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Abstract—Hollow-core waveguides with a periodic (photonic-crystal) cladding are shown to alow efficient
tempora compression of high-intensity ultrashort laser pulses and formation of megawatt soliton-like features
in the regime of robust isolated guided modes. We numerically analyze the temporal envelope evolution and
spectral transformation of the light field in air-guided modes of gas-filled hollow coaxial periodic Bragg
waveguides. Based on this analysis, we define optimal compression regimes, permitting high compression
ratios (of about six) and high compression efficiencies (up to 73%) to be achieved for microjoule laser pulses
with aninitial pulse length of 80—400 fs. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Temporal self-action of ultrashort laser pulsesisone
of the most interesting phenomena in ultrafast nonlin-
ear optics. Self-phase modulation (SPM) [1, 2], related
to the light-induced, intensity-dependent change in the
refractive index of a nonlinear material, alows
extremely short pulses to be produced and the phase of
laser radiation to be controlled [3]. This effect aso
plays an important role in the formation of optical soli-
tons [4-6]. The common strategy of short-pulse com-
pression involves SPM-induced spectral broadening of
a laser pulse within a large propagation length (typi-
caly, in an optical fiber) with subsequent chirp com-
pensation using prism compressors, diffraction grat-
ings, or chirped mirrors[3].

Thelaser power transmitted through an optical fiber
islimited by self-focusing [1], which leadsto an optical
damage of the fiber above a certain critical laser power.

Hollow waveguides [7, 8] represent a powerful and
convenient tool for the transmission and nonlinear-opti-
cal transformation of high-power laser pulses. The
threshold of optical breakdown for gasesfilling the core
of such waveguides is much higher than typical break-
down thresholds for dielectrics, with the radiation flu-
ence on waveguide walls usually being several orders
of magnitude lower than the radiation fluence at the
center of the waveguide core. Due to this advantageous
combination of properties, hollow waveguides made it
possible to perform several interesting and important
experiments dealing with the physics of high-intensity
ultrashort laser pulses [9]. Hollow-core fibers are
intensely used, in particular, in modern laser systemsto

increase the length of nonlinear-optical interactions of
laser pulses and to enhance nonlinear-optical processes.
Fibers of this type allow high-intensity ultrashort laser
pulses to be spectrally transformed through nonlinear-
optical processes without alaser breakdown in the fiber
core. Self-phase modulation in a gas filling the core of
a hollow fiber makes it possible to produce pulses
shorter than 5 fs[10, 11]. Stimulated Raman scattering
(SRS) of laser pulses in hollow fibers filled with
Raman-active gases resultsin an efficient generation of
multiple Raman sidebands. In the regime of locked
phases, these Raman sidebands can be employed to
synthesize pulses shorter than 4 fs [12]. Hollow
waveguides can radically enhance high-order harmonic
generation [13-16] and improve the sensitivity of gas-
phase analysis based on four-wave mixing (FWM)
Spectroscopy [17-19].

The modes of standard hollow fibers with a solid
dielectric cladding are leaky [7], with the magnitude of
optical losses increasing for these modes as A%/a® with
a decrease in the radius a of the hollow core (A is the
radiation wavelength). There is no way, therefore, to
use standard hollow fibers with very small inner diam-
etersfor laser experiments, which usually operate with
hollow fibers with core diameters ranging from 100 up
to 500 pm. Such fibers are essentially multimode. The
losses of guided modesin standard, solid-cladding hol-
low fibers with smaller core diameters are typically
unacceptably high for the transmission and nonlinear-
optica transformations of laser pulses. This circum-
stance prevents the above-described strategies of pulse
compression, based on standard hollow-core fibers,
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Fig. 1. A sketch of the cross section of a coaxia periodic
waveguide. Unshaded and shaded areas correspond to mate-
rials with low (ng) and high (n,) refractive indices, respec-
tively.

from being extended to femtosecond pulses with ener-
giesranging from afew up to tens of microjoules.

Recently developed hollow-core photonic-crystal
fibers (PCFs) [20, 21] provide a unique opportunity to
transmit high-intensity laser fields in guided modes
with transverse sizes of 10-50 pm. These fibers can
confine waveguide modes of electromagnetic radiation
within the low-index area of the hollow core due to the
high reflectivity of atwo-dimensionally periodic (pho-
tonic-crystal) cladding within photonic bandgaps
(PBGs) [20-26]. In these frequency ranges, electro-
magnetic field cannot exist in the form of waves propa
gating inside the periodic structure of the photonic-
crystal cladding. The reflection coefficient of aperiodic
structure within PBGs is much higher than the reflec-
tion coefficient of the material of the cladding, substan-
tially reducing optical losses of air-guided modes in
hollow fibers. PBGs of the PCF cladding are thus
mapped onto passbands in fiber transmission.

Due to the high intensities of laser pulses attainable
in the hollow core of PCFs without an optical break-
down of the fiber and because of the large interaction
length provided by the waveguide geometry, hollow
PCFs can radically enhance nonlinear-optical pro-
cesses, including stimulated Raman scattering [27],
four-wave mixing [28, 29], and self-phase modulation
[30, 31]. Asdemonstrated by experiments[32, 33], hol-
low PCFs can transmit ultrashort laser pulses in the
regime of tempora solitons. Such fibers can be
employed for the laser guiding of microspecies and
atoms [34], creation of optical switchesand limitersfor
high-intensity laser pulses [35], and transportation of
high-energy laser pulses for technological [36, 37] and
biomedical [38] applications.

In this work, we will show that hollow PCFs alow
an efficient temporal compression of high-intensity
ultrashort laser pulses, as well as formation of strong-
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field solitonlike featuresin the regime of robust isolated
guided modes. We will perform anumerical analysis of
temporal envelope evolution and the spectral transfor-
mation of the light field in air-guided modes of gas-
filled hollow coaxial periodic Bragg waveguides. Based
on this analysis, we will identify optimal compression
regimes, permitting high compression ratios (of about
six) and high compression efficiencies (up to 73%) to
be achieved for microjoule laser pulses with an initial
pulse length of 80400 fs.

2. MODEL
OF A PERIODIC COAXIAL WAVEGUIDE

For a qualitative analysis of temporal self-action of
femtosecond pulses in hollow PCFs, we employ a
model of a periodic coaxia Bragg waveguide. The
cladding in such a waveguide consists of a stack of
coaxial cylinders with a periodically aternating refrac-
tive index. Physically, the mechanism behind guided-
mode formation in coaxia Bragg waveguides is in
many respects similar to the mechanism of waveguid-
ing in hollow-core PCFs, as electromagnetic radiation
is confined to the low-index hollow core in both cases
dueto PBGs of thefiber cladding. The modes of coaxial
Bragg waveguides have been studied in earlier works
[39-43]. In recent years, this effort was, at least par-
tially, motivated by the fabrication and successful dem-
onstration of dielectric coaxial Bragg waveguides [44].
Obvioudly, the model of a coaxial Bragg waveguide
cannot provide an accurate quantitative description of
guided modes in hollow PCFs. However, this model
allows the basic features of dispersion properties and
transmission spectra of hollow PCFsto be understood
in asimple and illustrative way, providing also a gen-
eral insight into the properties of field intensity profiles
in waveguide modes localized in a hollow core of a
PCF [45].

The cross-sectional structure of a hollow-core coax-
ial Bragg waveguide is sketched in Fig. 1. The
waveguide hasahollow corewith aradiusa surrounded
by a stack of coaxial cylinders with alternating refrac-
tive indices and thicknesses b and c. The refractive
index isassumed to remain constant within the core and
each of the cladding layers. Equations for the eigen-
modes of such awaveguide are written as

[A.+KN]E; = B°E,, 1)

[An+KnTH, = B°H,, )

where n, istherefractive index of theith region; kisthe
wavenumber; B is the propagation constant; and E; and
H, are the electric and magnetic fields in the ith region,
respectively.
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The electric and magnetic fields are coupled by the
boundary conditions:

Ei(ri, 8, 0) = Ei,y(r;, 6, ), ©)

Hi(ri, 8, 00) = Hi,(r, 6, w), 4
where wis the frequency; 8 isthe anglein the cylindri-
cal frame of reference; and r; istheradius of thecircular
interface between theith and (i + 1)th regions,

r,=a+i(b+c) foreven i,

written as [40-42]
Ei.(r,8) = (Aidm(ur) + BNy (u;r)) cos(me), (5)
Hi (1, 8) = (CiJn(uir) + DiNg(uir))sin(m@), (6)

whereJ;,,and N, arethe Bessel functions of thefirst and
second kind; A, B;, C;, and D; are the coefficients
related to each other by the relevant boundary condi-
tions; and u; is the transverse part of the propagation
constant for the ith waveguide mode.

The boundary conditions of Egs. (3) and (4) can be
represented in the form of matrix equations for
unknown coefficients:

Ti(rpU; = T a(r)Ui,y, (7)
rr=a+b+(i—1)(b+c) forodd i. where
The longitudinal components of the electric and Ui = (ABCD), ®)
magnetic fields in the ith layer of the waveguide are and

E Jn(u;r) Np(ur) 0 0 E

0 . . 0

E 0 0 Jm(ur) Nm(ur) E

m

T = 0 220un) 2N 2P0 wn 2N un o ©

g ur ,I’ 0

Enzs E

i (0 | m m
0P () NG () B () BEN(un) £
g - ir ir O

The boundary conditions (3) and (4) should be sup-
plemented by the requirement that the field should
remain finitefor r =0, i.e., B, =0 and Dy = 0. To com-
plete the set of equations for unknown coefficients, we
also introduce a boundary condition for the field on the
external boundary of the outer layer. The form of the
field aong this contour is physicaly insignificant
because the field amplitude is small on this interface.
The magnitude of losses for the considered type of
waveguide can be found through the calculation of the
coefficient of reflection from the periodic cladding:

_(AY+(CY°
(A)* +(Co)®

The attenuation coefficient can then be derived by using
the ray approach to the description of waveguide modes
[45, 46]:

(10)

tang = Léo (11)
Ng = 2, (12)
y = =NgInR. (13)
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Here, ¢ is the angle between the ray representing the
guided mode and the z axis, N is the number of reflec-
tions of the ray from waveguide walls per unit length,
and y isthe sought-for attenuation coefficient. Formu-
las (11)—(13) define the losses of guided modes in a
hollow-core waveguide with a periodic cladding.

3. EVOLUTION OF ULTRASHORT PULSES

In this section, we present a model of the temporal
self-action of ultrashort laser pulses in a hollow
waveguide. Analysis of the evolution of high-power
ultrashort field waveforms in a hollow waveguide is a
complex nonlinear problem. In the case of very short
pulse lengths, the standard slowly varying envelope
approximation (SVEA) becomes inapplicable. To
introduce our approach, we start with the generic equa-
tion for the field E(r, w) propagating in a nonlinear
medium [1]:

rot[rotE(r, w)]
2 2 2 (14)
= K'n"E(r, w) + how P, (r, w),

where |, is the magnetic permeability and P, (r, w) is
the nonlinear part of the polarization of the medium.
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We split the differential operator appearing in
Eq. (14) into the longitudinal and transverse parts and
separate variables assuming the excitation of only one
waveguide mode:

E(r,w) = E(z, W)E(X, Yy, w), (15)

+ BZE(r, w) + powZPn,(r, w) = 0.

62E(r2, w) (16)

Using the solution to the linear problem in the non-
linear regime in the case under consideration, we, in
fact, neglect spatial self-action. Assuming that the non-
linear polarization is parallel to the applied field, we
derive

‘3—%—‘;'—‘*1)+B§.(z, WE(rw) =0,  (17)
Ba(z 0) = BA(w) + Ko’ By (2 w), (18)

where 3, is the nonlinear propagation constant and
P.(r,w) = E(r, w)B,(z w).

Thedifferential operator acting on the Fourier trans-
form of thefield in Eq. (17) can be represented as

Bnl - IBnIDDa +|BnIE_IaBn|'

(19)

Theidentity (19) showsthat the solution to Eq. (17)
inthelinear caseis given by asum of counterpropagat-
ing waves.

E(z w) = E'(z w) + E(z w).

We are interested in the forward wave,
E'(z w) O Eo(w) exp(iBy(w, 2)2).

The backward wave is induced by the nonlinear, inten-
sity-dependent modul ation of therefractiveindex along
the z axis, giving rise to the reflection of the forward
wave. This effect is represented by the last term on the
right-hand side of Eg. (19). In the regime when

0
aBn|<[3nli

thistermisnegligible and effectsrel ated to the reflected
wave can beignored. Inthiscase, Eq. (17) isreduced to

0E(r, w) _

S = iBu(z WE(r, w). (20)
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We now expand [3,; asaTaylor seriesincluding only
the first two terms in this expansion:

2

By =B+ B (21)
Our equation for the field then reads
2
0E(r, w) _
e =iB(z, WE(r, co)+|2B( ) P.(r, w). (22)
Introducing the retarded time
n = t—z/Vg,

where V, is the group velocity for the central wave-
length of the pulse, we rewrite Eq. (22) as

a_E(r W) _ |B3(z W) — E(r w)
(23)
+i Ho®
ZB(Z (A)) nl(r 0'))

For ultrashort pulses with broad spectra, the SVEA
approach becomes inadequate. We describe the nonlin-
ear polarization in the approximation of an instanta-
neous, nondispersive third-order nonlinear response at
the frequency of theincident field, neglecting third-har-
monic generation:

Po(r, @) = FT{P,(r,n)}, (24)
Pa(r,n) = eoxE(r, n)IE(r, n), (25)
E(r,n) = FT{E(r,n)}, (26)

where X® is the cubic nonlinear susceptibility of the
medium related to the Kerr nonlinearity and FT{ }
stands for the Fourier transform.

Multiplying both parts of Eq. (23) by E(x, y, w) and
performing integration over the cross section of the
waveguide, we arrive at the following one-dimensional
equation:

(M = ﬁ%(z w)— E(z w)
(27)
. How
ZB(OZ (),)) nl(Z (A))
where
P.(z ) = agFT{[E(z n)*E(zn)},  (29)
E(zn) = FT{E(z w)}, (29)
@ E o) dS
_ X7 IE, y, @)l | 30)

II'E(X Y, (*)0)| ds

Equation (27) adapts the Maxwell equations to the
self-phase modulation of broadband field waveforms,
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Fig. 2. Group-velocity dispersion D (the solid line) and the coefficient of losses Y (the dashed line) for the fundamental mode of a
hollow periodic coaxial Bragg waveguide with a= 3.0 um, b = 0.5 pm, and ¢ = 1.0 pm. The inset shows the transverse distribution

of the field intensity in the fundamental mode of the waveguide.

making it possible to examine the temporal self-action
of ultrashort laser pulsesin hollow waveguides beyond
the SVEA approach.

We now complete our model by adding a damping
terminto Eq. (27). This operation givesriseto animag-
inary part of the propagation constant 3. Along with
waveguide losses, damping may include also material
absorption. However, thismaterial part of losseswill be
neglected in our analysis. The final form of our evolu-
tion equation is thus written as

G_E(z W) _ |83(z oo)— E(z w)
(31)
. HoWw
ZB(OZ ) nl(zi (1)) —y((A))E(Z, (0)

Equations similar to Eqg. (31), but derived in a
dightly different fashion, have been earlier employed
to analyze supercontinuum generation and four-wave
mixing in microstructure fibers [47, 48]. We numeri-
cally solved Eq. (31) by using a standard finite-differ-
ence procedure based on the approximation of the elec-
tric field with a discrete function and replacement of the
field derivative in the z-coordinate by the relevant finite
difference. The initial condition was defined by the
spectrum of the pulse at the input of the waveguide at z
=0 (seeFigs. 7 and 8in Section 5 below). Consumption
of computation time for this procedure was dominated
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by the fast Fourier transform for nonlinear polarization
at each step of integration.

4. PULSE SELF-COMPRESSION
Self-phase  modulation in a gasfilled hollow
waveguide results in a spectral broadening of a laser

Compression of microjoule femtosecond pulsesin the funda-
mental mode of a hollow-core coaxia Bragg waveguide

Central wavelength, um 0.865 | 0.850 | 0.840
Initial pulse length, fs 400 200 80
Initial energy, uJ 1.8 1.0 14
Group-velocity dispersion 1010 582 440
at the central wavelength,

ps nm kmt

Propagation distance, cm 20 12 3.0
Dispersion length, cm 12.7 5.7 124
Nonlinear length, cm 9.7 8.5 24
Minimal pulse length, fs 68 32 14
Energy within the central 608 601 1022
peak, mJ

Energy fractionin side peaks| 47% 35% 27%
Compression efficiency 34% 60% 73%
in pulse energy
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Fig. 3. Spectra of the input pulses (dashed lines) coupled
into the fundamental mode of a hollow periodic coaxial
Bragg waveguide with a = 3.0 um, b = 0.5 pm, and ¢ =
1.0 um. The solid lines display the magnitude of losses (a)
and the group-velocity dispersion (b) for the fundamental
mode of this waveguide.

pulse propagating through the waveguide and puts a
chirp on this pulse. Under certain conditions, the result-
ing chirp can be compensated by the waveguide disper-
sion. The elementary theory of self-phase modulation
for narrowband pulses [1, 2] yields the following
expression for the SPM-induced nonlinear phase shift:

P (t,2) = —kon,l(t)z, (32

where k, is the wavenumber for the central frequency
and n, is the nonlinear refractive index of the medium.

According to Eq. (32), the parameter of the SPM-
induced chirp is given by

°d(t, 2) o’
Oy (t, 2) = 2222 = yon,z—. 33
SPM( ) atz 0' 12 atz ( )

On the other hand, solution of the linear evolution
equation for a Gaussian pulse in the second order of

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

BESSONOV et al.

P, arb. units
2.0 T T T T T

(a) g

1.5

1.0

0.5

~600 —400 400 600
t, fs
S2, arb. units
3.5 T . ; ; , :
3.0 (b) AR z=0cm
i -—.—z=10cm
2.5 Pl ---z=15cm A
{1 ——2z=20cm
2.0 L 4
Y
1.5 Y 4

1.0
0.5

0.858 0.860 0.862 0.864 0.866 0.868 0.870 0.872
A, m

Fig. 4. Evolution of the temporal envelope (a) and the spec-
trum (b) of afemtosecond pulsein the fundamental mode of
a hollow periodic coaxial Bragg waveguide with a =
3.0um, b=0.5um, and c = 1.0 um. The input pulse has a
Gaussian tempora envelope with an initial pulse length of
400 fs, the central wavelength of 0.865 um, and the energy
of 1.8 puJd.

dispersion theory yields the following expression for
the parameter of the dispersion-induced chirp [49]:

aq(t,2) = 2N (2 +L5) 7, (34)
where
K = 9_2.l§
dw?

L isthe dispersion length.

Based on these simple arguments, one can expect
that an anomalous group-velocity dispersion (GVD)
would be needed to compensate for a chirp induced by
SPM in a medium with a positive nonlinear refractive
index.

For the fundamental air-guided mode of a hollow
coaxial Bragg waveguide, the group-velocity dis
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Fig. 5. Evolution of the temporal envelope (a) and the spec-
trum (b) of afemtosecond pulsein the fundamental mode of
a hollow periodic coaxial Bragg waveguide with a =
3.0um, b=0.5pum, and ¢ = 1.0 pm. The input pulse has a
Gaussian tempora envelope with an initia pulse length of
200 fs, the central wavelength of 0.850 um, and the energy
of 1.0 uJ.

persion can take both positive and negative values. Fig-
ure 2 shows the group-velocity dispersion for the fun-
damental mode of a hollow coaxia Bragg fused silica
waveguidefilled with argon at apressure of 1 atm. Geo-
metric parameters of the waveguide area =3 um, b =
0.5pum, and ¢ = 1.0 um. Theinset to Fig. 2 displaysthe
transverse field intensity profile in the fundamental
mode of the waveguide. Self-compression of laser
pulses in amedium with a positive nonlinear refractive
index requires anomalous group-velocity dispersion,
which is achieved on the right-hand side of the GVD
plotinFig. 2.

Numerical simulations were performed for laser
pulses with an initial pulse length ranging from 50 up
to 500 fs. The initial pulse shape was assumed to be
Gaussian. Based on the results of numerical simula-
tions, we defined the optimal pulse energy and central
frequency providing the maximum efficiency of pulse
compression. Tuning the central frequency shifts the
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Fig. 6. Evolution of the temporal envelope (a) and the spec-
trum (b) of afemtosecond pulsein the fundamental mode of
a hollow periodic coaxial Bragg waveguide with a =
3.0um, b=0.5pum, and ¢ = 1.0 pm. The input pulse has a
Gaussian tempora envelope with an initia pulse length of
80fs, the central wavelength of 0.840 um, and the energy of
1.4 pd

spectrum of the laser pulse relative to the GVD curve
(Fig. 3), thus modifying the effective dispersion profile
sensed by the most powerful components in the spec-
trum of the laser pulse.

Optimization on the space of laser-pulse and
waveguide parameters for the maximum efficiency of
pulse compression is a quite complicated problem,
involving acareful matching of theinitial parameters of
the laser pulse with the characteristics of the
waveguide. The table presents three sets of initial
parameters of microjoule femtosecond laser pulses
allowing efficient pulse compression in a hollow coax-
ial Bragg waveguide. Figure 3 displaystheinitial spec-
tra of these pulses against the GVD profile of the fun-
damental mode in the waveguide under study. The tem-
poral and spectral evolution of the pulses with initial
parameters specified in the table and in Fig. 3 isillus-
trated by Figs. 4-6. With realistic GVD profiles of
waveguide modes, self-compression of the laser pulses
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Fig. 7. Formation of megawatt quasi-solitonic features. The
temporal envelope (a) and the spectrum (b) of apulsein the
quasi-soliton regime at a distance of 5 cm from the input
end of the waveguide. The input pulse has a Gaussian tem-
poral envelopewith aninitial pulselength of 100fs, the cen-
tral wavelength of 0.830 um, and the energy of 0.8 puJ.
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is accompanied by the appearance of off-center radia-
tion peaks and other pulse-shape distortions. However,
in al the three cases, the ratio of pulse compression is
guite high (about six). The central peak of the pulse cor-
responding to the highest pulse compression ratio car-
riesup to 73% of theinput pulse energy (Fig. 6). These
results demonstrate a unique potential of hollow PBG
waveguides and PCFs for the compression of high-
power ultrashort laser pulses.

5. SOLITON-LIKE FEATURES

In the previous sections, we considered the evolu-
tion of laser pulses within propagation distances com-
parable with dispersion and nonlinear lengths. On such
a gpatial scale, self-phase modulation leads to a sub-
stantial spectral broadening of laser pulses. Our numer-
ical simulations show that, within larger propagation
distances, light pulses transmitted through hollow
coaxia Bragg waveguides tend to form quasi-stable
features, similar to optical solitons. Examples of such
soliton-like features are presented in Figs. 7 and 8.

Figure 8 illustrates a quasi-soliton propagation
regime where a pulse with a duration of 115 fsand an
energy of 320 nJ is transmitted over a distance L =
30 cm, which is many times larger than the dispersion
length (1.6 cm) without dramatic changes in its spec-
trum or temporal envelope. The power of the light field
carried by this solitary wave can be as high as 3 MW
under the above-specified conditions. Such megawatt
solitons in hollow PCFs have been recently demon-
strated by Ouzounov et al. [32]. In view of substantial
losses, it is hardly possible to produce true solitons in
waveguide structures considered in this paper. A
decrease in the pulse energy due to waveguide losses
reduces SPM-induced spectral broadening, eventually
leading to a breakup of solitonic features. However, the

P, arb. units

t, fs

Fig. 8. Evolution of thetemporal envelope of alaser pulsein the quasi-soliton regimein a hollow periodic coaxial Bragg waveguide
witha=3.0um, b=0.5 um, and c = 1.0 um: (a) the input pulse and (b) the pulse transmitted over a distance L = 30 cm along the

waveguide. The central radiation wavelength is 0.850 um.
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stability of the temporal pulse envelope within limited
propagation lengths, demonstrated by our simulations,
makes this regime of waveguiding promising for the
transportation of high-power ultrashort laser pulses.

6. CONCLUSIONS

Numerical analysis performed in this work demon-
strates that hollow-core waveguides with a periodic
(photonic-crystal) cladding permit a highly efficient
temporal compression of high-intensity ultrashort laser
pulses and generation of megawatt solitonic featuresin
robust isolated guided modes. Self-compression of
ultrashort pulses in such waveguides is based on spec-
tral broadening due to self-phase modulation and com-
pensation of the resulting SPM-induced chirp by a spe-
cialy designed dispersion profile of guided modes.
This approach is shown to allow a sixfold compression
of microjoule pulses with an initial pulse length of 80—
400 fs. The central peak of the compressed pulse, cor-
responding to the maximum compression ratio, can
carry up to 73% of the input pulse energy. The mini-
mum duration of the compressed pulse at the output of
a hollow PCF is mainly limited by the width of the
spectral region where the GVD is anomalous. Within
propagation lengths exceeding the dispersion and non-
linear lengths, intense ultrashort pulses can break up
into several quasi-stable soliton-like features. The radi-
ation power transmitted in such quasi-solitary waves
can beashigh as several megawatts. Therate of spectral
broadening in such a quasi-soltonic regime of propaga:
tion is much lower than the rate of spectral broadening
characteristic of theinitial stage of pulse propagationin
the waveguide.

Thus, hollow-core waveguides with a one- or two-
dimensional photonic-crystal cladding offer unique
possibilities for the compression of high-power femto-
second laser pulses. Dueto low losses, the possibility of
tailoring the group-velocity dispersion profile, the
existence of stable isolated air-guided modes, and the
possibility of concentrating the energy of the light field
in guided modeswith asmall transverse size, these new
waveguides can provide high efficiencies of pulse com-
presson for both high- and medium-energy laser
pulses.
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Special Features of the Electric Components of Acoustic Waves

in the Vicinity of Nonpiezoactive Directionsin Crystals
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Abstract—The conditions of existence of the zero components of electric field E and electric induction D
accompanying avolume acoustic wave propagating in apiezoel ectric medium have been studied. General equa-
tions describing the positions of the zero-field lines E(m) = 0 and the zero-induction points mg, such that

D(mg) = 0 on the unit sphere (m? = 1) of the wave propagation directions, are obtained. General theorems deter-
mining the conditions ensuring the existence of such lines and points, evenin triclinic crystals, are formul ated.
The relationship between such directions and various elements of the crystal symmetry is analyzed. The vector
fields D(m), which are always orthogonal to the wave normals m, in the vicinity of the zero-induction points
mg exhibit certain orientational singularities characterized by the Poincaré indices n = 0, £1, +2. The general
analytical expressionsare obtained for the n valuesin crystalswith arbitrary anisotropy and specified for anum-
ber of crystals belonging to various symmetry classes. The conditions of stability of the orientational singular-
ities with respect to small perturbations of the material moduli and a change in the crystal symmetry are con-

sidered. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Asis known, the acoustic wave of displacementsin
piezoelectric mediais usually accompanied by a quasi-
static wave of the electric potential. Thisimplies that,
using acoustic waves, electric signals can be trans-
mitted at the velocity of sound over acrystal. Thispos-
sibility opened the way to numerous applications of
acoustic waves in electronic devices and even led to the
formation of a special field of science called acousto-
electronics. The applied aspect provides an important
stimulusfor extensive investigations devoted to various
features of acoustic fields in piezocrystals [1]. These
investigations are also stimulated by basic interest in
the study of new effects in media featuring interactions
of electromechanical fields [2, 3]. The acoustics of
piezoelectric crystalsis till an extensively developing
field of solid state physics (see, e.g., review [4]), the
more so that even purely basic investigations in this
field frequently contain ideas for fruitful, albeit not
immediately evident, applications.

It should also be noted that by no means al basic
problemsin piezoacoustcs have been solved, especialy
for media with arbitrary anisotropy. The anisotropy
often influences the properties of piezoelectric crystals
in anontrivial way, and may sometimeslead to qualita:
tively new phenomena. In particular, it is very impor-
tant from the practical standpoint to know the wave
propagation directions m for which the electric field
components possess maximum amplitudes [5] and, on
the contrary, to reveal the nonpiezoactive directions|[1,

3] inwhich the electric signals are not transmitted. Tak-
ing into account that, irrespective of the anisotropy, the
electric field in an acoustic wave is always longitudinal
(E || m) and the electric induction is aways transverse
(D O m), we haveto distinguish [3] between the direc-
tions of longitudinal and transverse nonpiezoactivity in
which E =0and D =0, respectively, inany crystal. This
paper presents the results of investigations aimed at a
detailed analysis of the nonpiezoactivity of both types.
Previously, only rather fragmentary data have been
reported on these issues in the available literature.

Another important aspect of this problem is related
todirectionsm, in thevicinity of which the vector fields
of the amplitudes of displacements (u) and the accom-
panying electric components (E, D) exhibit singulari-
ties. According to theresultsobtained in [6, 7], thisvery
situation takes place near the acoustic axes, where the
orientational singularitiesin the degenerate branches of
natural waves are observed for the u and D fields, and
the amplitude singularities, for the E field. This paper
deals with orientational singularities of a new type,
which occur in the vicinity of the transverse nonpiezo-
activity directions in the vector fields D(m), that is,
around the points m, on the unit sphere such that
D(mg) =0.

Below we will formulate, proceeding from the gen-
eral expressions describing the electric components E,
and D, as functions of the direction of wave propaga-

tion in a crystal for all three branches of the acoustic
spectrum (a =1, 2, 3), the equations determining spe-

1063-7761/05/10101-0107$26.00 © 2005 Pleiades Publishing, Inc.
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cial directions m for which either E,(m) = 0 or
Dy(m) = 0. These directions have different dimension-
alities: the typica solutions appear as zero-field lines
(E, = 0) and zero-induction points (D, = 0) on the unit
spherem? = 1. The equations obtained will be analyzed
both in the general case and in application to various
particular crystal symmetry classes. The two types on
nonpiezoactivity are closely related to the crystal sym-
metry, but they can also exist in triclinic crystals pos-
sessing no elements of symmetry. The corresponding
theorems of existence are proved.

The possible types of singularitiesin the vector field
Dy(m) inthevicinity of the transverse nonpiezoactivity
directions will be considered. In particular, it will be
shown that, depending on the material moduli, the sin-
gularity in anisolated point my may be characterized by
the Poincaréindices (topological charges) n=0, 1, +2.
The general analytical expressions will be obtained for
the n values in triclinic crystals with arbitrary anisot-
ropy and specified for alarge series of crystals belong-
ing to particular crystal symmetry classes. Only the
solutions corresponding to singularitieswithn=+1 are
topologically stable, while singularities of the other
types either split or disappear upon an arbitrary triclinic
perturbation of the material tensors. However, the sum
of indices for any splitting must be equal to the initia
index n.

2. FORMULATION OF THE PROBLEM
AND SOME MAIN EQUATIONS

As was mentioned above, some purely mechanical
characteristics, including the elastic displacement vec-
tor u(r, t), the distortion tensor B(r, t), and the stress
tensor G (r, t), arerelated to such electrical quantitiesas
the potentia @(r, t) and the electric field strength E(r, t),
and induction D(r, t). The fields of ﬁ(r, t) and E(r, t)
can be expressed in terms of their own potentials as

B(r,t) = Ou(r,t), E(r,t) = - (r,t). (1)

The interrelation of these characteristics is explicitly
expressed by the coupling equations [§]

Oij = CjuPu * &ijEx, Di = eBu—&xEw. (2

where ¢y = € isthetensor of elastic moduli, g = & is

thetensor of piezoel ectric moduli, and € = € isthe per-
mittivity tensor. In such a piezoelectric medium, the
volume acoustic wave with the wavevector k = km and
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the phase velocity v must be a superposition of
mechanical and electric dynamic fields:

{u,@ = {uy @ exp[ik(m O —vt)]. (©)]
These fields obey the usual equations of motion [8]

divé = pti, divD = 0, 4
where p is the density of medium. Here, we use the
well-known quasi-static approximation valid to within
theterms proportional totheratio (v/c)?~107° (cisthe
velacity of light). Combining the above relations, we
readily obtain a homogeneous equation for the polar-
ization vector ug [3, 9]:

F(v,mu,=[F? +eDelelu, = 0, (5)
where
F” = mem—-pv?, ®)
e = mém, &€ = ml(Em,

symbol 0 denotes the dyadic product, and 1 is the unit

matrix. A necessary condition for the existence of non-
trivial solutions of the homogeneous equation (5) is

detF(v, m) = 0. (7)

This is a cubic equation for the square phase velocity
(v?), which determines the three branches of the veloc-
ity of the volume acoustic waves v (m) (a =1, 2, 3).

Orientations of the corresponding mutually orthog-
onal polarization vectors ugy,(m) of theisonormal natu-

ral waves can be expressed in terms of the Eq matrix,
which is adjoint to the matrix Fq (M) = Fqo (V4(M), m)

and is determined from the condition FoFq = 1 detFq.
Ascan bereadily checked, Eq. (5) for any vector ¢ such

that Eq c # 0 is satisfied for

Ugq || E«(m)c. 8)

It should be emphasized that the direct relation (8)
between the polarization vector uy,(m) and the wave
normal m will be widely used in the subsequent ana-
lysis.

Once the field of elastic displacements for a given
wave branch u,(r, t) is known, we can also determine

the corresponding electric components (see, e.g., [8]).
For the subsequent analysis, these components are con-
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veniently represented (by analogy with Egs. (3)—(8)) in
a coordinate-free form as

E, = -ikpg,m, D, = Nu,,

@, = ellgl/e, 9

N = ém—(Em) 0 mém/mém. (10)
Relations (9) together with condition (8) essentially
determine the functions E,(m) and D,(m) necessary
for the subsequent analysis.

As can be readily seen, mN = 0. This relation and
thethird relationin (9) clearly illustrate the well-known
property (see Section 1) according to which the electric
field E(my) is purely longitudinal, whereas the induc-
tion Dy(my) is purely transverse:

E,llm, D,Om. (11)

On the other hand, the same identity mN = 0 implies

one useful property of the N matrix:
detN = 0, (12)

which indicates that this matrix is planar and, hence,
can be represented as a sum of two dyads.

109

3. EXAMPLES
OF TRANSVERSELY ISOTROPIC
PIEZOELECTRICS

There are three groups of piezoelectrics which
exhibit a transverse isotropy of their acoustic proper-
ties. These media belong to the following classes of
symmetry [10]:

02, 622, (13
oom, 6MM (19)
0, 6. (25

Owing to the transverse isotropy, the formulas pre-
sented below contain only the polar angle 6 between the
m vector and the z axis coinciding with the main axis of
symmetry. Without loss of generality, we may proceed
with the analysis upon selecting any cross section con-
taining the main axis. Here, it is convenient to choose

m = (m,, 0, m;) =(sin, 0, cosh). (16)

In these coordinates, the £'” matrix in Eq. (6) for all
the six classes of symmetry (13)—(15) have the same
quasi-diagonal form [11]:

D 2 2 2 D
E CyyM] + Cyyms—pVv 0 dm;m, E

(0) _

Fo= E 0 CesM + Chm—p V2 0 E 7
E dm;m, 0 CagM’ + CagMi — PV E

where d = ¢;53 + ¢4,. The €ém vector and, hence, the €
scalar in Eq. (6) are aso the same for all symmetry
classes (13)—(15) [10]:

Em = (g;my, 0, g;my),
5 5 (18)
€ = g,mj +g;m;.

However, the form of the electric vector e according to
Eq. (6) for the transversely isotropic crystals of three
typesisdifferent. For the piezoel ectric mediabelonging
to classes (13) and (14), the electric vectors are
expressed as

e = ey(0, mm;, 0), (19)

e = {(e5+€3)mm;0, elsmi + esa”é ; (20)
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respectively. For amedium of the symmetry class (15),
the electric vector is given by asum of expressions (19)

and (20). Thus, the structure of the F matrix (5) for
classes (13) and (14) isthesameasin (17), but this con-

clusion is not valid for the F matrix of the symmetry
classes (15), which contains no vanishing elements. In

the same coordinates, the N matrix for the piezoelec-
tric media belonging to classes (13) and (14) has the
following form:

0 ) [l
E 0 (eg/e)m; 0 U
N = el4[| _m3 0 _ml Dv
0
0
O

0 —(eole)mmi O E

(21)

No. 1 2005



110

R E esmy 0 esm E
N = E 0 em 0 [
O€um 0 exmy[
U 2 2 2 022
1% (€15 + €31)€,mimMg O (&5My + €33mMs)e M, E
_ED 0 0 0 [y
U |

2 2 2
E (€15 + €31)€3m M3 O (e5My + €53M3)E5M, E

respectively. For a medium of the symmetry classes

(15), the N matrix is (by analogy with vector €) given
by a sum of expressions (21) and (22). In classes (13)
and (14) of higher symmetry, one of the natural wave
branches for any direction m is purely transverse:

u. (0, 1,0), 23)
PVE = CegMi + Cyy + (€5,/€) mim.

Such purely transverse waves of the t mode are fre-
guently called SH waves. The other two branches are
polarized in the {m;, ms} plane:

u,.¢ Il (2dmym,, 0, — Az, + Ag,m5 £ R), on
pVE, = (AL,m:+ ALmE + R)/2,

where

R = (A’ —A5m)° + (2dmmy)?,
A =

ij

(25

The electric components of the above wave fields can
be aso determined for an arbitrary direction m. For a
medium of the symmetry class (13):

@ = (en/e)mmsu,,
D, = e(es/€)Ma(ms, 0,—my)u,
@®(m)=0,
D¢ = —€{0,1,0G [my(u )+ ms(u )]

In aless simple case of the symmetry class (14), we
present only the result for the t branch:

(26)

®(m)=0, D, = (0 e;m; 0)u.. (27)

The structure of acoustic wavesin the mediabelong-
ing to the symmetry classes (15) is more complicated.
In this case, even a purely symmetric branch (u; || y)
exists only in the xy basis plane.
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4. ZERO ELECTRIC FIELD LINES
ON THE UNIT SPHERE

According to the second relation in (9), the electric
field amplitude distribution on the unit sphere of the
wave propagation directions is described by the equa-
tion

Eq(m) = const Cip, (M)m, (28)
which shows that the zero values of E,(m) coincide
with those of the potentia @,(m) = e(m) - u,(m)/e.
According to condition (8), these directions are deter-
mined by the equation

e(m) Fq(m)c = 0. (29)
The acoustic waves (3) propagating in these directions
contain no electrostatic components E,, asin a nonpi-
ezoelectric medium. Even a nonzero induction field
D; = &l ; in these directions does not influence the
parameters of the displacement wave.

The scalar equation (29) poses only one limitation
on the direction of the wave normal m = m(6, ¢) asa
function of two spherical angular coordinates). In other
words, Eq. (29) determines a line (or several lines) of
nonpiezoelectric directions (in which E, = 0) on the
sphere m? = 1. It should be noted that the condition of
longitudinal nonpiezoactivity,

e(m) Oug(m), (30)
in some special cases can be satisfied even onthewhole
m? = 1 sphere. This takes place, in particular, in the
transversely isotropic crystals belonging to the symme-
try classes (13) (for the | and t' modes (26)) and (14)
(for the t mode (27)). For all other crystals, including
transversely isotropic crystals bel onging to the symme-
try classes (15), the geometric locus of the longitudinal
nonpiezoactivity asthe form of lines on the unit sphere
m?= 1. Such linesalso exist in the piezoactive branches
of the aforementioned high-symmetry media belonging
to symmetry classes (13) and (14). For example, the
zero-field lines E, = 0 in the | and t' branches of the
mediaof classes (14) and (15) appear at theintersection
of the m? = 1 sphere with the cones of directions
defined by the polar angles 6, and 6;. as

2
tan 08, = —ey/(2e; + e4),
2 | 33/ (2645 + €51) (31)
tan" 6, = (€5 + €3 — €33)/€;s.

For simplicity, these expressions are written in an
approximate form corresponding to the case of aweak
electromechanical interaction and a small elastic
anisotropy. Neverthel ess, one can readily check that the
exact condition for the existence of the aforementioned
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nonpiezoactivity cones is the positive determinacy of
the right-hand parts of the approximate formulas (31).

It is possible to prove that the longitudinal nonpi-
ezoactivity lines in fact exist virtually in all (even tri-
clinic) crystals. Let us consider a crystal with arbitrary
anisotropy, which contains at least one acoustic axis of
the general (conical) type. Here, it should be noted that
no onereal crystal without acoustic axes and no onetri-
clinic crystal without conical axes are known so far. As
was demonstrated in [12, 13], the polarization fields of
elastic displacements ug,(m) for the volume natural
acoustic waves in such acrystal can be arranged on the
m? = 1 sphere so that oneis even,

U(—=mM) = Ug(m), (32
and two are odd,
U (—M) = —Ug (M), Ug(—=m) = —Ug(m). (33)

The nondegenerate branch ug(m) is always odd and
continuous on the entire sphere of wave directions. As
for the degenerate branches, uy(m) and ug(m), their
evenness depends on the representation and can be
changed simultaneously. These branches are continu-
ous at al points of the sphere except for some non-
closed lines on which the uy;(m) and ug,(m) functions
change sign. Such lines can be arbitrarily deformed on
the unit sphere without changing the positions of termi-
nal points (coinciding with the points of degeneracy).
In fact, the representation is chosen by setting certain
fixed positions of the sign reversal lines (coinciding for
both degenerate branches).

One can readily check that the aforementioned
properties of the fields of elastic displacements, which
were established in [12, 13] for purely elastic media,
are also vaid for piezoelectrics. Taking into account
that, according to relations (33), the ug(m) function is
odd and the e(m) function is (by definition (6)) even,
we may conclude that the potential

Qoz(m) = e(m) Clg(m)/e
is an odd function

Qo3(—M) = —Poz(M). (34)
This result implies that, for any path connecting the
opposite points m and —m on the unit sphere, there
exists at least one point m, such that @;(mg) = 0. In
scanning the paths on the unit sphere, points mg will
apparently form a closed line representing a geometric
locus of the directions of longitudinal nonpiezoactivity
for the nondegenerate branch.

For the degenerate branches @y (m) and @,(m), the
considerations should be somewhat modified, while
being till generally anal ogous to those used in solving
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a similar problem [12] concerning the existence of
the lines of solutions in the degenerate branches of

special volume waves in semi-infinite elastic medial
Not reproducing these considerations here, we only for-
mulate the result: the longitudina nonpiezoactivity
lines exist in both degenerate branches and pass from
one branch to another at the degenerate points. Thus,
the following theorem of existenceisvalid:

All three wave branches in an arbitrary crystal
containing conical acoustic axes must possess lines
of longitudinal nonpiezoactivity directions on the
unit sphere.

It should be a so noted that, when awave propagates
along an acoustic axis my of any type, the continuum of
possible orientations of the wave polarization u in the
plane of degeneracy always contains a vector orthogo-
nal to the e(lm) direction. This ensures nonpiezoactiv-
ity of the corresponding wave. Therefore, the acoustic
axes must belong to the lines of longitudinal nonpiezo-
activity.

The elements of crystal symmetry can become an
independent factor accounting for the phenomenon of
nonpiezoactivity under consideration. According to [1],
any symmetry axis determines the direction of nonpi-
ezoactivity for purely transverse modes, while a sym-
metry plane is the geometric locus of nonpiezoactive
directions for the corresponding SH waves. Let us
consider, for example, a monoclinic piezoelectric
crystal belonging to one of the two possible symmetry
classes: mor 2. Inthefirst case, the electric vector e of
awave propagating in a plane of symmetry m must be
orthogonal to the polarization vector of the t branch
and, hence, occur in this plane. In the second case, the e
vector for awave normal occurring in the plane perpen-
dicular to the dyad (2-fold) axis of symmetry must be
paralel to this axis and, hence, orthogonal to polariza-
tion vectors (belonging to said plane) of the | and t'
waves. Naturaly, the latter property is valid for
any other symmetry axis of even order. In monograph
[1], this rule was formulated for planes orthogonal to
the tetrad (4-fold) and hexad (6-fold) axes.

In particular, the coordinate planes of the crysta
system orthogonal to the tetrad and dyad axes in cubic

piezoel ectrics (symmetry classes 4 3m and 23) must be
nonpiezoactive for the corresponding | and t' branches.
At the sametime, the diagonal planesof {110} symme-
try are nonpiezoactive for the corresponding t waves.
One can readily check that, in the vicinity of the coor-
dinate axes, the potential amplitudes for these branches
can be represented as (Fig. 1)

@, 06°sin2¢, (35)

@ 0 6°cos2¢. (36)

1 The authors are grateful to A.L. Shuvalov for attracting their
attention to this circumstance.
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5. ZERO-INDUCTION POINTS
ON THE UNIT SPHERE

5.1. General Case of Arbitrary Anisotropy

Now let us consider the conditions determining the
propagation directions my in which the electric induc-

tion vector D, = Nu, defined in (9) vanishes. Taking
into account identity (12) and the definition of the
adjoint tensor

~

NN = TdetN, (37)

one can readily check that D, = O for the directions m,
such that u, || Nd, where d is any vector obeying the

condition Nd # 0. For these directions m,, according
to condition (8), we also have

Fac|INd. (39)
In the general case, this condition gives two equations
with two unknowns 6 and ¢, which determine the posi-
tions of isolated points my(8, ¢) such that D, =0 onthe
unit sphere m? = 1.

There is the well-known Brouwer theorem in the
topol ogy, according to which any continuous transform
on a sphere, not mapping any point by its antipode, has
at least two stationary points.

Now let us consider a distribution of vectors D (m)
continuous everywhere on the m? = 1 sphere. The con-
tinuity of D,(m) is ensured when the corresponding
branch a is nondegenerate. According to Brouwer’s
theorem, this distribution of D, vectors tangent to the
sphere must have two stationary points for which
D, = 0. On the other hand, relations (9) and (10) imply
that this distribution also possesses an additional prop-
erty: Dy(—m) || D4(m). For thisreason, the pair of points

Fig. 1. Polar diagrams of the electric potentias (a) @ +(9)
and (b) @¢(¢) at © = const in thevicinity of the (0, O, 1) direc-
tion in a cubic piezoelectric crystal. Numbers 1, 2, and 3
refer to the angles 8, < 8, < B5; solid and dashed lines cor-
respond to the potentials of different signs.
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stipulated by Brouwer’s theorem includes the inver-
sion-equival ent stationary points mg and—m,. Thus, the
following theorem of existence of the transverse nonpi-
ezoactivity directionsisvalid:

In any crystal of arbitrary anisotropy, each nonde-
generate branch must contain at least one inversion-
nonequivalent zero-induction point mg such that
D,(m) = 0 on the unit sphere of directions.

Therefore, the zero-induction points in awave field
D,(m) must exist even in triclinic crystals. Of course,
the positions of such pointsin the general case(i.e., the
solutions to Eq. (38) in the general form) cannot be
found analytically. However, in some more symmetric
crystals, the nonpiezoactive directions mg can be deter-
mined without cumbersome computations.

5.2. Zero-Induction Points Related to Elements
of the Crystal Symmetry

5.2.1. Longitudinal waves propagating along
symmetry axes. Let us consider a wave propagating
the direction my in a piezoelectric crystal, which coin-
cideswith asymmetry axisof any order except for dyad

axes (e.g., thiscan bethe 3, 4, 4, 6, or 6-fold axis). As
is known [11], any symmetry axis (including a dyad
axis) is alongitudinal normal. Evidently, the electric
induction D,(mg) accompanying the given longitudi-
nal wave (u, || my) must be zero, since otherwise the
D,(mg) vector would possess two equivalent orienta-
tions (to contradict the single-valuedness of the third
relationin (9)):

D, = N(mg)m,. (39)

It should be noted that these considerations are not
valid in the case of transverse branches, which are
always degenerate for the selected direction, that is,
possessing equal phase velocities (v, = v,) and, hence,
arbitrary orientations of u; . and D,  in the plane:

Uy ¢, Dy e OMg. (40)

The wave propagating along a dyad axis should be
treated separately (albeit with the same result). In the
general case, this direction is not an acoustic axis. On
the other hand, the u, and D, vectors are determined to
within the sign and, hence, their rotations around the
dyad axis cannot be considered as different solutions.
One can readily check that, for a wave propagating
along the dyad axis, the transverse branches are charac-
terized by nonzero induction vectors. However, now we
will show that the longitudina branch in the same
direction always obeys the relation D,(mgy) = 0. Com-
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bining condition (39) with relation (10) for m = m,, we
obtain
D, = N(mo)mo = (émg)mg
(Emg)[(Mmeemg)my] (42)
my CEm, '
Let us check that the right-hand part of this expression
vanishes even for amonoclinic crystal of the symmetry

class 2. Indeed, selecting the z axis in (41) aong the
dyad axis (2 || mg), we obtain

] €56 €363 [
D, = Eﬁls—‘is‘-s‘sv 23— = SB-Q]- (42)
0 €33 3 [

However, according to [1, 10], the off-diagonal compo-
nents of & and € tensors entering into relation (42) for
amonoclinic crystal of the symmetry class 2 in this coor-
dinate system are vanishing: ;3= € = €;3 = €,3 = 0and,
hence,

Di(moll2) = 0. (43)
Evidently, Eq. (43) is valid for al crystals of various
classes possessing dyad axes. Thus, thefollowing state-
ment isvalid:

A longitudinal wave propagating along any axis of
symmetry in a piezoelectric crystal is accompanied by
an electric component with zero induction.

For example, let us consider a piezoelectric crystal
of the orthorhombic symmetry class 222. According to
the abovetheorem, all three dyad axesin thiscrystal are
the zero-induction directions m, for the longitudinal
modes. However, it can be shown that another four
inversion-inequivalent asymmetric directions m, with
zero induction (D, = 0) may exist in a quasi-longitudi-
nal branch of this crystal:

(B0, £00), (B9, o + ), (44)
€€, €

0, = arccot 7l 45

° ’\/(91452 +€5€1)€;5 (49)
_ €5€1

¢, = arctan e, (46)

For simplicity, solutions (45) and (46) are writteninthe
approximation of small piezoelectric moduli and weak
elastic anisotropy. In this approximation, a necessary
condition for the existence of the above series of zero-
induction points is that all the piezoelectric moduli
entering into relations (45) and (46) must have the same
sign (Fig. 2). It should be noted that cubic piezoelectric

crystals (symmetry classes 4 3m and 23) aways corre-
spond to Fig. 2b, since additional zero-induction direc-
tions according to relations (44)—(46) aways appear
along the triad axes.

5.2.2. Transverse (SH) waves propagating in
symmetry planes. Example 1: symmetry classm. Let
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Fig. 2. Diagrams of the directions of propagation of the
transversely nonpiezoactive quasi-longitudinal acoustic
waves in crystals of the symmetry class 222. The stereo-
graphic projections are given for the caseswhen (a) the sign
of the piezoelectric modulus ezg is opposite to that of e 4
and/or eys and (b) all piezoelectric moduli have the same

sign.

the z axis be perpendicular to the plane of symmetry of
amonoclinic crystal (z 0 m) and consider the t branch
of awave propagating in this plane:

m = (m;, m,, 0), u,ll(0,0,1). (47)
One can readily check that in such waves
D, = (0,0, esm; + em,)u, |l . (48)

Therefore, the symmetry plane always has a single
direction mg corresponding to zero induction D;, which
is determined by the azimuthal angle ¢

My = (Mg, My, 0),

Moy €35 (49)

tang, = —2 = ——=,
bo Moy €34

The maximum amplitude of D; in this plane corre-
sponds to the direction m,,,, = (My,, =My, 0), which is
perpendicular to m,.

Example 2: symmetry class 3m. In trigonal crys-
tals, the situation with transverse nonpiezoactive direc-
tions for the t waves in each of the three symmetry
planes containing the triad axis is completely analo-
gous to the above case of a monoclinic crystal. For
example, in the yz symmetry plane, relations (47)—49)
have to be replaced by

m = (0,m,, my), u,ll(1,0,0), (50)
D, = (—epm, +e;ms, 0,0)u,llu,, (51)
My = (0, Mgy, Mgg), tanB, = % = 2;2’ (52)

where 6, is the polar angle between m, and the triad
axis.
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Fig. 3. A singular vector distribution of the D, (m) vectors
in the vicinity of azero-induction point mg.

Example 3: symmetry class mm2. For at wave
propagating in the yz symmetry plane of an orthorhom-
bic crystal, we have

m = (0,m,, my), u.ll(1,0,0),
(0, my, my) ¢ ( ) (53)
D, = (eisms, 0,0)u; |l u,.
Evidently, in this case
m, = (0,1,0), m. . = (0,0,1). (54)

Relations (53) and (54) are also valid for tetragonal
crystals of the symmetry class 4mm.

Example4: symmetry classes 42m, 43m, and 23.
For thex axisparallel to thedyad axis (x||2), transverse
waves propagating in the diagonal plane (1, 1, 0) obey
therelations

m = (mg,—-m;, mg), u.ll(1,1,0). (55)
These waves exhibit electric components with the

amplitude of induction

D = eumy(1, 1,0)ullu, (56)
and, hence, have the following special directions:
mo = (1,-1,0)/4/2, mu, = (0,0,1). (57)

Example 5: symmetry classes 6mm and oom (14).
Any plane containing the principal symmetry axis in
such acrystal isthe plane of symmetry m. According to
relations (27), the electric induction vector of t waves
propagating in such planesis orthogonal to m and pro-
portional to my. Therefore, D, vanishes along the entire
equator mg = 0:

D.(m;, m,, 0) = 0. (58)
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It should be noted that, for crystals of the same symme-
try classes, the other transverse branch (t') polarized
along the principal symmetry axis aso has a zero-
induction line on the same equator:

D.(my, m,, 0) = O. (59)
One can readily check that relation (58), but not (59), is

aso valid for crystals of the symmetry classes (13)
and (15).

6. SINGULARITIES
OF THE INDUCTION VECTOR FIELDS
IN THE VICINITY OF D = 0 POINTS

6.1. General Case of Arbitrary Anisotropy
The vector field D,(m), which is orthogonal to the
wave normal m, may exhibit orientational singularity in
the vicinity of the zero-induction pointsm, (Fig 3). Let
us consider the D,(m) function for m = my + Am,
where Am [0 mg and |Am| < 1. Using condition (8) and
the third relation in (9), we obtain
D, (m) || N(m)E«(m)c. (60)
Taking into account that D,(m,) = 0, we have, to afirst
approximation,

Do(m) I Améa
(61)

O
(o7

[Ri(m)Ea(m)dlE

m=mq

3

Am,
m

For the transverse D,(m) field (see (11)), the asymmet-
ric tensor entering into expression (61),

Qu = O 0 N(M)Fa(M)Clp =, (62)

must be planar, that is, its spectral expansion can be
represented as a sum of two dyads:

QU = )\aléal 0 e(xl '9\ azéaz 0 eo(Z’ (63)

where A, éaj , and &, are the eigenvalues and eigen-

vectors (left and right) of the Qq tensor (e,; and e,,
must be orthogonal to m,). Note that the &, | eigenvec-
tors (in contrast to &) in the general case do not belong

to a plane orthogonal to mg, but their components éﬂ J-
oriented along m, are insignificant for our analysis.

Let us decompose each éaj eigenvector into two
components
-S| (= |
eaj - eotj + eotjl e(xj ”mm
A . (64)
€ = (I=my 0 mg)ey,; Omy,

No.1 2005



SPECIAL FEATURES OF THE ELECTRIC COMPONENTS OF ACOUSTIC WAVES

and form a more convenient matrix

QE = (i—moD mo)Qa

. - (65)
= )‘uleal U €a1 A a2€a2 0 €o2:
which will be used below instead of Qq:
D, [1AmQx. (66)

Let the angle of orientation ® of the D,(m) vector be
measured from the e,; direction, and the analogous

angle ¢ for Am in the same plane, from the égl direc-
tion (Fig. 4). In these terms, we can write

_ AeAM By, | Ag,
= JHE— 1t = g,
alAm Eeal al

— Da [éaz

tan®d =
Do LBy

(67)

Thus, the complete turn of Am around m, in the plane
orthogonal to m, implies the compete turn of Dy(m) in
the same or in the opposite direction (depending on the

sign of detQE = AgiMg2), Which corresponds to the
Poincaré index of the given singular point (Fig. 5)

n = sgndetOq. (68)
The above considerations fail to be valid in some

particular cases, when one of the eigenvalues (A4, or
Aq2) Of matrices (63) and (65) vanishes. In such cases,

det(AQEI =0, but formula (68) is not applicable. Indeed,
let Ay, =0 at my. Then,

Do 1AMQa = Ags(AM (B) ey (69)

and a zero-induction line can pass via mg in the direc-

tion of Am O &,,, but only provided that A,, = 0 is

valid. In this situation, the very concept of the Poincaré
index is inapplicable. However, if the vanishing of A,
has astrictly local character and takes place only along
m,, then we are dealing with avery specia singularity
analogous to a local-wedge degeneracy known in the
theory of acoustic axes[6]. It can be shown that atopo-
logical charge of the corresponding singularity in the
D,(m) field inthis case can take one of threevalues. n =
0, 1. However, both situations (point and line) with a
zero induction amplitude are very exclusive and never
encountered in real (even symmetric) crystals. Below
we will consider zero-induction lines of this kind in
model crystals. It will be demonstrated that the exam-
ples of the D, = O lines corresponding to Egs. (58) and
(59) belong to a different type.

On the other hand, the singular points with n = +1
depicted in Fig. 5 are rather widely encountered in real
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Fig. 4. The angles of orientation of the D, and Am vectors
in the plane orthogonal to mg.

/‘—t~\\
. ~
4 N
4 \
\ -
\
[ ) |
'
\ ' '
N ’
4
A 7z
\Ns_}_/’

Fig. 5. The two main types of singularitiesin the vicinity of
zero-induction points of the Dy(m) vectors.
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Fig. 6. A schematic image of the D;(m) vector field distribu-
tion over a group of five singular points mg in the central

region of acirclein Fig. 2b in the representation of nondi-
rectional segments.

crystals. For example, al directions mg in Fig. 2b cor-

responding to orthorhombic (222) or cubic (4 3m and
23) crystals are characterized by topological charges
n==1(inFig. 2, filled and empty circles correspond to
+1 and -1, respectively). Figure 6 is a schematic dia-
gram of the D,(m) distribution in the central region of
thecirclein Fig. 2b.
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Now let us consider some examples of crystals
belonging to particular crystal symmetry systems.

6.1.1. Longitudinal waves propagating along
symmetry axes. Example 1. For themg || 2 directionin
amonoclinic crystal with dyad axis, we have

n = sgn{(a, +b;)(a, +by) —c.ci (70)
where
a, = ez?ae, b, = elSdl_e?ssl’
AW 3
34 ; 35 (71)
e €5C
c, = 2ulz, G5t
Dy Dy
a, = ezAsfse, b, = 924d2_338352’
AW 3
35 34 (72)

_ €34C34 + €50,
C, = —— _
Ay, Ags

d, = 3 + Cg3. The € tensor is assumed to be diagonal,
which can be ensured by the appropriate choice of the
x- and y axes of the crystallographic coordinate system
with the z axis paralel to the dyad axis.

Example 2. For the my || 2 direction in an orthor-
hombic crystal belonging to the symmetry class mm2,
we have

n = sgn(b;b,). (73)

Example 3. For them, || 2 || zdirection in an orthor-
hombic crystal belonging to the symmetry class 222,
we have

n? = sgn(a,d,/a,d,). (74)

Analogous formulas for the n® and n® are obtained
from (74) by cyclic rearrangement of the indices. Note
that, in the isotropic limit, we obtain

d]_/AgS = dz/A544> 2, (75)

and only avery large elastic anisotropy can change the
signsof theratiosin formula(74). For thisreason, these
signs for most orthorhombic crystals are determined
only by the piezoelectric moduli n@ = sgn(e, /).

Example 4. As can be readily checked, for the prin-
cipal symmetry axesin crystalsof the symmetry classes
422, 622, 022, 4mm, 6mm, comm, 4, 6, o0, 32, 3m, and
3 we have

n@=1, (76)

and in crystals of the symmetry classes 42m, 4, 43m,
and 23,

n® = 1. (77)
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6.1.2. Transverse (SH) waves propagating in
symmetry planes. We will not write lengthy expres-
sions determining the choice between n=+1 indicesfor
the waves along m, directions in monoclinic and trigo-
nal crystals (see relations (49) and (52), respectively)
and instead pass to orthorhombic crystals.

Example 1. For the transverse acoustic waves (53)
and (54) propagating in the vicinity of the zero-induc-
tion direction my = (0, 1, 0) in an orthorhombic crystal
belonging to the symmetry class mm2, the singular
induction field is characterized by the Poincaré index

€32(C1p + Cos) /[ Dgs — e31} (78)

n = sgn
% [ €15

Example 2. For the same direction in tetragonal
crystals belonging to the symmetry class 4mm, we have
_ [€31C12 — C11 + 2Ceq]
n=sgne/———"——"--. 79

B (e JAV 0 (79)

Example 3. For the direction my = (1, =1, 0)/ /2 in
tetragonal crystals belonging to the symmetry class

42m, we obtain

n = —sgn(e/es;). (80)

Example 4. For the same direction in cubic crystals

of the symmetry classes 4 3m, 23 in the diagonal sym-
metry plane, as well as for the symmetry-equivalent

direction my = (-1, 1, 0)/ ﬁ , we have (for any combi-
nations of the moduli)

n=-1. (81)

6.2. Special Types of Sngularities
The above analysis is exhaustive only provided that
the Qq tensor (62) is nonzero. As was shown above,

usual systemshave Qq # 0. However, in somevery spe-
cial cases, this tensor may vanish in some special
directions because of high symmetry or as aresult of
vanishing of certain combinations of the material
tensor components. In such cases, the genera
expressions are very lengthy and we only present

here some final results. For Qq (M) = 0, the distribu-
tion of the induction vector field in the vicinity of m,
has four additional variants depicted in Fig. 7. The
first three of these correspond to isolated singular
pointswith the Poincaréindicesn=0, £2 (Figs. 7a-7c),
while the fourth variant correspond to the existence of
aD =0line passing viathemg point (Fig. 7d). Thisvery
situation is observed on the equator m; = 3 for the
transverse tangentially polarized t waves (58) in all
transverse-isotropic media (13)—(15) and for the trans-
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Fig. 7. Four possible types of the D, (m) vector field distribution around a zero-induction point mg, where Dy (m) = Ou (mg) =0.

verse t' waves (59) polarized along the principal sym-
metry plane in the media of symmetry classes 6mmand

com. The only alternative exampl e of Qu matrix vanish-

ing is offered by a crystal with hexad axis 6. In this
case, al three wave branches are featuring the identical
singularitieswith n = -2 (Fig. 7c).

6.2.1. A model crystal of the symmetry class
mmz2. Let us assume that one piezoel ectric modulus in
the crystal under consideration is much smaller than the
other moduli. In particular, we consider a conventional
crystallographic coordinate system with the x and y
axes perpendicular to the symmetry planes and the z
axis parallel to the dyad axis, in which

|€a| < |€15]s [€24], €357, €33 (82)
One can readily check that, in a zero-order approxima-
tion with e;; = 0, a quasi-longitudinal nondegenerate
wave branch along the my = (1, 0, 0) direction features
the above special situation, whereby simultaneously

Dy(mg) = 0 and Qq1(M) = 0. In this case, the Dy(m)
vector field distribution in the yz plane in the vicinity of
m, is described by the expression

D, [1{0, g,8in20, g; + €,€3,Y,

(83)
—(0; —€165Y,)COS20 },

where @ is a polar angle of the m direction measured
from they axisin the yz plane and
01 = Y1(€1€53—€3€15),
Oz = (Y1+VY2)€1€1— &5,
Y1 = ds/Ass,

Yo = g/l (84

ds = Cj3+Css, D15 = Cy —Css,
Css = Cs5 eiS/‘sl’ dg = Cyp + Cgs-
Expression (83) shows that, depending on the material

constants, the D,(m) field always corresponds to one of
the possible variants depicted in Fig. 7. The Poincaré
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indices for the point singularities corresponding to
Figs. 7a—7c are asfollows:

[0, 0i€xY,>0,
n = (85)
SON[(9: —€1€2Y2)02],  91€3Y, <O.

A condition for the existence of zero-induction linesin
the D,(m) field for Fig. 7d is

Oy, = 0 or g, = 0, 0:1€3Y,<0. (86)
According to expression (83), a zero-induction line for
0, = 0 passes via m, along the z axis (Fig. 8a). For
es,Y, = 0, asimilar zero-induction lineis directed along
the y axis (Fig. 8b). If g; = 0 simultaneously with
ey, = 0, the two lines coexist (Fig. 8c). Finaly, when
g, = 0 and g,e5,¥, < O, the system features an oblique

cross of zero-induction lines (Fig. 8d) with the mutual
orientation determined by the equation

O+ €.63Y>

cos2¢ = 01— €1€5Y>2

(87)

6.2.2. Behavior of point singularitiesin response
to perturbations in the material moduli. The point
singularities of various types in vector fields D,(m)
behave differently (shift, split, or disappear) in
response to perturbations in the material moduli. An
analysis of this situation, analogous to that carried out
in[6], showed that singularitieswithn=+1 (Fig. 5) are
topologically stable and can only be displaced by such

~
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Fig. 8. Four possible types of the D;(m) = 0linesin amodel
orthorhombic crystal.
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Fig. 9. Diagrams illustrating the splitting of singular points
withn =22 (a) and 0 (b) inamodel crystal of the symmetry
classmm2.
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Fig. 10. Transformation of a singularity with n = -2 along
the axis of symmetry 6 into four singular points with n =
+1 during the 6 — 3 phase transition.

perturbations. The singular points of other types
(Figs. 7a—7c) are unstable and either split or (in accor-
dance with the law of topological charge conservation)
or disappear (provided only that n = 0). The zero-induc-
tion lines (Fig. 7d and Fig. 8) are also unstable and dis-
appear either completely or leaving a certain number of
isolated zero points.

These general properties can beillustrated by a par-
ticular example using a model crystal of the symmetry
class mm2 with asmall modulus e;; described above. It
should be recaled that relations (83)—(87) were
obtained in the zero-order approximation for e;; = 0. In
the next order with respect to the small parameter e,
theinitial singularity exhibits splitting along the direc-
tion my = (1, 0, 0) so as to form two or four singular
points:

%1, t,, 0), Ug = —€3/€pY,,

my+dm = )
(01,0, tH3), H3 = —€,€3/0;.

(88)

As can be seen from expressions (88) with g,e;,y, < 0,
the zero-order approximation along m, corresponds to
a singularity with n = +2 or —2. The introduction of a
small e;; modulus leads to a symmetric splitting of this
singularity into a pair of zero-induction points with
equal topological chargesn=1or n=-1aongthey or
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zaxis, depending on the sign of the e;,/g; ratio (Fig. 9a).
For g,e5,y, > 0, when the initial topological charge in
the zero-order approximation is zero, the perturbed pat-
tern comprises either four singularities with a zero total
index n (for e;;/g; < 1) or none of them (which corre-
sponds to the absence of zero-induction points in the
vicinity of the given direction for e;/g; > 1) asdepicted
in Fig. 9b.

It should be noted that the above splitting of unsta-
ble singularities is by no means reduced to abstract
mathematical games. Perturbationsin the material indi-
ces of real crystals are frequently caused by various
external factors such as €electric fields, mechanical
stresses, or temperature fluctuations arising in the
vicinity of phase transitions. For example, the phase

transition from a crystal of the symmetry class 6 2m or
6 to atrigonal crystal of the symmetry class 32, 3m, or

3 leads to replacement of the hexad axis 6 (n =-2) by
atriad axis (n = 1). In accordance with the law of the
topological charge (index) conservation and with the
final crystal symmetry, three additional zero-induction
points D, = 0 with n = —1 must appear along with the
central point (Fig. 10).

7. CONCLUSIONS

Two electric components, the electric field E and the
electric induction D, accompanying a volume acoustic
wave propagating in a piezoelectric medium exhibit
significantly different properties. The electric field is
always purely longitudinal, whereas the electric induc-
tion vector is, in contrast, always purely transverse. On
the unit sphere (m? = 1) of wave propagation directions,
the directions of zero electric field (E = 0) form lines,
while the zero-induction directions (D = 0) are usualy
isolated and appear as singular points of the tangential
vector field D(m) orientations. The nonpiezoactive
directions of both typesexist practically in al (even tri-
clinic) crystals, although the presence of crystal sym-
metry elements is the addition factor determining the
appearance of such directions.

The topological singularities of the D,(m) vectors
fields in the vicinity of zero-induction points in most
crystals are characterized by the Poincaré indices n =
+1, where the sign coincides with that of the determi-

nant of the Qu matrix (62). However, in some special

cases, thistensor may vanish (Qq = 0) in some specia
directions because of a high symmetry or as aresult of
vanishing of certain combinations of the material tensor
components. In this case, the system has either an iso-
lated zero-induction point m, (and has the Poincaré
indicesn =0, £2) or azero-induction line. Such special
orientations are topologically unstable and, in response
to any change in the anisotropy, either split into stable
points with n = £1 or disappear.
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SPECIAL FEATURES OF THE ELECTRIC COMPONENTS OF ACOUSTIC WAVES

It is interesting to note that singularities of the
induction vector field D, (m) in the vicinity of the zero-
induction points substantialy differ from analogous
singularities near the acoustic axes. According to [7],
stable singularities in the latter case are characterized
by the Poincaré indices n = +1/2, while the unstable
ones have n = 0, 1. The only exception to thisruleis

the acoustic axis along the hexad axis 6, for which the

degenerate D, = O branches also have Q, = 0 and
n=-2.
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Abstract—Effects of propagation of an extremely short (of one or several oscillation periods) electromagnetic
pulse in a medium whose resonance transition is characterized by diagonal as well as nondiagonal matrix ele-
ments of the dipole moment operator have been studied numerically. The Maxwell-Bloch system of equations
is employed without using the approximation of slowly varying envelopes. An analog of the McCall and Hahn
areatheorem is discussed as applied to the division of theinitial extremely short pulse into subpul ses. The solu-
tion is obtained in the form of a solitary stable bipolar signal with a nonzero pulse area (nonzero breather). ©

2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Theterm extremely short pulses (ESPs) isapplied to
electromagnetic pulseswith a duration of afew periods
of field oscillations so that the el ectric field polarization
cannot change its sign during the action of the so-called
half-period pulse [1-9]. Such pulses are field energy
flashes for which the concepts of carrier frequency and
wavelength are inapplicable. The spectral composition
of an ESP exhibits overbroadening [10, 11] and
approaches white noise; under certain conditions, the
ESP spectrum has a peak at zero frequency.

The approximations of slowly varying amplitudes
for equations of electromagnetic field and rotating
waves for aresonant medium, which are normally used
in nonlinear optics of guasi-monochromatic pulses
[12-15], should be at least refined to take into account
higher orders in perturbation theory; this makes the
application of these approximations rather cumber-
some. In an approach devel oped during arecent discus-
sion of prablems in subpicosecond optics [4, 16-20],
the dynamics of the pulsefield is analyzed directly and
not its envelope. It was also pointed out that not only
the temporal, but also the spatial ESP spectrum must be
overbroadened in view of the extremely small longitu-
dinal size of the propagating light spot (on the order of
the central wavelength) [21, 22]. In this case, aconsis-
tent theory of self-action of such electromagnetic for-
mations must be nonparaxial.

The propagation of ESPs in a medium of two-level
atoms was studied in atypical situation for many reso-
nant media, when the diagona elements of the dipole
moment operator are equal to zero [5, 7, 17, 23-26].
However, the linear Stark effect is observed for some
molecules. Parity violation for quantum states between
which atransition takes place can be induced by exter-
nal fields or by the action of surface forcesin the case
of surface adsorption of molecules. In these cases, the
diagonal elements of the operator of dipole transitions

between resonance levels are regarded as nonzero
guantities. In the system of quantum dots, a constant
dipole moment appears due to possible symmetry
breaking in the shape of quantum dots during their for-
mation. Analogously to Kerr media, the media with
nonzero matrix elements of the dipole moment can be
referred to as Stark media [27-29]. The interaction of
an electromagnetic pulse with a duration of afew peri-
ods of field oscillation with a Stark medium, disregard-
ing the effects of propagation, was considered in [30].

It should be noted that the application of the slowly
varying amplitude approximation to the problem of
propagation of an ESP through a Stark medium leadsto
generation of even harmonics; this renders such an
approach complicated (if at al realizable). The rejec-
tion of the dowly varying amplitude approximation
supplemented with the approximation of unidirectional
waves renders the problem completely integrable and
makes it possible to find steady-state solutions (soli-
tons) [31, 32].

The goal here is to study the space-time ESP
dynamics in transient processes of formation of soli-
tonsin a Stark medium. We assume that the ESP spec-
tral half-width is smaller than the frequency of the pre-
ferred transition from the ground state to the nearest
excited state. The dipole moments of resonant mole-
cules are aligned so that al the matrix elements of the
dipole moment operator are parallel to the linearly
polarized electromagnetic field vector. The ESP dura
tion is such that the characteristic times of all irrevers-
ible relaxation processesin aquantum system are much
longer than the time scale of field variation. We assume
that all atoms have the same transition frequency; con-
sequently, reversible relaxation processes can be
ignored in the framework under the above-formulated
assumptions. We will also assume that the transverse
size of the light spot, which is flat over the front, is

1063-7761/05/10101-0011$26.00 © 2005 Pleiades Publishing, Inc.
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much larger than the characteristic wavelength; conse-
guently, diffraction effects can be disregarded.

The main equations of the model will be formulated
in Sections 2, 3, and 4, where numerical estimates of
the parameters of the problem are obtained and the
properties of steady-state solutions[20, 32] required for
further analysis are discussed. The numerical results
obtained in Sections 5 and 6 show that the space-time
evolution of ESPs in the bulk of a Stark medium sub-
stantially depends on the sign of quantity y, which is
proportional to the difference of the diagonal matrix
elements of the ground and excited states of atwo-level
atom. It was found that positive values of the Stark
parameter are characterized by a division of the initial
unipolar ESP into steady-state subpulsesin accordance
with regularities analogous to the McCall and Hahn
area theorem [33, 34]. Numerical simulation for nega-
tive values of | revealed the existence of asolitary sta-
ble bipolar ESP resembling a breather or a Ot pulse
[35], but having anonzero pulse area. The properties of
the obtained sol utions are associated with the extremely
short duration of pulses incident on a medium of two-
level atoms with nonzero matrix elements of the dipole
moment operator.

2. EQUATIONS OF THE MODEL

In the approximation of two-level atoms (mole-
cules), the Hamiltonian can be represented in the form
of a2 x 2 matrix [12]:

. hwM_100 O 0Q
H :ﬁ’m 10D—Dd11Ed12EDD
2 M0 10 OdyE dy,EOQD

where E is the electric field of the electromagnetic
wave, and |10and [20are the ground and excited state,
respectively, differing in energy by 7wy.

The polarizability p of an atom (molecule) is given
by

p= trﬁa = P11013 + P2y + P20y + P20,

If we assumethat all relaxation processesin the system
of atoms can be ignored, the density matrix p satisfies
the condition trp = p;; + px = 1. Inthis case,

1 1
p= é(dn +dy) + é(dzz +dy)rg+dpry, 1)

where the components
M = Pt P, 2= =1(Pr—Pa),

_ 2 2 2
r3 = Pp—Pu, rM+trp+ry=1,
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of Bloch vector r areintroduced, and constant phases of
the elements of density matrix p and of the dipole

moment operator d are chosen so that d, =d, =d.

The scaar Maxwell equations lead to the wave
equation for field E(z, t) (not the envelope),

°E 10°E _ 41,9’
o T v Rl mper 88
0z c ot c” ot
where polarizability p(z, t) isdefined by relation (1) and
the angle brackets denote summation over all atomsand
division of the results by the density n, of resonant par-
ticles.

If we assume that the electromagnetic field varies at
a higher rate than the material variables r4(t, 2) and
r,(t, 2), we can ignore the reflected wave [17, 25] and
obtain the wave eguation in the unidirectional approxi-
mation:

OE , 10E _ 21,0
dz cot c ot

<%(d22 —dy)rs+ d12r1>. )

The Neumann equations for the density matrix lead to
the equations for the Bloch vector components:

ory _ [wo_'_(dn—dzz)E}rz,

Fr h

or d,,—d,,)E dE

a'[2 - [wo"'( 11 . 2) ]r1+2—h rs (3
or; _ _dE
T -2 ﬁ r.

Relations (2) and (3) constitute the complete system of
model equations. This system differs from the self-
induced transparency equations [33, 34] in that the
expression in the brackets contains, instead of detuning
from resonance, the transition frequency itself (thisisa
manifestation of the rejection from the rotating wave
approximation); in addition, this expression contains
the second term (d,; — d,,)E/% defining the shift of res-
onance levels due to the high-frequency Stark effect.

In the dimensionless variables, system of equations
(2) and (3) has aform convenient for numerical analy-
sis, i.e,

de _ 0, _
C"_Z = _a.l.(rl Hrg) =Ty,
or
5 = ~(1+ue)r, (@)
%—rrz = (1+pue)r, +erg, a_r: = —er,,
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DYNAMICS OF AN EXTREMELY SHORT PULSE IN A STARK MEDIUM 13

where T = wy(t — Zc), { = Z/L 4, € = 2dE/AWy,, U =
(dy; — dyy)/2d is a parameter, and the reciproca reso-

nance absorption length is given by L;és =
4T d?(hic) L.

In system of equations (4), we will define the condi-
tion of rest of the quantum system (r,(t, 2) = r,(t, 2) =0,
rs(t, 2) = —1) as the variables of asymptotic forms for
polarization and the difference in population densi-
ties for T — =+, while the conditions for the field
at remote instants are formulated as e, 1) = 0,
0¢e(¢, 1)/ot = 0. At the input to the medium, the pulse
had the following form in most computations:

T—T1
e (1) = epsechg-—g—%. (5)

System of equations (4) describes the precession of
vector r about the effective field vector @ = {—e, O,
1+ pe} (Fig. 1):

or _
E—er. (6)

3. NUMERICAL ESTIMATES

Choosing the transition dipole moment d =
1078 CGSE units, number density of resonant atoms

N, = 1018 cm3, and the ESP duration 8= wy, = 1075,
we can estimate the pulse amplitude €, = #/2dt, =
5 x 10° CGSE units for a pesk intensity I, = c&5/8m=
3 x 10" W/cm?.

Thecharacteristic timet, = A/4md?n, = 8 x 10! sfor
two-level systems is the time of the emergence of the
dipole moment in the two-level system induced by the
field of a passing pulse. During this time, the ESP
traverses a distance L, = ct, which is approximately
several centimeters, while the spatial pulse length ¢d =
3x10°cm. Thereciprocal of time givesan estimatefor
the Rabi oscillation frequency in the characteristic field
of reciprocal response of the medium, €, = 2m,d =
hl2dt, = 10 CGSE units.

The unidirectional wave approximation is valid
when t.1 > 1 or, in other words, for low concentra-
tions of resonant emitters and small values of dipole
moments, which is obviously observed in our case. For
larger dipole moments of d = 10716 CGSE units, which
aretypical of quantum dots, the above parameters have
different values: €, = 5 x 10° CGSE units, €y = 6 %
10%2 CGSE units, t,=8 x 103 s, and L4, = 2 x 102 cm.
It can be seen that the condition of applicability of the
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Fig. 1. Vector model.

unidirectional wave approximation holds for quantum
dotsaswell, although the scales of variation of thefield
and polarization of the medium differ less significantly
as compared to quantities characteristic of a medium
formed by resonant atoms or molecules.

Parameter 1 = (dy; — dx,)/2d, which isimportant for
subsequent analysis, may be positive or negative. The
value of p variesfrom 0.2to 7.0 for sometypes of semi-
conducting quantum wells [36]; for example, 4 = 0.4
for two lower vibrational states of the ground electron
state of the HeH* molecule [37], while p = 1.0 accord-
ing to estimates made in [27].

4. STEADY-STATE SOLUTION

It is well known that system of equations (4),
describing unidirectional propagation of an ESP in a
Stark medium, is a completely integrable problem. Its
steady-state solution was found in [20] in the form of a
solitary wave whose velocity V obeys the inequality

V>c(l+ rgl )%, which is significant for 1, < 1-10:

ex(T)
-1
— 7
= o, i o ps, ]
O Tst 0
where
5 = 1.(c/V-1)
T 11 (c/V-1)
isthe steady pulse duration.

Parameter 1, = wyt, has the physical meaning of the
ratio of the transition energy to the energy of the
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Fig. 2. Space-time field profile in the decomposition of the
initial ESP into subpulses in a Stark medium with p > 0
(1 = 2) with aconserved total pulse area © = 2mtin the bulk
of the medium.

dipole—dipole interaction between neighboring atoms.
The pulse area of a steady signal O,

Oy = }est(Za t)dr

8 O A/1+p_2 O

= arctan[j 0,

J1+y? OJ1+ p2(1+8%) + 0

givesavaue of 2rtfor parameter p —» 0. A character-
istic feature of dependence (8) isthe presence of a peak
intheregion of small (|u|< 1) negative values of ; e.g.,
(O)max = 31tfor p =-0.4 and &4 = 5. The velocity V of
propagation of a steady ESP is given by the expression

(8

2 1
E =1+ 6StTC2 ,
\4 1+ 8

(9)

which implies that the value of V as a function of &g
rapidly decreases in the region of 84 < 1, the decelera-
tion of the signal being the stronger, the smaller the nor-
malized cooperative time 1. (i.e, the smaler the
response time of the medium and, hence, the stronger
the reciprocal effect of the medium on the propagating
pulse).

For u =0, system (4) istransformed into a system of
reduced Maxwell-Bloch equations, which are formally
equivalent to the equations of self-induced transpar-
ency with a finite detuning from resonance, and solu-
tion (7) is defined by function 2rsech, which was
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derived by McCall and Hahn (34). It is convenient to
use this property of system (4) for comparison with
numerical solutions for other (nonzero) values of
parameter L.

5. TEMPORAL DYNAMICS
OF ESP FOR i > 0

For a medium with a constant dipole moment
(1 # 0), theinput pulsein theform of (5) isnot asteady-
state solution any longer; its behavior in the bulk of the
medium differs from the propagation of a steady ESP.
For i > 0 and for the same area of the input pulse equal
to 2, the ESP splitsinto subpul ses (Fig. 2) propagating
at their individua velocities. The steady ESPs (7)
resulting from the decomposition preserve their tempo-
ral shape, which is a feature of affiliation of such
objects to solitons. Analogous space-time dynamicsis
characteristic of the effect of self-transparency of 2rm
pulses [35], in which the number of signals appearing
as aresult of decomposition of an input pulse multiple
of 2mis determined by the areatheorem. In our case, it
isimpossibleto formulate adirect anal og of the McCall
and Hahn area theorem. However, in accordance with
the decomposition pattern for the input pulse, whichis
similar in many respectsto the analogous processin the
self-induced transparency effect, the problem under
consideration undoubtedly contains intrinsic regulari-
ties analogous to the area theorem. Here, the role of
area © under the envelope of a coherent pulse incident
on the medium, which determines the number of soli-
tons formed in the theory of self-induced transparency,
can be played by the angle ® of rotation of the Bloch
vector r around the effective field vector  (6) less the
term emerging due to uniform precession of vector r
about the third component of vector € (6) containing
irreducible unity:

® = IdT(Je(Z,T)2+(1+ue(Z.r))2—1)- (10)
0

With increasing Stark parameter 1, the magnitude of
the input pulse ® (5) increases (see Fig. 10c below);
accordingly, the number of decaying signals increases,
which is manifested in the emergence of alarger num-
ber of spikes on the curve describing the time depen-
dence of inversion at the entrance of an ESP in the
medium (Fig. 3).

At the same time, it can be noted that the pulse
area (8) of each of the increasing number of secondary
steady ESPs (Fig. 4a), which are formed from the same
initial pulse, decreases with increasing u (see Fig. 4b
and the explanation given in the caption to Fig. 4). The
solitons formed as a result of decay of theinitial pulse
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Fig. 3. (a) Space-time profile of inversion. (b) Time depen-
dence of inversion at the entrance to the sample upon an
increase in parameter L.

have different pulse areas in accordance with their
steady-state durations, the shorter ESPs carrying a
higher energy with a higher velocity.

In contrast to the pulse area, the rotation angle ® in
our problem can be used as a standard for measuring
secondary steady ESPs since @y is virtually indepen-
dent of u > 0 (Fig. 5a) in the entire range of &4 under
investigation (Fig. 5b). In this case, the fractions of the
initial value of ® (¢ = 0) corresponding to each steady
ESP formed as a result of decay are approximately
equal (seethelower curvein Fig. 4b).

Along with a 2m pulse, a breather [35] (nonlinear
signal with zero pulse area, which is a bound state of
two solitonswith different phase velocities, but with the
same group velocity) is a solitary nonstationary solu-
tion of problem (4) for u=0.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

e
4

1.5

1.0

0.5+

s 1 1 | 1 1 |
0 100 200 300 400 500 600
@ 4

3\4X5
AN

1 1 1
300 400 500

[\

=1

100

il .
600
¢
Fig. 4. (a) Decay of an ESP for large values of the Stark
parameter (1 = 5). (b) Dependences of the pulse area® and
rotation angle ® on the spatial coordinate for large values of

K. The height of the stepsis equal to the area carried away
by a subpulse extending beyond the computational grid.

1
200

o

The main analytic method for solving the Maxwell—
Bloch equations is the method of inverse scattering
problem (see, for example, [35]) based on the solution
of the Zakharov—Shabat spectral problem [38]. Here, a
breather appears as a result of emergence of two cou-

pled (A =-Ay. ;) valuesof the spectral parameter. The

imaginary and real parts of parameters A, were inter-
preted as the phase velocity and amplitude of the
breather components.
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Fig. 5. (8) Dependence of the rotation angle ®g for a steady
ESP on the pulse duration &4. (b) Dependence of the
rotation angle ®4 for a steady input ESP on the Stark
parameter .

A breather propagating to the bulk of the medium
experiencesinternal oscillationsdueto the differencein
the phase velocities of the parts constituting it. This
intrinsic motion leads to a periodic variation in the
breather shape with increasing spatial coordinate.

However, the same breather from the problem of
self-induced transparency [35], which appears at the
entrance of amedium with induced polarization (u # 0),
does not evolvein the bulk of the sample asa stable sol-
itary ESP. Sharp variations of the polarity of the inci-
dent pulse at small depths of a resonant medium
(Fig. 6a) lead to rapid rotations of the effective field
vector about axis 2 (see Fig. 1), generating a nonlinear
oscillatory signal (Fig. 6b) of nonzero area, which
propagates at an extremely low velocity. After the
emergence of this object beyond the computational
grid, the only surviving pulse (see Fig. 6a) is a solitary
steady unipolar ESP (7), which is gradually freed from
background field oscillations.

The specific nonlinearities in equations (4) for the
Bloch vector components, which are associated with
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Stark corrections to the transition frequency, lead to
generation of spectral components supplementary to
the modulation frequency in the breather, and the tem-
poral profile of the difference in populations turns out
to be modulated by the second harmonic of field oscil-
lations in the input signal [30] (Fig. 6¢).

6. NUMERICAL RESULTS
FOR p < 0: NONZERO BREATHER

Signreversal in the Stark coefficient u leads to non-
trivial consegquences for the dynamics of an ESP in a
resonant medium with a constant dipole moment. A
unipolar ESP (5) specified at the sample surface gives
rise to a nonlinear stable breather-type pulse (Fig. 7a),
whose pulse area, however, differs from zero (Fig. 7b)
(so-called nonzero breather). Thisis due to the form of
the third effective field component Q; = 1 + pe in
Eqgs. (4), which may vanish, or even reverseitssign, for
negative values of the Stark parameter (Fig. 8a).

At small depthsin the sample, when z~ L.({ ~ 1),
we can assume that (C, 1) = g, + r,C (4). Essentially,
the polarization component r, defines the field emerg-
ing in the medium as a response to the external pulse.
Functionr,(t, ¢) at small depthsisaquantity that varies
at Rabi frequency Q and generates the oscillating “tail”
of the main ESP (see Fig. 7). In the course of propaga-
tion, positive and negative spikes of the internal field
distort the profile of the initial pulse, leading to the
emergence of abipolar signal (nonzero breather) in the
developed phase of the process (see Fig. 73).

At instants when the value of Q5 approaches zero
(gray circle in Fig. 8a), vector € is directed aimost
againgt axis 1 (see Fig. 1) and forms an angle of a =
—-90° with axis 3 (black circlein Fig. 8b). In this posi-
tion, precession of vector r about vector  occursinthe
32 plane (see Fig. 1), leading at the initial stage to
amost complete inversion of the resonant medium
(black circle in Fig. 8c) and, accordingly, to the effec-
tive interaction between the field and the medium, fol-
lowed by reemission of energy back to the ESPfield (as
in the propagation of a 21t self-induced transparency
pulse). However, over a time period following the
instant marked by the light circlein Fig. 8, polarization
r, exhibits a sharp dip of negative polarity (Fig. 8d),
leading to the emergence of a negative half-period in
the field profile (see Fig. 8a). In this case, in view of
peculiar features of the vector model for system of
equations (4), vector  makes a complete turn about
axis 2 so that the angle of its inclination to axis 3
becomes positive (see Fig. 8b). For the new position
of , precession of vector r reverses its direction and
the decrease in inversion is transformed into a new
spike followed by energy absorption and reemission.

In view of nonlinear features of the problem, the
swinging of the self-consistent system “quantum
medium + classical pulsed field” illustrated above leads
to the formation of a clearly manifested bipolar signal
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Fig. 6. (a) Formation of a solitary unipolar signal (bold curve) from the input Ort pulse (breather) (fine curve) for u >0 (u = 1).
(b) Temporal field profile at a depth ¢ = 10 for p = 1. (c) Generation of harmonics of an input small-period breather in the bulk of

a Stark medium with p > 0.

from the initially unipolar ESP. The increase in param-
eter W in the region of negative values is accompanied
by periodic variations in the decay of the initia ESP
(Fig. 9). At the initial stage of each cycle, the above-
mentioned nonzero breather (Fig. 9a) with a small
period T Of Variation of its phase is formed against
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the background of the oscillatory noise (Fig. 10a). This
bipolar pulse propagates at its own velocity U differing
from the velocity of steady signal (7); the value of U
can be smaller than 0.2c (Fig. 10b). With increasing
absolute value of W, period T, Of internal oscillations
in the nonzero breather increases (see Figs. 9 and 10a),
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Fig. 7. (8) Formation of a nonzero breather from a unipolar
input ESP in the Stark medium with pu < 0 (L =-1). (b) The
©(Q) curve (in units of 1) shows that the pulse area of the
bipolar signal (Fig. 7a) isapproximately equal to 21T, spatial
periodicity of the rotation angle ®({) corresponds to pene-
tration depths at which negative field spikes appear in
Fig. 7a

which ultimately leads to the emergence of a steady
unipolar signal (7) with Ty —> . With a further
decreasein |, thissignal gradually joinsthe package of
steady subpulses (Fig. 9c) that have been formed at the
beginning of propagation to the bulk of the medium.
The number and parameters of these decay signals is
determined, asin the case of i > 0, by the value of the
total precession angle ® ({ = 0) at the entrance of the
medium, which increases with decreasing  (Fig. 10c).

The oscillatory object discovered in calculations for
U < 0 (see Figs. 7-9) can be represented numerically as
the sum of two pulses propagating at the same group
velocity, viz., a steady signal with apreset p (7) and a
bipolar signal (Fig. 11) with a pulse area equal to zero
to ahigh degree of accuracy.

It should be noted that an adequate explanation of
the ESP evolution in the bulk of a Stark medium is con-
tained in the spectral structure of the inverse scattering
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nant medium with g = —1. Time dependence of the angle a
of rotation of effective field vector  (b), inversion ry (c),
and medium polarization r,, (d) at a distance { = 35 in the
bulk of the medium.

problem for Egs. (4) (the derivation and analysis of this
spectrum forms an individua nontrivial problem).
However, the representation of the above bipolar ESP
as the sum of two signals (Fig. 11) makes it possible
to qualitatively describe the processes illustrated in
Figs. 7-9.

As parameter P increases to the region of negative
values, a bound state of three pulses propagating at the
same group velocity (which is much smaller than the
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Fig. 9. Formation of a unipolar steady pulse from a bipolar
nonzero breather with increasing p in the region of negative
values: p =-3.78 (a), —3.85 (b), and 4.0 (c).

velocity of light) isformed from the boundary temporal
profile even at small distances (see Figs. 7 and 9). Two
components from this triad have equal and opposite
phase velocities and form a bipolar Ot pulse (see
Fig. 11). The third pulse is a steady ESP (7). As the
Stark parameter decreases, the difference in the phase
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tion of the Bloch vector relative to the effective field vector
for an ESP at the entrance to the medium on .

velocities decreases and, accordingly, the rate of phase
change in the temporal profile of the observed bipolar
signa slows down (see Fig. 9). In the limit of zero dif-
ference in the phase velocities, the two pulses with
opposite polarities coincide on the time scale and are
annihilated. As aresult, we are left with a steady signal
(see Fig. 9¢) whose velocity isthe lower, the smaller its
duration. With decreasing |1, the process of generation
and annihilation of the bipolar signal is repeated with
increasing frequency (see Figs. 10a and 10Db).

It should be noted that the above oscillatory signal
with anonzero area corresponding to negative values of
the Stark parameter [ is also formed in the case when a
Lamb [35] Omtsignal is specified at the entrance to the
medium (Fig. 12). Variation of p and the frequency of
field oscillations in the initial breather in this process
givesriseto alarge number of peculiar features, one of
which corresponds to a negative-polarity ESP with a
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Fig. 12. Emergence of a negative-polarity ESP and a non-
zero breather from the initial Ot pulse (breather) at large
depths of penetration to a Stark medium withp=-1: { =0
(fine curve) and 100 (bold curve). The pulse area of the non-
zero breather (inset) isequal to 1T

pulse area compensating the area of the “nonzero”
breather (see Fig. 12).

7. CONCLUSIONS

We have analyzed numerically the space-time
dynamics of extremely short pulses in a medium in
which the transition between two quantum states is
characterized by a dipole moment operator with non-
zero diagonal matrix elements (Stark medium). The
assumption on extremely small pulse duration leads to
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the regjection of concepts of slow dependent variables
for the field and the medium, their frequencies and
phases, as well as the formulation of the Maxwell—
Bloch model in terms of the self-consistent field itself
with a definite polarity and true (not approximate)
rotating waves (density matrix components). As a
result, Bloch equations (4) acquire (in the region of fre-
guency detuning) cofactors exhibiting a threshold
dependence on the magnitude and sign of the field and
Stark parameter . It is this feature of the model that
determines the main aspects of time evolution of the
ESP. For example, the pulse area cannot be used for
predicting the number of subpulses emerging from the
intense input signal as was done in the case of self-
induced transparency. To formulate a rule analogous to
the areatheorem, the angle of rotation of the Bloch vec-
tor during its precession about the effective field vector
should rather be used instead as a parameter. It should
also be noted that each time the amplitude (and not the
envelope) of theinput field g, tendsto 1/u for p < 0, the
value of effective detuning Q, tendsto zero and astable
solitary bipolar ESP with a nonzero pulse area is
formed even for small depths of the medium. The elec-
tromagnetic object observed in Figs. 7-10 was derived
numerically, and analytic properties of this solution are
not known as yet; however, simulation reveals aclearly
manifested stability of the“nonzero” breather. Thissta-
bility is manifested in the fact that the bipolar signal
withstands collisions with a steady-state solution of
type (7) (with a similar signal of other periodicity)
without decaying and penetrates through the region of
a strong modulated perturbation as a single entity.
These are features of soliton solutions, although the
final answer to the questions whether or not the
observed bipolar pulseisasoliton can be obtained only
from an analysis of the spectral problem in the method
of inverse scattering problem for the model under
investigation. In this connection, it is appropriate to
mention the work [39], in which the eigenvalues of the
Zakharov—Shabat spectral problem, which are paramet-
ric functions of the pulse duty factor of the external
field, were calculated under the conditions of two-pulse
excitation typical of photon echo problem. Subsequent
simulation [40, 41] proved that the eigenvalues appear
in triads in the form of an anticonjugate pair giving a
breather and a solitary root responsible for a 21t pulse
(soliton). An increase in the pulse duty ratio led to a
decrease in the difference in the phase velocities of the
breather components and to the transformation of the
breather to apair of 21t pulses. The obvious similarity
of this pattern with the results of calculations repre-
sented in Figs. 7—11 suggests that similar approaches
can be used for interpreting the results within an analy-
sis of the properties of the spectral problem, which
were obtained in [20, 31].
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Abstract—The existing descriptions of the process of track formation in metals bombarded with high-energy
heavy ions are usually based on the T-spike model. However, this model fails to explain high temperatures
developed in some target materials (e.g., in copper). We present a comparative analysis of track formation in
metals under the action of heavy ion bombardment, as described using the Coulomb explosion model and the
T-spike model in various modifications. Both models are used to calculate changes in the temperatures of the
electron and ion subsystemsin the track region in amorphous alloy FegsB15) and copper targets bombarded with
identical high-energy (E > 1 MeV/nucleon) heavy ions. The results show that the Coulomb explosion model
predicts stronger heating of theion subsystem in the track region (with the possible formation of amelt-through
zone) as compared to the T-spike model. The formation of point defects in copper as aresult of the ionization
losses has been al so described using the two model s and compared to the available experimental data. The Cou-
lomb explosion model provides for a more adequate description of track formation as compared to the T-spike

model. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

When heavy charged particles with energies E >
1 MeV/nucleon are stopped in atarget, more than 90%
of the particle energy is transferred to the electron sub-
system as a result of the electron drag and only about
10% istransferred directly to atomsof the crystal lattice
via their elastic collisions with the projectiles. Subse-
guent heating of the material is related to the energy
transfer from electrons to ions via processes described
within the framework of the thermal spike (T-spike)
model [1, 2] and the Coulomb explosion (or ion explo-
sion) model [3]. As aresult, the temperature of the ion
subsystem may increase to a significant level, reaching
the melting point for metals and the crystallization tem-
perature for amorphous alloys.

The bombardment with heavy ions at a high degree
of ionization losses may also lead to the production of
point defects with anomalously high concentration [4].
This process is determined predominantly by the ion-
ization and electronic stopping power, rather than by
the éastic collisions of heavy impinging ions with
atoms of the crystal lattice. The contribution of such
elastic collisionsto the point defect formation is several
orders of magnitude lower than the contribution due to
the ionization losses. Therefore, the physical properties
of metals in the track region significantly differ from
those in the regions far from tracks.

Let us briefly consider the physical mechanisms
involved in the heating of electron and ion subsystems
of atarget penetrated by a heavy charged particle, as

described using the T-spike model and the Coulomb
explosion model.

The essence of the T-spike model consistsin the fact
that a high-energy heavy charged particle penetrating
through a target material exhibits electronic stopping
power and transfers more than 90% of itskinetic energy
to the el ectron subsystem, while only asmall remaining
energy istransferred directly to the ion subsystem (i.e.,
to the crystal lattice) via the elastic collisions of host
atoms with the projectile. Thus, an effective energy
source localized at the track axis operates in the elec-
tron subsystem, which leads (via electron thermal con-
ductivity) to heating of the electron subsystem at dis-
tances greater than the track size (the characteristic
thermalization time for the electron subsystem in a
metal ison the order of 10-%° s). Subsequently, electrons
give part of their energy to ions via electron—phonon
interactions (the characteristic time of these interac-
tionsin metalsis on the order of 10713 s), which results
in heating of the ion subsystem. Thus, electrons are
thermalized within aperiod of time that is much shorter
than the characteristic time of heat exchange between
electron and ion subsystem.

There are various modifications of the T-spike
model [1, 2], which differ from one another by the
mechanisms of heating of the electron subsystem and
by the expressions used to describe the electron—
phonon interactions (exchange terms) in the heat bal-
ance equation. According to Yasui [2], the effective
energy source in the electron subsystem plays the role
of the initial condition for the electron temperature,
while the heat balance equation contains only an

1063-7761/05/10101-0120$26.00 © 2005 Pleiades Publishing, Inc.
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exchange term related to the heat transfer between the
electron and ion subsystems. Dufour [1] assumed that
the effective energy source operates over the entire
period of thermalization of the electron subsystem and
introduced the corresponding additional term into the
heat balance equation.

Now let us briefly consider the mechanism of heat-
ing of the ion and electron subsystems within the
framework of the Coulomb explosion model, which is
used in this study for description of this process. The
model proper and the conditions of its applicability
were described previously [3]. Here, we only consider
the physical processes leading to additional heating of
the ion and €electron subsystems according to this
model. A high-energy heavy charged particle penetrat-
ing through a target material collides with so-called
o-electrons, which travel predominantly in the radial
directions relative to the heavy-ion trgjectory (track
axis). Asaresult, an effective electric field is generated,
which exists over a characteristic period of time equal
to the d-electron current lifetime. The magnitude and
spatial distribution of this electric field were deter-
mined in [3]. lons of the crystal lattice and electrons of
the target material occurring within the zone of action
of the effective field acquire additional momenta and,
hence, additional energies. Thus, the model provides a
mechanism accounting for an increase in the average
kinetic energiesand, eventually, theinitial temperatures
of both electrons and ions at the expense of energy
received by these particles during their short-timeinter-
action with the effective electric field of d-electrons.

This paper isdevoted to acomparative study of heat-
ing of the electron and ion subsystems in the track
region of amorphous metal (FegsB;5) and copper targets
bombarded with high-energy heavy ions in the frame-
works of the T-spike and Coulomb explosion models.
The obtained nonlinear equations were numerically
solved by methods of implicit scheme and sequential
trials, which have proved to be sufficiently robust.
Examples of using these methodsfor solving analogous
problems can be found in [1, 8].

The contributions due to different mechanisms of
heating of the ion and electron subsystems, which are
employed in various modifications of the T-spike
model, are described by introducing various exchange
terms into the heat balance equation for electrons and
ions [1, 2]. Below, the significance of these mecha-
nismsis analyzed based on the results of numerical cal-
culations carried out for amorphous alloy FegB;s
within the framework of the corresponding models. The
results obtained using various modifications of the
T-spike model showed that, depending on the parame-
tersof irradiation, the temperature of the ion subsystem
in the aloy studied may increase to a significant level,
reaching the temperatures of melting and crystalliza-
tion. As aresult, a melt-through zone can form at the
heavy-ion trajectory in the alloy target (see dso [1]).
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Theresults of application of the T-spike model to the
calculations of heating of the ion subsystem in copper
showed that the ion temperature cannot exhibit sharp
jumps and increases by no more than 100 K, never
reaching the melting point (see aso [2]). In contrast,
numerical calculations using the Coulomb explosion
model showed that the temperature of the ion sub-
system may reach the melting point and that a melt-
through zone can form in the track region.

2. USE OF THE T-SPIKE MODEL
FOR STUDYING CHANGES
IN THE TEMPERATURES OF THE ELECTRON
AND ION SUBSYSTEMS
IN METAL TARGETS BOMBARDED
BY HIGH-ENERGY HEAVY IONS

Let us formulate a system of nonlinear equations
describing the heat transfer in the electron and ion sub-
systems in a metal target near a track produced by a
high-energy heavy charged particle, adopting a cylin-
drical geometry of the temperature distribution relative
to the particle trajectory (track axis). Taking into
account various modifications of the T-spike model
developed previously [1, 2], the heat conduction equa-
tionsfor the electron and ion subsystems can be written
asfollows:

T, _
Ce(Te)W - dIV(Ke(Te)DTe) (1)
—Y(T)[Te—Ti] +A(r, 1),

C(T)5E = dv(K(T)OT) +VIT-T1, (@

where T, and T; are the temperatures of the electron and
ion subsystemsin the metal target, respectively; C,, K,
G, K, arethe heat capacities and thermal conductivities
of electrons and ions, respectively, which are nonlinear
functions of the temperature; r is the distance from the
track axis; y[ T — T;] is the exchange term, which takes
into account heat transfer due to the electron—-phonon
interaction between the electron and ion subsystemsin
the ion-irradiated material; and A(r, t) is the effective
source of energy in the electron subsystem, which is
related to the electronic stopping power of the high-
energy heavy particle stopped in the metal target.

The nonlinear temperature dependences of the heat
capacities and thermal conductivities of electrons and
ions for the copper and FeysB 5 targets are presented in
the Appendix.

First, let us consider a modification of the T-spike
model proposed in [2]. In this variant, the coefficient y
in the exchange term, which describes the electron—
phonon interaction in the heat balance equation,
appearsasy = C./t, where T isthe characteristic time of

the electron—phonon interaction (1 = 1023 s).
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The boundary conditions for the electron and ion
subsystems in the regions far from the track reflect the
absence of irradiation-induced heating in these regions:

e|rﬁoo = Ti|r4.oo = TmaIn
where T4 = 10 K is the temperature of the metal
matrix.

Theinitial condition for the temperature distribution

in the electron subsystem reflects the electronic stop-
ping power for heavy ions[2]:

10K

_ Q
E((t=0) = Rexp% r Ly ICdT ©)
o? = LT (4)

EQInZJ

where E, is the volume electron energy density, Q are
the electronic stopping power per unit ion range for a
high-energy heavy charged particle; L is the halfwidth
of the spatial distribution of energy deposited in the
electron subsystem (we adopt L = 2 nm [2]). On the
other hand, the volume electron energy density at the
initial moment can be expressed as

Te(t=0)

E(t=0) = J' C.dT, (5)
0

where T (t = 0) isthe initial temperature of the electron
subsystem. Equating the electron energy densities
given by expressions (3) and (5), we obtain a relation
for determining the initial temperature of the electron
subsystem in a target penetrated by a high-energy
heavy charged particle:

Te(t=0)

__Q r’ D
CdT = —— exp +
I 4m 0 40

10K

J’CdT

The solution of this equation gives the initial condition
for the temperature of the electron subsystem. The ini-
tial temperature of theion subsystem coincideswith the
target material temperature T4, in the absence of ion
irradiation:

Ti(t = 0) = Tmatr'

There are two additional boundary conditions in both
variants of the T-spike model employed in this study:

OTel = OT;
3t |- ot

which correspond to the absence of heat fluxes at the
track axis.

:01

r=0
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Now let us consider another modification of the T-
spike model proposed in [1]. In this variant, the coeffi-
cient y in the exchange term is assumed to be constant,
vy =g, and is not varied in the course of calculations. In
our calculation, g = 5 x 10© W/(K cm?®) (see [1, §]).
Therefore, the term describing the electron—phonon
interaction is proportional to the difference between the
temperatures of the electron and ion subsystems and
does not take into account the nonlinear temperature
dependence of the amount of heat transferred between
these subsystems. In the variant proposed in [2], this
nonlinear dependence istaken into account viathe tem-
perature dependence of the coefficient g in the elec-
tron—phonon exchange term.

The boundary and initial conditions for the temper-
atures of the electron and ion subsystemsin the regions
far from the track are written as follows:

Te|, .o = Ti|, .o = 100K,

T(t=0)

where T4 = 100 K is the matrix temperature adopted
in this model.

T,(t=0) = 100K,

Heating of the electron and, accordingly, of theion
subsystemsis provided by the presence of the effective
energy source A(r, t), related to the el ectron-drag | osses
of a high-energy heavy charged particle propagating
through the matrix, in the equation for the el ectron tem-
perature distribution (1). The main difference of this
T-spike model variant from that proposed in [2] is that
the electron subsystem is assumed to be gradually
heated over thetimet, = 10715 s (the characteristic time
of thermalization of the electron subsystem), followed
by cooling. Thus, despite the fact that the el ectron ther-
malization timeis significantly shorter than the charac-
teristic electron—phonon interaction time, the model
proposed in [1] takes into account the fact that the elec-
tron subsystem is also gradually heated together with
theion subsystem. The effective energy source A(r, t) in
thismodel isasfollows [1]:

dEg ro(t— o)
E)————Datt<2t )
A(r,t) = %plDdzD pD o 202 O %(6)

O
D at t > 2t,,

where (dE/d2), are the electronic stopping power of the
high-energy heavy charged particle; o, =ty; ro=2.5nm
isthe characteristic distance determining the size of the
region of energy evolution in the electron subsystem;
and C, isaconstant determined from the following nor-
malization condition [1]:

2t,
(t—ty) D
2nClIrer’dtexpB—r——7% = 1.
0 o,
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T, K
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10715

Fig. 1. Time variation of the ion subsystem temperature in
the track region of a FegsB15 amorphous metal alloy target
irradiated by high-energy heavy charged particles. The
calculations were performed using the modified T-spike
model [1] for various distances from the track axisr =0 (1),
5(2), and 10 nm (3).

Let us consider whether it is expedient to use a
T-spike model with allowance for the gradual heating
of the electron subsystem and for the nonlinear
exchange term in the heat bal ance equation.

Figurel presents the results of numerical calcula-
tions of the time variation of the ion subsystem temper-
ature for the FegB,5 amorphous aloy, which were per-
formed using the T-spike model [1] with (i) the elec-
tronic stopping power (dE/dz), = 40 keV/nm and (ii) the
electron subsystem heating in Eq. (1) described by the
effective source A(r, t) according to relation (6). Ascan
be seen from these data, the T-spike model according
to[1] predicts the formation of local melt-through
zones in the FegsB45 amorphous alloy.

Since some particular mechanisms involved in vari-
ous modifications [1, 2] of the T-spike model do not
coincide, it was of interest to elucidate the influence of
such mechanisms on the ion subsystem temperature
distribution in the track region at various moments of
time. For this purpose, we have performed special
numerical calculationsfor the FeyB;5 amorphous aloy
using the T-spike model according to [2].

First, we have modified the mechanism of the elec-
tron subsystem heating (see [1]), while the form of the
exchange term remained unchanged (see [2]). The
results obtained in this case are presented in Fig. 2. As
can be seen, use of the second variant of the electron
subsystem heating [1] leads to stronger heating of the
ion subsystem, which is manifested by alonger period
of melting. This result is by no means surprising, since
the first model of the electron subsystem heating [2]
included the energy splash only at the initial moment,
which was accompanied by elongation of a high-tem-
perature period of timein the electron subsystem. Inthe
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Fig. 2. Time variation of the ion subsystem temperature in
the track region of a FegsB15 amorphous metal alloy target
irradiated by high-energy heavy charged particles. The cal-
culations were performed for various distances from the
track axisr = 0, 5, and 10 nm using a modified T-spike
model with the exchange term in the thermal balance equa-
tion taken from [2] and the electron subsystem heating
described according to (1) model [2] and (2) model [1].

second model, the energy source was also effectively
operating in the electron subsystem during the entire
thermalization period [1]. However, the obtained differ-
ences in the extent of heating of the ion subsystem are
not very significant, which is explained by the fact that
the characteristic time of the electron—phonon interac-
tion is much greater than that of the electron thermal-
ization. Thus, the process of heat exchange between the
electron and ion subsystemsin the target depends rather
insignificantly on the mechanism (gradua [1] against
instantaneous [2]) of the electron subsystem heating.

Now let us consider the second variant, whereby the
method of heating was selected according to the first
model [2] and the exchange term was borrowed from
the second model [1]. As can be seen from the results
presented in Fig. 3, use of the exchange terms of differ-
ent types leads to a difference in the rates of heating of
the ion subsystem. Since the time of heating is approx-
imately the same, the amounts of energy transferred
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Fig. 3. Time variation of the ion subsystem temperature in
the track region of a FegsB15 amorphous metal alloy target
irradiated by high-energy heavy charged particles. The cal-
culations were performed for various distances from the
track axisr = 0, 5, and 10 nm using a modified T-spike
model with the el ectron subsystem heating described accord-
ing to the model [2] and the exchange term in the heat balance
equation taken from (1) model [1] and (2) model [2].

from the electron to the ion subsystem are approxi-
mately the same. The difference in the rates of heating
of the ion subsystem is explained by the fact that the
two models[1, 2] usedifferent forms of the temperature
dependence of the exchange term in the heat balance
equation. In selecting thisdependence, special attention
hasto be paid to the behavior of the heat capacity of the
electron subsystem in the temperature interval under
consideration. In our case, an analysis of the tempera-
ture dependence of C, for FegB,5 showsthat it is expe-
dient to use the exchange term in the form proposed in
[2] (which takesinto account the nonlinear temperature
dependence of the heat exchange between the electron
and ion subsystems).

Analysis of obtained results leads to the conclusion
that no significant differences in the results of calcula-
tions of the temperature distribution for the ion sub-
system in the track region is observed for various mod-
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Fig. 4. Time variation of the ion subsystem temperature in
the track region of acopper target irradiated by high-energy
heavy charged particles. The calculations were performed
using the modified T-spike model [2] for various distances
from the track axisr = 0 (1), 5 (2), and 10 nm (3).

ifications of the T-spike modédl [1, 2]. Some differences
arerelated only to the duration of this process.

Figure 4 presents the results of calculations of the
ion subsystem temperature of a copper target using a
T-spike model [2] with the effective energy source in
the electron subsystem A(r, t) = 0 (see Eq. (1)), Q =
100 keV/nm, and the initial electron heating described
by Eg. (5). As can be seen from these data, the ion sub-
system heating according to the T-spike model is low
and is not accompanied by the formation of melt
through zone in the track region.

3. USE OF THE COULOMB EXPLOSION MODEL
FOR ANALY SIS OF CHANGES
IN THE TEMPERATURES OF THE ELECTRON
AND ION SUBSYSTEMSAND THE FORMATION
OF POINT DEFECTS IN THE TRACK REGIONS
FOR COPPER BOMBARDED
BY HIGH-ENERGY HEAVY IONS

As was demonstrated above, use of the T-spike
model for description of the process of ion subsystem
heating in copper leads to ardatively small increasein
the ion temperature in the track region and is not
accompanied by the formation of a melt-through zone
inthisregion. Thus, it would be of interest to study the
ion subsystem heating in copper caused by the stopping
of high-energy heavy ions as described in terms of the
Coulomb explosion model. In this case, it would be
easy to perform a comparative anaysis of the results
obtained using the two models (T-spike versus Cou-
lomb explosion) with the same el ectron drag |osses and
other parameters, and to determine how the various
physical mechanisms involved in these models affect
the results of calculations.
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Previoudly, we used the Coulomb explosion model
for calculating the spatial distribution of theradial elec-
tric field E,(p) generated by a high-energy heavy parti-
cle stopped in the target material, where p is the dis-
tance from the track axis in the plane perpendicular to
the heavy particle trgjectory) [3]. We have aso evalu-
ated the kinetic energy Ae acquired by ionsin thisfield
over a characteristic lifetime t, (t, ~ 10715-1071° g),
which hasthe form [3]

Ap)? _ (€ZE,t,)’
2M O 2M ()

ne(p) = ¢

where M and eZ are the host ion mass and charge,
respectively; Ap isthe momentum acquired by host ions
in the effective electric field E,(p) for thetimet,.

For aperiod of timeontheorder of t,, ionsinthelat-
tice are not thermalized, and we may assume that their
initial temperature is determined by the average kinetic
energy in the electric field. Therefore, the initial tem-
perature of the ion subsystem, which is established
quite rapidly under the action of a short-lived electric
field E,(p), can be expressed as

ke Ti(p, t = 0) = Ag(p), (8)

where kg is the Boltzmann constant.

Figure 5 showstheresults of calculations of the spa-
tial profiles of the electric field generated in copper at
t =t by various singly charged ions with Z; = 8 (oxy-
gen), 36 (krypton); 54 (xenon), and 92 (uranium) inci-
dent with an energy of 10 MeV/nucleon. The calcula
tions were carried out using a procedure described
in [3]. Ascan be seen, the electric field strength sharply
increases with the atomic number of incident particles
and reaches ~200 V/A for uranium ions.

Figure 6 presents the time variation of a kinetic
energy (temperature increment) gained by ions of the
copper lattice under the action of the effective electric
field, which was calculated using relation (7) and the
field strength determined for krypton ions (Fig. 5).

Now let us consider the most “ unfavorable” case for
ion subsystem temperature variation, whereby the Cou-
lomb explosion model is used to calculate only theion
subsystem heating for the initial ion temperature deter-
mined by formula (8) and the initial electron tempera-
ture, assumed to be constant and equal to the matrix
temperature:

T(t=0) = T = 100 K. 9)

The results of calculations of the ion temperature
variationinthetrack region of acopper target irradiated
by high-energy heavy (krypton) ions (Z; = 36, E =
10 MeV/nucleon) are presented in Fig. 7. A comparison
between Figs. 6 and 7 shows that the Coulomb explo-
sion model predicts astronger and faster increasein the
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Fig. 5. Spatial profiles of the electric field generated in cop-
per at t = t, by various ions with Z, = 8 (1), 36 (2), 54 (3),
and 92 (4) incident with an energy of 10 MeV/nucleon.
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Fig. 6. Time variation of the ion subsystem temperature in
the track region of acopper target irradiated by high-energy
heavy (Kr) ions. The calculations were performed for r =
5(1) and 10 A (2) using the Coulomb explosion model,
with the electron subsystem heating caused by the electron
drag losses (dE/dr = 100 keV/nm) calculated using the
T-spike model.

10°13

1%—15 10—14

ion temperature than does the T-spike model. The
achieved level of heating of theion subsystem may lead
to the formation of a melt-through zone in the metal
target.

Now let us consider the influence of the Coulomb
explosion on the formation of point defects in copper
bombarded by heavy ions. As was noted above, an
anomalous number density of point defects was
observed [4] in Cu and Ag targetsirradiated with heavy
ions at alevel of the electronic stopping power S, from
0.1 to 100 keV/nm. The concentration of point defects
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Fig. 7. Time variation of the ion subsystem temperature in
the track region of acopper target irradiated by high-energy
heavy (Kr) ions. The calculations were performed for r =
5(1) and 10 A (2) using the Coulomb explosion model,
with the electron subsystem temperature assumed to be
equal to the matrix temperature (100 K).
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Fig. 8. A plot of the total number N of point defects gener-
ated by a heavy ion per unit ion range due to temperature
fluctuations T(p, t) for a characteristic track cooling time
versus electron drag losses in the track region of a copper
target. Calculations were performed using the Coulomb
explosion model.

was significantly higher than that expected for their for-
mation as aresult of the elastic collisions of heavy pro-
jectiles with ions of the crystal lattice. For example, in
copper irradiated with heavy ions at S, = 100 KeV/nm,
the number of point defects per unit heavy ion range
(micron) reached N ~ 103-10* pum. In this context, it
would be of interest to calculate the point defect con-
centration as a function of the electronic stopping
power of heavy ions using the Coulomb explosion and
T-spike models and to compare these theoretical results
to experimental data.
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The total number N of point defects generated by a
heavy ion per unit ion range dueto thetemperature fluc-
tuations T(p, t) for a characteristic track cooling time t
in acylindrical region near the ion trgjectory is

Po T

N = NOVOZT[IpdeeXpE— Ei O
0 0

KT (p, t)H (10)

Here, N, is the number density of host atoms in the
matrix, v, is the Debye frequency, and E; is the
energy of vacancy formation in the matrix lattice.
Our calculations of the number of point defects
formed dueto thermal fluctuationsin the track region
in copper were performed for the following parame-
ters: Np = 8.5 x 1028 m=3, vy = 1023 s%; py = 107 m;
1=10"9s; E; =3 eV. Figure 8 shows aplot of N ver-
sus S, calculated using Eq. (10) within the frame-
work of the Coulomb explosion model. As can be
seen, the number of point defects produced by one
ion per unit ion range (i.e., per unit track length) at
S. = 100 keV/nmis about N = 1.3 x 10° um~2, which
is close to the experimental data for Cu targets [4].
Analogous calculations were performed using
Eg. (10) and the ion temperature profiles determined
previously using the T-spike model, according to
which the maximum ion temperature in the track
region is about 110 K (Fig. 4). These calculations
gave point defect densities about three orders of
magnitude lower as compared to the values obtained
using the Coulomb explosion model (where the max-
imum ion temperature is about T;= 10° K, see
Fig. 6). From this we infer that the Coulomb explo-
sion model shows a better agreement with experi-
ment than does the T-spike model for the number of
point defects formed in the track region. Thus, the
Coulomb explosion model provides a more adequate
description of track formation in metal targetsirradi-
ated by heavy ions.

4. CONCLUSIONS

We have analyzed the process of heating of the elec-
tron and ion subsystems in the track region in copper
and FegBi5; amorphous aloy targets bombarded by
high-energy heavy ions, as described within the frame-
work of two theoretical models of track formation:
Coulomb explosion and T-spike. Using these models,
we calculated the spatial distributions of the ion and
electron subsystem temperatures in the track regions.
Various modifications of the T-spike model were con-
sidered, which differed in the mechanisms of electron
subsystem heating and in the form of exchange terms
describing the electron—phonon interaction in the heat
bal ance equation. The results of numerical calculations
of the ion subsystem heating in a FegB,5 amorphous
alloy were compared for two variants of the T-spike
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model. It was found that modifications of this model do
not describe significant changes observed in the aloy
irradiated by heavy ions.

The ion subsystem heating in a copper target was
calculated using a combination of the Coulomb explo-
sion and T-spike models. The Coulomb explosion
model predicts a stronger heating of the ion subsystem
than does the T-spike model, with possible formation of
melt-through zonesin the track region. The point defect
concentration in a copper target as a function of the
electronic stopping power was calculated within the
framework of the Coulomb explosion and T-spike mod-
els. Comparison to the available experimental data
showed that the Coulomb explosion model (predicting
higher ion temperatures in the track region: T~ 10° K,
Fig. 6) gives point defect densities three orders of mag-
nitude higher than the values obtained using the T-spike
model and are close to the experimental values[4]. The
results showed that the Coulomb explosion more ade-
guately describes the track formation in metals than
does the T-spike model.

APPENDIX

1. Constants used in the numerical calculations
for Cu (taken from [2, 5, 6, 7]). N, = 1.4 x 10° mol/m3;
N; = 1.4 x 10° mol/m?3; AH;, = 13.01 x 10° Jmol;

T, K T, < 1.7945 x 10* K | T, > 1.7945 x 10* K
Ce, J(mol K) 6.95x 1074 T, 12.47 (3R/2)
Te, K 10<Te< 100K Te>100 K

6 T
Ke, W/(M K) 35x10 35 x 107==2

TeTi Ti

T, K 10<T,<80K T,>80K
G, J(mol K) | 474x105T’ 25(3R)

4 4
K., W/(m K) 1.8x10 1.8x 10

Ti Ti

Note: It isassumed that 10 K < T; < 1357.65 K.

2. Constants used in the numerical calculations
for FgsB,s amorphousmetal alloy (taken from [1, 8]).

Psol = 7.5 g/cm®; pjiq = 7.3 glem®; N, = 8.47 x 10?2 cm™;
Ne = 1.73 x 10% cmr3; £ = 8.97 x 105 J(cm3 K?); Ty =
1220 K; To =44 x 103 K; Demin =8 CmZ/S; Hfus =
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1410 Jem?3; T, = 5625 K; k; = 135 x 10° (cm? K?)/s,
k, = 45 x 10° (cm? K)/s;

Ci [Jg K]
4 4.6 .
ED.G? +11x10T,——— (solid phase),
=0 JTi

=0.95 (liquid phase),

[0.021 (solid phase),

K; [W/cm K] = o
[ ] Ep.ss (liquid phase).
Te 0-300K | 300K-T, | T,=T, >T,
Cod@mK) | T, | T, | T | SNk
Ky 3
Ke W/(Cm K) ZT—‘ Zkz ZDeminTe éNekBDemin
e
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Abstract—The structure, electrical, and magnetic properties of epitaxial LaCa(Sr)MnO single crystal films

with a clustered structure have been studied. In films with a“metallic” phase content C& < 0.15, the electric

conductivity is determined by the spin-dependent tunneling of charge carriers between “metallic” clusters, and
the magnetoresistanceismaximum at T = 4.2 K. The correlated motion of carriers over the system of tunneling-
linked clusters leads to the formation of awindow in the Coulomb blockade. The interactions between atomic,
magnetic, and electron subsystems increase in the vicinity of the dielectric—metal percolation transition (T =

200-210 K), where the metal phase content C,,, in the samples with C?n > 0.2 reaches a maximum (CrCT:it =0.5)

due to an increase in the cluster size upon cooling. In this case, the magnetoresistance exhibits a maximum at
T =260 K, on the dielectric side of the percolation transition. Due to the presence of space charge regions at
the periphery of the clusters, the content of aferromagnetic phase is 1.5-2 times that of the “metallic” phase.
For thisreason, the cal culations are performed using amodel combining the tunneling conductivity mechanism
with the percolation approximation for the description of magnetization. Allowance for the Coulomb interac-
tion between charge carriers and clusters improves the agreement of theory and experiment. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

As is known, the colossal magnetoresistance in
manganites of the LaCa(Sr)MnO type is due to the
interaction between electron and magnetic subsystems,
which resultsin the ordering of the magnetic subsystem
upon cooling of a sample in the magnetic field. An
important role in this phenomenon is played by struc-
tural inhomogeneities. The electron mechanisms of
phase separation [1, 2] make possible the formation of
inhomogeneities even in a single crystal structure, but
this processis usually not related to qualitative changes
in the atomic order. We believe that these mechanisms
are operative at film growth temperatures (~700°C),
when the magnetic interactions are weak but the possi-
bility of phase separation between dielectric and
“metallic” regionsisretained. Thisisfavored by ahigh
density of holes (p, ~ 10?* cm3), which is severa
orders of magnitude higher than the density of intrinsic
carriersin LaMnO;,

n = p; Oexp(-E4/2kT) =10 cm™ < p,

at E;=1.5€eV and T = 700°C. High temperatures favor
the formation of clusterswith linear dimensions within
70-160 A [3].

An integral characteristic of manganites, which
characterizestheinteraction between el ectron and mag-

netic subsystems, is offered by the temperature depen-
dence of the resistance. This dependence exhibits a
maximum near the Curie temperature (Tc), but factors
determining the exact position (T,,,) of this maximum
were not studied previously [4-15]. The dielectric state
of manganites at T > T, isrelated to a disorder in the
magnetic subsystem and to the presence of a random
potential whose nature has never been discussed [1, 2,
6, 9, 14, 16]. A decrease in theresistance at T < T is
usualy explained by the magnetic ordering and the
delocalization of electron states. We believe that such
states cannot appear without changes in the atomic
order of manganites.

The resistance usually exhibits amonotonic decrease
when the temperature is varied within 200-300 K,
athough several cases have been reported [13, 14]
when R(T) showed abrupt changes in the region of
20-30 K. As will be demonstrated below, the rate of
decrease in the resistance of epitaxial LaCa(Sr)MnO
layers with a single-crystal structure depends on the
local atomic order in a clustered structure. Slow R(T)
variationsat T < T, are related to the spin-dependent
tunneling of charge carriers between clusters with
metallic conductivity. Switch-on of apercolation mech-
anism leads to a significant increase in the efficiency of
interactions between electron and magnetic subsystems
and is accompanied by a rapid drop in the resistance

1063-7761/05/10101-0128$26.00 © 2005 Pleiades Publishing, Inc.
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with a large slope dR/dT. The results of calculations
performed for particular samples show satisfactory
agreement with experiment.

2. SAMPLES AND EXPERIMENTAL METHODS

We have studied a series of LaygSro,Mn;,0;
(LaSrMnO) and Lay3CasMnO; (LaCaMnO) films
with properties variable within broad limits, which
were prepared by pulsed laser sputtering of the corre-
sponding targets [17, 18]. The process was carried out
using a KrF excimer laser with a pulse width of T =
25ns and an output beam intensity of ® = 15—
3.0 Jem?. The films were grown at an oxygen pressure
of 300 mTorr on various single crystal substrates,
including SrLaGaO,, Nd;Gas0,,, Gd;Gas0;,, SIO,/Si,
(LaAIOg)p3(SI,AITaOg)g; (referred to below  as
SAT-30), and (LaAlO3)g2(SrAITaOg)07s (SAT-22).
The substrate temperature during growth was T, = 600—
730°C.

The magnetization of samples in the temperature
range from 4.2 to 300 K was measured using a SQUID
magnetometer. The electrical characteristics were stud-
ied using the standard four-point-probe technique. The
structure was studied by means of X-ray diffraction
using CrK,, radiation, which also provided information
about the features of diffuse scattering in the clustered
manganite films.

3. EXPERIMENTAL RESULTS

Below we present the results of our experimental
investigation of the properties of epitaxia
LaCa(Sr)MnO single crystal films. We will sequen-
tially consider the structure, electrical, and magnetic
properties of these films. The main attention will be
devoted to the analysis of interactions between atomic,
magnetic, and electron subsystemsin the films studied.
The experimental data are interpreted using the results
of our previousinvestigationsinto the optical properties
of such films[19]. In particular, the optical absorption
data are used for obtaining quantitative estimates of the
metal phase content in the samples.

3.1. The Structure of Samples

Although the mechanisms of phase separation in
manganites are well known, experimental data for the
structures with perfect atomic order are frequently
interpreted within the framework of models assuming a
homogeneous single-phase state of the material. It was
found that data available on the phase composition of
our samples are insufficient for solving the problems
posed in this study, and we have additionally studied a
fine structure of obtained manganite films. This section
presents adetailed analysis of thelocal structure of our
films and shows differencesin thelocal atomic order of
samples, which are related to the formation of meso-
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Fig. 1. The typical X-ray diffraction patters for LaSrMnO
film on SrLaGaO, substrate. The bottom inset shows a dif-

ference between the diffractograms of LaSrMnO films on
SrLaGa0, and Nd3Gas0,, substrates. The top inset shows

two Debye patterns with Laue reflections for (a) LaCaMnO
and (b) LaSrMnO films.

scopic inhomogeneities (clusters). The nature of clus-
ters influencing the structure-sensitive properties of
manganitesisrelated to variouslengths of Mn—O bonds
for the different charged states of manganese.

The multiscale character and variability of the
local atomic order. The results of X-ray diffraction
analysis of the films confirmed the absence of foreign
phases in LaCa(Sr)MnO single crystal films. The dif-
fraction patterns of various samples were much alike
(Fig. 1), displaying a single pronounced peak (B¢ ~
25°), which corresponds to the reflection from the main
group of planes, and several weak diffuse maxima
(B, ~ 27-38°) due to heterogeneous plane atomic
groups (clusters) [3, 19-23]. The Debye patterns with
L aue reflections showed that the films represented sin-
glecrystal layersinwhich along-range matrix structure
coexisted with a mesoscopic order in the local regions
(clusters) without violation of coherent binding with
the matrix. The absence of sharp boundaries facilitates
rearrangement of the atomic order in response to varia-
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Fig. 2. Fragments of the X-ray diffraction patterns in the
region of diffuse maxima for LaCaMnO (LCMO) films on
SAT-30 and SiO,/Si (T = 725°C) and LaSrMnO (LSMO)
films on SrLaGaO, (T = 650 and 700°C) and Gd3GasO1»
(Ts = 650°C). Regions Aq and A, correspond to 6 > 33.5°
and 6 < 33.5°, respectively.

tions of the temperature or applied magnetic field, not
excluding the possible influence of defects present in
peripheral regions of the clusters and the localization of
charge carriers on the related states.

The main structural differences are revealed by the
analysis of diffuse scattering from the clusters contain-
ing fragments of the Mn—O planes. The character of the
diffraction intensity distribution in the region of the dif-
fuse maxima (Fig. 2) is indicative of variability of the
local order in the clustered regions. Depending on the ©
value, there are three types of local order representing
the cubic, orthorhombic, and rhombohedral phases [3,
21, 22]. The former two phases may exhibit metallic
conductivity [24], while the rhombohedral phase forms
are dielectric clusters [3, 19, 20]. For this reason, the
conductivity o follows variations of the phase compo-
sition of the clustered structure, which is characterized
by the ratio C,,/Cs = (cubic + ortho)/(cubic + ortho +
rhombic). At alarge mismatch between the crystal lat-
tice parameters of films and substrates (e.g., for thelay-
ers grown on Gd;Ga;0,, and Nd;Ga;0;,), the concen-
tration of defects and the width of transition regionsin
the clusters are much greater than those in well-
matched layers (e.g., on SrLaGa0,). Thisresultsin sig-
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nificantly (2-10 times) lower ¢ values (for the same
C,/Cs) and to a considerable scatter in o(C,,/Cs) for
the films on Gd;Ga;0,, and Nd;Ga;0,, substrates.

The samples with high o and dR/dT values (at T <
Tma) &€ characterized by a symmetric (relative to the
center at 6, = 33.5°) intensity distribution with two
maxima (see the curve for afilm on SAT-30 in Fig. 2).
For this reason, we have studied the fine structure of
diffraction patterns showing no such symmetry (Fig. 2).
The observed diffraction peaks are due to the coherent
diffuse X-ray scattering from the clustered fragments of
planes in the (220)-O, (203)-R, (200)-C, and (400)-R,
(004)-0 phases (R, C, and O refer to the rhombohedral,
cubic, and orthorhombic phases, respectively), where
the (200)-C peak observed at 6. = 33.5° corresponds to
the center C). For alateral size of clusters within D =
100-150 A, athickness of D/3= 30-50 A, and an inter-
planar spacing of d= 1.8-2 A, clusters consist, on aver-
age, of 10-30 layers representing identical crysta
planes.

Asis known, the introduction of strontium ions Sr2*
(or calciumions Ca?*) into the composition of LaMnO,
leads to the appearance of Mn* and (in the presence of
local stresses) Mn?* ions via the reaction 2Mn3* —
Mn* + Mn?* [25, 26]. Taking into account the depen-
dence of the Mn—O bond length on the charged state of
manganese, Mn?4*[25, 26], and the experimental val-
ues of d (corresponding to the observed 0), we conclude
that the observed diffuse regions provide information
about the structural components with different sets of
manganese ions (Mn?*, Mn3*, and Mn*") and the corre-
sponding Mn—O distances [19, 20]. In particular, the
diffraction patterns reveal the points corresponding to
large (6 < 6.) and small (6 > 6,) d values corresponding
to the Mn?*—~O and Mn*-O bonds, respectively. The
center (Cin Fig. 2) corresponds to the Mn3—O bonds.

The distribution of planes between groups of
clusters. Using the measured distribution of the diffuse
scattering intensity, it is possible to estimate the frac-
tion of scattering planes for regions A; and A in Fig. 1
relative to the middle of each maximum (8, = 30.5° and
0, = 36°). These estimates are obtained using the | ,/I_
ratios, where 1, corresponds to d > d,., While I_is
taken on the side of d < d,. The discrete values of
intensities were determined for Ad = 0.02 A. Thus, by
measuring the 1,/I_ values in symmetric points with
respect to 6; and 6,, we obtain information about less
and more closely spaced planes (Fig. 3). At the middle
of each maximum, 1,/I_ = 1. When the planes with
smaller d predominate, the I./1_ curve fals within the
region of I./1_< 1. As the proportion of planes with
greater d grows, the curve shifts toward the region
wherel,/I_> 1.

For LaCaMnO films on SAT-30 (and the like films
of LaSrMnO on SrLaGa0,), the deviation of the A,
curvein Fig. 3toward I./1_< 1 implies that the manga-
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neseionsforming shorter Mn—O bonds (i.e., Mn*) pre-
dominate over Mn3*. At the same time, the shift of the
A, curve toward |,/I_> 1 is evidence for the predomi-

nance of Mn?* ions forming longer Mn—O contacts.

The films characterized by high stresses at the film—
substrate interface (such as LaCaMnO on SIO,/Si and
LaSrMnO on Gd;Ga;0;,) are described by sine-shaped
[./1_ curves (Fig. 3). These curves cross the level of
I./_=1 and occur for the most part in the region of
I./I_< 1. Their behavior corresponds to aternating
local density of clusters, whereby the more or less
closely spaced planes sequentialy predominate. The
planes with less ionized manganese (Mn@3* in A,))
exhibit weak (~20% relative to the average level) fluc-
tuations of the intensity (Fig. 3). At the same time, the
planes with more ionized manganese (MnG4* in A,)
show much greater intensity variations (~170%) of
about the average level (Fig. 3). This nonmonotonic
behavior of therelative intensity reflects agreater struc-
tural diversity related to the mutual misorientation of
the fragments of different Mn—O planes containing dif-
ferently charged manganese ions (Mn?*, Mn®*, and
Mn*) in the clusters. The misorientation leads to an
increase in the density of local states and a decreasein
the density of free holes inside the clusters, thus influ-
encing the conductivity of samples.

This situation is illustrated in the table, which pre-
sents datafor LaCaMnO films on SiO,/Si and SAT-30.
As can be seen from these data, the p valuesin thefilms
grown at the same temperature on different substrates
may differ by one to two orders of magnitude.

Phaseratiosin the clustered regionsA; and A,. It
can be expected that a difference in the mismatch
stresses for the clustered structures grown on different
substrates will also affect the phase ratios in these
Mesoscopi c components. It isnatural to suggest that, in
films on SIO,/S substrates, the concentration of ele-
ments of the rhombohedral (R) phase with a more dis-
torted structure (a = b = ¢, a = B #Y) will be greater
than the concentration of elements of the orthorhombic
(O) phasewith alessdistorted lattice(azb#c,a =3 =
y). In order to estimate the relative content of these
phases, let us use theratio of the intensities observed at
discrete angles 6 for the corresponding hkl values
(Fig. 2). In region A, of the LaCaMnO films on SAT,
the R/O phase ratio is 0.7, while the same film of
SiO,/Si has R/O = 0.56. For A, in the film on SAT, we
also obtain R/O = 0.7, while the ratio for SIO,/Si is

131
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Fig. 3. Plots of the ratio 1,/I_ of the intensities of diffuse
scattering in regions Ag and A; (in symmetric points d./d<
relative to dya) for LaCaMnO films on (a) SIO,/Si and
(b) SAT-30 substrates.

R/O = 1.56. In accordance with the diagramsin Fig. 2,
the maximum differenceisobserved in the Ay region for

the structures with MnG4* jons on SIO,/Si.

3.2. The Minimum of Metallic Conductivity
and the Electrical Sate of Manganite Films

The nature of adecrease in theresistanceat T < T
isusualy explained in terms of a metallic conductivity
component or “metal-like” behavior of the conductiv-
ity. However, analysis of the electrical properties of
manganite films (which exhibit characteristic R(T)
curves) shows that the dielectric—metal transition usu-
ally does not take place in the vicinity of the Curie tem-
perature. The electrical properties of samples are deter-

Comparative characteristics of LaCaMnO films grown under identical conditions on SIO,/Si and SAT-30 substrates

Substrate Ts °C Tmax: K Tmin K [ P22, @CM | Prysj, WCM | Py, @ CM | Pgoc, W CM | Pogo i, 2 €M
SIO,/S 725 200 30 0.0667 0.0575 152 0.0828 0.23
SAT-30 725 268 - 0.00052 - 0.026 0.00104 0.0245
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Fig. 4. Temperature dependences of the resistance of
LaSrMnO films grown on SiLaGaO, substrates at various

temperatures (Tg = 650-730°C).

mined by the tunneling of charge carriers between
“metalic” clusters. We have established that the transi-
tion (of the percolation type) to a state with metallic
conductivity (if it takes place at al) proceeds at lower
temperatures (well below T,,,,), wherethe sampleresis-
tance decreases to less than one-tenth of the value at
Tmax- Thus, we can speak only of aformal similarity of
the R(T) curves for manganites and metals.

Indeed, let us compare the specific conductivity of
manganite sampl es to the minimum metallic conductiv-
ity given by the formula[27, 28]

2 2
_ me B
Onmin = 4Zha|:v0i|crit, (1)

where z is the coordination number, a is the distance
between the impurity centers, V, is the random poten-
tial amplitude, and B is the bandgap width. For
LaCa(Sr)MnO, the 0., value according to formula (1)
must not be lessthan 100 Q- cm™ [3, 29]. The conduc-
tivities of our samples fall within o = 9.5 x 10°-4.1 x
10 Qtcmtat T =290 K and vary in a somewhat
broader range at T = 4.2 K, where g = 7.1 x 1074-2 x
10° Q1 cm™. In the region of R(T) maximum, the con-
ductivity iso = 3.4 x 103-3.85 x 10* Q' cm™?, which
is significantly lower than ;.

The R(T) curves with maxima of the usual type[30,
31] are observed even for o = 0.25-0.4 Q- cm, which
is two to three orders of magnitude smaller than 0,
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[23]. Within the interva of T,,—T = 60-270 K, the
samples still occur in the dielectric state. The values of
0 <10 Q' cm™ correspond the metallic phase con-
tent C, < 12%, which is below the percolation
threshold for a lattice of any type and an arbitrary
shape of grains[32, 33]. Theincreaseinc at T< T, IS
stimulated by the process of magnetic ordering. When
theleve of o = 0., is attained and the material passes
to a metalic state (e.g., for LaSrMnO grown on
SrLaGaO, at T, = 700°C (Fig. 4), this transition is
observed at T = 160-170 K, whilefor LaCaMnO grown
on SAT-30 and SAT-22, it takes place at T = 190—
200 K), the monotonic character of R(T) is retained.

In the dielectric state, the electric conductivity can
be explained by several mechanisms, including hoping
transport, injection of charge carriers, and tunneling.
The measurements of o asafunction of the temperature
T and the electric field strength F showed that the hop-
ping transport does not take place even in high-ohmic
(p > 102 Q cm) samples[3]. The mechanismsinvolving
charge carrier injection must exhibit characteristic fea-
tures related to nonlinearity of the conductivity. How-
ever, we observed aweak nonlinearity (manifested by a
20-50% increase in 0 in response to the field intensity
growth by two orders of magnitude) only in high-ohmic
(p > 200 Q cm) samples. The |-V curves of low-ohmic
samples were linear, whereby the resistance remained
unchanged when the field F was varied within three to
four orders of magnitude. Thus, the most probable
mechanism of conductivity is that based on the tunnel-
ing between metallic clusters.

Theinfluence of magnetic order on the chargetrans-
fer makes the tunneling spin-dependent [34-39]. There
are two characteristics features in this effect. First, the
absolute value of the negative magnetoresistance (MR)
monotonically decreases with increasing temperature
(Fig. 5, curve 1), in contrast to the MR value for the
sample whose state is closer to the dielectric—metal
transition (curve 2). Second, the MR exhibits maximum
changes in weak magnetic fields (Fig. 6). Accordingly,
the derivative dR/dH significantly varies only in the
region of weak magnetic fields (H < 3000 Oe). The
dR/dH value grows with decreasing temperature,
exhibitsamaximum at T =50 K (which correspondsto
the minimum in R(T), Fig. 4), and then further
decreases with the temperature.

In the case of electron tunneling, the resistivity of

the films exponentially grows with increasing average
distance L between clusters:

p = poexp%g, 2

where p, includes afactor on the order of exp(®¥?) and
@ is the effective barrier height that is assumed to be
constant. The main parameters of this process can be
determined from experiments, considering a model of
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guasi-two-dimensional clusters in the form of plates
paralel to the film surface. Let the plates have alateral
size of D and athickness of D/3 (in accordance with the
X-ray diffraction data) and form aregular lattice. Then,
there are /(L + D) clusters per unit volume and the
metal phase concentration is

1 .3 1
C,==D ,
"3 (L+D)®

which yields
L = D[(3C,) °-1],

and

b= poeXpD—[(3C 1 ]g. 3

The C,,, value was determined using the optical absorp-
tion data [17, 18, 40-42] and taking into account the
mechanisms of optical transitions [43-45] and the
results of X-ray diffraction measurements. In some of
thefilms, C,,= 15-18% (which is below the percolation
threshold) and metallic conductivity in the region of
Tmax iSNOt 0bserved. A shift in the percolation threshold

to Co' = 0.5-0.6 is inherent only in thin-film objects
[32, 33]. Metallic conductivity was observed (for the
most part, in LaCaMnO films on SAT-30 and SAT-22)
at low temperatures.

Figure 7 showsthe plot of p =f(L) accordingtorela
tion (3). A high value of the preexponential factor (p, =
0.0081 Q cm) isrelated to reduced density of holes (p),
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Fig. 6. Isothermal R(H) curves measured at various temper-
atures, showing the influence of a magnetic field on the
resistance of LaSrMnO film grown on SrLaGaO, at Tg =

730°C.

which arelocalized in the peripheral regionsof clusters.
At p =3 x 10%* cm3, the thickness of the space charge
layer depleted of holesis

h = (2eg,Vplep)™?, (%)

where Vj;, is the barrier height [46]. According to (4),
h~ 10 A, which is a significant value in the case of
small clusters.

3.3 Magnetic Properties

Manganites are known to represent two-phase mag-
netic systems [1, 2, 47]. At the same time, the samples

p, Qcm

_ : .
1005- 3
10; E
g
0.1 3 3
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Fig. 7. A plot of the resistivity of LaSrMnO films versus
average distance L = D[(3C,) Y2 — 1] between “metal-
lic" clusters (D = 100 A, pg = 0.0081 Q cm).
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Fig. 8. Temperature dependences of magnetization of the
FC and ZFC samples of LaSrMnO films grown on
SrLaGa0, at Tg= 650 (a) and (b) 700°C.

areusually characterized by X-ray diffraction assingle-
phase. Proceeding from the notion of atwo-phase mag-
netic state of LaCa(Sr)MnO single crystal films and
taking into account their local heterogeneous and het-
erophase character, we will show below that the clus-
tered structure of these films is responsible for both
their electrical properties (charge carrier tunneling
between clusters and, eventually, the dielectric-metal
percolation transition) and magnetic properties (spin-
dependent tunneling coupling of clusters and, eventu-
ally, the transition to a ferromagnetic state).

For example, let us consider the behavior of two
LaSrMnO films (grown on SrLaGaO, at T, = 650 and
700°C), which are characterized by similar R(T) curves
(Fig. 4) at atenfold difference in the values of conduc-
tivity 0. Figure 8 shows the temperature dependences
of the magnetization measured using samples cooled in
the presence (field-cooled, FC) and in the absence
(zero-field-cooled, ZFC) of magnetic field. The most
pronounced difference between M(T) curves of the FC
and ZFC samples, as well as between the MR curves
(see Figs. 5 and 6) is observed at low temperatures and
weak (about 100 Oe) magnetic fields. Indeed, the M(T)
curves of the FC samples exhibit saturation at low tem-
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peratures, whereas the curves of the ZFC samples have
a domelike shape characteristic of clustered spin
glasses [47]. As the field is increased, the difference
between FC and ZFC measurements decreases and vir-
tually disappears at H = 1 kOe. As can be seen in Fig.
8, the difference between FC and ZFC samplesis pro-
nounced for the low-conductivity (high resistance) film
grown at T, = 650°C and is rather weak for the film
grown a T, = 700°C.

The trapping of free holes on shallow surface states
in the peripheral regions of clusters in the course of
cooling cannot be the main reason for the observed
frustration, since the difference between FC and ZFC
samples (Fig. 8) isnot related to the cluster sizeD (D =
130 A for both samples in Fig. 8). Estimates show that
thisdifference is most pronounced for the sampleswith
large distances L between clusters. The magnetic dipole
interactions between ferromagnetic clusters, which cre-
ate a collective magnetic moment and determine the
long-range magnetic order, grow with decreasing L and
hinder the freezing of local magnetic moments of sepa-
rate clusters. For example, the intercluster distance in
the LaSrMnO films grown at T, = 650°C (C,, = 0.085)
isL =75 A. In the films grown at T, = 700°C (C,, =
0.15), this distance decreases to L = 40 A, which
accounts, in accordance with formula(3), for the differ-
encesin the behavior of R(T) (Fig. 4) and M(T) (Fig. 8)
Curves.

For the ZFC sample of afilm grown at T, = 700°C,
the value of M(10 K) at H = 100 Oeis 20 timesthat for
an analogousfilm grown at T, = 650°C. For the FC sam-
ples, this difference is much lower: the ratio decreases
to 1.6 and 1.3 at 100 Oe and 1 kOe, respectively. Thus,
the M(T) value for the FC samples weakly depends on
L in the region of small intercluster distances. As this
distance grows, the dependence increases. Indeed, as
the L value changes from 75 A (T, = 650°C) to 180 A
(Ts = 600°C), the magnetization M(10 K) exhibits a
fivefold decrease at H = 10 kOe, a sevenfold decrease at
H =1 kOe, and a 14-fold drop at H = 100 Oe (Figs. 8a
and 9). The films grown at T, = 600°C exhibit a very
pronounced difference between the results of measure-
ments on the FC and ZFC samples[19]. Weak magnetic
interactions between clusters (evidenced by the magne-
tization curves of ZFC samples) spaced by L =180 A in
these films lead to vanishing of the maximum in the
R(T) curves. The absence of a spontaneous magnetic
order (favoring a decrease in the resistance upon cool-
ing) lead to the appearance of a temperature interval
where R(T) = const [19].

For the FC samples, the M value increases with
decreasing temperatures (Figs. 8 and 9). There are
intervals with M(T) = const, but their lengths vary.
Indeed, afilm grown at T, = 650°C is characterized by
aninterval with M(T) = const (at T < 60 K) for the sam-
ples measured at 100 Oe and 1 kOe, but no such region
is observed at H= 10 kOe. For the films grown at
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T,=600°C, asmall interval (at T <40 K) with M(T) =
const is observed only at H = 100 Oe. A decrease in
length of this interval with increasing field (for T, =
650°C) and the absence of such interval at H = 1 kOe
(for T,= 600°C) isevidence for an increase in the aver-
age size of ferromagnetic clusters on cooling. Appar-
ently, thistrend isfavored by smearing of the peripheral
regions of these clusters.

3.4. Electrical Properties and the State
of a Magnetic Subsystem

Asisknown, the electrical properties of manganites
depend on the state of their magnetic subsystem, which
accounts both for the appearance of a maximum in the
R(T) curve near the Curie temperature (T) and for the
phenomenon of colossal magnetoresistance. However,
the exact position of this maximum (T,,,,) and the fac-
tors responsible for a difference in the dopes of the
R(T) curves observed when the samples are cooled
below T, are till not established. We will demon-
dtrate that this behavior is determined by various
threshold states of the magnetic subsystem and by fea-
tures of the cluster structures of manganites.

We have studied two series of LaCa(Sr)MnO films,
which showed different rates of variation of the resis-
tance R and magnetization M as functions of the tem-
perature. Figure 10 shows the R(T) and M(T) curves
measured at H = 1 kOe and matched on the temperature
scale (note that the curves of FC and ZFC samples for
H =1 kOe coincide).

In samples of the first group, the resistance slowly
varies with decreasing temperature (Figs. 10a and 10b)
and the metallic conductivity state is not attained: the
resistance exhibits a minimum at T = 30 K and then
somewhat increases. The relative variation rate,
(dR/AT)/R, typically does not exceed 0.7%/K. The max-
imum of R(T) occurs on the sloping part of the M(T)
curve. For illustration, Fig. 11 showsthe M(T) and R(T)
curves matched with respect to the position of the R(T)
maximum (indicated by the vertical linein Fig. 11b for
all samples). The maximum slopes dR/dT and dM/dT
(indicated by arrows R and M, respectively, in Figs. 11a
and 11b) do not coincide on the temperature scale, the
shift reaching 75 and 47 K, respectively (curves 1
and 2). This difference increases with the ratio
M(M/M(BK) at T = T, sShowing aweak sensitivity of
the electron subsystem to the state of the magnetic sub-
system. There are critical (threshold) states of the mag-
netic subsystem: above these thresholds, the electrical
properties of the samples studied begin to change.

In samples of the second group, the R(T) curves
exhibit no low-temperature minimum, while the maxi-
mum of R(T) coincides with the onset of M(T) growth.
For these films, the resistance rapidly decreases within
anarrow temperature interval (Figs. 10c and 10d). The
relative variation rate, (dR/dT)/R, reaches 7%/K (which
is 5-6 times the maximum value in the first group),
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Fig. 9. Temperature dependences of magnetization of the
FC samples of LaSrMnO films grown on SrLaGaO, at T =

600°C.

which isevidence for ahigh sensitivity of the electrical
properties of these films to the state of the magnetic
subsystem.

A temperature shift between the points of maximum
slopes dR/dT and dM/dT issmall, amounting to 3.5 and
1.8 K, respectively (Fig. 11b, curves 3 and 4). At T <
100 K, the specific conductivity is ¢ > 10° Q~* cm™,
which is much greater than 6,,;,,. According to the esti-
mates of 0., the dielectric-metal transition in these
films takes place within the temperature interval 200—
210 K.

In the region of metalic conductivity, the
LaCaMnO films on SAT-22 and SAT-30 exhibited a
nearly quadratic temperature dependence at T < 180 K

2.27

P(T) = po+ AT,

wherep,=5.37x 104 Q cmand A=10° Q cm K2 (in
agreement with the values reported for manganites
[48]). At low temperatures, the p(T) curve can be
approximated by a linear dependence, p = py(1 + aT),
with the temperature coefficients of resstancea = 7.1 x
102 K (LaCaMnO on SAT-22) and 3.7 x 102 K
(LaCaMnO on SAT-30), which are close to the values
of these coefficients for metals (Co, Al).

By analysis of the R(T) and M(T) curves, we can
study the possible relationship between the electric
conductivity and magnetization of manganites. We
have compared the values of o (normalized to 0,,,,,) to
the values of M at H =1 kOe for the same temperatures.
We did not observe a correlation of the o O M? type
reported for strongly inhomogeneous media in the
vicinity of the percolation threshold [49, 50]. Instead,
the samples of LaCaMnO on SAT-30 and SAT-22
exhibited an exponentia relation between ¢ and M

No. 1 2005



136

T T T T T T
1.0 -AAAAAAAAAAA _

M(T)/M(S K) ;\ 0,(T)
0.8F A y

0.6

T
4
1

0.4

0.2

1.0lavaaaAasAALAAAA Qz(D .
M(D/M( K) %\' ﬁ
0.8F

0.6r

0.2

0 50 100 150

T,K

200

OKUNEYV et al.

1.0

0.8
0.6

04

02F o

0

1.0 s tsnasanns,
MTDIMG K) ay,

0.8

0.6

04

0.2

f
IIIIII

il
------
|||||
|||||
|||||||||||||||
||||||||||

|
200 250

T,K

Fig. 10. Temperature dependences of the magnetization and resistance of LaCa(Sr)MnO manganite films on various substrates:

(a) LasrMnO films grown on SrLaGa0, (Tg = 650°C); (e, 0) R(T) calculated for C?n
blockade taken into account; (b) LaCaMnO on SiO,/Si (Tg = 725°C); (0) R(T) calculated for COm
blockade; (c) LaCaMnO on SAT-30 (Tg = 725°C); (e, o) R(T) calculated for Com
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action of charge carriers with clusters.

(Fig. 12) in a broad range of relative magnetizations
M(T)/M(5 K) (from 0.05-0.1 to 0.80-0.85). In Fig. 10,
thisinterval correspondsto variationsin the R(T) within
one order of magnitude.

The data plotted in Fig. 12 clearly revea various
threshold values of M(T)/M(5 K), which characterize
the sensitivity of the electron subsystem to the mag-
netic state of the samples of both groups. For the films
of LaCaMnO on SAT-30 and SAT-22, this threshold
correspondsto M(T)/M(5 K) = 0.02-0.04 (Fig. 12). For
the samples of LaSrMnO on SrLaGaO,, the magnetic
threshold corresponds to M(T)/M(5 K) = 0.3, and for
the LaCaMnO films on SiO,/Si thisthreshold increases
to 0.6, in agreement with Figs. 10 and 11.

4. RELATIONSHIPS BETWEEN PROPERTIES
OF MANGANITE FILMS

The temperature dependences of the resistance and
magnetoresistance of manganites are usually described
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= 0.1 without (e) and with (o) the Coulomb
= 0.1 disregarding the Coulomb
= 0.2 without (e) and with (o) the Coulomb block-

= 0.2 disregarding the Coulomb inter-

within the framework of amodel based on the notion of
an increase in the radius of ferromagnetic droplets in
the course of magnetic ordering on cooling or under the
action of an external magnetic field. However, this
model does not take into account the local microstruc-
ture of the samples and, hence, cannot provide for an
adequate description of their behavior. Below, we will
demonstrate that the obtained experimental data on the
electrical and magnetic properties of LaCa(Sr)MnO
films can be described using a model taking into
account a rearrangement of the cluster structure.
According to this model, the size of clusters increases
when the local atomic order in their peripheral regions
becomes more perfect as a result of their magnetic
ordering. The increase in the size of small clustersto a
critical level is equivalent to the generation of new
metallic clusters. In this context, we will consider the
transition from spin-dependent tunneling to percola-
tion, with alowance for the fact that concentrations of
the metallic phase (C,,) and the ferromagnetic phase
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(xF) may not coincide because of the presence of a
space charge layer depleted of holes in the peripheral
regions of clusters.

4.1. Relationship between Parameters
of the R(T) Curve
for Small Metallic Phase Concentrations C,,,

Recently, we established a linear relationship
between T, and T,;,, values [23],

Tmin = aTmax+y1 (5)

wherea =-0.46 and y = 154.32. The temperature inter-
va AT = T, — Tmin 1S the region of active interaction
between the atomic, magnetic, and electron sub-
systems. As the degree of atomic disorder decreases as
aresult of the magnetic ordering within AT, the ampli-
tude of the random potential decreases, which leads to
an increase in the electric conductivity. The nature of
the R(T) minimum at T, can be related [51-53] to
charge ordering, although this hypothesisis not free of
drawbacks.

In considering the tunneling mechanism of conduc-
tivity in LaCa(Sr)MnO films, we will neglect the
Coulomb interaction between charge carriers and clus-
ters [54-56], since this factor is insignificant under the
assumptions made. In the case of large concentrations
of the“metallic” and ferromagnetic phases, a system of
a tunneling-linked clusters is formed, which also fea-
ture a strong ferromagnetic interaction. The collective
effects [57, 58] make possible a correlated motion of
charge carriers over this system of clusters, with the
formation of a window in the Coulomb blockade [59].
At a small (1-7%) concentration of the ferromagnetic
phase and a high charge energy,

W, = [€°/eD] = 3600 K (~0.3eV) > kT,

manganites exhibit a clearly pronounced dielectric
behavior [60].

Assuming that the energy w of tunneling coupling
between clusters in the region of the R(T) maximum
corresponds to their thermal energy, we obtain arela-
tion

KT o = W = Woexp[—g%g] (6)
1

From a comparison of the two exponential relations,
w = wexp[<(L/L,)] and p = pyexp(L/L,), we infer that

Prax = (KT i) @

where 3 = L,/L,. Such arelation between p,,, and T,
with 3 = 10.7 was actually observed in our experiments
(Fig. 13).
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Fig. 11. Temperature dependences of the (a) resistance and
(b) magnetization matched with respect to T

(1) LaCaMnO on SIO,/Si (Tg = 725°C), & = 91.81 K;
(2) LaSrMnO films grown on SrLaGaO, (Tg = 650°C),
4 =0K; (3) LaCaMnO on SAT-30 (Tg=725°C), 6 =12.7K;
(4) LaCaMnO on SAT-22 (T¢ = 725°C), 5= 11.7K.
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Fig. 12. Relationship between conductivity 0/0p,g and
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ious substrates.
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A relation between p values in the minimum and
maximum of R(T) curves can be obtained assuming that
C,, linearly increases with the T, —T interval:

Cu(T) = CoL+ B(Ty = T), (8)

where Cfn is the metallic phase concentration at T =
Tmax- Under these conditions, the samples belong to the
class of systemswith variable potential relief [61].Tak-

ing into account formulas (3) and (8), we obtain arela
tionvaidat T< T,

P(T) = po

OD(T) 9)

- g
x X —[(3Ch + 3B(Tpa=T)) -~ 110,
g o u

Thisrelation is valid for C,, values below the percola-
tion threshold, C,, < C="* = 0.5. Inrelation (9), the clus-
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ter size is assumed to be temperature-dependent: D =
D(T). Taking into account the presence of small clusters
(D ~ 2h, where h is determined by formula (4)), which
do not contribute to C,,,, a relation between D and T
should be considered as independent of C(T). As the
temperature decreases, the size of small clusters
increases to acritical level, Dg;; = 2h, which is equiva
lent to the generation of new metallic clusters. In this
case, it is expedient to use the results known from per-
colation theory. Assuming that the variation of D with
the temperature T is analogous to a change in the corre-
lation radius,

L*(Cp) =|Cn—Ca|™

(wherev = 0.85 isacritical index [32]), we eventually
obtain

D(T)=D°|[C+ B(Trx—T)] -C2|™.  (20)

Using this relation, the expression for the resistivity
at T=T,, can bewritten as

pmin = pO

DDO rit| -V
X exf’gro“C?n + B(T o = Toin)] —C& (12)

_ —13 ]
x[31Co+ B(Trax = Ten)] =11 0

According to this relation, p,,, must exponentially
decrease with increasing interval AT = T — Trins
which agrees with experiment (Fig. 13). For T = T,
formula (3) yields

D _ |
Prmax = Po&XPO=[(3CH) ™ —1]. (12)
ko 0

Using formulas (11) and (12), we eventually obtain

pmin = (pmax)é’ (13)

where € = 1.25. Thisrelation also agrees with exper-
iment for B=1x 103K, D°=44.2 A, C"' = 0.5;

C? values were taken from the optical data, and T,

and T, values, from the experimental R(T) curves.
Let us consider the behavior of R(T) at T < T, and

small C,, in the case of samples exhibiting slow varia-

tions of the resistance R (occurring far from the dielec-
tric-metal transition). Writing expression (11) for the
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current p and T values, dencting C% + BT, = X and

C% + BT, — CO' =Y, taking into account that
BT/X < 1, and using the approximation

3275+ 81

we eventually obtain

P(T) =po
O vsfy , B O }D
DDO[(3X) d+33T5-1 0 (14)
XexpEL— B %
0 v _=
0 M- ‘ 0

Since the samples at T < T, occur in the dielectric
state (Y < 0), the denominator in thisformulais always
positive and decreases slower than the numerator, so
that p decreases on cooling of the sample. Figures 10a
and 10b show the results of R(T) calculations for the

films with various T, for C% = 0.1. The agreement
with experiment is provided for B = 1 x 102 K1 and
Co' = 0.5.

4.2. Relationship between Parameters
of the R(T) Curve for C, in the Vicinity
of the Percolation Threshold

For the samples with steep R(T) curves, which are
close to the dielectric-metal transition, the agreement
with experiment is observed for a nonlinear relation
between C,,and T:

Cn = Co* (G(Tra=T))', (15)
where t = 1.75 is the critical index used for the
description of conductivity in strongly inhomoge-
neous media close to the percolation threshold [32]
and G is a constant factor. Retaining the exponential
dependence (inherent in the tunneling conductivity
mechanism) of the resistance on the intercluster dis-
tance on the dielectric side of the transition, we can
rewrite relation (14) as

DDO crit| -V
P(T) = po &XPT=|[Ch + (G(Tma—T))1 - 1|
O-o (16)

X [FP[C 4 (G(Trae—=T))] 2 1] Ex
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In this case, the agreement with experiment for a
LaCaMnO film on SAT-30 (C) = 0.2, Ppa =
0.026 Q cm) is achieved at G = 7.7 x 102 K; p,
0.0081 Q cm, DYL, = 2.11, and C&* = 0.5 (Fig. 10c).

It was assumed that the percolation threshold Cﬁ:” =05

was independent of features of the process of magnetic
ordering. The validity of this assumption is confirmed
by an analysis of any particular R(T) curve. Indeed, for
aLaCaMnO film on SAT-30, the percolation transition
takes place at 200-210 K (Fig. 10c). Using formula

(15), we obtain C,, = 0.45 < Cﬁ:” =05for T=210K
and C,,= 052> C™" = 0.5 for T= 200 K.

4.3. Relationship between Electrical
and Magnetic Properties

An analysis of the relationship between electrical
and magnetic properties of the clustered films under
consideration requires taking into consideration the
presence of aspace charge layer depleted of holes (with
athickness of h~ 10 A according to formula (4)) in the
peripheral regions of clusters. For a spherical cluster
with D = 100 A, the metallic core has a diameter of 80
A. In planar clusters with a thickness of about several
tens of angstroms, the conducting core extends over
one-third of the layer. Thus, the real volume of the
metallic phase involved in the conductivity amounts
from 1/3 to 1/2 of the total volume of clusters. If the
cluster has a ferromagnetic core, the ferromagnetism
(according to the phase diagrams of manganites[24]) is
probably also retained in the peripheral regions with
dielectric properties. The difference in volumes of the
metallic and ferromagnetic phases makes it necessary
to combine the tunneling approximation used for the
description of the electrical properties of samples and
the percolation approximation used to describe their
magnetic characteritics.

The LaCaMnO filmswith C2, = 0.2 on SAT-22 and

SAT-30 in the region of magnetizations M(T)/M(5 K) =
0.1-0.85 exhibit an exponential relation between ¢ and

M, while the LaSrMnO films with C% = 0.1 on
SrLaGaO, obey such arelation in asomewhat narrower
region of M(T)/M(5 K) = 0.6-0.9 (Fig. 12).

If the content of the ferromagnetic phase xF is close
to the percolation threshold x_ , then

M Ox Ox" =xE| ™, 17

where ¥ is the magnetic susceptibility [62, 63]. In the

: F
range of concentrations x™ > x. , we have

M= E(x—x) ", (18)
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where & = const. This behavior agrees with a model
according to which the volume of the ferromagnetic
phase increasesin the course of magnetic ordering [47].
Assuming that the x™ and C,,, values differ by a constant

factor (3, so that C,,, = BxF, we obtain the relation
_ E lj\_/ID—l/V
Cm - B[XC_DED i|

The sampleisstill in the dielectric state and its conduc-
tivity (and resistance) is determined by the tunneling
of charge carriers between clusters. According to for-
mula (3),

(19)

ubD =Y,
P = poexp| (3BX)
-0

(20)
1 ljvllj—l/vi|—1/3 i| D
X — = -1 0
-5t ]
Using the approximation
|: _ldﬂm—ﬂ\l}—lﬁ - |:1 N l-l _D—l/\)i|
XE OO 3XE OgO '
we arrive at
p= poeXpDL—
(21)
E\-1/3 11 |:|_1/V O
y [(3[3 3 [1+ bt }—1} 5
1
o= omexpﬁ—} i (22)
¢l g
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Thus, inthevicinity of the percolation threshold, the
conductivity o and magnetization M obey an exponen-
tial relation, in agreement with experiment (Fig. 12).

4.4. Magnetoresi stance

Combining the tunneling approximation used to
describe the conductivity of samples and the percola-
tion approximation used to characterize their magnetic
state, we can also obtain an expression for the magne-
toresistance. Taking into account relation (22), the con-
ductivity in weak fields obeys the relation

0 =0,

v 23

< ept-2(T) +a(r, by + [MEHTT
U U

where Z(T) replaces the expression in braces in
Eqg. (16), which combines the terms dependent on the
internal state of the magnetic subsystem and on its
spontaneous variation with the temperature; A(T, H) > 0is
the additive term describing the effect of the external
magnetic field. In accordance with the magnetization
curves M(H) (Fig. 14), we have A(T, H) >0 for M = 0.
Representing the magnetization as M(T, H) =
MoH(T,..x — T and using the above relation, we obtain
an expression for the magnetic-field-induced change in
the conductivity:

(24)

n _ t_1v
= expﬁMoH (Emax T)} +A(T,H)§—l.

The experimental data for such samples (Fig. 10c)
show that T, = T.. According to formula (24), the
maximum of Ac/o takes place at a temperature T,
obeying the relation

Hr] 1/v vy
(e )-SR (T -]
(25

n T\t v
xexpﬁMoH (Ta”‘ax T)} +A(T, H)é = 0.

The maximum of A(T, H) can be expected in the vicin-
ity of the transition to the ferromagnetic state (T, =
Tmad), Where the system is characterized by maximum
disorder. The value of A, being maximum at the onset
of magnetic ordering, must decrease when the sample
iscooled below T, If this conditionisvalid, we have
OA(T, H)/0T > 0 and, hence, T,,.x — T > 0. Thisimplies
that the maximum of the magnetoresi stance must occur

No.1 2005



EFFECT OF A CLUSTER STRUCTURE ON THE INTERACTION OF ELECTRON

totheleft of T, faling in the region of the maximum
slope of R(T), in agreement with experiment (cf. Tyg =
256 K in Fig. 5, curve 2 and T, = 270K in Fig. 10c
for the LaCaMnO films on SAT). For the films of LaS-
rMnO on SrLaGaO,, which remain in the dielectric
state, the experimental curve (Fig. 5, curve 1) for the
magnetoresistance in theinterval T, — T 1S Satisfac-
torily described by the dependence MR ~ LT (Fig. 5,
squares) characteristic of spin-dependent tunneling
[34] (the effect of temperature on the spin polarization
was ignored). At T > T4, @ good approximation is
offered by the dependence MR ~ /T (Fig. 5, lineab in
theinset) reported for manganitesin the dielectric state
[60].

5. DISCUSSION

Our experiments showed that the presence of amax-
imum on the R(T) curves and the subsequent decrease
in the resistance on cooling, which reflect adecreasein
the degree of disorder in the magnetic subsystem at T <
T, are not related to the transition to metallic conduc-
tivity. It was established that the electrical properties of
samples are more or less sensitive to changes in their
magnetic state. This sensitivity is manifested by a shift
of the position of maximum in the R(T) curve relative
to the M(T) curve (and by the presence of threshold
magnetization values in Figs. 10-12), which is indica-
tive of the onset of an active influence of the magnetic
ordering on the electric conductivity. An increasein the
threshold M(T) values is accompanied by a decreasein
the dR/dT slopeat T < T, -

The magnetic properties of manganite films are
determined by the structure and interactions of clusters
[20, 23]. There are two topologicaly different pro-
cesses leading to an increase in the magnetic order
(i) inside the cluster and (ii) between clusters. In the
former case, the size of a ferromagnetic cluster
increases due to the attachment of atomic groups from
the peripheral regions. In this process, the main factor
is the local atomic order of the clustered structure (ion
composition, set of crystallographic planes, relative
content of clusters, and their spatial arrangement) and
the distribution of charge carrier density in the periph-
eral regions of clusters. In the second case, the main
roleis played by the shape of clusters, their mutual ori-
entation, and theintercluster distance, which determine
the threshold magnetization. An increase in the concen-
tration of a“metallic” phase and adecreaseintheresis-
tance at T < T, = Tc is related to the fact that an
increase in the “metallic” cluster size leads to the delo-
calization of holes in the peripheral regions of such
clusters.

For the el ectron mechanism of phase separation, the
size R of ferromagnetic drops possessing metallic con-
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ductivity can be evaluated using the formula[64]

R = LBTCEE (14 X)”

32 e Ef(X)’

where E; is the Fermi energy, f(X) = 2X+ 3 - 3(1 +
X)?3, X = V[V isthe ratio of volumes of the antiferro-
magnetic and ferromagnetic phases (in fact, X= 1/C,,).
For C,, = 0.12-0.25, this formula yields R = 50-70 A.
If the drops are oblate, so that the thickness is (1/3)R,
the maximum dimensions of clustered formations
increase to 90-120 A, which agrees with the X-ray data
and the results of magnetic measurements described
in[65].

For films grown under the optimum conditions,
C,,= 15-20% (at room temperature). These values
agree with the metal phase content anticipated if al
holes generated as a result of Sr?* (Ca?*) introduction
are involved in the formation of the “hole” drops. This
agreement confirms the assumption that the primary
factor responsible for cluster formation is the electron
mechanism of phase separation. The real shapes of
clusters formed on the basis of hole drops are deter-
mined by the anisotropy of atomic order in the crystal.

The X-ray diffraction patterns represent diffuse
reflections from the fragments of planes with Mn-O
bonds coherently built into a single crystal structure of
LaCa(Sr)MnO films. The clustered fragments of Mn—-O
planes alternate with nonclustered planes (of the (112)
type in Fig. 1) containing La, Sr(Ca), and O atoms,
which are characterized by long-range order and fixed
bond lengths. These planes retain the long-range order
and maintain the orientation of clustered fragments in
the single crystal structure, thus facilitating the process
of atomic and magnetic ordering in the peripheral
regions of clusters.

The clusters are formed as aresult of the relaxation
of elastic stresses related to a redistribution of the
charged states of Mn ions. According to this process,
the matrix must contain predominantly Mn3* ions,
while the Mn®* and Mn** ions predominantly enter into
clusters. According to the stoichiometric composition
of the material, the amount of such manganese ionsis
sufficient to provide for metallic conductivity. How-
ever, in astructure with clusters, only about 1/3 of their
total volume can be involved in the conductivity and,
hence, in most cases 0 < 0,,,. The X-ray diffraction
patterns (Fig. 2) show that the number of Mn3* ionsis
small, but Mn?* ions appear due to the local stresses
accompanying the cluster formation (with a maximum
in the stage of hole drop formation) and stimulating the
reaction 2Mn3* —= Mn?* + Mn* [25].

The dimensions of intermediate zones, which pro-
vide for a smooth transition from order to disorder, are
comparable to the size of small (<30 A) clusters. These
regions are the main sources of localized states.
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Considering the influence of the phase composition
of clusters on the conductivity, it is necessary to take
into account the fact that crystallographic distortions of
the rhombohedral type lead to the formation of a gap
with Ey; = 0.25 eV [19] inthe density of g, states respon-
sible for the hole conductivity of manganites. This gap
appears upon removal of the orbital degeneracy as a
result of the Jahn-Teller distortions [19, 26, 43]. In the
case of an ortho — rhombo phase transition, the pres-
ence of agap with Ey, = 0.25 eV decreases the o value
by ten orders of magnitude [3]. A large content of the
rhombohedral phasein the clusters (e.g., for LaCaMnO
films on SiO,/S substrates, Fig. 2) hinders redlization
of the percolation mechanism of conductivity.

In films with an orthorhombic structure, the distor-
tionsare small, the splitting between x> —y? and 22 states
is not observed and Ey; = O- in agreement with [24]. If
the orthorhombic phase predominates in the cluster
structure (as in LaCaMnO films on SAT-30), the sam-
ples exhibit a dielectric-metal phase transition with a
large dR/AT slope (Fig. 10c).

The phase composition of the cluster structure
determines the difference (from 1015 up to 3000%) in
magnetization of the FC and ZFC samples. This differ-
enceismore pronounced in high-ohmic samples grown
at T, < 600°C (in which the stress relaxation is hin-
dered) and in the films grown on substrates (e.g., on
SiO,/S) with alarge | attice mismatch (where a consid-
erable number of dielectric rhombohedral clusters are
formed). Falling between the ferromagnetic orthor-
hombic clusters, these dielectric clusters produce effec-
tive screening of the ferromagnetic phase). Taking into
account that the position of the maximum observed on
the M(T) curves of ZFC samples (Fig. 8a) corresponds
tothe Nédl temperature (135-137 K) of LaSrMnQO [24],
this maximum is probably related to the antiferromag-
netic ordering in rhombohedral clusters.

Changes in the magnetic order (induced by cooling
below T or by an external magnetic field) initiate rear-
rangement of the cluster structure, whereby C,
increases at the expense of peripheral regions. If the
resulting content of metallic clusters approaches the

percolation threshold C" = 50%, the system exhibits

a dielectric-metal transition of the percolation type.
The metallic phase content above the percolation
threshold isreached only in the structures characterized
by minimum stresses, in which orthorhombic clusters
are predominantly formed. This processisfacilitated in
the films grown on SAT substrates, where the maxi-
mum of R(T) coincides with the onset of the magneti-
zation growth (Figs. 10c and 10d), at ahigh rate of tem-
perature variation (large slow dR/dT) in the region of
T < Trax = Te. If the rhombohedral clusters (hindering
the structure rearrangement into the infinite percolation
cluster) predominate, the dR/dT values are low, the state
of metallic conductivity is not attained, and the conduc-
tivity mostly proceeds via the mechanism of spin-
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dependent tunneling with the participation of metallic
clusters.

In considering the tunneling mechanism, we
ignored the Coulomb interaction of charge carrierswith
clusters. Allowance for this interaction would require
introducing additional factors (dependent on the charge
energy W,) into Egs. (14) and (16):

pOQ = exp(W,/KT),

where W, = e2/eD[1 — (C,/CZ")¥3] [56]. For Eq. (14),
thisfactor is

Qu(T)

de?11 1

- L4+ 4 O+ _ __ etV
&P Do 1 On + BT =T =C

1/3
@ +B(T,...—TYd |0
x|1-[3 m (crir:]ax )D 0
0 c O |O

For Eg. (16), we have

Qx(T)

D111y 0 itV
- exp%;kDoT“Cm"'G(Tmax_T)] _Cm

04 i N\
x{l_g:m C(Tu =) }g
O Cn g |O

Under the assumptions made in this study (as
expressed by formulas (8) and (15)), the functions Q;
and Q, are slowly varying with the temperature. Allow-
ance for these termsin Egs. (14) and (16) improves the
fit of the calculated curves to experiment (Figs. 10a
and 10c). It should be noted that the introduction of the
Q; termin Eq. (14) for thefilmswith small C,, leads (in
agreement with experiment) to the appearance of a
minimum on the calculated R(T) curve (Fig. 10a).

6. CONCLUSIONS

We have demonstrated that LaCa(Sr)MnO mangan-
ite films are characterized by the coexistence and inter-
action of structural elements on different scale levels,
including microscopic, mesoscopic, and long-range
order. On the microscopic scale, the main factor is the
ratio of differently charged manganese ions (Mn?*,
Mn3*, and Mn*) in structural clusters. The mesoscopic
order (limiting the dimensions of clusters) determines
the main electrical, optical, and magnetic properties of
the manganite films. The nature of clustersisrelated to
the electron mechanisms of phase separation operating
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in the course of film growth and to differently charged
manganese ions, which act as sources of local stresses.
The phase composition of clusters determines the effi-
ciency of the interaction between the el ectron and mag-
netic subsystems. The long-range order in the matrix
planes retains a single crystal structure of the samples
and favors the correl ated motion of charge carriers over
the cluster system.

At alow (C,, < 15%) concentration of the metallic
phase, the characteristics of manganite films can be
described within the framework of the model of charge
carrier tunneling between clusters with metallic con-
ductivity. For C,, = 20%, it is necessary to take into
account conductivity according to the percolation
mechanism. The presence of regions depleted of holes
in the transition layers between clusters and the matrix
leads to the inequality of concentrations of the metallic
and ferromagnetic phases, which makes it necessary to
combine the tunneling approximation used for descrip-
tion of the electrical properties of samples and the per-
colation approximation used to describe their magnetic
state. The maximum efficiency of interaction between
the electron and magnetic subsystem is observed in the
vicinity of the dielectric—metal percolation transition.
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Abstract—We investigate the structure of the spatially periodic inner boundary layersin the plasma of a posi-
tive glow-discharge column produced in along cylindrical tube with an electropositive gas inside. Asymptotic
methods, namely, the method of boundary functions, are used to analyze the initial mathematical model. We
consider theformation of contrast burst-type structures. We have found all principal terms of the boundary-layer
asymptotics of the solution. The results obtained are compared with the available probe measurements of basic
physical parameters of ionization waves (strata) in neon at low pressures. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION. FORMULATION
OF THE PROBLEM

(1) The separation of a gas-discharge plasma col-
umn into layers (strata) called ionization waves is
familiar to specialists who use electric-discharge lasers
and other gas-discharge devices in practice or in
research. Being one of the main types of gas-discharge
plasmainstability, the phenomenon of stratification has
long attracted the attention of researchers. Its properties
have been studied in quite a few experimental and the-
oretical works (see, e.g., the reviews [1, 2] and the
papers[3, 4]). There are several reasons for the height-
ened interest of researchersin ionization waves. From a
scientific standpoint, this phenomenon attracts atten-
tion primarily as a classical example of the self-organi-
zation of agas-discharge plasma, whilefrom apractica
standpoint, it can be used in reactors to separate gas
mixtures [5] and to produce plasma-dust crystals [6] or
in electric trapsto collect dust particles with the goal of
their subsequent removal from a gaseous medium [7].
Finally, strata severely degrade the performance of all
gas-discharge devices, appreciably narrowing the range
of their applications. Many properties of strata have
been studied experimentally.

The goal of this paper is to theoreticaly study the
structure of the stationary large-amplitude strata that
emerge after the stratification of the plasma of a posi-
tive glow-discharge column at low pressures.

(2) Let adischargetake placein acylindrical tube of
radius R and length L > R with circular plane-parall€l
electrodes. We introduce a cylindrical (r, ¢, 2) coordi-
nate system whose origin coincides with the center of
the anode and whose z axis is directed along the dis-
charge axis from the anode to the cathode. The mathe-

matical model of an infinitely long steady discharge in
an electropositive gas with axial symmetry can be writ-
ten in dimensionless form [8] as

hO?N +vO(NV) + hy(1 =8N_N,) = 0,
2 —
hO?N, = O(NgV) + h(1 =8N,N,) = 0,

hOV = N,—N,, OxV =0,
oN (1.1
axe =0, N,=q(y.h), V,=0, x=0,
— —_ v@ _
N, = by(y,h), V, =V, x=1,
a=enp.

In problem (1.1) and below, we use the following nota-
tion:

OsszRsl, Osy=és%,
D, T _
. " TV

SN, REE-g=-@

SO ’

ac(o)ﬂzze V=he h='®

PD, ’ R’

02 GD 6
- xax%aﬂ ayz’
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c. and ¢, are the concentrations of the free plasmaelec-
trons and singly charged positive ions, respectively, D,
and k, aretheir coefficients of free diffusion and mobil-
ity, E isthe electric field strength, @ is the dimension-

less potential of this field, c(po) is some characteristic

concentration of the positive ions, rp is the Debye
length for these ions, and a is the bulk electron—ion
recombination coefficient. Thefunction| = 1(x, y; N, h)
defines the ionization rate, i.e., the number of pairs of
oppositely charged particles emerging in a unit plasma
volume per unit time. The coefficients D, and k, aswell
asthetemperatures of the free plasmaelectrons, T,, and
the neutral gaseous medium, T, are assumed to be con-
stant throughout the plasma volume. The equations of
system (1.1) were written by assuming that there was
no convective motion and magnetic field.

Notethat asmall parameter, 0 < h < 1, appearsbefore
the high derivatives in the equations of system (1.1) [§].
Consequently, asymptotic methods of the theory of sin-
gularly perturbed differential equations, for example,
the method of boundary functions [9], can be used to
analyze problem (1.1).

We restrict our analysis to a long tube and assume
the positive glow-discharge column to beinfinitely long
(—o0 <y < ). Inthiscase, the effect of the electrodeson
the object under study can be disregarded.

2. ASYMPTOTICS OF THE SOLUTION
IN PARAMETER h. A REGULAR SERIES

2.1. Let the discharge column be stratified and sta-
tionary ionization waves of length |, which isassumed
to be known, appear in it. Thislength can be measured
experimentally or estimated theoretically [3]. The func-
tion I(X, ¥; Ng, h) is aso assumed to be known and
|-periodicin variabley:

[(X, ¥; N, h) = 1(X,y+1; Ng, h), | =1/R. (21)

This function is written in explicit form below. We
assume the functions N,(x, y, h) and V(x, y, h), i.e., the
concentrations of the charged plasma components and
the electric field vector, to be unknown in problem (1.1).
Note that the values of these functions on the tube wall

(x=1),i.e, byand V" (theradial electric field compo-

nent) aswell asq(y, h) (theion concentration on thedis-
charge axis), are assumed to be known.

Denote the entire set of sough-for quantities
by W(X, y, h). The asymptotics of the solution of prob-
lem (1.1) can then be written as[8, 9]

W(x,y,h) = w(x y,h)

+TIW(X,, . h) + Rw(x, v, h), (@2

where x; = x/h and X, = (x— 1)/h are fast variables.
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Let us require that all variable quantities be I-peri-
odic, i.e., that the following condition be satisfied:

W(x, y,h) = W(x,y+1,h). (2.3

We seek the regular part of asymptotics (2.2) in the
form

wix y.h) = 3 hw(x,y) o0
s=0 ’

= Wo(X, ¥) +hw, (X, y) + ...

The expansions of the boundary functions Mw(x,, y, h)
and Rw(x,, y, h) have asimilar form; the former and the
latter can contribute appreciably to the value of the
principal function only near x = 0 and x = 1, respec-
tively. The coefficients of these expansions, i.e., the
functions wy(x, y), Mw(xy, y), and Rw(x,, y), s=0, 1,
2, ..., can be determined in a standard way. Thus, for
example, when determining the coefficients wy(x, y) of
theregular series(2.4), at thefirst step (s=0), weabtain
a system that is degenerate (h = 0) with respect to the
system of equations of problem (1.1) to determine the

unknown functions vy(X, y), N (x, y), and n{® (x, y).
The solution of this system is obvious [8]:

Vo(% ¥) =0, n62(x ¥) =n6”(x, y) = Ag(x,Y).
Here, Ag(X, y) isan arbitrary function.

At the next step (s = 1), we obtain the following
problem to determine the unknown functions Ay(X, y)
and Vl(Xl y)

0%Ag+VO(Avy) +Y(io—BAg) = 0,
0%Ag—O(Agvy) +ig—B8Ag = 0, vy = - ,

0
Ao = Qo(Y), %’:0, X =0;

(2.5)

09, &

Ay = bo(y), I - Vo X = 1.

Here, v = vy (1Y), io = io(X ¥), and §o = Do(X, y) are

the principal nonzero termsin expansions (2.4) for the
functions V,(1, y, h), I(X, y, h), and ®(x, y, h), respec-
tively; the first two functions are assumed to be known.
Having eliminated the terms with the vector vy(X, y)
from the equations of this problem, we obtain the fol-
lowing problem to determine the unknown function

Ao(X, Y, W):
WO?A, = Ag—1,,

(x,y)OD = [(0<x<1)x(-w<y<ow)], (2.6)
Ao(0,y, 1) = ao(y), Ao(L,y, 1) = bo(y),
No. 1 2005
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where

1+v k i
¥ By 17O OloTio W) =a0k0)

Since, in general, one function A, cannot satisfy two

boundary values, bée) and bE,p), we introduce a new

unknown parameter, by(y), in the additional conditions

of the boundary-value problems (2.5) and (2.6) that can
depend on p and must be I-periodic. The relationship

between the parameters by(y), b((,e) (y), and bf)p) (y) is

established when determining the boundary functions
Rw(x,, v, h).

Let us consider the casewhereO<pu <1l (aR=
lcm,p=1Torr,v=1020=103 a=2x10"cmis™,

and c) > 1022 cm3, we have p < 0.3).

The equation of problem (2.6) is a reaction—diffu-
sion equation. Aswas shown in [10], when certain con-
ditions are satisfied, the equations of this type have
|-periodic (invariabley) solutionswith aburst (contrast
burst-type structures) whose vertex lies on some
smooth I-periodic curve C (the burst curve). Let us
denote

F(X Y Ag 1) = Ag—1o

and write the expression defining the function
lo(X, Y; Ao, 1) &8

Lo(X, ¥; Ao 1) = 90X Y, ) Ag+E(X, Y, 1) Ay,

where g(X, y, W) is the ionization frequency of neutrals
by adirect electron impact and &(x, y, 1) isthe step ion-
ization frequency. These quantities are assumed to be
known and |-periodic in variableYy.

Thus, we seek an |-periodic (in variable y) solution
of problem (2.6) that at small u is close to some solu-
tion ayy(X, y) of the degenerate (1 = 0) equation

F(XY; 0o 0) = f(X,Y; 0o, 0)
5 5 2.7)
= Og—09(X Y, 0)ag—¢&(X,y,0)0 = 0

everywhereinside aclosed domain D, except the small
neighborhood of the |-periodic curve C where the burst
of the solution occurs.

We construct the asymptotics of the solution of
problem (2.6) in parameter 1 as the sum of four series:

Ao(X Y, 1) = ag(X, Y, 1) + Tag(To Y, 1)

(2.8)
+ QGO(T’ Zvu) + SGO(Tl! y! U),

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

147

where
Oo(X Yy M) = Ogo(X, Y) + HOg (X, Y) + ...
isthe regular series,
Tao(To, Y, H) = Tolo(To, Y) + UT100(To, Y) + ...,

T = 2
u

SAo(Ty, Y, 1) = S06(Ty, Y) + HSOo(Ty, Y) + -0,
u

are the series that describe the boundary layers in the
neighborhood of the boundaries of domain D, i.e, at
x=0and x = 1, respectively, and

Qao(T, (1) = Qu0o(T, () + HQu0(T,{) + ...

isthe series that describes the burst of the solution near
curve C; the variables T and { are described below. The
unknown burst curve is determined when constructing
asymptotics (2.8).

2.2. Let us determine the terms of the regular series
and check whether a solution with a burst exists for
problem (2.7). Aswas noted above, 0 (X, ) isaroot of
Eq. (2.7). Intotal, this equation has three roots:

a(x,y) = 2—§0[1—A/1—4gozo] = d4(x y),

a@(x.y) = 2—éotl+ JI=4g5Ed = 6,(x.Y),

al(x y)=0, & = &(x,0),

As 0y, We choose ¢; i.e., we assume that

g = 9(x,y,0).

cx00()(1 y) = ¢1(X1 y) > 0;
(x,y)OD = [(0sx<1) x (—0<y<w)],

It follows from the form of the function ¢,(X, y) that the
inequality
U080 <0.25

must hold. Clearly, in this case,

¢1(X1 y) < ¢2(X! Y),

and it follows from (2.7) that the partial derivatives of
the function (X, y; 0qg, 0) with respect to the argument
0o When this argument is substituted with ¢,(x, y) and
b,(X, y) satisfies the conditions

o< 01(X,Y) <20,

fo(Xy; 9,0)>0, fu(xy;$,0)<0, xyOD.
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In addition, there exists such afunction Y(x, y) that

W(xy)
f(X,Y; Ogp 0)dag,

¢1(xy) (2.9)
_ 1 1 2 1o a4 =
=3 290L|J 4EOLIJ d=0 xyOQD,
where

9 1 1
d = — 207+ 30778001,

and Eq. (2.7) has no roots other than ¢, and ¢, in the
integration segment [¢,, Y]. We havef(x, y; a, 0) <Ofor
¢, < a <. Thus, we can assert that problem (2.6) has
an |-periodic solution with a burst that is close to

d1(x,y) in D at small u everywhere, except the small
neighborhood of the burst curve C [10].

It can be easily verified that Eq. (2.9) has three dif-
ferent real rootsd(x, y) < d,(x, y) < W(x, y), one of which
(the function ¢4(X, y)) is known and has a double mul-
tiplicity, while the other two can be found by solving a
quadratic equation [8].

The succeeding terms of theregular seriesag, S= 1,
can be easily determined. Thus, for example,

fu(x%y; (% y), 0)

f;x(X, y1 ¢1(X! y)’ 0)

_ G Y)01+ &0 )03
2¢1—go—3zo¢i

Aoi(X, y) =

where

gl(xv y) = g;l(x’ yv 0)1 El(xv y) = EL(Xv y! 0)

3. THE BOUNDARY FUNCTIONS
OF ASYMPTQOTICS (2.8)

3.1. Let us determine the terms of the series
Ta(Te ¥, W), To = X/W. The problem defining the princi-
pal term Ty0,(Te, V) Of thisseriesis

1 a aTOCXq] _ .
1,01, 0% oty O - F(O,y; ag(0,y) + Ty, 0)
—f(0,y; ag(0,y),0) = wy—goo—&op,  (3.1)
0<t1y<o00,
Toao(0,y) = do(Y) —91(0,y), Totg(,y) =0,
(3.2

Wy = Wo(To, Y) = 04(0,y) + To0o(To, Y)-

Equation (3.1) is an ordinary nonlinear differential
equation in which y is a parameter of the problem.
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Let us substitute problem (3.1), (3.2) with an equiv-
alent integral equation:

00

Z(t,y) = jexp(—mxz)[szexp(—mez)
0

— B, exp(—mx’) + 4m°x’ —4m— 1] G(t, X)dx

+I[ 1-2B, X’ exp(—-mx’) + 3B,x exp(—2mx°)]
0 (3.3)

x Z(t, X)G(t, x)d—)z(
X

00

+ J’(BBzexp(—mxz) —B,)Z’(t, X)G(t, X)dx

[

+ J'Bzz?’(t, X)G(t, X)dx.
0

Here,
2(t.y) = 2 epl-m )

where m(y) is an unknown parameter, which, in gen-
eral, can depend on'y,

t = J(1-28,0)07T,,

_ 1-3800300— 07
1-28007 67

1

80! o
1-260050 67 O

2

& = &(0,Y) = &(0,¥,0), 1 = ¢,(0,y),

G(t, x) = XK ()I1,(x), x<t;
G(t, x) = xK (X)14(t), t<x,
K,(x) and 1,(x) are the Bessel functions of thefirst kind

of an imaginary argument. Obviously, the following
inequality holds:

0<go(y) SW(0,y) = ¢°.
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Note one feature of the integral equation (3.3) that
has a specific physical meaning. In the absence of step
ionization, i.e., at & = 0 (B, = 0), this equation has the
required positive solution with an exponential estimate
for t —= oo only for g, < ¢ (B, < 0) [8]. However,

0o > ) near the burst curve. In this case, Eq. (3.3) can
have a positive solution only at Eg > 0; the larger the

excess of g, over ¢2 , the higher the step ionization fre-
guency. Aswe show below, alarge increase in the elec-
tricfield produced by the plasma space charges can pro-
vide this increase in Eg . The solution of the integral

equation (3.3) itself can be constructed using the
method of successive approximations. Note yet another
property of this equation that is used below. In view of
the axial symmetry,

0Y(0,y)
ot

:0’

and

2
Q_X_.(O_’_y_) = %(1'{' B]_+ BZ)!

149

where

_ Todo(t Y)

— 07
The explicit form of al the succeeding terms
T0o(To, ¥), S= 1, can befound in asimilar way.

3.2. The boundary-val ue problem defining S,04(ty, ¥),
T, = (X=D/y,is

Y(t,y)

9°S.a
S‘)z % = F(LY; doo(1+Y) + S0, 0)
1]
—f(L,y; deo(L,¥), 0) = i —giw, —Ew?, (34)
—00 < T, <0,
S06(0,y) = bo(y) —0L?, Syag(—w,y) = 0.

Here,

Wy = W(Ty,Y) = gL, y) + S00(T4, Y),

=81y, 0, ¢P=0.1y), o =9(1y,0).

ot° We write the solution of problem (3.4) as
J $=b J by—3,
2 (W, - ‘”)I¢(”—bo| (¢§”—61)|¢§”—b0| _ e
In —5 = 7T1, (3.5
1

Jw —o@) (6P -3,) J Yy —
(= (”)I¢‘”

qu = lJ-,(:I-v y)! 61 = 6(11 y)

3.3. Let usnow find the terms of the boundary series
Qay(t, ¢, W). First, note that we also seek the burst
curve Cintheform of an expansionin terms of positive
powers of the small parameter . The principal term of
this expansion (curve C,) issought in theform x = x(y),
X(y) is the principal I-periodic function, such that 0 <
X(y) <1

Following the approach described in [10], we intro-
duce alocd (p, ) coordinate system in the neighbor-
hood of C,, where |p|is the distance from the current
point M(x, y) to curve C, measured along the normal to
Co, and C is the ordinate of the base of this normal on
curve C,. For afairly small neighborhood of curve C,,
the one-to-one correspondence between the coordi-
nates x, y and p, ¢ is defined by the formulas

p pX'(4)

Jie(x0? Ji+(x?

X = X(Q)+ y=1{-
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| (1)
w0,

In this case, p must be assumed to be positive if point
M isto theright of C, and negative if it isto the left of
Co- We seek an equation for the burst curve C in the
local coordinate system in the form

P = ALK = PALQ) + KAL) + ..o,
where the |-periodic functions A;(¢) are to be deter-
mined. The following condition is used to find them,
i.e., to determine curve C:;

LY
0p |
This condition implies that the solution of problem (2.6)

as a function of the variable p has an extremum on
curve C.

Let usintroduce an extended variable

= PG
u

61)|¢(”—w1|

= 0. (3.7)
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and the following designation convenient in theoretical
constructions:

w(p, 1) = w(x(p, ), y(p, O), ).

Here, as usua, the entire set of variable quantities is
denoted by w(x, y). Let us now write out the boundary
condition that the function Qa(t, {, ) must satisfy at
1=0. It followsfrom (3.7) that

+ laQGO e O
H ot

0P lp =@

=0

Using the expression for [°Qa, derived in [10] and
defining Qu0(T, ¢) in the new notation, we obtain the
problem

2
Q_;_QT_()Z_(}_O = F(0,{; ago(0, Q) + Qotig, 0)
= wé—ggmc—aocwé —00 <T <o, (38)
0 0,
PO =0, Quage=2) = 0,

where
we = (T, {) = Ugg(0, ) + Qu0o(T, ().

It was shown in [10] that problem (3.8) for any |-
periodic function x({) has a nontrivia |-periodic (in
variable ¢) solution with an exponential estimate. The
unknown function x(¢) is determined at the next step.
We write the integral of problem (3.8) as

2 o\, m_ Eo
Intan=z + = |T|
JWe—0:)(b1c-0) 2 4
_ - 1(01c—0c) (W — )72
= arcsn[(wc—q)lc)(wc—ac)} ’ (3.9)

We = P(X(4), 4), dc = d(x(4), Q).
bic S W< Ye.
Let us formulate the problem defining Q,a(t, {):

Qo

9° ,
T % - (1,)Quap - pI2%0 4 Fy (1, 7),
—00<T <00,
0Q,0,] _ _90n (3.10)
0t =0 ap p=0
Q10(%, L) = 0.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

VORONOV

Here,
FL(1.0) = 200 - g0~ 3682, B= LEK=XX
X[1+(x)]
1 1 a_ 0!
Fi(t,Q) = [(Fa—fq)—o‘f)g(p 2

+(Fg—f;)%%3)+(%—f;)g—g}

X (M(Q) + 1) + (Fo = F0)80a(0, Q)

+ (Fz = f£)&(0, Q) + (Fy— f)8,(0, 0),

Fu—fo= 20— 0o —3ng(2: - (20‘00—90C —38505).
Since the homogeneous problem corresponding
to (3.10) has a nontrivial solution, dQ,0/dT, theinitial
problem (3.10) is solvable only if the inhomogeneity
— BoQyuy/0T is orthogonal to the solution of the
homogeneous equation. Using the expression for
F,(t, ¢) and the property of anintegral of even and odd
functions with symmetric limits, we can simplify the

solvability condition by reducing it to the form

QOO

I(FE f) Tt
(3.11)
_ Qo0
= B_[E@ ai % dr

Equation (3.11) is a nonlinear differential equation
of the second order for the unknown function x(¢). The

functions 0Q,04/dt and a, (x(2), {) — we in the inte-

grands of this equation also depend on x({) and are
I-periodic in explicit variable . Therefore, the follow-
ing condition must be added to Eq. (3.11):

X(Q) = x(C+1).

Notethat in deriving Eq. (3.11), for the sake of sm-
plicity, we assumed that g(X, y, i) = const. However, we
cannot assume that &(x, y, W) = const, since Eqg. (3.11)
loses its meaning in this case. As was noted above, the
electric field of the plasma space charges can provide
the dependence of the step ionization frequency & on
point M(X, y). Curve C, can be determined by solving
Eq. (3.12), i.e, by finding the function 0 < x({) < 1. In
thisway, all terms of the asymptotics of the zeroth order
inparameter 1 are determined for the function Ay(X, y, L).
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4. ASYMPTOTICS OF THE SOLUTION
FOR v4(X, V, W)

4.1. The problem defining the vector P(x, y, W) =
MV, (%, Y, 1) follows from problem (2.5):

O(AP) = —¥=

v(L+ o)“D Ao

OxP =0,

P,(0,y,1n) =0, P(Ly,p) =P, (41

P(x,y,1) = P(x,y+1, 1).

We write the solution of this problem as

P(x, Y, 1) = (ylm)uDInAo(x Y, 1) + B
= —ulo o, (4.2)
do(X Y, 1) = v(1+l )InAO+ B,y + const.

Here, B isan arbitrary vector with B, = 0. Relations (4.2)
allow usto determine all terms of the asymptoticsfor P
and ¢,, which also consist of the sum of four series of

type (2.8):
P(X, ¥, 1) = p(X, ¥, W) + Tp(To, ¥, 1)
+Qp(T,{, 1) +Sp(Ty, Y, W),

do(xyH) = Hdos(X, Y) + TOo(To, Y, 1)
s=0
+Qbo(T, (1) + Sho(Ty, Y, H).

In determining the terms of the regular series, we
have

y-1

\m[”lﬁ( ot B,

(4.3)

Po(X%, ¥Y) =0, pu(Xy) =

1_
boo(X, y) = V(l+y0)lnaoo(x, y) — €,y + const,

€, = —B, is the constant electric field component
directed along the discharge axis. In expressions (4.3),
the constant is chosen in such a way that the potential
b @ agiven point has a known value. All succeeding
terms of the regular series can be determined in a simi-
lar way.

4.2. Let us find the terms of the boundary series. It
follows from (4.2) that

_ y-1 Wo(To, Y)
PP = S ey,
Tobo(To Y) = Ly (T V)

V(1+0) a0, y)’
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Similarly,
_ y—l wc(T-Z)
Qop(1,Q) = V(1+0)HDInGOO(O,Z)'
Hence,
_y-1 1 wy(T, ()
Qob«(T, () = v(1+o0) i+ Ino(OO(O,Z)
(X) (4.5)
Qo (1.2) = A X2, &l1E)

v(1+o0) /1+(X 20T (0, Q)

We see from (4.5) that the magnitude of the vector
Qop(1, ) depends on the shape of the burst curve. Thus,
for example, if this curve is a rectilinear segment, 0 <
x<1,y=congt, then

QOpX(Tv Z) = O!
_ y w(T, )
QPN = Jirs e (4O
_ 1-y wc(TaZ)
QOq)O(TaZ) - V(1+0) n(_xoo(OaZ).
Finally,
- neuTuy)
S)p(‘[l y) V(1+0)UD| aoo(]_, y)v (4 7)
_ y—-1 Wy (T4, Y) .
Sfo(T1Y) = V(17 0) "agLy)
Consequently,
@(11,) = AL Y) P TIS0,
(4.8)
Do(y) = ¢ @p[VTIS00(0,Y) |
Similarly,
To0o(T, Y) = (O)[GXPS/ To¢‘q] }
4.9

Qoly) = (1°)e><p[

Relation (4.8) establishes the physical meaning of
the unknown parameter by(y) introduced above. Finally,

+0
—5 Tabol0. y)]

Qubo(0, Q8. (4.10)

1+0
We = ¢1ceXp%’I‘_‘\‘/

Thus, we have found the principal terms of the
asymptotics in parameter W for all unknown functions.
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4.3. The problems defining the principal terms of the
boundary series Mw(x,, y, h) and Rw(x,, y, h) are formu-
lated so as to remove the residuals that can be intro-
duced in the boundary conditions of problem (1.1)
when finding the function Aqg(X, y, W) at both ends of the
segment [0, 1]. Since we managed to remove al the
emerging residuals at the left end of this segment using
the functions Tow(T,, YY), we have Mw(x,, y, h) = 0.

The boundary functions Rw(x,, y, h) are determined
in [11]. As was noted above, when finding these func-
tions, we establish the relationship between the param-
eter by(y) and the concentrations of the charged plasma

components on the inner surface of the tube wall béa) ,

a = eand p, which, according to the condition of prob-
lem (1.1), are assumed to be known. Therefore, we
assume that the formulated problem has been solved.

5. DISCUSSION OF RESULTS.
COMPARISON WITH EXPERIMENTAL DATA.
CONCLUSIONS

Below, we discuss the main results of the solution of
the formulated problem obtained in previous sections
and analyze the plots of the functions that describe the
distributions of basic physical parameters of a gas-dis-
charge plasma: the concentrations of its charged com-
ponents, the electric field strength, the potential, and
the space charges. Subsequently, we compare the
results of thisanalysiswith the probe measurementsfor
the same quantitiesin moving strata. We do not analyze
the wall boundary layer, i.e., do not use the functions
Rw(x,, ¥, h)) in our calculations. Our analysis of the
structure of the strata is based only on the solution of
problem (2.5). Let us consider the plots of thefollowing
functions:

the ion concentration

Np(X, Y, h, 1) = Ag(X, Y, 1) = A go(X, Y)

(5.1)
+To0o(To, Y) + Qolo(T, {) + S0o(Ty, Y);
the potential and the electric field
CD(X, y! h! ll) = ¢0(X! yv l‘l) = ¢OO(X1 y) (5 2)
+ Tobo(To, ¥) + QoPo(T, {) + Sobo(T1, Y), .
(%, Y, 1) = 2V, = Vi, (X, Y, 1) = Puy(X,Y)
. (5.3)
+ E[To Px(To, Y) + SoPx(T1, V)1,
£.0% Yo ) = TVa= V(X Y, 1) = pu(X,Y)
(5.4)

+r11Qopz(T,Z):
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and the plasma space charge

Pe(X, ¥, hy 1) = Np(X, Yy, h, 1) = Ne(X, y, h, 1)

2

= hOV(x, y,h,p)z%DP (5.5)

= hZD[pl + ﬁ(Top +Qop + Sop)}-

The discharge is assumed to take place in a long
tube with R = 1 cm filled with neon at pressure p =
2 Torr and T = 300 K. For the remaining parametersin
expressions (5.1)—5.5), we use the following numeri-
ca values: E;=3V cm?, v =102 0 =103 u=0.3,
0o = 1.0, & =0.114, ¢, = 1.151, and Y, = 9.94. These
values correspond to the case where the mean ion con-
centration is 10*? cm and the mean temperature is T, =
2 x 10* K. Since there is no reliable information about

the step ionization frequency, we took avalue for &5 at
which the burst height is Y = 10.

Let the burst curve C be a rectilinear segment, 0 <

x < 1, y = const with the period |4 = 6 cm. As c(po) , we
choose the ion concentration on the axis of the homo-
geneous part of a nonstratified positive glow-discharge
column with adirect current corresponding to the lower
boundary of the appearance of strata. An analysis of the

results of probe measurements presented in [12, 13]
indicates that for this choice of ¢}, go(y) < 1 between
the strata.

Figure 1 showsthe plots of functions (5.1) and (5.5)
for x = 0 that define the distributions of the ion concen-
tration,

N, (0, y, h, 1) = Ag(0, y, 1)
= Ao(p, ¢ 1) = do(y) + Qoo(T,7),

and a quantity proportional to the plasma space charge
density,

2
vEES p(0,y,h )

2
= vEET Pe(p, 4, 1) = VHOPITop + Qopl,

along the discharge axis.

These expressions differ from distributions (5.1)
and (5.5) in that they do not contain the boundary func-
tions Sw, since the latter differ markedly from zero
only near the x = 1 boundary. The quantity (p, was not
included in the second expression either, because it is
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a, VPP,
10 T T T T T T T T T 2~5
Y. =994
gL —12.0
6 —1.5
—

4 —1.0
2+ —0.5

5 )( —

-2 1 |
+3+2+1 0 -1 -2 7%
p

Fig. 1. Plots of the functions Ay(0, y, 1) = Ag(p, {, W) =
aoy) + Quug(t, 0), y = — p, p = ut (curve 1) and

V(Wh)?pe(x, ¥, 1) = V(Wh)?Be (P, Z, 1) = VD[ Tgp + Qop]
(curve 2) that define the distributions of the concentration of
the charged plasma particles and a quantity proportional to
the space charge density along the gas-discharge axis (x = 0).

1 1 1 1 1 1 1 _05
+2+1 0 -1 -2 F3

small. In addition, the expression for N, includes the
boundary condition (3.2).

We see from Fig. 1 that the N, distribution istypical
of the strata. In contrast, the p, distribution cannot be
compared with anything, because this quantity is usu-
ally not measured by experimenters, but its reliability
can be established in an indirect way, namely, from the
strength of the field produced by this charge. Here, we
note only one feature of this distribution: p, > 0
between the strata on the axis.

Figure 2 showsthe plots of functions (5.2) and (5.4)
without the constant longitudinal electric field E,
whileFigs. 3 and 4 show the plots of the same functions
with thisfield. Our calculations were based on formu-
las (4.6), (4.3), and (3.9). The potentia distribution for
the field produced only by the plasma space charge
along the axis (x = 0) agrees closely with the results of
experimental measurements from [12]. This suggests
that the p, distribution that follows from the plot in
Fig. 1 corresponds to the actual distribution of the
plasma space charge along the axis of the stratified dis-
charge.

It follows from the shape of the curvesin Figs. 3and
4 that there is a potential well in front of each stratum
on the side of the anode. Its depth decreases with
decreasing burst height Y. and with increasing E,. Note
that no such potential wells have been detected experi-
mentally in moving strata. This may be because an
overestimated ), and an underestimated E, were taken
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Qoo V W 'QyP, V em™
T T T T T T T T T T T
6F =412
s 18
ot ! ! 14
0 0
Ll 2 2 1y
4t 1-8
1 1 1 1 1 1 1 1 1 1 1
+33+2+1 0 -1 -2F3+2+1 0 -1 -2 F3
p

Fig. 2. Plots of the functions (1/W)Qup,T, {) and Qudo(T, )
that define the distributions of the electric field (curve 2)
produced by the plasma space charge with density p, (see

Fig. 1, curve 2) and the potential of thisfield (curve 1) along
the discharge axis (x = 0).

in our numerical calculations. For example, it follows
from the plots in [12, 13] that the plasma density in a
stratum exceeds its mean value by only a few factors,
whilewe used Y. = 10 in our numerical calculations. In
addition, it follows from the theory that the depth of the

o, V
0

24

-32

40

1 1
+3 +2 +1

-1 -2 F3

1 1 1
0 -1 -2F3+2+1 O

p

Fig. 3. Plot of the function ¢o(0, y, W) = §y(p, ¢, W) =
$§oo(0, y) + Qubo(t, ¢) that defines the distribution of the
potential of the total electric field €, (see Fig. 4) along the
discharge axis.
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1 1 1 1
+3+2+1 0 -1 -2 F3+2+1 0 -1 -2 F3
p

Fig. 4. Plot of the function €40, y, n) = &,(p, {, W) =
P10, ) + (U)QoPL(T, {), y =L —p, p =y, that definesthe
distribution of thetotal electric field whose constant compo-
nent is Ey = 3V cm™* along the discharge axis.

potential well also depends on the derivative &, (O, y).
Moreover, if this quantity is positive and fairly large,
then potential wells can also appear in front of each
stratum on the side of the cathode. Here, we did not
consider this casein detail, because there is no compre-
hensive information on the function &(x, y, ).

Figures 5 and 6 show the plots that define the distri-
butions of the same physical parameters (5.1)—(5.3) and
(5.5), but along the radius of the gas discharge. Our cal-

Ay V(H/R)P,
5 — 71— T— 2.5
4 2.0
3 115
2 ~11.0
1 —0.5
0 0
—1F 2 =4-0.5
-2+ 1-1.0
_3 4-1.5
—4r 1-2.0
-5 T e v A

0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Plots of the functions Ay(X, ¥, 1) and v(plh)zpe(x, Yo W)
that define the radial distributions of the concentration of
the charged plasma components and a quantity proportional
to the plasma space charge with density pe (Y is the ordi-
nate of any point on the discharge axis that is located at
equal distances from the centers of the two neighboring
strata).
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culations were performed for &y(X, Y) = 0, where y, is
the ordinate of any point on the discharge axis that is
located at equal distances from the two neighboring
strata, qy(y,) = 0.85, and the plasma potential on the
inner surface of the tube wall is higher than the poten-
tial on the discharge axis. These assumptions are based
on the analysis of the experimental data from [12, 13]
for moving strata. Let us set avalue for the wall poten-
tial at which S¢4(0, yp) =5V (at zero potential on the
axis). The parameter by(y,) = 6.9 can then be deter-
mined from (4.8). We used formula (3.5) to calculate
the function S0(t4, ).

Finally, we used the integral equation (3.3) to deter-
mine the function Tyay(Te, V). Its solution was con-
structed by the method of successive approximations.
As afirst approximation, we took the function

Z,(t,y) = D(y)t’exp(-t?),

where, in general, the unknown coefficient D can
depend ony. Thus, the solution of Eq. (3.3) depends on
two parameters, m(y) and D(y); there are two conditions
(see Section 3.1) to calculate them. If we restrict our-
selves to the second approximation when constructing
the solution of Eq. (3.3), then wewill obtain m(y,) = 6.2
and D(y,) = 6.4. This solution was used in our numeri-
cal calculations, which underlie the plotsin the last two
figures. Despite the rough approximation, the plots in
Figs. 5 and 6 are consistent with the experimental data.

Thus, our analysis leads us to the following main
conclusions:

$o, V €, Vem!
Smr——T—T———7— 717171115
4r -4
3 - 13
2F 12
1+ 1 41
0 0
-1 ) 1-1
-2r 1-2
-3r 1-3
-4 1-4
S 1111 15

Fig. 6. Plots of the functionse,(X, Yo, 1) and ¢(X, Yo, 1) that

define the distributions of the electric field and its potential
along the tube radius (yq has the same meaning asin Fig. 5).
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ON THE STRUCTURE OF THE TWO-DIMENSIONAL SPATIALLY PERIODIC

(1) The spatially periodic inner transition layers
emerging in the plasma of a positive glow-discharge
column are essentially two-dimensional. Not only the
longitudinal, but also the radia distributions of all
physical plasma parameters depend on the ordinate of
the point and differ greatly from the corresponding dis-
tributions in a homogeneous column.

(2) The salient features of the structure of the object
under study can be established by using only the prin-
cipal terms of the asymptotics of the solution of theini-
tial mathematical model found above. A comparison of
the above dependences with the published probe mea-
surements of the structure of ionization wavesreveals a
satisfactory (not only qualitative) similarity.

In conclusion, note that the approximate solution
used above can be improved, for example, by calculat-
ing the succeeding terms of asymptotics (2.8) or
through numerical calculations. In the latter case, it is
recommended that the approximate solution be used as
theinitial condition for the problem and then improved
numerically.
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Abstract—Even a very slow background vertical motion can strongly affect convection in a stratified fluid. A
previously unknown mechanism of convective instability is demonstrated for a binary mixturein the flow field

of such motion. © 2005 Pleiades Publishing, Inc.

It is well known that binary mixtures exhibit some
fluid-dynamic and thermodynamic characteristics that
arepeculiar at first glance (e.g., see[1, 2]). In particular,
convective instability can develop, contrary to intuitive
expectations, when the background stratification is sta-
ble, i.e, when the mixture density decreases with
increasing height [1, 3]. Generally, the key role in this
phenomenon (called differential diffusion or double-
diffusive convection [1]) is played by the difference
between the therma and species diffusivities. It is
believed that double-diffusive convection arises in a
stably stratified medium when a slowly diffusing spe-
cies (e.g., sea salt) has a destabilizing effect on density
stratification. Even if this effect is relatively weak, it
can be sufficient to destabilize a system characterized
by stable density stratification. This paper draws atten-
tion to qualitatively different situations. In particular,
instability can develop when slow species diffusion sta-
bilizes density stratification. Note that this effect may
be substantially stronger than thermal instability. At
first glance, this possibility is even more unlikely,
because dlow species diffusion is generally much more
conducive to convective instability than fast heat trans-
fer in a double-diffusive system (transport coefficients
are contained in the denominators of the respective
Rayleigh numbers).

The analysisthat followsisfocused on systemswith
slow background flow parallel to the gravity vector.
Convection in vertical background flows that are slow
as compared to the convective motion under study is
important, in particular, for geophysical applications
(e.g., see [4, 5]). Atmospheric and oceanic convection
frequently develops against the background of pro-
cesses of much larger horizontal extent (such as
cyclones or anticyclones). These processes involve
mean vertical flows whose velocities are several orders
of magnitude slower than those associated with convec-
tive instability. According to field experiments, even a
slow downward flow of the ambient fluid effectively
suppresses convection. The nature of this behavior is
poorly understood.

Consider the following modified problem of Ray-
leigh-Bénard instability for a fluid layer between two
horizontal plates [1, 6]. Suppose that the background
flow is a low downward motion. For simplicity, the
velocity of this motion, W < 0, is assumed to be inde-
pendent of the vertical coordi nate z measured upwards
from the lower boundary z= 0.1

First, consider the case of a one-component medium
whose density depends only on temperature T (effects
due to species stratification are assumed to be negligi-
ble). The temperatures at the lower and upper bound-
aries, Ty and T,, are supposed as known. Their differ-

ence, Ty — T,, is denoted by AT. Heat transfer in the
background flow is described by the equation

YL

Vo = a7 @

where K is thermal diffusivity. The solution subject to
the boundary conditions specified above can be written
as

exp(—E) - exp(_W) (2)

©(2) = l-exp(—w) '

where ©(2) = [T(2) — T J/AT is the dimensionless tem-
perature deviation, & = z/h isthe dimensionless vertical
coordinate, and h = k/W is the reference height associ-
ated with vertical motion (infinity in quiescent fluid).
The key dimensionless parameter isw = H/h = W(H/K),
where H is the fluid layer thickness. In the absence of
background vertical motion (in the limit of W — O,
h — o0, and w — 0), the result isthe expected linear
profile ® = 1 —z/H, i.e., the solution whose stability is
analyzed in the classical Rayleigh-Bénard problem.

1 The assumption of constant vertical velocity isincompatible with
impermeability conditions for the background flow at z = 0 and
z= H. Regimes of this kind can be implemented in practice by
pumping the fluid in the vertical direction through porous hori-
zontal boundaries. While this assumption is not necessary for fur-
ther analysis, it substantially simplifies calculations.
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MECHANISM OF CONVECTIVE INSTABILITY OF A BINARY MIXTURE

Figure 1 shows the vertical profiles ©(2) obtained
for w = 0 and 10. It is clear that the downward flow
“sgueezes’ the region of vertical temperature differ-
enceAT into alayer of thicknesson the order of h=k/W
at thelower boundary. Rigorous stability analysis of the
steady state with a nonlinear temperature profile in a
background downward flow is a difficult and cumber-
some problem. However, a very plausible estimate can
be obtained by using simple physical arguments. It is
guite obvious that the stability of state 2 in Fig. 1
depends on the convective instability of abottom “sub-
layer” of thickness on the order of h = k/W where
amost the entire vertical temperature difference AT is
localized. The effective Rayleigh number correspond-
ing to the sublayer thicknessis

0(gATh3D 0(gATK2

Ral <y W

©)

where a is the thermal expansion coefficient of the
fluid, v is the kinematic viscosity, and g is the gravita-
tional acceleration.

According to expression (3), the effective Rayleigh
number strongly depends on background vertical
motion, which determines the thickness of the sublayer
where almost the entire vertical temperature difference
islocalized. Note a so that the effective Rayleigh num-
ber defined by (3) rapidly increases with k, whereas the
classical Rayleigh number decreaseswith increasing K.
Denote by Ra,, the value of the effective Rayleigh num-
ber corresponding to loss of stability. Then, the down-
ward velocity required to prevent the onset of convec-
tive instability is

2 1/3

MgATK ]
W, DD VRa, O 4

For example, setting k = v = 1 m?/s (effective turbu-
lent transport coefficients characteristic of atmospheric
boundary layers), a = 4 x 102 K=, AT = 0.1 K, and
Ra, = 103, one obtains W,, ~ 102 m/s. This velocity is
two or three orders of magnitude lower than the charac-
teristic velocity of atmospheric convection. However,
results obtained in both field experiments and numeri-
cal smulations demonstrate that downward flow with
this velocity suppresses convection.

Now, consider a two-component medium. For
example, it can be saline water with density stratifica-
tion determined by the vertical distributions of temper-
ature and salinity, T(2) and s(2). In a commonly used
approximation [1, 7, 8], it isassumed that density pisa
linear function of temperature and salinity:

P = Po[1-0a(T-To) +B(s—)]- ©)
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Fig. 1. Distortion of avertical background temperature dis-
tribution by downward motion: (1) zero background vertical
velocity; (2) w=H/h = 10.
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Fig. 2. Instability of density stratification due to downward
motion in a two-component medium (w = 0.2, wg = 20,
AT>0, BAYaAT = 3): contributions of sdlinity,
(-BAso(2)/aAT) (1), and temperature, @(2) (2), to the nor-
malized buoyancy in the absence of background vertical
motion; (3) profile 1 distorted by downward motion;
(4) total buoyancy, b(2)/aAT, in the presence of downward
motion.

The positive coefficient B has an obvious interpreta-
tion. (In oceanology, it is called the coefficient of
salinity compression.) The subscript O denotes con-
stant reference values of the variables (e.g., those at
the upper boundary of the fluid layer). The steady-
state salinity profile s(z) is described by an equation
similar to (1):

-W=- = X7 (6)
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where X is the corresponding transport coefficient. To
be specific, assume that the boundary conditions for
salinity are analogous to those set above: s= s, and s,
at z= 0 and H, respectively. Then, the solution for sis
similar to (2):

eXp(—Es) _ exp(_Ws)
1- exp(— s)

o(z) =

: (7)

where

0 = (s—s)/As, As=s-5s, & = zh,

he = X/W, w, = H/h, = W(H/X).

When x and k have different values, the dimension-
less functions given by (2) and (7) are quantitatively
different. For example, x/k = 107 for saline water. The
corresponding reference height hg is smaller than h by
one hundred times. Comparing the salinity profile with
curve 2in Fig. 1, one finds that the entire drop in salin-
ity islocalized in alayer of thickness much smaller than
the thermal sublayer thickness. It can be shown that this
disparity can lead to nontrivial convection regimes in
the fluid layer.

Consider the dimensionless background buoyancy
profile b(2):

b(z) = _é_%(O_Z_) - aATO(2) —BAsa(2).  (8)

Depending on the signs of AT and As, four qualitatively
different regimes can be distinguished.

1. When AT <0, As > 0 (both fields are stably strat-
ified), it isobvious that downward background flow has
only a quantitative effect on the stable density stratifi-
cation: the gradients of both fieldsarelocalized near the
lower boundary. The sign of expression (8) remains
negative everywhere. Thus, downward flow does not
affect convective stability, which is unquestionable in
this case.

2. In the absence of vertical motion, density stratifi-
cation isunstable when at least one scalar field is unsta-
bly stratified to a sufficiently high degree. As shown
above for a one-component medium, the effective Ray-
leigh number isreduced in the presence of adownward
background flow (because of the reduced thickness of
the layer where almost the entire unstable density strat-
ification is localized). Therefore, the onset of convec-
tive instability can be prevented. Note that the instabil-
ity due to unstable stratification of a slowly diffusing
species (salt) is suppressed more easily, because the
corresponding transport coefficient is contained in the
numerators of criteria (3) and (4). Even aslow vertical
motion drivesthe slowly diffusing speciesinto anarrow
layer at the boundary, reducing the effective Rayleigh
number.
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3. When As> aAT > 0 (effects due to unstable tem-
perature stratification are by far counterbalanced by sta-
ble species dstratification in the absence of vertical
motion), even a slow downward motion can change the
sign of expression (8) in a considerable part of the
layer; i.e., asystem with “average’ density profile char-
acterized by an ample stability margin can be destabi-
lized. Thisis clear from Fig. 2, where vertica profiles
of buoyancy (8) normalized to AT and its “thermal”
and “saline’” components are shown. In the absence of
vertical motion, the dominant role is played by the
salinity stratification characterized by an ample stabil-
ity margin (line 1). Even though the temperature strati-
fication is unstable, its contribution to buoyancy is rel-
atively small (line 2). Slow downward motion (with
w =0.2) only dlightly changes the temperature profile
(represented by a curve very close to line 2), whereas
the salinity profile is drastically distorted (curve 3).
Since salt is carried downwards by vertical motion, the
salinity stratification cannot counterbalance the effects
due to unstable temperature stratification, and the
resulting buoyancy profile becomes unstable in the
greater part of the layer (curve 4). Note that faster
downward background motion can distort the tempera-
ture profile as well, stabilizing the system. Thus, the
domain of instability corresponds to an intermediate
range of downward flow velocity.

4. When aAT < BAs < 0, the species stratification is
unstable, but the system is stabilized by the stable tem-
perature stratification in the absence of vertica
motion.? It is clear that even a slow downward motion
may trigger convective instability. Indeed, it follows
from the discussion above that the vertical gradient of
Species concentration grows steeper in the presence of
downward motion; i.e., the instability of the species
stratification increases. This effect can be strong when
w > 1. At the same time, the value of w can be much
less than unity, in which case the temperature stratifica-
tion remains almost constant and cannot counterbal-
ance increasingly unstable species stratification.

Thus, whereas vertical background motion can pre-
vent the onset of convective instability in certain cases,
it can destabilize a double-diffusive layer. It is impor-
tant that the phenomena described above can take place
when the vertical velocity is very low. For example, in
cases 3 and 4 discussed above, an essential condition
for instability of the layer is

ws = WH/x =1, W=2=x/H.
For seawater, X = 1.5 x 10 m?/s, and destabilization

can be caused even by avery slow vertical motion with
W ~ 108 m/s. This phenomenon can be interpreted as

2The stability condition for this double-diffusive system is more
complicated than in the classica Rayleigh-Bénard problem [1, 8,
9]. In particular, it can be much more restrictive. It is assumed
here that the condition is satisfied in the absence of vertical
motion.
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instability of a new type. Note, however, that the times
required for a system to evolve into the unstabl e steady
states considered above may be very large.
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Abstract—Based on recent discoveries, we show that it is appropriate to complement the standard shock-wave
model for the production of galactic cosmic rays by a plasma-pinch model. The latter describes well the pro-
duction of high-energy cosmic rays, yields asimple formulafor their intensity, and allows the threshold pattern
of the knee-type kink in the secondary particle spectrum and a number of unusua phenomena observed above
the threshold to be explained. © 2005 Pleiades Publishing, Inc.

1. THE SHOCK-WAVE MODEL

The Sun is known to be the source of solar cosmic
rays with energies E < 108 eV (Fig. 1). Cosmic rays
with energies E > 108 eV are commonly called galactic
cosmic rays (GCRs), but their accel eration mechanism
has not yet been firmly established. In his well-known
paper [1], Ginzburg summarized the results of a pro-
longed study of this problem that he formulated in three
conclusions:

—the galactic rather than metagal actic model (the-
ory) isvalid,

—the galactic model with a large halo (without a
disk) isvalid;

—supernovaexplosions are the main sources of cos-
mic raysin the Galaxy.

However, new facts that require complementing the
shock-wave model have been discovered in recent
years.

A supernova explosion is accompanied by a shock
wave whose remnant is an expanding (Crab-like)
plasma nebula with a pulsar at its center. A rapidly
rotating pulsar generates shock waves and turbulent
plasmamotionsin the nebulaon which the particle accel -
eration is possible in accordance with the equation [2]

-d-f—%t-P—) = div,(Dpgrad, f). (1)

This equation describes the particle momentum (p) dif-
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Fig. 1. Giant solar flare of November 28, 2003.
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SHOCK-WAVE AND PLASMA-PINCH MECHANISMS

fusion with the diffusion tensor f)p proportional to the
plasma pulsation intensity; f is the particle distribution
function.

Since D, >0, eveninitially cold particles gradually
acquire large momenta and are then caught up by the
shock waves. Subsequently, they diffuse through the
Galactic disk and halo in accordance with the ordinary
diffusion equation

div,[Drgrad,n(r)] = Q(r), )

wheren(r) isthe cosmic-ray density and Q(r) isthedis-
tribution of sources over the Galactic disk. Figure 2 elu-
cidates this shock-wave model.

However, it was qualified in [1] that relatively low-
intensity cosmic rays with energies above 10%°-10% eV
were not considered. Therefore, in this paper, we study
the range of ultrahigh energies in which many impor-
tant discoveries have been made since about 2000.

2. RECENT DISCOVERIES

Below, we provide information published on the
Internet [3] and in print abstracts[4—7]. Thus, for exam-
ple, it isreported in [3] that five protons with an energy
of 108 eV that arrived from the same source, a cluster
of colliding galaxies 450 million light years away (!),
have been detected in extensive air showers (EASS).
The proton paths are rectilinear and are not distorted by
intervening magnetic fields. Since their velocity is v =
c(1—102%), where c is the speed of light in a vacuum,
they produce long rectilinear Cherenkov tracks in air
that specify the source’s direction with ahigh accuracy.

The paper [4] reported the discovery of EASs with
energies E > 10% eV far above the Greisen—Zatsepin—
Kuzmin threshold (against the cosmic microwave back-
ground). The specific mechanism of their acceleration
remainsamystery. The distribution of arrival directions
is consistent with isotropic distribution. EAS doublets
and triplets from the same direction are observed. Pro-
tons are the dominant particles of the primary spectrum
in the range of ultrahigh energies. The discovery of
entirely new phenomenais possible.

It isnoted in [5] that the following five difficult-to-
explain events are observed in EASs even at E =
10% eV:

anti centaurs—el ectromagnetic cascades of gamma-
ray photons and €* pairs;
centaurs—cascades composed mostly of hadrons;

alignment of cascade tracks along one straight line
(on Earth;

halo events—cascades with a peculiar pattern;
penetrating cascades from unknown particles.

No such events are observed before the kink in the
spectrum (see Fig. 5 below). It isalso noted in [5] that
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Fig. 2. Scheme of the shock-wave model: the GCR particles
produced during supernova explosions in the Galactic disk
are scattered by clouds of magnetized plasma in the halo,
where they become isotropic, and then diffuse from the
Galaxy.

the spectrum dN/dE O E~ with theindexv =1+ /3 =
2.73 (N is the number of recorded events) suggested
previously [8] is universal, while none of the other
models yields an unambiguous spectral index.

The numerical calculations for the energy range
10%-10% eV [6] show that the observed GCR spectrum
(to be more precise, calculated for the location of the
Sun in the Galaxy) steepens significantly compared to
their spectrum in the sourcesonly in arelatively narrow
(oneto two orders of magnitude) range of primary ener-
gies. This makes it difficult to reconcile the observed
spectrum with predictions of the standard model for the
acceleration of cosmic rays by shock waves.

The paper [7] reported that ten successful flights of
balloons with emulsion chambers at an atitude of
32 km (where the spectrumis primary) were carried out
in 1995-1999. The proton and helium spectra were
shown to have similar indices and to exhibit no appre-
ciable steepening at energies as high as 10'° eV per par-
ticle.

The above list of facts alows us to formulate two
main questions: (i) about the spectrum of the primary
GCR particles and their maximum energy; and
(ii) about the new physics of the cascades of secondary
particlesin EASs.

In the standard shock-wave model, the produced
GCRsin the sources are assumed to have a power-law
spectrum, dN/dE O E, with an index near k = 2. A
steeper spectrum with anindex near k= 2.7 observed on
Earth must form only during diffusive GCR propaga
tion through the Galaxy, from sourcesin the disk to the
solar neighborhood.

However, as is noted in [7], the primary spectrum
observed on Earth shows no tendency to steepen up to
E = 10'° eV. It can be assumed that particles with ener-
gies above 10™° eV are unlikely to be deflected by any
galactic magnetic fields and most likely fly toward
Earth directly from their sources, which are distributed
isotropically over the sky. However, when the particles
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Fig. 3. Scheme of the plasma-pinch model.
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Fig. 4. Comparison of the primary observed GCR spectra
(dots) with the curves constructed using formula (3).

move along straight trajectories, their spectrum on
Earth must not differ from the source spectra for al
energies above 10™° eV.

Meanwhile, the calculations [6] yield a primary
spectrum with a kink in a narrow energy range,
10%-10% eV. As was noted by the authors of [6], this
makes it difficult to compare the shock-wave model
with observations.

In our opinion, the shock-wave model requires a
refinement at high energies, and we should return to the
well-known (since 1949) Fermi acceleration mecha-
nism of a charged particle that is reflected from two
approaching clouds of magnetized plasma. As we see
from Fig. 2, such clouds in the halo are needed, and
they manifest themselves in the shock-wave model as
observations of galactic radio halos. It isassumed in the
Fermi hypothesis that, if the separation L between the
clouds decreases and the adiabatic invariant Lv = inv is
conserved, then the velocity v increases.

However, there exists a much more efficient mecha-
nism where a neutral current sheet isformed at the col-
lison boundary between the two magnetized plasma
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clouds; this sheet soon breaks up into cylindrical cur-
rent pinches with alongitudinal internal magnetic field.
During their prior constriction, this field must
straighten the pinches, and they can become very long
and almost rectilinear.

Subsequently, necks must grow on them, aswasfirst
shown in 1952 [9].

3. THE PLASMA-PINCH MODEL

Figure 3 elucidates this model. The quasi-neutral
plasma squeezed out of the necks into the thickenings
accelerates along its way, and the particles (electrons
and ions) can gain very high velocities. In severa
papers [10], we showed that the following formula for
the GCR intensity is derived (see Appendix) in the rel-
ativistic case for an idealized model (composed of a set
of isotropically directed pinches without longitudinal
fields and with skinned currents):

i(e) = oy, 3)

where

e=y-1, v =1+./3

wherey =1 + €/2 for hydrogen. Thisformula

(1) contains no parameters (except the normaliza-
tion factor a;, which is different for different GCR
nuclei);

(2) describes well the primary GCR spectrum
(Fig. 4) even at energies E < 10'® eV, at which the
shock-wave model is assumed to be applicable, but this
is probably a coincidence;

(3) predicts no limiting GCR energy (and could
describe the entire observed energy range if there were
no kinks in the primary spectrum shown in Fig. 5 for
secondary EAS spectra).

4. PRIMARY
AND SECONDARY SPECTRA

At E < 10* eV, the primary GCR particles can be
recorded by relatively light detectors on satellites
beyond Earth’s atmosphere. However, no satellite mea-
surements are possible at E > 10* eV, and al further
information can be obtained only from the observations
of secondary particlesin the EA Ssgenerated during the
collisions of a primary particle with air atoms. How-
ever, the interpretation of the EAS datais ambiguous.

Figure 5, in which kinks can be seen, was con-
structed by assuming that the EAS detectors catch all of
the total energy of the secondary particles that is attrib-
uted to the primary particle. However, part of the
energy in strong EASs can elude detection, for exam-
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Fig. 5. Kinksin the secondary GCR spectrum [5].

ple, in the form of difficult-to-record energetic neutri-
nos and muons.

Some researchers believe that there are no kinks in
the primary spectrum at al. In the standard shock-wave
model, the first knee-type kink at E; =5 PeV (1 PeV =
10% eV) is explained as follows: at E < E;, the GCR
particles get entangled in nonuniform Galactic mag-
netic fields, while at E > E, , their diffusive escape from
our Galaxy begins.

Our calculations of the diffusive escape mechanism
yield asmooth kink in the spectrum, while the observed
kink has a sharp threshold pattern. Circumstantial evi-
dence for the spectral indices of GCRs in supernova
remnants could be the gamma-ray photons arriving
from them to Earth that are not deflected by intervening
magnetic fields. In recent years, several large gamma-
ray telescopes have been put into operation, and the
cumulative energy spectra of the gamma-ray photons
from various sources observed by them have a power-
law form:

N,(E>0.8Tev) O E™

We added unity to the indices of the gamma-ray spec-
trum from the source (k) and the spectra of the events
from the source (k,,) and those taken simultaneously
with observation of the sources (k) givenin [4—7, 10]
for the cumulative spectra to obtain the differential
spectra. The latter are presented in the table. The values
of k, in the first column have a very large spread. The
detection of gammarray photons with energies E >
30 TeV would be evidence of their hadron rather than
electron origin.

According to arecent report [11], the HESS system
of four advanced gamma-ray telescopes began opera-
tion in Namibia in 2004; this system has imaged a
supernova remnant (the pulsar J1713.7-3946; see
Figs. 6 and 7) directly in gammarays for the first time.
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Fig. 6. The first gamma-ray image of the pulsar with an
envelope [11]

Figure 7 showstwo gamma-ray spectra: the upper spec-
trum for the entire envelope has a power-law form,
dNy/dE O EX with an index k = 2.2, while the lower
spectrum (taken previoudly in [12] only for the upper
right hottest part of the envelope) has an index near

In our opinion, these data and those given in the
table have such alarge spread that they are consistent
with the plasma-pinch model; the latter predicts an

index v = 1 + /3 = 2.732, which will possibly be
detected during the observations of gammarray photons
with higher energies, E > 100 TeV.

5. THE PROBLEM OF THE KINKS
IN THE SPECTRUM

Thus, we can assume that the primary GCR spec-
trum has no kinks, but they are typical of the secondary
EAS spectra. Schematically, an EAS resembles a fir
tree with a central hadron stem and side branches of
secondary particle cascades emanating from it down-
ward.

Table
ky Kon Kot
Crab Pulsar 2.45 261 273
Tycho Brahe Pulsar 2.00 212 2.73
Geminga Pulsar 1.65 1.88 2.77

Pulsar J1713.7-3946 2.2 - -

Hole Cygnus 3-X 3.55 294 2.74

Quasar Mkn 421 2.87 2.53 2.76

Quasar Mkn 501 2.82 2.85 2.76

Quasar 1739 + 522 3.64 3.29 2.77
No. 1 2005



164

dN/dE, m2 s TeV~!

107°

1077

1078

107°

E, TeV

Fig. 7. Gammarray spectra: (1) for the entire envelope,
ky=2.2[11]; (2) for the hottest part of the envelope (upper
rightin Fig. 6), k, = 3[12].

The simplest explanation of the first kink in the
GCR spectrum at E; =5 PeV was offered in[13], where
it was assumed that the lower end of the hadron stemin
an intense EAS goes to the bottom and part of the total
EAS energy simply cannot be recorded by existing
instruments. This methodological error may manifest
itself asan apparent kink in the secondary spectrum (an
artifact) without any kink in the primary spectrum. If
the assumption made in [12] is valid, then the maxi-
mum GCR energy detected to date, E = 2 x 102 eV,
may actually prove to be even higher.

In the opinion of Petrukhin [5], the second cause of
the kink could be the formation of new heavy particles
or states of nuclear matter. Recall that the theory pre-
dictsenergiesof 10%2-10% eV for the Grand Unification
of three forces of Nature—strong, weak, and electro-
magnetic forces. However, there are also models of the
early Grand Unification at energies E = 10'>-10Y eV,
which are close to the energy of thefirst knee-type kink
at E; =5 x 10'® eV. The late Grand Unification may be
responsiblefor the appearance of the second ankle-type
kink observed in EASsat E, =5 x 10 eV.

6. COLLECTIVE QUARK
SELF-MULTIPLICATION

In our opinion, however, athird causeis aso possi-
ble, which alows one to explain more easily (without
introducing new, as yet unknown particles) the thresh-
old pattern of the kink or, more specifically, the switch-
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ing-on of the processes of collective multiplication of
quark pairs described by the equation

dn _ 12 _n
a—zn[va T

Here, nisthe density of the quark pairs, o istheir mul-
tiplication cross section, and T is their lifetime in the
reaction volume.

The quark multiplication begins at dn/dt > 0, i.e., at
acritical valueof n,, = 2/[g v[T. For example, let uscon-
sider the situation where a primary proton with energy
Eo = m,c?y, impinges on aresting nucleus, for instance,
of nitrogen N, which contains 14 nucleons, i.e.,
42 quarks and 21 quark pairs.

The proton radius and volume are assumed to be
r,= 12 x 108 cm and V, = (41/3)r, respectively.
Since the proton contains three quarks, the quark den-
sity initisny = 3/V,, and it isthe samein al nuclei at
rest, including nitrogen. Therefore, the density of the
quark pairsat restisny = 3/2V,, if the medium moves at
velocity v = cf3, then this density is

Nett = NoYerts  Yert = 1/V1—[32-

The above formula can then be rewritten as a threshold
value:

_ 2 _16mMipT
ny Lo vt 9 myovt

Yar = (4)
Further, we assume that a primary ultrarelativistic pro-
ton with momentum P = mycy, and a nitrogen nucleus
at rest are combined into a single complex of mass M
with the same momentum P = mcy, = Mcy, for ashort
time. In this case, the factor y¢ = (Mm/M)y, is smaller
than theinitial factor y,. Finally, we have for the thresh-
old

S @M i’h 5

" 9 movt ©)
It isfrom this formulathat we wish to obtain the factor
Yo = 5 x 106 for the proton, which corresponds to the
kink energy E; =5 PeV =5 x 10° GeV = m,c?y,. How-
ever, this requires finding the factors on the right-hand
side, and additional assumptions are needed here.

7. THE MASS OF THE “BALL”
AND THE KINK THRESHOLD

To the best of my knowledge, only individual parti-
cle collisions have been investigated previously in
guantum chromodynamics and no collective processes
have been considered. However, they are phenomeno-
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logically taken into account in the theory of quark—
gluon plasma (the Fermi—Landau theory), inwhichiitis
assumed that the number of produced quarks during
head-on collisions between two nuclei is

Ng = J/Eso/Eq,

where E; is the total energy in the center-of-inertia
system, and E, = m,c? is the rest energy of the quark
(the gluons are assumed to be massless). If a proton of
initial energy E, = m,c?y, impinges on aresting nitro-
gen nucleus of mass M = 14m,, then

2
= Mmc? 1+ 00 o
Eqe = Mc? [1+ 52 + 2506y, ©

~5.3m,c”./Yo.

For aproton with y, = 5 x 10%, we find N, = 200 quarks
and, having added 45 initia quarks to them, obtain
about 125 quark pairs in the formed overall coal esced
complex with the rest mass M = 245m,. We then have
the factor M/m, = 82, and the above formula for the
kink threshold can be rewritten as

2
or _ 6 _ Mplp
Yo 5x10 4560VT.

Taking v = ¢, we haver/c= 4 x 10?*s, but we assume
that the lifetime of the quark pairs in the overall com-
plex is appreciably longer, say, by a factor of 100. We
then obtain the following estimate of the cross section:

0=10°r3=10"% e,

which seems plausible for the following reasons.

This cross section probably corresponds to such
close quark collisions that the gluon forces are weak
due to their so-called asymptotic freedom. The Cou-
lomb forces with the Rutherford cross section oy =
(0%/E)?, where q = &/2 isthe mean electric charge of the
quarks, play a major role. For our estimation, we
assume that m, = m/3, which yields the required cross
section

Or=r5(3m/4m,)* = 107 cm”. 7

Here, ro = €2/mc? isthe classical electron radius.

8. ON THE ALIGNMENT OF TRACKS
AND NEW PHYSICS

Note that the beams of ultrahigh-energy GCR parti-
clesin the plasma-pinch model must have the pattern of
individual “machine-gun bursts’ that are isotropic in
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Fig. 8. () Peripherd, (b) middle, and (c) central collisions.

Fig. 9. The stretchable chain of quark—antiquark pairs
winds around the core of the nucleus and forms a spider
web.

arrival directions. This may be the reason why close (in
arrival time) doublets and triplets of showers are occa-
sionally observed on the same EA S area from the same
direction (i.e, asif from a single machine-gun burst).

Below, we consider three types of possible colli-
sions (peripheral, middle, and central) between a pri-
mary proton and the nucleus of an air atom, which are
schematically shownin Fig. 8.

The tracks of the secondary cascades are probably
aligned not in a head-on collision, but in an off-center
collision, in which a turning ball of secondary quark
pairs arises, which is schematically shown in Fig. 9 and
resembles a spider web.

Recall that different atoms in a molecule are bound
by the “residual” electromagnetic forces, while differ-
ent nucleons in a nucleus are pulled together by the
“residual” gluon forces, despite the electrostatic repul -
sion of the protons. Therefore, the bunch of quark—anti-
quark pairs multiplied in the nucleuswill continueto be
attracted to the core by these residual gluon forces at
the exit from the nucleus and to be wound around the
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core. According to our hypothesis, this can give rise to
arotating spider web.

Since the proton comes from above, the spider web
must rotate in the vertical plane. As the spider web
breaks up, the radial jets of secondary particles (along
the “ spokes’ of the spider web) probably yield the cas-
cade tracks aligned along one straight line on Earth.
Apart from the alignment of thetracks of theradial jets,
we aso see from this scheme that only two breakup
scenarios are possible for the vertical spider web: into
neighboring quark—antiquark doublets, which gives
rise to electromagnetic anticentaurs composed of pions
decaying into neutrinos, gamma-ray photons, and elec-
tron—positron pairs according to the scheme

ou—dd
m—-1m+e +y, = 7
2

and into quark triplets, which gives rise to centaurs
composed mostly of hadrons with high angular
momenta L, i.e., “resonances’ with large spins S. The

relationJ=a+ mﬁ b, where my isthe resonance particle

mass and a and b are constants, is known to be obtained
for the quantized total angular momentumJ=S+L. To
bind the triplets (either only of quarks or antiquarks), it
is probably necessary that the spider web in the second
scenario be multilayered and the triplet members be
taken from the neighboring layers.

—Yy+y, (8

Observations show that in a central head-on colli-
sion of a primary GCR proton with the nucleus of an
atom in air, the multiplication process does not develop
in the way predicted by the Fermi—Landau theory for
the formation of an ellipsoid of quark—gluon plasma.
More specifically, if the above quark self-multiplication
threshold is exceeded, then a third scenario takes
place—instead of the ellipsoid, a torus like a “smoke
ring” with avertical axial jet isformed, which produces
a halo event—a cascade surrounded by a peculiar pat-
tern, the tracks of the torus.

Finally, the penetrating cascades are probably attrib-
utable [5] to a long-range component, whose role can
be played by weakly interacting ultrahigh-energy
muons.

As we see, the proposed inclusion of the collective
quark self-multiplication processes not only can quan-
titatively explain the threshold value of the knee-type
kink in EASs at E; = 5 PeV, but can also qualitatively
explain the cascades of unusual typesthat, according to
our hypothesis, are associated precisely with the pattern
of therotating spider web constructed like parquet from
the neighboring quark—antiquark pairs. This “parquet”
or even the multilayered “quark crystal” may be ame-
nable to a more accurate theoretical analysis, probably,
using group or string theory.
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9. DISCUSSION OF THE MODELS

As was noted above, the theory of the standard
shock-wave model runs into difficulties, particularly
near the kink and at high energies. At the sametime, the
plasma-pinch model with its simple formula for the
intensity, j = a2y, allows usto explain the following:

(1) the fall-off of the left edge of the spectrum due
to the natural factor B

(2) the pinch mechanism of high-energy GCR parti-
cle acceleration;

(3) the GCR spectrum without any restriction on the
maximum energy;

(4) the threshold of the kink in the secondary EAS
spectrum;

(5) the doublets and triplets of close (in time) show-
ersin EAS;

(6) the alignment of the tracks of cascades from the
vertical spider web of quarks;

(7) the emergence of centaurs—cascades composed
mostly of hadrons;

(8) the formation of anticentaurs—mostly electro-
magnetic cascades;

(9) the hal o events—cascades surrounded by a pecu-
liar pattern.

Points (4)—(9) arerelated to our hypothesis about the
collective self-multiplication of quarks, which is not
considered in chromodynamics. This possibility could
also be introduced in the shock-wave model, but it has
no “machine-gun bursts,” and events 6-9 are possible
only above the threshold, starting from an energy of
106 eV. In generd, in our opinion, the plasma-pinch
model complements well the standard shock-wave
model, particularly at high GCR energies.

In the plasma-pinch model, both the plasma enve-
lopes of supernova explosions in the Galactic disk and
the colliding clouds of magnetized plasmain the Galac-
tic halo are assumed to be the GCR sources. Therefore,
the energy supply required for the two modelsis either
the same or even greater in the plasma-pinch model,
because GCRs can be produced not only in the disk, but
also in the halo of the Galaxy. Undoubtedly, the main
difficulty of the plasma-pinch model isthat the pinches
of the required type have not yet been observed in the
Galactic halo. Whether they can be detected by cur-
rently available instruments of aparticular type, even if
they exist in the halo, remains an open question.

Calliding plasma clouds are seen, for example, in
the Crab Nebula, where even the optical radiation from
neighboring cells has different polarizations, suggest-
ing that the fields magnetizing them have different
directions. The plasma pinches of the type required for
our model must be formed at the contact boundaries
between these cells. Although plasma filaments are
actually seen there, no individua pinches and “bolts of
lightning” in the Crab can probably be detected in the
optical range so far. The pinches and bolts of lightning
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are even more difficult to find in the halos of galaxies.
However, individual plasma clouds are observed in
galactic halos in the radio range, and they are used in
the shock-wave model as the presumed cause of the
isotropization of the GCRs produced in the Galactic
disk. However, if the clouds exist, then the currents
magnetizing them also exist!

The acceleration mechanism itself rather than the
GCR hirthplace and the energy supply should be con-
sidered to be the main difference between the two mod-
elsunder consideration. The accel eration mechanismis
attributed to shocks in the shock-wave model and to
pinches, which periodically break and are again occa
sionally formed at the boundaries of the neighboring
colliding plasma clouds that are magnetized differently
in the neighboring cells, in the plasma-pinch model.

Above, we considered only the simplest idealized
model composed of a set of isotropically directed
pinches with skinned currents and without longitudinal
internal magnetic fields, whose role deserves special
study. On the one hand, these fields can contribute to
the straightening and formation of the required long
pinches during their prior constriction and formation.
On the other, they complicate the neck breaking pro-
cess. If the current is not skinned, but distributed over
the pinch cross section, then thereis afield component
B, inside the pinch that defocuses the ions moving
against the current and focuses the ions moving along
the current. Clearly, only the latter will yield the pencil
paraxial beams that require a separate numerical calcu-
lation.

Note also that, although the shock-wave modd is
most popular, this does not rule out the possibility of
constructing other models. In particular, a surfatron
mechanism of particle acceleration by relativistic
plasma waves in the halo was suggested in [14]. The
author points out that the most remarkable property of
the surfing is the absence of synchrotron radiation, the
most dangerous channel of energy losses by ultrarela-
tivistic particles. Clearly, the produced GCRs must also
beisotropicin directions and can acquire energies up to
10%-10% eV per nucleon in this model aswell.

APPENDIX

To derive the formulaj = a2y, we use the equa-
tions of relativistic hydrodynamics

onui' =0, 9T, =0 9)

with the adiabat p = py(n/ny)s, given that the skinned
current 1, = const produces the pressure p = py(ay/a)? in
apinch of radius a. In the one-dimensional approxima-
tion of a"narrow channel,” thetwo argumentsaret = ct
and z.
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Let us introduce dimensionless quantities,
> SPo na’
o= ——— =const, p=—, (10)
(s=1)ngmc Nodo

and two functions, x(t, 2) = cS/p and y(t, 2) =
arccoshy , for which we obtain the nonlinear equations

oyo , oM _
oo toa "9

T 4

U +y, +yx,+ux, = 0. (11)

If we introduce the inverse functions ¢(x, y) and
W(x, y) using the formulas

T=Txy) = (BY-0)W,

_X (12)
z=27(xy) = (Y-Bo)W, W = xe’y,
then we obtain the linear equations
- 0= gl
lpy - X(¢_¢x)! q)y - l-|Jx+ X' (13)

Lo = -0y, = xdy + (2-X)¢,—2¢,

where L is the operator of the Laguerre polynomials
A= L& (X) that satisfies the equation L A, = —(k + 2)A,
fork=0, 1, 2, 3, ... Note that the term with k = 0 and
Ao = 1 does not depend on the argument X.

The genera solution is

b = z CA)(Y)-
K

For the functions |1, we obtain the main eguation of the
problem

W = exp(-lylvk +2).

In the ultrarelativistic case (y > 1), we can retain
two terms, with k = 0 and k = 1. However, the zeroth
term with k = O describes periodic (over the entire infi-
nite pinch length) perturbationsthat cannot arisein cos-
mic conditions spontaneously. Therefore, the term with
k = 0 should be discarded, and only the local solution

Hyy = (K+2)y,

@, = CA 1(X)V_[3
remains.

The number of particles accelerated in a single
pinchis

N = [(rany - reing)dz = I‘;—Eldu - I‘j'j—';'ds,
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where € = E;/m,c?, m, is the mass of the nucleus with
charge Z. Hence, we have the formulas

dN _ dN _ s
e TagNy P YDdz, (14)
where
dZ(x,y) _ 5 dX
dy ZXdy Z

The total derivative dZ/dx is calculated for a fixed time
when

dT = Tidx+T,dy = 0, dz/dy = Z,—Z,(T\/T}).

Denoting ® =¢ — Yy, and ¥ = Y — ¢, wefind the par-
tial derivatives

- Bw—%vv, T, = (W-BOW,

(15)
Z = -%cpwgw, Z, = (BY-®)W.
The spectrum is
dN _dN _ P* + xW
B8R

We see from the relations x = ¢2/p = ¢, (ay/a)*s that
the particles are accel erated while moving from the nar-
row placesto thethickenings, wherea — co and x —»
0. In the limit x — 0, when ) = 0, we obtain a spec-
trum of the form

dN _ Ay
B =~ @(x=0.y)

where A, = Tta; n,c2 = const. For y > 1, we have ¢, O
y‘f3 , and the expression dN/de [ y¥ with theindex v =

1+ ./3 describeswell the entire ultrarel ativistic energy
range.

Multiplying the spectrum by the velocity v = cf3
yield the intensity of the particle beam:

= v = o mapy, @
where the coefficients a; = const are different for nuclel
with different charges Z,. However, since the charge of
the nucleusis proportional toitsmassm,, asingleargu-
ment issuitablefor all nuclei: the dimensionlesskinetic
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energy € =y — 1 = E,;/m,c% Thus, we see that al bare
nuclei are accelerated at the same potential difference
V, acquiring energies E, = Z]|e]V proportional to the
nuclear masses.
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Abstract—Special features of surface gravity wavesin adeep fluid flow with a constant vertical shear of veloc-
ity is studied. It is found that the mean flow velocity shear leads to a nontrivial modification of the dispersive
characteristics of surface gravity wave modes. Moreover, the shear induces generation of surface gravity waves
by internal vortex mode perturbations. The performed analytical and numerical study show that surface gravity
waves are effectively generated by the internal perturbations at high shear rates. The generation is different for
the waves propagating in the different directions. The generation of surface gravity waves propagating along
the main flow considerably exceeds the generation of surface gravity waves in the opposite direction for rela
tively small shear rates, whereas the latter wave is generated more effectively for high shear rates. From the
mathematical standpoint, the wave generation is caused by non-self-adjointness of the linear operators that
describe the shear flow. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Generation of surface gravity waves (SGW), which
are the best known sea and oceanic waves, is naturally
associated with winds. Momentum transfer from wind
to undulating movement of the ocean, which is the
basic mechanism of the generation of surface waves, is
investigated since Kelvin's pioneering work [1].
Independent and intercomplementary theories of Phil-
lips [2] and Miles [3—6] provide the basics of theoreti-
cal understanding of surface wave generation by wind.
Phillips' resonant mechanism is responsible for excita-
tion and initial rising of wave motion on an unexcited
surface of the fluid; Miles’ mechanism—energy trans-
fer from wind to fluid as a consegquence of the interac-
tion between wind shear flow and surface waves—is
responsible for subsequent amplification of the waves.
According to Miles mechanism, the energy sourceisthe
wind shear flows situated outside thefluid. Other ways of
SGW generation have a so been studied, such asthe pos-
sibility of SGW generation by earthquakes[7, 8] and the
theory of SGW generation by intrafluid explosions[9].
In the theories mentioned above, the sources of SGW
generation are extrinsic to the fluid.

The question arises as to whether sources intrinsic
for the fluid (shear flows and vortex perturbations, for
example) can generate SGW.

This question becomes especialy interesting in
view of the impressive progress made in the under-
standing of spectrally stable shear flow phenomena by

T This article was submitted by the authors in English.

the hydrodynamic community in the past ten years. The
early transient period for the perturbations has been
shown to reveal rich and complicate behavior in smooth
(without inflection point) shear flows. In particular, it
has been shown that the linear dynamics of perturba
tions in the flows are accompanied by intense temporal
energy exchange processes between the background
flow and perturbations and/or between different modes
of perturbations. From the mathematical standpoint,
these effects are caused by the non-self-adjointness of
the linear operators in shear flows and are adequately
described in the framework of the so-called nonmodal
approach (see, e.g., [10-12]). The nonmodal approach
involves a change of independent variables from the
laboratory frame to a moving frame and the study of
temporal evolution of spatial Fourier harmonics (SFHS)
of perturbationswithout any spectral expansionintime.

We examine the linear dynamics of surface waves
and internal perturbations in deep fluid in the absence
of wind and in the presence of the fluid flow with aver-
tical shear of velocity. Dispersive characteristics of
shear-modified SGWs and the linear mechanism of the
generation of surface waves in deep fluid by interna
perturbations are studied in detail in the framework of
the nonmodal approach.

The paper is organized as follows. The mathemati-
cal formalismis presented in Section 2. Shear-modified
SGWs and their generation are analyzed in Section 3.
Applications of the obtained results to the concrete
physical problems are discussed in Section 4. Conclu-
sions are given in Section 5.

1063-7761/05/10101-0169%$26.00 © 2005 Pleiades Publishing, Inc.
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2. MATHEMATICAL FORMALISM

We consider deep fluid with the flat outer surface at
z=0and aconstant shear flow U, = (Az, 0, 0) for z< 0.
The shear parameter A is considered positive for sim-
plicity. The gravitational field is considered uniform,
g= (0, 0, —g). Generdly, four modes of perturbation
(SGW, internal gravity waves, sound waves, and vortex
mode) can exist in the system. To reduce the mathemat-
ical complications as much as possible but still keep the
basic physics of our analysis, we consider fluid to be
incompressi ble (neglecting sound waves) and disregard
the stratification effects (assuming that the frequency of
internal gravity waves is much less than the frequency
of SGWs, i.e., considering internal gravity waves as
aperiodic/vortex mode perturbations). We also ignore
the effects of viscosity in what follows. After these sim-
plifications, we keep just two modes of perturbation,
SGW and the vortex mode, and write the differential
equations for the linear dynamics of perturbations of
velocity (u") and normalized pressure (p' = p/pg) as

du, Ouy  O0u, _
&+6_y+5_0’ (D)
au, au, _ op
E+A W+Au = T ()]

au 6u'y _ op
ot TA%% T oy )

au, ou, _ oap
ot A% T Tz @)

with the boundary condition on the surface z= 0:

op

Ot gu = 0. 5)

z=0

We use the standard technique of the nonmodal
approach [10]: introduction of comoving variables (X' =
X+Azt,y =y, Z =zt =1) dlows us to transform the
gpatial inhomogeneity presented in Egs. (1)—(5) into a
temporal one. Then, after the Fourier transformation
with respect to X' and v,

u'(r,t) = u(k,, k,, Z,1)
I ' (6)
X exp[i(kxx +k,y)]dk,dk,,
the dynamic equations are reduced to
. . o .. B
ikeuy +ikyu, + %_z' —iAt k)guz =0, (7)
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b—t-+Au = —ik.p, (8)
‘Z_‘:,y = —ik,p, €)

%%-Z = —%—%—lAt'kgp, (10)
g—g_gugi:o: 0. (11)

Hereafter, the primes of the Z and t' variables are
omitted.

From this set, we readily obtain the equation for the
perturbation of the vertical component of velocity,

02 00 i O1,0 =
aﬂk 57 |Atkﬂ}uﬂ—0,

ki+k§.

All other perturbed quantities (u,, u,, and p) can be
readily expressed through u, by combining Egs. (7)—(10);
e.g., for p, we have

(12)

where E =

10000 Oy 1 —iak.ul
~2@t[@ ~ Atk }lAkxuﬂ (13)
Integration of EqQ. (12) with respect to time yields
y 0
k-0 |AtkD}ZkX, 2zt
[ Loz (b Ky 21) (14)
= F(ko ky, 2),

where F(k,, k, 2) isthe constant (in time) of integration
and definesthe internal vortex mode perturbation in the
flow: F(k;, k,, 2) = O relates to the case where the inter-

nal perturbation is absent.
The Fourier transformation with respect to z,

u,(Ky, ky, z, 1)
F(Ky, Ky, 2)

(15)
F(kx, v K
reduces Eg. (14) to
K tu,(k,, k,, k,, t F Ky Ky, K,
() ( y ) ( y ) (16)
+4|T[kC(kX, v 1),
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where

1
4iTu

C

(17)
[

- 2iAtk, - ik, (k, y,zt)}

z=0

Defining u,(k,, k, k,, t) from Eq. (16), making the
inverse Fourier transform with respect to k,, taking the
boundary condition |u,| < o at z=—c0 into account, and
recalling that C(k,, k,, t) isindependent of z, we obtain

Uil K 2) = Zln %exp(ikzz)dkz
+ C (K, k. t)exp[ (K + i Atk)2],

where kX(t) = K* + K2 (t) and k(t) = k, — Atk,

The first term in Eq. (18) is related to the vortex
mode perturbation [11, 13], whereas the second term,
which is exponentialy decreasing with the depth, is
related to the SFHs of shear modified surface waves.

Substituting Eq. (18) in Eqg. (13) and using boundary
condition (Eq. (11)), we obtain

d°Cc , iAk dC
? " +kgC = (ke k v, (19)
where
I (Ky, Ky, 1)
- I[s. paicicet) kg} (k) dk,. (20)
J K°(t)  K(t)

Generaly, Egs. (19) and (20) describe the dynamics
of surface wave SFHSs in the presence of the internal
vortical source: the term I(k,, K, t) is the result of an
interplay of the mean flow shear and the internal vorti-
cal perturbations and couples the latter perturbation to
the surface one. Hence, there is no coupling between
these perturbations in the absence of the shear. Indeed,
if there are no surface perturbations initially [u/k,, k,
z=0, t=0) =(Q], then we readily abtain from Eqgs. (16)
and (20) that I(k,, k, t) ~u/k, k,z=0,t=0) at A=0,
i.e., I(k, K, t) = 0. Thus, if there is no the source in a
shearless flow initialy, it does not appear afterward.

3. SGWs AND THEIR GENERATION
IN SHEAR FLOW

We can see from Egs. (19) and (20) that there are
two main effects of the shear: first, the second term in
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the left-hand side of Eq. (19) indicates that the vel ocity
shear affects the frequencies of SGWSs. Second, the
source term I(k,, k, t) caused by the internal perturba-
tions couplestheinternal and surface perturbations and
results in the emergence/generation of SGW in the
flow. Our further attempts are focused on the study of
these effects.

3.1. Shear Modified SGWs

In this subsection, we study shear-induced modifi-
cations of the properties of SGWs. For this, we assume
that there were no vortex mode perturbations initially,
F (k. k,, k) = 0. Consequently, I(k,, k, t) = O [see
Eqg. (20)], and Eq. (19) reduces to a homogeneous one,
with the solution

Ch(kw Y1 ) 1(kx1 ky)

: : (21)
x exp(—iQ,t) + Cy(ky, ky) exp(—iQ,t),

where C, ,(k,, k) are determined by the initial condi-
tions and

21.2
~ Ak
Q,,=+% kg+A~k2X——~X
' 4k~ 2k
(22)
— 0 Kk
= /kg[jl_— 1+SZN—Z—S£
0 K kO

represents shear-modified frequencies of SFH of SGWs
propagating in the opposite directions and S =
AJ(4kg)V?isthe dimensionless shear rate. Thisequation
shows that, in contrast to acoustic and magnetohydro-
dynamic wave modes [14-16], the presence of the
shear does not lead to the time variability of the fre-
guency. However, velocity shear leads to a nontrivia
modification of the frequencies and, consequently,
phase velocities of SFH [17, 18]. Indeed, for the value
of the phase velacity, Eq. (22) gives

V(S ¢) = ﬁ(All + S'cos’@—Scosg),  (23)

where @ = arccos(k,/ R).

The phase velocity isisotropic in the shearless limit
(S=0) and depends on @in the shear flow. The anisot-
ropy increases with the shear rate. The value of the

phase velocity is minima a ¢ = 0, V' =
Jolk (J1+S —9), andis maximal at @ = T, Vi3> =
Jolk(J1+ S +9). We suppose that a SGW is emitted
by a point source situated on the surface at x =y = 0.
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Fig. 1. Shear-induced anisotropy of SGW propagation. The
leading wave crest at three different time instants ty, to, ts,

witht, = 2t t3 = 3t;, which are circular but not concentric.
A point source of the SGW islocated at x =y = 0.

From Eg. (23), it then follows that the propagation of
the leading wave crest is described by

NS et) = Vi(S ot

= ﬁ(A/l + S’ cos”(p— Scos@)t. (24)

Figure 1 shows the leading wave crest of the SGW for
three different time instants ty, t,, t3, with t, = 2t;, t; =
3t;, which are circular but not concentric.

3.2. Generation of SGWs by Internal Vortices

We first analyze the source term I (k,, K, t), whichis

determined by F (k,, k,, k). We assumethat F (k,, k, k,)
is alocalized function in the wavenumber space, with
the center of localization at ko = (Ko, Ko, Kg). We note
that the first factor in the integrand in Eq. (20) reaches
its maximum when k, — Akt = 0. Consequently, the
maximum of the integral isin the vicinity of the time
instant t = t= ky/(Ak,o). Equation (20) implies that
generally, I(k,, K, t) tends to zero in both limitst —~
oo, Actualy, there exists some time interval 2At
around t where the source term differsfrom zero. The

value of At depends on the degree of localization of the

internal perturbation, i.e., of F(k,, K, k), in the wave-
number space. (The source localization is demon-
strated below in a specific example.) Thus, in the
case of alocalized source, the coupling between sur-
face (gravity wave) and internal (vortex mode) pertur-
bations takes place in sometimeinterval 2At around tp

and these perturbations can be considered separately at
It —t] > At.

The general solution of the inhomogeneous equa-
tion (Eq. (19)) isthe sum of the general solution of the
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corresponding homogeneous equation and a partial
solution of the equation

C(kx1 y? t) - Ch(kx1 y? t)+C(kx1 Y1 ) (25)

The general solution Cy(k,, K, t) is given by Eq. (21),
whereas a partia solution of Eq. (19) is

t
C = ZQ ——exp(— |Q1t)J’I(kX, ky, t') exp(iQ,t")dt’

to

1
ZQOGXIO( 1Q,t) (26)
XJ’I(kX, Ky, ') exp(iQ,t")dt',
where
Qy = [k = Jkg /1+§E—;. 27)

We assume that the coupling between the surface
and internal modes can be neglected at the initial time
instant to, i.e., ty < t— At. After passing through the
coupling timeinterval, for any t > t; = t+ At, the modes
become independent again. However, during the time
interval [to, t], internal vortices generate SGWs with
frequencies Q, and Q, [see Eq. (22)]. As follows from
Egs. (21), (25), and (26), if there are no SGWs
(Cy o =0) initialy, then the generated SFH amplitudes
(Qy,0) are

Qulk k) = 5=
(29
xJ’I(kX, Ky, ) exp(iQ,t')dt'|,

Qz(kx’ ky) = ZQ

(29)
tYexp(iQ,t)dt'|.

X1 y1

We can replace the integration limits by +c. After inte-
gration over time, thisyields

_ A ko (Q, F AI2)K
Quz = i, R A
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Q, F AI2)k
J’F(kx, ko) expd %ﬂdk
. 30
218k, A _K (Q, F A/2)k (30)
- 2O A ;Ko (T A2
EINEToN Ak,

Q,F A/
XFB(X, Kyy ——7— 0 aﬂ

We note that the last factorsin Eq. (30) are propor-
tional to thevorticity of theinitial perturbationsat z, , =

—Qy F A2)/(AK,), respectively. The second factors

indicate that, at small shear rates (S= A/J4kg < 1),
the amplitudes of the generated SGWs are exponen-
tially small with respect to the large parameter 1/S.
Equation (30) also indicates that, for a fixed k., the
generation is most efficient in the two-dimensional
case (k, = 0).

We now describe the dynamic picture for a specific
example, where a pure internal vortex-mode perturba-
tion (without any admixture of surface waves) is
imposed in the flow initially. For simplicity, we con-
sider the two-dimensional problem, where d/dy = 0.
The vertical velocity of the imposed perturbation is
given by

U (X, 2,to) = 2n(-2)

O %j
8 expD [(z+ ZO)COi(p+ xsing] D
1

(31)

5 eXID%[(H zo)snch xcoscpﬁ;
2

where n(2) is Heaviside function, (0, —z,) is the center
of the localization, L, , characterize the vertical and
horizontal scales, respectively, and @ isthe slope of the
perturbation.

Numerical solution of the problem was performed
as follows. Fourier transformation of Eg. (31) with
respect to the x variable allows us to determine F(k,, 2)
through Eq. (14). Another Fourier transformation with

respect to z yields F (k,, k). Then the source function
I(k,, t) is found by Eq. (20). Thus, the solution of the
problem for afixed k, reduces to the numerical solution
of the inhomogeneous equation (Eq. (19)) with the
known I(k,, t).

The dependence of the sourcefunction I(k,, t) ont at
L,=1,L, =7, ¢@=118, k=1, and z, = 2 for two dif-
ferent values of the shear rate S=0.08 (dashed line) and
S=0.32(solid line) ispresented in Fig. 2. Aswas men-
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Fig. 2. 1(ky, ky, t) vs. timeat S= 0.32 (solid line) and S=0.08
(dashedline), ky=1,L,=1,L,=7,25=2, and ¢=1718.

tioned above, the source term is a localized function
and considerably differs from zero only in the interval
t O (20, 40) for S=0.08 and t U (5, 10) for S=0.32.

To analyze the wave generation efficiency, it is use-
ful to introduce the generation coefficients that charac-
terize the ratio of the generated wave energy density
and the maximum energy density of the initial vortex
mode perturbations for a fixed value of k,. Taking into
account that the maximum energy density of the vortex
mode perturbationsis

[

1 2
E, = — (|F(k,, 2)|°dz 32
o= paf ke (32)
and the energy density of the generated wavesis
wl 2 = Ql Z(kx) (33)

we define the dimensionless generation coefficients as

0 D1/2

e
2

GlZ - Ql 2(kx)E}“—-———-———-—-[j

0 0
DI|F(kX, 2)? dz.

(34)

Figure 3 represents the generation coefficients G,
(dashed line) and G, (solid line) vs. the shear rate Sat
L,=1L,=7, =118k, =1, and z, = 2. As can be
seen, at small values of the shear rate, generation of
SGW with the frequency Q, (i.e., propagating along the
X axis) considerably exceeds the generation of SGW
with the frequency Q, (i.e., propagating against the x
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Fig. 3. The generation coefficients G, (dashed line) and G,

(solid line) vs. theshear rate Sat k=1, L1 =1,L,=7, 7=
2, and =1718.
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Fig. 4. uk,, t) vs. timeat S=0.32, k,=1,L; =1, L, =7,
Zg=2,and ¢=T1U18.
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Fig. 5. u,(k, t) vs. timeat S=0.08, k,=1,L; =1, L, =7,
Zp=2,and @=T1U18.

axis), whereas the latter wave is generated more effi-
ciently at S> 0.15.

The wave generation iswell traced in Figs. 4 and 5,
where the temporal evolution of the vertical component
of velocity perturbation at the surface obtained by
numerical solution of Egs. (19) and (20) is presented
for S = 0.32 and S = 0.08, respectively. The other
parameters are the same as in Fig. 2. A purely internal
vortex mode perturbation is imposed in the equations
initially. The generation occurs in the time interval
where I (k,, t) noticeably differs from zero. Afterwards,
just (two) waves with different frequencies and ampli-
tudes exist. At S=0.32, presented in Fig. 4, the gener-
ation occursinthetimeinterval t O (5, 10). Besides, the
SGW propagating against the x axis is mainly gener-
ated. In contrast to this, at S=0.08, presented in Fig. 5,
the generation of SGW propagating along the x axis
dominates. These numerical results are in agreement
with the analytical ones (see Eg. (30) and Fig. 3).

4. DISCUSSION

In the previous sections, a simplified model was
considered that allowed usto simplify the mathematical
description and study shear-induced effectsin a* pure’
form. For instance, the influence of the viscosity was
ignored and the density ratio p,/p, of the fluids above
and below the surface z= 0 was assumed to be zero. The
last assumption allows us to ignore all the dynamical
processesin the upper fluid. Onthe other hand, itiswell
known that, in the case of ocean waves, the wind isthe
most important and powerful source of the waves. In
this section, we discuss possible applications of the
studied linear effects to the concrete physical situa-
tions.

4.1. Ocean Waves

It is well known [2—6] that the wind is the main
source of ocean SGWs. In the context of future discus-
sion, the papers of Chalikov’'s group [19, 20] should
also be noted, where the influence of small-scal e turbu-
lence in the air on the wave growth was studied in
detail. At present, there exists a well-developed theory
of both SGW generation and nonlinear evolutionthat is
mainly confirmed by experiments as well as numerical
simulations (see, e.g., [21] for a recent review). After
development of a wind-driven instability, nonlinear
four-wave resonant interactions transfer the wave
energy to smaller scales. The existing theory predicts
that, for relatively small frequencies, the Zakharov—
Philonenko [22] spectrum E(w) O w* of SGW fluctua-
tions (sometimes called Toba's spectrum) should be
observed (in this context, see also [23]), whereas for
relatively high wavenumbers, nonlinearity becomes
strong and the Phillips spectrum E(w) ~ w™ of the wave
turbulence should develop. The existing observations
confirm these predictions and provide that, in the range
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wWy/3 < w < 3wy, Where wy, is the peak frequency, the
Zakharov—Philonenko spectrum is usualy observed.
For w > 3w,, the spectrum becomes very close to the
Phillips one [21]. The properties of the wave spectrum
in the very short wavel ength region, as well as dynam-
ics of dissipation of SGW turbulent fluctuations, are
much less clear [24].

In the case of ocean waves, the presented linear
mechanism of SGW generation can make an important
contribution to the balance of small-scale SGW fluctu-
ations. Indeed, acharacteristic length scal e of the turbu-
lence is much smaller at the ocean surface than in the
air. Namely, the characteristic length and velocity
scales are ur~ 1 cm/sand | ~ 1 cm, respectively [25].

On the other hand, in the presence of the wind, the
strong velocity shear A ~ 10 s is present in the so-
called “buffer layer” [26] of the water, with the thick-
ness |, ~ (20-100)I,, where |, = v/upis the dissipation
length scale and v is the kinematic viscosity of water.
Simple estimates yield |; ~ (0.5-1) cm. The linear
mechanism presented implies that vortical perturba
tions generate SGWs with the same length scale.
Therefore, in the case of ocean waves, internal vortex-
mode perturbations should effectively generate small-
scale SGWs, with the wavelength just above the capil-
lary length scale A, = 0.39 cm [27]. In this context, the
study of the influence of capillary effects on the pro-
cesses discussed above seems to be interesting. Analy-
sis of this problem will be presented elsewhere.

4.2. Interfacial Gravity Waves

In the analysisin Sections 2 and 3, the density ratio
p./po of thefluids above and bel ow the surface z= 0 was
assumed to be zero. The obtained results can be readily
generalized to the case of interfacial GWSs. If the densi-
ties of the upper and lower fluids are p; and p, and the
shear rates are A; and A,, respectively, then the shear-
modified dispersion of interfacial GWsis given by the
same expression (22) with g and A replaced by gjand
A where

g = ng_pl A,

- AP, — APy
P2+ Py’

35

P2t P2 (39)
This equation implies that the influence of shear on
both the wave dispersion and the coupling with internal
vortex perturbations, which is determined by the
dimensionless parameter

A 1-p;A/PA,
SS=E—=%=-=5, ,
akg, J1-piip;

is much more notable when the fluids have comparable
densitiesif p,A, isnot very closeto p,A,. Therefore, the
described shear-induced effects should usually have

(36)
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much stronger effect on the dynamics of interfacial
waves than on ocean waves.

5. SUMMARY

We summarize the main features of the linear
dynamics of surface gravity wavesin asimplified deep
fluid (at z < 0) flow with vertical shear of the mean
velocity Uy = (Az, 0, 0). The simplification lies in
neglecting the fluid compressibility and stratification,
in other words, in the consideration of the system con-
taining just two modes of perturbation: the surface
gravity wave mode and the internal vortex mode. Spe-
cial features of SGW in the system are as follows.

The mean flow velocity shear causes a nontrivial
maodification of the frequencies and phase velocities of
SGWs. The frequencies are defined by Eq. (22). The
phase velocity becomes anisotropic (see Eg. (23) and
Fig. 1): itsvalueis minimal for SFH propagating along

thexaxis[Vin" = J/g/k(4/1 + S —S)] and maximal for
SFH propagating against the x axis [V, =

Jolk(J1+S +9).

The mean flow velocity shear leads to the appear-
ance of anintrinsic (to the fluid) source of SGW gener-
ation via coupling the wave to the internal vortex-mode
perturbations, the coupling results in the emer-
gence/generation of SGWs by internal vortex-mode
perturbations at S = 0.05. The generation is different
for the waves propagating in the different directions
(see Eq. (30)). The generation of SGW with the fre-
guency Q, considerably exceeds the generation of
SGW with the frequency Q, for relatively small shear
rates S whereasthelatter wave isgenerated more effec-
tively for high shear rates (S> 0.15).
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Abstract—We analyze the structure of the space electric charge that appears in the vicinity of a charged dust
particle in a moving conductive medium. We show that when the conduction currents play a major role, the
screening space charge is concentrated in the form of athin wake behind the dust particle, while the total Cou-
lomb field forms adipole structure and serves as an attractive center for other particleswith charges of the same
sign. We consider the pairing conditionsfor such particles. Including the polarization contribution from the dust
component to the permittivity radically changes the field structure when the dust particle concentration
approaches the dissipative instability threshold. In this case, the zone of attraction of like-charged dust particles
expands sharply. Estimates suggest that the effects under consideration can govern the formation of regular
structuresin amoving dusty plasmaat fairly high pressures, P > 0.1-1 mbar. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

At present, the attraction mechanisms of like-
charged aerosol particles in gaseous, partialy ionized
media are being widely discussed in connection with
the problem of the formation of regular structures, in
particular, dust plasmacrystalsin these media[1-6]. In
laboratory experiments with dusty plasmas, organized
structures appear under widely varied conditions and
can be observed in the form of one-dimensional chains
and low-dimensional clusters composed of severa
charged dust particles as well as in the form of fairly
extended two-dimensional and three-dimensiona |at-
ticeswith aregular arrangement of dust particles at the
lattice sites. This problem is also important for natural
media. Dust clouds are typical of cosmic conditions
[2]; aerosol streamsin partially ionized air are formed
in thunderclouds and at mesospheric altitudes in the
atmosphere [7-9].

The most popular theory [1, 2, 10] is based on the
combined effect of the repul sive Debye-Hiickel poten-
tial and the dust-particle-confining external electric
potential applied to the chamber walls. A crystal under
these conditionsisformed when the plasmanonideality
parameter ' = g?/AT is larger than a critical value of
My~ 10%, whereq, T, and A ~ N are, respectively,
the charge, temperature, and characteristic interparticle
distance of the dust component, and N, isits concentra-
tion. In the presence of plasma flows, other mecha-
nisms, in particular, the wake [11] and shadow [12]
attraction of like-charged particles can aso play asig-
nificant role.

Fundamentally new phenomena arise in a dusty
plasma, given that this system is open. In contrast to
an ordinary plasma, the electron—ion component in a
complex plasmais absorbed on dust particle surfaces,
which requires continuous energy supply to the sys-
tem [2-5]. Thiseffect can significantly change thefor-
mation of a space electric charge around a dust parti-
cle. At present, these questions are being actively
studied [13].

It should be noted that in the papers cited above, the
therma motion and the Debye screening by the elec-
tron and ion charges played a mgjor role in the forma-
tion of a space eectric charge around a dust particle
and, hence, in the formation mechanism of plasma
crystals. In general, the conduction currentswere disre-
garded. At the same time, in a fairly dense medium
where the ion mean free path is much smaller than the
Debye length and is comparable to the dust particle
radius, these currents can play acrucial role. A thunder-
cloud is a typical example of such a medium [7, 9].
Similar conditions are realized in laboratory experi-
ments at pressures P > 1 mbar (see below).

In this paper, we consider the limiting case of a con-
ductive medium moving relative to the dust particles
with a zero Debye length. The physical picture of the
interaction in this case is very simple if the hydrody-
namic effects are disregarded (the particle is “transpar-
ent” for the moving medium): a space charge wake of
the opposite sign whose diameter isequal to the particle
diameter and whose length is defined by the character-
istic scale length

Vo

lo= e (1)

1063-7761/05/10101-0177$26.00 © 2005 Pleiades Publishing, Inc.
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Znin z

Fig. 1. (a) Image of the particle and the space charge wake;
the arrows indicate the path of integration in (7). (b) Total

electric field EZ versus coordinate z.

where v, and o are the velocity and conductivity of the
medium, respectively, is formed downstream of the
charged dust particle. Basicaly, thisis an analog of the
Coulomb screening for the current formation mecha-
nism of a space charge. Together the particle and the
wake form a dipole electric field that leads to the
“pairing” of like-charged particles under certain con-
ditions. Such a structure of the screening field in a
conductive medium was first obtained in [14]. This
structureisanalyzed in detail in Section 2. In Section 3,
we analyze the interaction between “tailed” particles
and derive a criterion for their pairing. In Section 4,
we consider the collective wake by taking into account
the contribution from the dust component to the polar-
ization of the medium. This problem is of interest in
connection with the possibility of reaching the dissi-
pative instability threshold [7, 15] as the dust particle
concentration increases. The instability is accompa-
nied by the excitation of collective electrostatic
modes, with the particle short-range field also chang-
ing radically. In Section 5, we summarize our results
and discussthe range of their applicability to the condi-
tions of available experiments.

2. THE WAKE IN A CONDUCTIVE MEDIUM

We begin our analysis with the simplest model of
the interaction between a spherical charged particle and
a conductive medium moving with velocity v, whose
electric properties are characterized by conductivity o
and permittivity €. The stability of such aparticleinthe
flow is determined by external forces, including those
of a nonelectric origin (the gravity and the drag from
the neutral medium), while the constancy of the electric
charge is specified by the acting charging mechanism.
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For a given (unperturbed) motion of the conductive
medium, the structures of the electric field E and the
current j are described by the continuity eguation for j
and Ohm'’s law. In the case of interest, these are

divi =0, j = cE+nyv, 2
where n is the induced space charge in the medium.
Given that theflow isone-dimensional (inthiscase, v =
—VoZo, Vo > 0) and using Poisson’s equation, we find
from (2) that

d 4mo
&k = ko2 ), ko= TE @)

wheren,isthe given charge distribution on the particle,
Zy isaunit vector, and p is the transverse coordinate.

We are interested in the case where

ke < 1, )

i.e., where the length of the space charge wake kgl is
much larger than the particle radius a. The pattern of
the transverse dependence ny(z, p) for the overall struc-
ture of the electric field is unimportant, and it may be
taken to be uniform. Forng=g/sat-a<z<0(s= T2
is the cross-sectional area of the wake, and q is the
dust particle charge), the resulting space charge dis-
tribution is

n= —no(ek"z—l), -a<z<0, )
N = 1o(l-€e” z<-a
As can be easily verified,
0
sjr]dz = —q.

Clearly, the total electric field E is axially symmetric
(relative to the z axis). The central section of this field
containing the z axis is qualitatively shown in Fig. 1.
The field strength and the coordinate of the bottom of
the potential well, which basically serves as an attrac-
tive center for another dust particle with acharge of the
same sign, can be determined from the given charge (5)
in quadratures. They can be estimated from the follow-
ing considerations. For along charged cylindrical rod,
the radial field component E, behaves at distances
kop < 1 asfollows (in CGS units):

P (6)

where Kk = nsisthe linear charge density, and s is the
wake cross section. The field component E, produced
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by the space charge on the axis can then be determined
by integrating E over a closed path (Fig. 18). We have

a 3k,
K(z)dp K(z+Az)

-2 [ —~——+EAz+2 [ ———dp=0. (7
[ =% [T e O
3k, a

Given that

_ on
K(z+Az) = K(2) +Azsaz,

and using the corresponding dependence n(2) (5), we
obtain

E, = 2Msn(z) = 2qMkiexp(K,2), (8)

where g is the particle charge, M = |In(dk,a)|, and d is
the numerical coefficient that characterizes the loga-
rithmic accuracy of our calculations. Running ahead,
we note that the rigorous calculation in Section 4 yields
0 = 0.3. The tota field structure on the wake axis at
z< 0isgiven by the sum

Er=—3 +2mKie™. (9)
z
Dependence (9) is shown in Fig. 1b. The field reaches
zero at kyz,i,, = —0.6; the depth of the minimum of the
potential well is

z—g— 1 D:
Um Zmin%l--l-kozminD qko

Itiseasy to verify [14] that the total electric field of the
particle and the wake at distances kyr > 1 has adipole

structure with the dipole moment p = —qul z, directed
along the velocity vector of the medium v,

Thus, the wake of a dust particle in a moving con-
ductive medium differs significantly in scale and shape
from the wake of the space charge produced by the
Debye screening and has the shape of an elongated (in
the direction of motion of the medium) thin rod similar
to the valence bond of ions in material. The potential
well corresponding to the electric field structure (9) can
serve asan attractive center for other dust particles, giv-
ing rise to dimeric and, possibly (since a potential well
is also present in the common wake, the tail, of the two
particles), polymeric structures. To quantitatively
answer this question, we must consider the interaction
between such particles. This interaction is analyzed in
the next section.

3. PAIR INTERACTION
OF CHARGED DUST PARTICLES

In the case under consideration, the particle pair
interaction is peculiar inthat it cannot be reduced to the
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attraction (or repulsion) between two electric dipoles,
since the force acting on the space charge is applied to
the medium rather than to the particle. As aresult, the
problem is reduced to analyzing the relative motion of
two charged dust particles with the dipole field of the
“tailed” particle acting on each of them. Basically, this
allows the electric field acting on a charged particle in
plasma to be identified with the mean macroscopic
field. In actual conditions, apart from the interaction
through the electric field, the dust particles are aso
acted upon by various nonelectric forces, such as the
gravity, the drag from the medium, and the fluctuational
forces, which in the long run determine the effective
temperature of the dust component. In addition, the par-
ticle size dispersion in the field of gravity also leads to
dust particle velocity dispersion. All of these forces are
rather difficult to take into account, while the principal
possibility of particle pairing is entirely determined by
the electric force. To ascertain whether thisis possible,
let us consider the interaction between two identical
tailed particles that have a relative velocity v© at the
initial time and that are separated by adistance|ry|, i.e.,

t=0: (f,=F1) =V, (ra=ry)y = 1o (10)
wherer y(, isthe coordinate of particle 1 (2). At adis-

tance much larger than the wake length where the
inequality

Kolr| =ko|ro—r4 > 1 (12)

holds, the electric field E of the tailed particle can be
represented as the dipole field

g = 3n(p D;\)—p_
Irl
Here, n =r/|r|, r isthe radius vector from the location

of the dipole to the point of observation, and the dipole
moment p is

(12)

(13)

Formula (13) takes into account the fact that the length
of the space charge wake is proportional to the velocity
of the medium and that the wake orientation when the
particle motion is slowly rearranged (|fy .| < V)

closely follows the total velocity vector relative to the
conductive medium.

If we now take into account the fact that n; 11 n,,
we will then obtain the following equation of motion
for the difference vectorr =r, —r;:

P = A3n(r Egh)—r1 (14)
r
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Fig. 2. Examples of the trajectories of relative motion of
interacting particles for an equidistant increase in the

parameter Alyd? from 0.2 to 0.8 and at r = 10, 8, = 5176,
d = 5with (dotted line, (dko)‘2 =1) and without (solid line,
(dko)‘2 = 0) dlowance for the finite depth of the potential
well.

wheren=r/[r|, |r| =T,

pn= O
4mtom,

is the interaction parameter, and m, is the dust particle
mass. Equation (14) has avector integral of motion that
can be represented as

T r
F+a= = v®+A-2,
r o

(15

where v and r, are the initial relative velocity and
radius vector, respectively. Next, let us consider, for
simplicity, the two-dimensional motion of particlesina
medium with velocity v©. In the polar coordinate sys-
tem on the xz plane with the coordinate origin at the
point at which one of the particlesis located, Eq. (15)
transforms to

do
"t

%+éz = acosp +Psing =ycos(P—¢),
r

= Bcosp —asing =ysin(Yy —¢),
(16)

where
X
a = v(X°)+A—g’, B = v(Z°)+AZ—g, o = Xo+2,
o o
y = JoE+PB, Y= arctan®

a’

Dividing the second equation in (16) by the first
equation yields

dr _ Alyr®—cos8

6~ sne ' 0T V¢ (17)
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The solution of EQ. (17) that describes the particle tra-
jectory r(6) is

1/2
rsind = i[d2+%(coseo—cose)} .19

where d = rsing, is the impact parameter, which is
equal to the minimum distance between the particles as
they movein astraight line (whenA=0and r, — ).
The fall of the particle to the center, i.e., solution (18)
r = 0, corresponds to the pairing. Examples of the tra-
jectories corresponding to solution (18) areindicated in
Fig. 2 by the solid lines.

In general, the pairing depends on the starting con-
ditions. For fairly large distances (d/rp)? < 1, we have
cosB, = -1 for the colliding particles, and, given the pat-

tern of the trgjectories shown in Fig. 2, the pairing con-
dition can be written as

S

= >1, (29)
yd2 2mtov© mad2

where v©@ is the magnitude of the starting particle
velocity; it is assumed that v > A/t .

Recall that solution (18) isapplicableif inequality (11)
holds. If (11) is violated, then the short-range field of
the tailed particles must be taken into account, and the

depth of the potential well becomes finite. In this case,
Eq. (17) takesthe form

_ A
r_ Yyt +ky)
B sin®

— cosO

d
rde ’ (20)
where the depth of the potential well was taken in
accordance with relation (9). The numerical solution of
the latter equation is indicated in Fig. 2 by the dotted
lines. We see from this figure that the pairing condition
becomes dlightly more stringent in impact parameter.
Other things being equal, the interaction parameter A
required for pairing increases by about one and a half
times.

Aswe see, the interaction between two like-charged
tailed particles differs radically from the interaction
between the same particles in the absence of a wake.
However, thisis true only for distances kyr > 1. Taking
into consideration the electric field structure (9), we
conclude that an ordinary Coulomb field of repulsion
acts at distances kyr < 1. At the same time, it is not
obvious that the field around the particle will not
change at close distances either if the contribution from
the dust component to the polarization of themediumis
taken into account, especially since the medium
becomes unstable to electromagnetic disturbances
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starting from some critical dust concentration. These
guestions are analyzed in the next section.

4. THE COLLECTIVE WAKE

Aswas noted in the Introduction, an increase in the
dust particle concentration can fundamentally affect the
electric properties of the medium under consideration.
In particular, when a certain threshold is exceeded,
which, according to [7], is equal to

QD = 1, (21)
where
Q _ |:‘f]__,_[quaD]JZ
PO m, O

is the plasma frequency of the aerosol particles, and v,
is the effective collision frequency that determines the
force of friction acting on the dust particle from the
neutral component—collective electrostatic modes
leading to the bunching of dust particles can be excited.
It isinteresting to trace how the space electric chargeis
redistributed around the dust particle and how the struc-
ture of the electric fild found above changes with
increasing dust concentration. We restrict ourselves to
analyzing this problem in the approximation of a point
dust particle. In this approximation, we can use the gen-
eral method for calculating the electric field produced
by a uniformly moving particle in which the potential

¢(r, t) is[16]

_ 3 go(w—k V)
o(r,t) = Id kIdwz—T[szs(w,k)

x exp{ik O —iwt} ,

(22)

where 6(X) is the delta function and €(w, k) is the per-
mittivity.

In the coordinate system with the z axis directed
along the particle velocity and given the axial symme-
try, formula (22) after integration over w and the azi-
muthal angle transforms to

o(zp) = [k,
- (23)

0
*J
0

Here, Jy(k-p) isthe zero-order Bessel function, and p is
the distance from the z axis (in the cylindrical coordi-
nate system). Let usfirst consider asingle dust particle.
In the (§ = z— vgt, p) coordinate system, in which the

kodko Jo(kop) expliky(z—vt)]
(K& + KDe(ky ko, @ = k,v)
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particle is stationary, the flow of conductive gas blows
over the particle with velacity v, inthe— direction. In
this case,

_ 4 Ko
€ = 1—|EZ,

(24)
where, as above, k, = 4ntd'v,. The wake is formed at
¢ <0, and the potential after integrating (23) over k, and
k;using (24) is (€ <0)

O, p) = —— + TkyqN,(kop) Xp(—koE]), (25)

lp2+E2

where Ny(kop) is the zero-order Neumann function. At
Kop < 1,

2 k
No(kop) = = Jo(kop) | I +C|,

C = 0.57 isthe Euler constant. As a result, the expres-
sion for the electric field E, = —0¢/0¢ at kyp = kja < 1
isidentical to (9) if weset z= [§| > aand & = 0.3 under
the logarithm.

In general, given that the dust component is station-
ary, the expression for g(k, w=k,v) is

. 2
c=l14 ikoVo Qp 5 , (26)
w_kZVO (Q)+i\)a)(().)+ikZDa) w=k,v

where ky, Q,, and v, were defined above (see (1)
and (21)), D, = (Av)v,, (Av)? is the velocity spread
attributable to the size dispersion of the dust particles
falling in the field of gravity g || z; this spread is
assumed to dominate over the thermal scatter; it isaso
assumed that v, > k’D,. Integral (23) with € in
form (26) describes the electric potential of atest parti-
cle moving with velocity v along the z axis. Given
dependence (26), expression (23) can be integrated
over k5. Asaresult, we obtain

= . _ 2qko, dyKo(PY)
o, p) = 2 2
n 051()’) +&5(y)

x { £,C08(Ey) +£,5in(EY)} ,

(27)

where Ko(pYy) is the zero-order Macdonald function,
ko = 4mdl(Vy—Vv), p = kop, & = ko, and thefunctions
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Fig. 3. Change in the structure of the potential as the dust concentration increases at a fixed velocity of the test particle (c = 0.01).

€, = Ree and €, = Ime are given by

2, 2 2
¢’ —c
g, =1- pz(z 2T)4 2y’ (28)
(1+cy)(c" +cry)
1D 2o(1+ ¢ 0

ym(1+c2y2)(c +cTy2) 0

The dimensionless coefficients p, ¢, and ¢, determining
the structure of thefield ¢ are

Q, kov _ kodBAV® (30)
Va Va Va

Expression (25) is derived from (27) at p = 0. It iseasy
to see that the dispersion relation e(wy k) =0atp>1
contains solutions increasing with time (Imw > 0).
Basically, this implies that solution (27), which
describes the stationary structure of the field ¢, isvalid
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only at p < landisinapplicableat p> 1. For p> 1, the
problem with initial conditions must be solved. Given
the aforesaid, let us consider the changes in the struc-

ture of the field ¢(é, p) when p increases from zero to
unity whileremaining in the domain of stable solutions.

Given the polarization contribution of dust particles
tog(w=k,v, k) =0, thethree additional parameters (30)
appear in the problem. Let us first consider how the

structure of the potentid &(Z,p) changes in the
absence of avelocity spread, ¢y = 0. Here, the velocity
of the test particle ¢ plays a significant role. Figure 3

shows the change in the spatia structure of ¢(&,p)
with increasing p.

An interesting feature arises at p? = ¢, when the
dipole structure disappears (p?> = ¢ = 0.01) and then
reappears (p > 0.1), but with the opposite orientation of
the dipole, the screening space charge in front of the
dust particle. The equality p? = ¢ hereis not coinciden-
tal, but corresponds to a certain resonance at which €,
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changes its sign when passing through zero. This reso-
nance is discussed in more detail below. The physical
interpretation of this potential rearrangement is fairly
simple: a alow relative velocity, the dust particles are
deflected from the z axis by the electric field of the test
particle without reaching it; the space charge tails of
these particles turn inward, producing a charge excess
in front of the particle. Since the dust component at
€ <0 strikes the test particle from the tail, the dipole
does not change its orientation, and the depth of the
potential well increases due to the tails of the overtak-
ing dust particles. In general, with the exception of the
above effect, the dipole structure of the tailed particle
qualitatively changes only slightly with p, asillustrated
by Fig. 4.

The depth of the potentia well slightly increases
with p, because || decreases; at fixed c, the deepest
minimum of the potential well is reached at a certain
value of p? = c. Thecoordinate&;,, of the potential min-
imum slightly approachesthe coordinate of thetest par-
ticle with increasing p. The dust particle velocity dis-
persion, ¢c; # 0, decreases the depth of the potential well
and can cause it to disappear at fairly large values of ¢
and p (Fig. 5).

The largest changes in the structure of the Coulomb
potential arise as the threshold of dissipative instability
is approached; at ¢ = O, the latter is described by the
dispersion relation’

oK)=l — Do, Mo _ o g
’ w(w+iv,) w-k Oy,
According to (31), the instability threshold Imw=0is
reached for w — 0 and is equal to py, = 1 (21); near

the threshold, the dispersion relation w(k) is

1

w = KVy—————.
1+4mov,/Q,

(32)

The forced solution of interest described by (27) at w =
k,v isapplicablein the stable domain p < 1. Clearly, the
largest change in potential ¢ astheinstability threshold
is approached might be expected for |¢] — 0, i.e., for
the particle that isin phase with wave (32) when

p - 1!

c=p? y—0. (33)

Thecalculations of ¢ (27) confirm the above reasoning.

Figure 6 shows the structure of the potentia ¢(&, p)
near the threshold p < 1 for the resonant (p? = c) and
nonresonant (p = ¢) cases. We see aradical difference
in the behavior of the potential both near and far from

11t should be noted that, strictly speaking, the dispersion relation (31)
is valid on scales much larger than the interparticle distance. On
the other hand, if many dimeric (polymeric) structures appeared
in the medium, then the instability can be modified significantly.

2+ o .

O

1 1
0 005 010 015 020 025
p

Fig. 4. Evolution of the position (open circles) and value
(solid lineand filled circles) of the potential minimum asthe
dust concentration p increases at a fixed test particle veloc-
ity: ¢ = 0.01 (squares) and —0.01 (circles).
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Fig. 5. Evolution of the position (open circles) and value
(solid lineand filled circles) of the potential minimum asthe
dust concentration p increases at ¢ = —0.01 and for various
dust particle velocity dispersions: ¢y = 0 (squares), 0.05 (tri-
angles), 0.5 (circles).
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Fig. 6. Change in the structure of the potential near the dis-
sipative instability threshold.
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the particle. For p? = ¢ — 1, the following analytical
expression for ¢ and the electric field E can be derived
from (27):

= 93 qiin Ll

r Y

¢(&.p) (34)

wherer = (p? + £)V2; the electric field has the compo-
nents

Ko§)
EE:?B(O-'-ED E :QEB []

5 B (35)

The structure of potential (34) is determined not only
by the presence of a charged particle at the coordinate
origin and a wake of the opposite sign, but also by the
charge concentrated on the axis (p = 0); the latter
extends from —o to o as the p = 1 threshold is
approached and under the resonance conditions p? =
c =1, being positive at § < 0 and negative at & > 0. In
contrast to the case of asingle particle, the electric field
amplitude increases sharply, becoming infinite on the
axis, which basically corresponds to the resonance
e —0.

Qualitative changes in the potentia structure might
be expected during the passage through the instability
threshold, when p > 1. In this case, €, in (27) changes
itssign (at small y) and the Coulomb field of repulsion
of like-charged particles can transform into the field of
attraction even at small distances between them (simi-
lar to the case of € < 0in amedium without dispersion).
However, it should be borne in mind that the above
analysisisgeneraly invalid at p > 1, and the excitation of
electric eigenmodes of the medium must be taken into
account along with the forced solution (27). This prob-
lem is beyond the scope of this paper.

5. DISCUSSION AND CONCLUSIONS

The effects considered above relate to the limiting
case of a partially ionized plasma, where the conduc-
tion currents play a major role in forming the space
charge, while the effects of thermal motion can be
neglected. If the formation of the space chargeis deter-
mined by ions, then, as follows from the genera
expression for € with the inclusion of thermal motion,
this neglect is possible if the ion mean free path

V5 V5
L =, <ry ==L
Vin pi

and, in addition, if the length kgl of the space charge
wake is larger than the diffusion length, i.e.,

2
v >, oVn (36)
VinVo
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where vy, is the ion—neutral collision frequency, w, is
the plasma ion frequency, vy is the thermal ion veloc-
ity, ky = 41talv,, v, isthe directed relative velocity of
the ions and dust particles, and the conductivity

2

_ Wi

4TV,
If the electrons make a contribution comparable to that
of the ions, then the speed of sound v, = T/m must be
substituted for vy, in relation (34).

Inequalities (36) in thundercloud conditions hold
with a large margin. Different situations are encoun-
tered in laboratory experiments. At atypical degree of
ionization ~105-10-5, the first inequality in (36) holds
at fairly high pressures, P = 0.1-1 mbar. The second
inequality in (36) holdsat afairly high drift velocity v,.
If this velocity is attributable to the electric field, then,
giventherelation j = eN,v, = OE, the second inequality
in (36) transforms to
% <1, T, =mvi. (37)

At typical values of N; ~ 10° cm3 and T; ~ 300 K,
inequality (37) holds at E > 7 V cm™. Such electric
fields definitely take place in rarefied-plasma experi-
ments where dust crystal structures are observed [5, 6].
Let us consider how the current screening mechanism
and the dust particle pairing conditions are realized in
these experiments. Choosing P = 1 mbar, N, ~ 10° cnr3,
and E ~ 10 V cm™ as typical values, we find for an
argon plasma: vy/vy ~ 1.5v; ~3 x 10 cm s?, v;, ~ 3 x
107 s, and w,,; = 107 s, Inequalities (36) hold at these
parameters. The characteristic scale length of the wake
is ky' ~ 102. The pairing criterion (19) at the validity
boundary k,d ~ 1 can be written as

2
Sngo %> 1.
Vom,v

Assuming that a = 10y, vo =3 x 10* cm s?, g = 3 x
10%, and 4mto= 3 x 10° s%, wefind that the capture cri-
terion is satisfied for a relative dust particle velocity

v!9 < 102 cm s Note that the thermal velocity of
dust particles with a ~ 10p (m, ~ 109 g) at T= 300 K
is vy, =6x10°cms™. A risein the dust particle con-
centration causes an increase in the depth of the poten-
tial well in the particle wake and, thus, an increase in
the pairing probability. Qualitative changesin the struc-
ture of the Coulomb potential might be expected as the
dissipative instability threshold dependent on the dust
particle concentration (see (27)) is approached, when
the capture zone can expand sharply. However, certain
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conclusions can be reached here by considering the
nonstationary and, in general, nonlinear problem of the
formation of an electric field in acomplex plasma.?

Summarizing our results, we can suggest the follow-
ing scenario for the formation of structuresin amoving
conductive medium in the presence of dust charged par-
ticles. When inequalities (36) hold, the space charge
screening thedust particleislocalized in athin cylindri-
cal wake with the diameter equal to the particle diame-
ter and the length

10K = 72

determined by the velocity v, of the flow and the con-
ductivity o of the medium. The dipole structure of the
potential of such atailed particle is an attractive center
for other dust particles. This pairing process has no
threshold, but its probability depends on the impact
parameter of the interacting dust particles and on their
el ectric charge and increases with dust particle concen-
tration. The electric field structure admits of the princi-
pal possibility of the formation of polymeric chains
along with dimers, but this question is beyond the scope
of this paper. The formation of three-dimensional crys-
tal structures, particularly in the absence of a plasma
trap in the transverse (relative to the drift) direction, is
still an open question. Here, the reaching of the dissipa-
tive instability threshold, which gives rise to a periodic
electric potentia in the transverse direction [15], may
play an important role. The spread in dust particle
velocities may prove to be critical for the formation of
polymeric structures. In this case, the structural transi-
tion in the medium under consideration is possible only
when the dissipative instability threshold is reached.

2Note that a radical rearrangement of the Coulomb potential
accompanied by the attraction effects of like-charged particles
when the instability threshold is reached might also be expected
in the case of a collisionless plasma. This may prove to be funda-
mentally important at the nonlinear instability growth stage, lead-
ing to the clustering of phase space and to the sticking of interact-
ing particlesinto bunches.
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Abstract—The behavior of an excess electron in condensed inert gases in an external electric field is consid-
ered at densities and temperatures at which the mobility of a slow electron is relatively high. On the basis of
experimental dataand amodel of apair electron interaction with atoms, an effective potential energy surfaceis
constructed for an excess electron inside a dense inert gas. The region available for a slow electron consists of
many intersecting channel sthat form a Delaunay network located between atoms. A drifting electron, asaquan-
tum object, propagates along these channels (tubes), and electron transition between intersecting potential
energy tubes of different directions provides an effective electron scattering. This mechanism of electron drift
and scattering differs from that in gases and crystals. Peculiarities of electron drift inside dense inert gases are
analyzed within the framework of this mechanism of electron scattering, leading to a moderate change of the
electron mobility upon melting. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Thereduced el ectron mobility of excesselectronsin
heavy condensed inert gases (Ar, Kr, Xe) as afunction
of the atom number density has a sharp maximum at
moderate number densities, as it follows from experi-
ments [1-14]. In particular, for xenon, the maximum
zero-field reduced mobility exceeds that for a gaseous
state by more than three orders of magnitude [6, 10].
Moreover, the maximum reduced zero-field mobility of
excess electrons in inert gases exceeds that for coin
metals by one order of magnitude [15].

The simplest theoretical models [16-20] consider
the drift of an excess electron as a result of pair elec-
tron—atom scattering and explain high electron mobility
by the Ramsauer effect in electron scattering on indi-
vidual atoms and negative electron—atom scattering
lengths for Ar, Kr, and Xe. But the approach of inde-
pendent atoms is correct only for gases; at atomic den-
sities corresponding to the maximum of the electron
mobility, the distance between nearest-neighbors is
comparable with the electron—atom scattering length,
and, hence, thisapproach is not correct and may be con-
sidered rather as a model. The effect of high electron
mobility at moderate atomic densities results from the
collective character of the interaction of an excess elec-
tron with atoms.

Recently [21], we showed that the reason of the
electron mobility maximum is related to the transition

T This article was submitted by the authors in English.

from attraction to repulsion for an excess electron
inside an inert gas as the number density of atoms
increases starting from the gas density. Indeed, in gases,
where an excess el ectron interacts with each atom inde-
pendently, the average electron potential energy is neg-
ative because of a negative electron-atom scattering
length, which leads to an attractive Fermi exchange
interaction of the electron with each atom. At high
atomic densities, when the distance between neighbor-
ing atomsis comparable with the atom size, the average
interaction potential for the electron corresponds to
repulsion because of the Pauli exclusion principle.
Hence, at moderate atom densities, the average interac-
tion potential of an excess el ectron with inert gas atoms
becomes zero.

Therefore, thereisarange of inert gasdensitieswith
an attractive interaction potential for an excesselectron,
and these densities correspond to a high electron zero-
field mobility, as is observed experimentally. Because
penetration of an excess electron into each coreleadsto
repulsion due to the Pauli exclusion principle, points of
the maximum attractive potential for an excess electron
form a Delaunay network [22-24], whose lines are
located between atoms and may be found on the basis
of the Voronoi-Delaunay method [25]. This method
consists in construction of planes located at identical
distances from neighboring atoms. Intersections of
these planes form the Delaunay network, and the
electric potential has minima on this network. The
equipotential surfaces that are close in energy form

1063-7761/05/10101-0186$26.00 © 2005 Pleiades Publishing, Inc.



THE TUBE CHARACTER OF ELECTRON DRIFT IN CONDENSED INERT GASES

tubes, which are amost straight. The electron, being a
guantum object, can propagate inside an inert gasalong
these amost straight channels. Electron transitions
between channels of different directions in regions
of their intersections lead to an effective electron scat-
tering.

We thus conclude that a specific mechanism of the
electron drift in this case differs from those in both
gases and crystals. Indeed, propagating in gases, a test
electron is scattered on individual atoms, whereas scat-
tering of an electron wave in crystals is determined by
distortion of the crystal lattice as a result of a shift of
atom positions from the equilibrium ones during
motion of the electron wave. Then, melting of a solid
should seemingly lead to a strong change of the elec-
tron mobility. However, in the case under consider-
ation, aslow electron propagates along an individual
tube near the Delaunay network, the electron scattering
is weak, and, therefore, the electron mean free path
inside an inert gas with optimal parameters is large
compared to the distance between nearest-neighbors.
Correspondingly, change of the phase state does not
lead to a significant change of the mobility for a slow
electronin an inert gas.

Below, we consider the tube mechanism of electron
drift in heavy inert gases and analyze various aspects of
the electron drift under conditions of the tube-shape
potential of a self-consistent field for an excess
electron.

2. ELECTRIC POTENTIAL
FOR AN EXCESS ELECTRON
IN DENSE INERT GASES

The negative spatial charge created by excess elec-
trons in dense inert gases can result in strong electric
fields even at low electron number densities. Therefore,
we consider the regime of electron drift in an inert gas
neglecting the interaction between individual electrons;
that is, an individual electron is considered drifting in
an inert gas. We consider peculiarities of the potential
energy surface (PES) for an excess electron in an inert
gas and, correspondingly, the character of the electron
drift in condensed inert gases under the action of an
external electric field. Using the analogy with clusters
consisting of many atoms with a pair interaction
between them [26-28], we represent the PES as a sum
of local minimaand saddles. At atomic densities, when
the electron mobility is high, an excess electron passes
over barriers of the PES during its drift in inert gases.

Another peculiarity of the PES at optimal atomic
number densities is a large volume inside condensed
inert gases where the electron location is prohibited by
the Pauli exclusion principle. Indeed, a slow electron
cannot penetrate inside an atom where valence atomic
electrons are located, and, hence, the excluded region
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Tablel. Parametersof therepulsiveinteraction potential for
an excess e ectron with individual atoms of inert gases

Ar Kr Xe
F,a 1.663 1.952 2.338
i, a2 3311 4.455 6.277
rrA,e=01ev 1.63 1.72 1.92
rrAe=1lev 1.23 1.28 1.30
Vg, cm3/mol 24.6 29.6 371
Viig: cm*/mol 28.2 34.3 42.7
Vinax: CM/mMol 50.2 43.0 50.2
Vi Ngy 0.44(0.19) | 0.44(0.18) | 0.48(0.15)
Vi Vi 0.39(0.17) | 0.38(0.15) | 0.42(0.13)
Vi Vi 0.22(0.10) | 0.30(0.12) | 0.35(0.11)

for an excess electron is concentrated near atomic
cores. For simplicity, we take the prohibited volume
near each atom in the form

4
Vi = 3, M

wherer is the effective atom radius, which depends on
the electron energy €. We take it from the relation

U(2r) =&, 2

where U(R) isthe interaction potential of two atoms at
adistance R between them. In this way, we changed the
repulsion of afree electron from the atom core by that
of abound electron. Table 1 lists the values of the atom
radii for an exchange el ectron—atom interaction calcu-
lated on the basis of the above formula. Thisvolumeis
compared in Table 1 with the volumes per atom for the
solid Vg, and liquid V;;, phase states at the triple point,
and also with the volume per atom V,,, at the atomic
number density that correspondsto the maximum of the
electron mobility. Theseratiosare given for the electron
energy € = 0.1 eV and for the electron energy € = 1 eV
in parentheses. We can see that the prohibited volume
for afree electron at low electron energies may occupy
asignificant part of the total volume.

We note that this character of the exchange interac-
tion between an excess electron and valence electrons
of atoms of condensed inert gases is preserved up to
high atomic densities until electron shells of neighbor-
ing atoms overlap significantly. In any case, it is valid
at densities related to the solid and liquid aggregate
states of inert gases, and the average exchange interac-
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Table 2. Parameters of the potential energy for an excess
electron inside inert gases

Ar Kr Xe
L, ag -15 31 5.7
Umim €V [8,11,12,14] | -033 | -053 | -0.77
Niir, 10?2 cmi= 11 1.2 11
Ay A 4.8 47 48
[\ 2.8 2.7 2.8
21h2L N/ M, €V 0.41 0.94 1.58
C,ev 0.44 0.71 1.04
a 4 4 4
A eV 6 10 14
R A 36 35 36
C'ev 0.15 0.25 0.36
A eV 2.2 35 6.5

tion potential at agiven atomic density dueto thisinter-
action can be approximated by the formula

V
Ug = Aexp %—a V*E ©)

where V isthe volume per atom and A and a are param-
eters.

We now construct the difference between the poten-
tial for an excess electron located inside a condensed
inert gas and in avacuum. Taking the el ectron potential
in avacuum to be zero, we vary the atomic density from
low values, when this system of atomsis agas, up to
moderate ones, at which the mobility of an excess elec-
tron is of interest. At low atomic densities, an excess
electron interacts with individual atoms independently.
In regions between atoms and far from them, the inter-
action potential is zero, and nonzero interaction takes
place only near the atoms. On the basis of the Fermi
formula [29, 30], the interaction potential between an
electron and atoms can be represented as

u(r) = ZZZLZLé(r “R), ()

where 71 isthe Planck constant, m, is the electron mass,
r is the electron coordinate, R; is the coordinate of the
ith atom, and L is the electron—atom scattering length.
Because the scattering length L is negative for Ar, Kr,
and Xe (see Table 2), this interaction potential corre-
sponds to attraction in the regions close to atoms.
Therefore, the potential energy surface consists of
regions inside atoms with a sharp electron repulsion,
regions near each atom with electron attraction, and

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Val. 101

GORDON, SMIRNOV

regions between atoms with zero interaction potential.
The attraction corresponds only to an average interac-
tion of an electron of zero energy with an individual
atom in a gas, and, according to formula (4), the aver-
age interaction potential of an electron with inert gas
atomsis

2
Uy = 21h

LN, (5)

e

where N is the atom number density. This interaction
leads to a redshift of spectral lines emitted by excited
atoms located in inert gases [31]. Because this shift of
spectral lines is determined mostly by the exchange
electron—atom interaction, and a long-range interac-
tion, including the polarization ion—atom interaction,
gives a small contribution to this shift, we account
below for the exchange part of the interaction only.

The exchange interaction of a test electron with
electrons of an internal atom region corresponds
to repulsion of this electron, and we describe it by for-
mula (3). Adding the attractive exchange interaction
potential (5) to it, we represent the total electron poten-
tial in the form

_ N
O(N) = —CNN + Aexpfla—n 6)

min

where N is the current number density of atoms and
Niin 1S the number density at which the interaction
potential has a minimum. The values of N, together
with a.;,, the distances between nearest-neighboring
atoms at this density, are given in Table 2.

If formula (6) is valid for a gas, where the second
term is zero, the parameter C is equal to

_21‘[Lh2

e

C= Nmin- (7)

Inreality, we are based on the experimental dependence

U (N) that gives another value of C. Indeed, onthebasis
of experimental data, which are approximated by for-
mula (6), we find the parameters in Eqg. (6) in accor-
dance with the formula

du C
c=-%Yyx=0), a=—C
dx C—|U il 8)

A = (C—|Uny))€e", x = N/Nyp.

Here, U, is the minimum of the electron potential
inside an inert gas (the electron potential inavacuumis
zero). Experimental parameters for U(X) together with
the parametersin formula (6) are givenin Table 2. Fig-
ure 1 represents experimental datafor the average elec-
tron potential energy in xenon.

No.1 2005



THE TUBE CHARACTER OF ELECTRON DRIFT IN CONDENSED INERT GASES

Based on the experimental data for the electric
potential of a condensed inert gas with respect to an
excess electron, we construct the potential energy sur-
face for an excess electron inside an inert gas. We
rewrite formula (6) for the minimal electron energy of
an excess electron as

_ 3 O 30
U(ry) = —Cgrm—”g + Aexp-o ], (9)
w U rmirl:|
where
wWT O30

is the Wigner—Seits radius and r;,, is the radius at the
atom number density corresponding to the maximum
attraction of an electron inside the inert gas. Formula (9)
can be rewritten in terms of the distance a between the
nearest-neighbors,

- s 0 430
U(a) = —cg"%@ + AexpGa,

J (10)

mi

where a,,;,, s the distance between nearest-neighbors at
which the electron potential inside an inert gas has the
minimum. We note that the atom number densities cor-
responding to the minimum of the electron potential
according to formulas (9) and (10) areequal to N, the
minimal electron potentials in formulas (9) and (10)
coincide with U,;,,, and these parameters follow from
formula (6). In addition, we assume a classical charac-
ter of the electron interaction inside an inert gasin this
consideration, although the interaction has a quantum
character in redlity.

3. DELAUNAY NETWORK
FOR THE INTERACTION OF AN EXCESS
ELECTRON INSIDE AN INERT GAS

Our goal isto construct the potential energy surface
for an excess electron inside an inert gas in the range of
the atom number densities and temperatures providing
an attractive electric potential there. We concentrate on
the simplest case where atoms form acrystal lattice and
find electron positions with the minimum potential
energy. Evidently, because of the repulsive interaction
for an excess electron with atom interiors, the points of
the minimum electron potential are located equidis-
tantly from the nearest nuclei. For two nearest planes of
the crystal lattice, we then draw the Voronoi surfaces
between each pair of nearest-neighbors, such that these
surfaces separate the action of individual atoms on an
electron. Each Voronoi planeislocated at identical dis-
tances from two nearest atoms, and intersections of the
Voronoi surfaces with the two considered planes of
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Fig. 1. The potential energy of an excess electron movingin
xenon in an external electric field with respect to the vac-
uum vs. on the number density of atoms according to exper-

iment [8] (symbols).
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Fig. 2. The character of the behavior of an excess electron
between two planes of the crystal lattice of inert gases:
(2) positions of atoms of the first layer, (2) positions of
atoms of the second layer, (3) vertices of the pentagons that
are intersections of the Voronoi surface with the corre-
sponding layer, (4) positions of the Voronoi surface for an
excess electron in the middle plane between these layers
with the strongest interaction between the electron and
atoms, (5, 6) hexagons that are intersections of the Voronoi
surface with the corresponding layers, (7) directions of the
electron current if it islocated in the middle plane.

atomsare shown in Fig. 2, where they form anet of reg-
ular hexagons whose centers are the nuclei of the lat-
tice. Evidently, from the symmetry considerations, the
optimal positions of an excess electron with minimal
values of the electron potential energy are located inthe
planein the middle between the nearest planes of atoms
considered. Intersections of the Voronoi surface with
this plane form straight lines of three directions (the
solid linesin Fig. 2).

Evidently, the electron potential energy is minimal
on these lines forming the Delaunay network [22—24].
We note that the Delaunay network is an important
mathematical concept (see, e.g., [32-34]). We here use
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Electron ground state

\VaVaVvavi

Fig. 3. The form of the potential energy for an excess slow
electron in a condensed inert gas aong lines of the
Delaunay network.

X

only the applied aspect of this problem related to the
construction of lines of the minimum or maximum
potential (see, e.g., [25]). Electron drift inside an inert
gas proceeds near these lines. We assume that intersec-
tion points of theselines, i.e., sites of the Delaunay net-
work, are characterized by minima of the electron
potential energy, and their values are identical for al
the intersection points (values 4 in Fig. 2) because of
the symmetry. Passing to three-dimensional space, we
obtain intersections of six straight lines at points whose
distance from two nearest-neighbors is a/2, where ais
the distance between nearest-neighbors of the lattice.

Thus, assuming the optimal distance of an excess
electron from nearest nuclei at the optimal number den-
sities of atoms to be maximum for the minimum elec-
tron potential energy, we obtain the optimal electron
positions for the close-packed crystal lattice to be
located on the Delaunay network that consists of inter-
secting straight lines. We have two types of these lines,
which are aternated, and the period of tranglation sym-
metry isafor thefirst-typelines and a/2 for the second-
type lines. In Table 3, we give the distances from six
nearest-neighborsfor pointsthat correspond to the min-
imaof the electron potential energy or arelocated in the
middle between nearest such points. The number of
nuclei with an indicated distance from a given point of
the Delaunay network is given in parentheses.

Table 3. Distances between an excess electron located in
minimaand maximaof the Delaunay network and six nearest
nuclei in the case where atoms form a close-packed crystal
lattice. Numbers in parentheses are the corresponding num-
bers of nearest neighbors

Points 4 In the middle between
inFig. 2 points4inFig. 2
Lines of thefirst Jé a
— (6
type 5,25 @] 50
Linesof thesecond 3 3 7
type 22,024 | 220, o ),
11 15
a2 (1), 222 )
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In the liquid aggregate state, the Voronoi surfaces
and Delaunay network may be constructed in the same
manner, but the Delaunay network lines become
curved. Nevertheless, because of a short order in lig-
uids, the curvature of theselinesisnot large, and we can
take the crystal case as abasis for a qualitative consid-
eration. In any case, the number of lines and the char-
acter of their intersectionisidentical in both cases. Sup-
posing that positions on the Delaunay network corre-
spond to the minimal electron potential inside an inert
gas, we abtain that slow electron drifts inside the con-
densed inert gas near the lines form the Delaunay net-
work. If we move along a given line of the Delaunay
network, the electron potential energy oscillates, asis
shown in Fig. 3. The behavior of the electron PES on
the Delaunay network lines and near them resembles
that for bound atoms in clusters [26-28], with the
potential energy surfaceincluding many potential wells
separated by barriers or saddles. But, based on the
experimental datafor electron mobility, we take the dif-
ference between neighboring minima and maxima of
the potential energy to be relatively small if the atom
number density is near that corresponding to the maxi-
mum electron mobility [21].

4. POTENTIAL ENERGY SURFACE
FOR AN EXCESS ELECTRON
INSIDE INERT GASES

We have found the character of distribution of the
electron potential inside condensed inert gases in the
density range where the electron potential energy is
negative and close to the minimal one. The lines of a
significant electron attraction inside an inert gasform a
Delaunay network, and this result is not based on the
assumption of a pairwise character of the electron-
atom interaction. We use this assumption at the next
stage of evaluation of the electron PES near the lines of
maximum attraction, representing the interaction
potentia of an electron with surrounding atoms in the
form of pair interaction potentials u(r) of this electron
with nearest atoms,

U= Zu(ri),

(11)

where r; is the distance of the electron from the ith
nucleus and the pair interaction potential is taken such
that formulas (6) and (9) give the minimal electron
energy inside an inert gas. Because of a short-range
character of the electron interaction, we account for
only six nearest-neighbors. We take the dependence
u(r) to be identical to that given by formula (10),

3 O 30
u(r) = —C'[Rﬂrﬂ + Aexp - —1. (12)
D r D D Rﬁ'u
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This interaction potential has the minimum at the dis-
tance Ry,

Within the framework of this model, we represent
the observed el ectron potential inside an inert gasasthe
average for points 3 and 4 in Fig. 2. Then, on the basis
of the data in Table 3, we have that the observed el ec-

tron potential energy U (N) at a given number density
N of atomsis

U(a) = uZH+ 2u%“/—aj+ 3u57_£

Taking this relation at the minimum of the electron
potential, i.e, at a = a,;,, and expanding the interaction
potential u(r) near its minimum,

(13)

U"( Rmin)
2

u(r) = u(Ryp) + (r = Rmin)?,

we obtain the minimal electron potential

U(amm) = U%PSHH 2u%imin%a|%

(14)
+3umd = gy(R.. +AR),
D/\/—D min —
where
Rmin = 1+2'\/_3—+ 3//\/éamm = 0.726a,
12

(15)

AR = +0.123a,,,, Q—R = +0.17.

The above estimates, together with relation (13), allow
usto determine the parameters of the interaction poten-
tial u(r) taken in form (12); they arelisted in Table 2.

This approach allows us to construct the potential
energy surface of an excess electron inside inert gases
based on experimental data. Although the model uses a
pair interaction between an excess electron and inert
gas atoms, thisis not of importance at the final stage of
theanalysis, because parameters of thismodel are taken
from experimental results. In other words, the general
character of the electron interaction is based on the
Delaunay network and does not include the pairwise
character of the electron interaction inside an inert gas,
whereas the values of the electron potentia includes
this assumption. Therefore, the above behavior of the
electron PESisvalid strictly, while the accuracy of the
values of the electron potentials at a given electron
position are valid qualitatively.
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5. ELECTRON DRIFT AT OPTIMAL DENSITIES
OF INERT GASES AND LOW ELECTRIC FIELDS

The above analysis allows us to schematically draw
equipotential surfaces for an excess electron inside an
inert gas at a given number density of atoms, when the
mobility of a slow excess electron is high. The lines of
the minimum potential energy then form a Delaunay
network, and for the crystal state of an inert gas, these
lines are straight and pass between nearest atoms. A
general shape of lines of the minimum potential energy
are aso correct for liquids in principle. Indeed, first, a
change of the number density of atoms resulting from
the solidiquid phase transition for inert gases is
approximately 15%, and a change of the average dis-
tance between atoms is correspondingly three times
less. Second, the distortion of lines of the minimal
potential for an excess electron is also inessential,
because a dow electron is a quantum object, and the
difference of the electron potentials inside and outside
an inert gas alows us to find the energy of the electron
level inside theinert gas, but not the minimum potential
for an excess electron insideit. Correspondingly, the de
Broglie wavelength is not small for alow excess elec-
tron and aweak distortion of straight lines of the mini-
mum electric potential for an excess electron, in pass-
ing from asolidto aliquid, isnot of importance. Hence,
our consideration relates simultaneously to the solid
and liquid states of condensed inert gases.

Thus, we consider motion of a slow electron inside
an inert gas whose density corresponds to electron
attraction inside it. Therefore, an electron is bound
inside the inert gas and moves along tubes centered at
lines of the minimum electron potential, which are rep-
resented in Fig. 2 for a solid inert gas. These tubes of
identical potentials are widened dlightly near their
intersections, and the distances between neighboring

points of tube intersectionsis a./3/2, as follows from
Fig. 2. When a slow electron propagates along a tube
(see Fig. 3), its scattering proceeds in nodes of tube
intersections, and as aresult of this scattering, it trans-
fers to another tube. We take the probability y for the
electron scattering in an intersection node to be small,
and then the mean free path A of an electron during its
propagation along a potential tube is relatively large,
~aly(y<1l).

Electron scattering in the intersection regions of
potential energy tubes is similar to electron scattering
on atomsin a gas because the time of strong interaction
for an excess electron that causes scattering is a small
part of the total time in both cases. In addition, in both
cases, an electron is scattered mainly elasticaly, and
only asmall part of the electron energy (~m/M) istrans-
ferred to nuclear heating (mis the electron mass and M
isthe atom mass). Below, wetherefore use formulasfor
the electron drift velocity w and its average velocity v
assuming that the electron is scattered in a gas (see,
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Table 4. Parameters of the drift of an excess electron in liquid
inert gases under optimal conditions and low dectric field
strengths

Ar Kr Xe
e K 155 170 223
v, 105 cm/s 77 8.1 9.3
Ny 102 cm™3 1.2 14 1.2
B A 4.9 47 4.9
Kimae CMY V'S 1800 4600 6000
Vi 0.0062 0.0022 0.0015
E, ,V/cm 16 45 32

e.g., [35-37]). For an electron moving in an externa
electric field of a strength E, we then have

w= %, V= J:an, (16)
which gives
12 12-1/2
W= [ eEa }  v= [eEaM 3/2} . (17)
y(v)~/mM y(v)m

In these formulas, we take the average el ectron vel ocity
to be large compared to the electron thermal velocity in
the absence of an external electric field. If this electric
field isweak and does not change the Maxwell velocity
distribution for excess electrons, the zero-field electron
mobility K is

K=

vy

In evaluating the parameters of the electron drift, if

it proceeds according to the above scheme, we are

based on experimental data. Table 4 contains the num-

ber densities of atoms N,,,, and temperatures T,,,, Of

liquid inert gases [13] that provide the maximum zero-

field mobility of electrons, the corresponding distances

ayax between nearest-neighbor atoms, and the thermal
electron velocity

(18)

Vi = /8T e/ TIM

under these conditions. Then, the above formulas give
the minimal probability v, of electron scattering,
which is a typical probability for the transition to
another current tube at a point of tube intersection, and
atypical electric field strength Ejat which achangein

the average electron velocity dueto the electron drift in
an electric field is comparable to the initia thermal
velocity. Starting from these electric field strengths, the
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electron drift parameters depend on the electric field
strength.

We note that this mechanism for the electron drift,
with the electrons propagating along the tubes whose
centers form a Delaunay network, is valid only for
some range of inert gas parameters at which the elec-
tron is locked inside the inert gas in regions near the
Delaunay network. This mechanism of the electron
drift provides high mobility for slow electrons, which
can be used for determination of the range of the inert
gas parameters and electric field strength, where this
mechanism of the electron drift applies. For xenon at
least, these conditions are fulfilled in a wide range of
the indicated parameters. An increase of the electric
field strength leadsto an increase of the el ectron energy
and causes broadening of the region between atoms
where an excess el ectron can belocated. Finally, at high
electron energies, the electron scattering changes from
the tube character to scattering on atomic cores. Then,
the electron mobility decreases sharply with an
increase of the eectric field strength. In reality, for
xenon, the experimental data analysis shows that this
tendency exists, but the transition is not reached.

Electron scattering is aso intensified if the gas
parameters differ from the optimal ones. If the atom
number density deviates from the optimal one, the
attractive electron potential energy on the Delaunay
network decreases, which leads to a stronger electron
scattering in regions of tube intersection. At a given
atom number density, the lower gas temperature, the
higher isthe electron drift velocity. Thisis explained by
distortions in the atom distributions that increase asthe
temperature increases.

Thus, we represent the character of the drift of a
slow electron in condensed inert gases under the opti-
mal number density and temperature. The electron scat-
tering under these conditions differs in principle from
that in gases, where electrons collide with individual
atoms separately. In this case, an electron is moving
along a certain tube and transfers to another tube at
points of their intersections. Axes of these tubes form
the Delaunay network. This character of electron scat-
tering also differs from the wave character of scattering
in a crystal lattice, where scattering is determined by
deviation of atom positions from the crystal lattice
sites, such that scattering parameters vary significantly
during the melting. In the case of the tube character of
electron scattering, melting does not significantly
change the electron drift parameters. We add that the
tube character of the electron drift is realized in a
restricted range of the inert gas parameters and is valid
at not too high electric field strengths.

On the basis of this analysis, we can single out the
range of parameters that corresponds to the maximum
electron mobility in condensed inert gases. Asthe num-
ber density of atomsincreases, the effective interaction
for an excess electron with atoms of a condensed inert
gas varies from attraction due to the exchange interac-
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tion with anindividual atom because of a negative el ec-
tron—atom scattering length to repulsion owing to the
Pauli exclusion principle when the electron penetrates
inside an atom. Evidently, the maximum electron
mobility corresponds to moderate atomic number den-
sities corresponding to the transition from thefirst form
of interaction to the second one. Then, the PES part of
location of an excess electron consists of narrow tubes
with intersections, and the el ectron can propagate along
these tubes. As the number density of atoms increases,
these tubes are destroyed in regions near atoms where
the electron is locked. If the atomic number density
decreases, tubes widen, and the electron may transfer
more effectively to tubes of another direction. In both
cases, the electron mobility decreases.

We note that a temperature increase leads to an
increase of fluctuations in positions of individual
atoms, which causes the destruction of a PES tube. But
apressure increase leads to a decrease of these fluctua-
tions and hence stabilizes the PES tube when the tube
corresponds to optimal conditions. In analyzing the
optimal conditions for the electron mobility, we are
mostly based on experimental data. But experimental
data of this problem study are fragmentary. Additional
experimental studies are required in order to construct
the optimal range in coordinates of the atomic number
density, temperature, and electric field strength for each
heavy inert gas (Ar, Kr, and Xe). We also expect from
the subsequent experimental study that, at high pres-
sure, the electron mobility will decrease with an
increasing pressure.

We also note the peculiarities of inelastic electron
scattering in condensed inert gases. If the electron
energy is not small, and the electron can be considered
as a classical object, its inelastic scattering inside an
inert gas is related to excitation of phonons, and each
act of elastic scattering is accompanied by a loss of
approximately the m/M portion of the electron energy;
in other words, the process of inelastic scattering of a
classical electron in a condensed inert gasis similar to
that in rare gases. This is used in formulas (16) and
(17). But a slow electron is a quantum object, and its
inelastic scattering proceeds in another manner. Indeed,
the electron states are characterized by discrete levels,
and inelastic electron scattering requires its transition
to an excited electron level. Therefore, at low electric
field strengths, the inelastic electron scattering is weak
and becomes the same as in a gas when the electron is
excited sufficiently strongly, such that its levels are
located sufficiently close.

In considering inelastic electron scattering, we
restrict ourselvesto just thislimiting case. At high elec-
tric field strengths, the electron energy acquired from
the field suffices for excitation of inert gas atoms. The
excitation processes are in principle the same as in a
gas, which areanalyzed in detail in [37]. The efficiency
of this process, that is, the electron energy part con-
sumed to atom excitation, increases with an increase of
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the average electron energy € [15, 21] and is of the
order of 10% when theratio € /As = 0.1 (Ac istheatom

excitation energy). We are also guided by the experi-
mental efficiency value of 18% in solid xenon [38, 39].

6. PECULIARITIES
OF SELF-SUSTAINING DISCHARGE
IN CONDENSED INERT GASES

An applied aspect of the phenomenon of electron
drift in condensed inert gasesisrealized in electric dis-
charge, with the electric energy being converted into
the energy of emitted photonsin the vacuum ultraviolet
spectrum range. Excess electrons drifting in condensed
inert gases excite inert gas atoms, which leads to trans-
formation of an electrical energy into the energy of
emitted photons. Because the electron energy is high,
the efficiency of energy transformation is relatively
high. During these processes, an excess electron cannot
ionize the medium, because its energy is below theion-
ization potential due to an effective atom excitation.
The electrons are therefore injected into a sample from
outside and only play the role of carriers of a negative
charge, in contrast to standard gaseous discharges with
ionization inside asample. Due to this character of dis-
charge maintenance, excess el ectrons create a noncom-
pensated negative charge in condensed inert gases. This
charge restricts the number density of excess electrons
and correspondingly the power of the discharge and the
intensity of yield radiation [42]. We find the maximum

value Ng™ for the electron number density from the
Poisson equation that has the form

dE
I = —4meN..

(19)
Here, E is the electric field strength, e is the electron
charge, N, isthe electron number density, which is con-
stant inside the inert gas layer, and the coordinate x is
perpendicular to theinert gaslayer whosethicknessisl|.
From the Poisson equation, requiring E = 0 in the layer
middle because of the problem symmetry, we obtain the
electric voltage U between the layer boundaries due to
excess electrons inside the layer as

U = meN,’. (20)
Formula (20) implies that the electron number den-
sity isthe greater, the higher isthe electric field voltage

and the smaller is the layer thickness. In particular,
under typical parametersU =1 keV and| =1 mm rea-

ized in experiments[38, 39, this formulagives N;° =
2 x 10" cm3. This electron number density locks the
electric current in discharge. We note that the number
density N, = 1 x 10" cm |eads to the electric current
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density j = 0.01 A/cm? and the discharge power P =
Uj = 10 W/cen?.

7. CONCLUSIONS

High electron mobility is observed in heavy con-
densed inert gases (Ar, Kr, Xe) in a narrow range of
atomic densities. A widespread explanation of this
effect [16-20] by the Ramsauer effect in electron scat-
tering on an individual atom is not correct because of a
large distance of the electron—atom scattering in com-
parison with the distance between neighboring atoms at
these atomic densities. In reality, the nature of high
electron mobility is related to the transition from an
attractive interaction potential between an excess elec-
tron and the atom ensemble to arepulsive one [21]. In
this paper, we have proposed a new mechanism of elec-
tron drift in some range of atomic densities and temper-
atures near the optimal onesthat provide the maximum
electron mobility. This mechanism is additional to the
character of electron drift in gases due to electron scat-
tering on individual atoms and to electron drift in crys-
tals dueto scattering of the el ectron wave on nonunifor-
mities of the crystal lattice.

This character of electron drift consists in propaga-
tion of an electron along almost straight channels; elec-
tron scattering occurs as a result of the electron transi-
tion to apropagation channel of another direction. This
new mechanism of electron drift followsfrom the struc-
ture of the potential energy surface near its minimum;
it consists of almost straight intersecting tubes, and the
minimum of potential energy surface formsaDelaunay
network. The tube character of the electron drift leads
to high electron mobility. The understanding of this
phenomenon allows usto choose optimal conditionsfor
a self-sustaining electric discharge in condensed inert
gases asagenerator of ultraviolet radiation [38—40] and
stimulates new experimental investigations.
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Abstract—A procedure of numerical simulation for coherent phenomenain multiply scattering mediaisdevel -
oped on the basis of the juxtaposition of aMonte Carlo stochastic method with an iterative approach to the solu-
tion of the Bethe-Sal peter equation. The time correlation function and the interference component of coherent
backscattering are calculated for scalar and el ectromagnetic fields. The results of simulation are in good agree-
ment with experimental results, as well as with theoretical results obtained by generalizing the Milne solution.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Stochastic modeling within a Monte Carlo method
[1-10] has recently found wide application in the study
of coherent phenomena associated with the propagation
of light in randomly inhomogeneous media. These phe-
nomena (coherent backscattering, spatial and time cor-
relations of intensity) are attributed to the wave nature
of light and, in spite of the multiple scattering regime,
are observed in a wide variety of dielectric systems
[11], such as colloidal suspensions, liquid crystals, and
biological tissues.

The standard modeling technique for radiation in a
random medium is based on the concept of intensity
transfer. The phase relations between the fields that
contribute to the intensity remain outside the frame-
work of this modeling; one needs a special approach to
take into account these relations.

The theory of multiple scattering in random media,
including the theory of coherent and interference phe-
nomena, is based on the Bethe-Salpeter equation
(see[12)]). Inthe present paper, we juxtapose a stochas-
tic Monte Carlo method [13] with a theoretic method
that is based on the representation of the solution to the
Bethe-Salpeter equation as a series in scattering orders
to demonstrate how the standard Monte Carlo method
is generalized to a unified approach to the numerical
simulation of the time correlation function of intensity,
coherent backscattering, and other coherent phenom-
enathat require consideration of phase shifts.

Due to the multiple scattering, polarized light is
completely depolarized; this fact allows one to restrict
the consideration to a scalar field. However, in the case
of backscattering, the scattered light remains partialy
polarized due to the contributions of lower order scat-

tering terms. Experiments point to a significant role of
polarization in backscattering [14-16].

In [17-22], the problem of multiple scattering by
point, Rayleigh, particles was solved by generalizing
the Milne solution to the case of electromagnetic
waves. In [17. 18], a vector transport equation was
solved strictly for backward scattering with regard to
the interference component, and, in [19, 20], the angu-
lar dependence of the backscattering intensity was cal-
culated with regard to polarization. In [21], a solution
for the time correlation function was obtained. In [22],
this solution was generalized to the case of finite-size
scatterers.

In[2], aMonte Carlo procedure was applied to cal-
culate the intensity of coherent backscattering, includ-
ing a coherent component; for Rayleigh scattering, the
peak of coherent backscattering proved to be much less
than the enhancement predicted by the exact solution
[19, 22]. In [23], the authors also simulated backscat-
tering of electromagnetic waves; they calculated the
rate of depolarization of linearly polarized light as a
function of the number of scattering events. For Ray-
leigh scattering, the function obtained coincides with
that predicted in [24], which was obtained within a dif-
fusive approximation; however, as the anisotropy of the
single-scattering cross section increases, the result of
numerical simulation appreciably differs from theoret-
ical results.

In the present paper, we develop a method for sto-
chastic modeling of coherent phenomenawith regard to
the polarization of an electromagnetic field. For Ray-
leigh scattering, the numerical results are in agreement
with the theoretical results. This fact suggests that the
data obtained in the general case of anisotropic scatter-
ing cross section are reliable.
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STOCHASTIC MODELING OF COHERENT PHENOMENA 23

We consider the case most frequently used in theo-
retical investigations, of the scattering of radiation in a
medium that occupies a half-space with a plane bound-
ary. To facilitate consideration of the method, we exam-
ine the normal incidence and scattering close to the
backward scattering.

In Section 2, we present general expressions for the
time correlation function and the interference compo-
nent of backscattering. In Section 3, we compare the
methods of summation of ladder diagrams with a
Monte Carlo method and present the results of smula-
tion for the time correlation function and coherent
backscattering for a scalar field. In Section 4, we con-
sider the results of simulation for linearly polarized
light. In the Conclusions, we discuss the results.

2. TRANSFER OF FIELD CORRELATIONS

Suppose that a medium occupies the half-space z >
0, where z is the Cartesian coordinate normal to the
boundary of the medium and k; and k are the wavevec-
tors of the incident and scattered plane waves.

The transfer of field correlations in an inhomoge-
neous dispersion medium with random space-time
fluctuations of dielectric constant is described by the
Bethe—Salpeter integral equation

F(Ry Ry, tlke ki) = KoG(ks—ki, )3(R,—R )T

+ ng'dR3é(kS—k23, )A(R,—Ry) (2.1)

X |A_(R31 Ry, t|Kas, k).

Here, g 5.q,q, (R2, Ry, tKg, ki) is the propagator, or the
Green'sfunction of the Bethe-Sal peter equation, which
represents afourth-rank tensor. It describes the transfer
of two complex-conjugate fields that arrive at the point
R, with atime shift t, the wavevectorsk;, and the polar-
izations described by the Cartesian indices a,; and a,,
and go out from the point R, with the wavevectors kg
and the polarizations described by the Cartesian indices
B, and 3,. Here, k, = 217A is the wavenumber; A isthe
wavelength; k= k; = k= nky; nistherefractiveindex of
the random medium: n = n, + in,, where n; and n, are
the real and imaginary parts of n, respectively; the
imaginary part n, defines the photon mean free path
(2nky) = 1. The quantity

kj = k(Ri—R))|Ri—R;|™
defines the wavevector between the ith and jth scatter-
ing events. The fourth-rank tensor A (R),

RO
Aepu(R) = H -B2R0

R™

" (2.2)
y E_R 0 R exp(=R/l)
R? DBv R? ’
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represents a direct product of the complex-conjugate
pair of Green'sfunctions of the Maxwell wave equation
in the far-field region and describes the transformation
of apair of fields with polarizations i and v into a pair
of fields with polarizations a and (3 in a single scatter-
ing event.

In the weak scattering approximation (A < 1), which
isusually valid in the dielectric systems under consid-

eration, G (q, t) representsthe Fourier image of the cor-
relation function of space-time fluctuations of the
dielectric constant:

G(g 1) = — [ CBe(0, 0)3e(r, )]

(4m)°
x exp(-iqg ).

(2.3)

A key role in the problems of multiple scattering is
played by the optical theorem, which relatesthe single-
scattering cross section to the scattering length I. For
an electromagnetic field, the optical theorem in the
approximation of weak scattering, or the Born approx-
imation, is expressed as

It = r;lkg‘J’dQSéo(ks-ki). (2.4)
Here, Go(q) = G (q, t) isthe Fourier image of the static
correlation function of fluctuations of the dielectric

constant, g = 2(1 + cosze)—1 is the Rayleigh factor,
and

['dQSéo(kS— k,)cos’0,

2
cos 6 = =
J'dQSGo(kS—ki)

is the squared cosine, averaged over the single-scatter-
ing cross section, of the scattering angle between the
wavevectors k; and k.

The photon mean free path | and the scattering
length | are related by the formula

1_1,1
[ PR N
where |, is the characteristic length of the absorption

due to inelastic scattering. For the media considered
here, 1,> | and theratio I/l is close to unity.

Let us define a normalized correlation function of
fluctuations of the dielectric constant:

(2.5)

G(k, —ks 1)
J’é(ki —k,, 0)dQ,

p(ki—kg 1) = (2.6)

For t = 0, this function coincides with the phase func-
tion po(k; — kg = p(k; — kg, 0), which describes the cross
section of single scattering.
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Iterating the Bethe—Salpeter equation and applying
the optical theorem, we obtain the series

F(Ry Ry, tkg ki) = TRl p(ki—Ks )3(R, = Ry)

+ T2l p(ks—Kar, DA(R2) Pk — ki, 1) -
+ Fgl; IdRs P(Ks—Kos, t)i\(st) P(Kyz =Kz, 1)

x A(Ra) p(ka —ki, t) + ...,

which is usually represented as a series of ladder dia-
grams.

L et us define abinary correlation function of afield
that is observed at alarge distance r from the scattering
medium as

C9t kg ki)

~(L) ~(V) (2.8)
= C (tlkgs ki) + C (t|kg ki),

where ¢ (tlks k;) isacontribution of ladder diagrams
that describes a noncoherent component, while

¢V (tkks, k;) is the interference component that is
observed in the backscattered wave.

In the case of normal incidence and scattering close
to the backward scattering, the ladder and interference
components of the time correlation function of a field
are given by [24, 25]

Cliha,(tKs k)

) J’dedRerleuluz(Rz, Ry, tl ksa kl) (29)
2tz
x exp%- L I 2%
and
C(\I/)Zalaz(tlks7 kl) = J.dedRz
ks—k; ki—k
Fnafromasbish 5
(2.10)

— k3G (ky—k;, t)a(Rz—Rl)éulglaazsz}

Z,+7

x expE- = + (ke + ki) R, ~R1)

respectively, where the subscript “ 1" denotes the com-
ponent perpendicular to the boundary of the medium. It

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

is easily seen that, for backward scattering, when k =
—k;, the polarized component of the interference contri-

. ~ (V) . . L
bution C " (tlks, k;) coincides with the polarization
component of the main, noncoherent, contribution

¢ (tlks, k;) before subtracting the contribution of sin-
gle scattering, while the depol arized components do not
coincide.

The noncoherent component defines the time corre-
lation function of afield

c(t] -k k)

) 2.11
c(0] -k ki) (240

gi(t) =

Disregarding non-Gaussian long-range components,
we can represent the intensity correlation function as a
square of the field correlation function: g,(t) = 1 +

HU)
For t = 0, the interference component (2.10)
describes the peak of coherent backscattering

c(0kg k)

CBS _
S i (VTS

(2.12)
and its angular dependence.

3. SSIMULATION OF A SERIES
IN SCATTERING ORDERS: A SCALAR FIELD

Let us juxtapose the procedure of analytic summa
tion of a series of ladder diagrams with a Monte Carlo
method that combines the calculation scheme of sto-
chastic trgjectories with the application of statistical
weights [26, 27]. First, consider a scalar field. When

passing to the case of a scalar field, the tensor A (R)is
replaced by the scalar function Ay(R) = R2exp(-R/l),
and the Rayleigh factor Iz isreplaced by unity. Thefirst
term of the iterative series describes single scattering,
the second describes double scattering, etc.

A Monte Carlo method describes the radiation prop-
agation as a random process that consists of one,
two, ..., n scattering events. The addition of onelink of
the ladder A(Rjj_)po(k; — k;_1) in the theoretical
description isrealized in the numerical experiment by a
path R traversed by a photon (a packet of photons) up
to the next scattering event. The random photon mean
free path R between two successive scattering eventsis
defined by the Poisson distribution [13]:

f(R) = " exp(=R/I). (3.1)
This distribution implies that R=-In&, where & isthe
probability of the fact that the mean free path is greater
than R; the value of ¢ is chosen by a random number
generator from the interval [0, 1]. The propagation

No.1 2005



STOCHASTIC MODELING OF COHERENT PHENOMENA 25

direction of a photon packet in each event of elastic
scattering is defined randomly with regard to the phase
function (2.6). As aresult, one obtains a stochastic tra-
jectory of aphoton that is emitted at the point R, = Ry,
experienced n collisions at the points R, ..., R,,, and
detected on the surface at the point R,,, ; = Rp; thistra-
jectory randomly simulates the nth-order term in the
above-mentioned iterative series (Fig. 1).

Let W be the statistical weight of the ith photon that
reaches a detector. Then, the sum of these weights
defines, in arbitrary units, the intensity of scattered
radiation at the detection point,

EPAA

In the case of isotropic scattering, W = 1/N,,, where N,
isthe sample size; in the case of anisotropic scattering,
this quantity ismultiplied by the product of phase func-
tions.

The complexity of analytic calculations is associ-
ated with the fact that the integrals over R; cannot be
uncoupled because the phase functions depend on the
mutual disposition of scattering particles. The numeri-
cal simulation uncouples this chain and, at each step,
randomly definesthe direction and the magnitude of the
mean free path of a photon packet.

By virtue of the normalization condition for the
phase function,

Ipo(ki -ky)dQ =1, (3.2
the statistical weight of a photon packet is not changed
after each scattering event. In theoretical description,

the conservation of the weight of a packet is fulfilled
according to the optical theorem. Indeed, since

[Ao(R)GR = 4,

the expansion parameter of iterative series (2.7) isgiven
by

IS A0 [AR; AR 42 = R) Polki 11— ki) = I5'1.(3.3)

Let us show that it is the form of the propagator Ay(R)
that leadsto distribution (3.1). In the absence of absorp-

tion, the quantity I;ll is exactly equal to unity, which
points to the conservation of the weight of the photon
packet. In analytic calculations, it is the condition
I;ll = 1 that makes the method of successive approxi-

mations inapplicable for solving the Bethe-Salpeter
eguation.

A photon contributes to the detected signal provided
that it intersects the boundary of the medium at agiven
angle at the detection point. Then, the trgjectory of the
next photon is modeled. The sample size of incident
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Fig. 1. Tragjectory of random walks of a photon from the
input point Rg to the output point Rp; R, and R, are the
points of the first and the last, nth, scattering events; kjj 1
and k;  q; are the wavevectors before and after the jth scat-
tering event; and 6; isthe angle between the above wavevec-
tors.

photons varied from 10° to 107. The modeling of a pho-
ton trajectory terminated when the number of scattering
events became greater than 10*. When the statistical
weight of a photon became less than 103, we also
ceased to follow upon the trgjectory of the photon.
According to our estimates, the detection probability of
such a photon on the surface is no greater than 102
therefore, our approach leads to an error of a most 105,
We controlled the accuracy of calculated parameters by
the stability of their numerical values under increasing
sample size. For a sample size of 10°, the intensity is
stable up to at least four digits.

As the phase function, we used the Henyey—Green-
stein function (see[28]). In[2, 29], the authors used the
Rayleigh-Gans function.

When afraction of scattered photons possessing the
required properties (for example, phonons scattered
into a narrow solid angle when modeling coherent
backscattering) issmall, the timeit takes to accumulate
reliabl e statistics may proveto be extremely largein the
above-described standard modeling technique.

To improve the statistics, we applied a semianalytic
method of modeling [30], which is aso known as the
method of local estimation [31], in which each photon
contributes to the scattered radiation. Suppose that a
trajectory contains N scattering events. The weight of

the ith photon after n (n < N) scattering eventsis Wﬂ) .
The contribution of all trgjectories with the number of
scattering events n is simulated by the term of iterative
series (2.7) that describes n-tuple scattering in the lad-
der component (2.9):

c® oz, W exp(=2V11),
where zﬂ) is the distance from the point of the last, nth
scattering event to the boundary of the medium. Thus,

in this approach, each photon contributes to the
detected radiation. The accuracy of modeling is easily
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%

Fig. 2. The time correlation function of a field scattered
backward by (1) a semi-infinite medium and (2) alayer of

thicknessL = I* asafunction of thetime argument ./t/t for

three values of the anisotropy parameter cos® = 0 (O),
0.5 (@), and 0.9 (»); the dashed curve represents approxi-
mation by function (3.6) withy = 2.

monitored by comparing with analytic results, which
can be obtained for lower orders of scattering. For
example, in the case of isotropic scattering, the contri-
butions of single and double scattering to the intensity
are given by

~ Z,+2Z 1
Isingle = | IdzldRZé(RZ_Rl)eXpE— 1 | 2%: E’

| doutie = <4n)‘1r2jdz1 dR,Ao(R,—R;)

Zl+zﬂ

—a = In/2 = 0.346... .

X expg—

Using the method described, by simulation we
reproduced these theoretical results with a high degree
of accuracy.

The analysisinvolving the juxtaposition of the theo-
retical approach based on the Bethe-Salpeter equation
with the Monte Carlo method allows us to generalize
the latter method for modeling coherent multiple scat-
tering phenomena.

The difference between the calculation of the time
correlation function and the calculation of intensity lies
inthefact that the direction of ascattered photon packet
is determined by a generalized phase function p(k; —
K;j -1, 1), which depends on the time shift t, rather than
by the phase function itself. In the majority of known
applications[15, 32], the authorsinvestigate adiffusion
mechanism of the time evolution of irregularities, when

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

the time correlation function of the intensity fluctua-
tions can be represented as a product of astatic correla-
tion function and an exponential function:

P(a, t) = Po(a) exp(-Dya’t), (3.4)
where D is the coefficient of self-diffusion. Thus, the
time correlation function is calculated in the Monte
Carlo method as

N n
" 0 O : HN
g.(t) = ZWi exp%)—Z%ni%ﬂ.—%z cosej%, (3.5)
. I J

i=1

where T = (D&k?)™ is the characteristic time of Brown-
ian diffusion of a scatterer to adistance A and §; isthe
scattering angle in the jth scattering event. The result
remains virtually unchanged if we replace the sample
average by the average over the phase function

n dQ.Go(k—k;) cosd
EZCOSGJHCOSGZ [0 - -
niZ [8Q:Go(ks—k)

in agreement with the diffusive approximation.

Intheisotropic case, thereisan exact Milne solution
that allows one to control the results of simulation. The
exact solution gives the following value for the ratio of
the intensity of the total backscattered radiation to the
intensity of single scattering: I/lgnge = 8.455...
(see[12]). The method of simulation described repro-
duces this value with an accuracy of at least four digits
for asample size on the order of 10°. To reduce the sim-
ulation time, we cdculated, within the diffusive
approximation, the contribution of photons for which
the distance between the input and output pointsis sev-
eral dozens of times greater than the mean free path |,
whereas the contribution of photons that are emitted at
a distance less than | is calculated by the simulation
scheme described.

Figure 2 represents the results of simulation for the
time correlation function of field for three scattering
media with different values of the anisotropy factor

cosO =0, 0.5, and 0.9. We chose the value | = 33 um,
which corresponds to the values of the transport length
I* =1(1— cosB )%, ranging from 33um for the isotropic
case to 333 um for the case of strong anisotropy
(cos® =0.9). Intermsof J/t/T, thecorrelation function
is practically universal and does not depend on the
anisotropy of single scattering. Note also that these
results are in good agreement with experimental data

[15, 16]. The obtained time correlation function of field
iswell described by the formula

9,(t) O exp(-y~/6t/1),
which was proposed in [15].

(3.6)
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The sloperatio y of the time correlation function of field in a medium with isotropic scattering cross section: Theoretical pre-

dictions and results of simulation

Incident radiation Scattered radiation Diffusive approximation Milne solution Monte Carlo method
2
Plane wave Plane wave o(1+Z7) 2[12, 22] =2
1+2z*
Plane wave Point detector 1+z =1.53[22] =1.53
Point source Total scattered radiation z =1.2

Note: The Milne parameter isz* = 0.71.

The deviation from a linear decay for very small
times is attributed to insufficient statistics at large dis-
tances. Astime increases, the contribution of long opti-
cal paths decreases, thus weakening the requirements
on the statistical sample size.

Strictly speaking, the linear dependence on /t/T is
realized only for the scattering from a semi-infinite
medium. In the case of scattering from alayer of finite
thickness, the time correlation function decreases lin-
early with timet. However, evenfor layerswith athick-
ness on the order of the transport mean free path, the

time correlation function in terms of ./t/T weakly
depends on the anisotropy parameter cosO .

The decay rate of the correlation function, which
weakly depends on the specific character of a medium
in dimensionless terms t/1, depends rather strongly on
the geometry of the experiment. The table presents the
values of the slope ratio y for isotropic scattering that
are calculated in the diffusive approximation with the
use of the Milne solution and obtained by simulation.

One can see that, in the case of a point source or a
point detector, the decay rate of correlationsislessthan
that in the case of plane waves. As pointed out in [15],
thisis associated with the fact that, in the case of plane
waves, the relative contribution of longer optical paths
increases and leads to a faster decay of the correlation
function.

Note that, compared with the expression for the
intensity of a noncoherent component, the expression
for the intensity of the interference component of back-
scattering (see (2.10)) contains an additional factor
exp(igg - (Ry — Ry)p). Taking into account the transla-
tional invariance with respect to the coordinates R, we
can replace this factor by cos(q; - (R; — Ry)p). When
calculating the intensity of the coherent component of
backscattering, we should multiply the weight of theith
photon arriving at the interface with vector kg at dis-

tance|(Rs— Rg) )l from theinput point Rg by the factor
cos(qy(Rg — R(Di))D) and sum over all photons. As a

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

result, we obtain the following expression for the peak
of coherent backscattering:

1°°%(8)) = 5 Wicos(q [{Rs~Rp)0) = Lsngee

The height, or enhancement, of the peak of back-
scattering is given by

21 - Isingle

CBS
h=" = :
I

where | isthe intensity of the noncoherent component.

We obtained hBS = 1.87 for isotropic scattering, which

is in good agreement with the value hjey = 1.88 [2]

obtained on the basis of the Milne generalized solution.

For cos® = 0.9, we obtained h®BS = 1.99, which also

agrees with the expected theoretical value hioe = 2 for

cos@ — 1.

Just as in the case of time correlations, the angular
dependence of the peak intensity of coherent backscat-
tering calculated in the dimensionless variables q =
kI* sinBis closeto the universal one (Fig. 3) and is suf-
ficiently well described by the formula

1°%5(0,) O exp(—ykl* sin®,)

with y = 2. Note that this dependence differs signifi-
cantly from the dependence predicted by the diffusive
approximation [24]:

CBS

e Dl_2(|+z—*|*)2

o[ ksinB,
for kI* sin6, << 1, wherez* =0.71... isthe Milne extrap-
olation parameter. The values of the sloperatio given by
thisformulafor theisotropic scattering and the strongly
isotropic scattering differ by a factor of three: ydff) =

2.3 for cos® = 0, and ydf) = 0.71 for cos6 — 1
(see [18]). Note that the results of simulation also show
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1
0 0.2 04 0.6 0.8 1.0

kl* sin B

Fig. 3. Peak intensity of coherent backscattering as a func-
tion of kI*sinBg A = 0.6 um; | = 33 um; and cos® =0 (),
0.5 (c), and 0.9 (»); (1) approximation by exp(—2kl* sinB)
and (2) function of theform 1 — 2kI* sinBg. Theinset shows

the initial regions that demonstrate the deviation from uni-
versality.

that the decay rate of the peak of coherent backscatter-

ing decreases as the anisotropy parameter cosO
increases in the region of very small scattering angles,
ki*sinf, < 0.1.

4. CORRELATION EFFECTS
FOR LINEARLY POLARIZED LIGHT

In the case of an electromagnetic wave, one should
additionally follow up the variation in the direction of
the field, characterized by a polarization vector, along a
random trajectory of a photon. According to (2.2), to
this end, one should calculate the result of the action of
the chain of operators [24]

[10-(Ri+1-R) O (Ri11=R)IR;.1 =R (4.)

i=1

on theincident field.

Suppose that, just asin the case of ascalar field, the
weight of each incident photon is 1/N,,. In the electro-
magnetic field, one defines, in addition to the weight,
theinitial polarization of the photon field; in the general
case, it is defined by three Cartesian coordinates. Sup-
pose that the polarization of each incident photon is
defined by a set of three numbers: Pi" = (1; 0; 0). This
vector of initial polarization indicates that the incident
field is polarized along the x axis.

The polarization of afield is changed under scatter-
ing. In addition to the standard procedure of stochasti-
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cally determining the direction of a photon after a col-
lison and finding the weight function by the phase
function, one should calcul ate anew vector of polariza-
tion P; . ; by the preceding vector P; for each scattering
event:

Pi1= (T_(Rj+l_Rj)|:| (Rj+l_Rj)|Rj+l_Rj|_2)Pj-

Suppose that a photon experiences n scattering
events. Then, after the last, nth scattering event, a pho-
ton arrives at the observation point Ry with the polar-
ization vector

n
PO = M@ -(R,,-R)O(R,,,—R))
j+1 J j+1 J
jljl (4.2)
X|Rj. 1 =Ry *)P™.

Let W bethe statistical weight of a“scalar” ith pho-
ton that arrives at the point Ry . Then, summing over all
N, detected photons, we obtain the following expres-
sions for the polarized and depolarized components
(for short, we omit the index “out”):

N
2 =N
oot = Ixx = ZWiPixrR’
i=1
Npn
_ _ 2 N
i = Iy = 3 WIPYR.

i=1

(4.3)

In the case of backward scattering, thereisno zcom-
ponent. Note that these formulas describe the nonco-
herent contribution of ladder diagrams, lg, =

Chigaa (OKs ko).

In the case of an electromagnetic field, the polariza-
tion vector strongly fluctuates even for very large (on
the order of 10°) statistical sample sizes. In [24], the
authorsanalyzed therate of depolarization asafunction
of the number n of scattering events in the diffusive
approximation. According to [24], in the case of aniso-
tropic single-scattering cross section, the depolariza-
tion after n scattering eventsis given by

oo (N) — laepa (M) _ 3(0.7)"*
oo (M) + laga () 2+ (0.7)" "

P(n) =

Figure 4 represents the calculated function P(n). Note
that the number of scattering eventsis actually propor-
tiona to the length of the optical path; since the length
of the path is proportional to the flight time, the func-
tion P(n) illustrates the spreading of alight impulse in
a strongly inhomogeneous medium. One can see that
the depolarization indeed decays exponentially as the
optical path increases; however, the decay rate differs
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from that predicted by the diffusive approximation. As
the anisotropy increases, the characteristic length of
depolarization increases, because, for large values of

cosB, a photon must experience (1 — cos )™ times
greater number of collisions compared with the isotro-
pic case to appreciably change its direction and, hence,
the polarization. For n > 30, the results are quite unsta-
ble. Thisis associated with the fact that the products of
an odd number of components of the polarization vec-
tor directed along the boundary of the medium are
equal to zero theoretically, whereasthe stochastic result
strongly fluctuates.

The calculations are performed as follows. For tra-
jectories with a number of scattering events less than a
certain number n,, which varied from 20 to 50, the cal-
culation was performed by the above-described
scheme. We assumed that, for n > ny, the polarized and
depolarized components are equal and, hence, can be
calculated as haf the intensity calculated for a scalar
field:

o) = Lagga(M) = 5l

To control the process, we compared the results of
simulation in the case of point scatterers with the
known exact theoretical results.

In the case of Rayleigh scattering for the normal
incidence and scattering at an angle of 180°, the exact
solution [21, 22] obtained within ageneralization of the
Milne solution for an electromagnetic field yields a
value of ly/lgepq = 1.92 for the ratio of polarized to
depolarized components of the noncoherent compo-
nent. The numerical simulation yields I o/l geoo = 1.94.
The known value of the ratio of the polarized compo-
nent of scattered radiation to the depolarized compo-
nent allows one to determine the residual polarization
of the noncoherent component of backscattering. The
generalized Milne solution yields [19, 21, 22]

Ipol B Idepol ~ 0.31’
Ipol + Idepol
while numerical ssimulation yields 0.326. A close value
of 0.33 was obtained in [23].

L et us define the height of the peak of the polarized
component of coherent backscattering as

hCBS _ 2|poI — Isingle
pol — [ .

pol

The theoretical value [19, 21, 22] is hyy® = 1.75. The

analysis of simulation data obtained in [2] yields a
value of hy,° = 1.4, which is far from the theoretically
predicted result. In[29], the authors obtained a val ue of
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Fig. 4. Depolarization degree P as afunction of the number

of scattering eventsn for cos® = 0 (w), 0.5 (o), and 0.9 (A).
A semi-infinite layer. The straight line represents the diffu-
Sive approximation.

her > = 1.69. The value h,° = 1.746 calculated by us
agrees much better with theory.

We calculated the time correlation function for the
polarized and depolarized components of backscattered
light by numerical simulation.

To calculate the time correlation functions of an
electromagnetic field, we used the following formulas:

Npn
n;
Ga(t) = 5 WP,

i=1

0O ¢ O 1o M
x expF2-n—= z cosO 1],
Otv [0 nij mn
" (4.4)
n;
Giga(t) = 5 WP

i=1
Ot O M
x expEl—ZEni[ﬂ.— lz cosB ],
O T [0 nij mn

where P,, is the polarization vector of the ith photon
with polarization a that arises under the action of a
sequence of n; tensor operators of the form (4.1) and 6,
is the scattering angle of the jth scattering event.
Figure 5 represents the results of ssimulation of the
time correlation function of field for the polarized and
depolarized components for the Rayleigh scattering,

cosO =0, and for the case of astrongly anisotropic sys-
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Fig. 5. Time correlation function for electromagnetic field

in scattering media 9§<1>)< @), gg(l\z (®). Curves 1 and 3 cor-

respond to cosB =0, curves 2 and 4 correspond to cos® =
0.9 and brocken curves determine the slopes Y, = 1.42 and
Ydepol = 2.68 for a medium with isotropic phase function.

tem with the indicatrix stretched forward, cos® = 0.9.
One can see that, in the case of linearly polarized light,
the decay rate of the time correlation function in the
units of T appreciably depends on the anisotropy

parameter cosB , in contrast to nonpolarized light.

The diffusive character of light propagation in the
multiple scattering regime is responsible for the linear
decay of the field time correlation function of the
form [15]

g®(t) O1-y.f6trT,

wherey isthe doperatio that determines the decay rate
of the time correlation function. Note that, according
to (3.5), the initial small parameter in timeis (t/1)(1 —

cos0). In the case of a strongly anisotropic scattering

cross section, this quantity remains small for suffi-
ciently large values of the parameter t/t for which the

dependence of g®(t) on ./t/T may strongly differ from
alinear function.

In the case of Rayleigh scattering, the theory pre-
dicts [19, 22] the following slope ratios for the polar-
ized and depolarized components: y,, = 1.44 and
Yaepol = 2.75. The analysis within the diffusive approxi-
mation yields [16] Yy, = 1.6 and Yyepq = 2.7, Which are
close to the experimental data y,, = 1.6 + 0.1 and
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Yaepot = 2.8 £ 0.2. These experimenta data were
obtained for a suspension of latex particleswith adiam-
eter of D =0.091 um, which ismuch lessthan the wave-
length; i.e., the scattering is close to the Rayleigh scat-
tering.

Note that, just asin areal experiment [15], one can-
not eliminate the nonlinear region for very small values
of time, which is attributed to the finiteness of the aper-
ture and the finiteness of the number of scattering
events considered; the theoretically predicted linear
region with the slope ratios Y, = 1.42 and Yyepq = 2.68

starts a +/t/T = 0.15. As the anisotropy parameter
increases, the decay rates of the polarized and depolar-
ized components approach each other. The sum of the
polarized and depolarized components, i.e., the time
correlation function of nonpolarized light is described
by a curve close to the curve obtained during the simu-
lation of the time correlation function of a scalar field.

CONCLUSIONS

Inthetheory of coherent and correlation phenomena
of multiple scattering, both the cyclic diagrams that
describe the interference component of backscattering
[33, 24] and the diagrams that describe the field corre-
lations [34] can be reduced to ladder diagrams. This
allows one to describe the above phenomenawithin the
framework of the relevant Bethe-Salpeter equation.
The formal difference from the origina ladder dia-
grams that describe the transfer of the main, noncoher-
ent, component of scattered radiation consists in the
introduction of additional coefficients to the vertices of
ladder diagrams. These coefficients describe the phase
shift between the fields that appear in the definition of
the propagator of the Bethe-Salpeter equation. In the
present paper, by juxtaposing the representation of the
Bethe-Salpeter equation as a ladder diagram series
with the modeling of random trajectories, we have
shown that the consideration of phase relations in sto-
chastic modeling also reduces to the addition of appro-
priate coefficients in each scattering event experienced
by a photon as it moves along arandom trgjectory.

The semianalytic Monte Carlo method developed
allows one to compare numerical results with theoreti-
cal predictions at each step of simulation. The possibil-
ity of such a comparison allows one to significantly
reduce the simulation time by using analytic results
instead of numerical ones at large distances between
the input and output points of radiation, where theoret-
ical predictions are certainly correct.

The analysis carried out has shown that scattering is
indeed of multiple character only in the case of anon-
absorbing semi-infinite medium. In all other cases,
each scattering event gives rise to coefficients of the

form Dsqzt = 2(t/1)(1/1*) when simulating the time cor-
relation functions with diffusive decay of fluctuations
or kisinB, for coherent backscattering; these coeffi-

No.1 2005



STOCHASTIC MODELING OF COHERENT PHENOMENA 31

cientslead to arapid decay of awave packet. The decay
rate of coherent phenomena is determined by the
parameters (t/1) and ki* sinB,, which may be substan-
tidly greater than the original parameters (t/t)(1/1*) and
kl sinB, in the case of a strongly anisotropic phase func-

tion, 1 — cosB, < 1.

The simulation error is primarily determined by the
sample size, i.e., by the number N, of emitted photons

and by the maxima number n™) of the scattering
events taken into consideration. We continued to follow
up thetrajectory of aphoton up to 10* scattering events.
In this case, the results become stabl e to within one per-
cent even for about 1000 emitted photons; for Ny, ~ 10°,
the relative error in the scattering intensity is on the
order of 10*. However, in view of the diffusive charac-
ter of the propagation of radiation in an unbounded
medium, the contributions of the scattering events of
extremely high orders still continue to contribute when
one simulates the intensity. Therefore, the statistics of
photons with high-order scattering proves to be insuffi-
cient a large distances from the input point, and the
result depends on the choice of the number nM), Com-
paring, in the isotropic case, numerical results with the
theoretical results that follow from the Milne solution
and its generalizations, we have found that the above-
mentioned restriction on the number of scattering
events gives an understated result for the intensity of
scattered radiation: on the order of 2% for ascalar field
and on the order of 5% for an electromagnetic field,
even for sample sizes of up to several millions. It isthis
circumstance why we complement stochastic modeling
with analytic calculations, applying analytic calcula-
tions within the diffusive approximation instead of
modeling in the case of large distances between the
input and output points (or when the number of scatter-
ing events exceeds a certain fixed number); the accu-
racy of these analytic calculations are easily controlled
by increasing the above-mention fixed parameter.

In the case of modeling the time correlation function
or the peak of coherent backscattering for the parame-
ters (t/T)(I/1*) and ki* sinB, on the order of 0.01 and
greater, an additional contribution (combined with the
use of analytic calculations) of scattering events of
extremely high orders barely affects the result. In the
range of large values of (t/t)(I/I*) and kI* sin; on the
order of unity, the relative contribution increases again;
however, in this range of parameters, the very physical
model and, in particular, the ladder approximation
cease to bevalid.

The description of multiple scattering, including
coherent phenomena, in terms of ladder diagram series
is valid up to the parameter A/l. Thus, when the time
correlation function decreases as time increases or the
peak of coherent backscattering decreases as the scat-
tering angle increases by afactor greater than I/A, these
phenomena are no longer observable in real experi-
ments against the background of contributions made by
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“nonladder” diagrams that take into account the phase
shifts of fields in multiple rescattering processes.

Usually, multiple scattering, including coherent
phenomena, is described in terms of a scalar field. Our
results show that, for backward scattering, consider-
ation of the electromagnetic nature of light leads to an
essentialy different quantitative description compared
with that in the case of a scalar field because a consid-
erable part of backward scattered radiation consists of
low-order contributions. For example, the decay rate of
the time correlation function of the polarized compo-
nent is much less, while that of the depolarized compo-
nent is much greater, than the decay rate in the case of
nonpolarized light; the latter decay rate virtualy coin-
cideswith that in the scalar case. The polarized compo-
nent of backscattered light is almost twice as large as
the depolarized component.

This method of numerical simulation alows one to
judge the number of scattering events experienced by
light transmitted through a layer of a strongly inhomo-
geneous opague medium by the value of residual polar-
ization. This information is additional to that obtained
from the measurements of attenuation of nonpolarized
light, from which one derives the transport mean free
path. Comparative analysis makes it possible to signif-
icantly simplify the simulation of radiative transfer and
coherent phenomena in randomly inhomogeneous
strongly scattering media, such as liquid crystals, bio-
logical tissues, etc., and to significantly extend the
application domain of these methods.

The results extend the applicability domain of the
methods based on the coherent and correlation proper-
ties of diffusely scattered light.
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Abstract—M ultiparticle entangled states generated viainteraction between narrowband light and an ensemble
of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between
atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of
atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical
schemes for preparing entangled states of atomic ensembles by projective measurement are described. © 2005

Pleiades Publishing, Inc.

1. INTRODUCTION

Entangled states are used as a key resource in vari-
ous quantum information processing systems. Their
properties and preparation methods have been the sub-
ject of extensive discussion. Thedesired state of aphys-
ical system can be prepared either by projective mea-
surement or as a result of evolution. For atomic sys-
tems, both methods have already been implemented in
experiments. In particular, two atomic ensembles were
used in [1] to create an Einstein—Podolsky—Rosen
(EPR) pair by projective measurement. The latter
method was demonstrated in several studies: entangled
states of akali ions were generated via Coulomb inter-
action [2], neutral Rydberg atom were used to create an
EPR pair in a micromaser setup [3], and resonant
dipole—dipole interaction was used for entangling neu-
tral atoms in an optical lattice [4]. The most popular
methods for preparing entangled photon states are still
mostly based on parametric down-conversion. For
example, an entangled state equivalent to a three-state
guantum system (qutrit) was prepared and examined by
using quantum state tomography in [5]. These exam-
ples suggest that an entangled state of two systems can
be prepared experimentally by using a certain interac-
tion. Systems of this kind are well studied. With
regard to applications, it is important to know how
entanglement can be utilized and to know its robust-
ness against decoherence. In this respect, of special
interest are multiparticle systems whose entangled
states are characterized by much more complicated
and diverse behavior.

Previous efforts were mainly focused on analysis of
entanglement between several particles. In particular,
the W class of tripartite entanglement defined in [6]
includes the symmetric three-photon polarization-

entangled state implemented in the experiment reported
in[7]. An extension to four qubits was proposed in [8],
where nine inequival ent classes were distinguished that
cannot be connected by local operations and quantum
communication. Studies of multiparticle systems are
relatively few, being focused on entanglement criteria
and application to problems in quantum information
theory. Whereas the Peres-Horodecki criterion for
bipartite entanglement found in [9] was applied to areal
physical system in [10], no operational criterion is
known for entanglement in the general case; various
approaches are used. In [11], the concept of entangle-
ment molecules [12] was used to propose a classifica
tion using graphs, with particles and classical or quan-
tum correlations represented, respectively, by vertices
and edges connecting pairs of vertices. Graphs of this
kind can be used to describe both pure and mixed
entangled states and distinguish several classes differ-
ing by topological properties of the graphs. In [13],
symmetric states (including Dicke states) were studied
by using severa entanglement measures (entropy of
entanglement, negativity, and entanglement of forma-
tion) defined by the eigenvalues of a partial transpose of
the density matrix. A numerical analysiswas performed
to find that symmetric states are robust to particle loss
even if the number of particlesislarge (up to 10%). Note
that the calculation of eigenvalues is a difficult task,
because the dimension of an ensemble’'s Hilbert space
exponentially increases with the number of constituent
particles. Owing to their robustness, symmetric states
can be used in such applications as cloning and tele-
cloning protocols for quantum information transmis-
sion [14], quantum key distribution [15], and quantum
teleportation or dense coding [16]. The formulation of
two models of a one-way quantum computer using
measurements on multiparticle entangled states [17,

1063-7761/05/10101-0033$26.00 © 2005 Pleiades Publishing, Inc.
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18] has strongly stimulated studies of the properties of
multiparticle systems, in particular, Ising- and Bose—
Hubbard-like models.

The present study focuses on the Dicke states aris-
ing as a result of collective interaction of many atoms
with electromagnetic field [19], which has been ana-
lyzed in numerous studies (e.g., see [20]). This system
exhibits many physical properties of interest for quan-
tum information processing. Photon trapping in chain
configurations of atoms was considered in [21]. When
the system is placed in a cavity, this effect reduces the
photon escape rate and increases the decoherence time
of the cavity mode. In [22], this effect was used for gen-
erating W states and anticloning [23], which can be
implemented with high fidelity by means of photon
trapping. In those studies, only single-photon traps and
single-photon initial states were analyzed. Here, we
consider the more general case of multiphoton pro-
cesses, assuming that the photon statisticsis arbitrary.

The main questions addressed below are the foll ow-
ing: What types of entangled states are produced by
interaction between atoms and field? What states can be
prepared from independent atomic ensembles entan-
gled with a photon? How can these states be utilized?
We consider resonant interaction between narrowband
light and an ensembl e of identical two-level atoms cou-
pled to a common heat bath. The analysis is restricted
to asimple model of radiative decay. Multiphoton pro-
cesses, such as Raman scattering, are described in
terms of effective Hamiltonians, which can be obtained
by unitary transformation [24]. The behavior of an
atomic system interacting with light characterized by
arbitrary photon statistics is analyzed by using pertur-
bation theory in the interaction strength for Gaussian,
coherent, and squeezed states. We find that weak sin-
gle-mode squeezed light is required to create multipar-
ticle entanglement between atoms. As distinct to the
case considered in [25], the steady state discussed here
isrobust against atomic decay. When decay isneglected
and analysisisrestricted to asingle-photoninitial state,
simple exact solutions describing exchange of excita-
tion between the field mode and atoms can be obtained
[26]. These solutions can be used for generating and
transforming symmetric Dicke states and for process-
ing and storing quantum information. The optical
schemes for projective measurement considered here
can be used to generate entangled states of atomic
ensembles. An EPR entangled pair of macroscopic
ensembles was created in an experiment [1]. The new
states produced in our schemes have hierarchical struc-
ture, thus differing from the cluster states introduced
in [27] as aresource for one-way computing.

The paper is organized as follows. First, we formu-
late a basic model and write out the second-order per-
turbation solutions obtained by taking into account
radiative decay. These solutions are then used to ana-
lyze the states of the atomic system corresponding to
various photon statistics. Exact solutions obtained
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under certain initial conditions by neglecting radiative
decay are used to describe generation and transforma-
tion of symmetric Dicke states. Finally, we consider
optical schemes for preparing entangled states of
atomic ensembles by projective measurement.

2. BASIC EQUATIONS

In the dipole approximation, the ensemble of N
identical, but distinguishable, two-level atoms interact-
ing with electromagnetic field is described by the
Hamiltonian

H =ix™'9,
3 = gkakS-E—H.C.,
2

where

[TE=Y

is the coupling constant, p is the dipole transition
matrix element, e is the polarization vector for the

mode with wavevector k, a, and al are photon creation
and annihilation operators,

S =Y su(@)exp(ikr,)

is the collective atomic operator, s,, = [X(JlY| is the
atomic operator for the atom located at apointr, (x,y =
0, 1, where 0 and 1 denote the ground and excited
states, respectively). When analysis is restricted to
interaction with a single resonant mode, S, can be
replaced with S, - 5, which makes it possible to treat an
atomic ensemble occupying a spatial region as a point-
like object. Then,

9 = SpB-S,B, )

where
S = ZIlQ@I, B = ga.

Effective Hamiltonian (1) is used here to describe not
only interaction with a single resonant mode, but also
multiphoton processes, such as Raman scattering. In
the latter case, we set B = fa,a. and assume that the
photon frequencies w, and ws satisfy the relation w =
W — Ws, Where w is the atomic transition frequency.
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Hamiltonians of this form can be obtained by unitary
transformations [24].

Thedensity matrix p for the N-atom system interact-
ing with a cavity mode obeys the master equation

20 = [9,0] + p, @

where relaxation is represented by the Lindblad super-
operator

¢ =5,

La = L ls(2)510(2)p — $10(2)01(2)]
3
- L [s0(a)50(2)p — sea(@)pS10(2)] + He.

This representation corresponds to the model of purely
radiative decay with longitudinal and transverse decay
ratesy =y, +y, and yg, which satisfy the relation y =
V/2. In the general case, y; > y/2, since y; should be
replaced by y + K, where K is a dephasing collision
rate.

Effective Hamiltonian (1) may involve many field
modes with wy, differing from the atomic transition fre-
guency by dw, and occupying a frequency band of
width Aw. If Aw, 0w, < Yy, then we can consider a har-
row-band radiation field and make use of resonance
approximation. Otherwise, the field must be described
in terms of multiple-time correlation functions.

Solution of Eq. (2) isadifficult task. To describe the
interaction between an individual atom and a cavity
mode, the following equation for the density matrix

P, = Tr,p isderived from (2) by taking the trace Tr
over all atoms except for one:

20a = [84 Pl + £apa+ N(N=1)Tr [, paa] , (4)

where 3, =s,o(aQ)B—H.c. and p,, = Tr, p isatwo-par-
ticle density matrix. The right-hand side of (4) contains
a multiparticle contribution proportional to N(N — 1),
because the density matrix p,, does not commute with
the field operators. This leads to the Bogolyubov—
Born-Green—Kirkwood-Yvon chain of equations for
the multiparticle density matrices p,, Pag» Paga's -+ 1N
physical terms, this means that fluctuations of quan-
tized electromagnetic field induce correlation between
atoms. If the field is assumed to be classical and noise-
free, for example, a coherent state is considered, then
the interaction will not give rise to any correlation, and
the initially uncorrelated atoms will remain mutually
independent. In what follows, we use (2) to analyze
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interactions that can be used to generate symmetric
Dicke states.

3. DICKE STATES

First, we define symmetric Dicke states and intro-
duce a representation of symmetric Dicke states that
demonstrates their relation to the collective interaction
processes. The Dicke states are eigenstates of the oper-

aorsJ,and 2= J; + J; + 3
J,|jmad= m|jmal]
2, . . )
Jjmal= j(j +1)|jmaLl]

where

Js = %Zosk’

Oy (S=X, Y, 2) are the Pauli operators for a two-level
atom labeled by theindex k (k=1, ..., N),andj and m
are integer and half-integer numbers such that |m| < j
and maxj = N/2. If j = N/2, then the states are symmet-
ric, and the quantum number a introduced to lift degen-
eracy can be omitted. For h excited atoms (h =
m+ N/2), the states can be represented as

[j = N/2; mCE |h; NO

_ (6)
= 3 Py Loy 2, O, O
z

where P, is one of the

N!

N _
Cn = ht (N —h)!

distinguishable permutations of particles. The vector
|h; N[CFrepresents an atomic ensembl e of h excited atoms
normalized by the condition th; N|h, NO= Cj. Sym-

metric states of a multiparticle system arise when inter-
action is described by collective operators of the form

N
Sp = ZI1QE0|
In particular, the following representation is valid:
Ih: NO= %%o; NDJ (7)

If h =1, then it holds that
I1; NO= [10...00F ... +00...100 (8)
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Since the wavefunction |h; NCis not factorizable, it rep-
resents an entangled state. In terms of correlation
between particles, it is substantially different from
other entangled states. For example, in the Green-
berger—Horne-Zeilinger (GHZ) state

IGHZ D= %(|0ﬁ“ + 200",

the correlation of any group of M particles (M < N) is
classical. In particular, the density matrix correspond-
ing to the state |1; NCIof a group of particles (M < N) is

M o; Nm: N,

p(M<N) = Sjt; ML ) + &

The corresponding von Neumann entropy depends on
the relative particle number p = M/N:

S(p(M<N)) = —plogzp—(1-p)logz(1-p).

When p = 1/2, the entropy has a maximum value of
unity. If M = 2, we can apply the necessary and suffi-
cient separability criterion proposed in [9]. According
to this criterion, the state is inseparable (entangled) if
the transpose of the density matrix with respect to the
variables associated with one of the atoms has at least
one negative eigenvalue. In the case considered here,
one of the four eigenvalues

;[H«/“(Nfzf}é

is negative. Note that the behavior of correlation
between M particles depends on p = M/N. As the totd
particle number N increases, p — 0 and the correla
tion vanishes, since their state becomes pure as p(M <
N) — |0; NIID; N|. Inwhat follows, we make use of the
following equalities:

N-2

011
EN' N 2N

Si[0; NO= 0,
Splh; NO= (h+1)|h+1; N[
Sulh; NO= (N—h+1)lh—1; NLJ ©)

So Sl NO= (h+ 1)(N—h)|h; NLJ
SpSulh; NO= h(N—h+ 1)|h; NO

4. SECOND-ORDER PERTURBATION
SOLUTIONS

To solve Eq. (2), we use perturbation theory in the
interaction strength:

p=p%+pM+p@+ .. (10)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

Here, the zeroth-order approximation p@© is the time-
independent solution to (2) with 8 = 0: p© = |0mD| O
pr, where the density matrix p; represents the cavity
mode and |0C}= [OFN corresponds to the ground state of

all atoms. The operatorsp® (k= 1, ...) satisfy the equa-
tions
209 = 19,0077 + £p¥ (11)

subject to the initial conditions p®(0) = 0.

The analysis that follows is restricted to second-
order perturbation theory, which is sufficient to obtain
statistical characteristics of the excitation field. The
matrix equation for p@ is

9 5@ NC

= —2yo; 1 NIp®J0; NO+ [ 1,; NIR[O; NOJ
[ NI 9 <2>|1m, NC

= -2y5,; NIp?1,; NC

+0,; NIR[L,; NO k#m, (12)

g
L Ni5gp[Le NO= ~yL; Np[L; NO

+[,; NIRIL,; NO

0; N2 pl0; NOI= ¥ L ML NO

+[0; N|R|O; N[J
where the vectors
S10(K)[0; NO=[|1,; NUJ
S10(K)S1o(P)10; NO= [1,, 1,; NOI

represent the states in which only the kth atom is
excited and only the kth and pth atoms are excited,
respectively. The nonzero matrix elements of the oper-
ator R=[9, pP] are

[, 1, N|RO; NO= 2k (t)B®p;,

; N|R0; NO= —« (t)N(B'Bp; + p;B'B),  (13)
L NIR|Ly; NO= 2K(t)BpyB',
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where
K(t) = y—lm(l— exp(-yt).

For purely radiative decay, y; = y/2 and the second-
order perturbation theory yields

p = |000 O ps + K[|1; NOD; N| O Bpg + H.c]
+K’[[2; NOD; N| O B®p; + H.c]
—Ny¥|0; NOD; N| O [B'Bp; —Bp;B"+H.c] (14)
—(1/2)Nk?|0; NOD; N| O [B"Bp; + H.c]

+k%|1; NL; N| O Bp,B',

where

0 gl
I = iyt 1-ep(-y)l - 50
Yooy 0

This expression is valid to second order if the field is
relatively weak:

Nk’B'BO< 1. (15)
In the case of interaction with a single resonant cavity
mode, we have B = ga and k?B'B= n/n,, where n, =
(Y/9)? is a saturation parameter and n = [@'allis the
mean photon number. Then, (15) reduces to the stan-
dard condition imposed in the case of resonant coupling
between the field and two-level atoms: Nn/ng < 1. Solu-
tion (14) describes the joint evolution of the atomic

ensemble and field starting from an ensemble of
ground-state atoms and an arbitrary state of the field.

5. MIXED ENTANGLED ATOMIC STATES

Second-order perturbation theory predicts correla-
tion between atoms depending on photon statistics, i.e.,
providing aframework for describing entangled (insep-
arable) atomic states. To analyze the properties of the
atomic system, we use second-order perturbation the-
ory to find the density matrix for a group of M < N
atoms, pa(M < N), obtained by taking the trace of (14)
over the field states represented by p; and over N — M
particles. The result has the form

pA(M<N) = [000[1-Mk*B'B]
+ k[ BO1; MO + H.c.]
+ K[ (B’2; M| + H.c]
+k’B'BO1; M1; M.

(16)
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Note that the density matrix p,(M < N) describes a
mixed state of the atomic ensemble. Unlike the density
matrices for symmetric Dicke states (6), pa(M < N) is
independent of both N and p = M/N. Therefore, the cor-
relations between M < N atoms are identical and are
independent of thetotal particle number N. Thisimplies
that the state isrobust to particle loss.

The aomic density matrix cannot be factorized
because of the correlation depending on photon Statistics.
Consider two atoms described in terms of their respective
observables ¢, and ¢, such that [c;; ¢;] = 0. SettingM =2
in (16), we have the two-atom density matrix

pA(2) = |00mDO|(1 -2k B'BD)
+ K [B{(|10000| + [01000| + H.c.)
+ K’ [B(|1100| + H.c.)
+k*[B"B(|100+ |010)([10 + [01]).

(17)

Using (17), we find that the covariance of the operators
¢, and c, is determined by the electromagnetic field
variance:

[&, ¢, [&,00t, 0= k[ ((BT- [B) M|c, |10 c,|10
1
+(B'BO- (B'DBD) O ¢, |00 c,|1 5+ c.c.]. (18)

If thefield is not fluctuating in the sense that its vari-
ances are zero, i.e., B’ B2 = 0 etc. (whichistruein
the present case, e.g., for a coherent state), then thereis
no correlation between atoms. Supposethat ¢, (k=1, 2)
are dipole operators:

Ck = O = H(Sou(K) +510(K)),

wherethe matrix element [ isreal. Then the correlation
between two dipole moments depends on photon statis-
tics. We define the quadrature operator

X¢ = BTexp(i9)+H.c.

Then, (18) implies that the covariance of the dipole
moments is determined by the variance of the quadra-
ture operator normally ordered with respect to the field
operatorsBand Bt at 6 = 0:

[8l,d,0— [6,000,0 = u’k°Dy,
where
D, = IXT- X -0B, B0
For coherent dates, the variance is Dy = 0. The dipole
moments are correlated both for a squeezed-date field
(with Dy < 0) and for fidd in a classical sate (with
Dy >0).
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The necessary and sufficient condition for insepara
bility of a mixed state is provided by the Peres-Horo-
decki criterion [9], which isvalid for systems with Hil-
bert spaces of dimension 2 x 2 and 2 x 3. In the case
considered here, the state of a two-atom system
described by p(2) isinseparable (entangled) if at |east
one eigenvalue of the (partial) transpose of the density
matrix with respect to the variables associated with one
of the atoms (e.g., p,Tf(Z)) is negative. As example, we
consider light in Gaussian and squeezed states.

For aGaussian field (IBC= B?[= 0), expression (17)
reducesto the density matrix describing asuperposition
of the ground and mixed states:

Pa(2) = al00tno| + b[(J01CH [100(M0Y + [10)],
wherea+ 2b=1and a=1-2k?B'BLIThe eigenvalues

of p,Tﬁ(Z) are

2
A= %),b,gi /%+bﬁ.

Since +/a’/4+ b’ = a/2 in the approximation consid-
ered here, we have the eigenvalues {b, b, a, 0}, i.e,, a
separable state.

Consider the case of resonant interaction with sin-
gle-mode squeezed light (B = ga) generated, for exam-
ple, by a parametric oscillator. A simple model of the
oscillator is defined by the effective Hamiltonian

H = iﬁi(aTz—H.c.).
2
The solution is
a = a,coshr + asinhr,

wherer = ft is the squeezing parameter, T is the normal-

ized length of the nonlinear medium, and a, and a(T) denote
theinput field operators. For theinitial vacuum state,

=0, [@O= @1= coshrsinhr,
m'all = sinh’r.

In this case, (17) reduces to the following density
matrix of atwo-atom system:

pA(2) = |00IDO|[ 1 -2k’ BB
+ k°[ (B’ 11000 + [001Y) + H.c.]
+k’[(B"B|1010| + [01010| + [100I0] + [01001]).

(19)

The four eigenvalues of pll (2) are

0 . . O
A= [O,1—gsnh2r,ilexp(ir)smhrg.
0 N 0

5 (20)
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To be specific, we set r > 0; i.e., we consider the state
squeezed with respect to canonical momentum or
phase. In this case, (-1/ngsinhr exp(-2r) < 0. However,
it is clear that the degree of squeezing is low, because
the approximations used here imply that

(21)

Thus, the state of the atomic systemisinseparable. This
behavior is explained as follows. Fluctuations of light
give rise to correlation between atoms, which leads to
two-atom coherence. When condition (21) holds, this
coherence playsthe key role. Since absorption isweak,
the system isalmost entirely inthe ground state. Asdis-
tinct from the case of Gaussian statistics, the density
matrix has the form

pa(2) = 00000 + k*[ (BJ11000| + H.c.].

Note that the following two observations can be
inferred from this example. First, a steady entangled
atomic state can be created by using weak squeezed
light, which looks promising from an experimental per-
spective. Second, the entire ensemble cannot be inter-
preted as separable, because any pair in a group of
M < N atomsis entangled, i.e., the quantum correlation
of the ensemble as awhole is robust to particle loss.

Since no reliable universally applicable criterion is
known for multiparticle entanglement, we apply the
Peres—Horodecki criterion to two two-level subsystems
and find that any pair of atoms in the ensemble can be
inseparable, which gives reason to interpret the state of
the entire system as inseparabl e.

Note also that spurious entanglement may be pre-
dicted by perturbation theory [28]. In that study, an
example of expansion of the product of two wavefunc-
tions in terms of a common classical parameter was
considered in which individual summands represent
entangled states. However, if entropy of entanglement
isused asameasure, then we haveinitially independent
systems, because the entropy is either quadratic in the
small parameter or zero in arbitrary-order perturbation
theory. Note that physical implementation of such
entangled states, i.e., preparation of an independent
state of apair of entangled particles, requires projective
measurement in an entangled basis. The present analy-
sis also relies on perturbation theory, but we deal with
adifferent situation in both physical and formal sense,
in which interaction between particles gives rise to cor-
relation. The wavefunction obtained in first-order per-
turbation theory is not factorizable, and the correspond-
ing entropy of entanglement is zero to the correspond-
ing accuracy. This result is physically plausible,
because there is no correlation in first-order perturba
tion theory. In our analysis, entanglement is predicted
by second-order perturbation theory, which describes
real emission and absorption processes conducive to
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correlation. In this order of perturbation theory, the
existence of quantum correlation is substantiated by
entanglement criteria consistent with approximation
accuracy.

6. EXACT SOLUTIONS

Radiative decay can be neglected in (2) when evolu-
tion over atimet <y is considered, and the behavior
of the entire system is described by the wavefunction

o(t) = exp(—ia " Ht)(@a O @),

where the initial states of the atoms and field are
assumed to be uncorrelated. Then, ssimple solutions can
be obtained under certain initial conditions.

Consider the mixing of modes a and b described by
H = i#f(a'bS—ab's), (22)

where S= S and S' = §),. If analysisis restricted to
single-photon Fock states of the modes @ = c|O1Lg, +
€]100Y,, exact solutions can be written as

exp(—ifi "Ht)(c|0LG, + e[100),) O @4

= cElOl [cos(tf @ )
0

. |10[$T%T sin(tf /38" 00 g, 23)
0

SS

0 .
+ eFHOLB—2—sin(tf J/S'S)
O JS's

+ [10[€0s(tf /S'S) ED 0.
In the case of a single-photon process described by the
Hamiltonian
H = ikg(aS— aTST),
there also exist simple solutions. For example,
exp(—if"Ht)(c|1[ |0; N+ eloC [1; N

(24)

0
= ceos(gt./N)|110 |0; NO
0

+ L sin(gtJ/N) oD |1; NCF (25)
O

JN

+e{ —/Nsin(gt/N)|1(1 |0; NO
+ cos(gt+/N) [0 |1; N,
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where |h; NC_h =0, 1), represents the ground state |O[FN
of the atomic ensemble and a symmetric Dicke state
defined in accordance with (6). These solutions are
valid only under the restrictions imposed above on the
initial states. They describe exchange of excitation
between the cavity mode and the atoms.

7. GENERATION AND TRANSFORMATION
OF SYMMETRIC STATES

Now, we use the exact solutions written out aboveto
analyze the evolution of symmetric Dicke states |h; NO
in single-photon and wave-mixing processes.

First, consider the case when the spatial inhomoge-
neity of the field within the region occupied by the
atomic ensemble can be neglected. Setting @, = |[h; N
in (25), we use (9) to obtain

(ajo1d*+Bjo0 0O |h; NO

O
— 0 [Jcos,,|01[T] |h; NO
0

+ M+1g6 oo h+1: NCP
N—h a
0 NZh+1. .
+ B /NTh*lsnehplDD h—1; NO
0

+ ¢0s6,,[10(1] |h; Nﬂ
0

(26)

where
0, = tf/(h+1)(N-h),
0, = tf VJh(N—-h+1).

Relation (26) entails possibilities of preparation of an
entangled from ground-state atoms (|0; NCO— |1; N[J
and transformation of entangled states by changing the
number of excited atoms (|h; NC—— |h = 1; N[}, includ-
ing disentanglement (Jh; NO— [h—1; NO-—— ...
|0; ND.

Notethat exact solutions (25) and (26) describe state
swapping, which can be used to map the state of light
onto atoms in order to store it in a long-lived atomic
ensemble, i.e., to implement quantum memory. In par-
ticular, an unknown superposition of photons can be
transferred to atoms and back by using the following
transformation entailed by (25):

(a|10+ BOD O [0; NOJ

- o %’jlﬁll; N+ BJ0; NE.

—

(27)
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Fig. 1. (a) Schemefor generating entangled states of atomic
ensembles. (b) Preparation of entangled states by correla-
tion of photocounts recorded by two schemes.

Similarly, (26) can be used to map an entangled state of
photons onto the atomic ensemble:

(a010+ BJ100 O [0; NO

— . [100D E’ﬁ”; oo N P

Solutions (25) and (26) make it possible to take into
account the spatial configuration of atomsin the ensem-
ble. For example, consider the interaction between a
one-dimensional array of atomslocated at pointsxy, ...,
Xy and a single photon described by Hamiltonian (24)
with

S= 3 su(Pexp(iks,),
p

where the operator s,o(p) = |1LJ0] corresponds to the
atom located at x, (p = 1, ..., N). Using (25), we can
show that

|10 |0; NO— cos@[10 [0; NO 29
+ sinB|0C] ny(1),
where 8 = tg./N, and
1 .
Ny = —=[exp(ikx;)[10...00+ ...
TN 1 (30

+ exp(ikxy)[0...010.

Expression (30) implies that an array of entangled
atomsiscreated when 8 = 112, Notethat ny isthe Dicke
state withj = m=N/2 -1 only if

z exp[ikx,] = 0.
p

8. ENTANGLED ATOMIC ENSEMBLES

Solutions (23) and (25) imply that a photon and an
atomic ensemble are entangled via interaction. If pho-
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tons are entangled (e.g., by projective measurement) in
a combination of such independent systems, then the
atomic ensembles will become entangled. We consider
optical measurement schemes based on this method,
known as entanglement swapping. The key resources
used in these schemes are sets of atomic ensembles cor-
related with respective photons, beamsplitters, and sin-
gle-photon detectors. The anaysis that follows is
restricted to schemesin which only specific single-pho-
ton output is recorded.

Asaninitial state, we use the EPR pair

Z(W) = al0f0 [00F b[10D WG (31)

where Fock states are denoted by the subscript “f,

WLCE |1; NIZJ/N, [00= |0; N It is generated by the
mode mixing described by (22), wherethemode b isa
classical wave. The state of n independent identical
ensembles entangled with respective photons is repre-
sented by the product

Z.(W) = Z(W)™" = a" *b[|10...0Q10 |WO...OQ32)
+...+100...100|00...W0 +.. .

As illustrated by Fig. 1a, the photons associated
with atomic ensembles are injected into a system of
n -1 beamsplitters with n input ports and n output
ports. Each beamsplitter performs the transformation

|01[]— c,|01LJ+ s|10L4,
|100]— —s|O1[J+ c|10L4,

where cﬁ + s{f =1(k=1, ...,n=1). The scheme is
described by a unitary operator U, and characterized
by the following property. There exist an input port
optically coupled to every output port and an output
port optically coupled to every input port. In Fig. 1a, the
latter is output port 1. We call it the optical output port,
and the corresponding detector is called the output
detector. The scheme performs the transformation

Uyll...00 = ty[1...0Q+ ... +t,[0... 10

o (33)
U H[L...00= 141...00¢ ... +1,/0... 1L}

where the coefficients t, and 1, (k =1, ..., n) are deter-
mined by the transmittances and reflectances of the
beamsplitters, and

t2 = =1
257 2%

If the output detector detects a photon (which corre-
sponds to the state |1; [~ |1...00] then there is a proba-
bility

Prob(1) = |a" *b|* (34)
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that an entangled state of atomic ensembleswill be pre-
pared:

|:Lflunfzn(vv)
————— = (W),
~/Prob(1)
N.(W) = q;|W...00 q,[0... W[

This scheme hasthe following property. Since the coef-
ficients q,, ..., g, are completely determined by the
transmittances and reflectances of the beamsplitters,
weakly entangled states Z(W) can be used to prepare
highly entangled states atomic ensembiles.

Let us consider severa particular cases. If n = 2,
then g, = ¢, and g, = s;, and we have an EPR pair of the
form

(35)

No(W) = EPR(W) = ¢,|WOCk s,|OWL]

When ¢, = s, = 1/./2, it is maximally entangled. If
n=3and g; = ¢,C,, J, =—S,C,, and g3 = S, then we have

aWstate. If ¢, = —s, = 1/./2 and ¢, = /2/3, then

Na(W) = W(W) = —15(|w00[++ JOWOTH [00WD). (36)

=

In particular, one can prepare the asymmetric state
\7V(W) = —l—|WOOE++ 1 [Owor+ 1 [oow
J2 2 2

When N =1, it is unitarily equivalent to the GHZ state
and can be used as a quantum channel for teleportation
or dense coding [16].

Using correlation between photocounts in a combi-
nation of schemes considered above, mixed states of
atomic ensembles can be prepared, including insepara-
ble ones. For example, consider two independent iden-
tical schemes S,(X) combined asshowninFig. 1b, with
three single-photon detectors in each scheme. If a pho-
ton is detected by either scheme, then we have the pair
of states

A S,(X) O [0 S,(X)w =1 »(X), 00
and
[0 S,(X) O A S,(X)w = [0, n(X)L]

Suppose that the detector outputs are connected so that
a single photon produced by either scheme is counted.
This measurement is described by the projector
|2;0; M0 | + |0;; 01 |. The resulting mixed state is
represented by a density matrix of the form

p(X) = 3[IN2(X), OTAL(X), 0
+10,n,(X) 10, no(X)].

Its separability isan open question, because anecessary
and sufficient condition is known only for mixed sys-

(37)
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tems of dimension 2 x 2 and 2 x 3. However, if we
assumethat N = 1, i.e., consider a combination of four
atoms instead of ensembles, then

w1
Na(X) = W 5

and density matrix (37) describes afour-particle state:

(|010+ |100)

p(4) = %(|w+oom9u*oo| + [oowW mow’).  (38)

Taking the state of the pair of atomsin the first scheme
defined by the two-particle reduced density matrix

p(2) = 3[IW T + [00rTO0],

we can apply the separability criterion. Since the trans-
pose of the density matrix with respect to the variables
associated with one atom has four eigenvalues one of

which is negative, {1/4, 1/4, (1 £ ﬁ)/4}, the state of
this pair isinseparable (entangled). Therefore, the den-
sity matrix p(4) isinseparable.

9. HIERARCHICAL STRUCTURE OF STATES

Note that expression (35) is hierarchically struc-
tured. To illustrate this property, we consider a combi-
nation of schemes generating states of thistype. Asdis-
tinct to schemes using correlation of photocounts, we
consider optically connected schemes. If an elementary
scheme that performs the transformation S(X) =
U+Z,(W) with X = W (see Fig. 18) records single-pho-
ton output, then the resulting state has the form of (35):

S, (X)W = n,(X) = 13/X0...00

, (39)
+ ... +T4/00...X[]

where w = 1/./Prob(1) . We define the optical output
port of the scheme S,(X) asthe one optically coupled to
every input port. In Fig. 1a, it isoutput port 1. Theinput
port of the scheme S,(X) is defined as the optical input
port of the system of beamsplitters. Then, we can take,
for example, p independent schemes represented as
(S,(X))P and use their optical outputs as the input of the
scheme §,. As a result, we have a new scheme
S((S(X))P). If it records single-photon output, we have
an entangled state that consists of lower level entangled
states:

14 Sp((Si (X)W = np(Na(X))

(40)
= t4Nn(X), 0...00F ... +1,0,0, ..., Ny (X) 0
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By virtue of (39), it can be represented as
Np(Na(X)) = Npa(X).

Thus, we can formulate the following rule. The state
Nn(X) defined by (39) with n = nyn,...n, can be repre-
sented as

(41)

Na(X) = Ny, (N, (.- (M)

Thisimpliesthat the vector n,(X) hasthe structure of an
entangled state with respect to any group of s particles,
where sis such that n/sisanatural number greater than
unity.

When the wavefunctions in state (35) or (40) are
symmetric, a hierarchically structured representation
can be obtained by using the permanent expansion
defined as a determinant with a summation rulefor per-
mutations depending on symmetry [29]. In particular,
successive decomposition of adeterminant with respect
to rows or columns and subsequent association of sum-
mands can be used to represent apermanent in terms of
permanents of lower dimension, which reflects hierar-
chical structure.

For example, when n = 6, it holds that

Ne(X) = N3(N2(X)) = N2(ns(X))).
This state has the structure of an EPR pair or aW state:

(42)

(43)

Ns(N2(X)) = W(EPR) = EPR(W).

This example demonstrates that the same state exhibits
astructure characteristic of entangled states of two dif-
ferent types. This property can be used in different
applications: the EPR pair can serve as aquantum chan-
nel for teleportation or dense coding, while the sym-
metric W state can be used for cloning.

To choose a particular structure defined by the
dimension of the Hilbert space of its element, appropri-
ate basis vectors and observables should be introduced.
In physical terms, this is equivalent to a two-level
approximation. Indeed, any group of s particles, where
sissuch that n/sisanatural number greater than unity,
is represented in n,(X) by two states, |0C0= O and
N«(X) = 1. The group can be treated as atwo-level par-
ticle (qubit) with basis vectors 05 and 1. Such qubits
and hierarchically structured statesn,(X) can beusedin
quantum information processing. By analogy with (30),
the vector n,(X) represents a Dicke state only if

Zktk =0.

10. CONCLUSIONS

A model describing resonant interaction of identical
two-level atoms with a narrow-band radiation field is
used to analyze multiparticle entanglement. The inter-
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action is described by an effective Hamiltonian that
allowsfor various multiphoton processes. The statistics
of radiation and atoms are characterized by a density
matrix, for which solutions are calculated in second-
order perturbation theory in theinteraction strength and
exact solutions are found in the case of negligible
decay. It is shown that the state of any pair of atoms
interacting with weak single-mode sgueezed light is
inseparable and robust against decay. It is demonstrated
that symmetric entangled multiparticle states can be
generated by using optical schemes based on single-
photon projection. An optical scheme is described that
can be used to prepare highly entangled states of atomic
ensembles from weakly entangled states by projective
measurement.
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Abstract—The existence of ametastable cluster Hej} with total spin S= 2 is predicted. The cluster consists of
two covalently bound excited spin-polarized triplet He5 molecules and is rectangular in shape. The electron

wavefunctions, the dependence of the energy of the Hej; system on the distance between the He3  triplet mol-
ecules, the atomic spacing, the frequency spectrum of natural oscillations of the cluster, and other characteris-
ticsare calculated from first principles. It is shown that the metastable state is formed if one of the excited He

moleculesisinthe 32: state, whilethe other isin the 3 state. Theradiation lifetime T of the metastable cluster
Hej iscalculated; itisfound to range from 100 to 200 s, which is much longer than the lifetime T = 20 s of the
triplet molecule He; (323 ). The height U = 0.5 eV of the potential barrier preventing the departure from the

local energy minimum is determined. The energy E,.. = 9 eV/atom accumulated in the Hej cluster is calcu-
lated; this energy considerably exceedsthe energy of known chemical energy carriers. It is shown that the accu-
mulated energy is released virtualy completely during decomposition of the Hej cluster into individual
helium atoms. This meansthat helium clusters are apromising material with ahigh accumulated energy density

(HEDM). © 2005 Pleiades Publishing, Inc.

INTRODUCTION

One of the main goalsin nanophysics and nanotech-
nologies is the synthesis of fundamentally new sub-
stances with required properties from the known ele-
ments of the Periodic Table. The “building block” of
such asubstanceis a cluster consisting of a small num-
ber of atoms (and having asize on the order of ananom-
eter) and having the structure and properties radically
differing from those of the conventional condensed
substance.

If clusters are combined into an ensemble so that
they preserve their individual properties while remain-
ing bound to one another, they form a new material
(nanosubstance). A brilliant exampleisthe carbon clus-
ter fullerene Cy, discovered in 1985 [1]. An ensembl e of
fullerenes (fullerite) possesses a large number of
unique properties. For example, fullerites exhibit ferro-
magnetism [2] and superconductivity [3], while famil-
iar carbon structures such as graphite and diamond are
semiconductors.

The question arises. is it possible to synthesize a
nanosubstance capable of storing and releasing large
amounts of energy? L arge demand existing at present in
the new type of energy carriersis dueto aconsiderable
gap between the characteristic energies of chemical and

nuclear energy carriers. Another question: which chem-
ical elements should be used to obtain HEDM? In this
study, we give the following answer to these questions:
it is possible in principle to synthesize clusters of
helium, viz., an element that does not form acondensed
substance under normal conditions (i.e., at room tem-
perature and under atmospheric pressure).

We predict the existence of a metastable Hej; clus-

ter consisting of four helium atoms and prove that the
energy accumulated in the cluster exceeds the energy
of available chemical energy carriers by more than
an order of magnitude (preliminary resultswere pub-
lishedin[4]). The structure and energy parameters of

the Hej cluster and its stability and lifetime are

studied in detail from first principles. It is shown that
the energy accumulated in the cluster is released vir-
tually completely during its decomposition into indi-
vidual helium atoms.

It should be noted that helium is a representative of
agroup of elements that do not form a condensed sub-
stance under normal conditions. This group aso
includes nitrogen, oxygen, and some other elements. It
was shown in [4] that such elements may form metasta-
ble clusters whose binding energy decreases with
increasing number of atomsin acluster (typell clusters
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according to terminology proposed in [4]). The energy
stored in type Il clustersis released during decomposi-
tion of clusters into molecules or individual atoms.
Note that most chemical elements form type | clusters
(see [4]) whose binding energy increases with the num-
ber of atomsin acluster, while the accumulated energy
is released upon merging of small clusters into large
ones.

It wasnoted earlier in [4] that typell clustersarefor-
mally analogous to heavy metastable nuclei (e.g., of
uranium), while type | clusters are analogous to light
nuclei (e.g., deuterium). Indeed, the binding energy of
heavy nuclel decreases upon an increase in the number
N of nucleonsin the nuclei, while the energy isreleased
during nuclear fisson. On the contrary, the binding
energy in light nuclei increases with N, making nuclear
fusion advantageous from the energy point of view. We
studied the properties of type | and 11 clusters theoreti-
cally in [4] using carbon and nitrogen clusters, respec-
tively, as examples.

As motivation for such a choice of chemical ele-
ments, let us consider thetotal energy E({ R;}) of aclus-
ter consisting of N atoms as afunction of coordinates of
al atoms, {Rj}, i =1, ..., N. The minima of E{R;})
correspond to different structuresthat can be formed by
these atoms. The global minimum with the lowest
energy E, corresponds to the so-called ground state of
the system. This minimum is restricted by an infinitely
long barrier ensuring an infinitely long lifetime in the
ground state (in the absence of external effects). Most
of the substances existing in nature are in the ground
State.

The remaining (local) minima with energy E, > E,
correspond to metastable structures. The lifetime of a
metastable structureisfinite since thereis afinite prob-
ability of transition of the system to the ground state
with release of energy E,.. = E,, — E, stored in the meta-
stable state. It should be noted that the lifetime 1 of a
metastabl e structure may be very long (e.g., many years
in the case of diamond) since the quantity T isan expo-
nential function of temperature, T(T) = Toexp(U/kgT),
where U is the height of the energy barrier separating
the metastabl e state from the ground state, T, isamicro-
scopic value on the order of 1 fs-1 ps, and kg is the
Boltzmann constant.

Since nitrogen, oxygen, and hydrogen, as well as
noble gases (like helium), do not form a condensed
substance under normal conditions (we disregard con-
densation due to very week Van der Waals forces), we
can assume that clusters of these elements do not pos-
sess aglobal minimum of the total energy E({R;}). At
the same time, local minima (if they exist) must obvi-
ously be formed for relatively high energies (other-
wise they would have been observed experimentally).
It follows hence that, first, metastable structures of
helium, nitrogen, and other elements of this group
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Fig. 1. Diagram of electron filling of orbitals of the He;‘

. , 3 . .
molecule in the triplet state Z: with total spin S=1.

must accumulate large amounts of energy and, sec-
ond, release of energy during atransition from a meta-
stable to the ground state must take place during
decomposition of clusters into atoms (e.g., He) or
molecules (e.g., N,). This leads to virtually complete
release of accumulated energy, which is a consider-
able advantage of such structures as prospective
energy carriers.

The available experimental and theoretica data
indicate that helium atoms in the ground state do not
form clustersHe, (n=2, 3, 4, ...) with covalent bonds.
However, it was demonstrated experimentaly in [5]
that a metastable covalently bound cluster (triplet mol-

ecule) Hel inthe excited state 32: , which was studied
theoretically in [6, 7], exists. Figure 1 shows schemati-
cally the filling of orbitals of the He5; molecule with

electrons. Three electrons occupy “inner” orbitals
formed by atomic 1s orbitals, while the fourth electron
is on the “outer” excited orbital formed by atomic 2s

orbitals. It is important to note that the He; molecule
isin the triplet state with total spin S= 1 (see Fig. 1),
which increasesits stability and lifetime due to the pro-
hibition on recombination imposed by the Pauli exclu-
sion principle.

The triplet He5 molecule accumulates energy
approximately equal to 9 eV/atom and releases this
energy during decomposition into helium atoms. This
was confirmed experimentally in [5]. Thus, the Hej

molecule may play the role of a building block whose
properties radically differ from the properties of con-
ventional helium. The question arises: can an ensemble
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of He; molecules be formed? In such an ensemble, the
building blocks He; can betreated as quasi-atoms[4].

In the present paper, a search for such ensemblesis
carried out on the basis of ab initio calculations. Asthe

first step, we theoretically analyze a He; cluster con-

sisting of two He; quasi-atoms. It is shown that the

formation of such a cluster is possible in principle due
to overlapping of the wavefunctions of outer electrons.
Thetotal spin of thisclusterisS=2;i.e.,itisinthe“fer-
romagnetic’ state. It is found that the energy accumu-

lated in the He; cluster is approximately twice as high

as the energy stored in the excited He5 molecule; i.e.,
the specific energy E... = 9 eV/atom accumulated in the
He; cluster virtually does not change upon fusion of

two triplet molecules (quasi-atoms) Hej into the Hej

cluster. Theradiation lifetime of the Hej cluster isesti-
mated (T ~ 100 s) and is found to be an order of magni-
tude longer than thelifetime t ~ 10 s of the triplet He;
molecule.

The paper has the following structure. The compu-
tational methods used by us are described in Section 2.
In Section 3, the results of calculation of the electron

structure of the triplet He5 molecules and the energy
accumulated in them are considered. Theradiation life-

time of the He5 moleculein the 32: state is calculated
in Section 4. The structural and energy characteristics
of the metastable Hej cluster are determined in Sec-
tion 5, where the accumulated energy of the cluster is
calculated. The radiation lifetime of the Hej cluster is

obtained in Section 6. The results are briefly discussed
in the Conclusions.

2. COMPUTATIONAL METHODS

In theoretical analysis of metastable states of small
atomic clusters, even most advanced ab initio methods
of calculation often lead to contradictory results (see,
for example, [8] and the literature cited therein). Thisis
observed when the energy difference for two or severa
states of a cluster is comparable to the error of the
method, which amounts to not less than 0.1-1 eV as a
rule. For describing known structures, one chooses a
method which leads to correct results for physical
guantities whose values are already known from exper-
iments (e.g., the bond lengths and the binding energy).
A completely different situation takes place when char-
acteristics of new physical objectswhich have not been
discovered or experimentally studied, must be sought
and calculated. The results can be treated as authentic
only if the data obtained by different methods coin-
cided to areasonable degree of accuracy.
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In view of the above arguments, we calculated the
energies and wavefunctions of helium clusters using
several different ab initio methods, including the con-
ventional unrestricted Hartree—Fock method (UHF)
[9], the Hartree-Fock method with the second-order
M gller—Plessett correction (MP2) [9], the density func-
tional method [10, 11] in the local density approxima-
tion (LDA) [12], and the density functional method
with the exchange-correlation functional proposed in
[13, 14] (B3LY P). Some calculations were made using
the GAMESS program (General Atomic and Molecular
Electronic Structure Systems) [15, 16]. We performed
calculations with various sets of basis functions to
attain the convergence upon an increase in the number
of functionsin the basis. For the triplet molecule HeJ
we strove to attain correspondence to the data obtained
by the configuration interaction method in the frame-
work of the self-consistent field theory (SCF-CI) [6]. In
most cases, admissible accuracy was attained by using
a basis (7s5p2d) formed by the s, p, and d orbitals of
each atom.

3. METASTABLE He; MOLECULES

Itiswell known that two helium (He) atoms, each of
which is in the ground state, do not form a covalently
bound He, molecule. If, however, one of the helium
atomsisin the excited state He*, HeS metastable mol-
ecules can be formed. Henceforth, we will beinterested
in triplet molecules He} (°Z;) and Hej (31, with
total spin S= 1. It is these molecules that claim to be
building blocks for spin-polarized ensembles (He3 )y

(see Introduction). In the Hej (323) molecule, elec-
trons with spin up occupy three molecular a orbitals
(1sog, 2pa,, 2so,), while one electron with spin down
occupies the B orbital (1so,), which corresponds to
configuration |11 4, 1,, t30(see Fig. 1). Orbitals 1soy
and 2po,, are bonding and antibonding orbitals, respec-
tively, which are formed upon overlap of atomic 1s
wavefunctions, while the 2so,, orbital is a bonding
orbital that is formed from atomic 2s functions. The

He: (°=") moleculeislong-lived on atomic time scale
(itslifetime is T ~ 10 s [5-7]) and has been studied in
detail both theoretically and experimentally.

In the triplet molecule He; (M), the excited elec-

tron occupies the orbital formed from atomic 2p func-
tions. This moleculeis also metastable [6], but its radi-
ation lifetimeisvery small with respect to thetransition

tothe He} (°%)) state.

To verify and finalize our computational techniques,
we performed detailed calculations of wavefunctions,
energy, and other characteristics of He; molecules by
various methods (see Section 2). Self-consistent single-
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Wavefunction
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Fig. 2. Self-consistent single-electron wavefunctions of the

: , 3 .
metastable He5 moleculein thetriplet state Z: with total

spin S= 1 aong the line passing through the atoms (y = z= 0).
Helium atoms are located at points with coordinates
(xag, 0, 0). The solid curve corresponds to the first a

orbital, the dotted curve is the second a orbital, and the
dashed curve describes the third a orbital (the wavefunc-
tions of the 3 orbital and thefirst a orbital are aimost indis-
tinguishable).

electron wavefunctions of the Hej (SZZ) molecule are

shown in Fig. 2. The wavefunctions calculated by dif-
ferent methods are almost identical and have the same
shape as the corresponding single-electron wavefunc-

tions of the molecular ion Hes" [9].
Figure 3a shows the dependences of the total energy

E of the He% (°%)) system on distance R between the
atoms, which were calculated by different methods
(including those described in the literature [6]). It can
be seen from the figure that the E(R) curve exhibits a
local minimum for the atomic spacing R, = 2ag for all
the methods used. The curves depicted in the figure
have amost identical shapes and differ only in a shift

along the energy axis. The triplet molecule Hej (323)
has a single vibrational mode. Its frequency, which is
determined by the curvature of the E(R) curve at the
point of minimum, is real-valued. The presence of the
local minimum on the E(R) curve indicates that the
He (°=") moleculeis metastable. The height U of the

potential barrier preventing the escape from the local
minimum depends on the computational method and
amountsto 1.1-1.7 eV.

To cdculate the energy accumulated in the
He; (323) molecule, we calculated the energy of the
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E, atomic units
_4.9 T T T

()

R, atomic units

Fig. 3. Dependence of total energy E on distance R between
atoms for the He’z‘ system consisting of two helium atoms

inthetriplet state 32: with total spin S=1(a) and for asys-

tem of two helium atomsin the singlet state 12; with total
spin S= 0 (b). Quantities E and R are expressed in atomic
units (me*%2 and £2/me?, respectively). Calculations are
performed by the UHF (fine dotted curve), MP2 (bold dot-
ted curve), LDA (fine dashed curve), and B3LYP (bold
dashed curve) methods. The results of cal culations based on
the SCF-CI method [6] (solid curve) are shown for com-
parison.

He, system formed by two helium atoms in the singlet
ground state X, with total spin S= 0 (see Fig. 3b).
Each of the two lower a (spin up) orbitals and 3 (spin
down) orbitals are occupied by two electrons, which
corresponds to configuration |11 4, 11 ,[JIt can be seen
from Fig. 3b that the energy as a function of atomic
spacing hasno local minimum; i.e., atomsin the ground
state do not form a He, molecule. We can now estimate
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the energy difference in the triplet excited He} (°=))

state and the singlet ground He,( 12; ) statefor R= 2a.
This value depends insignificantly on the computa-
tional method and amounts to 14-15 eV. The end prod-
uct of decomposition of the He} (323) molecule are
two He atoms in the singlet 1s* states, separated from
each other. The difference E,. = E(He; ) — 2E(He) =
18 eV = 9 eV/atom is the energy accumulated in the

He; (BZZ) molecule. The accumulated energy can be

released, for example, due to emission of a photon by
the electron occupying the third o orbital upon its
transition to the second 3 orbital (seeFig. 1) with spin
flip.

Analogous calculations were performed for the trip-

let molecule He; (sﬂg) . Likethe above data, theresults

of these calculations are also in good agreement with
the familiar experimental and theoretical results. Thus,
we confirmed the results available in the literature and
verified the reliability of our computational methods.

4. THE LIFETIME
OF THE TRIPLET MOLECULE He} (°=))

The lifetime of the metastable state is the question
of fundamental importance. The experimentally mea-
sured lifetime of the triplet molecule Hej (323) iIST =

13 + 2 s [5], which is in accordance with the results
of numerical theoretical calculations (1 =18 s [6] and
10 s[7]). Thelong (by atomic standards) lifetime of the
spin-polarized state is associated with the prohibition
imposed by the Pauli exclusion principle on electron
transitions.

To verify and finalize the computational technique,
we cal culated the lifetime of the metastable triplet mol-

ecule He (°=)). The total-spin prohibition imposed

on the transition °%, — 'Z, is removed if we take
into account the spin-dependent relativistic corrections
in the Hamiltonian of the interaction of He; with the
electromagnetic field. Asaresult, the probability of the
radiative transition °z, —~ 'Z; becomes nonzero,
although contains a small factor on the order of a* as
compared to the probability of the conventional (spin-
alowed) dipole transition. Here, a = €%/#c is the fine

structure constant, e is the electron charge, # is the
Planck constant, and c is the velocity of light.
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Retaining the terms of the same powersin a in the

Hamiltonian Vi describing theinteraction of electrons
with the photon field [17], we obtain

~ _ eh
Vin = 2mc Z

eh ~
c-EH-——————E o [JE; xpi]
] J ] 4m202j J J J

am’c® £ o
: (N
et 5 o r; xAl]
2 3 3
2m'c ey i
L Eh 5 o [r; xA|
am’c’ L re. ’

where m is the electron mass; o, r;, and p; are the
Pauli matrix, coordinate, and momentum operator of
the jth electron, respectively; Fk=ri—rorn=r—Ry,
R,, being the coordinate of the nth helium atom; Z = 2;
and H = curl A and E = —(1/c)(0A/dt) are the magnetic
and electric fields of a photon, respectively. Vector
potential A at the locus of the jth electron has the form

of a linear combination of operators of creation, ay ,

and annihilation, &, , of a photon in a state with wave
vector k and polarization A:

- [ZT[fLCZD:L/Z
Ai= ) Bve.D
kX
X goaexp(ik O —iwy,t) (2

+anexp(-ik 0 +io,t],

where V is the normalization volume; w, = kc is the
photon freguency; e are the unit vectors of photon
polarization (A = 1, 2); and k - g, = 0inthecalibration
divA = 0. Summation over j and ' in EQ. (1) is carried
out over all electrons.

Intheinitial state|i; 0, photons are absent and the
electron subsystem is described by the wavefunction
W({r;}, {o}) corresponding to the configuration
[0 4, 12 T3D(3Z:) and depending on the coordinates
and spin projections of all electrons. In the final state
If; L,[Jone photon (k, A) is present, and the el ectron sub-
system is described by the wavefunction W;({r;}, {o}})

corresponding to the configuration |11 4, 11 ,0('Z;).
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The probability of the [iCl— |f [transition per unit time
is determined by the Fermi golden rule,

W, = %Tz|[f; 1k;\|\7int|i; OkAEIf
kn

x O(E; — E;¢

©)

—hwy,),

where E; and E; are the total energies of the initial and
final states of the electron subsystem, respectively, and
the & function reflects the energy conservation law in
the case of emission of a photon, E; = E; + Zw,,. The
lifetime of the metastable state is given by

1
T_W_f' (@]

The calculation of W,
tion of matrix elements

_, ¢ Isreduced to the calcula-

Dfl\‘/mlim=jw?({r,»},{o IWVa({r}, {p})

©)
xW({r}, {o j})l—ldrjl
i

where operators Vo, ({ i},{b;}) are determined by the

form of the terms in the interaction Hamiltonian (1).
Sincethe energy difference between theinitial and final

statesis E; — E; ~ 10 eV, the wavelength
21 _ 2711C 2TAC
e 01
k () E —E; 00

of the emitted photon is much larger than the size of the
Hes molecule; consequently, we can expand the expo-
nent exp(—ik - r) in formula (2) into a Taylor seriesin
powers of k - r. Each subsequent term in this expansion
introduces an additional small factor a. Taking into
account the orthogonality of the electron wavefunctions
of theinitial and final states, retaining in expression (1)
only the terms of the same order in a after expanding
exp(-ik - r) in powers of k - r, and taking into consid-
eration the identity

Al im ol

we obtain the following expression from (3) after eval-
uating the sum over photon polarizations, integrating
over angles, and averaging over the initial spin states
and summing over the final spin states:

lc
WI -f = éa_a AElf(rlf + alf) (6)
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Here, ag isthe Bohr radius, AE; = E; — E;,

¢ = Of|ry|i0d
(7
= O|-= in 4 JJ| i0
f
i AE,erm AE,fZ] r

and all quantities with dimensions of energy and length
are expressed in atomic units (me¥/A? and #%/me?,
respectively).

Numerical calculation of matrix elements (7) using
the wavefunctions obtained by the UHF, MP2, and
LDA methods leads to values of radiative transition
probability W _ ;= 3.0 x 102 s%, 4.1 x 102 s, and
4.3 x 102 s, respectively; this corresponds to life-
timest = 33, 24, and 23 s, respectively. These values of
T are in qualitative agreement with experiment (1 =
13+ 2 s [5]), as well as with the available results of
numerical calculations (1= 18s[6] andT=10s[7]).A
certain spread in theoretical resultsis apparently due to
the difference in the method of numerical solution of
the multielectron Schrédinger equation. Thus, we have
confirmed the known results and proved the reliability
of our approach to calculating the radiation lifetimes of
metastable helium systems.

5. METASTABLE CLUSTER Hej

It was shown in Section 3 that the triplet molecule
He; in excited state possesses properties radically dif-
fering from the properties of helium in the conventional
ground state. Indeed, the He moleculeis acovalently

bound object with a large amount of accumulated
energy, which is subsequently released during decom-
position into helium atoms. This molecule has quite a
long radiation lifetime and is thermally stable. The

question arises: can triplet molecules He; form ensem-
bles such that the above-mentioned properties will be
preserved? In other words, can the He; molecule play
therole of abuilding block in the formation of metasta-
ble helium structures (see Introduction)?

Asthefirst step, it isnatural to consider an ensemble
of two He5 molecules. The following physical consid-

erations (which were given for thefirst timein [4]) raise
hopesfor such aformation. First of al, let us pay atten-
tion to the spatia distribution of electron density in the

He; molecule (see Fig. 2). Three eectrons on the

lower orbitals are localized near the nuclei, while the
fourth (excited) electron has a much larger localization

radius. For this reason, the He; molecule is analogous

to an atom with partly filled lower orbitals and asingle
“outer” electron. For brevity (and better visualization),

following [4], we will refer to Hel as aquasi-atom.
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Fig. 4. Diagram of electron filling of orbitals of the He)
cluster with total spin S=2.

R,

Fig. 5. Metastable Hej; cluster with total spin S= 2, formed
from two triplet He§ molecules (quasi-atoms); Ry is
atomic spacing in Hel quasi-atoms; Ry is the distance

between HeJ quasi-atoms.

The problem is thus reduced to the formation of an
ensemble (cluster) He; of two quasi-atoms He; due

to the covalent bond formed by two excited electrons
(see Fig. 4), electron configuration |11 4, 115, 13, 14,
15, 1gllTherearereasonsto believethat the spins of the
outer bonding electrons will be aligned parallel to each

other so that the total spin of the Hej; cluster becomes
S = 2 and the “ferromagnetic” state will appear (see
Fig. 4). Thisis very important for improving stability
and for increasing the lifetime since the Pauli exclu-
sion principle will prevent recombination (as in the
case of Hej ). Thisisthe case, for example, in the O,
molecule, in which the spins of the outer electrons are
parallel (in accordance with Hund'srule, calculations,
and experiment; see [18]). Finally, we can expect that

He; quasi-atoms (building blocks) preserve their
individual properties in the Hej ensemble (cluster)
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since the orbits of the outer and inner electrons differ
substantially.

In this section, we consider the results of calcula-
tions, which prove the existence of the He; cluster

whose properties virtually coincide with those
described above. It should be noted above all that we
can expect various geometrical configurations of

helium atoms in the Hej cluster, e.g., in the form of a

one-dimensional chain, rectangle (see Fig. 5), etc. Using
the theoretical approaches described in Section 2, we
performed numerous calculations of the total energy of

various configuration of the He; system with spin
S= 2 asafunction of the distance between quasi-atoms
Hej . In addition, we calculated the vibrational spec-
trum which can be used to judge on the stability of a
certain atomic configuration.

A large number of studied configurations proved to
be unstable (in particular, the configuration in the form
of a1D chain). Inthiscase, it was shown that the energy

as afunction of spacing between the He; quasi-atoms
has a minimum. However, such an atomic configuration
is not metastable sinceit is not stable to transverse dis-
placements of the atoms (the vibrational spectrum con-
tains the corresponding imaginary frequencies). In
other words, this configuration is a saddle point on the
energy surface (dependence E({ R;}) of thetotal energy
of the system on the coordinates of al atoms).

We have found only one metastable configurationin
whichthe He cluster hasthe shape of arectangle (see
Fig. 5). The spacing between helium atoms in each
He; quasi-atomisR,= 2ag and isvirtually the same as
the distance between helium atoms in an isolated Hej
quasi-atom. Figure 6 shows the dependence of the total
energy E of the He) system on distance R between the

He; quasi-atoms.

It can be seen from Fig. 6 that, for all computational
methods used, quantity E has a minimum for the same
distance R, = 6ag between quasi-atoms. All frequencies
in the vibrational spectrum of the Hej} cluster are real-
valued (the minimal frequency is 174 cm™). It can be
concluded that the configuration of Hej depicted in
Fig. 5 corresponds to a local minimum of E({R;}) and
is metastable. The height of the potential barrier restrict

the local minimum is U = 0.5 eV and depends on the
method of calculation only slightly.

Figures 7a—7f show the self-consistent single-
electron wavefunctions of six a orbitals (spin up) of
the Hej cluster. The wavefunctions of two [ orbitals

(spin down) cannot be visually distinguished from
the corresponding wavefunctions of the a orbitals
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(see Figs. 7aand 7b). In accordance with the physi-
cal pattern described above, Fig. 7 clearly demon-
strates that six “lower” electrons (four a orbitals and
two 3 orbitals) are localized at quasi-atoms, while
the two “upper” electrons are delocalized between
the quasi-atoms and form the covalent bond between
them.

Our analysis shows that the state of the He} cluster
with the set of self-consistent one-electron wavefunc-
tions depicted in Fig. 7 (we will call it the |Alstate) is
not the only eigenstate of the Hej; system with total
spin S= 2. Thisfollows, in particular, from the presence

of akink on the E(R) curvesfor R = 8.5a5 (see Fig. 6),
which indicates that, with increasing R, the system
passes from state |AClo a certain state |BCwith another
symmetry of the multielectron wavefunction. This is
due to the fact that the energy EA(R) of state |Allis

smaller than the energy Eg(R) of state |BUfor R < I~?,
while Ex(R) < Ex(R) for R> R.

It can be shown that the He; cluster in state |Allis

formed from quasi-atoms He} (°Z) and He} (°My)
(see Section 3), whilein state |BLIt is formed from two

quasi-atoms He; (323) . To be more precise, the
wavefunction of the sixth a orbital in state |Alis a
symmetric superposition of atomic 2p, functions (the
z axisis perpendicular to the plane of the cluster; see
Fig. 7f) or, alternatively, a symmetric superposition
of molecular 2pt, functions; it is equal to zero in the
plane of the cluster (z= 0) and has different signs for
z> 0and z< 0. In state |BL] the wavefunction of the
sixth a orbital is an antisymmetric superposition of
molecular 2so,, functions (the wavefunctions of the
remaining orbitals in states |AlJand |BOare almost
identical).

To verify the aboveidea, we cal cul ated the energy of
the system in states [Aand |BL Figure 8 shows the
dependences of E, and Eg on R, which were calculated
by the MP2 method. The shape of the Ex(R) and E5(R)

curves and their intersection for R= R explain the rea-
son for the kink on the E(R) curve in Fig. 6. Another
fundamental result following from the shape of the
Ex s(R) dependencesis that the deepest local minimum

(and, hence, the highest stability) of the Hej cluster is

realized in state |ALJ It should be noted that the depth of
the minimum in state |[BOis very small and iswithin the

computational error. Thus, the He) cluster should be
formed from He} quasi-atomsin states °%;, and 3.

Let us estimate the energy accumulated in the Hej
cluster. The end products of the decay of the metastable
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Fig. 6. Total energy E of the He) system of four helium
atoms with total spin S = 2 as a function of distance R
between He’2k quasi-atoms (see Fig. 5). Calculations were

made using the UHF (1), LDA (2), MP2 (3), and B3LYP
(4) methods.

He; cluster are four He atomsin the singlet 1s° states.

The difference E,. = E(He}; ) — 4E(He) is the energy
accumulated in the metastabl e state. This energy can be
released in the form of photons emitted during succes-
sive spin flips of two electrons and the passage of these
electrons from excited a orbitalsto the lower 3 orbitals
as well asin the form of the kinetic energy of helium
atoms (asthetotal spin changesfromS=2toS=1and
further to S = 0, the system of four helium atoms
appears to be in the states which do not correspond to
the local minimum of the total energy as a function of
the coordinates of the atoms; i.e., these states are not
metastable and hence decay into individual atoms). Our
calculations give E,. = 33-36 eV for the energy accu-

mulated in the He; cluster, which is approximately
twice as large as the energy E,.. = E(He} ) — 2E(He) =
18 eV accumulated in the triplet He; molecule. Thus,

the specific value of accumulated energy (recalculated
per helium atom) E,.. = 9 eéV/atomisvirtually the same

for HeZ and Hej . Thisisdueto the fact that the inter-
action between quasi-atoms He; inthe Hej cluster is
much weaker than the interaction between two He
atomsinthe He; quasi-atom (which is manifested in the
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Fig. 7. Self-consistent single-electron wavefunctions of the six |

ower o orbitals of the metastable He} cluster with total spin S=2

(state JAD) (see Figs. 4 and 5). Helium atoms are |located at points with coordinates (+3ag, +ag, 0); z= 0 (a—€) and 0.25a5 (f) (see

text). The wavefunctions of the two 3 orbitals are almost indisti
o orbitals (a b).

strong difference between the corresponding bond
lengths; see Fig. 5).

6. LIFETIME OF THE He; CLUSTER

Let us determine the lifetime of the He) cluster. To
our knowledge, this question has not been considered in
the literature so far. A metastable He; cluster with

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

nguishable from the wavefunctions of the corresponding two lower

S=2 may pass to the final state of the system of four
helium atomswith S= 0 by emitting photons. Thistran-
sition occurs via an intermediate state with spin S= 1,
inwhich five electrons occupy a orbitalsand three elec-
trons occupy (3 orbitals (electron configuration |11 4,
t1, 113 14 1ts0. Such atransition occurs upon spin
flip of one of the excited electrons. Since the intermedi-
ate state for the configuration of four helium atoms
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depicted in Fig. 5 has no local minimum, this state
decays very rapidly. Thus, the lifetime T of the Hej

cluster isin fact determined by the time of itstransition
to the state with S= 1.

To calculate T, we used formulas (6) and (7), in
whichtheinitial stateis state |JAL{see Section 5), while
the state with S= 1 plays the role of state |f [ There
exist several intermediate states with spin S= 1. For
illustration, we consider here two of such states,
[ICand |I1T] State || Chas the lowest possible energy for
S=1. It can be obtained as a result of transition of an
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excited electron from the atomic p, orbital; conse-
guently, the p, component of all orbitals in state |IClis
zero (in this case, the sdlf-consistent single-electron
wavefunctions have the same form as the wavefunc-
tions of the lower five a orbitals of the He) cluster; see
Fig. 7). For this reason, matrix elements r;; and a; in
formula (7) are equal to zero. Consequently, the proba-
bility W _ ; of the electron transition to state || Cvanishes

due to different symmetries of the wavefunctions of the
initial and final states.
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In the intermediate state |I10) one of the orbitals has
ap, component. The energy of this state is higher than
the energy of state ||L1We calculated the multielectron
wavefunction of state |I10and proved that the self-con-
sistent single-electron wavefunctions of the four lower
o orbitalsand three 3 orbital s have the sameform asthe
wavefunctions of the corresponding orbitals of the Hej

cluster (see Fig. 7), while the wavefunction of the fifth
o orbital is a superposition of the atomic 2p, functions

like the sixth a orbital of the He; cluster.
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Asin the case of the triplet He; molecule, we cal-
culated matrix elements ri; and a; (see formula (7))
using the wavefunctions determined by different meth-
ods. For the radiative transition probability W, _ ;, we
obtained values of 4.7 x 102 s%, 6.9 x 103 s, and
1.05 x 102 st using the UHF, MP2, and L DA methods,
respectively; this correspondsto lifetimes of T = 213, 144,
and 95 s, respectively. Although the results obtained by
different methods differ substantially, it can be con-
cluded that the radiation lifetime T = 100-200 s of the
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Fig. 8. Energies E, (solid curve) and Eg (dotted curve) of
two eigenstates of the Hej{ system with total spin S=2 as

afunction of distance R between the He’z‘ quasi-atoms (see
text). Calculations were performed by the MP2 method.

metastable spin-polarized Hej cluster is approxi-
mately an order of magnitude longer than the lifetime
T =20 sof thetriplet He5 molecule. The possible rea-

son for this increase in the lifetime is associated with
the emergence of a new type of symmetry (such asthe
trandational symmetry in large systems).

7. CONCLUSIONS
The helium He; cluster studied hereisthe simplest
ensemble, consisting of two quasi-atoms He (323)

and He; (3M,). We aso obtained preliminary results
indicating the possibility of the existence of large
ensembles (He; )y up to N = 8. The specific energy
E.c = 9 eV/atom accumulated in such ensemblesisthe

same asin the He) cluster.

Using HeS and He; as examples, we proved that
theradiation lifetime 1 of the metastable state increases
with the number of atomsin the system. Consequently,
thereis hope that ensembles (He3 ), with N > 2 will be
even morelong-lived. In addition, our calculationsindi-
cate that the charged (Hej )* cluster is also metastable.
This makes it possible to detect experimentally meta-
stable helium clusters using standard mass-spectro-
scopic methods [19, 20].

It should be noted that a certain analogy exists
between the (He; ), ensembles and the so-called Ryd-
berg systems, which were studied in detail in [21] for

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

akali metals. However, the fundamental difference is
that alkali metals are condensed under normal condi-
tions and form type | clusters. On the contrary, spin-
polarized helium clusters (type Il clusters) are formed
only in excited states from blocks (quasi-atoms); such
systems have no global energy minimum as a function
of atomic coordinates and accumulate large amounts of
energy.
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Abstract—An equation describing the dynamics of plasma wave generation by a short intense laser pulseis
analyzed to find arelation between the difference in mean-square pul se frequency before and after laser—matter
interaction and the el ectric field amplitude in the wakefield plasmawave generated by the laser pulse. Thisrela
tion can be effectively used in systems for wakefield diagnostics. The relation is applied to several geometries
of interaction between a pulse and an ionizing gas or preformed plasma. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Analysis of spectral characteristics of electromag-
netic radiation after interaction with matter has impor-
tant advantages as a method for investigating the pro-
cesses taking place in the medium, in comparison with
other diagnostic methods. In this optical method, the
effect of the diagnostic intervention required to obtain
the desired information about the processesin question
isrelatively weak (e.g., see[1]). In view of the current
progress in ultrashort pulse optics, the rapid develop-
ment of the processes associated with laser—matter
interactionsis particularly important for practical appli-
cations. The only approach that can ensure a high tem-
poral resolution in studies of these processesis optical
measurement (e.g., see [2-4]). Furthermore, the most
promising optical diagnostic methods would be those
in which spectral characteristics of an intense laser
pulse are measured after interaction with matter with-
out using additional electromagnetic field (probe
pulse).

In the method proposed in [5], the mean-square
pulse frequencies before and after interaction with mat-
ter measured in the wave zone relative to theinteraction
region are used to evaluate integral characteristics of
electric field and current in that region for arbitrary
focusing geometry and incident laser intensity. In par-
ticular, the difference in mean-square pulse frequency
before and after interaction with an ionizing mediumis
related to the pulse field strength in the ionization
region. In [6], the method was extended to an arbitrary
even power of frequency averaged over an appropriate
spectral density. Since a power of frequency averaged
over an appropriate spectral density is amoment of the
spectral density, the spectral density of a beam that has
passed through the interaction region is completely
determined by the integral characteristics of electric
field and current in that region. Accordingly, the

method developed in [5, 6] was called moment method.
Note that moments of a spectral density, being integrals
of frequency, provide a spatiotemporal characterization
of the interaction between electromagnetic field and
matter in this method.

A short laser pulse interacting with a preformed
plasma generates relatively long-lived wakefield
plasma waves, which can be used to accelerate elec-
trons to ultrarelativistic energies [7]. Due to plasma
wave generation, the pul se propagatesin arapidly vary-
ing medium and its spectrum changes. In [8], the
moment method proposed in [5, 6] was extended to the
case of weakly damped plasmawaves. It was found that
the difference in mean-square pulse frequency before
and after interaction with the generated plasmawaveis
determined by the electron-density disturbance and
laser field intensity in the region of plasmawave gener-
ation, aswell as by the plasmawave amplitude after the
interaction.

In this paper, an equation describing the dynamics
of plasmawave generation by alaser pulse is analyzed
to find arelation between the difference in mean-square
pulse frequency before and after interaction and the
eectric field amplitude in the wakefield plasma wave
generated by the laser pulse. We analyze generation of
wakefield plasma waves in several geometries (“free”
and channeled Gaussian laser pul se and pul se propaga-
tion in a capillary tube), assuming that the pulse dura-
tionisnearly resonant [9]. Since no satellites are gener-
ated at multiples of the plasma frequency in this case
(e.g., see Fig. 6 below), treatment of the effect of
plasma wave generation on the pul se based on the con-
ventional theory of parametric processes [10, 11] can-
not be used for diagnosing the wakefield plasma wave.
However, the present theoretical analysis relying on
general relations between moments makesit possibleto
determine the frequency shift for a moderate-intensity
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laser pulse due to wakefield generation as a function of
both material and pulse parameters. In particular, we
show that the frequency shift is proportional to the
pulse propagation distance in a channel or capillary for
a weakly damped mode. Note also that the moment-
based theory is consistent with general conservation
laws and can therefore be used to verify the accuracy of
numerical simulations.

Since self-consistent computations of nonlinear
propagation of short intense laser pulses agree with the
analytical results obtained here, these results can be
used as a basis for an effective optical technique for
diagnosing the plasma wakefields generated by such
pulses in experiments on acceleration of electrons to
ultrarelativistic energies.

2. MODEL

Self-consistent equations describing the dynamics
of ultrashort laser pulse propagation in agas, including
ionization and ensuing plasma wave generation in the
weakly relativistic regime, were derived in [12]. Laser
pulse guiding and generation of wakefield plasma
waves in the strongly relativistic regime were analyzed
in [13]. The present study relies on the results obtained
in[12, 13].

We represent the electric field €, of alaser pulse
propagating in amedium as

€, = :—ZLELexp(ikOE) +cc,

where & = z—ct, the zaxis is aligned with the propaga-
tion direction, cisthe speed of light, k, = wy/c, Wy isthe
carrier frequency of the laser pulse, and E, isthe com-
plex amplitude slowly varying over times and lengths
on the order of 217wy, and 217k, . In the comoving frame
&zr , the equation for the dimensionless electric field
amplitude of the laser pulse, a = eE /muw,c (e and m
denote the electron charge and mass, respectively), is
written as

0° 0

0. _a_ — (|on1:|
%Qlkoaz 66&+AEDa koﬁw a-iG D

Here, A is the transverse Laplace operator (ro = ex +
gy, Where e, and e, denote the unit basis vectorsin the

x and y directions, respectively); n. = mey; /4Te? is the
critical electron density;

= [1+a£d% |a|2}1/2
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is the relativistic factor, with p denoting the dowly
varying momentum of electrons in the plasmawake;

U *
(k)Da _k_ua_D 2

z,-1
i 2
G(lon) -
nchkZ HaPme? 40

represents effects due to optical field ionization, which
are described in terms of the ionization potential U,
corresponding to the increase in ion charge number
fromktok + 1, the lowly time-varying ionization rate

per unit volume r% . the nuclear charge Z, of gas

atoms, and the coefficient 1 characterizing the contri-
bution of the second harmonic to the ionization rate
(u=0and 0.7-1.0 for circularly and linear polarized
laser beams, respectively, the latter value depending on
the gas and laser pulse parameters); and n is the elec-
tron density slowly varying over times on the order of

21wy, Details of the calculation of Fg‘) can be found

in [14]. Note that the ionization current G given
by (2) ensures correct balance of beam energy and
momentum in the process of optical field ionization [14].

The evolution of free-electron density is governed
by the equations of ionization kinetics and by the equa
tions of motion for the el ectron plasmain a strong elec-
tromagnetic field. When n < n., theratio n/yin the non-
linear-response term in Eq. (1) can be expressed in
terms of the ion charge density |e|n, as

n_  1+k’A®
y_nOcD+6qJS, (3)
where
2 1/2
Q=@ - N
P c b T O m O

and the wakefield potential ® depends on the z-compo-
nent of dimensionless electron momentum g, = p/mc
and laser pulse characterigtics:

£
_ g’
RO [ow:
xzi r(k)Bq —E—ERe(a* Eﬁ*)%zy—q Yo
0 z 2 4 z S-

k=0

Assuming that the pulse intensity distribution is cylin-
drically symmetric and its characteristic radiusislarger
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than k", then the equation for @ is
0 9> dlnn, 9° > O
(O AL RN
9 e e arag "o

(4)

K[, 1+]a%/2
Pl =T e
2[ (¢+6¢s)} “laj

and the slowly varying electric and magnetic field
strengths in the plasma, E, and By, can be expressed in
terms of ®:

o0 _eE,, 90 _eEyr

- €Bp
08 mc” ar

©)

2 27
m.c~  mgC

where B, ,, isthe azimuthal component of B,,.

Thetotal ion density n, is expressed in terms of the
ion densities N, (k = 0 corresponds to neutral particles)
asfollows:

Zy
Ny = kN,
0 k; ’

where the number densities N, either are governed by
local equations of ionization kinetics written for immo-
bile ions and neutrals (e.g., see [15]) or are prescribed
distributions determining the background plasma elec-
tron density n, (in the case of a preformed plasma).
When optical field ionization is taken into account, the
derivative

6n0 _ Z F(k)

and |a? determine the pul se frequency shift due to ion-
ization [5, 6].

Equations (1)«(5) must be supplemented with
boundary conditions. For a preformed plasma, we
assume that the ion charge density |e|n, remains time-
independent during the interaction between the pulse
and the medium. For anionizing gas (N (§ = «) =0 for
k # 0), we assume that the gas concentration Ny(& = )
isuniform. The boundary condition for ® in the unper-
turbed gasis® =1 (§ — oo, r — ).

Theincident laser pulse is assumed to have a Gaus-
sian profile:

a(Erz—+0)—aoA<r)exp[ G E(’)}. ®)
CT
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wherelaser-pulsefull width at half maximum (FWHM)
T, reached at &, isrelated to T asfollows: 1, = +/2In2.

Thefunction A (r) characterizes the transverse distribu-
tion of the pulse amplitude a. For a laser pulse propa
gating in alaterally unbounded plasma, we set

A(r) = A(r) = exp(—r’Ir5),

which corresponds to the asymptotic boundary condi-
tiona(&,r,z2) — 0asr — oo,

The initial radial profile A(r) of alaser pulse prop-
agating in a capillary tube can be approximated by a
finite superposition of hybrid modes:

A(I’) = z Cm‘]O(kDmr)’

(7)

_ 2 P
=—— (A, rdr,
[Rcale(bmnz{ R

where J, and J; are the first- and second-order Bessel
functions, respectively; by, is the mth root of the equa-
tion Jy(b) = 0; M isthe number of eigenmodes Jy(Kq )
retained in the expansion of A(r); is the radius of
the capillary tube; and ¢, is the dielectric constant of
the capillary-tube wall. For a linearly polarized pulse
(a=ea(¢, r, 2), where g, is the unit polarization vec-
tor), the wall boundary condition (at r = R) is

28 = k-

Note that boundary condition (6) with a real function
A(r) implies that the pulse is focused on the boundary
of the medium, whereas wall boundary condition (8)
leads to damping of the eigenmodes in (7) character-

ized by spatial damping rates ok,

io 90,

. _ b2 Rek,, = bi 1+g,

o 2 AR, e -1

The damping is due to electromagnetic field penetra-
tioninto the capillary wall and is described by the exact
expression for the damping rates of the eigenmodes of
the capillary tube obtained by taking into account the
distributions of the field vectors[16].

kO Rgap |ka|
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3. FREQUENCY SHIFT

General relations for the shift in the mean-square
frequency of the outgoing pulse were obtained in [5, 6].
For the pulse envelope a(, r, 2) defined above, the
mean-square frequency of the laser pulse that has prop-
agated to a distance z in the medium is expressed as

0 = Fliaa . ofrarce]
7) = Wr,z
el :

00 00

><I(w+ oQJ)ZJ'Ia(oo, r, z)|’rdrdo,
0 0

where a(w, r, 2) is a Fourier component of the dimen-
sionless electric field of the pulse. If that incident radi-
ation has a narrow spectrum, then the mean-sgquare
pulse frequency prior to interaction is

A E«h)ZE(z = 0) = Wy

Note that the mean-square frequency [M?[{z) is an inte-
gral spectra property, whereas the function
—1

o " , O

(w+ Wy, Z)Eﬂlnalea(w,r,z)l rdrJ
0w ) 0

)

00

x (la(w, r, z)|*rdr
J

istheintegral of the normalized spectrum of the propa
gating electromagnetic field centered at the carrier fre-
guency wy, over the transverse cross-sectional plane.

The frequency shift in the outgoing pulseis

w'z) - 'Ro) W) -w

ow(2) =
2 B»ZE(O) 20,

(10)

In[8], an expression for the frequency shift in terms of
the electron-density disturbance and the pulse intensity
in the region of wakefield generation was derived by
assuming that dw(2) is smaller than w, and using the
weakly relativistic approximation. The analysis pre-
sented below makes use of results obtained in [5, 6, 8].

When the peak pulse intensity is much higher than
that corresponding to the optical ionization threshold,
ionization and wakefield generation are separated in
space and time. In this case, it can be shown that the
total frequency shift due to both processesisthe sum of
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the shift dw,y/w, dueto ionization and the shift dw,/w,
associated with wakefield generation:

6_00 - 6(Mon_'_ 60%”

w w, W

(11)
P

Since the ionization-induced frequency shift is smaller
than that caused by wakefield generation (see below),
we first consider the relations that determine dw,/wy,.

In the weakly relativistic approximation (|Jaj < 1,
[0P|= |P - 1| < 1), assuming that the contribution due
to ionization is negligible, we derive the following
expression for the plasma density disturbance dnh=n—
ny from (3):

dn - 1
= (Koo —1)3®+ lal”.

0

(12)

Then, if the background ion charge density |gn, is
assumed to be uniform in space (or weakly nonuniform

over lengths on the order of k;l ), EQ. (4) for the poten-
tial reduces to

19" 4 s = g2 (13)
] 47

Lhs?

Combined with (5), this equation yields the wakefield
amplitude E,,.

2
2 _mcw,
Ep,max - 1A

2

[k

2 14
Oy (14)

[ d&exp(- ko&)lal?

X

2
g
O
U

2 [deexp(-ikg)lal

The pulse frequency shift can be expressed in terms of
this amplitude (by using Egs. (12), (13), and (3)
from [8]) as

Wy _

= W 1 1.
o8 Wy €8 )

o maxdl

(15)

where €, is the total energy of the outgoing pulse.
Notethat an expression similar to (14) was obtained for
the electron density disturbance n — n, in [17] (see
aso[9)]).

When a laser pulse interacts with a preformed
plasma or an ionizing medium, electrons are driven by
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Fig. 1. Spectral density I(w + wy, 2) defined by (9) versus
the normalized frequency w/w, at pulse propagation dis-
tancesin plasmaz = 0 (dashed curve) and 6z (solid curve)
for ng=0.98 x 101" cm™, ag = 0.14, kyfg = 16, T = 100fs,
PL/Pg=0.17,and Q = 1.5.

TN

0

-0.05

-0.10

-0.15 I L L I !

Z/zg

Fig. 2. Normalized frequency shift (10) versus pulse propa
gation distance for severa values of pulse duration: Q =
15(e), 2.0 (), 0.5 (m), and 3.0 (#). The curves corre-
sponding to these values of Q are plotted by using (14). The

pulse and plasmaparametersareny = 0.98 x 10 cm ™3, ay =
0.14, kyfo = 16, and P /P = 0.17.

ponderomotive force out of the region of high pulse
intensity. Asaresult, awakefield plasmawaveis gener-
ated, and the pulse propagates in a rapidly varying
medium whose reciprocal effect on the pulse leads to
(relativistic and ponderomotive) self-focusing and
changesin the pulse spectrum. This study isfocused on
the change in the pulse spectrum due to its interaction
with the medium.

In what follows, we discuss numerical solutions of
nonlinear problem (1)—«(8) and compare computed
characteristics of a laser pulse with analytical expres-
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sions (15) derived by using linearized model (12)—(14)
for several geometries (semi-infinite preformed
plasma, a channel in a semi-infinite preformed plasma,
a capillary tube filled with a homogeneous neutral gas)
for different values of pulse and material parameters.
To obtain closed-form analytical expressions for fre-
guency shift (15), simplified expressions for the laser
pulse amplitude are used in (14), where the reciprocal
effect of the wakefield plasma wave on pulse propaga-
tion is neglected.

3.1. Gaussian Pulse Propagation
in a Semi-infinite Preformed Plasma

Consider a Gaussian pulse (with A(r) = A(r) =

exp(—rzlrg ) in (6)) focused onto a semi-infinite pre-
formed plasma (with boundary at z = 0) characterized
by an initial electron density ny. When n, is negligible
as compared to ng, the time-dependent Gaussian pulse
amplitude can be represented as

16
_E-8) (19

2_2
CT

Assuming that this approximation isvalid, we can esti-
mate squared wakefield amplitude (14). Then, the fre-
guency shift given by (15) is afunction of the propaga-
tion distance z of the pulse:

S _ 10"
W, 64LP1
) (17)
2 2 V4
x aokﬁrogl + ——Z—r—ED(Q)arctan—Z;,
p' 0

where z; = 030r§/2c isthe Rayleigh length and D(Q) =
Qexp(—Q?%4) isafunction of Q = w,T reaching its max-

imumat Q. = ﬁ . Note that the resonant behavior of
frequency shift (17) reflects the resonant nature of
wakefield plasma wave generation, with a maximum
amplitude reached at Q = 2[9].

In Fig. 1, the spectral density I(w + ) defined
by (9) is shown as a function of the normalized fre-
quency w/wy, obtained in self-consistent computations
of (1)—(6) at z= 0 and 6z for ny = 0.98 x 10'" cm3,
8y =0.14, kyro = 16, P, /P, = 0.17, and Q = 1.5 corre-
sponding tot, =100 fs (P, isthelaser pulse power, and
P, istherelativistic self-focusing threshold). It is clear
that the pulse spectrum shiftstoward lower frequencies
as the pulse propagates into the plasma; i.e., the fre-
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quency shift duz)/w, defined by (10) becomesincreas-
ingly negative (see Fig. 2).

Figure 2 compares the integral frequency shift
dwys/w, obtained in self-consistent computations with
dwys/w, calculated by using (14)—16) as a function of
zfor several values of Q (both peak intensity and radius
of the incident pulse and the background plasma elec-
tron density are as in Fig. 1). It is obvious that the
numerical results and analytical predictionsarein good
agreement. The relatively small discrepancy is
explained by the fact that nonlinear reciproca effects
on the pulse amplitude were neglected in calculating
dwys/w, for freely diffracting Gaussian beams. Indeed,
Fig. 3a demonstrates that the effect of self-focusing on
the pulse field amplitude on the axisr = 0 builds up as
the pulse propagates deeper into the plasma, while
Fig. 3b shows that the discrepancy between duw(z)/wy,
and dw,s/w, increaseswith z. Theinsignificant discrep-
ancy obtained for relatively small Q (see Fig. 2) is
explained by mutual compensation of nonlinear pon-
deromotive and relativistic effects [13]. Our computa-
tions have also shown that the discrepancy between
du(2)/wy, and dw,/w, decreases with P /Py, .

3.2. Pulse Propagation in a Plasma Channel
For a pulse propagating in a preformed plasma

channel of radius Ry, such that Ry, = kpr§/2, the pulse

shape calculated by neglecting the nonlinear effectsis
independent of z:

2 2
at,r.2) = aoexp{—(a‘f;) —“—2}, (18)
ct ro

and the transverse electron-density profileis

O (20
No(r) = no(0) + —10.
U R

Substituting (18) into (14) and (15), we find that the
integral frequency shift is a linear increasing function
of the pulse propagation distance:

O Wyt
w,

P

(19

_ 1 g awy 40

= — 550 aoaoguﬁﬂo(g)kpz.
plo

Figure 4 demonstrates that the frequency shift given
by (19) is close to the value of dw(2)/w, obtained in a
self-consistent computation for relatively low P,
(P./P; = 0.082). Note that dw(2)/w, and dw,/w,
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0 1 2 3 4 5 6

Zzz

Fig. 3. (8) Pulse électric-field amplitude |a| on the axisr = 0
and (b) frequency shift (10) versus the pulse propagation
distance z. The pulse and plasma parameters correspond to
Fig. 1. Curves and symbols are predicted by Eq. (14) and
numerical calculation, respectively.
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Fig. 4. Plots of duwfwy, (w) and dw,s/w, predicted by (19)
(curve) versus the plasma-channel length z. The pulse and
channel parametersare ng = 0.98 x 101" cm=3, P =10 TW,
Koro =4, and Ry, = 136 pm.
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Fig. 5. Plots of duwwy, (m) and dw,s/w, predicted by (18)
(curves) versusthelength z of achannel filled with ionizing
hydrogen: (a) capillary tube diameter D¢y, = 75 Um, initial
hydrogen concentration Ng = 4.1 x 108 ecm™3, P =0.8 TW,
Kol = 9.5, P /P = 0.12; (D) Degp = 77 um, Ng = 6.7 x
10" cm3, Ag = 0.82 um, 1, = 50 fs, kyrg = 3.8, P =
9.6 TW, P /P, = 0.23.
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Fig. 6. Spectral density I(w + wy, 2) defined by (9) versus
the normalized frequency w/cy, at the pulse propagation dis-
tances in a capillary tube z = 0 (dashed curve) and 5.2 cm
for ng = 6.7 x 1017 cm 3, Ag = 0.82 pm, 1 =50 fs, kyrg =
38, PL =96 TW, P /Py = 0.23, Dey, = 77 pm, and
ro/Reap = 0.645.
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remain nearly equal as the pulse propagates to a dis-
tance of 10 cm and beyond.

3.3. Pulse Propagation in an lonizing Gas
in a Capillary Tube

L et us discuss the generation of awakefield plasma
wave in a capillary dielectric tube filled with an ioniz-
ing gas. When the focal spot size of a Gaussian pulse
focused onto the capillary entrance is matched with the
inner radius of the capillary tube, about 98% of theinci-
dent energy is transferred to the fundamental capillary
mode, which corresponds to m = 1 in (7) [13, 16].
Accordingly, we caculate frequency shift (15) by
using (14) with

a(g, z,1)° = |ag’
(20)

v =87 e r
x exp| — 20k, z—2 J ,
p{ 1 212 0 chapD

where b, = 2.405 isthefirst root of the Bessal function
Jo. When the expression for dk;, presented at the end

of Section 2 is used to characterize the attenuation of a
pulse propagating in a capillary tube due to energy
leakage through the capillary wall, formula (15) yields

O Gy -_1 E%aSD(Q) kF?I
Wy 200 Ok
c (21)
x [1- exp(~48k;,2)] {1 + =51
kp Rcap
where the constants C, and C, are defined as follows:
b, by -1

. O , .0
ClEIxJo(x)de xJo(X)dxJ = 0.5655,
0
0 0

b, b, —1

2 2 2 g 2 O
C,= 4b1J'xJ0(x)J1(x)dxng0(x) d{] =4.361.
0 0 .

In addition to frequency shift (21) associated with
wakefield generation, the pulse spectrum exhibits a
shift due to ionization, and the total shift in the mean-
square frequency is the sum in (11). The value of
dWe/w, can be estimated by combining formulas
obtained in [5, 6] with the field prescribed by (20). In
particular, theionization-induced frequency shift calcu-
lated for the pulse and capillary parameters correspond-

ingto Fig. 5bis
O Won
(x)p
where the propagation distance z is measured in centi-
meters. Note that the ionization-induced frequency

= 0.635x 10 *z,
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shift is much smaller than that due to wakefield plasma
wave generation under the conditions discussed here.
The resultant frequency shift shown in Fig. 5 for differ-
ent pulse and capillary parameters demonstrates good
agreement between numerical solutionsto Egs. (1)—(8)
and the frequency shifts predicted analytical expres-
sion (21).

Note that the conventional theory of parametric pro-
cesses[10, 11] cannot be applied when both laser pulse
and plasma have parameters corresponding to Fig. 5b,
because the pulse is too short as measured in units of
the plasmawave period (Q = 2). In particular, it should
not be expected that the spectrum of the outgoing pulse
would contain satellites corresponding to harmonics of
the plasmafrequency w,. InFig. 6, the spectral density
[ (w + Wy, 2) defined by (9) is shown as afunction of the
normalized frequency ww, obtained for the pulse and
capillary parameters corresponding to Fig. 5b at the
capillary entrance and at the propagation distance
z= 5.2 cm. The spectrum contains pronounced peaks at
w = 0 and —2.4w,. Note that the latter peak frequency
does not match any harmonic of .

4. CONCLUSIONS

The change in the frequency spectrum of a short
intense laser pulse propagating in amedium isanalyzed
by taking into account wakefield plasma wave genera-
tion. Since wakefield generation by a laser pulse leads
to achange in electron density, the pulse propagatesin
arapidly varying medium. The reciprocal effect of the
electron-density disturbance on the pulse changes the
pulse spectrum as the pulse propagates deeper into the
medium.

A linearized model is used to find expression (15)
for the frequency shift in terms of the wakefield ampli-
tude. For a pulse of nearly resonant duration, closed-
form analytical expressions (17), (19), and (21) corre-
sponding to different geometries are obtained for the
shift in the mean-sgquare frequency. In particular, it is
shown that the frequency shift is proportional to the
pulse propagation distance in a channel or capillary for
aweakly damped mode.

Since self-consistent computations of nonlinear
propagation of short intense laser pul ses agree with the
analytical results obtained here, these results can be
used as a basis for an effective optical technique for
diagnosing plasma wakefiel ds generated by such pulses
in experiments on acceleration of electron to ultrarela
tivistic energies.
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Abstract—Statistics of fluorescence photons emitted by a single two-level atom interacting with a continuous
wave laser field are analyzed. The photon-counting distribution is calculated for the so-called intermediate flu-
orescence photons, i.e., those counted during the time interval between instants at which photons are emitted.
The result is a sub-Poissonian (narrower than Poisson) distribution, which agrees with experimental observa-
tions. This intermediate-photon distribution is used to calculate the average number of fluorescence photons,
the second factorial moment of the photon-counting distribution, and Mandel’s Q parameter commonly used to
evaluate the deviation of photon statistics from the Poisson distribution. The theoretical expressions obtained
for moments of the intermediate-photon distribution are different from well-known Mandel’s formulas. © 2005

Pleiades Publishing, Inc.

1. INTRODUCTION

Generally, light isemitted by an ensembl e of excited
atoms and consists of many photons. Statistics of pho-
tonsin abeam and their dependence on the nature of the
beam were discussed in a number of books focused on
guantum characteristics of the laser field, fluctuations
of the field, and beam coherence [1-5].

In particular, the light emitted by a thermal source
was represented in [2] as a superposition of random
contributions due to many atoms, where each contribu-
tion varies with time and depends on the location of the
corresponding atom in the source. Mathematically,
light waves of this kind are treated as fluctuating ran-
dom fields. Depending on the source, the phases,
amplitudes, and frequencies of waves can fluctuate
independently or simultaneously. According to the
authors of [2], their approach is essentially similar to
that used in analysis of background noise in a radio
receiver.

The devel opment of lasers, which generate coherent
light, motivated studies of optical coherence. It was
established in [1] that “classical” coherent light is char-
acterized by the Poisson distribution of the photon
number P,

2

Trep(-a’), ()

Pa(a) =
where the parameter a is proportional to the electric-
field amplitude.

However, there exists an aspect of radiation never
mentioned in these books: the radiation emitted by a

single atom interacting with a continuous wave laser
field. Light emission by a single atom interacting with
a continuous wave laser field is an essentially quantum
process. It cannot be described by methods of classical
physics, which were frequently used as the starting
points of analyses in [1-5]. Therefore, oneisled to a
natural question: what distribution function describes
the radiation emitted by a single atom interacting with
a continuous wave laser field?

This question was posed in Mandel’s pioneering
study [6], where the probability of counting n photons
within atime interval T was expressed as the quantum
statistical average of a normally ordered time-ordered
product of intensity operators | [5-8]:

t+T

N(n,T) = [ T: n—llh dxf(x)}

x exp{—J’ de(x)} L.

This probability can be used to obtain the first and sec-
ond factorial moments:

(T)d = z nN(n, T)
n=0
t+T )

= :[’[dxf(x)}: = [,
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(<)

NSNE Y n(n-1N(n, T)

n=0

= <T : [tjt'deT(x)T :>

T T

= [ax[ayCT - ()T (y)d

(4

~—"

T X

= O fdx[dyg®(x-y),
I

where the fluorescence autocorrelation function g@(t)
can be measured in an experiment. Since these expres-
sions are derived for a stationary field, time is set to
zero.

Formulas (2)—(4) apply both to an atomic ensemble
and to a single atom. If the number N,(T, t) of sample
intervals of length T within which n fluorescence pho-
tons are counted is measured during atotal observation
timet, then the probability of such an eventis

Wo(T) = lim No(T, 1)

t o

= : ®)
No(T, )+ 5 Ny(T. 1)

This probability can be compared to theoretical for-
mula(2): the measured probability w,,(T) must be equal
to the probability N(n, T) predicted by (2) for a particu-
lar physical model.

Formula (2) was used to calculate the photon-num-
ber probability distribution for several simple models
in[5]. In particular, the photon number for a coherent
state of monochromatic field was found to be described
by the Poisson function. The Poisson distribution was
also abtained for a single-mode laser field with random
phase, whereas a binomial distribution was found for a
single-mode Fock state. The polarized light emitted by
a thermal source was shown to be described by the
Bose-Einstein distribution.

It may seem surprising, but the probability defined
by (2) is more difficult to calculate for a single atom
than for an atomic ensemble. This explains why this
calculation has never been performed. In [6], asimpler
calculation of moments of the distribution was pre-
sented. Using these moments, Mandel introduced the
following parameter as a measure of deviation of pho-
ton-counting statistics from the Poisson distribution:

h?(T)O- th(T)F
th(T)O ’ ©)

where M@(T)Ois the second factoria moment and
m(T)is the mean number of photocounts per sample

Q(T) =
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Fig. 1. Sequence of photons emitted by a single atom inter-
acting with a continuous wave laser field.

time T. By using (3) and (4), Mandel’s Q parameter is
expressed as

T X

Q(T) = DE{% [ox{ayg®(y) —T}. ™
0 0

The autocorrelation function proved very conve-
nient for estimating deviations of photon-counting sta-
tistics from the Poisson distribution for various systems
[9-11]. For the Poisson distribution, Mandel's Q
parameter is zero. For sub- and super-Poissonian (nar-
rower than Poisson) distributions, its values are nega-
tive and positive, respectively. Formula (7) is generaly
used to estimate the deviations from the Poisson pho-
ton-counting distribution in single-molecule spectros-

copy.

The approach used in this paper to analyze the sta-
tistics of fluorescence photons emitted by a single atom
is essentially different from that applied in [1-5].
Whereas the analyses presented in these books were
focused on the radiation field, the present study deals
with the quantum dynamics of asingle atom interacting
with a continuous wave laser field, and fluorescence
dynamics are derived from the dynamics of radiative
de-excitation to the ground state of the atom. In this
approach, the probability N(n, T) can be calculated
directly by using aformula derived below. In what fol-
lows, this calculation is presented and the resulting
probability is used to calculate the first two moments of
the distribution and Mandel’s Q parameter for a two-
level atom interacting with a continuous wave laser
field.

2. FLUORESCENCE PHOTON
COUNTING METHODS

Suppose that a two-level atom interacting with a
continuous wave laser field emits fluorescence photons
at random instants. Figure 1 shows numbered fluo-
rescence photons emitted by the atom. Mandel’s for-
mula (2) corresponds to the photon counting method in
which the time scale is divided into equal sampleinter-
vals (lower scale in Fig. 1) and photons are counted
within each interval. The start of the sample interval is
neither specified by any definition nor related to any
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Fig. 2. Transitions between quantum states of the atom—
field system.

instant of photon emission. There may exist sample
intervals when no photons are counted, asillustrated by
Fig. 1.

However, adifferent photon counting method can be
used in single-molecule spectroscopy. It is advanta
geous in that the probability distribution, in contrast
to (2), can be not only derived theoretically, but also
calculated. Let us consider this method in some detail.

Suppose that a fluorescence photon is emitted at
some instant and another photon is emitted after atime
T has elapsed. The former and latter instants define the
start and end of the sample interval, respectively. Thus,
only intervals of length T containing at least two photo-
counts are considered, as indicated on the upper time
scalein Fig. 1. Two cases are possible.

In one case, no photons are counted within the sam-
ple time T between the start and the end, as between
photons2 and 3 or 12 and 13 in Fig. 1. When only such
photon pairs are counted, the measurement is actually
performed in a start—stop maode (the two-photon start—
stop correlator is measured). This measurement mode
was called detection of successively emitted photons
in[12].

However, a number of photons (called intermedi-
ate here) may be emitted during a sample interval
of length T between two photons, as photon 5
between photons 4 and 6 or photons 14 and 15
between photons 13 and 16. When all photon pairs
separated by atime T are counted irrespective of the
number of intermediate photons emitted within this
time, the full two-photon correlator is measured. In
the next section, a mathematical expression is found
for the probability of counting any number of inter-
mediate photons within asampletime T.

3. QUANTUM DYNAMICS
OF A TWO-LEVEL ATOM

Figure 2 schematizes the transitions between the
guantum states of the atom—field system: each absorp-
tion of a photon of frequency w is followed by the
emission of a fluorescence photon k, and the process
repeats indefinitely. In detailed studies of the dynam-
ics of the system schematized in Fig. 2 by several
independent groups [13-17], the following system of
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equations was derived for the elements p( ) of the

density matrix describing the state of the atom—field
systemin the case of N intermediate fluorescence pho-
tons:

(N) _

pio’ = —i(A—i/2T)ply + X[ph — oo,
(N) _

Por = (p(N))*
P = —xIp%h + p] ——p(lT), (8)
poo) = X[p10)+p01)] + = p(llil Y,

Here, x = E - d/4 isthe Rabi frequency, A is the dif-
ference between the laser and atomic-transition fre-
guencies, and T, is the energy relaxation time. This
system resembl es, but differs from, the optical Bloch
equations: it is not closed, since the fourth equation

contains the function p{) . System (8) describes

the first pair of statesin Fig. 2 when N = 0 (without
intermediate photons), the second pair when N = 1,
and so on.

It can readily be shown that the four matrix elements

Pij = Z pI(JN) ©)

N=0

satisfy the Bloch equations with the phase relaxation
rate UT, = 1/2T;:

P10 = — |%3 ZTDplo X(P11—Poo).

o =1 %3 + ZLTEpOl +X(P11—Poo). W

Pu = —X(P10* Po1) _T_ll1

Poo = X(P1o+ Por) + = p“

The analysis of conversion of laser photons into fluo-
rescence photons developed in [14, 15] has shown that
the first two equationsin system (10) written for atwo-
level atom interacting with phonons contain a constant
1T, that is greater than 1/2T, and is determined by
electron—phonon interaction. In other words, the Bloch
eguations contain independent energy and phase relax-
ationtimes T, and T,.
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Consider Egs. (8) with N = 0. By using the fact that
ph.’ = 0, denoting p(o) = W, and performing the
Laplace transform

[

(G(1),=G(w) = IG(t)e‘(‘“‘O"dt,

(11)
It&)dw EO! t < Ol

G(t)-J’G(m)e 2m Ep(t), t>0

of system (8), the following system of equations is
obtained for the Laplace components W(w):

Ew—%—%wlﬁ KW, = O,

(12)
kW11+(|00—k)WOO = _1,
where
k(o) = izx’—2FC 13
(@ =12 (13)

with ' = 1T, = 1/2T,. By virtue of (11), the Bloch
equations (10) can be rewritten as equations for the
L aplace components p(w):

1
Sw—ﬂ—%pn +Kpg = 0,
L (14)
EF + %pu +(1w—Kk)pg = -1

1
Equations (12) and (14) are obtained under the initial
condition

Weo(t =0) = pgo(t=0) = 1.

Systems (12) and (14) yield
k k
pu(w) = D_p’ Wy (w) = SS, (15)
with the respective determinants
_ 1 _ k
D, = mﬁw—_l_—l—ZI%, D.= Dy (19

Hence, the Laplace components are related as follows:

11( w)

P(w) = Wy (w) + P11(w). (17)
By virtue of the equality
IW(w)p(w) gl jwa ~X)p(x)dx,  (18)
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oL T

Fig. 3. Dynamics of transitions between the ground and
excited electronic states.

the inverse Laplace transform of (17) yields the equa-
tion

t

pu(t) = Wy(t) + j%wn(t—x)pn(x)dx. (19)

Iterative solution of Eq. (19) leadsto a series expansion
of the probability p4(t) in terms of the number of inter-
mediate photons:

pu(t) = Wu()+ Y pi(1), (20)
where
N Lty dt2 dty
p11 (t) = I I —Wy(t-ty) 21)

x Wiy (ty —tz) . '-Wll(tN—l —tn) Wy (ty).

A simple physical interpretation of this formula is
derived from Fig. 3 by noting that 1to O and O to 1 tran-
sitions correspond to fluorescence-photon emissions
and laser-photon absorptions, respectively. Since pho-
tons are absorbed and emitted at random instants, Fig. 3
illustrates a random sequence of events in the system
schematized in Fig. 2. The lengths of the lower and
upper segments represent the lifetimes of ground and
excited states of the atom, respectively. The fluores-
cence photons emitted by transition from upper to
lower segments are shown by vertical segments on the
time scale. Figure 3 resembles a random telegraph sig-
nal, and the number of photons emitted during any par-
ticular time interval equals the number of de-excita-
tionsthat occurred within thisinterval. Two intervals of
length T containing one and two intermediate photons,
respectively, are indicated in Fig. 3. The lower and
upper line segments are associated, respectively, with
the probabilities

P (1), Pig (1), PS5 (1), ..
and
pID(t) = Wyy(t), piP (1), pi2 (1), ..
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The equation obtained by dividing (20) by p,4(t),

Wo(t) + 5 wy(t) = 1, (22)
relates the probability
_ Wi(t)
Wo(t) = 0 (23

of an interval of length t without intermediate photo-
counts to the probability

1
() = Pu(t)
J,dtlj.dtz J_ dtNW11(t (24)

X Wll(tl —tz) . -'Wll(tN—l —tn) Wi (ty)

of an interval t containing N intermediate photocounts.
Formulas (23) and (24) can be used to calculatethe dis-
tribution of intermediate photons counted within an
interval of length t between photon emissions.

4. DISTRIBUTION OF PHOTONS EMITTED
BY A TWO-LEVEL ATOM

According to (23) and (24), the calculation of the
desired probabilities requires expressions for W,(t)
and p,4(t) satisfying Egs. (12) and (14). These are not
bal ance equations, because the coefficient given by (13)
depends on the frequency w. These equations are
strictly equivalent to Egs. (8) with N = 1 and Bloch
equations (10); i.e., they preservethe phase correlations
represented by the off-diagonal elements of the density
matrix. Coherence is lost when w = 0 in Eg. (13), in
which case

o
k = 2%°—— (25)
M2 +A%

Expression (25) describes the absorption coefficient,
and Egs. (11) and (12) with this value of k are balance
equations.

Oneisledto aquestion: isit correct to change from
the Bloch eguations to balance equations? The answer
is provided by Fig. 4. Figure 4 compares the time
dependence of solutionsto the Bloch and balance equa-
tions for several laser intensities. Rabi oscillation
occurs when the intensity is so high that the stimulated
transition rate exceeds the spontaneous transition rate.
Figure 4b shows that the difference between the solu-
tionsto the Bloch and balance equationsisinsignificant
when the field intensity is low. Accordingly, use of the
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balance equations facilitates the analysis of fluores-
cence photons statistics presented below.

Solution of Egs. (12) and (14) with the absorption
coefficient given by (25) leads to the following expres-
sions.

Wiy(t) = 1 [exp(-at) - exp(-AD], (20
pu(t) = —{1-ep[-(A+a)l}, (27
where
a=vy-R, A=Vy+R,
(29

If the pump intensity is low (k < 1/T,), then a = k and
A = 1/T,. It can be verified by direct substitution that
functions (26) and (27) satisfy Eqg. (19) with 1T,
replaced by A.

According to (26), the probability W,,(t) increases
from zero within atime interval on the order of T, and
then decreases as

y = k+1/2T,,

Wiy, (t) O exp(—kt). (29

Probability (24) calculated by using (23) and approxi-
mating Wi, (t) with (29) is the Poisson distribution

(kt)

wy(t) =

(30)

Thus, the deviation of fluorescence photon statistics
from the Poisson distribution is due to the increase in
W,4(t) over times on the order of T,. The vanishing
probability of photon emission for t — 0 isdueto the
phenomenon known as photon antibunching. Now, let
us find the photon-counting distribution taking into
account photon antibunching.

The Laplace transform of (24) combined with for-
mula (18) yields

(Pra(OWn (D)), ﬂ’vﬂ(“’)ﬂ T Wa(@). @

The Laplace component of the probability given
by (26) is

K

Wil®) = G =R (o-A) (32)
By using (28), it can readily be shown that
aA=KkT,.
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Fig. 4. (a) Time dependence of probability pq1(t) predicted for several laser intensities: xT, = 0.05 (1), 0.1 (2), 0.3 (3), and 1.0 (4).
Solutions to the Bloch equations (solid curves) are compared to solutions to balance equations (dashed curves) for xT, = 0.1 (b),

0.3 (c), and 1.0 (d).

Combined with (32), this relation yields

Wy, (w) _ aA
T, (iw-a)(in-A)

(33)

By virtue of the last two formulas, relation (31) can be
rewritten as

N N
a A

(iw-—a)" (iw-A)"""

(Pu(wy(), = k (34)

Here, the first fraction on the right-hand side is the
L aplace component of the function

(at)"
N!

exp(—at),

i.e., the Poisson function. By taking this into account,
using formula (18), and performing the inverse Laplace
transform, the desired probability of counting N pho-
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tonswithin aninterval of lengthtisfound to be propor-
tional to the convolution of Poisson distributions:

t

- _k _
wy(t) = pll(t).!)'de,\,[(t x)a] Py[xA]

(35)

t
_ Kk [(t=x)a]" —t—0a[XA]"
= pll(,[)Jo’dx NI e N e .

This formula is equivalent to expression (24) for the
probability of an interval t containing N intermediate
photocounts, but is much more practical, because it
containsasingleintegral.

Figure 5 shows photon-counting distributions pre-
dicted by this expression and illustrates the ssimple fact
that many photons can be counted only on time inter-
vals much longer than the mean time 1/k between suc-
cessive emissions of fluorescence photons. The maxi-
mum of the distribution correspondsto the number N of
photocounts related to the sample time by the approxi-
mate formula KT = N. A similar relation between sam-
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Fig. 5. Photon-counting distribution for sample times T =
5/k (1), 10/k (2), 20/k (3), and 30/k (4).

ple time, number of photocounts, and laser intensity is
characteristic of the Poisson distribution. The longer
the sample interval, the more photons can be counted.
A number of photocounts that is sufficiently large to
provide a representative sample corresponds to a sam-
ple time much longer than the mean time 1/k between
successive emissions of fluorescence photons. The
resulting distribution resembles, but differs from, the
Poisson distribution.

Figure 6 compares these distributions and illustrates
the distinction between them. It demonstrates that the
width of the Poisson distribution corresponding to the
sampletime T = 27/k is equal to the width of distribu-
tion (35) calculated for the larger sampletime T = 30/k.
When the distributions correspond to equal sample
times, distribution (35) is narrower than the Poisson
distribution; i.e., a sub-Poissonian distribution is

Probability
O . 1 O T T T T T T

0.08-

0.06

0.04-

0.02

(]=

Fig. 6. Photon-counting distribution predicted by (35) for
T = 30/k (solid curve) and Poisson distribution of equal
width corresponding to T = 27/k (dashed curve).
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obtained. A sub-Poissonian distribution of fluorescence
photons emitted by a single atom interacting with con-
tinuous radiation within a short sample interval of
length T < 1/k was measured in [18].

Figure 7 shows the distribution predicted by (35)
and the Poisson distribution for T < 1/k. Such short
sample intervals without photocounts occur with a
probability close to unity, in agreement with results
reported in [18]. The probability of detecting a single
photon within such intervals is less than one percent,
and the probability of three photocounts within such an
interval is less than one-hundred-thousandth of a per-
cent. Even though the deviation from the Poisson distri-
bution reported by Short and Mandel was small, it
should be responsible for the negative value of Man-
del’s Q parameter, which can be measured in experi-
ment.

5. MEAN NUMBER OF PHOTOCOUNTS
AND MANDEL'S Q PARAMETER

Thedistribution of photons emitted by asingle atom
interacting with a continuous wave laser field has never
been calculated by using formula (2). The present the-
ory can be compared with Mandel’s theory by using
moments of the distribution and Mandel’s Q parameter
derived from the distribution found here. The mean
number of photonsis calculated as

00

th(T)O = Z Nwy(T),

=0

(36)

with probabilities defined by (24). Substituting the
expressions for probability (24), performing the

Probability

1.0

0.8

0.6

0.4

0.2

Fig. 7. Sub-Poissonian photon-counting distribution pre-
dicted by formula (35) (solid curve) and Poisson distribu-
tion of photocounts (dashed curve) for T = 1/10k.
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Laplace transform, and using formula (17), one obtains

[T (D], = Waa(w) § NEW?—(IQ))E

, ) (37
_ Wi (w)/T, _ P11 (W)
(1-Wn(w)/T)* T
Theinverse Laplace transform yields
1 Td
X
M(T0= ———— = T-Xx X). 38
(T) pll(-l—){-l—lpll( )P11(X) (38)

This expression differs from formula (3) derived by
Mandel. Formula (38) takes into account antibunching
of fluorescence photons, whereas formula

= Oadr

does not.
The second factorial moment

h@(m)o = > N(N=1)wy(T) (39)
N=0

contained in the expression for Mandel’s Q parameter
can also be calculated by using the Laplace transform,
as in the calculation of the mean photon number. The
resulting expression

2 2 TdX
h(T)O = mj’ﬂpn(T—X)
° (40)

“d
XJ’-‘I‘—{pn(X— Y)Pu(Y)
0

aso differs from the formula (4) found by Mandel.

The mean number of photocounts per sampletime T
is obtained by substituting probahility (27) into (38):

_oyT
Th(T)0 = 1re 1}

1-e2™ y 4D

k
2VT1[

Since 2yT; = 1 for low laser intensities, this result sim-
plifiesto

%‘%TkT, VT <1,
h(T)U= g

K (42)
T-2, yT> 1.
KTy Y
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These formulas are different from the expression

thd = 0Oar = kT (43)
used by Mandéd in (7). Owing to photon antibunching,
the number of photons counted within a short sample
interval is a quadratic, rather than linear, function of
sample time. Indeed, formula (43) is predicted by the
present theory when photon antibunching is neglected,
which corresponds to the Poisson distribution. There-
fore, it is not quite correct to use formula (43), which
doesnot allow for photon antibunching, in expression (7)
for calculating the parameter Q(T) asameasure of devi-
ation of a real photon-counting distribution from the
Poisson distribution.

The second factorial moment is obtained by substi-
tuting (27) into (40):

0k 7
E2\,’-|-1D

(s
Dy Dl_e—ZVT y2

Formulas (41) and (44) are combined to obtain the
following expression for Mandel’s Q parameter:

m®(myo=
(44)

1k
Q(T) = NToy
«EHTA+e™) +[(T) +3(1-e™)
0 yT(1+e?)—(1-T) (45)

—2yT 0
_yT(d+e ") )+1D
U

Let us compare this result with that predicted by Man-
del’s formula (7). It was shown in [9, 15, 19] that the
autocorrelation function isrelated to the probability py;
asfollows:

P (t)

(2) _
g = P11()’

Combining this formulawith (27) and (7), one obtains

1“"‘_2”}. (46)

Kk
Qu(T) = 5| -1+ 5=
According to (45) and (46), Mandel’s Q parameter is
proportional to k/2y = kT, i.e., small when the laser
intensity is low. However, the time behavior of Man-
del’s Q parameter is independent of the laser intensity,
being determined by the dimensionless time yT. If
yT > 1, then Q = 4Q,,. The difference in the theoretical
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Mandel’s parameters
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Fig. 8. Mandel’s Q parameters cal culated by using formulas
(45) (solid curve) and (46) (dashed curve) for T; = 1078s,

expressions for Mandel’s Q parameter should be
explained by differencein the methods actually used to
measure the moments of the distribution. Figure 8 com-
pares the functions Q(T)2yT,y/k and Qu(T)2y/k. Man-
del’s Q parameter predicted by (45) varies from zero to
the limit value Q(«) = —4KT, exponentialy. Note that
the transition between the domains of short- and long-
time behavior corresponds to a change in T within an
order of magnitudein the neighborhood of T=T,. Thus,
expression (45) implies that a fluorescence photon
“remembers’ the preceding one during a coherence
time approximately equal to T,. Mandel's Q parameter
predicted by (46) varies from zero to the limit value
Qu() = —KT,; according to a hyperbolic law, i.e., at a
dower rate. Formula (45) predicts an appreciable devi-
ation from the Poisson distribution only for T > T,,
whereas formula (46) predicts that it must be observed
for T < T,. The difference in behavior of Mandel’'s Q
parameter given by (45) and (46) can be explained by
the fact that these formulas correspond to different flu-
orescence photon counting methods.

6. CONCLUSIONS

1. When only intermediate photons are counted in
an experiment, formula (24) yields the desired expres-
sion for the statistics of fluorescence photons emitted
by a single two-level atom interacting with a continu-
ous wave laser field.

2. If the stimulated transition rate k islower than the
spontaneous transition rate 1/T, t by at least an order of
magnitude, then formula (24) reduces to the substan-
tially smpler form of (35).

3. The photon-counting distributions found numeri-
cally by using formula (35) for several sampletimesare
sub-Poissonian, in agreement with the experimental
results obtained in [18]. The deviation from the Poisson
distribution is more pronounced for short sampletimes,
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when the number of photocounts is small (cf. Figs. 6
and 7).

4. The expressions for the mean photon number and
second factorial moment of the photon-counting distri-
bution corresponding to the photon counting method
proposed in the present study are different from those
obtained by Mandel, and the expressions for Mandel’s
Q parameter differ accordingly. Whereas both time
dependence and limit values of the parameter are quan-
titatively different, both formulas compared here pre-
dict similar dependence on sample time.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 04-02-17024.

REFERENCES

1. R.I. Glauber, in Quantum Opticsand Electronics, Ed. by
C. deWitt, A. Blandin, and C. Cohen-Tannoud;ji (Gordon
and Breach, New York, 1965; Mir, Moscow, 1966).

2. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of
Quantum Optics (Benjamin, New York, 1968; Mir, Mos-
cow, 1970).

3. M. Lax, Fluctuations and Coherence in Classical and
Quantum Physics (Gordon and Breach, New York, 1968;
Mir, Moscow, 1974).

4. R. Loudon, The Quantum Theory of Light (Claredon,
Oxford, 1973; Mir, Moscow, 1976).

5. L. Mandel and E. Wolf, Optical Coherence and Quan-

tum Optics (Cambridge Univ. Press, Cambridge, 1995;

Fizmatlit, Moscow, 2000).

L. Mandel, Opt. Lett. 4, 205 (1979).

L. Mandel, Proc. Phys. Soc. London 72, 1037 (1958).

8. P L. Kelley and W. H. Kleiner, Phys. Rev. 136, 316
(1964).

9. M. S. Kim and P. L. Knight, Phys. Rev. A 36, 5265
(1987).

10. E. Barkai, Y. J. Jung, and R. Silbey, Phys. Rev. Lett. 87,
207403 (2001).

11. Y. J. Jung, E. Barkai, and R. Silbey, Adv. Chem. Phys.
123, 199 (2002).

12. M. S.Kim, P. L. Knight, and K. Wodkiewicz, Opt. Com-
mun. 62, 385 (1987).

13. B. R. Mollow, Phys. Rev. A 12, 1919 (1975).

14. I. S. Osad’ko, Zh. Eksp. Teor. Fiz. 113, 1606 (1998)
[JETP 86, 875 (1998)].

15. 1. S. Osad ko, Selective Spectroscopy of Sngle Mole-
cules (Fizmatlit, Moscow, 2000; Springer, Berlin, 2002).

16. Y. Zheng and F. L. H. Brown, Phys. Rev. Lett. 90,
238305 (2003).

17. Y. Zhengand F. L. H. Brown, J. Chem. Phys. 119, 11814
(2003).

18. R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).

19. I. S. Osad' ko and L. B. Yershova, J. Lumin. 87-89, 184
(2000).

N o

Translated by A. Betev

No.1 2005



Journal of Experimental and Theoretical Physics, Vol. 101, No. 1, 2005, pp. 73-79.

Tranglated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 128, No. 1, 2005, pp. 88-94.

Original Russian Text Copyright © 2005 by Astapenko.

ATOMS, MOLECULES,
OPTICS

Bremsstrahlung of Fast Charged Particleson Clusters
in a Wide Spectral Range

V. A. Astapenko
Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141700 Russia
e-mail: astval@mail.ru
Received February 17, 2005

Abstract—Within the framework of the first Born approximation and a simple model of the structural factor,
the bremsstrahlung of fast charged particles on polyatomic clusters is calculated and analyzed with regard to
the polarization mechanism in awide spectral range including adomain of high frequencies. Therole of coop-
erative phenomenain the static and polarization channels of bremsstrahlung isinvestigated. It is established that
these phenomena, being negligible for static bremsstrahlung, substantially influence the polarization
bremsstrahlung. It is shown that the constructive interference between the contributions of the atoms of a cluster
to the polarization bremsstrahlung substantially increases itsintensity and changes its dependence on the basic
parameters of the problem compared with the case of bremsstrahlung on an isolated atom. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

The scattering of a charged particle by a target that
possesses electronic degrees of freedom leads to
bremsstrahlung by two channels. One of these chan-
nels, the traditional (static) bremsstrahlung (SB), is
associated with the acceleration of theincident particle
in the field of the target. The second, polarization
bremsstrahlung (PB), is associated with the alternating
dipole moment of the target that arises during the scat-
tering of the incident particle[1, 2].

In general, the bremsstrahlung by these channels
differently depends on the frequency and angle of radi-
ation and on the mass and energy of the incident parti-
cle. If the radiation occursin amedium (plasma, amor-
phous substance, monocrystal, or polycrystal), the
static and polarization mechanisms of bremsstrahlung
exhibit different dependence on the parameters of the
medium. The last circumstance is largely attributed to
the fact that the SB is formed at small distances from
the target, whereas the PB, at large distances. As a
result, the cooperative phenomena associated with the
interference between the contributions of different
atoms of the target to bremsstrahlung play different
roles in the static and polarization mechanisms. The
cooperative phenomenadiscussed here should manifest
themselves in the purest form in the PB on polyatomic
clusters, which is the subject of the present paper.

Radiation of acharged particle scattered by acluster
was considered earlier for certain ranges of parameters.
For example, the bremsstrahlung of afast but nonrela-
tivistic electron on acluster in the low-frequency range
(w < 1 au) with regard to the polarization mechanism
was investigated in [3] (seeaso[1, Ch. 7]). The calcu-
lations were performed within the first Born approxi-

mation with respect to the interaction between electron
and target. The cluster form factor was calculated with
the use of ajellium model. The bremsstrahlung cross
section was studied as a function of frequency, velocity
(of electron), and the radiation angle. It was shown that,
in the frequency domain where the main contribution to
PB ismade by collective excitations of cluster electrons
(the domain of a giant resonance), the polarization
channel dominates the static one and the interchannel
interference leads to asymmetry of the radiation spec-
trum.

In the recent work [4], Kurkina calculated the char-
acteristics of the SB for scattering of aslow electron by
metallic clusters. These calculations were based on the
expansion of the electron wavefunction in terms of par-
tial waves. A model of spherical jellium was used for
the electrostatic potential of a cluster. The author dem-
onstrated that, as the number of atoms in a cluster
increases and the energy of radiating electron
decreases, a resonance structure arises in the high-fre-
guency region of the SB spectrum. This structure con-
sists of a series of peaks whose positions are deter-
mined by the type of the cluster and the energy of the
electron after emitting aphoton. The origin of the spec-
tral peaks was associated with quasistationary states of
the electron in the field of the cluster—target. The polar-
ization channel of bremsstrahlung was not considered
in[4].

As the energy of the incident particle increases, the
role of polyatomic interference phenomena in PB on
clusters must increase because the magnitude of the
minimal momentum transferred to the target decreases
and the effective projectile-target distance increases.
As the energy of the incident particle increases, the
spectral domain of the bremsstrahlung allowed by the
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energy conservation law increases. In the case of arel-
ativistic incident particle, the frequency rangew > 1 au
becomes topical, in which one can neglect the collec-
tive excitations of electrons in the cluster and assume
that the polarizability of atomic clustersis described in
terms of the polarizability of an isolated atom to area-
sonable degree of accuracy. It is aso essential that, in
the relativistic case, the role of the recoil during the
emission of a photon by the polarization channel
increases because the photon momentum becomes
comparable to the minimal variation of the momentum
of the impinging particle. As a result, the range of
angles of PB of arelativistic electron narrows down in
the high-frequency range [5, 6]. For the scattering of a
relativistic charged particle by a cluster, the angular—
frequency dependence of PB should be additionally
modified when the number of atoms in the target is
varied.

The present paper is devoted to the theoretical anal-
ysis of bremsstrahlung of fast, including relativistic,
charged particles on clustersin awide spectral range of
w > 1 au. The main objective of the paper is to deter-
mine and analyze the basic principles of bremsstrahl-
ung that are associated with the interference between
the contributions of various atoms of the target to the
process.

2. BASIC RELATIONS

Let us calculate the intensity of the polarization and
static channels of bremsstrahlung of afast charged par-
ticle on a cluster within a smple model. The main
assumptions of this approach are the first Born approx-
imation with respect to the interaction between theinci-
dent particle and the target and ajellium model for the
form factor of the cluster. In addition, wewill useaqua-
siclassical formulafor the SB amplitude and an approx-
imate expression for the generalized polarizability of
the cluster atoms. Applying a standard quantum-
mechanical procedure (see[7] for details) for the differ-
ential intensity of bremsstrahlung by each channel, nor-
malized by the number N of atoms in the cluster, we
obtain the following expression:

q

o5 = i [ T@d 1)

Amin

where g = p; — p; + K is the momentum transferred to
the target from the incident particle; T(q) is a partial
intensity of bremsstrahlung; dQ, is the solid angle in
thedirection of radiation; wand k arethe frequency and
the wavevector of the photon, respectively; p; and p; are
the initial and final momenta of the incident particle;
Omax = 21V, where [ is the reduced mass of the electron
and of the incident particle and v is the velocity of the
incident particle; and q,,, is defined by formula (13)
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below. Throughout the paper, we use the atomic system
of unitsh =e=m,= 1.

Within the approach used in this paper, the partial
intensity of PB can be represented as

272
, N
nc’ vqs(q ) 2

x |Zp0|(w1 q)2| Iq)(qv vV, W, e)’

Tpol (q) =

where Z; is the charge of the incident particle, c isthe
velocity of light, (g, N) isthe structure factor of aclus-
ter, Z,,(w, q) is the effective polarization charge of the
atoms of the cluster, 1,(q, v, w, B) isthe kinematic inte-
gral that results from the integration with respect to the
azimuthal angle g, and 8 is the angle between the vec-
torsp; and k (the radiation angle of photons). The kine-
matic integral I4(q, v, w, 0) represents a rather compli-
cated function of the parameters of the problem; the
explicit form of thisfunctionisgivenin [7].

Notethat expression (2) isobtained for asufficiently
high-frequency range in which w > 1, where |, is the
ionization potential of the atoms that constitute a clus-
ter. The opposite case of low frequencies (w<1,) iscon-
sidered in [3].

We will use the following model representation for
the structure factor of the cluster:

S(g,N) = N’F3(q,N) + N[1-F5(aq,N)], (3
where

j.(ar(N))
ar(N)

is the form factor of a spherical cluster, normalized by
the number of atoms, in the jellium model;

Fy(a,N) = 3 4)

|\(x) = Snx_ cosx
109 = -2 ©)

is the spherical Bessel function of order 1; and r(N) is
the cluster radius, which depends on the number of
atoms and can be calculated by the formula

3N
4mmn,’

r(N) = rws¥/N = 3 (6)

wherer,,sistheWigner—Seitz radius and n, isthe solid-
state concentration of atomsin the cluster.

The first term on the right-hand side of equality (3)
represents a coherent part of the structure factor of the
cluster, and the second term, a noncoherent part. Note
that form factor (4) isthe spatial Fourier image, normal-
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ized by the number of atoms, of the probability of the
distribution of atomsin the cluster inthejellium model:

3NO(r(N)-r)

(N = 4mr’(N)

(7)

where O(x) is the Heaviside step function. In the case
of amonoatomic cluster, structure factor (4) isequa to
unity.

The polarization charge of the cluster atoms can be
represented as

Zoy(w,q) = w’la(w, q)l = w’la(w)Fuya), (8)

where a(w) and F,(q) are the dipole polarizability and
the form factor of an atom, respectively. These quanti-
ties are calculated by the method proposed in [7]. The
imaginary part of the polarizability is determined by the
optical theorem, in terms of the photoabsorption cross
section, using the data provided at the site [8]. The rea
part of the polarizahility is recovered by the Kramers—
Kronig relation. The atomic form factor iscalculated in
the Slater approximation by the formula obtained
in[9].

An approximate expression for the partial intensity
of SB in the quasiclassical approximation g; > w (g; is
the initial energy of the incident particle) and the rela-
tivistic limit (v = ¢) hasthe form

2 T
3T[c3vqs(q’ N)EmpD
2[1—(v/c)’ (1 + cos’0)

[1-(v/c)cosB]®

T«(q) =
9)

x Z°[1—F(q)]

where m, isthe mass of theincident particleand Zisthe
charge of the atomic nucleus. Note that the relative
error of formula (9) for nonrelativistic velocities of the
incident particle is no greater than 30%.

The formulas presented above describe the intensity
of two channels of bremsstrahlung for sufficiently high
radiation frequencies w > |, when afast charged parti-
cleisscattered by acluster. We neglect the interchannel
interference term because the PB and SB amplitudes
differently depend on the transferred momentum and,
in the relativistic case, on the radiation angle as well.

3. DISCUSSION OF THE RESULTS

Let us apply the formulas obtained in the previous
section to calculate the intensity of bremsstrahlung by
static and polarization channels when a fast electron is
scattered by polyatomic clusters.
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Fig. 1. Cooperative phenomenain PB (1 and 2) and SB (3)
of an electron scattered by a copper cluster (y = 10 and
fico=1keV); (1) 8=1rad and (2) 6 = 0.5 rad.

The cooperative phenomena in bremsstrahlung are
characterized by the following relation:

_ _di(N)

& di(N=1) (10)
where dl isthe differentia intensity of bremsstrahlung
by one of the channels, normalized by the number of
atomsin acluster. Itisobviousthat & = 1 in the absence
of cooperative phenomena. In the opposite limit case of
constructive interference between the contributions of
the cluster atoms to the bremsstrahlung intensity, we
have

& =xN, x<L1l

The coefficient x takesinto account the fact that not all
the transferred momenta that are essential in the pro-
cess on an individual atom make a significant contribu-
tion to the coherent part of bremsstrahlung on acluster.

The dependence of the parameter & on the number of
atoms in a copper cluster for both channels of
bremsstrahlung isdemonstrated in Fig. 1. The energy of
a “bremsstrahlung” photon is equal to 1 keV, and the
Lorentz factor isy =[1 — (v/c)?]7Y? = 10. In the case of
a polarization channel, the function &(N)is shown for
two values of the radiation angle ® = 0.5 and 1 rad. One
can see that the cooperative phenomena are negligible
for the static channel of bremsstrahlung but are quite
significant for the polarization channel. The analysis
shows that the effect of the cooperative phenomena in
PB appreciably increases as the radiation angle
decreases. Moreover, the role of these phenomena
increases with the energy of the incident particle and as
the frequency of the bremsstrahlung photon decreases.

No. 1 2005



76 ASTAPENKO

Ipol(e)/[pol(o)
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Fig. 2. Angular dependence of the normalized intensity of
PB of an electron on an isolated atom (1) and on a copper

cluster for N = 100 (2), and N = 1000 (3); #iw = 5 keV and
y=10.

The curves in Fig. 1 and the results of calculations
imply that, in the case of the polarization channel, start-
ing from acertain value of Ng; that depends on the radi-
ation angle and the energy of the incident particle, the
radiation intensity saturates for a certain number of
atoms in the cluster. The anaysis shows that Ng;
increases as the radiation angle decreases and the
energy of theincident particle increases.

To account for the results listed above, we take into
account that, according to formulas (3)—<6) for the
structure factor, the constructive interference of the
contributions of different atoms of the cluster occurs
only for sufficiently small values of the transferred
momentum,

g<1/r(N), (11
wherer(N) isthe cluster radius (see (6)). Otherwise, the
structure factor of the cluster (normalized by the num-

ber of atoms) is equal to unity, and there are no cooper-
ative phenomena.

Itisessential that inequality (11) isinconsistent with
the condition
gq>1/ry, (12
which defines the range of transferred momenta in
which SB isnot small by virtue of the obviousinequal-
ity r(N) >r, (r,isacharacteristic atomic radius). Hence,
the cooperative phenomenain SB on a cluster are neg-
ligible.
At the same time, a partial amplitude of PB islarge

when the inequality opposite to (12) holds; thus, there
isno similar prohibition on the cooperative phenomena
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in the polarization channel. Let us write out an expres-
sion for the minima momentum that is transferred to
the target from the incident particle and appearsin inte-
gra (1):

Omin(®, v, 08) = %)%l—%cosda. (13)

The fact that the cooperative phenomena are essential,

Omin < 1/r(N)1 (14)

and formula (6) for the cluster radius imply the follow-
ing expression for the number Ng; of atomsin a cluster
at which the saturation occurs:

~ ammn,v®
= -
3 v
3w %L —-— COSEH
c

Equality (15) shows that Ng; strongly depends on the
radiation angle and on the energy of the incident parti-
cleinthe relativistic case. For instance, for the param-
etersof Fig. 1, we have

Ne(6 = 1 rad) = 27 and Ny (6 = 0.5 rad) = 1312,

Nt

(15

The effect of the cooperative phenomena on the
angular dependence of theintensity I, of PB onaclus-
ter isdemonstrated by Fig. 2. Thisfigure representsthe
intensity of PB, normalized by its value at zero angle,
as a function of the radiation angle for different num-
bers of atoms in a copper cluster, including the mono-
atomic case, for aphoton energy of 5keV and aL orentz
factor of y=10. One can see that the angular distribu-
tion of the PB intensity is narrowed down as the num-
ber of atoms N increases; moreover, in the limit of
large values of this number, this distribution becomes
nonmonotonic. This nonmonotonicity disappearsin the
nonrelativistic case as the radiation frequency
decreases and increases with the number of atoms.

Note that these variations of the angular distribution
of the intensity of PB on clusters can be observed
experimentally only for heavy incident particles. In the
case of light particles (an electron or a positron) and
small radiation angles, the static channel dominates in
which cooperative effects are small.

To describe the relative contribution of PB to the
process, we introduce an R factor by the equality

R—%

Codlg’ (16)
wherel istheintensity of SB. The angular dependence
of the Rfactor of an electron for y= 10, aphoton energy
of 1 keV, and different numbers of atoms in a copper
cluster isrepresented in Fig. 3. One can seethat therole
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of PB increases with the number of atoms. For exam-
ple, in the monoatomic case, the angle at which the
intensities of PB and SB become equal amountsto 30°,
while, for N = 100, thisangle is 10°.

The condition under which the cooperative phenom-
ena are essential in the PB spectrum can be obtained
from inequality (14) with regard to the explicit expres-
sion (13) for the minimal momentum transferred to the
target. This condition is expressed as

_Amn, v
©S G = 33N '

1-——cos6
c

(17)

For frequencies greater than w,,,,, cooperative phe-
nomenain bremsstrahlung on a cluster are small.

In the nonrelativistic limit v < ¢, the maximal fre-
guency above which the cooperative phenomena disap-
pear does not depend on the radiation angle and isequal
to

nrel "4
Wmax — .
rwsi/N

For metallic clusters, the Wigner—Seitz radius ryg
ranges from 2 to 4, so that the characteristic value of
frequency (18) for a moderate-size cluster and for the
velocity of the incident particle on the order of 10 au
amountsto 1 au.

In the frequency range w < 1 au, the computation
model used in this paper becomes inadequate because,
in this case, the dynamical polarizability of acluster is
largely determined by the collective excitations of the
electrons of the cluster. For a nonrelativistic incident
particle, such a situation was considered in [3].

Intherelativistic limit y > 1, formula (17) is conve-
niently represented as

(18)

2

1 2y
rwsd/N4y?sin’(8/2) + 1

Wrax = (19)

which explicitly demonstrates the dependence of the
maximal frequency ., 0N the energy of the incident
particle. It followsfrom equality (19) that, in contrast to
the nonrelativistic case, the effect of cooperative phe-
nomena on the spectrum of PB in the relativistic case
essentially depends on the radiation angle of a photon.
For small angles and large values of the L orentz factor
of the incident particle, the maximal frequency above
which the cooperative phenomenain PB disappear may
reach significant values. However, one should keep in
mind that, in the range of angles 6 <y, the static chan-
nel is dominant in the bremsstrahlung of an electron
(positron). Therefore, the problem concerning the role
of cooperative phenomena in the spectrum of
bremsstrahlung of alight charged particle one a cluster
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Fig. 3. Angular dependence of the R factor for different
numbers of atoms in a copper cluster, including the mono-
atomic case: fiw = 1 keV and y = 10; (1) N = 100, (2) N =
10,and (3) N=1.
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Fig. 4. The spectrum of PB on a copper cluster (N = 10) for
different values of the Lorentz factor and a radiation angle

of 0.5rad: (1) y= 102 (2) y= 10, and (3) y = 1.1.

should be solved with regard to the specific values of
the parameters of the problem. At the sametime, for the
bremsstrahlung of heavy charged particles, when SB is
negligible, a spectral constraint on the role of coopera-
tive phenomena in the relativistic case is given by fre-

guency (19).

The spectrum of PB on a copper cluster consisting
of ten atoms as a function of the energy of the incident
particle is shown in Fig. 4 for a radiation angle of
0.5rad. One can see that, as the Lorentz factor
increases, the radiation intensity increases and the max-
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Fig. 5. The intensity of the total bremsstrahlung (1 and 3)
and PB (2 and 4), normalized by the number of atomsin a
cluster, as afunction of the electron velocity in the nonrela
tivistic case for acopper cluster (N =20; curves 1 and 2) and

for an isolated atom (N = 1; curves 3 and 4); fiwo = 200 eV
and 6 =1rad.

imum of the spectrum shiftstoward higher frequencies.
These variations are especially manifest when passing
from fast but nonrelativistic incident particles to
weakly relativistic particles. As the Lorentz factor
increasesfurther, the variation of the spectrum of PB on
a cluster is not so manifest. As the radiation angle
decreases, the PB spectrum of relativistic incident
particles moves to higher frequencies according to for-
mula (19), which also implies that the maximal fre-
guency decreases as the number of atomsin the cluster
increases.

Theintensity of thetotal bremsstrahlung and of PB,
normalized by the number of electrons, for the scatter-
ing of nonrelativistic electrons by a copper cluster and
by an isolated atom are shown in Fig. 5 as afunction of
the velocity of theincident particle for aradiation angle
of 8 = 1 rad and a photon energy of zw = 200 eV. One
can see that, in the nonrelativistic case, there exists an
optimal value of the €lectron velocity v, for which the
intensity of PB on a cluster is maximal. The depen-
dence of this optimal velocity on the parameters of the
problem is given by

Vot = Wr(N). (20
In the case of scattering by an isolated atom, the cluster
radius in (20) must be replaced by the characteristic
atomic radiusr,. Thisformulacan be obtained with the
use of the expression (13) for the minimal transferred
momentum in the case of v < c.

Equality (20) implies that, as the frequency and the
cluster size decrease, the optimal velocity decreases. In
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particular, for a process on an isolated atom and a pho-
ton energy of 7w =200 eV, the value of v, liesoutside
the applicability domain of the Born approximation;
therefore, the intensities of bremsstrahlung and PB are
monotonically decreasing functions of the velocity of
theincident particle (Fig. 5). Asthe number of atomsin
the cluster increases, the optimal velocity increases, as
is clear from formulas (20) and (6).

As the radiation angle decreases, the peak in the
dependence of the bremsstrahlung intensity onthe elec-
tron velocity disappears; for PB, this peak becomes|less
pronounced. On the one hand, this is associated with
the increased contribution of the static channel to the
process (see formula (9)) and, on the other hand, with
the increase in the value of the minimal transferred
momentum (13).

Figure 5 illustrates the vanishing of the cooperative
phenomena as the velocity of the incident particle
decreases. for agiven photon energy (200 V), the total
bremsstrahlung and PB on a cluster and on a single
atom coincide in the limit of small velocities.

In the high-frequency range, the intensity of PB isa
monotonically increasing function of the particle veloc-
ity; this is associated with the natural restriction
imposed on the optimal velocity of the incident parti-
cle: Vo < 137. A monotonic increase in the PB inten-
sity as a function of the energy of the incident particle
is also characteristic of the relativistic case (except for
the case of low velocities, which is not considered
here).

4. CONCLUSIONS

Based on the analysis carried out in this work, one
can conclude that the cooperative phenomena play an
important role in the bremsstrahlung of a fast (includ-
ing arelativistic) charged particle scattered by a poly-
atomic cluster over awide range of frequencies. These
phenomena, associated with the constructive interfer-
ence of the contributions of atoms to the process by the
polarization channel, lead to anonlinear increase in the
intensity of PB as afunction of the number of atomsin
acluster. At the sametime, for the static mechanism of
bremsstrahlung, the contribution of different atoms to
the radiation is noncoherent, which is associated with
the small values of the impact parameters at which the
SB isformed.

In this work, we have investigated the cooperative
phenomena as a function of the number of atomsin a
cluster. We have determined the number N, (starting
from which the PB intensity ceases to grow nonlin-
early) asafunction of the basic parameters of the prob-
lem. In particular, we have shown that, for relativistic
incident particles, the value of Ng; strongly increases
asthe radiation angle decreases. We have also shown
that the cooperative phenomena substantially modify
the basic characteristics of bremsstrahlung on aclus-
ter compared with that on a single atom. For exam-

No.1 2005



BREMSSTRAHLUNG OF FAST CHARGED PARTICLES ON CLUSTERS 79

ple, in the high-frequency case, the radiation pattern of
PB isnarrowed down as the number of atomsincreases;
for sufficiently large clusters, the angular dependence
of the intensity of PB of relativistic particles becomes
nonmonotonic: a maximum appears for nonzero radia
tion angles.

As the energy of the incident particle increases, the
maximum of the spectral distribution of PB on acluster
moves to higher frequencies. In therelativistic case, the
shape of the high-frequency region of the spectrum
strongly depends on the radiation angle. For small
angles, the intensity of bremsstrahlung decreases, as
freguency increases, much slower than for large angles.

The analysis of the bremsstrahlung intensity as a
function of the velocity of the incident particle has
shown that, in the nonrelativistic case, the character of
this function varies from monotonically increasing to
monotonically decreasing behavior. In the relativistic
limit, the PB intensity monotonically increaseswith the
particle energy. In the limit of small velocities of the
incident particle, the role of cooperative phenomenain
the bremsstrahlung on a cluster becomes negligible.

The results obtained can be used for interpreting
experimental data on the bremsstrahlung of fast
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charged particles on clusters for sufficiently high ener-
gies of the photons.
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Abstract—The analytic approach of vacuum (Brunel) heating mechanism is generalized to the case of large
atomic clusters irradiated by a superintense femtosecond laser pulse. The hydrodynamic cluster expansion is
taken into account in this approach. Simple universal expressions are obtained for the absorbed laser energy by
acluster and for the radius of an expanding cluster. The absorption of laser energy and the cluster expansion
are determined by only one dimensionless field parameter. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Rapid developments in intense ultrashort laser tech-
nology have opened a new regime of laser—cluster
interaction, in which intense laser pulses deposit their
energy into solid targets faster than the hydrodynamic
expansion of the cluster surface occurs. Hot electronsin
laser—cluster plasmas can be generated by different
absorption or acceleration mechanisms under different
experimental conditions. At low laser intensities,
inverse bremsstrahlung is the main absorption mecha
nism, which depends on the electrical conductivity
associated with electron mean free path comparable to
the interatomic spacing inside the cluster [1]. This
absorption strongly decreases as the laser intensity
increases.

Brunel [2] proposed that high-intense p-polarized
laser pulsesincident obliquely on an atomically abrupt
metal surface could be strongly absorbed by pulling
electrons into vacuum during an optical cycle and then
returning them to the surface with approximately the
quiver velocity. This is the so-called vacuum heating
process.

Recently, hot electron generation was studied at
high intensities [3]. Hot electron spectra and X-ray
spectra from the bremsstrahlung radiation, when hot
electrons undergo deceleration in solid targets, showed
that, when smooth solid targets were irradiated
obliquely by p-polarized laser pulses, a group of hot
electrons could be heated to a relatively low Max-
wellian temperature. Another group of hot electrons
with higher energies could be produced by nonlinear
resonant absorption if there was a thin layer of pre-
plasma in front of the target surface. Electrons pro-
duced by the inverse bremsstrahlung absorption pro-
cess are known as thermal electrons and have energies
less than 1 keV at modest laser intensities. The elec-

T This article was submitted by the authors in English.

trons generated by resonance absorption and the other
nonlinear resonant absorption are called hot electrons
and have much higher kinetic energies. The energy
absorption and the hot electron generation in the inter-
action of p-polarized femtosecond laser pulses with
aluminum solid targets have been studied. The laser
delivered 150 fs pulses and produced a peak irradiance
of 8 x 10'> W/cn? at the focus. The measurements sug-
gest that vacuum heating is the main heating mecha-
nism for hot electrons with high energies.

It is clearly seen from other experimental data [4]
that, in the case of irradiation of solid targets by a
p-polarized laser, the outgoing electrons are extracted
from the critical surface by the Brunel absorption, once
in the laser oscillating period because the electron
bunch length is almost equal to the laser wavelength.
The laser wavelength and the intensity were 1 um and
2 x 10 W/cm?, respectively, in these experiments.

The third heating mechanism is the elastic reflec-
tions of inner electrons from the cluster surface [5, 6].

The absorption of laser energy is equal to Fizn 1207 at
each collision in the presence of laser field (analo-
gously to the induced inverse bremsstrahlung at the col-
lision of an electron with an atomicion). Here, F;,,isthe
eectric field strength inside the cluster. The system of
unitsm, = e = 1 is used throughout the paper. Then, the
average collision rate v is determined from the electron
motion inside the cluster:

v ~VJ/R
Here, V, is the eectron thermal, or quiver, velocity

inside the cluster. This mechanism s effective only near
the Mie resonance when the Mie frequency

(*)Mie:wp/'\/é
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is equal to the laser frequency w during the cluster
expansion. Then, F,, can be larger than the external
laser field strength F, resulting in large values of V,. Far
from the Mie resonance, we obtain

2
Fo=-H20F <F,
" Q“)Mielz|

We see that the collision rate v decreases as the cluster
size Rincreases.

Inverse induced bremsstrahlung and vacuum heat-
ing are very different heating mechanisms. Electron
heating at the inverse induced bremsstrahlung is pro-
portional to the duration of the laser pulse. An elec-
tron acquirestwice the oscillation field energy at each
collision with an atomic ion, but, inside the cluster,
the electric laser field is much less compared to the
external laser field, because the electron density in the
cluster ishigher than the critical density. The acquired
electron energy at each collision is therefore small,
but large absorption in experiments occurs due to
large duration of a laser pulse at the leading edge of
this pulse. At the trailing part of the laser pulse, the
electron plasma becomes subcritical, and the external
laser field freely penetrates the entire cluster. The
doubled oscillation energy becomes large, but the
cluster begins to expand so quickly that the rate of
el ectron—ion collisions becomes very small, and there
is no electron heating at the trialing edge. If now the
duration of laser pulse is only 50 fs, then there is no
time for many electron—ion collisions. Oppositely, the
vacuum heating mechanism operates only with the
external laser field, because an electron is gected
from the cluster, is heated by the external laser field,
and returns to the cluster (where the internal laser
field is negligibly small). Therefore, even a small
number of electron gections during the leading part
of the femtosecond laser pulse results in large elec-
tron heating.

It follows from [7] that, for clusters with radii
larger than 10 nm, only a small amount of electrons
leave the cluster, i.e., the Coulomb explosion mecha-
nism is not realized, and hydrodynamic pressure of
the free electron gas inside the cluster is the dominat-
ing mechanism for cluster expansion. The second
requirement for fulfillment of the hydrodynamic
approximation is that the laser pulse duration be large
compared to the time between the neighboring elec-
tron—electron collisions. In the opposite case, a parti-
cle-in-cell descriptionisrequired. Thismeansin prac-
tice that the laser intensity should be a nonrelativistic
quantity, because relativistic electrons practically do
not collide with each other (and with atomicions) dur-
ing afemtosecond laser pulse.
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In this paper, we report a theoretical study on hot
electron generation in the interaction of superintense
femtosecond laser pulses with large atomic clusters.
The vacuum (Brunel) mechanism is generalized to the
case of large atomic clusters with the hydrodynamic
cluster expansion during the laser pulse taken into
account. Femtosecond laser pulses are needed for
experiments with clusters in order to prevent fast clus-
ter decay beforethe peak of thelaser pulse. A ssmplified
version of the vacuum heating of electrons for deute-
rium clusters was considered in [8]. However, this
approach did not take the screening effects at the elec-
tron gjection into account. Besides, the acquired elec-
tron kinetic energy was estimated only qualitatively.
Finally, cluster expansion and multiple inner ionization
of atomic ions were not considered in [8].

2. VACUUM HEATING

To describe the Brunel energy absorption by alarge
atomic cluster, we first consider each small part of the
cluster surface as a plane irradiated by a superintense
femtosecond laser pulse. Thisis valid if the excursion
length F/wy of afree electron ejected by laser field from
the cluster islessthan the cluster radius R. Here, F and
w are the field strength amplitude and field frequency,
respectively. For example, if R =20 nm (the number of
Kr atoms is N, = 4.7 x 10° in such a cluster), Aw =
1.5 eV (Ti:sapphire laser), then the peak laser intensity
should be less than 5 x 10'® W/cm? (F < 1.2 a.u.). In
practice, the inequality

Flo?=R

can also be permitted, because an electron is gected
from the cluster with zero velocity, and, therefore, it
moves and returns to the cluster along the same curved
electric field line.

Free electrons are produced at the leading edge of
the laser pulse due to a single-ionization process. The
local coordinate X is assumed to be directed along the
normal to the cluster surface, and x > 0 is the region
inside the cluster plasma. Inside the liquid cluster mat-
ter, the plasma frequency

w, = J41n,

is large compared to the laser frequency w, and, hence,
the external electric field practically does not penetrate
the cluster. Here, n, is the electron number density. In
addition, we assumethat the cluster is sufficiently large,
such that the outer ionization can be neglected, unlike
in the case of inner ionization [9]. According to the
Bethe rule for barrier-suppression outer ionization [9],
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the charge of the cluster ion (i.e., the number of gected
electrons) is

Q=4F, R
The condition of aweak outer ionization

3
Q <N, = n 2R
3
(Ng is the total number of electrons in the cluster) cor-
responds to the requirement that

Fin/wh < R.

Thisinequality is usually fulfilled because wy, > w. For
example, in the case of aKr cluster, we have n, = 2.0 x
102 au. for single ionization, and w, = 0.160 au. >
w=0.055a.u. If R=20nm, the aboveinequality isvio-
lated only when F;,, > 10 a.u. and F > 100 a.u.

Following Brunel’s approach [2], we assume the
vacuum region for x < 0, where the normal component
of theincident linearly polarized laser field

F(t) = Fsinot

is present on the surface. Here,
F = Foexp(~t°/7°)

is the Gaussian envelope of the laser pulse and T isthe
pulse duration. The reflected field F(t) coincides with
theincident field within the laser wavelength A fromthe
cluster surface. We assume that the excursion length

Flo?<R< A,

where A is the laser wavelength. As the field increases
for t > 0, electrons are pulled out during thefirst half of
the laser period 0 <t < 1/w. The (I + 1)th electron feels
the total electric field strength F(t) + F(t), where

Fi(t) = —41'[2 do = —41'[2 n; (%) dx; (1)

isthe electric field strength produced by the previously
gjected el ectrons and their imagesinside the cluster, do;
is the surface number density of the ith electron, and
ni(x) is the volume number density of the gected ith
electron (do; = ndx). The electrons that are gected
after the (I + 1)th electron do not contribute to Eq. (1),
because these electrons and their images are on one side
of the considered (I + 1)th electron.

The quantity F, isindependent of thetimet, because
the electric field produced by a uniformly charged
plane isindependent of the distance between this plane

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Val. 101

and the cluster surface. Hence, puttingt = t, in Eq. (1),
we obtain

F(t) = F(t) = —Fsinwt,. 2

The last relation follows from the statement that the
total electric field vanishes on the cluster surface, F(t) +
F(t) =0whent =t and x = 0. Thus, the total electric
fieldisequal to F(t) + F(t) for the (I + 1)th electron. The
motion of this electron is described by the Newton
equation

dv, _ . .
v —F(sinwt —sinwt,)

(I > 1, and, hence, there is no real difference between
the numbers| and | + 1). We can integrate this equation
to obtain the velocity of theIth electron under theinitial
condition of a cold gjected electron v(t) = O:

v(t) = E[cosu)t—coscotI +w(t-t)snwt]. Q)

We can integrate Eq. (3) to obtain the position of thelth
electron under theinitial condition x(t,) = O:

X (t) = %[(sinwt —sinwt,) —w(t—t;) coswt,
W
) @)
+%(t—t,)zsinoot|]

The time instance for the return of the Ith electron
inside the cluster is determined from the universa
implicit equation x(t) = 0, or

sinwt — sinwt;, = w(t—t,)coswt,

()

2
—%(t—n)zsinoon.

A nonzero (t # t,) solution of this equation is possible
only intheinterval 0 <t < 72w (thefirst quarter of the
laser period). We restrict ourselves the range t; < t <
2w; t = t, when t;, = /2w (no return), but t > 12w
when t, < 172w The dependencet(t) isshownin Fig. 1.
It is seen that small values wt; <€ 1 correspond to large
values of the returning time t > 21/w. We neglect their
contribution, although they slightly distort the electron
gjection during the next laser period, because these
electrons have small electron density n, (see below
Eqg. (8)). The approximate solution of Eqg. (5) is then
given by

t=2>

w’t,

8_I|—\
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We can repeat al operations during the next laser
period analogously to the above consideration.

The absorbed energy over one laser cycle per unit
square is given by [2]

1 12T[/0)
E. = évfn|dx| =3 J’ vindt. (6)
2w

The electron number density n, can be found by differ-
entiating Eq. (1) with respect to t; at a fixed value of t
and taking Eq. (2) into account:

dx(t) _

dF
— = —4mn = —Fwcosay,. (7)

dt, ',

Differentiating Eq. (4) with respect to t; at afixed value
of t and substituting the result in Eq. (7), we obtain the
guantity n;:

1
n(t) = ———. 8
0= ®)
Substituting Egs. (3) and (8) in Eg. (6), we find
3
E, = — -
4w
21w . 3 (9)
N [ coswt — cos(wt; + w(t—t,)sinwt,)] at
I (t-t)° '

V2w

Theintegral is done numerically, and E, can be written
as

N (3Fcosh)’,

E. =
° 8nof

(10)

wheren =0.75. In Eq. (10), we substituted the external
field strength F far from cluster by the field strength at
the cluster surface

F. = 3Fcosb,

which is normal to the cluster surface at each surface
point (under the condition that the electric field Fy,
inside the cluster is very small). Here, O is the angle
between the polarization of the linearly polarized laser
field and the normal to the cluster surface.

The maximum number of returning electrons during
one laser cycle per unit square is

F 3Fcosh

4m

[

N =

N
=
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Fig. 1. The universal dependence of the returning timet on
the timet, of the electron gjection according to Eqg. (5).

The averaged energy € of ahot electronis

n(3Fcosd)” _ 3nF?

207 207

_Ee_
€=

i.e, itisof the order of the ponderomotive energy (asin
a rescattering process for an atom [10], but with a dif-
ferent numerical coefficient). The maximum number of
returning el ectrons during onelaser cycle for the whole
cluster is (see dso Eqg. (12) below)

2

2
N, = 2 [ N(2nRsn6)Rdb = 3FR
0

2

The number of free electrons inside the cluster is

4mR° _ wR’

Ne:ne3 3

We then have

For example, when R =20 nm, F = 0.5 a.u. (the peak
laser intensity is approximately equal to 10 W/cm?),
w= 15 eV, and w, = 0.16 au. (single ionization of
atoms in the Kr cluster), we obtain N,/N, = 0.25. The
number of electrons heated during the laser pulse can
be estimated by multiplying the quantity N,/N, by the
number of laser periods w1/2t = 54 (at T = 150 fs).
Thus, the conclusion can be made that all electrons are
heated in the cluster during the laser pulse.
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The mean free time of electron—electron collisions
inside the Kr cluster,

3T3/2
Tee = —_
4./2mn InA

(In/A ~ 10 is the Coulomb logarithm), is larger than the
pulse duration T = 150 fs for the electron temperature
T, > 1.5 keV during the laser pulse. Therefore, thereis
no Maxwell distribution among electrons during the
femtosecond laser pulse [11]. The kinetic energy of the
heated electron in the peak of the laser pulse is € =
3nNF?20? ~25keV at F=0.5au.

The absorbed power | per unit square of the cluster
surface can be found by dividing E, over the laser
period 217w. Thus,

27r]
| = Ficos’®.
 16Tw

(11)
We now integrate | over the cluster surface. The
power W absorbed by the entire cluster is given by

w2

- 2J’Icos 6(2nRsn0)Rde = 27K

6T[00F . (12

3. CLUSTER EXPANSION

The energy of laser radiation isfirst absorbed by the
cluster electrons; then, this energy transforms into the
kinetic energy of theatomicions. The cluster expansion
is a nonequilibrium statistical process due to high
expansion velocities. Thus, the increasing pressure of
the electron gas is not compensated by the external
medium. Therefore, the well-known expression P.dV
(P, is the pressure of the electron gas) of the equilib-
rium statistical physicsis not applicable for derivation
of the expansion work. Instead, we calculate the varia-
tion of the kinetic energy of atomic ions inside the
expanding cluster. We assume that the velocity of the
radial motion of atomic ions v(r) isalinear function of
theradial variabler:

dRr
v =GR

Thekinetic energy of atomic ionsin the spherical layer
having the width dr is

2
2NaMav (1),

dE, = 4mr 5 r,
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where M, is the mass of an atomic ion and n, is the
number density of atomicions. Thetotal kinetic energy
of cluster ions can be obtained by integration over r:

R
n,M,v (r)
E, = J’4 rsz EN Ma%%i%

Wetook into account that the number density of atomic
ionsis
3N,
4TRY

and N, is the total number of atoms in the cluster. The
time derivative of this energy gives the expansion work
produced per unit time:

dE, 3 dRd’R
dt ~ 5 At dt®’ (13)

According to Egs. (12) and (13), the cluster vacuum
heating is determined from the energy balance equation

dE _ 27r]R2FgeX 0 3th

dt ~ 16nw 0 20

(14)

3. dRIR

5 @72 dt g2’
where E(t) isthetotal thermal energy of the heated el ec-
tronsinside the cluster asafunction of timet. The clus-
ter expansion is determined from the Newton equation

3P,

dR _
? " MR (15)
The electron pressureis
_ 2E
P. = 3V

This expression is aso valid for nonequilibrium pro-
cess of the cluster expansion. The electron pressure can
be produced by both the electron—electron collisions
and elastic reflections of electrons from the cluster sur-
face (the latter occurs for high-energy electrons).
Hence,

R _2E
dt® M_N,R’

(16)
where
N, = n,V = const
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isthe number of atomicionsin the cluster. Equations (14)
and (16) are to be solved under the initial conditions

R(—) = Ry, dd—T=0astH—oo,

E(—») = 0.

We introduce the dimensionless radius RIR, — R,
the dimensionless time t/t — t, the dimensionless
electron energy

212

M.N.Rj

and the dimensionless field parameter

E—E,

27 (Fo1)°

~ 16T, N, (17)

Then, the dimensionless universal equations can be
written as

dE _ 2y 6EdR
i sR exp(-3t )_SRdt’
18
dR_E 1o
dt* R

and the initial conditions become

R(—0) = 1, ‘3—? =0 a5t —, E(—m) = 0.

It is seen that the vacuum heating of cluster elec-
trons and the cluster expansion are determined by only
one universal dimensionless field parameter s
(EQ. (17)). In Figs. 2 and 3, the functions R(t) and E(t)
are shown for various values of the parameter s. It
should be noted that the multiple inner ionization of
atoms inside the cluster does not change the obtained
results. It decreasesthe average energy of ahot electron
only. It followsfrom Eq. (18) that the vel ocity of cluster
expansion

Vzg—l?:constastaﬂo,
dt

and

E(t—» +0) Ot~ 0

dueto adiabatic cooling of the cluster electrons after the
end of the laser pulse.

InFig. 4, we present the final dimensionlessvel ocity
of the cluster expansion V(t — +) as a function of
the field parameter sat t — +oo. It is seen that this
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Fig. 2. The universal dependence of the cluster radius R(t)
(inunitsof theinitial cluster radius Ry) ontimet (in units of

the pulse duration 1) for different values of the field param-
eter s (Eq. (17)).

15

10
E@) s

Fig. 3. The universal dependence of the absorption energy
E(t) (inunitsof M N, RS /21?) by acluster ontimet (in units

of the pulse duration 1) for different values of the field
parameter s.

V(t)

— N W A N
T
|

Fig. 4. The final velocity of the cluster expansion V(t) as a
function of the field parameter sast — +oo.

dependence can be approximated by the simple linear
dependence V = 0.8s.

For the laser—Kr cluster interaction at F, = 1 a.u.,
Ry,= 20 nm, and 1 = 100 fs, we find s = 7.0. Then,
V=5.6au. In the usual units, we find V = 5.6Ry/T. It
then follows that V = 1.1 nm/fs, which isin agreement
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with Fig. 3in [12] for the same values of the parame-
ters. Hence, in this example, the maximum kinetic
energy of Kr ions is approximately equal to 530 keV.
Thus, most of the electron heating energy transforms
into the energy of cluster ion expansion; the kinetic
energy of the heated electron in the peak of the laser
pulseis

3nF?

o7 =10keV a F = 1 au.
w

€ =

4. CONCLUSIONS

The hydrodynamic expansion of large Xe clusters
(1.5 x 10° atoms per cluster) was observed at theirradi-
ation by alaser pulse with the peak intensity approxi-
mately 106 W/cm? [13]. The duration of the laser pulse
was T = 200 fs. The authors also took the asymmetric
pressure of the laser field into account in addition to the
hydrodynamic pressure. It can be effective at plasma
resonance when the Mie frequency coincides with the
laser frequency. The field pressure produces an asym-
metric cluster expansion.

Electron kinetic energy spectra were measured
in [14] from the interaction of Kr and Xe clusters with
a high-intensity 800 nm femtosecond laser pulse. The
sizes of clusterswere 10* and 2 x 10° atoms per cluster.
The peak intensity was 5 x 10'® W/cm? at the shortest
pulse duration T = 50 fs. The cutoff in the electron
energy spectrum was found to be at € = 6 keV. Accord-
ing to our approach, the cutoff for electrons inside the
cluster is

3nF2
e = 2No

2
w

=14 keV.

The difference is explained by a decrease of the elec-
tron energy due to the adiabatic decrease of the laser
field strength when the laser pulse turns off (in accor-
dance with the Lawson-Woodward theorem; see
also [15]). Thiscooling is confirmed by numerical sim-
ulation [16] of the interaction of a Xe cluster with a
laser pulse (A = 780 nm, T = 260 fs, 4 x 10> W/cm?).

Hot electron generation by the vacuum heating pro-
cess has been studied in the interaction of 150 fs, 5 mJ,
800 nm p-polarized laser pulses with solid targets[17].
The measurements have suggested that the “vacuum
heating” is the main heating process for hot electrons
with high energies. The energy of the vacuum-heated
hot electrons has been found to be higher than the pre-
diction from the scaling law of resonance absorption.
Particle-in-cell simulations have confirmed that hot
electrons are mainly generated by the vacuum heating
process under certain experimental conditions.
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Spectra of energetic electrons in the 100 keV range
were measured from the interaction of intense femtosec-
ond laser pulseswith clustersof xenon or argon[18]. The
interaction of 28 fs pulses with cluster targets revealed
quite different results with respect to the applied laser
intensity. At the laser intensity 10'® W/cm?, the absorp-
tion by xenon clusters was about 25%; however, at the
laser intensity 107 W/cm?, the laser energy absorption
drastically increased to 78%, and the efficient coupling
between the laser pulse and cluster target produced
electrons with the energy as high as 500 keV. The esti-
mated hot electron temperatures ranged from about 30
to 90 keV depending on atoms.

The Mie resonance is effective only during a very
short time (2-3 fs) because of the very fast cluster
expansion. Therefore, a short increase of the laser field
at the resonance does not result in significant electron
heating. The Mie resonance only appears in the self-
similar expansion model in[1] and resultsfrom the cal-
culation of the dipole moment. InFig. 7in[1], theelec-
tron energy as a function of time has a sharp and nar-
row peak because of the Mie resonance. Then, the elec-
tron energy strongly decreases, such that the Mie
resonance does not actually influence the final electron
heating in accordance with the conclusion in the previ-
ous section.

In conclusion, the vacuum mechanism suggested by
Brunel for irradiation of a planar solid surface by a
high-intensity laser pulse is generalized to the case of
large spherical clusters with the cluster hydrodynamic
expansion taken into account. The universal expres-
sions have been obtained for the absorbed laser energy
by acluster and for the radius of the expanding cluster
asfunctions of time. The absorption of laser energy and
the cluster expansion are determined by only one
dimensionless field parameter s (Eqg. (17)).

ACKNOWLEDGMENTS

This work was supported by the International Sci-
ence and Technology Center (project no. 2155), BRHE
(project no. MO-011-0), and the Russian Foundation
for Basic Research (project nos. 04-02-16499 and
05-02-16383).

REFERENCES

1. T. Ditmire, T. Donnelly, A. M. Rubenchik, et al., Phys.
Rev. A 53, 3379 (1996).

2. F. Brund, Phys. Rev. Lett. 59, 52 (1987).

3. S. Bastiani, P. Audebert, J. P. Geindre, et al., Phys. Rev.
E 60, 3439 (1999).

4. Y. Sentoku, H. Ruhl, K. Mima, et al., Phys. Plasmas 6,
2855 (1999).

5. F Megi, M. Belkacem, M. A. Bouchene, et al., J. Phys.
B: At. Mol. Opt. Phys. 36, 273 (2003).

No.1 2005



VACUUM HEATING OF LARGE ATOMIC CLUSTERS 87

6. V. P. Krainov and A. Roshchupkin, J. Phys. B: At. Mal.
Opt. Phys. 34, L297 (2001).

7. H. M. Milchberg, S. J. McNaught, and E. Parra, Phys.
Rev. E 64, 056402 (2001).

8. V. P Krainov and M. B. Smirnov, Zh. Eksp. Teor. Fiz.
119, 719 (2001) [JETP 92, 626 (2001)].

9. V. P Krainov and M. B. Smirnov, Phys. Rep. 370, 237
(2002).

10. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

11. M. B. Smirnov, Zh. Eksp. Teor. Fiz. 124, 48 (2003)
[JETP 97, 42 (2003)].

12. J. Liu, R. Li, P Zhu, et al., Phys. Rev. A 64, 033426
(2001).

13

14.

15.

16.

17.

18.

. V. Kumarappan, M. Krishnamurthy, and D. Mathur,
Phys. Rev. A 66, 033203 (2002).

E. Springate, S. A. Aseyev, S. Zamith, and M. J. J. Vrak-
king, Phys. Rev. A 68, 053201 (2003).

A. V. Sofronov and V. P. Krainov, J. Phys. B: At. Mol.
Opt. Phys. 37, L329 (2004).

E. Springate, N. Hay, J. W. G. Tisch, et al., Phys. Rev. A
61, 044101 (2000).

L. M. Chen, J. Zhang, Q. L. Dong, et al., Phys. Plasmas
8, 2925 (2001).

L. M. Chen, J. J. Park, K. H. Hong, et al., Phys. Plasmas
9, 3595 (2002).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101 No.1 2005



Journal of Experimental and Theoretical Physics, Vol. 101, No. 1, 2005, pp. 88-97.

Trangated from Zhurnal Eksperimental’ nor i Teoreticheskor Fiziki, Vol. 128, No. 1, 2005, pp. 103-114.

Original Russian Text Copyright © 2005 by Glushkov, Pravdin.

NUCLEI, PARTICLES, FIELDS,
GRAVITATION, AND ASTROPHYSICS

Energy Spectrum and Anisotropy of Cosmic Rays

with E, = 10" eV from Yakutsk EAS Array Data

A.V. Glushkov and M. |. Pravdin

Shafer Institute of Soace Physics and Aeronomy, Sherian Branch, Russian Academy of Sciences,
Yakutsk, 677891 Russia
e-mail: a.v.glushkov@ikfia.ysn.ru
Received November 22, 2004

Abstract—Data from the Yakutsk extensive air shower array for the period 1974-2004 are used to analyze the
energy spectrum and anisotropy of primary cosmic rays (PCRs) with energy E, = 107 V. The spectra from
different regions of the sky are shown to differ in shape. Enhanced and reduced particle fluxes come from the
disks of the Galaxy and the Supergalaxy (the Local Supercluster of galaxies) at E, > 5 x 10'8 eV and E, <

(2-3) x 10 eV, respectively. Thisisinterpreted as amanifestation of the possible interaction between extraga-
lactic PCRs and the matter of these spatial structures. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Ultrahigh-energy (E, = 10 eV) cosmic rays have
been being recorded on the Yakutsk extensive air
shower (EAS) array since 1970 and, in stable operating
conditions, since 1974. Over this period, we have
repeatedly reported the results of our studies of the pri-
mary cosmic ray (PCR) energy spectrum as the experi-
mental data were accumulated [1-5]. The shape and
intensity of the spectrum near the cutoff (~10?° eV) pre-
dicted by Zatsepin and Kuzmin [6] and Greisen [7] are
of great importance in revealing the PCR composition
and formation sources. The experimental results
obtained on different arrays [5, 8, 9] differ in absolute
intensity by afactor of 2, but are similar in shape. The
intensity variations cannot be described by a single
power law. The shape of the spectrum at E, > 10 eV is
consistent with the assumption that the bulk of the PCR
flux originates in extragalactic sources [10, 11]. In this
case, the spectrum must exhibit a cutoff near 10%° eV.
The data from the Yakutsk array [3-5] and the Ameri-
can HiRes array [9] agree with this conclusion, while
the datafrom AGASA (Akeno Giant Air Shower Array)
with alarge number of eventsat E, > 10 eV arein con-
flict with it [8]. We considered this problemin [12, 13].

Until now, the energy spectrum has been studied
without taking into account the locations of the sky
areas from which the PCRs arrived. However, as our
studies showed [14-23], the primary particle flux devi-
ates appreciably from isotropy in different energy
ranges. Below, we consider the influence of this factor
on the energy spectrum and the origin of PCRs with
E,= 10 eV asawhole.

2. THE DATA PROCESSING TECHNIQUE

The primary particle energy and flux on the Yakutsk
array are determined from the classification parame-
ters, estimated with minimum distortions [2-5]. Before
1992, air showers were selected from the entire array
area by the stations that formed equilateral triangles
with 1-km sides (alarge master). Such master triangles
select EASs with E, > 10%8 eV. The charged-particle
density measured by ground-based scintillation detec-
tors at the distance R = 600 m from the EAS axis with
azenith angle ps 00(0), is aclassification parameter for
them. The separation between the master stations at the
center of the array on an areawith a diameter of 1 km
is 500 m (a small master). Here, mostly showers with
Eo = 10% eV, for which pg 300(6) is better determined,
are detected. After 1992, aimost the entire area of the
array was controlled by the small master. This allowed
the spectrum to be analyzed up to its right boundary
with homogeneous event selection conditions.

The Greisen—-Lingley lateral distribution function
(LDF) of charged particles with the parameters esti-
mated on theYakutsk array [24] isused to determinethe
axis coordinates and the parameters Ps go0(Ps; 300):

f(R) O (RIRy) ™ (1+ R/IRy)" ™", (1)

where R, is the Moliere radius ([R,,[J= 70 m for the
Yakutsk array). Subsequently, however, we established
[25] that this LDF for air showerswith E; = 10'° eV is
in poor agreement with the experimental data at dis-
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tances R > 1000 m from the axis. We suggested a mod-
ified fit:

f(R) O (RIRy) ™

2
x (1+ R/Ry)"*°(1 + R/I2000)*°.

For EASs with Ey = 2 x 10% eV, the parameter b is
amost constant, but depends on the zenith angle.
In[13], we determined the axis in such air showers
using thisrefined LDF. As aresult, the pg g0 €stimates
increased, on average, by about 10% for air showers
with the axes located within the array boundaries and
up to 20% for air showers with the axes located on the
array periphery.

The effective area within which the event recording
probability P = 0.9 with allowance made for the fluctu-
ationsof the LDF slopeisused in the standard data pro-
cessing technique to determine the intensity. The total
exposure as afunction of ps e (Ps 300) @d zenith angle
is calculated by taking into account the actually operat-
ing stations at a given time. The limiting area is
bounded by the contour of the corresponding trigger.

To estimate the EAS energy, we use the following
relations:

E, = (48% 1.6) x 10" (ps o(0°))" """ [eV], (3)

Pse00(0°) = Pse00(6)

2 (4)
x exp((sec6—1) x 1020/A,) [m 7],

A, = (450 + 44)
+ (32 15)log(ps s0(0°)) [g em™].

Theerror informula(3) is determined mainly by the
absolute calibration accuracy of the Cherenkov detec-
tors and by the error in the mean atmospheric transpar-
ency [2, 3]. It does not affect the shape of the spectrum,
but is significant for the intensity estimation.

()

3. THE ENERGY SPECTRUM

Thefilled symbolsin Fig. 1aindicate the differential
energy spectrum obtained in [13] for the small
(squares) and large (triangles downward) masters
within the array boundaries and for a sample of events
with E, = 4 x 10*° eV from an expanded area with the
axes going outside the array boundaries (upright trian-
gles). Wetook air showerswith cos6 = 0.5 (6 < 60°) and
divided them into logE, = 0.1 energy bins.

In general, the shape of the spectrum [13] is identi-
cal to that obtained previously [4, 5]. However, the
stringent selection of air showers for the energy spec-
trum leads to the loss of almost all data with E; < 4 x

10% eV. Thisis because only the most reliably detected
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Fig. 1. Differentia (a) and integral (b) energy spectra
obtained on the Yakutsk EAS array: (o) this paper; our
results [13] for the small (m) and large (¥) masters within
the array boundaries; (A) a sample of events with Eg = 4 x

101 eV from an expanded area with the axes going outside
the array boundaries; the dashed lines represent the fits
J(Eg) = EyY with the indicesy; = 3,02+ 0,02, y, = 3.27 +
0.05, and y5 = 2.62 = 0.17.

air showers (with aprobability P = 0.9) recorded by the
master stations when no fewer than eight particles pass
through them are selected. In fact, this criterion is
needed to correctly estimate the event collection area
(at given E, and 8), which can be calculated by numer-
icaly simulating the entire experiment. Here, the fluc-
tuations of the EAS devel opment, which are not always
known completely, play acrucia role.

About 1.2 x 10° air showers have been detected to
date on the Yakutsk array. We performed an additional
anaysis of the events at 10'” < E, < 10*® eV to see
whether they can be used more fully to construct the
energy spectrum. It turned out that the effective detec-
tion area of such air showers could be found empiri-
cally. Thisisdemonstrated by the spectrum indicated in
Fig. 1a by the open circles. It was obtained for EASs
with cosB = 0.6 when the entire data set was divided
into AlogE, = 0.05 energy bins. In the above energy

range, we restricted our analysis to only six master tri-
angles in the central circle of the array with the radius
R =500 m. The spectrum included all of theair showers
that were selected by any of these triangles without any
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Fig. 2. Integral energy spectra: (a) for 28431 and 7504 air
showers with the arrival directions in the Northern (e) and
Southern (o) Hemispheres of the Galaxy, respectively;
(b) for 3270 and 4234 air showerswith the arrival directions
at —10° < bg < 0° (e) and bg < —10° (o), respectively; (c) for
28431 and 3276 air showers with the arrival directions at
bg > 0° (e) and bg = 60° (o) in the Northern Hemisphere of
the Galaxy, respectively.

selection by the number of particles passed through the
stations. It was only required that the EAS axis fall
within one of the six circles of radiusr inscribed in one
of the above six master triangles. The sought-for inten-
sity (at given E, and 0) was determined by increasing
the sizes of these circles (starting from r; = 20 m)
through a sequential increase in their radius r; = 20 +
10(i — 1) until the intensity began to decrease. In this
case, the i + 1 iteration of intensity computation in a
given energy bin (with astep of AlogE, =0.05) ceased
and resumed (from r,; = 20 m) in the next energy bin.

We seefrom Fig. 1lathat the two methodsyield iden-
tical results. Here, three characteristic portions of the
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spectrum are clearly distinguished. The first portion
(dashed line 1) corresponds to a power law

J(Eo) UEy' (6)

with the index y; = 3.02 + 0.02. The second portion in
the energy range E, = (0.7-10) x 10% eV satisfies (6)
withy, = 3.27 £ 0.05. Finally, the third portion (dashed
line 3) reflects the flattest part of the spectrum with the
index y;=2.62+ 0.17. Below, wewill consider and dis-
cuss the shape of the spectrum in more detail. For now,
we call attention only to the small peak at E, = (1-2) x
10%° eV. Recently, a wavelet analysis of Yakutsk array
data has revealed here a local region of cosmic-ray
excess in their arrival directions at a significance level
of 0.007 [26]. The pole with the maximum number of
events has equatorial coordinates d,,, = 35° £ 20° and
Omnax = 52.5° £ 7.5° and liesin the plane of the Supergal-
axy (the Local Supercluster of galaxies).

Figure 1b displaystheintegral spectrum (35935 events)
obtained from the differential spectrum shown in
Fig. 1a. Thetrianglesrepresent theresultsfrom[13] for
the sample of events with E, = 4 x 10 eV from an
expanded effective area with the axes going dightly
outside the array boundaries. We see that the complex
shape of the energy spectrum hereis reproduced with a
much higher accuracy. Therefore, in our subsequent
analysis, we will use the integral spectra.

It was shown in [14-23] that the particle flux at E, >
10 eV deviates appreciably from isotropy in the PCR
arrival directions. The anisotropy has different values
and directions in different energy ranges. We believe
that this PCR peculiarity can be reflected in the energy
spectrum obtained for events from different regions of
the sky. Let usfirst consider the Galaxy. In Fig. 2a, the
filled and open circles indicate the spectra for 28431
and 7504 air showers, respectively, from northern (bg >
0°) and southern (bg < 0°) latitudes. Some of theimpor-
tant features that distinguish the two spectra are seen
here. First, the north—south asymmetry that we have
repeatedly pointed out previously [14, 15, 22, 27] is
clearly seen at 5 x 108 < E; < 2 x 10%° eV. Second, a
statistically significant PCR excess from southern lati-
tudes was al so observed at lower energies with its max-
imum at Ey =5 x 10 eV.

To have amore compl ete picture, let us additionally
consider the PCR spectrum from other regions of the
Galaxy. Figure 2b shows two approximately identical
samples of air showers arriving only from southern lat-
itudes. The spectrum of one of them (3270 air showers)
isindicated by thefilled circles. It contains events from
the latitude band —10° < b < 0° immediately adjacent
to the Galactic disk. The second sample of 4234 air
showers (open circles) includes more southern latitudes
bg < —10°. We see that this sample forms the irregular-

ity of the spectrum at E, = 5 x 10'7 eV noted above.

No.1 2005



ENERGY SPECTRUM AND ANISOTROPY OF COSMIC RAYS 91

In Fig. 2c, the open circles indicate the PCR spec-
trum from the polar (bg = 60°) region of the Galaxy for
3276 air showers. The filled circles indicate the spec-
trum for all eventswith bg > 0° (itisshownin Fig. 2a).
We see that these spectra also differ significantly in
shape. The largest peak compared to the previous spec-
trais observed in the range of maximum energies (E; >
6 x 108 eV). In addition, there is another distinct peak
at E, = 2 x 10'7 eV. All these facts are suggestive of a
complex formation of the PCR fluxes arriving from dif-
ferent areas of the sky.

In [28], the ASAGA team found a statistically sig-
nificant anisotropy at E, = (5-20) x 10%7 eV attributable
to an enhanced PCR flux from aregion near the Galac-
tic center. This result was confirmed and refined by the
Australian team on SUGAR (Sydney University Giant
Air Shower Recorder) [29]. According to the authors of
[28], this flux could be produced by neutrons. It is sur-
mised [30] that such neutrons could originate from sev-
eral most recent gamma-ray burstsin our Galaxy.

Therefore, the spectrum of ultrahigh-energy parti-
cles arriving directly from the Galactic disk is of con-
siderableinterest. We considered a sample of (3713) air
showers with the arrival directions in the latitude band
|bg| < 5°. The disk is represented here in the Galactic
longitude sector 40° < | 5 < 200°, which isobservable on
the Yakutsk array. The spectrum from this region of the
Galaxy isindicated in Fig. 3a by the open circles. For
comparison, the filled circles in this figure indicate the
“background” spectrum constructed from 22 465 show-
erswiththearrival directionsat Galactic latitudes |bg| >
10°, i.e., lying outside the equatorial region of the Gal-
axy. We also excluded all of the events with |bg;| < 10°
that fell into the equatorial region of the Supergalaxy
from the background spectrum. The contribution of the
Supergalaxy is substantial [14-23], and we will con-
sider it below. For now, we note that the Galactic and
Supergalactic planes are almost perpendicular to one
another. They intersect in the part of the sky at a Galac-
tic longitude I = 137.4° surveyed by the Yakutsk array.

In Fig. 3a, we clearly see an excess flux from the
Galacticdisk at E, > (5-7) x 108 eV that is appreciably
higher than the background flux. The region where the
Galactic and Supergalactic planes intersect gives the
largest contribution [23]. The two spectra are almost
indistinguishable at E; < 5 x 108 eV. Thisisunlikely to
agree with the results of [28, 29] where a particle flux
from the central region of the Galaxy was detected.
Instead of the excess that we expected, we see only a
systematic intensity decrease in the spectrum from the
Galactic disk in Fig. 3ain the energy range 5 x 10% <
E, < 2 x 10'8 eV with a small peak at E, = 10'® eV.
Below, we will return to this question.

Let us now consider the PCR spectrum from the

Supergalactic disk. It isindicated in Fig. 3b by the open
circles and includes 4295 air showers. We constructed
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Fig. 3. Integral energy spectra: for 22465 air showers (e)
with the arrival directions outside the equatorial regions of
the Galaxy and Supergalaxy (|bg| > 10° and |bgs| > 10°); for
3713 air showers (o) with Galactic latitudes [bg| < 5° (a) and
for 4295 air showers in the Supergalactic latitude band
—-8° <bgz < 2° (b); for air showers (+) from theregion of the
sky with —8° < bg < 2° and 100° < g5 < 130°.

this spectrum for events from the region with Superga-
lactic latitudes —8° < by < 2°. No intensity error bars
are given in order not to overload the figure (they are
approximately the same as those in the spectrum from
the Galactic disk in Fig. 3a). Thefilled circlesindicate
the background spectrum shown in Fig. 3a by similar
circles.

Here, important, in our view, features are immedi-
ately apparent. First, an excess particle flux higher than
the flux from the Galactic disk is clearly seen in the
equatorial region of the Supergalaxy at E,>5 x 108 eV.
It isenhanced appreciably (crosses) if anarrower sector
(100° < Iy < 130°) istaken in the Supergalactic disk,
with the particle flux peak in the direction with equato-
rial coordinatesa = 79° and & = 74°. Second, 10to 15%
fewer particles than those generally observed for the
remaining part of the sky in the background spectrum
arrive from the Supergalactic disk at 5 x 10Y < E, < 2 x
108 eV.

The results obtained above at E; = 5 x 10 eV were
not entirely unexpected, since there are numerous
experimental data suggesting that the Galaxy plays a
role in the origin of the particles at such energies (see,
e.g., [14, 15, 27, 31-33]). In addition, Yakutsk data
revealed [14-23] that an enhanced PCR flux is aso
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Fig. 4. Variations in the phase of the first harmonic of rela-
tion (7) with energy bin position at AlogE, = 0.05 stepsfor
the sample of showersin the spectrumin Fig. 1.

observed from the Supergalactic disk. Therefore, the
spectrain Fig. 3 only confirmed once again these previ-
ously established facts.

In contrast, the excess particle fluxes in Fig. 2b at
2 x 10'" < E; < 108 eV from southern latitudes and in
Fig. 2c at E, = (1.5-4) x 10% eV from the polar region
of the Galaxy require further investigation. Theseirreg-

ularities of the spectrum probably reflect as yet
unknown astrophysical processes.

Thedecreasein particlefluxesat 5 x 10'" < E; < 2 x
10%8 eV in the Galactic disk in Fig. 3, which is particu-
larly clearly seen in the Supergalactic disk, arouses
great interest. It is so far hard to tell what caused this
decrease. We tested the technique for constructing the
energy spectrum, but found no errors. In general, the
spectrain Fig. 3 are similar. This suggests that the Gal-
axy and the Supergalaxy are somehow identically
involved in the generation of ultrahigh-energy PCRs.

4. THE PCR ANISOTROPY

Let us additionally consider some of the features of
the lateral PCR distribution. Let us analyze the global
PCR distribution on the celestial sphere in equatorial
coordinates. To this end, we use the method of har-
monic analysis [34], which basically consistsin choos-
ing the best values of the amplitude A, and phase ¢, of
the function

f(a) = fo(1+ Ajcos(a—¢,)) (7)
by minimizing

s (fi=N)°

where N; is the number of air showersin sector i (Aa);.
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In this case,

f, ==L = —N
0 n n’ 9)
frox — Fi
A = max min
! fmax+ fmin

We divided the sky into n = 36 spherical sectors. The
anisotropy was studied in the h = AlogE, = 0.15 bins

by sequentialy shifting then in energy by 0.2h. This
was done to analyze in more detail the behavior of the
phase of the first harmonic ¢,, which characterizes the
direction of the maximum of the global PCR flux.

Figure 4 shows the variations in phase ¢, with
energy bin position for the sample of 35935 air show-
ersincluded in the spectrum in Fig. 1. The relative scat-
ter of points in the neighboring bins characterizes the
errorsin the phase. We see that most of the phases clus-
ter near ¢, = 40° (dashed line 1), ¢, = 120° (dashed
line 2), and ¢, = 300° (dashed line 3). Thefirst of them
points to the place of intersection of the Galactic and
Supergalactic planes (Fig. 5) where the data from [23,
26] reveal an absolute maximum of the PCR flux at E, =
8 x 108 eV. The second concentrates near ¢, = 120°.
Thisdirection isin no way associated with the Galactic
plane from where one might seemingly expect an
anisotropy in the flux of charged PCR particles within
the framework of the diffusion model of their propaga-
tion. It points to the Supergalactic plane (Fig. 5).
Finally, the third direction with ¢, = 300° points
directly to the Galactic disk. It coincides with the direc-
tion of the anisotropy detected in [28, 29] a E, =
(5-20) x 107 eV.

The results presented in Fig. 4 suggest that the glo-
bal PCR flux vector in individual energy bins changes
significantly. We believe [14-23] that a substantial frac-
tion of the cosmic rays with E, > 10'7 eV is extragal ac-
tic in origin; therefore, it manifests itself in both the
Galaxy and the Supergalaxy. This is probably embod-
ied in the irregularities of the spectrain Figs. 1-3.

4.1. Eventswith E; > 8 x 108 eV

To analyze the results presented in Fig. 4 in more
detail, let usfirst consider the anisotropy in the arrival
directions of giant air showers (GASs) with E; = 8 x
108 eV. For our analysis, wetook all of the eventswith
zenith angles 6 < 60° whose arrival directions were
determined from at least four stations and whose axes
were within the array perimeter. A total of 559 air
showers were selected in this way.

In addition, we used 522 events from the catal og [ 35]
recorded by SUGAR. These air showers belong mostly
to the Earth’s Southern Hemisphere. Together with the
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Fig. 5. Deviation of the observed number of air showers N; from the expected mean number INCin units of ng = (N — INDQY / ENO

on the developed celestial sphere in Galactic coordinates for PCRswith Eg = 8 x 108 eV and 6 < 60°, as derived from the Yakutsk

EASand SUGAR data[35]: circles 1 and 2 indicate the pole of thelocal PCR excess found in [26] and the exit of the Local Galactic
Arm, respectively; the dark curve represents the Supergal actic plane; the grayscale indicates the ng range.

Yakutsk array data, they give afairly complete picture
of the GAS anisotropy in the surrounding space. The
accuracy with which the directions of the air shower
axes were determined in [35] is about 5°.

We analyzed the deviations of the observed number
of events N; from the expected mean number INCI=

N,(Q,/Q,) in units of the standard o = /[N

N, — INO
N, = T,

(10)
where N; and N, are the numbers of air showersin the
solid angles

Q, = 2m(1- cosB,)
and
Q, = 2m(1 - cosb,),

respectively (8, = 8°, 8, = 45°). The values of n; (10)
were found when a 1° x 1° area was sequentialy dis-
placed over the entire sphere.

Figure 5 shows amap of the distribution of (10) over
the developed celestial sphere in Galactic coordinates.
For the convenience of perception, the equatorial coor-
dinates are also shown here. Circles 1 and 2 mark the
pole of the local PCR excess found in [26] and the exit
of the Local Galactic Arm, respectively. Then, rangeis
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shown at the bottom of the figure in the form of agray-
scale. The darkest and lightest regions correspond to
deviations of the GAS flux from the mean by |n,| = 30.

Figure 5 shows interesting and important results.
First, numerous loca regions with relatively high and
low GAS fluxes are seen here over the entire sphere.
This suggests that the GAS anisotropy is multipolar in
pattern. Second, almost no excess flux is observed in
the Galactic disk if we do not take into consideration
the place of intersection of the Galactic and Superga-
lactic planes at | = 137.4°. There is no dlightest hint at
an excess flux even from the Galactic center, where the
most active and powerful matter conversion processes
take place, athough a statistically significant anisot-
ropy isobserved in thisregion at E, = (5-20) x 10*" eV
[28, 29]. Thereis no excess GAS flux at the exit of the
Local GalacticArm (circle 2) either. This probably sug-
gests that the Galaxy plays a minor role in the genera-
tion of particleswith E, > 8 x 10 eV.

However, acompletely different picture opensupin
the Supergalaxy. A correlation between the GAS arrival
directions and the Supergalactic plane in the Earth’'s
Northern Hemisphereisclearly seenin Fig. 5. This cor-
relation is characterized by the mean value

k
Z (Ng),

(ho0 = .

- (1
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Fig. 6. Variations in ng presented in Fig. 5 when scanning
adong the (a) Galactic and (b) Supergalactic disks; the
dashed curves represent the behavior on average when
smoothed over 30 neighboring points.

Figure 6b shows the variations in (11) when the
scanning solid angles Q, and Q, were sequentialy dis-
placed along a latitude of bg; = —3°. The dashed curve
reflects the behavior of this distribution (the depen-
dence on Supergalactic longitude), on average, when
smoothed over 30 neighboring points. An intense peak
in the sector Alg; = 0°-210°, with its maximum at | g5 =
120°, isalso seen here. However, thereis no such clear
correlation in the Southern Hemisphere, except the
GAS excess in the local region of the sky with equato-
rial coordinatesa = 0° and & = —85° (Fig. 5). Curiously
enough, it lies near the Supergalactic plane in a direc-
tion that isalmost opposite to that of the region with the
largest GAS excess in the Northern Hemisphere.
In [23], we showed that this may not be a coincidence,
but could be related to a certain orientation of the
Supergalactic disk in space, with its edge directly
againgt the flux of extragalactic particles generated by
quasars.

For comparison, Fig. 6a also shows the variations
in (11) along the Galactic disk (in the latitude band
|bg| < 8°). We see that the averaged distribution (dashed
curve) hasamaximum at | ; = 137°, where the Superga-
lactic plane passes (see Fig. 5). Its height (=10) is
approximately smaller by a factor of 2 than that of the
maximum in Fig. 6b at |5 = 120°, suggesting that the
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Supergalaxy plays a dominant role in forming the
excess GAS flux in the region of intersection of the
Galactic and Supergal actic planes.

4.2. Events with Ey = (5-12) x 10'7 eV

Let us now consider in more detail the events with
E, = (5-12) x 10'7 eV that have attracted increasing
attention since the reports [ 28, 29] appeared, especially
since we have observed anomalous changes in the
shape of the spectrum in Figs. 2a, 2b, and 3 in this
energy range.

Figure 7 shows amap (similar to Fig. 5) of the dis-
tribution of (10) in Galactic coordinates for eventswith
the above energies. It characterizes the distribution of
local PCR fluxesin the part of the sky surveyed by the
Yakutsk array. This sample contains 13407 air showers
with cosO = 0.7 included in the spectrum in Fig. 1. The
darkest and lightest areasreflect the deviations n, of the
number of events N, by 3o to the higher and lower val-
ues, respectively, in the scanning cone with

Q, = 2m(1 - cos8°)
from the expected mean

INO = No(Q,/Q))

in units of the standard o = /[N for the number of
events N, in the reference solid angle

Q, = 2m(1- cos20°)

when a 1° x 1° areais sequentially displaced over the
entire portion of the sky under study.

There are numerous local extrema with enhanced
and reduced cosmic-ray fluxesin Fig. 7. They form a
certain pattern that roughly resembles the multipolar
anisotropy in Fig. 5. Light rings with a diameter of
about 30° are seen at some locationsin Fig. 7.

The global anisotropy in the arrival directions of
PCRs with E, = (5-12) x 10% eV is characterized by
Fig. 8, which showsthe distribution of (11) inthe inter-
vals of angles Aa = 1.5°. The dashed curve reflects the
behavior on average when smoothed over 70 neighbor-
ing points. The maximum of this distribution at o =
300° matches the result of our harmonic analysis in
Fig. 4.

InFig. 9, (11) is plotted against latitude in Galactic
(filled circles) and Supergal actic (open circles) coordi-
nates (in the intervals of angles Ab = 1.5°). Here, alat-
itudinal gradient (dashed lines) is clearly seen in both
coordinate systems. Theresultsin Fig. 9 (filled circles)
completely confirm the north—south asymmetry in the
global particle flux that is present in the spectrum in
Figs. 2aand 2bin the form of apeak at 3 x 10 < E, <

2 x 108 eV. If we bear in mind that the North Galactic
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Fig. 7. Deviations of the observed number of air showersN; from their expected mean number ONCin units of ng = (N; — INDQV / ENO

on the developed celestial sphere in Galactic coordinates for PCRs with Eq = (5-12) x 10'7 eV and 8 < 45°: the dark curve, Cqj,
and ACg; are the Supergalactic plane, center, and anticenter, respectively; the grayscale indicates the ng range.

Pole points toward the Supergalactic center (Cg; in
Fig. 7), then, in this case, we cannot exclude the contri-
bution of the latter to the observed gradient. It can man-
ifest itself in stronger absorption of the extragalactic
PCR flux passing through the central region of the
Supergalaxy than that in other directions.

The distribution in Fig. 9 (open circles) agrees with
the spectrum in Fig. 3b. It confirms the existence of a
certain deficit of particles in the latitude band —8° <
by < 2°. The north—south asymmetry in these coordi-

rin
1.0 T T T T T

0.5

-0.5

-1.0

1 1 1 1
120° 180° 240° 300° 360°
a

1
0 60°

Fig. 8. Distribution of (11) in right ascension (in intervals
Aa = 1.5°) for the sample of events in Fig. 7: the dashed
curve represents the behavior on average when smoothed
over 70 neighboring points.
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nates can be interpreted as evidence for an enhanced
PCR flux from the central region of the Galaxy, since
the North Pole of the Supergalaxy has Galactic coordi-
nates | = 47.4° and bg = 3°.

Therole of the disks of the structures of surrounding
space that we considered is reflected in Fig. 10, in
which (11) is plotted against Galactic (filled circles)
and Supergalactic (open circles) longitudes (in the
bands |bg| < 5° and —8° < bg; < 2° represented in the
spectra in Fig. 3). Here, we aso see the gradients

0]
1.0 T T T T

0.5

besc)

Fig. 9. Distribution of (11) in latitude (in intervals Ab =
1.5°) for the sample of eventsin Fig. 7 in Galactic (e@) and
Supergalactic (O) coordinates: the dashed curves represent
the behavior on average.
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-2.0 . '

1 1 1
60 90 120 150 180 210
lG(SG)

Fig. 10. Dependences of (11) on Galactic (e) and Superga-
lactic (o) longitudes in the latitude intervals [bg| < 5° and
-8° < bgs < 2° for the sample of air showers with Eq =

(5-12) x 1017 eV and 8 < 45° presented in Fig. 3: the dashed
line represents the behavior on average.

(dashed line) that point to enhanced particle fluxesfrom
the Galactic center and the Supergal actic anticenter.

Note the local peaks and dips in Figs. 8-10 that
alternate approximately after 30°. We believe that they
did not arise accidentaly, but reflect the (somehow)
ordered structure of the distribution of PCR sourcesin
Metagalactic space. Quasars could be among the
sources of the above energies [18-23]. In [23], we
showed that quasars form a certain structure with the
same characteristic angular irregularities approxi-
mately equal to 30°.

5. CONCLUSIONS

If we attempt to summarize the results obtained
above, then the following picture is possible. We have
already repeatedly reported previously [14-23] that the
PCR flux with E, = 107 eV probably consists of two
components. One of these components is extragal actic
in origin and can be generated by quasars [18-23].
Quasars are among the most powerful sources in the
Universe. They are located at cosmological distances
that significantly exceed the sizes of the Supergalaxy,
not to mention the Galaxy. On their way to Earth, the
ultrahigh-energy particles pass through these struc-
tures. Some of them can be assumed to enter into
nuclear reactions with gas. The gas is concentrated
most densely in the Galactic and Supergalactic disks, in
regions with angular sizesin latitude |b| = 5°-10° [36].
TheexcessPCR fluxesat E;>5x 10 eV inFigs. 2and
3 and the anisotropy in Figs. 4-6 are probably attribut-
ableto thisfactor.

In the region of apparent intersection of the Galactic
and Supergalactic planes (at a = 40.6° and 0 = 59.5°),
the fluxes probably add up to give a local extremum
with the absol ute maximum found in [26].
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As regards energies of (3-5) x 10" < E, < 2 x
108 eV, an appreciable fraction of the extragalactic
PCR flux is apparently also present here. This has
already been reported previously [20-23]. Theintensity
decrease in Fig. 3b compared to the background spec-
trum and the results presented in Figs. 9 and 10 (open
circles) can be interpreted as the absorption of the
extragal actic particles interacting with the Supergal ac-
tic matter. The Galaxy may play asimilar role of thetar-
get in this energy range. It may well be that these two
structures act as targets for extragalactic ultrahigh-
energy particles generated by quasars and other galax-
ieswith active nuclei.

Different particles can be assumed to be produced in
the nuclear reactions that proceed in the Supergalactic
and Galactic gas at E; < 2 x 10 eV and E, = 5 x
10% eV. They reach Earth in the form of cosmic rays
producing EASswith distinctly different characteristics,
as suggested by our experimental data[37—41]. In these
papers, we showed that the experimental data at E, =
(3-5) x 108 eV completely disagree with the existing
theoretical models of EAS development from protons
or the nuclei of any other chemical elements.

The results presented above shed additional light on
the origin of ultrahigh-energy PCRs as a whole. They
point to the importance of taking into account the loca-
tions of the sky regions when comparing the experi-
mental data. We plan to continue these studies.
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Electron Transport, Penetration Depth,
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Abstract—We report on the synthesis and measurements of the temperature dependences of the resistivity p,
the penetration depth A, and the upper critical magnetic field H,, for polycrystalline samples of dodecaboride
ZrB, and diboride MgB,. We conclude that ZrB, behaves as a simple metal in the normal state with the usual
Bloch-Griinei sen temperature dependence of p(T) and with arather low resistive Debye temperature Ty = 280 K
(to be compared to Tz =900 K for MgB,). The p(T) and A(T) dependences for these samples reveal asupercon-
ducting transitionin ZrB,, at T, = 6.0 K. Although a clear exponential A(T) dependence in MgB, thin films and
ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB;, below T./2.
These features indicate an s-wave pairing state in MgB,, whereas a d-wave pairing state is possible in ZrB,.
In disagreement with conventional theories, we found a linear temperature dependence, of H(T) for ZrB,,

(H2(0) =0.15T). © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Therecent discovery of superconductivity at 39K in
magnesium diboride [1] has initiated a booming activ-
ity in condensed matter physics. Thisactivity hasraised
considerable interest in the search for superconductiv-
ity in other borides [2]. Unfortunately, none of natural
candidate MeB,-type diborides of light metals (Me =
Li, Be, Al, Ca) nor any of alarge number of the known
isostructural transition metal diborides (Me = Ti, Zr,
Hf, V, Ta, Cr, Mo, U) have been found to be supercon-
ducting [2]. Only in nonstoichiometric compounds
(MoB,s, NbB, s, Mo,B, W,B, BeB, +5) was supercon-
ductivity observed [3-6]. We note that the earlier spec-
ulation about superconductivity in TaB, [7] (in contra
diction to other published data[2]) has been disproved
by recent resistivity, susceptibility, and specific heat
measurements supported by electronic structure calcu-
lations[§].

These results do not seem to support the application
of the old idea about superconductivity in metallic
hydrogen [9] to the explanation of superconductivity in
MgB, [10]. In spite of this fact, we discuss some
aspects of thisidea. In particular, it is believed that in
MgB,, the averaged phonon frequencies (in other
words, the Debye temperature) must be very high due
to the low mass of the boron, which sharply increases
the prefactor in the McMillan formula for T.. Indeed,

T This article was submitted by the authors in English.

the band structure calculations have shown that elec-
trons at the Fermi level are predominantly boron-likein
MgB, and the superconductivity is dueto graphite-type
“metallic” boron sheets [10]. Furthermore, Eremets
et al. [11] recently observed that the semiconducting
polycrystalline boron (rhombohedral (-B,gs) trans-
forms to a metal under high pressure and even to a
superconductor at about 160 GPa. The critical temper-
ature T.increasesfrom 6to 11.2 K at raised pressure up
to 250 GPa. This observation supports the old idea that
aroute for optimizing T, isin preparation of boron-rich
compounds, even though this does not yet work for
known borides.

In fact, the search for superconductivity in borides
has along history. Matthias et al. [12] discovered sev-
eral superconducting cubic hexa and dodecaborides
(MeBg and MeB,,) in the 1960's. Many other hexa-and
dodecaborides (Me = Ce, Pr, Nd, Eu, Gd, Th, Dy, Ho,
Er, Tm) were found to be ferromagnetic or antiferro-
magnetic. It was suggested that the superconductivity
inYBg and ZrB,, (having the highest T. values 6.5-7.1
and 6.03 K, respectively [3]) might be due to the hypo-
thetical cubic metallic boron. However, amuch smaller
isotope effect on T, for boron in comparison with the Zr
isotopic substitution suggests that the boron in ZrB,
serves as an inert background, and Zr isactualy crucial
for superconductivity [13, 14], even though chemically,
ZrB;, mainly contains boron.

1063-7761/05/10101-0098$26.00 © 2005 Pleiades Publishing, Inc.
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While the superconductivity in ZrB,, was discov-
ered a long time ago [12], there has been little effort
devoted to the study of basic superconductive proper-
ties of this dodecaboride. Only recently were the elec-
tron transport of solid solutions Zr; _,Sc,B;, [15] and
the band structure calculations for ZrB,, [16] reported.
Understanding the electron transport properties of the
cluster borides and the superconductivity mechanismin
these compounds is very important. In this paper, we
attempt to address this problem. We report the temper-
ature-dependent resistivity p(T), magnetic field pene-
tration depth A(T), and upper critical magnetic field
H,(T) for polycrystalline samples of ZrB,,. Compara-
tive data on p(T) and A(T) in MgB, thin films and pel-
lets are also presented.

The structure of this paper isasfollows. In Section 2,
we report on synthesis of ZrB;, and MgB, and the
experimental techniques. Section 3 describes the elec-
tron transport in these compounds. Section 4 describes
the temperature dependence of A in thin filmsand poly-
crystalline samples. The dataon H,(T) are presented in
Section 5.

2. EXPERIMENTAL

Under ambient conditions, dodecaboride ZrB;,
crystallizesin thefcc structure (Fig. 1) of the UB,, type

(space group Fm3m), with the lattice parameter a =
0.74075 nm [17]. In this structure, the Zr atoms are
located at interstitiadl openings in close-packed
B,, clusters [15]. In contrast, the diborides show a
phase consisting of two-dimensional graphite-like
monolayers of boron atoms with a honeycomb lattice,
intercalated with metal monolayers [2]. In our search
for the superconducting diboride compounds, we
observed superconductivity at 5.5 K in ZrB, polycrys-
talline samples that had a few percent amount of ZrB,,
impurity [2]. It was recently suggested [18] that this
observation could be associated with nonstoichiometry
in the zirconium sublattice of ZrB,. To resolve this
issue and to study the electron transport and basic
superconducting properties of ZrB;,, we successfully
synthesized this compound.

Polycrystalline samples of ZrB,, were obtained by
the conventional solid-state reaction. The starting mate-
rials were a zirconium metal powder (99.99% purity)
and a submicron amorphous boron powder (99.9%
purity). These materialswere lightly mixed in appropri-
ate amounts and pressed into pellets 10 mm thick and
20 mmin diameter. The pelletswere wrapped in atung-
sten foil and baked at 2000°C by electron-beam heating
with subsequent slow cooling to room temperature. The
process took place for two hours in a high-vacuum
chamber at 2 x 10 Pa. The resulting polycrystalline
pellets had over 90% of the theoretical mass density
and were black in color. They demonstrated good
metallic conductivity at low temperatures. After
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Fig. 1. The lattice structure of dodecaboride ZrBq,. For
clarity, only By, clusters on the upper face of the lattice are
shown.
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Fig. 2. A typica X-ray 6 — 20 scan of ZrB4, powders (the
lower curve) at room temperature. A similar scan for ZrB,

pellets studied before [2] is presented by the upper curve.
The cycles mark the X-ray reflections from fcc ZrB 5.

regrinding the prepared pellets in an agate mortar, the
respective powders were reheated few times for two
hours.

The powder X-ray diffraction pattern obtained using
CuK, radiation showed that the sampleslargely consist
of the desired ZrB,, phase (Fig. 2). Nevertheless, small
amounts of ZrB, were found to be present and could not
be eliminated by subsequent regrinding and annealing.
A Rietveld refinement of the ZrB,, X-ray pattern, based
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on the fcc UB,,-type structure presented in Fig. 1,
yielded the lattice parameter a = 0.7388 nm to be very
close to the published values [17]. The polycrystalline
MgB, pellets have been sintered using a similar tech-
nigue asoutlined in our earlier work [2]. Thistechnique
is based on the reactive liquid Mg infiltration of boron
powder. X-ray diffraction analysis did not revea the
metallic Mg phase, and we therefore believe that a
rather high resistivity ratio (Rsy«/Rik = 12) is due to
the high quality of our samples.

For this study, two highly crystalline, superconduct-
ing films of MgB, were grown on an r-plane sapphire
substrate in atwo-step process. Deposition of B precur-
sor films via electron-beam evaporation was followed
by ex-situ post annealing at 890°C in the presence of
bulk MgB, and Mg vapor. Scanning electron micros-
copy showed dense films with surface roughness bel ow
5 nm. For the measurements, we investigate films of
500 and 700 nm thick, with the corresponding T, values
38 and 39 K. The details of the preparation technique
are described elsewhere [19].

For the resistance measurements, we used the spark
erosion method to cut the pelletsinto arectangular bars
with dimensions of about 0.5 x 0.5 x 8 mm?. The sam-
ples were lapped with a diamond paste. To remove any
deteriorated surface layers, the samples were etched:
ZrB, in hot nitrogen acid and MgB, in 2% HCI plus
water-free ethanol. A standard four-probe ac (9 Hz)
method was used for resistance measurements. Electri-
cal contacts were made with Epotek H20E silver epoxy.
The temperature was measured with platinum (PT-103)
and carbon glass (CGR-1-500) sensors. A well-defined
geometry of the samples provided for the precise resis-
tivity measurements.

The measurements were performed in the liquid-
helium variable-temperature cryostat in the tempera
ture range between 1.1 and 350 K. Magnetic measure-
ments of the resistivity and the penetration depth on the
polycrystalline samples were carried out using a super-
conducting coil in applied fields of up to 6 T. The dc
magnetic field was applied in the direction of the cur-
rent flow. The critical temperature measured by the
radio-frequency (RF) susceptibility [2] and p(T) was
found to be T, = 6.0 K for ZrB,, samples and 39.0 K
for MgB, samples.

The A(T) dependence in thin films was investigated
using a single-coil mutual inductance technique. This
technique, originally proposed in [20] and improved
in[21], takes advantage of the well-known two-coil
geometry. It was successfully used for the observation
of the Berezinskii—Kosterlitz—Thoul ess vortex—antivor-
tex unbinding transition in ultrathin YBa,Cus0;_,,
films [22] as well as for the study of the A(T) depen-
dence for MgB, films [23]. In particular, this RF tech-
nique measures the change of inductance AL of a one-
layer pancake coil located in the proximity of the sam-
ple. The cail isapart of the LC circuit driven by amar-
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ginal oscillator operating at 210 MHz or by the imped-
ance meter (VM-508 TESLA 2-50 MHZz). The fre-
guency stability of this oscillator is 10 Hz. The filmis
placed at a small distance (about 0.1 mm) below the
coil and isthermally insulated from the coil by aTeflon
foil. Both the sample and the coil are in vacuum, but
the coil holder is thermally connected with a helium
bath, while the sample holder is isolated and may be
heated. During the experiment, the coil was kept at
2.5 K, whereasthe sampl e temperature was varied from
2.51t0 100 K. Such adesign allows us to eliminate pos-
sible effects in temperature changesin L and C on the
measurements. The rea part of the complex mutual
inductance M between the film and the coil can be
obtained as

0 f2
ReM(T) = LoO—>— —

1
CF2(T) @

o8O

where L, and f, are the inductance and the resonant fre-
guency of the circuit without the sample. Inthe London
regime, where high-frequency losses are negligible,
one can introduce the difference between the tempera-
ture-dependent real part of M of the coil with the sam-
ple, ReM(T), and that of the coil at T, ReM,. This dif-
ferenceisafunction of A(T),

e M)
AREM(T) = o[ o ercoth(amy & @
0

where |, isthe magnetic permeability of vacuum, M(q)
playstherole of the mutual inductance at agiven wave-
number g in the film plane and depends on the distance
between the sample and the coil, d is the sample thick-
ness and Y, is the permeability of free space (additional
details can be found in [21]). A change in AReM(T) is
detected as a change of the resonant frequency f(T) of
the oscillating signal. When inserted in Eq. (2), this
change yields a temperature-dependent London pene-
tration depth A(T).

Measurements of A(T) for polycrystaline ZrB,, and
MgB, samples were performed with asimilar LC tech-
nique but using a rectangular solenoid coil into which
the sample was placed. The details of thistechnique are
described elsewhere [24]. For such arrangements,
changes in the resonant frequency f(T) = w/2rt of the
circuit relativeto that above T, f(T,.), and at the minimal
temperature T,, f(T,), are directly related to the induc-
tance of the probe coil and, hence, to A(T) by

(M- 7Ty
F4(T) - 17(Ty)

AT)=A(To) = 0 ©)

Here, f(T,) and f(T,)) are the respective resonant fre-
guencies at T > T, and at the minimal temperature T,
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and o = czp/2nco is the skin depth above T, which
was determined from the resistivity p(T) measure-
ments.

3. ELECTRON TRANSPORT

Figure 3 shows the temperature dependence of the
resistivity for ZrB,, and MgB, samples. The inset dis-
plays the variation of p(T) near the superconducting
transition with zero resistance at 6.0 K (the width AT =
0.04K)inZrB,andat 39K (AT =0.7K) inMgB, sam-
ples. The transition is remarkably narrow for ZrB,
samples, which is a clear indication of good-quality
samples. The transition temperature is consistent with
the previously reported values for ZrB,, (6.03 K) [12—
14] and is comparably larger than that of ZrB, samples
(5.5 K) [2]. Although ZrB,, mostly contains boron, its
room-temperature resistivity is only four times larger
than that of MgB, and ZrB, [ 2], whiletheresidual resis-
tivity is ten times larger. The resistivity ratio for ZrB,,
(p(300K)/p(6 K) = 4) israther low compared to thesin-
gle-crystal value 10 [25]. Although an X-ray diffraction
analysisrevealed small amounts of ZrB, (the nonsuper-
conducting phase [25]), apparently thereisno influence
of this phase on the p(T) dependence, because below T,
the resistivity drops to zero, rather than to the residual
value.

One can predict a nearly isotropic resistivity for fcc
ZrB,,, which can be described by the Bloch—Griineisen
(BG) expression of the electron—phonon (e—p) scatter-
ing rate [26]:

1/t 5 x
p()-p(0) = 4p.t" [ XE = 4p,C3y(11). (4

0 (e - 1)
Here, p(0) istheresidual resistivity, p; = dp(T)/dt isthe
slope of p(T) at high temperatures (T > Tg), t = T/Tg,
and Ty is the resistive Debye temperature. As we can
seefrom Fig. 3, the BG equation describes our datarea-
sonably well, indicating the importance of the ep
interaction for both metals. The best fit to our data is
obtained with Tr = 280 K for ZrB,, and Ty = 900 K for
MgB,.

In contrast to ZrB,,, theresistivity of MgB, samples
does deviate from the BG model at low temperatures.
This problem has been under consideration by severa
groups. In particular, Putti et al. [27] modified the BG
equation by introducing a variable power n for the
t"J,(1/t) term in Eq. (4). The best fit to the data was
obtained with n= 3, which in fact ignoresasmall-angle
e—p scattering. Recently, Sologubenko et al. [28]
reported acubic T-dependenceinthe a, b-planeresistiv-
ity below 130 K in single crystals of MgB,. This was
attributed to the interband e—p scattering in transition
metals.
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Fig. 3. Temperature dependence of the resistivity p for
ZrBq, (open circles) and MgB, (squares) polycrystalline

samples. The solid lines represent the Bloch-Gruneisen fits
to the experimental data in accordance with Eq. (4).

We stress that there are strong objections to this
modified BG model: (i) the cubic p(T) dependenceisa
theoretical model for large-angle e—p scattering, and no
evidence of it was observed in transition and non-tran-
sition metals; (ii) numerous studies of the p(T) depen-
dence in transition metals have been successfully
described by a sum of the electron-electron (e—€), pro-
portional to T2, and e—p, proportiona to T°, contribu-
tions to the low-temperature resistivity, which may be
easily confused with a T® law [26, 29, 30]; (iii) the o—Tt
inter-band e—p scattering plays no role in normal trans-
port in the two-band model for MgB,, [31].

To investigate whether a combination of e—e and
e—p scattering works for our samples, we decided to
add a T?-term to Eq. (4) [29, 30]. We note that the BG
term is proportional to T° at low temperatures. There-
fore, addition of the T?-term results in the following
expression for the resistivity p(T):

p(T)T_zp(O) =a +BT3_ (5)

Here, a and 3 are parameters of the respective e-e and
ep scattering terms. When plotted in the [p(T) —
p(0)]/T? vs T2 axes, such a dependence yields a straight
line with the dlope 3 and the y-intercept (T = 0) equa
toa. The corresponding plot of our data in Fig. 4
clearly displays the expected linear dependences. The
presence of an unusualy large T?-term in MgB, data
(open sguares in Fig. 4) below 150 K is evident (o =
150 pQ cm/K?), whereas the e—p scattering T°-term
is substantially smaller (B = 2.1 x10° pQ cm/K?5).
We note, however, that the a value for MgB, is
almost 40 times|arger than the corresponding valuesin
transition metals such as molybdenum and tungsten
(0o = 25 pQ cm/K? and ay, = 1.5-4 pQ cm/K?
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Fig. 4. Temperature dependence of the reduced resistivity
[p(T) — p(0)]/T? for ZrBy, (open circles) and MgB,

(squares) polycrystalline samples. The solid lines are a
guide for the eye.
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Fig. 5. Temperature dependence of the penetration depth for
aZrBy, sample. The solid lines are aguide for the eye. The
inset shows the data below 3.5 K in an extended scale.

[29, 30]). In contrast, the ZrB,, data display a nearly
zero T2-term.

In genera, there are many scattering processes
responsible for the T2-term in the p(T) dependence of
metals [25]. In particular, umklapp e-e scattering
strongly contributes to this term. Furthermore, normal
collisions are significant in compensated metals and in
thermal resistivity [30]. Borides have a rather high T,
value, which depresses the e scattering, and hence
the e—e term is easier to observe. Clearly, there is no
obvious explanation for such a significant e-e scatter-
ing contribution in MgB,. We believe that additional
experiments on purer samples are necessary before the
final conclusion about the origin of the T?-term in the
p(T) dependence for MgB, can be drawn. Besides, the

T?-term was recently observed in ZrB,, single-crystal
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samples with the large resistivity ratio equal to 10 [25].
Apparently, the T2-term depends on the residual resis-
tivity.

4. PENETRATION DEPTH

Our RF technique allows us to measure the change
in the penetration depth A(T) [24]. We note, however,
that there is some uncertainty in determining the abso-
lute values of A(T) for bulk samples because of error in
the f; determination in Eq. (3). For this reason, we do
not attempt to determine the absolute values of A(0) for
polycrystalline samples from these data but rather find
the temperature-dependent part AA(T) = A(T) —A(1 K).
Figure 5 displays the effect of the superconducting
trangition in ZrB,, on A(T). The striking feature of the
curvesin Fig. 5isthelinear temperature dependence of
AN below T/2 = 3 K. We emphasize that no frequency
dependence of these data was found when oscillator
frequency was varied by afactor of two.

In the BCS theory, the London penetration depth
A(T, ) is identical to the magnetic penetration depth
A(T) in the case of specular and diffuse surface scatter-
ing and for negligible nonlocal effects, i.e., for &(T, |) >
&(T, 1) [24, 32]. Here, | isthe mean free path of carriers
and § isthe coherence length. In a BCS-type supercon-
ductor (with the conventional s-wave pairing) in the
clean limit (I > §), the magnetic penetration depth has
an exponentially vanishing temperature dependence
below TJ/2 (where A(T) is almost constant) [32]:

A(T) :)\(O)[l+ 20 DA(OE}. ©6)

2kgT PO KT

Here, A(0) isthe value of the energy gap and A(0) isthe
magnetic penetration depth at zero temperature.

At the same time, the unconventional d-wave pair-
ing symmetry causes the energy gap to be suppressed
along node lines on the Fermi surface. Thisresultsin a
linear dependence of A(T) —A(0) O T at low tempera
tures. Such a linear T-dependence of A was recently
used as a fingerprint of the d-wave symmetry for Coo-
per pairsin cuprate superconductors[33, 34]. From this
standpoint, one could argue that the linear A(T) depen-
dencein ZrB,, (Fig. 5) may be considered an indication
of the d-wave symmetry of the condensate of Cooper
pairs.

Recently, however, thermodynamic arguments were
suggested [35] that a strictly linear T-dependence of A
at low temperatures violates the third law of thermody-
namics, because it produces nonvanishing entropy in
the zero-temperature limit. Therefore, one should
expect adeviation from the linear T-dependence of A at
very low temperatures. Indeed, recent experiments in
cuprates indicate deviation from the linearity of A(T)
from the current-carrying zero-energy surface Andreev
bound states [36]. We believe that further experiments
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on single crystals of ZrB,, are necessary to confirm
the actual character of the A(T) behavior below 1.0 K.
Such experiments are now in progress and may shed
light on the nature of the pairing state in this dode-
caboride.

Figure 6 displays the change in A(T) in a MgB,
polycrystalline sample. These measurements were
done on samples freely placed in a rectangular sole-
noid coil formingan LC circuit kept at 2.5K. InFig. 7,
we show the temperature variation of A for the best
MgB, film, determined from the one-coil technique
and inversion procedure via Eq. (2). A particular fea-
ture of these figures is a very similar exponential
T-dependence at low temperatures for both film and
polycrystalline samples.

We used the conventiona s-wave approach, Eg. (6),
to fit these data. In both cases, we observe satisfactory
if not perfect agreement between the fits and low-tem-
perature data for thin films. Our fitting parameters (the
superconducting gap value at 0 K) are 2.8 and
2.73 meV for film and polycrystalline samples, respec-
tively. The corresponding reduced gap 2A(0)/KgT, for
these samples was found to be 1.64 and 1.62.

Several recent reports on A(T) measurements |23, 37]
in MgB, provide strong evidence for a predominately
exponential temperature dependence of A at low tem-
peratures, which is consistent with our observation. The
reduced gap obtained from exponential fits to the data
was found to be 1.42 [37] and 2.3 [23] for single crys-
talsand thin films, respectively. These values, aswell as
the value we abtained from our data, are significantly
smaller than the BCSweak coupling value 2A(0)/kg T, =
3.52. Several other groups have claimed that A(T) in
MgB, does follow a power-law or even linear T-depen-
dence [38]. The possible reason for this discrepancy is
that previous studies were limited to temperatures
above 4 K, whereas A(T) shows a clear signature of
exponential behavior only below 7 K (see Figs. 6
and 7). Another problem may arisein use of nonetched
samples, where the damaged surface layer or the prox-
imity effect associated with the presence of a metallic
Mg over layer [19] may significantly complicate the
use of the surface-sensitive techniques.

We emphasize that our values of the superconduct-
ing gap at low temperatures are in the range of values
for 3D T1rbands obtained by point-contact spectroscopy
on MgB, single crystals (Ay(0) = 7.1 meV and A(0) =
2.9 meV for the o and 1tbands, respectively) [39]. Our
data also agree with theoretical values predicted by the
two-band model [40]. Analysis of the overall tempera-
ture dependence of A within the two-band phenomeno-
logical model [41] is now in progress and will be pub-
lished elsewhere. The essential property of this paper is
comparison of the ZrB,, and MgB, low-temperature
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Fig. 6. Temperature variation of the magnetic penetration
depth A for a MgB, sample up to T.. The inset shows the
data below T2 on an extended scale. The solid line repre-
sents the single-gap exponential fit forA(0) = 2.73 meV.
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Fig. 7. Temperature variation of A up to T, for MgB, thin
film on Al,03. The inset shows the data below T/2 on an

extended scale. The solid line represents the single-gap
exponential fit for A(0) = 2.8 meV.

data, where the A(T) dependence has atotally different
behavior.

5. UPPER CRITICAL MAGNETIC FIELD

We now turn to the data on electronic transport in a
magnetic field. Figure 8 presents the magnetic-field
dependent electric resistivity data for ZrB,, polycrys-
talline samples at various temperatures. Two features
are clearly seen: (i) the magnetic field shifts the super-
conducting transition to lower temperatures; (ii) thereis
avery small longitudinal magnetoresistivity in the nor-
mal state. We extracted the completed upper critical
magnetic field H,, by extending the maximal-derivative
dp/dH line (the dashed linein Fig. 8) up to the normal-
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0.2

Fig. 8. Magnetic field variation of the resistivity p(T) in a
linear scalefor aZrBq, sampleat T=5.6 (1), 5.2 (2), 5.0 (3),
4.3(4),3.6(5),3.3(6),2.0(7),1.8(8), 1.2 (9) K. The solid
lines are a guide for the eye and the dashed line describes
how the resistive transition field H,, has been established.

state level. The crossing point of this line and the nor-
mal-state resistivity gave us the value of H, at various
temperatures asindicated by an arrow in Fig. 8. Despite
a clear broadening at higher fields, such onset of the
resistive transition remains well defined. We note, how-
ever, that the resistance may not be anintrinsic property
and may be related to the poor grain connection in our
polycrystalline samples. Therefore, to obtain a better
test for the onset of the superconducting transition, we
measured the RF susceptibility. Figure 9 showsaplot of
the temperature dependence of the resonant frequency f
of our LC circuit as afunction of the longitudinal mag-
netic field. Changes in the resonant frequency are
directly proportiona to the RF susceptibility of the

10.5

10.0

0.15

H, T

Fig. 9. Magnetic field variation of the resonant frequency of
theLC circuit for ZrB4, sampleat thetemperaturesT=5.8(1),
5.0(2), 43 (3),3.3(4), 2.3(5), 1.6 (6), 1.1 (7) K. The solid
lines are a guide to the eye and the dashed line describes a
linear extrapolation of the RF dataused for the H,(T) deter-
mination.
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sample. To deduce H,(T), we used a straight-line fit
representing the maximum of the derivative df/dH (the
dashed line in Fig. 9). This straight line was extended
up to the normal-state frequency values. We defined H,
as the crossing point of this line with the normal-state
frequency f(T). Aswe can seefrom Fig. 9, thispoint is
very close to the onset point of f(T) in this plot, which
makes determination of H,(T) more reliable.

Figure 10 presents the H.,(T) data that we deduced
from these two techniques. A remarkabl e feature of this
plot is a nearly linear increase of H, with decreasing
temperature for both data with no evidence of satura-
tion down to 1.1 K. To obtain the value of H,(0) from
our RF data, we assumed that

dH,
°dT

H,(0) = 0.71T

at zero temperature [42]. This assumption yields
He(0) = 0.11 T, which is substantially smaller than the
extrapolated value 0.15 T, apparently due to non-BCS
or two-gap behavior. Neverthel ess, we used this extrap-
olated number to obtain the coherence length &(0) by
employing the relation H,(0) = @/21t&(0), where @ is
the magnetic flux quantum. It yields §(0) = 60 nm, the
value which is substantially larger than afew-angstrom
coherence length of high-T, superconductors. The
accuracy of our A(T) measurements in ZrB,, did not
allow us to determine the absolute values of A(0).
Therefore, the Ginzburg-Landau parameter Kk = A/¢
cannot be determined from these measurements.

Taken as a whole, the temperature dependence of
H, for ZrB,, isvery similar to that found for MgB,, [43,
44] and BaNbO,, [45] compounds. Unlike in the con-
ventional BCS theory [42], the H,(T) dependence is

HCZ’T
015 T T T T T
O
0.10F -
| |
| |
0.05} a -
1 1 1 1 1
0 1 2 3 4 5 6
T.K

Fig. 10. Temperature variation of the upper critical mag-
netic field of a ZrB,, sample. Different symbols represent
the data determined from p(H) (squares) and f(H) (circles)
data.
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linear over an extended region of temperatures with no
evidence of saturation at low temperatures. Although
the origin of this feature is not completely understood,
similar linear H,(T) dependences have been observed
in other high borides and oxide compounds [43-45].

6. CONCLUSIONS

We successfully performed syntheses of polycrys-
talline samples of dodecaboride ZrB;, and diboride
MgB,. We systematically studied the temperature
dependences of the resistivity p, the magnetic penetra-
tion depth A, and the upper critical magneticfield H, in
these compounds. The el ectron transport and supercon-
ducting properties have been compared with the aim to
shed light on the origin of superconductivity in borides.
Although the standard Bloch-Grineisen expression
describestheresistivity datain ZrB, fairly well, a bet-
ter fit was obtained by adding an electron-electron scat-
tering T?>term in the p(T) dependence of MgB,. This
square term dominates the p(T) dependence below
150 K in MgB,, athough is almost zero for ZrB,.

The temperature dependence of A of both polycrys-
talline and thin-film MgB, samplesiswell described by
an s-wave behavior of the order-parameter symmetry.
Our value of the reduced superconducting gap in MgB,
samples (2A(0)/kg T, = 1.6) is significantly smaller than
the weak coupling BCS value. However, thisvalueisin
a very good agreement with other direct probe mea-
surements of the smaller gap on the 11 sheets of the
Fermi surface. At the sametime, wefind that A in ZrB,,
has a linear temperature dependence over an extended
region of temperatures. This feature may be indicative
of the d-wave pairing, athough additional measure-
ments are needed for the final conclusion. We find that
the upper critical field H,(T) deduced from RF datais
amost the same asthat obtained from the resistive data.
Both techniques demonstrate an unconventiona linear
temperature dependence of H,,, with a considerably
lower value of H,(0) = 0.15 T. We believe that these
observations are clear indicators of the unconventional
behavior of electron transport and superconducting
properties of dodecaboride ZrB;,.
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