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Manifestations of pronounced shell effects are discovered when non-
axial octupole deformations are added to a harmonic oscillator model.
The degeneracies of the quantum spectra are in good agreement with
the corresponding main periodic orbits and winding number ratios
which are found by classical analysis. 99 American Institute of
Physics[S0021-364(109)00108-5

PACS numbers: 21.60.Cs, 21.10.Ky, 21.10.Gv

The remarkable regularity of the rotational spectra of superdeformed nuclei has
prompted many investigations into the contribution of higher multipoles to the formation
of shell structuré. Related questions have arisen for other mesoscopic systems. In par-
ticular, it appears that octupole deformation has the same importance for two-dimensional
systems like quantum dots and surface cludtassfor three-dimensional systems like
nuclef and metallic cluster$.Semiclassical analysis based on periodic orbit th&dry
provides substantial insight into the role of the octupole deformation for axially symmet-
ric system$~19 Axially symmetric octupole deformation, which leads to soft chaos in the
classical case, produces short periodic orbits at particular parameter strengths, and, cor-
respondingly, pronounced shell effects arise in the quantum speftum.

Conservation of angular momentum may increase the regular region for a noninte-
grable problem with axial symmetrigee, for example, Ref. 11The situation becomes
more complicated for nonaxial systems with three degrees of freedom, since angular
momentum is no longer a constant of motion and the classical dynamics may lead to a
stronger degree of chads.Inclusion of exotic, i.e., nonaxial, octupole deformations
renders the finding of pronounced shell effects rather difficult. Results based on the term
Y31, Which was suggested by Mottelsdmnd studied in Ref. 14, have been questioned
in Ref. 15. Other attempts which incorporate nonaxial octupole deformation start with
axially symmetric potentials; they have found indications of shell effects u¥igg
deformations mainly withw=0,2 (Refs. 15 and 16 The increasing accuracy of mea-
surements of nuclear spectra, due to the new generation of detectors, gives substantial
indications of strong octupole correlatioh. This calls for a thorough analysis of non-
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axial octupole deformations. A similar question about shell effects in electronic structures
and their connection to octupole deformations arises fronakhiaitio calculations of the
melting transitions in small alkali clustet®In this letter we demonstrate the existence of
strong shell effects which arise in the triaxial harmonic oscillator combined with nonaxial
octupole deformations. The model may serve for a simple and transparent study of the
effective mean field for mesoscopic systems like nuclei and metallic clusters. In addition,
features characteristic of realistic potentials, i.e., a coexistence of regular and chaotic
dynamics and the consequences for quantum mechanics, are addressed.

As in the procedure pursued in Ref. 8, we are guided by the study of the classical
motion in obtaining the quantum mechanical results. The single-particle Hamiltonian
considered reads

x)z
= +
a

where theY, , are the usual spherical harmonics. To maintain time reversal invariance,
only the combination¥’;, +Y;_, are considered, with a factowhere appropriate. We

take into account only one of the deformatigns0, 1, 2, 3 at a time. For convenience,

we express all quantities below in units ©E= w,, i.e.,a=1. If any of the parameters

A3, are nonzero, we are faced with a nonintegrable system. In fact, the problem gives rise
to chaotic motion even at relatively small values of the octupole parameters. The param-
eters have to be limited by their respective critical vaINé’ﬁ at which the potential no
longer binds. The critical values depend on the parametels ¢, which can be ex-
pressed through standard quadrupole deformatigps and, if more than one;, is
considered, critical surfaces are obtained. It is obvious that a search for shell structure for
the corresponding quantum mechanical problem becomes meaningless above the critical
values, as then the quantum mechanical spectrum obtained by matrix diagonalization
does not relate to the corresponding classical Hamiltonian.
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The quadrupole shapes as determined by the paransgters are illustrated by the
hexagonal figure given in Fig. 1. The three axes denoting axially symmetric prolate
(oblate shapes differ by an appropriate permutation of the coordinatgsz. For physi-
cal consideration it is therefore sufficient to consider just one sector if only quadrupole
deformation is being studiédHowever, the addition of an octupole term defines an
orientation, since it refers to a specificaxis. Therefore, when adding, say, the term
r?\3oY30, the physical situation is different for two oblate cases, for exanuiié¢/x and
obl/z in Fig. 1. Note that the latter case would preserve axial symmetry, thus making it
effectively a system with two degrees of freedom. But the former case is how a genuine
three-degrees-of-freedom system, since the symmetry axis of the quadrupolétebape
axis) is different from the symmetry axis of\ 303, (the z axis).

In the same vein, the addition of a ten?‘v\SMYgtM to any of the axially symmetric
quadrupole shapes gives rise to a three-degrees-of-freedom systgn# @or

The effect ofr2Y 3, upon the axepro/z andobl/z has been dealt with in Ref. 8. In
the present paper we begin with the combinatiéflY;;— Y;_3). Numerical analysis of
the classical equations of motigsee belowreveals that the most regular motion occurs
in the vicinity of thepro/x axis. The procedure used to approximate the nonintegrable
classical system is the ‘removal of resonances’ metifiatb lowest order it consists of



JETP Lett., Vol. 69, No. 8, 25 April 1999 Heiss et al. 565

a=b<c pro/z

y
X
c>b
y
obl/y
. ==

y

FIG. 1. Shapes in the, b, c plane. Spherical symmetryaEb=c) obtains at the center, while axially sym-
metric prolate and oblate shapes are obtained along the various axes. A genuine triaxial quadrupole deformation
(a#b#c) occurs between the axes.

averaging the Hamilton function over the fastest angle of the unperturbed n{atlon
A3, = 0) after rewriting the momenta and coordinates in terms of action—angle variables:

a= \/ri—isin 0, pi=v2Jimw;cosd;, 6Oi=wt, i=X)Y,z
On the axisgpro/x one would therefore average owgror ¢, and above it ovep,,

since therew,>w,>w, (a>b>c). Based on the observation thet(Ys3—Y3_3) is

proportional tox(xg— 3y?)/r, we expect the motion to be weakly affected by this term.

In the vicinity of thepro/x axis an averaging ovet, is thus indicated. Moreover, for the

reasons just given, an averaging over which yields an effective potential in the-y

coordinates, is expected to make little difference from an effective potential obtained by

simply settingz=0. This expectation is convincingly confirmed by numerical tests as

long asw,= wy . In other words, fow,= w,> w,, the motion effectively decouples into

an unperturbed motion in thecoordinate(governed by the potentiah Zw?/(2¢?)) and

the two degrees of freedom motion in they plane. Averaging now over the fast angle

6, yields the unperturbed motion in tiyecoordinate(governed bymy?w?/(2b?)) and the

effective potential foix, which reads
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whereK and,F, denote the first elliptic integral and the hypergeometric function, re-
spectively, ancE§=2Ey/mw§, wherew,= w/b. The approximation used here assumes
thatE,, the energy residing in themotion, is constantand therefore alsg,); note that
the effective potential .¢(x) depends orE, . A numerical comparison between the true
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three-dimensional motion and the approximate decoupled motion nicely confirms the
validity of the approximation fol ;3=\ /2. The crucial test which is relevant for the
corresponding quantum mechanical case is the comparison of the winding number ratios
w‘;ﬁ/wy and w‘;ﬁ/wz. Moreover, these ratios are virtually independenggffor E, less

than 60% of its maximal valug,,. As a result, we may evalua’teiff analytically by
choosingE,=0 in Eq.(2) and obtain
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By appropriately tuning the parametédrsc and\ 33, we can obtain simple ratios for
the winding numbers. They determine short periodic orbits which are expected to occupy
a major part of the phase space. For a two-dimensional problem the Posnztaee of
section can be used for estimation of the percentage of phase space occupied by periodic
orbits. In the present situation, the five-dimensional phase space renders an understanding
of the underlying structure rather difficult. The technique utilized here is essentially a
frequency analysis. It is in principle impossible to determine whether a trajectory is
quasi-periodic or chaotic merely by looking at the frequency spéttfa.pragmatic
approach is adopted here in that an initial condition is deemed to yield a chaotic orbit if
the associated frequency spectra have sufficiently many discernible peaks. We call an
orbit chaotic if any one of the frequency spectra has more than six peaks with intensities
greater than 1% of the maximum intensity. These arbitrary choices proved satisfactory
for our purpose. If the orbit is quasi-periodic, then the most significant frequency peaks
are compared and the approximate winding number and period are obtained. Repeating
this procedure many times using different initial conditions in phase space yields a Monte
Carlo-type estimate of the portions of phase space characterized by the various different
frequency ratios. If a particular simple ratio dominates, as exemplified below, then
we expect specific signatures in the quantum spectrum as shell structure. Examples
are illustrated in Figs. 2, 3, and 4. We have chosen the numlselsc
=1:0.5577:0.5577, 1:0.3718:0.5577 to obtain the rafio2:2, 1:3:2from Eq. (3),
respectively. This ratio is sufficiently simple to make for an easy comparison with the
quantum results.

The adiabatic approach predicts orbits with the frequency ratigs2 and 1:3:2 at
N33=0.5\.;. The corresponding spectra are displayed in Fig. 4. Classical frequency
crit

analysis(CFA) of the exact orbits shows a peakXd;~0.55\33 for the ratios1:2:2,
1:3:2, and theguantum shell structure occurring e4z~0.5\53 has the correct degen-

eracy pattern for about the first hundred levels.

As a guantitative measure of the shell structure we use the Strutinsky-type analysis
introduced in Ref. 8. From the quantitAE(A,N)=J6E(N,N+1)+SE(N,N—1)
—26E(N\,N), wheredE is the fluctuating part of the total energy, we obtain the precise
location of the magic numbersee Fig. 4. Similarly, the whole discussion can also be
applied to the axigpro/y in Fig. 1 by using the combination?(Ygas+ Y3_3)~Yy(y?
—3x?)/r instead. It turns out that, due to the weaklependence of the combinations
r2(Yas* Yz_3), it is mainly thex—y profile of the unperturbed harmonic oscillator that is
important. The stronger the deformation in they plane, i.e., the further away from the
z-axial symmetry line pro/z andobl/z), the better the adiabatic approximation and shell
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FIG. 2. Two quantum spectraa) for the parameterd=c=0.5577; (b) for the parameterd=0.3718,
¢=0.5577. Energies are given in units ob.

structure become. In contrast, along this horizontal line eithgr; combination acts
upon a circular potential in th&—y plane and quickly introduces chaos. The CFA,
applied to the combinatior?(Ys;— Y3_ 1) ~x(42°—x?—y?), reveals that thg motion is
weakly affected fom5,<0.6\5}" in the vicinity of thepro/x axis. Applying the analysis
described above, we found that this term leads to shell effects similar to those of
r2(Yas— Yz_3). In fact, Eq.(3) holds for this combination as well. The plus combination
r2(Ys1+ Y1) is simply the minus combination under the interchanges ahdy, and

thus will produce the same effects near the regioa/y. It is important to note that the
addition of a termhzor2Y3, to either situationpro/x or proly, leads to the onset of
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FIG. 3. Classical phase space occupation for the frequency ratios 1.1:3:2 and 1:3:2. The 1:3:2 peak at
Nss/\S3~0.55 leads to the shell structure displayed in Fig. 2b.
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FIG. 4. Magic numbers calculated at the parameter values used for Fig. 2. The magic numbers corresponding
to a pure quadrupole deformed harmonic oscillator are indicatéal for the ratiol1:2:2 and in(b) for the ratio
1:3:2.

chaos for rather small values af,, and accordingly the quantum spectrum does not
exhibit shell structure.

The two combinationsz(Y3Mi Y3-,) produce the same potential shape for the
spherical cas&® However, according to the analysis above, the plus and minus combi-
nations have different effects for different sectors of the hexagonal figlige 1). The
CFA shows that the adding of the octupole texmr2(Ys,+ Y5_,) gives rise to chaotic
motion for comparatively small coupling values. In contrast, the tergar?(Ys,
—Y3_,) has less impact on the unperturbed motion, chaotic motion only becoming
discernible forh3,=0.5\;. Since (Y3,— Y3_5) is symmetric with respect to an inter-
change ofx andy, this result applies to the region above and below the pxi¥z,
including the axe®bl/x andobl/y. The quantum mechanical results are in accordance
with the classical findings: the plain quadrupole spectrum changes weakly over a consid-
erable range ok 3, when the ternt?(Y4,— Y5_,) is added, while the order soon decays
when the plus combination is switched on.

The cases considered here represent novel exampkbseaf-dimensionahoninte-
grable systems, which can be well approximated by integrable ones. The results of the
current literature are limited primarily to axially symmetric nonintegrable sysféfs.
Special parameter values, found by the “removal of resonances” method, produce po-
tentials conducive to regular classical motion in much of phase space. The various octu-
pole combinations may have different effects on the generation of shell structure, depend-
ing on where the unperturbed potential lies in the hexagonal figtige 1). The effect of
r2Y 3o upon the axigro/z is similar to that ofr2(Y33= Y5_3) andr?(Ys;*Ys_;) upon
the axispro/x or pro/y. In contrast, the terms?(Yz,*+Y;3_,) do not support shell
structure. In this context we mention that the special combinatfor(Ysy+3(Ys,
+Y3_,)), when added t@ro/z, is, after suitable permutation of the coordinates, iden-
tically equivalent to the adding @\ 35(Y33— Y3_3) to pro/x. Thus we have generalized
our previous restfitto the domain of triaxiality in that the combination of quadrupole and
nonaxial octupole deformations has been shown to lead to shell effects equivalent to
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those from a plain quadrupole deformed potential, at least for the first one hundred levels.
More comprehensive details of the classical frequency analysis, the adiabatic approach,
and the quantum mechanical analysis will be presented in a forthcoming paper. Finally,

we note that negative parity states observed in rare-earth nuclei with neutron number
N~92, which become yrast at high spins, need an unexpectedly strong degree of triaxi-
ality (see Ref. 2lwhen described in terms of quadrupole and hexadecapole deformations

only. We suggest that inclusion of an octupole deformatit(tY 33— Y5_3) or a banana-

type octupole deformatior?(Yz;— Y5_4), which effectively gives rise to shell effects of

a triaxial oscillator, could yield a more natural explanation of these phenomena.
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The jump kinetics on a quasiperiodic pinning potential is analyzed
under small external force in a 1D Fibonacci quasilattice model. The
model describes plandiayern growth of stable quasicrystals from the
melt and is also relevant to the movement of quasicrystal dislocations
under small stress. An exact solution is found for the spectrum of jump
length as function of the driving force. The solution describes the su-
percooling dependence of the spectrum of nucleus heights on the grow-
ing surface of a quasicrystal. The spectrum appears to be universal and
its shape has a periodic dependence on the logarithm of the supercool-
ing. The resulting quasicrystal growth kinetics agrees well with that
found in computer simulations and in the analysis of continuous ther-
modynamic models. €1999 American Institute of Physics.
[S0021-364(09)00208-X

PACS numbers: 61.44.Br, 61.72.Lk, 81.10.Aj

The dynamics of crystal growth is usually studied through the kinetic equation for a
model Hamiltonian that involves a surface tension along with the pinning %érfime
supercooling is a thermodynamic driving force and the kinetic coefficient corresponds to
the surface mobility. The model describes a temperature-induced roughening transition
between the smooth and rough states of the equilibrium surface as well as a dynamic
roughening transition separating normal and layer growth mechanisms. A(dsaa)
growth proceeds through the thermally activated nucleation of 2D nuclei followed by
their lateral expansion via the movement of the surface Stdpmis the surface jumps
between minima of the pinning potential, the jump length being equal to the period of the
pinning potential, i.e., the lattice period in the direction of growth. The growth rate in this
case has an exponential dependence on the supercooling, in contrast with normal growth,
where this dependence is linéat.

In the case of quasicrystals the pinning potential is quasiperiodic due to quasiperi-
odicity of their atomic structure. The thermodynamic roughening temperature appears to
be infinite?> and, hence, the equilibrium surface remains smooth at any temperature.
This corresponds to the experimentally observed growth shapes for stable quasicrystals
and implies layer growth at sufficiently small supercooliAg3n account of the quasi-
periodicity, the thickness of the growing layer of a quasicrystal can take values from a
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dense set of “interplane distance$Ref. 6. Thus, during growth of a quasicrystal under
fixed supercooling there is some spectrum of thicknesses of the growing(fayedeus
heights.

In this paper | present the exact form of this nucleus height spectrum, obtained by
solving the pinning problem on the 1D Fibonacci quasilattice. The model is also relevant
to the movement of dislocations in quasicrystals under small stress due to the fact that
intrinsic “phason” contribution to the energy of a dislocation leads to the quasiperiodic
Peierls potential. This paper is organized as follows. After description of some features of
quasicrystal growth and brief analysis of the dislocation mobility in quasicrystals, the 1D
kinetic problem is formulated. The exact solution of this problem is then presented,
followed by a discussion of its implications with respect to the available experimental
data.

For conventional crystals the energy of any perturbation on a flat solid—liquid inter-
face consists of the bulk supercooling term along with the free energy of a linear step,
which has a large entropic contributidhis entropic term makes the step free energy
negative at temperatures above the thermodynamic roughening transition for conven-
tional crystals. As the quasicrystal structure is not invariant under translations, there is an
additional area-proportional contribution to the nucleus energy due to the difference in
the surface energy between old and new positions of the surfadayer of thickness
can appear during the quasicrystal growth only if the corresponding “effective
supercooling”’

Ape(nz)=Ap—Ac(h,z)/h 1)

is positive. HereA u= usqjig— Miquia 1S the supercooling and o is the difference in
surface energyA uo; depends not only on the nucleus heightout on the current
location z of a surface as well. The nucleus that will appear on the growing surface
located atz for a given supercooling u is selected by the smallest heidhivith positive
Apeg(h,z) (Ref. 8.

The surface energy(z) can be eXpreSSédlS(r(ZH)OCZLZ, with Z, andzL being the
“physical” and “orthogonal” components of the 6D quasilattice vecoRef. 9. Then

the effective supercooling takes the form
A(z %)
Aper(h)=Ap—A—r—, 2

where A(z ?)=(z+h) ?—z 2 This expression for the effective supercooling leads to
the power-law dependence of average nucleus height on the bulk superddbling:

hoc(Ap) ™3, 3)

The dislocation movement in crystals is described by the thermodynamic model in a
manner similar to the crystal growth. There are terms in Hamiltonian corresponding to a
periodic pinning(Peierls barriesrsand to the dislocation line tension. The nuclei corre-
spond to dislocation kinks and the stress component in the glide plane plays a role of the
supercooling. The dislocations in quasicrystals have a 6D Burgers V8ciad their
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movement involves “phason” displacements which correspond to diffusionlike atomic
rearrangement. Thus the dislocation movement in quasicrystals is not a glide but is like a
“creep” ! accompanied by atomic diffusion.

The formation work for a dislocation kink is proportional to the product of the
Burgers vector to the kink normal and the translation vector. As Burgers vector has
phason component, contribution proportional to perpendicular component of the transla-
tion vector appears. Minimization of this work with respect to both the translation length
and the orientation of the kink normal gives an expression for the activation energy
similar to that for the nucleation barrier for quasicrystal growth. Thus the results for the
planar growth of quasicrystals are relevant to the dislocation problem as well. The qua-
siperiodic pinning potential for dislocation movement was obtained in a computer simu-
lation of the quasicrystal dislocatiofs.

The problem has one spatial dimension which is the surface position in the direction
of growth and can be analyzed within a simplified one-dimensional model. The cut-and-
project method of generation of the atomic structure of quasicrystals be used to
generate a 1D quasiperiodic sequence of the minima of pinning potential through the
projection from a 2D square lattice. The “physical space” here is a straight line with a
slope equal to the “golden mean*= (/5+1)/2, and the nodep(q) is projected to the
point

(p,q) =(pr+q)/V7+2 4

in the physical space ifg,q) falls within a parallel “tube” of widthw:

( )|_|—p+q7-|<w_1 m+1 5
PO T2 2 e

The pinning potential at this point is defined in a manner similarAte(z), as
V((p,q)H)=(p,q)f. It can be shown that for sufficiently small supercoolings this model

is equivalent to the quasiperiodic pinning potential
W(z)=—Vg(codGz)+cogGZ 7)), (6)

used previously in a continuous mo8lahd in a Monte Carlo simulatiof?.

The growth process can be fully characterized by a sequence of surface locations
(p,q)H with the nucleus heighﬂsH being the difference between two sequential positions.
At any current point (),q)H the next surface position is determined by the smamﬁst
satisfying the condition of positivity of the effective supercooling,

((p,a)+h)*=(p,q)?
Apen(h)=Ap— . >0. (7)
Il

Here hH corresponds to a unique 2D lattice vechoand the supercooling is measured in

units such that the constait in the expression2) for Au.¢ disappears. Due to the
irrational slope of the projection from the 2D square lattice there is a one-to-one corre-
spondence between points of the “physical” and orthogonal space and, hence, the
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growth process can be described by the surface locations in the “perpendicular” space.
At every step the minimal jump Iengt’I]| is selected from all lengths satisfying condition

(7) that can be written as

1
h (p,a) <5 (Auh —h?). ®)

Since the nodes of the 2D square lattice form a dense set of points in the orthogonal
space, the spectral weight of a particUirﬁxris equal to the relative size occupied in this

set by those§,q) at which the conditior(8) leads to the selection drf”.

The ratio of two sequential Fibonacci numbégs , /f,,, are known to give the best
rational approximation to the “golden meart. Then Eqs(4) and (5) imply that a 2D
square lattice vector of the kirtt,= (f,+1, frn) has the lowest “orthogonal” Iengthl

from among all those with a comparable “parallel” componewt and the correspond-

ing nucleus height is the lowest one satisfying the condit®nThus the nucleus height
spectrum in this model of quasicrystal growth for sufficiently small supercoolings should
include only heights,, corresponding to the Fibonacci numbers. It has the form of a
discrete set of peaks with spectral weigits,(Au)} determined by the supercooling
Ap.

Using the definition of the Fibonacci sequence in recurrent form WgthO and
f,=1, we can get from Eqg4) and (5)

7_m-%—l F-m
=T M =D ©
Introducing the following set of points in the “perpendicular” space
th
Sn=— (Ap ™1 7+2-1), (10
we can get the conditiofB) in the form
(p,q), <Sy for hy, >0 (11a
(p.q), >Sy for hy <0. (11b

At every location of the growing surfacep,(q)” the nucleus heighhmH is selected
according to the lowesn that satisfies conditiofil1).

Using (9), we can obtain from the definitioi0) the following recurrent scaling
law:

Smia(7 3 Ap)=—7"1S,(Ap). (12
As the jump lengths9) satisfy similar recurrent relationshipgy.. 1) = — 71 N, , this
scaling holds for the set of pointsp,(q)L representing the surface position in perpendicu-
lar “space” satisfying(11). Since the appearance of a particular height in the spectrum is
determined by the relative size of a subset of poirpsquL satisfying Eq.(11) for
particularm, such a scaling implies that the nucleus height spectrum has the following
invariance:
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Xm+1(7 PA ) =Xm(Ap). (13

Thus we need consider the supercooling only within the interval betweenr 3
andAu* for some particulat u*. The spectrum for the all othexu’s can be easily
obtained through(13). Let us choose a valuau?* that corresponds to an equaligy,
=S,,_1 for some oddn. Introducing the relative supercooling, by Au=k, Aulk,, we
can obtain

h 3(1+1)
(m+1), [ K| T
Smi1=— ( NG +1 (14)
with
Sm-1TN(m-1), <Sn<Sn-1<Sn+hpm . (15

Direct geometrical analysis of the conditi¢hl) shows that regardless of the start-
ing point, the perpendicular component of the surface posit'mrq)g falls into the

interval betweers,,_;+ h(m,l)i and S+ hmi in a finite number of steps. Fop(q)i

>Sm+th only jumps with negativeh(m+|)l are possible, and forp(q)i<Sm_l

+h(m-1), only positiveh,, can occur. Once inside this interval, the point represent-
1 €L

ing the surface remains confined and fills this interval closely on account of the irrational
slope of the projection line. By comparimg/ieﬁ(h(mﬂ)”) for differentl it is easy to see

that for jumps ofh(m+|)i the surface position in perpendicular spacpeq()i should
belong to the following intervals:

Sno1<(PA), <Spthn, 1=-1, (169
Sm—1+h(m—1)i<(plq)L<Sm! I=O! (16b)
Sn<(p,q), <Sp-1, I=1, (169

with only finite possible appearances of oth@gﬂ)i. The relative size of these intervals
gives us the spectral weight of different peaks:

Ky— T ° Kt 73 1-ky
P Xm(Km) = i1 Xm+1(Km) = P

17

Xm—1(Km) =

All the otherh(mﬂ)L correspond to a finite number of poinl}s,Q)L. Such subsets have

zero measure in the perpendicular space and thus do not contribute to the spectrum. The
mean nucleus height in the spectrhY) is given by the expression

(m-1) N3— T

Km—1°

Nmead km) =2 7 (18

At the borders of thec,, interval there are only two peaks:
27783 1-773

-3 -3
Xm_1(773)=0, Xy (7 %)= v Xmya(77 )=
m 1( m l+7'73 m+1( 1+773

=7 Xy(72) (19

and
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FIG. 1. The nucleus height spectrum calculated in the present model as a function of superdgoling
(full curves in comparison with the results of a numerical simulation.
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For k,>1 a peak am—2 appears, as does the+ 2 peak fork,<7 3.

The main features of this spectrum agree well with the results of a Monte Carlo
simulation!? where a universal discrete spectrum corresponding to three subsequent
Fibonacci numbers has been found for a quasiperiodic double-cosine pinning potential.
The calculated spectrum is shown in Fig. 1 in a comparison with results of numerical
calculations:® where a periodic dependence of the spectrum on the logarithku.ofvas
obtained with a period of 3 log Figure 2 shows the periodic dependence of the mean

Xm-1(1)= =7Xm-1(1),  Xm+1(1)=0. (20

20 5 hmean(AP)

15}

10+

Ap

0.0001 0.001

FIG. 2. Calculated dependence of the mean step hbjghton A« in the present modéfull curve) compared
with numerical resultgtriangles. The straight line is a power-law dependemgg & A u =2,
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nucleus height on the supercooling, with a small deviation from the power-law expres-
sion (3) obtained in a continuous model which appears to be a good average approxima-
tion for Eq. (18).

The discrete nature of the spectrum of nucleus heights leads to a steplike depen-
dence of the growth rate on the supercoofth@ince the activation barriers for different
hmH differ by orders of magnitudéthe growth is controlled by the nucleation of the layer

with maximal thickness. This means that when the supercodljagaries in the interval
betweenA uy,.; and Au}, the growth rate experiences small changes. However, when
the supercooling passes througih},, the highest peak correspondinghg,, , disap-
pears and the growth rate undergoes a drastic increase.

A similar pattern should appear in the case of quasicrystal dislocations, where the
growth rate corresponds to the dislocation velocity. It should have small variations for
stress values corresponding to the same peaks in the spectrum, with drastic changes
around the critical stress at which new peaks appear in the spectrum. If the quasicrystal
has a finite density of defects then the defects prevent the formation of kinks larger than
some particular size. Hence, activation-driven movement of dislocations would not be
possible at a stress level that implies the appearance of larger kinks in the spectrum of
kink sizes.

Thus, unlike the case of the growth of quasicrystals, not only do the critical stress
levels correspond to drastic changes in dislocation velocity, but the dislocations become
frozen for a critical stress corresponding to saomeThis permits an experimental test of
the proposed model, since the stress level associated with drastic changes in the disloca-
tion velocity should form a periodic pattern on a logarithmic scale, and the critical stress
leading to the freezing of dislocations should belong to this pattern as well.

*On leave from Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia.
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The lower critical fieldHE’l"(T) of a superconducting cylinder with

radiusr o~ £(T)<<\(T) is found on the basis of the Ginzburg—Landau
theory with various boundary conditions. These results together with
the well-known results for the upper critical field are used to construct
phase diagrams in terms of the field versus the reduced ragi§éT)
variables. The jump in the average magnetizatiohiaf(T) is calcu-
lated as a function of the reduced radius. 1©®99 American Institute

of Physics[S0021-364(19)00308-4

PACS numbers: 74.60.Ec, 74.25.Dw

For the last few years a great deal of attention has been devoted to the experimental
and theoretical investigation of mesoscopic objects. Specifically, the behavior of a super-
conducting disk in a magnetic field near the upper critical field, where the disk radius is
of the order of the coherence length, is attracting great int&réShe upper critical field
of continuous and hollow cylinders wtih various boundary conditions has been studied in
Ref. 5, but the vortex structure of the superconducting cylinder or disk near the lower
critical field thus far has been studied only in the London approximation, where the
radiusr, of the cylinder or disk is much greater than the coherence leg¢ih.>’
Therefore the problem of calculating the lower critical field of a cylinder with
~&(T) remains open.

The present Letter is devoted to the calculation of the lower critical field, parallel to
the axis of a continuous superconducting cylinder, and the jump in the average magne-
tization of the cylinder at this transition, wherg~ &(T) <X\ (T) is the penetration depth,

i.e. for k>1, on the basis of the Ginzburg—Land@sL) theory. Two limiting cases of
boundary conditions are considere® { 2ieA)-¥=0 andW¥=0. For the first bound-

ary condition the results hold for a cylinder of arbitrary height, including a thin disk, and
for the second condition they hold when the height of the cylinder is much greater than
£(T). Our results, together with the existing results for the upper critical Yial#, used

to construct phase diagrams in terms of the reduced external field versus the reduced
cylinder radius.

Bobef has found in the London approximation an expression for the lower critical
field of a cylinder that is valid for cylinder radiug> &(T):

0021-3640/99/69(8)/7/$15.00 577 © 1999 American Institute of Physics
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HY'(T) 1 ( Ko(ré)) lo(rp) "
lo

2H(T) 2« o) To(rp) -1

1
where, as usual in the GL theory,=r/\(T), i.e. length is measured in units of the
penetration depth, andl, are modified Bessel functions, and the cons@nenters in
the well-known Abrikosov expression for the lower critical field of a bulk type-Il
superconductot:

Ha(T) 1
V2H(T) - 2«

There is still no concensus concerning the numerical value of this constart for
>1. Sometimes the valué,=0.081, obtained in the original work Ref. 9, is u&&y*!
though even Clem’s simple variational methbdgjives C;~0.52, and the numerical
solution of the nonlinear GL differential equation for an isolated vortex, undertaken by
Hu,'® gaveC,=0.4968. Our independent, i.e. even before we knew of Ref. 13, numerical
solution of the GL differential equation using the Mathematica 2.2 program gave
C,=0.496815, andC,= —0.282276, which appear in the expression for the field at the
center of an isolated vortex:

(Ink+Cy). 2

HTO 1 ey -
————=—(In :
T kK Co

Thus our results agree excellently with Ref. 13, where it was foundQhat—0.2823.

Let us return to a cylindrical superconductor. Taking account of the behavior of the
modified Bessel functions for small values of their arguments, we find fron{Itdghat
for k>1 and&(T)<<ry<<\(T) the lower critical field

HE'(D _ oyl 2 (In pp+0.380884, 1<p<1/ (4)
= =— . , <p<l/k.
Heo(T) cl Pg Po p

Here we have introduced, and we shall employ below, the most convenient units of
length and field intensity for our problemp=r/&(T) and h=H/H(T), where
Heo(T) = V2kH(T) = ¢o/27£3(T) is the upper critical field of a bulk superconductor
and ¢, is the flux quantum. We call attention to the fact that in this region the lower field

of a cylinder is independent of the penetration depth, increases with decreasing radius of
the cylinder mainly as 18, and approaches in order of magnitude the upper critical field
asro—&(T).

To find the lower critical field of a cylinder withy~ £(T) we turn to the system of
GL equations. Taking account of the symmetry of the problem we assume that the order
parameter¥ (p, ¢,z)=¥,f(p)e'™¢. Then the GL free-energy functional in an external
field hg is, to within a constant factor,

27 (ro 2

Fu (f’2+

m
A(P)—; f2+K2h(P)2)Pdp_2ho‘Da 5

2 Jo

where® is the flux of the field through the cross section of the cylinder
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¢=2Wfopoh(p)p dp. (6)

Taking account of Maxwell's equations, the GL equations in our case have the form

1d/ df m) 2 ) _

;@(P@)—(A(P)—; f+f(1-f%)=0; (7)
ﬁ=E(A<p>—T)- h=—3 (pA(p) ®
dp 2 pl’ pdp '

The boundary conditions for these equations are
f'(0)=0 if m=0, or f(0)=0 if m#0, h’(0)=0, 9

f'(po)=0 or f(pg)=0, h(pg)=ho.

As we have already stated, here we shall consider two limiting cases of boundary con-
ditions at the surface of the cylindef!(py) =0, which occurs on the boundary of an
ordinary superconductor with a vacuum or dielectric, &6a,) =0, which actually oc-

curs at a boundary with a normal méfai® or at the boundary of d superconductor with
diffuse reflectiont®

It is evident from Eq(8) that for large values of the parametethe additional field
produced inside the cylinder by the Meissner and vortex currents is substantially weaker,
of the order of 1«2 relative to the uniform external field,. This is entirely natural
considering that the penetration depth is large compared to the radius of the cylinder.
Therefore wherk>1 this additional field can be neglected when solving the first GL
equation(7), setting thereA(p) =hyp/2. This cannot be done when calculating the free
energy(5) because of the third term in the integrand and the last term. However, inte-
grating this expression by parts, using Ed@) and the boundary condition®) and
calculating the additional field from E¢8), we obtain up to terms of second order i1/

Fu=a | (1= 14p))p dp— mwh2p? 10
H WO( (p))p dp—mhgpg. (10

From the condition that the free energies of the vortex-free and one-vortex states
equal one another at the transition point it follows that Hgr=HZ

PO PO
f ) dp= f p dp, (1)
0 0

where the index indicates the azimuthal number of the order parameter.

The computational results for the lower critical field as a function of the cylinder
radius with the boundary conditidii(py) =0 are shown in Fig. {the bottom solid curve
1), which shows the phase diagram including the nortredionA), vortex (regionB),
and vortex-fredregionC) superconducting states. The bottom dashed cRisleows the
asymptotic behavior of the lower critical field ag— o0, described by the limiting ex-
pression of the London approximatié).

The upper broken curv@in Fig. 1 represents the upper critical field, determined as
the maximum field at which a nontrivial solution of the linearized first GL equafion
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3

FIG. 1. Phase diagram of a cylinder under the conditi¥-QieA) - W=0 at the surface of the cylinder.
RegionA — normal stateB — vortex state,C — vortex-free state. Lower solid curve— reduced lower
critical field hY'=HY(T)/H,(T) of the cylinder as a function of the reduced radjug=r,/£(T) of the
cylinder. Lower dashed curve@ — asymptotic field, where > &(T) (4). Upper broken curvéd — reduced
upper critical fieldh®'=H(T)/H,(T) of the cylinder. The numbers below the sections of the curve indicate
the azimuthal number, i.e. the multiplicity of the vortex. Upper dash cdrve asymptotic field, equal to the
surface critical field of a bulk sample.;=1.695.

first appears, wheri—0, andA(p)=hgp/2. The solution of this equation can be ex-
pressed in terms of a confluent hypergeometric funciiga,c;x) as"’

(ho_l . hop2>

hoP2
+
oh, ML

fm(p)=p™ eXD( - (12)

Using the boundary conditioff (pg) =0 and the recurrence relations for the con-
fluent hypergeometric function, a transcendental equation determining in an implicit form
the dependence of the magnetic field on the cylinder radius and the azimuthal mamber
determining the multiplicity of the central vortex, can be found as

o[ i1
(m+x) Z—ho,m+ X

ho—1

2h, ’ 13

!m!X

=2m¢(

where x=h0p3/2. Comparing for fixedp, the magnitude of the magnetic fields for
various azimuthal numberg, we choose the maximum value and thereby find the upper
critical field of the cylinder as a function of the reduced radius of the cylinder. The
numbers below the sections of the upper cuBvim Fig. 1 indicate the corresponding
azimuthal numbem.

The oscillations of the upper critical field as a function of the cylinder radius re-
semble the Little—Parks oscillations for a hollow cylindéfThis is not surprising. The
boundary conditiorf’ (py) =0 promote the appearance of surface superconductivity, the
result of which is that the superconducting cylinder becomes in some way similar to a
hollow cylinder. As one can see from the diagram in Fig. 1, the upper critical field of a
continuous cylinder is higher than the surface fidlg(T) of a bulk sample, equal in our
units to 1.695 and shown in Fig. 1 by the upper dashed line 4. It is also evident from this
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A

FIG. 2. Phase diagram of a cylinder under the boundary conder0D at the surface. The notations are the
same as in Fig. 1, except the upper dashed curve is the asymptotic upper critical field, equal here to the upper
critical field of a bulk samplén,=1.

figure that forpy<<1.333 the cylinder passes from the normal state immediately into a
vortex-free state, bypassing the mixed state where the field decreases.

The mixed statéregionB) includes forHy>H,(T) phases with a gigantic vortex
with different multiplicity m at the center of the cylinder. As the external field decreases,
somewhere foH<H_,(T) such a gigantic vortex decoposes into single vortices, so that
the cylinder passes into an Abrikosov phase.

Figure 2 shows the phase diagram in the other limiting case of boundary conditions
at the surface of the cylinder whefépy,) =0. The notations in this diagram have the
same meaning as above. An important difference is that here states with a gigantic vortex
do not appear, and the upper critical field of the cylinder is less than the upper critical
field H.,(T) of a bulk sample, in our units equal ko=1 and shown in the diagram by
the upper dashed line 4. This is due to the suppression of superconductivity at the
cylinder surface and a zero boundary condition. For the same reason the upper critical
field vanishes whemg=ry/&(T) =]y =2.4048(the first zero of the zero-order Bessel
function), which corresponds to the well-known decrease of the superconducting transi-
tion temperature in small samples with zero boundary conditions for the order parameter.
If pg<<4.14, then as the external field decreases, the cylinder pasHesHﬁ%'(T) from
the normal state immediately into a vortex-free superconducting state and remains in this
state right down to zero field. However,df>4.14, a thin cylinder first passes from the
normal state into a superconducting vortex-free state the rapidly narrowing with
increasingpg regionC) and then aH= Hg{'(T) (upper branch of curvé) it passes into
the region of an Abrikosov stat and finally atH=HS(T) (bottom branch of curvé)
once again into the vortex-free superconducting state

Thus one can judge, specifically, from the behavior of a cylinder in a magnetic field
the boundary conditions at the cylinder surface and therefore the symmetry of the order
parameter. It is obvious that the results obtained hold for a cylinder of arbitrary height if
(V—2ieA)- =0 on the flat surfaces, while fo#=0 they are valid as long as the
height of the cylinder is much greater than the coherence length.
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FIG. 3. Jump in the average reduced magnetizatiom4AM)/H,(T) as a function of the reduced radius.
Curvel — under boundary conditiorM— 2ieA) - W=0, curve2 — boundary condition¥’=0. Dashed curve
3 — their asymptotic valu€l16) for largep.

To calculate the magnetization of a very thin cylinder, the case considered here, one
can set once agaifi(p) =hgp/2 on the right-hand side of the second GL equat@®no
accuracy 1#2. Then the average magnetization of the cylinder in the one-vortex state is

4m<M> <B>-H, 1 Zf
Hea(T) Hea(T) 242

Po
The first term on the right-hand side determines the magnetic moment produced by the
vortex currents and the second term determines the moment produced by the Meissner
screening currents. Therefore the same expression but without the first term holds in the
vortex-free state. Sindd ., (T)~ x?H¢(T), the average magnetization is of the order of
the lower critical field in a bulk sample.

P h p
szp dp——g J' szpsdp). 14
0 pgy 70

It follows from Eq. (14) that the jump in the average magnetization at a transition
from a vortex-free into a one-vortex state is

. <AM> <AB> 1 (2 fpofz g hSy! fpo(fz 2,3 19
7T = = — — —_—— — .
Hao(T)  He(T) 22\ p2 Jo 1P7P 2 o V1 707 2P

For A\(T)>r > &(T) (i.e. k> pp>1) we find from Eq.(15)

<AM>_<AB>_ 1 (16)
THo(M ~ Ha(M 2.2

4

wherehgI is determined by Eq.14). This result is, of course, identical to that obtained
in the London approximatiof.

Figure 3 shows the jump in the average reduced magnetization as a function of the
reduced radius under the boundary conditidns-0 (upper solid curvel) and f=0
(lower solid curve2). The dashed curv@ shows their asymptotic behavi¢t6) in the
limit pg—o°. We call attention to the fact that under the second boundary condition the
magnetization jumgcurve2) changes sign gi,=4.14, which is shown in greater detall
in Fig. 4. The lower branch of this curve corresponds to the upper branch of the lower
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FIG. 4. Enlarged representation of the magnetization jump peat.14 under the second boundary condition.

critical field (curvel) in Fig. 2. This effect can apparently be observed for a thin cylinder
enclosed in a shell consisting of a normal metal, thereby providing the required boundary
condition¥=0.

Just as in the case of the field, the results obtained for the magnetization jump hold
for a cylinder of arbitrary height with the restriction indicated above.
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The spectrum of intersubband collective excitations of spin and charge
density in a system of quasi-two-dimensional electrons is calculated in
the strong magnetic field limit for filling factors<4. For v=2 two

new closely spaced modes of collective excitations are obtained. The
modes obtained make it possible to give a new interpretation of the
experimentally observed line, which is usually interpreted as being due
to single-particle excitations. €999 American Institute of Physics.
[S0021-364(99)00408-9

PACS numbers: 73.20.Mf, 71.45.Lr

The properties of quasi-two-dimensional electrons in systems such as inversion lay-
ers, single quantum wells, and superlattices have been attracting a great deal of attention
from investigators in the last few years. A characteristic feature of such systems, which is
of interest to both theoreticians and experimenters, is the appearance of collective exci-
tations of a special kind due to the presence of several size-quantization levels. The
specific collective excitations associated with intersubband transitions are intersubband
plasma oscillations or charge-density wavE®E) and spin-density waveSDE). This
problem in the absence of a magnetic field has been investigated theoretically in Refs.
1-7. In the random-phase approximatigRPA), together with the standard two-
dimensional plasmons, CDfintersubband plasmohsvere obtained:? Taking account
of the exchange interaction of the electrons made it possible to obtain excitations of a
second type — SDE:’ The exchange interaction was taken into account in the local-
density approximatiofLDA )3>* as well as by direct methods’ Collective excitations in
a magnetic fieldintersubband and intrasubband magnetoplasinoage been studied in
the RPA and LDA2 % nfrared absorption and resonance Raman scattering methods are
used to study SDE and CDE experimentafly*®

Lines due to scattering by collective excitations of the spin and charge densities as
well as an intense line located between these excitations are observed in the intersubband
Raman scattering spectra in a magnetic fiéfd®This line is interpreted in most cases as
being due to single-particle excitatiotSPB.*** However, it is indicated in Refs. 15
and 16 that the polarization and spectral characteristics of the SPE line are at variance
with the standard interpretation of this line in terms of single-particle excitations, and its
nature is not entirely clear.

0021-3640/99/69(8)/5/$15.00 584 © 1999 American Institute of Physics
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In the present Letter the spectrum of intersubband collective excitations in a strong
magnetic field is calculated by the direct method in the Hartree—Fock approximation. It
is shown that the number of collective modes depends on the filling factor. Thus, for
v<2 two types of excitations — CDE and SDE — occur in the system.iFe® four
types of excitations are obtained, two CDE and two SDE. Besides the ordinary CDE and
SDE, two new, closely spaced modes of collective excitations appear. The appearance of
these modes is associated with the filling of the second Landau level. This makes it
possible to give a new explanation of the SPE line appearing in a magnetic fiéld for
v>2. This is not a single unpolarized SPE line, but rather two almost coincident CDE
and SDE lines.

The spectrum of intersubband collective excitations is sought as a function of the
magnetic fieldH under the following conditions.

1. Two size-quantization subbands are present in the system. All other subbands can
be neglected. The density of two-dimensional electrons is such that the lower subband
E, is filled and the next subbartg, is empty. The energies, andE; are calculated in
the Hartree approximation.

2. A strong quantizing magnetic field perpendicular to the two-dimensional layer
is present. The region of strong magnetic fields, for whiehiG=4, is studied.

3. Only processes without spin flip are taken into account. For simplicityg faetor
of the electrons is assumed tope 0 (uog<<T, T is the temperature of the systgrbut
the spin degeneracy is included in the calculation.

4. The long-wavelength limika<1, kay<1 (a — width of the quantum well,
ay = (hc/eH)Y? — magnetic lengthis considered.

5. The energy scales are such tAa€|Ecp—E;q, |Esp— E1d <fiwc, Eig (Eqo
=E;—Egy, w.=eH/mc — cyclotron frequency

6. The width of the Landau levels, which is due to the interaction with impurities, is
small compared with temperatu¢this corresponds to the experimental situation, where
the width of the lines due to Raman scattering by CDE and SDE is small compared
with T).

The energies of the collective excitations are poles of the total polarization operator
II(k,w). Let us consider the intersubband polarization operatothe long-wavelength
limit the inter- and intrasubband excitations can be studied indepengently

Mo(k,w)= > Mo oko)= > > TG (k,w), (1)

nn’,o, n,n’,c mm’, o’

wherem, m’, n, andn’ are the numbers of the Landau levels.

For an integer filling factor all energy-degenerate Landau levels are filled with
probability 1. Let us assume that even with an arbitrary filling factor the Landau levels
are equally likely to be filled because their width is small compared with temperature
(condition 6 holds In waht follows we shall employ the Green'’s functions technique for
T=0. ComparingEcp in the RPA approximation, calculated by the proposed method,
with the result obtained in Ref. 10 using the temperature technique shows that them to be
equivalent under the indicated assumptions.
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The system of equations fdiy, 1, , includes summation of ladder and loop dia-
grams describing, respectively, the excitonic and depolarization effects. Exchange cor-
rections to the self-energy part are included in the single-particle Green’s functions. This
set of diagrams, which corresponds to the Hartree—Fock approximation, was taken into
account in Refs. 5—7, which are devoted to the calculation of intersubband collective
excitations in the absence of a magnetic field and in the analysis of magnetoplasmon
excitations in purely two-dimensional systéh¥and partially in Ref. 19 in an analysis
of the Mott exciton in quasi-two-dimensional semiconductors in a strong magnetic field.
In this approximation the single-particle Green’s functions in a magnetic field depend
only on frequency, and the interaction depends only on the momenta. Therefore the
interaction can be averaged over the momenta and the system becomes algebraic.

The following two types of interactions are present:

g’ ()=o) (KO %, (KO =ap! (K), ! (0)=VE(0) Sy S

on,In’ o

)

which determines the depolarization shift, and

’0" _ .2 7
Bomim 2 (K)= = 8, (27) f V) Inm( DI, . (q)€2HW*dg=5,,,. BT (K),

)
B (0= B 00 s == (2m) [ Ve @Ilonf@]?da,
which determines the excitonic corrections. Here
i 27e?
Vi(a)= =q f exp( — q|z1— 2o]) ¢i(z0) Y(21) ¥j(22) ¥1(2,)d 2,d 2, (4)

wherei, j, k, and| are subband indices anfi(z) are electron wavefunctions in the
direction of the quantization axis, and

lnn'(qxaQy): f ¢n(y)¢n’(y+qxaa)exq_iny)dYa

5
dn(y)=m"Y4a,2"n!) " Yexp —y?/2aZ)H,(y/ay), ©®

whereH,, are Hermite polynomials and theaxis is directed along.

For k=0 the transitions of interest to us between the corresponding Landau levels
from different subbandsnf=m’, n=n") can be studied independently of transitions
with a change in the Landau level. The conditigds and (5) make it possible to study
them independently fok# 0 also. The system of equations fid, 1, , becomes finite
([v]+1 equations in all To find the poles we equate to zero the determinant of this
system

deqngn,ln,a'vgnm,ﬁn,]&g - 5n(r,m(r’| = O,
(6)

om,dm,o’ _ _mm mm
VOn,ln,a = Qpp +Bnn 500’-
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FIG. 1. Dependence of the energies of intersubband collective excitations of a system of two-dimensional
electrons in a single 250 A wide quantum wallE 6.8x 10™ cm™2) versus the perpendicular magnetic field:
1— CDE,2 — SDE,3— CDEL1 and SDE14 — CDE2 and SDEZcalculated for one value of the field=4).

The zeroth polarization operators, including exchange corrections, are

nr‘l(T

119 —_—
0 2
w ElO 10no

; 2lO,I‘lo':Elnzr_zontr ’ (7)

n,ln,o':

wheren,,, is the density of electrons in the (Qg) level. Forg=0 Ny, 1p=Nm —1/2-
The exchange corrections to the single-particle energies have the form

Eiw:% €mNmo 82‘m=—(2w>—1f Vo (@)|Ihm(@)|?dg  (i=0,2). ®

If only the spin sublevels of the zeroth Landau level are filleg<@, ngq/,
=g —1/2=Ns/2), We obtain that the existence of two types of particles in the system leads
to the existence of two types of collective excitations — CDE and SDE with energies
Ecp andEgp. CDE are excitations witts=0 and SDE are excitations with=1 and
S,=0 (by virtue of the condition B They can also be interpreted as in-phase and an-
tiphase intersubband transitions of particles with different spins.

For 2<v=4 we obtain that, besides the basic CDE and SDE, two additional modes
with close energies, CDE1 and SDE1, appear between SDE and CDE. These modes can
be interpreted, though not completely correctly, as antiphase transitions of particles from
different Landau levels. Therefore the appearance of the new types of particles leads to
the appearance of new types of collective excitations.

Figure 1 shows as an example the spectrum of collective excitations for a rectangu-
lar GaAs/AlGaAs quantum wella=250 A ; ng=6.810"* cm 2) with k=0 in the
magnetic field range corresponding #e=4. One can see th&i.p and Egp are essen-
tially independent ofH, while Ecp; and Egp;, starting not far fromEgp, have an
appreciable slope, which qualitatively agrees with experinifettit should be under-
scored that the modes CDE1 and SDE1, which coincide in the figure, are actually non-
degenerate.
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Similarly, the spectrum of collective excitations for amgan be found from E(6).
New modes will arise every time for even valuesrofThe modes will arise in pairs, CD
and SD types, and lie approximately in the same location as CDE1 and SDE1. The point
where the pairs of modes CDE2 and SDE2 with4 appear is shown in the figure. We
note that the appearance of modes in pairs and the strict division of the excitations into
CDE and SDE occurs only if the electronic system is spin-unpolarized. However, in any
case the appearance of a particles of a new type in the system should be accompanied by
the appearance of a new mode of collective excitations.

In summary, in the present Letter the spectrum of collective excitations in a strong
magnetic field was calculated assuming that the energy-degenerate levels at low but finite
temperature are filled with equal probability. The proposed method makes it possible to
obtain the complete spectrum of intersubband collective excitations as a function of the
magnetic field and to give a new interpretation of the line previously attributed to SPE. It
is asserted that all observed modes are collective.

| thank S. V. lordanskii for helpful discussions, I. V. Kukushkin for his unfailing
attention to this work, and L. V. Kulik and O. V. Volkov for assistance in the numerical
calculations.

This work was supported in part by the Russian Fund for Fundamental Research
(Project 98-02-16659

*e-Mail: bisti@issp.ac.ru
1. V. Kukushkin, private communication.

1Jainendra K. Jain and S. Das Sarma, Phys. Re®6,86949(1987).

2D. H. Ehlers, Phys. Rev. B8, 9706(1988.

3S. Das Sarma and I. K. Marmorkos, Phys. Revi B 16343(1993.

41. K. Marmorkos and S. Das Sarma, Phys. Rev4® 1544(1993.

5S. L. Chuang, M. S. C. Luo, S. Schmitt-Rimk al, Phys. Rev. B46, 1897(1992.

5M. S.-C. Luo, S. L. Chuang, S. Schmitt-Rimk al, Phys. Rev. B48, 11086(1993.

7J. C. Ryan, Phys. Rev. B3, 12406(1991).

8K. W. Chui and J. J. Quinn, Phys. Rev.B4724(1974.

9A. Tselis, J. J. Quinn, Surf. Sc113 362 (1982.

10, Wendler and R. Pechstedt, J. Phys.: Condens. Majt8881(1990.

11D, Gammon, B. V. Shanabrook, J. C. Ryanal, Phys. Rev. B41, 12311(1990.

12D, Gammon, B. V. Shanabrook, J. C. Ruetnal,, Phys. Rev. Lett68, 1884(1992.

13G. Brozak, B. V. Shanabrook, D. Gammenal,, Superlattices Microstrucfi2, 251(1992.
14G. Brosak, B. V. Shanabrook, D. Gammenal,, Phys. Rev. B47, 9981(1993.

15y, E. Kirpichev, I. V. Kukushkin, K. von Klitzing, and K. Eberl, JETP Lef7, 210(1998.
18y, E. Kirpichev, L. V. Kulik, I. V. Kukushkinet al, Phys. Rev. 1998, at press.

7yu. A. Bychkov, S. V. lordanskj and G. M. Hashberg, JETP Let33, 143(1981).

18C. Kallin and B. I. Halperin, Phys. Rev. B0, 5655(1984).

191, V. Lerner and Yu. E. Lozovik, Zh. Esp. Teor. Fiz78, 1167(1978 [Sov. Phys. JETB1, 588(1980].

Translated by M. E. Alferieff



JETP LETTERS VOLUME 69, NUMBER 8 25 APRIL 1999

Two-dimensional incommensurate superlattices
in precious-metals alloys: nature of formation

O. I. Velikokhatnyi and I. I. Naumov*

Institute of the Physics of Strength and Materials Science, Siberian Branch of the Russian
Academy of Sciences, 634021 Tomsk, Russia

S. V. Eremeev and A. |. Potekaev
Siberian Physicotechnical Institute, 634050 Tomsk, Russia

(Submitted 4 March 1999
Pis'ma Zh. Ksp. Teor. Fiz69, No. 8, 548—55425 April 1999

The nature of two-dimensional incommensurate superlatticg®M )
obtained in the precious-metals alloys/8u and Cy4Pd is investigated

on the basis of first-principles calculations of the electronic structure. It
is shown that their stability can be explained by the opening of energy
gaps on coinciding sections of the Fermi surface in two mutually per-
pendicular directions. It is important that this explanation holds only if
the superlattice is treated as a superstructure with respect to ordinary
superstructures (LJ: the electronic spectrum of the superstructure and
not the disordered alloyas in the existing electronic theory of one-
dimensional long-period structupeshould serve as the starting spec-
trum. Arguments supporting the fact that in a number of quasicrystal-
line substances the {MM) phases fall between incommensurate
systems and quasicrystals are presented19899 American Institute of
Physics[S0021-364(109)00508-3

PACS numbers: 73.20.Dx, 71.20.Gj, 61.44.Br

The heightened interest in the physics of nano- and low-dimensional structures is
focusing attention on very exotic objects formed in the alloys@w CwyPd, CyPt,
AuzMn, and others —two-dimensional incommensuraseperlattices with strongly dif-
ferent periods ®,; and 2V, in two mutually orthogonal direction's. The nature of the
formation of such objects and their place among quasicrystalline media have remained
unclear up to now.

The superlattices under discussion are often designated ,@€N),> having in
mind the fact that they can be obtained from the ordinary short-period superstructure LI
by introducing a corresponding sequence of discommensurations — domain walls or
solitons, on passage of which the phase of the long-range order parameter chamges by
(in this connection, such discommensurations structures are also said to be antiphase
boundaries— APBs Characteristically, the distance between the closest APBs is random
but locally commensurate: Antiphase domains of different length are distributed ran-
domly in the direction$010] and[001] of the base LJ structure. As the composition or
temperature varies, the average half-peribtsand M, over the random ensemble vary

0021-3640/99/69(8)/7/$15.00 589 © 1999 American Institute of Physics
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continuously, also taking on irrational valugs Cu;Pd, for exampleM ;=3.5-4.5 and
M,=5.52 according to other measurements,;=4.1 andM,=6.3).

The existing electronic theory of long-period states in precious-metals &ffoys
attributes these states to the Peierls instability of the electronic speeitkmof the
initial disordered state. The one-dimensional superlattices can be explained in a natural
manner on the basis of this theory — their peridd 2s determined by the vectork2 ,
parallel to the(110) direction and separating the coincidifithesting”) sections of the
Fermi surfacdF9). If it is assumed that even two-dimensional structures are stabilized by
a decrease of the electronic energy as a result of gaps opening on coinciding sections of
the FS, then together with the known nesting there should exist another nesting on the FS
in the samg 100 directions. However, all attempts to find the required nesting starting
from the initial electronic spectrura(k) of the disordered alloy have been unsuccessful.

In the present Letter we wish to show for the alloys;8&u and CyPd that two-
dimensional superlattices can be derived only starting from the electronic spectrum of the
short-period superstructure,Libut not the initial disordered alloy. This is not surprising:
Superlattices always coexist with a very high degree of “short” range orderhich on
cooling arise as a result of sharp first-order transitions with a typical jimp 0.6
—0.71 The strong and nontrivial influence of “short” range ordering on the “long”
range ordering, as will be seen from what follows, is due to the fact that it leads to
splitting and deformations of the electronic states that determine the nesting on the FS
(and therefore the stability of the superlatticeln many cases there arises a unique
“multiplication” of the initial flat section of the FS into two and more sections. These are
the characteristic cases for alloys with two-dimensional superlatfices.

We used the full LMTO methdd in the density approximation to calculate the
electronic-energy spectrum (k) of different sections of the FS and the polarizability
x(q) of noninteracting electrons. The Barth—Hedin form of the exchange-correlation
potential was choself;the integration over occupied states was performed by the tetra-
hedron method?® using 296 reference points for the self-consistent calculation of the
spectrume, (k) and 12341 points in the irreducible part of the Brillouin zone of the LI
structure(the latter is identical to that of a simple cubic latider calculatingy(q).

In going from the fcc solution to the Listructure the above-mentioned flattened
sections of the FS alongl10) turn out to be close to the poiid of the new Brillouin
zone(BZ). Therefore we shall examine the electronic spectrum of the alloys near this
point (Fig. 1). Figure 1 shows together with AGd and CyPd the alloy CyAu and pure
copper(the latter is of interest as a prototype of a disordered alloy C)—@Boe can see
that in pure coppeftand disordered alloyshe electronic term is four-fold degenerate at
the pointM. Such a high degree of degeneracy is, of course, of formal origin and is due
to the artificial representation of the electronic spectrum of fcc copper in the BZ of the
LI, structure. For true Llalloys this term splits, as should happen, into a doubly degen-
erate levelM{ and singlet levelsv; and M. For what follows it is important that the
relative arrangement of the split levels can be arbitrary. This is easy to show using the
four-wave approximation of the pseudopotential metHoth this approximation the
values of the term#15, M, and M3 can be found explicitly. They are, respectively,
T—Avq19, T+HAv1g+ 240199, @and T+Av 4,9, WhereT is the kinetic energy in the
“empty” lattice, and Av 19 and Avqgg are the differences of the pseudopotentials of
the components at the superstructural sites of the reciprocal latida 2110] and
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FIG. 1. Electron-energy spectrugy(k) near the poinM in Cu, AuCu, CyPd, and CygAu.

27/a [100]. Since the signs and absolute values of the form fadtors,andAv g can

be arbitrary, the relative arrangement of the levels is not completely determined. In
AuzCu, for example, thé\l{ level lies above the other two, while in gRd and CgAu

Mg lies below them.

As one can see from Fig. 1, in AQu two electronic sections of the K33rd and
24th bands which are genetically related with the splitting of th level accompany-
ing a transition into the& points of the general position, arise near the pdintin the
sectionz=0 (Fig. 29 they have the form of a star and a circle with a very small radius,
respectively, and in the sectior= 0.5 they have the form of thin rectangular strip4g.
2b) strongly prolate along the lin€(M — R) and centered on it. The latter fact is partially
due to the circumstance that thg, level does not split on the lin€itself. On the whole,
the electronic section of the 24th band is a thin cylindrical rod, which coincides with
itself under a translation by the small veci®y=0.0275(27/a) [100] (Figs. 2a and 2b
The corresponding electronic polarizabiligue to the transitions 24 24 only) demon-
strates a characteristic kink at the poiptD, (see inset in Fig. B The rod under study
also coincides well with the electronic section of the 23rd band under a translation by the
vectorD;=0.065(2r/a) [100] (Figs. 2a and 2b This fact is manifested as a kink in the
total electronic polarizability(q) atq=D; (Fig. 3. It is evident from the figure that this
kink is formed by contributions from the interband electronic transitions-23 and
24— 23.

In the alloy CuPd, just in Cy4Au, the termM¢ is closest taer . Now, however, this
term lies somewhat abowg and there are no occupied states in the immediate vicinity
of the pointM. This point serves as a center of a prolate hole pocket formed by the 21st
band(in the remaining part of the BZ this band is virtually completely occupiétbre-
over, the electronic pockets from the 22nd band, which are centered at the X dkits
2¢), approach very close to it. The hole pocket coincides with the electronic pocket under
a translation by the vectdd,=0.082(2r/a) [100], leading to a sharp maximum of the
total polarizability (Fig. 4). Moreover, the electronic pockets centered at neighboxing
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FIG. 2. Fragments of the cross sections of the Fermi surface:in,Au;Cu, d Cu;Pd. a, c — Fragments on
an enlarged scale in the plare-0; b — in theplanex=0.5(2n/a); d — in theplanex=0.45(2x/a).

points fit with one another, to a high degree of accuracy, under a translation of one of
them by the vectobD;=0.105(2~/a) [100] — this is expressed as the appearance of a
kink in the total y(q) and a peak in the partial contribution of 222 (Fig. 4). It is
interesting that, in contrast to all cases considered above, the nestingDedigs not on
the line M X itself but rather close to it, as is evident from the sect«en0.45(27/a)
(Fig. 20.

We shall show that the coinciding sections of the FS which were determined above
do indeed explain the formation of two-dimensional superlattices igCAuand CyPd.
For Au;Cu the calculations predict the following values for the given half-peridds
~/|D4|=7.7 andM ,~ /| D,| = 18 (in units of the lattice parametay); they agree well
with the observed valuell;=6.7+0.5 andM,=17+19! For CyPd the calculations
give M;=4.7 andM,=6.1, which are also close to the experimental valibs=3.5
—4.5 andM,=5.5-6.312 These correlations indicate the following simple mechanism
leading to the formation of two-dimensional superlattices. Each of the two systems of
coinciding sections of the FS induces the formation of a its superperiod in one of the two
mutually orthogonal directions. If, say, the coinciding sections separated by the Bgctor
induce a period along tHeL0Q], then the sections corresponding to the ve&iginduce
a period along an orthogonal directig®10] or [001]).
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FIG. 3. Electronic polarizability(q) and its partial components, calculated fors8u in the(100) direction.
The arrows mark the nesting vectdds andD,. The dashed curve corresponds to pure copper.

It should be underscored that the presence of sharp peaks in the electronic polariz-
ability for vectors of the typd; andD, is not necessary for the formation of superlat-
tices. Indeed, as Vul’ and Krivoglaz showed analyticdlitabilization of the superperiod
is possible not only in systems with flat and cylindrical sections of the FS but also with
ellipsoidal sections, leading to a relatively we@dgarithmig singularity inx(q). In our
cases the “critical” sections of the FS are still quite strongly flattened and are nearly
cylindrical, as the above-indicated characteristic kinks in the polarizability attest.

There can arise the question of why, for example, only one-dimens{bn&lnot
two-dimensiongl superlattices are observed in the systemATuy even though its elec-
tronic structure seems to be similar to that of;8u. The electronic spectrum of this
system near the poiM differs from the spectrum of AiCu in that the singlet termis!
and M are closest to the Fermi level, the teivhy, (24th bandl lying above the Fermi
level (Fig. 1). As a result of the latter circumstance, the additional electronic section of
the FS near the pointl does not arisdthe flat sections do not splitThe existing
electronic sectiori23rd bandl coincides with itself under a translation by the vectég2
such thatM ~ 7/| 2kg| ~8.3. At relatively low temperatures the observed half-period of
the one-dimensional superlattice in Lw is M ~8.4 (Ref. J).

Switching from disordered alloys to 4 buperstructures the “quality” of the nesting
decreases because of the above-examined splitting and deformation of the “critical”
electronic states. It is evident from Fig. 3 that in pure copper the polarizability has a
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FIG. 4. Electronic polarizability(q) and its partial components, calculated for;d in the(100) direction.
The arrows mark the nesting vectdds and D,.

sharper feature than in AGu — a step aig=0.08(27/a). Hence follows the very
unexpected result that as temperature decreases, at a certain stage short-period ordering
can start to destabilize the superlattice. This circumstance is important for explaining why

in the alloys Cu—Au(and in certain other alloyssuperlattices exist only in a narrow
temperature range and at sufficiently low temperatures become energetically unfavorable
compared with the usual superstructureg (dr Ll).

In closing, we shall discuss the question of the place of incommensurate superlat-
tices (one- and two-dimensionabmong other quasicrystalline materials. In some re-
spects they are undoubtedly similar to ordinary incommensurate crysjetems with
charge-density waves, helicoidal magnetic structures, and)sd bus, as the concentra-
tion varies they can undergo a transition into commensurate superlattices, whose average
period can be expressed in the form of a rational fractivn (m andn are integers In
the system Cu-—Pd, for example, sucHoak-in transition occurs with increasing Pd
concentratior(at the point 21.3 at.% Pd As the composition changes above this point
the values ofm/n start to change discretély— a “devil’s staircase” of commensurate
transitions arises.

Despite the similarity, the behavior of the superlattices still does not fit well with the
conventional ideas about the behavior of ordinary incommensurate crystdln the
first place, as we have already mentioned, they are formed as a result of sharp first-order
transitions, immediately acquiring a domdaoliton) character and bypassing the initial
stage, corresponding to their modulation by a single plane wave. As temperature de-
creases, the density of domain walls changes very little, usually increasing slightly. On
further cooling the superlattices undergo a sharp first-order transition to the Lifshitz
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superstructures blor LI,.*® In ordinary incommensurate systems, however, as is well
known!®>!” the evolution of the soliton lattice is different: The soliton density rapidly
decreases with temperature and vanishes abttiein transition(second-order or nearly
SO point.

The fundamental difference of incommensurate superlattices from ordinary incom-
mensurate systems lies in the fact that in them the average domain Mizea@not
assume arbitrary values, but rather it is determined by the diamétersf2he initial FS.

But this circumstance makes them similar to quasicrystals, whose stability is based es-
sentially on the same factors — the “interaction” of the FS with Bragg pldRésis

well knowrf® that quasicrystals can be represented in the form of a quasiperiodic packing
of two (or more unit cells of different forms. This packing is organized in a manner so
that the FS is in contact with a pseudo-BZ, due to the icosahedral symmetry of the
quasicrystat? It is easy to see that valleys of different length in superlattices and differ-
ent unit cells in quasicrystals essentially play the same role — by their specific alternation
they give the quasiperiodl ~ /| 2kg| required to lower the electronic energy. Therefore

the superlattices considered occupy a unique place among quasicrystallines materials —
between commensurate systems and quasicrystals.
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The influence of thermal fluctuations on magnetization-reversal pro-
cesses in ultrathin magnetic particles is investigated on the basis of a
numerical solution of the Landau-Lifshitz—Gilbert equations taking
account the thermal-activation fluctuation field. It is shown that for
nanoparticles there exists a region of magnetic and geometric param-
eters where a strong jump-like instability of the critical field for mag-
netization reversal arises. This instability is due to the thermally acti-
vated transformation of magnetization configurations far from the
switching threshold. The thermal-instability mechanism described is
important for particles of much larger sizes than for the single-mode
Neel-Brown instability. ©1999 American Institute of Physics.
[S0021-364(99)00608-9

PACS numbers: 75.50.Kj, 75.50.Tt, 61.46v, 75.60.Nt

The question of the thermal instability of the magnetization of small magnetic par-
ticles is a fundamental problem of micromagnetistit is especially important for
magnetic microelectronics in connection with miniaturization. For example, fled—Ne
Brown thermal instabilit§ of flat nanoparticles limits the maximum information density
of longitudinal storage on a magnetic disk and makes vertical storage preféfathe.
critical particle sizes for the single-mode &leBrown instability are determined by the
ratio of the thermal energksT to the energy density determining the magnetization-
reversal energy barrie/ ~kgT/u. However, a multimode switching instability, associ-
ated with the existence of alternative magnetic configurations due to the influence of the
film edges, as described in, for example, Ref. 5, can be expected to arise long before the
critical volume is reached in a thin particle. Each magnetization-reversal mode is char-
acterized by its own switching threshold. We shall show that thermal fluctuations can
lead to a random transformation of magnetic configurations during switching as well as
far from the magnetization-reversal threshold — in the region where the energy barrier
separating different mode states is small. In consequence this leads to a very strong

0021-3640/99/69(8)/7/$15.00 596 © 1999 American Institute of Physics
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variance of the switching fields long before &leBrown superparamagnetism arises. The
indicated instability mechanism could be important, specifically, in nanosize magnetore-
sistance memory elements which are under development.

To study magnetization reversal processes in ultrathin nanoparticles the Landau—
Lifshitz equations written in Gilbert's form were solved numerically:

%:Y[MxHeﬁ]—%[MX[MxHeﬁ]J. @

where M is the magnetization vectoM, y, and o are the saturation magnetization,
gyromagnetic ratio, and the Gilbert damping parameter, respectiiéfyis the effective
magnetic field given by a sum of fields

Heﬁ:H+Hm+Hanis+Hexch+Hfl (2)
whereH is the external magnetic field;

r—r
dr’+f(M(r’)-ns)—dS
s lr—r'|3

Hm(r)=—f divM(r) rr
v [r—r'|3
is the magnetostatic field, is the radius vector of a point in the layeY,and S are,
respectively, the volume and surface area of a partit)dés the vector normal to the
particle boundaryH3"s=(2K/M?) (M-n)n is the uniaxial anisotropy fieldK is the
anisotropy constant,n is a unit vector along the easy magnetization axis,
He"=(2A/M?) AM is the nonuniform exchange field) is the in-layer exchange
constantA is the two-dimensional Laplacian, ait! is the random magnetic field giving

rise to thermal fluctuations of the spins. We assume that the thickness of the flat
magnetic-film particle is much less than the exchange lenty# ¢, = VA/27/M?, and
therefore magnetization is uniform over the thickness. Assuming the spins on the surface
to be free, we employ a boundary condition of the form

M
—| =0. 3

ang|
Methods for numerical integration of the Landau—Lifshitz equations are described in
detail in the literaturband have been well testédee, for example, Refs. 6-1Bimi-
larly to Ref. 6, which employs a dynamic approach to describing the thermodynamic
fluctuations on the basis of the fluctuation-dissipation thedreme shall assume that
after a magnetic particle is divided into a grid of unit cells, a uniform random field
Hf(t) (t is the tim@ corresponding to white noise with the correlation function
(H(t)-H"(t"))= 028, 8y, Whereo?=2kgTalyvMdt, v is the unit cell volume, and
St is the integration time interval, is generated in eéth) cell.

In the absence of fluctuationsi{(t)=0) a thin rectangular particle has two differ-
ent configurations of the magnetic distribution in the remanent state and S types,
characterized by parallel or antiparallel magnetizations near the opposite shortlidges
1). The calculations show that the energy of the remanent states varies with the geometric
parameters of the particle and the bias magnetic field in the transverse direction, so that
for small form factors and strong bias fields theonfiguration is preferred. There exists
a line of first-order phase transitiofBig. 2) on which the energies of theé and S states
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FIG. 1. Remanent-magnetization configurations corresponding to the main magnetization modes of a
400X 250<4 nm ultrathin, rectangular, permalloy particle with magnetizatids-800 G and longitudinal
uniaxial anisotropyK =1000 ergs/crt a — S state, b —C state.

are equal. To each remanent state there corresponds a uniqgue magnetization reversal
mode and a hysteresis loop. The critical magnetization reversal (ielercivity) can

differ very strongly, as shown in Fig. 3. It is obvious that when thermal fluctuations are
switched on H"(t)#0) intertransformation of the switching modes can be expected to
occur in the range of parameters corresponding to the phase-transition line, if the
height of the separating energy barrier is comparable to the thermal er&&gy
~kgTIn(w7INP~Y), wherew is the resonance frequency,s the characteristic thermal-
activation time of the intermode interaction, aRds the expected intermode transforma-
tion probability. It should be noted that the energy barrier decreases with increasing
saturation field'see the computational example in Fig.right down to zero at the point

of instability of one of the configuration modes, and the probability of thermally-
activated change of th€ and S modes increases with advancement into the saturation

Hya Oe Hy, Oe
b
10’ 10’
10°
10°
10" !
Ec < Es |
o' i i
300 -200 -106 0 100 200 150 100 80 P Iso
HI) Oe Hx, Oe

FIG. 2. Energy diagram of the modal magnetization states of two rectangular permalloy particles with dimen-
siors a — 4002504 nm and b — 808 400x2 nm in longitudinal,H, , and transversei, , magnetic

fields. Thick line — the line of first-order phase transitions that separates the region of stability Sfeahe
C-mode states. Thin line — the line of instability of tiiestate; dashed line — the line of instability of the

S state.
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FIG. 3. Magnetic hysteresis loops of the main magnetization-reversal modes ox28084 nm permalloy
rectangle for thes and C modes.

region. Therefore it should be expected that near the line of degeneracy of the mode
states a thermally activated change of the states in the region of saturation fields is always
possible in thin films.

Figure 5a shows the results of numerical simulation of hysteresis switching of a
400X 250x 4 nm flat permalloy particle at room temperature in an ac magnetic field
H=Hgcos(2nt/ty) with cycling periodicity along the loopo=1 s and a constant bias
field of 1.5 Oe in the transverse direction. Figure 5b shows the time variation of the
transverse magnetization components at the opposite poles of the particle subject to

E, 10" erg E, 101 erg
5.0 -4.60
a
1
3 2
0.0 -4.75
-5.0 . -4.90
-250.0 -50.0 150.0 -226.0 -222.0 -218.0
H,, Oe H, Oe

FIG. 4. Energy of the main modal configurations and energy barrier separating the modal states of a 400
X 250X 4 nm rectangle as a function of the longitudinal magnetization:feeld- general viewb — enlarged
fragment of the dependence in the region shown by the square in Fig. 4a near the line of instability of the
C mode 1 — energy of theC mode 2 — energy of theS mode 3 — energy barrier.
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FIG. 5. 3 Magnetic hysteresis cycles of a 40@50X4 nm permalloy particle taking account of thermal
fluctuations. b Time scan of the values of the transverse magnetization components at the opposite poles of a
magnetic particle. The transverse component of the magnetization at the Mjgin=0) is shown in black.

The time dependence of the average transverse magnetization at the opposi,dg&00 nn) is shown

in gray.

magnetization reversal. In the case shown, the coercivity of magnetization reversal of a
nanoparticle changed abruptly by 30%. In the process, the decrease of coercivity due to
the single-mode thermally activated &leBrown instability did not exceed 10%. The
random changing of the magnetization-reversal modes, as shown in Fig. 5b, can be
described by the kinetic equation®/dt=GP for the mode-state vectd*= (P§, P},

PL, Pé), determined by the probabilities for realization of the corresponding modes,
where an arrow distinguishes the state of longitudinal magnetization and corresponds to
the upper or lower hysteresis branch. The state vector corresponds to at least four modes
in a zero base field and at most eight modes in the presence of a transverse bias field. The
transition-rate matribxG=G(t) varies in time because the energy barriers vary together
with the cycling field along the hysteresis loop.

We shall consider a simplified example of single passage of a magnetized state far
from the magnetization-reversal threshold, where only two mode states, corresponding to
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one of the hysteresis loopdor example, the upper oheare important, so thaP
=(Ps, Pc). We approximate the decrease in the energy barrier by a linear function
SEsc=Usc+«|t|, whereUg ¢ are, respectively, the minimum achievable barrier for the
Sor C mode,x=|dU/dt| is the rate of passage through the minimum. The decay rates of
each mode will contain an exponential time dependence, and the kinetic equation be-
comes

®__ Gs G e _ e P (4
dt - |- &2 [P ket
where G%C:wsycexp(—USC/kBT) and wsc are the characteristic frequencies of the

modal oscillations. Sinc®-=1-Pg, integrating the systert¥) we find the change in
the probability with a single passage through the minimum barrier

0 0 2kgT 0 0
Ps<t=oo>=Ps+<Ps<—w>—Ps>exp(— —(G&+G) |, (5)
where P2=G2/(G2+ G2) is the probability of being in thé state after an unlimited
number of passage cycles along the hysteresis loop. It is evident from the last equation
that the characteristic thermally activated interaction time=kgT/x. The humbemlN
of passage cycles along the loop for which the probability of a given magnetization-
reversal mode being realized approaches a stationary value can be estimated using the
approximate condition I'{S(N)—Pg)/Pg<0.1. It follows from this condition, iterating
Eq. (5), that

N>In(10(1— PY)/PY) _ In(10GYG2)
7(Gg+Gg) T(Ga+Ge)

(6)

In our case, according to an estimate using &).taking account of the energy
dependences presented in Fig. 4 for #@ndC states with a characteristic half-period for
passager~1 us and the characteristic frequency of magnetization oscillationsl
GHz, for the maximum amplitudel,=160 Oe of the magnetization-reversing field two
cycles are sufficient to establish a thermodynamically equilibrium probability of being in
the S state, and foH,=120 Oe 850 magnetization-reversal cycles are required.

In summary, the closeness of the energies of the configuration modes of the mag-
netization and a low separating barrier are important for the mechanism of multimode
thermally activated instability in nanoparticles. To suppress this effect in practical appli-
cations the magnetic and geometric parameters of an element must be chosen to be far
from the line of energy degeneracy of alternative magnetization states, using, for ex-
ample, a magnetic or an exchange bias field in the hard direction. We note that a multi-
mode switching instability with energy degeneracy of the mode states of a magnetic
particle is also possible, in principle, at ultralow temperatures on account of the macro-
scopic quantum fluctuations of the magnetization. Together with the conventional
magnetic-relaxation methods this can be used to observe such fluctuations.

We thank the Russian Fund for Fundamental Research for financial su@partt
No. 98-02-1646%8

IH. N. Bertram and J. G. Zhu, Solid State Ph¢8, 271 (1992.



602 JETP Lett., Vol. 69, No. 8, 25 April 1999 Popkov et al.

2L. Néel, Ann. Geophys5, 99 (1949; W. F. Brown, Phys. Revl130, 1677(1963.

3P.-L. Lu and S. H. Charap, IEEE Trans. Ma@i, 2767(1995.

4S. Charap, P. Lu, and Y. He, IEEE Trans. Mag8, 978 (1997).

5Y. Zheng and J.-G. Zhu, J. Appl. Phy&1, 5471(1997).

SE. D. Boerner and H. N. Bertram, |IEEE Trans. Mag8, 3052 (1997).

Y. Nakatani, Y. Uesaka, and N. Haiashi, Jpn. J. Appl. Phys., Pag, 2485(1989.

8S. G. Osipov and M. M. Khapaev, Zhk&p. Teor. Fiz90, 1354 (1990 [Sov. Phys. JETH1, 756 (1990].

®N. A. Usov and S. E. Peschany, JMMLBO, 275(1994.

105, G. Filippov and L. G. Korzunin, Fiz. Tverd. Te(&t. Petersbuig38, 2442(1996 [Phys. Solid Stat@8,
1343(1990].

111, D. Landau and E. M. LifshitzStatistical PhysicgPergamon Press, New YdrkRussian original, Nauka,
Moscow, 1964

Translated by M. E. Alferieff



JETP LETTERS VOLUME 69, NUMBER 8 25 APRIL 1999

Lateral tunneling through the controlled barrier between
edge channels in a two-dimensional electron system

A. A. Shashkin, V. T. Dolgopolov, and E. V. Deviatov

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow Region, Russia

B. Irmer, A. G. C. Haubrich, and J. P. Kotthaus
Ludwig-Maximilians-Universita D-80539 Munchen, Germany

M. Bichler and W. Wegscheider
Walter Schottky Institut, Technische Universitéiinchen, D-85748 Garching, Germany

(Submitted 18 March 1999
Pis'ma Zh. Ksp. Teor. Fiz69, No. 8, 561-56625 April 1999

A study is made of the lateral tunneling between edge channels at the
depletion-induced edges of a gated two-dimensional electron system,
through a gate-voltage-controlled barrier arising when the donor layer
of the heterostructure is partly removed along a fine strip by means of
an atomic force microscope. For a sufficiently high barrier the typical
current—voltage characteristic is found to be strongly asymmetric, hav-
ing, in addition to the positive tunneling branch, a negative branch that
corresponds to the current overflowing the barrier. It is established that
the barrier height depends linearly on both the gate voltage and the
magnetic field, and the data are described in terms of electron tunneling
between the outermost edge channels. 1899 American Institute of
Physics[S0021-364(109)00708-3

PACS numbers: 73.40.Gk, 73.40.Hm

Recently there has arisen much interest in lateral tunneling to the edge of a two-
dimensional electron syste(@8DES), which is related not only to the problem of integer
and fractional edge states in the 2DES but also to that of resonant tunneling and Coulomb
blockade'~’ The tunneling regime was identified by the presence of exponential depen-
dences of the measured current on either source—drain vbifagremagnetic field. For
producing a tunnel barrier a number of methods were ugedate voltage depletion of
a narrow region inside the 2DES*7 (ii) focused-ion-beam insulation writirfgfiii )
cleaved-edge overgrowth techniquénsofar as the tunnel barrier parameters are not
well-controllable values, it is important for using the first method that one can tune the
barrier on the same sample. In contrast to vertical tunneling into the bulk of the 2DES in
a quantizing magnetic field, when the 2DES spectrum is maniféStid|ateral tunnel-
ing the electrons can always tunnel to Landau levels that bend up at the edge to form
edge channels where they intersect the Fermi level, i.e., the spectrum gaps are not seen
directly in lateral tunneling. Instead, it reflects the edge channel structure and density of
states. For both the integer and fractional quantum Hall effect, a power-law behavior of

0021-3640/99/69(8)/7/$15.00 603 © 1999 American Institute of Physics
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FIG. 1. () Top view on the sampléop), and a blowup of one of the constrictions after etching of the oxidized
part of the mesa as performed solely for visualization purp@dsetsom). (b) Gate voltage dependences of the
electron density in the oxidizetsquares and unoxidizedcircleg regions of the 2DES. An example of the
magnetoconductance in the barrier region is shown in the inset. The vatugéxtracted from the slope of
the dashed lines with 10% uncertainty.

the density of states at the 2DES edge is expected. Since this can interfere with the barrier
distortion at electric fields in the nonlinear response regime, the results of lateral tunnel-
ing experiments obtained from measurements of the current—voltage tshasdd be
treated with care.

Here we investigate the lateral tunneling in narrow constrictions in which, along a
thin strip across, the donor layer of a GaAs/AlGaAs heterostructure is partly removed
using an atomic force microscogAFM). A controlled tunnel barrier is created by gate
depletion of the whole of the sample. The well-developed tunneling regime is indicated
by strongly asymmetric diodelike current—voltage characteristics of the constriction,
which are sensitive to both the gate voltadg and the normal magnetic field. The
behavior of the tunneling part of the current—voltage curves points to electron tunneling
between the outermost edge channels.

The samples are triangular constrictions of a 2D electron layer with different widths
W=0.7, 0.4, 0.3, and 0.2m of the thinnest part; see Fig. 1la. These are made using
standard optical and electron beam lithography from a wafer of GaAs/AlGaAs hetero-
structure with a low-temperature mobility=1.6x10° cm?/Vs and a carrier density
ng=4x 10" cm™2. Within each constriction the donor layer is removed along a fine line
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by locally oxidizing the heterostructure using AFM induced oxidatifhis technique
allows one to define 140 A wide oxide lines of sufficient depth and oxide quality so as to
partly remove the donor layer and, therefore, locally decrease the original electron den-
sity. The whole structure is covered with a metallic gate, which enables us to tune the
carrier density everywhere in the sample. As the 2D layer is depleted, the oxidized
regions get depopulated first, resulting in the creation of tunnel barriers. Potential probes
are made to the sample to permit transport measurements.

For the measurements we apply a dc voltadgg, between the sourcgrounded
and drain contacts of one of the constrictions, modulated with small ac voltage with
amplitudeV,=40 uV and frequencyf =20 Hz. A gate voltage is applied between the
source and the gate. We measure the real part of the ac current, which is proportional to
the differential conductancel/dV, as a function of bias voltag€é, (I -V characteris-
tics) using a home-made-V converter and a standard lock-in technique. The behavior of
thel -V characteristics is investigated as a function of both the gate voltage and magnetic
field. The measurements are performed at a temperature of about 30 mK in magnetic
fields of up to 14 T. The results obtained on different constrictions are qualitatively
similar.

To characterize the sample we extract the gate-voltage dependence of the electron
density from the behavior of magnetoconductance plateaus in the barrier region and in
the rest of the 2DESFig. 1b. The analysis is made at high fields, where the size-
quantization-caused effect of conductance plateaus in narrow constrictions is dominated
by magnetic field quantization effectsAs is seen from Fig. 1b, if the barrier region is
depopulatedV;<Vy,), the electron density in the surrounding areas is still high enough
to provide good conduction. The slopes of the cumgd/y) in the oxidized region and
in the rest of the 2DES turn out to be equal within our accuracy. The distance between the
gate and the 2DES is determined todye570 A; as the corresponding growth parameter
is about 400 A, the 2D layer thickness contributes appreciably to the distaki¢e have
found that even in the unoxidized region the electron density,at0 can be different
after different coolings of the sample on account of slight threshold shifts: it falls within
the range 2.5 10 to 4x 10' cm™2 and is always higher than in the barrier region.

The typicall -V characteristic of the constriction in the well-developed tunneling
regime is strongly asymmetric and includes an overflowing branci;@ 0 and the
tunneling branch aw>0; see Fig. 2a. The tunneling branch is much smaller and
saturates rapidly in zem with increasing bias voltage. The onset voltaggsandV- for
these branches are defined in a standard way as shown in the figure. The tunneling regime
can be attained both by decreasing the gate voltage and by increasing the magnetic field,
as is evident from Fig. 2a. We have checked that the shape\bftharacteristics is not
influenced by interchanging the source and drain contacts. Hence, the tunnel barrier is
symmetric, and the asymmetry observed is not related to the constriction geometry.

To understand the origin of the asymmetry, let us consider a gated 2DES containing
a potential barrier of approximately rectangular shape, with wid#d, in zero magnetic
field. The 2D band bottom in the barrier region coincides with the Fermi Eyedf the
2DES atVy equal to the threshold voltagg;,. Since in the barrier region fof <V, an
incremental electric field is not screened, the 2D band bottom follows the gate potential,
so that the barrier height is equal toeAVy=e(Vy—V,), where—e is the charge of an
electron(Fig. 2b. Applying a bias voltag&/ 4 shifts the Fermi level in the drain contact
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FIG. 2. (a) I-V curves at different gate voltages and magnetic fields. The &s&sandB+ 0 correspond to
two coolings of the sample as compared in Fig. &= 0.4 um. (b) A sketch of the 2D band bottom in the
barrier region for different source—drain biadég.

by —eV,y. Because of gate screening the voltafg drops over a distance scale of the
order ofd near the boundary between the barrier and drain, and so the barrier height on
the source side remains practically unchanged; see Fig. 2¥.4lfeaches the onset
voltageVo=AVy, the barrier on the drain side vanishes, and electrons start to overflow
from the drain to the source. In contrast, #gs>0 only the electron tunneling through

the barrier from the source to the drain is possible. \Agincreases above AV, the
tunneling distance diminishes and the barrier shape becomes close to triangular. Within
the triangular barrier approximation, in the quasiclassical limit of small tunneling prob-
abilities, it is easy to deduce that the derivative of the tunneling current with respect to
the bias voltage is expressed by the relation

d 4(2m)YA(—eAVy ¥
qv 7o 3heVy

whereoy=~ —(e2/h)AVgW/Vsd>\F, m=0.067m, (M, is the free electron magsand A
is the Fermi wavelength in the source. Obviously, the tunneling current is dominated
by electrons in the vicinity of the Fermi level, and the tunneling distance
Lt=—AV4L/V¢yshould satisfy the inequality<L<L. In accordance with Eq1), the
expected dependence of the tunneling onset voldgeon gate voltage is given by
Ve (—AVy) 2

As is seen from Fig. 3a, the expected behavior of baghandV+ with changingVg
does indeed occur. The dependenuggV,) andV$’3(Vg) are both linear; the slope of
the former is very close to one. Extensions of these straight lines interceyt, dods at
slightly different voltages, which points out that the triangular barrier approximation is
good. The threshold voltagé,, for the generation of a 2DES in the barrier region, which
is defined as a point of vanishing, (Fig. 33, is coincident, within experimental uncer-
tainty, with the value ofVy, determined from the analysis of magnetoconductance
plateaugFig. 1b.

A fitting of the set ofl -V characteristics at differety by Eq. (1) with parameters
L, Vin, andoy is depicted in Fig. 3b. The dependenceogfon AV, andVyis ignored
against the background of the strong exponential dependentl @¥. Although three

<0y, 1
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FIG. 3. (@ Change of the onset voltagd&, and V; as defined in Fig. 2a witl, at B=0; and(b) the fit
(dashed lingsof the |-V curves(solid lineg by Eq. (1) with the parameters =0.6 um, 0,=38 MQ 1,
Viyp=—0.4 mV; W=0.4 um. In case(a), the data marked by filled triangles are obtained for the same cooling
of the sample as the data B=0 in Fig. 2a and in casé), whereas the open triangles correspond to the
B+0 data of Figs. 2a and 4 as measured for the other cooling.

parameters are varied, the fit is very sensitive, exceptrfoto their variation because of

the exponential behavior of the-V characteristics. One can see from Fig. 3b that the
above model describes well the experiment at zero magnetic field. As expected, the
determined parametdr=0.6 um is much larger thard, i.e., the barrier shape at
V¢=0 is approximately rectangular, and the valué/gfis close to the point wheré,

(and V) tends to zerqFig. 39. Similar results are obtained at the other two constric-
tions. In addition, we find that the coefficiem, for different constrictions does not scale
with the constriction widthW. This probably implies that the tunnel barriers, even with
submicron lengths, are still inhomogeneous, which, however, does not seem crucial for
the case of exponentidt-V dependences.

Having tested that we are dealing with a controlled tunnel barrier, we investigate the
tunneling in a normal magnetic field that gives rise to an emerging tunnel barrier in a
manner similar to gate depletiaifrig. 23. At a constantVy>Vy,, where there is no
tunnel barrier in zerd®, the magnetoconductaneeobeys a 1B law at weak fields and
drops exponentially withB in the high-field limit, signaling the tunneling regime. Figure
4a presents the magnetic field dependence of the onset vdtagehich determines the
barrier height. It is seen from the figure that the change of the barrier height, with
B is very close tdh w/2, which points to a shift of the 2D band bottom by one-half of the
cyclotron energy.

For describing the tunneling branch of theV characteristics we calculate the
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FIG. 4. (a) Behavior of the onset voltagd4, andV; with magnetic field; andb) the fit (dashed linesof the
|-V curves(solid line9 by Eq. (4) with the parametert =0.6 um, co=1.3MQ "%, andVy=—-1.4 mV;
W=0.4 um, V4=0.

tunneling probability in the presence of a magnetic field. This is not so trivial as at
B=0 because electrons tunnel through the magnetic parabola between edge channels at
the induced edges of the 2DES. In the triangular barrier approximation one has to solve
the Schrdinger equation with the barrier potential
hw ) X
Ux)= F(X_XO) —evsdE—eAVg, 0<x<L, 2

wherew, is the cyclotron frequency,is the magnetic length, arel,, is larger than the
barrier height in the magnetic field. An electron at the Fermi level in the source tunnels
throughU(x) from the origin to a state with orbit cent&p such that 8<xy<L. If the
barrier potential is dominated by the magnetic paralfioda, the magnetic length is the
shortesy, the problem reduces to the known problem of finding the energy levels in the
shifted parabolic potential as caused by the linear term in(Bq.The value ofx; is
determined from the condition of coincidence of a Landau level in the potdu(is)

with the Fermi level in the source. If only the lowest Landau level is taken into consid-
eration and the spin splitting is ignored, we get the minimum tunneling distance to the
outermost edge channel in the drain:

| (ol 2AVL eV
on LT:_ - - p> d
2\eVd Vo Aol

The first term in brackets in Eq3), which is dominant, is large compared to unity.
Knowing the wave function of the lowest Landau level in the potentiék) and ne-
glecting the last term in Ed3), we obtain for the shape of tHe-V characteristics near
the onset, where the tunneling probability is small,

d (iwd2—eAVy)?L?
d_V—O'B ex - eZ\/éJZ

Here o is a prefactor which can be tentatively expected to be of the same order of
magnitude asry. From Eq.(4) it follows that at sufficiently strong magnetic fields the
tunneling onset voltag¥ is related to the barrier height &l <% w/2—eAV,, which

is consistent with the experime(ftig. 48. The solution(4) includes the caseAV >0,

3

<0pg. (4)
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when a tunnel barrier is absent at zero magnetic field but arises with incréasirgs
occurs apparently because of depopulation of the barrier region in the extreme quantum
limit of magnetic field.

Figure 4b displays the fit of thb-V characteristics at different magnetic fields by
Eq. (4) with the parameters, Vy,, and og. The optimum values oE=0.6 um and
V= —1.5 mV are found to be very close to the ones forBe0 case as determined for
the same range of barrier heights; see Fig. 3b. Although this fact supports our consider-
ations, they are not rigorous enough to permit discussing the considerable discrepancy
between the preexponential factors with and without magnetic field.

The observed behavior of theV characteristics with magnetic field in the transient
region where their asymmetry is not yet strofigg. 239 is similar to that of Refs. 4
and 5. Over this region, which is next to the region of exponehti®l dependences at
higher magnetic-field-induced tunnel barriers, deiV curves are close to power-law
dependences, as was discussed in Ref. 5. There is little doubt that it is very difficult to
analyze and interpret sudk-V curves without solving the tunneling problem rigorously.
We note that the peak structures on the tunneling branch df-tiecharacteristic¢see
Figs. 2a and 3bpersist at relatively low magnetic fields and are very similar to those
studied in Ref. 4. These may be hint at resonant tunneling through impurity states below
the 2D band bottom.

This work was supported in part by the Russian Fund for Fundamental Research
under Grants 97-02-16829 and 98-02-16632, the Program “Nanostructures” from the
Russian Ministry of Sciences under Grant 97-1024, and the Volkswagen-Stiftung under
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A sharp kink in the temperature dependence of the electronic spin-
lattice relaxation rate near 200 K was found in the high-temperature
superconductors YB&u,0Og and YBgCuOg, . The effect is corre-
lated with opening of a spin gap and microscopic phase separation.
© 1999 American Institute of Physids$0021-364(19)00808-17

PACS numbers: 74.72.Bk, 76.60.Es

In the physics of high-temperature superconductefESCs9 the nature of the so-
called spin gap, which opens in the energy spectrum of “underdoped” oxide HTSCs at
temperaturesT* ~150—200 K (i.e. much higher than the superconducting transition
temperaturd ;) and is manifested, specifically, as an exponential decrease of the nuclear
spin-lattice relaxation rate and Knight shift on coolifsge, for example, Ref)lremains
an enigma. To understand the nature of this phenomenon it is extremely important to find
some anomalies in the behavior of HTSC materials A&arln the last few years such
features have been intensively sought. For example, in Ref. 2 the systepC¥Bx
(1248, containing an additional, compared with the widely used material,€BsOs ,

(123, layer of CuO and distinguished by high stability and definiteness in the oxygen
distribution over the lattice sites, was chosen as the object of investigation. The authors
were able to find some anomalies near 180—200 K for a number of spectral and relaxation
characteristics of”Y, 83Cu, and*’O NMR and NQR. This was taken as evidence of
“electronic crossover” associated with the opening of a spin gap and possibly the ap-
pearance of charge-density wavddowever, these featurésmall jumps and changes in
slope of the temperature dependenca® all only negligibly above the experimental
error, so that the search for new effects of this kind remains urgent. In the present Letter
we report a new anomaly which we observed near 200 K in the temperature dependence
of the electronic spin-lattice relaxation rate of Gdons introduced as a spin probe into

the lattice of the 1248 and 123 oxide HTSCs.

The measurements were performed on god5d)0:BaCu0O3 and
Y 0.0630) 0 BaxCUs0g . Samples. The 123 samples were prepared at the Institute of

0021-3640/99/69(8)/6/$15.00 610 © 1999 American Institute of Physics
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Single Crystals(Khar'’kov, Ukraing by the standard method of solid-phase synthesis.
Their characteristics wene=0.59 and 0.95 and@ ;=90 K and 56 K, respectively. The

1248 sample T,=84 K) was prepared at ETKurich) using the following technolog§.

The oxides GgO3;, Y,05;, CuO, and the nitrate BBNOs),, taken in the stoichiometric

ratio and heated up to 900 °C, were dissolved in concentr@®®%) HNO,; and then
polymerized by adding ethylene glycol and citric acid. The gel formed after the liquid
was evaporated was dried at 120°C and annealed at 700°C. To obtain a single-phase
sample with the required composition the initial powder obtained was sintered in an
oxygen flow at 820°C for 60 h. X-Ray investigation confirmed all 123 and 1248 samples
to be single-phase.

The experimental samples in the form of pulverized powder were set in epoxy resin
and oriented along theaxis in a 2 Tmagnetic field. The ESR spectra were recorded on
a standard Bruker ER-200 spectrometer near 3.2 cm. The powder particlédizes
order of 10um) were much smaller than the depth of the skin layer. This ensured the
absence of Dyson distortions of the line shape.

The main method of investigation in this work was to measure the electronic spin-
lattice relaxation timeT; of GA* ions. Small values off; (107 '—10° s), together
with a large ESR linewidtithundreds of @ preclude using standard methods for mea-
suring the relaxation time in the investigation of HTSC materials. For this reason, in the
present work we used a novel modulation method in which the longitu@ingd respect
to the external magnetic field) spin magnetization of the sample

M,(t)=Ucog Qt)+ Vsin(Qt) (1)

was recorded. Herd andV are the in-phase and quadrature components of the longitu-
dinal relaxational response with respect to amplitude modulation of the microwave
power, performed at the frequen€y. This method, which makes it possible to measure
times T, down to 10'° s, has been successfully used to investigate HTSCs and
fullerides®’

The values olJ andV in the simplest case are determined by the equations
U=AMow3g(w)QT,/[1+(QT,)?], (2a)
V=AMowig(w)(QT)%[1+(QTy)?], (2b)

whereA is the instrumental proportionality coefficiemdl is the static spin magnetiza-
tion, w4 is the amplitude of the microwave fieléh frequency units andg(w) is the
form factor of the ESR line. In this work we used mainly the phase variant of this
technique, in which the longitudindspin-lattice relaxation time is given by

QT,=V/U. ©)

The amplitudedJ andV were measured using synchronous detection of the sidnal
recorded by a longitudinal inductance coil. The modulation frequency in these experi-
ments wad)=10" s~ 1. The details are described in Ref. 5.

The 123 systemIn the Y; odGth 01BaCu;Og ;. , Samples with field orientatioB || ¢
and sufficiently low temperatures, the standard for §pins/2 fine structure of the ESR
spectrum with parameters in agreement with the published data was ob%ekgetie
temperature increases above 100 K, the spectra gradually merge into a single, approxi-
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FIG. 1. Relaxation longitudinal respons¥s(left-hand scaleand U (right-hand scalgin Y-Ba-Cu-O:Gd™

versus the external magnetic fieldt 78 K. The data for the 1248 sample are normalized to the valué of

for the 123 sample. Dashed curve — form of the ESR absorption. The solid curve is drawn through the
experimental points.

mately Lorentzian, central line. As is well knowWrthis is explained by the exchange
coupling with the spin system of delocalized charge carriers. We note that the method
used in the present work to record the longitudinal magnetization does not depend on the
details of this merging, and in any case it gives the relaxation time of thezotahpo-

nent of the electronic spirfs.

The magnetic field dependence of the sigridlandV near resonance ai=78 K is
shown in Fig. 1. It is clearly seen that the forms of the relaxation spectra for the in-phase
and quadrature components of the magnetization are differentUEignal is essentially
identical to the standard ESR absorption spectrum, whereas the field dependence of the
signal is a much narrower asymmetric line ngar 2. This means that two types of
paramagnetic centers with substantially different spin-lattice interaction efficiency are
present in the sample. Centers of one type have such a short relaxation time that
OT,<1. Therefore, in accordance with Eq8) and(3), only the in-phase componebt
is observed from them. The fact that its field dependence matches the ESR absorption
lines shows that these rapidly relaxing centers make the main contribution to the ob-
served ESR spectrum. Conversely, centers of the second type are characterized by rela-
tively slow spin-lattice relaxation. At 78 IQT,>1 for them, so that only th& compo-
nent is observed. The fact that the corresponding narrow line is virtually absent in the
observed ESR spectrum indicates that the density of the slowly relaxing centers is rela-
tively low; they are manifested in the relaxation spectrum only because of the large value
of T, (see Eq(2)). The contribution of the slowly relaxing centers to the observed ESR
absorption is estimated to be about 1% in these samples.

The results of the investigation of the rapidly relaxing part of the spectrum, which
we attribute to G&" ions in an ordinary metallic phase, are described in Ref. 7 and will
not be examined in detail below. In the present Letter we shall concentrate on the slowly
relaxing centers, which will be the subject of the discussion below.

The narrow line shown in Fig. 1 begins to appear in the sighak the temperature
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FIG. 2. Temperature dependence of the spin-lattice relaxation rate for the “slow” centers in Y-Ba-C8*0:Gd
(left-hand scale O — 123,x=0.59; A — 123,x=0.95; B — 1248; dashed curve — quadratic dependence;
+ — data of Ref. 7 for “fast” centers in 123%=0.59(right-hand scale Inset: Temperature dependence of the
NQR frequency of°Cu(1) in 12482

rises above 78 K. There are no special difficulties in distinguishing the signals due to the
two types of centers, since the form of the rapidly relaxing component is known from
ESR. Performing this separation and using E3), we obtained the temperature depen-
dences of the spin-lattice relaxation rate=1/T,, which are shown in Fig. 2. One can

see that at low temperatures the results for both samples are described quite well by the
law W= T?, but near 200 K the dependence changes, and at higher temperatures the
experimental points (fox=0.59) lie appreciably higher. We note that at the same time

a similar kink also occurs in the temperature dependence of theTtinier the “fast”
centers; the corresponding datre also shown in Fig. 2. At higher temperatures the
method was too insensitive for reliable measurements because of the low density of
“slow” centers. Much more definite results of this kind were obtained for the system
1248, which we discuss below.

The 1248 systemThe central part of the ESR spectrum obtained on a magnetically
oriented sample YodGth 0;Ba,Cu,05 for B||c and T=30 K is shown in Fig. 3. The
spectrum is unusual and does not correspond to the typical fine structure df add
Analysis showed that this is explained by the larges0%) contribution from additional
paramagnetic centers whose spectrum is virtually identical to the slowly relaxing com-
ponent observed in the 123 samples. This is confirmed by the fact that the field depen-
dences of the relaxation signals of typefor 1248 and 123 systems matchig. 1).
Differentiating this dependence with the magnetic field we obtained the derivative of the
corresponding ESR absorption signal. Then we subtracted this derivative from the ob-
served spectrum. As one can see from Fig. 3, this proce@uitle the proper fit of the
amplitude gives the ESR spectrum in a form characteristic for the fine structure 3f Gd
in the 1248 systert{

Thus the slowly relaxing centers which we observed earlier in 123 samples have
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FIG. 3. Central part of the ESR spectrum of 9¢Gd, o;BaCu,Og with B || ¢, T=30 K. Solid line — before
processing; dashed curve — after subtraction of the signal from the “slow” centers.

also been found, with a much higher density, in the 1248 system. The latter circumstance
made it difficult to investigate the relaxation of “fast” centers in the normal 1248 phase
(the results for the superconducting phase will be published separdtetyon the other

hand more accurate measurement$ ptould be performed for the “slow” centers right

up to room temperaturdilled squares in Fig. 2 One can see that right up to 180—200 K

the experimental points lie on the curVéxT?, and above 200 K they move sharply
upward, more than two times above the previous dependence. We note that the data
obtained on both materiald23 and 1248 match within the limits of the measurement
error.

The main result of this work is the observation of a distinct featdr a sharp
change in the slope of the temperature depend&paeear 190-200 K in YB&u,Og :
1%Gd" samples and, evidently, in the 123 systéat least forx=0.59). The main
question arising in this connection concerns the nature of the slowly relaxing centers
demonstrating the anomaly indicated. Judging from the relatively large valugs of
(10°—10"7 s) and from the typical for dielectrics quadratic temperature dependence in
the range 80-200 K, most likely we are dealing with a nonconducting pliasbe
metallic 123 phase the timg, is two orders of magnitude shorter, and its temperature
dependence varies from a linear Koringa law to an exponential, due to the spin
gap "3, Thus the question posed above reduces to the following: Is the observed
nonconducting phase macroscopic, i.e. parasitic and not associated with the experimental
system, or have we encountered manifestations of a microscopic phase separation, which
in the opinion of many authors is a fundamental characteristic of the lattices of oxide
HTSCs?3

It is impossible to answer this question definitively on the basis of the present work.
Of course, the simplest and most “economical” conclusion would be a macroscopic
parasitic phase arising during synthesis. However, this assumption is difficult to reconcile
with the existence of a similar jump in the temperature variation,0bf rapidly relaxing
Gd®* centers, which unquestionably belong to the metallic phase. Even more convinc-
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ing is the fact that the anomalies in the temperature dependences of the Knight shift,
nuclear relaxation rates, and NQR frequencies, described by &uéf match in posi-

tion and character. For comparison, one of these results is displayed in the inset in Fig. 2.
It is difficult to imagine that the kink observed here at 180-200 K in the temperature
variation of the quadrupole splitting BFVQ could be due to an extraneous phase, mac-
roscopically separated from the main lattice. Finally, it is impossible to ignore the un-
questionable matching of the temperature at which these anomalies are observed with
temperatureT* corresponding to the appearance of a spin 'g@ipese data can all be
correlated by the hypothesis of microscopic phase separation in which the micro- or
mesoscopic layers inside the HTSC material have different conducting and magnetic
properties. Such electronic separation has been reliably observed in the La—Sr—Cu-0
family of HTSCs and is being actively discussed in the literataes, for example, Refs.

13 and 14. Evidently, it is also confirmed by recent experiments on electronic relaxation
of G&®* in the 123 syster.In this case, the feature observed in the present work near
200 K could be explained by a phase transition in dielectric interlayers or chains sepa-
rated from the metallic phase only microscopically and therefore inevitably having some
influence on the nuclear and electronic relaxation in that phase. It is clear that the mag-
nitude of the anomalies in the dielectric phase undergoing a phase transition should be
much greater than in metallic layers which feel it only indirectly because of the proximity
effect. This is what is observed experimentally.

The nature of the transition discussed is still unclear. For example, it can be corre-
lated with antiferromagnetic ordering in CuO, occurring near 229 &, with hypotheti-
cal charge-density waves, whose appearance in the same temperature range is predicted
theoretically in Ref. 3. It is obvious that further investigations are required to solve this
problem.
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The effect of a random field due to impurities, boundary irregularities,
and so on, on the superfluidity of a three-dimensional system of exci-
tons and a quasi-two-dimensional system of direct or spatially indirect
excitons is studied. The influence of a random field on the density of
the superfluid component in the indicated excitonic systems at low
temperaturesT is investigated. The interaction between excitons is
taken into account in the ladder approximation. For quasi-two-
dimensional excitonic systems in a random field the Kosterlitz—
Thouless temperature in the superfluid state is calculated19€9
American Institute of Physic§S0021-364(09)00908-1]

PACS numbers: 71.35.Lk, 73.20.Dx

A system of spatially indirect excitons in coupled quantum wefls of interest in
connection with the superfluidity previously predicted for this systantd manifested as
persistent electric currents, quasi-Josephson phenomand, unusual properties in
strong magnetic field%:® Phase transitions occurring in systems with spatially separated
electrons and holes were studied in Ref. 9. In these works the collective properties of
indirect excitons in idealizegure systems neglecting the random field due to the pres-
ence of impurities and boundary irregularities of the quantum wells were studied.

However, in experiments a random field operates on a weakly-nonideal exciton gas.
The transport properties of direct and indirect excitons and magnetoexcitons in random
fields have been studied in Ref. 10, the influence of various random fields on excitonic
and magnetoexcitonic absorption of light has been studied in Refs. 11 and 12, and
Anderson localization of excitons has been studied in Ref. 13.

The effect of a random field on the superfluidity and the collective properties of
excitons is of interest and has not been studied thus far. The effect of a random field on
the properties of an excitonic system can be very substantial. Indeed, if the random field
is sufficiently strong, it can induce a transition of the superfluid phase into a Bose-glass
phase. We shall confine our attention to the effect of a weak random field on the collec-
tive properties and superfluidity of excitons in honuniform systems.

In the present Letter we examine a rarefied system of three-dimensional excitons and
two-dimensional excitons in a single quantum well and indirect excitons in coupled
guantum wells in a random field. In two-dimensional systems the excitonic interaction in
the Bogolyubov approximation operates only in an unphysically narrow range of the

0021-3640/99/69(8)/7/$15.00 616 © 1999 American Institute of Physics
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system parameters because of the divergence of the two-dimensional scattering amplitude
in the Born approximation. For this reason, the ladder approximation must be used to take
account of the interaction between two-dimensional excitons. The random field was taken
into account by perturbation theory. It is predicted here that a random field decreases the
densityng of the superfluid component in the indicated systems at low temperafures
and it also decreases the temperature of the superconducting transition induced by the
random field.

Our analysis is also applicable to other physical realizations of nonuniform Bose
systems, for example, liquid helium in random porous médiad so on.

We shall use perturbation theory up to second order in the interaction of excitons
with the random field at finite temperaturéqsee Fig. ] to take account of the effect
of the random field on the density of the superfluid component. In what follows we set
ﬁ = kB= 1.

The Green'’s functiorD(®(p,iw,) for the Bose condensate neglecting the random
field is

—(2m)%ny s
D(O)(p,iwk)=w, 5—0, 1)
Wy
wherew,=27KT (k is an intege, d is the dimension of the system, anglis the density
of the Bose condensate in the system of excitons in the absence of a random field.

The Green'’s functioD (p,i w)) of the Bose condensate taking account of the ran-
dom field (Fig. 1) is

D(p,iw) =DO(p,iw) +S] f DO(py,i @) DV(p2i ) (GO (p,iwy)

(2m)¢
+FO(p,iw)+ G O(p,iw) +FOp,iw) (Vi Vi) (2)

where(( . . .)) denotes averaging over various configurations of the random 8gigl,is
the area(volume of the system, an@((p,iwy) and F(9(p,iw,) are the normal and
anomalous Green’s functions of the rarefied system of supercondensate parttsies
account of the weak repulsive interaction between excitons:

M

it eg(p)+u
wi+e%(p)’

and FO(p,iw)=—
a)i—l—gz(p) (p wk)

GO (p,iwy)=— (3

where go(p) =p?/2M is the spectrum of noninteracting excitons, the spectrum of
interacting excitons(in the absence of a random figldhas the form e(p)

//l\//= P PV AR I e gl P B T B B g

FIG. 1. Perturbation-theory diagrams for taking account of the effect of a random field on the Green’s function
of the condensate. A double straight line represents supercondensate particles, crosses represent the interaction
with the random field, and broken lines represent the condensate.
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—\(p2/2M + w)?— 12, and for small momenta the excitation spectrum is acoustic
e(p)=cgp, Whereu = Mc§ is the chemical potentiaM is the exciton mass, arg is the
velocity of sound.

In the approximation employetsimilarly to Ref. 14 only transitions of particles
into and out of the condensate under the action of the random field are taken into account,
and the scattering of supercondensate particles by the random field is nedlaated
scattering of excitons by one another is taken into account in the ladder approximation —
see above The Green’s functioD(x,x") is not a function only of the coordinate dif-
ference. In the momentum representation it can be considered to be only a function of the
momentumD (p,iw,) only after averaging over different configurations of the random
field.X® The approximation used is valid provided that in the random field almost all
particles aff=0 are in the condensat®& (- Ny)/N<1, if the correlation function of the
random field is small with respect to the parametev:; Vo)) w?<1. The fourth term in
the perturbation theorysee Fig. 1 with four crosses contributes to the condensate
density an amount less than the second term with respect to the same small parameter
(N—Ng)/N<1l. The odd terms in the perturbation theory vanish for any Gaussian
random field.

The density of the normal component, which is dissipated at the walls and impuri-
ties, can be calculated using the Kubo formula as the response of the total momentum to
an external velocity?®

Im(7(w
n,=— Ilim —( () , 4
w—0
where 7 (i w) is the polarization operator with zero transferred momentum
: 1 . : :
w(lw)zm% pZTZ Fpiog+io)Fpioy), (5)

k

wherew,=27kT; F(p,iwy) is the total single-particle Matsubara Green’s function of an
indirect exciton

F(piog)=D(p,iog)+G(p,iwg). (6)

The renormalization of the vertex by the interaction is neglected in the polarization
operator(5). When the interaction is taken into account in the ladder approximation, a
term which is small with respect to the parameter <1 appears[( is the vertex in the
ladder approximation For a two-dimensional rarefied system of indirect excitons this
parameter has the formmIn(1/8mn.M?e*D* <1 (n., and D are, respectively, the
surface density of excitons and the distance between quantum wells, respectively

We now substitute the Green’s functions of the conden@atand supercondensate
(3) particles into Eq(6). Next, substituting the expressid) into Egs.(5) and(4) we
have

go(p)

ALy 7
e*(p) @

N? dp
—nn0 2 *
nn_nn+ dMm f (27T)dp <<vap>>
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HereN is the total number of particles, am is the density of the normal component in
a pure system with no impurities,

ek dp_,an(p) ®

" dM (zw)dp de '

where ny(p)=(e*P’T—1)"1 is the distribution of an ideal Bose gas of temperature
excitations(compare with Ref. 14

The first term in Eq(7) corresponds to the contribution due to scattering of quasi-
particles with an acoustic spectrum in an ordered systeim# to the normal compo-
nent. In a two-dimensional systenﬂ=3§(3)T3/27rch. The second term corresponds
to the contribution of the interaction of the particlescitong with the random field to
the normal component. The density of the superfluid componentisi—n, (wherenis
the total density In the approximation employed the random field does not affect the
spectrum of collective excitations in the system. Therefore the random field decreases the
density of the superfluid component.

For weakly interacting three- and two-dimensional direct excitons the sound velocity
is, respectively;’’ cq3p)= ViIM = V13mn,,86/3M2 (ae, is the effective Bohr radiys
andcyzp)= \V /M =417, /M2,

The theory of a weakly nonideal two-dimensional Bose gas can be used to take
account of scattering of an indirect exciton by an indirect excifofhe sound velocity

for a two-dimensional system of particles interacting via a dipole-dipole repulsive inter-
actionU(R)=e’D?/R® is in the ladder approximation

Ce= V87N /2M2In( 1/87Nn, M 26*D4).

In Eq. (7) (p) is the collective spectrum, renormalized by the interaction between
excitons, which for a rarefied system can be taken into account in the ladder approxima-
tion, making it possible to study the influence of a random field on two-dimensional
systems of direct and indirect excitons, to describe which the Bogolyubov approximation
works only in an unphysically narrow range of parameters of the system because of the
divergence of the two-dimensional scattering amplitude in the Born approximation. How-
ever, two-dimensional systems are of interest in connection with experimental searches
for Sl,|1p(3erfluidity of a two-dimensional system of indirect excitons in coupled quantum
wells~

In a two-dimensional system superfluidity appears below the Kosterlitz—Thouless
transition temperatur&.= 7ny/2M,*® where only coupled vortices are present. Using the
expression(7) for the densityng of the superfluid component we obtain an equation for
the Kosterlitz—Thouless transition temperatiige Its solution is

1/3
\/ 16 MTO\ ® )
T.=|| 1+ +1
(6-0.453%7%\ n’
1/3
\/ 16 MY\ O
+|1- +1 9
(6-0.45°7*\ n’ (4m)13
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HereTg is an auxiliary quantity, equal to the temperature at which the superfluid density
vanishes in the mean-field approximating(Tg)=O,

o_ ( 2mn’ciM ) v ( 32 Fn’ (10
¢ 3(3) 3¢(3)In3(1/87nM2D%)) M~
In Egs.(9) and(10) n’ is
. N? dp * &o(P)
n'=n-qo (zw)dp2<<vpv‘°>>s“(p)' (12)

Thus a random field decreases the Kosterlitz—Thouless transition temperature.

An interesting realization of a two-dimensional system of weakly interacting bosons
is a system of indirect excitons in coupled quantum wells. Fluctuations of the thickness of
a quantum wellQW), which arise during the fabrication process, lead to the appearance
of a random field. The interaction of an indirect exciton and such a random field has the
form

V(re,rp)=Ve(re) +Vu(ry), (12
wherer, andr, are the electron and hole coordinates;

Veny (1) = aeny(€1(3) (1) = E23a)(1)), (13

whereae ,= IES) dde ,, EX) are the lower energy levels of the electron and hole in the
valence and conduction bandsis the thickness of the wells, ardd »(3 4)are fluctuations

of the thickness on the top and bottom surfaces of the quantum well of an eléudien

Next, we assume that fluctuations on different surfaces are statically independent, while
on the ame surface they are described by a Gaussian correlation function of the white
noise type

((&i(r)é€i(rp)))=0i88(r—ry), (14)
whereg; is proportional to the squared amplitude of the fluctuations ofitthaurface.

Substituting the matrix elemeriL2) of the transition from the statép,| into the
state(p,| for the excitonic wave functions in Eq11), we find the Kosterlitz—Thouless
transition temperature, and the quantity

2
n
n'=n-— E[aé(gﬁ 92) + @f(93+04)]

S

(15

1
v 2c2a?

11 3
x| 1+ §M2c§a2+ ZMzcgazln
must be substituted into Eq9), wherea is the effective Bohr radius of an indirect
exciton, which depends on the distance betweenetlamd h quantum wellsa~=~a,p

= e/4m* e? for D<a, a~ajsD%* for D>a (m* =m,m,/(m+m,), andm, andm, are
the electron and hole masses, respectively

The interaction of an exciton with the random field due to composition fluctuations
of the solid substitution solution has the fdfm
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V(re,rp) =V(re) +V(ry), (16)
where
(Te(hy) = @e(y (T e(n)) (17

aeh=(9Een/dX)IN, &(r) is the fluctuation-induced change in the concentratior of

sites, whose average fractiondisandN is the density of sites where atoms of both kinds
can be found. The Gaussian random funcign) satisfies

((&i(r)&i(r2))) =Nx(1=x)8(r,=ry). (18
Substituting the matrix element of the transition from the s{g@tg into the state
|p,) (16) into Eq.(7) we find the density of the superfluid component

0 n%g(ae— ah)2< 35

Ng=Ngy—Np— Tomc 1- —Mcga/|, (19
S

16

whereg=Nx(1—x) andm;=m,=M/2.

In summary, in the present Letter the effect of a random field on the demsiy
the superfluid component in a system of indirect excitons at low temperafuard on
the Kosterlitz—Thouless transition temperature in the superfluid state was analyzed. It
was shown that the random field decreases the density of the superfluid component and
the Kosterlitz—Thouless transition temperature.
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It is shown that two circumstances must be taken into account in order
to describe the tunneling magnetoresistance and Hall effect in granular
ferromagnetic metals:)the size variance of the metallic granules and

2) the percolation character of the tunneling conductivity of the system,
determining the optimaltemperature-dependergize of the granules
through which current transport occurs. This complicates the depen-
dences of the magnetoresistance and Hall resistance of the system on its
magnetization and temperature. 99 American Institute of Phys-

ics. [S0021-364(99)01008-1

PACS numbers: 75.50.Cc, 75.50.Kj, 73.50.Jt

Granular metalgmetal-insulator nanocomposijes- a collection of small(size a
=1-100 nm) metallic inclusions in a dielectric matrix — possess a number of unique
properties that depend on the volume contenf the conducting phase? There exists
a critical valuex; such that forx>x; the material possesses metallic properties and for
X<X. it is a dielectric with a thermally activated conductivity. It has been established that
it is due to the tunneling transitions of charge carriers between granules, and in this
respect its mechanism is close to the well-known mechanism of hopping conductivity
along impurities in doped semiconductdr. the granule material is a ferromagnetic
metal, such tunneling conductivity depends strongly on the magnetic field. The physical
reason for this strong dependence is as follows. The probability of electronic tunneling
through the insulator interlayer between two ferromagnetic meEgI/FM transition
is determined by the relative orientation of the magnetic moments of the metallic elec-
trodes. The tunneling conductance of an FM/I/FM junctiofis(1+ P?cosf)e ¢, where
e ¢ is the standard tunneling exponentiéljs the angle between the directions of the
magnetic moments in the “edges” of the junction and depends on the external magnetic
field, andP=(D,—D,)/(D;+D)) is the magnetic-field-independent spin polarization of
the conduction electrons in the ferromagniet (andD |) are the densities of states at the
Fermi level for electrons with and| sping. The factor co8 arises because of the spinor
transformation of the wave function of the electron, whose spin changes direction at a
transition from one ferromagnet into the otHer.

A magnetic field influences only the preexponential factor in the expression for the
conductance of the tunneling junction. This means that the percolation model of conduc-

0021-3640/99/69(8)/7/$15.00 623 © 1999 American Institute of Physics



624 JETP Lett., Vol. 69, No. 8, 25 April 1999 E. Z. Meilikhov

tivity, ordinarily employed to describe the properties of nonmagnetic nanocomposites,
can also be used in the present case. Specifically, it is necessary to take account of the
fact that when the size variance of the granules in the nanocomposite is large only a
negligible fraction of the granules participates effectively in the conductivity, specifically,
granules of so-called optimal sizg,,, which decreases with increasing temperature.
The orientation of the magnetic moment of ferromagnetic granules in a magnetic field is
determined by the magnitude of this moment, which is directly related with the granule
size. For this reason, in contrast to the magnetization of the system, which is determined
by all magnetic granules in it, the conductivity of a nanocomposite is determined only by
granules with the “optimal” magnetic moment,,;, which is strongly temperature de-
pendent. This circumstance is ignored in works devoted to the investigation and descrip-
tion of the properties of ferromagnetic granular metals with tunneling conductivity. Our
objective in the present Letter is to show that the properties of magnetic nanocomposites
can be described adequately only if the indicated circumstances are taken into account.

Since ferromagnetic granules are small, they are single-domain and are in a super-
paramagnetic state. The latter means that with respect to the action of an external mag-
netic fieldH and temperatur@ the collection of granules under study behaves similarly
to a paramagnetic gas of atoms. The only difference is that in a gas the orientation of the
atoms themselves changes together with their magnetic moments, whereas in stationary
single-domain granules only the magnetic moment of the granules rbtates. result,
the average relative orientation of the magnetic moments of neighboring granules, char-
acterized by the quantitycosd), and hence also the average intergranular conductance
(G) depend on the external magnetic field. In this model the calculation of the conduc-
tivity of the nanocomposite

o(H,T)=(G)x 1+ P*(cosb) (1)

reduces to establishing the correct method of averaing).

In what follows we shall consider only the situation where the interaction and hence
the correlation of the directions of the magnetic moments of neighboring granules are
negligible. Taking account of such a correlatidar example, using the simple scheme
described in Ref. J7shows that all conclusions derived below remain qualitatively un-
changed. Let the moments of two neighboring granules 1 and 2 make the angles
Bi, and vy, with the coordinate axes, y, and z respectively. Then c@s
=C0Sy;COS,+ 053,058, +C0Sy,C08y,. If an external magnetic field is directed along
thez axis, then the angles, , and 3, ; (relative to thex andy axe$ assume all values in
the interval[ 0,27] with equal probability. Thereforécose;cosw,)=(cos8,c053,)=0 and
after averaging we obtaificosd)=(cosy,cosy,), where nowy; and vy, are the angles
between the magnetic moments of the granules and the external magnetic field. In the
absence of a correlation between the directions of the magnetic moments of neighboring
granules, the angley; and y, are independent of one another, and therefaes)
=(cosy)”.

Having determined the relative magnetoresistance of the system a$iNR(
=[o(0,T)—0o(H,T)]/o(0,T), taking account of Eq(l) we obtain

MR(H,T)=—P%(cosy)2. 2
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Thus the problem reduces to averaging over the anglestween the external magnetic
field and the magnetic moments of the granules that actually contribute to the conduc-
tivity of the system.

The simplest case is averaging owdrgranuled Then, assuming that the granules
are all spheres with the same radagsand therefore possegfentical magnetic moments
,u0=(47-r/3)a(3,lS (I is the saturation magnetization of the granule materthe well-
known Langevin formula can be used for the total magnetic moment of the system:

M(H,T)=Ngp{cosy)=NuoL(mgH/KT), L(x)=coth(x)—1/x (3)
(N is the total number of granulgsThen
MR(H,T)=—P2L?(uoH/KT)=—P? [ M(H,T)/M]?, (4

whereM =Ny, is the saturation magnetic moment.

However, the size variance of the granules and hence their magnetic moments are
virtually always quite large. If granules are once again assumed to be spherical, then this
variance can be described by the distribution funcfi¢éa) of their radii a. In this case
the granules possesdifferent magnetic momentg=(4x/s)a’ly, whose variance is
characterized by the distribution functiorp(u)="f[a(x)](da/du)=(36mls) 3
X~ ?3[a(w)]. In this case the total magnetic moment of the system

o0

MR T) =N |l (uHIKT () dn ®
once again is determined by averaging owadlr granules. However, to calculate the
conductivity (and magnetoresistancef the system only the granules which actually
contribute to the conductivity need be taken into account. As shown in Ref. 5, from this
standpoint only granules with sizes close to the “optimal” size are impor&@ata,;

«T~ %2 Then we obtain from E¢(2)

MR(H,T)=—P2L[ uop( T)H/KT], (6)

where oo T) = (477/3)a§p[(T)IS. The direct proportionality MR{,T)=[M(H,T)]?,
characteristic for a system where all granules have the same size, naturally, does not hold.

The model used in Ref. 5 is completely applicable to systems far from the percola-
tion threshold. For this reason, the theoretical dependé®cenust be compared with
experiments for systems withx{—x)=0.1. Such a comparison, moreover, requires
knowledge ofu,,(T) at least for one temperature, for example, at room temperature
T=300 K. If o= 3001 KNown, thenu o, T) = w30 300T) ¥2 Thereforeu o can be
used as an adjustable parameter.

The magnetoresistance of the systemg $&,),_, with x<<0.45 was investigated
in Ref. 9. Figure 1 shows the experimental temperature dependencé)Mét(a system
with x=0.26. The theoretical dependen& shown in the same figure agrees well with
experiment if it is assuméUthat,u300= 145Qug and P=0.2. We should mention the
following concerning the adjustable parametey,, found above. Since, decreases
with increasing temperature, it should be expected gt () =Ms/N, since granules
with large values ofu, which are ineffective from the standpoint of tunneling conduc-
tivity (because they are separated by large distanoeske a large contribution tQu).®
Approximating the magnetic-field dependence of the magnetization of the system
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FIG. 1. Temperature dependences of the relative magnetoresistancé&,VtR9 kOe) for the system
Fe (Si0,),_, with x=0.26. Circles — experiment of Ref. 8. Curve — calculation using @&y.with the
parameter$®=0.2 anduz90= 1450ug .

Fe (Si0,) 1y with x=0.26 by a sum of two Langevin functions, the authors of Ref. 9
show that the system contains two types of Fe granules: large granules with magnetic
moment w, =1250Qug and small granules with magnetic momemnt=2620ug, the
concentration of the small granules being an order of magnitude higher than that of the
large granules. Setting aside for the time being the question of the correctness of such an
analysis(see below, we conclude that the adjustable quanjityis indeed less than the
values presented fqi, and us.

Taking account of the temperature dependence of the granule size caages
pared with a system of identical granuldise temperature dependence of the magnetore-
sistance, which is especially strong for weak magnetic fields. In the latter case, it follows
from Egs.(4) and (6) (since uqpe T~ that

T2, same size granules,

MR(H —0) (7)

T~°, large granule-size variance.

Figure 2 shows MRY) in various magnetic fields.

We shall now discuss the correctness of the often ¢ses, for example, Refs. 7, 9,
and 11 procedure for reconstructing the distribution functiofy.) from the experimen-
tally measured dependendb®&(H,T). Mathematically, the problem reduces to solving the
integral equation(5) and is a so-called ill-posed problefhThis means that in the ab-
sence ofa priori information about the form of the functiap(w) (and such information
is almost always lackingand in view of the approximate character of the experimental
data many approximate solutions with radically different properties can be found for this
equation. In approximating the functiovi(H) by a sum of several Langevin functions
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FIG. 2. Temperature dependences of the normalized relative magnetoresistart RFR( various magnetic
fields. The curves were calculated using E).for 3= 1450ug -

the authors proceed from the unfounded assumption that the system consist$'dfomo
four’ sharply defined fractions and is not described by a wide and continuous distribution
function (). The fact that this is doubtful is seen at least by comparing the results of
a similar approximation and the TEM photographs of the experimental systems. Thus the
procedure of approximation used in Ref. 9 “shows” that the system supposedly consists
of granules with two sizes — 15 an& A , while the particles with irregular shapes and
arbitrary sizes, less than approximately & , can be seen in the photographs.

To illustrate how questionable the results obtained using this procedure are, we used
Eq. (5) to calculate the magnetic-field dependence of the magnetization for the distribu-
tion function used in Ref. 11:

e(w)=[1N2mopu]exd —In%(ul uo)l20?]. (8)

In Fig. 3 this function is shown by bars whose length represents the measurement error,
equal to 3%. The figure also shows curves which were obtained by the described ap-
proximation for several sets of granule parameters. One can see that within the limits of
accuracy of the “experiment” these sets are all indistinguishétispite the large dif-
ference between themThis attests to the incorrectness of this procedure and many
conclusions based on it.

We shall now consider the Hall effect in the system under study. It is known that in
bulk ferromagnets two components contribute to the Hall ftéld:

EM=[R,B+4mR4]X]. (9)

One component corresponds to the normal Hall effect, which is associated with the
Lorentz force and is proportional to the magnetic induct®ifiR, is the normal Hall
coefficienj. The other component, corresponding to the so-called anomalous Hall effect,
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FIG. 3. Magnetic field dependence of the magnetization, calculated usinpEdor a system of granules
whose magnetic moments are distributed according to the(&wwith the parametergizo;=250ug and
o=1.16 atT=300 K. The length of the vertical bars represent a relative error of 3%. The curves were obtained
by fitting the results of the numerical experiment with a sum of t&p and three and fou(B) weighted
Langevin functionsM/M =%, %L (u;H/KT), where »;=n;u;/Z;n;u; and n; are, respectively, the relative
fraction and concentration of granules of thk kind. The adjustable sets of parametéi the dominant
fractions consisting of the smallest granulese: A — w,;=170ug, 7,=0.92, u,=2400ug, 7,=0.08
(system of two fractions B — u,=100ug, 7,=0.87, u,=1000ug, 7,~0.13 (system of three fractions
pn1=65ug, 7,=0.85, u,=610ug, 7,~0.13 (system of four fractions — first variantu,;=33ug,
7,=0.78, u,=330ug, 7,~0.22(system of four fractions — second variant

is proportional to the magnetizatidnof the ferromagnet R is the anomalous Hall
coefficienj. It is related with the spin-orbit interaction of conduction electrons with
scatterergphonons, magnetic inhomogeneijiewhich leads to their “asymmetric scat-
tering” (skew scatteringor “lateral displacement’(side-jump.**

The tunneling current flows through granules of optimal sigg, separated from
one another by an average distarntd_et this current be parallel to theaxis, and let the
external magnetic field once again be directed along zhaxis. Since ordinarily
R>R,, the Hall electric field arising in a granule ie~4mRl x(i/agm), where
li|~|j|/? is the current in an individual granule ahd is the average current density.
The Hall fieldE™, directed along thg axis, in a sample is related by the simple relation
E(H)~<e(aopt//)> with the Hall fieldse in individual granuleshere averaging is per-
formed over all granules of optimal sizeTherefore

EM~(4mRg// agp (1 Xi), (10

which after averaging giveB{") ~ (4mRg// agy) (1 ,)(ix) = 4TRl COSY)(/ Iagp) j . Here

we have assumed all particles to be single-domain and Hépeé, and in addition we
took account of the fact thdt,)=j /2. In the absence of an interaction between granules
we obtain hence for the Hall resistivity

pr(H, T)=EM/j,=47Ry L[ propd TIHIKTI(/ Tagp). (11)
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From the relation$6) and(11) for the relative magnetoresistance and Hall resistivity
follows

IMR| = pZ[(P/4TR| ) (aop! /)12 (12)

At constant temperatur@nd in a varying magnetic fieldhe expression on the right-
hand side of Eq(12) remains constant, so th&f the model under study is correct
experiment should give the simple depende|rM|o<pﬁ , making it possible to find the
anomalous Hall effect. The experiments of Ref. 15 on measurement of the magnetore-
sistance and Hall effect in the systems,(f&0,)4_, confirm this conclusion.

This work was supported by the Russian Fund for Fundamental Resgrahts
99-02-16955-a and 98-02-17412and the program PICS—RFFGrant 98-02-2203)7

UThe value ofP presented can be compared with the known véatee0.3 for Co®1°

1Thematic issue, Philos. Mag5 (1992.

2C. J. Adkins, inMetal-Insulator Transitions Revisiteddited by P. P. Edwards and C. N. R. R@aylor and
Francis, 1995 J. Phys.: Condens. Mattéy 1253(1989.

3P. Sheng, Philos. Mag. B5, 357 (1992.

4J. C. Slonczewski, Phys. Rev. 39, 6995(1989.

SE. Z. Médilikhov, Zh. Eksp. Teor. Fiz115 624 (1999 [sic].

6S. V. Vonsovski, Magnetism Vols. 1 and 2(Wiley, New York, 1974 [Russian original, Nauka, Moscow,
1971).

7P. Allia, M. Knobel, P. Tiberto, and F. Vinai, Phys. Rev.52, 15398(1995.

8J. Inoue and S. Maekawa, Phys. Rev5®% R11927(1996.

9S. Honda, T. Okada, M. Nawate, and M. Tokumoto, Phys. ReS6RL4566(1997).

10C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera, Phys. R&8/.F2917(1998.

E. F. Ferrari, F. C. S. da Silva, and M. Knobel, Phys. Re\66B6086(1997).

2. N. Tikhonov and V. Ya. ArseninSolutions of Ill-Posed Problem@alsted Press, New York, 1977,
translation of the 1st Russian editjgiRussian original, 2nd edition, Nauka, Moscow, 1879

A, V. Vedyaev, A. B. Granovskj and O. A. Kotel'nikovaKinetic Phenomena in Disordered Ferromagnetic
Alloys (Moscow State University Press, Moscow, 1892

143, M. Luttinger, Phys. Rev112, 739(1958.

15V, V. Ryl’kov and D. Yu. Kovalev, private communication.

Translated by M. E. Alferieff



JETP LETTERS VOLUME 69, NUMBER 8 25 APRIL 1999

Stochastic resonance between limit cycles. Spring
pendulum in a thermostat

Yu. N. Gornostyrev, D. |. Zhdakhin, and M. I. Katsnel'son

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences,
620219 Ekaterinburg, Russia

A. V. Trefilov
Russian Science Center “Kurchatov Institute,” 123182 Moscow, Russia

(Submitted 18 March 1999
Pis'ma Zh. Ksp. Teor. Fiz69, No. 8, 585-58925 April 1999

The effect of white noise on phase synchronization is studied numeri-
cally for a classical model of a spring pendulum with a multiple ratio of
the frequencies of small oscillatiof¥itt—Gorelik mode). It is shown

that in the model investigated a Fermi resonance regime occurs for a
system in a thermostat. A new type of nonlinear dynamics is found —
stochastic resonance between limit cycles. 1899 American Institute

of Physics[S0021-364(®9)01108-]1

PACS numbers: 46.40.Ff, 05.40.Ca, 0544.

The problem of the effect of noisgor example, thermal fluctuatiop®n the dy-
namical behavior of complicated nonlinear systems has been investigated traditionally in
connection with the study of various scenarios leading to the appearance of turbulence.
In so doing it was assumed that the phenomena associated with the appearance of chaos
in deterministic systems play the main role, while fluctuations do not lead to any quali-
tative changes in the behavior of these systems. In the last few years investigators have
turned their attention to phenomena associated with stochastic resdi®@R&e which
are observed in the most diverse procesfesn chemical reactions to the evolution of
the earth’s climateand in which noise plays a “constructive” role. Stochastic resonance
appears as a more or less periodic behavior of a system with several positions of equi-
librium under the action of random forces, in the simplest case — white noise. It is
natural to ask about the possibility of SR-related phenomena in systems with attractors of
a more complicated nature than a position of equilibriiocus, for example, with limit
cycles? Although related problems have already been discu&dgthmic intermittency
and deterministic SR in systems with chaotic behayjamoise-induced transitions be-
tween limit cycles have not yet been considered. Limit cycles describe self-excited os-
cillations as well as phase synchronization in systems with several degrees of freedom.
We shall be interested in the latter case. In the present Letter, in studying the Fermi
resonance phenomenon well known in the physics of moletidad crystal$, we
demonstrate an analog of SR between limit cycles.

The clearest model describing Fermi resonance is the model of a spring pendulum
with the frequencies of small oscillations in the ratio {tRe Vitt—Gorelik modée). In

0021-3640/99/69(8)/6/$15.00 630 © 1999 American Institute of Physics
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the absence of noise and dissipation it is described by the Lagrangian
L=1/20+y?) = V(x,y), 1)

k
V= E(r—l)2+gr(1—cos¢)

2 2
= 1/2] w32+ (y+1)2]+2(02— w2) W+ (y+ 1)2—202(y+ 1) + M ,

@q
wherewy=k andQ,=\/g/I are the frequencies of small oscillations of the load on the
spring and of the pendulum, respectivelyis the stiffness of the springhe mass of the
load is 1); g is the acceleration of gravity;is the length of the sprind;is the equilibrium
length of the spring is the polar angle; anck andy are Cartesian coordinates in units
of | (the coordinate origin is located at the suspension poirite values of the param-
eters for which the frequencies are nearly in a multiple raje- 2Qy+ A, A<Q, are
studied. This model describes the classical Fermi resonance regime, for example, for
C—H bonds in organic moleculésTrue, the classical limiT>7%w, cannot be literally
achieved in this case, sindes,=10° K. However, as shown in Ref. 6, the mod#) for
smallx andy also describes phenomena related with the Fermi resonance for phonons at
a definite point of the Brillouin zone of the bcc phase of alkali and alkaline-earth metals,
where the classical case is of the main interest. When phonon darfggsgpation and
interaction with the thermostat are taken into account, synchronization is possible in the
systen? As a result, a certain combination of the phases of the two oscillations is no
longer random and for sufficiently small the true ratio of the oscillation frequencies
becomes precisely 1:@phase-locking From the standpoint of the general theory of
dynamical systems, synchronization corresponds to bifurcation of a torus into a limit
cycle? A numerical solution of the corresponding equations of motion for this system
showed that for small amplitudes of the oscillatibtise system possesses two synchro-
nization regimes, i.awo limits cycles. Together with the clarity of the initial mechanical
system, this makes the Vitt—Gorelik model a suitable object for solving our problem.

The effect of noise and dissipation on the dynamics of the system was investigated
by solving the numerically Langevin equations

X+ 2 '+&V—f t
X ’yX &_ X( )l

. Y
y+2I‘y+W=fy(t), 2

wherey andI" are the damping constan(sf the order of 102w,) andf; are Gaussian
random forces of the white-noise type with correlation functions

(F(D (1)) =4Tys(t—t"),

(f(OF,(t"))=4TT8(t—t"),

(F(Ofy(t"))=0. ()

This choice of correlation functions guarantees that a Gibbs distribution with temperature
T will be achieved in the state of thermodynamic equilibriuta-¢2).° To solve the
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FIG. 1. Typical dependencé(t)y(t) in the stationary state with =0, T=0.025,y=0.005, and =0.005.

system of stochastic differential equatio{2$ numerically we used one of the “strong”
(rms) methods proposed in Ref. 10. Methods of this type guarantee convergence not only
for quantities averaged over the realizations of the random force but also for individual
trajectories(see Ref. 11 and the literature there for a more detailed discysSibe
“weak” methods which we used in a previous wéritid not make it possible to draw
definite conclusions about the character of the dynamical behavior of the system under
study, except to establish the fact of synchronization itself.

The initial quantities for analysis are the trajectorxés) andy(t) in the stationary
state, which was monitored according to the matclftogvithin 0.199 of the distribution
functions of the velocitiex andy to the Maxwellian distribution. It is convenient to
investigate intermode energy transfer by following the quantfift)y(t). The typical
form of this quantity forA =0 and not too high temperatur&s< w3|? is shown in Fig. 1.
The latter inequality guarantees small oscillation amplituétesvalues of the parameters
corresponding to Fig. 1x|<0.1 and|y|<0.05). Then, as follows from EqJl), the
productx?y is proportional to the intermode interaction energy.

One can see from Fig. 1 that the dynamics of intermode energy transfer is very
complicated with sections of strong coupling alternating with sections of weak coupling.
Figure 2 shows the results for the “filtered” variable

t+nm/Q

s(t)=90f X(t)y(t)cod 40t )dt (@)
t=nw/Qq

(in Fig. 2n=2). The variables(t) makes it possible to follow directly the appearance or
disappearance of the phase-synchronization regime, since it is proportional dg cos
where®=2¢,+ ¢, and ¢, and ¢, are the phases of the variabbeandy. As shown in

Ref. 8, the valued~0 and®~ 7 correspond to two limit cycles, so thsft) remaining
positive for a sufficiently long period of time corresponds to motion according to the first
limit cycle and negatives(t) corresponds to the second limit cycle.

As one can see from Fig. 2, the synchronization regibnalternate with regions of
chaotic motion, where~0. Moreover, fast transitions from one limit cycle to the other
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250

FIG. 2. s(t) (see the expressigd)) for the same parameters as in Fig. 1. The sections corresponding to phase
synchronizationlimit cycles) are designated by I, and the sections corresponding to fast transitions between
limit cycles are designated by II.

(1), to some extent similar to the “transit” trajectories in a bistable systeare ob-
served. The spectral density sft) has a distinct maximunfFig. 3), so that alternation

of the time intervals during which phase synchronization occurs is of an approximately
periodic character. The observed low-frequency dynamics is similar in this sense to SR,
which occurs in this system despite the absence of several positions of equilibrium. Their
role is played by limit cyclegregions of the type | in Fig.)2

P /T3

0.0 0.1 0.2 03 04

(¢

FIG. 3. Ratio of the spectral densiBy(w)=|s,|? to T® for A=0, y=0.005, and =0.005. The curve4—4
are presented fof =0.0002, 0.0005, 0.001, and 0.0025, respectively.
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FIG. 4. Spectral densitie®,(w)=|x,/? and P,(»)=|y,|? normalized to 1 forA=0, y=0.005, andI
=0.005. The curved-3 are presented fof =0.001, 0.0025, and 0.005, respectively. For convenience the
coordinate origin of the curvezd and3 is shifted.

As the noise intensity increaséhe temperature increaseshe “resonance” fre-
quency increases and the resonance itself broadens. To determine the temperature behav-
ior of the effects under discussion, the spectral density, made dimensionless by normal-
izing to the characteristic thermal-noise leWé| is presented in Fig. 3. The intensity of
the peak changes nonmonotonically with increasihgvhich demonstrates the “con-
structive” role of noise in its formation. This behavior is a characteristic feature ot SR.
It follows from our calculations that the picture remains unchanged in the entire range of
frequency detuningd where synchronization exists at alh &0.1w, for the dampings
chosen, while the characteristics of SRletermined from the Fourier spectrurare
essentially independent df.

The Fourier spectra for the coordinateandy (Fig. 4 demonstrate splitting of the
main peaks, which is strictly the analog of a Fermi resonar@er calculations with no
dissipation and no random forces agree with the analytical results of Ref. 7 on the
dependence of the intensity of the “upper” and “lower” peaks on the initial conditions.
In the presence of noise averaging over the initial conditions occurs and both peaks are
always present.

In conclusion, we note that in our opinion the stochastic resonance phenomenon
demonstrated here between limit cycles could be quite general . It requires the presence
of more than one limit cycle, corresponding to phase synchronization, which, as one can
see, occurs even in such a simple and natural model as a spring pendulum. With an eye
toward the possible application of the results obtained to the Fermi resonance in the
vibrational spectra of molecules and the phonon spectra of metals, it would be interesting
to study the behavior of the system in the quantum case. In the semiclassical approxima-
tion the latter is described by col¢so-called blugnoise in a Langevin type equatiof.
Unfortunately, only “weak” method have been used to simulate such systems numeri-
cally, while “strong” systems have not even been developed. The question of the
specific nature of the phenomena related to phase synchronization and SR in quantum
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systems is of great interest and could be studied by such methods.

This work was supported by the Russian Fund for Fundamental Research, Project
98-02-16219.
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1/f and 1f? noise were observed experimentally in film boiling of
water on vertically oriented platinum heater. Fluctuations with f& 1/
spectrum were observed in a wide range of controlling parameters and
seen over five orders of magnitude in frequency. It was noted that the
process investigated is similar to the phenomenon of self-organized
criticality. © 1999 American Institute of Physics.
[S0021-364(99)01208-9

PACS numbers: 05.40.Ca, 68.60.Dv

Stochastic processes with a spectrum inversely proportional to the freq(fliciar
or 1/f noise are observed in systems of different nature and have long been the subject
of intensive investigations:® Interest in random processes with divergent spectral char-
acteristics has revived in recent years in connection with the discovery of self-organized
criticality.® In self-organized criticality the system arrives at critical behavior in the
course of its evolution and fine tuning of the controlling parameters is not required. The
concept of self-organized criticality is extremely general and can be used to describe the
behavior of dynamical systems of different natli®t experimental investigations have
been performed only on the model sandpile system. A characteristic feature of a system
in a state of self-organized criticality is the presence of fluctuations of dynamical vari-
ables with a spectral density of the typd bt 1/f2. Fluctuations of two types have been
observed experimentally in the sandpile model sy&ttand are predicted by the con-
tinuum theory’

In Refs. 10—12 we reported the experimental observation of thermal pulsations with
a 1f spectrum during Joule heating of a superconductor in a boiling coolant. The distin-
guishing feature of these experiments is that only one source of stochastic signals with a
1/f spectrum was present in the system and the system could be regarded as lumped. The
origin of the intense thermal pulsations with the spectral density inversely proportional to
frequency is due to the interaction of nonequilibrium phase transitions in nonlinear sub-
systens — a superconductor with the current and the boiling coolant. A mathematical
model of concurrent nonequilibrium phase transitions, which consists of a system of
stochastic nonlinear differential equations which convert white noise into two modes of
oscillations with spectral densities proportional td 4hd 1f2, was proposed in Refs. 11
and 12. This model satisfactorily describes the experimental results of Refs. 10—12 on the
observation of 1 noise, but the accompanyingfi/spectrum predicted by theory was
not observed experimentally.

0021-3640/99/69(8)/4/$15.00 636 © 1999 American Institute of Physics
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FIG. 1. Oscillograms of transport-current fluctuations for two regimes of film boiling on a vertical heater.
1 — Regime with a 1f spectrum2 — regime with a 1f? spectrum.

In the present Letter we report the results of an experimental study of fluctuations
accompanying nonequilibrium phase transitions where it was possible to observe stochas-
tic oscillations with the spectral densitiesf Hnd 1f2.

Film boiling on a Joule-heated wire heater was chosen as the object of investigation.
The transition from bubble to film boilingcrisis of boiling is a typical nonequilibrium
first-order phase transition. The dynamics of the transition to crisis of boiling depends
strongly on the spatial orientation of the heater. For a horizontal arrangement of the
heater the transition from bubble to film boiling occurs in the form of autowave propa-
gation of a vapor film along the heatér** For a vertically oriented heater domain
instability arises, which under certain conditions leads to the appearance of traveling
domain structure$>'* The dependence of the observed picture on the spatial orientation
is due to the fact that for a vertical heater there exists an additional longitudinal tempera-
ture gradient caused by convective removal of vapor along the heater.

The experiments were performed with distilled water, into which a 400 in
diameter and about 2 cm long platinum wire heater was inserted. The measurements were
performed with a fixed source voltage. The oscillations of the transport current in the
circuit which are associated with boiling were recorded in the experiments.The spectral
densities were determined from the measured realizations by the Fourier-transform
method.

When film boiling arose on a horizontally arranged heater, a vapor film propagated
over a distance of about 1.5 cm. In contrast to experiments with superconducting
heaters®~?the heating zone is not localized so that the direct and reverse transitions
from bubble to film boiling occurred under different loads, since the external perturbation
due to the irregularity of the vapor removal is not enough to give a reversible transition
between the two boiling regimes. The spectral densities of the oscillations of both bubble
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FIG. 2. Frequency dependences of the spectral density of fluctuations for two regimes of film boiling. Dashed
lines — 1f (1) and 1f? (2) dependences.

and film boiling on a horizontal heater were of a Lorentzian form with a characteristic
horizontal shelf at low frequencies.

A different picture was observed for a vertical heater. The source of film boiling
arising at a weak location of the wire rapidly propagated upwards over a distance of
1-1.5 cm. The transition to film boiling was accompanied by a large increase in tem-
perature. The process was observed through a microscope. A cone-shaped vapor jet rose
along the wire from the bottom boundary of the hot zone. The length of the hot zone
fluctuated appreciably.

Oscillograms of the transport current were recorded on an S9-8 oscillograph using a
time step from 1 ms to 0.5 s with 2048-point realizations, which made it possible to cover
the frequency range from 18 to 10 Hz. The spectral densities calculated from the
experimental oscillograms of film boiling had the formf</n a wide range of input
power. The values of: depended on the input heat power. When film boiling was quite
stable,a was close to 1, i.e. 1/noise was observed in the system in a wide range of
controlling parameters. As the power decreased, the picture changed near the instability
of film boiling. The amplitude of the fluctuations of the hot zone increased. Outwardly,
the picture resembled an inverted sandpile, and the fluctuations of the length of the hot
zone resembled the descent of an avalanche. The exparniarthe region of instability
of film boiling was close to 2.

Figure 1 shows typical oscillograms for the two regimes described above. The
oscillogram 1 in Fig. 1 corresponds to relatively stable film boiling on a vertical heater,
and the oscillogram 2 corresponds to instability of the film regime. The distribution
functions for the amplitudes of the oscillations in the first case were approximately
symmetric with a maximum near zero and resembled Gaussian distributions. In the sec-
ond case the distribution functions near zero split into two peaks and had longer “tails.”
Longer realizations are required for quantitative analysis of the distribution functions and



JETP Lett., Vol. 69, No. 8, 25 April 1999 Skokov et al. 639

to determine whether the behavior of the distribution of “avalanches” in the region of
large outbursts is exponential or power-law.

Figure 2 shows the spectral densities of fluctuations for two film-boiling regimes in
the experimental frequency range. The densities were obtained by “joining” the spectra
for individual oscillograms with a different time step. The dashed line in Fig. 2 shaiws 1/
and 1f2 curves. One can see from this figure that thie* behavior is observed over five
orders of magnitude.

It should be underscored that thd 9Lbehavior of the spectral density of the fluc-
tuations was observed for all oscillograms in the region of film boiling and in a wide
range of input powers. The low-frequency limit of the indicated behavior was observed
only when the input power was too high and the upper limit of the hot zone reached the
end of the wire. In other words, the critical behavior indicated by tH& %pectra is
maintained in a wide range of and without adjustment of the controlling parameters.

In summary, in the present work wideband “Lhoise was observed during film
boiling of a liquid. The behavior of the spectra in a wide range of external parameters and
the general picture of the process suggest that the process investigated is similar to the
phenomenon of self-organized criticality.
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Erratum: Experimental evidence for Coulomb
charging effects in submicron Bi-2212 stacks
[JETP Lett. 69, No. 1, 84—-90 (10 January 1999 )]

Yu. I. Latyshev, S.-J. Kim. and T. Yamashita
Pis'ma Zh.'Eksp. Teor. Fiz69, No. 8, 594-59525 April 1999

[S0021-364(09)01308-7
PACS numbers: 85.25.Cp, 74.50, 99.10:+g

For technical reasons, the reproduction quality of the oscillograms was unsatisfac-

tory.

The editorial board apologizes to the authors and readers and reproduces the figures

here. These same figures can be seen at cond-mat./9903134.

Translated by M. E. Alferieff
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FIG. 1. Stages of the stack fabrication with Hl®, FIB combined with ion milling(b), a schematic viewc),
and a micrograph of the submicron Bi-2212 stacked junctin

0021-3640/99/69(8)/4/$15.00 640 © 1999 American Institute of Physics
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FIG. 2. Thel-V characteristics of the Bi-2212 stacks on a large current and voltage &bk, S=2 unv;

(b) #4,S=0.6 um?; (c) #6,S=0.3 um?. T=4.2 K.
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FIG. 3. Thel-V characteristics of the Bi-2212 stacks on a small current and voltage &Bgd#2, S=2 um?;
(b) #4,5=0.6 um?; (c) #6,S=0.3 um?. T=4.2 K.
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FIG. 4. Temperature evolution of the periodic structure on Ithé characteristicfa) and the temperature
dependence of the zero-bias resistaRggb) of Bi-2212 stack #65=0.3 um?.
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