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Triaxial octupole deformations and shell structure
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Manifestations of pronounced shell effects are discovered when non-
axial octupole deformations are added to a harmonic oscillator model.
The degeneracies of the quantum spectra are in good agreement with
the corresponding main periodic orbits and winding number ratios
which are found by classical analysis. ©1999 American Institute of
Physics.@S0021-3640~99!00108-5#

PACS numbers: 21.60.Cs, 21.10.Ky, 21.10.Gv

The remarkable regularity of the rotational spectra of superdeformed nucle
prompted many investigations into the contribution of higher multipoles to the forma
of shell structure.1 Related questions have arisen for other mesoscopic systems. In
ticular, it appears that octupole deformation has the same importance for two-dimen
systems like quantum dots and surface clusters2 as for three-dimensional systems lik
nuclei3 and metallic clusters.4 Semiclassical analysis based on periodic orbit theory5–7

provides substantial insight into the role of the octupole deformation for axially sym
ric systems.8–10Axially symmetric octupole deformation, which leads to soft chaos in
classical case, produces short periodic orbits at particular parameter strengths, an
respondingly, pronounced shell effects arise in the quantum spectrum.8,9

Conservation of angular momentum may increase the regular region for a no
grable problem with axial symmetry~see, for example, Ref. 11!. The situation becomes
more complicated for nonaxial systems with three degrees of freedom, since an
momentum is no longer a constant of motion and the classical dynamics may lea
stronger degree of chaos.12 Inclusion of exotic, i.e., nonaxial, octupole deformatio
renders the finding of pronounced shell effects rather difficult. Results based on the
Y361, which was suggested by Mottelson13 and studied in Ref. 14, have been question
in Ref. 15. Other attempts which incorporate nonaxial octupole deformation start
axially symmetric potentials; they have found indications of shell effects usingY3m

deformations mainly withm50,2 ~Refs. 15 and 16!. The increasing accuracy of mea
surements of nuclear spectra, due to the new generation of detectors, gives sub
indications of strong octupole correlations.3,17 This calls for a thorough analysis of non
5630021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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axial octupole deformations. A similar question about shell effects in electronic struc
and their connection to octupole deformations arises from theab initio calculations of the
melting transitions in small alkali clusters.18 In this letter we demonstrate the existence
strong shell effects which arise in the triaxial harmonic oscillator combined with nona
octupole deformations. The model may serve for a simple and transparent study
effective mean field for mesoscopic systems like nuclei and metallic clusters. In add
features characteristic of realistic potentials, i.e., a coexistence of regular and c
dynamics and the consequences for quantum mechanics, are addressed.

As in the procedure pursued in Ref. 8, we are guided by the study of the clas
motion in obtaining the quantum mechanical results. The single-particle Hamilto
considered reads

H5
~p!2

2m
1

mv2

2 F S x

aD 2

1S y

bD 2

1S z

cD 2

1r 2(
m

l3mY3mG , ~1!

where theYlm are the usual spherical harmonics. To maintain time reversal invaria
only the combinationsY3m6Y32m are considered, with a factori where appropriate. We
take into account only one of the deformationsm50, 1, 2, 3 at a time. For convenienc
we express all quantities below in units ofv[vx , i.e., a51. If any of the parameters
l3m are nonzero, we are faced with a nonintegrable system. In fact, the problem give
to chaotic motion even at relatively small values of the octupole parameters. The p
eters have to be limited by their respective critical valuesl3m

crit at which the potential no
longer binds. The critical values depend on the parametersa, b, c, which can be ex-
pressed through standard quadrupole deformationse2m , and, if more than onel3m is
considered, critical surfaces are obtained. It is obvious that a search for shell structu
the corresponding quantum mechanical problem becomes meaningless above the
values, as then the quantum mechanical spectrum obtained by matrix diagonali
does not relate to the corresponding classical Hamiltonian.

The quadrupole shapes as determined by the parametersa, b, c are illustrated by the
hexagonal figure given in Fig. 1. The three axes denoting axially symmetric pr
~oblate! shapes differ by an appropriate permutation of the coordinatesx–y–z. For physi-
cal consideration it is therefore sufficient to consider just one sector if only quadru
deformation is being studied.6 However, the addition of an octupole term defines
orientation, since it refers to a specificz axis. Therefore, when adding, say, the te
r 2l30Y30, the physical situation is different for two oblate cases, for example,obl/x and
obl/z in Fig. 1. Note that the latter case would preserve axial symmetry, thus mak
effectively a system with two degrees of freedom. But the former case is now a ge
three-degrees-of-freedom system, since the symmetry axis of the quadrupole shap~thex
axis! is different from the symmetry axis ofr 2l30Y30 ~the z axis!.

In the same vein, the addition of a termr 2l3mY36m to any of the axially symmetric
quadrupole shapes gives rise to a three-degrees-of-freedom system formÞ0.

The effect ofr 2Y30 upon the axespro/z andobl/z has been dealt with in Ref. 8. In
the present paper we begin with the combinationr 2(Y332Y323). Numerical analysis of
the classical equations of motion~see below! reveals that the most regular motion occu
in the vicinity of thepro/x axis. The procedure used to approximate the nonintegr
classical system is the ‘removal of resonances’ method.19 To lowest order it consists o
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averaging the Hamilton function over the fastest angle of the unperturbed motio~all
l3m50) after rewriting the momenta and coordinates in terms of action–angle varia

qi5A 2Ji

mv i
sinu i , pi5A2Jimv i cosu i , u i5v i t, i 5x,y,z.

On the axispro/x one would therefore average overuz or uy and above it overuz ,
since therevz.vy.vx (a.b.c). Based on the observation thatr 2(Y332Y323) is
proportional tox(x223y2)/r , we expect thez motion to be weakly affected by this term
In the vicinity of thepro/x axis an averaging overuz is thus indicated. Moreover, for th
reasons just given, an averaging overuz , which yields an effective potential in thex–y
coordinates, is expected to make little difference from an effective potential obtaine
simply settingz50. This expectation is convincingly confirmed by numerical tests
long asvz>vy . In other words, forvz>vy.vx , the motion effectively decouples int
an unperturbed motion in thez coordinate~governed by the potentialmz2v2/(2c2)! and
the two degrees of freedom motion in thex–y plane. Averaging now over the fast ang
uy yields the unperturbed motion in they coordinate~governed bymy2v2/(2b2)) and the
effective potential forx, which reads

Ueff~x!5
mv2

2 F x21l33

sign~x!

p S 2x2KS 2
jy

2

x2D 23pjy
2

2F1S 1

2
,
3

2
,2;2

jy
2

x2D D G , ~2!

whereK and 2F1 denote the first elliptic integral and the hypergeometric function,
spectively, andjy

252Ey /mvy
2 , wherevy5v/b. The approximation used here assum

thatEy , the energy residing in they motion, is constant~and therefore alsoEx!; note that
the effective potentialUeff(x) depends onEy . A numerical comparison between the tru

FIG. 1. Shapes in thea, b, c plane. Spherical symmetry (a5b5c) obtains at the center, while axially sym
metric prolate and oblate shapes are obtained along the various axes. A genuine triaxial quadrupole defo
(aÞbÞc) occurs between the axes.
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three-dimensional motion and the approximate decoupled motion nicely confirm
validity of the approximation forl33&lcrit/2. The crucial test which is relevant for th
corresponding quantum mechanical case is the comparison of the winding number
vx

eff/vy andvx
eff/vz . Moreover, these ratios are virtually independent ofEy for Ey less

than 60% of its maximal valueEtot . As a result, we may evaluatevx
eff analytically by

choosingEy50 in Eq. ~2! and obtain

vx
eff :vy :vz5

2A12l33
2

A12l331A11l33

:
1

b
:
1

c
. ~3!

By appropriately tuning the parametersb, c andl33, we can obtain simple ratios fo
the winding numbers. They determine short periodic orbits which are expected to o
a major part of the phase space. For a two-dimensional problem the Poincare´ surface of
section can be used for estimation of the percentage of phase space occupied by p
orbits. In the present situation, the five-dimensional phase space renders an unders
of the underlying structure rather difficult. The technique utilized here is essentia
frequency analysis. It is in principle impossible to determine whether a trajecto
quasi-periodic or chaotic merely by looking at the frequency spectra.20 A pragmatic
approach is adopted here in that an initial condition is deemed to yield a chaotic o
the associated frequency spectra have sufficiently many discernible peaks. We c
orbit chaotic if any one of the frequency spectra has more than six peaks with inten
greater than 1% of the maximum intensity. These arbitrary choices proved satisfa
for our purpose. If the orbit is quasi-periodic, then the most significant frequency p
are compared and the approximate winding number and period are obtained. Rep
this procedure many times using different initial conditions in phase space yields a M
Carlo-type estimate of the portions of phase space characterized by the various di
frequency ratios. If a particular simple ratio dominates, as exemplified below,
we expect specific signatures in the quantum spectrum as shell structure. Exa
are illustrated in Figs. 2, 3, and 4. We have chosen the numbersa:b:c
51:0.5577:0.5577, 1:0.3718:0.5577 to obtain the ratios1:2:2, 1:3:2 from Eq. ~3!,
respectively. This ratio is sufficiently simple to make for an easy comparison with
quantum results.

The adiabatic approach predicts orbits with the frequency ratios1:2:2 and 1:3:2 at
l3350.5lcrit . The corresponding spectra are displayed in Fig. 4. Classical frequ
analysis~CFA! of the exact orbits shows a peak atl33'0.55l33

crit for the ratios1:2:2,

1:3:2, and thequantum shell structure occurring atl33'0.5l33
crit has the correct degen

eracy pattern for about the first hundred levels.

As a quantitative measure of the shell structure we use the Strutinsky-type an
introduced in Ref. 8. From the quantityDE(l,N)5dE(l,N11)1dE(l,N21)
22dE(l,N), wheredE is the fluctuating part of the total energy, we obtain the prec
location of the magic numbers~see Fig. 4!. Similarly, the whole discussion can also b
applied to the axispro/y in Fig. 1 by using the combinationr 2(Y331Y323);y(y2

23x2)/r instead. It turns out that, due to the weakz dependence of the combination
r 2(Y336Y323), it is mainly thex–y profile of the unperturbed harmonic oscillator that
important. The stronger the deformation in thex–y plane, i.e., the further away from th
z-axial symmetry line (pro/z andobl/z), the better the adiabatic approximation and sh
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structure become. In contrast, along this horizontal line eitherY363 combination acts
upon a circular potential in thex–y plane and quickly introduces chaos. The CF
applied to the combinationr 2(Y312Y321);x(4z22x22y2), reveals that they motion is
weakly affected forl31&0.6l31

crit in the vicinity of thepro/x axis. Applying the analysis
described above, we found that this term leads to shell effects similar to thos
r 2(Y332Y323). In fact, Eq.~3! holds for this combination as well. The plus combinati
r 2(Y311Y321) is simply the minus combination under the interchange ofx and y, and
thus will produce the same effects near the regionpro/y. It is important to note that the
addition of a terml30r

2Y30 to either situation,pro/x or pro/y, leads to the onset o

FIG. 2. Two quantum spectra:~a! for the parametersb5c50.5577; ~b! for the parametersb50.3718,
c50.5577. Energies are given in units of\v.

FIG. 3. Classical phase space occupation for the frequency ratios 1.1:3:2 and 1:3:2. The 1:3:2 p
l33 /l33

crit'0.55 leads to the shell structure displayed in Fig. 2b.
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chaos for rather small values ofl30, and accordingly the quantum spectrum does
exhibit shell structure.

The two combinationsr 2(Y3m6Y32m) produce the same potential shape for t
spherical case.16 However, according to the analysis above, the plus and minus co
nations have different effects for different sectors of the hexagonal figure~Fig. 1!. The
CFA shows that the adding of the octupole terml32r

2(Y321Y322) gives rise to chaotic
motion for comparatively small coupling values. In contrast, the terml32r

2(Y32

2Y322) has less impact on the unperturbed motion, chaotic motion only beco
discernible forl32*0.5lcrit . Since (Y322Y322) is symmetric with respect to an inter
change ofx and y, this result applies to the region above and below the axispro/z,
including the axesobl/x andobl/y. The quantum mechanical results are in accorda
with the classical findings: the plain quadrupole spectrum changes weakly over a c
erable range ofl32 when the termr 2(Y322Y322) is added, while the order soon deca
when the plus combination is switched on.

The cases considered here represent novel examples ofthree-dimensionalnoninte-
grable systems, which can be well approximated by integrable ones. The results
current literature are limited primarily to axially symmetric nonintegrable systems7,12

Special parameter values, found by the ‘‘removal of resonances’’ method, produc
tentials conducive to regular classical motion in much of phase space. The various
pole combinations may have different effects on the generation of shell structure, de
ing on where the unperturbed potential lies in the hexagonal figure~Fig. 1!. The effect of
r 2Y30 upon the axispro/z is similar to that ofr 2(Y336Y323) andr 2(Y316Y321) upon
the axis pro/x or pro/y. In contrast, the termsr 2(Y326Y322) do not support shell
structure. In this context we mention that the special combinationr 2l̃(Y3013(Y32

1Y322)), when added topro/z, is, after suitable permutation of the coordinates, id
tically equivalent to the adding ofr 2l33(Y332Y323) to pro/x. Thus we have generalize
our previous result8 to the domain of triaxiality in that the combination of quadrupole a
nonaxial octupole deformations has been shown to lead to shell effects equivale

FIG. 4. Magic numbers calculated at the parameter values used for Fig. 2. The magic numbers corres
to a pure quadrupole deformed harmonic oscillator are indicated in~a! for the ratio1:2:2 and in~b! for the ratio
1:3:2.
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those from a plain quadrupole deformed potential, at least for the first one hundred l
More comprehensive details of the classical frequency analysis, the adiabatic app
and the quantum mechanical analysis will be presented in a forthcoming paper. F
we note that negative parity states observed in rare-earth nuclei with neutron nu
N;92, which become yrast at high spins, need an unexpectedly strong degree of
ality ~see Ref. 21! when described in terms of quadrupole and hexadecapole deforma
only. We suggest that inclusion of an octupole deformationr 2(Y332Y323) or a banana-
type octupole deformationr 2(Y312Y321), which effectively gives rise to shell effects o
a triaxial oscillator, could yield a more natural explanation of these phenomena.

R. G. N. acknowledges financial support from the Foundation for Research D
opment of South Africa which was provided under the auspices of the Russian/S
African Agreement on Science and Technology.
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Jump kinetics on the Fibonacci quasilattice. Exactly
solvable model of the layer growth and dislocation
kinetics in quasicrystals

M. A. Fradkin*
IMRS 6225 Montre´al, Québec, H3S 2T5, Canada

~Submitted 5 January 1999; resubmitted 18 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 8, 531–536~25 April 1999!

The jump kinetics on a quasiperiodic pinning potential is analyzed
under small external force in a 1D Fibonacci quasilattice model. The
model describes planar~layer! growth of stable quasicrystals from the
melt and is also relevant to the movement of quasicrystal dislocations
under small stress. An exact solution is found for the spectrum of jump
length as function of the driving force. The solution describes the su-
percooling dependence of the spectrum of nucleus heights on the grow-
ing surface of a quasicrystal. The spectrum appears to be universal and
its shape has a periodic dependence on the logarithm of the supercool-
ing. The resulting quasicrystal growth kinetics agrees well with that
found in computer simulations and in the analysis of continuous ther-
modynamic models. ©1999 American Institute of Physics.
@S0021-3640~99!00208-X#

PACS numbers: 61.44.Br, 61.72.Lk, 81.10.Aj

The dynamics of crystal growth is usually studied through the kinetic equation
model Hamiltonian that involves a surface tension along with the pinning term.1,2 The
supercooling is a thermodynamic driving force and the kinetic coefficient correspon
the surface mobility. The model describes a temperature-induced roughening tran
between the smooth and rough states of the equilibrium surface as well as a dy
roughening transition separating normal and layer growth mechanisms. A layer~planar!
growth proceeds through the thermally activated nucleation of 2D nuclei followe
their lateral expansion via the movement of the surface steps.3 Thus the surface jumps
between minima of the pinning potential, the jump length being equal to the period o
pinning potential, i.e., the lattice period in the direction of growth. The growth rate in
case has an exponential dependence on the supercooling, in contrast with normal g
where this dependence is linear.2,3

In the case of quasicrystals the pinning potential is quasiperiodic due to quas
odicity of their atomic structure. The thermodynamic roughening temperature appe
be infinite,4,5 and, hence, the equilibrium surface remains smooth at any tempera
This corresponds to the experimentally observed growth shapes for stable quasic
and implies layer growth at sufficiently small supercoolings.2 On account of the quasi
periodicity, the thickness of the growing layer of a quasicrystal can take values fr
5700021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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dense set of ‘‘interplane distances’’~Ref. 6!. Thus, during growth of a quasicrystal und
fixed supercooling there is some spectrum of thicknesses of the growing layer~nucleus
heights!.

In this paper I present the exact form of this nucleus height spectrum, obtaine
solving the pinning problem on the 1D Fibonacci quasilattice. The model is also rele
to the movement of dislocations in quasicrystals under small stress due to the fa
intrinsic ‘‘phason’’ contribution to the energy of a dislocation leads to the quasiperi
Peierls potential. This paper is organized as follows. After description of some featu
quasicrystal growth and brief analysis of the dislocation mobility in quasicrystals, th
kinetic problem is formulated. The exact solution of this problem is then prese
followed by a discussion of its implications with respect to the available experime
data.

For conventional crystals the energy of any perturbation on a flat solid–liquid in
face consists of the bulk supercooling term along with the free energy of a linear
which has a large entropic contribution.3 This entropic term makes the step free ener
negative at temperatures above the thermodynamic roughening transition for co
tional crystals. As the quasicrystal structure is not invariant under translations, there
additional area-proportional contribution to the nucleus energy due to the differen
the surface energy between old and new positions of the surface.7 A layer of thicknessh
can appear during the quasicrystal growth only if the corresponding ‘‘effec
supercooling’’7

Dmeff~h,z!5Dm2Ds~h,z!/h ~1!

is positive. HereDm5msolid2m liquid is the supercooling andDs is the difference in
surface energy.Dmeff depends not only on the nucleus heighth but on the current
location z of a surface as well. The nucleus that will appear on the growing sur
located atz for a given supercoolingDm is selected by the smallest heighth with positive
Dmeff(h,z) ~Ref. 8!.

The surface energys(z) can be expressed7 ass(zuu)}z
'

2, with z
uu

andz
'

being the
‘‘physical’’ and ‘‘orthogonal’’ components of the 6D quasilattice vectorz ~Ref. 9!. Then
the effective supercooling takes the form

Dmeff~h!5Dm2A
D~z

'

2!

h
, ~2!

whereD(z
'

2)5(z1h)
'

22z
'

2. This expression for the effective supercooling leads
the power-law dependence of average nucleus height on the bulk supercooling:7,8

h}~Dm!21/3. ~3!

The dislocation movement in crystals is described by the thermodynamic mode
manner similar to the crystal growth. There are terms in Hamiltonian corresponding
periodic pinning~Peierls barriers! and to the dislocation line tension. The nuclei cor
spond to dislocation kinks and the stress component in the glide plane plays a role
supercooling. The dislocations in quasicrystals have a 6D Burgers vector,10 and their
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movement involves ‘‘phason’’ displacements which correspond to diffusionlike ato
rearrangement. Thus the dislocation movement in quasicrystals is not a glide but is
‘‘creep’’ 11 accompanied by atomic diffusion.

The formation work for a dislocation kink is proportional to the product of
Burgers vector to the kink normal and the translation vector. As Burgers vector
phason component, contribution proportional to perpendicular component of the tra
tion vector appears. Minimization of this work with respect to both the translation le
and the orientation of the kink normal gives an expression for the activation en
similar to that for the nucleation barrier for quasicrystal growth. Thus the results fo
planar growth of quasicrystals are relevant to the dislocation problem as well. The
siperiodic pinning potential for dislocation movement was obtained in a computer s
lation of the quasicrystal dislocations.1!

The problem has one spatial dimension which is the surface position in the dire
of growth and can be analyzed within a simplified one-dimensional model. The cut
project method of generation of the atomic structure of quasicrystals9 can be used to
generate a 1D quasiperiodic sequence of the minima of pinning potential throug
projection from a 2D square lattice. The ‘‘physical space’’ here is a straight line w
slope equal to the ‘‘golden mean’’t5(A511)/2, and the node (p,q) is projected to the
point

~p,q!
uu
5~pt1q!/At12 ~4!

in the physical space if (p,q) falls within a parallel ‘‘tube’’ of widthw:

u~p,q!
'
u5

u2p1qtu

At12
,

w

2
5

1

2

t11

At12
. ~5!

The pinning potential at this point is defined in a manner similar toDs(z), as
V((p,q)

uu
)5(p,q)

'

2. It can be shown that for sufficiently small supercoolings this mo
is equivalent to the quasiperiodic pinning potential

V~z!52VG~cos~Gz!1cos~Gz/t!!, ~6!

used previously in a continuous model8 and in a Monte Carlo simulation.12

The growth process can be fully characterized by a sequence of surface loc
(p,q)

uu
with the nucleus heightsh

uu
being the difference between two sequential positio

At any current point (p,q)
uu

the next surface position is determined by the smallesth
uu

satisfying the condition of positivity of the effective supercooling,

Dmeff~h!5Dm2
~~p,q!1h!

'

22~p,q!
'

2

h
uu

.0. ~7!

Hereh
uu

corresponds to a unique 2D lattice vectorh and the supercooling is measured
units such that the constantA in the expression~2! for Dmeff disappears. Due to the
irrational slope of the projection from the 2D square lattice there is a one-to-one c
spondence between points of the ‘‘physical’’ and orthogonal space and, hence
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growth process can be described by the surface locations in the ‘‘perpendicular’’ s
At every step the minimal jump lengthh

uu
is selected from all lengths satisfying conditio

~7! that can be written as

h
'

~p,q!
'

,
1

2
~Dm h

uu
2h

'

2!. ~8!

Since the nodes of the 2D square lattice form a dense set of points in the ortho
space, the spectral weight of a particularh

uu
is equal to the relative size occupied in th

set by those (p,q)
'

at which the condition~8! leads to the selection ofh
uu
.

The ratio of two sequential Fibonacci numbersf m11 / f m are known to give the bes
rational approximation to the ‘‘golden mean’’t. Then Eqs.~4! and ~5! imply that a 2D
square lattice vector of the kindhm5( f m11 , f m) has the lowest ‘‘orthogonal’’ lengthh

'

from among all those with a comparable ‘‘parallel’’ componenth
uu
, and the correspond

ing nucleus height is the lowest one satisfying the condition~8!. Thus the nucleus heigh
spectrum in this model of quasicrystal growth for sufficiently small supercoolings sh
include only heightshm corresponding to the Fibonacci numbers. It has the form o
discrete set of peaks with spectral weights$xm(Dm)% determined by the supercoolin
Dm.

Using the definition of the Fibonacci sequence in recurrent form withf 050 and
f 151, we can get from Eqs.~4! and ~5!

hmuu
5

tm11

At12
, hm'

5~21!m21
t2m

At12
. ~9!

Introducing the following set of points in the ‘‘perpendicular’’ space

Sm5
hm'

2
~Dm t3 m11 At1221!, ~10!

we can get the condition~8! in the form

~p,q!
'

,Sm for hm'
.0 ~11a!

~p,q!
'

.Sm for hm'
,0. ~11b!

At every location of the growing surface (p,q)
uu

the nucleus heighthmuu
is selected

according to the lowestm that satisfies condition~11!.

Using ~9!, we can obtain from the definition~10! the following recurrent scaling
law:

Sm11~t23 Dm!52t21 Sm ~Dm!. ~12!

As the jump lengths~9! satisfy similar recurrent relationshipsh(m11)'
52t21 hm'

, this
scaling holds for the set of points (p,q)

'
representing the surface position in perpendic

lar ‘‘space’’ satisfying~11!. Since the appearance of a particular height in the spectru
determined by the relative size of a subset of points (p,q)

'
satisfying Eq.~11! for

particularm, such a scaling implies that the nucleus height spectrum has the follo
invariance:
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xm11~t23Dm!5xm~Dm!. ~13!

Thus we need consider the supercooling only within the interval betweenDm* t23

and Dm* for some particularDm* . The spectrum for the all otherDm ’s can be easily
obtained through~13!. Let us choose a valueDmm* that corresponds to an equalitySm

5Sm21 for some oddm. Introducing the relative supercoolingkm by Dm5km Dmm* , we
can obtain

Sm1 l5
h(m1 l )'

2 S km t3 (l 11)

A5
11D ~14!

with

Sm211h(m21)'
,Sm,Sm21,Sm1hm'

. ~15!

Direct geometrical analysis of the condition~11! shows that regardless of the sta
ing point, the perpendicular component of the surface position (p,q)

'
falls into the

interval betweenSm211h(m21)'
and Sm1hm'

in a finite number of steps. For (p,q)
'

.Sm1hm'
only jumps with negativeh(m1 l )'

are possible, and for (p,q)
'

,Sm21

1h(m21)'
only positiveh(m1 l )'

can occur. Once inside this interval, the point represe
ing the surface remains confined and fills this interval closely on account of the irrat
slope of the projection line. By comparingDmeff(h(m1 l ) uu

) for different l it is easy to see
that for jumps ofh(m1 l )'

the surface position in perpendicular space (p,q)
'

should
belong to the following intervals:

Sm21,~p,q!
'

,Sm1hm'
, l 521, ~16a!

Sm211h(m21)'
,~p,q!

'
,Sm , l 50, ~16b!

Sm,~p,q!
'

,Sm21 , l 51, ~16c!

with only finite possible appearances of otherh(m1 l )'
. The relative size of these interva

gives us the spectral weight of different peaks:

xm21~km!5
km2t23

km11
, xm~km!5

km1t23

km11
, xm11~km!5

12km

km11
. ~17!

All the otherh(m1 l )'
correspond to a finite number of points (p,q)

'
. Such subsets hav

zero measure in the perpendicular space and thus do not contribute to the spectru
mean nucleus height in the spectrum~17! is given by the expression

hmean~km!52 t (m21)
A32t

km21
. ~18!

At the borders of thekm interval there are only two peaks:

xm21~t23!50, xm~t23!5
2 t23

11t23
, xm11~t23!5

12t23

11t23
5t xm~t23! ~19!

and
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xm21~1!5
12t23

2
, xm~1!5

11t23

2
5t xm21~1!, xm11~1!50. ~20!

For km.1 a peak atm22 appears, as does them12 peak forkm,t23.

The main features of this spectrum agree well with the results of a Monte C
simulation,12 where a universal discrete spectrum corresponding to three subse
Fibonacci numbers has been found for a quasiperiodic double-cosine pinning pot
The calculated spectrum is shown in Fig. 1 in a comparison with results of nume
calculations,13 where a periodic dependence of the spectrum on the logarithm ofDm was
obtained with a period of 3 logt. Figure 2 shows the periodic dependence of the m

FIG. 1. The nucleus height spectrum calculated in the present model as a function of supercoolinDm
~full curves! in comparison with the results of a numerical simulation.

FIG. 2. Calculated dependence of the mean step heighthmeanon Dm in the present model~full curve! compared
with numerical results~triangles!. The straight line is a power-law dependencehmean}Dm21/3.
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nucleus height on the supercooling, with a small deviation from the power-law ex
sion ~3! obtained in a continuous model which appears to be a good average appro
tion for Eq. ~18!.

The discrete nature of the spectrum of nucleus heights leads to a steplike d
dence of the growth rate on the supercooling.12 Since the activation barriers for differen
hmuu

differ by orders of magnitude,7 the growth is controlled by the nucleation of the lay
with maximal thickness. This means that when the supercoolingDm varies in the interval
betweenDmm11* and Dmm* the growth rate experiences small changes. However, w
the supercooling passes throughDmm* , the highest peak corresponding tohm12 disap-
pears and the growth rate undergoes a drastic increase.

A similar pattern should appear in the case of quasicrystal dislocations, wher
growth rate corresponds to the dislocation velocity. It should have small variation
stress values corresponding to the same peaks in the spectrum, with drastic c
around the critical stress at which new peaks appear in the spectrum. If the quasi
has a finite density of defects then the defects prevent the formation of kinks large
some particular size. Hence, activation-driven movement of dislocations would n
possible at a stress level that implies the appearance of larger kinks in the spectr
kink sizes.

Thus, unlike the case of the growth of quasicrystals, not only do the critical s
levels correspond to drastic changes in dislocation velocity, but the dislocations be
frozen for a critical stress corresponding to somem. This permits an experimental test o
the proposed model, since the stress level associated with drastic changes in the d
tion velocity should form a periodic pattern on a logarithmic scale, and the critical s
leading to the freezing of dislocations should belong to this pattern as well.

*On leave from Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia.
e-mail: cu111@freenet.carleton.ca
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On the lower critical field and phase diagram of a thin
cylindrical type-II superconductor

E. A. Shapoval*
All-Russia Scientific-Research Institute of the Metrological Service,
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The lower critical fieldHc1
cyl(T) of a superconducting cylinder with

radiusr 0;j(T)!l(T) is found on the basis of the Ginzburg–Landau
theory with various boundary conditions. These results together with
the well-known results for the upper critical field are used to construct
phase diagrams in terms of the field versus the reduced radiusr 0 /j(T)
variables. The jump in the average magnetization atHc1

cyl(T) is calcu-
lated as a function of the reduced radius. ©1999 American Institute
of Physics.@S0021-3640~99!00308-4#

PACS numbers: 74.60.Ec, 74.25.Dw

For the last few years a great deal of attention has been devoted to the experim
and theoretical investigation of mesoscopic objects. Specifically, the behavior of a s
conducting disk in a magnetic field near the upper critical field, where the disk radi
of the order of the coherence length, is attracting great interest.1–4 The upper critical field
of continuous and hollow cylinders wtih various boundary conditions has been stud
Ref. 5, but the vortex structure of the superconducting cylinder or disk near the l
critical field thus far has been studied only in the London approximation, where
radius r 0 of the cylinder or disk is much greater than the coherence lengthj(T).6,7

Therefore the problem of calculating the lower critical field of a cylinder withr 0

;j(T) remains open.

The present Letter is devoted to the calculation of the lower critical field, parall
the axis of a continuous superconducting cylinder, and the jump in the average m
tization of the cylinder at this transition, wherer 0;j(T)!l(T) is the penetration depth
i.e. for k@1, on the basis of the Ginzburg–Landau~GL! theory. Two limiting cases of
boundary conditions are considered: (“22ieA)•C50 andC50. For the first bound-
ary condition the results hold for a cylinder of arbitrary height, including a thin disk,
for the second condition they hold when the height of the cylinder is much greater
j(T). Our results, together with the existing results for the upper critical field,5 are used
to construct phase diagrams in terms of the reduced external field versus the re
cylinder radius.

Böbel8 has found in the London approximation an expression for the lower cri
field of a cylinder that is valid for cylinder radiusr 0@j(T):
5770021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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Hc1
cyl~T!

A2Hc~T!
5

1

2k S ln k1C12
K0~r 08!

I 0~r 08!
D I 0~r 08!

I 0~r 08!21
, ~1!

where, as usual in the GL theory,r 85r /l(T), i.e. length is measured in units of th
penetration depth,K0 andI 0 are modified Bessel functions, and the constantC1 enters in
the well-known Abrikosov expression for the lower critical field of a bulk type
superconductor:9

Hc1~T!

A2Hc~T!
5

1

2k
~ ln k1C1!. ~2!

There is still no concensus concerning the numerical value of this constantk
@1. Sometimes the valueC150.081, obtained in the original work Ref. 9, is used8,10,11

though even Clem’s simple variational method12 gives C1'0.52, and the numerica
solution of the nonlinear GL differential equation for an isolated vortex, undertake
Hu,13 gaveC150.4968. Our independent, i.e. even before we knew of Ref. 13, nume
solution of the GL differential equation using the Mathematica 2.2 program g
C150.496815, andC0520.282276, which appear in the expression for the field at
center of an isolated vortex:

H~T,0!

A2Hc~T!
5

1

k
~ ln k1C0!. ~3!

Thus our results agree excellently with Ref. 13, where it was found thatC0520.2823.

Let us return to a cylindrical superconductor. Taking account of the behavior o
modified Bessel functions for small values of their arguments, we find from Eq.~1! that
for k@1 andj(T)!r 0!l(T) the lower critical field

Hc1
cyl~T!

Hc2~T!
[hc1

cyl5
2

r0
2 ~ ln r010.380884!, 1!r!1/k. ~4!

Here we have introduced, and we shall employ below, the most convenient un
length and field intensity for our problem:r5r /j(T) and h5H/Hc2(T), where
Hc2(T)5A2kHc(T)5f0/2pj2(T) is the upper critical field of a bulk superconduct
andf0 is the flux quantum. We call attention to the fact that in this region the lower fi
of a cylinder is independent of the penetration depth, increases with decreasing rad
the cylinder mainly as 1/r 0

2, and approaches in order of magnitude the upper critical fi
as r 0→j(T).

To find the lower critical field of a cylinder withr 0;j(T) we turn to the system o
GL equations. Taking account of the symmetry of the problem we assume that the
parameterC(r,w,z)5C0f (r)eimw. Then the GL free-energy functional in an extern
field h0 is, to within a constant factor,

FH5
2p

k2 E
0

r0S f 821S A~r!2
m

r D 2

f 21k2h~r!2D r dr22h0F, ~5!

whereF is the flux of the field through the cross section of the cylinder
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F52pE
0

r0
h~r!r dr. ~6!

Taking account of Maxwell’s equations, the GL equations in our case have the

1

r

d

dr S r
d f

dr D2S A~r!2
m

r D 2

f 1 f ~12 f 2!50; ~7!

dh

dr
5

f 2

k2 S A~r!2
m

r D ; h5
d

rdr
~rA~r!!. ~8!

The boundary conditions for these equations are

f 8~0!50 if m50, or f ~0!50 if mÞ0, h8~0!50, ~9!

f 8~r0!50 or f ~r0!50, h~r0!5h0 .

As we have already stated, here we shall consider two limiting cases of boundary
ditions at the surface of the cylinder:f 8(r0)50, which occurs on the boundary of a
ordinary superconductor with a vacuum or dielectric, andf (r0)50, which actually oc-
curs at a boundary with a normal metal14,15or at the boundary of ad superconductor with
diffuse reflection.16

It is evident from Eq.~8! that for large values of the parameterk the additional field
produced inside the cylinder by the Meissner and vortex currents is substantially we
of the order of 1/k2 relative to the uniform external fieldh0. This is entirely natural
considering that the penetration depth is large compared to the radius of the cyl
Therefore whenk@1 this additional field can be neglected when solving the first
equation~7!, setting thereA(r)5h0r/2. This cannot be done when calculating the fr
energy~5! because of the third term in the integrand and the last term. However,
grating this expression by parts, using Eq.~7! and the boundary conditions~9! and
calculating the additional field from Eq.~8!, we obtain up to terms of second order in 1k

FH5pE
0

r0
~12 f 4~r!!r dr2ph0

2r0
2 . ~10!

From the condition that the free energies of the vortex-free and one-vortex s
equal one another at the transition point it follows that forH05Hc1

cyl

E
0

r0
f 0

4r dr5E
0

r0
f 1

4r dr, ~11!

where the index indicates the azimuthal number of the order parameter.

The computational results for the lower critical field as a function of the cylin
radius with the boundary conditionf 8(r0)50 are shown in Fig. 1~the bottom solid curve
1!, which shows the phase diagram including the normal~regionA), vortex ~regionB),
and vortex-free~regionC) superconducting states. The bottom dashed curve2 shows the
asymptotic behavior of the lower critical field asr0→`, described by the limiting ex-
pression of the London approximation~4!.

The upper broken curve3 in Fig. 1 represents the upper critical field, determined
the maximum field at which a nontrivial solution of the linearized first GL equation~7!
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first appears, whenf→0, andA(r)5h0r/2. The solution of this equation can be e
pressed in terms of a confluent hypergeometric functionF(a,c;x) as4,7

f m~r!5rm expS 2
h0r2

4 DFS h021

2h0
,m11;

h0r2

2 D . ~12!

Using the boundary conditionf 8(r0)50 and the recurrence relations for the co
fluent hypergeometric function, a transcendental equation determining in an implicit
the dependence of the magnetic field on the cylinder radius and the azimuthal numm,
determining the multiplicity of the central vortex, can be found as

~m1x!FS h021

2h0
,m11,xD52mFS h021

2h0
,m,xD , ~13!

where x5h0r0
2/2. Comparing for fixedr0 the magnitude of the magnetic fields fo

various azimuthal numbersm, we choose the maximum value and thereby find the up
critical field of the cylinder as a function of the reduced radius of the cylinder.
numbers below the sections of the upper curve3 in Fig. 1 indicate the correspondin
azimuthal numberm.

The oscillations of the upper critical field as a function of the cylinder radius
semble the Little–Parks oscillations for a hollow cylinder.17 This is not surprising. The
boundary conditionf 8(r0)50 promote the appearance of surface superconductivity,
result of which is that the superconducting cylinder becomes in some way similar
hollow cylinder. As one can see from the diagram in Fig. 1, the upper critical field
continuous cylinder is higher than the surface fieldHc3(T) of a bulk sample, equal in ou
units to 1.695 and shown in Fig. 1 by the upper dashed line 4. It is also evident from

FIG. 1. Phase diagram of a cylinder under the condition (“22ieA)•C50 at the surface of the cylinder
RegionA — normal state,B — vortex state,C — vortex-free state. Lower solid curve1 — reduced lower
critical field hc1

cyl5Hc1
cyl(T)/Hc2(T) of the cylinder as a function of the reduced radiusr05r 0 /j(T) of the

cylinder. Lower dashed curve2 — asymptotic field, wherer 0@j(T) ~4!. Upper broken curve3 — reduced
upper critical fieldhc2

cyl5Hc2
cyl(T)/Hc2(T) of the cylinder. The numbers below the sections of the curve indic

the azimuthal number, i.e. the multiplicity of the vortex. Upper dash curve4 — asymptotic field, equal to the
surface critical field of a bulk samplehc351.695.
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figure that forr0,1.333 the cylinder passes from the normal state immediately in
vortex-free state, bypassing the mixed state where the field decreases.

The mixed state~regionB) includes forH0.Hc2(T) phases with a gigantic vorte
with different multiplicity m at the center of the cylinder. As the external field decrea
somewhere forH0,Hc2(T) such a gigantic vortex decoposes into single vortices, so
the cylinder passes into an Abrikosov phase.3,18

Figure 2 shows the phase diagram in the other limiting case of boundary cond
at the surface of the cylinder wheref (r0)50. The notations in this diagram have th
same meaning as above. An important difference is that here states with a gigantic
do not appear, and the upper critical field of the cylinder is less than the upper c
field Hc2(T) of a bulk sample, in our units equal toh51 and shown in the diagram b
the upper dashed line 4. This is due to the suppression of superconductivity a
cylinder surface and a zero boundary condition. For the same reason the upper
field vanishes whenr05r 0/j(T)5 j 0152.4048 ~the first zero of the zero-order Bess
function!, which corresponds to the well-known decrease of the superconducting tr
tion temperature in small samples with zero boundary conditions for the order param
If r0,4.14, then as the external field decreases, the cylinder passes atH5Hc2

cyl(T) from
the normal state immediately into a vortex-free superconducting state and remains
state right down to zero field. However, ifr0.4.14, a thin cylinder first passes from th
normal state into a superconducting vortex-free state~into the rapidly narrowing with
increasingr0 regionC) and then atH5Hc1

cyl(T) ~upper branch of curve1! it passes into
the region of an Abrikosov stateB and finally atH5Hc1

cyl(T) ~bottom branch of curve1!
once again into the vortex-free superconducting stateC.

Thus one can judge, specifically, from the behavior of a cylinder in a magnetic
the boundary conditions at the cylinder surface and therefore the symmetry of the
parameter. It is obvious that the results obtained hold for a cylinder of arbitrary heig
(“22ieA)•C50 on the flat surfaces, while forC50 they are valid as long as th
height of the cylinder is much greater than the coherence length.

FIG. 2. Phase diagram of a cylinder under the boundary conditionC50 at the surface. The notations are th
same as in Fig. 1, except the upper dashed curve is the asymptotic upper critical field, equal here to th
critical field of a bulk samplehc251.
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To calculate the magnetization of a very thin cylinder, the case considered here
can set once againA(r)5h0r/2 on the right-hand side of the second GL equation~8! to
accuracy 1/k2. Then the average magnetization of the cylinder in the one-vortex sta

4p,M.

Hc2~T!
5

,B.2H0

Hc2~T!
5

1

2k2 S 2

r0
2 E0

r0
f 2r dr2

h0

r0
2 E0

r0
f 2r3 dr D . ~14!

The first term on the right-hand side determines the magnetic moment produced
vortex currents and the second term determines the moment produced by the Me
screening currents. Therefore the same expression but without the first term holds
vortex-free state. SinceHc2(T);k2Hc1(T), the average magnetization is of the order
the lower critical field in a bulk sample.

It follows from Eq. ~14! that the jump in the average magnetization at a transi
from a vortex-free into a one-vortex state is

4p
,DM.

Hc2~T!
5

,DB.

Hc2~T!
5

1

2k2 S 2

r0
2 E0

r0
f 1

2r dr2
hc2

cyl

r0
2 E

0

r0
~ f 1

22 f 0
2!r3 dr D . ~15!

For l(T)@r 0@j(T) ~i.e. k@r0@1) we find from Eq.~15!

4p
,DM.

Hc2~T!
5

,DB.

Hc2~T!
5

1

2k2
, ~16!

wherehc2
cyl is determined by Eq.~14!. This result is, of course, identical to that obtain

in the London approximation.8

Figure 3 shows the jump in the average reduced magnetization as a function
reduced radius under the boundary conditionsf 850 ~upper solid curve1! and f 50
~lower solid curve2!. The dashed curve3 shows their asymptotic behavior~16! in the
limit r0→`. We call attention to the fact that under the second boundary condition
magnetization jump~curve2! changes sign atr054.14, which is shown in greater deta
in Fig. 4. The lower branch of this curve corresponds to the upper branch of the l

FIG. 3. Jump in the average reduced magnetization 4pk2^DM &/Hc2(T) as a function of the reduced radius
Curve1 – under boundary condition (“22ieA)•C50, curve2 — boundary conditionC50. Dashed curve
3 — their asymptotic value~16! for larger.
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critical field ~curve1! in Fig. 2. This effect can apparently be observed for a thin cylin
enclosed in a shell consisting of a normal metal, thereby providing the required bou
conditionC50.

Just as in the case of the field, the results obtained for the magnetization jump
for a cylinder of arbitrary height with the restriction indicated above.

This work is supported by the Scientific Council on the Direction ‘‘Supercond
tivity’’ of the State Scientific and Technical Program ‘‘Current Directions in Condens
Media Physics’’ as part of project No. 96024 and was performed at the P. N. Leb
Center for Physical Studies.
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FIG. 4. Enlarged representation of the magnetization jump nearr54.14 under the second boundary conditio
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Intersubband collective excitations in quasi-two-
dimensional systems in a strong magnetic field

V. E. Bisti*
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow Region, Russia

~Submitted 25 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 8, 543–547~25 April 1999!

The spectrum of intersubband collective excitations of spin and charge
density in a system of quasi-two-dimensional electrons is calculated in
the strong magnetic field limit for filling factorsn<4. For n>2 two
new closely spaced modes of collective excitations are obtained. The
modes obtained make it possible to give a new interpretation of the
experimentally observed line, which is usually interpreted as being due
to single-particle excitations. ©1999 American Institute of Physics.
@S0021-3640~99!00408-9#

PACS numbers: 73.20.Mf, 71.45.Lr

The properties of quasi-two-dimensional electrons in systems such as inversio
ers, single quantum wells, and superlattices have been attracting a great deal of at
from investigators in the last few years. A characteristic feature of such systems, wh
of interest to both theoreticians and experimenters, is the appearance of collective
tations of a special kind due to the presence of several size-quantization levels
specific collective excitations associated with intersubband transitions are intersu
plasma oscillations or charge-density waves~CDE! and spin-density waves~SDE!. This
problem in the absence of a magnetic field has been investigated theoretically in
1–7. In the random-phase approximation~RPA!, together with the standard two
dimensional plasmons, CDE~intersubband plasmons! were obtained.1,2 Taking account
of the exchange interaction of the electrons made it possible to obtain excitations
second type — SDE.3–7 The exchange interaction was taken into account in the lo
density approximation~LDA !3,4 as well as by direct methods.5–7 Collective excitations in
a magnetic field~intersubband and intrasubband magnetoplasmons! have been studied in
the RPA and LDA.8–10 Infrared absorption and resonance Raman scattering method
used to study SDE and CDE experimentally.11–16

Lines due to scattering by collective excitations of the spin and charge densiti
well as an intense line located between these excitations are observed in the inters
Raman scattering spectra in a magnetic field.13–16This line is interpreted in most cases
being due to single-particle excitations~SPE!.13,14 However, it is indicated in Refs. 15
and 16 that the polarization and spectral characteristics of the SPE line are at va
with the standard interpretation of this line in terms of single-particle excitations, an
nature is not entirely clear.
5840021-3640/99/69(8)/5/$15.00 © 1999 American Institute of Physics
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In the present Letter the spectrum of intersubband collective excitations in a s
magnetic field is calculated by the direct method in the Hartree–Fock approximati
is shown that the number of collective modes depends on the filling factor. Thus
n<2 two types of excitations — CDE and SDE — occur in the system. Forn.2 four
types of excitations are obtained, two CDE and two SDE. Besides the ordinary CDE
SDE, two new, closely spaced modes of collective excitations appear. The appeara
these modes is associated with the filling of the second Landau level. This ma
possible to give a new explanation of the SPE line appearing in a magnetic field1!

n.2. This is not a single unpolarized SPE line, but rather two almost coincident
and SDE lines.

The spectrum of intersubband collective excitations is sought as a function o
magnetic fieldH under the following conditions.

1. Two size-quantization subbands are present in the system. All other subban
be neglected. The densityns of two-dimensional electrons is such that the lower subb
E0 is filled and the next subbandE1 is empty. The energiesE0 andE1 are calculated in
the Hartree approximation.

2. A strong quantizing magnetic fieldH perpendicular to the two-dimensional lay
is present. The region of strong magnetic fields, for which 0,n<4, is studied.

3. Only processes without spin flip are taken into account. For simplicity theg factor
of the electrons is assumed to beg50 (m0g!T, T is the temperature of the system!, but
the spin degeneracy is included in the calculation.

4. The long-wavelength limitka!1, kaH!1 (a — width of the quantum well,
aH5(\c/eH)1/2 — magnetic length! is considered.

5. The energy scales are such thatT!uECD2E10u, uESD2E10u!\vC , E10 (E10

5E12E0 , vc5eH/mc — cyclotron frequency!.

6. The width of the Landau levels, which is due to the interaction with impuritie
small compared with temperature~this corresponds to the experimental situation, wh
the width of the lines due to Raman scattering by CDE and SDE is small comp
with T).

The energies of the collective excitations are poles of the total polarization ope
P(k,v). Let us consider the intersubband polarization operator~in the long-wavelength
limit the inter- and intrasubband excitations can be studied independently!:

P01~k,v!5 (
n,n8,s,

P0n,1n8,s~k,v!5 (
n,n8,s

(
m,m8,s8

P0n,1n8,s
0m,1m8,s8~k,v!, ~1!

wherem, m8, n, andn8 are the numbers of the Landau levels.

For an integer filling factor all energy-degenerate Landau levels are filled
probability 1. Let us assume that even with an arbitrary filling factor the Landau le
are equally likely to be filled because their width is small compared with tempera
~condition 6 holds!. In waht follows we shall employ the Green’s functions technique
T50. ComparingECD in the RPA approximation, calculated by the proposed meth
with the result obtained in Ref. 10 using the temperature technique shows that them
equivalent under the indicated assumptions.
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The system of equations forP0n,1n8,s includes summation of ladder and loop di
grams describing, respectively, the excitonic and depolarization effects. Exchang
rections to the self-energy part are included in the single-particle Green’s functions
set of diagrams, which corresponds to the Hartree–Fock approximation, was take
account in Refs. 5–7, which are devoted to the calculation of intersubband colle
excitations in the absence of a magnetic field and in the analysis of magnetopla
excitations in purely two-dimensional systems17,18 and partially in Ref. 19 in an analysi
of the Mott exciton in quasi-two-dimensional semiconductors in a strong magnetic
In this approximation the single-particle Green’s functions in a magnetic field de
only on frequency, and the interaction depends only on the momenta. Therefor
interaction can be averaged over the momenta and the system becomes algebraic

The following two types of interactions are present:

a0n,1n8s
0m,1m8,s8~k!5V01

01~k!I nn8~k,0!I m8m
* ~k,0!5ann8

mm8~k!, ann8
mm8~0!5V01

01~0!dnn8dmm8 ,
~2!

which determines the depolarization shift, and

b0n,1n8,s
0m,1m8,s8~k!52dss8~2p!21E V00

11~q!Jnm~q!Jn8m8
* ~q!eiaH

2 qykdq5dss8bnn8
mm8~k!,

~3!

bnn8
mm8~0!5bnn8

mm8dn2n8,m2m8 , bnn
mm52~2p!21E V00

11~q!uI nm~q!u2dq,

which determines the excitonic corrections. Here

Vik
jl ~q!5

2pe2

«q E exp~2quz12z2u!c i~z1!ck~z1!c j~z2!c l~z2!dz1dz2 , ~4!

where i, j , k, and l are subband indices andc i(z) are electron wavefunctions in th
direction of the quantization axis, and

I nn8~qx ,qy!5E fn~y!fn8~y1qxaH
2 !exp~2 iqyy!dy,

~5!
fn~y!5p21/4~aH2nn! !21/2exp~2y2/2aH

2 !Hn~y/aH!,

whereHn are Hermite polynomials and thex axis is directed alongk.

For k50 the transitions of interest to us between the corresponding Landau l
from different subbands (m5m8, n5n8) can be studied independently of transitio
with a change in the Landau level. The conditions~4! and ~5! make it possible to study
them independently forkÞ0 also. The system of equations forP0n,1n,s becomes finite
(@n#11 equations in all!. To find the poles we equate to zero the determinant of
system

detuP0n,1n,s
0 V0n,1n,s

0m,1m,s82dns,ms8u50,
~6!

V0n,1n,s
0m,1m,s85ann

mm1bnn
mmdss8 .
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The zeroth polarization operators, including exchange corrections, are

P0n,1n,s
0 5

nns

v2E102S10,ns
; S10,ns5S1ns2S0ns , ~7!

wherenns is the density of electrons in the (0,n,s) level. Forg50 nm,1/25nm,21/2.

The exchange corrections to the single-particle energies have the form

S ins5(
m

«nm
0i nms , «nm

0i 52~2p!21E V0i
0i~q!uI nm~q!u2dq ~ i 50,1!. ~8!

If only the spin sublevels of the zeroth Landau level are filled (n<2, n0,1/2

5n0,21/25ns/2!, we obtain that the existence of two types of particles in the system l
to the existence of two types of collective excitations — CDE and SDE with ener
ECD andESD . CDE are excitations withS50 and SDE are excitations withS51 and
Sz50 ~by virtue of the condition 3!. They can also be interpreted as in-phase and
tiphase intersubband transitions of particles with different spins.

For 2,n<4 we obtain that, besides the basic CDE and SDE, two additional m
with close energies, CDE1 and SDE1, appear between SDE and CDE. These mod
be interpreted, though not completely correctly, as antiphase transitions of particles
different Landau levels. Therefore the appearance of the new types of particles le
the appearance of new types of collective excitations.

Figure 1 shows as an example the spectrum of collective excitations for a rect
lar GaAs/AlGaAs quantum well (a5250 Å ; ns56.8•1011 cm22) with k50 in the
magnetic field range corresponding ton<4. One can see thatECD andESD are essen-
tially independent ofH, while ECD1 and ESD1, starting not far fromESD , have an
appreciable slope, which qualitatively agrees with experiment.16,17 It should be under-
scored that the modes CDE1 and SDE1, which coincide in the figure, are actually
degenerate.

FIG. 1. Dependence of the energies of intersubband collective excitations of a system of two-dimen
electrons in a single 250 Å wide quantum well (ns56.831011 cm22) versus the perpendicular magnetic fiel
1 — CDE,2 — SDE,3 — CDE1 and SDE1,4 — CDE2 and SDE2~calculated for one value of the fieldn54!.
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Similarly, the spectrum of collective excitations for anyn can be found from Eq.~6!.
New modes will arise every time for even values ofn. The modes will arise in pairs, CD
and SD types, and lie approximately in the same location as CDE1 and SDE1. The
where the pairs of modes CDE2 and SDE2 withn54 appear is shown in the figure. W
note that the appearance of modes in pairs and the strict division of the excitation
CDE and SDE occurs only if the electronic system is spin-unpolarized. However, in
case the appearance of a particles of a new type in the system should be accompa
the appearance of a new mode of collective excitations.

In summary, in the present Letter the spectrum of collective excitations in a s
magnetic field was calculated assuming that the energy-degenerate levels at low bu
temperature are filled with equal probability. The proposed method makes it possi
obtain the complete spectrum of intersubband collective excitations as a function
magnetic field and to give a new interpretation of the line previously attributed to SP
is asserted that all observed modes are collective.
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Two-dimensional incommensurate superlattices
in precious-metals alloys: nature of formation

O. I. Velikokhatny  and I. I. Naumov*
Institute of the Physics of Strength and Materials Science, Siberian Branch of the Ru
Academy of Sciences, 634021 Tomsk, Russia
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~Submitted 4 March 1999!
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The nature of two-dimensional incommensurate superlattices Ll2~MM !
obtained in the precious-metals alloys Au3Cu and Cu3Pd is investigated
on the basis of first-principles calculations of the electronic structure. It
is shown that their stability can be explained by the opening of energy
gaps on coinciding sections of the Fermi surface in two mutually per-
pendicular directions. It is important that this explanation holds only if
the superlattice is treated as a superstructure with respect to ordinary
superstructures (Ll2): the electronic spectrum of the superstructure and
not the disordered alloy~as in the existing electronic theory of one-
dimensional long-period structures! should serve as the starting spec-
trum. Arguments supporting the fact that in a number of quasicrystal-
line substances the Ll2~MM ! phases fall between incommensurate
systems and quasicrystals are presented. ©1999 American Institute of
Physics.@S0021-3640~99!00508-3#

PACS numbers: 73.20.Dx, 71.20.Gj, 61.44.Br

The heightened interest in the physics of nano- and low-dimensional structu
focusing attention on very exotic objects formed in the alloys Au3Cu, Cu3Pd, Cu3Pt,
Au3Mn, and others —two-dimensional incommensuratesuperlattices with strongly dif-
ferent periods 2M1 and 2M2 in two mutually orthogonal directions.1–3 The nature of the
formation of such objects and their place among quasicrystalline media have rem
unclear up to now.

The superlattices under discussion are often designated as Ll2~MM !,1 having in
mind the fact that they can be obtained from the ordinary short-period superstructu2

by introducing a corresponding sequence of discommensurations — domain wa
solitons, on passage of which the phase of the long-range order parameter changep
~in this connection, such discommensurations structures are also said to be an
boundaries— APBs!. Characteristically, the distance between the closest APBs is ran
but locally commensurate: Antiphase domains of different length are distributed
domly in the directions@010# and@001# of the base Ll2 structure. As the composition o
temperature varies, the average half-periodsM1 andM2 over the random ensemble var
5890021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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continuously, also taking on irrational values~in Cu3Pd, for example,M153.524.5 and
M255.5;1 according to other measurements2 M154.1 andM256.3).

The existing electronic theory of long-period states in precious-metals alloys1,4–9

attributes these states to the Peierls instability of the electronic spectrume(k) of the
initial disordered state. The one-dimensional superlattices can be explained in a n
manner on the basis of this theory — their period 2M is determined by the vector 2kF ,
parallel to thê 110& direction and separating the coinciding~‘‘nesting’’ ! sections of the
Fermi surface~FS!. If it is assumed that even two-dimensional structures are stabilize
a decrease of the electronic energy as a result of gaps opening on coinciding sect
the FS, then together with the known nesting there should exist another nesting on
in the samê 100& directions. However, all attempts to find the required nesting star
from the initial electronic spectrume(k) of the disordered alloy have been unsuccess

In the present Letter we wish to show for the alloys Au3Cu and Cu3Pd that two-
dimensional superlattices can be derived only starting from the electronic spectrum
short-period superstructure Ll2 but not the initial disordered alloy. This is not surprisin
Superlattices always coexist with a very high degree of ‘‘short’’ range orderh, which on
cooling arise as a result of sharp first-order transitions with a typical jumpuhu;0.6
20.7.1 The strong and nontrivial influence of ‘‘short’’ range ordering on the ‘‘long
range ordering, as will be seen from what follows, is due to the fact that it lead
splitting and deformations of the electronic states that determine the nesting on t
~and therefore the stability of the superlattices!. In many cases there arises a uniq
‘‘multiplication’’ of the initial flat section of the FS into two and more sections. These
the characteristic cases for alloys with two-dimensional superlattices.10

We used the full LMTO method11 in the density approximation to calculate th
electronic-energy spectrumel(k) of different sections of the FS and the polarizabili
x(q) of noninteracting electrons. The Barth–Hedin form of the exchange-correla
potential was chosen;12 the integration over occupied states was performed by the te
hedron method,13 using 296 reference points for the self-consistent calculation of
spectrumel(k) and 12341 points in the irreducible part of the Brillouin zone of the2
structure~the latter is identical to that of a simple cubic lattice! for calculatingx(q).

In going from the fcc solution to the Ll2 structure the above-mentioned flatten
sections of the FS alonĝ110& turn out to be close to the pointM of the new Brillouin
zone ~BZ!. Therefore we shall examine the electronic spectrum of the alloys near
point ~Fig. 1!. Figure 1 shows together with Au3Cd and Cu3Pd the alloy Cu3Au and pure
copper~the latter is of interest as a prototype of a disordered alloy Cu–Au!. One can see
that in pure copper~and disordered alloys! the electronic term is four-fold degenerate
the pointM. Such a high degree of degeneracy is, of course, of formal origin and is
to the artificial representation of the electronic spectrum of fcc copper in the BZ o
Ll2 structure. For true Ll2 alloys this term splits, as should happen, into a doubly deg
erate levelM58 and singlet levelsM1 and M3. For what follows it is important that the
relative arrangement of the split levels can be arbitrary. This is easy to show usin
four-wave approximation of the pseudopotential method.14 In this approximation the
values of the termsM58 , M1 , and M3 can be found explicitly. They are, respectivel
T2Dv110, T1Dv11012Dv100, and T1Dv110, where T is the kinetic energy in the
‘‘empty’’ lattice, and Dv110 and Dv100 are the differences of the pseudopotentials
the components at the superstructural sites of the reciprocal lattice 2p/a @110# and
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2p/a @100#. Since the signs and absolute values of the form factorsDv110 andDv100 can
be arbitrary, the relative arrangement of the levels is not completely determine
Au3Cu, for example, theM58 level lies above the other two, while in Cu3Pd and Cu3Au
M58 lies below them.

As one can see from Fig. 1, in Au3Cu two electronic sections of the FS~23rd and
24th bands!, which are genetically related with the splitting of theM58 level accompany-
ing a transition into thek points of the general position, arise near the pointM. In the
sectionz50 ~Fig. 2a! they have the form of a star and a circle with a very small rad
respectively, and in the sectionx50.5 they have the form of thin rectangular strips~Fig.
2b! strongly prolate along the lineT(M2R) and centered on it. The latter fact is partial
due to the circumstance that theM58 level does not split on the lineT itself. On the whole,
the electronic section of the 24th band is a thin cylindrical rod, which coincides
itself under a translation by the small vectorD250.0275(2p/a) @100# ~Figs. 2a and 2b!.
The corresponding electronic polarizability~due to the transitions 24→24 only! demon-
strates a characteristic kink at the pointq5D2 ~see inset in Fig. 3!. The rod under study
also coincides well with the electronic section of the 23rd band under a translation b
vectorD150.065(2p/a) @100# ~Figs. 2a and 2b!. This fact is manifested as a kink in th
total electronic polarizabilityx(q) at q5D1 ~Fig. 3!. It is evident from the figure that this
kink is formed by contributions from the interband electronic transitions 23→24 and
24→23.

In the alloy Cu3Pd, just in Cu3Au, the termM58 is closest toeF . Now, however, this
term lies somewhat aboveeF and there are no occupied states in the immediate vici
of the pointM. This point serves as a center of a prolate hole pocket formed by the
band~in the remaining part of the BZ this band is virtually completely occupied!. More-
over, the electronic pockets from the 22nd band, which are centered at the pointsX ~Fig.
2c!, approach very close to it. The hole pocket coincides with the electronic pocket u
a translation by the vectorD250.082(2p/a) @100#, leading to a sharp maximum of th
total polarizability~Fig. 4!. Moreover, the electronic pockets centered at neighborinX

FIG. 1. Electron-energy spectrumel(k) near the pointM in Cu, Au3Cu, Cu3Pd, and Cu3Au.
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points fit with one another, to a high degree of accuracy, under a translation of o
them by the vectorD150.105(2p/a) @100# — this is expressed as the appearance o
kink in the totalx(q… and a peak in the partial contribution of 22→22 ~Fig. 4!. It is
interesting that, in contrast to all cases considered above, the nesting vectorD1 lies not on
the line MX itself but rather close to it, as is evident from the sectionx50.45(2p/a)
~Fig. 2d!.

We shall show that the coinciding sections of the FS which were determined a
do indeed explain the formation of two-dimensional superlattices in Au3Cu and Cu3Pd.
For Au3Cu the calculations predict the following values for the given half-periodsM1

;p/uD1u57.7 andM2;p/uD2u518 ~in units of the lattice parametera); they agree well
with the observed valuesM156.760.5 andM2517619.1 For Cu3Pd the calculations
give M154.7 andM256.1, which are also close to the experimental valuesM153.5
24.5 andM255.526.3.1,2 These correlations indicate the following simple mechani
leading to the formation of two-dimensional superlattices. Each of the two system
coinciding sections of the FS induces the formation of a its superperiod in one of th
mutually orthogonal directions. If, say, the coinciding sections separated by the vectD1

induce a period along the@100#, then the sections corresponding to the vectorD2 induce
a period along an orthogonal direction~@010# or @001#!.

FIG. 2. Fragments of the cross sections of the Fermi surface: a, b! in Au3Cu, d! Cu3Pd. a, c — Fragments on
an enlarged scale in the planez50; b — in theplanex50.5(2p/a); d — in theplanex50.45(2p/a).
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It should be underscored that the presence of sharp peaks in the electronic p
ability for vectors of the typeD1 andD2 is not necessary for the formation of superla
tices. Indeed, as Vul’ and Krivoglaz showed analytically,8 stabilization of the superperiod
is possible not only in systems with flat and cylindrical sections of the FS but also
ellipsoidal sections, leading to a relatively weak~logarithmic! singularity inx(q). In our
cases the ‘‘critical’’ sections of the FS are still quite strongly flattened and are ne
cylindrical, as the above-indicated characteristic kinks in the polarizability attest.

There can arise the question of why, for example, only one-dimensional~but not
two-dimensional! superlattices are observed in the system Cu3Au, even though its elec-
tronic structure seems to be similar to that of Au3Cu. The electronic spectrum of thi
system near the pointM differs from the spectrum of Au3Cu in that the singlet termsM1

and M3 are closest to the Fermi level, the termM1 ~24th band! lying above the Fermi
level ~Fig. 1!. As a result of the latter circumstance, the additional electronic sectio
the FS near the pointM does not arise~the flat sections do not split!. The existing
electronic section~23rd band! coincides with itself under a translation by the vector 2kF

such thatM;p/u2kFu;8.3. At relatively low temperatures the observed half-period
the one-dimensional superlattice in Cu3Au is M;8.4 ~Ref. 1!.

Switching from disordered alloys to Ll2 superstructures the ‘‘quality’’ of the nestin
decreases because of the above-examined splitting and deformation of the ‘‘cri
electronic states. It is evident from Fig. 3 that in pure copper the polarizability h

FIG. 3. Electronic polarizabilityx(q) and its partial components, calculated for Au3Cu in the^100& direction.
The arrows mark the nesting vectorsD1 andD2. The dashed curve corresponds to pure copper.
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sharper feature than in Au3Cu — a step atq50.08(2p/a). Hence follows the very
unexpected result that as temperature decreases, at a certain stage short-period
can start to destabilize the superlattice. This circumstance is important for explaining
in the alloys Cu–Au~and in certain other alloys! superlattices exist only in a narrow
temperature range and at sufficiently low temperatures become energetically unfav
compared with the usual superstructures Ll2 ~or Ll0).

In closing, we shall discuss the question of the place of incommensurate sup
tices ~one- and two-dimensional! among other quasicrystalline materials. In some
spects they are undoubtedly similar to ordinary incommensurate crystals~systems with
charge-density waves, helicoidal magnetic structures, and so on!. Thus, as the concentra
tion varies they can undergo a transition into commensurate superlattices, whose a
period can be expressed in the form of a rational fractionm/n (m andn are integers!. In
the system Cu–Pd, for example, such alock-in transition occurs with increasing P
concentration~at the point 21.3 at.% Pd!.2 As the composition changes above this po
the values ofm/n start to change discretely2 — a ‘‘devil’s staircase’’ of commensurate
transitions arises.

Despite the similarity, the behavior of the superlattices still does not fit well with
conventional ideas about the behavior of ordinary incommensurate crystals.15–17 In the
first place, as we have already mentioned, they are formed as a result of sharp firs
transitions, immediately acquiring a domain~soliton! character and bypassing the initi
stage, corresponding to their modulation by a single plane wave. As temperatur
creases, the density of domain walls changes very little, usually increasing slightly
further cooling the superlattices undergo a sharp first-order transition to the Lif

FIG. 4. Electronic polarizabilityx(q) and its partial components, calculated for Cu3Pd in the^100& direction.
The arrows mark the nesting vectorsD1 andD2.
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superstructures Ll0 or Ll2.18 In ordinary incommensurate systems, however, as is w
known,15,17 the evolution of the soliton lattice is different: The soliton density rapi
decreases with temperature and vanishes at thelock-in transition~second-order or nearly
so! point.

The fundamental difference of incommensurate superlattices from ordinary in
mensurate systems lies in the fact that in them the average domain size 2M cannot
assume arbitrary values, but rather it is determined by the diameters 2kF of the initial FS.
But this circumstance makes them similar to quasicrystals, whose stability is base
sentially on the same factors — the ‘‘interaction’’ of the FS with Bragg planes.19 It is
well known20 that quasicrystals can be represented in the form of a quasiperiodic pa
of two ~or more! unit cells of different forms. This packing is organized in a manner
that the FS is in contact with a pseudo-BZ, due to the icosahedral symmetry o
quasicrystal.19 It is easy to see that valleys of different length in superlattices and di
ent unit cells in quasicrystals essentially play the same role — by their specific altern
they give the quasiperiodM;p/u2kFu required to lower the electronic energy. Therefo
the superlattices considered occupy a unique place among quasicrystallines mater
between commensurate systems and quasicrystals.

We thank É. V. Kozlov for helpful discussions and consultations. This work w
supported by the Federal Science Program ‘‘Surface Atomic Structures’’~Grant 3.8.99!.
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Thermally activated transformation of magnetization-
reversal modes in ultrathin nanoparticles
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The influence of thermal fluctuations on magnetization-reversal pro-
cesses in ultrathin magnetic particles is investigated on the basis of a
numerical solution of the Landau–Lifshitz–Gilbert equations taking
account the thermal-activation fluctuation field. It is shown that for
nanoparticles there exists a region of magnetic and geometric param-
eters where a strong jump-like instability of the critical field for mag-
netization reversal arises. This instability is due to the thermally acti-
vated transformation of magnetization configurations far from the
switching threshold. The thermal-instability mechanism described is
important for particles of much larger sizes than for the single-mode
Néel–Brown instability. © 1999 American Institute of Physics.
@S0021-3640~99!00608-8#

PACS numbers: 75.50.Kj, 75.50.Tt, 61.46.1w, 75.60.Nt

The question of the thermal instability of the magnetization of small magnetic
ticles is a fundamental problem of micromagnetism.1,2 It is especially important for
magnetic microelectronics in connection with miniaturization. For example, the N´el–
Brown thermal instability2 of flat nanoparticles limits the maximum information dens
of longitudinal storage on a magnetic disk and makes vertical storage preferable.3,4 The
critical particle sizes for the single-mode Ne´el–Brown instability are determined by th
ratio of the thermal energykBT to the energy densityu determining the magnetization
reversal energy barrier:V;kBT/u. However, a multimode switching instability, assoc
ated with the existence of alternative magnetic configurations due to the influence
film edges, as described in, for example, Ref. 5, can be expected to arise long befo
critical volume is reached in a thin particle. Each magnetization-reversal mode is
acterized by its own switching threshold. We shall show that thermal fluctuations
lead to a random transformation of magnetic configurations during switching as w
far from the magnetization-reversal threshold — in the region where the energy b
separating different mode states is small. In consequence this leads to a very
5960021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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variance of the switching fields long before Ne´el–Brown superparamagnetism arises. T
indicated instability mechanism could be important, specifically, in nanosize magne
sistance memory elements which are under development.

To study magnetization reversal processes in ultrathin nanoparticles the Lan
Lifshitz equations written in Gilbert’s form were solved numerically:

]M

]t
5g@M3Heff#2

ag

M
@M3@M3Heff##, ~1!

where M is the magnetization vector;M, g, and a are the saturation magnetizatio
gyromagnetic ratio, and the Gilbert damping parameter, respectively;Heff is the effective
magnetic field given by a sum of fields

Heff5H1Hm1Hanis1Hexch1Hfl, ~2!

whereH is the external magnetic field;

Hm~r !52E
V
div M ~r !

r2r 8

ur2r 8u3
dr 81E

S
~M ~r 8!•ns!

r2r 8

ur2r 8u3
dS

is the magnetostatic field,r is the radius vector of a point in the layer,V and S are,
respectively, the volume and surface area of a particle,ns is the vector normal to the
particle boundary,Hanis5(2K/M2) (M–n)n is the uniaxial anisotropy field,K is the
anisotropy constant,n is a unit vector along the easy magnetization ax
Hexch5(2A/M2) DM is the nonuniform exchange field;A is the in-layer exchange
constant,D is the two-dimensional Laplacian, andHfl is the random magnetic field giving
rise to thermal fluctuations of the spins. We assume that the thickness of th
magnetic-film particle is much less than the exchange length,d! l exch5AA/2p/M2, and
therefore magnetization is uniform over the thickness. Assuming the spins on the s
to be free, we employ a boundary condition of the form

]M

]ns
U

S

50. ~3!

Methods for numerical integration of the Landau–Lifshitz equations are describe
detail in the literature1 and have been well tested~see, for example, Refs. 6–10!. Simi-
larly to Ref. 6, which employs a dynamic approach to describing the thermodyn
fluctuations on the basis of the fluctuation-dissipation theorem,11 we shall assume tha
after a magnetic particle is divided into a grid of unit cells, a uniform random fi
Hfl(t) (t is the time! corresponding to white noise with the correlation functi
^Hfl(t)•Hfl(t8)&5s2d i j d tt8 , wheres252kBTa/gvMdt, v is the unit cell volume, and
dt is the integration time interval, is generated in each~ith! cell.

In the absence of fluctuations (Hfl(t)50) a thin rectangular particle has two diffe
ent configurations of the magnetic distribution in the remanent state —C and S types,
characterized by parallel or antiparallel magnetizations near the opposite short edge~Fig.
1!. The calculations show that the energy of the remanent states varies with the geo
parameters of the particle and the bias magnetic field in the transverse direction, s
for small form factors and strong bias fields theSconfiguration is preferred. There exis
a line of first-order phase transitions~Fig. 2! on which the energies of theC andSstates
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are equal. To each remanent state there corresponds a unique magnetization r
mode and a hysteresis loop. The critical magnetization reversal field~coercivity! can
differ very strongly, as shown in Fig. 3. It is obvious that when thermal fluctuations
switched on (Hfl(t)Þ0) intertransformation of the switching modes can be expecte
occur in the range of parameters corresponding to the phase-transition line,
height of the separating energy barrier is comparable to the thermal energdE
'kBTln(vt/lnP21), wherev is the resonance frequency,t is the characteristic thermal
activation time of the intermode interaction, andP is the expected intermode transform
tion probability. It should be noted that the energy barrier decreases with incre
saturation field~see the computational example in Fig. 4! right down to zero at the poin
of instability of one of the configuration modes, and the probability of therma
activated change of theC and S modes increases with advancement into the satura

FIG. 1. Remanent-magnetization configurations corresponding to the main magnetization modes
400325034 nm ultrathin, rectangular, permalloy particle with magnetizationM5800 G and longitudinal
uniaxial anisotropyK51000 ergs/cm3: a — S state, b —C state.

FIG. 2. Energy diagram of the modal magnetization states of two rectangular permalloy particles with d
sions a — 400325034 nm and b — 800340032 nm in longitudinal,Hx , and transverse,Hy , magnetic
fields. Thick line — the line of first-order phase transitions that separates the region of stability of theS- and
C-mode states. Thin line — the line of instability of theC state; dashed line — the line of instability of th
S state.
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region. Therefore it should be expected that near the line of degeneracy of the
states a thermally activated change of the states in the region of saturation fields is a
possible in thin films.

Figure 5a shows the results of numerical simulation of hysteresis switching
400325034 nm flat permalloy particle at room temperature in an ac magnetic
H5H0cos(2pt/tV) with cycling periodicity along the looptV51 ms and a constant bia
field of 1.5 Oe in the transverse direction. Figure 5b shows the time variation o
transverse magnetization components at the opposite poles of the particle sub

FIG. 3. Magnetic hysteresis loops of the main magnetization-reversal modes of a 400325034 nm permalloy
rectangle for theS andC modes.

FIG. 4. Energy of the main modal configurations and energy barrier separating the modal states of
325034 nm rectangle as a function of the longitudinal magnetization field: a — general view; b — enlarged
fragment of the dependence in the region shown by the square in Fig. 4a near the line of instability
C mode: 1 — energy of theC mode, 2 — energy of theS mode, 3 — energy barrier.
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magnetization reversal. In the case shown, the coercivity of magnetization reversa
nanoparticle changed abruptly by 30%. In the process, the decrease of coercivity
the single-mode thermally activated Ne´el–Brown instability6 did not exceed 10%. The
random changing of the magnetization-reversal modes, as shown in Fig. 5b, c
described by the kinetic equationsdP/dt5GP for the mode-state vectorP5(PS

↑ , PC
↑ ,

PS
↓ , PC

↓ ), determined by the probabilities for realization of the corresponding mo
where an arrow distinguishes the state of longitudinal magnetization and correspo
the upper or lower hysteresis branch. The state vector corresponds to at least four
in a zero base field and at most eight modes in the presence of a transverse bias fie
transition-rate matrixG5G(t) varies in time because the energy barriers vary toge
with the cycling field along the hysteresis loop.

We shall consider a simplified example of single passage of a magnetized sta
from the magnetization-reversal threshold, where only two mode states, correspond

FIG. 5. a! Magnetic hysteresis cycles of a 400325034 nm permalloy particle taking account of therm
fluctuations. b! Time scan of the values of the transverse magnetization components at the opposite pol
magnetic particle. The transverse component of the magnetization at the originM y(x50) is shown in black.
The time dependence of the average transverse magnetization at the opposite edgeM y(x5400 nm! is shown
in gray.
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one of the hysteresis loops~for example, the upper one!, are important, so thatP
5(PS , PC). We approximate the decrease in the energy barrier by a linear fun
dES,C5US,C1kutu, whereUS,C are, respectively, the minimum achievable barrier for
Sor C mode,k5udU/dtu is the rate of passage through the minimum. The decay rate
each mode will contain an exponential time dependence, and the kinetic equatio
comes

dP

dt
52FGS

0 2GC
0

2GS
0 GC

0 GexpS 2
kutu
kBTDP, ~4!

where GS,C
0 5vS,Cexp(2US,C /kBT) and vS,C are the characteristic frequencies of t

modal oscillations. SincePC512PS , integrating the system~4! we find the change in
the probability with a single passage through the minimum barrier

PS~ t5`!5PS
01~PS~2`!2PS

0!expS 2
2kBT

k
~GS

01GC
0 ! D , ~5!

wherePS
05GC

0 /(GS
01GC

0 ) is the probability of being in theS state after an unlimited
number of passage cycles along the hysteresis loop. It is evident from the last eq
that the characteristic thermally activated interaction time ist52kBT/k. The numberN
of passage cycles along the loop for which the probability of a given magnetiza
reversal mode being realized approaches a stationary value can be estimated us
approximate condition (PS(N)2PS

0)/PS
0,0.1. It follows from this condition, iterating

Eq. ~5!, that

N.
ln~10~12PS

0!/PS
0!

t~GS
01GC

0 !
5

ln~10GS
0/GC

0 !

t~GS
01GC

0 !
. ~6!

In our case, according to an estimate using Eq.~6! taking account of the energ
dependences presented in Fig. 4 for theSandC states with a characteristic half-period fo
passaget;1 ms and the characteristic frequency of magnetization oscillationsv;1
GHz, for the maximum amplitudeH05160 Oe of the magnetization-reversing field tw
cycles are sufficient to establish a thermodynamically equilibrium probability of bein
the S state, and forH05120 Oe 850 magnetization-reversal cycles are required.

In summary, the closeness of the energies of the configuration modes of the
netization and a low separating barrier are important for the mechanism of multim
thermally activated instability in nanoparticles. To suppress this effect in practical a
cations the magnetic and geometric parameters of an element must be chosen to
from the line of energy degeneracy of alternative magnetization states, using, fo
ample, a magnetic or an exchange bias field in the hard direction. We note that a
mode switching instability with energy degeneracy of the mode states of a mag
particle is also possible, in principle, at ultralow temperatures on account of the m
scopic quantum fluctuations of the magnetization. Together with the convent
magnetic-relaxation methods this can be used to observe such fluctuations.

We thank the Russian Fund for Fundamental Research for financial support~Grant
No. 98-02-16469!.
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Lateral tunneling through the controlled barrier between
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A study is made of the lateral tunneling between edge channels at the
depletion-induced edges of a gated two-dimensional electron system,
through a gate-voltage-controlled barrier arising when the donor layer
of the heterostructure is partly removed along a fine strip by means of
an atomic force microscope. For a sufficiently high barrier the typical
current–voltage characteristic is found to be strongly asymmetric, hav-
ing, in addition to the positive tunneling branch, a negative branch that
corresponds to the current overflowing the barrier. It is established that
the barrier height depends linearly on both the gate voltage and the
magnetic field, and the data are described in terms of electron tunneling
between the outermost edge channels. ©1999 American Institute of
Physics.@S0021-3640~99!00708-2#

PACS numbers: 73.40.Gk, 73.40.Hm

Recently there has arisen much interest in lateral tunneling to the edge of a
dimensional electron system~2DES!, which is related not only to the problem of integ
and fractional edge states in the 2DES but also to that of resonant tunneling and Co
blockade.1–7 The tunneling regime was identified by the presence of exponential de
dences of the measured current on either source–drain voltage1–4 or magnetic field.5 For
producing a tunnel barrier a number of methods were used:~i! gate voltage depletion o
a narrow region inside the 2DES;1–4,7 ~ii ! focused-ion-beam insulation writing;6 ~iii !
cleaved-edge overgrowth technique.5 Insofar as the tunnel barrier parameters are
well-controllable values, it is important for using the first method that one can tune
barrier on the same sample. In contrast to vertical tunneling into the bulk of the 2DE
a quantizing magnetic field, when the 2DES spectrum is manifested,8,9 in lateral tunnel-
ing the electrons can always tunnel to Landau levels that bend up at the edge to
edge channels where they intersect the Fermi level, i.e., the spectrum gaps are n
directly in lateral tunneling. Instead, it reflects the edge channel structure and dens
states. For both the integer and fractional quantum Hall effect, a power-law behav
6030021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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the density of states at the 2DES edge is expected. Since this can interfere with the
distortion at electric fields in the nonlinear response regime, the results of lateral tu
ing experiments obtained from measurements of the current–voltage curves5 should be
treated with care.

Here we investigate the lateral tunneling in narrow constrictions in which, alo
thin strip across, the donor layer of a GaAs/AlGaAs heterostructure is partly rem
using an atomic force microscope~AFM!. A controlled tunnel barrier is created by ga
depletion of the whole of the sample. The well-developed tunneling regime is indic
by strongly asymmetric diodelike current–voltage characteristics of the constric
which are sensitive to both the gate voltageVg and the normal magnetic fieldB. The
behavior of the tunneling part of the current–voltage curves points to electron tunn
between the outermost edge channels.

The samples are triangular constrictions of a 2D electron layer with different wi
W50.7, 0.4, 0.3, and 0.2mm of the thinnest part; see Fig. 1a. These are made u
standard optical and electron beam lithography from a wafer of GaAs/AlGaAs he
structure with a low-temperature mobilitym51.63106 cm2/Vs and a carrier density
ns5431011 cm22. Within each constriction the donor layer is removed along a fine

FIG. 1. ~a! Top view on the sample~top!, and a blowup of one of the constrictions after etching of the oxidiz
part of the mesa as performed solely for visualization purposes~bottom!. ~b! Gate voltage dependences of th
electron density in the oxidized~squares! and unoxidized~circles! regions of the 2DES. An example of th
magnetoconductance in the barrier region is shown in the inset. The value ofns is extracted from the slope o
the dashed lines with 10% uncertainty.
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by locally oxidizing the heterostructure using AFM induced oxidation.10 This technique
allows one to define 140 Å wide oxide lines of sufficient depth and oxide quality so
partly remove the donor layer and, therefore, locally decrease the original electron
sity. The whole structure is covered with a metallic gate, which enables us to tun
carrier density everywhere in the sample. As the 2D layer is depleted, the oxi
regions get depopulated first, resulting in the creation of tunnel barriers. Potential p
are made to the sample to permit transport measurements.

For the measurements we apply a dc voltage,Vsd, between the source~grounded!
and drain contacts of one of the constrictions, modulated with small ac voltage
amplitudeVac540 mV and frequencyf 520 Hz. A gate voltage is applied between t
source and the gate. We measure the real part of the ac current, which is proportio
the differential conductancedI/dV, as a function of bias voltageVsd (I –V characteris-
tics! using a home-madeI –V converter and a standard lock-in technique. The behavio
the I –V characteristics is investigated as a function of both the gate voltage and ma
field. The measurements are performed at a temperature of about 30 mK in ma
fields of up to 14 T. The results obtained on different constrictions are qualitat
similar.

To characterize the sample we extract the gate-voltage dependence of the e
density from the behavior of magnetoconductance plateaus in the barrier region a
the rest of the 2DES~Fig. 1b!. The analysis is made at high fields, where the si
quantization-caused effect of conductance plateaus in narrow constrictions is dom
by magnetic field quantization effects.11 As is seen from Fig. 1b, if the barrier region
depopulated (Vg,Vth), the electron density in the surrounding areas is still high eno
to provide good conduction. The slopes of the curvesns(Vg) in the oxidized region and
in the rest of the 2DES turn out to be equal within our accuracy. The distance betwe
gate and the 2DES is determined to bed'570 Å; as the corresponding growth parame
is about 400 Å, the 2D layer thickness contributes appreciably to the distanced. We have
found that even in the unoxidized region the electron density atVg50 can be different
after different coolings of the sample on account of slight threshold shifts: it falls wi
the range 2.531011 to 431011 cm22 and is always higher than in the barrier region.

The typical I –V characteristic of the constriction in the well-developed tunnel
regime is strongly asymmetric and includes an overflowing branch atVsd,0 and the
tunneling branch atVsd.0; see Fig. 2a. The tunneling branch is much smaller
saturates rapidly in zeroB with increasing bias voltage. The onset voltagesVO andVT for
these branches are defined in a standard way as shown in the figure. The tunneling
can be attained both by decreasing the gate voltage and by increasing the magnet
as is evident from Fig. 2a. We have checked that the shape ofI –V characteristics is no
influenced by interchanging the source and drain contacts. Hence, the tunnel bar
symmetric, and the asymmetry observed is not related to the constriction geometr

To understand the origin of the asymmetry, let us consider a gated 2DES conta
a potential barrier of approximately rectangular shape, with widthL@d, in zero magnetic
field. The 2D band bottom in the barrier region coincides with the Fermi levelEF of the
2DES atVg equal to the threshold voltageVth . Since in the barrier region forVg,Vth an
incremental electric field is not screened, the 2D band bottom follows the gate pote
so that the barrier height is equal to2eDVg5e(Vth2Vg), where2e is the charge of an
electron~Fig. 2b!. Applying a bias voltageVsd shifts the Fermi level in the drain contac
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by 2eVsd. Because of gate screening the voltageVsd drops over a distance scale of th
order ofd near the boundary between the barrier and drain, and so the barrier heig
the source side remains practically unchanged; see Fig. 2b. IfVsd reaches the onse
voltageVO5DVg , the barrier on the drain side vanishes, and electrons start to ove
from the drain to the source. In contrast, forVsd.0 only the electron tunneling throug
the barrier from the source to the drain is possible. AsVsd increases above2DVg , the
tunneling distance diminishes and the barrier shape becomes close to triangular.
the triangular barrier approximation, in the quasiclassical limit of small tunneling p
abilities, it is easy to deduce that the derivative of the tunneling current with respe
the bias voltage is expressed by the relation

dI

dV
5s0 expS 2

4~2m!1/2~2eDVg!
3/2L

3\eVsd
D!s0 , ~1!

wheres0'2(e2/h)DVgW/VsdlF , m50.067m0 (m0 is the free electron mass!, andlF

is the Fermi wavelength in the source. Obviously, the tunneling current is domin
by electrons in the vicinity of the Fermi level, and the tunneling dista
LT52DVgL/Vsd should satisfy the inequalityd!LT,L. In accordance with Eq.~1!, the
expected dependence of the tunneling onset voltageVT on gate voltage is given by
VT}(2DVg)

3/2.

As is seen from Fig. 3a, the expected behavior of bothVO andVT with changingVg

does indeed occur. The dependencesVO(Vg) andVT
2/3(Vg) are both linear; the slope o

the former is very close to one. Extensions of these straight lines intercept theVg axis at
slightly different voltages, which points out that the triangular barrier approximatio
good. The threshold voltageVth for the generation of a 2DES in the barrier region, whi
is defined as a point of vanishingVO ~Fig. 3a!, is coincident, within experimental unce
tainty, with the value ofVth determined from the analysis of magnetoconducta
plateaus~Fig. 1b!.

A fitting of the set ofI –V characteristics at differentVg by Eq. ~1! with parameters
L, Vth , ands0 is depicted in Fig. 3b. The dependence ofs0 on DVg andVsd is ignored
against the background of the strong exponential dependence ofdI/dV. Although three

FIG. 2. ~a! I –V curves at different gate voltages and magnetic fields. The casesB50 andBÞ0 correspond to
two coolings of the sample as compared in Fig. 3a.W50.4 mm. ~b! A sketch of the 2D band bottom in the
barrier region for different source–drain biasesVsd.
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parameters are varied, the fit is very sensitive, except fors0, to their variation because o
the exponential behavior of theI –V characteristics. One can see from Fig. 3b that
above model describes well the experiment at zero magnetic field. As expecte
determined parameterL50.6 mm is much larger thand, i.e., the barrier shape a
Vsd50 is approximately rectangular, and the value ofVth is close to the point whereVO

~andVT) tends to zero~Fig. 3a!. Similar results are obtained at the other two constr
tions. In addition, we find that the coefficients0 for different constrictions does not sca
with the constriction widthW. This probably implies that the tunnel barriers, even w
submicron lengths, are still inhomogeneous, which, however, does not seem cruc
the case of exponentialI –V dependences.

Having tested that we are dealing with a controlled tunnel barrier, we investigat
tunneling in a normal magnetic field that gives rise to an emerging tunnel barrier
manner similar to gate depletion~Fig. 2a!. At a constantVg.Vth , where there is no
tunnel barrier in zeroB, the magnetoconductances obeys a 1/B law at weak fields and
drops exponentially withB in the high-field limit, signaling the tunneling regime. Figu
4a presents the magnetic field dependence of the onset voltageVO , which determines the
barrier height. It is seen from the figure that the change of the barrier height2eVO with
B is very close to\vc/2, which points to a shift of the 2D band bottom by one-half of t
cyclotron energy.

For describing the tunneling branch of theI –V characteristics we calculate th

FIG. 3. ~a! Change of the onset voltagesVO and VT as defined in Fig. 2a withVg at B50; and ~b! the fit
~dashed lines! of the I –V curves~solid lines! by Eq. ~1! with the parametersL50.6 mm, s0538 MV21,
Vth520.4 mV; W50.4 mm. In case~a!, the data marked by filled triangles are obtained for the same coo
of the sample as the data atB50 in Fig. 2a and in case~b!, whereas the open triangles correspond to
BÞ0 data of Figs. 2a and 4 as measured for the other cooling.
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tunneling probability in the presence of a magnetic field. This is not so trivial a
B50 because electrons tunnel through the magnetic parabola between edge chan
the induced edges of the 2DES. In the triangular barrier approximation one has to
the Schro¨dinger equation with the barrier potential

U~x!5
\vc

2l 2
~x2x0!22eVsd

x

L
2eDVg , 0,x,L, ~2!

wherevc is the cyclotron frequency,l is the magnetic length, andeVsd is larger than the
barrier height in the magnetic field. An electron at the Fermi level in the source tun
throughU(x) from the origin to a state with orbit centerx0 such that 0,x0,L. If the
barrier potential is dominated by the magnetic parabola~i.e., the magnetic length is th
shortest!, the problem reduces to the known problem of finding the energy levels in
shifted parabolic potential as caused by the linear term in Eq.~2!. The value ofx0 is
determined from the condition of coincidence of a Landau level in the potentialU(x)
with the Fermi level in the source. If only the lowest Landau level is taken into con
eration and the spin splitting is ignored, we get the minimum tunneling distance t
outermost edge channel in the drain:

x05LT5
l

2 S \vcL

eVsdl
2

2DVgL

Vsdl
2

eVsdl

\vcL
D@d. ~3!

The first term in brackets in Eq.~3!, which is dominant, is large compared to unit
Knowing the wave function of the lowest Landau level in the potentialU(x) and ne-
glecting the last term in Eq.~3!, we obtain for the shape of theI –V characteristics nea
the onset, where the tunneling probability is small,

dI

dV
5sB expS 2

~\vc/22eDVg!
2L2

e2Vsd
2 l 2 D !sB . ~4!

Here sB is a prefactor which can be tentatively expected to be of the same ord
magnitude ass0. From Eq.~4! it follows that at sufficiently strong magnetic fields th
tunneling onset voltageVT is related to the barrier height asVTl}\vc/22eDVg , which
is consistent with the experiment~Fig. 4a!. The solution~4! includes the caseeDVg.0,

FIG. 4. ~a! Behavior of the onset voltagesVO andVT with magnetic field; and~b! the fit ~dashed lines! of the
I –V curves ~solid lines! by Eq. ~4! with the parametersL50.6 mm, s051.3 MV21, and Vth521.4 mV;
W50.4 mm, Vg50.
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when a tunnel barrier is absent at zero magnetic field but arises with increasingB. This
occurs apparently because of depopulation of the barrier region in the extreme qu
limit of magnetic field.

Figure 4b displays the fit of theI –V characteristics at different magnetic fields b
Eq. ~4! with the parametersL, Vth , and sB . The optimum values ofL50.6 mm and
Vth521.5 mV are found to be very close to the ones for theB50 case as determined fo
the same range of barrier heights; see Fig. 3b. Although this fact supports our con
ations, they are not rigorous enough to permit discussing the considerable discre
between the preexponential factors with and without magnetic field.

The observed behavior of theI –V characteristics with magnetic field in the transie
region where their asymmetry is not yet strong~Fig. 2a! is similar to that of Refs. 4
and 5. Over this region, which is next to the region of exponentialI –V dependences a
higher magnetic-field-induced tunnel barriers, ourI –V curves are close to power-law
dependences, as was discussed in Ref. 5. There is little doubt that it is very diffic
analyze and interpret suchI –V curves without solving the tunneling problem rigorous
We note that the peak structures on the tunneling branch of theI –V characteristics~see
Figs. 2a and 3b! persist at relatively low magnetic fields and are very similar to th
studied in Ref. 4. These may be hint at resonant tunneling through impurity states
the 2D band bottom.

This work was supported in part by the Russian Fund for Fundamental Res
under Grants 97-02-16829 and 98-02-16632, the Program ‘‘Nanostructures’’ from
Russian Ministry of Sciences under Grant 97-1024, and the Volkswagen-Stiftung
Grant I/68769.
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Anomalies of the electronic spin-lattice relaxation of
Gd31 in YBa 2Cu4O8 and YBa 2Cu3O61x near 200 K
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A sharp kink in the temperature dependence of the electronic spin-
lattice relaxation rate near 200 K was found in the high-temperature
superconductors YBa2Cu4O8 and YBa2Cu3O61x . The effect is corre-
lated with opening of a spin gap and microscopic phase separation.
© 1999 American Institute of Physics.@S0021-3640~99!00808-7#

PACS numbers: 74.72.Bk, 76.60.Es

In the physics of high-temperature superconductors~HTSCs! the nature of the so-
called spin gap, which opens in the energy spectrum of ‘‘underdoped’’ oxide HTSC
temperaturesT* '1502200 K ~i.e. much higher than the superconducting transit
temperatureTc) and is manifested, specifically, as an exponential decrease of the nu
spin-lattice relaxation rate and Knight shift on cooling~see, for example, Ref. 1!, remains
an enigma. To understand the nature of this phenomenon it is extremely important t
some anomalies in the behavior of HTSC materials nearT* . In the last few years such
features have been intensively sought. For example, in Ref. 2 the system YBa2Cu4O8

~1248!, containing an additional, compared with the widely used material YBa2Cu3O61x

~123!, layer of CuO and distinguished by high stability and definiteness in the oxy
distribution over the lattice sites, was chosen as the object of investigation. The au
were able to find some anomalies near 180–200 K for a number of spectral and rela
characteristics of87Y, 63Cu, and17O NMR and NQR. This was taken as evidence
‘‘electronic crossover’’ associated with the opening of a spin gap and possibly the
pearance of charge-density waves.3 However, these features~small jumps and changes i
slope of the temperature dependences! are all only negligibly above the experiment
error, so that the search for new effects of this kind remains urgent. In the present
we report a new anomaly which we observed near 200 K in the temperature depen
of the electronic spin-lattice relaxation rate of Gd31 ions introduced as a spin probe in
the lattice of the 1248 and 123 oxide HTSCs.

The measurements were performed on Y0.99Gd0.01Ba2Cu4O8 and
Y0.99Gd0.01Ba2Cu3O61x samples. The 123 samples were prepared at the Institut
6100021-3640/99/69(8)/6/$15.00 © 1999 American Institute of Physics
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Single Crystals~Khar’kov, Ukraine! by the standard method of solid-phase synthe
Their characteristics werex50.59 and 0.95 andTc590 K and 56 K, respectively. The
1248 sample (Tc584 K) was prepared at ETH~Zürich! using the following technology.4

The oxides Gd2O3, Y2O3, CuO, and the nitrate Ba~NO3)2, taken in the stoichiometric
ratio and heated up to 900 °C, were dissolved in concentrated~65%! HNO3 and then
polymerized by adding ethylene glycol and citric acid. The gel formed after the li
was evaporated was dried at 120°C and annealed at 700°C. To obtain a single
sample with the required composition the initial powder obtained was sintered i
oxygen flow at 820°C for 60 h. X-Ray investigation confirmed all 123 and 1248 sam
to be single-phase.

The experimental samples in the form of pulverized powder were set in epoxy
and oriented along thec axis in a 2 Tmagnetic field. The ESR spectra were recorded
a standard Bruker ER-200 spectrometer near 3.2 cm. The powder particle sizes~of the
order of 10mm! were much smaller than the depth of the skin layer. This ensured
absence of Dyson distortions of the line shape.

The main method of investigation in this work was to measure the electronic
lattice relaxation timeT1 of Gd31 ions. Small values ofT1 (102721029 s), together
with a large ESR linewidth~hundreds of G! preclude using standard methods for me
suring the relaxation time in the investigation of HTSC materials. For this reason, i
present work we used a novel modulation method in which the longitudinal~with respect
to the external magnetic fieldB) spin magnetization of the sample

Mz~ t !5Ucos~Vt !1Vsin~Vt ! ~1!

was recorded. HereU andV are the in-phase and quadrature components of the lon
dinal relaxational response with respect to amplitude modulation of the microw
power, performed at the frequencyV. This method, which makes it possible to measu
times T1 down to 10210 s, has been successfully used to investigate HTSCs
fullerides.5–7

The values ofU andV in the simplest case are determined by the equations

U5AM0v1
2g~v!VT1 /@11~VT1!2#, ~2a!

V5AM0v1
2g~v!~VT1!2/@11~VT1!2#, ~2b!

whereA is the instrumental proportionality coefficient,M0 is the static spin magnetiza
tion, v1 is the amplitude of the microwave field~in frequency units!, andg(v) is the
form factor of the ESR line. In this work we used mainly the phase variant of
technique, in which the longitudinal~spin-lattice! relaxation time is given by

VT15V/U. ~3!

The amplitudesU and V were measured using synchronous detection of the signaMz

recorded by a longitudinal inductance coil. The modulation frequency in these ex
ments wasV5107 s21. The details are described in Ref. 5.

The 123 system. In the Y0.99Gd0.01Ba2Cu3O61x samples with field orientationB i c
and sufficiently low temperatures, the standard for spinS57/2 fine structure of the ESR
spectrum with parameters in agreement with the published data was observed.8 As the
temperature increases above 100 K, the spectra gradually merge into a single, ap
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mately Lorentzian, central line. As is well known,9 this is explained by the exchang
coupling with the spin system of delocalized charge carriers. We note that the m
used in the present work to record the longitudinal magnetization does not depend
details of this merging, and in any case it gives the relaxation time of the totalz compo-
nent of the electronic spins.7

The magnetic field dependence of the signalsU andV near resonance atT578 K is
shown in Fig. 1. It is clearly seen that the forms of the relaxation spectra for the in-p
and quadrature components of the magnetization are different. TheU signal is essentially
identical to the standard ESR absorption spectrum, whereas the field dependence oV
signal is a much narrower asymmetric line nearg52. This means that two types o
paramagnetic centers with substantially different spin-lattice interaction efficiency
present in the sample. Centers of one type have such a short relaxation tim
VT1!1. Therefore, in accordance with Eqs.~2! and~3!, only the in-phase componentU
is observed from them. The fact that its field dependence matches the ESR abso
lines shows that these rapidly relaxing centers make the main contribution to th
served ESR spectrum. Conversely, centers of the second type are characterized b
tively slow spin-lattice relaxation. At 78 KVT1@1 for them, so that only theV compo-
nent is observed. The fact that the corresponding narrow line is virtually absent i
observed ESR spectrum indicates that the density of the slowly relaxing centers is
tively low; they are manifested in the relaxation spectrum only because of the large
of T1 ~see Eq.~2!!. The contribution of the slowly relaxing centers to the observed E
absorption is estimated to be about 1% in these samples.

The results of the investigation of the rapidly relaxing part of the spectrum, w
we attribute to Gd31 ions in an ordinary metallic phase, are described in Ref. 7 and
not be examined in detail below. In the present Letter we shall concentrate on the s
relaxing centers, which will be the subject of the discussion below.

The narrow line shown in Fig. 1 begins to appear in the signalU as the temperature

FIG. 1. Relaxation longitudinal responsesV ~left-hand scale! and U ~right-hand scale! in Y-Ba-Cu-O:Gd31

versus the external magnetic field atT578 K. The data for the 1248 sample are normalized to the value oV
for the 123 sample. Dashed curve — form of the ESR absorption. The solid curve is drawn throug
experimental points.
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rises above 78 K. There are no special difficulties in distinguishing the signals due
two types of centers, since the form of the rapidly relaxing component is known
ESR. Performing this separation and using Eq.~3!, we obtained the temperature depe
dences of the spin-lattice relaxation rateW51/T1, which are shown in Fig. 2. One ca
see that at low temperatures the results for both samples are described quite well
law W}T2, but near 200 K the dependence changes, and at higher temperatur
experimental points (forx50.59) lie appreciably higher. We note that at the same t
a similar kink also occurs in the temperature dependence of the timeT1 for the ‘‘fast’’
centers; the corresponding data7 are also shown in Fig. 2. At higher temperatures
method was too insensitive for reliable measurements because of the low dens
‘‘slow’’ centers. Much more definite results of this kind were obtained for the sys
1248, which we discuss below.

The 1248 system.The central part of the ESR spectrum obtained on a magnetic
oriented sample Y0.99Gd0.01Ba2Cu4O8 for B i c and T530 K is shown in Fig. 3. The
spectrum is unusual and does not correspond to the typical fine structure of a Gd31 ion.
Analysis showed that this is explained by the large (;50%) contribution from additiona
paramagnetic centers whose spectrum is virtually identical to the slowly relaxing
ponent observed in the 123 samples. This is confirmed by the fact that the field d
dences of the relaxation signals of typeV for 1248 and 123 systems match~Fig. 1!.
Differentiating this dependence with the magnetic field we obtained the derivative o
corresponding ESR absorption signal. Then we subtracted this derivative from th
served spectrum. As one can see from Fig. 3, this procedure~with the proper fit of the
amplitude! gives the ESR spectrum in a form characteristic for the fine structure of G31

in the 1248 system.10

Thus the slowly relaxing centers which we observed earlier in 123 samples

FIG. 2. Temperature dependence of the spin-lattice relaxation rate for the ‘‘slow’’ centers in Y-Ba-Cu-O:31

~left-hand scale!: s — 123,x50.59; D — 123,x50.95; j — 1248; dashed curve — quadratic dependen
1 — data of Ref. 7 for ‘‘fast’’ centers in 123,x50.59~right-hand scale!. Inset: Temperature dependence of t
NQR frequency of63Cu~1! in 1248.2
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also been found, with a much higher density, in the 1248 system. The latter circums
made it difficult to investigate the relaxation of ‘‘fast’’ centers in the normal 1248 ph
~the results for the superconducting phase will be published separately!, but on the other
hand more accurate measurements ofT1 could be performed for the ‘‘slow’’ centers righ
up to room temperature~filled squares in Fig. 2!. One can see that right up to 180–200
the experimental points lie on the curveW}T2, and above 200 K they move sharp
upward, more than two times above the previous dependence. We note that th
obtained on both materials~123 and 1248! match within the limits of the measureme
error.

The main result of this work is the observation of a distinct feature — a sharp
change in the slope of the temperature dependenceT1 near 190–200 K in YBa2Cu4O8 :
1%Gd31 samples and, evidently, in the 123 system~at least forx50.59). The main
question arising in this connection concerns the nature of the slowly relaxing ce
demonstrating the anomaly indicated. Judging from the relatively large values oT1

(102621027 s! and from the typical for dielectrics quadratic temperature dependen
the range 80–200 K, most likely we are dealing with a nonconducting phase~in the
metallic 123 phase the timeT1 is two orders of magnitude shorter, and its temperat
dependence varies from a linear Koringa law to an exponential, due to the
gap5,7,11,12!. Thus the question posed above reduces to the following: Is the obse
nonconducting phase macroscopic, i.e. parasitic and not associated with the experi
system, or have we encountered manifestations of a microscopic phase separation
in the opinion of many authors is a fundamental characteristic of the lattices of o
HTSCs?13,14

It is impossible to answer this question definitively on the basis of the present w
Of course, the simplest and most ‘‘economical’’ conclusion would be a macrosc
parasitic phase arising during synthesis. However, this assumption is difficult to reco
with the existence of a similar jump in the temperature variation ofT1 of rapidly relaxing
Gd31 centers,7 which unquestionably belong to the metallic phase. Even more conv

FIG. 3. Central part of the ESR spectrum of Y0.99Gd0.01Ba2Cu4O8 with B i c, T530 K. Solid line — before
processing; dashed curve — after subtraction of the signal from the ‘‘slow’’ centers.
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ing is the fact that the anomalies in the temperature dependences of the Knight
nuclear relaxation rates, and NQR frequencies, described by Suteret al.,2 match in posi-
tion and character. For comparison, one of these results is displayed in the inset in
It is difficult to imagine that the kink observed here at 180–200 K in the tempera
variation of the quadrupole splitting of63nQ could be due to an extraneous phase, m
roscopically separated from the main lattice. Finally, it is impossible to ignore the
questionable matching of the temperature at which these anomalies are observe
temperatureT* corresponding to the appearance of a spin gap.1 These data can all be
correlated by the hypothesis of microscopic phase separation in which the micr
mesoscopic layers inside the HTSC material have different conducting and mag
properties. Such electronic separation has been reliably observed in the La–Sr–
family of HTSCs and is being actively discussed in the literature~see, for example, Refs
13 and 14!. Evidently, it is also confirmed by recent experiments on electronic relaxa
of Gd31 in the 123 system.7 In this case, the feature observed in the present work n
200 K could be explained by a phase transition in dielectric interlayers or chains
rated from the metallic phase only microscopically and therefore inevitably having s
influence on the nuclear and electronic relaxation in that phase. It is clear that the
nitude of the anomalies in the dielectric phase undergoing a phase transition sho
much greater than in metallic layers which feel it only indirectly because of the proxi
effect. This is what is observed experimentally.

The nature of the transition discussed is still unclear. For example, it can be c
lated with antiferromagnetic ordering in CuO, occurring near 220 K,15 or with hypotheti-
cal charge-density waves, whose appearance in the same temperature range is p
theoretically in Ref. 3. It is obvious that further investigations are required to solve
problem.
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Superfluidity of ‘‘dirty’’ excitons

Yu. E. Lozovik,* O. L. Berman, and A. M. Ruvinski 
Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk,
Moscow Region, Russia

~Submitted 22 March 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 8, 573–578~25 April 1999!

The effect of a random field due to impurities, boundary irregularities,
and so on, on the superfluidity of a three-dimensional system of exci-
tons and a quasi-two-dimensional system of direct or spatially indirect
excitons is studied. The influence of a random field on the density of
the superfluid component in the indicated excitonic systems at low
temperaturesT is investigated. The interaction between excitons is
taken into account in the ladder approximation. For quasi-two-
dimensional excitonic systems in a random field the Kosterlitz–
Thouless temperature in the superfluid state is calculated. ©1999
American Institute of Physics.@S0021-3640~99!00908-1#

PACS numbers: 71.35.Lk, 73.20.Dx

A system of spatially indirect excitons in coupled quantum wells1–4 is of interest in
connection with the superfluidity previously predicted for this system5 and manifested as
persistent electric currents, quasi-Josephson phenomena,5 and unusual properties in
strong magnetic fields.6–8 Phase transitions occurring in systems with spatially separ
electrons and holes were studied in Ref. 9. In these works the collective propert
indirect excitons in idealizedpure systems neglecting the random field due to the pr
ence of impurities and boundary irregularities of the quantum wells were studied.

However, in experiments a random field operates on a weakly-nonideal exciton
The transport properties of direct and indirect excitons and magnetoexcitons in ra
fields have been studied in Ref. 10, the influence of various random fields on exc
and magnetoexcitonic absorption of light has been studied in Refs. 11 and 12
Anderson localization of excitons has been studied in Ref. 13.

The effect of a random field on the superfluidity and the collective propertie
excitons is of interest and has not been studied thus far. The effect of a random fie
the properties of an excitonic system can be very substantial. Indeed, if the random
is sufficiently strong, it can induce a transition of the superfluid phase into a Bose-
phase. We shall confine our attention to the effect of a weak random field on the c
tive properties and superfluidity of excitons in nonuniform systems.

In the present Letter we examine a rarefied system of three-dimensional exciton
two-dimensional excitons in a single quantum well and indirect excitons in cou
quantum wells in a random field. In two-dimensional systems the excitonic interacti
the Bogolyubov approximation operates only in an unphysically narrow range o
6160021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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system parameters because of the divergence of the two-dimensional scattering am
in the Born approximation. For this reason, the ladder approximation must be used t
account of the interaction between two-dimensional excitons. The random field was
into account by perturbation theory. It is predicted here that a random field decreas
densityns of the superfluid component in the indicated systems at low temperaturT
and it also decreases the temperature of the superconducting transition induced
random field.

Our analysis is also applicable to other physical realizations of nonuniform B
systems, for example, liquid helium in random porous media14 and so on.

We shall use perturbation theory up to second order in the interaction of exc
with the random field at finite temperaturesT ~see Fig. 1! to take account of the effec
of the random field on the density of the superfluid component. In what follows we
\5kB51.

The Green’s functionD (0)(p,ivk) for the Bose condensate neglecting the rand
field is

D (0)~p,ivk!5
2~2p!dn0d~p!

vk
, d→0, ~1!

wherevk52pkT (k is an integer!, d is the dimension of the system, andn0 is the density
of the Bose condensate in the system of excitons in the absence of a random field

The Green’s functionD(p,ivk) of the Bose condensate taking account of the r
dom field ~Fig. 1! is

D~p,ivk!5D (0)~p,ivk!1Sd
2 E dp

~2p!d
D (0)~p1,ivk!D

(0)~p2,ivk!~G(0)~p,ivk!

1F (0)~p,ivk!1G1(0)~p,ivk!1F1(0)~p,ivk!^^Vpp1
* Vpp2

&&, ~2!

where^^ . . . && denotes averaging over various configurations of the random field,S2(3) is
the area~volume! of the system, andG(0)(p,ivk) and F (0)(p,ivk) are the normal and
anomalous Green’s functions of the rarefied system of supercondensate particles15 taking
account of the weak repulsive interaction between excitons:

G(0)~p,ivk!52
ivk1«0~p!1m

vk
21«2~p!

and F (0)~p,ivk!52
m

vk
21«2~p!

, ~3!

where «0(p)5p2/2M is the spectrum of noninteracting excitons, the spectrum
interacting excitons ~in the absence of a random field! has the form «(p)

FIG. 1. Perturbation-theory diagrams for taking account of the effect of a random field on the Green’s fu
of the condensate. A double straight line represents supercondensate particles, crosses represent the i
with the random field, and broken lines represent the condensate.
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5A(p2/2M1m)22m2, and for small momenta the excitation spectrum is acou
«(p)5csp, wherem5Mcs

2 is the chemical potential,M is the exciton mass, andcs is the
velocity of sound.

In the approximation employed~similarly to Ref. 14! only transitions of particles
into and out of the condensate under the action of the random field are taken into ac
and the scattering of supercondensate particles by the random field is neglecte~but
scattering of excitons by one another is taken into account in the ladder approximat
see above!. The Green’s functionD(x,x8) is not a function only of the coordinate dif
ference. In the momentum representation it can be considered to be only a function
momentumD(p,ivk) only after averaging over different configurations of the rand
field.15 The approximation used is valid provided that in the random field almos
particles atT50 are in the condensate (N2N0)/N!1, if the correlation function of the
random field is small with respect to the parameter:^^Vp* Vp&&/m

2!1. The fourth term in
the perturbation theory~see Fig. 1! with four crosses contributes to the condens
density an amount less than the second term with respect to the same small par
(N2N0)/N!1. The odd terms in the perturbation theory vanish for any Gaus
random field.

The density of the normal component, which is dissipated at the walls and im
ties, can be calculated using the Kubo formula as the response of the total momen
an external velocity:16

nn52 lim
v→0

F Im~p~v!!

v G , ~4!

wherep( iv) is the polarization operator with zero transferred momentum

p~ iv!5
1

dM (
p

p2T (
vk8
F~p,ivk81 iv!F~p,ivk8!, ~5!

wherevk52pkT; F(p,ivk8) is the total single-particle Matsubara Green’s function of
indirect exciton

F~p,ivk8!5D~p,ivk8!1G~p,ivk8!. ~6!

The renormalization of the vertex by the interaction is neglected in the polariza
operator~5!. When the interaction is taken into account in the ladder approximatio
term which is small with respect to the parameterMG!1 appears (G is the vertex in the
ladder approximation!. For a two-dimensional rarefied system of indirect excitons
parameter has the form 4p/ ln(1/8pnexM

2e4D4)!1 (nex and D are, respectively, the
surface density of excitons and the distance between quantum wells, respectively!.

We now substitute the Green’s functions of the condensate~2! and supercondensat
~3! particles into Eq.~6!. Next, substituting the expression~6! into Eqs.~5! and ~4! we
have

nn5nn
01

N2

dM E dp

~2p!d
p2^^Vp* Vp&&

«0~p!

«4~p!
. ~7!
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HereN is the total number of particles, andnn
0 is the density of the normal component

a pure system with no impurities,

nn
052

1

dM E dp

~2p!d
p2

]n~p!

]«
, ~8!

where n0(p)5(e«(p)/T21)21 is the distribution of an ideal Bose gas of temperatu
excitations~compare with Ref. 14!.

The first term in Eq.~7! corresponds to the contribution due to scattering of qu
particles with an acoustic spectrum in an ordered system atTÞ0 to the normal compo-
nent. In a two-dimensional systemnn

053z(3)T3/2pcs
4M . The second term correspond

to the contribution of the interaction of the particles~excitons! with the random field to
the normal component. The density of the superfluid component isns5n2nn ~wheren is
the total density!. In the approximation employed the random field does not affect
spectrum of collective excitations in the system. Therefore the random field decreas
density of the superfluid component.

For weakly interacting three- and two-dimensional direct excitons the sound vel

is, respectively,9,17 cs(3D)5Am/M5A13pnexaex/3M2 (aex is the effective Bohr radius!

andcs(2D)5Am/M5A4.17nex/M2.

The theory of a weakly nonideal two-dimensional Bose gas can be used to
account of scattering of an indirect exciton by an indirect exciton.18 The sound velocity
for a two-dimensional system of particles interacting via a dipole-dipole repulsive i
actionU(R)5e2D2/R3 is in the ladder approximation

cs5A8pnex/2M2ln~1/8pnexM
2e4D4!.

In Eq. ~7! «(p) is the collective spectrum, renormalized by the interaction betw
excitons, which for a rarefied system can be taken into account in the ladder appro
tion, making it possible to study the influence of a random field on two-dimensi
systems of direct and indirect excitons, to describe which the Bogolyubov approxim
works only in an unphysically narrow range of parameters of the system because
divergence of the two-dimensional scattering amplitude in the Born approximation. H
ever, two-dimensional systems are of interest in connection with experimental sea
for superfluidity of a two-dimensional system of indirect excitons in coupled quan
wells.1–3

In a two-dimensional system superfluidity appears below the Kosterlitz–Thou
transition temperatureTc5pns/2M ,19 where only coupled vortices are present. Using
expression~7! for the densityns of the superfluid component we obtain an equation
the Kosterlitz–Thouless transition temperatureTc . Its solution is

Tc5F S 11A 16

~6•0.45!3p4 S MTc
0

n8
D 3

11D 1/3

1S 12A 16

~6•0.45!3p4 S MTc
0

n8
D 3

11D 1/3G Tc
0

~4p!1/3
. ~9!
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HereTc
0 is an auxiliary quantity, equal to the temperature at which the superfluid de

vanishes in the mean-field approximationns(Tc
0)50,

Tc
05S 2pn8cs

4M

3z~3!
D 1/3

5S 32

3z~3!ln2~1/8pnM2D4!
D 1/3

pn8

M
. ~10!

In Eqs.~9! and ~10! n8 is

n85n2
N2

dME dp

~2p!d
p2^^Vp* Vp&&

«0~p!

«4~p!
. ~11!

Thus a random field decreases the Kosterlitz–Thouless transition temperature

An interesting realization of a two-dimensional system of weakly interacting bo
is a system of indirect excitons in coupled quantum wells. Fluctuations of the thickne
a quantum well~QW!, which arise during the fabrication process, lead to the appear
of a random field. The interaction of an indirect exciton and such a random field ha
form

V~re ,rh!5Ve~re!1Vh~rh!, ~12!

wherere and rh are the electron and hole coordinates;

Ve(h)~r !5ae(h)~j1(3)~r !2j2(4)~r !!, ~13!

whereae,h5]Ee,h
(0)/]de,h , Ee,h

(0) are the lower energy levels of the electron and hole in
valence and conduction bands,d is the thickness of the wells, andj1,2(3,4) are fluctuations
of the thickness on the top and bottom surfaces of the quantum well of an electron~hole!.
Next, we assume that fluctuations on different surfaces are statically independent,
on the ame surface they are described by a Gaussian correlation function of the
noise type

^^j i~r1!j j~r2!&&5gid i j d~r22r 1!, ~14!

wheregi is proportional to the squared amplitude of the fluctuations of theith surface.

Substituting the matrix element~12! of the transition from the statêp1u into the
state^p2u for the excitonic wave functions in Eq.~11!, we find the Kosterlitz–Thouless
transition temperature, and the quantity

n85n2
n2

8cs
2 @ae

2~g11g2!1ah
2~g31g4!#

3S 11
11

8
M2cs

2a21
3

4
M2cs

2a2lnS 1

4
M2cs

2a2D D ~15!

must be substituted into Eq.~9!, where a is the effective Bohr radius of an indirec
exciton, which depends on the distance between thee and h quantum wells,a'a2D

5e/4m* e2 for D!a, a;a2D
1/4D3/4 for D@a (m* 5memh /(me1mh), andme andmh are

the electron and hole masses, respectively!.

The interaction of an exciton with the random field due to composition fluctuat
of the solid substitution solution has the form12
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V~re ,rh!5V~re!1V~rh!, ~16!

where

~re(h)!5ae(h)j~re(h)!, ~17!

ae,h5(]Ee,h /]x)/N, j(r ) is the fluctuation-induced change in the concentration oA

sites, whose average fraction isx, andÑ is the density of sites where atoms of both kin
can be found. The Gaussian random functionj(r ) satisfies

^^j i~r 1!j j~r 2!&&5Nx~12x!d~r 22r 1!. ~18!

Substituting the matrix element of the transition from the state^p1u into the state
up2& ~16! into Eq. ~7! we find the density of the superfluid component

ns5nex2nn
02

n2g~ae2ah!2

12pcs
S 12

35

16
McsaD , ~19!

whereg5Nx(12x) andm15m25M /2.

In summary, in the present Letter the effect of a random field on the densityns of
the superfluid component in a system of indirect excitons at low temperaturesT and on
the Kosterlitz–Thouless transition temperature in the superfluid state was analyz
was shown that the random field decreases the density of the superfluid compone
the Kosterlitz–Thouless transition temperature.

This work was supported by grants from the Russian Fund for Fundamenta
search, INTAS, and the International Scientific and Technical Program ‘‘Solid-S
Nanostructures.’’ O. L. B. was supported by the program ‘‘Soros Post-Graduate
dents’’ of the G. Soros Fund ISSEP and by the program ICFPM~International Center for
Fundamental Physics in Moscow! ~96-0457!. A. M. R. was supported by the program
‘‘Soros Graduate Students’’ of the George Soros ISSEP Fund.

*e-mail: lozovik@isan.troitsk.ru

1T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev. Lett.64, 3066 ~1990!; J. A. Kash, M. Zachav,
E. E. Mendezet al., ibid. 66, 2247~1991!.

2U. Sivan, P. M. Solomon, and H. Strikman, Phys. Rev. Lett.68, 1196~1992!.
3L. V. Butov, A. Zrenner, G. Abstreiteret al., Phys. Rev. Lett.73, 304 ~1994!.
4M. Bayer, V. B. Timofeev, F. Falleret al., Phys. Rev. B54, 8799~1996!.
5Yu. E. Lozovik and Yu. E. Yudson, JETP Lett.22, 274 ~1975!; Zh. Éksp. Teor. Fiz.71, 738 ~1976! @Sov.
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Tunneling magnetoresistance and Hall effect of granular
ferromagnetic metals

E. Z. Me likhov
Institute of Molecular Physics, Russian Science Center ‘‘Kurchatov Institute,’’
123182 Moscow, Russia

~Submitted 4 March 1999; resubmitted 22 March 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 8, 579–584~25 April 1999!

It is shown that two circumstances must be taken into account in order
to describe the tunneling magnetoresistance and Hall effect in granular
ferromagnetic metals: 1! the size variance of the metallic granules and
2! the percolation character of the tunneling conductivity of the system,
determining the optimal~temperature-dependent! size of the granules
through which current transport occurs. This complicates the depen-
dences of the magnetoresistance and Hall resistance of the system on its
magnetization and temperature. ©1999 American Institute of Phys-
ics. @S0021-3640~99!01008-7#

PACS numbers: 75.50.Cc, 75.50.Kj, 73.50.Jt

Granular metals~metal-insulator nanocomposites! — a collection of small~size a
512100 nm) metallic inclusions in a dielectric matrix — possess a number of un
properties that depend on the volume contentx of the conducting phase.1–3 There exists
a critical valuexc such that forx.xc the material possesses metallic properties and
x,xc it is a dielectric with a thermally activated conductivity. It has been established
it is due to the tunneling transitions of charge carriers between granules, and i
respect its mechanism is close to the well-known mechanism of hopping conduc
along impurities in doped semiconductors.2 If the granule material is a ferromagnet
metal, such tunneling conductivity depends strongly on the magnetic field. The phy
reason for this strong dependence is as follows. The probability of electronic tunn
through the insulator interlayer between two ferromagnetic metals~FM/I/FM transition!
is determined by the relative orientation of the magnetic moments of the metallic
trodes. The tunneling conductance of an FM/I/FM junction isG}(11P2cosu)e2j, where
e2j is the standard tunneling exponential,u is the angle between the directions of th
magnetic moments in the ‘‘edges’’ of the junction and depends on the external mag
field, andP5(D↑2D↓)/(D↑1D↓) is the magnetic-field-independent spin polarization
the conduction electrons in the ferromagnet (D↑ andD↓) are the densities of states at th
Fermi level for electrons with↑ and↓ spins!. The factor cosu arises because of the spino
transformation of the wave function of the electron, whose spin changes direction
transition from one ferromagnet into the other.4

A magnetic field influences only the preexponential factor in the expression fo
conductance of the tunneling junction. This means that the percolation model of co
6230021-3640/99/69(8)/7/$15.00 © 1999 American Institute of Physics
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tivity, ordinarily employed to describe the properties of nonmagnetic nanocompo
can also be used in the present case. Specifically, it is necessary to take accoun
fact that when the size variance of the granules in the nanocomposite is large o
negligible fraction of the granules participates effectively in the conductivity, specific
granules of so-called optimal sizeaopt, which decreases with increasing temperatur5

The orientation of the magnetic moment of ferromagnetic granules in a magnetic fi
determined by the magnitude of this moment, which is directly related with the gra
size. For this reason, in contrast to the magnetization of the system, which is deter
by all magnetic granules in it, the conductivity of a nanocomposite is determined on
granules with the ‘‘optimal’’ magnetic momentmopt, which is strongly temperature de
pendent. This circumstance is ignored in works devoted to the investigation and de
tion of the properties of ferromagnetic granular metals with tunneling conductivity.
objective in the present Letter is to show that the properties of magnetic nanocomp
can be described adequately only if the indicated circumstances are taken into ac

Since ferromagnetic granules are small, they are single-domain and are in a
paramagnetic state. The latter means that with respect to the action of an externa
netic fieldH and temperatureT the collection of granules under study behaves simila
to a paramagnetic gas of atoms. The only difference is that in a gas the orientation
atoms themselves changes together with their magnetic moments, whereas in sta
single-domain granules only the magnetic moment of the granules rotates.6 As a result,
the average relative orientation of the magnetic moments of neighboring granules,
acterized by the quantitŷcosu&, and hence also the average intergranular conducta
^G& depend on the external magnetic field. In this model the calculation of the con
tivity of the nanocomposite

s~H,T!}^G&}11P2^cosu& ~1!

reduces to establishing the correct method of averaging^cosu&.

In what follows we shall consider only the situation where the interaction and h
the correlation of the directions of the magnetic moments of neighboring granule
negligible. Taking account of such a correlation~for example, using the simple schem
described in Ref. 7! shows that all conclusions derived below remain qualitatively
changed. Let the moments of two neighboring granules 1 and 2 make the anglesa1,2,
b1,2, and g1,2 with the coordinate axesx, y, and z, respectively. Then cosu
5cosa1cosa21cosb1cosb21cosg1cosg2. If an external magnetic field is directed alon
thez axis, then the anglesa1,2 andb1,2 ~relative to thex andy axes! assume all values in
the interval@0,2p# with equal probability. Thereforêcosa1cosa2&5^cosb1cosb2&50 and
after averaging we obtain̂cosu&5^cosg1cosg2&, where nowg1 and g2 are the angles
between the magnetic moments of the granules and the external magnetic field.
absence of a correlation between the directions of the magnetic moments of neigh
granules, the anglesg1 and g2 are independent of one another, and therefore^cosu&
5^cosg&2.

Having determined the relative magnetoresistance of the system as MR(H,T)
5@s(0,T)2s(H,T)#/s(0,T), taking account of Eq.~1! we obtain

MR~H,T!52P2^cosg&2. ~2!
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Thus the problem reduces to averaging over the anglesg between the external magnet
field and the magnetic moments of the granules that actually contribute to the co
tivity of the system.

The simplest case is averaging overall granules8 Then, assuming that the granule
are all spheres with the same radiusa0 and therefore possessidentical magnetic moment
m05(4p/3)a0

3I s (I s is the saturation magnetization of the granule material!, the well-
known Langevin formula can be used for the total magnetic moment of the system

M ~H,T!5Nm0^cosg&5Nm0L~m0H/kT!, L~x!5coth~x!21/x ~3!

(N is the total number of granules!. Then

MR~H,T!52P2L2~m0H/kT!52P2@M ~H,T!/Ms#
2, ~4!

whereMs5Nm0 is the saturation magnetic moment.

However, the size variance of the granules and hence their magnetic momen
virtually always quite large. If granules are once again assumed to be spherical, the
variance can be described by the distribution functionf (a) of their radii a. In this case
the granules possessdifferent magnetic momentsm5(4p/s)a3I s , whose variance is
characterized by the distribution functionw(m)5 f @a(m)#(]a/]m)5(36pI s)

21/3

3m22/3f @a(m)#. In this case the total magnetic moment of the system

M ~H,T!5NE
0

`

mL~mH/kT!w~m!dm ~5!

once again is determined by averaging overall granules. However, to calculate th
conductivity ~and magnetoresistance! of the system only the granules which actua
contribute to the conductivity need be taken into account. As shown in Ref. 5, from
standpoint only granules with sizes close to the ‘‘optimal’’ size are important:a'aopt

}T21/2. Then we obtain from Eq.~2!

MR~H,T!52P2L2@mopt~T!H/kT#, ~6!

where mopt(T)5(4p/3)aopt
3 (T)I s . The direct proportionality MR(H,T)}@M (H,T)#2,

characteristic for a system where all granules have the same size, naturally, does no

The model used in Ref. 5 is completely applicable to systems far from the per
tion threshold. For this reason, the theoretical dependence~6! must be compared with
experiments for systems with (xc2x)*0.1. Such a comparison, moreover, requir
knowledge ofmopt(T) at least for one temperature, for example, at room tempera
T5300 K. If mopt[m300 is known, thenmopt(T)5m300(300/T)3/2. Thereforem300 can be
used as an adjustable parameter.

The magnetoresistance of the systems Fex(SiO2)12x with x,0.45 was investigated
in Ref. 9. Figure 1 shows the experimental temperature dependence MR(T) for a system
with x50.26. The theoretical dependence~6! shown in the same figure agrees well wi
experiment if it is assumed1! that m30051450mB and P50.2. We should mention the
following concerning the adjustable parameterm300 found above. Sincemopt decreases
with increasing temperature, it should be expected thatmopt,^m&5Ms /N, since granules
with large values ofm, which are ineffective from the standpoint of tunneling condu
tivity ~because they are separated by large distances!, make a large contribution tôm&.5

Approximating the magnetic-field dependence of the magnetization of the sy
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Fex(SiO2)12x with x50.26 by a sum of two Langevin functions, the authors of Ref
show that the system contains two types of Fe granules: large granules with ma
momentmL512500mB and small granules with magnetic momentmS52620mB , the
concentration of the small granules being an order of magnitude higher than that
large granules. Setting aside for the time being the question of the correctness of s
analysis~see below!, we conclude that the adjustable quantitym300 is indeed less than the
values presented formL andmS .

Taking account of the temperature dependence of the granule size changes~com-
pared with a system of identical granules! the temperature dependence of the magneto
sistance, which is especially strong for weak magnetic fields. In the latter case, it fo
from Eqs.~4! and ~6! ~sincemopt}T23/2) that

MR~H→0!}H T22, same size granules,

T25, large granule-size variance.
~7!

Figure 2 shows MR(T) in various magnetic fields.

We shall now discuss the correctness of the often used~see, for example, Refs. 7, 9
and 11! procedure for reconstructing the distribution functionw(m) from the experimen-
tally measured dependenceM (H,T). Mathematically, the problem reduces to solving t
integral equation~5! and is a so-called ill-posed problem.12 This means that in the ab
sence ofa priori information about the form of the functionw(m) ~and such information
is almost always lacking! and in view of the approximate character of the experimen
data many approximate solutions with radically different properties can be found fo
equation. In approximating the functionM (H) by a sum of several Langevin function

FIG. 1. Temperature dependences of the relative magnetoresistance MR(T,H59 kOe) for the system
Fex(SiO2)12x with x50.26. Circles — experiment of Ref. 8. Curve — calculation using Eq.~6! with the
parametersP50.2 andm30051450mB .
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the authors proceed from the unfounded assumption that the system consists of tw9,11 or
four7 sharply defined fractions and is not described by a wide and continuous distrib
function w(m). The fact that this is doubtful is seen at least by comparing the resul
a similar approximation and the TEM photographs of the experimental systems. Th
procedure of approximation used in Ref. 9 ‘‘shows’’ that the system supposedly co
of granules with two sizes — 15 and 25 Å , while the particles with irregular shapes an
arbitrary sizes, less than approximately 50 Å , can be seen in the photographs.

To illustrate how questionable the results obtained using this procedure are, we
Eq. ~5! to calculate the magnetic-field dependence of the magnetization for the dis
tion function used in Ref. 11:

w~m!5@1/A2psm#exp@2 ln2~m/m0!/2s2#. ~8!

In Fig. 3 this function is shown by bars whose length represents the measurement
equal to 3%. The figure also shows curves which were obtained by the describe
proximation for several sets of granule parameters. One can see that within the lim
accuracy of the ‘‘experiment’’ these sets are all indistinguishable~despite the large dif-
ference between them!. This attests to the incorrectness of this procedure and m
conclusions based on it.

We shall now consider the Hall effect in the system under study. It is known th
bulk ferromagnets two components contribute to the Hall field:13

E(H)5@R0B14pRsI #3 j . ~9!

One component corresponds to the normal Hall effect, which is associated wit
Lorentz force and is proportional to the magnetic inductionB (R0 is the normal Hall
coefficient!. The other component, corresponding to the so-called anomalous Hall e

FIG. 2. Temperature dependences of the normalized relative magnetoresistance MR(T)/P2 in various magnetic
fields. The curves were calculated using Eq.~6! for m30051450mB .
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is proportional to the magnetizationI of the ferromagnet (Rs is the anomalous Hal
coefficient!. It is related with the spin-orbit interaction of conduction electrons w
scatterers~phonons, magnetic inhomogeneities!, which leads to their ‘‘asymmetric scat
tering’’ ~skew scattering! or ‘‘lateral displacement’’~side-jump!.14

The tunneling current flows through granules of optimal sizeaopt, separated from
one another by an average distancel . Let this current be parallel to thex axis, and let the
external magnetic field once again be directed along thez axis. Since ordinarily
Rs@R0 , the Hall electric field arising in a granule ise;4pRsI3( i/aopt

2 ), where
u iu;u j ul 2 is the current in an individual granule andu j u is the average current density
The Hall fieldE(H), directed along they axis, in a sample is related by the simple relati
E(H);^e(aopt/l )& with the Hall fieldse in individual granules~here averaging is per
formed over all granules of optimal size!. Therefore

E(H);~4pRs /l aopt!^I3 i&, ~10!

which after averaging givesEy
(H);(4pRs /l aopt)^I z&^ i x&54pRsI s^cosg&(l /aopt) j . Here

we have assumed all particles to be single-domain and henceuI u5I s , and in addition we
took account of the fact that^ i x&5 j l 2. In the absence of an interaction between granu
we obtain hence for the Hall resistivity

rH~H,T![Ey
(H)/ j x54pRsI sL@mopt~T!H/kT#~ l /aopt!. ~11!

FIG. 3. Magnetic field dependence of the magnetization, calculated using Eq.~5!, for a system of granules
whose magnetic moments are distributed according to the law~8! with the parametersm3005250mB and
s51.16 atT5300 K. The length of the vertical bars represent a relative error of 3%. The curves were ob
by fitting the results of the numerical experiment with a sum of two~A! and three and four~B! weighted
Langevin functions:M /Ms5( ih iL(m iH/kT), whereh i5nim i /( inim i and ni are, respectively, the relative
fraction and concentration of granules of theith kind. The adjustable sets of parameters~for the dominant
fractions consisting of the smallest granules! are: A — m15170mB , h150.92, m252400mB , h250.08
~system of two fractions!; B — m15100mB , h150.87, m251000mB , h2'0.13 ~system of three fractions!;
m1565mB , h150.85, m25610mB , h2'0.13 ~system of four fractions — first variant!; m1533mB ,
h150.78,m25330mB , h2'0.22 ~system of four fractions — second variant!.
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From the relations~6! and~11! for the relative magnetoresistance and Hall resistiv
follows

uMRu5rH
2 @~P/4pRsI s!~aopt/l !#2. ~12!

At constant temperature~and in a varying magnetic field! the expression on the right
hand side of Eq.~12! remains constant, so that~if the model under study is correct!
experiment should give the simple dependenceuMRu}rH

2 , making it possible to find the
anomalous Hall effect. The experiments of Ref. 15 on measurement of the magn
sistance and Hall effect in the systems Fex(SiO2)12x confirm this conclusion.

This work was supported by the Russian Fund for Fundamental Research~Grants
99-02-16955-a and 98-02-17412-a! and the program PICS–RFFI~Grant 98-02-22037!.

1!The value ofP presented can be compared with the known valueP'0.3 for Co.8,10

1Thematic issue, Philos. Mag.65 ~1992!.
2C. J. Adkins, inMetal-Insulator Transitions Revisited, edited by P. P. Edwards and C. N. R. Rao~Taylor and
Francis, 1995!; J. Phys.: Condens. Matter1, 1253~1989!.

3P. Sheng, Philos. Mag. B65, 357 ~1992!.
4J. C. Slonczewski, Phys. Rev. B39, 6995~1989!.
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Stochastic resonance between limit cycles. Spring
pendulum in a thermostat
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The effect of white noise on phase synchronization is studied numeri-
cally for a classical model of a spring pendulum with a multiple ratio of
the frequencies of small oscillations~Vitt–Gorelik model!. It is shown
that in the model investigated a Fermi resonance regime occurs for a
system in a thermostat. A new type of nonlinear dynamics is found —
stochastic resonance between limit cycles. ©1999 American Institute
of Physics.@S0021-3640~99!01108-1#

PACS numbers: 46.40.Ff, 05.40.Ca, 05.45.2a

The problem of the effect of noise~for example, thermal fluctuations! on the dy-
namical behavior of complicated nonlinear systems has been investigated tradition
connection with the study of various scenarios leading to the appearance of turbul1

In so doing it was assumed that the phenomena associated with the appearance o
in deterministic systems play the main role, while fluctuations do not lead to any q
tative changes in the behavior of these systems. In the last few years investigator
turned their attention to phenomena associated with stochastic resonance~SR!2,3 which
are observed in the most diverse processes~from chemical reactions to the evolution o
the earth’s climate! and in which noise plays a ‘‘constructive’’ role. Stochastic resona
appears as a more or less periodic behavior of a system with several positions o
librium under the action of random forces, in the simplest case — white noise.
natural to ask about the possibility of SR-related phenomena in systems with attract
a more complicated nature than a position of equilibrium~focus!, for example, with limit
cycles.4 Although related problems have already been discussed~dynamic intermittency
and deterministic SR in systems with chaotic behavior3!, noise-induced transitions be
tween limit cycles have not yet been considered. Limit cycles describe self-excite
cillations as well as phase synchronization in systems with several degrees of fre
We shall be interested in the latter case. In the present Letter, in studying the
resonance phenomenon well known in the physics of molecules5 and crystals,6 we
demonstrate an analog of SR between limit cycles.

The clearest model describing Fermi resonance is the model of a spring pend
with the frequencies of small oscillations in the ratio 1:2~the Vitt–Gorelik model7!. In
6300021-3640/99/69(8)/6/$15.00 © 1999 American Institute of Physics
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the absence of noise and dissipation it is described by the Lagrangian

L51/2~ ẋ21 ẏ2!2V~x,y!, ~1!

V5
k

2
~r 2 l !21gr~12cosf!

51/2H v0
2@x21~y11!2#12~V0

22v0
2!Ax21~y11!222V0

2~y11!1
~V0

22v0
2!

v0
2 J ,

wherev05Ak andV05Ag/ l are the frequencies of small oscillations of the load on
spring and of the pendulum, respectively;k is the stiffness of the spring~the mass of the
load is 1!; g is the acceleration of gravity;r is the length of the spring;l is the equilibrium
length of the spring;f is the polar angle; and,x andy are Cartesian coordinates in uni
of l ~the coordinate origin is located at the suspension point!. The values of the param
eters for which the frequencies are nearly in a multiple ratiov052V01D, D!V0 , are
studied. This model describes the classical Fermi resonance regime, for examp
C–H bonds in organic molecules.5 True, the classical limitT@\v0 cannot be literally
achieved in this case, since\v0>103 K. However, as shown in Ref. 6, the model~1! for
smallx andy also describes phenomena related with the Fermi resonance for phon
a definite point of the Brillouin zone of the bcc phase of alkali and alkaline-earth me
where the classical case is of the main interest. When phonon damping~dissipation! and
interaction with the thermostat are taken into account, synchronization is possible
system.6 As a result, a certain combination of the phases of the two oscillations i
longer random and for sufficiently smallD the true ratio of the oscillation frequencie
becomes precisely 1:2~phase-locking!. From the standpoint of the general theory
dynamical systems, synchronization corresponds to bifurcation of a torus into a
cycle.4 A numerical solution of the corresponding equations of motion for this sys
showed that for small amplitudes of the oscillations8 the system possesses two synch
nization regimes, i.e.two limits cycles. Together with the clarity of the initial mechanic
system, this makes the Vitt–Gorelik model a suitable object for solving our problem

The effect of noise and dissipation on the dynamics of the system was investi
by solving the numerically Langevin equations

ẍ12g ẋ1
]V

]x
5 f x~ t !,

ÿ12G ẏ1
]V

]y
5 f y~ t !, ~2!

whereg andG are the damping constants~of the order of 1022v0) and f i are Gaussian
random forces of the white-noise type with correlation functions

^ f x~ t ! f x~ t8!&54Tgd~ t2t8!,

^ f y~ t ! f y~ t8!&54TGd~ t2t8!,

^ f x~ t ! f y~ t8!&50. ~3!

This choice of correlation functions guarantees that a Gibbs distribution with temper
T will be achieved in the state of thermodynamic equilibrium (t→`).9 To solve the
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system of stochastic differential equations~2! numerically we used one of the ‘‘strong’
~rms! methods proposed in Ref. 10. Methods of this type guarantee convergence no
for quantities averaged over the realizations of the random force but also for indiv
trajectories~see Ref. 11 and the literature there for a more detailed discussion!. The
‘‘weak’’ methods which we used in a previous work8 did not make it possible to draw
definite conclusions about the character of the dynamical behavior of the system
study, except to establish the fact of synchronization itself.

The initial quantities for analysis are the trajectoriesx(t) andy(t) in the stationary
state, which was monitored according to the matching~to within 0.1%! of the distribution
functions of the velocitiesẋ and ẏ to the Maxwellian distribution. It is convenient t
investigate intermode energy transfer by following the quantityx2(t)y(t). The typical
form of this quantity forD50 and not too high temperaturesT!v0

2l 2 is shown in Fig. 1.
The latter inequality guarantees small oscillation amplitudes~for values of the parameter
corresponding to Fig. 1uxu<0.1 and uyu<0.05). Then, as follows from Eq.~1!, the
productx2y is proportional to the intermode interaction energy.

One can see from Fig. 1 that the dynamics of intermode energy transfer is
complicated with sections of strong coupling alternating with sections of weak coup
Figure 2 shows the results for the ‘‘filtered’’ variable

s~ t !5V0E
t2np/V0

t1np/V0
x2~ t8!y~ t8!cos~4V0t8!dt8 ~4!

~in Fig. 2 n52). The variables(t) makes it possible to follow directly the appearance
disappearance of the phase-synchronization regime, since it is proportional to cF,
whereF52fx1fy andfx andfy are the phases of the variablesx andy. As shown in
Ref. 8, the valuesF'0 andF'p correspond to two limit cycles, so thats(t) remaining
positive for a sufficiently long period of time corresponds to motion according to the
limit cycle and negatives(t) corresponds to the second limit cycle.

As one can see from Fig. 2, the synchronization regions~I! alternate with regions of
chaotic motion, wheres'0. Moreover, fast transitions from one limit cycle to the oth

FIG. 1. Typical dependencex2(t)y(t) in the stationary state withD50, T50.025,g50.005, andG50.005.
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~II !, to some extent similar to the ‘‘transit’’ trajectories in a bistable system,11 are ob-
served. The spectral density ofs(t) has a distinct maximum~Fig. 3!, so that alternation
of the time intervals during which phase synchronization occurs is of an approxim
periodic character. The observed low-frequency dynamics is similar in this sense t
which occurs in this system despite the absence of several positions of equilibrium.
role is played by limit cycles~regions of the type I in Fig. 2!.

FIG. 2. s(t) ~see the expression~4!! for the same parameters as in Fig. 1. The sections corresponding to p
synchronization~limit cycles! are designated by I, and the sections corresponding to fast transitions be
limit cycles are designated by II.

FIG. 3. Ratio of the spectral densityPs(v)5usvu2 to T3 for D50, g50.005, andG50.005. The curves1–4
are presented forT50.0002, 0.0005, 0.001, and 0.0025, respectively.
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As the noise intensity increases~the temperature increases!, the ‘‘resonance’’ fre-
quency increases and the resonance itself broadens. To determine the temperature beh
ior of the effects under discussion, the spectral density, made dimensionless by norma
izing to the characteristic thermal-noise levelT3, is presented in Fig. 3. The intensity of
the peak changes nonmonotonically with increasingT, which demonstrates the ‘‘con-
structive’’ role of noise in its formation. This behavior is a characteristic feature of SR.2

It follows from our calculations that the picture remains unchanged in the entire range o
frequency detuningsD where synchronization exists at all (D<0.1v0 for the dampings
chosen!, while the characteristics of SR~determined from the Fourier spectrum! are
essentially independent ofD.

The Fourier spectra for the coordinatesx andy ~Fig. 4! demonstrate splitting of the
main peaks, which is strictly the analog of a Fermi resonance.5 Our calculations with no
dissipation and no random forces agree with the analytical results of Ref. 7 on th
dependence of the intensity of the ‘‘upper’’ and ‘‘lower’’ peaks on the initial conditions.
In the presence of noise averaging over the initial conditions occurs and both peaks a
always present.

In conclusion, we note that in our opinion the stochastic resonance phenomeno
demonstrated here between limit cycles could be quite general . It requires the presen
of more than one limit cycle, corresponding to phase synchronization, which, as one ca
see, occurs even in such a simple and natural model as a spring pendulum. With an e
toward the possible application of the results obtained to the Fermi resonance in th
vibrational spectra of molecules and the phonon spectra of metals, it would be interestin
to study the behavior of the system in the quantum case. In the semiclassical approxim
tion the latter is described by color~so-called blue! noise in a Langevin type equation.12

Unfortunately, only ‘‘weak’’ methods12 have been used to simulate such systems numeri-
cally, while ‘‘strong’’ systems have not even been developed. The question of the
specific nature of the phenomena related to phase synchronization and SR in quantu

FIG. 4. Spectral densitiesPx(v)5uxvu2 and Py(v)5uyvu2 normalized to 1 forD50, g50.005, andG
50.005. The curves1–3 are presented forT50.001, 0.0025, and 0.005, respectively. For convenience the
coordinate origin of the curves2 and3 is shifted.
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systems is of great interest and could be studied by such methods.

This work was supported by the Russian Fund for Fundamental Research, P
98-02-16219.
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Fluctuations with a 1/ f a spectrum in film boiling

V. N. Skokov, V. P. Koverda, and A. V. Reshetnikov
Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences,
620219 Ekaterinburg, Russia

~Submitted 25 March 1999!
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1/f and 1/f 2 noise were observed experimentally in film boiling of
water on vertically oriented platinum heater. Fluctuations with a 1/f a

spectrum were observed in a wide range of controlling parameters and
seen over five orders of magnitude in frequency. It was noted that the
process investigated is similar to the phenomenon of self-organized
criticality. © 1999 American Institute of Physics.
@S0021-3640~99!01208-6#

PACS numbers: 05.40.Ca, 68.60.Dv

Stochastic processes with a spectrum inversely proportional to the frequency~flicker
or 1/f noise! are observed in systems of different nature and have long been the su
of intensive investigations.1–5 Interest in random processes with divergent spectral c
acteristics has revived in recent years in connection with the discovery of self-orga
criticality.6 In self-organized criticality the system arrives at critical behavior in
course of its evolution and fine tuning of the controlling parameters is not required
concept of self-organized criticality is extremely general and can be used to descri
behavior of dynamical systems of different nature,7 but experimental investigations hav
been performed only on the model sandpile system. A characteristic feature of a s
in a state of self-organized criticality is the presence of fluctuations of dynamical
ables with a spectral density of the type 1/f or 1/f 2. Fluctuations of two types have bee
observed experimentally in the sandpile model system6,8 and are predicted by the con
tinuum theory.9

In Refs. 10–12 we reported the experimental observation of thermal pulsations
a 1/f spectrum during Joule heating of a superconductor in a boiling coolant. The d
guishing feature of these experiments is that only one source of stochastic signals
1/f spectrum was present in the system and the system could be regarded as lump
origin of the intense thermal pulsations with the spectral density inversely proportion
frequency is due to the interaction of nonequilibrium phase transitions in nonlinear
systems — a superconductor with the current and the boiling coolant. A mathema
model of concurrent nonequilibrium phase transitions, which consists of a syste
stochastic nonlinear differential equations which convert white noise into two mod
oscillations with spectral densities proportional to 1/f and 1/f 2, was proposed in Refs. 1
and 12. This model satisfactorily describes the experimental results of Refs. 10–12
observation of 1/f noise, but the accompanying 1/f 2 spectrum predicted by theory wa
not observed experimentally.
6360021-3640/99/69(8)/4/$15.00 © 1999 American Institute of Physics
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In the present Letter we report the results of an experimental study of fluctua
accompanying nonequilibrium phase transitions where it was possible to observe st
tic oscillations with the spectral densities 1/f and 1/f 2.

Film boiling on a Joule-heated wire heater was chosen as the object of investig
The transition from bubble to film boiling~crisis of boiling! is a typical nonequilibrium
first-order phase transition. The dynamics of the transition to crisis of boiling dep
strongly on the spatial orientation of the heater. For a horizontal arrangement o
heater the transition from bubble to film boiling occurs in the form of autowave pro
gation of a vapor film along the heater.13,14 For a vertically oriented heater doma
instability arises, which under certain conditions leads to the appearance of trav
domain structures.13,14 The dependence of the observed picture on the spatial orient
is due to the fact that for a vertical heater there exists an additional longitudinal tem
ture gradient caused by convective removal of vapor along the heater.

The experiments were performed with distilled water, into which a 100mm in
diameter and about 2 cm long platinum wire heater was inserted. The measuremen
performed with a fixed source voltage. The oscillations of the transport current in
circuit which are associated with boiling were recorded in the experiments.The sp
densities were determined from the measured realizations by the Fourier-tran
method.

When film boiling arose on a horizontally arranged heater, a vapor film propag
over a distance of about 1.5 cm. In contrast to experiments with supercondu
heaters,10–12 the heating zone is not localized so that the direct and reverse trans
from bubble to film boiling occurred under different loads, since the external perturb
due to the irregularity of the vapor removal is not enough to give a reversible trans
between the two boiling regimes. The spectral densities of the oscillations of both b

FIG. 1. Oscillograms of transport-current fluctuations for two regimes of film boiling on a vertical he
1 — Regime with a 1/f spectrum,2 — regime with a 1/f 2 spectrum.



istic

iling
ce of
tem-
jet rose
zone

ing a
over
he

uite
of

tability
rdly,
e hot

The
ater,
tion
ately
e sec-
ils.’’
and

ashed

638 JETP Lett., Vol. 69, No. 8, 25 April 1999 Skokov et al.
and film boiling on a horizontal heater were of a Lorentzian form with a character
horizontal shelf at low frequencies.

A different picture was observed for a vertical heater. The source of film bo
arising at a weak location of the wire rapidly propagated upwards over a distan
1–1.5 cm. The transition to film boiling was accompanied by a large increase in
perature. The process was observed through a microscope. A cone-shaped vapor
along the wire from the bottom boundary of the hot zone. The length of the hot
fluctuated appreciably.

Oscillograms of the transport current were recorded on an S9-8 oscillograph us
time step from 1 ms to 0.5 s with 2048-point realizations, which made it possible to c
the frequency range from 1023 to 102 Hz. The spectral densities calculated from t
experimental oscillograms of film boiling had the form 1/f a in a wide range of input
power. The values ofa depended on the input heat power. When film boiling was q
stable,a was close to 1, i.e. 1/f noise was observed in the system in a wide range
controlling parameters. As the power decreased, the picture changed near the ins
of film boiling. The amplitude of the fluctuations of the hot zone increased. Outwa
the picture resembled an inverted sandpile, and the fluctuations of the length of th
zone resembled the descent of an avalanche. The exponenta in the region of instability
of film boiling was close to 2.

Figure 1 shows typical oscillograms for the two regimes described above.
oscillogram 1 in Fig. 1 corresponds to relatively stable film boiling on a vertical he
and the oscillogram 2 corresponds to instability of the film regime. The distribu
functions for the amplitudes of the oscillations in the first case were approxim
symmetric with a maximum near zero and resembled Gaussian distributions. In th
ond case the distribution functions near zero split into two peaks and had longer ‘‘ta
Longer realizations are required for quantitative analysis of the distribution functions

FIG. 2. Frequency dependences of the spectral density of fluctuations for two regimes of film boiling. D
lines — 1/f ~1! and 1/f 2 ~2! dependences.
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to determine whether the behavior of the distribution of ‘‘avalanches’’ in the regio
large outbursts is exponential or power-law.

Figure 2 shows the spectral densities of fluctuations for two film-boiling regime
the experimental frequency range. The densities were obtained by ‘‘joining’’ the sp
for individual oscillograms with a different time step. The dashed line in Fig. 2 showsf
and 1/f 2 curves. One can see from this figure that the 1/f a behavior is observed over fiv
orders of magnitude.

It should be underscored that the 1/f a behavior of the spectral density of the flu
tuations was observed for all oscillograms in the region of film boiling and in a w
range of input powers. The low-frequency limit of the indicated behavior was obse
only when the input power was too high and the upper limit of the hot zone reache
end of the wire. In other words, the critical behavior indicated by the 1/f a spectra is
maintained in a wide range of and without adjustment of the controlling parameter

In summary, in the present work wideband 1/f a noise was observed during film
boiling of a liquid. The behavior of the spectra in a wide range of external parameter
the general picture of the process suggest that the process investigated is similar
phenomenon of self-organized criticality.
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For technical reasons, the reproduction quality of the oscillograms was unsat
tory.

The editorial board apologizes to the authors and readers and reproduces the
here. These same figures can be seen at cond-mat./9903134.

Translated by M. E. Alferieff

FIG. 1. Stages of the stack fabrication with FIB~a!, FIB combined with ion milling~b!, a schematic view~c!,
and a micrograph of the submicron Bi-2212 stacked junction~d!.
6400021-3640/99/69(8)/4/$15.00 © 1999 American Institute of Physics
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FIG. 2. TheI–V characteristics of the Bi-2212 stacks on a large current and voltage scale:~1! #2, S52 mm2;
~b! #4, S50.6 mm2; ~c! #6, S50.3 mm2. T54.2 K.
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FIG. 3. TheI–V characteristics of the Bi-2212 stacks on a small current and voltage scale:~1! #2, S52 mm2;
~b! #4, S50.6 mm2; ~c! #6, S50.3 mm2. T54.2 K.
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FIG. 4. Temperature evolution of the periodic structure on theI–V characteristics~a! and the temperature
dependence of the zero-bias resistanceR0 ~b! of Bi-2212 stack #6,S50.3 mm2.
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