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Abstract—Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially
inhomogeneous ultrashort electromagnetic pulse are considered by solving the Dirac equation. The correspond-
ing transition probabilities are expressed in terms of known inelastic atomic form factors, which are widely used
in the theory of relativistic collisions between charged particles and atoms. By way of example, the inelastic
processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered.
The probabilities of ionization and production of a bound–free electron–positron pair on a bare nucleus, which
are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum,
are calculated. The developed technique makes it possible to take into account exactly not only the spatial inho-
mogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction. © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

The interaction of atoms with ultrashort electromag-
netic pulses with a duration shorter than the character-
istic atomic periods of time has become an object of
investigation only recently. A new trend, viz., the phys-
ics of attosecond pulses (1 attos = 10–18 s), has been
developed. The possibility of detection, generation, and
application of attosecond pulses was discussed by
many authors engaged in experimental and theoretical
studies. The state of the art by the beginning of 2004
and the corresponding references are given in reviews
[1–3] (see also several later publications [4–20]). The
increased interest in the physics of ultrashort pulses is
associated not only with modern tendencies in design-
ing more powerful lasers and generation of ultrashort
pulses [21], but also with the advances made in heavy-
ion accelerator technique since the fields produced by
relativistic and ultrarelativistic charged particles are
close in properties to the field of a light wave. For
example, in experiments [22] (see also [23–26]), dou-
ble and single ionization of a helium atom by an impact
of a uranium U92+ ion with an energy of 1 GeV/nucleon
was studied and a ultrastrong pulse (I > 1019 W/cm2)
with a duration on the order of 10–18 s was simulated. It
is extremely difficult to obtain such parameters of an
electromagnetic pulse by other available methods. For
example, the observation of pulses with a duration of a
few femtosecond was reported in [21], representing
almost thirty years (up to 2000) of evolution in the
physics of ultrashort laser pulses and technological
achievements in the field of generating such pulses.
Thus, collision experiments in fact offer the only possi-
bility of simulating ultrashort pulses with a duration
1063-7761/05/10006- $26.00 1043
comparable to or smaller than the characteristic atomic
time τa ~ 10–17 s. Collision experiments also provide the
subsequent opportunity for direct observation of the
interaction between atoms and an ultrashort electromag-
netic pulse. In a comparatively recent experiment [27],
multiphoton production of pairs by an ultrarelativistic
electron moving with a relativistic factor of γ ~ 105

through an ultrastrong laser field was observed; in this
case, in the rest system of the electron, the laser field
frequency and strength increased approximately by a
factor of γ. In recent theoretical works [28, 29], the pro-
cesses of multiphoton pair production during collisions
of bare ultrarelativistic nuclei with high-intensity laser
radiation were considered and the possibility of con-
ducting the corresponding experiments on modern
accelerators was also noted. Thus, during the collision
(interaction) of a target atom moving with a relativistic
energy (or a partly stripped atom, viz., a structural ion
with a certain number of electrons in its shells) with an
ultrashort electromagnetic pulse of duration τ, the cor-
responding collision time τc in the rest system of the
atom (ion) decreases by a factor of γ; i.e., τc ~ τ/γ. Let
us consider the possibility of observing in such experi-
ments the inelastic processes accompanying the inter-
action between atoms and ultrashort electromagnetic
pulses with values of relativistic factor γ ~ 104 attain-
able in modern heavy-particle accelerators [24] (these
values correspond to the effective decrease in the pulse
duration by four orders of magnitude). We will first
obtain estimates for relativistic problems, in which the
characteristic energy difference ∆E ~ mc2 (m is the elec-
tron mass and c is the velocity of light). The corre-
sponding characteristic frequency is ωa = mc2/"; conse-
© 2005 Pleiades Publishing, Inc.
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quently, the characteristic times of a stationary target
atom are

while the collision time in the rest system of the atom
for femtosecond pulses of duration τ ~ 10–15 s attainable
at present is τc ~ τ/γ ~ 10–19 s. Thus, direct observation
of the relativistic effects considered here requires that
the pulse duration be reduced by an order of magnitude
(i.e., to approximately 100 attos), which is in line with
contemporary tendencies [1–3, 21].

In theoretical analysis of the effects accompanying
the interaction of atoms with ultrashort electromagnetic
pulses, a natural foundation for solving problems
can be the sudden approximation, which is closely
related [30] to the eikonal approximation and which
was previously used only for solving nonrelativistic
problems [31–35], in which the perturbation is not
small enough for using perturbation theory, but the time
of action of a perturbation is much shorter than the
characteristic periods of time for an unperturbed sys-
tem. This makes it possible to solve the problem with-
out setting a limit on the perturbation intensity. The
effects of interaction of atoms with ultrashort electro-
magnetic pulses can be attributed to such cases. Here, we
apply the term ultrashort pulses to pulses with duration
smaller than the characteristic times for the target atom,
which can be in the ground state or in an excited state
(including a highly excited Rydberg state) prior to the
interaction. Such pulses may be of various origin [1−3,
36–39], but can also be the fields of heavy ions moving
with a relativistic or ultrarelativistic velocity [22–26]. In
the latter case, perturbation theory is inapplicable for
the fields of ions with large charges [40] even for infi-
nitely large energies of the ions. A nonrelativistic non-
perturbative theory developed in [41] describes the
electron transitions and radiation emitted by an atom
during its interaction with a spatially inhomogeneous
(over the target size) ultrashort electromagnetic pulse.

In this study, on the basis of the sudden approxima-
tion, we obtain a solution to the Dirac equation, which
describes the behavior of a hydrogen-like atom during
its interaction with a spatially inhomogeneous
ultrashort electromagnetic pulse. The corresponding
transition probabilities are expressed in terms of the
known inelastic atomic form factors, which are widely
used in the theory of relativistic collisions between
charged particles and atoms. By way of example, we
consider the inelastic processes accompanying the
interaction between ultrashort pulses with hydrogen-
like atoms; the probabilities of ionization and produc-
tion of a bound–free electron–positron pair at a bare
nucleus accompanied by the formation of a hydrogen-
like atom in the final state and a positron in the contin-
uum are calculated. The developed technique makes it
possible to exactly take into account the spatial inho-
mogeneity (over the target size) of the ultrashort elec-

τa
2π
ωa

------ 8.1 10 21–× 10 20–   s,∼≈=
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tromagnetic pulse as in the nonrelativistic theory [41];
however, in contrast to the nonrelativistic theory, this
technique exactly takes into account the magnetic inter-
action also.

2. TRANSITION AMPLITUDE 
IN THE SUDDEN APPROXIMATION

In the terminology used in [31], the perturbation
corresponding to the field of an ultrashort pulse is a
shock of the scattering type. To illustrate the sudden
approximation, it is obviously expedient to consider the
formal solution of the Schrödinger equation (here and
below, we use atomic units)

(1)

where sudden perturbation U(t) acts during a time
much shorter than the characteristic time periods of an
unperturbed system described by Hamiltonian H0. In
this case, in solving Eq. (1), we can disregard (during
the time of action of perturbation U(t)) the evolution of
the wavefunction under the action of intrinsic Hamilto-
nian H0 and solve the equation

It hence follows that

(2)

Consequently, the amplitude of transition of a nonrela-
tivistic atom from state |i〉  to state |f 〉  as a result of sud-
den perturbation U(t) has the form [31]

(3)

It can easily be seen that the same result can be obtained
if we solve exactly Eq. (1) with a delta-shaped potential

(t) connected with potential U(t) via the relation

(4)

Precisely this circumstance will be used below for solv-
ing the Dirac equation in the sudden approximation.

The behavior of the electron in a hydrogen-like
atom (with a nuclear charge Za on which no limitations
are imposed except the applicability conditions [42] for
the Dirac equation) in an external field

Aµ = (ϕ, A)

will be described by the Dirac equation (the electron

iΨ̇ H0 U t( )+( )Ψ,=

iΨ̇ U t( )Ψ.=

Ψ t( ) i U t( ) td

t0

t

∫–
 
 
 

Ψ t0( ).exp=

aif f〈 | i U t( ) td

∞–

+∞

∫–
 
 
 

i| 〉 .exp=

Ũ

Ũ t( ) U0δ t( ), U0 U t( ) t.d

∞–

+∞

∫= =
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charge e = –1 at. unit)

(5)

where the terms

are equal to the Hamiltonian H0 of a single atom and the
interaction of the atomic electron with the external field
is described by the potential

where  is the momentum operator,  and  are the
Dirac matrices, and r are the coordinates of the atomic
electron. We first choose the calibration of the electro-
magnetic wave potentials (vector potential A and scalar
potential ϕ) so that the scalar potential is zero. We
assume that the vector potential of the field of the wave
is a function of coordinate r and time t,

where the phase of the wave is given by

here, wavevector k0 is such that

and ω0 is the circular frequency. We carry out the gauge
transformation [41]

where

This gives

where

Consequently, in the new calibration, the vector and
scalar potentials are connected through the relation

We assume that the z axis is directed along vector k0. In
this case, the interaction of an atomic electron with the

iΨ̇ câ p̂
1
c
---A+ 

  Za

r
-----– ϕ– β̂c2+

 
 
 

Ψ,=

câp̂ β̂c2 Za/r–+

U t( ) U r t,( ) âA ϕ ,–= =

p̂ â β̂

A A r t,( ) A η( ),= =

η ω0t k0 r;⋅–=

k0 ω0/c,=

A' A ∇ f , ϕ'+ ϕ 1
c
---∂f

∂t
-----,–= =

f A– r.⋅=

A' k0 r
dA
dη
------- 

  , ϕ' E r⋅( ),–= =

E E r t,( ) k0
dA
dη
-------.–= =

A' k0/ k0( )ϕ'.=
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external field in Eq. (5) is given by

(6)

We will operate with the new calibration and omit primes
on the potentials. To solve the Dirac equation (5) in the
sudden approximation, we write it in the form

and use the substitution (4) introduced at the beginning
of this section. For this purpose, we introduce

(7)

where ϕ0 = ϕ0(r) (i.e., a function of only the coor-
dinates r of the point of observation). Further, in
accordance with formula (4), we replace U(t) from
formula (6) by

or by

(8)

where

(9)

As a result, Eq. (5) assumes the form

(10)

To obtain the exact solution to the Dirac equation with
such a potential, we expand Ψ = Ψ(r, t) in the eigen-
functions φk(r) (with energies Ek) of the unperturbed
atomic Hamiltonian

This gives

Substituting this expansion into the left-hand side of the
equation

U t( ) âA' ϕ'–=

=  1
âk0

k0
---------– 

  ϕ'– 1 α̂ z–( )ϕ'.–=

iΨ̇ H0 U t( )+( )Ψ=

ϕ̃ ϕ0δ ct z–( ), ϕ0 c ϕ t,d

∞–

+∞

∫= =

Ũ t( ) 1 α̂ z–( )ϕ̃–=

Ũ t( ) U0δ ct z–( ),=

U0 c U t( ) td

∞–

+∞

∫ 1 α̂ z–( )ϕ0.–= =

iΨ̇ câp̂
Za

r
-----– β̂c2 1 α̂ z–( )ϕ̃–+

 
 
 

Ψ.=

H0 câp̂ β̂c2 Za/r.–+=

Ψ r t,( ) ak t( )φk r( ) iEkt–( ).exp
k

∑=

iΨ̇ H0 Ũ t( )+( )Ψ=
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and integrating, after premultiplying it by a state φf and
taking into account the orthogonality of states φk , we
obtain

(11)

Let us suppose that the atom was in state φj before the
collision; in this case, we have

(12)

(13)

where δfj is the Kronecker delta. Since

it is sufficient for solving Eq. (11) to know the values of
Ψ(r, t) only for ct = z; these values can be determined
from Eq. (10) as follows. We pass to the light-cone vari-
ables

(14)

Retaining only the derivatives with respect to z– in a
small neighborhood of z– = 0 and the singular potential
–(1 – ) , we obtain the equation

(15)

Since  = ϕ0δ(z–), taking into account the relations

(16)

where

we obtain the solution to Eq. (15):

(17)

Returning to time t and using conditions (12) and (13),
we obtain a solution which is valid for t < z/c and in the
vicinity of t = z/c (i.e., t = z/c + ε, ε > 0 and is small):

(18)

da f t( )
dt

--------------- i iE f t( ) φf Ũ t( ) Ψ r t,( )〈 〉 .exp–=

Ψ r t, ∞–=( ) iE jt–( )φj r( ),exp=

a f t ∞–=( ) δ fj,=

Ũ t( ) U0δ ct z–( ),=

z– ct z–( ),=

z+ ct z+( ).=

α̂ z ϕ̃

ic 1 α̂ z–( )∂Ψ
∂z–
-------- 1 α̂ z–( )ϕ̃Ψ.–=

ϕ̃

d
dx
------θ x( ) δ x( ),=

d
dx
------ θ x( )( )exp δ x( ) θ x( )( ),exp=

θ x( )
0, x 0,<
1, x 0,>




=

1 α̂ z–( )Ψ z– 0+( ) 1 α̂ z–( )=

× i
ϕ0

c
-----θ z–( ) Ψ z– 0–( ).exp

1 α̂ z–( )Ψ r t,( ) 1 α̂ z–( )=

× iθ ct z–( )
ϕ0

c
----- iE jt–[ ]φ j r( ).expexp
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Substituting Eq. (18) into the right-hand side of
Eq. (11) and integrating with respect to t taking into
account initial conditions (13), we obtain

(19)

Using relations (16), we obtain

(20)

This is the required solution to the Dirac equation with
potential

corresponding to the inclusion of potential (6) in the
sudden approximation. The obtained expression can be
written in a more convenient form by using the easily
verifiable relation

(21)

This gives

(22)

To describe transitions in the case of the interaction of
a complex multielectron atom with an ultrashort elec-
tromagnetic pulse, we proceed as follows. We assume
that the states of atomic electrons are described as the
products of one-electron wavefunctions and denote the
energy of the electron with number a (where a = 1, 2,
…, N, N being the number of atomic electrons) by E(a)

and the electron coordinates by ra . Then the natural
generalization of amplitude (22) for a transition of the
complex N-electron atom from the initial state φj =
φj(r1, r2, …, rN) with energy

a fj a f t +∞=( )=

=  δ fj i t i E f E j–( )t( )expd

∞–

+∞

∫+

× φf〈 |ϕ 0δ z ct–( ) 1 α̂ z–( ) iθ ct z–( )
ϕ0

c
----- φj| 〉 .exp

a fj δ fj φf〈 | 1 α̂ z–( ) i
E f E j–( )z

c
------------------------- 

 exp+=

× i
ϕ0

c
----- 

 exp 1– φj| 〉 .

Ũ t( ) U0δ ct z–( ),=

φf〈 | 1 α̂ z–( ) i
E f E j–( )z

c
------------------------- 

  φj| 〉exp δ fj.=

a fj φf〈 | 1 α̂ z–( ) i
E f E j–( )z

c
------------------------- 

 exp=

× i
ϕ0

c
----- 

  φj| 〉 .exp

E j E j
a( )

a 1=

N

∑=
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to the final state φf = φf(r1, r2, …, rN) with energy

has the form

(23)

where matrix  acts only on bispinor indices belong-
ing to the atomic electron with number a.

3. TRANSITION PROBABILITIES

Let us consider the interaction of an atomic electron
with a Gaussian electromagnetic pulse (with an effec-
tive duration on the order of λ–1),

(24)

where

(25)

Recollecting that

and introducing the vector

where

we write afj from relation (22) in the form

(26)

Choosing now the z axis in the direction of vector Q, we
can write afj in the form

(27)

E f E f
a( )

a 1=

N

∑=

a fj φf〈 | 1 âz
a( )–( ) i

c
-- E f

a( ) E j
a( )–( )za

a 1=

N

∑exp
a 1=

N

∏=

× i
c
-- ϕ0 ra( )

a 1=

N

∑ 
 
 

φj| 〉 ,exp

α̂ z
a( )

E r t,( ) E0 λ2 t
k0 r⋅
ω0

------------– 
  2

– 
 exp=

× ω0t k0 r⋅–( ),cos

ϕ r– E r t,( ), ϕ0⋅ cq r,⋅= =

q tE r t,( )d

∞–

+∞

∫– E0
π

λ
-------

ω0
2

4λ2
--------–

 
 
 

.exp–= =

α̂ z âk0/k0=

Q Qx Qy Qz, ,( ) q 0 Ω fj/c, ,( ),= =

Ω fj E f E j,–=

a fj φf〈 | 1
âk0

k0
---------– 

  iQ r⋅( ) φj| 〉 .exp=

a fj φf〈 | 1 α̂ z θcos–( ) iQz( ) φj| 〉exp=

– φf〈 |α̂ x θ iQz( ) φj| 〉 ,expsin
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where

Thus, let us now suppose that the atom was in state φj

with energy Ej prior to the interaction (i.e., at t = –∞)
with the field of an ultrashort pulse; then the probability
of finding the atom in state φf with energy Ef after the
interaction (i.e., for t = +∞) is given by

(28)

Following [43–45], we have introduced the inelastic
atomic form factors

which are widely used in the theory of relativistic colli-
sions of charged particles with atoms. Consequently,
the above formulas make it possible [43–45] to deter-
mine the probabilities of excitation and ionization of a
hydrogen-like atom interacting with an ultrashort elec-
tromagnetic pulse. These formulas can also be used for
calculating the probability of production of an elec-
tron–positron pair during the interaction of a bare ion
with an ultrashort electromagnetic pulse if we interpret
this process as a transition of an electron from the states
of the negative continuum (Dirac sea) to the states with
a positive total energy of the hydrogen-like atom In all
cases, we can use either the form factors (see, for exam-
ple, [40, 45]) calculated using the so-called Coulomb–
Dirac hydrogen-like wavefunctions for electrons and
positrons, which leads to a complex numerical compu-
tation, or analytic expressions [40, 43–47] for the form
factors determined with the Darwin quasi-relativistic
wavefunctions and the Sommerfeld–Maue wavefunc-
tions [40, 42, 44, 45, 48]. Strictly speaking, the quasi-
relativistic functions are valid under the condition
Za ! c; if this inequality is violated, the results satisfac-
torily illustrate the behavior of the form factors qualita-
tively [40, 45].

The above formulas make it possible to calculate
both the probabilities of inelastic processes having non-
relativistic analogs (excitation or ionization of an atom
by an ultrashort electromagnetic pulse) and essentially
relativistic effects (production of the electron–positron
pairs). As in the nonrelativistic theory [41], the relativ-
istic approach developed by us exactly takes into
account the spatial inhomogeneity (over the target size)
of the ultrashort electromagnetic pulse; however, unlike
the nonrelativistic approach [41] (see also [5, 49]), it
exactly takes into account the magnetic interaction
also. Figures 1 and 2 show the ionization probabilities

Q q2 Ω fj
2 /c2+ , θcos Ω fj    c 

2
 q 

2 Ω fj 
2

 + ,= =

θsin q   q 
2 Ω fj 

2 / c 
2 + .=

a fj
2 q2

Q2
------ q2

Q2
------ F fj 2

Gx
fj 2

+ 
  .=

F fj φf〈 | iQz( ) φj| 〉exp
Qc
Ω fj

------- φf〈 |α̂ z iQz( ) φj| 〉exp ,= =

Gx
fj φf〈 |α̂ x iQz( ) φj| 〉 ,exp=
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(the probabilities of formation of K vacancies) of
hydrogen-like atoms and the probabilities of produc-
tion of a free–bound electron–positron pair for several
values of the nuclear charge Za . In our calculations, we
used, following [40, 45], the quasi-relativistic Darwin
wavefunctions for bound states and the Sommerfeld–
Maue functions for the states of the continuum as the
wavefunctions of the initial and final states; this makes
it possible to calculate the form factors analytically.

To obtain the cross section of the transition of an
atom from state φj with energy Ej to state φf with energy

10–1 1 10 102 103 104

q

0

0.2

0.4

0.6

0.8

1.0

P

1 2 3 4

Fig. 1. Dependences of the ionization probability P (forma-
tion of a K vacancy) of hydrogen-like atoms for several val-
ues of nuclear charge Za on the transferred momentum (25)
q = |q | (atomic units). The results of calculations for each
value of Za are represented by two curves; the solid curve
corresponds to relativistic calculations based on formula
(28), while the dashed curve corresponds to the nonrelativ-
istic calculation [41] (formula (28) for c  ∞) for Za = 1
(1), 10 (2), 50 (3), and 92 (4).

110–1 10 102 103 104

q

10–16

10–13

10–10

10–7

10–4

P

1

2

3

4

Fig. 2. Dependences of the probability P (28) of production
of a free–bound electron–positron pair (the electron in the
1s state and the positron in the state of continuum of a
hydrogen-like atom with effective atomic charge Za) on the
transferred momentum (25) q = |q | (atomic units) for sev-
eral values of Za = 1 (1), 10 (2), 50 (3), and 92 (4).
JOURNAL OF EXPERIMENTAL A
Ef , we must obviously multiply, according to [50], the
probability |afj |2 of the corresponding transition from
formula (28) by the energy difference

and divide the result by the energy flux I equal to the
integral of the absolute value of the Poynting vector

with respect to time, where E is expressed by for-
mula (24). This gives

(29)
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Abstract—We theoretically investigate the possibility of electron acceleration during the self-channeled prop-
agation of laser radiation. We consider a new acceleration mechanism associated with the formation of an ion
cloud in material (under the ponderomotive force of the laser radiation) that moves together with the laser pulse.
We show that the quasi-stationary electric and magnetic fields generated by the moving ion cloud can lead to
the acceleration of electrons up to energies of several dozen MeV and to the formation of an electron beam prop-
agating forward coaxially with the laser pulse. The calculated angular distribution of the accelerated electrons
is in satisfactory agreement with published experimental results. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Producing directional electron beams with energies
of several MeV and durations of several femtoseconds
is interesting from a fundamental standpoint and
important from the standpoint of possible applications.
In recent years, significant advances have been made in
this direction using intense short laser pulses. The gen-
eration of such beams has been studied theoretically
and experimentally in a considerable number of publi-
cations (see, e.g., [1–4]).

The generation of electron beams is directly related
to the pattern of nonlinear propagation of laser pulses in
a material: intense laser radiation ionizes the material
and produces quasi-stationary electron-accelerating
electromagnetic fields in it. Such beams are generated
both when intense radiation propagates in gaseous
media and when radiation is focused on the surfaces of
solid targets. The beam parameters depend strongly on
the target type and basic characteristics of the nonlinear
interaction. Some of the questions on the dynamics of
intense laser pulses in a material were considered in the
monograph [5].

There are several possible electron acceleration
mechanisms. Among the most important mechanisms,
we note, first, the generation of plasma Langmuir (the
so-called wake) waves behind the pulse and the accel-
eration of electrons in them and, second, the charge dis-
placement by the ponderomotive force of the laser radi-
ation and the acceleration of electrons by the quasi-
static electric field that emerges from this displacement.
Since these two mechanisms are in a way competing
ones, their comparative analysis is needed, which
requires studying both mechanisms. The first mecha-
1063-7761/05/10006- $26.001050
nism was investigated in sufficient detail in earlier pub-
lications. The objective of this paper is to study the sec-
ond mechanism in more detail.

Let us consider the second mechanism, as applied to
the regime of self-channeled propagation [6, 7], in
which the laser pulse propagates without changing its
divergence to a distance much larger than the diffrac-
tion length. The charge displacement by the pondero-
motive force of the laser radiation is particularly effi-
cient in this regime. A large self-channeling length can
be achieved only in gaseous media, and precisely this
case is considered here.

There are several physical mechanisms of the
change in the refractive index that lead to self-channel-
ing. The most important of them include increase in the
electron mass in a relativistic-intensity laser field, the
expulsion of electrons by the ponderomotive force from
the region of a strong field, change in the refractive
index of the plasma in the quasi-stationary magnetic
fields produced by the moving uncompensated ion
charge and the current of accelerated electrons, possi-
ble generation of plasma waves, etc. These mechanisms
have been repeatedly discussed in the literature (see,
e.g., [5–9]). Here, we do not consider these mecha-
nisms and assume that all of the conditions necessary
for self-channeling to take place are satisfied, i.e., the
radiation power P > Pcr . The critical power Pcr
decreases with increasing electron density. An expres-
sion for Pcr that is valid in a wide range of electron den-
sities, including the densities near their critical values,
is given in [10].

Since the channel diameter is comparable to the
laser wavelength in the case of self-channeled propaga-
 © 2005 Pleiades Publishing, Inc.
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tion, the transverse intensity gradients are large, which,
in turn, yields a large ponderomotive force. Electrons
are expelled by this force in the radial direction from
the region in which intense laser radiation is concen-
trated, and the expulsion results in the formation of a
region of positive uncompensated charge, a kind of a
cloud composed of ions (Fig. 1). This cloud (with a
charge that is several orders of magnitude larger than
the electron charge) moves together with the laser pulse
and with its velocity, although the ions themselves
remain stationary. At the leading edge of the pulse, ion-
ization takes place and electrons are expelled by the
ponderomotive force; after the passage of the trailing
edge of the laser pulse, the ions are neutralized by cold
electrons from the surrounding plasma. (Under certain
conditions, when the pulse duration exceeds the charac-
teristic time determined by the diameter of the channel
and the ion density in it, a Coulomb explosion of the
channel can take place, but we do not consider this sit-
uation here.) A fraction of the electrons expelled from
the channel remain near the ion cloud, partially screen-
ing it. Therefore, the electrostatic interaction of the ion
cloud with an individual electron outside the cloud is
determined not by the total charge of the cloud, but by
an effective charge whose value generally decreases
with increasing distance from the cloud. The electron
motion outside the region of action of the ponderomo-
tive force is determined by the quasi-stationary electro-
magnetic field of the ion cloud and is predominantly
longitudinal.

In this paper, we use an approach based on the solu-
tion of the Newton equations; these equations are
solved for single electrons, and their reverse effect on
the motion of the ion cloud is disregarded. The ion
cloud is approximated by large particles [11]. Since the
ion cloud moves along the axis with a velocity close to
the speed of light, our model includes the delay in the
charge interaction and is based on the delayed Lienard–
Wiechert potentials [12]. Note that the currently used
PIC methods do not properly take into account the
delay in the interaction of rapidly moving charges.

The model of electron acceleration in the field of the
ion cloud developed here allows the formation of an
electron beam to be described quantitatively.

2. THE MOTION OF AN ELECTRON
IN THE FIELD OF A POINT CHARGE

To ascertain the main features of the electron accel-
eration by the moving ion cloud, let us first consider the
relativistic motion of an electron in the field of a point
charge. This problem was considered in the monograph
[12], in which the motion of an electron in the field of a
stationary point charge was investigated. Generalizing
the solutions obtained in [12] to the case of a point
charge moving in the laboratory frame of reference
with a relativistic velocity is of considerable interest.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Let us consider the motion of an electron in the field
of a positive charge Q. If the mass of the positive charge
is much larger than the electron mass, then the change
in the energy of the positive charge can be ignored. In
this case, the total energy of the electron in the frame of
reference in which the positive charge is at rest (the
intrinsic frame of reference) is

where α = qQ is the product of the charges (during the
interaction between a positive charge and an electron,

q = –e and α < 0), p2 = M2/r2 + , pr is the radial
momentum, and M is a constant angular momentum.

The action as the solution of the Hamilton–Jacobi
equation is constructed from general considerations:

The trajectory can be obtained from the equation
∂S/∂M = 0. It can be written in analytical form: θ = θ(r).
The inverse function r = r(θ) also has an analytical
expression [12] that contains a dimensional constant,

The condition for the capture of an electron by a
positive charge is cM < |α|. In this case, the trajectory in
polar coordinates is a convergent spiral whose θ depen-
dence is given by the hyperbolic cosine

W c p2 m2c2+ α /r,+=

pr
2

S Wt– Mθ W α /r–( )2

c2
-------------------------- M2

r2
------- m2c2–+ r.d∫+ +=

r0
α2 c2M2–

c M2W2 m2c2 α2 c2M2–( )+
---------------------------------------------------------------------.=

θ eQ/cM( )2 1–( ),cosh

b

z
vg

Fig. 1. The formation of a region of positive uncompensated
charge, a kind of a cloud composed of ions and moving
together with the laser pulse and with its velocity. At the
leading edge of the pulse, ionization takes place and elec-
trons are expelled by the ponderomotive force; after the pas-
sage of the trailing edge of the laser pulse, the ions are neu-
tralized by cold electrons from the surrounding plasma.
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Fig. 2. Electron trajectories in the (a) intrinsic and (b) laboratory frames of reference for the same parameters and V = c/2; (c) kinetic
energy versus time in the laboratory frame. All parameters are given in dimensionless form: the space coordinates are in units of r0,

the time is in units of r0/c, and the energy is in units of mc2.
so the number of complete spiral turns from θ = 0 to the
fall to the center can be estimated as

At the parameters typical of the problem under con-
sideration, the electron can fall rapidly to the positive
charge; in this case, the number of complete turns is
much less than 1.

The time dependence t = t(r) can be derived from the
condition ∂S/∂W = 0. This function has an analytical

1

2π eQ/cM( )2 1–
--------------------------------------------.
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expression, while the inverse function r = r(t) has no
analytical expression; therefore, our subsequent analy-
sis is based on numerical calculations. The time depen-
dences of the Cartesian coordinates and the velocity
components can be numerically derived from the func-
tions θ(r) and t(r). The values of t, θ, x, y, ∂r/∂t, ∂θ/∂t,
v x , v y , and the electron kinetic energy are determined
sequentially on a uniform r coordinate grid.

The Lorentz transformation allows us to numeri-
cally derive similar dependences, including the electron
kinetic energy, in the laboratory frame of reference, in
which the positive charge moves along the z axis with a
constant velocity V.
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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Figure 2a shows an example of the trajectory along
which the electron falls to the center in the intrinsic
frame of reference. Going to the laboratory frame of
reference leads to a significant change of the trajectory
in the shape of an open spiral. As an example, Fig. 2b
shows the shape of the trajectory in the laboratory
frame of reference for the same parameters and V = c/2
as those in Fig. 2a.

An analysis of the electron motion leads us to two
conclusions. First, during its motion, the electron can
overtake the positive charge moving with a constant
velocity. Second, the electron kinetic energy oscillates:
it has maxima and minima attributable to the overtaking
of the positive charge during the motion in one direc-
tion and the lagging behind it during the motion in the
opposite direction (in contrast to the motion in the
frame of reference in which the positive charge is at
rest, where the electron kinetic energy monotonically
increases). In this case, the electron kinetic energy can

significantly exceed W* = mc2/ . The time
dependence of the kinetic energy is shown in Fig. 2c. In
our calculations, we used Q/e ≈ 2.5 × 1010 and M =
0.99Qe/c.

In the case under consideration, the velocity of the
positive charge is determined by the velocity of the ion-
ization wave, which is equal to the group velocity of the
laser pulse in the medium. The Coulomb interaction of
the electrons with the positive charge allows them to
reach velocities much higher than the velocity of the
ionization wave.

3. BASIC EQUATIONS DESCRIBING 
THE PROPAGATION OF A LASER PULSE

3.1. The Physical Picture of the Nonlinear Propagation
of a Laser Pulse 

An intense laser pulse propagating through a
medium interacts with the medium and greatly changes
its properties. This interaction manifests itself in sev-
eral aspects. The pulse ionizes the medium even at its
leading edge, and the bulk of the pulse propagates in the
plasma with the group velocity Vg < c determined by
the plasma parameters. We assume that the radiation
propagates in hydrogen, the produced plasma is hydro-
genic, and the initial electron, ne , and ion, ni , densities
are equal, ne = ni = n. When the radiation propagates in
other gases, multiple ionization takes place, ne = Zni ,
and the total charge of the ion cloud is a factor of Z
larger. Note that the medium is ionized and the plasma
is produced mainly inside the laser pulse. However, due
to the plasma radiation in the short-wavelength spectral
range, a plasma halo in which the electron density
decreases rapidly with increasing distance from the
axis is formed around the region occupied by the laser
pulse. Inside the beam, the plasma is in the field of
intense laser radiation, and the plasma parameters,
including its refractive index, are determined by this

1 V2/c2–
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radiation. In turn, a change in the refractive index mod-
ifies the pattern of propagation of the radiation itself. It
is well known [7] that the pulse propagates in the
regime of self-channeling if its total power exceeds its
critical value. In this regime, two mechanisms of the
change in the plasma refractive index play a major role:
the relativistic increase in the electron mass and the
expulsion of electrons by the ponderomotive force from
the region of a strong field. Both mechanisms cause the
plasma refractive index in the region of a strong field to
increase, thereby ensuring the necessary conditions for
self-channeling. As a result, only ions are left inside the
channel, and an ion cloud (coinciding with the region of
action of the ponderomotive force) is formed; this cloud
effectively moves with the group velocity of the laser
pulse. The ions remain stationary, while the positive
charge at the trailing edge of the laser pulse is neutral-
ized by cold electrons from the cloud-surrounding
plasma. The source of this plasma, which emerges only
in the immediate vicinity of the ion cloud, is the radia-
tion from the ion cloud, including its X-ray radiation.
Note that the electron density in the produced plasma
decreases rapidly with increasing distance from the
beam axis.

The sizes of the ion cloud are determined by the
charge displacement under the ponderomotive force
and by the self-consistent collective motion of electrons
(the mobility of ions is low) in the emerging quasi-
static electric field. In general, the boundaries of the ion
cloud are blurred. In this paper, the cloud diameter a is
assumed to be equal to the diameter of the region of a
strong field at the center of the laser pulse. The cloud
length L was chosen from the condition that the inten-
sity on the axis inside the cloud was higher than Imin =
3 × 1017 W cm–2. This choice is dictated by the fact that
at such intensities, the material is completely ionized
and the electrons are expelled from the channel by the
ponderomotive force. The shape of the ion cloud used
in the model is a cylinder with a total volume of πa2L.
When considering the Coulomb interaction of the ion
cloud with an electron outside it, we assumed that the
cloud had an effective charge Q; the latter was obtained
by multiplying the total charge of the ions by a correc-
tive coefficient that included many factors. First, the
diameter of the actual cloud slightly decreases with
increasing distance from the center of the laser pulse;
second, as was mentioned above, the positive charge of
the cloud is partially screened by the electrons captured
by the cloud. In this paper, this corrective coefficient is
close to 1/2. The latter value was obtained by analyzing
the trajectories of the electrons moving in the field of
the ion cloud.

The moving ion cloud produces quasi-stationary
electric and magnetic fields in its vicinity. Since the
cloud velocity is close to the speed of light, the delayed
Lienard–Wiechert potentials must be used to describe
these fields. Note that the skin depth for these fields is
much larger than the size of the plasma region under
SICS      Vol. 100      No. 6      2005
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consideration; therefore, the plasma is transparent for
them. Since ε = µ = 1 in the original gas, we conclude
that the velocity of propagation of these fields is equal
to c.

The electrons surrounding the ion cloud can be
divided into two groups. The electrons that were ini-
tially formed inside the ion cloud constitute the first
group. The electrons of this group are initially acceler-
ated inside the cloud by the ponderomotive force to
high energies and subsequently interact with the posi-
tive charge of the ion cloud. The initial acceleration sig-
nificantly affects their trajectories. The electrons
formed near the cloud, but outside the region of action
of the ponderomotive force constitute the second group.
Immediately after their appearance, the electrons of the
second group begin to interact with the fields produced
by the ion cloud.

Let us consider the passage of the ion cloud through
a thin layer of material located perpendicularly to the
direction of its motion. Initially, the material near the
axis is ionized by the laser pulse; subsequently, the
X-ray radiation propagating from the cloud also ionizes
the material at a certain distance from the axis. A pecu-
liar ionization wave propagates through this thin layer;
as a result, electrons appear at some impact parameter
b and begin their motion attributable to the interaction
with the fields of the ion cloud with a delay relative to
the passage of the leading edge of the pulse through the
chosen layer. It can be assumed that a peculiar “light
cone” with a vertex half-angle ϕ =  prop-
agates together with the leading edge of the pulse, and
that this cone gives rise to an electron and turns on the
electromagnetic action on it from the ion cloud. The
delay is approximately equal to b/c.

We assume that at time t = 0, the thin layer under
consideration is far from the peak of the laser pulse, and
the distance to it is 100a in the longitudinal direction.
Such a large distance allows the initial formation of the
ion cloud and the appearance of the fields as the pulse
enters into the gas to be not considered.

3.2. The Equation of Motion for Electrons 

Three forces act on an electron: the ponderomotive
force produced by laser intensity gradients and the two
forces governed by the electric and magnetic fields of
the ion cloud. Suppose that the laser radiation is a short
pulse of duration τ and radius a that propagates along
the z axis and has an intensity distribution I(r, z, t).

The ponderomotive force acting on an electron in a
relativistic-intensity field is

(1)

where Ir = 2.75 × 1018(1/λ[µm])2 W cm–2 is the relativ-
istic intensity, and ne, cr is the critical plasma electron

Vg/c( )arctan

Fp

Ir

cne cr,
-------------∇ 1 I

Ir

----+ 
  1/2

,–=
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density. Expression (1) is valid for radiation with circu-
lar polarization, but can also be approximately used for
linear polarization. In the nonrelativistic case, expres-
sion (1) is

In general, ∇ I has both radial and longitudinal com-
ponents; as a result, the ponderomotive force also has
the same components, Fpr and Fpz .

Let us assume that the intensity distribution in the
beam is

(2)

where the radial distribution is given by

(3)

and the time dependence is

(4)

The parameter γ in expression (3) determines the
shape of the transverse intensity distribution of the laser
pulse. For self-channeled propagation, this parameter is
larger than 2. In expression (4), z0 denotes the initial
coordinate of the laser pulse intensity peak and the cen-
ter of the ion cloud. For plasma, the pulse group veloc-
ity is Vg =  = cN, where N is the refractive
index of the plasma.

Note that dependence (4) on the longitudinal coor-
dinate implies the passage to an axially symmetric
model, in contrast to the cylindrically symmetric model
used previously [13]. In specific calculations, the inten-
sity I(r, z, t) was taken to be zero if its value defined by
formula (2) was lower than a certain minimum value,
I ≤ Imin.

The distance between the leading and trailing edges
of the pulse can be determined from (4):

(5)

The charge of the ion cloud composed of hydrogen
ions with density ni is

(6)

where e is the elementary charge.

Denote the electric and magnetic fields produced by
the moving ion cloud in the surrounding space by E

Fp
1

2cne cr,
----------------∇ I .–=

I r z t, ,( ) I0 f 1 r( ) f 2 z t,( ),=

f 1 r( ) 2
r
a
--- 

 
γ

ln– ,exp=

f 2 z t,( ) 4 2
z z0– Vgt–

τVg

-------------------------- 
 

2

ln– .exp=

dω/dk( )ω0

L 2
Imin/I0( )ln
4 2ln

-------------------------–
1/2

τVg.=

Q
1
2
---πa2Lnie,=
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and H, respectively. In this case, the equation of motion
for an electron is

(7)

where V is the electron velocity, V = |V|.
The fields produced by a point charge Q moving

with a constant velocity Vg is defined by the expressions
(the delayed Lienard–Wiechert potentials)

(8)

where n is a unit vector along the z axis, θ is the angle
between the z axis and the radius vector R of the elec-
tron, R = |R|

At time t = 0, the laser pulse peak has the coordinate
z0 and moves along the z axis with the velocity Vg (the
center of the ion cloud has the same coordinate and
velocity), the electron coordinates are r(0) = b and
z(0) = 0, and the electrons are initially at rest.

The componentwise representation of (7) in the
dimensionless variables

is

(9)

(10)

where

The terms with the factor A on the right-hand sides
of Eqs. (9) and (10) describe the Coulomb and Lorentz
forces (the latter contain the components v gv r and
v gv z); the quantities r1, z1, and R1 are the components
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and magnitude of the radius vector of the electron rela-
tive to the point ion in units of a.

In the case under consideration, the length of the ion
cloud is much larger than its diameter. Therefore, we
must either generalize Eqs. (9) and (10) to the case of a
distributed charge or approximate the ion cloud by a
system of point charges with an adjustment of the field
of these charges. We used the second alternative, in
which the cloud was modeled by a system of K = 50
identical point charges uniformly arranged on the axis.
Three different cases can be distinguished, depending
on the distance of the accelerated electron from the
axis. At a large distance (R1 > 1), the value of each point
charge was taken to be q = Q/K, where K is the number
of point charges. If, however, the electron penetrates
into the ion cloud to a distance 1 ≥ R1 ≥ 0.1, then its
motion in this region may be considered as the motion
in the field of a cylindrical charge. The influence of the
ions located in the outer (with respect to the charge)
regions of the cylinder, i.e., at distances larger than R1,
can be disregarded. This approximation is justified
everywhere, except the small regions at a distance of
the order of the radius from the cylinder ends. In this
case, the cylindrical charge can be approximated by a
system of point charges with the value of each point

charge q = Q/K. When the electron is located at dis-
tances R1 ≤ 0.1, the approximation of point charges
arranged on the axis is no longer valid, since the fields
on the cloud axis have a singularity in this approxima-
tion. To make the passage of electrons through the
region near the axis possible (which may occasionally
be required), this singularity must be removed. To this
end, we assumed in the region R1 ≤ 0.1 that the electron

interacts with one point charge with q = Q/K.

Thus, the charge is q = χQ/K, where

Formally, allowance for the finite cloud sizes in (9) and
(10) consists in going to the summation over all charges
qj on the right hand sides of these equations (j = 1, …,
K). In this case, the quantities r1, z1, R1, and θ in these
equations are replaced with r1j , z1j , R1j , and θj . The
value of j* = (K + 1)/2 corresponds to the center of the
ion cloud. Below, we use  = z1j* to denote the elec-
tron coordinate relative to the center of the ion cloud.

The presence of sinθ in Eqs. (9) and (10) reflects the
inclusion of the delay in the electromagnetic action. In
addition to this delay, there is also a time factor. It stems
from the fact that the ion cloud emerges and forms at a
finite distance from the electron under consideration;
therefore, a regime described by the equations for the
delayed potentials is reached. However, analysis shows

R1
2

R1
3

χ

1, R1 1,≥

R1
2, 0.1 R1 1,≤ ≤

R1
3, R1 0.1.≤






=

z1*
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that this effect is insignificant in the conditions under
consideration.

3.3. The Angular Distribution
of Accelerated Electrons 

As follows from Eqs. (7) and (8), the electron moves
in the plane passing through the z axis and the point of
its initial location. Let us consider its motion in a two-
dimensional Cartesian coordinate system located on
this plane.

The solution of the initial system defines the veloc-
ity components, coordinates, and kinetic energy as
functions of the impact parameter b and time t. The
angle between the electron velocity direction and the
axis after its interaction with the ion cloud was taken as
the exit angle. This angle is a single-valued function of
the impact parameter b, θe = θe(b). Since the electron
can cross the z axis as it moves, the exit angle of the
accelerated electron, θe , can be both positive and nega-
tive, depending on the specific impact parameter b.
Note also that during its motion, the electron can be
multiply reflected from the region with a large ponder-
omotive force; its trajectory can be complex. Therefore,
the exit angle θe can have equal values for different b;
i.e., the inverse function b(θe) is generally not single-
valued.

In the problem under consideration, the electrons
are located in both the upper and lower half-planes.
Formally, as a result of this, both positive and negative
values of b should be taken into account when calculat-
ing the angular distribution. Due to the symmetry prop-
erties of the electric and magnetic field distributions,
the electron trajectories at the initial values of b and –b
are mirror-symmetric relative to the z axis, which ulti-
mately yields θe(–b) = –θe(b).

To calculate the angular distribution of the acceler-
ated electrons, we must go from the two-dimensional
Cartesian coordinate system in which the electron tra-
jectories were analyzed to a cylindrical coordinate sys-
tem. The sought-for angular distribution must be axi-
ally symmetric relative to the z axis.

Given the axial symmetry, the total number of elec-
trons in a cylindrical layer of unit length with width db
at distance b is

(11)

On the single-valued segments of the function b(θe),
it transforms into the angular electron distribution

(12)

Since b(θe) is not a single-valued function, expres-
sion (12) must be summed over its single-valued
branches in a given b range.

P b( )db 2πne b( )b b.d=

P θe( ) θed 2πne b( )b db
dθe

-------- θe.d=
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The calculation of (12) can be simplified apprecia-
bly if we first average it over the positive and negative
values of b.

Since θe(–b) = –θe(b), the averaging of the distribu-
tion is achieved by going to the quantity [P(θe) +
P(−θe)]/2, which should be considered only at positive θe.
After this procedure, the angle θe acquires the meaning
of an azimuthal angle in the angular distribution of the
accelerated electrons.

The following should be taken into account when
calculating the angular distribution. In expressions (11)
and (12), the electron density distribution ne(b) depends
on the distance b to the axis, since the ionization of the
material is determined by the intensity of the short-
wavelength radiation from the ion cloud. This depen-
dence is different in three different regions. In the first
region that extends from the channel axis to a distance
of (1–2)a from the surface of the ion cloud, i.e., for 0 ≤
b ≤ 3, the intensity of this radiation is approximately
constant. Therefore, the electron density is also con-
stant. The second region extends from the boundary of
the first region to the distance L from the axis (L is the
cloud length). In this region, the ion cloud can be
treated as an extended source of X-ray radiation. There-
fore, it should be assumed that its intensity (and,
accordingly, the electron density) in the second region
varies as 1/b. In the third region beginning from b ≈ L,
the ion cloud must be treated as a point source of X-ray
radiation. Therefore, it should be assumed that its inten-
sity (and, accordingly, the electron density) in the third
region varies as 1/b2 or even faster. The latter stems
from the fact that during ionization, the X-ray radiation
is absorbed and its intensity decreases.

It follows from the foregoing that the contribution of
various impact parameters to the formation of an elec-
tron beam can be determined by taking into account the
corresponding dependences ne(b).

4. DISCUSSION OF THE RESULTS 
OF NUMERICAL CALCULATIONS

4.1. The Capture of an Electron by a Point Ion 

To test the code, we computed the capture of an
electron by a positive point charge Q.

For n/ne, cr = 0.1 and Vg/c = 0.95, the electron has the
angular momentum

,

and the condition M < Mcr = |α|/c transforms to the con-
dition b < 13.9a.

M
0.95cmeb

1 0.952–
-------------------------=
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005



ELECTRON ACCELERATION IN QUASI-STATIONARY ELECTROMAGNETIC FIELDS 1057
7

3

–1

–5

–9

re

ze – zi

(a)

–5 –1 3 7

10

–10

–20

–30

–40

re

ze – zi

(b)

–5 –1 3 7–9

0

300

–300

–900

re

ze – zi

(d)

–360 –140–580

6 7

8

80

200

–200

–600

re

ze – zi

(c)

–30 0 30 60

1

2

3

4

5

Fig. 3. Electron trajectories for I0 = 1019 W cm–2 and n/ne, cr = 0.075 (a–c) and 0.04 (d) at b = 1.925 (a), 1.95 (b), 8.5 (1), 8.8 (2),
9.1 (3), 9.4 (4), 9.7 (5), 1.95 (6), 2.375 (7), and 8.5 (8).
The results of our numerical calculations are in
close agreement with the analytical results presented in
Section 2.

4.2. Specifying the Parameters of the Problem 

In our calculations, we assumed that the laser radia-
tion had a wavelength of 1.06 µm at the pulse duration
τ = 50 fs (ne, cr = 9.93 × 1020 cm–3, Ir = 2.45 ×
1018 W cm–2) with a hyper-Gaussian (3) radial intensity
distribution with γ = 6 and a Gaussian (4) longitudinal
and time dependence f2(z, t). The calculations were per-
formed for a = 3 µm, initial particle densities n/ne, cr in
the range 0.03–0.5, and peak intensities in the range
4 × 1018–4 × 1020 W cm–2. The value of z0 was taken to
be –100a. We assumed that the laser pulse entered the
medium at time t = 0 and analyzed the electron motion
over a period of t = 2000a/c.

4.3. Results of Numerical Calculations 

By integrating the system of equations (9) and (10),
we determined the time profiles of both (longitudinal
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and radial) coordinates, both velocities, and the kinetic
energy of the electron with various initial impact
parameters b.

The configurations of the electric and magnetic
fields in the laboratory frame of reference produced by
the moving cloud differ markedly from those for a point
charge. (Note that the magnetic field strength in the
frame of reference associated with the moving ion
cloud is H ≡ 0.) They are more elongated along the z
axis. The characteristic electric field strength is E0 ≈ 5 ×
1013 V m–1, while the characteristic magnetic field
strength is H0 ≈ 2 × 1010 A m–1.

Figure 3 shows the electron trajectories for I0 =
1019 W cm–2 and two values of n/ne, cr . For all of the tra-
jectories shown in Fig. 3, ze – zi associated with the
motion of the ion cloud and re are used as the longitudi-
nal and transverse variables, respectively.

Analysis of the results reveals two types of trajecto-
ries that correspond to two ranges of the parameter b
separated by a critical value bcr . Just as in the case of a
point ion, the electron passes by the cloud as it moves
at b > bcr and is captured by the cloud at b < bcr . In the
SICS      Vol. 100      No. 6      2005



1058 GALKIN et al.
trajectories of the first type shown in Figs. 3a and 3b,
the electron is captured by the ion cloud. In the capture
regime, the electron is in a relatively small vicinity of
the cloud. At high intensities, it can be multiply
reflected from the region of action of the ponderomo-
tive force without going into it, while at low intensities,
it can go into the region of action of the ponderomotive
force while crossing the z axis. The angular momentum
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Fig. 4. Electron kinetic energy versus time for I0 =

1019 W cm–2 and n0/ne, cr = 0.075 at b = 1.95 (a), 5.525 (b),
and 6.825 (c).

21
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6

1
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Fig. 5. Maximum electron energy Wmax [MeV] versus
impact parameter b in the time interval t1 = 0–2000.
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M of an electron in a centrally symmetric field is known
to be conserved, and the capture condition is |M| ≤ Mcr .
During the interaction with a distributed charge (cloud),
the angular momentum is not conserved. Moreover,
during the reflection from the region of action of the
ponderomotive force, the angular momentum of the
electron changes sharply; therefore, the capture is not
continuous, and the electron escapes from the capture
regime and recedes from the cloud in a certain time
(Fig. 3b).

Figure 4 shows the time dependences of the electron
kinetic energy for I0 = 1019 W cm–2 and n/ne, cr = 0.075
for three impact parameters: b = 1.95 (Fig. 4a), 5.525
(Fig. 4b), and 6.825 (Fig. 4c). In Fig. 4a, the electron is
in the capture regime; in Figs. 4b and 4c, the electron
escapes from the capture regime at a different time.
Analysis of these curves leads us to the following con-
clusions. In the capture regime, the energy oscillates
with time, reaching its maximum when the electron
moves around the ion cloud is at the minimum distance
from the cloud and only begins to be decelerated by the
ponderomotive force. The electron has a minimum
energy of ~3–4 MeV at the maximum distance from the
ion cloud. The electron also has approximately the
same energy after its escape from the capture regime far
from the cloud.

As n/ne, cr decreases, the total charge of the ion cloud
decreases, causing the Coulomb force to decrease. In
this case, the regime of electron motion around the ion
cloud changes: the capture regime disappears, and the
electron moves around the ion cloud in a smooth trajec-
tory. The change of regimes occurs at n/ne, cr = 0.05.

The maximum energy achievable in the capture
regime also depends on the density. It is 20 MeV at
n/ne, cr = 0.075 and reaches 140 MeV when the density
increases to n/ne, cr = 0.5.

In Fig. 5, the maximum electron energy Wmax in
the capture regime is plotted against the impact param-
eter b. It is interesting to compare this quantity with
the energy of the electron oscillations in the laser radi-
ation field, which is 0.6 MeV for the intensity I0 =
1019 W cm–2 under consideration. (This is the energy of
the electrons with b ≤ 0.2a after their escape from the
region of action of the ponderomotive force.) It thus
follows that the electron acquires an energy higher than
0.6 MeV during the Coulomb interaction with the
cloud.

4.4. The Angular Distribution 
of Accelerated Electrons 

The accelerated electrons escaped from the capture
regime fly at an angle θe(b) to the axis; this angle has a
random value in some interval (Fig. 6a). Electrons with
different impact parameters can fly at the same angles
to the axis. Figure 6b shows the angular electron distri-
bution calculated using the technique described above.
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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Curve 4 represents the resulting angular distribution.
Curve 5 is shown for comparison. Curves 1, 2, and 3
illustrate the contributions of various impact parame-
ters to the ultimate angular distribution.

A comparison of curve 4 with experimental results
is of considerable interest. In this case, the experimen-
tal results obtained under the self-channeling condi-
tions must be used. Curve 4 is in satisfactory agreement
with the experimental curve obtained in [2] during the
propagation of laser radiation in gases. Note that it is
improper to compare the above computational data
with the results of the experiments in which laser radi-
ation was focused on the surface of a solid target.

The time tc during which the electron is in the cap-
ture regime depends on the impact parameter b. This
dependence is random, and tc can change greatly as b
changes only slightly. Nevertheless, our calculations
show that for the thin layer under consideration, we can
introduce a mean value of  that corresponds to the
condition under which the fraction of the electrons left
in the capture regime is 1/e of their total number in this

tc*
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Fig. 6. (a) Electron exit angle θe versus impact parameter b;
(b) the angular electron distribution. Curve 4 represents the
resulting angular distribution for the interval 0.1a ≤ b ≤ 12a,
curve 5 represents the resulting angular distribution under
the assumption of ne(b) = const for the interval 0.1a ≤ b ≤
12a. Curves 1, 2, and 3 were obtained for the intervals
0.1a ≤ b ≤ 5a, 0.1a ≤ b ≤ 7a, and 0.1a ≤ b ≤ 8.8a, res-
pectively.
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layer. The quantity v g  gives the mean free path of an
electron in the captured state. It can be assumed that all
electrons escape from the capture regime after the time

 and subsequently propagate in their own trajectories
without interacting with the field of the ion cloud. Next,
let us consider two cases. In the first case, the total
length of the nonlinear medium is Lnl @ v g , all thin
layers are equivalent, and the angular electron distribu-
tion at the exit from the nonlinear medium is similar to
that after one thin layer (without the additional scatter-
ing of electrons as they propagate in the medium). In
the second case, the length of the nonlinear medium is
Lnl ≤ v g , the thin layers are not equivalent, and the
integration must be performed over the entire length of
the nonlinear medium when calculating the beam
parameters at the exit.

Both the maximum energy during the oscillations in
the capture regime and the energy after the recession
from the cloud are of considerable interest from the
standpoint of possible applications. The former case is
important, for example, for the possible use of oscillat-
ing electrons to collisionally excite the heavy particles
near the ion cloud and to produce inversion in the X-ray
range. The latter case deals with the maximum energy
of the electrons in the electron beam produced through
the passage of an ultrashort pulse through material.

5. CONCLUSIONS

We investigated the possibility of electron accelera-
tion during the self-channeled propagation of laser
radiation.

In this regime, an ion cloud moving together with
the laser pulse is formed in the material. Our analysis is
based on studying the trajectories of single electrons
under the ponderomotive force of a laser pulse and the
quasi-stationary electric and magnetic fields generated
by the moving ion cloud.

Our calculations lead us to the following conclu-
sions.

(1) The maximum energy of the electron, Wmax, that
it reaches during its motion along the trajectory
increases with density and depends weakly on intensity.

(2) The maximum output energy of the electron,
Wout (the electron energy after the propagation of a laser
pulse in a nonlinear medium of finite length), increases
with density and depends weakly on intensity.

(3) In all regimes, Wmax ≥ Wout .

(4) Two electron acceleration regimes are observed
at fixed intensity. At low density, no electrons are cap-
tured by the ion cloud and their energies Wmax and Wout
lie in the range of several MeV. At high density, elec-
trons are captured by the cloud, and the energies Wmax
and Wout can reach 100 MeV or more.

tc*

tc*

tc*

tc*
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(5) The angular distribution of the beam of acceler-
ated electrons is in satisfactory agreement with pub-
lished experimental results.

Note that there is no plasma, but only a charged ion
cloud inside the laser pulse. Thus, no plasma waves can
be generated in it. After the passage of the laser pulse
through a layer of material, the tail of the ion cloud is
rapidly neutralized by the surrounding cold electrons.
Under such conditions, the possibility of plasma wave
generation in the wake of the laser pulse is not obvious.
The electron acceleration mechanism suggested in this
paper, in fact, does not require invoking the plasma
wave mechanism. The electromagnetic field of the ion
cloud traveling together with the laser pulse acts as the
wakefield considered previously [9, 14, 15].
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Abstract—We investigate the quasi-solitons of the envelope of forward body magnetostatic waves in a struc-
ture that consists of two magnetically coupled films separated by a nonmagnetic interlayer under the initial exci-
tation of a pulse in one of them. We have found that as the pulse propagates, its energy is transferred from one
film to the other through intermode coupling; as a result, “pulsating” quasi-solitons of the coupled modes of the
two films emerge. We show that the amplitude of each of the mode pulses at the exit from the waveguide can
be regulated over a wide range by varying the magnetizing field. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In recent years, the soliton regimes of propagation
of waves of various natures have attracted the rapt
attention of researchers. Apart from optical solitons [1],
solitons in magnetically ordered structures, namely, the
solitons of the envelope of magnetostatic waves
(MSWs) in garnet-ferrite films [2], have been studied
extensively. Interest in MSW solitons stems both from
the possibility of implementing various integrated spin-
wave devices based on them and from the variety of
soliton dynamical regimes realizable at fairly low
MSW intensities. The generation conditions for soli-
tons of various MSW types and the analytical apparatus
for their investigation are described in [2, 3]. Theoreti-
cal and experimental studies of MSW solitons in gar-
net-ferrite films with various orientations of the magne-
tizing field as well as the types of excitation and control
of the soliton dynamics are presented in [4–7]. In par-
ticular, it is shown in [7] that the soliton regimes can be
controlled through the action of a continuous-pumping
wave. Additional possibilities for controlling the soli-
ton regimes could be associated with the use of two-
layer magnetically coupled structures as a wave-guid-
ing medium, since the dynamical properties of the spin
subsystem change significantly in such structures and
new types of spin-wave excitations are realized [8–10].
The dipole [11, 12] or exchange [13] interaction or their
combined action [14] are the main types of interlayer
magnetic coupling. Recently, the propagation of optical
solitons has been investigated in two-channel and two-
mode optical fibers [15, 16]. The existence of inter-
mode coupling was shown to lead to energy transfer
and oscillations of the amplitudes of the coupled soli-
tons with a certain period along the optical fiber length.
The peculiarities of the waveguide structures for
1063-7761/05/10006- $26.001061
MSWs consist mainly in the mode excitation methods
and in the constraints imposed on the waveguide
length, which, however, is compensated for by the
strong nonlinearity of systems. In this paper, we inves-
tigate the quasi-solitons of the envelope of forward
body MSWs that propagate in a normally magnetized
two-layer garnet-ferrite structure under the initial exci-
tation of an MSW soliton in the structure only in one of
the coupled magnetic layers.

2. BASIC EQUATIONS

Let us consider a three-layer planar structure com-
posed of two ferromagnetic films separated by a non-
magnetic interlayer that is oriented perpendicular to the
z axis. Let a wave packet formed by the interacting
MSW modes belonging to each of the films be excited
in this film structure and propagate along the x axis. In
this case, the magnetostatic potential of the wave
packet can be represented as the sum of eigenmodes of
the isolated magnetic films in the structure. Of the com-
plete set of film eigenmodes, the only two effectively
coupled ones are those that most precisely satisfy the
phase matching conditions, i.e., those for which both
2δω = ω01 – ω02 and 2δk = k01 – k02 have minimal or zero
values, where ω0n and k0n are the carrier frequency and
wavenumber of an eigenmode. In this paper, we do not
assume the presence of a different perturbation (e.g., a
periodic nonuniformity of the layer parameters) that
could synchronize the modes of different orders. There-
fore, the total pulses are formed only by the coupled
modes of the same order belonging to different
waveguide layers. In particular, the modes of the first
order must be these modes, since they are least
 © 2005 Pleiades Publishing, Inc.
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absorbed. In this case, the magnetostatic potential is
described by

(1)

where M0n is the magnetization of the corresponding
film and φn is the initial (at t = 0) phase of the wave
localized in layer n. For the orientation of the magnetiz-
ing field H under consideration (H || M0n || z), the diag-
onal and nondiagonal components of the magnetic sus-
ceptibility tensor are defined by the expressions

where

The profile function Un(z), which defines the distribu-
tion of the mode in each of the n layers over its cross-
section, and the coefficient in front of it can be deter-
mined from the expression that relates the magneto-
static potential to the variable MSW magnetic field and
from the Walker equation:

(2)

where  is the magnetic permeability tensor for film
n. The dimensionless complex amplitude of the magne-
tostatic potential can be expressed in terms of the nor-
malized complex values of the variable magnetic
moment components,

it is a slowly varying function of the coordinate and
time due to the intermode coupling. The dispersion
relation for the MSW eigenmodes is

(3)

where ln is the thickness of the corresponding film, and
the transverse wave number is related to the propaga-

tion constant by kzn = k0n .
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The dynamics of the envelope of each of the inter-
acting MSWs can be represented by the following
equation (see the Appendix):

(4)

Here, the upper and lower signs in the argument of the
exponential refer to the modes with the indices n = 1
and 2, respectively; 2δφ = φ1 – φ2 is the initial phase dif-
ference between the coupled modes; the dispersion

parameters v n = ∂wn/∂kn and dn = ∂2ωn/∂  obtained at
kn = k0n define, respectively, the MSW group velocity
and group velocity dispersion, gsn = ∂ωn/∂|ϕn|2 is the
nonlinear self-action of the system; and qn is the inter-
mode coupling coefficient. In the absence of losses, the
following condition is satisfied:

which yields the equality q1 =  = q for the coupling
coefficients. Below, we take into account the phase mis-
match attributable only to the difference between the
wavevectors of the two modes, δω = 0 and δk = δ, by
assuming the carrier frequencies of the MSW pulses in
both magnetic layers to be identical; this is justified by
the MSW excitation methods used [3]. When going to
the running coordinate

,

the system of dynamical equations takes the form

(5)

where

In the absence of intermode coupling (and when
going to the corresponding running coordinate ξ = x –
v nt), each of the dynamical equations admits of an exact

i
∂ϕn

∂t
--------- iv n

∂ϕn

∂x
---------

dn

2
-----

∂2ϕn

∂x2
-----------+ +

=  qn 2i δωt δkx– δφ–( )±[ ]ϕ 3 n– gsn ϕn
2ϕn.+exp

kn
2

ϕ1
2 ϕ2

2+ const,=

q2*

ξ x
2v 1v 2

v 1 v 2+
------------------t–=

i
∂ϕn

∂t
--------- iṽ n

∂ϕn

∂ξ
---------

dn

2
-----

∂2ϕn

∂ξ2
-----------+±

=  qn 2i δ ξ
2v 1v 2

v 1 v 2+
------------------t+ 

  δφ++−
 
 
 

ϕ3 n–exp

+ gsn ϕn
2ϕn,

ṽ n v n

v 1 v 2–
v 1 v 2+
------------------.=
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Fig. 1. Time dependences of the envelope of the MSW pulses in each of the layers (n = 1, 2) under the single-mode excitation of
the structure and total phase synchronism; l1,2 = 5 µm, H = 1.8 kOe, q = 3 × 106 (a), 7 × 106 (b), and 107 s–1 (c).
solution in the form of a propagating soliton of the
MSW envelope:

(6)

where for dn < 0 (anomalous dispersion) and gsn > 0,

(7)

The following relation holds between the initial (i.e., at
t = 0) amplitude |ϕn0|, length ξn0 of the pulse, and its
phase Γn:

(8)

For normal dispersion (dn > 0) and at gsn > 0, we have a

ϕn t ξ,( ) ϕn ξ( ) iΓnt–( ),exp=

ϕn ξ( ) ϕn0 ξ /ξn0( ).cosh
1–

=

2Γn ϕn0
2gsn

dn

ξn0
2

-------.–= =
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stationary solution:

(9)

In this case, the pulse phase, initial length, and ampli-
tude are related by

this relation describes a state called a “dark” soliton and
corresponds to a dip in the MSW intensity.

The solution of Eqs. (5) at q = 0 in the form of a
propagating soliton is stable [2–4] for the initial ampli-
tude of the solitary wave determined by the dispersion
and nonlinear properties of the waveguide and by the
length of the pulse excited in the structure. The pulse is

ϕn t ξ,( ) ϕn0 ξ /ξn0( ) iΓnt–( ).exptanh=

Γn ϕn0
2gsn

dn

ξn0
2

-------;= =
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compressed and spreads if the amplitude is, respectively,
larger or smaller than |ϕn0| satisfying condition (8). In
actual structures, when the energy of the excited soliton
differs slightly from the energy corresponding to the
stable solution, the energy is adjusted—it is released in
the form of radiation or absorbed from the medium [1].

In the presence of intermode coupling, system (5)
can be solved analytically in the case of symmetric or
antisymmetric mode excitation in the magnetic layers
(ϕ10 = ±ϕ20). In the approximation of strong intermode
coupling, the envelopes of the totally synchronized
interacting MSWs can be represented as a sum of
uncoupled partial pulses, and two independent dynam-
ical equations [1, 16] can be solved instead of the sys-
tem. However, in the case of single-mode excitation of
the structure (ϕn ≠ 0, ϕ3 – n = 0), we cannot obtain two

0.02

0.01

0
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2

n = 1

|ϕn|

ξ, cm

(a)

0.02

0.01

0
–0.1 0 0.1
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n = 1

(b)

Fig. 2. MSW pulse profiles in each of the layers at (a) t =
1.26 × 10–7 s and (b) t = 11.34 × 10–7 s; the dashed lines rep-
resent the soliton profiles with the amplitudes correspond-
ing to the pulses; the coupling coefficient is q = 107 s–1.
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independent equations, and only a numerical solution
of system (5) is possible.

3. NUMERICAL ANALYSIS

For our numerical analysis, we take the parameters
for each of the magnetic layers of the structures that
correspond to garnet-ferrite films: 4πM0n = 1750 G and
γ = 1.76 × 107 (Oe s)–1. We assume the duration of the
MSW pulse excited in the structure to be τ1 = 10 ns and
the carrier frequency to be ω0n = 2 × 109 s–1.

For these parameters, Fig. 1 shows the time depen-
dences of the MSW pulse profiles in each of the layers
of the magnetically coupled structure with a length of
L = 1 cm for three values of the coupling coefficient and
the initial excitation of only the first mode (n = 1). The
profile of the input pulse corresponds to the soliton
solution (7). We also assume that the magnetic layers
are identical and have a thickness of ln = 5 µm and that
the total phase synchronism condition is satisfied
between the MSW modes; the magnetizing field is
taken to be H = 1.8 kOe. We see from the above depen-
dences that as the input pulse propagates, its energy is
transferred to the second layer of the structure, where
the pulse of the second MSW mode with a profile sim-
ilar to the soliton profile is formed. After the pulse of
the first mode completely transforms into the pulse of
the second mode, the reverse process begins: the ampli-
tude of the n = 2 pulse decreases, while the amplitude
of the n = 1 pulse increases. Depending on the MSW
group velocity and the coupling coefficient, this cycle
of energy transfer can be repeated many times over the
travel time of the pulses through the waveguide, but the
pulse profiles slightly change and increasingly deviate
from the initial one corresponding to the soliton profile.
Thus, two quasi-solitons that “pulsate” as they propa-
gate are formed in the two-layer structure. The number
of pulsations of the two synchronized (v 1 = v 2) pulses
in length L (to within the fractional part) is N = Lq/πv n ,
and the energy from the pulse of one mode is com-
pletely transferred to the pulse of the other mode in a
time of tp = π/2q.

Figure 2 shows the pulse profiles for the two MSW
modes at the beginning of their propagation through the
waveguide structure at t = 126 ns (a), which corre-
sponds to the first half-period of the mode conversion,
and at t = 1134 ns (b) near the exit from the waveguide
for the case considered above at q = 107 s–1. The dashed
lines indicate the profiles that have the same amplitudes
as those of the above pulses and that were constructed
using formula (7); i.e., they are the soliton profiles. We
see that at the beginning of the mode conversion, both
the decreasing (in amplitude) pulse and the increasing
pulse of the other mode differ little from solitons. How-
ever, the mode coupling leads to a spreading of the
pulse profiles; as a result, the pulse length at the exit
from the waveguide almost doubles compared to the
solitons (Fig. 2b). The pulse spreading depends mainly
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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Fig. 3. Time dependences of the envelope of the MSW pulses in each of the layers in the presence of a phase mismatch; l1 = 10.0 µm,

l2 = 9.9 (a) and 9.7 µm (b), H = 1.8 kOe, and q = 107 s–1.
on the time of their propagation through the structure.
Thus, for example, as the coupling coefficient
decreases by several factors, the intermode conversion
slows down significantly, but the pulse broadening at
the exit from the waveguide changes only slightly.
However, as the thickness of the magnetic layers
increases, the pulse spreading at the exit from the
waveguide proves to be smaller due to an increase in the
group velocity of the pulses and, hence, the faster their
propagation through the structure. Note that the pulse
modulation, which manifests itself in a distortion of the
pulse tails, increases with decreasing coupling coeffi-
cient (see Fig. 1a).

When performing our numerical analysis, we may
not include the initial phase difference δφ in system (5),
since we consider single-mode excitation and the
(n = 2) mode absent at t = 0 lags behind the input
(n = 1) mode by π/2 in phase. However, for two-mode
excitation, the initial phase difference determines the
pattern of intermode coupling: for symmetric or anti-
symmetric excitation of the structure (ϕ10 = ±ϕ20), for
which the phase difference is 2δφ = 0, π, no energy is
transferred between the modes, and, hence, there are no
periodic mode amplitude variations; at 2δφ = ±π/2 for a
symmetric waveguide, energy is completely transferred
from one mode to the other and back, i.e., the pattern of
intermode coupling is similar to that shown in Fig. 1; at
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
intermediate δφ and at 2δφ = 0, π and ϕ10 ≠ ±ϕ20, mode
amplitude pulsations emerge, but there is no complete
energy transfer between the modes.

In the case of single-mode excitation under consid-
eration, there is no complete energy transfer between
the pulses of the two modes in the presence of a phase
mismatch, which, in particular, is attributable to an
asymmetry of the waveguide structure. Figure 3 shows
the time dependences of the pulse profiles for the two
modes at the magnetic layer thickness l1 = 10.0 µm and
l2 = 9.9 (a) and 9.7 µm (b), the waveguide length L =
1 cm, the coupling coefficient q = 107 s–1, and the mag-
netizing field H = 1.8 kOe. As above, the initial exci-
tation is assumed to be single-mode or, more specifi-
cally, |ϕ2(ξ)| = 0, and |ϕ1(ξ)| corresponds to the soliton
profile (7). The wavevectors of the MSW eigenmodes
in each of the films at the pulse carrier frequency were
calculated numerically from the transcendental disper-
sion relation (3). It follows from these dependences that
the mode conversion efficiency decreases with increas-
ing phase mismatch attributable to the difference
between the thicknesses of the magnetic layers, which
manifests itself in a decrease in the pulsation amplitude
of the input pulse and the amplitude of the pulse of the
second mode excited by it. In this case, the time of max-
imum mode conversion decreases; i.e., there is a large
SICS      Vol. 100      No. 6      2005
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number of extrema of the pulse amplitude over the
travel time of the pulses through the waveguide struc-
ture.

In Fig. 4, the magnitudes of the MSW wavevectors
and the pulse group velocities are plotted against the
magnetizing field H at the MSW carrier frequency
ω0n = 2 × 109 s–1 and the magnetic layer thicknesses ln =
5, 10, and 15 µm. We see that increasing the magnetiz-
ing field causes a decrease in the magnitudes of the
wavevectors and a nearly linear increase in the pulse
group velocities. As the thickness of the magnetic lay-
ers increases, the field dependence of the wavevectors
weakens, while the corresponding dependence of the
group velocities strengthens. Note that a change in the
group velocity at the same pulse duration τn causes the
pulse length ξn to change, but the pulse amplitude for a
given change in the magnetizing field changes only
slightly due to the accompanying changes in the disper-
sion and nonlinear self-action of the system (the coeffi-
cients dn and gsn).

The dependence of the group velocity on the magne-
tizing field leads to the following important result. By
varying the velocity of pulse propagation at the exit
from the structure through the field H, we can obtain
any mode conversion phase and, thus, regulate the out-
put amplitude of the two MSW pulses over a wide
range, from its maximum value to zero in the case of
total mode synchronism. Figure 5 shows the profiles of
the first (a) and second (b) pulses at the exit from a
waveguide of length L = 1 cm for identical magnetic
layers of thickness ln = 5 and 10 µm at various magne-
tizing fields H. For thicker films, the change in the out-
put amplitudes for the same change in the magnetizing
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Fig. 4. Magnitudes of the MSW wavevectors (dashed
curves) and pulse group velocities (solid curves) versus
magnetizing field; ω0n = 2 × 109 s–1, l1, 2 = 5 (1), 10 (2), and
15 µm (3).
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field is smaller. This is because as the films become
thicker, the group velocity increases greatly (in the case
under consideration, by more than a factor of 2), and
the number of extrema of the amplitudes of the propa-
gating pulses decreases over their travel time through
the waveguide. As a result, to change the intermode
coupling phase by a half-period (which is needed to
obtain any of the possible output pulse amplitudes)
requires a larger change in the group velocity v n

through the field H than that for thin films; for the latter,
the group velocity is relatively low, and the pulse under-
goes a much larger number of pulsations as it travels
through the waveguide. It is clear from the aforesaid
that for a larger change in the field H, several maxima
and minima of the pulse amplitude take place at the exit
from the magnetic structure; the intervals between the
field strengths corresponding to the nearest maxima
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Fig. 5. Pulse profiles in the first (a) and second (b) layers at
the exit from a waveguide of length L = 1 cm; l1, 2 = 6 µm
(solid curves) and 10 µm (dashed curves), H = 1796.0 (1),
1797.0 (2), 1798.0 (3), 1799.0 (4), and 1799.5 Oe (5).
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(minima) of the pulse amplitude in one of the layers
increase with increasing H.

4. CONCLUSIONS

Our analysis has shown that when a soliton of the
MSW envelope of one of the layers is excited in a two-
layer magnetically coupled structure, MSW quasi-soli-
tons pulsating out of phase and belonging to different
magnetic layers are formed through intermode cou-
pling. The intermode coupling leads to a spreading of
the pulses relative to the soliton profile, which depends
mainly on the travel time of the pulses through the two-
layer structure. The conversion period of the pulse of
one mode into the pulse of the other mode is deter-
mined by the coupling coefficient. The dependence of
the group velocity on the magnetizing field allows one
to obtain any phase of the intermode conversion cycle
at the exit from the waveguide structure through a small
change in the field strength (∆H ≈ 1 Oe) and, thus, to
vary the output amplitude of the pulses of both coupled
modes over a wide range. The efficiency of this pulse
amplitude control increases with decreasing thickness
of the magnetic layers. Note that, despite the MSW
peculiarities, the main features of the dynamical behav-
ior of coupled solitons considered here can take place
in a broad class of physical systems described by the
nonlinear Schrödinger equations.
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APPENDIX

Let us write the wave equation for the magnetostatic
potential of an individual layer by assuming it to be iso-
lated (and omitting the index n):

(A.1)

where v  = /  is the MSW phase velocity,  =

, and the frequency  is assumed to depend
on the propagation constant k and the MSW intensity.
Let us represent the magnetostatic potential as

(A.2)

Its Fourier components,

(A.3)
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satisfy the equation

(A.4)

We seek a solution of this equation in the form

(A.5)
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reduce Eq. (A.4) to the following equation for the
slowly varying functions :
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Let us represent the MSW frequency as

where the term 
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 describes the nonlinear effects.
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) in a Taylor series near
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 = . The small addition to the
frequency associated with nonlinearity can be repre-
sented as

(A.9)

Let us substitute expansion (A.8) in which we discard
the terms higher than the second order into Eq. (A.7).
Performing the inverse Fourier transform in this equa-
tion,
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the nonlinear Schrödinger equation for the MSW enve-
lope of an isolated layer:

(A.11)

We can formally pass to the equations that include
the intermode coupling in the two-layer structure using
the matrix equation

(A.12)

where the unperturbed magnetostatic potential of each
of the layers with the initial phase is

(A.13)

In the case of weak linear coupling between the modes
where the dispersion relation for the MSW in each of
the layers can be assumed to be independent of the
wave amplitude in the neighboring layer, the equations
for the coupled modes can be written as

(A.14)

Assuming cnn + iω0n to be identical to the operator on
the right-hand side of Eq. (A.11), we obtain a system of
two coupled nonlinear equations where the coefficients
cn, n' define the linear MSW intermode coupling. In the
absence of coupling between the modes (cn, n' = 0),
Eq. (A.11) is valid. For total phase synchronism
between the modes and at zero initial phase difference,
this system is

(A.15)
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In the presence of a phase mismatch, we obtain the sys-
tem of equations (4).
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Abstract—Two-photon transient nutation is observed in a two-level spin system (  centers in crystalline
quartz) using a transverse microwave field and a linearly polarized rf field oriented along a static magnetic field
in the electron paramagnetic resonance. Nutation is excited when the sum of the energies of a microwave photon
and a rf photon is equal to the energy difference between two spin states. The two-photon nature of nutation is
confirmed by measuring its frequency as a function of the amplitude and frequency of the rf field as well as the
amplitude of the microwave field. The amplitude of the effective field of two-photon transitions is measured. It
is shown that the decay rate of two-photon nutation is close to the decay rate for one-photon nutation and is
determined by the spin–spin interaction between  centers. © 2005 Pleiades Publishing, Inc. 
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1. INTRODUCTION

Multiphoton processes in which several photons are
emitted or absorbed simultaneously play an important
role in nonlinear optics [1]. Although such processes
have been known for a long time in magnetic resonance
as well, the interest in studying their dynamics (in par-
ticular, in two-level systems) has appeared only
recently [2–5]. It is well known [3] that real intermedi-
ate energy levels are required for multiphoton pro-
cesses involving a change in the magnetic quantum
number ∆ms > 1 to occur in multilevel spin systems. In
two-level spin systems, multiphoton processes with
∆ms = 1 can take place. Such transitions were studied in
a series of recent publications devoted to pulsed NMR
and EPR [2–5]. In this case, real intermediate levels do
not exist; “dressed” spin states may play the role of such
levels [3]. The term “dressed states” is applied to the
eigenstates of a spin system in a strong microwave
(MW) field having a frequency close to the resonance
frequency of this system. The energy levels of a dressed
system form a “ladder” of doublets separated by the
energy of MW-field photons. At the same time, the
energy difference between the states in each doublet is
determined by the generalized Rabi frequency.

In the subsequent analysis, we will confine our-
selves to multiphoton transitions initiated in two-level
spin systems by bichromatic radiation produced by a
transverse microwave field and a longitudinal radiofre-
quency (rf) field [3]. Considering pulsed EPR studies of
the dynamics of multiphoton processes induced by the
above-mentioned bichromatic radiation, it should be
noted that, in particular, two-photon processes of this
1063-7761/05/10006- $26.001069
type can be excited when the MW field is oriented not
strictly perpendicularly to the static magnetic field and,
hence, an MW field component appears along this field.
The experimental setup in which the MW field is tilted
at 45° to the static field was repeatedly employed for
studying the dynamics of two-photon transitions in two-
level systems using nutation and nutation echo [6, 7]. In
such experiments, two-photon transitions are excited
by two components of the MW field with the same fre-
quency. A similar field configuration has been proposed
recently for two-photon excitation in stochastic NMR
spectroscopy [2].

When a transverse MW field and a longitudinal rf
field are used, the difference in their frequencies is
large; this opens new potentialities for two-frequency
magnetoresonance spectroscopy and its instrumental
implementation. In this type of pulse EPR experiments,
which are based on simultaneous absorption or emis-
sion of several photons with noticeably different fre-
quencies, two- and three-photon electron spin echo was
detected when a nonresonant MW field was used for
excitation [4]; in this case, the sum of the energies of a
MW photon and one or two rf photons was equal to the
resonant frequency of the two-level spin system. Rf-
field induced transparency of the matter to MW radia-
tion was observed when a two-level system was excited
by a bichromatic field with the frequency of the MW
field equal to the resonance frequency of the spin sys-
tem [5].

An analogous field configuration also made it possi-
ble to observe one-photon nutation caused by transi-
tions between the dressed states of a two-level system
 © 2005 Pleiades Publishing, Inc.
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excited by a resonant MW field [8, 9]. Three-photon
nutation between the dressed states of a two-level sys-
tem has also been studied recently in NMR [4]. In this
case, nutation was excited by three circularly polarized
photons of a low-frequency rf field, when their fre-
quency was close to one-third of the frequency of one-
photon nutation caused by the resonance transverse rf
field.

In this study, two-photon nonstationary nutation
excited in the EPR by combined action of MW and rf
fields is observed for the first time (to our knowledge)
in a two-level spin system. In contrast to other coherent
nonstationary effects (free induction, echo, etc.), nuta-
tion directly reflects the dynamics of quantum transi-
tions during the interaction of radiation with the spin
system, while the frequency of nutation provides direct
information on the amplitude of the effective field of
this interaction. These potentialities of nutation are also
illustrated for two-photon transitions in a model two-
level spin system (  centers in crystalline quartz).

2. PREDICTIONS OF THE THEORY

Let us consider an electron spin system with spin
S = 1/2 in a static magnetic field B0 directed along the z
axis in the laboratory system of coordinates and in a lin-
early polarized microwave field 2B1cos(ωt) directed
along the x axis and a linearly polarized rf field
2B2cos(ωrft) applied along the z axis. In this case, the
Hamiltonian of the system (in units of frequency) has
the form

(1)

where ω0 = γB0 is the Larmor frequency (resonance fre-
quency of spin transitions), γ = gβe/" is the gyromag-
netic ratio for the electron, g is the electron g factor, βe

is the Bohr magneton, and ω1 = γB1 and ω2 = γB2 are the
Rabi frequencies for the MW and rf fields, respectively.

For ω0 @ ω1, only one component (σ+ photons) of
the linearly polarized MW field, which rotates in the
direction of the Larmor spin precession, plays a deci-
sive role, while the effect of the second component (σ–

photons) of the MW field, which rotates in the opposite
direction, can be ignored.

Under the action of bichromatic radiation consid-
ered here, multiphoton transitions of the type σ+ + kπrf

can be excited; in these transitions, one MW σ+ photon
is absorbed and k rf π photons are absorbed (k > 0) or
emitted (k < 0) simultaneously [5]. Since π photons
have zero angular momentum, the number of rf photons
participating in such a multiphoton transition is not lim-
ited.

For describing multiquantum transitions induced by
bichromatic radiation, a transition to a generalized
rotating system of coordinates (toggling frame) was
used in [5]. In this case, the effective field amplitude

E1'

H lab t( ) = ω0Sz 2ω1 ωt( )Sx 2ω2 ωrf t( )Sz,cos+cos+
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calculated to within third-order corrections [5] was
found to be

(2)

where parameter z = 2ω2/wrf and Jn(z) is the first-kind
Bessel function of order n.

The first coefficient  describes the effective field
for ω1 ! ωrf . In this case, the effective field amplitude
for the resonance MW field (ω = ω0) is equal to the sum
of the amplitudes of the effective field for all multipho-

ton processes of the type –mπrf +  + mπrf:

(3)

In the case of a nonresonant MW field for ω0 = ω +
ωrf (k = 1), the amplitude of the effective field for the
two-photon transition σ+ + πrf and corresponding mul-

tiphoton processes of the type –mπrf +  + (m + 1)πrf

is given by

(4)

For z < 1 or in the absence of multiphoton processes of

the type –mπrf +  + (m + 1)πrf , the effective field of
the two-photon transition σ+ + πrf can approximately be
described by the dependence [3]

(5)

For large values of ω1, we must take into account the

effect of the third-order term .

3. EXPERIMENTAL TECHNIQUE

The field configuration in the laboratory reference
frame and the energy level diagram showing the pulsed
establishment of two-photon resonance (ω0 = ω + ωef)
between the Larmor frequency and the sum of the fre-
quencies of the MW and rf fields are presented in
Fig. 1. We used continuous MW and rf fields; a longi-
tudinal magnetic field pulse established the resonance.
The initially equilibrium spin system was in a nonreso-
nant static magnetic field B = B0 – ∆B. The magnetic
field was then changed pulse-wise to the resonant value
B0 at instant t = 0. Due to the Zeeman effect, the fre-
quency  of the quantum transition in the spin system
changed as a result of the magnetic field jump ∆B =

ω1 k,  = ω1 J k– z( )
ω1

2ωrf
----------+ ∫

×
J l– z( )Jm l– z( )Jm k– z( )

l k–( )m
------------------------------------------------

m 0≠
∑

l k≠
∑

=  ω1 ck
1( ) ck

3( )+[ ] ,

ck
1( )

σmw
+

ω1 0, ω1J0 z( ).=

σmw
+

ω1 1, ω1J 1– z( ).=

σmw
+

ω1 1,
ω1ω2

ωrf
------------.≈

ck
3( )

ω0'
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|B − B0| to a value of ω0 and became equal to the sum of
the frequencies of the MW and rf fields (Fig. 1b). Dur-
ing the action of the pulse, the resonance interaction
between the total field and the spin system was estab-
lished. The stabilization time for resonance conditions
was about 120 ns and was much shorter than T2 and
2π/ω1, 1 , which ensured the excitation of two-photon
nutation.

A continuous rf field and a magnetic field pulse
were produced by passing current through the same
modulation element in the measuring resonator. In this
case, measuring the current producing these fields
made it possible to determine the amplitude B2 of the rf
field produced in the region of the sample if the ampli-
tude ∆B of the pulse magnetic field is known. The value
of ∆B was determined from the frequency of beats
(equal to ∆B/γ) in the free induction signal observed
after the termination of the magnetic field pulse [10].
This enabled us determine the rf field amplitude B2

approximately to within 5%.

This technique for forming nutation signals was
implemented using the X-band EPR pulse spectrometer
specially designed by us [9, 11]. The amplitudes of the
MW and rf fields (in frequency units) did not exceed
1.5 MHz. To improve the signal-to-noise ratio, we used
multichannel digital summation of signals. The phase
of the rf field was not locked with the phase of the MW
field. There was no locking of the rf field phase to the
beginning of the magnetic field pulse either.

Two-photon nutation was observed for  centers
(S = 1/2) in crystalline quartz bombarded by neutrons.
The EPR spectrum of these centers in the X-band in the
direction of the magnetic field parallel to the optical
axis of the crystal consists of a single line of width
∆Bpp = 0.016 mT. The small width of the EPR line and
long relaxation times even at room temperature render

 centers in quartz a convenient object for nutation
studies [3, 6, 8, 9].

4. RESULTS AND DISCUSSION

The experiments were made at room temperature.
The static magnetic field was parallel to the optical axis
of the crystal. The duration of negative magnetic field
pulses was 10 µs, their amplitude ∆B = 0.12 mT, and
the pulse repetition period was 1.25 ms.

Figure 2 shows the dependence of the absorption
signal amplitude of one-photon nutation on the mag-
netic field detuning δ/γ = (w0 – ω)/γ from the resonance
value B0 during the pulse action.

It is well known that the one-photon nutation signal
in the case of a nonuniform magnetic resonance line-

E1'

E1'
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width σ @ ω1 at T2 ! T1 (except for time intervals t <
1/ω1) can be described by the relation [11, 12]

(6)

Here, f(ω) is the value of normalized function describ-
ing the shape of the line in the vicinity of the center of
the nonuniform line, J0(ω1t) is the zero-order Bessel
function, and T1 and T2 are the spin–lattice and spin–
spin relaxation times, respectively. In the case of 
centers, the condition ω1 > σ was satisfied and the sig-

v ω1 f ω( )J0 ω1t( ) t
2T2
---------– 

  .exp∝

E1'

z

x
y

tt = 0

(a) (b)

ω1

ω0

ω2

ω0'

 ωrf, π
 ω, σ+

ω0 = ω + ωrf

Fig. 1. (A) Field configuration in the laboratory reference
frame, used for observing two-photon resonance.
(b) Energy level diagram illustrating the pulsed switching
on of two-photon resonance (ω0 = ω + ωrf) by a magnetic
field pulse in the case of continuous MW and rf fields.
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Fig. 2. EPR spectrum of  centers in crystalline quartz,

detected with the help of one-photon nutation at ω1/2π =
0.96 MHz. The dashed curve describes the spectrum
obtained in a weak microwave field.
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Fig. 3. Nutation EPR signals from  centers detected at fixed amplitudes of the MW (ω1/2π = 0.96 MHz) and rf (ω2/2π =

1.02 MHz) fields for various values of detuning δ = ω0 – ω from one-photon resonance. (a) One-photon nutation for δ = 0 and
ω2 = 0. Two-photon nutation for detuning δ ≈ ωrf and ωrf /2π = 1.37 (b), 2.62 (c), and 3.40 MHz (d).

E1'
nal had a shape intermediate between a decaying Bessel
function and a decaying sinusoid typical of a uniformly
broadened line (see the oscillograms in Fig. 3a). In this
case, the nutation frequency was equal to the Rabi fre-
quency ω1 = γB1 and was virtually independent of the
detuning from resonance.

In view of radiation broadening, the linewidth
detected with the help of nutation exceeds the EPR line-
width for  centers, which can be obtained using a
weak MW field and shown by the dashed curve in
Fig. 2.

Arrows in Fig. 2 mark the values of the magnetic
field during the action of the pulse, at which the nuta-
tion signals shown in Fig. 3 were recorded. The signal

E1'
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in Fig. 3a is one-photon nutation at frequency ω1 =
0.96 MHz, recorded at the resonance value of the mag-
netic field (the position of this field is marked by
arrow 1 in Fig. 2). The signals depicted in Figs. 3b–3d
were obtained for magnetic field detunings from the
resonance value for one-photon resonance, marked by
arrows 2–4 in Fig. 2, for the simultaneous action of the
MW and rf fields with frequencies satisfying the condi-
tion ω + ωrf = ω0. The rf field amplitude ω2 = γB2 =
1.02 MHz was close to the amplitude of the MW field
and was the same for all above-mentioned values of
detuning from resonance.

It can be seen that, in accordance with relation (5),
the frequency Ωn of nutation observed on the oscillo-
grams shown in Figs. 3b–3d decreases with increasing
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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detuning of the magnetic field and, accordingly, with
increasing frequency of the rf field, which is required
for the condition ω + ωrf = ω0 to be satisfied. In this
case, the amplitude of the recorded signals decreases. It
should be noted that if the signal being detected were
due not to two-photon transitions, but to a change in the
one-photon nutation signal of a uniformly broadened
line associated with detuning from resonance, its fre-
quency would be determined by the generalized Rabi

frequency Ω =  and would increase with
detuning δ.

Figure 4 shows the dependence of the two-photon
nutation frequency on parameter z = 2ω2/ωrf (normal-
ized amplitude of the rf field) for ω1/2π = 0.96 MHz.
The experimental results represented by circles are
obtained upon a change in ω2 at a fixed rf field fre-
quency ωrf//2π = 2.62 MHz. The remaining data are
obtained upon a change in the rf field frequency ωrf at
ω2/2π = 1.02 MHz. The solid line shows the approxi-
mation of the experimental data by the dependence
Ωn = kω1ω2/ωrf , where k = 0.74 ± 0.07.

In view of the absence of phase locking between the
rf and MW fields in our experiments, the signal being
recorded is the result of averaging of a large number (up
to 103) of signals obtained for a random phase of the rf
field. Such an averaging ensures the suppression of the
contribution from all multiphoton processes of the type

–mπrf +  + (m + 1)πrf [5]. Consequently, the
detected nutation was determined by the two-photon
transitions σ+ + πrf alone, and its frequency can be
described by relation (5).

The experimental data presented in Fig. 4 confirm
the two-photon origin of the observed nutation.
Another dependence confirming this origin is depicted
in Fig. 5. It can be seen from Fig. 5 that the two-photon
nutation frequency for ω2/2π = 1.02 MHz and ωrf /2π =
2.62 MHz is proportional to the MW field amplitude (in
frequency units) in accordance with the predictions of
the theory.

The possibility of measuring the MW and rf field
amplitudes in the given experiment has made it possible
to quantitatively compare the effective field of two-
photon transitions determined by the nutation fre-
quency with the predictions of the theory (with an error
not exceeding 10% even for the lowest nutation fre-
quencies). It has been found that the amplitude of this
field differs quantitatively from the value predicted by

relation (5) and is close to k = 1/  ≈ 0.707. This can
be due to the fact that, according to [13, 14], the effect
of the longitudinal field on the transitions involving
dressed states in such experiments may be weaker than

the effect of the transverse field by a factor of .
It can be seen from Figs. 3c and 3d that the observed

signals of two-photon nutation are successfully approx-
imated by a dependence of type (6) typical of a nonuni-

ω1
2 δ2+

σmw
+

2

2
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form line, which can be written in the present case in
the form

(7)

The dashed curves in these figures show the depen-

v J0 ω1 1, t( ) t
2T2
---------– 

  .exp∝
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z

Fig. 4. Dependence of the two-photon nutation frequency
on parameter z = 2ω2/ωrf .
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Fig. 5. Dependence of the two-photon nutation frequency
on the MW field amplitude (in frequency units) for ω2/2π =
1.02 MHz and ωrf /2π = 2.62 MHz.
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dence given by formula (7) for ω1, 1/2π = 0.28 MHz
(Fig. 3c), ω1, 1/2π = 0.19 MHz (Fig. 3d) and T2 = 3.5 µs.
In this case, the condition ω1, 1 ! σ is satisfied more
exactly than in the case of one-photon nutation. In view
of nonuniform broadening, the two-photon nutation
frequency was virtually independent of the detuning
from resonance and was determined by the effective
field amplitude.

Time T2 = 3.5 ± 0.4 µs estimated from the two-pho-
ton nutation decay coincides with the analogous time
for one-photon nutation, which is determined by the
dipole–dipole interaction of  centers [9]. A similar

result was observed for  centers in amorphous quartz
in the case of two-photon nutation excited by two MW
photons of the same frequency for small amplitudes of
the MW field [15]. In this case, the increase in the MW
field amplitude led to an anomalous field-dependent
decay of two-photon nutation, whose origin is still not
completely clear [16]. Probably, two-photon nutation
excited by photons with strongly different frequencies
will make it possible to obtain new data explaining the
reason for the above-mentioned decay.

5. CONCLUSIONS

Thus, we have reported the results of direct record-
ing of two-photon nutation excited in a two-level spin
system with a transverse microwave field and a longitu-
dinal radiofrequency field. The possibility of measuring
the amplitudes of the MW and rf fields in our experi-
ment enabled us to determine the effective field of two-
photon transitions. Apart from the applications illus-
trated earlier and associated with the transparency
induced by the rf field [5] and the replacement of the
second MW field in the double electron–electron reso-
nance by a longitudinal rf field [17], analysis of the
dynamics of multiphoton transitions using the field con-
figurations employed by us may prove useful for study-
ing relaxation processes in strong exciting fields and for
developing new methods for narrowing lines [4].

E1'
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Abstract—The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area
in the classical limit. The general structure of the horizon spectrum and the value of the Barbero–Immirzi
parameter are found. The discrete spectrum of thermal radiation of a black hole naturally fits the Wien profile.
The natural widths of the lines are very small as compared to the distances between them. The total intensity of
the thermal radiation is calculated. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The idea of quantizing the horizon area of black
holes was put forward many years ago by Bekenstein in
the pioneering article [1]. He pointed out that reversible
transformations of the horizon area of a nonextremal
black hole found by Christodoulou and Ruffini [2, 3]
have an adiabatic nature. Of course, the quantization of
an adiabatic invariant is perfectly natural, in accordance
with the correspondence principle.

Once one accepts this hypothesis, the general struc-
ture of the quantization condition for large quantum
numbers becomes obvious, up to an overall numerical
constant β. The quantization condition for the horizon
area A should be

(1)

where N is some large quantum number [4]. Indeed, the
presence of the Planck length squared,

,

is only natural in this quantization rule. Then, for the
horizon area A to be finite in the classical limit, the

power of N must be the same as that of " in . This
argument can be checked by considering any expecta-
tion value in quantum mechanics, nonvanishing in the
classical limit. It is worth mentioning that there are no
compelling reasons to believe that N is an integer. Nei-
ther are there compelling reasons to believe that spec-
trum (1) is equidistant [5, 6].

On the other hand, formula (1) can be interpreted as
follows. The entire horizon area A is split into elements

of typical size, ~ , each of them giving a contribution
to the large quantum number N. This scheme arises, in

A βlp
2 N ,=

lp
2 k"

c3
------=

lp
2

lp
2

¶ This article was submitted by the author in English.
1063-7761/05/10006- $26.00 1075
particular, in the framework of loop quantum gravity
(LQG) [7–11].

A quantized surface in LQG looks as follows. The
surface is assigned a set of edges. Each edge is supplied
with an integer or half-integer “angular momentum” j:

. (2)

The projections m of these “angular momenta” range as
usual from –j to j. The area of the surface is

(3)

The numerical factor γ in (3) cannot be determined
without an additional physical input. This free (so-
called Barbero–Immirzi) parameter [12, 13] corre-
sponds to a family of inequivalent quantum theories, all
of them being viable without such an input.

We mention that although spectrum (3) is not equi-
distant, it is not far from being so. Indeed, even for the
smallest quantum number j = 1/2, the quantity

 can be approximated by j + 1/2 with an accu-
racy of 13%. As j increases,

becomes better and better; i.e., spectrum (3) comes
close to being an equidistant one. This feature of spec-
trum (3) is of interest in connection with the observa-
tion by Bekenstein: quantum effects result in the fol-
lowing lower bound on the change of the horizon
area ∆A under an adiabatic process:

(4)

here, ξ is a numerical factor reflecting “the inherent
fuzziness of the uncertainty relation” [14]. Of course,

j 1/2 1 3/2 …,, ,=

A 8πγlp
2 ji ji 1+( ).

i

∑=

j j 1+( )

j j 1+( ) j 1/2+≈

∆A( )min ξ lp
2 ;=
© 2005 Pleiades Publishing, Inc.
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the right-hand side of formula (4) is proportional to ",

together with the Planck length squared .

Due to the uncertainty of the numerical factor ξ
itself, one cannot see any reason why ξ should not
change slightly from one act of capture to another.
Therefore, the discussed quasiequidistant spectrum (3)
agrees with the bound (4), almost as well as the equidis-
tant one. We return to relation (4) below.

As regards the unknown parameter γ in (3), the first
attempts to fix its value, based on an analysis of the
black hole entropy, were made in [15, 16]. However,
these attempts did not lead to concrete quantitative
results.

Then it was argued in [17] that for the black hole
horizon, all quantum numbers j are equal to 1/2 (as is
the case in the so-called “it from bit” model formulated
earlier by Wheeler [18]). With these quantum numbers,
one arrives easily at the equidistant area spectrum and
at the value

for the Barbero–Immirzi parameter. However, the result
in [17] was demonstrated in [5] to be certainly
incorrect1 because it violates the so-called holographic
bound formulated in [22–24]. According to this bound,
among the spherical surfaces of a given area, the sur-
face of the black hole horizon has the largest entropy.

2. MICROCANONICAL ENTROPY 
OF A BLACK HOLE

On the other hand, the requirement of maximum
entropy allows one to find the correct structure of the
horizon area [25], which in particular is of crucial
importance for the problem of radiation of a quantized
black hole.

We actually consider the “microcanonical” entropy
S of a quantized surface defined as the logarithm of the
number of states of this surface for a fixed area A
(instead of a fixed energy in common problems). Obvi-
ously, this number of states K depends on assumptions
concerning the distinguishability of edges.

To analyze the problem, it is convenient to rewrite
formula (3) as

(5)

where νjm is the number of edges with given j and m. It
can be demonstrated [5, 6] that the only reasonable
assumption on the distinguishability of edges that may

1 Later, the result in [17] was also criticized in [19, 20]. Then an
error made in [17] was acknowledged [21]. We demonstrate
below that the result in [19, 20] is also incorrect.

lp
2

γ ln 2

π 3
----------=

A 8πγlp
2

j j 1+( )ν jm,
jm

∑=
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result in acceptable physical predictions (i.e., may com-
ply both with the Bekenstein–Hawking relation and
with the holographic bound) is as follows:

nonequal j, any m  distinguishable;

equal j, nonequal m  distinguishable;

equal j, equal m  indistinguishable.

Under this assumption, the number of states of the
horizon surface for a given number νjm of edges with
momenta j and their projections jz = m is obviously
given by

(6)

where

and the corresponding entropy is

(7)

The structures of the last expression and of formula (5)
are so different that the entropy cannot be proportional
to the area in the general case. However, this is the case
for the maximum entropy in the classical limit.

In this limit, with all the effective “occupation num-
bers” being large, νjm @ 1, we use the Stirling approxi-
mation, and hence the entropy is

(8)

We calculate its maximum for a fixed area A, i.e., for a
fixed sum

(9)

The problem reduces to the solution of the system of
equations

(10)

where µ is the Lagrange multiplier for constraint (9).
These equations can be rewritten as

(11)

K ν!
1

ν jm!
---------,

jm

∏=

ν ν j, ν j

j

∑ ν jm,
m

∑= =

S  =  K ln ν ! ( ) ln ν jm ! ( ) .ln 

jm

 ∑ –=

S ν ν ν jm ν jm.ln
jm

∑–ln=

N j j 1+( )ν jm

jm

∞

∑ const.= =

ν ν jmln–ln µ j j 1+( ),=

ν jm ν µ j j 1+( )–( ),exp=
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or

(12)

We now sum expressions (12) over j, and with

we arrive at the equation for µ:

(13)

Its solution is

(14)

Strictly speaking, the summation in formula (14)
extends not to infinity but to some jmax. Its value follows
from the obvious condition that none of the νjm should
be less than unity. Then, for ν @ 1, Eq. (11) gives

(15)

It is well known that the Stirling approximation for n!
has reasonably good numerical accuracy even for n = 1.
Therefore, formula (15) for jmax is not just an estimate
but has reasonably good numerical accuracy. The rela-
tive magnitude of the corresponding correction to (14)
can be easily estimated as ~lnν/ν.

We now return to Eq. (10). Multiplying it by νjm and
summing over jm, we arrive, with constraint (9), at the
following result for the maximum entropy for a given
value of N:

(16)

Therefore, with the Bekenstein–Hawking relation and
formula (5), we find the value of the Barbero–Immirzi
parameter:

(17)

Quite recently, this calculation with the same result,
although with a somewhat different motivation, was
reproduced in [26].

We emphasize that the above calculation is not spe-
cial for LQG only, but applies (with obvious modifica-
tions) to a more general class of approaches to the
quantization of surfaces. The following assumption is
actually necessary here: the surface should consist of
sites of different sorts, such that there are νi sites of
each sort i, with a generalized effective quantum num-

ber ri (here, ) and a statistical weight gi ,
(here, 2j + 1). Then in the classical limit, with given

ν j 2 j 1+( ) µ j j 1+( )–( )ν .exp=

ν j

j

∑ ν ,=

2 j 1+( ) µ j j 1+( )–( )exp
j 1/2=

∞

∑ 1.=

µ 1.722.=

jmax
νln

µ
--------.=

Smax 1.722N .=

γ 0.274.=

j j 1+( )
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functions ri and gi , the maximum entropy of a surface
can be found, at least numerically, and is certainly pro-
portional to the area of the surface.

As regards the previous attempts to calculate γ, we
should point out an apparent error in counting states
made in [19, 20]. It can be easily checked that the tran-
sition from formula (25) to formulas (29) and (36)
in [19] performed therein and then used in [20], is cer-
tainly valid under the assumption that only two maxi-
mum projections ±j are allowed for each quantum num-
ber j, but it cannot then hold for the correct number
2j + 1 of the projections. Therefore, it is not surprising
that the equation for the Barbero–Immirzi parameter
in [20] is

(18)

instead of ours in (13) (see also the discussion of (18)
in [26]).

The conclusion is obvious. Any restriction on the
number of admissible states for the horizon, as com-
pared to a generic quantized surface, be it the restriction
to

made in [17], or the restriction to

made in [19, 20], results in a conflict with the holo-
graphic bound.

3. QUANTIZATION
OF ROTATING BLACK HOLE

In discussing the radiation spectrum of quantized
black holes, one should take the angular momentum
selection rules into account. Obviously, radiation of any
particle with a nonvanishing spin is impossible if both
the initial and final states of the black hole are spheri-
cally symmetric. Therefore, to find the radiation spec-
trum, the quantization rule for the mass of a Schwarzs-
child black hole must be generalized to that of a rotat-
ing Kerr black hole.

To derive the quantization rule for a Kerr black hole,
we return to the thought experiment analyzed in [2, 3].
Therein, under adiabatic capture of a particle with an
angular momentum j, the angular momentum J of a
rotating black hole changes by a finite amount j, but the
horizon area A does not change. Of course, under some
other variation in the parameters, it is the angular
momentum J that remains constant. In other words, we
have here two independent adiabatic invariants, A and
J, for a Kerr black hole with mass M.

2 µ j j 1+( )–( )exp
j 1/2=

∞

∑ 1,=

j 1/2, m 1/2,±= =

any j, m j,±=
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Such a situation is quite common in ordinary
mechanics. For example, the energy of a particle with
mass m bound in the Coulomb field

is

(19)

where Ir and Iφ are the respective adiabatic invariants
for the radial and angular degree of freedom. Of course,
the energy E is in a sense also an adiabatic invariant, but
it is invariant only under those variations of parameters
that preserve both Ir and Iφ. In quantum mechanics, for-
mula (19) becomes

(20)

where nr and l are the radial and orbital quantum num-
bers, respectively.

This example prompts the solution of the quantiza-
tion problem for a Kerr black hole. It is conveniently
formulated in terms of the so-called irreducible mass
Mir of a black hole, related by definition to its horizon
radius rh and area A as

(21)

Together with the horizon area A, the irreducible mass
is an adiabatic invariant. In accordance with (3) and (9),
it is quantized as

(22)

where

is the Planck mass squared.

For a Schwarzschild black hole, Mir coincides with
its ordinary mass M, but for a Kerr black hole, the situ-
ation is more interesting. Here,

(23)

where J is the internal angular momentum of a rotating
black hole.

U r( ) α
r
---–=

E
mα2

2 Ir Iφ+( )2
-------------------------,–=

E
mα2

2"
2 nr 1 l+ +( )2

--------------------------------------,–=

rh 2kMir, A 16πk2Mir
2 .= =

Mir
2 1

2
---mp

2 N ,=

mp
2

"c/k=

M2 Mir
2 J2

rh
2

-----+ Mir
2 J2

4k2Mir
2

----------------,+= =
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Now, taking (22) into account, we arrive at the fol-
lowing quantization rule for the mass squared M2 of a
rotating black hole:

(24)

Obviously, as long as the black hole is far from an
extremal one, i.e., while γN @ J, we can neglect the
dependence of M2 on J, and the angular momentum
selection rules have practically no effect on the black
hole radiation spectrum.

As regards the mass and irreducible mass of a
charged black hole, they are related by

(25)

where q is the black hole charge. This formula has a
simple physical interpretation: the total mass (or total
energy) M of a charged black hole consists of its irre-
ducible mass Mir and of the energy q2/2rh of its electric
field in the outer space r > rh .

With rh = 2kMir , relation (25) can be rewritten as

(26)

Thus, for a charged black hole, M2 is quantized as

(27)

In fact, relations of this type (even in a more general
form, for Kerr–Newman black holes, both charged and
rotating) were already presented in the pioneering arti-
cle [1], although with the equidistant quantization rule

for , i.e., for the horizon area (see also [14]). More
recently, the conclusion that the mass of a quantized
black hole must be expressed via its quantized area and
angular momentum, was made in the approach based
on the notion of the so-called isolated horizons [27, 28].

Here, we do not mention the attempts to quantize
rotating and charged black holes that resulted in weird

quantization rules for  and e2/"c.

4. RADIATION SPECTRUM
OF QUANTIZED BLACK HOLE

It follows from expression (24) that for a rotating
black hole, the radiation frequency ω, which coincides
with the loss ∆M of the black hole mass, is

(28)

M2 1
2
---mp

2 γN
J J 1+( )

γN
--------------------+ .=

M Mir
q2

2rh

-------,+=

M2 Mir
2 q4

16k2Mir
2

-------------------
q2

2k
------.+ +=

M2 1
2
---mp

2 γN
q4

4γN
---------- q2+ + .=

Mir
2

Ĵ
2

ω ∆M Tµ∆N
1

4kM
-----------2J 1+

γN
---------------∆J ,+= =
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where ∆N and ∆J are the respective losses of the area
quantum number N and the angular momentum J. Here,
in line with (24), we used the identity

(29)

for the Hawking temperature T, as well as formula (23).
In the same way, for a charged black hole, with for-

mula (27), we obtain the radiation frequency

(30)

where ∆q is the loss of charge.
We are mainly interested in the first temperature

terms in (28) and (30), dominating everywhere except
the vicinity of the extremal regime, where J  γN, or
q2  2γN, and T  0. The natural assumption is that
the thermal radiation occurs when an edge with a given
value of j disappears, which means that

(31)

Thus we arrive at the discrete spectrum with a finite
number of lines. Their frequencies start at

and terminate at

We recall that

and hence the number of lines is not very large, ~102, if
the black hole mass is comparable to the mass of the
Sun. However, because of the exponential decrease of
the radiation intensity with ω or j (see below), the exist-
ence of ωmax and a finite number of lines are not that
important.

To substantiate the assumption made, we return to
the lower bound (4) on the change of the horizon area
under an adiabatic capture of a particle. The presence of
the gap (4) in this process means that this threshold cap-
ture effectively consists in the increase by unity of the
occupation number νjm with the smallest j, equal to 1/2.
If the capture were accompanied by a reshuffle of few
occupation numbers, the change of the area could eas-
ily be made arbitrarily small. For instance, one could
delete two edges with quantum numbers j1 and j2, and
add an edge with the quantum number j1 + j2. Obvi-
ously, with j1, 2 @ 1, the increase in area could be made
arbitrarily small.

T
∂M
∂S
--------

1
8πkM
--------------- ∂M2

∂Mir
2

-----------= =

ω ∆M Tµ∆N
1

4kM
----------- 2 q2

γN
-------+ 

  q∆q,+= =

∆N j r j, ωj Tµr j.= =

ωmin Tµ 3/2=

ωmax T ν .ln=

j jmax≤ ν/µ,ln=
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It is only natural to assume that in the radiation pro-
cess as well, changing several occupation numbers
instead of one is at least strongly suppressed. We thus
arrive at Eqs. (31).

Our next assumption, at least as natural as this one,
is that the probability of radiation of a quantum with the
frequency ωj is proportional to the occupation number
νj . Correspondingly, the radiation intensity Ij at this fre-
quency ωj is proportional to νjωj:

(32)

We compare this expression with the intensity of the
blackbody radiation in the Wien limit ω/T @ 1,

(33)

where A is the area of a spherical black body. First of
all, our relation (32) for Ij directly reproduces the expo-
nential factor of the Wien spectrum. Next, dω in (33)
goes over into (1/2)µT because the limit ω/T @ 1 corre-

sponds in our problem to  @ 1, i.e., to

and the minimum increment of j is 1/2. Now, to repro-
duce the Wien profile, we supplement relation (32) with
the following factors: some “oscillator strength” pro-
portional to ωj , obvious powers of µT, the Newton con-
stant k (necessary to transform ν into A), and obvious
numerical ones. We thus arrive at the final formula for
the discrete radiation spectrum of a black hole:

(34)

Of course, because Wien spectrum (33) corresponds
to j @ 1, we cannot guarantee the exact structure of the
j-dependence in formula (34), especially in the preex-
ponential factor. For instance, it would perhaps be
equally legitimate to write there

instead of

.

However, this ambiguity is not very significant, at least
numerically.

We note that because the black hole temperature T is
less than the minimum allowed frequency ωmin, this
spectrum has no Rayleigh–Jeans region at all.

I j ν jωj ν 2 j 1+( )ωj ωj/T–( ).exp∼ ∼

I ω( )dω A
ω3

4π2
-------- ω/T–( ) ω,dexp=

j j 1+( )

j j 1+( ) j 1/2,+≈

I j AT4 µ4

8π2
-------- j j

1
2
---+ 

  j 1+( )=

× µ j j 1+( )–( ).exp

j3/2 j 1+( )3/2

j j 1/2+( ) j 1+( )
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Now, the emission probability for a quantum of fre-
quency ωj = Tµrj , i.e., the width of the corresponding
line, is

(35)

The ratio of this natural line width to the distance

between the lines is very small numerically:

(36)

Thus, the radiation spectrum of an isolated black hole
is actually discrete.

Finally, the total radiation intensity of a black hole is

(37)

The numerical coefficient in this expression is close to
that in the total intensity of the common thermal radia-
tion, i.e., to the Stefan–Boltzmann constant

The point is that the Rayleigh–Jeans contribution to the
total intensity, which is completely absent in the present
spectrum, would be small anyway.

Formulas (34) and (37) describe not only the ther-
mal radiation of bosons, photons, and gravitons, but
also the thermal radiation of fermions, i.e., massless
neutrinos. However, in the latter case, proper account of
the number of polarization states is necessary: for a
two-component Dirac neutrino, the numerical factors in
formulas (34) and (37) are twice as small.

In fact, it was argued long ago [29] that the discrete
thermal radiation spectrum of a black hole, with the
equidistant quantization rule for the horizon area,
should fit the Wien profile.

On the other hand, our conclusion on the discrete
radiation spectrum of a black hole in LQG differs dras-
tically from that of [30], according to which the black
hole spectrum in LQG is dense.

As regards the nonthermal radiation of extremal
black holes, described by the terms with ∆J and ∆q in
Eqs. (28) and (30), these effects are due to tunneling
(see a relatively recent discussion of the subject and a
detailed list of relevant references in [31, 32]). The loss
of charge by a charged black hole is in fact caused by

Γ j

I j

ωj

----- AT3 µ3

8π2
-------- j 1/2+( ) j j 1+( )= =

× µ j j 1+( )–( ).exp

∆ωj ωj 1+ ωj
1
2
---µT≈–=

Γ j

∆ωj

--------- µ2

16π3
----------- j 1/2+( ) j j 1+( )≈

× µ j j 1+( )–( ) & 10 3– .exp

I I j

j

∑ 0.150AT4.= =

π2
/60 0.164.=
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the Coulomb repulsion between the black hole and the
emitted particles with the same sign of charge. For a
rotating black hole, the reason is the interaction of
angular momenta: particles (mainly massless) whose
total angular momentum is parallel to that of the black
hole are repelled from it.
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Abstract—The special features of the phase diagrams of La2 – xSrxCuO4 are considered in terms of the high-
temperature superconductivity model according to which the mechanism responsible for the anomalous prop-
erties of these compounds is the interaction of electrons with diatomic negative U-centers. A microstructural
model that assumes the coexistence of domains with different types of dopant ion ordering is suggested for
La2 − xSrxCuO4. According to this model, the main characteristics of the experimental phase diagrams of
La2 − xSrxCuO4 only reflect square lattice geometric relations and competition between different dopant order-
ing types. Close agreement between the calculated and experimental “superconducting” and “magnetic” phase
diagrams is an important argument in favor of the suggested high-temperature superconductivity model. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

In [1], we suggested a model of high-Tc supercon-
ductors based on the suggestion that the mechanism
responsible for many of the anomalous properties of
these compounds, including high-temperature super-
conductivity proper, is the interaction of electrons with
diatomic negative U-centers (NUCs). We showed that
their formation was possible because of the stiff local-
ization of doping charges in the vicinity of impurity
ions. Electron pairing responsible for superconductiv-
ity appears in this model as a result of the strong renor-
malization of effective electron–electron interaction
when scattering with intermediate virtual NUC bound
states is taken into account. This mechanism was sug-
gested for the first time in [2] and repeatedly discussed
later on as applied to various systems, including high-
Tc superconductors [3–10].

The suggested mechanism of the interaction of elec-
trons with pair states can only be effective if percolation
clusters are formed from NUCs. However, generally, at
a random distribution of dopant ions, the formation of
such extensive clusters is difficult to expect. Our goal is
to show that there is peculiar ordering of dopant ions in
high-Tc superconductors. This creates conditions for
the formation of NUC percolation clusters over a broad
concentration range. For this purpose, we suggest a
model of ordering that allows the phase diagram of
La2 – xSrxCuO4 to be explained. We also show that, in
certain dopant concentration ranges, such ordering in
La2 – xSrxCuO4 is accompanied by the formation of mag-
netic spin textures that simulate stripe structures [11].
1063-7761/05/10006- $26.00 1082
2. THE FORMATION OF NEGATIVE U-CENTERS 
IN HIGH-Tc SUPERCONDUCTORS

In [1], we suggested a mechanism for the formation
of diatomic NUCs on a pair of neighboring copper cat-
ions in the CuO2 plane. This mechanism is essentially
as follows. The electronic structure of the insulator
phase of high-Tc superconductors in the vicinity of the
Fermi energy EF is known to be well described by the
model of a insulator with a gap related to charge transfer.
The electron energy spectrum of an undoped high-Tc
superconductor is shown in Fig. 1a. In this scheme, the
excitation energy ∆ct (about 2 eV) corresponds to elec-
tron transfer from oxygen to a neighboring copper ion.
The hole is then distributed over four surrounding oxy-
gen ions because their orbitals overlap (Fig. 1b). This
excitation (an electron on copper and a hole on the sur-
rounding oxygen ions) resembles the hydrogen ion.
Proceeding further, we can suggest that the energy of
two excitations must be lower if two such pseudoatoms
neighbor one another and as though form a hydrogen
pseudomolecule (Fig. 1d). This is possible under cer-
tain conditions thanks to the formation of a bound state
(of the Heitler–London type) of two electrons on neigh-
boring copper ions and two holes that appear in the
nearest environment of this pair of cations.

Apart from purely outward similarity, an additional
argument in favor of our model is the observation that
the distance between copper cations in high-Tc super-
conductors is a = 3.7–4.0 Å, which is approximately
equal to the product R0ε∞ , where R0 = 0.8 Å is the
distance between nuclei in the H2 molecule and ε∞ is the
high-frequency permittivity equal to 4.5–5.0 for all
high-Tc superconductors; that is, naturally created con-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Electron energy spectrum of an undoped CuO2 plane: UH is the energy of repulsion between two electrons on a copper
ion; the ∆ct gap for excitation with the lowest energy corresponds to (b) electron transfer from oxygen to the nearest copper ion with
the formation of a hole distributed over four surrounding oxygen ions; tOO is the hopping integral between the pσ orbitals of the
nearest oxygen ions; (c) the energy of two such pseudoatomic excitations can be decreased by ∆EU if (d) they are situated side by
side and form a pseudomolecule.
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Fig. 2. Atomic clusters Cu2R2On common to all cuprate high-Tc superconductors with hole doping: (a) in YBCO (BSCCO), copper
ions are incorporated into the CuO2 plane, and R is the Cu (Bi) ion in CuO3 chains (BiO planes); (b) in La2 – xMxCuO4 (M = Ba or
Sr), the whole cluster is built into the CuO2 plane, and R stands for Cu ions inside the oxygen octahedron adjacent to the M ion.

Two types of such clusters with a distance between the R ions of 3a or a  can exist in La2 – xMxCuO4. The ellipses bound the
regions of the localization of additional hole pairs that appear when an electron pair is transferred to a NUC.

5

ditions for the formation of such pseudomolecules in
high-Tc superconductor crystals.

Let us consider the conditions under which a NUC
is formed on the given pair of copper ions in the CuO2
plane. For this purpose, we select a fragment of the
crystal structure (Fig. 2) common to all cuprates with
hole doping. This is the Cu2R2On cluster, where the
copper ions are “built” into the CuO2 plane and R = Cu
in the CuO2 plane in La2CuO4, R = Cu in chains in
YBa2Cu3O6 + δ, and R = Bi in Bi2SrCaCu2Ox. We
assume that a NUC is formed in the CuO2 plane on a
pair of copper ions if a hole formed as a result of doping
(doped hole) is localized in each of the oxygen squares
surrounding R ions (Fig. 2). For Y2Ba2Cu3O6 + x, this
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
requirement means that a NUC on a given pair of Cu
ions is formed when three consecutive oxygen sites are
filled in the CuO3 chain over these ions. For
La2 − xSrxCuO4, where localized doped holes lie in the
CuO2 plane (on four oxygen atoms of the oxygen octa-
hedron adjacent to the strontium ion [12, 13]), this
requirement is fulfilled when the distance between the
R ions (or, equivalently, between the projections of

strontium ions onto the CuO2 plane) is 3a or a  (a is
the lattice constant in the CuO2 plane).

In [1], we characterized various types of the mutual
arrangement of doped charges in La2 – xSrxCuO4.
According to simple estimates [1], a doped hole local-
ized in the CuO2 plane decreases the ∆ct value by

5
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approximately 1.8 eV for the nearest four copper ions.
When doped holes localized in the CuO2 plane inside

oxygen octahedra are at a distance of a  and 3a from
each other, they decrease the ∆ct value for the internal
pair of neighboring copper ions to the extent that two-
electron transfer to this pair from the surrounding oxy-
gen ions becomes possible. These two variants of the
mutual arrangement of doped charges correspond to the
formation of a NUC on a pair of neighboring copper
ions.

In the intermediate case, when the distance between

the doped charges is a , there is no pair of neighbor-
ing copper ions with a doped hole adjacent to each of
them, and NUCs are not formed. This situation corre-
sponds to an insulator and, as is shown below, is
responsible for the “1/8”-anomaly.

When doped holes are situated at a distance of 2a
from each other, the ∆ct gap for the internal copper ion
closes also for one-electron transitions. This corre-
sponds to the conventional metal state.

As is seen from Fig. 1, NUCs play the role of pair
acceptors that generate additional hole pairs, which are
also localized in the neighborhood of NUCs. There is
conductivity in such a system if these regions of the
localization of hole pairs form a percolation cluster in
the CuO2 plane; that is, when the percolation threshold
is exceeded along the NUC chain.

At a random dopant distribution in a crystal, various
types of the mutual arrangement of doped charges can
coexist. It would then be difficult to expect the exist-
ence of large clusters whose properties are fully deter-
mined by one of the four configuration variants consid-
ered above. We will, however, show that the dopants in
La2 – xSrxCuO4 are ordered over square lattice sites with
different constants that depend on their concentration.

5

8

0.4 0.5 0.6 0.7 0.8 0.9
δ

0

20

40

60

80

100
Tc, K

Fig. 3. Tc–δ phase diagram for YBa2Cu3O6 + δ [15]. The
region of NUC percolation is hatched.
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For this reason, extensive percolation nets of broken

lines with segment lengths a , 3a, a , and 2a can
develop on such lattices. The first two segment lengths
correspond to the conducting (high-Tc) phase in our
model; the third one, to an insulator; and the fourth, to
a conventional metal.

3. THE CHARGE ORDERING MODEL

3.1. YBa2Cu3O6 + δ

The ordering of doping oxygen ions is inherent in
YBa2Cu3O6 + δ because they have crystallographic sites
of their own. According to [1], a NUC in a certain
YBa2Cu3O6 + δ cell is formed when three consecutive
oxygen sites are filled in the CuO3 chain (see Fig. 2).
The concentration of such cells is δ3 if the oxygen ions
are distributed at random. Percolation occurs when the
site percolation threshold pc is exceeded for the square
lattice; this threshold is 0.593 [14]. Suppose that such
oxygen triples are distributed independently (strictly,

this is not so). We then have  = 0.593 and δc = 0.84,
where δc is the δ value corresponding to the percolation
threshold. In reality, such triples of oxygen ions are dis-
tributed not independently, and δc therefore differs from
0.84 but insignificantly.

The Tc–δ phase diagram of YBa2Cu3O6 + δ samples
with different oxygen contents is shown in Fig. 3 [15].
The region 0.84 < δ < 1, where percolation along NUC
chains occurs, is hatched. We see that the concentration
interval corresponding to percolation along NUC
chains coincides with the region of high-temperature
superconductivity, Tc ≈ 92 K.

3.2. La2 – xSrxCuO4

In this section, we suggest and substantiate the
model of an ordered distribution of strontium ions over
lanthanum sites in La2CuO4. This model allows us to
explain the Tc–x diagram for La2 – xSrxCuO4 and con-
sider the characteristics of magnetic spin textures
formed as a result of ordering.

First, let us consider the special features of the crys-
tal structure of La2CuO4 and find out how and where
doped charges (holes) are formed. The unit cell of
La2CuO4 containing two formula units is shown in
Fig. 4a. As is seen from this figure, there are two differ-
ent lanthanum sites in the La2CuO4 lattice (for instance,

in the LaO planes I and II) shifted by a/  with respect
to each other in the direction of the cell diagonal. It fol-
lows from the experimental data [12, 13] that doped
holes are rigidly localized in the CuO2 plane on four
oxygen atoms of the oxygen octahedron adjacent to the
dopant ion (Fig. 4a); that is, holes are doped into the
central CuO2 plane by ions situated in planes I and IV
and are localized in the immediate vicinity of the

5 8

δc
3

2
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Fig. 4. Ordering of strontium ions in La2 – xSrxCuO4: (a) La2CuO4 unit cell; Roman numerals on the right are the numbers of LaO
planes (see text); (b) negatively charged strontium ions together with doped holes “ascribed” to them are dipoles that attract each
other at opposite ends to form cranked chains.
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III

IV

—La/Sr
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—Cu

—O ions on which doped holes are localized

—Sr
—La

—O
—Cu
dopant ion.1 As a result, the local electronic structure of
the high-Tc superconductor is substantially different
from the mean structure. This conclusion is central to
our model [1].

In the scheme under consideration, a doped system
comprising a strontium ion and a hole localized in the
oxygen square is an electric dipole involved in long-
range Coulomb interactions with the other similar
dipoles. In such systems, the orientation interaction
between dipoles appears; as a consequence, dipoles line
up and their opposite poles are oriented toward each
other. The crystal structure of the compound leads us to
suggest that the substitution of strontium for lanthanum
in La2 – xSrxCuO4 occurs in such a way that the dipoles
form chains (resembling crankshafts) along the c axis
(Fig. 4b). This arrangement removes the question about
strontium ions (from planes I, IV or II, III in Fig. 4a)
that dope holes to the central plane.

We assume that the chains are planar and aligned
with each other. Calculations of the electrostatic inter-
action energy between the chains of dipoles show that
the nearest two chains (Fig. 4b) attract each other if the

1 We can also consider another situation, when holes are doped into
the central CuO2 plane by strontium ions situated in planes II and
III. It will, however, be shown that the reasoning presented below
remains valid in this situation, and the final results remain
unchanged.
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distance between doped holes is lcom ≥ , while the
interaction between the next-to-nearest chains is repul-
sive.2 Such interactions provide ordering of dipole
chains. As a result, doped holes in the CuO2 plane (or
projections of strontium ions) occur in square lattice
sites with some parameter lcom commensurate with the
lattice constant a in the CuO2 plane. It follows from cal-
culations that the energies of configurations with lcom =

2, , , and 3 coincide to within 10–2e2/εa per
dipole, where ε is the permittivity. They can therefore
coexist in the form of microdomains, in which doped
holes occupy sites of lattices with various lcom values.

Domains with a given lcom distance can only exist
over a certain concentration x range. This range is
bounded from above by the xcom = 1/lcom value; at higher
concentrations, the existence of physically significant
domains with given lcom violates the condition of a con-
stant mean concentration. At x < xcom, dipole chains
become broken, and vacancies appear in the square lat-
tices of projections (Fig. 5). Microdomains with a given
lcom distance remain intact up to some x = xl value,
which, at a random distribution, corresponds to the
two-dimensional percolation threshold on vacancies

2 This corresponds to the experimental solubility limit of strontium
impurity in La2CuO4 equal to xlim ≈ 0.25.

2

5 8
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with the concentration cν = 1 – xl = 0.593. Accordingly,
the existence of domains with a given lcom value is pos-
sible at concentrations that satisfy the condition

(1)

The concentration ranges in which domains with a
given lcom value can exist are listed in the table.

At arbitrary concentrations x, domains of various
types can coexist whose ordering corresponds to filling
the sites of various projection lattices with lcom values
that satisfy the condition

(2)

For instance, at x = 1/9, domains with lcom = 3 (complete
filling of the lattice of strontium ion projections) and

0.407

lcom
2

------------- x
1

lcom
2

--------.≤<

0.638

x
------------- lcom

1

x
-------.≤<

Fig. 5. Ordering of dipole chains at x < xcom. Columns are
dipole chains aligned with the c axis. At x < xcom, dipole
chains become broken, and vacancies appear in square lat-
tices of the projections of strontium ions onto the CuO2
plane.
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lcom = , , and 2 can exist in volume ratios deter-
mined by the deviation of the given x value from xcom
and the conditions of sample preparation. In what fol-
lows, the domain in which free square lattice sites with
lcom are being filled will be characterized by the corre-
sponding lcom value. The fraction of occupied sites

changes from approximately 0.4 (at x = 0.407/ ) to

one (at x = 1/ ) as x increases.

The ordered domain sizes depend on the concentra-
tion (more exactly, on the closeness of x to xcom) and
reach 200–600 Å in the CuO2 plane. The size of an
ordered domain in the direction of the c axis is likely to
be of several lattice constants because every type of
ordering of doped charges is repeated in every second
CuO2 plane. Naturally, apart from domains with an
ordered distribution of dopants, regions with disordered
distribution must exist.

We assume that, at small x (at a mean distance
between dopant projections of l > 3), dipole chains are
grouped in planes parallel to the c axis and the orthor-
hombic a axis in such a way that the distance between
doped holes (or strontium ion projections) along the a

axis be ; they that is, correspond to minimum inter-
action energy.

4. PERCOLATION
AND THE Tc–x PHASE DIAGRAM

OF La2 – xSrxCuO4

As follows from our reasoning, La2 – xSrxCuO4 must
be treated as a set of mutually penetrating domains in
which strontium ions are ordered in such a manner that
doped holes fill (in part or completely) square lattice
sites with various lcom values determined by the concen-
tration.

The percolation regions on sites in lattices with var-
ious lcom values, that is, the concentration regions corre-
sponding to the existence of continuous clusters of var-
ious phases, can be determined. The strontium concen-

8 5

lcom
2

lcom
2

8

Intervals of existence and site percolation thresholds for domains with various lcom values

lcom x0 xp xm Properties

>3 insulator

3 0.045 0.066 0.111 high-Tc superconductor (in the region of percolation)

0.05 0.075 0.125 insulator

0.08 0.12 0.20 high-Tc superconductor (in the region of percolation)

2 0.10 0.15 0.25 normal metal (in the region of percolation)

Note: x0 and xm are the lower and upper boundaries of the concentration range in which domains with the given lcom can exist, x0 = 0.407xm

and xm = 1/ ; xp = 0.593xm is the percolation threshold for a lattice with period a, when the existence of percolation chains with

l = lcom becomes possible. The last column contains characteristics of microdomains with the given lcom value.

8

5

lcom
2
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tration xp that corresponds to the percolation threshold

is xp = 0.593/  for the given lcom at a random distri-
bution over sites [14]. Figure 6a shows the intervals of
concentrations corresponding to two-dimensional site

lcom
2

0.05 0.10 0.15 0.20 0.25
x

0

10

20

30

40

(a)

(b)

T c
, K

lcom = 3
8

5
2

Fig. 6. (a) Concentration intervals corresponding to site per-

colation in domains with lcom = 3, , , and 2. Solid
lines bound the regions of percolation broken lines with
segments lcom long. Thick lines bound the regions of the
existence of NUC percolation clusters. (b) Experimental
Tc–x phase diagram for La2 – xSrxCuO4 [18]. The composi-
tion (x = 0.115) for which superconductivity was not
observed to 4.2 K is marked by a solid triangle.

8 5
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percolation in domains with lcom = 3, , , 2, that
is, the intervals where, according to our reasoning, two-

dimensional percolation clusters with lcom = 3 and 
(NUC chains), a cluster with lcom = 2 corresponding to

the usual metal phase, and a cluster with lcom =  cor-
responding to the insulator phase can exist. The bound-
aries of the regions of the existence of percolation bro-
ken lines with segment lengths lcom are shown by solid
lines in Fig. 6a. The percolation regions for domains

with lcom = 3 and , that is, for NUC chains, are indi-
cated by thick lines. Figure 7 shows how the regions of
the localization of singlet hole pairs overlap along per-

colation clusters with (a) lcom = 3 and (b) lcom = .
Note that, as is seen from Fig. 7a, current transfer
largely occurs along Cu–O bonds if lcom = 3. This is in
agreement with the results reported in [16, 17], where
the conclusion of such a character of the movement of
carriers was drawn from the ARPES, IR, and Raman
data on La1.9Sr0.1CuO4 crystals.

Figure 6a shows that volume superconductivity
(domains with percolation NUC chains) exists in the
regions 0.066 < x < 0.11 and 0.12 < x < 0.20. Supercon-
ducting domains (containing percolation clusters with

lcom = ) and normal metal domains coexist at 0.15 <
x < 0.20; the fraction of normal domains increases as x
grows. This corresponds to the transition to the state in
which superconductivity is fully determined by the
neighborhood effect and Tc monotonically decreases as
x increases.

8 5

5

8

5

5

5

(a) (b)

Fig. 7. Percolation clusters in the regions of the localization of singlet hole pairs: (a) lcom = 3 and (b) lcom = . Solid circles are
the projections of dopant ions onto the CuO2 plane, open circles are doped hole localization regions, and rectangles are the local-
ization regions of hole pairs around NUCs.
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For comparison, the experimental Tc–x phase dia-
gram of La2 – xSrxCuO4 [18] is shown in Fig. 6b. The
coincidence of the superconductivity intervals in the
experimental phase diagrams and the percolation inter-

vals for lcom =  and lcom = 3 substantiates the conclu-
sion that it is the fragments under consideration includ-
ing pairs of neighboring copper ions that are responsi-
ble for the superconductivity of La2 – xSrxCuO4. This is
also evidence in favor of the suggested model of high-
temperature superconductivity. Note that the “dip” in
the Tc–x diagram at 0.11 < x < 0.12, which is related to
the absence of percolation along NUC chains, is super-
imposed on the narrow region of the existence (for

x  1/8) of the fully ordered  ×  lattice of
doped charges, which corresponds to the insulator
phase. We show in the next section that precisely this
allows us to observe a statistical incommensurate mag-
netic texture in this region [11].

As follows from the above analysis, the microstruc-
ture of La2 – xSrxCuO4 must be treated as a set of NUC
clusters of various sizes immersed into either a insula-
tor (at x < 0.125) or a metal-insulator (at 0.125 < x <
0.20) matrix. A conducting cluster at x < 0.2 can there-
fore include insulator regions whose conductivity is
determined exclusively by quantum tunneling pro-

5

8 8
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Fig. 8. (a) Experimental magnetic phase diagram of
La2 − xSrxCuO4 [11, 32–36]; α = 45° and 90° correspond to
diagonal and vertical stripes, respectively. Hatched regions
are the intervals where static stripes are observed. (b) Cal-
culated stripe phase diagram of La2 – xSrxCuO4. The dashed
lines bound the regions of percolation along NUC chains

with lcom = 3 and lcom =  (dynamic stripes); the thick
lines correspond to the regions of the existence of micro-

domains with doped holes ordered into a  ×  lattice
(0.05 < x < 0.12) and diagonal lines of doped holes (x <
0.066).

5

8 8
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cesses in combination with transfer along the c axis.
The true metallic conductivity is therefore only possi-
ble when x  0.2. This corresponds with the results
obtained in [19], where a logarithmic divergence of
resistance was observed at x < 0.17 as T tended to zero
when superconductivity was suppressed by a magnetic
field.

To summarize, the conclusion can be drawn that all
the special features of the Tc–x phase diagrams of
La2 − xSrxCuO4 only reflect the geometric relations that
exist in a square lattice and competition between vari-
ous strontium ordering types.

5. INCOMMENSURATE CHARGE
AND SPIN MODULATION IN La2 – xSrxCuO4

In recent years, the concept of stripes has been used
in one or another form to analyze the results obtained in
many works concerned with hole-doped cuprate high-
Tc superconductors [20–31]. This concept presupposes
the existence of incommensurate modulation of the
spin antiferromagnetic structure in the form of
antiphase domains of antiferromagnetically ordered
spins separated by narrow extensive stripes of doped
holes.

In experiments on the magnetic scattering of neu-
trons, such a modulation characterized by the wavevec-
tor Q should be observed in the form of two incommen-
surate peaks shifted with respect to the antiferromag-
netic wavevector QAF(1/2, 1/2, 0) by ε = 1/T in the
direction of the modulation vector. Here, T is the mag-
netic structure period in lattice constant units. Accord-
ingly, the charge modulation period should be T/2, and
the related incommensurate charge density modulation
should manifest itself in the appearance of additional
peaks shifted by 2ε.

The neutron diffraction data on the magnetic texture of
La2 – xSrxCuO4 and La1.6 – x – yNd0.4SrxCuO4 [11, 32–36]
can be summarized in the form of the phase diagram
shown in Fig. 8a. According to this figure, the incom-
mensurate elastic scattering peaks related to statistical
modulation (hatched in the figure) are observed at
strontium concentrations x < 0.07 and 0.11 < x < 0.12.
In the interval 0.07 < x < 0.11 and at x > 0.13, incom-
mensurate inelastic neutron scattering peaks appear,
which is evidence of dynamic modulation of the spin
texture. At x < 0.07, there are diagonal stripes with a
single modulation vector directed along the orthorhom-
bic b axis, whereas for parallel stripes (x > 0.055), there
is always modulation in two directions parallel to the
tetragonal axes. In the intermediate region 0.055 < x <
0.07, both modulation types are observed. To compare
the spin structures that appear when there are diagonal
and parallel stripes, both are considered in the tetrago-
nal coordinates. The incommensurability parameter of

spin modulation is then δ = ε for parallel and δ = ε/ 2
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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for diagonal stripes. For x < 0.12, we experimentally
observe a remarkably simple relation between the
incommensurability parameter and concentration,
namely, δ ≈ x.

The appearance of a stripe structure caused by the
competition between electronic phase separation and
long-range Coulomb repulsion was studied theoreti-
cally in [20–27]. An alternative mechanism of the for-
mation of the insulator “stripe” phase in an underdoped
high-Tc superconductor caused by Fermi surface nest-
ing was suggested in [28–31]. Both theories, however,
face difficulties in describing the whole complex of
experimental data. The most important of these are:

(1) the transition from diagonal to parallel stripes in
La2 – xSrxCuO4 at x ≈ 0.06;

(2) the appearance of static correlations in
La2 − xSrxCuO4 in a narrow concentration range at
x ≈ 0.12;

(3) the one-dimensional character of diagonal
stripes and the two-dimensional character of parallel
stripes;

(4) the δ ≈ x relation for x ≤ 0.12 and δ = const at
x ≥ 0.12. As follows from Hall effect measurements,
the x value in La2 – xSrxCuO4 is not equal to the concen-
tration of hole carriers (which, in addition, strongly
depends on temperature). The equality δ ≈ x is therefore
indicative of a relation between spin texture parameters
and the concentration of strontium ions rather than the
density of carriers.

In attempts to overcome the difficulties that arise
when the neutron scattering data are analyzed, Gooding
et al. [37, 38] suggested a physical spin glass model
based on the assumption of a chaotic distribution of
localized doped holes. According to [38], doped holes
in the spin glass phase are localized in the CuO2 plane.
Such a hole localized in a certain region creates a long-
range field of spin distortions around it. The appearing
distortions of the antiferromagnetic background can be
described as the creation of a topological excitation
similar to skyrmion [39, 40] with topological charges
Q = ±1. This excitation corresponds to rotation (twist)
of the antiferromagnetic order parameter (Fig. 9) in the
vicinity of a localized hole.

Doping therefore destroys long-range antiferromag-
netic order and results in the formation of disoriented
antiferromagnetically ordered microdomains. The
boundaries between them (domain walls) are deter-
mined by localized doped holes, and the directions of
antiferromagnetic ordering in the neighboring domains
are rotated through some angle with respect to each
other (so-called spin twisting). This model allows vari-
ous special features of the spin texture of La2 – xSrxCuO4
observed in the spin glass state to be explained [41].

In what follows, we give an alternative explanation
of the observed spin and charge modulation. Certain
presumptions of the model suggested in [37, 38] will be
combined with the concepts of the mechanism of for-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
mation of NUCs, dopant ordering, and percolation
developed in this work. For this purpose, let us first try
to guess the form of the spin texture (different from the
classic stripe picture) for some strictly ordered distribu-
tions of doped holes with the concentration x = xcom,
which is responsible for the experimentally observed
spin modulation picture. This approach is justified,
because there are no grounds to expect that the stripe
model is inapplicable when the distribution is ordered.
Moreover, it follows from the experiment reported
in [36] that, in the region 0.06 < x < 0.12 (the region of
parallel stripes), the correlation length increases from
25 Å at x ≈ 0.06 to 200 Å at x ≈ 0.12. This increase in
the correlation region size is natural to relate to order-
ing of separate antiferromagnetic domains. It can be
suggested that this ordering is in turn related to the
ordering of doped holes and, accordingly, dopant ions.

Next, we will consider how the texture guessed by
us transforms as x decreases below xcom and as the sys-
tem deviates from the strictly ordered distribution of
holes. We will show that, in a certain concentration
region xp < x < xcom, the principal experimentally
observed relations that are characteristic of an ideal lat-
tice of holes (x = xcom) remain unchanged.

5.1. Parallel Stripes

Let us consider complete ordering at xcom = 1/8
assuming that (1) each hole circulates over the oxygen
square that surrounds a copper ion, (2) because of the
interaction between the hole current and the spins of the
nearest four copper ions, these ions are polarized, and
the resulting distortions of the antiferromagnetic back-
ground can be described as the creation of a skyrmion
with topological charges Q = ±1 (Fig. 9).

Possible ordering of the projections of copper spin
directions onto the CuO2 plane is shown in Fig. 10a for
a completely ordered arrangement of localized holes at

x = xcom = 1/8, when the holes form a  ×  square8 8

Fig. 9. Rotations of copper ion spin directions (thick
arrows) in the vicinity of a doped hole localized in the CuO2
plane on four oxygen atoms around the copper ion; rota-
tions correspond to different skyrmion topological signs
(a) Q = 1 and (b) Q = –1.

—O
—Cu

–π/2+π/2

+e +e

(a) (b)
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θY

(a) (b)

Fig. 10. (a) Projections of spin directions at x = 1/8 when doped holes are ordered into a  ×  lattice. Microdomains that form
horizontal stripes are hatched, thick lines denote stripe directions. (b) The same at x < 1/8. The plane is divided into domains sepa-
rated by diagonal dislocations, which are nuclei of diagonal stripes. The shift of vertical stripes by one cell at each dislocation results
in an effective tilt of vertical stripes by the θY angle.

8 8

a

b

lattice. The CuO2 plane is then divided into separate
quadrangular antiferromagnetically ordered micro-
domains; the quadrangle angles are determined by the
localized doped holes. The projections onto the CuO2
plane of the spin directions of the copper ions in lattice
sites are shown by arrows. The correlated ordering that
then appears is characterized by the antiferromagnetic
ordering of microdomains themselves and the ordered
alternation of skyrmions with charges Q = ±1. As is
seen from Fig. 10a, this ordering simulates a magnetic
stripe texture. The magnetic modulation period is then
equal to the sum of the sizes of two antiphase domains
in the direction of the modulation vector. A stripe of

width lcom/  and length equal to one period then con-
tains two sites,

(3)

and δ = 1/8 = x, in agreement with experiment. This pic-
ture is in conformity with what was observed in [42],
where µsR relaxation measurements revealed the exist-
ence of antiferromagnetically ordered microdomains in
La1.88Sr0.12CuO4. These microdomains were 15–30 Å
in size, and magnetization directions in them were cor-
related on scales up to 600 Å. Note that, as follows from
Fig. 8a, there are no charge stripes in this system in the
form predicted theoretically. However, we here deal
with commensurate modulation, which cannot give sat-
ellite diffractogram peaks. Satellite reflections can only
appear when modulation is incommensurate. In addi-
tion, charge modulation was also observed in [11] in the

2

T 2 2lcom 8,= =
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form of the incommensurate lattice peak splitting (2 ±
2ε, 0, 0) and (0, 2 ± 2ε, 0).

To find the reason for this, let us pass from the fully
ordered lattice of doped holes at x = 1/8 to the distribu-
tion of holes at x < 1/8. Let us first consider the experi-
mental data obtained in the region of the existence of
static parallel stripes at x ≈ 0.12 [36, 43]. This will
allow us to compare the experimental results with our
model in detail.

Spin texture modulation with the incommensurabil-
ity parameter δ = 0.118 was observed in [43] for
La1.88Sr0.12CuO4. This corresponds to the mean texture
period T ≈ 8.5 (in a units), that is, to the alternation of
two periods T1 = 8 and T2 = 9. The picture that we sug-
gest to describe an ordered distribution of doped holes
(therefore, dopant projections) for the mean concentra-
tion x = 0.118 is shown in Fig. 10b. This picture was
obtained by cutting the fully ordered distribution (x =
0.125) along the orthorhombic axis a and shifting one
part with respect to the other by the q = (1, 1) vector.
This shift does not disturb the coherence of ordering in
domains on both sides of the dislocation and shifts the
system of parallel stripes by one cell in traversing the
cut.3 Such a structure (Fig. 10b) gives characteristic
diffractogram reflections corresponding to incommen-
surate modulation of both spin (with the incommensu-
rability parameter δ) and charge (incommensurability

3 We in fact suppose that dipole chains (therefore, vacancy chains)
tend to line up along the orthorhombic axis a. This is, in our view,
caused by the minimum strain requirement.
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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parameter 2δ). The condition of a constant mean con-
centration yields

(4)

where Td is the mean period of dislocations in a units
and xl is the local concentration of holes inside a
domain. To satisfy the condition of the constant mean
concentration  = 0.118, the local concentration inside
domains being xl = 0.125, the diagonal dislocations that
we introduce should have the mean period Td = T1 +
T2 = 17. Such quasi-periodic dislocations resulting in
incommensurate modulation of both the crystalline and
spin textures are responsible for the possibility of
observing incommensurate reflections in diffraction
experiments.

The special feature of the appearing picture of
ordering is the shift of parallel stripes by one lattice
constant (see Fig. 10b); that is, it is as though these
stripes are tilted by the θY = 1/17 ≈ 3.3° angle with
respect to the tetragonal b axis. It is these tilted parallel
stripes with a 3° tilt angle that were observed in
La1.88Sr0.12CuO4 [43].

Next, let us consider arbitrary x < 1/8 values. The
distribution picture can then be obtained from the fully
ordered distribution at x = 1/8 by successively remov-
ing a certain number of sites. A texture simulating par-
allel stripes can appear if there exists a percolation clus-

ter that binds  ×  microdomains into one antifer-
romagnetically ordered cluster. The table shows that
such microdomains can exist up to x ≈ 0.05.

Let the lattice contain correlated residual fragments

of a parallel stripe texture genetically related to  ×
 microdomains (Fig. 11). The neutron diffraction

pattern then contains characteristic reflections deter-
mined by the mean period of the residual texture. The
mean period T of this texture, which is the distance
between the middle points of single-phase magnetic
microdomains, includes two occupied sites, as when
there is complete ordering. It follows that the rectangle

of area Tlcom/  = 2T (this rectangle is hatched in
Fig. 11) should contain two sites. Therefore,

(5)

It follows that the δ = x equality is in some sense for-
tuitous. It exists because, in the case of parallel stripes,
holes lie on straight lines situated at distances 2a from
each other.

5.2. Diagonal Stripes

Figure 10a shows that the dislocations introduced
are in fact nuclei of diagonal stripes extended along the
orthorhombic axis a. They appear as a quasi-periodic

structure at x < 0.05, when  ×  texture remain-
ders disappear and there only remain diagonal lines of

Tdxl Td 1+( )x,=

x

8 8

8

8

2

2Tx 2, δ 1/T x.= = =

8 8
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impurity dipoles with a distance of lcom ≥ 2  between

the lines and a distance of lcom =  between the
dipoles. Diagonal stripes are therefore always directed
along the orthorhombic axis a, and, accordingly, the
modulation vector, along the other orthorhombic axis b.

The period T of diagonal spin modulation (in tetrag-

onal axes) should be T = 1/ x (or δ = x) when all
doped holes are ordered into diagonal charge stripes.
Since part of the doped holes can remain in the space
between charge stripes, the period of the observed spin

texture is larger than 1/ x and, accordingly, δ is

smaller than x. The experimental δ values vary from
δ ≈ 0.7x to δ ≈ 1.4x at 0.01 < x < 0.05 [34].

5.3. Dynamic Stripes

The last question discussed in this Section concerns
static and dynamic stripes. Figure 8b shows concentra-
tion regions where antiferromagnetically correlated

clusters of  ×  microdomains and diagonal lines
of dipoles can exist. Primes denote regions of the exist-

ence of percolation chains with lcom =  and lcom = 3.
Such chains of doped holes in the CuO2 plane can bor-
der on a cluster of antiferromagnetic microdomains.
According to our model, NUCs are formed in regions
of the existence of percolation clusters with lcom = 3 and

lcom =  on pairs of neighboring copper ions; these
NUCs play the role of pair acceptors. In these regions,
we observe conductivity along the corresponding NUC
chains situated on percolation clusters. The appearance
of conductivity disturbs static spin correlations in the
surrounding regions because of the movement of
charges that destroy magnetic order along their trajec-
tories. Spin correlations can then be observed only in
inelastic neutron scattering as dynamic incommensu-

8

8

2 2

2

2

8 8

5

5

T

lcom

l c
o

m
2

⁄

Fig. 11. Fragment of magnetic stripe texture. Solid circles
are the projections of strontium ions onto the CuO2 plane.
Arrows show the directions of spin projections at Cu sites.

Two filled sites occur within a band of width lcom/  over
the length T of the magnetic structure period (the rectangle

of area Tlcom/  is hatched). 

2

2
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rate magnetic fluctuations. Remarkably (see Fig. 8b),
apart from the region x < 0.07, there is a narrow concen-
tration range 0.11 < x < 0.125 where NUC percolation
is absent. This is where static incommensurate correla-
tions are again observed.

6. CONCLUSIONS

In this work, we suggested a microstructural model
of the La2 – xSrxCuO4 compound, which, in combination
with the results reported in our work [1], allowed us to
qualitatively and quantitatively explain all the details of
the Tc–x phase diagram of La2 – xSrxCuO4, in particular:

(1) spatial inhomogeneity on the nanoscopic scale
observed experimentally;

(2) the existence of two concentration ranges of vol-
ume high-temperature superconductivity (0.066 < x <
0.11 and 0.12 < x < 0.2);

(3) the Tc(x) curve dip at x ≈ 1/8;
(4) successive transition from underdoping condi-

tions (at x < 0.12, where percolation clusters of negative
U-centers are “immersed” into a insulator matrix) to
optimum doping (x ≈ 0.15) and further to overdoping
conditions (at x > 0.15, where percolation clusters of
negative U-centers coexist with usual metal clusters);

(5) the superconductor–insulator transition in a
magnetic field in underdoped samples;

(6) a gradual decrease in Tc to zero as x increases in
the overdoping region (at x > 0.15).

To check the validity of the suggested model of
ordering, we considered magnetic spin textures, which
can be observed if the character of ordering of doping
ions corresponds to that suggested in this work. We
found that the spin textures that are formed completely
simulate so-called stripe modulation (electronic phase
separation into charge and antiferromagnetic insulator
stripes) earlier believed to be responsible for the
appearance of incommensurate reflections in magnetic
neutron diffractograms.

On the other hand, we were able to explain the tran-
sition from diagonal to vertical and from static to
dynamic stripes and back. The predicted concentration
regions, where diagonal (x < 0.05), vertical (0.05 < x <
0.12), and dynamic (0.066 < x < 0.11) stripes should
exist according to our model, coincide exactly with the
regions determined experimentally.

It follows from our model, in qualitative and quanti-
tative agreement with experiment, that tilted stripes
with tilt angles depending on the incommensurability
parameter δ can be observed. It also naturally follows
from this model that the incommensurability parameter
δ is related to the concentration as δ = x. This equality
is only valid in the region 0.05 < x < 0.12, in agreement
with the experimental data.

The suggested model describes the experimental
spin textures in detail. This is evidence that the model
is valid for La2CuO4 and therefore applicable to analyz-
JOURNAL OF EXPERIMENTAL A
ing the Tc–x phase diagram. On the other hand, both
(“superconducting” and “magnetic”) phase diagrams
were constructed using not only the ordering model but
also the concept of negative U-centers developed by us
earlier. The coincidence of the experimental and calcu-
lated phase diagrams can therefore be considered evi-
dence of the validity of the assumptions made and of a
key role played by negative U-centers of the suggested
type in the mechanism of high-temperature supercon-
ductivity.
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Abstract—Experiments with the tetragonal antiferromagnet Nd2CuO4 in the temperature range 1.5 K < T <
TN = 245 K show that the magnetic moments of Cu2+ possess an exchange-noncollinear magnetic structure of
the “square” type, which has the form of an exchange doublet whose components exhibit different chiralities
(Γ4 and Γ5 phases). Between these phases, consecutive phase transitions Γ4  Γ5  Γ4 with a change in
chirality take place at temperatures T1 = 30 K and T2 = 70 K. The electron and nuclear magnetic resonances
(natural frequencies and susceptibilities) associated with excitation of magnons (due to the magnetoelectric and
antiferroelectric interactions) by an ac electric field E(t), as well as a variable magnetic field H(t) applied in the
case of a constant electric field E0, are calculated. It is predicted that nuclear magnetic resonance is excited by
an ac electric field at frequencies determined by hyperfine fields of the sublattices. The change in the resonance
frequencies upon the above chiral phase transitions are analyzed (being first-order phase transitions, these tran-
sitions possess a number of features associated with the chirality of the magnetic structures). © 2005 Pleiades
Publishing, Inc. 

           
1. INTRODUCTION

Rare-earth cuprates R2CuO4 (R = Nd, Pr, Sm, etc.)
have attracted the attention of researchers owing to
their possible use for preparing high-temperature
superconductors (by adding certain impurities). How-
ever, it turned out that these compounds themselves are
of considerable interest as regards their magnetic (usu-
ally antiferromagnetic) properties. This can be demon-
strated using neodymium cuprate (Nd2CuO4) as an
example, for which numerous theoretical and experi-
mental studies were carried out and clearly formulated
results were obtained. From the very outset, consider-
able difficulties and inconsistencies in the crystalline
structure of Nd2CuO4 determined by different authors
have been observed. At T > Tc = 300 K, in the paramag-
netic region, a consistent result was obtained, according
to which the structure is determined by the body-cen-
tered tetragonal group

(1)

however, in the antiferromagnetic ordered region T <
TN = 245 K, a substantial disagreement between two
groups of publications is observed. According to the

I4/mmm D4h
17( );
1063-7761/05/10006- $26.001094
results obtained in the first group [1–4], the same crys-
tal-chemistry symmetry group (1) is preserved in the
antiferromagnetic region, in which a primitive cell con-
tains two Cu2+ ions in view of body centering, so that
antitranslation τ' = τ(1/2, 1/2, 1/2) × 1' appears in the
magnetic groups as a result of antiferromagnetic order-
ing [5] (1' denotes the time inversion t  –t). Accord-
ing to the second group of authors [6–9], a structural
phase transition occurs at Tc = 300 K to the group

(2)

Although this group is also tetragonal, it is simple and
noncentered; the unit cell volume of this group
increases by a factor of 4 due to doubling of each edge
of the unit cell in the basal plane. In this case, the anti-
translations typical of the preceding group (1) do not
appear in the antiferromagnetic structure.

Our analysis is based on the assumption that the
phase transition from group (1) to group (2) indeed
takes place, although, as mentioned above, the exist-
ence of this transition is not recognized by some
authors. We present some arguments in favor of this
transition and develop the spin-wave dynamics for

P42/mnm D4h
14( ).
 © 2005 Pleiades Publishing, Inc.
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Nd2CuO4 taking into account the magnetoelectric and
antiferroelectric interactions taking place in the region
of antiferromagnetic ordering of magnetic moments of
copper ions (i.e., at quite high temperatures of T ≥
1.5 K, for which the ordering of the magnetic moments
of neodymium ions does not take place). We will con-
sider antiferromagnetic structures and specific (chiral)
phase transitions between them, which take place in the
above-mentioned temperature range.

2. ON MAGNETIC STRUCTURE 
OF Nd2CuO4 ACCORDING

TO EXPERIMENTAL DATA: CHIRALITY

Thus, following the authors of [6–9], we assume
that the antiferromagnetic compound Nd2CuO4 (TN =
245 K) has a tetragonal crystal lattice with space sym-

metry P42/mnm ( ) [7]. In a unit cell (Fig. 1), the
Cu2+ magnetic ions occupy the fourfold position
4f{mm}:

The local symmetry of the Cu2+ ions is indicated in the
braces. Four magnetic sublattices with magnetizations
Mν (ν = 1, 2, 3, 4) correspond to four (one ferromag-
netic and three antiferromagnetic) vectors:

(3)

We can compose a table (Table 1) of transformations
of these vectors under the action of generators of group

P42/mnm, assuming that elements , 21x , and 42z are the
end elements (see Fig. 1). It should be borne in mind
that these elements not only generate conventional rota-
tions and reflections, but also carry out the transposition
of copper ions (space symmetry!). It can be seen from
Table 1 that two of four vectors (3) (M and Lc) are cen-
trosymmetric, so that

(4)

(where  is the space inversion operator), while the
remaining two operators are centroantisymmetric:

(5)

Pay attention to the fact that Table 1 is compiled so
that it first represents the transformations for the rhom-
bic group Pnmm (column 3), which is a subgroup of the

P42/mnm group we are interested in since  = 2z. The

D4h
14

1 x x 0, ,( ), 2 1/2 x+ 1/2, x– 1/2,( ),

3 1/2 x– 1/2, x+ 1/2,( ), 4 1 x– 1 x– 0, ,( ).

M M1 M2 M3 M4,+ + +=

La M1 M2 M3– M4,–+=

Lb M1 M2– M3 M4,–+=

Lc M1 M2– M3– M4.+=

1

1M M and 1Lc Lc= =

1

1La b, La b, .–=

4z
2
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first column labels phases Γn of the Pnmm group in
terms of the components of vectors M and Lξ (ξ = a, b,
c). Numbers +1 and –1 in column 3 indicate whether
the corresponding functions from the second column

reverse their sign under the action of elements , 21x ,
and 2z . The last column contains the results of transfor-
mation of these functions under the action of element
42z supplementing the Pnmm group to P42/mnm.

It should be noted from the very outset that the mag-
netic ions Cu2+ occupy noncentrosymmetric positions

so that spatial inversion  transposes atoms with one
another and not each atom into itself; this ensures the

1

1

1

2
3

4

42

1

21x

—Cu2+x

y

z

Fig. 1. Unit cell of the crystal lattice of Nd2CuO4 for the 4f

position of the P42/mnm ( ) group. Positions of genera-

tors , 21x , and 42z of the group are indicated.

D4h
14

1

Table 1.  Transformation of vectors M, Lξ (ξ = a, b, c), and
E under the action of elements of symmetry groups Pnmm
and P42/mnm

Γi M, L, E 21x2z 42z

Γ1 Mx, Lcy +1 + 1 – 1 My, Lcx

Γ2 My, Lcx +1 – 1 – 1 –Mx, –Lcy

Γ3 Mz +1 – 1 + 1 Mz

Γ4 Lax, Lby –1 + 1 + 1 Lby, Lax

Γ5 Lay, Lbx, Ez –1 – 1 + 1 –Lbx, –Lay, Ez

Γ6 Laz, Ey –1 – 1 – 1 Lbz, –Ex

Γ7 Lbz, Ex –1 + 1 – 1 –Laz, Ey

Γ8 Lcz +1 + 1 + 1 –Lcz

1
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magnetoelectric and antiferroelectric interactions.
Table 1 makes it possible to write invariant expressions
for the energy of these interactions:

(6)

(7)

Here, the terms containing coefficients R and G are of
exchange origin, while the remaining terms are of rela-
tivistic origin, so that R, G @ s, f.

In the spin dynamics, the magnetoelectric and anti-
ferroelectric interactions make it possible to excite
oscillations of magnetic moments by the ac electric

field E(t). For example, if vectors  and/or  differ
from zero in the ground state of an antiferromagnet,
these interactions produce an ordinary magnetoelectric
effect: by solving the Landau–Lifshitz equations
together with expressions (6) and (7), we can determine
the oscillations of magnetization M(t) and antifer-
romagnetism vectors Lξ (ξ = a, b, c) excited by field
E(t) ∝  exp(–iωt).

Thus, in the model adopted here, the compound
Nd2CuO4 has a tetragonal crystal lattice with symmetry

P42/mnm ( ) [7–9]. After the structural transition,
both paramagnetic and antiferromagnetic (TN = 245 K)
phases are described by the same group P42/mnm
belonging to the tetragonal system. The primitive cell
containing two copper atoms in the phase I4/mmm
increases fourfold in the phase P42/mnm and now con-
tains four copper atoms [7–9].

ΦME R Ex M La⋅( ) Ey M Lb⋅( )+[ ]–=

– s1 MxEx MyEy+( ) Lax Lby+( ) s2 MxEy MyEx+( )–

× Lay Lbx+( ) s3MzEz Lax Lby+( ),–

ΦAFE G Ex Lb Lc⋅( ) Ey La Lc⋅( )+[ ]–=

– f 1 LcxEx LcyEy+( ) Lay Lbx+( )
– f 2 LcxEy LcyEx+( ) Lax Lby+( )

– f 3LczEz Lay Lbx+( ).

La
0 Lb

0

D4h
14

1

2

3

4
O1

2xy

2xy

O2

1/4

z = 0
z = 1/2

x

y

44

4

4

4

3

3

3

3

22

22

2

1

1 1

1

I II

Fig. 2. Two square (or rectangular cross) exchange mag-
netic structures I and II forming an exchange multiplet
(doublet). O1 and O2 are two orientations states of each of
these exchange magnetic structures.

21x
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It should be emphasized once again that magneto-
electric effects in the noncollinear antiferromagnet
Nd2CuO4 can exist only in the presence of the above
spontaneous phase transition of the crystal lattice,
which occurs in this compound at Tc = 300 K. If, how-
ever, group (1) were preserved, antitranslations forbid-
ding the magnetoelectric effects would appear in the
magnetic symmetry group [5, 7, 9]. In addition, the
magnetoelectric and antiferroelectric interactions are
impossible for group (1) if only because magnetic cop-
per ions occupy centrosymmetric positions in this
case [10].

Thus, the question about the crystal symmetry group
((1) or (2)) for Nd2CuO4 (for copper ions) is answered
by the absence or presence of the magnetoelectric
effect in the antiferromagnetic phase. The authors
of [11, 12] tried to find the answer to this question
experimentally.

Indeed, the magnetoelectric and antiferroelectric
interactions are absent for group (1) and are present for
group (2). This means that the magnetoelectric and
antiferroelectric effects are absent in the former case,
but can take place in the latter. We will consider the
results of measurements [11, 12] at a later stage pro-
ceeding from the P42/mnm structure adopted in [7–9]
and used in this article. These results are not that simple
and clear and require a serious analysis of the theory
together with the experiment.

Let us consider in greater detail the noncollinear
antiferromagnetic structure Nd2CuO4 in the tempera-
ture range 1.5 < T < 245 K [7, 9] for symmetry
group (2) adopted by us. Figure 2 shows Cu2+ ions pro-
jected onto the xy plane in the form of light circles for
z = 0 and dark circles for z = c/2. As compared to Fig. 1,
the origin is displaced to point (–1/2, 0, 0). The mag-
netic structure of Nd2CuO4 depicted in Fig. 2 can be
conditionally called quadratic (all Mν vectors con-
nected successively with one another form a square) or
rectangular cross (all Mν vectors with their origins
brought to a single point form a rectangular cross).

Columns I and II in Fig. 2 correspond to different
exchange magnetic structures, while the upper and
lower lines (O1 and O2) correspond to different orienta-
tional states. The stability of these states is determined
by the magnetoanisotropic interaction. According to
the results obtained by different authors who studied
microscopic models, these interactions include the
dipole interactions between ions, the anisotropic
exchange, and pseudodipole interactions [3, 4]. We will
not consider these interactions explicitly since we are
planning to construct a purely symmetric phenomeno-
logical theory.

The exchange magnetic structures I and II corre-
spond to the same exchange energy (the angles between
the magnetic moments are identical for both structures
and equal to 90°), but are characterized by different
magnetic symmetries. Indeed, structure I contains sym-
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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metry element 42z , while in structure II this element is
replaced by  = 42z · 1'. Moreover, if we introduce the
chirality vector [8]

(8)

these structures will have different chiralities. The sec-
ond part of this equality corresponds to the equimodu-
lar model, when |Mν | = M0 (ν = 1, 2, 3, 4). For the nor-
malization of Q introduced here (for which Q2 = 1),
components Qx and Qy = 0 for both structures, while
Qz = 1 for structure I and Qz = –1 for structure II.

3. THERMODYNAMIC POTENTIAL

To define the ground state and spectrum of spin
waves (magnons), we must write the thermodynamic
potential Φ (we confine out analysis to density Φ(r) =
const, which is constant in space). Apart from the mag-
netoelectric and antiferroelectric interactions, the
potential must include the magnetic energy (exchange)
and the magnetic anisotropy:

(9)

In addition to the bilinear exchange (the terms with
coefficients A), the biquadratic exchange (the term with
D) is also taken into account. The term associated with
chirality has coefficient qa , and the remaining terms are
the relativistic magnetic anisotropy (which contains
relativistic terms of the type of quadratic interionic
anisotropy), anisotropic exchange, and the pseudodi-
pole interaction. In the presence of a magnetic field H,
the total potential Φ also includes the Zeeman energy

(10)

42z'

Q
1

2M0( )2
-----------------–=

× M1 M2 M2 M4 M4 M3 M3 M1×+×+×+×( )

=  
1

8M0
2

----------La Lb,×

Φmag
1
2
---AMM2 1

2
---Aa La

2 Lb
2+( )+=

+
1
2
---AcLc

2 D La
2 Lb

2–( )2
+

+ qaQz qs LaxLby LayLbx+( )+

+
1
2
---K1 Lax

2 Lby
2+( ) 1

2
---K2 Lay

2 Lbx
2+( )+

+
1
2
---g Mx

2 My
2+( ) 1

2
---r Lcx

2 Lcy
2+( )+

+ p MxLcy MyLcx+( ).

ΦZ M– H.⋅=
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Thus, the total thermodynamic potential (density) is
given by

(11)

All the terms are invariant to elements , 21x , and 42z

which are regarded as generators of the P42/mnm group
(see Table 1). Among other things, invariance of the
chirality

(12)

is also important. For structures I and II considered
here, we have Qz = ±1. On the other hand, transposition
of indices a and b in expression (12) leads to sign rever-
sal of Qz , which corresponds to a phase transition
between two chiral exchange magnetic structures I
and II.

Analogously to the Dzyaloshinskii–Moriya anti-
symmetric exchange, chirality (12) is an exchange-rel-
ativistic quantity; consequently, magnetic interactions
of various origin in energy (9) are characterized by the
inequalities

A @ D, qa @ qs, K1, K2, g, r, p. (13)

The equimodular model adopted above (  = )
corresponds to the conditions

(14)

(15)

as well as the Landau–Lifshitz equations for vectors M
and Lξ (ξ = a, b, c), which are written, for example,
in [13] for antiferromagnets with four sublattices.

4. EXCHANGE MAGNETIC STRUCTURES 
AND ORIENTATIONAL STATES

The conditions for the realization and stability of the
exchange magnetic structures and orientational states
IO1, IO2 (Qz = 1) and IIO1, IIO2 (Qz = –1), which are
presented in Fig. 2, were studied in [7]. We will not
repeat these conditions here and will first use the above
approximation, in which the role of chirality is mani-
fested most clearly. In addition to the exchange terms,
we will retain only one (semiexchange–semirelativis-
tic) term associated with chirality Qz in the magnetic
part of thermodynamic potential (9). In accordance
with inequalities (13), the remaining purely relativistic

Φ Φmag ΦZ ΦME ΦAFE.+ + +=

1

Qz
1

8M0
2

---------- LaxLby LayLbx–( )=

Mν
2 M0

2

M2 Lξ
2

ξ
∑+ 4M0( )2,=

M La Lb Lc⋅+⋅ M Lb La Lc⋅+⋅=

=  M Lc La Lb⋅+⋅ 0,=
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terms will be omitted at this stage, so that the potential
assumes the form

(16)

Here, we also take into account relation (14) for the
equimodular model, using this relation to eliminate the
exchange terms containing Aa . We assume in this case
that

Aa < 0, AM > 0, Ac > 0, D > 0 (17)

and introduce new parameters

(18)

both of which are positive.
Minimizing potential (16), we obtain, among other

things, two exchange magnetic structures in the easy-

plane state, viz., the phases with  =  = 8  ≡ L2

for La ⊥  Lb , La and Lb ⊥  z, M = Lc = 0, which precisely
correspond to two chiral structures I (Qz = 1) for qa < 0
and II (Qz = –1) for qa > 0, which are shown in Fig. 2.

For the orientational state IO1, we have  =  ≡
(±)L, while for the IO2 state with the same energy, we

obtain –  =  ≡ (±)L. Analogously, for the state

IIO1, we have  =  ≡ (±)L, while for the state

IIO2, we obtain  = –  ≡ (±)L.

The signs (±) in the above equalities indicate that
each of the four orientational states contains two possi-
bilities differing only in the sign of the vectors corre-
sponding to the ground state. This points to the exist-
ence of domains for which the magnetization associ-
ated with the magnetoelectric effect also differs only in
sign. If the number of such domains (say, with vectors

 = ) in the orientational state under investigation
is the same (the IO1 structure), the total magnetization
is zero (see below). To detect the linear magnetoelectric
effect, poling of the sample must be first carried out;
this can be done, for example, by cooling the sample
from the paramagnetic region in an appropriate external
magnetic field (thermomagnetic treatment). Appar-
ently, this was not done in [11, 12].

Naturally, it should be borne in mind that, strictly
speaking, it is the relativistic anisotropy (which is
ignored in expression (16)) that determines as to which
of the two orientational states, O1 or O2, is realized for
each exchange magnetic structure.

In accordance with Table 1, structure IO1 (from the
position of the rhombic group Pnmm) corresponds to

representation Γ4( , ); although this representa-

Φmag const
1
2
--- ÃMM2 1

2
--- ÃcLc

2+ +≈

+ D La
2 Lb

2–( )2
qaQz.+

ÃM AM Aa, Ãc– Ac Aa,–= =

La
2 Lb

2 M0
2

Lax
0 Lby

0

Lay
0 Lbx

0

Lay
0 Lbx

0

Lax
0 Lby

0

Lax
0 Lby

0

Lax
0 Lby

0
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tion becomes two-dimensional upon a transition to the
tetragonal group P42/mnm after the addition of the 42z

axis, it contains the same nonzero components of vec-

tors  and . The latter statement means that the
magnetic group for this structure (we will call it the

Γ4( , ) phase) is 42z21x . The IIO1 structure cor-

responds to the representation Γ5( , ), in which
the 42z axis transforms the vector components constitut-
ing it into one another, but with opposite signs. The

magnetic group of the corresponding phase is .

The other two phases (which can be written as

Γ4(− , ) and Γ5( , – ) in the orientational
state O2) can be obtained from the above phases by
rotating all magnetic moments through 90°; henceforth,
we will consider only the phases in the orientational

state O1 (i.e., Γ4(– , ) and Γ5( , – ) with
chirality Qz = 1 and Qz = –1, respectively).

It should be noted that the semiexchange–semirela-
tivistic interaction with the chirality energy ΦQ = qaQz

is an analog of the pseudodipole interaction with
Hamiltonian HQ introduced in [4] for explaining the
noncollinearity of the magnetic structure of Nd2CuO4.
This can easily be verified if, taking into account rela-
tions (12) and (3), we write energy ΦQ in the form

where ϕ1 and ϕ2 are the azimuth angles of vectors

 = −  and  = – . Consequently, energy ΦQ ,
as well as HQ , describes the interaction of the magnetic
moments of the Cu2+ ions lying in the adjacent planes
z = 0 and z = c/2 (see Fig. 2, states O1). The minimum
value of energy ΦQ corresponds to ϕ2 – ϕ1 = –π/2 for
qa < 0 (phase Γ4, Qz = 1) or ϕ2 – ϕ1 = π/2 for qa > 0
(phase Γ5, Qz = –1), corresponding to the noncollinear
magnetic structures shown in Fig. 2 (states O1).

5. SPIN-WAVE REPRESENTATIONS 
(OSCILLATION MODES): FREQUENCIES 

AND SUSCEPTIBILITIES TO FIELD E = E(t)

In calculating the natural oscillation frequencies, it
is convenient to use the concept of spin-wave represen-
tations [9, 13–16], which makes it possible to separate
vibrational variables into independent groups corre-
sponding to vibrational modes even before the equa-
tions of motion are written. In the general case, the
group-theoretical approach is used for this purpose,
which is based on the theory of corepresentations of
magnetic groups [14, 15]. However, for the rhombic
symmetry, the following simple algorithm was pro-

La
0 Lb
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Lax
0 Lby

0 1'

Lay
0 Lbx

0

1'42z' 21x'

Lay
0 Lbx

0 Lax
0 Lby

0
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0

ΦQ

qa

M0
2
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0 M2y
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posed [9, 13], in which Table 1 (the part corresponding
to the rhombic group) is used. The same spin-wave rep-
resentation of phase Γn under investigation corresponds
to variables from two lines of the table (Γm and Γm') for
which the product of numbers (+1 or –1) gives the num-
bers of line Γn . This can be written schematically as

Γm · Γm' = Γn. (19)

The case when m = m' is also possible.
Unfortunately, an analogous simplified rule for

determining the spin-wave representations for tetrago-
nal crystals has not been formulated as yet. It will be
shown below, however, that even the spin-wave repre-
sentations determined for the corresponding rhombic
subgroup provide information sufficient for obtaining
representations for the tetragonal case by using the spe-
cific form of the thermodynamic potential and the cor-
responding symmetry of the problem.

Let us demonstrate this for structures (phases)

Γ4( , ) and Γ5( , ).

5.1. Spin Oscillations in the Γ4( , ) Phase 
Induced by Field E(t) 

In accordance with the rule formulated above for the
rhombic subgroup, Table 1 for this phase gives the fol-
lowing four spin-wave representations (modes): anti-
magnons1 

(20)

and three quasi-antiferromagnon modes

(21)

(22)

(23)

each of which has one component of vector M among
vibrational variables.

What will happen to these modes after the inclusion
of the 42z axis (i.e., in the case of the tetragonal group)?
To be more precise, how are these modes transformed
under the action of the 42z symmetry axis (since the

exact symmetry of the Γ4( , ) phase is deter-

mined by the magnetic group 42z21x)? The answer to
these questions is quite favorable: each of the modes
Γ48 and Γ35 is transformed into itself, while modes Γ17
and Γ26 are transformed into each other! Thus,
modes (20)–(23) remain unchanged for the tetragonal

1 It was agreed earlier [13, 17] that this term is applied to the mode
for which vector M does not participate in oscillations and only
vectors L oscillate.

Lax
0 Lby

0 Lay
0 Lbx

0

Lax
0 Lby

0

Γ48 ∆Lax ∆Lby ∆Lcz, ,( )

Γ17 ∆Mx ∆Lcy ∆Lbz, ,( ),

Γ26 ∆My ∆Lcx ∆Laz, ,( ),

Γ35 ∆Mz ∆Lay ∆Lbx, ,( ),

Lax
0 Lby

0

1'
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phase also and only modes Γ17 and Γ26 are transformed
into each other under the action of element 42z .

To solve the problem of natural oscillations excited by

field E(t) ∝  exp(–iωt) in the Γ4( , ) phase, we must
single out the terms in thermodynamic potential (9),
which are quadratic in the vibrational variables appear-
ing in modes (20)–(23) of this phase and supplement
the corresponding terms from expressions (6) and (7)
for ΦME and ΦAFE, respectively.

Thus, we find that

(24)

In the derivation of this equation, relations (14) and
(15) of the equimodular model play a significant role.
Owing to these relations, variable ∆Mx , ∆My , ∆Lax , and
∆Lay are eliminated and an exchange contribution from

ΦME (term  in Eq. (24)) appears. In addition to param-

eters  and  (18), one more exchange parameter,
viz., their sum

, (25)

also appears. The remaining notation in (24) is as fol-
lows:

(26)

 = qa/L2,  + qs < 0, K+ > 0, and K1 < 0 (see stability
conditions (63) and (64) below for phase Γ4). Here, the
(±) signs indicate allowance for domains with positive
(+L0) and negative (–L0) values of the vectors of the
ground state, while the plus and minus signs (sepa-
rately) in the argument as well as in the superscripts of
physical quantities indicate that they correspond to
phase Γ4 or Γ5 with chirality Qz = +1 or Qz = –1, respec-
tively.

Using expression (24) for Φ2, we can now find solu-
tions to the Landau–Lifshitz equations [13] for all four
modes (20)–(23).

The antimagnon mode Γ48(∆Lax, ∆Lby, ∆Lcz) in the

Γ4( , ) phase is not excited by electric field E(t)

Lax
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2
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2 Ã ∆Lcx
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+ Ãc∆Lcz
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+ q+ ∆Laz
2 ∆Lbz

2+( ) ] G̃ R̃–( )–

× Ex∆Lcy Ey∆Lcx+( ) 2s̃3∆MzEz.–
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ÃM Ãc
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D+ 4 8DL2 q̃a qs+( )–[ ] ,=
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since expressions (6) and (7) do not contain any terms
linear in its variables.

For the Γ17(∆Mx, ∆Lcy, ∆Lbz) mode excited by field E
parallel to the x axis, we obtain

(27)

where αxx is the corresponding component of the mag-
netoelectric susceptibility tensor. If we take into account
the presence of the above-mentioned domains, the total
magnetization in compliance with relations (27) will be
zero in the case of complete compensation of domains
(see above):  = 0. However, incomplete com-
pensation (a structure with predominance of domains
with identical sign of vectors La, b over other domains)

is also possible; in this case, ∆Mx ≠ 0.

In view of the above-mentioned relation between
modes Γ17(∆Mx, ∆Lcy, ∆Lbz) and Γ26(∆My, ∆Lcx, ∆Laz),
we can immediately write the corresponding expres-
sions for the latter mode. We will not do it here, bearing
in mind that the Γ26 mode can be obtained from the Γ17
mode by the symmetry operation 42z (see Table 1); it
should only be noted that these modes are degenerate,
i.e., having the same resonance frequency

(28)

where ω0 = γL, γ being the absolute value of the magne-
tomechanical ratio.

It should be noted that the magnetoelectric suscepti-
bility αxx in formula (27) is determined by the exchange
part of the magneto- and antiferroelectric interactions

(the terms containing  –  in formula (24)); conse-
quently, we can hope that the value of this susceptibility
(in the absence of domains or in the presence of a grain
structure) is much higher than the values of susceptibil-
ities determined by relativistic interactions.

Finally, for the fourth (quasi-antiferromagnon)
mode Γ35(∆Mz, ∆Lay, ∆Lbx), the Landau–Lifshitz equa-
tions [13], taking into account (24), give

(29)

∆Mx α xxEx
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2 +( ) ω2–
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iω

ω0K+
-------------∆Mz.–= =
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This mode is excited by field E parallel to the z axis due
to the relativistic magnetoelectric interaction (the term
containing  in (24)). Its frequency

(30)

is determined by the geometrical mean of the exchange

constant  from formula (18) and the linear combina-
tion K+ from relation (26), which consists of relativistic
anisotropy constants.

5.2. Spin Oscillations Excited

in the Γ5( , ) Phase by Field E(t) 

In this phase,  =  ≡ (±)L are the nonzero com-
ponents of the basis vectors of the ground state, and the

magnetic subgroup of this phase is . As in the
case of the Γ4 mode, we find from Table 1 the spin-wave
representations

(31)

for the antimagnon mode,

(32)

for the quasi-antiferromagnon modes connected with
each other via the symmetry operation , and

(33)

for one more quasi-antiferromagnon mode.
The quadratic thermodynamic potential determined

from formula (11), taking into account relations (14)
and (15), can be represented in terms of vibrational
variables of these modes in the form

(34)

Here, we used the notation

(35)
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where  – qs > 0, K– > 0, and K2 < 0 (see the stability
conditions (65), (66) for the Γ5 phase).

Solving the Landau–Lifshitz equations [13] succes-
sively for the Γ58 modes from relation (31), Γ16 and Γ27
modes from relation (32), and the Γ34 mode from rela-
tion (33), we arrive at the following results.

The antimagnon mode Γ58(∆Lay, ∆Lbx, ∆Lcz) contain-
ing oscillations ∆Lcz is excited by field E(t) directed
along the z axis (expression (34), the term containing

coefficient ). Unfortunately, this is a relativistic
term. This gives

(36)

where βzz is the component of the antimagnon-electric
susceptibility tensor and

(37)

is the antimagnon resonance frequency. The second
factor in the radicand (D– from expressions (35)) con-
tains, apart from biquadratic exchange D the chiral term
with . These two terms may be comparable in value,
but they are usually smaller than the bilinear exchange.
In this respect, the magnet under consideration with an
exchange-noncollinear magnetic structure differs from
collinear or weakly relativistically noncollinear structure
considered earlier [13, 17]. In accordance with adopted
inequalities (13), the antimagnon frequency ωL (37) may
turn out to be much smaller than in those cases. It
should be noted that the antimagnon mode Γ48(∆Lax,
∆Lby, ∆Lcz), which is not excited by the electric field,
E(t), has natural frequency ωL(+) similar to frequency
ωL(–). It can be determined from formula (37) by
replacing D– (35) in this formula by D+ (26) (see for-
mula (47) below).

It should be noted that the antiferromagnetism vec-
tor ∆L cannot be a directly observable quantity in anti-
magnon resonance. In this respect, it is more conve-
nient to use the effective polarization vector (in the
present case, its component

(38)

where κzz = 2 βzz is the dielectric susceptibility tensor
component). In this case, we can calculate, for exam-
ple, the absorbed power

(39)

q̃a

f̃ 3
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ωL

2 –( ) ω2–
--------------------------Ez,= =

∆Lbx i
ω

ω0D–
-------------∆Lcz, ∆Lay ∆Lbx,–= =

ωL –( ) ω0 ÃcD–=
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∂Φ2

∂Ez

----------– 2 f̃ 3∆Lcz κ zzEz,= = =

f̃ 3

Q PzĖz–=
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(the bar indicates averaging over time t @ 2π/ω). Natu-
rally, we must first take into account damping in for-
mula (39). In the simplest form (in Bloch’s sense), this
can be reduced to the substitution ω  ω + iΓ in for-
mula (39), where Γ is the resonance half-width. As a
result, we obtain from Eq. (39)

(40)

where  is the imaginary part of βzz from formula (36)
(taking into account damping). The above arguments
should be taken into account in experiments on observ-
ing the antimagnon resonance since, in contrast to the
antiferromagnetic resonance, resonance for electric
polarization and not for magnetization takes place in
field E(t) in this case.

Modes Γ16 and Γ27 (32) transformed into each other
under transformation , have natural frequency
ωAQ(–), which can be obtained from expression (28) for
ωAQ(+) in the case when Γ17 is defined by formula (21)
and Γ26 is defined by formula (22) if we replace q+ by
q– in the latter formula. In particular, for the mode
Γ16(∆Mx, ∆Lcy, ∆Laz) excited by field E directed along
the y axis, we have

(41)

The corresponding expressions for the mode Γ27(∆My,
∆Lcx, ∆Lbz) can be obtained from these formulas by the
action of the symmetry operation  (see Table 1).

Let us now consider the mode Γ34(∆Mz, ∆Lax, ∆Lby).

Its variables (  =  ≡ (±)L in the ground state) do
not appear in expressions (6) for ΦME and (7) for ΦAFE;
consequently, it is not excited by field E(t). The fre-
quency ωAF(–) of this mode, as well as the frequency
ωAF(+) of the Γ35 mode (see relation (30)), is deter-
mined by the relativistic constants enhanced by

exchange  (see formula (60) below).

6. EXCITATION OF MAGNETIZATION 
BY AC MAGNETIC FIELD H(t) 

UPON APPLICATION 
OF CONSTANT ELECTRIC FIELD E0

Although the conventional linear magnetoelectric
effect (in field E(t)) could not be reliably observed
in [11, 12], another magnetoelectric effect quadratic in

Q ω f̃ 3βzz'' Ez
2,=

βzz''

42z'

∆Mx α xyEy
G̃ R̃–

Ã
--------------

ωAQ
2 –( )

ωAQ
2 –( ) ω2–

------------------------------Ey,–= =

∆Lcy ∆Mx,–=

∆Laz i
ω

ω0q–
-----------∆Mx, ωAQ –( )– ω0 Ãq–.= =

42z'

Lay
0 Lbx

0

ÃM
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E(t) was observed for sure. The theory predicts this
effect from the following considerations.

Let us define the varying magnetization M(t),

(42)

emerging due to the Zeeman and magnetoelectric inter-
actions when a varying magnetic field H = h(t) and a
constant electric field E = E0 = const are applied simul-
taneously. The energy of the magnetoelectric interac-
tion in this case can be written in the form

(43)

Here, the meaning and magnitude of coefficient R' dif-
fer from those of the corresponding coefficient R in for-
mula (6) and relation (43) is analogous to the terms in
formula (6) containing R only in symmetry. In expres-
sion (43), the relativistic terms analogous to those
from (6) after the substitution of h for M are not
included since these terms make zero contribution to
quantities ∆Mi, ∆Lξi (ξ = a, b, c), and M(t) in the equi-
modular model. Taking into account relations (10) and
(43), we obtain from Eq. (42) the expression for the
total magnetization,

(44)

in which the second term, including the entire expres-
sion in the parentheses, describes the contribution of
oscillations of antiferromagnetism vectors ∆Lξi to
quantity M(t). This contribution is associated with the
exchange part of the magnetoelectric interaction with
constant R'. Here, ∆Mi, ∆Lξi (ξ = a, b) are the vibra-
tional variables corresponding to modes (20)–(23) in

the Γ4( , ) phase and to modes (31)–(33) in the

Γ5( , ) phase. We will find these variables from
the Landau–Lifshitz equations [13], using the thermo-
dynamic potential Φ composed from energies Φmag (9),
ΦZ (10), and ΦME (43). Here, we disregard the antifer-
roelectric interaction energy ΦAFE (7) since we ignore a
weak effect of the constant electric field on the ground
state and frequency of oscillations emerging when the
term ΦAFE is taken into account in the thermodynamic
potential Φ. It can be proved that this effect is relatively
weak indeed.

6.1. Γ4( , ) Phase 

Let us first consider the antimagnon mode Γ48(∆Lax,
∆Lby, ∆Lcz). The Landau–Lifshitz equations [13] taking

M
∂Φ
∂h
-------,–=

ΦME' R' Ex
0 h La⋅( ) Ey

0 h Lb⋅( )+[ ] .–=

Mi t( ) ∆Mi R' Ex
0∆Lai Ey

0∆Lbi+( ),+=

Lax
0 Lby

0

Lay
0 Lbx

0

Lax
0 Lby

0
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into account expressions (9)–(11) and (43) in this case
have the form

(45)

(46)

where

(47)

is the antimagnon resonance frequency for the Γ48
mode.

Analogously, for the Γ17(∆Mx, ∆Lcy, ∆Lbz) mode, we
can write

(48)

(49)

Variables for the Γ26(∆My, ∆Lcx, ∆Laz) mode, which is
degenerate with the Γ17 mode, are determined from
expressions (48), (49) by the action of the symmetry
element 42z as before (see Table 1)

Using the Landau–Lifshitz equations [13], we
obtain the following expressions for the Γ35(∆Mz, ∆Lay,
∆Lbx) mode:

(50)

(51)

In formulas (48)–(51), quantities ωAQ(+) and ωAF(+)
are the natural frequencies of the corresponding modes
given by formulas (28) and (30).

It follows from expressions (45), (46), and (48)–(51)
that the antimagnon mode Γ48(∆Lax, ∆Lby, ∆Lcz) (which
is not excited by the varying electric field E(t)) is
excited by a varying magnetic field h(t) ⊥  z in the pres-
ence of field E0 ⊥  z owing to the magnetoelectric inter-
action. Other (quasi-antiferromagnon) modes can be
excited due to both the magnetoelectric interaction
(first terms in Eqs. (48)–(51)) and the Zeeman interac-
tion (last terms). For example, the quasi-antiferromag-
non mode Γ17 (21) is excited by magnetic field h(t) || x

∆Lax ∆Lby–
ω0

2R' Ãc Ex
0hx Ey

0hy–( )
ωL

2 +( ) ω2–
---------------------------------------------------,= =

∆Lcz
iω

ω0 Ãc

------------∆Lax,–=

ωL +( ) ω0 ÃcD+=

∆Mx ∆Lcy–
iωω0R'Ey

0hz ω0
2q+hx+

ωAQ
2 +( ) ω2–

-----------------------------------------------------,= =

∆Lbz

ω0
2 ÃR'Ey

0hz iωω0hx–

ωAQ
2 +( ) ω2–

---------------------------------------------------.=

∆Mz

iωω0R' Ex
0hy Ey

0hx–( ) ω0
2K+hz+

ωAF
2 +( ) ω2–

----------------------------------------------------------------------------,=

∆Lay ∆Lbx–=

=  
ω0

2 ÃMR' Ex
0hy Ey

0hx–( ) iωω0hz–

ωAF
2 +( ) ω2–

----------------------------------------------------------------------------.
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Table 2.  Modes of spin oscillations and electric field E and magnetic field h exciting them in the Γ4 and Γ5 phases. Here,

D± = 4 , K± = 2 , q+ = –(  + qs + K1), and q– =  – qs + K2

Phase stability 
regions Vibrational modes E E0, h h Natural frequencies

Γ4( ) Γ48(∆Lax, ∆Lby, ∆Lcz) – , –  = 

 + qs < 0 Γ17(∆Mx, ∆Lcy, ∆Lbz) Ex hx

K+ > 0  = 

Γ26(∆My, ∆Lcx, ∆Laz) Ey hy

Γ35(∆Mz, ∆Lay, ∆Lbx) Ez , hz  = 

Γ5( ) Γ58(∆Lay, ∆Lbx, ∆Lcz) Ez , –  = 

 – qs < 0 Γ16(∆Mx, ∆Lcy, ∆Laz) Ey hx

K– > 0  = 

Γ27(∆My, ∆Lcx, ∆Lbz) Ex hy

Γ34(∆Mz, ∆Lax, ∆Lby) – , hz  = 

8DL2 q̃a qs–+−( ) K1 K2 2qs–±+−( ) q̃a q̃a

Lax
0 Lby

0, Ex
0hx Ey

0hy ωL
+ ω0 ÃcD+

q̃a Ey
0hz

ωAQ
+ ω0 Ãq+

Ex
0hz

Ex
0hy Ey

0hx ωAF
+ ω0 ÃMK+

Lay
0 Lbx

0, Ex
0hy Ey

0hx ωL
– ω0 ÃcD–

q̃a Ex
0hz

ωAQ
– ω0 Ãq–

Ey
0hz

Ex
0hx Ey

0hy ωAF
– ω0 ÃMK–
(owing to the Zeeman interaction) or under the simulta-
neous action of fields h(t) || z and E0 || y (owing to the
magnetoelectric interaction), while the quasi-antiferro-
magnon mode Γ35 (23) is excited by field h(t) || z or by
fields h(t) ⊥  z and E0 ⊥  z acting together (see Table 2).

Using expressions (45), (46), and (48)–(51) for
vibrational variables ∆M and ∆Lξ (ξ = a, b) in expres-
sion (44), we find that the total magnetization M(t) is
defined as

(52)

where χik is the magnetic susceptibility tensor with
diagonal components (other components are equal to
zero),

(53)

(susceptibilities χik describe excitation of magnetiza-
tion M(t) by magnetic field h(t) due to the Zeeman
interaction); ∆χik is a tensor describing the magneto-

Mi t( ) χ ik ∆χ ik+( )hk,=

χxx χyy
1

Ã
---

ωAQ
2 +( )

ωAQ
2 +( ) ω2–

------------------------------,= =

χzz
1

ÃM

-------
ωAF

2 +( )
ωAF

2 +( ) ω2–
------------------------------=
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electric correction to the magnetic susceptibility with
components

(54)

(55)

(56)

(57)

∆χxx
R'2
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-------

ωL
2 +( )

ωL
2 +( ) ω2–

--------------------------- Ex
0( )2
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+
R'2
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-------
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2 +( ) ω2–

------------------------------ Ey
0( )2

,

∆χyy
R'2
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ωL
2 +( ) ω2–

--------------------------- Ey
0( )2

=

+
R'2

K+
-------

ωAF
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ωAF
2 +( ) ω2–
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0( )2

,

∆χzz
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------------------------------




Ex
0Ey

0,
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(58)

(59)

It should be noted that components χii (54)–(56) and
∆χxy , ∆χyx (57) describe the excitation of magnetization
Mi(t) by oscillations ∆Lξ (ξ = a, b) induced by the mag-
netic field h(t) due to direct exchange magnetoelectric
interaction. The remaining components ∆χik (58), (59)
describe the excitation of magnetization M(t) by mag-
netic field h(t) due to both the direct and indirect mag-
netoelectric interactions. For example, the first terms in
expressions (58) for ∆χxz and (59) for ∆χyz are respon-
sible for direct excitation of oscillations of Mx = ∆Mx

(the first term in Eq. (48)) and My = ∆My , belonging to
modes Γ17 and Γ26, respectively, while the second terms
are responsible for the indirect excitation of magnetiza-
tions Mx and My by oscillations ∆Lay and ∆Lbx of the Γ35
mode (the last term in Eq. (51)), which are induced not
by the magnetoelectric, but by the Zeeman interaction.
Analogously, the first terms in expressions (58) for ∆χzx

and (59) for ∆χzy describe indirect magnetoelectric
excitation of magnetization Mz by oscillations ∆Lbz of
the Γ17 mode (the last term in Eq. (49)) and oscillations
∆Laz of the Γ26 mode caused by the Zeeman interaction,
while the second term are responsible for direct magne-
toelectric excitation of oscillations of Mz = ∆Mz (terms
with R' in Eq. (50)) belonging to the Γ35 mode.

It should be noted that formulas (53)–(59) remain
valid for an electric field containing, apart from con-
stant component E0, a varying (quasi-static) component
E(t) if we carry out the substitutions E0  E0 + E(t)
and ω  ωE + ωh ≈ ωh , where ωE and ωh (ωE ! ωh)
are the frequencies of oscillations of the electric and
magnetic fields.

6.2. Γ5( , ) Phase 

Let us now consider the Γ5( , ) phase. The
antimagnon mode Γ58(∆Lay, ∆Lbx, ∆Lcz) of this phase, as
well as the antimagnon mode Γ48(∆Lax, ∆Lby, ∆Lcz) of

phase Γ4( , ), is excited by magnetic field h(t) ⊥
z for E0 ⊥  z (see Table 2). The vibrational variables of
this mode are determined from expressions (45) and
(46) using the substitutions ∆Lax  ∆Lay, ∆Lby 
∆Lbx, hx  hy, ω  –ω, ωL(+)  ωL(–), where
ωL(–) is the antimagnon resonance frequency for the
Γ58 mode (see formula (37)).

∆χxz ∆χzx– iωω0R'Ey
0 ωAQ

2 +( ) ω2–[ ] 1–{= =

+ ωAF
2 +( ) ω2–[ ] 1– } ,

∆χyz ∆χzy– i– ωω0R'Ex
0 ωAQ

2 +( ) ω2–[ ] 1–{= =

+ ωAF
2 +( ) ω2–[ ] 1– } .

Lay
0 Lbx

0

Lay
0 Lbx

0

Lax
0 Lby

0
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The quasi-antiferromagnon mode Γ16(∆Mx, ∆Lcy,
∆Laz) is excited by magnetic field h(t) || x or by the
simultaneous action of fields E0 || x and h(t) || z, while
the Γ27(∆My, ∆Lcx, ∆Lbz) mode is excited by field h(t) ||
y or by field h(t) || z for E0 || 

 

y

 

 (see Table 2). In this case,
the vibrational variables of the 

 

Γ

 

16

 

 mode are defined by
formulas (48) and (49) after the substitutions 

 

∆

 

L

 

bz

 

 

 

∆

 

L

 

az

 

,   , 

 

q

 

+

 

  

 

q

 

–

 

, and 

 

ω

 

AQ

 

(+)  

 

ω

 

AQ

 

(–),
while the 

 

Γ

 

27

 

 mode can be obtained from 

 

Γ

 

16

 

 under the
action of symmetry element  on it.

Finally, the quasi-antiferromagnon (electrically
inactive) mode 

 

Γ

 

34

 

(
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∆
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L

 

by

 

) is excited by mag-
netic field 

 

h
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||

 

 

 

z

 

 or by the simultaneous action of fields

 

E

 

0

 

 

 

⊥

 

 

 

z

 

 and 
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z

 

 (see Table 2). The variables of this
mode are calculated by formulas (50) and (51) using the
substitutions 
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L

 

ay

 

  

 

∆

 

L

 

ax
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L
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x
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ω
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, and 

 

ωAF(+)  ωAF(–), where
ωAF(–) is the natural frequency of the Γ34 mode, which
is defined by the formula

(60)

Magnetization M(t) (44) associated with oscilla-
tions ∆M and ∆Lξ (ξ = a, b) can also be calculated in
this phase by formulas (52)–(59) using the substitutions

(61)

in this case, all plus signs in formulas (53)–(59) are
replaced by the minus signs.

The magnetoelectric effects in the Nd2CuO4 com-
pound were investigated experimentally in [11, 12].
The excitation of the quasi-antiferromagnon mode
Γ35(∆Mz, ∆Lay, ∆Lbx) by a varying electric field E(t) ||
[001] was observed in [11] at temperatures 1.5 < T <
50 K. At a temperature below 10 K, a quadratic depen-

dence (∆χzz ∝  (t)) of the magnetoelectric part of sus-
ceptibility ∆χzz on the amplitude of the quasi-static
electric field E(t) || [100] of frequency fE = ωE/2π =
2.6 kHz was observed in [12]. The rf magnetic field
h(t) || [001] had a frequency of fh = ωh/2π = 36 GHz.
When a constant electric field E0 || [100] was applied in

addition, magnetic susceptibility ∆χzz ∝  (  + Ex(t))2

acquired not only a quadratic, but also a linear depen-

dence on the varying field E(t)(∆χzz ∝   + Ex(t)).

Ey
0 Ex

0

42z'

     

ωAF –( ) ω0 ÃMK–.=

χ ik +( ) χ ik –( ), ∆χxx +( ) ∆χyy –( ),

∆χyy +( ) ∆χxx –( ), ∆χzz +( ) ∆χzz –( ),

∆χxy +( ) ∆χyx +( ) ∆χxy –( ) ∆χyx –( ),= =

∆χxz +( ) ∆χzx +( ) ∆χyz –( )–– ∆χzy –( ),= =

∆χyz +( ) ∆χzy +( ) ∆χxz –( )–– ∆χzx –( ),= =

Ex
2

Ex
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0
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These experimental results are in good agreement with
formulas (29) and (56) if we carry out the substitutions

   + Ex(t), Ey = 0, and ω  ωE + ωh ≈ ωh in
the latter formula.

However, the authors of [12] failed to observe the
static linear magnetoelectric effect. This is probably
associated with the domain structure of the sample,
leading to a decrease in static magnetoelectric suscep-

tibilities  =  and , which can be determined
from formulas (27) and (29) for ω = 0. According to
estimates made by the authors of [12] themselves, these
susceptibilities are more than two orders of magnitude
smaller than for a polycrystalline Cr2O3 sample and do
not exceed 5 × 10–7 CGS units. It should be noted that
sample poling by an appropriate thermomagnetic treat-
ment might lead to a substantial increase in the values
of magnetoelectric susceptibilities. For example, the

magnetoelectric susceptibility  ~ 10–8 CGS units in
the antiferromagnetic compound Gd2CuO4 increases
after magnetoelectric annealing to 3 × 10–5 CGS units
at T = 5 K [18].

7. CHIRAL PHASE TRANSITIONS

It was mentioned above that the Nd2CuO4 com-
pound experiences successive phase transitions Γ4 
Γ5  Γ4 at temperatures T1 = 30 K and T2 = 70 K [3,
6, 7] between two chiral phases Γ4 (Qz = 1) and Γ5
(Qz = –1), which are accompanied by a change in
chirality Qz . A more detailed treatment of these transi-
tions is given below.

To describe these transitions, we write magnetiza-
tions Mν of the sublattices in the form

(62)

where ϕν are azimuth angles of vectors Mν (ν = 1, 2, 3,
4). Taking into account relations (62) in definition (3) of
vectors La and Lb , we can represent the anisotropic part

of thermodynamic potential Φmag (9) for M0 =  = 0
(including the terms with coefficients qa, qs, K1, and K2
in formula (9)) in the form of the anisotropy energy
Φan(ϕν) as a function of angles ϕν (we will not write
energy Φan(ϕν) in explicit form since it is quite cumber-
some).

Testing energy Φan(ϕν) for minimum, we find that

the stability boundaries of the Γ4( , ) phase for
values of angles ϕ1 = –ϕ2 = π/4, ϕ3 = –ϕ4 = 3π/4 corre-
sponding to this phase are defined by the inequalities

(63)

(64)

Ex
0 Ex

0

α xx
0 α yy

0 α zz
0

α zx
0

     
     

Mνx M0 ϕν, Mνycos M0 ϕν,sin= =

Lc
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Lax
0 Lby

0

q̃a qs+ 0,<

1
2
--- K2 K1–( ) qs 0,>–

                                               
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
while the stability of the Γ5( , ) phase for values
of angles ϕ1 = –ϕ3 = π/4, ϕ2 = –ϕ4 = 3π/4 corresponding
to this phase are defined by the inequalities

(65)

(66)

In accordance with relation (9), the anisotropy energy

Φan in the stability region of phases Γ4( , ) and

Γ5( , ) is a negative quantity; consequently, the
relativistic constants qs < 0, K1 < 0, and K2 < 0, while
the chirality coefficient  reverses its sign under phase
transitions in accordance with formulas (63) and (65).

Phase transitions Γ4  Γ5  Γ4 between chiral
phases Γ

 

4

 

 and 

 

Γ

 

5

 

 occur, according to experiments [6, 7]

at two temperatures  = 30 K and  = 70 K. At these
points of the transition, the quantity

(67)

corresponding to the equality of the anisotropy energies
of two chiral phases ( Φ 

an
 ( Γ 

4
 ) =  Φ 

an
 ( Γ 

5
 )) vanishes. In the

vicinity of transition temperatures  and , the 

 

a

 

(

 

T

 

)
dependence (67) can be represented in the form

(68)

respectively, where 
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 > 0 and 
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2

 

 > 0 are the coefficients
determining the rate of variation of quantity 
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) at 

 

T

 

 =

 and 

 

T

 

 = .

We can choose a single inequality from (63), (64) or
(65), (66), which determines the stability boundary of
the 

 

Γ

 

4

 

 or 

 

Γ

 

5

 

 phase. It depends on the sign of the chiral

constant ( ) defined at the phase-transition

points. For ( ) > 0, the stability boundaries of the
phases are determined by inequalities (63) and (66),

respectively, while ( ) < 0, the stability bound-
aries are determined by inequalities (64) and (65).

Taking into account relations (67) and (68) in ine-
qualities (63)–(66), we find that the 

 

Γ

 

4

 

 and 

 

Γ

 

5

 

 phases
are stable at temperatures of 

 (phase ), (69)

 (phase ), (70)
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where

are the stability loss temperatures for chiral phases 

and  (Fig. 3).

The temperature hysteresis loops of the transitions,

∆T1 =  –  = 2∆1 and ∆T2 =   –  = 2∆2, are
determined by the quantities

(71)

Thus, successive chiral phase transitions Γ4 

Γ5  Γ4 occurring at temperatures  and  are
first-order transitions with temperature hysteresis loops
∆T1, 2 = 2∆1, 2 . Features of these transitions associated
with chirality and variation of resonance frequencies at
the transition points will be considered in Section 9.

8. EXCITATION OF NMR
BY AN ELECTRIC FIELD

The effects of antimagnon and quasi-antiferromag-
non excitation by a varying electric field E(t) consid-
ered above are associated with the magnetoelectric and
antiferroelectric interactions and usually correspond to
the microwave range (or, probably, even higher fre-
quencies).

In the lower (radiofrequency) range, these interac-
tions can be manifested in the effect of resonance exci-
tation of nuclear spins (nuclear magnetoelectric reso-
nance, NMER) by a varying electric field E(t) [13, 17,
19, 20]. This effect takes place if the frequency of the
field E(t) building up oscillations of vectors L or M due
to the magnetoelectric interaction is close to the NMR
frequency

(72)

determined by the constant component of the hyperfine
interaction field in the electron subsystem,

(73)

T1
± T1

0 ∆1 and T2
±± T2

0 ∆2+−= =

Γ4
+

Γ5
–

T1
+ T1

– T2
– T2

+

∆1 2,
1

λ1 2,
--------- qs qa–( )

T T1 2,
0=

.=

     

     T1
0 T2

0

ωnν γnHnν,=

Hnν FMν
0;=

                                                                      

T1
– T1

0 T1
+ T2

0T2
+ T2

– T
Γ4 Γ4

Γ5

Fig. 3. Temperature hysteresis loops for successive chiral
phase transitions Γ4  Γ5  Γ4 in Nd2CuO4 com-
pound.
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γn is the nuclear magnetomechanical ratio, F is the

hyperfine interaction constant, and  is the magneti-
zation of the νth sublattice in the ground state.

Let us first consider the excitation of NMR by the

electric field E(t) in the Γ4( , ) phase with the
exchange magnetic structure I characterized by chiral-
ity Qz = 1. For this purpose, we supplement thermody-
namic potential Φ (11) with the terms

(74)

(75)

(76)

where  and  describe the nuclear magneto-
electric and antiferroelectric interactions and ΦHF is the
hyperfine interaction of nuclear magnetizations mν of
the sublattices with vectors M and Lξ (ξ = a, b, c). Here,
m and lξ are the nuclear vectors of ferromagnetism and
antiferromagnetism, which are connected with mν (ν =
1, 2, 3, 4) through relations analogous to (3).

It should be noted that we have ignored in expres-
sions (74) and (75) some relativistic terms similar to
those in formulas (6) and (7) with coefficients s1, s2 and
f1, f2. The inclusion of these terms would only lead to
an insignificant renormalization of constants Rn and Gn

appearing with the scalar products of vectors L with m
and 

 

L

 

 with 

 

l

 

; analogously to the exchange in the elec-
tron subsystem, we can assume that these terms exceed
anisotropic interactions.

In accordance with relation (73), constant fields 
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of hyperfine interaction in phase 

 

Γ

 

4

 

( , ) have the
components

These fields correspond to constant nuclear magnetiza-

tions  = 

 

H

 

n

 

ν

 

 of the sublattices with component

(77)

where  is the static nuclear magnetic susceptibility.
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x– Hn4

x– ±( )FM0/ 2,= = = =

Hn1
y H– n2

y Hn3
y Hn4

y– ±( )FM0/ 2.= = = =

mν
0 χn

0

m1x
0 m2x

0 m3x
0– m4x

0–= = =

=  ±( )χn
0FM0/ 2,

m1y
0 m– 2y

0 m3y
0 m4y

0–= = =

=  ±( )χn
0FM0/ 2,

χn
0
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Taking into account expressions (77) in the defini-
tion of vectors 

 

m 

 

and 

 

l

 

ξ

 

 (using formulas analogous
to (3)), we find that the nuclear magnetization vector

 

m

 

0

 

 = 0 in the ground state, and the nuclear antiferro-

magnetism vectors  have the components

(78)

Let us now separate the quadratic form  from the
nuclear part of the thermodynamic potential

. (79)

Taking into account relations (78) as well as the equi-
modularity conditions for nuclear vectors 

 

m 

 

and 

 

l

 

ξ

 

(analogous to conditions (14) and (15)), which is valid
in the linear theory, we obtain

 

2

 

 

(80)

where

The NMER signals can be registered from the 

 

Q 

 

fac-
tor by determining the heat loss [17]

(81)

Here, 

 

P

 

n

 

 is the nuclear part of the electric polarization
associated with oscillations of vectors 

 

m

 

 and 

 

l

 

ξ

 

. The
expression for 

 

P

 

n

 

 can be determined from the definition
of effective polarization

(82)

where  = 

 

Φ

 

2

 

 +  is the quadratic form of the total
thermodynamic potential. Taking into account expres-

sions (24) for 

 

Φ

 

2

 

 and (80) for  in Eq. (82), we obtain

(83)

(84)

 

2 These conditions remain in force for the paramagnetic spin sys-
tem (including the nuclear subsystem) also if we remain in the
framework of the linear theory in nuclear spin oscillations, which
will be considered below.

lξ
0

lax
0 lby

0 ±( ) 8χn
0FM0 ±( )χn

0FL.≡= =

Φ2
n

Φn ΦME
n ΦAFE

n ΦHF+ +=

Φ2
n ±( ) G̃

n
Rn–( ) Exlcy Eylcx+( )– 2s̃3

nmzEz–=

–
F
4
--- ∆Mzmz ∆Lazlaz+(

+ 2∆Lbxlbx 2∆Lbylby ∆Lbzlbz+ +

+ 2∆Lcxlcx 2∆Lcylcy ∆Lczlcz ),+ +

G̃
n

R̃
n

– ±( ) Gn Rn–( )L, s̃3
n ±( )s3

nL.= =

Qn PnĖ.–=

P
∂Φ̃2

∂E
----------,–=

Φ̃2 Φ2
n

Φ2
n

Px y, G̃ R̃–( )∆Lcy x, G̃
n

R̃
n

–( )lcy x, ,+=

Pz 2 s̃3∆Mz s̃3
nmz+( ).=
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Since we are interested in frequencies

, (85)

which are much lower than the natural frequencies ωAQ
and ωAF of quasi-antiferromagnon vibrations, we can
use the quasi-equilibrium approximation. In this case,
variables ∆Lc and ∆M can be determined directly from
the requirement of the energy minimum:

This gives

(86)

(87)

Finally, to determine the resonance response to field
E(t) in the form of effective polarization (83), (84), we
must solve the equations of motion for m and lc (in the
linear and nonlinear approximation depending on the
experimental conditions, i.e., continuous or pulsed
mode). It was noted above that we consider the results
for the linear case only. For lcα (α = x, y) and mz , we
obtain

(88)

(89)

Here,

(90)

is the NMR susceptibility and ωn = γnFM0 is the NMR
frequency.

Formulas (88) and (89) describe two resonance
excitation channels for NMER signals. The terms con-

taining  –  and  describe direct excitation of
polarization Pn(t) by oscillations of quantities lcα (α =
x, y) and mz (see formulas (83) and (84)). The second

terms containing  –  and  are responsible for
indirect excitation via the hyperfine interaction of vec-
tors Lc with lc and M with m. Each of these channels is
characterized by its own magneto- and antiferroelectric
constants.

ω ωn ! ωAQ ωAF,≈

∂Φ̃2

∂Lc

---------- 0,
∂Φ̃2

∂M
---------- 0.= =

∆Lcx y,
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--------------Ey x,

F

2 Ã
-------lcx y, ,+=

∆Mz

2s̃3

ÃM

-------Ez
F

4 ÃM

----------mz.+=

lcx y, 2χn ω( ) G̃
n

R̃
n

–( ) G̃ R̃–

2 Ã
--------------F+ Ey x, ,=

mz 8χn ω( ) s̃3
n s̃3

4 ÃM

----------F+ 
  Ez.=

χn ω( ) χn
0 ωn

2

ωn
2 ω2–

------------------=
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n

R̃
n

s̃3
n

G̃ R̃ s̃3
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Substituting expressions (86)–(89) into Eqs. (83)
and (84), we find that the nuclear part of the polariza-
tion is defined as

(91)

(92)

It is the Pn polarization with components  (91)

and  (92), which is associated with the nuclear sub-
system and induced by field E(t), that is a linear NMER
signal manifested in the antinode of this field.

Calculating the absorbed energy Qn (81) taking into
account relations (91) and (92), we obtain

(93)

where (ω) is the imaginary part of quantity χn(ω) (90),
which is given by

(94)

Here, dissipation is taken into account again through
the substitution ω  ω + iΓn (in the Bloch sense).

In the Γ5( , ) phase with the exchange mag-
netic structure II and chirality Qz = –1, the NMER
effect can also be described by formulas of the
form (91)–(94) after the following substitution of con-
stants:

Consequently, as should be expected for a first-order
phase transition, the NMER signal changes its value
jumpwise during a chiral transition (true, the jump
appears in formula (91) only if we additionally take into
account the relativistic magneto- and antiferroelectric
interactions).

9. DISCUSSION

The main concept adopted in this study on the basis
of [7, 11, 12], in which the existence of the magneto-
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nL,=

s̃3 f̃ 3 ±( ) f 3L, ÃM Ãc.=
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electric and antiferroelectric interactions in Nd2CuO4
was established, is the assumption that crystal-chemis-

try group P42/mnm ≡  corresponds to the symmetry
of this cuprate (it differs from the body-centered group

I4/mmm ≡ , which was purportedly ascertained by
some other authors for neodymium cuprate [1–4]). This
allowed us to study in detail the dynamics of the
Nd2CuO4 compound using the concept of a chiral dou-
blet and a phase transition between the components of
this doublet.

Another important aspect is the assumption con-
cerning the possibility of existence of a domain struc-
ture, in which domains equivalent in energy and other
parameters differ only in the signs of the antiferromag-
netism vectors and in the signs of the magnetoelectric
magnetizations associated with them. This may nullify
(or at least reduce) the total magnetoelectric magnetiza-
tion (magnetoelectric effect linear in field E) and the
field-induced magnetoelectric susceptibility associated
with it for nonzero absorption of the energy of the elec-
tric field, which is a quadratic function of the field.

Finally, an appropriate representation of the magne-
toelectric interaction in form (43) has made it possible
to explain the effect quadratic in E observed in [12],
which is determined by the linear magnetoelectric
interaction and is independent of the above-mentioned
domain structure when field E is applied in addition to
a varying field H ≡ h(t).

Thus, in the four-sublattice antiferromagnet Nd2CuO4
with the crystal structure described by group (2), the
magnetic Cu2+ ions occupy a noncentrosymmetric posi-
tion, which explains the existence of both magnetoelec-
tric (6) and the antiferroelectric (7) interaction. The
main terms are of the exchange type. In addition, non-
collinear magnetic structures (phases) I and II of the
square (or rectangular cross) type in neodymium
cuprate form exchange doublets with different chirali-
ties and magnetic symmetries. For example, the sym-

metry of the Γ4( , ) phase with exchange struc-
ture I and chirality Qz = 1 is determined by the magnetic

group 42z21x , while the symmetry of the Γ5( , )
phase with exchange structure II and chirality Qz = –1

is determined by the magnetic group .

One more important remark is appropriate here. In
this study, we assume that noncollinearity of the struc-
tures (I and II) is associated with the exchange (see
inequalities (13)). At the same time, for the other ver-
sion (1) of the crystal-chemistry group, it was proved
by some authors that the noncollinearity of the structure
might be due to the pseudodipole interaction [3, 4]. At
any rate, the role of this interaction should be analyzed
in greater detail in our model also, although we agreed
not to discuss the specific microscopic mechanisms of
interactions.

D4h
14

D4h
17

Lax
0 Lby

0

1' Lay
0 Lbx

0

1'42z' 21x'
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005



ELECTRON AND NUCLEAR MAGNETIC RESONANCES 1109
Each of the phases considered here, e.g., in phase Γ4
(or Γ5), is characterized by four modes of spin oscilla-
tions. One of these modes, Γ48 (20) (or Γ58 (31)), is an
antimagnon mode and has a frequency ωL(+) (47) (or
ωL(–) (37)), which depends on the difference (or sum)
of the biquadratic exchange constants D and chirality
constant  (the latter is of semiexchange–semirelativ-
istic origin). (It should be recalled that the plus and
minus signs in the arguments or superscripts of physi-
cal quantities indicate that they correspond to the Γ4 or
Γ5 phases with chiralities Qz = +1 and Qz = –1, respec-
tively.) The other two quasi-antiferromagnon modes,
Γ17 (21) and Γ26 (22) (or Γ16 and Γ27 (32)) are degener-
ate and have frequency ωAQ(+) (28) (or ωAQ(–) (41)),
which is determined by the geometric mean value of

exchange constant  and renormalized chirality coeffi-
cient q+ (or q–). Finally, the fourth mode Γ35 (23) (or
Γ34 (33)) has a frequency ωAF(+) (30) (or ωAF(–) (60))
characterized by the geometrical mean value of the

exchange constant  and the linear combination K+

(or K–) consisting of relativistic magnetic anisotropy
constants.

It is shown in Table 2 that if E0 = 0, some of these
modes cannot be excited by electric field E(t) or mag-
netic field h(t) (e.g., the antimagnon mode Γ48(∆Lax,
∆Lby, ∆Lcz) cannot be excited by either of these fields).
However, in addition to the cases considered in [7], we
also considered the case when E0 ≠ 0, for which reso-
nance is possible (for certain directions of the fields) for
all modes under investigation (see the fourth column in
Table 2). The natural frequencies remain approximately
unchanged (as in the case when E0 = 0).

It has been established experimentally that
Nd2CuO4 exhibits successive phase transitions Γ4 
Γ5  Γ4, associated with a change in chirality at tem-
peratures T1 = 30 K and T2 = 70 K [6, 7]. It was found
that these are first-order phase transitions of the order–
order type.3 

3 In [21], magnetic structures with frustration are considered (i.e.,
it is impossible to obtain collinear antiferromagnetism in a sys-
tem of antiferromagnetically interacting spins). Frustration leads
to the emergence of exchange-noncollinear (chiral) structures,
e.g., of the triangle type in a system of three spins in the same
position of multiple points. In our case of four one-position spins,
frustration is absent since the spins can be ordered in an antiferro-
magnetically collinear manner. Exchange-noncollinear chiral
magnetic structures (see Fig. 2) emerge from the requirement of
energy minimum. We mention Kawamura’s review [21] here only
due to the fact that the possibility of existence of a new class of
phase transitions associated with chirality is discussed in this
review. However, the transitions from a paramagnetic structure to
an ordered antiferromagnetic chiral structure was studied in [21],
while we consider a phase transition from one ordered state to
another with a change in chirality in the framework of the con-
ventional Landau theory. Consequently, the special universal
phase transition considered in [21] and accompanying the emer-
gence of a new property (chirality) does not take place in our
case.

q̃a

Ã

ÃM
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Let us now analyze the behavior of resonance fre-
quencies during the phase transition under study by
using Table 2. A simple analysis shows that two situa-
tions are possible in this case.

1. If chirality coefficient ( ) > 0 at points T =

 of the phase transition (see Fig. 3), the quantities

(95)

vanish at critical temperatures T =  and T = ,
which are equal to the temperatures of stability loss of
phases Γ4(+) and Γ5(–). The most interesting fact here
is that frequency ωAF(–) (60) of the quasi-antiferromag-

non mode Γ34 (33) vanishes at points T =  (analo-
gously to the case of a soft mode in a second-order
phase transition),

(96)

Naturally the Γ5 phase vanishes in this case, giving way
to the Γ4 phase with a nonzero frequency at these
points:

(97)

For all other frequencies at the stability-loss points

T =  (second condition in (95)) as well as at points

T =  (corresponding to the first condition in (95)),
changes (discontinuity) typical of first-order transitions
take place with simultaneous change in the phase (how-
ever, the frequency of one of the phases does not vanish
in this case). The corresponding results can be obtained
using Table 2.

2. If the chirality coefficient ( ) < 0, tempera-

tures T =  and T =  are determined by the
equalities

(98)

respectively. In this case, the natural frequency ωAF(+)
(30) of the quasi-antiferromagnon mode Γ35 (23) van-

ishes at temperatures T = :

(99)

The corresponding frequency ( ) in the emerg-
ing phase Γ5 (instead of Γ4) assumes a finite value (97)
again. The statements concerning other modes and
analogous to those formulated in the previous case
remain in force.

q̃a T1 2,
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0
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– T1 2,
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+ T1 2,

–( ) 2ω0 2 ÃM qs .=
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q̃a T1 2,
0

T1 2,
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T1 2,
+

ωAF
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ωAF
– T1 2,

+
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The following circumstance is worth noting. It is
expedient to experimentally measure the magnetoelec-
tric contributions ∆χik (54)–(59), (61) to the magnetic
susceptibility at low frequencies ω ! ω0 in the vicinity

of critical temperatures  or , where the natural
frequency ωAF(+) or ωAF(–) of the quasi-antiferromag-
non mode Γ35 (23) or Γ34 (33) may vanish at a temper-
ature equal to one of these temperatures. At these tem-
peratures, the component ∆χik associated with oscilla-
tions of these soft mode have the highest value. In
particular, for electric field E0 || x, from expression (54)–
(59) and (61), we obtain

(100)

(101)

In addition, for T =  (when ωAF(+) = 0 or ωAF(–) =

0), magnetic susceptibility  = 0 (53), which allows
us to eliminate this Zeeman contribution in the mea-

surement of magnetoelectric correction ∆  (56) in
the vicinity of chiral phase transitions.

Thus, experimental investigation of the temperature
dependences of the natural frequencies of spin oscilla-
tions would make it possible to determine the type and
stability region of chiral phases in successive phase
transitions Γ4  Γ5  Γ4 in Nd2CuO4. It should
be borne in mind, however, that antimagnon mode
Γ48 (20) of the Γ4 phase and quasi-antiferromagnon
mode Γ34 (33) of the Γ5 phase are not electrically active
(i.e., are not excited by a varying electric field E(t)). On
the other hand, these and all the remaining modes can
be excited by a varying magnetic field h(t) in the pres-
ence of a constant electric field E0 = const (see Table 2).
It should be noted that electrically active modes
Γ58 (31) and Γ35 (23) are excited by electric field E(t) ||
z, while modes Γ17 (21), Γ26 (22), and Γ16, Γ27 (32) are
excited by field E(t) ⊥  z.

NMER experiments on the Cu63 and Cu65 nuclei can
also be used for studying the magneto- and antiferro-
electric interaction. The highest level of NMER signals
in neodymium cuprate should be expected when these
interactions are excited by an electric field E(t) ⊥  z. In

this case, polarization  (α = x, y) (91) and the
amount of heat Qn (93) are determined by the exchange
part of the magnetoelectric and antiferroelectric inter-

T1 2,
+ T1 2,

–

∆χyy
+ T1 2,

+( ) ∆χxx
– T1 2,

–( )
ω0

2

ω2
------R'2 ÃM Ex

0( )2
,–= =

∆χyz
+ T1 2,

+( ) ∆χzy
+ T1 2,

+( )–=

=  ∆χxz
– T1 2,

–( )– ∆χzx
– T1 2,

–( ) i
ω0

ω
------R'Ex

0.= =

T1 2,
+

χzz
±

χzz
±

          

Pα
n
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actions. The electron and nuclear parts of these interac-
tions are characterized by the difference of constants

 –  and  – . The values of these constants
have not yet been determined.

As an added note, the ratio of constants (  – )/

appearing in the expression for  (91) and Qn (93)
could be determined from experimental measurements
of magnetoelectric susceptibility  by studying the
dynamic magnetoelectric effect emerging, for example,
upon excitation of quasi-antiferromagnon modes
Γ17 (21) and Γ26 (22) of the Γ4 phase by electric field
E(t) ⊥  z. In this case, magnetoelectric susceptibilities

αxx (27) and αyy at low frequencies ω2 ! (+) are
determined precisely by this ratio:

(102)

Thus, the above arguments confirm once again the
urgent need for experiments on antiferroelectric and
nuclear magnetoelectric resonances in the chiral anti-
ferromagnet Nd2CuO4.
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IN CONDENSED SYSTEMS
Exchange Bias of Hysteresis Loop in the Ising 
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Abstract—A simple analytical model is developed to explain the phenomenon of exchange bias of the hyster-
esis loop in a two-dimensional ferromagnet–antiferromagnet bilayer. A solution of the magnetic relaxation
equation is obtained within the framework of the generalized mean field theory, which describes the shape of
the hysteresis loop and shows its dependence on the properties of a model interface in the system under consid-
eration. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The experimental magnetic hysteresis loop of a fer-
romagnetic substance (plotted in the coordinates of
external magnetic field He versus magnetic moment) is
usually symmetric. However, the hysteresis loop in a
system comprising a ferromagnet (FM) in contact with
an antiferromagnet (AFM) may exhibit a shift along the
field axis [1, 2]. As a result, the center of symmetry of
the loop is displaced to a point with He = HEB ≠ 0. In
typical systems of this kind (Co–CoO, Fe–FeF2), such
a displacement is quite large and can even be compara-
ble to the coercive force. This phenomenon, called
exchange bias (EB), takes place in systems where the
Curie temperature (TC) of the FM exceeds the Neél
temperature (TN) of the AFM. The EB phenomenon is
observed upon cooling of the system in an external
magnetic field from an initial temperature in the inter-
val TN < T < TC to a final temperature T < TN. If the
direction of the field in which the system is cooled is
considered positive, the hysteresis loop shifts in the
negative direction: HEB < 0. A considerable growth in
the interest in this phenomenon stems from the possi-
bility of its various practical applications [1, 3].

It is a common opinion that the nature of exchange
bias is related to features of the spin structure of an
AFM in the vicinity of the interface, namely, to the
domain structure stabilized by nonmagnetic defects
(impurities, structural imperfections, etc.) [1, 2, 4].
These defects account for the formation of domains in
the AFM, while their random distribution results in that
the numbers of spins in the two sublattices are not equal
for any finite volume in the AFM. As a result, any such
volume possesses a finite magnetic moment whose
rotation in an external magnetic field may become ener-
getically favorable [4]. In order to provide for minimi-
zation of the domain structure energy, the domain walls
1063-7761/05/10006- $26.001112
must pass predominantly through nonmagnetic defects
and, as a result, acquire a complicated shape. Although
the resulting structure is metastable, the domain walls
exhibit pinning that leads to “freezing” of this structure,
whereby it does not change (provided that the tempera-
ture is sufficiently low) in response to alteration of the
magnetic field sign and magnitude (at least in the range
of fields typically encountered in the measurements of
hysteresis loops).

The first models (for the most part, phenomenolog-
ical) of exchange bias did not take into account the
interaction of spins in the FM, even within the frame-
work of the mean field theory [2]. Subsequent theories
treated this phenomenon from the standpoint of the
Ising or Heisenberg models. However, these models,
while taking this interaction into account, are reduced
to numerical calculations of the magnetic state of the
system (e.g., by the Monte Carlo method) [5]. The aim
of this study is to develop a simple analytical model
representing a generalization of the mean field theory
for the Ising system of spins in a two-dimensional (2D)
FM under the conditions when the interaction of some
of these spins is enhanced due to the exchange interac-
tion with spins of the AFM. Such a model is unavoid-
ably rather simplified, but it nevertheless reflects all the
main features of the phenomenon under consideration
and admits (owing to this very simplicity) an analytical
solution, which allows the influence of various factors
on the shape of the hysteresis loop to be readily estab-
lished.

One possible model mechanism of the specific
enhancement of the exchange interaction at the FM–
AFM interface was described by Illa et al. [5]. This
model is illustrated in Fig. 1, which shows the AFM
layer with a domain and a domain wall (DW), the FM–
AFM interface, and spins of the FM (si, sj) and the AFM
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic diagram showing (a) an AFM layer with a domain wall (DW) and (b) an FM–AFM interface, a domain wall, and
coupled spins of the FM (si , sj) and the AFM (σi , σj) in the vicinity of this interface.
                 
(σi, σj) in the vicinity of this interface. The FM spins si

and sj interact with each other (both directly and indi-
rectly—via the neighboring atoms of the AFM), as well
as with the AFM spins. The total interaction energy can
be expressed as

where , , and  are the energy parame-
ters of the bilinear and the four-spin exchange. The
energy E1 can be expressed in terms of an effective con-
stant of the pair interaction between spins si and sj . This
constant depends on whether the spin pair occurs far
from the AFM domain wall or near this interface. For
the spin pair remote from the domain wall, the effective
energy is

while for the spins near the wall, this energy is

As can be seen,

which implies that the domain wall in the AFM leads to
enhancement of the spin coupling in the FM.

Since the domain contains a large number of lattice
sites, the fraction f of the FM spins with such enhanced
coupling is small (f ! 1).

It should be emphasized that the above mechanism
of enhancement of the spin coupling is just a model.
The true mechanism can be quite different: it has only

Eij E1 E2, E1+ J2
F/Fsis j J4

F/AFsis jσiσ j+( ),–= =

E2 J2
F/AFsiσi,–=

J2
F/F J2

F/AF J4
F/AF

E1' Jsis j, J– J2
F/F J4

F/AF σiσ j ,–= =

E1'' JEsis j, JE– J2
F/F  +  J 4 

F
 

/
 

AF σ i σ j .= =

JE

J
-----

J2
F/F

J4
F/AF σiσ j+

J2
F/F J4

F/AF σiσ j–
------------------------------------------ 1,>=
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to provide for the appearance of a small fraction of
spins with enhanced coupling. This is the only condi-
tion necessary for the further analysis.

Subsequent consideration consists of two steps. The
first step is related to the random distribution of ener-

gies  of the pair interaction between the near-wall
FM spins described by the function

as well as to the random distribution of energies  of
the pair interaction of FM and AFM spins described by
the function

 

1

 

where 

 

I

 

 

 

≡

 

 .

Application of the traditional mean field theory
leads to significant errors. A more correct result can be
obtained by finding and using a distribution function

 

F
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) of the effective local magnetic fields 

 

H

 

.
The second step is generalization of the equation

describing the relaxation of magnetization of the FM
with random magnetic bonds. These interactions are
related to the local fields described by the distribution
function

 

 F

 

(

 

H

 

). The generalized relaxation equation is
used for an analysis of the shape and parameters of the
hysteresis loop.

It should be noted that the approach developed
below is quite general and can be applied not only to the
above model of modification of the spin coupling at the

 

1

 

A small “frozen” magnetization of an antiferromagnet is mainly
due to its spins at antiphase domain walls (see Fig. 1). Conse-
quently, the number of 

 

s

 

i

 

, 

 

σ

 

i

 

 pairs with parallel and antiparallel
spin orientations can be assumed to be the same; for the same rea-

son, the sign of the interaction constant  is immaterial.

Jij
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FM–AFM interface, but to any other mechanism of
such a modification changing the energy of interaction
for a small fraction f of spin–spin bonds.

2. GENERALIZED MEAN FIELD MODEL
FOR A SQUARE ISING LATTICE

As is well known, the mean field theory does not
take into account the correlation of magnetic moments.
Another drawback of this theory is the notion of equiv-
alence of all lattice sites, according to which the mean
field is assumed to be the same at all sites. Actually, the
field varies from one lattice cite to another in a random
manner. It would be natural to take this random varia-
tion into account and to check how much this general-
ized mean field theory will increase the accuracy of
description. Such an approach was originally devel-
oped by Klein and Brout [6] for a system of randomly
arranged magnetic dipoles. Later, this approach was
thoroughly analyzed by Thomsen et al. [7] proceeding
from a selected (although without sufficient ground)
distribution of the pair interaction energy.

The essence of the generalized model consists in
replacing the standard mean field equation

(1)

where j is the reduced magnetization and λ is the mean
field constant, by the generalized equation

(2)

Here, F( j; H) is a function describing the distribution of
local magnetic fields H created by all magnetic

j
λ j
kT
------ 

  ,tanh=

j
µH
kT
-------- 

  F j; H( ) H .dtanh

∞–

∞

∫=

Table 1.  Configurations of the magnetic moments of nearest
neighbors and their probabilities on a square lattice

Configu-
ration

Effective 
magnetic 
field H/hJ

Number 
of configura-

tions

Probability of con-
figuration (for mag-

netization j)

↑↑↑↑ +4  = 1

↑↑↑↓ +2  = 4

↑↑↓↓ 0  = 6

↑↓↓↓ –2  = 4

↓↓↓↓ –4  = 1

C4
0 1 j+

2
----------- 

  4

C4
1 4

1 j+
2

----------- 
  3 1 j–

2
----------- 

 

C4
2 6

1 j+
2

----------- 
  2 1 j–

2
----------- 

  2

C4
3 4

1 j+
2

----------- 
  1 j–

2
----------- 

  3

C4
4 1 j–

2
----------- 

  4
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moments µ except one at the site of location of this
magnetic moment in a system (not necessarily regular)
with the magnetization j. It should be noted that the
standard mean field equation (1) is also equivalent to
the equation

(3)

which is obtained from the generalized equation (2) by
substituting F( j; H) = δ[H – ( j)]. According to this
approximation, all spins occur in the same field equal to
the average field ( j).

In order to assess how this generalization improves
the theory as compared to the traditional mean field the-
ory, let us calculate the critical temperature and com-
pare the result to the known exact value. Consider a
square lattice and let magnetic moments with the two
possible orientations, ↑  and ↓ , occur at the lattice sites
with the probabilities (1 + j)/2 and (1 – j)/2. If all mag-
netic bonds are identical (Jij = J, or f = 0), the energy W
of interaction between a certain magnetic moment and
its nearest surrounding is the algebraic sum of compo-
nents with the same absolute value J and the sign deter-
mined by the mutual orientation of the “central”
moment and its neighbor. Thus, the energy W depends
on the configuration of the Ising magnetic moments in
the first coordination “sphere.” For a square lattice,
there are 24 = 16 such combinations. Their distribution
with respect to the effective magnetic field H = –W/µ,
as well as the probabilities of various configurations in
the system with magnetization j, is given in Table 1
(where hJ = J/µ).

The corresponding distribution function is

(4)

where δ(h) is the delta function taking a nonzero value
at H = h. Substituting function (4) into Eq. (2), we
obtain

(5)

This relation describes the temperature dependence of
the magnetization in the system under consideration
and determines the Curie temperature TC. This temper-
ature is found from the conditions j = 0, which leads to
the equation

j
µH j( )

kT
--------------- , H j( )tanh HF j; H( ) H ,d

∞–

∞

∫= =

H

H

F0 j; H( ) 1
16
------ 1 j+( )4δ 4hJ( )[=

+ 4 1 j+( )3 1 j–( )δ 2hJ( ) 6 1 j+( )2 1 j–( )2δ 0( )+

+ 4 1 j+( ) 1 j–( )3δ 2hJ–( ) 1 j–( )4δ 4hJ–( )+ ] ,

j2 2 2K( )tanh 4K( ) 2–tanh+
2 2K( )tanh 4K( )tanh–

------------------------------------------------------------------, K
µhJ

kT
---------.==

2 2K( ) 4K( )tanh+tanh 2,=
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and yields K = KC ≈ 0.323, or

(6)

This value is much closer to the exact result (kTC ≈
2.27J) than the value predicted by the mean field theory
(kTC = 4J). It should be noted that the field determined

by the distribution function (4) is  = 4jhJ , which leads
to the usual mean-field expression for the Curie temper-
ature.

Figure 2 presents the temperature dependences of
magnetization, j(T), calculated according to the tradi-
tional mean field theory (Eq. (1)), the proposed gener-
alized theory (Eq. (2)), and the exact solution

(7)

of the Ising problem on a square lattice [8]. As can be
seen, the result provided by the proposed generalization
is much closer than the traditional approximation to the
exact solution.

For an FM with zero magnetization (j = 0), the dis-
tribution function (4) is even with respect to the mag-
netic field and, hence, the hysteresis loop of the corre-
sponding system is symmetric (HEB = 0). Let us gener-
alize the proposed procedure to the case when a 2D
ferromagnetic layer comes in contact with an antiferro-
magnetic layer, so that the fraction of the possible near-
est-neighbor configurations with enhanced coupling
becomes nonzero (0 < f ! 1). In this case, the effective
magnetic moments of all configurations presented in
Table 1 will equiprobably change by the value ±I/J as a
result of the additional interaction with the AFM spins
far from the domain wall. This interaction modifies the
distribution function (4), whereby the arguments of all
delta functions change by ±I/J. However, the most
important (from the standpoint of a possible shift of the
hysteresis loop) property of the distribution function is
retained: it is still symmetric for an FM with zero mag-
netization and is not involved in the shift of the hyster-
esis loop. Moreover, calculations according to a scheme
described below show that modification of the distribu-
tion function (4) in the case of I & J also hardly influ-
ences the other properties of the hysteresis loop (width,
vertical shift, shape, etc.). For this reason, below we
will assume for the sake of simplicity that I = 0, so that
separation of the near-wall spins into a special group
only implies that the distribution function (4) has to be
multiplied by the factor (1 – f )4. In addition, it is nec-
essary to take into consideration the spin configurations
near the domain wall, in which the energy of one mag-
netic bond in significantly enhanced (under favorable
conditions) due to the aforementioned mechanism.
These additional configurations and their probabilities
are presented in Table 2, where symbols “⇑ ” and “⇓ ”
indicate the near-wall bonds with increased (JE) and
“normal” (J) energies.

kTC 3.10J .≈

H

j 1 2K( )sinh
4–

–[ ]
1/8

=
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For f ! 1, the configurations with more than one
enhanced bond are rare and can be ignored. Then, the
distribution function of the fields created by configura-
tions involving the near-wall spins is as follows:

(8)

where hE = JE/µ = (JE/J)hJ . The total distribution func-
tion of random magnetic fields can be written as

(9)

In this case, the magnetization j(T) of the system pre-
dicted by Eq. (2) is nonzero only at an infinitely high
temperature. This behavior is related to the assumption
that the parameter f is independent of temperature. In
real systems, where f  0 as T  TN, this drawback
of the model is absent. However, in the case under con-
sideration we have T < TN and, hence, the temperature
dependence of the parameter f can be ignored.

F f j; H( ) 1
16
------ 1 j+( )3δ hE 3hJ+( )[=

+ 3 1 j+( )2 1 j–( )δ hE hJ+( ) 3 1 j+( ) 1 j–( )2+

× δ hE hJ–( ) 1 j–( )3δ hE 3hJ–( )+ ]

+
1
16
------ 1 j+( )3δ 2hJ( ) 3 1 j+( )2 1 j–( )δ 0( )+[

+ 3 1 j+( ) 1 j–( )2δ 2hJ–( ) 1 j–( )3δ 4hJ–( )+ ] ,

F j; H( ) = 
1 f–( )4F0 j; H( ) 4 f 1 f–( )3F f j; H( )+

1 f–( )4 4 f 1 f–( )3+
---------------------------------------------------------------------------------------------.

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4

j

kT/J

1 2 3

Fig. 2. The temperature dependences of the magnetization j
calculated according to (1) the exact solution of the Ising
problem on a square lattice, (2) the proposed generalized
theory, and (3) the traditional mean field theory.
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Table 2.  Additional configurations of the magnetic bonds and their probabilities on a square lattice

Configuration Effective magnetic 
field H/hJ

Number
of configurations Probability of configuration (for magnetization j)

⇑↑↑↑ JE/J + 3  = 4

⇑↑↑↓ JE/J + 1  = 12

⇑↑↓↓ JE/J – 1  = 12

⇑↓↓↓ JE/J – 3  = 4

⇓↑↑↑ +2  = 4

⇓↑↑↓ 0  = 12

⇓↑↓↓ –2  = 12

⇓↓↓↓ –4  = 4

4C3
0 4

f
2
--- 

  1 f–( )3 1 j+
2

----------- 
  3

4C3
1 12

f
2
--- 

  1 f–( )3 1 j+
2

----------- 
  2 1 j–

2
----------- 

 

4C3
2 12

f
2
--- 

  1 f–( )3 1 j+
2

----------- 
  1 j–

2
----------- 

  2

4C3
3 4

f
2
--- 

  1 f–( )3 1 j–
2

----------- 
  3

4C3
0 4

f
2
--- 

  1 f–( )3 1 j+
2

----------- 
  3

4C3
1 12

f
2
--- 

  1 f–( )3 1 j+
2

----------- 
  2 1 j–

2
----------- 

 

4C3
2 12

f
2
--- 

  1 f–( )3 1 j+
2

----------- 
  1 j–

2
----------- 

  2

4C3
3 4

f
2
--- 

  1 f–( )3 1 j–
2

----------- 
  3
The distribution (9) is asymmetric with respect to
the magnetic field. For a system with zero magnetiza-
tion (j = 0), the center-of-gravity of this function for
f ! 1 corresponds to the field

If JE > J, we have (0) > 0 and the hysteresis loop is
shifted toward negative fields, otherwise it is shifted in
the positive direction. We can expect that the center of
the hysteresis loop corresponds to the field

(10)

However, this conclusion is valid (see below) only for
JE & kT. For large JE , the function HEB(JE) exhibits sat-
uration so that HEB  (HEB)max ~ 4fhJ .

3. MAGNETIC MOMENT
RELAXATION EQUATION

Consider the system of magnetic moments µ form-
ing a 2D Ising spin lattice described by the Ising vari-
ables sj = ±1 (j = 1, 2, …, N). Thermal fluctuations at a

H 0( ) HF 0; H( ) Hd

∞–

∞

∫=

≈ 4 f HF f 0; H( ) Hd

∞–

∞

∫ 2 f hE hJ–( ).=

H

HEB H 0( )– 2 f JE/J 1–( )hJ .–≈∼
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finite temperature T lead to the spin flip from “↑” to “↓”
state and back. The probabilities of such events deter-
mine the relaxation equations for the system state
parameters. In particular, the probability P(s1, s2, …,
+sj, …, sN; t) of the realization of a given spin configu-
ration at the time moment t is determined by the equa-
tion [9]

(11)

where wj(sj) and wj(–sj) are the probabilities of jth spin
flip from the “↑” and “↓” states, respectively. Accord-
ing to the principle of detailed balancing, we have

(12)

where P0(s1, …) are the probabilities corresponding to
the thermodynamically equilibrium configuration.
These probabilities obey the Boltzmann relation

(13)

d
dt
-----P s1 s2 … +s j … sN; t, , , , ,( )

=  w j s j( )P s1 s2 … +s j … sN; t, ,, , ,( )
j

∑–

+ w j s j–( )P s1 s2 … s j … sN; t, ,–, , ,( ),
j

∑

w j s j( )P0 s1 s2 … +s j … sN, ,, , ,( )
=  w j s j–( )P0 s1 s2 … s j– … sN, , , , ,( ),

P0 s1 s2 … s j … sN, ,–, , ,( )
P0 s1 s2 … +s j … sN, ,, , ,( )
------------------------------------------------------------

∆ jE
kT
---------– 

  ,exp=
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where, ∆jE is the difference between the energies of
states with opposite directions of the jth spin. Evi-
dently, ∆jE = 2Ej , where

(14)

is the energy of the jth spin in the state “↑” (determined
by its interaction with the external magnetic field He

and the other spins) and Jjk is the energy of interaction
between the jth and kth spins. Equations (12)–(14)
yield

(15)

According to the Glauber approach [10], the proba-
bilities wj(sj) and wj(–sj) obeying relation (15) are writ-
ten as

(16)

where Ω is the parameter having the sense of a fre-
quency at which spins try to change their orientations.
In this approach, the equilibrium state of the system
coincides with that according to the mean field theory
(see below).

The configuration-average value of the jth spin at
the time t is

(17)

where the sum is taken over all spin configurations of
the system. Substituting Eq. (11) into formula (17) and
using expression (16), we obtain [9]

(18)

In accordance with the ideology of the mean field
theory, this equation can in principle be simplified by
substituting

where

E j µHe sk J jk

k j≠
∑+=

w j s j( )
w j s j–( )
------------------

1 s jtanh E j/kT( )–
1 s j E j/kT( )tanh+
--------------------------------------------.=

w j s j( ) 1
2
---Ω 1 s j

E j

kT
------tanh– 

  ,=

w j s j–( ) 1
2
---Ω 1 s j

E j

kT
------tanh+ 

  ,=

s j〈 〉 s jP s1 … sN; t, ,( ),
s( )

∑=

d
dt
----- s j〈 〉 Ω s j〈 〉

E j

kT
------tanh– 

  .–=

E j

kT
------tanh

E j〈 〉
kT

-----------,tanh

E j〈 〉 µ He J jk sk〈 〉 .
k j≠
∑+=
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Taking into account the fact that j ∝  〈sj〉 , we obtain an
equation

(19)

describing relaxation of the magnetization toward the
thermodynamically equilibrium state determined by
the standard mean field relation:

However, more exact results can be obtained, as was
demonstrated above, by means of the generalization of
the mean field model. According to this approach,
Eq. (18) can be rewritten as

(20)

This equation, together with the local field distribution
function (9), determines the relaxation phenomena in
the system under consideration and, in particular,
describes the hysteresis loop.

4. HYSTERESIS LOOP

Prior to proceeding with an analysis of the relax-
ation equation (20), let us formulate some conclusions
following from the form of this equation for the partic-
ular system under consideration.

(i) The hysteresis, as the relaxation phenomenon,
significantly depends on the rate of magnetic field
variation in the course of measurements. The natural
time scale in this case is provided by the inverse fre-
quency Ω . According to this, a process with the charac-
teristic time τ ! Ω–1 is fast, while that with τ @ Ω–1 is
slow. The typical process of measurement of the hyster-
esis loop is a slow process. However, even in this case
the shape of the loop significantly depends on the
period τ of variation of the external magnetic field and
the law of its variation. This is illustrated in Fig. 3,
which shows the hysteresis loops for various periods
(Fig. 3a) and different laws of variation (Fig. 3b) of the
magnetic field. As can be seen from this figure, the shape
of the loop and especially its width (even for Ωτ @ 1)
strongly depend on the field sweep time. On the other
hand, the law of the field variation (at Ωτ = const) rather
insignificantly influences the loop width and virtually
does not affect the shift. Below we describe the results
obtained for a cosine-shaped field sweep (see the inset
to Fig. 3b) with a total duration of τ = 320/Ω at a tem-
perature of Θ ≡ kT/J = 2 and the magnetic parameters
hJ ≡ J/µ = 1 and JE = 10J .

dj
dt
----- Ω j

µHe j J jk
k j≠
∑+

kT
-----------------------------------tanh–

 
 
 
 
 
 

–=

j µHe j J jk
k j≠
∑+

 
 
 

   kT .tanh=

dj
d Ωt( )
-------------- j–

µ He H+( )
kT

-------------------------- F j H,( ) H .dtanh

∞–

∞

∫+=
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Fig. 3. The hysteresis loops calculated for (a) various periods and (b) different laws of variation of the magnetic field at Θ = 2, hJ =
1, JE = 10J, and f = 0.01 (a) and 0.05 (b). The inset shows the triangle (solid), sine (dash), and cosine (dot) shapes of the field sweep.
(ii) The shift of the loop along the field axis is
caused, as was indicated above, by the asymmetric part
Ff (hJ) of the distribution function (8), which is centered

at the field (0) = 2f(JE/J – 1)hJ . This field exhibits a
linear increase with the exchange energy JE . However,
this dependence does not imply an infinite leftward
shift of the loop, since, in fact, the displacement is
determined by the term

in the right-hand part of Eq. (20). For JE  ∞, this
term tends to 4fhJ (in fact, this value is approached at
JE/J * Θ). Therefore, the dependence HEB(JE) is
expected to saturate as JE  ∞.

A physical reason for this saturation is quite clear.
For sufficiently low temperatures (Θ & 1) and small
amplitudes (he0 & JE/J) of the magnetic field sweep,
only the FM spins with a weak coupling J respond to
the field, while spins with enhanced coupling JE retain
their directions. In this case, spins of the first group cre-
ate a symmetric hysteresis loop, while the second group
accounts for its displacement leftward by the value pro-
portional to the total magnetization jEB ~ f in this group.
As a result, the center of the hysteresis loop exhibits a
leftward displacement by |HEB|max/hJ ≈ jEB/ , where

 = dj/dhe|f = 0, j = 0 is the slope of the symmetric (i.e.,
that for f = 0) hysteresis loop at the points j = 0 (i.e., at
H = ±Hc , where Hc is the coercive field for the symmet-
ric loop). The parameter  is determined from Eq. (20)

H

4 f
µ He H+( )

kT
-------------------------- F f j H,( ) Hdtanh

∞–

∞

∫

j0'

j0'

j0'
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for f = 0 and j = 0. In this case, the right-hand part of
this equation is equal with a good approximation to
(3/16)he . Then, for a linear field sweep with a period τ
and an amplitude he0, we obtain he(t) = he0(1 – 4t/τ), and
Eq. (20) yields  ~ (1/10)Ωτ/he0. Therefore, the max-
imum displacement of the hysteresis loop can be esti-
mated as

For Ωτ ~ 100 and he0 ~ 1, this yields |HEB|max/hJ ~ 10f.
A comparison of this value to expression (10) shows
that saturation of the dependence |HEB|max(JE/J) must
take place at JE/J ~ 5. Apparently, the loop width ceases
to change as well.

Now let us proceed to an analysis of the hysteresis
loop of the system under consideration, which is
described by a solution to Eq. (20). We assume that the
system is completely magnetized (j = 1) in the initial
state (he ≡ µHe/J = 5), after which the field is first
decreased to he = –5 and then increased to the initial
level. 

Figure 4 shows the typical hysteresis loops for the
system with various fractions f of enhanced bonds. As
can be seen, an increase in f leads to a shift of the hys-
teresis loop toward negative fields. Simultaneously, the
loop exhibits narrowing and shifts up toward greater
positive magnetization. The first of these effects is

described by the exchange bias parameter HEB = (  +

)/2, where  and  are the coercive fields corre-
sponding to decrease and increase in the field. The lat-

j0'

HEB max

hJ

------------------- 1
10
------ fΩτ

he0
----------.∼

Hc
–

Hc
+ Hc

– Hc
+
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ter trends are described by formulas for the loop width,

∆H = (  + )/2, and the magnetization increment

jEB = (  + )/2, where  and  are the maximum
and minimum magnetization values.

Figure 5 shows the dependences of all three param-
eters (∆H, HEB, and jEB) on the fraction f of exchange-
enhanced bonds. As can be seen, the shifts HEB and jEB
of the hysteresis loop exhibit a linear increase, while
the loop width ∆H shows a linear decrease with increas-
ing f. The increase in HEB and jEB with f is quite under-
standable, since it reflects the growth in the number of
enhanced bonds, which favor to provide positive mag-
netization of the system even in the region of negative
fields. It should be noted that the behavior of HEB(f)
quantitatively disagrees with relation (10), which is
explained by the aforementioned effect of the HEB sat-
uration at large JE values. As for the narrowing of the
hysteresis loop, this is related (see Fig. 4) for the most

part to a significant shift of the coercive field  to the

negative values, whereas the coercive field  changes

to a much lesser extent. The greater shift of  is
explained by the aforementioned tendency of the sys-
tem to retain positive magnetization of the system even
in the region of negative fields, which is caused by the
presence of spins with enhanced coupling.

The inset to Fig. 5 shows the temperature depen-
dence of the exchange bias HEB(Θ) of the hysteresis
loop. The increase in the absolute EB value with the
temperature is easy to understand: at higher tempera-

Hc
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js
+ js

– js
+ js

–

Hc
+

Hc
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Hc
+
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Fig. 4. The hysteresis loops calculated for various fractions
f of enhanced bonds. The inset shows the plot of coercive
fields versus f.
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tures, the system always occurs in an almost stationary
state corresponding to the maximum possible value of
HEB determined by relation (10). As can be seen from
Fig. 5, HEB tends to this very level at high temperatures.

Figure 6 shows saturation of the HEB and ∆H values
with increasing energy JE of enhanced coupling. This
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Fig. 5. Plots of the (1) hysteresis loop width ∆H,
(2) exchange bias HEB, and (3) magnetization increment
jEB versus fraction f of enhanced magnetic bonds. The inset
shows the temperature dependence of the exchange bias
(f = 0.02, JE/J = 10).
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Fig. 6. Plots of the (a) hysteresis loop width ∆H and
(b) exchange bias HEB versus energy JE of enhanced cou-
pling for (f = 0.02 (1) and 0.05 (2). The dashed lines corre-
spond to formula (10).
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behavior was discussed above and quantitatively agrees
with the obtained conclusions.

The vertical shift of the hysteresis loop described by
the parameter jEB is related to a difference in the mag-
netization of the system for the positive and negative
directions of the magnetic field (Fig. 4). Evidently, this
difference must disappear for a sufficiently large abso-
lute value of the negative field He * µJE . In our case,
this corresponds to he * 10 and agrees well with the
results of calculations presented in Fig. 7.

An important and, hence, frequently measured char-
acteristic of the real systems is the dependence of the
exchange bias on the AFM film thickness. Although we
have considered a 2D model, it is possible to qualita-
tively judge the shape of this dependence. Indeed, the
fraction f of enhanced bonds is inversely proportional to
the average size L of the AFM domain: f ∝  1/L. Since
the formation and stabilization of domains in the AFM
is caused by defects, the domain walls appear as closed
surfaces (2D boundaries for the films of finite thick-
ness) containing the maximum possible number of
defects. Obviously, the possible number of such sur-
faces increases with the film thickness d. Since the min-
imum energy corresponds to the minimum possible (for
the given conditions) length of this boundary, the aver-
age domain size L must also increase with the film

1.0

0

–0.5

–1.0
–8 –2 2

j

he

0.5

0–4–6–10

Fig. 7. The hysteresis loops calculated for the same field
sweep rates dhe/dt but various sweep amplitudes: hmax = 30,
Ωτ = 2000 (solid curve); hmax = 5, Ωτ = 333 (points).
Dashed region corresponds to he > –hmax, where the two
loops coincide.
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thickness. Accordingly, the parameter f and, hence, the
exchange bias HEB must decrease with increasing d.
Such a dependence of the exchange bias on the AFM film
thickness was frequently observed in experiment [1].

5. CONCLUSIONS

The main points of the proposed model, which make
possible its analytical consideration, are the presence of
a small fraction of enhanced (by any mechanism) ferro-
magnetic bonds, generalization of the mean field theory
through introduction of the distribution function of the
spin coupling energies, and the corresponding general-
ization of the magnetic relaxation energy.

Within the framework of the developed generalized
model, we considered the exchange bias of the hystere-
sis loop of a 2D Ising FM–AFM bilayer, determined
various characteristics of the hysteresis loop, and ana-
lyzed their dependence on the parameters of the model.
On the whole, the obtained results agree with experi-
ment.
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Abstract—The preparation conditions and magnetic properties of the La(Co1 – xFex)O3 – d system of solid solu-
tions were studied. Irrespective of synthesis conditions, the samples with x ≤ 0.15 were rhombohedral (space

group ), and those with x ≥ 0.7, orthorhombic (space group Pnma). In the intermediate region of 0.15 <
x < 0.7, the samples could be mixtures of rhombohedral and orthorhombic phases. Structural heterogeneity con-
siderably decreased as the temperature of the synthesis increased or after annealing in a reducing medium. The
samples containing more than 40% iron exhibited weak spontaneous magnetization, as is characteristic of weak
ferromagnets. The magnetic properties and structure depend on the content of oxygen. A decrease in the con-
centration of oxygen sharply increases magnetic anisotropy; the coercive force is then close to 10 kOe, which
is more than that known for other oxide systems. The magnetic properties are explained in terms of the model
according to which Co3+ ions are in the low-spin state. © 2005 Pleiades Publishing, Inc. 
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1. INTRODUCTION

Cobaltites with perovskite structures exhibit several
unusual phase transitions related to changes in the spin
state of ions [1–5]. The trivalent cobalt ions (Co3+) in
LaCoO3 experience the transition from the low-spin
(LS) nonmagnetic ground state with S = 0 to the inter-
mediate spin (IS) state with S = 1 at about T = 90 K.
Close to T = 500 K, a metal-dielectric transition
extended along the temperature axis is observed [1–4].
The specific resistance ρ obeys the law ρ(T) ∝
exp(Eg/kBT) at low temperatures; the ρ value decreases
by several orders of magnitude at T = 500 K and
increases as the temperature rises at the higher temper-
atures [1]. The spin state transition at T = 90 K disap-
pears for the La1 – xSrxCoO3 system doped with Sr, and
the cobalt ions then remain magnetic even to the lowest
temperature. Systems with x > 0.2 exhibit spontaneous
magnetization at low temperatures [6]. The magnetiza-
tion and neutron diffraction data led several authors to
suggest the existence of the state of a cluster spin glass
and ferromagnetism in the region 0.3 < x < 0.5 [7]. At
lower strontium contents (x < 0.2), magnetization mea-
surements revealed the spin-glass ground state [7, 8]
with strong ferromagnetic short-range order correla-
tions according to the experimental diffuse neutron
scattering data [8]. The suggestion was made that lat-
tice expansion caused by the substitution of Sr stabi-
1063-7761/05/10006- $26.001121
lized the intermediate spin state of Co3+ [8], whereas
the appearance of ferromagnetic short-range order
could be caused by the introduction of charge carriers.
The latter factor should also change electron transport
properties. The ρ(T) value for La1 – xSrxCoO3 with x <
0.2 is smaller by several orders of magnitude than for
LaCoO3, although ρ(T) remains semiconducting in
character [9]. According to the thermal electromotive
force and Hall coefficient signs, the compound has hole
conduction [9]. Above T = 500 K, ρ(T) increases as the
temperature grows, which presupposes the occurrence
of the dielectric–metal transition at T = 500 K, as in
LaCoO3. Thermal electromotive force changes are also
indicative of the occurrence of the dielectric–metal
transition [9].

It was found in [10, 11] that the magnetic state of the
Co3+ ions in LaCoO3 can be changed not only by sub-
stituting Sr but also by replacing Co3+ with isovalent
Ni3+ ions. At x < 0.5, La(Co1 – xNix)O3 samples exhibit
spin-glass properties at low temperatures. In this work,
we show that the replacement of Co3+ with Fe3+ does
not cause significant stabilization of the intermediate
spin state of cobalt ions. This system exhibits giant
magnetic anisotropy at x ≥ 0.5; the mechanism of its
formation is discussed. Earlier, the LaCo1 – xFexO3 sys-
tem was studied from the point of view of its catalytic
activity [11].
 © 2005 Pleiades Publishing, Inc.
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2. EXPERIMENTAL

The La(Co1 – xFex)O3 – d samples were prepared in
air following the usual ceramic technology from a mix-
ture of La2O3, Co3O4, and Fe2O3 oxides at temperatures
from T = 1470 K to T = 1770 K. Several synthesized
samples were reduced in evacuated quartz ampules at
T = 1200 K. Tantalum metal was used as a getter for
oxygen. The X-ray measurements were performed on a
DRON-3M diffractometer using CuKα radiation. The
crystal structure was calculated with the use of the Full-
Prof program. The magnetic measurements were per-
formed on an OI-1001 commercial vibrating-coil mag-
netometer and using an MPMS-5 (Quantum Design)
SQUID magnetometer. The Mössbauer spectra were
recorded on an MS2000 spectrometer in the transmis-
sion mode using a 57Co/Rh source. The spectra were
calculated with the help of the MOSMOD program.
The isomeric shifts are given with respect to α-Fe. The
topography of the surface was studied with a KARL
ZEISS scanning electron microscope. X-ray spectral
analysis data were obtained using a Röntec energy dis-
persion Si–Li semiconductor detector.

3. RESULTS AND DISCUSSION

Crystal structure. FullProf calculations for the
samples prepared at T = 1570 K in air were successfully
performed to show the samples with x ≤ 0.15 to be sin-

gle-phase, space group ; the samples with 0.3 ≤ x ≤
0.6 to be mixtures of rhombohedral and orthorhombic
(Pnma) phases; and the samples with x ≥ 0.7 to be sin-
gle-phase orthorhombic (space group Pnma).

Increasing the synthesis temperature to T = 1770 K
sharply decreased crystal structural inhomogeneity.
The samples prepared at this temperature were success-
fully calculated as rhombohedral (x ≤ 0.5) and orthor-
hombic (x ≥ 0.6). Only the sample with x = 0.55 could
not be calculated in terms of a single-phase model. The
unit cell volume increased almost linearly as the con-
tent of iron grew in the interval 0 ≤ x ≤ 1. It is likely that
high temperature contributes to the formation of homo-
geneous solid solutions. There is, however, another
method for the preparation of samples with homoge-

R3c
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neous crystal structures; it involves thermal treatment
in a reducing medium. The FullProf calculation results
obtained for the samples with x = 0.5 prepared at T =
1570 K and T = 1770 K in air and the sample reduced
in an evacuated quartz ampule in the presence of tanta-
lum metal at T = 1170 K are shown in Fig. 1. Reduction
was performed for the sample prepared at T = 1570 K
in air. Treatment of the sample in an evacuated ampule
caused weight loss corresponding to a 2% decrease in
the content of oxygen. The sample was fully trans-
formed into the orthorhombic phase. The unit cell
parameters of several samples are listed in the table.
The unit cell volume increases as the content of oxygen
decreases. This can be explained by the appearance of
Co2+ ions, whose ionic radius is larger than that of Co3+.
Electron microscopic studies of the surface of samples
showed the presence of 2–10 µm polycrystalline grains
in the samples with x = 0.5. According to the X-ray
spectral microanalysis data, the content of cobalt and
iron in reduced sample grains was homogeneous. Nor
did we observe significant deviations from a uniform
distribution of cobalt and iron for the samples prepared
in air.

Magnetic properties. Samples with low iron con-
tents did not exhibit a dependence of magnetization on
their magnetic prehistory, as is characteristic of para-
magnets or antiferromagnets. Nor did we observe
anomalous behavior indicative of antiferromagnetic
ordering. The reciprocal susceptibilities measured for
the samples with x = 0.1, 0.15, and 0.4 are shown in
Fig. 2. The absolute value of the asymptotic paramag-
netic Curie point increased as the content of iron grew.
This is evidence of strengthening of antiferromagnetic
exchange interactions.

The field dependences of magnetization obtained at
various temperatures are close to linear, as is character-
istic of paramagnets or antiferromagnets. The field
dependence of magnetization for spin glasses should be
substantially nonlinear.

Note that the magnetic properties of the sample
doped with iron ions (10%) are sharply different from
those of pure LaCoO3, which experiences gradual tran-
sition into the diamagnetic state at temperatures below
Table

Space group Unit cell parameters, Å Volume, Å3

LaCo0.6Fe0.4O3 R c a = 5.4784(7), c = 13.2127(6) 57.132

LaCo0.5Fe0.5O3 R c a = 5.4881(7), c = 13.2368(6) 57.539

LaCo0.5Fe0.5O3 – d reduced Pnma a = 5.4627(7), b = 7.7573(8), c = 5.5129(1) 58.405

LaCo0.4Fe0.6O3 Pnma a = 5.4405(9), b = 7.3355(6), c = 5.4936(4) 57.7865

LaCo0.3Fe0.7O3 Pnma a = 5.4742(0), b = 7.7484(8), c = 5.5070(3) 58.4265

3

3
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Fig. 1. Refinement of the structure of La(Co0.5Fe0.5)O3 prepared (a) at T = 1570 K in air, (b) at T = 1770 K in air, and (c) by reduction
in a quartz ampule. The experimental data are given by dots, the calculated curve by a solid line, and their difference by the lower
solid line; vertical dashes correspond to the calculated reflection positions. The upper row of dashes in Fig. 1a is for the rhombohe-
dral phase, and the lower row, for the orthorhombic phase.
100 K [1]. According to magnetization measurements,
this transition is absent in the sample with the concen-
tration x = 0.1, and the sample remains paramagnetic
even at T = 5 K. The properties of the sample with x =
0.15 did not differ qualitatively from those of the sam-
ple with x = 0.1.

All the samples rich in iron (x ≥ 0.4) are character-
ized by a small spontaneous magnetic moment. The
results obtained in studying the magnetic properties of
the samples with x = 0.4 and x = 0.5 prepared at T =
1770 K and the remanent magnetization of the reduced
composition are shown in Fig. 3. The sample with x =
0.4 becomes paramagnetic at TN = 120 K. The transition
is fairly sharp, which is not characteristic of spin
glasses. The ZFC and FC curves at low temperatures
show that magnetization increases as the temperature
grows, which is also unusual for spin glasses. Possibly,
the sample exhibits long-range magnetic order. How-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ever, conclusions about the type of its magnetic state
are difficult to make in the absence of neutron diffrac-
tion data. The temperature of magnetic ordering
sharply increases to 300 K as the content of iron grows
to x = 0.5. The field dependences of magnetization are
evidence that spontaneous magnetization is small, as is
characteristic of weak ferromagnets. It was found for
the sample with x = 0.5 prepared at 1570 K in air and
reduced in a vacuum that it had a small spontaneous
moment at room temperature; this moment could not be
suppressed by heating the sample to 360 K (this was the
highest temperature of our measurements). It follows
that the critical temperature at which magnetic ordering
disappears is higher than 360 K. Magnetization mea-
surements for the samples heated after cooling to
helium temperatures were performed without applying
an external magnetic field. The reduced sample exhib-
ited anomalous magnetization behavior over the tem-
perature range 5–100 K. This behavior corresponded to
SICS      Vol. 100      No. 6      2005
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a phase transition, possibly caused by spin reorienta-
tion.

Field dependences of magnetization show that the
reduced composition with x = 0.5 was characterized by
strong magnetic anisotropy. Hysteresis loops for the
samples with x = 0.4 and x = 0.5 obtained in air at
1770 K are shown in Fig. 4. These samples are charac-
terized by magnetic rigidity and a coercive force of
about 3 kOe at T = 5 K. Oxygen loss during reduction
causes a dramatic increase in magnetic anisotropy
(Fig. 5). The coercive force is then about 10 kOe at T =
293 K. Such a magnetic anisotropy value at room tem-
perature is unique for oxide compounds. Magnetic
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Fig. 2. Reciprocal paramagnetic susceptibility as a function
of temperature for La(Co0.9Fe0.1)O3, La(Co0.85Fe0.15)O3,
and La(Co0.6Fe0.4)O3.
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Fig. 4. Field dependences of magnetization for
LaCo0.5Fe0.5O3 and LaCo0.6Fe0.4O3 at T = 5 K.
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anisotropy sharply increases as the temperature
decreases. For the reduced sample, a 50 kOe external
magnetic field was too low to cause reorientation of
magnetic moments at 10 K.

Conductivity measurements showed that the com-
positions with 0.3 ≤ x ≤ 0.5 were characterized by the
semiconducting conductivity type up to 370 K.

Mössbauer spectra. The Mössbauer spectrum of
the sample with x = 0.5 prepared at 1770 K (rhombohe-
dral phase) was recorded at T = 293 K. It was a doublet
with quadrupole splitting, ∆Q = 0.440 mm/s. The iso-
meric shift δ = 0.369 mm/s was evidence that the iron
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Fig. 3. Temperature dependences of FC and ZFC magnetiza-
tions for (s, d) La(Co0.6Fe0.4)O3 and (n, m) La(Co0.5Fe0.5)O3
in a 100 Oe field. Shown by asterisks is the temperature
dependence of the remanent magnetization of the reduced
La(Co0.5Fe0.5)O3 – d sample.
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Fig. 5. Field dependences of magnetization for the reduced
LaCo0.5Fe0.5O3 – d sample at (d) T = 293 K and (s) T =
10 K.
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ions were in the trivalent state. The spectra of orthor-
hombic samples consisted of two or more sextets,
which was evidence of magnetic nonequivalence of the
iron ions.

Discussion. As follows from the Mössbauer data,
the iron ions in the LaCo1 – xFexO3 system are in the oxi-
dation state 3+. The question arises what is the spin
state of the cobalt ions? To answer this question, let us
compare the properties of LaCo1 – xFexO3 and
LaCo1 − xNixO3. The authors of [12] performed a com-
plex study of the latter system to find that the cobalt and
nickel ions were also in the trivalent state. The unit cell
volume of the LaCo0.5Ni0.5O3 composition was substan-
tially larger than the unit cell volumes for the extreme
solid solution compositions LaCoO3 and LaNiO3. This
means that the cobalt ions in LaCo1 – xNixO3 were in the
intermediate spin state, because the ionic radius of Co3+

(IS) is substantially larger than the ionic radius of Co3+

(LS) [13].

We, however, found that the unit cell volume of
LaCo1 – xFexO3 solid solutions with homogeneous crys-
tal structures linearly increased as the content of iron
grew, which was evidence in favor of the low-spin state
of the cobalt ions, as in LaCoO3. Magnetic properties
also show that the cobalt ions are in the low-spin state.
For instance, let us compare the magnetic properties of
LaCo0.9Ni0.1O3 and LaCo0.9Fe0.1O3. The former is a
spin glass with Tf = 16 K, whereas the latter remains
paramagnetic even at liquid helium temperatures. This
shows that the cobalt ions are in the ground nonmag-

netic state with the  configuration. A sharp
increase in magnetic susceptibility at low temperatures
and as the concentration of iron ions increases is in all
probability caused by the magnetic contribution of Fe3+

ions, whose exchange interaction is antiferromagnetic.
These ions begin to form clusters as their concentration
increases, and long-range magnetic order arises close to
the x = 0.4 concentration. The magnetic properties of
the composition with x = 0.4 more closely correspond
to a magnetically ordered than spin glass state. This fol-
lows from a fairly sharp transition to the paramagnetic
state, which is characteristic of systems with coopera-
tive magnetic ordering. Neutron diffraction data are
necessary to refine the magnetic structure of the com-
pound. The temperature of the transition into the para-
magnetic state sharply increases at x = 0.5, because the
cobalt (LS) ions are nonmagnetic. The reason for this
may be very strong exchange interaction between the
iron ions. Indeed, the temperature of antiferromagnetic
ordering in LaFeO3 is 750 K [14], which is evidence of
strong negative exchange interactions. The small spon-
taneous magnetization is in all probability caused by
antisymmetric exchange interaction of the Dzyaloshin-

ski–Moriya type. Indeed, both rhombohedral ( )
and orthorhombic (Pbnm) phases admit the appearance
of weak ferromagnetism.

t2g
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The compounds with x = 0.4 and x = 0.5 are magnet-
ically rigid materials with a fairly high coercive force.
Like Co3+ (LS), Fe3+ ions cannot make a considerable
contribution to magnetic anisotropy. Nor can the large
magnetic anisotropy value be caused by the morphol-
ogy of crystallites, because, according to the electron
microscopic data, the mean size of crystallites is about
10 µm. A crystallite should therefore be divided into a
large number of magnetic domains. In all probability,
the large magnetic anisotropy is caused by the Dzy-
aloshinski–Moriya antisymmetric exchange directly
related to spin-orbit coupling. The reduction of the
sample with x = 0.5 sharply increases magnetic anisot-
ropy. At helium temperatures, a 5 T external field is
insufficient for displacing the magnetic moment from
the easy magnetic axis in the direction of the field. We
believe that the reduction of samples causes the appear-
ance of oxygen vacancies. Near these vacancies, Co2+

or Co3+ ions in the high-spin state are stabilized. Both
of them can make a large contribution to single-ion
magnetic anisotropy and to the anisotropy of weak fer-
romagnetism because of strong spin-orbit coupling
[15]. The appearance of Co2+ (or Co3+ (HS)) magnetic
ions somewhat increases Neél temperature, most likely
because of negative exchange interactions between
these ions and Fe3+.

Note in conclusion that, in spite of a noticeable
increase in the Co–O mean distance in CoO6 octahedra
as cobalt ions are replaced by iron, cobalt ions predom-
inantly remain in the low-spin state. This is evidence
that Co3+ (LS) remains in the ground magnetic state in
LaCoO3 as the temperature increases and the anoma-
lous behavior of the properties of LaCoO3 is caused by
thermal excitations in Co3+ (IS) states. The magnetic
properties of the La(Co1 – xFex)O3 system can be
described using the model according to which Co3+

ions do not participate actively in exchange interac-
tions, and weak ferromagnetism and large magnetic
anisotropy are caused by the magnetically active sub-
system of Fe3+ ions. Their interactions result in the
appearance of long-range magnetic order at x ≈ 0.4.
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Abstract—Magnetic-group analysis of the symmetries typical of quasicrystals shows that ferromagnetism is
incompatible with the icosahedral symmetry. Depending on the magnetic field direction, the icosahedral sym-
metry in the magnetic field is reduced to pentagonal, trigonal or rhombic symmetries. © 2005 Pleiades Pub-
lishing, Inc. 
Quasicrystals are currently attracting great interest
because of the variety of their unusual physical proper-
ties. Among these, the magnetic properties and, espe-
cially, ferromagnetism are the least studied. The first
experimental information on ferromagnetism in quasi-
crystals was connected with the presence of ferro-
magnetic nonquasicrystalline inclusions of a second
phase [1, 2], and later ferromagnetic-like behavior was
observed in pure icosahedral phases i-AlPdMnB and i-
AlPdFeB [3, 4]. Mössbauer spectroscopy and nuclear
magnetic resonance (NMR) experiments have shown
that the magnetic state in these systems was ferromag-
netic, but the samples consisted of large magnetic clus-
ters with extensions of about 20 nm [2, 4]. Theoreti-
cally, the ferromagnetic ordering in quasicrystals has
never been considered, and the most important problem
is the compatibility of ferromagnetism with quasicrys-
talline symmetries. To the best of our knowledge, it has
never been considered before, although the color
groups for quasicrystalline solids have been studied [5,
6]. In the present work, a theoretical analysis of the
magnetic groups for quasicrystals is performed to solve
this problem.

The existence of a magnetic structure in solids is
formally connected with the time inversion operation.
The time inversion symmetry operation R changes the
direction of the current density in a solid but does not
act on spatial coordinates. The element R commutes
with the rotations Cn , the rotations S2n and the reflec-
tions σ, and at the same time, R2 = E (the identity trans-
formation). Magnetic crystalline classes for periodic
solids are described in [7]. Structurally, magnetic
classes can be divided into three types. The magnetic
class of type I has the ordinary point group symmetry.
The direct product of point groups with the group {E, R}
forms the magnetic class of type II. The magnetic class
of type III contains the operation R in combination with

¶ This article was submitted by the authors in English.
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some rotations or reflections. These magnetic classes
have the structure G(H) = H + RgH, where H is an
invariant subgroup of index 2, g ∈  G, but g ∉  H, and R
is the time inversion operator. In periodic solids,
58 magnetic classes of type III exist. In this paper, we
obtain the magnetic classes for quasiperiodic structures
following the method described in [7]

We first obtain the magnetic classes for symmetries
with a preferable main axis (we have the five-, eight-,
ten-, and twelvefold axes in mind). Classes with such a
symmetry are related to pentagonal, octagonal, deca-
gonal, and dodecagonal systems, correspondingly. The
magnetic classes of type I represent an ordinary point
group. Ferromagnetism is possible in the following
classes of type I: C5, C5h, C8, C8h, S8, C10, C10h, S10, C12,
C12h , and S12, with the magnetic moment vector
directed along the main axis. Of course, ferromag-
netism is impossible in all type-II magnetic classes (due
to the presence of the time inversion R).

As pointed out above, all possible index-2 sub-
groups should be determined in order to find the mag-
netic classes of type III. The simplest way is to use the
tables of characters of irreducible representations.
Classes with characters equal to one in one-dimen-
sional representations form invariant subgroups of
index 2. All possible groups are given in the table for
the systems under consideration. Each magnetic class is
defined by a point group and its index-2 subgroup (in
parentheses), which is given in the table. We note that
only the class C5 does not have index-2 subgroups, and
consistently magnetic classes of type III. For the exist-
ence of the ferromagnetic state in magnetic classes of
type III, it is necessary that these classes do not contain
the elements RI or  (I is the spatial inversion and
σh is the reflection in the plane perpendicular to the
main axis). All classes of type III that allow a ferromag-
netic state are given in the last column in the table. The

Rσh
 © 2005 Pleiades Publishing, Inc.
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Magnetic classes for quasicrystalline symmetries

Symmetry Point groups Magnetic classes of type III Ferromagnetic classes

Pentagonal C5, C5v , D5, S10, D5d C5v(C5), D5(C5), S10(C5), D5d(C5v , D5, S10) C5v(C5), D5(C5), D5d(S10)

Octagonal C8, S8, C8v , D8, C8h, 
D4d, D8h

C8(C4), S8(C4), C8v(C8, C4v), D8(C8, D4), C8h(C8, C4h, S8), 
D4d(D4, C4v , S8), D8h(C8h, C8v , D8, D4h, D4d)

C8v(C8), D8(C8), D4d(S8), 
D8h(C8h)

Decagonal C10, C5h, C10v , D10, 
C10h, D5h, D10h

C10(C5), C5h(C5), C10v(C10, C5v), D10(C10, D5), C10h(C10, 
C5h, S10), D5h(D5, C5v , C5h), D10h(C10h, C10v , D10, D5h, D5d)

C10v(C10), D10(C10), 
D5h(C5h), D10h(C10h)

Dodecagonal C12, S12, C12v , D12, 
C12h, D6d, D12h

C12(C6), S12(C6), C12v(C12, C6v), D12(C12, D6), C12h(C12, 
C6h, S12), D6d(D6, C6v , S12), D12h(C12h, C12v , D12, D6h, D6d)

C12v(C12), D12(C12), 
D6d(S12), D12h(C12h)

Icosahedral Y, Yh Yh(Y) –
magnetic moment vector in these classes is directed
along the main axis.

In the case of the icosahedral symmetry, there is
only one class Yh (Y) of type III. In this class, it is
impossible (due to the presence of the operation RI) to
find a direction for which the magnetic moment vector
is invariant under all symmetry operations. However,
due to different conditions (magnetostriction, external
field, etc.), the icosahedral symmetry (the groups Y and
Yh) can be reduced to the pentagonal groups D5 and D5d

if the action is along one of the fivefold axes or to the
trigonal (D3 and D3d) and rhombic (D2 and D2h) groups
if the action is along one of the three- or twofold axes.
In this sense, the possibility of ferromagnetism in
icosahedral quasicrystals is analogous to ferromag-
netism in crystals with cubic symmetry. It is known that
the lattice of the ferromagnetic phase of iron is not
cubic (body-centered cubic), but tetragonal, with tet-
ragonal distortion on the order of 10–5 [7, 8], which is
too small to be observed experimentally. A distortion in
the icosahedral quasicrystal (with the group Yh) due to
magnetostriction along one of the five-order axes
should reduce the symmetry to class D5d , which forms
the ferromagnetic class D5h (S10).

In quasicrystals, magnetostriction can generate pha-
sons and, as a result, a sample becomes magnetically
inhomogeneous. Actually, the experiments mentioned
above have been explained in terms of large magnetic
clusters with the size about 20 nm [2, 3]. Therefore, the
magnetic state of these objects may be characterized as
a “mictomagnetic” (mixed) one. For the mictomagnetic
state, the susceptibility is analogous to an antiferromag-
netic or spin glass state, but spontaneous magnetization
after cooling in the field is typical of ferromagnets [8, 9].
In this sense, the “ferromagnetic” quasicrystals have
many features in common with concentrated alloys
CuMn and AuFe, where magnetic behavior can be
described by the presence of large supermagnetic clus-
ters with identical moments and anisotropy fields, but
with random directions of the light magnetization axis.
Upon increasing the concentration, creation of mag-
netic clusters becomes more probable and the long-
JOURNAL OF EXPERIMENTAL A
range magnetic order can propagate over the entire
sample [8, 9].

In conclusion, based on a magnetic-group analysis,
we have predicted that ferromagnetism is incompatible
with the icosahedral symmetry of quasicrystals. In
magnetic field, the icosahedral symmetry is reduced to
the pentagonal or trigonal or rhombic symmetry
depending on the field direction. Magnetostriction can
induce phason distortions in quasicrystals, and as a
result, the system becomes magnetically inhomoge-
neous. Such a physical picture can explain the existing
experimental data on “ferromagnetic” quasicrystals.
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Abstract—Formation of the liquid state of clusters with pairwise interactions between atoms is examined
within the framework of the void model, in which configurational excitation of atoms results from formation of
voids. Void parameters are found from computer simulation by molecular dynamics methods for Lennard-Jones
clusters. From that standpoint, phase transitions are analyzed in terms of two aggregate states. This information
allows us to divide the entropy jump during a solid-liquid phase transition into two parts: one corresponds to
configurational excitation at zero temperature and the other arises from thermal vibrations of atoms. The latter
part contributes approximately 40% for Lennard-Jones clusters consisting of 13 and 55 atoms, increasing to
56% for bulk inert gases. These magnitudes explain the validity of melting criteria based on thermal motion of
atoms, even though the distinctive mechanism of this phase transition results from configurational excitations.
It is shown that the void concept allows analyzing various aspects of the liquid state of clusters including the
existence of a limiting freezing temperature below which no metastable liquid state exists, as well as the exist-
ence and properties of glassy states that may exist below the freezing limit. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION
Clusters, being systems of relatively small finite

numbers of bound atoms, differ from macroscopic
atomic systems in several properties. Their solid states
are characterized by sharp, nonmonotonic dependence
of their population on the number of component atoms.
The most striking aspect is the occurrence of “magic
numbers” that corresponds to completed atomic shells,
often of polyhedra rather than lattices. In experiments,
these favorable structures exhibit heightened popula-
tions and stabilities, see, e.g., [1–3]. In the subsequent
analysis, we focus on clusters with pairwise interac-
tions between atoms. In this case, the pairwise charac-
ter and magnitude of the interaction means that the
interaction energies between atoms of a cluster are
small compared with a typical electronic excitation
energy. This criterion is valid for clusters of inert gas
atoms and clusters of molecules typically found in a
gaseous state under normal conditions. (It does not hold
for covalently bound clusters or metallic clusters.) We
consider the phase change of clusters between the solid
and liquid states and examine how it differs in principle
from the traditional melting/freezing transition in macro-
scopic systems. Indeed, the phase transition in macro-
scopic systems proceeds by a sharp step in specific prop-
erties, and hence, in classical thermodynamics, there are
phase transitions of the first and second orders [4–9],
depending on the behavior of the derivatives of specific
thermodynamical quantities. In the cluster case, com-
puter simulation exhibits coexistence of the solid and

¶ This article was submitted by the authors in English.
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liquid phases [10–13] over some finite temperature and
pressure band that makes the phase change of clusters
richer than for macroscopic systems, and, in a sense,
makes the classical thermodynamic classification of
phase transitions, based on specific discontinuities,
inapplicable here, even while the basic laws of thermo-
dynamics remain completely valid. Because of the
coexistence of aggregate states in the phase change of
clusters, dividing the phase transitions into sharply
divided types loses its sense.

The phase transition is a collective phenomenon that
results from simultaneous interaction of many atoms.
Therefore, simple analytical one-particle models are
not suitable for its analysis. In considering the phase
change in clusters, we use the results of computer sim-
ulation for clusters whose atoms interact through the
Lennard-Jones potential. We focus mainly on the liquid
state of these systems, whose properties depend mono-
tonically on the number of cluster atoms, in contrast to
the solid state, which exhibits its irregular dependence
(with magic numbers) on the number of cluster atoms.
As a result of melting, the crystalline distribution of
atoms is lost, and the liquid state has more or less amor-
phous structure, although a shell-like distribution of
atoms may be conserved to some degree. The aim of
this paper is the analysis of some properties of liquid
cluster systems on the basis of appropriate models. In
constructing our model, we must take the specifics of
the cluster liquid state into account. In general, this can
follow from the probability of the total kinetic energy
of cluster atoms held at constant energy, for example, as
was done in [11] for the Lennard-Jones cluster of
© 2005 Pleiades Publishing, Inc.
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13 atoms. Here, this probability has a bimodal form in
a range of internal energies near the state of classical
melting, i.e., where the chemical potentials of the solid
and liquid states are equal. (For convenience, we here
refer to this state as the “melting point.”) The two max-
ima of this distribution and their vicinities correspond
to two aggregate states, solid and liquid.

In modeling a large liquid cluster with pair interac-
tions between atoms by a spherical liquid drop, we take
into account that atoms in this aggregate state occupy a
larger volume than in the solid state. Then we can con-
sider the cluster’s transition from solid to liquid as a
result of formation of voids inside the cluster [14]. We
consider a void as an elementary configuration excita-
tion. A void is a perturbed, even a relaxed, vacancy; in
contrast to a vacancy in a solid, a void has an indefinite
volume and shape that changes in time. On the basis of
computer simulation results, we find the average void
parameters as they emerge for macroscopic inert gases
[15–19] on the basis of their measured parameters. This
allows us to analyze various aspects of the phase tran-
sitions in condensed inert gases as well as in Lennard-
Jones clusters.

Introduction of a void as an elementary configura-
tion excitation is in reality a simplification of a general
analysis of the potential energy surface of an ensemble of
interacting atoms [20]. In a multidimensional space of
atomic coordinates, the potential energy surface for an
atomic ensemble with pairwise interactions consists of
many potential wells separated by saddles [13, 21–24].
Evolution of this ensemble is described by saddle-
crossing dynamics [23]. In particular, a cluster is found
near a minimum of the potential energy long enough to
equilibrate its vibrations; transition to a neighboring
minimum typically proceeds relatively slowly by com-
parison [25]. (Of course, if there are minima separated
by low barriers, equilibration among these may occur
on the same time scale as vibrational relaxation, and
can be treated appropriately.) First, this leads to a short-
range, short-duration order for any amorphous struc-
ture of atoms, because each configuration of atoms is
preserved for a relatively long time (such that the
atomic kinetic energy is not very large). Second, this
allows us to introduce an average void by averaging
parameters over times that exceed the typical vibra-
tional period but are shorter than typical well-to-well
passages. This allows us to separate configuration exci-
tation that is responsible for the phase transition from
vibrational excitation associated with an increase of the
kinetic energy of the atoms. This fact is of importance
for the analysis of the phase transition.

We note that the phase change in clusters is richer
and more complicated than in bulk systems. In particu-
lar, the sharp onset of a liquid state is absent for Len-
nard-Jones clusters of 8 and 14 atoms (and others) [26];
these are examples of systems that do not show bimodal
distributions of kinetic energies on time scales of vibra-
tional relaxation. In addition, large clusters can exhibit
JOURNAL OF EXPERIMENTAL A
several aggregate states associated with melting of var-
ious atomic shells [27, 28]. Below, we focus on clusters
with completed atomic shells and consider melting of
surface shells. In these cases, the melting process is
clearer and more easily distinguished. First, because
the surface shell contains a considerable fraction of the
cluster’s atoms, the statistical weight of configuration-
ally excited states with voids in the surface shell is rel-
atively large, as is the entropy of transition to this state.
This leads to a stable liquid state for the surface layer of
these clusters, as well as a state composed entirely of
liquid. Next, in contrast to the liquid state of bulk sys-
tems, where a void differs clearly from the vacancy in a
solid, a surface void in a not-so-large cluster can be
considered a perturbed vacancy. For example, the
energy of formation of a void in the liquid state of a
bulk inert gas is approximately half the energy of
formation of a vacancy in the solid state of a bulk inert
gas [15–17]. In the case of clusters under consideration,
the energy difference of formation of surface vacancies
and voids is not very large, and hence a void can be
considered a perturbed vacancy. This facilitates the
analysis.

Because some concepts of classical thermodynam-
ics of macroscopic systems are not valid for clusters, it
is necessary to revise some of those concepts in order to
apply them to clusters. In particular, the phase of an
aggregate state is defined in classical thermodynamics
as a uniform distribution of atoms that is restricted by
boundaries. From the standpoint of the void concept,
this means that the liquid aggregate state as a configu-
rationally excited state has to contain many elementary
excitations—voids. To transfer this concept to small
clusters, it is necessary to revise the definition, to be
done in what follows.

The void concept gives a sufficiently detailed pic-
ture of the liquid aggregate state, in comparison with
classical thermodynamics, and allows us to resolve its
apparent paradoxes. As an example, we consider the
criterion of the phase transition for macroscopic sys-
tems. According to the widely used Lindemann crite-
rion [29, 30], bulk melting proceeds at the temperature
at which the ratio of the atomic oscillation amplitude to
the distance between nearest neighbors reaches a cer-
tain value (10–15%). Development of numerical meth-
ods for computer cluster simulation gave new variants
of this criterion of cluster melting on the basis of the
Etters–Kaelberer parameter [31–33] or Berry parame-
ter [12, 34]; these account for pair correlations in posi-
tions of atoms. These parameters have jumps at melting
and, as with the Lindemann criterion, are connected
with thermal motion of atoms, even though the melting
results from configurational excitation. Hence, there is
an apparent contradiction between the nature of the
phase transition in ensembles of bound atoms due to
configurational excitation and the practical criteria for
this transition based on thermal motion of atoms. The
subsequent analysis of numerical parameters of this
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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phase transition exhibits the resolution of this apparent
contradiction.

Although vibrational excitation of finite and “infi-
nite” numbers of bound atoms that characterizes ther-
mal motion of atoms is separated from configuration
excitation that is responsible for the phase transition,
thermal motion of atoms gives a contribution to the
entropy jump ∆S at the melting point, because the solid
state is more compact than the liquid aggregate state.
Reflecting just the thermal (kinetic energy) part of the
entropy jump, the vibrational parameters nevertheless
simultaneously characterize the phase transition. By
exhibiting the connection between the configurational
and kinetic-energy aspects, the void analysis justifies
applying the melting criteria based on thermal motion
of atoms.

The goal of this paper is the analysis of Lennard -
Jones clusters with completed shells from the stand-
point of the void concept. This consists in obtaining the
void parameters from treatment of numerical computer
calculations and in the analysis of these data to connect
the two kinds of excitation.

2. CHARACTER 
OF CLUSTER CONFIGURATIONAL EXCITATION

We consider an ensemble of interacting atoms in
which the ground electronic state is well separated from
electronically excited states, and these excited states do
not partake in evolution of the atomic ensemble, i.e.,
development of this system can be described in terms of
motion on the potential energy surface (PES) in a mul-
tidimensional space of nuclear coordinates, and this
PES corresponds to the electron ground state. The PES
has many local minima, which was discovered in first
numerical calculations of the cluster energy at zero
temperature for a simple character of atomic interac-
tions [35–37]. Early algorithms that made oversimpli-
fying assumptions about the potential landscape led to
underestimations of the number of minima, but with
increasing the computing power, more elaborate meth-
ods made it possible to explore these landscapes fairly
thoroughly and to obtain plausible estimates regarding
the dependence of the number of minima on the number
n of atoms in the cluster. For Lennard-Jones clusters,
the number of geometrically distinct minima increases
somewhat faster than exponentially with n; there are
roughly n! permutational isomers of each of these, and
hence the total number increases roughly as n!exp(an)
[21, 36–39]. As a result, cluster evolution consists of tran-
sitions between neighboring local minima of PES that
correspond to saddle-crossing dynamics [13, 22–24].
This concept is a basis for investigation of various
ensembles of interacting atoms, from simple clusters to
biological molecules [20, 24].

The character of transitions between neighboring
minima of PES is given in Fig. 1, which shows sche-
matic projections of a PES on planes in the space of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
atomic coordinates where only the coordinate related to
a specific transition between two local minima of the
PES varies. (These planes are different for each transi-
tion.) Energy levels for each well indicate an average
atomic energy along the coordinate of the transition.
Because this energy is significantly less than the barrier
height, such transitions proceed seldom, only when the
kinetic energy of atoms in the transition degree of free-
dom exceeds its average energy adequately. Hence, the
system has many oscillations inside a given well until it
transfers to another local minimum of the PES. Then
identifying a given local (but not global) minimum of
the PES as a configurational excitation of the system of
interacting atoms, we can separate it from thermal
motion associated with atomic oscillations. This allows
us to consider the configurational excitation indepen-
dently of vibrational excitations and is the basis of the
following analysis. Moreover, taking a realistic
assumption that a typical time of establishment of the
thermodynamic equilibrium for thermal motion of
atoms is short compared to a typical time of transition
between local minima of the PES, we can introduce the
temperature of thermal motion of bound atoms for each
configuration excitation.

We use an approach based on the assumption of a
large number of local minima on the PES. In particular,
the Lennard- Jones cluster of 13 atoms is characterized
by 1478 local minima and 17357 saddle points of the
potential energy surface [22]; early estimates found
only 988 local minima [35, 36]. As noted above, the
number of geometrically distinct local minima
increases roughly exponentially with increasing the
number n of atoms in the cluster [20, 21, 38]. We con-
struct an aggregate state from configurationally excited
states. Restricting ourselves to the local minima of the
PES that are occupied with a nonnegligible probability
in a range of cluster temperatures under consideration,
we join the local minima with similar excitation ener-
gies into one aggregate state. Because of the large num-
ber of such local minima, the aggregate state is charac-
terized by a large statistical weight and, correspond-
ingly, by a large entropy, and hence the probability for
a cluster to be found in this aggregate state may be con-
siderable, even when the excitation energy is signifi-

x

ε

Fig. 1. The evolution of an ensemble of atoms in the ground
electron state as the propagation of a point in the phase
space of atomic coordinates resulting from transition
between neighboring local minima of the potential energy
surface.
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cantly less than kT. Below, we illustrate this definition
of the cluster aggregate state with examples.

3. CONFIGURATIONAL EXCITATION 
OF THE ICOSAHEDRAL CLUSTER OF 13 ATOMS

Dividing cluster excitations into two parts, configu-
rational and vibrational, we consider these parts inde-
pendent. Next, for configurational excitation, we use
the void model, considering this excitation as a result of
formation of voids. Then we can express the parameters
of the phase transition and other cluster properties
through the parameters of forming voids. We restrict
ourselves to clusters with completed shells, which sim-
plifies this analysis because a void, an elementary con-
figurational excitation, is in reality a perturbed vacancy.

We start the analysis of configurational excitation
from the simplest cluster with completed shells that has
the icosahedral structure and consists of 13 atoms. In
the lowest-energy state, its first (and only) shell is filled.
Configurational excitation of this cluster consists in
transition of one atom from the surface shell to the clus-
ter surface as shown in Fig. 2. After formation of a
vacancy on the cluster shell, the atoms around the
vacancy are distributed over a larger space due to ther-
mal motion, and the promoted atom moves over the
cluster surface more freely than any of the other atoms.
As a result of the configurational transition, an excited
cluster state has the statistical weight g and the addi-
tional entropy ∆S0 given by

(1)

Here, the value 12 is the number of shell atoms, any of
which can be promoted, and 15 is the number of posi-
tions for a promoted atom if it is not in a site bordering
the new vacancy. It is important that thermal motion of
atoms gives a contribution to these values near the melt-
ing point because of the free motion of bound atoms in
this configurationally excited state.

g 12 15× 180, ∆S0 gln 5.2.= = = =

Fig. 2. The character of the lowest configurational excita-
tion in the icosahedral cluster consisting of 13 atoms at zero
temperature.
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We now determine energetic parameters of this tran-
sition. In the ground state, each surface atom of this
icosahedral cluster has five atoms from the surface shell
and the central atom as nearest neighbors. The pairwise
interactions therefore yield six “bonds” to these atoms.
When this atom is located on the cluster surface, it has
only three nearest neighbors. Then the energy of this
atomic transition onto the hollow between three atoms
on the cluster surface is roughly equal to 3D, where D
is the energy needed to break one bond. (We assume
atoms to be classical, and hence the depth of the poten-
tial well D for the two-atom interaction coincides with
the dissociation energy of a diatomic molecule.) Next,
if a surface atom is transferred to a neighboring position
on the cluster surface, it retains two bonds between
nearest neighbors as it makes the transition between
neighboring hollows on the cluster surface. Hence, for
this transition, an atom must overcome a barrier whose
magnitude is roughly 1D. Figure 3 gives the energies of
these states at zero temperature and the values of barri-
ers that separate them for the Lennard-Jones interaction
potential between atoms [40]. We see that the differ-
ence between the data in Fig. 3 and the above values is
not substantial. Hence, our consideration of an elemen-
tary configurational excitation, a void, as a perturbed
vacancy is justified.

Figure 3 gives the energies of these states at zero
temperature and the values of barriers that separate
them [40]. As a result of configurational excitation, an
atom transfers from the shell of 12 atoms, as shown in
Fig. 2. For this transition, an atom must overcome a
barrier; likewise, transitions to other positions on the
cluster surface are accompanied by overcoming ener-
getic barriers. Increasing the energy facilitates transi-
tions between different stable positions on the cluster
surface, as well as exchanges between a configuration-
ally excited atom and another one. All configurationally
excited states with promotion of one atom are con-
nected in the liquid state, and hence the system may
find all permutations among the atoms of any attainable
structure. This follows from the data in Fig. 3. Thus, all
the configurational states with one atom promoted from
the outer shell comprise the lowest-energy excited
aggregate state.

We now analyze the character of configurational
excitation of this cluster in the phase coexistence range
where thermal motion of atoms influences the transi-
tion parameters. We base this on the results of computer
simulation of the Lennard-Jones cluster of 13 atoms
[11], in which this cluster is considered a member of a
microcanonical ensemble [41], i.e., the total cluster
energy is conserved during the cluster’s evolution. In a
particular band of energies, the probability distribution
of the total kinetic energy (or mean kinetic energy per
atom) of the cluster becomes the bimodal distribution,
which confirms the existence of the aggregate states in
the dynamic equilibrium in this case (solid and liquid).
Therefore, in this range, we can treat the results of com-
puter simulation [11] in terms of a dynamic equilibrium
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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3.42

2.86

3.70

2.88

3.87

2.93

liquid state

3.69

3.54

0

hexagonal structure

face-centered cubic structure

icosahedral
structure

solid state

Fig. 3. The energy and barrier positions for the lowest configurational excitations of the Lennard-Jones cluster consisting of
13 atoms according to [40].
of two aggregate states. This was fulfilled partially in
[42–44], and we give the results of this treatment
below.

We now give general formulas of this consideration
in which the results of numerical calculations are com-
pared with simple formulas that reflect a simple con-
cept. For the classical motion of bound atoms inside the
cluster, we represent the energy E of a cluster consist-
ing of n atoms, with a pair interaction between them, in
the form

(2)

Here, U is the total potential energy, K is the total
kinetic energy of atoms, u(rij) is the pair interaction
potential between atoms at a distance

where ri and rj , are the atomic coordinates, and m is the
atomic mass. This formula is the basis of our analysis
of cluster computer simulations. We consider the prop-
erties of two terms of this formula, taking into account
that thermal equilibrium is usually established for
atomic vibrations. This allows us to introduce the
atomic temperature T, with the motion of atoms treated
as that of a set of harmonic oscillators. The cluster tem-
perature is defined from the relation

(3)

E U K+ u rij( ) m
2
----

dri

dt
------- 

 
2

.
i

∑+
i j,
∑= =

rij ri r j,–=

K
3
2
---nT ,=
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where n @ 1 and the total kinetic energy of atoms is
averaged over times much longer than the period of
atomic oscillation. A typical oscillation time τ for
atoms can be expressed through the Debye frequency
ωD as

(4)

We note that for a microcanonical ensemble, this defi-
nition of the effective temperature, although useful and
widely chosen, is not the only one, and different defini-
tions are not equivalent [45].

The global minimum of the potential energy surface
of this cluster has the structure of a regular icosahedron,
and it corresponds to the cluster’s ground state, its equi-
librium state at zero temperature. Transitions from the
global minimum to other local minima of the potential
energy surface for a 13-atom cluster are responsible for
the phase transition to the liquid aggregate state. Fig-
ure 3 gives the energies of the lowest configurationally
excited states of this cluster at zero temperature and the
values of barriers that separate them [40]. As a result of
configurational excitation, an atom transfers from the
shell of 12 atoms, as shown in Fig. 2. At high tempera-
tures, the lowest configurationally excited state is the
liquid aggregate state, which is to be justified below.

The energy of an isolated cluster of 13 atoms in the
energy range where both solid and liquid may be stable
can be represent as

(5)

τ 1
ωD
------- "

D
----.∼ ∼

E E0 Eex+– Usol
k Ksol+ ∆E U liq

k K liq,+ += = =
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where E0 is the binding energy of cluster atoms at zero
temperature, Eex is the excitation energy, Ksol and Kliq
are the total kinetic energies of atoms for the solid and

liquid cluster states,  and  are the average
potential energies of the cluster for the kth local mini-
mum of the potential energy surface, and ∆E is the aver-
age excitation energy above the energy needed to reach

 required to produce the labile liquid aggregate
state. The values in this formula are averaged over
times that exceed a typical time of atom oscillations but
are less than a typical transition time between cluster
aggregate states. Within the framework of this consid-
eration, we join energetically similar local minima of
the cluster potential energy into one aggregate state,
assuming the transitions between local minima of the
same aggregate state to be more effective than transi-
tions between states that belong to different aggregate
states. In other words, we assume that the system,
although liquid, explores the local minima available to
it far more frequently than it returns to the solid with
which it is in the dynamic equilibrium-on long enough
time scales.

We introduce the effective temperature for a given
aggregate state of the cluster on the basis of a formula
transformed from formula (3):

(6)

where n = 13 is the number of cluster atoms, and the
energy fraction η related to the kinetic energy of atoms
is

(7)

Usol
k U liq

k

U liq
k

T
2

3n 6–
---------------K

2K
33
-------,= =

η sol

Ksol

Eex
--------, η liq

K liq

Eex ∆E–
---------------------.= =

0.46

0.44

0.42

0.40

0.38

0.36
6 8 10 12 14 16

Eex/D

LJ13

η

Fig. 4. The dependence on the excitation energy for the
energy part related to the kinetic energy of atoms for an iso-
lated Lennard-Jones cluster of 13 atoms. This value is
identical for the solid and liquid cluster states. The arrow
indicates the excitation energy of the phase transition
wsol = wliq.
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If atomic motion is a combination of harmonic oscilla-
tors, we have η = 0.5. Anharmonicity of the oscillations
typically leads to a decrease of this value, and η(Eex)
decreases with an increase of Eex. Treatment of the
results of computer simulation [11] for this cluster by
the method in [43] gives the dependence η(Eex) that is
represented in Fig. 4. We note that

within the limits of the result accuracy, while this quan-
tity has different values for the solid and liquid states at
identical temperatures. This value starts from

where the system can be described in terms of harmonic
oscillators and decreases monotonically with increas-
ing the excitation energy because of the increasing role
of anharmonicity of the dominant stretching modes.1

Hence, the parameter η characterizes the influence of
the anharmonicity in atomic motion of an isolated clus-
ter as the excitation energy increases.

From these data, we have the excitation energy of
the cluster liquid state,

(8)

Comparison of formula (8) with the data in Fig. 3 for
the excitation energies at zero energy shows that the
difference of these energies is not significant. In con-
trast to this, the ratio of the energy of void formation for
bulk inert gases to the vacancy energy formation is
approximately one half. The energy of void formation
at the melting point Tm = 0.29D allows us to find the
entropy jump of the bulk system at the melting point

(9)

Comparing this with the entropy jump ∆S0 of the cluster
at zero temperature according to formula (1), we find 

(10)

1 Some modes, notably bending modes in molecules and, at high
energies, high-frequency phonons in large clusters and solids,
may have negative anharmonicities. For such systems, this line of
reasoning requires further scrutiny. But for clusters of at least
several hundred atoms, it is a valid assumption that the anharmo-
nicity reduces the spacing of the relevant modes as the energy
increases.

η sol Eex( ) η liq Eex( )=

η Eex 0=( ) 0.5,=

∆E
Ksol K liq–

η Eex( )
-----------------------=

=  Eex 1
K liq

Ksol
--------– 

  2.49 0.05.±=

∆Sm
∆E
Tm
------- 8.6 0.2.±= =

∆S0

∆Sm
---------- 0.6.≈
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Thus, the different character of atom motion in the solid
compact aggregate state and in the liquid aggregate
state with its sparser distribution of atoms increases the
entropy jump.

An isolated cluster, viewed as a microcanonical
ensemble of atoms, is characterized by two tempera-
tures if it can be found in two aggregate states only.
These temperatures are determined by formula (6) for
each aggregate state, and ignoring the anharmonicity,
which gives η = 0.5, we use formula (8) to obtain the
difference of the atomic temperatures Tsol  and Tliq of the
solid and liquid aggregate states near the melting point:

(11)

Figure 5 gives the values of these temperatures for the
Lennard-Jones cluster of 13 atoms as a function of the
cluster excitation energy, and these data follow from
treatment of the computer simulation results [11] for
this cluster. Along with these temperatures, we can
introduce the configurational cluster temperature Tef
that follows from the equilibrium between the solid and
liquid cluster states according to the formula

(12)

where wsol and wliq are the respective probabilities for
the cluster to be found in the solid or liquid states and
∆F is the free energy jump at melting. The configura-
tional temperature is determined by populations of the
solid and liquid aggregate states. Figure 5 gives the
dependence of the configurational temperature on the
cluster excitation energy. The configurational tempera-
ture tends to the solid temperature in the limit of low
temperatures, and to the liquid temperature in the limit
of high temperatures.

4. CONFIGURATIONAL EXCITATION 
OF THE ICOSAHEDRAL CLUSTER OF 55 ATOMS

We consider a cluster as a member of a canonical
ensemble [41], when it is maintained under isothermal
conditions. Experimentally [46–49], this condition can
be reached when clusters are located in a gas of light
(usually, helium) atoms that collide with clusters and
metallic walls maintained at a certain temperature. Col-
lisions establish the wall temperature for each cluster if
the typical time for equilibration to a gas temperature as
a result of collisions with the atomic heat bath is short
compared to a typical dwell time of the cluster in each
aggregate state. As earlier, we assume the existence of
the two aggregate states [42–44] and use the dynamic
coexistence of phases in clusters [11, 50–52] within a
temperature range; in other words, we assume that part
of the time, the cluster is found in one aggregate state
and in the remainder, it is found in the other. In addi-

T sol T liq–
2∆E
33

----------- 0.15D.≈=

wliq

wsol
-------- ∆F

Tef
-------– 

 exp ∆E
Tef
-------– ∆S+ 

  ,exp= =
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tion, while the cluster is in each aggregate state, vibra-
tional equilibrium is established [25], and hence the
temperature of bound atoms for each aggregate state
coincides with the thermostat temperature if the cluster
is in a canonical ensemble [41]. In this case, the proba-
bility wliq that the cluster is found in the liquid state is
given by the formula [18, 43, 44]

(13)

where T is the cluster temperature (which coincides
with the thermostat temperature), ∆E is the energy of
configurational excitation, ∆S is the entropy jump as a
result of melting, and ∆F is a change of the free energy.
The parameters of the phase transition ∆E and ∆S deter-
mine the behavior of the cluster heat capacity, which we
connect with the cluster heat capacity that can be calcu-
lated from computer simulations. Using the average
kinetic energy of atoms for each aggregate state, we
characterize each of those states by the mean potential
energy, i.e., we ignore the broadening of the energy of
each cluster state due to fluctuations.

We first determine the cluster heat capacity and sep-
arate its “resonance” part, the peak due to the phase
transition. According to formula (5), we have

(14)

and because the cluster is in a thermostat, Ksol = Kliq .
Assuming that ηsol = ηliq , we obtain the average cluster

wliq
p

1 p+
------------,=

p
∆E
T

-------– 
 exp ∆S

∆E
T

-------– 
  ,exp= =

E E0

Ksol

η sol
--------wsol ∆Ewliq

K liq

η liq
--------wliq,+ + +–=
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Fig. 5. Temperatures of the Lennard-Jones cluster of
13 atoms depending on the excitation energy (the tempera-
tures of the solid and liquid aggregate states, average trans-
versal temperature, and configuration temperature).
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energy according to formula (14),

(15)

We first consider the Lennard-Jones cluster of
13 atoms in a thermostat. We note that the anharmonic-
ity of atomic oscillations affects the degree of the con-
figurational excitation. Indeed, because the anharmo-
nicity is greater for the liquid than for the solid cluster,
the density of vibrational states increases faster with
energy than does that of the solid, and therefore the
average potential energy for the isothermal liquid clus-
ter is higher than that for the solid. If the melting tem-
peratures for the isolated and isothermal clusters are
approximately equal (as they are for clusters of
ca. 100 atoms or more), we find a special excess change
of the cluster’s potential energy in the isothermal case
that does not appear in the constant-energy case. Taking
the melting point Tm = 0.29D for both cases and the cor-
responding kinetic energies at this temperature to be

we find the excess excitation energy ∆E ' as a change of
the average potential energy per atom given by

(16)

where ∆E = 2.5D is the energy difference for aggregate
states of an isolated cluster at the melting point. We
here assume that the anharmonicity parameter η is
identical for both aggregate states of an isolated cluster,
and its dependence on the excitation energy is given in
Fig. 4. Next, the dependence of the temperature of a
given aggregate state on the excitation energy is repre-
sented in Fig. 5, and, as indicated in formula (16), the
excitation energies of isolated clusters correspond to
the temperature 0.29D for each aggregate state. There-
fore, the anharmonicity of the solid aggregate state
under isothermal conditions is higher than that for an
isolated cluster, whereas for the liquid state, we have a
different relation between these values. As a result, the
isothermal phase transition requires a greater change of
potential energy than that at constant energy, due to
interactions between atoms for the Lennard-Jones
13-atom cluster. Due to the anharmonicity, the energy
change for an isothermal cluster exceeds that of the iso-
lated cluster approximately by 20%.

We next analyze the temperature dependence of the
heat capacity under isothermal conditions. We repre-

E
Ksol

η sol
-------- ∆Ewliq+

Ksol

η sol
-------- ∆E

p
1 p+
------------.+= =

Ksol Tm( ) K liq Tm( ) 2.9D,≈=

∆E' ∆E
K liq Tm( )
η liq Tm( )
--------------------

Ksol Tm( )
η sol Tm( )
--------------------–+ ∆E= =

+ Ksol Tm( ) 1
η 15.3D( )
------------------------ 1

η 11.7D( )
------------------------– 3.1D,=
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sent the cluster heat capacity in the isothermal case
as [53, 54]

(17)

where the first term characterizes the cluster’s heat
capacity in the absence of the phase transition,

(18)

and the resonance part of the heat capacity is

(19)

We here assume that the energy of configurational exci-
tation ∆E and the entropy jump ∆S are independent of
the temperature. Formula (19) leads to the maximum

 at the melting point Tm defined in this case as
p(Tm) = 1. We have

(20)

To account for the temperature dependence of the
entropy jump, we represent it as

(21)

where ∆S0 is the entropy jump at zero temperature. At
the melting point, this gives

(22)

where ∆Sm is the entropy jump at the melting point. On
the basis of formulas (13) and (19), we obtain the reso-
nant part of the heat capacity:

(23)

Because numerical calculations by the molecular
dynamics method allow one to determine the heat
capacity maximum, this relation can be used for evalu-
ating the entropy at zero temperature as

(24)

We now use this formula for the Lennard-Jones
cluster of 55 atoms. As our basis, we take computer
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simulations of this cluster in [28, 55, 56], which give
the parameters characterizing the phase transition
within the ranges

From this, we have

(25)

On the basis of formula (24), we have

(26)

The large uncertainty here makes this result relatively
uninformative. We need a way to do better.

We now determine the entropy jump at zero temper-
ature from another standpoint. The energy of formation
of one vacancy at zero temperature can be found by
comparing the total binding energies of atoms ε55 and
ε56 for the Lennard-Jones clusters of 55 and 56 atoms.
On the basis of calculations in [57] for ε55 and ε56, we
have [43]

at zero temperature. The direct calculations for lower
excitations of this cluster [58] lead to the minimal exci-
tation energy 2.63D. The proximity of these values con-
firms that an excited atom transferred onto the cluster
surface can be treated as being well removed from the
vacancy from which it came. Evidently, the energy of
void formation, the relaxed form, is less than the energy
∆ε of formation of the initial vacancy. This implies that
the number of atoms leaving the body of the cluster to
form voids is

(27)

Taking the number of voids in the liquid state of the
Lennard-Jones cluster of 55 atoms to be v  = 5–7, we
determine the entropy jump at zero temperature ∆S0 as
we treat the solid-liquid transition to be a consequence
of transitions of atoms from the outer cluster shell onto
its surface. Because of the icosahedral structure of this
cluster, its outermost shell consists of 42 atoms, and
there are 80 positions with 3-atom “hollows” on the
surface for atoms promoted from the outer shell. A new
vacancy on the cluster edge or surface has l = 6 neigh-
boring atoms, and a vertex vacancy has only l = 5.
Therefore, if v  atoms transfer onto the cluster surface,
then v l bonds are lost in the cluster surface for atoms
transferred to any of the 80 positions on the cluster sur-

∆E 15 1,
Tm

D
------± 0.31 0.01,±= =

Cres
max 650 50.±=

∆Sm
∆E
Tm
------- 48 5.±= =

∆S0 36 15.±=

∆ε ε56 ε55– 2.64D= =

v
∆E
∆ε
------- 5.≈≥
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face if we assume that v  transferring atoms on the clus-
ter surface do not border vacancies on the cluster shell.
From this, for the configurational excitation of the clus-
ter at zero temperature, we find the entropy jump that
results from v  atoms moving from the outermost shell,

where m = 80 – v l is the number of positions on the
cluster surface for transition of atoms from the outer-
most cluster shell. This formula implies that the entropy
jump at zero temperature is

Thus, the entropy jump at zero temperature depends
weakly on the number of transferred atoms, and the
average value of the entropy jump at zero temperature
is

(28)

One can see that this value is well within the range in
formula (26). Because the accuracy is higher in this
case than in formula (26), we use formula (24) for
determination of ∆Sm. Then formula (24) gives

(29)

and on the basis of formula (28) and the calculated
maximal heat capacity

we obtain

(30)

This result, together with its validity range, is consis-
tent with formula (25), but we now have a result with
greater precision and presumably with greater accu-
racy. Thus the analysis of computer simulations of
these clusters by molecular dynamics allows us to
determine some thermodynamical parameters of the
phase transition within the framework of a simple
scheme. Below, we analyze these results together with
the microscopic nature of the phase transitions.

5. CHARACTER OF PHASE TRANSITIONS
IN SIMPLE ENSEMBLES OF BOUND ATOMS

The nature of the order-disorder phase transition for
an ensemble of bound atoms may be understood on the
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basis of the lattice model (see, e.g., [6, 59, 60]). Within
this model, atoms are located at sites of a crystal lattice
and interaction occurs only between nearest neighbors.
Then the ordered state is a compact distribution of
atoms, which leads to a maximum number of bonds
between nearest-neighbor atoms, and the disordered
state with a random distribution of atoms corresponds
to a maximum entropy and to a loss of some of the
bonds between nearest neighbors that occur in the
ordered state. The phase transition between these states
proceeds by a stepwise change of the total atomic bind-
ing energy and the entropy of the evolving distribution.
This order-disorder phase transition models the solid-
liquid phase transition for an ensemble of bound atoms,
with the ordered state being analogous to the solid state
and the disordered state analogous to the liquid state.
Because this phase transition involves a change of the
atomic configuration, the passage to the disordered
state occurs by configurational excitation of the system.
One can see that the lattice model for configurational
excitation of such a system is a simplified void model,
in which a void is considered equivalent to a vacancy
and additional assumptions are used. Thus, the conclu-
sions following from the lattice model generally apply
also to the void model of configuration excitation.

In considering a phase change of clusters, we invoke
a certain hierarchy of times for establishment of the
various equilibria along the path to the overall transi-
tion. We now exhibit the validity of the hierarchy of
times in clusters that was the basis of the argument. We
assume that a typical time to establish thermal (vibra-
tional) equilibrium in clusters, τ0, is short compared to
a typical time of transition between aggregate states.
Roughly, we have τ0 ~ 1/ωD, where ωD is the Debye fre-
quency. To estimate the time needed for an atom pro-
moted to the cluster surface to move from one position
to another or to its ground-state location, we assume for
simplicity that all atom positions are separated by iden-
tical barriers. Moreover, we take the barrier height to be
U0 = 0.56D, as it is at zero temperature (see Fig. 3),
even though a temperature increase leads to a decrease
of these barriers. A transition of an atom in a three-con-
tact hollow on the cluster surface may proceed in one of
the three directions through a triangular transition state,
joined there to two nearest neighbors. With τ denoting
the transition time to a neighboring position on the
cluster surface, we find the mean transition time to the
ground state to be 9τ. Thus, under these assumptions,
we infer that transitions between different configura-
tional states proceed faster by an order of magnitude
than a transition from the surface to a vacancy in the
outer shell, normally occupied in the solid state. This
allows us to join all the different configurational excita-
tions for promotion of one atom from the outermost
shell onto the cluster surface in one liquid aggregate
state.

We now estimate the time τ of transition between
neighboring positions on the cluster surface on the
JOURNAL OF EXPERIMENTAL A
basis of the Frenkel model [61], according to which the
transition occurs if the atomic oscillation energy
exceeds the barrier height. Assuming for simplicity that
the barrier has an axial symmetry, we take it in the form

where ρ is the distance from the point of the barrier
minimum in the saddle plane. From this, we find the
transition rate

(31)

where T is the current temperature and R is the distance
between an atom and the saddle point. Taking

for an estimate, we obtain

(32)

at the melting point Tm = 0.29D. Thus, the hierarchy of
times is as we used above.

Consequently, we have three typical times that are
of importance near the melting point, where the rates of
the phase transition in both directions are similar. These
times are the time τ0 of equilibrium establishment for
transversal degrees of freedom, during which a definite
vibrational temperature is established depending on the
aggregate state; the typical time τ for transition
between neighboring configurationally excited states;
and the typical time of transition between aggregate
states. The last is the longest one, but during the time τ,
an equilibrium is established within the liquid state.
This reflects the lability of that state. We note that from
the standpoint of void formation, the case of a 13-atom
cluster is special because the liquid aggregate state
involves formation of only one void in this case. For
larger clusters, the time of transition between the aggre-
gate states is increased in comparison with times of
transition between neighboring configurationally
excited states. We demonstrate this for a 55-atom clus-
ter, assuming that the number of voids v  = 6 is the opti-
mal one for the liquid state. This means that the total
probability for the cluster to be in any of the configura-
tionally excited states with v  = 5 is less than for v  = 6,
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and for v  = 4 is still less than that for v  = 5. To reach the
solid aggregate state starting from the liquid, this clus-
ter must pass through configurationally excited states
with small probabilities of occurrence, and hence, in
most histories, the cluster returns to its initial liquid
state many times and eventually reaches the other, solid
aggregate state. This means that a typical time of tran-
sition between aggregate states is very long compared
with the time for passage between neighboring config-
urationally excited states, particularly in the case of
large clusters. Thus, the dynamic coexistence of phases
in clusters proceeds such that the vibrational tempera-
ture is established fast, next an equilibrium is estab-
lished between configurationally excited states of the
liquid phase, and then the phase transition can proceed
during longer times.

At zero temperature, the vacancy and the relaxed
void become equivalent if we neglect the vacancy-atom
interaction. Real parameters of voids take this interac-
tion into account, and hence the relaxation has its effect
on the thermal motion of atoms upon configurational
excitation. Of course, the lower the temperature, the
less is the configurational excitation and the less is the
vibrational excitation as well. Evidently, the separation
of the configurational excitation from thermal vibra-
tions of atoms that we have used is valid only at low to
moderate temperatures, and is better for clusters with
completed outer shells than for others. Therefore, we
use the void concept primarily for clusters with com-
plete shells, such as those consisting of 7, 13, 19, 55,
147, … atoms. In these cases, there is a solid-liquid
coexistence region of temperature and pressure within
which the probability distribution of the total kinetic
energy is distinctly bimodal [11, 26] for an isolated
cluster. The occurrence and persistence of these two
aggregate states allows us to use the approach of two
aggregate states [44], which is an analogue of the solid
and liquid aggregate states for bulk systems. We note
that in reality, several types of configurational excita-
tions can be observed that correspond to excitation of
different cluster shells [27, 28].

Next, for some clusters with incomplete outer
shells, thermodynamically stable states of configura-
tional excitation are absent, in particular, for clusters
consisting of 8 and 14 atoms [26], because only a small
entropy (and free energy) jump separates the states; this
is much the same situation as occurs with excited states
of atoms with open shells. Therefore, the real behavior
of excitations of open-shell clusters with pair interac-
tions may be more complicated than that within the
framework of the void model of a cluster with two
aggregate states. Nevertheless, this model is useful for
understanding and description of the clusters with a
pairwise atomic interaction.

The table presents some parameters for the liquid
states of Lennard-Jones clusters consisting of 13 and 55
atoms, which we obtained from the analysis of the
results of molecular dynamics computer simulations. In
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
this table, LJn is a cluster consisting of n atoms with the
Lennard-Jones interaction potential, D is the depth of
the potential well, Tm is the melting point, ∆E is the
phase transition energy for an isolated cluster at the
melting point, Tsol and Tliq are the effective (kinetic-
energy-based) temperatures of the solid and liquid
states for an isolated cluster at the melting point, and
∆S0 and ∆Sm are the respective entropy jumps for the
phase transition at zero temperature and the melting
point. In determining the difference Tsol–Tliq , we
assume the heat capacity for each aggregate state to be
given by the Dulong–Petit law.

In the table, we also include the parameters of bulk
inert gases consisting of n atoms, which were found
[15–17, 19] on the basis of measured parameters of
condensed inert gases and are averaged over classical
inert gases (Ne, Ar, Kr, Xe). Then the reduced entropy
jump in inert gases near the triple point is

[18, 43, 62]. Considering the entropy jump at zero tem-
perature as a result of vacancy formation in a solid, we
then obtain

(33)

where n is the number of atoms in the system, v  is the

number of vacancies, and  is the number of ways
to remove v  atoms from the initial lattice containing
n + v  atoms. For condensed inert gases [15–17, 19], we
have

which gives

as included in the table.
It follows from the data in the table that in all the

cases under consideration, the atomic thermal motion
makes a very large contribution to the entropy jump at

∆Sm/n 1.68 0.03±=

∆S0 Cn v+
vln n

n v+
n

-------------ln v
n v+

v
-------------,ln+= =

Cn v+
v

n/v 3.12 0.01,±=

∆S0/n 0.73=

Parameters of melting for atomic clusters and macroscopic
inert gases

LJ13 LJ55 bulk inert gases

Tm/D 0.29 0.31 0.58

∆E/D 2.5 16 ± 1 0.98n

(Tsol – Tliq)/Tm 0.22 0.31 ± 0.02 0.56

∆S0 5.2 31 ± 2 0.73n

∆Sm 8.6 48 ± 4 1.68n

∆S0/∆Sm, % 60 65 ± 10 44
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the melting point. This effect is very important because
it holds down the temperature of the phase transition or
even makes it possible at all, in principle. In addition,
the thermal contribution to the entropy jump can solve
the paradox of the phase transition, which we now con-
sider. In practice, it is convenient to use the Lindemann
criterion [29, 30] for the melting point of an ensemble
of bound atoms. According to this criterion, melting
starts if the ratio of the amplitude of atom oscillations
to the distance between nearest neighbors reaches a
value in the range 0.10–0.15. With computer modeling
of clusters, more precise criteria of the phase transition
were introduced, using the correlations in positions of
two cluster atoms. In particular, this correlation func-
tion can use the Etters–Kaelberer parameter [31–33] or
the Berry parameter [12, 34]. These parameters are pro-
portional to the mean fluctuation of the distance
between two atoms, which, similarly to the Lindemann
index, falls into different ranges for the solid and liquid
states; this difference allows us to distinguish a cluster’s
state. These parameters are connected with thermal
motion of atoms, while the melting, i.e., the lability of
the liquid, results from configurational excitation of an
ensemble of bound atoms.

One can see an apparent contradiction between the
nature of the phase transition that we attribute to con-
figurational excitation and the practical criterion signi-
fying this transition, which is based on thermal motion
of atoms. This contradiction disappears when we account
for the influence of thermal excitation on the entropy of
this transition in accordance with formula (21). The sec-
ond part of this formula accounts for the apparent par-
adox of the thermal motion in the entropy jump, and
hence, if we understand the origin of the paradox, the
amplitude-based criteria of the phase transition become
natural. The nature of this term results from the lower
density of atoms in the liquid state and from the associ-
ated larger entropy of the atomic vibrations. Naturally,
the entropy jump due to vibrations of atoms increases
with increasing the temperature. Thus, although the
method of calculation separates configurational excita-
tion from the thermal motion of the bound atoms, the
latter gives a contribution to the entropy change of the
transition.

We conclude that because thermal motion of atoms
gives a significant contribution to the entropy jump, this
effect improves conditions of the phase transition or
can even be a required condition for the phase transi-
tion. When we consider a bulk system of bound atoms,
we base our argument on the model in which the liquid
state is formed from the solid state by removal of inter-
nal atoms. Then the system relaxes to the liquid state by
shrinking, such that vacancies of the crystal lattice are
transformed into voids. The entropy of this configura-
tional excitation follows from this intermediate state
with vacancies, and the void concept [14] describes the
phase transition. Using the void concept for the analysis
of the phase transitions allows one to understand its
nature more deeply.
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6. CONCLUSIONS

The void concept for configurational excitation of
ensembles of bound atoms is the basis for their analy-
sis. This concept follows from a general approach of
local minima of the potential energy surface for an
ensemble of interacting atoms [20]; a simplified version
of this approach allows us to analyze the results of clus-
ter computer simulations by molecular dynamics. On
the basis of this analysis, we can understand some
aspects of the behavior of ensembles of bound atoms at
the phase transition in detail. In particular, there is a dif-
ference in the transition parameters for an isolated clus-
ter at constant energy and a similar cluster in a thermo-
stat. The entropy jump of the phase transition includes
two contributions, both of which are important: the
thermal, vibrational motion of atoms (because the solid
state is characterized by a more compact distribution
and correspondingly by a lower entropy than the liquid
aggregate state at this temperature) and the configura-
tional excitation that introduces the voids, providing the
basis of the fluidity of the liquid. The thermal effect in
the entropy jump at the phase transition provides the
validity of melting criteria based on thermal motion of
atoms, whereas the “nature” of the phase transition
consists in the configurational excitation.

The void concept for configurational excitation of
ensembles of bound atoms, interpreted with the help of
the results of computer simulations and thermo-
dynamic parameters of condensed inert gases, gives a
deepened understanding of the phase transition in these
ensembles.
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Abstract—The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of
Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and mag-
netic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both
the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance ∆ρ,
which is strongly anisotropic to the magnetic field orientation (H || a and H || c), with the easy magnetization
direction along the c axis and a weak dependence on the probing current direction in the low-temperature
region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can
be described within the framework of a theoretical model with two conductivity channels. The first channel cor-
responds to the charge carriers with increased effective masses (~10me, where me is the electron mass) and pre-
dominantly electron–electron scattering, which leads to the quadratic temperature dependences of ρa and ρc .
The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scatter-
ing at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝  1/T type. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION
The proper understanding of the mechanism of

high-temperature superconductivity in cuprates
requires a theory adequately describing their proper-
ties, primarily in the normal (metallic) state. The elec-
tron transport in cuprate high-temperature supercon-
ductors (HTSCs) exhibits a number of anomalous fea-
tures not inherent in usual metals. This circumstance
hinders description of the properties of such HTSCs
within the framework of a usual model of the Fermi liq-
uid. While the temperature dependence of the in-plane
electric resistivity in HTSCs has a “metallic” shape
(with dρa/dT > 0), the behavior of the out-of-plane
component (in c axis direction) is more like that in
semiconductors (with dρc/dT < 0) [1, 2]. In addition, ρa

exhibits a weaker (approximately linear) dependence
on the temperature as compared to behavior of the
ρa(T) ∝  T2 type expected for compounds with strong
electron correlations. Other unexpected features are
(i) a strong temperature dependence of the Hall coeffi-
cient [3] and (ii) the negative values of magnetoresis-
tance (∆ρ < 0) at T > TC [4, 5].

In order to develop a theory adequately describing
the properties of HTSC compounds in the normal state,
it is necessary to base the analysis on reliable experi-
mental data on the galvanomagnetic properties in the
low-temperature limit (T  0), which would provide
reliable information on the features of electron states
near the Fermi level. However, rather high values of the
1063-7761/05/10006- $26.001142
superconducting transition temperature (TC ~ 100 K)
and the second (upper) critical field (HC2 ~ 100 T) make
such experiments very difficult. The “anomalous” prop-
erties of HTSCs are by no means unique, since similar
features in the transport properties were observed in
many other systems with strong electron correlations
such as compounds with heavy fermions [6] or
Sr2RuO4 [7, 8]. However, the mechanisms underlying
this behavior may be different. In particular, a nonme-
tallic behavior of the electric resistivity along the c axis
in HTSC-like compounds is usually related to the hop-
ping mechanism of conductivity [9], which seems to be
quite well justified for these virtually quasi-two-dimen-
sional systems. In contrast, such a behavior in almost
isotropic systems with heavy fermions is attributed to a
magnetic scattering of the Kondo type [6].

The systems with strong electron correlations are
extremely sensitive to isovalent doping, as well as to
other kinds of atomic disorder, which makes it possible
to use the methods of disordering for studying the fea-
tures of electron spectrum near the Fermi level. In con-
trast to the case of usual metals, the atomic disorder in
HTSCs induced, in particular, by fast neutron bombard-
ment, leads to a cardinal rearrangement of the electron
spectrum and results in electronic phase transitions of
the metal–dielectric type [10, 11]. For example, a
“semiconductor” character of the in-plane conductiv-
ity arises when the sample is still in superconducting
state [12]. It should be noted that radiation-induced dis-
 © 2005 Pleiades Publishing, Inc.
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order was used [10–12] as a means of directional mod-
ification of the electron properties in order to reveal
“anomalous” features of electron transport in the initial
ordered state. Obvious advantages of this method are
the homogeneous distribution of defects over the sam-
ple volume at an unchanged stoichiometric composi-
tion. The radiation-induced disorder is reversible: the
resulting nonequilibrium disordered state can be grad-
ually shifted toward a higher order by means of sequen-
tial high-temperature anneals until compete restoration
of the initial (ordered) state [13].

Strontium ruthenium oxide Sr2RuO4 is frequently
considered as an electronic analog of HTSC com-
pounds. According to published data, high quality of
Sr2RuO4 single crystals and low values of their super-
conducting transition temperature (TC < 2 K) and the
upper critical field (HC2 < 0.1 T) made it possible to
determine the main band structure parameters and the
Fermi surface topology of this compound using power-
ful experimental methods such as the de Haas–Van
Alphen effect [14, 15], cyclotron resonance [16], angu-
lar-resolved photoemission [17], and some other [18–23]
and numerical band-structure calculations [24], so that
now these properties are much more reliably estab-
lished for Sr2RuO4 than for any HTSC compound. The
Fermi surface of Sr2RuO4 consists of one hole cylinder
(α sheet) and two electron cylinders (β and γ sheets)
with the corresponding wavevectors kF = 0.3, 0.62, and
0.75 Å–1 and effective electron masses 3.4, 6.6, and
12.0 (in me units), respectively. The main contribution
to the conductivity and the Hall effect is due to the γ
surface corresponding to heavier electrons [14].

In the initial ordered Sr2RuO4, the behavior of ρa(T)
and ρc(T) at low temperatures (T < 30 K) is described
by a function of the ρ ∝  T2 type, which is quite natural
for the Fermi liquid. In the region of higher tempera-
tures (T > 100 K), the behavior of the conductivity qual-
itatively changes: ρa(T) grows slower than in the low-
temperature region and can be described, as demon-
strated by Mackenzie et al. [25], by the sum of the qua-
dratic and linear terms; ρc(T) passes through a maxi-
mum at T ~ 100 K and then decreases (dρc/dT < 0) in
the interval of temperatures up to ~600 K [26]. It was
shown [27] that the out-of-plane conductivity can be
also described in a broad temperature range by a sum of
two terms, one of which is proportional to the in-plane
conductivity (ρa)–1 and the other is proportional to the
temperature. Because of this qualitatively different
behavior of ρa(T) and ρc(T), the anisotropy of the elec-
tric resistivity defined as the ratio ρc/ρa decreases from
about 2000 (at low temperatures) to ~20 at T ≈ 1300 K
[27]. The Hall coefficient RH strongly depends on the
temperature and is negative at T < 30 K, positive at
30 K < T < 130 K, and negative again at T > 130 K [25,
28]. The magnetoresistance of Sr2RuO4 exhibits rather
involved field and temperature dependences, changing
sign from positive (at low T) to negative (at T ≈ 80 K);
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in addition, the negative magnetoresistance signifi-
cantly increases in magnitude for the field H oriented
along the c axis [27, 28].

This behavior of galvanomagnetic properties in
Sr2RuO4, as well as in other HTSC-like compounds is
frequently referred to as the transition from a coherent
mechanism of conductivity at low T to a noncoherent
mechanism at high temperatures. An analogous
approach was also used for description of the charge
transport in systems with heavy fermions (the transition
from a Kondo-lattice at low T to a disordered Kondo
system at high temperatures). In the case of strongly
anisotropic HTSC-like compounds, this implies that
the character of the out-of-plane transport changes
from strongly anisotropic metallic to hopping (related
to single-particle tunneling induced by magnons or
other appropriate quasi-particles. Recently, Minakata
and Maeno [29] studied the effect of replacement of
ruthenium ions by isovalent nonmagnetic titanium ions
(with respect to the influence on the electron properties,
this kind of doping is closest to the radiation-induced
disorder used in our study). It was demonstrated that an
increase in the content of titanium in Sr2RuO1 – xTixO4
not only results in a gradual decrease in the crossover
temperature separating the regions with dρc/dT > 0 and
dρc/dT < 0 (until complete vanishing of the crossover at
x ≈ 0.05), but also leads to the appearance of a low-tem-
perature region where dρa/dT < 0 in combination with
a quite “metallic” resistivity ρa < 100 µΩ cm. Evi-
dently, this behavior cannot be interpreted as a kind of
noncoherent (hopping) conductivity, at least to a homo-
geneous electronic system. Thus, the electron transport
in Sr2RuO4, as well in other HTSC-like compounds, is
still not given an adequate description.

2. EXPERIMENT
We have studied the temperature dependence of the

electric resistivity of Sr2RuO4 single crystals in mag-
netic fields up to 13.6 T. The measurements were per-
formed on the crystals irradiated by fast neutrons and
then subjected to isochronous (20 min) anneals in air at
temperatures Tann in the range from 100 to 1000°C. The
Sr2RuO4 single crystals were obtained by RF crucible-
less zone melting technique in air, proceeding from
cylindrical ceramic samples prepared by means of a
conventional solid-state reaction. The experiments
were performed on crystals with mirror-smooth sur-
faces and typical dimensions 1.5 × 0.5 mm2 (in plane)
at a thickness of 50–100 µm. The samples were irradi-
ated by fast neutrons to a total fluence of Φ = (0.5, 1.0,
1.5, 3, and 5) × 1019 cm–2 (two samples for each dose)
in a nuclear reactor of the IVV-2M type (the sample
temperature during exposure did not exceed 50°C).

The resistivity components ρa and ρc were deter-
mined by the standard four-point-probe Montgomery
technique [30] in a temperature range from 1.7 to
380 K. The longitudinal and transverse magnetoresis-
SICS      Vol. 100      No. 6      2005
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Fig. 1. The temperature dependences of the (a) in-plane (ρa) and (b) out-of-plane (ρc) resistivities for (1) the initial (unirradiated)

Sr2RuO4 crystal and (2–4) the samples irradiated with fast neutrons to various fluences Φ = (1.5, 3, and 5) × 1019 cm–2, respectively.
The inset shows plots of the anisotropy ρa/ρc versus temperature. Points represent experimental data, curves show the results of
fitting using formulas (3).

(a) (b)
tance components were measured at T = 4.2 K in mag-
netic fields up to 13.6 T (with changing directions of the
probing current and magnetic field H and switching
between the current and potential leads). The results of
measurements for each pair of samples irradiated to the
same fluence were virtually coinciding. The Montgom-
ery technique gives good results only for the optimum
ratio da/dc ≈ (ρc/ρa)1/2 of the distances da and dc between
electrodes in the a and c directions [30]. A significant
variation of the ρc/ρa ratio as a result of the temperature
variation and/or the radiation-induced disordering led
to a significant decrease in the accuracy of measure-
ments at lower (higher) temperatures, where the da/dc

ratio was above (below) the optimum value. For this
reason, below we will analyze in detail the results
obtained predominantly for a sample with nearly opti-
mum dimensions (da = 1.85 mm, dc = 0.10 mm) irradi-
JOURNAL OF EXPERIMENTAL A
ated to a total fluence of Φ = 3 × 1019 cm–2. For this
sample, the error of measurement of the absolute values
of ρa and ρc (determined predominantly by uncertainty
of the sample dimensions) was on the order of 10%.
The reproducibility of ρa and ρc measurements was
within 0.05–0.2%.

3. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependences of the
in-plane (ρa) and out-of-plane (ρc) resistivities for the
initial Sr2RuO4 crystals and the samples irradiated with
fast neutrons to Φ = (1.5, 3, and 5) × 1019 cm–2. As can
be seen, the radiation-induced disorder leads to a qual-
itative change in the behavior of both ρa(T) and ρc(T) in
the region of low temperatures (T < 30 K). Indeed, even
upon irradiation to Φ = 1.5 × 1019 cm–2, this initial part
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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Fig. 2. The temperature dependences of (a) ρa and (b) ρc for an Sr2RuO4 crystal (1) in the initial (unirradiated) state, (2) upon irra-

diation with fast neutrons to a fluence of Φ = 3 × 1019 cm–2, and (3–10) after subsequent annealing at 300, 400, 500, 600, 700, 800,
900, and 1000°C, respectively. Points represent experimental data, curves show the results of fitting using formulas (3).

(a) (b)
of the curves acquires negative slope (dρ/dT < 0), the
magnitude of which rapidly increases with growing dis-
order. In the region of high temperatures (T > 100 K),
changes in the behavior of ρa(T) and ρc(T) are not very
significant: as the degree of disorder grows, dρa/dT
slightly increases, while dρc/dT changes from a small
negative to small positive value. The temperature
dependence of the anisotropy (ρa/ρc) also exhibits sig-
nificant changes (see the inset in Fig. 1): from almost
quadratic dependence for the initial unirradiated) sam-
ple to approximately linear dependence for the crystals
irradiated to the maximum fluence. These dependences
are qualitatively very much like the data reported
in [29] for titanium-doped Sr2Ru1 – xTixO4, but the neu-
tron irradiation to Φ = 5 × 1019 cm–2 produces much
more pronounced changes in ρa(T) and ρc(T) than those
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
observed in [29] for a maximum titanium content of
x = 0.09.

Annealing of the samples irradiated to Φ = 3 ×
1019 cm–2 (Fig. 2) at Tann = 1000°C leads to virtually
complete restoration of the initial ρa(T) curve. At the
same time, the ρc(T) curves are restored incompletely:
while the low-temperature parts of these dependences
show a clear tendency to restoration (residual resistivity
decreases and the negative slope disappears), the initial
high-temperature parts are not restored upon annealing
(the slope dρc/dT remains positive and even slightly
increases after the treatment at Tann = 800–1000°C).

Figure 3 shows the relative magnetoresistance ∆ρ/ρ
measured at T = 4.2 K for the probing current directions
in plane (∆ρa/ρa) and along the c axis (∆ρc/ρc). The
measurements were performed for the initial Sr2RuO4
crystals and the samples bombarded with fast neutrons
SICS      Vol. 100      No. 6      2005
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to various degrees of disorder. The residual resistivity
ρa0 (which can be considered as a measure of the crystal
disorder) varied within broad limits (50–220 µΩ cm).
In the initial crystal, all components of the magnetore-
sistance are positive, in agreement with behavior typi-
cal of the usual metals [4, 5, 26]. In disordered samples
studied for the field orientation H || c, the ∆ρa/ρa and
∆ρc/ρc values are negative in the entire interval of
applied fields H and are practically independent of the
probing current direction. For H || a, the magnetoresis-
tance components are much smaller (in absolute value)
than those for H || c, negative for H > 2–3 T, and also
practically independent of the probing current direc-
tion. For both H || a and H || c orientations, the ∆ρa/ρa
JOURNAL OF EXPERIMENTAL A
and ∆ρc/ρc values remain virtually unchanged when the
temperature is decreased from 4.2 to 1.5 K.

Figure 4 shows a change in the behavior of ∆ρc/ρc in
the course of annealing of a sample irradiated to a flu-
ence of Φ = 3 × 1019 cm–2. After the annealing at Tann =
300–800°C (whereby the residual resistivity ρa0

decreases from 220 to 25 µΩ cm), the ∆ρc/ρc value
remains almost constant for both H || a and H || c. Only
the annealing at Tann = 900°C (after which ρa0 ≈ 20 µΩ
cm) leads to the appearance of a significant positive
increment in the region of high fields (H > 6 T). Not that
the initial behavior (as well as that of ρc(T), see Fig. 2)
is not restored as a result of annealing. Thus, all com-
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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ponents of the magnetoresistance—both ∆ρc/ρc and
∆ρa/ρa (not shown in Fig. 4)—are negative at T = 4.2 for
ρa0 > 20 µΩ cm.

4. DISCUSSION OF RESULTS

In order to analyze the temperature dependences of
ρa and ρc in (Figs. 1 and 2), let us consider the behavior
of derivatives dρa/dT and dρc/dT (Fig. 5). In the range
T > 150 K, the former derivative can be represented as
the sum of a linear function of temperature and a con-
stant, so that ρa(T) = a0 + a1T + a2T2. Here, the constant
term a0 rapidly grows with increasing disorder, a1
rather weakly varies for ρa0 = 0.3–0.5 (µΩ cm)/K, and
the coefficient a2 slowly increases from about 0.5 to
1 (nΩ cm)/K2. By the same token, the behavior of ρc(T)
in this temperature range can be described as ρc(T) =
c0 + c1T + c2T2, where the constant term c0 rapidly
increases with growing disorder, while the coefficients
c1 and c2 virtually remain constant. It should be noted
that the values of c1 and c2 are much smaller than a1 and
a2 (c1 ≈ 0; c2 ≈ 0.02 (µΩ cm)/K2). In the temperature
interval T < 30, the behavior of dρa/dT and dρc/dT can
also be roughly described as the sum of a constant and
linear terms. However, the linear term in this case is
much greater than that in the high-temperature, while
the constant term decreases from zero for the initial
sample to a large negative value for the irradiated crys-
tal. In the intermediate temperature region (30 K < T <
150 K), there is a more (for dρc/dT) or less (for dρa/dT)
pronounced maximum in the temperature dependences
of these derivatives.

In order to describe the obtained experimental data,
let us represent the conductivity 1/ρi(T) as the sum of
contributions due to two channels denoted by I and II,
corresponding to heavy and light charge carriers,
respectively:

. (1)

We assume that ρiI(T) ! ρiII(T) at low temperatures and
ρiI(T) @ ρiII(T) at high temperatures. This implies that
ρiI(T) and ρiII(T) exhibit qualitatively different temper-
ature dependences of the “metallic” and “semiconduc-
tor” types, as it was suggested, for example, in [27].

For the conductivity channel I, let us write an
expression for the resistivity in the form expected for a
metal with strong electron correlations:

(2)

As was noted above, the second channel cannot be
related to a conductivity of the hopping type. We
believe that most consistent explanation of the observed

1
ρi T( )
------------- 1

ρiI T( )
--------------

1
ρiII T( )
----------------, i+ a c,= =

ρiI T( ) Ai0
I Ai2

I T2.+=
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behavior (increase in the resistivity with decreasing
temperature) can be given in terms of strong magnetic
scattering of the charge carriers. In this case, a natural
explanation is provided both for the sign (negative) of
all magnetoresistance components ∆ρ/ρ and for their
strong (three- to fivefold) difference in various crystal-
lographic directions. According to [29], the magnetic
susceptibility of Sr2Ru1 – xTixO4 contains a contribution
of the Curie–Weiss type increasing with x, which
exhibits a strong (fivefold) anisotropy with respect to
the magnetic field orientation (H || a against H || c).
Therefore, the appearance of negative anisotropic mag-
netoresistance in radiation-disordered Sr2RuO4 crystals
is quite natural. It should be noted that the magnetore-
sistance also contains, besides the negative magnetic
contribution, the usual positive contribution related to
deviation of the electron trajectories in the applied
magnetic field. The latter component should predomi-
nate in ordered systems at low temperatures, but it rap-
idly decreases both with growing disorder (i.e., increas-
ing ρ0) and with increasing temperature. The change in
the sign of ∆ρ/ρ at T = 4.2 K in radiation-disordered
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Fig. 4. The relative magnetoresistance ∆ρc/ρc of an
Sr2RuO4 crystal measured at T = 4.2 K for the magnetic
field orientations (a) H || c and (b) H || a upon irradiation
with fast neutrons to a fluence of Φ = 3 × 1019 cm–2 and
post-annealing at 300 (o), 700 (h), 800 (n), and 900°C (,).
Curves connect the points corresponding to the same
treatment.
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samples is observed (Fig. 3) for ρ0 ≈ 15–20 µΩ cm,
while in the ordered crystals it takes place at T ~ 80 K
(ρ80 ≈ 15 µΩ cm) [27].

One possible mechanism of magnetic scattering is
offered by the Kondo effect, known to contribute with
an additional logarithmic term ρm ~ –lnT in ρ(T). How-
ever, it was demonstrated [31] that the logarithmic form
of magnetic scattering is valid only for dilute systems,
whereas more concentrated ones are characterized by
an approximately linear additional low-temperature
term ρm ~ –T, which was repeatedly observed in disor-
dered systems (such as (La–Ce)Cu2Si2) with heavy fer-
mions [32]. Our system (see Fig. 1) exhibits a clearly
pronounced linear temperature dependence of both
ρa(T) and ρc(T). In a broad temperature range, a more
realistic form of the magnetic contribution can be pro-
JOURNAL OF EXPERIMENTAL A
vided by ρm ~ 1/(T + T0), which correctly described
both the low-temperature (linear) behavior and the
damping at higher temperatures. Any other interpola-
tion with analogous behavior in the low- and high-tem-
perature limits can be used as well.

By analogy with [27], let us attribute the magnetic
scattering (for the probing current and magnetic field
parallel to the axis c) entirely to channel II (it should be
noted that the negative magnetoresistance was related
in [27] to the Zeeman splitting of localized levels
involved in the noncoherent hopping process, rather
than to the magnetic scattering). We shall also take into
account that, according to the observed behavior of
dρa/dT (Fig. 5), the theoretical function ρa(T) at high
temperatures must include a linear term in addition to
the quadratic term.
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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The final expression, which was used for the
description of experimental data (solid curves in Figs. 1
and 2), is as follows:

(3)

As can be seen from Figs. 1 and 2, using these formulas

and varying the fitting parameters , , , ,

, Bim , and Ti0, it is possible to describe the experi-
mental curves of ρa(T) and ρc(T) with high precision for
the samples disordered by irradiation to various
degrees. The fitting parameters exhibit monotonic vari-
ation with the degree of disorder.

Figure 6 shows the plots of ρaI(T), ρcI(T), ρaII(T), and
ρcII(T) functions obtained by subtracting conductivities
calculated for each of the two channels from the exper-
imental 1/ρa(T) and 1/ρc(T) curves. For example,

Figure 7 presents the magnetic contributions ρam

and ρcm in conductivity channel II for a sample irradi-
ated to a fluence of 3 × 1019 cm–2. These functions were
calculated (similarly to those in Fig. 6) as

where ρi(T) are the experimental temperature depen-

dences, and , , , , and  are fitting
parameters. As can be seen, the magnetic contributions
are described with good accuracy in a broad tempera-
ture range from 1.7 to 380 K by functions of the type
ρim(T) ∝  T–1.

For the first channel (see Figs. 6a and 6b plotted on
a double logarithmic scale), the quadratic dependence
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ρiI(T) =  + T2 well fits to the experimental data
in the entire temperature range, and even for the highly
disordered samples at high temperatures, where the rel-
ative contribution of 1/ρiI(T) to the total conductivity is
as small as 5–10%. The coefficient at the quadratic term
(which is related to the electron–electron scattering) is

 ≈ 10–15 (µΩ cm)/K2 and weakly changes with

increasing disorder. The residual resistivity 
increases from about 8 mΩ cm for the initial crystal to
100 mΩ cm for the irradiated samples. The coefficient

 increases from about 5 (nΩ cm)/K2 for the initial
crystal to 25 (nΩ cm)/K2 for the disordered samples.

The residual resistivity  increases from about
4 µΩ cm for the initial crystal to 230 µΩ cm for the
irradiated samples. Since channel I gives the main con-
tribution to the total conductivity al low temperatures,

it is the stronger growth in  and  in comparison

to  and  upon the radiation-induced disordering
that predominantly accounts for the increase in the low-
temperature anisotropy ρa/ρc (see the inset in Fig. 1).

The observed variation of the parameters  and 
for the first conductivity channel in the samples with
growing disorder can be interpreted in terms of an
increase in the effective electron mass for the in-plane
transport (ma), at a relatively weak variation of the
effective electron mass along the c axis (mc).

The curves of ρaII(T) and ρcII(T) for the second con-
ductivity channel are presented in Figs. 6c and 6d (on a

linear scale). As can be seen, the parameters Bim , ,

, and  show relatively small variations depend-
ing on the degree of disorder, in agreement with the
observed high-temperature behavior of the derivatives
dρa/dT and dρc/dT (Fig. 5). The main difference
between the transport along the c axis and the in-plane
transport in channel II is the relatively small value of

. For this reason, the /  ratio is greater by
approximately two orders of magnitude than the

/  ratio. As a result, the region of the negative
slope of dρc/dT extends to lower temperatures. As can
be seen from Fig. 5, only ρcII(T) for the initial sample
deviates from the general trend in variation of the tem-
perature dependence of resistivity, which is related for

the most part to smallness of the fitting parameter 
in comparison to the corresponding values for irradi-
ated and annealed samples.

The physical meaning of the terms T and T2

in the second conductivity channel is not as clear. For
the in-plane transport, the  value is probably related
to the process of electron–electron scattering involving
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charge carriers with relatively small effective mass ma in

accordance with the empirical relation  ∝   [33].

However, the presence of the linear term T can be
interpreted differently. Of course, this term could be

Aa2
II ma

2

Ai1
II
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related to the electron–phonon scattering (which is lin-
ear at high temperatures), but this type of scattering was
rarely observed in systems with strong electron correla-
tions. In HTSC-like systems, the linear variation of
ρa(T) observed in a broad temperature range (e.g., from
AND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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30 to 1300 K for (La–Sr)2CuO4) is interpreted as “non-
Fermi” behavior of elementary excitations with allow-
ance for the fact that the temperature dependence of the
electric resistance is closer to linear than to quadratic
(expected for the Fermi liquids). Similar behavior was
also observed in many other systems with heavy fermi-
ons, for example, in CeNi2Ge2 [34] and Sr3Ru2O7 (a
double-layer analog of Sr2RuO4) [35].

Even more ambiguous is the physical meaning of

the parameters  and . Although the effective
mass along the c axis may, in principle, differ for vari-
ous parts of the Fermi surface determining the transport
properties for the first and second conductivity chan-

nels, the nonsystematic behavior of  upon the neu-
tron irradiation and subsequent annealing (irreversibil-
ity) casts some doubt upon the possibility that the term

T2 describes the electron–electron scattering. It
should be noted that a positive slope of ρc(T) (or
dρc/dT > 0) at high temperatures was also observed in
less perfect crystals grown by zone melting under non-
optimum conditions or from a solution melt [36].
Therefore, it is possible that the irreversibility of
changes in ρc(T) observed in annealed samples is either
related to some large-scale (nonpoint) defects formed
in the course of high-temperature annealing as a result
of the recombination of radiation defects, or this revers-
ibility is caused by oxygen diffusion at temperatures
above 800°C. Although the samples were annealed in
air in a regime identical to the conditions of synthesis,
the parameters of cooling and, hence, the crystal sto-
ichiometry could hardly be the same for the synthesized
and annealed samples.

The main result of the above analysis is that a chan-
nel of conductivity in which dρ/dT < 0 not only for the
charge transport along the c axis, but for the in-plane
charge transfer as well, is present already in the initial
(ordered) crystals of Sr2RuO4 rather than appears only
upon irradiation or doping [29]. Thus, the compound
studied features no electronic phase transitions: radia-
tion-induced disorder on the atomic scale (as well as
doping) accompanied by an increase in the residual

resistivity ( ) only leads to a gradual decrease in the
relative contribution of the first channel to the total con-
ductivity. As a result, a region of negative slope in ρ(T)
(or dρ/dT < 0) unavoidably appears. It should be noted
that only the first channel may contribute, for example,
to the de Haas–Van Alphen effect in the initial sample.
In contrast, the second channel characterized by strong
magnetic scattering (and, accordingly, small mean free
path of charge carriers) at low temperatures cannot be
studied using experimental methods employing the
phenomenon of quantum oscillations.

Using the proposed model based on the concept of
two conductivity channels with sharply different tem-
perature dependences of the resistivity, it is possible to

Ac1
II Ac2

II

Ac2
II

Ac2
II

Ai0
I
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describe the behavior of ρa(T) and ρc(T) for the initial
ordered sample at elevated temperatures (T = 400–
1300 K). In particular, calculations using formulas (3)
at T = 1000 K yield the resistivity components ρa ≈
850 µΩ cm and ρc ≈ 30 mΩ cm, which agree well with
the experimentally observed values of about 900 µΩ cm
and 27 mΩ cm, respectively [26]. It should be noted
that relations (3) offer only one variant of the descrip-
tion of experimental curves (Figs. 1 and 2) in terms of
the two conductivity channels (bands). The expression
for ρiII(T) appears formally as an expansion in powers
of T (for Ti0 ~ 0). However, the terms dominating at low

and high temperatures are Bim/(T + Ti0) and T2,
respectively, while the contributions of two other terms
are not as significant. Apparently, formulas (3) offer the
best variant for the description of experimental data
within the framework of the model with two conductivity
channels for a reasonable number of fitting parameters.

We showed that radiation-induced disorder in
Sr2RuO4 single crystals under fast neutron bombard-
ment leads to the appearance of negative temperature

Ai2
II

101 102 103

T, K

10–1

1
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102

103

ρm, mΩ cm

Fig. 7. The temperature dependence of magnetic contributions
ρm via the second conductivity channel for the probing current
directions (1) in plane and (2) along the c axis for an Sr2RuO4

crystal irradiated to a fluence of 3 × 1019 cm–2. Curves con-
nect the points corresponding to the same treatment.

2

1

SICS      Vol. 100      No. 6      2005



1152 KARKIN et al.
coefficients (dρa/dT < 0, dρc/dT < 0) and negative mag-
netoresistances (∆ρa < 0, ∆ρc < 0) at low temperatures.
The magnetoresistance weakly depends on the probing
current direction (dρa/dH ≈ dρc/dH), but is strongly
anisotropic with respect to the magnetic field orienta-
tion (H || a against H || c).

The experimental curves of ρa(T) and ρc(T) for both
the initial (ordered) samples and those radiation-disor-
dered to various degrees of disorder can be described
within the framework of a theoretical model with two
channels of conductivity, which are characterized by
strongly different temperature dependences of the
resistivity. The first channel, in which dρ/dT < 0 not
only for the charge transport along the c axis but for the
in-plane charge transfer as well, is present already in
the initially ordered Sr2RuO4 crystals. The main contri-
bution to the first channel is due to electrons (γ sheet of
the Fermi surface) featuring electron–electron and
impurity scattering, which leads to quadratic ρa(T) and
ρc(T) functions. The second conductivity channel cor-
responds to the carriers possessing lower effective
masses and featuring predominantly magnetic scatter-
ing at low temperatures, which account for the temper-
ature dependence of the ρim(T) ~ T–1 type.
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Abstract—It is shown that exposure of an additively colored CdF2:Ga crystal with bistable DX centers that is
slowly cooled to 150 K to blue-green light through a slotted mask produces a submillimeter-wave diffraction
grating, which persists for a long time at temperatures of 160–240 K. It is also shown that the diffraction grating
induced in a sample is an amplitude grating. The absorption of submillimeter waves in illuminated regions of
the sample is associated with the conductivity due to the transition of impurity centers to a metastable donor
state. In the n–i–n–i-type conducting structure obtained, the conductivity of n-type regions at 225 K amounts
to σ' ≈ 0.24 Ω–1 cm–1. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A CdF2 crystal is an ionic dielectric with a wide
band gap of about 7.8 eV; it converts into an n-type
semiconductor under doping by trivalent impurities and
subsequent annealing in alkaline metal vapor [1]. In Ga
doped CdF2 subjected to such a procedure of additive
coloring, impurity centers may be in two states, which
are characteristic of DX centers. The shallow state cor-
responds to the localization of an electron on a hydro-
gen-like orbit (Ga3+ + e). In the ground, deep state, two
electrons are localized on the impurity ion (Ga1+), and
the ion itself is displaced to the adjacent interstitial site,
thus giving rise to a local distortion of the lattice. The
corresponding potential barrier between shallow and
deep states is responsible for the metastability of the
shallow state and for the difference between the thermal
and optical ionization energies of the deep state. The
depth of the shallow impurity level is about 0.116 eV
[2], and that of the deep level is about 0.75 eV [3]; the
optical ionization energy of the deep center is about
3 eV [4].

At a temperature below T ≈ 240 K [4, 5], metastable
shallow centers that are induced by the light quanta
hν ≈ 3 eV during the reaction

(1)

may persist for a long time. This transition is accompa-
nied by a decrease in the refractive index ∆n in the fre-
quency range between the visible ultraviolet absorption
band of the deep center (λmax ≈ 400 nm) and the infrared
band of the shallow center (λmax ≈ 7 µm). Owing to the
locality and the metastability of variations in ∆n and
their dependence on the intensity of light, one can use a
CdF2:Ga crystal for recording optical holograms [6]. As

Ga1+ Ga3+ hν 2 Ga3+ e+( )+ +
1063-7761/05/10006- $26.001153
temperature increases, the photoinduced shallow cen-
ters decay according to the reverse reaction

, (2)

and the photoinduced variations in ∆n vanish.
As temperature decreases, the impurity ions gradu-

ally pass to the deep state. However, when a CdF2:Ga
crystal is cooled sufficiently rapidly to temperatures
below 240 K, part of the impurity centers remain in the
shallow state due to the potential barrier between the
shallow and deep states.

The temperature and illumination dependence of the
refractive index similar to that described above for
CdF2:Ga is also characteristic of other semiconductors
with bistable DX centers [7–10] that were used earlier
as the recording media for phase holograms in the fre-
quency range between the absorption bands of the deep
and shallow centers. Usually, interference fringes are
recorded at the intersection of two laser beams, and
these holograms represent a phase diffraction grating.
In this paper, we show that, in an additively colored
CdF2:Ga crystal with bistable DX centers, one can
obtain a photoinduced amplitude diffraction grating in
the frequency range below the absorption band of shal-
low centers.

Such a possibility arises in a temperature interval
low enough that the decay of photoinduced shallow
centers according to reaction (2) does not occur and, at
the same time, high enough that the thermal ionization
of shallow centers creates a significant concentration of
free electrons. In the case of a CdF2:Ga crystal, this
condition is fulfilled at temperatures of 150−240 K. The
local character of the conductive structure produced
and its correspondence to the profile of the illumination

2 Ga3+ e+( ) kT Ga1+ Ga3+++
 © 2005 Pleiades Publishing, Inc.
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intensity are guaranteed by the small value of electron
mobility, µ ≈ 15 cm2 V–1 s–1 in CdF2 : Ga [11] at these
temperatures, and the Coulomb attraction of an ionized
DX center. For these values of the mobility, the mean
time between electron scattering events (with the effec-
tive mass m* = 0.45me for CdF2 [11]) is

,

and the corresponding mean free path is

which is much less than the wavelength (4 × 10–5 cm)
of the illuminating light. In this case, the real part of the
Drude conductivity is

(3)

and the corresponding absorption coefficient is

(4)

τ µm*/e 4 10 15–  s×= =

l v thermτ 3kT /m*( )1/2τ= =

≈ 5 10 8–  cm, ×

σ'
σ0

1 ω2τ2+
--------------------, σ0 Neeµ,= =

α σ'
ε0cn
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Fig. 1. Temperature dependence of the submillimeter-wave
transmission of a CdF2:Ga sample before (filled squares)
and after (open squares) exposure to blue-green light (l =
2.18 mm and λ = 0.65 mm).
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and remains practically unchanged up to a frequency of

i.e., up to the mid infrared band (here, Ne is the concen-
tration of conduction electrons, e is the electron charge,
ε0 is the permittivity of vacuum, c is the velocity of
light, and n is the refractive index). As we showed
in [12], when a CdF2:Ga crystal is cooled sufficiently
slowly to T = 200 K, the concentrations of ions in the
shallow state Nsh before and after photoexposition may
differ by a factor greater than 20. Therefore, the con-
centrations of conduction electrons Ne and the absorp-
tion coefficients α in the illuminated and unilluminated
parts of the sample may also differ by a factor of more
than 20. Thus, a photoinduced amplitude diffraction
grating in CdF2:Ga must have high contrast and be reli-
ably recorded in the submillimeter-wave band.

2. DESCRIPTION OF THE EXPERIMENT

Experiments were carried out on the submillimeter-
wave spectrometer Epsilon [13]. First, we measured the
transmission coefficient Tr versus temperature of a
plane-parallel sample of CdF2:Ga of thickness l =
2.18 mm at a wavelength of λ = 0.65 mm in the dark
and after exposing it to blue-green light. To this end, we
put caps with windows of black polyethylene film on
the windows of a cryostat; this film well transmits sub-
millimeter waves and cuts off visible light. Under one
of the caps, we mounted two light-emitting diodes
(LEDs) above and below the aperture of the polyethyl-
ene window to illuminate the sample by blue-green
light.

The temperature dependence of the transmission of
CdF2:Ga in the dark at a wavelength of λ = 0.65 mm
was recorded while the sample was cooled from room
temperature to a temperature of 150 K. First, from
300 to 263 K, the sample was cooled rapidly. In the
interval from 263 to 225 K, which included the meta-
stability temperature T ≈ 240 K, the sample was cooled
slowly at a rate of 0.3 K/min, and then, in the range of
temperatures 225–150 K, the sample was cooled at a
rate of 0.7 K/min.

At a temperature of T = 150 K, the sample was illu-
minated for 25 min by blue-green light emitted by two
LEDs; after that, the transmission of the sample with
photoinduced delayed conductivity was measured in
the dark at a wavelength of λ = 0.65 mm in the temper-
ature interval from 150 to 240 K. These measurements
were carried out while the sample was heated during
1 h and 15 min.

The measured submillimeter-wave transmission of
CdF2:Ga is shown in Fig. 1. The difference between the
transmissions of the illuminated and unilluminated

νD
1

2πτ
--------- 4 1013×  Hz,= =
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samples of CdF2:Ga attains its maximum at a tempera-
ture of about 225 K. Using the formulas

(5)

for the transmission of a sample and formula (4), we

find that, for n =  ≈ 3 [14, 15] and Tr (225 K) =
0.0009 for an illuminated sample, the delayed conduc-
tivity equals σ' (225 K) = 0.24 Ω–1 cm–1.

To carry out experiments with a diffraction grating
photoinduced in a CdF2:Ga sample, we modified the
Epsilon spectrometer to allow for the measurement of
the angular dependence of the intensity of submillime-
ter waves transmitted through a sample.

A quasi-parallel beam of radiation with a wave-
length of λ = 0.65 mm emitted by a backward wave
oscillator was focused on a sample by a teflon lens with
a focal length of F = 340 mm; the half-width of the
Gaussian intensity profile on the sample was about
9 mm. A metal diaphragm with a 8 × 8-mm square hole
was placed behind the sample so that the intensity of
the submillimeter-wave radiation on the sample was
approximately constant within the aperture of the dia-
phragm. A transparent film was sandwiched between
the sample and the diaphragm. On this film (from the
side of the sample), black parallel vertical strips 2 mm
in width were printed with a step of 4 mm by a laser
printer, so that two black and two transparent strips fall
within the 8 × 8-mm aperture. The whole structure was
placed in a cryostat with caps of black polyethylene put
on its windows. The cap with LEDs was placed on the
side where the film with black strips was attached.
When the LEDs were switched on, the regions of the
sample under transparent strips were illuminated, while
the regions under black strips were practically unillu-
minated. The sharpness of the shadows from the strips
was guaranteed by the configuration of the LEDs,
which were arranged along a vertical axis at a distance
of about 7 cm from the sample. We carried out a sepa-
rate experiment to find out that, at λ = 0.65 mm, the
transmission of the film regions under the black strips
is the same as that outside these strips; i.e., the black
strips on the film are practically transparent for submil-
limeter waves.

To measure the angular dependence of the intensity
of submillimeter waves transmitted through the sample,
we placed the receiver (a Golay cell) of the spectrome-
ter at the end of a rod that could rotate about a vertical
axis passing through the sample. A lens with the focal
length F = 120 mm was placed at the middle of the rod;
the distance between the lens and either the sample or
the receiver was about twice the focal length. Such a
configuration guaranteed a sufficiently high degree of
sensitivity and the necessary angular resolution. The
aperture of the cryostat windows was large enough to
allow for the angular measurements within ±16°. For

Tr 1 R–( )2 α l–( ), Rexp n 1–( )2

n 1+( )2
-------------------= =

ε'
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the chosen configuration of two 2-mm-wide slots with
a step of 4 mm on an opaque screen, the first-order dif-
fraction maxima for λ = 0.65 mm are located at about
±8.5° and amount to 44% of the intensity of the zeroth-
order maximum, and the second-order diffraction max-
ima amount to only 1% of the intensity of the zeroth-
order maximum. Thus, practically the whole diffracted
radiation falls within the aperture of the cryostat win-
dow.

To carry out experiments with the photoinduced dif-
fraction grating, we used the same 2.18-mm-thick
CdF2 : Ga sample and followed the same cooling
regime as in the preliminary measurements of transmis-
sion versus temperature in the dark. At a temperature of
150 K, the sample was illuminated for 25 min by blue-
green light from two LEDs. Then, we measured the
angular distribution of the intensity of submillimiter
waves (λ = 0.65 mm) transmitted through the sample at
temperatures of 161, 171, 186, 200, 225, and 240 K in
the dark. These measurements were carried out during
heating of the sample with necessary stops at each tem-
perature point and took 2.5 hours.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 2 shows the angular distribution of diffracted
radiation measured at different temperatures. Each dis-
tribution is normalized by the intensity of the zeroth-
order maximum at the relevant temperature. For the
sake of clarity, each diagram is shifted by 0.3 along the
vertical axis. The symbols represent the experimental
results with a step of 1°, and the solid curves represent
the theoretical results (see below) calculated for the
transmission in the dark and after exposure (see Fig. 1).

The lowest diagram is obtained at 150 K before
exposing the sample to blue-green light; i.e., this distri-
bution corresponds to the diffraction of radiation with
λ = 0.65 mm by a single 8-mm-wide slot in an opaque
screen. For such a configuration, the angular distribu-
tion of radiation intensity I(θ) behind the slot is given
by [16]

(6)

where a is the slot width and θ is the angle between the
direction of the incident beam and the direction to the
receiver. The solid (theoretical) curve for this case coin-
cides with the experimental data, which means, in par-
ticular, that the receiving system has a sufficiently high
angular resolution.

The angular distributions of diffracted radiation
obtained after exposing the sample to blue-green light
through the mask exhibit pronounced peaks near ±8.5°
at all temperature points, which corresponds to the first-
order diffraction maxima for the grating consisting of
two 2-mm-wide slots with a step of 4 mm in an opaque
screen. The relative intensity of these peaks increases

I θ( ) u/u2, usin
2 πa θ/λ ,sin= =
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with temperature up to T = 225 K and decreases at T =
240 K. Qualitatively, this result correlates with the
behavior of the contrast of the transmissions of the illu-
minated and unilluminated regions of a CdF2:Ga sam-
ple (see Fig. 1). At T = 225 K, the relative intensity of
the first-order maxima amounts to 23%, which is about
one half the intensity of these maxima (44%) in the case
of two 2-mm-wide slots with a step of 4 mm in an
opaque screen. Obviously, in the case of our structure,
which consists of alternating strips with transmissions
Tr1 and Tr2, where the indices 1 and 2 refer to the unil-
luminated and illuminated regions, respectively, the rel-
ative intensity of the first-order maxima must be lower
due to the additional contribution of the strips with
transmission Tr2 ≠ 0 to the diffraction pattern.

We calculated the diffraction pattern for a periodic
structure consisting of alternating strips with transmis-
sions Tr1 and Tr2 in the case when the number of strips

2.5

1.0

0.5

I/Imax

–16° –12° 0 4° 16°
θ

–8° –4° 8° 12° 20°

2.0

1.5

0

7

6

5

4

3

2

1

Fig. 2. Angular distributions of submillimeter-wave radia-
tion diffracted by a photoinduced grating in CdF2:Ga;
(1) before exposure, (2–7) after exposure at different tem-
peratures: T = (2) 161, (3) 171, (4) 186), (5) 200, (6) 225,
and (7) 240 K. Every subsequent graph is shifted by 0.3
along the vertical axis. The symbols represent experimental
results, and the solid lines represent the results of calcula-
tion by formulas (6)–(11) for the values of transmission in
the dark and after exposure, which are shown in Fig. 1 (l =
2.18 mm, a = 2 mm, d = 4 mm, N = 2, and λ = 0.65 mm).
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of the fist type, N1, is equal to the number of strips of
the second type, N2, i.e., N1 = N2 = N, in the following
manner. The diffraction by such a structure can be con-
sidered as interference between the diffraction fields
from two gratings: a grating of N slots with transmis-
sion Tr1 in an opaque screen and a grating of N slots
with transmission Tr2 in an opaque screen, the latter
grating being shifted by half the period d with respect
to the first one.

According to the Fresnel–Kirchhoff diffraction the-
ory [16], the amplitude E1 of the field from the first
grating is determined by the expressions

(7)

where b is a dimensional proportionality factor and a1
is the width of the slots of the first grating. Similarly,
the amplitude E2 of the field from the second grating is
determined by the expressions

(8)

where a2 is the width of the slots in the second grating.
The oscillation phases of the fields E1 and E2 differ by

(9)

The amplitude of the field E(θ) of the resulting diffrac-
tion pattern with regard to interference is given by

(10)

accordingly, the intensity I(θ) in the direction θ is given
by

(11)

Thus, the coefficient b cancels out in the expression for
the relative intensity.

The results of calculations by formulas (7)–(11)
using the experimental parameters a1 = a2 = 2 mm, d =
4 mm, N = 2, and λ = 0.65 mm and the measured values
Tr1 and Tr2 of transmission in the dark and after expo-
sure are shown in Fig. 2. One can see that the experi-
mental results are well described by computed curves at
temperatures 161–200 K, whereas, at temperatures T =
225 K and T = 240 K, the experimental points for the
first-order maxima lie significantly lower than the com-
puted results. Figure 3 shows the temperature depen-

E1 b
t1a1 u1 Nν( )sinsin

u1 νsin
-------------------------------------------, t1 Tr1,= =

u1 πa1 θ/λ , νsin πd θ/λ ,sin= =

E2 b
t2a2 u2 Nν( )sinsin

u2 νsin
-------------------------------------------, t2 Tr2,= =

u2 πa2 θ/λ ,sin=

ϕ 2π
λ

------d
2
--- θ.sin=

E2 θ( ) E1
2 E2

2 2E1E2 ϕ ;cos+ +=

I θ( )
I 0( )
----------

E2 θ( )
E2 0( )
--------------.=
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dence of the relative intensity of the first-order maxima
obtained in the experiment (filled squares) and calcu-
lated by formulas (7)–(11) (open squares). One can see
that, despite a certain quantitative discrepancy at tem-
peratures of 220–240 K, the experimental and theoreti-
cal functions are qualitatively identical: first, the rela-
tive intensity of the first-order maxima increases with
temperature due to the increased contrast of the grating
because of the increased density of electrons in the illu-
minated strips of the sample, and then the diffraction
maxima decrease due to the decreased population of the
metastable state and the associated drop in the electron
density. Note that the maxima of both curves occur near
the same temperature point of T ≈ 220 K. This correla-
tion between experimental results and the theoretical
calculations based on the transmission of illuminated
and unilluminated strips of the sample provide reliable
evidence for the presence of a photoinduced amplitude
diffraction grating in the sample.

In our view, the main reason for the quantitative dis-
crepancy, especially in the range from 220 to 240 K, is
the decay of the metastable state at temperatures close
to 240 K. For instance, according to [4], at T = 254 K,
the infrared absorption from the metastable level in
CdF2:Ga is halved in 600 s after exposure. Our mea-
surements show that, at T = 240 K, the submillimeter-
wave conductivity is halved in 1000 s after exposure.
Hence, at temperatures slightly below 240 K, the half-
life time may be on the order of 1 h. Our preliminary
measurements of the transmission of the CdF2:Ga sam-
ple during heating after exposure took 1 h and 15 min,
whereas the measurements of the angular distributions of
the diffraction pattern took twice as much time. Thus, in
the diffraction experiment, when approaching tempera-
tures of 225 and 240 K, a metastable state was depleted
over a longer period, the transmission Tr2 was greater,
and the contrast of the grating was weaker compared
with the preliminary measurements.

The reduced contrast of exposure due to the incom-
plete absorption of light by black strips of the mask,
scattering of light in the sample, and the fact that LEDs
are not point sources may constitute the second reason
for the above quantitative discrepancy.

In [17], the authors observed significant photoin-
duced variations in the dielectric response of CdF2:Ga
and CdF2:In crystals at a wavelength of λ = 8 mm. They
attribute these variations to the resonance absorption in
the infrared band due to the ionized donor pairs. The
variation in ε' in CdF2:Ga at T = 1.8 K was ∆ε' =
0.5 ± 0.1. If we assume that there is a similar photoin-
duced variation in ε' at λ = 0.65 mm at temperatures of
150–200 K, then this should give rise to an additional
phase shift ∆ϕ between submillimeter-wave beams
transmitted through the illuminated and unilluminated
strips of a sample of thickness l:

(12)∆ϕ 2π
λ

------l ε1' ε2'–( ),=
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where the indices “1” and “2” refer to the illuminated
and unilluminated areas and  =  + ∆ε'. When cal-
culating diffraction by a photoinduced grating, one
should add this phase shift to the argument of cosine
in (10). We performed such a calculation for the sample
temperature 161 K at which the transmission contrast
between the illuminated and unilluminated areas is
minimal (see Fig. 1) and, accordingly, the effect of the
additional phase shift is maximal. The results of calcu-
lations for l = 2.18 mm and  (161 K) ≈ 9 [14, 15] are
presented in Fig. 4 for ∆ϕ = –0.55π, which corresponds
to ∆ε' = 0.5, and for ∆ϕ = –0.056π, which corresponds
to ∆ε' = 0.05. One can see that the calculated curves are
characterized by asymmetric distribution of the inten-
sity and the shape of the diffraction maxima of orders
+1 and –1, whereas the experimental curves are sym-
metric.1 For ∆ε' = 0.5, the calculations also show a mul-
tifold increase in the amplitudes of the maxima of
orders –1 and +1 and a shift in the zeroth-order maxi-

1 A small difference between the intensities of the maxima of
orders –1 and +1 is attributed to the apparatus effect, which was
observed even before illuminating the sample (see Fig. 2).

ε2' ε1'

ε1'

0.25

0.10

0
160 180 200 220 240

T, K

230210190170

0.20

0.15

0.05

0.30

0.35

I1/I0

Fig. 3. Temperature dependence of the intensity of the dif-
fraction maxima of orders –1 and +1. Filled and open
squares represent, respectively, experimental results and the
results of calculations by formulas (7)–(11) for the values of
transmission in the dark and after exposure shown in Fig. 1.
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mum by about 1° compared with the experimental data.
Thus, our experiment shows that, at λ = 0.65 mm and
temperatures of 150–240 K, a photoinduced variation
in ε' is extremely small (∆ε' < 0.05). However, note that
the angular distributions of the diffraction pattern for
∆ε' ≈ 0 coincide with the distributions for which the
phase difference is ∆ϕ ≈ –2πk, k = 1, 2, 3, … (see for-
mula (10)). If some of these low-probability situations
happen to occur, then the corresponding ∆ε' ≈ 1.9, or
3.9, or 6.2, etc.

4. CONCLUSIONS

Thus, we have shown that the exposure of a
CdF2:Ga crystal, slowly cooled in the dark to 150 K, to
blue-green light through a slotted mask produces a sub-
millimeter-wave diffraction grating, which persists for
a long time at temperatures of 160–240 K. The agree-
ment between the experimental temperature depen-
dence of the intensities of diffraction maxima and the-
oretical calculations of the diffraction pattern based on
the temperature dependence of the transmission of illu-
minated and unilluminated strips in a sample provide
strong evidence that the diffraction grating induced by
light in the sample is an amplitude grating.

The absorption of submillimeter waves in the illu-
minated regions of the sample is attributed to the Drude
conductivity of electrons thermally activated from a
shallow level of impurity centers transferred to a meta-
stable donor state. Actually, we have obtained a photo-
induced long-term conducting n–i–n–i-type structure;
at 225 K, the n-region conductivity reaches a value of
σ' ≈ 0.24 Ω–1 cm–1. It is obvious that, using different
masks, one can obtain photoinduced long-term struc-
tures of arbitrary shape in a CdF2:Ga sample (and in

0.6

0.4

I/Imax

–16° –12° 0 4° 16°
θ

–8° –4° 8° 12° 20°

1.0

0

0.8

0.2

Fig. 4. Diffraction patterns of a photoinduced grating in
CdF2:Ga at T = 161 K. Filled circles represent the experi-
mental distributions of intensity, and the crosses and the
solid curve represent the results of calculations performed
with regard to the phase shift (formula (12)) for ∆ε' = 0.5
and 0.05, respectively.
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other materials with bistable DX centers), the width of
conducting strips being of submicron range.

At λ = 0.65 mm, there is no appreciable photoin-
duced variation in the dielectric constant ε' in CdF2:Ga
at temperatures of 150–240 K (∆ε' < 0.05) because we
did not observe the corresponding characteristic varia-
tions in the diffraction pattern in our experiments.
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Abstract—A regular procedure is proposed for finding the solution to a linearized kinetic equation for charged
particles with the Landau collision integral in a plasma with large Z. The expression for longitudinal permittiv-
ity of a collisional plasma, which is obtained using this procedure for the entire range of frequencies and wave-
numbers, as well as the collision parameter, is transformed to the known expressions in the corresponding
asymptotic limits. The nonlocal transport equations for small perturbations are also formulated for arbitrary
relations between the characteristic space and time scales of the plasma; these relations considerably extend the
limits of applicability for previously developed theories. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In spite of the fact that dielectric susceptibility of
plasma is a parameter invariably considered in all text-
books on plasma physics, a universal expression or a
simple algorithm for its derivation for collisional
plasma has not been obtained for the entire range of
wavenumbers k and frequencies ω. This is due to the
fact that even the determination of a linear response of
the plasma involves the solution of an integrodifferen-
tial kinetic equation for particles experiencing Cou-
lomb collisions. The derivation of such a solution in a
form permitting its routine use in various applications
is the main constraint in the theory of plasma response
with collisions. A natural simplification of the theory
becomes possible when the exact Landau collision inte-
gral is replaced by model expressions or when simpli-
fying assumptions concerning weak or, conversely,
strong collisions of particles may lead to a noticeable
loss in the accuracy of computations.

The most widely used expression for the permittiv-
ity of a collisional plasma can easily be derived by
using the model Bhatnagar–Gross–Krook (BGK) colli-
sion integral [1]. This approximation makes it possible
to qualitatively describe the effect of collisions on dis-
persion properties of the plasma. However, the use of
permittivity for the BGK model in a certain region of
(ω, k) leads to a significant error. Attempts to improve
such a model description by introducing the Rutherford
dependence of the effective collision frequency on the
velocity have not substantially improved the accuracy
in determining the dielectric susceptibility [2, 3]. A
noticeable improvement of the theory was obtained
when the electrostatic response of a plasma was deter-
mined using the Lorentz model with an exact (in
1063-7761/05/10006- $26.001159
parameter me/mi) Landau electron–ion collision inte-
gral [4–6]. This was manifested in a narrowing of the
(ω, k) region in which a satisfactory quantitative
description of the dielectric constant cannot be
obtained. At the same time, it will be shown below that
disregard of the electron–electron collision integral still
does not allow obtaining a quantitative description of
the dielectric properties of plasmas in the entire range
of frequencies and wavelengths.

In addition to theoretical models providing a unified
quantitative description of the dielectric susceptibility
in the entire range of (ω, k), standard approaches of per-
turbation theory give correct asymptotic concepts of
dielectric susceptibility. Such approaches include the
kinetic theory of the response of a weakly collisional
plasma [7] and hydrodynamic-type theory for colli-
sional plasma [8]. These theories naturally have strong
limitations in parameters ω/νei and kλei , where νei is the
frequency of electron–ion (e–i) collisions and λei is the
mean free path of electrons. Although the weakly colli-
sional nonlocal theory proposed in [9] expands the
region of qualitative description of permittivity, it still
fails to cover all space and time scales of perturbations.
The most direct method for calculating the dielectric
susceptibility for arbitrarily set values of (ω, k) involves
numerical solution of the Fokker–Planck kinetic equa-
tion in the Fourier representation, which is quite non-
trivial, requires practical skills in simulation and cannot
be easily parametrized. Consequently, the construction
of a theory providing a universal method for reproduc-
ing the dielectric susceptibility for the entire range of
frequencies and wavenumbers (νei , λei) and the colli-
sion parameter of a plasma is a problem important for
 © 2005 Pleiades Publishing, Inc.
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practical applications. The present study is devoted to
the solution of this problem.

The problem of dielectric susceptibility of a colli-
sional plasma is closely related to the problem of non-
local transport. Theoretical models of nonlocal trans-
port in hot plasmas have been being developed for more
than 20 years beginning from publications [10–12];
however, the improvement of these models is still not
over for the condition λei/L < 10–2, which is typical, on
the one hand, for inertial confinement fusion (ICF)
experiments and, on the other hand, in cases when the
classical strongly collisional theory of transport is inap-
plicable [13, 14]. For example, the characteristic length
L of plasma inhomogeneity in ICF experiments in the
region of laser energy absorption usually does not exceed
100 electron mean free paths. For this reason, the inter-
pretation of almost all experiments with a laser plasma
requires the application of nonlocal transport theory.

The most significant advances in the development of
nonlocal transport theory were made in the small per-
turbation model [9, 15, 16], for which analytic solu-
tions to the kinetic equation can be obtained under cer-
tain assumptions and can be used for determining elec-
tron fluxes. These theories presumed that the transport
processes are slow (quasi-stationary) so that transport
coefficients are independent of time. In such a quasi-
static approximation, the nonlocal hydrodynamic equa-
tions completely equivalent to the kinetic description of
a plasma were formulated [16]. At the same time, the
transient nature of transport processes may limit the
application of the theory to a considerable extent [17].
In the linear theory, allowance for the effects of nonsta-
tionary transport is essentially equivalent to allowance
for the ω dependence of transport coefficients, which
leads to a nontrivial frequency dependence of the
dielectric susceptibility. In [4, 18], these effects were
taken into account for weakly collisional and collision-
less plasmas. The approach developed by us here makes
it possible to analyze transport properties of plasmas
for any relations between the temporal, spatial, and col-
lisional scales of plasmas.

The models of nonlocal hydrodynamics are advan-
tageous since they simplify the description of transport
processes for practical applications. Such models were
developed starting from the beginning of the 1990s
[19–22] and were aimed at inclusion of kinetic effects
(such as Landau damping) in the comparatively simple
equations of hydrodynamics. Consequently, an analytic
description of transport coefficients using a consistent
theory (even if it is confined to a linear approximation)
would lead to further improvement of nonlocal hydro-
dynamic models.

In this study, the derivation of transport equations
for perturbations and the expressions for dielectric sus-
ceptibility is based on solving the initial value problem
for the linearized kinetic equation for plasma particles
[16]. The method for solving this equation is valid for a
plasma with a large ion charge Z @ 1 and with arbitrary
JOURNAL OF EXPERIMENTAL A
relations between the length L = k–1 of perturbation
inhomogeneity and the electron mean free path as well
as between the typical temporal scale τ = ω–1 of pertur-
bation, electron collision time, and the electron mean
free time (the time during which an electron traverses
the distance equal to the characteristic scale of inhomo-
geneity, 1/kvTe , where vTe is the thermal velocity of
electrons). Using the expansion of the distribution
function in Legendre polynomials in this approach, we
sum all angular harmonics of the electron distribution
function, which allows us to describe a continuous tran-
sition from the strongly collisional hydrodynamic limit
to the collisionless case in the transport equations and
the expression for dielectric susceptibility. The proce-
dure for solving the initial value problem for a pertur-
bation of the distribution function [16] is generalized to
the nonstationary case. The transport equations are for-
mulated in the form of relations between Fourier com-
ponents of electron fluxes and generalized hydrody-
namic forces (i.e., between the density and temperature
gradients and the electric field). As a result of the tran-
sient nature of the problem, all electron transport coef-
ficients in the (ω, k) space contain the imaginary part,
which is missing in the quasi-stationary theory [9, 15,
16]. The obtained complex longitudinal dielectric sus-
ceptibility is analyzed in the entire (ω, k) region as a
function of collision parameters of the plasma (kλei and
ωλei/vTe). The relation between the dielectric suscepti-
bility of the plasma and nonstationary nonlocal trans-
port coefficients is established.

2. KINETIC DESCRIPTION
OF POTENTIAL PERTURBATIONS

IN A COLLISIONAL PLASMA

Let us consider small potential perturbations of a
homogeneous equilibrium plasma with the Maxwell

distributions functions  (a = e, i) of electrons and
ions, which are characterized by density na and temper-
ature Ta . We assume that the ground state is quasi-sta-
tionary, allowing for only a slow variation of the parti-
cle temperature with time due to energy redistribution
between electrons and ions as a result of collisions. In
this case, the linearized kinetic equation for spatial Fou-

rier components δfa = fa –  of perturbations in the
particle distribution functions has the form

(1)

where Cab and Caa are the Landau collision integrals for
particles of the same species with a charge ea and a
mass ma .

f M
a

f M
a

∂
∂t
----- ik v⋅+ 

  δ f a

ea

ma

------E
∂ f M

a

∂v
----------+ Cab δ f a f b,[ ]=

+ Cab f a δ f b,[ ] Caa δ f a f a,[ ] Caa f a δ f a,[ ] ,+ +
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Carrying out the unilateral Fourier transformation in
time and expanding the distribution function δfa in Leg-
endre polynomials Pl(θ),

(2)

we obtain an infinitely large system of equations for the
(ω, k) Fourier components of angular harmonics of dis-

tribution functions :

(3)

Here, the collision integrals  (both for b = a and for
b ≠ a) written using the Rosenbluth potentials [8] have
the form

(4)

where νab(v) = 4πnb(eaeb)2Λab/ v 3 is the velocity-
dependent frequency of collisions of particles of spe-
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cies a with particles of species b, Λab is the Coulomb
logarithm, and

(5)

are unperturbed Rosenbluth potentials  and their

perturbations δ , which can be defined from standard
expressions [8].

Under the assumption that the initial perturbation
δfa(t = 0) of the distribution function is determined by
the perturbed Maxwell distribution (i.e., characterized
by the initial perturbations of density δna(0) and tem-
perature δTa(0) [16]),

(6)

the sources in kinetic equation (3) (right-hand sides)
appear only for the first two angular harmonics of the

distribution function (  = 0 for l ≥ 2) and are deter-
mined by the initial perturbations of the distribution
function and by the (ω, k) Fourier component of the

electric field, namely, S0 = δf(t = 0) and  =

(eaE/Ta)v .

Taking two moments in velocity of Eq. (3) with l =
0 for perturbed density δna and temperature δTa ,

(7)

(vTa =  is the thermal velocity), we obtain the
number-of-particles and energy conservation laws,

(8)

(9)

Im
0 ; δIm

n{ } 4π
nbv

m
------------ f M

b ; f n
b{ } v m 2+ v ,d

0

v

∫=

Jm
0 ; δJm

n{ } 4π
nbv

m
------------ f M

b ; f n
b{ } v m 2+ vd

v

∞

∫=

Jm
0

Jm
n

δf v t 0=,( )

=  
δna 0( )

na

----------------
δTa 0( )

Ta

----------------- v 2

2v Ta
2

----------- 3
2
---–

 
 
 

+ f M
a v( ),

Sl
a

S1
a

f M
a

δna 4π vv 2 f 0
a,d

0

∞

∫=

δTa

4πma

3na

------------- vv 2 v 2 3v Ta
2–( ) f 0

ad

0

∞

∫=

Ta/ma

∂δna

∂t
----------- iknaua+ 0,=

∂δTa

∂t
------------ ik

2
3na

-------- qa nauaTa+( )+

=  
4πma

3na

------------- vv 4Cab
0 ∂δTa

∂t
------------

ab

,≡d∫
ICS      Vol. 100      No. 6      2005



1162 BRANTOV et al.
where ua is the average velocity of particles and qa is
their heat flux:

(10)

Here and everywhere below, the thermal energy of par-
ticles is given in the normalization corresponding to the
Boltzmann constant equal to unity. The right-hand side
in Eq. (9) describes the collisional energy exchange
between the species of particles:

(11)

Accordingly, for the moment of ua , we obtain from
Eq. (3) with l = 1 the law of momentum conservation

(12)

where the contributions from collision (friction) are
described as follows:

(13)

Quantity  in expression (12) is given by expression

(14)

as the longitudinal component of the stress tensor.

Further simplification is associated with expansion
of the electron–ion and ion–electron collision integrals
in the characteristic velocity of ions and the electron
velocity in corresponding equations (3). This gives the
following expressions for these collision integrals:
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(15)

(16)

in these expressions, primed distribution functions cor-
respond to argument v '. The above collision integrals
give the conservation laws for the number of particles,
momentum, and energy. The energy exchange between
electrons and ions (cooling) in Eq. (9) for electron tem-
perature perturbations associated with collisions is
described by the expression

(17)

where  = 2νei(vTe)/(3 ). The energy balance
equation for ions contains the same contribution with
the opposite sign (heating). Accordingly, the e–i colli-
sions give a contribution to the momentum conserva-
tion law (12),

(18)

which takes into account the friction force 5ie and the

ion recoil ui.
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Since we are interested only in kinetic effects for
electrons, we seek a solution to Eq. (3) only for the
electron distribution function. Assuming that ions have
a large degree of ionization Z @ 1, we can disregard the
electron–electron (e–e) collision in the equations for
higher harmonics of the electron distribution function,

retaining only  in the equation for its symmetric
part. We also ignore the contributions on the order of
~me/mi in Cei , which are responsible for the slow energy
transfer from electrons to ions, which is significant only
over large temporal scales. This is well justified, for
example, for a laser plasma. Thus, for the electron–ion
collision integral, we will use the expression

(19)

assuming that the mean ion velocity ui appearing in Cei

is a preset quantity. An analogous system of equations

for  was considered in [16] using a reference frame
in which ions are at rest. However, in contrast to our
approach, the authors of [16] used a quasi-stationary
approximation imposing the limitation of a low rate of
transport processes. Here, this constraint does not exist.

The equations for higher (l > 1) angular harmonics
of distribution function (3) are eliminated by introduc-
ing modified collision frequency ν1 [16, 23], for which
we can write the recurrence relation [23],

(20)

this makes it possible to write the following equation
for the first angular harmonic:

(21)

Here, the symmetric part of perturbations of the elec-

tron distribution function  satisfies the kinetic equa-
tion

(22)

with the initial perturbation f e (v, t = 0) defined by rela-
tion (6).
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Following [16], we present the general solution to
Eq. (22) using the basis functions ψA,

(23)

which satisfy the kinetic equation with various sources
SA (A = N, T, R),

(24)

where SN = 1, ST = v2/3  – 1, and SR = v2νei/3 ν1.

We also introduce the moments  of basis function [16],

(25)

which are symmetric to transposition of the upper and
lower indices.

We can eliminate the initial perturbations from
Eq. (23) by calculating the first two moments of δneand
δTe (7), which leads to the following relations between
the initial perturbations (δne(0) and δTe(0)) and current
perturbations (δne and δTe):

(26)

Accordingly, having eliminated the initial perturbations
δne(0) and δTe(0) from Eq. (23), we can derive the
expression for the symmetric component of the electron

distribution function  proceeding from the lower
hydrodynamic moments

(27)
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where  =  – . The resulting expression

together with Eq. (21) for  makes it possible to for-
mulate the linear theory of electron response of plasma
and transport.

3. NONLOCAL HYDRODYNAMICS
FOR ELECTRON PERTURBATIONS

In our previous discussion, we realized the approach
that has made it possible to express the electron distri-
bution function in terms of its lower moments. This
solves the problem of closing the chain of equations for
hydrodynamic moments. The simplest closure of this
type is well known in the strongly collisional case,
where the Chapman–Enskog or Grad methods are used.
However, this imposes severe constraints on the rela-
tion between the electron mean free path λei and the
characteristic scale L of perturbation inhomogeneity in

a plasma [24], λei/L < 0.06/ . Consequently, the clas-
sical theory cannot be used for describing experiments
on the interaction of laser radiation with matter in
fusion studies, in which small-scale perturbations are of
practical interest. Considerable expansion of the range
of application of hydrodynamic equations, which are
convenient for describing plasmas, was achieved in the
framework of nonlocal hydrodynamics [16] formulated
for slow processes in the quasi-static approximation.
Here, we solve the problem of generalization of nonlo-
cal hydrodynamics to the case of rapidly varying pro-
cesses in a plasma.

A. Nonlocal Transport Equations 

The first three moments of kinetic equation (1) lead
to the equations of continuity, motion, and energy bal-
ance for electrons,

(28)

where ue is the electron drift velocity and E* is the Fou-
rier component of the effective electric field,

(29)

Following previous publications [16], we have intro-
duced the generalized friction force Rie = 5ie –

mene ui . It should be noted that the equation of
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motion for electrons (second equation) can be used for
defining the stress tensor

while the remaining two equations of system (28) are
completely equivalent to system (26).

Integrating Eqs. (10) and (21), we can represent
electric current j = ene(ui – ue) and the heat flux in the
standard form

(30)

while for the friction force we obtain

(31)

Here, we have introduced nonlocal nonstationary trans-
port coefficients in the (ω, k) space: electrical conduc-
tivity σ, thermoelectric coefficient α, thermal diffusiv-
ity χ, and ion convection transport coefficient βj, q, r:

(32)

All electric transport coefficients are complex functions
which, being presented in dimensionless form, can be

parametrized using kλei , ω/  and Z using classical
expressions. In the static limit ω = 0, nonlocal transport
coefficients (32) were analyzed in [16]. The range of
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applicability of the static transport coefficients in the

classical strongly collisional limit (kλei < 0.06/ ) in a
plasma with a high degree of ionization of ions, Z @ 1,
is determined by the smallness of frequency as com-

pared to the frequency of the e–i collisions, ω !  [8].
The coefficients themselves are in fact determined

by quantity , and the effects associated with elec-
tron–electron collision are small corrections of order
O(Z–1) [13, 14]. The applicability limits of this classical
limits are determined by the electron energy delocaliza-

tion length λe = λei [11, 12], which defines the spa-
tial scale for which the relaxation rate associated with
e–e collisions becomes equal to the rate of spatial trans-
port in kinetic equation (22). In the vicinity of this
boundary, e–e collisions begin to strongly affect the
transport coefficients, modifying the symmetric part of
the distribution function, which in turn determines the
anisotropic correction (see Eq. (21)) as well as electron
fluxes. This narrows the applicability limits for the
static approximation for transport coefficients, which is
now determined by the relation between ω and the e–e
collision frequency. At the same time, with increasing
kλei , as a result of the electron redistribution associated
with spatial transport, subthermal electrons (i.e., elec-
trons with low velocities v  & vTe) begin to determine
perturbation of the symmetric part of the distribution
function, thus effectively increasing the frequency of

e−e collisions [9]. For example, for kλei @ , their

characteristic velocities v* ~ vTe/(Zk2 )1/7 become
noticeably lower than thermal velocities [9, 16]. Thus,
the range of application of static approximation for
transport coefficients for moderate gradients

0.06/  < kλei < 6Z2/3 are determined by the condition

ω ! , (kλei)4/7/Z5/7 [9, 16], where  =

2νee(vTe)/(3 ). For higher gradients in the region of
kλei ~ 6Z2/3, all angular harmonics must be taken into
account for obtaining a correct description of the tran-
sition to the collisionless limit. This explains the sharp
transition to the region in which the applicability of the
static approximation to transport coefficient is violated.
In the collisionless range of wavenumbers, kλei > 6Z2/3,
this region is defined in the standard manner as ω !
kvTe . Henceforth, we will define the applicability
region of the static approximation for the transport
coefficients

(33)
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as the quasi-static limit of our nonlocal theory. It should
be noted that the above-mentioned sharp transition to
the collisionless kinetic limit is expressed in that expres-
sion (33) formally experiences a jump for kλei ~ 6Z2/3.

B. Nonlocal Transport Coefficients 

The region of application of the classical (local) the-
ory is well defined in the quasi-static limit (33) [24].
This region expands with increasing ω since a simple
exact solution to the kinetic equation [8] exists for

|ω + i | @ kvTe if we disregard e–e collisions. Our
exact solution shows that nonlocal effects are insignifi-

cant for kλei < 0.06/ , 0.1ω/ . In this case, Eq. (24)
can be solved by expanding the basis functions using

the first two Laguerre polynomials ψA =  +

(v 2/3  – 1). Then the effective frequency of col-
lisions satisfies the following approximate expression:
ν1 = νei – iω. As a result, we obtain the transport coeffi-
cients in quadratures [8]:

(34)
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Fig. 1. Dependence of the real and imaginary parts of transport coefficients σ, α, χ, and βj, q, r on ω/  in the long-wave limit kλei <

0.06/ , 0.1ω/ . Dashed curves correspond to the static limit (35).
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correspond to the classical transport coefficients [13, 14].
These expressions for transport coefficients are inde-
pendent of the wavenumber and correspond to the local
limit, including the hydrodynamic limit. Figure 1 illus-
trates their dependence on frequency.

In the limit of strong collisions and low frequencies

ω ! , expressions (34) lead to classical real-valued
transport coefficients [13] with small imaginary correc-
tions
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(35)

With increasing ω, the real part of the classical transport
coefficients σ, α, and χ decrease monotonically, while
the imaginary part increases, attaining its maximal

value for ω ~ 0.1  and then decreases (see Fig. 1). In
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the limit of strong collisions, the ion convective trans-
port coefficients are negligibly small; these coefficients
appear only due to nonstationary nature of the process
since it can be seen directly that they are proportional

to ω. In the high-frequency limit ω @ , coefficients
βj and βr with small imaginary parts tend to unity, while
coefficient βq is small in absolute value, its real part
being smaller than the imaginary type. In the same
limit, transport coefficients σ, α, and χ become purely
imaginary with small real corrections:

(36)

With increasing collision parameter kλei , the nature
of the frequency dependence of transport coefficient
also changes. For example, coefficients α and χ charac-
terize the essentially nonmonotonic frequency depen-
dence, which can be clearly seen in Fig. 2. For example,
the real part of the thermal diffusivity first increases
with frequency ω as compared to the static case, and

then decreases for ω/  > 1. Accordingly, the imagi-
nary part of the thermal diffusivity is first negative and
decreases to its minimal value; then it begins to
increase, changes sign, attains its maximal value, and
decreases again. Both the imaginary and real part of the

thermal diffusivity have a maximum for ω/  ~ 1 at
kλei = 1 (see Fig. 2). A still more complex frequency
dependence appears for the thermoelectric coefficient α
whose imaginary and real parts have three points of
inflection each. The real part of α reverses its sign upon
an increase in ω. The above arguments indicate a non-
trivial manifestation of the Peltier effect in a hot
plasma.

Relatively simple equations for transport coeffi-
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e–e collisions make an insignificant contribution [6],
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In this case, obtaining solutions for the basis distribu-
tion functions in the form

we arrive at the following expressions for their
moments:

(37)

where

All transport coefficients (32) can easily be calculated
in terms of these moments.

In the collisionless kinetic limit kλei @ 1, we have βj ,
βr = 1, βq = 0, while the remaining coefficients are func-
tions of parameter p = ω/kvTe and can be obtained using
ν1 = kvTeh1 as the effective frequency in Eqs. (37),
where hl – 1 = –ip + x2l2/(4l2 – 1)hl (cf. Eq. (20)). In this
case, we can propose a simple approximate formula,
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where the following notation is used:

It should be noted that expressions for collisionless
transport coefficients were obtained in [18] using a rep-
resentation differing from (39) using explicit summa-
tion of an infinite series. At the same time, the collision-
less transport coefficients can be calculated absolutely
exactly (without using infinite summation in function
h1 or its approximation (38)) by solving the initial value
problem (6) for the collisionless kinetic equation. This
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Fig. 3. Dependence of the real and imaginary parts of transport coefficients σ, α, and χ on ω/kvTe , calculated using formula (38)
(bullets), in comparison with the exact collisionless theory (40) (solid curve).
follows from the corresponding collisionless expres-

sions for moments ,

(40)

where

is the standard dispersion function emerging in the col-
lisionless theory of plasmas [1]. The behavior of colli-
sionless transport coefficients as functions of ω/kvTe is
illustrated in Fig. 3. These coefficients correspond to
the results obtained in [20]. In the quasi-static collision-
less limit, we represent the result

(41)
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nev Te

k
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following from (40) [16, 19] and corresponding to the
free (Knudsen) quasi-stationary transport.

The expression for the heat flux is often written
in terms of the temperature gradient and electric cur-
rent [14]. Accordingly, eliminating the electric field
from Eqs. (30), we obtain

(42)

where the heat conductivity κ and the ion convective
transport coefficient β are introduced. Figure 4 illus-
trates the dependence of these quantities on ω for two
different collision parameters. Formulas (42) for j = 0
(no-current plasma) are directly related to the descrip-
tion of transport in a ICF plasma. It was shown in [17]
using the heat conductivity in the problem of thermal
relaxation as an example that transient effects are
important for kλei * 0.1. For such inhomogeneity
scales, the quasi-stationary approaches that have
mainly been developed until now [9, 11, 12, 15, 16] are
inapplicable. The theory developed above suspends this
constraint. The equations of nonlocal hydrodynamics
with nonstationary transport coefficients proposed by

q
αTe

σ
--------- j– κ ikδTe– neTeβui,–=

κ χ
α2Te

σ
-----------, β– βq

eα
σ

------β j,–= =
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T

us make it possible to describe a plasma for any spatial
and temporal perturbation scales.

4. LONGITUDINAL PERMITTIVITY
OF PLASMAS

Since the hydrodynamic equations (28) are equiva-
lent to a kinetic description and completely determine
the linear response of a plasma to small perturbations in
the entire range of parameters (ω, k), these equations
can be used for obtaining the longitudinal permittivity
e(ω, k) of the plasma. To calculate the permittivity

, (43)

we eliminate the density and electron temperature per-
turbations from the expression for current, solving sys-
tem (28):

(44)

e 1 4πi
j

ωE
--------+=

j 1 iω
e2ne

k2Teσ
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2ne σ eα+( )2

σ2 2k
2κ 3iωne–( )
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ie2ne
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------------ωE–




+ eneui 1 iω
e2neβ j

k2Teσ
---------------
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-----------------------------------------------+
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 
 

–



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Let us first analyze a purely electron plasma in the limit
of stationary (infinitely heavy) ions, when ui = 0.

A. Electronic Permittivity 

We will characterize the partial electron contribu-
tion δee to permittivity (e = 1 + δee) by quantity δe =

k2 δee , where λDe is the Debye radius for electrons.
Using relation (44), we obtain for this quantity the
expression

(45)

which makes it possible to find the contribution from all
transport coefficients and is in fact determined by only

one momentum .

In the classical hydrodynamic limit kλei < 0.06/ ,

0.1ω/ , the analytic expression for δe is obtained by

≡
ie2ne

k2Te

------------ω 1 iωJN
N+( )E– eneui 1 iωJN

R
+( ).+

λDe
2

δe 1 iω
e2ne
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-------------------------------------------+

 
 
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≡ 1 iωJN
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Fig. 5. Parametric (k, ω) plane for the longitudinal permittivity of plasmas. Dotted curves describe the spectra corresponding to the
Langmuir (epw) and ion-acoustic waves (iaw). References are given in the brackets.
substituting Eqs. (34) into formula (45). In the limit of

low frequencies (ω ! ), this leads to the expression

(46)

In the limit ω @ x, the electron susceptibility is deter-
mined by the classical electrical conductivity δee =
4πiσSH/ω. In the opposite case (ω ! x), the transport
coefficients are immaterial for describing the static per-
mittivity corresponding to Debye screening, Ree = 1 +

1/k2 ; these coefficients determine only the small
imaginary correction Ime = 41ω/16x, which receives a
comparable contribution from coefficients σ, α, and χ.
The dispersion relation e = 0 for kλDe ! 1 gives the
classical entropy mode ω = 2ik2κSH/3ne with a heat con-
ductivity defined by relation (42), κSH = 128nevTeλei/3π
[13, 14]. For fast processes (ω @ ), the permittivity
is determined by the high-frequency electrical conduc-
tivity and is described by the well-known expression

e = 1 – ( /ω2)(1 – i /ω) [7].

Figure 5 shows the parametric (k, ω) plane divided
into regions corresponding to different approximations
for describing the permittivity beginning from the clas-
sical hydrodynamic limit (left-hatched region) to the
collisionless kinetic limit (dot-hatched region). The
region between the fine solid curves in Fig. 5 (right
hatching) corresponds to strongly decaying perturba-
tions, for which Ime > Ree. Under the unmarked bold
solid curve, the real part of the permittivity corresponds

νei
T

δe
2x 8x 3iω–( )

16x2 6ω2
– 47iωx–

------------------------------------------------, x
32k2v Te

2

3πνei
T

--------------------.= =

λDe
2

νei
T

ωpe
2 νei

T
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to the Debye screening, Ree = 1 + 1/k2 . The ω(k)
boundary curve denoted by e–e separates the quasista-
tionary regime (33), for which electron–electron colli-
sions are important, from the nonstationary regime. It
should be noted that for kλei ! 6Z2/3 in the quasi-static
approximation, it is sufficient to use two angular har-
monics (diffusion approximation) for calculating the
electron distribution function and, accordingly, for all
transport coefficients as well as permittivity [9]. In this

limit and for kλei @ 1/ , the approximate expression
for the permittivity has the form [9]

(47)

which is close to the exact solution. Our analysis proves
that the range of applicability of relation (47) is in fact
slightly narrower, kλei > 1.

In the frequency range in which the e–e collisions
can be neglected, we can reconstruct from relation (37)
the permittivity obtained in [4–6], which leads to the
well-known expression

(48)

in the collisionless kinetic limit νei  0.
The general expression derived for permittivity is

applicable for describing the plasma in the entire range
of k and ω for any number of collisions in the plasma
also. The contribution of collisions to the permittivity
of the plasma is still described in most cases by using a

λDe
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δe 1 i
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kv Te

----------- π
2
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Z2/7

kλ ei( )3/7
--------------------+

 
 
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,+=

e 1
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ω
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simplified BGK collision integral. The theory devel-
oped here makes it possible to determine the accuracy
of this approximation. The best agreement is obtained
using the expression proposed in [3]:

(49)

However, in spite of the fact that the behavior described
by this expression is qualitatively correct on the whole,
it noticeably differs from the exact result for kλei < 1 in
a wide frequency range (see Fig. 6a). With increasing
kλei , the agreement is improved; however, it follows
from Fig. 6b that the empirical formula (49) still differs
from the exact solution by a factor of 2 to 3 in the range
of parameters ω ~ νei .

B. Ion Contribution to Permittivity 

In accordance with definition (43), elimination of
the ion velocity from expression (44) makes it possible
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to obtain the ion contribution to permittivity. Strictly
speaking, a complete kinetic description of the ion
component is required in this case. However, according
to the results obtained in [25], for describing rapid per-
turbations (ω @ kvTi), where vTi is the ion thermal
velocity, we can use the hydrodynamic equations for
ions, in which the ion viscosity and heat conductivity
are taken into account using the 21-moment approxi-
mation of the Grad method. This makes it possible to
write conservation laws (8), (9), and (12) for ions in the
form

(50)

The contribution from collisions to the momentum con-
servation law (12) is described by Eq. (18); the longitu-
dinal component of the stress tensor is represented in

terms of the ion viscosity  [25],

(51)

the energy exchange during the e–i collisions in the
energy conservation law (9) is assumed to be negligibly
weak; and the expression for the ion heat flux qi = –ikκi

is determined by the heat conductivity [25]

(52)

Here, the ion–ion collision frequency is introduced in

the standard manner, νi = 4 niΛ/3 .

Using relations (50)–(52), we can describe the total
permittivity of the plasma in the form

(53)
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where

(54)

Thus, expression (53) defines the total longitudinal per-
mittivity of a plasma with negligibly small Landau
damping at ions, ω @ kvTi .

5. CONCLUSIONS

Using the kinetic approach, we have formulated the
equations of nonlocal transport for small perturbations
in the general case of arbitrary relations between the
characteristic space and time scales of plasma inhomo-
geneity and particle collisions. Consequently, the
derived quasi-hydrodynamic equations are in fact
equivalent to the description of a plasma with the help
of the kinetic equation since these equations consis-
tently take into account the kinetic transport effects
under the conditions and spatial and temporal nonlocal-
ity. The corresponding nonstationary and nonlocal
transport coefficients in the Fourier representation are
investigated in detail in the entire (ω, k) region with
visual graphic illustrations. The developed theory gen-
eralizes particular transport models constructed earlier
to the case of arbitrary (ω, k) and describes all limiting
transitions to the known results.

We propose a convenient algorithm for calculating
the longitudinal permittivity of a plasma for arbitrary
values of frequency and wavenumber. The expression
for permittivity derived here describes a smooth transi-
tion from the hydrodynamic region of strong collisions
to the collisionless kinetic region and from the static to
the high-frequency limit. On the basis of our theory, it
becomes possible to analyze the plasma response in an
intermediate region of wavenumbers and frequencies,
in which the values of these quantities are on the order
of the inverse mean free path and electron collision fre-
quency, respectively. A qualitative description of the
plasma response is especially difficult for such param-
eters.

The permittivity is determined on the basis of the
Landau approximation for the collision integral,
although a more exact Balesku–Lenard expression for
this integral [26, 27] taking into account the effect of
dynamic polarization of the plasma is itself, strictly
speaking, a function of permittivity. The solution of the
problem is complicated under the conditions when this
effect is significant. This complication is associated
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with allowance for the contribution from the interaction
of particles with plasma oscillations. Since the phase
velocity of Langmuir oscillations of electrons is larger
than the electron thermal velocity, the number of parti-
cles interacting with plasma waves is relatively small
and the dynamic polarization effect of the plasma does
not noticeably affect the collisions. This effect might
become significant in the case of interaction with slow
ion–acoustic waves [28]. The corresponding correction
to the Landau collision integral is most substantial for
the electron–electron collision integral and becomes
predominant for a strongly nonisothermal plasma,

when ZTe/Ti > Λeeln(Z2mi /me ) (i.e., for ZTe/Ti >
103) [28]. Thus, the theory developed here is applicable
when ZTe/Ti < 103.

The development of nonlocal hydrodynamics is
especially important for describing heat transport play-
ing a decisive role in the ICF problem (in particular, for
interpreting and simulating experiments with laser
plasmas). It is well known that traditional hydrody-
namic codes with a heat flux, which can be described on
the basis of the classical theory or its simple heuristic
modifications, fail to explain experimental data cor-
rectly, while the model with nonlocal transport give a
much better agreement with experiment [29]. This
raises hopes that the nonstationary transport theory pre-
sented here has a high potential for practical application
in the ICF problem. Analysis of transport in the case of
small-scale plasma inhomogeneities must occupy a
special place in this case. A closely related problem is
that of energy transport in a speckle laser beam used for
obtaining a more uniform irradiation of a thermonu-
clear target with the help of a number of laser radiation
smoothing mechanisms. It has been demonstrated that
the description of temperature relaxation in small-scale
(L ~ λei) hot laser spots requires taking into account the
effects associated with nonstationary nature of trans-
port coefficients [17]. These effects are important for
describing rapid heating of a hot laser plasma, includ-
ing the heating of the skin layer of the plasma with a
sharp boundary (the latter is characteristic of the inter-
action of short laser pulses with solid targets).

Direct application of nonlocal nonstationary trans-
port coefficients for small perturbations may involve
the development of a theory of laser plasma instabili-
ties. The importance of allowance for nonlocality of
transport in the quasi-stationary limit of filamentation
instability and the stimulated Brillouin scattering was
demonstrated in [30, 31]. The approach worked out by
us paves the way for the development of such a theory
for a strongly nonstationary laser plasma. Another
important trend in the application of permittivity is
associated with calculation of the Thomson scattering
cross section [32], which is widely used for diagnostics
of plasmas [29].

Te
3 Ti

3
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Abstract—The DD reaction yield (3-MeV protons) and the soft X-ray emission from a titanium (Ti) cathode
surface in a periodic pulsed glow discharge in deuterium were studied at a discharge voltage of 0.8–2.45 kV
and a discharge current density of 300–600 mA/cm2. The electron screening potential Ue = 610 ± 150 eV was
estimated in the range of deuteron energies 0.8 keV < Ed < 2.45 keV from an analysis of the DD reaction yield
as a function of the accelerating voltage. The obtained data show evidence for a significant enhancement of the
DD reaction yield in Ti in comparison to both theoretical estimates (based on the extrapolation of the known
DD reaction cross section for Ed ≥ 5 keV to low deuteron energies in the Bosch–Halle approximation) and the
results of experiments using accelerators at the deuteron energies Elab ≥ 2.5 keV and current densities
50−500 µA/cm2. Intense emission of soft X-ray quanta (1013–1014 s–1 cm–2) was observed at an average energy
of 1.2–1.5 keV. The X-ray emission intensity and the DD reaction yield enhancement strongly depend on the
rate of deuterium diffusion in a thin subsurface layer of Ti cathode. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The results of recent experiments at relatively low
energies of bombarding particles [1–10] showed evi-
dence for significant screening effects in metal targets,
in particular, in the case of deuteron bombardment.
Investigations of the fusion of light nuclei in metal tar-
gets showed exponential growth of the DD reaction
yield enhancement (astrophysical S factor) with
decreasing particle energy. Even in gaseous deuterium
targets, the screening potential Ue = 25 ± 5 eV calcu-
lated for a deuteron projectile energy that has decreased
down to Elab = 3 keV is significantly higher than the adi-
abatic limit of the DD reaction in deuterium molecule
(Uad = 14.0 eV) [1]. 

In most metals and in some oxides [6–10], the
experimental DD reaction yield enhancement and the
screening potential are significantly higher than the val-
ues measured for gas targets and those theoretically
predicted using extrapolation of the reaction cross sec-
tion to low deuteron energies [10]. For example, in a
PdO target bombarded with deuterons at an energy of
Elab ≥ 2.5 keV, the experimental yield of the D(d, p)T
reaction corresponds to a screening potential of Ue =
600 eV [8]. This leads to a 50-fold DD reaction yield
enhancement as compared to that predicted using a
1063-7761/05/10006- $26.001175
standard cross section for this reaction calculated via
extrapolation of the known cross section for Ed ≥ 5 keV
to low deuteron energies (Elab = 2.5 keV) in the Bosch–
Halle approximation [11]. 

Raiola et al. [6–8] systematically studied the DD
reaction yields and the screening potentials deduced
from the S factor for more than 40 elements of the Peri-
odic table, including various metals and nonmetals. It
was established that most of the studied metals possess
a high screening potential (Ue ≥ 100 eV) except for the
metals of groups IV (Ti, Zr, Hf) and XI (Cu, Ag, Au)
and some semiconductor and dielectric targets. No spe-
cific experimental conditions (including accelerator
current density) and target properties (crystal and mag-
netic structure, charge number, and deuterium mobility
in the target) were found to influence the DD reaction
enhancement and the screening potential growth. It
should be noted that the accelerator used in [6, 7]
allowed the deuteron current only within 1–54 µA to be
reached, so that the DD reaction yield could be mea-
sured only at a relatively high energy (E > 5 keV). 

Kasagi et al. [9, 10] used a low-energy high-current
accelerator (with a beam current within 60–400 µA)
and measured the D(d, p)T reaction yields in some met-
als and oxides for Elab ≥ 2.5 keV. It was found that the
screening potential value at these beam intensities
 © 2005 Pleiades Publishing, Inc.
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strongly depends on the deuterium mobility in the tar-
get. In metals (Ti, Au) with low deuterium mobilities
and high activation energies for deuteron diffusion, the
screening potentials were low (Ue = 65 ± 15 and 70 ±
10 eV, respectively). These Ue values were only two
times higher than the value for a gas (D2) target. In con-
trast, the screening potentials in targets (such as Pd and
PdO) with high deuterium mobilities were rather high
(Ue = 310 and 600 eV, respectively) [10]. 

Unlike the aforementioned investigations [6–10]
with metal targets and low-current accelerators,
Bystritsky et al. [12–14] studied the D(d, n)He3 reac-
tion yield in a deuterated polyethylene (CDn) target
using the Z-pinch technique [12]. For the deuteron
energies 3.6 keV < Elab < 7.8 keV, the measured neutron
yield and the evaluated S factor showed (to within the
experimental error) the absence of enhancement of the
DD reaction: the D(d, n)He3 reaction cross section in
CDn was comparable to that described using the
Bosch–Halle extrapolation in the given range of deu-
teron energies [14]. It should be noted that the dielectric
target used in [13, 14] was characterized by a low
mobility of deuterium, while the energy spread of bom-
barding deuterons was very large as compared to that in
the experiments using accelerators [6–10]. 

Previously, accelerators with a low (<1%) spread of
deuteron energies allowed the DD reaction yield in
metal targets to be studied only for Elab > 2.5 keV. Fur-
ther decrease in the accelerating voltage leads to insur-
mountable difficulties in maintaining a sufficiently high
beam current density, which makes impossible mea-
surement of the DD reaction yield within an acceptable
period of time because of an extremely low yield. At the
same time, investigations of the DD reaction yield and
cross section at low deuteron energies (below 1 keV) is
of considerable interest from the standpoint of astro-
physical processes of star evolution [15] and controlled
thermonuclear reactions, in particular, the cross sec-
tions of a hot deuterium plasma interaction with a reac-
tor wall [16]. 

An alternative possibility for studying the DD reac-
tion yield at deuteron energies below 1 keV is offered
by the experiments with a high-current pulsed dis-
charge in deuterium. The results of previous experi-
ments [17] showed that pulsed glow discharge makes it
possible to obtain ions with the energies within 0.8–
2.5 keV and current densities within 300–600 mA/cm2

at a deuterium pressure of 1–10 Torr. The current den-
sity used fore the bombardment of the cathode (target)
surface in glow discharge is three orders of magnitude
higher than that accessible using accelerators. Prelimi-
nary estimates show that high-current bombardment of
the cathode with deuterium ions in glow discharge can
provide for detection of the DD reaction products even
at E ≤ 1 keV for exposures not exceeding several tens
of hours (in the case of exponential growth of the DD
reaction enhancement factor at low energies). More-
JOURNAL OF EXPERIMENTAL A
over, this bombardment may initiate the X-ray emission
(accompanying the DD reaction initiation in a metal
lattice with high solubility of hydrogen [18]), which
has never been detected in the experiments using accel-
erators because of insufficiently high deuteron beam
current density. 

This paper presents the results of our systematic
investigation of the DD reaction yield and X-ray emis-
sion in a titanium (Ti) cathode bombarded with deuter-
ons of very low energies (0.8 keV < Ed < 2.45 keV) in
a high-current pulsed glow discharge. The thick target
yield (Ti cathode) showed evidence for a very high DD
reaction enhancement described by screening potential
Ue = 610 ± 150 eV. At Ed = 1.0 keV, the DD-reaction
rate is nine orders of magnitude higher than that calcu-
lated by standard extrapolation [11] of the DD-reaction
cross section. 

2. EXPERIMENT 

The yields of charged particles and X-ray quanta
from a DD reaction were studied in a vacuum chamber
where glow discharge was initiated at various voltages
and currents. Figure 1 shows a schematic diagram of
the experimental setup and the arrangement of detec-
tors. The distance between the mobile Mo anode and
the replaceable Ti cathode was 4–5 mm. The cathode
was made of a 0.01-cm-thick cold rolled foil (99.95%
Ti) and had an area of 0.64 cm2). In order to eliminate
overheating of the electrodes, thus reducing their sput-
tering rate and prolonging work life, the hollow cathode
and anode holders were cooled from inside by a flow of
distilled water. In order to prevent arc discharge forma-
tion at high current densities, the cathode and anode
holders were covered by Teflon. 

Rectangular voltage and current pulses with a short
front (below 1 µs) and a duration of 200–400 µs were
generated with a frequency of 3 kHz. The pulse param-
eters were monitored with the aid of a two-channel
100-MHz storage oscilloscope. A power supply source
provided stable glow discharge at deuterium concentra-
tions within 2–9 Torr. It was found that continuous lev-
eling of the pressure during the glow discharge opera-
tion suppressed uncontrolled current and voltage fluc-
tuations, thus stabilizing the discharge conditions.
Under conditions of quasi-stable glow discharge, the
average deuteron energy in the laboratory frame (Elab =
eV, where e is the electron charge) corresponds with
high precision to the applied voltage V. Indeed, a low
(<10–5) degree of deuterium ionization in glow dis-
charge makes the “maxwellization” effects (generating
high-energy deuterons at the “tail” of the energy distri-
bution) insignificant [19], so that the average deuteron
energy is close to the nominal discharge voltage. The
spread of the average deuteron energy, which is an ana-
log of the particle energy spread in an accelerator) in
our case did not exceed ±15% of the nominal value and
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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was mostly determined by the residual pressure insta-
bility in the discharge chamber. 

The current (I) and voltage (V) measurements in
glow discharge at a constant pressure showed that the
I−U curves were linear [19, 20] in the range of I =
100−300 mA and U = 800–2000 V (Fig. 2). The propor-
tionality of current and voltage provides a convincing
evidence for the absence of “arc” effects (capable of
distorting the deuteron spectrum) in glow discharge. In
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Fig. 1. (a) Schematic diagram of the glow discharge setup:
(1) vacuum chamber; (2) cathode holder; (3) cathode;
(4) anode; (5) Be window; (6) CR-39 detectors; (7) glow
discharge region; (8) thermoluminescent detectors (TLDs)
with 15- to 300-µm-thick Be filters. (b) Schematic diagram
of the experiments with open cathode: (view A) TLDs with
Be filters of different thickness; (1) cathode; (2) anode;
(3) Be filters; (4) TLDs or pinhole camera; (5) metal holder
of detectors; (6) 15- to 300-µm-thick Be filters. 
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P = 6.0 Torr
P = 4.2 Torr

order to provide for the maximum DD reaction yield,
we selected the maximum current at a given pressure,
so as to maintain a preset voltage according to the I –V
curve. 

The results of temperature measurements performed
using thermoresistors pressed against the rear side of
the cathode showed that the cathode temperature was
increased by 50–100 K over discharge operation [21].
However, these measurements do not provide correct
estimates of the temperature of a near-surface layer of
the cathode: examination of the cathode showed evi-
dence of the material melting over the entire surface
even at a minimum electric power (100 W/cm2) applied
to the discharge. In connection with this, below we will
assume the maximum temperature in the near-surface
layer of the cathode (with a thickness on the order of the
range of bombarding deuterons in the cathode material)
to be equal to the melting temperature of titanium. 

In order to suppress spurious electromagnetic sig-
nals induced by the discharge, which are capable of sig-
nificantly distorting the measured output signals, we
did not use surface-barrier Si detectors (typically
employed in experiments [6–10]). The DD reaction
products were detected with the aid of plastic track
detectors of the CR-39 type (Fukuvi Chemical Industry,
Japan), which are insensitive to electromagnetic fields.
These detectors were arranged in the discharge cham-
ber behind the anode (in which seven holes were made)
at a distance of 3 cm from the cathode surface (Fig. 1a).
Measurements performed under analogous conditions
of discharge in hydrogen (replacing deuterium) were
used for determining the background level. 

The CR-9 track detectors employed for detecting
charged particles produced in the course of the
D(d, p)T reaction were calibrated (Fig. 3) using stan-
dard α particle sources (Eα = 2.0–7.7 MeV), a cyclotron
beam (Eα = 8.0–30.0 MeV), and a proton beam of the
Van de Graaff accelerator (Ep = 0.5–3.0 MeV) of the

1000500 1500 2000
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Fig. 2. Current-voltage curves of a glow discharge with Ti
cathode in deuterium at a pressure of 4.2 and 6.0 Torr. 
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Institute of Nuclear Physics (Moscow State Univer-
sity). After exposure, the detectors were etched in 6 M
aqueous NaOH solution for 7 h at 70°C. The tracks
ware examined and their diameters measured using an
optical microscope equipped with a digital video camera. 

In order to eliminate the action of discharge plasma
and sputtered cathode particles on the detector surface,
the detectors were screened with a 11-µm-thick Al foil.
This foil transmits 3-MeV protons and absorbs 1-MeV
tritons from the D(d, p)T reaction. The results of our
measurements showed that the tracks due to 3-MeV
protons transmitted through the foil have a diameter of
about 5.2 µm. The detection efficiency of a CR-39
detector spaced by 3 cm from the cathode is determined
primarily by the geometric factor. Taking into account
the total area of holes in the anode, the geometric effi-
ciency of 3-MeV proton detection was estimated at εp =
5.6 × 10–3. 

The average energy and intensity of X-ray quanta
emitted from the cathode surface were evaluated using
Al2O3-based thermoluminescent detectors (TLDs) and
a set of beryllium (Be) filters with thicknesses from 15
to 300 µm (2.8–55.5 mg/cm2). These TLDs measured
the absorbed radiation dose. Seven TLDs (each with a
diameter of 5 mm) were arranged outside the discharge
zone, at a distance of 7 cm from the anode. In a separate
experiment performed in order to determine spatial
position of the source of X-ray quanta in the discharge,
the anode was shifted 20 mm away from the cathode
and the TLD or a pinhole camera was positioned imme-
diately in front of the cathode (Fig. 1b). The TLDs were
calibrated using a standard 137Cs source. The TLD sig-
nal readout and construction of the glow curves were
performed using a special device based on a picosecond
processor (Harshaw Co.).

The time correlation of X-ray emission and dis-
charge current pulses were studied using a 17-mm-
diam plastic (PMMA) scintillator and an FEU-85 pho-
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E, MeV
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Fig. 3. Calibration curve of proton track diameter d versus
particle energy E for CR-39 detectors. 
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toelectron multiplier. These experiments were per-
formed at a pressure of 4.2 Torr and a current of
250 mA. A positive image of the X-ray emitting zone
was obtained with a pinhole camera using an X-ray-
sensitive film. 

The experiments devoted to the detection of charged
particles were performed in a glow discharge operating at
a voltage of 0.8–2.45 kV and a current of 240–450 mA.
The duration of each exposure at a certain fixed dis-
charge voltage was about 7 h. Preliminary experiments
with CR-39 detectors covered by aluminum (Al) and
polyethylene (PE) films of various thicknesses showed
a statistically significant number of the 3-MeV proton
tracks, which was dependent on the discharge voltage
and current. Figure 4 presents typical distributions of
the proton track diameters d in the detector covered by
films of different thicknesses in a glow discharge in
deuterium and hydrogen at U = 1.25 kV and I =
240 mA. As can be seen from these data, the track diam-
eter strongly depends on the coating thickness, in accor-
dance with the energy losses for 3-MeV protons [22]
generated during operation of the glow discharge. In
the presence of 11-µm-thick Al foil, the distribution
peak is at d = 5.2 µm corresponding to Ep = 2.85 MeV
(Fig. 4a). When the coating thickness was increased to
33 µm (Al foil) and 60 µm PE film, the peak shifts to
d = 6.8 µm (Figs. 4b). In the glow discharge with Ti
cathode in hydrogen under the same conditions (volt-
age, current, pressure) as in deuterium, no track were
observed in the interval of diameters corresponding to
the 3-MeV protons. 

The thick target yield of 3-MeV protons Yt(Ed) from
a Ti cathode bombarded by deuterons with an energy Ed
was calculated using a formula [3] 

(1)

where ND(x), σlab(E), and dE/dx are the deuteron con-
centration in the cathode, the DD reaction cross section,
and the deuteron stopping power in titanium. The cross
sections at low energies were determined by using the
Bosch–Halle parametrization [11]. The deuteron stop-
ping power in Ti target was assumed to be proportional
to the particle velocity, which is consistent with the data
available for various targets at low deuteron energies
(down to Ed = 1.0 keV) [23, 24]. 

The yields of 3-MeV protons observed for various
discharge voltages in the 0.8–2.45 kV range were nor-
malized to the yield at the maximum voltage (U =
2.45 kV) with allowance for the discharge power and
the effective temperature at the target surface (the fac-
tors influencing variations of the deuterium concentra-
tion ND(x) in the Ti cathode). The effective concentra-
tion of deuterium in Ti was defined as ND(eff) =
k(W, T)ND(x), where T and W are the temperature and

Yt Ed( ) ND x( )σlab E( ) Ed
xd

------ 
 

1–

E,d

0

Ed

∫=
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power at the target surface, respectively. The coefficient
k(W, T) can be expressed as [21] 

(2)

where kB is the Boltzmann constant, εd = 0.04 eV is the
activation energy for deuteron escape from the Ti cath-
ode surface during discharge, Tm = 1941 K is the melt-
ing temperature of titanium, T0 = 290 K is the initial
temperature of the target, ∆T = Tm – T0, Wm = 906.5 W
is the maximum discharge power at Ed = Em = 2.45 keV,
Im = 370 mA, and Wx is the power at lower values of
the current and voltage. The εd value was determined
from data reported for the experiments using accelera-
tors [9], by approximating the 3-MeV proton yield in Ti
target with an Arrhenius plot [25] in the temperature
interval 185–195 K at Ed = 10 keV (where no any DD
enhancement takes place). The slope of the plot of yield
versus temperature corresponds to the activation energy
of the yield of deuterium from the target surface
(Fig. 5). 

3. EXPERIMENTAL RESULTS 

The results of measurements using CR-39 detectors
covered by 11-µm-thick Al foil showed a statistically
significant number of 3-MeV proton tracks, which
was dependent on the discharge voltage and current.
Figure 6 presents a typical distribution of the track
diameter for two discharge voltages (U = 2175 and
805 V) and the same current (I = 250 mA). A peak of
the 3-MeV proton track diameter at d = 5.2 µm well
agrees with the results of calibration (Fig. 2) and the
preliminary measurements at U = 1.25 kV (Fig. 4). 

The total set of data presented in Table 1 includes
the numbers of tracks at various values of the current
and voltage with allowance of the correction factor k
calculated using formula (2). As the deuteron energy
decreases from 2.45 to 0.8 keV, the 3-MeV proton yield
drops by 3 orders in magnitude (with allowance for the
normalization factor k). Calculated without the correc-
tion for k, the yield decreases by only one order in mag-
nitude (Table 1, fourth column). This difference is
related to the fact that the concentration of deuterium in
Ti al low voltages (and discharge powers) is much
higher than that at U = 2.45 kV because the effective
temperature in the near-surface cathode layer is propor-
tional to the discharge power. 

Figure 7 shows the experimental yields of the
D(d, p)T reaction in Ti as functions of the deuteron
energy Ed in the range from 0.8 to 2.45 keV. Before the
normalization using the coefficient k (Fig. 7a), the
dependence of the 3-MeV proton yield on the discharge
voltage has a more pronounced exponential character
as compared to that expected taking into account the
behavior of the cross section at low energies. After the

k W T,( )
εd∆T

kBTmT0
------------------

Wm

Wx

--------– 
  ,exp=
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Fig. 4. Proton track diameter distributions in CR-39 detec-
tors for glow discharge in deuterium and hydrogen (pres-
sure, 6 Torr; U = 1.25 kV; I = 240 mA; exposure time, 7 h;
cathode–detector distance, R = 3 cm): (a) detector covered
with 11-µm-thick Al foil (the peak at d = 5.2 µm corre-
sponds to protons with Ep = 3 MeV; energy losses in the foil
are ∆E = 0.2 ± 0.1 MeV); (b) detector covered with 11-µm-
thick Al foil and 60-µm-thick PE film (the peak at d =
6.4 µm corresponds to protons with Ep = 3 MeV; energy
losses in the foil are ∆E = 1.1 ± 0.2 MeV); (c) detector cov-
ered with 33-µm-thick Al foil and 60-µm-thick PE film (the
peak at d = 6.8 µm corresponds to protons with Ep = 3 MeV;
energy losses in the foil are ∆E = 2.5 ± 0.2 MeV). 

185180 190 195 200

T, K

1200

1300

1400

1500

1600
Yt, s

–1

Fig. 5. Normalized proton yield versus temperature for a Ti
target bombarded in an accelerator with deuterons at Ed =
10.0 keV and I = 60–100 µA [9]. Solid line corresponds to
the Arrhenius function. 
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normalization (Fig. 7b), the curve Yt(Ed) curve exhibits
a smoother behavior. This result confirms the need for
normalization that takes into account the influence of
random collisions (related to uncertainty in the deute-
rium concentration) leading to deviations of the exper-
imental points from the exponent. 

Figure 8 presents the DD proton yield Yp at low deu-
teron energies normalized to that at 2.45 keV. For com-
parison, this figure also shows the standard yield of the
D(d, p)T reaction (solid curve) calculated using the
Bosch–Halle approximation [9, 10]. Even with allow-
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d, µm
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N, cm–2

Ti/D2, U = 805 V
Ti/D2, U = 2175 V

Fig. 6. Track diameter distribution for 3-MeV protons from
a Ti cathode measured with a CR-39 detector for a dis-
charge voltage of U1= 805 and U2 = 2175 V (I = 250 mA;
exposure time, 7 h). 
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ance for the total error of measurements (including a
systematic error and an error caused by the instability
of glow discharge, amounting to ±10% in terms of the
discharge voltage and current), the experimental plot of
Yp/Y(2.45 keV) lies well above the Bosch–Halle curve.
This fact is clearly indicative of a large enhancement of
the DD reaction in the near-surface of the target at low
energies. In order to directly evaluate the DD reaction
enhancement factor f(E) and calculate the electron
screening potential Ue in the 0.8−2.45 keV energy
range, we used the formula [3]

(3)

where Yp(E) is the experimental DD proton yield in a
glow discharge, Yb(E) is the yield determined for the
same energy using the Bosch–Halle extrapolation,
2πη = 31.29Z2(µ/E)1/2 is the Sommerfeld parameter, Z
is the deuteron charge (for bombardment with D+), and
µ and E are the reduced mass and energy of deuteron,
respectively. 

Figure 9 shows the results obtained in an accelerator
(curve 1) [10] and in a glow discharge (curve 2) with
the Ti cathode (target). In the case of measurements
using the accelerator for 2.5 keV < Ed < 10.0 keV, the
screening potential was Ue = 65 ± 10 eV [9]. However,
the screening potential evaluated from data on the reac-
tion yield enhancement in glow discharge (Fig. 9,
curve 2) is Ue = 610 ± 150 eV. For example, the exper-
imental DD reaction yield enhancement at Ed = 1.0 keV
is almost 9 orders of magnitude greater than that pre-

f E( )
Yp E( )
Yb E( )
-------------- πη E( )

Ue

E
------ ,exp= =
Table 1.  The yield of 3-MeV protons from a Ti cathode for various voltages of glow discharge in deuterium

〈U〉 , V 〈I〉 , mA Wm, W N (5.2 µm), cm2 k(W, T) 〈Np〉 , s–1 [〈n/ε〉 ± σ], s–1 (in 4π sr)  Yp, C–1

805 250 201.3 30 2.2 × 10–3 2.6 × 10–6 (4.7 ± 1.4) × 10–4 1.9 × 10–3

850 225 191.3 28 1.6 × 10–3 1.8 × 10–6 (3.3 ± 1.1) × 10–4 1.5 × 10–3

1000 370 370 35 3.6 × 10–2 5.0 × 10–5 (9.0 ± 1.9) × 10–4 2.5 × 10–3

1145 370 420 54 5.3 × 10–2 1.1 × 10–4 (2.0 ± 0.3) × 10–2 5.3 × 10–2

1190 240 286 30 1.3 × 10–2 1.6 × 10–5 (3.0 ± 0.5) × 10–3 1.3 × 10–2

1435 250 359 50 3.3 × 10–2 7.0 × 10–5 (1.3 ± 0.2) × 10–2 5.2 × 10–2

1500 450 675 71 0.16 4.5 × 10–4 (8.1 ± 0.5) × 10–2 1.8 × 10–1

1647 300 495 62 8.3 × 10–2 2.1 × 10–4 (4.0 ± 0.5) × 10–2 1.3 × 10–1

2000 370 740 159 1.9 × 10–1 1.2 × 10–3 (2.1 ± 0.02) × 10–1 5.7 × 10–1

2175 250 544 252 1.1 × 10–1 1.1 × 10–3 (2.0 ± 0.02) × 10–1 8.0 × 10–1

2450 370 906.5 317 2.7 × 10–1 3.4 × 10–3 (6.1 ± 0.04) × 10–1 1.65

Notes: 〈U〉 , 〈I〉 , and Wm are the average voltage, average current, and power of the glow discharge; N is the number density of 3-MeV proton
tracks; 〈Np〉  is the average count rate for 3-MeV protons; 〈n/ε〉 is the proton yield in a solid angle of 4π sr for a detection efficiency

of ε = 5,6 × 10–3; Yp is the DD proton yield per 1 C charge transferred by the deuteron current to the cathode.
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Fig. 7. The yield of 3-MeV protons from a Ti cathode: (a) nonnormalized; (b) normalized to deuterium concentration (with a nor-
malization factor k determined using formula (2)). 
dicted using the standard extrapolation of the reaction
cross section to low deuteron energies. 

Figure 10 presents the DD reaction yield in a glow
discharge normalized to the yield measured in an accel-
erator at Ed = 10.0 keV (with correction of the DD pro-
ton yield for a lower effective target temperature in the
accelerator as compared to that in glow discharge [9]).
Similar to the situation in Fig. 8, the DD reaction yield
in the glow discharge is much higher than that obtained
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Fig. 8. The experimental yields of 3-MeV protons versus
deuteron energy within 0.8 keV < Ed < 2.45 keV (normal-
ized to the yield at Ed = 2.45 keV): Bosh–Halle approxima-
tion [11] (solid curve); DD reaction yield for a screening
potential of Ue = 610 eV (dashed curve). 
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by extrapolating to lower energy the value observed in
the accelerator (for the screening potential Ue = 65 eV). 

Thus, the data on the DD reaction yields in a glow
discharge, corrected by normalization using the proce-
dures analogous to those used in the experiments using
accelerators [9, 10], demonstrate a much greater
enhancement of the DD reaction yield at Ed < 2.45 keV
as compared to that anticipated proceeding both from
the theoretical extrapolation of the yield to low deu-

10 2 3 4 5 6

Ed, keV

1

10

102

103

104

105

106

107

108

109

f

Ue = 610 ± 150 eV

Ue = 65 ± 10 eV

1
2

Fig. 9. Plot of the enhancement factor calculated using for-
mula (3) versus Ed for a Ti target: (1) accelerator experi-
ment [10]; (2) glow discharge. Solid curves correspond to the
Ed intervals in which the yield was experimentally measured. 
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teron energies and from the analogous extrapolation of
the yields obtained in the experiments using accelera-
tors at Ed > 2.5 keV. 

The experiments showed that the bombardment of a
cathode in high-current periodic pulsed glow discharge
is accompanied by the intense emission of soft X-ray
quanta. In the experiments using TLDs in a glow dis-
charge with a Ti cathode at U = 1.25 kV and I =
200 mA, we observed X-ray emission in the energy
range of Ex = 1.1–1.4 keV and an intensity of Ix =
1013 s−1 in a solid angle of 4π (Fig. 11). It should be
noted that the average energy of these radiation quanta
is close to the energy of bombarding deuterons. 

In order to determine the location of the X-ray
source in the discharge, we used a setup in which the
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Fig. 10. Thick target yield of protons measured in glow dis-
charge with Ti cathode (0.8 keV < Ed < 2.45 keV) and in
accelerator experiments with Ti and Au targets (2.5 keV <
Ed < 10 keV) [9]. All yields are normalized to the value
obtained on the accelerator for Ed = 10 keV. 
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Fig. 11. Estimated energy Ex of X-ray quanta emitted from
a Ti cathode in the glow discharge in deuterium (U =
1.25 kV; I = 200 mA; p = 4.4 Torr). The radiation was
detected by a TLD with Be foils of variable thickness (see
Fig. 1); Ix and I0 are the X-ray intensity measured in front of
and behind the filter. 
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anode could be displaced relative to the cathode
(Fig. 1b). In the case of a glow discharge with a
“plasma” anode (i.e., with the anode shifted 20 mm
away from the cathode) and the cathode open for mon-
itoring with a pinhole camera, it was established that
most X-ray quanta (>90%) are emitted predominantly
from the cathode surface. A positive image of the open
cathode obtained with X-ray-sensitive film (Fig. 12)
represents a bright spot with dimensions corresponding
to the diameter of the cathode spot. 

The results of our experiments also showed that the
X-ray emission pulses observed in a stationary dis-
charge regime were strictly correlated with the current
pulses. A growth in the discharge voltage and current
was accompanied by substantially nonlinear growth in
the yield of X-ray quanta (Fig. 13). The front of the sig-
nal from an X-ray radiation detector (based on a plastic
scintillator and a photoelectron multiplier) usually
coincided with the current pulse front. The X-ray inten-
sity reaches maximum within several microseconds
and then slowly decays over a period of about 200 µs. 

It was found that the energy of the X-ray quanta,
which was estimated using TLDs and a set of Be filters,
exhibits a weak growth when the discharge voltage
increases from 1.2 to 2.0 kV at a constant current of
200 mA. In order to provide for a change in the voltage
at a constant current, the pressure of deuterium was var-
ied in the interval from 2 to 9 Torr. It was found that, at
U < 1.6 kV, the X-ray quantum energy Ex = 1.22 ±
0.15 keV is virtually independent of the discharge volt-
age. As the voltage is increased further, the X-ray quan-
tum energy growth to reach Ex = 1.43 ± 0.17 keV. 

The statement that the TLDs with Be filters detected
X-ray quanta, rather than some other kind of ionizing
radiation, can be confirmed by an analysis of the possi-
ble types of emission accompanying glow discharge.
The TLDs employed are sensitive to X-ray and gamma

d

Fig. 12. A Ti cathode image obtained with X-ray film using
0.3-mm aperture pinhole camera covered by a 15-µm-thick
Be foil (I = 150 mA; U = 1250 V; p = 5.3 Torr; exposure
time, 1000 s). 
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quanta and to electrons with energies in the range from
several units to several hundred of kiloelectronvolts. In
the given interval of discharge voltages studied, it is
unlikely that electrons can be accelerated to E > 10 keV.
On the other hand, electrons with E < 10 keV are com-
pletely absorbed in a Be layer with a thickness of
15 µm. In our case, the intensity of radiation detected
by TLDs exhibited a tenfold decrease only for a Be film
thickness of h > 100 µm (Fig. 10). Therefore, we may
ascertain that the radiation detected by TLDs represents
only X-ray quanta, which are attenuated in Be films
according to the well-known law. 

The measurements of radiation doses Ix absorbed by
TLDs for various discharge currents (100–270 mA) and
voltages (1.0–1.8 kV) at a constant deuterium pressure
of 6 and 4.2 Torr revealed exponential growth of Ix as a
function of the effective discharge power P* = UIQ,
where Q is the on-off ratio for the discharge current
pulses (Fig. 14). The yield of X-ray quanta at a constant
pressure obeys the law 

(4)

where I0 = 0.98 and 0.725 Gy for p = 6.0 and 4.2 Torr,
respectively; ε = 0.04 eV is the activation energy for
deuteron escape from the Ti cathode surface (Fig. 5,
formula (1)); Tm = 1941 K is the melting temperature of
titanium; and  ≈ 6.0 W is the minimum (threshold)
effective discharge power. 

The efficiency of X-ray generation (the number of
quanta emitted per implanted deuteron) as a function of
the discharge current also obeys an exponential depen-
dence with the same parameters ε, Tm, and 
(Fig. 15). Thus, the X-ray yield strongly depends on the
deuterium concentration at the target surface at the tita-
nium melting temperature and exhibits a tendency to
growth with increasing effective cathode temperature
(Teff ∝  P*). 

4. DISCUSSION OF RESULTS 
The results of our experiments showed that a high-

current glow discharge in deuterium at an applied volt-
age of 0.8–2.45 kV is characterized by significant
enhancement of the DD reaction yield in a Ti cathode
and is accompanied by intense X-ray emission. In con-
trast to the accelerator experiments [6–10], which were
performed at much lower currents and higher deuteron
energies and showed an enhancement of the DD reac-
tion corresponding to an electron screening potential of
Ue ≤ 65 eV, our experiments with glow discharge gave
a much higher value of Ue = 610 ± 150 eV in Ti.

Let us consider the possible sources of errors in the
experiments with glow discharge, which might lead to
overestimation of the screening potential and enhance-
ment factor for the DD reaction in a Ti target. As was
demonstrated in earlier accelerator studies [1, 3], the

Ix I0 ε/kBTm( )Px*/P0*[ ] ,exp=

P0*

P0*
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400 µs

Fig. 13. Synchronized oscillograms of (1) X-ray emission
pulses measured with the aid of a plastic scintillator and a
photoelectron multiplier and (2) a glow discharge current
(∆τ = 400 µs) in deuterium (U = 1.4 kV; I = 250 mA; p =
4.2 Torr). 
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Fig. 14. Plots of the total dose of X-ray quanta emitted from
a Ti cathode and detected for 6000 s by a TLD spaced by
7 cm from the cathode (with allowance for the detector effi-
ciency) versus effective discharge power P* = UJQ (Q =
0.15 is the current pulse on-off ratio) for two gas pressures:
p1 = 6.0 Torr, and p2 = 4.2 Torr. 
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Fig. 15. Plot of the yield of X-ray quanta per deuteron ver-
sus effective discharge power P* at a gas pressure of p =
4.2 Torr. 
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standard procedure of evaluation of the screening
potential, including the normalization of the yields
from bulk targets at various energies (with respect to
the yield at the maximum energy) and comparison to
predictions of the Bosch–Halle extrapolation, may
exclude the errors related to uncertainties in the deute-
rium concentration and the absolute DD reaction yield. 

The stopping power of deuterons in Ti in our exper-
iments was assumed to be proportional to the particle
velocity v d. According to the results of recent investi-
gations for metals and semiconductors [23, 24], this
assumption is valid, at least for deuteron energies of
Ed ≥ 1.0 keV. The available data suggest that propor-
tionality of the stopping power and velocity of deuter-
ons is also not significantly distorted for Ed ≥ 0.5 keV.
Nevertheless, measurement of the stopping power for
deuterons at Ed ≤ 1.0 keV, which might reveal devia-
tions from the dE/dx ~ v d relation, would be of consid-
erable value. 

In this study, the deuteron beam current was deter-
mined with an oscilloscope and, in fact, considered
equal to the discharge current without using a Faraday
cup. It is important to note, however, that this determi-
nation of the beam current cannot lead to overestima-
tion of the DD reaction yield. Indeed, the secondary
electron emission from the cathode, should it be caused
by the bombardment with deuterons, might only reduce
the total charge detected by the Faraday cup on the
cathode (thus, understating the real deuteron beam cur-
rent). In turn, a decrease in the deuteron current on the
target may only lead to an increase in the absolute DD
reaction yield. For this reason, estimates of the 3-MeV
proton yield presented in Table 1 can be considered
only as the most conservative values. 

The phenomenon of deuteron channeling, which
may increase the probability of deuteron collisions, was
considered in detail in [6, 7]. Not dwelling here on this
phenomenon in much detail, we only point out that
channeling is not the main factor responsible for an
increase in the DD reaction cross section because of the
random orientation of polycrystals and the radiation
damage of crystal structure in the Ti target, especially
in the case of an intense flux of bombarding deuterons
and a high target temperature. The effect of a molecular

component ( / ) of the glow discharge on the DD
reaction yield enhancement in Ti can be also ignored, to
a first approximation, because the results of recent

experiments with the beams of D+ and  showed anal-
ogous enhancement [6]. 

On the other hand, a large (as compared to the case
of experiments using accelerators) uncertainty of the
discharge conditions (voltage–current) and the temper-
ature on the cathode surface can be actually considered
as the main sources of errors in estimating the enhance-
ment of the DD reaction yield in glow discharge.
Indeed, the voltage–current fluctuations in our experi-
ments might reach a level of 15% at a constant pressure

D2
+ D3

+

D3
+
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of deuterium. These effects increase the experimental
error in thick target yield and in evaluating the enhance-
ment factor. As a result, the finite screening potential
obtained using formula (3) is Ue = 610 ± 150 eV, where
the uncertainty (δUe = ±150 eV) amounts to about 25%
(including corrections for the current–voltage instabil-
ity) of the total Ue value. At the same time, in the
absence of significant spread in the deuteron energy in
the experiments using accelerators, the error in calcula-
tions of the screening potential does not exceed 15%. It
should be emphasized that, in such experiments at low
deuteron energies (Ed < 5 keV), the uncertainty in the
screening potential is determined primarily by the sys-
tematic error of detection, because a relatively small
beam current leads to a rather low count rate for the DD
reaction products. On the contrary, the count rate of
3-MeV protons in the case of glow discharge even at
Ed ≤ 1 keV is still greater than the statistical error of
measurements, which is due to a high deuteron beam
current on the cathode. In any case, the experimental
DD yields in a Ti cathode are always much higher than
the values obtained by extrapolation of the standard
yield. As the deuteron energy decreases, the difference
between experimental and standard yields tends to
increase and remains significantly greater than all
experimental uncertainties, including the detection
errors and the corrections for the current/voltage insta-
bility. 

In order to vary the deuteron energies, our experi-
ments were performed with variable discharge voltages
and currents (deuterium pressures) and, hence, with
different discharge powers. For taking into account the
effect of discharge power, which accounts for heating
of the near-surface cathode layer (with a thickness com-
parable with the deuteron range in Ti) and the resulting
change of the deuterium concentration, we introduced
the correction coefficient k(W, T) defined by formula (2)
with normalization to the maximum power at the melt-
ing temperature of Ti. It should be noted that k(W, T) =
εd∆T/kBTmT0 ≈ 0.3, and this value practically does not
increase on changing the power. The validity of this
approach is confirmed by the fact that the activation
energy ε for deuteron escape from the Ti cathode sur-
face (Fig. 5) was determined from the data determined
in the experiments using accelerators at low tempera-
tures (170–190 K) and can be considered as having the
maximum value, since it has a tendency to decrease
with increasing temperature [26]. Thus, a correction for
possible changes in the deuterium concentration in Ti
with allowance for the power supplied to the discharge
is quite justified. In the absence of this correction, the
experimental DD reaction yields at low deuteron ener-
gies would be unreasonably overstated. Therefore, the
enhancement factor according to formula (3), with nor-
malization to the effective cathode temperature accord-
ing to formula (1), can be considered as a conservative
estimate of the absolute DD reaction yield. 
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005
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Table 2.  Screening potentials and the corresponding electron energies for some metals

Target [Ref.] Ed(lab), keV ∆I, mA T, K Ue, eV Electron level Level energy E, eV

Ti [7] 5–30 0.054 263 ≤30 Ti (MII/MIII) 32.6

Ti [10] 2.5–10.0 0.06–0.25 186 65 ± 15 Ti (MI) 58.3

Ti* 0.8–2.45 225–450 >1000 610 ± 150 Ti (LII) 461

Au [7] 5–30 0.054 263 61 ± 20 Au (OII) 71

Au [10] 2.5–10.0 0.06–0.25 180 70 ± 10 Au (OII) 71

Pd [7] 5–30 0.054 263 800 ± 70 Pd (MI) 670

Pd [10] 2.5–10.0 0.06–0.30 313 310 ± 30 Pd (MV) 334

PdO [10] 2.5–10.0 0.06–0.30 193 600 ± 20 Pd (MII) 560

* Experiment in glow discharge.
It should be noted that an additional factor influenc-
ing the DD reaction enhancement is related to the
atomic vibrations in the target. The role of this factor
must increase with temperature [24]. However, using
published data [25], it can be readily shown that the
corresponding enhancement correction for the glow
discharge with Ed = 1.0 keV, and energy spread of ∆E ≈
100 eV with the corresponding thermal (Eth ~ 7.0kBT)
and vibrational (Evib ~ 0.1 eV [22]) energies, does not
exceed ±10%. This correction to the enhancement fac-
tor can increase the f(E) value and must be considered
as the limiting value. However, the real enhancement
factor at Ed = 1.0 keV according to formula (3) is f(E) ~
109. Therefore, neither a large energy spread nor a
higher temperature in our experiments could signifi-
cantly influence the DD reaction enhancement deter-
mined using formula (3). 

In concluding the analysis of correctness of the DD
reaction enhancement data obtained in our experiments
with glow discharge, it should be noted that the contri-
bution of D(d, p)T reaction yield due to the possible
cracking of metal deuterides is lower by at least two
orders of magnitude [27] than that obtained in our
experiments (without correction for the diffusion pro-
cesses) even at a minimum discharge voltage (Table 1).
Thus, despite uncertainties related to the instability of
conditions in a high-current glow discharge as com-
pared to those in a deuteron accelerator, the data on a
considerable enhancement of the DD reaction yield
(and the corresponding screening potential) obtained in
this study appear as significantly well substantiated
from the standpoint of both an analysis of possible
errors and a simple explanation of the DD reaction
enhancement effect. 

It was established that the anomalous enhancement
of the DD reaction yield in a glow discharge in deute-
rium with a Ti cathode is accompanied by intense X-ray
emission from the cathode surface. Such emission was
not observed earlier in the experiments using accelera-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tors at low energies, which is probably explained by
small deuteron beam currents and significantly lower
power injected into a metal target bombarded with an
accelerator as compared to the case of glow discharge. 

Without aspiring to give a detailed description of
processes on a Ti cathode surface under the conditions
of high-current deuteron beam action, we will now
briefly outline a qualitative model capable of explain-
ing the observed simultaneous DD reaction yield
enhancement and the intense emission of soft X rays
from the cathode. The mechanism of electron screening
in metals at low energies of bombarding particles con-
sidered within the framework of the usual model of
valence electron screening [28, 29] is still not com-
pletely clear and there is no commonly accepted expla-
nation of the enhancement effect corresponding to a
screening potential of Ue > 100 eV (i.e., well above the
adiabatic limit). The presence of a high screening
potential at high temperatures of the target with simul-
taneous intense X-ray emission cannot be explained in
terms of classical Debye screening (in application to
quasi-free valence electrons) or dynamic deuteron
screening in the metal lattice [8, 30]. In this respect, we
may only suggest that electrons of the inner levels can
be also involved in screening [31]. 

In order to illustrate this hypothesis, we summarized
in Table 2 the data on the screening potentials in some
metal targets bombarded with deuterons. These data
were mostly obtained in experiments using accelerators
[6–10], but also include the results obtained for glow
discharge in this study. The experimental values of the
screening potential in Table 2 are compared to the ener-
gies of the closest inner electron shells of the corre-
sponding metals. As can be seen from these data, the
screening potentials reported by various researchers are
in fact close (to within 1–2 standard deviations) to the
energies of the inner electron shells of these target
atoms. 
SICS      Vol. 100      No. 6      2005
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The correlation between the electron screening
potentials Ue for deuterons and the inner energy levels
of the target atoms stipulated a relation between the
mechanisms of this screening and the X-ray emission.
One possible explanation for the strong electron screen-
ing of deuterons in Ti assumes that the bombarding
deuterons coherently interact with a diffusing deute-
rium flux in the near-surface layer of the Ti cathode [26,
30, 32]. The high mobility of deuterium results from a
high density of the deuteron beam current and the
related high temperature of the target surface layer
(with a thickness comparable with the deuteron range).
Deuterons diffusing in d-metals possessing a high affin-
ity to hydrogen must exhibit interactions with the
valence d orbitals of metal atoms, that is, the sd hybrid-
ization of the valence electrons of deuterium and tita-
nium on the outer electron shells [30]. 

For simplicity, we suggest that the interaction of an
impinging deuteron with the valence d shell of Ti (cou-
pled to the s orbital of another deuteron diffusing with
an energy of kBT, or practically resting relative to the
projectile) has an inelastic character. The projectile
energy is transmitted to a linear combination of wave-
functions corresponding to the given set of states of the
diffusing deuteron coupled to the d orbital of Ti. This
energy transfer leads to a nonzero probability of popu-
lation of the inner (LII) shell of titanium by the recoil
deuteron and a temporal electron transition from the LII
shell to a state with lower energy [33]. As a result, the
interaction between the resting deuteron (coupled to the
valence d shell of Ti) and the recoil deuteron (occurring
on the LII shell with a binding energy of 462 eV for a
very short time τ ≈ "/Ed ≈ 10–18 s [34, 35]). This pro-
vides the conditions for strong screening, while the
energy transferred from the deuteron to the LII-shell elec-
tron is emitted in the form of an X-ray quantum [35]. The
X-ray quantum energy might be approximately equal to
that of the impinging deuteron, suggesting that the
interaction would be fully inelastic. The process of
simultaneous screening and X-ray emission involving
the LII shell of Ti can be described using the following
scheme: 

(5)

where D+(Ed) is the impinging deuteron with the energy
Ed; [D0 + Ti]sd is the diffusing or resting deuteron with
the energy kBT (kB is the Boltzmann constant), which is
coupled to the valence d shell of Ti (sd hybridization);

[  + Ti(LII)]* is the bound excited state of the recoil

deuteron  and an LII electron in Ti; dd( ) is the

DD reaction between  and D0 with the screening

D+ Ed( ) D0 Ti+[ ] sd+

Dr
+ Ti LII( )+[ ] * D0 dd ULII

( ) X Ed( ),+ +

Dr
+

Dr
+ ULII

Dr
+
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potential Ue =  = 462 eV; and X(Ed) is the emission
of X-ray quantum with the energy Ed. 

Under the glow discharge conditions, both the con-
centration and mobility of deuterium in a near-surface
layer of Ti are much higher than the corresponding val-
ues in the experiments using accelerators, which is
related to a high deuteron beam current density in the
discharge. Therefore, the probability of finding a dif-
fusing deuteron near a valence orbital of Ti in a glow
discharge is also high. This circumstance gives rise to
the probability of a quasi-inelastic collision between
the diffusing and impinging deuterons, which allows
the projectile to penetrate into the inner (LII) shell of Ti.
In the case of experiments using accelerators, the lower
concentrations and mobilities of deuterons in the target
lead to predominantly elastic collisions characterized
by a lower energy transferred to a deuteron interacting
with the valence orbital of Ti. As a result, the recoil deu-
terons (possessing much lower effective kinetic ener-
gies as compared to those of the impinging deuterons)
cannot penetrate into the L shell of Ti. Should such deu-
terons reach the M shell, their screening will take pace
at a lower electron screening potential (Ue ~ 30–65 eV),
in agreement with experiment (see Table 2). 

The approach outlined above for explaining the
simultaneous screening of deuterons and X-ray quanta
emission in glow discharge agrees with the observed
dependence of the X-ray quantum yield Yx on the effec-
tive discharge power P* (Fig. 15). The yield of X-ray
quanta with an energy of 1.25 ± 0.25 keV in the range
of voltages 900–1700 V grows exponentially with the
effective power. Since the effective temperature in a
near-surface layer of Ti is proportional to the discharge
power, the mobility of deuterium in this layer is also
proportional to P*. Thus, the simultaneous increase in
the X-ray quanta emission intensity and the deuterium
mobility in the near-surface layer of cathode (target)
agrees with the model according to scheme (5). 

5. CONCLUSIONS

We have studied for the first time the DD reaction
yield (3-MeV protons) and the soft X-ray quanta emis-
sion from a titanium (Ti) cathode surface in a periodic
pulsed glow discharge in deuterium at a discharge volt-
age of 0.8–2.45 kV and a discharge current density of
300–600 mA/cm2. An analysis of the DD reaction yield
as a function of the accelerating voltage allowed us to
estimate the electron screening potential at Ue = 610 ±
150 eV in the range of deuteron energies 0.8 keV < Ed <
2.45 keV. The data obtained show evidence for a signif-
icant enhancement of the DD reaction yield in Ti in
comparison to both theoretical estimates (based on the
extrapolation of the known DD reaction cross section
for Ed ≥ 5 keV to low deuteron energies in the Bosch–
Halle approximation) and the results of experiments
using accelerators at deuteron energies of Elab ≥ 2.5 keV
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and current densities of 50–500 µA/cm2. Intense emis-
sion of X-ray quanta (1013–1014 s–1 cm–2) was observed
at an average energy of 1.2–1.5 keV. 

Irrespective of a real mechanism responsible for the
DD reaction yield enhancement in a glow discharge
with a Ti cathode, accompanied by soft X-ray emission,
we showed that a high-current pulsed glow discharge
offers a unique possibility for studying the screening of
low-energy deuterons by electrons and the accompany-
ing atomic processes in solids under the conditions of a
large energy density transfer. In order to increase the
accuracy of data related to calculations of the DD reac-
tion yields under glow discharge conditions, we plan to
measure the energy distributions and charged states of
deuterium using methods developed for low-tempera-
ture plasma diagnostics. In addition, we will also per-
form direct measurements of the deuterium concentra-
tion in the cathode using in situ measurements of its elec-
tric resistance in the course of deuteron bombardment. 

ACKNOWLEDGMENTS 

The authors are grateful to V.V. Kushin and
A.I. Per’kov (Moscow Institute of Engineering Phys-
ics) for their help in experimental setups. Special
thanks to J. Kasagi and G. Hubler for their interest in
this study and valuable remarks, and to E.L. Feinberg
and A.N. Lebedev (Institute of Physics, Russian Acad-
emy of Sciences) for fruitful discussions. 

This study was partly financed by the government of
the USA (AF ERC grant no. RP50053).

REFERENCES 

1. U. Greife, F. Gorris, M. Junker, et al., Z. Phys. A 465,
150 (1995).

2. M. Junker, A. D’Alessandro, S. Zavatarelli, et al., Phys.
Rev. C 57, 2700 (1998).

3. H. Yuki, T. Sato, J. Kasagi, et al., J. Phys. G: Nucl. Part.
Phys. 23, 23 (1997).

4. M. Aliotta, F. Raiola, G. Gyurky, et al., Nucl. Phys. A
690, 790 (2001).

5. K. Czerski, A. Huke, A. Biller, et al., Europhys. Lett. 54,
449 (2001).

6. F. Raiola, P. Migliardi, G. Gyurky, et al., Eur. Phys. J. A
13, 377 (2002).

7. F. Raiola, P. Migliardi, L. Gang, et al., Phys. Lett. B 547,
193 (2002).

8. F. Raiola et al., Europhys. J. A 19, 283 (2004).
9. H. Yuki, J. Kasagi, A. G. Lipson, et al., JETP Lett. 68,

823 (1998).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
10. J. Kasagi, H. Yuki, T. Baba, et al., J. Phys. Soc. Jpn. 71,
2881 (2002).

11. H. S. Bosch and G. M. Halle, Nucl. Fusion 32, 611
(1992).

12. V. M. Grebenyuk, S. S. Parzhitski, P. M. Penkov, et al.,
Laser Part. Beams 18, 325 (2000).

13. V. M. Bystritskii, V. M. Bystritsky, S. A. Chaikovsky,
et al., Phys. At. Nucl. 64, 855 (2001).

14. V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, et al.,
Phys. At. Nucl. 66, 1683 (2003).

15. K. Krieger, Science 304, 1226 (2004).
16. D. Reiter, Trans. Fusion Technol. 33, 249 (1998).
17. A. B. Karabut, Ya. A. Kucherov, and I. B. Savvatimova,

Phys. Lett. A 170, 265 (1992).
18. V. Violante, A. Torre, G. Silvaggi, and G. H. Miley,

Fusion Technol. 39, 266 (2001).
19. E. P. Velikhov, A. S. Kovalev, and A. T. Rakhimov, Phys-

ical Phenomena in a Gas Discharge Plasma (Nauka,
Moscow, 1987) [in Russian].

20. F. G. Baksht and V. G. Yuriev, Zh. Tekh. Fiz. 49, 905
(1979) [Sov. Phys. Tech. Phys. 24, 535 (1979)].

21. A. G. Lipson, A. B. Karabut, and A. S. Roussetski, Proc.
Ital. Phys. Soc. 70, 335 (2001).

22. H. H. Anderson and J. F. Ziegler, Hydrogen Stopping
Powers and Ranges in All Elements (Pergamon, New
York, 1977).

23. K. Eder, D. Semard, P. Bauer, et al., Phys. Rev. Lett. 79,
4112 (1997).

24. S. P. Moller, A. Csete, T. Ichioka, et al., Phys. Rev. Lett.
88, 193201 (2002).

25. L. Schlapbach, I. Anderson, and J. P. Burger, in Materi-
als Science and Technology, Ed. by K. H. Jurgen Bus-
chow (Weinheim, New York, 1994), Vol. 3B, Part 2.

26. Y. Fukai and H. Sugimoto, Adv. Phys. 34, 263 (1985).
27. A. G. Lipson, B. F. Lyakhov, N. Asami, et al., Fusion

Technol. 38, 257 (2000).
28. C. Bonomo, G. Fiorentini, Z. Fulop, et al., Nucl. Phys. A

719, 37C (2003).
29. G. Fiorentini, C. Rolf, F. L. Villante, and B. Ricci, Phys.

Rev. C 67, 014603 (2003).
30. S. Ichimaru, Rev. Mod. Phys. 65, 255 (1993).
31. K. P. Shina and P. L. Hagelstein, Proc. Ital. Phys. Soc. 70,

369 (2001).
32. D. Pines, Elementary Excitations in Solids (Wiley, New

York, 1963; Mir, Moscow, 1965).
33. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
34. M. Drescher, M. Hentschei, R. Klenberger, et al., Nature

419, 803 (2002).
35. J. Seres, E. Seres, A. J. Verhoff, et al., Nature 433, 596

(2005).

Translated by P. Pozdeev
SICS      Vol. 100      No. 6      2005



  

Journal of Experimental and Theoretical Physics, Vol. 100, No. 6, 2005, pp. 1188–1233.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 127, No. 6, 2005, pp. 1350–1402.
Original Russian Text Copyright © 2005 by Suslov.

                        

MISCELLANEOUS
CONTENTS

1. Dyson’s Argument: Important 
Perturbative Series Have Zero Radius
of Convergence 1189

2. Lipatov’s Method: Quantitative Estimation
of Divergence of Series Expansions 1189

3. Interpretation of Perturbation Series: 
a Survey of the Mathematical Theory 
of Divergent Series 1191
3.1. Can We Deal with Divergent Series? 1191
3.2. Euler’s Principle 1191
3.3. How Should We Define
the Sum of a Series? 1193
3.4. Asymptotic Interpretation 
of Divergent Series 1193
3.5. Physical Arguments 1194

4. Lipatov Asymptotic Forms 
for Specific Models 1195
4.1. ϕ4 Theory 1195
4.2. Quantum Electrodynamics 1197
4.3. Other Fermionic Models 1199
4.4. Degenerate Vacuum 1200
4.5. Yang–Mills Theory and QCD 1201

5. Renormalons and Mathematical 
Substantiation of Lipatov’s Method 1203
5.1. ’t Hooft’s Argumentation 1203
5.2. Absence of Renormalon Singularities
in ϕ4 Theory 1205
5.3. General Criterion for the Absence 
of Renormalon Singularities 1206

6. Practical Summation of Perturbation Series 1208

6.1. Conformal–Borel Technique
and Other Methods 1208
6.2. Summation 
in the Strong-Coupling Limit 1211

7. “Non-Borel-Summable” Series 1215
7.1. Zero-Dimensional Model 1216
7.2. Double-Well Potential 1218
7.3. Yang–Mills Theory 1218

8. Gell-Mann–Low Functions
in Basic Field Theories 1220
8.1. ϕ4 Theory 1220
8.2. Quantum Electrodynamics 1224
8.3. QCD 1226

9. High-Order Corrections
to the Lipatov Asymptotics 1228

10. Outlook 1229
10.1. Calculation of c
in the Lipatov Asymptotics 1229
10.2. A Priori Proofs of Absence 
of Renormalons 1229
10.3. Development and Application 
of Highly Accurate Summation Methods 1230
10.4. Summation of Nonalternating Series 1230
10.5. Analytical Methods
for Strong-Coupling Problems 1230
10.6. Applications to the Theory
of Disordered Systems 1230

Acknowledgments 1230
References 1231

Divergent Perturbation Series
I. M. Suslov

Kapitza Institute for Physical Problems, Russian Academy of Sciences, Moscow, 117334 Russia
e-mail: suslov@kapitza.ras.ru

Received January 25, 2005

Abstract—Various perturbation series are factorially divergent. The behavior of their high-order terms can be
determined by Lipatov’s method, which involves the use of instanton configurations of appropriate functional
integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series
are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the
series, which can be resummed to solve various strong-coupling problems in a certain approximation. This
approach is demonstrated by determining the Gell-Mann–Low functions in ϕ4 theory, QED, and QCD with
arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and inter-
pretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented
for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contribu-
tions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes
are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of
the Borel integral is given for “non-Borel-summable” series. Higher order corrections to the Lipatov asymptotic
form are discussed. © 2005 Pleiades Publishing, Inc. 
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1. DYSON’S ARGUMENT:
IMPORTANT PERTURBATIVE SERIES 

HAVE ZERO RADIUS OF CONVERGENCE

Classical books on diagrammatic techniques [2–4]
describe the construction of diagram series as if they
were well defined. However, almost all important per-
turbation series are hopelessly divergent since they
have zero radii of convergence. The first argument to
this effect was given in [5] with regard to quantum elec-
trodynamics. Here, it is reiterated by using simpler
examples.

Consider a Fermi gas with a delta-function interac-
tion gδ(r – r') and the corresponding perturbation series
in terms of the coupling constant g. Its radius of conver-
gence is determined by the distance from the origin to
the nearest singular point in the complex plane and can
be found as follows. In the case of a repulsive interac-
tion (g > 0), the ground state of the system is a Fermi
liquid. When the interaction is attractive (g < 0), the
Cooper instability leads to superconductivity (see
Fig. 1a). As g is varied, the ground state qualitatively
changes at g = 0. Thus, the nearest singular point is
located at the origin, and the convergence radius of the
series is zero.

An even simpler example is the energy spectrum of
a quantum particle in the one-dimensional anharmonic
potential

(1.1)

Whereas the system has well-defined energy levels

U x( ) x2 gx4.+=
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when g > 0, these levels are metastable when g < 0 since
the particle can escape to infinity (see Fig. 1b). There-
fore, the perturbation series in terms of g is divergent
for any finite g. This can easily be shown by calculating
its coefficients. The calculation of the first 150 coeffi-
cients in [6] served as direct evidence of convergence of
the series and basis for a detailed convergence study.

Zero radius of convergence looks “accidental” in
quantum-mechanical problems: it is the case when a
potential of special form and an “inadequate” coupling
constant are chosen deliberately. However, zero radius
of convergence is encountered in all fundamental quan-
tum field theories with a single coupling constant.

Even though Dyson’s argument is unquestionable, it
was hushed up or decried for many years, because the
scientific community was not prepared to face the prob-
lem of divergent perturbation series.

2. LIPATOV’S METHOD: 
QUANTITATIVE ESTIMATION OF DIVERGENCE 

OF SERIES EXPANSIONS

A further step was made in 1977, when Lipatov’s
method was proposed as a tool for calculating high-
order terms in perturbation series and making quantita-
tive estimates for the divergence of series. The idea of
the method is as follows. If a function F(g) can be
(a)

Cooper instability

g

 Fermi liquid

(b) (c)U

xg > 0

U

xg < 0

Fig. 1. Graphic illustration of Dyson’s argument.
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expanded into a series in terms of g,

(2.1)

then the coefficients FN in the expansion can be deter-
mined as

(2.2)

where the contour C goes around the point g = 0 in the
complex plane. Rewriting the denominator as
exp{−(N + 1)lng} for large N, one may hope that the
saddle-point method can be applied to the resulting
exponential with a large exponent.

It is well known that the problems tractable by dia-
grammatic techniques can be reformulated in terms of
functional integrals of the form

(2.3)

with the expansion coefficients

(2.4)

Lipatov suggested seeking the saddle-point configura-
tion in (2.4) in g and ϕ simultaneously, rather than with
respect to g only. The desired configuration exists in all
cases of interest, being defined on a localized function
ϕ(x) called instanton. However, it turns out that the sad-
dle-point approximation is applicable when N is large
irrespective of its applicability to integral (2.3). This

F g( ) FNgN ,
N 0=

∞

∑=

FN
gd

2πi
--------F g( )

gN 1+
-----------,

C

∫=

Z g( ) Dϕ S0 ϕ{ }– gSint ϕ{ }–( ),exp∫=

ZN
gd

2πig
------------

C

∫=

× Dϕ S0 ϕ{ }– gSint ϕ{ }– N gln–( ).exp∫

?

QCD

QED, ϕ4

g

1

L

?

Fig. 2. Effective coupling versus length scale in ϕ4 theory,
QED, and QCD.
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finding has important consequences: whereas func-
tional integrals cannot generally be calculated exactly,
they can always be calculated in the saddle-point
approximation.

Once expansion coefficients are known for a func-
tional integral, expansions of Green functions, verti-
ces, etc., can be found, because factorial series can be
treated as finite expressions in a simple algebra
(see [8, Section 5.3]). Generally, the Lipatov asymp-
totic form of the expansion coefficients for any quantity
F(g) is

(2.5)

where Γ(x) is the gamma function and a, b, and c are
parameters depending on the specific problem under
analysis. In the framework of a particular theory, a is a
universal constant, b is a parameter depending on F(g),
and c depends on external coordinates or momenta.

When the Lipatov asymptotic form is known and a
few lowest order terms of a perturbation series are
found by direct calculation of diagrams, one can gain
insight into the behavior of the remaining terms of the
series and perform their summation to solve various
strong-coupling problems in a certain approximation.
The most important consequence is the possibility of
finding the Gell-Mann–Low function β(g), which
determines the effective coupling constant g(L) as a
function of length scale:

(2.6)

In relativistic theories, the first term in the expansion of
β(g) is quadratic, β(g) = β2g2 + …. For a small g,
Eq. (2.6) yields the well-known result [3, 9, 10]

(2.7)

where g0 is the value of g(L) on a length scale L0. In
both quantum electrodynamics (QED) and ϕ4 theory,
the constant β2 is positive, and g(L) is an increasing
function at small L (see Fig. 2). In quantum chromody-
namics (QCD), the sign of β2 is negative. Accordingly,
the interaction between quarks and gluons is weak at
small L (asymptotic freedom), while its increase with L
demonstrates a tendency toward confinement (see
Fig. 2). One problem of primary importance is exten-
sion of (2.7) to intermediate and strong coupling.
According to the classification put forward in [2], the
function g(L) tends to a constant if β(g) has a zero at a
finite g and continues to increase ad infinitum as g  ∞
if β(g) ∝  gα with α ≤ 1. If β(g) ∝  gα with α > 1, then
two interpretations are plausible. On the one hand,
assuming finite interaction at long distances, one would
have a self-contradictory theory: the effective charge

FN cΓ N b+( )aN ,=

dg

d L2ln
--------------– β g( ).=

g L( )
g0

1 β2g0 L2/L0
2( )ln–

--------------------------------------------,=
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g(L) goes to infinity at a finite Lc (Landau pole), while
the function g(L) is undefined at L < Lc . On the other
hand, a field theory interpreted as a continuum limit of
lattice models is “trivial” since the interaction vanishes
as L  ∞ (“zero-charge” property). The first attempts
to determine the Gell-Mann–Low function in ϕ4 theory
were made in [11–13].

Originally developed for scalar theories (such as
ϕ4 [7]), Lipatov’s method was extended to vector
fields [14], fermion problems [15], scalar electrody-
namics [16], and the Yang–Mills theories [17, 18], as
well as to a variety of problems in quantum mechanics
(see [19] and reviews in [20, 21]). Next in order were its
applications to theories of practical interest, QED [22, 23]
and QCD [24–26].

In all theories mentioned above, factorially diver-
gent series were obtained. Assuming that divergent
series are “the devil’s invention,” one must admit that
the Creator has also taken part: modeling of physical
reality leads to divergent series expansions with strik-
ing regularity.

3. INTERPRETATION
OF PERTURBATION SERIES: 

A SURVEY OF THE MATHEMATICAL THEORY 
OF DIVERGENT SERIES

The modern status of divergent series suggests that
techniques for manipulating them should be included in
a minimum syllabus for graduate students in theoretical
physics. However, the theory of divergent series is
almost unknown to physicists, because the correspond-
ing parts of standard university courses in calculus date
back to the mid-nineteenth century, when divergent
series were virtually banished from mathematics. The
discussion that follows provides a brief review of the
mathematical theory of divergent series [27].

3.1. Can We Deal with Divergent Series? 

Dealing with series of the form

(3.1)

for the first time, one may be tempted to treat them as if
they were finite sums. However, this is incorrect in the
general case, because a series can be treated as a finite
sum only if it is absolutely convergent [28], i.e.,

(3.2)

When dealing with a conditionally convergent series,
such as the alternating harmonic series

(3.3)

a0 a1+   +  a 2 a 3 … a N … + + + +

a0 a1 a2 a3 … aN … ∞.<+ + + + + +

1 1
2
---– 1

3
--- 1

4
---– 1

5
--- …,–+ +
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one cannot rearrange its terms in an arbitrary manner:
by Riemann’s theorem, a conditionally convergent
series can be rearranged to converge to any specified
sum [28]. Indeed, the sum of a convergent series is
defined as the limit of its partial sums, and any result
can be obtained by shifting negative terms rightwards
and positive terms leftwards, or vice versa.

Expectably, the analysis of divergent series is even
more complicated because of a greater number of for-
bidden operations on them:

(a) obviously, terms cannot be rearranged;

(b) terms cannot be grouped either, e.g.,

(3.4)

(c) a series cannot be “padded” by inserting zero
terms,

(3.5)

Thus, the basic idea of the theory of divergent series can
be stated: in principle, they can be consistently manip-
ulated if one follows rules that are much more stringent
than those for operations on finite sums or convergent
series.

3.2. Euler’s Principle 

What are the new rules to be followed? A prelimi-
nary answer to this question was given by L. Euler, who
was the true pioneer in developing the theory of
divergent series. Euler ruled out the use of number
series (3.1) and expansions over arbitrary basis func-
tions,1 

(3.6)

and emphasized a special role played by power series

(3.7)

Power series expansions are special in that information
about the natural numbering of their terms is preserved
under permutation or other operations. Therefore,
power series can be treated as finite sums. It is clear that
forbidden operations are ruled out automatically: if
number series (3.1) is interpreted as the limit of power
series (3.7) as x  1, then any rearrangement, pad-

1 This discussion concerns to divergent series only. Convergent
expansions such as (3.6) (e.g., over an orthogonal basis) are obvi-
ously admissible.

1 1– 1 1– 1 1– … 1 1–( )≠ 1 1–( )+ + + +

+ 1 1–( ) … 1 1– 1+( ) 1– 1+( )+ +≠+

+ 1– 1+( ) …;+

a0 a1 a2 a3 …+ + + +

≠ a0 0 a1 0 a2 0 a3 0 … .+ + + + + + + +

a0 f 0 x( ) a1 f 1 x( ) a2 f 2 x( ) … aN f N x( ) …,+ + + + +

a0 a1x a2x2 a3x3 … aN xN ….+ + + + + +
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ding with zero terms, or association leads to a series dif-
ferent from the starting one:

(3.8)

(3.9)

(3.10)

The fundamental reason for Euler’s principle lies in the
fact that a power series is absolutely convergent within
its circle of convergence and defines an analytic func-
tion that can be continued outside its domain of conver-
gence. Accordingly, arbitrary manipulations of power
series are admissible either as operations on absolutely
convergent series or by the principle of analytic contin-
uation. However, an analytic function may have several
branches, and information about them is lost when
divergent series are employed. Therefore, Euler’s
approach is not complete, and its application may lead
to poorly defined expressions requiring correct inter-
pretation. As a consequence, its rigorous mathematical
substantiation is hampered by difficult problems. Gen-
erally, constructive results concerning divergent series
provide partial evidence in support of Euler’s principle
under some restrictive assumptions [27]. Typically, the
approach is valid for the entire parameter space
spanned by the coefficients of a series except for a set
of measure zero, where it is valid only when the defini-
tion of the sum of the series is appropriately general-
ized. The excluded set has a complex structure and is
difficult to specify by proving only a finite number of
theorems. For this reason, Euler’s principle cannot be
adopted in modern mathematics without reservation.
However, it is not rejected either, because it does not
seem to be disproved by any known fact.

Basically, Euler’s principle is consistent with com-
mon practice in theoretical physics. It is commonly
believed that formal manipulations of power series on a
“symbolic” level cannot lead to results that are outright
incorrect even if divergent series are used in intermedi-
ate calculations. Moreover, ill-defined expressions do
not present significant problems, since their correct
interpretation can be found from physical consider-
ations by applying various rules for avoiding singulari-
ties, which are so skillfully devised by physicists. When
applying this approach, one should follow two rules:
never substitute the numerical values of x before the
series is transformed into a convergent one and never
perform Taylor series expansion about any known sin-
gular point.

With regard to the latter requirement, note that the
series used in quantum field theories have zero radii of

a1 a0 a3 a2 …+ + + +

a1 a0x a3x2 a2x3…,+ + +

a0 0 a1 0 a2 0 a3 …+ + + + + + +

a0 0 x a1x2 0 x3 a2x4+⋅+ +⋅+

+ 0 x5 a3x6…,+⋅

a0 a1+( ) a2 a3+( ) a4 a5+( ) …+ + +

a0 a1+( ) a2 a3+( )x a4 a5+( )x2 ….+ + +
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convergence, but arise from functional integral (2.3) as
a result of a regular expansion of the exponential in
terms of g and a subsequent (incorrect) interchange of
summation and integration. In essence, a summation
procedure is a reverse rearrangement performed “else-
where”: its applicability guarantees the freedom of for-
mal manipulation.

It may seem that the restriction to power series
expansion is very stringent. Actually, this is not true,
because a number series may arise in a physical appli-
cation only when some particular values are assigned to
model parameters. Normally, a power series in at least
one parameter can be obtained by returning to the gen-
eral statement of the problem or generalizing the
model. This is frequently done by using relatively sim-
ple tricks. For example, if the potential energy in the
Schrödinger equation is treated as a perturbation, then
the resulting expansion is not a power series. However,
if U(x) is replaced with gU(x) before performing the
series expansion (with a view to setting g  1 as a
final step), then a power series in g will be obtained.

Now, a few words should be said about number
series (3.1). In principle, it can be consistently manipu-
lated [27] if (3.1) is interpreted as a symbolic represen-
tation that cannot be treated as a conventional sum (oth-
erwise, one is led to paradoxes commonly discussed in
textbooks [28]). Manipulations of this kind are per-
formed according to ad hoc rules known only to spe-
cialists. The constructive prescriptions in these rules are
consistent with Euler’s principle if number series (3.1)
is identified with power series (3.7) in the limit of
x  1. This can always be done formally, but one
must be sure that series (3.1) has not been modified by
rearranging terms, discarding zero terms, etc. Since the
fulfillment of this requirement cannot be reliably
checked unless the number series is derived from a
known power series, number series per se are of no
practical importance.

As an implementation of Euler’s approach, consider
the well-known Borel transform: dividing and multi-
plying each term of a series by N!, introducing the inte-
gral representation of the gamma function, and permut-
ing sums and integrals, one obtains

(3.11)

The power series on the right-hand side has factorially
improved convergence properties and defines the Borel
transform B(z) of F(g):

(3.12)

F g( ) FNgN

N 0=

∞

∑ FN

N!
------ xxNe x– gNd

0

∞

∫
N 0=

∞

∑= =

=  xe x– FN

N!
------ gx( )N .

N 0=

∞

∑d

0

∞

∫

F g( ) xe x– B gx( ), B z( )d

0

∞

∫
FN

N!
------zN .

N 0=

∞

∑= =
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The Borel transform provides a natural basis for
summing factorially divergent series in quantum field
theories.

3.3. How Should We Define the Sum of a Series? 

Now, let us discuss the modern approach to the
problem. An “ideal” program of formalization can be
represented as follows.

1. Formulate a definition of the sum S of a series that
is equivalent to the conventional definition in the case
of a convergent series.

2. Consider a class L of transformations of one
series into another that leaves the sum invariant:

(3.13)

3. Verify that L is a sufficiently wide class that can
be used to transform convergent series into divergent
ones and vice versa.

4. Specify the class L to set rules for manipulating
series expansions without checking their convergence.

Has this program ever been implemented in modern
mathematics? In fact, it has been, to the extent that a
subclass of L sufficiently wide to solve practical prob-
lems has been specified. However, the theory cannot be
presented in the elegant form outlined above. Indeed,
difficulties arise even in implementing the first step: no
definition of a sum equally suited to any particular
problem is available. Summation methods for strongly
divergent series are not instrumental as applied to
weakly divergent ones, and vice versa. For this reason,
a laissez-faire approach is adopted: any definition of a
sum is formally admissible, and mutual consistency of
different definitions is the only subject to be analyzed
on an abstract mathematical level. The choice of a par-
ticular definition is left to the user. This attitude of
mathematicians is not quite correct: the user that knows
the definition of the sum can carry out the rest of the
analysis. However, this attitude is well grounded (see
Section 7).

In principle, it is known how these difficulties
should be resolved. Recall the standard definitions of
temperature in physics. Since no temperature measure-
ment method is universally applicable, several temper-
ature standards have been introduced (for high, low,
and ultralow temperatures) that lead to identical results
in the temperature regions where they overlap. An anal-
ogous approach can be adopted in the theory of diver-
gent series, where a variety of “good” (mutually consis-
tent) summation methods are available:2 a sum can be
defined by using a combination of these methods. Since
good methods actually rely on Euler’s principle, this

2 Note that “poor” (mutually inconsistent) methods are no less
abundant.

a0 a1 a2 a3 … aN …+ + + + + + S=

b0 b1 b2 b3 … bN …+ + + + + + S.=
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approach reverts to that principle, but on a higher for-
mal level and under certain restrictions.

As examples, consider the following possible defini-
tions of sum.

Euler’s definition. If power series (3.7) is conver-
gent at small x, then it defines a regular function f(x)
whose analytic continuation is the sum of series (3.7)
outside its circle of convergence.

In physical applications, this definition is adopted
without reservation. As noted above, it is not complete,
because the choice of a branch of the analytic function
remains an open question. However, when this defini-
tion is meaningful, all calculations can be performed
only by using convergent series, and the uncertainty is
thus eliminated. A theory of divergent series is really
necessary when the radius of convergence is zero, i.e.,
when Euler’s definition is meaningless.

Borel’s definition (applicable in the latter case as
well). The sum of series (3.11) is given by (3.12). This
definition agrees with other definitions based on Euler’s
principle and satisfies all necessary requirements.

3.4. Asymptotic Interpretation of Divergent Series 

Modern theory of divergent series has “two sources
and two parts.” The foregoing discussion deals with the
essentials of the Borel summation theory presented in
its complete form in [29]. More widely known is the
asymptotic interpretation of divergent series proposed
by Poincaré [30]. A power series expansion of a func-
tion f(x) is asymptotic if

(3.14)

where

(3.15)

i.e., if f(x) is accurately approximated by a truncated
series when x is small. The asymptotic interpretation is
constructive only if the problem at hand involves a
small parameter. However, when this condition is satis-
fied, one need not sum any high-order terms and even
should not be interested in their behavior. Another
advantage lies in the possibility of constructing asymp-
totic expansion (3.6) over arbitrary basis functions, pro-
vided that each fn(x) approaches zero faster than does
fn – 1(x).3 

There is no one-to-one correspondence between
functions and asymptotic power series expansions,
because f(x) can be modified by adding a function for
which all coefficients in (3.14) vanish, such as

3 If x ≥ 1, then expansion (3.6), in contrast to (3.7), does not admit
any meaningful interpretation at all. However, this is not neces-
sary: why should we use an expansion that is not regular and does
not involve any small parameter?

f x( ) a0 a1x a2x2 … aN xN RN x( ),+ + + + +=

RN x( ) O xN 1+( ), x 0,=
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exp(−a/x). When a series is convergent at small x, this
uncertainty is eliminated by imposing the condition of
analyticity at x = 0. However, this cannot be done for
series with zero radii of convergence. At first glance,
this would imply that a divergent series cannot be
assigned any particular sum.

Actually, this is not true. Asymptotic equality means
that the partial sum a0 + … + aNxN “resembles” the
function f(x) up to some remainder term RN(x). It is no
surprise that many functions meet this requirement
within the prescribed accuracy. Their variety can be
reduced by using a smaller RN(x), so that ultimately a
single function remains. In fact, this is exactly what
should be done: when the remainder term is subject to
certain constraints, the function and the asymptotic
series expansion are in one-to-one correspondence.
Namely, it suffices to replace standard condition (3.15)
with the so-called strong asymptotic condition

(3.16)

where G is a region containing the point x = 0 and CN is
a specially chosen coefficient. It is reasonable to treat
the single function that satisfies the strong asymptotic
condition and “resembles” an asymptotic series “most
closely” as its sum. By Watson’s theorem on Borel

RN x( ) CN x N 1+ , x< G,∈

(a) B

C

A

x

rc

rc

S

SE

(b)

SB

Fig. 3. (a) Convergence radius rc decreases as singular point
A approaches the origin. (b) Euler sum SE equals Borel sum
SB when rc is finite; when rc = 0, the former is meaningless,
whereas the latter extends the former by continuity.
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summability [27], this unique function is given by the
Borel integral in (3.12) for a broad class of divergent
series. Thus, both summation theory and asymptotic
theory naturally lead one to adopt Borel’s sum as the
sum of a divergent series.

The discussion above clearly solves the problem of
nonperturbative contributions, such as exp(–a/x), which
is frequently brought up as an argument against the use
of perturbation series. When Borel’s definition is
adopted, addition of such terms to Borel integral (3.12)
is forbidden. Formal manipulations of power series
expansions will never lead to terms of this kind unless
Taylor series expansion is performed about a known
singular point.

3.5. Physical Arguments 

Now, let us discuss physical arguments in support of
the interpretation of perturbation series in the Borel
sense.

Suppose that power series (3.7) has a finite radius of
convergence. Then, the corresponding analytic function
f(x) has singular points A, B, C, … at finite distances
from the origin (see Fig. 3a). In this case, it can be
shown that Borel’s definition of a sum is equivalent to
Euler’s, which is definitely suitable for physical appli-
cations.

As the distance from a pole or power-like singularity
at a point A to the origin decreases, the coefficients in
the series diverge, and the expansion becomes mean-
ingless when the convergence radius approaches zero.
However, there exist singularities that can be moved to
the origin without causing divergence of the coeffi-
cients: these are branch points with exponentially
decreasing jump across a cut. In particular, Lipatov
asymptotic form (2.5) is associated with the following
jump in F(g) across a cut [31, 32]:4 

(3.17)

Both Borel’s and Euler’s sums vary with radius of con-
vergence rc , remaining equal. When rc = 0, Euler’s sum
is meaningless, whereas Borel’s sum corresponds to
Euler’s definition extended by continuity (see Fig. 3b).

The limit of rc  0 is amenable to a straightfor-
ward physical interpretation. Consider the Fermi gas
with a delta-function interaction discussed in Section 1.
The Cooper instability occurs for arbitrary g < 0 only at
zero temperature. As the temperature T is raised to a
finite value, the instability domain shifts to negative g
by an amount gc determined by a Bardeen–Cooper–

4 Correspondence between (3.17) and (2.5) can be established by
calculating the jump across the cut for Borel’s sum of a series
with expansion coefficients having asymptotic form (2.5). Alter-
natively, one can write Cauchy’s integral formula for a point g
lying in the domain of analyticity and deform the integration con-
tour so that it goes around the cut. Then, the jump across the cut
given by (3.17) will correspond to asymptotic expression (2.5).

∆F g( ) 2πic
1

ag
------ 

 
b 1

ag
------– 

  .exp=
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Schriffer-like relation, T ∝  exp{–const/gc}. The corre-
sponding perturbation series has a finite convergence
radius gc , which tends to zero with decreasing temper-
ature. Generally, the value of a quantity calculated at
strictly zero temperature differs from its limit value
approached as T  0. However, the physically mean-
ingful value is that obtained as T  0. Thus, the value
at T = 0 must always be defined by continuous exten-
sion, i.e., by Borel summation.

4. LIPATOV ASYMPTOTIC FORMS
FOR SPECIFIC MODELS

The calculation of Lipatov asymptotic form (2.5) is
tedious if all parameters a, b, and c are to be found.
However, its functional form can be found by perform-
ing a formal saddle-point expansion and separating the
dependence on N. In what follows, calculations of this
kind are performed for several fundamental models in
theoretical physics.

4.1. ϕ4 Theory 

To begin with, consider the n-component ϕ4 theory.
The corresponding action is

(4.1.1)

(d is the space dimension). Functional integrals of the
form

(4.1.2)

define M-point Green functions,

(4.1.3)

which are diagrammatically represented by M-legged
graphs. Hereinafter, integral (4.1.2) is written in com-
pact form as

(4.1.4)

and normalized to an analogous integral with M = 0 and

g = 0, with the factor  subsumed under Dϕ.
Actually, the explicit form of the action is not required
in the present analysis, and only its homogeneity is
used to write

(4.1.5)

S g ϕ,{ } ddx
1
2
--- ∂µϕα x( )[ ] 2 1

2
---m2 ϕα

2 x( )
α 1=

n

∑+
α 1=

n

∑




∫=

+ 
1
4
---g ϕα

2 x( )
α 1=

n

∑ 
 
 

2





ZM g( ) Dϕϕ α1
x1( )ϕα2

x2( )…ϕαM
xM( )∫=

× S g ϕ,{ }–( )exp

GM g( )
ZM g( )
Z0 g( )
---------------,=

Z g( ) Dϕϕ 1( )…ϕ M( ) S g ϕ,{ }–( ),exp∫=

Z0
–1 0( )

S g ϕ,{ } S ϕ{ }
g

-------------, where ϕ φ
g

-------.= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
First, consider a finite-dimensional integral having the
form of (4.1.4) with Dϕ = dϕ1dϕ2…dϕm and define

(4.1.6)

This notation makes it possible to write any expression
in a form analogous to the corresponding one-dimen-
sional integral. In the infinite-dimensional limit, S'{φ}
and S''{φ} become the first and second functional deriv-
atives, interpreted as a vector and linear operator,
respectively.

According to Section 2, the expansion coefficients
are

(4.1.7)

and the saddle-point conditions have the form

(4.1.8)

The expansion of the exponent in (4.1.7) to quadratic
terms in δφ = φ – φc and δg = g – gc is

(4.1.9)

Since

(4.1.10)

the origin of δϕ can be shifted to obtain

(4.1.11)

where δg = igct, because the saddle point is passed in
the vertical direction. The Gaussian integration yields

(4.1.12)

i.e., Lipatov asymptotic form (2.5) is recovered.

φ

φ1

φ2

·

φm

, S' φ{ }

∂S/∂φ1

∂S/∂φ2

…
∂S/∂φm

,= =

S'' φ{ } ∂2S
∂φi∂φj

---------------- .=

ZN
gd

2πig
------------ Dϕϕ 1( )…ϕ M( )∫

C

∫°=

× S φ{ }
g

-------------– N gln– 
  ,exp

S' φc{ } 0, gc

S φc{ }
N

--------------.= =

N– N gc
N
2
----

δφ S'' φc{ }δφ,( )
S φc{ }

--------------------------------------–
N

2gc
2

-------- δg( ).2–ln–

δφ gc δϕ δg
2gc
--------ϕc+ 

  , δϕ ϕ ϕ c,–= =

ZN e N– gc
N– M /2– td

2π
------

∞–

∞

∫ Dϕφc
1( )…φc

M( )∫=

× 1
2
--- δϕ S'' φc{ }δϕ,( )–

N
2
----t2+ 

  ,exp

ZN
const

det S'' φc{ }[ ]–
-------------------------------------S φc{ } N– Γ N

M
2
-----+ 

  ;=
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The result given by (4.1.12) is independent of m,
remaining valid as m  ∞, i.e., in the functional-inte-
gral limit. However, any realistic functional integral
contains zero modes associated with the symmetry of
action under a continuous group defined by the operator

, S{φ} = S{ φ}. If φc is an instanton (i.e., S'{φc} = 0),

then so is φc (S'{ φc} = 0). By the continuity of the

group operation, there exists an operator  that is arbi-

trarily close to the identity operator,  = 1 + e .

Hence, it is clear that φc is the eigenvector of the oper-
ator S''{φc} associated with its zero eigenvalue. There-
fore, det[S''{φc}] = 0, and expression (4.1.12) is diver-
gent. However, its divergence is spurious, being due to
the inapplicability of the Gaussian approximation to
integrals over zero modes.

To calculate an integral of this kind correctly, collec-
tive variables λi are formally defined as functionals of
an arbitrary configuration of ϕ: λi = fi{ϕ}. For example,
the center x0 of an instanton can be defined by the rela-
tion

(4.1.13)

i.e.,

(4.1.14)

The integral in collective variables is performed by
inserting the following partition of unity into the inte-
grand in (4.1.11):

(4.1.15)

where fi{ϕ} can be defined as homogeneous functionals
of ϕ of degree zero5 (cf. (4.1.14)). If the arguments of
the delta functions in (4.1.15) are linearized in the
neighborhood of a saddle-point configuration,

(4.1.16)

and the instanton is defined so that λi – fi{φc} = 0 (e.g.,
using a solution that is symmetric about the point x = x0
in (4.1.14)), then φc is a function of λi , i.e., φc ≡ φλ . Per-

5 The result is actually independent of the particular form of the
functionals [33], and only their linear independence is essential.

L̂ L̂

L̂ L̂

L̂

L̂e T̂

T̂

ddxϕ4 x( ) x x0–( )∫ 0,=

x0

ddxϕ4 x( )x∫
ddxϕ4 x( )∫

-----------------------------.=

1 λ iδ λi f i ϕ{ }–( ),d∫
i 1=

r

∏=

1 λ iδ λi f i ϕc{ }– f i' ϕc{ } δϕ,( )–( )d∫
i 1=

r

∏=

=  λ iδ λi f i φc{ }– gc f i' φc{ } δϕ,( )–( ),d∫
i 1=

r

∏
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form a linear change of variables δϕ  δϕ with

det  = 1 to diagonalize the matrix S''{φc} and set

(4.1.17)

where the r variables (denoted by the tilde) that corre-
spond to the zero eigenvalues of S''{φc} and actually do
not contribute to the exponential in (4.1.11) are factored
out. Substituting (4.1.16) and (4.1.17) into (4.1.11),
removing the delta functions by performing integration
in δ , and calculating the integral in D'ϕ, we obtain

(4.1.18)

(4.1.19)

where f '{φc} is the operator defined by the matrix con-
sisting of the columns {φc}, and the subscripts P and
P' denote projections onto the subspace spanned by the
zero modes and its complement, respectively.6 The
ultraviolet divergences that arise when the constant c is
calculated are eliminated by conventional renormaliza-
tion of mass and charge. A general renormalization
scheme of this kind was developed by Brezin and Parisi
(see [8, 34]). Specific values of the parameters
in (4.1.18) can be found in [7, 14, 34, 35], and the most
general formal results were presented in [36–38].

According to (4.1.18), each degree of freedom asso-
ciated with a zero mode contributes 1/2 to the argument
of the gamma function. This resembles the classical
equidistribution principle. A more careful analysis
reveals a direct analogy. Indeed, the conventional parti-
tion function Z is a configuration-space integral of
exp(–H/T). As the number rosc of oscillatory degrees of
freedom increases by unity, Z changes to ZT1/2 and a
corresponding 1/2 is added to specific heat [39]. Inte-
gral (4.1.4) is dominated by the exponential
exp(−S{φ}/g), and the coupling constant g plays the
role of temperature. An increase by unity in the number
r of zero modes corresponds to a decrease by unity in
rosc and change from Z to Zg–1/2. To calculate the Lipa-
tov asymptotic form, the factor g–1/2 is estimated at the
saddle point gc ~ 1/N (see (4.1.8)), ZN is replaced by

6 In some cases, when det[f '{φc}]P depends on collective variables,
it must be factored into the integral in dλi .

Ŝ

Ŝ

Dϕ D'ϕ dϕ̃ i,
i 1=

r

∏=

ϕ̃ i

ZN cS0
N– Γ N

M r+
2

-------------+ 
  ,=

S0 S φc{ } ,=

c
S0

M r+( )/2–

2π( )1 r/2+
---------------------- detS'' 0{ }

det S'' φc{ }[ ] P'

--------------------------------–
1

det f ' φc{ }[ ] P

-------------------------------=

× λiφλ
1( )…φλ

M( ),d
i 1=

r

∏∫

f i'
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005



DIVERGENT PERTURBATION SERIES 1197
ZNN1/2, and 1/2 is added to the argument of the gamma
function. In ϕ4 theory with d < 4, the total number of
zero modes is r = d + n – 1, including d instanton trans-
lations and n – 1 instanton rotations in a vector space.
In a four-dimensional massless theory, there also exists
a dilatation mode associated with scale invariance
under variation of the instanton radius.

The equidistribution principle may be violated in
the presence of soft modes associated with approximate
symmetries: some degrees of freedom resemble zero
modes in the first approximation (see Fig. 4a), but a
more accurate analysis shows that they correspond to
motions in a slowly varying potential (Fig. 4b), which
may have a nonanalytic minimum (Fig. 4c). The contri-
bution of such a mode to the argument of a delta func-
tion is neither zero nor 1/2.

One problem arising in the presence of soft modes
is that the instanton φc is only an approximate solution
to the equation S'{φ} = 0, while there may not exist any
exact solution at all. Accordingly, the linear terms in the
expansion of φc in powers of δφ must be accurately
eliminated. The collective variable characterizing the
location of a particle moving in a slowly varying poten-
tial (see Fig. 4b) can be formally defined as a functional
on an arbitrary instanton configuration: z = f{φ}. An
extremum of the action is sought under the constraint
f{φ} = const (i.e., for a constant z) and then an integral
in z is calculated. Then, the instanton is determined by
the equation

, (4.1.20)

where µ is a Lagrange multiplier, and the integration
with respect to z is performed by inserting the following
partition of unity into the functional integral:

(4.1.21)

Using the condition z = f{φc} to define an instanton, one
obtains

(4.1.22)

and the linear in δφ terms in the exponential are can-
celed by a delta function by virtue of condition (4.1.20).
Since φc is a function of z, integration with respect to
Dϕ results in a nontrivial integral in z, which corre-
sponds to the motion in a slowly varying potential

S' φc{ } µ f ' φc{ }– 0=

1 zδ z f φ{ }–( )d∫=

=  zδ z f φc{ }– f ' φc{ } δφ,( )–( ).d∫

Z g( ) Dϕϕ 1( )…ϕ M( )∫=

×
S φc{ } S' φc{ } δφ,( ) 1

2
--- δφ S'' φc{ }δφ,( )+ +

g
---------------------------------------------------------------------------------------------------–

 
 
 
 
 

exp

× zδ f ' φc{ } δφ,( )–( ),d∫
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(Fig. 4b). Note that the rearrangements performed
in (4.1.20)–(4.1.22) are not restrictive, and any degree
of freedom can be treated as a soft mode. However, this
should be done only if the validity of the Gaussian
approximation is questionable.

Examples of soft modes are the dilatations in the
massive four-dimensional or (4 – e)-dimensional ϕ4

theory [37, 38] and the variation of the distance
between elementary instantons in a two-instanton con-
figuration (see Sections 4.4 and 9). The analysis above
shows that the shift b in the argument of the gamma
function includes contributions of external lines (M/2)
and zero modes (r/2), as well as the contribution ν due
to soft modes.

4.2. Quantum Electrodynamics 

The simplest functional integral in quantum electro-
dynamics (vacuum integral) has the form

(4.2.1)

where Aν is the vector potential, and  and ψ denote
fermionic fields represented in terms of Grassmann
variables. These are abstract quantities for which for-
mal algebraic operations are defined [40, 41], and the
standard Lipatov method cannot be applied directly
when they contribute to an exponential. A remedy can
be found by noting that the action is quadratic in the fer-
mionic fields and the Gaussian integral is easily calcu-

Z DADψDψ d4x
1
4
--- ∂µAν ∂ν Aµ–( )2∫–





exp∫=

---+ ψ iγν∂ν m– eγν Aν+( )ψ




,

ψ

(a)

(b)

(c)

Fig. 4. Soft mode: (a) zero mode (in the first approxima-
tion); (b) motion in a slowly varying potential (in a more
detailed analysis); (c) the potential may have a nonanalytic
minimum.
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lated in a Grassmann algebra as the determinant of the
corresponding quadratic form (see [15]):

(4.2.2)

If det(…) is represented as exp{logdet(…)}, then the
resulting effective action contains only the vector
potential Aν , which can be treated by Lipatov’s method.

The determinant of an operator is too difficult to be
used constructively, and considerable effort has been
applied to reduce it to a tractable form (see [22, 23]). In
particular, it was difficult to establish the general prop-
erties of a saddle-point configuration when no tractable
expression for effective action was available [22]. It
was found that the saddle-point value of eAν(x) is large.
Accordingly, one can make use of the asymptotic form
of the determinant as e  i∞ since the fastest growth
corresponds to a pure imaginary e [20]:

(4.2.3)

Expression (4.2.3) is not gauge invariant. It is valid only
in a restricted set of gauges for which the scale of vec-
tor-potential variation is comparable to that of the phys-
ical electromagnetic field, which is treated as semiclas-
sical.7 Actually, these gauges are close to the Lorentz
gauge, as can be shown by considering configurations
characterized by high symmetry [20, 23].

Substituting (4.2.3) into (4.2.2), one obtains the
functional integral containing the effective action

(4.2.4)

for which asymptotic results of perturbation theory can
be found in the saddle-point approximation. The struc-
ture of these asymptotics is determined by the homoge-
neity properties of the action, which are analogous to
those in ϕ4 theory with g2 used as a coupling constant.
According to Section 4.1, the general term of the

asymptotics has the form c Γ(N + b)g2N, where S0 is
an instanton action. Actually, the series expansion is
developed in terms of arbitrary (not only even) powers
of g, and the substitution N  N/2 leads to

7 The general scheme for deriving expressions analogous to (4.2.3)
is illustrated in Section 4.3 by using a simpler example.

Z DAdet iγν∂ν m– eγν Aν+( )∫=

× 1
4
--- d4x ∂µAν ∂ν Aµ–( )2∫–

 
 
 

exp .

det iγν∂ν m– eγν Aν+( )

=  
e4

12π2
----------- d4x Aν

2( )2

∫ 
 
 

.exp

Seff A{ }  = d4x
1
4
--- ∂µAν ∂ν Aµ–( )2 4

3
---g2 Aν

2( )2
–

 
 
 

,∫

S0
N–
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c Γ(N/2 + b)gN as the Nth-order contribution. This
formal substitution is valid, because the direct expan-
sion of (4.2.4) in terms of the last summand is not cor-
rect, because the functional integration would involve
configurations for which (4.2.4) is not valid. Calcula-
tion must be performed by the saddle-point method,
which yields a continuous function of N, and the fact
that its values must be taken at integer or half-integer
points is an external condition.

By using the value of the instanton action, the coef-
ficients of high-order terms in the expansion of (4.2.1)
are expressed as follows [14, 15]:

(4.2.5)

Here, the total number r of zero modes is 11, including
four translations, a scale transformation, and six four-
dimensional rotations, since the symmetry of an instan-
ton is similar to that of an irregular solid.

The scheme developed above can be applied to cal-
culate other quantities [42]. The most general vertex in
QED contains M photon integrals and 2L electron lines
and corresponds to the functional integral

(4.2.6)

Integration over the fermionic fields results in

(4.2.7)

Here, G(x, x') is the Green function of the Dirac
operator,

(4.2.8)

and the ellipsis stands for terms with different pairings
of ψ(yi) and (zk). The structure of the result can be
found by performing calculations as demonstrated
above, i.e., essentially by dimensional analysis. It can
readily be shown that ec ~ N–1/4 and Ac(x) ~ N1/2 for a
saddle-point configuration. To determine the dimension

S0
N /2–

ZN const S0
N /2– Γ N r+

2
------------- 

  , S0
4π3

33/2
--------.= =

ZM L, DADψDψA x1( )∫=

…A xM( )ψ y1( )ψ z1( )…ψ yL( )ψ zL( )

× d4x
1
4
--- ∂µAν ∂ν Aµ–( )2∫–





exp

---+ ψ iγν∂ν m– eγν Aν+( )ψ




.

ZM L, DAA x1( )∫=

…A xM( )G y1 z1,( )…G yL zL,( )
× det iγν∂ν m– eγν Aν+( )

× 1
4
--- d4x ∂µAν ∂ν Aµ–( )2∫–

 
 
 

exp ….+

iγν∂ν m– eγν Aν+( )G x x',( ) δ x x'–( ),=

ψ
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of G(x, x'), write out the Dyson equation that follows
from (4.2.8):

(4.2.9)

To elucidate the structure of the solution, consider the
scalar counterpart of (4.2.9) and assume that the func-
tion Aν(x) is localized within a small neighborhood of
x = 0. Then, the equation is easily solved by setting
G(y, x') ≈ G(0, x'):

(4.2.10)

Since eAν(x) ~ N1/4 and (4.2.10) tends to a finite limit as
e  ∞, the result is G(x, x') ~ N0. It is reasonable to
expect that its validity is independent of the assump-
tions used in its derivation. The Nth-order contribution
to integral (4.2.6) has the form

(4.2.11)

for even M and a similar form multiplied by eN1/4 for
odd M.

4.3. Other Fermionic Models 

As an additional example of fermionic model, con-
sider the Yukawa interaction [15], to which description
of electron–phonon interaction in metals can be
reduced with minor changes:

(4.3.1)

Integration over the fermionic fields results in

(4.3.2)

The transformation of the fermion determinant begins
with the solution of an analogous problem for the deter-
minant of the Schrödinger operator normalized to the
determinant of the unperturbed problem (normalization

G x x',( ) G0 x x'–( )=

– d4yG0 x y–( )eγν Aν y( )G y x',( ).∫

G x x',( ) G0 x x'–( )=

–
G0 x'–( ) d4yG0 x y–( )eγν Aν y( )∫

1 d4yG0 y–( )eγν Aν y( )∫+
-----------------------------------------------------------------------------.

const
33/2

4π3
-------- 

 
N /2

Γ N r M+ +
2

------------------------ 
  g–( )N

Z DϕDψDψ ddx
1
2
--- ∂µϕ( )2∫–





exp∫=

+
1
2
---m2ϕ2 ψ iγν∂ν M+( )ψ λψϕψ+ +





.

Z Dϕdet iγν∂ν M λϕ+ +( )∫=

× ddx
1
2
--- ∂µϕ( )2 1

2
---m2ϕ2+∫–

 
 
 

.exp
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of this kind is due to the normalization of a functional
integral to the vacuum integral in the interaction-free
theory):

(4.3.3)

It can easily be shown that

(4.3.4)

where µs denotes the eigenvalues of the problem

(4.3.5)

The number s of energy states below E for an electron
moving in a semiclassical potential –µV(x) can be
found by invoking the Thomas–Fermi model. By using
the local Fermi momentum

(4.3.6)

it is expressed as

(4.3.7)

where n(x) is the local electron density and Kd is the
area of a d-dimensional unit sphere divided by (2π)d.
Since the value of µs in (4.3.5) corresponds to the con-
dition that exactly s electron energy states lie below E,
expression (4.3.7) describes the asymptotic behavior of
µs for large s:

(4.3.8)

Now, the value of (4.3.4) can easily be estimated at
large z:

(4.3.9)

When d < 2, the upper limit in the integral can be set at
infinity, and the integral is calculated by changing from
x to ax in the logarithm and differentiating the result

D z( ) det ∆– E– zV x( )+[ ]
det ∆– E–[ ]

---------------------------------------------------=

=  det 1 z
V x( )
∆– E–

-----------------+ .

D z( ) 1 z
µs

-----+ 
  ,

s

∏=

∆– E– µsV x( )–{ } es x( ) 0.=

p x( ) E µV x( )+ µV x( )[ ] 1/2,≈=

s n x( )ddx∫
Kd

d
------ pd x( )ddx∫= =

≈
Kd

d
------ µV x( )[ ] d/2ddx,∫

s Aµs
d /2, A

Kd

d
------ V x( )[ ] d/2ddx.∫= =

D z( )ln 1 z
µs

-----+ 
 ln

s 1∼

∞

∑=

≈ A
d
2
--- µsµs

d/2 1– 1 z
µs

-----+ 
 lnd

~A
2/d–

∞

∫

≈ A
d
2
---zd /2 xd

x1 d/2+
-------------- 1 x+( )ln

0

~zA
2/d

∫ Azd /2 π
πd/2( )sin

------------------------.≈
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with respect to a. The substitution of Kd =
21 − dπ−d/2/Γ/(d/2) yields the final result

(4.3.10)

It is well known that the Dirac operator can be obtained
by factorization of the Klein–Gordon operator trans-
formed into the following Schrödinger operator by
Wick rotation:

(4.3.11)

An analogous relation holds after m is replaced with
λϕ(x), where ϕ(x) is a slowly varying function. For
large λ, it can readily be shown that

(4.3.12)

and (4.3.2) yields the effective action

(4.3.13)

where g = λ2 is used as an effective coupling constant
in an expansion of integral (4.3.1).

When 2 ≤ d < 4 or d ≥ 4, the divergence of the inte-
gral in (4.3.9) is eliminated by renormalizing both mass
and charge [34] so that ln(1 + x) is replaced with
ln(1 + x) – x and ln(1 + x) – x + x2/2, respectively. The
integral is calculated by changing from x to ax and dif-
ferentiating the result with respect to a. The result

D z( ) Γ d/2–( )
4π( )d /2

-------------------- ddx zV x( )[ ] d/2∫–
 
 
 

.exp=

∆– m2+ iγν∂ν m+( ) iγν∂ν– m+( ).=

det
iγν∂ν M λϕ+ +

iγν∂ν M+
------------------------------------- 

  det
∆– λ2ϕ2 x( )+

–∆
---------------------------------- 

 ≈

≈ Γ d/2–( )
2 4π( )d /2
-------------------- ddx λϕ x( )[ ] d∫–

 
 
 

exp

Seff ddx
1
2
--- ∂µϕ( )2 1

2
---m2ϕ2+∫=

+
Γ d/2–( )
2 4π( )d/2
--------------------gd/2ϕd x( ) ,

(a)

H(b)

Fig. 5. Domain wall as example of topological instanton:
(a) degenerate vacuum; (b) vacuum state is split into an
instanton–anti-instanton pair corresponding to a saddle-
point configuration.
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obtained for d ≠ 2, 4 is formally identical to (4.3.13). If
d = 2 or 4, then the calculation can be performed to log-
arithmic accuracy by taking into account the finite
upper limit in the last integral in (4.3.9).

Effective action (4.3.13) can be rewritten as

(4.3.14)

where

and the change to  = g1/α and  = αN is performed to
represent the integral expression for the expansion
coefficients in a form similar to that in ϕ4 theory.
The result is similar to ϕ4 theory up to the change
N  αN:

(4.3.15)

4.4. Degenerate Vacuum 

Calculations of the Lipatov asymptotic forms for the-
ories with degenerate vacuum require special analysis.

The simplest example is the one-dimensional Ising
ferromagnet with a doubly degenerate ground state
with all spins either up or down. In addition to these
vacuums, there exists a classical domain-wall solution
(an example of topological instanton), which corre-
sponds to transition between the two degenerate vacu-
ums (Fig. 5a). The issues to be resolved in this model
arise from the following: (a) the contributions of topo-
logical instantons to asymptotic expressions for expan-
sion coefficients are strictly imaginary, which implies
that they are insignificant in some sense; (b) generally,
the absence of other nontrivial classical solutions to
problems of this kind is established by special theorems.

To elucidate these issues, suppose that the degener-
acy of the vacuum states is eliminated by applying a
magnetic field aligned with the ferromagnet’s axis.
Then, domain-wall-like excitations cannot exist,
because they are associated with an infinitely large
additional energy (in the infinite-volume limit). How-
ever, they can exist in the form of instanton–anti-instan-
ton pairs (Fig. 5b). If the interaction between the com-
ponents of such a pair is repulsive, then there exists a
stationary state characterized by an average distance
between the components. As the distance decreases
with increasing magnetic field strength, a localized
instanton of the type considered in Lipatov’s method is
obtained. As the distance increases with decreasing
magnetic field strength, the amplitude of distance fluc-
tuations increases, and the pair breaks up into free
instanton and anti-instanton in the limit of strictly
degenerate vacuum.

Seff g ϕ,{ } S ϕ{ }
g1/α-------------,=

φ ϕg1/2α , α d 2–
d

------------,= =

g̃ Ñ

ZN cS0
αN– Γ α N b+( ).=
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Because of strong fluctuations of the distance
between the components, the saddle-point approxima-
tion can be applied in Lipatov’s method only if N @ 1/e
(rather than N @ 1), where e is a small parameter char-
acterizing the difference between the vacuums. How-
ever, there exists an intermediate asymptotic regime
that is virtually independent of e for 1 ! N ! 1/e. As
e    0, this intermediate asymptotic behavior
approaches the true asymptotics of the degenerate prob-
lem. This implies that the latter asymptotics can be
found without analyzing the case of e = 0. For finite e,
single instantons do not exist and therefore do not con-
tribute to the asymptotics of perturbation theory, which
are determined by the instanton–anti-instanton pair.

The physical interpretation outlined here was devel-
oped in an analysis of the quantum mechanical double-
well potential problem [43]. Analogous interpretations
can be expected to be valid for other theories with
degenerate vacuum, among which Yang–Mills theories
are of particular interest.

4.5. Yang–Mills Theory and QCD 

The topological instanton found in [44] for the
Yang–Mills theory was the earliest evidence of the
existence of degenerate vacuum in QCD. In [45], the
saddle-point calculation of a functional integral was
performed for the one-instanton configuration of SU(2)
Yang–Mills fields coupled to fermions and scalar parti-
cles. This result was extended to arbitrary SU(Nc) sym-
metry in [46]. In an analysis of saddle-point configura-
tions performed for the Yang–Mills field coupled to a
scalar field in [18], a continuous transformation of the
ϕ4 theory instanton into a saddle-point configuration for
the pure Yang–Mills theory was found. The latter con-
figuration was shown to correspond to an instanton–
anti-instanton pair; i.e., a physical interpretation analo-
gous to that discussed above was developed. The result
obtained in [45] for a single instanton was used in [17]
to calculate the contribution of the instanton–anti-
instanton configuration to asymptotic behavior in per-
turbation theory for SU(2) Yang–Mills fields. The Lipa-
tov asymptotic forms for realistic QCD were calculated
in [24–26]. A general scheme of these calculations is
presented below.

As a first step, a rule for combining instantons [33]
is formulated for the functional integral

(4.5.1)

where A(i) is a bosonic field, and the superscript i stands
for both coordinate and internal degrees of freedom.
Suppose that the action S{A, g} is rewritten as S{B}/g2

by changing from A to B/g and the equation S '{B} = 0
has an instanton solution Bc . By following the scheme

ZM g( ) DAA 1( )A 2( )…A M( ) S A g,{ }–( ),exp∫=
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developed in Section 4.1, it can readily be shown that
the one-instanton contribution to ZM(g) has the form

(4.5.2)

where S0 = S{Bc}, r is the number of zero modes, λi

denotes the corresponding collective variables, and Bλ
is the instanton configuration depending on these vari-
ables.

If Bc is the combination Bλ + Bλ' of elementary
instantons, then the corresponding two-instanton con-
tribution can be represented as the sum of terms of the
form

(4.5.3)

with L + L' = M. The instanton–instanton interaction
Sint(Bλ, Bλ') is defined by the relation

(4.5.4)

When the interaction is neglected, the right-hand side
of (4.5.3) reduces to the product of two expressions
having the form of (4.5.2), with M = L and M = L'. Due
to the exponential factor, the instanton–instanton inter-
action is limited by the condition Sint(Bλ, Bλ') & g2.
When g is small, this condition is insignificant, and the
overlap of Bλ and Bλ' can be neglected. The resulting
sum in L and L' contains only the terms with L = M,
L' = 0 and L = 0, L' = M, which are obviously equal. The
ensuing factor 2 is canceled by the combinatorial factor
1/2! introduced to preclude double counting of config-
urations. The resulting two-instanton contribution,

(4.5.5)

entails a rule for combining instantons: in addition to
the information contained in (4.5.2), it is necessary to
know the instanton–instanton interaction in the domain
where the interaction is weak.

ZM
1( ) g( ) c0g M– r– e

S0/g2–
=

× λiBλ
1( )Bλ

2( )…Bλ
M( ),d

i 1=

r

∏∫

ZLL' g( ) c0
2g M– 2r– e

2S0/g2–
=

× λi λ i'Bλ
1( )…Bλ

L( )Bλ'
1( )…Bλ'

L'( )dd
i 1=

r

∏∫

×
Sint Bλ Bλ',( )

g2
----------------------------– 

 exp

S Bλ Bλ'+{ }
≡ S Bλ{ } S Bλ'{ } Sint Bλ Bλ',( ).+ +

ZM
2( ) g( ) c0

2g M– 2r– e
2S0/g2–

=

× λi λ i'Bλ
1( )…Bλ

M( ) Sint Bλ Bλ',( )
g2

----------------------------– 
  ,expdd

i 1=

r

∏∫
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In relativistic scale-invariant theories, the integrals
with respect to the radius ρ and center x0 of an instanton
in (4.5.2) can be performed separately [41], while λi are
treated as internal degrees of freedom:

(4.5.6)

where yi = (xi – x0)/ρ, ν = –β2S0, β2 is the lowest order
nonvanishing expansion coefficient for the Gell-Mann–
Low, µ is the value of momentum at the normalization
point, and exp(ν lnµρ) is uniquely factored out by virtue
of the renormalizability condition [41]. Formula (4.5.6)
is consistent with ’t Hooft’s result for SU(Nc) Yang–
Mills fields (S0 = 8π2, r = 4Nc, ν = (11Nc – 2Nf)/3) [45,
46] and (with g2 replaced by g) with the corresponding
result in ϕ4 theory [7, 14, 37].

The QCD Lagrangian has the form

(4.5.7)

where , ψf , and ωa denote gluon, quark, and ghost
fields, respectively; Ta and fabc are the generators of the
fundamental representation and structure constants of
the Lie algebra, respectively; α is the gauge parameter;
and the subscript “f” denotes the types of quarks, whose
total number is Nf . The preexponential factor in the
most general functional integral for QCD contains M
gluon fields, 2L ghost fields, and 2K quark fields:

(4.5.8)

where the vector indices that are not essential for the
present analysis are omitted. By replacing A with B/ ,
the Euclidean action is rewritten as

(4.5.9)

ZM
1( ) g( ) cHg M– r– e

S0/g2–
λ i d4x0∫d

i

∏∫=

× ρρ M– 5– eν µρln Bλ y1( )…Bλ yM( ),d∫

L
1
4
--- Fµν

a( )2
–

1
2α
------- ∂µAµ

a( )2
–=

+ ψf D̂ψf ∂µωa ∂µωa g f abcωbAµ
c–( ),+

f

∑
Fµν

a ∂µAν
a ∂ν Aµ

a– g f abcAµ
b Aν

c ,+=

D̂ iγµ ∂µ igAµ
a Ta–( ),=

Aν
a

ZMLK DADωDωDψDψA x1( )∫=

…A xM( )ω y1( )ω y1( )…ω yL( )ω yL( )
× ψ z1( )ψ z1( )…ψ zK( )ψ zK( )
× S A ω ω ψ ψ, , , ,{ }–( ),exp

g

S A ω ω ψ ψ, , , ,{ } S B{ }
g2

-------------

+ d4x ωQ̂ω ψf D̂ψf

f

∑+ .∫
JOURNAL OF EXPERIMENTAL A
Integration over the fermionic fields results in

(4.5.10)

where G and  are the Green functions of the operators

 and , and the ellipsis stands for terms with differ-

ent pairings. It is important here that S{B}, G, and 
are independent of . Functional integral (4.5.10) is
dominated by the Yang–Mills action, and the corre-
sponding one-instanton contribution can be written out
by analogy with (4.5.2). The asymptotic behavior in
perturbation theory is determined by an instanton–anti-
instanton contribution calculated by analogy with (4.5.5).
The instanton–instanton interaction is specified by
introducing a conformal parameter ξ:

(4.5.11)

where ρI and ρA denote the instanton and anti-instanton
radii, R is the distance between their centers, and h =
h(λ, λ') depends on their mutual orientation in the iso-
topic space [24]. Next, it should be noted that

det {Bλ + Bλ'} ≠ det {Bλ}det {Bλ'} since det {Bλ}
does not vanish only if the finite quark mass is taken

into account, whereas det {Bλ + Bλ'} is determined by
the instanton–instanton interaction and is finite in the
massless limit (see [24]),

(4.5.12)

By factoring the integrals in the instanton radii and cen-
ters and changing to the momentum representation, the
instanton–anti-instanton contribution is rewritten as

(4.5.13)

where 〈B〉k , 〈G〉k, k' , and  denote Fourier compo-

nents of B(x), G(x, x'), and , respectively; ρ ≡

ZMLK 1/g( )M DAB x1( )∫=

…B xM( )G y1 y1,( )…G yL yL,( )

× G̃ z1 z1,( )…G̃ zK zK,( )detQ̂ detD̂( )
N f

× S B{ } /g2–{ }exp …,+

G̃

Q̂ D̂

G̃
g

Sint hξ , ξ–
ρI

2ρA
2

R2 ρI
2 ρA

2+ +( )2
-------------------------------------,= =

D̂ D̂ D̂ D̂

D̂

detD̂ Bλ Bλ'+{ } const ξ3/2.=

ZMLL'
IA( ) const

gM 2r+
--------------e

2S0/g2–
λ i λ i'dd

i

∏∫=

× ρρ3M 6L 5L' 5–+ + e2ν µρln Bλ〈 〉 ρp1
d∫ … Bλ〈 〉 ρpM

× Gλ〈 〉 ρk1 ρk1', … Gλ〈 〉 ρkL ρkL', G̃λ〈 〉 ρq1 ρq1',

… G̃λ〈 〉 ρqL' ρqL',
ξd

ξ
1 ν /2 3N f /2–+

----------------------------e h λ λ ',( )ξ /g2–

0

~1

∫ …,+

G̃〈 〉 k k',

G̃ x x',( )
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ρI; use is made of the fact that the dominant contribu-
tion is due to the region where R ~ ρA @ ρI; and rela-
tion (18) from [24] is taken into account.

By following [17] (see also [33]), the last integral is
replaced by the corresponding jump across the cut.
Then, (4.5.13) yields a jump in the total value of ZMLL'
across the cut:

(4.5.14)

where the independence of Bλ , Gλ , and  of  is used

and all integrals are assumed to be convergent.8 By vir-
tue of relation (3.17) between the jump across the cut
and the asymptotic form of expansion coefficients, the
Nth-order contribution to ZMLL' is

(4.5.15)

for even M and by a similar form multiplied by 
for odd M [17, 24, 47]. This result is analogous to that
discussed in Section 4.1: the term M/2 in the argument
of the gamma function is determined by the number of
external lines, 4Nc is half the number of zero modes,
and 11(Nc – Nf)/6 is the additional contribution of the
soft mode corresponding to variation of the instanton–
anti-instanton distance. Specific values of the constant
factor were calculated in [17, 24, 25].

5. RENORMALONS AND MATHEMATICAL 
SUBSTANTIATION OF LIPATOV’S METHOD

5.1. ’t Hooft’s Argumentation 

The invention of Lipatov’s method was widely rec-
ognized, and it was immediately applied to almost
every topical problem in theoretical physics (see [19]).
However, the validity if Lipatov’s method was ques-
tioned as early as in 1977. The criticism dates back
to [49], where the following interesting remark was
made. Lipatov’s result (2.5) is obviously associated
with the factorially increasing number of diagrams of
order (ag)N. However, this interpretation is incorrect in
the general case: in particular, there exist Nth-order dia-
grams (with long chains of “bubbles”) whose contribu-
tions are proportional to N! (see Fig. 6a), which were
called renormalons since they arise only in renormaliz-

8 In the quark–quark correlation function, the integral in ρ involves
divergences. The method for eliminating them proposed in [24, 26]
evokes doubts [48]. For M ≥ 1, the integral is convergent.

∆ZMLL' g( ) i const
1
g
--- 

 
M 2r ν 3Nf–+ +

=

×
2S0

g2
--------– 

  ,exp

G̃λ g

ZMLK[ ] Ng2N const 16π2( ) N–
=

× Γ N
M
2
----- 4Nc

11 Nc N f–( )
6

-----------------------------+ + + 
  g2N

gN1/2
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able theories:9 even though the example discussed
in [49] and illustrated by Fig. 6a was taken from quan-
tum electrodynamics, analogous diagrams arise in
QCD and four-dimensional ϕ4 theory. Strictly speak-
ing, Lautrup’s remark is inconsequential, since Lipa-
tov’s method relies on formal calculation of functional
integral (2.4) and does not involve any statistical analy-
sis of diagrams. Therefore, it should be expected that
the renormalon contributions are subsumed under (2.5).

However, ’t Hooft claimed in [50] that renormalons
provide an independent mechanism of divergence of
perturbation series and their contribution is not con-
tained in the Lipatov asymptotics. The argumentation
put forward by ’t Hooft relies on an analysis of the ana-
lyticity properties of Borel transforms. Indeed, the

9 This is true for theories with running coupling, which involve
logarithmic contributions. No renormalons arise in superrenor-
malizable theories.

(a)

(b) (c)

(d)

(e)

1

2

N

k

= + + …+

N1
2

x0 x

f

Fig. 6. (a) Example of single QED diagram of Nth-order
giving contribution N! [49]. Renormalon diagram: (b) an
internal photon line is singled out; (c) a chain of electron
“bubbles” is inserted; (d) insertions into the photon line cor-
respond to interaction “dressing.” (e) Saddle-point method
is formally applicable, but leads to incorrect results.
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Borel transform of the function represented by a series
with expansion coefficients caNΓ(N + b) has a singular
point at z = 1/a:

(5.1)

Thus, the value of a in (2.5) determines the location of
a singular point in the Borel plane. This conclusion was
obtained by ’t Hooft without reference to Lipatov’s
method. Representing action as S{φ}/g (see Section 4),
one can rewrite a general functional integral and the
definition of Borel transform (3.12) as follows:

(5.2)

(5.3)

where the factors gn are omitted since they cancel out
when Green functions are calculated as ratios of two
functional integrals. Then, the Borel transform of func-
tional integral (5.2) is

(5.4)

where |S'{φ}| is the absolute value of the vector defined
in (4.1.6), and the last integral is calculated over the
hypersurface z = S{φ}. If φc(x) is an instanton, then
S'{φc} = 0 and (5.4) has a singular point at z = S{φc},
which coincides with 1/a for the instanton character-
ized by the least action S0. Furthermore, there exist sin-
gular points at the points mS0, which correspond to
instantons at infinity, and singularities corresponding to
instantons of other types. If z = S0 is the singular point
nearest to the origin, then Lipatov asymptotic
form (2.5) is obtained. However, ’t Hooft hypothesized
that singularities other than instantons may exist, in
which case the asymptotic behavior of expansion coef-
ficients is determined by the non-instanton singular
point nearest to the origin.

Renormalons were considered by ’t Hooft as a pos-
sible new mechanism of singularity formation. The vir-
tual photon line with momentum k in an arbitrary QED
diagram (see Fig. 6b) represents an large-momentum
integral of the form

(5.5)

where n is integer. After all renormalizations are per-
formed, the integral is convergent and n ≥ 3. When N
electron bubbles are inserted into the photon line (see
Fig. 6c), the integrand is multiplied by lnN(k2/m2) (m is
electron mass), and the resulting integral is propor-

B z( ) caN Nb 1– zN

N

∑ 1 az–( ) b– ,∼=

za 1.

Z g( ) Dφ S φ{ }
g

-------------– 
  ,exp∫=

Z g( ) xe x/g– B x( ),d

0

∞

∫=

B z( ) Dφδ z S φ{ }–( )∫ σd
S' φ{ }
-----------------,

z S φ{ }=

∫°= =

d4kk 2n– ,∫
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tional to N!. Insertions in the photon line correspond to
“dressed” coupling. Accordingly, g0 is replaced by a
running coupling constant in the integrand of (5.5).
Summation of diagrams of the form shown in Fig. 6c is
equivalent to the use of the one-loop approximation
β(g) = β2g2 for the Gell-Mann–Low function and leads
to a well-known result:

(5.6)

The integral over the region of k2 * m2 yields

(5.7)

As a result of Borel summation, renormalon singulari-
ties are obtained at the points10 

, (5.8)

in the Borel plane z. In both ϕ4 theory and QED, instan-
ton and renormalon singularities lie on the negative and
positive half-axes, respectively (see Fig. 7a); in QCD,
the converse is true. The analysis presented above
shows that factorial contributions due to particular dia-
grams arise in any field theory where the leading term
in the expansion of β is quadratic.

It is obvious that ’t Hooft’s argumentation with
regard to renormalons leaves unanswered the following
basic questions: Why should certain sequences of dia-
grams be considered particularly important even
though they comprise only a small fraction of all dia-
grams? How should we deal with double counting? (In
other words, how do we know that renormalons are not
taken into account in instanton contribution (2.5)?)
However, the general question about the possibility of
non-instanton contributions to the asymptotic behavior
of expansion coefficients has been well reasoned, since
it brings to light a shortcoming in the mathematical
substantiation of Lipatov’s method. Indeed, consider a
function f(x) that has a sharp peak at x0 and a slowly
decaying “tail” at large x (Fig. 6e), so that the contribu-
tions of the peak and tail regions to the integral

dx are comparable. An analysis of the integral

would reveal the existence of a saddle point at x0 and (if
it is sufficiently sharp) show that the saddle-point
method is formally applicable. However, the calcula-
tion of the integral in the saddle-point approximation
would be incorrect, because the contribution of the tail

10Analogous singularities with n = 0, –1, –2, … (known as infrared
renormalons) arise in the integral over the small-momentum
region. 

g k2( )
g0

1 β2g0 k2/m2( )ln–
--------------------------------------------.=

d4kk 2n– g k2( )∫ g0 d4kk 2n– β2g0
k2

m2
------ln 

 
N

∫
N

∑=

∼ g0 N!
β2

n 2–
----------- 

 
N

g0
N .

N

∑

zn
n 2–
β2

-----------, n 3 4 5 …, , ,= =

f x( )∫
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would be lost. If tails of this kind contribute to (2.4),
then Lipatov’s method fails.

Since there is hardly any alternative to the saddle-
point method in calculations of functional integrals,
direct analysis of possible tail contributions cannot be
performed, and ’t Hooft’s argumentation is difficult to
disprove. Nevertheless, it is “unnatural” in a certain
sense: for any finite-dimensional integral (5.2), it can
be shown that (a) its value for g  0 is determined by
saddle-point configurations [51] (according to (4.1.8),
gc  0 as N  ∞) and (b) all singularities in the
Borel plane are associated with action extrema
(’t Hooft’s argumentation based on (5.4) is necessary
and sufficient). Therefore, renormalon singularities
may arise only in the limit of an infinite-dimensional
integral. However, the constructive argumentation in
support of their existence is relatively weak and can
easily be disproved by a careful analysis [48]. Further
studies showed that summation of a more complicated
sequences of diagrams leads to substantial modification
of the renormalon contribution. The corresponding com-
mon coefficient becomes totally indeterminate [52]; i.e.,
the possibility that it vanishes cannot be ruled out.
Thus, the existence of renormalon singularities is not an
established fact, and this is admitted even by the most
enthusiastic advocates of this hypothesis [53].

Nevertheless, ’t Hooft’s view immediately became
popular [54–60]. This is explained by the use of dia-
grams in describing renormalons. One can easily insert
a chain of bubbles into any diagram and explore the
qualitative consequences of divergence of perturbation
series for any phenomenon under study. Analysis of
instantons can be combined with diagrammatic calcu-
lations (see [8]), but the procedure is very cumbersome.
The concept of renormalons can undoubtedly be used
as a “model.” Moreover, conditions under which its use
is justified can be determined (see Section 5.3). Regret-
tably, further investigation of high-order perturbative
contributions was hampered after ’t Hooft’s lecture [50]
had thrown doubt on the validity of Lipatov’s method.
As a consequence of the drop in its popularity, the com-
plete perturbation-theory asymptotics in both QED and
QCD remain uncalculated to this day even though all
fundamental issues were resolved in the late 1970s.

5.2. Absence of Renormalon Singularities
in ϕ4 Theory 

In the analysis of the Borel transforms arising in ϕ4

theory presented in [48], it was shown that they are ana-
lytic on the complex plane with a cut extending from
the nearest instanton singularity to infinity (see
Fig. 7b), in agreement with a hypothesis (put forward
by Le Guillou and Zinn-Justin [35]) that underlies an
extremely efficient summation method, conformal–
Borel technique (see Section 6.1). A comparison with
’t Hooft’s argumentation (see Fig. 7a) shows that all
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
instanton singularities are absorbed by the cut, while
renormalon singularities are absent.

The approach developed in [48] relies on the use of
the modified Borel transform in which N! is replaced by
Γ(N + b0) with an arbitrary b0:

(5.9)

(Borel–Leroy transform). It can readily be shown that
all Borel transforms are analytic in the same domain,
which is easy to find by setting b0 = 1/2, since the cor-
responding Borel transform preserves exponential
form:

(5.10)

Accordingly, the Borel transform of (2.3) can be
expressed as

(5.11)

F g( ) xe x– x
b0 1–

B gx( ),d
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∞

∫=
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Γ N b0+( )
------------------------gN

N 0=

∞
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F g( ) e g– B z( ) 1

2 π
---------- e2i z c.c.+{ } .= =

B z( ) 1

2 π
---------- Dϕ S0 ϕ{ }–( )exp∫=

× 2i zSint ϕ{ }( )exp c.c.+[ ] ,

z

z

gz

S0 1/β2

instantons renormalons

(a)

(b)

(c) (d)

S0

B(z) β(g)

Fig. 7. (a) Singularities in ϕ4 theory according to ’t Hooft
[50]. (b) Domain of analyticity according to [48]. Analytic-
ity of B(z) for |argz | < π/2 + δ (c) entails analyticity of
β(g) for |argg | < π + δ, i.e., (d) on the entire physical sheet
of the Riemann surface.
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and used to find the domain of analyticity for any finite-
dimensional integral (2.3) calculated on a finite-size
lattice for m2 > 0.

The infinite-volume limit can be taken after Green
functions are calculated as ratios of two integrals hav-
ing the form of (2.3). This limit is not singular unless
the system under study is at a phase-transition point,
because partition into quasi-independent subsystems is
possible when the correlation length is finite; in ϕ4 the-
ory, this possibility is guaranteed by the condition
m2 > 0.

Calculation of the continuum limit does not present
any problem in the absence of ultraviolet divergences,
which corresponds to d < 2. When the theory is diver-
gent in the ultraviolet limit, the proof consists of the fol-
lowing steps:

(a) the domain of analyticity of B(z) is determined
for a finite cutoff parameter Λ by using Feynman regu-
larization;

(b) the domain of analyticity is found for the Borel
transform of the Gell-Mann–Low function and the
anomalous dimensions defined in the cutoff scheme,
whose dependence on Λ fades out as Λ  ∞;

(c) the invariance of the domain of analyticity under
charge renormalization is proved;

(d) the domain of analyticity is determined for
renormalized vertices and renormalization-group func-
tions in other renormalization schemes.

Let us discuss a subtle detail of the proof that was
not elucidated in [48]. Any quantity calculated pertur-
batively is a function of the bare charge gB and the cut-
off parameter Λ. Changing to a renormalized charge g,
one obtains a function F(g, Λ) that marginally depends
on Λ, but approaches a finite limit as Λ  ∞ by virtue
of renormalizability. Similarly, its Borel transform
B(z, Λ) tends to a finite limit B(z). In [48], it was rigor-
ously proved that B(z, Λ) is analytic on the complex z
plane with a cut extending from the nearest instanton
singularity to infinity when Λ is finite. The function
B(z) is analytic in the same domain if the series is uni-
formly convergent (by the Weierstrass theorem [61]),
which is the case when B(z, Λ) is bounded (by compact-
ness principle [62]). Therefore, regularity of B(z) is
guaranteed if the limit with respect to Λ is finite. How-
ever, renormalizability has been rigorously proved only
in the framework of perturbation theory, i.e., for the
coefficients of expansions in g and z, rather than
directly for the functions F(g, Λ) and B(z, Λ). The proof
presented in [48] assumes the existence of finite limits
on the level of functions and is incomplete in this
respect. However, the existence of these finite limits
must be considered as a necessary physical condition
for true renormalizability. This condition is directly
related to the requirement of redefinition of functional
integrals discussed below (see Section 5.3).
JOURNAL OF EXPERIMENTAL A
5.3. General Criterion for the Absence 
of Renormalon Singularities 

The absence of renormalon singularities in the four-
dimensional ϕ4 theory, which is a typical “renormalon”
theory, puts to question the general concept of renorma-
lon. The problem of renormalons in an arbitrary field
theory was elucidated in [63]. Returning to quantum
electrodynamics, consider the simplest possible class
of renormalon diagrams corresponding to all kinds of
insertions into a photon line (see Figs. 6b and 6c).
When the function β is known, all of these diagrams
can easily be summed by solving the Gell-Mann–Low
equation

(5.12)

under the initial condition g(k2) = g0 for k2 = m2 and ana-
lyzing the expansion of an integral having the form
of (5.7) in terms of g0.

The solution to Eq. (5.12) is

(5.13)

In view of the behavior of F(g), the following expres-
sion can be used for small g:

(5.14)

The formal solution of (5.13) for g is

(5.15)

Here, the right-hand side is regular at g0 = 0; i.e., it can
be represented as a series in powers of g0 of the form

(5.16)

where r(x) is the radius of convergence and AN behaves
as a power of N. The radius of convergence is deter-
mined by the distance to the singular point nearest to
the origin.
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If zc is a singular point of the function F–1(z), then
the singular points in g0 in (5.15) satisfy the equation

(5.17)

or

(5.18)

If zc is finite and x is large, then Eq. (5.18) has a small
root g0 ≈ 1/x. In this case, since the right-hand side is
negligible by virtue of (5.14), there exists a singular
point at gc ≈ 1/x, and the series in (5.16) is

(5.19)

The integral obtained by substituting it into (5.7) is sin-
gular at the points defined by (5.8). (Note that the inte-
gral is dominated by the contributions of large k, which
correspond to large x.) If zc = ∞, then Eq. (5.17) has no
solution for g0 ~ 1/x, and the expansion coefficients
in (5.19) must decrease faster than any exponential.
Thus, the renormalon contribution is definitely smaller
than the instanton contribution and the Borel plane does
not contain any singularities.

If the function z = F(g) is regular at g0 and F'(g0) ≠
0, then its inverse g = F–1(z) is also regular in some
neighborhood of g0. Therefore, the singular points of
F−1(z) are zc = F(gc), where gc is any value such that
either

(5.20)

In summary, renormalon singularities exist if there is at
least one point gc (including gc = ∞) satisfying condi-
tion (5.20) and zc = F(gc) < ∞. Otherwise, renormalon
singularities do not exist.

In terms of the β function, the results discussed
above imply that renormalon singularities do not exist
if β(g) ~ gα with α ≤ 1 at infinity and its singularities at
finite gc are so weak that the function 1/β(g) is noninte-
grable at gc (e.g., β(g) ~ (g – gc)γ with γ ≥ 1). When
either condition is violated, there exist singular points
defined by (5.8).

An analysis of more complicated classes of renor-
malon diagrams relying on the general Callan–Syman-
zik renormalization-group equation [63] leads to simi-
lar conclusions: necessary and sufficient conditions for

zc
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the existence of renormalon singularities can be estab-
lished, but no definite assertions can be made by using
only results of renormalization-group analysis.

Now, recall that the perturbation series expansion of
β is factorially divergent because there exists a cut ema-
nating from the origin in the complex g plane. There-
fore, both g = 0 and g = ∞ are branch points, and β(g)
can be represented by a Borel integral:

(5.21)

Suppose that the Borel transform B(z) behaves as zα as
z goes to infinity11 (in which case β(g
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Fig. 7c). Then, 

 

β

 

(

 

g

 

) is a regular function for 

 

|

 

arg

 

g

 

|

 

 < 

 

π

 

 +

 

δ

 

 (see Fig. 7d), which implies the absence of singularities
at finite 
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 in the physical sheet of the Riemann surface,
and the behavior of 
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 at infinity (
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guarantees the absence of renormalon singularities.

This criterion can be used as a basis for constructive
analysis as follows. According to ’t Hooft (see Fig. 7a),
instanton and renormalon singularities lie, respectively,
on the negative and positive half-axes in both 

 

ϕ

 

4

 

 theory
and QED. If it is assumed that renormalon singularities
do not exist, then (a) the regularity condition for 

 

β

 

(

 

g

 

) at
finite 

 

g 

 

(see Figs. 7c and 7d) holds, (b) the asymptotic
behavior of the expansion coefficients 

 

β

 

N

 

 is determined
by the nearest instanton singularity and can be found by
Lipatov’s method, and (c) the behavior of 

 

β
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g

 

) at infinity
can be uniquely determined by summing the correspond-
ing perturbation series expansion since the Borel integral
is well defined. If 

 

β

 

 grows faster than does 

 

g

 

α

 

 with 

 

α

 

 > 1,
then the starting assumption is incorrect, and the exist-
ence of renormalon singularities is proved by contradic-
tion. If  β  (  g  ) ~  g  

α
  with  α    ≤   1, then the assumption that

renormalons are negligible is self-consistent. These
results are extended to QCD by changing the signs of 

 

g

 

and 

 

z.

 

The program of determination of Gell-Mann–Low
functions outlined here was implemented in [42, 47, 64,
65] (see discussion in Section 8). The exponent 

 

α

 

 is
close to unity in both 

 

ϕ

 

4

 

 theory and QED and much
smaller than unity in QCD. Therefore, renormalon sin-
gularities can be self-consistently eliminated (up to
uncertainty of results). Moreover, it can be argued that

 

α

 

 = 1 in both 

 

ϕ

 

4

 

 theory and QED. Anyway, since 

 

β

 

(

 

g

 

)
has a definite sign in both theories, the negligibility
condition for renormalons is equivalent to the condition
for their internal consistency.

11A similar analysis can be developed without using this assum-
ption.
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The only field theory in which the existence of
renormalons is an established fact is the O(n)-symmet-
ric sigma model in the limit of n  ∞ [53]. In this the-
ory, the β function is calculated exactly in the one-loop
approximation, and β(g) ∝  g2 at any g. Since α = 2,
renormalons cannot be eliminated self-consistently.
However, the theory is self-contradictory in the four-
dimensional case. It should be noted that renormalon
singularities arise when a truncated series of any length
is used to approximate the Gell-Mann–Low function;
i.e., the “renormalon problem” cannot be solved in the
framework of loop expansion [56, 57].

Note that functional integrals are ill defined if the
existence of renormalon singularities cannot be ruled
out. The conventional definition of functional integral
based on perturbation theory is unsatisfactory because
of the divergence of the expansion in terms of the cou-
pling constant. Its adequate summation requires knowl-
edge of certain analyticity properties in the Borel plane
(see Section 6), which are indeterminate unless the
existence of renormalon singularities is elucidated. The
definition of functional integral as a multidimensional
integral on a lattice also evokes doubts: a lattice theory
can be qualitatively different from the continuum the-
ory, because renormalon contributions correspond to
arbitrarily large momenta. This leads to a deadlock: an
analysis of functional integrals is required to solve the
renormalon problem, but the integrals remain ill
defined until the renormalon problem is solved. The
proposed scheme of self-consistent elimination of
renormalon singularities appears to be the only remedy.

g

u u

u

–1/a

(a) (b)

(c) (d)

R Q P

O g = 0

Q R

R'Q'

–1 1

1

R'
Q'

Q
R

P

g = 0 g = 0 g = ∞

1

O

Fig. 8. Borel transform: (a) analyticity on the complex plane
with the cut (–∞, –1/a); (b) analyticity domain conformally
mapped to a unit circle. If analytic extension is restricted to
the positive half-axis, then (c) conformal mapping can be
performed to any domain such that u = 1 is its boundary
point nearest to the origin and (d) to the plane with the cut
(1, ∞) in an extreme case.

g = ∞

g = ∞
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In this scheme, a continuum theory is interpreted as the
limit of lattice theories by definition.12 

6. PRACTICAL SUMMATION
OF PERTURBATION SERIES

In this section, the practical summation of the fol-
lowing power series is discussed:

(6.1)

where the expansion coefficients have the asymptotic
form caNΓ(N + b) and their numerical values are given.
The present analysis is restricted to alternating series.
Accordingly, (–1)N is factored out, and a = –1/S0 > 0, as
in ϕ4 theory.

6.1. Conformal–Borel Technique 
and Other Methods 

Treating (6.1) as Borel’s sum (see Section 3),
consider the following modification of Borel trans-
form (5.9):

(6.2)

where an arbitrary parameter b0 can be used to optimize
the summation procedure [35]. The Borel transform is
assumed to have analyticity properties characteristic of
ϕ4 theory (see Section 5.2), i.e., analytic on the complex
z plane with a cut extending from –1/a to –∞ (see Fig.
8a). The series expansion of B(z) is convergent on the
circle |z | < 1/a. To calculate the integral in (6.2), the
series must be analytically continued. When the numer-
ical values of WN are given, continuation presents some
difficulties. Its elegant solution proposed in [35] makes
use of the conformal mapping z = f(u) of the plane with

12This philosophy is hidden in the very concept of renormalizabil-
ity. In fact, an effective theory is constructed for small momenta
with a cutoff parameter Λ, and a similar scale is supposed to be
the upper boundary of the essential domain of integration. Renor-
malizability is interpreted as a possibility of taking the limit as
Λ  ∞ without corrupting the structure of the theory. How-
ever, the actual contribution of momenta larger than Λ can
hardly be controlled within the scope of the effective theory,
since an essential contribution may always come from some
“demon” that lurks in the large-momentum region, running away
with increasing Λ. The contribution of the action minimum asso-
ciated with a lattice instanton in the theory of the Anderson tran-
sition is a remarkable example of physical realization of such a
demon [8, 36, 37].
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a cut to the unit circle |u | < 1 (see Fig. 8b) to represent
B(z) as a series in powers u,

(6.3)

which is convergent at any z. Indeed, the singular points
of B(z) (P, Q, R, …) lie on the cut, while their images
(P, Q, Q', R, R', …) lie on the circumference of the circle
|u | = 1. Thus, the latter series in (6.3) is convergent at
|u | < 1. However, there is one-to-one correspondence
between the interior |u | < 1 of the circle and the domain
of analyticity in the z plane. The conformal mapping is
defined as

(6.4)

Hence,

(6.5)

where  denotes binomial coefficients.

Since the B(z) exhibits power-like behavior at infin-
ity, the Borel integral in (6.2) is rapidly convergent, and
its upper limit can be assigned a finite value in accor-
dance with the required accuracy. Then, u is bounded
from above by umax < 1, and the latter series in (6.3) is
convergent. The substitution of u = u(z) into the Borel
integral (6.2) followed by integration, as done in [35],
is not quite legitimate, because permutation of the sum
and the integral may lead to slower convergence or even
divergence of the algorithm. However, this scheme is
convergent, because the actual coefficients UN exhibit
power-like asymptotic behavior (see [65, Section 2.1]).13

As b0 increases, oscillatory asymptotic behavior
changes to monotonic, and this change was used in [35]
as a basis for error estimation.

When the first Nm coefficients in series (6.1) are
known, formula (6.5) can be used to find the first Nm

coefficients of the convergent series in (6.3). If g ~ 1,
then the dominant contribution corresponds to values of
u on the order of a few tenths, which makes it possible

13To determine the asymptotic form of UN , the contributions found
in [65] must be summed over all singular points, whose number is
infinite. Since the sum is finite for any constant N = N0, it can
readily be shown that it is dominated by the term containing the
highest power of N as N  ∞.
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to obtain accurate results even for small Nm . The sum-
mation error is estimated as

(6.6)

Therefore, the highest value of g for which satisfactory

results can be obtained is on the order of . This
scheme was used [35] to calculate critical exponents in
theory of phase transitions up to the third decimal
place.

In an alternative analytic continuation method [66],
the coefficients in the Padé approximant [M/L] (defined
as the ratio PM(z)/QL(z) of polynomials of degrees M
and L) are adjusted to approximate the function B(z) so
that the known lowest order terms in (6.1) are obtained.
Diagonal and quasi-diagonal approximants (with M = L
and M ≈ L, respectively) are known to converge to the
approximated function as M  ∞ for a broad class of
functions, but the convergence rate is relatively low in
the general case. When both M and L are finite, the
approximate Borel transform generally exhibits incor-
rect behavior at infinity dictated by the particular Padé
approximant [M/L] employed. The corresponding
incorrect behavior of W(g) at g  ∞ gives rise to a
certain error at g ~ 1 by continuity. Accordingly, differ-
ent results are obtained by using different approxi-
mants, depending on the subjective choice of the user.
However, uniform convergence with respect to g can be
achieved by matching the Padé approximant at infinity
with the asymptotic form of B(z) if the asymptotic
behavior of W(g) in the strong-coupling limit is known.
When the number of terms in the expansion is suffi-
ciently large, the asymptotic behavior at strong cou-
pling can be “probed” by analyzing the convergence
rate, as done in [66]. Furthermore, information con-
cerning the singular behavior at –1/a can be used to
restrict the approximation by requiring that all poles of
Padé approximants lie on the negative half-axis, in
which case the input data used in this method are the
same as in the conformal–Borel technique described
above. The results of the original calculations of critical
exponents performed by this method in [66] were virtu-
ally identical with those obtained in [35]. The Padé–
Borel technique should be used when the analyticity
properties of B(z) are not known, because information
about the locations of the nearest singularities can be
gained by constructing Padé approximants.

In multiple-charge models, Chisholm approximants
(rational functions in many variables) can be used
instead of Padé approximants [67]. A more efficient
approach to problems of this type is based on the so-
called resolvent expansion [68]: all charges are multi-
plied by an auxiliary parameter λ, Padé approximants
in terms of this parameter are employed, and λ is set to
unity at the end of the calculations. In this method, the
symmetry of the model is completely preserved, and
projection onto any charge subspace of lower dimen-
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sion does not lead to loss of information [69, 70]. A
more complicated sequence of approximants can be
constructed by using Winn’s e-algorithm [71] based on
a “strong” Borel transform (see Section 7). The Som-
merfeld–Watson summation scheme [13] makes use of
the analyticity properties of the coefficient functions of
Borel transforms. A generalized conformal–Borel tech-
nique was employed in [12]. The last two methods
make it possible to “guess” the strong-coupling asymp-
totics analyzed systematically in the next section.

In another approach, variational perturbation theory
[72, 73] is used to formulate a scheme of interpolation
between the weak- and strong-coupling regions when
some information about the latter is available. With
regard to critical exponents, this information concerns
behavior near the renormalization-group fixed point. It
can be expressed in terms of strong coupling as an
expansion in the bare charge. Thus, a divergent pertur-
bation series is transformed into a convergent sequence
of approximations, and an accuracy comparable to that
of conformal–Borel technique is achieved [74]. How-
ever, neither divergence of the series nor the Lipatov
asymptotic form is used in this approach explicitly.
Information about the latter can be used only implicitly
by interpolating the coefficient function. Since an
attempt to this effect made in [75] did not result in any
improvement in accuracy, Kleinert claimed that infor-
mation about high-order terms is insignificant. It is
obvious that this assertion is incorrect in the general
case: since exact knowledge of the expansion coeffi-
cients is equivalent to exact knowledge of the function,
appropriate use of any additional information must
improve accuracy. The particular result obtained by
Kleinert is due to the fact that variational interpolation
is not less accurate than interpolation of the coefficient
function.

The application of divergent series to calculation of
critical exponents relies on the use of the Callan–
Symanzik renormalization-group equation, which con-
tains both Gell-Mann–Low function β(g) and renor-
malization-group functions η(g) and η4(g) (anomalous
dimensions) [36, 76, 77]. If g* is a nontrivial zero of
β(g), then the critical exponents η and ν can be
expressed in terms of the anomalous dimensions at that
point by the relations η(g*) = η and η4(g*) = 1/ν – 2 +
η, and the remaining exponents are determined by well-
known relations [39]. The renormalization-group func-
tions are calculated as series expansions in terms of g,
which can be summed by methods mentioned above.

Based on this approach, substantial progress has
been made in analysis of critical behavior of a various
systems. The critical exponents for the O(n)-symmetric
ϕ4 theories with n = 0, 1, 2, and 3 were originally cal-
culated in [35, 66] for two- and three-dimensional
spaces by using six- and four-loop expansions, respec-
tively. Subsequently, these calculations were extended
to larger n and higher order coupling constants [78, 79].
In particular, this provided a basis for estimating the
JOURNAL OF EXPERIMENTAL A
computational scope of the 1/n expansion. The seven-
loop contributions to the renormalization-group func-
tions found for d = 3 in [75, 80] and for d = 2 in [81, 82]
were used to refine the critical exponents. The latter
studies revealed systematic deviation of the resumma-
tion results from the known exact values of critical
exponents. However, their interpretation as a manifes-
tation of nonanalytic contributions to renormalization-
group functions (see [81, 82]) does not seem to be well
grounded.

When cubic anisotropy is taken into account, a two-
charge version of the n-component ϕ4 theory is
obtained, since the corresponding action contains two
fourth-order invariants. The cases of n = 3 and n = 0
correspond to a cubic crystals and weakly disordered
Ising ferromagnets, respectively. This can be shown by
using the standard replica trick to average over the ran-
dom impurity field [83]. The expansion coefficients and
sums of renormalization-group series were calculated
for these systems in the four-, five-, and six-loop
approximations in [69, 84], [85], and [86, 87], respec-
tively (see also [88, 89]).

Six-loop expansions have also been obtained for
other two-charge field systems: the mn model describ-
ing certain magnetic and structural phase transitions
(including the critical behavior of n-component disor-
dered magnets in the case of m = 0 [87]) and the O(m) ×
O(n)-symmetric model corresponding to the so-called
chiral phase transitions [90]. The summation of the
resulting series performed in [90–93] made it possible
to elucidate the structure of the phase portraits of the
renormalization-group equations and analyze the sta-
bility of nontrivial fixed points. Even more complicated
(three-charge) versions of ϕ4 theory arise in models of
superconductors with nontrivial pairing, many-sublat-
tice antiferromagnets, structural phase transitions,
superfluid transition in neutron liquid, etc. Some of
these have been analyzed in three-, four-, and six-loop
approximations in [70, 94–96]. In recent studies, five-
loop expansions were found and resummed for the two-
dimensional chiral [97], cubic, and mn models [82].
Finally, summation of three- and four-loop expansions
was used to analyze critical dynamics in pure and dis-
ordered Ising models [98, 99], as well as effects due to
long-range interactions [100] and violation of replica
symmetry [101].

Note that, instead of summing a series expansion in
terms of the coupling constant in the space of physical
dimension, one can sum up the divergent e-expansions
obtained for the formal problem of phase transition in
the (4 – e)-dimensional space [77, 102, 103]. The four-
loop expansions for the O(n)-symmetric theory [104]
summed up in [105] were extended to the five-loop
level [106] and summed in [80]. The five-loop expan-
sions obtained in [107] for the cubic model were used

in [108] as a basis for deriving five-loop -expan-
sions of critical exponents for disordered Ising model,
and their summation was discussed in [108–110].

e
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Detailed discussions of the current status of theory
of critical phenomena based on multiple-loop renor-
malization-group expansions, as well as extensive bib-
liography, can be found in recent reviews [89, 96, 111].

6.2. Summation in the Strong-Coupling Limit 

The results obtained for increasingly stronger cou-
pling are characterized by stronger dependence on the
particular implementation of the summation procedure.
Analysis of the ensuing uncertainty is facilitated if the
asymptotic behavior of W(g) in the strong-coupling
limit are directly related to the values of WN . This prob-
lem is solved here by assuming that the asymptotic
behavior can be represented by the power law

(6.7)

which adequately represents all models that are amena-
ble to analysis and consistent with realistic field-theo-
retic problems. The problem can be solved by applying
the standard conformal–Borel technique (see Section
6.1) [65]. However, a more efficient algorithm can be
developed by using a modified conformal mapping.

If z = 0 and ∞ are mapped to u = 0 and 1, respec-
tively, then (6.4) is the only conformal mapping that
can be used to find the analytic continuation of the
Borel transform to arbitrary complex z. However, this is
not necessary: the integral in (6.2) can be calculated if
the analytic continuation to the positive half-axis is
found. Therefore, it will suffice to use a conformal
mapping to any region for which u = 1 is the boundary
point nearest to the origin (see Fig. 8c): under this con-
dition, the latter series in (6.3) will be divergent if |u | <
1, in particular, on the interval 0 < u < 1 (the image of
the positive half-axis).

One advantage of this conformal mapping is that the
divergence of the re-expanded series in (6.3) is con-
trolled by the nearest singular point u = 1, which is
related to the singularity of W(g) as g  ∞, so that the
asymptotic form of UN corresponds to the parameters of
asymptotic formula (6.7). If UN is expressed in terms of
B(u) as

(6.8)

and the contour C encompassing u = 0 is deformed so
that it goes around the cuts extending from the singular
points to infinity, then it can readily be shown that the
asymptotic form of UN for large N is controlled by the
nearest singular point u = 1. To reduce the contributions
of the remaining singular points P, Q, Q', …, the points
should be moved away as far as possible. Ultimately,

W g( ) W∞gα , g ∞,=

UN
ud

2πi
--------B u( )

uN 1+
------------,

C

∫°=
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the desired transform is the mapping to the plane with
the cut (1, ∞) (see Fig. 8d),

(6.9)

for which

(6.10)

The asymptotic form of UN for large N,

(6.11)

, (6.12)

is determined by the parameters of asymptotic for-
mula (6.7). Thus, a simple algorithm is proposed:
use (6.2) to calculate the coefficients BN corresponding
to the prescribed WN; substitute the results into (6.10) to
find UN; and find power-law fit (6.11) to determine the
parameters W∞ and α in (6.7).

In practical applications of the algorithm, one has to
deal with problems due to random error growth. The
random error in UN corresponding to a relative compu-
tational or round-off error δ in WN is an extremely rap-
idly increasing function of N:

(6.13)

In double-precision computations, when δ ~ 10–14, the
value of δUN is comparable to unity if N ≈ 45, and the
corresponding error in the recovered asymptotic for-
mula (6.7) is ~1%.

Fortunately, the algorithm is “superstable” with
respect to smooth errors in the sense that the output error
is smaller than the input error. Linear mapping (6.10) has
a remarkable property:

(6.14)

for m = 0, 1, …, N – 2. Accordingly, the addition of an
arbitrary polynomial Pm(K) to BK/aK (which behaves as
a power of K) does not change the asymptotic form of
UN . There is an analogous property characteristic of a
broad class of smooth functions accurately approxi-
mated by polynomial fitting: in particular, when BK/aK

is replaced with BK/aK + f(K), where f(K) is an entire
function with rapidly decreasing Taylor series expan-
sion coefficients, the resulting change in UN rapidly
decreases with increasing N. In practical problems, sev-

z
u

a 1 u–( )
--------------------,=

U0 B0,=

UN

BK

aK
------ 1–( )KCN 1–

K 1– N 1≥( ).
K 1=

N

∑=

UN U∞Nα 1– , N ∞,=

U∞
W∞

aαΓ α( )Γ b0 α+( )
-------------------------------------------=

δUN δ 2N .⋅∼

Km 1–( )KCN 1–
K 1–

K 1=

N

∑ 0=
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eral low-order values and asymptotic behavior of WN

are known, while intermediate coefficients are found by
interpolation. Since interpolation leads to smooth
errors, they can be expected to play a minor role even if
their magnitudes are large. Thus, the proposed algo-
rithm is best suited to the most relevant formulation of
the problem.

The approximation of UN by a power law can be per-
formed by applying a standard χ2 minimization proce-
dure [112], and the fitting interval Nmin ≤ N ≤ Nmax can
be chosen as follows. The upper limit Nmax is set by
imposing the condition δUN ~ UN , because no addi-
tional information can be derived from coefficients
with higher N. This condition is not restrictive, because
outliers are automatically discarded in χ2 minimization.
The lower limit Nmin is set by requiring that χ2 have
“normal” values to rule out the systematic error due to
deviation of UN from asymptotic law (6.11).

–α –α'

(a)

(b)

(c)

χ2

αeff

–α –α'

α'

α

–α'–α

U∞
ex

U∞

b0

b0

b0

Fig. 9. Theoretical curves of χ2, αeff , and U∞ plotted versus
b0 by neglecting the corrections subsumed under the ellipsis
in (6.16). Log–log plots are frequently discontinuous
(dashed curves) [65].
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The existence of an upper limit for N entails strong
dependence of the results on b0 (see (6.2)), because this
parameter determines the rate at which the asymptotic
behavior is approached. To analyze this effect, suppose
that asymptotic formula (6.7) is modified by adding
power-law corrections:

. (6.15)

By analogy with (6.11) and (6.12), it follows that

(6.16)

When the corrections subsumed under the ellipsis
in (6.16) are neglected, the formal approximation
of (6.16) by power law (6.11) leads to satisfactory
results, because the log–log plot of (6.16) is almost lin-
ear; however, the values of α and U∞ thus obtained
should be interpreted as “effective” parameters.

Since the first and second terms in (6.16) vanish at
the poles of the respective gamma functions, UN ∝
Nα' − 1 and UN ∝  Nα – 1 are obtained for b0 = –α and b0 =
–α', respectively. The corresponding power-law fits are
particularly accurate (the values of χ2 are low). The
results obtained by varying b0 are illustrated by Fig. 9.
The graph of χ2 has two sharp minima at b0 = –α and
b0 = –α'. The curve of αeff drops to α' in the neighbor-
hood of b0 = –α and approaches α outside this neigh-
borhood. At b0 = –α', the exact equality αeff = α is
reached and effective parameter U∞ exactly corre-
sponds to W∞ . In the neighborhood of b0 = –α, U∞ van-
ishes, while its linear slope

(6.17)

yields an estimate for W∞ weakly sensitive to errors in
α. The effect of the terms discarded in (6.16) only
slightly changes this pattern.

The analysis above suggests that independent esti-
mates for the exponent α can be obtained by using
(i) the value of αeff at the right-hand minimum of χ2,
(ii) the location of the left-hand minimum of χ2,
(iii) a log–log plot in the neighborhood of zero U∞ , and
(iv) power-law fitting in this neighborhood with a con-
stant α given by a previous estimate.

Similarly, independent estimates for W∞ are
obtained by using the value of U∞ at the right-hand min-
imum of χ2 and the linear slope of U∞(b0) near its zero.
In the latter estimate, the constant α is varied within the
interval of its values estimated as described above to
obtain upper and lower bounds for W∞ .

W g( ) W∞gα W∞' gα' W∞'' g
α''   +  … + +=

UN

W∞

aαΓ α( )Γ b0 α+( )
-------------------------------------------Nα 1–=

+
W∞'

aα'Γ α '( )Γ b0 α'+( )
---------------------------------------------Nα' 1–   +  … .

U∞
W∞

aαΓ α( )
------------------ b0 α+( )≈
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The accuracy of the results can be estimated by
using the fact that the discrepancies between different
estimates for α and W∞ are comparable to their respec-
tive deviations from the exact value. When several esti-
mates are available, the results are more reliable:
whereas two close estimates may be obtained acciden-
tally (resulting in underestimation of the error), prox-
imity of three or four independent estimates is very
unlikely.

As an example, consider the integral

(6.18)

which can be interpreted as the zero-dimensional ana-
log of the functional integral in ϕ4 theory. Its asymp-
totic behavior is described by (6.7) with α = –1/4 and
W∞ = Γ(1/4)/4, and the corrections can be represented
as a power series in g–1/2. The results obtained when WN

are double-precision quantities (δ ~ 10–14) are illus-
trated by Fig. 10.14 The ensuing estimates,

(6.19)

are in good agreement with the respective exact values

(6.20)

Stability of the algorithm with respect to interpolation
can be checked by writing the expansion coefficients
as15 

(6.21)

since relative corrections to the Lipatov asymptotic
form have the form of a regular series expansion in
terms of 1/N. This representation can readily be used to
interpolate the coefficient function: the series can be
truncated, and the parameters AK can be determined by
comparison with several low-order coefficients WN .
When interpolation is performed by using the Lipatov

14For technical reasons, the coefficients  = UNΓ(b0 + N0) given
below are normalized so that a constant limit is obtained as
b0  ∞. Here, N0 is the lower limit of summation in (6.5),
which may differ from unity if the first terms in (6.1) vanish. Sim-

ilarly,  = U∞Γ(b0 + N0).
15Frequently arising questions concerning the analyticity of the

coefficient function and its interpolation were discussed in [113]
in the context of comments to [114].

W g( ) ϕ ϕ 2– gϕ4–( ),expd

0

∞

∫=

ŨN

Ũ∞

α 0.235– 0.025, W∞± 0.908 0.025,±= =

α' 0.75– 0.08,±=

α 0.25, W∞– 0.9064…,= =

α' 0.75.–=

WN caNΓ N b+( )=

× 1
A1

N
------

A2

N2
------ …

AK

NK
------- …+ + + + +

 
 
 

,
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asymptotic parameters, the lowest order correction
A1/N, and the single coefficient W1 [65], the resulting
values α = –0.245 ± 0.027 and W∞ = 0.899 ± 0.014 are
almost equal to those in (6.20). The errors in these
results are still determined by round-off error, even
though the interpolation errors are greater by ten orders
of magnitude.

Another example is the calculation of the ground-
state energy E0(g) for anharmonic oscillator (1.1). This
model can be reformulated as ϕ4 theory. The parameters
of the asymptotic power law obtained in [65] by using
the coefficients WN calculated in [6] up to δ ~ 10–12,

(6.22)

agree with the exact values α = 0.3333… and W∞ =
0.6679… and demonstrate adequately estimated errors.

The reliability of error estimation suggests a new
approach to optimization of summation algorithms. On
a conceptual level, optimization is performed by intro-
ducing a variation characterized by a parameter λ into
the summation algorithm and finding the parameter
value that maximizes the convergence rate. For exam-

α 0.317 0.032, W∞± 0.74 0.14,±= =

0.50 1.0 1.5 b0

1
2
3
4
5
6
7
8
9
logχ2

α'

–0.50

–0.25

0

0.25

αeff

–0.2

–0.1

0

0.1

0.2

0.3
U∞
~

αeff

αeff

U∞
~

Fig. 10. Curves of χ2, αeff , and  calculated as functions
of b0 for integral (6.18) by using the interval 24 ≤ N ≤ 50.

Dashed curve represents (b0) in the neighborhood of its
zero by using α = –0.25.

Ũ∞

Ũ∞
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ple, series (6.1) can be raised to the power λ, and the
summation algorithm can then be applied to the re-
expanded series

(6.23)

which has analogous properties (except for a different
parameter c in the Lipatov asymptotic form [8]). Theo-
retically, series (6.23) is equivalent to (6.1) in that the
value of any quantity Q obtained as a result of summa-
tion must be independent of λ. When the available
information about series (6.1) is incomplete, Q depends
on λ. The dependence becomes weaker as the amount
of information increases. In the general case, conver-
gence is not uniform with respect to λ, and the approx-
imate value of Q is close to the exact one only within
some plateau-like region (see Fig. 11a). The error rap-
idly increases away from it, while the plateau widens
and flattens with increase in available information (e.g.,
see [115]). It is clear that the best convergence is
achieved at the center of the plateau. However, the loca-

W g( )λ W̃0 W̃1g– W̃2g2 …–+=

+ c̃aNΓ N b+( ) g–( )N …,+

(a)

(b)

Qexact

Qexact

Q

Q

1

3

1

2

2

3

λopt λ

Fig. 11. (a) In theory, any quantity Q obtained by summa-
tion of a series is independent of the optimization parameter
λ. In practice, the dependence exists and changes from
curve 1 to curves 2 and 3 with increasing amount of avail-
able information. The optimal value of λ corresponds to the
central plateau region. (b) The error of approximate calcu-
lation of Q (hatched region) depends on λ. When the error
is estimated correctly, the exact value Qexact is consistent
with all data. In the “ideal” case illustrated here, the optimal
value of λ corresponds to the minimal error.
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tion of a “center” may not be easy to determine, since
the plateau may be asymmetric or indistinct, its center
may move in the course of interpolation, etc. Therefore,
the choice of λ, i.e., the optimization of Q, is a largely
subjective one.

However, there exists an objective approach to opti-
mization. Note that the λ determines not only the
approximate value of Q, but also the error of its calcu-
lation. If the error is estimated correctly, then the exact
value Qexact must be consistent with the approximate
results corresponding to any λ (see Fig. 11b); i.e., spu-
rious dependence of Q on λ is ruled out. If this “ideal”
is attained, then optimization of λ reduces to error min-
imization.

It is reasonable to optimize the interpolation stage,
because the uncertainty of results is ultimately due to
imprecise knowledge of the coefficients WN . If (6.21) is
rewritten as

(6.24)

and the interpolation is performed by truncating the

series and determining the coefficients , then the

interpolation procedure can be parameterized by  and

. Optimization with respect to  relies on a theoreti-

cal analysis [65], and the result  = b – 1/2 corresponds
to the Lipatov asymptotic form parameterized as

caNNb – 1/2Γ(N + 1/2). Optimization with respect to 
was demonstrated in [65], where interpolation over the
first nine coefficients was performed for the series cor-
responding to anharmonic oscillator. Coarse optimiza-

tion of χ2 as a function of  was performed for several

constant values of b0 having minima at  between –5.5
and – 5.0. This narrow interval determines the range of
interpolations consistent with the power-law asymp-
totic behavior of W(g). Next, a systematic procedure
was executed to find α and W∞ . The “ideal” situation
illustrated by Fig. 11b was obtained by widening the
error corridor for α by a factor of 1.3 and for W∞ by a
factor of 1.1, which can be done since the error is esti-
mated up to order of magnitude. If the values of α and
W∞ are consistent with all data, and the one-sided error
is minimized, the results are

(6.25)

and their deviation from the exact results is adequately
estimated by the respective errors.

If the available information concerning WN is suffi-
cient to recover the asymptotic behavior of W(g), then

WN caN Nb̃Γ N b b̃–+( ) 1
Ã1

N Ñ–
--------------+





=

+
Ã2

N Ñ–( )2
--------------------- … ÃK

N Ñ–( )K
---------------------- …+ + +





ÃK

b̃

Ñ b̃

b̃

Ñ

Ñ

Ñ

α 0.38 0.05, W∞± 0.52 0.12,±= =
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the summation of series (6.1) presents no problem:
the lowest order coefficients UN are calculated by
using (6.10) and continued to match the asymptotic
form U∞Nα – 1. As a result, all coefficients in the conver-
gent series (6.3) are found. The summation error is
determined by the accuracy of calculation of the
asymptotic form of UN , which is characterized by a
quantity ∆ assumed to be constant within a bounded
interval even though the actual error behaves as a loga-
rithm of N. If Nc is the characteristic value for which the
relative error is equal to ∆ and

(6.26)

then the summation error is

(6.27)

The error of a straightforward summation using Nm

known coefficients is given by (6.27) with Nc = Nm and
∆ ~ 1 and is higher than estimated by (6.6). Neverthe-
less, the stability of the algorithm with respect to inter-
polation ensures that ∆ ! 1 and Nc @ Nm even for small
Nm [65].

7. “NON-BOREL-SUMMABLE” SERIES

It is clear from Section 3 that any definition of the
sum of a factorially divergent series must be equivalent
to Borel’s definition. In other words, any effective sum-
mation scheme must be equivalent to the Borel tech-
nique; otherwise, self-consistent manipulation of diver-
gent series is impossible. Nevertheless, “non-Borel-
summable” series are frequently discussed in the liter-
ature. This misleading concept is used in two situations.

In one of these situations, the coefficients of the
series in question increase much faster than N!, and the
standard transform defined by (3.11) is not effective,
but the “strong” Borel transform

(7.1)

δUN

UN

----------
0, N Nc,<
∆, N Nc,≥




=

δW g( )
W g( )

----------------
∆, ag * Nc,

∆ 2 Nc/ag( )1/2–{ } , ag & Nc.exp



∼

F g( ) FNgN

N 0=

∞

∑=

=  
FN

Γ kN 1+( )
------------------------- xxkNe x– gNd

0

∞

∫
N 0=

∞

∑

=  xe x– FN

Γ kN 1+( )
------------------------- gxk( )N

,
N 0=

∞

∑d

0

∞

∫
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can be used for summing series whose coefficients
increase as (N!)k with arbitrary finite k.16 

In the other situation, the factorial series in question
have nonalternating coefficients. Analysis of the simple
example

(7.2)

shows that the singular points of the corresponding B(z)
lie on the positive half-axis; i.e., they belong to the con-
tour of integration in (3.12). Therefore, the Borel inte-
gral is ill defined and must be correctly interpreted. In
particular, the contour of integration in (7.2) may lie
above or below the singular point x = 1/ag; alterna-
tively, the integral may be interpreted in the sense of the
Cauchy principal value.

To deal with all possible interpretations, the defini-
tion of gamma function is written as

(7.3)

where C1, C2, … are arbitrary contours extending from
the origin to infinity in the right half-plane. Then, the
Borel transform becomes

(7.4)

where the contours Ci are not mutually equivalent
because of the singularities of the Borel transform B(z)
and cannot be aligned with the positive half-axis as can
be done in (7.3). The choice of interpretation is deter-
mined by the parameters γi if the set {Ci} contains all
nonequivalent contours.

Correct interpretation of the Borel integral is impos-
sible without additional mathematical information
about the quantity represented by a divergent series. For
this reason, current views on the prospects of recovering
physical quantities from the corresponding perturbative

16This leads one to the following question: why do we not use
“strong” transforms of this kind in every case whatsoever? As far
as exact calculations are concerned, the only criterion is analyti-
cal tractability: any transform is applicable if the required calcu-
lations can be carried through. In approximate calculations,
“strong” summation methods are not as reliable as they may seem
to be. Mathematically, the nontriviality of a function is deter-
mined by the type and location of its singularities. Strong Borel
transform (7.1) defines an entire function B(z) having a compli-
cated singular point at infinity. This very fact entails practical dif-
ficulties: the singular point is hardly amenable to analysis,
whereas its impact is not any weaker. This explains why the
“weakest” Borel transform is so effective: its singularities lie at
finite points in the complex plane, and even their location pro-
vides essential information about the function (see Section 6).

F g( ) aN N!gN

N 0=

∞

∑ x
e x–

1 agx–
------------------,d
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∞

∫= =
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expansions are largely pessimistic (see [116, 117]).
However, the importance of additional information
should not be overestimated. Reasonable interpretation
can be based on the requirement of analyticity with
respect to model parameters, which is satisfied in
almost every physical application.

If the values of the parameters are such that all sin-
gular points zi of the Borel transform lie in the left half-
plane (see Fig. 12a), then Borel integral (3.12) for a fac-
torial series with asymptotic expansion coefficients
caNΓ(N + b) is the only analytic function that satisfies
the strong asymptotic condition within the sector
|argg | ≤ π, |g | < g0 with an arbitrary g0 (see [21, Sec-
tion 8.1]), i.e., on the entire physical sheet of the Rie-
mann surface. Therefore, the choice of a contour C
aligned with the positive half-axis (see Fig. 12a) is cor-
rect. If the singular points of the Borel transform move
to the positive half-axis as the parameters are varied,
then the problem of “non-Borel-summability” should
be dealt with. If the analyticity with respect to model
parameters is to be preserved, then the moving singular
points must not cross the contour C. Therefore, the con-
tour should be deformed as shown in Fig. 12b. Accord-
ingly, correct interpretation of the Borel integral
requires that only one parameter γi in (7.4) is not zero.

Interpretation in the sense of the Cauchy principal
value corresponds to the half-sum of integrals over con-
tours C ' and C ''. Its difference from the correct interpre-
tation is determined by the half-sum of the integrals
over contours Ci going around the singular points zi (see

z

z

z

(b)

(c)

z1z3

z4 z2

C

C

C'

C''

z1
z2

z3

z4

z1 z2

z3
z4

C1

C3

C4

C2

Fig. 12. Graphic illustration of non-Borel-summability.

(a)
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Fig. 12c). The integral over a contour Ci behaves as
exp(–zi/g). When interpretation in the sense of the
Cauchy principal value is used, nonperturbative contri-
butions of this form must be added to the Borel integral.
An expression of this kind was discussed in [118] with
regard to the quantum mechanical double-well poten-
tial problem.

Can one be sure that the same interpretation will be
obtained by analytic continuation of the Borel integral
with respect to different model parameters? This ques-
tion is nontrivial in that it cannot be answered positively
in the case of analytic continuation with respect to the
coupling constant. Indeed, the action S{g, ϕ} (in ϕ4 and
related theories) can be transformed into S{φ}/g, and
the change g  geiψ is equivalent to S{φ} 
S{φ}e−iψ. Thus, the pattern of singularities of the Borel
transform in the complex plane is rotated by an angle ψ.
The singularities move from the positive half-axis into
the left half-plane if ψ > π/2, which is impossible if the
convergence of the functional integral is preserved.

In realistic field theories, the set of parameters is
strongly restricted. Due to translational invariance and
various symmetries the action can contain only the cor-
responding invariants, while the renormalizability con-
dition requires that analysis be restricted to small pow-
ers of fields and their gradients. Since the coefficients of
the highest powers of fields are generally associated
with the coupling constant, they are not amenable to
analytic continuation. The coefficients of the terms that
are quadratic in fields cannot be used either, because
their variation may be associated with vacuum instabil-
ity and phase transitions. The remaining possibilities
include the coefficients of the intermediate powers of
fields (such as ϕ3 in ϕ4 theory) and the cross terms rep-
resenting interactions between different fields. Analyt-
icity with respect to these coefficients is preserved in
any part of the complex plane by virtue of (a) conver-
gence of the functional integrals defined on a finite-size
lattice; (b) possibility of taking infinite-volume limits
everywhere except for phase-transition points, where
the system can be partitioned into quasi-independent
subsystems owing to the finite correlation length; and
(c) possibility of elimination of ultraviolet cutoffs in
renormalizable models. These considerations are illus-
trated here by several examples.

7.1. Zero-Dimensional Model 

Consider the integral

(7.5)

as a zero-dimensional analog of the functional integral

W g( ) ϕ ϕ 2– 2γ gϕ3– gϕ4–{ }expd

∞–

∞

∫=

=  g 1/2– φ S ϕ{ } /g–{ } ,expd

∞–

∞

∫
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in ϕ4 theories containing cubic terms. According
to [50], the singular points in the Borel plane corre-
spond to the extrema of the dimensionless action S{φ}:

(7.6)

If γ = 0, then there exist two saddle points where the

values of action are equal, φc = ±i/ , and a singularity
at z = S{φc} = –1/4 (on the negative half-axis). If 0 < γ <
γc , where γc = (8/9)1/2 ≈ 0.942, there exists a pair of
complex conjugate points. If γ > γc , then this pair lies
on the positive half-axis (Fig. 13a), which corresponds
to “non-Borel-summability.” When γ equals γc , another
minimum of S{φ} appears on the real axis.

When γ = 0, the contour C in (5.9) is aligned with the
positive half-axis. This choice of C can obviously be
retained for γ < γc (Fig. 13b). The configuration
obtained by making cuts from the singular points in
Fig. 13b to infinity along the rays emanating from the
origin can be considered as the quadrilateral A1A2A3A4
with vertices A2 and A4 at infinity that can be mapped to
the unit circle by the Christoffel–Schwarz integral [51,
119] and then to the plane with a cut (Fig. 8d). The lat-
ter mapping is defined as

(7.7)

where 2πβ is the angle between the cuts made along
rays and 1/a is the distance from the singular points to
the origin. Note that (6.4) and (6.9) are special cases
of (7.7) corresponding to β = 2 and β = 1. The coeffi-
cients UN of the resummed series in (6.3) are expressed
as

(7.8)

Their asymptotic form in the limit of N  ∞,

, (7.9)

determines the asymptotic values of the parameters in
W(g) in the strong-coupling limit. When 0 < γ < γc , the
pattern of minima of χ2 is analogous to that correspond-
ing to γ = 0 (see Fig. 10). The summation results
obtained for γ = 0.25 and 0.75 are presented in Tables 1
and 2, respectively. As in the case of γ = 0, the accuracy
of summation depends on the error of reconstructing
the asymptotics, which increases as γ approaches γc (cf.

S φc{ } 1
32
------ 27γ4– 36γ2 8– γ 9γ2 8–( )3/2±+[ ] .=

2

z p
u

1 u–( )β-------------------, p
ββ 1 β–( )1 β–

a
-------------------------------,= =

U0 B0,=

UN BK pK Γ N K– βK+( )
Γ N K– 1+( )Γ βK( )
-------------------------------------------------, N 0.≥

K 1=

N

∑=

UN U∞N 1– αβ+ , U∞
W∞

Γ αβ( )Γ α b0+( )
----------------------------------------= =
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Tables 1 and 2). Indeed, the leading correction to (7.9)
scales with N−1 + α'β, and the actual large parameter in
the expansion is Nβ (since α – α' ~ 1), which is con-
firmed by an estimate for summation error analogous
to (6.27):

Fig. 13. (a) Singularities in Borel plane for different γ in
integral (7.5). Contour of integration: (b) γ < γc; (c) γ > γc.
(d) Point A1 remains on the physical sheet of the Riemann
surface if the cut emanating from A3 is parabolic.
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The parameter Nβ decreases as γ  γc , since β  0
and the value of N cannot be increased indefinitely for
technical reasons. Thus, the algorithm formulated
above cannot be used to deal with the case of γ = γc ,
even though approaching this state to an arbitrarily
small distance does not contradict any fundamental
principle.

To describe the case of γ > γc , the degeneracy of the
singular points at γ = γc is eliminated by adding a con-
stant imaginary quantity iδ to γ. When γ ≈ γc , saddle-
point action (7.6) contains the singular contribution
(γ − γc)3/2. As γ increases, vertical displacement of the
singular points is followed by horizontal after the rota-
tion by an angle of 3π/2 is performed, and the contour C
folds (Fig. 13c). After the cut emanating from A3 is

Table 1.  Sum of the series for integral (7.5) with γ = 0.25

g
W(g)

exact value resummed value

0.0625 1.718915 1.718915

0.125 1.674422 1.674422

0.25 1.604821 1.604821

0.50 1.508008 1.508008

1 1.387746 1.387745

2 1.252226 1.252220

4 1.110955 1.11093

8 0.972181 0.97212

32 0.722937 0.72272

g  ∞ 1.812g–0.25 1.835g–0.252

Table 2.  Sum of the series for integral (7.5) with γ = 0.75

g
W(g)

exact value resummed value

0.0625 1.902930 1.902928

0.125 1.937627 1.93755

0.25 1.903621 1.90300

0.50 1.787743 1.7851

1 1.615170 1.608

2 1.419861 1.406

4 1.226524 1.205

8 1.048303 1.020

32 0.753306 0.714

g  ∞ 1.812g–0.25 1.885g–0.275
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rotated so as to coincide with the positive half-axis,
point A1 lies on a different sheet of the Riemann surface
and does not contribute to the divergence of the pertur-
bation series, which can be verified directly by calculat-
ing the expansion coefficients. This agrees with the fact
that the formally calculated contribution of A1 to the
coefficients is purely imaginary. To hold the singular
point A1 on the physical sheet of the Riemann surface,
the cut emanating from A3 must be curved. If the cut is
parabolic (see Fig. 13d), the following constructive

algorithm can be used: the mapping w =  trans-
forms the plane in Fig. 13d into a plane with a straight
cut, which is mapped to a unit circle by the Christoffel–
Schwarz integral, and then any desired domain can be
obtained (see Fig. 8c).

7.2. Double-Well Potential 

Consider the ground state of a quantum particle in
the potential

(7.11)

which reduces to anharmonic oscillator (1.1) when γ =
0 and becomes a double-well potential with symmetric
minima when γ = 1. The latter model is of interest as a
typical case of two degenerate vacuums. It was asserted
in [116] that problems of this type cannot be solved by
summation of perturbation series in principle.
Model (7.11) reduces to a one-dimensional field theory
with two instantons when 0 < γ < 1, and the correspond-
ing dimensionless action is

(7.12)

If m-instanton configurations are taken into account,
then the singularities of the Borel transform lie at the
points zm = –(2/3)m on the negative half-axis when γ =
0 and on two rays emanating from the origin when 0 <
γ < 1 (see Fig. 14a). In the latter case, the perturbation
series can be resummed by using the conformal map-
ping defined by (7.7). The case of γ = 1 corresponds to
the critical state approached as β  0. This state is
unreachable in a rigorous sense, but there is no funda-
mental principle that forbids approaching it to an arbi-
trarily small distance. This can be done without using
perturbation series in terms of an arbitrary γ. It will suf-
fice to analyze the change in the Lipatov asymptotic
form caused by a small deviation of γ from unity [43].

7.3. Yang–Mills Theory 

In the Yang–Mills theories, the Borel integral can be
interpreted by using a procedure that resembles analyt-
ical continuation with respect to the coupling between
fields, but preserves gauge invariance. This is facilitated

z A1–
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2
---x2 γ gx3–

1
2
---gx4,+=
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---– γ2 1

2
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by invoking the results obtained in [18], where an

SU(2) Yang–Mills field  coupled to a complex scalar
field ϕ was considered,

(7.13)

with τa = σa/2 and σa denoting Pauli matrices. After
changing to new field variables, A  B/g, ϕ  φ/λ,
action (7.13) is represented as

(7.14)

where the last equality is written by introducing χ =
λ2/g2. In this theory, an arbitrary functional Z(g2, λ2)
can be represented as a double series in powers of g2

and λ2,

(7.15)

with coefficients ZK, M determined by the saddle-point
configurations of functional (7.14) modified by adding
–Mlng2 and –K lnλ2. The saddle-point values of g2 and
λ2 are

(7.16)

while the saddle-point field configuration is given by

(7.17)

where  denotes ’t Hooft matrices, U is a constant
spinor (UU* = 1). The saddle-point action is expressed
as

(7.18)

Aν
a

S A ϕ,{ } d4x
1
4
--- Fµν

a( )2 ∂µ igτaAµ
a–( )ϕ 2

+




∫=

+
1
2
---λ2 ϕ 4





,

Fµν
a ∂µAν

a ∂ν Aµ
a– geabcAµ

b Aν
c ,+=

S A ϕ,{ }
S0 B{ }

g2
---------------

S1 B φ,{ }
λ2

---------------------- S B φ,{ }
g2

-------------------,≡+=

Z g2 λ2,( ) ZK M, g2Mλ2K ,
K M,
∑=

gc
2 S0 Bc{ }

M
-----------------, λ c

2 S1 Bc φc,{ }
K

-------------------------,= =

Bµ
a x( ) 4ηµν

a xν
ρ4 1–

x2 ρ2+( ) ρ2x2 1+( )
----------------------------------------------,=

φ x( ) i χU
4 3

x2 ρ2+( ) ρ2x2 1+( )[ ] 1/2
--------------------------------------------------------,±=

ρ4 12χ 1,–=

ηµν
a

S Bc φc,{ } 16π2 2–
3 4ξ0sinh 4ξ0–( )

2 2ξ0sinh
2

-----------------------------------------+ ,=

S1 Bc φc,{ }

=  16π2χ 6 2ξ0cosh–( )e
2ξ0– 2ξ0 2ξ0cosh 2ξ0sinh–

2ξ0sinh
3

------------------------------------------------------,

e
2ξ0 ρ2,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
while the corresponding value is

(7.19)

If K and M in (7.15) satisfy some constant relations,

(7.20)

then the asymptotic behavior of the expansion coeffi-

χ
λ c
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Fig. 14. (a) Singularities in the Borel plane corresponding
to different γ in potential (7.11). Interpretation of the Borel
integral in the Yang–Mills theory: (b) curve ABCDE in the
ξ0 plane defined by the condition Imf(ξ0) = 0 and (c) the

corresponding action Seff (in units of 16π2).

Seff
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cients is described by the formula

, (7.21)

where

(7.22)

and ξ0 is found by solving the second equation in (7.19)
rewritten by using (7.18) as

(7.23)

Equation (7.23) has a pair of complex conjugate solu-
tions, and the symbol Re in (7.21) is results from sum-
mation over these solutions. Figure 14b shows the
curve ABCDE defined by the condition Imf(ξ0) = 0. On
this curve, Ref(ξ0) varies from 1 to ∞ along segment
AB, from –∞ to 0 along BC, and from 0 to ∞ along CE.
Physical values of γ (0 ≤ γ ≤ 1) correspond to segments
AB and DE, where |Seff(ξ0)|/16π2 varies from 1/3 to 5.4
and from 4.2 to 1, respectively (see Fig. 14c). Asymp-
totic form (7.21) is determined by the saddle point with
the minimum value |Seff(ξ0)|, and the variation of γ from
1 to 0 corresponds to the movement of a point along the
trajectory AFF'E with a jump between points F and F',
which are associated with equal values of γ and
|Seff(ξ0)|. The jump in action (see Fig. 14c) can be elim-
inated by moving via complex values of γ defined by
relation (7.23) on the segment FF ' in the complex ξ0
plane (see Fig. 14b).

Point A corresponds to the value ρ2 = 1 for which the
Yang–Mills field vanishes (see (7.17)), and Seff(ξ0) cor-
responds to the saddle-point action in ϕ4 theory. Con-
versely, the parameter χ increases indefinitely at the
right endpoint of the curve (ξ0  ∞ + iπ/4), the field
ϕ vanishes accordingly, and Seff(ξ0) corresponds to the
value of action for an instanton–anti-instanton pair for
the pure Yang–Mills theory. If coefficients (7.21) for-
mally define the series

(7.24)

then γ can be varied to perform a continuous change
from the series for ϕ4 theory to the series for the Yang–
Mills theory and to monitor the evolution of the singu-
larities of the Borel transform at z = Seff(ξ0) and z =
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(ξ0). If the m-instanton configurations are taken into
account, then the result is similar to that obtained for
the double-well potential (Fig. 14a). Therefore, the
summation of the series for the Yang–Mills theory
should make use of conformal mapping (7.7) with an
extremely small parameter β.

8. GELL-MANN–LOW FUNCTIONS
IN BASIC FIELD THEORIES

This section presents a scheme for finding the Gell-
Mann–Low functions in basic field theories with arbi-
trary coupling constants (see Fig. 15).

8.1. ϕ4 Theory 

The first attempt to recover the Gell-Mann–Low
function in the four-dimensional scalar ϕ4 theory was
made in [11]. The analysis of the strong-coupling limit
presented in [12] predicted the asymptotic behavior
0.9g2, which differs from the one-loop result 1.5g2

valid for g  0 only by a numerical factor. Similar
asymptotic behavior, 1.06g1.9, was obtained in [13].
The variational perturbation theory developed in [120]
predicts 2.99g1.5. All of these results indicate that ϕ4

theory is non-self-consistent (or “trivial”), which con-
tradicts the absence of renormalon singularities estab-
lished in Section 5. An additional argument follows
from the fact that ϕ4 theory can be rigorously derived
from a reasonable model of a disordered system [103,
121–123], which is well defined in the continuum limit.

The Gell-Mann–Low function can be found by
means of the algorithm described in Section 6.2 with
β(g) playing the role of W(g) [65]. The input data used
here are the same as in [12]: the values of the first four
coefficients of the β function expansion in the subtrac-
tion scheme developed in [124, 125],

, (8.1)

and their high-order asymptotic form [7] with a correc-
tion calculated in [126],

(8.2)

This asymptotic expression is determined by the expan-
sion coefficients for the invariant charge, which corre-
sponds here to the vertex with M = 4 (cf. (4.1.18)). The
“natural” normalization is used for charge g, with the
parameter a in (2.5) set equal to unity. In this case, the
nearest singular point of the Borel transform is sepa-
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Fig. 15. Gell-Mann–Low functions for (a) ϕ4 theory, (b) QED, and (c) QCD. (d) Effective coupling in QCD.

g

rated by unit distance from the origin, and the charac-
teristic scale of variation of β function is g ~ 1.

Interpolation was performed using (6.24) with  =
4 as an optimal value. Coarse optimization of χ2 as a

function of  was performed for several constant val-
ues of b0 [65] to determine the range of interpolations

(  between –0.5 and 0.5) consistent with the power-
law asymptotic behavior of W(g). Figure 16 shows the
behavior of UN for a nearly optimal interpolation with

 = 0. Since all curves except for those corresponding
to b0 @ 1 and b0 ≈ –2 (which approach their respective
asymptotes at slower rates) tend to constants at large N,
the value of α is close to unity. This result agrees with
the value of αeff at the right-hand minimum of χ2, the
location of the left-hand minimum of χ2, and the behav-
ior of U∞ near its zero (see Fig. 17). Figure 18 illustrates

the dependence of the results on . The behavior of α
corresponding to the “ideal” situation shown in
Fig. 11b is obtained by widening the error corridor by a
factor of 2 (short-dashed curves in Fig. 18a). The result-
ing value α = 0.96 is consistent with all results obtained

b̃

Ñ

Ñ

Ñ

Ñ
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for various . The “ideal” situation for W∞ is obtained
immediately (Fig. 18b), and the corresponding value
W∞ = 7.4 is consistent with all results. Thus,

(8.3)

A similar pattern is observed when  is varied
in (6.24) [65].

Figure 15a compares the β function obtained for g ≤
20 by series summation (solid curve) with results
obtained in [12, 13, 120] (upper, middle, and lower
dashed curves, respectively). The asymptotic form of
β(g) found in [12, 13] corresponds to the stable line

segment  ≈ 1.1N at N ≤ 10 in Fig. 16, which is inev-
itably interpreted as the true asymptote if it is calculated
by using only the known expansion coefficients. Actu-
ally, this segment is associated with a dip in the coeffi-
cient function at N & 10 (see insert to Fig. 15a), which
manifests itself in the behavior of the β function by
a one-loop law17 with domain extending to g ~ 10 [65].
Thus, the results obtained in [12, 13] reflect certain

17Being more pronounced for the Borel transform, this behavior is
less obvious for the β function because of the integration in (6.2).

Ñ

α 0.96 0.01, W∞± 7.4 0.4.±= =

b̃

ŨN
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properties of the β function and should not be inter-
preted as essentially incorrect (see detailed discussion
in [65, Section 8.3]). The variational perturbation the-
ory developed in [120] provides a somewhat better
description of the region of g & 10 in Fig. 15a, but does
not guarantee correct results in the strong-coupling
limit even theoretically.

The value of α obtained is close to unity. Even
though the deviation from unity exceeds the error, the
exact equality α = 1 cannot be ruled out, because
asymptotic expansion (6.7) may contain logarithmic
corrections,

(8.4)

which may be interpreted as a slight decrease in α if
γ < 0. In this case, expansion (6.11) contains the factor
(lnN)–γ, while U∞ does not change, and the resulting UN

can be fitted by using (8.4) with

(8.5)

W g( ) W∞gα gln( ) γ– , g ∞,=

α 1, γ 0.14, W∞ 7.7≈ ≈=
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Fig. 16. Coefficients  versus N for different b0 (sym-
bols) and corresponding approximate power laws (solid
curves) obtained for ϕ4 theory by nearly optimal interpola-

tion with  = 4 and  = 0.

ŨN

b̃ Ñ
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without any increase in χ2. Logarithmic branching
appears to be quite plausible for the following reasons.

1. Logarithmic branching is inevitable when the
exact equality α = 1 holds. Indeed, series (6.1) can be
represented as the Sommerfeld–Watson integral [7, 13]

(8.6)

where 0(z) is the analytic continuation of WN to the
complex plane (0(N) = WN), C is a contour encom-
passing the points N0, N0 + 1, N0 + 2, …. When g is
large, the contour C can be extended and shifted left-
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Fig. 17. Pattern of χ2 minima obtained for ϕ4 theory by

using the interval 20 ≤ N ≤ 40 and curves of αeff and 

versus b0 calculated by interpolation with  = 0. Dashed
curve is U∞(b0) corresponding to constant α = 1.
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wards until the rightmost singular point of 0(z)/sinπz
at z = α is reached. This singularity determines the
behavior of W(g) as g  ∞. Power law (6.7) and
asymptotic formula (8.4) correspond to the existence of
a simple pole at z = α and a singularity of the form
(z − α)γ – 1, respectively.

The term β0 in expansion (8.1) vanishes by defini-
tion. However, the zero value of the coefficient β1 for-
tuitous: in the (4 – e)-dimensional ϕ4 theory, it has a
finite value on the order of e, and 0(1) ~ e accordingly.
As e  0, the four-dimensional limit value 0(1) = 0
is obtained, and there is no simple pole if α = 1. If zero
is approached according to the law 0(z) = ω0(z – 1)γ,
then

(8.7)

and the positive value of γ has a natural explanation.
2. The class of field theories with nonlinear terms ϕn

(generalizations of ϕ4 theory) analyzed in [127] for
spaces of dimension d = 2n/(n – 2) is characterized by
logarithmic behavior. In theories of this type, the coef-
ficient β1 vanishes, but becomes finite as d decreases.
Therefore, 0(1) = 0 as shown above. The Gell-Mann–
Low function can be calculated exactly as n  ∞ [127],
and the rightmost singularity of 0(z) has the form (z –
1)3/2, which corresponds to the asymptotic behavior
β(g) ∝  g(lng)–3/2. By continuity, nonanalyticity of the
form (z – 1)γ should hold for finite n, and the singular-
ity at z = 1 should remain rightmost. Therefore, asymp-
totic behavior (8.7) is natural for field theories of this
kind, and it is no surprise that it holds even for n = 4.
Note that W∞ is negative as n  ∞, and the Gell-
Mann–Low function has a zero. A similar conclusion
can be drawn for ϕ4 theory by straightforward extrapola-
tion to n = 4 [127]. Actually, this extrapolation should use
the fact that the exponent γ varies from 3/2 to small val-
ues (see (8.5)). Accordingly, the asymptotic expression
obviously changes sign when γ = 1 according to (8.7)
(ω0 is positive since 0(2) ~ ω0 and β2 is positive [127]).

Thus, one has to choose between two possibilities:
power law (6.7) with α slightly below unity and
asymptotic expression (8.7) with γ > 0. In either case,
ϕ4 theory is self-consistent, which contradicts the wide-
spread view that ϕ4 theory is trivial. Let us discuss the
origin of this belief (for a more detailed discussion,
see [65, Section 8.4]).

It has been rigorously proved that ϕ4 theory is trivial
for d > 4 and nontrivial for d < 4 [128, 129]. The ine-
qualities obtained for d = 4 are “just a bit” insufficient
for proving triviality [130, Section 14]. For mathemati-
cians, this is an annoying minor problem, and the trivi-
ality of ϕ4 theory is commonly regarded as “almost
proved.” For physicists, there is no reason to be so opti-
mistic about it: from the modern perspective, the afore-

β g( )
ω0

Γ 1 γ–( )
--------------------g gln( ) γ– , g ∞,=
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mentioned results obtained for d ≠ 4 are nothing more
than elementary corollaries of renormalizability theory
and one-loop renormalization group analysis. However,
the physics of the theory with d = 4 are extremely com-
plicated, and no analytical approach to the problem has
been found to this day.

It is generally believed that the triviality of ϕ4 theory
can be demonstrated by numerical experiments on lat-
tices. However, most of them reveal only a decrease in
the effective charge g(L) with increasing L, which is
quite natural because the β function has no zero,
whereas convincing evidence of “zero charge” can
hardly be obtained on any finite-size lattice. There is
considerable misunderstanding with regard to charge
normalization. Even under the “natural normalization”
used here, a quadratic law holds for g ~ 10. Under con-
ventional normalization conditions, it holds on wider
intervals, for example, even for g ~ 2000 when the cou-
pling term is written as gϕ4/4!. Accordingly, behavior
of any variable is impossible to distinguish from “triv-
ial” over a wide range of parameter values. The very
concept of triviality is frequently misunderstood. Many

0

0.5

1.0

1.5
α

1

2

3

4

α = 0.96 ± 0.01

4

3

2

1

–0.4–0.6 –0.2 0 0.2 0.4
N
~

0

5

10

15

W∞

1 2

3

W∞ = 7.4 ± 0.43

2

1

Fig. 18. Curves of α and W∞ estimated for ϕ4 theory: num-
bers at curves correspond to estimates in Section 6.2; short-
dashed curves illustrate the widening of the error corridor
for α by a factor of 2.
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authors relate it to the mean-field values of critical
exponents in the four-dimensional theory of phase tran-
sitions, but this indisputable fact is due to the mere
absence of nontrivial zero of the β function.

Issues related to triviality were analyzed by Agodi,
Consoli, and others in a recent series of publications
(e.g., see [131, 132]). An unconventional scenario for
continuum limit in ϕ4 theory was proposed and claimed
to be logically consistent. The validity of the conven-
tional perturbation theory was basically denied, which
seems to be a premature conclusion. Since the numeri-
cal results used as supportive evidence were obtained in
computations on lattices in the weak-coupling limit,
they cannot provide any information about triviality.
The analyses presented in [131, 132] were performed to
resolve the difficulties arising in the Higgs sector of the
Standard Model in view of the triviality of ϕ4 theory.
No issues of this kind arise when the theory is self-con-
sistent.

8.2. Quantum Electrodynamics 

In QED, four terms of the expansion of the β func-
tion are known in the MOM scheme [133]:

(8.8)

and the corresponding asymptotic expression is

(8.9)

It is identical, up to a constant factor, to the asymptotic
behavior of coefficients for the invariant charge [7],
which depends on gD in QED, where D is the photon
propagator (see (4.2.11) for M = 2 and L = 0).

The summation procedure for this series must be
modified, as compared to that developed in Section 6,
because the Lipatov asymptotic form is caNΓ(N/2 + b)
rather than caNΓ(N + b). The Borel transform is

(8.10)

where b0 is an arbitrary parameter. The conformal map-
ping z = u/(1 – u) is applied to obtain a convergent series

β g( ) 4
3
---g2 4g3 64

3
------ζ 3( ) 202

9
---------– g4+ +=

+ 186
256
3

---------ζ 3( ) 1280
3

------------ζ 5( )–+ g5 …,+

βN
as const 4.886× N– Γ N 12+

2
---------------- 

  , N ∞.=

β g( ) xe x– x
b0 1–

B ag x( ),d

0

∞

∫=

B z( ) BN z–( )N ,
N 0=

∞

∑=

BN

βN

aNΓ N /2 b0+( )
------------------------------------,=
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in u for the Borel transform, with coefficients

(8.11)

whose behavior at large N,

, (8.12)

determines the parameters of the asymptotic expression
β(g) = β∞gα as g  ∞.

Interpolation was performed by using (6.24) with

 = b – 1/2 = 5.5 [65]. In contrast to ϕ4 theory, the con-
stant factor in (8.9) is not known. Technically, this is not
a problem, because the constant c can be factored into
the curly brackets in (6.24) to replace 1 with a parame-

ter  treated as unknown and calculated by interpola-
tion. However, this leads to a much higher uncertainty

in the normalized coefficient function FN = βN/ : its
values F2 = 63.1, F3 = –7.02, F4 = 0.34, and F5 = 1.23
(measured in units of 10–3) exhibit only weak conver-

gence to a constant, and the predicted  = 

varies by orders of magnitude as a function of . Nev-
ertheless, the “superstability” of the algorithm men-
tioned above (see Section 6.2) suggests that reasonable
results can be obtained even in this situation. To verify
this possibility, a test experiment was performed for ϕ4

theory. The complete input data (including both coeffi-

cients β2, β3, β4, and β5 and parameters  and )
were used to obtain α = 0.96 ± 0.01 and β∞ = 7.4 ± 0.4
(recall Section 8.1). Similar computations performed

without using  and  resulted in α = 1.02 ± 0.03
and β∞ = 1.7 ± 0.3. Since the uncertainty in the coeffi-

cient function (estimated by varying  within unity
about its optimal value) is a few percent in the former
case and more than an order of magnitude in the latter,
this robustness of results is quite satisfactory.18 It is
clear that the results presented below should be consid-
ered as a zeroth approximation.

Coarse optimization of χ2 as a function of  was
performed to determine the range of interpolations

(−0.5 &  & 1.0) for which UN may exhibit power-law
behavior. The dependence of χ2 and U∞ on α and b0
illustrated by Fig. 19 implies that α ≈ 1. Indeed, U∞

18The shift in β∞ cannot be controlled by error estimation. This is
obviously explained by the fact that the procedure of error esti-
mation validated in [65] is justified only when the discrepancy
with the exact result is so small that all deviations can be linea-
rized.

UN BK 1–( )KCN 1–
K 1– N 1≥( ),

K 1=

N

∑=

U0 B0,=

UN U∞Nα 1– , U∞
β∞

aαΓ α( )Γ b0 α /2+( )
------------------------------------------------= =

b̃

Ã0

βN
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Ã0 FN
N ∞→
lim

Ñ
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Ñ
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changes sign when β0 = –α/2 ≈ –0.5 (see (8.12)). The
same value of b0 corresponds to the minimum of χ2 due
to zero value of the leading contribution to the asymp-
totic U∞Nα – 1. The values of αeff corresponding to the
minima of χ2 at b0 = –α'/2, –α''/2, …, where the corre-
sponding corrections to (8.12) vanish, are closest to the
exact value α ≈ 1.19 

Figures 20a and 20b show several estimates for α
and β∞ as functions of . The values of α obtained for

 ≤ 0.25 are consistent with a value slightly below unity.

The systematic growth to 1.08 observed at  > 0.25 can-
not be controlled by error estimation, but the corre-
sponding minima of χ2 are weak and unstable. Similar
behavior is characteristic of β∞ . The results obtained

for the central part of the examined interval of  are

19Usually, only the minima of χ2 corresponding to α and α' (recall
Section 6.2) are observed in test examples. Additional minima

may appear when certain relations between the coefficients ,

, … are satisfied. This must occur when the amount of avail-

able information is small, as in the test computations on ϕ4 theory
described here.
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Ñ

Ñ
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–U∞
~

αeff

0–1 1 2 b0

Fig. 19. Pattern of χ2 minima and curves of αeff and 
versus b0 obtained for quantum electrodynamics by using
the interval 20 ≤ N ≤ 40 (notation as in Fig. 17).

Ũ∞
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accepted as more reliable, with a conservative error
estimate including systematic variations:

(8.13)

In view of the above remarks concerning errors, even
this estimate is somewhat unreliable.

Figure 15b shows the results obtained by summing

the series for  = 0.2 and b0 = 0. The one-loop law β2g2

is matched with the asymptotic β∞gα at g ~ 10. The dif-
ference between β(g) and the one-loop result is negligi-
ble at g < 5. The asymptotic β(g) agrees with the upper
bound in the inequality 0 ≤ β(g) < g derived in [134]
from a spectral analysis within the estimated error. If
α = 1 and β∞ = 1, then the fine structure constant in pure
electrodynamics increases as L–2 in the small-length
limit.

Even specialists disagree on the interpretation of the
results obtained in lattice QED [135, 136]. Overall,
they point to the triviality in Wilson’s sense: the β func-
tion does not have a nontrivial zero, and phase transi-
tions are characterized by mean-field critical expo-
nents. This conclusion agrees with the results presented
above.
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Fig. 20. Curves of α and W∞ estimated for QED: numbers
at curves correspond to estimates in Section 6.2.
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8.3. QCD 

In QCD, the first four terms of the expansion of the
Gell-Mann–Low function are known in the MS
scheme [137]:

(8.14)

(8.15)

where  is the coupling constant in QCD Lagrangian

β g( ) βNgN

N 0=

∞

∑– β2g2– β3g3– β4g4– …,–= =
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2,+=
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– 1078361
162

---------------------
6508
27

------------ζ 3( )+ N f

+ 50065
162

---------------
6472
81

------------ζ 3( )+ N f
2 1093

729
------------N f

3,+
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Fig. 21. Curves of χ2, αeff , and  versus b0 obtained for
QCD. The minima at b0 = 15.4 and 15.9 are interpreted as
satellites moving with the main minimum at b0 = 15.5.

Ũ∞
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(4.5.7). The asymptotic form of the coefficients in
series (8.14) 

(8.16)

is determined by the expansion of the invariant charge,
which can be found by using any vertex in view of the
generalized Ward identities [47]. Formula (8.16) for
Nc = 2 and Nf = 0 agree with the result obtained in [17].

Since (8.14) is a nonalternating series, its summa-
tion should be performed by the method described in
Section 7. However, a simpler procedure [47] can be
applied by assuming that B(z) ~ zα at infinity. Irrespec-
tive of interpretation of Borel integral (7.4), the result is

(8.17)

where the exact relation between β∞ and  depends on

γi and Ci . However, since β∞ ~  in the general case,
the summation of series (8.14) for negative g can be
used to determine the exponent α and estimate β∞ .

Interpolation of the coefficient function is per-

formed by using (6.24) with  = b – 1/2. As in QED,
the parameter c in the Lipatov asymptotic form is not
known. In Section 8.2, it was calculated in the course of
interpolation. In the present case, the results of an anal-
ogous calculation are characterized by considerable
uncertainties, which cannot be reduced by optimiza-
tion. For this reason, interpolation was performed by
starting from a trial value of c and then varying it
between 10–5 and 1.20 The change in the results due to
the variation was negligible as compared to other
uncertainties. The results presented below were
obtained for Nc = 3, Nf = 0, and c = 10–5.

By finding a power-law fit for UN and analyzing χ2

as a function of  [47], it was found that the minimal

values of χ2 correspond to 0.5 &  & 2.0. Thus, the
range of interpolations consistent with the power-law
behavior of UN was determined. The typical curves of
χ2 and effective U∞ and α plotted versus b0 in Fig. 21
demonstrate that α ≈ –15. Indeed, U∞ changes sign
(see (6.12)) at b0 = –α ≈ 15.5, and the left-hand mini-
mum of χ2 is located at the same point. A similar esti-
mate, α ≈ –15, is obtained by using the value of αeff at

20The parameter c was estimated as the product of the squared

’t Hooft constant cH in one-instanton contribution (4.5.6) (  ~

10–5 and 10–4 for Nf = 0 and 3, respectively) with the dimension-
less integral of the instanton configuration. The latter factor is rel-
atively large (its characteristic value is 16π2).

βN const Γ N 4Nc
11 Nc N f–( )
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-----------------------------+ + 
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the right-hand minimum of χ2. The values of α esti-

mated by these methods agree only for  close to the

optimal value  = 1.58 (Fig. 21) and tend to disagree

as the difference between  and this value increases.

The resulting value of α cannot be accepted as final.
First, a large value of α may be indicative of exponen-
tial behavior. Second, since Γ(α) has poles at α = 0, –1,
–2, … (see (6.12)), the leading contribution to the
asymptotic behavior of UN may vanish, and the result
may correspond, for example, to α' in (6.15). For this

reason, the function W(g) = β(g) is introduced, and
the integer parameter ns is increased until the exponent
αW = α + ns becomes positive. The results obtained by
this method (Fig. 22a) demonstrate that the true behav-
ior a power law with a large noninteger negative expo-
nent rather than an exponential. (If α = –n, the exponent
would behave as illustrated by the inset.) Each point in

Fig. 22a is obtained by independent optimization in .

The optimal  decreases monotonically with increas-
ing ns . The uncertainty of the results is primarily due to
their dependence on the lower limit of the averaging
interval Nmin ≤ N ≤ Nmax. The higher lying data points in
Fig. 22a correspond to small Nmin and minimum values
of χ2 on the order of 106. As Nmin increases, α decreases
monotonically until χ2 reaches a value on the order of
103 (lower lying data points). With a further increase in
Nmin, the pattern of χ2 minima becomes indistinct and
the uncertainty of the results sharply increases. The
value of α is then allowed to decrease further until χ2 ~
10 is reached as required, and this is taken into account

in error estimation. Even though the uncertainty in 
amounts to several orders of magnitude (Fig. 22b), the
most probable value must be on the order of 105 to be
consistent with most data. Thus,

(8.18)

for Nf = 0. For Nf = 3, the result is α = –12 ± 3, and the

same most probable value is obtained (while  is scat-
tered between 1 and 107). The robustness results under
the change in summation procedure means that their
uncertainty has been adequately estimated.

While the uncertainty in  is large, the corre-
sponding uncertainty in the β function to relatively
small: the one-loop law β2g2 is matched with asymp-

totic expression (8.17) at g* ~ 2, and  changes by
four orders of magnitude as g* changes by a factor of

two. When αW is negative, the sign of  is indetermi-
nate, because the error in α is large and the factor Γ(α)
in Eq. (6.12) is alternating, but this sign is definitely
negative for positive αW (large ns). Figure 15c illustrates

Ñ

Ñ

Ñ

g
ns

Ñ

Ñ

β∞

α 13– 2, β∞± 105.∼=

β∞

β∞

β∞

β∞
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the behavior of β-function at g < 0 (solid curve). Its ana-
lytic continuation to positive g is expected to exhibit
qualitatively similar behavior, but the sign of (8.17)
may change (dashed curve).21 Nevertheless, the effec-
tive coupling constant exhibits consistent behavior as a
function of the length scale L (Fig. 15d). In the one-
loop approximation, g(L) has a pole at L = L0 = 1/ΛQCD

(dashed curve). For the obtained β function, g(L)
increases in the neighborhood of L0 until a value on the
order of g* is reached (see Fig. 15c) and then either
becomes constant (if β∞ > 0) or nearly constant,
increasing as (lnL)0.07 (if β∞ < 0).

In the weak-coupling region, the quark–quark inter-
action potential V(L) is described by the modified Cou-

lomb law (L)/L, and the sharp increase in (L) in the
neighborhood of L = L0 points to a tendency to confine-
ment. In the strong-coupling region, the relation
between V(L) and (L) is not known. However, an

21In particular, β∞ = cosπα if the Borel integral is interpreted in
the sense of the Cauchy principal value.
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Fig. 22. (a) Exponent αW for QCD obtained by summation

of series for W(g) = β(g) versus ns for different intervals
Nmin ≤ N ≤ Nmax: . corresponds to Nmin = 22 + ns, Nmax =
35 + ns; j, m, d, h, n, s, and e correspond to Nmin

increased in unit steps. (b)  versus ns .
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analogous result was obtained by Wilson [138] in lat-
tice QCD:

(8.19)

where a is the lattice constant. Since the result must be
independent of a, the β function in the strong-coupling
region may be estimated as β(g) ~ glng [139], which is,
however, incorrect. The transverse size of the string
estimated for a @ 1/ΛQCD is on the order of a, which is
much larger than its actual physical size (~1/ΛQCD).
This means that lattice effects are so strong that there is
no reason to expect that the result will be independent
of a. With regard to a ! 1/ΛQCD , there is some reason
to these expectations, but Eq. (8.19) does not apply
since the coupling constant (a) is small. Thus,
Eq. (8.19) may be valid only for a ~ 1/ΛQCD. In the pla-

teau region, (L) ~  ~ 20, and the sharp
increase in (L) in the neighborhood of L = L0 (Fig. 15d)
implies that the conditions a ~ 1/ΛQCD and (a) @ 1 are
compatible; i.e., lattice formula (8.19) can be applied to
actual QCD.

9. HIGH-ORDER CORRECTIONS
TO THE LIPATOV ASYMPTOTICS

As noted above, corrections to Lipatov asymptotic
form (2.5) can be represented by a regular expansion in
terms of 1/N:

(9.1)

Knowledge of all coefficients AK is equivalent to knowl-
edge of the exact coefficient function WN , and their cal-
culation offers an alternative to direct calculation of
low-order diagrams [81, 106, 125, 133, 137]. Currently,
the lowest order corrections are known in ϕ4 theory
[126] and a number of quantum-mechanical problems
[6, 140].

It was shown in [141] that series (9.1) is factorially
divergent, and high-order expansion coefficients can be
calculated by using a procedure analogous to Lipatov’s
method: an exact expression for the Kth coefficient can
be written as a functional integral and found by the sad-
dle-point method for large K. Typically, AK has the
asymptotic form

(9.2)

where S0 and S1 are the values of action for the first and
second instantons in the field theory under analysis, and
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S1

S0
-----ln 

  K–

Γ K
r' r–
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r and r' denote the corresponding number of zero
modes. The instantons are enumerated in the order of
increasing action.

Detailed calculations of the asymptotic form of AK

for the n-component ϕ4 theory were presented in [33].
Available information about higher order instantons in
ϕ4 theory is incomplete. However, it is reasonable to
assume that the role of the second instanton is played
by a combination of two elementary instantons [33,
142]. Then, expression (9.2) must be modified, because
it is correct only when the equidistribution principle is
valid (see Section 4.1), i.e., when the fluctuation modes
can be strictly classified as zero and oscillatory ones.
For two-instanton configurations, there must exist a
soft mode that corresponds to variation of the distance
between the elementary instantons and can be reduced
to oscillation in a potential well with nonanalytic mini-
mum. Accordingly, logarithmic and power-law correc-
tions appear in (9.2) if d = 1, 2, 3 and d = 4, respectively.

If d = 1, then the asymptotic form of the coefficients
AK corresponding to the M-point Green function GM(g)
is

(9.3)

where CE is Euler’s constant and ψ(x) is the logarithmic
derivative of the gamma function. If d = 2, then

(9.4)

to logarithmic accuracy. Similarly,

(9.5)

for d = 3. The results obtained for d = 4 depend on the
coordinates contained in the Green functions and have
cumbersome expressions [33]. They can be simplified
by changing to the representation in terms of momenta
pi corresponding to the symmetric point (pi ~ p):

(9.6)
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where µ is a constant determined by the charge normal-
ization condition, ν = (n + 8)/3, and the values of B are
listed in Table 3. In the scalar theory (n = 1), the leading
contribution to the asymptotic expression vanishes, and
the asymptotic behavior is expected to be determined
by the next-order term in 1/K:

(9.7)

The results for the logarithm of the vacuum integral
Z0(g) are formally derived by setting M = 0 and intro-
ducing a factor of 1/2 in (9.3)–(9.6). In particular, the
following result is obtained for the ground-state energy
of the anharmonic oscillator (d = 1, n = 1):

(9.8)

Figure 23 compares this prediction with numerical
results obtained in [6].

If d = 1, then the entire instanton spectrum can be
represented by combinations of elementary instantons.
If d ≥ 2, then there may exist a nonspherically symmet-
ric instanton with action lower than 2S0. In this case,
there are no soft modes, and formula (9.2) with r' – r =
d(d – 1)/2 is valid, because an asymmetric instanton is
associated with d(d – 1)/2 additional modes corre-
sponding to rotations in the coordinate space. Since
modes of this kind have never been considered, the cal-
culation of the constant  in (9.2) is a technically non-
trivial problem. The technique of integration over these
modes developed in [33] must be instrumental in quan-
tum electrodynamics, where even the first instanton is
asymmetric [23].

10. OUTLOOK

Finally, let us discuss the most promising lines of
further research.

10.1. Calculation of c
in the Lipatov Asymptotics 

Complete Lipatov asymptotic forms are known only
in ϕ4 theory and a number of quantum-mechanical
problems. In other models, the common factor c has yet
to be calculated. For the Gell-Mann–Low function in
QCD, the factor c has been calculated only in the case
of SU(2) symmetry [17]. Note that the calculation made
use of an unconventional definition of the β function.
Therefore, consistency of the asymptotic form of βN

with the renormalization scheme used in actual dia-
grammatic calculations remains an open question. The
factor c has been formally calculated for the quark–
quark correlation function in QCD [24]. However,

AK const eν µ / p( )ln=

× Γ K
n 4+

2
------------ ν 1–+ + 

  2ln( ) K– .

AK
Kln 2.74+
3.78

--------------------------Γ K
1
2
---+ 

  2ln( ) K– .–=

c̃
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since the procedure used to eliminate divergences
in (4.5.13) evokes doubts [48], even the general form of
the result may be revised.

10.2. A Priori Proofs of Absence of Renormalons 

A proof of this kind has been found only for ϕ4 the-
ory. The constructive scheme proposed in Section 5.3
for eliminating renormalon singularities in QED and
QCD is substantiated by results presented in Section 8.
However, it relies on approximate determination of the
Gell-Mann–Low function, which may seem question-
able to a skeptical reader. Therefore, extension of the
analysis presented in [48] to other field theories is
highly desirable.

20 4 6 8 10
K

2

4

6

8

log |AK|

Fig. 23. Predictions of asymptotic formula (9.8) (curve)
compared with coefficients AK calculated numerically in [6]
(symbols).

Table 3.  Parameter B in formula (9.6)

n
B × 104

M = 2 M = 4

0 –9.05 –8.72

1 0 0

2 3.25 1.45

3 4.55 1.50
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10.3. Development and Application 
of Highly Accurate Summation Methods 

In the scheme of conformal–Borel technique pre-
sented in Section 6.1, the cut in the Borel plane extends
from –∞ to the nearest instanton singularity S0. How-
ever, the cut can be extended to point S* such that S0 <
S* < 0. In this case, all singularities of the Borel trans-
form remain on the boundary of a unit circle in the u
plane, and the resummed series is convergent at every
point in the Borel plane that does not lie on the cut. If
S0 < S* < 0, then the results are independent of S*. This
empirical observation made in [115] implies that
knowledge of the exact value of S0 is not required, and
no quantitative information about the Lipatov asymp-
totic form is used in the scheme proposed by Le Guillou
and Zinn-Justin [35]. I believe that interpolation of the
coefficient function and explicit use of the asymptotic
behavior at strong coupling will substantially improve
the accuracy of calculations of critical exponents based
on available information. This example illustrates the
inefficiency of the current use of information that
requires enormous labor resources to be acquired.

Additional improvement of efficiency can be
achieved by using information concerning high-order
corrections to the Lipatov asymptotic form. The
scheme described in Section 9 facilitates the calculation
of several parameters characterizing the coefficient
function. In terms of efficiency, this is equivalent to
advancing by several orders in perturbation theory,
whereas advancement to the next order in diagram-
matic calculations requires about ten years.

The method for finding strong-coupling asymptotics
described in Section 6.2 is effective when information
is scarce, but cannot be classified as a highly accurate
one. When more information is available, construction
of Padé approximants for the coefficient function [13]
is a more effective tool. Preliminary studies show that
this method can be combined with some strategy for
selecting most suitable Padé approximants.

10.4. Summation of Nonalternating Series 

In essence, the analysis presented in Section 7
solves the problem of non-Borel-summability for the
most interesting problems. However, the summation
schemes formulated therein are insufficiently accurate,
and improved methods should be developed.

The summation of QCD perturbation series is per-
formed in Section 8.3 without invoking the technique
developed in Section 7. A certain trick is used to cir-
cumvent the problem, and the resulting exponent α is
correct, whereas β∞ is determined only up to an order of
magnitude. Currently, this rough approximation is
acceptable in view of large uncertainty in β∞ (see
Fig. 22b). However, it is strongly recommended that a
test summation be performed “by following all the
rules” and essential uncertainties be analyzed.
JOURNAL OF EXPERIMENTAL A
In the confinement problem, summation of expan-
sions for anomalous dimensions is required. The for-
mation of a string -like “flux tube” between quarks is
not controlled by the β function, being determined by
properties of correlation functions, which depend on
the values of anomalous dimensions in the “plateau”
region of the coupling constant (see Fig 15d).

10.5. Analytical Methods
for Strong-Coupling Problems 

The exponent α is close to unity in both QCD and ϕ4

theory. Moreover, there are reasons to believe that its
exact value is α = 1. Simple results of this kind must be
obtainable by analytical methods. Since a known result
is always easier to substantiate than to obtain, there are
grounds for an optimistic outlook. Once the equality
α = 1 is proved, the accuracy of analysis of strong-cou-
pling asymptotics will substantially improve, because
the number of parameters to be determined will reduce
from two to one. It is obvious that progress in this area
will be stimulated by acquiring additional “experimen-
tal” information concerning strong-coupling asymp-
totics.

10.6. Applications to the Theory
of Disordered Systems 

The theory of disordered systems is unique in that
high-order contributions are essential even in the weak-
coupling region. Description of a particle moving in a
Gaussian random field can be rigorously reformulated
as a ϕ4 theory with “incorrect” sign of the coupling con-
stant [103, 121–123]. In formally unstable field theo-
ries of this kind, nonperturbative contributions of the
form exp(–a/g) play an important role and can be found
by summing perturbation series. One example is the
fluctuation tail of density of states [143], which is
directly related to the Lipatov asymptotic form [8, 144].
Combination of instanton calculations with parquet
approximation can be used to develop a complete the-
ory of density of states for a disordered system in the
(4 – e)-dimensional space [8]. Next in order is the devel-
opment of an analogous kinetic theory for calculating
transport disordered systems, which requires an analysis
of a ϕ4-type theory with two vector fields [122, 123]. The
qualitative importance of high-order perturbative con-
tributions for such an analysis is due to the purely non-
perturbative nature of the diffusion pole in the localized
phase [145, 146]. If all characteristics of the pole can be
elucidated in the framework of the instanton method,
then an explanation will be found for the “simple” crit-
ical exponents obtained in the symmetry-based
approach to the theory of the Anderson transition [147].

ACKNOWLEDGMENTS

I thank M.V. Sadovskii and A.I. Sokolov, who read
a preliminary version of the manuscript and made
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005



DIVERGENT PERTURBATION SERIES 1231
important remarks; L.N. Lipatov for stimulating dis-
cussions; K.B. Varnashev for help in selecting refer-
enced papers; and participants of seminars at the
Kapitza Institute for Physical Problems, Lebedev Phys-
ical Institute, Institute of Theoretical and Experimental
Physics, and Konstantinov Institute of Nuclear Physics
for interest in this study and numerous discussions.

This work was supported by the Russian Foundation
for Basic Research, project no. 03-02-17519.

REFERENCES

1. J.-P. Ramis, Series divergentes et theories asympto-
tiques (Am. Math. Soc., Providence, RI, 1984; Inst.
Komp. Issled., Izhevsk, 2002).

2. N. N. Bogolyubov and D. V. Shirkov, Introduction to
the Theory of Quantized Fields, 3rd ed. (Nauka, Mos-
cow, 1976; Wiley, New York, 1980).

3. V. B. Berestetskiœ, E. M. Lifshitz, and L. P. Pitaevskiœ,
Quantum Electrodynamics, 2nd ed. (Nauka, Moscow,
1980; Pergamon, Oxford, 1982).

4. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshin-
skiœ, Methods of Quantum Field Theory in Statistical
Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall,
Englewood Cliffs, N.J., 1963).

5. F. J. Dyson, Phys. Rev. 85, 631 (1952).

6. C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231
(1969); Phys. Rev. D 7, 1620 (1973).

7. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 72, 411 (1977) [Sov.
Phys. JETP 45, 216 (1977)].

8. I. M. Suslov, Usp. Fiz. Nauk 168, 503 (1998) [Phys.
Usp. 41, 441 (1998)].

9. L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov,
Dokl. Akad. Nauk SSSR 95, 497, 773, 1177 (1954).

10. N. N. Bogolyubov and D. V. Shirkov, Quantum Fields
(Nauka, Moscow, 1993) [in Russian].

11. V. S. Popov, V. L. Eletskiœ, and A. V. Turbiner, Zh. Éksp.
Teor. Fiz. 74, 445 (1978) [Sov. Phys. JETP 47, 232
(1978)].

12. D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, Teor.
Mat. Fiz. 38, 15 (1979).

13. Yu. A. Kubyshin, Teor. Mat. Fiz. 58, 137 (1984).

14. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys.
Rev. D 15, 1544 (1977).

15. G. Parisi, Phys. Lett. B 66B, 382 (1977).

16. A. P. Bukhvostov and L. N. Lipatov, Zh. Éksp. Teor. Fiz.
73, 1658 (1977) [Sov. Phys. JETP 46, 871 (1977)]; C.
Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. Lett. 38,
306 (1977).

17. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 71B,
93 (1977).

18. L. N. Lipatov, A. P. Bukhvostov, and E. I. Malkov, Phys.
Rev. D 19, 2974 (1979).

19. Large Order Behavior of Perturbation Theory, Ed. by
J. C. Le Guillou and J. Zinn-Justin (North-Holland,
Amsterdam, 1990).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
20. E. B. Bogomolny, V. A. Fateyev, and L. M. Lipatov, in
Soviet Science Reviews: Physics, Ed. by I. M. Khalatni-
kov (Harwood Academic, New York, 1980), Vol. 2,
p. 247.

21. J. Zinn-Justin, Phys. Rep. 70, 109 (1981).
22. C. Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 16,

996 (1977); R. Balian, C. Itzykson, G. Parisi, and
J. B. Zuber, Phys. Rev. D 17, 1041 (1978).

23. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76B,
210 (1978).

24. I. I. Balitsky, Phys. Lett. B 273, 282 (1991).
25. P. G. Silvestrov, Phys. Rev. D 51, 6587 (1995).
26. S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 463, 489

(1996).
27. G. H. Hardy, Divergent Series, 2nd ed. (Clarendon,

Oxford, 1956; Inostrannaya Literatura, Moscow, 1951).
28. L. D. Kudryavtsev, Mathematical Analysis (Vysshaya

Shkola, Moscow, 1973), Vol. 1 [in Russian].
29. E. Borel, Memoire sur les series divergentes (Gauthier-

Villars, Paris, 1899).
30. H. Poincaré, Acta Math. 5, 240 (1884).
31. E. B. Bogomolny, Phys. Lett. B 67B, 193 (1977).
32. G. Parisi, Phys. Lett. B 66B, 167 (1977).
33. D. A. Lobaskin and I. M. Suslov, Zh. Éksp. Teor. Fiz.

126, 268 (2004) [JETP 99, 234 (2004)].
34. E. Brezin and G. Parisi, J. Stat. Phys. 19, 269 (1978).
35. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39,

95 (1977); Phys. Rev. B 21, 3976 (1980); R. Guida and
J. Zinn-Justin, J. Phys. A 31, 8103 (1998).

36. I. M. Suslov, Zh. Éksp. Teor. Fiz. 106, 560 (1994) [JETP
79, 307 (1994)].

37. I. M. Suslov, Zh. Éksp. Teor. Fiz. 111, 220 (1997) [JETP
84, 120 (1997)].

38. I. M. Suslov, Zh. Éksp. Teor. Fiz. 111, 1896 (1997)
[JETP 84, 1036 (1997)].

39. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 5: Statistical Physics, 3rd ed. (Nauka,
Moscow, 1976; Pergamon, Oxford, 1980).

40. F. A. Berezin, Method of Second Quantization (Nauka,
Moscow, 1965; Academic, New York, 1966).

41. R. Rajaraman, Solitons and Instantons: An Introduction
to Solitons and Instantons in Quantum Field Theory
(North-Holland, Amsterdam, 1982; Mir, Moscow,
1985).

42. I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 74, 211 (2001)
[JETP Lett. 74, 191 (2001)].

43. E. Brezin, G. Parisi, and J. Zinn-Justin, Phys. Rev. D 16,
408 (1977).

44. A. A. Belavin, A. M. Polyakov, A. S. Shwartz, and
Yu. S. Tyupkin, Phys. Lett. B 59B, 85 (1975).

45. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976).
46. C. Bernard, Phys. Rev. D 19, 3013 (1979).
47. I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 76, 387 (2002)

[JETP Lett. 76, 327 (2002)].
48. I. M. Suslov, Zh. Éksp. Teor. Fiz. 116, 369 (1999) [JETP

89, 197 (1999)].
SICS      Vol. 100      No. 6      2005



1232 SUSLOV
49. B. Lautrup, Phys. Lett. B 69B, 109 (1977).
50. G. ’t Hooft, in The Whys of Subnuclear Physics: Pro-

ceedings of the 1977 International School of Subnu-
clear Physics, Erice, Trapani, Sicily, 1977, Ed. by
A. Zichichi (Plenum, New York, 1979).

51. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, in
Lectures on the Theory of Functions of a Complex Vari-
able (Nauka, Moscow, 1976) [in Russian].

52. S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 507, 379
(1997).

53. M. Beneke, Phys. Rep. 317, 1 (1999).
54. G. Parisi, Phys. Lett. B 76B, 65 (1978); Nucl. Phys. B

150, 163 (1979).
55. G. Parisi, Phys. Rep. 49, 215 (1979).
56. F. David, Nucl. Phys. B 209, 433 (1982); 234, 237

(1984); 263, 637 (1986).
57. M. C. Bergere and F. David, Phys. Lett. B 135B, 412

(1984).
58. A. H. Mueller, Nucl. Phys. B 250, 327 (1985).
59. V. I. Zakharov, Nucl. Phys. B 385, 452 (1992).
60. M. Beneke et al., Phys. Lett. B 307, 154 (1993); 348,

613 (1995); Nucl. Phys. B 452, 563 (1995); 472, 529
(1996); Phys. Rev. D 52, 3929 (1995).

61. G. A. Korn and T. M. Korn, Mathematical Handbook
for Scientists and Engineers, 2nd ed. (McGraw-Hill,
New York, 1968; Nauka, Moscow, 1977).

62. M. A. Evgrafov, Analytic Functions, 2nd ed. (Nauka,
Moscow, 1968; Saunders, Philadelphia, 1966).

63. I. M. Suslov, Zh. Éksp. Teor. Fiz. 126, 542 (2004) [JETP
99, 474 (2004)].

64. I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 315 (2000)
[JETP Lett. 71, 217 (2000)].

65. I. M. Suslov, Zh. Éksp. Teor. Fiz. 120, 5 (2001) [JETP
93, 1 (2001)].

66. G. A. Baker, Jr., B. G. Nickel, M. S. Green, and
D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys.
Rev. B 17, 1365 (1978).

67. J. S. R. Chisholm, Math. Comput. 27, 841 (1973).
68. G. A. Baker, Jr. and P. Graves-Morris, Pade Approxi-

mants (Addison-Wesley, Reading, MA, 1981).
69. I. O. Mayer, J. Phys. A 22, 2815 (1989).
70. S. A. Antonenko and A. I. Sokolov, Phys. Rev. B 49,

15901 (1994).
71. I. O. Mayer, Teor. Mat. Fiz. 75, 234 (1988).
72. R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080

(1986); H. Kleinert, Phys. Lett. A 173, 332 (1993).
73. H. Kleinert and V. Schulte-Frohlinde, Critical Proper-

ties of ϕ4-Theories (World Sci., Singapore, 2001).
74. H. Kleinert, Phys. Rev. Lett. 75, 2787 (1995); Phys.

Rev. D 57, 2264 (1998); Phys. Lett. B 434, 74 (1998).
75. H. Kleinert, Phys. Rev. D 60, 085001 (1999).
76. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase

Transitions and Critical Phenomena, Ed. by C. Domb
and M. S. Green (Academic, New York, 1976), Vol. 6.

77. J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon, Oxford, 2002).
JOURNAL OF EXPERIMENTAL A
78. S. A. Antonenko and A. I. Sokolov, Phys. Rev. E 51,
1894 (1995).

79. A. I. Sokolov, Fiz. Tverd. Tela (St. Petersburg) 40, 1284
(1998) [Phys. Solid State 40, 1169 (1998)]; A. I. Soko-
lov, E. V. Orlov, V. A. Ul’kov, and S. S. Kashtanov,
Phys. Rev. E 60, 1344 (1999).

80. R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).
81. E. V. Orlov and A. I. Sokolov, Fiz. Tverd. Tela (St.

Petersburg) 42, 2087 (2000) [Phys. Solid State 42, 2151
(2000)].

82. P. Calabrese, E. V. Orlov, D. V. Pakhnin, and A. I. Soko-
lov, Phys. Rev. B 70, 094425 (2004).

83. G. Grinstein and A. Luther, Phys. Rev. B 13, 1329
(1976); A. Aharony, Phys. Rev. B 13, 2092 (1976).

84. I. O. Mayer, A. I. Sokolov, and B. N. Shalaev, Ferroelec-
trics 95, 93 (1989).

85. D. V. Pakhnin and A. I. Sokolov, Phys. Rev. B 61, 15130
(2000).

86. J. M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev.
B 61, 15136 (2000).

87. A. Pelissetto and E. Vicari, Phys. Rev. B 62, 6393
(2000).

88. D. V. Pakhnin, A. I. Sokolov, and B. N. Shalaev, Pis’ma
Zh. Éksp. Teor. Fiz. 75, 459 (2002) [JETP Lett. 75, 387
(2002)].

89. Yu. Holovatch, V. Blavats’ka, M. Dudka, et al., Int. J.
Mod. Phys. B 16, 4027 (2002).

90. A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 63,
140414 (2001); 65, 020403 (2002).

91. P. Calabrese, P. Parruccini, and A. I. Sokolov, Phys. Rev.
B 66, 180403 (2002); 68, 094415 (2003).

92. R. Folk, Yu. Holovatch, and T. Yavors’kii, Phys. Rev. B
62, 12195 (2000).

93. M. Dudka, Yu. Holovatch, and T. Yavors’kii, J. Phys. A
37, 10727 (2004).

94. A. I. Sokolov and K. B. Varnashev, Phys. Rev. B 59,
8363 (1999).

95. A. I. Mudrov and K. B. Varnashev, Phys. Rev. B 57,
3562 (1998); 57, 5704 (1998); 64, 214423 (2001).

96. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
97. P. Calabrese, E. V. Orlov, P. Parruccini, and A. I. Soko-

lov, Phys. Rev. B 67, 024413 (2003).
98. V. V. Prudnikov, S. V. Belim, A. V. Ivanov, et al., Zh.

Éksp. Teor. Fiz. 114, 972 (1998) [JETP 87, 527 (1998)].
99. V. V. Prudnikov, S. V. Belim, E. V. Osintsev, and

A. A. Fedorenko, Fiz. Tverd. Tela (St. Petersburg) 40,
1526 (1998) [Phys. Solid State 40, 1383 (1998)].

100. V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko,
J. Phys. A 32, 8587 (1999); S. V. Belim, Pis’ma Zh.
Éksp. Teor. Fiz. 77, 118 (2003) [JETP Lett. 77, 112
(2003)]; Pis’ma Zh. Éksp. Teor. Fiz. 77, 509 (2003)
[JETP Lett. 77, 434 (2003)].

101. V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko,
Pis’ma Zh. Éksp. Teor. Fiz. 73, 153 (2001) [JETP Lett.
73, 135 (2001)]; P. V. Prudnikov and V. V. Prudnikov,
Zh. Éksp. Teor. Fiz. 122, 636 (2002) [JETP 95, 550
(2002)].
ND THEORETICAL PHYSICS      Vol. 100      No. 6      2005



DIVERGENT PERTURBATION SERIES 1233
102. K. G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1975);
The Renormalization Group and the e-Expansion (Mir,
Moscow, 1975).

103. S. Ma, Modern Theory of Critical Phenomena (Ben-
jamin, Reading, Mass., 1976; Mir, Moscow, 1980).

104. A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, Zh.
Éksp. Teor. Fiz. 77, 1035 (1979) [Sov. Phys. JETP 50,
521 (1979)].

105. J. C. Le Guillou and J. Zinn-Justin, J. Phys. Lett. 46,
L131 (1985); J. Phys. (Paris) 48, 19 (1987); 50, 1365
(1989).

106. H. Kleinert, J. Neu, V. Schulte-Frohlinde, et al., Phys.
Lett. B 272, 39 (1991); 319, 545 (1993).

107. H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. B 342,
284 (1995).

108. B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov,
Phys. Lett. A 230, 105 (1997).

109. H. Kleinert, S. Thoms, and V. Schulte-Frohlinde, Phys.
Rev. B 56, 14428 (1997).

110. R. Folk, Yu. Holovatch, and T. Yavors’kii, Phys. Rev. B
61, 15114 (2000).

111. R. Folk, Y. Holovatch, and T. Yavorskiœ, Usp. Fiz. Nauk
173, 175 (2003) [Phys. Usp. 46, 169 (2003)].

112. W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling, Numerical Recipes (Cambridge Univ.
Press, Cambridge, 1988).

113. I. M. Suslov, Zh. Éksp. Teor. Fiz. 122, 696 (2002) [JETP
95, 601 (2002)].

114. D. I. Kazakov and V. S. Popov, Zh. Éksp. Teor. Fiz. 122,
675 (2002) [JETP 95, 581 (2002)].

115. A. I. Mudrov and K. B. Varnashev, Phys. Rev. E 58,
5371 (1998).

116. U. D. Jentschura and J. Zinn-Justin, J. Phys. A 34, L253
(2001).

117. D. I. Kazakov and V. S. Popov, Pis’ma Zh. Éksp. Teor.
Fiz. 77, 547 (2003) [JETP Lett. 77, 453 (2003)].

118. J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon, Oxford, 1989), Chap. 40.

119. W. Koppenfels and F. Stallmann, Praxis der Konformen
Abbildung (Springer, Berlin, 1959; Inostrannaya Liter-
atura, Moscow, 1963).

120. A. N. Sissakian, I. L. Solovtsov, and O. P. Solovtsova,
Phys. Lett. B 321, 381 (1994).

121. D. J. Thouless, J. Phys. C 8, 1803 (1975).

122. A. Nitzan, K. F. Freed, and M. N. Cohen, Phys. Rev. B
15, 4476 (1977).

123. M. V. Sadovskii, Usp. Fiz. Nauk 133, 223 (1981) [Sov.
Phys. Usp. 24, 96 (1981)]; Zh. Éksp. Teor. Fiz. 70, 1936
(1976) [Sov. Phys. JETP 43, 1008 (1976)].
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
124. A. A. Vladimirov and D. V. Shirkov, Usp. Fiz. Nauk
129, 407 (1979) [Sov. Phys. Usp. 22, 860 (1979)].

125. F. M. Dittes, Yu. A. Kubyshin, and O. V. Tarasov, Teor.
Mat. Fiz. 37, 66 (1978).

126. Yu. A. Kubyshin, Teor. Mat. Fiz. 57, 363 (1983).

127. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 71, 2010 (1976)
[Sov. Phys. JETP 44, 1055 (1976)].

128. J. Frolich, Nucl. Phys. B 200, 281 (1982).

129. J. P. Eckmann and R. Epstein, Comm. Math. Soc. 64, 95
(1979).

130. M. Aizenman, Comm. Math. Soc. 86, 1 (1982).

131. M. Consoli and P. M. Stevenson, Z. Phys. C 63, 427
(1994).

132. A. Agodi, G. Andronico, P. Cea, et al., Mod. Phys. Lett.
A 12, 1011 (1997).

133. S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Sur-
guladze, Phys. Lett. B 256, 81 (1991).

134. N. V. Krasnikov, Nucl. Phys. B 192, 497 (1981);
H. Yamagishi, Phys. Rev. D 25, 464 (1982).

135. S. Kim, J. B. Kogut, and M. P. Lombardo, Phys. Lett. B
502, 345 (2001).

136. V. Azcoiti, Nucl. Phys., Proc. Suppl. 53, 148 (1997).

137. T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,
Phys. Lett. B 400, 379 (1997).

138. K. Wilson, Phys. Rev. D 10, 2445 (1974).

139. C. Callan, R. Dashen, and D. Gross, Phys. Rev. D 20,
3279 (1979).

140. S. V. Faleev and P. G. Silvestrov, Phys. Lett. A 197, 372
(1995).

141. I. M. Suslov, Zh. Éksp. Teor. Fiz. 117, 659 (2000) [JETP
90, 571 (2000)].

142. G. L. Alfimov, V. M. Eleonsky, N. E. Kulagin, et al.,
Physica D (Amsterdam) 44, 168 (1990); G. L. Alfimov,
Mat. Model. 2, 67 (1990); G. L. Alfimov, Izv. Ross.
Akad. Nauk, Ser. Fiz. 60, 12 (1996).

143. I. M. Lifshits, Usp. Fiz. Nauk 83, 617 (1964) [Sov.
Phys. Usp. 7, 571 (1965)].

144. E. Brezin and G. Parisi, J. Phys. C 13, L307 (1980).

145. J. L. Cardy, J. Phys. C 11, L321 (1978).

146. M. V. Sadovskii, in Soviet Science Reviews: Physics,
Ed. by I. M. Khalatnikov (Harwood Academic, New
York, 1986), Vol. 7, p. 1.

147. I. M. Suslov, Zh. Éksp. Teor. Fiz. 108, 1686 (1995)
[JETP 81, 925 (1995)].

Translated by A. Betev
SICS      Vol. 100      No. 6      2005


	1043_1.pdf
	1050_1.pdf
	1061_1.pdf
	1069_1.pdf
	1075_1.pdf
	1082_1.pdf
	1094_1.pdf
	1112_1.pdf
	1121_1.pdf
	1127_1.pdf
	1129_1.pdf
	1142_1.pdf
	1153_1.pdf
	1159_1.pdf
	1175_1.pdf
	1188_1.pdf

