4 ∆XL

2 }∆ FL
4 27643∆XF

8 1442∆XL
8+{+

+ 57858∆XF
6 ∆FF

2 64744∆XF
4 ∆FF

4 35400∆XF
2 ∆FF

6+ +

+ 4725∆FF
8 1080∆XL

2 ∆FF
2 ∆LF

4 4140∆XL
6 ∆FF

2+ +

+ 2852∆XF
2 ∆XL

6 6300∆XL
2 ∆FF

6 7492∆XF
6 ∆XL

2+ +

+ 2520∆XL
2 ∆FF

4 ∆LF
2 9940∆XF

2 ∆XL
4 ∆FF

2+

+ 3150∆XL
4 ∆FF

2 ∆LF
2 4352∆XF

2 ∆XL
2 ∆FF

2 ∆LF
2+
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(A.2)

+ 20940∆XF
2 ∆XL

2 ∆FF
4 1532∆XL

6 ∆LF
2+

+ 240∆XL
2 ∆LF

6 240∆XL
2 ∆LL

6 756∆XL
4 ∆LF

4+ +

+ 6300∆XL
4 ∆FF

4 4560∆XF
4 ∆XL

4+

+ 2418∆XL
4 ∆XF

2 ∆LF
2 984∆XF

2 ∆XL
2 ∆LF

4+

+ 2112∆XF
4 ∆XL

2 ∆LF
2 18996∆XF

4 ∆XL
2 ∆FF

2+

+ 3976∆XF
2 ∆XL

2 ∆FF
2 720∆XL

2 ∆LF
4+(

+ 1824∆XF
4 ∆XL

2 2520∆XL
2 ∆FF

4 2160∆XL
2 ∆FF

2 ∆LF
2+ +

+ 1768∆XL
4 ∆LF

2 3510∆XL
4 ∆FF

2+

+ 1728∆XF
2 ∆XL

2 ∆LF
2 1820∆XL

6 2418∆XF
2 ∆XL

4+ + )∆LL
2

+ 1080∆XL
2 ∆FF

2 1012∆XL
4 720∆XL

2 ∆LF
2+ +(

+ 744∆XF
2 ∆XL

2 )∆LL
4 }∆ FL

2 945∆FL
10 43989∆FF

2 ∆XF
8+ +

+ 21847∆XF
10 945∆FF

10 48498∆FF
4 ∆XF

6+ +

+ 33742∆FF
6 ∆XF

4 11385∆FF
8 ∆XF

2 ,+

M2Z
F( ) 2∆XF

2 ,=

M4Z
F( ) 4∆XF

2 ∆FL
2 10∆XF

4 4∆FF
2 ∆XF

2 ,+ +=

M6Z
F( ) 24∆XF

2 ∆FL
4 92∆XF

6 78∆FF
2 ∆XF

4+ +=

+ 24∆FF
4 ∆XF

2 70∆XF
4 48∆FF

2 ∆XF
2 8∆XF

2 ∆XL
2+ +( )∆FL

2 ,+

M8Z
F( ) 240∆XF

2 ∆FL
6 240∆XF

2 ∆XL
2 756∆XF

4+(+=

+ 720∆XF
2 ∆FF

2 )∆FL
4 720∆XF

2 ∆FF
4 1768∆XF

4 ∆FF
2+(+

+ 16∆XF
2 ∆LF

2 ∆XL
2 16∆XF

2 ∆LL
2 ∆XL

2 1532∆XF
6+ +

+ 248∆XF
4 ∆XL

2 240∆XF
2 ∆FF

2 ∆XL
2 40∆XF

2 ∆XL
4 )∆FL

2+ +

+ 1820∆XF
6 ∆FF

2 1012∆XF
4 ∆FF

4+

+ 240∆XF
2 ∆FF

6 1442∆XF
8 ,+

M10Z
F( ) 3360∆XF

2 ∆FL
8 6720∆XF

2 ∆XL
2 10956∆XF

4+(+=

+ 13440∆XF
2 ∆FF

2 )∆FL
6 20160∆XF

2 ∆FF
4(+

+ 40580∆XF
4 ∆FF

2 896∆XF
2 ∆LF

2 ∆XL
2+

+ 896∆XF
2 ∆LL

2 ∆XL
2 28752∆XF

6 11516∆XF
4 ∆XL

2+ +

+ 13440∆XF
2 ∆FF

2 ∆XL
2 3360∆XF

2 ∆XL
4+ )∆FL

4

+ 13440∆XF
2 ∆FF

6 368∆XF
2 ∆XL

6+{
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Expressions for the moments of the nuclei of the second
type are obtained by changing the subscripts F  L
and L  F.

For comparison, we present an exact expression for
the fourth moment of the ACF ΓxF(t) (4) for a system
consisting of nuclei of two types with a DDI for a real
LiF crystal, which was derived from the results for a
similar moment of the NMR spectrum [18], and an
expression for the fourth moment of the ACF of a
homonuclear system [19]:

(A.3)

A similar moment for the Li nuclei is obtained by the
change of the subscripts F  L and L  F and by
the simultaneous change of the numerical coefficients:

9S2/4  to 1.27S2/  and 34 /(5 )2 to 2 /( )2,
which is associated with the difference in the spin quan-
tum numbers of the F and Li nuclei.
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Abstract—We consider chaotic oscillator synchronization and propose a new approach for detecting the syn-
chronized behavior of chaotic oscillators. This approach is based on analysis of different time scales in the time
series generated by coupled chaotic oscillators. We show that complete synchronization, phase synchronization,
lag synchronization, and generalized synchronization are particular cases of the synchronized behavior called
time-scale synchronization. A quantitative measure of chaotic oscillator synchronous behavior is proposed.
This approach is applied to coupled Rössler systems. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Synchronization of chaotic oscillators is one of the
fundamental phenomena in nonlinear dynamics. It
occurs in many physical [1–6] and biological [7–9] pro-
cesses. It seems to play an important role in the ability
of biological oscillators, such as neurons, to act cooper-
atively [10–12].

Several different types of synchronization of cou-
pled chaotic oscillators have been described theoreti-
cally and observed experimentally [13–16]. Complete
synchronization implies the coincidence of states of
coupled oscillators, x1(t) ≈ x2(t), with the difference
between state vectors of coupled systems converging to
zero in the limit as t  ∞ [17–20]. It occurs when
interacting systems are identical. If the parameters of
coupled chaotic oscillators slightly mismatch, the state
vectors are close, |x1(t) – x2(t)| ≈ 0, but differ from each
other. Another type of synchronized behavior of cou-
pled chaotic oscillators with slightly mismatched
parameters is lag synchronization: this is the case
where state vectors coincide with each other after a
time shift, x1(t + τ) = x2(t). As the coupling between
oscillators increases, the time lag τ decreases and the
synchronization regime tends to the complete synchro-
nization described in [21–23]. Generalized synchroni-
zation [24–26], introduced for drive-response systems,
means that there is some functional relation between
coupled chaotic oscillators, i.e., x2(t) = F[x1(t)].

We mention finally the phase synchronization
regime. To describe the phase synchronization, the
instantaneous phase φ(t) of a chaotic continuous time
series is usually introduced [13–16, 27, 28]. The phase
synchronization means the entrainment of phases of
chaotic signals, with their amplitudes remaining cha-
otic and uncorrelated.

¶ This article was submitted by the authors in English.
1063-7761/05/10004- $26.000784
All synchronization types mentioned above are
related to each other (see [1, 22, 24] for details), but the
relation between them has not yet been completely clar-
ified. For each type of synchronization, there are spe-
cific ways of detecting synchronized behavior of cou-
pled chaotic oscillators. Complete synchronization can
be detected by comparing system state vectors x1(t) and
x2(t), whereas lag synchronization can be determined
by means of a similarity function [21]. The case of the
generalized synchronization is more intricate because
the functional relation F[…] can be very complicated,
but there are several methods for detecting synchro-
nized behavior of coupled chaotic oscillators, such as
the auxiliary system approach [29] or the method of
nearest neighbors [24, 30].

Finally, phase synchronization of two coupled cha-
otic oscillators occurs if the difference between the
instantaneous phases φ(t) of chaotic signals x1, 2(t) is
bounded by some constant:

(1)

It is possible to define the mean frequency of the cha-
otic signal,

(2)

which is the same for both coupled chaotic systems;
i.e., phase locking leads to frequency entrainment. We
note that for the results to be correct, the mean fre-
quency  a of chaotic signal x(t) must coincide with
the main frequency Ω0 = 2πf0 of the Fourier spectrum
(see [31] for details). There is no general way to intro-
duce the phase for chaotic time series. There are several
approaches that allow defining the phase for “good”
systems with a simple topology of a chaotic attractor
(the so-called phase coherent attractor), whose Fourier
spectrum contains a single main frequency f0.

φ1 t( ) φ2 t( )– const.<

Ω φ t( )
t

----------
t ∞→
lim φ̇ t( )〈 〉 ,= =

Ω
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First of all, a plane in the system phase space may
exist such that the projection of the chaotic attractor on
it looks like a circular band. For such a plane, coordi-
nates x and y can be introduced with the origin placed
somewhere near the center of the chaotic attractor pro-
jection. The phase can then be introduced as an angle in
this coordinate system [32, 21], but this requires all tra-
jectories of the chaotic attractor projection on the (x, y)
plane to revolve around the origin. A coordinate trans-
formation can be sometimes used to obtain a proper
projection [32, 13]. If the projections of chaotic trajec-
tories on the plane ( , ) always rotate around the ori-
gin, velocities  and  can also be used; in some cases,
this approach is more suitable [33, 34]. Another way to
define the phase φ(t) of a chaotic time series x(t) is to
construct the analytical signal [14, 27] using the Hilbert
transform. Moreover, the Poincaré secant surface can
be used to introduce the instantaneous phase of a cha-
otic dynamical system [14, 27]. Finally, the phase of a
chaotic time series can be introduced by means of the
continuous wavelet transform [35], but the appropri-
ate wavelet function and its parameters should be cho-
sen [36].

All these approaches give correct results for “good”
systems with well-defined phase, but fail for oscillators
with nonrevolving trajectories. Such chaotic oscillators
are often called “systems with ill-defined phase” or
“systems with the funnel attractor.” Introducing the
phase via the above-mentioned approaches usually
leads to incorrect results for a system with ill-defined
phase [31]. Therefore, the phase synchronization of
such systems can be usually detected by means of indi-
rect indications [32, 37] and measurements [33].

In this paper, we propose a new approach for detect-
ing the synchronization between two coupled chaotic
oscillators. The main idea of this approach consists in
analyzing the system behavior on different time scales,
which allows us to consider different cases of synchro-
nization from a universal standpoint [38]. Using the
continuous wavelet transform [39–42], we introduce
the continuous set of time scales s and the instantaneous
phases φs(t) associated with them. In other words, φs(t)
is a continuous function of time t and time scale s. As
we show in what follows, if two chaotic oscillators
demonstrate any type of synchronized behavior men-
tioned above, the time series x1, 2(t) generated by these
systems involve time scales s that are necessarily corre-
lated and satisfy the phase locking condition

(3)

In other words, complete, lag, phase, and generalized
synchronizations are the particular cases of the syn-
chronous coupled chaotic oscillator behavior called
“time-scale synchronization.”

The structure of this paper is as follows. In Section 2,
we discuss the continuous wavelet transform and the
method of time scales s, and define the phases φs(t)
associated with them. In Section 3, we consider the

ẋ ẏ
ẋ ẏ

φs1 t( ) φs2 t( )– const.<
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phase synchronization of two coupled Rössler systems.
We demonstrate the application of our method and dis-
cuss its relation to traditional approaches. Section 4
deals with synchronization of two coupled Rössler sys-
tems with funnel attractors. In this case, the traditional
methods for introducing the phase fail and it is impos-
sible to detect the phase synchronization regime. Syn-
chronization between systems can be revealed here
only by means of indirect measurements (see [33] for
details). We demonstrate the efficiency of our method
for such cases and discuss the correlation between phase,
lag, and complete synchronizations. In Section 5, we
apply our method to the unidirectional coupled Rössler
systems with phase-coherent attractors in which gener-
alized synchronization is observed. The quantitative
measure of synchronization is described in Section 6.
The conclusions are presented in Section 7.

2. CONTINUOUS WAVELET TRANSFORM
The continuous wavelet transform is a powerful tool

for analyzing the behavior of nonlinear dynamical sys-
tems. In particular, the continuous wavelet analysis has
been used for the detection of synchronization of cha-
otic oscillations in the brain [35, 43, 44] and chaotic
laser array [45]. It has also been used to detect the basic
frequency of oscillations in nephron autoregulation [46].
We propose to analyze the dynamics of coupled chaotic
oscillators by considering system behavior at different
time scales s, each of which is characterized by its own
phase φs(t). In defining the continuous set of instanta-
neous phases φs(t), the continuous wavelet transform is
a convenient mathematical tool.

We consider the continuous wavelet transform of a
chaotic time series x(t),

(4)

where (t) is the wavelet function related to the
mother-wavelet function ψ0(t) as

(5)

The time scale s corresponds to the width of the wavelet
function (t), t0 is the shift of the wavelet along the
time axis, and the “*” symbol in (4) denotes complex
conjugation. We note that the time scale s is typically
used instead of the Fourier-transform frequency f and
can be considered as the quantity inversed to it.

The Morlet wavelet [47]

(6)

has been used as a mother-wavelet function. The choice
of the parameter value Ω0 = 2π provides the relation s =

W s t0,( ) x t( )ψs t0,* t( ) t,d

∞–

∞

∫=

ψs t0,

ψs t0, t( ) 1

s
------ψ

t t0–
s

----------- 
  .=

ψs t0,

ψ0 η( ) 1

π4
------- jΩ0η( ) η2

2
-----– 

 expexp=
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Fig. 1. (a) A phase coherent attractor and (b) the Fourier spectrum for the first Rössler system (10). The coupling parameter ε
between the oscillators is zero.

f0
1/f between the time scale s of the wavelet transform
and the frequency f of the Fourier transform.

The wavelet surface

(7)

describes the system dynamics on every time scale s at
the time instant t0. The value of |W(s, t0)| indicates the
presence and intensity of the time scale s mode in the
time series x(t) at the time instant t0. The quantities

(8)

and

(9)

are the instantaneous and integral energy distributions
on time scales, respectively.

The phase φs(t) = (s, t) is naturally introduced
for every time scale s. This means that the behavior of
each time scale s can be described by means of its own
phase φs(t). If two interacting chaotic oscillators are
synchronized, the corresponding time series x1(t) and
x2(t) involve scales s correlated with each other. This
correlation can be detected by examining condition (3),
which must be satisfied for synchronized time scales.

3. PHASE SYNCHRONIZATION
OF TWO RÖSSLER SYSTEMS

We first consider two coupled Rössler systems with
slightly mismatched parameters [27, 28],

(10)

where a = 0.165, p = 0.2, and c = 10. The parameters

W s t0,( ) W s t0,( ) jφs t0( )[ ]exp=

E s t0,( ) W s t0,( ) 2=

E s( )〈 〉 W s t0,( ) 2 t0d∫=

Warg

ẋ1 2, ω1 2, y1 2,– z1 2, ε x2 1, x1 2,–( ),+–=

ẏ1 2, ω1 2, x1 2, ay1 2, ,+=

ż1 2, p z1 2, x1 2, c–( ),+=
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ω1, 2 = ω0 ± ∆ determine the parameter detuning and ε
is the coupling parameter (ω0 = 0.97, ∆ = 0.02). It was
shown [21] that the phase synchronization is observed
for these control parameter values and a coupling
parameter of ε = 0.05.

In this case, the phase of the chaotic signal can be
easily introduced in one of the ways mentioned above,
because the phase coherent attractor with rather simple
topological properties is realized in the system phase
space. The attractor projection on the (x, y) plane
resembles the smeared limit cycle where the phase
point always rotates around the origin (Fig. 1a). The
Fourier spectrum S(f) contains the basic frequency peak
f0 ≈ 0.163 (see Fig. 1b), which coincides with the mean

frequency  = /2π determined from the instanta-
neous phase φ(t) dynamics (2). Therefore, the phase
synchronization regime can be detected in two coupled
Rössler systems (10) by means of traditional
approaches without complications.

When the coupling parameter ε is equal to 0.05, the
phase synchronization between chaotic oscillators is
observed. Phase locking condition (1) is satisfied and
the mean frequencies  are entrained. Hence, the
time scales s0 ≈ 6 of both chaotic systems correspond-

ing to the mean frequencies  should be correlated
with each other. Correspondingly, the phases φs1, 2(t)
associated with these time scales s should be locked and
condition (3) should be satisfied. The time scales that
are nearest to the time scale s0 should also be correlated,
but the interval of the correlated time scales depends on
the coupling strength. At the same time, there should be
time scales that remain uncorrelated. These uncorre-
lated time scales cause a difference between chaotic
oscillations of coupled systems.

Figure 2 illustrates the behavior of different time
scales for two coupled Rössler systems (10) with phase

f Ω

Ω1 2,

Ω1 2,
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Fig. 2. (a) Wavelet power spectra 〈E(s)〉  for the first (solid line) and the second (dashed line) Rössler systems (10). (b) The depen-
dence of the phase difference φs1(t) – φs2(t) on time t for different time scales s. The coupling parameter between the oscillators is
ε = 0.05. Phase synchronization for two coupled chaotic oscillators is observed.
coherent attractors. It is clear that the phase difference
φs1(t) – φs2(t) for scales s0 = 6 is bounded, and therefore
time scales s0 = 6 corresponding to the main frequency
f0 of the Fourier spectrum are synchronized. It is impor-
tant to note that the wavelet power spectra 〈E1, 2(s)〉  that
are close to each other (Fig. 2a) and time scales s char-
acterized by a large value of energy (e.g., s = 5) close to
the main time scale s0 = 6.0 are also correlated. There
are also time scales that are not synchronized, for
example, s = 3.0, s = 4.0 (Fig. 2b).

Therefore, phase synchronization of two coupled
chaotic oscillators with phase coherent attractors man-
ifests itself as a synchronous behavior of the time scales
s0 (and time scales s close to s0) corresponding to the

chaotic signal mean frequency .

4. SYNCHRONIZATION 
OF TWO RÖSSLER SYSTEMS 
WITH FUNNEL ATTRACTORS

We consider a more complicated example where it
is impossible to correctly introduce the instantaneous
phase φ(t) of the chaotic signal x(t). It is clear that in
such cases, the traditional methods of detecting phase
synchronization fail and it is necessary to use the other
techniques, e.g., indirect measurements [33]. On the
contrary, our approach gives correct results and allows
detection of the synchronization between chaotic oscil-
lators as easily as before.

As an illustration, we consider two nonidentical
coupled Rössler systems with funnel attractors (Fig. 3),

(11)

Ω

ẋ1 2, ω1 2, y1 2,– z1 2,– ε x2 1, x1 2,–( ),+=

ẏ1 2, ω1 2, x1 2, ay1 2, ε y2 1, y1 2,–( ),++=

ż1 2, p z1 2, x1 2, c–( ),+=
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where ε is a coupling parameter and ω1 = 0.98, ω2 =
1.03. The control parameter values have been selected
analogously to [33] as a = 0.22, p = 0.1, and c = 8.5. We
note that under these control parameter values, none of
the methods mentioned above allows defining the phase
of the chaotic signal correctly in entire range of the cou-
pling parameter ε variation. Therefore, nobody can
determine by means of direct measurements whether
the synchronization regime occurs for several values
of ε. On the other hand, our approach permits easy
detection of synchronization between the coupled
oscillators under consideration for all values of the cou-
pling parameter.

In [33], it was shown by means of indirect measure-
ments that for a coupling parameter value of ε = 0.05,
synchronization of two coupled Rössler systems (11)
occurs. Our approach based on the analysis of the
dynamics of different time scales s gives analogous
results. The behavior of the phase difference φs1(t) –
φs2(t) for this case is presented in Fig. 4b. One can see
that phase locking occurs for time scales s = 5.25,
which are characterized by the largest energy value in
the wavelet power spectra 〈E(s)〉  (Fig. 4a).

We note that the phase difference φs1(t) – φs2(t) is
also bounded at the time scales close to s = 5.25. We can
say that the time scales s = 5.25 (and close to them) of
two oscillators are synchronized with each other. At the
same time, other time scales (e.g., s = 4.5, 6.0) remain
uncorrelated. For such time scales, phase locking was
not observed (see Fig. 4b).

It is clear that the mechanism of synchronization of
coupled chaotic oscillators is the same in both cases
considered in Sections 3 and 4. The synchronization
phenomenon is caused by the existence of time scales s
in system dynamics correlated with each other. There-
fore, there is no reason to divide the considered syn-
chronization examples into different types.
SICS      Vol. 100      No. 4      2005
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Fig. 3. (a) A phase picture and (b) the power spectrum of oscillation for the first Rössler system (11). The coupling parameter ε is
equal to zero.
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Fig. 4. (a) The normalized energy distribution in the wavelet spectrum 〈E(s)〉  for the first (line 1) and the second (line 2) Rössler
systems (11); (b) the phase difference φs1(t) – φs2(t) for two coupled Rössler systems. The value of the coupling parameter is selected
as ε = 0.05. The time scales s = 5.25 are correlated with each other and synchronization is observed.
It has been shown [21] that there is a certain relation
between phase, lag, and complete synchronizations for
chaotic oscillators with slightly mismatched parame-
ters. With the increase of the coupling strength, the sys-
tems undergo the transition from unsynchronized cha-
otic oscillations to phase synchronization. With a fur-
ther increase in the coupling, lag synchronization is
observed. As the coupling parameter increases further,
the time lag decreases and both systems tend to have the
complete synchronization regime.

We consider the dynamics of different time scales s
of two nonidentical coupled Rössler systems (11) when
the coupling parameter value increases. If there is no
phase synchronization between the oscillators, their
dynamics remain uncorrelated for all time scales s. Fig-
ure 5 illustrates the dynamics of two coupled Rössler
systems when the coupling parameter ε is sufficiently
JOURNAL OF EXPERIMENTAL 
small (ε = 0.025). The power spectra 〈E(s)〉  of the wave-
let transform for Rössler systems differ from each other
(Fig. 5a), but the maximum values of the energy corre-
spond approximately to the same time scale s in both
systems. It is clear that the phase difference φs1(t) –
φs2(t) is not bounded for almost all time scales (Fig. 5b).
One can see that the phase difference φs1(t) – φs2(t)
increases for time scale s = 3.0, but decreases for s =
4.5. This means that there should be a time scale 3.0 <
s* < 4.5 at which the phase difference remains
bounded. This time scale s* plays the role of a point
separating the time scale areas with the phase differ-
ence increasing and decreasing, respectively. In this
case, the measure of time scales at which the phase dif-
ference remains bounded is zero and we cannot talk
about the synchronous behavior of coupled chaotic
oscillators (see also Section 6).
AND THEORETICAL PHYSICS      Vol. 100      No. 4      2005
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systems; (b) the phase difference φs1(t) – φs2(t) for two coupled Rössler systems. The value of coupling parameter is selected as
ε = 0.07.
As soon as any of the time scales of the first chaotic
oscillator becomes correlated with another time scale
of the second oscillator (e.g., when the coupling param-
eter increases), phase synchronization occurs (see
Fig. 4). The time scales s characterized by the largest
value of energy in the wavelet spectrum 〈E(s)〉  are more
likely to be correlated first. The other time scales remain
uncorrelated as before. The phase synchronization
between chaotic oscillators leads to phase locking (3) at
the correlated time scales s.

As the parameter of coupling between the chaotic
oscillators increases, more and more time scales
become correlated and one can say that the degree of
synchronization grows. Therefore, with the further
increase of the coupling parameter value (e.g., ε = 0.07)
in coupled Rössler systems (11), the time scales that
were uncorrelated before become synchronized
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(Fig. 6b). It is evident that the time scales s = 4.5 are
synchronized in comparison with the previous case (ε =
0.05, Fig. 4b) when these time scales were uncorre-
lated. The number of time scales s demonstrating phase
locking increases, but there are nonsynchronized time
scales as before (e.g., the time scales s = 3 and s = 6
remain nonsynchronized).

The occurrence of lag synchronization [21] between
oscillators means that all time scales are correlated.
Indeed, the lag synchronization condition x1(t – τ) ≈
x2(t) implies that W1(s, t – τ) ≈ W2(t, s) and therefore
φs1(t – τ) ≈ φs2(t). In this case, phase locking condition (3)
is obviously satisfied for all time scales s. For instance,
when the coupling parameter of chaotic oscillators (11)
becomes sufficiently large (s = 0.25), lag synchroniza-
tion of two coupled oscillators occurs. In this case, the
power spectra of the wavelet transform coincide with
SICS      Vol. 100      No. 4      2005
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φs1(t) − φs2(t) for two coupled Rössler systems. The value of the coupling parameter is selected as ε = 0.25. Lag synchronization is
observed, all time scales are synchronized.
each other (see Fig. 7a) and phase locking takes place
for all time scales s (Fig. 7b). We note that the phase
difference φs1(t) – φs2(t) is not equal to zero in the case
of lag synchronization. It is clear that this difference
depends on the time lag τ.

A further increase of the coupling parameter leads to
a decrease of the time lag τ [21]. Both systems tend to
have the complete synchronization regime x1(t) ≈ x2(t),
and hence the phase difference φs1(t) – φs2(t) tends to be
zero for all time scales.

The dependence of the synchronized time scale
range [sm; sb] on the coupling parameter is shown in
Fig. 8. The range [sm; sb] of synchronized time scales
appears at ε ≈ 0.039. The appearance of the synchro-
nized time scale range corresponds to the phase syn-
chronization regime. As the coupling parameter value
increases, the range of synchronized time scales
expands until all time scales become synchronized.
Synchronization of all time scales means the presence
of the lag synchronization regime.

We can therefore say that the time-scale synchroni-
zation is the most general synchronization type unify-
ing (at least) phase, lag, and complete synchronization
regimes.

5. GENERALIZED SYNCHRONIZATION REGIME

We consider another type of synchronized behavior,
the so-called generalized synchronization. It has been
shown above that phase, lag, and complete synchroni-
zations are naturally related to each other and the syn-
chronization type depends on the number of synchro-
nized time scales. The details of the relations between
phase and generalized synchronizations are not at all
clear. There are several works [1, 22] dealing with the
problem of how phase and generalized synchroniza-
tions are correlated with each other. For instance, it has
JOURNAL OF EXPERIMENTAL A
been reported in [22] that two unidirectional coupled
Rössler systems can demonstrate the generalized syn-
chronization, while the phase synchronization has not
been observed. This case can easily be explained by
means of the time scale analysis. The equations of the
coupled Rössler system are

(12)

where x1 = (x1, y1, z1)T and x2 = (x2, y2, z2)T are the
respective state vectors of the first (drive) and the sec-
ond (response) Rössler systems. The control parameter
values are chosen as ω1 = 0.8, ω2 = 1.0, a = 0.15, p =

ẋ1 ω1y1– z1,–=

ẏ1 ω1x1 ay1,+=

ż1 p z1 x1 c–( )+=

ẋ2 ω2y2– z2– ε x1 x2–( ),+=

ẏ2 ω2x2 ay2,+=

ż2 p z2 x2 c–( ),+=

4

2
0.1

s

ε0.2

6

0

sm

sb

sb = 30.5

Fig. 8. The dependence of the synchronized time scale
range [sm; sb] on the coupling strength ε for two coupled
Rössler systems (11) with funnel attractors.
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Fig. 9. Fourier spectra for (a) the first (drive) and (b) the second (response) Rössler systems (12). The coupling parameter is ε = 0.2.
Generalized synchronization occurs.
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Fig. 10. (a) Normalized energy distribution in the wavelet spectrum 〈E(s)〉  for the first (line 1) and the second (line 2) Rössler sys-
tems. The time scales indicated with arrows correspond to the frequencies f1 = 0.125 and f2 = 0.154; (b) the phase difference
φs1(t) − φs2(t) for two coupled Rössler systems. Generalized synchronization is observed.
0.2, c = 10, and ε = 0.2. Generalized synchronization
occurs in this case (see [22] for details). The time scale
analysis explains why it is impossible to detect phase
synchronization in system (12) despite generalized syn-
chronization being observed.

We consider Fourier spectra of coupled chaotic
oscillators (Fig. 9). There are two main spectral compo-
nents with the frequencies f1 = 0.125 and f2 = 0.154 in
these spectra. The analysis of the behavior of time
scales shows that both the time scales s1 = 1/f1 = 8.0 of
the coupled oscillators corresponding to the frequency
f1 and time scales close to s1 are synchronized, while the
time scales s2 = 1/f2 ≈ 6.5 and those close to this value
do not demonstrate synchronous behavior (Fig. 10b).

The source of such behavior of time scales becomes
clear from the wavelet power spectra 〈E(s)〉  of both sys-
tems (see Fig. 10a). The time scale s1 of the drive
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Rössler system is characterized by a large value of
energy, while the part of energy associated with this
scale of the response system is quite small. Therefore,
the drive system dictates its own dynamics at the time
scale s1 to the response system. The opposite situation
occurs for the time scales s2 (Fig. 10a). The drive sys-
tem cannot dictate its dynamics to the response system
because the part of energy associated with this time
scale is small in the first Rössler system and large
enough in the second one. Therefore, time scales s2 are
not synchronized.

Thus, the generalized synchronization of the unidi-
rectional coupled Rössler systems appears as the time
scale synchronized dynamics, similarly to other syn-
chronization types. It is also clear why the phase syn-
chronization was not observed in this case. Figure 9
shows that the instantaneous phases φ1, 2(t) of chaotic
SICS      Vol. 100      No. 4      2005
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signals x1, 2(t) introduced by means of traditional
approaches are determined by both frequencies, f1 and
f2, but only the spectral components with the frequency
f1 are synchronized. Therefore, observation of the
instantaneous phases φ1, 2(t) does not allow detection of
phase synchronization in this case, although the syn-
chronization of time scales takes place.

Thus, one can see that there is a close relation
between different types of chaotic oscillator synchroni-
zation. According to the results mentioned above, we
can say that phase, lag, complete, and generalized syn-
chronizations are particular cases of time-scale syn-
chronization. Therefore, it is possible to consider dif-
ferent types of synchronized behavior from the univer-
sal standpoint. Unfortunately, it is not clear how one
can distinguish phase synchronization1 and generalized
synchronization using only the results obtained from
the analysis of the time scale dynamics.

6. MEASURE OF SYNCHRONIZATION

From the examples given above, we can see that any
type of synchronous behavior of coupled chaotic oscil-
lators leads to the occurrence of synchronized time
scales. Therefore, the measure of synchronization can
be introduced. This measure ρ can be defined as the part
of the wavelet spectrum energy associated with the syn-
chronized time scales,

(13)

1 We mean here that phase synchronization between chaotic oscil-
lators occurs if the instantaneous phase φ(t) of the chaotic signal
may be correctly introduced by means of traditional approaches
and phase locking condition (1) is satisfied.

ρ1 2,
1

E1 2,
--------- E1 2, s( )〈 〉 s,d

sm

sb

∫=

0.2

0 0.1

ρ1

ε0.2

0.8

0.6

0.4

1.0

Fig. 11. Dependence of the synchronization measure ρ1 for
the first Rössler system (11) on the coupling strength ε. The
measure ρ2 for the second Rössler oscillator behaves in a
similar manner (not shown in the figure).
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where [sm; sb] is the range of time scales for which con-
dition (1) is satisfied and

(14)

is the total energy of the wavelet spectrum. This mea-
sure ρ is zero for nonsynchronized oscillations, and
unity for the complete and lag synchronization regimes.
If the phase synchronization regime is observed, ρ
takes a value between zero and unity depending on the
part of energy associated with the synchronized time
scales. Hence, the synchronization measure ρ makes it
possible not only to distinguish synchronized and non-
synchronized oscillations, but also to characterize the
degree of time scale synchronization quantitatively.

Figure 11 presents the dependence of time-scale
synchronization measure ρ1 for the first Rössler oscilla-
tor of system (11) considered in Section 4 on the cou-
pling parameter ε. It is clear that the part of the energy
associated with the synchronized time scales grows
monotonically with increasing coupling strength. Sim-
ilar results have been obtained for the generalized syn-
chronization of two coupled Rössler systems consid-
ered in Section 5.

We have already mentioned that when the coupled
oscillators do not demonstrate synchronous behavior,
there are time scales s* at which the phase difference
φs1(t) – φs2(t) is bounded. Such time scales play the role
of points separating the time scale areas where the
phase difference increases and decreases, respectively
(see also Section 4). Nevertheless, the presence of such
time scales does not mean the occurrence of chaotic
synchronization, because the part of energy associated
with them is equal to zero. Therefore, the synchroniza-
tion measure ρ of such oscillations is zero, and the
dynamical regime realized in the system in this case
should be classified as nonsynchronous.

7. CONCLUSIONS

Summarizing this work, we note several principal
aspects. First, we have proposed considering the time
scale dynamics of coupled chaotic oscillators. It allows
us to examine the different types of behavior of coupled
oscillators (such as complete synchronization, lag syn-
chronization, phase synchronization, generalized syn-
chronization, and nonsynchronized oscillations) from
the universal standpoint. In this case, time scale syn-
chronization is the most common type of synchronous
coupled chaotic oscillator behavior. Therefore, the
other types of synchronous oscillations (phase, lag,
complete, and generalized) may be considered particu-
lar cases of time-scale synchronization. The quantita-
tive characteristic ρ of the synchronization measure has
also been introduced. It is important to note that our
method (with insignificant modifications) can also be

E1 2, E1 2, s( )〈 〉 sd

0

∞

∫=
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applied to dynamical systems synchronized by the
external (e.g., harmonic) signal.

Second, the traditional approach for the phase syn-
chronization detecting based on the introduction of the
instantaneous phase φ(t) of the chaotic signal is suitable
and correct for such time series characterized by the
Fourier spectrum with a single main frequency f0. In
this case, the phase φs0 associated with the time scale s0
corresponding to the main frequency f0 of the Fourier
spectrum coincides approximately with the instanta-
neous phase φ(t) of the chaotic signal introduced by
means of the traditional approaches (see also [36]).
Indeed, because the other frequencies (the other time
scales) do not play a significant role in the Fourier spec-
trum, the phase φ(t) of the chaotic signal is close to the
phase φs0(t) of the main spectral frequency f0 (and the
main time scale s0, respectively). It is obvious that in

this case, the mean frequencies  = 〈 (t)〉/2π and

 = 〈 (t)〉/2π should coincide with each other and
with the main frequency f0 of the Fourier spectrum (see
also [31]),

(15)

If the chaotic time series is characterized by the Fourier
spectrum without a single basic frequency (like the
spectrum shown in Fig. 3b), the traditional approaches
fail. One has to consider the dynamics of the system at
all time scales, but this cannot be done by means of the
instantaneous phase φ(t). On the contrary, our approach
based on the analysis of time scale dynamics can be
used for both types of chaotic signals.

Finally, our approach can be easily applied to the
experimental data because it does not require any a pri-
ori information on the dynamical systems considered.
Moreover, in several cases, the influence of noise can be
reduced by means of the wavelet transform (see [39, 48,
49] for details). We believe that our approach will be
useful and effective for the analysis of physical, biolog-
ical, physiological, and other data, such as described
in [9, 10, 36, 35].
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Abstract—The dependence of the threshold parameters and the period of the electric-field-induced spatially
periodic reorientation of the director in a flexoelectric nematic liquid crystal (NLC) on the anchoring conditions
at the surface of a planar NLC cell has been studied. The threshold electric field and the corresponding wave-
number of the periodic structure of the director field have been numerically calculated for arbitrary values of
the anchoring energy. In the case of strong anchoring, the corresponding analytical expressions are obtained in
a single-constant approximation. A decrease in the azimuthal anchoring energy leads to an increase in the inter-
vals of possible values of the flexoelectric parameter ν and the ratio K2/K1 of the Frank elastic constants. A
decrease in the polar anchoring energy leads to narrowing of these intervals as compared to the case of infinitely
strong anchoring at the NLC cell surface. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Considerable interest in the physics of phenomena
in liquid crystal cells under the action of external
fields—in particular, in the process of threshold reori-
entation of the director of a nematic liquid crystal
(NLC) in the applied electric field (known as the Frée-
dericksz effect)—are related to the wide use of such
cells in various electrooptical devices [1–3]. Although
the threshold reorientation of the NLC director is a vol-
ume effect, important characteristics such as the thresh-
old current and the degree of the director reorientation
significantly depend on the interaction between the liq-
uid crystal and the cell surface. The effect of the cell
surface on these characteristics is so strong that even a
spontaneous Fréedericksz transition (in fact, stimulated
by a change in conditions at this surface) may take
place [4–7]. One of the most important parameters
determining the conditions at the NLC cell surface and
influencing the NLC director behavior is the anchoring
energy. The model of infinitely strong anchoring offers
the simplest case, while allowance for a finite anchor-
ing energy significantly complicates description of this
system.

It was established that, under certain conditions, a
threshold reorientation of the NLC director is accompa-
nied by the formation of a periodic spatial structure in the
plane of the NLC cell. Previously, Bobylev et al. [8, 9]
described this phenomenon in a planar-oriented cell of
a flexoelectric NLC with absolutely rigid (infinitely
strong anchoring) boundary conditions. Romanov and
Sklyarenko [10] studied the influence of the surface
conditions on the electric-field-induced threshold peri-
odic structure of the director field, but only in a homeo-
1063-7761/05/10004- $26.000795
tropically oriented cell of a flexoelectric NLC. The val-
ues of the threshold electric field and the spatial period
in the director reorientation were determined as func-
tions of the anchoring energy and the flexoelectric coef-
ficients of the NLC. Recently, Barbero and Lelidis [11]
studied the possibility of the formation of periodic
structures of flexoelectric origin in a homeotropic
NLC cell.

Lonberg and Meyer [12] showed that a periodic spa-
tial structure of the director field can arise in a homeo-
tropic NLC cell with absolutely rigid boundary condi-
tions even in the absence of the flexoelectric polariza-
tion, depending only on the ratio of the Frank elastic
constants K1 and K2. When K2/K1 < ro ≈ 0.3, the system
exhibits a Fréedericksz transition with the formation of
a periodic spatial structure, whereas only a homoge-
neous Fréedericksz transition is possible for K2/K1 > ro .
It was demonstrated [13–15] that the character of the
periodic structure formed in this geometry strongly
depends on the anchoring energy.

Simões et al. [16, 17] theoretically and experimen-
tally investigated periodic structures appearing in the
cells of lyotropic NLCs when the external magnetic
field exceeded a threshold for the Fréedericksz transi-
tion. The influence of the elastic constant K24 on the
spontaneous periodic distortions in a planar NLC cell
was studied in [18–21], while a relationship between
K24 and the parameters of a periodic structure formed
during the Fréedericksz transition in the external mag-
netic field was analyzed in [22].
 © 2005 Pleiades Publishing, Inc.
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The aim of this study was to consider the effect of
the anchoring energy on the periodic spatial structure of
the director field in a planar flexoelectric NLC cell.

2. EQUATIONS DESCRIBING
THE DIRECTOR FIELD

Let us consider a plane-parallel flexoelectric NLC
cell bounded by the planes z = –L/2 and z = +L/2 with
an initial planar director orientation along the x axis.
The cell is exposed to an external homogeneous electric
field E = (0, 0, E). The free energy of this NLC cell can
be expressed as

(1)

Here, n is the NLC director; Fel is the Frank elastic
energy; FE and Fd are the anisotropic and flexoelectric
contributions to the energy of NLC interaction with the
electric field; FS is the free surface energy of the NLC;
εa = ε|| – ε⊥  > 0 is the anisotropy of the static permittiv-
ity; e1 and e3 are the flexoelectric coefficients; Wθ and
Wϕ are the polar and azimuthal anchoring energies at
the cell surface, respectively; and θ and ϕ are the direc-
tor tilt angles in the xz and xy planes, respectively.

It should be noted that, since we are interested in the
influence of a finite anchoring energy of the NLC at the
cell surface, the surface free energy in Eqs. (1) has been
written in terms of the simplest (but still most fre-
quently used) Rapini–Papoular model [23]. According
to this, the energy of the NLC–surface interaction is
proportional to square of the angle between the director
and its easy axis on the cell surface. However, we have
also taken into account that a change in the surface
energy can be different for director rotation relative to the
easy axis in the azimuthal and polar directions [24].

Since the threshold reorientation of the director in
the planar geometry leads to the appearance of a peri-

F Fel FE Fd FS,+ + +=

Fel
1
2
--- K1 divn( )2 K2 n curln⋅( )2+{

V

∫=

+ K3 n curln×[ ] 2 } dV ,

FE

εa

8π
------ n E⋅( )2 V ,d

V

∫–=

Fd e1 n E⋅( )divn e3 curln n×[ ] E⋅( )+{ } V ,d

V

∫–=

FS

Wϕ

2
------- ϕ S

Wθ

2
------- θ S,dcos

2

S1 2,

∫–dcos
2

S1 2,

∫–=

Wϕ 0, Wθ 0.>>
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odic spatial structure along the y axis [8, 9], we seek the
director in the following form:

(2)

where i, j, k are the unit vectors of the Cartesian coor-
dinate system.

In the case of small distortions of the director field
(|ϕ|, |θ| ! 1), minimization of the free energy (1) with
respect to (θ, ϕ gives the set of stationary equations

(3)

and the corresponding boundary conditions

(4)

where

Taking into account the symmetry of Eqs. (3), a
solution to this system can be found in the following
form:

(5)

where the functions θ1(z) and ϕ1(z) meet the condition

(6)

Substituting in these relations

(7)

n i θ y z,( ) ϕ y z,( )coscos=

+ j θ y z,( ) ϕ y z,( ) k θ y z,( ),sin+sincos

r
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we obtain a homogeneous system of two algebraic
equations for determining the unknown coefficients θ10
and ϕ10. This system has a nontrivial solution provided
that

(8)

Solving Eq. (8), we obtain λ = ±ip1 and ±p2, where
p1 and p2 are real quantities given by the formulas

(9)

and ν = e/e2.
Equations (6) yield

Taking this into account, the total solution of Eqs. (6)
can be written as

(10)

where

(11)

(12)

and ai , bi (i = 1, 2) are arbitrary constants whose values
are determined from the boundary conditions (4).

λ 2
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3. DEPENDENCE OF THE DIRECTOR 
REORIENTATION THRESHOLD

ON THE AZIMUTHAL ANCHORING ENERGY

Let us assume that the polar anchoring energy at the
cell surface is infinitely large (Wθ = ∞), while the azi-
muthal energy Wϕ may have an arbitrary value. In this
case, the boundary conditions (4) take the following
form:

(13)

Substituting solution (10) into the boundary condi-
tions (13), we obtain a homogeneous system of four
algebraic equations for determining the unknown coef-
ficients ai , bi (i = 1, 2). This system has a nontrivial
solution provided that

(14)

Solving Eq. (14), we find the electric field E as a func-
tion of the parameter q. A minimum on the E(q) curve
determines the threshold (critical) field Ec for the onset
of instability.

In the general case, Eq. (14) admits only numerical
solution. It should be noted that a necessary condition
for the spatially periodic reorientation of the director is 

(15)
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Differentiating Eq. (14) with respect to q, we obtain
an expression for dE/dq|q = 0 and, taking into account
condition (15), we arrive at the following relation
between the NLC parameters r, ν, and εϕ = WϕL/K1 in
an NLC featuring a periodic spatial structure of the
director field:

(16)

(a) NLC cell in the absence of flexoelectric polar-

1 r–( )2 π2

8
----- 1 2r– 1

ν
--- 4r

νεϕ
--------+ + 
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Fig. 1. Plots of (a) the dimensionless critical field  and

(b) the dimensionless critical wavenumber Qc versus azi-
muthal anchoring energy εϕ in the absence of flexoelectric
polarization (ν = ∞) for r = 0.1 (1), 0.15 (2), 0.2 (3),
0.25 (4), 0.3 (5), 0.35 (6), and 0.4 (7).

Ec
'
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ization. In this case, Eq. (14) simplifies to

(17)

Solving this equation, we determine the values of the
critical electric field Ec and the corresponding wave-
number qc for arbitrary values of the dimensionless azi-
muthal anchoring energy εϕ and the ratio r of the Frank
elastic constants.

Figure 1 shows the calculated dependences of the

dimensionless critical electric field  = EcL and
the corresponding dimensionless wavenumber Qc = qcL
on the azimuthal anchoring energy εϕ for various values
of the parameter r. As can be seen, critical electric field
increases with the azimuthal anchoring energy εϕ .

As can be seen, the period λc = 2π/qc of the spatial
structure of the director field decreases with increasing
εϕ for r & 0.2 and increases for greater values of this
parameter. The values of λc tend to a certain finite level
as εϕ  ∞, provided that

For each r from the interval ro < r < 0.5, relation (16)
gives a certain limiting (threshold) azimuthal anchoring
energy

(18)

For εϕ < εϕth , the NLC cell exhibits a Fréedericksz tran-
sition with the formation of a periodic spatial structure,
while for εϕ > εϕth only a Fréedericksz transition with a
uniform (along the y axis) director distribution can take
place. For values of parameter r ≥ 0.5, only a homoge-
neous Fréedericksz transition is possible in agreement
with the results of Oldano [13].

Figure 2 shows the plots of the threshold electric
field  and the dimensionless wavenumber Qc versus
the ratio r of the Frank elastic constants for various val-
ues of the azimuthal anchoring energy εϕ . As can be
seen, both the critical electric field and the correspond-
ing period λc of the arising structure of the director field
increase with the parameter r. For each given value of
the azimuthal anchoring energy εϕ , relation (16) gives
a certain threshold ratio of the Frank elastic constants

(19)
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For r < rth , the NLC cell exhibits a Fréedericksz transi-
tion with the formation of a periodic spatial structure,
while for r > rth only a homogeneous Fréedericksz tran-
sition is possible in agreement with the results obtained
in [13, 15]. In the limiting case of the infinitely strong
anchoring (εϕ  ∞), formula (19) shows that the thresh-
old ratio of the Frank elastic constants is rth = ro [12].

(b) NLC cell with flexoelectric polarization. In the
case of strong (but not infinitely strong) azimuthal
anchoring (εϕ @ 1), solving Eq. (14) in a single constant
approximation (K1 = K2) yields the critical electric field

(20)Ec E qc( ) 2π
e 1 ν+( )L
--------------------------- 1 1 ν–

εϕ
------------– 

  .= =
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Fig. 2. Plots of (a) the critical field  and (b) the critical

wavenumber Qc versus parameter r in the absence of flexo-
electric polarization (ν = ∞) for the azimuthal anchoring
energy εϕ = 50 (1), 5 (2), 1 (3), and 0.1 (4).

Ec
'
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The corresponding wavenumber is

for ν < 1 and εϕ(1 – ν) ! 1, and this wavenumber is

for |1 – ν| ! 1.
For arbitrary values of the dimensionless azimuthal

anchoring energy εϕ and the K1 ≠ K2, Eq. (14) was
solved by numerical methods. Figure 3 shows the cal-
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Fig. 3. Plots of (a) the critical field  and (b) the critical

wavenumber Qc versus azimuthal anchoring energy εϕ for
r = 0.75 and ν = 0.2 (1), 0.5 (2), 0.7 (3), 0.9 (4), 1.5 (5),
2.0 (6), 2.2 (7), 2.5 (8), 2.8 (9), and 3.0 (10).
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culated dependences of the dimensionless critical elec-
tric field  and the corresponding wavenumber Qc on
the azimuthal anchoring energy εϕ for various values of
the flexoelectric parameter ν. For certainty, the ratio of
the Frank elastic constants was assumed to be r = 0.75.
As expected, the critical electric field grows with
increasing azimuthal anchoring energy εϕ and the flex-
oelectric parameter ν. However, the period λc of the
spatial structure of the director field can be a nonmono-
tonic function of εϕ (Fig. 3b). As the flexoelectric
parameter ν increases, the critical period λc grows. For
each ν value obeying the condition

,

Ec'

ν π2

8 1 r–( )2 π2 1 2r–( )–
---------------------------------------------------->

3
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Fig. 4. Plots of (a) the critical field  and (b) the critical

wavenumber Qc versus parameter r for εϕ = 10 and ν =
0.5 (1), 0.7 (2), 0.9 (3), 1.5 (4), 2.0 (5), 3.0 (6), and ∞ (7).

Ec
'
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there is a certain limiting (threshold) azimuthal anchor-
ing energy which monotonically decreases with
increasing ν and, as ν  ∞, tends to the εϕth(r) value
given by formula (18).

Figure 4 shows the plots of the critical electric field
 and the dimensionless wavenumber Qc versus the

ratio r of the Frank elastic constants for several values
of the flexoelectric parameter ν at an azimuthal anchor-
ing energy of εϕ = 10. Both the critical electric field and
the corresponding period λc of the arising structure of
the director field increase with the parameter r. As can
be seen from Fig. 4b, the threshold ratio of the Frank
elastic constants decreases with increasing ν and, in the
limiting case corresponding to the absence of the flexo-
electric polarization (curve 7), acquires the value given
by formula (19).

It should be noted that, as the parameter r increases,
the critical electric field Ec tends to the limiting value

Ec(rth) = π/ L, which depends neither on the azi-
muthal anchoring energy εϕ nor on the flexoelectric
parameter ν.

As can be seen from Figs. 1–4, the domain of exist-
ence of a periodic structure of the director field with
respect to both r (the ratio of the Frank elastic con-
stants) and ν (flexoelectric parameter) values expands
at a finite value of the azimuthal anchoring energy εϕ as
compared to the case of infinitely strong anchoring.

4. DEPENDENCE OF THE DIRECTOR 
REORIENTATION THRESHOLD 

ON THE POLAR ANCHORING ENERGY

Now let us consider the opposite case, whereby the
azimuthal polar anchoring energy at the cell surface is
infinitely large (Wϕ = ∞), while the polar anchoring
energy Wθ is arbitrary. In this case, the boundary condi-
tions (4) take the following form:

(21)

Substituting solution (10) into boundary condi-
tions (21), we obtain a homogeneous system of four
algebraic equations for determining the unknown coef-
ficients ai , bi (i = 1, 2). The condition that this system
has a nontrivial solution yields a determinant equation
that determines the dispersion dependence E(q), which
is not presented here due to its being very cumbersome.
The domain of the existence of a periodic spatial struc-
ture of the director field is determined, in accordance
with condition (15), by the following inequality:

(22)

Ec'
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which is valid for all values of the polar (dimension-
less) anchoring energy εθ = WθL/K1. In this relation,

and u is the minimum positive root of the transcenden-
tal equation

(a) NLC cell in the absence of flexoelectric polar-
ization. In this case, the equation for determining the
critical field is as follows:

(23)

Figure 5a shows the calculated dependences of the
wavenumber Qc of the periodic structure of the director
field on the polar anchoring energy εθ for various values
of the parameter r, which were obtained by solving
Eq. (23). As can be seen, the period λc = 2π/qc mono-
tonically decreases with increasing εθ . For each value
of the parameter r in the interval r < 0.5, relation (22)
gives a certain threshold polar anchoring energy εθth(r)
such that for εθ < εθth , the NLC cell exhibits a homoge-
neous Fréedericksz transition, while for εθ > εθth , a
Fréedericksz transition with the formation of a periodic
spatial structure takes place. For r > 0.5, in this case (as
well as for the infinite polar and a finite azimuthal
anchoring energy), only a homogeneous Fréedericksz
transition is possible in the NLC cell.

Figure 5b shows the plots of the wavenumber Qc on
the ratio r of the Frank elastic constants for various val-
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ues of the polar anchoring energy εθ. The critical value
of r according to relation (22) is

(24)

where uo is the minimum positive root of the equation
 = 2uo/εθ. For r < rth , the NLC cell exhibits a Frée-
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Fig. 5. Plots of the critical wavenumber Qc in the absence of
flexoelectric polarization (a) versus polar anchoring energy
εθ for r = 0.1 (1), 0.15 (2), 0.2 (3), 0.22 (4), and 0.25 (5) and
(b) versus parameter r for εθ = 50 (1), 10 (2), 5 (3), 2 (4),
and 1 (5).
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dericksz transition with the formation of a periodic spa-
tial structure, while for r > rth only a homogeneous
Fréedericksz transition is possible.

Similar to the case of a finite azimuthal anchoring
energy, the critical electric field monotonically grows
with increasing polar anchoring energy εθ and parame-
ter r. However, in the latter case, Ec tends to different

limiting values Ec(rth) = 2uo/ L dependent on the
polar anchoring energy εθ.

As can be seen from Fig. 5b, the finite polar anchor-
ing energy εθ leads to narrowing of the domain of exist-
ence of a periodic structure of the director field with
respect to the parameter r as compared to the case of the
infinitely strong anchoring.

(b) NLC cell with flexoelectric polarization. In the
case of strong polar anchoring (εθ @ 1), the critical
electric field in a single constant approximation is

(25)

The corresponding wavenumber is

for ν < 1 and εθ(1 – ν) @ 1, and this wavenumber is

for |1 – ν| ! 1.
For arbitrary values of the polar anchoring energy εθ

and the parameter r, the problem in this case (as well as
in that considered above) has to be solved by numerical
methods. The results of numerical calculations show
that the critical electric field Ec in a flexoelectric NLC
with r ≠ 1 grows monotonically with increasing εθ and
r for all values of the flexoelectric parameter ν. The
period λc of the spatial structure of the director mono-
tonically decreases with increasing εθ and monotoni-
cally increases with increasing r, also for all values
of ν. The threshold value of the polar anchoring energy
increases with the parameter ν for all r, in contrast to
the case of finite azimuthal anchoring. The threshold
value of r monotonically decreases with increasing ν
and approaches (as ν  ∞) a finite value rth(εθ) deter-
mined by formula (24).

In a typical NLC with parameters of εa = 0.2, r = 0.4,
and K1 = 5.5 × 10–7 dyn and infinitely strong anchoring
(Wϕ = Wθ = ∞) in the absence of flexoelectric polariza-
tion, the cell exhibits only the Fréedericksz transition
with a homogeneous director distribution along the y
axis. However, if the azimuthal anchoring energy is

e
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finite, for example, εϕ = 0.1 (but Wθ = ∞), the NLC cell
exhibits a Fréedericksz transition with the formation of
a periodic spatial structure with λc ≈ 4.6L, whereas a
finite polar anchoring with εθ = 0.1 (but Wϕ = ∞) still
admits only the homogeneous Fréedericksz transition.
By the same token, a flexoelectric NLC with ν = 0.5 and
νo = 0.1 (corresponding to the flexoelectric coefficients
e1 and e3 within (0.7–2.5) × 10–4 dyn–1/2 [3]) shows a
spatially periodic director field with λc ≈ 2.3L for infi-
nitely strong anchoring and with λc ≈ 3.4L for εϕ = 0.1
(but Wθ = ∞), while exhibiting only a homogeneous
Fréedericksz transition for εθ = 0.1 (but Wϕ = ∞). Thus,
the period of the spatial structure of the director field
depends much stronger on the azimuthal anchoring
(this circumstance can be used for evaluating this
energy), whereas the critical field in the general case
depends more significantly on the polar anchoring.

In concluding, it should be emphasized that, in NLC
cells with planar director, the finite anchoring signifi-
cantly influences both the critical field and the period of
a spatially periodic structure of the director field, as
well as the intervals of the flexoelectric parameter ν and
the ratio of the Frank elastic constants admitting the
formation of such periodic structure. In the case of a
finite azimuthal anchoring, the domain of existence of
the periodic director field with respect to r and ν
expands, whereas for a finite polar anchoring this
domain contracts as compared to the case of infinitely
strong anchoring.
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Abstract—The results of studies of orientational dynamics and instability in an MBBA nematic liquid crystal
in a decaying Poiseuille flow are considered. The experiments were made on a wedge cell with a gap width vary-
ing in a direction perpendicular to the flow. Confining surfaces ensured homeotropic adhesion of the nematic
to the surface. Above a certain critical value of the initial pressure drop, a uniform orientational instability is
observed, which corresponds to the emergence of the director from the plane of the flow. The dependence of
the critical pressure drop on the local thickness of the liquid crystal layer and on the external destabilizing elec-
tric field is determined. Simulation of nematodynamics equations is carried out. The results of theoretical
calculations are in qualitative and quantitative agreement with the experimental data. © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

Nematic liquid crystals are anisotropic liquids char-
acterized by orientational ordering of molecules. These
bodies can serve as a model system for studying univer-
sal regularities of rheological behavior of various com-
plex liquids such as liquid-crystal polymers, lamellar
phases of solutions of surfactants, and melts of block-
copolymers. Specific features in the behavior of a liquid
crystal in a flow are determined by anisotropy of vis-
coelastic properties and by the interaction between the
field of velocity v and the average local orientation of
molecules, which is described by a unit vector (direc-
tor) n. Orientational instabilities in a nematic flow have
been studied most comprehensively for the case when
the initial orientation of the director is perpendicular to
the plane of the flow [1–3]. Theoretical analysis of a
steady-state Poiseuille flow with a homeotropic orien-
tation of the director at the boundary surfaces of the
layer (vector n is perpendicular to the surface) shows
that an increase in the gradient of pressure applied
along the layer above a certain critical value leads to
uniform orientational instability accompanied by the
emergence of the director from the plane of the flow [4].
An analogous instability, which was predicted for an
oscillating Poiseuille flow [5], was observed earlier
and studied experimentally at frequencies from 1 to
20 Hz [6]. At small amplitudes of a decaying Poiseuille
flow in a liquid crystal with an initial homeotropic ori-
entation, the director field in the plane of the flow is dis-
torted [7]. However, the stability of such a state upon an
increase in the initial pressure drop has not been studied
experimentally as yet.
1063-7761/05/10004- $26.000804
Here, we report on the results of a study of the ori-
entational behavior and instabilities in an MBBA
(n'-metoxybenzylidene-n-butylaniline) nematic liquid
crystal under the action of a decaying Poiseuille flow.
The effect of a destabilizing electric field on the orien-
tational instability threshold is investigated.

2. EXPERIMENT

The experimental cell is shown schematically in
Fig. 1. A capillary with a wedge gap was formed by
glass plates with inner surfaces coated with a thin con-
ducting SnO2 layer, which made it possible to apply an
electric field to the liquid crystal layer. The treatment of
the surfaces with chromolane ensured a homeotropic
(perpendicular to the surface) orientation of the nematic
on the substrates. The main feature of the cell was
wedge-shaped with a local layer width h varying along
the y axis. The linearity of the h(y) dependence and the
absolute values of local width h were monitored from
the variation of the phase difference between the ordi-
nary and extraordinary rays caused by a decrease in the
alternating voltage (U0 = 45 V, a frequency of 5 kHz)
applied to the MBBA layer to zero [8]. The absolute
error in determining the local width h was approxi-
mately 2–3 µm. Prior to the experiment, the cell was
mounted vertically and was filled with the liquid crystal
so that the material filled the capillary, filling channels,
and a part of expansion vessels (cylindrical pipes of
diameter D). Decaying Poiseuille flow (along the x
axis) was produced because of introduction of the crys-
tal into one of expansion vessels. The initial pressure
 © 2005 Pleiades Publishing, Inc.
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drop ∆P0 created in this case and proportional to the ini-
tial difference ∆H0 in the levels of the liquid crystal was
calculated to within 5% from the mass of the crystal
introduced in the cell and the diameter of the expansion
vessels. The experiments were carried out at tempera-
ture T = 22 ± 0.5°C.

For a small wedging,

,

the capillary can be treated as a set of channels having
different widths and parallel to the x axis, to which the
same pressure gradient ∆P/L is applied. In addition, in
view of the large aspect ratio of the cell,

we can expect that a plane Poiseuille flow along the x
axis is formed in the capillary (except for the boundary
regions at the ends of the cell); this is confirmed by
observations of movement of small impurity particles
(2–4 µm in diameter) added to the nematic.

The intensity I(t) of light with a wavelength of
628 nm (He–Ne laser) transmitted (along the z axis)
through the capillary was detected from an area of
diameter D = 0.3 mm by a photodiode and recorded in
digital form (with the help of A to D converter) on the
hard disk of a computer. Two versions of positions of
the polarizer and the analyzer were used in the experi-
ment: crossed polaroids oriented at an angle of α = 45°
to the direction of the flow (geometry a) and at an angle
of α = 0° (geometry b). Geometry b made it possible to
detect the emergence of the director from the xz plane
of the flow. Shadow images of the cell in crossed
polaroids in geometries a and b were recorded simulta-
neously with the help of a digital camera.

3. EXPERIMENTAL RESULTS

For small initial pressure drops (∆P0 ≤ 6 Pa) in the
entire range of local cell thicknesses h0 < h < hmax, no
changes in the intensity of transmitted light were
detected in the b geometry; consequently, the director
preserved its orientation in the plane of the flow. In the
a geometry, this regime corresponds to the shadow
image of the cell, consisting of dark and bright fringes
arranged along the direction of the flow and formed as
a result of interference of the ordinary and extraordi-
nary rays. The phase delay appears as a result of a
change in the refractive index, which is in turn associ-
ated with a deviation of the director from the initial
homeotropic orientation. The dynamics of the interfer-
ence fringes is as follows: the formation of the fringe
structure in the region of large local thicknesses begins
immediately after the emergence of the initial pressure
difference; after this, the system of fringes moves

hmax h0–( )/A 0.002≈

A
hmax h0+( )/2

------------------------------- 800,
L

hmax h0+( )/2
------------------------------- 80,≈≈
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towards smaller thicknesses. In the steady-state decay-
ing Poiseuille flow, the fringes slowly move towards
larger thicknesses.

Recording the intensity of transmitted light locally
in the a geometry,

where I0 is the input intensity, we found that the phase
lag δ(t) decreases exponentially with time (curve 1 in
Fig. 2). For small deviations of the director (in the plane
of the flow) from the initial homeotropic orientation,
we can derive the following time dependence of the
phase lag [7]:

(1)

where δ0 is the maximal value of the phase lag at the

I t( ) I0 δ t( )/2[ ] ,sin
2

=

δ t( ) δ0 t/τδ–( ), τδexp ηhom/ρgk0,= =

k0 A hmax h0+( ) hmax
2 h0

2+( )/3πD2L,=

Fig. 1. Geometry of a wedge-shaped cell: A = 10 cm, L =
1 cm, hmax = 210 µm, h0 = 33 µm, and D = 1.5 cm.
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instant of stabilization of the decaying flow,

is the viscosity of the homeotropically oriented liquid
crystal, ρ is the density of the nematic, g is the acceler-
ation due to gravity, and k0 is a quantity constant for the
given cell and depending on the geometrical size. The
experimental data for δ(t) are correctly described by
dependence (1) using ηhom as a fitting parameter. The
value of ηhom = 0.16 ± 0.02 Pa s obtained for MBBA is
in good agreement with the results of independent mea-
surements [9, 10]. Our experiments suggest a new sim-
ple and reliable technique for measuring the viscosity
coefficients of nematic liquid crystals, which is based
on the recording of the time dependence of the phase
lag in a decaying Poiseuille flow. If the cells used in
experiments ensure the planar boundary conditions (the
director is oriented parallel to the substrates in the plane
of the flow), it is possible to measure the viscosity

With increasing initial pressure drop (∆P0 > 6 Pa),
the signal intensity I(t) of transmitted light in the b
geometry, which is recorded in the range of large thick-
nesses of the cell, exhibits two peaks (curve 2 in
Fig. 3a), indicating the emergence of the director from
the plane of the flow. Figure 3b shows the theoretical
dependences I(t) in geometries a and b as well as the

ηhom
α2– α4 α5+ +

2
----------------------------------=

ηplan

α3 α4 α6+ +
2

------------------------------.=

10

1

0.1
0 100 200 300 400 500 600

t, s

δ, π

1

2

3 4

Fig. 2. Time dependence of the phase lag δ(t). Experimental
data (solid curves) and results of simulation (dashed
curves): ∆P0 = 1.5 Pa, h = 164 µm (1), ∆P0 = 9.4 Pa, h =
70 µm (2), ∆P0 = 12.8 Pa, h = 70 µm (3), and ∆P0 = 15.5 Pa,
h = 70 µm (4).
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angle φm(t) of deviation of the director from the plane
of the flow at the center of the layer. The nonlinear nem-
atodynamics equations [11] for a planar layer, when the
director and the velocity are functions of coordinate z
and time t [12], were solved numerically using the
material parameters for MBBA [10, 13]. The intensity
of transmitted light was calculated using the Jones
matrix method [14, 15]. Angle φm characterizes the ori-
entation of the director at the center of the layer:

The director distribution at the instant corresponding to
φm = 60° is shown in Fig. 3c. The first peak of the I(t)
signal in the b geometry is associated with the emer-
gence of the director from the plane of the flow in the
case of a large initial pressure drop. As the pressure
drop ∆P(t) decreases below the threshold value, the
director returns to the plane of the flow (second peak on
the I(t) curve in the b geometry) and relaxes over long
time periods to the uniform homeotropic orientation.

The transition associated with the emergence of the
director from the plane of the flow is observed most
clearly in the shadow image of the cell (Fig. 4). In the b
geometry (Fig. 4b), the shadow image is (in the increas-
ing order of the local layer thickness) dark field I in the
range of smaller thicknesses, light fringe II, and the
low-intensity region III. In the a geometry (Fig. 4a),
two regions can be clearly distinguished on the shadow
image: region I + II, corresponding to relatively small
thicknesses, in which wide interference fringes parallel
to the direction of the flow are observed, and region III,
corresponding to large thicknesses, where narrow inter-
ference fringes are transformed into wide fringes.

The polarization and optical analysis, as well as a
comparison of microphotographs (Fig. 4) with the time
dependences of transmitted light (Fig. 3a), make it pos-
sible to unambiguously identify all regions on the
shadow image of the cell: region I (the director is in the
plane of the flow, the azimuth angle φm of deviation of
the director at the center of the layer is zero); region II
(the director emerges from the plane of the flow (0 <
φm < 20°), and region III (the director is oriented almost
perpendicularly to the plane of the flow, φm  90°).

The recording of shadow images and the intensity of
transmitted light in the b geometry made it possible to
clarify the nature of formation of the region corre-
sponding to the emergence of the director from the
plane of the flow. Immediately after the application of
the initial pressure gradient (for 10–15 s) in the range of
large values of local thicknesses of the nematic layer,
light fringe II is formed, which subsequently moves
along the y axis towards smaller thicknesses over a time
of approximately 30–40 s. After approximately
50−60 s, the position of the light fringe stabilizes, and
the fringe begins to move slowly in the direction of
increasing layer thickness. This stage corresponds to a
steady-state decaying Poiseuille flow. The boundary yb

nm 0 φmsin φmcos, ,( ).=
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Fig. 3. Time dependences of the intensity of transmitted light, I(t), in geometry a (curves 1) and b (curves 2) and of the angle of
deviation of the director from the plane of the flow at the center of the layer, φm(t) (curve 3). (a) Experimental data: ∆P0 = 20 Pa,
h = 86 µm; (b) theoretical calculations: ∆P0 = 21 Pa, h = 90 µm; (c) schematic diagram of orientation of the director at the instant
corresponding to φm = 60°.
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between regions II and III can be seen most clearly,
while the boundary between regions I and II becomes
less clear as fringe II moves towards large thicknesses.
The width of region II attains its minimal value when it
begins its reverse motion and increases as fringe II
moves towards large local thicknesses. The presence of
two peaks in the I(t) signal in the b geometry (Fig. 3a)
is due to the fact that light fringe II passes twice through
the point of observation.

At the stage corresponding to a steady-state decay-
ing Poiseuille flow, we recorded the time dependence
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
yb(t) of the position of the boundary between regions II
and III since this boundary remains the clearest during
the entire experiment. The simultaneous recording of
the phase lag δ(t) in the a geometry in the range of small
local widths of the liquid crystal layer makes it possible
to reconstruct the time dependence of the pressure
drop, ∆P(t). Since the director is oriented in the plane
of the layer in the range of small local thicknesses of the
layer (the absence of signal I(t) in the b geometry) and
deviations from the homeotropic orientation are small,
the measured phase lag is proportional to the square of
SICS      Vol. 100      No. 4      2005
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the pressure drop [16],

which makes it possible to calculate ∆P(t) from the cor-
responding dependence δ(t). It should be noted that, for
large initial pressure gradients, the time dependences

δ t( ) ∆P t( )[ ] 2,∼

yb

III

II

I

(a) (b)

Fig. 4. Shadow images of the cell in crossed polaroids at
instant t = 30 s for ∆P0 = 15.5 Pa: (a) in geometry a; (b) in
geometry b.
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Fig. 5. The threshold pressure drop ∆Pc corresponding to
the emergence of the director from the plane of the flow as
a function of the local layer thickness hb . Experimental data
are shown by symbols and the results of calculations are
given by curves. U = 0: ∆P0 = 9.4 Pa (m and 1a), ∆P0 =
12.8 Pa (d and 2a), ∆P0 = 15.5 Pa (j and 3a); U = 3 V:
∆P0 = 8.7 Pa (m and 1b), ∆P0 = 10.8 Pa (d and 2b), and
∆P0 = 14.1 Pa (j and 3b). Curves 4a and 4b correspond to
calculations for the case of a steady-state Poiseuille flow for
U = 0 and 3 V, respectively.
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δ(t) of the phase lag differ substantially from the simple
exponential law (1) (curves 2, 3, and 4 in Fig. 2). This
is due to the fact that, after the application of a large ini-
tial pressure gradient, the orientation of the director
becomes almost perpendicular to the plane of the flow
in the major part of the cell, and the director returns to
the plane of the flow in the course of deceleration, after
which it acquires the equilibrium homeotropic orienta-
tion; as a result, the effective viscosity of the nematic
varies with time. For this regime of the flow, we can
derive the following semi-empirical expression for δ(t):

(2)

with a slowly varying relaxation time τδ(t). In expres-
sion (2),

is the viscosity of the liquid crystal oriented perpendic-
ularly to the plane of the flow and τ0 is a fitting param-
eter. The relative variation of the relaxation time,

,

is associated with the change in the orientation of the
director from the orientation perpendicular to the plane
of the flow to the homeotropic orientation. For MBBA
at T = 22°C, we have ηper/ηhom = 0.31 [10]. It can be
seen from Fig. 2 (curves 2, 3, and 4) that the experimen-
tal data are correctly described by dependence (2) for
various initial pressure gradients.

Thus, using the data on the time dependence yb(t) of
the position of the boundary and the dependence ∆P(t)
reconstructed from δ(t), we can associate the value of
pressure drop with the position of boundary yb recorded
in the experiment, thus establishing the dependence of
the critical pressure gradient ∆Pc , corresponding to the
emergence of the director from the plane of the flow, on
local thickness hb of the liquid crystal layer. Figure 5
(curves marked by a) shows the ∆Pc(hb) dependence
obtained for various values of the initial pressure drop
∆P0. It can be seen from the figure that, for large values
of h, the curves obtained for different values of ∆P0
almost coincide. This is due to the fact that large thick-
nesses correspond to large time intervals following the
application of the initial pressure drop, when a quasi-
stationary flow sets in the cell. The velocity varies
slowly with time and the director can follow the varia-
tion of pressure. Accordingly, the position of the
boundary yb in such a flow regime is determined only
by the current value of ∆P and does not depend on ∆P0.

δ t( ) δ0 t/τδ t( )–[ ] ,exp=

τδ t( )
ηhom ηhom ηper–( ) t/τ0–( )exp–

ρgk0
-------------------------------------------------------------------------,=

ηper α4/2=

τδ 0( )
τδ ∞( )
--------------

ηper

ηhom
----------=
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The results of analysis of the effect of an electric
field applied along the z axis on the threshold for the
emergence of the director from the plane of the flow are
given by curves marked by b in Fig. 5. The reduction of
the critical value ∆Pc(hb) is due to the fact that the elec-
tric field exerts a destabilizing effect (in addition to the
flow) on the homeotropically oriented MBBA layer
(negative anisotropy of permittivity).

Figure 5 also shows the theoretical ∆Pc(hb) depen-
dences obtained from the results of simulation of the
nonlinear nematodynamics equations [11] for the case
when the director and velocity are functions of coordi-
nate z and time t [12] using the material parameter of
MBBA [10, 13]. For a number of values of thickness of
a planar layer of the liquid crystal, the orientational
dynamics of the director was calculated using the
experimentally determined time dependence ∆P(t) of
the pressure drop. At the initial instant, the director is
oriented homeotropically and emerges from the plane
of the flow when the value of ∆P exceeds a certain crit-
ical value (depending on the thickness). As the pressure
decays, the director returns to the plane of the flow. The
threshold value ∆Pc corresponds to the instantaneous
value ∆P(t) at which the return of the director to the
plane of the flow is registered. The results are in good
agreement with the experimental data considering that
the wedge-shape cell was simulated in numerical calcu-
lations by a set of planar capillaries, taking into account
experimental errors in determining ∆Pc and hb .

Figure 5 also shows for comparison the depen-

dences ∆ (h) of the critical pressure drop corre-
sponding for the emergence of the director from the
plane of the flow, which were calculated for a steady-
state Poiseuille flow (curves 4). The critical value of the
pressure drop for a steady-state Poiseuille flow,

,

systematically exceeds the corresponding values of ∆Pc

for a decaying flow. This is due to the fact that the return
of the director to the plane of the decaying flow occurs

upon a decrease in pressure ∆P(t) below ∆  over a
finite time (on the order of the director relaxation time),
during which the pressure continues to decrease.

The wedge-shaped structure of the cell enabled us to
observe the behavior of a liquid crystal in a wide range
of thicknesses in the same experiment. It was found that
at thicknesses exceeding the threshold values for the
emergence of the director from the plane of the flow,
regions (domains) of various shape and size were
formed. A characteristic feature of these domains is
their long lifetime. For example, for a layer having a
thickness of about 130 µm and ∆P0 ≈ 25 Pa, the time of
relaxation of the director to the original homeotropic
orientation in these domains is longer than 3 h, which
exceeds the characteristic time of flow decay (<10 min)

Pc
st

∆Pc
st 1/h3∼

Pc
st
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and the time of restoration of the initial orientation out-
side these domains.

In polarized monochromatic light, in the a geome-
try, the interference pattern in the domains is similar to
that described above, but inclined interference fringes
in this case move at a much lower velocity. In the b
geometry, these domains have an average illuminance
higher than that of neighboring regions of the cell. At
times exceeding the flow decay time, the domains are
successfully visualized against the background of the
dark field corresponding to the homeotropic orientation
and are separated from the latter by a bright threadlike
boundary (domain wall). The boundary of the regions is
also observed for the position of both polaroids parallel
to the direction of the flow. In this case, it separates two
regions with equal illuminances.

The domains were formed over approximately
1−2 minutes after the generation of the flow in the form
of one or several formations oriented along the flow.
The area of the domains is the larger, the higher the ini-
tial pressure drop ∆P0. For large values of the initial
pressure gradient, a single region occupying a substan-
tial part of the cell was formed.

It should be noted that domains are formed for
thicknesses h > hb , i.e., at velocities exceeding the
threshold value for the emergence of the director from
the plane of the flow. Consequently, the formation of
domains can be treated as the result of secondary
hydrodynamic instabilities developing against the
background of a strongly deformed structure of the
layer associated with the primary instability. In the cen-
tral regions of the layer, for large pressure drops, a dis-
tribution close to that perpendicular to the plane of the
flow is formed for the director as a result of primary
instability (Fig. 3c). For such an orientation, the same
mechanisms affect the stability of the director as those
considered in [2, 17] for the initial orientation perpen-
dicular to the plane of the flow. However, the mecha-
nism of formation of these domains with anomalously
long lifetime remains unclear and requires further
investigations.

4. CONCLUSIONS

Orientational instability formed in a nematic liquid
crystal under the action of a decaying Poiseuille flow
and accompanied by the emergence of the director from
the plane of the flow is detected experimentally and
studied for the first time. The development of instability
is visualized in a wedge-shaped cell in the form of a
sharp boundary (domain wall) separating spatial
regions in which the orientation of the director is in the
plane of the flow and outside this plane. Analysis of the
dynamics of motion of the domain wall in a decaying
flow made it possible to determine the dependence of
the threshold pressure drop on the thickness of the liq-
uid crystal layer. It is found that the additional action of
an electric field on the nematic layer with a negative
SICS      Vol. 100      No. 4      2005
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anisotropy of the permittivity lowers the threshold for
the emergence of the director from the plane of the flow.
The results of theoretical calculations of the critical
pressure drop are in quantitative agreement with the
experimental data. The analysis of the orientational
behavior of the director in a decaying Poiseuille flow
has demonstrated the possibility of determining the vis-
cosity coefficients of the nematic to a high degree of
accuracy from the data on the optical response for small
initial pressure gradients.
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Abstract—A two-parameter family of smooth Hamiltonian systems perturbed by a piecewise linear force is
analyzed. The systems are represented both as maps and as dynamical systems. Currently available analytical
and numerical results concerning the onset of chaos and global diffusion in such systems are reviewed. Dynam-
ical behavior that has no analogs in the class of systems with analytic Hamiltonians is described. A comparison
with the well-studied dynamics of a driven pendulum is presented, and essential differences in dynamics
between smooth and analytic systems are highlighted. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Two-dimensional canonical maps of the form

(1.1)

where K is the perturbation strength, have been widely
used in nonlinear physics as very useful and informa-
tive models [1–3].

Map (1.1) is equivalent to an explicitly time-depen-
dent Hamiltonian dynamical system perturbed by kick-
ing [1–3]:

(1.2)

where V(x) = – dx is a force potential and

is the delta function of period 1.
The unperturbed term in (1.2),

(1.3)

represents the main (integer) resonance, while

(1.4)

is treated as a perturbation with period T = 1 and fre-
quency Ω = 2π/T = 2π.

p p Kf x( ), x+ x p mod 1( ),+= =

H x p t, ,( ) p2

2
----- KV x( )δ1 t( )+=

=  H0 x p,( ) H1 x t,( ),+

f x( )∫
δ1 t( ) 1 2 2πnt( )cos

n 1≥
∑+=

H0
p2

2
----- KV x( ),+=

H1 x t,( ) KV x( ) δ1 t( ) 1–( )=
1063-7761/05/10004- $26.000811
The system defined by resonant Hamiltonian (1.3) is
integrable and does not exhibit any attributes of chaos.
Its phase portrait has the following basic structure.
There exists a saddle point, which should be classified
as a distinct trajectory (unperturbed pendulum remains
at this point for an indefinitely long time). Two oppo-
sitely directed separatrices emanate from the saddle
point and loop back toward it in the long-time limit.
They separate the regions where phase rotates (outside
resonance) from those where phase oscillates (inside
resonance). Note that both separatrices are combina-
tions of two similar trajectories corresponding to for-
ward and backward time evolution. It is well known
that each separatrix is split by perturbation into two dis-
tinct trajectories that intersect at the so-called
homoclinic points.

Generally, perturbed system (1.2) is not integrable,
and its phase space is divided into chaotic and regular
regions. One problem of practical importance is an
overlap criterion for the chaotic regions, i.e., conditions
for the onset of global chaos. These conditions criti-
cally depend on the properties of the potential function
V(x) of the main resonance.

The founders of the Kolmogorov–Arnold–Moser
(KAM) theory noted from the very start that the onset
of global chaos (the possibility of unbounded diffusion
in overlapping chaotic regions) depends not only on the
perturbation strength, but also on the smoothness of the
system, which is well characterized in terms of its Fou-
rier spectrum. In the case of an analytic perturbation,
the Fourier amplitudes decay exponentially and there
exists a critical value Kcr such that global chaos devel-
ops only when K * Kcr . If K & Kcr , then chaos is local-
ized in relatively narrow layers (which exist for any
K > 0), and global diffusion is impossible for a conser-
vative system having less than two degrees of freedom.
 © 2005 Pleiades Publishing, Inc.
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Essentially different dynamical behavior is observed
when the nth Fourier amplitude of a smooth potential
V(x) decays as the inverse of n raised to a certain power
β + 1 (see [4] and references therein). For a two-dimen-
sional map, a simple estimate was used in [4] to show
that there exists Kcr > 0 corresponding to the onset of
global chaos if β > βcr = 3. This critical degree of
smoothness should be verified in numerical experi-
ments. A rigorous proof was found only for βcr = 5
(see [5], where it was also conjectured that the correct
value is βcr = 4).

Map (1.1) has been analyzed for both analytic and
smooth forcing functions. For example, the analytic
function f(x) = sin(2πx) is associated with Chirikov’s
standard map. Extensive studies of the standard map
and its dynamical analog (driven pendulum) have sig-
nificantly contributed to progress in modern nonlinear
dynamics.

Moreover, dynamical behavior of a new type not
observed under analytic forcing has been discovered
for systems with smooth potential functions (see dis-
cussion below).

This paper focuses on a Hamiltonian in which a
smooth (sinusoidal) perturbation is replaced by a piece-
wise linear force (sawtooth pulse train) with β = 2 (see
Section 2). Since the dynamical behavior correspond-
ing to this particular degree of smoothness has long
remained unclear, a brief background review is pre-
sented here.

Even early numerical experiments on systems with
β < βcr = 3 demonstrated that both global diffusion and
trajectories restricted to bounded regions of the phase
space can be observed in long-time simulations [6, 7].
Whereas those observations provided indirect evidence
of suppressed or weakened diffusion, it was established
in [8] that the phase space of a symmetric, piecewise
linear two-dimensional (SPL2D) map with β = 2 con-
tains global invariant curves with both irrational and
rational winding numbers (see also [9]). Global invari-
ant curves span the entire phase domain, which pre-
cludes unbounded diffusion in action.

It was originally shown in [8] that the invariant
curves with rational winding numbers include persis-
tent integer- and fractional-resonance separatrices. Of
particular importance is the fact that the system remains
nonintegrable, i.e., global diffusion is blocked by per-
sistent separatrices even if local dynamics is strongly
chaotic.

For some obscure reason, Bullett’s important and
interesting study was not widely acknowledged at the
time of publication. In a similar theorem independently
proved much later by Ovsyannikov for the same
SPL2D map [10], a countable set of K values was found
for which integer-resonance separatrices persist despite
local chaos. This finding motivated the systematic anal-
ysis of the SPL2D map and its modifications presented
in [11–17]. Since Ovsyannikov’s theorem had never
JOURNAL OF EXPERIMENTAL A
been published, its complete statement was included in
appendices to [12, 13] with the author’s permission.
Bullett’s paper was not mentioned in my first publica-
tions on the subject [11, 12] for the mere reason that I
was not aware of it at the time.

It should be stressed here that the analyses per-
formed by Bullett and Ovsyannikov were focused on
the invariant curves of new type, because the pairs of
orbits that result from separatrix splitting exhibit cha-
otic behavior are not amenable to analytical methods
(i.e., they can be studied only in numerical [11–17] or
physical experiments).

Every invariant curve of an SPL2D map is associ-
ated with a specific value of K. In [11], these values
were called critical numbers and denoted by KQ, n ,
where Q is the resonance order (Q = 1 and Q ≥ 2 corre-
spond to integer and fractional resonances, respec-
tively) and n is the index of a critical number. By Ovsy-
annikov’s theorem, the critical number corresponding
to an integer resonance is

(1.5)

where αn is the least positive root of the equation

(1.6)

In [11–14], the values of KQ, n were found numerically
by using the fact that these numbers correspond to zero
angle of intersection between the split trajectories at the
central homoclinic point (the angle changes sign
smoothly and discontinuously for odd and even n,
respectively). It has been noted that, among all
attributes of chaos, only this angle can be measured to
arbitrary accuracy [14]. Note also that a vanishing
angle of intersection between separatrices does not nec-
essarily imply their persistence. In an example consid-
ered in [17], the trajectories that result from separatrix
splitting are mutually tangent (have kinks) at the
homoclinic point.

The critical numbers make up a Cantor set, and there
must exist intervals of K corresponding to global diffu-
sion. One of these intervals was found in [8]: 0.2295 <
K < 0.2500 for d = 1/2 (see below).

Further analysis showed that each global invariant
curve of the type discovered by Bullett (including the
persistent integer- and fractional-resonance separa-
trices) strongly modifies the structure of the phase
plane in a finite neighborhood of the corresponding
KQ, n . Based on this observation, the term virtual invari-
ant curve was coined. These virtual curves are associ-
ated with extremely complicated motions of smooth
systems, which were called fractal diffusion in [15, 16].
Recent studies of these motions raised numerous ques-
tions that call for special analyses. Their discussion is
left outside the scope of this review.

K1 n,
αn

2
-----, nsin

2
1 2 …,, ,= =

2 nα
2

-------sin
α
2
---.cos=
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The important role played by the standard map and
its dynamical analog (driven pendulum) in nonlinear
dynamics is mentioned above. When developing the
theory of stochastic layer in a driven pendulum, Chir-
ikov introduced and widely used the Melnikov–Arnold
integral to determine the amplitude of the separatrix
map responsible for the generation of a stochastic layer
by perturbation of any frequency [1].

Analysis of smooth systems driven by a piecewise
linear force is facilitated if map (1.1) is studied in con-
junction with a Hamiltonian dynamical system
(see Section 2). The first analytical expressions for the
corresponding Melnikov–Arnold integrals were
obtained in [13, 17]. They characterize the specific
dynamics of the systems, including the existence of
both critical numbers and separatrices that persist
despite local chaos. These integrals are used in Section
3 to elucidate the details of the onset of chaos.

In Sections 4 and 5, the results obtained for a
dynamical system driven by a piecewise linear force are
compared with the well-studied dynamics of a driven
pendulum, and both analogies and differences in the
dynamical behavior of these systems are highlighted.

2. HAMILTONIAN DYNAMICAL SYSTEM

In conjunction with (1.1), consider the biharmoni-
cally driven dynamical system described by a Hamilto-
nian of the form

(2.1)

In the general case,

(2.2)

is an asymmetric perturbation with integer m1 and m2

and ε1, ε2 ! 1.

Both harmonics in (2.2) are assumed to be resonant.
Furthermore, it is assumed that Ω1 > 0, and the first
term is called the upper harmonic (the corresponding
trajectory lies above the main-resonance separatrix in
the phase plane). It is also assumed that Ω2 < 0, and the
second term in (2.2) is called the lower harmonic
accordingly.

In (2.1), the potential function

H x p t, ,( ) H0 x p,( ) U x t,( ),+=

H0 x p,( ) p2

2
----- ω0

2V x( ).+=

U x t,( ) ε1 2πm1x Ω1t–( )cos=

+ ε2 2πm2x Ω2t–( )cos

V x( ) 1
4
--- f x( ) xd∫–=
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is associated with a piecewise linear force of period 1:

(2.3)

The corresponding Fourier series is [15]

(2.4)

where β = 2 is the degree of smoothness.
Varying the parameter d in expressions (2.3) and

(2.4), one can analyze the dynamics of any system
driven by a perturbation belonging to the family of saw-
tooth functions [8, 14]. To date, the system with d = 1/2
has been studied most thoroughly. Note that systems
with 0 < d < 1 exhibit the dynamical behavior associ-
ated with the existence of global invariant curves
revealed and analyzed in [8, 10–17] if the parameter K
in (1.1) satisfies the following condition found in [8]:

(2.5)

If K > KB, then system (1.1), (2.3) has no global invari-
ant curves.

In the limit case of forcing by a discontinuous saw-
tooth function (d = 0), the Fourier series expansion
analogous to (2.4) is characterized by

(2.6)

This degree of smoothness is lower by unity than that
corresponding to 0 < d < 1, and both values of β are
obviously less than βcr = 3. In this case, the system is
ergodic; i.e., there are no invariant curves, and global
diffusion occurs at any K > 0. The regular motion cor-
responding to the opposite limit case of d = 1 [14] is of
no interest for the present study.

The period of the force defined by (2.3) includes
“elliptic” and “hyperbolic” intervals, where df/dx is
negative and positive, respectively. The derivative is
discontinuous across the boundaries of these intervals.

The motion along the upper unperturbed separatrix
(when ε1 = ε2 = 0) is described by the following func-
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tion of the dimensionless time ψ = 2ω0t:

(2.7)

The corresponding momentum is ps =  = 2ω0dxs/dψs,
where

(2.8)

The relative energy deviation from the unperturbed

separatrix is w = H0/H0, s – 1, where H0, s = /4 is the
value of the Hamiltonian on the separatrix. The period
of motion in the vicinity of the separatrix can be calcu-
lated as

(2.9)

where

(2.10)

The stochastic-layer width is calculated by using the
relation between w and T0 given by the inverse of (2.9):

(2.11)

Expressions (2.7)–(2.11) were derived in [17].
In the sections that follow, the onset of chaos in

smooth systems of the type defined in this section is
compared with the well-studied dynamics of the driven
pendulum described by the Hamiltonian

(2.12)

where the frequency of small-amplitude oscillation is
set to unity and the perturbation term is given by (2.2)
in the general case.
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ẋ

ψs 1, 2d d ,arcsin=

Ad
1 d–

2
------------

ψs 1,

2 1 d–( )
------------------------.exp=

ω0
2

T0 w( ) 2T s 1,
1
ω2
------

4 1 d– ω1T s 1,( )cos
w

-------------------------------------------------,ln+=

ω1 ω0
2
d
---, ω2 ω0

2
1 d–
------------,= =

T s 1,
darcsin

ω1
----------------------.=

w T0( ) 4 1 d– ω1T s 1,( )cos=

× ω2 T0 2T s 1,–( )–( ).exp

H x p t, ,( ) p2

2
----- x U x t,( ),+cos+=
JOURNAL OF EXPERIMENTAL A
3. MELNIKOV–ARNOLD INTEGRAL FOR (2.1)

Generally, the stochastic layer that develops when
the main-resonance separatrices are broken by pertur-
bation consists of three parts: an upper part of width wu
(where the phase rotates so that p > 0), a middle one of
width wm (where the phase oscillates), and a lower one
of width wl (where the phase rotates so that p < 0). In
the case of an asymmetric perturbation, the individual
parts of the layer may have substantially different
widths. Note that the upper and lower parts of the layer
are mainly generated by the upper and lower resonant
harmonics, respectively, while the middle one develops
as a result of their combined effect [17]. The present
analysis is mainly focused on the upper part of the sto-
chastic layer.

Following the approach described in [1], consider
the change in energy per oscillation half-period or rota-
tion period relative to H0:

where {,} denotes the Poisson bracket, τ = Ω1t, and

(3.1)

is the Melnikov–Arnold integral. Here, only the even
function is retained in the expansion of sin(2πm1x – τ – τ0)
for a motion localized in the vicinity of the unperturbed
separatrix.

Note that the normalization required to suppress the
oscillation in (3.1) is provided by ps: this factor asymp-
totically vanishes at both infinite limits of integration
along the unperturbed separatrix (see details in [1, Sec-
tion 4.4]).

The amplitude of the separatrix-map harmonic with
frequency Ω is determined by the properties and behav-
ior of the Melnikov–Arnold integral:

(3.2)

Rewriting integral (3.1) along unperturbed separa-
trix (2.7) in terms of the dimensionless time ψ = 2ω0t,
one finds that the contribution of the upper harmonic to

∆H0 H H0,{ } td

∞–

∞

∫ ε1 p t( )∂U
∂x
------- td

∞–

∞

∫–= =

=  2πmε1 p t( ) 2πm1x τ– τ0–( ) tdsin

∞–

∞

∫

=  2πm1ε1 τ0WM,sin

WM ps t( ) 2πm1xs t( ) Ω1t–[ ] tdcos

∞–

∞

∫–=

W max w w–±
∆H0

H0 s,
----------± 8πmε

ω0
2

--------------WMA.= = =
ND THEORETICAL PHYSICS      Vol. 100      No. 4      2005



DYNAMICS OF HAMILTONIAN SYSTEMS UNDER PIECEWISE LINEAR FORCING 815
the motion in the upper part of the stochastic layer is
determined by the expression

(3.3)

where λ1 = Ω1/2ω0 is an adiabaticity parameter [1].

Similarly, the contribution of the lower harmonic to
the motion in the upper part of the stochastic layer can
be expressed as

(3.4)

where λ2 = Ω2/2ω0.

The total separatrix-map amplitude for the upper
part of the layer is given by (3.2) as the sum of the con-
tributions of all perturbing harmonics. In the next two
sections, the expressions obtained here are used to ana-
lyze the behavior of system (2.1) under symmetric and
asymmetric perturbations (2.2).

4. SYMMETRIC PERTURBATION

Perturbation (2.2) is symmetric if

(4.1)

First, recall that the frequency dependence of the onset
of chaos for driven pendulum (2.12) under symmetric
forcing can be examined by tentatively dividing the fre-
quency domain into low-, intermediate-, and high-fre-
quency intervals. An analysis presented in [1] showed
that both separatrix-map amplitude W and energy width
of the stochastic layer exponentially decrease with
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increasing frequency and the three parts of the layer
tend to have equal widths as Ω  ∞:

(4.2)

where λ ≡ Ω and w = p2/2 + cosx – 1 is the relative
energy deviation from the unperturbed separatrix for
pendulum (2.12).

In a recent analysis of the low-frequency asymptotic
behavior in the limit of Ω  0 [18], it was found that
the separatrix-map amplitude linearly increases with
frequency, whereas the layer width is independent of
frequency.

The asymptotic behavior is relatively simple in both
limits (Ω @ 1 and Ω ! 1). The most difficult to analyze
is the case of intermediate-frequency forcing, when
neither a small nor large adiabaticity parameter can be
introduced. The key difficulty here lies in the dis-
continuity of the stochastic-layer width as a function
of W [19]. In modern theory, it is explained by succes-
sive breakdown of invariant curves characterized by
irrational winding numbers with increasing W: as the
curve separating the main stochastic layer from the
nearest resonance of the separatrix map breaks down,
the finite-sized region occupied by the resonance is
added to the layer.

The so-called resonance invariants can be used to
analyze chaotic behavior in this interval, since they ade-
quately represent the topology of individual reso-
nances. A technique for constructing resonance invari-
ants of the first to third order (corresponding to the
1 : 1, 1 : 2, and 1 : 3 resonances) and examples of their
use were presented in [20] for Chirikov’s standard map
and in [19] for a single-frequency separatrix map.

Now, consider the onset of chaos in a smooth system
in the low- and high-frequency limits. The sum of the
contributions of both harmonics to the Melnikov–
Arnold integral for the upper part of the layer is

(4.3)

where λ = Ω/2ω0. The first and second summands in
this expression represent the contributions of the “ellip-
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tic” interval in (2.3) and the remaining part of the per-
turbation period, respectively.

First, consider the limit of λ  0. Replacing
sin(λψ) with λψ and factoring λ out of the integral, one
finds that the low-frequency Melnikov–Arnold integral
(and, therefore, the separatrix-map amplitude W) lin-
early increases with frequency:

(4.4)

Note that the use of infinite integration limits in (4.3)

W WMA λ .∝ ∝

10–1

10–2

W, wu

λ
10–1

10–2

Fig. 1. Asymptotic behavior of system (2.1) under symmet-
ric forcing at Ω  0: circles and crosses represent com-
puted amplitudes of the separatrix map and widths of the
upper part of the stochastic layer found by iterating the map;
sloped line is Melnikov–Arnold integral (4.3) multiplied by
a fitting factor of 0.75.

5

–3
10

WMA × λ3

λ

–1

–2

0

1

2

3

4

15 20 25 30 35 40 45

Fig. 2. Asymptotic behavior of system (2.1) under symmet-
ric forcing at Ω  ∞: curves with large, intermediate,
and small amplitudes represent the joint contributions of the
upper and lower harmonics, the contribution of the upper
one, and that of the lower one, respectively.
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does not change this result, because momentum asymp-
totically vanishes at the endpoints of the unperturbed
separatrix (see above).

It was shown in [18] that the stochastic-layer width
is independent of frequency if the separatrix-map ampli-
tude linearly increases with frequency. Figure 1 illus-
trates this fact for symmetrically perturbed system (2.1),
(2.2) with ε1 = ε2 = 0.01. Thus, the behavior of the sys-
tem driven by a piecewise linear force is qualitatively
similar to that of a driven pendulum.

System (2.1) is remarkable in that the corresponding
separatrix map contains both single- and double-fre-
quency harmonics when λ ! 1. In the case of interme-
diate-frequency perturbation, the latter harmonic van-
ishes, i.e., the separatrix map contains only one har-
monic. Recall that a driven pendulum exhibits opposite
behavior: the double-frequency contribution is signifi-
cant only under intermediate-frequency forcing and
vanishes as λ  0 or λ  ∞ [21].

In the limit of Ω  ∞, a qualitatively different
behavior is observed. In this case, both summands
in (4.3) change sign, oscillating almost in antiphase
with one another. The resultant function WMA(λ) also
oscillates and changes sign (see Fig. 2).

Asymptotic estimates for Melnikov–Arnold inte-
grals (3.3) and (3.4) performed in the limit of λ  ∞
(see [17]) lead to the following results.

When λ @ 1, the integrals are periodic functions
of λ,

(4.5)

(upper sign corresponds to the upper harmonic), with
the period

(4.6)

Figure 2 shows the normalized Melnikov–Arnold
integral  = WMAλ3 calculated for d = 1/2 (symmet-
ric sawtooth function). Similar graphs are obtained for
d ≠ 1/2, except for a phase shift between the harmonics.
It is clear that expression (4.5) is qualitatively correct,
even though numerical corrections are required to
improve its accuracy.

In [13], a separatrix map with amplitudes given by
the Melnikov–Arnold integral was iterated to show
that relation (4.2) between the stochastic-layer width
and the separatrix-map amplitude W holds for a smooth
system as well,

(4.7)
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even in the neighborhoods of the zeros of W. In partic-
ular, 0.94 ≤ wu/λ|W| ≤ 1.3 for λ = Ω/2ω0 > 10.

The results obtained above for smooth dynamical
system (2.1) can be associated with characteristics of
map (1.1) in a straightforward manner as follows [13].
Define critical λ1, n (n = 1, 2, …) as the zeros of the
Melnikov–Arnold integral (the first index refers to the
main resonance). Then, dynamical system (2.1) param-
eterized by λ is equivalent to map (1.1) parameterized
by K, and vice versa, because the relation

can be used to calculate the critical numbers of the map
by substituting λ1, n . Indeed, the result of a comparison
of

with K1, n given by (1.5) and (1.6) can be accurately rep-
resented by the approximate formula

Since each  tends to the corresponding K1, n in the
limit of n @ 1, the results obtained here can be applied
to map (1.1).

In the limit of Ω @ 1, the periodic behavior of the
Melnikov–Arnold function obtained here, with an
amplitude decreasing as λ–3, contrasts with the mono-
tonic behavior of the exponentially decreasing WMA(λ)
for an analytic potential function. Moreover, the contri-
bution of the lower harmonic to the upper part of the
stochastic layer in the latter case is smaller by a factor
of exp(−π|λ|) as compared to the contribution of the
upper harmonic [1], whereas the contributions of the
upper and lower harmonics are asymptotically equal for
the system driven by a piecewise linear force. The dras-
tic difference between systems of the two types dis-
cussed here may be explained by different location of
the singularities of the Melnikov–Arnold integral: they
lie on the real axis and in the complex plane in the cases
of smooth potential and driven pendulum, respectively.

5. ASYMMETRIC PERTURBATION

Asymmetric perturbation (2.2) with Ω1, |Ω2| @ 1
was originally analyzed in [22, 23] for the driven pen-
dulum described by Hamiltonian (2.12). In this case, it
was found that the perturbed motion has secondary har-
monics with amplitudes proportional to ε1ε2 and fre-
quencies equal to the sum and difference of the primary
frequencies:

(5.1)

K ω0
2 π

λ
--- 

 
2

, n 1 2 …, ,= = =

K1 n,*
π

λ1 n,
--------- 

  2

, n 1 2 …, ,= =

K1 n,

K1 n,*
---------- 1 0.676n 0.875– , n+≈ 1 2 …, ,=

K1 n,*

∆Ω+ Ω1 Ω2, ∆Ω–+ Ω2 Ω1.–= =
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Moreover, it was found that the secondary harmonics are
much weaker than the primary ones when ε1, ε2 ! 1.

Even the first numerical experiments revealed the
seemingly surprising fact that these weak harmonics
determine both the amplitude of the separatrix map and
width of the chaotic layer under certain conditions.

In the example considered in [23], the system had
the parameters ε1 = ε2 = 0.075, Ω1 = 13, and Ω2 = –10.
The amplitude of the sum-frequency harmonic of the
perturbed motion (with ∆Ω+ = 3) was ε ≈ 4.5 × 10–5,
which is smaller than the primary-harmonic amplitude
by a factor of about 1700. However, its contribution to
the separatrix-map amplitude corresponding to the
upper part of the layer (responsible for the onset of
chaos) exceeded the total contribution of the primary
harmonics by a factor of almost 400, while the individ-
ual parts of the layer had substantially different widths.
This is explained by the exponential dependence of
layer width on frequency at Ω @ 1, which leads to a
dominant effect of weak low-frequency harmonics on
the onset of chaos.

In smooth systems, a similar role is played by sum-
frequency secondary harmonics, whereas the effect of
difference-frequency harmonics is much weaker as
compared to that in a driven pendulum [17].

The secondary-harmonic amplitudes are not known
a priori, and no rigorous method for finding them is
available to this day. In [22], a general approach to the
problem was proposed, and approximate analytical esti-
mates were obtained. In this approach (see also [17]), a
change from the coordinate x(t) and momentum p(t) to
the deviations from xs(t) (given by (2.7)) and ps(t) on the
unperturbed separatrix is performed in (2.1) and (2.2).
By assuming that the deviations are small and dropping
the terms of order higher than two, it can be shown that
the perturbation contains both the sum-frequency sec-
ondary harmonic

(5.2)

with

and m+ = m1 + m2, and the difference-frequency har-
monic

(5.3)

with

and m– = m2 – m1. (These expressions were derived for
|Ω1, 2| @ 2πm1, 2ps, max.)

ε+ 2πm+xs ∆Ω+t–( )cos

ε+ 2π2ε1ε2m1m2
m1

Ω2
2

------
m2

Ω1
2

------+ 
  ,–=

ε– 2πm–xs ∆Ω–t–( )cos

ε– 2π2ε1ε2m1m2
m1

Ω2
2

------
m2

Ω1
2

------– 
  ,–=
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The analysis that follows is restricted to the most
interesting case of sum-frequency harmonic. When the
primary harmonics have almost equal frequencies (in
absolute value), it has a low frequency. Therefore, one
should find out if the system follows the behavior char-
acteristic of the primary harmonics when λ ! 1 under
symmetric forcing (see preceding section).

As a first step, an analysis of system (2.1), (2.2) is per-
formed for a high-frequency symmetric perturbation:

(5.4)

The graph of the corresponding separatrix map is a per-
fectly sinusoidal curve with an amplitude of 1.65 × 10−4

(see [22] for details). By iterating the map, it has been
shown that wu = |wm| = wl ≈ 0.013.

Now, suppose that a low-frequency secondary har-
monic is generated by slightly changing the lower har-
monic frequency:

(5.5)

Figure 3 shows the separatrix map calculated numeri-
cally for system (2.1), (5.5) at the instants tπ when the
system passes through the stable equilibrium point at
x  =  0.5 (see [22]). Note that the sinusoidal curve
obtained by least-squares fitting has an amplitude of
6.91 × 10–3 and, most importantly, the totally different
frequency ∆Ω+ = 0.5. Note also that wu ≈ 0.50, i.e., is
greater by a factor of almost 40. A spectral analysis has
shown that the total contribution of the primary har-
monics is less than two percent. The system behaves as
if the perturbation contains a single low-frequency har-

ω0
2 0.09, ε1 ε2 0.05, m1 m2 1,= = = = =

Ω1 30.0, Ω2 30.–= =

Ω1 30.0, Ω2 29.5, ∆Ω+– 0.5.= = =

0.8

–0.8
0

W × 102

∆Ω+tπ, mod 2π

–0.4

0

0.4

1 2 3 4 5 6

Fig. 3. Separatrix map for system (2.1) under asymmetric
forcing defined by (5.5): symbols and curve represent
numerical results and their least-squares approximation,
respectively.
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monic rather than two high-frequency ones (as corrob-
orated numerically in [23]).

It is clear that this dynamical behavior is qualita-
tively similar to that characteristic of pendulum dynam-
ics: even a weak low-frequency secondary harmonic
“outdoes” the primary ones as a factor contributing to
the onset of chaos.

Additional analysis has shown that the separatrix-
map amplitude scales linearly with frequency for a sys-
tem characterized by a very low secondary-harmonic
frequency, as in the case of symmetric perturbation, and
the upper part of the stochastic layer has an almost fre-
quency-independent width.

6. CONCLUSIONS

An analysis of a family of smooth Hamiltonian sys-
tems driven by a piecewise linear force performed as an
extension of Bullett’s pioneering study [8] has revealed
quite unexpected dynamics.

Persistence of the separatrices of nonlinear reso-
nances in a chaotic sea, complete suppression of diffu-
sion in critical regimes, fractal diffusion in the neigh-
borhoods of these regimes in the parameter space, peri-
odic and power-law behavior of the Melnikov–Arnold
integral as a function of frequency, and other phenom-
ena have no analogs in the dynamics of systems with
analytic Hamiltonian functions. The discovery of these
phenomena challenges certain seemingly well-estab-
lished views. In particular, it is commonly believed that
the separatrices of nonlinear resonances with rational
winding numbers are the least stable under forcing,
whereas invariant curves with irrational winding num-
bers are the last to break down. As noted in the Intro-
duction, a particularly wide variety of challenging
questions are raised in the ongoing studies of fractal
diffusion.

Continued research is required to answer these
questions and find other systems exhibiting dynamical
behavior of the type reviewed here.
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