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Abstract—Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially
inhomogeneous ultrashort electromagnetic pul se are considered by solving the Dirac equation. The correspond-
ing transition probabilities are expressed in terms of known inelastic atomic form factors, which arewidely used
in the theory of relativistic callisions between charged particles and atoms. By way of example, the inelastic
processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered.
The probabilities of ionization and production of a bound—free electron—positron pair on a bare nucleus, which
are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum,
are calculated. The devel oped technique makesit possible to take into account exactly not only the spatial inho-
mogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction. © 2005 Pleiades Publish-

ing, Inc.

1. INTRODUCTION

Theinteraction of atomswith ultrashort el ectromag-
netic pulses with a duration shorter than the character-
istic atomic periods of time has become an object of
investigation only recently. A new trend, viz., the phys-
ics of attosecond pulses (1 attos = 1028 s), has been
developed. The possibility of detection, generation, and
application of attosecond pulses was discussed by
many authors engaged in experimental and theoretical
studies. The state of the art by the beginning of 2004
and the corresponding references are given in reviews
[1-3] (see also severd later publications [4-20]). The
increased interest in the physics of ultrashort pulsesis
associated not only with modern tendencies in design-
ing more powerful lasers and generation of ultrashort
pulses [21], but also with the advances made in heavy-
ion accelerator technique since the fields produced by
relativistic and ultrarelativistic charged particles are
close in properties to the field of a light wave. For
example, in experiments [22] (see also [23-26]), dou-
ble and singleionization of ahelium atom by an impact
of auranium U%* jon with an energy of 1 GeV/nucleon
was studied and a ultrastrong pulse (I > 10% W/cnv)
with aduration on the order of 1078 swas simulated. It
is extremely difficult to obtain such parameters of an
electromagnetic pulse by other available methods. For
example, the observation of pulseswith aduration of a
few femtosecond was reported in [21], representing
amost thirty years (up to 2000) of evolution in the
physics of ultrashort laser pulses and technological
achievements in the field of generating such pulses.
Thus, collision experimentsin fact offer the only possi-
bility of simulating ultrashort pulses with a duration

comparable to or smaller than the characteristic atomic
timet,~ 107" s. Collision experiments also providethe
subsequent opportunity for direct observation of the
interaction between atoms and an ultrashort el ectromag-
netic pulse. In a comparatively recent experiment [27],
multiphoton production of pairs by an ultrarelativistic
electron moving with a relativistic factor of y ~ 10°
through an ultrastrong laser field was observed; in this
case, in the rest system of the electron, the laser field
frequency and strength increased approximately by a
factor of y. In recent theoretical works[28, 29], the pro-
cesses of multiphoton pair production during collisions
of bare ultrardlativistic nuclei with high-intensity laser
radiation were considered and the possibility of con-
ducting the corresponding experiments on modern
accelerators was also noted. Thus, during the collision
(interaction) of atarget atom moving with arelativistic
energy (or a partly stripped atom, viz., a structural ion
with a certain number of electronsin its shells) with an
ultrashort electromagnetic pulse of duration T, the cor-
responding collision time T, in the rest system of the
atom (ion) decreases by afactor of y; i.e., T, ~ 1/y. Let
us consider the possibility of observing in such experi-
ments the inelastic processes accompanying the inter-
action between atoms and ultrashort electromagnetic
pulses with values of relativistic factor y ~ 10* attain-
able in modern heavy-particle accelerators [24] (these
values correspond to the effective decrease in the pulse
duration by four orders of magnitude). We will first
obtain estimates for relativistic problems, in which the
characteristic energy difference AE ~ mc? (mistheelec-
tron mass and c is the velocity of light). The corre-
sponding characteristic frequency is w, = mc?/A; conse-
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guently, the characteristic times of a stationary target
atom are

1, = Z=81x10% 0102 s
[6V)

a

while the collision time in the rest system of the atom
for femtosecond pulses of duration T ~ 107'° sattainable
at present is 1, ~ 1/y ~ 10° s. Thus, direct observation
of the relativistic effects considered here requires that
the pulse duration be reduced by an order of magnitude
(i.e., to approximately 100 attos), which isin line with
contemporary tendencies [1-3, 21].

In theoretical analysis of the effects accompanying
the interaction of atomswith ultrashort electromagnetic
pulses, a natural foundation for solving problems
can be the sudden approximation, which is closely
related [30] to the eikonal approximation and which
was previously used only for solving nonrelativistic
problems [31-35], in which the perturbation is not
small enough for using perturbation theory, but thetime
of action of a perturbation is much shorter than the
characteristic periods of time for an unperturbed sys-
tem. This makes it possible to solve the problem with-
out setting a limit on the perturbation intensity. The
effects of interaction of atoms with ultrashort electro-
magnetic pulses can be attributed to such cases. Here, we
apply the term ultrashort pulses to pulses with duration
smaller than the characteristic times for the target atom,
which can be in the ground state or in an excited state
(including a highly excited Rydberg state) prior to the
interaction. Such pulses may be of various origin [1-3,
36-39], but can aso be the fields of heavy ions moving
with arelativigtic or ultrarelativistic velocity [22-26]. In
the latter case, perturbation theory is inapplicable for
the fields of ions with large charges [40] even for infi-
nitely large energies of the ions. A nonrelativistic non-
perturbative theory developed in [41] describes the
electron transitions and radiation emitted by an atom
during its interaction with a spatially inhomogeneous
(over the target size) ultrashort electromagnetic pul se.

In this study, on the basis of the sudden approxima-
tion, we obtain a solution to the Dirac equation, which
describes the behavior of a hydrogen-like atom during
its interaction with a gpatialy inhomogeneous
ultrashort electromagnetic pulse. The corresponding
transition probabilities are expressed in terms of the
known inelastic atomic form factors, which are widely
used in the theory of relativistic collisions between
charged particles and atoms. By way of example, we
consider the inelastic processes accompanying the
interaction between ultrashort pulses with hydrogen-
like atoms; the probabilities of ionization and produc-
tion of a bound—ree electron—positron pair at a bare
nucleus accompanied by the formation of a hydrogen-
like atom in the final state and a positron in the contin-
uum are calculated. The developed technique makes it
possible to exactly take into account the spatial inho-
mogeneity (over the target size) of the ultrashort elec-
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tromagnetic pulse as in the nonrelativistic theory [41];
however, in contrast to the nonrelativistic theory, this
technique exactly takesinto account the magnetic inter-
action also.

2. TRANSITION AMPLITUDE
IN THE SUDDEN APPROXIMATION

In the terminology used in [31], the perturbation
corresponding to the field of an ultrashort pulse is a
shock of the scattering type. To illustrate the sudden
approximation, it isobviously expedient to consider the
formal solution of the Schrodinger equation (here and
bel ow, we use atomic units)

iW = (Hy+U(t)W¥, (1)

where sudden perturbation U(t) acts during a time
much shorter than the characteristic time periods of an
unperturbed system described by Hamiltonian H,. In
this case, in solving Eq. (1), we can disregard (during
the time of action of perturbation U(t)) the evolution of
the wavefunction under the action of intrinsic Hamilto-
nian H, and solve the equation

iY = U(t)W.

It hence follows that
o 0
W(t) = exp[HJ’U(t)dH]W(to)- 2
ad ! g

Consequently, the amplitude of transition of a nonrela-
tivistic atom from state |i (ko state [f Clas a result of sud-
den perturbation U(t) has the form [31]

+o00

a = OexpfH IU(t)dEuD 3
od .

It can easily be seen that the same result can be obtained
if we solve exactly Eq. (1) with adelta-shaped potential

U (t) connected with potential U(t) viathe relation

U(t) = Upd(t), U, = Jumat. (4

Precisdly thiscircumstancewill be used below for solv-
ing the Dirac equation in the sudden approximation.

The behavior of the electron in a hydrogen-like
atom (with anuclear charge Z, on which no limitations
areimposed except the applicability conditions[42] for
the Dirac equation) in an external field

A =(9,A)
will be described by the Dirac equation (the electron
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charge e = -1 at. unit)

R 1.0 4a -

iw = 5{:(185+CAD— r —¢+BCﬁ‘P, (5)
where the terms

cap + B’ —Z,/r

are equal to the Hamiltonian H, of asingle atom and the
interaction of the atomic electron with the external field
is described by the potential

U(t) = U(r,t) = aA -9,

where p is the momentum operator, a and B are the
Dirac matrices, and r are the coordinates of the atomic
electron. We first choose the calibration of the electro-
magnetic wave potentials (vector potential A and scalar
potential ¢) so that the scalar potential is zero. We
assume that the vector potential of the field of the wave
isafunction of coordinater and timet,

A = A(r,t) = A(n),
where the phase of the wave is given by
n = wet—Kkqyt;
here, wavevector kg is such that
|ko = wylc,

and wy isthe circular frequency. We carry out the gauge
transformation [41]

A= A+0Of, ¢ = ¢—%%,
where
f =-AL.
Thisgives
A= R GE = ~ED),
where

dA
E = E(r,t) = —|ko|ﬁ.
Consequently, in the new calibration, the vector and
scalar potentials are connected through the relation
A" = (kol|ko|) 9"

We assumethat the zaxisis directed along vector k. In
this case, the interaction of an atomic el ectron with the
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external field in Eq. (5) isgiven by
U(t) = aA'—¢'
akg X (6)
—Al-——=0" = —(1-0,)¢".
5! kgt = (-0

Wewill operate with the new calibration and omit primes
on the potentias. To solve the Dirac equation (5) in the
sudden approximation, we writeit in the form

iW = (Ho+ U(t)W

and use the substitution (4) introduced at the beginning
of this section. For this purpose, we introduce

+o00

b = dodlct—2), ¢ = CJ'¢0|L (7)

where ¢, = ¢o(r) (i.e., a function of only the coor-
dinates r of the point of observation). Further, in
accordance with formula (4), we replace U(t) from
formula (6) by

O(t) = «(1-8,)%
or by
U(t) = Uyd(ct—2), ©)

where

+o00

Uo = CJ’U(t)dt = ~(1-0,) 0o 9
Asaresult, EqQ. (5) assumes the form

. O.. Z, =& ~
iW = ap-=+pc’—(1-6,)¢0%.  (10)
O ' O
To obtain the exact solution to the Dirac equation with
such a potential, we expand W = W(r, t) in the eigen-
functions @ (r) (with energies E,) of the unperturbed
atomic Hamiltonian
Ho = caf + B’ —Z,/r.
This gives
W, 1) = S alt)adr)exp(-iEd).
k
Substituting thisexpansion into theleft-hand side of the
equation

iW = (Hy+ U(t)W
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and integrating, after premultiplying it by a state ¢ and
taking into account the orthogonality of states ., we
obtain

da(t) _
dt

L et us suppose that the atom was in state @ before the
collision; in this case, we have

W(r,t=-) = exp(-E;t)@(r),

6fj,

where & isthe Kronecker delta. Since
U(t) = Ud(ct—2),

itissufficient for solving Eqg. (11) to know the values of
W(r, t) only for ct = z these values can be determined
from Eqg. (10) asfollows. We passto the light-cone vari-
ables

= —iexp(iE,t) T, |U(b)|W(r, 1)

(11)

(12)

a(t=—0) = (13)

Z = (ct—2), (14)
Z = (ct+2).

Retaining only the derivatives with respectto z ina
small neighborhood of z= 0 and the singular potential
—(1-4,)$ , we obtain the equation

ic(l—dz)a—qi = —(1-G,)0W. (15)
0z
Since § = ¢8(2), taking into account the relations

d gy =
5809 = 300,

q (16)
T EP(8(x)) = d(x)exp(8(x)),
where
_ 00, x<0,
8(x) = El >0,
we obtain the solution to Eqg. (15):
(1-a,)¥(z +0) = (1-a,)
o a7

X exp[l—e(z )}W(Z -0).

Returning to time t and using conditions (12) and (13),
we obtain asolution whichisvalidfort < z/candinthe
vicinity of t =z/c (i.e, t=2z/c + &, € > 0and issmal):

(1-a)¥W(r,t) = (1-4a,)

x exp[le(ct—z)q)o} exp[— Ejt]g;(r). (18)
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Substituting Eqg. (18) into the right-hand side of
Eg. (11) and integrating with respect to t taking into
account initial conditions (13), we obtain

Ay

j = af(t = +°°)

+o00

= 3y +i [ drexp(i(E, - E))1) (19)

X G| 0oB(2— ct) (1 - az)exp[ue(ct—z)"’ﬂkpjm
Using relations (16), we obtain

A E:—-E;
(1 -6, expl SR8

v [expg%da_

Thisisthe required solution to the Dirac equation with
potential

a; =0

(20)
1]l

U(t) = Upd(ct—2),

corresponding to the inclusion of potentia (6) in the
sudden approximation. The obtained expression can be
written in a more convenient form by using the easily
verifiable relation

oIa-a)epd T p0=5, ()
This gives
A E;—E;
ay = (L-a,) e 00
@)

x epo¢ ;]

To describe transitions in the case of the interaction of
a complex multielectron atom with an ultrashort elec-
tromagnetic pulse, we proceed as follows. We assume
that the states of atomic electrons are described as the
products of one-electron wavefunctions and denote the
energy of the electron with number a (wherea =1, 2,
..., N, N being the number of atomic electrons) by E@
and the electron coordinates by r,. Then the natural
generalization of amplitude (22) for a transition of the
complex N-electron atom from the initial state @ =
@(ry, ry, ..., ry) with energy

N
= E(a)
2"
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tothefina state @ = @(rq, r, ..., ry) With energy

N

Ec= S EP
f aZl f
has the form
N . N
ay = O[] (1—a§a’>exp[('—: S (B~ EE"’”)za}
a=1 a=1 (23)
«explL 3 o(ro B0
AR

where matrix dia) actsonly on bispinor indices belong-

ing to the atomic e ectron with number a.

3. TRANSITION PROBABILITIES

Let us consider the interaction of an atomic electron
with a Gaussian electromagnetic pulse (with an effec-
tive duration on the order of A ™),

E(r,t) = EoexpB—AZB—ko Zinjn

W, U0
x cos(wyt — Ko [F), (24)
¢ = —r (E(r,t), ¢, =cqlt,
where
too 2
q = —J;th(r,t) = —Eo%apg—ﬁ. (25)
Recollecting that
a, = aky/k,
and introducing the vector
Q = (QuQyQ,) = (9.0,Qy/c),
where
Qy = Es—FEj,
we write a; from relation (22) in the form
a = @3-S Te0(Qmien @

Choosing now the zaxisin the direction of vector Q, we
can write a4 in the form

ay = [ (1-a,cos0)exp(iQz)|p,0

. : (27)
—[@a,sinBexp(iQz)|¢;L]

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

1047

where

Q = Jq’+QF/c, cos® = Qg /. Jc’q + QF,
sind = q/.Jo? + Q%%

Thus, let us now suppose that the atom was in state @
with energy E; prior to the interaction (i.e., at t = —)
with thefield of an ultrashort pulse; then the probability
of finding the atom in state ¢ with energy E; after the
interaction (i.e., for t = +) is given by

s ifn:
Y’
Following [43-45], we have introduced the inelastic
atomic form factors

lag|® = 7+ 1) E (28)

Efi = [y exp(iQ2) |, 0= %Epfmzexp(in)I(ij
]

G, = [i{a,exp(iQ2)|p,0

which are widely used in the theory of relativistic colli-
sions of charged particles with atoms. Consequently,
the above formulas make it possible [43—45] to deter-
mine the probabilities of excitation and ionization of a
hydrogen-like atom interacting with an ultrashort elec-
tromagnetic pulse. These formulas can a so be used for
calculating the probability of production of an elec-
tron—positron pair during the interaction of a bare ion
with an ultrashort electromagnetic pulse if we interpret
this process as atransition of an electron from the states
of the negative continuum (Dirac sea) to the states with
apositive total energy of the hydrogen-like atom In al
cases, we can use either theform factors (see, for exam-
ple, [40, 45]) calculated using the so-called Coulomb—
Dirac hydrogen-like wavefunctions for electrons and
positrons, which leads to a complex numerical compu-
tation, or analytic expressions [40, 43—47] for the form
factors determined with the Darwin quasi-relativistic
wavefunctions and the Sommerfeld—Maue wavefunc-
tions [40, 42, 44, 45, 48]. Strictly speaking, the quasi-
relativistic functions are valid under the condition
Z, < ¢, if thisinequality isviolated, the results satisfac-
torily illustrate the behavior of the form factors qualita-
tively [40, 45].

The above formulas make it possible to calculate
both the probabilities of inelastic processes having non-
relativistic analogs (excitation or ionization of an atom
by an ultrashort electromagnetic pulse) and essentially
relativistic effects (production of the electron—positron
pairs). Asin the nonrelativistic theory [41], the relativ-
istic approach developed by us exactly takes into
account the spatial inhomogeneity (over the target size)
of the ultrashort electromagnetic pulse; however, unlike
the nonrelativistic approach [41] (see aso [5, 49)), it
exactly takes into account the magnetic interaction
also. Figures 1 and 2 show the ionization probabilities
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10*
q

Fig. 1. Dependences of the ionization probability P (forma-
tion of aK vacancy) of hydrogen-like atoms for several val-
ues of nuclear charge Z, on the transferred momentum (25)

= |q| (atomic units). The results of calculations for each
value of Z, are represented by two curves; the solid curve

corresponds to relativistic calculations based on formula
(28), while the dashed curve corresponds to the nonrel ativ-
istic calculation [41] (formula(28) for c — ) for Z, =1

(1), 10 (2), 50 (3), and 92 (4).

P

107
1077
101
10°"

10—16

107! 1 10 102 10° 104
q

Fig. 2. Dependences of the probability P (28) of production
of afree-bound electron—positron pair (the electron in the
1s state and the positron in the state of continuum of a
hydrogen-like atom with effective atomic charge Z,) on the

transferred momentum (25) q = |q| (atomic units) for sev-
eral valuesof Z, =1 (1), 10 (2), 50 (3), and 92 (4).

(the probabilities of formation of K vacancies) of
hydrogen-like atoms and the probabilities of produc-
tion of afree-bound electron—positron pair for several
values of the nuclear charge Z,. In our calculations, we
used, following [40, 45], the quasi-relativistic Darwin
wavefunctions for bound states and the Sommerfeld—
Maue functions for the states of the continuum as the
wavefunctions of the initial and final states; this makes
it possible to calculate the form factors analytically.

To obtain the cross section of the transition of an
atom from state @ with energy E; to state ¢ with energy
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E;, we must obviously multiply, according to [50], the
probability |ag[* of the corresponding transition from
formula (28) by the energy difference

and divide the result by the energy flux | equal to the
integral of the absolute value of the Poynting vector

S(t) = c(4m)E?
with respect to time, where E is expressed by for-
mula (24). This gives

g2 AT

- faso - g
(29)

0O 0w
X exp-

18,
O 0Od2A O
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Abstract—We theoretically investigate the possibility of electron acceleration during the self-channeled prop-
agation of laser radiation. We consider a new accel eration mechanism associated with the formation of an ion
cloud in material (under the ponderomotive force of thelaser radiation) that movestogether with the laser pulse.
We show that the quasi-stationary electric and magnetic fields generated by the moving ion cloud can lead to
the accel eration of electrons up to energies of several dozen MeV and to the formation of an el ectron beam prop-
agating forward coaxially with the laser pulse. The calculated angular distribution of the accel erated electrons
isin satisfactory agreement with published experimental results. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Producing directional electron beams with energies
of several MeV and durations of several femtoseconds
is interesting from a fundamental standpoint and
important from the standpoint of possible applications.
In recent years, significant advances have been madein
this direction using intense short laser pulses. The gen-
eration of such beams has been studied theoretically
and experimentally in a considerable number of publi-
cations (see, e.g., [1-4]).

The generation of electron beamsis directly related
to the pattern of nonlinear propagation of laser pulsesin
a material: intense laser radiation ionizes the material
and produces quasi-stationary electron-accelerating
electromagnetic fields in it. Such beams are generated
both when intense radiation propagates in gaseous
media and when radiation is focused on the surfaces of
solid targets. The beam parameters depend strongly on
the target type and basic characteristics of the nonlinear
interaction. Some of the questions on the dynamics of
intense laser pulsesin amaterial were considered in the
monograph [5].

There are several possible electron acceleration
mechanisms. Among the most important mechanisms,
we note, first, the generation of plasma Langmuir (the
so-called wake) waves behind the pulse and the accel-
eration of electronsin them and, second, the chargedis-
placement by the ponderomotive force of the laser radi-
ation and the acceleration of electrons by the quasi-
static electric field that emergesfrom this displacement.
Since these two mechanisms are in a way competing
ones, their comparative anaysis is needed, which
requires studying both mechanisms. The first mecha

nism was investigated in sufficient detail in earlier pub-
lications. The objective of this paper isto study the sec-
ond mechanism in more detail.

L et us consider the second mechanism, as applied to
the regime of self-channeled propagation [6, 7], in
which the laser pulse propagates without changing its
divergence to a distance much larger than the diffrac-
tion length. The charge displacement by the pondero-
motive force of the laser radiation is particularly effi-
cient in thisregime. A large self-channeling length can
be achieved only in gaseous media, and precisely this
caseis considered here.

There are several physical mechanisms of the
change in the refractive index that |ead to self-channel-
ing. The most important of them include increase in the
electron mass in a relativistic-intensity laser field, the
expulsion of electrons by the ponderomotiveforcefrom
the region of a strong field, change in the refractive
index of the plasma in the quasi-stationary magnetic
fields produced by the moving uncompensated ion
charge and the current of accelerated electrons, possi-
ble generation of plasmawaves, etc. These mechanisms
have been repeatedly discussed in the literature (see,
e.g., [5-9]). Here, we do not consider these mecha-
nisms and assume that all of the conditions necessary
for self-channeling to take place are satisfied, i.e., the
radiation power P > P,. The critica power P,
decreases with increasing electron density. An expres-
sionfor P, that isvalid in awide range of electron den-
sities, including the densities near their critical values,
isgivenin [10].

Since the channel diameter is comparable to the
laser wavelength in the case of self-channeled propaga:
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tion, the transverse intensity gradients are large, which,
in turn, yields a large ponderomotive force. Electrons
are expelled by this force in the radia direction from
the region in which intense laser radiation is concen-
trated, and the expulsion results in the formation of a
region of positive uncompensated charge, a kind of a
cloud composed of ions (Fig. 1). This cloud (with a
charge that is severa orders of magnitude larger than
the electron charge) moves together with the laser pulse
and with its velocity, although the ions themselves
remain stationary. At the leading edge of the pulse, ion-
ization takes place and electrons are expelled by the
ponderomotive force; after the passage of the trailing
edge of the laser pulse, the ions are neutralized by cold
electrons from the surrounding plasma. (Under certain
conditions, when the pul se duration exceedsthe charac-
teristic time determined by the diameter of the channel
and the ion density in it, a Coulomb explosion of the
channel can take place, but we do not consider this sit-
uation here.) A fraction of the electrons expelled from
the channel remain near theion cloud, partially screen-
ing it. Therefore, the electrostatic interaction of theion
cloud with an individual electron outside the cloud is
determined not by the total charge of the cloud, but by
an effective charge whose value generally decreases
with increasing distance from the cloud. The electron
motion outside the region of action of the ponderomo-
tive force is determined by the quasi-stationary electro-
magnetic field of the ion cloud and is predominantly
longitudinal.

In this paper, we use an approach based on the solu-
tion of the Newton eguations, these equations are
solved for single electrons, and their reverse effect on
the motion of the ion cloud is disregarded. The ion
cloud is approximated by large particles[11]. Since the
ion cloud moves along the axis with a velocity close to
the speed of light, our model includes the delay in the
charge interaction and is based on the delayed Lienard—
Wiechert potentials [12]. Note that the currently used
PIC methods do not properly take into account the
delay in the interaction of rapidly moving charges.

The model of electron acceleration in thefield of the
ion cloud developed here alows the formation of an
electron beam to be described quantitatively.

2. THE MOTION OF AN ELECTRON
IN THE FIELD OF A POINT CHARGE

To ascertain the main features of the electron accel-
eration by the moving ion cloud, let usfirst consider the
relativistic motion of an electron in the field of a point
charge. This problem was considered in the monograph
[12], in which the motion of an electronin thefield of a
stationary point charge was investigated. Generalizing
the solutions obtained in [12] to the case of a point
charge moving in the laboratory frame of reference
with arelativistic velocity is of considerable interest.
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Fig. 1. Theformation of aregion of positive uncompensated
charge, a kind of a cloud composed of ions and moving
together with the laser pulse and with its velocity. At the
leading edge of the pulse, ionization takes place and elec-
trons are expelled by the ponderomotiveforce; after the pas-
sage of thetrailing edge of the laser pulse, the ions are neu-
tralized by cold electrons from the surrounding plasma.

Let us consider the motion of an electron in thefield
of apositive charge Q. If the mass of the positive charge
is much larger than the electron mass, then the change
in the energy of the positive charge can be ignored. In
this case, thetotal energy of the electron in the frame of
reference in which the positive charge is at rest (the
intrinsic frame of reference) is

W = c/p’+m’c®+alr,
where a = gQ is the product of the charges (during the
interaction between a positive charge and an electron,
q= —eand o < 0), pP? = M%r2 + p>, p, is the radial
momentum, and M is a constant angular momentum.

The action as the solution of the Hamilton—Jacobi
equation is constructed from general considerations:

2 2
S= —M+M6+IJM+MZ—mZCZdr.
c r

The trajectory can be obtained from the equation
0S/0M =0. It can bewrittenin analytical form: 8 = 6(r).
The inverse function r = r(6) aso has an anaytica
expression [12] that contains a dimensional constant,

_ o’ —c’M?
e/ MPW2 + mPc?(a? — 2 M?)

The condition for the capture of an electron by a
positive chargeiscM < |a|. Inthis case, thetrajectory in
polar coordinatesis a convergent spiral whose 6 depen-
denceis given by the hyperbolic cosine

cosh(6./(eQ/cM)? — 1),
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Fig. 2. Electron trgectoriesin the (a) intrinsic and (b) laboratory frames of reference for the same parametersand V = ¢/2; (c) kinetic
energy versustimein thelaboratory frame. All parameters are given in dimensionless form: the space coordinates arein units of rg,

thetimeisin units of ry/c, and the energy isin units of me2.

so the number of complete spiral turnsfrom 6 = 0 to the
fall to the center can be estimated as

1
o (eQicMY? =1

At the parameterstypical of the problem under con-
sideration, the electron can fall rapidly to the positive
charge; in this case, the number of complete turns is
much less than 1.

Thetimedependencet =t(r) can be derived from the
condition dS0W = 0. This function has an anaytical
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expression, while the inverse function r = r(t) has no
analytical expression; therefore, our subsequent analy-
sisisbased on numerical calculations. The time depen-
dences of the Cartesian coordinates and the velocity
components can be numerically derived from the func-
tions B(r) and t(r). The values of t, 6, X, y, dr/dt, 06/at,
Vy, Vy, and the electron kinetic energy are determined
sequentially on auniform r coordinate grid.

The Lorentz transformation allows us to numeri-
cally derive similar dependences, including the electron
kinetic energy, in the laboratory frame of reference, in
which the positive charge moves along the zaxiswith a
constant velocity V.
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Figure 2a shows an example of the trgectory along
which the electron falls to the center in the intrinsic
frame of reference. Going to the laboratory frame of
reference leads to a significant change of the trgjectory
in the shape of an open spiral. As an example, Fig. 2b
shows the shape of the trgjectory in the laboratory
frame of reference for the same parametersand V = c¢/2
asthosein Fig. 2a.

An analysis of the electron motion leads us to two
conclusions. First, during its motion, the electron can
overtake the positive charge moving with a constant
velocity. Second, the electron kinetic energy oscillates:
it has maximaand minima attributabl e to the overtaking
of the positive charge during the mation in one direc-
tion and the lagging behind it during the motion in the
opposite direction (in contrast to the motion in the
frame of reference in which the positive charge is at
rest, where the electron kinetic energy monotonically
increases). In this case, the electron kinetic energy can

significantly exceed W* = mc?/ /1 —V?/c”. The time
dependence of the kinetic energy isshowninFig. 2c. In
our calculations, we used Q/e = 2.5 x 10 and M =
0.99Qe/c.

In the case under consideration, the velocity of the
positive chargeis determined by the velocity of theion-
ization wave, which isequal to the group velocity of the
laser pulse in the medium. The Coulomb interaction of
the electrons with the positive charge allows them to
reach velocities much higher than the velocity of the
ionization wave.

3. BASIC EQUATIONS DESCRIBING
THE PROPAGATION OF A LASER PULSE

3.1. The Physical Picture of the Nonlinear Propagation
of a Laser Pulse

An intense laser pulse propagating through a
medium interacts with the medium and greatly changes
its properties. This interaction manifests itself in sev-
eral aspects. The pulse ionizes the medium even at its
leading edge, and the bulk of the pulse propagatesin the
plasma with the group velocity V, < ¢ determined by
the plasma parameters. We assume that the radiation
propagates in hydrogen, the produced plasmais hydro-
genic, and the initial eectron, n., and ion, n;, densities
are equal, n, = n, = n. When the radiation propagatesin
other gases, multiple ionization takes place, n, = Zn;,
and the total charge of the ion cloud is a factor of Z
larger. Note that the medium isionized and the plasma
isproduced mainly inside the laser pulse. However, due
to the plasmaradiation in the short-wavel ength spectral
range, a plasma halo in which the electron density
decreases rapidly with increasing distance from the
axisis formed around the region occupied by the laser
pulse. Inside the beam, the plasma is in the field of
intense laser radiation, and the plasma parameters,
including its refractive index, are determined by this
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radiation. In turn, achange in the refractive index mod-
ifies the pattern of propagation of the radiation itself. It
is well known [7] that the pulse propagates in the
regime of self-channeling if itstotal power exceedsits
critical value. In this regime, two mechanisms of the
changein the plasmarefractive index play amajor role:
the relativistic increase in the electron mass and the
expulsion of electrons by the ponderomativeforcefrom
theregion of astrong field. Both mechanisms cause the
plasmarefractive index in the region of astrong field to
increase, thereby ensuring the necessary conditions for
self-channeling. Asaresult, only ions are left inside the
channel, and anion cloud (coinciding with the region of
action of the ponderomotiveforce) isformed; thiscloud
effectively moves with the group velocity of the laser
pulse. The ions remain stationary, while the positive
charge at the trailing edge of the laser pulse is neutral-
ized by cold eectrons from the cloud-surrounding
plasma. The source of this plasma, which emerges only
in the immediate vicinity of theion cloud, is the radia-
tion from the ion cloud, including its X-ray radiation.
Note that the electron density in the produced plasma
decreases rapidly with increasing distance from the
beam axis.

The sizes of the ion cloud are determined by the
charge displacement under the ponderomotive force
and by the self-consistent collective motion of electrons
(the mobility of ions is low) in the emerging quasi-
static electric field. In general, the boundaries of theion
cloud are blurred. In this paper, the cloud diameter ais
assumed to be equal to the diameter of the region of a
strong field at the center of the laser pulse. The cloud
length L was chosen from the condition that the inten-
sity on the axis inside the cloud was higher than |, =

3 x 10% W cm. This choiceis dictated by the fact that
at such intensities, the material is completely ionized
and the electrons are expelled from the channel by the
ponderomotive force. The shape of the ion cloud used
in the model is a cylinder with atotal volume of Ta?L.
When considering the Coulomb interaction of the ion
cloud with an electron outside it, we assumed that the
cloud had an effective charge Q; the latter was obtained
by multiplying the total charge of theions by a correc-
tive coefficient that included many factors. First, the
diameter of the actua cloud dightly decreases with
increasing distance from the center of the laser pulse;
second, as was mentioned above, the positive charge of
the cloud is partially screened by the electrons captured
by the cloud. In this paper, this corrective coefficient is
closeto 1/2. Thelatter value was obtained by analyzing
the trgjectories of the electrons moving in the field of
theion cloud.

The moving ion cloud produces quasi-stationary
electric and magnetic fields in its vicinity. Since the
cloud velocity is closeto the speed of light, the delayed
Lienard-Wiechert potentials must be used to describe
these fields. Note that the skin depth for these fields is
much larger than the size of the plasma region under
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consideration; therefore, the plasma is transparent for
them. Since € = u = 1 in the origina gas, we conclude
that the velocity of propagation of these fields is equal
toc.

The electrons surrounding the ion cloud can be
divided into two groups. The electrons that were ini-
tially formed inside the ion cloud constitute the first
group. The electrons of this group are initially acceler-
ated inside the cloud by the ponderomotive force to
high energies and subsequently interact with the posi-
tive charge of theion cloud. Theinitial acceleration sig-
nificantly affects their trajectories. The electrons
formed near the cloud, but outside the region of action
of the ponderomotive force constitute the second group.
Immediately after their appearance, the electrons of the
second group begin to interact with the fields produced
by theion cloud.

L et us consider the passage of theion cloud through
a thin layer of material located perpendicularly to the
direction of its motion. Initially, the material near the
axis is ionized by the laser pulse; subsequently, the
X-ray radiation propagating from the cloud also ionizes
the material at a certain distance from the axis. A pecu-
liar ionization wave propagates through this thin layer;
as a result, electrons appear at some impact parameter
b and begin their motion attributable to the interaction
with the fields of the ion cloud with a delay relative to
the passage of the leading edge of the pulse through the
chosen layer. It can be assumed that a peculiar “light

cone” with avertex half-angle ¢ = arctan(V,4/c) prop-

agates together with the leading edge of the pulse, and
that this cone gives rise to an electron and turns on the
electromagnetic action on it from the ion cloud. The
delay is approximately equal to b/c.

We assume that at time t = 0, the thin layer under
considerationisfar from the peak of thelaser pulse, and
the distance to it is 100a in the longitudinal direction.
Such alarge distance allowsthe initial formation of the
ion cloud and the appearance of the fields as the pulse
enters into the gas to be not considered.

3.2. The Equation of Motion for Electrons

Three forces act on an electron: the ponderomotive
force produced by laser intensity gradients and the two
forces governed by the electric and magnetic fields of
theion cloud. Suppose that the laser radiation is a short
pulse of duration T and radius a that propagates along
the z axis and has an intensity distribution I(r, z, t).

The ponderomotive force acting on an electronin a
relativistic-intensity field is

l, |2
N, CrD%L + er ' (1)

Fp:_

where |, = 2.75 x 10%8(1/A\[um])?> W cm? is the rel ativ-
istic intensity, and n, , is the critical plasma electron
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density. Expression (1) isvalid for radiation with circu-
lar polarization, but can also be approximately used for
linear polarization. In the nonrelativistic case, expres-
sion(1)is

_ 1
P che’aDI.

In general, Ol has both radial and longitudinal com-
ponents; as a result, the ponderomotive force also has
the same components, F,. and F,.

Let us assume that the intensity distribution in the
beam is

I(r,zt) = If(r)fy(z1), 2
where the radial distribution is given by
_ _inod
f,(r) = exp[ InZQﬂ}, ©)

and the time dependenceis

v, U

fo(zt) = exp[—4|n2%ﬂtm] (4)

The parameter y in expression (3) determines the
shape of thetransverseintensity distribution of the laser
pulse. For self-channeled propagation, this parameter is
larger than 2. In expression (4), z, denotes the initial
coordinate of the laser pulseintensity peak and the cen-
ter of theion cloud. For plasma, the pulse group veloc-
ity is Vy = (dw/dk),, = cN, where N is the refractive
index of the plasma.

Note that dependence (4) on the longitudinal coor-
dinate implies the passage to an axially symmetric
model, in contrast to the cylindrically symmetric model
used previously [13]. In specific calculations, the inten-
sity I(r, z, t) wastaken to be zero if its value defined by
formula (2) was lower than a certain minimum value,

1< 1.

The distance between the leading and trailing edges
of the pulse can be determined from (4):

_ 1/2
L = 2[—%} v, (5)

The charge of theion cloud composed of hydrogen
ionswith density n; is

Q= %naanie, (6)

where e isthe elementary charge.

Denote the electric and magnetic fields produced by
the moving ion cloud in the surrounding space by E
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and H, respectively. In this case, the equation of motion
for an electron is
m.V
d%; = —eE-SVxH+F,, @)
1-V?/c? ¢

whereV isthe electron velocity, V = |V|.

The fields produced by a point charge Q moving
with aconstant velocity V, is defined by the expressions
(the delayed Lienard-Wiechert potentials)

£ - OR 1-Vi/c?
R’ (1-V2sin’e/c?)™® -
b oo QUln xRl 1-vye® |
Rc  (1-Visin'e/c?)™”

where n is aunit vector along the z axis, 6 isthe angle
between the z axis and the radius vector R of the elec-
tron, R=|R|

Attimet =0, thelaser pulse peak hasthe coordinate
Z, and moves along the z axis with the velocity V, (the
center of the ion cloud has the same coordinate and
velacity), the eectron coordinates are r(0) = b and
Z(0) = 0, and the electrons areinitially at rest.

The componentwise representation of (7) in the
dimensionless variables

ct \Y _V Vv
e
is
d v, A 1—v§
dt, 2 25+20)%/2
1—v (1-v,sin"0)
N ’ 9)
Z,t VvV, I, a
g : *Fp—s,
R; m.C
d v, _ 1—v§
- 3/2
dt; /1,2 (1-v;sin’e) (10
r(1 vgvz)+F a
r I
=5 *myc?
where
Z(t) —zy— Vgt r(t
= e =) R
_ Qe : _ N
A= ey sin@ = ﬁl
e

The terms with the factor A on the right-hand sides
of Egs. (9) and (10) describe the Coulomb and Lorentz
forces (the latter contain the components v,v, and
V4V,); the quantitiesry, z;, and R, are the components
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and magnitude of the radius vector of the electron rela
tive to the point ion in units of a.

In the case under consideration, the length of theion
cloud is much larger than its diameter. Therefore, we
must either generalize Egs. (9) and (10) to the case of a
distributed charge or approximate the ion cloud by a
system of point charges with an adjustment of the field
of these charges. We used the second alternative, in
which the cloud was modeled by a system of K = 50
identical point charges uniformly arranged on the axis.
Three different cases can be distinguished, depending
on the distance of the accelerated electron from the
axis. At alargedistance (R; > 1), the value of each point
charge was taken to be g = Q/K, where K is the number
of point charges. If, however, the electron penetrates
into the ion cloud to a distance 1 = R, = 0.1, then its
motion in this region may be considered as the motion
inthefield of acylindrical charge. The influence of the
ions located in the outer (with respect to the charge)
regions of the cylinder, i.e., at distances larger than Ry,
can be disregarded. This approximation is justified
everywhere, except the small regions at a distance of
the order of the radius from the cylinder ends. In this
case, the cylindrical charge can be approximated by a
system of point charges with the value of each point

charge g = R; Q/K. When the electron islocated at dis-
tances R, < 0.1, the approximation of point charges
arranged on the axis is no longer valid, since the fields
on the cloud axis have a singularity in this approxima-
tion. To make the passage of eectrons through the
region near the axis possible (which may occasionally
be required), this singularity must be removed. To this
end, we assumed in theregion R; < 0.1 that the electron

interacts with one point charge with q = Ri Q/K.
Thus, the chargeis q = xQ/K, where

i, Ri>1,
X = ER%, 01<R; <1,
O 3
R, R,<0.1.

Formally, allowance for the finite cloud sizesin (9) and
(20) consistsin going to the summation over al charges
g; on the right hand sides of these equations (j =1, ...,
K). In this case, the quantitiesr,, z;, R;, and 8 in these
equations are replaced with ry;, z;, Ry, and 6,. The
value of j* = (K + 1)/2 corresponds to the center of the
ion cloud. Below, we use z; = z;;. to denote the elec-
tron coordinate relative to the center of the ion cloud.

The presence of sinBin Egs. (9) and (10) reflectsthe
inclusion of the delay in the electromagnetic action. In
addition to thisdelay, thereisalso atimefactor. It stems
from the fact that the ion cloud emerges and forms at a
finite distance from the electron under consideration;
therefore, a regime described by the equations for the
delayed potentialsis reached. However, analysis shows
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that this effect is insignificant in the conditions under
consideration.

3.3. The Angular Distribution
of Accelerated Electrons

Asfollowsfrom Egs. (7) and (8), the el ectron moves
in the plane passing through the z axis and the point of
itsinitial location. Let us consider its motion in atwo-
dimensional Cartesian coordinate system located on
this plane.

The solution of theinitial system defines the veloc-
ity components, coordinates, and kinetic energy as
functions of the impact parameter b and time t. The
angle between the electron velocity direction and the
axis after itsinteraction with theion cloud was taken as
the exit angle. Thisangle is a single-valued function of
the impact parameter b, 6, = 84(b). Since the electron
can cross the z axis as it moves, the exit angle of the
accelerated electron, 6, can be both positive and nega-
tive, depending on the specific impact parameter b.
Note also that during its motion, the electron can be
multiply reflected from the region with a large ponder-
omoativeforce; itstrajectory can be complex. Therefore,
the exit angle 6, can have equal values for different b;
i.e., the inverse function b(8,) is generally not single-
valued.

In the problem under consideration, the electrons
are located in both the upper and lower half-planes.
Formally, as aresult of this, both positive and negative
values of b should be taken into account when cal cul at-
ing the angular distribution. Due to the symmetry prop-
erties of the electric and magnetic field distributions,
the electron trgjectories at the initial values of b and —b
are mirror-symmetric relative to the z axis, which ulti-
mately yields 8,(—b) = —6.(b).

To calculate the angular distribution of the acceler-
ated electrons, we must go from the two-dimensional
Cartesian coordinate system in which the electron tra-
jectories were analyzed to acylindrical coordinate sys-
tem. The sought-for angular distribution must be axi-
ally symmetric relative to the z axis.

Given the axial symmetry, the total number of elec-
tronsin acylindrical layer of unit length with width db
at distancebis

P(b)db = 2rmny(b)bdb. (12)

On the single-valued segments of the function b(6,),
it transforms into the angular electron distribution
do..

P(6,)d8, = 2rmn.(b)b % (12)

e

Since b(B,) is not a single-valued function, expres-
sion (12) must be summed over its single-valued
branches in a given b range.
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The calculation of (12) can be simplified apprecia
bly if we first average it over the positive and negative
values of b.

Since B,(—h) = —0.(b), the averaging of the distribu-
tion is achieved by going to the quantity [P(6,) +
P(-6,)]/2, which should be considered only at positive 8.
After this procedure, the angle 8, acquires the meaning
of an azimuthal angle in the angular distribution of the
accelerated electrons.

The following should be taken into account when
calculating the angular distribution. In expressions (11)
and (12), the electron density distribution n(b) depends
on the distance b to the axis, since the ionization of the
material is determined by the intensity of the short-
wavelength radiation from the ion cloud. This depen-
dence is different in three different regions. In the first
region that extends from the channel axis to a distance
of (1-2)a from the surface of theion cloud, i.e., for 0 <
b < 3, the intensity of this radiation is approximately
constant. Therefore, the electron density is also con-
stant. The second region extends from the boundary of
the first region to the distance L from the axis (L isthe
cloud length). In this region, the ion cloud can be
treated as an extended source of X-ray radiation. There-
fore, it should be assumed that its intensity (and,
accordingly, the electron density) in the second region
varies as 1/b. In the third region beginning fromb =L,
the ion cloud must be treated as a point source of X-ray
radiation. Therefore, it should be assumed that itsinten-
sity (and, accordingly, the electron density) in the third
region varies as 1/b? or even faster. The latter stems
from the fact that during ionization, the X-ray radiation
is absorbed and itsintensity decreases.

It follows from the foregoing that the contribution of
various impact parameters to the formation of an elec-
tron beam can be determined by taking into account the
corresponding dependences ng(b).

4. DISCUSSION OF THE RESULTS
OF NUMERICAL CALCULATIONS

4.1. The Capture of an Electron by a Point lon

To test the code, we computed the capture of an
electron by a positive point charge Q.

For n/n ., = 0.1and V/c = 0.95, the electron hasthe
angular momentum

0.95cm.b

J1i-005%

and the condition M < M, = |a|/c transforms to the con-
dition b < 13.9a.
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-200

_ 600 | | |

60
z-7

Fig. 3. Electron trajectories for 1o = 10" W ecm™ and n/ng, ¢, = 0
9.1 (3), 9.4 (4), 9.7 (5), 1.95 (6), 2.375 (7), and 8.5 (8).

The results of our numerical calculations are in
close agreement with the analytical results presented in
Section 2.

4.2. Specifying the Parameters of the Problem

In our calculations, we assumed that the |aser radia-
tion had a wavelength of 1.06 um at the pulse duration
T =50 fs (Ngo = 9.93 x 10° cm=3, |, = 245 x
10 W cm?) with ahyper-Gaussian (3) radial intensity
distribution with y = 6 and a Gaussian (4) longitudinal
and time dependencef,(z, t). The calcul ations were per-
formed for a = 3 pum, initial particle densities n/n , in
the range 0.03-0.5, and peak intensities in the range
4 x 1084 x 10?° W cm. The value of z, was taken to
be —100a. We assumed that the laser pulse entered the
medium at time t = 0 and analyzed the electron motion
over aperiod of t = 2000a/c.

4.3. Results of Numerical Calculations

By integrating the system of equations (9) and (10),
we determined the time profiles of both (longitudinal
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.075 (a=c) and 0.04 (d) at b = 1.925 (a), 1.95 (b), 8.5 (1), 8.8 (2),

and radial) coordinates, both velocities, and the kinetic
energy of the eectron with various initia impact
parameters b.

The configurations of the electric and magnetic
fieldsin the laboratory frame of reference produced by
the moving cloud differ markedly from thosefor apoint
charge. (Note that the magnetic field strength in the
frame of reference associated with the moving ion
cloud isH = 0.) They are more elongated along the z
axis. The characteristic electric field strengthisEy = 5 %
108 V m, while the characteristic magnetic field
strengthisHy= 2 x 10° A m™.

Figure 3 shows the electron trajectories for 1, =
10'® W cm2 and two values of n/n,, . For all of the tra-
jectories shown in Fig. 3, z, — z associated with the
motion of theion cloud and r, are used as the longitudi-
nal and transverse variables, respectively.

Analysis of the results reveals two types of trgjecto-
ries that correspond to two ranges of the parameter b
separated by acritical value b,,. Just asin the case of a

point ion, the electron passes by the cloud as it moves
at b> b, and is captured by the cloud at b < b,,. In the
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Fig. 4. Electron kinetic energy versus time for I =

10°W em™ and ny/ng, ¢ = 0.075 at b= 1.95 (a), 5.525 (b),
and 6.825 (c).
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Fig. 5. Maximum electron energy Wi [MeV] versus
impact parameter b in the time interval t; = 0—2000.

trajectories of the first type shown in Figs. 3a and 3b,
the electron is captured by theion cloud. In the capture
regime, the electron isin arelatively small vicinity of
the cloud. At high intensities, it can be multiply
reflected from the region of action of the ponderomo-
tive force without going into it, while at low intensities,
it can go into the region of action of the ponderomoative
force while crossing the z axis. The angular momentum
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M of an electronin acentrally symmetric fieldisknown
to be conserved, and the capture conditionis|M|< M.
During theinteraction with adistributed charge (cloud),
the angular momentum is not conserved. Moreover,
during the reflection from the region of action of the
ponderomotive force, the angular momentum of the
electron changes sharply; therefore, the capture is not
continuous, and the electron escapes from the capture
regime and recedes from the cloud in a certain time
(Fig. 3b).

Figure 4 shows the time dependences of the electron
kinetic energy for I, = 10*° W cm= and n/n, ., = 0.075
for three impact parameters: b = 1.95 (Fig. 4a), 5.525
(Fig. 4b), and 6.825 (Fig. 4¢). In Fig. 4a, the electronis
in the capture regime; in Figs. 4b and 4c, the electron
escapes from the capture regime at a different time.
Analysis of these curves leads us to the following con-
clusions. In the capture regime, the energy oscillates
with time, reaching its maximum when the electron
moves around the ion cloud is at the minimum distance
from the cloud and only beginsto be decelerated by the
ponderomotive force. The electron has a minimum
energy of ~3-4 MeV at the maximum distance from the
ion cloud. The electron also has approximately the
same energy after its escape from the capture regime far
from the cloud.

Asn/n, ., decreases, thetotal charge of theion cloud
decreases, causing the Coulomb force to decrease. In
this case, the regime of electron motion around the ion
cloud changes: the capture regime disappears, and the
electron moves around the ion cloud in asmooth trajec-
tory. The change of regimes occurs at n/n,, . = 0.05.

The maximum energy achievable in the capture
regime also depends on the density. It is 20 MeV at
n/ng - = 0.075 and reaches 140 MeV when the density
increasesto n/n, o = 0.5.

In Fig. 5, the maximum electron energy W, in
the capture regime is plotted against the impact param-
eter b. It is interesting to compare this quantity with
the energy of the electron oscillationsin the laser radi-
ation field, which is 0.6 MeV for the intensity I, =
10 W cm under consideration. (Thisisthe energy of
the electrons with b < 0.2a after their escape from the
region of action of the ponderomotive force.) It thus
follows that the electron acquires an energy higher than
0.6 MeV during the Coulomb interaction with the
cloud.

4.4. The Angular Distribution
of Accelerated Electrons

The accelerated electrons escaped from the capture
regime fly at an angle 6,(b) to the axis; thisangle has a
random valuein someinterval (Fig. 6a). Electrons with
different impact parameters can fly at the same angles
to the axis. Figure 6b shows the angular €lectron distri-
bution cal culated using the technique described above.
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0 5 10 15 20 25

Fig. 6. (8) Electron exit angle 8, versusimpact parameter b;
(b) the angular electron distribution. Curve 4 represents the
resulting angular distribution for theinterval 0.1a<b< 12a,
curve 5 represents the resulting angular distribution under
the assumption of ng(b) = const for the interval 0.1a< b <

12a. Curves 1, 2, and 3 were obtained for the intervals
0.las b<5a 0las<b<7a and 0.1a< b < 88a, res
pectively.

Curve 4 represents the resulting angular distribution.
Curve 5 is shown for comparison. Curves 1, 2, and 3
illustrate the contributions of various impact parame-
tersto the ultimate angular distribution.

A comparison of curve 4 with experimental results
is of considerable interest. In this case, the experimen-
tal results obtained under the self-channeling condi-
tions must be used. Curve 4 isin satisfactory agreement
with the experimental curve obtained in [2] during the
propagation of laser radiation in gases. Note that it is
improper to compare the above computational data
with the results of the experiments in which laser radi-
ation was focused on the surface of a solid target.

The time t, during which the electron is in the cap-
ture regime depends on the impact parameter b. This
dependence is random, and t. can change greatly as b
changes only dlightly. Nevertheless, our calculations
show that for the thin layer under consideration, we can
introduce a mean value of t} that corresponds to the

condition under which the fraction of the electrons | eft
in the capture regime is L/e of their total number in this
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layer. The quantity v,t; givesthe mean free path of an

electron in the captured state. It can be assumed that all
el ectrons escape from the capture regime after the time

t¥ and subsequently propagate in their own trajectories

without interacting with thefield of theion cloud. Next,
let us consider two cases. In the first case, the totd

length of the nonlinear medium is L, > vgtg , al thin

layers are equivalent, and the angular electron distribu-
tion at the exit from the nonlinear medium is similar to
that after one thin layer (without the additional scatter-
ing of electrons as they propagate in the medium). In
the second case, the length of the nonlinear medium is

Ly < vgte , the thin layers are not equivalent, and the
integration must be performed over the entire length of

the nonlinear medium when calculating the beam
parameters at the exit.

Both the maximum energy during the oscillationsin
the capture regime and the energy after the recession
from the cloud are of considerable interest from the
standpoint of possible applications. The former caseis
important, for example, for the possible use of oscillat-
ing electrons to collisionally excite the heavy particles
near theion cloud and to produceinversion in the X-ray
range. The latter case deals with the maximum energy
of the electronsin the electron beam produced through
the passage of an ultrashort pulse through material.

5. CONCLUSIONS

We investigated the possibility of electron accelera-
tion during the self-channeled propagation of laser
radiation.

In this regime, an ion cloud moving together with
thelaser pulseisformed in the material. Our anaysisis
based on studying the trgjectories of single electrons
under the ponderomotive force of alaser pulse and the
quasi-stationary electric and magnetic fields generated
by the moving ion cloud.

~ Our calculations lead us to the following conclu-
sions.

(1) The maximum energy of the electron, W, that
it reaches during its motion along the trgectory
increaseswith density and dependsweakly on intensity.

(2) The maximum output energy of the electron,
W,; (the electron energy after the propagation of alaser
pulsein anonlinear medium of finite length), increases
with density and depends weakly on intensity.

(3) In all regimes, Wiz = Wy

(4) Two electron acceleration regimes are observed
at fixed intensity. At low density, no electrons are cap-
tured by theion cloud and their energies W, and W,
lie in the range of several MeV. At high density, elec-
trons are captured by the cloud, and the energies W,
and W,; can reach 100 MeV or more.
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(5) The angular distribution of the beam of acceler-
ated electrons is in satisfactory agreement with pub-
lished experimental results.

Note that there is no plasma, but only a charged ion
cloud inside the laser pulse. Thus, no plasmawaves can
be generated in it. After the passage of the laser pulse
through a layer of material, the tail of the ion cloud is
rapidly neutralized by the surrounding cold electrons.
Under such conditions, the possibility of plasma wave
generation in the wake of the laser pulseis not obvious.
The electron accel eration mechanism suggested in this
paper, in fact, does not require invoking the plasma
wave mechanism. The electromagnetic field of the ion
cloud traveling together with the laser pulse acts as the
wakefield considered previoudly [9, 14, 15].
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Abstract—We investigate the quasi-solitons of the envelope of forward body magnetostatic wavesin a struc-
ture that consists of two magnetically coupled films separated by anonmagneticinterlayer under theinitial exci-
tation of a pulsein one of them. We have found that as the pul se propagates, its energy is transferred from one
film to the other through intermode coupling; asaresult, “pulsating” quasi-solitons of the coupled modes of the
two films emerge. We show that the amplitude of each of the mode pulses at the exit from the waveguide can
be regulated over awide range by varying the magnetizing field. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In recent years, the soliton regimes of propagation
of waves of various natures have attracted the rapt
attention of researchers. Apart from optical solitons[1],
solitonsin magnetically ordered structures, namely, the
solitons of the envelope of magnetostatic waves
(MSWs) in garnet-ferrite films [2], have been studied
extensively. Interest in MSW solitons stems both from
the possibility of implementing variousintegrated spin-
wave devices based on them and from the variety of
soliton dynamical regimes redlizable at fairly low
MSW intensities. The generation conditions for soli-
tons of various M SW types and the analytical apparatus
for their investigation are described in [2, 3]. Theoreti-
cal and experimenta studies of MSW solitons in gar-
net-ferrite filmswith various orientations of the magne-
tizing field aswell asthetypes of excitation and control
of the soliton dynamics are presented in [4—7]. In par-
ticular, itisshownin [7] that the soliton regimes can be
controlled through the action of a continuous-pumping
wave. Additional possibilities for controlling the soli-
ton regimes could be associated with the use of two-
layer magnetically coupled structures as a wave-guid-
ing medium, since the dynamical properties of the spin
subsystem change significantly in such structures and
new types of spin-wave excitations are realized [8-10].
Thedipole[11, 12] or exchange[13] interaction or their
combined action [14] are the main types of interlayer
magnetic coupling. Recently, the propagation of optical
solitons has been investigated in two-channel and two-
mode optical fibers [15, 16]. The existence of inter-
mode coupling was shown to lead to energy transfer
and oscillations of the amplitudes of the coupled soli-
tonswith a certain period along the optical fiber length.
The peculiarities of the waveguide structures for

MSWs consist mainly in the mode excitation methods
and in the constraints imposed on the waveguide
length, which, however, is compensated for by the
strong nonlinearity of systems. In this paper, we inves-
tigate the quasi-solitons of the envelope of forward
body MSWs that propagate in a normally magnetized
two-layer garnet-ferrite structure under theinitial exci-
tation of an MSW soliton in the structure only in one of
the coupled magnetic layers.

2. BASIC EQUATIONS

Let us consider a three-layer planar structure com-
posed of two ferromagnetic films separated by a non-
magnetic interlayer that is oriented perpendicular to the
z axis. Let a wave packet formed by the interacting
MSW modes belonging to each of the films be excited
in this film structure and propagate along the x axis. In
this case, the magnetostatic potential of the wave
packet can be represented as the sum of eigenmodes of
theisolated magnetic filmsin the structure. Of the com-
plete set of film eigenmodes, the only two effectively
coupled ones are those that most precisely satisfy the
phase matching conditions, i.e., those for which both
20,, = Wy — Wy, and 20, = ky; — ko, have minimal or zero
values, where wy, and k,, are the carrier frequency and
wavenumber of an eigenmode. In this paper, we do not
assume the presence of a different perturbation (e.g., a
periodic nonuniformity of the layer parameters) that
could synchronize the modes of different orders. There-
fore, the total pulses are formed only by the coupled
modes of the same order belonging to different
waveguide layers. In particular, the modes of the first
order must be these modes, since they are least
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absorbed. In this case, the magnetostatic potential is
described by

41iM,,
l'I'Jn = —Un n ,t
n=zl,2 ZkOnf\lXﬁ-}'Xazm (Z)q) (X ) (1)

* exp[—i (Wont —KonX = @y)],

Y =

where M, is the magnetization of the corresponding
film and @, is the initia (at t = 0) phase of the wave
localized in layer n. For the orientation of the magnetiz-
ing field H under consideration (H ||Mg, || 2), the diag-
onal and nondiagonal components of the magnetic sus-
ceptibility tensor are defined by the expressions

anan anOn
n— 2 2 an ’
W on Win
where
Wy = 4T[yMOn! Wy = VH — Wyn-

The profile function U,(2), which defines the distribu-
tion of the mode in each of the n layers over its cross-
section, and the coefficient in front of it can be deter-
mined from the expression that relates the magneto-
static potential to the variable MSW magnetic field and
from the Walker equation:

grad¥, = h,, div(i,® ,) =0, )

where [1,, is the magnetic permeability tensor for film
n. The dimensionless complex amplitude of the magne-
tostatic potential can be expressed in terms of the nor-
malized complex values of the variable magnetic
moment components,

2 2
= Mo ¥ My

¢n - I\/IOn ,

it is a dowly varying function of the coordinate and
time due to the intermode coupling. The dispersion
relation for the MSW eigenmodes is

2./-%X,—1

tan(kznln) = - X +2

, ©)

where |, isthe thickness of the corresponding film, and
the transverse wave number is related to the propaga-

tion constant by K,, = Kgn /= Xn— 1.
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The dynamics of the envelope of each of the inter-
acting MSWs can be represented by the following
equation (see the Appendix):

2
i0¢n+. 00, , dyd ¢2n
2 9x )

at 'V ox
= 0 eXp[£2i (3t — 5 X = 85)1d 3 + Gen| B D1

Here, the upper and lower signs in the argument of the
exponentia refer to the modes with the indicesn = 1
and 2, respectively; 25,= @, — @, istheinitial phase dif-
ference between the coupled modes; the dispersion
parameters v, = dw,/ok, and d, = 0%w,/d kﬁ obtained at
k, = ko, define, respectively, the MSW group velocity
and group velocity dispersion, gq, = 0w/d|¢, | is the
nonlinear self-action of the system; and q,, is the inter-

mode coupling coefficient. In the absence of losses, the
following condition is satisfied:

|64+ |,° = const,

which yields the equality g, = g; = q for the coupling
coefficients. Below, wetake into account the phase mis-
match attributable only to the difference between the
wavevectors of the two modes, 8, = 0 and &, = 9, by
assuming the carrier frequencies of the MSW pulsesin
both magnetic layersto beidentical; thisis justified by
the MSW excitation methods used [3]. When going to
the running coordinate

2v,v,

£ =X

t,

the system of dynamical equations takes the form

2
CAIMPR Tk

at _|Vnﬁ aEz

_ g .. 2v4v, []
= quepCr2i Sk + o 8 000 )

1tV

+ Gonl O] 1
where

Vi—V,
itV

Vy =V

In the absence of intermode coupling (and when
going to the corresponding running coordinate & = X —
v,t), each of the dynamical equationsadmits of an exact
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Fig. 1. Time dependences of the envelope of the MSW pulses in each of the layers (n = 1, 2) under the single-mode excitation of
the structure and total phase synchronism; I; , =5 pum, H = 1.8 kOe, q =3 x 10° (@), 7x 10° (b), and 10" 1 (c).

solution in the form of a propagating soliton of the stationary solution:

MSW envelope:
¢n(t1 E) = |¢n(£)| eXp(—iFnt), (6)

where for d, < 0 (anomalous dispersion) and gg, > O,

[00(&)] = [P no| COSN™ (&/Z00)- v
The following relation holds between theinitia (i.e., at

t = 0) amplitude |§,o|, length &, of the pulse, and its
phaserl

d
2rn = |¢nolzgsn = __2n.
EnO

For normal dispersion (d, > 0) and at g, > 0, we have a

(8)
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Ot €) = |dnoltanh(E/€0) exp(—iT ot). 9)

In this case, the pulse phase, initial length, and ampli-
tude are related by

d,.

EnO,

thisrelation describes astate called a“ dark” soliton and
correspondsto a dip in the MSW intensity.

The solution of Egs. (5) at g = 0 in the form of a
propagating soliton is stable [2—4] for the initial ampli-
tude of the solitary wave determined by the dispersion
and nonlinear properties of the waveguide and by the
length of the pulse excited in the structure. The pulseis

I_n = |¢n0|zgsn =
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Fig. 2. MSW pulse profiles in each of the layersat (a) t =

1.26x 10~ sand (b) t = 11.34 x 10~ s; the dashed linesrep-
resent the soliton profiles with the amplitudes correspond-

ing to the pulses; the coupling coefficient isq = 107 s,

compressed and spreadsif the amplitudeis, respectively,
larger or smdler than || satisfying condition (8). In
actual structures, when the energy of the excited soliton
differs dlightly from the energy corresponding to the
stable solution, the energy is adjusted—it isreleased in
the form of radiation or absorbed from the medium [1].

In the presence of intermode coupling, system (5)
can be solved analytically in the case of symmetric or
antisymmetric mode excitation in the magnetic layers
(§10 = £d50). In the approximation of strong intermode
coupling, the envelopes of the totally synchronized
interacting MSWs can be represented as a sum of
uncoupled partial pulses, and two independent dynam-
ical equations [1, 16] can be solved instead of the sys-
tem. However, in the case of single-mode excitation of
the structure (¢, # 0, ¢;_, = 0), we cannot obtain two
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independent equations, and only a numerical solution
of system (5) is possible.

3. NUMERICAL ANALYSIS

For our numerical analysis, we take the parameters
for each of the magnetic layers of the structures that
correspond to garnet-ferrite films: 41iM,,, = 1750 G and

y =1.76 x 10’ (Oe s)~*. We assume the duration of the
MSW pulse excited in the structure to be t, = 10 nsand

the carrier frequency to be wy, =2 x 10° s,

For these parameters, Fig. 1 shows the time depen-
dences of the MSW pulse profilesin each of the layers
of the magnetically coupled structure with a length of
L =1 cmfor three values of the coupling coefficient and
theinitial excitation of only the first mode (n = 1). The
profile of the input pulse corresponds to the soliton
solution (7). We aso assume that the magnetic layers
areidentical and have athickness of |,, = 5 um and that
the total phase synchronism condition is satisfied
between the MSW modes; the magnetizing field is
taken to be H = 1.8 kOe. We see from the above depen-
dences that as the input pulse propagates, its energy is
transferred to the second layer of the structure, where
the pulse of the second MSW mode with a profile sim-
ilar to the soliton profile is formed. After the pulse of
the first mode completely transforms into the pulse of
the second mode, the reverse process begins: the ampli-
tude of the n = 2 pulse decreases, while the amplitude
of the n = 1 pulse increases. Depending on the MSW
group velocity and the coupling coefficient, this cycle
of energy transfer can be repeated many times over the
travel time of the pul ses through the waveguide, but the
pulse profiles slightly change and increasingly deviate
from theinitial one corresponding to the soliton profile.
Thus, two quasi-solitons that “pulsate” as they propa-
gate are formed in the two-layer structure. The number
of pulsations of the two synchronized (v, = v,) pulses
inlength L (to within the fractional part) isN = Lg/Tv,,,
and the energy from the pulse of one mode is com-
pletely transferred to the pulse of the other mode in a
time of t, = W2q.

Figure 2 shows the pulse profiles for the two MSW
modes at the beginning of their propagation through the
waveguide structure at t = 126 ns (a), which corre-
sponds to the first half-period of the mode conversion,
and at t = 1134 ns (b) near the exit from the waveguide
for the case considered above at = 107 s. The dashed
linesindicate the profilesthat have the same amplitudes
as those of the above pulses and that were constructed
using formula (7); i.e., they are the soliton profiles. We
see that at the beginning of the mode conversion, both
the decreasing (in amplitude) pulse and the increasing
pulse of the other mode differ little from solitons. How-
ever, the mode coupling leads to a spreading of the
pulse profiles; as a result, the pulse length at the exit
from the waveguide almost doubles compared to the
solitons (Fig. 2b). The pulse spreading depends mainly
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Fig. 3. Time dependences of the envelope of the M SW pulsesin each of the layersin the presence of aphase mismatch; |, =10.0 um,

I,=9.9(a) and 9.7 um (b), H = 1.8 kOe, and q = 10’ s

on the time of their propagation through the structure.
Thus, for example, as the coupling coefficient
decreases by several factors, the intermode conversion
slows down significantly, but the pulse broadening at
the exit from the waveguide changes only dlightly.
However, as the thickness of the magnetic layers
increases, the pulse spreading at the exit from the
waveguide provesto be smaller dueto anincreaseinthe
group velocity of the pulses and, hence, the faster their
propagation through the structure. Note that the pulse
modulation, which manifestsitself in adistortion of the
pulse tails, increases with decreasing coupling coeffi-
cient (seeFig. 1a).

When performing our numerical analysis, we may
not include theinitial phase difference 9, in system (5),
since we consider single-mode excitation and the
(n=2) mode absent at t = 0 lags behind the input
(n=1) mode by 192 in phase. However, for two-mode
excitation, the initial phase difference determines the
pattern of intermode coupling: for symmetric or anti-
symmetric excitation of the structure (¢, = £b,), for
which the phase difference is 25, = 0, Tt, no energy is
transferred between the modes, and, hence, there are no
periodic mode amplitude variations; at 25, = +1/2 for a
symmetric waveguide, energy iscompletely transferred
from one mode to the other and back, i.e., the pattern of
intermode coupling issimilar to that shownin Fig. 1; at
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intermediate , and at 20, = 0, Ttand ¢4 # ¢, Mmode
amplitude pulsations emerge, but there is no complete
energy transfer between the modes.

In the case of single-mode excitation under consid-
eration, there is no complete energy transfer between
the pulses of the two modes in the presence of a phase
mismatch, which, in particular, is attributable to an
asymmetry of the waveguide structure. Figure 3 shows
the time dependences of the pulse profiles for the two
modes at the magnetic layer thickness|, = 10.0 um and
I, =9.9 (@ and 9.7 um (b), the waveguide length L =
1 cm, the coupling coefficient g = 107 s, and the mag-
netizing field H = 1.8 kOe. As above, the initial exci-
tation is assumed to be single-mode or, more specifi-
caly, |$,(§)| = 0, and |$,(&)| corresponds to the soliton
profile (7). The wavevectors of the MSW eigenmodes
in each of the films at the pulse carrier frequency were
calculated numerically from the transcendental disper-
sionrelation (3). It follows from these dependencesthat
the mode conversion efficiency decreases with increas-
ing phase mismatch attributable to the difference
between the thicknesses of the magnetic layers, which
manifestsitself in adecreasein the pulsation amplitude
of the input pulse and the amplitude of the pulse of the
second mode excited by it. In this case, the time of max-
imum mode conversion decreases; i.e., thereis alarge
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Fig. 4. Magnitudes of the MSW wavevectors (dashed
curves) and pulse group velocities (solid curves) versus
magnetizing field; wy, =2 x 10957, 11 ,=5(1), 10(2), and
15 pm (3).
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number of extrema of the pulse amplitude over the
travel time of the pulses through the waveguide struc-
ture.

In Fig. 4, the magnitudes of the MSW wavevectors
and the pulse group velocities are plotted against the
magnetizing field H at the MSW carrier frequency
Wyn = 2 % 10° s and the magnetic layer thicknesses|,, =
5, 10, and 15 pm. We see that increasing the magnetiz-
ing field causes a decrease in the magnitudes of the
wavevectors and a nearly linear increase in the pulse
group velocities. As the thickness of the magnetic lay-
ers increases, the field dependence of the wavevectors
weakens, while the corresponding dependence of the
group velocities strengthens. Note that a change in the
group velocity at the same pulse duration 1,, causes the
pulse length &, to change, but the pulse amplitude for a
given change in the magnetizing field changes only
slightly due to the accompanying changesin the disper-
sion and nonlinear self-action of the system (the coeffi-
cientsd, and gg,).

The dependence of the group vel ocity on the magne-
tizing field leads to the following important result. By
varying the velocity of pulse propagation at the exit
from the structure through the field H, we can obtain
any mode conversion phase and, thus, regulate the out-
put amplitude of the two MSW pulses over a wide
range, from its maximum value to zero in the case of
total mode synchronism. Figure 5 shows the profiles of
the first (a) and second (b) pulses at the exit from a
waveguide of length L = 1 cm for identical magnetic
layers of thickness |, =5 and 10 um at various magne-
tizing fields H. For thicker films, the change in the out-
put amplitudes for the same change in the magnetizing
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Fig. 5. Pulse profilesin the first (a) and second (b) layers at
the exit from awaveguide of length L =1 cm; [1 , =6 um
(solid curves) and 10 pm (dashed curves), H = 1796.0 (1),
1797.0 (2), 1798.0 (3), 1799.0 (4), and 1799.5 Oe (5).

field is smaller. This is because as the films become
thicker, the group velocity increases greatly (in the case
under consideration, by more than a factor of 2), and
the number of extrema of the amplitudes of the propa-
gating pulses decreases over their travel time through
the waveguide. As a result, to change the intermode
coupling phase by a half-period (which is needed to
obtain any of the possible output pulse amplitudes)
requires a larger change in the group velocity v,
through thefield H than that for thin films; for the latter,
the group velocity isrelatively low, and the pul se under-
goes a much larger number of pulsations as it travels
through the waveguide. It is clear from the aforesaid
that for alarger change in the field H, several maxima
and minima of the pulse amplitude take place at the exit
from the magnetic structure; the intervals between the
field strengths corresponding to the nearest maxima
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(minima) of the pulse amplitude in one of the layers
increase with increasing H.

4. CONCLUSIONS

Our analysis has shown that when a soliton of the
MSW envelope of one of the layersis excited in atwo-
layer magnetically coupled structure, MSW quasi-soli-
tons pulsating out of phase and belonging to different
magnetic layers are formed through intermode cou-
pling. The intermode coupling leads to a spreading of
the pulsesrelative to the soliton profile, which depends
mainly on the travel time of the pul ses through the two-
layer structure. The conversion period of the pulse of
one mode into the pulse of the other mode is deter-
mined by the coupling coefficient. The dependence of
the group velocity on the magnetizing field allows one
to obtain any phase of the intermode conversion cycle
at the exit from the waveguide structure through a small
change in the field strength (AH = 1 Oe) and, thus, to
vary the output amplitude of the pul ses of both coupled
modes over a wide range. The efficiency of this pulse
amplitude control increases with decreasing thickness
of the magnetic layers. Note that, despite the MSW
peculiarities, the main features of the dynamical behav-
ior of coupled solitons considered here can take place
in a broad class of physical systems described by the
nonlinear Schroédinger equations.
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APPENDIX

L et uswrite the wave equation for the magnetostatic
potential of anindividual layer by assuming it to beiso-
lated (and omitting the index n):

lG‘P_O’

vZ at?

2 2
i P (A1)
ox~ 0z
where v = @/k is the MSW phase velocity, k =

JK + kf, and the frequency @ is assumed to depend
on the propagation constant k and the MSW intensity.
L et us represent the magnetostatic potential as

W(t,z,x) = W(t, z, x)exp(ikyX). (A.2)

Its Fourier components,

00

lIJ('[, Z, ky—k) = J'LTJ(t, z, x)exp[i(ky,—K)x] dx, (A.3)
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satisfy the equation
- 20)  ©2a2(]
PR S ) (A.4)
0Z  dt

We seek a solution of this equation in the form

k) = F(2)9(t ko—

where the function F(2) is the product of the profile
function U(2) and the coefficient infront of itin Eq. (1);
 (t, k, — k) are the Fourier components of the MSW
envelope ¢(t, X). Given that

o°F

= (K —K )F,

07

and discarding the term proportional to 92§ /0t2, we
reduce Eq. (A.4) to the following equation for the
slowly varying functions § :

P(t, z, ko — K) exp(—iwt), (A.5)

(l(T_)_ —2_ 2\T _

5t (@ —wy)d = 0.
Let us represent the MSW frequency as

(k. [91°) = w(k) +Aw(d7),

where the term Aw describes the nonlinear effects.

Given that the approximate equaity @ — wp =
20(® — wy) holds good, Eq. (A.6) can be written as

D = ifw(k) + 20— w]d.

2i Wy (A.6)

(A7)

L et usexpand the frequency w(K) in aTaylor seriesnear
the point k:

(k) = wy+ (kg—K)w™ += (k —K2w? + ..., (A.9)
where w® = [8'w/dkk=k,. The small addition to the
frequency associated with nonlinearity can be repre-
sented as

0w | |
alol°

Let us substitute expansion (A.8) in which we discard
the terms higher than the second order into Eq. (A.7).
Performing the inverse Fourier transform in this equa-
tion,

Aw =

g:l!”. (A.9)

r
02 = 5Bk~ A0
x exp[—i (ko — k) x] dk,

replacing the Fourier transform of k, — k with the oper-
ator i(0/0x), and using the expression for Aw, we obtain
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the nonlinear Schrodinger equation for the MSW enve-
lope of anisolated Iayer'

09 _ @O
ot ax 2
We can formally pass to the eguations that include

the intermode coupling in the two-layer structure using
the matrix equation

a
= 3w WP = —igJolHp. (A1)

0 Ow. O
05%ig = |Cu ol g¥ap (A.12)
otgw,0 ¢, CpWOW,0

where the unperturbed magnetostatic potential of each
of the layers with theinitial phaseis

Wn(t,z x) = Fo(2)n(t, X)

X eXp[_I ((“)Ont - kOnX - (pn)] '

In the case of weak linear coupling between the modes
where the dispersion relation for the MSW in each of
the layers can be assumed to be independent of the
wave amplitude in the neighboring layer, the equations
for the coupled modes can be written as

(A.13)

% = (Cpp +i0g) 0,
+Co0,eXP[2i (Ot — O X —0y)] ,
09, (A.19)

3t = (Cp+iwg)d,

+ Cu 01 eXp[—2i (8t — 5 X = dy)] -

Assuming ¢, + iy, to be identical to the operator on
theright-hand side of Eq. (A.11), we obtain a system of
two coupled nonlinear equations where the coefficients
C,,  define the linear MSW intermode coupling. In the
absence of coupling between the modes (c, , = 0),
Eqg. (A.11) is vaid. For total phase synchronism
between the modes and at zero initial phase difference,
thissystemis
00, 0y, did’d,
n
at aX 2 axz

= qn¢3—n + gsn|¢n|2¢n- (A-15)
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In the presence of a phase mismatch, we obtain the sys-

=

10.

11.

12.

13.

14.

15.

16.

tem of equations (4).
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Abstract—Two-photon transient nutation is observed in a two-level spin system (E; centers in crystalline

guartz) using atransverse microwave field and alinearly polarized rf field oriented along a static magnetic field
inthe electron paramagnetic resonance. Nutation isexcited when the sum of the energies of amicrowave photon
and arf photon is equal to the energy difference between two spin states. The two-photon nature of nutation is
confirmed by measuring its frequency as afunction of the amplitude and frequency of the rf field aswell asthe
amplitude of the microwave field. The amplitude of the effective field of two-photon transitionsis measured. It
is shown that the decay rate of two-photon nutation is close to the decay rate for one-photon nutation and is

determined by the spin—spin interaction between E; centers. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Multiphoton processes in which several photons are
emitted or absorbed simultaneously play an important
role in nonlinear optics [1]. Although such processes
have been known for along timein magnetic resonance
aswell, the interest in studying their dynamics (in par-
ticular, in two-level systems) has appeared only
recently [2-5]. It iswell known [3] that real intermedi-
ate energy levels are required for multiphoton pro-
cesses involving a change in the magnetic quantum
number Am, > 1 to occur in multilevel spin systems. In
two-level spin systems, multiphoton processes with
Am,=1 can take place. Such transitionswere studied in
a series of recent publications devoted to pulsed NMR
and EPR [2-5]. In this case, real intermediate levels do
not exist; “dressed” spin states may play the role of such
levels [3]. The term “dressed states’ is applied to the
eigenstates of a spin system in a strong microwave
(MW) field having a frequency close to the resonance
frequency of thissystem. The energy levels of adressed
system form a “ladder” of doublets separated by the
energy of MW-field photons. At the same time, the
energy difference between the states in each doublet is
determined by the generalized Rabi frequency.

In the subsequent analysis, we will confine our-
selves to multiphoton transitions initiated in two-level
spin systems by bichromatic radiation produced by a
transverse microwave field and alongitudinal radiofre-
guency (rf) field [3]. Considering pulsed EPR studies of
the dynamics of multiphoton processes induced by the
above-mentioned bichromatic radiation, it should be
noted that, in particular, two-photon processes of this

type can be excited when the MW field is oriented not
strictly perpendicularly to the static magnetic field and,
hence, an MW field component appears along thisfield.
The experimental setup in which the MW field is tilted
at 45° to the tatic field was repeatedly employed for
studying the dynamics of two-photon transitionsin two-
level systems using nutation and nutation echo [6, 7]. In
such experiments, two-photon transitions are excited
by two components of the MW field with the same fre-
guency. A similar field configuration has been proposed
recently for two-photon excitation in stochastic NMR
spectroscopy [2].

When a transverse MW field and a longitudinal rf
field are used, the difference in their frequencies is
large; this opens new potentialities for two-frequency
magnetoresonance spectroscopy and its instrumental
implementation. In thistype of pulse EPR experiments,
which are based on simultaneous absorption or emis-
sion of several photons with noticeably different fre-
guencies, two- and three-photon el ectron spin echo was
detected when a nonresonant MW field was used for
excitation [4]; in this case, the sum of the energies of a
MW phaton and one or two rf photons was equal to the
resonant frequency of the two-level spin system. Rf-
field induced transparency of the matter to MW radia-
tion was observed when atwo-level system was excited
by a bichromatic field with the frequency of the MW
field equal to the resonance frequency of the spin sys-
tem[5].

An analogous field configuration also made it possi-
ble to observe one-photon nutation caused by transi-
tions between the dressed states of a two-level system
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excited by a resonant MW field [8, 9]. Three-photon
nutation between the dressed states of atwo-level sys
tem has also been studied recently in NMR [4]. In this
case, nutation was excited by three circularly polarized
photons of a low-frequency rf field, when their fre-
quency was close to one-third of the frequency of one-
photon nutation caused by the resonance transverse rf
field.

In this study, two-photon nonstationary nutation
excited in the EPR by combined action of MW and rf
fields is observed for the first time (to our knowledge)
in atwo-level spin system. In contrast to other coherent
nonstationary effects (free induction, echo, etc.), nuta-
tion directly reflects the dynamics of quantum transi-
tions during the interaction of radiation with the spin
system, while the frequency of nutation provides direct
information on the amplitude of the effective field of
thisinteraction. These potentialities of nutation are also
illustrated for two-photon transitions in a model two-

level spin system (E; centersin crystalline quartz).

2. PREDICTIONS OF THE THEORY

Let us consider an electron spin system with spin
S=1/2 in astatic magnetic field B, directed along the z
axisinthelaboratory system of coordinatesandinalin-
early polarized microwave field 2B, cos(wt) directed
aong the x axis and a linearly polarized rf field
2B, cos(wyt) applied aong the z axis. In this case, the
Hamiltonian of the system (in units of frequency) has
the form

Hia(t) = 000S, + 20, cos(wt) S, + 2w, cos(wit)S,, (1)

where wy, = yB, isthe Larmor frequency (resonance fre-
guency of spin transitions), y = gBJ% is the gyromag-
netic ratio for the electron, g isthe electron g factor, 3.
isthe Bohr magneton, and w, = yB; and w, = yB, arethe
Rabi frequenciesfor the MW and rf fields, respectively.

For wy > w,, only one component (o* photons) of
the linearly polarized MW field, which rotates in the
direction of the Larmor spin precession, plays a deci-
siverole, while the effect of the second component (-
photons) of the MW field, which rotates in the opposite
direction, can be ignored.

Under the action of bichromatic radiation consid-
ered here, multiphoton transitions of the type o* + kri;
can be excited; in these transitions, one MW ¢* photon
is absorbed and k rf 1T photons are absorbed (k > 0) or
emitted (k < 0) simultaneoudly [5]. Since 1t photons
have zero angular momentum, the number of rf photons
participating in such amultiphoton transitionisnot lim-
ited.

For describing multiquantum transitions induced by
bichromatic radiation, a transition to a generalized
rotating system of coordinates (toggling frame) was
used in [5]. In this case, the effective field amplitude
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calculated to within third-order corrections [5] was
found to be

w
Wy = wl|:‘J—k(Z) + Klrf

J.2)3,,_(23I._ (2 2
DY T m }

l#km#0

(1)

— (3)
= wy[cy 1,

+ Cy

where parameter z = 2w,/w,; and J,(2) is the first-kind
Bessel function of order n.

Thefirst coefficient ¢ describes the effective field
for w;, < wy. Inthis case, the effective field amplitude

for the resonance MW field (w = wy) isequal to the sum
of the amplitudes of the effective field for all multipho-

ton processes of the type -, + G, + M

W0 = W Jo(2). (©)

In the case of a nonresonant MW field for wy = w +

wy (k = 1), the amplitude of the effective field for the
two-photon transition * + 11 and corresponding mul-
tiphoton processes of thetype—mri; + o, + (M+ 1)1
isgiven by

Wy = W J4(2). (4)
For z< 1 or in the absence of multiphoton processes of
the type—mmi,; + o, + (M+ 1)1, the effective field of
the two-photon transition a* + 11; can approximately be
described by the dependence [3]

_ W0,

Wy 1= W (5)
r

For large values of w,, we must take into account the

effect of the third-order term ¢\ .

3. EXPERIMENTAL TECHNIQUE

The field configuration in the laboratory reference
frame and the energy level diagram showing the pulsed
establishment of two-photon resonance (wy = w + W)
between the Larmor frequency and the sum of the fre-
quencies of the MW and rf fields are presented in
Fig. 1. We used continuous MW and rf fields; alongi-
tudinal magnetic field pul se established the resonance.
The initially equilibrium spin system was in anonreso-
nant static magnetic field B = B, — AB. The magnetic
field was then changed pul se-wise to the resonant value
By at instant t = 0. Due to the Zeeman effect, the fre-

quency W, of the quantum transition in the spin system
changed as a result of the magnetic field jump AB =
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|B — By| to avalue of wy, and became equal to the sum of
the frequencies of the MW and rf fields (Fig. 1b). Dur-
ing the action of the pulse, the resonance interaction
between the total field and the spin system was estab-
lished. The stabilization time for resonance conditions
was about 120 ns and was much shorter than T, and
21wy, 1, which ensured the excitation of two-photon
nutation.

A continuous rf field and a magnetic field pulse
were produced by passing current through the same
modulation element in the measuring resonator. In this
case, measuring the current producing these fields
made it possible to determine the amplitude B, of the rf
field produced in the region of the sample if the ampli-
tude AB of the pulse magnetic field isknown. Thevalue
of AB was determined from the frequency of beats
(equal to AB/Y) in the free induction signal observed
after the termination of the magnetic field pulse [10].
This enabled us determine the rf field amplitude B,
approximately to within 5%.

This technique for forming nutation signals was
implemented using the X-band EPR pul se spectrometer
specialy designed by us[9, 11]. The amplitudes of the
MW and rf fields (in frequency units) did not exceed
1.5 MHz. To improve the signal-to-noiseratio, we used
multichannel digital summation of signals. The phase
of the rf field was not locked with the phase of the MW
field. There was no locking of the rf field phase to the
beginning of the magnetic field pul se either.

Two-photon nutation was observed for E; centers
(S=1/2) in crystalline quartz bombarded by neutrons.
The EPR spectrum of these centersin the X-band in the
direction of the magnetic field parallel to the optical
axis of the crystal consists of a single line of width
AB,,, = 0.016 mT. The small width of the EPR line and
long relaxation times even at room temperature render

E} centersin quartz a convenient object for nutation
studies|[3, 6, 8, 9].

4. RESULTS AND DISCUSSION

The experiments were made at room temperature.
The static magnetic field was parallel to the optical axis
of the crystal. The duration of negative magnetic field
pulses was 10 ps, their amplitude AB = 0.12 mT, and
the pulse repetition period was 1.25 ms.

Figure 2 shows the dependence of the absorption
signal amplitude of one-photon nutation on the mag-
netic field detuning d/y = (wy — w)/y from the resonance
value B, during the pulse action.

It iswell known that the one-photon nutation signal
in the case of a nonuniform magnetic resonance line-
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(a) (b)
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A Wy = W+ 0y
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X 1
t=0 t

Fig. 1. (A) Field configuration in the laboratory reference
frame, used for observing two-photon resonance.
(b) Energy level diagram illustrating the pulsed switching
on of two-photon resonance (wy = w + wy) by a magnetic
field pulsein the case of continuous MW and rf fields.

Nutation amplitude, rel. units

1.0 - -
0.8F B
0.6 B
0.4+ —
02} \ i
oL~ Y il 1 ~=—
-0.2 -0.1 0 0.1 0.2
o/y, mT

Fig. 2. EPR spectrum of E'1 centers in crystalline quartz,

detected with the help of one-photon nutation at w,/21 =

0.96 MHz. The dashed curve describes the spectrum
obtained in aweak microwave field.

widtho > w, at T, < T, (except for timeintervalst <
Vw,) can be described by therelation [11, 12]

v wlf(w)Jo(wlt)expE—%E. ©6)

Here, f(w) is the value of normalized function describ-
ing the shape of the linein the vicinity of the center of
the nonuniform line, Jy(w,t) is the zero-order Bessel
function, and T, and T, are the spin-attice and spin—

spin relaxation times, respectively. In the case of E}
centers, the condition w, > o was satisfied and the sig-
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Fig. 3. Nutation EPR signals from E'1 centers detected at fixed amplitudes of the MW (w/21t = 0.96 MHZz) and rf (w,/2m =

1.02 MHz) fields for various values of detuning 6 = wy — w from one-photon resonance. (a) One-photon nutation for & = 0 and
w, = 0. Two-photon nutation for detuning & = wy and wy¢ /2= 1.37 (b), 2.62 (c), and 3.40 MHz (d).

nal had ashape intermediate between adecaying Bessel
function and adecaying sinusoid typical of auniformly
broadened line (see the oscillogramsin Fig. 3a). In this
case, the nutation frequency was equal to the Rabi fre-
guency w; = yB, and was virtually independent of the
detuning from resonance.

In view of radiation broadening, the linewidth
detected with the help of nutation exceedsthe EPR line-

width for E; centers, which can be obtained using a

weak MW field and shown by the dashed curve in
Fig. 2.

Arrows in Fig. 2 mark the values of the magnetic
field during the action of the pulse, at which the nuta-
tion signals shown in Fig. 3 were recorded. The signal

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

in Fig. 3a is one-photon nutation at frequency w; =
0.96 MHz, recorded at the resonance value of the mag-
netic field (the position of this field is marked by
arrow 1in Fig. 2). The signals depicted in Figs. 3b—3d
were obtained for magnetic field detunings from the
resonance value for one-photon resonance, marked by
arrows 24 in Fig. 2, for the simultaneous action of the
MW and rf fields with frequencies satisfying the condi-
tion w + w; = wy. The rf field amplitude w, = yB, =
1.02 MHz was close to the amplitude of the MW field
and was the same for al above-mentioned values of
detuning from resonance.

It can be seen that, in accordance with relation (5),
the frequency Q,, of nutation observed on the oscillo-
grams shown in Figs. 3b—3d decreases with increasing
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detuning of the magnetic field and, accordingly, with
increasing frequency of the rf field, which is required
for the condition w + w = wy, to be satisfied. In this
case, the amplitude of the recorded signals decreases. It
should be noted that if the signal being detected were
due not to two-photon transitions, but to achangein the
one-photon nutation signal of a uniformly broadened
line associated with detuning from resonance, its fre-
guency would be determined by the generalized Rabi

frequency Q = .Jw+3° and would increase with
detuning .

Figure 4 shows the dependence of the two-photon
nutation frequency on parameter z = 2w,/w;; (Normal-
ized amplitude of the rf field) for w,/2m= 0.96 MHz.
The experimental results represented by circles are
obtained upon a change in w, at a fixed rf field fre-
guency wy//21m = 2.62 MHz. The remaining data are
obtained upon a change in the rf field frequency w at
w,/211= 1.02 MHz. The solid line shows the approxi-
mation of the experimental data by the dependence
Q, = koyw,/wy, wherek = 0.74 £ 0.07.

In view of the absence of phase locking between the
rf and MW fields in our experiments, the signal being
recorded isthe result of averaging of alarge number (up
to 10°) of signals obtained for arandom phase of the rf
field. Such an averaging ensures the suppression of the
contribution from all multiphoton processes of the type

-mm; + o, + (M + D [5]. Consequently, the
detected nutation was determined by the two-photon
transitions o* + T1; alone, and its frequency can be
described by relation (5).

The experimental data presented in Fig. 4 confirm
the two-photon origin of the observed nutation.
Another dependence confirming this origin is depicted
in Fig. 5. It can be seen from Fig. 5 that the two-photon
nutation frequency for w,/2m=1.02 MHz and w,/211=
2.62 MHzisproportional to theMW field amplitude (in
frequency units) in accordance with the predictions of
the theory.

The possibility of measuring the MW and rf field
amplitudesin the given experiment hasmadeit possible
to quantitatively compare the effective field of two-
photon transitions determined by the nutation fre-
guency with the predictions of the theory (with an error
not exceeding 10% even for the lowest nutation fre-
guencies). It has been found that the amplitude of this
field differs quantitatively from the value predicted by

relation (5) and iscloseto k = 1/./2 = 0.707. This can
be due to the fact that, according to [13, 14], the effect
of the longitudinal field on the transitions involving
dressed states in such experiments may be weaker than

the effect of the transverse field by a factor of J2.

It can be seen from Figs. 3c and 3d that the observed
signals of two-photon nutation are successfully approx-
imated by adependence of type (6) typical of anonuni-
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Fig. 4. Dependence of the two-photon nutation frequency
on parameter z = 2w,/ G+ .
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Fig. 5. Dependence of the two-photon nutation frequency
on the MW field amplitude (in frequency units) for /2=

1.02 MHz and w;/211= 2.62 MHz.

form line, which can be written in the present case in
the form

t
v 0 Jo(0y 1t) exp %_fﬁ (7)
The dashed curves in these figures show the depen-
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dence given by formula (7) for w, ,/2m = 0.28 MHz
(Fig. 3c), wy 4/21t=0.19 MHz (Fig. 3d) and T, = 3.5 us.
In this case, the condition w; ; < o is satisfied more
exactly than in the case of one-photon nutation. In view
of nonuniform broadening, the two-photon nutation
frequency was virtually independent of the detuning
from resonance and was determined by the effective
field amplitude.

TimeT, = 3.5 £ 0.4 pys estimated from the two-pho-
ton nutation decay coincides with the analogous time
for one-photon nutation, which is determined by the

dipole—dipole interaction of E; centers [9]. A similar

result was observed for E; centersin amorphous quartz

in the case of two-photon nutation excited by two MW
photons of the same frequency for small amplitudes of
the MW field [15]. In this case, the increase in the MW
field amplitude led to an anomalous field-dependent
decay of two-photon nutation, whose origin is till not
completely clear [16]. Probably, two-photon nutation
excited by photons with strongly different frequencies
will make it possible to obtain new data explaining the
reason for the above-mentioned decay.

5. CONCLUSIONS

Thus, we have reported the results of direct record-
ing of two-photon nutation excited in a two-level spin
system with atransverse microwave field and alongitu-
dinal radiofrequency field. The possibility of measuring
the amplitudes of the MW and rf fields in our experi-
ment enabled usto determine the effective field of two-
photon transitions. Apart from the applications illus-
trated earlier and associated with the transparency
induced by the rf field [5] and the replacement of the
second MW field in the double el ectron—electron reso-
nance by a longitudinal rf field [17], analysis of the
dynamics of multiphoton transitions using the field con-
figurations employed by us may prove useful for study-
ing relaxation processes in strong exciting fields and for
developing new methods for narrowing lines [4].
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Abstract—The maximum entropy of aquantized surface is demonstrated to be proportional to the surface area
in the classical limit. The general structure of the horizon spectrum and the value of the Barbero-Immirzi
parameter are found. The discrete spectrum of thermal radiation of a black hole naturally fits the Wien profile.
The natural widths of the lines are very small as compared to the distances between them. Thetotal intensity of
the thermal radiation is calculated. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The idea of quantizing the horizon area of black
holes was put forward many years ago by Bekensteinin
the pioneering article[1]. He pointed out that reversible
transformations of the horizon area of a nonextremal
black hole found by Christodoulou and Ruffini [2, 3]
have an adiabatic nature. Of course, the quantization of
an adiabatic invariant is perfectly natural, in accordance
with the correspondence principle.

Once one accepts this hypothesis, the general struc-
ture of the quantization condition for large quantum
numbers becomes obvious, up to an overall numerical
constant 3. The quantization condition for the horizon
area A should be

A = BIEN, 1)

where N is some large quantum number [4]. Indeed, the
presence of the Planck length squared,

Iz_kﬁ

P~ "3
c

is only natural in this quantization rule. Then, for the
horizon area A to be finite in the classical limit, the

power of N must be the same as that of # in 1. This

argument can be checked by considering any expecta-
tion value in quantum mechanics, nonvanishing in the
classical limit. It is worth mentioning that there are no
compelling reasons to believe that N is an integer. Nei-
ther are there compelling reasons to believe that spec-
trum (1) isequidistant [5, 6].

On the other hand, formula (1) can be interpreted as
follows. The entire horizon area A is split into elements

of typical size, ~If) , each of them giving a contribution
to the large quantum number N. This scheme arises, in

T This article was submitted by the author in English.

particular, in the framework of loop quantum gravity
(LQG) [7-11].
A guantized surface in LQG looks as follows. The

surfaceisassigned a set of edges. Each edgeis supplied
with an integer or half-integer “angular momentum” j:

j=1/2,1,3/2, ... )

The projections mof these “ angular momenta’ range as
usual from - toj. The area of the surface is

A =8y i+ 1) (3)

The numerical factor y in (3) cannot be determined
without an additional physical input. This free (so-
caled Barbero-dmmirzi) parameter [12, 13] corre-
spondsto afamily of inequivalent quantum theories, al
of them being viable without such an inpuit.

We mention that although spectrum (3) is not equi-
distant, it is not far from being so. Indeed, even for the
smallest quantum number j = 1/2, the quantity

Jj(j + 1) canbeapproximated by j + 1/2 with an accu-
racy of 13%. Asj increases,

Ni(j+1)=]+1/2

becomes better and better; i.e., spectrum (3) comes
close to being an equidistant one. This feature of spec-
trum (3) is of interest in connection with the observa-
tion by Bekenstein: quantum effects result in the fol-
lowing lower bound on the change of the horizon
area AA under an adiabatic process.

(DAY = EI%; (4)

here, & is a numerical factor reflecting “the inherent
fuzziness of the uncertainty relation” [14]. Of course,

1063-7761/05/10006-1075$26.00 © 2005 Pleiades Publishing, Inc.
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the right-hand side of formula (4) is proportional to 7,
together with the Planck length squared |5

Due to the uncertainty of the numerical factor ¢
itself, one cannot see any reason why ¢ should not
change dightly from one act of capture to another.
Therefore, the discussed quasiequidistant spectrum (3)
agreeswith the bound (4), dmost aswell asthe equidis-
tant one. We return to relation (4) below.

As regards the unknown parameter y in (3), the first
attempts to fix its value, based on an analysis of the
black hole entropy, were made in [15, 16]. However,
these attempts did not lead to concrete gquantitative
results.

Then it was argued in [17] that for the black hole
horizon, al quantum numbers|j are equal to 1/2 (asis
the casein the so-called “it from bit” model formulated
earlier by Wheeler [18]). With these quantum numbers,
one arrives easily at the equidistant area spectrum and
at thevalue

In2

/3

for the Barbero—Immirzi parameter. However, the result
in [17] was demonstrated in [5] to be certainly
incorrect’ because it violates the so-called holographic
bound formulated in [22—24]. According to this bound,
among the spherical surfaces of a given area, the sur-
face of the black hole horizon has the largest entropy.

2. MICROCANONICAL ENTROPY
OF A BLACK HOLE

On the other hand, the requirement of maximum
entropy allows one to find the correct structure of the
horizon area [25], which in particular is of crucia
importance for the problem of radiation of a quantized
black hole.

We actually consider the “microcanonical” entropy
Sof aquantized surface defined as the logarithm of the
number of states of this surface for a fixed area A
(instead of afixed energy in common problems). Obvi-
ously, this number of states K depends on assumptions
concerning the distinguishability of edges.

To analyze the problem, it is convenient to rewrite
formula (3) as

A =8y S i+ Dvim, (5)
jm

where v;,, is the number of edges with given j and m. It
can be demonstrated [5, 6] that the only reasonable
assumption on the distinguishability of edges that may

L ater, the result in [17] was aso criticized in [19, 20]. Then an
error made in [17] was acknowledged [21]. We demonstrate
below that the result in [19, 20] is also incorrect.
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result in acceptable physical predictions (i.e., may com-
ply both with the Bekenstein—Hawking relation and
with the holographic bound) is as follows:

nonequal j, any m— distinguishable;

equal j, nonequal m — distinguishable;

equal j, equal m — indistinguishable.

Under this assumption, the number of states of the
horizon surface for a given number v;,, of edges with
momenta | and their projections j, = m is obviously
given by

~ 1
K= Vll_lm, (6)
jm

where

and the corresponding entropy is

S=InK = In(v1) = 5 In(v;}). )
jm

The structures of the last expression and of formula (5)
are so different that the entropy cannot be proportional
tothe areain the general case. However, thisisthe case
for the maximum entropy in the classical limit.

In thislimit, with all the effective “ occupation num-
bers’ being large, v, > 1, we use the Stirling approxi-
mation, and hence the entropy is

S=vinv-} v, Inv,. (8

We calculate its maximum for afixed area A, i.e., for a
fixed sum

N = ZA/j(j +1)v;, = const. 9)
jm

The problem reducesto the solution of the system of
equations

Inv—Inv,, = WG +1),

where 1 is the Lagrange multiplier for constraint (9).
These equations can be rewritten as

Vim = vexp(—u4/j(j + 1)),

(10)

(11)

No. 6 2005



RADIATION OF A QUANTIZED BLACK HOLE

or
Vi = (2] + 1)exp(-u~j(j +1))v. (12)
We now sum expressions (12) over j, and with
Zvj = v,
i
we arrive at the equation for p:
> @i+ Dexp(-uvi(j+1)) = 1. (13)
j=1/2
Itssolutionis
u = 1722 (14

Strictly speaking, the summation in formula (14)
extends not to infinity but to somej ., . Itsvaluefollows
from the obvious condition that none of the v;,, should
be less than unity. Then, for v > 1, Eq. (11) gives

_ Inv
i3

It iswell known that the Stirling approximation for n!
has reasonably good numerical accuracy evenforn=1.
Therefore, formula (15) for .. iS hot just an estimate
but has reasonably good numerical accuracy. The rela
tive magnitude of the corresponding correction to (14)
can be easily estimated as ~Inv/v.

We now return to Eq. (10). Multiplying it by v;, and
summing over jm, we arrive, with constraint (9), at the
following result for the maximum entropy for a given
value of N:

(15)

Jmax

Snax = 1.722N. (16)
Therefore, with the Bekenstein—Hawking relation and
formula (5), we find the value of the Barbero—Immirzi
parameter:

y = 0.274. a7

Quite recently, this calculation with the same resuilt,
although with a somewhat different motivation, was
reproduced in [26].

We emphasi ze that the above calculation is not spe-
cial for LQG only, but applies (with obvious modifica-
tions) to a more general class of approaches to the
quantization of surfaces. The following assumption is
actually necessary here: the surface should consist of
sites of different sorts, such that there are v; sites of
each sort i, with a generalized effective quantum num-

ber r; (here, J/j(j+1)) and a dtatistical weight g;,
(here, 2j + 1). Then in the classical limit, with given
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functions r; and g;, the maximum entropy of a surface
can be found, at least numerically, and is certainly pro-
portional to the area of the surface.

As regards the previous attempts to calculate y, we
should point out an apparent error in counting states
madein [19, 20]. It can be easily checked that the tran-
sition from formula (25) to formulas (29) and (36)
in [19] performed therein and then used in [20], is cer-
tainly valid under the assumption that only two maxi-
mum projections £j are allowed for each quantum num-
ber j, but it cannot then hold for the correct number
2] + 1 of the projections. Therefore, it is not surprising
that the equation for the Barbero-Immirzi parameter
in[20] is

00

2% ep(-ui(i+1) =1,

j=1/2

(18)

instead of oursin (13) (see aso the discussion of (18)
in[26]).

The conclusion is obvious. Any restriction on the
number of admissible states for the horizon, as com-
pared to ageneric quantized surface, beit therestriction
to

j =1/2, m=+1/2,

made in [17], or the restriction to

any j, m= #j,
made in [19, 20], results in a conflict with the holo-
graphic bound.

3. QUANTIZATION
OF ROTATING BLACK HOLE

In discussing the radiation spectrum of quantized
black holes, one should take the angular momentum
selection rulesinto account. Obviously, radiation of any
particle with a nonvanishing spin is impossible if both
the initial and final states of the black hole are spheri-
cally symmetric. Therefore, to find the radiation spec-
trum, the quantization rule for the mass of a Schwarzs-
child black hole must be generalized to that of a rotat-
ing Kerr black hole.

To derivethe quantization rulefor aKerr black hole,
we return to the thought experiment analyzed in [2, 3].
Therein, under adiabatic capture of a particle with an
angular momentum j, the angular momentum J of a
rotating black hole changes by afinite amount j, but the
horizon area A does not change. Of course, under some
other variation in the parameters, it is the angular
momentum J that remains constant. In other words, we
have here two independent adiabatic invariants, A and
J, for aKerr black hole with mass M.
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Such a situation is quite common in ordinary
mechanics. For example, the energy of a particle with
mass m bound in the Coulomb field

u(r = -

ma’

E = e,
2(1:+1g)

(19)

where |, and |, are the respective adiabatic invariants
for theradia and angular degree of freedom. Of course,
theenergy Eisinasenseaso an adiabatic invariant, but
itisinvariant only under those variations of parameters
that preserve both I, and I, In quantum mechanics, for-
mula (19) becomes

2
E = ma , (20)

28%(n, + 1+1)°

where n, and | are the radial and orbital quantum num-
bers, respectively.

This example prompts the solution of the quantiza-
tion problem for a Kerr black hole. It is conveniently
formulated in terms of the so-called irreducible mass
M;, of ablack hole, related by definition to its horizon
radiusr, and area A as

rh, = 2kM;,, A = 16T’M_.. (21)
Together with the horizon area A, the irreducible mass
isan adiabatic invariant. In accordance with (3) and (9),
it isquantized as

(22)
where

mrz, = fclk

is the Planck mass squared.

For a Schwarzschild black hole, M;, coincides with
its ordinary mass M, but for aKerr black hole, the situ-
ation is more interesting. Here,

J? J?
5= M+ ——,
4KPM2

M* = M+
Ih

(23)

where Jisthe internal angular momentum of arotating
black hole.
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Now, taking (22) into account, we arrive at the fol-
lowing quantization rule for the mass squared M2 of a
rotating black hole:

2 1 m2 J(J+1)
M [yN+ N }

(24)
Obvioudly, as long as the black hole is far from an
extremal one, i.e., while yN > J, we can neglect the
dependence of M? on J, and the angular momentum
selection rules have practically no effect on the black
hole radiation spectrum.

As regards the mass and irreducible mass of a
charged black hole, they are related by

2

M = M”+2q_rh, (25)

where q is the black hole charge. This formula has a
simple physical interpretation: the total mass (or total
energy) M of a charged black hole consists of itsirre-
ducible mass M;, and of the energy g?/2r,, of its electric
field in the outer spacer > ry,.

With r, = 2kM;,, relation (25) can be rewritten as
4 2

2 = M? g 9

M= M 16k*M? Tk

(26)
Thus, for acharged black hole, M? is quantized as

2 1 q
M =5 [yN+4yN+q} (27)
Infact, relations of thistype (even in amore general
form, for Kerr—-Newman black holes, both charged and
rotating) were already presented in the pioneering arti-

cle [1], although with the equidistant quantization rule

for Mizr , i.e., for the horizon area (see also [14]). More

recently, the conclusion that the mass of a quantized
black hole must be expressed viaits quantized areaand
angular momentum, was made in the approach based
on the notion of the so-called isolated horizons[27, 28].

Here, we do not mention the attempts to quantize
rotating and charged black holes that resulted in weird

quantization rulesfor 3° and e2/c.

4. RADIATION SPECTRUM
OF QUANTIZED BLACK HOLE

It follows from expression (24) that for a rotating
black hole, the radiation frequency w, which coincides
with the loss AM of the black hole mass, is

1 2J+1

© = AM = TUAN + Zon S0

AJ, (28)
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where AN and AJ are the respective losses of the area
guantum number N and the angular momentum J. Here,
in line with (24), we used the identity

oM _ 1 oMm?

T=%s" 8TkM g M2 29

for the Hawking temperature T, as well as formula (23).

In the same way, for a charged black hole, with for-
mula (27), we obtain the radiation frequency

1o, a0
T T yNasa (30)

where Aq isthe loss of charge.

We are mainly interested in the first temperature
terms in (28) and (30), dominating everywhere except
the vicinity of the extremal regime, whereJ —~ yN, or
g — 2yN,and T — 0. The natural assumptionisthat
the thermal radiation occurs when an edge with agiven
value of j disappears, which means that

w =AM = TUAN +

AN =1, w; = Tur,. (31)
Thus we arrive at the discrete spectrum with a finite

number of lines. Their frequencies start at

Wnin = THA/3/2
and terminate at
Wrax = TINV.
Werecall that
J S Jmax = INV/IY,

and hence the number of linesis not very large, ~10, if
the black hole mass is comparable to the mass of the
Sun. However, because of the exponential decrease of
theradiation intensity with wor j (see below), the exist-
ence of wy,, and a finite number of lines are not that
important.

To substantiate the assumption made, we return to
the lower bound (4) on the change of the horizon area
under an adiabatic capture of aparticle. The presence of
the gap (4) inthis process meansthat thisthreshold cap-
ture effectively consists in the increase by unity of the
occupation number v;, with the smallest j, equal to 1/2.
If the capture were accompanied by a reshuffle of few
occupation numbers, the change of the area could eas-
ily be made arbitrarily small. For instance, one could
delete two edges with quantum numbers j, and j,, and
add an edge with the quantum number j; + j,. Obvi-
ously, with j; , > 1, theincrease in area could be made
arbitrarily small.
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It isonly natural to assume that in the radiation pro-
cess as well, changing several occupation numbers
instead of oneis at least strongly suppressed. We thus
arrive a Egs. (31).

Our next assumption, at least as natural as this one,
isthat the probability of radiation of aquantum with the
frequency «y is proportional to the occupation number
v;. Correspondingly, theradiation intensity I; at thisfre-
quency w is proportional to v;uy:

I Oviwd v(2] + 1), exp(—w;/T). (32

We compare this expression with the intensity of the
blackbody radiation in the Wien limit w/T > 1,

3
W

4T

where A is the area of a spherical black body. First of
al, our relation (32) for I; directly reproduces the expo-
nential factor of the Wien spectrum. Next, dw in (33)
goesover into (U/2)uT becausethelimit w/T > 1 corre-

spondsin our problemto /j(j +1) > 1,i.e,to
Ni(j+1)=j+1/2,

and the minimum increment of j is 1/2. Now, to repro-
duce the Wien profile, we supplement relation (32) with
the following factors: some “oscillator strength” pro-
portional to wy, obvious powers of uT, the Newton con-
stant k (necessary to transform v into A), and obvious
numerical ones. We thus arrive at the final formula for
the discrete radiation spectrum of ablack hole:

[(w)dw = A—exp(—w/T)dw, (33)

= AT i+
x exp(—i (7 + 1),

Of course, because Wien spectrum (33) corresponds
toj > 1, we cannot guarantee the exact structure of the
j-dependence in formula (34), especially in the preex-
ponential factor. For instance, it would perhaps be
equally legitimate to write there

(34)

j3/2(j + 1)3/2
instead of
j(+12)(j+1).

However, this ambiguity is not very significant, at least
numerically.

We note that because the black holetemperature T is
less than the minimum allowed frequency w,,,, this
spectrum has no Rayleigh—Jeans region at all.
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Now, the emission probability for a quantum of fre-

quency w, = Turj, i.e., the width of the corresponding
ling, is

L= AT+ 7201+ D)

j (35)
x exp(—u/j(j +1)).
Theratio of this natural line width to the distance
Aw; = W1~ W, ::lpT
2
between the lines is very small numerically:
Lo 1 1) i)
Aw; 161 (36)

x exp(—p/j(j+1)) = 10°
Thus, the radiation spectrum of an isolated black hole
isactualy discrete.
Finally, thetotal radiation intensity of ablack holeis

| = le = 0.150AT*. (37)
j

The numerical coefficient in this expression is close to
that in the total intensity of the common thermal radia-
tion, i.e., to the Stefan—Boltzmann constant

/60 = 0.164.

The point isthat the Rayleigh—Jeans contribution to the
total intensity, which iscompletely absent in the present
spectrum, would be small anyway.

Formulas (34) and (37) describe not only the ther-
mal radiation of bosons, photons, and gravitons, but
also the thermal radiation of fermions, i.e., massless
neutrinos. However, inthe latter case, proper account of
the number of polarization states is necessary: for a
two-component Dirac neutrino, the numerical factorsin
formulas (34) and (37) are twice as small.

In fact, it was argued long ago [29] that the discrete
thermal radiation spectrum of a black hole, with the
equidistant quantization rule for the horizon area,
should fit the Wien profile.

On the other hand, our conclusion on the discrete
radiation spectrum of ablack holein LQG differsdras-
tically from that of [30], according to which the black
hole spectrum in LQG is dense.

As regards the nonthermal radiation of extremal
black holes, described by the terms with AJ and Aq in
Egs. (28) and (30), these effects are due to tunneling
(see ardatively recent discussion of the subject and a
detailed list of relevant referencesin [31, 32]). Theloss
of charge by a charged black hole is in fact caused by
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the Coulomb repulsion between the black hole and the
emitted particles with the same sign of charge. For a
rotating black hole, the reason is the interaction of
angular momenta: particles (mainly massless) whose
total angular momentum is parallel to that of the black
hole are repelled fromiit.
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Abstract—The special features of the phase diagrams of La, _,Sr,CuO, are considered in terms of the high-
temperature superconductivity model according to which the mechanism responsible for the anomal ous prop-
erties of these compounds is the interaction of electrons with diatomic negative U-centers. A microstructural
model that assumes the coexistence of domains with different types of dopant ion ordering is suggested for
La, _,Sr,CuO,. According to this model, the main characteristics of the experimental phase diagrams of
La, _,Sr,CuO, only reflect square lattice geometric relations and competition between different dopant order-
ing types. Close agreement between the cal culated and experimental “superconducting” and “magnetic” phase
diagramsisan important argument in favor of the suggested high-temperature superconductivity model . © 2005

Pleiades Publishing, Inc.

1. INTRODUCTION

In [1], we suggested a model of high-T, supercon-
ductors based on the suggestion that the mechanism
responsible for many of the anomalous properties of
these compounds, including high-temperature super-
conductivity proper, isthe interaction of electrons with
diatomic negative U-centers (NUCs). We showed that
their formation was possible because of the stiff local-
ization of doping charges in the vicinity of impurity
ions. Electron pairing responsible for superconductiv-
ity appearsin this model as aresult of the strong renor-
malization of effective electron—electron interaction
when scattering with intermediate virtual NUC bound
states is taken into account. This mechanism was sug-
gested for the first timein [2] and repeatedly discussed
later on as applied to various systems, including high-
T, superconductors [3-10].

The suggested mechanism of the interaction of elec-
tronswith pair states can only be effectiveif percolation
clusters are formed from NUCs. However, generally, at
arandom distribution of dopant ions, the formation of
such extensive clustersisdifficult to expect. Our goal is
to show that thereis peculiar ordering of dopant ionsin
high-T, superconductors. This creates conditions for
the formation of NUC percolation clusters over a broad
concentration range. For this purpose, we suggest a
model of ordering that allows the phase diagram of
La,_,Sr,CuQ, to be explained. We also show that, in
certain dopant concentration ranges, such ordering in
La,_,Sr,CuQ, isaccompanied by the formation of mag-
netic spin textures that s mulate stripe structures[11].

2. THE FORMATION OF NEGATIVE U-CENTERS
IN HIGH-T, SUPERCONDUCTORS

In[1], we suggested a mechanism for the formation
of diatomic NUCs on a pair of neighboring copper cat-
ions in the CuO, plane. This mechanism is essentialy
as follows. The electronic structure of the insulator
phase of high-T, superconductors in the vicinity of the
Fermi energy Er is known to be well described by the
mode! of ainsulator with agap related to charge transfer.
The eectron energy spectrum of an undoped high-T,
superconductor is shown in Fig. 1a. In this scheme, the
excitation energy A (about 2 eV) corresponds to elec-
tron transfer from oxygen to a neighboring copper ion.
The holeisthen distributed over four surrounding oxy-
gen ions because their orbitals overlap (Fig. 1b). This
excitation (an electron on copper and a hole on the sur-
rounding oxygen ions) resembles the hydrogen ion.
Proceeding further, we can suggest that the energy of
two excitations must be lower if two such pseudoatoms
neighbor one another and as though form a hydrogen
pseudomolecule (Fig. 1d). This is possible under cer-
tain conditions thanks to the formation of abound state
(of the Heitler—London type) of two electrons on neigh-
boring copper ions and two holes that appear in the
nearest environment of this pair of cations.

Apart from purely outward similarity, an additional
argument in favor of our model is the observation that
the distance between copper cations in high-T, super-
conductors is a = 3.7-4.0 A, which is approximately
equal to the product Ry, where R, = 0.8 A is the
distance between nuclei inthe H, moleculeand €, isthe
high-frequency permittivity equal to 4.5-5.0 for al
high-T, superconductors; that is, naturally created con-

1063-7761/05/10006-1082$26.00 © 2005 Pleiades Publishing, Inc.
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(a)

Cu1+

Un

1083

Fig. 1. (a) Electron energy spectrum of an undoped CuO, plane: Uy isthe energy of repulsion between two electrons on a copper
ion; the A gap for excitation with the lowest energy correspondsto (b) electron transfer from oxygen to the nearest copper ion with
the formation of a hole distributed over four surrounding oxygen ions; tog is the hopping integral between the po orbitals of the
nearest oxygen ions; (c) the energy of two such pseudoatomic excitations can be decreased by AE if (d) they are situated side by
side and form a pseudomolecule.

(b)

R = Cu(Bi)

Fig. 2. Atomic clusters Cu,R,O,, common to all cuprate high-T. superconductors with hole doping: (a) inYBCO (BSCCO), copper
ions areincorporated into the CuO, plane, and R isthe Cu (Bi) ion in CuO5 chains (BiO planes); (b) in La, _\M,CuO,4 (M =Baor
Sr), the whole cluster is built into the CuO, plane, and R stands for Cu ions inside the oxygen octahedron adjacent to the M ion.

Two types of such clusters with a distance between the R ions of 3a or a./5 can exist in Lay, _,M,Cu0,. The ellipses bound the

regions of the localization of additional hole pairs that appear when an electron pair is transferred to a NUC.

ditions for the formation of such pseudomolecules in
high-T, superconductor crystals.

Let us consider the conditions under which a NUC
is formed on the given pair of copper ions in the CuO,
plane. For this purpose, we select a fragment of the
crystal structure (Fig. 2) common to all cuprates with
hole doping. This is the Cu,R,0, cluster, where the
copper ions are “built” into the CuO, planeand R = Cu
in the CuO, plane in La,CuO,, R = Cu in chains in
YBa,Cu;04,5 and R = Bi in Bi,SrCaCu,O,. We
assume that a NUC is formed in the CuO, plane on a
pair of copper ionsif aholeformed asaresult of doping
(doped hole) islocalized in each of the oxygen squares
surrounding R ions (Fig. 2). For Y,Ba,Cu;04, 4, this

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

requirement means that a NUC on a given pair of Cu
ionsisformed when three consecutive oxygen sites are
filled in the CuO; chain over these ions. For
La,_,Sr,CuQ,, where localized doped holes lie in the
CuO, plane (on four oxygen atoms of the oxygen octa-
hedron adjacent to the strontium ion [12, 13]), this
requirement is fulfilled when the distance between the
R ions (or, equivalently, between the projections of

strontium ions onto the CuO, plane) is 3a or a./5 (ais
the lattice constant in the CuO, plane).

In [1], we characterized various types of the mutual
arrangement of doped charges in La,_,Sr,CuQ,.
According to simple estimates [1], a doped hole local-
ized in the CuO, plane decreases the A, value by
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Fig. 3. T-—0 phase diagram for YBay,Cu3Og 4 5 [15]. The
region of NUC percolation is hatched.

approximately 1.8 eV for the nearest four copper ions.
When doped holes localized in the CuO, plane inside

oxygen octahedra are at adistance of a./5 and 3a from
each other, they decrease the A value for the interna
pair of neighboring copper ions to the extent that two-
electron transfer to this pair from the surrounding oxy-
gen ions becomes possible. These two variants of the
mutual arrangement of doped charges correspond to the
formation of a NUC on a pair of neighboring copper
ions.

In the intermediate case, when the distance between

the doped chargesisa./8, thereis no pair of neighbor-
ing copper ions with a doped hole adjacent to each of
them, and NUCs are not formed. This situation corre-
sponds to an insulator and, as is shown below, is
responsible for the “ 1/8” -anomaly.

When doped holes are situated at a distance of 2a
from each other, the A, gap for the internal copper ion
closes aso for one-electron transitions. This corre-
sponds to the conventional metal state.

As s seen from Fig. 1, NUCs play the role of pair
acceptors that generate additional hole pairs, which are
also localized in the neighborhood of NUCs. There is
conductivity in such a system if these regions of the
localization of hole pairs form a percolation cluster in
the CuO, plane; that is, when the percolation threshold
is exceeded along the NUC chain.

At arandom dopant distribution in acrystal, various
types of the mutual arrangement of doped charges can
coexist. It would then be difficult to expect the exist-
ence of large clusters whose properties are fully deter-
mined by one of the four configuration variants consid-
ered above. We will, however, show that the dopantsin
La, _,Sr,CuQ, are ordered over sguare lattice siteswith
different constants that depend on their concentration.
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For this reason, extensive percolation nets of broken

lines with segment lengths a./5, 3a, a./8, and 2a can
develop on such lattices. The first two segment lengths
correspond to the conducting (high-T.) phase in our
model; the third one, to an insulator; and the fourth, to
aconventional metal.

3. THE CHARGE ORDERING MODEL
3.1. YBa,Cuy04 ., 5

The ordering of doping oxygen ions is inherent in
Y Ba,Cu;04 , 5 because they have crystallographic sites
of their own. According to [1], a NUC in a certain
YBa,Cu;04 ., 5 Cell is formed when three consecutive
oxygen sites are filled in the CuO; chain (see Fig. 2).
The concentration of such cellsis &® if the oxygenions
are distributed at random. Percolation occurs when the
site percolation threshold p; is exceeded for the square
lattice; this threshold is 0.593 [14]. Suppose that such
oxygen triples are distributed independently (strictly,

thisis not so). We then have 3. = 0.593 and &, = 0.84,
where 8, isthe d value corresponding to the percolation
threshold. Inreality, such triples of oxygenionsaredis-
tributed not independently, and &, therefore differsfrom
0.84 but insignificantly.

The T 0 phase diagram of YBa,Cu;05 ., 5 Samples
with different oxygen contentsis shown in Fig. 3 [15].
Theregion 0.84 < d < 1, where percolation along NUC
chains occurs, is hatched. We see that the concentration
interval corresponding to percolation along NUC
chains coincides with the region of high-temperature
superconductivity, T, = 92 K.

3.2. La,_,&,Cu0,

In this section, we suggest and substantiate the
model of an ordered distribution of strontium ions over
lanthanum sites in La,CuQ,. This model alows us to
explain the T—x diagram for La,_,Sr,CuO, and con-
sider the characteristics of magnetic spin textures
formed as aresult of ordering.

First, let us consider the special features of the crys-
tal structure of La,CuO, and find out how and where
doped charges (holes) are formed. The unit cell of
La,CuQ, containing two formula units is shown in
Fig. 4a. Asisseen from thisfigure, there are two differ-
ent lanthanum sitesin the La,CuQ, lattice (for instance,

inthe LaO planes| and 1) shifted by a/ /2 with respect
to each other in the direction of the cell diagonal. It fol-
lows from the experimental data [12, 13] that doped
holes are rigidly localized in the CuO, plane on four
oxygen atoms of the oxygen octahedron adjacent to the
dopant ion (Fig. 4a); that is, holes are doped into the
central CuO, plane by ions situated in planes | and 1V
and are localized in the immediate vicinity of the
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Fig. 4. Ordering of strontiumionsin Lay, _,Sr,CuOy: (a) La,CuO, unit cell; Roman numerals on the right are the numbers of LaO
planes (see text); (b) negatively charged strontium ions together with doped holes “ ascribed” to them are dipoles that attract each

other at opposite ends to form cranked chains.

dopant ion.l Asaresult, thelocal eectronic structure of
the high-T, superconductor is substantially different
from the mean structure. This conclusion is central to
our model [1].

In the scheme under consideration, a doped system
comprising a strontium ion and a hole localized in the
oxygen sguare is an electric dipole involved in long-
range Coulomb interactions with the other similar
dipoles. In such systems, the orientation interaction
between dipoles appears; asaconsegquence, dipolesline
up and their opposite poles are oriented toward each
other. The crystal structure of the compound leads usto
suggest that the substitution of strontium for lanthanum
inLa _,Sr,CuO, occurs in such away that the dipoles
form chains (resembling crankshafts) along the c axis
(Fig. 4b). Thisarrangement removes the question about
strontium ions (from planes |, IV or I1, Il in Fig. 4Q)
that dope holes to the central plane.

We assume that the chains are planar and aligned
with each other. Calculations of the electrostatic inter-
action energy between the chains of dipoles show that
the nearest two chains (Fig. 4b) attract each other if the

1 We can al'so consider another situation, when holes are doped into
the central CuO, plane by strontium ions situated in planes |1 and
I11. 1t will, however, be shown that the reasoning presented below
remains valid in this situation, and the final results remain
unchanged.
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distance between doped holes is I, = +/2, while the
interaction between the next-to-nearest chainsis repul-
sive Such interactions provide ordering of dipole
chains. As a result, doped holes in the CuO, plane (or
projections of strontium ions) occur in square lattice
sites with some parameter |,,, commensurate with the
lattice constant a in the CuO, plane. It followsfrom cal-
culations that the energies of configurations with |, =

2, /5, /8, and 3 coincide to within 10-2€?/sa per
dipole, where ¢ is the permittivity. They can therefore
coexist in the form of microdomains, in which doped
holes occupy sites of lattices with various |, values.

Domains with a given |, distance can only exist
over a certain concentration x range. This range is
bounded from above by the X, = 1/, Value; at higher
concentrations, the existence of physically significant
domainswith given |, violates the condition of a con-
stant mean concentration. At X < X.,m, dipole chains
become broken, and vacancies appear in the square | at-
ticesof projections (Fig. 5). Microdomainswith agiven
lom distance remain intact up to some x = x, value,
which, a a random distribution, corresponds to the
two-dimensional percolation threshold on vacancies

2 This corresponds to the experimental solubility limit of strontium
impurity in La,CuO, equal to Xjj,, = 0.25.
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Fig. 5. Ordering of dipole chains at X < Xgm. Columns are
dipole chains aigned with the ¢ axis. At X < X, dipole

chains become broken, and vacancies appear in square lat-
tices of the projections of strontium ions onto the CuO,

plane.

with the concentration ¢, = 1 —x = 0.593. Accordingly,

the existence of domainswith agiven |, valueis pos-

sible at concentrations that satisfy the condition
0|.:]-07 <X< i

= I >
com com

(D)

The concentration ranges in which domains with a
given |, value can exist are listed in the table.

At arbitrary concentrations x, domains of various
types can coexist whose ordering corresponds to filling
the sites of various projection lattices with |, values
that satisfy the condition

0.638 1

<—.

com = /\/;(

For instance, at x = 1/9, domainswith |, = 3 (complete
filling of the lattice of strontium ion projections) and

)
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lom = +/8, /5, and 2 can exist in volume ratios deter-
mined by the deviation of the given x value from X,
and the conditions of sample preparation. In what fol-
lows, the domain in which free square lattice sites with
l.om @re being filled will be characterized by the corre-
sponding |, value. The fraction of occupied sites

changes from approximately 0.4 (at x = O.407/I§0m) to
one (at x = 1/12,,,) as X increases.

The ordered domain sizes depend on the concentra-
tion (more exactly, on the closeness of x to X, and
reach 200-600 A in the CuO, plane. The size of an
ordered domain in the direction of the c axisislikely to
be of severa lattice constants because every type of
ordering of doped charges is repeated in every second
CuO, plane. Naturaly, apart from domains with an
ordered distribution of dopants, regionswith disordered
distribution must exist.

We assume that, at small x (at a mean distance
between dopant projections of | > 3), dipole chains are
grouped in planes parallel to the c axis and the orthor-
hombic a axis in such away that the distance between
doped holes (or strontium ion projections) along the a

axisbe ./8; they that is, correspond to minimum inter-
action energy.

4. PERCOLATION
AND THE T.~x PHASE DIAGRAM
OF La,_,Sr,Cuo,

Asfollows from our reasoning, La,_,Sr,CuO, must
be treated as a set of mutually penetrating domains in
which strontium ions are ordered in such a manner that
doped holes fill (in part or completely) square lattice
siteswith various|,,, values determined by the concen-
tration.

The percolation regions on sitesin | attices with var-
ious| ., values, that is, the concentration regions corre-

sponding to the existence of continuous clusters of var-
ious phases, can be determined. The strontium concen-

Intervals of existence and site percolation thresholds for domains with various | ., values

lcom X0 Xp Xm Properties
>3 insulator
3 0.045 0.066 0.111 high-T. superconductor (in the region of percolation)
J/8 0.05 0.075 0.125 insulator
J5 0.08 0.12 0.20 high-T, superconductor (in the region of percolation)
2 0.10 0.15 0.25 normal metal (in the region of percolation)

Note: X and ., are thelower and upper boundaries of the concentration range in which domainswith the given | .o, can exist, Xy = 0.407x,,

and xy, = 1/1 iom ; Xp = 0.593xy, is the percol ation threshold for alattice with period a, when the existence of percolation chains with
| =1 oom becomes possible. The last column contains characteristics of microdomains with the given Iy, value.
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0.05 0.10 0.15 0.20 0.25

X

Fig. 6. (8) Concentration intervals corresponding to site per-

colation in domains with |om = 3, /8, /5, and 2. Solid

lines bound the regions of percolation broken lines with
segments | .oy long. Thick lines bound the regions of the

existence of NUC percolation clusters. (b) Experimental
T phase diagram for La, _,Sr,CuO,4 [18]. The composi-
tion (x = 0.115) for which superconductivity was not
observed to 4.2 K ismarked by a solid triangle.

tration X, that corresponds to the percolation threshold

isx, = 0.593/1%,, for the given |, a arandom distri-

bution over sites [14]. Figure 6a shows the interval s of
concentrations corresponding to two-dimensional site

1087

percolation in domains with |, = 3, /8, /5, 2, that
is, theintervalswhere, according to our reasoning, two-

dimensional percolation clusters with | 5, = 3 and /5
(NUC chains), a cluster with |, = 2 corresponding to

the usual metal phase, and acluster with |, = /8 cor-
responding to the insulator phase can exist. The bound-
aries of the regions of the existence of percolation bro-
ken lines with segment lengths |, are shown by solid
lines in Fig. 6a. The percolation regions for domains

with |4, = 3and ./5, that is, for NUC chains, are indi-
cated by thick lines. Figure 7 shows how the regions of
the localization of singlet hole pairs overlap along per-

colation clusters with (a) l,m = 3 and (b) lm = J5.
Note that, as is seen from Fig. 7a, current transfer
largely occurs along Cu—O bondsiif |, = 3. Thisisin
agreement with the results reported in [16, 17], where
the conclusion of such a character of the movement of
carriers was drawn from the ARPES, IR, and Raman
dataon La, ¢Sry;CuQ, crystals.

Figure 6a shows that volume superconductivity
(domains with percolation NUC chains) exists in the
regions 0.066 < x < 0.11 and 0.12 < x < 0.20. Supercon-
ducting domains (containing percolation clusters with

leom = +/5) and normal metal domains coexist at 0.15 <
X < 0.20; the fraction of normal domains increases as x
grows. This corresponds to the transition to the state in
which superconductivity is fully determined by the
neighborhood effect and T, monotonically decreases as
X increases.

(@) ®)
D \ I
~ ~
S N

\ 4 -

D

&) )
\ /\ T T T /\ ﬁ“

Fig. 7. Percolation clusters in the regions of the localization of singlet hole pairs: (8) | oy =3 and (b) lom = J/5. Solid circles are
the projections of dopant ions onto the CuO, plane, open circles are doped hole localization regions, and rectangles are the local-

ization regions of hole pairs around NUCs.
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Fig. 8. (a) Experimental magnetic phase diagram of
Lay, — ,Sr,CuO, [11, 32-36]; a = 45° and 90° correspond to
diagonal and vertical stripes, respectively. Hatched regions
are the intervals where static stripes are observed. (b) Cal-
culated stripe phase diagram of La, _ Sr,CuOy. The dashed
lines bound the regions of percolation along NUC chains
With lgom = 3 and I gm = /5 (dynamic stripes); the thick
lines correspond to the regions of the existence of micro-
domains with doped holes ordered into a ./8 x ./8 lattice

(0.05 < x < 0.12) and diagonal lines of doped holes (x <
0.066).

For comparison, the experimental T.—x phase dia-
gram of La,_,Sr,CuQ, [18] is shown in Fig. 6b. The
coincidence of the superconductivity intervals in the
experimental phase diagrams and the percolation inter-

valsfor |y, = +/5 and |, = 3 substantiates the conclu-
sion that it isthe fragments under consideration includ-
ing pairs of neighboring copper ions that are responsi-
ble for the superconductivity of La, _,Sr,CuO,. Thisis
also evidence in favor of the suggested model of high-
temperature superconductivity. Note that the “dip” in
the T.—x diagram at 0.11 < x < 0.12, which isrelated to
the absence of percolation along NUC chains, is super-
imposed on the narrow region of the existence (for

X —» 1/8) of the fully ordered ./8 x ./8 lattice of
doped charges, which corresponds to the insulator
phase. We show in the next section that precisely this
allows usto observe a statistical incommensurate mag-
netic texture in thisregion [11].

Asfollows from the above analysis, the microstruc-
ture of La,_,Sr,CuO, must be treated as a set of NUC
clusters of various sizes immersed into either ainsula-
tor (at x < 0.125) or a meta-insulator (at 0.125 < x <
0.20) matrix. A conducting cluster at x < 0.2 can there-
fore include insulator regions whose conductivity is
determined exclusively by quantum tunneling pro-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

MITSEN, IVANENKO

cesses in combination with transfer along the ¢ axis.
The true metallic conductivity is therefore only possi-
ble when x — 0.2. This corresponds with the results
obtained in [19], where a logarithmic divergence of
resistance was observed at x < 0.17 as T tended to zero
when superconductivity was suppressed by a magnetic
field.

To summarize, the conclusion can be drawn that all
the special features of the T~x phase diagrams of
La, _,Sr,CuQ, only reflect the geometric relations that
exist in a square lattice and competition between vari-
ous strontium ordering types.

5. INCOMMENSURATE CHARGE
AND SPIN MODULATION IN La,_,Sr.Cu0,

In recent years, the concept of stripes has been used
in one or another form to analyze the results obtained in
many works concerned with hole-doped cuprate high-
T, superconductors [20—31]. This concept presupposes
the existence of incommensurate modulation of the
spin antiferromagnetic  structure in the form of
antiphase domains of antiferromagnetically ordered
spins separated by narrow extensive stripes of doped
holes.

In experiments on the magnetic scattering of neu-
trons, such amodulation characterized by the wavevec-
tor Q should be observed in the form of two incommen-
surate peaks shifted with respect to the antiferromag-
netic wavevector Qe(1/2, 1/2, 0) by € = U/T in the
direction of the modulation vector. Here, T is the mag-
netic structure period in lattice constant units. Accord-
ingly, the charge modulation period should be T/2, and
the related incommensurate charge density modulation
should manifest itself in the appearance of additional
peaks shifted by 2¢.

The neutron diffraction data on the magnetic texture of
La_,S,CuO, and Layg_y_Ndy,S,CuO, [11, 32-36]
can be summarized in the form of the phase diagram
shown in Fig. 8a. According to this figure, the incom-
mensurate elastic scattering peaks related to statistical
modulation (hatched in the figure) are observed at
strontium concentrations x < 0.07 and 0.11 < x < 0.12.
In the interval 0.07 < x < 0.11 and at x > 0.13, incom-
mensurate inelastic neutron scattering peaks appear,
which is evidence of dynamic modulation of the spin
texture. At x < 0.07, there are diagona stripes with a
single modulation vector directed al ong the orthorhom-
bic b axis, whereasfor parallel stripes (x > 0.055), there
is always modulation in two directions parallel to the
tetragonal axes. In the intermediate region 0.055 < x <
0.07, both modulation types are observed. To compare
the spin structures that appear when there are diagonal
and paralld stripes, both are considered in the tetrago-
nal coordinates. The incommensurability parameter of

spin modulation isthen & = € for parallel and 5 = ¢/ /2
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for diagonal stripes. For x < 0.12, we experimentally
observe a remarkably simple relation between the
incommensurability parameter and concentration,
namely, d = X.

The appearance of a stripe structure caused by the
competition between eectronic phase separation and
long-range Coulomb repulsion was studied theoreti-
cally in [20-27]. An dternative mechanism of the for-
mation of the insulator “stripe” phase in an underdoped
high-T, superconductor caused by Fermi surface nest-
ing was suggested in [28-31]. Both theories, however,
face difficulties in describing the whole complex of
experimental data. The most important of these are:

(2) thetransition from diagonal to parallel stripesin
La,_,Sr,CuQ, a x = 0.06;

(2) the appearance of static correlations in
La_,S,CuO, in a narrow concentration range at
x=0.12;

(3) the one-dimensional character of diagonal
stripes and the two-dimensional character of parallel
stripes;

(4) the & = x relation for x < 0.12 and & = const at
x> 0.12. As follows from Hall effect measurements,
thex valuein La,_,Sr,CuQ, is not equal to the concen-
tration of hole carriers (which, in addition, strongly
depends on temperature). The equality d = xistherefore
indicative of arelation between spin texture parameters
and the concentration of strontium ions rather than the
density of carriers.

In attempts to overcome the difficulties that arise
when the neutron scattering data are analyzed, Gooding
et al. [37, 38] suggested a physical spin glass model
based on the assumption of a chaotic distribution of
localized doped holes. According to [38], doped holes
in the spin glass phase are localized in the CuO, plane.
Such aholelocalized in acertain region creates along-
range field of spin distortions around it. The appearing
distortions of the antiferromagnetic background can be
described as the creation of a topological excitation
similar to skyrmion [39, 40] with topological charges
Q = £1. This excitation corresponds to rotation (twist)
of the antiferromagnetic order parameter (Fig. 9) in the
vicinity of alocalized hole.

Doping therefore destroys long-range antiferromag-
netic order and results in the formation of disoriented
antiferromagnetically ordered microdomains. The
boundaries between them (domain walls) are deter-
mined by localized doped holes, and the directions of
antiferromagnetic ordering in the neighboring domains
are rotated through some angle with respect to each
other (so-called spin twisting). This model allows vari-
ous special features of the spin texture of La, _,Sr,CuQ,
observed in the spin glass state to be explained [41].

In what follows, we give an aternative explanation
of the observed spin and charge modulation. Certain
presumptions of the model suggested in [37, 38] will be
combined with the concepts of the mechanism of for-
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(a) (b)
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+172 -T72

+e +e

Fig. 9. Rotations of copper ion spin directions (thick
arrows) in thevicinity of adoped holelocalized in the CuO,

plane on four oxygen atoms around the copper ion; rota-
tions correspond to different skyrmion topological signs
(@ Q=1and(b) Q=-1.

mation of NUCs, dopant ordering, and percolation
developed in thiswork. For this purpose, let usfirst try
to guess the form of the spin texture (different from the
classic stripe picture) for some strictly ordered distribu-
tions of doped holes with the concentration X = X,
which is responsible for the experimentally observed
spin modulation picture. This approach is justified,
because there are no grounds to expect that the stripe
model is inapplicable when the distribution is ordered.
Moreover, it follows from the experiment reported
in [36] that, in the region 0.06 < x < 0.12 (the region of
paralel stripes), the correlation length increases from
25 A at x=0.06t0 200 A at x = 0.12. Thisincrease in
the correlation region size is natural to relate to order-
ing of separate antiferromagnetic domains. It can be
suggested that this ordering is in turn related to the
ordering of doped holes and, accordingly, dopant ions.

Next, we will consider how the texture guessed by
us transforms as x decreases below X, and as the sys-
tem deviates from the strictly ordered distribution of
holes. We will show that, in a certain concentration
region X, < X < Xem, the principal experimentally
observed relations that are characteristic of anideal lat-
tice of holes (X = X.,m) remain unchanged.

5.1. Parallel Sripes

Let us consider complete ordering at X, = 1/8
assuming that (1) each hole circulates over the oxygen
square that surrounds a copper ion, (2) because of the
interaction between the hole current and the spins of the
nearest four copper ions, these ions are polarized, and
the resulting distortions of the antiferromagnetic back-
ground can be described as the creation of a skyrmion
with topological charges Q = £1 (Fig. 9).

Possible ordering of the projections of copper spin
directions onto the CuO, planeis shown in Fig. 10afor
acompletely ordered arrangement of localized holes at

X = Xeom = 1/8, when the holes form a ./8 x ./8 square
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Fig. 10. (a) Projections of spin directions at x = 1/8 when doped holes are ordered into a /8 x /8 lattice. Microdomains that form
horizontal stripes are hatched, thick lines denote stripe directions. (b) The same at x < 1/8. The planeis divided into domains sepa-
rated by diagonal dislocations, which are nuclei of diagonal stripes. The shift of vertical stripes by onecell at each dislocation results

in an effective tilt of vertical stripes by the 8y angle.

lattice. The CuO, plane is then divided into separate
quadrangular antiferromagnetically ordered micro-
domains; the quadrangle angles are determined by the
localized doped holes. The projections onto the CuO,
plane of the spin directions of the copper ionsin lattice
sites are shown by arrows. The correlated ordering that
then appears is characterized by the antiferromagnetic
ordering of microdomains themselves and the ordered
aternation of skyrmions with charges Q = £1. As is
seen from Fig. 10a, this ordering simulates a magnetic
stripe texture. The magnetic modulation period is then
equal to the sum of the sizes of two antiphase domains
in the direction of the modulation vector. A stripe of

width |/ ~/2 and length equal to one period then con-
tains two sites,

T = 242l = 8, ©)

and o = 1/8 = x, in agreement with experiment. Thispic-
ture is in conformity with what was observed in [42],
where usR relaxation measurements reveal ed the exist-
ence of antiferromagnetically ordered microdomainsin
L&y ggSr1,CUO,. These microdomains were 15-30 A
in size, and magnetization directions in them were cor-
related on scalesup to 600 A. Notethat, asfollowsfrom
Fig. 8a, there are no charge stripes in this system in the
form predicted theoreticaly. However, we here deal
with commensurate modulation, which cannot give sat-
ellite diffractogram peaks. Satellite reflections can only
appear when modulation is incommensurate. In addi-
tion, charge modulation wasalso observed in[11] inthe
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form of the incommensurate lattice peak splitting (2 +
2¢,0,0) and (0, 2 + 2¢, 0).

To find the reason for this, let us pass from the fully
ordered lattice of doped holes at x = 1/8 to the distribu-
tion of holes at x < 1/8. Let usfirst consider the experi-
mental data obtained in the region of the existence of
static parallel stripes at x = 0.12 [36, 43]. This will
allow us to compare the experimental results with our
model in detail.

Spin texture modulation with the incommensurabil-
ity parameter & = 0.118 was observed in [43] for
L&y g5Sro1,CUQ,. This corresponds to the mean texture
period T = 8.5 (in a units), that is, to the alternation of
two periods T, = 8 and T, = 9. The picture that we sug-
gest to describe an ordered distribution of doped holes
(therefore, dopant projections) for the mean concentra-
tion x = 0.118 is shown in Fig. 10b. This picture was
obtained by cutting the fully ordered distribution (x =
0.125) along the orthorhombic axis a and shifting one
part with respect to the other by the q = (1, 1) vector.
This shift does not disturb the coherence of ordering in
domains on both sides of the dislocation and shifts the
system of parallel stripes by one cell in traversing the
cut.2 Such a structure (Fig. 10b) gives characteristic
diffractogram reflections corresponding to incommen-
surate modulation of both spin (with the incommensu-
rability parameter d) and charge (incommensurability

3Wein fact suppose that dipole chains (therefore, vacancy chains)
tend to line up along the orthorhombic axisa. Thisis, in our view,
caused by the minimum strain requirement.
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parameter 20). The condition of a constant mean con-
centration yields

Tex = (Tg+ D)X, (4)

where T, is the mean period of dislocations in a units
and x is the local concentration of holes inside a
domain. To satisfy the condition of the constant mean
concentration X = 0.118, thelocal concentration inside
domains being x, = 0.125, the diagona dislocations that
we introduce should have the mean period T4 =T, +
T, = 17. Such quasi-periodic didocations resulting in
incommensurate modul ation of both the crystalline and
spin textures are responsible for the possibility of
observing incommensurate reflections in diffraction
experiments.

The special feature of the appearing picture of
ordering is the shift of parallel stripes by one lattice
constant (see Fig. 10b); that is, it is as though these
stripes are tilted by the 6, = 1/17 = 3.3° angle with
respect to the tetragonal b axis. It isthesetilted parallel
stripes with a 3° tilt angle that were observed in
L&y g5S10.12CUO, [43].

Next, let us consider arbitrary x < 1/8 values. The
distribution picture can then be obtained from the fully
ordered distribution at x = 1/8 by successively remov-
ing a certain number of sites. A texture simulating par-
alld stripescan appear if there exists a percolation clus-

ter that binds ./8 x ./8 microdomainsinto one antifer-
romagnetically ordered cluster. The table shows that
such microdomains can exist up to x = 0.05.

Let the lattice contain correlated residual fragments
of aparallel stripe texture genetically related to /8 x

/8 microdomains (Fig. 11). The neutron diffraction
pattern then contains characteristic reflections deter-
mined by the mean period of the residua texture. The
mean period T of this texture, which is the distance
between the middle points of single-phase magnetic
microdomains, includes two occupied sites, as when
there is complete ordering. It follows that the rectangle

of area Tl,/+/2 = 2T (this rectangle is hatched in
Fig. 11) should contain two sites. Therefore,

2Tx =2, d=1T = x. 5)

It followsthat the 6 = x equality isin some sensefor-
tuitous. It exists because, in the case of parallel stripes,
holes lie on straight lines situated at distances 2a from
each other.

5.2. Diagonal Stripes

Figure 10a shows that the dislocations introduced
arein fact nuclei of diagonal stripes extended along the
orthorhombic axis a. They appear as a quasi-periodic

structure at x < 0.05, when /8 x ./8 texture remain-
ders disappear and there only remain diagonal lines of
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Fig. 11. Fragment of magnetic stripe texture. Solid circles
are the projections of strontium ions onto the CuO, plane.

Arrows show the directions of spin projections at Cu sites.
Two filled sites occur within aband of width |/ /2 over
the length T of the magnetic structure period (the rectangle
of area Tl o/ /2 is hatched).

impurity dipoleswith adistance of | ., > 2./8 between

the lines and a distance of I, = /8 between the
dipoles. Diagonal stripes are therefore always directed
along the orthorhombic axis a, and, accordingly, the
modul ation vector, along the other orthorhombic axisb.

Theperiod T of diagonal spin modulation (in tetrag-

onal axes) should be T = 1/./2x (or 8= ./2x) when all
doped holes are ordered into diagonal charge stripes.
Since part of the doped holes can remain in the space
between charge stripes, the period of the observed spin

texture is larger than ﬂﬁx and, accordingly, o is

smaller than ./2x. The experimental & valuesvary from
0=0.7xtod=1.4xat 0.01 < x<0.05[34].

5.3. Dynamic Stripes

The last question discussed in this Section concerns
static and dynamic stripes. Figure 8b shows concentra-
tion regions where antiferromagnetically correlated

clusters of /8 x ./8 microdomains and diagonal lines
of dipoles can exist. Primes denote regions of the exist-

ence of percolation chains with | o, = /5 and I o, = 3.
Such chains of doped holes in the CuO, plane can bor-
der on a cluster of antiferromagnetic microdomains.
According to our model, NUCs are formed in regions
of the existence of percolation clusterswith|_,,,=3and

lun = ~/5 0N pairs of neighboring copper ions; these
NUCs play the role of pair acceptors. In these regions,
we observe conductivity along the corresponding NUC
chains situated on percolation clusters. The appearance
of conductivity disturbs static spin correlations in the
surrounding regions because of the movement of
charges that destroy magnetic order along their trajec-
tories. Spin correlations can then be observed only in
inelastic neutron scattering as dynamic incommensu-
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rate magnetic fluctuations. Remarkably (see Fig. 8b),
apart from theregion x < 0.07, thereisanarrow concen-
tration range 0.11 < x < 0.125 where NUC percolation
is absent. Thisis where static incommensurate correla-
tions are again observed.

6. CONCLUSIONS

In this work, we suggested a microstructural model
of theLa, _,Sr,CuO, compound, which, in combination
with the results reported in our work [1], allowed us to
gualitatively and quantitatively explain all the details of
the T—x phase diagram of La, _,Sr,CuQ,, in particular:

(1) spatial inhomogeneity on the nanoscopic scale
observed experimentally;

(2) the existence of two concentration ranges of vol-
ume high-temperature superconductivity (0.066 < x <
0.11and 0.12 < x < 0.2);

(3) the Ty(X) curve dip at x = 1/8;

(4) successive transition from underdoping condi-
tions (at x < 0.12, where percol ation clusters of negative
U-centers are “immersed” into a insulator matrix) to
optimum doping (x = 0.15) and further to overdoping
conditions (at x > 0.15, where percolation clusters of
negative U-centers coexist with usual metal clusters);

(5) the superconductor—insulator transition in a
magnetic field in underdoped samples;

(6) agradual decreasein T, to zero asx increasesin
the overdoping region (at x > 0.15).

To check the validity of the suggested model of
ordering, we considered magnetic spin textures, which
can be observed if the character of ordering of doping
ions corresponds to that suggested in this work. We
found that the spin textures that are formed completely
simulate so-called stripe modulation (electronic phase
separation into charge and antiferromagnetic insul ator
stripes) earlier believed to be responsible for the
appearance of incommensurate reflections in magnetic
neutron diffractograms.

On the other hand, we were able to explain the tran-
sition from diagonal to vertical and from static to
dynamic stripes and back. The predicted concentration
regions, where diagonal (x < 0.05), vertical (0.05<x <
0.12), and dynamic (0.066 < x < 0.11) stripes should
exist according to our model, coincide exactly with the
regions determined experimentally.

It follows from our model, in qualitative and quanti-
tative agreement with experiment, that tilted stripes
with tilt angles depending on the incommensurability
parameter & can be observed. It aso naturally follows
from thismodel that the incommensurability parameter
0 isrelated to the concentration as o = x. This equality
isonly validintheregion 0.05 < x < 0.12, in agreement
with the experimental data.

The suggested model describes the experimental
spin textures in detail. This is evidence that the model
isvalid for La,CuQ, and therefore applicableto analyz-
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ing the T~ phase diagram. On the other hand, both
(“superconducting” and “magnetic’) phase diagrams
were constructed using not only the ordering model but
also the concept of negative U-centers devel oped by us
earlier. The coincidence of the experimental and calcu-
lated phase diagrams can therefore be considered evi-
dence of the validity of the assumptions made and of a
key role played by negative U-centers of the suggested
type in the mechanism of high-temperature supercon-
ductivity.
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ORDER, DISORDER, AND PHASE TRANSITIONS

IN CONDENSED SYSTEMS

Electron and Nuclear M agnetic Resonances Associated
with M agnetoelectric and Antiferroelectric I nteractions
in the Exchange-Noncollinear (* Square’) Chiral
Antiferromagnet Nd,CuO, and Their Behavior
In Chiral Phase Transitions
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Abstract—Experiments with the tetragonal antiferromagnet Nd,CuQ, in the temperature range 1.5 K < T <

Ty = 245 K show that the magnetic moments of Cu?* possess an exchange-noncollinear magnetic structure of
the “square” type, which has the form of an exchange doublet whose components exhibit different chiralities
(T, and I 5 phases). Between these phases, consecutive phase transitions Iy~ '~ I, with achangein
chirality take place at temperatures T, = 30 K and T, = 70 K. The electron and nuclear magnetic resonances
(natural frequencies and susceptibilities) associated with excitation of magnons (due to the magnetoel ectric and
antiferroelectric interactions) by an ac eectric field E(t), aswell asavariable magnetic field H(t) applied in the
case of a constant electric field E°, are calculated. It is predicted that nuclear magnetic resonance is excited by
an ac electric field at frequencies determined by hyperfine fields of the sublattices. The change in the resonance
frequencies upon the above chiral phase transitions are analyzed (being first-order phase transitions, these tran-
sitions possess a number of features associated with the chirality of the magnetic structures). © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

Rare-earth cuprates R,CuO, (R = Nd, Pr, Sm, €tc.)
have attracted the attention of researchers owing to
their possible use for preparing high-temperature
superconductors (by adding certain impurities). How-
ever, it turned out that these compounds themselves are
of considerable interest as regards their magnetic (usu-
ally antiferromagnetic) properties. This can be demon-
strated using neodymium cuprate (Nd,CuQO,) as an
example, for which numerous theoretical and experi-
mental studies were carried out and clearly formulated
results were obtained. From the very outset, consider-
able difficulties and inconsistencies in the crystalline
structure of Nd,CuO, determined by different authors
have been observed. At T > T, =300 K, in the paramag-
netic region, aconsistent result was obtained, according
to which the structure is determined by the body-cen-
tered tetragonal group

| 4/mmm (Dj/); (1)
however, in the antiferromagnetic ordered region T <
Ty = 245 K, a substantial disagreement between two
groups of publications is observed. According to the

results obtained in the first group [1-4], the same crys-
tal-chemistry symmetry group (1) is preserved in the
antiferromagnetic region, in which aprimitive cell con-
tains two Cu?* ions in view of body centering, so that
antitranslation t' = 1(1/2, 1/2, 1/2) x 1' appears in the
magnetic groups as aresult of antiferromagnetic order-
ing [5] (1' denotesthetimeinversiont — —t). Accord-
ing to the second group of authors [6-9], a structural
phase transition occurs at T, = 300 K to the group

P4,/mnm (Djp). )
Although this group is also tetragonal, it is simple and
noncentered; the unit cell volume of this group
increases by afactor of 4 due to doubling of each edge
of the unit cell in the basal plane. In this case, the anti-
trandations typical of the preceding group (1) do not
appear in the antiferromagnetic structure.

Our analysis is based on the assumption that the
phase transition from group (1) to group (2) indeed
takes place, although, as mentioned above, the exist-
ence of this transition is not recognized by some
authors. We present some arguments in favor of this
transition and develop the spin-wave dynamics for

1063-7761/05/10006-1094$26.00 © 2005 Pleiades Publishing, Inc.
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Nd,CuQ, taking into account the magnetoelectric and
antiferroelectric interactions taking place in the region
of antiferromagnetic ordering of magnetic moments of
copper ions (i.e., at quite high temperatures of T =
1.5 K, for which the ordering of the magnetic moments
of neodymium ions does not take place). We will con-
sider antiferromagnetic structures and specific (chiral)
phase transitions between them, which take placein the
above-mentioned temperature range.

2. ON MAGNETIC STRUCTURE
OF Nd,CuO, ACCORDING
TO EXPERIMENTAL DATA: CHIRALITY

Thus, following the authors of [6-9], we assume
that the antiferromagnetic compound Nd,CuQO, (T =
245 K) has atetragonal crystal lattice with space sym-

metry P4,/mnm (D41) [7]. In a unit cell (Fig. 1), the
Cu? magnetic ions occupy the fourfold position
Af{ mm} :
1(x,x,0), 2(1/2+x,1U2-x,12),
3(V2-x,12+x,12), 4(1-x1-x,0).
The local symmetry of the Cu?* ionsisindicated in the
braces. Four magnetic sublattices with magnetizations

M, (v =1, 2, 3, 4) correspond to four (one ferromag-
netic and three antiferromagnetic) vectors:

M=M;+M,+Mz+M,,
La= M+ M;-M3-M,,
L, = M;—M,+M3;-—M,,
L,= M,—M,—M,+M,.

©)

We can compose atable (Table 1) of transformations
of these vectors under the action of generators of group

P4,/mnm, assuming that elements 1, 2,,, and 4,, arethe
end elements (see Fig. 1). It should be borne in mind
that these elements not only generate conventional rota-
tions and reflections, but also carry out the transposition
of copper ions (space symmetry!). It can be seen from
Table 1 that two of four vectors(3) (M and L ) are cen-
trosymmetric, so that

IM =M and 1L, = L, 4)

(where 1 is the space inversion operator), while the
remaining two operators are centroantisymmetric:

Il,p = —Lgp (5)

Pay attention to the fact that Table 1 is compiled so
that it first represents the transformations for the rhom-
bic group Pnmm (column 3), which isasubgroup of the

P4,/mnm group we are interested in since 43 =2,.The
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L—

X
o—Cu?*

Fig. 1. Unit cell of the crystal lattice of Nd,CuO, for the 4f
position of the P4,/mnm ( Diﬁ) group. Positions of genera-

tors 1, 24, and 4,, of the group are indi cated.

first column labels phases I, of the Pnmm group in
terms of the components of vectorsM and L (§ = a, b,
¢). Numbers +1 and —1 in column 3 indicate whether
the corresponding functions from the second column

reverse their sign under the action of elements 1, 2,,,
and 2,. Thelast column contains the results of transfor-
mation of these functions under the action of element
4,, supplementing the Pnmm group to P4,/mnm.

It should be noted from the very outset that the mag-
netic ions Cu?* occupy noncentrosymmetric positions

so that spatial inversion 1 transposes atoms with one
another and not each atom into itself; this ensures the

Table 1. Transformation of vectorsM, L¢ (¢ = &, b, ¢), and

E under the action of elements of symmetry groups Pnmm
and P4,/mnm

I M,L,E 12,2, 45,

M My, Loy +1+1-1 | M, Ly

r, My, Lex +1-1-1 | -M,, L

I3 M, +1-1+1 | M,

My Lax Lby -1+1+1 | Ly, L

s Lay Lox E; “1-1+1 |Lp-LayE
e Lan Ey -1-1-1 |Ly, —E

r Lz Ex -1+1-1 |, E

Mg L, +1+1+1 |
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Fig. 2. Two square (or rectangular cross) exchange mag-
netic structures | and Il forming an exchange multiplet
(doublet). O, and O, are two orientations states of each of

these exchange magnetic structures.

magnetoelectric and antiferroelectric  interactions.
Table 1 makesit possible to write invariant expressions
for the energy of these interactions:

CDME = _R[EX(M D—a)"'Ey(M D—b)]
_Sl(MxEx + MyEy)(Lax + I—by) _SZ(MxEy + I\/IyEx) (6)
x (Lay + be) _S3MZEZ( Lax + Lby)v

Pare = —G[E(Lp o) + Ey(La o)l
— Fi(LoxEx+ LoyEy) (Lay + Ly
— fa(LoxEy + LoyEy) (Lax + Liy)
— 3l E(Lay + Liy)-

(7)

Here, the terms containing coefficients R and G are of
exchange origin, while the remaining terms are of rela-
tivistic origin, sothat R, G > s, f.

In the spin dynamics, the magnetoel ectric and anti-
ferroelectric interactions make it possible to excite
oscillations of magnetic moments by the ac electric

field E(t). For example, if vectors L and/or L}, differ
from zero in the ground state of an antiferromagnet,
these interactions produce an ordinary magnetoelectric
effect: by solving the Landau—Lifshitz equations
together with expressions (6) and (7), we can determine
the oscillations of magnetization M(t) and antifer-
romagnetism vectors L (§ = a, b, c) excited by field
E(t) O exp(—iwt).

Thus, in the model adopted here, the compound
Nd,CuO, has atetragonal crystal lattice with symmetry

P4,/mnm (Dj;) [7-9]. After the structural transition,
both paramagnetic and antiferromagnetic (Ty = 245 K)
phases are described by the same group P4,/mnm
belonging to the tetragonal system. The primitive cell
containing two copper atoms in the phase 14/mmm
increases fourfold in the phase P4,/mnm and now con-
tains four copper atoms [7-9].
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It should be emphasized once again that magneto-
electric effects in the noncollinear antiferromagnet
Nd,CuQO, can exist only in the presence of the above
spontaneous phase transition of the crystal lattice,
which occurs in this compound at T, = 300 K. If, how-
ever, group (1) were preserved, antitrandations forbid-
ding the magnetoelectric effects would appear in the
magnetic symmetry group [5, 7, 9]. In addition, the
magnetoelectric and antiferroelectric interactions are
impossible for group (1) if only because magnetic cop-
per ions occupy centrosymmetric positions in this
case[10].

Thus, the question about the crystal symmetry group
((1) or (2)) for Nd,CuOQ, (for copper ions) is answered
by the absence or presence of the magnetoelectric
effect in the antiferromagnetic phase. The authors
of [11, 12] tried to find the answer to this question
experimentally.

Indeed, the magnetoelectric and antiferroelectric
interactions are absent for group (1) and are present for
group (2). This means that the magnetoelectric and
antiferroelectric effects are absent in the former case,
but can take place in the latter. We will consider the
results of measurements [11, 12] at a later stage pro-
ceeding from the P4,/mnm structure adopted in [7-9]
and used inthisarticle. These results are not that smple
and clear and require a serious anaysis of the theory
together with the experiment.

Let us consider in greater detail the noncollinear
antiferromagnetic structure Nd,CuQO, in the tempera-
ture range 1.5 < T < 245 K [7, 9] for symmetry
group (2) adopted by us. Figure 2 shows Cu?* ions pro-
jected onto the xy plane in the form of light circles for
z=0and dark circlesfor z=¢/2. Ascompared to Fig. 1,
the origin is displaced to point (=1/2, 0, 0). The mag-
netic structure of Nd,CuO, depicted in Fig. 2 can be
conditionally called quadratic (all M, vectors con-
nected successively with one another form a square) or
rectangular cross (all M, vectors with their origins
brought to a single point form a rectangular cross).

Columns | and Il in Fig. 2 correspond to different
exchange magnetic structures, while the upper and
lower lines (O, and O,) correspond to different orienta-
tiona states. The stability of these states is determined
by the magnetoanisotropic interaction. According to
the results obtained by different authors who studied
microscopic models, these interactions include the
dipole interactions between ions, the anisotropic
exchange, and pseudodipoleinteractions[3, 4]. Wewill
not consider these interactions explicitly since we are
planning to construct a purely symmetric phenomeno-
logical theory.

The exchange magnetic structures | and Il corre-
spond to the same exchange energy (the angles between
the magnetic moments are identical for both structures
and equal to 90°), but are characterized by different
magnetic symmetries. Indeed, structure | contains sym-
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metry element 4,,, while in structure 11 this element is
replaced by 4;, =4,,-1'. Moreover, if we introduce the
chirality vector [8]
1

(2Mo)°
X(MyXMp+M,xM,+MyxMz+MzxM;) (8)

Q:

1

= éK/l-—gL a X L bs
these structures will have different chiralities. The sec-
ond part of this equality corresponds to the equimodu-
lar model, when [M, | = My (v = 1, 2, 3, 4). For the nor-
malization of Q introduced here (for which Q? = 1),
components Q, and Q, = O for both structures, while
Q, = 1for structure | and Q, = —1 for structure 1.

3. THERMODYNAMIC POTENTIAL

To define the ground state and spectrum of spin
waves (magnons), we must write the thermodynamic
potential ® (we confine out analysis to density ®(r) =
const, which is constant in space). Apart from the mag-
netoelectric and antiferroelectric interactions, the
potential must include the magnetic energy (exchange)
and the magnetic anisotropy:

Py = SAUM?+ZA(L2+ L)

+SALZ+D(LI-LY)’

+ Qan + QS( I-axl—by + Laybe)

1 1 (©)
+ SKa(La+ Liy) + SKa(Lgy + L)

1 1
+59(Mc+ M) + Sr(Lg+ L)

+ p(Mchy + Myl—cx)-

In addition to the bilinear exchange (the terms with
coefficients A), the biquadratic exchange (the term with
D) is also taken into account. The term associated with
chirality has coefficient g,, and theremaining terms are
the relativistic magnetic anisotropy (which contains
relativistic terms of the type of quadratic interionic
anisotropy), anisotropic exchange, and the pseudodi-
pole interaction. In the presence of a magnetic field H,
the total potential ® also includes the Zeeman energy

¢, = -M [H. (10)
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Thus, the total thermodynamic potential (density) is
given by

D = P+ P+ Dy + Py (11)

All the terms are invariant to elements 1, 2,,, and 4,,
which are regarded as generators of the P4.,/mnm group
(see Table 1). Among other things, invariance of the
chirality

1
Qz = 8_M2(Lax|-by_ Laybe) (12)

0

is aso important. For structures | and 1l considered
here, we have Q, = 1. On the other hand, transposition
of indicesaand bin expression (12) leadsto sign rever-
sal of Q,, which corresponds to a phase transition
between two chiral exchange magnetic structures |
and 1.

Analogously to the Dzyaoshinskii—-Moriya anti-
symmetric exchange, chirality (12) is an exchange-rel-
ativistic quantity; consequently, magnetic interactions
of various origin in energy (9) are characterized by the
inequalities

A> D! qa > qS! Kl! K21 gv r, p (13)

The equimodular model adopted above (M2 = M3)
corresponds to the conditions

M2+ ZL§ = (4My)?, (14)
g

MO,+L,L,=MO,+L,0,

(15)
=MD .+L,0O0, =0,
aswel| asthe Landau—Lifshitz equations for vectors M
and L¢ (¢ = a, b, c), which are written, for example,
in [13] for antiferromagnets with four sublattices.

4. EXCHANGE MAGNETIC STRUCTURES
AND ORIENTATIONAL STATES

The conditionsfor the realization and stability of the
exchange magnetic structures and orientational states
104, 10, (Q, = 1) and 110y, 110, (Q, = -1), which are
presented in Fig. 2, were studied in [7]. We will not
repeat these conditions here and will first use the above
approximation, in which the role of chirality is mani-
fested most clearly. In addition to the exchange terms,
we will retain only one (semiexchange-semirelativis-
tic) term associated with chirality Q, in the magnetic
part of thermodynamic potentia (9). In accordance
with inequalities (13), the remaining purely relativistic
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terms will be omitted at this stage, so that the potential
assumes the form

1% 1%
Py = CONSL + EAMMZ + éAcl_ﬁ

2
+D(Li-Lp) +0.Q,

(16)

Here, we also take into account relation (14) for the
equimodular model, using this relation to eliminate the
exchange terms containing A,. We assume in this case
that

A, <0, A,>0, A.>0, D>0 a7
and introduce new parameters
Av = Ay—A, Ac= A—A, (18)

both of which are positive.
Minimizing potential (16), we obtain, among other
things, two exchange magnetic structures in the easy-

plane state, viz., the phaseswith L2 = L{ = 8M? = L2
forL, 0Ly, LyandL, 0z M=L,=0, which precisely
correspond to two chiral structures| (Q,=1) for g, <0
and Il (Q,=-1) for g, > 0, which are shown in Fig. 2.

For the orientational state 10, we have LY, = Ly, =
(x)L, while for the 10, state with the same energy, we

obtain —Lg, = Lp, = (+)L. Analogoudly, for the state
10,, we have Lgy Lo, = (+)L, while for the state
110,, we obtain Lg, =—Lp, = (£)L.

The signs (%) in the above equalities indicate that
each of the four orientational states contains two possi-
bilities differing only in the sign of the vectors corre-
sponding to the ground state. This points to the exist-
ence of domains for which the magnetization associ-
ated with the magnetoel ectric effect also differsonly in
sign. If the number of such domains (say, with vectors

Lax = Lp,) intheorientational state under investigation
is the same (the |O; structure), the total magnetization
iszero (see below). To detect the linear magnetoel ectric
effect, poling of the sample must be first carried out;
this can be done, for example, by cooling the sample
from the paramagnetic region in an appropriate external
magnetic field (thermomagnetic treatment). Appar-
ently, thiswas not donein [11, 12].

Naturally, it should be borne in mind that, strictly
speaking, it is the relativistic anisotropy (which is
ignored in expression (16)) that determines as to which
of the two orientational states, O, or O,, isrealized for
each exchange magnetic structure.

In accordance with Table 1, structure 10; (from the
position of the rhombic group Pnmm) corresponds to

representation (LY, , Lgy); although this representa-
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tion becomes two-dimensional upon atransition to the
tetragonal group P4,/mnm after the addition of the 4,,
axis, it contains the same nonzero components of vec-

tors LY and LJ. The latter statement means that the
magnetic group for this structure (we will call it the

[4(Lax, Loy) phase) is 1'4,,2,,. The 110, structure cor-

responds to the representation I's(Lg,, Ly, ), in which
the 4,, axistransforms the vector components constitut-

ing it into one another, but with opposite signs. The
magnetic group of the corresponding phaseis 1'4,,2} , .

The other two phases (which can be written as
F4(—Lgy, Loe) and M's(Lgy, —Lp,) in the orientational
state O,) can be obtained from the above phases by

rotating all magnetic momentsthrough 90°; henceforth,
we will consider only the phases in the orientational

state O, (i.e, My(-Lay, Lp,) and Ms(La,, —Lp,) with

chirality Q,= 1 and Q, = -1, respectively).

It should be noted that the semiexchange-semirela-
tivistic interaction with the chirality energy @4 = q,Q,
is an anaog of the pseudodipole interaction with
Hamiltonian Hq introduced in [4] for explaining the
noncollinearity of the magnetic structure of Nd,CuQ,.
This can easily be verified if, taking into account rela
tions (12) and (3), we write energy @, in the form

q .
®, = —@(M&M%—M%MS» = q.Sn($1—05),

0

where ¢, and ¢, are the azimuth angles of vectors
M? =-Mj and M3 =—M3 . Consequently, energy @,
aswell asHq, describesthe interaction of the magnetic
moments of the Cu?* ions lying in the adjacent planes
z=0and z=c/2 (see Fig. 2, states O,). The minimum
value of energy @, corresponds to ¢, — ¢, = -T2 for
0a< O (phase 'y, Q, = 1) or ¢, — ¢, = W2 for g, > 0
(phase I'5, Q, = —1), corresponding to the noncollinear
magnetic structures shown in Fig. 2 (states O,).

5. SPIN-WAVE REPRESENTATIONS
(OSCILLATION MODES): FREQUENCIES
AND SUSCEPTIBILITIES TO FIELD E = E(t)

In calculating the natural oscillation frequencies, it
is convenient to use the concept of spin-wave represen-
tations [9, 13-16], which makes it possible to separate
vibrational variables into independent groups corre-
sponding to vibrational modes even before the equa-
tions of motion are written. In the general case, the
group-theoretical approach is used for this purpose,
which is based on the theory of corepresentations of
magnetic groups [14, 15]. However, for the rhombic
symmetry, the following simple agorithm was pro-
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posed [9, 13], in which Table 1 (the part corresponding
to the rhombic group) is used. The same spin-wave rep-
resentation of phase ", under investigation corresponds
to variables from two lines of thetable (I',and ;) for
which the product of numbers (+1 or —1) givesthe num-
bersof linel . This can be written schematically as

M Tw=Th (29)

The case when m=m' isaso possible.

Unfortunately, an analogous simplified rule for
determining the spin-wave representations for tetrago-
nal crystals has not been formulated as yet. It will be
shown below, however, that even the spin-wave repre-
sentations determined for the corresponding rhombic
subgroup provide information sufficient for obtaining
representations for the tetragonal case by using the spe-
cific form of the thermodynamic potential and the cor-
responding symmetry of the problem.

Let us demonstrate this for structures (phases)
F(Las Loy) and Ts(Lay, Lyy).

5.1. Spin Oscillationsin the (L3, Lp,) Phase
Induced by Field E(t)

In accordance with the rule formulated above for the
rhombic subgroup, Table 1 for this phase gives the fol-
lowing four spin-wave representations (modes): anti-
magnon

IM4g(AL, ALy, ALg,) (20)
and three quasi-antiferromagnon modes

M7(AM,, ALy, ALy,), (21)

M(AM,, AL, AL,,), (22

Mas(AM,, ALy, ALy,), (23)

each of which has one component of vector M among
vibrational variables.

What will happen to these modes after the inclusion
of the 4,, axis (i.e., in the case of the tetragonal group)?
To be more precise, how are these modes transformed
under the action of the 4,, symmetry axis (since the

exact symmetry of the I (L2, Lgy) phase is deter-

mined by the magnetic group 1'4,,2,,)? The answer to
these questions is quite favorable: each of the modes
IN,g and I 55 is transformed into itself, while modes Ty,
and I,; are transformed into each other! Thus,
modes (20)—<23) remain unchanged for the tetragonal

1|t was agreed earlier [13, 17] that this term is applied to the mode
for which vector M does not participate in oscillations and only
vectors L oscillate.
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phase also and only modes I ; and I 5 are transformed
into each other under the action of element 4,,.

To solvethe problem of natural oscillations excited by
field E(t) O exp(-ict) inthel ,(Lg,, Ly, ) phase, wemust
single out the terms in thermodynamic potentia (9),
which are quadratic in the vibrational variables appear-
ing in modes (20)—(23) of this phase and supplement

the corresponding terms from expressions (6) and (7)
for dy,z and P, ¢, respectively.

Thus, we find that

P,(2) = %[AMAM§+A(AL§X+AL§y)

+ADLZ,+ DALY, + K ALY,

L (24)
+q(ALs, +ALE)] - (G-R)

x (E,ALgy + E,ALy) — 25,AM,E,.

In the derivation of this equation, relations (14) and
(15) of the equimodular model play a significant role.
Owing to theserelations, variable AM,, AM,, AL, and
AL, are eliminated and an exchange contribution from

Ppe (term Rin Eq. (24)) appears. In addition to param-
eters Ay and Ac (18), one more exchange parameter,

viz., their sum

A= Au+A, (25)

also appears. The remaining notation in (24) is as fol-
lows:

D" = 4[8DL*—(8,+qy)],

K" = 2(K,—K;-2q,),
) (~2 1—20s) (26)
q = (0. +gs+Ky),

G-R = (#)(G-R)L, & = ()sL,

0 = 0s/L% 0, +0s<0, K* >0, and K, < 0 (see stability
conditions (63) and (64) below for phasel,). Here, the
() signs indicate allowance for domains with positive
(+L°) and negative (—L°) values of the vectors of the
ground state, while the plus and minus signs (sepa-
rately) in the argument as well asin the superscripts of
physical quantities indicate that they correspond to
phasel ,or I'swith chirality Q,=+1 or Q,=-1, respec-
tively.

Using expression (24) for @,, we can now find solu-
tions to the Landau—L ifshitz equations [13] for all four
modes (20)—(23).

The antimagnon mode I 45(AL,, ALy, AL) in the

(L%, Ly,) phaseis not excited by electric field E(t)
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since expressions (6) and (7) do not contain any terms
linear in its variables.

For the I 17(AM,, AL, AL,,,) mode excited by field E
paralel to the x axis, we obtain

(G=R)_ ao(*)
A wpg(+) -

E.
(27)

w

+

Weq

cy

AM,, —AM,,

where q,, is the corresponding component of the mag-
netoel ectric susceptibility tensor. If we take into account
the presence of the above-mentioned domains, the tota
magnetization in compliance with relations (27) will be
zero in the case of complete compensation of domains

(see above): Z ) AM, =0. However, incomplete com-

pensation (a structure with predominance of domains
with identical sign of vectors L , ,, over other domains)

isalso possible; in this case, z(r) AM, # 0.

In view of the above-mentioned relation between
modes I ;7(AM,, AL, ALy,) and I (AM,, AL, ALy),
we can immediately write the corresponding expres-
sionsfor the latter mode. We will not do it here, bearing
in mind that the I .5 mode can be obtained from the ;7
mode by the symmetry operation 4,, (see Table 1); it
should only be noted that these modes are degenerate,
i.e., having the same resonance frequency

Wag = Won/AG" = Wag(+), (28)
where wy, = YL, y being the absol ute value of the magne-
tomechanical ratio.

It should be noted that the magnetoel ectric suscepti-
bility a,, in formula (27) is determined by the exchange
part of the magneto- and antiferroelectric interactions

(the terms containing G — R in formula (24)); conse-
guently, we can hope that the value of this susceptibility
(in the absence of domains or in the presence of agrain
structure) is much higher than the values of susceptibil-
ities determined by relativistic interactions.

Finaly, for the fourth (quasi-antiferromagnon)
mode IM35(AM,, AL,, ALy, the Landau-Lifshitz equa
tions [13], taking into account (24), give

25, Wip(+
AM, = 0 F, = T2—EE (+§ £,
MTAF (29)
AL, = —Aly, = —2AM,.
WK
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Thismodeisexcited by field E parall€l to the zaxis due
to the relativistic magnetoel ectric interaction (the term

containing S; in (24)). Its frequency

War(t) = on AuK’

is determined by the geometrical mean of the exchange

constant Ay from formula(18) and the linear combina-

tion K* from relation (26), which consists of relativistic
anisotropy constants.

(30)

5.2. Spin Oscillations Excited
inthe Ms(Lo,, Loy) Phase by Field E(t)

Inthisphase, L3, = Lp, = ()L arethenonzero com-
ponents of the basis vectors of the ground state, and the
magnetic subgroup of this phase is 1'4,,2;, . Asin the
case of thel” , mode, wefind from Table 1 the spin-wave
representations

I_58(AL ALbX! AI—cz) (31)

ay’

for the antimagnon mode,

Ms(AM,, AL, AL,,),
16( cy a. ) (32)
r27(A|\/va AI—cx’ AI—bz)
for the quasi-antiferromagnon modes connected with
each other via the symmetry operation 4., , and

r34(AMZ’ AI—ax, AI—by) (33)

for one more guasi-antiferromagnon mode.

The quadratic thermodynamic potential determined
from formula (11), taking into account relations (14)
and (15), can be represented in terms of vibrational
variables of these modes in the form

®y(t) = STAUME + A(ALL +AL3)

+AALZ+ DALY + KTALY,

(34)
+q (ALg, +ALy)]
~(G-R)(E,ALgy + E,AL,) —2f3AL,E,.
Here, we used the notation
D™ = 4(8DL"+ 8, ~qy),
K™ = 2(K,—K,—20q), (35)
0 = Gu—0s—K, fs= (2)fal,
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where @, —gs> 0, K-> 0, and K, < 0 (see the stability
conditions (65), (66) for the "5 phase).

Solving the Landau—Lifshitz equations [13] succes-
sively for the ;g modes from relation (31), I'jgand I,
modes from relation (32), and the I' 5, mode from rela
tion (33), we arrive at the following results.

The antimagnon mode IMsg(AL, ALy, AL,) contain-
ing oscillations AL, is excited by field E(t) directed
along the z axis (expression (34), the term containing
coefficient f3). Unfortunately, this is a relativistic
term. This gives

~ 2
fa w(-)
AI—cz = BzzEz = meEz’
o (36)
DLy = i—2-Al,, AL, = —Dly,
0D

where 3, is the component of the antimagnon-electric
susceptibility tensor and

W () = wAD (37)

is the antimagnon resonance frequency. The second
factor in the radicand (D~ from expressions (35)) con-
tains, apart from biquadratic exchange D the chiral term
with @, . These two terms may be comparablein value,
but they are usually smaller than the bilinear exchange.
In this respect, the magnet under consideration with an
exchange-noncollinear magnetic structure differs from
collinear or weakly relativistically noncollinear structure
considered earlier [13, 17]. In accordance with adopted
inequalities (13), the antimagnon frequency wy, (37) may
turn out to be much smaller than in those cases. It
should be noted that the antimagnon mode I ,5(AL,,
AL, AL,), which is not excited by the electric field,
E(t), has natural frequency wy (+) similar to frequency
w (-). It can be determined from formula (37) by
replacing D~ (35) in this formula by D* (26) (see for-
mula (47) below).

It should be noted that the antiferromagnetism vec-
tor AL cannot be a directly observable quantity in anti-
magnon resonance. In this respect, it is more conve-
nient to use the effective polarization vector (in the
present case, its component

D,
JE,

PZ = = 2¥3ALCZ = KZZE21 (38)

wherek,, =2 f 3B, isthedielectric susceptibility tensor
component). In this case, we can calculate, for exam-
ple, the absorbed power

Q = -P,E, (39)
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(the bar indicates averaging over timet > 21/w). Natu-
raly, we must first take into account damping in for-
mula (39). In the simplest form (in Bloch's sense), this
can be reduced to the substitution w —» w + il in for-
mula (39), where I is the resonance half-width. As a
result, we obtain from Eq. (39)

Q = wfaPylE)% (40)

where B, istheimaginary part of 3, from formula(36)

(taking into account damping). The above arguments
should be taken into account in experiments on observ-
ing the antimagnon resonance since, in contrast to the
antiferromagnetic resonance, resonance for electric
polarization and not for magnetization takes place in
field E(t) in this case.

ModesT ;5 and I, (32) transformed into each other
under transformation 4,,, have natural frequency
Waq(-), Which can be obtained from expression (28) for
wWao(+) inthe case when Iy, is defined by formula (21)
and I 54 is defined by formula (22) if we replace q* by
g in the latter formula. In particular, for the mode
I16(AM,, AL, AL,,) excited by field E directed along
they axis, we have

== 2
G-R Wao(-)
AM, = 0 E, = —=——2C 2 F
A Wag(-)—w
AL, = -AM,, (41)
. W ~
AL, = - w—q_AMX, Wao(-) = W AQ .
0

The corresponding expressions for the mode I ,7(AM,,
AL, AL,,) can be obtained from these formulas by the

action of the symmetry operation 4, (see Table 1).
L et us now consider the mode I 34(AM,, AL, ALy,).

Its variables (L, = L, = (+)L in the ground state) do
not appear in expressions (6) for ®y,z and (7) for ®ppg;
consequently, it is not excited by field E(t). The fre-
guency wa(-) of this mode, as well as the frequency
wap(+) of the '35 mode (see relation (30)), is deter-
mined by the relativistic constants enhanced by

exchange Aw (see formula (60) below).

6. EXCITATION OF MAGNETIZATION
BY AC MAGNETIC FIELD H(t)
UPON APPLICATION
OF CONSTANT ELECTRIC FIELD E°

Although the conventional linear magnetoelectric
effect (in field E(t)) could not be reliably observed
in[11, 12], another magnetoelectric effect quadratic in
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E(t) was observed for sure. The theory predicts this
effect from the following considerations.

L et us define the varying magnetization M (t),

0P

M =—a—h,

(42)

emerging due to the Zeeman and magnetoel ectric inter-
actions when a varying magnetic field H = h(t) and a
constant electric field E = E® = const are applied simul-
taneously. The energy of the magnetoelectric interac-
tion in this case can be written in the form

®ye = —R[Ey(h [L,) + Ej(h [L,)]. (43)

Here, the meaning and magnitude of coefficient R dif-
fer from those of the corresponding coefficient Rin for-
mula (6) and relation (43) is analogous to the termsin
formula (6) containing R only in symmetry. In expres-
sion (43), the relativistic terms analogous to those
from (6) after the substitution of h for M are not
included since these terms make zero contribution to
quantities AM;, AL (€ = a, b, ¢), and M (t) in the equi-
modular model. Taking into account relations (10) and
(43), we obtain from Eq. (42) the expression for the
total magnetization,

Mi(t) = AM; + R(E;AL, + EyALy),  (44)
in which the second term, including the entire expres-
sion in the parentheses, describes the contribution of
oscillations of antiferromagnetism vectors Al to
guantity M (t). This contribution is associated with the
exchange part of the magnetoelectric interaction with
constant R. Here, AM;, ALy (§ = a, b) are the vibra-
tional variables corresponding to modes (20)—(23) in

the I,(Lgy, Lp,) phase and to modes (31)~(33) in the

s(Lay, Loy) phase. We will find these variables from
the Landau—L ifshitz equations [13], using the thermo-
dynamic potential ® composed from energies @, (9),
@, (10), and Py (43). Here, we disregard the antifer-
roelectric interaction energy @, (7) sSinceweignorea
weak effect of the constant electric field on the ground
state and frequency of oscillations emerging when the
term @, is taken into account in the thermodynamic
potential ®. It can be proved that this effect isrelatively
weak indeed.

6.1 [,(LY, Ly,) Phase

Let usfirst consider the antimagnon mode I 45(AL 5,
AL, AL,). The Landau-Lifshitz equations [13] taking
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into account expressions (9)—(11) and (43) in this case
have the form

wsR A.(Esh, —Eoh,)

AL, = —AL,, = 45
ax by (A)i(‘i')—(k)z ( )
AL, = —% AL, (46)
WoAc
where
W (+) = wo/AD* (47)

is the antimagnon resonance frequency for the Iy
mode.

Analogously, for the I';,(AM,, AL, AL,;;) mode, we
can write

iwwREN, + wig'h
AM, = —AL,, = LTS T g
Wao(+) —w
WEARESh, —iwuph
AL,, = 1z X, (49)

2 2
Wag(+) —w

Variables for the I',6(AM,, AL, AL,,) mode, which is
degenerate with the I';; mode, are determined from
expressions (48), (49) by the action of the symmetry
element 4,, as before (see Table 1)

Using the Landau—Lifshitz equations [13], we
obtain the following expressions for the I 35(AM,, AL,
AL,) mode:

iwuyR (Exh, —Eyh,) + oK',

AM: = () - F -
ALay = =AL,,
_ WRAWR(ESh, —E%h,) —iwaph, (51)
War(+) — W’ '

In formulas (48)—(51), quantities wWag(+) and wap(+)
are the natural frequencies of the corresponding modes
given by formulas (28) and (30).

It followsfrom expressions (45), (46), and (48)—(51)
that the antimagnon mode I yg(AL 4, ALy, AL,) (Which
is not excited by the varying electric field E(t)) is
excited by avarying magnetic field h(t) [ zin the pres-
ence of field E° J z owing to the magnetoel ectric inter-
action. Other (quasi-antiferromagnon) modes can be
excited due to both the magnetoelectric interaction
(first terms in Egs. (48)—(51)) and the Zeeman interac-
tion (last terms). For example, the quasi-antiferromag-
non mode I ;7 (21) is excited by magnetic field h(t) || x
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Table 2. Modes of spin oscillations and electric field E and magnetic field h exciting them in the ', and I 5 phases. Here,
D* :4(8DL2$aa_qs)i K* = 2($K1i K2_2qs) ' q+ :_(aa 0t Kl)! andq—: aa Qs+ K2

Pharsgg?to%bsi,“ty Vibrational modes E E% h h Natural frequencies
4 Lgxa Lgy) M g(Alay, Alpy, Alc) - Eghx, EShy - UJE = woJATD*
Ga +0s<0 [17(AMy, ALy, Alyy) Ex Ejh, hy
K*>0 Wag = wo/Aq"

[ 26(AMy, ALy, AL ) E, E%h, h,

[ a5(AM,, AL, ALp) E, Eqh,, Evh, h, whe = W/ AnK”
(Lo Lo) | Moa(Alay ALy ALc) E, ESh,, Eh, - W[ = 0/ AD”
Qs —0s<0 [16(AMy, ALy, ALy) E, Eqh, hy
K=>0 Wag = mm/rq‘

[ 27(AMy, ALy, ALp,) E, Ejh, hy

[ 34(AMy, AL, ALy, - Ech,, ESh, h, Wap = Wy AmK™

(owing to the Zeeman interaction) or under the simulta-
neous action of fields h(t) || zand E° || y (owing to the
magnetoel ectric interaction), while the quasi-antiferro-
magnon mode I 55 (23) is excited by field h(t) || z or by

fields h(t) O zand E° 0 z acting together (see Table 2).

Using expressions (45), (46), and (48)—(51) for
vibrational variables AM and AL; (¢ = a, b) in expres-
sion (44), we find that the total magnetization M (t) is
defined as

Mi(t) = (Xik + AXi) i (52)
where x; IS the magnetic susceptibility tensor with
diagonal components (other components are equal to
Z€ro),

1 Whao(#)

Xk = Xy = =3 2!
Aw,o(+) — W
’;Q( ) (53)
X, = 1 Wae()

 Aul () —

(susceptibilities ¥x;, describe excitation of magnetiza-
tion M(t) by magnetic field h(t) due to the Zeeman
interaction); Ax;, is a tensor describing the magneto-
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electric correction to the magnetic susceptibility with
components

R? of(+) o2

= e (E
“ D+oof(+)—oo2( 2
) (54)

+ R?  wip(+)

2
— (D),
K whe(+) -

R°_Wi(+) o
Bxyy = B2 )
w5 2 (+) - y
o (=)
: +
+R_+ ZwAF( ) 2(E2)21
K" Wpe(+) —

_R? wao(#)

DYy = == (ED*+(EDT,  (56)
g Wao(+)—w

2
_ _ [R'Z Wi (+)
Doy = DXy = —F— 2
A wp (+) -’
(57)
+R'2 (*)/Z;F("') U oo
xEys

K* wap(+) — w0
Vol. 100
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DXy = DXy = IOQREN [Who(+) -]~ )
+[@Ae(+) — w7},
. ! -1
DXy, = DXy = "0QREY [Who(+) -] =)

+lap(+) -}

It should be noted that components x;; (54)—56) and
DXy, DXy« (57) describe the excitation of magnetization
M;(t) by oscillations AL ; (€ = a, b) induced by the mag-
netic field h(t) due to direct exchange magnetoel ectric
interaction. The remaining components Ay, (58), (59)
describe the excitation of magnetization M (t) by mag-
netic field h(t) due to both the direct and indirect mag-
netoel ectric interactions. For example, thefirst termsin
expressions (58) for Ay, and (59) for Ax,, are respon-
sible for direct excitation of oscillations of M, = AM,
(thefirst term in Eq. (48)) and M, = AM,,, belonging to
modes T ;; and I .4, respectively, while the second terms
areresponsiblefor the indirect excitation of magnetiza-
tions M, and M, by oscillations AL, and AL, of theT 35
mode (the last term in Eq. (51)), which are induced not
by the magnetoel ectric, but by the Zeeman interaction.
Anaogoudly, thefirst termsin expressions (58) for Ax
and (59) for Ax, describe indirect magnetoelectric
excitation of magnetization M, by oscillations AL, of
the I";; mode (the last term in Eq. (49)) and oscillations
AL, of the T, mode caused by the Zeeman interaction,
whilethe second term are responsible for direct magne-
toelectric excitation of oscillations of M, = AM, (terms
with R in Eg. (50)) belonging to the I' ;5 mode.

It should be noted that formulas (53)—(59) remain
valid for an electric field containing, apart from con-
stant component E°, avarying (quasi-static) component
E(t) if we carry out the substitutions E® —~ E° + E(t)
and W — W + W, = Wy, where wg and wy, (Wg << Wy)
are the frequencies of oscillations of the electric and
magnetic fields.

6.2. (LY, Lo,) Phase

ay 1
Let us now consider the s(L3,, Lp,) phase. The

antimagnon mode IMsg(AL,, ALy, AL,) of thisphase, as
well as the antimagnon mode I 4g(AL,y, ALy, AlL,) of

phase ,(Lgy, Ly, ), is excited by magnetic field h(t) O
z for E° O z (see Table 2). The vibrational variables of
this mode are determined from expressions (45) and
(46) using the substitutions AL, —> AL, ALy, —=
ALy, hy~—h, ® —= —w W (+) — w (), where
w, (- is the antimagnon resonance frequency for the
I"sg mode (see formula (37)).
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The quasi-antiferromagnon mode I5(AM,, AL,
AL,,) is excited by magnetic field h(t) || x or by the
simultaneous action of fields E° || x and h(t) || z, while
the I 7(AM,, AL, ALy,,) mode is excited by field h(t) ||
yor by field h(t) || zfor E° ||y (see Table 2). In this case,
the vibrational variables of the I" ;5 mode are defined by
formulas (48) and (49) after the substitutions AL, —»

ALy, Ey —= E,, " —= 0, and tao(+) —= ng(),
while the I',; mode can be obtained from I ;g under the
action of symmetry element 4,, onit.

Finally, the quasi-antiferromagnon (electrically
inactive) mode I3,(AM,, AL, ALy,) is excited by mag-
neticfield h(t) || zor by the simultaneous action of fields
E° O zand h(t) O z (see Table 2). The variables of this
mode are cal culated by formulas (50) and (51) using the
substitutions AL,, — ALy, ALy — ALy, hy=—>h,,
W — —w, K* — K=, and wa(+) — wup(-), where
wae(-) isthe natural frequency of the I3, mode, which
is defined by the formula

War(—) = Won AuK’.

Magnetization M(t) (44) associated with oscilla-
tions AM and AL ¢ (§ = a, b) can also be calculated in
this phase by formulas (52)—«59) using the substitutions

(60)

Xik(+) - Xik(_)1 AXxx("') HAny(_)f

Any(-'-) - AXXX(_)7 AXZZ(+) - AXZZ(_)1
AXxy(-i-) = Any('l-) - AXxy(_) = Any(_)’ (61)
AXXZ(+) = _AXZX(+) - _AXyz(_) = AXzy(_)1

AXyz(-i-) = _AXzy(+) - _AXXZ(_) = AXZX(_)7

in this case, all plus signs in formulas (53)—59) are
replaced by the minus signs.

The magnetodl ectric effects in the Nd,CuO, com-
pound were investigated experimentally in [11, 12].
The excitation of the quasi-antiferromagnon mode
I 35(AM,, AL, ALy,) by avarying electric field E(t) ||
[001] was observed in [11] at temperatures 1.5 < T <
50 K. At atemperature below 10 K, a quadratic depen-

dence (Ax,, O Ei (1)) of the magnetoel ectric part of sus-
ceptibility Ax, on the amplitude of the quasi-static
electric field E(t) || [100] of frequency fz = wg/2m =
2.6 kHz was observed in [12]. The rf magnetic field
h(t) || [001] had a frequency of f, = w/21t= 36 GHz.
When aconstant electric field E° || [100] was appliedin
addition, magnetic susceptibility Ax,, [ (Eg + E,(1))?
acquired not only a quadratic, but also a linear depen-
dence on the varying field E(t)(Ax, U ES + E(1)).
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These experimental results are in good agreement with
formulas (29) and (56) if we carry out the substitutions

ES — E +E(1),E,=0,and 0 —~ g + @, = @, in
the latter formula.

However, the authors of [12] failed to observe the
static linear magnetoelectric effect. This is probably

associated with the domain structure of the sample,
leading to a decrease in static magnetoelectric suscep-
tibilities a3, = ay, and ay,, which can be determined
from formulas (27) and (29) for w = 0. According to
estimates made by the authors of [12] themselves, these
susceptibilities are more than two orders of magnitude
smaller than for a polycrystalline Cr,O5 sample and do
not exceed 5 x 10~" CGS units. It should be noted that
sample poling by an appropriate thermomagnetic treat-
ment might lead to a substantial increase in the values
of magnetoelectric susceptibilities. For example, the

magnetoel ectric susceptibility agx ~ 108 CGSunitsin
the antiferromagnetic compound Gd,CuO, increases

after magnetoel ectric annealing to 3 x 10 CGS units
at T=5K [18].

7. CHIRAL PHASE TRANSITIONS

It was mentioned above that the Nd,CuO, com-
pound experiences successive phasetransitionsl ,~—
g~—1T,at temperatures T, =30K and T, = 70K [3,
6, 7] between two chiral phases ', (Q, = 1) and g
(Q,=-1), which are accompanied by a change in
chirality Q,. A more detailed treatment of these transi-
tionsis given below.

To describe these transitions, we write magnetiza-
tions M, of the sublatticesin the form

My, = Moycosd,, M,, = Mysing,, (62)
where ¢, are azimuth angles of vectorsM,, (v =1, 2, 3,
4). Taking into account relations (62) in definition (3) of
vectorsL ,and L, we can represent the anisotropic part
of thermodynamic potential @, (9) for M° = LS =0
(including the terms with coefficients q,, gs, K4, and K,
in formula (9)) in the form of the anisotropy energy
d..(d,) as a function of angles ¢, (we will not write
energy ®,.(d,) inexplicit form sinceit is quite cumber-
some).

Testing energy @4,(¢,) for minimum, we find that

the stability boundaries of the I'y(LS,, Lb,) phase for

values of angles ¢, = —¢, = 174, ¢ =—¢, = 314 corre-
sponding to this phase are defined by the inequalities

Ga + 05 <0, (63)

2(Ko~Ky)=0,>0, (649)
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while the stability of the Ms(L3,, Lo,) phase for values
of angles$, =—b5; =174, ¢, =—¢, = 3174 corresponding
to this phase are defined by the inequalities

4a—0s>0, (65)

1
_(Kl_ KZ) —Qs> 0.

5 (66)

In accordance with relation (9), the anisotropy energy
®,, in the stability region of phases I',(LJ,, Lp,) and
Ms(Lay, Lpy) is anegative quantity; consequently, the
relativistic constants g, < 0, K; < 0, and K, < 0, while
the chirality coefficient g, reversesitssign under phase
trangitions in accordance with formulas (63) and (65).
Phase transitions Iy <— ' ~— I, between chiral

phases I, and I occur, according to experiments [ 6, 7]
at two temperatures T; = 30K and T = 70K. At these
points of the transition, the quantity

a(T) = Ga+3(Ky—Ky) (67)

corresponding to the equality of the anisotropy energies
of two chiral phases (P,,(I" ;) = P, (I5)) vanishes. Inthe
vicinity of transition temperatures T and Ty, the a(T)
dependence (67) can be represented in the form

a(T)=Ay(T-T7) and a(T)=A,(To-T), (68)

respectively, whereA; > 0and A, > 0 arethe coefficients
determining the rate of variation of quantity a(T) at T =

T, andT=T5.
We can choose asingle inequality from (63), (64) or

(65), (66), which determines the stability boundary of
the I, or 5 phase. It depends on the sign of the chiral

constant da(ng) defined at the phase-transition
points. For g, (Tcl’, ) >0, the stability boundaries of the
phases are determined by inequalities (63) and (66),
respectively, while da(Tiz) < 0, the stability bound-
aries are determined by inequalities (64) and (65).

Taking into account relations (67) and (68) in ine-
gualities (63)—(66), we find that the ', and I' 5 phases
are stable at temperatures of

T<T; and T>T, (phasel}), (69)
T,< T<T, (phase I'5), (70)
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P o1
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Fig. 3. Temperature hysteresis loops for successive chiral
phase transitions I'y ~— ' <—— "4 in Nd,CuO, com-
pound.

where
T =T0+A, and T; = ToFA,

are the stability 10ss temperatures for chiral phases ',
and I'; (Fig. 3).

The temperature hysteresis loops of the transitions,
AT, =T; —T; =20, and AT, =T, — T, =2A,, are
determined by the quantities

1
A1,2 = )TZ(MS' _|qa|)-|—:-|—i2' (71)

Thus, successive chiral phase transitions [, ~—

s~ [, occurring at temperatures Ts and T, are
first-order transitions with temperature hysteresis loops
AT, , = 27\ ,. Features of these transitions associated
with chirality and variation of resonance frequencies at
the transition points will be considered in Section 9.

8. EXCITATION OF NMR
BY AN ELECTRIC FIELD

The effects of antimagnon and quasi-antiferromag-
non excitation by a varying electric field E(t) consid-
ered above are associated with the magnetoel ectric and
antiferroel ectric interactions and usually correspond to
the microwave range (or, probably, even higher fre-
guencies).

In the lower (radiofrequency) range, these interac-
tions can be manifested in the effect of resonance exci-
tation of nuclear spins (nuclear magnetoel ectric reso-
nance, NMER) by avarying electric field E(t) [13, 17,
19, 20]. This effect takes place if the frequency of the
field E(t) building up oscillations of vectorsL or M due
to the magnetoel ectric interaction is close to the NMR

frequency

wnv = Vn H nvs (72)

determined by the constant component of the hyperfine
interaction field in the electron subsystem,
FMy;

Ho = (73)
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V, is the nuclear magnetomechanical ratio, F is the

hyperfine interaction constant, and MS is the magneti-
zation of the vth sublattice in the ground state.
Let us first consider the excitation of NMR by the

electric field E(t) in the I,(Lgy, Lp,) phase with the
exchange magnetic structure | characterized by chiral-
ity Q, = 1. For this purpose, we supplement thermody-
namic potential ® (11) with the terms

®pe = —R[E(L, M) + Ey(L, ()] (74)
_ngzEz(Lax+ Lby)!

CDQ\FE = _Gn[Ex(Lb Dc) + Ey(l—a EIc)]

(75)
- fglczEz( I—ay + be)a

q)HF = —E(M Dn+LaDa+ Lb Db+LC DC)! (76)

where @y, and ®, . describe the nuclear magneto-
electric and antiferrod ectric interactions and @ isthe
hyperfine interaction of nuclear magnetizations m, of
the sublatticeswith vectorsM and L (¢ = a, b, ). Here,
m and |; are the nuclear vectors of ferromagnetism and
antiferromagnetism, which are connected with m,, (v =
1, 2, 3, 4) through relations analogous to (3).

It should be noted that we have ignored in expres-
sions (74) and (75) some relativistic terms similar to
thosein formulas (6) and (7) with coefficients s,, s, and
f;, f,. The inclusion of these terms would only lead to
an insignificant renormalization of constants R" and G"
appearing with the scalar products of vectorsL with m
and L with |; analogously to the exchange in the elec-
tron subsystem, we can assume that these terms exceed
anisotropic interactions.

In accordance with relation (73), constant fieldsH,,,

of hyperfine interaction in phase M ,(L2, Lgy) have the
components
Hhy = Hp, = —Hig = —Ho, = (£)FMg//2,
Hi = —Hip = Hig = —Hiu = (2)FMo/J/2.
Thesefields correspond to constant nuclear magnetiza-
tions mJ = X H,, of the sublattices with component

my, = My, = —-mg, = —m,
= (£)XaFMd//2,

m, = -md, = md, = —md,
= (£)XaFMo//2,

where xg is the static nuclear magnetic susceptibility.

(77)
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Taking into account expressions (77) in the defini-
tion of vectors m and I; (using formulas analogous
to (3)), we find that the nuclear magnetization vector
m° = 0 in the ground state, and the nuclear antiferro-

magnetism vectors |§ have the components

lox = loy = (£)/BXaFMo= (2)X.FL.  (78)

L et us now separate the quadratic form @, from the
nuclear part of the thermodynamic potential

D" = Py + P+ Py (79)

Taking into account relations (78) as well as the equi-
modularity conditions for nuclear vectors m and I,
(analogous to conditions (14) and (15)), which is valid
in the linear theory, we obtain?

CD;(i) = - (é“ - Rn)(Exlcy + Eylcx) - 2§3nszz

F
- Z(AMzmz + AI—azl az (80)
+ 201l py + 2AL 1y, + Al ply,

+2AL | +2AL 1., + ALl,,),

cx'ex cy'cy

where

G'-R" = (#)(G"=R)L, & = (+)sIL.

The NMER signals can beregistered from the Q fac-
tor by determining the heat loss[17]

Q" = —P"E. (81)

Here, P" is the nuclear part of the electric polarization
associated with oscillations of vectors m and I;. The

expression for P" can be determined from the definition
of effective polarization

00,

T

(82

where @, = ®, + @, isthe quadratic form of the total
thermodynamic potential. Taking into account expres-

sions (24) for d, and (80) for ® in Eq. (82), we obtain
Px y = (é‘ - INQ)ALcy, x T (én - Iin)lcy,w (83)

P, = 2(5AM, + §m,). (84)

2 These conditions remain in force for the paramagnetic spin sys-
tem (including the nuclear subsystem) also if we remain in the
framework of the linear theory in nuclear spin oscillations, which
will be considered below.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

1107
Since we are interested in frequencies

W= 0 < Wag War, (85)
which are much lower than the natural frequencies waq
and w,r of quasi-antiferromagnon vibrations, we can
use the quasi-equilibrium approximation. In this case,
variables AL . and AM can be determined directly from
the requirement of the energy minimum:

6@2 _ (L‘Bz _
oL, =0 5w =0
This gives
é—ﬁe F
AI—cx,y - T~ y,x+ ch,yi (86)
A
2
M, = 2+ Fom, (87)
AM 4AM

Finally, to determine the resonance response to field
E(t) in the form of effective polarization (83), (84), we
must solve the equations of motion for m and I, (in the
linear and nonlinear approximation depending on the
experimental conditions, i.e.,, continuous or pulsed
mode). It was noted above that we consider the results
for the linear case only. For |, (a =X, y) and m,, we

obtain
locy = 2Xn (w)[(G i)+ 8 AEQF}E“, (88)
m, = 8x, (w)g;+—~§3_ E,. (89)

Here,
Xn(®) = xﬂw;_)i (90)

is the NMR susceptibility and w, = y,FM, isthe NMR
frequency.

Formulas (88) and (89) describe two resonance
excitation channels for NMER signals. The terms con-
taining G" - R" and S; describe direct excitation of
polarization P"(t) by oscillations of quantities |, (a =
X, y) and m, (see formulas (83) and (84)). The second
terms containing G - R and S, are responsible for
indirect excitation via the hyperfine interaction of vec-
torsL . with |, and M with m. Each of these channelsis
characterized by its own magneto- and antiferroel ectric
constants.
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Substituting expressions (86)—89) into Egs. (83)
and (84), we find that the nuclear part of the polariza-
tion is defined as

. . ~ L 2
P! = 2xn(w)[G”—R“+G NRF} E,,
2A (91)
a = X,y,
n n ’és 2
P! = 8y, ()& + =FE, 92
Xn(02) 55 Wi (92)

It is the P" polarization with components Py (91)

and P) (92), which is associated with the nuclear sub-
system and induced by field E(t), that isalinear NMER
signal manifested in the antinode of thisfield.

Calculating the absorbed energy Q" (81) taking into
account relations (91) and (92), we obtain

n _ n "‘n_"‘n é_é 2
Q" = wxn(co)ﬁe R+ =8
(93)

S el
<(E[+ I8 + 4+ 2-F [
M

where x (w) istheimaginary part of quantity x,(w) (90),
which is given by

2w anﬁ

Xn(®) = Xn . (94)
” ()~ 0") + (20T,
Here, dissipation is taken into account again through
the substitution w — w + i, (in the Bloch sense).
0

In the I's(Lgy, Lpy) phase with the exchange mag-
netic structure Il and chiraity Q, = -1, the NMER
effect can also be described by formulas of the
form (91)—(94) after the following substitution of con-
stants:

& —f3 = (1) fiL,
§,—> f3 = (£)fsl, Au—= A

Consequently, as should be expected for a first-order
phase transition, the NMER signal changes its value
jumpwise during a chira transition (true, the jump
appearsinformula(91) only if we additionally takeinto
account the relativistic magneto- and antiferroelectric
interactions).

9. DISCUSSION

The main concept adopted in this study on the basis
of [7, 11, 12], in which the existence of the magneto-
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electric and antiferroelectric interactions in Nd,CuO,
was established, is the assumption that crystal-chemis-

try group P4,/mnm= Dj; corresponds to the symmetry
of this cuprate (it differs from the body-centered group

l4/mmm = Dy;,, which was purportedly ascertained by

some other authorsfor neodymium cuprate[1-4]). This
allowed us to study in detail the dynamics of the
Nd,CuO, compound using the concept of a chiral dou-
blet and a phase transition between the components of
this doublet.

Another important aspect is the assumption con-
cerning the possibility of existence of a domain struc-
ture, in which domains equivalent in energy and other
parameters differ only in the signs of the antiferromag-
netism vectors and in the signs of the magnetoel ectric
magnetizations associated with them. This may nullify
(or at least reduce) the total magnetoel ectric magneti za-
tion (magnetoelectric effect linear in field E) and the
field-induced magnetoel ectric susceptibility associated
with it for nonzero absorption of the energy of the elec-
tric field, which is a quadratic function of the field.

Finally, an appropriate representation of the magne-
toelectric interaction in form (43) has made it possible
to explain the effect quadratic in E observed in [12],
which is determined by the linear magnetoelectric
interaction and is independent of the above-mentioned
domain structure when field E is applied in addition to
avarying field H = h(t).

Thus, in the four-sublattice antiferromagnet Nd,CuO,
with the crystd structure described by group (2), the
magnetic Cu?* ions occupy anoncentrosymmetric posi-
tion, which explains the existence of both magnetoel ec-
tric (6) and the antiferroelectric (7) interaction. The
main terms are of the exchange type. In addition, non-
collinear magnetic structures (phases) | and Il of the
square (or rectangular cross) type in neodymium
cuprate form exchange doublets with different chirali-
ties and magnetic symmetries. For example, the sym-

metry of the [,(LY, , Lgy) phase with exchange struc-
turel and chirality Q,= 1 isdetermined by the magnetic

group 1'4,,2;,, while the symmetry of thes(Lg, , Lo, )
phase with exchange structure |1 and chirality Q, = -1

is determined by the magnetic group 1'45,2;,,.

One more important remark is appropriate here. In
this study, we assume that noncollinearity of the struc-
tures (I and I1) is associated with the exchange (see
inequalities (13)). At the same time, for the other ver-
sion (1) of the crystal-chemistry group, it was proved
by some authorsthat the noncollinearity of the structure
might be due to the pseudodipole interaction [3, 4]. At
any rate, therole of thisinteraction should be analyzed
in greater detail in our model aso, although we agreed
not to discuss the specific microscopic mechanisms of
interactions.
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Each of the phases considered here, e.g., inphasel ,
(or ['g), is characterized by four modes of spin oscilla
tions. One of these modes, I 45 (20) (or I'sg (31)), isan
antimagnon mode and has a frequency w (+) (47) (or
w, (-) (37)), which depends on the difference (or sum)
of the biquadratic exchange constants D and chirality
constant g, (thelatter is of semiexchange-semirelativ-
istic origin). (It should be recalled that the plus and
minus signs in the arguments or superscripts of physi-
cal quantities indicate that they correspond to thel, or
I'5 phases with chiralities Q, = +1 and Q, = —1, respec-
tively.) The other two quasi-antiferromagnon modes,
M7 (21) and 56 (22) (or 15 and 57 (32)) are degener-
ate and have frequency wao(+) (28) (or wag(-) (41)),
which is determined by the geometric mean value of

exchange constantA and renormalized chiral ity coeffi-
cient g* (or q). Finally, the fourth mode I 55 (23) (or
34 (33)) has a frequency war(+) (30) (or war(-) (60))
characterized by the geometrical mean value of the

exchange constant Au and the linear combination K*
(or K) consisting of relativistic magnetic anisotropy
constants.

It is shown in Table 2 that if E® = 0, some of these
modes cannot be excited by electric field E(t) or mag-
netic field h(t) (e.g., the antimagnon mode I ,4(AL,,,
AL, AL,) cannot be excited by either of these fields).
However, in addition to the cases considered in [ 7], we
also considered the case when E° # 0, for which reso-
nanceis possible (for certain directions of thefields) for
all modes under investigation (see the fourth columnin
Table 2). The natural frequenciesremain approximately
unchanged (as in the case when E° = 0).

It has been established experimentally that
Nd,CuQ, exhibits successive phase transitions Iy ~—
Is-—- 14, associated with achangein chirality at tem-
peratures T, =30 K and T, = 70K [6, 7]. It was found
that these are first-order phase transitions of the order—
order type.2

3n [21], magnetic structures with frustration are considered (i.e.,
it is impossible to obtain collinear antiferromagnetism in a sys-
tem of antiferromagnetically interacting spins). Frustration leads
to the emergence of exchange-noncollinear (chiral) structures,
e.g., of the triangle type in a system of three spins in the same
position of multiple points. In our case of four one-position spins,
frustration is absent since the spins can be ordered in an antiferro-
magnetically collinear manner. Exchange-noncollinear chiral
magnetic structures (see Fig. 2) emerge from the requirement of
energy minimum. We mention Kawamura's review [21] here only
due to the fact that the possibility of existence of a new class of
phase transitions associated with chirality is discussed in this
review. However, the transitions from a paramagnetic structure to
an ordered antiferromagnetic chiral structure was studied in [21],
while we consider a phase transition from one ordered state to
another with a change in chirality in the framework of the con-
ventional Landau theory. Consequently, the specia universal
phase transition considered in [21] and accompanying the emer-
gence of a new property (chirality) does not take place in our
case.
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Let us now analyze the behavior of resonance fre-
guencies during the phase transition under study by
using Table 2. A simple analysis shows that two situa-
tions are possible in this case.

1. If chirality coefficient §,(T{,) > O at points T =
Ti , of the phase transition (see Fig. 3), the quantities

0a*Qsf,_,. =0 and Klor,, =0 (95)
vanish at critical temperatures T= Ty, and T= T, ,,

which are equal to the temperatures of stability loss of
phases I ,(+) and I"5(—). The most interesting fact here
isthat frequency wae(-) (60) of the quasi-antiferromag-

non mode I3, (33) vanishes at points T = T, , (analo-

gously to the case of a soft mode in a second-order
phase transition),
War(T12) = 0. (96)

Naturally the 5 phase vanishesin this case, giving way
to the ', phase with a nonzero frequency at these

points:
Wae(T12) = 20004/2Au]ay.

For all other frequencies at the stability-loss points
T=T, , (second condition in (95)) aswell as at points

(97)

T= TI , (corresponding to the first condition in (95)),

changes (discontinuity) typical of first-order transitions
take place with simultaneous change in the phase (how-
ever, the frequency of one of the phases does not vanish
inthiscase). The corresponding results can be obtained
using Table 2.

2. If the chirality coefficient G, (TS ,) <0, tempera-
tures T = Ty, and T = T, , are determined by the
equalities

K+|T:TI2 =0 and aa_qsl =0,

T=T.,

(98)

respectively. Inthis case, the natural frequency wag(+)
(30) of the guasi-antiferromagnon mode I 55 (23) van-

ishes at temperatures T= T ,:

w:\F(TI, 2) = 0. (99)
The corresponding frequency w, g (TI, ) inthe emerg-
ing phase I 5 (instead of I" ;) assumes afinite value (97)
again. The statements concerning other modes and
analogous to those formulated in the previous case
remain in force.
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The following circumstance is worth noting. It is
expedient to experimentally measure the magnetoel ec-
tric contributions Ay, (54)—59), (61) to the magnetic
susceptibility at low frequencies w < wy, in the vicinity
of critical temperatures TI, » Or Ty ,, wherethe natural
frequency wap(+) or wue(-) of the quasi-antiferromag-
non mode I 55 (23) or I3, (33) may vanish at atemper-
ature equal to one of these temperatures. At these tem-
peratures, the component Ax;, associated with oscilla-
tions of these soft mode have the highest value. In
particular, for electric field E° || x, from expression (54)—
(59) and (61), we obtain

2
R o Wy 2~ 2
DXy (T12) = BX(T12) = —Z)SRZAM(EQ) , (100)

AX;Z(TI 2) = _szy(TI 2)

- o W (101
= _AXXZ(T1,2) = AXZX(TI,Z) = IEORIEQ

In addition, for T=T7 , (When wae(+) = 0 0r Wae(-) =

0), magnetic susceptibility x5, = 0 (53), which allows
us to eliminate this Zeeman contribution in the mea-

surement of magnetoelectric correction Ax;, (56) in
the vicinity of chiral phase transitions.

Thus, experimental investigation of the temperature
dependences of the natural frequencies of spin oscilla-
tions would make it possible to determine the type and
stability region of chiral phases in successive phase
transitions I y ~— 'y ~— I, in Nd,CuQ,. It should
be borne in mind, however, that antimagnon mode
I45 (20) of the I', phase and quasi-antiferromagnon
modeT 5, (33) of the I'; phase are not electrically active
(i.e., arenot excited by avarying electric field E(t)). On
the other hand, these and al the remaining modes can
be excited by a varying magnetic field h(t) in the pres-
ence of aconstant electricfield Ey = const (see Table 2).
It should be noted that electrically active modes
55 (31) and I 55 (23) are excited by electric field E(t) ||
z, whilemodes I 7 (21), [y (22), and I 46, 57 (32) are
excited by fild E(t) O z

NMER experiments on the Cu®® and Cu®® nuclei can
also be used for studying the magneto- and antiferro-
electric interaction. The highest level of NMER signals
in neodymium cuprate should be expected when these
interactions are excited by an electric field E(t) O z In

this case, polarization Py (a = x, y) (91) and the

amount of heat Q" (93) are determined by the exchange
part of the magnetoelectric and antiferroelectric inter-
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actions. The electron and nuclear parts of these interac-
tions are characterized by the difference of constants

G —-R and G" — R". The values of these constants
have not yet been determined.

As an added note, the ratio of constants (é - I?e)/ A

appearing in the expression for P, (91) and Q" (93)
could be determined from experimental measurements
of magnetoelectric susceptibility & by studying the
dynamic magnetoel ectric effect emerging, for example,
upon excitation of quasi-antiferromagnon modes
M7 (21) and I, (22) of the ', phase by electric field
E(t) O z In this case, magnetoelectric susceptibilities

Oy (27) and oy, at low frequencies w? < coiQ (+) are
determined precisely by thisratio:

Oy = Ay = ——=—. (102)

Thus, the above arguments confirm once again the
urgent need for experiments on antiferroelectric and
nuclear magnetoel ectric resonances in the chiral anti-
ferromagnet Nd,CuO,.

ACKNOWLEDGMENTS

The authors thank N.G. Bebenin, M.l. Kurkin, and
Yu.N. Skryabin for fruitful discussions.

This study was financed by the Russian Foundation
for Basic Research (project no. 02-02-16440).

REFERENCES

1. D. Petitgrand, A. H. Moudden, P. Galez, et al., J. Less-
Common Met. 164165, 768 (1990).

2. O. Kondo, M. Ono, T. Yosida, €t al., J. Magn. Magn.
Mater. 90-91, 79 (1990).

3. G. R. Sachidanandam, T. Yildirim, A. B. Harris, et al.,
Phys. Rev. B 56, 260 (1997).

4. D. Petitgrand, S. V. Maeyev, Ph. Bourges, et al., Phys.
Rev. B 59, 1079 (1999).

5. D. A.Yablonskii and V. N. Krivoruchko, in Problemsin
Physical Kinetics and Physics of Solid State (Naukova
Dumka, Kiev, 1990) [in Russian].

6. S. Skanthakumar, H. Zhang, T. W. Clinton, et al., Phys-
icaC (Amsterdam) 160, 124 (1989).

7. V. A. Blinkin, I. M. Vitebskii, O. D. Kolatii, et al., Zh.
Eksp. Teor. Fiz. 98, 2098 (1990) [Sov. Phys. JETP 71,
1179 (1990)].

8. E.A.Turov, Zh. Eksp. Teor. Fiz. 115, 1386 (1999) [JETP
88, 766 (1999)].

9. E. A. Turov, A. V. Kolchanov, V. V. Men'shenin, et al.,
Symmetry and Physical Properties of Antiferromagnet-
ics (Fizmatlit, Moscow, 2001) [in Russian].

No. 6 2005



10

11

12.

13.

14.

15.

ELECTRON AND NUCLEAR MAGNETIC RESONANCES

. E.A. Turov, Usp. Fiz. Nauk 164, 325 (1994) [Phys. Usp.
37, 303 (1994)].

A. l. Smirnov, S. N. Barilo, and D. I. Zhigunov, Zh.
Eksp. Teor. Fiz. 100, 1690 (1991) [Sov. Phys. JETP 73,
934 (1991)].

A.1.Smirnov andI. N. Khlyustikov, Zh. Eksp. Teor. Fiz.
105, 1040 (1994) [JETP 78, 558 (1994)].

I. F. Mirsaev and E. A. Turov, Zh. Eksp. Teor. Fiz. 124,
338 (2003) [JETP 97, 305 (2003)].

E. A. Turov, A. V. Kolchanov, V. V. Men'shenin, €t al.,
Usp. Fiz. Nauk 168, 1303 (1998) [Phys. Usp. 41, 1191
(1998)].

Yu. A. Izyumov and N. A. Chernoplekov, in Neutron
Soectroscopy, Ed. by R. P. Ozerov (Energoatomizdat,
Moscow, 1983; Consultants Bureau, New York, 1994),
Vol. 3.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

16.

17.

18.

19.

20.

21.

1111

V. G, Bar'yakhtar, 1. M. Vitebskii, and D. A. Yablonskii,
Zh. Eksp. Teor. Fiz. 76, 1381 (1979) [Sov. Phys. JETP
49, 703 (1979)].

E. A. Turov and V. V. Nikolaev, Usp. Fiz. Nauk 175 (5)
(2005).

A. 1. Smirnov and |. N. Khlyustikov, Zh. Eksp. Teor. Fiz.
108, 706 (1995) [JETP 81, 384 (1995)].

M. I. Kurkin, V. V. Leskovets, V. V. Nikolaev, et al., Fiz.
Tverd. Tela (St. Petersburg) 45, 653 (2003) [Phys. Solid
State 45, 685 (2003)].

M. I. Kurkin, I. F. Mirsaev, and E. A. Turov, Zh. Eksp.
Teor. Fiz. 125, 1144 (2004) [JETP 98, 1002 (2004)].

H. Kawamura, J. Phys.: Condens. Matter 10, 4707
(1998).

Trandated by N. Wadhwa

No. 6 2005



Journal of Experimental and Theoretical Physics, Vol. 100, No. 6, 2005, pp. 1112-1120.

Tranglated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 127, No. 6, 2005, pp. 1262-1271.

Original Russian Text Copyright © 2005 by Meilikhov, Farzetdinova.

ORDER, DISORDER, AND PHASE TRANSITIONS
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Abstract—A simple analytical model is devel oped to explain the phenomenon of exchange bias of the hyster-
esis loop in a two-dimensional ferromagnet—antiferromagnet bilayer. A solution of the magnetic relaxation
equation is obtained within the framework of the generalized mean field theory, which describes the shape of
the hysteresis|oop and shows its dependence on the properties of amodel interface in the system under consid-

eration. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The experimental magnetic hysteresis loop of afer-
romagnetic substance (plotted in the coordinates of
external magnetic field H, versus magnetic moment) is
usually symmetric. However, the hysteresis loop in a
system comprising aferromagnet (FM) in contact with
an antiferromagnet (AFM) may exhibit a shift along the
field axis[1, 2]. As aresult, the center of symmetry of
the loop is displaced to a point with H, = Hgg # 0. In
typical systems of this kind (Co—CoO, Fe—FeF,), such
adisplacement is quite large and can even be compara-
ble to the coercive force. This phenomenon, called
exchange bias (EB), takes place in systems where the
Curie temperature (T.) of the FM exceeds the Neédl
temperature (Ty) of the AFM. The EB phenomenon is
observed upon cooling of the system in an externa
magnetic field from an initial temperature in the inter-
val Ty < T < T, to afinal temperature T < Ty. If the
direction of the field in which the system is cooled is
considered positive, the hysteresis loop shifts in the
negative direction: Hgg < 0. A considerable growth in
the interest in this phenomenon stems from the possi-
bility of its various practical applications[1, 3].

It is a common opinion that the nature of exchange
bias is related to features of the spin structure of an
AFM in the vicinity of the interface, namely, to the
domain structure stabilized by nonmagnetic defects
(impurities, structural imperfections, etc.) [1, 2, 4].
These defects account for the formation of domainsin
the AFM, whiletheir random distribution resultsin that
the numbers of spinsin the two sublattices are not equal
for any finite volume in the AFM. As aresult, any such
volume possesses a finite magnetic moment whose
rotation in an external magnetic field may become ener-
getically favorable [4]. In order to provide for minimi-
zation of the domain structure energy, the domain walls

must pass predominantly through nonmagnetic defects
and, as aresult, acquire a complicated shape. Although
the resulting structure is metastable, the domain walls
exhibit pinning that leadsto “freezing” of thisstructure,
whereby it does not change (provided that the tempera-
ture is sufficiently low) in response to ateration of the
magnetic field sign and magnitude (at least in the range
of fields typically encountered in the measurements of
hysteresis |oops).

The first models (for the most part, phenomenol og-
ical) of exchange bias did not take into account the
interaction of spins in the FM, even within the frame-
work of the mean field theory [2]. Subsequent theories
treated this phenomenon from the standpoint of the
Ising or Heisenberg models. However, these models,
while taking this interaction into account, are reduced
to numerical calculations of the magnetic state of the
system (e.g., by the Monte Carlo method) [5]. Theaim
of this study is to develop a simple analytica model
representing a generalization of the mean field theory
for the Ising system of spinsin atwo-dimensional (2D)
FM under the conditions when the interaction of some
of these spins is enhanced due to the exchange interac-
tion with spins of the AFM. Such a moddl is unavoid-
ably rather simplified, but it neverthelessreflects all the
main features of the phenomenon under consideration
and admits (owing to this very simplicity) an analytical
solution, which allows the influence of various factors
on the shape of the hysteresis |oop to be readily estab-
lished.

One possible modd mechanism of the specific
enhancement of the exchange interaction at the FM—
AFM interface was described by Illa et al. [5]. This
model is illustrated in Fig. 1, which shows the AFM
layer with adomain and adomain wall (DW), the FM—
AFM interface, and spinsof the FM (s, ) and theAFM

1063-7761/05/10006-1112$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic diagram showing (a) an AFM layer with adomain wall (DW) and (b) an FM—-AFM interface, adomain wall, and
coupled spins of the FM (s, 5) and the AFM (o;, )) in the vicinity of thisinterface.

(gi, 0;) inthe vicinity of thisinterface. The FM spins s
and 5 interact with each other (both directly and indi-
rectly—viathe neighboring atoms of theAFM), aswell
aswiththe AFM spins. Thetotal interaction energy can
be expressed as

Ej = E,+E, E, = ~(J5ss+ 3 ss,00),
E, = —JF*sg,,
where 357, 357 and ;" are the energy parame-

ters of the bilinear and the four-spin exchange. The
energy E; can be expressed in terms of an effective con-
stant of the pair interaction between spinss and 5. This
constant depends on whether the spin pair occurs far
from the AFM domain wall or near this interface. For
the spin pair remote from the domain wall, the effective
energy is

FIF

1=3 _JZ/AF

E} = -Jss;, loiay],
while for the spins near the wall, this energy is

FIF FIAF

E;I: = _JESiS', ‘JE = ‘JZ + \]4 |0|0J|
As can be seen,
‘J_E _ JE/F+ JZ/AFMG]_' o
/ / !
I3 -3 o0

which impliesthat the domain wall in theAFM leadsto
enhancement of the spin coupling in the FM.

Since the domain contains a large number of |attice
sites, the fraction f of the FM spins with such enhanced
couplingissmall (f < 1).

It should be emphasized that the above mechanism
of enhancement of the spin coupling is just a model.
The true mechanism can be quite different: it has only
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to provide for the appearance of a small fraction of
spins with enhanced coupling. This is the only condi-
tion necessary for the further analysis.

Subseguent consideration consists of two steps. The
first step is related to the random distribution of ener-

gies J” of the pair interaction between the near-wall

FM spins described by the function
Fy(3) = (1- )33 -3) + 13(Jf - Jp),

aswell asto the random distribution of energies Ji(jz) of
the pair interaction of FM and AFM spins described by

the function®
1
Fy(3F) = SI8Q37 - 1)+ 83 + )1,

where| = JE'AF.

Application of the traditional mean field theory
leads to significant errors. A more correct result can be
obtained by finding and using a distribution function
F(H) of the effective local magnetic fields H.

The second step is generalization of the equation
describing the relaxation of magnetization of the FM
with random magnetic bonds. These interactions are
related to the local fields described by the distribution
function F(H). The generalized relaxation equation is
used for an analysis of the shape and parameters of the
hysteresis |oop.

It should be noted that the approach developed
below isquite general and can be applied not only to the
above model of modification of the spin coupling at the

LA small “frozen” magnetization of an antiferromagnet is mainly
due to its spins at antiphase domain walls (see Fig. 1). Conse-
quently, the number of 5, o pairs with parallel and antiparallel

spin orientations can be assumed to be the same; for the same rea
son, the sign of the interaction constant J; IAF isimmaterial.
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Table 1. Configurations of the magnetic moments of nearest
neighbors and their probabilities on a square lattice

confiqu- | Effective Number Probability of con-
rati o% magnetic | of configura- |figuration (for mag-
field H/h; tions netization j)
0_ i+t
Tt +4 C,=1 050
1_ +iltl-in
Tl +2 C,=4 4D_2 0050
2 _ L+ Pl -
Tl 0 C,=6 6D_2 0050
3 _ i+ ol - i
Tl —2 C,=4 4D_2 At % 0
_ A
L -4 cl=1 Bug

FM-AFM interface, but to any other mechanism of
such a modification changing the energy of interaction
for asmall fraction f of spin—spin bonds.

2. GENERALIZED MEAN FIELD MODEL
FOR A SQUARE ISING LATTICE

As is well known, the mean field theory does not
take into account the correlation of magnetic moments.
Another drawback of this theory is the notion of equiv-
alence of all lattice sites, according to which the mean
field isassumed to be the same at all sites. Actually, the
field varies from one lattice cite to another in arandom
manner. It would be natural to take this random varia-
tion into account and to check how much this general-
ized mean field theory will increase the accuracy of
description. Such an approach was originally devel-
oped by Klein and Brout [6] for a system of randomly
arranged magnetic dipoles. Later, this approach was
thoroughly analyzed by Thomsen et al. [7] proceeding
from a selected (although without sufficient ground)
distribution of the pair interaction energy.

The essence of the generalized model consists in
replacing the standard mean field equation

j = enh 0 (1)

where | isthe reduced magnetization and A isthe mean
field constant, by the generalized equation

o Ho
j = J’tanh%;—TEF(J;H)dH. @)

Here, F(j; H) isafunction describing the distribution of
local magnetic fields H created by al magnetic
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moments L except one at the site of location of this
magnetic moment in a system (not necessarily regular)
with the magnetization j. It should be noted that the
standard mean field equation (1) is also equivaent to
the equation

j = tanh[EE-T(-j-)}, A() = [HFGH)AH, @

which is obtained from the generalized equation (2) by
substituting F(j; H) = 8[H — H (j)]. According to this
approximation, all spinsoccur inthe samefield equal to
the average field H (j).

In order to assess how this generalization improves
the theory as compared to thetraditional mean field the-
ory, let us calculate the critical temperature and com-
pare the result to the known exact value. Consider a
square lattice and let magnetic moments with the two
possible orientations, t and |, occur at the lattice sites
with the probabilities (1 +j)/2 and (1 —j)/2. If al mag-
netic bonds areidentical (J; = J, or f = 0), the energy W
of interaction between a certain magnetic moment and
its nearest surrounding is the algebraic sum of compo-
nents with the same absol ute value J and the sign deter-
mined by the mutual orientation of the *“central”
moment and its neighbor. Thus, the energy W depends
on the configuration of the Ising magnetic momentsin
the first coordination “sphere” For a square lattice,
there are 2% = 16 such combinations. Their distribution
with respect to the effective magnetic field H = “Wi,
aswell as the probabilities of various configurationsin
the system with magnetization j, is given in Table 1
(where hy = J/p).

The corresponding distribution function is

Fo(i; H) = 2=[(1+])*5(4n))

+4(1+))°(1-])8(2hy) +6(1+[)*(1-)*5(0) (4)

+4(1+[)(1-])°8(=2hy) + (1-})*3(~4h;)],

where §(h) is the delta function taking a nonzero value
at H = h. Substituting function (4) into Eg. (2), we
obtain

2 _ 2tanh(2K) + tanh(4K) -2
2tanh(2K) — tanh (4K) ’

This relation describes the temperature dependence of
the magnetization in the system under consideration
and determines the Curie temperature T. This temper-
ature is found from the conditions j = 0, which leadsto
the equation

2tanh(2K) + tanh(4K) = 2,

_ kh
K=17-
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andyieldsK = K = 0.323, or
KT.=3.10J. (6)

This value is much closer to the exact result (KT¢ =
2.27J) than the val ue predicted by the mean field theory
(KT = 4J). It should be noted that the field determined

by the distribution function (4) is H = 4jh;, which leads
to the usual mean-field expression for the Curie temper-
ature.

Figure 2 presents the temperature dependences of
magnetization, j(T), calculated according to the tradi-
tional mean field theory (EQ. (1)), the proposed gener-
alized theory (EQ. (2)), and the exact solution

j = [1-sinh(2K)M® @)

of the Ising problem on a square lattice [8]. As can be
seen, theresult provided by the proposed generalization
is much closer than the traditional approximation to the
exact solution.

For an FM with zero magnetization (j = 0), the dis-
tribution function (4) is even with respect to the mag-
netic field and, hence, the hysteresis loop of the corre-
sponding system is symmetric (Hgg = 0). Let us gener-
alize the proposed procedure to the case when a 2D
ferromagnetic layer comesin contact with an antiferro-
magnetic layer, so that the fraction of the possible near-
est-neighbor configurations with enhanced coupling
becomes nonzero (0 < f < 1). In this case, the effective
magnetic moments of all configurations presented in
Table 1 will equiprobably change by the value tl/J asa
result of the additional interaction with the AFM spins
far from the domain wall. This interaction modifies the
distribution function (4), whereby the arguments of al
delta functions change by *I/J. However, the most
important (from the standpoint of a possible shift of the
hysteresis |oop) property of the distribution function is
retained: it is still symmetric for an FM with zero mag-
netization and is not involved in the shift of the hyster-
esisloop. Moreover, calculations according to ascheme
described below show that modification of the distribu-
tion function (4) in the case of | < J also hardly influ-
encesthe other properties of the hysteresisloop (width,
vertical shift, shape, etc.). For this reason, below we
will assume for the sake of simplicity that | =0, so that
separation of the near-wall spins into a specia group
only implies that the distribution function (4) hasto be
multiplied by the factor (1 —f ). In addition, it is nec-
essary to take into consideration the spin configurations
near the domain wall, in which the energy of one mag-
netic bond in significantly enhanced (under favorable
conditions) due to the aforementioned mechanism.
These additional configurations and their probabilities
are presented in Table 2, where symbols “[0" and “ [’
indicate the near-wall bonds with increased (Jz) and
“normal” (J) energies.
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Fig. 2. The temperature dependences of the magnetization j
calculated according to (1) the exact solution of the Ising
problem on a square lattice, (2) the proposed generalized
theory, and (3) the traditional mean field theory.

For f < 1, the configurations with more than one
enhanced bond are rare and can be ignored. Then, the
distribution function of the fields created by configura-
tionsinvolving the near-wall spinsis as follows:

Fo(ji H) = 22[(1+])°5(he + 3h,)
+3(1+])°(1-)8(he + hy) + 3(1+ )(1-))°
x 8(he —hy) + (1—])°8(he —3h,)] ®)
#2[(1+])°8(2h,) + 3(1+ ) (1 )5(0)

+3(1+ [)(1-j)*8(=2hy) + (1-})°5(~4h;)],

where he = Jg/u = (J/J)h;. The total distribution func-
tion of random magnetic fields can be written as

(1—1)*Fo(j; H) + 411~ £)°F((j; H)

R H) = (1-f)'+af(1-1)

9)

In this case, the magnetization j(T) of the system pre-
dicted by Eqg. (2) is nonzero only at an infinitely high
temperature. This behavior is related to the assumption
that the parameter f is independent of temperature. In
real systems, wheref —= 0asT — Ty, thisdrawback
of the model is absent. However, in the case under con-
sideration we have T < Ty and, hence, the temperature
dependence of the parameter f can be ignored.
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Table 2. Additional configurations of the magnetic bonds and their probabilities on a square lattice

Configuration Effecf:itg/g r|_r|1ﬁ%netic of co,\rlwﬁr;l?rgti ons Probability of configuration (for magnetization j)
@1 Jgld+3 4c =4 4DfD(1—f)35*1;r 5
311 I+ 1 act =12 ZDfD(l—f) Dlz JEZ%%E
31 JI—1 4C2 =12 12001 f)S%l:Zf_%gl_z—_lgz
i J1-3 ac? =4 ad0 — f)%%gs
@11 +2 4 =4 aJha f)gﬁ%jgs
[ 0 ack =12 12001 - f)‘"’%’l-zt—lgzgl—;-lg
i1 -2 aci =12 120001 - f)%%%%%gz
01y 4 aci =4 =

The distribution (9) is asymmetric with respect to
the magnetic field. For a system with zero magnetiza-
tion (j = 0), the center-of-gravity of this function for
f < 1 corresponds to the field

00

H(0) = IHF(O; H)dH

[

=4f [HF{(0; H)dH = 2f(he~h,).

If Jz > J, we have H (0) > 0 and the hysteresis loop is
shifted toward negative fields, otherwise it is shifted in
the positive direction. We can expect that the center of
the hysteresis loop corresponds to the field

Heg O-H(0) ==2f(J¢/J - 1)h,. (10)

However, this conclusion is valid (see below) only for
Je = KT. For large Jg, the function Hgg(Jg) exhibits sat-
ura“ on so that HEB —_— (HEB)max -~ 4ch

3. MAGNETIC MOMENT
RELAXATION EQUATION

Consider the system of magnetic moments p form-
ing a 2D lsing spin lattice described by the Ising vari-
ablesg=+1(j=1,2, ..., N). Therma fluctuations at a
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finitetemperature T lead to the spinflipfrom“1” to* |
state and back. The probabilities of such events deter-
mine the relaxation equations for the system state
parameters. In particular, the probability P(s;, S,, ...,
+§;, ..., Sy; 1) of the realization of a given spin configu-
ration at the time moment t is determined by the equa-
tion[9]

d
E[P(sla SZ!"-’+S !SN!t)
= _ZWJ(S])P(S]_, SZ! R '!SN; t) (11)
]
+ ZWj(—sj)P(sl, Sy s =Sy .y S 1),

J
where wi(s) and wj(—s) are the probabilities of jth spin
flip fromthe“1” and “ 1" states, respectively. Accord-
ing to the principle of detailed balancing, we have
W;(S;)Po(S1, Sz, -1 +Sjs -+, SN)
= Wi(=S))Po(S1; S0 -+ =Sjs -+ » SN

where Py(s,, ...) are the probabilities corresponding to
the thermodynamically equilibrium configuration.
These probabilities obey the Boltzmann relation

Po(S1, Sp1 -1 =) -2 Sn) _ pD_A;ED
Po(S1, Sz -y +Sj, ooy SN) O kTD

(12)

(13)
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where, AE is the difference between the energies of
states with opposite directions of the jth spin. Evi-
dently, AE = 2E;, where

Ej = uH:+ zsk‘]jk

k#j

(14

isthe energy of thejth spininthe state“ 1" (determined

by its interaction with the external magnetic field H,

and the other spins) and Jj is the energy of interaction
between the jth and kth spins. Equations (12)—14)
yield

w;(s))
w;(=s;)

_ 1-s;tanh(E;/KT)
~ 1+s;tanh(E;/KT)’

(15)

According to the Glauber approach [10], the proba-
bilities wi(s) and w;(—s)) obeying relation (15) are writ-
ten as

w;(s;) = Q%L stanhkTD
(16)

wi(-s;) = Q%l+stanthTD

where Q is the parameter having the sense of a fre-
guency at which spins try to change their orientations.
In this approach, the equilibrium state of the system
coincides with that according to the mean field theory
(see below).

The configuration-average value of the jth spin at
thetimetis

0= zsjP(sl,
(s)

SN; t)! (17)

where the sum is taken over al spin configurations of
the system. Substituting Eq. (11) into formula (17) and
using expression (16), we obtain [9]

d E,
G30= 0 %}D <tanhkT>D

In accordance with the ideology of the mean field
theory, this equation can in principle be simplified by
substituting

(18)

EE ]
<tanhkT> tanh -,

where

[(E=pHe+ ZijBSkD

K]
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Taking into account the fact that j [J [$[] we obtain an
equation

OJ
’ % HUH, +jZJ l%
8 - _ob _tanh——k2i [ (19)
O
dt 5 kT g
O O

describing relaxation of the magnetization toward the
thermodynamically equilibrium state determined by
the standard mean field relation:

j = tanh{DJH +jZJ IG/kT}

k#j

However, more exact results can be obtained, as was
demonstrated above, by means of the generalization of
the mean field model. According to this approach,
Eq. (18) can be rewritten as

g _ L e TH(He+H)_
m__+Itanh[ T }F(J,H)dH- (20)

This equation, together with the local field distribution
function (9), determines the relaxation phenomena in
the system under consideration and, in particular,
describes the hysteresis loop.

4. HYSTERESIS LOOP

Prior to proceeding with an analysis of the relax-
ation equation (20), let us formulate some conclusions
following from the form of this equation for the partic-
ular system under consideration.

(i) The hysteresis, as the relaxation phenomenon,
significantly depends on the rate of magnetic field
variation in the course of measurements. The natural
time scale in this case is provided by the inverse fre-
quency Q. According to this, aprocess with the charac-
teristictime 1 < Q'isfast, while that witht > Qs
slow. Thetypical process of measurement of the hyster-
esisloop is asow process. However, even in this case
the shape of the loop significantly depends on the
period T of variation of the external magnetic field and
the law of its variation. This is illustrated in Fig. 3,
which shows the hysteresis loops for various periods
(Fig. 39) and different laws of variation (Fig. 3b) of the
magnetic field. As can be seen from thisfigure, the shape
of the loop and especially its width (even for Qt > 1)
strongly depend on the field sweep time. On the other
hand, the law of thefield variation (at Qt = const) rather
insignificantly influences the loop width and virtually
does not affect the shift. Below we describe the results
obtained for a cosine-shaped field sweep (see the inset
to Fig. 3b) with atotal duration of T = 320/Q at atem-
perature of © = kT/J = 2 and the magnetic parameters
h;=J/u=1and J- = 10J.
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Fig. 3. The hysteresis|loops cal culated for (a) various periods and (b) different laws of variation of the magnetic fieldat© =2, hy =
1, Jz=10J, and f = 0.01 (a) and 0.05 (b). Theinset showsthetriangle (solid), sine (dash), and cosine (dot) shapes of the field sweep.

(if) The shift of the loop aong the field axis is
caused, as was indicated above, by the asymmetric part
F; (h,) of the distribution function (8), whichis centered

at the field H (0) = 2f(Jz/J — 1)h,. This field exhibits a
linear increase with the exchange energy Jz. However,
this dependence does not imply an infinite leftward

shift of the loop, since, in fact, the displacement is
determined by the term

o H(He+ H)
4fJ’tanh[ T

in the right-hand part of Eq. (20). For Jg — oo, this
term tends to 4fh; (in fact, this value is approached at
Je/lJ = 0O). Therefore, the dependence Hgg(Jp) is
expected to saturate as Jg — .

A physical reason for this saturation is quite clear.
For sufficiently low temperatures (© < 1) and small
amplitudes (hy =< J¢/J) of the magnetic field sweep,
only the FM spins with a weak coupling J respond to
the field, while spins with enhanced coupling Jg retain
their directions. Inthis case, spinsof thefirst group cre-
ate asymmetric hysteresisloop, while the second group
accountsfor its displacement leftward by the value pro-
portional to the total magnetization jgg ~ f in this group.
As aresult, the center of the hysteresis loop exhibits a

leftward displacement by |Heglma/Ny = jes/ jo, Where
jo = di/dhgf=q =0 is the slope of the symmetric (i.e.,

that for f = 0) hysteresisloop at the pointsj =0 (i.e., a
H =+H,_, where H. isthe coercivefield for the symmet-

ricloop). The parameter j, isdetermined from Eqg. (20)

]Ff(j,H)dH
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for f = 0andj = 0. In this case, the right-hand part of
this equation is equal with a good approximation to
(3/16)h,. Then, for alinear field sweep with a period t
and an amplitude hyy, we obtain hy(t) = ho(1—4t/1), and

Eq. (20) yields j, ~ (1/10)Qt/hy. Therefore, the max-

imum displacement of the hysteresis loop can be esti-
mated as

|HEB|max DifQT
h, 10 hy -

For Q1 ~ 100 and hy, ~ 1, this yields |Hgg|ma/h; ~ 10f.
A comparison of this value to expression (10) shows
that saturation of the dependence |Heglmax(Je/J) must
take place at J=/J ~ 5. Apparently, the loop width ceases
to change as well.

Now let us proceed to an analysis of the hysteresis
loop of the system under consideration, which is
described by a solution to Eg. (20). We assume that the
system is completely magnetized (j = 1) in the initia
state (h, = pHJJ = 5), after which the field is first
decreased to h, = -5 and then increased to the initial
level.

Figure 4 shows the typical hysteresis loops for the
system with various fractions f of enhanced bonds. As
can be seen, anincrease in f leads to a shift of the hys-
teresis loop toward negative fields. Simultaneously, the
loop exhibits narrowing and shifts up toward greater
positive magnetization. The first of these effects is

described by the exchange bias parameter Hgg = (H, +

H;)/2, where H; and H_ arethe coercivefields corre-
sponding to decrease and increase in the field. The lat-

No. 6 2005



EXCHANGE BIAS OF HYSTERESIS LOOP

i (w7 ]
| H g |
| A i
: e
: 0 0.02 0'04f
~1.0 | | . | |
4 ) 0 2 4
h

a

Fig. 4. The hysteresis |oops calculated for various fractions
f of enhanced bonds. The inset shows the plot of coercive
fields versusf.

ter trends are described by formulas for the loop width,
AH = (H. + H;)/2, and the magnetization increment

jes = (jo + j3)/2, where j; and j; are the maximum
and minimum magnetization values.

Figure 5 shows the dependences of all three param-
eters (AH, Hgg, and jg) on the fraction f of exchange-
enhanced bonds. As can be seen, the shifts Hgg and jg
of the hysteresis loop exhibit a linear increase, while
theloop width AH showsalinear decrease with increas-
ing f. Theincrease in Hgg and jgg with f is quite under-
standable, since it reflects the growth in the number of
enhanced bonds, which favor to provide positive mag-
netization of the system even in the region of negative
fields. It should be noted that the behavior of Hgg(f)
guantitatively disagrees with relation (10), which is
explained by the aforementioned effect of the Hgg sat-
uration at large Jz values. As for the narrowing of the
hysteresis loop, thisis related (see Fig. 4) for the most

part to a significant shift of the coercivefield H; to the
negative values, whereas the coercivefield H, changes

to a much lesser extent. The greater shift of H is

explained by the aforementioned tendency of the sys-
tem to retain positive magnetization of the system even
in the region of negative fields, which is caused by the
presence of spins with enhanced coupling.

The inset to Fig. 5 shows the temperature depen-
dence of the exchange bias Hg(©) of the hysteresis
loop. The increase in the absolute EB value with the
temperature is easy to understand: at higher tempera-
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AH/hy, Heglhy, jes
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0 0.02 0.04 0.06 0.08
f
Fig. 5. Plots of the (1) hysteresis loop width AH,
(2) exchange bias Hgg, and (3) magnetization increment
ieg Vversusfraction f of enhanced magnetic bonds. The inset

shows the temperature dependence of the exchange bias
(f=0.02, Jg/J = 10).

tures, the system always occurs in an almost stationary
state corresponding to the maximum possible value of
Hgg determined by relation (10). As can be seen from
Fig. 5, Heg tendsto thisvery level at high temperatures.

Figure 6 shows saturation of the Hgz and AH values
with increasing energy Jg of enhanced coupling. This

Hgg/h,

10
Tl

Fig. 6. Plots of the (a) hysteresis loop width AH and
(b) exchange bias Heg versus energy Jg of enhanced cou-
pling for (f = 0.02 (1) and 0.05 (2). The dashed lines corre-
spond to formula (10).
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Fig. 7. The hysteresis loops calculated for the same field
sweep rates dhy/dt but various sweep amplitudes: hy,g, = 30,

Qt = 2000 (solid curve); hyax = 5, Qt = 333 (points).
Dashed region corresponds to hg > —hpy,4¢, Where the two
loops coincide.

behavior was discussed above and quantitatively agrees
with the obtained conclusions.

Thevertical shift of the hysteresisloop described by
the parameter j is related to a difference in the mag-
netization of the system for the positive and negative
directions of the magnetic field (Fig. 4). Evidently, this
difference must disappear for a sufficiently large abso-
lute value of the negative field H, = pJg. In our case,
this corresponds to h, = 10 and agrees well with the
results of calculations presented in Fig. 7.

Animportant and, hence, frequently measured char-
acteristic of the real systems is the dependence of the
exchange bias on the AFM film thickness. Although we
have considered a 2D model, it is possible to qualita-
tively judge the shape of this dependence. Indeed, the
fraction f of enhanced bondsisinversely proportional to
the average size L of the AFM domain: f O 1/L. Since
the formation and stabilization of domainsin the AFM
is caused by defects, the domain walls appear as closed
surfaces (2D boundaries for the films of finite thick-
ness) containing the maximum possible number of
defects. Obvioudly, the possible number of such sur-
facesincreases with the film thickness d. Since the min-
imum energy corresponds to the minimum possible (for
the given conditions) length of this boundary, the aver-
age domain size L must also increase with the film
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thickness. Accordingly, the parameter f and, hence, the
exchange bias Hgz must decrease with increasing d.
Such adependence of the exchange biasonthe AFM film
thickness was frequently observed in experiment [1].

5. CONCLUSIONS

The main points of the proposed model, which make
possibleitsanalytical consideration, are the presence of
asmall fraction of enhanced (by any mechanism) ferro-
magnetic bonds, generalization of the mean field theory
through introduction of the distribution function of the
spin coupling energies, and the corresponding general-
ization of the magnetic relaxation energy.

Within the framework of the developed generalized
model, we considered the exchange bias of the hystere-
sis loop of a 2D Ising FM-AFM bilayer, determined
various characteristics of the hysteresis loop, and ana-
lyzed their dependence on the parameters of the model.
On the whole, the obtained results agree with experi-
ment.
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Abstract—The preparation conditions and magnetic properties of the La(Co; _,Fe )O3 _ 4 System of solid solu-
tions were studied. Irrespective of synthesis conditions, the samples with x < 0.15 were rhombohedral (space

group R3c), and those with x = 0.7, orthorhombic (space group Pnma). In the intermediate region of 0.15 <
x < 0.7, the samples could be mixtures of rhombohedral and orthorhombic phases. Structural heterogeneity con-
siderably decreased as the temperature of the synthesisincreased or after annealing in areducing medium. The
samples containing more than 40% iron exhibited weak spontaneous magnetization, asis characteristic of weak
ferromagnets. The magnetic properties and structure depend on the content of oxygen. A decrease in the con-
centration of oxygen sharply increases magnetic anisotropy; the coercive force is then close to 10 kOe, which
is more than that known for other oxide systems. The magnetic properties are explained in terms of the model

according to which Co®" ions are in the low-spin state. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Cobaltites with perovskite structures exhibit several
unusual phase transitions related to changes in the spin
state of ions [1-5]. The trivalent cobalt ions (Co*) in
LaCoO; experience the transition from the low-spin
(LS) nonmagnetic ground state with S= 0 to the inter-
mediate spin (IS) state with S= 1 at about T = 90 K.
Close to T = 500 K, a meta-dielectric transition
extended along the temperature axisis observed [1-4].
The specific resistance p obeys the law p(T) O
exp(Ey/kgT) at low temperatures; the p value decreases
by several orders of magnitude at T = 500 K and
increases as the temperature rises at the higher temper-
atures [1]. The spin state transition at T = 90 K disap-
pears for the La; _,Sr,CoO; system doped with Sr, and
the cobalt ions then remain magnetic even to the lowest
temperature. Systems with x > 0.2 exhibit spontaneous
magnetization at |ow temperatures [6]. The magnetiza-
tion and neutron diffraction data led several authors to
suggest the existence of the state of a cluster spin glass
and ferromagnetism in the region 0.3 < x < 0.5 [7]. At
lower strontium contents (x < 0.2), magnetization mea-
surements revealed the spin-glass ground state [7, 8]
with strong ferromagnetic short-range order correla-
tions according to the experimental diffuse neutron
scattering data [8]. The suggestion was made that |at-
tice expansion caused by the substitution of Sr stabi-

lized the intermediate spin state of Co® [8], whereas
the appearance of ferromagnetic short-range order
could be caused by the introduction of charge carriers.
The latter factor should aso change electron transport
properties. The p(T) value for La, _,Sr,CoO; with X <
0.2 is smaller by severa orders of magnitude than for
LaCoO;, dthough p(T) remains semiconducting in
character [9]. According to the thermal electromotive
force and Hall coefficient signs, the compound has hole
conduction [9]. Above T = 500 K, p(T) increases asthe
temperature grows, which presupposes the occurrence
of the dielectric-metal transition at T = 500 K, asin
LaCoO;. Thermal electromotive force changes are also
indicative of the occurrence of the dielectric—metal
transition [9].

It wasfound in[10, 11] that the magnetic state of the
Co* ions in LaCoOj; can be changed not only by sub-
stituting Sr but also by replacing Co®* with isovalent
Ni3* ions. At x < 0.5, La(Co, _,Ni,)O; samples exhibit
spin-glass properties at low temperatures. In thiswork,
we show that the replacement of Co®* with Fe** does
not cause significant stabilization of the intermediate
spin state of cobalt ions. This system exhibits giant
magnetic anisotropy at x = 0.5; the mechanism of its
formation is discussed. Earlier, the LaCo, _,Fe O; sys-
tem was studied from the point of view of its catalytic
activity [11].

1063-7761/05/10006-1121$26.00 © 2005 Pleiades Publishing, Inc.
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2. EXPERIMENTAL

The La(Co, _,Fe)O;_4 samples were prepared in
air following the usual ceramic technology from amix-
ture of La,05, Co30,, and Fe,O5 oxides at temperatures
fromT=1470 K to T = 1770 K. Severa synthesized
samples were reduced in evacuated quartz ampules at
T= 1200 K. Tantalum metal was used as a getter for
oxygen. The X-ray measurements were performed on a
DRON-3M diffractometer using CuK, radiation. The
crystal structure was cal culated with the use of the Full-
Prof program. The magnetic measurements were per-
formed on an OI-1001 commercial vibrating-coil mag-
netometer and using an MPMS-5 (Quantum Design)
SQUID magnetometer. The Mosshauer spectra were
recorded on an MS2000 spectrometer in the transmis-
sion mode using a 5’Co/Rh source. The spectra were
calculated with the help of the MOSMOD program.
The isomeric shifts are given with respect to a-Fe. The
topography of the surface was studied with a KARL
ZEISS scanning electron microscope. X-ray spectra
analysis data were obtained using a Rontec energy dis-
persion Si—Li semiconductor detector.

3. RESULTS AND DISCUSSION

Crystal structure. FullProf calculations for the
samplesprepared at T=1570K inair were successfully
performed to show the sampleswith x < 0.15 to be sin-

gle-phase, spacegroup R3c; the sampleswith0.3<x <
0.6 to be mixtures of rhombohedral and orthorhombic
(Pnma) phases; and the samples with x = 0.7 to be sin-
gle-phase orthorhombic (space group Pnma).

Increasing the synthesis temperatureto T = 1770 K
sharply decreased crystal structural inhomogeneity.
The samples prepared at thistemperature were success-
fully calculated as rhombohedral (x < 0.5) and orthor-
hombic (x = 0.6). Only the sample with x = 0.55 could
not be calculated in terms of a single-phase model. The
unit cell volume increased ailmost linearly as the con-
tent of iron grew intheinterval 0< x< 1. Itislikely that
high temperature contributes to the formation of homo-
geneous solid solutions. There is, however, another
method for the preparation of samples with homoge-
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neous crystal structures; it involves thermal treatment
in areducing medium. The FullProf calculation results
obtained for the samples with x = 0.5 prepared at T =
1570 K and T = 1770 K in air and the sample reduced
in an evacuated quartz ampule in the presence of tanta-
lummetal at T=1170K areshownin Fig. 1. Reduction
was performed for the sample prepared at T = 1570 K
in air. Treatment of the sample in an evacuated ampule
caused weight loss corresponding to a 2% decrease in
the content of oxygen. The sample was fully trans-
formed into the orthorhombic phase. The unit cell
parameters of several samples are listed in the table.
The unit cell volume increases as the content of oxygen
decreases. This can be explained by the appearance of
Co?* ions, whoseionic radiusis|larger than that of Co®*.
Electron microscopic studies of the surface of samples
showed the presence of 2-10 um polycrystalline grains
in the samples with x = 0.5. According to the X-ray
spectral microanalysis data, the content of cobalt and
iron in reduced sample grains was homogeneous. Nor
did we observe significant deviations from a uniform
distribution of cobalt and iron for the samples prepared
inair.

Magnetic properties. Samples with low iron con-
tents did not exhibit a dependence of magnetization on
their magnetic prehistory, as is characteristic of para-
magnets or antiferromagnets. Nor did we observe
anomalous behavior indicative of antiferromagnetic
ordering. The reciprocal susceptibilities measured for
the samples with x = 0.1, 0.15, and 0.4 are shown in
Fig. 2. The absolute value of the asymptotic paramag-
netic Curie point increased as the content of iron grew.
Thisis evidence of strengthening of antiferromagnetic
exchange interactions.

The field dependences of magnetization obtained at
various temperatures are close to linear, asis character-
istic of paramagnets or antiferromagnets. The field
dependence of magnetization for spin glasses should be
substantially nonlinear.

Note that the magnetic properties of the sample
doped with iron ions (10%) are sharply different from
those of pure LaCoO;, which experiences gradual tran-
sition into the diamagnetic state at temperatures below

Table
Space group Unit cell parameters, A Volume, A3
LaCoy gFep 403 R3c a=5.4784(7), c = 13.2127(6) 57.132
LaCoy sFey<Os R3c a=5.4881(7), c = 13.2368(6) 57.539
LaCoq sF€ey 505 _ 4 reduced Pnma a=5.4627(7), b =7.7573(8), c = 5.5129(1) 58.405
LaCoq 4Fen 605 Pnma a = 5.4405(9), b = 7.3355(6), ¢ = 5.4936(4) 57.7865
LaCoy sFey 05 Pnma a=5.4742(0), b = 7.7484(8), ¢ = 5.5070(3) 58.4265
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100 No. 6 2005



THE TWO-PHASE CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

()

Intensity

ny
A

M 1 L !
20 30 40 50 60 70 80
20

(b)

Intensity

26

1123

(©

Intensity

20 30 40 50 60 70 80
26

Fig. 1. Refinement of the structure of La(Cog sFey 5)O3 prepared (a) at T=1570K inair, (b) at T=1770K inair, and (c) by reduction
in a quartz ampule. The experimental data are given by dots, the calculated curve by a solid line, and their difference by the lower
solid line; vertical dashes correspond to the calculated reflection positions. The upper row of dashesin Fig. 1laisfor the rhombohe-

dral phase, and the lower row, for the orthorhombic phase.

100 K [1]. According to magnetization measurements,
this transition is absent in the sample with the concen-
tration x = 0.1, and the sample remains paramagnetic
even at T =5 K. The properties of the sample with x =
0.15 did not differ qualitatively from those of the sam-
plewithx=0.1.

All the samplesrich iniron (x = 0.4) are character-
ized by a small spontaneous magnetic moment. The
results abtained in studying the magnetic properties of
the samples with x = 0.4 and x = 0.5 prepared at T =
1770 K and the remanent magnetization of the reduced
composition are shown in Fig. 3. The sample with x =
0.4 becomes paramagnetic at Ty, =120 K. Thetransition
is fairly sharp, which is not characteristic of spin
glasses. The ZFC and FC curves at low temperatures
show that magnetization increases as the temperature
grows, which is also unusual for spin glasses. Possibly,
the sample exhibits long-range magnetic order. How-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

ever, conclusions about the type of its magnetic state
are difficult to make in the absence of neutron diffrac-
tion data. The temperature of magnetic ordering
sharply increasesto 300 K as the content of iron grows
to x = 0.5. The field dependences of magnetization are
evidence that spontaneous magnetization issmall, asis
characteristic of weak ferromagnets. It was found for
the sample with x = 0.5 prepared at 1570 K in air and
reduced in a vacuum that it had a small spontaneous
moment at room temperature; this moment could not be
suppressed by heating the sasmpleto 360 K (thiswasthe
highest temperature of our measurements). It follows
that the critical temperature at which magnetic ordering
disappears is higher than 360 K. Magnetization mea-
surements for the samples heated after cooling to
helium temperatures were performed without applying
an external magnetic field. The reduced sample exhib-
ited anomalous magnetization behavior over the tem-
perature range 5-100 K. This behavior corresponded to
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Fig. 2. Reciprocal paramagnetic susceptibility asafunction
of temperature for La(Cog gFeg 1)O3, La(Coq gsFey 15)03,
and La(Cog gFep 4)O3.
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Fig. 4. Field dependences of magnetization for
LaCop sFeg 503 and LaCog gFey 403 a T=5K.

a phase transition, possibly caused by spin reorienta-
tion.

Field dependences of magnetization show that the
reduced composition with x = 0.5 was characterized by
strong magnetic anisotropy. Hysteresis loops for the
samples with x = 0.4 and x = 0.5 obtained in air at
1770 K are shown in Fig. 4. These samples are charac-
terized by magnetic rigidity and a coercive force of
about 3 kOe at T =5 K. Oxygen loss during reduction
causes a dramatic increase in magnetic anisotropy
(Fig. 5). The coerciveforceisthen about 10 kOeat T =
293 K. Such a magnetic anisotropy value at room tem-
perature is unique for oxide compounds. Magnetic

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

TROYANCHUK et al.

M, G cm’/g
0.20 T T T T T T T

x=0.5, FC i
x=0.5
reduced

0.15

0.10F

0.05

150 200 250 300 350
T,K

|
0 50 100

Fig. 3. Temperature dependences of FC and ZFC magnetiza-
tionsfor (O, ®) La(Cog gFep 4)O3and (A, A) La(Cog sFep 5)O3
in a 100 Oe field. Shown by asterisks is the temperature
dependence of the remanent magnetization of the reduced
La(Cop sFep5)03 g sample.
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Fig. 5. Field dependences of magnetization for the reduced
LaCogsFegs03_q sample at (@) T=293 K and (0) T =
10K.

anisotropy sharply increases as the temperature
decreases. For the reduced sample, a 50 kOe externa
magnetic field was too low to cause reorientation of
magnetic moments at 10 K.

Conductivity measurements showed that the com-
positions with 0.3 < x < 0.5 were characterized by the
semiconducting conductivity type up to 370 K.

M Gssbauer spectra. The Mossbauer spectrum of
the sample with x = 0.5 prepared at 1770 K (rhombohe-
dral phase) wasrecorded at T = 293 K. It was a doubl et
with quadrupole splitting, AQ = 0.440 mm/s. The iso-
meric shift & = 0.369 mm/s was evidence that the iron
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ions were in the trivalent state. The spectra of orthor-
hombic samples consisted of two or more sextets,
which was evidence of magnetic noneguivalence of the
ironions.

Discussion. As follows from the Méssbauer data,
theironionsintheLaCo, _,Fe0; system arein the oxi-
dation state 3+. The question arises what is the spin
state of the cobalt ions? To answer this question, let us
compare the properties of LaCo,_,FeO; and
LaCo; _,Ni,O;. The authors of [12] performed a com-
plex study of thelatter system to find that the cobalt and
nickel ionswere also in the trivalent state. The unit cell
volume of the LaCo, sNi, O3 composition was substan-
tially larger than the unit cell volumes for the extreme
solid solution compositions LaCoO; and LaNiOs. This
means that the cobalt ionsin LaCo, _,Ni,O; werein the
intermediate spin state, because the ionic radius of Co®*
(1S) is substantially larger than the ionic radius of Co®*
(LS) [13].

We, however, found that the unit cell volume of
LaCo; _,Fe,0O4 solid solutions with homogeneous crys-
tal structures linearly increased as the content of iron
grew, which was evidence in favor of the low-spin state
of the cobalt ions, as in LaCoO;. Magnetic properties
also show that the cobalt ions are in the low-spin state.
For instance, let us compare the magnetic properties of
LaCoygNig,05 and LaCo,gFe,;05. The former is a
spin glass with T; = 16 K, whereas the latter remains
paramagnetic even at liquid helium temperatures. This
shows that the cobalt ions are in the ground nonmag-

netic state with the t5,el configuration. A sharp
increase in magnetic susceptibility at low temperatures
and as the concentration of iron ionsincreasesisin al
probability caused by the magnetic contribution of Fe*
ions, whose exchange interaction is antiferromagnetic.
Theseions begin to form clusters as their concentration
increases, and long-range magnetic order arises closeto
the x = 0.4 concentration. The magnetic properties of
the composition with x = 0.4 more closely correspond
to amagnetically ordered than spin glass state. Thisfol-
lows from afairly sharp transition to the paramagnetic
state, which is characteristic of systems with coopera-
tive magnetic ordering. Neutron diffraction data are
necessary to refine the magnetic structure of the com-
pound. The temperature of the transition into the para-
magnetic state sharply increases at x = 0.5, because the
cobalt (LS) ions are nonmagnetic. The reason for this
may be very strong exchange interaction between the
iron ions. Indeed, the temperature of antiferromagnetic
ordering in LaFeO; is 750 K [14], which is evidence of
strong negative exchange interactions. The small spon-
taneous magnetization is in al probability caused by
antisymmetric exchange interaction of the Dzyal oshin-

ski-Moriya type. Indeed, both rhombohedral (R3c)
and orthorhombic (Pbnm) phases admit the appearance
of weak ferromagnetism.
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The compoundswith x = 0.4 and x = 0.5 are magnet-
ically rigid materials with afairly high coercive force.
Like Co* (LS), Fe** ions cannot make a considerable
contribution to magnetic anisotropy. Nor can the large
magnetic anisotropy value be caused by the morphol-
ogy of crystalites, because, according to the electron
microscopic data, the mean size of crystallites is about
10 um. A crystallite should therefore be divided into a
large number of magnetic domains. In al probability,
the large magnetic anisotropy is caused by the Dzy-
aloshinski-Moriya antisymmetric exchange directly
related to spin-orbit coupling. The reduction of the
sample with x = 0.5 sharply increases magnetic anisot-
ropy. At helium temperatures, a 5 T external field is
insufficient for displacing the magnetic moment from
the easy magnetic axis in the direction of the field. We
believe that the reduction of samples causes the appear-
ance of oxygen vacancies. Near these vacancies, Co?*
or Co* ionsin the high-spin state are stabilized. Both
of them can make a large contribution to single-ion
magnetic anisotropy and to the anisotropy of weak fer-
romagnetism because of strong spin-orbit coupling
[15]. The appearance of Co?* (or Co®* (HS)) magnetic
ions somewhat increases Nedl temperature, most likely
because of negative exchange interactions between
theseions and Fe*'.

Note in conclusion that, in spite of a noticeable
increase in the Co—O mean distance in CoOg octahedra
as cobalt ions are replaced by iron, cobalt ions predom-
inantly remain in the low-spin state. This is evidence
that Co®* (LS) remains in the ground magnetic state in
LaCoO; as the temperature increases and the anoma-
lous behavior of the properties of LaCoO; is caused by

thermal excitations in Co® (1S) states. The magnetic
properties of the La(Co,_,Fe)O; system can be
described using the model according to which Co®*
ions do not participate actively in exchange interac-
tions, and weak ferromagnetism and large magnetic
anisotropy are caused by the magnetically active sub-
system of Fe** ions. Their interactions result in the
appearance of long-range magnetic order at x = 0.4.
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Abstract—Magnetic-group analysis of the symmetries typical of quasicrystals shows that ferromagnetism is
incompatible with the icosahedral symmetry. Depending on the magnetic field direction, the icosahedral sym-
metry in the magnetic field is reduced to pentagonal, trigonal or rhombic symmetries. © 2005 Pleiades Pub-

lishing, Inc.

Quasicrystals are currently attracting great interest
because of the variety of their unusual physical proper-
ties. Among these, the magnetic properties and, espe-
cialy, ferromagnetism are the least studied. The first
experimental information on ferromagnetism in quasi-
crystals was connected with the presence of ferro-
magnetic nonquasicrystalline inclusions of a second
phase [1, 2], and later ferromagnetic-like behavior was
observed in pure icosahedral phasesi-AlPdMnB and i-
AlPdFeB [3, 4]. Mossbauer spectroscopy and nuclear
magnetic resonance (NMR) experiments have shown
that the magnetic state in these systems was ferromag-
netic, but the samples consisted of large magnetic clus-
ters with extensions of about 20 nm [2, 4]. Theoreti-
caly, the ferromagnetic ordering in quasicrystals has
never been considered, and the most important problem
is the compatibility of ferromagnetism with quasicrys-
talline symmetries. To the best of our knowledge, it has
never been considered before, although the color
groups for quasicrystalline solids have been studied [5,
6]. In the present work, a theoretical analysis of the
magnetic groups for quasicrystalsis performed to solve
this problem.

The existence of a magnetic structure in solids is
formally connected with the time inversion operation.
The time inversion symmetry operation R changes the
direction of the current density in a solid but does not
act on gpatial coordinates. The element R commutes
with the rotations C,,, the rotations S,, and the reflec-

tions g, and at the sametime, R? = E (the identity trans-
formation). Magnetic crystalline classes for periodic
solids are described in [7]. Structurally, magnetic
classes can be divided into three types. The magnetic
class of type | has the ordinary point group symmetry.
Thedirect product of point groupswith the group{ E, R}
forms the magnetic class of type Il. The magnetic class
of type Il containsthe operation R in combination with

T This article was submitted by the authors in English.

some rotations or reflections. These magnetic classes
have the structure G(H) = H + RgH, where H is an
invariant subgroup of index 2,g 0 G, butg [0 H, and R
is the time inversion operator. In periodic solids,
58 magnetic classes of type |11 exist. In this paper, we
obtain the magnetic classes for quasiperiodic structures
following the method described in [7]

We first obtain the magnetic classes for symmetries
with a preferable main axis (we have the five-, eight-,
ten-, and twelvefold axesin mind). Classes with such a
symmetry are related to pentagonal, octagonal, deca-
gonal, and dodecagonal systems, correspondingly. The
magnetic classes of type | represent an ordinary point
group. Ferromagnetism is possible in the following
classesof typel: Cs, Csp, Cg, Can, Sg, C10, Caon S0 C12,
Cin, and S;,, with the magnetic moment vector
directed along the main axis. Of course, ferromag-
netismisimpossiblein all type-11 magnetic classes (due
to the presence of the time inversion R).

As pointed out above, al possible index-2 sub-
groups should be determined in order to find the mag-
netic classes of type I11. The simplest way is to use the
tables of characters of irreducible representations.
Classes with characters equal to one in one-dimen-
sional representations form invariant subgroups of
index 2. All possible groups are given in the table for
the systems under consideration. Each magnetic classis
defined by a point group and its index-2 subgroup (in
parentheses), which is given in the table. We note that
only the class C; does not have index-2 subgroups, and
consistently magnetic classes of type I11. For the exist-
ence of the ferromagnetic state in magnetic classes of
typelll, it is necessary that these classes do not contain

the elements Rl or R, (I is the spatial inversion and
0, is the reflection in the plane perpendicular to the

main axis). All classes of typelll that allow aferromag-
netic state are given in the last column in the table. The
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Magnetic classes for quasicrystalline symmetries

Symmetry Point groups Magnetic classes of type 11 Ferromagnetic classes
Pentagona | Cs, Cs,, Ds, S;g, Dsg| Cs5,(Cs), D5(Cs), S10(Cs), Dsd(Csy, Ds, Si0) Cs51(Cs), D5(Cs), Dsg(Sio)
Octagonal Cg, Sg, Cgy» Dg, Can, | Cg(Ca), S5(Ca), Cg,(Cg, Cay), Dg(Cg, D), Cen(Csg, Cany Sg)s | Csy(Cs), Dg(Csg), Dao(Ss)s

4d» Den 4d(D4, Cay» Sp), Dgn(Cany Cays Dg, Dap, Dag) gn(Cs
Decagonal | Cyg, Csp, C1ov1 D1gr | C10(Cs), Csn(Cs), C10UC10: Cs1)s D10(Ca0, Ds), C10n(Cior | C101(C10)s D10(C10),
10n Dspy D1on s S10), Dsn(Ds, Csy s Csn)s D1on(C1on Caovs D10y Dsny Dsg) | Dsn(Csn)s D1on(Cion)
Dodecagond | C1, S12, C1oy, D12, | C12(Cé); S12(Cé), C120(Caz Cey), D12(Ca2 Dg), C1on(Cr2r | C12(C12), D12(C12),
C12n Deg» D1on Cén S12): Ded(De: Cey» S12)s D12n(Ca2ny Ca2vs D12, Dens Ded) | Dea(S12)s D12n(Cizn)
Icosahedral |V, Yy YY) -

magnetic moment vector in these classes is directed
along the main axis.

In the case of the icosahedral symmetry, there is
only one class Yy, (Y) of type Ill. In this class, it is
impossible (due to the presence of the operation RI) to
find a direction for which the magnetic moment vector
is invariant under all symmetry operations. However,
due to different conditions (magnetostriction, external
field, etc.), theicosahedral symmetry (the groupsY and
Y ) can be reduced to the pentagonal groups D5 and D,
if the action is along one of the fivefold axes or to the
trigonal (D5 and D4y4) and rhombic (D, and D) groups
if the action is along one of the three- or twofold axes.
In this sense, the possibility of ferromagnetism in
icosahedral quasicrystals is analogous to ferromag-
netismin crystalswith cubic symmetry. It isknown that
the lattice of the ferromagnetic phase of iron is not
cubic (body-centered cubic), but tetragonal, with tet-
ragonal distortion on the order of 107 [7, 8], which is
too small to be observed experimentally. A distortionin
the icosahedral quasicrystal (with the group Y,)) due to
magnetostriction along one of the five-order axes
should reduce the symmetry to class Dsy, which forms
the ferromagnetic class Dy, (S,0)-

In quasicrystal's, magnetostriction can generate pha-
sons and, as a result, a sample becomes magnetically
inhomogeneous. Actually, the experiments mentioned
above have been explained in terms of large magnetic
clusterswith the size about 20 nm[2, 3]. Therefore, the
magnetic state of these objects may be characterized as
a“mictomagnetic” (mixed) one. For the mictomagnetic
state, the susceptibility is analogous to an antiferromag-
netic or spin glass state, but spontaneous magnetization
after cooling inthefield istypical of ferromagnets (8, 9].
In this sense, the “ferromagnetic” quasicrystals have
many features in common with concentrated alloys
CuMn and AuFe, where magnetic behavior can be
described by the presence of large supermagnetic clus-
ters with identical moments and anisotropy fields, but
with random directions of the light magnetization axis.
Upon increasing the concentration, creation of mag-
netic clusters becomes more probable and the long-
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range magnetic order can propagate over the entire
sample[8, 9].

In conclusion, based on a magnetic-group anaysis,
we have predicted that ferromagnetism isincompatible
with the icosahedral symmetry of quasicrystals. In
magnetic field, the icosahedral symmetry is reduced to
the pentagonal or trigonal or rhombic symmetry
depending on the field direction. Magnetostriction can
induce phason distortions in quasicrystals, and as a
result, the system becomes magnetically inhomoge-
neous. Such a physical picture can explain the existing
experimental dataon “ferromagnetic” quasicrystals.
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Abstract—Formation of the liquid state of clusters with pairwise interactions between atoms is examined
within the framework of the void model, in which configurational excitation of atoms results from formation of
voids. Void parameters are found from computer simulation by molecular dynamics methods for L ennard-Jones
clusters. From that standpoint, phase transitions are analyzed in terms of two aggregate states. Thisinformation
allows us to divide the entropy jump during a solid-liquid phase transition into two parts: one corresponds to
configurational excitation at zero temperature and the other arises from thermal vibrations of atoms. The latter
part contributes approximately 40% for Lennard-Jones clusters consisting of 13 and 55 atoms, increasing to
56% for bulk inert gases. These magnitudes explain the validity of melting criteria based on thermal motion of
atoms, even though the distinctive mechanism of this phase transition results from configurational excitations.
It is shown that the void concept allows analyzing various aspects of the liquid state of clusters including the
existence of alimiting freezing temperature below which no metastable liquid state exists, as well asthe exist-
ence and properties of glassy states that may exist below the freezing limit. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Clusters, being systems of relatively small finite
numbers of bound atoms, differ from macroscopic
atomic systems in several properties. Their solid states
are characterized by sharp, nonmonotonic dependence
of their population on the number of component atoms.
The most striking aspect is the occurrence of “magic
numbers’ that corresponds to completed atomic shells,
often of polyhedra rather than lattices. In experiments,
these favorable structures exhibit heightened popula-
tions and stabilities, see, e.g., [1-3]. In the subsequent
analysis, we focus on clusters with pairwise interac-
tions between atoms. In this case, the pairwise charac-
ter and magnitude of the interaction means that the
interaction energies between atoms of a cluster are
small compared with a typical electronic excitation
energy. This criterion is valid for clusters of inert gas
atoms and clusters of molecules typically found in a
gaseous state under normal conditions. (It does not hold
for covalently bound clusters or metallic clusters.) We
consider the phase change of clusters between the solid
and liquid states and examine how it differsin principle
from thetraditional melting/freezing transition in macro-
scopic systems. Indeed, the phase transition in macro-
scopic systems proceeds by a sharp step in specific prop-
erties, and hence, in classical thermodynamics, there are
phase transitions of the first and second orders [4-9],
depending on the behavior of the derivatives of specific
thermodynamical quantities. In the cluster case, com-
puter simulation exhibits coexistence of the solid and

T This article was submitted by the authors in English.

liquid phases [10—-13] over some finite temperature and
pressure band that makes the phase change of clusters
richer than for macroscopic systems, and, in a sense,
makes the classical thermodynamic classification of
phase transitions, based on specific discontinuities,
inapplicable here, even while the basic laws of thermo-
dynamics remain completely valid. Because of the
coexistence of aggregate states in the phase change of
clusters, dividing the phase transitions into sharply
divided types losesiits sense.

The phasetransition isacollective phenomenon that
results from simultaneous interaction of many atoms.
Therefore, ssimple analytical one-particle models are
not suitable for its analysis. In considering the phase
changein clusters, we use the results of computer sm-
ulation for clusters whose atoms interact through the
L ennard-Jones potential. We focus mainly on theliquid
state of these systems, whose properties depend mono-
tonically on the number of cluster atoms, in contrast to
the solid state, which exhibits its irregular dependence
(with magic numbers) on the number of cluster atoms.
As a result of melting, the crystaline distribution of
atomsislost, and theliquid state has more or less amor-
phous structure, athough a shell-like distribution of
atoms may be conserved to some degree. The aim of
this paper is the analysis of some properties of liquid
cluster systems on the basis of appropriate models. In
constructing our model, we must take the specifics of
the cluster liquid state into account. In general, this can
follow from the probability of the total kinetic energy
of cluster atoms held at constant energy, for example, as
was done in [11] for the Lennard-Jones cluster of
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13 atoms. Here, this probability has a bimodal formin
arange of internal energies near the state of classica
melting, i.e., where the chemical potentials of the solid
and liquid states are equal. (For convenience, we here
refer to this state as the “melting point.”) The two max-
ima of this distribution and their vicinities correspond
to two aggregate states, solid and liquid.

In modeling alarge liquid cluster with pair interac-
tions between atoms by a spherical liquid drop, wetake
into account that atoms in this aggregate state occupy a
larger volume than in the solid state. Then we can con-
sider the cluster’'s transition from solid to liquid as a
result of formation of voids inside the cluster [14]. We
consider a void as an elementary configuration excita-
tion. A void is a perturbed, even arelaxed, vacancy; in
contrast to avacancy in asolid, avoid has an indefinite
volume and shape that changesin time. On the basis of
computer simulation results, we find the average void
parameters as they emerge for macroscopic inert gases
[15-19] on the basis of their measured parameters. This
allows us to analyze various aspects of the phase tran-
sitions in condensed inert gases as well asin Lennard-
Jones clusters.

Introduction of a void as an elementary configura-
tion excitation isin reality a simplification of a general
analysisof the potential energy surface of an ensemble of
interacting atoms [20]. In a multidimensional space of
atomic coordinates, the potential energy surface for an
atomic ensemble with pairwise interactions consists of
many potential wells separated by saddles [13, 21-24].
Evolution of this ensemble is described by saddle-
crossing dynamics[23]. In particular, acluster isfound
near a minimum of the potential energy long enough to
equilibrate its vibrations; transition to a neighboring
minimum typically proceeds relatively slowly by com-
parison [25]. (Of course, if there are minima separated
by low barriers, equilibration among these may occur
on the same time scae as vibrational relaxation, and
can betreated appropriately.) First, thisleadsto a short-
range, short-duration order for any amorphous struc-
ture of atoms, because each configuration of atoms is
preserved for a relatively long time (such that the
atomic kinetic energy is not very large). Second, this
allows us to introduce an average void by averaging
parameters over times that exceed the typical vibra-
tiona period but are shorter than typical well-to-well
passages. This allows us to separate configuration exci-
tation that is responsible for the phase transition from
vibrational excitation associated with an increase of the
kinetic energy of the atoms. This fact is of importance
for the analysis of the phase transition.

We note that the phase change in clusters is richer
and more complicated than in bulk systems. In particu-
lar, the sharp onset of aliquid state is absent for Len-
nard-Jones clusters of 8 and 14 atoms (and others) [26];
these are exampl es of systemsthat do not show bimodal
distributions of kinetic energies on time scales of vibra-
tional relaxation. In addition, large clusters can exhibit
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several aggregate states associated with melting of var-
ious atomic shells[27, 28]. Below, we focus on clusters
with completed atomic shells and consider melting of
surface shells. In these cases, the melting process is
clearer and more easily distinguished. First, because
the surface shell contains a considerable fraction of the
cluster's atoms, the statistical weight of configuration-
ally excited states with voids in the surface shell isrel-
atively large, asisthe entropy of transition to this state.
Thisleadsto astableliquid state for the surface layer of
these clusters, as well as a state composed entirely of
liquid. Next, in contrast to the liquid state of bulk sys-
tems, where avoid differs clearly from the vacancy ina
solid, a surface void in a not-so-large cluster can be
considered a perturbed vacancy. For example, the
energy of formation of a void in the liquid state of a
bulk inert gas is approximately half the energy of
formation of avacancy in the solid state of a bulk inert
gas[15-17]. Inthe case of clusters under consideration,
the energy difference of formation of surface vacancies
and voids is not very large, and hence a void can be
considered a perturbed vacancy. This facilitates the
analysis.

Because some concepts of classical thermodynam-
ics of macroscopic systems are not valid for clusters, it
isnecessary to revise some of those conceptsin order to
apply them to clusters. In particular, the phase of an
aggregate state is defined in classical thermodynamics
as a uniform distribution of atoms that is restricted by
boundaries. From the standpoint of the void concept,
this means that the liquid aggregate state as a configu-
rationally excited state hasto contain many elementary
excitations—voids. To transfer this concept to small
clusters, it is necessary to revise the definition, to be
donein what follows.

The void concept gives a sufficiently detailed pic-
ture of the liquid aggregate state, in comparison with
classical thermodynamics, and allows us to resolve its
apparent paradoxes. As an example, we consider the
criterion of the phase transition for macroscopic sys-
tems. According to the widely used Lindemann crite-
rion [29, 30], bulk melting proceeds at the temperature
at which theratio of the atomic oscillation amplitude to
the distance between nearest neighbors reaches a cer-
tain value (10-15%). Development of numerical meth-
ods for computer cluster simulation gave new variants
of this criterion of cluster melting on the basis of the
EttersKaelberer parameter [31-33] or Berry parame-
ter [12, 34]; these account for pair correlations in posi-
tions of atoms. These parameters have jJumps at melting
and, as with the Lindemann criterion, are connected
with thermal motion of atoms, even though the melting
results from configurational excitation. Hence, thereis
an apparent contradiction between the nature of the
phase transition in ensembles of bound atoms due to
configurational excitation and the practical criteria for
this transition based on thermal motion of atoms. The
subsequent analysis of numerical parameters of this
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phase transition exhibits the resolution of this apparent
contradiction.

Although vibrational excitation of finite and “infi-
nite” numbers of bound atoms that characterizes ther-
mal motion of atoms is separated from configuration
excitation that is responsible for the phase transition,
thermal motion of atoms gives a contribution to the
entropy jump ASat the melting point, because the solid
state is more compact than the liquid aggregate state.
Reflecting just the thermal (kinetic energy) part of the
entropy jump, the vibrational parameters nevertheless
simultaneously characterize the phase transition. By
exhibiting the connection between the configurational
and kinetic-energy aspects, the void analysis justifies
applying the melting criteria based on thermal motion
of atoms.

The goal of this paper is the analysis of Lennard -
Jones clusters with completed shells from the stand-
point of the void concept. This consistsin obtaining the
void parameters from treatment of numerical computer
calculations and in the analysis of these datato connect
the two kinds of excitation.

2. CHARACTER
OF CLUSTER CONFIGURATIONAL EXCITATION

We consider an ensemble of interacting atoms in
which the ground el ectronic stateiswell separated from
electronically excited states, and these excited states do
not partake in evolution of the atomic ensemble, i.e.,
development of this system can be described in terms of
motion on the potential energy surface (PES) in amul-
tidimensional space of nuclear coordinates, and this
PES corresponds to the electron ground state. The PES
has many local minima, which was discovered in first
numerical calculations of the cluster energy at zero
temperature for a simple character of atomic interac-
tions [35-37]. Early agorithms that made oversimpli-
fying assumptions about the potential landscape led to
underestimations of the number of minima, but with
increasing the computing power, more elaborate meth-
ods made it possible to explore these landscapes fairly
thoroughly and to obtain plausible estimates regarding
the dependence of the number of minimaon the number
n of atoms in the cluster. For Lennard-Jones clusters,
the number of geometrically distinct minima increases
somewhat faster than exponentially with n; there are
roughly n! permutational isomers of each of these, and
hence the total number increases roughly as n! exp(an)
[21, 36-39]. Asaresult, cluster evolution consists of tran-
sitions between neighboring local minima of PES that
correspond to saddle-crossing dynamics [13, 22-24].
This concept is a basis for investigation of various
ensembles of interacting atoms, from simple clustersto
biological molecules [20, 24].

The character of transitions between neighboring
minima of PES is given in Fig. 1, which shows sche-
matic projections of a PES on planes in the space of
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Fig. 1. The evolution of an ensemble of atomsin the ground
electron state as the propagation of a point in the phase
space of atomic coordinates resulting from transition
between neighboring local minima of the potential energy
surface.

atomic coordinateswhere only the coordinate related to
a specific transition between two local minima of the
PES varies. (These planes are different for each transi-
tion.) Energy levels for each well indicate an average
atomic energy along the coordinate of the transition.
Because this energy is significantly less than the barrier
height, such transitions proceed seldom, only when the
kinetic energy of atomsin the transition degree of free-
dom exceeds its average energy adequately. Hence, the
system has many oscillationsinside agiven well until it
transfers to another local minimum of the PES. Then
identifying a given local (but not global) minimum of
the PES as a configurational excitation of the system of
interacting atoms, we can separate it from thermal
motion associated with atomic oscillations. Thisallows
us to consider the configurational excitation indepen-
dently of vibrational excitations and is the basis of the
following anaysis. Moreover, taking a readlistic
assumption that a typical time of establishment of the
thermodynamic equilibrium for thermal motion of
atoms is short compared to atypical time of transition
between local minimaof the PES, we can introduce the
temperature of thermal motion of bound atomsfor each
configuration excitation.

We use an approach based on the assumption of a
large number of local minimaon the PES. In particular,
the Lennard- Jones cluster of 13 atoms is characterized
by 1478 local minima and 17357 saddle points of the
potential energy surface [22]; early estimates found
only 988 local minima [35, 36]. As noted above, the
number of geometricaly distinct loca minima
increases roughly exponentially with increasing the
number n of atomsin the cluster [20, 21, 38]. We con-
struct an aggregate state from configurationally excited
states. Restricting ourselves to the local minima of the
PES that are occupied with a nonnegligible probability
in arange of cluster temperatures under consideration,
we join the local minima with similar excitation ener-
giesinto one aggregate state. Because of the large num-
ber of such local minima, the aggregate state is charac-
terized by a large statistical weight and, correspond-
ingly, by alarge entropy, and hence the probability for
acluster to be found in this aggregate state may be con-
siderable, even when the excitation energy is signifi-
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Fig. 2. The character of the lowest configurational excita-
tionintheicosahedral cluster consisting of 13 atoms at zero
temperature.

cantly less than KT. Below, we illustrate this definition
of the cluster aggregate state with examples.

3. CONFIGURATIONAL EXCITATION
OF THE ICOSAHEDRAL CLUSTER OF 13ATOMS

Dividing cluster excitations into two parts, configu-
rational and vibrational, we consider these parts inde-
pendent. Next, for configurational excitation, we use
the void model, considering this excitation asaresult of
formation of voids. Then we can expressthe parameters
of the phase transition and other cluster properties
through the parameters of forming voids. We restrict
ourselvesto clusters with completed shells, which sim-
plifies this analysis because a void, an elementary con-
figurational excitation, isin reality a perturbed vacancy.

We start the analysis of configurational excitation
from the simplest cluster with completed shells that has
the icosahedral structure and consists of 13 atoms. In
thelowest-energy state, itsfirst (and only) shell isfilled.
Configurational excitation of this cluster consists in
transition of one atom from the surface shell to the clus-
ter surface as shown in Fig. 2. After formation of a
vacancy on the cluster shell, the atoms around the
vacancy are distributed over alarger space due to ther-
mal motion, and the promoted atom moves over the
cluster surface more freely than any of the other atoms.
As aresult of the configurational transition, an excited
cluster state has the statistical weight g and the addi-
tional entropy AS, given by

g=12x15 = 180, AS, = Ing=52. (1)

Here, the value 12 is the number of shell atoms, any of
which can be promoted, and 15 is the number of posi-
tionsfor apromoted atom if it isnot in asite bordering
the new vacancy. It isimportant that thermal motion of
atoms gives a contribution to these values near the melt-
ing point because of the free motion of bound atomsin
this configurationally excited state.
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We now determine energetic parameters of thistran-
sition. In the ground state, each surface atom of this
icosahedral cluster hasfive atomsfrom the surface shell
and the central atom as nearest neighbors. The pairwise
interactions therefore yield six “bonds’ to these atoms.
When this atom is located on the cluster surface, it has
only three nearest neighbors. Then the energy of this
atomic transition onto the hollow between three atoms
on the cluster surface is roughly equal to 3D, where D
is the energy needed to break one bond. (We assume
atomsto be classical, and hence the depth of the poten-
tial well D for the two-atom interaction coincides with
the dissociation energy of a diatomic molecule.) Next,
if asurfaceatomistransferred to aneighboring position
on the cluster surface, it retains two bonds between
nearest neighbors as it makes the transition between
neighboring hollows on the cluster surface. Hence, for
this transition, an atom must overcome a barrier whose
magnitudeisroughly 1D. Figure 3 givesthe energies of
these states at zero temperature and the values of barri-
ersthat separate them for the Lennard-Jonesinteraction
potential between atoms [40]. We see that the differ-
ence between the datain Fig. 3 and the above valuesis
not substantial. Hence, our consideration of an elemen-
tary configurational excitation, a void, as a perturbed
vacancy isjustified.

Figure 3 gives the energies of these states at zero
temperature and the values of barriers that separate
them [40]. As aresult of configurational excitation, an
atom transfers from the shell of 12 atoms, as shown in
Fig. 2. For this transition, an atom must overcome a
barrier; likewise, transitions to other positions on the
cluster surface are accompanied by overcoming ener-
getic barriers. Increasing the energy facilitates transi-
tions between different stable positions on the cluster
surface, as well as exchanges between a configuration-
ally excited atom and another one. All configurationally
excited states with promotion of one atom are con-
nected in the liquid state, and hence the system may
find all permutations among the atoms of any attainable
structure. Thisfollowsfrom the datain Fig. 3. Thus, al
the configurational stateswith one atom promoted from
the outer shell comprise the lowest-energy excited
aggregate state.

We now analyze the character of configurational
excitation of this cluster in the phase coexistence range
where therma motion of atoms influences the transi-
tion parameters. We base this on the results of computer
simulation of the Lennard-Jones cluster of 13 atoms
[11], in which this cluster is considered a member of a
microcanonical ensemble [41], i.e, the total cluster
energy is conserved during the cluster’s evolution. In a
particular band of energies, the probability distribution
of the total kinetic energy (or mean kinetic energy per
atom) of the cluster becomes the bimodal distribution,
which confirms the existence of the aggregate statesin
the dynamic equilibrium in this case (solid and liquid).
Therefore, inthisrange, we can treat the results of com-
puter simulation [11] in terms of adynamic equilibrium
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Fig. 3. The energy and barrier positions for the lowest configurational excitations of the Lennard-Jones cluster consisting of

13 atoms according to [40].

of two aggregate states. This was fulfilled partialy in
[42—-44], and we give the results of this treatment
below.

We now give general formulas of this consideration
in which the results of numerical calculations are com-
pared with simple formulas that reflect a simple con-
cept. For the classical motion of bound atomsinsidethe
cluster, we represent the energy E of a cluster consist-
ing of n atoms, with apair interaction between them, in
the form

_ _ me i’
E=U+K = Zu(r”)+ ZZ
0] i

Here, U is the total potential energy, K is the total
kinetic energy of atoms, u(r;) is the pair interaction
potential between atoms at a distance
wherer; andr;, are the atomic coordinates, and misthe
atomic mass. This formulais the basis of our anaysis
of cluster computer simulations. We consider the prop-
erties of two terms of this formula, taking into account
that thermal equilibrium is usually established for
atomic vibrations. This allows us to introduce the
atomic temperature T, with the motion of atoms treated
asthat of aset of harmonic oscillators. The cluster tem-
perature is defined from the relation

§nT,

K=2

©)
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where n > 1 and the total kinetic energy of atoms is
averaged over times much longer than the period of
atomic oscillation. A typical oscillation time 1 for
atoms can be expressed through the Debye frequency

Wp as

1_ %

(4)
We note that for a microcanonical ensemble, this defi-
nition of the effective temperature, although useful and
widely chosen, is not the only one, and different defini-
tions are not equivalent [45].

The global minimum of the potential energy surface
of thiscluster hasthe structure of aregular icosahedron,
and it correspondsto the cluster’s ground state, its equi-
librium state at zero temperature. Transitions from the
global minimum to other local minima of the potential
energy surfacefor a13-atom cluster areresponsiblefor
the phase transition to the liquid aggregate state. Fig-
ure 3 gives the energies of the lowest configurationally
excited states of this cluster at zero temperature and the
values of barriersthat separate them [40]. Asaresult of
configurational excitation, an atom transfers from the
shell of 12 atoms, as shown in Fig. 2. At high tempera-
tures, the lowest configurationally excited state is the
liquid aggregate state, which is to be justified below.

The energy of anisolated cluster of 13 atomsin the
energy range where both solid and liquid may be stable
can be represent as

= —Eg+Ey = U +Kg = AE+ U+ Kyg, (5)
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Fig. 4. The dependence on the excitation energy for the
energy part related to the kinetic energy of atomsfor an iso-
lated Lennard-Jones cluster of 13 atoms. This value is
identical for the solid and liquid cluster states. The arrow
indicates the excitation energy of the phase transition
Wsol = Wiig-

0.36
6

where E, is the binding energy of cluster atoms at zero
temperature, E,, is the excitation energy, Ky, and Ky,
are the total kinetic energies of atoms for the solid and

liquid cluster states, U'§o| and Uﬁq are the average
potential energies of the cluster for the kth local mini-
mum of the potential energy surface, and AE isthe aver-
age excitation energy above the energy needed to reach
Uﬁq required to produce the labile liquid aggregate
state. The values in this formula are averaged over
timesthat exceed atypical time of atom oscillations but
are less than a typical transition time between cluster
aggregate states. Within the framework of this consid-
eration, we join energetically similar local minima of
the cluster potential energy into one aggregate state,
assuming the transitions between local minima of the
same aggregate state to be more effective than transi-
tions between states that belong to different aggregate
states. In other words, we assume that the system,
although liquid, explores the local minima available to
it far more frequently than it returns to the solid with
which it isin the dynamic equilibrium-on long enough
time scales.

We introduce the effective temperature for a given
aggregate state of the cluster on the basis of aformula
transformed from formula (3):

2 _ 2K
3n—6K - 33’ ©)

where n = 13 is the number of cluster atoms, and the
energy fraction n related to the kinetic energy of atoms
is

— Ksol — Kqu
nsol - Eex7 r]liq - Eex_AE (7)
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If atomic motion is a combination of harmonic oscilla-
tors, we haven = 0.5. Anharmonicity of the oscillations
typically leads to a decrease of this value, and n(E,)
decreases with an increase of E,. Treatment of the
results of computer simulation [11] for this cluster by
the method in [43] gives the dependence n(E,,) that is
represented in Fig. 4. We note that

nsol(Eex) = r]qu(Eex)

within the limits of the result accuracy, while this quan-
tity has different values for the solid and liquid states at
identical temperatures. This value starts from

N(Ey, =0) = 0.5,

wherethe system can be described in terms of harmonic
oscillators and decreases monotonically with increas-
ing the excitation energy because of the increasing role
of anharmonicity of the dominant stretching modes.t
Hence, the parameter ) characterizes the influence of
the anharmonicity in atomic motion of an isolated clus-
ter as the excitation energy increases.

From these data, we have the excitation energy of
the cluster liquid state,

Keo = Kiig

N(Ee)

_ Kiq _
= Ey sl 2.49 + 0.05.

sol

AE =
(8)

Comparison of formula (8) with the datain Fig. 3 for
the excitation energies at zero energy shows that the
difference of these energies is not significant. In con-
trast to this, theratio of the energy of void formation for
bulk inert gases to the vacancy energy formation is
approximately one half. The energy of void formation
a the melting point T,, = 0.29D allows us to find the
entropy jump of the bulk system at the melting point

AS, = _Ar—E = 86+0.2. ©)

m

Comparing thiswith the entropy jump AS, of the cluster
at zero temperature according to formula (1), we find

A
A% =0.6.

ie (10)

1 Some modes, notably bending modes in molecules and, at high
energies, high-frequency phonons in large clusters and solids,
may have negative anharmonicities. For such systems, thisline of
reasoning requires further scrutiny. But for clusters of at least
several hundred atoms, it is a valid assumption that the anharmo-
nicity reduces the spacing of the relevant modes as the energy
increases.
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Thus, the different character of atom motion in the solid
compact aggregate state and in the liquid aggregate
state with its sparser distribution of atomsincreasesthe
entropy jump.

An isolated cluster, viewed as a microcanonical
ensemble of atoms, is characterized by two tempera-
tures if it can be found in two aggregate states only.
These temperatures are determined by formula (6) for
each aggregate state, and ignoring the anharmonicity,
which gives n = 0.5, we use formula (8) to obtain the
difference of the atomic temperatures T, and T;;, of the
solid and liquid aggregate states near the melting point:

2AE

T —Tig = 33

= 0.15D. (11)

Figure 5 gives the values of these temperatures for the
Lennard-Jones cluster of 13 atoms as a function of the
cluster excitation energy, and these data follow from
treatment of the computer simulation results [11] for
this cluster. Along with these temperatures, we can
introduce the configurational cluster temperature Ty
that follows from the equilibrium between the solid and
liquid cluster states according to the formula

= DAFD_ DAE'l'A
DTef %

Wi

Q

(12)

3

SO

where wg, and w;;, are the respective probabilities for
the cluster to be found in the solid or liquid states and
AF is the free energy jump at melting. The configura-
tional temperature is determined by populations of the
solid and liquid aggregate states. Figure 5 gives the
dependence of the configurational temperature on the
cluster excitation energy. The configurational tempera-
ture tends to the solid temperature in the limit of low
temperatures, and to the liquid temperature in the limit
of high temperatures.

4. CONFIGURATIONAL EXCITATION
OF THE ICOSAHEDRAL CLUSTER OF 55 ATOMS

We consider a cluster as a member of a canonical
ensemble [41], when it is maintained under isothermal
conditions. Experimentally [46-49], this condition can
be reached when clusters are located in a gas of light
(usually, helium) atoms that collide with clusters and
metallic walls maintained at a certain temperature. Col-
lisions establish the wall temperature for each cluster if
thetypical timefor equilibration to agastemperature as
aresult of collisions with the atomic heat bath is short
compared to atypical dwell time of the cluster in each
aggregate state. As earlier, we assume the existence of
the two aggregate states [42—44] and use the dynamic
coexistence of phases in clusters [11, 50-52] within a
temperature range; in other words, we assume that part
of the time, the cluster is found in one aggregate state
and in the remainder, it is found in the other. In addi-
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Fig. 5. Temperatures of the Lennard-Jones cluster of
13 atoms depending on the excitation energy (the tempera-
tures of the solid and liquid aggregate states, average trans-
versal temperature, and configuration temperature).

tion, while the cluster is in each aggregate state, vibra-
tional equilibrium is established [25], and hence the
temperature of bound atoms for each aggregate state
coincides with the thermostat temperatureif the cluster
isinacanonical ensemble [41]. In this case, the proba-
bility w;, that the cluster is found in the liquid state is
given by the formula[18, 43, 44]

Wiq = 774 0’ (13)
A A
p = oo = ewhs- 5

where T is the cluster temperature (which coincides
with the thermostat temperature), AE is the energy of
configurational excitation, ASis the entropy jump as a
result of melting, and AF isachange of the free energy.
The parameters of the phase transition AE and ASdeter-
minethe behavior of the cluster heat capacity, whichwe
connect with the cluster heat capacity that can be calcu-
lated from computer simulations. Using the average
kinetic energy of atoms for each aggregate state, we
characterize each of those states by the mean potentia
energy, i.e., we ignore the broadening of the energy of
each cluster state due to fluctuations.

We first determine the cluster heat capacity and sep-
arate its “resonance”’ part, the peak due to the phase
trangition. According to formula (5), we have

K,
= -Eo+ SOlem +AEW;q + ““-anq, (14)

sl Niig
and because the cluster is in a thermostat, Ky = Kjig.

Assuming that ng, = n;;q, We obtain the average cluster
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energy according to formula (14),

K K
E = -9 +AEw, = n—“"+AEL (15)

sol sol 1+ p

We first consider the Lennard-Jones cluster of
13 atomsin athermostat. We note that the anharmonic-
ity of atomic oscillations affects the degree of the con-
figurational excitation. Indeed, because the anharmo-
nicity is greater for the liquid than for the solid cluster,
the density of vibrational states increases faster with
energy than does that of the solid, and therefore the
average potential energy for the isothermal liquid clus-
ter is higher than that for the solid. If the melting tem-
peratures for the isolated and isothermal clusters are
approximately equal (as they are for clusters of
ca. 100 atomsor more), wefind aspecial excesschange
of the cluster’s potential energy in the isothermal case
that does not appear in the constant-energy case. Taking
themelting point T,, = 0.29D for both cases and the cor-
responding kinetic energies at this temperature to be

KsoI(Tm) = Kqu(Tm) = 29D.

we find the excess excitation energy AE' as a change of
the average potential energy per atom given by

T Kqu(Tm) KsoI(Tm) —
AE' = AE _ - AE
* nl.iq(m nsi.(m .
+KSO'(Tm)[r](lBBD)_r](ll.7D)} = 31D,

where AE = 2.5D isthe energy difference for aggregate
states of an isolated cluster at the melting point. We
here assume that the anharmonicity parameter n is
identical for both aggregate states of an isolated cluster,
and its dependence on the excitation energy isgivenin
Fig. 4. Next, the dependence of the temperature of a
given aggregate state on the excitation energy is repre-
sented in Fig. 5, and, as indicated in formula (16), the
excitation energies of isolated clusters correspond to
the temperature 0.29D for each aggregate state. There-
fore, the anharmonicity of the solid aggregate state
under isothermal conditions is higher than that for an
isolated cluster, whereas for the liquid state, we have a
different relation between these values. As aresult, the
isothermal phase transition requires agreater change of
potential energy than that at constant energy, due to
interactions between atoms for the Lennard-Jones
13-atom cluster. Due to the anharmonicity, the energy
change for an isothermal cluster exceedsthat of theiso-
lated cluster approximately by 20%.

We next analyze the temperature dependence of the
heat capacity under isothermal conditions. We repre-
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sent the cluster heat capacity in the isothermal case
as[53, 54]

_dE _ d(AEW,,)
C= a7 - Co+ T a7
where the first term characterizes the cluster’s heat
capacity in the absence of the phase transition,

_ d(Kg/Mg) _ d(Kig/MNiig)
Co = dT TdT (18)
and the resonance part of the heat capacity is
2
Cres — d(AEWHq) — A_E p (19)

dT T? (1+p)°

We here assume that the energy of configurational exci-
tation AE and the entropy jump AS are independent of
the temperature. Formula (19) leads to the maximum
Cre’ at the melting point T,, defined in this case as
p(T,) = 1. We have

_AS

2
s AE 20)
4T

To account for the temperature dependence of the
entropy jump, we represent it as

AS = AS +aT, (21)

where AS, is the entropy jump at zero temperature. At
the melting point, this gives

A5, —4%
C Te

where AS,, isthe entropy jump at the melting point. On
the basis of formulas (13) and (19), we obtain the reso-
nant part of the heat capacity:

max _ AE dp - AE P

(22)

= (14 p)dT (1+p)° -
dAS, A AS, 1
(A58 - 8% dosas,

Because numencal calculations by the molecular
dynamics method alow one to determine the heat
capacity maximum, this relation can be used for evalu-
ating the entropy at zero temperature as

4C
AS,

We now use this formula for the Lennard-Jones
cluster of 55 atoms. As our basis, we take computer

AS, = 2AS, - (24)
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simulations of this cluster in [28, 55, 56], which give
the parameters characterizing the phase transition
within the ranges

AS“—_AI_—E=4815 (25)
On the basis of formula (24), we have
AS, = 36+ 15. (26)

The large uncertainty here makes this result relatively
uninformative. We need away to do better.

We now determine the entropy jump at zero temper-
ature from another standpoint. The energy of formation
of one vacancy at zero temperature can be found by
comparing the total binding energies of atoms €55 and
€56 for the Lennard-Jones clusters of 55 and 56 atoms.
On the basis of calculations in [57] for €55 and €56, We
have [43]

Ag = gg5—85 = 264D

at zero temperature. The direct calculations for lower
excitations of this cluster [58] lead to the minimal exci-
tation energy 2.63D. The proximity of these values con-
firms that an excited atom transferred onto the cluster
surface can be treated as being well removed from the
vacancy from which it came. Evidently, the energy of
void formation, the relaxed form, islessthan the energy
Ae of formation of the initial vacancy. Thisimplies that
the number of atoms leaving the body of the cluster to
form voidsis

AE
> —=
2+ 5. 27)
Taking the number of voidsin the liquid state of the
Lennard-Jones cluster of 55 atoms to be v = 5-7, we
determine the entropy jump at zero temperature AS, as
we treat the solid-liquid transition to be a consequence
of transitions of atoms from the outer cluster shell onto
its surface. Because of the icosahedral structure of this
cluster, its outermost shell consists of 42 atoms, and
there are 80 positions with 3-atom “hollows’ on the
surface for atoms promoted from the outer shell. A new
vacancy on the cluster edge or surface has| = 6 neigh-
boring atoms, and a vertex vacancy has only | = 5.
Therefore, if v atoms transfer onto the cluster surface,
then vl bonds are lost in the cluster surface for atoms
transferred to any of the 80 positions on the cluster sur-
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faceif we assumethat v transferring atoms on the clus-
ter surface do not border vacancies on the cluster shell.
From this, for the configurational excitation of the clus-
ter at zero temperature, we find the entropy jump that
results from v atoms moving from the outermost shell,

AS) = |nC;‘IC221

where m = 80 — vl is the number of positions on the
cluster surface for transition of atoms from the outer-
most cluster shell. Thisformulaimpliesthat the entropy
jump at zero temperatureis

AS = 285+£0.3 for v = 5,
AS, = 31.6+£04 for v = 6,
AS) = 323+£0.7 for v = 7.

Thus, the entropy jump at zero temperature depends
weakly on the number of transferred atoms, and the
average value of the entropy jump at zero temperature
is

AS, = 31+2. (28)
One can see that this value is well within the range in
formula (26). Because the accuracy is higher in this
case than in formula (26), we use formula (24) for
determination of AS,,. Then formula (24) gives

AS, = —+ /A$+20f£x,

and on the basis of formula (28) and the calculated
maximal heat capacity

C™ = 650 + 50,

(29)

we obtain

AS, = 2E = 4542,
T

This result, together with its validity range, is consis-
tent with formula (25), but we now have a result with
greater precision and presumably with greater accu-
racy. Thus the analysis of computer simulations of
these clusters by molecular dynamics allows us to
determine some thermodynamical parameters of the
phase transition within the framework of a simple
scheme. Below, we analyze these results together with
the microscopic nature of the phase transitions.

(30)

5. CHARACTER OF PHASE TRANSITIONS
IN SIMPLE ENSEMBLES OF BOUND ATOMS

The nature of the order-disorder phase transition for
an ensemble of bound atoms may be understood on the
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basis of the lattice model (see, e.g., [6, 59, 60]). Within
thismodel, atoms are located at sites of acrystal lattice
and interaction occurs only between nearest neighbors.
Then the ordered state is a compact distribution of
atoms, which leads to a maximum number of bonds
between nearest-neighbor atoms, and the disordered
state with a random distribution of atoms corresponds
to a maximum entropy and to a loss of some of the
bonds between nearest neighbors that occur in the
ordered state. The phase transition between these states
proceeds by a stepwise change of the total atomic bind-
ing energy and the entropy of the evolving distribution.
This order-disorder phase transition models the solid-
liquid phase transition for an ensemble of bound atoms,
with the ordered state being analogous to the solid state
and the disordered state analogous to the liquid state.
Because this phase transition involves a change of the
atomic configuration, the passage to the disordered
state occurs by configurational excitation of the system.
One can see that the lattice model for configurational
excitation of such a system is a simplified void model,
in which a void is considered equivalent to a vacancy
and additional assumptions are used. Thus, the conclu-
sions following from the lattice model generally apply
also to the void model of configuration excitation.

In considering a phase change of clusters, weinvoke
a certain hierarchy of times for establishment of the
various equilibria along the path to the overal transi-
tion. We now exhibit the validity of the hierarchy of
timesin clustersthat was the basis of the argument. We
assume that a typical time to establish thermal (vibra-
tional) equilibrium in clusters, 1, is short compared to
atypical time of transition between aggregate states.
Roughly, we have 1, ~ 1/t , where wy isthe Debyefre-
guency. To estimate the time needed for an atom pro-
moted to the cluster surface to move from one position
to another or to its ground-state | ocation, we assume for
simplicity that all atom positions are separated by iden-
tical barriers. Moreover, wetakethe barrier height to be
Uy = 0.56D, asit is at zero temperature (see Fig. 3),
even though atemperature increase leads to a decrease
of these barriers. A transition of an atom in athree-con-
tact hollow on the cluster surface may proceed in one of
the three directionsthrough atriangular transition state,
joined there to two nearest neighbors. With T denoting
the transition time to a neighboring position on the
cluster surface, we find the mean transition time to the
ground state to be 9t. Thus, under these assumptions,
we infer that transitions between different configura-
tional states proceed faster by an order of magnitude
than a transition from the surface to a vacancy in the
outer shell, normally occupied in the solid state. This
allowsusto join al the different configurational excita-
tions for promotion of one atom from the outermost
shell onto the cluster surface in one liquid aggregate
State.

We now estimate the time t of transition between
neighboring positions on the cluster surface on the
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basis of the Frenkel model [61], according to which the
transition occurs if the atomic oscillation energy
exceedsthe barrier height. Assuming for simplicity that
the barrier hasan axial symmetry, wetakeit intheform

1d°U »
U(p) = Upg+5—0",
(P) = Uo ey

where p is the distance from the point of the barrier
minimum in the saddle plane. From this, we find the
transition rate

0

_11 U(p)
= 21T ex [——}
To4T[R2-([ pdpexp| —=3
=T pllo D
- 2 OT0
2R2d U

2

dp

where T isthe current temperature and R is the distance
between an atom and the saddle point. Taking

d’U D
p2 RZ
for an estimate, we obtain
1
T = S 0501, (32)

at the melting point T,,, = 0.29D. Thus, the hierarchy of
timesis as we used above.

Consequently, we have three typical times that are
of importance near the melting point, where the rates of
the phase transition in both directionsare similar. These
times are the time 1, of equilibrium establishment for
transversal degrees of freedom, during which a definite
vibrational temperatureis established depending on the
aggregate state; the typical time t for transition
between neighboring configurationally excited states;
and the typical time of transition between aggregate
states. Thelast isthe longest one, but during thetimer,
an equilibrium is established within the liquid state.
Thisreflects the lability of that state. We note that from
the standpoint of void formation, the case of a 13-atom
cluster is specia because the liquid aggregate state
involves formation of only one void in this case. For
larger clusters, thetime of transition between the aggre-
gate states is increased in comparison with times of
transition between neighboring configurationally
excited states. We demonstrate this for a 55-atom clus-
ter, assuming that the number of voids v = 6 isthe opti-
mal one for the liquid state. This means that the total
probability for the cluster to be in any of the configura-
tionally excited states with v = 5 islessthan for v = 6,

No. 6 2005



PHASE TRANSITIONS IN SIMPLE CLUSTERS

andfor v =4isdtill lessthan that for v = 5. To reach the
solid aggregate state starting from the liquid, this clus-
ter must pass through configurationally excited states
with small probabilities of occurrence, and hence, in
most histories, the cluster returns to its initial liquid
state many times and eventually reaches the other, solid
aggregate state. This means that atypical time of tran-
sition between aggregate states is very long compared
with the time for passage between neighboring config-
urationally excited states, particularly in the case of
large clusters. Thus, the dynamic coexistence of phases
in clusters proceeds such that the vibrational tempera-
ture is established fast, next an equilibrium is estab-
lished between configurationally excited states of the
liquid phase, and then the phase transition can proceed
during longer times.

At zero temperature, the vacancy and the relaxed
void become equivalent if we neglect the vacancy-atom
interaction. Real parameters of voids take this interac-
tion into account, and hence therelaxation hasits effect
on the thermal motion of atoms upon configurational
excitation. Of course, the lower the temperature, the
less is the configurational excitation and the less is the
vibrational excitation aswell. Evidently, the separation
of the configurational excitation from thermal vibra-
tions of atoms that we have used isvalid only at low to
moderate temperatures, and is better for clusters with
completed outer shells than for others. Therefore, we
use the void concept primarily for clusters with com-
plete shells, such as those consisting of 7, 13, 19, 55,
147, ... atoms. In these cases, there is a solid-liquid
coexistence region of temperature and pressure within
which the probability distribution of the total kinetic
energy is distinctly bimodal [11, 26] for an isolated
cluster. The occurrence and persistence of these two
aggregate states allows us to use the approach of two
aggregate states [44], which is an analogue of the solid
and liquid aggregate states for bulk systems. We note
that in reality, several types of configurational excita-
tions can be observed that correspond to excitation of
different cluster shells[27, 28].

Next, for some clusters with incomplete outer
shells, thermodynamically stable states of configura-
tional excitation are absent, in particular, for clusters
consisting of 8 and 14 atoms[26], because only asmall
entropy (and free energy) jump separatesthe states; this
is much the same situation as occurs with excited states
of atoms with open shells. Therefore, the real behavior
of excitations of open-shell clusters with pair interac-
tions may be more complicated than that within the
framework of the void model of a cluster with two
aggregate states. Nevertheless, this model is useful for
understanding and description of the clusters with a
pairwise atomic interaction.

The table presents some parameters for the liquid
states of Lennard-Jones clusters consisting of 13 and 55
atoms, which we obtained from the analysis of the
results of molecular dynamics computer ssmulations. In
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Parameters of melting for atomic clusters and macroscopic
inert gases

LJs3 LJss bulk inert gases
Tw/D 0.29 0.31 0.58
AE/D 25 161 0.98n
(Teo = Tiig) Tm 0.22 0.31+0.02 0.56
A 52 31+2 0.73n
AS, 8.6 48+ 4 1.68n
AS/AS,, % 60 65+ 10 44

thistable, LJ, isacluster consisting of n atomswith the
Lennard-Jones interaction potential, D is the depth of
the potential well, T,,, is the melting point, AE is the
phase transition energy for an isolated cluster at the
melting point, Ts, and T, are the effective (kinetic-
energy-based) temperatures of the solid and liquid
states for an isolated cluster at the melting point, and
AS, and AS,, are the respective entropy jumps for the
phase transition at zero temperature and the melting
point. In determining the difference Tg—T,,, we
assume the heat capacity for each aggregate state to be
given by the Dulong—Petit law.

In the table, we a so include the parameters of bulk
inert gases consisting of n atoms, which were found
[15-17, 19] on the basis of measured parameters of
condensed inert gases and are averaged over classical
inert gases (Ne, Ar, Kr, Xe). Then the reduced entropy
jump ininert gases near the triple point is

AS,/n = 1.68+0.03

[18, 43, 62]. Considering the entropy jump at zero tem-
perature as aresult of vacancy formation in asolid, we
then obtain

n+v

n+v
+vin ,
v

AS, = InC,,, = nIn

(33)

where n is the number of atoms in the system, v isthe

number of vacancies, and C, ., isthe number of ways

to remove v atoms from the initial lattice containing
n+ v atoms. For condensed inert gases[15-17, 19], we
have

n/v = 3.12+0.01,
which gives
AS/n = 0.73

asincluded in the table.

It follows from the data in the table that in all the
cases under consideration, the atomic thermal motion
makes a very large contribution to the entropy jump at

No. 6 2005



1140

the melting point. This effect is very important because
it holds down the temperature of the phase transition or
even makes it possible at al, in principle. In addition,
the thermal contribution to the entropy jump can solve
the paradox of the phase transition, which we now con-
sider. In practice, it is convenient to use the Lindemann
criterion [29, 30] for the melting point of an ensemble
of bound atoms. According to this criterion, melting
starts if the ratio of the amplitude of atom oscillations
to the distance between nearest neighbors reaches a
value in the range 0.10-0.15. With computer modeling
of clusters, more precise criteria of the phase transition
were introduced, using the correlations in positions of
two cluster atoms. In particular, this correlation func-
tion can use the EttersKaelberer parameter [31-33] or
the Berry parameter [12, 34]. These parametersare pro-
portional to the mean fluctuation of the distance
between two atoms, which, similarly to the Lindemann
index, fallsinto different ranges for the solid and liquid
states; thisdifference allowsusto distinguish acluster’s
state. These parameters are connected with thermal
motion of atoms, while the melting, i.e., the lability of
the liquid, results from configurational excitation of an
ensemble of bound atoms.

One can see an apparent contradiction between the
nature of the phase transition that we attribute to con-
figurational excitation and the practical criterion signi-
fying this transition, which is based on thermal motion
of atoms. This contradiction disappears when we account
for the influence of thermal excitation on the entropy of
this transition in accordance with formula (21). The sec-
ond part of this formula accounts for the apparent par-
adox of the thermal motion in the entropy jump, and
hence, if we understand the origin of the paradox, the
amplitude-based criteria of the phase transition become
natural. The nature of this term results from the lower
density of atomsin the liquid state and from the associ-
ated larger entropy of the atomic vibrations. Naturally,
the entropy jump due to vibrations of atoms increases
with increasing the temperature. Thus, athough the
method of calculation separates configurational excita-
tion from the therma motion of the bound atoms, the
latter gives a contribution to the entropy change of the
transition.

We conclude that because thermal motion of atoms
givesasignificant contribution to the entropy jump, this
effect improves conditions of the phase transition or
can even be a required condition for the phase transi-
tion. When we consider a bulk system of bound atoms,
we base our argument on the model in which the liquid
state isformed from the solid state by removal of inter-
nal atoms. Then the system relaxesto the liquid state by
shrinking, such that vacancies of the crystal lattice are
transformed into voids. The entropy of this configura-
tional excitation follows from this intermediate state
with vacancies, and the void concept [14] describesthe
phasetransition. Using the void concept for theanalysis
of the phase transitions allows one to understand its
nature more deeply.
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6. CONCLUSIONS

The void concept for configurational excitation of
ensembles of bound atoms is the basis for their analy-
sis. This concept follows from a general approach of
local minima of the potential energy surface for an
ensembl e of interacting atoms[20]; asimplified version
of thisapproach allows usto analyze theresults of clus-
ter computer simulations by molecular dynamics. On
the basis of this analysis, we can understand some
aspects of the behavior of ensembles of bound atoms at
the phasetransitionin detail. In particular, thereisadif-
ferencein thetransition parametersfor an isolated clus-
ter at constant energy and asimilar cluster in athermo-
stat. The entropy jump of the phase transition includes
two contributions, both of which are important: the
thermal, vibrational motion of atoms (because the solid
state is characterized by a more compact distribution
and correspondingly by alower entropy than the liquid
aggregate state at this temperature) and the configura-
tional excitation that introducesthe voids, providing the
basis of the fluidity of the liquid. The thermal effect in
the entropy jump at the phase transition provides the
validity of melting criteria based on thermal motion of
atoms, whereas the “nature” of the phase transition
consists in the configurational excitation.

The void concept for configurational excitation of
ensembles of bound atoms, interpreted with the help of
the results of computer simulations and thermo-
dynamic parameters of condensed inert gases, gives a
deepened understanding of the phase transition in these
ensembles.
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Abstract—The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of
Sr,RuQ, single crystals has been experimentally studied in abroad range of temperatures (1.7-380 K) and mag-
netic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both
the in-plane electric resistivity (p,) and that along the ¢ axis (p,), as well as the negative magnetoresi stance Ap,
which is strongly anisotropic to the magnetic field orientation (H || a and H || ¢), with the easy magnetization
direction along the ¢ axis and a weak dependence on the probing current direction in the low-temperature
region. The experimental p,(T) and p.(T) curves obtained for the initial and radiation-disordered samples can
be described within the framework of atheoretical model with two conductivity channels. Thefirst channel cor-
responds to the charge carriers with increased effective masses (~10m,, where m, isthe electron mass) and pre-
dominantly electron—electron scattering, which leads to the quadratic temperature dependences of p, and p..
The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scatter-
ing at low temperatures, which |eads to the temperature dependence of the p, (T) O 1/T type. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

The proper understanding of the mechanism of
high-temperature  superconductivity in cuprates
requires a theory adequately describing their proper-
ties, primarily in the normal (metallic) state. The elec-
tron transport in cuprate high-temperature supercon-
ductors (HTSCs) exhibits a number of anomalous fea-
tures not inherent in usual metals. This circumstance
hinders description of the properties of such HTSCs
within the framework of ausual mode of the Fermi lig-
uid. While the temperature dependence of the in-plane
electric resigtivity in HTSCs has a “metallic’ shape
(with dp,/dT > 0), the behavior of the out-of-plane
component (in ¢ axis direction) is more like that in
semiconductors (with dp/dT < 0) [1, 2]. In addition, p,
exhibits a weaker (approximately linear) dependence
on the temperature as compared to behavior of the
pa(T) O T? type expected for compounds with strong
electron correlations. Other unexpected features are
(i) astrong temperature dependence of the Hall coeffi-
cient [3] and (ii) the negative values of magnetoresis-
tance(Ap<Q)a T> T[4, 5].

In order to develop a theory adequately describing
the properties of HTSC compounds in the normal state,
it is necessary to base the analysis on reliable experi-
mental data on the galvanomagnetic properties in the
low-temperature limit (T — 0), which would provide
reliable information on the features of electron states
near the Fermi level. However, rather high values of the

superconducting transition temperature (T. ~ 100 K)
and the second (upper) critical field (He, ~ 100 T) make
such experimentsvery difficult. The"anomalous’ prop-
erties of HTSCs are by no means unique, since similar
features in the transport properties were observed in
many other systems with strong electron correlations
such as compounds with heavy fermions [6] or
Sr,RuQ, [7, 8]. However, the mechanisms underlying
this behavior may be different. In particular, a nonme-
tallic behavior of the electric resistivity along the c axis
in HTSC-like compounds is usually related to the hop-
ping mechanism of conductivity [9], which seemsto be
quitewell justified for these virtually quasi-two-dimen-
siona systems. In contrast, such a behavior in almost
isotropic systems with heavy fermionsis attributed to a
magnetic scattering of the Kondo type [6].

The systems with strong electron correlations are
extremely sensitive to isovalent doping, as well as to
other kinds of atomic disorder, which makesit possible
to use the methods of disordering for studying the fea-
tures of electron spectrum near the Fermi level. In con-
trast to the case of usual metals, the atomic disorder in
HTSCsinduced, in particul ar, by fast neutron bombard-
ment, leads to a cardina rearrangement of the electron
spectrum and results in electronic phase transitions of
the metal-dielectric type [10, 11]. For example, a
“semiconductor” character of the in-plane conductiv-
ity arises when the sample is still in superconducting
state[12]. It should be noted that radiation-induced dis-
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order was used [10-12] as ameans of directional mod-
ification of the electron properties in order to revea
“anomalous’ features of electron transport in the initial
ordered state. Obvious advantages of this method are
the homogeneous distribution of defects over the sam-
ple volume at an unchanged stoichiometric composi-
tion. The radiation-induced disorder is reversible: the
resulting nonequilibrium disordered state can be grad-
ually shifted toward a higher order by means of sequen-
tial high-temperature anneals until compete restoration
of theinitial (ordered) state [13].

Strontium ruthenium oxide Sr,RuQ, is frequently
considered as an electronic analog of HTSC com-
pounds. According to published data, high quality of
Sr,RuQ, single crystals and low values of their super-
conducting transition temperature (T < 2 K) and the
upper critical field (He, < 0.1 T) made it possible to
determine the main band structure parameters and the
Fermi surface topology of this compound using power-
ful experimental methods such as the de Haas-Van
Alphen effect [14, 15], cyclotron resonance [16], angu-
lar-resolved photoemission [17], and some other [18-23]
and numerical band-structure calculations [24], so that
now these properties are much more reliably estab-
lished for Sr,RuQ, than for any HTSC compound. The
Fermi surface of Sr,RuQ, consists of one hole cylinder
(o sheet) and two electron cylinders (B and y sheets)
with the corresponding wavevectors k- = 0.3, 0.62, and
0.75 A and effective electron masses 3.4, 6.6, and
12.0 (in m, units), respectively. The main contribution
to the conductivity and the Hall effect is due to the y
surface corresponding to heavier electrons [14].

Intheinitial ordered Sr,RuQ,, the behavior of p,(T)
and p(T) at low temperatures (T < 30 K) is described
by afunction of the p O T? type, which is quite natural
for the Fermi liquid. In the region of higher tempera-
tures (T > 100 K), the behavior of the conductivity qual-
itatively changes. p,(T) grows slower than in the low-
temperature region and can be described, as demon-
strated by Mackenzie et al. [25], by the sum of the qua-
dratic and linear terms; p(T) passes through a maxi-
mum at T~ 100 K and then decreases (dp/dT < 0) in
the interval of temperatures up to ~600 K [26]. It was
shown [27] that the out-of-plane conductivity can be
also described in abroad temperature range by asum of
two terms, one of which is proportional to the in-plane
conductivity (p,)~* and the other is proportional to the
temperature. Because of this qualitatively different
behavior of p,(T) and p.(T), the anisotropy of the elec-
tric resistivity defined astheratio pJ/p, decreases from
about 2000 (at low temperatures) to~20 at T = 1300 K
[27]. The Hall coefficient R, strongly depends on the
temperature and is negative at T < 30 K, positive at
30K <T< 130K, and negativeagainat T > 130 K [25,
28]. The magnetoresistance of Sr,RuO, exhibits rather
involved field and temperature dependences, changing
sign from positive (at low T) to negative (at T = 80 K);
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in addition, the negative magnetoresistance signifi-
cantly increases in magnitude for the field H oriented
aongthecaxis[27, 28].

This behavior of galvanomagnetic properties in
Sr,RuQ,, as well asin other HTSC-like compounds is
frequently referred to as the transition from a coherent
mechanism of conductivity at low T to a noncoherent
mechanism at high temperatures. An anaogous
approach was also used for description of the charge
transport in systemswith heavy fermions (thetransition
from a Kondo-lattice a low T to a disordered Kondo
system at high temperatures). In the case of strongly
anisotropic HTSC-like compounds, this implies that
the character of the out-of-plane transport changes
from strongly anisotropic metallic to hopping (related
to single-particle tunneling induced by magnons or
other appropriate quasi-particles. Recently, Minakata
and Maeno [29] studied the effect of replacement of
ruthenium ions by isovalent nonmagnetic titanium ions
(with respect to the influence on the electron properties,
this kind of doping is closest to the radiation-induced
disorder used in our study). It was demonstrated that an
increase in the content of titanium in Sr,RuO; _,Ti,O,
not only results in a gradual decrease in the crossover
temperature separating the regions with dp,/dT > 0 and
dp/dT < O (until complete vanishing of the crossover at
x=0.05), but also |eadsto the appearance of alow-tem-
perature region where dp,/dT < 0 in combination with
a quite “metallic” resistivity p, < 100 uQ cm. Evi-
dently, this behavior cannot be interpreted as a kind of
noncoherent (hopping) conductivity, at |east to ahomo-
geneous electronic system. Thus, the el ectron transport
in Sr,RuO,, aswell in other HTSC-like compounds, is
till not given an adequate description.

2. EXPERIMENT

We have studied the temperature dependence of the
electric resistivity of Sr,RuO, single crystals in mag-
netic fields up to 13.6 T. The measurements were per-
formed on the crystals irradiated by fast neutrons and
then subjected to isochronous (20 min) annealsin air at
temperatures T,,, in the range from 100 to 1000°C. The
Sr,RuQ, single crystals were obtained by RF crucible-
less zone melting technique in air, proceeding from
cylindrical ceramic samples prepared by means of a
conventional solid-state reaction. The experiments
were performed on crystals with mirror-smooth sur-
faces and typical dimensions 1.5 x 0.5 mm? (in plane)
at athickness of 50-100 pm. The samples were irradi-
ated by fast neutronsto atotal fluence of ® = (0.5, 1.0,
1.5, 3, and 5) x 10'° cm2 (two samples for each dose)
in a nuclear reactor of the IVV-2M type (the sample
temperature during exposure did not exceed 50°C).

The resistivity components p, and p, were deter-
mined by the standard four-point-probe Montgomery
technique [30] in a temperature range from 1.7 to
380 K. The longitudinal and transverse magnetoresis-
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Fig. 1. The temperature dependences of the (a) in-plane (p,) and (b) out-of-plane (p.) resistivities for (1) theinitia (unirradiated)
Sr,RUQ, crystal and (2-4) the samplesirradiated with fast neutronsto various fluences ® = (1.5, 3, and 5) x 10'° cm™?, respectively.
The inset shows plots of the anisotropy p,/p. versus temperature. Points represent experimental data, curves show the results of

fitting using formulas (3).

tance components were measured at T = 4.2 K in mag-
neticfieldsup to 13.6 T (with changing directions of the
probing current and magnetic field H and switching
between the current and potential |eads). The results of
measurements for each pair of samplesirradiated to the
same fluence were virtually coinciding. The Montgom-
ery technigque gives good results only for the optimum
ratio d,/d, = (pJp,)Y? of the distances d, and d, between
electrodes in the a and ¢ directions [30]. A significant
variation of the p/p, ratio asaresult of the temperature
variation and/or the radiation-induced disordering led
to a significant decrease in the accuracy of measure-
ments at lower (higher) temperatures, where the d,/d,
ratio was above (below) the optimum value. For this
reason, below we will analyze in detail the results
obtained predominantly for a sample with nearly opti-
mum dimensions (d, = 1.85 mm, d, = 0.10 mm) irradi-
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ated to atotal fluence of ® = 3 x 10'° cm. For this
sample, the error of measurement of the absol ute values
of p, and p, (determined predominantly by uncertainty
of the sample dimensions) was on the order of 10%.
The reproducibility of p, and p. measurements was
within 0.05-0.2%.

3. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependences of the
in-plane (p,) and out-of-plane (p,) resistivities for the
initial Sr,RuQ, crystals and the samplesirradiated with
fast neutronsto ® = (1.5, 3, and 5) x 10'° cm. Ascan
be seen, the radiation-induced disorder leads to a qual-
itative changein the behavior of both p,(T) and p(T) in
theregion of low temperatures (T < 30 K). Indeed, even
upon irradiation to ® = 1.5 x 10 cm?, thisinitia part
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Fig. 2. The temperature dependences of (a) p, and (b) p. for an SroRuO, crystal (1) in theinitial (unirradiated) state, (2) uponirra-

diation with fast neutrons to afluence of ® = 3 x 101° cm™, and (3-10) after subsequent annealing at 300, 400, 500, 600, 700, 800,
900, and 1000°C, respectively. Points represent experimental data, curves show the results of fitting using formulas (3).

of the curves acquires negative slope (dp/dT < 0), the
magnitude of which rapidly increases with growing dis-
order. In the region of high temperatures (T > 100 K),
changes in the behavior of p,(T) and p(T) are not very
significant: as the degree of disorder grows, dp,/dT
slightly increases, while dp/dT changes from a small
negative to small positive value. The temperature
dependence of the anisotropy (p./p.) aso exhibits sig-
nificant changes (see the inset in Fig. 1): from almost
quadratic dependence for the initial unirradiated) sam-
ple to approximately linear dependence for the crystals
irradiated to the maximum fluence. These dependences
are qualitatively very much like the data reported
in [29] for titanium-doped Sr,Ru, _, Ti,O,, but the neu-
tron irradiation to ® = 5 x 10%° cm produces much
more pronounced changesin p,(T) and p,(T) than those

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

observed in [29] for a maximum titanium content of
x =0.09.

Annealing of the samples irradiated to ® = 3 x
10 cm? (Fig. 2) at T,,, = 1000°C leads to virtualy
complete restoration of the initial p,(T) curve. At the
same time, the p,(T) curves are restored incompletely:
while the low-temperature parts of these dependences
show aclear tendency to restoration (residual resistivity
decreases and the negative slope disappears), theinitial
high-temperature parts are not restored upon annealing
(the dope dp/dT remains positive and even dightly
increases after the treatment at T,,, = 800—-1000°C).

Figure 3 shows the rel ative magnetoresi stance Ap/p
measured at T=4.2 K for the probing current directions
in plane (Ap./p,) and aong the c axis (ApJ/p.). The
measurements were performed for the initia Sr,RuO,
crystals and the samples bombarded with fast neutrons
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Fig. 3. The relative magnetoresistances (a, ¢) Ap,/p, and (b, d) Ap/p of SroRUO, crystals measured at T = 4.2 K for the magnetic
field orientations (a, b) H |[|cand (c, d) H ||aintheinitial state (®) and after irradiation with fast neutrons to various fluences ® =
1% 10 cm™ (0), 1.5 x 10%° cm (1), and 3 x 10 cm™ (»). Curves connect the points corresponding to the same treatment.

to various degrees of disorder. The residua resistivity
P.o (Which can be considered as ameasure of the crystal
disorder) varied within broad limits (50-220 puQ cm).
In theinitial crystal, all components of the magnetore-
sistance are positive, in agreement with behavior typi-
cal of the usual metals[4, 5, 26]. In disordered samples
studied for the field orientation H || ¢, the Ap./p, and
ApJp. values are negative in the entire interval of
applied fields H and are practically independent of the
probing current direction. For H || a, the magnetoresis-
tance components are much smaller (in absolute value)
than those for H || ¢, negative for H > 2-3 T, and aso
practically independent of the probing current direc-
tion. For both H ||a and H || ¢ orientations, the Ap./p,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

and ApJ/p. values remain virtually unchanged when the
temperature is decreased from 4.2 to 1.5K.

Figure 4 shows a change in the behavior of Ap/p.in
the course of annealing of a sample irradiated to aflu-
ence of @ = 3 x 10'° cm. After the annealing at T, =
300-800°C (whereby the residua resistivity pgo
decreases from 220 to 25 uQ cm), the ApJp. vaue
remains almost constant for both H ||aand H || c. Only
the annealing at T, = 900°C (after which p,, = 20 uQ
cm) leads to the appearance of a significant positive
increment intheregion of highfields(H >6T). Not that
theinitial behavior (as well asthat of p(T), see Fig. 2)
is not restored as a result of annealing. Thus, all com-
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ponents of the magnetoresistance—both ApJ/p. and
Ap,/p, (not shownin Fig. 4)—arenegativeat T=4.2for
P> 20 pQ cm.

4. DISCUSSION OF RESULTS

In order to analyze the temperature dependences of
p,and p.in (Figs. 1 and 2), let us consider the behavior
of derivatives dp,/dT and dp/dT (Fig. 5). In the range
T> 150 K, the former derivative can be represented as
the sum of alinear function of temperature and a con-
stant, so that p,(T) = a, + &, T + a, T2 Here, the constant
term a, rapidly grows with increasing disorder, a;
rather weakly varies for p,, = 0.3-0.5 (LQ cm)/K, and
the coefficient & slowly increases from about 0.5 to
1 (nQ cm)/KZ2. By the same token, the behavior of p,(T)
in this temperature range can be described as p,(T) =
Co+ ¢, T + c, T, where the constant term c, rapidly
increases with growing disorder, while the coefficients
c, and ¢, virtually remain constant. It should be noted
that the values of ¢, and ¢, are much smaller than a, and
a, (c; = 0; ¢, = 0.02 (UQ cm)/K?). In the temperature
interval T < 30, the behavior of dp,/dT and dp/dT can
also be roughly described as the sum of a constant and
linear terms. However, the linear term in this case is
much greater than that in the high-temperature, while
the constant term decreases from zero for the initial
sample to alarge negative value for the irradiated crys-
tal. In the intermediate temperature region (30K < T <
150 K), there isamore (for dp/dT) or less (for dp,/dT)
pronounced maximum in the temperature dependences
of these derivatives.

In order to describe the obtained experimental data,
let us represent the conductivity 1/p;(T) as the sum of
contributions due to two channels denoted by | and I,
corresponding to heavy and light charge carriers,
respectively:

1 _ 1, 1
Pi(T)  pu(T) pin(T)’

i =ac. (D)

We assume that p;,(T) < p;,(T) at low temperatures and
Pi(T) > p;,(T) at high temperatures. This implies that
Pi(T) and p;,(T) exhibit qualitatively different temper-
ature dependences of the “metalic” and “ semiconduc-
tor” types, asit was suggested, for example, in [27].

For the conductivity channel |, let us write an
expression for the resistivity in the form expected for a
metal with strong electron correlations:

pi(T) = Ajg+ AT )

As was noted above, the second channel cannot be
related to a conductivity of the hopping type. We
believe that most consistent explanation of the observed
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Bp /.. %

Fig. 4. The relative magnetoresistance ApJ/p, of an
SroRuO, crystal measured at T = 4.2 K for the magnetic
field orientations (a) H || c and (b) H || a upon irradiation
with fast neutrons to a fluence of ® = 3 x 10*° cm= and
post-annealing at 300 (0), 700 (O0), 800 (A), and 900°C (V).
Curves connect the points corresponding to the same
treatment.

behavior (increase in the resistivity with decreasing
temperature) can be given in terms of strong magnetic
scattering of the charge carriers. In this case, a natura
explanation is provided both for the sign (negative) of
all magnetoresistance components Ap/p and for their
strong (three- to fivefold) difference in various crystal-
lographic directions. According to [29], the magnetic
susceptibility of Sr,Ru, _,Ti,O, contains a contribution
of the Curie-Weiss type increasing with x, which
exhibits a strong (fivefold) anisotropy with respect to
the magnetic field orientation (H || a against H || ¢).
Therefore, the appearance of negative anisotropic mag-
netoresi stance in radiation-disordered Sr,RuQ, crystals
is quite natural. It should be noted that the magnetore-
sistance also contains, besides the negative magnetic
contribution, the usual positive contribution related to
deviation of the electron traectories in the applied
magnetic field. The latter component should predomi-
nate in ordered systems at low temperatures, but it rap-
idly decreases both with growing disorder (i.e., increas-
ing po) and with increasing temperature. The changein
the sign of Ap/p at T = 4.2 K in radiation-disordered
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Fig, 5. The temperature dependences of the derivatives (a) dp,/dT and (b) dp/dT for an SroRuO, crystal (1) in theinitial (unirradi-

ated) state, (2) upon irradiation with fast neutrons to a fluence of ® = 3 x 101° cm™2, and (3-10) after subsequent annealing at 300,
400, 500, 600, 700, 800, 900, and 1000°C, respectively. The curves are sequentially shifted relative to each other along the ordinate
axisby (a) 0.2 (LQ cm)/K and (b) 0.1 (LQ cm)/K. Curves connect the points corresponding to the same treatment.

samples is observed (Fig. 3) for p, = 15-20 pQ cm,
while in the ordered crystals it takesplaceat T ~ 80 K
(Pgo = 15 pQ cm) [27].

One possible mechanism of magnetic scattering is
offered by the Kondo effect, known to contribute with
an additional logarithmic term p,,~—nT in p(T). How-
ever, it was demonstrated [31] that thelogarithmic form
of magnetic scattering is valid only for dilute systems,
whereas more concentrated ones are characterized by
an approximately linear additional low-temperature
term p,,, ~ —T, which was repeatedly observed in disor-
dered systems (such as (La—Ce)Cu,Si,) with heavy fer-
mions [32]. Our system (see Fig. 1) exhibits a clearly
pronounced linear temperature dependence of both
p.(T) and p(T). In a broad temperature range, a more
realistic form of the magnetic contribution can be pro-
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vided by p,, ~ (T + Tg), which correctly described
both the low-temperature (linear) behavior and the
damping at higher temperatures. Any other interpola-
tion with analogous behavior in the low- and high-tem-
perature limits can be used as well.

By analogy with [27], let us attribute the magnetic
scattering (for the probing current and magnetic field
parallel to the axis c) entirely to channel 11 (it should be
noted that the negative magnetoresistance was related
in [27] to the Zeeman splitting of localized levels
involved in the noncoherent hopping process, rather
than to the magnetic scattering). We shall also take into
account that, according to the observed behavior of
dp,/dT (Fig. 5), the theoretical function p,(T) at high
temperatures must include a linear term in addition to
the quadratic term.
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The final expression, which was used for the
description of experimental data (solid curvesinFigs. 1
and 2), isasfollows:

1 o_ 1, 1
Pi(M)  pu(T) pi(T)’

pu(T) = Ajp+ ALT?,

pu(T) = Ag+ Al + AT +pip, 3)
_ Bim
pim - T+Ti07
i = acC.

Ascan be seen from Figs. 1 and 2, using these formulas
and varying the fitting parameters Al,, AL, A, AL,

A, B, and T, it is possible to describe the experi-
mental curvesof p,(T) and p.(T) with high precision for
the samples disordered by irradiation to various
degrees. The fitting parameters exhibit monotonic vari-
ation with the degree of disorder.

Figure 6 showsthe plotsof p,(T), pu(T), pa(T), and
pq(T) functions obtained by subtracting conductivities
calculated for each of the two channels from the exper-
imental 1/p,(T) and 1/p(T) curves. For example,

Pa(T)

-1
0 1 I I 2 Bam

= - + AL T+HALT + ———

pa(T) EAaO al a2 T+Ta 1

1

O 1 1 o
a(T) =0 - .
Pl D) = L) ™ A+ AT

Figure 7 presents the magnetic contributions p,,
and p., in conductivity channel Il for a sample irradi-
ated to afluence of 3 x 10%° cm. These functions were
calculated (similarly to thosein Fig. 6) as

(™) = Bl LB
Y M T A AT

—(Alp+ AT + ALT?),

where p;(T) are the experimental temperature depen-

dences, and Al,, A, Ay, A, and A, are fitting

parameters. As can be seen, the magnetic contributions
are described with good accuracy in a broad tempera-
ture range from 1.7 to 380 K by functions of the type
pim(T) 0T

For the first channel (see Figs. 6aand 6b plotted on
a double logarithmic scale), the quadratic dependence
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py(T) = A, + A, T2 well fits to the experimental data

in the entire temperature range, and even for the highly
disordered samples at high temperatures, wheretherel-
ative contribution of 1/p;(T) to the total conductivity is
assmall as 5-10%. The coefficient at the quadratic term
(which isrelated to the electron—electron scattering) is

AL, = 10-15 (UQ cm)/K2 and weakly changes with

increasing disorder. The residual resistivity Al
increases from about 8 mQ cm for the initial crystal to
100 mQ cm for the irradiated samples. The coefficient
A'az increases from about 5 (NQ cm)/K? for the initial
crystal to 25 (nQ cm)/K? for the disordered samples.

The residual resistivity Ay, increases from about

4 uQ cm for the initial crystal to 230 pQ cm for the
irradiated samples. Since channel | givesthe main con-
tribution to the total conductivity al low temperatures,

it is the stronger growth in AL, and Al, in comparison

to A, and AL, upon the radiation-induced disordering
that predominantly accountsfor theincreasein the low-
temperature anisotropy p./p. (see the inset in Fig. 1).
The observed variation of the parameters A, and A,

for the first conductivity channel in the samples with
growing disorder can be interpreted in terms of an
increase in the effective electron mass for the in-plane
transport (m,), at a relatively weak variation of the
effective electron mass along the ¢ axis (m).

The curves of py,(T) and p,(T) for the second con-
ductivity channel are presented in Figs. 6¢ and 6d (on a

linear scale). As can be seen, the parameters B,,, Alp,

Aly, and A, show relatively small variations depend-
ing on the degree of disorder, in agreement with the
observed high-temperature behavior of the derivatives
dp,/dT and dpJ/dT (Fig. 5). The main difference
between the transport along the ¢ axis and the in-plane
transport in channel 11 is the relatively small value of
AL, . For this reason, the A,,/Al, ratio is greater by
approximately two orders of magnitude than the
AL, /A, ratio. As a result, the region of the negative
slope of dp/dT extends to lower temperatures. As can
be seen from Fig. 5, only pg,(T) for the initial sample
deviates from the general trend in variation of the tem-
perature dependence of resistivity, which is related for
the most part to smallness of the fitting parameter AL'Z

in comparison to the corresponding values for irradi-
ated and annealed samples.

The physical meaning of the terms A/, T and A, T2
in the second conductivity channel is not as clear. For

the in-planetransport, the A!z valueisprobably related
to the process of electron—€lectron scattering involving
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Fig. 6. The temperature dependences of the resistivity components (a) p(T), (b) pg(T), (€) P4 (T), and (d) pey(T) for an SroRuO,

crystal (1) intheinitial (unirradiated) state, (2) uponirradiation with fast neutronsto afluence of ® = 3 x 101° cm2, and (3-10) after
subsequent annealing at 300, 400, 500, 600, 700, 800, 900, and 1000°C, respectively. Curves connect the points corresponding to
the same treatment.

charge carrierswith relatively small effectivemassm,in  related to the electron—phonon scattering (whichislin-

. - . I 2 ear at high temperatures), but thistype of scattering was
accordance with the empirical r.el ation Aq ? m [33] rarely observed in systemswith strong electron correla
However, the presence of the linear term A;; T can be tions. In HTSC-like systems, the linear variation of

interpreted differently. Of course, this term could be  p,(T) observed in abroad temperature range (e.g., from
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30to 1300 K for (La-=Sr),CuQ,) isinterpreted as “non-
Fermi” behavior of elementary excitations with allow-
ancefor the fact that the temperature dependence of the
electric resistance is closer to linear than to quadratic
(expected for the Fermi liquids). Similar behavior was
also observed in many other systems with heavy fermi-
ons, for example, in CeNi,Ge, [34] and Sr;Ru,0O; (a
double-layer analog of Sr,RuQ,) [35].

Even more ambiguous is the physical meaning of

the parameters AL, and A.,. Although the effective

mass along the ¢ axis may, in principle, differ for vari-
ous parts of the Fermi surface determining the transport
properties for the first and second conductivity chan-

nels, the nonsystematic behavior of A'C'2 upon the neu-

tron irradiation and subsequent annealing (irreversibil-
ity) casts some doubt upon the possibility that the term

A::'z'l'2 describes the electron—electron scattering. It

should be noted that a positive slope of py(T) (or
dp/dT > 0) at high temperatures was also observed in
less perfect crystals grown by zone melting under non-
optimum conditions or from a solution melt [36].
Therefore, it is possible that the irreversibility of
changesin p,(T) observed in annealed samplesiseither
related to some large-scale (nonpoint) defects formed
in the course of high-temperature annealing as a result
of the recombination of radiation defects, or thisrevers-
ibility is caused by oxygen diffusion at temperatures
above 800°C. Although the samples were annealed in
air in aregime identical to the conditions of synthesis,
the parameters of cooling and, hence, the crystal sto-
ichiometry could hardly bethe samefor the synthesized
and annealed samples.

The main result of the above analysisisthat a chan-
nel of conductivity in which dp/dT < 0 not only for the
charge transport along the ¢ axis, but for the in-plane
charge transfer as well, is present aready in the initia
(ordered) crystals of Sr,RuO, rather than appears only
upon irradiation or doping [29]. Thus, the compound
studied features no electronic phase transitions: radia-
tion-induced disorder on the atomic scale (as well as
doping) accompanied by an increase in the residua

resistivity (Al,) only leads to agradual decreasein the

relative contribution of thefirst channel to thetotal con-
ductivity. As aresult, aregion of negative slopein p(T)
(or dp/dT < 0) unavoidably appears. It should be noted
that only the first channel may contribute, for example,
to the de Haas-Van Alphen effect in the initial sample.
In contrast, the second channel characterized by strong
magnetic scattering (and, accordingly, small mean free
path of charge carriers) at low temperatures cannot be
studied using experimental methods employing the
phenomenon of quantum oscillations.

Using the proposed model based on the concept of
two conductivity channels with sharply different tem-
perature dependences of the resistivity, it is possible to
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Fig. 7. Thetemperature dependence of magnetic contributions
P Viathe second conductivity channel for the probing current
directions (1) in plane and (2) along the c axisfor an Sr,RUO,

crystal irradiated to a fluence of 3 x 101 cm™. Curves con-
nect the points corresponding to the same treatment.

describe the behavior of p,(T) and py(T) for the initial
ordered sample at elevated temperatures (T = 400—
1300 K). In particular, calculations using formulas (3)
a T = 1000 K vyield the resistivity components p, =
850 pQ cm and p, = 30 mQ cm, which agree well with
the experimentally observed values of about 900 uQ cm
and 27 mQ cm, respectively [26]. It should be noted
that relations (3) offer only one variant of the descrip-
tion of experimental curves (Figs. 1 and 2) in terms of
the two conductivity channels (bands). The expression
for p;,(T) appears formally as an expansion in powers
of T (for T;; ~ 0). However, the terms dominating at low

and high temperatures are B,/(T + T,o) and ALT?
respectively, while the contributions of two other terms
are not as significant. Apparently, formulas (3) offer the
best variant for the description of experimenta data
withintheframework of the model with two conductivity
channdl s for areasonable number of fitting parameters.

We showed that radiation-induced disorder in
Sr,RuQ, single crystals under fast neutron bombard-
ment leads to the appearance of negative temperature
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coefficients (dp,/dT < 0, dp/dT < 0) and negative mag-
netoresi stances (Ap, < 0, Ap. < 0) at low temperatures.
The magnetoresistance weakly depends on the probing
current direction (dp,/dH = dpJ/dH), but is strongly
anisotropic with respect to the magnetic field orienta-
tion (H ||aagainst H || c).

The experimental curves of p,(T) and p.(T) for both
the initial (ordered) samples and those radiation-disor-
dered to various degrees of disorder can be described
within the framework of a theoretical model with two
channels of conductivity, which are characterized by
strongly different temperature dependences of the
resistivity. The first channel, in which dp/dT < O not
only for the charge transport along the ¢ axis but for the
in-plane charge transfer as well, is present already in
theinitially ordered Sr,RuQ, crystals. The main contri-
bution to the first channel is due to electrons (y sheet of
the Fermi surface) featuring electron—electron and
impurity scattering, which leads to quadratic p,(T) and
p:(T) functions. The second conductivity channel cor-
responds to the carriers possessing lower effective
masses and featuring predominantly magnetic scatter-
ing at low temperatures, which account for the temper-
ature dependence of the p;(T) ~ T type.
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Abstract—It is shown that exposure of an additively colored CdF,:Ga crystal with bistable DX centersthat is
slowly cooled to 150 K to blue-green light through a slotted mask produces a submillimeter-wave diffraction
grating, which persistsfor along time at temperatures of 160-240 K. It isalso shown that the diffraction grating
induced in a sample is an amplitude grating. The absorption of submillimeter waves in illuminated regions of
the sample is associated with the conductivity due to the transition of impurity centers to a metastable donor
state. In the n—i—n-i-type conducting structure obtained, the conductivity of n-type regions at 225 K amounts

to o' = 0.24 Q71 cm™. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

A CdF, crystal is an ionic dielectric with a wide
band gap of about 7.8 eV; it converts into an n-type
semiconductor under doping by trivalent impurities and
subsequent annealing in alkaline metal vapor [1]. In Ga
doped CdF, subjected to such a procedure of additive
coloring, impurity centers may be in two states, which
are characteristic of DX centers. The shallow state cor-
responds to the localization of an electron on a hydro-
gen-like orbit (Ga® + €). In the ground, deep state, two
electrons are localized on the impurity ion (Ga**), and
theionitself isdisplaced to the adjacent interstitial site,
thus giving rise to alocal distortion of the lattice. The
corresponding potential barrier between shallow and
deep states is responsible for the metastability of the
shallow state and for the difference between the thermal
and optical ionization energies of the deep state. The
depth of the shallow impurity level is about 0.116 eV
[2], and that of the deep level is about 0.75 eV [3]; the
optical ionization energy of the deep center is about
3eV [4].

At atemperature below T = 240K [4, 5], metastable
shallow centers that are induced by the light quanta
hv = 3 eV during the reaction

Ga™" +Ga” +hv—» 2(Ga™ +e) 1)
may persist for along time. Thistransition is accompa:
nied by adecrease in the refractive index Anin the fre-
guency range between the visible ultraviol et absorption
band of the deep center (A« =400 nm) and theinfrared
band of the shallow center (A, = 7 um). Owing to the
locality and the metastability of variations in An and
their dependence on theintensity of light, one can usea
CdF,:Gacrystal for recording optical holograms[6]. As

temperature increases, the photoinduced shallow cen-
ters decay according to the reverse reaction

2(Ga” +e) +kT—» Ga~" +Ga™",

)

and the photoinduced variationsin An vanish.

As temperature decreases, the impurity ions gradu-
aly pass to the deep state. However, when a CdF,:Ga
crystal is cooled sufficiently rapidly to temperatures
below 240 K, part of theimpurity centersremain in the
shallow state due to the potential barrier between the
shallow and deep states.

The temperature and illumination dependence of the
refractive index similar to that described above for
CdF,:Gais aso characteristic of other semiconductors
with bistable DX centers [7-10] that were used earlier
as the recording media for phase holograms in the fre-
guency range between the absorption bands of the deep
and shallow centers. Usually, interference fringes are
recorded at the intersection of two laser beams, and
these holograms represent a phase diffraction grating.
In this paper, we show that, in an additively colored
CdF,:Ga crystal with bistable DX centers, one can
obtain a photoinduced amplitude diffraction grating in
the frequency range bel ow the absorption band of shal-
low centers.

Such a possibility arises in a temperature interval
low enough that the decay of photoinduced shallow
centers according to reaction (2) does not occur and, at
the same time, high enough that the thermal ionization
of shallow centers creates a significant concentration of
free electrons. In the case of a CdF,:Ga crystd, this
conditionisfulfilled at temperatures of 150-240K. The
local character of the conductive structure produced
and its correspondence to the profile of theillumination

1063-7761/05/10006-1153$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependence of the submillimeter-wave
transmission of a CdF,:Ga sample before (filled squares)

and after (open sguares) exposure to blue-green light (I =
2.18 mm and A = 0.65 mm).

intensity are guaranteed by the small value of electron
mobility, u = 15 cm? V-1 st in CdF, : Ga[11] at these
temperatures, and the Coulomb attraction of an ionized
DX center. For these values of the mobility, the mean
time between electron scattering events (with the effec-
tive mass m* = 0.45m, for CdF, [11]) is

T=umt/e = 4x10"°s,
and the corresponding mean free path is

| = VT = (3KT/m*)"?1

=5x10° cm,

which is much less than the wavelength (4 x 10° cm)
of theilluminating light. In this case, thereal part of the
Drude conductivity is

Oy

- 2
1+wT

0 Go = Neeuv (3)

27

and the corresponding absorption coefficient is

G'
a = — 4
€oCN “)
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and remains practically unchanged up to afrequency of

1 13
Vp = =— = 4x10" Hz,
D ont

i.e., up tothemid infrared band (here, N, isthe concen-
tration of conduction electrons, eisthe electron charge,
€, is the permittivity of vacuum, c is the velacity of
light, and n is the refractive index). As we showed
in[12], when a CdF,:Ga crystal is cooled sufficiently
slowly to T = 200 K, the concentrations of ions in the
shallow state Ny, before and after photoexposition may
differ by a factor greater than 20. Therefore, the con-
centrations of conduction electrons N, and the absorp-
tion coefficients a in the illuminated and unilluminated
parts of the sample may also differ by afactor of more
than 20. Thus, a photoinduced amplitude diffraction
grating in CdF,:Gamust have high contrast and be reli-
ably recorded in the submillimeter-wave band.

2. DESCRIPTION OF THE EXPERIMENT

Experiments were carried out on the submillimeter-
wave spectrometer Epsilon[13]. First, we measured the
transmission coefficient Tr versus temperature of a
plane-parallel sample of CdF,:Ga of thickness | =
2.18 mm at a wavelength of A = 0.65 mm in the dark
and after exposing it to blue-green light. To thisend, we
put caps with windows of black polyethylene film on
the windows of a cryostat; this film well transmits sub-
millimeter waves and cuts off visible light. Under one
of the caps, we mounted two light-emitting diodes
(LEDs) above and below the aperture of the polyethyl-
ene window to illuminate the sample by blue-green
light.

The temperature dependence of the transmission of
CdF,:Ga in the dark at a wavelength of A = 0.65 mm
was recorded while the sample was cooled from room
temperature to a temperature of 150 K. First, from
300 to 263 K, the sample was cooled rapidly. In the
interval from 263 to 225 K, which included the meta-
stability temperature T = 240 K, the sample was cooled
slowly at arate of 0.3 K/min, and then, in the range of
temperatures 225-150 K, the sample was cooled at a
rate of 0.7 K/min.

At atemperature of T =150 K, the sample wasillu-
minated for 25 min by blue-green light emitted by two
LEDs; after that, the transmission of the sample with
photoinduced delayed conductivity was measured in
the dark at awavelength of A = 0.65 mm in the temper-
ature interval from 150 to 240 K. These measurements
were carried out while the sample was heated during
1 hand 15 min.

The measured submillimeter-wave transmission of
CdF,:GaisshowninFig. 1. The difference between the
transmissions of the illuminated and unilluminated
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samples of CdF,:Ga attains its maximum at a tempera
ture of about 225 K. Using the formulas

Tr = (1-Rexp(al), R=0= (5
(n+1)°

for the transmission of a sample and formula (4), we

find that, for n = /&' = 3[14, 15] and Tr (225 K) =
0.0009 for an illuminated sample, the delayed conduc-
tivity equals o' (225 K) =0.24 O~ cmrL.

To carry out experiments with a diffraction grating
photoinduced in a CdF,:Ga sample, we modified the
Epsilon spectrometer to allow for the measurement of
the angular dependence of the intensity of submillime-
ter waves transmitted through a sample.

A quasi-parale beam of radiation with a wave-
length of A = 0.65 mm emitted by a backward wave
oscillator was focused on asample by ateflon lenswith
a foca length of F = 340 mm; the half-width of the
Gaussian intensity profile on the sample was about
9 mm. A metal diaphragm with a8 x 8-mm square hole
was placed behind the sample so that the intensity of
the submillimeter-wave radiation on the sample was
approximately constant within the aperture of the dia-
phragm. A transparent film was sandwiched between
the sample and the diaphragm. On this film (from the
side of the sample), black parallel vertical strips 2 mm
in width were printed with a step of 4 mm by a laser
printer, so that two black and two transparent strips fall
within the 8 x 8-mm aperture. The whole structure was
placed in acryostat with caps of black polyethylene put
on its windows. The cap with LEDs was placed on the
side where the film with black strips was attached.
When the LEDs were switched on, the regions of the
sample under transparent stripswereilluminated, while
the regions under black strips were practically unillu-
minated. The sharpness of the shadows from the strips
was guaranteed by the configuration of the LEDs,
which were arranged along a vertical axis at a distance
of about 7 cm from the sample. We carried out a sepa-
rate experiment to find out that, at A = 0.65 mm, the
transmission of the film regions under the black strips
is the same as that outside these strips; i.e., the black
strips on the film are practically transparent for submil-
limeter waves.

To measure the angular dependence of the intensity
of submillimeter waves transmitted through the sample,
we placed the receiver (a Golay cell) of the spectrome-
ter at the end of arod that could rotate about a vertical
axis passing through the sample. A lens with the focal
length F = 120 mm was placed at the middle of therod,;
the distance between the lens and either the sample or
the receiver was about twice the focal length. Such a
configuration guaranteed a sufficiently high degree of
sensitivity and the necessary angular resolution. The
aperture of the cryostat windows was large enough to
allow for the angular measurements within £16°. For
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the chosen configuration of two 2-mm-wide slots with
astep of 4 mm on an opague screen, the first-order dif-
fraction maximafor A = 0.65 mm are located at about
+8.5° and amount to 44% of the intensity of the zeroth-
order maximum, and the second-order diffraction max-
ima amount to only 1% of the intensity of the zeroth-
order maximum. Thus, practically the whole diffracted
radiation falls within the aperture of the cryostat win-
dow.

To carry out experiments with the photoinduced dif-
fraction grating, we used the same 2.18-mm-thick
CdF, : Ga sample and followed the same cooling
regime asin the preliminary measurements of transmis-
sion versustemperature in the dark. At atemperature of
150 K, the sample was illuminated for 25 min by blue-
green light from two LEDs. Then, we measured the
angular distribution of the intensity of submillimiter
waves (A = 0.65 mm) transmitted through the sample at
temperatures of 161, 171, 186, 200, 225, and 240K in
the dark. These measurements were carried out during
heating of the sample with necessary stops at each tem-
perature point and took 2.5 hours.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 2 shows the angular distribution of diffracted
radiation measured at different temperatures. Each dis-
tribution is normalized by the intensity of the zeroth-
order maximum at the relevant temperature. For the
sake of clarity, each diagram is shifted by 0.3 along the
vertica axis. The symbols represent the experimental
results with a step of 1°, and the solid curves represent
the theoretical results (see below) caculated for the
transmission in the dark and after exposure (see Fig. 1).

The lowest diagram is obtained at 150 K before
exposing the sampleto blue-green light; i.e., thisdistri-
bution corresponds to the diffraction of radiation with
A =0.65 mm by asingle 8-mm-wide slot in an opague
screen. For such a configuration, the angular distribu-
tion of radiation intensity 1(6) behind the dlot is given
by [16]

1(6) = sin‘u/u?, u = Tasind/A, (6)

where aisthe slot width and 6 isthe angle between the
direction of the incident beam and the direction to the
receiver. The solid (theoretical) curvefor this case coin-
cides with the experimental data, which means, in par-
ticular, that the receiving system has a sufficiently high
angular resolution.

The angular distributions of diffracted radiation
obtained after exposing the sample to blue-green light
through the mask exhibit pronounced peaks near £8.5°
at all temperature points, which correspondsto thefirst-
order diffraction maxima for the grating consisting of
two 2-mm-wide slots with a step of 4 mm in an opague
screen. The relative intensity of these peaks increases
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Fig. 2. Angular distributions of submillimeter-wave radia-
tion diffracted by a photoinduced grating in CdF,:Gg;
(1) before exposure, (2—7) after exposure at different tem-
peratures: T = (2) 161, (3) 171, (4) 186), (5) 200, (6) 225,
and (7) 240 K. Every subsequent graph is shifted by 0.3
aong the vertical axis. The symbols represent experimental
results, and the solid lines represent the results of calcula-
tion by formulas (6)—(11) for the values of transmission in
the dark and after exposure, which are shownin Fig. 1 (I =
218 mm,a=2mm,d=4mm, N =2, and A = 0.65 mm).

with temperatureup to T = 225 K and decreasesat T =
240 K. Qualitatively, this result correlates with the
behavior of the contrast of the transmissions of theillu-
minated and unilluminated regions of a CdF,:Ga sam-
ple (see Fig. 1). At T = 225 K, the relative intensity of
the first-order maxima amounts to 23%, which is about
one half theintensity of these maxima (44%) inthe case
of two 2-mm-wide slots with a step of 4 mm in an
opaque screen. Obviously, in the case of our structure,
which consists of aternating strips with transmissions
Tr, and Tr,, where theindices 1 and 2 refer to the unil-
luminated and illuminated regions, respectively, therel-
ative intensity of the first-order maxima must be lower
due to the additional contribution of the strips with
transmission Tr, # O to the diffraction pattern.

We calculated the diffraction pattern for a periodic
structure consisting of alternating strips with transmis-
sions Tr, and Tr, in the case when the number of strips

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

RITUS, VOLKOV

of the fist type, N,, is equal to the number of strips of
the second type, N,, i.e.,, N; = N, = N, in the following
manner. The diffraction by such a structure can be con-
sidered as interference between the diffraction fields
from two gratings: a grating of N slots with transmis-
sion Tr, in an opague screen and a grating of N slots
with transmission Tr, in an opaque screen, the latter
grating being shifted by half the period d with respect
to thefirst one.

According to the Fresnel—Kirchhoff diffraction the-
ory [16], the amplitude E; of the field from the first
grating is determined by the expressions

t,a; S in(N
E, =D 1alSSuSli:3( V), t, = JTry,
1 (7
u, = Ta;sin6/A, v = TdsinB/A,

where b is adimensional proportionality factor and a;
is the width of the slots of the first grating. Similarly,
the amplitude E, of the field from the second grating is
determined by the expressions

t,a,snu,sin(Nv
242 2 ( ), t2 — Trz,

E,=b :
U,sinv )

U, = T@a,sinb/A,

where a, is the width of the dots in the second grating.
The oscillation phases of the fields E; and E, differ by

The amplitude of the field E(B) of the resulting diffrac-
tion pattern with regard to interference is given by

E*(0) = E;+ E;+ 2E,E,cos0; (10)

accordingly, theintensity 1(6) inthedirection 8 isgiven
by

E*(6)
E*(0)

1(8)

1(0)

Thus, the coefficient b cancels out in the expression for
the relative intensity.

The results of calculations by formulas (7)—11)
using the experimental parametersa, =a, =2 mm, d =
4 mm, N =2, and A = 0.65 mm and the measured values
Tr, and Tr, of transmission in the dark and after expo-
sure are shown in Fig. 2. One can see that the experi-
mental resultsarewell described by computed curves at
temperatures 161-200 K, whereas, at temperatures T =
225 K and T = 240 K, the experimental points for the
first-order maximalie significantly lower than the com-
puted results. Figure 3 shows the temperature depen-

(11)
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dence of the relative intensity of the first-order maxima
obtained in the experiment (filled squares) and calcu-
lated by formulas (7)—(11) (open squares). One can see
that, despite a certain quantitative discrepancy at tem-
peratures of 220-240 K, the experimental and theoreti-
cal functions are qualitatively identical: first, the rela-
tive intensity of the first-order maxima increases with
temperature due to the increased contrast of the grating
because of the increased density of electronsin theillu-
minated strips of the sample, and then the diffraction
maximadecrease due to the decreased popul ation of the
metastabl e state and the associated drop in the electron
density. Note that the maxima of both curves occur near
the same temperature point of T = 220 K. This correla-
tion between experimental results and the theoretical
calculations based on the transmission of illuminated
and unilluminated strips of the sample provide reliable
evidence for the presence of a photoinduced amplitude
diffraction grating in the sample.

In our view, the main reason for the quantitative dis-
crepancy, especialy in the range from 220to 240 K, is
the decay of the metastable state at temperatures close
to 240 K. For instance, according to [4], at T =254 K,
the infrared absorption from the metastable level in
CdF,:Ga is halved in 600 s after exposure. Our mea-
surements show that, at T = 240 K, the submillimeter-
wave conductivity is halved in 1000 s after exposure.
Hence, at temperatures sightly below 240 K, the half-
life time may be on the order of 1 h. Our preliminary
measurements of the transmission of the CdF,:Ga sam-
ple during heating after exposure took 1 h and 15 min,
whereasthe measurements of the angular distributions of
the diffraction pattern took twice as much time. Thus, in
the diffraction experiment, when approaching tempera-
tures of 225 and 240 K, a metastable state was depleted
over a longer period, the transmission Tr, was greater,
and the contrast of the grating was weaker compared
with the preliminary measurements.

The reduced contrast of exposure due to the incom-
plete absorption of light by black strips of the mask,
scattering of light in the sample, and the fact that LEDs
are not point sources may constitute the second reason
for the above quantitative discrepancy.

In [17], the authors observed significant photoin-
duced variations in the dielectric response of CdF,:Ga
and CdF,:In crystals at awavelength of A =8 mm. They
attribute these variations to the resonance absorption in
the infrared band due to the ionized donor pairs. The
variation in €' in CdF,;Ga a T = 1.8 K was Ag' =
0.5+ 0.1. If we assume that there is a similar photoin-
duced variationin €' at A = 0.65 mm at temperatures of
150-200 K, then this should give rise to an additional
phase shift A¢ between submillimeter-wave beams
transmitted through the illuminated and unilluminated
strips of a sample of thicknessl:

86 = S(Jei - Je)).

(12)
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Fig. 3. Temperature dependence of the intensity of the dif-
fraction maxima of orders —1 and +1. Filled and open
sguares represent, respectively, experimental results and the
results of calculations by formulas (7)—(11) for the values of
transmission in the dark and after exposure shownin Fig. 1.

where the indices “1” and “2" refer to the illuminated
and unilluminated areas and €, = €] + Ag'. When cal-

culating diffraction by a photoinduced grating, one
should add this phase shift to the argument of cosine
in (10). We performed such acal culation for the sample
temperature 161 K at which the transmission contrast
between the illuminated and unilluminated areas is
minimal (see Fig. 1) and, accordingly, the effect of the
additional phase shift is maximal. The results of calcu-

lationsfor | = 2.18 mmand €; (161 K) = 9[14, 15] are

presented in Fig. 4 for A =—0.5511, which corresponds
to Ag' = 0.5, and for A = —0.056TT, which corresponds
to Ag' = 0.05. One can see that the calculated curves are
characterized by asymmetric distribution of the inten-
sity and the shape of the diffraction maxima of orders
+1 and —1, whereas the experimental curves are sym-
metric.! For Ag' = 0.5, the cal cul ations also show amul-
tifold increase in the amplitudes of the maxima of
orders —1 and +1 and a shift in the zeroth-order maxi-

1A small difference between the intensities of the maxima of
orders —1 and +1 is attributed to the apparatus effect, which was
observed even before illuminating the sample (see Fig. 2).
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Fig. 4. Diffraction patterns of a photoinduced grating in
CdF,:Gaat T = 161 K. Filled circles represent the experi-

mental distributions of intensity, and the crosses and the
solid curve represent the results of calculations performed
with regard to the phase shift (formula (12)) for Ag' = 0.5
and 0.05, respectively.

mum by about 1° compared with the experimental data.
Thus, our experiment shows that, at A = 0.65 mm and
temperatures of 150-240 K, a photoinduced variation
in¢'isextremely small (Ag' < 0.05). However, note that
the angular distributions of the diffraction pattern for
Ag' = 0 coincide with the distributions for which the
phase differenceisA¢p = 21k, k=1, 2, 3, ... (seefor-
mula (10)). If some of these low-probability situations
happen to occur, then the corresponding Ag' = 1.9, or
3.9, or 6.2, etc.

4. CONCLUSIONS

Thus, we have shown that the exposure of a
CdF,:Gacrysta, slowly cooled in the dark to 150 K, to
blue-green light through a sl otted mask produces a sub-
millimeter-wave diffraction grating, which persists for
along time at temperatures of 160—240 K. The agree-
ment between the experimental temperature depen-
dence of the intensities of diffraction maxima and the-
oretical calculations of the diffraction pattern based on
the temperature dependence of the transmission of illu-
minated and unilluminated strips in a sample provide
strong evidence that the diffraction grating induced by
light in the sample is an amplitude grating.

The absorption of submillimeter waves in the illu-
minated regions of the sample isattributed to the Drude
conductivity of electrons thermally activated from a
shallow level of impurity centers transferred to a meta-
stable donor state. Actually, we have obtained a photo-
induced long-term conducting n——n—i-type structure;
at 225 K, the n-region conductivity reaches a value of
o' = 0.24 Q' cm™. It is obvious that, using different
masks, one can obtain photoinduced long-term struc-
tures of arbitrary shape in a CdF,:Ga sample (and in

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

RITUS, VOLKOV

other materials with bistable DX centers), the width of
conducting strips being of submicron range.

At A = 0.65 mm, there is no appreciable photoin-
duced variation in the dielectric constant €' in CdF,:Ga
at temperatures of 150-240 K (Ag' < 0.05) because we
did not observe the corresponding characteristic varia-
tions in the diffraction pattern in our experiments.
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Abstract—A regular procedure is proposed for finding the solution to alinearized kinetic equation for charged
particleswith the Landau collision integral in aplasmawith large Z. The expression for longitudinal permittiv-
ity of acollisional plasma, which is obtained using this procedure for the entire range of frequencies and wave-
numbers, as well as the collision parameter, is transformed to the known expressions in the corresponding
asymptotic limits. The nonlocal transport equations for small perturbations are also formulated for arbitrary
rel ations between the characteristic space and time scales of the plasma; these relations considerably extend the
limits of applicability for previously developed theories. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In spite of the fact that dielectric susceptibility of
plasmais a parameter invariably considered in all text-
books on plasma physics, a universal expression or a
simple algorithm for its derivation for collisional
plasma has not been obtained for the entire range of
wavenumbers k and frequencies w. This is due to the
fact that even the determination of alinear response of
the plasma involves the solution of an integrodifferen-
tial kinetic equation for particles experiencing Cou-
lomb collisions. The derivation of such a solution in a
form permitting its routine use in various applications
is the main constraint in the theory of plasma response
with collisions. A natural simplification of the theory
becomes possible when the exact Landau collisioninte-
gral is replaced by model expressions or when simpli-
fying assumptions concerning weak or, conversely,
strong collisions of particles may lead to a noticeable
lossin the accuracy of computations.

The most widely used expression for the permittiv-
ity of a collisional plasma can easily be derived by
using the model Bhatnagar—Gross—Krook (BGK) calli-
sion integral [1]. This approximation makes it possible
to qualitatively describe the effect of collisions on dis-
persion properties of the plasma. However, the use of
permittivity for the BGK model in a certain region of
(w, K) leads to a significant error. Attempts to improve
such amodel description by introducing the Rutherford
dependence of the effective collision frequency on the
velocity have not substantially improved the accuracy
in determining the dielectric susceptibility [2, 3]. A
noticeable improvement of the theory was obtained
when the electrostatic response of a plasma was deter-
mined using the Lorentz model with an exact (in

parameter my/m) Landau electron—on collision inte-
gral [4-6]. This was manifested in a narrowing of the
(w, K) region in which a satisfactory quantitative
description of the dielectric constant cannot be
obtained. At the sametime, it will be shown below that
disregard of the electron—electron collision integral still
does not allow obtaining a quantitative description of
the dielectric properties of plasmas in the entire range
of frequencies and wavelengths.

In addition to theoretical models providing aunified
quantitative description of the dielectric susceptibility
inthe entirerange of (w, k), standard approaches of per-
turbation theory give correct asymptotic concepts of
dielectric susceptibility. Such approaches include the
kinetic theory of the response of a weakly collisional
plasma [7] and hydrodynamic-type theory for colli-
sional plasma[8]. These theories naturally have strong
limitationsin parameters w/vg and kA4, wherev isthe
frequency of electron-ion (e-) collisionsand A4 isthe
mean free path of electrons. Although the weakly colli-
siona nonlocal theory proposed in [9] expands the
region of qualitative description of permittivity, it still
failsto cover all space and time scales of perturbations.
The most direct method for calculating the dielectric
susceptibility for arbitrarily set values of (w, k) involves
numerical solution of the Fokker—Planck kinetic equa-
tion in the Fourier representation, which is quite non-
trivial, requires practical skillsin simulation and cannot
be easily parametrized. Consequently, the construction
of atheory providing a universal method for reproduc-
ing the dielectric susceptibility for the entire range of
frequencies and wavenumbers (v, Ag) and the colli-
sion parameter of a plasma is a problem important for
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practical applications. The present study is devoted to
the solution of this problem.

The problem of dielectric susceptibility of a colli-
sional plasmais closely related to the prablem of non-
local transport. Theoretical models of nonlocal trans-
port in hot plasmas have been being devel oped for more
than 20 years beginning from publications [10-12];
however, the improvement of these models is still not
over for the condition A4/L < 102, which istypical, on
the one hand, for inertial confinement fusion (ICF)
experiments and, on the other hand, in cases when the
classical strongly collisional theory of transport isinap-
plicable [13, 14]. For example, the characteristic length
L of plasma inhomogeneity in ICF experiments in the
region of laser energy absorption usually does not exceed
100 electron mean free paths. For this reason, the inter-
pretation of aimost all experiments with a laser plasma
requires the application of nonlocal transport theory.

The most significant advancesin the devel opment of
nonlocal transport theory were made in the small per-
turbation moddl [9, 15, 16], for which analytic solu-
tions to the kinetic equation can be obtained under cer-
tain assumptions and can be used for determining elec-
tron fluxes. These theories presumed that the transport
processes are slow (quasi-stationary) so that transport
coefficients are independent of time. In such a quasi-
static approximation, the nonlocal hydrodynamic equa-
tions compl etely equivalent to the kinetic description of
a plasma were formulated [16]. At the same time, the
transient nature of transport processes may limit the
application of the theory to a considerable extent [17].
In the linear theory, allowance for the effects of nonsta-
tionary transport is essentially equivalent to allowance
for the w dependence of transport coefficients, which
leads to a nontrivial frequency dependence of the
dielectric susceptibility. In [4, 18], these effects were
taken into account for weakly collisional and collision-
lessplasmas. The approach devel oped by us here makes
it possible to analyze transport properties of plasmas
for any relations between the temporal, spatial, and col-
lisional scales of plasmas.

The models of nonlocal hydrodynamics are advan-
tageous since they simplify the description of transport
processes for practical applications. Such models were
developed starting from the beginning of the 1990s
[19-22] and were aimed at inclusion of kinetic effects
(such as Landau damping) in the comparatively simple
equations of hydrodynamics. Consequently, an analytic
description of transport coefficients using a consistent
theory (eveniif it is confined to alinear approximation)
would lead to further improvement of nonlocal hydro-
dynamic models.

In this study, the derivation of transport equations
for perturbations and the expressions for dielectric sus-
ceptibility is based on solving the initial value problem
for the linearized kinetic equation for plasma particles
[16]. The method for solving this equationisvalid for a
plasmawith alargeion charge Z > 1 and with arbitrary
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relations between the length L = k™ of perturbation
inhomogeneity and the electron mean free path as well
as between the typical temporal scale T = w™ of pertur-
bation, electron collision time, and the electron mean
free time (the time during which an electron traverses
the distance equal to the characteristic scale of inhomo-
geneity, 1/kv4,, where v+, is the thermal velocity of
electrons). Using the expansion of the distribution
function in Legendre polynomials in this approach, we
sum al angular harmonics of the electron distribution
function, which allows usto describe acontinuoustran-
sition from the strongly collisional hydrodynamic limit
to the collisionless case in the transport equations and
the expression for dielectric susceptibility. The proce-
dure for solving the initial value problem for a pertur-
bation of the distribution function [16] isgeneralized to
the nonstationary case. The transport equations are for-
mulated in the form of relations between Fourier com-
ponents of electron fluxes and generalized hydrody-
namic forces (i.e., between the density and temperature
gradients and the electric field). As aresult of the tran-
sient nature of the problem, all electron transport coef-
ficients in the (w, K) space contain the imaginary part,
which is missing in the quasi-stationary theory [9, 15,
16]. The obtained complex longitudinal dielectric sus-
ceptibility is analyzed in the entire (w, k) region as a
function of collision parameters of the plasma (kA4 and
WA/ V1o). The relation between the dielectric suscepti-
bility of the plasma and nonstationary nonlocal trans-
port coefficients is established.

2. KINETIC DESCRIPTION
OF POTENTIAL PERTURBATIONS
IN A COLLISIONAL PLASMA

Let us consider small potential perturbations of a
homogeneous equilibrium plasma with the Maxwell

distributions functions f;, (a = e, i) of eectrons and
ions, which are characterized by density n, and temper-
ature T,. We assume that the ground state is quasi-sta-
tionary, allowing for only a slow variation of the parti-
cle temperature with time due to energy redistribution
between electrons and ions as a result of collisions. In
this case, the linearized kinetic equation for spatial Fou-

rier components &f, = f, — f, of perturbations in the
particle distribution functions has the form

DQ 1 % aﬂ =
by ik DHéfa+maE 5o = Capl8f4 1] "

+Cab[fa16fb] +Caa[6fal fa] +Caa[fa1 6fa]1

where C,, and C,, arethe Landau collision integralsfor
particles of the same species with a charge e, and a
mass m,.
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Carrying out the unilateral Fourier transformationin
time and expanding the distribution function of, in Leg-
endre polynomials P,(8),

= 5 fiP(8), Caw= 5 CuPiB), (@
=0 1=0

we obtain an infinitely large system of equationsfor the
(o, k) Fourier components of angular harmonics of dis-

tribution functions f;:

[+1

—iwff+ikv T+ 3f|+1 @

2II fi o +ikv=—=

~Caa=Cap = S
Here, the collision integrals C'Elb (both for b=aand for
b # &) written using the Rosenbluth potentials [8] have

the form

st~ a2
iy
XI6J'_1_|2|—JE|1+1)5|:%[_%E

2 aZfan(l |) (4)
"4 M - | |
221+ 1) g2 D21 =1 N+ 00

L@@+

S g Bl + 83 ) F

v afn{I®+31-2)31 +1(1-1)8J;
@+ av O 211

(I+2)(1 +2)81,,,+ (1P =1-4)33'
B 2l +3 |

where v(v) = 4my(e,e,)?\/m: V2 is the velocity-
dependent frequency of collisions of particles of spe-
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cies a with particles of species b, A, is the Coulomb
logarithm, and

b, fg} Vm+2dv

{13 8l =

©®)

v™ 2

{39; 83 =

v

4m ) b

= ({ Ty, f
n,v -[ )
are unperturbed Rosenbluth potentials J% and their

perturbations &J7, , which can be defined from standard
expressions [8].

Under the assumption that the initial perturbation
of4(t = 0) of the distribution function is determined by
the perturbed Maxwell distribution (i.e., characterized
by the initial perturbations of density on,(0) and tem-
perature 6T,(0) [16]),

5f (v, t = 0)
dn,(0) 5Ta(0) Oy a (6)
i = )

the sources in kinetic equation (3) (right-hand sides)
appear only for the first two angular harmonics of the

distribution function (S* = 0 for | > 2) and are deter-

mined by the initial perturbations of the distribution
function and by the (w, k) Fourier component of the

electric field, namely, § = &f(t = 0) and S, =
(eEITYv s,

Taking two moments in velocity of Eq. (3) with | =
0O for perturbed density &n, and temperature &T,,

00

on, = 4T[J’dvv2f§,

(7)
41

m [ee]
3T, = 3—n;‘fdvv2(v2—3v$a)f3

(V12 = JT./m, isthe thermal velocity), we obtain the
number-of-particles and energy conservation laws,

oon,

50 &+ikn,u, = 0, (8
00T, . 2
ot 2+ Ikﬁ(qa + nauaTa)
9)
4mm, _00T,
= dvv?c? = ,
3n, ) TR I
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where u, is the average velocity of particles and q, is
their heat flux:

41t

_ 3ca
U, = 3—anvv fis
10)
2nT 2 (
0o = —5— EDf
3 EvTa

Here and everywhere below, the thermal energy of par-
ticlesisgiven in the normalization corresponding to the
Boltzmann constant equal to unity. The right-hand side
in Eqg. (9) describes the collisional energy exchange
between the species of particles:

J’dvv cY, = 2J’dvvabv
(11)
N _Me

Accordingly, for the moment of u,, we obtain from

x Df M %’J—l

Eq. (3) with | = 1 the law of momentum conservation
ou,
n,m,—— ST 2 +ik(dn,T,+ 0T na)+|kﬂ|| e.nE
(12)
4nm
ab =n maa—u 1]

ab

where the contributions from collision (friction) are
described as follows:

Janch = B

xjdvv3vab(f;5Ji2— £219).

(13)

Quantity I'Iﬁl in expression (12) is given by expression

8mm
i = = aJ’dvv“f"; (14)

as the longitudinal component of the stress tensor.

Further simplification is associated with expansion
of the electron—on and ion—electron collision integrals
in the characteristic velocity of ions and the electron
velocity in corresponding equations (3). This gives the
following expressions for these collision integrals:

CI 4TV
oy = S
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0 |jne':| ’ 2¢h ev 2 i%
X — O fdv'vfy, + O,y fdv'vcf
aVE'ﬁD |'(|: M 10 MI OD
] (15)
1 f; vy |. g
0
af
6|1 Iav
C:e v f i
= =1(1+21)f
Vie(v) 3neVTe T[( ) !
4T[V m e
302 m5|1 dv'f,
(16)
O 2910
_\_/__a_Dnmfo_v_af,
3N0V =\ 2m VTe vTeavDD

i D e h 0
+ 41, i, v IF5(0) — —1-2—Idv‘v‘ fSH 0
0 Vi 00

in these expressions, primed distribution functions cor-
respond to argument v'. The above collision integrals
give the conservation laws for the number of particles,
momentum, and energy. The energy exchange between
electrons and ions (cooling) in Eq. (9) for electron tem-
perature perturbations associated with collisions is
described by the expression

T mMBN

DT = 2T =T +3T,
mgn

ot

ei

@
e e |:|
+ “—’T[’—T(viefo(om T ovee[dvy 85
ne 2 0

where v, = 2v4(v)/(3.4/2T1). The energy balance
equation for ions contains the same contribution with
the opposite sign (heating). Accordingly, the e-i colli-
sions give a contribution to the momentum conserva-
tion law (12),

oug| —T,_L g
O_te ; - Velul mene%lev
P (18)
Rie = me dvv ve,(v)fl,

which takes into account the friction force R, and the
ion recoil v ;.
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Since we are interested only in kinetic effects for
electrons, we seek a solution to Eq. (3) only for the
electron distribution function. Assuming that ions have
alarge degree of ionization Z > 1, we can disregard the
electron—€lectron (e—€) collision in the equations for
higher harmonics of the electron distribution function,
retaining only Cge in the equation for its symmetric
part. We also ignore the contributions on the order of
~my/m in C4, which areresponsiblefor the slow energy
transfer from electronsto ions, whichissignificant only
over large temporal scales. This is well justified, for
example, for alaser plasma. Thus, for the electron—ion
collision integral, we will use the expression

(1 +1)

Clei = - 2

Vg f1+ 8,V fMui, (29

ei” 5
Ve

assuming that the mean ion velocity u; appearing in Cy
is a preset quantity. An analogous system of equations
for f; was considered in [16] using a reference frame
in which ions are at rest. However, in contrast to our
approach, the authors of [16] used a quasi-stationary

approximation imposing the limitation of alow rate of
transport processes. Here, this constraint does not exist.

The equations for higher (I > 1) angular harmonics
of distribution function (3) are eliminated by introduc-
ing modified collision frequency v, [16, 23], for which
we can write the recurrence relation [23],

Vi(v) = —iw+ 311+ 1)ve(v)

(I + 1)2 k2v2 (20)

+
4(1 +1)2 = 1Vi+a(v)’

this makes it possible to write the following equation
for the first angular harmonic:

ikv e

f 1 an[ﬁ‘E 0
vi(v) 0

v, (v) ov O, Vel'Dr

fi:_

(21)

Here, the symmetric part of perturbations of the elec-

tron distribution function fg satisfies the kinetic equa-
tion

0 kZVZDfe f
D_I(*)+ 3V1D O_Cee[ 8]
ikv2eE v2v 22
= KV BE e L Ye fe 1 5%y, t = 0)
3V1 Te 3VTeV1

withtheinitial perturbationf® (v, t = 0) defined by rela-
tion (6).
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Following [16], we present the general solution to
Eg. (22) using the basis functions Y,

_ L Pne0) _ eEp n
fo_'kaM On, kTDlIJ fu
5T.(0 ©3
+30 ol )l]J £, —ikupReS,

which satisfy the kinetic equation with various sources
S\(A=N,T,R),

Ew"v% = (f5) Cal fEW Sy (20

where Sy = 1, Sr = v¥/3v2, —1, and Sy = vA,/3v 2, v;.

We dso introduce the moments JQ of basisfunction[16],

3 = @IvzdeAf;sB, (25)
ne
0
which are symmetric to transposition of the upper and
lower indices.

We can eliminate the initial perturbations from
Eqg. (23) by calculating thefirst two moments of dn.and
0T, (7), which leads to the following relations between
theinitial perturbations (dn,(0) and dT,(0)) and current
perturbations (én, and oT,):

6_n_e = |_e_.E_ + @ne(O) eEDJ
Ne kT, U n, kTeD N
oT,(0 ,
30T( )JL iku;Jy,
2 T,
(26)
0T _ PNe(0) eEpyn
T. U n, KTHT
36Te(0)
toy, Jriku Jr.

Accordingly, having eliminated theinitia perturbations
ong(0) and dT,(0) from Eqg. (23), we can derive the
expression for the symmetric component of the electron

distribution function fg proceeding from the lower
hydrodynamic moments

0 kT Dne kTeD Dm ¢

L OTednd "

et 27
Te DNT |V| ( )
g DR D
—iku,ap~ - Ellp - NTQJTEfM,
U Dnr DNT U
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where D5 = JSIE — J2J5. The resulting expression

together with Eq. (21) for f] makes it possible to for-

mulate the linear theory of electron response of plasma
and transport.

3. NONLOCAL HYDRODYNAMICS
FOR ELECTRON PERTURBATIONS

In our previous discussion, we realized the approach
that has made it possible to express the electron distri-
bution function in terms of its lower moments. This
solvesthe problem of closing the chain of equationsfor
hydrodynamic moments. The simplest closure of this
type is well known in the strongly collisional case,
where the Chapman-Enskog or Grad methods are used.
However, this imposes severe constraints on the rela
tion between the electron mean free path A4 and the
characteristic scale L of perturbation inhomogeneity in

aplasma[24], A4/L < 0.06/./Z . Consequently, the clas-
sical theory cannot be used for describing experiments
on the interaction of laser radiation with matter in
fusion studies, in which small-scale perturbations are of
practical interest. Considerable expansion of the range
of application of hydrodynamic eguations, which are
convenient for describing plasmas, was achieved in the
framework of nonlocal hydrodynamics[16] formulated
for slow processes in the quasi-static approximation.
Here, we solve the problem of generalization of nonlo-
cal hydrodynamics to the case of rapidly varying pro-
cessesin aplasma.

A. Nonlocal Transport Equations

The first three moments of kinetic equation (1) lead
to the equations of continuity, motion, and energy bal-
ance for electrons,

ag?e+ Nk U, = 0,
Me_ vy L ipm-Ltr, (29
ot m, MmN, m.n,
8T, 2. 2 _
3t +é—n—e|k [qe+§Te|k (b, = 0,

whereu, isthe electron drift velocity and E* isthe Fou-
rier component of the effective electric field,
. Terdne 0T
* = _eLr e _GD
E E+|keDne + T.0 (29)
Following previous publications [16], we have intro-
duced the generalized friction force R, = Rie —

MheVg U;. 1t should be noted that the equation of
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motion for electrons (second equation) can be used for
defining the stress tensor

. Eay ] .
ikl = Ry +enE* —iwomgn.u,,

while the remaining two equations of system (28) are
completely equivalent to system (26).

Integrating Egs. (10) and (21), we can represent
electric current j = en,(u; — U,) and the heat flux in the
standard form

j = OE* +aikdT, + B,enyu;,

30
Je = —OTE* —XikdT,—BgneTeU;, (30)

while for the friction force we obtain
Rie = (B;—1)N€E* + B ngikdT,— VB, mengu;. (31)

Here, we have introduced nonlocal nonstationary trans-
port coefficients in the (w, k) space: electrical conduc-
tivity o, thermoelectric coefficient a, thermal diffusiv-
ity X, and ion convection transport coefficient 3; , ,:

en0J; . O
0= = B—m"'l(ﬂj,

en, Y +J7 O
= Tper B Tlad
k’T.O Dnr 0

Dyt
Bi=1-—m

NT

N T N
O
= D-;EQJT +‘:ITT+JN+i§uD,
K’O  Dnr 20
(32)
g, = Dur* Dy
R o

Br = 1 + k2VTe)\ei
x [JR=(1=B;)(IR+ IR) + ByIH

32V 1e AVV Ve (V) e
M-
ne0 vi(v)

—(2m)

All electric transport coefficients are complex functions
which, being presented in dimensionless form, can be
parametrized using ki, oa/vgi and Z using classical
expressions. In the static limit w = 0, nonlocal transport
coefficients (32) were analyzed in [16]. The range of
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applicability of the static transport coefficients in the

classical strongly collisional limit (kAg < 0.06/./Z)ina
plasmawith a high degree of ionization of ions, Z > 1,
is determined by the smallness of frequency as com-

pared to the frequency of the e-i collisions, w < v; [8].
The coefficients themselves are in fact determined

by quantity VL , and the effects associated with elec-

tron—electron collision are small corrections of order
O(Z™1) [13, 14]. The applicability limits of thisclassical
limits are determined by the el ectron energy delocaliza-

tion length A, = ,/Z A4 [11, 12], which defines the spa-
tial scale for which the relaxation rate associated with
e—e collisions becomes equal to therate of spatial trans-
port in kinetic equation (22). In the vicinity of this
boundary, e—e collisions begin to strongly affect the
transport coefficients, modifying the symmetric part of
the distribution function, which in turn determines the
anisotropic correction (see Eg. (21)) aswell aselectron
fluxes. This narrows the applicability limits for the
static approximation for transport coefficients, whichis
now determined by the relation between w and the e-e
collision frequency. At the same time, with increasing
kA, asaresult of the electron redistribution associated
with spatial transport, subthermal electrons (i.e., elec-
trons with low velocities v < vy) begin to determine
perturbation of the symmetric part of the distribution
function, thus effectively increasing the frequency of

e—e collisions [9]. For example, for k\y > ./Z, their

characteristic velocities v* ~ v/(ZK2AZ )Y7 become
noticeably lower than thermal velocities [9, 16]. Thus,
the range of application of static approximation for
transport  coefficients for moderate gradients

0.06/ /Z < k\g < 6723 are determined by the condition
W < Vg, Va(KAg)¥7/Z57 [9, 16], where v, =

2V eo(V1)/(34/2T1). For higher gradientsin the region of
K\g ~ 6223, dl angular harmonics must be taken into
account for obtaining a correct description of the tran-
sition to the collisionless limit. This explains the sharp
transition to the region in which the applicability of the
static approximation to transport coefficient isviolated.
In the collisionless range of wavenumbers, kA > 6223,
this region is defined in the standard manner as w <
kv4.. Henceforth, we will define the applicability
region of the static approximation for the transport
coefficients

Ve, kA >0.06/./Z,
0

W < VL, VE(KAG)YT1ZY7, 0.06//Z <k\y <6277,
0

|:kVTev k}\ei > 622/31 (33)
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asthe quasi-static limit of our nonlocal theory. It should
be noted that the above-mentioned sharp transition to
the collisionless kinetic limit is expressed in that expres-
sion (33) formally experiences ajump for khg ~ 6223,

B. Nonlocal Transport Coefficients

Theregion of application of the classical (local) the-
ory is well defined in the quasi-static limit (33) [24].
This region expands with increasing w since a ssimple
exact solution to the kinetic eguation [8] exists for

[+ iv¥e| > kv, if we disregard e—e collisions. Our
exact solution shows that nonlocal effects are insignifi-

cant for kA < 0.06/./Z, 0.1w/v, . Inthiscase, Eq. (24)
can be solved by expanding the basis functions using

the first two Laguerre polynomias (* = CQ +

CJ (v¥3v4, —1). Then the effective frequency of col-

lisions satisfies the following approximate expression:
Vv, = Vg4 —i. Asaresult, we obtain the transport coeffi-
cientsin quadratures [8]:

o _iw 6
oo 48_[ dxx"Q(x),
0

a _ 1 6,2
i mIdXX (X"=5)Q(x),
0

00

XLSH = ﬁ)jdxxs(x2 -5)°Q(x),
0 (34)

Br =1 —J'dXQ(X),
0

200 3
B = 1— | [dxx*Q(x),
j 9“0[
1 ) 3 2
By = [7a=[dxx*(5-x)Q(x),
q 18r[!

where we have introduced the notation

v; xexp(—x2/ 2)

Q(x) = _ , X = VIV,
vy —i/29muwx’ T
and
32n.€° 16n.e
O-SH = T? a = T?
3mMVy TIM Vi
Yo = 200N,V 1A
SH 3.,_[
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Fig. 1. Dependence of thereal and imaginary partsof transport coefficients o, a, X, and ;¢ » on m/v; inthelong-wavelimit kA <

0.06/./Z , 0.1 v; . Dashed curves correspond to the static limit (35).

correspond to the classical transport coefficients[13, 14].
These expressions for transport coefficients are inde-
pendent of the wavenumber and correspond to the local
limit, including the hydrodynamic limit. Figure 1 illus-
trates their dependence on frequency.

In the limit of strong collisions and low frequencies
w< v; , expressions (34) lead to classical real-valued

transport coefficients [ 13] with small imaginary correc-
tions

+i1050o

16 vg
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i_1+i&5(‘$, L—l+i@(’$,
s 8 vl Xsn 40 L
(35
B, 32w B _j2w
: 3myl" 2m, T’
B, = i<
r Ve

Withincreasing w, thereal part of the classical transport
coefficients g, a, and X decrease monotonically, while
the imaginary part increases, attaining its maximal

valuefor w~ O.lv; and then decreases (see Fig. 1). In

No. 6 2005



PERMITTIVITY OF PLASMA AND NONSTATIONARY THEORY

the limit of strong collisions, the ion convective trans-
port coefficients are negligibly small; these coefficients
appear only due to nonstationary nature of the process
since it can be seen directly that they are proportional

to w. In the high-frequency limit w > v; , coefficients
B; and B, with small imaginary partstend to unity, while
coefficient 3, is small in absolute value, its real part
being smaller than the imaginary type. In the same

limit, transport coefficients o, a, and x become purely
imaginary with small real corrections:

i ezne%]_ i Vel e'D
m,w w’

o =
. T
X = |TeneE§_i13veiD,
mwl2 400
ien, 500 (v, ?] 3v;
o = eplT(Ve) iz @
0 36w° 20
T T
Vi _ -3Vei
B = 1—|6, By = —lﬁ,
Egn(v )ZD .
= 1- Ay 1+i./3).
P D 20 O Jé( )

With increasing collision parameter kA, the nature
of the frequency dependence of transport coefficient
also changes. For example, coefficientsa and x charac-
terize the essentially nonmonotonic frequency depen-
dence, which can beclearly seenin Fig. 2. For example,
the rea part of the thermal diffusivity first increases
with frequency w as compared to the static case, and

then decreases for w/vy, > 1. Accordingly, the imagi-

nary part of the thermal diffusivity isfirst negative and
decreases to its minimal value; then it begins to
increase, changes sign, attains its maximal value, and
decreases again. Both theimaginary and real part of the

thermal diffusivity have a maximum for w/v; ~lat
kAg = 1 (see Fig. 2). A still more complex frequency
dependence appearsfor the thermoel ectric coefficient a
whose imaginary and real parts have three points of
inflection each. Thereal part of a reversesits sign upon
an increase in w. The above arguments indicate a non-
trivial manifestation of the Peltier effect in a hot
plasma.

Relatively simple equations for transport coeffi-
cients can be obtained in the (w, k) region, in which the
e—e collisions make an insignificant contribution [6],
i.e, for

w> vl vh(khg) 127"
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In this case, obtaining solutions for the basis distribu-
tion functionsin the form

P* = 3v,S/(Kvi-3iwy,),

we arive a the following expressions for their
moments:

dxW(x),

_ ﬁ de(x2—3)W(x),
0

00

7= 3% de(x2—3)2W(x),
3N 3V dxW(x)
Ir kvn[ 2 3,0

dxW(x) (x* = 3)
JI*‘kvmf 7

(37)

3“( Vel) dXW(X)
JR = J’
2KV 1 ) x 2V3(x)
where
2
W(x) = N2ITKV 1 eXp(—X°12)

K2V2 vy (X) = il

All transport coefficients (32) can easily be calculated
in terms of these moments.

Inthecollisionlesskineticlimit kAg > 1, wehavij,
Br =1, B4 =0, whilethe remaining coefficients are func-
tions of parameter p = w/kv, and can be obtained using
v, = kvgh; as the effective frequency in Egs. (37),
where hy_; =—ip + x22/(412 — 1)h, (cf. Eq. (20)). In this
case, we can propose a simple approximate formula,

hy(x, p) = i(T(p—+p*~x°)/6—p),

for hy, which coincideswith the exact solution to within
1%. Substituting expressions (37) caculated in this

(38)
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Fig. 2. Dependence of the real and imaginary parts of transport coefficients g, o, X, and Bj g r On WV for Khg =

way into Egs. (32), we obtain where the following notation is used:

_engVoe
-~ kT,

A= IXAW(x)deW(X)dX—SXZW(X)d%Z.

[ 4 |:|
X %J’% —2x° + FW(X)dx + i,
H (39) It should be noted that expressions for collisionless
transport coefficients were obtained in [ 18] using arep-

O : e ) s
= &N VTE% I% W(x)dx—lpj, resentation differing from (39) using explicit summa-
KA O tion of aninfinite series. At the sametime, the collision-
less transport coefficients can be calculated absolutely
n VTe% 5 O exactly (without using infinite summation in function
X = [‘Q FWEJdx+i5a, h, or its approximation (38)) by solving theinitial value
a problem (6) for the collisionless kinetic equation. This
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Fig. 3. Dependence of the real and imaginary parts of transport coefficients o, o, and X on wkve, calculated using formula (38)
(bullets), in comparison with the exact collisionless theory (40) (solid curve).

follows from the corresponding collisionless expres-
sions for moments J%,

T

N i 2 2
In = ZI+(P) In = 3P =1)3.(p) — P,

| (40
7= (0200 5)0.(p) -+ ),

where

X 2

2
X t
J.(x) = xexpE—EEIdtexpz

isthe standard dispersion function emerging in the col-
lisionless theory of plasmas [1]. The behavior of colli-
sionless transport coefficients as functions of wkv is
illustrated in Fig. 3. These coefficients correspond to
theresultsobtained in [20]. In the quasi-static collision-
less limit, we represent the result

o= 5 neVre 1 envee
- kT, ' B kT,
Jam KTe J2m KTe @)
X = 4 NeVre
J2m K

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

following from (40) [16, 19] and corresponding to the
free (Knudsen) quasi-stationary transport.

The expression for the heat flux is often written
in terms of the temperature gradient and electric cur-
rent [14]. Accordingly, eliminating the electric field
from Egs. (30), we obtain

aT.. .
Gej —KikdT,—nTBu;,

2
o' T,
o

(42)

. B = B-=B

where the heat conductivity K and the ion convective
transport coefficient B are introduced. Figure 4 illus-
trates the dependence of these quantities on w for two
different collision parameters. Formulas (42) forj=0
(no-current plasma) are directly related to the descrip-
tion of transport in alCF plasma. It was shown in [17]
using the heat conductivity in the problem of thermal
relaxation as an example that transient effects are
important for kAq = 0.1. For such inhomogeneity
scales, the quasi-stationary approaches that have
mainly been developed until now [9, 11, 12, 15, 16] are
inapplicable. The theory devel oped above suspendsthis
constraint. The equations of nonlocal hydrodynamics
with nonstationary transport coefficients proposed by
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Fig. 4. Dependence of the real and imaginary parts of transport coefficientsk and 3 on w/ v; for k\g = 0.25 and khg = 2.25.

us make it possible to describe a plasma for any spatial
and temporal perturbation scales.

4. LONGITUDINAL PERMITTIVITY
OF PLASMAS

Since the hydrodynamic equations (28) are equiva-
lent to a kinetic description and completely determine
the linear response of aplasmato small perturbationsin
the entire range of parameters (w, k), these equations
can be used for obtaining the longitudina permittivity
€(w, K) of the plasma. To calculate the permittivity

€ = 1+4Ti wLE , (43)
we eliminate the density and el ectron temperature per-
turbations from the expression for current, solving sys-
tem (28):

0¢ on(o+ea)® O
= |1-iepSle , 2hlorea) -
kK'Teo 0°(2k’k —3iwn)J
0 ie’n
X F——wE
O k'Te
2 (44)
) P2 + 1-pd| O
+en.u, 1—|w5é2”eﬁl + nE(OZ eO()(. B)D O
k°T.o 0o(2k’k —=3iwn) 0|0
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.2
ie'n,

2
e

(1 +iwIN)E +engu (1 +i0dg).

Let usfirst analyze apurely electron plasmain the limit
of stationary (infinitely heavy) ions, when u;, = 0.

A. Electronic Permittivity

We will characterize the partial electron contribu-
tion e, to permittivity (e = 1 + de) by quantity de =
K2\, B€., Where Ap, is the Debye radius for electrons.

Using relation (44), we obtain for this quantity the
expression

0e? ong(o+ea)® O
de = 1—iwmfne > ne(zo ef’) 0
[k'T.o 0°(2k°k —3iwn,)d (45)

El+in,'§',

which makesit possibleto find the contribution from all
transport coefficients and is in fact determined by only

one momentum J,.
In the classical hydrodynamic limit kh; < 0.06/./Z,
0.1w/Vg , the analytic expression for e is obtained by
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Fig. 5. Parametric (k, w) plane for the longitudinal permittivity of plasmas. Dotted curves describe the spectra corresponding to the
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substituting Egs. (34) into formula (45). In the limit of
low frequencies (w < v; ), thisleads to the expression

i 32k2 2
66 — 22X(8X - 3I00) , X = \?Te. (46)
16X" — 6w —47iwx 31TV,

In the limit w > X, the electron susceptibility is deter-
mined by the classical electrical conductivity &e,
4riog/w. In the opposite case (w < X), the transport
coefficients areimmaterial for describing the static per-
mittivity corresponding to Debye screening, Ree = 1 +

1/k2)\2De; these coefficients determine only the small

imaginary correction Ime = 41w/16x, which receives a
comparabl e contribution from coefficients o, a, and x.
The dispersion relation € = 0 for khp, << 1 gives the

classical entropy mode w = 2ik’k 4,/3n, with aheat con-
ductivity defined by relation (42), Kg, = 128NV Ag/3TT

[13, 14]. For fast processes (w > v; ), the permittivity
is determined by the high-frequency electrical conduc-
tivity and is described by the well-known expression

€= 1—(Whe/wP)(L—ivg lw) [7].

Figure 5 shows the parametric (k, w) plane divided
into regions corresponding to different approximations
for describing the permittivity beginning from the clas-
sical hydrodynamic limit (left-hatched region) to the
collisionless kinetic limit (dot-hatched region). The
region between the fine solid curves in Fig. 5 (right
hatching) corresponds to strongly decaying perturba
tions, for which Ime > Ree. Under the unmarked bold
solid curve, thereal part of the permittivity corresponds

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

to the Debye screening, Ree = 1 + 1/k2A%,. The oK)
boundary curve denoted by e—e separates the quasista:
tionary regime (33), for which electron—electron colli-
sions are important, from the nonstationary regime. It
should be noted that for k\y < 6Z%3 in the quasi-static
approximation, it is sufficient to use two angular har-
monics (diffusion approximation) for calculating the
electron distribution function and, accordingly, for al
transport coefficients as well as permittivity [9]. In this

limit and for k\q > 1/./Z , the approximate expression
for the permittivity has the form [9]

(A)DT[ 22/7 0
iy O/z+21

Oe = 1+ A7——,
AT

(47)

Te

which iscloseto the exact solution. Our analysis proves
that the range of applicability of relation (47) isin fact
dlightly narrower, kA4 > 1.

In the frequency range in which the e—e collisions
can be neglected, we can reconstruct from relation (37)
the permittivity obtained in [4-6], which leads to the
well-known expression

1

242
De

0w D}
Ckv

1+

€ (48)

[1—\1+

in the collisionless kinetic limit vy —» O.

The general expression derived for permittivity is
applicable for describing the plasmain the entire range
of k and w for any number of collisions in the plasma
also. The contribution of collisions to the permittivity
of the plasmais still described in most cases by using a
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Fig. 6. Dependence of the real and imaginary parts of

o€(w, K) (45) (bullets) on (*)/V; for kK\g = 0.25 (a) and

2.25 (b) in comparison with the theory disregarding the
electron—electron collisions (solid curves) [4] and the BGK
model (49) (dashed curves) [3].

simplified BGK collision integral. The theory devel-
oped here makes it possible to determine the accuracy
of this approximation. The best agreement is obtained
using the expression proposed in [3]:

1-J.(y) _wHivg
1_i~]+(y)/yk)\ei, - kVTe.

However, in spite of the fact that the behavior described
by this expression is qualitatively correct on the whole,
it noticeably differs from the exact result for kAz < 1in
a wide frequency range (see Fig. 6a). With increasing
kAg, the agreement is improved; however, it follows
from Fig. 6b that the empirical formula(49) still differs
from the exact solution by afactor of 2to 3intherange
of parameters w ~vy.

5e° =

(49)

B. lon Contribution to Permittivity

In accordance with definition (43), elimination of
the ion velocity from expression (44) makesit possible
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to obtain the ion contribution to permittivity. Strictly
speaking, a complete kinetic description of the ion
component isrequired in this case. However, according
to the results obtained in [25], for describing rapid per-
turbations (w > kvy), where vy is the ion thermal
velocity, we can use the hydrodynamic equations for
ions, in which the ion viscosity and heat conductivity
are taken into account using the 21-moment approxi-
mation of the Grad method. This makes it possible to
write conservation laws (8), (9), and (12) for ionsinthe
form

. 2 @n 6T|D
—] .= _ 4+ —
i WU E ikv On, ¥ T.0
Kv3 .
—é—v—_ﬁmui +'t1‘_1r_n‘_%ie—VeTini,
I | 1 (50)
iwdT, = —%ikuiTi—%sziéTi,

—iwon; +ikun, = 0.

The contribution from collisionsto the momentum con-
servation law (12) is described by Eqg. (18); the longitu-
dina component of the stress tensor is represented in

terms of theion viscosity My = ik4nT;A;u/3v; [25],

~ iv;(w+ 1.46iv;
f = Mo 1BV) - (s
(w+ 1.20iv;)(w + 1.46iv;) + 0.23V;

the energy exchange during the e—i collisions in the
energy conservation law (9) isassumed to be negligibly

weak; and the expression for theion heat flux g; = —kk;
is determined by the heat conductivity [25]
. 5NVY, i(w+1.29iv,) (52

2 Vi (w+0.8iv,)(w+ 1.29iv,) + 0.21v7

Here, the ion—-on collision frequency is introduced in
the standard manner, v; = 4./mie nA/3TY? /m; .

Using relations (50)—(52), we can describe the total
permittivity of the plasmain the form

.- +1+inH_c_§(1+ioo.J§)2

KApe Ape A

(53)
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where

2, - T
A= W +iwvg

2 2|:| R+ (2"—[2)3/2 Vei (54)

[l
+iwk csdy J’dvv—ff,{j
O nekAgid Vi g

hiofy  5nyw + 2ikk
2,2 Ni i}
3nw+ 2ik k]

Thus, expression (53) definesthetotal longitudinal per-
mittivity of a plasma with negligibly small Landau
damping at ions, w > kvy;.

5. CONCLUSIONS

Using the kinetic approach, we have formulated the
equations of nonlocal transport for small perturbations
in the general case of arbitrary relations between the
characteristic space and time scales of plasmainhomo-
geneity and particle collisions. Consequently, the
derived quasi-hydrodynamic equations are in fact
equivalent to the description of a plasma with the help
of the kinetic equation since these equations consis-
tently take into account the kinetic transport effects
under the conditions and spatial and temporal nonlocal-
ity. The corresponding nonstationary and nonlocal
transport coefficients in the Fourier representation are
investigated in detail in the entire (w, k) region with
visual graphic illustrations. The devel oped theory gen-
eralizes particular transport models constructed earlier
to the case of arbitrary (w, k) and describes all limiting
transitions to the known results.

We propose a convenient algorithm for calculating
the longitudinal permittivity of a plasma for arbitrary
values of frequency and wavenumber. The expression
for permittivity derived here describes a smooth transi-
tion from the hydrodynamic region of strong collisions
to the collisionless kinetic region and from the static to
the high-frequency limit. On the basis of our theory, it
becomes possible to analyze the plasmaresponse in an
intermediate region of wavenumbers and frequencies,
in which the values of these quantities are on the order
of the inverse mean free path and electron collision fre-
guency, respectively. A qualitative description of the
plasma response is especially difficult for such param-
eters.

The permittivity is determined on the basis of the
Landau approximation for the collision integral,
although a more exact Balesku-Lenard expression for
this integral [26, 27] taking into account the effect of
dynamic polarization of the plasma is itself, strictly
speaking, afunction of permittivity. The solution of the
problem is complicated under the conditions when this
effect is significant. This complication is associated
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with allowance for the contribution from the interaction
of particles with plasma oscillations. Since the phase
velocity of Langmuir oscillations of electronsis larger
than the electron thermal velocity, the number of parti-
cles interacting with plasma waves is relatively small
and the dynamic polarization effect of the plasma does
not noticeably affect the collisions. This effect might
become significant in the case of interaction with slow
ion—acoustic waves [28]. The corresponding correction
to the Landau collision integral is most substantial for
the electron—electron collision integral and becomes
predominant for a strongly nonisothermal plasma,

when ZTJT, > AIn(Z2mT2/m,T) (i.e., for ZTJT, >
10°) [28]. Thus, the theory devel oped hereis applicable
when ZTJT; < 103,

The development of nonlocal hydrodynamics is
especially important for describing heat transport play-
ing adecisiverolein the ICF problem (in particular, for
interpreting and simulating experiments with laser
plasmas). It is well known that traditional hydrody-
namic codeswith aheat flux, which can be described on
the basis of the classical theory or its simple heuristic
modifications, fail to explain experimental data cor-
rectly, while the model with nonlocal transport give a
much better agreement with experiment [29]. This
raises hopesthat the nonstationary transport theory pre-
sented here hasa high potential for practical application
in the ICF problem. Analysis of transport in the case of
small-scale plasma inhomogeneities must occupy a
specia placein this case. A closely related problem is
that of energy transport in a specklelaser beam used for
obtaining a more uniform irradiation of a thermonu-
clear target with the help of a number of laser radiation
smoothing mechanisms. It has been demonstrated that
the description of temperature relaxation in small-scale
(L ~Ag) hot laser spots requires taking into account the
effects associated with nonstationary nature of trans-
port coefficients [17]. These effects are important for
describing rapid heating of a hot laser plasma, includ-
ing the heating of the skin layer of the plasma with a
sharp boundary (the latter is characteristic of the inter-
action of short laser pulses with solid targets).

Direct application of nonlocal nonstationary trans-
port coefficients for small perturbations may involve
the development of a theory of laser plasma instabili-
ties. The importance of alowance for nonlocality of
transport in the quasi-stationary limit of filamentation
instability and the stimulated Brillouin scattering was
demonstrated in [30, 31]. The approach worked out by
us paves the way for the development of such atheory
for a strongly nonstationary laser plasma Another
important trend in the application of permittivity is
associated with calculation of the Thomson scattering
cross section [32], which iswidely used for diagnostics
of plasmas [29].
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Abstract—The DD reaction yield (3-MeV protons) and the soft X-ray emission from atitanium (Ti) cathode
surface in a periodic pulsed glow discharge in deuterium were studied at a discharge voltage of 0.8-2.45 kV
and a discharge current density of 300-600 mA/cm?. The electron screening potential U, = 610 + 150 eV was
estimated in the range of deuteron energies 0.8 keV < E4 < 2.45 keV from an analysis of the DD reaction yield
as afunction of the accelerating voltage. The obtained data show evidence for a significant enhancement of the
DD reaction yield in Ti in comparison to both theoretical estimates (based on the extrapolation of the known
DD reaction cross section for E4 = 5 keV to low deuteron energies in the Bosch—Halle approximation) and the
results of experiments using accelerators at the deuteron energies Ey, = 2.5 keV and current densities
50-500 pA/cm?. Intense emission of soft X-ray quanta (10210 s cm) was observed at an average energy
of 1.2-1.5 keV. The X-ray emission intensity and the DD reaction yield enhancement strongly depend on the

rate of deuterium diffusion in athin subsurface layer of Ti cathode. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The results of recent experiments at relatively low
energies of bombarding particles [1-10] showed evi-
dence for significant screening effects in metal targets,
in particular, in the case of deuteron bombardment.
Investigations of the fusion of light nuclei in metal tar-
gets showed exponential growth of the DD reaction
yield enhancement (astrophysical S factor) with
decreasing particle energy. Even in gaseous deuterium
targets, the screening potential U, = 25 + 5 eV calcu-
lated for adeuteron projectile energy that has decreased
downto E, = 3 keV issignificantly higher than the adi-
abatic limit of the DD reaction in deuterium molecule
(Ug=14.0eV) [1].

In most metals and in some oxides [6-10], the
experimental DD reaction yield enhancement and the
screening potentia are significantly higher than the val-
ues measured for gas targets and those theoretically
predicted using extrapolation of the reaction cross sec-
tion to low deuteron energies [10]. For example, in a
PdO target bombarded with deuterons at an energy of
E . = 2.5 keV, the experimenta yield of the D(d, p)T
reaction corresponds to a screening potential of U, =
600 eV [8]. This leads to a 50-fold DD reaction yield
enhancement as compared to that predicted using a

standard cross section for this reaction calculated via
extrapolation of the known cross section for E4 = 5 keV
to low deuteron energies (E,,, = 2.5 keV) in the Bosch—
Halle approximation [11].

Raiola et al. [6-8] systematically studied the DD
reaction yields and the screening potentials deduced
from the Sfactor for more than 40 elements of the Peri-
odic table, including various metals and nonmetals. It
was established that most of the studied metals possess
a high screening potential (U, = 100 eV) except for the
metals of groups IV (Ti, Zr, Hf) and XI (Cu, Ag, Au)
and some semi conductor and diel ectric targets. No spe-
cific experimental conditions (including accelerator
current density) and target properties (crystal and mag-
netic structure, charge number, and deuterium mobility
in the target) were found to influence the DD reaction
enhancement and the screening potential growth. It
should be noted that the accelerator used in [6, 7]
allowed the deuteron current only within 1-54 pA to be
reached, so that the DD reaction yield could be mea-
sured only at arelatively high energy (E > 5 keV).

Kasagi et al. [9, 10] used alow-energy high-current
accelerator (with a beam current within 60—400 pA)
and measured the D(d, p)T reaction yieldsin some met-
als and oxides for E 4, = 2.5 keV. It was found that the
screening potential value at these beam intensities

1063-7761/05/10006-1175$26.00 © 2005 Pleiades Publishing, Inc.
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strongly depends on the deuterium mobility in the tar-
get. In metals (Ti, Au) with low deuterium mobilities
and high activation energies for deuteron diffusion, the
screening potentials were low (U, =65+ 15and 70 £
10 eV, respectively). These U, values were only two
times higher than the value for agas (D,) target. In con-
trast, the screening potentialsin targets (such as Pd and
PdO) with high deuterium mobilities were rather high
(Ue = 310 and 600 &V, respectively) [10].

Unlike the aforementioned investigations [6—10]
with metal targets and low-current accelerators,
Bystritsky et al. [12-14] studied the D(d, n)He® reac-
tion yield in a deuterated polyethylene (CD,) target
using the Z-pinch technique [12]. For the deuteron
energies 3.6 keV < E,,, < 7.8 keV, the measured neutron
yield and the evaluated Sfactor showed (to within the
experimental error) the absence of enhancement of the
DD reaction: the D(d, n)He® reaction cross section in
CD, was comparable to that described using the
Bosch—Halle extrapolation in the given range of deu-
teron energies[14]. It should be noted that the dielectric
target used in [13, 14] was characterized by a low
mobility of deuterium, whilethe energy spread of bom-
barding deuteronswas very large as compared to that in
the experiments using accelerators [6-10].

Previoudly, accelerators with alow (<1%) spread of
deuteron energies alowed the DD reaction yield in
metal targets to be studied only for E,4, > 2.5 keV. Fur-
ther decrease in the accel erating voltage leads to insur-
mountabl e difficultiesin maintaining asufficiently high
beam current density, which makes impossible mea-
surement of the DD reaction yield within an acceptable
period of time because of an extremely low yield. At the
same time, investigations of the DD reaction yield and
cross section at low deuteron energies (below 1 keV) is
of considerable interest from the standpoint of astro-
physical processes of star evolution [15] and controlled
thermonuclear reactions, in particular, the cross sec-
tions of ahot deuterium plasmainteraction with areac-
tor wall [16].

An alternative possibility for studying the DD reac-
tion yield at deuteron energies below 1 keV is offered
by the experiments with a high-current pulsed dis-
charge in deuterium. The results of previous experi-
ments [17] showed that pulsed glow discharge makesit
possible to abtain ions with the energies within 0.8—
2.5 keV and current densities within 300-600 mA/cm?
at a deuterium pressure of 1-10 Torr. The current den-
sity used fore the bombardment of the cathode (target)
surface in glow discharge is three orders of magnitude
higher than that accessible using accelerators. Prelimi-
nary estimates show that high-current bombardment of
the cathode with deuterium ions in glow discharge can
provide for detection of the DD reaction products even
at E <1 keV for exposures not exceeding severa tens
of hours (in the case of exponential growth of the DD
reaction enhancement factor at low energies). More-
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over, thisbombardment may initiate the X-ray emission
(accompanying the DD reaction initiation in a meta
lattice with high solubility of hydrogen [18]), which
has never been detected in the experiments using accel -
erators because of insufficiently high deuteron beam
current density.

This paper presents the results of our systematic
investigation of the DD reaction yield and X-ray emis-
sion in atitanium (Ti) cathode bombarded with deuter-
ons of very low energies (0.8 keV < E; < 2.45keV) in
a high-current pulsed glow discharge. The thick target
yield (Ti cathode) showed evidence for avery high DD
reaction enhancement described by screening potential
U, = 610 *+ 150 eV. At E; = 1.0 keV, the DD-reaction
rate is nine orders of magnitude higher than that calcu-
lated by standard extrapolation [11] of the DD-reaction
Cross section.

2. EXPERIMENT

The yields of charged particles and X-ray quanta
from a DD reaction were studied in a vacuum chamber
where glow discharge was initiated at various voltages
and currents. Figure 1 shows a schematic diagram of
the experimental setup and the arrangement of detec-
tors. The distance between the mobile Mo anode and
the replaceable Ti cathode was 4-5 mm. The cathode
was made of a 0.01-cm-thick cold rolled foil (99.95%
Ti) and had an area of 0.64 cm?). In order to eliminate
overheating of the electrodes, thus reducing their sput-
tering rate and prolonging work life, the hollow cathode
and anode holders were cooled from inside by aflow of
distilled water. In order to prevent arc discharge forma-
tion at high current densities, the cathode and anode
holders were covered by Teflon.

Rectangular voltage and current pulses with a short
front (below 1 ps) and a duration of 200-400 us were
generated with afrequency of 3 kHz. The pulse param-
eters were monitored with the aid of a two-channel
100-MHz storage oscilloscope. A power supply source
provided stable glow discharge at deuterium concentra:
tions within 2-9 Torr. It was found that continuous lev-
eling of the pressure during the glow discharge opera-
tion suppressed uncontrolled current and voltage fluc-
tuations, thus stabilizing the discharge conditions.
Under conditions of quasi-stable glow discharge, the
average deuteron energy in the laboratory frame (E, =
eV, where e is the electron charge) corresponds with
high precision to the applied voltage V. Indeed, a low
(<10°) degree of deuterium ionization in glow dis-
charge makes the “maxwellization” effects (generating
high-energy deuterons at the “tail” of the energy distri-
bution) insignificant [19], so that the average deuteron
energy is close to the nomina discharge voltage. The
spread of the average deuteron energy, which isan ana-
log of the particle energy spread in an accelerator) in
our case did not exceed +15% of the nominal value and
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 FEL

Fig. 1. (a) Schematic diagram of the glow discharge setup:
(1) vacuum chamber; (2) cathode holder; (3) cathode;
(4) anode; (5) Be window; (6) CR-39 detectors; (7) glow
discharge region; (8) thermoluminescent detectors (TLDs)
with 15- to 300-um-thick Befilters. (b) Schematic diagram
of the experiments with open cathode: (view A) TLDs with
Be filters of different thickness; (1) cathode; (2) anode;
(3) Befilters; (4) TLDs or pinhole camera; (5) metal holder
of detectors; (6) 15- to 300-pum-thick Befilters.

was mostly determined by the residual pressure insta-
bility in the discharge chamber.

The current (I) and voltage (V) measurements in
glow discharge at a constant pressure showed that the
I-U curves were linear [19, 20] in the range of | =
100-300 mA and U =800-2000V (Fig. 2). The propor-
tionality of current and voltage provides a convincing
evidence for the absence of “arc” effects (capable of
distorting the deuteron spectrum) in glow discharge. In
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Fig. 2. Current-voltage curves of a glow discharge with Ti
cathode in deuterium at a pressure of 4.2 and 6.0 Torr.

order to provide for the maximum DD reaction yield,
we selected the maximum current at a given pressure,
S0 asto maintain a preset voltage according to the | -V
curve.

Theresults of temperature measurements performed
using thermoresistors pressed against the rear side of
the cathode showed that the cathode temperature was
increased by 50-100 K over discharge operation [21].
However, these measurements do not provide correct
estimates of the temperature of a near-surface layer of
the cathode: examination of the cathode showed evi-
dence of the material melting over the entire surface
even at aminimum electric power (100 W/cm?) applied
to the discharge. In connection with this, below we will
assume the maximum temperature in the near-surface
layer of the cathode (with athickness on the order of the
range of bombarding deuteronsin the cathode material)
to be equal to the melting temperature of titanium.

In order to suppress spurious €lectromagnetic sig-
nalsinduced by the discharge, which are capable of sig-
nificantly distorting the measured output signals, we
did not use surface-barrier Si detectors (typically
employed in experiments [6-10]). The DD reaction
products were detected with the aid of plastic track
detectors of the CR-39 type (Fukuvi Chemical Industry,
Japan), which are insensitive to electromagnetic fields.
These detectors were arranged in the discharge cham-
ber behind the anode (in which seven holes were made)
at adistance of 3 cm from the cathode surface (Fig. 1a).
Measurements performed under analogous conditions
of discharge in hydrogen (replacing deuterium) were
used for determining the background level.

The CR-9 track detectors employed for detecting
charged particles produced in the course of the
D(d, p)T reaction were cdibrated (Fig. 3) using stan-
dard a particle sources (E, =2.0-7.7 MeV), acyclotron
beam (E, = 8.0-30.0 MeV), and a proton beam of the
Van de Graaff accelerator (E, = 0.5-3.0 MeV) of the
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Fig. 3. Calibration curve of proton track diameter d versus
particle energy E for CR-39 detectors.

Institute of Nuclear Physics (Moscow State Univer-
sity). After exposure, the detectors were etched in 6 M
aqueous NaOH solution for 7 h at 70°C. The tracks
ware examined and their diameters measured using an
optical microscopeequipped withadigital video camera.
In order to eliminate the action of discharge plasma
and sputtered cathode particles on the detector surface,
the detectors were screened with a 11-pum-thick Al foil.
Thisfoil transmits 3-MeV protons and absorbs 1-MeV
tritons from the D(d, p)T reaction. The results of our
measurements showed that the tracks due to 3-MeV
protons transmitted through the foil have a diameter of
about 5.2 um. The detection efficiency of a CR-39
detector spaced by 3 cm from the cathodeis determined
primarily by the geometric factor. Taking into account
the total area of holes in the anode, the geometric effi-
ciency of 3-MeV proton detection was estimated at €, =

5.6 x 105,

The average energy and intensity of X-ray quanta
emitted from the cathode surface were evaluated using
Al,O3-based thermoluminescent detectors (TLDs) and
aset of beryllium (Be) filters with thicknesses from 15
to 300 um (2.8-55.5 mg/cm?). These TLDs measured
the absorbed radiation dose. Seven TLDs (each with a
diameter of 5 mm) were arranged outside the discharge
zone, at adistance of 7 cm from the anode. In aseparate
experiment performed in order to determine spatia
position of the source of X-ray quantain the discharge,
the anode was shifted 20 mm away from the cathode
and the TLD or apinhole camerawas positioned imme-
diately infront of the cathode (Fig. 1b). The TLDswere
calibrated using a standard *3’Cs source. The TLD sig-
nal readout and construction of the glow curves were
performed using aspecial device based on apicosecond
processor (Harshaw Co.).

The time correlation of X-ray emission and dis-
charge current pulses were studied using a 17-mm-
diam plastic (PMMA) scintillator and an FEU-85 pho-
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toelectron multiplier. These experiments were per-
formed at a pressure of 4.2 Torr and a current of
250 mA. A positive image of the X-ray emitting zone
was obtained with a pinhole camera using an X-ray-
sensitive film.

The experiments devoted to the detection of charged
particleswere performed in aglow discharge operating at
avoltage of 0.8-2.45 kV and a current of 240-450 mA..
The duration of each exposure at a certain fixed dis-
charge voltage was about 7 h. Preliminary experiments
with CR-39 detectors covered by aluminum (Al) and
polyethylene (PE) films of various thicknesses showed
a statistically significant number of the 3-MeV proton
tracks, which was dependent on the discharge voltage
and current. Figure 4 presents typical distributions of
the proton track diameters d in the detector covered by
films of different thicknesses in a glow discharge in
deuterium and hydrogen at U = 1.25 kV and | =
240 mA.. As can be seen from these data, the track diam-
eter strongly depends on the coating thickness, in accor-
dance with the energy losses for 3-MeV protons [22]
generated during operation of the glow discharge. In
the presence of 11-um-thick Al foil, the distribution
peak isat d = 5.2 um corresponding to E, = 2.85 MeV
(Fig. 4a). When the coating thickness was increased to
33 um (Al foil) and 60 pm PE film, the peak shifts to
d= 6.8 um (Figs. 4b). In the glow discharge with Ti
cathode in hydrogen under the same conditions (volt-
age, current, pressure) as in deuterium, no track were
observed in the interval of diameters corresponding to
the 3-MeV protons.

Thethick target yield of 3-MeV protons Y,(E,) from
aTi cathode bombarded by deuteronswith an energy Eg4
was calculated using aformula[3]

E

d 1
V(E) = [No(ow(®EE] &
0

where Np(X), 0,4(E), and dE/dx are the deuteron con-
centration in the cathode, the DD reaction cross section,
and the deuteron stopping power in titanium. The cross
sections at low energies were determined by using the
Bosch—Halle parametrization [11]. The deuteron stop-
ping power in Ti target was assumed to be proportional
to the particle vel ocity, which is consistent with the data
available for various targets at low deuteron energies
(downto Ey= 1.0 keV) [23, 24].

The yields of 3-MeV protons observed for various
discharge voltages in the 0.8-2.45 kV range were nor-
malized to the yield at the maximum voltage (U =
2.45 kV) with allowance for the discharge power and
the effective temperature at the target surface (the fac-
torsinfluencing variations of the deuterium concentra-
tion Np(x) in the Ti cathode). The effective concentra-
tion of deuterium in Ti was defined as Np(eff) =
k(W, T)Np(X), where T and W are the temperature and
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power at thetarget surface, respectively. The coefficient

k(W, T) can be expressed as [21]
_ ul gAT Vlrﬁ]
k(Wi T) - eXpD kBTmT() WXD! (2)

where kg is the Boltzmann constant, g, = 0.04 eV isthe
activation energy for deuteron escape from the Ti cath-
ode surface during discharge, T,, = 1941 K is the melt-
ing temperature of titanium, Ty = 290 K is the initial
temperature of the target, AT = T, — T, W, = 906.5W
isthe maximum discharge power a E, = E,,, = 2.45 keV,
I, = 370 mA, and W, is the power at lower values of
the current and voltage. The g4 value was determined
from data reported for the experiments using accelera-
tors[9], by approximating the 3-MeV protonyieldinTi
target with an Arrhenius plot [25] in the temperature
interval 185-195K at E4 = 10 keV (where no any DD
enhancement takes place). The slope of the plot of yield
versus temperature correspondsto the activation energy
of the yield of deuterium from the target surface
(Fig. 5).

3. EXPERIMENTAL RESULTS

The results of measurements using CR-39 detectors
covered by 11-um-thick Al foil showed a statistically
significant number of 3-MeV proton tracks, which
was dependent on the discharge voltage and current.
Figure 6 presents a typical distribution of the track
diameter for two discharge voltages (U = 2175 and
805 V) and the same current (I = 250 mA). A peak of
the 3-MeV proton track diameter at d = 5.2 um well
agrees with the results of calibration (Fig. 2) and the
preliminary measurementsat U = 1.25 kV (Fig. 4).

The total set of data presented in Table 1 includes
the numbers of tracks at various values of the current
and voltage with allowance of the correction factor k
calculated using formula (2). As the deuteron energy
decreasesfrom 2.45t0 0.8 keV, the 3-MeV proton yield
drops by 3 ordersin magnitude (with allowance for the
normalization factor k). Calculated without the correc-
tion for k, the yield decreases by only one order in mag-
nitude (Table 1, fourth column). This difference is
related to the fact that the concentration of deuteriumin
Ti a low voltages (and discharge powers) is much
higher than that at U = 2.45 kV because the effective
temperature in the near-surface cathode layer is propor-
tiona to the discharge power.

Figure 7 shows the experimental yields of the
D(d, p)T reaction in Ti as functions of the deuteron
energy E4 in the range from 0.8 to 2.45 keV. Before the
normalization using the coefficient k (Fig. 7a), the
dependence of the 3-MeV proton yield on the discharge
voltage has a more pronounced exponential character
as compared to that expected taking into account the
behavior of the cross section at low energies. After the
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Fig. 4. Proton track diameter distributions in CR-39 detec-
tors for glow discharge in deuterium and hydrogen (pres-
sure, 6 Torr; U = 1.25 kV; | = 240 mA; exposure time, 7 h;
cathode-detector distance, R = 3 cm): (a) detector covered
with 11-um-thick Al foil (the pesk at d = 5.2 um corre-
spondsto protonswith E, = 3 MeV; energy lossesin thefoil
are AE = 0.2 + 0.1 MeV); (b) detector covered with 11-pm-
thick Al foil and 60-pum-thick PE film (the peak at d =
6.4 um corresponds to protons with E, = 3 MeV; energy
lossesin thefoil are AE = 1.1+ 0.2 MeV); (c) detector cov-
ered with 33-pum-thick Al foil and 60-pum-thick PE film (the
peak at d = 6.8 pm corresponds to protonswith E, = 3MeV;
energy lossesin thefoil are AE =25+ 0.2 MeV).
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Fig. 5. Normalized proton yield versus temperature for a Ti
target bombarded in an accelerator with deuterons at Eq =

10.0 keV and | = 60-100 pA [9]. Solid line corresponds to
the Arrhenius function.
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Fig. 6. Track diameter distribution for 3-MeV protons from
a Ti cathode measured with a CR-39 detector for a dis-
charge voltage of U;= 805 and U, = 2175V (I = 250 mA,;

exposure time, 7 h).

normalization (Fig. 7b), the curve Y,(E,) curve exhibits
a smoother behavior. This result confirms the need for
normalization that takes into account the influence of
random collisions (related to uncertainty in the deute-
rium concentration) leading to deviations of the exper-
imental points from the exponent.

Figure 8 presentsthe DD protonyield Y, at low deu-
teron energies normalized to that at 2.45 keV. For com-
parison, this figure also shows the standard yield of the
D(d, p)T reaction (solid curve) calculated using the
Bosch—Halle approximation [9, 10]. Even with allow-

LIPSON et al.

ance for the total error of measurements (including a
systematic error and an error caused by the instability
of glow discharge, amounting to £10% in terms of the
discharge voltage and current), the experimental plot of
Y,/Y(2.45 keV) lies well above the Bosch—Halle curve.
Thisfact isclearly indicative of alarge enhancement of
the DD reaction in the near-surface of the target at low
energies. In order to directly evaluate the DD reaction
enhancement factor f(E) and calculate the electron
screening potential U, in the 0.8-2.45 keV energy
range, we used the formula[3]

_ Y(E)

"B =36

- ep[m®Z], @

where Y,(E) is the experimental DD proton yield in a
glow discharge, Y,(E) is the yield determined for the
same energy using the Bosch—Halle extrapolation,
21N = 31.29Z%(WE)Y? is the Sommerfeld parameter, Z
is the deuteron charge (for bombardment with D*), and
K and E are the reduced mass and energy of deuteron,
respectively.

Figure 9 shows the results obtained in an accel erator
(curve 1) [10] and in a glow discharge (curve 2) with
the Ti cathode (target). In the case of measurements
using the accelerator for 2.5 keV < E4 < 10.0 keV, the
screening potential was U, = 65 £+ 10 eV [9]. However,
the screening potential evaluated from dataon the reac-
tion yield enhancement in glow discharge (Fig. 9,
curve 2) isU, =610 + 150 eV. For example, the exper-
imental DD reaction yield enhancement at Ey = 1.0 keV
is amost 9 orders of magnitude greater than that pre-

Table 1. Theyield of 3-MeV protons from a Ti cathode for various voltages of glow discharge in deuterium

WLV | O0mA | W, W | N (5.2 um), cm? k(W, T) MNpLs™ | [Mel o], st (in4msr) Y, C*
805 250 201.3 30 22x10° | 26x10° (47+1.4) x 10 1.9x 1073
850 225 191.3 28 16x10° | 1.8x10° (33+11)x10™* 15x%x 1073

1000 370 370 35 36x102 | 50x10° (9.0+1.9) x10™* 25x 1073

1145 370 420 54 53x102 | 11x10* (20+0.3) x 1072 5.3x 1072

1190 240 286 30 13%x102 | 1.6x10° (3.0+0.5) x 1073 1.3x 107

1435 250 359 50 33x102 | 7.0x10° (1.3£0.2) x 1072 5.2 x 1072

1500 450 675 71 0.16 45x 10 (8.1+0.5) x 1072 1.8x 107"

1647 300 495 62 83x102 | 21x10* (4.0+0.5) x 1072 1.3x 107

2000 370 740 159 19x10t | 1.2x10°3 (21+0.02) x 10% 5.7x 107t

2175 250 544 252 11x10t | 11x10°3 (20+0.02) x 102 8.0x 10

2450 370 906.5 317 27x101t | 34x10°3 (6.1+£0.04) x 107* 1.65

Notes: WL and W, are the average voltage, average current, and power of the glow discharge; N isthe number density of 3-MeV proton
tracks; IN,[1s the average count rate for 3-MeV protons; veLis the proton yield in a solid angle of 4mtsr for a detection efficiency

of e=56x 1073 Ypisthe DD proton yield per 1 C charge transferred by the deuteron current to the cathode.
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Fig. 7. Theyield of 3-MeV protons from a Ti cathode: (a) nonnormalized; (b) normalized to deuterium concentration (with a nor-

malization factor k determined using formula (2)).

dicted using the standard extrapolation of the reaction
cross section to low deuteron energies.

Figure 10 presents the DD reaction yield in a glow
discharge normalized to the yield measured in an accel-
erator at E4 = 10.0 keV (with correction of the DD pro-
ton yield for alower effective target temperature in the
accelerator as compared to that in glow discharge [9]).
Similar to the situation in Fig. 8, the DD reaction yield
in the glow dischargeis much higher than that obtained

Y,/Y(2.45 keV)
1
Ue=6IOiISOeV\/|—/§>£|
7
107"
37
/
102F ,eir;
/
7
/
—3 1 1 1 1
10 05 1.0 1.5 20 25
E, keV

Fig. 8. The experimental yields of 3-MeV protons versus
deuteron energy within 0.8 keV < E4 < 2.45 keV (normal-
ized to theyield at Ey = 2.45 keV): Bosh—Halle approxima-
tion [11] (solid curve); DD reaction yield for a screening
potential of U, = 610 eV (dashed curve).
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by extrapolating to lower energy the value observed in
the accelerator (for the screening potential U, = 65 eV).

Thus, the data on the DD reaction yields in a glow
discharge, corrected by normalization using the proce-
dures analogous to those used in the experiments using
accelerators [9, 10], demonstrate a much greater
enhancement of the DD reaction yield at Ej4 < 2.45 keV
as compared to that anticipated proceeding both from
the theoretical extrapolation of the yield to low deu-

f
10°
103
107
108
10°
104
103
102

10

E4, keV

Fig. 9. Plot of the enhancement factor calculated using for-
mula (3) versus Eg4 for a Ti target: (1) accelerator experi-
ment [10]; (2) glow discharge. Solid curves correspond to the
Eqintervalsin which theyield was experimentally measured.
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Fig. 10. Thick target yield of protons measured in glow dis-
charge with Ti cathode (0.8 keV < Ey < 2.45 keV) and in

accelerator experiments with Ti and Au targets (2.5 keV <
Ey < 10keV) [9]. All yields are normalized to the value

obtained on the accelerator for Eq = 10 keV.

teron energies and from the anal ogous extrapol ation of
the yields obtained in the experiments using accelera-
torsat Ey > 2.5 keV.

The experiments showed that the bombardment of a
cathode in high-current periodic pulsed glow discharge
is accompanied by the intense emission of soft X-ray
quanta. In the experiments using TLDs in a glow dis-
charge with a Ti cathode at U = 1.25 kV and | =
200 mA, we observed X-ray emission in the energy
range of E, = 1.1-1.4 keV and an intensity of |, =
108 st in a solid angle of 41 (Fig. 11). It should be
noted that t