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Abstract—Hollow-core waveguides with a periodic (photonic-crystal) cladding are shown to allow efficient
temporal compression of high-intensity ultrashort laser pulses and formation of megawatt soliton-like features
in the regime of robust isolated guided modes. We numerically analyze the temporal envelope evolution and
spectral transformation of the light field in air-guided modes of gas-filled hollow coaxial periodic Bragg
waveguides. Based on this analysis, we define optimal compression regimes, permitting high compression
ratios (of about six) and high compression efficiencies (up to 73%) to be achieved for microjoule laser pulses
with an initial pulse length of 80–400 fs. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Temporal self-action of ultrashort laser pulses is one
of the most interesting phenomena in ultrafast nonlin-
ear optics. Self-phase modulation (SPM) [1, 2], related
to the light-induced, intensity-dependent change in the
refractive index of a nonlinear material, allows
extremely short pulses to be produced and the phase of
laser radiation to be controlled [3]. This effect also
plays an important role in the formation of optical soli-
tons [4–6]. The common strategy of short-pulse com-
pression involves SPM-induced spectral broadening of
a laser pulse within a large propagation length (typi-
cally, in an optical fiber) with subsequent chirp com-
pensation using prism compressors, diffraction grat-
ings, or chirped mirrors [3].

The laser power transmitted through an optical fiber
is limited by self-focusing [1], which leads to an optical
damage of the fiber above a certain critical laser power.

Hollow waveguides [7, 8] represent a powerful and
convenient tool for the transmission and nonlinear-opti-
cal transformation of high-power laser pulses. The
threshold of optical breakdown for gases filling the core
of such waveguides is much higher than typical break-
down thresholds for dielectrics, with the radiation flu-
ence on waveguide walls usually being several orders
of magnitude lower than the radiation fluence at the
center of the waveguide core. Due to this advantageous
combination of properties, hollow waveguides made it
possible to perform several interesting and important
experiments dealing with the physics of high-intensity
ultrashort laser pulses [9]. Hollow-core fibers are
intensely used, in particular, in modern laser systems to
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increase the length of nonlinear-optical interactions of
laser pulses and to enhance nonlinear-optical processes.
Fibers of this type allow high-intensity ultrashort laser
pulses to be spectrally transformed through nonlinear-
optical processes without a laser breakdown in the fiber
core. Self-phase modulation in a gas filling the core of
a hollow fiber makes it possible to produce pulses
shorter than 5 fs [10, 11]. Stimulated Raman scattering
(SRS) of laser pulses in hollow fibers filled with
Raman-active gases results in an efficient generation of
multiple Raman sidebands. In the regime of locked
phases, these Raman sidebands can be employed to
synthesize pulses shorter than 4 fs [12]. Hollow
waveguides can radically enhance high-order harmonic
generation [13–16] and improve the sensitivity of gas-
phase analysis based on four-wave mixing (FWM)
spectroscopy [17–19].

The modes of standard hollow fibers with a solid
dielectric cladding are leaky [7], with the magnitude of
optical losses increasing for these modes as λ2/a3 with
a decrease in the radius a of the hollow core (λ is the
radiation wavelength). There is no way, therefore, to
use standard hollow fibers with very small inner diam-
eters for laser experiments, which usually operate with
hollow fibers with core diameters ranging from 100 up
to 500 µm. Such fibers are essentially multimode. The
losses of guided modes in standard, solid-cladding hol-
low fibers with smaller core diameters are typically
unacceptably high for the transmission and nonlinear-
optical transformations of laser pulses. This circum-
stance prevents the above-described strategies of pulse
compression, based on standard hollow-core fibers,
 © 2005 Pleiades Publishing, Inc.
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from being extended to femtosecond pulses with ener-
gies ranging from a few up to tens of microjoules.

Recently developed hollow-core photonic-crystal
fibers (PCFs) [20, 21] provide a unique opportunity to
transmit high-intensity laser fields in guided modes
with transverse sizes of 10–50 µm. These fibers can
confine waveguide modes of electromagnetic radiation
within the low-index area of the hollow core due to the
high reflectivity of a two-dimensionally periodic (pho-
tonic-crystal) cladding within photonic bandgaps
(PBGs) [20–26]. In these frequency ranges, electro-
magnetic field cannot exist in the form of waves propa-
gating inside the periodic structure of the photonic-
crystal cladding. The reflection coefficient of a periodic
structure within PBGs is much higher than the reflec-
tion coefficient of the material of the cladding, substan-
tially reducing optical losses of air-guided modes in
hollow fibers. PBGs of the PCF cladding are thus
mapped onto passbands in fiber transmission.

Due to the high intensities of laser pulses attainable
in the hollow core of PCFs without an optical break-
down of the fiber and because of the large interaction
length provided by the waveguide geometry, hollow
PCFs can radically enhance nonlinear-optical pro-
cesses, including stimulated Raman scattering [27],
four-wave mixing [28, 29], and self-phase modulation
[30, 31]. As demonstrated by experiments [32, 33], hol-
low PCFs can transmit ultrashort laser pulses in the
regime of temporal solitons. Such fibers can be
employed for the laser guiding of microspecies and
atoms [34], creation of optical switches and limiters for
high-intensity laser pulses [35], and transportation of
high-energy laser pulses for technological [36, 37] and
biomedical [38] applications.

In this work, we will show that hollow PCFs allow
an efficient temporal compression of high-intensity
ultrashort laser pulses, as well as formation of strong-
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n0 r1

r2

r0

Core

Fig. 1. A sketch of the cross section of a coaxial periodic
waveguide. Unshaded and shaded areas correspond to mate-
rials with low (n0) and high (n1) refractive indices, respec-
tively.
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field solitonlike features in the regime of robust isolated
guided modes. We will perform a numerical analysis of
temporal envelope evolution and the spectral transfor-
mation of the light field in air-guided modes of gas-
filled hollow coaxial periodic Bragg waveguides. Based
on this analysis, we will identify optimal compression
regimes, permitting high compression ratios (of about
six) and high compression efficiencies (up to 73%) to
be achieved for microjoule laser pulses with an initial
pulse length of 80–400 fs.

2. MODEL
OF A PERIODIC COAXIAL WAVEGUIDE

For a qualitative analysis of temporal self-action of
femtosecond pulses in hollow PCFs, we employ a
model of a periodic coaxial Bragg waveguide. The
cladding in such a waveguide consists of a stack of
coaxial cylinders with a periodically alternating refrac-
tive index. Physically, the mechanism behind guided-
mode formation in coaxial Bragg waveguides is in
many respects similar to the mechanism of waveguid-
ing in hollow-core PCFs, as electromagnetic radiation
is confined to the low-index hollow core in both cases
due to PBGs of the fiber cladding. The modes of coaxial
Bragg waveguides have been studied in earlier works
[39–43]. In recent years, this effort was, at least par-
tially, motivated by the fabrication and successful dem-
onstration of dielectric coaxial Bragg waveguides [44].
Obviously, the model of a coaxial Bragg waveguide
cannot provide an accurate quantitative description of
guided modes in hollow PCFs. However, this model
allows the basic features of dispersion properties and
transmission spectra of hollow PCFs to be understood
in a simple and illustrative way, providing also a gen-
eral insight into the properties of field intensity profiles
in waveguide modes localized in a hollow core of a
PCF [45].

The cross-sectional structure of a hollow-core coax-
ial Bragg waveguide is sketched in Fig. 1. The
waveguide has a hollow core with a radius a surrounded
by a stack of coaxial cylinders with alternating refrac-
tive indices and thicknesses b and c. The refractive
index is assumed to remain constant within the core and
each of the cladding layers. Equations for the eigen-
modes of such a waveguide are written as

(1)

(2)

where ni is the refractive index of the ith region; k is the
wavenumber; β is the propagation constant; and Ei and
Hi are the electric and magnetic fields in the ith region,
respectively.

∆⊥ k2ni
2+[ ] Ei β2Ei,=

∆⊥ k2ni
2+[ ] Hi β2Hi,=
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The electric and magnetic fields are coupled by the
boundary conditions:

(3)

(4)

where ω is the frequency; θ is the angle in the cylindri-
cal frame of reference; and ri is the radius of the circular
interface between the ith and (i + 1)th regions,

The longitudinal components of the electric and
magnetic fields in the ith layer of the waveguide are

Ei
τ ri θ ω, ,( ) Ei 1+

τ ri θ ω, ,( ),=

Hi
τ ri θ ω, ,( ) Hi 1+

τ ri θ ω, ,( ),=

ri a i b c+( )   for  even   i ,+=

ri a b i 1–( ) b c+( )   for  odd   i .+ +=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
written as [40–42]

(5)

(6)

where Jm and Nm are the Bessel functions of the first and
second kind; Ai , Bi , Ci , and Di are the coefficients
related to each other by the relevant boundary condi-
tions; and ui is the transverse part of the propagation
constant for the ith waveguide mode.

The boundary conditions of Eqs. (3) and (4) can be
represented in the form of matrix equations for
unknown coefficients:

(7)

where

(8)

and

Eiz r θ,( ) AiJm uir( ) BiNm uir( )+( ) mθ( ),cos=

Hiz r θ,( ) CiJm uir( ) DiNm uir( )+( ) mθ( ),sin=

Ti ri( )Ui Ti 1+ ri( )Ui 1+ ,=

Ui AiBiCiDi( ),=
(9)Ti r( )

Jm uir( ) Nm uir( ) 0 0

0 0 Jm uir( ) Nm uir( )

βm

ui
2r

-------Jm uir( )–
βm

ui
2r

-------Nm uir( )–
ωµ0

ui

----------Jm' uir( )
ωµ0

ui

----------Nm' uir( )

ni
2ε0ω
ui

--------------Jm' uir( )
ni

2ε0ω
ui

--------------Nm' uir( ) βm

ui
2
r

--------Jm uir( )–
βm

ui
2
r

--------Nm uir( )–
 
 
 
 
 
 
 
 
 
 
 

.=
The boundary conditions (3) and (4) should be sup-
plemented by the requirement that the field should
remain finite for r = 0, i.e., B0 = 0 and D0 = 0. To com-
plete the set of equations for unknown coefficients, we
also introduce a boundary condition for the field on the
external boundary of the outer layer. The form of the
field along this contour is physically insignificant
because the field amplitude is small on this interface.
The magnitude of losses for the considered type of
waveguide can be found through the calculation of the
coefficient of reflection from the periodic cladding:

(10)

The attenuation coefficient can then be derived by using
the ray approach to the description of waveguide modes
[45, 46]:

(11)

(12)

(13)

R 1
AN( )2 CN( )2+

A0( )2 C0( )2+
----------------------------------.–=

ϕtan
u0

β
-----,=

NR
ϕtan

4a
-----------,=

γ NR R.ln–=
Here, ϕ is the angle between the ray representing the
guided mode and the z axis, NR is the number of reflec-
tions of the ray from waveguide walls per unit length,
and γ is the sought-for attenuation coefficient. Formu-
las (11)–(13) define the losses of guided modes in a
hollow-core waveguide with a periodic cladding.

3. EVOLUTION OF ULTRASHORT PULSES

In this section, we present a model of the temporal
self-action of ultrashort laser pulses in a hollow
waveguide. Analysis of the evolution of high-power
ultrashort field waveforms in a hollow waveguide is a
complex nonlinear problem. In the case of very short
pulse lengths, the standard slowly varying envelope
approximation (SVEA) becomes inapplicable. To
introduce our approach, we start with the generic equa-
tion for the field E(r, ω) propagating in a nonlinear
medium [1]:

(14)

where µ0 is the magnetic permeability and Pnl(r, ω) is
the nonlinear part of the polarization of the medium.

rot rotE r ω,( )[ ]

=  k 
2 n 2 E r ω,( ) µ 0 ω 

2 P nl r ω,( ) ,+
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We split the differential operator appearing in
Eq. (14) into the longitudinal and transverse parts and
separate variables assuming the excitation of only one
waveguide mode:

(15)

(16)

Using the solution to the linear problem in the non-
linear regime in the case under consideration, we, in
fact, neglect spatial self-action. Assuming that the non-
linear polarization is parallel to the applied field, we
derive

(17)

(18)

where βnl is the nonlinear propagation constant and

The differential operator acting on the Fourier trans-
form of the field in Eq. (17) can be represented as

(19)

The identity (19) shows that the solution to Eq. (17)
in the linear case is given by a sum of counterpropagat-
ing waves:

We are interested in the forward wave,

The backward wave is induced by the nonlinear, inten-
sity-dependent modulation of the refractive index along
the z axis, giving rise to the reflection of the forward
wave. This effect is represented by the last term on the
right-hand side of Eq. (19). In the regime when

,

this term is negligible and effects related to the reflected
wave can be ignored. In this case, Eq. (17) is reduced to

(20)

E r ω,( ) E z ω,( )E x y ω, ,( ),=

∂2E r ω,( )
∂z2

------------------------ β2E r ω,( ) µ0ω
2Pnl r ω,( )+ + 0.=

∂2E r ω,( )
∂z2

------------------------ βnl
2 z ω,( )E r ω,( )+ 0,=

βnl
2

z ω,( ) β2 ω( ) µ0ω
2Bnl z ω,( ),+=

Pnl r ω,( ) E r ω,( )Bnl z ω,( ).=

∂2

∂z2
------- βnl

2+ ∂
∂z
----- iβnl– 

  ∂
∂z
----- iβnl+ 

  i
∂βnl

∂z
----------.–=

E z ω,( ) E+ z ω,( ) E– z ω,( ).+=

E+ z ω,( ) E0 ω( ) iβnl ω z,( )z( ).exp∝

∂βnl

∂z
---------- ! βnl

2

∂E r ω,( )
∂z

---------------------- iβnl z ω,( )E r ω,( ).=
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We now expand βnl as a Taylor series including only
the first two terms in this expansion:

(21)

Our equation for the field then reads

(22)

Introducing the retarded time

where Vg is the group velocity for the central wave-
length of the pulse, we rewrite Eq. (22) as

(23)

For ultrashort pulses with broad spectra, the SVEA
approach becomes inadequate. We describe the nonlin-
ear polarization in the approximation of an instanta-
neous, nondispersive third-order nonlinear response at
the frequency of the incident field, neglecting third-har-
monic generation:

(24)

(25)

(26)

where χ(3) is the cubic nonlinear susceptibility of the
medium related to the Kerr nonlinearity and FT{ }
stands for the Fourier transform.

Multiplying both parts of Eq. (23) by E(x, y, ω) and
performing integration over the cross section of the
waveguide, we arrive at the following one-dimensional
equation:

(27)

where

(28)

(29)

(30)

Equation (27) adapts the Maxwell equations to the
self-phase modulation of broadband field waveforms,

βnl β
µ0ω

2

2β
------------Bnl.+≈

∂E r ω,( )
∂z

--------------------- = iβ z ω,( )E r ω,( ) i
µ0ω

2

2β z ω,( )
--------------------Pnl r ω,( ).+

η t z/Vg,–=

∂E r ω,( )
∂z

---------------------- i β z ω,( ) ω
Vg

------– 
  E r ω,( )=

+ i
µ0ω

2

2β z ω,( )
---------------------Pnl r ω,( ).

Pnl r ω,( ) FT Pnl r η,( ){ } ,=

Pnl r η,( ) ε0χ
3( ) E r η,( ) 2E r η,( ),=

E r η,( ) FT 1– E r η,( ){ } ,=

∂E z ω,( )
∂z

--------------------- i β z ω,( ) ω
Vg

------– 
  E z ω,( )=

+ i
µ0ω

2

2β z ω,( )
---------------------Pnl z ω,( ),

Pnl z ω,( ) αε0FT E z η,( ) 2E z η,( ){ } ,=

E z η,( ) FT 1– E z ω,( ){ } ,=

α
χ 3( ) x y,( ) E x y ω0, ,( ) 4 Sd∫∫

E x y ω0, ,( ) 2 Sd∫∫
-------------------------------------------------------------------.=
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Fig. 2. Group-velocity dispersion D (the solid line) and the coefficient of losses Y (the dashed line) for the fundamental mode of a
hollow periodic coaxial Bragg waveguide with a = 3.0 µm, b = 0.5 µm, and c = 1.0 µm. The inset shows the transverse distribution
of the field intensity in the fundamental mode of the waveguide.
making it possible to examine the temporal self-action
of ultrashort laser pulses in hollow waveguides beyond
the SVEA approach.

We now complete our model by adding a damping
term into Eq. (27). This operation gives rise to an imag-
inary part of the propagation constant β. Along with
waveguide losses, damping may include also material
absorption. However, this material part of losses will be
neglected in our analysis. The final form of our evolu-
tion equation is thus written as

(31)

Equations similar to Eq. (31), but derived in a
slightly different fashion, have been earlier employed
to analyze supercontinuum generation and four-wave
mixing in microstructure fibers [47, 48]. We numeri-
cally solved Eq. (31) by using a standard finite-differ-
ence procedure based on the approximation of the elec-
tric field with a discrete function and replacement of the
field derivative in the z-coordinate by the relevant finite
difference. The initial condition was defined by the
spectrum of the pulse at the input of the waveguide at z
= 0 (see Figs. 7 and 8 in Section 5 below). Consumption
of computation time for this procedure was dominated

∂E z ω,( )
∂z

--------------------- i β z ω,( ) ω
Vg

------– 
  E z ω,( )=

+ i
µ0ω

2

2β z ω,( )
---------------------Pnl z ω,( ) γ ω( )E z ω,( ).–
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by the fast Fourier transform for nonlinear polarization
at each step of integration.

4. PULSE SELF-COMPRESSION

Self-phase modulation in a gas-filled hollow
waveguide results in a spectral broadening of a laser

Compression of microjoule femtosecond pulses in the funda-
mental mode of a hollow-core coaxial Bragg waveguide

Central wavelength, µm 0.865 0.850 0.840

Initial pulse length, fs 400 200 80

Initial energy, µJ 1.8 1.0 1.4

Group-velocity dispersion
at the central wavelength,
ps nm–1 km–1

1010 582 440

Propagation distance, cm 20 12 3.0

Dispersion length, cm 12.7 5.7 1.24

Nonlinear length, cm 9.7 8.5 2.4

Minimal pulse length, fs 68 32 14

Energy within the central 
peak, mJ

608 601 1022

Energy fraction in side peaks 47% 35% 27%

Compression efficiency
in pulse energy

34% 60% 73%
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pulse propagating through the waveguide and puts a
chirp on this pulse. Under certain conditions, the result-
ing chirp can be compensated by the waveguide disper-
sion. The elementary theory of self-phase modulation
for narrowband pulses [1, 2] yields the following
expression for the SPM-induced nonlinear phase shift:

(32)

where k0 is the wavenumber for the central frequency
and n2 is the nonlinear refractive index of the medium.
According to Eq. (32), the parameter of the SPM-
induced chirp is given by

(33)

On the other hand, solution of the linear evolution
equation for a Gaussian pulse in the second order of

ϕ t z,( ) k0n2I t( )z,–=

αSPM t z,( ) ∂2ϕ t z,( )
∂t2

--------------------- k0n2z
∂2I

∂t2
-------.–= =

1.8

1.4
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0.82 0.83 0.84 0.85 0.86 0.87

Y, m–1

λ, µm
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λ, µm
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Fig. 3. Spectra of the input pulses (dashed lines) coupled
into the fundamental mode of a hollow periodic coaxial
Bragg waveguide with a = 3.0 µm, b = 0.5 µm, and c =
1.0 µm. The solid lines display the magnitude of losses (a)
and the group-velocity dispersion (b) for the fundamental
mode of this waveguide.
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dispersion theory yields the following expression for
the parameter of the dispersion-induced chirp [49]:

(34)

where

Ld is the dispersion length.

Based on these simple arguments, one can expect
that an anomalous group-velocity dispersion (GVD)
would be needed to compensate for a chirp induced by
SPM in a medium with a positive nonlinear refractive
index.

For the fundamental air-guided mode of a hollow
coaxial Bragg waveguide, the group-velocity dis-

αd t z,( ) zk2
1– z2 Ld

2+( ) 1–
,=

k2 d
2
k

dω2
---------,=

2.0

1.5

1.0

0.5

–600 –400 –200 0 200 400 600

(a)

P, arb. units

t, fs

z = 0 cm

∆t = 68 fs

z = 10 cm
z = 15 cm
z = 20 cm

3.5

2.0

1.0

0.5

0.858 0.860 0.862 0.864 0.868 0.870 0.872

(b)

S2, arb. units

λ, m

z = 0 cm
z = 10 cm
z = 15 cm
z = 20 cm

3.0

2.5

1.5

0.866

Fig. 4. Evolution of the temporal envelope (a) and the spec-
trum (b) of a femtosecond pulse in the fundamental mode of
a hollow periodic coaxial Bragg waveguide with a =
3.0 µm, b = 0.5 µm, and c = 1.0 µm. The input pulse has a
Gaussian temporal envelope with an initial pulse length of
400 fs, the central wavelength of 0.865 µm, and the energy
of 1.8 µJ.
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persion can take both positive and negative values. Fig-
ure 2 shows the group-velocity dispersion for the fun-
damental mode of a hollow coaxial Bragg fused silica
waveguide filled with argon at a pressure of 1 atm. Geo-
metric parameters of the waveguide are a = 3 µm, b =
0.5 µm, and c = 1.0 µm. The inset to Fig. 2 displays the
transverse field intensity profile in the fundamental
mode of the waveguide. Self-compression of laser
pulses in a medium with a positive nonlinear refractive
index requires anomalous group-velocity dispersion,
which is achieved on the right-hand side of the GVD
plot in Fig. 2.

Numerical simulations were performed for laser
pulses with an initial pulse length ranging from 50 up
to 500 fs. The initial pulse shape was assumed to be
Gaussian. Based on the results of numerical simula-
tions, we defined the optimal pulse energy and central
frequency providing the maximum efficiency of pulse
compression. Tuning the central frequency shifts the

1.4

0.8

0.4

0.2

–300 –200 –100 0 100 200 300

(a)

P, arb. units

t, fs

z = 0 cm

∆t = 32 fs

z = 8 cm
z = 12 cm

1.8

1.0

0.4

0.2

0.835 0.840 0.845 0.850 0.860 0.865

(b)

S2, arb. units

λ, m

z = 0 cm
z = 8 cm
z = 12 cm

1.6

1.4

0.8

0.855

1.2

1.0

0.6

1.2

0.6

Fig. 5. Evolution of the temporal envelope (a) and the spec-
trum (b) of a femtosecond pulse in the fundamental mode of
a hollow periodic coaxial Bragg waveguide with a =
3.0 µm, b = 0.5 µm, and c = 1.0 µm. The input pulse has a
Gaussian temporal envelope with an initial pulse length of
200 fs, the central wavelength of 0.850 µm, and the energy
of 1.0 µJ.
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spectrum of the laser pulse relative to the GVD curve
(Fig. 3), thus modifying the effective dispersion profile
sensed by the most powerful components in the spec-
trum of the laser pulse.

Optimization on the space of laser-pulse and
waveguide parameters for the maximum efficiency of
pulse compression is a quite complicated problem,
involving a careful matching of the initial parameters of
the laser pulse with the characteristics of the
waveguide. The table presents three sets of initial
parameters of microjoule femtosecond laser pulses
allowing efficient pulse compression in a hollow coax-
ial Bragg waveguide. Figure 3 displays the initial spec-
tra of these pulses against the GVD profile of the fun-
damental mode in the waveguide under study. The tem-
poral and spectral evolution of the pulses with initial
parameters specified in the table and in Fig. 3 is illus-
trated by Figs. 4–6. With realistic GVD profiles of
waveguide modes, self-compression of the laser pulses

3.0

2.0

1.0

0.5

–100 –50 0 50 100

(a)

P, arb. units

t, fs

z = 0 cm

∆t = 14 fs

z = 8 cm
z = 3 cm

3.5

2.0

1.0

0.5

0.81 0.82 0.83 0.85 0.86 0.87

(b)

S2, arb. units

λ, µm

z = 0 cm
z = 2 cm
z = 3 cm

3.0

2.5

1.5

0.84

2.5

1.5

Fig. 6. Evolution of the temporal envelope (a) and the spec-
trum (b) of a femtosecond pulse in the fundamental mode of
a hollow periodic coaxial Bragg waveguide with a =
3.0 µm, b = 0.5 µm, and c = 1.0 µm. The input pulse has a
Gaussian temporal envelope with an initial pulse length of
80 fs, the central wavelength of 0.840 µm, and the energy of
1.4 µJ.
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Fig. 7. Formation of megawatt quasi-solitonic features. The
temporal envelope (a) and the spectrum (b) of a pulse in the
quasi-soliton regime at a distance of 5 cm from the input
end of the waveguide. The input pulse has a Gaussian tem-
poral envelope with an initial pulse length of 100 fs, the cen-
tral wavelength of 0.830 µm, and the energy of 0.8 µJ.
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is accompanied by the appearance of off-center radia-
tion peaks and other pulse-shape distortions. However,
in all the three cases, the ratio of pulse compression is
quite high (about six). The central peak of the pulse cor-
responding to the highest pulse compression ratio car-
ries up to 73% of the input pulse energy (Fig. 6). These
results demonstrate a unique potential of hollow PBG
waveguides and PCFs for the compression of high-
power ultrashort laser pulses.

5. SOLITON-LIKE FEATURES

In the previous sections, we considered the evolu-
tion of laser pulses within propagation distances com-
parable with dispersion and nonlinear lengths. On such
a spatial scale, self-phase modulation leads to a sub-
stantial spectral broadening of laser pulses. Our numer-
ical simulations show that, within larger propagation
distances, light pulses transmitted through hollow
coaxial Bragg waveguides tend to form quasi-stable
features, similar to optical solitons. Examples of such
soliton-like features are presented in Figs. 7 and 8.

Figure 8 illustrates a quasi-soliton propagation
regime where a pulse with a duration of 115 fs and an
energy of 320 nJ is transmitted over a distance L =
30 cm, which is many times larger than the dispersion
length (1.6 cm) without dramatic changes in its spec-
trum or temporal envelope. The power of the light field
carried by this solitary wave can be as high as 3 MW
under the above-specified conditions. Such megawatt
solitons in hollow PCFs have been recently demon-
strated by Ouzounov et al. [32]. In view of substantial
losses, it is hardly possible to produce true solitons in
waveguide structures considered in this paper. A
decrease in the pulse energy due to waveguide losses
reduces SPM-induced spectral broadening, eventually
leading to a breakup of solitonic features. However, the
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Fig. 8. Evolution of the temporal envelope of a laser pulse in the quasi-soliton regime in a hollow periodic coaxial Bragg waveguide
with a = 3.0 µm, b = 0.5 µm, and c = 1.0 µm: (a) the input pulse and (b) the pulse transmitted over a distance L = 30 cm along the
waveguide. The central radiation wavelength is 0.850 µm.
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stability of the temporal pulse envelope within limited
propagation lengths, demonstrated by our simulations,
makes this regime of waveguiding promising for the
transportation of high-power ultrashort laser pulses.

6. CONCLUSIONS

Numerical analysis performed in this work demon-
strates that hollow-core waveguides with a periodic
(photonic-crystal) cladding permit a highly efficient
temporal compression of high-intensity ultrashort laser
pulses and generation of megawatt solitonic features in
robust isolated guided modes. Self-compression of
ultrashort pulses in such waveguides is based on spec-
tral broadening due to self-phase modulation and com-
pensation of the resulting SPM-induced chirp by a spe-
cially designed dispersion profile of guided modes.
This approach is shown to allow a sixfold compression
of microjoule pulses with an initial pulse length of 80–
400 fs. The central peak of the compressed pulse, cor-
responding to the maximum compression ratio, can
carry up to 73% of the input pulse energy. The mini-
mum duration of the compressed pulse at the output of
a hollow PCF is mainly limited by the width of the
spectral region where the GVD is anomalous. Within
propagation lengths exceeding the dispersion and non-
linear lengths, intense ultrashort pulses can break up
into several quasi-stable soliton-like features. The radi-
ation power transmitted in such quasi-solitary waves
can be as high as several megawatts. The rate of spectral
broadening in such a quasi-soltonic regime of propaga-
tion is much lower than the rate of spectral broadening
characteristic of the initial stage of pulse propagation in
the waveguide.

Thus, hollow-core waveguides with a one- or two-
dimensional photonic-crystal cladding offer unique
possibilities for the compression of high-power femto-
second laser pulses. Due to low losses, the possibility of
tailoring the group-velocity dispersion profile, the
existence of stable isolated air-guided modes, and the
possibility of concentrating the energy of the light field
in guided modes with a small transverse size, these new
waveguides can provide high efficiencies of pulse com-
pression for both high- and medium-energy laser
pulses.
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Abstract—The conditions of existence of the zero components of electric field E and electric induction D
accompanying a volume acoustic wave propagating in a piezoelectric medium have been studied. General equa-
tions describing the positions of the zero-field lines E(m) = 0 and the zero-induction points m0, such that
D(m0) = 0 on the unit sphere (m2 = 1) of the wave propagation directions, are obtained. General theorems deter-
mining the conditions ensuring the existence of such lines and points, even in triclinic crystals, are formulated.
The relationship between such directions and various elements of the crystal symmetry is analyzed. The vector
fields D(m), which are always orthogonal to the wave normals m, in the vicinity of the zero-induction points
m0 exhibit certain orientational singularities characterized by the Poincaré indices n = 0, ±1, ±2. The general
analytical expressions are obtained for the n values in crystals with arbitrary anisotropy and specified for a num-
ber of crystals belonging to various symmetry classes. The conditions of stability of the orientational singular-
ities with respect to small perturbations of the material moduli and a change in the crystal symmetry are con-
sidered. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

As is known, the acoustic wave of displacements in
piezoelectric media is usually accompanied by a quasi-
static wave of the electric potential. This implies that,
using acoustic waves, electric signals can be trans-
mitted at the velocity of sound over a crystal. This pos-
sibility opened the way to numerous applications of
acoustic waves in electronic devices and even led to the
formation of a special field of science called acousto-
electronics. The applied aspect provides an important
stimulus for extensive investigations devoted to various
features of acoustic fields in piezocrystals [1]. These
investigations are also stimulated by basic interest in
the study of new effects in media featuring interactions
of electromechanical fields [2, 3]. The acoustics of
piezoelectric crystals is still an extensively developing
field of solid state physics (see, e.g., review [4]), the
more so that even purely basic investigations in this
field frequently contain ideas for fruitful, albeit not
immediately evident, applications.

It should also be noted that by no means all basic
problems in piezoacoustcs have been solved, especially
for media with arbitrary anisotropy. The anisotropy
often influences the properties of piezoelectric crystals
in a nontrivial way, and may sometimes lead to qualita-
tively new phenomena. In particular, it is very impor-
tant from the practical standpoint to know the wave
propagation directions m for which the electric field
components possess maximum amplitudes [5] and, on
the contrary, to reveal the nonpiezoactive directions [1,
1063-7761/05/10101- $26.000107
3] in which the electric signals are not transmitted. Tak-
ing into account that, irrespective of the anisotropy, the
electric field in an acoustic wave is always longitudinal
(E || m) and the electric induction is always transverse
(D ⊥  m), we have to distinguish [3] between the direc-
tions of longitudinal and transverse nonpiezoactivity in
which E = 0 and D = 0, respectively, in any crystal. This
paper presents the results of investigations aimed at a
detailed analysis of the nonpiezoactivity of both types.
Previously, only rather fragmentary data have been
reported on these issues in the available literature.

Another important aspect of this problem is related
to directions m, in the vicinity of which the vector fields
of the amplitudes of displacements (u) and the accom-
panying electric components (E, D) exhibit singulari-
ties. According to the results obtained in [6, 7], this very
situation takes place near the acoustic axes, where the
orientational singularities in the degenerate branches of
natural waves are observed for the u and D fields, and
the amplitude singularities, for the E field. This paper
deals with orientational singularities of a new type,
which occur in the vicinity of the transverse nonpiezo-
activity directions in the vector fields D(m), that is,
around the points m0 on the unit sphere such that
D(m0) = 0.

Below we will formulate, proceeding from the gen-
eral expressions describing the electric components Eα
and Dα as functions of the direction of wave propaga-
tion in a crystal for all three branches of the acoustic
spectrum (α = 1, 2, 3), the equations determining spe-
 © 2005 Pleiades Publishing, Inc.
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cial directions m for which either Eα(m) = 0 or
Dα(m) = 0. These directions have different dimension-
alities: the typical solutions appear as zero-field lines
(Eα = 0) and zero-induction points (Dα = 0) on the unit
sphere m2 = 1. The equations obtained will be analyzed
both in the general case and in application to various
particular crystal symmetry classes. The two types on
nonpiezoactivity are closely related to the crystal sym-
metry, but they can also exist in triclinic crystals pos-
sessing no elements of symmetry. The corresponding
theorems of existence are proved.

The possible types of singularities in the vector field
Dα(m) in the vicinity of the transverse nonpiezoactivity
directions will be considered. In particular, it will be
shown that, depending on the material moduli, the sin-
gularity in an isolated point m0 may be characterized by
the Poincaré indices (topological charges) n = 0, ±1, ±2.
The general analytical expressions will be obtained for
the n values in triclinic crystals with arbitrary anisot-
ropy and specified for a large series of crystals belong-
ing to particular crystal symmetry classes. Only the
solutions corresponding to singularities with n = ±1 are
topologically stable, while singularities of the other
types either split or disappear upon an arbitrary triclinic
perturbation of the material tensors. However, the sum
of indices for any splitting must be equal to the initial
index n.

2. FORMULATION OF THE PROBLEM 
AND SOME MAIN EQUATIONS

As was mentioned above, some purely mechanical
characteristics, including the elastic displacement vec-

tor u(r, t), the distortion tensor (r, t), and the stress
tensor (r, t), are related to such electrical quantities as
the potential φ(r, t) and the electric field strength E(r, t),

and induction D(r, t). The fields of (r, t) and E(r, t)
can be expressed in terms of their own potentials as

(1)

The interrelation of these characteristics is explicitly
expressed by the coupling equations [8]

(2)

where cijkl =  is the tensor of elastic moduli, ekij =  is
the tensor of piezoelectric moduli, and εik =  is the per-
mittivity tensor. In such a piezoelectric medium, the
volume acoustic wave with the wavevector k = km and

β̂
σ̂

β̂

β̂ r t,( ) ∇ u r t,( ), E r t,( ) ∇φ r t,( ).–= =

σij cijklβkl ekijEk, Di+ eiklβkl εikEk,–= =

ĉ ê

ε̂
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the phase velocity v  must be a superposition of
mechanical and electric dynamic fields:

(3)

These fields obey the usual equations of motion [8]

(4)

where ρ is the density of medium. Here, we use the
well-known quasi-static approximation valid to within
the terms proportional to the ratio (v /c)2 ~ 10–10 (c is the
velocity of light). Combining the above relations, we
readily obtain a homogeneous equation for the polar-
ization vector u0 [3, 9]:

(5)

where

(6)

symbol ⊗  denotes the dyadic product, and  is the unit
matrix. A necessary condition for the existence of non-
trivial solutions of the homogeneous equation (5) is

(7)

This is a cubic equation for the square phase velocity
(v 2), which determines the three branches of the veloc-
ity of the volume acoustic waves vα(m) (α = 1, 2, 3).

Orientations of the corresponding mutually orthog-
onal polarization vectors u0α(m) of the isonormal natu-

ral waves can be expressed in terms of the  matrix,

which is adjoint to the matrix (m) ≡ (vα(m), m)

and is determined from the condition  = det .
As can be readily checked, Eq. (5) for any vector c such

that c ≠ 0 is satisfied for

(8)

It should be emphasized that the direct relation (8)
between the polarization vector u0α(m) and the wave
normal m will be widely used in the subsequent ana-
lysis.

Once the field of elastic displacements for a given
wave branch uα(r, t) is known, we can also determine
the corresponding electric components (see, e.g., [8]).
For the subsequent analysis, these components are con-

u φ,{ } u0 φ0,{ } ik m r⋅ v t–( )[ ] .exp=

divσ̂ ρu̇̇, divD 0,= =

F̂ v m,( )u0 F̂
0( )

e e/ε⊗+[ ] u0≡ 0,=

F̂
0( )

mĉm ρv 2 Î ,–=

e mε̂m, ε m ε̂m,⋅= =

Î

detF̂ v m,( ) 0.=

F̂α

F̂α F̂α

F̂α F̂α Î F̂α

F̂α

u0α F̂α m( )c.||
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veniently represented (by analogy with Eqs. (3)–(8)) in
a coordinate-free form as

(9)

(10)

Relations (9) together with condition (8) essentially
determine the functions Eα(m) and Dα(m) necessary
for the subsequent analysis.

As can be readily seen, m  ≡ 0. This relation and
the third relation in (9) clearly illustrate the well-known
property (see Section 1) according to which the electric
field Eα(m0) is purely longitudinal, whereas the induc-
tion Dα(m0) is purely transverse:

(11)

On the other hand, the same identity m  = 0 implies

one useful property of the  matrix:

(12)

which indicates that this matrix is planar and, hence,
can be represented as a sum of two dyads.

φα e uα /ε, Eα⋅ ikφαm, Dα– N̂uα ,= = =

N̂ êm ε̂m( )– mêm/mε̂m.⊗=

N̂

Eα m, Dα m.⊥||

N̂

N̂

detN̂ 0,=
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3. EXAMPLES 
OF TRANSVERSELY ISOTROPIC 

PIEZOELECTRICS

There are three groups of piezoelectrics which
exhibit a transverse isotropy of their acoustic proper-
ties. These media belong to the following classes of
symmetry [10]:

∞2, 622, (13)

∞m, 6mm (14)

∞, 6. (15)

Owing to the transverse isotropy, the formulas pre-
sented below contain only the polar angle θ between the
m vector and the z axis coinciding with the main axis of
symmetry. Without loss of generality, we may proceed
with the analysis upon selecting any cross section con-
taining the main axis. Here, it is convenient to choose

(16)

In these coordinates, the  matrix in Eq. (6) for all
the six classes of symmetry (13)–(15) have the same
quasi-diagonal form [11]:

m m1 0 m3, ,( ) θsin 0 θcos, ,( ).≡=

F̂
0( )
(17)F̂
0( )

c11m1
2 c44m3

2 ρv 2–+ 0 dm1m3

0 c66m1
2 c44m3

2 ρv 2–+ 0

dm1m3 0 c44m1
2 c33m3

2 ρv 2–+
 
 
 
 
 
 
 

,=
where d = c13 + c44. The m vector and, hence, the ε
scalar in Eq. (6) are also the same for all symmetry
classes (13)–(15) [10]:

(18)

However, the form of the electric vector e according to
Eq. (6) for the transversely isotropic crystals of three
types is different. For the piezoelectric media belonging
to classes (13) and (14), the electric vectors are
expressed as

(19)

(20)

ε̂

ε̂m ε1m1 0 ε3m3, ,( ),=

ε ε1m1
2 ε3m3

2.+=

e e14 0 m1m3 0,,( ),=

e e15 e31+( )m1m3 0 e15m1
2 e33m3

2+, ,{ } ,=
S

respectively. For a medium of the symmetry class (15),
the electric vector is given by a sum of expressions (19)

and (20). Thus, the structure of the  matrix (5) for
classes (13) and (14) is the same as in (17), but this con-

clusion is not valid for the  matrix of the symmetry
classes (15), which contains no vanishing elements. In

the same coordinates, the  matrix for the piezoelec-
tric media belonging to classes (13) and (14) has the
following form:

(21)

F̂

F̂

N̂

N̂ e14

0 ε3/ε( )m3
2 0

m3– 0 m1–

0 ε3/ε( )m1m3
2– 0

 
 
 
 
 
 
 

,=
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(22)

respectively. For a medium of the symmetry classes

(15), the  matrix is (by analogy with vector e) given
by a sum of expressions (21) and (22). In classes (13)
and (14) of higher symmetry, one of the natural wave
branches for any direction m is purely transverse:

(23)

Such purely transverse waves of the t mode are fre-
quently called SH waves. The other two branches are
polarized in the {m1, m3} plane:

(24)

where

(25)

The electric components of the above wave fields can
be also determined for an arbitrary direction m. For a
medium of the symmetry class (13):

(26)

In a less simple case of the symmetry class (14), we
present only the result for the t branch:

(27)

The structure of acoustic waves in the media belong-
ing to the symmetry classes (15) is more complicated.
In this case, even a purely symmetric branch (ut || y)
exists only in the xy basis plane.

N̂
e15m3 0 e15m1

0 e15m3 0

e31m1 0 e33m3 
 
 
 
 

=

–
1
ε
---

e15 e31+( )ε1m1
2m3 0 e15m1

2 e33m3
2+( )ε1m1

0 0 0

e15 e31+( )ε3m1m3
2 0 e15m1

2 e33m3
2+( )ε3m3 

 
 
 
 
 
 

,

N̂

ut 0 1 0, ,( ),||

ρv t
2 c66m1

2 c44m3
2 e14

2 /ε( )m1
2m3

2.+ +=

ul t', 2dm1m3 0 ∆14
– m1

2– ∆34
– m3

2 R±+, ,( ),||

ρv l t',
2 ∆14

+ m1
2 ∆34

+ m3
2 R±+( )/2,=

R ∆14
– m1

2 ∆34
– m3

2–( )2
2dm1m3( )2+ ,=

∆ij
± cii c jj.±=

φt e14/ε( )m1m3ut,=

Dt e14 ε3/ε( )m3
2 m3 0 m1–, ,( )ut,=

φl t', m( ) 0,≡
Dl t', e14 0 1 0, ,{ } m1 ul t',( )3 m3 ul t',( )1+[ ] .–=

φt m( ) 0, Dt≡ 0 e15m3 0, ,( )ut.=
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4. ZERO ELECTRIC FIELD LINES
ON THE UNIT SPHERE

According to the second relation in (9), the electric
field amplitude distribution on the unit sphere of the
wave propagation directions is described by the equa-
tion

(28)

which shows that the zero values of Eα(m) coincide
with those of the potential φα(m) = e(m) · uα(m)/ε.
According to condition (8), these directions are deter-
mined by the equation

(29)

The acoustic waves (3) propagating in these directions
contain no electrostatic components Eα , as in a nonpi-
ezoelectric medium. Even a nonzero induction field
Di = eijkuk, j in these directions does not influence the
parameters of the displacement wave.

The scalar equation (29) poses only one limitation
on the direction of the wave normal m ≡ m(θ, ϕ) as a
function of two spherical angular coordinates). In other
words, Eq. (29) determines a line (or several lines) of
nonpiezoelectric directions (in which Eα = 0) on the
sphere m2 = 1. It should be noted that the condition of
longitudinal nonpiezoactivity,

(30)

in some special cases can be satisfied even on the whole
m2 = 1 sphere. This takes place, in particular, in the
transversely isotropic crystals belonging to the symme-
try classes (13) (for the l and t ' modes (26)) and (14)
(for the t mode (27)). For all other crystals, including
transversely isotropic crystals belonging to the symme-
try classes (15), the geometric locus of the longitudinal
nonpiezoactivity as the form of lines on the unit sphere
m2 = 1. Such lines also exist in the piezoactive branches
of the aforementioned high-symmetry media belonging
to symmetry classes (13) and (14). For example, the
zero-field lines Eα = 0 in the l and t' branches of the
media of classes (14) and (15) appear at the intersection
of the m2 = 1 sphere with the cones of directions
defined by the polar angles θl and θt ' as

(31)

For simplicity, these expressions are written in an
approximate form corresponding to the case of a weak
electromechanical interaction and a small elastic
anisotropy. Nevertheless, one can readily check that the
exact condition for the existence of the aforementioned

Eα m( ) const φα m( )m,⋅=

e m( ) F̂α m( )c⋅ 0.=

e m( ) uα m( ),⊥

θltan
2

e33/ 2e15 e31+( ),–≈

θt'tan
2

e15 e31 e33–+( )/e15.≈
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nonpiezoactivity cones is the positive determinacy of
the right-hand parts of the approximate formulas (31).

It is possible to prove that the longitudinal nonpi-
ezoactivity lines in fact exist virtually in all (even tri-
clinic) crystals. Let us consider a crystal with arbitrary
anisotropy, which contains at least one acoustic axis of
the general (conical) type. Here, it should be noted that
no one real crystal without acoustic axes and no one tri-
clinic crystal without conical axes are known so far. As
was demonstrated in [12, 13], the polarization fields of
elastic displacements u0α(m) for the volume natural
acoustic waves in such a crystal can be arranged on the
m2 = 1 sphere so that one is even,

(32)

and two are odd,

(33)

The nondegenerate branch u03(m) is always odd and
continuous on the entire sphere of wave directions. As
for the degenerate branches, u01(m) and u02(m), their
evenness depends on the representation and can be
changed simultaneously. These branches are continu-
ous at all points of the sphere except for some non-
closed lines on which the u01(m) and u02(m) functions
change sign. Such lines can be arbitrarily deformed on
the unit sphere without changing the positions of termi-
nal points (coinciding with the points of degeneracy).
In fact, the representation is chosen by setting certain
fixed positions of the sign reversal lines (coinciding for
both degenerate branches).

One can readily check that the aforementioned
properties of the fields of elastic displacements, which
were established in [12, 13] for purely elastic media,
are also valid for piezoelectrics. Taking into account
that, according to relations (33), the u03(m) function is
odd and the e(m) function is (by definition (6)) even,
we may conclude that the potential

is an odd function

(34)

This result implies that, for any path connecting the
opposite points m and –m on the unit sphere, there
exists at least one point m0 such that φ03(m0) = 0. In
scanning the paths on the unit sphere, points m0 will
apparently form a closed line representing a geometric
locus of the directions of longitudinal nonpiezoactivity
for the nondegenerate branch.

For the degenerate branches φ01(m) and φ02(m), the
considerations should be somewhat modified, while
being still generally analogous to those used in solving

u02 m–( ) u02 m( ),=

u01 m–( ) u01 m( ), u03 m–( )– u03 m( ).–= =

φ03 m( ) e m( ) u03 m( )/ε⋅=

φ03 m–( ) φ03 m( ).–=
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a similar problem [12] concerning the existence of
the lines of solutions in the degenerate branches of
special volume waves in semi-infinite elastic media.1

Not reproducing these considerations here, we only for-
mulate the result: the longitudinal nonpiezoactivity
lines exist in both degenerate branches and pass from
one branch to another at the degenerate points. Thus,
the following theorem of existence is valid:

All three wave branches in an arbitrary crystal
containing conical acoustic axes must possess lines
of longitudinal nonpiezoactivity directions on the
unit sphere.

It should be also noted that, when a wave propagates
along an acoustic axis md of any type, the continuum of
possible orientations of the wave polarization u in the
plane of degeneracy always contains a vector orthogo-
nal to the e(md) direction. This ensures nonpiezoactiv-
ity of the corresponding wave. Therefore, the acoustic
axes must belong to the lines of longitudinal nonpiezo-
activity.

The elements of crystal symmetry can become an
independent factor accounting for the phenomenon of
nonpiezoactivity under consideration. According to [1],
any symmetry axis determines the direction of nonpi-
ezoactivity for purely transverse modes, while a sym-
metry plane is the geometric locus of nonpiezoactive
directions for the corresponding SH waves. Let us
consider, for example, a monoclinic piezoelectric
crystal belonging to one of the two possible symmetry
classes: m or 2. In the first case, the electric vector e of
a wave propagating in a plane of symmetry m must be
orthogonal to the polarization vector of the t branch
and, hence, occur in this plane. In the second case, the e
vector for a wave normal occurring in the plane perpen-
dicular to the dyad (2-fold) axis of symmetry must be
parallel to this axis and, hence, orthogonal to polariza-
tion vectors (belonging to said plane) of the l and t'
waves. Naturally, the latter property is valid for
any other symmetry axis of even order. In monograph
[1], this rule was formulated for planes orthogonal to
the tetrad (4-fold) and hexad (6-fold) axes.

In particular, the coordinate planes of the crystal
system orthogonal to the tetrad and dyad axes in cubic

piezoelectrics (symmetry classes 3m and 23) must be
nonpiezoactive for the corresponding l and t' branches.
At the same time, the diagonal planes of {110} symme-
try are nonpiezoactive for the corresponding t waves.
One can readily check that, in the vicinity of the coor-
dinate axes, the potential amplitudes for these branches
can be represented as (Fig. 1)

(35)

(36)

1 The authors are grateful to A.L. Shuvalov for attracting their
attention to this circumstance.

4

φl t', θ2 2ϕ ,sin∝

φt θ2 2ϕ .cos∝
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5. ZERO-INDUCTION POINTS 
ON THE UNIT SPHERE

5.1. General Case of Arbitrary Anisotropy

Now let us consider the conditions determining the
propagation directions m0 in which the electric induc-

tion vector Dα = uα defined in (9) vanishes. Taking
into account identity (12) and the definition of the
adjoint tensor

(37)

one can readily check that Dα = 0 for the directions m0

such that uα || d, where d is any vector obeying the

condition d ≠ 0. For these directions m0, according
to condition (8), we also have

(38)

In the general case, this condition gives two equations
with two unknowns θ and ϕ, which determine the posi-
tions of isolated points m0(θ, ϕ) such that Dα = 0 on the
unit sphere m2 = 1.

There is the well-known Brouwer theorem in the
topology, according to which any continuous transform
on a sphere, not mapping any point by its antipode, has
at least two stationary points.

Now let us consider a distribution of vectors Dα(m)
continuous everywhere on the m2 = 1 sphere. The con-
tinuity of Dα(m) is ensured when the corresponding
branch α is nondegenerate. According to Brouwer’s
theorem, this distribution of Dα vectors tangent to the
sphere must have two stationary points for which
Dα = 0. On the other hand, relations (9) and (10) imply
that this distribution also possesses an additional prop-
erty: Dα(–m) || Dα(m). For this reason, the pair of points

N̂

N̂ N̂ ÎdetN̂ ,=

N̂

N̂

F̂αc N̂d.||

y

x1

2
3

(a) (b) y

x

1 1

1

2

22

3

33
3

3

3

3 21

2

2

ϕ

1

1

1
2

Fig. 1. Polar diagrams of the electric potentials (a) φl, t '(ϕ)
and (b) φt(ϕ) at θ = const in the vicinity of the (0, 0, 1) direc-
tion in a cubic piezoelectric crystal. Numbers 1, 2, and 3
refer to the angles θ1 < θ2 < θ3; solid and dashed lines cor-
respond to the potentials of different signs.
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stipulated by Brouwer’s theorem includes the inver-
sion-equivalent stationary points m0 and –m0. Thus, the
following theorem of existence of the transverse nonpi-
ezoactivity directions is valid:

In any crystal of arbitrary anisotropy, each nonde-
generate branch must contain at least one inversion-
nonequivalent zero-induction point m0 such that
Dα(m) = 0 on the unit sphere of directions. 

Therefore, the zero-induction points in a wave field
Dα(m) must exist even in triclinic crystals. Of course,
the positions of such points in the general case (i.e., the
solutions to Eq. (38) in the general form) cannot be
found analytically. However, in some more symmetric
crystals, the nonpiezoactive directions m0 can be deter-
mined without cumbersome computations.

5.2. Zero-Induction Points Related to Elements 
of the Crystal Symmetry 

5.2.1. Longitudinal waves propagating along
symmetry axes. Let us consider a wave propagating
the direction m0 in a piezoelectric crystal, which coin-
cides with a symmetry axis of any order except for dyad

axes (e.g., this can be the 3, 4, , 6, or -fold axis). As
is known [11], any symmetry axis (including a dyad
axis) is a longitudinal normal. Evidently, the electric
induction Dl(m0) accompanying the given longitudi-
nal wave (ul || m0) must be zero, since otherwise the
Dl(m0) vector would possess two equivalent orienta-
tions (to contradict the single-valuedness of the third
relation in (9)):

(39)

It should be noted that these considerations are not
valid in the case of transverse branches, which are
always degenerate for the selected direction, that is,
possessing equal phase velocities (v t = v t ') and, hence,
arbitrary orientations of ut, t ' and Dt, t ' in the plane:

(40)

The wave propagating along a dyad axis should be
treated separately (albeit with the same result). In the
general case, this direction is not an acoustic axis. On
the other hand, the uα and Dα vectors are determined to
within the sign and, hence, their rotations around the
dyad axis cannot be considered as different solutions.
One can readily check that, for a wave propagating
along the dyad axis, the transverse branches are charac-
terized by nonzero induction vectors. However, now we
will show that the longitudinal branch in the same
direction always obeys the relation Dl(m0) = 0. Com-

4 6

Dl = N̂ m0( )m0.

ut t', Dt t',, m0.⊥
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bining condition (39) with relation (10) for m = m0, we
obtain

(41)

Let us check that the right-hand part of this expression
vanishes even for a monoclinic crystal of the symmetry
class 2. Indeed, selecting the z axis in (41) along the
dyad axis (2 || m0), we obtain

(42)

However, according to [1, 10], the off-diagonal compo-
nents of  and  tensors entering into relation (42) for
a monoclinic crystal of the symmetry class 2 in this coor-
dinate system are vanishing: e13 = e23 = ε13 = ε23 = 0 and,
hence,

(43)

Evidently, Eq. (43) is valid for all crystals of various
classes possessing dyad axes. Thus, the following state-
ment is valid:

A longitudinal wave propagating along any axis of
symmetry in a piezoelectric crystal is accompanied by
an electric component with zero induction. 

For example, let us consider a piezoelectric crystal
of the orthorhombic symmetry class 222. According to
the above theorem, all three dyad axes in this crystal are
the zero-induction directions m0 for the longitudinal
modes. However, it can be shown that another four
inversion-inequivalent asymmetric directions m0 with
zero induction (Dl = 0) may exist in a quasi-longitudi-
nal branch of this crystal:

(44)

(45)

(46)

For simplicity, solutions (45) and (46) are written in the
approximation of small piezoelectric moduli and weak
elastic anisotropy. In this approximation, a necessary
condition for the existence of the above series of zero-
induction points is that all the piezoelectric moduli
entering into relations (45) and (46) must have the same
sign (Fig. 2). It should be noted that cubic piezoelectric

crystals (symmetry classes 3m and 23) always corre-
spond to Fig. 2b, since additional zero-induction direc-
tions according to relations (44)–(46) always appear
along the triad axes.

5.2.2. Transverse (SH) waves propagating in
symmetry planes. Example 1: symmetry class m. Let

Dl = N̂ m0( )m0 êm0( )m0=

–
ε̂m0( ) m0êm0( )m0[ ]

m0 ε̂m0⋅
--------------------------------------------------.

Dl e13
ε13e33

ε33
-------------– e23,

ε23e33

ε33
-------------– 0,

 
 
 

.=

ê ε̂

Dl m0 2||( ) 0.=

θ0 ϕ0±,( ) θ0 ϕ0 π+±,( ),,

θ0
e36ε1ε2

e14ε2 e25ε1+( )ε3
---------------------------------------,arccot=

ϕ0
e25ε1

e14ε2
-----------.arctan=

4
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the z axis be perpendicular to the plane of symmetry of
a monoclinic crystal (z ⊥  m) and consider the t branch
of a wave propagating in this plane:

(47)

One can readily check that in such waves

(48)

Therefore, the symmetry plane always has a single
direction m0 corresponding to zero induction Dt , which
is determined by the azimuthal angle ϕ0:

(49)

The maximum amplitude of Dt in this plane corre-
sponds to the direction mmax = (m02, –m01, 0), which is
perpendicular to m0.

Example 2: symmetry class 3m. In trigonal crys-
tals, the situation with transverse nonpiezoactive direc-
tions for the t waves in each of the three symmetry
planes containing the triad axis is completely analo-
gous to the above case of a monoclinic crystal. For
example, in the yz symmetry plane, relations (47)–(49)
have to be replaced by

(50)

(51)

(52)

where θ0 is the polar angle between m0 and the triad
axis.

m m1 m2 0, ,( ), ut 0 0 1, ,( ).||=

Dt 0 0 e35m1, , e34m2+( )ut ut.||=

m0 m01 m02 0, ,( ),=

ϕ0tan
m02

m01
--------

e35

e34
------.–= =

m 0 m2 m3, ,( ), ut 1 0 0, ,( ),||=

Dt e22m2– e15m3+ 0 0, ,( )ut ut,||=

m0 0 m02 m03, ,( ), θ0tan
m02

m03
--------

e15

e22
------,= = =

(a) (b)

x

y

z x

y

z

Fig. 2. Diagrams of the directions of propagation of the
transversely nonpiezoactive quasi-longitudinal acoustic
waves in crystals of the symmetry class 222. The stereo-
graphic projections are given for the cases when (a) the sign
of the piezoelectric modulus e36 is opposite to that of e14
and/or e25 and (b) all piezoelectric moduli have the same
sign.
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Example 3: symmetry class mm2. For a t wave
propagating in the yz symmetry plane of an orthorhom-
bic crystal, we have

(53)

Evidently, in this case

(54)

Relations (53) and (54) are also valid for tetragonal
crystals of the symmetry class 4mm.

Example 4: symmetry classes 2m, 3m, and 23.
For the x axis parallel to the dyad axis (x || 2), transverse

waves propagating in the diagonal plane (1, , 0) obey
the relations

(55)

These waves exhibit electric components with the
amplitude of induction

(56)

and, hence, have the following special directions:

(57)

Example 5: symmetry classes 6mm and •m (14).
Any plane containing the principal symmetry axis in
such a crystal is the plane of symmetry m. According to
relations (27), the electric induction vector of t waves
propagating in such planes is orthogonal to m and pro-
portional to m3. Therefore, Dt vanishes along the entire
equator m3 = 0:

(58)

m 0 m2 m3, ,( ), ut 1 0 0, ,( ),||=

Dt e15m3 0 0, ,( )ut ut.||=

m0 0 1 0, ,( ), mmax 0 0 1, ,( ).= =

4 4

1

m m1 m1– m3, ,( ), ut 1 1 0, ,( ).||=

Dt e14m3 1 1 0, ,( )ut ut||=

m0 1 1– 0, ,( )/ 2, mmax 0 0 1, ,( ).= =

Dt m1 m2 0, ,( ) 0.=

∆m

m0

Fig. 3. A singular vector distribution of the Dα(m) vectors
in the vicinity of a zero-induction point m0.
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It should be noted that, for crystals of the same symme-
try classes, the other transverse branch (t') polarized
along the principal symmetry axis also has a zero-
induction line on the same equator:

(59)

One can readily check that relation (58), but not (59), is
also valid for crystals of the symmetry classes (13)
and (15).

6. SINGULARITIES
OF THE INDUCTION VECTOR FIELDS

IN THE VICINITY OF D = 0 POINTS
6.1. General Case of Arbitrary Anisotropy 

The vector field Dα(m), which is orthogonal to the
wave normal m, may exhibit orientational singularity in
the vicinity of the zero-induction points m0 (Fig 3). Let
us consider the Dα(m) function for m = m0 + ∆m,
where ∆m ⊥  m0 and |∆m | ! 1. Using condition (8) and
the third relation in (9), we obtain

(60)

Taking into account that Dα(m0) = 0, we have, to a first
approximation,

(61)

For the transverse Dα(m) field (see (11)), the asymmet-
ric tensor entering into expression (61),

, (62)

must be planar, that is, its spectral expansion can be
represented as a sum of two dyads:

(63)

where λαj , , and eαj are the eigenvalues and eigen-

vectors (left and right) of the  tensor (eα1 and eα2

must be orthogonal to m0). Note that the  eigenvec-
tors (in contrast to eαj) in the general case do not belong

to a plane orthogonal to m0, but their components 
oriented along m0 are insignificant for our analysis.

Let us decompose each  eigenvector into two
components

(64)

Dt' m1 m2 0, ,( ) 0.=

Dα m( ) N̂ m( )F̂α m( )c.||

Dα m( ) ∆mQ̂α||

≡ ∆mi
∂

∂mi

-------- N̂ m( )F̂α m( )c[ ]
 
 
 

m m0=

.

Q̂α ∇ m N̂ m( )F̂α m( )c m m0=⊗=

Q̂α λα1ẽα1 eα1⊗ λ α2ẽα2+ eα2,⊗=

ẽα j

Q̂α

ẽα j

ẽα j
||

ẽα j

ẽα j ẽα j
|| ẽα j

⊥ , ẽα j
|| m0,||+=

ẽα j
⊥ Î m0– m0⊗( )ẽα j m0,⊥=
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and form a more convenient matrix

(65)

which will be used below instead of :

(66)

Let the angle of orientation Φ of the Dα(m) vector be
measured from the eα1 direction, and the analogous

angle ϕ for ∆m in the same plane, from the  direc-
tion (Fig. 4). In these terms, we can write

(67)

Thus, the complete turn of ∆m around m0 in the plane
orthogonal to m0 implies the compete turn of Dα(m) in
the same or in the opposite direction (depending on the

sign of det  = λα1λα2), which corresponds to the
Poincaré index of the given singular point (Fig. 5)

(68)

The above considerations fail to be valid in some
particular cases, when one of the eigenvalues (λα1 or
λα2) of matrices (63) and (65) vanishes. In such cases,

det  = 0, but formula (68) is not applicable. Indeed,
let λα2 = 0 at m0. Then,

(69)

and a zero-induction line can pass via m0 in the direc-

tion of ∆m ⊥  , but only provided that λα2 = 0 is
valid. In this situation, the very concept of the Poincaré
index is inapplicable. However, if the vanishing of λα2
has a strictly local character and takes place only along
m0, then we are dealing with a very special singularity
analogous to a local-wedge degeneracy known in the
theory of acoustic axes [6]. It can be shown that a topo-
logical charge of the corresponding singularity in the
Dα(m) field in this case can take one of three values: n =
0, ±1. However, both situations (point and line) with a
zero induction amplitude are very exclusive and never
encountered in real (even symmetric) crystals. Below
we will consider zero-induction lines of this kind in
model crystals. It will be demonstrated that the exam-
ples of the Dα = 0 lines corresponding to Eqs. (58) and
(59) belong to a different type.

On the other hand, the singular points with n = ±1
depicted in Fig. 5 are rather widely encountered in real

Q̂α
⊥

Î m0– m0⊗( )Q̂α=

=  λα1ẽα1
⊥ eα1⊗ λ α2ẽα2

⊥+ eα2,⊗

Q̂α

Dα DmQ̂α
⊥
.||

ẽα1
⊥

Φtan
Dα eα2⋅
Dα eα1⋅
------------------

λα2

λα1
--------

∆m ẽα2
⊥⋅

∆m ẽα1
⊥⋅

--------------------
λα2

λα1
-------- ϕ .tan= = =

Q̂α
⊥

n detQ̂α
⊥
.sgn=

Q̂α
⊥

Dα ∆mQ̂α
⊥|| λα1 ∆m ẽα1

⊥⋅( )eα1=

ẽα1
⊥
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crystals. For example, all directions m0 in Fig. 2b cor-

responding to orthorhombic (222) or cubic ( 3m and
23) crystals are characterized by topological charges
n = ±1 (in Fig. 2, filled and empty circles correspond to
+1 and –1, respectively). Figure 6 is a schematic dia-
gram of the Dl(m) distribution in the central region of
the circle in Fig. 2b.

4

n = 1 n = –1

Fig. 5. The two main types of singularities in the vicinity of
zero-induction points of the Dα(m) vectors.

eα2

eα1 eα1
⊥~

eα2
⊥~

Dα

Φ ϕ

∆m

Fig. 4. The angles of orientation of the Dα and ∆m vectors
in the plane orthogonal to m0.

Fig. 6. A schematic image of the Dl(m) vector field distribu-
tion over a group of five singular points m0 in the central
region of a circle in Fig. 2b in the representation of nondi-
rectional segments.
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Now let us consider some examples of crystals
belonging to particular crystal symmetry systems.

6.1.1. Longitudinal waves propagating along
symmetry axes. Example 1. For the m0 || 2 direction in
a monoclinic crystal with dyad axis, we have

(70)

where

(71)

(72)

di = ci3 + c33. The  tensor is assumed to be diagonal,
which can be ensured by the appropriate choice of the
x- and y axes of the crystallographic coordinate system
with the z axis parallel to the dyad axis.

Example 2. For the m0 || 2 direction in an orthor-
hombic crystal belonging to the symmetry class mm2,
we have

(73)

Example 3. For the m0 || 2 || z direction in an orthor-
hombic crystal belonging to the symmetry class 222,
we have

(74)

Analogous formulas for the n(x) and n(y) are obtained
from (74) by cyclic rearrangement of the indices. Note
that, in the isotropic limit, we obtain

(75)

and only a very large elastic anisotropy can change the
signs of the ratios in formula (74). For this reason, these
signs for most orthorhombic crystals are determined
only by the piezoelectric moduli n(z) = sgn(e14/e25).

Example 4. As can be readily checked, for the prin-
cipal symmetry axes in crystals of the symmetry classes
422, 622, ∞22, 4mm, 6mm, ∞mm, 4, 6, ∞, 32, 3m, and
3 we have

n(z) = 1, (76)

and in crystals of the symmetry classes 2m, , 3m,
and 23,

n(z) = –1. (77)

n a1 b1+( ) a2 b2+( ) c1c2–{ } ,sgn=

a1

e14c36

∆34
–

-------------, b1
e15d1

∆35
–

------------
e33ε1

ε3
-----------,–= =

c1
e14d2

∆34
–

------------
e15c36

∆35
–

-------------,+=

a2

e25c36

∆35
–

-------------, b2
e24d2

∆34
–

------------
e33ε2

ε3
-----------,–= =

c2
e24c36

∆34
–

-------------
e25d1

∆35
–

------------,+=

ε̂

n b1b2( ).sgn=

n z( ) a1d2/a2d1( ).sgn=

d1/∆35
– d2/∆34

– 2,=

4 4 4
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6.1.2. Transverse (SH) waves propagating in
symmetry planes. We will not write lengthy expres-
sions determining the choice between n = ±1 indices for
the waves along m0 directions in monoclinic and trigo-
nal crystals (see relations (49) and (52), respectively)
and instead pass to orthorhombic crystals.

Example 1. For the transverse acoustic waves (53)
and (54) propagating in the vicinity of the zero-induc-
tion direction m0 = (0, 1, 0) in an orthorhombic crystal
belonging to the symmetry class mm2, the singular
induction field is characterized by the Poincaré index

(78)

Example 2. For the same direction in tetragonal
crystals belonging to the symmetry class 4mm, we have

(79)

Example 3. For the direction m0 = (1, –1, 0)/  in
tetragonal crystals belonging to the symmetry class

2m, we obtain

(80)

Example 4. For the same direction in cubic crystals

of the symmetry classes 3m, 23 in the diagonal sym-
metry plane, as well as for the symmetry-equivalent

direction m0 = (–1, 1, 0)/ , we have (for any combi-
nations of the moduli)

n = –1. (81)

6.2. Special Types of Singularities 

The above analysis is exhaustive only provided that

the  tensor (62) is nonzero. As was shown above,

usual systems have  ≠ 0. However, in some very spe-
cial cases, this tensor may vanish in some special
directions because of high symmetry or as a result of
vanishing of certain combinations of the material
tensor components. In such cases, the general
expressions are very lengthy and we only present

here some final results. For (m0) = 0, the distribu-
tion of the induction vector field in the vicinity of m0
has four additional variants depicted in Fig. 7. The
first three of these correspond to isolated singular
points with the Poincaré indices n = 0, ±2 (Figs. 7a–7c),
while the fourth variant correspond to the existence of
a D = 0 line passing via the m0 point (Fig. 7d). This very
situation is observed on the equator m3 = 3 for the
transverse tangentially polarized t waves (58) in all
transverse-isotropic media (13)–(15) and for the trans-

n
e32 c12 c66+( )/∆26

– e31–
e15

------------------------------------------------------ .sgn=

n
e31

e15
------

c12 c11– 2c66+

∆16
–

----------------------------------- 
  .sgn=

2

4

n e14/e36( ).sgn–=

4

2

Q̂α

Q̂α

Q̂α
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(a) (b) (c)
n = 0 n = 2 n = –2

(d)

Fig. 7. Four possible types of the Dα(m) vector field distribution around a zero-induction point m0, where Dα(m) = (m0) = 0.Q̂α
verse t' waves (59) polarized along the principal sym-
metry plane in the media of symmetry classes 6mm and

∞m. The only alternative example of  matrix vanish-

ing is offered by a crystal with hexad axis . In this
case, all three wave branches are featuring the identical
singularities with n = –2 (Fig. 7c).

6.2.1. A model crystal of the symmetry class
mm2. Let us assume that one piezoelectric modulus in
the crystal under consideration is much smaller than the
other moduli. In particular, we consider a conventional
crystallographic coordinate system with the x and y
axes perpendicular to the symmetry planes and the z
axis parallel to the dyad axis, in which

(82)

One can readily check that, in a zero-order approxima-
tion with e31 = 0, a quasi-longitudinal nondegenerate
wave branch along the m0 = (1, 0, 0) direction features
the above special situation, whereby simultaneously

Dl(m0) = 0 and (m0) = 0. In this case, the Dl(m)
vector field distribution in the yz plane in the vicinity of
m0 is described by the expression

(83)

where φ is a polar angle of the m direction measured
from the y axis in the yz plane and

(84)

Expression (83) shows that, depending on the material
constants, the Dl(m) field always corresponds to one of
the possible variants depicted in Fig. 7. The Poincaré

Q̂α

6

e31  ! e15 e24 e32 e33 ., , ,

Q̂α1

Dl 0 g2 2φsin g1 ε1e32γ2+, ,{||

– g1 ε1e32γ2–( ) 2φ} ,cos

g1 γ1 ε1e33 ε3e15–( ),=

g2 γ1 γ2+( )ε1e24 ε2e15,–=

γ1 d5/∆15, γ2 d6/∆16,= =

d5 c13 c55, ∆15+ c11 c55,–= =

c55 c55 e15
2 /ε1, d6+ c12 c66.+= =
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indices for the point singularities corresponding to
Figs. 7a–7c are as follows:

(85)

A condition for the existence of zero-induction lines in
the Dl(m) field for Fig. 7d is

(86)

According to expression (83), a zero-induction line for
g1 = 0 passes via m0 along the z axis (Fig. 8a). For
e32γ2 = 0, a similar zero-induction line is directed along
the y axis (Fig. 8b). If g1 = 0 simultaneously with
e32γ2 = 0, the two lines coexist (Fig. 8c). Finally, when
g2 = 0 and g1e32γ2 < 0, the system features an oblique
cross of zero-induction lines (Fig. 8d) with the mutual
orientation determined by the equation

(87)

6.2.2. Behavior of point singularities in response
to perturbations in the material moduli. The point
singularities of various types in vector fields Dα(m)
behave differently (shift, split, or disappear) in
response to perturbations in the material moduli. An
analysis of this situation, analogous to that carried out
in [6], showed that singularities with n = ±1 (Fig. 5) are
topologically stable and can only be displaced by such

nl

0, g1e32γ2 0,>
2 g1 ε1e32γ2–( )g2[ ] , g1e32γ2sgn 0.<




=

g1e32γ2 0 or g2 0, g1e32γ2 0.<= =

2φcos
g1 ε1e32γ2+
g1 ε1e32γ2–
----------------------------.=

yyyy

z z z z
(a) (b) (c) (d)

Fig. 8. Four possible types of the Dl(m) = 0 lines in a model
orthorhombic crystal.
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perturbations. The singular points of other types
(Figs. 7a–7c) are unstable and either split or (in accor-
dance with the law of topological charge conservation)
or disappear (provided only that n = 0). The zero-induc-
tion lines (Fig. 7d and Fig. 8) are also unstable and dis-
appear either completely or leaving a certain number of
isolated zero points.

These general properties can be illustrated by a par-
ticular example using a model crystal of the symmetry
class mm2 with a small modulus e31 described above. It
should be recalled that relations (83)–(87) were
obtained in the zero-order approximation for e31 = 0. In
the next order with respect to the small parameter e31,
the initial singularity exhibits splitting along the direc-
tion m0 = (1, 0, 0) so as to form two or four singular
points:

(88)

As can be seen from expressions (88) with g1e32γ2 < 0,
the zero-order approximation along m0 corresponds to
a singularity with n = +2 or –2. The introduction of a
small e31 modulus leads to a symmetric splitting of this
singularity into a pair of zero-induction points with
equal topological charges n = 1 or n = –1 along the y or

m0 δm+
1 µ2± 0, ,( ), µ2

2 e31/e32γ2,–=

1 0 µ3±, ,( ), µ3
2 ε1e31/g1.–=




=

n = 1

n = –1

n = –1

n = –1

n = –2

Fig. 10. Transformation of a singularity with n = –2 along

the axis of symmetry  into four singular points with n =

±1 during the   3 phase transition.

6

6

(a) (b)
n = ±2 n = 0

n = ±1

n = ±1

1±n = 

Dl ≠ 0

z

y

zz

z

zz

yyy

y

y

e31/g1 < 0 e31/g1 > 0 e31/g1 > 0e31/g1 < 0

Fig. 9. Diagrams illustrating the splitting of singular points
with n = ±2 (a) and 0 (b) in a model crystal of the symmetry
class mm2.
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z axis, depending on the sign of the e31/g1 ratio (Fig. 9a).
For g1e32γ2 > 0, when the initial topological charge in
the zero-order approximation is zero, the perturbed pat-
tern comprises either four singularities with a zero total
index n (for e31/g1 < 1) or none of them (which corre-
sponds to the absence of zero-induction points in the
vicinity of the given direction for e31/g1 > 1) as depicted
in Fig. 9b.

It should be noted that the above splitting of unsta-
ble singularities is by no means reduced to abstract
mathematical games. Perturbations in the material indi-
ces of real crystals are frequently caused by various
external factors such as electric fields, mechanical
stresses, or temperature fluctuations arising in the
vicinity of phase transitions. For example, the phase

transition from a crystal of the symmetry class 2m or

 to a trigonal crystal of the symmetry class 32, 3m, or

3 leads to replacement of the hexad axis  (n = –2) by
a triad axis (n = 1). In accordance with the law of the
topological charge (index) conservation and with the
final crystal symmetry, three additional zero-induction
points Dl = 0 with n = –1 must appear along with the
central point (Fig. 10).

7. CONCLUSIONS

Two electric components, the electric field E and the
electric induction D, accompanying a volume acoustic
wave propagating in a piezoelectric medium exhibit
significantly different properties. The electric field is
always purely longitudinal, whereas the electric induc-
tion vector is, in contrast, always purely transverse. On
the unit sphere (m2 = 1) of wave propagation directions,
the directions of zero electric field (E = 0) form lines,
while the zero-induction directions (D = 0) are usually
isolated and appear as singular points of the tangential
vector field D(m) orientations. The nonpiezoactive
directions of both types exist practically in all (even tri-
clinic) crystals, although the presence of crystal sym-
metry elements is the addition factor determining the
appearance of such directions.

The topological singularities of the Dα(m) vectors
fields in the vicinity of zero-induction points in most
crystals are characterized by the Poincaré indices n =
±1, where the sign coincides with that of the determi-

nant of the  matrix (62). However, in some special

cases, this tensor may vanish (  = 0) in some special
directions because of a high symmetry or as a result of
vanishing of certain combinations of the material tensor
components. In this case, the system has either an iso-
lated zero-induction point m0 (and has the Poincaré
indices n = 0, ±2) or a zero-induction line. Such special
orientations are topologically unstable and, in response
to any change in the anisotropy, either split into stable
points with n = ±1 or disappear.

6

6

6

Q̂α

Q̂α
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It is interesting to note that singularities of the
induction vector field Dα(m) in the vicinity of the zero-
induction points substantially differ from analogous
singularities near the acoustic axes. According to [7],
stable singularities in the latter case are characterized
by the Poincaré indices n = ±1/2, while the unstable
ones have n = 0, ±1. The only exception to this rule is

the acoustic axis along the hexad axis , for which the

degenerate Dα = 0 branches also have  = 0 and
n = −2.
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Abstract—Effects of propagation of an extremely short (of one or several oscillation periods) electromagnetic
pulse in a medium whose resonance transition is characterized by diagonal as well as nondiagonal matrix ele-
ments of the dipole moment operator have been studied numerically. The Maxwell–Bloch system of equations
is employed without using the approximation of slowly varying envelopes. An analog of the McCall and Hahn
area theorem is discussed as applied to the division of the initial extremely short pulse into subpulses. The solu-
tion is obtained in the form of a solitary stable bipolar signal with a nonzero pulse area (nonzero breather). ©
2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The term extremely short pulses (ESPs) is applied to
electromagnetic pulses with a duration of a few periods
of field oscillations so that the electric field polarization
cannot change its sign during the action of the so-called
half-period pulse [1–9]. Such pulses are field energy
flashes for which the concepts of carrier frequency and
wavelength are inapplicable. The spectral composition
of an ESP exhibits overbroadening [10, 11] and
approaches white noise; under certain conditions, the
ESP spectrum has a peak at zero frequency.

The approximations of slowly varying amplitudes
for equations of electromagnetic field and rotating
waves for a resonant medium, which are normally used
in nonlinear optics of quasi-monochromatic pulses
[12–15], should be at least refined to take into account
higher orders in perturbation theory; this makes the
application of these approximations rather cumber-
some. In an approach developed during a recent discus-
sion of problems in subpicosecond optics [4, 16–20],
the dynamics of the pulse field is analyzed directly and
not its envelope. It was also pointed out that not only
the temporal, but also the spatial ESP spectrum must be
overbroadened in view of the extremely small longitu-
dinal size of the propagating light spot (on the order of
the central wavelength) [21, 22]. In this case, a consis-
tent theory of self-action of such electromagnetic for-
mations must be nonparaxial.

The propagation of ESPs in a medium of two-level
atoms was studied in a typical situation for many reso-
nant media, when the diagonal elements of the dipole
moment operator are equal to zero [5, 7, 17, 23–26].
However, the linear Stark effect is observed for some
molecules. Parity violation for quantum states between
which a transition takes place can be induced by exter-
nal fields or by the action of surface forces in the case
of surface adsorption of molecules. In these cases, the
diagonal elements of the operator of dipole transitions
1063-7761/05/10101- $26.000011
between resonance levels are regarded as nonzero
quantities. In the system of quantum dots, a constant
dipole moment appears due to possible symmetry
breaking in the shape of quantum dots during their for-
mation. Analogously to Kerr media, the media with
nonzero matrix elements of the dipole moment can be
referred to as Stark media [27–29]. The interaction of
an electromagnetic pulse with a duration of a few peri-
ods of field oscillation with a Stark medium, disregard-
ing the effects of propagation, was considered in [30].

It should be noted that the application of the slowly
varying amplitude approximation to the problem of
propagation of an ESP through a Stark medium leads to
generation of even harmonics; this renders such an
approach complicated (if at all realizable). The rejec-
tion of the slowly varying amplitude approximation
supplemented with the approximation of unidirectional
waves renders the problem completely integrable and
makes it possible to find steady-state solutions (soli-
tons) [31, 32].

The goal here is to study the space–time ESP
dynamics in transient processes of formation of soli-
tons in a Stark medium. We assume that the ESP spec-
tral half-width is smaller than the frequency of the pre-
ferred transition from the ground state to the nearest
excited state. The dipole moments of resonant mole-
cules are aligned so that all the matrix elements of the
dipole moment operator are parallel to the linearly
polarized electromagnetic field vector. The ESP dura-
tion is such that the characteristic times of all irrevers-
ible relaxation processes in a quantum system are much
longer than the time scale of field variation. We assume
that all atoms have the same transition frequency; con-
sequently, reversible relaxation processes can be
ignored in the framework under the above-formulated
assumptions. We will also assume that the transverse
size of the light spot, which is flat over the front, is
 © 2005 Pleiades Publishing, Inc.
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much larger than the characteristic wavelength; conse-
quently, diffraction effects can be disregarded.

The main equations of the model will be formulated
in Sections 2, 3, and 4, where numerical estimates of
the parameters of the problem are obtained and the
properties of steady-state solutions [20, 32] required for
further analysis are discussed. The numerical results
obtained in Sections 5 and 6 show that the space–time
evolution of ESPs in the bulk of a Stark medium sub-
stantially depends on the sign of quantity µ, which is
proportional to the difference of the diagonal matrix
elements of the ground and excited states of a two-level
atom. It was found that positive values of the Stark
parameter are characterized by a division of the initial
unipolar ESP into steady-state subpulses in accordance
with regularities analogous to the McCall and Hahn
area theorem [33, 34]. Numerical simulation for nega-
tive values of µ revealed the existence of a solitary sta-
ble bipolar ESP resembling a breather or a 0π pulse
[35], but having a nonzero pulse area. The properties of
the obtained solutions are associated with the extremely
short duration of pulses incident on a medium of two-
level atoms with nonzero matrix elements of the dipole
moment operator.

2. EQUATIONS OF THE MODEL

In the approximation of two-level atoms (mole-
cules), the Hamiltonian can be represented in the form
of a 2 × 2 matrix [12]:

where E is the electric field of the electromagnetic
wave, and |1〉  and |2〉  are the ground and excited state,
respectively, differing in energy by "ω0.

The polarizability p of an atom (molecule) is given
by

If we assume that all relaxation processes in the system
of atoms can be ignored, the density matrix  satisfies
the condition  = ρ11 + ρ22 = 1. In this case,

(1)

where the components
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of Bloch vector 

 

r

 

 are introduced, and constant phases of
the elements of density matrix  and of the dipole

moment operator  are chosen so that 
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The scalar Maxwell equations lead to the wave

equation for field 
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) (not the envelope),

where polarizability 
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) is defined by relation (1) and
the angle brackets denote summation over all atoms and
division of the results by the density 

 

n
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 of resonant par-
ticles.

If we assume that the electromagnetic field varies at
a higher rate than the material variables 
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), we can ignore the reflected wave [17, 25] and
obtain the wave equation in the unidirectional approxi-
mation:

(2)

The Neumann equations for the density matrix lead to
the equations for the Bloch vector components:

(3)

Relations (2) and (3) constitute the complete system of
model equations. This system differs from the self-
induced transparency equations [33, 34] in that the
expression in the brackets contains, instead of detuning
from resonance, the transition frequency itself (this is a
manifestation of the rejection from the rotating wave
approximation); in addition, this expression contains
the second term (
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11

 

 – 

 

d

 

22
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E

 

/
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 defining the shift of res-
onance levels due to the high-frequency Stark effect.

In the dimensionless variables, system of equations
(2) and (3) has a form convenient for numerical analy-
sis, i.e.,

(4)
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where τ = ω0(t – z/c), ζ = z/Labs , e = 2dE/"ω0, µ =
(d11 − d22)/2d is a parameter, and the reciprocal reso-

nance absorption length is given by  =
4πnAd2("c)−1.

In system of equations (4), we will define the condi-
tion of rest of the quantum system (r1(t, z) = r2(t, z) = 0,
r3(t, z) = –1) as the variables of asymptotic forms for
polarization and the difference in population densi-
ties for τ  ±∞, while the conditions for the field
at remote instants are formulated as e(ζ, τ) = 0,
∂e(ζ, τ)/∂τ = 0. At the input to the medium, the pulse
had the following form in most computations:

(5)

System of equations (4) describes the precession of
vector r about the effective field vector W = {–e, 0,
1 + µe} (Fig. 1):

(6)

3. NUMERICAL ESTIMATES

Choosing the transition dipole moment d ≈
10−18 CGSE units, number density of resonant atoms

nA ≈ 1018 cm–3, and the ESP duration δ ≈  ≈ 10–15 s,
we can estimate the pulse amplitude %p ≈ "/2dtp ≈
5 × 105 CGSE units for a peak intensity Ip = c /8π ≈
3 × 1013 W/cm2.

The characteristic time tc = "/4πd2nA ≈ 8 × 10–11 s for
two-level systems is the time of the emergence of the
dipole moment in the two-level system induced by the
field of a passing pulse. During this time, the ESP
traverses a distance Labs = ct, which is approximately
several centimeters, while the spatial pulse length cδ ≈
3 × 10–5 cm. The reciprocal of time gives an estimate for
the Rabi oscillation frequency in the characteristic field
of reciprocal response of the medium, %char ≈ 2πnAd =
"/2dtc ≈ 10 CGSE units.

The unidirectional wave approximation is valid
when tcδ–1 @ 1 or, in other words, for low concentra-
tions of resonant emitters and small values of dipole
moments, which is obviously observed in our case. For
larger dipole moments of d ≈ 10–16 CGSE units, which
are typical of quantum dots, the above parameters have
different values: %p ≈ 5 × 103 CGSE units, %char ≈ 6 ×
102 CGSE units, tc ≈ 8 × 10–13 s, and Labs ≈ 2 × 10–2 cm.
It can be seen that the condition of applicability of the
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unidirectional wave approximation holds for quantum
dots as well, although the scales of variation of the field
and polarization of the medium differ less significantly
as compared to quantities characteristic of a medium
formed by resonant atoms or molecules.

Parameter µ = (d11 – d22)/2d, which is important for
subsequent analysis, may be positive or negative. The
value of µ varies from 0.2 to 7.0 for some types of semi-
conducting quantum wells [36]; for example, µ ≈ 0.4
for two lower vibrational states of the ground electron
state of the HeH+ molecule [37], while µ ≈ 1.0 accord-
ing to estimates made in [27].

4. STEADY-STATE SOLUTION

It is well known that system of equations (4),
describing unidirectional propagation of an ESP in a
Stark medium, is a completely integrable problem. Its
steady-state solution was found in [20] in the form of a
solitary wave whose velocity V obeys the inequality

V > c(1 + )–1, which is significant for τc < 1–10:

(7)

where

is the steady pulse duration.

Parameter τc = ω0tc has the physical meaning of the
ratio of the transition energy to the energy of the

τc
1–

est τ( )

=  2 δst 1 µ2
1 δst

2+( )+
τ τ 0–

τ st
-------------cosh µδst+

 
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 

1–

,

δst
2 τc c/V 1–( )

1 τc c/V 1–( )–
------------------------------------=
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–90°

1 + µeΩ
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α

Fig. 1. Vector model.
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14 ELYUTIN
dipole–dipole interaction between neighboring atoms.
The pulse area of a steady signal Θst ,

(8)

gives a value of 2π for parameter µ  0. A character-
istic feature of dependence (8) is the presence of a peak
in the region of small (|µ| < 1) negative values of µ; e.g.,
(Θst)max ≈ 3π for µ = –0.4 and δst = 5. The velocity V of
propagation of a steady ESP is given by the expression

(9)

which implies that the value of V as a function of δst
rapidly decreases in the region of δst < 1, the decelera-
tion of the signal being the stronger, the smaller the nor-
malized cooperative time τc (i.e., the smaller the
response time of the medium and, hence, the stronger
the reciprocal effect of the medium on the propagating
pulse).

For µ = 0, system (4) is transformed into a system of
reduced Maxwell–Bloch equations, which are formally
equivalent to the equations of self-induced transpar-
ency with a finite detuning from resonance, and solu-
tion (7) is defined by function 2πsech, which was

Θst est ζ t,( ) τd

∞–

∞

∫=

=  
8

1 µ2
+

------------------- 1 µ2+

1 µ2 1 δst
2+( )+ δstµ+

-------------------------------------------------------
 
 
 

,arctan

c
V
--- 1

δst
2 τc

1–

1 δst
2+

---------------,+=

Fig. 2. Space-time field profile in the decomposition of the
initial ESP into subpulses in a Stark medium with µ > 0
(µ = 2) with a conserved total pulse area Θ = 2π in the bulk
of the medium.
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derived by McCall and Hahn (34). It is convenient to
use this property of system (4) for comparison with
numerical solutions for other (nonzero) values of
parameter µ.

5. TEMPORAL DYNAMICS
OF ESP FOR µ > 0

For a medium with a constant dipole moment
(µ ≠ 0), the input pulse in the form of (5) is not a steady-
state solution any longer; its behavior in the bulk of the
medium differs from the propagation of a steady ESP.
For µ > 0 and for the same area of the input pulse equal
to 2π, the ESP splits into subpulses (Fig. 2) propagating
at their individual velocities. The steady ESPs (7)
resulting from the decomposition preserve their tempo-
ral shape, which is a feature of affiliation of such
objects to solitons. Analogous space–time dynamics is
characteristic of the effect of self-transparency of 2πn
pulses [35], in which the number of signals appearing
as a result of decomposition of an input pulse multiple
of 2π is determined by the area theorem. In our case, it
is impossible to formulate a direct analog of the McCall
and Hahn area theorem. However, in accordance with
the decomposition pattern for the input pulse, which is
similar in many respects to the analogous process in the
self-induced transparency effect, the problem under
consideration undoubtedly contains intrinsic regulari-
ties analogous to the area theorem. Here, the role of
area Θ under the envelope of a coherent pulse incident
on the medium, which determines the number of soli-
tons formed in the theory of self-induced transparency,
can be played by the angle Φ of rotation of the Bloch
vector r around the effective field vector W (6) less the
term emerging due to uniform precession of vector r
about the third component of vector W (6) containing
irreducible unity:

(10)

With increasing Stark parameter µ, the magnitude of
the input pulse Φ (5) increases (see Fig. 10c below);
accordingly, the number of decaying signals increases,
which is manifested in the emergence of a larger num-
ber of spikes on the curve describing the time depen-
dence of inversion at the entrance of an ESP in the
medium (Fig. 3).

At the same time, it can be noted that the pulse
area (8) of each of the increasing number of secondary
steady ESPs (Fig. 4a), which are formed from the same
initial pulse, decreases with increasing µ (see Fig. 4b
and the explanation given in the caption to Fig. 4). The
solitons formed as a result of decay of the initial pulse

Φ τ e ζ τ,( )2 1 µe ζ τ,( )+( )2+ 1–( ).d

0

∞

∫=
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DYNAMICS OF AN EXTREMELY SHORT PULSE IN A STARK MEDIUM 15
have different pulse areas in accordance with their
steady-state durations, the shorter ESPs carrying a
higher energy with a higher velocity.

In contrast to the pulse area, the rotation angle Φ in
our problem can be used as a standard for measuring
secondary steady ESPs since Φst is virtually indepen-
dent of µ > 0 (Fig. 5a) in the entire range of δst under
investigation (Fig. 5b). In this case, the fractions of the
initial value of Φ (ζ = 0) corresponding to each steady
ESP formed as a result of decay are approximately
equal (see the lower curve in Fig. 4b).

Along with a 2π pulse, a breather [35] (nonlinear
signal with zero pulse area, which is a bound state of
two solitons with different phase velocities, but with the
same group velocity) is a solitary nonstationary solu-
tion of problem (4) for µ = 0.

Fig. 3. (a) Space-time profile of inversion. (b) Time depen-
dence of inversion at the entrance to the sample upon an
increase in parameter µ.
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The main analytic method for solving the Maxwell–
Bloch equations is the method of inverse scattering
problem (see, for example, [35]) based on the solution
of the Zakharov–Shabat spectral problem [38]. Here, a
breather appears as a result of emergence of two cou-
pled (  = –λk + 1) values of the spectral parameter. The
imaginary and real parts of parameters λk were inter-
preted as the phase velocity and amplitude of the
breather components.

λ k*

Fig. 4. (a) Decay of an ESP for large values of the Stark
parameter (µ = 5). (b) Dependences of the pulse area Θ and
rotation angle Φ on the spatial coordinate for large values of
µ. The height of the steps is equal to the area carried away
by a subpulse extending beyond the computational grid.
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16 ELYUTIN
A breather propagating to the bulk of the medium
experiences internal oscillations due to the difference in
the phase velocities of the parts constituting it. This
intrinsic motion leads to a periodic variation in the
breather shape with increasing spatial coordinate.

However, the same breather from the problem of
self-induced transparency [35], which appears at the
entrance of a medium with induced polarization (µ ≠ 0),
does not evolve in the bulk of the sample as a stable sol-
itary ESP. Sharp variations of the polarity of the inci-
dent pulse at small depths of a resonant medium
(Fig. 6a) lead to rapid rotations of the effective field
vector about axis 2 (see Fig. 1), generating a nonlinear
oscillatory signal (Fig. 6b) of nonzero area, which
propagates at an extremely low velocity. After the
emergence of this object beyond the computational
grid, the only surviving pulse (see Fig. 6a) is a solitary
steady unipolar ESP (7), which is gradually freed from
background field oscillations.

The specific nonlinearities in equations (4) for the
Bloch vector components, which are associated with

Fig. 5. (a) Dependence of the rotation angle Φst for a steady
ESP on the pulse duration δst . (b) Dependence of the
rotation angle Φst for a steady input ESP on the Stark
parameter µ.
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Stark corrections to the transition frequency, lead to
generation of spectral components supplementary to
the modulation frequency in the breather, and the tem-
poral profile of the difference in populations turns out
to be modulated by the second harmonic of field oscil-
lations in the input signal [30] (Fig. 6c).

6. NUMERICAL RESULTS 
FOR µ < 0: NONZERO BREATHER

Sign reversal in the Stark coefficient µ leads to non-
trivial consequences for the dynamics of an ESP in a
resonant medium with a constant dipole moment. A
unipolar ESP (5) specified at the sample surface gives
rise to a nonlinear stable breather-type pulse (Fig. 7a),
whose pulse area, however, differs from zero (Fig. 7b)
(so-called nonzero breather). This is due to the form of
the third effective field component Ω3 = 1 + µe in
Eqs. (4), which may vanish, or even reverse its sign, for
negative values of the Stark parameter (Fig. 8a).

At small depths in the sample, when z ~ Labs(ζ ~ 1),
we can assume that e(ζ, τ) ≈ ein + r2ζ (4). Essentially,
the polarization component r2 defines the field emerg-
ing in the medium as a response to the external pulse.
Function r2(τ, ζ) at small depths is a quantity that varies
at Rabi frequency Ω and generates the oscillating “tail”
of the main ESP (see Fig. 7a). In the course of propaga-
tion, positive and negative spikes of the internal field
distort the profile of the initial pulse, leading to the
emergence of a bipolar signal (nonzero breather) in the
developed phase of the process (see Fig. 7a).

At instants when the value of Ω3 approaches zero
(gray circle in Fig. 8a), vector W is directed almost
against axis 1 (see Fig. 1) and forms an angle of α ≈
−90° with axis 3 (black circle in Fig. 8b). In this posi-
tion, precession of vector r about vector W occurs in the
32 plane (see Fig. 1), leading at the initial stage to
almost complete inversion of the resonant medium
(black circle in Fig. 8c) and, accordingly, to the effec-
tive interaction between the field and the medium, fol-
lowed by reemission of energy back to the ESP field (as
in the propagation of a 2π self-induced transparency
pulse). However, over a time period following the
instant marked by the light circle in Fig. 8, polarization
r2 exhibits a sharp dip of negative polarity (Fig. 8d),
leading to the emergence of a negative half-period in
the field profile (see Fig. 8a). In this case, in view of
peculiar features of the vector model for system of
equations (4), vector W makes a complete turn about
axis 2 so that the angle of its inclination to axis 3
becomes positive (see Fig. 8b). For the new position
of W , precession of vector r reverses its direction and
the decrease in inversion is transformed into a new
spike followed by energy absorption and reemission.

In view of nonlinear features of the problem, the
swinging of the self-consistent system “quantum
medium + classical pulsed field” illustrated above leads
to the formation of a clearly manifested bipolar signal
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005



DYNAMICS OF AN EXTREMELY SHORT PULSE IN A STARK MEDIUM 17
Fig. 6. (a) Formation of a solitary unipolar signal (bold curve) from the input 0π pulse (breather) (fine curve) for µ > 0 (µ = 1).
(b) Temporal field profile at a depth ζ = 10 for µ = 1. (c) Generation of harmonics of an input small-period breather in the bulk of
a Stark medium with µ > 0.
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from the initially unipolar ESP. The increase in param-
eter µ in the region of negative values is accompanied
by periodic variations in the decay of the initial ESP
(Fig. 9). At the initial stage of each cycle, the above-
mentioned nonzero breather (Fig. 9a) with a small
period Tphase of variation of its phase is formed against
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the background of the oscillatory noise (Fig. 10a). This
bipolar pulse propagates at its own velocity U differing
from the velocity of steady signal (7); the value of U
can be smaller than 0.2c (Fig. 10b). With increasing
absolute value of µ, period Tphase of internal oscillations
in the nonzero breather increases (see Figs. 9 and 10a),
SICS      Vol. 101      No. 1      2005



18 ELYUTIN
which ultimately leads to the emergence of a steady
unipolar signal (7) with Tphase  ∞. With a further
decrease in µ, this signal gradually joins the package of
steady subpulses (Fig. 9c) that have been formed at the
beginning of propagation to the bulk of the medium.
The number and parameters of these decay signals is
determined, as in the case of µ > 0, by the value of the
total precession angle Φ (ζ = 0) at the entrance of the
medium, which increases with decreasing µ (Fig. 10c).

The oscillatory object discovered in calculations for
µ < 0 (see Figs. 7–9) can be represented numerically as
the sum of two pulses propagating at the same group
velocity, viz., a steady signal with a preset µ (7) and a
bipolar signal (Fig. 11) with a pulse area equal to zero
to a high degree of accuracy.

It should be noted that an adequate explanation of
the ESP evolution in the bulk of a Stark medium is con-
tained in the spectral structure of the inverse scattering
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Fig. 7. (a) Formation of a nonzero breather from a unipolar
input ESP in the Stark medium with µ < 0 (µ = –1). (b) The
Θ(ζ) curve (in units of π) shows that the pulse area of the
bipolar signal (Fig. 7a) is approximately equal to 2π; spatial
periodicity of the rotation angle Φ(ζ) corresponds to pene-
tration depths at which negative field spikes appear in
Fig. 7a.
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problem for Eqs. (4) (the derivation and analysis of this
spectrum forms an individual nontrivial problem).
However, the representation of the above bipolar ESP
as the sum of two signals (Fig. 11) makes it possible
to qualitatively describe the processes illustrated in
Figs. 7–9.

As parameter µ increases to the region of negative
values, a bound state of three pulses propagating at the
same group velocity (which is much smaller than the
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and medium polarization r2 (d) at a distance ζ = 35 in the
bulk of the medium.

Ω3, e
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005



DYNAMICS OF AN EXTREMELY SHORT PULSE IN A STARK MEDIUM 19
velocity of light) is formed from the boundary temporal
profile even at small distances (see Figs. 7 and 9). Two
components from this triad have equal and opposite
phase velocities and form a bipolar 0π pulse (see
Fig. 11). The third pulse is a steady ESP (7). As the
Stark parameter decreases, the difference in the phase
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Fig. 9. Formation of a unipolar steady pulse from a bipolar
nonzero breather with increasing µ in the region of negative
values: µ = –3.78 (a), –3.85 (b), and –4.0 (c).
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velocities decreases and, accordingly, the rate of phase
change in the temporal profile of the observed bipolar
signal slows down (see Fig. 9). In the limit of zero dif-
ference in the phase velocities, the two pulses with
opposite polarities coincide on the time scale and are
annihilated. As a result, we are left with a steady signal
(see Fig. 9c) whose velocity is the lower, the smaller its
duration. With decreasing µ, the process of generation
and annihilation of the bipolar signal is repeated with
increasing frequency (see Figs. 10a and 10b).

It should be noted that the above oscillatory signal
with a nonzero area corresponding to negative values of
the Stark parameter µ is also formed in the case when a
Lamb [35] 0π signal is specified at the entrance to the
medium (Fig. 12). Variation of µ and the frequency of
field oscillations in the initial breather in this process
gives rise to a large number of peculiar features, one of
which corresponds to a negative-polarity ESP with a
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tion of the Bloch vector relative to the effective field vector
for an ESP at the entrance to the medium on µ.
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20 ELYUTIN
pulse area compensating the area of the “nonzero”
breather (see Fig. 12).

7. CONCLUSIONS

We have analyzed numerically the space–time
dynamics of extremely short pulses in a medium in
which the transition between two quantum states is
characterized by a dipole moment operator with non-
zero diagonal matrix elements (Stark medium). The
assumption on extremely small pulse duration leads to
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Fig. 11. Nonzero breather as the sum of steady signal (7)
and 0π pulse for µ = –1, ζ = 35. The bold curve corresponds
to e(ζ = 35, τ), i.e., a bipolar pulse of a nonzero area; the fine
curve corresponds to est(ζ = 35, τ), i.e., a steady ESP of
duration δst = 1; the dashed curve corresponds to e – est , i.e.,
a bipolar pulse of zero area (0π pulse).
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depths of penetration to a Stark medium with µ = –1: ζ = 0
(fine curve) and 100 (bold curve). The pulse area of the non-
zero breather (inset) is equal to π.
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the rejection of concepts of slow dependent variables
for the field and the medium, their frequencies and
phases, as well as the formulation of the Maxwell–
Bloch model in terms of the self-consistent field itself
with a definite polarity and true (not approximate)
rotating waves (density matrix components). As a
result, Bloch equations (4) acquire (in the region of fre-
quency detuning) cofactors exhibiting a threshold
dependence on the magnitude and sign of the field and
Stark parameter µ. It is this feature of the model that
determines the main aspects of time evolution of the
ESP. For example, the pulse area cannot be used for
predicting the number of subpulses emerging from the
intense input signal as was done in the case of self-
induced transparency. To formulate a rule analogous to
the area theorem, the angle of rotation of the Bloch vec-
tor during its precession about the effective field vector
should rather be used instead as a parameter. It should
also be noted that each time the amplitude (and not the
envelope) of the input field ep tends to 1/µ for µ < 0, the
value of effective detuning Ω3 tends to zero and a stable
solitary bipolar ESP with a nonzero pulse area is
formed even for small depths of the medium. The elec-
tromagnetic object observed in Figs. 7–10 was derived
numerically, and analytic properties of this solution are
not known as yet; however, simulation reveals a clearly
manifested stability of the “nonzero” breather. This sta-
bility is manifested in the fact that the bipolar signal
withstands collisions with a steady-state solution of
type (7) (with a similar signal of other periodicity)
without decaying and penetrates through the region of
a strong modulated perturbation as a single entity.
These are features of soliton solutions, although the
final answer to the questions whether or not the
observed bipolar pulse is a soliton can be obtained only
from an analysis of the spectral problem in the method
of inverse scattering problem for the model under
investigation. In this connection, it is appropriate to
mention the work [39], in which the eigenvalues of the
Zakharov–Shabat spectral problem, which are paramet-
ric functions of the pulse duty factor of the external
field, were calculated under the conditions of two-pulse
excitation typical of photon echo problem. Subsequent
simulation [40, 41] proved that the eigenvalues appear
in triads in the form of an anticonjugate pair giving a
breather and a solitary root responsible for a 2π pulse
(soliton). An increase in the pulse duty ratio led to a
decrease in the difference in the phase velocities of the
breather components and to the transformation of the
breather to a pair of ±2π pulses. The obvious similarity
of this pattern with the results of calculations repre-
sented in Figs. 7–11 suggests that similar approaches
can be used for interpreting the results within an analy-
sis of the properties of the spectral problem, which
were obtained in [20, 31].
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Abstract—The existing descriptions of the process of track formation in metals bombarded with high-energy
heavy ions are usually based on the T-spike model. However, this model fails to explain high temperatures
developed in some target materials (e.g., in copper). We present a comparative analysis of track formation in
metals under the action of heavy ion bombardment, as described using the Coulomb explosion model and the
T-spike model in various modifications. Both models are used to calculate changes in the temperatures of the
electron and ion subsystems in the track region in amorphous alloy Fe85B15) and copper targets bombarded with
identical high-energy (E > 1 MeV/nucleon) heavy ions. The results show that the Coulomb explosion model
predicts stronger heating of the ion subsystem in the track region (with the possible formation of a melt-through
zone) as compared to the T-spike model. The formation of point defects in copper as a result of the ionization
losses has been also described using the two models and compared to the available experimental data. The Cou-
lomb explosion model provides for a more adequate description of track formation as compared to the T-spike
model. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

When heavy charged particles with energies E >
1 MeV/nucleon are stopped in a target, more than 90%
of the particle energy is transferred to the electron sub-
system as a result of the electron drag and only about
10% is transferred directly to atoms of the crystal lattice
via their elastic collisions with the projectiles. Subse-
quent heating of the material is related to the energy
transfer from electrons to ions via processes described
within the framework of the thermal spike (T-spike)
model [1, 2] and the Coulomb explosion (or ion explo-
sion) model [3]. As a result, the temperature of the ion
subsystem may increase to a significant level, reaching
the melting point for metals and the crystallization tem-
perature for amorphous alloys.

The bombardment with heavy ions at a high degree
of ionization losses may also lead to the production of
point defects with anomalously high concentration [4].
This process is determined predominantly by the ion-
ization and electronic stopping power, rather than by
the elastic collisions of heavy impinging ions with
atoms of the crystal lattice. The contribution of such
elastic collisions to the point defect formation is several
orders of magnitude lower than the contribution due to
the ionization losses. Therefore, the physical properties
of metals in the track region significantly differ from
those in the regions far from tracks.

Let us briefly consider the physical mechanisms
involved in the heating of electron and ion subsystems
of a target penetrated by a heavy charged particle, as
1063-7761/05/10101- $26.000120
described using the T-spike model and the Coulomb
explosion model.

The essence of the T-spike model consists in the fact
that a high-energy heavy charged particle penetrating
through a target material exhibits electronic stopping
power and transfers more than 90% of its kinetic energy
to the electron subsystem, while only a small remaining
energy is transferred directly to the ion subsystem (i.e.,
to the crystal lattice) via the elastic collisions of host
atoms with the projectile. Thus, an effective energy
source localized at the track axis operates in the elec-
tron subsystem, which leads (via electron thermal con-
ductivity) to heating of the electron subsystem at dis-
tances greater than the track size (the characteristic
thermalization time for the electron subsystem in a
metal is on the order of 10–15 s). Subsequently, electrons
give part of their energy to ions via electron–phonon
interactions (the characteristic time of these interac-
tions in metals is on the order of 10–13 s), which results
in heating of the ion subsystem. Thus, electrons are
thermalized within a period of time that is much shorter
than the characteristic time of heat exchange between
electron and ion subsystem.

There are various modifications of the T-spike
model [1, 2], which differ from one another by the
mechanisms of heating of the electron subsystem and
by the expressions used to describe the electron–
phonon interactions (exchange terms) in the heat bal-
ance equation. According to Yasui [2], the effective
energy source in the electron subsystem plays the role
of the initial condition for the electron temperature,
while the heat balance equation contains only an
 © 2005 Pleiades Publishing, Inc.
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exchange term related to the heat transfer between the
electron and ion subsystems. Dufour [1] assumed that
the effective energy source operates over the entire
period of thermalization of the electron subsystem and
introduced the corresponding additional term into the
heat balance equation.

Now let us briefly consider the mechanism of heat-
ing of the ion and electron subsystems within the
framework of the Coulomb explosion model, which is
used in this study for description of this process. The
model proper and the conditions of its applicability
were described previously [3]. Here, we only consider
the physical processes leading to additional heating of
the ion and electron subsystems according to this
model. A high-energy heavy charged particle penetrat-
ing through a target material collides with so-called
δ-electrons, which travel predominantly in the radial
directions relative to the heavy-ion trajectory (track
axis). As a result, an effective electric field is generated,
which exists over a characteristic period of time equal
to the δ-electron current lifetime. The magnitude and
spatial distribution of this electric field were deter-
mined in [3]. Ions of the crystal lattice and electrons of
the target material occurring within the zone of action
of the effective field acquire additional momenta and,
hence, additional energies. Thus, the model provides a
mechanism accounting for an increase in the average
kinetic energies and, eventually, the initial temperatures
of both electrons and ions at the expense of energy
received by these particles during their short-time inter-
action with the effective electric field of δ-electrons.

This paper is devoted to a comparative study of heat-
ing of the electron and ion subsystems in the track
region of amorphous metal (Fe85B15) and copper targets
bombarded with high-energy heavy ions in the frame-
works of the T-spike and Coulomb explosion models.
The obtained nonlinear equations were numerically
solved by methods of implicit scheme and sequential
trials, which have proved to be sufficiently robust.
Examples of using these methods for solving analogous
problems can be found in [1, 8].

The contributions due to different mechanisms of
heating of the ion and electron subsystems, which are
employed in various modifications of the T-spike
model, are described by introducing various exchange
terms into the heat balance equation for electrons and
ions [1, 2]. Below, the significance of these mecha-
nisms is analyzed based on the results of numerical cal-
culations carried out for amorphous alloy Fe85B15
within the framework of the corresponding models. The
results obtained using various modifications of the
T-spike model showed that, depending on the parame-
ters of irradiation, the temperature of the ion subsystem
in the alloy studied may increase to a significant level,
reaching the temperatures of melting and crystalliza-
tion. As a result, a melt-through zone can form at the
heavy-ion trajectory in the alloy target (see also [1]).
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The results of application of the T-spike model to the
calculations of heating of the ion subsystem in copper
showed that the ion temperature cannot exhibit sharp
jumps and increases by no more than 100 K, never
reaching the melting point (see also [2]). In contrast,
numerical calculations using the Coulomb explosion
model showed that the temperature of the ion sub-
system may reach the melting point and that a melt-
through zone can form in the track region.

2. USE OF THE T-SPIKE MODEL
FOR STUDYING CHANGES

IN THE TEMPERATURES OF THE ELECTRON 
AND ION SUBSYSTEMS

IN METAL TARGETS BOMBARDED
BY HIGH-ENERGY HEAVY IONS

Let us formulate a system of nonlinear equations
describing the heat transfer in the electron and ion sub-
systems in a metal target near a track produced by a
high-energy heavy charged particle, adopting a cylin-
drical geometry of the temperature distribution relative
to the particle trajectory (track axis). Taking into
account various modifications of the T-spike model
developed previously [1, 2], the heat conduction equa-
tions for the electron and ion subsystems can be written
as follows:

(1)

(2)

where Te and Ti are the temperatures of the electron and
ion subsystems in the metal target, respectively; Ce , Ke ,
Ci , Ki are the heat capacities and thermal conductivities
of electrons and ions, respectively, which are nonlinear
functions of the temperature; r is the distance from the
track axis; γ[Te – Ti] is the exchange term, which takes
into account heat transfer due to the electron–phonon
interaction between the electron and ion subsystems in
the ion-irradiated material; and A(r, t) is the effective
source of energy in the electron subsystem, which is
related to the electronic stopping power of the high-
energy heavy particle stopped in the metal target.

The nonlinear temperature dependences of the heat
capacities and thermal conductivities of electrons and
ions for the copper and Fe85B15 targets are presented in
the Appendix.

First, let us consider a modification of the T-spike
model proposed in [2]. In this variant, the coefficient γ
in the exchange term, which describes the electron–
phonon interaction in the heat balance equation,
appears as γ = Ce/τ, where τ is the characteristic time of
the electron–phonon interaction (τ = 10–13 s).

Ce Te( )
∂Te

∂t
-------- div Ke Te( )∇ Te( )=

– γ Te( ) Te T i–[ ] A r t,( ),+

Ci T i( )
∂Ti

∂t
-------- div K i T i( )∇ T i( ) γ Te T i–[ ] ,+=
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The boundary conditions for the electron and ion
subsystems in the regions far from the track reflect the
absence of irradiation-induced heating in these regions:

where Tmatr = 10 K is the temperature of the metal
matrix.

The initial condition for the temperature distribution
in the electron subsystem reflects the electronic stop-
ping power for heavy ions [2]:

(3)

(4)

where Ee is the volume electron energy density, Q are
the electronic stopping power per unit ion range for a
high-energy heavy charged particle; L is the halfwidth
of the spatial distribution of energy deposited in the
electron subsystem (we adopt L = 2 nm [2]). On the
other hand, the volume electron energy density at the
initial moment can be expressed as

(5)

where Te(t = 0) is the initial temperature of the electron
subsystem. Equating the electron energy densities
given by expressions (3) and (5), we obtain a relation
for determining the initial temperature of the electron
subsystem in a target penetrated by a high-energy
heavy charged particle:

The solution of this equation gives the initial condition
for the temperature of the electron subsystem. The ini-
tial temperature of the ion subsystem coincides with the
target material temperature Tmatr in the absence of ion
irradiation:

There are two additional boundary conditions in both
variants of the T-spike model employed in this study:

which correspond to the absence of heat fluxes at the
track axis.

Te r ∞→ T i r ∞→ Tmatr,= =

Ee t 0=( ) Q

4πσ2
------------ r2

4σ2
---------– 

  Ce T ,d

0

10 K

∫+exp=

σ2 L
2 2ln
----------- 

  ,=

Ee t 0=( ) Ce T ,d

0

Te t 0=( )

∫=

Ce Td

0

Te t 0=( )

∫ Q

4πσ2
------------ r2

4σ2
---------– 

 exp Ce T .d

0

10 K

∫+=

T i t 0=( ) Tmatr.=

∂Te

∂t
--------

r 0=

∂T i

∂t
--------

r 0=

0,= =
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Now let us consider another modification of the T-
spike model proposed in [1]. In this variant, the coeffi-
cient γ in the exchange term is assumed to be constant,
γ = g, and is not varied in the course of calculations. In
our calculation, g = 5 × 1012 W/(K cm3) (see [1, 8]).
Therefore, the term describing the electron–phonon
interaction is proportional to the difference between the
temperatures of the electron and ion subsystems and
does not take into account the nonlinear temperature
dependence of the amount of heat transferred between
these subsystems. In the variant proposed in [2], this
nonlinear dependence is taken into account via the tem-
perature dependence of the coefficient g in the elec-
tron–phonon exchange term.

The boundary and initial conditions for the temper-
atures of the electron and ion subsystems in the regions
far from the track are written as follows:

where Tmatr = 100 K is the matrix temperature adopted
in this model.

Heating of the electron and, accordingly, of the ion
subsystems is provided by the presence of the effective
energy source A(r, t), related to the electron-drag losses
of a high-energy heavy charged particle propagating
through the matrix, in the equation for the electron tem-
perature distribution (1). The main difference of this
T-spike model variant from that proposed in [2] is that
the electron subsystem is assumed to be gradually
heated over the time t0 = 10–15 s (the characteristic time
of thermalization of the electron subsystem), followed
by cooling. Thus, despite the fact that the electron ther-
malization time is significantly shorter than the charac-
teristic electron–phonon interaction time, the model
proposed in [1] takes into account the fact that the elec-
tron subsystem is also gradually heated together with
the ion subsystem. The effective energy source A(r, t) in
this model is as follows [1]:

(6)

where (dE/dz)e are the electronic stopping power of the
high-energy heavy charged particle; σt = t0; r0 = 2.5 nm
is the characteristic distance determining the size of the
region of energy evolution in the electron subsystem;
and C1 is a constant determined from the following nor-
malization condition [1]:

Te r ∞→ T i r ∞→ 100 K,= =

Te t 0=( ) T i t 0=( ) 100 K,= =

A r t,( )
C1

dE
zd

------- 
 

e

r
r0
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t t0–( )2

2σt
2
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 
 
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 at t 2t0,<exp

0 at t 2t0,>





=

2πC1 r r t
r
r0
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t t0–( )2

2σt
2

------------------–
 
 
 

expd

0

2t0

∫d

0

∞

∫ 1.=
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Let us consider whether it is expedient to use a
T-spike model with allowance for the gradual heating
of the electron subsystem and for the nonlinear
exchange term in the heat balance equation.

Figure1 presents the results of numerical calcula-
tions of the time variation of the ion subsystem temper-
ature for the Fe85B15 amorphous alloy, which were per-
formed using the T-spike model [1] with (i) the elec-
tronic stopping power (dE/dz)e = 40 keV/nm and (ii) the
electron subsystem heating in Eq. (1) described by the
effective source A(r, t) according to relation (6). As can
be seen from these data, the T-spike model according
to [1] predicts the formation of local melt-through
zones in the Fe85B15 amorphous alloy.

Since some particular mechanisms involved in vari-
ous modifications [1, 2] of the T-spike model do not
coincide, it was of interest to elucidate the influence of
such mechanisms on the ion subsystem temperature
distribution in the track region at various moments of
time. For this purpose, we have performed special
numerical calculations for the Fe85B15 amorphous alloy
using the T-spike model according to [2].

First, we have modified the mechanism of the elec-
tron subsystem heating (see [1]), while the form of the
exchange term remained unchanged (see [2]). The
results obtained in this case are presented in Fig. 2. As
can be seen, use of the second variant of the electron
subsystem heating [1] leads to stronger heating of the
ion subsystem, which is manifested by a longer period
of melting. This result is by no means surprising, since
the first model of the electron subsystem heating [2]
included the energy splash only at the initial moment,
which was accompanied by elongation of a high-tem-
perature period of time in the electron subsystem. In the

10–1510–16 10–14 10–13 10–12

t, s

102

103

Ti, K

1

2

3

Fig. 1. Time variation of the ion subsystem temperature in
the track region of a Fe85B15 amorphous metal alloy target
irradiated by high-energy heavy charged particles. The
calculations were performed using the modified T-spike
model [1] for various distances from the track axis r = 0 (1),
5 (2), and 10 nm (3).
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second model, the energy source was also effectively
operating in the electron subsystem during the entire
thermalization period [1]. However, the obtained differ-
ences in the extent of heating of the ion subsystem are
not very significant, which is explained by the fact that
the characteristic time of the electron–phonon interac-
tion is much greater than that of the electron thermal-
ization. Thus, the process of heat exchange between the
electron and ion subsystems in the target depends rather
insignificantly on the mechanism (gradual [1] against
instantaneous [2]) of the electron subsystem heating.

Now let us consider the second variant, whereby the
method of heating was selected according to the first
model [2] and the exchange term was borrowed from
the second model [1]. As can be seen from the results
presented in Fig. 3, use of the exchange terms of differ-
ent types leads to a difference in the rates of heating of
the ion subsystem. Since the time of heating is approx-
imately the same, the amounts of energy transferred
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Fig. 2. Time variation of the ion subsystem temperature in
the track region of a Fe85B15 amorphous metal alloy target
irradiated by high-energy heavy charged particles. The cal-
culations were performed for various distances from the
track axis r = 0, 5, and 10 nm using a modified T-spike
model with the exchange term in the thermal balance equa-
tion taken from [2] and the electron subsystem heating
described according to (1) model [2] and (2) model [1].
SICS      Vol. 101      No. 1      2005



124 RYAZANOV et al.
from the electron to the ion subsystem are approxi-
mately the same. The difference in the rates of heating
of the ion subsystem is explained by the fact that the
two models [1, 2] use different forms of the temperature
dependence of the exchange term in the heat balance
equation. In selecting this dependence, special attention
has to be paid to the behavior of the heat capacity of the
electron subsystem in the temperature interval under
consideration. In our case, an analysis of the tempera-
ture dependence of Ce for Fe85B15 shows that it is expe-
dient to use the exchange term in the form proposed in
[2] (which takes into account the nonlinear temperature
dependence of the heat exchange between the electron
and ion subsystems).

Analysis of obtained results leads to the conclusion
that no significant differences in the results of calcula-
tions of the temperature distribution for the ion sub-
system in the track region is observed for various mod-
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Fig. 3. Time variation of the ion subsystem temperature in
the track region of a Fe85B15 amorphous metal alloy target
irradiated by high-energy heavy charged particles. The cal-
culations were performed for various distances from the
track axis r = 0, 5, and 10 nm using a modified T-spike
model with the electron subsystem heating described accord-
ing to the model [2] and the exchange term in the heat balance
equation taken from (1) model [1] and (2) model [2].
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ifications of the T-spike model [1, 2]. Some differences
are related only to the duration of this process.

Figure 4 presents the results of calculations of the
ion subsystem temperature of a copper target using a
T-spike model [2] with the effective energy source in
the electron subsystem A(r, t) = 0 (see Eq. (1)), Q =
100 keV/nm, and the initial electron heating described
by Eq. (5). As can be seen from these data, the ion sub-
system heating according to the T-spike model is low
and is not accompanied by the formation of melt
through zone in the track region.

3. USE OF THE COULOMB EXPLOSION MODEL 
FOR ANALYSIS OF CHANGES 

IN THE TEMPERATURES OF THE ELECTRON 
AND ION SUBSYSTEMS AND THE FORMATION 
OF POINT DEFECTS IN THE TRACK REGIONS 

FOR COPPER BOMBARDED
BY HIGH-ENERGY HEAVY IONS

As was demonstrated above, use of the T-spike
model for description of the process of ion subsystem
heating in copper leads to a relatively small increase in
the ion temperature in the track region and is not
accompanied by the formation of a melt-through zone
in this region. Thus, it would be of interest to study the
ion subsystem heating in copper caused by the stopping
of high-energy heavy ions as described in terms of the
Coulomb explosion model. In this case, it would be
easy to perform a comparative analysis of the results
obtained using the two models (T-spike versus Cou-
lomb explosion) with the same electron drag losses and
other parameters, and to determine how the various
physical mechanisms involved in these models affect
the results of calculations.
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Fig. 4. Time variation of the ion subsystem temperature in
the track region of a copper target irradiated by high-energy
heavy charged particles. The calculations were performed
using the modified T-spike model [2] for various distances
from the track axis r = 0 (1), 5 (2), and 10 nm (3).
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Previously, we used the Coulomb explosion model
for calculating the spatial distribution of the radial elec-
tric field Eρ(ρ) generated by a high-energy heavy parti-
cle stopped in the target material, where ρ is the dis-
tance from the track axis in the plane perpendicular to
the heavy particle trajectory) [3]. We have also evalu-
ated the kinetic energy ∆ε acquired by ions in this field
over a characteristic lifetime tr (tr ~ 10–15–10–16 s),
which has the form [3]

(7)

where M and eZ are the host ion mass and charge,
respectively; ∆p is the momentum acquired by host ions
in the effective electric field Eρ(ρ) for the time tr .

For a period of time on the order of tr , ions in the lat-
tice are not thermalized, and we may assume that their
initial temperature is determined by the average kinetic
energy in the electric field. Therefore, the initial tem-
perature of the ion subsystem, which is established
quite rapidly under the action of a short-lived electric
field Eρ(ρ), can be expressed as

(8)

where kB is the Boltzmann constant.
Figure 5 shows the results of calculations of the spa-

tial profiles of the electric field generated in copper at
t = tr by various singly charged ions with Z1 = 8 (oxy-
gen), 36 (krypton); 54 (xenon), and 92 (uranium) inci-
dent with an energy of 10 MeV/nucleon. The calcula-
tions were carried out using a procedure described
in [3]. As can be seen, the electric field strength sharply
increases with the atomic number of incident particles
and reaches ~200 V/Å for uranium ions.

Figure 6 presents the time variation of a kinetic
energy (temperature increment) gained by ions of the
copper lattice under the action of the effective electric
field, which was calculated using relation (7) and the
field strength determined for krypton ions (Fig. 5).

Now let us consider the most “unfavorable” case for
ion subsystem temperature variation, whereby the Cou-
lomb explosion model is used to calculate only the ion
subsystem heating for the initial ion temperature deter-
mined by formula (8) and the initial electron tempera-
ture, assumed to be constant and equal to the matrix
temperature:

(9)

The results of calculations of the ion temperature
variation in the track region of a copper target irradiated
by high-energy heavy (krypton) ions (Z1 = 36, E =
10 MeV/nucleon) are presented in Fig. 7. A comparison
between Figs. 6 and 7 shows that the Coulomb explo-
sion model predicts a stronger and faster increase in the

∆ε ρ( ) ∆p( )2

2M
-------------

eZEρtr( )2

2M
-----------------------,= =

kBT i ρ t 0=,( ) ∆ε ρ( ),=

Te t 0=( ) Tmatr 100 K.= =
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ion temperature than does the T-spike model. The
achieved level of heating of the ion subsystem may lead
to the formation of a melt-through zone in the metal
target.

Now let us consider the influence of the Coulomb
explosion on the formation of point defects in copper
bombarded by heavy ions. As was noted above, an
anomalous number density of point defects was
observed [4] in Cu and Ag targets irradiated with heavy
ions at a level of the electronic stopping power Se from
0.1 to 100 keV/nm. The concentration of point defects
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Fig. 5. Spatial profiles of the electric field generated in cop-
per at t = tr by various ions with Z1 = 8 (1), 36 (2), 54 (3),
and 92 (4) incident with an energy of 10 MeV/nucleon.
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Fig. 6. Time variation of the ion subsystem temperature in
the track region of a copper target irradiated by high-energy
heavy (Kr) ions. The calculations were performed for r =
5 (1) and 10 Å (2) using the Coulomb explosion model,
with the electron subsystem heating caused by the electron
drag losses (dE/dr = 100 keV/nm) calculated using the
T-spike model.
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was significantly higher than that expected for their for-
mation as a result of the elastic collisions of heavy pro-
jectiles with ions of the crystal lattice. For example, in
copper irradiated with heavy ions at Se ≈ 100 KeV/nm,
the number of point defects per unit heavy ion range
(micron) reached N ~ 103–104 µm–1. In this context, it
would be of interest to calculate the point defect con-
centration as a function of the electronic stopping
power of heavy ions using the Coulomb explosion and
T-spike models and to compare these theoretical results
to experimental data.
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Fig. 7. Time variation of the ion subsystem temperature in
the track region of a copper target irradiated by high-energy
heavy (Kr) ions. The calculations were performed for r =
5 (1) and 10 Å (2) using the Coulomb explosion model,
with the electron subsystem temperature assumed to be
equal to the matrix temperature (100 K).
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Fig. 8. A plot of the total number N of point defects gener-
ated by a heavy ion per unit ion range due to temperature
fluctuations T(ρ, t) for a characteristic track cooling time
versus electron drag losses in the track region of a copper
target. Calculations were performed using the Coulomb
explosion model.
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The total number N of point defects generated by a
heavy ion per unit ion range due to the temperature fluc-
tuations T(ρ, t) for a characteristic track cooling time τ
in a cylindrical region near the ion trajectory is

(10)

Here, N0 is the number density of host atoms in the
matrix, ν0 is the Debye frequency, and Ef is the
energy of vacancy formation in the matrix lattice.
Our calculations of the number of point defects
formed due to thermal fluctuations in the track region
in copper were performed for the following parame-
ters: N0 = 8.5 × 1028 m–3, ν0 = 1013 s–1; ρ0 ≈ 10–7 m;
τ ≈ 10–10 s; Ef = 3 eV. Figure 8 shows a plot of N ver-
sus Se calculated using Eq. (10) within the frame-
work of the Coulomb explosion model. As can be
seen, the number of point defects produced by one
ion per unit ion range (i.e., per unit track length) at
Se ≈ 100 keV/nm is about N ≈ 1.3 × 103 µm–1, which
is close to the experimental data for Cu targets [4].
Analogous calculations were performed using
Eq. (10) and the ion temperature profiles determined
previously using the T-spike model, according to
which the maximum ion temperature in the track
region is about 110 K (Fig. 4). These calculations
gave point defect densities about three orders of
magnitude lower as compared to the values obtained
using the Coulomb explosion model (where the max-
imum ion temperature is about Ti ≈ 103 K, see
Fig. 6). From this we infer that the Coulomb explo-
sion model shows a better agreement with experi-
ment than does the T-spike model for the number of
point defects formed in the track region. Thus, the
Coulomb explosion model provides a more adequate
description of track formation in metal targets irradi-
ated by heavy ions.

4. CONCLUSIONS

We have analyzed the process of heating of the elec-
tron and ion subsystems in the track region in copper
and Fe85B15 amorphous alloy targets bombarded by
high-energy heavy ions, as described within the frame-
work of two theoretical models of track formation:
Coulomb explosion and T-spike. Using these models,
we calculated the spatial distributions of the ion and
electron subsystem temperatures in the track regions.
Various modifications of the T-spike model were con-
sidered, which differed in the mechanisms of electron
subsystem heating and in the form of exchange terms
describing the electron–phonon interaction in the heat
balance equation. The results of numerical calculations
of the ion subsystem heating in a Fe85B15 amorphous
alloy were compared for two variants of the T-spike

N N0ν02π ρ ρ
E f

kT ρ t,( )
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model. It was found that modifications of this model do
not describe significant changes observed in the alloy
irradiated by heavy ions.

The ion subsystem heating in a copper target was
calculated using a combination of the Coulomb explo-
sion and T-spike models. The Coulomb explosion
model predicts a stronger heating of the ion subsystem
than does the T-spike model, with possible formation of
melt-through zones in the track region. The point defect
concentration in a copper target as a function of the
electronic stopping power was calculated within the
framework of the Coulomb explosion and T-spike mod-
els. Comparison to the available experimental data
showed that the Coulomb explosion model (predicting
higher ion temperatures in the track region: T ~ 103 K,
Fig. 6) gives point defect densities three orders of mag-
nitude higher than the values obtained using the T-spike
model and are close to the experimental values [4]. The
results showed that the Coulomb explosion more ade-
quately describes the track formation in metals than
does the T-spike model.

APPENDIX

1. Constants used in the numerical calculations
for Cu (taken from [2, 5, 6, 7]). Ne = 1.4 × 105 mol/m3;
Ni = 1.4 × 105 mol/m3; ∆Hfus = 13.01 × 103 J/mol;

2. Constants used in the numerical calculations
for F85B15 amorphous metal alloy (taken from [1, 8]).
ρsol = 7.5 g/cm3; ρliq = 7.3 g/cm3; Ni = 8.47 × 1022 cm–3;
Ne = 1.73 × 1023 cm–3; ζ = 8.97 × 10–5 J/(cm3 K2); Tfus =
1220 K; T0 = 44 × 103 K; De min = 8 cm2/s; Hfus =

Te, K Te < 1.7945 × 104 K Te > 1.7945 × 104 K

Ce, J/(mol K) 6.95 × 10–4 Te 12.47 (3R/2)

Te, K 10 < Te < 100 K Te > 100 K

Ke, W/(m K) 3.5 × 102

Ti, K 10 < Ti < 80 K Ti > 80 K

Ci, J/(mol K) 4.74 × 10–5 25 (3R)

Ki, W/(m K)

Note: It is assumed that 10 K < Ti < 1357.65 K.

3.5 106×
TeT i

----------------------
Te

T i
-----

T i
3

1.8 104×
T i

---------------------- 1.8 104×
T i

----------------------
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1410 J/cm3; TL = 5625 K; k1 = 135 × 105 (cm2 K2)/s;
k2 = 45 × 103 (cm2 K)/s;
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Abstract—The structure, electrical, and magnetic properties of epitaxial LaCa(Sr)MnO single crystal films

with a clustered structure have been studied. In films with a “metallic” phase content  ≤ 0.15, the electric
conductivity is determined by the spin-dependent tunneling of charge carriers between “metallic” clusters, and
the magnetoresistance is maximum at T = 4.2 K. The correlated motion of carriers over the system of tunneling-
linked clusters leads to the formation of a window in the Coulomb blockade. The interactions between atomic,
magnetic, and electron subsystems increase in the vicinity of the dielectric–metal percolation transition (T =

200–210 K), where the metal phase content Cm in the samples with  ≥ 0.2 reaches a maximum (  = 0.5)
due to an increase in the cluster size upon cooling. In this case, the magnetoresistance exhibits a maximum at
T = 260 K, on the dielectric side of the percolation transition. Due to the presence of space charge regions at
the periphery of the clusters, the content of a ferromagnetic phase is 1.5–2 times that of the “metallic” phase.
For this reason, the calculations are performed using a model combining the tunneling conductivity mechanism
with the percolation approximation for the description of magnetization. Allowance for the Coulomb interac-
tion between charge carriers and clusters improves the agreement of theory and experiment. © 2005 Pleiades
Publishing, Inc. 

Cm
0

Cm
0 Cm

crit
1. INTRODUCTION

As is known, the colossal magnetoresistance in
manganites of the LaCa(Sr)MnO type is due to the
interaction between electron and magnetic subsystems,
which results in the ordering of the magnetic subsystem
upon cooling of a sample in the magnetic field. An
important role in this phenomenon is played by struc-
tural inhomogeneities. The electron mechanisms of
phase separation [1, 2] make possible the formation of
inhomogeneities even in a single crystal structure, but
this process is usually not related to qualitative changes
in the atomic order. We believe that these mechanisms
are operative at film growth temperatures (~700°C),
when the magnetic interactions are weak but the possi-
bility of phase separation between dielectric and
“metallic” regions is retained. This is favored by a high
density of holes (p0 ~ 1021 cm–3), which is several
orders of magnitude higher than the density of intrinsic
carriers in LaMnO3,

,

at Eg = 1.5 eV and T = 700°C. High temperatures favor
the formation of clusters with linear dimensions within
70–160 Å [3].

An integral characteristic of manganites, which
characterizes the interaction between electron and mag-

ni pi Eg/2kT–( )exp∼ 1015 cm 3–
 ! p0≈=
1063-7761/05/10101- $26.000128
netic subsystems, is offered by the temperature depen-
dence of the resistance. This dependence exhibits a
maximum near the Curie temperature (TC), but factors
determining the exact position (Tmax) of this maximum
were not studied previously [4–15]. The dielectric state
of manganites at T > TC is related to a disorder in the
magnetic subsystem and to the presence of a random
potential whose nature has never been discussed [1, 2,
6, 9, 14, 16]. A decrease in the resistance at T < TC is
usually explained by the magnetic ordering and the
delocalization of electron states. We believe that such
states cannot appear without changes in the atomic
order of manganites.

The resistance usually exhibits a monotonic decrease
when the temperature is varied within 200–300 K,
although several cases have been reported [13, 14]
when R(T) showed abrupt changes in the region of
20−30 K. As will be demonstrated below, the rate of
decrease in the resistance of epitaxial LaCa(Sr)MnO
layers with a single-crystal structure depends on the
local atomic order in a clustered structure. Slow R(T)
variations at T < Tmax are related to the spin-dependent
tunneling of charge carriers between clusters with
metallic conductivity. Switch-on of a percolation mech-
anism leads to a significant increase in the efficiency of
interactions between electron and magnetic subsystems
and is accompanied by a rapid drop in the resistance
 © 2005 Pleiades Publishing, Inc.
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with a large slope dR/dT. The results of calculations
performed for particular samples show satisfactory
agreement with experiment.

2. SAMPLES AND EXPERIMENTAL METHODS

We have studied a series of La0.6Sr0.2Mn1.2O3
(LaSrMnO) and La2/3Ca1/3MnO3 (LaCaMnO) films
with properties variable within broad limits, which
were prepared by pulsed laser sputtering of the corre-
sponding targets [17, 18]. The process was carried out
using a KrF excimer laser with a pulse width of τ =
25 ns and an output beam intensity of Φ = 1.5–
3.0 J/cm2. The films were grown at an oxygen pressure
of 300 mTorr on various single crystal substrates,
including SrLaGaO4, Nd3Ga5O12, Gd3Ga5O12, SiO2/Si,
(LaAlO3)0.3(Sr2AlTaO6)0.7 (referred to below as
SAT-30), and (LaAlO3)0.22(Sr2AlTaO6)0.78 (SAT-22).
The substrate temperature during growth was Ts = 600–
730°C.

The magnetization of samples in the temperature
range from 4.2 to 300 K was measured using a SQUID
magnetometer. The electrical characteristics were stud-
ied using the standard four-point-probe technique. The
structure was studied by means of X-ray diffraction
using CrKα radiation, which also provided information
about the features of diffuse scattering in the clustered
manganite films.

3. EXPERIMENTAL RESULTS

Below we present the results of our experimental
investigation of the properties of epitaxial
LaCa(Sr)MnO single crystal films. We will sequen-
tially consider the structure, electrical, and magnetic
properties of these films. The main attention will be
devoted to the analysis of interactions between atomic,
magnetic, and electron subsystems in the films studied.
The experimental data are interpreted using the results
of our previous investigations into the optical properties
of such films [19]. In particular, the optical absorption
data are used for obtaining quantitative estimates of the
metal phase content in the samples.

3.1. The Structure of Samples 

Although the mechanisms of phase separation in
manganites are well known, experimental data for the
structures with perfect atomic order are frequently
interpreted within the framework of models assuming a
homogeneous single-phase state of the material. It was
found that data available on the phase composition of
our samples are insufficient for solving the problems
posed in this study, and we have additionally studied a
fine structure of obtained manganite films. This section
presents a detailed analysis of the local structure of our
films and shows differences in the local atomic order of
samples, which are related to the formation of meso-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
scopic inhomogeneities (clusters). The nature of clus-
ters influencing the structure-sensitive properties of
manganites is related to various lengths of Mn–O bonds
for the different charged states of manganese.

The multiscale character and variability of the
local atomic order. The results of X-ray diffraction
analysis of the films confirmed the absence of foreign
phases in LaCa(Sr)MnO single crystal films. The dif-
fraction patterns of various samples were much alike
(Fig. 1), displaying a single pronounced peak (θCr ~
25°), which corresponds to the reflection from the main
group of planes, and several weak diffuse maxima
(θCr ~ 27–38°) due to heterogeneous plane atomic
groups (clusters) [3, 19–23]. The Debye patterns with
Laue reflections showed that the films represented sin-
gle crystal layers in which a long-range matrix structure
coexisted with a mesoscopic order in the local regions
(clusters) without violation of coherent binding with
the matrix. The absence of sharp boundaries facilitates
rearrangement of the atomic order in response to varia-

30° 40°35°
θ

8

9

10
14

12

10

8

6

4

20° 25° 30° 35° 40°

θ

A1
A0

20
2(

O
)

20
3(

R
)

40
0(

R
)

00
4(

O
)

SrLaGaO

I,
 r

el
. u

ni
ts

11
2(

O
)

NdGaO

20
2(

O
)

20
3(

R
)

00
4(

O
)

40
0(

R
)

I,
 r

el
. u

ni
ts

Fig. 1. The typical X-ray diffraction patters for LaSrMnO
film on SrLaGaO4 substrate. The bottom inset shows a dif-
ference between the diffractograms of LaSrMnO films on
SrLaGaO4 and Nd3Ga5O12 substrates. The top inset shows
two Debye patterns with Laue reflections for (a) LaCaMnO
and (b) LaSrMnO films.
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tions of the temperature or applied magnetic field, not
excluding the possible influence of defects present in
peripheral regions of the clusters and the localization of
charge carriers on the related states.

The main structural differences are revealed by the
analysis of diffuse scattering from the clusters contain-
ing fragments of the Mn–O planes. The character of the
diffraction intensity distribution in the region of the dif-
fuse maxima (Fig. 2) is indicative of variability of the
local order in the clustered regions. Depending on the θ
value, there are three types of local order representing
the cubic, orthorhombic, and rhombohedral phases [3,
21, 22]. The former two phases may exhibit metallic
conductivity [24], while the rhombohedral phase forms
are dielectric clusters [3, 19, 20]. For this reason, the
conductivity σ follows variations of the phase compo-
sition of the clustered structure, which is characterized
by the ratio Cm/CΣ = (cubic + ortho)/(cubic + ortho +
rhombic). At a large mismatch between the crystal lat-
tice parameters of films and substrates (e.g., for the lay-
ers grown on Gd3Ga5O12 and Nd3Ga5O12), the concen-
tration of defects and the width of transition regions in
the clusters are much greater than those in well-
matched layers (e.g., on SrLaGaO4). This results in sig-
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Fig. 2. Fragments of the X-ray diffraction patterns in the
region of diffuse maxima for LaCaMnO (LCMO) films on
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and θ < 33.5°, respectively.
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nificantly (2–10 times) lower σ values (for the same
Cm/CΣ) and to a considerable scatter in σ(Cm/CΣ) for
the films on Gd3Ga5O12 and Nd3Ga5O12 substrates.

The samples with high σ and dR/dT values (at T <
Tmax) are characterized by a symmetric (relative to the
center at θc = 33.5°) intensity distribution with two
maxima (see the curve for a film on SAT-30 in Fig. 2).
For this reason, we have studied the fine structure of
diffraction patterns showing no such symmetry (Fig. 2).
The observed diffraction peaks are due to the coherent
diffuse X-ray scattering from the clustered fragments of
planes in the (220)-O, (203)-R, (200)-C, and (400)-R,
(004)-O phases (R, C, and O refer to the rhombohedral,
cubic, and orthorhombic phases, respectively), where
the (200)-C peak observed at θc = 33.5° corresponds to
the center C). For a lateral size of clusters within D =
100–150 Å, a thickness of D/3 ≈ 30–50 Å, and an inter-
planar spacing of d ≈ 1.8–2 Å, clusters consist, on aver-
age, of 10–30 layers representing identical crystal
planes.

As is known, the introduction of strontium ions Sr2+

(or calcium ions Ca2+) into the composition of LaMnO3

leads to the appearance of Mn4+ and (in the presence of
local stresses) Mn2+ ions via the reaction 2Mn3+ 
Mn4+ + Mn2+ [25, 26]. Taking into account the depen-
dence of the Mn–O bond length on the charged state of
manganese, Mn(2–4)+ [25, 26], and the experimental val-
ues of d (corresponding to the observed θ), we conclude
that the observed diffuse regions provide information
about the structural components with different sets of
manganese ions (Mn2+, Mn3+, and Mn4+) and the corre-
sponding Mn–O distances [19, 20]. In particular, the
diffraction patterns reveal the points corresponding to
large (θ < θc) and small (θ > θc) d values corresponding
to the Mn2+–O and Mn4+–O bonds, respectively. The
center (C in Fig. 2) corresponds to the Mn3+–O bonds.

The distribution of planes between groups of
clusters. Using the measured distribution of the diffuse
scattering intensity, it is possible to estimate the frac-
tion of scattering planes for regions A1 and A0 in Fig. 1
relative to the middle of each maximum (θ1 = 30.5° and
θ0 = 36°). These estimates are obtained using the I+/I–
ratios, where I+ corresponds to d > dmax, while I– is
taken on the side of d < dmax. The discrete values of
intensities were determined for ∆d = 0.02 Å. Thus, by
measuring the I+/I– values in symmetric points with
respect to θ1 and θ0, we obtain information about less
and more closely spaced planes (Fig. 3). At the middle
of each maximum, I+/I– = 1. When the planes with
smaller d predominate, the I+/I– curve falls within the
region of I+/I–< 1. As the proportion of planes with
greater d grows, the curve shifts toward the region
where I+/I– > 1.

For LaCaMnO films on SAT-30 (and the like films
of LaSrMnO on SrLaGaO4), the deviation of the A0
curve in Fig. 3 toward I+/I– < 1 implies that the manga-
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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nese ions forming shorter Mn–O bonds (i.e., Mn4+) pre-
dominate over Mn3+. At the same time, the shift of the
A1 curve toward I+/I– > 1 is evidence for the predomi-
nance of Mn2+ ions forming longer Mn–O contacts.

The films characterized by high stresses at the film–
substrate interface (such as LaCaMnO on SiO2/Si and
LaSrMnO on Gd3Ga5O12) are described by sine-shaped
I+/I– curves (Fig. 3). These curves cross the level of
I+/I− = 1 and occur for the most part in the region of
I+/I− < 1. Their behavior corresponds to alternating
local density of clusters, whereby the more or less
closely spaced planes sequentially predominate. The
planes with less ionized manganese (Mn(2–3)+ in A1)
exhibit weak (~20% relative to the average level) fluc-
tuations of the intensity (Fig. 3). At the same time, the
planes with more ionized manganese (Mn(3–4)+ in A0)
show much greater intensity variations (~170%) of
about the average level (Fig. 3). This nonmonotonic
behavior of the relative intensity reflects a greater struc-
tural diversity related to the mutual misorientation of
the fragments of different Mn–O planes containing dif-
ferently charged manganese ions (Mn2+, Mn3+, and
Mn4+) in the clusters. The misorientation leads to an
increase in the density of local states and a decrease in
the density of free holes inside the clusters, thus influ-
encing the conductivity of samples.

This situation is illustrated in the table, which pre-
sents data for LaCaMnO films on SiO2/Si and SAT-30.
As can be seen from these data, the ρ values in the films
grown at the same temperature on different substrates
may differ by one to two orders of magnitude.

Phase ratios in the clustered regions A1 and A0. It
can be expected that a difference in the mismatch
stresses for the clustered structures grown on different
substrates will also affect the phase ratios in these
mesoscopic components. It is natural to suggest that, in
films on SiO2/Si substrates, the concentration of ele-
ments of the rhombohedral (R) phase with a more dis-
torted structure (a = b = c, α = β ≠ γ) will be greater
than the concentration of elements of the orthorhombic
(O) phase with a less distorted lattice (a ≠ b ≠ c, α = β =
γ). In order to estimate the relative content of these
phases, let us use the ratio of the intensities observed at
discrete angles θ for the corresponding hkl values
(Fig. 2). In region A1 of the LaCaMnO films on SAT,
the R/O phase ratio is 0.7, while the same film of
SiO2/Si has R/O = 0.56. For A0 in the film on SAT, we
also obtain R/O = 0.7, while the ratio for SiO2/Si is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
R/O = 1.56. In accordance with the diagrams in Fig. 2,
the maximum difference is observed in the A0 region for
the structures with Mn(3–4)+ ions on SiO2/Si.

3.2. The Minimum of Metallic Conductivity
and the Electrical State of Manganite Films 

The nature of a decrease in the resistance at T < TC
is usually explained in terms of a metallic conductivity
component or “metal-like” behavior of the conductiv-
ity. However, analysis of the electrical properties of
manganite films (which exhibit characteristic R(T)
curves) shows that the dielectric–metal transition usu-
ally does not take place in the vicinity of the Curie tem-
perature. The electrical properties of samples are deter-
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Comparative characteristics of LaCaMnO films grown under identical conditions on SiO2/Si and SAT-30 substrates

Substrate Ts, °C Tmax, K Tmin, K ρ4.2 K, ω cm ρmin, ω cm ρmax, ω cm ρ80 K, ω cm ρ290 K, Ω cm

SiO2/Si 725 200 30 0.0667 0.0575 1.52 0.0828 0.23

SAT-30 725 268 – 0.00052 – 0.026 0.00104 0.0245
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mined by the tunneling of charge carriers between
“metallic” clusters. We have established that the transi-
tion (of the percolation type) to a state with metallic
conductivity (if it takes place at all) proceeds at lower
temperatures (well below Tmax), where the sample resis-
tance decreases to less than one-tenth of the value at
Tmax. Thus, we can speak only of a formal similarity of
the R(T) curves for manganites and metals.

Indeed, let us compare the specific conductivity of
manganite samples to the minimum metallic conductiv-
ity given by the formula [27, 28]

(1)

where z is the coordination number, a is the distance
between the impurity centers, V0 is the random poten-
tial amplitude, and B is the bandgap width. For
LaCa(Sr)MnO, the σmin value according to formula (1)
must not be less than 100 Ω–1 cm–1 [3, 29]. The conduc-
tivities of our samples fall within σ = 9.5 × 10–3–4.1 ×
101 Ω–1 cm–1 at T = 290 K and vary in a somewhat
broader range at T = 4.2 K, where σ = 7.1 × 10–4–2 ×
103 Ω–1 cm–1. In the region of R(T) maximum, the con-
ductivity is σ = 3.4 × 10–3–3.85 × 101 Ω–1 cm–1, which
is significantly lower than σmin.

The R(T) curves with maxima of the usual type [30,
31] are observed even for σ = 0.25–0.4 Ω–1 cm–1, which
is two to three orders of magnitude smaller than σmin
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Fig. 4. Temperature dependences of the resistance of
LaSrMnO films grown on SiLaGaO4 substrates at various
temperatures (Ts = 650–730°C).
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[23]. Within the interval of Tmax–T = 60–270 K, the
samples still occur in the dielectric state. The values of
σ < 10 Ω–1 cm–1 correspond the metallic phase con-
tent Cm < 12%, which is below the percolation
threshold for a lattice of any type and an arbitrary
shape of grains [32, 33]. The increase in σ at T < Tmax is
stimulated by the process of magnetic ordering. When
the level of σ = σmin is attained and the material passes
to a metallic state (e.g., for LaSrMnO grown on
SrLaGaO4 at Ts = 700°C (Fig. 4), this transition is
observed at T = 160–170 K, while for LaCaMnO grown
on SAT-30 and SAT-22, it takes place at T = 190–
200 K), the monotonic character of R(T) is retained.

In the dielectric state, the electric conductivity can
be explained by several mechanisms, including hoping
transport, injection of charge carriers, and tunneling.
The measurements of σ as a function of the temperature
T and the electric field strength F showed that the hop-
ping transport does not take place even in high-ohmic
(ρ > 103 Ω cm) samples [3]. The mechanisms involving
charge carrier injection must exhibit characteristic fea-
tures related to nonlinearity of the conductivity. How-
ever, we observed a weak nonlinearity (manifested by a
20–50% increase in σ in response to the field intensity
growth by two orders of magnitude) only in high-ohmic
(ρ > 200 Ω cm) samples. The I–V curves of low-ohmic
samples were linear, whereby the resistance remained
unchanged when the field F was varied within three to
four orders of magnitude. Thus, the most probable
mechanism of conductivity is that based on the tunnel-
ing between metallic clusters.

The influence of magnetic order on the charge trans-
fer makes the tunneling spin-dependent [34–39]. There
are two characteristics features in this effect. First, the
absolute value of the negative magnetoresistance (MR)
monotonically decreases with increasing temperature
(Fig. 5, curve 1), in contrast to the MR value for the
sample whose state is closer to the dielectric–metal
transition (curve 2). Second, the MR exhibits maximum
changes in weak magnetic fields (Fig. 6). Accordingly,
the derivative dR/dH significantly varies only in the
region of weak magnetic fields (H < 3000 Oe). The
dR/dH value grows with decreasing temperature,
exhibits a maximum at T = 50 K (which corresponds to
the minimum in R(T), Fig. 4), and then further
decreases with the temperature.

In the case of electron tunneling, the resistivity of
the films exponentially grows with increasing average
distance L between clusters:

(2)

where ρ0 includes a factor on the order of exp(Φ1/2) and
Φ is the effective barrier height that is assumed to be
constant. The main parameters of this process can be
determined from experiments, considering a model of
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quasi-two-dimensional clusters in the form of plates
parallel to the film surface. Let the plates have a lateral
size of D and a thickness of D/3 (in accordance with the
X-ray diffraction data) and form a regular lattice. Then,
there are 1/(L + D)3 clusters per unit volume and the
metal phase concentration is

which yields

and

(3)

The Cm value was determined using the optical absorp-
tion data [17, 18, 40–42] and taking into account the
mechanisms of optical transitions [43–45] and the
results of X-ray diffraction measurements. In some of
the films, Cm ≈ 15–18% (which is below the percolation
threshold) and metallic conductivity in the region of
Tmax is not observed. A shift in the percolation threshold

to  = 0.5–0.6 is inherent only in thin-film objects
[32, 33]. Metallic conductivity was observed (for the
most part, in LaCaMnO films on SAT-30 and SAT-22)
at low temperatures.

Figure 7 shows the plot of ρ = f(L) according to rela-
tion (3). A high value of the preexponential factor (ρ0 =
0.0081 Ω cm) is related to reduced density of holes (p),
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Fig. 5. Temperature dependences of the magnetoresistance
for (1) LaSrMnO on SiLaGaO4 (Ts = 730°C) measured at
0.376 T and (2) LaCaMnO on SAT-30 (Ts = 725°C) mea-
sured at 0.4 T. The inset shows agreement between the high-
temperature region of the MR curve 1 and the MR ∝  1/T5
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which are localized in the peripheral regions of clusters.
At p ≈ 3 × 1021 cm–3, the thickness of the space charge
layer depleted of holes is

(4)

where VD is the barrier height [46]. According to (4),
h ~ 10 Å, which is a significant value in the case of
small clusters.

3.3 Magnetic Properties 

Manganites are known to represent two-phase mag-
netic systems [1, 2, 47]. At the same time, the samples
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atures, showing the influence of a magnetic field on the
resistance of LaSrMnO film grown on SrLaGaO4 at Ts =
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are usually characterized by X-ray diffraction as single-
phase. Proceeding from the notion of a two-phase mag-
netic state of LaCa(Sr)MnO single crystal films and
taking into account their local heterogeneous and het-
erophase character, we will show below that the clus-
tered structure of these films is responsible for both
their electrical properties (charge carrier tunneling
between clusters and, eventually, the dielectric–metal
percolation transition) and magnetic properties (spin-
dependent tunneling coupling of clusters and, eventu-
ally, the transition to a ferromagnetic state).

For example, let us consider the behavior of two
LaSrMnO films (grown on SrLaGaO4 at Ts = 650 and
700°C), which are characterized by similar R(T) curves
(Fig. 4) at a tenfold difference in the values of conduc-
tivity σ. Figure 8 shows the temperature dependences
of the magnetization measured using samples cooled in
the presence (field-cooled, FC) and in the absence
(zero-field-cooled, ZFC) of magnetic field. The most
pronounced difference between M(T) curves of the FC
and ZFC samples, as well as between the MR curves
(see Figs. 5 and 6) is observed at low temperatures and
weak (about 100 Oe) magnetic fields. Indeed, the M(T)
curves of the FC samples exhibit saturation at low tem-
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Fig. 8. Temperature dependences of magnetization of the
FC and ZFC samples of LaSrMnO films grown on
SrLaGaO4 at Ts = 650 (a) and (b) 700°C.
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peratures, whereas the curves of the ZFC samples have
a domelike shape characteristic of clustered spin
glasses [47]. As the field is increased, the difference
between FC and ZFC measurements decreases and vir-
tually disappears at H = 1 kOe. As can be seen in Fig.
8, the difference between FC and ZFC samples is pro-
nounced for the low-conductivity (high resistance) film
grown at Ts = 650°C and is rather weak for the film
grown at Ts = 700°C.

The trapping of free holes on shallow surface states
in the peripheral regions of clusters in the course of
cooling cannot be the main reason for the observed
frustration, since the difference between FC and ZFC
samples (Fig. 8) is not related to the cluster size D (D ≈
130 Å for both samples in Fig. 8). Estimates show that
this difference is most pronounced for the samples with
large distances L between clusters. The magnetic dipole
interactions between ferromagnetic clusters, which cre-
ate a collective magnetic moment and determine the
long-range magnetic order, grow with decreasing L and
hinder the freezing of local magnetic moments of sepa-
rate clusters. For example, the intercluster distance in
the LaSrMnO films grown at Ts = 650°C (Cm = 0.085)
is L = 75 Å. In the films grown at Ts = 700°C (Cm =
0.15), this distance decreases to L = 40 Å, which
accounts, in accordance with formula (3), for the differ-
ences in the behavior of R(T) (Fig. 4) and M(T) (Fig. 8)
curves.

For the ZFC sample of a film grown at Ts = 700°C,
the value of M(10 K) at H = 100 Oe is 20 times that for
an analogous film grown at Ts = 650°C. For the FC sam-
ples, this difference is much lower: the ratio decreases
to 1.6 and 1.3 at 100 Oe and 1 kOe, respectively. Thus,
the M(T) value for the FC samples weakly depends on
L in the region of small intercluster distances. As this
distance grows, the dependence increases. Indeed, as
the L value changes from 75 Å (Ts = 650°C) to 180 Å
(Ts = 600°C), the magnetization M(10 K) exhibits a
fivefold decrease at H = 10 kOe, a sevenfold decrease at
H = 1 kOe, and a 14-fold drop at H = 100 Oe (Figs. 8a
and 9). The films grown at Ts = 600°C exhibit a very
pronounced difference between the results of measure-
ments on the FC and ZFC samples [19]. Weak magnetic
interactions between clusters (evidenced by the magne-
tization curves of ZFC samples) spaced by L = 180 Å in
these films lead to vanishing of the maximum in the
R(T) curves. The absence of a spontaneous magnetic
order (favoring a decrease in the resistance upon cool-
ing) lead to the appearance of a temperature interval
where R(T) = const [19].

For the FC samples, the M value increases with
decreasing temperatures (Figs. 8 and 9). There are
intervals with M(T) = const, but their lengths vary.
Indeed, a film grown at Ts = 650°C is characterized by
an interval with M(T) = const (at T < 60 K) for the sam-
ples measured at 100 Oe and 1 kOe, but no such region
is observed at H = 10 kOe. For the films grown at
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005



EFFECT OF A CLUSTER STRUCTURE ON THE INTERACTION OF ELECTRON 135
Ts = 600°C, a small interval (at T < 40 K) with M(T) =
const is observed only at H = 100 Oe. A decrease in
length of this interval with increasing field (for Ts =
650°C) and the absence of such interval at H ≥ 1 kOe
(for Ts = 600°C) is evidence for an increase in the aver-
age size of ferromagnetic clusters on cooling. Appar-
ently, this trend is favored by smearing of the peripheral
regions of these clusters.

3.4. Electrical Properties and the State 
of a Magnetic Subsystem 

As is known, the electrical properties of manganites
depend on the state of their magnetic subsystem, which
accounts both for the appearance of a maximum in the
R(T) curve near the Curie temperature (TC) and for the
phenomenon of colossal magnetoresistance. However,
the exact position of this maximum (Tmax) and the fac-
tors responsible for a difference in the slopes of the
R(T) curves observed when the samples are cooled
below Tmax are still not established. We will demon-
strate that this behavior is determined by various
threshold states of the magnetic subsystem and by fea-
tures of the cluster structures of manganites.

We have studied two series of LaCa(Sr)MnO films,
which showed different rates of variation of the resis-
tance R and magnetization M as functions of the tem-
perature. Figure 10 shows the R(T) and M(T) curves
measured at H = 1 kOe and matched on the temperature
scale (note that the curves of FC and ZFC samples for
H = 1 kOe coincide).

In samples of the first group, the resistance slowly
varies with decreasing temperature (Figs. 10a and 10b)
and the metallic conductivity state is not attained: the
resistance exhibits a minimum at T ≈ 30 K and then
somewhat increases. The relative variation rate,
(dR/dT)/R, typically does not exceed 0.7%/K. The max-
imum of R(T) occurs on the sloping part of the M(T)
curve. For illustration, Fig. 11 shows the M(T) and R(T)
curves matched with respect to the position of the R(T)
maximum (indicated by the vertical line in Fig. 11b for
all samples). The maximum slopes dR/dT and dM/dT
(indicated by arrows R and M, respectively, in Figs. 11a
and 11b) do not coincide on the temperature scale, the
shift reaching 75 and 47 K, respectively (curves 1
and 2). This difference increases with the ratio
M(T)/M(5 K) at T = Tmax, showing a weak sensitivity of
the electron subsystem to the state of the magnetic sub-
system. There are critical (threshold) states of the mag-
netic subsystem: above these thresholds, the electrical
properties of the samples studied begin to change.

In samples of the second group, the R(T) curves
exhibit no low-temperature minimum, while the maxi-
mum of R(T) coincides with the onset of M(T) growth.
For these films, the resistance rapidly decreases within
a narrow temperature interval (Figs. 10c and 10d). The
relative variation rate, (dR/dT)/R, reaches 7%/K (which
is 5–6 times the maximum value in the first group),
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
which is evidence for a high sensitivity of the electrical
properties of these films to the state of the magnetic
subsystem.

A temperature shift between the points of maximum
slopes dR/dT and dM/dT is small, amounting to 3.5 and
1.8 K, respectively (Fig. 11b, curves 3 and 4). At T <
100 K, the specific conductivity is σ > 103 Ω–1 cm–1,
which is much greater than σmin. According to the esti-
mates of σmin, the dielectric–metal transition in these
films takes place within the temperature interval 200–
210 K.

In the region of metallic conductivity, the
LaCaMnO films on SAT-22 and SAT-30 exhibited a
nearly quadratic temperature dependence at T < 180 K

where ρ0 = 5.37 × 10–4 Ω cm and A = 10–8 Ω cm K–2 (in
agreement with the values reported for manganites
[48]). At low temperatures, the ρ(T) curve can be
approximated by a linear dependence, ρ = ρ0(1 + αT),
with the temperature coefficients of resistance α = 7.1 ×
10–3 K–1 (LaCaMnO on SAT-22) and 3.7 × 10–3 K–1

(LaCaMnO on SAT-30), which are close to the values
of these coefficients for metals (Co, Al).

By analysis of the R(T) and M(T) curves, we can
study the possible relationship between the electric
conductivity and magnetization of manganites. We
have compared the values of σ (normalized to σmax) to
the values of M at H =1 kOe for the same temperatures.
We did not observe a correlation of the σ ∝  M2 type
reported for strongly inhomogeneous media in the
vicinity of the percolation threshold [49, 50]. Instead,
the samples of LaCaMnO on SAT-30 and SAT-22
exhibited an exponential relation between σ and M
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Fig. 9. Temperature dependences of magnetization of the
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600°C.
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(Fig. 12) in a broad range of relative magnetizations
M(T)/M(5 K) (from 0.05–0.1 to 0.80–0.85). In Fig. 10,
this interval corresponds to variations in the R(T) within
one order of magnitude.

The data plotted in Fig. 12 clearly reveal various
threshold values of M(T)/M(5 K), which characterize
the sensitivity of the electron subsystem to the mag-
netic state of the samples of both groups. For the films
of LaCaMnO on SAT-30 and SAT-22, this threshold
corresponds to M(T)/M(5 K) = 0.02–0.04 (Fig. 12). For
the samples of LaSrMnO on SrLaGaO4, the magnetic
threshold corresponds to M(T)/M(5 K) = 0.3, and for
the LaCaMnO films on SiO2/Si this threshold increases
to 0.6, in agreement with Figs. 10 and 11.

4. RELATIONSHIPS BETWEEN PROPERTIES
OF MANGANITE FILMS

The temperature dependences of the resistance and
magnetoresistance of manganites are usually described
JOURNAL OF EXPERIMENTAL A
within the framework of a model based on the notion of
an increase in the radius of ferromagnetic droplets in
the course of magnetic ordering on cooling or under the
action of an external magnetic field. However, this
model does not take into account the local microstruc-
ture of the samples and, hence, cannot provide for an
adequate description of their behavior. Below, we will
demonstrate that the obtained experimental data on the
electrical and magnetic properties of LaCa(Sr)MnO
films can be described using a model taking into
account a rearrangement of the cluster structure.
According to this model, the size of clusters increases
when the local atomic order in their peripheral regions
becomes more perfect as a result of their magnetic
ordering. The increase in the size of small clusters to a
critical level is equivalent to the generation of new
metallic clusters. In this context, we will consider the
transition from spin-dependent tunneling to percola-
tion, with allowance for the fact that concentrations of
the metallic phase (Cm) and the ferromagnetic phase
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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(xF) may not coincide because of the presence of a
space charge layer depleted of holes in the peripheral
regions of clusters.

4.1. Relationship between Parameters 
of the R(T) Curve

for Small Metallic Phase Concentrations Cm

Recently, we established a linear relationship
between Tmax and Tmin values [23],

(5)

where α = –0.46 and γ = 154.32. The temperature inter-
val ∆T = Tmax – Tmin is the region of active interaction
between the atomic, magnetic, and electron sub-
systems. As the degree of atomic disorder decreases as
a result of the magnetic ordering within ∆T, the ampli-
tude of the random potential decreases, which leads to
an increase in the electric conductivity. The nature of
the R(T) minimum at Tmin can be related [51–53] to
charge ordering, although this hypothesis is not free of
drawbacks.

In considering the tunneling mechanism of conduc-
tivity in LaCa(Sr)MnO films, we will neglect the
Coulomb interaction between charge carriers and clus-
ters [54–56], since this factor is insignificant under the
assumptions made. In the case of large concentrations
of the “metallic” and ferromagnetic phases, a system of
a tunneling-linked clusters is formed, which also fea-
ture a strong ferromagnetic interaction. The collective
effects [57, 58] make possible a correlated motion of
charge carriers over this system of clusters, with the
formation of a window in the Coulomb blockade [59].
At a small (1–7%) concentration of the ferromagnetic
phase and a high charge energy,

,

manganites exhibit a clearly pronounced dielectric
behavior [60].

Assuming that the energy w of tunneling coupling
between clusters in the region of the R(T) maximum
corresponds to their thermal energy, we obtain a rela-
tion

(6)

From a comparison of the two exponential relations,
w = w0exp[–(L/L1)] and ρ = ρ0exp(L/L0), we infer that

(7)

where β = L1/L0. Such a relation between ρmax and Tmax
with β = 10.7 was actually observed in our experiments
(Fig. 13).
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A relation between ρ values in the minimum and
maximum of R(T) curves can be obtained assuming that
Cm linearly increases with the Tmax–T interval:

(8)

where  is the metallic phase concentration at T =
Tmax. Under these conditions, the samples belong to the
class of systems with variable potential relief [61].Tak-
ing into account formulas (3) and (8), we obtain a rela-
tion valid at T ≤ Tmax:

(9)

This relation is valid for Cm values below the percola-

tion threshold, Cm <  = 0.5. In relation (9), the clus-
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ter size is assumed to be temperature-dependent: D =
D(T). Taking into account the presence of small clusters
(D ~ 2h, where h is determined by formula (4)), which
do not contribute to Cm, a relation between D and T
should be considered as independent of Cm(T). As the
temperature decreases, the size of small clusters
increases to a critical level, Dcrit ≈ 2h, which is equiva-
lent to the generation of new metallic clusters. In this
case, it is expedient to use the results known from per-
colation theory. Assuming that the variation of D with
the temperature T is analogous to a change in the corre-
lation radius,

(where ν = 0.85 is a critical index [32]), we eventually
obtain

(10)

Using this relation, the expression for the resistivity
at T = Tmin can be written as

(11)

According to this relation, ρmin must exponentially
decrease with increasing interval ∆T = Tmax – Tmin,
which agrees with experiment (Fig. 13). For T = Tmax,
formula (3) yields

(12)

Using formulas (11) and (12), we eventually obtain

(13)

where ξ = 1.25. This relation also agrees with exper-

iment for B = 1 × 10–3 K–1, D0 = 44.2 Å,  = 0.5;

 values were taken from the optical data, and Tmax

and Tmin values, from the experimental R(T) curves.
Let us consider the behavior of R(T) at T < Tmax and

small Cm in the case of samples exhibiting slow varia-
tions of the resistance R (occurring far from the dielec-
tric–metal transition). Writing expression (11) for the
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current ρ and T values, denoting  + BTmax = X and

 + BTmax –  = Y, taking into account that
BT/X < 1, and using the approximation

,

we eventually obtain

(14)

Since the samples at T < Tmax occur in the dielectric
state (Y < 0), the denominator in this formula is always
positive and decreases slower than the numerator, so
that ρ decreases on cooling of the sample. Figures 10a
and 10b show the results of R(T) calculations for the

films with various Tmax for  ≈ 0.1. The agreement
with experiment is provided for B = 1 × 10–3 K–1 and

 = 0.5.

4.2. Relationship between Parameters 
of the R(T) Curve for Cm in the Vicinity

of the Percolation Threshold

For the samples with steep R(T) curves, which are
close to the dielectric–metal transition, the agreement
with experiment is observed for a nonlinear relation
between Cm and T:

(15)

where t = 1.75 is the critical index used for the
description of conductivity in strongly inhomoge-
neous media close to the percolation threshold [32]
and G is a constant factor. Retaining the exponential
dependence (inherent in the tunneling conductivity
mechanism) of the resistance on the intercluster dis-
tance on the dielectric side of the transition, we can
rewrite relation (14) as

(16)
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In this case, the agreement with experiment for a

LaCaMnO film on SAT-30 (  = 0.2, ρmax =
0.026 Ω cm) is achieved at G = 7.7 × 10–3 K–1; ρ0 =

0.0081 Ω cm, D0/L0 = 2.11, and  = 0.5 (Fig. 10c).

It was assumed that the percolation threshold  = 0.5
was independent of features of the process of magnetic
ordering. The validity of this assumption is confirmed
by an analysis of any particular R(T) curve. Indeed, for
a LaCaMnO film on SAT-30, the percolation transition
takes place at 200–210 K (Fig. 10c). Using formula

(15), we obtain Cm = 0.45 <  = 0.5 for T = 210 K

and Cm = 0.52 >  = 0.5 for T = 200 K.

4.3. Relationship between Electrical
and Magnetic Properties 

An analysis of the relationship between electrical
and magnetic properties of the clustered films under
consideration requires taking into consideration the
presence of a space charge layer depleted of holes (with
a thickness of h ~ 10 Å according to formula (4)) in the
peripheral regions of clusters. For a spherical cluster
with D = 100 Å, the metallic core has a diameter of 80
Å. In planar clusters with a thickness of about several
tens of ångströms, the conducting core extends over
one-third of the layer. Thus, the real volume of the
metallic phase involved in the conductivity amounts
from 1/3 to 1/2 of the total volume of clusters. If the
cluster has a ferromagnetic core, the ferromagnetism
(according to the phase diagrams of manganites [24]) is
probably also retained in the peripheral regions with
dielectric properties. The difference in volumes of the
metallic and ferromagnetic phases makes it necessary
to combine the tunneling approximation used for the
description of the electrical properties of samples and
the percolation approximation used to describe their
magnetic characteristics.

The LaCaMnO films with  = 0.2 on SAT-22 and
SAT-30 in the region of magnetizations M(T)/M(5 K) =
0.1–0.85 exhibit an exponential relation between σ and

M, while the LaSrMnO films with  = 0.1 on
SrLaGaO4 obey such a relation in a somewhat narrower
region of M(T)/M(5 K) = 0.6–0.9 (Fig. 12).

If the content of the ferromagnetic phase xF is close

to the percolation threshold , then

(17)

where χ is the magnetic susceptibility [62, 63]. In the

range of concentrations xF > , we have

(18)
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where ξ = const. This behavior agrees with a model
according to which the volume of the ferromagnetic
phase increases in the course of magnetic ordering [47].
Assuming that the xF and Cm values differ by a constant
factor β, so that Cm = βxF, we obtain the relation

(19)

The sample is still in the dielectric state and its conduc-
tivity (and resistance) is determined by the tunneling
of charge carriers between clusters. According to for-
mula (3),

(20)

Using the approximation

we arrive at

(21)

(22)
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Fig. 14. Magnetization curves M(H) with hysteresis for a
LaCaMnO film on SAT measured at T = 5 K.
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Thus, in the vicinity of the percolation threshold, the
conductivity σ and magnetization M obey an exponen-
tial relation, in agreement with experiment (Fig. 12).

4.4. Magnetoresistance

Combining the tunneling approximation used to
describe the conductivity of samples and the percola-
tion approximation used to characterize their magnetic
state, we can also obtain an expression for the magne-
toresistance. Taking into account relation (22), the con-
ductivity in weak fields obeys the relation

(23)

where Z(T) replaces the expression in braces in
Eq. (16), which combines the terms dependent on the
internal state of the magnetic subsystem and on its
spontaneous variation with the temperature; ∆(T, H) > 0 is
the additive term describing the effect of the external
magnetic field. In accordance with the magnetization
curves M(H) (Fig. 14), we have ∆(T, H) > 0 for M = 0.
Representing the magnetization as M(T, H) =
M0Hη(Tmax – T)t and using the above relation, we obtain
an expression for the magnetic-field-induced change in
the conductivity:

(24)

The experimental data for such samples (Fig. 10c)
show that Tmax ≈ Tc . According to formula (24), the
maximum of ∆σ/σ takes place at a temperature Tmax
obeying the relation

(25)

The maximum of ∆(T, H) can be expected in the vicin-
ity of the transition to the ferromagnetic state (Tc ≈
Tmax), where the system is characterized by maximum
disorder. The value of ∆, being maximum at the onset
of magnetic ordering, must decrease when the sample
is cooled below Tmax. If this condition is valid, we have
∂∆(T, H)/∂T > 0 and, hence, Tmax – T > 0. This implies
that the maximum of the magnetoresistance must occur
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to the left of Tmax, falling in the region of the maximum
slope of R(T), in agreement with experiment (cf. TMR =
256 K in Fig. 5, curve 2 and Tmax = 270 K in Fig. 10c
for the LaCaMnO films on SAT). For the films of LaS-
rMnO on SrLaGaO4, which remain in the dielectric
state, the experimental curve (Fig. 5, curve 1) for the
magnetoresistance in the interval Tmax – Tmin is satisfac-
torily described by the dependence MR ~ 1/T (Fig. 5,
squares) characteristic of spin-dependent tunneling
[34] (the effect of temperature on the spin polarization
was ignored). At T > Tmax, a good approximation is
offered by the dependence MR ~ 1/T5 (Fig. 5, line ab in
the inset) reported for manganites in the dielectric state
[60].

5. DISCUSSION

Our experiments showed that the presence of a max-
imum on the R(T) curves and the subsequent decrease
in the resistance on cooling, which reflect a decrease in
the degree of disorder in the magnetic subsystem at T <
TC, are not related to the transition to metallic conduc-
tivity. It was established that the electrical properties of
samples are more or less sensitive to changes in their
magnetic state. This sensitivity is manifested by a shift
of the position of maximum in the R(T) curve relative
to the M(T) curve (and by the presence of threshold
magnetization values in Figs. 10–12), which is indica-
tive of the onset of an active influence of the magnetic
ordering on the electric conductivity. An increase in the
threshold M(T) values is accompanied by a decrease in
the dR/dT slope at T < Tmax.

The magnetic properties of manganite films are
determined by the structure and interactions of clusters
[20, 23]. There are two topologically different pro-
cesses leading to an increase in the magnetic order
(i) inside the cluster and (ii) between clusters. In the
former case, the size of a ferromagnetic cluster
increases due to the attachment of atomic groups from
the peripheral regions. In this process, the main factor
is the local atomic order of the clustered structure (ion
composition, set of crystallographic planes, relative
content of clusters, and their spatial arrangement) and
the distribution of charge carrier density in the periph-
eral regions of clusters. In the second case, the main
role is played by the shape of clusters, their mutual ori-
entation, and the intercluster distance, which determine
the threshold magnetization. An increase in the concen-
tration of a “metallic” phase and a decrease in the resis-
tance at T < Tmax ≈ TC is related to the fact that an
increase in the “metallic” cluster size leads to the delo-
calization of holes in the peripheral regions of such
clusters.

For the electron mechanism of phase separation, the
size R of ferromagnetic drops possessing metallic con-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ductivity can be evaluated using the formula [64]

where EF is the Fermi energy, f(X) = 2X + 3 – 3(1 +
X)2/3, X = VA/VF is the ratio of volumes of the antiferro-
magnetic and ferromagnetic phases (in fact, X ≈ 1/Cm).
For Cm = 0.12–0.25, this formula yields R = 50–70 Å.
If the drops are oblate, so that the thickness is (1/3)R,
the maximum dimensions of clustered formations
increase to 90–120 Å, which agrees with the X-ray data
and the results of magnetic measurements described
in [65].

For films grown under the optimum conditions,
Cm = 15–20% (at room temperature). These values
agree with the metal phase content anticipated if all
holes generated as a result of Sr2+ (Ca2+) introduction
are involved in the formation of the “hole” drops. This
agreement confirms the assumption that the primary
factor responsible for cluster formation is the electron
mechanism of phase separation. The real shapes of
clusters formed on the basis of hole drops are deter-
mined by the anisotropy of atomic order in the crystal.

The X-ray diffraction patterns represent diffuse
reflections from the fragments of planes with Mn–O
bonds coherently built into a single crystal structure of
LaCa(Sr)MnO films. The clustered fragments of Mn–O
planes alternate with nonclustered planes (of the (112)
type in Fig. 1) containing La, Sr(Ca), and O atoms,
which are characterized by long-range order and fixed
bond lengths. These planes retain the long-range order
and maintain the orientation of clustered fragments in
the single crystal structure, thus facilitating the process
of atomic and magnetic ordering in the peripheral
regions of clusters.

The clusters are formed as a result of the relaxation
of elastic stresses related to a redistribution of the
charged states of Mn ions. According to this process,
the matrix must contain predominantly Mn3+ ions,
while the Mn3+ and Mn4+ ions predominantly enter into
clusters. According to the stoichiometric composition
of the material, the amount of such manganese ions is
sufficient to provide for metallic conductivity. How-
ever, in a structure with clusters, only about 1/3 of their
total volume can be involved in the conductivity and,
hence, in most cases σ < σmin. The X-ray diffraction
patterns (Fig. 2) show that the number of Mn3+ ions is
small, but Mn2+ ions appear due to the local stresses
accompanying the cluster formation (with a maximum
in the stage of hole drop formation) and stimulating the
reaction 2Mn3+  Mn2+ + Mn4+ [25].

The dimensions of intermediate zones, which pro-
vide for a smooth transition from order to disorder, are
comparable to the size of small (<30 Å) clusters. These
regions are the main sources of localized states.

R3 135
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--------- π2

m2
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εε0

e2
------- 1 X+( )1/3

EF f X( )
-----------------------,=
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Considering the influence of the phase composition
of clusters on the conductivity, it is necessary to take
into account the fact that crystallographic distortions of
the rhombohedral type lead to the formation of a gap
with Eg1 ≈ 0.25 eV [19] in the density of eg states respon-
sible for the hole conductivity of manganites. This gap
appears upon removal of the orbital degeneracy as a
result of the Jahn–Teller distortions [19, 26, 43]. In the
case of an ortho  rhombo phase transition, the pres-
ence of a gap with Eg1 ≈ 0.25 eV decreases the σ value
by ten orders of magnitude [3]. A large content of the
rhombohedral phase in the clusters (e.g., for LaCaMnO
films on SiO2/Si substrates, Fig. 2) hinders realization
of the percolation mechanism of conductivity.

In films with an orthorhombic structure, the distor-
tions are small, the splitting between x2 – y2 and z2 states
is not observed and Eg1 = 0· in agreement with [24]. If
the orthorhombic phase predominates in the cluster
structure (as in LaCaMnO films on SAT-30), the sam-
ples exhibit a dielectric–metal phase transition with a
large dR/dT slope (Fig. 10c).

The phase composition of the cluster structure
determines the difference (from 10–15 up to 3000%) in
magnetization of the FC and ZFC samples. This differ-
ence is more pronounced in high-ohmic samples grown
at Ts ≤ 600°C (in which the stress relaxation is hin-
dered) and in the films grown on substrates (e.g., on
SiO2/Si) with a large lattice mismatch (where a consid-
erable number of dielectric rhombohedral clusters are
formed). Falling between the ferromagnetic orthor-
hombic clusters, these dielectric clusters produce effec-
tive screening of the ferromagnetic phase). Taking into
account that the position of the maximum observed on
the M(T) curves of ZFC samples (Fig. 8a) corresponds
to the Néel temperature (135–137 K) of LaSrMnO [24],
this maximum is probably related to the antiferromag-
netic ordering in rhombohedral clusters.

Changes in the magnetic order (induced by cooling
below TC or by an external magnetic field) initiate rear-
rangement of the cluster structure, whereby Cm
increases at the expense of peripheral regions. If the
resulting content of metallic clusters approaches the

percolation threshold  = 50%, the system exhibits
a dielectric–metal transition of the percolation type.
The metallic phase content above the percolation
threshold is reached only in the structures characterized
by minimum stresses, in which orthorhombic clusters
are predominantly formed. This process is facilitated in
the films grown on SAT substrates, where the maxi-
mum of R(T) coincides with the onset of the magneti-
zation growth (Figs. 10c and 10d), at a high rate of tem-
perature variation (large slow dR/dT) in the region of
T < Tmax ≈ TC. If the rhombohedral clusters (hindering
the structure rearrangement into the infinite percolation
cluster) predominate, the dR/dT values are low, the state
of metallic conductivity is not attained, and the conduc-
tivity mostly proceeds via the mechanism of spin-

Cm
crit
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dependent tunneling with the participation of metallic
clusters.

In considering the tunneling mechanism, we
ignored the Coulomb interaction of charge carriers with
clusters. Allowance for this interaction would require
introducing additional factors (dependent on the charge
energy Wa) into Eqs. (14) and (16):

where Wa ≈ e2/εD[1 – (Cm/ )1/3] [56]. For Eq. (14),
this factor is

For Eq. (16), we have

Under the assumptions made in this study (as
expressed by formulas (8) and (15)), the functions Q1
and Q2 are slowly varying with the temperature. Allow-
ance for these terms in Eqs. (14) and (16) improves the
fit of the calculated curves to experiment (Figs. 10a
and 10c). It should be noted that the introduction of the
Q1 term in Eq. (14) for the films with small Cm leads (in
agreement with experiment) to the appearance of a
minimum on the calculated R(T) curve (Fig. 10a).

6. CONCLUSIONS

We have demonstrated that LaCa(Sr)MnO mangan-
ite films are characterized by the coexistence and inter-
action of structural elements on different scale levels,
including microscopic, mesoscopic, and long-range
order. On the microscopic scale, the main factor is the
ratio of differently charged manganese ions (Mn2+,
Mn3+, and Mn4+) in structural clusters. The mesoscopic
order (limiting the dimensions of clusters) determines
the main electrical, optical, and magnetic properties of
the manganite films. The nature of clusters is related to
the electron mechanisms of phase separation operating
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in the course of film growth and to differently charged
manganese ions, which act as sources of local stresses.
The phase composition of clusters determines the effi-
ciency of the interaction between the electron and mag-
netic subsystems. The long-range order in the matrix
planes retains a single crystal structure of the samples
and favors the correlated motion of charge carriers over
the cluster system.

At a low (Cm ≤ 15%) concentration of the metallic
phase, the characteristics of manganite films can be
described within the framework of the model of charge
carrier tunneling between clusters with metallic con-
ductivity. For Cm ≥ 20%, it is necessary to take into
account conductivity according to the percolation
mechanism. The presence of regions depleted of holes
in the transition layers between clusters and the matrix
leads to the inequality of concentrations of the metallic
and ferromagnetic phases, which makes it necessary to
combine the tunneling approximation used for descrip-
tion of the electrical properties of samples and the per-
colation approximation used to describe their magnetic
state. The maximum efficiency of interaction between
the electron and magnetic subsystem is observed in the
vicinity of the dielectric–metal percolation transition.
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Abstract—We investigate the structure of the spatially periodic inner boundary layers in the plasma of a posi-
tive glow-discharge column produced in a long cylindrical tube with an electropositive gas inside. Asymptotic
methods, namely, the method of boundary functions, are used to analyze the initial mathematical model. We
consider the formation of contrast burst-type structures. We have found all principal terms of the boundary-layer
asymptotics of the solution. The results obtained are compared with the available probe measurements of basic
physical parameters of ionization waves (strata) in neon at low pressures. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION. FORMULATION 
OF THE PROBLEM

(1) The separation of a gas-discharge plasma col-
umn into layers (strata) called ionization waves is
familiar to specialists who use electric-discharge lasers
and other gas-discharge devices in practice or in
research. Being one of the main types of gas-discharge
plasma instability, the phenomenon of stratification has
long attracted the attention of researchers. Its properties
have been studied in quite a few experimental and the-
oretical works (see, e.g., the reviews [1, 2] and the
papers [3, 4]). There are several reasons for the height-
ened interest of researchers in ionization waves. From a
scientific standpoint, this phenomenon attracts atten-
tion primarily as a classical example of the self-organi-
zation of a gas-discharge plasma, while from a practical
standpoint, it can be used in reactors to separate gas
mixtures [5] and to produce plasma-dust crystals [6] or
in electric traps to collect dust particles with the goal of
their subsequent removal from a gaseous medium [7].
Finally, strata severely degrade the performance of all
gas-discharge devices, appreciably narrowing the range
of their applications. Many properties of strata have
been studied experimentally.

The goal of this paper is to theoretically study the
structure of the stationary large-amplitude strata that
emerge after the stratification of the plasma of a posi-
tive glow-discharge column at low pressures.

(2) Let a discharge take place in a cylindrical tube of
radius R and length L @ R with circular plane-parallel
electrodes. We introduce a cylindrical (r, φ, z) coordi-
nate system whose origin coincides with the center of
the anode and whose z axis is directed along the dis-
charge axis from the anode to the cathode. The mathe-
1063-7761/05/10101- $26.000145
matical model of an infinitely long steady discharge in
an electropositive gas with axial symmetry can be writ-
ten in dimensionless form [8] as

(1.1)

In problem (1.1) and below, we use the following nota-
tion:

h∇ 2Ne ν∇ NeV( ) hγ I θN pNe–( )+ + 0,=

h∇ 2N p ∇ NeV( ) h I θN pNe–( )+– 0,=

h∇ V N p Ne, ∇ V×– 0,= =

∂Ne

∂x
--------- 0, N p q y h,( ), V x 0, x 0,= = = =

Na ba y h,( ), V x V x
1( )

, x 1,= = =

a e p.,=

0 x≤ r
R
--- 1, 0 y≤≤ z

R
--- L

R
---,≤= =

Dp

De

------ γ,
T
Te

----- ν ,= =

ca

cp
0( )------- Na, R

kp

Dp

------E e = ∇Φ ,–= =

αcp
0( ) R2

Dp

------ θ, V he, h
rD

R
-----,= = =

∇ 2 1
x
--- ∂

∂x
------ x

∂
∂x
------ 

  ∂2

∂y2
--------,+=
 © 2005 Pleiades Publishing, Inc.
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ce and cp are the concentrations of the free plasma elec-
trons and singly charged positive ions, respectively, Da

and ka are their coefficients of free diffusion and mobil-
ity, E is the electric field strength, Φ is the dimension-

less potential of this field,  is some characteristic
concentration of the positive ions, rD is the Debye
length for these ions, and α is the bulk electron–ion
recombination coefficient. The function I = I(x, y; Ne, h)
defines the ionization rate, i.e., the number of pairs of
oppositely charged particles emerging in a unit plasma
volume per unit time. The coefficients Da and ka as well
as the temperatures of the free plasma electrons, Te , and
the neutral gaseous medium, T, are assumed to be con-
stant throughout the plasma volume. The equations of
system (1.1) were written by assuming that there was
no convective motion and magnetic field.

Note that a small parameter, 0 < h ! 1, appears before
the high derivatives in the equations of system (1.1) [8].
Consequently, asymptotic methods of the theory of sin-
gularly perturbed differential equations, for example,
the method of boundary functions [9], can be used to
analyze problem (1.1).

We restrict our analysis to a long tube and assume
the positive glow-discharge column to be infinitely long
(–∞ < y < ∞). In this case, the effect of the electrodes on
the object under study can be disregarded.

2. ASYMPTOTICS OF THE SOLUTION
IN PARAMETER h. A REGULAR SERIES

2.1. Let the discharge column be stratified and sta-
tionary ionization waves of length lst , which is assumed
to be known, appear in it. This length can be measured
experimentally or estimated theoretically [3]. The func-
tion I(x, y; Ne, h) is also assumed to be known and
l-periodic in variable y:

(2.1)

This function is written in explicit form below. We
assume the functions Na(x, y, h) and V(x, y, h), i.e., the
concentrations of the charged plasma components and
the electric field vector, to be unknown in problem (1.1).
Note that the values of these functions on the tube wall

(x = 1), i.e., ba and  (the radial electric field compo-
nent) as well as q(y, h) (the ion concentration on the dis-
charge axis), are assumed to be known.

Denote the entire set of sough-for quantities
by W(x, y, h). The asymptotics of the solution of prob-
lem (1.1) can then be written as [8, 9]

(2.2)

where x1 = x/h and x2 = (x – 1)/h are fast variables.

cp
0( )

I x y; Ne h,,( ) I x y l; Ne h,+,( ), l lst/R.= =

V x
1( )

W x y h, ,( ) w x y h, ,( )=

+ Πw x1 y h, ,( ) Rw x2 y h, ,( ),+
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Let us require that all variable quantities be l-peri-
odic, i.e., that the following condition be satisfied:

(2.3)

We seek the regular part of asymptotics (2.2) in the
form

(2.4)

The expansions of the boundary functions Πw(x1, y, h)
and Rw(x2, y, h) have a similar form; the former and the
latter can contribute appreciably to the value of the
principal function only near x = 0 and x = 1, respec-
tively. The coefficients of these expansions, i.e., the
functions ws(x, y), Πsw(x1, y), and Rsw(x2, y), s = 0, 1,
2, …, can be determined in a standard way. Thus, for
example, when determining the coefficients ws(x, y) of
the regular series (2.4), at the first step (s = 0), we obtain
a system that is degenerate (h = 0) with respect to the
system of equations of problem (1.1) to determine the

unknown functions v0(x, y), (x, y), and (x, y).
The solution of this system is obvious [8]:

Here, A0(x, y) is an arbitrary function.

At the next step (s = 1), we obtain the following
problem to determine the unknown functions A0(x, y)
and v1(x, y):

(2.5)

Here,  = v 1x(1, y), i0 = i0(x, y), and ϕ0 = ϕ0(x, y) are
the principal nonzero terms in expansions (2.4) for the
functions Vx(1, y, h), I(x, y, h), and Φ(x, y, h), respec-
tively; the first two functions are assumed to be known.
Having eliminated the terms with the vector v1(x, y)
from the equations of this problem, we obtain the fol-
lowing problem to determine the unknown function
A0(x, y, µ):

(2.6)

W x y h, ,( ) W x y l h,+,( ).=

w x y h, ,( ) hsws x y,( )
s 0=

∞

∑=

=  w0 x y,( ) hw1 x y,( ) … .++

n0
e( ) n0

p( )

v0 x y,( ) 0, n0
e( ) x y,( ) n0

p( ) x y,( )≡ ≡ A0 x y,( ).=

∇ 2A0 ν∇ A0v1( ) γ i0 θA0
2

–( )+ + 0,=

∇ 2A0 ∇ A0v1( )– i0 θA0
2

–+ 0, v1 ∇ϕ 0,–= =

A0 q0 y( ),
∂ϕ0

∂x
--------- 0,= =      x 0;=

A0 b0 y( ),
∂ϕ0

∂x
--------- v 1x

1( ), x– 1.= = =

v 1x
1( )

µ2∇ 2A0 A0
2

I0,–=

x y,( ) D∈ 0 x 1< <( ) ∞– y ∞< <( )×[ ] ,=

A0 0 y µ, ,( ) q0 y( ), A0 1 y µ, ,( ) b0= = y( ),
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where

Since, in general, one function A0 cannot satisfy two

boundary values,  and , we introduce a new
unknown parameter, b0(y), in the additional conditions
of the boundary-value problems (2.5) and (2.6) that can
depend on µ and must be l-periodic. The relationship

between the parameters b0(y), (y), and (y) is
established when determining the boundary functions
Rw(x2, y, h).

Let us consider the case where 0 < µ ! 1 (at R =
1 cm, p = 1 Torr, ν = 10–2, σ = 10–3, α = 2 × 10–7 cm3 s−1,

and  > 1012 cm–3, we have µ ≤ 0.3).

The equation of problem (2.6) is a reaction–diffu-
sion equation. As was shown in [10], when certain con-
ditions are satisfied, the equations of this type have
l-periodic (in variable y) solutions with a burst (contrast
burst-type structures) whose vertex lies on some
smooth l-periodic curve C (the burst curve). Let us
denote

and write the expression defining the function
I0(x, y; A0, µ) as

where g(x, y, µ) is the ionization frequency of neutrals
by a direct electron impact and ξ(x, y, µ) is the step ion-
ization frequency. These quantities are assumed to be
known and l-periodic in variable y.

Thus, we seek an l-periodic (in variable y) solution
of problem (2.6) that at small µ is close to some solu-
tion α00(x, y) of the degenerate (µ = 0) equation

(2.7)

everywhere inside a closed domain , except the small
neighborhood of the l-periodic curve C where the burst
of the solution occurs.

We construct the asymptotics of the solution of
problem (2.6) in parameter µ as the sum of four series:

(2.8)

µ2 = 
1 ν+

νθ 1 σ+( )
------------------------,   

kp

ke

----- = σ,   θI0 = i0,   q0 y( ) = q y 0,( ).

b0
e( )

b0
p( )

b0
e( )

b0
p( )

cp
0( )

F x y; A0 µ,,( ) A0
2

I0–=

I0 x y; A0 µ,,( ) g x y µ, ,( )A0 ξ x y µ, ,( )A0
3
,+=

F x y; α00 0,,( ) f x y; α00 0,,( )=

=  α00
2 g x y 0, ,( )α00– ξ x y 0, ,( )α00

3– 0=

D

A0 x y µ, ,( ) α0 x y µ, ,( ) Tα0 τ0 y µ, ,( )+=

+ Qα0 τ ζ µ, ,( ) Sα0 τ1 y µ, ,( ),+
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where

is the regular series,

are the series that describe the boundary layers in the
neighborhood of the boundaries of domain D, i.e., at
x = 0 and x = 1, respectively, and

is the series that describes the burst of the solution near
curve C; the variables τ and ζ are described below. The
unknown burst curve is determined when constructing
asymptotics (2.8).

2.2. Let us determine the terms of the regular series
and check whether a solution with a burst exists for
problem (2.7). As was noted above, α00(x, y) is a root of
Eq. (2.7). In total, this equation has three roots:

As α00, we choose ϕ1; i.e., we assume that

It follows from the form of the function ϕ1(x, y) that the
inequality

must hold. Clearly, in this case,

and it follows from (2.7) that the partial derivatives of
the function f(x, y; α00, 0) with respect to the argument
α00 when this argument is substituted with ϕ1(x, y) and
ϕ2(x, y) satisfies the conditions

α0 x y µ, ,( ) α00 x y,( ) µα01 x y,( ) …++=

Tα0 τ0 y µ, ,( ) T0α0 τ0 y,( ) µT1α0 τ0 y,( ) …,+ +=

τ0
x
µ
---,=

Sα0 τ1 y µ, ,( ) S0α0 τ1 y,( ) µS1α0 τ1 y,( ) …,+ +=

τ1
x 1–

µ
-----------=

Qα0 τ ζ µ, ,( ) Q0α0 τ ζ,( ) µQ1α0 τ ζ,( ) …+ +=

α00
1( ) x y,( ) 1

2ξ0
-------- 1 1 4g0ξ0––[ ] ϕ 1 x y,( ),= =

α00
2( ) x y,( ) 1

2ξ0
-------- 1 1 4g0ξ0–+[ ] ϕ 2 x y,( ),= =

α00
3( ) x y,( ) 0, ξ0≡ ξ x y 0, ,( ), g0 g x y 0, ,( ).= =

α00 x y,( ) ϕ1 x y,( ) 0,>≡

x y,( ) D∈ 0 x 1≤ ≤( ) ∞ y ∞< <–( )×[ ] .=

g0ξ0 0.25<

ϕ1 x y,( ) ϕ2 x y,( ), g0 ϕ1 x y,( ) 2g0,<≤<

f α' x y; ϕ1 0,,( ) 0, f α' x y; ϕ2 0,,( ) 0, x y D.∈,<>
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In addition, there exists such a function ψ(x, y) that

(2.9)

where

,

and Eq. (2.7) has no roots other than ϕ1 and ϕ2 in the
integration segment [ϕ1, ψ]. We have f(x, y; α, 0) < 0 for
ϕ2 < α < ψ. Thus, we can assert that problem (2.6) has
an l-periodic solution with a burst that is close to
ϕ1(x, y) in  at small µ everywhere, except the small
neighborhood of the burst curve C [10].

It can be easily verified that Eq. (2.9) has three dif-
ferent real roots δ(x, y) < ϕ1(x, y) < ψ(x, y), one of which
(the function ϕ1(x, y)) is known and has a double mul-
tiplicity, while the other two can be found by solving a
quadratic equation [8].

The succeeding terms of the regular series α0s , s ≥ 1,
can be easily determined. Thus, for example,

where

3. THE BOUNDARY FUNCTIONS
OF ASYMPTOTICS (2.8)

3.1. Let us determine the terms of the series
Tα0(τ0, y, µ), τ0 = x/µ. The problem defining the princi-
pal term T0α0(τ0, y) of this series is

(3.1)

(3.2)

Equation (3.1) is an ordinary nonlinear differential
equation in which y is a parameter of the problem.

f x y; α00 0,,( ) α00d

ϕ1 x y,( )

ψ x y,( )

∫

=  
1
3
---ψ3 1

2
---g0ψ

2–
1
4
---ξ0ψ

4– d– 0, x y D,∈,=

d
g0

2
-----ϕ1

2–
1
3
---ϕ1

3 1
4
---ξ0ϕ1

4–+=

D

α01 x y,( )
f µ' x y; ϕ1 x y,( ) 0, ,( )
f α' x y; ϕ1 x y,( ) 0, ,( )
-------------------------------------------------=

=  
g1 x y,( )ϕ1 ξ1 x y,( )ϕ1

3
+

2ϕ1 g0– 3ξ0ϕ1
2–

--------------------------------------------------------,

g1 x y,( ) gµ' x y 0, ,( ), ξ1 x y,( ) ξµ' x y 0, ,( ).= =

1
τ0
---- ∂

∂τ0
-------- τ0

∂T0α0

∂τ0
--------------- 

  F 0 y; α00 0 y,( ), T0α0 0,+( )=

– f 0 y; α00 0 y,( ) 0, ,( ) ω0
2 g0ω0– ξ0ω0

3
,–=

0 τ0 ∞,< <

T0α0 0 y,( ) q0 y( ) ϕ1 0 y,( ), T0α0 ∞ y,( )– 0,= =

ω0 ω0 τ0 y,( ) ϕ1 0 y,( ) T0α0 τ0 y,( ).+= =
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Let us substitute problem (3.1), (3.2) with an equiv-
alent integral equation:

(3.3)

Here,

where m(y) is an unknown parameter, which, in gen-
eral, can depend on y,

K1(x) and I1(x) are the Bessel functions of the first kind
of an imaginary argument. Obviously, the following
inequality holds:

Z t y,( ) mx2–( ) B2 2mx2–( )exp[exp

0

∞

∫=

– B1 mx2–( )exp 4m2x2 4m– 1–+ ]G t x,( ) xd

+ 1 2B1x2 mx2–( )exp– 3B2x2 2mx2–( )exp+[ ]
0

∞

∫

× Z t x,( )G t x,( )dx

x2
------

+ 3B2 mx2–( )exp B1–( )Z2 t x,( )G t x,( ) xd

0

∞

∫

+ B2Z3 t x,( )G t x,( ) x.d

0

∞

∫

Z t y,( )
T0α0 t y,( )

q0 ϕ1
0–

------------------------ m y( )t2–[ ] ,exp–=

t 1 2ξ0ϕ1
0–( )ϕ1

0τ0,=

B1

1 3ξ0
0ϕ1

0–

1 2ξ0
0ϕ1

0–
-----------------------

q0 ϕ1
0–

ϕ1
0

----------------,=

B2

ξ0
0ϕ1

0

1 2ξ0
0ϕ1

0–
-----------------------

q0 ϕ1
0–

ϕ1
0

----------------
 
 
 

2

,=

ξ0
0 ξ0 0 y,( ) ξ 0 y 0, ,( ), ϕ1

0 ϕ1 0 y,( ),= = =

G t x,( ) xK1 t( )I1 x( ), x t;≤=

G t x,( ) xK1 x( )I1 t( ), t x,≤=

0 q0 y( ) ψ 0 y,( )≤ ≤ ψ0.=
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Note one feature of the integral equation (3.3) that
has a specific physical meaning. In the absence of step

ionization, i.e., at  = 0 (B2 = 0), this equation has the
required positive solution with an exponential estimate

for t  ∞ only for q0 <  (B1 < 0) [8]. However,

q0 >  near the burst curve. In this case, Eq. (3.3) can

have a positive solution only at  > 0; the larger the

excess of q0 over , the higher the step ionization fre-
quency. As we show below, a large increase in the elec-
tric field produced by the plasma space charges can pro-

vide this increase in . The solution of the integral
equation (3.3) itself can be constructed using the
method of successive approximations. Note yet another
property of this equation that is used below. In view of
the axial symmetry,

and

ξ0
0

ϕ1
0

ϕ1
0

ξ0
0

ϕ1
0

ξ0
0

∂Y 0 y,( )
∂t

-------------------- 0,=

∂2Y 0 y,( )
∂t2

-----------------------
1
2
--- 1 B1 B2+ +( ),=
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where

The explicit form of all the succeeding terms
Tsα0(τ0, y), s ≥ 1, can be found in a similar way.

3.2. The boundary-value problem defining S0α0(τ1, y),
τ1 = (x – 1)/µ, is

(3.4)

Here,

We write the solution of problem (3.4) as

Y t y,( )
T0α0 t y,( )

q0 ϕ1
0–

------------------------.=

∂2S0α0

∂τ1
2

---------------- F 1 y; α00 1 y+( ) S0α0 0,+,( )=

– f 1 y; α00 1 y,( ) 0, ,( ) ω1
2

g0
1( )ω1– ξ0

1( )ω1
3( )

,–=

∞ τ1 0,< <–

S0α0 0 y,( ) b0 y( ) ϕ1
1( )

, S0α0 ∞– y,( )– 0.= =

ω1 ω1 τ1 y,( ) α00 1 y,( ) S0α0 τ1 y,( ),+= =

ξ0
1( )

 = ξ 1 y 0, ,( ), ϕ1
1( )

 = ϕ1 1 y,( ), g0
1( )

 = g 1 y 0, ,( ).
(3.5)
2

ψ1 ϕ1
1( )–( ) ϕ1

1( ) δ1–( )
-------------------------------------------------------

ψ1 b0–

ψ1 ϕ1
1( )–( ) ϕ1

1( )
b0–

-------------------------------------------------
b0 δ1–

ϕ1
1( ) δ1–( ) ϕ1

1( )
b0–

------------------------------------------------+

ψ1 ω1–

ψ1 ϕ1
1( )–( ) ϕ1

1( ) ω1–
--------------------------------------------------

ω1 δ1–

ϕ1
1( ) δ1–( ) ϕ1

1( ) ω1–
-------------------------------------------------+

------------------------------------------------------------------------------------------------------------------ln
ξ0

1( )

2
--------τ1,=
3.3. Let us now find the terms of the boundary series
Qα0(τ, ζ, µ). First, note that we also seek the burst
curve C in the form of an expansion in terms of positive
powers of the small parameter µ. The principal term of
this expansion (curve C0) is sought in the form x = χ(y),
χ(y) is the principal l-periodic function, such that 0 <
χ(y) < 1.

Following the approach described in [10], we intro-
duce a local (ρ, ζ) coordinate system in the neighbor-
hood of C0, where |ρ| is the distance from the current
point M(x, y) to curve C0 measured along the normal to
C0, and ζ is the ordinate of the base of this normal on
curve C0. For a fairly small neighborhood of curve C0,
the one-to-one correspondence between the coordi-
nates x, y and ρ, ζ is defined by the formulas

ψ1 ψ 1 y,( ), δ1 δ 1 y,( ).= =

x χ ζ( ) ρ

1 χ'( )2+
------------------------, y+ ζ ρχ' ζ( )

1 χ'( )2+
------------------------.–= =
In this case, ρ must be assumed to be positive if point
M is to the right of C0 and negative if it is to the left of
C0. We seek an equation for the burst curve C in the
local coordinate system in the form

where the l-periodic functions λi(ζ) are to be deter-
mined. The following condition is used to find them,
i.e., to determine curve C:

(3.7)

This condition implies that the solution of problem (2.6)
as a function of the variable ρ has an extremum on
curve C.

Let us introduce an extended variable

ρ λ ζ µ,( ) µλ1 ζ( ) µ2λ2 ζ( ) …,+ += =

∂A0

∂ρ
---------

C

0.=

τ ρ λ ζ µ,( )–
µ

---------------------------=
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and the following designation convenient in theoretical
constructions:

Here, as usual, the entire set of variable quantities is
denoted by w(x, y). Let us now write out the boundary
condition that the function Qα0(τ, ζ, µ) must satisfy at
τ = 0. It follows from (3.7) that

Using the expression for ∇ 2Qα0 derived in [10] and
defining Q0α0(τ, ζ) in the new notation, we obtain the
problem

(3.8)

where

It was shown in [10] that problem (3.8) for any l-
periodic function χ(ζ) has a nontrivial l-periodic (in
variable ζ) solution with an exponential estimate. The
unknown function χ(ζ) is determined at the next step.
We write the integral of problem (3.8) as

(3.9)

Let us formulate the problem defining Q1a0(τ, ζ):

(3.10)

w ρ ζ µ, ,( ) w x ρ ζ,( ) y ρ ζ,( ) µ, ,( ).=

∂α0

∂ρ
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ρ λ ζ µ,( )=

1
µ
---∂Qα0

∂τ
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τ 0=

+ 0.=

∂2Q0α0

∂τ2
------------------ F 0 ζ ; α00 0 ζ,( ), Q0α0 0,+( )=

=  ωC
2 g0

CωC– ξ0
CωC

3 , ∞ τ ∞ ,< <––

∂Q0α0 0 ζ,( )
∂τ

------------------------------ 0, Q0α0 ∞ ζ,±( ) 0,= =

ωC ω τ ζ,( ) α00 0 ζ,( ) Q0α0 τ ζ,( ).+= =

2

ψC ϕ1C–( ) ϕ1C δC–( )
------------------------------------------------------- Λ

2
---- π

4
---+ 

 tanln
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2
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Λ
ϕ1C δC–( ) ψC ωC–( )
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,arcsin=

ψC ψ χ ζ( ) ζ,( ), δC δ χ ζ( ) ζ,( ),= =

ϕ1C ωC ψC.≤ ≤

∂2Q1α0

∂τ2
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∂Q0α0

∂τ
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∞– τ ∞ ,< <
∂Q1α0

∂τ
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∂ρ
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Here,

Since the homogeneous problem corresponding
to (3.10) has a nontrivial solution, ∂Q0α0/∂τ, the initial
problem (3.10) is solvable only if the inhomogeneity
F1 – β∂Q0α0/∂τ is orthogonal to the solution of the
homogeneous equation. Using the expression for
F1(τ, ζ) and the property of an integral of even and odd
functions with symmetric limits, we can simplify the
solvability condition by reducing it to the form

(3.11)

Equation (3.11) is a nonlinear differential equation
of the second order for the unknown function χ(ζ). The

functions ∂Q0α0/∂τ and (χ(ζ), ζ) –  in the inte-
grands of this equation also depend on χ(ζ) and are
l-periodic in explicit variable ζ. Therefore, the follow-
ing condition must be added to Eq. (3.11):

Note that in deriving Eq. (3.11), for the sake of sim-
plicity, we assumed that g(x, y, µ) ≡ const. However, we
cannot assume that ξ(x, y, µ) = const, since Eq. (3.11)
loses its meaning in this case. As was noted above, the
electric field of the plasma space charges can provide
the dependence of the step ionization frequency ξ on
point M(x, y). Curve C0 can be determined by solving
Eq. (3.11), i.e., by finding the function 0 < χ(ζ) < 1. In
this way, all terms of the asymptotics of the zeroth order
in parameter µ are determined for the function A0(x, y, µ).

Fα' τ ζ,( ) = 2ωC g0
C– 3ξ0

CωC
2
, β–  = 

1 χ'( )2 χχ''–+

χ 1 χ'( )2+[ ] 3/2
-----------------------------------,

F1 τ ζ,( ) Fα' f α'–( )
∂α00 0 ζ,( )

∂ρ
-------------------------=

+ Fξ' f ξ'–( )∂ξ 0 ζ,( )
∂ρ
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∂ρ
------+

× λ1 ζ( ) τ+( ) Fα' f α'–( )α01 0 ζ,( )+

+ Fξ' f ξ'–( )ξ1 0 ζ,( ) Fg' f g'–( )g1 0 ζ,( ),+

Fα' f α'–  = 2ωC g0
C– 3ξ0

CωC
2

– 2α00 g0
C

– 3ξ0
Cα00

2–( ).–

∂ξ
∂ρ
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ρ 0=

Fξ' f ξ'–( )τ
∂Q0α0

∂τ
---------------- τd

∞–

∞

∫

=  β
∂Q0α0

∂τ
---------------- 

 
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3 ωC

3
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4. ASYMPTOTICS OF THE SOLUTION 
FOR v1(x, y, µ)

4.1. The problem defining the vector P(x, y, µ) =
µv1(x, y, µ) follows from problem (2.5):

(4.1)

We write the solution of this problem as

(4.2)

Here, B is an arbitrary vector with Bx = 0. Relations (4.2)
allow us to determine all terms of the asymptotics for P
and ϕ0, which also consist of the sum of four series of
type (2.8):

In determining the terms of the regular series, we
have

(4.3)

%0 = –Bz is the constant electric field component
directed along the discharge axis. In expressions (4.3),
the constant is chosen in such a way that the potential
ϕ00 at a given point has a known value. All succeeding
terms of the regular series can be determined in a simi-
lar way.

4.2. Let us find the terms of the boundary series. It
follows from (4.2) that

(4.4)

∇ A0P( ) γ 1–
ν 1 σ+( )
---------------------µ∇ 2A0, ∇ P× 0,= =

Px 0 y µ, ,( ) 0, Px 1 y µ, ,( ) Px
1( ),= =

P x y µ, ,( ) P x y l µ,+,( ).=

P x y µ, ,( ) γ 1–
ν 1 σ+( )
---------------------µ∇ A0 x y µ, ,( )ln µB+=

=  µ∇ϕ 0,–

ϕ0 x y µ, ,( ) γ 1–
ν 1 σ+( )
--------------------- A0ln– Bzy const.+ +=

P x y µ, ,( ) p x y µ, ,( ) Tp τ0 y µ, ,( )+=

+ Qp τ ζ µ, ,( ) Sp τ1 y µ, ,( ),+

ϕ0 x y µ, ,( ) µsϕ0s x y,( ) Tϕ0 τ0 y µ, ,( )+
s 0=

∞

∑=

+ Qϕ0 τ ζ µ, ,( ) Sϕ0 τ1 y µ, ,( ).+

p0 x y,( ) 0, p1 x y,( )≡ γ 1–
ν 1 σ+( )
---------------------∇ α 00 B,+ln=

ϕ00 x y,( ) 1 γ–
ν 1 σ+( )
--------------------- α00 x y,( )ln %0y– const,+=

T0p τ0 y,( ) γ 1–
ν 1 σ+( )
---------------------µ∇

ω0 τ0 y,( )
α00 0 y,( )
---------------------,ln=

T0ϕ0 τ0 y,( ) 1 γ–
ν 1 σ+( )
---------------------

ω0 τ0 y,( )
α00 0 y,( )
---------------------.ln=
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Similarly,

Hence,

(4.5)

We see from (4.5) that the magnitude of the vector
Q0p(τ, ζ) depends on the shape of the burst curve. Thus,
for example, if this curve is a rectilinear segment, 0 <
x < 1, y = const, then

(4.6)

Finally,

(4.7)

Consequently,

(4.8)

Similarly,

(4.9)

Relation (4.8) establishes the physical meaning of
the unknown parameter b0(y) introduced above. Finally,

(4.10)

Thus, we have found the principal terms of the
asymptotics in parameter µ for all unknown functions.

Q0p τ ζ,( ) γ 1–
ν 1 σ+( )
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ωc τ ζ,( )
α00 0 ζ,( )
---------------------ln .=
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4.3. The problems defining the principal terms of the
boundary series Πw(x1, y, h) and Rw(x2, y, h) are formu-
lated so as to remove the residuals that can be intro-
duced in the boundary conditions of problem (1.1)
when finding the function A0(x, y, µ) at both ends of the
segment [0, 1]. Since we managed to remove all the
emerging residuals at the left end of this segment using
the functions T0w(τ0, y), we have Πw(x1, y, h) ≡ 0.

The boundary functions Rw(x2, y, h) are determined
in [11]. As was noted above, when finding these func-
tions, we establish the relationship between the param-
eter b0(y) and the concentrations of the charged plasma

components on the inner surface of the tube wall ,
a = e and p, which, according to the condition of prob-
lem (1.1), are assumed to be known. Therefore, we
assume that the formulated problem has been solved.

5. DISCUSSION OF RESULTS. 
COMPARISON WITH EXPERIMENTAL DATA.

CONCLUSIONS

Below, we discuss the main results of the solution of
the formulated problem obtained in previous sections
and analyze the plots of the functions that describe the
distributions of basic physical parameters of a gas-dis-
charge plasma: the concentrations of its charged com-
ponents, the electric field strength, the potential, and
the space charges. Subsequently, we compare the
results of this analysis with the probe measurements for
the same quantities in moving strata. We do not analyze
the wall boundary layer, i.e., do not use the functions
Rw(x2, y, h)) in our calculations. Our analysis of the
structure of the strata is based only on the solution of
problem (2.5). Let us consider the plots of the following
functions:
the ion concentration

(5.1)

the potential and the electric field

(5.2)

(5.3)

(5.4)

b0
a( )

N p x y h µ, , ,( ) A0 x y µ, ,( ) α00 x y,( )≈ ≈
+ T0α0 τ0 y,( ) Q0α0 τ ζ,( ) S0α0 τ1 y,( );+ +

Φ x y h µ, , ,( ) ϕ0 x y µ, ,( ) ϕ00 x y,( )≈ ≈
+ T0ϕ0 τ0 y,( ) Q0ϕ0 τ ζ,( ) S0ϕ0 τ1 y,( ),+ +

εx x y h µ, , ,( ) 1
h
---V x v 1x x y µ, ,( ) p1x x y,( )≈ ≈=

+
1
µ
--- T0 px τ0 y,( ) S0 px τ1 y,( )+[ ] ,

εz x y h µ, , ,( ) 1
h
---Vz v 1z x y µ, ,( ) p1z x y,( )≈ ≈=

+
1
µ
---Q0 pz τ ζ,( );
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and the plasma space charge

(5.5)

The discharge is assumed to take place in a long
tube with R = 1 cm filled with neon at pressure p =
2 Torr and T = 300 K. For the remaining parameters in
expressions (5.1)–(5.5), we use the following numeri-
cal values: E0 = 3 V cm–1, ν = 10–2, σ = 10–3, µ = 0.3,

g0 = 1.0,  = 0.114, ϕ1c = 1.151, and ψc = 9.94. These
values correspond to the case where the mean ion con-
centration is 1012 cm–3 and the mean temperature is Te ≈
2 × 104 K. Since there is no reliable information about

the step ionization frequency, we took a value for  at
which the burst height is ψC ≈ 10.

Let the burst curve C be a rectilinear segment, 0 <

x < 1, y = const with the period lst = 6 cm. As , we
choose the ion concentration on the axis of the homo-
geneous part of a nonstratified positive glow-discharge
column with a direct current corresponding to the lower
boundary of the appearance of strata. An analysis of the
results of probe measurements presented in [12, 13]

indicates that for this choice of , q0(y) < 1 between
the strata.

Figure 1 shows the plots of functions (5.1) and (5.5)
for x = 0 that define the distributions of the ion concen-
tration,

and a quantity proportional to the plasma space charge
density,

along the discharge axis.
These expressions differ from distributions (5.1)

and (5.5) in that they do not contain the boundary func-
tions S0w, since the latter differ markedly from zero
only near the x = 1 boundary. The quantity ∇ p1 was not
included in the second expression either, because it is

ρe x y h µ, , ,( ) N p x y h µ, , ,( ) Ne x y h µ, , ,( )–=

=  h∇ V x y h µ, , ,( ) h2

µ
----- ∇ P≈

≈ h2∇ p1
1
µ
--- T0p Q0p S0p+ +( )+ .

ξ0
c

ξ0
C

cp
0( )

cp
0( )

N p 0 y h µ, , ,( ) A0 0 y µ, ,( )≈

=  A0 ρ ζ µ, ,( ) q0 y( ) Q0α0 τ ζ,( ),+≈

ν µ
h
--- 

 
2

ρc 0 y h µ, , ,( )

=  ν µ
h
--- 

 
2

ρe ρ ζ µ, ,( ) νµ∇ p T0p Q0p+[ ] ,≈
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small. In addition, the expression for Np includes the
boundary condition (3.2).

We see from Fig. 1 that the Np distribution is typical
of the strata. In contrast, the ρe distribution cannot be
compared with anything, because this quantity is usu-
ally not measured by experimenters, but its reliability
can be established in an indirect way, namely, from the
strength of the field produced by this charge. Here, we
note only one feature of this distribution: ρe > 0
between the strata on the axis.

Figure 2 shows the plots of functions (5.2) and (5.4)
without the constant longitudinal electric field E0,
while Figs. 3 and 4 show the plots of the same functions
with this field. Our calculations were based on formu-
las (4.6), (4.3), and (3.9). The potential distribution for
the field produced only by the plasma space charge
along the axis (x = 0) agrees closely with the results of
experimental measurements from [12]. This suggests
that the ρe distribution that follows from the plot in
Fig. 1 corresponds to the actual distribution of the
plasma space charge along the axis of the stratified dis-
charge.

It follows from the shape of the curves in Figs. 3 and
4 that there is a potential well in front of each stratum
on the side of the anode. Its depth decreases with
decreasing burst height ψc and with increasing E0. Note
that no such potential wells have been detected experi-
mentally in moving strata. This may be because an
overestimated ψc and an underestimated E0 were taken

±3 +2 +1 0 –1 –2 +2 +1 0 –1 –2

±

3

±

3
ρ

–2

0

2

4

6

8

10
A0

1

2

Ψc = 9.94

–0.5

0

0.5

1.0

1.5

2.0

2.5
ν(µ/h)2ρe

Fig. 1. Plots of the functions A0(0, y, µ) = (ρ, ζ, µ) ≈
q0(y) + Q0α0(τ, ζ), y = ζ – ρ, ρ = µτ (curve 1) and

ν(µ/h)2ρe(x, y, µ) = ν(µ/h)2 (ρ, ζ, µ) ≈ νµ∇ [T0p + Q0p]
(curve 2) that define the distributions of the concentration of
the charged plasma particles and a quantity proportional to
the space charge density along the gas-discharge axis (x = 0).

A0

ρe
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in our numerical calculations. For example, it follows
from the plots in [12, 13] that the plasma density in a
stratum exceeds its mean value by only a few factors,
while we used ψc ≈ 10 in our numerical calculations. In
addition, it follows from the theory that the depth of the
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Fig. 2. Plots of the functions (1/µ)Q0pz(τ, ζ) and Q0ϕ0(τ, ζ)
that define the distributions of the electric field (curve 2)
produced by the plasma space charge with density ρe (see
Fig. 1, curve 2) and the potential of this field (curve 1) along
the discharge axis (x = 0).
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ϕ00(0, y) + Q0ϕ0(τ, ζ) that defines the distribution of the
potential of the total electric field εz (see Fig. 4) along the
discharge axis.
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potential well also depends on the derivative (0, y).
Moreover, if this quantity is positive and fairly large,
then potential wells can also appear in front of each
stratum on the side of the cathode. Here, we did not
consider this case in detail, because there is no compre-
hensive information on the function ξ(x, y, µ).

Figures 5 and 6 show the plots that define the distri-
butions of the same physical parameters (5.1)–(5.3) and
(5.5), but along the radius of the gas discharge. Our cal-
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Fig. 5. Plots of the functions A0(x, y0, µ) and ν(µ/h)2ρe(x, y0, µ)
that define the radial distributions of the concentration of
the charged plasma components and a quantity proportional
to the plasma space charge with density ρe (y0 is the ordi-
nate of any point on the discharge axis that is located at
equal distances from the centers of the two neighboring
strata).
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Fig. 4. Plot of the function εz(0, y, µ) = (ρ, ζ, µ) ≈
p1z(0, y) + (1/µ)Q0pz(τ, ζ), y = ζ – ρ, ρ = µτ, that defines the
distribution of the total electric field whose constant compo-
nent is E0 = 3 V cm–1 along the discharge axis.
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culations were performed for ξ0(x, y0) ≡ 0, where y0 is
the ordinate of any point on the discharge axis that is
located at equal distances from the two neighboring
strata, q0(y0) = 0.85, and the plasma potential on the
inner surface of the tube wall is higher than the poten-
tial on the discharge axis. These assumptions are based
on the analysis of the experimental data from [12, 13]
for moving strata. Let us set a value for the wall poten-
tial at which S0ϕ0(0, y0) = 5 V (at zero potential on the
axis). The parameter b0(y0) = 6.9 can then be deter-
mined from (4.8). We used formula (3.5) to calculate
the function S0α0(τ1, y).

Finally, we used the integral equation (3.3) to deter-
mine the function T0α0(τ0, y). Its solution was con-
structed by the method of successive approximations.
As a first approximation, we took the function

where, in general, the unknown coefficient D can
depend on y. Thus, the solution of Eq. (3.3) depends on
two parameters, m(y) and D(y); there are two conditions
(see Section 3.1) to calculate them. If we restrict our-
selves to the second approximation when constructing
the solution of Eq. (3.3), then we will obtain m(y0) = 6.2
and D(y0) = 6.4. This solution was used in our numeri-
cal calculations, which underlie the plots in the last two
figures. Despite the rough approximation, the plots in
Figs. 5 and 6 are consistent with the experimental data.

Thus, our analysis leads us to the following main
conclusions:

Z1 t y,( ) D y( )t2 t2–( ),exp=
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Fig. 6. Plots of the functions εx(x, y0, µ) and ϕ0(x, y0, µ) that
define the distributions of the electric field and its potential
along the tube radius (y0 has the same meaning as in Fig. 5).
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(1) The spatially periodic inner transition layers
emerging in the plasma of a positive glow-discharge
column are essentially two-dimensional. Not only the
longitudinal, but also the radial distributions of all
physical plasma parameters depend on the ordinate of
the point and differ greatly from the corresponding dis-
tributions in a homogeneous column.

(2) The salient features of the structure of the object
under study can be established by using only the prin-
cipal terms of the asymptotics of the solution of the ini-
tial mathematical model found above. A comparison of
the above dependences with the published probe mea-
surements of the structure of ionization waves reveals a
satisfactory (not only qualitative) similarity.

In conclusion, note that the approximate solution
used above can be improved, for example, by calculat-
ing the succeeding terms of asymptotics (2.8) or
through numerical calculations. In the latter case, it is
recommended that the approximate solution be used as
the initial condition for the problem and then improved
numerically.
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Abstract—Even a very slow background vertical motion can strongly affect convection in a stratified fluid. A
previously unknown mechanism of convective instability is demonstrated for a binary mixture in the flow field
of such motion. © 2005 Pleiades Publishing, Inc. 
It is well known that binary mixtures exhibit some
fluid-dynamic and thermodynamic characteristics that
are peculiar at first glance (e.g., see [1, 2]). In particular,
convective instability can develop, contrary to intuitive
expectations, when the background stratification is sta-
ble, i.e., when the mixture density decreases with
increasing height [1, 3]. Generally, the key role in this
phenomenon (called differential diffusion or double-
diffusive convection [1]) is played by the difference
between the thermal and species diffusivities. It is
believed that double-diffusive convection arises in a
stably stratified medium when a slowly diffusing spe-
cies (e.g., sea salt) has a destabilizing effect on density
stratification. Even if this effect is relatively weak, it
can be sufficient to destabilize a system characterized
by stable density stratification. This paper draws atten-
tion to qualitatively different situations. In particular,
instability can develop when slow species diffusion sta-
bilizes density stratification. Note that this effect may
be substantially stronger than thermal instability. At
first glance, this possibility is even more unlikely,
because slow species diffusion is generally much more
conducive to convective instability than fast heat trans-
fer in a double-diffusive system (transport coefficients
are contained in the denominators of the respective
Rayleigh numbers).

The analysis that follows is focused on systems with
slow background flow parallel to the gravity vector.
Convection in vertical background flows that are slow
as compared to the convective motion under study is
important, in particular, for geophysical applications
(e.g., see [4, 5]). Atmospheric and oceanic convection
frequently develops against the background of pro-
cesses of much larger horizontal extent (such as
cyclones or anticyclones). These processes involve
mean vertical flows whose velocities are several orders
of magnitude slower than those associated with convec-
tive instability. According to field experiments, even a
slow downward flow of the ambient fluid effectively
suppresses convection. The nature of this behavior is
poorly understood.
1063-7761/05/10101- $26.00 0156
Consider the following modified problem of Ray-
leigh–Bénard instability for a fluid layer between two
horizontal plates [1, 6]. Suppose that the background
flow is a slow downward motion. For simplicity, the
velocity of this motion, –W < 0, is assumed to be inde-
pendent of the vertical coordinate z measured upwards
from the lower boundary z = 0.1 

First, consider the case of a one-component medium
whose density depends only on temperature T (effects
due to species stratification are assumed to be negligi-
ble). The temperatures at the lower and upper bound-
aries, Td and Tu, are supposed as known. Their differ-
ence, Td – Tu, is denoted by ∆T. Heat transfer in the
background flow is described by the equation

(1)

where κ is thermal diffusivity. The solution subject to
the boundary conditions specified above can be written
as

(2)

where Θ(z) = [T(z) – Tu]/∆T is the dimensionless tem-
perature deviation, ξ = z/h is the dimensionless vertical
coordinate, and h = κ/W is the reference height associ-
ated with vertical motion (infinity in quiescent fluid).
The key dimensionless parameter is w = H/h = W(H/κ),
where H is the fluid layer thickness. In the absence of
background vertical motion (in the limit of W  0,
h  ∞, and w  0), the result is the expected linear
profile Θ = 1 – z/H, i.e., the solution whose stability is
analyzed in the classical Rayleigh–Bénard problem.

1 The assumption of constant vertical velocity is incompatible with
impermeability conditions for the background flow at z = 0 and
z = H. Regimes of this kind can be implemented in practice by
pumping the fluid in the vertical direction through porous hori-
zontal boundaries. While this assumption is not necessary for fur-
ther analysis, it substantially simplifies calculations.

W
dT
dz
------– κ d2T

dz2
---------,=

Θ z( ) ξ–( )exp w–( )exp–
1 w–( )exp–

------------------------------------------------,=
© 2005 Pleiades Publishing, Inc.
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Figure 1 shows the vertical profiles Θ(z) obtained
for w = 0 and 10. It is clear that the downward flow
“squeezes” the region of vertical temperature differ-
ence ∆T into a layer of thickness on the order of h = κ/W
at the lower boundary. Rigorous stability analysis of the
steady state with a nonlinear temperature profile in a
background downward flow is a difficult and cumber-
some problem. However, a very plausible estimate can
be obtained by using simple physical arguments. It is
quite obvious that the stability of state 2 in Fig. 1
depends on the convective instability of a bottom “sub-
layer” of thickness on the order of h = κ/W where
almost the entire vertical temperature difference ∆T is
localized. The effective Rayleigh number correspond-
ing to the sublayer thickness is

(3)

where α is the thermal expansion coefficient of the
fluid, ν is the kinematic viscosity, and g is the gravita-
tional acceleration.

According to expression (3), the effective Rayleigh
number strongly depends on background vertical
motion, which determines the thickness of the sublayer
where almost the entire vertical temperature difference
is localized. Note also that the effective Rayleigh num-
ber defined by (3) rapidly increases with κ, whereas the
classical Rayleigh number decreases with increasing κ.
Denote by Racr the value of the effective Rayleigh num-
ber corresponding to loss of stability. Then, the down-
ward velocity required to prevent the onset of convec-
tive instability is

(4)

For example, setting κ = ν = 1 m2/s (effective turbu-
lent transport coefficients characteristic of atmospheric
boundary layers), α = 4 × 10–3 K–1, ∆T = 0.1 K, and
Racr = 103, one obtains Wcr ~ 10–2 m/s. This velocity is
two or three orders of magnitude lower than the charac-
teristic velocity of atmospheric convection. However,
results obtained in both field experiments and numeri-
cal simulations demonstrate that downward flow with
this velocity suppresses convection.

Now, consider a two-component medium. For
example, it can be saline water with density stratifica-
tion determined by the vertical distributions of temper-
ature and salinity, T(z) and s(z). In a commonly used
approximation [1, 7, 8], it is assumed that density ρ is a
linear function of temperature and salinity:

(5)

Ra
αg∆Th3

κν
-------------------- αg∆Tκ 2

νW3
---------------------,∼ ∼

Wcr
αg∆Tκ2

νRacr
-------------------- 

 
1/3

.∼

ρ ρ0 1 α T T0–( )– β s s0–( )+[ ] .=
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The positive coefficient β has an obvious interpreta-
tion. (In oceanology, it is called the coefficient of
salinity compression.) The subscript 0 denotes con-
stant reference values of the variables (e.g., those at
the upper boundary of the fluid layer). The steady-
state salinity profile s(z) is described by an equation
similar to (1):

(6)W
ds
dz
-----– χd2s

dz2
-------,=
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Fig. 1. Distortion of a vertical background temperature dis-
tribution by downward motion: (1) zero background vertical
velocity; (2) w = H/h = 10.
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Fig. 2. Instability of density stratification due to downward
motion in a two-component medium (w = 0.2, ws = 20,
∆T > 0, β∆s/α∆T = 3): contributions of salinity,
(−β∆sσ(z)/α∆T) (1), and temperature, Θ(z) (2), to the nor-
malized buoyancy in the absence of background vertical
motion; (3) profile 1 distorted by downward motion;
(4) total buoyancy, b(z)/α∆T, in the presence of downward
motion.
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where χ is the corresponding transport coefficient. To
be specific, assume that the boundary conditions for
salinity are analogous to those set above: s = sd and su
at z = 0 and H, respectively. Then, the solution for s is
similar to (2):

(7)

where

When χ and κ have different values, the dimension-
less functions given by (2) and (7) are quantitatively
different. For example, χ/κ ≈ 10–2 for saline water. The
corresponding reference height hs is smaller than h by
one hundred times. Comparing the salinity profile with
curve 2 in Fig. 1, one finds that the entire drop in salin-
ity is localized in a layer of thickness much smaller than
the thermal sublayer thickness. It can be shown that this
disparity can lead to nontrivial convection regimes in
the fluid layer.

Consider the dimensionless background buoyancy
profile b(z):

(8)

Depending on the signs of ∆T and ∆s, four qualitatively
different regimes can be distinguished.

1. When ∆T < 0, ∆s > 0 (both fields are stably strat-
ified), it is obvious that downward background flow has
only a quantitative effect on the stable density stratifi-
cation: the gradients of both fields are localized near the
lower boundary. The sign of expression (8) remains
negative everywhere. Thus, downward flow does not
affect convective stability, which is unquestionable in
this case.

2. In the absence of vertical motion, density stratifi-
cation is unstable when at least one scalar field is unsta-
bly stratified to a sufficiently high degree. As shown
above for a one-component medium, the effective Ray-
leigh number is reduced in the presence of a downward
background flow (because of the reduced thickness of
the layer where almost the entire unstable density strat-
ification is localized). Therefore, the onset of convec-
tive instability can be prevented. Note that the instabil-
ity due to unstable stratification of a slowly diffusing
species (salt) is suppressed more easily, because the
corresponding transport coefficient is contained in the
numerators of criteria (3) and (4). Even a slow vertical
motion drives the slowly diffusing species into a narrow
layer at the boundary, reducing the effective Rayleigh
number.

σ z( )
ξ s–( )exp ws–( )exp–

1 ws–( )exp–
---------------------------------------------------,=

σ s su–( )/∆s, ∆s sd su, ξ s– z/hs,= = =

hs χ/W , ws H/hs W H/χ( ).= = =

b z( ) ∆ρ z( )
ρ0

--------------– α∆TΘ z( ) β∆sσ z( ).–= =
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3. When β∆s > α∆T > 0 (effects due to unstable tem-
perature stratification are by far counterbalanced by sta-
ble species stratification in the absence of vertical
motion), even a slow downward motion can change the
sign of expression (8) in a considerable part of the
layer; i.e., a system with “average” density profile char-
acterized by an ample stability margin can be destabi-
lized. This is clear from Fig. 2, where vertical profiles
of buoyancy (8) normalized to α∆T and its “thermal”
and “saline” components are shown. In the absence of
vertical motion, the dominant role is played by the
salinity stratification characterized by an ample stabil-
ity margin (line 1). Even though the temperature strati-
fication is unstable, its contribution to buoyancy is rel-
atively small (line 2). Slow downward motion (with
w = 0.2) only slightly changes the temperature profile
(represented by a curve very close to line 2), whereas
the salinity profile is drastically distorted (curve 3).
Since salt is carried downwards by vertical motion, the
salinity stratification cannot counterbalance the effects
due to unstable temperature stratification, and the
resulting buoyancy profile becomes unstable in the
greater part of the layer (curve 4). Note that faster
downward background motion can distort the tempera-
ture profile as well, stabilizing the system. Thus, the
domain of instability corresponds to an intermediate
range of downward flow velocity.

4. When α∆T < β∆s < 0, the species stratification is
unstable, but the system is stabilized by the stable tem-
perature stratification in the absence of vertical
motion.2 It is clear that even a slow downward motion
may trigger convective instability. Indeed, it follows
from the discussion above that the vertical gradient of
species concentration grows steeper in the presence of
downward motion; i.e., the instability of the species
stratification increases. This effect can be strong when
ws > 1. At the same time, the value of w can be much
less than unity, in which case the temperature stratifica-
tion remains almost constant and cannot counterbal-
ance increasingly unstable species stratification.

Thus, whereas vertical background motion can pre-
vent the onset of convective instability in certain cases,
it can destabilize a double-diffusive layer. It is impor-
tant that the phenomena described above can take place
when the vertical velocity is very low. For example, in
cases 3 and 4 discussed above, an essential condition
for instability of the layer is

For seawater, χ ≈ 1.5 × 10–9 m2/s, and destabilization
can be caused even by a very slow vertical motion with
W ~ 10–8 m/s. This phenomenon can be interpreted as

2 The stability condition for this double-diffusive system is more
complicated than in the classical Rayleigh–Bénard problem [1, 8,
9]. In particular, it can be much more restrictive. It is assumed
here that the condition is satisfied in the absence of vertical
motion.

ws WH/χ 1, W χ/H .≥≥=
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instability of a new type. Note, however, that the times
required for a system to evolve into the unstable steady
states considered above may be very large.
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Abstract—Based on recent discoveries, we show that it is appropriate to complement the standard shock-wave
model for the production of galactic cosmic rays by a plasma-pinch model. The latter describes well the pro-
duction of high-energy cosmic rays, yields a simple formula for their intensity, and allows the threshold pattern
of the knee-type kink in the secondary particle spectrum and a number of unusual phenomena observed above
the threshold to be explained. © 2005 Pleiades Publishing, Inc. 
1. THE SHOCK-WAVE MODEL

The Sun is known to be the source of solar cosmic
rays with energies E < 108 eV (Fig. 1). Cosmic rays
with energies E > 108 eV are commonly called galactic
cosmic rays (GCRs), but their acceleration mechanism
has not yet been firmly established. In his well-known
paper [1], Ginzburg summarized the results of a pro-
longed study of this problem that he formulated in three
conclusions:

—the galactic rather than metagalactic model (the-
ory) is valid;

—the galactic model with a large halo (without a
disk) is valid;
1063-7761/05/10101- $26.000160
—supernova explosions are the main sources of cos-
mic rays in the Galaxy.

However, new facts that require complementing the
shock-wave model have been discovered in recent
years.

A supernova explosion is accompanied by a shock
wave whose remnant is an expanding (Crab-like)
plasma nebula with a pulsar at its center. A rapidly
rotating pulsar generates shock waves and turbulent
plasma motions in the nebula on which the particle accel-
eration is possible in accordance with the equation [2]

(1)

This equation describes the particle momentum (p) dif-

df t p,( )
dt

------------------- divp D̂pgradp f( ).=
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Cycle 23 Sunsport Number Prediction (November 2003)

Fig. 1. Giant solar flare of November 28, 2003.
 © 2005 Pleiades Publishing, Inc.
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fusion with the diffusion tensor  proportional to the
plasma pulsation intensity; f is the particle distribution
function.

Since  > 0, even initially cold particles gradually
acquire large momenta and are then caught up by the
shock waves. Subsequently, they diffuse through the
Galactic disk and halo in accordance with the ordinary
diffusion equation

(2)

where n(r) is the cosmic-ray density and Q(r) is the dis-
tribution of sources over the Galactic disk. Figure 2 elu-
cidates this shock-wave model.

However, it was qualified in [1] that relatively low-
intensity cosmic rays with energies above 1015−1016 eV
were not considered. Therefore, in this paper, we study
the range of ultrahigh energies in which many impor-
tant discoveries have been made since about 2000.

2. RECENT DISCOVERIES

Below, we provide information published on the
Internet [3] and in print abstracts [4–7]. Thus, for exam-
ple, it is reported in [3] that five protons with an energy
of 1018 eV that arrived from the same source, a cluster
of colliding galaxies 450 million light years away (!),
have been detected in extensive air showers (EASs).
The proton paths are rectilinear and are not distorted by
intervening magnetic fields. Since their velocity is v  =
c(1 – 10–22), where c is the speed of light in a vacuum,
they produce long rectilinear Cherenkov tracks in air
that specify the source’s direction with a high accuracy.

The paper [4] reported the discovery of EASs with
energies E > 1020 eV far above the Greisen–Zatsepin–
Kuzmin threshold (against the cosmic microwave back-
ground). The specific mechanism of their acceleration
remains a mystery. The distribution of arrival directions
is consistent with isotropic distribution. EAS doublets
and triplets from the same direction are observed. Pro-
tons are the dominant particles of the primary spectrum
in the range of ultrahigh energies. The discovery of
entirely new phenomena is possible.

It is noted in [5] that the following five difficult-to-
explain events are observed in EASs even at E =
1016 eV:

anticentaurs—electromagnetic cascades of gamma-
ray photons and e± pairs;

centaurs—cascades composed mostly of hadrons;
alignment of cascade tracks along one straight line

(on Earth);
halo events—cascades with a peculiar pattern;
penetrating cascades from unknown particles.
No such events are observed before the kink in the

spectrum (see Fig. 5 below). It is also noted in [5] that

D̂p

D̂p

divr D̂rgradrn r( )[ ] Q r( ),=
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the spectrum dN/dE ∝  E–ν with the index ν = 1 +  =
2.73 (N is the number of recorded events) suggested
previously [8] is universal, while none of the other
models yields an unambiguous spectral index.

The numerical calculations for the energy range
1014–1019 eV [6] show that the observed GCR spectrum
(to be more precise, calculated for the location of the
Sun in the Galaxy) steepens significantly compared to
their spectrum in the sources only in a relatively narrow
(one to two orders of magnitude) range of primary ener-
gies. This makes it difficult to reconcile the observed
spectrum with predictions of the standard model for the
acceleration of cosmic rays by shock waves.

The paper [7] reported that ten successful flights of
balloons with emulsion chambers at an altitude of
32 km (where the spectrum is primary) were carried out
in 1995–1999. The proton and helium spectra were
shown to have similar indices and to exhibit no appre-
ciable steepening at energies as high as 1015 eV per par-
ticle.

The above list of facts allows us to formulate two
main questions: (i) about the spectrum of the primary
GCR particles and their maximum energy; and
(ii) about the new physics of the cascades of secondary
particles in EASs.

In the standard shock-wave model, the produced
GCRs in the sources are assumed to have a power-law
spectrum, dN/dE ∝  E–k, with an index near k = 2. A
steeper spectrum with an index near k = 2.7 observed on
Earth must form only during diffusive GCR propaga-
tion through the Galaxy, from sources in the disk to the
solar neighborhood.

However, as is noted in [7], the primary spectrum
observed on Earth shows no tendency to steepen up to
E = 1015 eV. It can be assumed that particles with ener-
gies above 1015 eV are unlikely to be deflected by any
galactic magnetic fields and most likely fly toward
Earth directly from their sources, which are distributed
isotropically over the sky. However, when the particles

3

Fig. 2. Scheme of the shock-wave model: the GCR particles
produced during supernova explosions in the Galactic disk
are scattered by clouds of magnetized plasma in the halo,
where they become isotropic, and then diffuse from the
Galaxy.
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move along straight trajectories, their spectrum on
Earth must not differ from the source spectra for all
energies above 1015 eV.

Meanwhile, the calculations [6] yield a primary
spectrum with a kink in a narrow energy range,
1015−1017 eV. As was noted by the authors of [6], this
makes it difficult to compare the shock-wave model
with observations.

In our opinion, the shock-wave model requires a
refinement at high energies, and we should return to the
well-known (since 1949) Fermi acceleration mecha-
nism of a charged particle that is reflected from two
approaching clouds of magnetized plasma. As we see
from Fig. 2, such clouds in the halo are needed, and
they manifest themselves in the shock-wave model as
observations of galactic radio halos. It is assumed in the
Fermi hypothesis that, if the separation L between the
clouds decreases and the adiabatic invariant Lv  = inv is
conserved, then the velocity v  increases.

However, there exists a much more efficient mecha-
nism where a neutral current sheet is formed at the col-
lision boundary between the two magnetized plasma
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10–14

10–2 100 102 104

j, cm–2 s–1 sr–1 MeV–1

He

C

Fe H

Ekin, GeV/nucleon

Fig. 4. Comparison of the primary observed GCR spectra
(dots) with the curves constructed using formula (3).

Fig. 3. Scheme of the plasma-pinch model.
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clouds; this sheet soon breaks up into cylindrical cur-
rent pinches with a longitudinal internal magnetic field.
During their prior constriction, this field must
straighten the pinches, and they can become very long
and almost rectilinear.

Subsequently, necks must grow on them, as was first
shown in 1952 [9].

3. THE PLASMA-PINCH MODEL

Figure 3 elucidates this model. The quasi-neutral
plasma squeezed out of the necks into the thickenings
accelerates along its way, and the particles (electrons
and ions) can gain very high velocities. In several
papers [10], we showed that the following formula for
the GCR intensity is derived (see Appendix) in the rel-
ativistic case for an idealized model (composed of a set
of isotropically directed pinches without longitudinal
fields and with skinned currents):

(3)

where

where γ = 1 + ε/2 for hydrogen. This formula
(1) contains no parameters (except the normaliza-

tion factor αi , which is different for different GCR
nuclei);

(2) describes well the primary GCR spectrum
(Fig. 4) even at energies E < 1015 eV, at which the
shock-wave model is assumed to be applicable, but this
is probably a coincidence;

(3) predicts no limiting GCR energy (and could
describe the entire observed energy range if there were
no kinks in the primary spectrum shown in Fig. 5 for
secondary EAS spectra).

4. PRIMARY
AND SECONDARY SPECTRA

At E < 1014 eV, the primary GCR particles can be
recorded by relatively light detectors on satellites
beyond Earth’s atmosphere. However, no satellite mea-
surements are possible at E > 1014 eV, and all further
information can be obtained only from the observations
of secondary particles in the EASs generated during the
collisions of a primary particle with air atoms. How-
ever, the interpretation of the EAS data is ambiguous.

Figure 5, in which kinks can be seen, was con-
structed by assuming that the EAS detectors catch all of
the total energy of the secondary particles that is attrib-
uted to the primary particle. However, part of the
energy in strong EASs can elude detection, for exam-

j ε( ) α iβ
2γ ν– ,=

β v
c
----, γ 1

1 β2–
------------------, ε γ 1, ν– 1 3,+= = = =
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005



SHOCK-WAVE AND PLASMA-PINCH MECHANISMS 163
ple, in the form of difficult-to-record energetic neutri-
nos and muons.

Some researchers believe that there are no kinks in
the primary spectrum at all. In the standard shock-wave
model, the first knee-type kink at E1 = 5 PeV (1 PeV =
1015 eV) is explained as follows: at E < E1, the GCR
particles get entangled in nonuniform Galactic mag-
netic fields, while at E > E1, their diffusive escape from
our Galaxy begins.

Our calculations of the diffusive escape mechanism
yield a smooth kink in the spectrum, while the observed
kink has a sharp threshold pattern. Circumstantial evi-
dence for the spectral indices of GCRs in supernova
remnants could be the gamma-ray photons arriving
from them to Earth that are not deflected by intervening
magnetic fields. In recent years, several large gamma-
ray telescopes have been put into operation, and the
cumulative energy spectra of the gamma-ray photons
from various sources observed by them have a power-
law form:

We added unity to the indices of the gamma-ray spec-
trum from the source (kγ) and the spectra of the events
from the source (kon) and those taken simultaneously
with observation of the sources (koff) given in [4–7, 10]
for the cumulative spectra to obtain the differential
spectra. The latter are presented in the table. The values
of kγ in the first column have a very large spread. The
detection of gamma-ray photons with energies E >
30 TeV would be evidence of their hadron rather than
electron origin.

According to a recent report [11], the HESS system
of four advanced gamma-ray telescopes began opera-
tion in Namibia in 2004; this system has imaged a
supernova remnant (the pulsar J1713.7–3946; see
Figs. 6 and 7) directly in gamma rays for the first time.

Nγ E 0.8 TeV>( ) E k– .∝

1.0

0

0.1

1011 1015 1019 1021

Ekin, GeV/nucleon
1013 1017

γ1 = 2.7

γ2 = 3.1

γ3 = 2.7

Fig. 5. Kinks in the secondary GCR spectrum [5].

E2.7dN/dE, cm–2 s–1 sr–1 GeV1.7
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Figure 7 shows two gamma-ray spectra: the upper spec-
trum for the entire envelope has a power-law form,
dNγ/dE ∝  E–k, with an index k = 2.2, while the lower
spectrum (taken previously in [12] only for the upper
right hottest part of the envelope) has an index near
k = 3.

In our opinion, these data and those given in the
table have such a large spread that they are consistent
with the plasma-pinch model; the latter predicts an

index ν = 1 +  = 2.732, which will possibly be
detected during the observations of gamma-ray photons
with higher energies, E > 100 TeV.

5. THE PROBLEM OF THE KINKS
IN THE SPECTRUM

Thus, we can assume that the primary GCR spec-
trum has no kinks, but they are typical of the secondary
EAS spectra. Schematically, an EAS resembles a fir
tree with a central hadron stem and side branches of
secondary particle cascades emanating from it down-
ward.

3

Table

kγ kon koff

Crab Pulsar 2.45 2.61 2.73

Tycho Brahe Pulsar 2.00 2.12 2.73

Geminga Pulsar 1.65 1.88 2.77

Pulsar J1713.7–3946 2.2 – –

Hole Cygnus 3-X 3.55 2.94 2.74

Quasar Mkn 421 2.87 2.53 2.76

Quasar Mkn 501 2.82 2.85 2.76

Quasar 1739 + 522 3.64 3.29 2.77

35

30

25

20

15

10

5

0

Fig. 6. The first gamma-ray image of the pulsar with an
envelope [11]
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The simplest explanation of the first kink in the
GCR spectrum at E1 = 5 PeV was offered in [13], where
it was assumed that the lower end of the hadron stem in
an intense EAS goes to the bottom and part of the total
EAS energy simply cannot be recorded by existing
instruments. This methodological error may manifest
itself as an apparent kink in the secondary spectrum (an
artifact) without any kink in the primary spectrum. If
the assumption made in [12] is valid, then the maxi-
mum GCR energy detected to date, Emax = 2 × 1020 eV,
may actually prove to be even higher.

In the opinion of Petrukhin [5], the second cause of
the kink could be the formation of new heavy particles
or states of nuclear matter. Recall that the theory pre-
dicts energies of 1023–1025 eV for the Grand Unification
of three forces of Nature—strong, weak, and electro-
magnetic forces. However, there are also models of the
early Grand Unification at energies E = 1015–1017 eV,
which are close to the energy of the first knee-type kink
at E1 = 5 × 1015 eV. The late Grand Unification may be
responsible for the appearance of the second ankle-type
kink observed in EASs at E2 = 5 × 1018 eV.

6. COLLECTIVE QUARK 
SELF-MULTIPLICATION

In our opinion, however, a third cause is also possi-
ble, which allows one to explain more easily (without
introducing new, as yet unknown particles) the thresh-
old pattern of the kink or, more specifically, the switch-

10–6

1

dN/dE, m–2 s–1 TeV–1

E, TeV
10

10–7

10–8

10–9

1

2

Fig. 7. Gamma-ray spectra: (1) for the entire envelope,
kγ = 2.2 [11]; (2) for the hottest part of the envelope (upper
right in Fig. 6), kγ = 3 [12].
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ing-on of the processes of collective multiplication of
quark pairs described by the equation

Here, n is the density of the quark pairs, σ is their mul-
tiplication cross section, and τ is their lifetime in the
reaction volume.

The quark multiplication begins at dn/dt > 0, i.e., at
a critical value of ncr = 2/〈σv 〉τ . For example, let us con-
sider the situation where a primary proton with energy
E0 = mpc2γ0 impinges on a resting nucleus, for instance,
of nitrogen 7N, which contains 14 nucleons, i.e.,
42 quarks and 21 quark pairs.

The proton radius and volume are assumed to be

rp = 1.2 × 10–13 cm and Vp = (4π/3) , respectively.
Since the proton contains three quarks, the quark den-
sity in it is n0 = 3/Vp, and it is the same in all nuclei at
rest, including nitrogen. Therefore, the density of the
quark pairs at rest is n0 = 3/2Vp; if the medium moves at
velocity v  = cβ, then this density is

The above formula can then be rewritten as a threshold
value:

(4)

Further, we assume that a primary ultrarelativistic pro-
ton with momentum P = mpcγ0 and a nitrogen nucleus
at rest are combined into a single complex of mass M
with the same momentum P = mpcγ0 = Mcγeff for a short
time. In this case, the factor γeff = (mp/M)γ0 is smaller
than the initial factor γ0. Finally, we have for the thresh-
old

(5)

It is from this formula that we wish to obtain the factor
γ0 = 5 × 106 for the proton, which corresponds to the
kink energy E1 = 5 PeV ≈ 5 × 106 GeV = mpc2γ0. How-
ever, this requires finding the factors on the right-hand
side, and additional assumptions are needed here.

7. THE MASS OF THE “BALL”
AND THE KINK THRESHOLD

To the best of my knowledge, only individual parti-
cle collisions have been investigated previously in
quantum chromodynamics and no collective processes
have been considered. However, they are phenomeno-

dn
dt
------

1
2
---n2 σv〈 〉 n

τ
---.–=

rp
3

neff n0γeff, γeff 1/ 1 β2– .= =

γeff
cr 2

n0 σv〈 〉 τ
----------------------

16π
9

--------- M
mp

------
rp

2

σ
----

rp

v τ
------.= =

γ0
cr 16π

9
--------- M

mp

------
rp

2

σ
----

rp

v τ
------.=
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logically taken into account in the theory of quark–
gluon plasma (the Fermi–Landau theory), in which it is
assumed that the number of produced quarks during
head-on collisions between two nuclei is

where Ecis is the total energy in the center-of-inertia
system, and Eq = mqc2 is the rest energy of the quark
(the gluons are assumed to be massless). If a proton of
initial energy E0 = mpc2γ0 impinges on a resting nitro-
gen nucleus of mass M = 14mp, then

(6)

For a proton with γ0 = 5 × 106, we find Nq ≈ 200 quarks
and, having added 45 initial quarks to them, obtain
about 125 quark pairs in the formed overall coalesced
complex with the rest mass M = 245mq . We then have
the factor M/mp ≈ 82, and the above formula for the
kink threshold can be rewritten as

Taking v  = c, we have rp/c ≈ 4 × 10–24 s, but we assume
that the lifetime of the quark pairs in the overall com-
plex is appreciably longer, say, by a factor of 100. We
then obtain the following estimate of the cross section:

which seems plausible for the following reasons.
This cross section probably corresponds to such

close quark collisions that the gluon forces are weak
due to their so-called asymptotic freedom. The Cou-
lomb forces with the Rutherford cross section σR ≈
(q2/Eq)2, where q = e/2 is the mean electric charge of the
quarks, play a major role. For our estimation, we
assume that mq = mp/3, which yields the required cross
section

(7)

Here, r0 = e2/mec2 is the classical electron radius.

8. ON THE ALIGNMENT OF TRACKS
AND NEW PHYSICS

Note that the beams of ultrahigh-energy GCR parti-
cles in the plasma-pinch model must have the pattern of
individual “machine-gun bursts” that are isotropic in

Nq Ecis/Eq,=

Ecis Mc2 1
mp

M
------ 

 
2

2
mp

M
------ 

  γ0+ +=

≈ 5.3mpc2 γ0.

γ0
cr 5 106 456

rp
2

σ
----

rp

v τ
------.≈×=

σ 10 6– rp
2 10 32–  cm2,≈ ≈

σR r0
2 3me/4mp( )2 10 32–  cm2.≈ ≈
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arrival directions. This may be the reason why close (in
arrival time) doublets and triplets of showers are occa-
sionally observed on the same EAS area from the same
direction (i.e., as if from a single machine-gun burst).

Below, we consider three types of possible colli-
sions (peripheral, middle, and central) between a pri-
mary proton and the nucleus of an air atom, which are
schematically shown in Fig. 8.

The tracks of the secondary cascades are probably
aligned not in a head-on collision, but in an off-center
collision, in which a turning ball of secondary quark
pairs arises, which is schematically shown in Fig. 9 and
resembles a spider web.

Recall that different atoms in a molecule are bound
by the “residual” electromagnetic forces, while differ-
ent nucleons in a nucleus are pulled together by the
“residual” gluon forces, despite the electrostatic repul-
sion of the protons. Therefore, the bunch of quark–anti-
quark pairs multiplied in the nucleus will continue to be
attracted to the core by these residual gluon forces at
the exit from the nucleus and to be wound around the

Fig. 8. (a) Peripheral, (b) middle, and (c) central collisions.

Fig. 9. The stretchable chain of quark–antiquark pairs
winds around the core of the nucleus and forms a spider
web.

(a) (b) (c)
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core. According to our hypothesis, this can give rise to
a rotating spider web.

Since the proton comes from above, the spider web
must rotate in the vertical plane. As the spider web
breaks up, the radial jets of secondary particles (along
the “spokes” of the spider web) probably yield the cas-
cade tracks aligned along one straight line on Earth.
Apart from the alignment of the tracks of the radial jets,
we also see from this scheme that only two breakup
scenarios are possible for the vertical spider web: into
neighboring quark–antiquark doublets, which gives
rise to electromagnetic anticentaurs composed of pions
decaying into neutrinos, gamma-ray photons, and elec-
tron–positron pairs according to the scheme

(8)

and into quark triplets, which gives rise to centaurs
composed mostly of hadrons with high angular
momenta L, i.e., “resonances” with large spins S. The

relation J = a + b, where mR is the resonance particle
mass and a and b are constants, is known to be obtained
for the quantized total angular momentum J = S + L. To
bind the triplets (either only of quarks or antiquarks), it
is probably necessary that the spider web in the second
scenario be multilayered and the triplet members be
taken from the neighboring layers.

Observations show that in a central head-on colli-
sion of a primary GCR proton with the nucleus of an
atom in air, the multiplication process does not develop
in the way predicted by the Fermi–Landau theory for
the formation of an ellipsoid of quark–gluon plasma.
More specifically, if the above quark self-multiplication
threshold is exceeded, then a third scenario takes
place—instead of the ellipsoid, a torus like a “smoke
ring” with a vertical axial jet is formed, which produces
a halo event—a cascade surrounded by a peculiar pat-
tern, the tracks of the torus.

Finally, the penetrating cascades are probably attrib-
utable [5] to a long-range component, whose role can
be played by weakly interacting ultrahigh-energy
muons.

As we see, the proposed inclusion of the collective
quark self-multiplication processes not only can quan-
titatively explain the threshold value of the knee-type
kink in EASs at E1 = 5 PeV, but can also qualitatively
explain the cascades of unusual types that, according to
our hypothesis, are associated precisely with the pattern
of the rotating spider web constructed like parquet from
the neighboring quark–antiquark pairs. This “parquet”
or even the multilayered “quark crystal” may be ame-
nable to a more accurate theoretical analysis, probably,
using group or string theory.

π+ π0 e+ νe, π0+ +
uu dd–

2
------------------ γ γ,+=

mR
2
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9. DISCUSSION OF THE MODELS

As was noted above, the theory of the standard
shock-wave model runs into difficulties, particularly
near the kink and at high energies. At the same time, the
plasma-pinch model with its simple formula for the
intensity, j = αβ2γ–ν, allows us to explain the following:

(1) the fall-off of the left edge of the spectrum due
to the natural factor β2;

(2) the pinch mechanism of high-energy GCR parti-
cle acceleration;

(3) the GCR spectrum without any restriction on the
maximum energy;

(4) the threshold of the kink in the secondary EAS
spectrum;

(5) the doublets and triplets of close (in time) show-
ers in EAS;

(6) the alignment of the tracks of cascades from the
vertical spider web of quarks;

(7) the emergence of centaurs—cascades composed
mostly of hadrons;

(8) the formation of anticentaurs—mostly electro-
magnetic cascades;

(9) the halo events—cascades surrounded by a pecu-
liar pattern.

Points (4)–(9) are related to our hypothesis about the
collective self-multiplication of quarks, which is not
considered in chromodynamics. This possibility could
also be introduced in the shock-wave model, but it has
no “machine-gun bursts,” and events 6–9 are possible
only above the threshold, starting from an energy of
1016 eV. In general, in our opinion, the plasma-pinch
model complements well the standard shock-wave
model, particularly at high GCR energies.

In the plasma-pinch model, both the plasma enve-
lopes of supernova explosions in the Galactic disk and
the colliding clouds of magnetized plasma in the Galac-
tic halo are assumed to be the GCR sources. Therefore,
the energy supply required for the two models is either
the same or even greater in the plasma-pinch model,
because GCRs can be produced not only in the disk, but
also in the halo of the Galaxy. Undoubtedly, the main
difficulty of the plasma-pinch model is that the pinches
of the required type have not yet been observed in the
Galactic halo. Whether they can be detected by cur-
rently available instruments of a particular type, even if
they exist in the halo, remains an open question.

Colliding plasma clouds are seen, for example, in
the Crab Nebula, where even the optical radiation from
neighboring cells has different polarizations, suggest-
ing that the fields magnetizing them have different
directions. The plasma pinches of the type required for
our model must be formed at the contact boundaries
between these cells. Although plasma filaments are
actually seen there, no individual pinches and “bolts of
lightning” in the Crab can probably be detected in the
optical range so far. The pinches and bolts of lightning
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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are even more difficult to find in the halos of galaxies.
However, individual plasma clouds are observed in
galactic halos in the radio range, and they are used in
the shock-wave model as the presumed cause of the
isotropization of the GCRs produced in the Galactic
disk. However, if the clouds exist, then the currents
magnetizing them also exist!

The acceleration mechanism itself rather than the
GCR birthplace and the energy supply should be con-
sidered to be the main difference between the two mod-
els under consideration. The acceleration mechanism is
attributed to shocks in the shock-wave model and to
pinches, which periodically break and are again occa-
sionally formed at the boundaries of the neighboring
colliding plasma clouds that are magnetized differently
in the neighboring cells, in the plasma-pinch model.

Above, we considered only the simplest idealized
model composed of a set of isotropically directed
pinches with skinned currents and without longitudinal
internal magnetic fields, whose role deserves special
study. On the one hand, these fields can contribute to
the straightening and formation of the required long
pinches during their prior constriction and formation.
On the other, they complicate the neck breaking pro-
cess. If the current is not skinned, but distributed over
the pinch cross section, then there is a field component
Bϕ inside the pinch that defocuses the ions moving
against the current and focuses the ions moving along
the current. Clearly, only the latter will yield the pencil
paraxial beams that require a separate numerical calcu-
lation.

Note also that, although the shock-wave model is
most popular, this does not rule out the possibility of
constructing other models. In particular, a surfatron
mechanism of particle acceleration by relativistic
plasma waves in the halo was suggested in [14]. The
author points out that the most remarkable property of
the surfing is the absence of synchrotron radiation, the
most dangerous channel of energy losses by ultrarela-
tivistic particles. Clearly, the produced GCRs must also
be isotropic in directions and can acquire energies up to
1016–1020 eV per nucleon in this model as well.

APPENDIX

To derive the formula j = αβ2γ–ν, we use the equa-
tions of relativistic hydrodynamics

(9)

with the adiabat p = p0(n/n0)s, given that the skinned
current I0 = const produces the pressure p = p0(a0/a)2 in
a pinch of radius a. In the one-dimensional approxima-
tion of a “narrow channel,” the two arguments are τ = ct
and z.

∂inui 0, ∂iTk
i 0= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Let us introduce dimensionless quantities,

, (10)

and two functions, x(τ, z) = /ρ and y(τ, z) =

, for which we obtain the nonlinear equations

(11)

If we introduce the inverse functions ϕ(x, y) and
ψ(x, y) using the formulas

(12)

then we obtain the linear equations

(13)

where  is the operator of the Laguerre polynomials

λk = (x) that satisfies the equation λk = –(k + 2)λk

for k = 0, 1, 2, 3, … Note that the term with k = 0 and
λ0 = 1 does not depend on the argument x.

The general solution is

For the functions µ, we obtain the main equation of the
problem

In the ultrarelativistic case (γ @ 1), we can retain
two terms, with k = 0 and k = 1. However, the zeroth
term with k = 0 describes periodic (over the entire infi-
nite pinch length) perturbations that cannot arise in cos-
mic conditions spontaneously. Therefore, the term with
k = 0 should be discarded, and only the local solution

remains.
The number of particles accelerated in a single

pinch is
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where ε = Ekin/mZc2, mZ is the mass of the nucleus with
charge Z. Hence, we have the formulas

(14)

where

The total derivative dZ/dx is calculated for a fixed time
when

Denoting Φ = ϕ –  and Ψ = ψ – , we find the par-
tial derivatives

(15)

The spectrum is

(16)

We see from the relations x = /ρ = (a0/a)4/5 that
the particles are accelerated while moving from the nar-
row places to the thickenings, where a  ∞ and x 
0. In the limit x  0, when ψ = 0, we obtain a spec-
trum of the form

where A0 = π n0  = const. For y @ 1, we have φ1 ∝

, and the expression dN/dε ∝  γ–ν with the index ν =

1 +  describes well the entire ultrarelativistic energy
range.

Multiplying the spectrum by the velocity v  = cβ
yield the intensity of the particle beam:

(17)

where the coefficients αi = const are different for nuclei
with different charges Zi . However, since the charge of
the nucleus is proportional to its mass mZ , a single argu-
ment is suitable for all nuclei: the dimensionless kinetic
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energy ε = γ – 1 = Ekin/mZc2. Thus, we see that all bare
nuclei are accelerated at the same potential difference
V, acquiring energies Ekin = Zi|e|V proportional to the
nuclear masses.
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Abstract—Special features of surface gravity waves in a deep fluid flow with a constant vertical shear of veloc-
ity is studied. It is found that the mean flow velocity shear leads to a nontrivial modification of the dispersive
characteristics of surface gravity wave modes. Moreover, the shear induces generation of surface gravity waves
by internal vortex mode perturbations. The performed analytical and numerical study show that surface gravity
waves are effectively generated by the internal perturbations at high shear rates. The generation is different for
the waves propagating in the different directions. The generation of surface gravity waves propagating along
the main flow considerably exceeds the generation of surface gravity waves in the opposite direction for rela-
tively small shear rates, whereas the latter wave is generated more effectively for high shear rates. From the
mathematical standpoint, the wave generation is caused by non-self-adjointness of the linear operators that
describe the shear flow. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Generation of surface gravity waves (SGW), which
are the best known sea and oceanic waves, is naturally
associated with winds. Momentum transfer from wind
to undulating movement of the ocean, which is the
basic mechanism of the generation of surface waves, is
investigated since Kelvin’s pioneering work [1].
Independent and intercomplementary theories of Phil-
lips [2] and Miles [3–6] provide the basics of theoreti-
cal understanding of surface wave generation by wind.
Phillips’ resonant mechanism is responsible for excita-
tion and initial rising of wave motion on an unexcited
surface of the fluid; Miles’ mechanism—energy trans-
fer from wind to fluid as a consequence of the interac-
tion between wind shear flow and surface waves—is
responsible for subsequent amplification of the waves.
According to Miles’ mechanism, the energy source is the
wind shear flows situated outside the fluid. Other ways of
SGW generation have also been studied, such as the pos-
sibility of SGW generation by earthquakes [7, 8] and the
theory of SGW generation by intrafluid explosions [9].
In the theories mentioned above, the sources of SGW
generation are extrinsic to the fluid.

The question arises as to whether sources intrinsic
for the fluid (shear flows and vortex perturbations, for
example) can generate SGW.

This question becomes especially interesting in
view of the impressive progress made in the under-
standing of spectrally stable shear flow phenomena by

¶ This article was submitted by the authors in English.
1063-7761/05/10101- $26.000169
the hydrodynamic community in the past ten years. The
early transient period for the perturbations has been
shown to reveal rich and complicate behavior in smooth
(without inflection point) shear flows. In particular, it
has been shown that the linear dynamics of perturba-
tions in the flows are accompanied by intense temporal
energy exchange processes between the background
flow and perturbations and/or between different modes
of perturbations. From the mathematical standpoint,
these effects are caused by the non-self-adjointness of
the linear operators in shear flows and are adequately
described in the framework of the so-called nonmodal
approach (see, e.g., [10–12]). The nonmodal approach
involves a change of independent variables from the
laboratory frame to a moving frame and the study of
temporal evolution of spatial Fourier harmonics (SFHs)
of perturbations without any spectral expansion in time.

We examine the linear dynamics of surface waves
and internal perturbations in deep fluid in the absence
of wind and in the presence of the fluid flow with a ver-
tical shear of velocity. Dispersive characteristics of
shear-modified SGWs and the linear mechanism of the
generation of surface waves in deep fluid by internal
perturbations are studied in detail in the framework of
the nonmodal approach.

The paper is organized as follows. The mathemati-
cal formalism is presented in Section 2. Shear-modified
SGWs and their generation are analyzed in Section 3.
Applications of the obtained results to the concrete
physical problems are discussed in Section 4. Conclu-
sions are given in Section 5.
 © 2005 Pleiades Publishing, Inc.
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2. MATHEMATICAL FORMALISM

We consider deep fluid with the flat outer surface at
z = 0 and a constant shear flow U0 = (Az, 0, 0) for z < 0.
The shear parameter A is considered positive for sim-
plicity. The gravitational field is considered uniform,
g = (0, 0, –g). Generally, four modes of perturbation
(SGW, internal gravity waves, sound waves, and vortex
mode) can exist in the system. To reduce the mathemat-
ical complications as much as possible but still keep the
basic physics of our analysis, we consider fluid to be
incompressible (neglecting sound waves) and disregard
the stratification effects (assuming that the frequency of
internal gravity waves is much less than the frequency
of SGWs, i.e., considering internal gravity waves as
aperiodic/vortex mode perturbations). We also ignore
the effects of viscosity in what follows. After these sim-
plifications, we keep just two modes of perturbation,
SGW and the vortex mode, and write the differential
equations for the linear dynamics of perturbations of
velocity (u') and normalized pressure (p' = p/ρ0) as

(1)

(2)

(3)

(4)

with the boundary condition on the surface z = 0:

(5)

We use the standard technique of the nonmodal
approach [10]: introduction of comoving variables (x' =
x + Azt, y' = y, z' = z, t ' = t) allows us to transform the
spatial inhomogeneity presented in Eqs. (1)–(5) into a
temporal one. Then, after the Fourier transformation
with respect to x' and y',

(6)

the dynamic equations are reduced to

(7)

∂ux'

∂x
--------

∂uy'

∂y
--------

∂uz'

∂z
--------+ + 0,=

∂ux'

∂t
-------- Az

∂ux'

∂x
-------- Auz'+ +

∂ p'
∂x
-------,–=

∂uy'

∂t
-------- Az

∂uy'

∂x
--------+

∂ p'
∂y
-------,–=

∂uz'

∂t
-------- Az

∂uz'

∂x
--------+

∂ p'
∂z
-------,–=

∂ p'
∂t
------- guz'– 

 
z 0=

0.=

u' r t,( ) 1

4π2
-------- u kx ky z' t, , ,( )∫=

× i kxx' kyy'+( )[ ] dkxdky,exp

ikxux ikyuy
∂

∂z'
------ iAt'kx– 

  uz+ + 0,=
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(8)

(9)

(10)

(11)

Hereafter, the primes of the z' and t' variables are
omitted.

From this set, we readily obtain the equation for the
perturbation of the vertical component of velocity,

(12)

where  = .

All other perturbed quantities (ux, uy , and p) can be
readily expressed through uz by combining Eqs. (7)–(10);
e.g., for p, we have

(13)

Integration of Eq. (12) with respect to time yields

(14)

where F(kx, ky, z) is the constant (in time) of integration
and defines the internal vortex mode perturbation in the
flow: F(kx, ky, z) = 0 relates to the case where the inter-
nal perturbation is absent.

The Fourier transformation with respect to z,

(15)

reduces Eq. (14) to

(16)

∂ux

∂t'
-------- Auz+ ikx p,–=

∂uy

∂t'
-------- iky p,–=

∂uz

∂t'
-------- ∂

∂z'
------ iAt'kx– 

  p,–=

∂p
∂t'
------ guz– 

 
z' 0=

0.=

∂
∂t
----- k̃

2 ∂
∂z
----- iAtkx– 

  2

– uz 
  0,=

k̃ kx
2 ky

2+

p
1

k̃
2

---- ∂
∂t
----- ∂

∂z
----- iAtkx– 

  uz iAkxuz– 
  .–=

k̃
2 ∂

∂z
----- iAtkx– 

  2

– uz kx ky z t, , ,( )

=  F kx ky z, ,( ),

uz kx ky z t, , ,( )
F kx ky z, ,( )

=  
1

2π
------

uz kx ky kz t, , ,( )

F̃ kx ky kz, ,( )
e

ikzz kz,d

∞–

∞

∫

k2 t( )uz kx ky kz t, , ,( ) F̃ kx ky kz, ,( )=

+ 4iπk̃C kx ky t, ,( ),
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where

(17)

Defining uz(kx, ky, kz, t) from Eq. (16), making the
inverse Fourier transform with respect to kz , taking the
boundary condition |uz | < ∞ at z = –∞ into account, and
recalling that C(kz, ky, t) is independent of z, we obtain

(18)

where k2(t) =  + (t) and kz(t) ≡ kz – Atkx .

The first term in Eq. (18) is related to the vortex
mode perturbation [11, 13], whereas the second term,
which is exponentially decreasing with the depth, is
related to the SFHs of shear modified surface waves.

Substituting Eq. (18) in Eq. (13) and using boundary
condition (Eq. (11)), we obtain

(19)

where

(20)

Generally, Eqs. (19) and (20) describe the dynamics
of surface wave SFHs in the presence of the internal
vortical source: the term I(kx, ky, t) is the result of an
interplay of the mean flow shear and the internal vorti-
cal perturbations and couples the latter perturbation to
the surface one. Hence, there is no coupling between
these perturbations in the absence of the shear. Indeed,
if there are no surface perturbations initially [uz(kx, ky,
z = 0, t = 0) = 0], then we readily obtain from Eqs. (16)
and (20) that I(kx, ky, t) ~ uz(kx, ky, z = 0, t = 0) at A = 0,
i.e., I(kx, ky, t) ≡ 0. Thus, if there is no the source in a
shearless flow initially, it does not appear afterward.

3. SGWs AND THEIR GENERATION
IN SHEAR FLOW

We can see from Eqs. (19) and (20) that there are
two main effects of the shear: first, the second term in

C
1

4iπk̃
-----------≡

× d
dz
----- 2iAtkx – ikz– 

  uz kx ky z t, , ,( )
z 0=

.

uz kx ky z t, , ,( ) 1
2π
------

F̃ kx ky kz, ,( )
k2 t( )

---------------------------- ikzz( )exp kzd

∞–

∞

∫=

+ C kx ky t, ,( ) k̃ iAtkx+( )z[ ]exp ,

k̃
2

kz
2

d2C

dt2
---------

iAkx

k̃
----------dC

dt
------- k̃gC+ + I kx ky t, ,( ),=

I kx ky t, ,( )

≡ 8iA2kx
2k̃

kz t( )
k6 t( )
----------- k̃g

k2 t( )
-----------– F̃ k( ) kz.d

∞–

∞

∫
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the left-hand side of Eq. (19) indicates that the velocity
shear affects the frequencies of SGWs. Second, the
source term I(kx, ky, t) caused by the internal perturba-
tions couples the internal and surface perturbations and
results in the emergence/generation of SGW in the
flow. Our further attempts are focused on the study of
these effects.

3.1. Shear Modified SGWs 

In this subsection, we study shear-induced modifi-
cations of the properties of SGWs. For this, we assume
that there were no vortex mode perturbations initially,

(kx, ky, kz) = 0. Consequently, I(kx, ky, t) = 0 [see
Eq. (20)], and Eq. (19) reduces to a homogeneous one,
with the solution

(21)

where C1, 2(kx, ky) are determined by the initial condi-
tions and

(22)

represents shear-modified frequencies of SFH of SGWs
propagating in the opposite directions and S ≡
A/(4 g)1/2 is the dimensionless shear rate. This equation
shows that, in contrast to acoustic and magnetohydro-
dynamic wave modes [14–16], the presence of the
shear does not lead to the time variability of the fre-
quency. However, velocity shear leads to a nontrivial
modification of the frequencies and, consequently,
phase velocities of SFH [17, 18]. Indeed, for the value
of the phase velocity, Eq. (22) gives

(23)

where φ ≡ arccos(kx/ ).

The phase velocity is isotropic in the shearless limit
(S = 0) and depends on φ in the shear flow. The anisot-
ropy increases with the shear rate. The value of the

phase velocity is minimal at φ = 0,  =

(  – S), and is maximal at φ = π,  =

(  + S). We suppose that a SGW is emitted
by a point source situated on the surface at x = y = 0.

F̃

Ch kx ky t, ,( ) C1 kx ky,( )=

× iΩ1t–( )exp C2 kx ky,( ) iΩ2t–( ),exp+

Ω1 2, k̃g
A2kx

2

4k̃
2

-----------+±
Akx

2k̃
---------–=

=  k̃g 1 S2kx
2

k̃
2

----+± S
kx

k̃
----–

 
 
 

k̃

Vph S φ,( ) g

k̃
--- 1 S2 φcos

2
+ S φcos–( ),=

k̃

Vph
min

g/k̃ 1 S2+ Vph
max

g/k̃ 1 S2+
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From Eq. (23), it then follows that the propagation of
the leading wave crest is described by

(24)

Figure 1 shows the leading wave crest of the SGW for
three different time instants t1, t2, t3, with t2 = 2t1, t3 =
3t1, which are circular but not concentric.

3.2. Generation of SGWs by Internal Vortices 

We first analyze the source term I(kx, ky, t), which is

determined by (kx, ky, kz). We assume that (kx, ky, kz)
is a localized function in the wavenumber space, with
the center of localization at k0 = (kx0, ky0, kz0). We note
that the first factor in the integrand in Eq. (20) reaches
its maximum when kz – Akxt = 0. Consequently, the
maximum of the integral is in the vicinity of the time
instant t = t∗  ≡ kz0/(Akx0). Equation (20) implies that
generally, I(kx, ky, t) tends to zero in both limits t 
±∞. Actually, there exists some time interval 2∆t
around t∗ , where the source term differs from zero. The
value of ∆t depends on the degree of localization of the

internal perturbation, i.e., of (kx, ky, kz), in the wave-
number space. (The source localization is demon-
strated below in a specific example.) Thus, in the
case of a localized source, the coupling between sur-
face (gravity wave) and internal (vortex mode) pertur-
bations takes place in some time interval 2∆t around t∗ ,
and these perturbations can be considered separately at
|t − t∗ | > ∆t.

The general solution of the inhomogeneous equa-
tion (Eq. (19)) is the sum of the general solution of the

r S φ t, ,( ) Vph S φ,( )t=

=  g

k̃
--- 1 S2 φcos

2
+ S φcos–( )t.

F̃ F̃

F̃

x

y

t1

t2

t3

Fig. 1. Shear-induced anisotropy of SGW propagation. The
leading wave crest at three different time instants t1, t2, t3,
with t2 = 2t1, t3 = 3t1, which are circular but not concentric.
A point source of the SGW is located at x = y = 0.
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corresponding homogeneous equation and a partial
solution of the equation

(25)

The general solution Ch(kx, ky, t) is given by Eq. (21),
whereas a partial solution of Eq. (19) is

(26)

where

(27)

We assume that the coupling between the surface
and internal modes can be neglected at the initial time
instant t0, i.e., t0 < t∗  – ∆t. After passing through the
coupling time interval, for any t > tf = t∗  + ∆t, the modes
become independent again. However, during the time
interval [t0, tf], internal vortices generate SGWs with
frequencies Ω1 and Ω2 [see Eq. (22)]. As follows from
Eqs. (21), (25), and (26), if there are no SGWs
(C1, 2 = 0) initially, then the generated SFH amplitudes
(Q1, 2) are

(28)

(29)

We can replace the integration limits by ±∞. After inte-
gration over time, this yields

C kx ky t, ,( ) Ch kx ky t, ,( ) Ci kx ky t, ,( ).+=

Ci
1

2Ω0
---------- iΩ1t–( ) I kx ky t', ,( ) iΩ1t'( )exp t'd

t0

t

∫exp=

–
1

2Ω0
---------- iΩ2t–( )exp

× I kx ky t', ,( ) iΩ2t'( )exp t',d

t0

t

∫

Ω0 k̃g
A2kx

2

4k̃
2

-----------+ k̃g 1 S2kx
2

k̃
2

----+ .= =

Q1 kx ky,( ) 1
2Ω0
----------=

× I kx ky t', ,( ) iΩ1t'( )exp t'd

t0

t f

∫ ,

Q2 kx ky,( ) 1
2Ω0
----------=

× I kx ky t', ,( ) iΩ2t'( )exp t'd

t0

t f

∫ .

Q1 2,
πkx

k̃
3

-------- A
2Ω0
----------

kx

k̃
----+− 

  Ω0 A/2+−( )k̃
Akx

------------------------------–exp=
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(30)

We note that the last factors in Eq. (30) are propor-
tional to the vorticity of the initial perturbations at z1, 2 =
–(Ω0  A/2)/(Akx), respectively. The second factors

indicate that, at small shear rates (S ≡ A/  ! 1),
the amplitudes of the generated SGWs are exponen-
tially small with respect to the large parameter 1/S.
Equation (30) also indicates that, for a fixed kx , the
generation is most efficient in the two-dimensional
case (ky = 0).

We now describe the dynamic picture for a specific
example, where a pure internal vortex-mode perturba-
tion (without any admixture of surface waves) is
imposed in the flow initially. For simplicity, we con-
sider the two-dimensional problem, where ∂/∂y = 0.
The vertical velocity of the imposed perturbation is
given by

(31)

where η(z) is Heaviside function, (0, –z0) is the center
of the localization, L1, 2 characterize the vertical and
horizontal scales, respectively, and φ is the slope of the
perturbation.

Numerical solution of the problem was performed
as follows. Fourier transformation of Eq. (31) with
respect to the x variable allows us to determine F(kx, z)
through Eq. (14). Another Fourier transformation with

respect to z yields (kx, kz). Then the source function
I(kx, t) is found by Eq. (20). Thus, the solution of the
problem for a fixed kx reduces to the numerical solution
of the inhomogeneous equation (Eq. (19)) with the
known I(kx, t).

The dependence of the source function I(kx, t) on t at
L1 = 1, L2 = 7, φ = π/18, kx = 1, and z0 = 2 for two dif-
ferent values of the shear rate S = 0.08 (dashed line) and
S = 0.32 (solid line) is presented in Fig. 2. As was men-

× F̃ kx ky kz, ,( ) i
Ω0 A/2+−( )kz

Akx

-------------------------------– 
 exp kzd∫

=  
2π2kx

k̃
3

------------- A
2Ω0
----------

kx

k̃
----+− 

  Ω0 A/2+−( )k̃
Akx

------------------------------–exp

× F kx ky

Ω0 A/2+−
Akx

----------------------–, , 
  .

+−

4k̃g

uz x z t0, ,( ) z3η z–( )=

×
z z0+( ) φ x φsin+cos[ ] 2

L1
2

---------------------------------------------------------–
 
 
 

exp

×
z z0+( ) φsin x φcos–[ ] 2

L2
2

---------------------------------------------------------–
 
 
 

,exp

F̃
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tioned above, the source term is a localized function
and considerably differs from zero only in the interval
t ∈  (20, 40) for S = 0.08 and t ∈  (5, 10) for S = 0.32.

To analyze the wave generation efficiency, it is use-
ful to introduce the generation coefficients that charac-
terize the ratio of the generated wave energy density
and the maximum energy density of the initial vortex
mode perturbations for a fixed value of kx . Taking into
account that the maximum energy density of the vortex
mode perturbations is

(32)

and the energy density of the generated waves is

(33)

we define the dimensionless generation coefficients as

(34)

Figure 3 represents the generation coefficients G1
(dashed line) and G2 (solid line) vs. the shear rate S at
L1 = 1, L2 = 7, φ = π/18, kx = 1, and z0 = 2. As can be
seen, at small values of the shear rate, generation of
SGW with the frequency Ω1 (i.e., propagating along the
x axis) considerably exceeds the generation of SGW
with the frequency Ω2 (i.e., propagating against the x

Ev
1

2kx
4

-------- F kx z,( ) 2 zd

∞–

∞

∫=

Ew1 2,
1
kx

----Q1 2,
2 kx( ),=

G1 2, Q1 2, kx( )
2kx

3

F kx z,( ) 2 zd

∞–

∞

∫
-----------------------------------

 
 
 
 
 
 
  1/2

.=

100 20 30 40

t

10

20

30

40

50

60
I

Fig. 2. I(kx, ky, t) vs. time at S = 0.32 (solid line) and S = 0.08
(dashed line), kx = 1, L1 = 1, L2 = 7, z0 = 2, and φ = π/18.
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Fig. 4. uz(kx, t) vs. time at S = 0.32, kx = 1, L1 = 1, L2 = 7,
z0 = 2, and φ = π/18.
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Fig. 5. uz(kx, t) vs. time at S = 0.08, kx = 1, L1 = 1, L2 = 7,
z0 = 2, and φ = π/18. 
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Fig. 3. The generation coefficients G1 (dashed line) and G2
(solid line) vs. the shear rate S at kx = 1, L1 = 1, L2 = 7, z0 =
2, and φ = π/18.
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axis), whereas the latter wave is generated more effi-
ciently at S > 0.15.

The wave generation is well traced in Figs. 4 and 5,
where the temporal evolution of the vertical component
of velocity perturbation at the surface obtained by
numerical solution of Eqs. (19) and (20) is presented
for S = 0.32 and S = 0.08, respectively. The other
parameters are the same as in Fig. 2. A purely internal
vortex mode perturbation is imposed in the equations
initially. The generation occurs in the time interval
where I(kz, t) noticeably differs from zero. Afterwards,
just (two) waves with different frequencies and ampli-
tudes exist. At S = 0.32, presented in Fig. 4, the gener-
ation occurs in the time interval t ∈  (5, 10). Besides, the
SGW propagating against the x axis is mainly gener-
ated. In contrast to this, at S = 0.08, presented in Fig. 5,
the generation of SGW propagating along the x axis
dominates. These numerical results are in agreement
with the analytical ones (see Eq. (30) and Fig. 3).

4. DISCUSSION

In the previous sections, a simplified model was
considered that allowed us to simplify the mathematical
description and study shear-induced effects in a “pure”
form. For instance, the influence of the viscosity was
ignored and the density ratio ρa/ρ0 of the fluids above
and below the surface z = 0 was assumed to be zero. The
last assumption allows us to ignore all the dynamical
processes in the upper fluid. On the other hand, it is well
known that, in the case of ocean waves, the wind is the
most important and powerful source of the waves. In
this section, we discuss possible applications of the
studied linear effects to the concrete physical situa-
tions.

4.1. Ocean Waves 

It is well known [2–6] that the wind is the main
source of ocean SGWs. In the context of future discus-
sion, the papers of Chalikov’s group [19, 20] should
also be noted, where the influence of small-scale turbu-
lence in the air on the wave growth was studied in
detail. At present, there exists a well-developed theory
of both SGW generation and nonlinear evolution that is
mainly confirmed by experiments as well as numerical
simulations (see, e.g., [21] for a recent review). After
development of a wind-driven instability, nonlinear
four-wave resonant interactions transfer the wave
energy to smaller scales. The existing theory predicts
that, for relatively small frequencies, the Zakharov–
Philonenko [22] spectrum E(ω) ∝  ω–4 of SGW fluctua-
tions (sometimes called Toba’s spectrum) should be
observed (in this context, see also [23]), whereas for
relatively high wavenumbers, nonlinearity becomes
strong and the Phillips spectrum E(ω) ~ ω–5 of the wave
turbulence should develop. The existing observations
confirm these predictions and provide that, in the range
AND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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ωp/3 < ω < 3ωp , where ωp is the peak frequency, the
Zakharov–Philonenko spectrum is usually observed.
For ω > 3ωp , the spectrum becomes very close to the
Phillips one [21]. The properties of the wave spectrum
in the very short wavelength region, as well as dynam-
ics of dissipation of SGW turbulent fluctuations, are
much less clear [24].

In the case of ocean waves, the presented linear
mechanism of SGW generation can make an important
contribution to the balance of small-scale SGW fluctu-
ations. Indeed, a characteristic length scale of the turbu-
lence is much smaller at the ocean surface than in the
air. Namely, the characteristic length and velocity
scales are u∗  ~ 1 cm/s and l ~ 1 cm, respectively [25].
On the other hand, in the presence of the wind, the
strong velocity shear A ~ 10 s–1 is present in the so-
called “buffer layer” [26] of the water, with the thick-
ness l1 ~ (20–100)l0, where l0 ≈ ν/u∗  is the dissipation
length scale and ν is the kinematic viscosity of water.
Simple estimates yield l1 ~ (0.5–1) cm. The linear
mechanism presented implies that vortical perturba-
tions generate SGWs with the same length scale.
Therefore, in the case of ocean waves, internal vortex-
mode perturbations should effectively generate small-
scale SGWs, with the wavelength just above the capil-
lary length scale λc = 0.39 cm [27]. In this context, the
study of the influence of capillary effects on the pro-
cesses discussed above seems to be interesting. Analy-
sis of this problem will be presented elsewhere.

4.2. Interfacial Gravity Waves 

In the analysis in Sections 2 and 3, the density ratio
ρa/ρ0 of the fluids above and below the surface z = 0 was
assumed to be zero. The obtained results can be readily
generalized to the case of interfacial GWs. If the densi-
ties of the upper and lower fluids are ρ1 and ρ2 and the
shear rates are A1 and A2, respectively, then the shear-
modified dispersion of interfacial GWs is given by the
same expression (22) with g and A replaced by g∗  and
A∗ , where

(35)

This equation implies that the influence of shear on
both the wave dispersion and the coupling with internal
vortex perturbations, which is determined by the
dimensionless parameter

(36)

is much more notable when the fluids have comparable
densities if ρ1A1 is not very close to ρ2A2. Therefore, the
described shear-induced effects should usually have

g* g
ρ2 ρ1–
ρ2 ρ1+
-----------------, A*

A2ρ2 A1ρ1–
ρ2 ρ1+

-----------------------------.= =

S*
A*
4k̃g*

----------------≡ S2

1 ρ1A1/ρ2A2–

1 ρ1
2/ρ2

2–
----------------------------------,=
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much stronger effect on the dynamics of interfacial
waves than on ocean waves.

5. SUMMARY

We summarize the main features of the linear
dynamics of surface gravity waves in a simplified deep
fluid (at z < 0) flow with vertical shear of the mean
velocity U0 = (Az, 0, 0). The simplification lies in
neglecting the fluid compressibility and stratification,
in other words, in the consideration of the system con-
taining just two modes of perturbation: the surface
gravity wave mode and the internal vortex mode. Spe-
cial features of SGW in the system are as follows.

The mean flow velocity shear causes a nontrivial
modification of the frequencies and phase velocities of
SGWs. The frequencies are defined by Eq. (22). The
phase velocity becomes anisotropic (see Eq. (23) and
Fig. 1): its value is minimal for SFH propagating along

the x axis [  = (  – S)] and maximal for

SFH propagating against the x axis [  =

(  + S)].
The mean flow velocity shear leads to the appear-

ance of an intrinsic (to the fluid) source of SGW gener-
ation via coupling the wave to the internal vortex-mode
perturbations; the coupling results in the emer-
gence/generation of SGWs by internal vortex-mode
perturbations at S * 0.05. The generation is different
for the waves propagating in the different directions
(see Eq. (30)). The generation of SGW with the fre-
quency Ω1 considerably exceeds the generation of
SGW with the frequency Ω2 for relatively small shear
rates S, whereas the latter wave is generated more effec-
tively for high shear rates (S > 0.15).
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Abstract—We analyze the structure of the space electric charge that appears in the vicinity of a charged dust
particle in a moving conductive medium. We show that when the conduction currents play a major role, the
screening space charge is concentrated in the form of a thin wake behind the dust particle, while the total Cou-
lomb field forms a dipole structure and serves as an attractive center for other particles with charges of the same
sign. We consider the pairing conditions for such particles. Including the polarization contribution from the dust
component to the permittivity radically changes the field structure when the dust particle concentration
approaches the dissipative instability threshold. In this case, the zone of attraction of like-charged dust particles
expands sharply. Estimates suggest that the effects under consideration can govern the formation of regular
structures in a moving dusty plasma at fairly high pressures, P > 0.1–1 mbar. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

At present, the attraction mechanisms of like-
charged aerosol particles in gaseous, partially ionized
media are being widely discussed in connection with
the problem of the formation of regular structures, in
particular, dust plasma crystals in these media [1–6]. In
laboratory experiments with dusty plasmas, organized
structures appear under widely varied conditions and
can be observed in the form of one-dimensional chains
and low-dimensional clusters composed of several
charged dust particles as well as in the form of fairly
extended two-dimensional and three-dimensional lat-
tices with a regular arrangement of dust particles at the
lattice sites. This problem is also important for natural
media. Dust clouds are typical of cosmic conditions
[2]; aerosol streams in partially ionized air are formed
in thunderclouds and at mesospheric altitudes in the
atmosphere [7–9].

The most popular theory [1, 2, 10] is based on the
combined effect of the repulsive Debye–Hückel poten-
tial and the dust-particle-confining external electric
potential applied to the chamber walls. A crystal under
these conditions is formed when the plasma nonideality
parameter Γ = q2/∆T is larger than a critical value of

Γcr ~ 102, where q, T, and ∆ ~  are, respectively,
the charge, temperature, and characteristic interparticle
distance of the dust component, and Na is its concentra-
tion. In the presence of plasma flows, other mecha-
nisms, in particular, the wake [11] and shadow [12]
attraction of like-charged particles can also play a sig-
nificant role.

Na
1/3–
1063-7761/05/10101- $26.000177
Fundamentally new phenomena arise in a dusty
plasma, given that this system is open. In contrast to
an ordinary plasma, the electron–ion component in a
complex plasma is absorbed on dust particle surfaces,
which requires continuous energy supply to the sys-
tem [2–5]. This effect can significantly change the for-
mation of a space electric charge around a dust parti-
cle. At present, these questions are being actively
studied [13].

It should be noted that in the papers cited above, the
thermal motion and the Debye screening by the elec-
tron and ion charges played a major role in the forma-
tion of a space electric charge around a dust particle
and, hence, in the formation mechanism of plasma
crystals. In general, the conduction currents were disre-
garded. At the same time, in a fairly dense medium
where the ion mean free path is much smaller than the
Debye length and is comparable to the dust particle
radius, these currents can play a crucial role. A thunder-
cloud is a typical example of such a medium [7, 9].
Similar conditions are realized in laboratory experi-
ments at pressures P > 1 mbar (see below).

In this paper, we consider the limiting case of a con-
ductive medium moving relative to the dust particles
with a zero Debye length. The physical picture of the
interaction in this case is very simple if the hydrody-
namic effects are disregarded (the particle is “transpar-
ent” for the moving medium): a space charge wake of
the opposite sign whose diameter is equal to the particle
diameter and whose length is defined by the character-
istic scale length

(1)l0

v 0

4πσ
----------,≈
 © 2005 Pleiades Publishing, Inc.
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where v 0 and σ are the velocity and conductivity of the
medium, respectively, is formed downstream of the
charged dust particle. Basically, this is an analog of the
Coulomb screening for the current formation mecha-
nism of a space charge. Together the particle and the
wake form a dipole electric field that leads to the
“pairing” of like-charged particles under certain con-
ditions. Such a structure of the screening field in a
conductive medium was first obtained in [14]. This
structure is analyzed in detail in Section 2. In Section 3,
we analyze the interaction between “tailed” particles
and derive a criterion for their pairing. In Section 4,
we consider the collective wake by taking into account
the contribution from the dust component to the polar-
ization of the medium. This problem is of interest in
connection with the possibility of reaching the dissi-
pative instability threshold [7, 15] as the dust particle
concentration increases. The instability is accompa-
nied by the excitation of collective electrostatic
modes, with the particle short-range field also chang-
ing radically. In Section 5, we summarize our results
and discuss the range of their applicability to the condi-
tions of available experiments.

2. THE WAKE IN A CONDUCTIVE MEDIUM

We begin our analysis with the simplest model of
the interaction between a spherical charged particle and
a conductive medium moving with velocity v0 whose
electric properties are characterized by conductivity σ
and permittivity ε. The stability of such a particle in the
flow is determined by external forces, including those
of a nonelectric origin (the gravity and the drag from
the neutral medium), while the constancy of the electric
charge is specified by the acting charging mechanism.

+++

V0

z

zzmin

Ez
Σ

(a)

(b)

Fig. 1. (a) Image of the particle and the space charge wake;
the arrows indicate the path of integration in (7). (b) Total

electric field  versus coordinate z.Ez
Σ
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For a given (unperturbed) motion of the conductive
medium, the structures of the electric field E and the
current j are described by the continuity equation for j
and Ohm’s law. In the case of interest, these are

(2)

where η is the induced space charge in the medium.
Given that the flow is one-dimensional (in this case, v =
–v 0z0, v 0 > 0) and using Poisson’s equation, we find
from (2) that

(3)

where η0 is the given charge distribution on the particle,
z0 is a unit vector, and ρ is the transverse coordinate.

We are interested in the case where

k0a ! 1, (4)

i.e., where the length of the space charge wake  is
much larger than the particle radius a. The pattern of
the transverse dependence η0(z, ρ) for the overall struc-
ture of the electric field is unimportant, and it may be
taken to be uniform. For η0 ≡ q/s at –a ≤ z ≤ 0 (s = πa2

is the cross-sectional area of the wake, and q is the
dust particle charge), the resulting space charge dis-
tribution is

(5)

As can be easily verified,

Clearly, the total electric field E is axially symmetric
(relative to the z axis). The central section of this field
containing the z axis is qualitatively shown in Fig. 1.
The field strength and the coordinate of the bottom of
the potential well, which basically serves as an attrac-
tive center for another dust particle with a charge of the
same sign, can be determined from the given charge (5)
in quadratures. They can be estimated from the follow-
ing considerations. For a long charged cylindrical rod,
the radial field component Eρ behaves at distances
k0ρ < 1 as follows (in CGS units):

(6)

where κ = ηs is the linear charge density, and s is the
wake cross section. The field component Ez produced

div j 0, j σE ηv,+= =

dη
dz
------ k0η– k0η0 z ρ,( ), k0

4πσ
v 0

----------,= =

k0
1–

η η 0 e
k0z

1–( ), a– z 0,≤ ≤–=

η η 0 1 e
k0a

–( )e
k0z

, z a.–≤–=

s η zd

∞–

0

∫ q.–=

Eρ
2κ
ρ

------,=
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by the space charge on the axis can then be determined
by integrating E over a closed path (Fig. 1a). We have

(7)

Given that

and using the corresponding dependence η(z) (5), we
obtain

(8)

where q is the particle charge, M = |ln(δk0a)|, and δ is
the numerical coefficient that characterizes the loga-
rithmic accuracy of our calculations. Running ahead,
we note that the rigorous calculation in Section 4 yields
δ = 0.3. The total field structure on the wake axis at
z < 0 is given by the sum

(9)

Dependence (9) is shown in Fig. 1b. The field reaches
zero at k0zmin ≈ –0.6; the depth of the minimum of the
potential well is

It is easy to verify [14] that the total electric field of the
particle and the wake at distances k0r @ 1 has a dipole

structure with the dipole moment p = –q z0 directed
along the velocity vector of the medium v0.

Thus, the wake of a dust particle in a moving con-
ductive medium differs significantly in scale and shape
from the wake of the space charge produced by the
Debye screening and has the shape of an elongated (in
the direction of motion of the medium) thin rod similar
to the valence bond of ions in material. The potential
well corresponding to the electric field structure (9) can
serve as an attractive center for other dust particles, giv-
ing rise to dimeric and, possibly (since a potential well
is also present in the common wake, the tail, of the two
particles), polymeric structures. To quantitatively
answer this question, we must consider the interaction
between such particles. This interaction is analyzed in
the next section.

3. PAIR INTERACTION
OF CHARGED DUST PARTICLES

In the case under consideration, the particle pair
interaction is peculiar in that it cannot be reduced to the

2 κ z( ) ρd
ρ

----------------- Ez∆z 2
κ z ∆z+( )

ρ
----------------------- ρd

a

δ/k0

∫ 0.≈+ +

δ/k0

a

∫–

κ z ∆z+( ) κ z( ) ∆zs
∂η
∂z
------,+=

Ez 2Msη z( ) 2qMk0
2 k0z( ),exp= =

Ez
Σ q

z2
----– 2Mk0

2e
k0z

.+≈

Um
q

zmin
-------- 1 1

k0zmin
-------------+ 

  qk0.≈ ≈

k0
1–
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attraction (or repulsion) between two electric dipoles,
since the force acting on the space charge is applied to
the medium rather than to the particle. As a result, the
problem is reduced to analyzing the relative motion of
two charged dust particles with the dipole field of the
“tailed” particle acting on each of them. Basically, this
allows the electric field acting on a charged particle in
plasma to be identified with the mean macroscopic
field. In actual conditions, apart from the interaction
through the electric field, the dust particles are also
acted upon by various nonelectric forces, such as the
gravity, the drag from the medium, and the fluctuational
forces, which in the long run determine the effective
temperature of the dust component. In addition, the par-
ticle size dispersion in the field of gravity also leads to
dust particle velocity dispersion. All of these forces are
rather difficult to take into account, while the principal
possibility of particle pairing is entirely determined by
the electric force. To ascertain whether this is possible,
let us consider the interaction between two identical
tailed particles that have a relative velocity v(0) at the
initial time and that are separated by a distance |r0 |, i.e.,

(10)

where r1(2) is the coordinate of particle 1 (2). At a dis-
tance much larger than the wake length where the
inequality

(11)

holds, the electric field E of the tailed particle can be
represented as the dipole field

(12)

Here, n = r/|r|, r is the radius vector from the location
of the dipole to the point of observation, and the dipole
moment p is

(13)

Formula (13) takes into account the fact that the length
of the space charge wake is proportional to the velocity
of the medium and that the wake orientation when the
particle motion is slowly rearranged (  ! v 0)
closely follows the total velocity vector relative to the
conductive medium.

If we now take into account the fact that n1 ↓↑  n2,
we will then obtain the following equation of motion
for the difference vector r = r2 – r1:

(14)

t 0: ṙ2 ṙ1–( )0 v 0( ), r2 r1–( )0 r0,= = =

k0 r k0 r2 r1–  @ 1≡

E
3n p n⋅( ) p–

r 3
--------------------------------.=

p1 2, p0 z0
ṙ1 2,

v 0
--------+ 

  , p0
q
k0
----.≈=

ṙ1 2,

ṙ̇ ∆3n ṙ n⋅( ) ṙ–

r3
------------------------------,=
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where n = r/|r |, |r | ≡ r,

is the interaction parameter, and ma is the dust particle
mass. Equation (14) has a vector integral of motion that
can be represented as

(15)

where v(0) and r0 are the initial relative velocity and
radius vector, respectively. Next, let us consider, for
simplicity, the two-dimensional motion of particles in a
medium with velocity v(0). In the polar coordinate sys-
tem on the xz plane with the coordinate origin at the
point at which one of the particles is located, Eq. (15)
transforms to

(16)

where

Dividing the second equation in (16) by the first
equation yields

(17)

∆ q2

4πσma

-----------------=

ṙ ∆ r

r3
----+ v 0( ) ∆

r0

r0
3

----,+=

r
dϕ
dt
------ β ϕcos α ϕ γ ψ ϕ–( ),sin≡sin–=

dr
dt
----- ∆

r2
----+ α ϕ β ϕsin+cos γ ψ ϕ–( ),cos≡=

α v x
0( ) ∆

x0

r0
3

-----, β+ v z
0( ) ∆

z0

r0
3

----, r0+ x0
2 z0

2+ ,= = =

γ α2 β2+ , ψ β
α
---.arctan= =

dr
rdθ
---------

∆/γr2 θcos–
θsin

-------------------------------, θ ψ ϕ.–= =

12 10 8 6 4 2 0 2 4 6 8
x

0

1

2

3

4

5
z

r

θ

Fig. 2. Examples of the trajectories of relative motion of
interacting particles for an equidistant increase in the
parameter ∆/γd2 from 0.2 to 0.8 and at r0 = 10, θ0 = 5π/6,

d = 5 with (dotted line, (dk0)–2 = 1) and without (solid line,

(dk0)–2 = 0) allowance for the finite depth of the potential
well.
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The solution of Eq. (17) that describes the particle tra-
jectory r(θ) is

(18)

where d = r0sinθ0 is the impact parameter, which is
equal to the minimum distance between the particles as
they move in a straight line (when ∆ = 0 and r0  ∞).
The fall of the particle to the center, i.e., solution (18)
r = 0, corresponds to the pairing. Examples of the tra-
jectories corresponding to solution (18) are indicated in
Fig. 2 by the solid lines.

In general, the pairing depends on the starting con-
ditions. For fairly large distances (d/r0)2 ! 1, we have
cosθ0 ≈ –1 for the colliding particles, and, given the pat-
tern of the trajectories shown in Fig. 2, the pairing con-
dition can be written as

(19)

where v (0) is the magnitude of the starting particle

velocity; it is assumed that v (0) @ ∆/ .

Recall that solution (18) is applicable if inequality (11)
holds. If (11) is violated, then the short-range field of
the tailed particles must be taken into account, and the
depth of the potential well becomes finite. In this case,
Eq. (17) takes the form

(20)

where the depth of the potential well was taken in
accordance with relation (9). The numerical solution of
the latter equation is indicated in Fig. 2 by the dotted
lines. We see from this figure that the pairing condition
becomes slightly more stringent in impact parameter.
Other things being equal, the interaction parameter ∆
required for pairing increases by about one and a half
times.

As we see, the interaction between two like-charged
tailed particles differs radically from the interaction
between the same particles in the absence of a wake.
However, this is true only for distances k0r > 1. Taking
into consideration the electric field structure (9), we
conclude that an ordinary Coulomb field of repulsion
acts at distances k0r ! 1. At the same time, it is not
obvious that the field around the particle will not
change at close distances either if the contribution from
the dust component to the polarization of the medium is
taken into account, especially since the medium
becomes unstable to electromagnetic disturbances

r θsin d2 2∆
γ

------- θ0 θcos–cos( )+
1/2

,±=
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2πσv 0( )mad2
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starting from some critical dust concentration. These
questions are analyzed in the next section.

4. THE COLLECTIVE WAKE

As was noted in the Introduction, an increase in the
dust particle concentration can fundamentally affect the
electric properties of the medium under consideration.
In particular, when a certain threshold is exceeded,
which, according to [7], is equal to

(21)

where

is the plasma frequency of the aerosol particles, and νa

is the effective collision frequency that determines the
force of friction acting on the dust particle from the
neutral component—collective electrostatic modes
leading to the bunching of dust particles can be excited.
It is interesting to trace how the space electric charge is
redistributed around the dust particle and how the struc-
ture of the electric field found above changes with
increasing dust concentration. We restrict ourselves to
analyzing this problem in the approximation of a point
dust particle. In this approximation, we can use the gen-
eral method for calculating the electric field produced
by a uniformly moving particle in which the potential
ϕ(r, t) is [16]

(22)

where δ(x) is the delta function and ε(ω, k) is the per-
mittivity.

In the coordinate system with the z axis directed
along the particle velocity and given the axial symme-
try, formula (22) after integration over ω and the azi-
muthal angle transforms to

(23)

Here, J0(k⊥ ρ) is the zero-order Bessel function, and ρ is
the distance from the z axis (in the cylindrical coordi-
nate system). Let us first consider a single dust particle.
In the (ξ = z – v 0t, ρ) coordinate system, in which the

Ωp
2 /νa

2( )thr 1,=
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4πq2Na
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------------------- 
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particle is stationary, the flow of conductive gas blows
over the particle with velocity v 0 in the –ξ direction. In
this case,

(24)

where, as above, k0 = 4πσ/v 0. The wake is formed at
ξ < 0, and the potential after integrating (23) over kz and
k⊥  using (24) is (ξ ≤ 0)

(25)

where N0(k0ρ) is the zero-order Neumann function. At
k0ρ < 1,

C = 0.57 is the Euler constant. As a result, the expres-
sion for the electric field Ez = –∂ϕ/∂ξ at k0ρ = k0a ! 1
is identical to (9) if we set z ≡ |ξ| @ a and δ = 0.3 under
the logarithm.

In general, given that the dust component is station-
ary, the expression for ε(k, ω = kzv ) is

(26)

where k0, Ωp , and νa were defined above (see (1)
and (21)), Da = (∆v)2/νa , (∆v)2 is the velocity spread
attributable to the size dispersion of the dust particles
falling in the field of gravity g || z; this spread is
assumed to dominate over the thermal scatter; it is also

assumed that νa @ Da . Integral (23) with ε in
form (26) describes the electric potential of a test parti-
cle moving with velocity v  along the z axis. Given
dependence (26), expression (23) can be integrated
over k⊥ . As a result, we obtain

(27)

where K0( y) is the zero-order Macdonald function,

 = 4πσ/(v 0 – v),  = ρ,  = ξ, and the functions

ε 1 i
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Fig. 3. Change in the structure of the potential as the dust concentration increases at a fixed velocity of the test particle (c = 0.01).
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ε1 = Reε and ε2 = Imε are given by

(28)

(29)

The dimensionless coefficients p, c, and cT determining
the structure of the field ϕ are

(30)

Expression (25) is derived from (27) at p = 0. It is easy
to see that the dispersion relation ε(ω, k) = 0 at p > 1
contains solutions increasing with time (Imω > 0).
Basically, this implies that solution (27), which
describes the stationary structure of the field ϕ, is valid
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only at p & 1 and is inapplicable at p > 1. For p > 1, the
problem with initial conditions must be solved. Given
the aforesaid, let us consider the changes in the struc-

ture of the field ϕ( ) when p increases from zero to
unity while remaining in the domain of stable solutions.

Given the polarization contribution of dust particles
to ε(ω = kzv, k) = 0, the three additional parameters (30)
appear in the problem. Let us first consider how the

structure of the potential ϕ( ) changes in the
absence of a velocity spread, cT = 0. Here, the velocity
of the test particle c plays a significant role. Figure 3

shows the change in the spatial structure of ϕ( )
with increasing p.

An interesting feature arises at p2 ≈ c, when the
dipole structure disappears (p2 = c = 0.01) and then
reappears (p > 0.1), but with the opposite orientation of
the dipole, the screening space charge in front of the
dust particle. The equality p2 = c here is not coinciden-
tal, but corresponds to a certain resonance at which ε2

ξ̃ ρ̃,

ξ̃ ρ̃,

ξ̃ ρ̃,
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changes its sign when passing through zero. This reso-
nance is discussed in more detail below. The physical
interpretation of this potential rearrangement is fairly
simple: at a low relative velocity, the dust particles are
deflected from the z axis by the electric field of the test
particle without reaching it; the space charge tails of
these particles turn inward, producing a charge excess
in front of the particle. Since the dust component at
c < 0 strikes the test particle from the tail, the dipole
does not change its orientation, and the depth of the
potential well increases due to the tails of the overtak-
ing dust particles. In general, with the exception of the
above effect, the dipole structure of the tailed particle
qualitatively changes only slightly with p, as illustrated
by Fig. 4.

The depth of the potential well slightly increases
with p, because |ε| decreases; at fixed c, the deepest
minimum of the potential well is reached at a certain
value of p2 = c. The coordinate ξmin of the potential min-
imum slightly approaches the coordinate of the test par-
ticle with increasing p. The dust particle velocity dis-
persion, cT ≠ 0, decreases the depth of the potential well
and can cause it to disappear at fairly large values of cT

and p (Fig. 5).
The largest changes in the structure of the Coulomb

potential arise as the threshold of dissipative instability
is approached; at cT = 0, the latter is described by the
dispersion relation1 

(31)

According to (31), the instability threshold Imω = 0 is
reached for ω  0 and is equal to pthr = 1 (21); near
the threshold, the dispersion relation ω(k) is

(32)

The forced solution of interest described by (27) at ω =
kzv  is applicable in the stable domain p < 1. Clearly, the
largest change in potential ϕ as the instability threshold
is approached might be expected for |ε|  0, i.e., for
the particle that is in phase with wave (32) when

p  1, c ≈ p2, y  0. (33)

The calculations of ϕ (27) confirm the above reasoning.

Figure 6 shows the structure of the potential ϕ( )
near the threshold p & 1 for the resonant (p2 = c) and
nonresonant (p = c) cases. We see a radical difference
in the behavior of the potential both near and far from

1 It should be noted that, strictly speaking, the dispersion relation (31)
is valid on scales much larger than the interparticle distance. On
the other hand, if many dimeric (polymeric) structures appeared
in the medium, then the instability can be modified significantly.
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the particle. For p2 = c  1, the following analytical
expression for ϕ and the electric field E can be derived
from (27):

(34)

where r = (ρ2 + ξ2)1/2; the electric field has the compo-
nents

(35)

The structure of potential (34) is determined not only
by the presence of a charged particle at the coordinate
origin and a wake of the opposite sign, but also by the
charge concentrated on the axis (ρ = 0); the latter
extends from –∞ to ∞ as the p = 1 threshold is
approached and under the resonance conditions p2 =
c = 1, being positive at ξ < 0 and negative at ξ > 0. In
contrast to the case of a single particle, the electric field
amplitude increases sharply, becoming infinite on the
axis, which basically corresponds to the resonance
ε  0.

Qualitative changes in the potential structure might
be expected during the passage through the instability
threshold, when p > 1. In this case, ε1 in (27) changes
its sign (at small y) and the Coulomb field of repulsion
of like-charged particles can transform into the field of
attraction even at small distances between them (simi-
lar to the case of ε < 0 in a medium without dispersion).
However, it should be borne in mind that the above
analysis is generally invalid at p > 1, and the excitation of
electric eigenmodes of the medium must be taken into
account along with the forced solution (27). This prob-
lem is beyond the scope of this paper.

5. DISCUSSION AND CONCLUSIONS

The effects considered above relate to the limiting
case of a partially ionized plasma, where the conduc-
tion currents play a major role in forming the space
charge, while the effects of thermal motion can be
neglected. If the formation of the space charge is deter-
mined by ions, then, as follows from the general
expression for ε with the inclusion of thermal motion,
this neglect is possible if the ion mean free path

and, in addition, if the length  of the space charge
wake is larger than the diffusion length, i.e.,

(36)
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where νin is the ion–neutral collision frequency, ωpi is
the plasma ion frequency, vTi is the thermal ion veloc-
ity, k0 = 4πσi/v 0, v 0 is the directed relative velocity of
the ions and dust particles, and the conductivity

If the electrons make a contribution comparable to that
of the ions, then the speed of sound v s ≈ Te/mi must be
substituted for vTi in relation (34).

Inequalities (36) in thundercloud conditions hold
with a large margin. Different situations are encoun-
tered in laboratory experiments. At a typical degree of
ionization ~10–6–10–5, the first inequality in (36) holds
at fairly high pressures, P * 0.1–1 mbar. The second
inequality in (36) holds at a fairly high drift velocity v 0.
If this velocity is attributable to the electric field, then,
given the relation j = eNiv 0 = σE, the second inequality
in (36) transforms to

(37)

At typical values of Ni ~ 109 cm–3 and Ti ~ 300 K,
inequality (37) holds at E > 7 V cm–1. Such electric
fields definitely take place in rarefied-plasma experi-
ments where dust crystal structures are observed [5, 6].
Let us consider how the current screening mechanism
and the dust particle pairing conditions are realized in
these experiments. Choosing P ≈ 1 mbar, Ni ~ 109 cm–3,
and E ~ 10 V cm–1 as typical values, we find for an
argon plasma: v 0/vTi ~ 1.5vTi ~ 3 × 104 cm s–1, νin ~ 3 ×
107 s−1, and ωpi ≈ 107 s–1. Inequalities (36) hold at these
parameters. The characteristic scale length of the wake

is  ~ 102µ. The pairing criterion (19) at the validity
boundary k0d ~ 1 can be written as

Assuming that a ≈ 10µ, v 0 ≈ 3 × 104 cm s–1, q ≈ 3 ×
104e, and 4πσ ≈ 3 × 106 s–1, we find that the capture cri-
terion is satisfied for a relative dust particle velocity

 & 10–3 cm s–1. Note that the thermal velocity of
dust particles with a ~ 10µ (ma ~ 10–9 g) at T ≈ 300 K
is  ≈ 6 × 10–3 cm s–1. A rise in the dust particle con-
centration causes an increase in the depth of the poten-
tial well in the particle wake and, thus, an increase in
the pairing probability. Qualitative changes in the struc-
ture of the Coulomb potential might be expected as the
dissipative instability threshold dependent on the dust
particle concentration (see (27)) is approached, when
the capture zone can expand sharply. However, certain

σ
ωpi

2

4πνin
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8πq2σ
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conclusions can be reached here by considering the
nonstationary and, in general, nonlinear problem of the
formation of an electric field in a complex plasma.2 

Summarizing our results, we can suggest the follow-
ing scenario for the formation of structures in a moving
conductive medium in the presence of dust charged par-
ticles. When inequalities (36) hold, the space charge
screening the dust particle is localized in a thin cylindri-
cal wake with the diameter equal to the particle diame-
ter and the length

determined by the velocity v 0 of the flow and the con-
ductivity σ of the medium. The dipole structure of the
potential of such a tailed particle is an attractive center
for other dust particles. This pairing process has no
threshold, but its probability depends on the impact
parameter of the interacting dust particles and on their
electric charge and increases with dust particle concen-
tration. The electric field structure admits of the princi-
pal possibility of the formation of polymeric chains
along with dimers, but this question is beyond the scope
of this paper. The formation of three-dimensional crys-
tal structures, particularly in the absence of a plasma
trap in the transverse (relative to the drift) direction, is
still an open question. Here, the reaching of the dissipa-
tive instability threshold, which gives rise to a periodic
electric potential in the transverse direction [15], may
play an important role. The spread in dust particle
velocities may prove to be critical for the formation of
polymeric structures. In this case, the structural transi-
tion in the medium under consideration is possible only
when the dissipative instability threshold is reached.

2 Note that a radical rearrangement of the Coulomb potential
accompanied by the attraction effects of like-charged particles
when the instability threshold is reached might also be expected
in the case of a collisionless plasma. This may prove to be funda-
mentally important at the nonlinear instability growth stage, lead-
ing to the clustering of phase space and to the sticking of interact-
ing particles into bunches.

l k0
1–∼

v 0

4πσ
----------=
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Abstract—The behavior of an excess electron in condensed inert gases in an external electric field is consid-
ered at densities and temperatures at which the mobility of a slow electron is relatively high. On the basis of
experimental data and a model of a pair electron interaction with atoms, an effective potential energy surface is
constructed for an excess electron inside a dense inert gas. The region available for a slow electron consists of
many intersecting channels that form a Delaunay network located between atoms. A drifting electron, as a quan-
tum object, propagates along these channels (tubes), and electron transition between intersecting potential
energy tubes of different directions provides an effective electron scattering. This mechanism of electron drift
and scattering differs from that in gases and crystals. Peculiarities of electron drift inside dense inert gases are
analyzed within the framework of this mechanism of electron scattering, leading to a moderate change of the
electron mobility upon melting. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The reduced electron mobility of excess electrons in
heavy condensed inert gases (Ar, Kr, Xe) as a function
of the atom number density has a sharp maximum at
moderate number densities, as it follows from experi-
ments [1–14]. In particular, for xenon, the maximum
zero-field reduced mobility exceeds that for a gaseous
state by more than three orders of magnitude [6, 10].
Moreover, the maximum reduced zero-field mobility of
excess electrons in inert gases exceeds that for coin
metals by one order of magnitude [15].

The simplest theoretical models [16–20] consider
the drift of an excess electron as a result of pair elec-
tron–atom scattering and explain high electron mobility
by the Ramsauer effect in electron scattering on indi-
vidual atoms and negative electron–atom scattering
lengths for Ar, Kr, and Xe. But the approach of inde-
pendent atoms is correct only for gases; at atomic den-
sities corresponding to the maximum of the electron
mobility, the distance between nearest-neighbors is
comparable with the electron–atom scattering length,
and, hence, this approach is not correct and may be con-
sidered rather as a model. The effect of high electron
mobility at moderate atomic densities results from the
collective character of the interaction of an excess elec-
tron with atoms.

Recently [21], we showed that the reason of the
electron mobility maximum is related to the transition

¶ This article was submitted by the authors in English.
1063-7761/05/10101- $26.000186
from attraction to repulsion for an excess electron
inside an inert gas as the number density of atoms
increases starting from the gas density. Indeed, in gases,
where an excess electron interacts with each atom inde-
pendently, the average electron potential energy is neg-
ative because of a negative electron–atom scattering
length, which leads to an attractive Fermi exchange
interaction of the electron with each atom. At high
atomic densities, when the distance between neighbor-
ing atoms is comparable with the atom size, the average
interaction potential for the electron corresponds to
repulsion because of the Pauli exclusion principle.
Hence, at moderate atom densities, the average interac-
tion potential of an excess electron with inert gas atoms
becomes zero.

Therefore, there is a range of inert gas densities with
an attractive interaction potential for an excess electron,
and these densities correspond to a high electron zero-
field mobility, as is observed experimentally. Because
penetration of an excess electron into each core leads to
repulsion due to the Pauli exclusion principle, points of
the maximum attractive potential for an excess electron
form a Delaunay network [22–24], whose lines are
located between atoms and may be found on the basis
of the Voronoi–Delaunay method [25]. This method
consists in construction of planes located at identical
distances from neighboring atoms. Intersections of
these planes form the Delaunay network, and the
electric potential has minima on this network. The
equipotential surfaces that are close in energy form
 © 2005 Pleiades Publishing, Inc.
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tubes, which are almost straight. The electron, being a
quantum object, can propagate inside an inert gas along
these almost straight channels. Electron transitions
between channels of different directions in regions
of their intersections lead to an effective electron scat-
tering.

We thus conclude that a specific mechanism of the
electron drift in this case differs from those in both
gases and crystals. Indeed, propagating in gases, a test
electron is scattered on individual atoms, whereas scat-
tering of an electron wave in crystals is determined by
distortion of the crystal lattice as a result of a shift of
atom positions from the equilibrium ones during
motion of the electron wave. Then, melting of a solid
should seemingly lead to a strong change of the elec-
tron mobility. However, in the case under consider-
ation, a slow electron propagates along an individual
tube near the Delaunay network, the electron scattering
is weak, and, therefore, the electron mean free path
inside an inert gas with optimal parameters is large
compared to the distance between nearest-neighbors.
Correspondingly, change of the phase state does not
lead to a significant change of the mobility for a slow
electron in an inert gas.

Below, we consider the tube mechanism of electron
drift in heavy inert gases and analyze various aspects of
the electron drift under conditions of the tube-shape
potential of a self-consistent field for an excess
electron.

2. ELECTRIC POTENTIAL 
FOR AN EXCESS ELECTRON 

IN DENSE INERT GASES

The negative spatial charge created by excess elec-
trons in dense inert gases can result in strong electric
fields even at low electron number densities. Therefore,
we consider the regime of electron drift in an inert gas
neglecting the interaction between individual electrons;
that is, an individual electron is considered drifting in
an inert gas. We consider peculiarities of the potential
energy surface (PES) for an excess electron in an inert
gas and, correspondingly, the character of the electron
drift in condensed inert gases under the action of an
external electric field. Using the analogy with clusters
consisting of many atoms with a pair interaction
between them [26–28], we represent the PES as a sum
of local minima and saddles. At atomic densities, when
the electron mobility is high, an excess electron passes
over barriers of the PES during its drift in inert gases.

Another peculiarity of the PES at optimal atomic
number densities is a large volume inside condensed
inert gases where the electron location is prohibited by
the Pauli exclusion principle. Indeed, a slow electron
cannot penetrate inside an atom where valence atomic
electrons are located, and, hence, the excluded region
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
for an excess electron is concentrated near atomic
cores. For simplicity, we take the prohibited volume
near each atom in the form

(1)

where r is the effective atom radius, which depends on
the electron energy ε. We take it from the relation

U(2r) = ε, (2)

where U(R) is the interaction potential of two atoms at
a distance R between them. In this way, we changed the
repulsion of a free electron from the atom core by that
of a bound electron. Table 1 lists the values of the atom
radii for an exchange electron–atom interaction calcu-
lated on the basis of the above formula. This volume is
compared in Table 1 with the volumes per atom for the
solid Vsol and liquid Vliq phase states at the triple point,
and also with the volume per atom Vmax at the atomic
number density that corresponds to the maximum of the
electron mobility. These ratios are given for the electron
energy ε = 0.1 eV and for the electron energy ε = 1 eV
in parentheses. We can see that the prohibited volume
for a free electron at low electron energies may occupy
a significant part of the total volume.

We note that this character of the exchange interac-
tion between an excess electron and valence electrons
of atoms of condensed inert gases is preserved up to
high atomic densities until electron shells of neighbor-
ing atoms overlap significantly. In any case, it is valid
at densities related to the solid and liquid aggregate
states of inert gases, and the average exchange interac-

V*
4π
3

------r3,=

Table 1.  Parameters of the repulsive interaction potential for
an excess electron with individual atoms of inert gases

Ar Kr Xe

, a0 1.663 1.952 2.338

, 3.311 4.455 6.277

r, Å, ε = 0.1 eV 1.63 1.72 1.92

r, Å, ε = 1 eV 1.23 1.28 1.30

Vsol, cm3/mol 24.6 29.6 37.1

Vliq, cm3/mol 28.2 34.3 42.7

Vmax, cm3/mol 50.2 43.0 50.2

/Vsol 0.44(0.19) 0.44(0.18) 0.48(0.15)

/Vliq 0.39(0.17) 0.38(0.15) 0.42(0.13)

/Vmax 0.22(0.10) 0.30(0.12) 0.35(0.11)

r

r2 a0
2

V*

V*

V*
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tion potential at a given atomic density due to this inter-
action can be approximated by the formula

(3)

where V is the volume per atom and A and α are param-
eters.

We now construct the difference between the poten-
tial for an excess electron located inside a condensed
inert gas and in a vacuum. Taking the electron potential
in a vacuum to be zero, we vary the atomic density from
low values, when this system of atoms is a gas, up to
moderate ones, at which the mobility of an excess elec-
tron is of interest. At low atomic densities, an excess
electron interacts with individual atoms independently.
In regions between atoms and far from them, the inter-
action potential is zero, and nonzero interaction takes
place only near the atoms. On the basis of the Fermi
formula [29, 30], the interaction potential between an
electron and atoms can be represented as

(4)

where " is the Planck constant, me is the electron mass,
r is the electron coordinate, Ri is the coordinate of the
ith atom, and L is the electron–atom scattering length.
Because the scattering length L is negative for Ar, Kr,
and Xe (see Table 2), this interaction potential corre-
sponds to attraction in the regions close to atoms.
Therefore, the potential energy surface consists of
regions inside atoms with a sharp electron repulsion,
regions near each atom with electron attraction, and

Uex A αV*
V

-------– 
  ,exp=

U r( ) 2π"
2

me

------------Lδ r Ri–( ),
i

∑=

Table 2.  Parameters of the potential energy for an excess
electron inside inert gases

Ar Kr Xe

L, a0 –1.5 –3.1 –5.7

Umin, eV [8, 11, 12, 14] –0.33 –0.53 –0.77

Nmin, 1022 cm–3 1.1 1.2 1.1

amin, Å 4.8 4.7 4.8

rmin, Å 2.8 2.7 2.8

2π"2LNmin/me, eV 0.41 0.94 1.58

C, eV 0.44 0.71 1.04

α 4 4 4

A, eV 6 10 14

Rmin, Å 3.6 3.5 3.6

C ', eV 0.15 0.25 0.36

A ', eV 2.2 3.5 6.5
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regions between atoms with zero interaction potential.
The attraction corresponds only to an average interac-
tion of an electron of zero energy with an individual
atom in a gas, and, according to formula (4), the aver-
age interaction potential of an electron with inert gas
atoms is 

(5)

where N is the atom number density. This interaction
leads to a redshift of spectral lines emitted by excited
atoms located in inert gases [31]. Because this shift of
spectral lines is determined mostly by the exchange
electron–atom interaction, and a long-range interac-
tion, including the polarization ion–atom interaction,
gives a small contribution to this shift, we account
below for the exchange part of the interaction only.

The exchange interaction of a test electron with
electrons of an internal atom region corresponds
to repulsion of this electron, and we describe it by for-
mula (3). Adding the attractive exchange interaction
potential (5) to it, we represent the total electron poten-
tial in the form

(6)

where N is the current number density of atoms and
Nmin is the number density at which the interaction
potential has a minimum. The values of Nmin together
with amin, the distances between nearest-neighboring
atoms at this density, are given in Table 2.

If formula (6) is valid for a gas, where the second
term is zero, the parameter C is equal to

(7)

In reality, we are based on the experimental dependence
(N) that gives another value of C. Indeed, on the basis

of experimental data, which are approximated by for-
mula (6), we find the parameters in Eq. (6) in accor-
dance with the formula

(8)

Here, Umin is the minimum of the electron potential
inside an inert gas (the electron potential in a vacuum is
zero). Experimental parameters for U(x) together with
the parameters in formula (6) are given in Table 2. Fig-
ure 1 represents experimental data for the average elec-
tron potential energy in xenon.

Uat
2π"
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----------– A α
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N
----------– 
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C
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-----------------------,= =
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Based on the experimental data for the electric
potential of a condensed inert gas with respect to an
excess electron, we construct the potential energy sur-
face for an excess electron inside an inert gas. We
rewrite formula (6) for the minimal electron energy of
an excess electron as

(9)

where

is the Wigner–Seits radius and rmin is the radius at the
atom number density corresponding to the maximum
attraction of an electron inside the inert gas. Formula (9)
can be rewritten in terms of the distance a between the
nearest-neighbors,

(10)

where amin is the distance between nearest-neighbors at
which the electron potential inside an inert gas has the
minimum. We note that the atom number densities cor-
responding to the minimum of the electron potential
according to formulas (9) and (10) are equal to Nmin, the
minimal electron potentials in formulas (9) and (10)
coincide with Umin, and these parameters follow from
formula (6). In addition, we assume a classical charac-
ter of the electron interaction inside an inert gas in this
consideration, although the interaction has a quantum
character in reality.

3. DELAUNAY NETWORK 
FOR THE INTERACTION OF AN EXCESS 

ELECTRON INSIDE AN INERT GAS

Our goal is to construct the potential energy surface
for an excess electron inside an inert gas in the range of
the atom number densities and temperatures providing
an attractive electric potential there. We concentrate on
the simplest case where atoms form a crystal lattice and
find electron positions with the minimum potential
energy. Evidently, because of the repulsive interaction
for an excess electron with atom interiors, the points of
the minimum electron potential are located equidis-
tantly from the nearest nuclei. For two nearest planes of
the crystal lattice, we then draw the Voronoi surfaces
between each pair of nearest-neighbors, such that these
surfaces separate the action of individual atoms on an
electron. Each Voronoi plane is located at identical dis-
tances from two nearest atoms, and intersections of the
Voronoi surfaces with the two considered planes of

U rW( ) C
rmin

rW

-------- 
 

3

– A α
rW

3
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3
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 
 
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--------- 

 
3

– A α a3

amin
3

---------–
 
 
 

,exp+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
atoms are shown in Fig. 2, where they form a net of reg-
ular hexagons whose centers are the nuclei of the lat-
tice. Evidently, from the symmetry considerations, the
optimal positions of an excess electron with minimal
values of the electron potential energy are located in the
plane in the middle between the nearest planes of atoms
considered. Intersections of the Voronoi surface with
this plane form straight lines of three directions (the
solid lines in Fig. 2).

Evidently, the electron potential energy is minimal
on these lines forming the Delaunay network [22–24].
We note that the Delaunay network is an important
mathematical concept (see, e.g., [32–34]). We here use

20 4 6 8 10 12 14

N, 1021 cm–3

–1.0

–0.8

–0.6

–0.4

–0.2

0
U, eV

Xe

Fig. 1. The potential energy of an excess electron moving in
xenon in an external electric field with respect to the vac-
uum vs. on the number density of atoms according to exper-
iment [8] (symbols).

—1, —2, —3, —4, —5, —6, —7

Fig. 2. The character of the behavior of an excess electron
between two planes of the crystal lattice of inert gases:
(1) positions of atoms of the first layer, (2) positions of
atoms of the second layer, (3) vertices of the pentagons that
are intersections of the Voronoi surface with the corre-
sponding layer, (4) positions of the Voronoi surface for an
excess electron in the middle plane between these layers
with the strongest interaction between the electron and
atoms, (5, 6) hexagons that are intersections of the Voronoi
surface with the corresponding layers, (7) directions of the
electron current if it is located in the middle plane.
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only the applied aspect of this problem related to the
construction of lines of the minimum or maximum
potential (see, e.g., [25]). Electron drift inside an inert
gas proceeds near these lines. We assume that intersec-
tion points of these lines, i.e., sites of the Delaunay net-
work, are characterized by minima of the electron
potential energy, and their values are identical for all
the intersection points (values 4 in Fig. 2) because of
the symmetry. Passing to three-dimensional space, we
obtain intersections of six straight lines at points whose
distance from two nearest-neighbors is a/2, where a is
the distance between nearest-neighbors of the lattice.

Thus, assuming the optimal distance of an excess
electron from nearest nuclei at the optimal number den-
sities of atoms to be maximum for the minimum elec-
tron potential energy, we obtain the optimal electron
positions for the close-packed crystal lattice to be
located on the Delaunay network that consists of inter-
secting straight lines. We have two types of these lines,
which are alternated, and the period of translation sym-
metry is a for the first-type lines and a/2 for the second-
type lines. In Table 3, we give the distances from six
nearest-neighbors for points that correspond to the min-
ima of the electron potential energy or are located in the
middle between nearest such points. The number of
nuclei with an indicated distance from a given point of
the Delaunay network is given in parentheses.

Table 3.  Distances between an excess electron located in
minima and maxima of the Delaunay network and six nearest
nuclei in the case where atoms form a close-packed crystal
lattice. Numbers in parentheses are the corresponding num-
bers of nearest neighbors

Points 4
in Fig. 2

In the middle between 
points 4 in Fig. 2

Lines of the first 
type (2), (4) (6)

Lines of the second 
type (2), (4) (1), (2),

(1), (2)

a
2
--- a

3
2

-------
a

2
-------

a
2
--- a

3
2

------- a 3
4

---------- a
7

4
-------

a
11
4

---------- a
15
4

----------

U

x

Electron ground state

Fig. 3. The form of the potential energy for an excess slow
electron in a condensed inert gas along lines of the
Delaunay network.
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In the liquid aggregate state, the Voronoi surfaces
and Delaunay network may be constructed in the same
manner, but the Delaunay network lines become
curved. Nevertheless, because of a short order in liq-
uids, the curvature of these lines is not large, and we can
take the crystal case as a basis for a qualitative consid-
eration. In any case, the number of lines and the char-
acter of their intersection is identical in both cases. Sup-
posing that positions on the Delaunay network corre-
spond to the minimal electron potential inside an inert
gas, we obtain that slow electron drifts inside the con-
densed inert gas near the lines form the Delaunay net-
work. If we move along a given line of the Delaunay
network, the electron potential energy oscillates, as is
shown in Fig. 3. The behavior of the electron PES on
the Delaunay network lines and near them resembles
that for bound atoms in clusters [26–28], with the
potential energy surface including many potential wells
separated by barriers or saddles. But, based on the
experimental data for electron mobility, we take the dif-
ference between neighboring minima and maxima of
the potential energy to be relatively small if the atom
number density is near that corresponding to the maxi-
mum electron mobility [21].

4. POTENTIAL ENERGY SURFACE 
FOR AN EXCESS ELECTRON 

INSIDE INERT GASES

We have found the character of distribution of the
electron potential inside condensed inert gases in the
density range where the electron potential energy is
negative and close to the minimal one. The lines of a
significant electron attraction inside an inert gas form a
Delaunay network, and this result is not based on the
assumption of a pairwise character of the electron–
atom interaction. We use this assumption at the next
stage of evaluation of the electron PES near the lines of
maximum attraction, representing the interaction
potential of an electron with surrounding atoms in the
form of pair interaction potentials u(r) of this electron
with nearest atoms,

(11)

where ri is the distance of the electron from the ith
nucleus and the pair interaction potential is taken such
that formulas (6) and (9) give the minimal electron
energy inside an inert gas. Because of a short-range
character of the electron interaction, we account for
only six nearest-neighbors. We take the dependence
u(r) to be identical to that given by formula (10),

(12)

U u ri( ),
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This interaction potential has the minimum at the dis-
tance Rmin.

Within the framework of this model, we represent
the observed electron potential inside an inert gas as the
average for points 3 and 4 in Fig. 2. Then, on the basis
of the data in Table 3, we have that the observed elec-
tron potential energy (N) at a given number density
N of atoms is

(13)

Taking this relation at the minimum of the electron
potential, i.e., at a = amin, and expanding the interaction
potential u(r) near its minimum,

,

we obtain the minimal electron potential

(14)

where

(15)

The above estimates, together with relation (13), allow
us to determine the parameters of the interaction poten-
tial u(r) taken in form (12); they are listed in Table 2.

This approach allows us to construct the potential
energy surface of an excess electron inside inert gases
based on experimental data. Although the model uses a
pair interaction between an excess electron and inert
gas atoms, this is not of importance at the final stage of
the analysis, because parameters of this model are taken
from experimental results. In other words, the general
character of the electron interaction is based on the
Delaunay network and does not include the pairwise
character of the electron interaction inside an inert gas,
whereas the values of the electron potential includes
this assumption. Therefore, the above behavior of the
electron PES is valid strictly, while the accuracy of the
values of the electron potentials at a given electron
position are valid qualitatively.
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5. ELECTRON DRIFT AT OPTIMAL DENSITIES 
OF INERT GASES AND LOW ELECTRIC FIELDS

The above analysis allows us to schematically draw
equipotential surfaces for an excess electron inside an
inert gas at a given number density of atoms, when the
mobility of a slow excess electron is high. The lines of
the minimum potential energy then form a Delaunay
network, and for the crystal state of an inert gas, these
lines are straight and pass between nearest atoms. A
general shape of lines of the minimum potential energy
are also correct for liquids in principle. Indeed, first, a
change of the number density of atoms resulting from
the solid–liquid phase transition for inert gases is
approximately 15%, and a change of the average dis-
tance between atoms is correspondingly three times
less. Second, the distortion of lines of the minimal
potential for an excess electron is also inessential,
because a slow electron is a quantum object, and the
difference of the electron potentials inside and outside
an inert gas allows us to find the energy of the electron
level inside the inert gas, but not the minimum potential
for an excess electron inside it. Correspondingly, the de
Broglie wavelength is not small for a slow excess elec-
tron and a weak distortion of straight lines of the mini-
mum electric potential for an excess electron, in pass-
ing from a solid to a liquid, is not of importance. Hence,
our consideration relates simultaneously to the solid
and liquid states of condensed inert gases.

Thus, we consider motion of a slow electron inside
an inert gas whose density corresponds to electron
attraction inside it. Therefore, an electron is bound
inside the inert gas and moves along tubes centered at
lines of the minimum electron potential, which are rep-
resented in Fig. 2 for a solid inert gas. These tubes of
identical potentials are widened slightly near their
intersections, and the distances between neighboring

points of tube intersections is a /2, as follows from
Fig. 2. When a slow electron propagates along a tube
(see Fig. 3), its scattering proceeds in nodes of tube
intersections, and as a result of this scattering, it trans-
fers to another tube. We take the probability γ for the
electron scattering in an intersection node to be small,
and then the mean free path λ of an electron during its
propagation along a potential tube is relatively large,
λ ~ a/γ (γ ! 1).

Electron scattering in the intersection regions of
potential energy tubes is similar to electron scattering
on atoms in a gas because the time of strong interaction
for an excess electron that causes scattering is a small
part of the total time in both cases. In addition, in both
cases, an electron is scattered mainly elastically, and
only a small part of the electron energy (~m/M) is trans-
ferred to nuclear heating (m is the electron mass and M
is the atom mass). Below, we therefore use formulas for
the electron drift velocity w and its average velocity v
assuming that the electron is scattered in a gas (see,

3

SICS      Vol. 101      No. 1      2005



192 GORDON, SMIRNOV
e.g., [35–37]). For an electron moving in an external
electric field of a strength E, we then have

(16)

which gives

(17)

In these formulas, we take the average electron velocity
to be large compared to the electron thermal velocity in
the absence of an external electric field. If this electric
field is weak and does not change the Maxwell velocity
distribution for excess electrons, the zero-field electron
mobility K is

(18)

In evaluating the parameters of the electron drift, if
it proceeds according to the above scheme, we are
based on experimental data. Table 4 contains the num-
ber densities of atoms Nmax and temperatures Tmax of
liquid inert gases [13] that provide the maximum zero-
field mobility of electrons, the corresponding distances
amax between nearest-neighbor atoms, and the thermal
electron velocity

under these conditions. Then, the above formulas give
the minimal probability γmin of electron scattering,
which is a typical probability for the transition to
another current tube at a point of tube intersection, and
a typical electric field strength E∗  at which a change in
the average electron velocity due to the electron drift in
an electric field is comparable to the initial thermal
velocity. Starting from these electric field strengths, the
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Table 4.  Parameters of the drift of an excess electron in liquid
inert gases under optimal conditions and low electric field
strengths

Ar Kr Xe

Tmax, K 155 170 223

v t, 106 cm/s 7.7 8.1 9.3

Nmax, 1022 cm–3 1.2 1.4 1.2

amax, Å 4.9 4.7 4.9

Kmax, cm2/ V s 1800 4600 6000

γmin 0.0062 0.0022 0.0015

, V/cm 16 4.5 3.2E*
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electron drift parameters depend on the electric field
strength.

We note that this mechanism for the electron drift,
with the electrons propagating along the tubes whose
centers form a Delaunay network, is valid only for
some range of inert gas parameters at which the elec-
tron is locked inside the inert gas in regions near the
Delaunay network. This mechanism of the electron
drift provides high mobility for slow electrons, which
can be used for determination of the range of the inert
gas parameters and electric field strength, where this
mechanism of the electron drift applies. For xenon at
least, these conditions are fulfilled in a wide range of
the indicated parameters. An increase of the electric
field strength leads to an increase of the electron energy
and causes broadening of the region between atoms
where an excess electron can be located. Finally, at high
electron energies, the electron scattering changes from
the tube character to scattering on atomic cores. Then,
the electron mobility decreases sharply with an
increase of the electric field strength. In reality, for
xenon, the experimental data analysis shows that this
tendency exists, but the transition is not reached.

Electron scattering is also intensified if the gas
parameters differ from the optimal ones. If the atom
number density deviates from the optimal one, the
attractive electron potential energy on the Delaunay
network decreases, which leads to a stronger electron
scattering in regions of tube intersection. At a given
atom number density, the lower gas temperature, the
higher is the electron drift velocity. This is explained by
distortions in the atom distributions that increase as the
temperature increases.

Thus, we represent the character of the drift of a
slow electron in condensed inert gases under the opti-
mal number density and temperature. The electron scat-
tering under these conditions differs in principle from
that in gases, where electrons collide with individual
atoms separately. In this case, an electron is moving
along a certain tube and transfers to another tube at
points of their intersections. Axes of these tubes form
the Delaunay network. This character of electron scat-
tering also differs from the wave character of scattering
in a crystal lattice, where scattering is determined by
deviation of atom positions from the crystal lattice
sites, such that scattering parameters vary significantly
during the melting. In the case of the tube character of
electron scattering, melting does not significantly
change the electron drift parameters. We add that the
tube character of the electron drift is realized in a
restricted range of the inert gas parameters and is valid
at not too high electric field strengths.

On the basis of this analysis, we can single out the
range of parameters that corresponds to the maximum
electron mobility in condensed inert gases. As the num-
ber density of atoms increases, the effective interaction
for an excess electron with atoms of a condensed inert
gas varies from attraction due to the exchange interac-
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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tion with an individual atom because of a negative elec-
tron–atom scattering length to repulsion owing to the
Pauli exclusion principle when the electron penetrates
inside an atom. Evidently, the maximum electron
mobility corresponds to moderate atomic number den-
sities corresponding to the transition from the first form
of interaction to the second one. Then, the PES part of
location of an excess electron consists of narrow tubes
with intersections, and the electron can propagate along
these tubes. As the number density of atoms increases,
these tubes are destroyed in regions near atoms where
the electron is locked. If the atomic number density
decreases, tubes widen, and the electron may transfer
more effectively to tubes of another direction. In both
cases, the electron mobility decreases.

We note that a temperature increase leads to an
increase of fluctuations in positions of individual
atoms, which causes the destruction of a PES tube. But
a pressure increase leads to a decrease of these fluctua-
tions and hence stabilizes the PES tube when the tube
corresponds to optimal conditions. In analyzing the
optimal conditions for the electron mobility, we are
mostly based on experimental data. But experimental
data of this problem study are fragmentary. Additional
experimental studies are required in order to construct
the optimal range in coordinates of the atomic number
density, temperature, and electric field strength for each
heavy inert gas (Ar, Kr, and Xe). We also expect from
the subsequent experimental study that, at high pres-
sure, the electron mobility will decrease with an
increasing pressure.

We also note the peculiarities of inelastic electron
scattering in condensed inert gases. If the electron
energy is not small, and the electron can be considered
as a classical object, its inelastic scattering inside an
inert gas is related to excitation of phonons, and each
act of elastic scattering is accompanied by a loss of
approximately the m/M portion of the electron energy;
in other words, the process of inelastic scattering of a
classical electron in a condensed inert gas is similar to
that in rare gases. This is used in formulas (16) and
(17). But a slow electron is a quantum object, and its
inelastic scattering proceeds in another manner. Indeed,
the electron states are characterized by discrete levels,
and inelastic electron scattering requires its transition
to an excited electron level. Therefore, at low electric
field strengths, the inelastic electron scattering is weak
and becomes the same as in a gas when the electron is
excited sufficiently strongly, such that its levels are
located sufficiently close.

In considering inelastic electron scattering, we
restrict ourselves to just this limiting case. At high elec-
tric field strengths, the electron energy acquired from
the field suffices for excitation of inert gas atoms. The
excitation processes are in principle the same as in a
gas, which are analyzed in detail in [37]. The efficiency
of this process, that is, the electron energy part con-
sumed to atom excitation, increases with an increase of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the average electron energy  [15, 21] and is of the
order of 10% when the ratio /∆ε * 0.1 (∆ε is the atom
excitation energy). We are also guided by the experi-
mental efficiency value of 18% in solid xenon [38, 39].

6. PECULIARITIES
OF SELF-SUSTAINING DISCHARGE

IN CONDENSED INERT GASES

An applied aspect of the phenomenon of electron
drift in condensed inert gases is realized in electric dis-
charge, with the electric energy being converted into
the energy of emitted photons in the vacuum ultraviolet
spectrum range. Excess electrons drifting in condensed
inert gases excite inert gas atoms, which leads to trans-
formation of an electrical energy into the energy of
emitted photons. Because the electron energy is high,
the efficiency of energy transformation is relatively
high. During these processes, an excess electron cannot
ionize the medium, because its energy is below the ion-
ization potential due to an effective atom excitation.
The electrons are therefore injected into a sample from
outside and only play the role of carriers of a negative
charge, in contrast to standard gaseous discharges with
ionization inside a sample. Due to this character of dis-
charge maintenance, excess electrons create a noncom-
pensated negative charge in condensed inert gases. This
charge restricts the number density of excess electrons
and correspondingly the power of the discharge and the
intensity of yield radiation [42]. We find the maximum

value  for the electron number density from the
Poisson equation that has the form

(19)

Here, E is the electric field strength, e is the electron
charge, Ne is the electron number density, which is con-
stant inside the inert gas layer, and the coordinate x is
perpendicular to the inert gas layer whose thickness is l.
From the Poisson equation, requiring E = 0 in the layer
middle because of the problem symmetry, we obtain the
electric voltage U between the layer boundaries due to
excess electrons inside the layer as

(20)

Formula (20) implies that the electron number den-
sity is the greater, the higher is the electric field voltage
and the smaller is the layer thickness. In particular,
under typical parameters U = 1 keV and l = 1 mm real-

ized in experiments [38, 39], this formula gives  =
2 × 1011 cm–3. This electron number density locks the
electric current in discharge. We note that the number
density Ne = 1 × 1011 cm–3 leads to the electric current

ε
ε

Ne
max

dE
dx
------- 4πeNe.–=

U πeNel
2.=

Ne
max
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density j ≈ 0.01 A/cm2 and the discharge power P =
Uj ≈ 10 W/cm2.

7. CONCLUSIONS

High electron mobility is observed in heavy con-
densed inert gases (Ar, Kr, Xe) in a narrow range of
atomic densities. A widespread explanation of this
effect [16–20] by the Ramsauer effect in electron scat-
tering on an individual atom is not correct because of a
large distance of the electron–atom scattering in com-
parison with the distance between neighboring atoms at
these atomic densities. In reality, the nature of high
electron mobility is related to the transition from an
attractive interaction potential between an excess elec-
tron and the atom ensemble to a repulsive one [21]. In
this paper, we have proposed a new mechanism of elec-
tron drift in some range of atomic densities and temper-
atures near the optimal ones that provide the maximum
electron mobility. This mechanism is additional to the
character of electron drift in gases due to electron scat-
tering on individual atoms and to electron drift in crys-
tals due to scattering of the electron wave on nonunifor-
mities of the crystal lattice.

This character of electron drift consists in propaga-
tion of an electron along almost straight channels; elec-
tron scattering occurs as a result of the electron transi-
tion to a propagation channel of another direction. This
new mechanism of electron drift follows from the struc-
ture of the potential energy surface near its minimum;
it consists of almost straight intersecting tubes, and the
minimum of potential energy surface forms a Delaunay
network. The tube character of the electron drift leads
to high electron mobility. The understanding of this
phenomenon allows us to choose optimal conditions for
a self-sustaining electric discharge in condensed inert
gases as a generator of ultraviolet radiation [38–40] and
stimulates new experimental investigations.
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Abstract—A procedure of numerical simulation for coherent phenomena in multiply scattering media is devel-
oped on the basis of the juxtaposition of a Monte Carlo stochastic method with an iterative approach to the solu-
tion of the Bethe–Salpeter equation. The time correlation function and the interference component of coherent
backscattering are calculated for scalar and electromagnetic fields. The results of simulation are in good agree-
ment with experimental results, as well as with theoretical results obtained by generalizing the Milne solution.
© 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Stochastic modeling within a Monte Carlo method
[1–10] has recently found wide application in the study
of coherent phenomena associated with the propagation
of light in randomly inhomogeneous media. These phe-
nomena (coherent backscattering, spatial and time cor-
relations of intensity) are attributed to the wave nature
of light and, in spite of the multiple scattering regime,
are observed in a wide variety of dielectric systems
[11], such as colloidal suspensions, liquid crystals, and
biological tissues.

The standard modeling technique for radiation in a
random medium is based on the concept of intensity
transfer. The phase relations between the fields that
contribute to the intensity remain outside the frame-
work of this modeling; one needs a special approach to
take into account these relations.

The theory of multiple scattering in random media,
including the theory of coherent and interference phe-
nomena, is based on the Bethe–Salpeter equation
(see [12]). In the present paper, we juxtapose a stochas-
tic Monte Carlo method [13] with a theoretic method
that is based on the representation of the solution to the
Bethe–Salpeter equation as a series in scattering orders
to demonstrate how the standard Monte Carlo method
is generalized to a unified approach to the numerical
simulation of the time correlation function of intensity,
coherent backscattering, and other coherent phenom-
ena that require consideration of phase shifts.

Due to the multiple scattering, polarized light is
completely depolarized; this fact allows one to restrict
the consideration to a scalar field. However, in the case
of backscattering, the scattered light remains partially
polarized due to the contributions of lower order scat-
1063-7761/05/10101- $26.000022
tering terms. Experiments point to a significant role of
polarization in backscattering [14–16].

In [17–22], the problem of multiple scattering by
point, Rayleigh, particles was solved by generalizing
the Milne solution to the case of electromagnetic
waves. In [17. 18], a vector transport equation was
solved strictly for backward scattering with regard to
the interference component, and, in [19, 20], the angu-
lar dependence of the backscattering intensity was cal-
culated with regard to polarization. In [21], a solution
for the time correlation function was obtained. In [22],
this solution was generalized to the case of finite-size
scatterers.

In [2], a Monte Carlo procedure was applied to cal-
culate the intensity of coherent backscattering, includ-
ing a coherent component; for Rayleigh scattering, the
peak of coherent backscattering proved to be much less
than the enhancement predicted by the exact solution
[19, 22]. In [23], the authors also simulated backscat-
tering of electromagnetic waves; they calculated the
rate of depolarization of linearly polarized light as a
function of the number of scattering events. For Ray-
leigh scattering, the function obtained coincides with
that predicted in [24], which was obtained within a dif-
fusive approximation; however, as the anisotropy of the
single-scattering cross section increases, the result of
numerical simulation appreciably differs from theoret-
ical results.

In the present paper, we develop a method for sto-
chastic modeling of coherent phenomena with regard to
the polarization of an electromagnetic field. For Ray-
leigh scattering, the numerical results are in agreement
with the theoretical results. This fact suggests that the
data obtained in the general case of anisotropic scatter-
ing cross section are reliable.
 © 2005 Pleiades Publishing, Inc.
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We consider the case most frequently used in theo-
retical investigations, of the scattering of radiation in a
medium that occupies a half-space with a plane bound-
ary. To facilitate consideration of the method, we exam-
ine the normal incidence and scattering close to the
backward scattering.

In Section 2, we present general expressions for the
time correlation function and the interference compo-
nent of backscattering. In Section 3, we compare the
methods of summation of ladder diagrams with a
Monte Carlo method and present the results of simula-
tion for the time correlation function and coherent
backscattering for a scalar field. In Section 4, we con-
sider the results of simulation for linearly polarized
light. In the Conclusions, we discuss the results.

2. TRANSFER OF FIELD CORRELATIONS
Suppose that a medium occupies the half-space z >

0, where z is the Cartesian coordinate normal to the
boundary of the medium and ki and ks are the wavevec-
tors of the incident and scattered plane waves.

The transfer of field correlations in an inhomoge-
neous dispersion medium with random space–time
fluctuations of dielectric constant is described by the
Bethe–Salpeter integral equation

(2.1)

Here, (R2, R1, t|ks, ki) is the propagator, or the
Green’s function of the Bethe–Salpeter equation, which
represents a fourth-rank tensor. It describes the transfer
of two complex-conjugate fields that arrive at the point
R1 with a time shift t, the wavevectors ki , and the polar-
izations described by the Cartesian indices α1 and α2,
and go out from the point R2 with the wavevectors ks
and the polarizations described by the Cartesian indices
β1 and β2. Here, k0 = 2π/λ is the wavenumber; λ is the
wavelength; ks = ki = k = nk0; n is the refractive index of
the random medium: n = n1 + in2, where n1 and n2 are
the real and imaginary parts of n, respectively; the
imaginary part n2 defines the photon mean free path
(2n2k0)–1 = l. The quantity

defines the wavevector between the ith and jth scatter-

ing events. The fourth-rank tensor (R),

(2.2)

Γ̂ R2 R1, t ks ki, ,( ) k0
4G̃ ks ki t,–( )δ R2 R1–( ) Î=

+ k0
4 R3G̃ ks k23– t,( )Λ̂ R2 R3–( )d∫

× Γ̂ R3 R1 t k23 ki, , ,( ).

Γβ1β2α1α2

kij k Ri R j–( ) Ri R j– 1–=

Λ̂

Λαβµν R( ) Î
R R⊗

R2
----------------– 

 
αµ

=

× Î
R R⊗

R2
----------------– 

 
βν

R/l–( )exp

R2
-------------------------,
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represents a direct product of the complex-conjugate
pair of Green’s functions of the Maxwell wave equation
in the far-field region and describes the transformation
of a pair of fields with polarizations µ and ν into a pair
of fields with polarizations α and β in a single scatter-
ing event.

In the weak scattering approximation (λ ! l), which
is usually valid in the dielectric systems under consid-

eration, (q, t) represents the Fourier image of the cor-
relation function of space–time fluctuations of the
dielectric constant:

(2.3)

A key role in the problems of multiple scattering is
played by the optical theorem, which relates the single-
scattering cross section to the scattering length ls . For
an electromagnetic field, the optical theorem in the
approximation of weak scattering, or the Born approx-
imation, is expressed as

(2.4)

Here, (q) = (q, t) is the Fourier image of the static
correlation function of fluctuations of the dielectric

constant, ΓR = 2(1 + )–1 is the Rayleigh factor,
and

is the squared cosine, averaged over the single-scatter-
ing cross section, of the scattering angle between the
wavevectors ki and ks .

The photon mean free path l and the scattering
length ls are related by the formula

(2.5)

where la is the characteristic length of the absorption
due to inelastic scattering. For the media considered
here, la @ l and the ratio l/ls is close to unity.

Let us define a normalized correlation function of
fluctuations of the dielectric constant:

(2.6)

For t = 0, this function coincides with the phase func-
tion p0(ki – ks) = p(ki – ks, 0), which describes the cross
section of single scattering.

G̃

G̃ q t,( ) 1

4π( )2
------------- r δε 0 0,( )δε r t,( )〈 〉d∫=

× iq r⋅–( ).exp

ls
1– ΓR

1– k0
4 ΩsG̃0 ks ki–( ).d∫=

G̃0 G̃

θcos
2

θcos
2

ΩsG̃0 ks ki–( ) θscos
2

d∫
ΩsG̃0 ks ki–( )d∫

--------------------------------------------------------=

1
l
--- 1

ls
---

1
la
---,+=

p ki ks t,–( )
G̃ ki ks– t,( )

G̃ ki ks– 0,( ) Ωsd∫
--------------------------------------------.=
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Iterating the Bethe–Salpeter equation and applying
the optical theorem, we obtain the series

(2.7)

which is usually represented as a series of ladder dia-
grams.

Let us define a binary correlation function of a field
that is observed at a large distance r from the scattering
medium as

(2.8)

where (t|ks, ki) is a contribution of ladder diagrams
that describes a noncoherent component, while

(t|ks, ki) is the interference component that is
observed in the backscattered wave.

In the case of normal incidence and scattering close
to the backward scattering, the ladder and interference
components of the time correlation function of a field
are given by [24, 25]

(2.9)

and

(2.10)

respectively, where the subscript “⊥ ” denotes the com-
ponent perpendicular to the boundary of the medium. It

Γ̂ R2 R1 t ks ki,, ,( ) ΓRls
1– p ki ks– t,( )δ R2 R1–( )=

+ ΓR
2 ls

2– p ks k21– t,( )Λ̂ R21( )p k21 ki t,–( )

+ ΓR
3 ls

3– R3 p ks k23– t,( )Λ̂ R23( )p k23 k31– t,( )d∫
× Λ̂ R31( )p k31 ki– t,( ) …,+

Ĉ
E( )

t ks ki,( )

=  Ĉ
L( )

t ks ki,( ) Ĉ
V( )

t ks ki,( ),+

Ĉ
L( )

Ĉ
V( )

Cβ1β2α1α2

L( ) t ks ki,( )

=  R1 R2Γβ1β2α1α2
R2 R1 t ks ki, , ,( )dd∫

×
z1 z2+

l
---------------– 

 exp

Cβ1β2α1α2

V( ) t ks ki,( ) R1 R2dd∫=

× Γβ1α2α1β2
R2 R1 t, ,

ks ki–
2

---------------
ki ks–

2
---------------, 

 

---– k0
4G̃ ks ki– t,( )δ R2 R1–( )δα1β1

δα2β2

×
z1 z2+

l
---------------– i ks ki+( )⊥ R2 R1–( )⊥⋅+ 

  ,exp
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is easily seen that, for backward scattering, when ks =
−ki , the polarized component of the interference contri-

bution (t|ks, ki) coincides with the polarization
component of the main, noncoherent, contribution

(t|ks, ki) before subtracting the contribution of sin-
gle scattering, while the depolarized components do not
coincide.

The noncoherent component defines the time corre-
lation function of a field

(2.11)

Disregarding non-Gaussian long-range components,
we can represent the intensity correlation function as a
square of the field correlation function: g2(t) = 1 +

(t).

For t = 0, the interference component (2.10)
describes the peak of coherent backscattering

(2.12)

and its angular dependence.

3. SIMULATION OF A SERIES
IN SCATTERING ORDERS: A SCALAR FIELD

Let us juxtapose the procedure of analytic summa-
tion of a series of ladder diagrams with a Monte Carlo
method that combines the calculation scheme of sto-
chastic trajectories with the application of statistical
weights [26, 27]. First, consider a scalar field. When

passing to the case of a scalar field, the tensor (R) is
replaced by the scalar function Λ0(R) = R–2exp(–R/l),
and the Rayleigh factor ΓR is replaced by unity. The first
term of the iterative series describes single scattering,
the second describes double scattering, etc.

A Monte Carlo method describes the radiation prop-
agation as a random process that consists of one,
two, …, n scattering events. The addition of one link of
the ladder Λ(Rjj – 1)p0(kj – kj – 1) in the theoretical
description is realized in the numerical experiment by a
path R traversed by a photon (a packet of photons) up
to the next scattering event. The random photon mean
free path R between two successive scattering events is
defined by the Poisson distribution [13]:

(3.1)

This distribution implies that R = –llnξ, where ξ is the
probability of the fact that the mean free path is greater
than R; the value of ξ is chosen by a random number
generator from the interval [0, 1]. The propagation

Ĉ
V( )

Ĉ
L( )

g1 t( )
C L( ) t ki– ki,( )
C L( ) 0 ki– ki,( )
-------------------------------------.=

g1
2

ICBS θs( )
C V( ) 0 ks ki,( )

0 ki– ki,( )
---------------------------------=

Λ̂

f R( ) l 1– R/l–( ).exp=
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direction of a photon packet in each event of elastic
scattering is defined randomly with regard to the phase
function (2.6). As a result, one obtains a stochastic tra-
jectory of a photon that is emitted at the point R0 = RS ,
experienced n collisions at the points R1, …, Rn , and
detected on the surface at the point Rn + 1 = RD; this tra-
jectory randomly simulates the nth-order term in the
above-mentioned iterative series (Fig. 1).

Let Wi be the statistical weight of the ith photon that
reaches a detector. Then, the sum of these weights
defines, in arbitrary units, the intensity of scattered
radiation at the detection point,

In the case of isotropic scattering, Wi = 1/Nph, where Nph
is the sample size; in the case of anisotropic scattering,
this quantity is multiplied by the product of phase func-
tions.

The complexity of analytic calculations is associ-
ated with the fact that the integrals over Ri cannot be
uncoupled because the phase functions depend on the
mutual disposition of scattering particles. The numeri-
cal simulation uncouples this chain and, at each step,
randomly defines the direction and the magnitude of the
mean free path of a photon packet.

By virtue of the normalization condition for the
phase function,

(3.2)

the statistical weight of a photon packet is not changed
after each scattering event. In theoretical description,
the conservation of the weight of a packet is fulfilled
according to the optical theorem. Indeed, since

the expansion parameter of iterative series (2.7) is given
by

(3.3)

Let us show that it is the form of the propagator Λ0(R)
that leads to distribution (3.1). In the absence of absorp-

tion, the quantity  is exactly equal to unity, which
points to the conservation of the weight of the photon
packet. In analytic calculations, it is the condition

 = 1 that makes the method of successive approxi-
mations inapplicable for solving the Bethe–Salpeter
equation.

A photon contributes to the detected signal provided
that it intersects the boundary of the medium at a given
angle at the detection point. Then, the trajectory of the
next photon is modeled. The sample size of incident

I ΣiWi.=

p0 ki ks–( ) Ωd∫ 1,=

Λ0 R( ) Rd∫ 4πl,=

ls
1– Ωn Ri 1+ Λ0 Ri 1+ Ri–( ) p0 ki 1+ ki–( )d∫d∫  = ls

1– l.

ls
1– l

ls
1– l
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photons varied from 105 to 107. The modeling of a pho-
ton trajectory terminated when the number of scattering
events became greater than 104. When the statistical
weight of a photon became less than 10–3, we also
ceased to follow upon the trajectory of the photon.
According to our estimates, the detection probability of
such a photon on the surface is no greater than 10–2;
therefore, our approach leads to an error of at most 10–5.
We controlled the accuracy of calculated parameters by
the stability of their numerical values under increasing
sample size. For a sample size of 105, the intensity is
stable up to at least four digits.

As the phase function, we used the Henyey–Green-
stein function (see [28]). In [2, 29], the authors used the
Rayleigh–Gans function.

When a fraction of scattered photons possessing the
required properties (for example, phonons scattered
into a narrow solid angle when modeling coherent
backscattering) is small, the time it takes to accumulate
reliable statistics may prove to be extremely large in the
above-described standard modeling technique.

To improve the statistics, we applied a semianalytic
method of modeling [30], which is also known as the
method of local estimation [31], in which each photon
contributes to the scattered radiation. Suppose that a
trajectory contains N scattering events. The weight of

the ith photon after n (n < N) scattering events is .
The contribution of all trajectories with the number of
scattering events n is simulated by the term of iterative
series (2.7) that describes n-tuple scattering in the lad-
der component (2.9):

where  is the distance from the point of the last, nth
scattering event to the boundary of the medium. Thus,
in this approach, each photon contributes to the
detected radiation. The accuracy of modeling is easily

Wn
i( )

C L( ) ΣiWn
i( ) zn

i( )/l–( ),exp∼

zn
i( )

RS RD

RnR1

ki
ks

Rj

θj

kj + 1jkjj – 1

xy

z

Fig. 1. Trajectory of random walks of a photon from the
input point RS to the output point RD; R1 and Rn are the
points of the first and the last, nth, scattering events; kjj – 1
and kj + 1j are the wavevectors before and after the jth scat-
tering event; and θj is the angle between the above wavevec-
tors.
ICS      Vol. 101      No. 1      2005
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monitored by comparing with analytic results, which
can be obtained for lower orders of scattering. For
example, in the case of isotropic scattering, the contri-
butions of single and double scattering to the intensity
are given by

Using the method described, by simulation we
reproduced these theoretical results with a high degree
of accuracy.

The analysis involving the juxtaposition of the theo-
retical approach based on the Bethe–Salpeter equation
with the Monte Carlo method allows us to generalize
the latter method for modeling coherent multiple scat-
tering phenomena.

The difference between the calculation of the time
correlation function and the calculation of intensity lies
in the fact that the direction of a scattered photon packet
is determined by a generalized phase function p(kj –
kj − 1, t), which depends on the time shift t, rather than
by the phase function itself. In the majority of known
applications [15, 32], the authors investigate a diffusion
mechanism of the time evolution of irregularities, when

Isingle l 1– z1 R2δ R2 R1–( )
z1 z2+

l
---------------– 

 exp
1
2
---,=dd∫=

Idouble 4π( ) 1– l 2– z1 R2Λ0 R2 R1–( )d∫d∫=

×
z1 z2+

l
---------------– 

 exp 2ln 0.346… .= =

0.40 0.8 1.2 1.6 2.0
t τ0⁄
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1
g1
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2

Fig. 2. The time correlation function of a field scattered
backward by (1) a semi-infinite medium and (2) a layer of

thickness L = l* as a function of the time argument  for

three values of the anisotropy parameter  = 0 (h),
0.5 (d), and 0.9 (n); the dashed curve represents approxi-
mation by function (3.6) with γ = 2.

t/τ
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the time correlation function of the intensity fluctua-
tions can be represented as a product of a static correla-
tion function and an exponential function:

(3.4)

where Ds is the coefficient of self-diffusion. Thus, the
time correlation function is calculated in the Monte
Carlo method as

(3.5)

where τ = (Dsk2)–1 is the characteristic time of Brown-
ian diffusion of a scatterer to a distance λ and θj is the
scattering angle in the jth scattering event. The result
remains virtually unchanged if we replace the sample
average by the average over the phase function

in agreement with the diffusive approximation.
In the isotropic case, there is an exact Milne solution

that allows one to control the results of simulation. The
exact solution gives the following value for the ratio of
the intensity of the total backscattered radiation to the
intensity of single scattering: I/Isingle = 8.455…
(see [12]). The method of simulation described repro-
duces this value with an accuracy of at least four digits
for a sample size on the order of 105. To reduce the sim-
ulation time, we calculated, within the diffusive
approximation, the contribution of photons for which
the distance between the input and output points is sev-
eral dozens of times greater than the mean free path l,
whereas the contribution of photons that are emitted at
a distance less than l is calculated by the simulation
scheme described.

Figure 2 represents the results of simulation for the
time correlation function of field for three scattering
media with different values of the anisotropy factor

 = 0, 0.5, and 0.9. We chose the value l = 33 µm,
which corresponds to the values of the transport length

l* = l(1 – )–1, ranging from 33µm for the isotropic
case to 333 µm for the case of strong anisotropy

(  = 0.9). In terms of , the correlation function
is practically universal and does not depend on the
anisotropy of single scattering. Note also that these
results are in good agreement with experimental data
[15, 16]. The obtained time correlation function of field
is well described by the formula

(3.6)

which was proposed in [15].
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The slope ratio γ of the time correlation function of field in a medium with isotropic scattering cross section: Theoretical pre-
dictions and results of simulation

Incident radiation Scattered radiation Diffusive approximation Milne solution Monte Carlo method

Plane wave Plane wave 2 [12, 22] ≈2

Plane wave Point detector 1 + z* ≈1.53 [22] ≈1.53

Point source Total scattered radiation z* ≈1.2

Note: The Milne parameter is z* ≈ 0.71.

2
1 z*+( )2

1 2z*+
----------------------
The deviation from a linear decay for very small
times is attributed to insufficient statistics at large dis-
tances. As time increases, the contribution of long opti-
cal paths decreases, thus weakening the requirements
on the statistical sample size.

Strictly speaking, the linear dependence on  is
realized only for the scattering from a semi-infinite
medium. In the case of scattering from a layer of finite
thickness, the time correlation function decreases lin-
early with time t. However, even for layers with a thick-
ness on the order of the transport mean free path, the

time correlation function in terms of  weakly

depends on the anisotropy parameter .

The decay rate of the correlation function, which
weakly depends on the specific character of a medium
in dimensionless terms t/τ, depends rather strongly on
the geometry of the experiment. The table presents the
values of the slope ratio γ for isotropic scattering that
are calculated in the diffusive approximation with the
use of the Milne solution and obtained by simulation.

One can see that, in the case of a point source or a
point detector, the decay rate of correlations is less than
that in the case of plane waves. As pointed out in [15],
this is associated with the fact that, in the case of plane
waves, the relative contribution of longer optical paths
increases and leads to a faster decay of the correlation
function.

Note that, compared with the expression for the
intensity of a noncoherent component, the expression
for the intensity of the interference component of back-
scattering (see (2.10)) contains an additional factor
exp(iq⊥  · (R1 – R2)⊥ ). Taking into account the transla-
tional invariance with respect to the coordinates R⊥ , we
can replace this factor by cos(q⊥  · (R1 – R2)⊥ ). When
calculating the intensity of the coherent component of
backscattering, we should multiply the weight of the ith
photon arriving at the interface with vector ks at dis-

tance |(RS – )⊥ | from the input point RS by the factor

cos(q⊥ (RS – )⊥ ) and sum over all photons. As a

t/τ

t/τ
θcos

RD
i( )

RD
i( )
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result, we obtain the following expression for the peak
of coherent backscattering:

The height, or enhancement, of the peak of back-
scattering is given by

where I is the intensity of the noncoherent component.
We obtained hCBS = 1.87 for isotropic scattering, which

is in good agreement with the value  = 1.88 [2]
obtained on the basis of the Milne generalized solution.

For  = 0.9, we obtained hCBS = 1.99, which also

agrees with the expected theoretical value  = 2 for

  1.
Just as in the case of time correlations, the angular

dependence of the peak intensity of coherent backscat-
tering calculated in the dimensionless variables  =
kl*sinθs is close to the universal one (Fig. 3) and is suf-
ficiently well described by the formula

with γ = 2. Note that this dependence differs signifi-
cantly from the dependence predicted by the diffusive
approximation [24]:

for kl*sinθs ! 1, where z* = 0.71… is the Milne extrap-
olation parameter. The values of the slope ratio given by
this formula for the isotropic scattering and the strongly
isotropic scattering differ by a factor of three: γ(diff) =

2.3 for  = 0, and γ(diff) = 0.71 for   1
(see [18]). Note that the results of simulation also show

ICBS θs( ) Wi q⊥ RS RD
i–( )⊥⋅( ) Isingle.–cos

i
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hCBS 2I Isingle–
I

-----------------------,=

htheor
CBS

θcos

htheor
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θcos

q̃

ICBS θs( ) γkl* θssin–( )exp∝
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CBS 1 2

l z*l*+( )2
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-------------------------k θssin–∝
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that the decay rate of the peak of coherent backscatter-

ing decreases as the anisotropy parameter 
increases in the region of very small scattering angles,
kl*sinθs ≤ 0.1.

4. CORRELATION EFFECTS 
FOR LINEARLY POLARIZED LIGHT

In the case of an electromagnetic wave, one should
additionally follow up the variation in the direction of
the field, characterized by a polarization vector, along a
random trajectory of a photon. According to (2.2), to
this end, one should calculate the result of the action of
the chain of operators [24]

(4.1)

on the incident field.
Suppose that, just as in the case of a scalar field, the

weight of each incident photon is 1/Nph. In the electro-
magnetic field, one defines, in addition to the weight,
the initial polarization of the photon field; in the general
case, it is defined by three Cartesian coordinates. Sup-
pose that the polarization of each incident photon is
defined by a set of three numbers: P(in) = (1; 0; 0). This
vector of initial polarization indicates that the incident
field is polarized along the x axis.

The polarization of a field is changed under scatter-
ing. In addition to the standard procedure of stochasti-

θcos

Î R j 1+ R j–( ) R j 1+ R j–( ) R j 1+ R j– 2–⊗–( )
j 1=

n

∏
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Fig. 3. Peak intensity of coherent backscattering as a func-

tion of kl*sinθs; λ = 0.6 µm; l = 33 µm; and  = 0 (h),
0.5 (s), and 0.9 (n); (1) approximation by exp(–2kl*sinθs)
and (2) function of the form 1 – 2kl*sinθs. The inset shows
the initial regions that demonstrate the deviation from uni-
versality.
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cally determining the direction of a photon after a col-
lision and finding the weight function by the phase
function, one should calculate a new vector of polariza-
tion Pj + 1 by the preceding vector Pj for each scattering
event:

Suppose that a photon experiences n scattering
events. Then, after the last, nth scattering event, a pho-
ton arrives at the observation point RD with the polar-
ization vector

(4.2)

Let Wi be the statistical weight of a “scalar” ith pho-
ton that arrives at the point RD. Then, summing over all
Nph detected photons, we obtain the following expres-
sions for the polarized and depolarized components
(for short, we omit the index “out”):

(4.3)

In the case of backward scattering, there is no z com-
ponent. Note that these formulas describe the nonco-
herent contribution of ladder diagrams, Iβα =

(0|ks, ki).

In the case of an electromagnetic field, the polariza-
tion vector strongly fluctuates even for very large (on
the order of 105) statistical sample sizes. In [24], the
authors analyzed the rate of depolarization as a function
of the number n of scattering events in the diffusive
approximation. According to [24], in the case of an iso-
tropic single-scattering cross section, the depolariza-
tion after n scattering events is given by

Figure 4 represents the calculated function P(n). Note
that the number of scattering events is actually propor-
tional to the length of the optical path; since the length
of the path is proportional to the flight time, the func-
tion P(n) illustrates the spreading of a light impulse in
a strongly inhomogeneous medium. One can see that
the depolarization indeed decays exponentially as the
optical path increases; however, the decay rate differs

Pj 1+  = Î Rj 1+ Rj–( ) Rj 1+ Rj–( ) Rj 1+ Rj– 2–⊗–( )Pj.

P out( ) Î R j 1+ R j–( ) R j 1+ R j–( )⊗–(
j 1=

n
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× R j 1+ R j– 2– )P in( ).
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from that predicted by the diffusive approximation. As
the anisotropy increases, the characteristic length of
depolarization increases, because, for large values of

, a photon must experience (1 – )–1 times
greater number of collisions compared with the isotro-
pic case to appreciably change its direction and, hence,
the polarization. For n > 30, the results are quite unsta-
ble. This is associated with the fact that the products of
an odd number of components of the polarization vec-
tor directed along the boundary of the medium are
equal to zero theoretically, whereas the stochastic result
strongly fluctuates.

The calculations are performed as follows. For tra-
jectories with a number of scattering events less than a
certain number n0, which varied from 20 to 50, the cal-
culation was performed by the above-described
scheme. We assumed that, for n > n0, the polarized and
depolarized components are equal and, hence, can be
calculated as half the intensity calculated for a scalar
field:

To control the process, we compared the results of
simulation in the case of point scatterers with the
known exact theoretical results.

In the case of Rayleigh scattering for the normal
incidence and scattering at an angle of 180°, the exact
solution [21, 22] obtained within a generalization of the
Milne solution for an electromagnetic field yields a
value of Ipol/Idepol ≈ 1.92 for the ratio of polarized to
depolarized components of the noncoherent compo-
nent. The numerical simulation yields Ipol/Idepol ≈ 1.94.
The known value of the ratio of the polarized compo-
nent of scattered radiation to the depolarized compo-
nent allows one to determine the residual polarization
of the noncoherent component of backscattering. The
generalized Milne solution yields [19, 21, 22]

while numerical simulation yields 0.326. A close value
of 0.33 was obtained in [23].

Let us define the height of the peak of the polarized
component of coherent backscattering as

The theoretical value [19, 21, 22] is  ≈ 1.75. The
analysis of simulation data obtained in [2] yields a

value of  ≈ 1.4, which is far from the theoretically
predicted result. In [29], the authors obtained a value of

θcos θcos

Ipol n( ) Idepol n( ) 1
2
--- Iscalar n( ).= =

Ipol Idepol–
Ipol Idepol+
------------------------ 0.31,≈

hpol
CBS 2Ipol Isingle–

Ipol
----------------------------.=

hpol
CBS

hpol
CBS
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 ≈ 1.69. The value  ≈ 1.746 calculated by us
agrees much better with theory.

We calculated the time correlation function for the
polarized and depolarized components of backscattered
light by numerical simulation.

To calculate the time correlation functions of an
electromagnetic field, we used the following formulas:

(4.4)

where Piα is the polarization vector of the ith photon
with polarization α that arises under the action of a
sequence of ni tensor operators of the form (4.1) and θj

is the scattering angle of the jth scattering event.
Figure 5 represents the results of simulation of the

time correlation function of field for the polarized and
depolarized components for the Rayleigh scattering,

 = 0, and for the case of a strongly anisotropic sys-
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Fig. 4. Depolarization degree P as a function of the number

of scattering events n for  = 0 (j), 0.5 (s), and 0.9 (m).
A semi-infinite layer. The straight line represents the diffu-
sive approximation.
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tem with the indicatrix stretched forward,  = 0.9.
One can see that, in the case of linearly polarized light,
the decay rate of the time correlation function in the
units of τ appreciably depends on the anisotropy

parameter , in contrast to nonpolarized light.

The diffusive character of light propagation in the
multiple scattering regime is responsible for the linear
decay of the field time correlation function of the
form [15]

where γ is the slope ratio that determines the decay rate
of the time correlation function. Note that, according
to (3.5), the initial small parameter in time is (t/τ)(1 –

). In the case of a strongly anisotropic scattering
cross section, this quantity remains small for suffi-
ciently large values of the parameter t/τ for which the

dependence of g(1)(t) on  may strongly differ from
a linear function.

In the case of Rayleigh scattering, the theory pre-
dicts [19, 22] the following slope ratios for the polar-
ized and depolarized components: γpol ≈ 1.44 and
γdepol ≈ 2.75. The analysis within the diffusive approxi-
mation yields [16] γpol ≈ 1.6 and γdepol ≈ 2.7, which are
close to the experimental data γpol ≈ 1.6 ± 0.1 and

θcos
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g 1( ) t( ) 1 γ 6t/τ ,–∼
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Fig. 5. Time correlation function for electromagnetic field

in scattering media  (h),  (d). Curves 1 and 3 cor-

respond to  = 0, curves 2 and 4 correspond to  =
0.9 and brocken curves determine the slopes γpol ≈ 1.42 and
γdepol ≈ 2.68 for a medium with isotropic phase function.
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θcos θcos
JOURNAL OF EXPERIMENTAL A
γdepol ≈ 2.8 ± 0.2. These experimental data were
obtained for a suspension of latex particles with a diam-
eter of D = 0.091 µm, which is much less than the wave-
length; i.e., the scattering is close to the Rayleigh scat-
tering.

Note that, just as in a real experiment [15], one can-
not eliminate the nonlinear region for very small values
of time, which is attributed to the finiteness of the aper-
ture and the finiteness of the number of scattering
events considered; the theoretically predicted linear
region with the slope ratios γpol ≈ 1.42 and γdepol ≈ 2.68

starts at  = 0.15. As the anisotropy parameter
increases, the decay rates of the polarized and depolar-
ized components approach each other. The sum of the
polarized and depolarized components, i.e., the time
correlation function of nonpolarized light is described
by a curve close to the curve obtained during the simu-
lation of the time correlation function of a scalar field.

CONCLUSIONS

In the theory of coherent and correlation phenomena
of multiple scattering, both the cyclic diagrams that
describe the interference component of backscattering
[33, 24] and the diagrams that describe the field corre-
lations [34] can be reduced to ladder diagrams. This
allows one to describe the above phenomena within the
framework of the relevant Bethe–Salpeter equation.
The formal difference from the original ladder dia-
grams that describe the transfer of the main, noncoher-
ent, component of scattered radiation consists in the
introduction of additional coefficients to the vertices of
ladder diagrams. These coefficients describe the phase
shift between the fields that appear in the definition of
the propagator of the Bethe–Salpeter equation. In the
present paper, by juxtaposing the representation of the
Bethe–Salpeter equation as a ladder diagram series
with the modeling of random trajectories, we have
shown that the consideration of phase relations in sto-
chastic modeling also reduces to the addition of appro-
priate coefficients in each scattering event experienced
by a photon as it moves along a random trajectory.

The semianalytic Monte Carlo method developed
allows one to compare numerical results with theoreti-
cal predictions at each step of simulation. The possibil-
ity of such a comparison allows one to significantly
reduce the simulation time by using analytic results
instead of numerical ones at large distances between
the input and output points of radiation, where theoret-
ical predictions are certainly correct.

The analysis carried out has shown that scattering is
indeed of multiple character only in the case of a non-
absorbing semi-infinite medium. In all other cases,
each scattering event gives rise to coefficients of the

form Ds t = 2(t/τ)(l/l*) when simulating the time cor-
relation functions with diffusive decay of fluctuations
or klsinθs for coherent backscattering; these coeffi-

t/τ

q2
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cients lead to a rapid decay of a wave packet. The decay
rate of coherent phenomena is determined by the
parameters (t/τ) and kl*sinθs , which may be substan-
tially greater than the original parameters (t/τ)(l/l*) and
klsinθs in the case of a strongly anisotropic phase func-

tion, 1 –  ! 1.

The simulation error is primarily determined by the
sample size, i.e., by the number Nph of emitted photons
and by the maximal number n(max) of the scattering
events taken into consideration. We continued to follow
up the trajectory of a photon up to 104 scattering events.
In this case, the results become stable to within one per-
cent even for about 1000 emitted photons; for Nph ~ 105,
the relative error in the scattering intensity is on the
order of 10–4. However, in view of the diffusive charac-
ter of the propagation of radiation in an unbounded
medium, the contributions of the scattering events of
extremely high orders still continue to contribute when
one simulates the intensity. Therefore, the statistics of
photons with high-order scattering proves to be insuffi-
cient at large distances from the input point, and the
result depends on the choice of the number n(max). Com-
paring, in the isotropic case, numerical results with the
theoretical results that follow from the Milne solution
and its generalizations, we have found that the above-
mentioned restriction on the number of scattering
events gives an understated result for the intensity of
scattered radiation: on the order of 2% for a scalar field
and on the order of 5% for an electromagnetic field,
even for sample sizes of up to several millions. It is this
circumstance why we complement stochastic modeling
with analytic calculations, applying analytic calcula-
tions within the diffusive approximation instead of
modeling in the case of large distances between the
input and output points (or when the number of scatter-
ing events exceeds a certain fixed number); the accu-
racy of these analytic calculations are easily controlled
by increasing the above-mention fixed parameter.

In the case of modeling the time correlation function
or the peak of coherent backscattering for the parame-
ters (t/τ)(l/l*) and kl*sinθs on the order of 0.01 and
greater, an additional contribution (combined with the
use of analytic calculations) of scattering events of
extremely high orders barely affects the result. In the
range of large values of (t/τ)(l/l*) and kl*sinθs on the
order of unity, the relative contribution increases again;
however, in this range of parameters, the very physical
model and, in particular, the ladder approximation
cease to be valid.

The description of multiple scattering, including
coherent phenomena, in terms of ladder diagram series
is valid up to the parameter λ/l. Thus, when the time
correlation function decreases as time increases or the
peak of coherent backscattering decreases as the scat-
tering angle increases by a factor greater than l/λ, these
phenomena are no longer observable in real experi-
ments against the background of contributions made by

θscos
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“nonladder” diagrams that take into account the phase
shifts of fields in multiple rescattering processes.

Usually, multiple scattering, including coherent
phenomena, is described in terms of a scalar field. Our
results show that, for backward scattering, consider-
ation of the electromagnetic nature of light leads to an
essentially different quantitative description compared
with that in the case of a scalar field because a consid-
erable part of backward scattered radiation consists of
low-order contributions. For example, the decay rate of
the time correlation function of the polarized compo-
nent is much less, while that of the depolarized compo-
nent is much greater, than the decay rate in the case of
nonpolarized light; the latter decay rate virtually coin-
cides with that in the scalar case. The polarized compo-
nent of backscattered light is almost twice as large as
the depolarized component.

This method of numerical simulation allows one to
judge the number of scattering events experienced by
light transmitted through a layer of a strongly inhomo-
geneous opaque medium by the value of residual polar-
ization. This information is additional to that obtained
from the measurements of attenuation of nonpolarized
light, from which one derives the transport mean free
path. Comparative analysis makes it possible to signif-
icantly simplify the simulation of radiative transfer and
coherent phenomena in randomly inhomogeneous
strongly scattering media, such as liquid crystals, bio-
logical tissues, etc., and to significantly extend the
application domain of these methods.

The results extend the applicability domain of the
methods based on the coherent and correlation proper-
ties of diffusely scattered light.
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Abstract—Multiparticle entangled states generated via interaction between narrowband light and an ensemble
of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between
atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of
atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical
schemes for preparing entangled states of atomic ensembles by projective measurement are described. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

Entangled states are used as a key resource in vari-
ous quantum information processing systems. Their
properties and preparation methods have been the sub-
ject of extensive discussion. The desired state of a phys-
ical system can be prepared either by projective mea-
surement or as a result of evolution. For atomic sys-
tems, both methods have already been implemented in
experiments. In particular, two atomic ensembles were
used in [1] to create an Einstein–Podolsky–Rosen
(EPR) pair by projective measurement. The latter
method was demonstrated in several studies: entangled
states of alkali ions were generated via Coulomb inter-
action [2], neutral Rydberg atom were used to create an
EPR pair in a micromaser setup [3], and resonant
dipole–dipole interaction was used for entangling neu-
tral atoms in an optical lattice [4]. The most popular
methods for preparing entangled photon states are still
mostly based on parametric down-conversion. For
example, an entangled state equivalent to a three-state
quantum system (qutrit) was prepared and examined by
using quantum state tomography in [5]. These exam-
ples suggest that an entangled state of two systems can
be prepared experimentally by using a certain interac-
tion. Systems of this kind are well studied. With
regard to applications, it is important to know how
entanglement can be utilized and to know its robust-
ness against decoherence. In this respect, of special
interest are multiparticle systems whose entangled
states are characterized by much more complicated
and diverse behavior.

Previous efforts were mainly focused on analysis of
entanglement between several particles. In particular,
the W class of tripartite entanglement defined in [6]
includes the symmetric three-photon polarization-
1063-7761/05/10101- $26.000033
entangled state implemented in the experiment reported
in [7]. An extension to four qubits was proposed in [8],
where nine inequivalent classes were distinguished that
cannot be connected by local operations and quantum
communication. Studies of multiparticle systems are
relatively few, being focused on entanglement criteria
and application to problems in quantum information
theory. Whereas the Peres–Horodecki criterion for
bipartite entanglement found in [9] was applied to a real
physical system in [10], no operational criterion is
known for entanglement in the general case; various
approaches are used. In [11], the concept of entangle-
ment molecules [12] was used to propose a classifica-
tion using graphs, with particles and classical or quan-
tum correlations represented, respectively, by vertices
and edges connecting pairs of vertices. Graphs of this
kind can be used to describe both pure and mixed
entangled states and distinguish several classes differ-
ing by topological properties of the graphs. In [13],
symmetric states (including Dicke states) were studied
by using several entanglement measures (entropy of
entanglement, negativity, and entanglement of forma-
tion) defined by the eigenvalues of a partial transpose of
the density matrix. A numerical analysis was performed
to find that symmetric states are robust to particle loss
even if the number of particles is large (up to 103). Note
that the calculation of eigenvalues is a difficult task,
because the dimension of an ensemble’s Hilbert space
exponentially increases with the number of constituent
particles. Owing to their robustness, symmetric states
can be used in such applications as cloning and tele-
cloning protocols for quantum information transmis-
sion [14], quantum key distribution [15], and quantum
teleportation or dense coding [16]. The formulation of
two models of a one-way quantum computer using
measurements on multiparticle entangled states [17,
 © 2005 Pleiades Publishing, Inc.
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18] has strongly stimulated studies of the properties of
multiparticle systems, in particular, Ising- and Bose–
Hubbard-like models.

The present study focuses on the Dicke states aris-
ing as a result of collective interaction of many atoms
with electromagnetic field [19], which has been ana-
lyzed in numerous studies (e.g., see [20]). This system
exhibits many physical properties of interest for quan-
tum information processing. Photon trapping in chain
configurations of atoms was considered in [21]. When
the system is placed in a cavity, this effect reduces the
photon escape rate and increases the decoherence time
of the cavity mode. In [22], this effect was used for gen-
erating W states and anticloning [23], which can be
implemented with high fidelity by means of photon
trapping. In those studies, only single-photon traps and
single-photon initial states were analyzed. Here, we
consider the more general case of multiphoton pro-
cesses, assuming that the photon statistics is arbitrary.

The main questions addressed below are the follow-
ing: What types of entangled states are produced by
interaction between atoms and field? What states can be
prepared from independent atomic ensembles entan-
gled with a photon? How can these states be utilized?
We consider resonant interaction between narrowband
light and an ensemble of identical two-level atoms cou-
pled to a common heat bath. The analysis is restricted
to a simple model of radiative decay. Multiphoton pro-
cesses, such as Raman scattering, are described in
terms of effective Hamiltonians, which can be obtained
by unitary transformation [24]. The behavior of an
atomic system interacting with light characterized by
arbitrary photon statistics is analyzed by using pertur-
bation theory in the interaction strength for Gaussian,
coherent, and squeezed states. We find that weak sin-
gle-mode squeezed light is required to create multipar-
ticle entanglement between atoms. As distinct to the
case considered in [25], the steady state discussed here
is robust against atomic decay. When decay is neglected
and analysis is restricted to a single-photon initial state,
simple exact solutions describing exchange of excita-
tion between the field mode and atoms can be obtained
[26]. These solutions can be used for generating and
transforming symmetric Dicke states and for process-
ing and storing quantum information. The optical
schemes for projective measurement considered here
can be used to generate entangled states of atomic
ensembles. An EPR entangled pair of macroscopic
ensembles was created in an experiment [1]. The new
states produced in our schemes have hierarchical struc-
ture, thus differing from the cluster states introduced
in [27] as a resource for one-way computing.

The paper is organized as follows. First, we formu-
late a basic model and write out the second-order per-
turbation solutions obtained by taking into account
radiative decay. These solutions are then used to ana-
lyze the states of the atomic system corresponding to
various photon statistics. Exact solutions obtained
JOURNAL OF EXPERIMENTAL A
under certain initial conditions by neglecting radiative
decay are used to describe generation and transforma-
tion of symmetric Dicke states. Finally, we consider
optical schemes for preparing entangled states of
atomic ensembles by projective measurement.

2. BASIC EQUATIONS

In the dipole approximation, the ensemble of N
identical, but distinguishable, two-level atoms interact-
ing with electromagnetic field is described by the
Hamiltonian

where

is the coupling constant, m is the dipole transition
matrix element, ek is the polarization vector for the

mode with wavevector k, ak and  are photon creation
and annihilation operators,

is the collective atomic operator, sxy = |x〉a〈y| is the
atomic operator for the atom located at a point ra (x, y =
0, 1, where 0 and 1 denote the ground and excited
states, respectively). When analysis is restricted to
interaction with a single resonant mode, Sk can be
replaced with Sk = 0 , which makes it possible to treat an
atomic ensemble occupying a spatial region as a point-
like object. Then,

(1)

where

Effective Hamiltonian (1) is used here to describe not
only interaction with a single resonant mode, but also
multiphoton processes, such as Raman scattering. In

the latter case, we set B = faA  and assume that the
photon frequencies ωA and ωS satisfy the relation ω =
ωA – ωS, where ω is the atomic transition frequency.

H i" 1– ϑ ,=

ϑ gkakSk
† H.c.,–

k

∑=

gk

"ωk

2ε0L3
-------------- 

  1/2

m ek⋅=

ak
†

Sk
† s10 a( ) ikra( )exp

a

∑=

ϑ S10B S01B†,–=

S10 1| 〉a 0〈 | , B
a

∑ ga.= =

aS
†
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Hamiltonians of this form can be obtained by unitary
transformations [24].

The density matrix ρ for the N-atom system interact-
ing with a cavity mode obeys the master equation

(2)

where relaxation is represented by the Lindblad super-
operator

(3)

This representation corresponds to the model of purely
radiative decay with longitudinal and transverse decay
rates γ = γ↓ + γ↑ and γ⊥ , which satisfy the relation γ⊥  =
γ/2. In the general case, γ⊥  > γ/2, since γ⊥  should be
replaced by γ⊥  + κ, where κ is a dephasing collision
rate.

Effective Hamiltonian (1) may involve many field
modes with ωk differing from the atomic transition fre-
quency by δωk and occupying a frequency band of
width ∆ω. If ∆ω, δωk ! γ⊥ , then we can consider a nar-
row-band radiation field and make use of resonance
approximation. Otherwise, the field must be described
in terms of multiple-time correlation functions.

Solution of Eq. (2) is a difficult task. To describe the
interaction between an individual atom and a cavity
mode, the following equation for the density matrix
ρa = ρ is derived from (2) by taking the trace 
over all atoms except for one:

(4)

where ϑa = s10(a)B – H.c. and ρaa' = ρ is a two-par-
ticle density matrix. The right-hand side of (4) contains
a multiparticle contribution proportional to N(N − 1),
because the density matrix ρaa' does not commute with
the field operators. This leads to the Bogolyubov–
Born–Green–Kirkwood–Yvon chain of equations for
the multiparticle density matrices ρa, ρaa' , ρaa'a'' , …. In
physical terms, this means that fluctuations of quan-
tized electromagnetic field induce correlation between
atoms. If the field is assumed to be classical and noise-
free, for example, a coherent state is considered, then
the interaction will not give rise to any correlation, and
the initially uncorrelated atoms will remain mutually
independent. In what follows, we use (2) to analyze

∂
∂t
-----ρ ϑ ρ,[ ] +ρ,+=

+ +a,
a

∑=

+a

γ↑

2
----- s01 a( )s10 a( )ρ s10 a( )s01 a( )–[ ]–=

–
γ↓

2
----- s10 a( )s01 a( )ρ s01 a( )ρs10 a( )–[ ] H.c.+

Tr a' Tr a'

∂
∂t
-----ρa ϑ a ρa,[ ] +aρa N N 1–( )Tr a' ϑ a' ρaa',[ ]+ + ,=

Tr aa''
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interactions that can be used to generate symmetric
Dicke states.

3. DICKE STATES

First, we define symmetric Dicke states and intro-
duce a representation of symmetric Dicke states that
demonstrates their relation to the collective interaction
processes. The Dicke states are eigenstates of the oper-

ators Jz and J2 =  +  + :

(5)

where

σsk (s = x, y, z) are the Pauli operators for a two-level
atom labeled by the index k (k = 1, …, N), and j and m
are integer and half-integer numbers such that |m | ≤ j
and maxj = N/2. If j = N/2, then the states are symmet-
ric, and the quantum number a introduced to lift degen-
eracy can be omitted. For h excited atoms (h =
m + N/2), the states can be represented as

(6)

where Pz is one of the

distinguishable permutations of particles. The vector
|h; N〉  represents an atomic ensemble of h excited atoms

normalized by the condition 〈h; N |h, N〉  = . Sym-
metric states of a multiparticle system arise when inter-
action is described by collective operators of the form

In particular, the following representation is valid:

(7)

If h = 1, then it holds that

(8)

Jx
2 Jy

2 Jz
2

Jz jma| 〉 m jma| 〉 ,=

J2 jma| 〉 j j 1+( ) jma| 〉 ,=

Js
1
2
--- σsk,

k

∑=

j N /2; m=| 〉 h; N| 〉≡

=  Pz 11 12 … 1h 0h 1+ … 0, , , , , ,| 〉 ,
z

∑

Ch
N N!

h! N h–( )!
-------------------------=

Ch
N

S10 1| 〉a 0〈 | .
a

N

∑=

h; N| 〉 1
h!
-----S10

h 0; N| 〉 .=

1; N| 〉 10…0| 〉 … 00…1| 〉 .+ +=
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Since the wavefunction |h; N〉  is not factorizable, it rep-
resents an entangled state. In terms of correlation
between particles, it is substantially different from
other entangled states. For example, in the Green-
berger–Horne–Zeilinger (GHZ) state

,

the correlation of any group of M particles (M < N) is
classical. In particular, the density matrix correspond-
ing to the state |1; N〉  of a group of particles (M ≤ N) is

The corresponding von Neumann entropy depends on
the relative particle number p = M/N:

When p = 1/2, the entropy has a maximum value of
unity. If M = 2, we can apply the necessary and suffi-
cient separability criterion proposed in [9]. According
to this criterion, the state is inseparable (entangled) if
the transpose of the density matrix with respect to the
variables associated with one of the atoms has at least
one negative eigenvalue. In the case considered here,
one of the four eigenvalues

is negative. Note that the behavior of correlation
between M particles depends on p = M/N. As the total
particle number N increases, p  0 and the correla-
tion vanishes, since their state becomes pure as ρ(M ≤
N)  |0; N〉〈 0; N|. In what follows, we make use of the
following equalities:

(9)

4. SECOND-ORDER PERTURBATION 
SOLUTIONS

To solve Eq. (2), we use perturbation theory in the
interaction strength:

(10)

GHZ| 〉 1
2
--- 0| 〉⊗ N 1| 〉⊗ N+( )=

ρ M N≤( ) 1
N
---- 1; M| 〉 1; M〈 | N M–

N
--------------- 0; N| 〉 0; N〈 | .+=

S ρ M N≤( )( ) p p2log– 1 p–( ) 1 p–( ).2log–=

1
N
----; 

1
N
----; 

N 2–
2N

-------------; 1 1 4

N 2–( )2
--------------------+±

 
 
 

S01 0; N| 〉 0,=

S10 h; N| 〉 h 1+( ) h 1; N+| 〉 ,=

S01 h; N| 〉 N h– 1+( ) h 1; N–| 〉 ,=

S01S10 h; N| 〉 h 1+( ) N h–( ) h; N| 〉 ,=

S10S01 h; N| 〉 h N h– 1+( ) h; N| 〉 .=

ρ ρ 0( ) ρ 1( ) ρ 2( ) ….+ + +=
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Here, the zeroth-order approximation ρ(0) is the time-
independent solution to (2) with ϑ  = 0: ρ(0) = |0〉〈 0| ⊗
ρf , where the density matrix ρf represents the cavity
mode and |0〉  = |0〉 ⊗ N corresponds to the ground state of
all atoms. The operators ρ(k) (k = 1, …) satisfy the equa-
tions

(11)

subject to the initial conditions ρ(k)(0) = 0.
The analysis that follows is restricted to second-

order perturbation theory, which is sufficient to obtain
statistical characteristics of the excitation field. The
matrix equation for ρ(2) is

(12)

where the vectors

represent the states in which only the kth atom is
excited and only the kth and pth atoms are excited,
respectively. The nonzero matrix elements of the oper-
ator R = [ϑ , ρ(1)] are

(13)

∂
∂t
-----ρ k( ) ϑ ρ k 1–( ),[ ] +ρ k( )+=

1k; 1m; N〈 | ∂
∂t
-----ρ 2( ) 0; N| 〉

=  2γ⊥ 1k; 1m; N〈 |ρ 2( ) 0; N| 〉– 1k; 1m; N〈 |R 0; N| 〉 ,+

1k; N〈 | ∂
∂t
-----ρ 2( ) 1m; N| 〉

=  2γ⊥ 1k; N〈 |ρ 2( ) 1m; N| 〉–

+ 1k; N〈 |R 1m; N| 〉 , k m,≠

1k; N〈 | ∂
∂t
-----ρ 2( ) 1k; N| 〉 γ 1k; N〈 |ρ 2( ) 1k; N| 〉–=

+ 1k; N〈 |R 1k; N| 〉 ,

0; N〈 | ∂
∂t
-----ρ 2( ) 0; N| 〉 γ 1k; N〈 |ρ 2( ) 1k; N| 〉

k

∑=

+ 0; N〈 |R 0; N| 〉 ,

s10 k( ) 0; N| 〉 1k; N| 〉 ,=

s10 k( )s10 p( ) 0; N| 〉 1k 1p; N,| 〉=

1k 1m; N,〈 |R 0; N| 〉 2κ t( )B2ρf ,=

0; N〈 |R 0; N| 〉 κ t( )N B†Bρf ρf B
†B+( ),–=

1k; N〈 |R 1m; N| 〉 2κ t( )Bρsf B
†,=
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where

For purely radiative decay, γ⊥  = γ/2 and the second-
order perturbation theory yields

(14)

where

This expression is valid to second order if the field is
relatively weak:

(15)

In the case of interaction with a single resonant cavity
mode, we have B = ga and κ2〈B†B〉  = n/ns , where ns =
(γ⊥ /g)2 is a saturation parameter and n = 〈a†a〉  is the
mean photon number. Then, (15) reduces to the stan-
dard condition imposed in the case of resonant coupling
between the field and two-level atoms: Nn/ns ! 1. Solu-
tion (14) describes the joint evolution of the atomic
ensemble and field starting from an ensemble of
ground-state atoms and an arbitrary state of the field.

5. MIXED ENTANGLED ATOMIC STATES

Second-order perturbation theory predicts correla-
tion between atoms depending on photon statistics, i.e.,
providing a framework for describing entangled (insep-
arable) atomic states. To analyze the properties of the
atomic system, we use second-order perturbation the-
ory to find the density matrix for a group of M ≤ N
atoms, ρA(M ≤ N), obtained by taking the trace of (14)
over the field states represented by ρf and over N – M
particles. The result has the form

(16)

κ t( ) 1
γ⊥
----- 1 γ⊥ t–( )exp–( ).=

ρ 0| 〉 0〈 | ρf κ 1; N| 〉 0; N〈 | Bρsf H.c.+⊗[ ]+⊗=

+ κ2 2; N| 〉 0; N〈 | B2ρf H.c.+⊗[ ]

– Nγ_ 0; N| 〉 0; N〈 | B†Bρf Bρf B
†– H.c.+[ ]⊗

– 1/2( )Nκ2 0; N| 〉 0; N〈 | B†Bρf H.c.+[ ]⊗

+ κ2 1; N| 〉 1; N〈 | Bρf B
†,⊗

_
1
γ⊥
----- 1

γ2
----- γt 1 γt–( )exp–+[ ] κ2

2
-----–

 
 
 

.=

Nκ2 B†B〈 〉  ! 1.

ρA M N≤( ) 0| 〉 0〈 | 1 Mκ2 B†B〈 〉–[ ]=

+ κ B〈 〉 1; M| 〉 0〈 | H.c.+[ ]

+ κ2 B2〈 〉 2; M| 〉 0〈 | H.c.+[ ]

+ κ2 B†B〈 〉 1; M| 〉 1; M〈 | .
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Note that the density matrix ρA(M ≤ N) describes a
mixed state of the atomic ensemble. Unlike the density
matrices for symmetric Dicke states (6), ρA(M ≤ N) is
independent of both N and p = M/N. Therefore, the cor-
relations between M < N atoms are identical and are
independent of the total particle number N. This implies
that the state is robust to particle loss.

The atomic density matrix cannot be factorized
because of the correlation depending on photon statistics.
Consider two atoms described in terms of their respective
observables c1 and c2 such that [c1; c2] = 0. Setting M = 2
in (16), we have the two-atom density matrix

(17)

Using (17), we find that the covariance of the operators
c1 and c2 is determined by the electromagnetic field
variance:

(18)

If the field is not fluctuating in the sense that its vari-
ances are zero, i.e., 〈B2〉  – 〈B〉2 = 0 etc. (which is true in
the present case, e.g., for a coherent state), then there is
no correlation between atoms. Suppose that ck (k = 1, 2)
are dipole operators:

where the matrix element µ is real. Then the correlation
between two dipole moments depends on photon statis-
tics. We define the quadrature operator

Then, (18) implies that the covariance of the dipole
moments is determined by the variance of the quadra-
ture operator normally ordered with respect to the field
operators B and B† at θ = 0:

where

For coherent states, the variance is DN = 0. The dipole
moments are correlated both for a squeezed-state field
(with DN < 0) and for field in a classical state (with
DN > 0).

ρA 2( ) 00| 〉 00〈 | 1 2κ2 B†B〈 〉–( )=

+ κ B〈 〉 10| 〉 00〈 | 01| 〉 00〈 | H.c.+ +( )

+ κ2 B2〈 〉 11| 〉 00〈 | H.c.+( )

+ κ2 B†B〈 〉 10| 〉 01| 〉+( ) 10〈 | 01〈 |+( ).

c1c2〈 〉 c1〈 〉 c2〈 〉  = κ2 B2〈 〉 B〈 〉 2–( ) 0〈 |c1 1| 〉 0〈 |c2 1| 〉[–

+ B†B〈 〉 B†〈 〉 B〈 〉–( ) 1〈 |c1 0| 〉 0〈 |c2 1| 〉 c.c. ] .+

ck dk µ s01 k( ) s10 k( )+( ),= =

Xf B† iθ( )exp H.c.+=

d1d2〈 〉 d1〈 〉 d2〈 〉– µ2κ2DN ,=

DN Xf
2〈 〉 Xf〈 〉 2– B B†,[ ]〈 〉 .–=
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The necessary and sufficient condition for insepara-
bility of a mixed state is provided by the Peres–Horo-
decki criterion [9], which is valid for systems with Hil-
bert spaces of dimension 2 × 2 and 2 × 3. In the case
considered here, the state of a two-atom system
described by ρA(2) is inseparable (entangled) if at least
one eigenvalue of the (partial) transpose of the density
matrix with respect to the variables associated with one

of the atoms (e.g., ) is negative. As example, we
consider light in Gaussian and squeezed states.

For a Gaussian field (〈B〉  = 〈B2〉  = 0), expression (17)
reduces to the density matrix describing a superposition
of the ground and mixed states:

where a + 2b = 1 and a = 1 – 2κ2〈B†B〉 . The eigenvalues

of  are

Since  ≈ a/2 in the approximation consid-
ered here, we have the eigenvalues {b, b, a, 0}, i.e., a
separable state.

Consider the case of resonant interaction with sin-
gle-mode squeezed light (B = ga) generated, for exam-
ple, by a parametric oscillator. A simple model of the
oscillator is defined by the effective Hamiltonian

The solution is

where r = fτ is the squeezing parameter, τ is the normal-

ized length of the nonlinear medium, and a0 and  denote
the input field operators. For the initial vacuum state,

In this case, (17) reduces to the following density
matrix of a two-atom system:

(19)

The four eigenvalues of (2) are

(20)

ρA
T1 2( )

ρA 2( ) a 00| 〉 00〈 | b 01| 〉 10| 〉+( ) 01〈 | 10〈 |+( )[ ] ,+=

ρA
T1 2( )

λ b b
a
2
--- a2

4
----- b2+±, ,

 
 
 

.=

a2/4 b2+

H i"
f
2
--- a†2 H.c.–( ).=

a a0 rcosh a0
† r,sinh+=

a0
†

a〈 〉 0, a2〈 〉 a†2〈 〉 r r,sinhcosh= = =

a†a〈 〉 r.sinh
2

=

ρA 2( ) 00| 〉 00〈 | 1 2κ2 B†B〈 〉–[ ]=

+ κ2 B2〈 〉 11| 〉 00〈 | 00| 〉 11〈 |+( ) H.c.+[ ]

+ κ2 B†B〈 〉 10| 〉 10〈 | 01| 〉 10〈 | 10| 〉 01〈 | 01| 〉 01〈 |+ + +( ).

ρA
T1

λ 0 1
2
ns
---- rsinh

2
–

1
ns
---- r±( ) rsinhexp±, ,

 
 
 

.=
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To be specific, we set r > 0; i.e., we consider the state
squeezed with respect to canonical momentum or
phase. In this case, (–1/ns)sinhrexp(–2r) < 0. However,
it is clear that the degree of squeezing is low, because
the approximations used here imply that

(21)

Thus, the state of the atomic system is inseparable. This
behavior is explained as follows. Fluctuations of light
give rise to correlation between atoms, which leads to
two-atom coherence. When condition (21) holds, this
coherence plays the key role. Since absorption is weak,
the system is almost entirely in the ground state. As dis-
tinct from the case of Gaussian statistics, the density
matrix has the form

Note that the following two observations can be
inferred from this example. First, a steady entangled
atomic state can be created by using weak squeezed
light, which looks promising from an experimental per-
spective. Second, the entire ensemble cannot be inter-
preted as separable, because any pair in a group of
M ≤ N atoms is entangled, i.e., the quantum correlation
of the ensemble as a whole is robust to particle loss.

Since no reliable universally applicable criterion is
known for multiparticle entanglement, we apply the
Peres–Horodecki criterion to two two-level subsystems
and find that any pair of atoms in the ensemble can be
inseparable, which gives reason to interpret the state of
the entire system as inseparable.

Note also that spurious entanglement may be pre-
dicted by perturbation theory [28]. In that study, an
example of expansion of the product of two wavefunc-
tions in terms of a common classical parameter was
considered in which individual summands represent
entangled states. However, if entropy of entanglement
is used as a measure, then we have initially independent
systems, because the entropy is either quadratic in the
small parameter or zero in arbitrary-order perturbation
theory. Note that physical implementation of such
entangled states, i.e., preparation of an independent
state of a pair of entangled particles, requires projective
measurement in an entangled basis. The present analy-
sis also relies on perturbation theory, but we deal with
a different situation in both physical and formal sense,
in which interaction between particles gives rise to cor-
relation. The wavefunction obtained in first-order per-
turbation theory is not factorizable, and the correspond-
ing entropy of entanglement is zero to the correspond-
ing accuracy. This result is physically plausible,
because there is no correlation in first-order perturba-
tion theory. In our analysis, entanglement is predicted
by second-order perturbation theory, which describes
real emission and absorption processes conducive to

rsinh
2

ns
--------------- ! 1.

ρA 2( ) 00| 〉 00〈 | κ 2 B2〈 〉 11| 〉 00〈 | H.c.+[ ] .+≈
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correlation. In this order of perturbation theory, the
existence of quantum correlation is substantiated by
entanglement criteria consistent with approximation
accuracy.

6. EXACT SOLUTIONS
Radiative decay can be neglected in (2) when evolu-

tion over a time t ! γ–1 is considered, and the behavior
of the entire system is described by the wavefunction

where the initial states of the atoms and field are
assumed to be uncorrelated. Then, simple solutions can
be obtained under certain initial conditions.

Consider the mixing of modes a and b described by

(22)

where S = S10 and S† = S01. If analysis is restricted to
single-photon Fock states of the modes φf = c|01〉ab +
e|10〉ab , exact solutions can be written as

(23)

In the case of a single-photon process described by the
Hamiltonian

(24)

there also exist simple solutions. For example,

(25)

φ t( ) i" 1– Ht–( ) φA φf⊗( ),exp=

H i" f a†bS ab†S†–( ),=

i" 1– Ht–( ) c 01| 〉ab e 10| 〉ab+( )exp φA⊗

=  c 01| 〉 tf SS†( )cos




+ 10| 〉S† 1

SS†
------------ tf SS†( )sin





φA⊗

+ e 01| 〉S 1

S†S
------------ tf S†S( )sin–





+ 10| 〉 tf S†S( )cos




φA.⊗

H i"g aS a†S†–( ),=

i" 1– Ht–( ) c 1| 〉 0; N| 〉⊗ e 0| 〉+ 1; N| 〉⊗( )exp

=  c gt N( ) 1| 〉 0; N| 〉⊗cos




+
1

N
-------- gt N( ) 0| 〉sin 1; N| 〉⊗





+ e N gt N( ) 1| 〉 0; N| 〉⊗sin–{

+ gt N( ) 0| 〉cos 1; N| 〉 } ,⊗
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where |h; N〉  (h = 0, 1), represents the ground state |0〉 ⊗ N

of the atomic ensemble and a symmetric Dicke state
defined in accordance with (6). These solutions are
valid only under the restrictions imposed above on the
initial states. They describe exchange of excitation
between the cavity mode and the atoms.

7. GENERATION AND TRANSFORMATION 
OF SYMMETRIC STATES

Now, we use the exact solutions written out above to
analyze the evolution of symmetric Dicke states |h; N〉
in single-photon and wave-mixing processes.

First, consider the case when the spatial inhomoge-
neity of the field within the region occupied by the
atomic ensemble can be neglected. Setting φA = |h; N〉
in (25), we use (9) to obtain

(26)

where

Relation (26) entails possibilities of preparation of an
entangled from ground-state atoms (|0; N〉   |1; N〉)
and transformation of entangled states by changing the
number of excited atoms (|h; N〉   |h ± 1; N〉), includ-
ing disentanglement (|h; N〉   |h – 1; N〉   … 
|0; N〉).

Note that exact solutions (25) and (26) describe state
swapping, which can be used to map the state of light
onto atoms in order to store it in a long-lived atomic
ensemble, i.e., to implement quantum memory. In par-
ticular, an unknown superposition of photons can be
transferred to atoms and back by using the following
transformation entailed by (25):

(27)

α 01| 〉 β 10| 〉+( ) h; N| 〉⊗

α θh 01| 〉cos h; N| 〉⊗




+ h 1+
N h–
------------- θh 10| 〉sin h 1; N+| 〉⊗





+ β N h– 1+
h

---------------------- θh' 01| 〉sin–




h 1; N–| 〉⊗

+ θh' 10| 〉cos h; N| 〉⊗




,

θh tf h 1+( ) N h–( ),=

θh' tf h N h– 1+( ).=

α 1| 〉 β 0| 〉+( ) 0; N| 〉⊗

0| 〉 α 1

N
-------- 1; N| 〉 β 0; N| 〉+ 

  .⊗
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Similarly, (26) can be used to map an entangled state of
photons onto the atomic ensemble:

(28)

Solutions (25) and (26) make it possible to take into
account the spatial configuration of atoms in the ensem-
ble. For example, consider the interaction between a
one-dimensional array of atoms located at points x1, …,
xN and a single photon described by Hamiltonian (24)
with

where the operator s10(p) = |1〉p〈0| corresponds to the
atom located at xp (p = 1, …, N). Using (25), we can
show that

(29)

where θ = , and

(30)

Expression (30) implies that an array of entangled
atoms is created when θ = π/2. Note that ηN is the Dicke
state with j = m = N/2 – 1 only if

8. ENTANGLED ATOMIC ENSEMBLES

Solutions (23) and (25) imply that a photon and an
atomic ensemble are entangled via interaction. If pho-

α 01| 〉 β 10| 〉+( ) 0; N| 〉⊗

10| 〉 α 1

N
-------- 1; N| 〉 β 0; N| 〉+ 

  .⊗

S s10 p( ) ikxp( ),exp
p

∑=

1| 〉 0; N| 〉 θ 1| 〉cos 0; N| 〉⊗ ⊗
+ θ 0| 〉sin ηN 1( ),⊗

tg N

ηN
1

N
-------- ikx1( ) 10…0| 〉exp[ …+=

+ ikxN( ) 0…01| 〉 ] .exp

ikxp[ ]exp
p

∑ 0.=

A A A A A A A A A A

0 0 0 1

0 0 0 0

0 1

01

1

1

2

2

k n

nk

Unf

(a) (b)

Fig. 1. (a) Scheme for generating entangled states of atomic
ensembles. (b) Preparation of entangled states by correla-
tion of photocounts recorded by two schemes.
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tons are entangled (e.g., by projective measurement) in
a combination of such independent systems, then the
atomic ensembles will become entangled. We consider
optical measurement schemes based on this method,
known as entanglement swapping. The key resources
used in these schemes are sets of atomic ensembles cor-
related with respective photons, beamsplitters, and sin-
gle-photon detectors. The analysis that follows is
restricted to schemes in which only specific single-pho-
ton output is recorded.

As an initial state, we use the EPR pair

(31)

where Fock states are denoted by the subscript “f,”

|W〉  = |1; N〉/ , |0〉  = |0; N〉 . It is generated by the
mode mixing described by (22), where the mode b is a
classical wave. The state of n independent identical
ensembles entangled with respective photons is repre-
sented by the product

(32)

As illustrated by Fig. 1a, the photons associated
with atomic ensembles are injected into a system of
n − 1 beamsplitters with n input ports and n output
ports. Each beamsplitter performs the transformation

where  +  = 1 (k = 1, …, n – 1). The scheme is
described by a unitary operator Unf and characterized
by the following property. There exist an input port
optically coupled to every output port and an output
port optically coupled to every input port. In Fig. 1a, the
latter is output port 1. We call it the optical output port,
and the corresponding detector is called the output
detector. The scheme performs the transformation

(33)

where the coefficients tk and τk (k = 1, …, n) are deter-
mined by the transmittances and reflectances of the
beamsplitters, and

If the output detector detects a photon (which corre-
sponds to the state |1f 〉  = |1…0〉 , then there is a proba-
bility

(34)

Z W( ) a 0| 〉f 0| 〉 b 1| 〉f+ W| 〉 ,⊗ ⊗=

N

Zn W( ) Z W( )⊗ n an 1– b 10…0| 〉f W0…0| 〉⊗[= =

+ … 00…1| 〉f+ 00…W| 〉 ]⊗ … .+

01| 〉f ck 01| 〉f sk 10| 〉f ,+

10| 〉f sk 01| 〉f– ck 10| 〉f ,+

ck
2 sk

2

Unf 1…0| 〉 f t1 1…0| 〉f … tn 0…1| 〉f ,+ +=

Unf
1– 1…0| 〉 τ 1 1…0| 〉 … τ n 0…1| 〉f ,+ +=

tk
2

k

∑ τk
2

k

∑ 1.= =

Prob 1( ) an 1– b
2

=
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that an entangled state of atomic ensembles will be pre-
pared:

(35)

This scheme has the following property. Since the coef-
ficients q1, …, qn are completely determined by the
transmittances and reflectances of the beamsplitters,
weakly entangled states Z(W) can be used to prepare
highly entangled states atomic ensembles.

Let us consider several particular cases. If n = 2,
then q1 = c1 and q2 = s1, and we have an EPR pair of the
form

When c1 = s1 = 1/ , it is maximally entangled. If
n = 3 and q1 = c1c2, q2 = –s1c2, and q3 = s2, then we have

a W state. If c1 = –s1 = 1/  and c2 = , then

(36)

In particular, one can prepare the asymmetric state

When N = 1, it is unitarily equivalent to the GHZ state
and can be used as a quantum channel for teleportation
or dense coding [16].

Using correlation between photocounts in a combi-
nation of schemes considered above, mixed states of
atomic ensembles can be prepared, including insepara-
ble ones. For example, consider two independent iden-
tical schemes S2(X) combined as shown in Fig. 1b, with
three single-photon detectors in each scheme. If a pho-
ton is detected by either scheme, then we have the pair
of states

and

Suppose that the detector outputs are connected so that
a single photon produced by either scheme is counted.
This measurement is described by the projector
|1f0f 〉〈 1f0f | + |0f1f 〉〈 0f1f |. The resulting mixed state is
represented by a density matrix of the form

(37)

Its separability is an open question, because a necessary
and sufficient condition is known only for mixed sys-

1f〈 |Unf Zn W( )
Prob 1( )

--------------------------------- ηn W( ),=

ηn W( ) q1 W…0| 〉 qn 0…W| 〉 .+=

η2 W( ) EPR W( ) c1 W0| 〉 s1 0W| 〉 .+= =

2

2 2/3

η3 W( ) W W( ) = 
1

3
------- W00| 〉 0W0| 〉 00W| 〉+ +( ).=

W̃ W( ) 1

2
------- W00| 〉 1

2
--- 0W0| 〉 1

2
--- 00W| 〉 .+ +=

1f〈 |S2 X( ) 0f〈 |S2 X( )w⊗ η 2 X( ) 0,| 〉=

0f〈 |S2 X( ) 1f〈 |S2 X( )w⊗ 0 η, 2 X( )| 〉 .=

ρ X( ) 1
2
--- η2 X( ) 0,| 〉 η 2 X( ) 0,〈 |[=

+ 0 η2 X( ),| 〉 0 η2 X( ),〈 | ] .
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tems of dimension 2 × 2 and 2 × 3. However, if we
assume that N = 1, i.e., consider a combination of four
atoms instead of ensembles, then

and density matrix (37) describes a four-particle state:

(38)

Taking the state of the pair of atoms in the first scheme
defined by the two-particle reduced density matrix

we can apply the separability criterion. Since the trans-
pose of the density matrix with respect to the variables
associated with one atom has four eigenvalues one of

which is negative, {1/4, 1/4, (1 ± )/4}, the state of
this pair is inseparable (entangled). Therefore, the den-
sity matrix ρ(4) is inseparable.

9. HIERARCHICAL STRUCTURE OF STATES

Note that expression (35) is hierarchically struc-
tured. To illustrate this property, we consider a combi-
nation of schemes generating states of this type. As dis-
tinct to schemes using correlation of photocounts, we
consider optically connected schemes. If an elementary
scheme that performs the transformation Sn(X) =
UnfZn(W) with X = W (see Fig. 1a) records single-pho-
ton output, then the resulting state has the form of (35):

(39)

where w = 1/ . We define the optical output
port of the scheme Sn(X) as the one optically coupled to
every input port. In Fig. 1a, it is output port 1. The input
port of the scheme Sn(X) is defined as the optical input
port of the system of beamsplitters. Then, we can take,
for example, p independent schemes represented as
(Sn(X))p and use their optical outputs as the input of the
scheme Sp . As a result, we have a new scheme
Sp((Sn(X))p). If it records single-photon output, we have
an entangled state that consists of lower level entangled
states:

(40)

η2 X( ) Ψ+ 1

2
------- 01| 〉 10| 〉+( )= =

ρ 4( ) 1
2
--- Ψ+00| 〉 Ψ+00〈 | 00Ψ+| 〉 00Ψ+〈 |+( ).=

ρ 2( ) 1
2
--- Ψ+| 〉 Ψ+〈 | 00| 〉 00〈 |+[ ] ,=

2

1f〈 |Sn X( )w ηn X( ) τ1' X0…0| 〉= =

+ … τn' 00…X| 〉 ,+

Prob 1( )

1f〈 |Sp Sn X( )( )p( )w η p ηn X( )( )=

=  t1 ηn X( ) 0…0,| 〉 … t p 0 0 … ηn X( ), , ,| 〉 .+ +
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By virtue of (39), it can be represented as

(41)

Thus, we can formulate the following rule. The state
ηn(X) defined by (39) with n = n1n2…np can be repre-
sented as

(42)

This implies that the vector ηn(X) has the structure of an
entangled state with respect to any group of s particles,
where s is such that n/s is a natural number greater than
unity.

When the wavefunctions in state (35) or (40) are
symmetric, a hierarchically structured representation
can be obtained by using the permanent expansion
defined as a determinant with a summation rule for per-
mutations depending on symmetry [29]. In particular,
successive decomposition of a determinant with respect
to rows or columns and subsequent association of sum-
mands can be used to represent a permanent in terms of
permanents of lower dimension, which reflects hierar-
chical structure.

For example, when n = 6, it holds that

(43)

This state has the structure of an EPR pair or a W state:

This example demonstrates that the same state exhibits
a structure characteristic of entangled states of two dif-
ferent types. This property can be used in different
applications: the EPR pair can serve as a quantum chan-
nel for teleportation or dense coding, while the sym-
metric W state can be used for cloning.

To choose a particular structure defined by the
dimension of the Hilbert space of its element, appropri-
ate basis vectors and observables should be introduced.
In physical terms, this is equivalent to a two-level
approximation. Indeed, any group of s particles, where
s is such that n/s is a natural number greater than unity,
is represented in ηn(X) by two states, |0〉  = 0s and
ηs(X) = 1s . The group can be treated as a two-level par-
ticle (qubit) with basis vectors 0s and 1s . Such qubits
and hierarchically structured states ηn(X) can be used in
quantum information processing. By analogy with (30),
the vector ηn(X) represents a Dicke state only if

 = 0.

10. CONCLUSIONS

A model describing resonant interaction of identical
two-level atoms with a narrow-band radiation field is
used to analyze multiparticle entanglement. The inter-

η p ηn X( )( ) η pn X( ).=

ηn X( ) ηn1
ηn2

… ηnp
( )( ).(=

η6 X( ) η3 η2 X( )( ) η2 η3 X( )( ) ).= =

η3 η2 X( )( ) W EPR( ) EPR W( ).= =

τkk∑
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action is described by an effective Hamiltonian that
allows for various multiphoton processes. The statistics
of radiation and atoms are characterized by a density
matrix, for which solutions are calculated in second-
order perturbation theory in the interaction strength and
exact solutions are found in the case of negligible
decay. It is shown that the state of any pair of atoms
interacting with weak single-mode squeezed light is
inseparable and robust against decay. It is demonstrated
that symmetric entangled multiparticle states can be
generated by using optical schemes based on single-
photon projection. An optical scheme is described that
can be used to prepare highly entangled states of atomic
ensembles from weakly entangled states by projective
measurement.
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Abstract—The existence of a metastable cluster  with total spin S = 2 is predicted. The cluster consists of

two covalently bound excited spin-polarized triplet  molecules and is rectangular in shape. The electron

wavefunctions, the dependence of the energy of the  system on the distance between the  triplet mol-
ecules, the atomic spacing, the frequency spectrum of natural oscillations of the cluster, and other characteris-
tics are calculated from first principles. It is shown that the metastable state is formed if one of the excited 

molecules is in the  state, while the other is in the 3Πg state. The radiation lifetime τ of the metastable cluster

 is calculated; it is found to range from 100 to 200 s, which is much longer than the lifetime τ ≈ 20 s of the

triplet molecule ( ). The height U ≈ 0.5 eV of the potential barrier preventing the departure from the

local energy minimum is determined. The energy Eacc ≈ 9 eV/atom accumulated in the  cluster is calcu-
lated; this energy considerably exceeds the energy of known chemical energy carriers. It is shown that the accu-
mulated energy is released virtually completely during decomposition of the  cluster into individual
helium atoms. This means that helium clusters are a promising material with a high accumulated energy density
(HEDM). © 2005 Pleiades Publishing, Inc. 
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INTRODUCTION

One of the main goals in nanophysics and nanotech-
nologies is the synthesis of fundamentally new sub-
stances with required properties from the known ele-
ments of the Periodic Table. The “building block” of
such a substance is a cluster consisting of a small num-
ber of atoms (and having a size on the order of a nanom-
eter) and having the structure and properties radically
differing from those of the conventional condensed
substance.

If clusters are combined into an ensemble so that
they preserve their individual properties while remain-
ing bound to one another, they form a new material
(nanosubstance). A brilliant example is the carbon clus-
ter fullerene C60 discovered in 1985 [1]. An ensemble of
fullerenes (fullerite) possesses a large number of
unique properties. For example, fullerites exhibit ferro-
magnetism [2] and superconductivity [3], while famil-
iar carbon structures such as graphite and diamond are
semiconductors.

The question arises: is it possible to synthesize a
nanosubstance capable of storing and releasing large
amounts of energy? Large demand existing at present in
the new type of energy carriers is due to a considerable
gap between the characteristic energies of chemical and
1063-7761/05/10101- $26.000044
nuclear energy carriers. Another question: which chem-
ical elements should be used to obtain HEDM? In this
study, we give the following answer to these questions:
it is possible in principle to synthesize clusters of
helium, viz., an element that does not form a condensed
substance under normal conditions (i.e., at room tem-
perature and under atmospheric pressure).

We predict the existence of a metastable  clus-
ter consisting of four helium atoms and prove that the
energy accumulated in the cluster exceeds the energy
of available chemical energy carriers by more than
an order of magnitude (preliminary results were pub-
lished in [4]). The structure and energy parameters of
the  cluster and its stability and lifetime are
studied in detail from first principles. It is shown that
the energy accumulated in the cluster is released vir-
tually completely during its decomposition into indi-
vidual helium atoms.

It should be noted that helium is a representative of
a group of elements that do not form a condensed sub-
stance under normal conditions. This group also
includes nitrogen, oxygen, and some other elements. It
was shown in [4] that such elements may form metasta-
ble clusters whose binding energy decreases with
increasing number of atoms in a cluster (type II clusters

He4*
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 © 2005 Pleiades Publishing, Inc.
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according to terminology proposed in [4]). The energy
stored in type II clusters is released during decomposi-
tion of clusters into molecules or individual atoms.
Note that most chemical elements form type I clusters
(see [4]) whose binding energy increases with the num-
ber of atoms in a cluster, while the accumulated energy
is released upon merging of small clusters into large
ones.

It was noted earlier in [4] that type II clusters are for-
mally analogous to heavy metastable nuclei (e.g., of
uranium), while type I clusters are analogous to light
nuclei (e.g., deuterium). Indeed, the binding energy of
heavy nuclei decreases upon an increase in the number
N of nucleons in the nuclei, while the energy is released
during nuclear fission. On the contrary, the binding
energy in light nuclei increases with N, making nuclear
fusion advantageous from the energy point of view. We
studied the properties of type I and II clusters theoreti-
cally in [4] using carbon and nitrogen clusters, respec-
tively, as examples.

As motivation for such a choice of chemical ele-
ments, let us consider the total energy E({Ri}) of a clus-
ter consisting of N atoms as a function of coordinates of
all atoms, {Ri}, i = 1, …, N. The minima of E({Ri})
correspond to different structures that can be formed by
these atoms. The global minimum with the lowest
energy E0 corresponds to the so-called ground state of
the system. This minimum is restricted by an infinitely
long barrier ensuring an infinitely long lifetime in the
ground state (in the absence of external effects). Most
of the substances existing in nature are in the ground
state.

The remaining (local) minima with energy En > E0

correspond to metastable structures. The lifetime of a
metastable structure is finite since there is a finite prob-
ability of transition of the system to the ground state
with release of energy Eacc = En – E0 stored in the meta-
stable state. It should be noted that the lifetime τ of a
metastable structure may be very long (e.g., many years
in the case of diamond) since the quantity τ is an expo-
nential function of temperature, τ(T) = τ0exp(U/kBT),
where U is the height of the energy barrier separating
the metastable state from the ground state, τ0 is a micro-
scopic value on the order of 1 fs–1 ps, and kB is the
Boltzmann constant.

Since nitrogen, oxygen, and hydrogen, as well as
noble gases (like helium), do not form a condensed
substance under normal conditions (we disregard con-
densation due to very week Van der Waals forces), we
can assume that clusters of these elements do not pos-
sess a global minimum of the total energy E({Ri}). At
the same time, local minima (if they exist) must obvi-
ously be formed for relatively high energies (other-
wise they would have been observed experimentally).
It follows hence that, first, metastable structures of
helium, nitrogen, and other elements of this group
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
must accumulate large amounts of energy and, sec-
ond, release of energy during a transition from a meta-
stable to the ground state must take place during
decomposition of clusters into atoms (e.g., He) or
molecules (e.g., N2). This leads to virtually complete
release of accumulated energy, which is a consider-
able advantage of such structures as prospective
energy carriers.

The available experimental and theoretical data
indicate that helium atoms in the ground state do not
form clusters Hen (n = 2, 3, 4, …) with covalent bonds.
However, it was demonstrated experimentally in [5]
that a metastable covalently bound cluster (triplet mol-

ecule)  in the excited state , which was studied
theoretically in [6, 7], exists. Figure 1 shows schemati-
cally the filling of orbitals of the  molecule with
electrons. Three electrons occupy “inner” orbitals
formed by atomic 1s orbitals, while the fourth electron
is on the “outer” excited orbital formed by atomic 2s
orbitals. It is important to note that the  molecule
is in the triplet state with total spin S = 1 (see Fig. 1),
which increases its stability and lifetime due to the pro-
hibition on recombination imposed by the Pauli exclu-
sion principle.

The triplet  molecule accumulates energy
approximately equal to 9 eV/atom and releases this
energy during decomposition into helium atoms. This
was confirmed experimentally in [5]. Thus, the 
molecule may play the role of a building block whose
properties radically differ from the properties of con-
ventional helium. The question arises: can an ensemble
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Fig. 1. Diagram of electron filling of orbitals of the 

molecule in the triplet state  with total spin S = 1.
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of  molecules be formed? In such an ensemble, the

building blocks  can be treated as quasi-atoms [4].

In the present paper, a search for such ensembles is
carried out on the basis of ab initio calculations. As the
first step, we theoretically analyze a  cluster con-

sisting of two  quasi-atoms. It is shown that the
formation of such a cluster is possible in principle due
to overlapping of the wavefunctions of outer electrons.
The total spin of this cluster is S = 2; i.e., it is in the “fer-
romagnetic” state. It is found that the energy accumu-
lated in the  cluster is approximately twice as high

as the energy stored in the excited  molecule; i.e.,
the specific energy Eacc ≈ 9 eV/atom accumulated in the

 cluster virtually does not change upon fusion of

two triplet molecules (quasi-atoms)  into the 

cluster. The radiation lifetime of the  cluster is esti-
mated (τ ~ 100 s) and is found to be an order of magni-
tude longer than the lifetime τ ~ 10 s of the triplet 
molecule.

The paper has the following structure. The compu-
tational methods used by us are described in Section 2.
In Section 3, the results of calculation of the electron
structure of the triplet  molecules and the energy
accumulated in them are considered. The radiation life-

time of the  molecule in the  state is calculated
in Section 4. The structural and energy characteristics
of the metastable  cluster are determined in Sec-
tion 5, where the accumulated energy of the cluster is
calculated. The radiation lifetime of the  cluster is
obtained in Section 6. The results are briefly discussed
in the Conclusions.

2. COMPUTATIONAL METHODS

In theoretical analysis of metastable states of small
atomic clusters, even most advanced ab initio methods
of calculation often lead to contradictory results (see,
for example, [8] and the literature cited therein). This is
observed when the energy difference for two or several
states of a cluster is comparable to the error of the
method, which amounts to not less than 0.1–1 eV as a
rule. For describing known structures, one chooses a
method which leads to correct results for physical
quantities whose values are already known from exper-
iments (e.g., the bond lengths and the binding energy).
A completely different situation takes place when char-
acteristics of new physical objects which have not been
discovered or experimentally studied, must be sought
and calculated. The results can be treated as authentic
only if the data obtained by different methods coin-
cided to a reasonable degree of accuracy.
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In view of the above arguments, we calculated the
energies and wavefunctions of helium clusters using
several different ab initio methods, including the con-
ventional unrestricted Hartree–Fock method (UHF)
[9], the Hartree–Fock method with the second-order
Møller–Plessett correction (MP2) [9], the density func-
tional method [10, 11] in the local density approxima-
tion (LDA) [12], and the density functional method
with the exchange-correlation functional proposed in
[13, 14] (B3LYP). Some calculations were made using
the GAMESS program (General Atomic and Molecular
Electronic Structure Systems) [15, 16]. We performed
calculations with various sets of basis functions to
attain the convergence upon an increase in the number
of functions in the basis. For the triplet molecule ,
we strove to attain correspondence to the data obtained
by the configuration interaction method in the frame-
work of the self-consistent field theory (SCF-CI) [6]. In
most cases, admissible accuracy was attained by using
a basis (7s5p2d) formed by the s, p, and d orbitals of
each atom.

3. METASTABLE  MOLECULES

It is well known that two helium (He) atoms, each of
which is in the ground state, do not form a covalently
bound He2 molecule. If, however, one of the helium
atoms is in the excited state He*,  metastable mol-
ecules can be formed. Henceforth, we will be interested

in triplet molecules  and (3Πg) with
total spin S = 1. It is these molecules that claim to be
building blocks for spin-polarized ensembles 

(see Introduction). In the  molecule, elec-
trons with spin up occupy three molecular α orbitals
(1sσg, 2pσu, 2sσg), while one electron with spin down
occupies the β orbital (1sσg), which corresponds to
configuration |↑↓ 1, ↑ 2, ↑ 3〉  (see Fig. 1). Orbitals 1sσg

and 2pσu are bonding and antibonding orbitals, respec-
tively, which are formed upon overlap of atomic 1s
wavefunctions, while the 2sσg orbital is a bonding
orbital that is formed from atomic 2s functions. The

 molecule is long-lived on atomic time scale
(its lifetime is τ ~ 10 s [5–7]) and has been studied in
detail both theoretically and experimentally.

In the triplet molecule (3Πg), the excited elec-
tron occupies the orbital formed from atomic 2p func-
tions. This molecule is also metastable [6], but its radi-
ation lifetime is very small with respect to the transition

to the  state.

To verify and finalize our computational techniques,
we performed detailed calculations of wavefunctions,
energy, and other characteristics of  molecules by
various methods (see Section 2). Self-consistent single-
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electron wavefunctions of the  molecule are
shown in Fig. 2. The wavefunctions calculated by dif-
ferent methods are almost identical and have the same
shape as the corresponding single-electron wavefunc-

tions of the molecular ion  [9].

Figure 3a shows the dependences of the total energy

E of the  system on distance R between the
atoms, which were calculated by different methods
(including those described in the literature [6]). It can
be seen from the figure that the E(R) curve exhibits a
local minimum for the atomic spacing R0 ≈ 2aB for all
the methods used. The curves depicted in the figure
have almost identical shapes and differ only in a shift

along the energy axis. The triplet molecule 
has a single vibrational mode. Its frequency, which is
determined by the curvature of the E(R) curve at the
point of minimum, is real-valued. The presence of the
local minimum on the E(R) curve indicates that the

 molecule is metastable. The height U of the
potential barrier preventing the escape from the local
minimum depends on the computational method and
amounts to 1.1–1.7 eV.

To calculate the energy accumulated in the

 molecule, we calculated the energy of the
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Fig. 2. Self-consistent single-electron wavefunctions of the

metastable  molecule in the triplet state  with total

spin S = 1 along the line passing through the atoms (y = z = 0).
Helium atoms are located at points with coordinates
(±aB, 0, 0). The solid curve corresponds to the first α
orbital, the dotted curve is the second α orbital, and the
dashed curve describes the third α orbital (the wavefunc-
tions of the β orbital and the first α orbital are almost indis-
tinguishable).
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He2 system formed by two helium atoms in the singlet

ground state  with total spin S = 0 (see Fig. 3b).
Each of the two lower α (spin up) orbitals and β (spin
down) orbitals are occupied by two electrons, which
corresponds to configuration |↑↓ 1, ↑↓ 2〉 . It can be seen
from Fig. 3b that the energy as a function of atomic
spacing has no local minimum; i.e., atoms in the ground
state do not form a He2 molecule. We can now estimate

Σ1 +
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Fig. 3. Dependence of total energy E on distance R between

atoms for the  system consisting of two helium atoms

in the triplet state  with total spin S = 1 (a) and for a sys-

tem of two helium atoms in the singlet state  with total
spin S = 0 (b). Quantities E and R are expressed in atomic
units (me4/"2 and "2/me2, respectively). Calculations are
performed by the UHF (fine dotted curve), MP2 (bold dot-
ted curve), LDA (fine dashed curve), and B3LYP (bold
dashed curve) methods. The results of calculations based on
the SCF-CI method [6] (solid curve) are shown for com-
parison.
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the energy difference in the triplet excited 

state and the singlet ground He2( ) state for R ≈ 2aB .
This value depends insignificantly on the computa-
tional method and amounts to 14–15 eV. The end prod-

uct of decomposition of the  molecule are

two He atoms in the singlet 1s2 states, separated from

each other. The difference Eacc = E( ) – 2E(He) ≈
18 eV ≈ 9 eV/atom is the energy accumulated in the

 molecule. The accumulated energy can be
released, for example, due to emission of a photon by
the electron occupying the third α orbital upon its
transition to the second β orbital (see Fig. 1) with spin
flip.

Analogous calculations were performed for the trip-

let molecule . Like the above data, the results
of these calculations are also in good agreement with
the familiar experimental and theoretical results. Thus,
we confirmed the results available in the literature and
verified the reliability of our computational methods.

4. THE LIFETIME 

OF THE TRIPLET MOLECULE 

The lifetime of the metastable state is the question
of fundamental importance. The experimentally mea-

sured lifetime of the triplet molecule  is τ =
13 ± 2 s [5], which is in accordance with the results
of numerical theoretical calculations (τ ≈18 s [6] and
10 s [7]). The long (by atomic standards) lifetime of the
spin-polarized state is associated with the prohibition
imposed by the Pauli exclusion principle on electron
transitions.

To verify and finalize the computational technique,
we calculated the lifetime of the metastable triplet mol-

ecule . The total-spin prohibition imposed

on the transition    is removed if we take
into account the spin-dependent relativistic corrections

in the Hamiltonian of the interaction of  with the
electromagnetic field. As a result, the probability of the

radiative transition    becomes nonzero,

although contains a small factor on the order of α4 as
compared to the probability of the conventional (spin-
allowed) dipole transition. Here, α = e2/"c is the fine
structure constant, e is the electron charge, " is the
Planck constant, and c is the velocity of light.
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Retaining the terms of the same powers in α in the

Hamiltonian  describing the interaction of electrons
with the photon field [17], we obtain

(1)

where m is the electron mass; sj , rj , and  are the
Pauli matrix, coordinate, and momentum operator of
the jth electron, respectively; rjk = rj – rk , rjn = rj – Rn ,
Rn being the coordinate of the nth helium atom; Z = 2;
and H = curlA and E = –(1/c)(∂A/∂t) are the magnetic
and electric fields of a photon, respectively. Vector
potential A at the locus of the jth electron has the form

of a linear combination of operators of creation, ,

and annihilation, , of a photon in a state with wave
vector k and polarization λ:

(2)

where V is the normalization volume; ωkλ = kc is the
photon frequency; ekλ are the unit vectors of photon
polarization (λ = 1, 2); and k · ekλ = 0 in the calibration
divA = 0. Summation over j and j' in Eq. (1) is carried
out over all electrons.

In the initial state |i; 0kλ〉 , photons are absent and the
electron subsystem is described by the wavefunction
Ψi({rj}, {σj}) corresponding to the configuration

|↑↓ 1, ↑ 2, ↑ 3〉   and depending on the coordinates
and spin projections of all electrons. In the final state
|f; 1kλ〉, one photon (k, λ) is present, and the electron sub-
system is described by the wavefunction Ψf ({rj}, {σj})

corresponding to the configuration |↑↓ 1, ↑↓ 2〉  .
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The probability of the |i〉   |f 〉  transition per unit time
is determined by the Fermi golden rule,

(3)

where Ei and Ef are the total energies of the initial and
final states of the electron subsystem, respectively, and
the δ function reflects the energy conservation law in
the case of emission of a photon, Ei = Ef + "ωkλ . The
lifetime of the metastable state is given by

(4)

The calculation of Wi → f is reduced to the calcula-
tion of matrix elements

(5)

where operators ({rj}, { }) are determined by the
form of the terms in the interaction Hamiltonian (1).
Since the energy difference between the initial and final
states is Ei – Ef ~ 10 eV, the wavelength

of the emitted photon is much larger than the size of the
 molecule; consequently, we can expand the expo-

nent exp(–ik · r) in formula (2) into a Taylor series in
powers of k · r. Each subsequent term in this expansion
introduces an additional small factor α. Taking into
account the orthogonality of the electron wavefunctions
of the initial and final states, retaining in expression (1)
only the terms of the same order in α after expanding
exp(−ik · r) in powers of k · r, and taking into consid-
eration the identity

we obtain the following expression from (3) after eval-
uating the sum over photon polarizations, integrating
over angles, and averaging over the initial spin states
and summing over the final spin states:

(6)
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Here, aB is the Bohr radius, ∆Eif = Ei – Ef ,

(7)

and all quantities with dimensions of energy and length
are expressed in atomic units (me4/"2 and "2/me2,
respectively).

Numerical calculation of matrix elements (7) using
the wavefunctions obtained by the UHF, MP2, and
LDA methods leads to values of radiative transition
probability Wi → f = 3.0 × 10–2 s–1, 4.1 × 10–2 s–1, and
4.3 × 10–2 s–1, respectively; this corresponds to life-
times τ = 33, 24, and 23 s, respectively. These values of
τ are in qualitative agreement with experiment (τ =
13 ± 2 s [5]), as well as with the available results of
numerical calculations (τ ≈ 18 s [6] and τ ≈ 10 s [7]). A
certain spread in theoretical results is apparently due to
the difference in the method of numerical solution of
the multielectron Schrödinger equation. Thus, we have
confirmed the known results and proved the reliability
of our approach to calculating the radiation lifetimes of
metastable helium systems.

5. METASTABLE CLUSTER 

It was shown in Section 3 that the triplet molecule
 in excited state possesses properties radically dif-

fering from the properties of helium in the conventional
ground state. Indeed, the  molecule is a covalently
bound object with a large amount of accumulated
energy, which is subsequently released during decom-
position into helium atoms. This molecule has quite a
long radiation lifetime and is thermally stable. The
question arises: can triplet molecules  form ensem-
bles such that the above-mentioned properties will be
preserved? In other words, can the  molecule play
the role of a building block in the formation of metasta-
ble helium structures (see Introduction)?

As the first step, it is natural to consider an ensemble
of two  molecules. The following physical consid-
erations (which were given for the first time in [4]) raise
hopes for such a formation. First of all, let us pay atten-
tion to the spatial distribution of electron density in the

 molecule (see Fig. 2). Three electrons on the
lower orbitals are localized near the nuclei, while the
fourth (excited) electron has a much larger localization
radius. For this reason, the  molecule is analogous
to an atom with partly filled lower orbitals and a single
“outer” electron. For brevity (and better visualization),
following [4], we will refer to  as a quasi-atom.
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The problem is thus reduced to the formation of an

ensemble (cluster)  of two quasi-atoms  due
to the covalent bond formed by two excited electrons
(see Fig. 4), electron configuration |↑↓ 1, ↑↓ 2, ↑ 3, ↑4,
↑ 5, ↑6〉 . There are reasons to believe that the spins of the
outer bonding electrons will be aligned parallel to each

other so that the total spin of the  cluster becomes
S = 2 and the “ferromagnetic” state will appear (see
Fig. 4). This is very important for improving stability
and for increasing the lifetime since the Pauli exclu-
sion principle will prevent recombination (as in the

case of ). This is the case, for example, in the O2

molecule, in which the spins of the outer electrons are
parallel (in accordance with Hund’s rule, calculations,
and experiment; see [18]). Finally, we can expect that

 quasi-atoms (building blocks) preserve their

individual properties in the  ensemble (cluster)
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He2*

He2*

He4*

Fig. 4. Diagram of electron filling of orbitals of the 

cluster with total spin S = 2.

He4*

R0

R1

Fig. 5. Metastable  cluster with total spin S = 2, formed

from two triplet  molecules (quasi-atoms); R0 is

atomic spacing in  quasi-atoms; R1 is the distance

between  quasi-atoms.

He4*

He2*

He2*

He2*
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since the orbits of the outer and inner electrons differ
substantially.

In this section, we consider the results of calcula-
tions, which prove the existence of the  cluster
whose properties virtually coincide with those
described above. It should be noted above all that we
can expect various geometrical configurations of
helium atoms in the  cluster, e.g., in the form of a
one-dimensional chain, rectangle (see Fig. 5), etc. Using
the theoretical approaches described in Section 2, we
performed numerous calculations of the total energy of
various configuration of the  system with spin
S = 2 as a function of the distance between quasi-atoms

. In addition, we calculated the vibrational spec-
trum which can be used to judge on the stability of a
certain atomic configuration.

A large number of studied configurations proved to
be unstable (in particular, the configuration in the form
of a 1D chain). In this case, it was shown that the energy
as a function of spacing between the  quasi-atoms
has a minimum. However, such an atomic configuration
is not metastable since it is not stable to transverse dis-
placements of the atoms (the vibrational spectrum con-
tains the corresponding imaginary frequencies). In
other words, this configuration is a saddle point on the
energy surface (dependence E({Ri}) of the total energy
of the system on the coordinates of all atoms).

We have found only one metastable configuration in
which the  cluster has the shape of a rectangle (see
Fig. 5). The spacing between helium atoms in each

 quasi-atom is R0 ≈ 2aB and is virtually the same as

the distance between helium atoms in an isolated 
quasi-atom. Figure 6 shows the dependence of the total
energy E of the  system on distance R between the

 quasi-atoms.

It can be seen from Fig. 6 that, for all computational
methods used, quantity E has a minimum for the same
distance R1 ≈ 6aB between quasi-atoms. All frequencies

in the vibrational spectrum of the  cluster are real-
valued (the minimal frequency is 174 cm–1). It can be
concluded that the configuration of  depicted in
Fig. 5 corresponds to a local minimum of E({Ri}) and
is metastable. The height of the potential barrier restrict
the local minimum is U ≈ 0.5 eV and depends on the
method of calculation only slightly.

Figures 7a–7f show the self-consistent single-
electron wavefunctions of six α orbitals (spin up) of
the  cluster. The wavefunctions of two β orbitals
(spin down) cannot be visually distinguished from
the corresponding wavefunctions of the α orbitals

He4*

He4*

He4*

He2*

He2*

He4*

He2*

He2*

He4*

He2*

He4*

He4*

He4*
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(see Figs. 7a and 7b). In accordance with the physi-
cal pattern described above, Fig. 7 clearly demon-
strates that six “lower” electrons (four α orbitals and
two β orbitals) are localized at quasi-atoms, while
the two “upper” electrons are delocalized between
the quasi-atoms and form the covalent bond between
them.

Our analysis shows that the state of the  cluster
with the set of self-consistent one-electron wavefunc-
tions depicted in Fig. 7 (we will call it the |A〉  state) is
not the only eigenstate of the  system with total
spin S = 2. This follows, in particular, from the presence

of a kink on the E(R) curves for  ≈ 8.5aB (see Fig. 6),
which indicates that, with increasing R, the system
passes from state |A〉  to a certain state |B〉  with another
symmetry of the multielectron wavefunction. This is
due to the fact that the energy EA(R) of state |A〉  is

smaller than the energy EB(R) of state |B〉  for R < ,

while EB(R) < EA(R) for R > .

It can be shown that the  cluster in state |A〉  is

formed from quasi-atoms  and (3Πg)
(see Section 3), while in state |B〉  it is formed from two

quasi-atoms . To be more precise, the
wavefunction of the sixth α orbital in state |A〉  is a
symmetric superposition of atomic 2pz functions (the
z axis is perpendicular to the plane of the cluster; see
Fig. 7f) or, alternatively, a symmetric superposition
of molecular 2pπu functions; it is equal to zero in the
plane of the cluster (z = 0) and has different signs for
z > 0 and z < 0. In state |B〉 , the wavefunction of the
sixth α orbital is an antisymmetric superposition of
molecular 2sσg functions (the wavefunctions of the
remaining orbitals in states |A〉  and |B〉  are almost
identical).

To verify the above idea, we calculated the energy of
the system in states |A〉  and |B〉 . Figure 8 shows the
dependences of EA and EB on R, which were calculated
by the MP2 method. The shape of the EA(R) and EB(R)

curves and their intersection for R =  explain the rea-
son for the kink on the E(R) curve in Fig. 6. Another
fundamental result following from the shape of the
EA, B(R) dependences is that the deepest local minimum

(and, hence, the highest stability) of the  cluster is
realized in state |A〉 . It should be noted that the depth of
the minimum in state |B〉  is very small and is within the
computational error. Thus, the  cluster should be

formed from  quasi-atoms in states  and 3Πg .

Let us estimate the energy accumulated in the 
cluster. The end products of the decay of the metastable
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R̃
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u( ) He2*
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He4*
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u
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 cluster are four He atoms in the singlet 1s2 states.

The difference Eacc = E( ) – 4E(He) is the energy

accumulated in the metastable state. This energy can be
released in the form of photons emitted during succes-
sive spin flips of two electrons and the passage of these
electrons from excited α orbitals to the lower β orbitals
as well as in the form of the kinetic energy of helium
atoms (as the total spin changes from S = 2 to S = 1 and
further to S = 0, the system of four helium atoms
appears to be in the states which do not correspond to
the local minimum of the total energy as a function of
the coordinates of the atoms; i.e., these states are not
metastable and hence decay into individual atoms). Our
calculations give Eacc = 33–36 eV for the energy accu-

mulated in the  cluster, which is approximately

twice as large as the energy Eacc = E( ) – 2E(He) ≈

18 eV accumulated in the triplet  molecule. Thus,

the specific value of accumulated energy (recalculated
per helium atom) Eacc ≈ 9 eV/atom is virtually the same

for  and . This is due to the fact that the inter-

action between quasi-atoms  in the  cluster is

much weaker than the interaction between two He

atoms in the  quasi-atom (which is manifested in the
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Fig. 6. Total energy E of the  system of four helium

atoms with total spin S = 2 as a function of distance R

between  quasi-atoms (see Fig. 5). Calculations were

made using the UHF (1), LDA (2), MP2 (3), and B3LYP
(4) methods.
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Fig. 7. Self-consistent single-electron wavefunctions of the six lower α orbitals of the metastable  cluster with total spin S = 2

(state |A〉) (see Figs. 4 and 5). Helium atoms are located at points with coordinates (±3aB, ±aB, 0); z = 0 (a–e) and 0.25aB (f) (see
text). The wavefunctions of the two β orbitals are almost indistinguishable from the wavefunctions of the corresponding two lower
α orbitals (a, b).

He4*
strong difference between the corresponding bond
lengths; see Fig. 5).

6. LIFETIME OF THE  CLUSTER

Let us determine the lifetime of the  cluster. To
our knowledge, this question has not been considered in
the literature so far. A metastable  cluster with

He4*

He4*

He4*
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S = 2 may pass to the final state of the system of four
helium atoms with S = 0 by emitting photons. This tran-
sition occurs via an intermediate state with spin S = 1,
in which five electrons occupy α orbitals and three elec-
trons occupy β orbitals (electron configuration |↑↓ 1,
↑↓ 2, ↑↓ 3, ↑4, ↑5〉). Such a transition occurs upon spin
flip of one of the excited electrons. Since the intermedi-
ate state for the configuration of four helium atoms
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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Fig. 7. (Contd.)
depicted in Fig. 5 has no local minimum, this state
decays very rapidly. Thus, the lifetime τ of the 
cluster is in fact determined by the time of its transition
to the state with S = 1.

To calculate τ, we used formulas (6) and (7), in
which the initial state is state |A〉  (see Section 5), while
the state with S = 1 plays the role of state | f 〉 . There
exist several intermediate states with spin S = 1. For
illustration, we consider here two of such states,
|I〉  and |II〉 . State |I〉  has the lowest possible energy for
S = 1. It can be obtained as a result of transition of an

He4*
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excited electron from the atomic pz orbital; conse-
quently, the pz component of all orbitals in state |I〉  is
zero (in this case, the self-consistent single-electron
wavefunctions have the same form as the wavefunc-

tions of the lower five α orbitals of the  cluster; see
Fig. 7). For this reason, matrix elements rif and aif in
formula (7) are equal to zero. Consequently, the proba-
bility Wi → f of the electron transition to state |I〉 vanishes
due to different symmetries of the wavefunctions of the
initial and final states.

He4*
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In the intermediate state |II〉 , one of the orbitals has
a pz component. The energy of this state is higher than
the energy of state |I〉 . We calculated the multielectron
wavefunction of state |II〉  and proved that the self-con-
sistent single-electron wavefunctions of the four lower
α orbitals and three β orbitals have the same form as the
wavefunctions of the corresponding orbitals of the 
cluster (see Fig. 7), while the wavefunction of the fifth
α orbital is a superposition of the atomic 2pz functions

like the sixth α orbital of the  cluster.

He4*

He4*
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As in the case of the triplet  molecule, we cal-
culated matrix elements rif and aif (see formula (7))
using the wavefunctions determined by different meth-
ods. For the radiative transition probability Wi → f , we
obtained values of 4.7 × 10–3 s–1, 6.9 × 10–3 s–1, and
1.05 × 10–2 s–1 using the UHF, MP2, and LDA methods,
respectively; this corresponds to lifetimes of τ = 213, 144,
and 95 s, respectively. Although the results obtained by
different methods differ substantially, it can be con-
cluded that the radiation lifetime τ = 100–200 s of the

He2*
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metastable spin-polarized  cluster is approxi-
mately an order of magnitude longer than the lifetime
τ ≈ 20 s of the triplet  molecule. The possible rea-
son for this increase in the lifetime is associated with
the emergence of a new type of symmetry (such as the
translational symmetry in large systems).

7. CONCLUSIONS

The helium  cluster studied here is the simplest

ensemble, consisting of two quasi-atoms 

and (3Πg). We also obtained preliminary results
indicating the possibility of the existence of large
ensembles ( )N up to N = 8. The specific energy
Eacc ≈ 9 eV/atom accumulated in such ensembles is the
same as in the  cluster.

Using  and  as examples, we proved that
the radiation lifetime τ of the metastable state increases
with the number of atoms in the system. Consequently,
there is hope that ensembles ( )N with N > 2 will be
even more long-lived. In addition, our calculations indi-
cate that the charged ( )+ cluster is also metastable.
This makes it possible to detect experimentally meta-
stable helium clusters using standard mass-spectro-
scopic methods [19, 20].

It should be noted that a certain analogy exists
between the ( )N ensembles and the so-called Ryd-
berg systems, which were studied in detail in [21] for
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He2*
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He4*

He2* He4*

He2*
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He2*
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Fig. 8. Energies EA (solid curve) and EB (dotted curve) of

two eigenstates of the  system with total spin S = 2 as

a function of distance R between the  quasi-atoms (see

text). Calculations were performed by the MP2 method.
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alkali metals. However, the fundamental difference is
that alkali metals are condensed under normal condi-
tions and form type I clusters. On the contrary, spin-
polarized helium clusters (type II clusters) are formed
only in excited states from blocks (quasi-atoms); such
systems have no global energy minimum as a function
of atomic coordinates and accumulate large amounts of
energy.
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Abstract—An equation describing the dynamics of plasma wave generation by a short intense laser pulse is
analyzed to find a relation between the difference in mean-square pulse frequency before and after laser–matter
interaction and the electric field amplitude in the wakefield plasma wave generated by the laser pulse. This rela-
tion can be effectively used in systems for wakefield diagnostics. The relation is applied to several geometries
of interaction between a pulse and an ionizing gas or preformed plasma. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Analysis of spectral characteristics of electromag-
netic radiation after interaction with matter has impor-
tant advantages as a method for investigating the pro-
cesses taking place in the medium, in comparison with
other diagnostic methods. In this optical method, the
effect of the diagnostic intervention required to obtain
the desired information about the processes in question
is relatively weak (e.g., see [1]). In view of the current
progress in ultrashort pulse optics, the rapid develop-
ment of the processes associated with laser–matter
interactions is particularly important for practical appli-
cations. The only approach that can ensure a high tem-
poral resolution in studies of these processes is optical
measurement (e.g., see [2–4]). Furthermore, the most
promising optical diagnostic methods would be those
in which spectral characteristics of an intense laser
pulse are measured after interaction with matter with-
out using additional electromagnetic field (probe
pulse).

In the method proposed in [5], the mean-square
pulse frequencies before and after interaction with mat-
ter measured in the wave zone relative to the interaction
region are used to evaluate integral characteristics of
electric field and current in that region for arbitrary
focusing geometry and incident laser intensity. In par-
ticular, the difference in mean-square pulse frequency
before and after interaction with an ionizing medium is
related to the pulse field strength in the ionization
region. In [6], the method was extended to an arbitrary
even power of frequency averaged over an appropriate
spectral density. Since a power of frequency averaged
over an appropriate spectral density is a moment of the
spectral density, the spectral density of a beam that has
passed through the interaction region is completely
determined by the integral characteristics of electric
field and current in that region. Accordingly, the
1063-7761/05/10101- $26.00 0056
method developed in [5, 6] was called moment method.
Note that moments of a spectral density, being integrals
of frequency, provide a spatiotemporal characterization
of the interaction between electromagnetic field and
matter in this method.

A short laser pulse interacting with a preformed
plasma generates relatively long-lived wakefield
plasma waves, which can be used to accelerate elec-
trons to ultrarelativistic energies [7]. Due to plasma
wave generation, the pulse propagates in a rapidly vary-
ing medium and its spectrum changes. In [8], the
moment method proposed in [5, 6] was extended to the
case of weakly damped plasma waves. It was found that
the difference in mean-square pulse frequency before
and after interaction with the generated plasma wave is
determined by the electron-density disturbance and
laser field intensity in the region of plasma wave gener-
ation, as well as by the plasma wave amplitude after the
interaction.

In this paper, an equation describing the dynamics
of plasma wave generation by a laser pulse is analyzed
to find a relation between the difference in mean-square
pulse frequency before and after interaction and the
electric field amplitude in the wakefield plasma wave
generated by the laser pulse. We analyze generation of
wakefield plasma waves in several geometries (“free”
and channeled Gaussian laser pulse and pulse propaga-
tion in a capillary tube), assuming that the pulse dura-
tion is nearly resonant [9]. Since no satellites are gener-
ated at multiples of the plasma frequency in this case
(e.g., see Fig. 6 below), treatment of the effect of
plasma wave generation on the pulse based on the con-
ventional theory of parametric processes [10, 11] can-
not be used for diagnosing the wakefield plasma wave.
However, the present theoretical analysis relying on
general relations between moments makes it possible to
determine the frequency shift for a moderate-intensity
© 2005 Pleiades Publishing, Inc.
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laser pulse due to wakefield generation as a function of
both material and pulse parameters. In particular, we
show that the frequency shift is proportional to the
pulse propagation distance in a channel or capillary for
a weakly damped mode. Note also that the moment-
based theory is consistent with general conservation
laws and can therefore be used to verify the accuracy of
numerical simulations.

Since self-consistent computations of nonlinear
propagation of short intense laser pulses agree with the
analytical results obtained here, these results can be
used as a basis for an effective optical technique for
diagnosing the plasma wakefields generated by such
pulses in experiments on acceleration of electrons to
ultrarelativistic energies.

2. MODEL

Self-consistent equations describing the dynamics
of ultrashort laser pulse propagation in a gas, including
ionization and ensuing plasma wave generation in the
weakly relativistic regime, were derived in [12]. Laser
pulse guiding and generation of wakefield plasma
waves in the strongly relativistic regime were analyzed
in [13]. The present study relies on the results obtained
in [12, 13].

We represent the electric field %L of a laser pulse
propagating in a medium as

where ξ = z – ct, the z axis is aligned with the propaga-
tion direction, c is the speed of light, k0 = ω0/c, ω0 is the
carrier frequency of the laser pulse, and EL is the com-
plex amplitude slowly varying over times and lengths
on the order of 2π/ω0 and 2π/k0. In the comoving frame
ξzr⊥ , the equation for the dimensionless electric field
amplitude of the laser pulse, a = eEL/mω0c (e and m
denote the electron charge and mass, respectively), is
written as

(1)

Here, ∆⊥  is the transverse Laplace operator (r⊥  = exx +
eyy, where ex and ey denote the unit basis vectors in the

x and y directions, respectively); nc = m /4πe2 is the
critical electron density;
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is the relativistic factor, with p denoting the slowly
varying momentum of electrons in the plasma wake;

(2)

represents effects due to optical field ionization, which
are described in terms of the ionization potential Uk

corresponding to the increase in ion charge number
from k to k + 1, the slowly time-varying ionization rate

per unit volume , the nuclear charge Zn of gas
atoms, and the coefficient µ characterizing the contri-
bution of the second harmonic to the ionization rate
(µ = 0 and 0.7–1.0 for circularly and linear polarized
laser beams, respectively, the latter value depending on
the gas and laser pulse parameters); and n is the elec-
tron density slowly varying over times on the order of

2π/ω0. Details of the calculation of  can be found
in [14]. Note that the ionization current G(ion) given
by (2) ensures correct balance of beam energy and
momentum in the process of optical field ionization [14].

The evolution of free-electron density is governed
by the equations of ionization kinetics and by the equa-
tions of motion for the electron plasma in a strong elec-
tromagnetic field. When n ! nc , the ratio n/γ in the non-
linear-response term in Eq. (1) can be expressed in
terms of the ion charge density |e|n0 as

(3)

where

and the wakefield potential Φ depends on the z-compo-
nent of dimensionless electron momentum qz = pz/mc
and laser pulse characteristics:

Assuming that the pulse intensity distribution is cylin-
drically symmetric and its characteristic radius is larger
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than , then the equation for Φ is

(4)

and the slowly varying electric and magnetic field
strengths in the plasma, Ep and Bp, can be expressed in
terms of Φ:

(5)

where Bp, ϕ is the azimuthal component of Bp.

The total ion density n0 is expressed in terms of the
ion densities Nk (k = 0 corresponds to neutral particles)
as follows:

where the number densities Nk either are governed by
local equations of ionization kinetics written for immo-
bile ions and neutrals (e.g., see [15]) or are prescribed
distributions determining the background plasma elec-
tron density n0 (in the case of a preformed plasma).
When optical field ionization is taken into account, the
derivative

and |a|2 determine the pulse frequency shift due to ion-
ization [5, 6].

Equations (1)–(5) must be supplemented with
boundary conditions. For a preformed plasma, we
assume that the ion charge density |e|n0 remains time-
independent during the interaction between the pulse
and the medium. For an ionizing gas (Nk(ξ = ∞) = 0 for
k ≠ 0), we assume that the gas concentration N0(ξ = ∞)
is uniform. The boundary condition for Φ in the unper-
turbed gas is Φ = 1 (ξ  ∞, r  ∞).

The incident laser pulse is assumed to have a Gaus-
sian profile:

(6)
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where laser-pulse full width at half maximum (FWHM)

τL reached at ξ0 is related to τ as follows: τL = .

The function (r) characterizes the transverse distribu-
tion of the pulse amplitude a. For a laser pulse propa-
gating in a laterally unbounded plasma, we set

,

which corresponds to the asymptotic boundary condi-
tion a(ξ, r, z)  0 as r  ∞.

The initial radial profile (r) of a laser pulse prop-
agating in a capillary tube can be approximated by a
finite superposition of hybrid modes:

(7)

where J0 and J1 are the first- and second-order Bessel
functions, respectively; bm is the mth root of the equa-
tion J0(bm) = 0; M is the number of eigenmodes J0(k⊥ mr)
retained in the expansion of (r); Rcap is the radius of
the capillary tube; and εw is the dielectric constant of
the capillary-tube wall. For a linearly polarized pulse
(a = e0a(ξ, r, z), where e0 is the unit polarization vec-
tor), the wall boundary condition (at r = Rcap) is

(8)

Note that boundary condition (6) with a real function
A(r) implies that the pulse is focused on the boundary
of the medium, whereas wall boundary condition (8)
leads to damping of the eigenmodes in (7) character-
ized by spatial damping rates :

The damping is due to electromagnetic field penetra-
tion into the capillary wall and is described by the exact
expression for the damping rates of the eigenmodes of
the capillary tube obtained by taking into account the
distributions of the field vectors [16].
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3. FREQUENCY SHIFT

General relations for the shift in the mean-square
frequency of the outgoing pulse were obtained in [5, 6].
For the pulse envelope a(ξ, r, z) defined above, the
mean-square frequency of the laser pulse that has prop-
agated to a distance z in the medium is expressed as

where a(ω, r, z) is a Fourier component of the dimen-
sionless electric field of the pulse. If that incident radi-
ation has a narrow spectrum, then the mean-square
pulse frequency prior to interaction is

Note that the mean-square frequency 〈ω2〉(z) is an inte-
gral spectral property, whereas the function

(9)

is the integral of the normalized spectrum of the propa-
gating electromagnetic field centered at the carrier fre-
quency ω0 over the transverse cross-sectional plane.

The frequency shift in the outgoing pulse is

(10)

In [8], an expression for the frequency shift in terms of
the electron-density disturbance and the pulse intensity
in the region of wakefield generation was derived by
assuming that δω(z) is smaller than ω0 and using the
weakly relativistic approximation. The analysis pre-
sented below makes use of results obtained in [5, 6, 8].

When the peak pulse intensity is much higher than
that corresponding to the optical ionization threshold,
ionization and wakefield generation are separated in
space and time. In this case, it can be shown that the
total frequency shift due to both processes is the sum of
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the shift δωion/ωp due to ionization and the shift δωwf/ωp
associated with wakefield generation:

(11)

Since the ionization-induced frequency shift is smaller
than that caused by wakefield generation (see below),
we first consider the relations that determine δωwf/ωp.

In the weakly relativistic approximation (|a| < 1,
|δΦ| ≡ |Φ – 1| ! 1), assuming that the contribution due
to ionization is negligible, we derive the following
expression for the plasma density disturbance δn = n –
n0 from (3):

(12)

Then, if the background ion charge density |e|n0 is
assumed to be uniform in space (or weakly nonuniform

over lengths on the order of ), Eq. (4) for the poten-
tial reduces to

(13)

Combined with (5), this equation yields the wakefield
amplitude Ep:

(14)

The pulse frequency shift can be expressed in terms of
this amplitude (by using Eqs. (12), (13), and (3)
from [8]) as

(15)

where %out is the total energy of the outgoing pulse.
Note that an expression similar to (14) was obtained for
the electron density disturbance n – n0 in [17] (see
also [9]).

When a laser pulse interacts with a preformed
plasma or an ionizing medium, electrons are driven by
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ponderomotive force out of the region of high pulse
intensity. As a result, a wakefield plasma wave is gener-
ated, and the pulse propagates in a rapidly varying
medium whose reciprocal effect on the pulse leads to
(relativistic and ponderomotive) self-focusing and
changes in the pulse spectrum. This study is focused on
the change in the pulse spectrum due to its interaction
with the medium.

In what follows, we discuss numerical solutions of
nonlinear problem (1)–(8) and compare computed
characteristics of a laser pulse with analytical expres-

–4 –3 –2 –1 0 1 2 3 4

ω/ωp

10–5

10–4

10–3

10–2

10–1

1
I

Fig. 1. Spectral density I(ω + ω0, z) defined by (9) versus
the normalized frequency ω/ωp at pulse propagation dis-
tances in plasma z = 0 (dashed curve) and 6zR (solid curve)

for n0 = 0.98 × 1017 cm–3, a0 = 0.14, kpr0 = 16, τL = 100 fs,
PL/Pcr = 0.17, and Ω = 1.5.

1

–0.10

2 3 4 5 60
–0.15

–0.05

z/zR

δω/ωp

0

Fig. 2. Normalized frequency shift (10) versus pulse propa-
gation distance for several values of pulse duration: Ω =
1.5 (d), 2.0 (m), 0.5 (j), and 3.0 (r). The curves corre-
sponding to these values of Ω are plotted by using (14). The
pulse and plasma parameters are n0 = 0.98 × 1017 cm–3, a0 =
0.14, kpr0 = 16, and PL/Pcr = 0.17.
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sions (15) derived by using linearized model (12)–(14)
for several geometries (semi-infinite preformed
plasma, a channel in a semi-infinite preformed plasma,
a capillary tube filled with a homogeneous neutral gas)
for different values of pulse and material parameters.
To obtain closed-form analytical expressions for fre-
quency shift (15), simplified expressions for the laser
pulse amplitude are used in (14), where the reciprocal
effect of the wakefield plasma wave on pulse propaga-
tion is neglected.

3.1. Gaussian Pulse Propagation
in a Semi-infinite Preformed Plasma 

Consider a Gaussian pulse (with (r) = A(r) ≡
exp(–r2/ ) in (6)) focused onto a semi-infinite pre-
formed plasma (with boundary at z = 0) characterized
by an initial electron density n0. When n0 is negligible
as compared to n0, the time-dependent Gaussian pulse
amplitude can be represented as

(16)

Assuming that this approximation is valid, we can esti-
mate squared wakefield amplitude (14). Then, the fre-
quency shift given by (15) is a function of the propaga-
tion distance z of the pulse:

(17)

where zR = ω0 /2c is the Rayleigh length and D(Ω) =
Ωexp(–Ω2/4) is a function of Ω = ωpτ reaching its max-

imum at Ωmax = . Note that the resonant behavior of
frequency shift (17) reflects the resonant nature of
wakefield plasma wave generation, with a maximum
amplitude reached at Ω = 2 [9].

In Fig. 1, the spectral density I(ω + ω0) defined
by (9) is shown as a function of the normalized fre-
quency ω/ωp obtained in self-consistent computations
of (1)–(6) at z = 0 and 6zR for n0 = 0.98 × 1017 cm–3,
a0 = 0.14, kpr0 = 16, PL/Pcr = 0.17, and Ω = 1.5 corre-
sponding to τL = 100 fs (PL is the laser pulse power, and
Pcr is the relativistic self-focusing threshold). It is clear
that the pulse spectrum shifts toward lower frequencies
as the pulse propagates into the plasma; i.e., the fre-
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quency shift δω(z)/ωp defined by (10) becomes increas-
ingly negative (see Fig. 2).

Figure 2 compares the integral frequency shift
δωwf /ωp obtained in self-consistent computations with
δωwf /ωp calculated by using (14)–(16) as a function of
z for several values of Ω (both peak intensity and radius
of the incident pulse and the background plasma elec-
tron density are as in Fig. 1). It is obvious that the
numerical results and analytical predictions are in good
agreement. The relatively small discrepancy is
explained by the fact that nonlinear reciprocal effects
on the pulse amplitude were neglected in calculating
δωwf /ωp for freely diffracting Gaussian beams. Indeed,
Fig. 3a demonstrates that the effect of self-focusing on
the pulse field amplitude on the axis r = 0 builds up as
the pulse propagates deeper into the plasma, while
Fig. 3b shows that the discrepancy between δω(z)/ωp
and δωwf /ωp increases with z. The insignificant discrep-
ancy obtained for relatively small Ω (see Fig. 2) is
explained by mutual compensation of nonlinear pon-
deromotive and relativistic effects [13]. Our computa-
tions have also shown that the discrepancy between
δω(z)/ωp and δωwf /ωp decreases with PL/Pcr .

3.2. Pulse Propagation in a Plasma Channel 

For a pulse propagating in a preformed plasma

channel of radius Rch such that Rch = kp /2, the pulse
shape calculated by neglecting the nonlinear effects is
independent of z:

(18)

and the transverse electron-density profile is

Substituting (18) into (14) and (15), we find that the
integral frequency shift is a linear increasing function
of the pulse propagation distance:

(19)

Figure 4 demonstrates that the frequency shift given
by (19) is close to the value of δω(z)/ωp obtained in a
self-consistent computation for relatively low PL
(PL/Pcr = 0.082). Note that δω(z)/ωp and δωwf /ωp
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Fig. 3. (a) Pulse electric-field amplitude |a| on the axis r = 0
and (b) frequency shift (10) versus the pulse propagation
distance z. The pulse and plasma parameters correspond to
Fig. 1. Curves and symbols are predicted by Eq. (14) and
numerical calculation, respectively.
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Fig. 4. Plots of δω/ωp (j) and δωwf /ωp predicted by (19)
(curve) versus the plasma-channel length z. The pulse and
channel parameters are n0 = 0.98 × 1017 cm–3, PL = 10 TW,
kpr0 = 4, and Rch = 136 µm.
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Fig. 5. Plots of δω/ωp (j) and δωwf /ωp predicted by (18)
(curves) versus the length z of a channel filled with ionizing
hydrogen: (a) capillary tube diameter Dcap = 75 µm, initial

hydrogen concentration N0 = 4.1 × 1018 cm–3, PL = 0.8 TW,
kpr0 = 9.5, PL/Pcr = 0.12; (b) Dcap = 77 µm, N0 = 6.7 ×
1017 cm–3, λ0 = 0.82 µm, τL = 50 fs, kpr0 = 3.8, PL =
9.6 TW, PL/Pcr = 0.23.
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Fig. 6. Spectral density I(ω + ω0, z) defined by (9) versus
the normalized frequency ω/ωp at the pulse propagation dis-
tances in a capillary tube z = 0 (dashed curve) and 5.2 cm
for n0 = 6.7 × 1017 cm–3, λ0 = 0.82 µm, τL = 50 fs, kpr0 =
3.8, PL = 9.6 TW, PL/Pcr = 0.23, Dcap = 77 µm, and
r0/Rcap = 0.645.
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remain nearly equal as the pulse propagates to a dis-
tance of 10 cm and beyond.

3.3. Pulse Propagation in an Ionizing Gas
in a Capillary Tube 

Let us discuss the generation of a wakefield plasma
wave in a capillary dielectric tube filled with an ioniz-
ing gas. When the focal spot size of a Gaussian pulse
focused onto the capillary entrance is matched with the
inner radius of the capillary tube, about 98% of the inci-
dent energy is transferred to the fundamental capillary
mode, which corresponds to m = 1 in (7) [13, 16].
Accordingly, we calculate frequency shift (15) by
using (14) with

(20)

where b1 ≈ 2.405 is the first root of the Bessel function
J0. When the expression for  presented at the end
of Section 2 is used to characterize the attenuation of a
pulse propagating in a capillary tube due to energy
leakage through the capillary wall, formula (15) yields

(21)

where the constants C1 and C2 are defined as follows:

In addition to frequency shift (21) associated with
wakefield generation, the pulse spectrum exhibits a
shift due to ionization, and the total shift in the mean-
square frequency is the sum in (11). The value of
δωion/ωp can be estimated by combining formulas
obtained in [5, 6] with the field prescribed by (20). In
particular, the ionization-induced frequency shift calcu-
lated for the pulse and capillary parameters correspond-
ing to Fig. 5b is

where the propagation distance z is measured in centi-
meters. Note that the ionization-induced frequency
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shift is much smaller than that due to wakefield plasma
wave generation under the conditions discussed here.
The resultant frequency shift shown in Fig. 5 for differ-
ent pulse and capillary parameters demonstrates good
agreement between numerical solutions to Eqs. (1)–(8)
and the frequency shifts predicted analytical expres-
sion (21).

Note that the conventional theory of parametric pro-
cesses [10, 11] cannot be applied when both laser pulse
and plasma have parameters corresponding to Fig. 5b,
because the pulse is too short as measured in units of
the plasma wave period (Ω = 2). In particular, it should
not be expected that the spectrum of the outgoing pulse
would contain satellites corresponding to harmonics of
the plasma frequency ωp. In Fig. 6, the spectral density
I(ω + ω0, z) defined by (9) is shown as a function of the
normalized frequency ω/ωp obtained for the pulse and
capillary parameters corresponding to Fig. 5b at the
capillary entrance and at the propagation distance
z = 5.2 cm. The spectrum contains pronounced peaks at
ω = 0 and –2.4ωp. Note that the latter peak frequency
does not match any harmonic of ωp.

4. CONCLUSIONS

The change in the frequency spectrum of a short
intense laser pulse propagating in a medium is analyzed
by taking into account wakefield plasma wave genera-
tion. Since wakefield generation by a laser pulse leads
to a change in electron density, the pulse propagates in
a rapidly varying medium. The reciprocal effect of the
electron-density disturbance on the pulse changes the
pulse spectrum as the pulse propagates deeper into the
medium.

A linearized model is used to find expression (15)
for the frequency shift in terms of the wakefield ampli-
tude. For a pulse of nearly resonant duration, closed-
form analytical expressions (17), (19), and (21) corre-
sponding to different geometries are obtained for the
shift in the mean-square frequency. In particular, it is
shown that the frequency shift is proportional to the
pulse propagation distance in a channel or capillary for
a weakly damped mode.

Since self-consistent computations of nonlinear
propagation of short intense laser pulses agree with the
analytical results obtained here, these results can be
used as a basis for an effective optical technique for
diagnosing plasma wakefields generated by such pulses
in experiments on acceleration of electron to ultrarela-
tivistic energies.
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Abstract—Statistics of fluorescence photons emitted by a single two-level atom interacting with a continuous
wave laser field are analyzed. The photon-counting distribution is calculated for the so-called intermediate flu-
orescence photons, i.e., those counted during the time interval between instants at which photons are emitted.
The result is a sub-Poissonian (narrower than Poisson) distribution, which agrees with experimental observa-
tions. This intermediate-photon distribution is used to calculate the average number of fluorescence photons,
the second factorial moment of the photon-counting distribution, and Mandel’s Q parameter commonly used to
evaluate the deviation of photon statistics from the Poisson distribution. The theoretical expressions obtained
for moments of the intermediate-photon distribution are different from well-known Mandel’s formulas. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

Generally, light is emitted by an ensemble of excited
atoms and consists of many photons. Statistics of pho-
tons in a beam and their dependence on the nature of the
beam were discussed in a number of books focused on
quantum characteristics of the laser field, fluctuations
of the field, and beam coherence [1–5].

In particular, the light emitted by a thermal source
was represented in [2] as a superposition of random
contributions due to many atoms, where each contribu-
tion varies with time and depends on the location of the
corresponding atom in the source. Mathematically,
light waves of this kind are treated as fluctuating ran-
dom fields. Depending on the source, the phases,
amplitudes, and frequencies of waves can fluctuate
independently or simultaneously. According to the
authors of [2], their approach is essentially similar to
that used in analysis of background noise in a radio
receiver.

The development of lasers, which generate coherent
light, motivated studies of optical coherence. It was
established in [1] that “classical” coherent light is char-
acterized by the Poisson distribution of the photon
number Pn:

(1)

where the parameter α is proportional to the electric-
field amplitude.

However, there exists an aspect of radiation never
mentioned in these books: the radiation emitted by a

Pn α( ) α2n

n!
-------- α2–( ),exp=
1063-7761/05/10101- $26.00 0064
single atom interacting with a continuous wave laser
field. Light emission by a single atom interacting with
a continuous wave laser field is an essentially quantum
process. It cannot be described by methods of classical
physics, which were frequently used as the starting
points of analyses in [1–5]. Therefore, one is led to a
natural question: what distribution function describes
the radiation emitted by a single atom interacting with
a continuous wave laser field?

This question was posed in Mandel’s pioneering
study [6], where the probability of counting n photons
within a time interval T was expressed as the quantum
statistical average of a normally ordered time-ordered
product of intensity operators I [5–8]:

(2)

This probability can be used to obtain the first and sec-
ond factorial moments:

(3)

N n T,( ) T : 
1
n!
----- xÎ x( )d

t

t T+

∫=

× xÎ x( )d

t

t T+

∫–  : exp .

n

n T( )〈 〉 nN n T,( )
n 0=

∞

∑=

=   : xÎ x( )d

t

t T+

∫  : I〈 〉 T ,=
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(4)

where the fluorescence autocorrelation function g(2)(t)
can be measured in an experiment. Since these expres-
sions are derived for a stationary field, time is set to
zero.

Formulas (2)–(4) apply both to an atomic ensemble
and to a single atom. If the number Nn(T, t) of sample
intervals of length T within which n fluorescence pho-
tons are counted is measured during a total observation
time t, then the probability of such an event is

(5)

This probability can be compared to theoretical for-
mula (2): the measured probability wn(T) must be equal
to the probability N(n, T) predicted by (2) for a particu-
lar physical model.

Formula (2) was used to calculate the photon-num-
ber probability distribution for several simple models
in [5]. In particular, the photon number for a coherent
state of monochromatic field was found to be described
by the Poisson function. The Poisson distribution was
also obtained for a single-mode laser field with random
phase, whereas a binomial distribution was found for a
single-mode Fock state. The polarized light emitted by
a thermal source was shown to be described by the
Bose–Einstein distribution.

It may seem surprising, but the probability defined
by (2) is more difficult to calculate for a single atom
than for an atomic ensemble. This explains why this
calculation has never been performed. In [6], a simpler
calculation of moments of the distribution was pre-
sented. Using these moments, Mandel introduced the
following parameter as a measure of deviation of pho-
ton-counting statistics from the Poisson distribution:

(6)

where 〈n(2)(T)〉  is the second factorial moment and
〈n(T)〉  is the mean number of photocounts per sample

n 2( ) T( )〈 〉 n n 1–( )N n T,( )
n 0=

∞

∑=

=  T  : xÎ x( )d

t

t T+

∫
2

 : 

=  x y T  : Î x( ) Î y( )〈 〉d

0

T

∫d

0

T

∫

=  I〈 〉 2 x yg 2( ) x y–( ),d

0

x

∫d

0

T

∫

wn T( )
Nn T t,( )

N0 T t,( ) Nn T t,( )
n 1=

∞

∑+

-------------------------------------------------------.
t ∞→
lim=

Q T( ) n 2( ) T( )〈 〉 n T( )〈 〉 2–
n T( )〈 〉

-----------------------------------------------,=
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time T. By using (3) and (4), Mandel’s Q parameter is
expressed as

(7)

The autocorrelation function proved very conve-
nient for estimating deviations of photon-counting sta-
tistics from the Poisson distribution for various systems
[9–11]. For the Poisson distribution, Mandel’s Q
parameter is zero. For sub- and super-Poissonian (nar-
rower than Poisson) distributions, its values are nega-
tive and positive, respectively. Formula (7) is generally
used to estimate the deviations from the Poisson pho-
ton-counting distribution in single-molecule spectros-
copy.

The approach used in this paper to analyze the sta-
tistics of fluorescence photons emitted by a single atom
is essentially different from that applied in [1–5].
Whereas the analyses presented in these books were
focused on the radiation field, the present study deals
with the quantum dynamics of a single atom interacting
with a continuous wave laser field, and fluorescence
dynamics are derived from the dynamics of radiative
de-excitation to the ground state of the atom. In this
approach, the probability N(n, T) can be calculated
directly by using a formula derived below. In what fol-
lows, this calculation is presented and the resulting
probability is used to calculate the first two moments of
the distribution and Mandel’s Q parameter for a two-
level atom interacting with a continuous wave laser
field.

2. FLUORESCENCE PHOTON 
COUNTING METHODS

Suppose that a two-level atom interacting with a
continuous wave laser field emits fluorescence photons
at random instants. Figure 1 shows numbered fluo-
rescence photons emitted by the atom. Mandel’s for-
mula (2) corresponds to the photon counting method in
which the time scale is divided into equal sample inter-
vals (lower scale in Fig. 1) and photons are counted
within each interval. The start of the sample interval is
neither specified by any definition nor related to any

Q T( ) I〈 〉 2
T
--- x yg 2( ) y( ) T–d

0

x

∫d

0

T

∫ .=

T T T T
T

t
t

12345678910111213141516

"ω

Fig. 1. Sequence of photons emitted by a single atom inter-
acting with a continuous wave laser field.
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instant of photon emission. There may exist sample
intervals when no photons are counted, as illustrated by
Fig. 1.

However, a different photon counting method can be
used in single-molecule spectroscopy. It is advanta-
geous in that the probability distribution, in contrast
to (2), can be not only derived theoretically, but also
calculated. Let us consider this method in some detail.

Suppose that a fluorescence photon is emitted at
some instant and another photon is emitted after a time
T has elapsed. The former and latter instants define the
start and end of the sample interval, respectively. Thus,
only intervals of length T containing at least two photo-
counts are considered, as indicated on the upper time
scale in Fig. 1. Two cases are possible.

In one case, no photons are counted within the sam-
ple time T between the start and the end, as between
photons 2 and 3 or 12 and 13 in Fig. 1. When only such
photon pairs are counted, the measurement is actually
performed in a start–stop mode (the two-photon start–
stop correlator is measured). This measurement mode
was called detection of successively emitted photons
in [12].

However, a number of photons (called intermedi-
ate here) may be emitted during a sample interval
of length T between two photons, as photon 5
between photons 4 and 6 or photons 14 and 15
between photons 13 and 16. When all photon pairs
separated by a time T are counted irrespective of the
number of intermediate photons emitted within this
time, the full two-photon correlator is measured. In
the next section, a mathematical expression is found
for the probability of counting any number of inter-
mediate photons within a sample time T.

3. QUANTUM DYNAMICS 
OF A TWO-LEVEL ATOM

Figure 2 schematizes the transitions between the
quantum states of the atom–field system: each absorp-
tion of a photon of frequency ω is followed by the
emission of a fluorescence photon k, and the process
repeats indefinitely. In detailed studies of the dynam-
ics of the system schematized in Fig. 2 by several
independent groups [13–17], the following system of

…

1

0

|1〉 |1, k〉 |1, k, k'〉

|0〉 |0, k〉 |0, k, k'〉

ωωω
k k'

Fig. 2. Transitions between quantum states of the atom–
field system.
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equations was derived for the elements  of the
density matrix describing the state of the atom–field
system in the case of N intermediate fluorescence pho-
tons:

(8)

Here, χ = E · d/" is the Rabi frequency, ∆ is the dif-
ference between the laser and atomic-transition fre-
quencies, and T1 is the energy relaxation time. This
system resembles, but differs from, the optical Bloch
equations: it is not closed, since the fourth equation

contains the function . System (8) describes
the first pair of states in Fig. 2 when N = 0 (without
intermediate photons), the second pair when N = 1,
and so on.

It can readily be shown that the four matrix elements

(9)

satisfy the Bloch equations with the phase relaxation
rate 1/T2 = 1/2T1:

(10)

The analysis of conversion of laser photons into fluo-
rescence photons developed in [14, 15] has shown that
the first two equations in system (10) written for a two-
level atom interacting with phonons contain a constant
1/T2 that is greater than 1/2T1 and is determined by
electron–phonon interaction. In other words, the Bloch
equations contain independent energy and phase relax-
ation times T1 and T2.

ρij
N( )

ρ̇10
N( )

i ∆ i/2T1–( )ρ10
N( )– χ ρ11

N( ) ρ00
N( )–[ ] ,+=
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N( )( )*,=

ρ̇11
N( ) χ ρ10

N( ) ρ01
N( )+[ ]–

1
T1
-----ρ11

N( ),–=

ρ̇00
N( ) χ ρ10
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N( )+[ ] 1
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-----ρ11

N 1–( ).+=

ρ11
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N 0=

∞

∑=

ρ̇10 i ∆ i
2T1
---------– 

  ρ10– χ ρ11 ρ00–( ),+=

ρ̇01 i ∆ i
2T1
---------+ 

  ρ01 χ ρ11 ρ00–( ),+=
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ρ11
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ρ̇00 χ ρ10 ρ01+( )
ρ11
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-------.+=
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Consider Eqs. (8) with N = 0. By using the fact that

 = 0, denoting  = Wij , and performing the
Laplace transform

(11)

of system (8), the following system of equations is
obtained for the Laplace components W(ω):

(12)

where

(13)

with Γ = 1/T2 = 1/2T1. By virtue of (11), the Bloch
equations (10) can be rewritten as equations for the
Laplace components ρ(ω):

(14)

Equations (12) and (14) are obtained under the initial
condition

Systems (12) and (14) yield

(15)

with the respective determinants

(16)

Hence, the Laplace components are related as follows:

(17)

By virtue of the equality

(18)
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the inverse Laplace transform of (17) yields the equa-
tion

(19)

Iterative solution of Eq. (19) leads to a series expansion
of the probability ρ11(t) in terms of the number of inter-
mediate photons:

(20)

where

(21)

A simple physical interpretation of this formula is
derived from Fig. 3 by noting that 1 to 0 and 0 to 1 tran-
sitions correspond to fluorescence-photon emissions
and laser-photon absorptions, respectively. Since pho-
tons are absorbed and emitted at random instants, Fig. 3
illustrates a random sequence of events in the system
schematized in Fig. 2. The lengths of the lower and
upper segments represent the lifetimes of ground and
excited states of the atom, respectively. The fluores-
cence photons emitted by transition from upper to
lower segments are shown by vertical segments on the
time scale. Figure 3 resembles a random telegraph sig-
nal, and the number of photons emitted during any par-
ticular time interval equals the number of de-excita-
tions that occurred within this interval. Two intervals of
length T containing one and two intermediate photons,
respectively, are indicated in Fig. 3. The lower and
upper line segments are associated, respectively, with
the probabilities

and

.

ρ11 t( ) W11 t( ) xd
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∫+=
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Fig. 3. Dynamics of transitions between the ground and
excited electronic states.
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The equation obtained by dividing (20) by ρ11(t),

(22)

relates the probability

(23)

of an interval of length t without intermediate photo-
counts to the probability

(24)

of an interval t containing N intermediate photocounts.
Formulas (23) and (24) can be used to calculate the dis-
tribution of intermediate photons counted within an
interval of length t between photon emissions.

4. DISTRIBUTION OF PHOTONS EMITTED
BY A TWO-LEVEL ATOM

According to (23) and (24), the calculation of the
desired probabilities requires expressions for W11(t)
and ρ11(t) satisfying Eqs. (12) and (14). These are not
balance equations, because the coefficient given by (13)
depends on the frequency ω. These equations are
strictly equivalent to Eqs. (8) with N = 1 and Bloch
equations (10); i.e., they preserve the phase correlations
represented by the off-diagonal elements of the density
matrix. Coherence is lost when ω = 0 in Eq. (13), in
which case

(25)

Expression (25) describes the absorption coefficient,
and Eqs. (11) and (12) with this value of k are balance
equations.

One is led to a question: is it correct to change from
the Bloch equations to balance equations? The answer
is provided by Fig. 4. Figure 4 compares the time
dependence of solutions to the Bloch and balance equa-
tions for several laser intensities. Rabi oscillation
occurs when the intensity is so high that the stimulated
transition rate exceeds the spontaneous transition rate.
Figure 4b shows that the difference between the solu-
tions to the Bloch and balance equations is insignificant
when the field intensity is low. Accordingly, use of the
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balance equations facilitates the analysis of fluores-
cence photons statistics presented below.

Solution of Eqs. (12) and (14) with the absorption
coefficient given by (25) leads to the following expres-
sions:

(26)

(27)

where

(28)

If the pump intensity is low (k ! 1/T1), then a ≈ k and
A ≈ 1/T1. It can be verified by direct substitution that
functions (26) and (27) satisfy Eq. (19) with 1/T1
replaced by A.

According to (26), the probability W11(t) increases
from zero within a time interval on the order of T1 and
then decreases as

(29)

Probability (24) calculated by using (23) and approxi-
mating W11(t) with (29) is the Poisson distribution

(30)

Thus, the deviation of fluorescence photon statistics
from the Poisson distribution is due to the increase in
W11(t) over times on the order of T1. The vanishing
probability of photon emission for t  0 is due to the
phenomenon known as photon antibunching. Now, let
us find the photon-counting distribution taking into
account photon antibunching.

The Laplace transform of (24) combined with for-
mula (18) yields

(31)

The Laplace component of the probability given
by (26) is

(32)

By using (28), it can readily be shown that

aA = k/T1.
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Fig. 4. (a) Time dependence of probability ρ11(t) predicted for several laser intensities: χT2 = 0.05 (1), 0.1 (2), 0.3 (3), and 1.0 (4).
Solutions to the Bloch equations (solid curves) are compared to solutions to balance equations (dashed curves) for χT2 = 0.1 (b),
0.3 (c), and 1.0 (d).

1234
Combined with (32), this relation yields

(33)

By virtue of the last two formulas, relation (31) can be
rewritten as

(34)

Here, the first fraction on the right-hand side is the
Laplace component of the function

i.e., the Poisson function. By taking this into account,
using formula (18), and performing the inverse Laplace
transform, the desired probability of counting N pho-
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tons within an interval of length t is found to be propor-
tional to the convolution of Poisson distributions:

(35)

This formula is equivalent to expression (24) for the
probability of an interval t containing N intermediate
photocounts, but is much more practical, because it
contains a single integral.

Figure 5 shows photon-counting distributions pre-
dicted by this expression and illustrates the simple fact
that many photons can be counted only on time inter-
vals much longer than the mean time 1/k between suc-
cessive emissions of fluorescence photons. The maxi-
mum of the distribution corresponds to the number N of
photocounts related to the sample time by the approxi-
mate formula kT ≈ N. A similar relation between sam-
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ple time, number of photocounts, and laser intensity is
characteristic of the Poisson distribution. The longer
the sample interval, the more photons can be counted.
A number of photocounts that is sufficiently large to
provide a representative sample corresponds to a sam-
ple time much longer than the mean time 1/k between
successive emissions of fluorescence photons. The
resulting distribution resembles, but differs from, the
Poisson distribution.

Figure 6 compares these distributions and illustrates
the distinction between them. It demonstrates that the
width of the Poisson distribution corresponding to the
sample time T = 27/k is equal to the width of distribu-
tion (35) calculated for the larger sample time T = 30/k.
When the distributions correspond to equal sample
times, distribution (35) is narrower than the Poisson
distribution; i.e., a sub-Poissonian distribution is

0 10 20 30 40 50
N

0

0.02

0.04

0.06

0.08

0.10
Probability

Fig. 6. Photon-counting distribution predicted by (35) for
T = 30/k (solid curve) and Poisson distribution of equal
width corresponding to T = 27/k (dashed curve).

0 10 20 30 40 50

N

0.04

0.08

0.12

0.16

wN(t)

1

2

3
4

Fig. 5. Photon-counting distribution for sample times T =
5/k (1), 10/k (2), 20/k (3), and 30/k (4).
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obtained. A sub-Poissonian distribution of fluorescence
photons emitted by a single atom interacting with con-
tinuous radiation within a short sample interval of
length T < 1/k was measured in [18].

Figure 7 shows the distribution predicted by (35)
and the Poisson distribution for T < 1/k. Such short
sample intervals without photocounts occur with a
probability close to unity, in agreement with results
reported in [18]. The probability of detecting a single
photon within such intervals is less than one percent,
and the probability of three photocounts within such an
interval is less than one-hundred-thousandth of a per-
cent. Even though the deviation from the Poisson distri-
bution reported by Short and Mandel was small, it
should be responsible for the negative value of Man-
del’s Q parameter, which can be measured in experi-
ment.

5. MEAN NUMBER OF PHOTOCOUNTS
AND MANDEL’S Q PARAMETER

The distribution of photons emitted by a single atom
interacting with a continuous wave laser field has never
been calculated by using formula (2). The present the-
ory can be compared with Mandel’s theory by using
moments of the distribution and Mandel’s Q parameter
derived from the distribution found here. The mean
number of photons is calculated as

(36)

with probabilities defined by (24). Substituting the
expressions for probability (24), performing the

n T( )〈 〉 NwN T( ),
N 0=

∞

∑=

10 2 3
N

0.2

0.4

0.6

0.8

1.0

Probability

Fig. 7. Sub-Poissonian photon-counting distribution pre-
dicted by formula (35) (solid curve) and Poisson distribu-
tion of photocounts (dashed curve) for T = 1/10k.
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Laplace transform, and using formula (17), one obtains

(37)

The inverse Laplace transform yields

(38)

This expression differs from formula (3) derived by
Mandel. Formula (38) takes into account antibunching
of fluorescence photons, whereas formula

does not.
The second factorial moment

(39)

contained in the expression for Mandel’s Q parameter
can also be calculated by using the Laplace transform,
as in the calculation of the mean photon number. The
resulting expression

(40)

also differs from the formula (4) found by Mandel.
The mean number of photocounts per sample time T

is obtained by substituting probability (27) into (38):

(41)

Since 2γT1 ≈ 1 for low laser intensities, this result sim-
plifies to

(42)

n T( )〈 〉ρ 11 T( )[ ] ω W11 ω( ) N
W11 ω( )

T1
------------------ 
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=  
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----------------.=
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---------------- xd

T1
-----ρ11 T x–( )ρ11 x( ).

0

T

∫=

n〈 〉 I〈 〉 T=

n 2( ) T( )〈 〉 N N 1–( )wN T( )
N 0=
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T1
-----ρ11 T x–( )

0

T
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× yd
T1
-----ρ11 x y–( )ρ11 y( )

0

x

∫

n T( )〈 〉 k
2γT1
------------ T

1 e 2γT–+

1 e 2γT––
-------------------- 1

γ
---– .=

n T( )〈 〉

γT
3

------kT , γT  ! 1,

kT
k
γ
--, γT  @ 1.–






=
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These formulas are different from the expression

(43)

used by Mandel in (7). Owing to photon antibunching,
the number of photons counted within a short sample
interval is a quadratic, rather than linear, function of
sample time. Indeed, formula (43) is predicted by the
present theory when photon antibunching is neglected,
which corresponds to the Poisson distribution. There-
fore, it is not quite correct to use formula (43), which
does not allow for photon antibunching, in expression (7)
for calculating the parameter Q(T) as a measure of devi-
ation of a real photon-counting distribution from the
Poisson distribution.

The second factorial moment is obtained by substi-
tuting (27) into (40):

(44)

Formulas (41) and (44) are combined to obtain the
following expression for Mandel’s Q parameter:

(45)

Let us compare this result with that predicted by Man-
del’s formula (7). It was shown in [9, 15, 19] that the
autocorrelation function is related to the probability ρ11
as follows:

Combining this formula with (27) and (7), one obtains

(46)

According to (45) and (46), Mandel’s Q parameter is
proportional to k/2γ = kT1, i.e., small when the laser
intensity is low. However, the time behavior of Man-
del’s Q parameter is independent of the laser intensity,
being determined by the dimensionless time γT. If
γT @ 1, then Q = 4QM. The difference in the theoretical

n〈 〉 I〈 〉 T kT= =

n 2( ) T( )〈 〉 k
2γT1
------------ 

  2
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× 3T
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expressions for Mandel’s Q parameter should be
explained by difference in the methods actually used to
measure the moments of the distribution. Figure 8 com-
pares the functions Q(T)2γT1γ/k and QM(T)2γ/k. Man-
del’s Q parameter predicted by (45) varies from zero to
the limit value Q(∞) = –4kT1 exponentially. Note that
the transition between the domains of short- and long-
time behavior corresponds to a change in T within an
order of magnitude in the neighborhood of T ≈ T1. Thus,
expression (45) implies that a fluorescence photon
“remembers” the preceding one during a coherence
time approximately equal to T1. Mandel’s Q parameter
predicted by (46) varies from zero to the limit value
QM(∞) = –kT1 according to a hyperbolic law, i.e., at a
slower rate. Formula (45) predicts an appreciable devi-
ation from the Poisson distribution only for T > T1,
whereas formula (46) predicts that it must be observed
for T ≤ T1. The difference in behavior of Mandel’s Q
parameter given by (45) and (46) can be explained by
the fact that these formulas correspond to different flu-
orescence photon counting methods.

6. CONCLUSIONS

1. When only intermediate photons are counted in
an experiment, formula (24) yields the desired expres-
sion for the statistics of fluorescence photons emitted
by a single two-level atom interacting with a continu-
ous wave laser field.

2. If the stimulated transition rate k is lower than the
spontaneous transition rate 1/T1 t by at least an order of
magnitude, then formula (24) reduces to the substan-
tially simpler form of (35).

3. The photon-counting distributions found numeri-
cally by using formula (35) for several sample times are
sub-Poissonian, in agreement with the experimental
results obtained in [18]. The deviation from the Poisson
distribution is more pronounced for short sample times,

–10 –9 –8 –7 –6 –5 –4
logT [s]

–1.0

–0.8

–0.6

–0.4

–0.2

0

Mandel’s parameters

Fig. 8. Mandel’s Q parameters calculated by using formulas
(45) (solid curve) and (46) (dashed curve) for T1 = 10–8 s.
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when the number of photocounts is small (cf. Figs. 6
and 7).

4. The expressions for the mean photon number and
second factorial moment of the photon-counting distri-
bution corresponding to the photon counting method
proposed in the present study are different from those
obtained by Mandel, and the expressions for Mandel’s
Q parameter differ accordingly. Whereas both time
dependence and limit values of the parameter are quan-
titatively different, both formulas compared here pre-
dict similar dependence on sample time.
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Abstract—Within the framework of the first Born approximation and a simple model of the structural factor,
the bremsstrahlung of fast charged particles on polyatomic clusters is calculated and analyzed with regard to
the polarization mechanism in a wide spectral range including a domain of high frequencies. The role of coop-
erative phenomena in the static and polarization channels of bremsstrahlung is investigated. It is established that
these phenomena, being negligible for static bremsstrahlung, substantially influence the polarization
bremsstrahlung. It is shown that the constructive interference between the contributions of the atoms of a cluster
to the polarization bremsstrahlung substantially increases its intensity and changes its dependence on the basic
parameters of the problem compared with the case of bremsstrahlung on an isolated atom. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

The scattering of a charged particle by a target that
possesses electronic degrees of freedom leads to
bremsstrahlung by two channels. One of these chan-
nels, the traditional (static) bremsstrahlung (SB), is
associated with the acceleration of the incident particle
in the field of the target. The second, polarization
bremsstrahlung (PB), is associated with the alternating
dipole moment of the target that arises during the scat-
tering of the incident particle [1, 2].

In general, the bremsstrahlung by these channels
differently depends on the frequency and angle of radi-
ation and on the mass and energy of the incident parti-
cle. If the radiation occurs in a medium (plasma, amor-
phous substance, monocrystal, or polycrystal), the
static and polarization mechanisms of bremsstrahlung
exhibit different dependence on the parameters of the
medium. The last circumstance is largely attributed to
the fact that the SB is formed at small distances from
the target, whereas the PB, at large distances. As a
result, the cooperative phenomena associated with the
interference between the contributions of different
atoms of the target to bremsstrahlung play different
roles in the static and polarization mechanisms. The
cooperative phenomena discussed here should manifest
themselves in the purest form in the PB on polyatomic
clusters, which is the subject of the present paper.

Radiation of a charged particle scattered by a cluster
was considered earlier for certain ranges of parameters.
For example, the bremsstrahlung of a fast but nonrela-
tivistic electron on a cluster in the low-frequency range
(ω < 1 au) with regard to the polarization mechanism
was investigated in [3] (see also [1, Ch. 7]). The calcu-
lations were performed within the first Born approxi-
1063-7761/05/10101- $26.000073
mation with respect to the interaction between electron
and target. The cluster form factor was calculated with
the use of a jellium model. The bremsstrahlung cross
section was studied as a function of frequency, velocity
(of electron), and the radiation angle. It was shown that,
in the frequency domain where the main contribution to
PB is made by collective excitations of cluster electrons
(the domain of a giant resonance), the polarization
channel dominates the static one and the interchannel
interference leads to asymmetry of the radiation spec-
trum.

In the recent work [4], Kurkina calculated the char-
acteristics of the SB for scattering of a slow electron by
metallic clusters. These calculations were based on the
expansion of the electron wavefunction in terms of par-
tial waves. A model of spherical jellium was used for
the electrostatic potential of a cluster. The author dem-
onstrated that, as the number of atoms in a cluster
increases and the energy of radiating electron
decreases, a resonance structure arises in the high-fre-
quency region of the SB spectrum. This structure con-
sists of a series of peaks whose positions are deter-
mined by the type of the cluster and the energy of the
electron after emitting a photon. The origin of the spec-
tral peaks was associated with quasistationary states of
the electron in the field of the cluster–target. The polar-
ization channel of bremsstrahlung was not considered
in [4].

As the energy of the incident particle increases, the
role of polyatomic interference phenomena in PB on
clusters must increase because the magnitude of the
minimal momentum transferred to the target decreases
and the effective projectile–target distance increases.
As the energy of the incident particle increases, the
spectral domain of the bremsstrahlung allowed by the
 © 2005 Pleiades Publishing, Inc.
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energy conservation law increases. In the case of a rel-
ativistic incident particle, the frequency range ω @ 1 au
becomes topical, in which one can neglect the collec-
tive excitations of electrons in the cluster and assume
that the polarizability of atomic clusters is described in
terms of the polarizability of an isolated atom to a rea-
sonable degree of accuracy. It is also essential that, in
the relativistic case, the role of the recoil during the
emission of a photon by the polarization channel
increases because the photon momentum becomes
comparable to the minimal variation of the momentum
of the impinging particle. As a result, the range of
angles of PB of a relativistic electron narrows down in
the high-frequency range [5, 6]. For the scattering of a
relativistic charged particle by a cluster, the angular–
frequency dependence of PB should be additionally
modified when the number of atoms in the target is
varied.

The present paper is devoted to the theoretical anal-
ysis of bremsstrahlung of fast, including relativistic,
charged particles on clusters in a wide spectral range of
ω @ 1 au. The main objective of the paper is to deter-
mine and analyze the basic principles of bremsstrahl-
ung that are associated with the interference between
the contributions of various atoms of the target to the
process.

2. BASIC RELATIONS

Let us calculate the intensity of the polarization and
static channels of bremsstrahlung of a fast charged par-
ticle on a cluster within a simple model. The main
assumptions of this approach are the first Born approx-
imation with respect to the interaction between the inci-
dent particle and the target and a jellium model for the
form factor of the cluster. In addition, we will use a qua-
siclassical formula for the SB amplitude and an approx-
imate expression for the generalized polarizability of
the cluster atoms. Applying a standard quantum-
mechanical procedure (see [7] for details) for the differ-
ential intensity of bremsstrahlung by each channel, nor-
malized by the number N of atoms in the cluster, we
obtain the following expression:

(1)

where q = pf – pi + k is the momentum transferred to
the target from the incident particle; T(q) is a partial
intensity of bremsstrahlung; dΩn is the solid angle in
the direction of radiation; ω and k are the frequency and
the wavevector of the photon, respectively; pi and pf are
the initial and final momenta of the incident particle;
qmax = 2µv, where µ is the reduced mass of the electron
and of the incident particle and v  is the velocity of the
incident particle; and qmin is defined by formula (13)

dI
dωΩn
--------------

1
N
---- T q( ) q,d

qmin

qmax

∫=
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below. Throughout the paper, we use the atomic system
of units " = e = me = 1.

Within the approach used in this paper, the partial
intensity of PB can be represented as

(2)

where Zp is the charge of the incident particle, c is the
velocity of light, S(q, N) is the structure factor of a clus-
ter, Zpol(ω, q) is the effective polarization charge of the
atoms of the cluster, Iφ(q, v, ω, θ) is the kinematic inte-
gral that results from the integration with respect to the
azimuthal angle q, and θ is the angle between the vec-
tors pi and k (the radiation angle of photons). The kine-
matic integral Iφ(q, v, ω, θ) represents a rather compli-
cated function of the parameters of the problem; the
explicit form of this function is given in [7].

Note that expression (2) is obtained for a sufficiently
high-frequency range in which ω @ Ia , where Ia is the
ionization potential of the atoms that constitute a clus-
ter. The opposite case of low frequencies (ω < Ia) is con-
sidered in [3].

We will use the following model representation for
the structure factor of the cluster:

(3)

where

(4)

is the form factor of a spherical cluster, normalized by
the number of atoms, in the jellium model;

(5)

is the spherical Bessel function of order 1; and r(N) is
the cluster radius, which depends on the number of
atoms and can be calculated by the formula

(6)

where rWS is the Wigner–Seitz radius and na is the solid-
state concentration of atoms in the cluster.

The first term on the right-hand side of equality (3)
represents a coherent part of the structure factor of the
cluster, and the second term, a noncoherent part. Note
that form factor (4) is the spatial Fourier image, normal-

Tpol q( )
2Zp

2

πc3v q
---------------S q N,( )=

× Zpol ω q,( )2 Iφ q v ω θ, , ,( ),

S q N,( ) N2FJ
2

q N,( ) N 1 FJ
2 q N,( )–[ ] ,+=

FJ q N,( ) 3
j1 qr N( )( )

qr N( )
------------------------=
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x2
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x
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r N( ) rWS N3 3N
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ized by the number of atoms, of the probability of the
distribution of atoms in the cluster in the jellium model:

(7)

where Θ(x) is the Heaviside step function. In the case
of a monoatomic cluster, structure factor (4) is equal to
unity.

The polarization charge of the cluster atoms can be
represented as

(8)

where α(ω) and Fa(q) are the dipole polarizability and
the form factor of an atom, respectively. These quanti-
ties are calculated by the method proposed in [7]. The
imaginary part of the polarizability is determined by the
optical theorem, in terms of the photoabsorption cross
section, using the data provided at the site [8]. The real
part of the polarizability is recovered by the Kramers–
Kronig relation. The atomic form factor is calculated in
the Slater approximation by the formula obtained
in [9].

An approximate expression for the partial intensity
of SB in the quasiclassical approximation εi @ ω (εi is
the initial energy of the incident particle) and the rela-
tivistic limit (v  ≈ c) has the form

(9)

where mp is the mass of the incident particle and Z is the
charge of the atomic nucleus. Note that the relative
error of formula (9) for nonrelativistic velocities of the
incident particle is no greater than 30%.

The formulas presented above describe the intensity
of two channels of bremsstrahlung for sufficiently high
radiation frequencies ω @ Ia when a fast charged parti-
cle is scattered by a cluster. We neglect the interchannel
interference term because the PB and SB amplitudes
differently depend on the transferred momentum and,
in the relativistic case, on the radiation angle as well.

3. DISCUSSION OF THE RESULTS

Let us apply the formulas obtained in the previous
section to calculate the intensity of bremsstrahlung by
static and polarization channels when a fast electron is
scattered by polyatomic clusters.

wJ r N,( ) 3NΘ r N( ) r–( )
4πr3 N( )

-------------------------------------,=

Zpol ω q,( ) ω2 α ω q,( ) ω2 α ω( ) Fa q( ),≈=

T st q( ) 2

3πc3v q
-------------------S q N,( )

Zp

mp
------ 

 
2

≈

× Z2 1 Fa q( )–[ ] 2 1 v /c( )2–[ ] 1 θcos
2

+( )
1 v /c( ) θcos–[ ] 2

----------------------------------------------------------,
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The cooperative phenomena in bremsstrahlung are
characterized by the following relation:

(10)

where dI is the differential intensity of bremsstrahlung
by one of the channels, normalized by the number of
atoms in a cluster. It is obvious that ξ = 1 in the absence
of cooperative phenomena. In the opposite limit case of
constructive interference between the contributions of
the cluster atoms to the bremsstrahlung intensity, we
have

The coefficient χ takes into account the fact that not all
the transferred momenta that are essential in the pro-
cess on an individual atom make a significant contribu-
tion to the coherent part of bremsstrahlung on a cluster.

The dependence of the parameter ξ on the number of
atoms in a copper cluster for both channels of
bremsstrahlung is demonstrated in Fig. 1. The energy of
a “bremsstrahlung” photon is equal to 1 keV, and the
Lorentz factor is γ = [1 – (v /c)2]–1/2 = 10. In the case of
a polarization channel, the function ξ(N)is shown for
two values of the radiation angle θ = 0.5 and 1 rad. One
can see that the cooperative phenomena are negligible
for the static channel of bremsstrahlung but are quite
significant for the polarization channel. The analysis
shows that the effect of the cooperative phenomena in
PB appreciably increases as the radiation angle
decreases. Moreover, the role of these phenomena
increases with the energy of the incident particle and as
the frequency of the bremsstrahlung photon decreases.

ξ dI N( )
dI N 1=( )
-------------------------,=

ξ χN , χ 1.<=

200 40 60 80 100
N
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20
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3

Fig. 1. Cooperative phenomena in PB (1 and 2) and SB (3)
of an electron scattered by a copper cluster (γ = 10 and
"ω = 1 keV); (1) θ = 1 rad and (2) θ = 0.5 rad.
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The curves in Fig. 1 and the results of calculations
imply that, in the case of the polarization channel, start-
ing from a certain value of Nsat that depends on the radi-
ation angle and the energy of the incident particle, the
radiation intensity saturates for a certain number of
atoms in the cluster. The analysis shows that Nsat
increases as the radiation angle decreases and the
energy of the incident particle increases.

To account for the results listed above, we take into
account that, according to formulas (3)–(6) for the
structure factor, the constructive interference of the
contributions of different atoms of the cluster occurs
only for sufficiently small values of the transferred
momentum,

(11)

where r(N) is the cluster radius (see (6)). Otherwise, the
structure factor of the cluster (normalized by the num-
ber of atoms) is equal to unity, and there are no cooper-
ative phenomena.

It is essential that inequality (11) is inconsistent with
the condition

(12)

which defines the range of transferred momenta in
which SB is not small by virtue of the obvious inequal-
ity r(N) > ra (ra is a characteristic atomic radius). Hence,
the cooperative phenomena in SB on a cluster are neg-
ligible.

At the same time, a partial amplitude of PB is large
when the inequality opposite to (12) holds; thus, there
is no similar prohibition on the cooperative phenomena

q 1/r N( ),<

q 1/ra,>

20°0 40° 60°
θ

0.5

1.0

Ipol(θ)/Ipol(0)

1

2

3

1.5

Fig. 2. Angular dependence of the normalized intensity of
PB of an electron on an isolated atom (1) and on a copper
cluster for N = 100 (2), and N = 1000 (3); "ω = 5 keV and
γ = 10.
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in the polarization channel. Let us write out an expres-
sion for the minimal momentum that is transferred to
the target from the incident particle and appears in inte-
gral (1):

(13)

The fact that the cooperative phenomena are essential,

(14)

and formula (6) for the cluster radius imply the follow-
ing expression for the number Nsat of atoms in a cluster
at which the saturation occurs:

(15)

Equality (15) shows that Nsat strongly depends on the
radiation angle and on the energy of the incident parti-
cle in the relativistic case. For instance, for the param-
eters of Fig. 1, we have

Nsat(θ = 1 rad) = 27 and Nsat(θ = 0.5 rad) = 1312.

The effect of the cooperative phenomena on the
angular dependence of the intensity Ipol of PB on a clus-
ter is demonstrated by Fig. 2. This figure represents the
intensity of PB, normalized by its value at zero angle,
as a function of the radiation angle for different num-
bers of atoms in a copper cluster, including the mono-
atomic case, for a photon energy of 5 keV and a Lorentz
factor of γ = 10. One can see that the angular distribu-
tion of the PB intensity is narrowed down as the num-
ber of atoms N increases; moreover, in the limit of
large values of this number, this distribution becomes
nonmonotonic. This nonmonotonicity disappears in the
nonrelativistic case as the radiation frequency
decreases and increases with the number of atoms.

Note that these variations of the angular distribution
of the intensity of PB on clusters can be observed
experimentally only for heavy incident particles. In the
case of light particles (an electron or a positron) and
small radiation angles, the static channel dominates in
which cooperative effects are small.

To describe the relative contribution of PB to the
process, we introduce an R factor by the equality

(16)

where Ist is the intensity of SB. The angular dependence
of the R factor of an electron for γ = 10, a photon energy
of 1 keV, and different numbers of atoms in a copper
cluster is represented in Fig. 3. One can see that the role

qmin ω v θ, ,( ) ω
v
---- 1

v
c
---- θcos– 

  .=
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of PB increases with the number of atoms. For exam-
ple, in the monoatomic case, the angle at which the
intensities of PB and SB become equal amounts to 30°,
while, for N = 100, this angle is 10°.

The condition under which the cooperative phenom-
ena are essential in the PB spectrum can be obtained
from inequality (14) with regard to the explicit expres-
sion (13) for the minimal momentum transferred to the
target. This condition is expressed as

(17)

For frequencies greater than ωmax, cooperative phe-
nomena in bremsstrahlung on a cluster are small.

In the nonrelativistic limit v  ! c, the maximal fre-
quency above which the cooperative phenomena disap-
pear does not depend on the radiation angle and is equal
to

(18)

For metallic clusters, the Wigner–Seitz radius rWS
ranges from 2 to 4, so that the characteristic value of
frequency (18) for a moderate-size cluster and for the
velocity of the incident particle on the order of 10 au
amounts to 1 au.

In the frequency range ω < 1 au, the computation
model used in this paper becomes inadequate because,
in this case, the dynamical polarizability of a cluster is
largely determined by the collective excitations of the
electrons of the cluster. For a nonrelativistic incident
particle, such a situation was considered in [3].

In the relativistic limit γ @ 1, formula (17) is conve-
niently represented as

(19)

which explicitly demonstrates the dependence of the
maximal frequency ωmax on the energy of the incident
particle. It follows from equality (19) that, in contrast to
the nonrelativistic case, the effect of cooperative phe-
nomena on the spectrum of PB in the relativistic case
essentially depends on the radiation angle of a photon.
For small angles and large values of the Lorentz factor
of the incident particle, the maximal frequency above
which the cooperative phenomena in PB disappear may
reach significant values. However, one should keep in
mind that, in the range of angles θ < γ–2, the static chan-
nel is dominant in the bremsstrahlung of an electron
(positron). Therefore, the problem concerning the role
of cooperative phenomena in the spectrum of
bremsstrahlung of a light charged particle one a cluster

ω ωmax<
4πna

3N
-----------3

v

1
v
c
---- θcos–

-------------------------.=

ωmax
nrel v

rWS N3
-----------------.=

ωmax
1

rWS N3
----------------- 2γ2

4γ2 θ/2( )sin
2

1+
-----------------------------------------,=
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should be solved with regard to the specific values of
the parameters of the problem. At the same time, for the
bremsstrahlung of heavy charged particles, when SB is
negligible, a spectral constraint on the role of coopera-
tive phenomena in the relativistic case is given by fre-
quency (19).

The spectrum of PB on a copper cluster consisting
of ten atoms as a function of the energy of the incident
particle is shown in Fig. 4 for a radiation angle of
0.5 rad. One can see that, as the Lorentz factor
increases, the radiation intensity increases and the max-

5°0 10° 15° 20° 30°
θ

0.01

0.1

1
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100
R

1 2

3

25°
0.001

Fig. 3. Angular dependence of the R factor for different
numbers of atoms in a copper cluster, including the mono-
atomic case: "ω = 1 keV and γ = 10; (1) N = 100, (2) N =
10, and (3) N = 1.
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Fig. 4. The spectrum of PB on a copper cluster (N = 10) for
different values of the Lorentz factor and a radiation angle
of 0.5 rad: (1) γ = 102, (2) γ = 10, and (3) γ = 1.1.
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imum of the spectrum shifts toward higher frequencies.
These variations are especially manifest when passing
from fast but nonrelativistic incident particles to
weakly relativistic particles. As the Lorentz factor
increases further, the variation of the spectrum of PB on
a cluster is not so manifest. As the radiation angle
decreases, the PB spectrum of relativistic incident
particles moves to higher frequencies according to for-
mula (19), which also implies that the maximal fre-
quency decreases as the number of atoms in the cluster
increases.

The intensity of the total bremsstrahlung and of PB,
normalized by the number of electrons, for the scatter-
ing of nonrelativistic electrons by a copper cluster and
by an isolated atom are shown in Fig. 5 as a function of
the velocity of the incident particle for a radiation angle
of θ = 1 rad and a photon energy of "ω = 200 eV. One
can see that, in the nonrelativistic case, there exists an
optimal value of the electron velocity vopt for which the
intensity of PB on a cluster is maximal. The depen-
dence of this optimal velocity on the parameters of the
problem is given by

(20)

In the case of scattering by an isolated atom, the cluster
radius in (20) must be replaced by the characteristic
atomic radius ra . This formula can be obtained with the
use of the expression (13) for the minimal transferred
momentum in the case of v  ! c.

Equality (20) implies that, as the frequency and the
cluster size decrease, the optimal velocity decreases. In

v opt ωr N( ).=
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Fig. 5. The intensity of the total bremsstrahlung (1 and 3)
and PB (2 and 4), normalized by the number of atoms in a
cluster, as a function of the electron velocity in the nonrela-
tivistic case for a copper cluster (N = 20; curves 1 and 2) and
for an isolated atom (N = 1; curves 3 and 4); "ω = 200 eV
and θ = 1 rad.

v , au
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particular, for a process on an isolated atom and a pho-
ton energy of "ω = 200 eV, the value of vopt lies outside
the applicability domain of the Born approximation;
therefore, the intensities of bremsstrahlung and PB are
monotonically decreasing functions of the velocity of
the incident particle (Fig. 5). As the number of atoms in
the cluster increases, the optimal velocity increases, as
is clear from formulas (20) and (6).

As the radiation angle decreases, the peak in the
dependence of the bremsstrahlung intensity on the elec-
tron velocity disappears; for PB, this peak becomes less
pronounced. On the one hand, this is associated with
the increased contribution of the static channel to the
process (see formula (9)) and, on the other hand, with
the increase in the value of the minimal transferred
momentum (13).

Figure 5 illustrates the vanishing of the cooperative
phenomena as the velocity of the incident particle
decreases: for a given photon energy (200 eV), the total
bremsstrahlung and PB on a cluster and on a single
atom coincide in the limit of small velocities.

In the high-frequency range, the intensity of PB is a
monotonically increasing function of the particle veloc-
ity; this is associated with the natural restriction
imposed on the optimal velocity of the incident parti-
cle: vopt < 137. A monotonic increase in the PB inten-
sity as a function of the energy of the incident particle
is also characteristic of the relativistic case (except for
the case of low velocities, which is not considered
here).

4. CONCLUSIONS

Based on the analysis carried out in this work, one
can conclude that the cooperative phenomena play an
important role in the bremsstrahlung of a fast (includ-
ing a relativistic) charged particle scattered by a poly-
atomic cluster over a wide range of frequencies. These
phenomena, associated with the constructive interfer-
ence of the contributions of atoms to the process by the
polarization channel, lead to a nonlinear increase in the
intensity of PB as a function of the number of atoms in
a cluster. At the same time, for the static mechanism of
bremsstrahlung, the contribution of different atoms to
the radiation is noncoherent, which is associated with
the small values of the impact parameters at which the
SB is formed.

In this work, we have investigated the cooperative
phenomena as a function of the number of atoms in a
cluster. We have determined the number Nsat (starting
from which the PB intensity ceases to grow nonlin-
early) as a function of the basic parameters of the prob-
lem. In particular, we have shown that, for relativistic
incident particles, the value of Nsat strongly increases
as the radiation angle decreases. We have also shown
that the cooperative phenomena substantially modify
the basic characteristics of bremsstrahlung on a clus-
ter compared with that on a single atom. For exam-
ND THEORETICAL PHYSICS      Vol. 101      No. 1      2005
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ple, in the high-frequency case, the radiation pattern of
PB is narrowed down as the number of atoms increases;
for sufficiently large clusters, the angular dependence
of the intensity of PB of relativistic particles becomes
nonmonotonic: a maximum appears for nonzero radia-
tion angles.

As the energy of the incident particle increases, the
maximum of the spectral distribution of PB on a cluster
moves to higher frequencies. In the relativistic case, the
shape of the high-frequency region of the spectrum
strongly depends on the radiation angle. For small
angles, the intensity of bremsstrahlung decreases, as
frequency increases, much slower than for large angles.

The analysis of the bremsstrahlung intensity as a
function of the velocity of the incident particle has
shown that, in the nonrelativistic case, the character of
this function varies from monotonically increasing to
monotonically decreasing behavior. In the relativistic
limit, the PB intensity monotonically increases with the
particle energy. In the limit of small velocities of the
incident particle, the role of cooperative phenomena in
the bremsstrahlung on a cluster becomes negligible.

The results obtained can be used for interpreting
experimental data on the bremsstrahlung of fast
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
charged particles on clusters for sufficiently high ener-
gies of the photons.
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Abstract—The analytic approach of vacuum (Brunel) heating mechanism is generalized to the case of large
atomic clusters irradiated by a superintense femtosecond laser pulse. The hydrodynamic cluster expansion is
taken into account in this approach. Simple universal expressions are obtained for the absorbed laser energy by
a cluster and for the radius of an expanding cluster. The absorption of laser energy and the cluster expansion
are determined by only one dimensionless field parameter. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Rapid developments in intense ultrashort laser tech-
nology have opened a new regime of laser–cluster
interaction, in which intense laser pulses deposit their
energy into solid targets faster than the hydrodynamic
expansion of the cluster surface occurs. Hot electrons in
laser–cluster plasmas can be generated by different
absorption or acceleration mechanisms under different
experimental conditions. At low laser intensities,
inverse bremsstrahlung is the main absorption mecha-
nism, which depends on the electrical conductivity
associated with electron mean free path comparable to
the interatomic spacing inside the cluster [1]. This
absorption strongly decreases as the laser intensity
increases.

Brunel [2] proposed that high-intense p-polarized
laser pulses incident obliquely on an atomically abrupt
metal surface could be strongly absorbed by pulling
electrons into vacuum during an optical cycle and then
returning them to the surface with approximately the
quiver velocity. This is the so-called vacuum heating
process.

Recently, hot electron generation was studied at
high intensities [3]. Hot electron spectra and X-ray
spectra from the bremsstrahlung radiation, when hot
electrons undergo deceleration in solid targets, showed
that, when smooth solid targets were irradiated
obliquely by p-polarized laser pulses, a group of hot
electrons could be heated to a relatively low Max-
wellian temperature. Another group of hot electrons
with higher energies could be produced by nonlinear
resonant absorption if there was a thin layer of pre-
plasma in front of the target surface. Electrons pro-
duced by the inverse bremsstrahlung absorption pro-
cess are known as thermal electrons and have energies
less than 1 keV at modest laser intensities. The elec-

¶ This article was submitted by the authors in English.
1063-7761/05/10101- $26.000080
trons generated by resonance absorption and the other
nonlinear resonant absorption are called hot electrons
and have much higher kinetic energies. The energy
absorption and the hot electron generation in the inter-
action of p-polarized femtosecond laser pulses with
aluminum solid targets have been studied. The laser
delivered 150 fs pulses and produced a peak irradiance
of 8 × 1015 W/cm2 at the focus. The measurements sug-
gest that vacuum heating is the main heating mecha-
nism for hot electrons with high energies.

It is clearly seen from other experimental data [4]
that, in the case of irradiation of solid targets by a
p-polarized laser, the outgoing electrons are extracted
from the critical surface by the Brunel absorption, once
in the laser oscillating period because the electron
bunch length is almost equal to the laser wavelength.
The laser wavelength and the intensity were 1 µm and
2 × 1018 W/cm2, respectively, in these experiments.

The third heating mechanism is the elastic reflec-
tions of inner electrons from the cluster surface [5, 6].

The absorption of laser energy is equal to /2ω2 at
each collision in the presence of laser field (analo-
gously to the induced inverse bremsstrahlung at the col-
lision of an electron with an atomic ion). Here, Fin is the
electric field strength inside the cluster. The system of
units me = e = 1 is used throughout the paper. Then, the
average collision rate ν is determined from the electron
motion inside the cluster:

ν ~ Ve/R.

Here, Ve is the electron thermal, or quiver, velocity
inside the cluster. This mechanism is effective only near
the Mie resonance when the Mie frequency

ωMie = ωp/

Fin
2

3

 © 2005 Pleiades Publishing, Inc.



        

VACUUM HEATING OF LARGE ATOMIC CLUSTERS 81

                                                                 
is equal to the laser frequency ω during the cluster
expansion. Then, Fin can be larger than the external
laser field strength F, resulting in large values of Ve . Far
from the Mie resonance, we obtain

We see that the collision rate ν decreases as the cluster
size R increases.

Inverse induced bremsstrahlung and vacuum heat-
ing are very different heating mechanisms. Electron
heating at the inverse induced bremsstrahlung is pro-
portional to the duration of the laser pulse. An elec-
tron acquires twice the oscillation field energy at each
collision with an atomic ion, but, inside the cluster,
the electric laser field is much less compared to the
external laser field, because the electron density in the
cluster is higher than the critical density. The acquired
electron energy at each collision is therefore small,
but large absorption in experiments occurs due to
large duration of a laser pulse at the leading edge of
this pulse. At the trailing part of the laser pulse, the
electron plasma becomes subcritical, and the external
laser field freely penetrates the entire cluster. The
doubled oscillation energy becomes large, but the
cluster begins to expand so quickly that the rate of
electron–ion collisions becomes very small, and there
is no electron heating at the trialing edge. If now the
duration of laser pulse is only 50 fs, then there is no
time for many electron–ion collisions. Oppositely, the
vacuum heating mechanism operates only with the
external laser field, because an electron is ejected
from the cluster, is heated by the external laser field,
and returns to the cluster (where the internal laser
field is negligibly small). Therefore, even a small
number of electron ejections during the leading part
of the femtosecond laser pulse results in large elec-
tron heating.

It follows from [7] that, for clusters with radii
larger than 10 nm, only a small amount of electrons
leave the cluster, i.e., the Coulomb explosion mecha-
nism is not realized, and hydrodynamic pressure of
the free electron gas inside the cluster is the dominat-
ing mechanism for cluster expansion. The second
requirement for fulfillment of the hydrodynamic
approximation is that the laser pulse duration be large
compared to the time between the neighboring elec-
tron–electron collisions. In the opposite case, a parti-
cle-in-cell description is required. This means in prac-
tice that the laser intensity should be a nonrelativistic
quantity, because relativistic electrons practically do
not collide with each other (and with atomic ions) dur-
ing a femtosecond laser pulse.

Fin
ω

ωMie
---------- 

  2

F ! F.–≈
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In this paper, we report a theoretical study on hot
electron generation in the interaction of superintense
femtosecond laser pulses with large atomic clusters.
The vacuum (Brunel) mechanism is generalized to the
case of large atomic clusters with the hydrodynamic
cluster expansion during the laser pulse taken into
account. Femtosecond laser pulses are needed for
experiments with clusters in order to prevent fast clus-
ter decay before the peak of the laser pulse. A simplified
version of the vacuum heating of electrons for deute-
rium clusters was considered in [8]. However, this
approach did not take the screening effects at the elec-
tron ejection into account. Besides, the acquired elec-
tron kinetic energy was estimated only qualitatively.
Finally, cluster expansion and multiple inner ionization
of atomic ions were not considered in [8].

2. VACUUM HEATING

To describe the Brunel energy absorption by a large
atomic cluster, we first consider each small part of the
cluster surface as a plane irradiated by a superintense
femtosecond laser pulse. This is valid if the excursion
length F/ω2 of a free electron ejected by laser field from
the cluster is less than the cluster radius R. Here, F and
ω are the field strength amplitude and field frequency,
respectively. For example, if R = 20 nm (the number of
Kr atoms is Na = 4.7 × 105 in such a cluster), "ω =
1.5 eV (Ti:sapphire laser), then the peak laser intensity
should be less than 5 × 1016 W/cm2 (F < 1.2 a.u.). In
practice, the inequality

F/ω2 ≥ R

can also be permitted, because an electron is ejected
from the cluster with zero velocity, and, therefore, it
moves and returns to the cluster along the same curved
electric field line.

Free electrons are produced at the leading edge of
the laser pulse due to a single-ionization process. The
local coordinate x is assumed to be directed along the
normal to the cluster surface, and x > 0 is the region
inside the cluster plasma. Inside the liquid cluster mat-
ter, the plasma frequency

is large compared to the laser frequency ω, and, hence,
the external electric field practically does not penetrate
the cluster. Here, ne is the electron number density. In
addition, we assume that the cluster is sufficiently large,
such that the outer ionization can be neglected, unlike
in the case of inner ionization [9]. According to the
Bethe rule for barrier-suppression outer ionization [9],

ωp 4πne=
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the charge of the cluster ion (i.e., the number of ejected
electrons) is

Q = 4FinR2.

The condition of a weak outer ionization

(Ne is the total number of electrons in the cluster) cor-
responds to the requirement that

This inequality is usually fulfilled because ωp @ ω. For
example, in the case of a Kr cluster, we have ne = 2.0 ×
10–3 a.u. for single ionization, and ωp = 0.160 a.u. @
ω = 0.055 a.u. If R = 20 nm, the above inequality is vio-
lated only when Fin > 10 a.u. and F > 100 a.u.

Following Brunel’s approach [2], we assume the
vacuum region for x < 0, where the normal component
of the incident linearly polarized laser field

F(t) = Fsinωt

is present on the surface. Here,

is the Gaussian envelope of the laser pulse and τ is the
pulse duration. The reflected field F(t) coincides with
the incident field within the laser wavelength λ from the
cluster surface. We assume that the excursion length

F/ω2 < R ! λ,

where λ is the laser wavelength. As the field increases
for t > 0, electrons are pulled out during the first half of
the laser period 0 < t < π/ω. The (l + 1)th electron feels
the total electric field strength F(t) + Fl(t), where

(1)

is the electric field strength produced by the previously
ejected electrons and their images inside the cluster, dσi

is the surface number density of the ith electron, and
ni(xi) is the volume number density of the ejected ith
electron (dσi = nidxi). The electrons that are ejected
after the (l + 1)th electron do not contribute to Eq. (1),
because these electrons and their images are on one side
of the considered (l + 1)th electron.

The quantity Fl is independent of the time t, because
the electric field produced by a uniformly charged
plane is independent of the distance between this plane

Q ! Ne ne
4πR3

3
------------=

Fin/ωp
2
 ! R.

F F0 t2/τ2–( )exp=

Fl t( ) 4π σid
i 1=

l

∑– 4π ni xi( )dxi

i 1=

l

∑–= =
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and the cluster surface. Hence, putting t = tl in Eq. (1),
we obtain

(2)

The last relation follows from the statement that the
total electric field vanishes on the cluster surface, F(t) +
Fl(t) = 0 when t = tl and xl = 0. Thus, the total electric
field is equal to F(t) + F(tl) for the (l + 1)th electron. The
motion of this electron is described by the Newton
equation

(l @ 1, and, hence, there is no real difference between
the numbers l and l + 1). We can integrate this equation
to obtain the velocity of the lth electron under the initial
condition of a cold ejected electron v l(tl) = 0:

(3)

We can integrate Eq. (3) to obtain the position of the lth
electron under the initial condition xl(tl) = 0:

(4)

The time instance for the return of the lth electron
inside the cluster is determined from the universal
implicit equation xl(t) = 0, or

(5)

A nonzero (t ≠ tl) solution of this equation is possible
only in the interval 0 < tl < π/2ω (the first quarter of the
laser period). We restrict ourselves the range tl < t <
2π/ω; t = tl when tl = π/2ω (no return), but t > π/2ω
when tl < π/2ω. The dependence t(tl) is shown in Fig. 1.
It is seen that small values ωtl ! 1 correspond to large
values of the returning time t > 2π/ω. We neglect their
contribution, although they slightly distort the electron
ejection during the next laser period, because these
electrons have small electron density nl (see below
Eq. (8)). The approximate solution of Eq. (5) is then
given by 

Fl t( ) Fl tl( ) F ωtl.sin–= =

dv l

dt
-------- F ωtsin ωtlsin–( )–=

v l t( ) F
ω
---- ωtcos ωtl ω t tl–( ) ωtlsin+cos–[ ] .=

xl t( ) F

ω2
------ ωtsin ωtlsin–( ) ω t tl–( ) ωtlcos–=

+
ω2

2
------ t tl–( )2 ωtlsin .

ωtsin ωtlsin– ω t tl–( ) ωtlcos=

–
ω2

2
------ t tl–( )2 ωtl.sin

t
2

ω2tl

--------- @ 
1
ω
----.≈
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We can repeat all operations during the next laser
period analogously to the above consideration.

The absorbed energy over one laser cycle per unit
square is given by [2]

(6)

The electron number density nl can be found by differ-
entiating Eq. (1) with respect to tl at a fixed value of t
and taking Eq. (2) into account:

(7)

Differentiating Eq. (4) with respect to tl at a fixed value
of t and substituting the result in Eq. (7), we obtain the
quantity nl:

(8)

Substituting Eqs. (3) and (8) in Eq. (6), we find

(9)

The integral is done numerically, and Ee can be written
as

(10)

where η = 0.75. In Eq. (10), we substituted the external
field strength F far from cluster by the field strength at
the cluster surface

Fs = 3Fcosθ,

which is normal to the cluster surface at each surface
point (under the condition that the electric field Fin
inside the cluster is very small). Here, θ is the angle
between the polarization of the linearly polarized laser
field and the normal to the cluster surface.

The maximum number of returning electrons during
one laser cycle per unit square is

Ee
1
2
---v l

2nl xld∑ 1
2
--- v l

3nl t.d

π/2ω

2π/ω

∫= =

dFl

dtl

-------- 4πnl

dxl t( )
dtl

--------------– Fω ωtl.cos–= =

nl t( ) 1

2π t tl–( )2
------------------------.=

Ee
F3

4πω3
-------------=

×
ωtcos ωtl ω t tl–( ) ωtlsin+( )cos–[ ] 3

t tl–( )2
------------------------------------------------------------------------------------------- t.d

π/2ω

2π/ω

∫

Ee
η

8πω2
------------- 3F θcos( )3,=

N
Fs

4π
------

3F θcos
4π

-------------------.= =
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The averaged energy ε of a hot electron is

i.e., it is of the order of the ponderomotive energy (as in
a rescattering process for an atom [10], but with a dif-
ferent numerical coefficient). The maximum number of
returning electrons during one laser cycle for the whole
cluster is (see also Eq. (12) below)

The number of free electrons inside the cluster is

We then have

For example, when R = 20 nm, F = 0.5 a.u. (the peak
laser intensity is approximately equal to 1016 W/cm2),
ω = 1.5 eV, and ωp = 0.16 a.u. (single ionization of
atoms in the Kr cluster), we obtain Nr/Ne ≈ 0.25. The
number of electrons heated during the laser pulse can
be estimated by multiplying the quantity Nr/Ne by the
number of laser periods ωτ/2π = 54 (at τ = 150 fs).
Thus, the conclusion can be made that all electrons are
heated in the cluster during the laser pulse.

ε
Ee

N
----- η 3F θcos( )2

2ω2
------------------------------

3ηF2

2ω2
-------------,= = =

Nr 2 N 2πR θsin( )R θd

0

π/2

∫ 3FR2

2
-------------.= =

Ne ne
4πR3

3
------------

ωp
2 R3

3
------------.= =

Nr

Ne

------
9F

2ωp
2 R

--------------.=

0 0.5 1.0 1.5
tl

π/2
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t

Fig. 1. The universal dependence of the returning time t on
the time tl of the electron ejection according to Eq. (5).
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The mean free time of electron–electron collisions
inside the Kr cluster,

(lnΛ ~ 10 is the Coulomb logarithm), is larger than the
pulse duration τ = 150 fs for the electron temperature
Te > 1.5 keV during the laser pulse. Therefore, there is
no Maxwell distribution among electrons during the
femtosecond laser pulse [11]. The kinetic energy of the
heated electron in the peak of the laser pulse is ε =
3ηF2/2ω2 ~ 2.5 keV at F = 0.5 a.u.

The absorbed power I per unit square of the cluster
surface can be found by dividing Ee over the laser
period 2π/ω. Thus,

(11)

We now integrate I over the cluster surface. The
power W absorbed by the entire cluster is given by

(12)

3. CLUSTER EXPANSION

The energy of laser radiation is first absorbed by the
cluster electrons; then, this energy transforms into the
kinetic energy of the atomic ions. The cluster expansion
is a nonequilibrium statistical process due to high
expansion velocities. Thus, the increasing pressure of
the electron gas is not compensated by the external
medium. Therefore, the well-known expression PedV
(Pe is the pressure of the electron gas) of the equilib-
rium statistical physics is not applicable for derivation
of the expansion work. Instead, we calculate the varia-
tion of the kinetic energy of atomic ions inside the
expanding cluster. We assume that the velocity of the
radial motion of atomic ions v(r) is a linear function of
the radial variable r:

The kinetic energy of atomic ions in the spherical layer
having the width dr is

τee

3Te
3/2

4 2πne Λln
-----------------------------=

I
27η

16π2ω
----------------F3 θ.cos

3
=

W 2 I θ 2πR θsin( )Rcos
3 θd

0

π/2

∫ 27η R3

16πω
----------------F3.= =

v r( ) dR
dt
------- r

R
---.=

dEk 4πr2naMav
2 r( )

2
--------------------------dr,=
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where Ma is the mass of an atomic ion and na is the
number density of atomic ions. The total kinetic energy
of cluster ions can be obtained by integration over r:

We took into account that the number density of atomic
ions is

and Na is the total number of atoms in the cluster. The
time derivative of this energy gives the expansion work
produced per unit time:

(13)

According to Eqs. (12) and (13), the cluster vacuum
heating is determined from the energy balance equation

(14)

where E(t) is the total thermal energy of the heated elec-
trons inside the cluster as a function of time t. The clus-
ter expansion is determined from the Newton equation

(15)

The electron pressure is

This expression is also valid for nonequilibrium pro-
cess of the cluster expansion. The electron pressure can
be produced by both the electron–electron collisions
and elastic reflections of electrons from the cluster sur-
face (the latter occurs for high-energy electrons).
Hence,

(16)

where

Ek 4πr2naMav
2 r( )

2
-------------------------- rd

0

R

∫ 3
10
------NaMa

dR
dt
------- 

 
2

.= =

na

3Na

4πR3
------------,=

dEk

dt
---------

3
5
---NaMa

dR
dt
-------d2R

dt2
---------.=

dE
dt
-------

27η R2

16πω
----------------F0

3 3t2

τ2
-------– 

 exp=

–
3
5
---NaMa

dR
dt
-------d2R

dt2
---------,

d2R

dt2
---------

3Pe

naMaR
-----------------.=

Pe
2E
3V
-------.=

d2R

dt2
---------

2E
MaNaR
------------------,=

Na naV const= =
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is the number of atomic ions in the cluster. Equations (14)
and (16) are to be solved under the initial conditions

We introduce the dimensionless radius R/R0  R,
the dimensionless time t/τ  t, the dimensionless
electron energy

and the dimensionless field parameter

(17)

Then, the dimensionless universal equations can be
written as

(18)

and the initial conditions become

It is seen that the vacuum heating of cluster elec-
trons and the cluster expansion are determined by only
one universal dimensionless field parameter s
(Eq. (17)). In Figs. 2 and 3, the functions R(t) and E(t)
are shown for various values of the parameter s. It
should be noted that the multiple inner ionization of
atoms inside the cluster does not change the obtained
results. It decreases the average energy of a hot electron
only. It follows from Eq. (18) that the velocity of cluster
expansion

and

due to adiabatic cooling of the cluster electrons after the
end of the laser pulse.

In Fig. 4, we present the final dimensionless velocity
of the cluster expansion V(t  +∞) as a function of
the field parameter s at t  +∞. It is seen that this

R ∞–( ) R0,
dR
dt
------- 0 as t ∞,–= =

E ∞–( ) 0.=

2τ2

MaNaR0
2

--------------------E E,

s
27η F0τ( )3

16πωMaNa

----------------------------.=

dE
dt
------- sR2 3t2–( )exp

6E
5R
-------dR

dt
-------,–=

d2R

dt2
--------- E

R
---=

R ∞–( ) 1,
dR
dt
------- 0 as t ∞, E ∞–( )– 0.= = =

V
dR
dt
------- const as t +∞,= =

E t +∞( ) t 6/5– 0∼
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dependence can be approximated by the simple linear
dependence V = 0.8s.

For the laser–Kr cluster interaction at F0 = 1 a.u.,
R0 = 20 nm, and τ = 100 fs, we find s = 7.0. Then,
V = 5.6 a.u. In the usual units, we find V = 5.6R0/τ. It
then follows that V ≈ 1.1 nm/fs, which is in agreement

2 4 6 8 10s

10

6

2

1
2

0
–1

–2t

R(t)

Fig. 2. The universal dependence of the cluster radius R(t)
(in units of the initial cluster radius R0) on time t (in units of
the pulse duration τ) for different values of the field param-
eter s (Eq. (17)).
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Fig. 3. The universal dependence of the absorption energy

E(t) (in units of MaNa /2τ2) by a cluster on time t (in units

of the pulse duration τ) for different values of the field
parameter s.
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Fig. 4. The final velocity of the cluster expansion V(t) as a
function of the field parameter s as t  +∞.
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with Fig. 3 in [12] for the same values of the parame-
ters. Hence, in this example, the maximum kinetic
energy of Kr ions is approximately equal to 530 keV.
Thus, most of the electron heating energy transforms
into the energy of cluster ion expansion; the kinetic
energy of the heated electron in the peak of the laser
pulse is

4. CONCLUSIONS

The hydrodynamic expansion of large Xe clusters
(1.5 × 105 atoms per cluster) was observed at the irradi-
ation by a laser pulse with the peak intensity approxi-
mately 1016 W/cm2 [13]. The duration of the laser pulse
was τ = 200 fs. The authors also took the asymmetric
pressure of the laser field into account in addition to the
hydrodynamic pressure. It can be effective at plasma
resonance when the Mie frequency coincides with the
laser frequency. The field pressure produces an asym-
metric cluster expansion.

Electron kinetic energy spectra were measured
in [14] from the interaction of Kr and Xe clusters with
a high-intensity 800 nm femtosecond laser pulse. The
sizes of clusters were 104 and 2 × 106 atoms per cluster.
The peak intensity was 5 × 1016 W/cm2 at the shortest
pulse duration τ = 50 fs. The cutoff in the electron
energy spectrum was found to be at ε = 6 keV. Accord-
ing to our approach, the cutoff for electrons inside the
cluster is

The difference is explained by a decrease of the elec-
tron energy due to the adiabatic decrease of the laser
field strength when the laser pulse turns off (in accor-
dance with the Lawson–Woodward theorem; see
also [15]). This cooling is confirmed by numerical sim-
ulation [16] of the interaction of a Xe cluster with a
laser pulse (λ = 780 nm, τ = 260 fs, 4 × 1015 W/cm2).

Hot electron generation by the vacuum heating pro-
cess has been studied in the interaction of 150 fs, 5 mJ,
800 nm p-polarized laser pulses with solid targets [17].
The measurements have suggested that the “vacuum
heating” is the main heating process for hot electrons
with high energies. The energy of the vacuum-heated
hot electrons has been found to be higher than the pre-
diction from the scaling law of resonance absorption.
Particle-in-cell simulations have confirmed that hot
electrons are mainly generated by the vacuum heating
process under certain experimental conditions.

ε 3ηF2

2ω2
------------- 10 keV at F≈ 1 a.u.= =

ε
3ηF0

2

ω2
------------- 14 keV.≈=
JOURNAL OF EXPERIMENTAL A
Spectra of energetic electrons in the 100 keV range
were measured from the interaction of intense femtosec-
ond laser pulses with clusters of xenon or argon [18]. The
interaction of 28 fs pulses with cluster targets revealed
quite different results with respect to the applied laser
intensity. At the laser intensity 1016 W/cm2, the absorp-
tion by xenon clusters was about 25%; however, at the
laser intensity 1017 W/cm2, the laser energy absorption
drastically increased to 78%, and the efficient coupling
between the laser pulse and cluster target produced
electrons with the energy as high as 500 keV. The esti-
mated hot electron temperatures ranged from about 30
to 90 keV depending on atoms.

The Mie resonance is effective only during a very
short time (2–3 fs) because of the very fast cluster
expansion. Therefore, a short increase of the laser field
at the resonance does not result in significant electron
heating. The Mie resonance only appears in the self-
similar expansion model in [1] and results from the cal-
culation of the dipole moment. In Fig. 7 in [1], the elec-
tron energy as a function of time has a sharp and nar-
row peak because of the Mie resonance. Then, the elec-
tron energy strongly decreases, such that the Mie
resonance does not actually influence the final electron
heating in accordance with the conclusion in the previ-
ous section.

In conclusion, the vacuum mechanism suggested by
Brunel for irradiation of a planar solid surface by a
high-intensity laser pulse is generalized to the case of
large spherical clusters with the cluster hydrodynamic
expansion taken into account. The universal expres-
sions have been obtained for the absorbed laser energy
by a cluster and for the radius of the expanding cluster
as functions of time. The absorption of laser energy and
the cluster expansion are determined by only one
dimensionless field parameter s (Eq. (17)).
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Abstract—Data from the Yakutsk extensive air shower array for the period 1974–2004 are used to analyze the
energy spectrum and anisotropy of primary cosmic rays (PCRs) with energy E0 ≥ 1017 eV. The spectra from
different regions of the sky are shown to differ in shape. Enhanced and reduced particle fluxes come from the
disks of the Galaxy and the Supergalaxy (the Local Supercluster of galaxies) at E0 ≥ 5 × 1018 eV and E0 ≤
(2−3) × 1018 eV, respectively. This is interpreted as a manifestation of the possible interaction between extraga-
lactic PCRs and the matter of these spatial structures. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Ultrahigh-energy (E0 ≥ 1017 eV) cosmic rays have
been being recorded on the Yakutsk extensive air
shower (EAS) array since 1970 and, in stable operating
conditions, since 1974. Over this period, we have
repeatedly reported the results of our studies of the pri-
mary cosmic ray (PCR) energy spectrum as the experi-
mental data were accumulated [1–5]. The shape and
intensity of the spectrum near the cutoff (~1020 eV) pre-
dicted by Zatsepin and Kuzmin [6] and Greisen [7] are
of great importance in revealing the PCR composition
and formation sources. The experimental results
obtained on different arrays [5, 8, 9] differ in absolute
intensity by a factor of 2, but are similar in shape. The
intensity variations cannot be described by a single
power law. The shape of the spectrum at E0 > 1019 eV is
consistent with the assumption that the bulk of the PCR
flux originates in extragalactic sources [10, 11]. In this
case, the spectrum must exhibit a cutoff near 1020 eV.
The data from the Yakutsk array [3–5] and the Ameri-
can HiRes array [9] agree with this conclusion, while
the data from AGASA (Akeno Giant Air Shower Array)
with a large number of events at E0 ≥ 1020 eV are in con-
flict with it [8]. We considered this problem in [12, 13].

Until now, the energy spectrum has been studied
without taking into account the locations of the sky
areas from which the PCRs arrived. However, as our
studies showed [14–23], the primary particle flux devi-
ates appreciably from isotropy in different energy
ranges. Below, we consider the influence of this factor
on the energy spectrum and the origin of PCRs with
E0 ≥ 1017 eV as a whole.
1063-7761/05/10101- $26.000088
2. THE DATA PROCESSING TECHNIQUE

The primary particle energy and flux on the Yakutsk
array are determined from the classification parame-
ters, estimated with minimum distortions [2–5]. Before
1992, air showers were selected from the entire array
area by the stations that formed equilateral triangles
with 1-km sides (a large master). Such master triangles
select EASs with E0 > 1018 eV. The charged-particle
density measured by ground-based scintillation detec-
tors at the distance R = 600 m from the EAS axis with
a zenith angle ρS, 600(θ), is a classification parameter for
them. The separation between the master stations at the
center of the array on an area with a diameter of 1 km
is 500 m (a small master). Here, mostly showers with
E0 ≥ 1017 eV, for which ρS, 300(θ) is better determined,
are detected. After 1992, almost the entire area of the
array was controlled by the small master. This allowed
the spectrum to be analyzed up to its right boundary
with homogeneous event selection conditions.

The Greisen–Linsley lateral distribution function
(LDF) of charged particles with the parameters esti-
mated on the Yakutsk array [24] is used to determine the
axis coordinates and the parameters ρS, 600(ρS, 300):

(1)

where RM is the Moliere radius (〈RM〉  ≈ 70 m for the
Yakutsk array). Subsequently, however, we established
[25] that this LDF for air showers with E0 ≥ 1019 eV is
in poor agreement with the experimental data at dis-

f R( ) R/RM( ) 1– 1 R/RM+( )1 b– ,∝
 © 2005 Pleiades Publishing, Inc.
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tances R > 1000 m from the axis. We suggested a mod-
ified fit:

(2)

For EASs with E0 ≥ 2 × 1019 eV, the parameter b is
almost constant, but depends on the zenith angle.
In [13], we determined the axis in such air showers
using this refined LDF. As a result, the ρS, 600 estimates
increased, on average, by about 10% for air showers
with the axes located within the array boundaries and
up to 20% for air showers with the axes located on the
array periphery.

The effective area within which the event recording
probability P ≥ 0.9 with allowance made for the fluctu-
ations of the LDF slope is used in the standard data pro-
cessing technique to determine the intensity. The total
exposure as a function of ρS, 600 (ρS, 300) and zenith angle
is calculated by taking into account the actually operat-
ing stations at a given time. The limiting area is
bounded by the contour of the corresponding trigger.

To estimate the EAS energy, we use the following
relations:

(3)

(4)

(5)

The error in formula (3) is determined mainly by the
absolute calibration accuracy of the Cherenkov detec-
tors and by the error in the mean atmospheric transpar-
ency [2, 3]. It does not affect the shape of the spectrum,
but is significant for the intensity estimation.

3. THE ENERGY SPECTRUM

The filled symbols in Fig. 1a indicate the differential
energy spectrum obtained in [13] for the small
(squares) and large (triangles downward) masters
within the array boundaries and for a sample of events
with E0 ≥ 4 × 1019 eV from an expanded area with the
axes going outside the array boundaries (upright trian-
gles). We took air showers with cosθ ≥ 0.5 (θ ≤ 60°) and
divided them into  = 0.1 energy bins.

In general, the shape of the spectrum [13] is identi-
cal to that obtained previously [4, 5]. However, the
stringent selection of air showers for the energy spec-
trum leads to the loss of almost all data with E0 < 4 ×
1017 eV. This is because only the most reliably detected

f R( ) R/RM( ) 1.3–∝

× 1 R/RM+( )1.3 b– 1 R/2000+( ) 3.5– .

E0 4.8 1.6±( ) 1017× ρS 600, 0°( )( )1.00 0.02±  eV[ ] ,=

ρS 600, 0°( ) ρS 600, θ( )=

× θ 1–sec( ) × 1020/λρ( ) m 2–[ ] ,exp

λρ 450 44±( )=

+ 32 15±( ) ρS 600, 0°( )( ) g  cm 
–2 [ ] .log

E0log

                         
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
air showers (with a probability P ≥ 0.9) recorded by the
master stations when no fewer than eight particles pass
through them are selected. In fact, this criterion is
needed to correctly estimate the event collection area
(at given E0 and θ), which can be calculated by numer-
ically simulating the entire experiment. Here, the fluc-
tuations of the EAS development, which are not always
known completely, play a crucial role.

About 1.2 × 106 air showers have been detected to
date on the Yakutsk array. We performed an additional
analysis of the events at 1017 ≤ E0 < 1018 eV to see
whether they can be used more fully to construct the
energy spectrum. It turned out that the effective detec-
tion area of such air showers could be found empiri-
cally. This is demonstrated by the spectrum indicated in
Fig. 1a by the open circles. It was obtained for EASs
with cosθ ≥

 

 0.6 when the entire data set was divided
into 

 

∆

 

 = 0.05 energy bins. In the above energy
range, we restricted our analysis to only six master tri-
angles in the central circle of the array with the radius

 

R

 

 = 500 m. The spectrum included all of the air showers
that were selected by any of these triangles without any
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selection by the number of particles passed through the
stations. It was only required that the EAS axis fall
within one of the six circles of radius r inscribed in one
of the above six master triangles. The sought-for inten-
sity (at given E0 and θ) was determined by increasing
the sizes of these circles (starting from r1 = 20 m)
through a sequential increase in their radius ri = 20 +
10(i – 1) until the intensity began to decrease. In this
case, the i + 1 iteration of intensity computation in a
given energy bin (with a step of ∆  = 0.05) ceased
and resumed (from r1 = 20 m) in the next energy bin.

We see from Fig. 1a that the two methods yield iden-
tical results. Here, three characteristic portions of the

E0log
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Fig. 2. Integral energy spectra: (a) for 28431 and 7504 air
showers with the arrival directions in the Northern (d) and
Southern (s) Hemispheres of the Galaxy, respectively;
(b) for 3270 and 4234 air showers with the arrival directions
at –10° < bG < 0° (d) and bG ≤ –10° (s), respectively; (c) for
28431 and 3276 air showers with the arrival directions at
bG > 0° (d) and bG ≥ 60° (s) in the Northern Hemisphere of
the Galaxy, respectively.
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spectrum are clearly distinguished. The first portion
(dashed line 1) corresponds to a power law

(6)

with the index γ1 = 3.02 ± 0.02. The second portion in
the energy range E0 = (0.7–10) × 1018 eV satisfies (6)
with γ2 = 3.27 ± 0.05. Finally, the third portion (dashed
line 3) reflects the flattest part of the spectrum with the
index γ3 = 2.62 ± 0.17. Below, we will consider and dis-
cuss the shape of the spectrum in more detail. For now,
we call attention only to the small peak at E0 ≈ (1–2) ×
1019 eV. Recently, a wavelet analysis of Yakutsk array
data has revealed here a local region of cosmic-ray
excess in their arrival directions at a significance level
of 0.007 [26]. The pole with the maximum number of
events has equatorial coordinates αmax ≈ 35° ± 20° and
δmax ≈ 52.5° ± 7.5° and lies in the plane of the Supergal-
axy (the Local Supercluster of galaxies).

Figure 1b displays the integral spectrum (35935 events)
obtained from the differential spectrum shown in
Fig. 1a. The triangles represent the results from [13] for
the sample of events with E0 ≥ 4 × 1019 eV from an
expanded effective area with the axes going slightly
outside the array boundaries. We see that the complex
shape of the energy spectrum here is reproduced with a
much higher accuracy. Therefore, in our subsequent
analysis, we will use the integral spectra.

It was shown in [14–23] that the particle flux at E0 ≥
1017 eV deviates appreciably from isotropy in the PCR
arrival directions. The anisotropy has different values
and directions in different energy ranges. We believe
that this PCR peculiarity can be reflected in the energy
spectrum obtained for events from different regions of
the sky. Let us first consider the Galaxy. In Fig. 2a, the
filled and open circles indicate the spectra for 28431
and 7504 air showers, respectively, from northern (bG >
0°) and southern (bG < 0°) latitudes. Some of the impor-
tant features that distinguish the two spectra are seen
here. First, the north–south asymmetry that we have
repeatedly pointed out previously [14, 15, 22, 27] is
clearly seen at 5 × 1018 < E0 < 2 × 1019 eV. Second, a
statistically significant PCR excess from southern lati-
tudes was also observed at lower energies with its max-
imum at E0 ≈ 5 × 1017 eV.

To have a more complete picture, let us additionally
consider the PCR spectrum from other regions of the
Galaxy. Figure 2b shows two approximately identical
samples of air showers arriving only from southern lat-
itudes. The spectrum of one of them (3270 air showers)
is indicated by the filled circles. It contains events from
the latitude band –10° < bG < 0° immediately adjacent
to the Galactic disk. The second sample of 4234 air
showers (open circles) includes more southern latitudes
bG ≤ –10°. We see that this sample forms the irregular-
ity of the spectrum at E0 ≈ 5 × 1017 eV noted above.

J E0( ) E0
γ–∝
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In Fig. 2c, the open circles indicate the PCR spec-
trum from the polar (bG ≥ 60°) region of the Galaxy for
3276 air showers. The filled circles indicate the spec-
trum for all events with bG > 0° (it is shown in Fig. 2a).
We see that these spectra also differ significantly in
shape. The largest peak compared to the previous spec-
tra is observed in the range of maximum energies (E0 ≥
6 × 1018 eV). In addition, there is another distinct peak
at E0 ≈ 2 × 1017 eV. All these facts are suggestive of a
complex formation of the PCR fluxes arriving from dif-
ferent areas of the sky.

In [28], the ASAGA team found a statistically sig-
nificant anisotropy at E0 ≈ (5–20) × 1017 eV attributable
to an enhanced PCR flux from a region near the Galac-
tic center. This result was confirmed and refined by the
Australian team on SUGAR (Sydney University Giant
Air Shower Recorder) [29]. According to the authors of
[28], this flux could be produced by neutrons. It is sur-
mised [30] that such neutrons could originate from sev-
eral most recent gamma-ray bursts in our Galaxy.

Therefore, the spectrum of ultrahigh-energy parti-
cles arriving directly from the Galactic disk is of con-
siderable interest. We considered a sample of (3713) air
showers with the arrival directions in the latitude band
|bG| ≤ 5°. The disk is represented here in the Galactic
longitude sector 40° < lG < 200°, which is observable on
the Yakutsk array. The spectrum from this region of the
Galaxy is indicated in Fig. 3a by the open circles. For
comparison, the filled circles in this figure indicate the
“background” spectrum constructed from 22 465 show-
ers with the arrival directions at Galactic latitudes |bG| >
10°, i.e., lying outside the equatorial region of the Gal-
axy. We also excluded all of the events with |bSG| ≤ 10°
that fell into the equatorial region of the Supergalaxy
from the background spectrum. The contribution of the
Supergalaxy is substantial [14–23], and we will con-
sider it below. For now, we note that the Galactic and
Supergalactic planes are almost perpendicular to one
another. They intersect in the part of the sky at a Galac-
tic longitude lG ≈ 137.4° surveyed by the Yakutsk array.

In Fig. 3a, we clearly see an excess flux from the
Galactic disk at E0 > (5–7) × 1018 eV that is appreciably
higher than the background flux. The region where the
Galactic and Supergalactic planes intersect gives the
largest contribution [23]. The two spectra are almost
indistinguishable at E0 < 5 × 1018 eV. This is unlikely to
agree with the results of [28, 29] where a particle flux
from the central region of the Galaxy was detected.
Instead of the excess that we expected, we see only a
systematic intensity decrease in the spectrum from the
Galactic disk in Fig. 3a in the energy range 5 × 1017 <
E0 < 2 × 1018 eV with a small peak at E0 ≈ 1018 eV.
Below, we will return to this question.

Let us now consider the PCR spectrum from the
Supergalactic disk. It is indicated in Fig. 3b by the open
circles and includes 4295 air showers. We constructed
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
this spectrum for events from the region with Superga-
lactic latitudes –8° < bSG < 2°. No intensity error bars
are given in order not to overload the figure (they are
approximately the same as those in the spectrum from
the Galactic disk in Fig. 3a). The filled circles indicate
the background spectrum shown in Fig. 3a by similar
circles.

Here, important, in our view, features are immedi-
ately apparent. First, an excess particle flux higher than
the flux from the Galactic disk is clearly seen in the
equatorial region of the Supergalaxy at E0 ≥ 5 × 1018 eV.
It is enhanced appreciably (crosses) if a narrower sector
(100° < lSG < 130°) is taken in the Supergalactic disk,
with the particle flux peak in the direction with equato-
rial coordinates α ≈ 79° and δ ≈ 74°. Second, 10 to 15%
fewer particles than those generally observed for the
remaining part of the sky in the background spectrum
arrive from the Supergalactic disk at 5 × 1017 < E0 < 2 ×
1018 eV.

The results obtained above at E0 ≥ 5 × 1018 eV were
not entirely unexpected, since there are numerous
experimental data suggesting that the Galaxy plays a
role in the origin of the particles at such energies (see,
e.g., [14, 15, 27, 31–33]). In addition, Yakutsk data
revealed [14–23] that an enhanced PCR flux is also
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Fig. 3. Integral energy spectra: for 22 465 air showers (d)
with the arrival directions outside the equatorial regions of
the Galaxy and Supergalaxy (|bG| > 10° and |bSG| > 10°); for
3713 air showers (s) with Galactic latitudes |bG| ≤ 5° (a) and
for 4295 air showers in the Supergalactic latitude band
−8° < bSG < 2° (b); for air showers (+) from the region of the
sky with –8° < bSG < 2° and 100° < lSG < 130°.
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observed from the Supergalactic disk. Therefore, the
spectra in Fig. 3 only confirmed once again these previ-
ously established facts.

In contrast, the excess particle fluxes in Fig. 2b at
2 × 1017 < E0 < 1018 eV from southern latitudes and in
Fig. 2c at E0 ≈ (1.5–4) × 1017 eV from the polar region
of the Galaxy require further investigation. These irreg-
ularities of the spectrum probably reflect as yet
unknown astrophysical processes.

The decrease in particle fluxes at 5 × 1017 < E0 < 2 ×
1018 eV in the Galactic disk in Fig. 3, which is particu-
larly clearly seen in the Supergalactic disk, arouses
great interest. It is so far hard to tell what caused this
decrease. We tested the technique for constructing the
energy spectrum, but found no errors. In general, the
spectra in Fig. 3 are similar. This suggests that the Gal-
axy and the Supergalaxy are somehow identically
involved in the generation of ultrahigh-energy PCRs.

4. THE PCR ANISOTROPY

Let us additionally consider some of the features of
the lateral PCR distribution. Let us analyze the global
PCR distribution on the celestial sphere in equatorial
coordinates. To this end, we use the method of har-
monic analysis [34], which basically consists in choos-
ing the best values of the amplitude A1 and phase ϕ1 of
the function

(7)

by minimizing

(8)

where Ni is the number of air showers in sector i (∆α)i.

f α( ) f 0 1 A1 α ϕ 1–( )cos+( )=

X2 f i Ni–( )2

f i

-----------------------,
i 1=

n

∑=

1018

60°

1019 10201017
0
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3

Fig. 4. Variations in the phase of the first harmonic of rela-
tion (7) with energy bin position at ∆  = 0.05 steps for

the sample of showers in the spectrum in Fig. 1.

E0log

E0, eV
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In this case,

(9)

We divided the sky into n = 36 spherical sectors. The
anisotropy was studied in the h = ∆  = 0.15 bins
by sequentially shifting then in energy by 0.2h. This
was done to analyze in more detail the behavior of the
phase of the first harmonic ϕ1, which characterizes the
direction of the maximum of the global PCR flux.

Figure 4 shows the variations in phase ϕ1 with
energy bin position for the sample of 35 935 air show-
ers included in the spectrum in Fig. 1. The relative scat-
ter of points in the neighboring bins characterizes the
errors in the phase. We see that most of the phases clus-
ter near ϕ1 ≈ 40° (dashed line 1), ϕ1 ≈ 120° (dashed
line 2), and ϕ1 ≈ 300° (dashed line 3). The first of them
points to the place of intersection of the Galactic and
Supergalactic planes (Fig. 5) where the data from [23,
26] reveal an absolute maximum of the PCR flux at E0 ≥
8 × 1018 eV. The second concentrates near ϕ1 ≈ 120°.
This direction is in no way associated with the Galactic
plane from where one might seemingly expect an
anisotropy in the flux of charged PCR particles within
the framework of the diffusion model of their propaga-
tion. It points to the Supergalactic plane (Fig. 5).
Finally, the third direction with ϕ1 ≈ 300° points
directly to the Galactic disk. It coincides with the direc-
tion of the anisotropy detected in [28, 29] at E0 ≈
(5−20) × 1017 eV.

The results presented in Fig. 4 suggest that the glo-
bal PCR flux vector in individual energy bins changes
significantly. We believe [14–23] that a substantial frac-
tion of the cosmic rays with E0 ≥ 1017 eV is extragalac-
tic in origin; therefore, it manifests itself in both the
Galaxy and the Supergalaxy. This is probably embod-
ied in the irregularities of the spectra in Figs. 1–3.

4.1. Events with E0 ≥ 8 × 1018 eV

To analyze the results presented in Fig. 4 in more
detail, let us first consider the anisotropy in the arrival
directions of giant air showers (GASs) with E0 ≥ 8 ×
1018 eV. For our analysis, we took all of the events with
zenith angles θ ≤ 60° whose arrival directions were
determined from at least four stations and whose axes
were within the array perimeter. A total of 559 air
showers were selected in this way.

In addition, we used 522 events from the catalog [35]
recorded by SUGAR. These air showers belong mostly
to the Earth’s Southern Hemisphere. Together with the

f 0

Ni

i 1=

n

∑
n

-------------
N
n
----,= =

A1

f max f min–
f max f min+
--------------------------.=

E0log
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Fig. 5. Deviation of the observed number of air showers N1 from the expected mean number 〈N〉  in units of nσ = (N1 – 〈N〉)/
on the developed celestial sphere in Galactic coordinates for PCRs with E0 ≥ 8 × 1018 eV and θ ≤ 60°, as derived from the Yakutsk
EAS and SUGAR data [35]: circles 1 and 2 indicate the pole of the local PCR excess found in [26] and the exit of the Local Galactic
Arm, respectively; the dark curve represents the Supergalactic plane; the grayscale indicates the nσ range.

N〈 〉
Yakutsk array data, they give a fairly complete picture
of the GAS anisotropy in the surrounding space. The
accuracy with which the directions of the air shower
axes were determined in [35] is about 5°.

We analyzed the deviations of the observed number
of events N1 from the expected mean number 〈N〉  =

N2(Ω1/Ω2) in units of the standard σ = :

(10)

where N1 and N2 are the numbers of air showers in the
solid angles

and

respectively (θ1 = 8°, θ2 = 45°). The values of nσ (10)
were found when a 1° × 1° area was sequentially dis-
placed over the entire sphere.

Figure 5 shows a map of the distribution of (10) over
the developed celestial sphere in Galactic coordinates.
For the convenience of perception, the equatorial coor-
dinates are also shown here. Circles 1 and 2 mark the
pole of the local PCR excess found in [26] and the exit
of the Local Galactic Arm, respectively. The nσ range is

N〈 〉

nσ
N1 N〈 〉–

σ
----------------------,=

Ω1 2π 1 θ1cos–( )=

Ω2 2π 1 θ2cos–( ),=
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shown at the bottom of the figure in the form of a gray-
scale. The darkest and lightest regions correspond to
deviations of the GAS flux from the mean by |nσ| ≥ 3σ.

Figure 5 shows interesting and important results.
First, numerous local regions with relatively high and
low GAS fluxes are seen here over the entire sphere.
This suggests that the GAS anisotropy is multipolar in
pattern. Second, almost no excess flux is observed in
the Galactic disk if we do not take into consideration
the place of intersection of the Galactic and Superga-
lactic planes at lG ≈ 137.4°. There is no slightest hint at
an excess flux even from the Galactic center, where the
most active and powerful matter conversion processes
take place, although a statistically significant anisot-
ropy is observed in this region at E0 ≈ (5–20) × 1017 eV
[28, 29]. There is no excess GAS flux at the exit of the
Local Galactic Arm (circle 2) either. This probably sug-
gests that the Galaxy plays a minor role in the genera-
tion of particles with E0 ≥ 8 × 1018 eV.

However, a completely different picture opens up in
the Supergalaxy. A correlation between the GAS arrival
directions and the Supergalactic plane in the Earth’s
Northern Hemisphere is clearly seen in Fig. 5. This cor-
relation is characterized by the mean value

(11)nσ〈 〉

nσ( )1

i 1=

k

∑
k

--------------------.=
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Figure 6b shows the variations in (11) when the
scanning solid angles Ω1 and Ω2 were sequentially dis-
placed along a latitude of bSG ≈ –3°. The dashed curve
reflects the behavior of this distribution (the depen-
dence on Supergalactic longitude), on average, when
smoothed over 30 neighboring points. An intense peak
in the sector ∆lSG ≈ 0°–210°, with its maximum at lSG ≈
120°, is also seen here. However, there is no such clear
correlation in the Southern Hemisphere, except the
GAS excess in the local region of the sky with equato-
rial coordinates α ≈ 0° and δ ≈ –85° (Fig. 5). Curiously
enough, it lies near the Supergalactic plane in a direc-
tion that is almost opposite to that of the region with the
largest GAS excess in the Northern Hemisphere.
In [23], we showed that this may not be a coincidence,
but could be related to a certain orientation of the
Supergalactic disk in space, with its edge directly
against the flux of extragalactic particles generated by
quasars.

For comparison, Fig. 6a also shows the variations
in (11) along the Galactic disk (in the latitude band
|bG| ≤ 8°). We see that the averaged distribution (dashed
curve) has a maximum at lG ≈ 137°, where the Superga-
lactic plane passes (see Fig. 5). Its height (≈1σ) is
approximately smaller by a factor of 2 than that of the
maximum in Fig. 6b at lSG ≈ 120°, suggesting that the
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Fig. 6. Variations in nσ presented in Fig. 5 when scanning
along the (a) Galactic and (b) Supergalactic disks; the
dashed curves represent the behavior on average when
smoothed over 30 neighboring points.
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Supergalaxy plays a dominant role in forming the
excess GAS flux in the region of intersection of the
Galactic and Supergalactic planes.

4.2. Events with E0 ≈ (5–12) × 1017 eV 

Let us now consider in more detail the events with
E0 ≈ (5–12) × 1017 eV that have attracted increasing
attention since the reports [28, 29] appeared, especially
since we have observed anomalous changes in the
shape of the spectrum in Figs. 2a, 2b, and 3 in this
energy range.

Figure 7 shows a map (similar to Fig. 5) of the dis-
tribution of (10) in Galactic coordinates for events with
the above energies. It characterizes the distribution of
local PCR fluxes in the part of the sky surveyed by the
Yakutsk array. This sample contains 13 407 air showers
with cosθ ≥ 0.7 included in the spectrum in Fig. 1. The
darkest and lightest areas reflect the deviations nσ of the
number of events N1 by 3σ to the higher and lower val-
ues, respectively, in the scanning cone with

from the expected mean

in units of the standard σ =  for the number of
events N2 in the reference solid angle

when a 1° × 1° area is sequentially displaced over the
entire portion of the sky under study.

There are numerous local extrema with enhanced
and reduced cosmic-ray fluxes in Fig. 7. They form a
certain pattern that roughly resembles the multipolar
anisotropy in Fig. 5. Light rings with a diameter of
about 30° are seen at some locations in Fig. 7.

The global anisotropy in the arrival directions of
PCRs with E0 ≈ (5–12) × 1017 eV is characterized by
Fig. 8, which shows the distribution of (11) in the inter-
vals of angles ∆α = 1.5°. The dashed curve reflects the
behavior on average when smoothed over 70 neighbor-
ing points. The maximum of this distribution at α ≈
300° matches the result of our harmonic analysis in
Fig. 4.

In Fig. 9, (11) is plotted against latitude in Galactic
(filled circles) and Supergalactic (open circles) coordi-
nates (in the intervals of angles ∆b = 1.5°). Here, a lat-
itudinal gradient (dashed lines) is clearly seen in both
coordinate systems. The results in Fig. 9 (filled circles)
completely confirm the north–south asymmetry in the
global particle flux that is present in the spectrum in
Figs. 2a and 2b in the form of a peak at 3 × 1017 ≤ E0 ≤
2 × 1018 eV. If we bear in mind that the North Galactic

Ω1 2π 1 8°cos–( )=

N〈 〉 N2 Ω1/Ω2( )=

N〈 〉

Ω2 2π 1 20°cos–( )=
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Fig. 7. Deviations of the observed number of air showers N1 from their expected mean number 〈N〉  in units of nσ = (N1 – 〈N〉)/
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and ACSG are the Supergalactic plane, center, and anticenter, respectively; the grayscale indicates the nσ range.

N〈 〉
Pole points toward the Supergalactic center (CSG in
Fig. 7), then, in this case, we cannot exclude the contri-
bution of the latter to the observed gradient. It can man-
ifest itself in stronger absorption of the extragalactic
PCR flux passing through the central region of the
Supergalaxy than that in other directions.

The distribution in Fig. 9 (open circles) agrees with
the spectrum in Fig. 3b. It confirms the existence of a
certain deficit of particles in the latitude band –8° <
bSG < 2°. The north–south asymmetry in these coordi-
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Fig. 8. Distribution of (11) in right ascension (in intervals
∆α = 1.5°) for the sample of events in Fig. 7: the dashed
curve represents the behavior on average when smoothed
over 70 neighboring points.
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nates can be interpreted as evidence for an enhanced
PCR flux from the central region of the Galaxy, since
the North Pole of the Supergalaxy has Galactic coordi-
nates lG ≈ 47.4° and bG ≈ 3°.

The role of the disks of the structures of surrounding
space that we considered is reflected in Fig. 10, in
which (11) is plotted against Galactic (filled circles)
and Supergalactic (open circles) longitudes (in the
bands |bG| ≤ 5° and –8° < bSG < 2° represented in the
spectra in Fig. 3). Here, we also see the gradients
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0 30 60 90–60
bG(SG)

–0.5
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1.0

〈nσ〉

Fig. 9. Distribution of (11) in latitude (in intervals ∆b =
1.5°) for the sample of events in Fig. 7 in Galactic (d) and
Supergalactic (s) coordinates: the dashed curves represent
the behavior on average.
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(dashed line) that point to enhanced particle fluxes from
the Galactic center and the Supergalactic anticenter.

Note the local peaks and dips in Figs. 8–10 that
alternate approximately after 30°. We believe that they
did not arise accidentally, but reflect the (somehow)
ordered structure of the distribution of PCR sources in
Metagalactic space. Quasars could be among the
sources of the above energies [18–23]. In [23], we
showed that quasars form a certain structure with the
same characteristic angular irregularities approxi-
mately equal to 30°.

5. CONCLUSIONS

If we attempt to summarize the results obtained
above, then the following picture is possible. We have
already repeatedly reported previously [14–23] that the
PCR flux with E0 ≥ 1017 eV probably consists of two
components. One of these components is extragalactic
in origin and can be generated by quasars [18–23].
Quasars are among the most powerful sources in the
Universe. They are located at cosmological distances
that significantly exceed the sizes of the Supergalaxy,
not to mention the Galaxy. On their way to Earth, the
ultrahigh-energy particles pass through these struc-
tures. Some of them can be assumed to enter into
nuclear reactions with gas. The gas is concentrated
most densely in the Galactic and Supergalactic disks, in
regions with angular sizes in latitude |b| ≈ 5°–10° [36].
The excess PCR fluxes at E0 ≥ 5 × 1018 eV in Figs. 2 and
3 and the anisotropy in Figs. 4–6 are probably attribut-
able to this factor.

In the region of apparent intersection of the Galactic
and Supergalactic planes (at α ≈ 40.6° and δ ≈ 59.5°),
the fluxes probably add up to give a local extremum
with the absolute maximum found in [26].
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Fig. 10. Dependences of (11) on Galactic (d) and Superga-
lactic (s) longitudes in the latitude intervals |bG| ≤ 5° and
−8° < bSG < 2° for the sample of air showers with E0 ≈
(5−12) × 1017 eV and θ ≤ 45° presented in Fig. 3: the dashed
line represents the behavior on average.
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As regards energies of (3–5) × 1017 ≤ E0 ≤ 2 ×
1018 eV, an appreciable fraction of the extragalactic
PCR flux is apparently also present here. This has
already been reported previously [20–23]. The intensity
decrease in Fig. 3b compared to the background spec-
trum and the results presented in Figs. 9 and 10 (open
circles) can be interpreted as the absorption of the
extragalactic particles interacting with the Supergalac-
tic matter. The Galaxy may play a similar role of the tar-
get in this energy range. It may well be that these two
structures act as targets for extragalactic ultrahigh-
energy particles generated by quasars and other galax-
ies with active nuclei.

Different particles can be assumed to be produced in
the nuclear reactions that proceed in the Supergalactic
and Galactic gas at E0 ≤ 2 × 1018 eV and E0 ≥ 5 ×
1018 eV. They reach Earth in the form of cosmic rays
producing EASs with distinctly different characteristics,
as suggested by our experimental data [37–41]. In these
papers, we showed that the experimental data at E0 ≥
(3–5) × 1018 eV completely disagree with the existing
theoretical models of EAS development from protons
or the nuclei of any other chemical elements.

The results presented above shed additional light on
the origin of ultrahigh-energy PCRs as a whole. They
point to the importance of taking into account the loca-
tions of the sky regions when comparing the experi-
mental data. We plan to continue these studies.
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Abstract—We report on the synthesis and measurements of the temperature dependences of the resistivity ρ,
the penetration depth λ, and the upper critical magnetic field Hc2 , for polycrystalline samples of dodecaboride
ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual
Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K
(to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a supercon-
ducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and
ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2.
These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12.
In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12
(Hc2(0) = 0.15 T). © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The recent discovery of superconductivity at 39 K in
magnesium diboride [1] has initiated a booming activ-
ity in condensed matter physics. This activity has raised
considerable interest in the search for superconductiv-
ity in other borides [2]. Unfortunately, none of natural
candidate MeB2-type diborides of light metals (Me =
Li, Be, Al, Ca) nor any of a large number of the known
isostructural transition metal diborides (Me = Ti, Zr,
Hf, V, Ta, Cr, Mo, U) have been found to be supercon-
ducting [2]. Only in nonstoichiometric compounds
(MoB2.5, NbB2.5, Mo2B, W2B, BeB2.75) was supercon-
ductivity observed [3–6]. We note that the earlier spec-
ulation about superconductivity in TaB2 [7] (in contra-
diction to other published data [2]) has been disproved
by recent resistivity, susceptibility, and specific heat
measurements supported by electronic structure calcu-
lations [8].

These results do not seem to support the application
of the old idea about superconductivity in metallic
hydrogen [9] to the explanation of superconductivity in
MgB2 [10]. In spite of this fact, we discuss some
aspects of this idea. In particular, it is believed that in
MgB2, the averaged phonon frequencies (in other
words, the Debye temperature) must be very high due
to the low mass of the boron, which sharply increases
the prefactor in the McMillan formula for Tc . Indeed,

¶ This article was submitted by the authors in English.
1063-7761/05/10101- $26.000098
the band structure calculations have shown that elec-
trons at the Fermi level are predominantly boron-like in
MgB2 and the superconductivity is due to graphite-type
“metallic” boron sheets [10]. Furthermore, Eremets
et al. [11] recently observed that the semiconducting
polycrystalline boron (rhombohedral β-B105) trans-
forms to a metal under high pressure and even to a
superconductor at about 160 GPa. The critical temper-
ature Tc increases from 6 to 11.2 K at raised pressure up
to 250 GPa. This observation supports the old idea that
a route for optimizing Tc is in preparation of boron-rich
compounds, even though this does not yet work for
known borides.

In fact, the search for superconductivity in borides
has a long history. Matthias et al. [12] discovered sev-
eral superconducting cubic hexa and dodecaborides
(MeB6 and MeB12) in the 1960's. Many other hexa-and
dodecaborides (Me = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho,
Er, Tm) were found to be ferromagnetic or antiferro-
magnetic. It was suggested that the superconductivity
in YB6 and ZrB12 (having the highest Tc values 6.5−7.1
and 6.03 K, respectively [3]) might be due to the hypo-
thetical cubic metallic boron. However, a much smaller
isotope effect on Tc for boron in comparison with the Zr
isotopic substitution suggests that the boron in ZrB12

serves as an inert background, and Zr is actually crucial
for superconductivity [13, 14], even though chemically,
ZrB12 mainly contains boron.
 © 2005 Pleiades Publishing, Inc.
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While the superconductivity in ZrB12 was discov-
ered a long time ago [12], there has been little effort
devoted to the study of basic superconductive proper-
ties of this dodecaboride. Only recently were the elec-
tron transport of solid solutions Zr1 – xScxB12 [15] and
the band structure calculations for ZrB12 [16] reported.
Understanding the electron transport properties of the
cluster borides and the superconductivity mechanism in
these compounds is very important. In this paper, we
attempt to address this problem. We report the temper-
ature-dependent resistivity ρ(T), magnetic field pene-
tration depth λ(T), and upper critical magnetic field
Hc2(T) for polycrystalline samples of ZrB12. Compara-
tive data on ρ(T) and λ(T) in MgB2 thin films and pel-
lets are also presented.

The structure of this paper is as follows. In Section 2,
we report on synthesis of ZrB12 and MgB2 and the
experimental techniques. Section 3 describes the elec-
tron transport in these compounds. Section 4 describes
the temperature dependence of λ in thin films and poly-
crystalline samples. The data on Hc2(T) are presented in
Section 5.

2. EXPERIMENTAL

Under ambient conditions, dodecaboride ZrB12
crystallizes in the fcc structure (Fig. 1) of the UB12 type

(space group Fm m), with the lattice parameter a =
0.74075 nm [17]. In this structure, the Zr atoms are
located at interstitial openings in close-packed
B12 clusters [15]. In contrast, the diborides show a
phase consisting of two-dimensional graphite-like
monolayers of boron atoms with a honeycomb lattice,
intercalated with metal monolayers [2]. In our search
for the superconducting diboride compounds, we
observed superconductivity at 5.5 K in ZrB2 polycrys-
talline samples that had a few percent amount of ZrB12
impurity [2]. It was recently suggested [18] that this
observation could be associated with nonstoichiometry
in the zirconium sublattice of ZrB2. To resolve this
issue and to study the electron transport and basic
superconducting properties of ZrB12, we successfully
synthesized this compound.

Polycrystalline samples of ZrB12 were obtained by
the conventional solid-state reaction. The starting mate-
rials were a zirconium metal powder (99.99% purity)
and a submicron amorphous boron powder (99.9%
purity). These materials were lightly mixed in appropri-
ate amounts and pressed into pellets 10 mm thick and
20 mm in diameter. The pellets were wrapped in a tung-
sten foil and baked at 2000°C by electron-beam heating
with subsequent slow cooling to room temperature. The
process took place for two hours in a high-vacuum
chamber at 2 × 10–4 Pa. The resulting polycrystalline
pellets had over 90% of the theoretical mass density
and were black in color. They demonstrated good
metallic conductivity at low temperatures. After

3
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regrinding the prepared pellets in an agate mortar, the
respective powders were reheated few times for two
hours.

The powder X-ray diffraction pattern obtained using
CuKα radiation showed that the samples largely consist
of the desired ZrB12 phase (Fig. 2). Nevertheless, small
amounts of ZrB2 were found to be present and could not
be eliminated by subsequent regrinding and annealing.
A Rietveld refinement of the ZrB12 X-ray pattern, based

Zr

B

Fig. 1. The lattice structure of dodecaboride ZrB12. For
clarity, only B12 clusters on the upper face of the lattice are
shown.
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Fig. 2. A typical X-ray θ – 2θ scan of ZrB12 powders (the
lower curve) at room temperature. A similar scan for ZrB2
pellets studied before [2] is presented by the upper curve.
The cycles mark the X-ray reflections from fcc ZrB12.
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on the fcc UB12-type structure presented in Fig. 1,
yielded the lattice parameter a = 0.7388 nm to be very
close to the published values [17]. The polycrystalline
MgB2 pellets have been sintered using a similar tech-
nique as outlined in our earlier work [2]. This technique
is based on the reactive liquid Mg infiltration of boron
powder. X-ray diffraction analysis did not reveal the
metallic Mg phase, and we therefore believe that a
rather high resistivity ratio (R300 K/R40 K = 12) is due to
the high quality of our samples.

For this study, two highly crystalline, superconduct-
ing films of MgB2 were grown on an r-plane sapphire
substrate in a two-step process. Deposition of B precur-
sor films via electron-beam evaporation was followed
by ex-situ post annealing at 890°C in the presence of
bulk MgB2 and Mg vapor. Scanning electron micros-
copy showed dense films with surface roughness below
5 nm. For the measurements, we investigate films of
500 and 700 nm thick, with the corresponding Tc values
38 and 39 K. The details of the preparation technique
are described elsewhere [19].

For the resistance measurements, we used the spark
erosion method to cut the pellets into a rectangular bars
with dimensions of about 0.5 × 0.5 × 8 mm3. The sam-
ples were lapped with a diamond paste. To remove any
deteriorated surface layers, the samples were etched:
ZrB12 in hot nitrogen acid and MgB2 in 2% HCl plus
water-free ethanol. A standard four-probe ac (9 Hz)
method was used for resistance measurements. Electri-
cal contacts were made with Epotek H20E silver epoxy.
The temperature was measured with platinum (PT-103)
and carbon glass (CGR-1-500) sensors. A well-defined
geometry of the samples provided for the precise resis-
tivity measurements.

The measurements were performed in the liquid-
helium variable-temperature cryostat in the tempera-
ture range between 1.1 and 350 K. Magnetic measure-
ments of the resistivity and the penetration depth on the
polycrystalline samples were carried out using a super-
conducting coil in applied fields of up to 6 T. The dc
magnetic field was applied in the direction of the cur-
rent flow. The critical temperature measured by the
radio-frequency (RF) susceptibility [2] and ρ(T) was
found to be Tc0 = 6.0 K for ZrB12 samples and 39.0 K
for MgB2 samples.

The λ(T) dependence in thin films was investigated
using a single-coil mutual inductance technique. This
technique, originally proposed in [20] and improved
in [21], takes advantage of the well-known two-coil
geometry. It was successfully used for the observation
of the Berezinskii–Kosterlitz–Thouless vortex–antivor-
tex unbinding transition in ultrathin YBa2Cu3O7 – x ,
films [22] as well as for the study of the λ(T) depen-
dence for MgB2 films [23]. In particular, this RF tech-
nique measures the change of inductance ∆L of a one-
layer pancake coil located in the proximity of the sam-
ple. The coil is a part of the LC circuit driven by a mar-
JOURNAL OF EXPERIMENTAL A
ginal oscillator operating at 2–10 MHz or by the imped-
ance meter (VM-508 TESLA 2–50 MHz). The fre-
quency stability of this oscillator is 10 Hz. The film is
placed at a small distance (about 0.1 mm) below the
coil and is thermally insulated from the coil by a Teflon
foil. Both the sample and the coil are in vacuum, but
the coil holder is thermally connected with a helium
bath, while the sample holder is isolated and may be
heated. During the experiment, the coil was kept at
2.5 K, whereas the sample temperature was varied from
2.5 to 100 K. Such a design allows us to eliminate pos-
sible effects in temperature changes in L and C on the
measurements. The real part of the complex mutual
inductance M between the film and the coil can be
obtained as

(1)

where L0 and f0 are the inductance and the resonant fre-
quency of the circuit without the sample. In the London
regime, where high-frequency losses are negligible,
one can introduce the difference between the tempera-
ture-dependent real part of M of the coil with the sam-
ple, ReM(T), and that of the coil at T0, ReM0. This dif-
ference is a function of λ(T),

(2)

where µ0 is the magnetic permeability of vacuum, M(q)
plays the role of the mutual inductance at a given wave-
number q in the film plane and depends on the distance
between the sample and the coil, d is the sample thick-
ness and µ0 is the permeability of free space (additional
details can be found in [21]). A change in ∆ReM(T) is
detected as a change of the resonant frequency f(T) of
the oscillating signal. When inserted in Eq. (2), this
change yields a temperature-dependent London pene-
tration depth λ(T).

Measurements of λ(T) for polycrystalline ZrB12 and
MgB2 samples were performed with a similar LC tech-
nique but using a rectangular solenoid coil into which
the sample was placed. The details of this technique are
described elsewhere [24]. For such arrangements,
changes in the resonant frequency f(T) = ω/2π of the
circuit relative to that above Tc , f(Tc), and at the minimal
temperature T1, f(T1), are directly related to the induc-
tance of the probe coil and, hence, to λ(T) by

(3)

Here, f(Tc) and f(T1)) are the respective resonant fre-
quencies at T > Tc and at the minimal temperature T1

ReM T( ) L0
f 0
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and δ =  is the skin depth above Tc , which
was determined from the resistivity ρ(T) measure-
ments.

3. ELECTRON TRANSPORT

Figure 3 shows the temperature dependence of the
resistivity for ZrB12 and MgB2 samples. The inset dis-
plays the variation of ρ(T) near the superconducting
transition with zero resistance at 6.0 K (the width ∆T =
0.04 K) in ZrB12 and at 39 K (∆T = 0.7 K) in MgB2 sam-
ples. The transition is remarkably narrow for ZrB12
samples, which is a clear indication of good-quality
samples. The transition temperature is consistent with
the previously reported values for ZrB12 (6.03 K) [12–
14] and is comparably larger than that of ZrB2 samples
(5.5 K) [2]. Although ZrB12 mostly contains boron, its
room-temperature resistivity is only four times larger
than that of MgB2 and ZrB2 [2], while the residual resis-
tivity is ten times larger. The resistivity ratio for ZrB12
(ρ(300 K)/ρ(6 K) ≈ 4) is rather low compared to the sin-
gle-crystal value 10 [25]. Although an X-ray diffraction
analysis revealed small amounts of ZrB2 (the nonsuper-
conducting phase [25]), apparently there is no influence
of this phase on the ρ(T) dependence, because below Tc

the resistivity drops to zero, rather than to the residual
value.

One can predict a nearly isotropic resistivity for fcc
ZrB12, which can be described by the Bloch–Grüneisen
(BG) expression of the electron–phonon (e–p) scatter-
ing rate [26]:

(4)

Here, ρ(0) is the residual resistivity, ρ1 = dρ(T)/dt is the
slope of ρ(T) at high temperatures (T > TR), t = T/TR ,
and TR is the resistive Debye temperature. As we can
see from Fig. 3, the BG equation describes our data rea-
sonably well, indicating the importance of the e–p
interaction for both metals. The best fit to our data is
obtained with TR = 280 K for ZrB12 and TR = 900 K for
MgB2.

In contrast to ZrB12, the resistivity of MgB2 samples
does deviate from the BG model at low temperatures.
This problem has been under consideration by several
groups. In particular, Putti et al. [27] modified the BG
equation by introducing a variable power n for the
tnJn(1/t) term in Eq. (4). The best fit to the data was
obtained with n = 3, which in fact ignores a small-angle
e–p scattering. Recently, Sologubenko et al. [28]
reported a cubic T-dependence in the a, b-plane resistiv-
ity below 130 K in single crystals of MgB2. This was
attributed to the interband e–p scattering in transition
metals.

c2ρ/2πω

ρ t( ) ρ 0( )– 4ρ1t5 x5ex xd

ex 1–( )2
--------------------

0

1/t

∫ 4ρ1t5J5 1/t( ).= =
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We stress that there are strong objections to this
modified BG model: (i) the cubic ρ(T) dependence is a
theoretical model for large-angle e–p scattering, and no
evidence of it was observed in transition and non-tran-
sition metals; (ii) numerous studies of the ρ(T) depen-
dence in transition metals have been successfully
described by a sum of the electron-electron (e–e), pro-
portional to T2, and e–p, proportional to T5, contribu-
tions to the low-temperature resistivity, which may be
easily confused with a T3 law [26, 29, 30]; (iii) the σ–π
inter-band e–p scattering plays no role in normal trans-
port in the two-band model for MgB2 [31].

To investigate whether a combination of e–e and
e−p scattering works for our samples, we decided to
add a T2-term to Eq. (4) [29, 30]. We note that the BG
term is proportional to T5 at low temperatures. There-
fore, addition of the T2-term results in the following
expression for the resistivity ρ(T):

(5)

Here, α and β are parameters of the respective e–e and
e–p scattering terms. When plotted in the [ρ(T) –
ρ(0)]/T2 vs T3 axes, such a dependence yields a straight
line with the slope β and the y-intercept (T = 0) equal
to α. The corresponding plot of our data in Fig. 4
clearly displays the expected linear dependences. The
presence of an unusually large T2-term in MgB2 data
(open squares in Fig. 4) below 150 K is evident (α =
150 pΩ cm/K2), whereas the e–p scattering T 5-term
is substantially smaller (β = 2.1 ×10–6 pΩ cm/K5).
We note, however, that the α value for MgB2 is
almost 40 times larger than the corresponding values in
transition metals such as molybdenum and tungsten
(αMo = 2.5 pΩ cm/K2 and αW = 1.5–4 pΩ cm/K2

ρ T( ) ρ 0( )–

T2
----------------------------- α βT3.+=
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Fig. 3. Temperature dependence of the resistivity ρ for
ZrB12 (open circles) and MgB2 (squares) polycrystalline
samples. The solid lines represent the Bloch-Grüneisen fits
to the experimental data in accordance with Eq. (4).
SICS      Vol. 101      No. 1      2005



102 GASPAROV et al.
[29, 30]). In contrast, the ZrB12 data display a nearly
zero T2-term.

In general, there are many scattering processes
responsible for the T2-term in the ρ(T) dependence of
metals [25]. In particular, umklapp e–e scattering
strongly contributes to this term. Furthermore, normal
collisions are significant in compensated metals and in
thermal resistivity [30]. Borides have a rather high TR

value, which depresses the e–p scattering, and hence
the e–e term is easier to observe. Clearly, there is no
obvious explanation for such a significant e–e scatter-
ing contribution in MgB2. We believe that additional
experiments on purer samples are necessary before the
final conclusion about the origin of the T2-term in the
ρ(T) dependence for MgB2 can be drawn. Besides, the
T2-term was recently observed in ZrB12 single-crystal
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Fig. 4. Temperature dependence of the reduced resistivity
[ρ(T) – ρ(0)]/T2 for ZrB12 (open circles) and MgB2
(squares) polycrystalline samples. The solid lines are a
guide for the eye.
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Fig. 5. Temperature dependence of the penetration depth for
a ZrB12 sample. The solid lines are a guide for the eye. The
inset shows the data below 3.5 K in an extended scale.
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samples with the large resistivity ratio equal to 10 [25].
Apparently, the T2-term depends on the residual resis-
tivity.

4. PENETRATION DEPTH

Our RF technique allows us to measure the change
in the penetration depth λ(T) [24]. We note, however,
that there is some uncertainty in determining the abso-
lute values of λ(T) for bulk samples because of error in
the f1 determination in Eq. (3). For this reason, we do
not attempt to determine the absolute values of λ(0) for
polycrystalline samples from these data but rather find
the temperature-dependent part ∆λ(T) = λ(T) – λ(1 K).
Figure 5 displays the effect of the superconducting
transition in ZrB12 on λ(T). The striking feature of the
curves in Fig. 5 is the linear temperature dependence of
∆λ below Tc/2 = 3 K. We emphasize that no frequency
dependence of these data was found when oscillator
frequency was varied by a factor of two.

In the BCS theory, the London penetration depth
λ(T, l) is identical to the magnetic penetration depth
λ(T) in the case of specular and diffuse surface scatter-
ing and for negligible nonlocal effects, i.e., for δ(T, l) @
ξ(T, l) [24, 32]. Here, l is the mean free path of carriers
and ξ is the coherence length. In a BCS-type supercon-
ductor (with the conventional s-wave pairing) in the
clean limit (l @ ξ), the magnetic penetration depth has
an exponentially vanishing temperature dependence
below Tc/2 (where ∆(T) is almost constant) [32]:

(6)

Here, ∆(0) is the value of the energy gap and λ(0) is the
magnetic penetration depth at zero temperature.

At the same time, the unconventional d-wave pair-
ing symmetry causes the energy gap to be suppressed
along node lines on the Fermi surface. This results in a
linear dependence of λ(T) – λ(0) ∝  T at low tempera-
tures. Such a linear T-dependence of λ was recently
used as a fingerprint of the d-wave symmetry for Coo-
per pairs in cuprate superconductors [33, 34]. From this
standpoint, one could argue that the linear λ(T) depen-
dence in ZrB12 (Fig. 5) may be considered an indication
of the d-wave symmetry of the condensate of Cooper
pairs.

Recently, however, thermodynamic arguments were
suggested [35] that a strictly linear T-dependence of λ
at low temperatures violates the third law of thermody-
namics, because it produces nonvanishing entropy in
the zero-temperature limit. Therefore, one should
expect a deviation from the linear T-dependence of λ at
very low temperatures. Indeed, recent experiments in
cuprates indicate deviation from the linearity of λ(T)
from the current-carrying zero-energy surface Andreev
bound states [36]. We believe that further experiments

λ T( ) λ 0( ) 1 π∆ 0( )
2kBT
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on single crystals of ZrB12 are necessary to confirm
the actual character of the λ(T) behavior below 1.0 K.
Such experiments are now in progress and may shed
light on the nature of the pairing state in this dode-
caboride.

Figure 6 displays the change in λ(T) in a MgB2

polycrystalline sample. These measurements were
done on samples freely placed in a rectangular sole-
noid coil forming an LC circuit kept at 2.5 K. In Fig. 7,
we show the temperature variation of λ for the best
MgB2 film, determined from the one-coil technique
and inversion procedure via Eq. (2). A particular fea-
ture of these figures is a very similar exponential
T-dependence at low temperatures for both film and
polycrystalline samples.

We used the conventional s-wave approach, Eq. (6),
to fit these data. In both cases, we observe satisfactory
if not perfect agreement between the fits and low-tem-
perature data for thin films. Our fitting parameters (the
superconducting gap value at 0 K) are 2.8 and
2.73 meV for film and polycrystalline samples, respec-
tively. The corresponding reduced gap 2∆(0)/kBTc for
these samples was found to be 1.64 and 1.62.

Several recent reports on λ(T) measurements [23, 37]
in MgB2 provide strong evidence for a predominately
exponential temperature dependence of λ at low tem-
peratures, which is consistent with our observation. The
reduced gap obtained from exponential fits to the data
was found to be 1.42 [37] and 2.3 [23] for single crys-
tals and thin films, respectively. These values, as well as
the value we obtained from our data, are significantly
smaller than the BCS weak coupling value 2∆(0)/kBTc =
3.52. Several other groups have claimed that λ(T) in
MgB2 does follow a power-law or even linear T-depen-
dence [38]. The possible reason for this discrepancy is
that previous studies were limited to temperatures
above 4 K, whereas λ(T) shows a clear signature of
exponential behavior only below 7 K (see Figs. 6
and 7). Another problem may arise in use of nonetched
samples, where the damaged surface layer or the prox-
imity effect associated with the presence of a metallic
Mg over layer [19] may significantly complicate the
use of the surface-sensitive techniques.

We emphasize that our values of the superconduct-
ing gap at low temperatures are in the range of values
for 3D π-bands obtained by point-contact spectroscopy
on MgB2 single crystals (∆σ(0) = 7.1 meV and ∆π(0) =
2.9 meV for the σ and π bands, respectively) [39]. Our
data also agree with theoretical values predicted by the
two-band model [40]. Analysis of the overall tempera-
ture dependence of λ within the two-band phenomeno-
logical model [41] is now in progress and will be pub-
lished elsewhere. The essential property of this paper is
comparison of the ZrB12 and MgB2 low-temperature
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
data, where the λ(T) dependence has a totally different
behavior.

5. UPPER CRITICAL MAGNETIC FIELD

We now turn to the data on electronic transport in a
magnetic field. Figure 8 presents the magnetic-field
dependent electric resistivity data for ZrB12 polycrys-
talline samples at various temperatures. Two features
are clearly seen: (i) the magnetic field shifts the super-
conducting transition to lower temperatures; (ii) there is
a very small longitudinal magnetoresistivity in the nor-
mal state. We extracted the completed upper critical
magnetic field Hc2 by extending the maximal-derivative
dρ/dH line (the dashed line in Fig. 8) up to the normal-
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Fig. 6. Temperature variation of the magnetic penetration
depth λ for a MgB2 sample up to Tc . The inset shows the
data below Tc/2 on an extended scale. The solid line repre-
sents the single-gap exponential fit for∆(0) = 2.73 meV.
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Fig. 7. Temperature variation of λ up to Tc for MgB2 thin
film on Al2O3. The inset shows the data below Tc/2 on an
extended scale. The solid line represents the single-gap
exponential fit for ∆(0) = 2.8 meV.
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state level. The crossing point of this line and the nor-
mal-state resistivity gave us the value of Hc2 at various
temperatures as indicated by an arrow in Fig. 8. Despite
a clear broadening at higher fields, such onset of the
resistive transition remains well defined. We note, how-
ever, that the resistance may not be an intrinsic property
and may be related to the poor grain connection in our
polycrystalline samples. Therefore, to obtain a better
test for the onset of the superconducting transition, we
measured the RF susceptibility. Figure 9 shows a plot of
the temperature dependence of the resonant frequency f
of our LC circuit as a function of the longitudinal mag-
netic field. Changes in the resonant frequency are
directly proportional to the RF susceptibility of the

Fig. 8. Magnetic field variation of the resistivity ρ(T) in a
linear scale for a ZrB12 sample at T = 5.6 (1), 5.2 (2), 5.0 (3),
4.3 (4), 3.6 (5), 3.3 (6), 2.0 (7), 1.8 (8), 1.2 (9) K. The solid
lines are a guide for the eye and the dashed line describes
how the resistive transition field Hc2 has been established.

Fig. 9. Magnetic field variation of the resonant frequency of
the LC circuit for ZrB12 sample at the temperatures T = 5.8 (1),
5.0 (2), 4.3 (3), 3.3 (4), 2.3 (5), 1.6 (6), 1.1 (7) K. The solid
lines are a guide to the eye and the dashed line describes a
linear extrapolation of the RF data used for the Hc2(T) deter-
mination.
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sample. To deduce Hc2(T), we used a straight-line fit
representing the maximum of the derivative df/dH (the
dashed line in Fig. 9). This straight line was extended
up to the normal-state frequency values. We defined Hc2
as the crossing point of this line with the normal-state
frequency fn(T). As we can see from Fig. 9, this point is
very close to the onset point of f(T) in this plot, which
makes determination of Hc2(T) more reliable.

Figure 10 presents the Hc2(T) data that we deduced
from these two techniques. A remarkable feature of this
plot is a nearly linear increase of Hc2 with decreasing
temperature for both data with no evidence of satura-
tion down to 1.1 K. To obtain the value of Hc2(0) from
our RF data, we assumed that

at zero temperature [42]. This assumption yields
Hc2(0) = 0.11 T, which is substantially smaller than the
extrapolated value 0.15 T, apparently due to non-BCS
or two-gap behavior. Nevertheless, we used this extrap-
olated number to obtain the coherence length ξ(0) by
employing the relation Hc2(0) = φ0/2πξ2(0), where φ0 is
the magnetic flux quantum. It yields ξ(0) = 60 nm, the
value which is substantially larger than a few-angstrom
coherence length of high-Tc superconductors. The
accuracy of our λ(T) measurements in ZrB12 did not
allow us to determine the absolute values of λ(0).
Therefore, the Ginzburg-Landau parameter κ = λ/ξ
cannot be determined from these measurements.

Taken as a whole, the temperature dependence of
Hc2 for ZrB12 is very similar to that found for MgB2 [43,
44] and BaNbOx , [45] compounds. Unlike in the con-
ventional BCS theory [42], the Hc2(T) dependence is

Hc2 0( ) 0.71Tc

dHc2

dT
------------=

1

0.05

2 3 4 5 60

0.10

0.15

T, K

Hc2, T

Fig. 10. Temperature variation of the upper critical mag-
netic field of a ZrB12 sample. Different symbols represent
the data determined from ρ(H) (squares) and f(H) (circles)
data.
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linear over an extended region of temperatures with no
evidence of saturation at low temperatures. Although
the origin of this feature is not completely understood,
similar linear Hc2(T) dependences have been observed
in other high borides and oxide compounds [43–45].

6. CONCLUSIONS

We successfully performed syntheses of polycrys-
talline samples of dodecaboride ZrB12 and diboride
MgB2. We systematically studied the temperature
dependences of the resistivity ρ, the magnetic penetra-
tion depth λ, and the upper critical magnetic field Hc2 in
these compounds. The electron transport and supercon-
ducting properties have been compared with the aim to
shed light on the origin of superconductivity in borides.
Although the standard Bloch-Grüneisen expression
describes the resistivity data in ZrB12 fairly well, a bet-
ter fit was obtained by adding an electron-electron scat-
tering T2-term in the ρ(T) dependence of MgB2. This
square term dominates the ρ(T) dependence below
150 K in MgB2, although is almost zero for ZrB12.

The temperature dependence of λ of both polycrys-
talline and thin-film MgB2 samples is well described by
an s-wave behavior of the order-parameter symmetry.
Our value of the reduced superconducting gap in MgB2
samples (2∆(0)/kBTc = 1.6) is significantly smaller than
the weak coupling BCS value. However, this value is in
a very good agreement with other direct probe mea-
surements of the smaller gap on the π sheets of the
Fermi surface. At the same time, we find that λ in ZrB12
has a linear temperature dependence over an extended
region of temperatures. This feature may be indicative
of the d-wave pairing, although additional measure-
ments are needed for the final conclusion. We find that
the upper critical field Hc2(T) deduced from RF data is
almost the same as that obtained from the resistive data.
Both techniques demonstrate an unconventional linear
temperature dependence of Hc2, with a considerably
lower value of Hc2(0) = 0.15 T. We believe that these
observations are clear indicators of the unconventional
behavior of electron transport and superconducting
properties of dodecaboride ZrB12.
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