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Abstract—We investigate some aspects of the scalar-field dynamics on the brane that differ from the
corresponding regimes in standard cosmology. We consider asymptotic solutions near singularity, inflation
and rebound conditions, and some features of chaos in the model on the brane. Our results are compared
with their analogs in classical cosmology. c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The idea that we live on a three-dimensional
(mem)brane embedded in space with a larger number
of dimensions has aroused considerable interest for
the last several years. This idea has a long history
of its own [see Visser (1985) and references therein]
but it owes its recent revival to Randall and Sundrum
(1999a, 1999b).
In such models, ordinary matter is confined to the

brane, while gravity can pervade the entire space.
Extra terms appear in the equations that describe
effective four-dimensional gravity; they can play a
significant role in cosmology (Binetruy 2000). Brane
models predict an extra term on the right-hand sides
of the effective Einstein equations that is quadratic
in the energy–momentum tensor components, while
there are only a linear term in standard general rela-
tivity. Another prediction is the existence of a nonlocal
term that is the projection of the Weyl tensor onto
the brane. For the Friedmann metric on the brane,
it enters into the equation in the same manner as
radiation. Therefore, despite its geometric nature, this
term is occasionally called “dark radiation.”
The dynamics of the Universe with hydrody-

namic matter on the brane has been the subject
of intensive studies in the last three years (see,
e.g., Maartens 2000; Campos and Sopuerta 2001a,
2001b). These studies revealed new regimes that
were not typical of standard cosmology, such as
stable oscillations (Campos and Sopuerta 2001b),
the collapse of a flat Universe (Santos et al. 2001),
the growth of anisotropy in a Bianchi type-I Universe
(Toporensky 2001), and an unusual analog of the Ein-
stein static Universe (Gergely and Maartens 2002).
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The dynamics in the model with a scalar field
is complex even in standard cosmology (Starobin-
sky 1978). Thus, it comes as no surprise that new
interesting dynamical regimes arise on the brane.
Some inflation features on the brane were investi-
gated by Maartens et al. (2000, 2001) and Copeland
et al. (2001). The dynamics with exponential scalar-
field potentials was described byMizumo et al. (2002)
andGoheer andDunsby (2002). Presently, the scalar-
field dynamics on the brane continues to draw consid-
erable attention.

Here, we describe how some well-known regimes
of standard cosmology change for the model on the
brane. We consider effective four-dimensional cos-
mological models with the Friedmann metric on the
brane with a scalar field ϕ with potential V (ϕ). Fea-
tures related to the presence of a quadratic term in
the Einstein equations are investigated in the section
entitled Dynamics on the Brane at High Energies.
Some of the dynamical features related to dark radi-
ation when this term enters into the equations with
a negative sign are considered in the section entitled
Effects Related to Dark Radiation.

DYNAMICS ON THE BRANE
AT HIGH ENERGIES

The effective four-dimensional equations of mo-
tion [in this form, they can be easily derived from the
equations presented in Binetruy et al. (2000)] are
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where the dot and prime denote differentiation with
respect to time and ϕ, respectively; κ̃2 = 8π/M2

(4);

and κ2 = 8π/M3
(5). Here, M(5) is the fundamental

five-dimensional Planck mass and M(4) is the effec-
tive four-dimensional Planck mass on the brane. The
latter is related toM(5) and to the brane tension λ by
(Maartens et al. 2000)
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√
3
4π

(
M2

(5)√
λ

)
M(5). (4)

The brane tension λ must be positive in order
that the gravity on the brane have the correct sign.
The dark-radiation constant C can be positive and
negative.
A distinctive feature of Eq. (1) is the presence

of a term quadratic in the scalar-field energy den-
sity. The contribution of this term must be small
at low energies in order to be consistent with the
standard cosmological scenario (Cline et al. 1999;
Binetruy et al. 2000), but this term dominates at
high energies. Therefore, let us consider the system of
equations (1)–(3) in the high-energy approximation.
Recall that the scalar-field dynamics significantly de-
pends on whether the Universe is in a contraction
or an expansion stage. In the standard cosmological
scenario (in the standard case, we use the system of
quantities M(4)/

√
8π = 1, while in the nonstandard

case, we explicitly write out all dimensional param-
eters), if the scalar-field potential V (ϕ) at the con-
traction stage increases more slowly than V (ϕ) ∼
exp

√
6ϕ, then we have the same regime as that for

V (ϕ) = 0. In this regime, a(t) ∼ t1/3 and the scalar
field diverges as ϕ(t) ∼ t−1 (Starobinsky 1978). For
a steeper potential, scalar-field oscillations arise; the
field itself also diverges (Foster 1998).
This pattern significantly changes in the scenario

on the brane. Indeed, for V (ϕ) = 0, substituting

a = Atα, ϕ = Btβ + ϕ0

into the equations of motion yields the solution

a(t) = At1/6, ϕ(t) = ±
M

3/2
(5)√
2π

t1/2 + ϕ0, (5)

t→ 0,

where A > 0 and ϕ0 are the integration constants.
The salient feature of this solution is that the scalar
field tends to a constant, while in standard cosmol-
ogy ϕ→ ∞. Although the scalar field remains finite,
its derivative diverges. This divergence leads to the
equation of state p = ε, as in the case of standard
cosmology. On the other hand, since ϕ remains finite,
while ϕ̇→ ∞, the kinetic energy of the scalar field
always dominates over its potential energy during the
contraction near singularity and asymptotics (5) is
valid for an arbitrary V (ϕ).
Consider the opposite regime—inflation. Here,

one of the problems is the steepness of the scalar-field
potential V (ϕ) at which the inflation stage can exist.
At this stage, we can disregard spatial curvature and
dark radiation in the equations of motion.
The equations for the two slow-roll parameters

can be written as [in the limit of high energies; see
Maartens et al. (2000) for a general form]
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where � means equality in the slow-roll approxima-
tion. The inflation condition is |max(ε, η)| < 1. In
standard cosmology, this condition is violated for po-
tentials that increase faster than V (ϕ) ∼ e

√
2ϕ. In our

case, this condition can be violated only for potentials
that increase faster than

V (ϕ) ∼ (ϕ− ϕ0)−2;

in the boundary case

V (ϕ) = A/(ϕ − ϕ0)2,

the condition |max(ε, η)| < 1 is violated at A <
9M6

(5)/(8π
2).

Thus, for the brane, inflation imposes less strin-
gent conditions on the rate of increase in potential
than it does in the standard case, admitting a potential
in the form of an infinitely high wall.
The nonstandard dependence in the equations of

motion on the energy–momentum tensor compo-
nents of matter also causes the condition for the
existence of chaos to change. In standard cosmology,
the dynamics of the closed model (k = +1) is chaotic
for a broad class of potentials V (ϕ) (Cornish and
Shellard 1998; Kamenshchik et al. 1997). In this
case, the behavior of an arbitrary trajectory appears
as follows. Without loss of generality, we can set the
initial value of ȧ equal to zero. The initial value of ϕ̇
can be obtained from Eq. (1). Thus, we have the two-
dimensional space of initial values. Numerical cal-
culations indicate that, starting from certain regions
in the space of initial values, the phase trajectory
can either go to singularity or pass through a local
ASTRONOMY LETTERS Vol. 29 No. 1 2003



NEW PROPERTIES OF SCALAR-FIELD DYNAMICS 3
minimum of the scale factor (this behavior is called
a rebound). In the latter case, the scale factor then
necessarily passes through a local maximum and we
will return to the original picture with two possible
outcomes. There is a set of trajectories that undergo
an infinite number of rebounds, but the measure of
this set is equal to zero.

In the (a, ϕ) plane, the region where the scale fac-
tor can have an extremum is defined by the inequality
that follows from Eq. (1):

V (ϕ) ≤
3M3

(5)

4πa2

(
1 − C

a2

)
. (8)

Recall that in standard cosmology, chaos can dis-
appear for exponential or steeper potentials. Toporen-
sky (1999) developed an analytic approach to this
problem. It was shown that a simple necessary con-
dition for the existence of chaos can be written using
the following two facts established during numerical
experiments:

(i) all simple periodic trajectories contain a point at
which ϕ̇ = 0 and ȧ = 0 located at the boundary of the
region defined by inequality (8),

(ii) all the trajectories that have a velocity vector
directed inward into region (8) at this point go to
singularity and, hence, cannot be periodic.

These two facts can be violated in the so-called
strong-chaos regime. However, this regime exists
only for much more gently sloping potentials than
a quadratic potential (Pavluchenko and Toporen-
sky 2000). Thus, we can use them for sufficiently
steep potentials when chaos is on the verge of dis-
appearance.

Let us apply the methods described in Toporen-
sky (1999) to the case on the brane. First, we set
C = 0. The trajectory with ϕ̇ = 0 and ȧ = 0 is di-
rected outward from region (8) if∣∣∣∣ äϕ̈

∣∣∣∣ >
∣∣∣∣da(ϕ)
dϕ

∣∣∣∣ , (9)

where a(ϕ) is the boundary equation. Substituting ä
and ϕ̈ from Eqs. (2) and (3) and using (1), we can
write this condition as

κ4

36
V (ϕ)3 >

(
dV (ϕ)
dϕ

)2

. (10)

If this condition is violated for all ϕ, then chaos
disappears. This condition is valid for exponential
potentials at sufficiently large ϕ. Moreover, it is also
valid for potentials V ∼ exp(ϕ2). Thus, chaos on the
brane can exist for much steeper potentials than those
in standard cosmology.
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Potentials that violate condition (10) must be in
the form of a potential wall. The critical case is

V (ϕ) =
A

(ϕ− ϕ0)2
. (11)

In this case, as can be easily seen from (10), this
condition is violated at any ϕ for A < 9M6

(5)/(4π
2).

Our numerical calculations confirm that there is no
chaos in this case.
The same analysis can be performed for nonzeroC,

although the corresponding equations are not so
simple. A general property is that positiveC make the
condition for the existence of chaos more stringent,
while negative C relax it. In the limit C → −∞, we
can write a simple analog of (10)

κ4

9
V (ϕ)3 >

(
dV (ϕ)
dϕ

)2

, (12)

which leads to a potential of the form (11) for A =
9M6

(5)/(16π
2) in the boundary case.

We summarize our results as follows. In standard
cosmology, the scalar-field dynamics is known to
significantly differ for potentials that increase more
slowly and faster than an exponential. For sufficiently
steep potentials, inflation cannot take place, chaos
disappears for a positive spatial curvature, and scalar-
field oscillations with an increasing amplitude arise
during the contraction to singularity. There is no ana-
log of the latter on the brane—the scalar field does not
diverge at the contraction stage, irrespective of the
potential. However, the first two of the above features
also have their analogs on the brane. The boundary
potential that separates dynamically distinct cases
(similar to an exponential potential in classical cos-
mology) is a wall-type potential of the form V (ϕ) ∼
1/(ϕ − ϕ0)2.

EFFECTS RELATED
TO DARK RADIATION

Let us consider the effects related to dark radia-
tion. An important feature of dark radiation is that the
constant C can be both positive and negative. For
negative C, the behavior of the scale factor can be
nonmonotonic not only for a positive spatial curva-
ture, but also for a zero and negative curvature. In-
deed, as we can see from Eqs. (1)–(3), the terms con-
taining C for C < 0 give a contribution of the same
sign as a positive curvature. In particular, this gives
rise to rebounds in a flat and an open Universe. More-
over, the probability of a rebound increases with |C|
and can become significant.
To illustrate the latter assertion, we numerically

integrated system (1)–(3) in nonstandard regime
(ρ� λ) at the contraction stage starting from a fixed
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Fig. 1. The region in which the scale factor of a closed
Universe can have an extremum is bounded by two solid
lines and, for minima, by solid and dashed lines.

initial scale factor. In our numerical calculations,
we set κ = 1. An individual trajectory is defined by
specifying two initial values, the scalar field and its
derivative. At fixed initial values of ϕ and ϕ̇, the
initial value of ȧ can be determined from Eq. (1). We
investigated a compact region in the plane of initial
(ϕ, ϕ̇) that satisfied Eq. (1) and the inequality

m2ϕ2

2
+
ϕ̇2

2
< 1.

Introducing a uniform measure on this compact set
of initial conditions, we obtained the following results.
For the first set of rebound probabilities P , the scalar-
field mass was chosen to be 0.1. Since C and a for a
flat Universe enter the equations only in the combina-
tion C/a4, our results are virtually independent of the
specific initial scale factor.

C/a4 −10−5 −10−4.5 −10−4 −10−3 −10−2

P 7.4×10−4 2.0×10−3 5.6×10−3 9.2×10−2 3.4× 10−1

The dependence of the rebound probability on
scalar-field mass m is complex but vanishes for low
masses. In this situation, P values for different C and
lowm (m < 10−3) are given below:

C/a4 −10−4 −10−3 −10−2

P 0.029 0.072 0.195

The transition from the contraction of a flat Uni-
verse to its expansion is possible only if there are
terms with a negative contribution to the energy in
Eq. (1). Cosmology on the brane gives a simple ex-
ample of this kind. Our numerical calculations indi-
cate that the measure of the initial values that lead to
a rebound can be significant at large |C|.
For a positive curvature, the dynamics on the

brane is more complex. The region in which the scale
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Fig. 2. The ϕ = 0 section of the space of initial values for
various values of C. The initial values at which a rebound
occurs are painted black.

factor can have extrema shrinks for positive C and
chaos disappears for sufficiently large C. The dy-
namical picture is similar to the picture that arises in
standard cosmology in the presence of hydrodynamic
matter with the equation of state p = ε/3 (Kamen-
shchik et al. 1999). Negative C (in this case, there is
no direct analogy with standard cosmology) act in the
opposite direction: the region where the scale factor
can have extrema grows with absolute value ofC and,
as we will see below, the chaotic properties of the
cosmological dynamics are enhanced. In Fig. 1, the
region in which the scale factor can have extrema is
bounded by two solid lines, while the region in which
the scale factor can have a minimum is bounded by
solid and dashed lines. In this figure, the scalar-field
potential was chosen in the form V (ϕ) = m2ϕ2/2,
where m = 0.5 and the brane tension λ = 1 (we
returned to the units M(4)/

√
8π = 1). The thick

and thin lines correspond to C = 0 and C = −30,
respectively.

Let us consider the interesting transformation of
chaotic dynamics that occurs in standard regime
(ρ� λ). Below, we consider a scalar potential in the
form V (ϕ) = m2ϕ2/2. For C = 0, the initial values
that lead to a rebound form a set of narrow regions
separated by wide regions in which the solution is
singular. This pattern significantly changes as |C|
increases. In Fig. 2, we set the initial value of ϕ equal
to zero and m = 0.5. We varied C and a over the
ranges from −100 to 0 and from 1 to 30, respectively.
The region painted black corresponds to the initial
conditions that lead to a rebound at the initial ȧ = 0,
while white corresponds to singular solutions. As we
can see, the ranges of initial scale factors that lead
to a rebound broaden with increasing absolute value
of C and the first two ranges merge for C ≈ −15.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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The solutions that start in the merging region are
strongly chaotic. Such solutions can oscillate over a
long period, without leaving the region of large spatial
curvatures. As the absolute value of C increases
further, we observe a successive merging of the
ranges and a monotonic increase in the fraction of
the initial values that lead to a rebound.
This pattern of strong chaos is similar to the pat-

tern that has been found previously in standard cos-
mology with a gently sloping potential (Pavluchenko
and Toporensky 2000) and in cosmologies that
include second-order curvature string corrections
(Alexeyev et al. 2000). In the scenario on the brane,
this effect shows up even for the simplest poten-
tial m2ϕ2/2. Interestingly, in nonstandard regime
(ρ� λ), this strong chaos exists only for potentials
that increase much more slowly than a quadratic
potential.
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Original Russian Text Copyright c© 2003 by Dunina-Barkovskaya, Imshennik.
Effects of Boundary Conditions and Viscous Energy Dissipation
on Carbon Burning in Thermonuclear Supernova Models

N. V. Dunina-Barkovskaya* and V. S. Imshennik
Institute of Theoretical and Experimental Physics,

ul. Bol’shaya Cheremushkinskaya 25, Moscow, 117259 Russia
Received August 12, 2002

Abstract—Based on a one-dimensional hydrodynamic model, we investigate carbon burning in a ther-
monuclear type-Ia supernova in the approximation of unsteady convection. The relatively broad range of
convective parameters, 1 × 10−3 ≤ α c ≤ 2 × 10−3, in which delayed detonation from the edge takes place
was found to be preserved only for cases with a low boundary temperature at the presupernova stage,
T

(PS)
b = 6.4 × 106 K, and with a high envelope mass, mex � 2 × 10−3M�. In cases with a more realistic

temperature, T (PS)
b = 2 × 108 K, which corresponds to helium burning in the shell source, and with a lower

mass mex, delayed detonation from the edge takes place only at αc = 2 × 10−3, while at αc = 1 × 10−3,
numerous model pulsations occur during t � 500 s. Artificial viscosity is shown to give a determining
contribution to the increase in entropy in outer model shells, which is caused by the generation of weak
shock waves during pulsations. We also show that the entropies calculated by two independent methods
are equal. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: supernovae and supernova remnants; plasma astrophysics, hydrodynamics, and shock
waves; detonation and deflagration.
INTRODUCTION

Recently, because of the progress made in model-
ing the light curves of type-Ia supernovae (Sorokina
et al. 2000), a demand has arisen for new supernova
models that could explain isolated events with a
large 56Ni mass (Cappellaro et al. 1997). The model
with delayed detonation from the edge described (for
various boundary conditions) previously (Dunina-
Barkovskaya et al. 2001; Dunina-Barkovskaya and
Imshennik 2000) could presumably be such a model.
Nevertheless, it is first necessary to analyze the de-
pendence of this burning regime on model boundary
conditions and on the parameter of artificial viscosity.
The latter describes shock-front smearing and also
affects the increase in entropy in the outer layers of a
carbon–oxygen core as weak shock waves propagate
in them. This is the goal of our study. Concurrently,
we justify our previous results (Dunina-Barkovskaya
et al. 2001) regarding the increase in entropy in the
near-surface layers of a carbon–oxygen core during a
supernova explosion through additional calculations
of the equation for entropy production.

*E-mail: dunina@vitep1.itep.ru
1063-7737/03/2901-0010$24.00 c©
BASIC EQUATIONS FOR THE CONVECTIVE
HYDRODYNAMIC MODEL

As in our previous studies, we calculated the evo-
lution of a presupernova and supernova explosion by
solving the system of hydrodynamic equations

∂r

∂t
= v, (1)

∂v

∂t
= −Gm

r2
(2)

− 4πr2∂(P + Q)
∂m

,

∂T

∂t
=
[
εnucl − εν − 4π∂(r2Fconv)

∂m
− 4π∂(r2Frad)

∂m
(3)

− 4π
∂(r2v)
∂m

(T (∂P/∂T )ρ + Q)
]
/(∂E/∂T )ρ,

∂XC

∂t
= −X2

CrCC +
(
∂XC

∂t

)
conv

, (4)

∂uc

∂t
=

2(v2
c − u2

c)
lmix

, (5)
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EFFECTS OF BOUNDARY CONDITIONS 11
where XC is the mass fraction of 12C; uc is the velocity
of unsteady convection; εnucl is the specific energy
release through nuclear burning (corrected for carbon
burning, as was done by Dunina-Barkovskaya et al.
2001); rCC is the specific rate of carbon burning,
which is uniquely related to εnucl; εν are the standard
neutrino energy losses (from the formulas of Schinder
et al. 1987); lmix, vc, and Fconv are, respectively, the
mixing length, the velocity of steady convection, and
the convective energy flux density (see Bisnovatyı̆-
Kogan 1989); and Q is the momentum flux density
due to quadratic scalar artificial viscosity. The latter is
defined in our calculations by the expression

Q = Aqρ

(
∆ri

1
r2

∂(r2v)
∂r

)2

for
∂(r2v)
∂r

< 0, (6)

Q = 0 for
∂(r2v)
∂r

> 0, (7)

where ∆ri is the (radial) thickness of the ith mass
zone and the square root of the dimensionless positive
coefficient Aq (of the order of unity) gives the number
of zones over which the shock front was smeared.
Because of condition (7), viscous energy dissipation
is possible only in compression shocks (Landau and
Lifshitz 1954).

Equation (3) also includes Frad, the energy flux
density due to electron and radiative heat conduction.
In all but the last zone, it is defined by

Frad = −4πacr2

3κ
∂T 4

∂m
. (8)

Here, κ is the opacity due to electron and radia-
tive heat conduction in the inner and outer model
layers, respectively. In the last zone (for models
with a variable boundary temperature), we use the
gray-atmosphere approximation (see Bisnovatyi-
Kogan 1989) for Frad:

Frad =
acT 4

2 + 3τ
, (9)

where τ is the optical depth estimated below. This
boundary condition closely corresponds to the so-
called mixed boundary condition in the radiation hy-
drodynamics of supernovae at τ = 2/3 [see Imshen-
nik and Nadyozhin (1982) for a review]. However, in
our calculations, τ can be large (τ � 1).

Note that in Eq. (3), the expression for the term
attributable to gravitational contraction (Dunina-
Barkovskaya et al. 2000) is written explicitly:

εg = −4π
∂(r2v)
∂m

T

(
∂P

∂T

)
ρ

.
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We emphasize that this expression differs from the
standard expression for the energy release through
gravitational contraction

εgr = −
(
∂E

∂t
− P

ρ2

∂ρ

∂t

)
= εg −

(
∂E

∂T

)
ρ

∂T

∂t

(Schwarzschild 1958).
To independently control the increase in entropy

in our numerical solution, we added the equation for
entropy production to system (1)–(5). It is essentially
equivalent to the equation for the change in tempera-
ture (3), according to the thermodynamic identity

∂Stest

∂t
=

1
T

[
εnucl − εν − 4π∂(r2Fconv)

∂m
(10)

− 4π∂(r2Frad)
∂m

− 4πQ
∂(r2v)
∂m

]
.

Our calculations must show a close match between
the entropy from Eq. (10) and its value from the
equation of state (Ivanova et al. 1977). Equation (10)
explicitly contains the term of viscous energy dissipa-
tion at the shock fronts, including weak compression
shock waves.

THE DEVELOPMENT
OF A CONVECTIVE CORE

AT THE PRESUPERNOVA STAGE

Here, we retain the same rate of increase in the
CO-core mass, Ṁ = 5 × 10−7M� yr−1, as that in
Dunina-Barkovskaya et al. (2001). The following
considerations can be added to arguments for this
choice of Ṁ by using data from the review article by
Arkhipova (1996) on novae. Thermonuclear models
for nova outbursts (see, in particular, Kovetz and
Prialnik 1994) lead one to conclude that at Ṁ �
10−7M� yr−1 no shell ejection takes place but a sub-
Chandrasekhar type-Ia SN is formed. In contrast, the
model of recurrent nova-type explosions is realized
at Ṁ < 10−7M� yr−1. These results refer to the
accretion of matter with normal chemical composi-
tion, i.e., in the presence of hydrogen. For a purely
helium accretor (or the companion of a CO core in
a binary), Cassisi et al. (1998) showed that in a
wide Ṁ range (10−8M� yr−1 < Ṁ < 10−6M� yr−1),
the helium layer on a cool CO core can be lost.
However, the latter conclusion, according to Yungel-
son (1998), needs to be verified by a hydrodynamic
accretion model. Nevertheless, the chosen value of
Ṁ = 5 × 10−7M� yr−1 lies almost outside this Ṁ
range, especially since it satisfies the criterion of
Kovetz and Prialnik mentioned above. There is a
certain relationship between the models of nova and
type-Ia supernova progenitors considered in this
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Table 1. Parameters of presupernova models

Model αc, 10−3 T
(PS)
b , К Mbeg,M� q N mN ,M� Nconv mex,M�

H20–181 2.0 2.0 × 108 1.341 0.9324 181 1.36806 87 1.02 × 10−4

H20–180 2.0 2.0 × 108 1.341 0.9324 180 1.36781 87 3.27 × 10−4

L20–188 2.0 6.4 × 106 1.335 0.9363 188 1.36762 100 5.58 × 10−5

L20–180 2.0 6.4 × 106 1.335 0.9363 180 1.36560 100 1.85 × 10−3

H10–180 1.0 2.0 × 108 1.341 0.9324 180 1.36781 79 3.24 × 10−4

H10–174 1.0 2.0 × 108 1.341 0.9324 174 1.36586 79 2.02 × 10−3

L10–188 1.0 6.4 × 106 1.335 0.9363 188 1.36762 100 5.16 × 10−5

L10–180 1.0 6.4 × 106 1.335 0.9363 180 1.36560 100 1.85 × 10−3
paper. Note that the mass included in the nonzero
boundary condition of the latter, ∆M � 3 × 10−3M�
[in Dunina-Barkovskaya et al. (2001), it was ∆M =
2.34 × 10−3M�], is close in magnitude to the charac-
teristic mass of ejected nova shells, ∆Mcr � 1030 g �
10−3M� (Gorbatskiı̆ 1986).

Since the difference models under consideration
use mass (Lagrangian) coordinates and take into ac-
count mass accretion at the presupernova stage, it
would be methodologically appropriate to introduce
a nonzero boundary pressure (Dunina-Barkovskaya
et al. 2001). Clearly, the initial Lagrangian grid is
retained in this case. As for the boundary tempera-
ture, whose specification is dictated by the parabolic
type of Eq. (3), we could just set it equal to a con-
stant. Dunina-Barkovskaya et al. (2001) chose the
temperature in the last zone to be low, 1.05 × 107 K.
This virtually zero boundary temperature was as-
sumed to be constant even during large model pul-
sations at the explosion stage. However, it would
probably be more precise to assume it to be equal
to ∼2 × 108 K, because accreted helium [see the
evolutionary scenario 2 in Yungelson (1998)] on the
surface of a CO core must burn through the Salpeter
triple reaction (Frank-Kamenetskiı̆ 1959) at exactly
this temperature.1 Such a temperature can even give
rise to a positive entropy gradient; i.e., it can restrict
the growth of a convective core at the presupernova
stage.

Figure 1 shows the temperature distribution in
mass at the onset of a supernova explosion (at
Tc = 5 × 109 K) for the main model H20–180 with
αc = 2 × 10−3 and Tb = 2 × 108 K (see Table 1) and
for L20–188 and H10–180; the latter differ from the
main model by a lower boundary temperature (Tb =

1We are grateful to Prof. W. Hillebrandt for the remark on the
refinement of the boundary temperature.
6.4 × 106 K) and a smaller convective parameter
(αc = 1 × 10−3), respectively. In the case with Tb =
6.4 × 106 K, we had to artificially restrict the growth
of convection by the maximum number of convec-
tion zones Nconv = 100 (Mconv = 0.91M�), because
otherwise convection would grow in the outermost
zones and the computational time would significantly
increase. For H20–180, we obtained a similar value,
Nconv = 87, because of a positive entropy gradient in
the outer core layers. As a result, the temperature
profiles in the first 87 mass zones (at m < 0.8M�)
essentially coincide for the H20–180 and L20–188
models. For H10–180, however, the temperature
profile in these zones lies slightly lower, but at the
same time, it almost coincides with the temperature
profile from H20–180 outside the convective core (at
m > 0.8M�).

Thus, raising the constant boundary tempera-
ture Tb actually causes a significant reduction (almost
by a factor of 2) in the mass of the convective
core. Therefore, the entropy distribution in the outer
zones without convection can dramatically change
by the onset of explosion. This factor will affect the
development of explosion, particularly in the regime
of delayed detonation from the surface model layers
concerned. Note that it seems appropriate to limit the
number of convection zones to Nconv = 100 (Mconv =
0.91M�) if we specify a low boundary temperature,
Tb = 6.4 × 106 K.

THE DEVELOPMENT OF AN EXPLOSION
UNDER A LOW BOUNDARY PRESSURE

AND FOR A VARIABLE BOUNDARY
TEMPERATURE

The boundary pressure at the explosion time can,
in principle, be made extremely low by discretely
adding increasingly shallow mass zones to the outer
model layers. However, with the assumed uniform
ASTRONOMY LETTERS Vol. 29 No. 1 2003



EFFECTS OF BOUNDARY CONDITIONS 13

 

0.4

0.60 1.2

 

m

 

, 

 

M

 

�

 

H20–180
L20–188
H10–180

 

T

 

, 1
0

 

9

 

 K
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Table 2. The development of a thermonuclear explosion for various presupernova models

Model texpl, s npuls E
(max)
tot , 1050 erg T

(end)
b , K mdefl,M� mdet,M� Ndet

H20–181 40.30 11 14.571 3.3 × 107 0.16655 1.3574 161

H20–180 34.99 10 14.627 4.6 × 107 0.15548 1.3609 165

L20–188 35.69 10 14.595 6.4 × 106 0.16523 1.3581 166

L20–180 19.72 7 14.678 6.4 × 106 0.09930 1.3653 179

H10–180 > 518 85 −1.826 1.3 × 106 0.21086 – –

H10–174 > 543 84 −1.829 1.9 × 106 0.22193 – –

L10–188 > 520 84 −1.832 6.4 × 106 0.22017 – –

L10–180 30.90 11 14.664 6.4 × 106 0.07733 1.3653 179
decrease in the masses of the added Lagrangian zones
(as a geometric progression), the boundary pressure
cannot be made equal to zero, because it is not
known in advance exactly at which time an explosion
will occur. Here, for the initial model with a total
number of zones equal to 150, a mass of 1.341M� ,
and a boundary temperature T

(PS)
b = 2.0 × 108 K,

we used a geometric progression with the masses
in the zones ∆mi decreasing from 1.1 × 10−2M� to
2.2 × 10−3M� for 127 ≤ i ≤ 150. In our main H20–
180 model, in the course of evolution with an accre-
tion rate of 5 × 10−7M� yr−1, we added 30 zones
to this model with the masses decreasing in the
same geometric progression with the denominator
q = 0.9324 (in the notation of this model, the letter
“H” points to a high boundary temperature, 180 is
the number of mass zones at the explosion time, and
20 is the value of αc in units of 10−4). As a result, the
final model mass reached M = 1.36781M� and the
conventional envelope mass mex, which is related to
the external pressure Pex by the relation from Dunina-
Barkovskaya et al. (2001)

Pex =
GM

4πR4
mex, (11)

was 3.27 × 10−4M�. Relation (11) is inaccurate, be-
cause mex is only approximately equal to the actual
envelope mass. In general, however, its accuracy in-
creases with decreasing mex. Parameters of this and
other models at the presupernova stage are given
in Table 1. As was mentioned above, all models are
arbitrarily defined at Tc = 5 × 109 K, a necessary but
not sufficient condition for the model explosion.

Figure 2 shows the development of the explosion
for the H20–180 and H10–180 models with con-
vective parameters αc that differ by a factor of 2. In
the case with αc = 2 × 10−3, delayed detonation or
detonation from the edge took place rapidly (in 35 s).
However, in the other case (as in the similar H10–174
model with a higher boundary pressure), the pulsa-
tions in our calculations lasted up to 500 s and no
detonation took place in this time interval. For the
H20–181 model, delayed detonation did take place
(see Table 2), although mex decreased approximately
by a factor of 3 (see below) compared to the H20–180
model.

For the models with a high presupernova boundary

temperature (T (PS)
b = 2.0 × 108 K), we were unable

to keep this temperature constant during the entire
process of pulsational deflagration. In this case, the
density in the outer layers decreased to an extent that
the radius of the last mass zone significantly (by sev-
eral factors) exceeded the radius of the next-to-last
zone. This made it impossible to properly work with
the difference derivatives when solving system (1)–
(5). Therefore, instead of setting the left-hand side of
Eq. (3) equal to zero in the last zone, we used Eq. (9)
for the flux in a gray atmosphere with the optical
depth τ estimated from the formula

τ =
κ

4πr2
N

∆mN + mex

2
. (12)

In our case, condition (9) is, of course, cruder than
that in models with a nearly zero boundary pressure
and with a fine breakdown of the outer model layers
in mass (Imshennik and Nadyozhin 1982). How-
ever, it still yields a reasonable final model boundary
temperature T

(end)
b given in Table 2. This table also

lists the other basic quantities that characterize the
development of explosion for various initial models.
The value of T

(end)
b is given at the onset of delayed

detonation for the cases with such detonation and
at the completion time of our calculations for the
cases with a large number of pulsations. The value
of texpl from Table 2 shows the time in which the
total energy of the model increased to zero through
ASTRONOMY LETTERS Vol. 29 No. 1 2003



EFFECTS OF BOUNDARY CONDITIONS 15

ASTRONO
 

6

1
0

100.1

12
 

T

 

, 1
0

 

9

 

 K

 

r

 

, 10

 

8

 

 cm

 

t

 

 = 34.617 s

 

t

 

 = 34.973 s

 

t

 

 = 35.031 s

Fig. 3. The development of delayed detonation from the edge for H20–180.
carbon burning, i.e., the model became a gravita-
tionally unbound system. In general, this occurs at
the stage of detonation from the edge [except for
the models with fast detonation described, e.g., by
Dunina-Barkovskaya et al. (2001), in which texpl <
1 s], npuls is the number of pulsations (including the
first decrease in density) occurred before detonation
from the edge or before the completion of our calcu-
lations (in H10–180, H10–174, and L10–188). The
maximum total energy E

(max)
tot for all models is given

at the completion time of our calculations. We also
give the mass coordinate mdefl that was reached by
the deflagration front propagating from the center for
all models, the mass coordinate mdet from which the
detonation front began to propagate inward for the
models with delayed detonation, and the correspond-
ing mass-zone number Ndet.

For the cases with a relatively high convective
parameter, αc = 2 × 10−3, delayed detonation in our
calculations took place irrespective of the bound-
ary temperature and boundary pressure. However, in
contrast to Dunina-Barkovskaya et al. (2001) (where
mex = 2.34 × 10−3M� and Tb = 1.05 × 107 К), the
αc range in which delayed detonation took place sig-
nificantly narrowed. Of all the models with αc = 1 ×
MY LETTERS Vol. 29 No. 1 2003
10−3, only the L10–180 model with a low boundary
temperature and a high boundary pressure exploded
in this study, suggesting an important role of the
boundary conditions in effecting this regime.

The development of delayed detonation from the
edge for H20–180 is shown in Fig. 3. Although the
mass zone 165 in which detonation begins is close
to the edge in mass coordinate, a (radially) extended
envelope lies behind it. During the development of
detonation, i.e., before the collision of its front with
an essentially static deflagration front (in ∆t ∼ 0.4 s),
this envelope remains virtually static, which is in
contrast to a similar plot from Dunina-Barkovskaya
et al. (2001) where this envelope was mainly included
(with r > 4 × 108 cm) in the boundary condition for
pressure. On the other hand, there is a close match
between the physical conditions near the detonation
front propagating into the presupernova in the calcu-
lations being compared.

THE ROLE OF VISCOUS ENERGY
DISSIPATION IN THE DEVELOPMENT
OF DETONATION FROM THE EDGE

The introduction of artificial viscosity is known
(von Neuman and Richtmyer 1950) to be necessary to
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properly describe the energy dissipation inside shock
fronts within a narrow range of thickness, which is
determined in models by the spatial step of the dif-
ference grid, i.e., by ∆ri in expression (6). Actually,
this range is determined by the physical viscosity. As
is easy to show, being proportional to the particle
(nuclides, electrons, photons) mean free path in the
stellar matter of a CO core, the physical viscosity is
extremely low. Nevertheless, the tensor properties of
the viscosity effects, which are well known in the hy-
drodynamics of viscous fluids and gases (Landau and
Lifshitz 1954), hold for such artificial viscosity. This
viscosity is determined by analogy with volume phys-
ical viscosity. It can be shown that in the spherically
symmetric (one-dimensional) case, only the diagonal
components of the tensor σ′

ik of the latter are nonzero
(for this reason, it is also called linear scalar viscosity):

Π = σ′
rr = σ′

θθ = σ′
ϕϕ (13)

= η

(
∂v

∂r
+

2v
r

)
= η

1
r2

∂

∂r
(r2v) = 4πρη

∂

∂m
(r2v),

where the tensor σ′
ik enters the right-hand side of

the equation of motion as an addition to the scalar
pressure Pδik − σ′

ik and η is the the volume viscos-
ity coefficient, which below is assumed to be con-
stant. Hence, based on tensor differentiation rules
(Kochin 1951), we derive an expression for the only
nonzero radial component of the viscous force per unit
mass:

1
ρ
(divσ′)r =

(
η

ρ

)(
∂2v

∂r2
+

2
r

∂v

∂r
− 2v

r2

)
(14)

=
(
η

ρ

)
∂

∂r

(
∂v

∂r
+

2v
r

)
.

The corresponding specific power of the viscous
energy dissipation, which is generally given by Ψ =
[div(σ′v)− (v× divσ′)]/ρ (Landau and Lifshitz 1954),
have the following expression, which is also derived
according to tensor differentiation rules using (14):

Ψ =
η

ρ

[(
∂v

∂r

)2

+
4v
r

∂v

∂r
+

4v2

r2

]
(15)

=
η

ρ

(
∂v

∂r
+

2v
r

)2

=
η

ρ

[
4πρ

∂

∂m
(r2v)

]2

= 4πΠ
∂

∂m
(r2v);

i.e., it matches the analogous quantity in Eq. (3) if it
is considered that Q ≡ −Π in the latter equation. In
turn, the expression for the viscous force on the right-
hand side of Eq. (2) matches expression (14).
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Table 3. The entropy Stest calculated from the additional equation (10) for H20–180 at t = 29.20 s

i m S + const, 108 erg g−1 K−1 Stest + const, 108 erg g−1 K−1

1 1.1076× 10−4 3.7804 3.7816

10 3.5963× 10−3 8.8670 × 10−1 8.8724× 10−1

20 3.5824× 10−2 1.0211 1.0217

30 1.4440× 10−1 1.2740 1.2742

40 2.5516× 10−1 −3.1207× 10−1 −3.1207× 10−1

50 3.6592× 10−1 −3.3635× 10−1 −3.3634× 10−1

60 4.7668× 10−1 −3.4208× 10−1 −3.4208× 10−1

70 5.8743× 10−1 −3.3754× 10−1 −3.3754× 10−1

80 6.9819× 10−1 −3.2608× 10−1 −3.2608× 10−1

90 8.0895× 10−1 −3.0441× 10−1 −3.0441× 10−1

100 9.1971× 10−1 −2.6710× 10−1 −2.6710× 10−1

110 1.0305 −2.1395× 10−1 −2.1395× 10−1

120 1.1412 −1.3925× 10−1 −1.3925× 10−1

130 1.2477 −3.9396× 10−2 −3.9396× 10−2

140 1.3100 4.6799× 10−2 4.6799× 10−2

150 1.3410 2.3998× 10−1 2.3998× 10−1

160 1.3564 6.4682× 10−1 6.4702× 10−1

170 1.3640 4.0611 4.0617

180 1.3678 5.6180 5.6184
However, in introducing artificial viscosity, it
proved to be more appropriate to use quadratic
rather than linear scalar viscosity (von Neuman and
Richtmyer 1950) in the difference scheme. Therefore,
the specific expression for Π differs from (13) by the
substitution Π ≡ Π′, where

Π′ = ζ

(
∂v

∂r
+

2v
r

)2

= ζ

[
4πρ

∂

∂m
(r2v)

]2

. (16)

In expression (16), we also substituted ζ for the
viscosity coefficient η, because Π and Π′ have the
same dimensions, [Π] = [Π′] = erg cm−3. For the
shock-front thickness in Lagrangian coordinates
to be smeared by 4πr2k∆riρ = k∆mi (k � 1), the
viscosity coefficient ζ must be equal in order of
magnitude to (in which case, Π′ � ρv2)

ζ = ρk2(∆ri)2. (17)

Using relations (16) and (17) and the relation Q =
−Π′, we obtain formula (6) with Aq = k2; i.e., the
dimensionless coefficient Aq is actually of the order
of unity and it determines the number of spatial zones
for a shock-front thickness of ∼

√
Aq.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
It remains to note that similar conclusions could
be reached with shear (tensor) physical viscosity.
However, since it is more complex, there is apparently
little point in using the corresponding analog as
artificial viscosity in the convective hydrodynamic
model.

As was said above, expression (10) contains the
term for the specific power of the viscous energy dis-
sipation

T

(
∂S

∂t

)
q

= −4πQ
∂(r2v)
∂m

, (18)

attributable to artificial viscosity. Recall that, accord-
ing to (6)–(7), it is always nonnegative. As the en-
tropy increases in the outer model layers, this term
becomes comparable to the other terms from Eq. (10)
and even exceeds them inside the compression shock
fronts by several orders of magnitude, although these
shocks are weak in the hydrodynamic sense. Figure 4
shows the velocity, entropy, and (∂S/∂t)q profiles for
H20–180 at the time t = 29.20 s, close to the onset
of detonation from the edge. We see two local entropy
maxima: the flatter maximum closer to the center
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and the sharper maximum closer to the edge, which
plays no role in the development of delayed detona-
tion because of the low density in this (next-to-last)
mass zone. In contrast, the narrow sharp maximum
of (∂S/∂t)q located at r ∼ 2 × 108 cm on the inside
of the inner entropy maximum led to a thermonuclear
explosion and to the development of detonation from
the edge at r ∼ 3 × 108 cm (see Fig. 3).

In comparison with our previous study (Dunina-
Barkovskaya et al. 2001), where we used an esti-
mate for the increase in entropy inside the steady-
state plane fronts of weak shocks (Landau and Lif-
shitz 1954), here we significantly refined this increase
in entropy in arbitrary (unsteady-state, nonweak, and
nonplane) compression waves, as follows from the
derivation of the entropy production equation (10).
Therefore, we should also emphasize that the above
derivation of the artificial-viscosity terms (6)–(7) in
the basic equations of the convective hydrodynamic
model (1)–(5) in terms of physical volume viscosity
is also valid in the unsteady-state, nonplane case of
nonweak compression waves.

From the viewpoint of numerically solving
Eqs. (1)–(5) using the difference scheme that was de-
veloped by Blinnikov and Rudzskii (1984), Blinnikov
and Bartunov (1993), and Blinnikov and Dunina-
Barkovskaya (1993, 1994), it is also important to
compare the entropy inferred from the solution of the
additional equation (10) with its value that follows
from the adopted equations of state. Table 3 makes
such a comparison for a slightly sparse Lagrangian
grid at the same time t = 29.20 s for H20–180, which
shows an approximate match between the specific
entropies S when delayed detonation sets in, in the
most critical time interval of this calculation: the
maximum discrepancy between S is ≈0.6%. Such an
independent check on the accuracy of the difference
solution of the problem was also made at all instants
of time in the other calculations. We emphasize that
the entropy plays a special role in the thermonuclear
mechanism of SN-Ia explosions under consideration.

CONCLUSIONS

Here, we continued to study the thermonuclear
explosion mechanism for presupernovae in the form
of an accreting sub-Chandrasekhar-mass carbon–
oxygen core (white dwarf) in terms of the con-
vective hydrodynamic model presented previously
(Dunina-Barkovskaya and Imshennik 2000; Dunina-
Barkovskaya et al. 2001). In all probability, the exter-
nal boundary conditions for temperature and pressure
have to be considered in more detail than was done
previously. We attempted to numerically simulate the
outer layers of an accreting white dwarf by taking
into account helium burning (of the main matter of
the accretor), which was reflected in a new boundary
condition for temperature. We also developed a spe-
cial difference technique for adding extra Lagrangian
layers that become shallower toward the edge, where
possible. The latter improvement of the Lagrangian
scheme for solving the difference problem results
in a significant reduction of the external boundary
pressure, thereby ensuring that the condition of a thin
envelope is satisfied at the time of the thermonuclear
explosion. In previous calculations, it was violated, as
we managed to ascertain in our series of calculations.

Despite the significant increase in the surface tem-
perature of a CO core (approximately by a factor
of 10, i.e., to ∼5 × 107 K) and the significant de-
crease in its surface pressure (also approximately
by a factor of 10), delayed detonation was obtained
with a convective parameter αc � 2× 10−3, irrespec-
tive of the possible variations in the above bound-
ary conditions. Nevertheless, the range of convec-
tion parameters, 3 × 10−4 � αc � 2 × 10−3, signif-
icantly narrowed, because at the typical αc = 1 ×
10−3 (Dunina-Barkovskaya et al. 2001) this regime
was obtained only in the exceptional cases of varia-
tions in the external boundary conditions. It became
clear that delayed detonation depended on external
boundary conditions. In this study, these conditions
seem more adequate than the previous, highly sim-
plified conditions. This dependence can, in principle,
be determined by extending the physical model of
the presupernova evolution and explosion to include
the hydrodynamic mass accretion itself. However,
this approach at least implies that the hydrodynamic
model is not one-dimensional and calls into question
the assumed constancy of the accretion rate in an
evolving binary system.

Apart from an attempt to study the role of external
boundary conditions, we confirmed the mechanism
for the onset of delayed detonation itself by justifying
the increase in entropy that results from the propaga-
tion of the compression waves generated by the initial
deflagration–pulsational regime of carbon burning
in the outer presupernova layers. In all cases, we
numerically solved the additional entropy production
equation (10). This equation gives an independent
method for calculating the entropy as a function of
time and the Lagrangian coordinate, similar to all the
other physical quantities that appear in the system
of equations (1)–(5). This additional calculation first
provides a check on the accuracy of the entire so-
lution of the convective hydrodynamic model prob-
lem, because the entropies, primarily for unsteady-
state explosion conditions, were shown to be equal. In
addition, we showed that the expression for viscous
energy dissipation in the case of quadratic artificial
scalar viscosity (6) and (7) could be directly derived
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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from the standard expressions for physical volume
viscosity. Viscous energy dissipation produces the
characteristic sharp entropy peaks in the outer pre-
supernova layers. These peaks lead to the necessary
conditions for the onset of delayed detonation that can
be created by an SN-Ia-scale thermonuclear explo-
sion of a sub-Chandrasekhar-mass CO core.
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Abstract—We explore the possibilities for detecting pulsars that have ceased to radiate in the radio band.
We consider two models: the model with hindered particle escape from the pulsar surface [first suggested
by Ruderman and Sutherland (1975)] and the model with free particle escape (Arons 1981; Mestel 1999).
In the model with hindered particle escape, the number of particles that leave the pulsar magnetosphere
is small and their radiation cannot be detected with currently available instruments. At the same time,
for Arons’ model, both the number of particles and the radiation intensity are high enough for such
“extinct” pulsars to be detectable with the GLAST and INTEGRAL satellites. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: neutron stars, radio pulsars.
INTRODUCTION

More than 1200 radio pulsars are currently known
(Camilo et al. 2000). Most of them belong to young
neutron stars (NSs) with characteristic ages of
∼10 Myr. Since the lifetimes of radio pulsars are
much shorter than the age of the Universe, up to
109 NSs that have already ceased to radiate in the
radio band must exist in our Galaxy (Lipunov 1987).
The possibility of their detection is commonly asso-
ciated with the thermal radiation attributable either
to intrinsic stores of NS thermal energy (Yakovlev
et al. 1999) or to accretion from interstellar gas
(Colpi et al. 1998). In both cases, the electrodynamic
processes in the NS magnetosphere are assumed to
cease to play a crucial role. However, the cessation
of secondary-plasma production in the region of the
magnetic poles at rotation periods P ∼ (2–3) s by
no means implies that the electrodynamic processes
become unimportant. Thus, for example, it is well
known that secondary plasma cannot be produced
in the region of closed magnetic field lines only at

periods P > Pcr ∼ 105B
4/3
12 s (Istomin and Mosya-

gin 1995), where B12 = B/1012 G. Therefore, at
P < Pcr, some of the closed magnetic field lines
still remain filled with secondary electron–positron
plasma. As we see, the critical period is long enough
(more than a month) for the electrodynamic processes
in extinct radio pulsars to play a significant role for
an appreciable length of time. Accordingly, particles
can be effectively accelerated in the region of open

*E-mail: beskin@lpi.ru
1063-7737/03/2901-0020$24.00 c©
magnetic field lines where a strong longitudinal
electric field must be generated. This acceleration
must give rise to the observable radiation associated
with curvature losses.

Clearly, the total intensity of this radiation is re-
lated to the number of charged particles that fall into
the region of strong longitudinal electric fields. This,
in turn, directly depends on the particle work function
for the NS surface. Thus, by analyzing the radiation
from extinct radio pulsars (or its absence), we can
reach a definitive conclusion regarding the particle
work function and, hence, obtain independent infor-
mation on the structure of the particle acceleration
region near the magnetic poles of radio pulsars.

Here, we discuss two basic models: the model with
hindered particle escape from the pulsar surface (Ru-
derman and Sutherland 1975) and the model with free
particle escape (Arons 1981; Mestel 1999). We show
that in the model with hindered particle escape, the
number of particles leaving the pulsar magnetosphere
is small and their radiation cannot be detected with
currently available instruments. At the same time, for
the model with free particle escape, the number of
particles and, hence, the total energy release are large
enough for such extinct pulsars to be detectable with
the GLAST and INTEGRAL satellites.

THE MODEL WITH HINDERED PARTICLE
ESCAPE FROM THE PULSAR SURFACE

The simplest model used to calculate the radiation
intensity is the model with hindered particle escape
2003 MAIK “Nauka/Interperiodica”
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from the pulsar surface, since general-relativity ef-
fects introduce no significant corrections, because
they do not qualitatively change the structure of the
electrodynamic equations in the particle acceleration
region (Beskin 1999). Since the particle work func-
tion for the NS surface in the Ruderman–Sutherland
model is large, particles only fill the equatorial regions
with a strongly curved magnetic field in which sec-
ondary particles can still be produced. As a result,
the longitudinal electric field outside the plasma (in
particular, on open magnetic field lines) can be strong
enough for effective particle acceleration. In this case,
the polar-cap size is determined by the last closed
magnetic field line on which secondary plasma can
still be produced (Istomin and Mosyagin 1995)

R⊥ ≈ R (P/Pcr)
3/8 , (1)

where R is the NS radius.

Thus, for extinct radio pulsars, the observed ra-
diation must be determined only by the radiation
from primary particles through the so-called cur-
vature losses. The mechanism of this radiation is
similar to synchrotron radiation, but the radius of
curvature of magnetic field lines Rc should be cho-
sen in place of the Larmor radius rL = mec

2γ/eB
(Zheleznyakov 1977). However, in contrast to young
NSs, the condition for the production of secondary
electron–positron pairs in the polar regions of extinct
radio pulsars is not satisfied. Therefore, one might
expect radiation from extinct radio pulsars only in
the high-energy part of the electromagnetic spec-
trum. We emphasize that this point distinguishes our
analysis from the numerous calculations of gamma-
ray emission from radio pulsars, for which the entire
secondary-particle spectrum should be taken into ac-
count [see, e.g., Harding et al. (2002) and references
therein].

Let us estimate the expected flux from radio-quiet
pulsars on Earth as the product of the energy losses
by a single particle and the number of particles leaving
the pulsar magnetosphere:

F ∼ ∆EṄ
4πd2

. (2)

Here, Ṅ = dN/dt is the number of particles that leave
the pulsar magnetosphere, ∆E are the energy losses
by each of these particles, and d is the distance from
the pulsar to the observer. Since the radiation mech-
anism in this case is curvature radiation, the particle
energy losses can be defined as ∆E = (dE/dt)∆t,
where (Zheleznyakov 1977)

dE
dt

=
2e2c
3R2

c
γ4 (3)
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is the power of the curvature radiation, Rc ≈ R2/R⊥
is the radius of curvature of magnetic field lines, and
the distance from the axis, R⊥ ≈ 104 cm (1), deter-
mines the location of the last closed magnetic field line
on which secondary plasma can still be produced.

It is well known that a strong longitudinal elec-
tric field can exist only near the NS surface. Far
from the NS surface, the longitudinal electric field
decreases sharply in strength even in the absence
of outflowing plasma (see, e.g., Muslimov and Tsy-
gan 1990). Therefore, we have two alternatives: the
particle emits all its kinetic energy near the NS or it
leaves the region with a small radius of curvature Rc
virtually without changing its energy. In the former
case, the particle energy losses ∆E are determined
by the radiation time τrad and ∆E = mec

2γ. In the
latter case, the energy losses are determined by the
escape time of the particle from the region of a strong
longitudinal electric field, τesc = Rc/c ≈ 10−3 s. In
general, the minimum time ∆t = min(τesc, τrad) can
be taken as ∆t. In this case, τrad = mec

2γ/(dE/dt),
where the Lorentz factor of the accelerated particles
can be estimated as

γ ∼ eER⊥
mec2

∼ e(4πρGJR⊥)R⊥
mec2

∼ 4πeR⊥
2B0

Pmec3
. (4)

Here,B0 is the NS surface magnetic field. As a result,

τrad ∼ R4c5

Ω3ω3
BreR8

⊥
, (5)

where ρGJ = enGJ = −ΩB/(2πc) = B/(Pc) is the
Goldreich–Julian charge density, re = e2/mec

2 is the
classical electron radius, and ωB = eB/mec is the
cyclotron frequency. Therefore, the radiation and es-
cape times are of the same order of magnitude: τrad ≈
10−4B12 s, τesc = Rc/c ≈ 10−3 s. Finally, given the
particle Lorentz factor, the characteristic energy of
the curvature-radiation photons can be estimated:

Eph ≈ 2.9 × 103B12
−1/2P−3/8MeV. (6)

We see that the expected energies lie within the hard
gamma-ray range.

Let us now consider the inflow of particles into
the region of a strong longitudinal electric field. First,
the production of primary particles can be associated
with diffuse Galactic gamma-ray radiation, which
causes the single-photon conversion of photons into
electron–positron pairs. In this case, the number of
particles being produced near the magnetic poles can
be estimated as 2 × 105 particles s−1 (Shukre and
Radhakrishnan 1982). Hence, the expected flux from
the object must be

F ≈ 0.3 × 10−25d−2
10 MeV cm−2 s−1, (7)
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where d10 = d/10 pc.
Another source of primary particles could be the

diffusion from the region of closed magnetic field lines
filled with secondary plasma. The number of particles
leaving the pulsar magnetosphere can be estimated
using the formula (Istomin and Mosyagin 1995)

Ṅ =
dN

dt
∼ nGJR

3 Ω2

ωB
. (8)

As a result, the number of particles that diffuse into
the region of a strong longitudinal electric field can be
estimated as

Ṅ ∼ 4π2meR
3

P 3e2
∼ 4 × 108 particles s−1, (9)

so the expected flux from the object must be

F ∼ 10−13d−2
10 P

−3MeV cm−2 s−1. (10)

The flux turns out to be so low that the radiation
power is not enough for the NS signal to be detectable
even at P ∼ 2–4 s. This is primarily because the
number of primary particles that fall into the region of
a longitudinal electric field is small, i.e., because the
particles escape from the NS surface is hindered.

THE MODEL WITH FREE PARTICLE
ESCAPE FROM THE PULSAR SURFACE.

A QUALITATIVE TREATMENT

Let us now consider the model with free particle
escape from the NS surface where the charge den-
sity of the outflowing particles differs only slightly
from the Goldreich charge density. General-relativity
effects then become significant near the NS sur-
face (Muslimov and Tsygan 1990; Beskin 1990). In
this case, since no particles are produced, the model
of Mestel (1999), in which no secondary plasma is
generated, rather than the model of Arons (1981),
in which a reverse flow of secondary particles must
exist, is realized [for more details, see Beskin (1999)].
However, an elucidation is required here. The point
is that in Mustel’s model, none of the magnetic field
lines near the pulsar surface are preferred because of
general-relativity effects, so the particles cannot be
accelerated (Beskin 1990). In other words, the lon-
gitudinal electric field that arises from the mismatch
between the outflowing-plasma charge density and
the Goldreich charge density decelerates rather than
accelerates the outflowing plasma.

Nevertheless, the absence of regular acceleration
does not imply that plasma will not fill the polar re-
gions. Only effective particle acceleration is not pos-
sible. On the other hand, even at small heights r > r0,
where

r0 ≈ 1.8 × 106 (M/M�)P 1/7 cm, (11)
at which general-relativity effects become negligible,
the difference between the plasma charge density and
the Goldreich charge density will result in particle
acceleration, at least at the half of the polar cap where
the magnetic field lines deviate from the rotation axis
(i.e., for which the angle between the magnetic field
and the rotation axis increases with distance from the
NS). Therefore, we assume below that particle ac-
celeration begins when the radius r = r0 is reached,
while at smaller radii, the plasma on open magnetic
field lines rotates rigidly with the NS. Finally, recall
that in Mestel’s model, as in Arons’s model, the num-
ber of particles leaving the NS magnetosphere closely
corresponds to the outflow of the Goldreich density
from the polar-cap surface

Ṅ = πR2
0nGJc ≈

1030Ω2

ce
particles s−1. (12)

Here, R0 = (ΩR/c)R is the polar-cap radius.
To determine the electric potential, we write the

Poisson equation in a rotating coordinate system
(see, e.g., Mestel 1999)

∇2ϕ = 4π(ρGJ − ρe). (13)

Here, the Goldreich charge density and the particle
charge density can be written as

ρGJ = −ΩB
2πc

=
ΩB
2πc

cos θb, (14)

ρe = −ΩB
2πc

cos θ(0)b , (15)

where θb is the current angle between the magnetic

field line and the rotation axis and θ(0)b is its value at
the base of the acceleration region r = r0.

For simplicity, we consider here the axisymmetric
case of a coaxial rotator where all magnetic field lines
are preferred. After substituting the expressions for
the plasma charge density and the Goldrecih charge
density, the problem reduces to solving the equation

∇2ϕ =
9
4

ΩB(r0)
c

(
1 − r0

r

)(r0
r

)3
sin2 θ (16)

with the boundary conditions

ϕ(r = r0) = 0; ϕ′(r = r0) = 0; (17)

ϕ
(
r = RL sin2 θ

)
= 0.

Here, RL = c/Ω is the radius of the light cylinder.
As a result, we have as a zero approximation for the
solution of this equation

ϕ ≈ ΩB0

c

R3

RL
, (18)

so

γ ≈ eϕ

mec2
=
(

ΩR
c

)2(ωBR

c

)
. (19)
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Fig. 1. Radiation intensity W versus angle α for a central
beam passage. In what follows, the NS rotation period is
assumed to be P = 1 s.

Above, we used the law of conservation of magnetic
flux, which yieldsB(r0)r30 = B0R

3. Having estimated
the times τrad and τesc, just as for the model with
hindered particle escape from the NS surface, we find
that τrad ≈ τesc at P = Pbreak, where

Pbreak =
2πR
c

(
2re

3R

)1/7 (ωBR

c

)3/7

≈ 1.8 s. (20)

As we see, the break takes place at the NS rotation
periods of greatest interest, when the expected radia-
tion power is high (see below).

Next, we obtain Eph = �cγ3/Rc ≈
50P−13/2 MeV ≈ 0.05P−13/2 GeV for the energy of
the curvature gamma-ray photons leaving the NS
magnetosphere, which also fall within the gamma-ray
range. Finally, the radiation power can be estimated
as

W1 ≈ mec
2γṄ ≈

(
ΩR
c

)4(ωBR

c

)2 mec
3

re
(21)

≈ 5 × 1029B
2
12

P 4
,

erg
s
, P < Pbreak;

W2 ≈ 2e2c
R2

c
γ4Ṅ ≈

(
ΩR
c

)11(ωBR

c

)5 2mec
3

3R
(22)

≈ 3 × 1031B
5
12

P 11

erg
s
, P > Pbreak.

The value for P < Pbreak (21) corresponds to the es-
timate obtained by Harding et al. (2002). Thus, the
expected flux from such NSs

F ≈ W1

4πd2
≈ 3.5 × 10−4 B12

2

P 4d2
10

MeV
cm2s

, P < Pbreak;

(23)
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F ≈ W2

4πd2
≈ 2 × 10−2 B12

5

P 11d2
10

MeV
cm2s

, P > Pbreak.

(24)

Since, as we see, the expected fluxes are large, we
conclude that for the distances d ∼ 10–100 pc char-
acteristic of the nearest NSs, such fluxes can most
likely be detected with the GLAST and INTEGRAL
satellites. The latter are capable of detecting fluxes of
10−2–10−4 MeV cm−2 s−1.

A MORE ACCURATE SOLUTION
FOR THE MODEL WITH FREE PARTICLE

ESCAPE

Thus, for free particle escape from the NS surface,
hard radiation can actually be detected from extinct
radio pulsars. Therefore, it seems appropriate to find
a more accurate distribution of the electric potential
(and, hence, the particle energy) in the region of open
magnetic field lines and, thus, to quantitatively de-
termine the basic parameters of the expected radia-
tion. To numerically solve Eq. (16), we used a simple
iteration method for solving elliptic problems by the
grid method (Fedorenko 1994). We chose a five-point
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Fig. 4. Comparison of the sensitivities of the INTEGRAL instruments (the exposure time is 106 s) and the radiation intensities
of extinct radio pulsars for two NS distances.
approximation of the Poisson equation as the (cross)
template and the solution (Harding et al. 2002)

ϕ =
3
8

ΩB0

c

R3

RL

(
1 − RL

r
sin2 θ

)
, (25)

which is valid for r� r0, as the first approximation.
This solution can be easily obtained by analyzing
Eq. (16) in which the radial derivatives are disre-
garded. Relation (25) accurately describes the solu-
tion of Eq. (16) even at r > 1.5r0.

Since the radius of curvature of the dipole mag-
netic field increases with distance from the NS, the
bulk of the radiation (which, recall, is associated with
curvature losses) originates at small distances com-
pared to the light-cylinder radius RL. This prop-
erty holds even if the energy of the emitting particle
changes little as it moves along an open magnetic
field line. Therefore, the magnetic field in the emission
region may be assumed to be dipolar. For the radiation
powerW (α) into an element of solid angleαdαdϕ, we
can then write the expression

dW = Ṅ Ė dV
dα
dα. (26)

Here, Ė = 2e2cγ4/3R2
c is the power of the curvature

radiation from a single particle, Rc = r2/r⊥ ≈ 3r/2α
is the radius of curvature of the magnetic field lines,
dV = r2drdo is the volume element, and α ≈ (3/2)θ
is the angle with respect to the magnetic dipole axis.
Using now the fact that at τrad > τesc, the particle
Lorentz factor can be written as

γ =
eϕ

mec2
=

3
8

e

mec2
ΩB0

c

R3

RL

(
1 − 4

9
RL

r
α2

)
, (27)

we obtain the following radiation intensity distribu-
tion in α by the integration over the azimuthal angle
and radius r (Fig. 1):

W (α) ≈ BR3Ωe
192

(
e

mec2
ΩB0

c

R3

RL

)4

×A. (28)

Here,

A =
1

2R2
α2 − 16

27
RL

R3
α4 +

8
27
R2

L

R4
α6 (29)

if 0 ≤ α ≤ 0.022/
√
P and

A =
27

160α2R2
L

(30)

if 0.022/
√
P ≤ α ≤ 1.

Having integrated expression (28) over α, we find
the total radiation power

W ≈ 3.5 × 1029B5
12P

−11 erg s−1. (31)

Therefore, the expected flux from radio-quiet pulsars
on Earth is

F =
W

4πd2
≈ 2.5 × 10−4d−2

10 P
−11 MeV

cm2 s
. (32)

The simple expression (27) for the particle energy
also allows the spectral power of the radiation to be
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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estimated analytically. Fitting the curvature radiation
spectrum for a single particle as

IE ∝ E1/3θ(Emax − E), (33)

where Emax = (�c/Rc)γ3, we can obtain (Fig. 2)

IE(α) = [3.6 × 1039E1/3α2/3P−1 (34)

− 5.1 × 1040EP 3] s−1, if 0 ≤ α ≤ 0.022/
√
P ,

IE(α) = [0.22 × 1038E1/3α−2/3P−5/3 (35)

− 5.1 × 1040EP 3] s−1, if 0.022/
√
P ≤ α ≤ 1.

Here, the photon energy E is given in ergs. However,
since the expected radiation intensity is low, we are
primarily interested in the spectral density of the ra-
diation averaged over the NS rotation period. For a
central passage through the beam, we obtain (Fig. 3)

IE = [5.1 × 1034E1/3P−7/3 − 1.2 × 1037EP 2] s−1.
(36)

Figure 4 compares the threshold sensitivities of the
INTEGRAL instruments (in particular, for the SPI
detector) and the photon count rates for the model
with free particle escape from the pulsar surface for
distances from the NS to the observer of 10 and
100 pc. As we see, for nearby pulsars at distances
10–100 pc, INTEGRAL can, in principle, detect the
gamma-ray fluxes from extinct radio pulsars.

CONCLUSIONS

Thus, we have shown that extinct radio pulsars
can be observed for some time as intense gamma-
ray sources. For nearby neutron stars, they can be
detected with currently available detectors.

On the other hand, since the dependence on the
NS rotation period P in the expressions for the ra-
diation power is strong, radio-quite pulsars with suf-
ficiently long rotation periods (i.e., those which have
long ceased to exist as radio pulsars or those for
which the rotation period was relatively long even at
the radio emission stage) can no longer be detected.
Therefore, we can formulate two conditions for the
possibility of detecting gamma-ray emission from ex-
tinct radio pulsars: a relatively small distance to such
stars (d ∼ 10–100 pc) and a short rotation period
(P ∼ 2–4 s). In this case, the detection of gamma-ray
ASTRONOMY LETTERS Vol. 29 No. 1 2003
emission with the parameters described above would
be direct evidence for free particle escape from the NS
surface.
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Triplet Structure of the H2O Spectra in S255
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Abstract—We analyzed the monitoring data for the maser S255 obtained in the H2O line at λ = 1.35 cm
with the 22-m radio telescope at the Pushchino Radio Astronomy Observatory in 1981–2002. The maser
was most active during 1998–2002. Since 2001, the H2O spectra have been extended and complex; their
triplet structure has been disrupted. The extent of the spectra was 24 km s−1 (from −6 to 18 km s−1). We
calculated orbital parameters for some of the components. We estimated the mass of the central star to be
(6–7)M� and the outer Keplerian-disk radius to be ∼160 AU. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: radio sources; masers; interstellar medium; gaseous nebulae.
INTRODUCTION

Among the H2O masers associated with star-
forming regions, sources with triplet spectra are of
great interest. Such spectra can be formed in a ro-
tating disk observed edge-on.

One such a source is the H2O maser S255. The
triplet structure of S255 was first studied by Cesa-
roni (1990). He constructed a model of the maser
in the form of a Keplerian disk. The main argu-
ment for this model was the flux anticorrelation be-
tween the side triplet components found by Cesaroni.
However, a 20-year-long monitoring (Pashchenko
et al. 2001) shows that during some periods the
H2O spectra in S255 were complex and consisted
of many components. Despite the significant differ-
ence in the structures of the spectra, their radial-
velocity ranges, obtained by Pashchenko et al. (2001)
and Cesaroni (1990), coincided and were from −2 to
14 km s−1.

The H2Omaser is located in the S255 IR complex
(Lo and Burke 1973), a compact region of active star
formation. The distance to S255 IR was estimated to
be 2.4 kpc (Jaffe et al. 1987) and the mass of the star
was estimated to be M∗ ≈ 18M� (Cesaroni 1990).
The source is located in a molecular cloud whose
radial velocity measured in the CS line is 8.3 km s−1

(Morris et al. 1974).

*E-mail: pachenko@sai.msu.ru
1063-7737/03/2901-0026$24.00 c©
Here, based on its monitoring with the RT-22
radio telescope (Pushchino), we study the evolution
of the H2Omaser emission in S255 .

OBSERVATIONS AND DATA
PRESENTATION

The H2O maser emission toward S255 IR
(α1950 = 06h09m58.2s, δ1950 = 18◦00′17′′) was ob-
served with the 22-m radio telescope RT-22
(Pushchino) from July 2000 until April 2002. We
also used published data (Pashchenko et al. 2001).
The noise temperature of the system with a cooled
transistor amplifier at the input was within the range
120–150 K. The signal was analyzed by a 128-
channel filter-bank spectrum analyzer with a fre-
quency resolution of 7.5 kHz.

Figure 1 presents previously unpublished H2O
spectra of S255 (March 2001–April 2002). Figure 2
shows the variability of the total flux for the most
active phase of the maser emission (1998–2002).
The vertical arrow indicates the center of the in-
terval June 1998–June 2000; h and i denote the
successive activity cycles (Pashchenko et al. 2001).
From 1981 until 2000, there were eight activity cy-
cles, each about two years long. June 2000 may be
considered as the beginning of another activity cycle.
Since it clearly breaks up into two shorter intervals,
we denote them by i1 and i2 for convenience. Below,
for simplicity, we use these designations.

Figure 3 shows the average spectra obtained
for segments i1 and i2 and for the entire interval
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The spectra of H2O maser emission from S255
obtained in 2001–2002. The vertical arrow indicates the
major scale division.

(July 2000–April 2002). For convenience, we as-
signed ordinal numbers to some emission features.

Here, we also used the eight average spectra (for
the eight activity cycles) obtained from the data of
our entire monitoring of S255 from 1981 until 2000
(Pashchenko et al. 2001). We determined the radial
velocities of individual features or groups of features
from the average spectra of each of the nine activ-
ity cycles of S255. These velocities were related in
time to the positions of the corresponding total-flux
maxima. For h and i, we took the centers of the time
intervals. The results are shown in Fig. 4, where we
also used data fromCesaroni (1990). The large circles
indicate the most intense components. The dashed
straight line corresponds to the radial velocity of the
molecular cloud.
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Figure 5 schematically shows the arrangement
of the maser regions for the blue triplet component
in S255 for the Keplerian-disk model.

DISCUSSION

Variability of the Total Flux

An important parameter for studying the evolution
of maser emission and, in particular, the spectral
structure, is the total (integrated) flux. Its vari-
ability in S255 has a cyclic pattern (Pashchenko
et al. 2001). The most complex pattern of variability
was observed from 1998 until 2002. The last two
maser activity cycles, h and i, have dips at their
centers. A particularly significant dip was observed
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termined from average spectra.

in cycle i. Cycles h and i occurred at a high level of
maser activity, which is determined by the state of the
central star.

It is quite natural that in this case, the favorable
conditions for maser emission took place for a larger
number of maser condensations, which gave rise to
additional emission features. At the same time, the
spectra ceased to be triplet ones. Thus, the spectral
structure of the H2O maser sources identified with
Keplerian disks may be assumed to depend on the
activity phase of the central star.

Variability of the H2OMaser in 2000–2002

In accordance with the cyclic variability of the total
flux, Fig. 3 shows average spectra for the intervals
designated as i1 and i2 (the thin and dotted lines,
respectively). There are both a difference and a co-
incidence between them. The main difference may
be considered to be the fact that the intensity ratio
of emission features within two groups (from −6 to
0 and from 5 to 10 km s−1) located more or less
symmetrically relative to the 2-km s−1 component
varies. As we see from Figs. 1 and 3, the 2-km s−1

component is the most intense and stable.
Note the most important features of the maser

during this period:
(1) the breakup of the variability cycle into two

segments, i1 and i2;
(2) the high activity of the maser;
(3) the fast and significant variations of the spec-

tra;
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Fig. 5. Arrangement of the H2O maser regions in S255
for the blue component.

(4) a large extent of the spectra, from −6 to
18 km s−1;

(5) the absence of triplet structure;
(6) the stability of the emission from the blue

(2 km s−1) and red (12.5 km s−1) components.
In period i1, features 2 and 4 (see Fig. 3) that

are closer to the main feature 3 of the maser activity
cycle i than features 1 and 5 were most intense.
Subsequently, in period i2, the farther features 1 and 5
became more intense. Comparison of the spectra in-
dicates that the intensities anticorrelate only for fea-
tures 1 and 4. This anticorrelation does not explain
the overall pattern of evolution of the spectra. We can
assume that the stellar wind from the central star
successively excites masing regions. The emission of
feature 1 is delayed from that of feature 4 by about one
year. For a stellar-wind velocity of 100 km s−1, the
difference in the radial distances between features 1
and 4 relative to the star is ∼20 AU, which seems to
be quite a reasonable value.

Structure of the Spectra

As we see from Fig. 4, the features in the average
spectra can be separated into four groups. In turn, the
first group splits into two subgroups. The features of
the fourth group were observed only in two activity
cycles. Nevertheless, their separation into one group
is important in understanding the structure of the
H2O spectra. The emission of groups 2 and 3 was
observed persistently. Thus, there was mainly a sta-
tistical recurrence of the triplet structure of the H2O
spectra in S255.

In most cases, the group of features with VLSR ≈
8 km s−1 was central, implying that the radial
velocities of this group and the molecular cloud
(8.3 km s−1) are virtually the same. In the Keplerian-
disk model for the maser S255, the velocity of the
central component is the radial velocity of S255.
Thus, we can assume that the maser S255 (the
Keplerian disk) has no peculiar velocity relative to the
molecular cloud.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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The deviation of the points from a straight line
for the central component (Fig. 4) may result from
the complex spectral structure at these velocities.
Thus, for example, there are two emission features
in cycle i at a velocity of ∼7.5 km s−1. Variations
of their flux ratio caused variations in the line shape
and a displacement of the line peak in the spectrum.
Nevertheless, the velocity variability of this group is
well fitted by a sine wave with a period of the order
of 20 years. Because of their small amplitude, these
velocity variations cannot be associated with orbital
motion. In addition, it should be noted that the si-
nusoidal velocity variations are associated with the
average spectrum rather than with a specific emission
feature.

Variations in the radial velocities of the features
belonging to the central component can take place,
for example, when the stellar wind acts on clumps
of matter (maser condensations). We cannot rule out
the existence of an activity superperiod of the maser
and, hence, the central star. However, judging by
the pattern of variability of the total flux (see also
Pashchenko et al. 2001), it is so far hard to tell
with certainty whether such a superperiod exists. If
it exists, it is most likely longer than 20 years.

The red component 3 has always been observed,
while the blue component 1 has been observed
since 1987. The blue component splits up into two
(1a and 1b). Their fluxes anticorrelate. Cycle i, during
which both components were present in the spectra,
is an exception.

A Model of the Maser
Thus, Fig. 4 led us to conclude that there was a

triplet structure in S255. The central component is at
a velocity of ∼8 km s−1, which is confirmed by the
fact that the radial velocities of the central component
and the molecular cloud observed in the CS line are
equal. The triplet structure of the spectra for single
components showed up only at some epochs, mainly
when the maser activity was low. The intensities of
the side components anticorrelated at these epochs.
This anticorrelation can be explained by the compe-
tition between spatial emission modes in a partially
saturated disk maser with anisotropic pumping.

The detected radial-velocity drift of the blue-
component features allows us to calculate some
parameters of the Keplerian disk. Although these
calculations are approximate, they make it possible
to refine the parameters of the Keplerian-disk model
proposed by Cesaroni (1990).

The radial velocity of a condensation relative to the
central star (to be more precise, relative to the center
of mass) varies as

V (α) = V (0) cosα, (1)
ASTRONOMY LETTERS Vol. 29 No. 1 2003
where α is the angle between the radius vector of the
condensation and the plane of the sky and V (0) is the
orbital velocity of the condensation. Differentiating
formula (1) and making minor transformations yields

dV

dt
= −V (α) tanα

2π
T
, (2)

where T is the orbital period of the condensation.
Let us perform calculations for the straight line 1

that represents the mean drift of the blue triplet com-
ponent (Fig. 4). According to Cesaroni (1990), the
group must be in the side amplification corridor of the
Keplerian disk. Therefore the angle α does not differ
greatly from 0◦. In accordance with similar calcula-
tions for S140 (Lekht and Sorochenko 2001), we can
assume that |α| < 30◦. It follows from Fig. 4 that the
radial velocity of component 1 relative to the central
component 2 at epoch 2001 is 8 km s−1 and the
rate of its change is 0.13 km s−1 yr−1. For α ≈ 30◦,
an orbital period of the condensation T1 ≈ 230 yrs
corresponds to this rate of change in VLSR. According
to Eq. (1), V1(0) = 9.2 km s−1.

As was shown by Lekht et al. (1993), the de-
rived period can be its upper limit. Thus, we can
estimate an upper limit on the central-star mass,
M∗ = {T1[V1(0)]

3}/(2πG) < 7M�, and an upper
limit on the distance from the star to the condensa-
tion, R1 = T1V1(0)/2π < 70 AU, from the condition
of Keplerian rotation.

Let us now perform similar calculations for com-
ponent 1a. Its radial velocity relative to the central
component is 6 km s−1 and the rate of its change
is 0.04 km s−1 yr−1. The observed anticorrelation
between the intensities of components 1a and 1b can
take place only in the absence of their relative motion,
i.e., toward each other (Cesaroni 1990). Since they
have different radial velocities but are in the blue
amplification corridors, they must be located on the
same radius vector from the star (see Fig. 5). Thus,
we can assume that α ≈ 30◦ for component 1a as
well. Using the corresponding formulas, as in the case
of component 1, we obtain T1a ≈ 570 yr, V1a(0) =
7.2 km s−1,M∗ < 7M�, and R1a < 130 AU.

To estimate the outer radius of the Keplerian disk
in S255, we make use of the fact that the red com-
ponent 2 has a radial velocity of about 4.8 km s−1

relative to the central component and, hence, it is
farther from the star than the blue features. Its radial-
velocity drift was modest, 0.02 km s−1 yr−1. This
value is a factor of 3 smaller than the scatter of data
points caused by variations in the flux ratio of the
emission features belonging to this red group. Cer-
tainly, the accuracy of the calculations is lower in this
case. Calculations similar to the previous ones yielded
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the following results: T3 = 900 yr,M∗ ≈ 5.7M�, and
R3 ≈ 160 AU.

The closematch between the stellar masses can be
an argument for the fact that the observed drift reflects
the orbital motion in the Keplerian disk. Based on
the three calculations, we can assume that the stellar
mass lies within the range (6–7)M�. The derived
parameters differ from the corresponding parameters
in Cesaroni’s model. In our model, the stellar mass is
a factor of 2.5 lower, while the outer radius of the disk
and the orbital periods are a factor of ≈4 smaller.

Thus, our analysis of the results of the 20-year-
long monitoring in the 1.35-cm line indicates that the
triplet structure of the H2O spectra in S255 iden-
tified with a Keplerian disk was not observed per-
sistently but only in some periods. In other periods,
however, the spectra were complex and consisted of
many emission features. Nevertheless, the separation
of spectral features into three main groups was pre-
served. In the Keplerian-disk model for S255, these
are side and central components. The emission of
group 4 appeared only twice: weak emission with a
flux of no more than 2 Jy in 1983–1985 and strong
emission (110 Jy at maximum) in 2001–2002. The
region responsible for this emission is most likely
located in the inner Keplerian disk, in the red amplifi-
cation corridor.

CONCLUSIONS

(1) The long-termmonitoring revealedH2Omaser
emission in S255 in a wide velocity range, from−7 to
18 km s−1.

(2) There was a stable recurrence of a triplet spec-
tral structure. The triplet structure was observed for
three groups of features with similar radial velocities
within each group.
(3) The maser was most active from 1998 through
2002. There were significant variations in the total
flux on a time scale that was several times shorter
than the mean period of the cyclic variability, i.e., two
years. During this period, the triplet structure of the
H2O spectrum was disrupted.

(4) The fluxes of the emission features located in
the blue amplification corridors of the Keplerian disk
anticorrelated.

(5) We estimated the mass of the central star
in S255 to be (6–7)M� and the outer radius of the
Keplerian disk to be≈160 AU.
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Abstract—We present the optical observations of the AM Herculis system EU UMa (=RE1149+28)
carried out in February 1993 with a TV scanner and a photometer (NEPh) at the secondary focus of the 6-
m Special Astrophysical Observatory telescope. Spectroscopywith a time resolution of 300 s and a spectral
resolution of 2 Å in the wavelength range ≈3950–4950 Å is used to analyze the variability of emission-line
profiles, equivalent widths, central intensities Rc, and radial velocities with orbital phase. We determined
the orbital period of the system from line radial-velocity measurements, 90.0 ± 0.2 min. The emission-line
profiles are highly variable. The Hβ and He II 4686 Å lines exhibit P Cyg profiles at selected phases. The
spectral-line parameters were found to vary significantly on time scales from 5 to 15 min. The possible
causes of the detected spectroscopic variability are discussed. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar, polars, accretion.
INTRODUCTION

The АМ Herculis (AM Her) stars are close bina-
ries that represent the subclass of cataclysmic vari-
ables. They are also classified as X-ray binaries. In
these objects, a synchronously rotating (with orbital
period) magnetized white dwarf with a magnetic-
field strength B ≈ 10–230 MG accretes matter from
a low-mass companion—a red dwarf. The matter
transferred from the secondary component to the pri-
mary forms no accretion disk around the latter. This
process is inhibited by the strong magnetic field of
the primary component, which controls the motion
of the gas and channels it to the magnetic poles of
the white dwarf. Accreting plasma moves along mag-
netic field lines into an accretion column(s), a narrow
region(s) near the pole(s) of the white dwarf. In the
polar regions of the white dwarf, energy is released
via accretion over a wide spectral range: from hard
X-rays to the far infrared. A characteristic property of
these systems is the high intrinsic linear and circular
polarization of their optical radiation (Tapia 1977).
Therefore, these objects are also called polars. An
overview of the basic information on AM Her systems

*E-mail: tsom@sao.ru
1063-7737/03/2901-0031$24.00 c©
(or polars) was given by Cropper (1990), Voikhan-
skaya (1990), and Chanmugam (1992).

After the ROSAT All-Sky Survey, the number
of known magnetic cataclysmic variables tripled;
presently, there are about 60 such systems. EU UMa
(=RE1149+28) was also discovered during this
survey. The R and B photometry obtained by Mittaz
et al. (1992) yielded the following magnitude esti-
mates for the star averaged over the observing time:
17m. 0± 0.1 and 16m. 7± 0.1. They also determined the
probable orbital periods of the polar, 102.78 ± 0.65 or
90.09 ± 0.50 min.

In our studies, the objective was to investigate the
rapid spectroscopic variability in this polar on time
scales from several to several tens of minutes. To this
end, we took spectra of this faint source on the 6-
m telescope using a TV photon counter with a high
time resolution. In order to know in which brightness
state we studied the system, we planned to estimate
its magnitudes. Based on our spectroscopic data, we
intended to determine the orbital period of the polar
and to analyze the behavior of the spectral parameters
for emission lines with orbital phase. This paper is
the result of our series of studies of this magnetic
cataclysmic variable published in the proceedings of
2003 MAIK “Nauka/Interperiodica”
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Table 1. A log of spectroscopic observations

Date Start (UT) End (UT) Exposure time, s V

February 14, 1993 00:51:27 02:40:01 6514 16m. 6
several conferences (Bonnet-Bidaud et al. 1994; So-
mov et al. 1995; and Somova et al. 2000).

OBSERVATIONS AND RESULTS

Our observations were performed on February 14
and 15, 1993, at the secondary focus of the 6-m
telescope (N1) (Ioannisiani et al. 1982) with an SP-
124 spectrograph (Gusev et al. 1976) equipped with a
TV scanner (Somova et al. 1982; Drabek et al. 1986;
and Afanasiev et al. 1991) and a NEPh photome-
ter (Vikul’ev et al. 1991). We used a B2 diffrac-
tion grating (1200 lines mm−1) with a dispersion
of 50 Å mm−1 and a spectral resolution of ≈2 Å,
which allowed spectra to be taken in the wavelength
range 3950–4950 Å. Information was recorded with
the TV scanner in a frame-by-frame mode; data on
each arrived photon was recorded using the technique
of dynamic spectroscopy (Somov 1988). The spectra
were wavelength-calibrated with a He–Ar–Ne lamp.

We reduced the spectroscopic data with the codes
written on the SIPRAN (a special interpreter for pro-
gramming and reducing astronomical observations)
algorithmic language (Somov 1986) using the pro-
grams and techniques described by Kopylov et al.
(1986). A log of our spectroscopic observations is
given in Table 1.

We made the photometric measurements with
the NEPh photometer that was also mounted at
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Fig. 1. The total continuum-normalized spectrum of
EU UMa (=RE1149+28). The observationswere carried
out on February 14, 1993.
the secondary N1 focus of the 6-m telescope. The
classical (Johnson) four-color UBVR photome-
try was performed to estimate the polar magni-
tudes. The accuracy of our measurements was about
0m. 1. The photometer aperture was 12′′ in diam-
eter. The photometric standard was star SA56B
(Neizvestny 1995). On the first date of our obser-
vations (JD 2449033.5869), the UBV R measure-
ments of EU UMa yielded the following results:
V = 16m. 56 ± 0.13, U–B = −0.39 ± 0.22, B–V =
0.03 ± 0.19, and V –R = 0.15 ± 0.25. The V mag-
nitude of the source at the end of our observations
(JD 2449034.5439) was 17m. 2 ± 0.1.

Figure 1 shows an average continuum-normalized
spectrum of the object. The Hβ, Hγ, Hδ, and
He II 4686 Å emission lines are clearly seen in the
spectrum; in addition, we see the С III–N III 4640 Å
blend and He I (4921 and 4471 Å) lines. Table 2
presents the period-averaged equivalent widths (EW),
central line intensities Rc (the ratio of intensity at the
line center to continuum intensity), and FWHMs. For
comparison, this table also gives the emission-line
equivalent widths for this polar measured by Mittaz
et al. (1992). We see from the table that the Hγ and
Hβ equivalent widths are, respectively, 20% lower and
25% higher than those from Mittaz et al. (1992). For
He II 4686 Å, the measurements yield comparable
values.

Emission-Line Profiles

To study the rapid variability of spectral lines on
time scales from several to several tens of minutes,
we analyze the spectra taken with an exposure time of
300 s. All of these data are homogeneous in recording
and reduction techniques. We used them to analyze
the profile variability of the emission lines under study.

Figure 2 shows variations in the profiles of the
Hβ, Hγ, and He II 4686 Å emission lines with orbital
phase. The start of our observations, UT = 00:51:27,
corresponds to zero phase when the orbital period of
90.0 min is used.

These profiles are highly variable and asymmetric
in most cases. The Hβ and He II 4686 Å lines exhibit
P Cyg profiles at various phases, in particular, at φ =
0.51. In the phase range 0.56–0.61, the lines virtually
disappear.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Table 2. The mean spectrophotometric parameters of emission lines

Line EW, Å Rc FWHM, Å EW, Å Mittaz et al. (1992)

Hγ 22.5–116; 48 2.3–8.4; 5.1 5.5–21; 10 67

He I 4471 Å 2–25; 12 0.6–4.8; 2.1 2–22; 12 27

He II 4686 Å 11.5–75; 47 1.8–8; 4.7 2.5–17; 9 42

Hβ 10–262; 80 2.5–20.5; 7.6 3–17; 9 61

Table 3. Parameters of the radial-velocity curves

Line Method γ, km s−1 K , km s−1 φ0 σ, km s−1

Hβ Centroid 199(19) 370(25) 0.61(0.01) 75

Hβ Peak 112(23) 393(29) 0.65(0.01) 89

Hγ Centroid 174(28) 491(35) 0.57(0.01) 107

Hγ Peak 296(64) 608(80) 0.55(0.02) 248

He I 4471 Å Peak 55(60) 431(73) 0.74(0.03) 234

He II 4686 Å Centroid –1(29) 310(37) 0.65(0.02) 111

He II 4686 Å Peak 19(34) 303(41) 0.74(0.02) 133

Table 4. The orbital period of the system

Line

Period (sine-wave fitting) Period (Deeming’s method) Mean period

min

Hβ 89.55 90.50 90.025

Hγ 90.46 88.90 89.68

He I 4471 Å 90.45 90.37 90.42

90.15 ± 0.3 89.92± 0.51 90.04± 0.2
Variations in Line Equivalent Widths and Relative
Intensities with an Orbital Phase

Spectroscopy with a time resolution of 5 min al-
lows the variations in all spectral parameters of emis-
sion lines to be traced during the orbital period. The
technique for measuring the spectrophotometric pa-
rameters of emission lines in the spectra taken with
the TV scanner was described by Kopylov et al.
(1986). The measurement errors are ≈5% for the
equivalent widths of lines with EW ≈20 Å, ≈5%
for the central line depths Rc, and ≈4% for the line
FWHMs. For weaker lines, the errors can reach 10%.

Variations in the equivalent widths and central in-
tensitiesRc of the Hβ, Hγ, and He II 4686 Å emission
lines are shown in Fig. 3. We see from the figure
how greatly the equivalent widths and relative inten-
sities (Rc) of these emission lines vary with orbital
ASTRONOMY LETTERS Vol. 29 No. 1 2003
phase. The equivalent-width and relative-intensity
curves for the Balmer lines exhibit two sharp peaks
at phases 0.15 and 0.85. The calculation of orbital
phases was described above. The behavior of the line
equivalent widths correlates with that of Rc. Weaker
peaks are seen in the Hβ and He II 4686 Å lines in
these curves near phase 0.4. We also see from these
curves that the minima of all curves lie within the
phase range 0.55–0.6. The FWHM curves for the
emission lines exhibit peaks near phase 0.5.

The Radial Velocities of Emission Lines
and Determining the Orbital Period

The true locations of the emission-line regions in
polars are still the subject of debate. Many authors
have shown that a narrow peak and a broad base
represent different formation regions. We analyzed



34 SOMOVA et al.

 

488548354705465543654315

 

λ

 

, 

 

Å

 

0.02

0.12

0.17

0.21

0.26

0.30

0.35

0.47

Ph
as

e

0.93

0.88

0.83

0.79

0.74

0.61

0.56

0.51
H

 

γ

 

H II H

 

β

 

1

1

 
R

 
c

Fig. 2. The profiles of the Hβ, Hγ, and He II 4686 Å
emission lines as a function of orbital phase.

the radial velocities of several emission lines. The
radial velocities were measured for broad line features
(from the centroids) and for narrow features (from
the line peaks). The error in the radial velocities is
±20 km s−1. For weak lines, this error can double.

We constructed the following curve from the data
set for each of the measured lines by the least-squares
method:

V = γ +K sin[2π(t− t0)/P ],

where V is the radial velocity, γ is the γ velocity, t
is the current time, the epoch t = 0 and φ = 0 cor-
responds to the start of our observations, K is the
semi-amplitude of the radial-velocity curve in km s−1,
σ is the rms deviation of all measurements from a sine
wave, and P is the period. The period was varied over
the range from 60 to 130 min with a 30-s step. We
calculated the errors for all parameters. The minimum
rms deviation from a sine wave was the criterion that
the orbital period was chosen correctly. The results of
our calculations for some lines are presented in Ta-
ble 3. The measurement errors are given in parenthe-
ses. The second column of this table gives the method
of radial-velocity measurements: centroid is the from
the line centroid and peak is the from the line peak.
We see from Table 3 that the differences between the
radial velocities measured from the line centroids and
from the emission-line peaks are small. We also see
that the radial-velocity curves constructed from the
velocities measured by using the helium-line peaks
have the same phase shift and are displaced by 0.1P
from the radial-velocity curves constructed from the
velocities measured by using the Balmer-line peaks.
Figure 4 shows the radial-velocity curve for the broad
feature of the Hβ line.

We also used Deeming’s method (seeking a power
spectrum for the series of measurements) to deter-
mine the orbital period of EU UMa (Deeming 1975).
The two methods yielded consistent results (see Ta-
ble 4).

DISCUSSION

Our spectroscopic and photometric studies of
EU UMa (RE1149+28) indicate that the system is a
faint (17m) object whose spectrum varies greatly with
the orbital phase. This spectroscopic variability with
time is illustrated by Figs. 2 and 3. These figures show
line-profile variations (Fig. 2) and variations in the
spectrophotometric parameters of emission lines in
the spectrum with a time resolution of 300 s (Fig. 3).
The spectral-line parameters vary significantly on
time scales from 5 to 15 min. The rapid variations of
emission features in the spectra could be associated
with photometric characteristics of the system and
with unsteady accretion in the polars.

The mean FWHMs are 550–700 km s−1 for the
Balmer emission lines and about 600 km s−1 for the
He II 4686 Å line. These values are comparable with
the line FWHMs for other polars. The emission-line
FWHMs are largest near phase 0.5. In the phase
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Fig. 3. Spectral parameters of emission lines (equivalent widths EW and relative intensities Rc) versus orbital phase.
range 0.56–0.61, the emission lines virtually disap-
pear. An eclipse of the accretion pole or of the accre-
tion stream by the white dwarf itself could be respon-
sible for the disappearance of the lines. At selected
phases, the Hβ and He II 4686 Å lines exhibit P Cyg
profiles. These profiles may result from a superposi-
tion of atmospheric absorption lines of the white dwarf
on the emission-line spectrum or from a circumstellar
nonuniformity moving in the system shell.

Analysis of the radial-velocity curves for all of the
lines except He II 4686 Å indicates that the orbital
period of RE1149+28 is, on average, 90.15 ± 0.3 min
(see Table 4). The mean period estimated by two
different methods (sine-wave fitting and Deeming’s
method) is 90.04 ± 0.2 min (see Table 4). Thus, of the
two possible periods found from the results of Mittaz
et al. (1992), the correct period is 90 min (Bonnet-
Bidaud et al. 1994; Somov et al. 1995). This is the
first determination of the orbital period for EU UMa
(=RE1149+28) from spectroscopic data. The soft X-
ray (EUVE) observations of this system carried out
by Howell et al. (1995) also revealed a similar period.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
Interestingly, the radial velocities of the
He II 4686 Å emission-line peaks yielded a radial-
velocity curve with the period of 74.9 ± 2.8 min that
correlates with the separation between the peaks in
the curves of variations in the Balmer-line equivalent
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widths and central intensities with orbital phase.
The mean period estimated by the two methods is
73.5 ± 1.9 min. This period probably indicates that
at least two regions contribute to the narrow feature.
These could be the heated hemisphere of the red dwarf
and part of the horizontal stream.

CONCLUSIONS

We analyzed the spectroscopic and photometric
observations of EU UMa (=RE1149+28) carried
out in February 1993 with a TV spectrophotometer
(scanner) and a photometer (NEPh) at the secondary
Nasmyth-1 focus of the 6-m telescope.

We obtained the following results.
(1) The orbital period of the system was estimated

from spectroscopic data to be 90.0 ± 0.2 min.
(2) Our analysis of the variability of spectral

parameters for Balmer lines revealed their significant
variations with orbital phase. The line equivalent
widths and central intensities were found to peak at
phases 0.15 and 0.85. The time separation between
these peaks was 72.5 min. The Balmer-line equiv-
alent widths were at a minimum in the phase range
≈0.5–0.6.

(3) The curve of variations in the equivalent widths
of the He II 4686 Å line with an orbital phase exhibits
no sharp peaks, as for the Balmer lines. The equiva-
lent widths in the curve are at a minimum in the phase
range ≈0.5–0.7.

(4) The velocities measured from narrow features
of the He II 4686 Å line yielded a mean period of
73.5 ± 1.9 min. This period correlates in duration
with the separation between the peaks in the curves
of variations in the hydrogen-line equivalent widths
and central intensities with orbital phase. This period
probably indicates that at least two regions contribute
to the narrow feature. These could be the heated
hemisphere of the red dwarf and part of the horizontal
stream.

(5) The emission-line FWHMs peak at phase 0.5.
In the phase range 0.56–0.61, the emission lines
virtually disappear. An eclipse of the accretion pole or
of the accretion stream by the white dwarf itself could
be responsible for the disappearance of the lines.

(6) We found significant rapid variations in Rc
and EW on time scales from 5 to 15 min. The rapid
variations of emission features in the spectra could
be associated with photometric characteristics of the
system and with unsteady accretion in the polars.

(7) At selected phases, the Hβ and He II 4686 Å
emission lines exhibited P Cyg profiles. These profiles
suggest a possible superposition of the absorption-
line spectrum from the white-dwarf atmosphere on
the emission-line spectrum or the existence of a cir-
cumstellar nonuniformity moving in the system shell.
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Abstract—An inequality that allows the minimum sum of the component masses for a binary, M0, to
be determined was derived from simple geometric considerations. This quantity satisfies the observed
orbital motion according to Newton’s law with a known parallax. The M0 value can be calculated if the
apparent-motion parameters for the components, including the curvature of the observed short orbital
arc, were determined from observations. We estimated M0 for 14 Pulkovo program stars for which the
apparent orbital arc covered with observations was no less than 10◦. We compare M0 with the masses
estimated from the mass–luminosity relation. A significant mass excess was found for the star ADS 10329.
c© 2003 MAIK “Nauka/Interperiodica”.

Key words: visual binaries.
The method of apparent-motion parameters
(AMPs), as applied to determining the orbits of visual
binaries (Kiselev and Kiyaeva 1980), can also be used
as an efficient tool for studying the kinematics and
dynamics of the components of wide stellar pairs
with orbital periods of ∼1000 yr or more (Kiselev and
Romanenko 1996). A necessary condition for such
studies is a reliable knowledge of the following four
first-order apparent-motion parameters: distance ρ,
position angle θ, relative velocity µ, and its direc-
tion ψ, supplemented with the relative radial veloc-
ities of the components and with the trigonometric
parallax of the star under study.

Here, we consider another unexpected application
of the AMP method, which makes it possible to esti-
mate the sum of the component masses for a visual
binary with a known parallax solely from positional
observations, without determining its orbit and with-
out requiring the radial velocities of the components.

The mass estimate can be easily derived from the
key formula of the PAMmethod

r3 = k2 ρρcτ

µ2
|sin(ψ − θ)|. (1)

Here, r is the spatial separation between compo-
nent A and component B and k2 is the dynamical

*E-mail: kiyaeva@gao.spb.ru
1063-7737/03/2901-0037$24.00 c©
constant of astrocentric motion determined from Ke-
pler’s third law

k2 = 4π2(MA +MB). (2)

The dimensions of k2 are (AU)3 (yr)−2 if the binary
component masses are given in solar masses. The
parameters ρ, θ, µ, and ψ mentioned above describe
the relative positions and motions of the components
at a fixed epoch T0 and ρc is the radius of curva-
ture of the observed short arc of the apparent orbit
near T0. The dimensions of ρ and ρc are arcseconds;
the dimensions of µ are arcseconds per year. The
quantity r is then expressed in AU. It remains to
compare the magnitude of vector r calculated from
dynamical considerations with its projection onto the
plane of the sky rt determined purely geometrically if
the trigonometric parallax πt is known. Clearly,

r ≥ rt =
ρ

πt
, (3)

Transforming estimate (3) using (1) and (2) yields

MA +MB ≥ ρ2µ2

4π2ρcπt
3| sin(ψ − θ)| = M0. (4)

Formula (4) makes it possible to determine the
minimum of M0, the sum of the binary component
masses that satisfies the observed relative motion of
the components on a short arc. Using this estimate
does not require knowledge of any spectroscopic or
photometric parameters of the stars under study. Of
2003 MAIK “Nauka/Interperiodica”



38 KISELEV, KIYAEVA
Table 1. Parameters of the apparent relative motion for the components of visual binaries

ADS ∆T T0, year ρ′′ θ µ ψ ρc

48 (1) 1961–1994 1978.8 5′′
.940 ± .002 172◦.911 ± .008 0′′

.0462± .0003 248◦.9 ± .3 2′′
.78 ± .14

48 (2) 1870–1994 1936 5.253 ± .008 151.818 ± .044 0.0557 ± .0002 219.0 ± .4 4.10 ± .07

2427 1920–1999 1956 4.567 ± .031 22.85 ± .34 0.0324 ± .0012 312 ± 4 4.6 ± .2

2757 1830–1995 1908 8.406 ± .024 48.86 ± .07 0.0140 ± .0006 187 ± 3 3.3 ± .6

3353 1830–1997 1909 3.732 ± .012 20.54 ± .07 0.0103 ± .0002 328 ± 2 3.0 ± .5

7551 1830–1997 1914 2.232 ± .011 307.66 ± .28 0.0101 ± .0002 246 ± 2 1.34 ± .18

8250 1833–1996 1905 10.032 ± .025 259.56 ± .12 0.0205 ± .0004 146 ± 2 9.4 ± .8

8980 1908–1991 1946 2.713 ± .095 287.09 ± .33 0.0236 ± .0015 37 ± 9 1.23 ± .13

9031 1962–1979 1972 3.288 ± .005 152.69 ± .06 0.0502 ± .0006 214.6 ± .9 1.4 ± .1

9167 1831–1997 1914 2.242 ± .013 81.99 ± .24 0.0173 ± .0002 168 ± 2 4.8 ± .2

10329 1830–1995 1915 12.028 ± .042 49.41 ± .14 0.0140 ± .0005 332 ± 4 2.9 ± .1

12169 1832–1986 1903 9.331 ± .024 217.47 ± .04 0.0243 ± .0006 74 ± 1 76 ± 9.00

15600 1832–1995 1916 7.026 ± .010 281.15 ± .06 0.0165 ± .0003 247 ± 1 4.0 ± .2

16291 1832–1997 1904 3.774 ± .014 65.22 ± .10 0.0104 ± .0002 25 ± 1 9.4 ± .9

19464 + 3201 1936–2000 1968 3.984 ± .010 131.96 ± .10 0.0400 ± .0006 142.0 ± .7 12.4 ± .4

Table 2. Comparison of the minimum sum of the component masses M with the expected value of MSp–L calculated
from the spectral type and luminosity

ADS SpA SpB VA VB πHip MSp–L,M� M ,M�

48 (1) dK6 dM0 8.93 8.97 0′′
.0851± .0027 1.0 1.1 ± .1

48 (2) dK6 dM0 8.93 8.97 0.0851± .0027 1.0 0.9 ± .1

2427 M2 M2 10.5 10.8 0.0743± .0006 0.7 0.3 ± .1

2757 K1V K2V 7.67 8.37 0.0408± .0022 1.6∗ 2.3 ± .6

3353 F2V F2V 6.56 6.68 0.0143± .0016 3.3 5.4 ± 2.0

7551 K0 – 8.42 8.85 0.0168± .0029 2.0 2.3 ± .9

8250 G0V K2 6.29 8.22 0.0429± .0010 1.8 1.6 ± .3

8980 M0 – 9.77 10.75 0.0457± .0027 1.1 0.9 ± .2

9031 dK6 dK6 7.04 8.2 0.0732± .0013 1.4 1.4 ± .1

9167 K2V K2V 8.92 9.27 0.0264± .0018 1.6∗ 0.4 ± .1

10329 K5 M0 8.61 10.34 0.0400± .0010 1.3 4.0 ± .5

12169 G3V G3V 5.85 6.0 0.0402± .0008 2.4 0.4 ± .1

15600 A3m F7V 4.26 6.34 0.0320± .0007 3.3∗ 4.6 ± .4

16291 F5s F4s 6.19 6.31 0.0160± .0009 1.4 1.6 ± .4

19464 + 3201 M1 – 9.74 10.7 0.0749± .0029 0.7 0.7 ± .1
∗ ADS 2757, 9167, and 15600 are triple stars. Given the third component, MSp–L = 1.7M� for ADS 2757 (Tokovinin et al. 1994),
MSp–L = 2.35M� for ADS 9167 (Kiyaeva et al. 1998), and MSp−L = 4.0M� for ADS 15600 (McAlister 1980).
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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course, knowledge of the trigonometric parallaxes
with a sufficient accuracy plays a crucial role here,
because the relative error in the mass estimate is at
least a factor of 3 larger than the relative error of the
parallax:

∆MA+B

MA+B
≥ 3

∆πt

πt
. (5)

Thus, disregarding the AMP errors, whose effect on
the mass error is much weaker, we conclude that for
stars at distances up to 25 pc (πt = 0′′

.040),M0 is es-
timated with an accuracy of 30% if πt was determined
with an error of ±0′′

.004 (van Altena et al. 1995) and
8% if πt was determined with an error of ±0′′

.001,
as in the Hipparcos catalog (ESA 1997). For the
Hipparcos stars at a distance of 100 pc, the error in
the estimate increases to 30%.

Another important factor that affects the accuracy
of theM0 estimate is ρc. This parameter is difficult to
determine from observations of a short arc, especially
if the star under study is a wide pair with a long
orbital period (500 yr or more). Therefore, our method
is applicable only in those cases where the radius of
curvature can be reliably determined.

In our study, we estimated M0 for 14 visual bi-
naries with available Hipparcos parallaxes and with
dense series of positional observations at Pulkovo in
1960–2000 and at other observatories, starting from
Struve, which were included in the WDS catalog
of 1996 (Worley and Douglass 1997). Since astro-
physical data were available for all the stars under
study, we were able to estimate the sum of the masses
from the mass–luminosity relation,MSp−L.

Our goal was to obtain reliableM0 estimates from
Eq. (4) and to compare them with MSp−L. The fol-
lowing inequality must hold: MSp−L ≥M0. Other-
wise, if (even with errors) M0 is much larger than
MSp−L, we conclude that there is a mass excess in
the system under study. This mass excess can be
attributed either to hiddenmass in the system (e.g., to
a dark companion) or to peculiarities of the physical
nature of the stars, which lead to the breakdown of
the mass–luminosity relation. In both cases, such
stars are of great interest in stellar astronomy and can
stimulate further research.

Our observational data are presented in Table 1,
which lists the AMPs derived from series of positional
observations ∆T in duration at epoch T0. Two sets of
AMPs are given for the star АDS 48: for epoch 1978.8
based on the Pulkovo observations alone and for
epoch 1938.0 based on all the observations from the
WDS catalog.We only used the 17-year-long Pulko-
vo observations (Kiselev et al. 1988) for ADS 9031
and all the available observations for the remaining
stars.
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Calculations of ρc for stars with slow orbital mo-
tions of their components involve difficulties requiring
longer series of observations. The values of ρc in
Table 1 were mostly calculated by using the exact
formula with the second derivatives of ρ and θ

ρc =
µ3

θ̇(µ2 + ρ̇2) + ρ(ρ̇θ̈ − ρ̈θ̇)
. (6)

In all cases, these calculations were checked by
approximate calculations, using a formula that repro-
duced the definition of curvature in differential geom-
etry:

K =
1
ρc

=
dψ

dσ
. (7)

Here, dσ is the element of the apparent orbital arc that
corresponds to the change in the tangent direction,
dψ. Thus, we managed to minimize the probable er-
ror of ρc determined from observations. Our results
are presented in Table 2. The estimated sum of the
masses M0 is given with errors that include only
the errors in the trigonometric parallaxes and in the
radii of curvature. The sum of the masses estimated
from themass–luminosity relation,MSp−L, were rec-
onciled with data from Kulikovskii (1985). We took
astrophysical data for the individual components from
theWDS catalog and the parallaxes from theHippar-
cos catalog.

Comparison ofMSp−L andM0 shows that, inmost
cases,M0 < MSp−L, which confirms the good agree-
ment between the results independently obtained
from astrophysics and geometry. However, in two
cases, ADS 3353 and ADS 10329, theM0 estimates
clearly exceed MSp−L by 1 or 2 solar masses. The
mass excess derived for ADS 3353 is equal to the
error in M0. As regards ADS 10329, we may be
dealing with hidden mass in the system. Further
studies of this star are desirable.

The multiple stars ADS 2757 and ADS 15600,
for which M0 > MSp−L, but within the error limits,
are also noteworthy. Studies of these stars indicate
that component B of ADS 2757 is a spectroscopic
binary (Tokovinin et al. 1994) and component A of
ADS 15600 is a speckle binary (McAlister 1980).

CONCLUSIONS

We proposed a method to determine a lower limit
for the sum of the component masses for a binary with
a known parallax if the parameters of the relative mo-
tion of its components, including the curvature of the
observed short arc, were determined from observa-
tions. Themethod makes it possible to detect binaries
with an excess mass compared to that expected from
themass–luminosity relation even if the orbital period
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of the star is longer that 500 yr and if its orbit has not
been determined at all.

We applied our method to 14 visual binaries of the
Pulkovo program. One system with a mass excess of
∼2M� was found. At present, the applicability of our
method has been significantly enhanced in connec-
tion with the availability of highly accurate Hipparcos
parallaxes.
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Abstract—We investigate the dynamical evolution of 100 000 rotating triple systems with equal-mass
components. The system rotation is specified by the parameter w = −c2E, where c and E are the angular
momentum and total energy of the triple system, respectively. We consider w = 0.1, 1, 2, 4, 6 and study
20 000 triple systems with randomly specified coordinates and velocities of the bodies for each w. We
consider two methods for specifying initial conditions: with and without a hierarchical structure at the
beginning of the evolution. The evolution of each system is traced until the escape of one of the bodies
or until the critical time equal to 1000 mean system crossing times. For each set of initial conditions, we
computed parameters of the final motions: orbital parameters for the final binary and the escaping body. We
analyze variations in the statistical characteristics of the distributions of these parameters withw. Themean
disruption time of triple systems and the fraction of the systems that have not been disrupted in 1000 mean
crossing times increase with w. The final binaries become, on average, wider at larger angular momenta.
The distribution of their eccentricities does not depend on w and generally agrees with the theoretical law
f(e) = 2e. The velocities of the escaping bodies, on average, decrease with increasing angular momentum
of the triple system. The fraction of the angles between the escaping-body velocity vector and the triple-
system angular momentum close to 90◦ increaseswithw. Escapes in the directions opposite to rotation and
prograde motions dominate at small and large angular momenta, respectively. For slowly rotating systems,
the angular momentum during their disruption is, on average, evenly divided between the escaping body
and the final binary, whereas in rapidly rotating systems, about 80% of the angular momentum is carried
away by the escaping component. We compare our numerical simulations with the statistical theory of
triple-system disruption. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: celestial mechanics, triple systems, dynamical evolution, simulations.
INTRODUCTION

Triple systems are widely represented among stars
and galaxies. Therefore, the dynamical evolution of
such systems has long attracted the attention of re-
searchers [see, e.g., Anosova and Orlov (1985), Val-
tonen (1988), and Valtonen and Mikkola (1991) for a
review].

The dynamical disruption of triple systems can be
analyzed both numerically and in terms of the statis-
tical theory of disruption (Monaghan 1976a, 1976b;
Nash and Monaghan 1978). This approximate theory
is based on the assumption that the phase trajectory
of a triple system is quasi-ergodic within the region
of strong body interaction (a close triple encounter).
The probability of escape with certain parameters of
the final state (orbital elements of the final binary
and the escaping body) is then proportional to the
corresponding volume of phase space in a coordinate

*E-mail: vor@astro.spbu.ru
1063-7737/03/2901-0041$24.00 c©
system associated with the center of mass of the triple
system for the chosen integrals of motion. Another
simplifying assumption of this theory is the absence
of interaction between the escaping body and the
remaining binary.

In several cases, comparison of the theoretical
distributions of disruption parameters and numerical
simulations shows good agreement, suggesting that
the quasi-ergodic hypothesis is suitable for describing
the results of close triple encounters that lead to the
disruption of triple systems. It is of interest to deter-
mine the validity range for the statistical theory of dis-
ruption by comparing its predictions with numerical
simulations.

The dynamical evolution of rotating triple sys-
tems has been numerically simulated for more than
30 years (see, e.g., Anosova 1969; Standish 1972;
Saslaw et al. 1974; Valtonen 1974; Anosova et al.
1984; Mikkola and Valtonen 1986; Anosova and
Orlov 1986). These authors showed that an increase
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The domain of all possible configurations of triple
systems.

in angular momentum, on average, causes the dy-
namical evolution to slow down and the fraction of
stable hierarchical triple systems to increase.

Comparison of the statistical theory of disruption
with numerical simulations (Monaghan 1976b; Nash
and Monaghan 1978) shows the qualitative agree-
ment of the theoretical distributions of eccentricity
and binding energy for the final binary and the mag-
nitude of the velocity for the escaping body with their
distributions derived from the statistical theory of dis-
ruption. As the angular momentum of a triple system
increases, the escape direction tends to be orthogonal
to the angular momentum vector of the triple system
(the angle θ between these vectors is close to 90◦),
which is in qualitative agreement with the numerical
simulations of Valtonen (1974).

Here, we consider the dynamical evolution of ro-
tating triple systems in three-dimensional space. We
constructed the distributions for several parameters
that characterize the final states of the disrupted sys-
tems and compare our results with the statistical
theory of disruption.

THE MODEL

We consider the evolution of triple systems with
equal-mass components. The rotation is specified by
the parameter

w = −c2E, (1)

where c and E are the magnitude of the angular
momentum vector and the total energy of the triple
system, respectively. This parameter was also used by
Mikkola and Valtonen (1986).

We use the following system of units: the gravita-
tional constant G = 1, the body masses m1 = m2 =
m3 = 1, and E = −1.

We consider two different methods of specifying
the initial conditions.
The first method is similar to that used by Mikkola
and Valtonen (1986). The dynamical evolution begins
with the encounter of a single body with a close binary
along an elliptical orbit with a low binding energy
compared to the binding energy of the inner binary;
i.e., at the beginning of the evolution, the triple system
has an hierarchical structure.

The second method for specifying the initial con-
ditions does not assume any mandatory hierarchical
structure. The initial configuration is chosen ran-
domly from the domain D (Fig. 1): the coordinates
of the third body are chosen uniformly randomly from
the segment bounded by the coordinate axes and
by the arc of a circumference of unit radius cen-
tered at point (−0.5, 0); the positions of the first and
the second bodies are fixed at points (−0.5, 0) and
(+0.5, 0), respectively. The domain D includes all
possible configurations of triple systems (see, e.g.,
Agekyan and Anosova 1967). The initial velocities
are chosen isotropically, with the virial coefficient k
being distributed uniformly randomly over the interval
(0, 1).

In both methods of specifying the initial condi-
tions, the value of w (1) is fixed and the initial condi-
tions for which w differs from the assumed value by
no more than 0.01 are chosen. We considered w =
0.1, 1, 2, 4, 6. For each w and each choice of initial
conditions, we traced the evolution of 10 000 triple
systems. A total of 100 000 sets of initial conditions
were considered. Our computations lasted until one
of the bodies escaped from the triple system along a
hyperbolic orbit or until the critical time 1000τ was
reached, where

τ =
GM5/2

|2E|3/2
(2)

is the mean crossing time of the triple system. Here,
M is the total mass of the triple system and G is the
gravitational constant. The quantity τ is the charac-
teristic time in which the component moving at the
characteristic velocity crosses the system (see, e.g.,
Valtonen 1988).

Below, the parameters with the dimensions of
length are expressed in units of the mean system size

d =
G(m1m2 +m1m3 +m2m3)

|E| , (3)

and the parameters with the dimensions of velocity
are given in units of d/τ .

THE RESULTS OF NUMERICAL
SIMULATIONS

We determined the following parameters for the
disrupted triple systems: the lifetime T of the triple
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Mean disruption parameters

w 0.1 1 2 4 6

nH 9814 9543 8700 4591 883

nD 9839 9705 9447 7269 4692

TH 49.4 ± 1.0 80.0 ± 1.4 120.5 ± 2.0 190.9 ± 3.8 274.2 ± 10.4

TD 44.0 ± 0.9 82.7 ± 1.3 112.5 ± 1.7 160.2 ± 2.6 61.9 ± 2.6

āH 0.1164 ± 4 0.1349 ± 3 0.1429 ± 2 0.1556 ± 2 0.1636 ± 1

āD 0.0976 ± 5 0.1270 ± 3 0.1349 ± 3 0.1404 ± 4 0.1201 ± 6

ēH 0.710 ± 2 0.689 ± 2 0.705 ± 2 0.722 ± 3 0.634 ± 6

ēD 0.695 ± 2 0.695 ± 2 0.699 ± 2 0.712 ± 2 0.707 ± 3

V H 2.22 ± 2 1.50 ± 1 1.22 ± 1 0.76 ± 1 0.39 ± 1

V D 4.04 ± 5 2.02 ± 2 1.69 ± 2 1.51 ± 2 2.34 ± 3

θH 90.2 ± 3 90.0 ± 1 90.1 ± 1 89.9 ± 1 90.0 ± 1

θD 90.0 ± 3 89.9 ± 1 90.0 ± 1 90.1 ± 1 90.0 ± 1

λH 114.8 ± 4 90.4 ± 4 83.2 ± 4 62.0 ± 4 36.3 ± 5

λD 110.6 ± 4 84.3 ± 4 75.0 ± 4 60.1 ± 4 75.9 ± 6

β̄H 1.13 ± 2 0.310 ± 1 0.219 ± 1 0.165 ± 1 0.170 ± 1

β̄D 0.731 ± 4 0.274 ± 1 0.200 ± 1 0.144 ± 1 0.108 ± 1
system, the semimajor axis a of the final binary, the
eccentricity e of the final binary, the asymptotic ve-
locity V of the escaping body, the angle θ between the
orbital angular momentum vector of the triple system
and the velocity vector of the escaping body, the angle
λ between the angular momentum vectors of the final
binary and the binary formed by the escaping body
and the center of mass of the final binary, and the ratio
β of the angular momentum of the final binary to the
angular momentum of the outer binary formed by the
escaping body and the barycenter of the final binary.

The table lists themean values of these parameters
for the two methods of choosing the initial condi-
tions and the w values considered here. The subscript
“H” in the first column corresponds to hierarchi-
cal systems (the first method of choosing the initial
conditions); the subscript “D” refers to the second
method (the initial configuration in the domain D).
The first two rows give the number of systems dis-
rupted in a time T < 1000τ . Based on these systems,
we computed the mean disruption parameters and
constructed their distributions.

As we see from the table, the fraction of the sys-
tems that were not disrupted in time 1000τ increases
with the angular momentum of the triple system.
Note that this increase is much larger for hierarchi-
cal systems. For w = 6, the fraction of the hierar-
chical systems disrupted in time T < 1000τ is less
ASTRONOMY LETTERS Vol. 29 No. 1 2003
than 10%, whereas this fraction is slightly less than
50% for the second method of specifying the initial
conditions. This difference probably results from the
emergence of a significant number of nonhierarchical
systems disrupted in a short time, whereas among
hierarchical systems such initial conditions are much
fewer in number. This is probably the reason why
the mean lifetime greatly decreases at w = 6 for the
second method of choosing the initial conditions.

The final binaries become, on average, wider and
the velocities of the escaping bodies, accordingly,
decrease with increasing angular momentum. In the
second method of specifying the initial conditions, the
final binaries are, on average, closer and the velocities
of the escaping bodies are higher than those for hier-
archical systems. Thismay be because the interaction
between the components and the energy redistribu-
tion between the escaping body and the final binary
in systems with nonhierarchical initial configurations
are more intense than those in hierarchical systems.

The mean eccentricities of the final binaries are
almost independent ofw and of the method for choos-
ing the initial conditions. The mean ē ≈ 0.7. Only
ē = 0.634 ± 0.006 for hierarchical triple systems con-
stitutes an exception. Here, the final binaries are, on
average, less eccentric.

The mean angles θ are close to 90◦, irrespective of
the method of choosing the initial conditions.
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Fig. 2. The distributions of triple-system disruption times
for the first (a) and second (b) method of specifying the
initial conditions: 1 is w = 0.1; 2 is w = 2; and 3 is
w = 6.

In slowly rotating systems (w = 0.1), body es-
capes in the direction opposite to the rotation of the
final binary (λ̄ > 90◦) generally dominate, whereas
in rapidly rotating systems (w > 1), more escapes
take place in the direction of the rotation of the final
binary (λ̄ < 90◦). The values of λ̄H and λ̄D generally
agree, although for initially hierarchical systems, λ̄H

is slightly larger than λ̄D, except for the case w = 6,
where λ̄H is much smaller than λ̄D.

The angular momentum is redistributed almost
equally between the final binary and the binary formed
by the escaping body and the barycenter of the fi-
nal binary for both methods of choosing the initial
conditions. For hierarchical systems, this ratio is, on
average, slightly larger than that for nonhierarchi-
cal systems. The mean β̄H and β̄D decrease with
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Fig. 3. The distributions of semimajor axes of the final
binaries. The notation is the same as that in Fig. 2.

increasing angular momentum of the system. This
is probably because the escaping body carries away
excess angular momentum.

Let us consider the distribution functions for the
parameters of the final states of triple systems. These
distributions are shown in Figs. 2–8. Figures 2a, 3a,
4a, 5a, 6a, 7a, and 8a and 2b, 3b, 4b, 5b, 6b, 7b, and
8b correspond to the first (hierarchical systems) and
second (systems without mandatory initial hierarchy)
methods of specifying the initial conditions. The pa-
rameter bins and the fractions ν of triple systems
in these bins are plotted along the x and y axes,
respectively.

In general, the parameter distributions for the first
and second methods of choosing the initial conditions
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Fig. 4. The distributions of eccentricities of the final bina-
ries for the twomethods of specifying the initial conditions
(a) and (b) at w = 0.1 (1) andw = 6 (2); 3 is the theoret-
ical distribution f(e) = 2e.

agree. The general trends of variations in the distribu-
tions with w correspond to the trends of variations in
the mean parameters (see the table).

Most of the systems are disrupted in timeT < 50τ ;
the fraction of the systems with long lifetimes gen-
erally increases with w (the “tail” of the distribu-
tion becomes more powerful). Only the distribution
f(TD) for the second method of specifying the initial
conditions at w = 6 constitutes an exception. Note
that w = 6 is close to the critical value of wcr = 6.25,
which corresponds to the instability threshold of
a triple system with respect to hierarchy violation
(see, e.g., Szebehely and Zare 1977). At w > wcr,
the triple systems appear to be separated into two
categories: (1) stable triple systems and (2) unstable
triple systems where one of the bodies escapes in a
short time without hierarchy violation. As the stability
threshold wcr is approached, the triple systems break
up into three classes: (1) nearly stable triple systems
with long lifetimes T > 1000τ , (2) unstable systems
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Fig. 5. The velocity distributions for the escaping body for
twomethods of specifying the initial conditions (a) and (b)
at w = 0.1 (1), w = 2 (2), and w = 6 (3).

with fast escape of one of the bodies, and (3) the
intermediate class of unstable systems.

For hierarchical triple systems (see Fig. 2a and the
table), the fraction of the systems with fast escape
of one of the bodies is small, about 5% of the entire
sample of initial conditions. More than 90% of the
systems were not disrupted in time 1000τ . For the
secondmethod of specifying the initial conditions (see
Fig. 2b and the table), the fraction of the systems
being rapidly disrupted is about 40% of the total num-
ber of systems and more than 80% of the systems
that were disrupted in time T < 1000τ . This is also
the reason why the mean lifetime T̄D decreases as
one passes from w = 4 to w = 6. The result obtained
probably suggests that in nonhierarchical systems
with large angular momentum, one of the bodies of-
ten rapidly escapes, whereas in hierarchical systems,
such situations are much rarer. The results for hier-
archical and nonhierarchical systems (the mean life-
times and their distribution functions) become closer
with decreasing angular momentum.

The preference of thew = 6 case for nonhierarchi-
cal systems also shows up in the distributions of a, V ,
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Fig. 6. The distributions of the angle between the orbital
angular momentum vector of the triple system and the
velocity vector of the escaping body for the twomethods of
specifying the initial conditions (a) and (b) at w = 0.1 (1)
and w = 6 (2).

and λ (see Figs. 3, 5, and 7 and the table). At w = 6,
the final binaries formed during the disruption of non-
hierarchical systems become, on average, closer and
the escaping bodies carry away more kinetic energy
than in the w = 4 case (see Figs. 3b and 5b), whereas
for hierarchical systems the tendency for the final bi-
naries to widen and for the escape velocity to decrease
with increasing w is preserved (see Figs. 3a and 5a).
For nonhierarchical systems with w = 6, the ten-
dency for the angles λ to decrease (i.e., for prograde
motions of the escaping body and the remaining pair
to dominate) gives way to their increase. This may
be because for systems being rapidly disrupted, the
numbers of prograde and retrograde escapes are ap-
proximately equal (see Fig. 9).

The distributions of eccentricities for the final bi-
naries are virtually independent of w (Fig. 4). They
agree with the theoretical distribution for the proba-
bility density

f(e)de = 2ede, (4)
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Fig. 7. The distributions of the angle between the orbital
planes of the final binary and the escaping body. The
notation is the same as that in Fig. 5.

which corresponds to the dissociative equilibrium of
binaries in a stellar field (see Ambartsumyan 1937;
Heggie 1975). The straight lines in Fig. 4 correspond
to this distribution. The distribution of eccentricities
for the final binaries formed during the disruption of
hierarchical systems with large angular momentum
at w = 6 (Fig. 4a) constitutes an exception. In this
case, no highly eccentric binaries with e > 0.9 are
formed and the distribution peak is located at e ≈ 0.6.

The distributions of the angle θ are symmetric
about θ = 90◦ (Fig. 6). The concentration of the dis-
tribution toward θ = 90◦ increases with w: body es-
capes generally occur near the stationary Laplace
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Fig. 8. The distributions of the ratio of angular momenta
for the final binary and the binary formed by the escaping
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plane. Fast rotation hinders escapes in other direc-
tions.

The distributions of λ (Fig. 7) show that in slowly
rotating triple systems (w = 0.1), escapes in the di-
rections opposite to the rotation of the triple sys-
tem (λ > 90◦) dominate, because the rotations of the
inner and outer binaries are mutually compensated.
In rapidly rotating systems (w ≥ 1), escapes more
commonly occur in the direction of rotation of the
triple system; rotation supplies additional energy to
the escaping body.

The angular momentum is redistributed between
the outer and inner binaries differently for slowly and
rapidly rotating systems (see Fig. 8 and the table).
Whereas in slowly rotating systems (w = 0.1) the
angular momentum is, on average, evenly distributed,
in rapidly rotating systems (w ≥ 2) the lion’s share
(on average, from 80% to 90%) is carried away by
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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second (3) methods of specifying the initial conditions.

the escaping body and only from 10% to 20% of the
angular momentum remains in the final binary.

ANALYTIC APPROXIMATIONS
OF THE DISTRIBUTIONS

The Eccentricities of Final Binaries

In the statistical theory of disruption of triple
systems (Monaghan 1976a, 1976b; Nash and Mon-
aghan 1978), the eccentricity distributions for the
final binaries were obtained as a function of the triple-
system angular momentum. The distribution function
of eccentricities for three-dimensional motions with
small angular momentum is given by formula (4).
Comparison with numerical simulations (see Fig. 4
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and the table) shows that this law agrees with the
simulations. The fraction of the final binaries with
highly eccentric orbits decreases with increasing
angular momentum (Nash and Monaghan 1978).
This result also qualitatively agrees with the nu-
merical simulations of hierarchical triple systems at
w = 6 (Fig. 4a). At the same time, for nonhierar-
chical systems, the function f(e) = 2e satisfactorily
describes the simulation results for all of the w values
considered.

The Velocities of Escaping Bodies

In the statistical theory of disruption, the velocity
distributions for the escaping bodies are unimodal;
as the angular momentum increases, the peak shifts
toward higher velocities (Nash andMonaghan 1978).
In the numerical models, the distribution is also uni-
modal (Fig. 5), however, the peak shifts toward lower
velocities as the angular momentum increases. This
discrepancy probably stems from the fact that at small
angular momentums, the triple encounters that result
in escapes are closer than those in the cases of fast
rotation [see, e.g., Anosova and Orlov (1985) for a re-
view]. For a small angular momentum, the theoretical
distribution f(V ) peaks at V = 2/3 (in our system
of units). This value does not differ greatly from the
corresponding values for the model distributions at
w = 0.1 (see Fig. 5).

The theoretical distribution itself is (Monaghan
1976a)

f(V ) =
3
2

V

(1 + 3/4V 2)2
. (5)

Figure 10 shows a plot of this distribution (heavy solid
line) and, for comparison, histograms of the model
distributions at w = 0.1 for the first (solid line) and
second (dashed line) methods of specifying the initial
conditions. The theoretical distribution agrees with
the numerical simulations of nonhierarchical systems
(dashed line) but shifts to the left of the model dis-
tribution for hierarchical systems. The mean for the
theoretical distribution (5) is equal to V̄ = π/

√
3 ≈

1.81. This value is closer to VH = 2.22, whereas, as
was pointed out above, the form of the theoretical
distribution is closer to the model function for non-
hierarchical systems.

The Escape Angle

Nash and Monahgan (1978) obtained theoretical
distributions of the angle θ between the velocity vec-
tor of the escaping body and the angular momentum
vector of the triple system. These distributions are
symmetric about θ = 90◦, as are the model distri-
butions (see Fig. 6). The peaks of the theoretical
distributions become sharper with increasing angu-
lar momentum, which is also in agreement with the
numerical simulations.

CONCLUSIONS

We numerically simulated the dynamical evolution
of 100 000 rotating triple systems. The following two
methods of specifying the initial conditions were con-
sidered:

(1) Hierarchical systems in which the encounter of
a single body with a binary system takes place at the
beginning of the evolution; and

(2) Triple systems with randomly chosen config-
urations in the domain D (Fig. 1) with an isotropic
velocity distribution of the bodies.

Our analysis of the final states for disrupted triple
systems showed that the results for the two methods
of specifying the initial conditions generally agree.

The following evolutionary trends are observed as
the angular momentum of a triple system increases:

(1) The fraction of the systems that were not dis-
rupted in time 1000τ increases.

(2) The mean lifetime of the systems being dis-
rupted increases.

(3) The final binaries generally become wider.
(4) The velocities of the escaping bodies during

disruption, on average, decrease.
(5) Body escapes occur, on average, closer to the

Laplace plane and in the direction of rotation of the
triple system.

(6) The fraction of the angular momentum carried
away by the escaping body increases and the ratio of
the final-binary and triple-system angular momenta
decreases.

We compared the numerical simulations with the
statistical theory of disruption for triple systems.

The form of the eccentricity distribution for the
final binaries is almost independent of the angular
momentum and agrees with the theoretical distribu-
tion f(e) = 2e, which is valid for small angular mo-
menta (Monaghan 1976a). Only hierarchical systems
with w = 6, where no highly eccentric binaries with
e > 0.9 are formed, constitute an exception.

The general forms of the theoretical andmodel dis-
tributions of escape velocities are in agreement. These
distributions have one peak. However, the tenden-
cies for the forms of the distributions to change with
increasing w are different. The theoretical distribu-
tions shift toward higher velocities, whereas in model
systems, the escape velocities, on average, decrease.
This discrepancy may be due to the different degree of
closeness of triple encounters for slowly and rapidly
rotating triple systems. Closer triple encounters in
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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slowly rotating systems increase the probability of
escapes with high velocities. The statistical theory
of disruption, which assumes all encounters to be
equally close, appears to ignore this effect.

The distributions of angles θ qualitatively agree
and have a similar dependence on angular momen-
tum: the larger the triple-system angular momentum,
the stronger the concentration of the escape angles to
90◦.
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Abstract—We consider the kinetics of a rarefied rotating planetary atmosphere. The spatial distributions
of the atmospheric-gas density and mean angular velocity were determined by analyzing the exact solution
of the two-dimensional kinetic equation. We show that the angular velocity of the gas at some distance
from the planet could be higher than that in the initial layer starting from which the atmosphere is rarefied.
Our model calculations elucidate the superrotationmechanism under consideration. c© 2003MAIK “Nau-
ka/Interperiodica”.

Key words: planets, Venus, Mars, Earth, atmospheres, kinetics, rotation, superrotation.
INTRODUCTION

Experimental studies of atmospheric flows carried
out for several planets have established the possibil-
ity of superrotation of their atmospheres. Thus, for
example, analysis of satellite drag in the Earth’s at-
mosphere revealed atmospheric superrotation at large
heights. This superrotation is characterized by the ra-
tio of the angular velocities of the atmosphere and the
Earth. Following Allen (1973), we give experimental
values of the superrotation at various heights above
the Earth’s surface:

Height, km 200 250 300 350 400

Superrotation 1.1 1.2 1.3 1.4 1.1

The atmosphere of Venus exhibits pronounced su-
perrotation: the rotation period of its upper cloud
cover is about four days (Izakov 2001), while the
rotation period of the planet is about 247 Earth days
(Izakov 2001).

Several possible superrotation mechanisms have
been discussed in the literature. Hide (1984) asso-
ciated superrotation with the nonuniform rotation
of the planet due to its internal processes. The
results obtained were used to explain processes in
the atmospheres of Earth and Venus. Nonuniform
atmospheric heating by the Sun as a superrotation
source for the atmosphere of Venus was investigated
by Dikii (1969), Dobrovolskis and Ingersoll (1980),
Monin et al. (1987), and Izakov (2001). Kundt (1983)
considered the spinup action of the Ampère force.
Thus, several mechanisms responsible for atmo-
spheric superrotation were proposed, but none of

*E-mail: peter@appl.sci-nnov.ru
1063-7737/03/2901-0050$24.00 c©
them were universal. Indeed, Venus possesses no
appreciable magnetic field at all, which makes it
difficult to invoke the Ampère force to explain su-
perrotation. Nonuniform solar heating of the giant
planets seems not so important because they are far
from the Sun and their rotation is rapid. In general,
the universal superrotation mechanism has not yet
been established.

Here, we consider the kinetics of a rarefied at-
mosphere replenished with particles injected from a
spherical surface inside which collisions are signifi-
cant. As we show below, peculiarities of the motion of
a rarefied gas in the gravitational field of a slowly ro-
tating planet can give rise to superrotation. It follows
from the laws of motion that sufficiently fast particles
can rise high and even recede to infinity. Because of
the axial rotation of the planet, the particles whose
velocity have the same direction as the rotational
velocity of the planet will have a higher (in magnitude)
initial velocity. Primarily these particles can recede
appreciably from the planet to become its “satellites”
due to weak collisions. Therefore, we have reason to
expect that the mean angular velocity of the particles
in the upper planetary atmosphere can exceed the
angular velocity at its inner boundary. Let us now turn
to a quantitative analysis of this problem based on the
exact solution of the kinetic equation.

BASIC EQUATIONS
Consider the motion of a single particle for the

Keplerian problem. In spherical coordinates, the com-
ponents of the particle velocity v are defined by the
kinematic relations

vr =
dr

dt
, vθ = r

dθ

dt
, vϕ = r sin θ

dϕ

dt
,

2003 MAIK “Nauka/Interperiodica”
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where ϕ is the azimuthal angle and the angle θ is
measured from the rotation axis.

The Lagrangian L for this problem does not de-
pend explicitly on time, ∂L/∂t = 0. Therefore, it is the
energy integral

ε =
m

2

(
ṙ2 + r2θ̇2 + r2sin2 θϕ̇2

)
− gmr0

2

r
, (1)

where m is the particle mass, r0 is the planetary
radius, r is the distance from the planetary center to
the particle, and g is the free-fall acceleration on the
planetary surface. Since ∂L/∂ϕ = 0, the variable ϕ
is cyclic. Consequently, there is another integral of
motion that can be written as

M = mr2sin2 θϕ̇. (2)

Thus, according to Eqs. (1) and (2), the energy ε
and angular momentumM are conserved during the
motion of a single particle. The particle is known to
move in an elliptical orbit for ε < 0 and in a hyperbolic
orbit for ε > 0 (see, e.g., Arnold 1979).

SOLVING THE COLLISIONLESS KINETIC
EQUATION FOR THE TWO-DIMENSIONAL

MODEL PROBLEM

Let us write the collisionless Boltzmann kinetic
equation for the distribution function f(t, r,v) in
spherical coordinates (Kogan 1967):

∂f

∂t
+ vr

∂f

∂r
+

vϕ
r sin θ

∂f

∂ϕ
+
vθ
r

∂f

∂θ
(3)

+

(
v2ϕ + v2θ
r

− gr
2
0

r2

)
∂f

∂vr

−
(
vϕvθ cos θ
r sin θ

+
vϕvr
r

)
∂f

∂vϕ

+

(
v2ϕ cos θ
r sin θ

− vθvr
r

)
∂f

∂vθ
= 0.

We seek the solution of this equation by choosing
an appropriate boundary condition. Assume that par-
ticles with a Maxwellian (in a comoving frame of
reference) velocity distribution are injected from the
planetary surface in the equatorial plane. To simplify
our analysis, we restrict it to the two-dimensional
problem by assuming that θ = π/2 and vθ = 0. In an
inertial frame of reference, this distribution is

f+ = C exp
{
−
( m

2kT

)
(4)

×
[
(vϕ − ω+r0)2 + vr2

]}
E(vr),
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where C is the normalization constant; T is the tem-
perature that characterizes the thermal spread in az-
imuthal and radial velocities; k is the Boltzmann con-
stant; ω+ is the characteristic angular velocity for
the particles escaping from the surface, which we
choose below in such a way that the mean angular
velocity near the surface is ω0; and the factor with
a unit function E(vr) (E(ξ) = 1, ξ > 0; E(ξ) = 0,
ξ < 0) takes into account the fact that particles with
upward-directed velocities are injected. In our case,
the function E(vr) for particles with positive energies
is also the energy integral.

According to Eqs. (1) and (2), for the particles
moving in the equatorial plane,

ε =
m

2
(vr2 + vϕ2) − gmr0

2

r
, (5)

M = mrvϕ.

Relations (5) define the range of distances r in which
the particle moves. The boundaries of this range cor-
respond to the condition vr = 0 and depend on ε
and M . This circumstance should be taken into ac-
count when seeking a solution.

The sought-for distribution function must de-
scribe both escaping and returning particles. The
energy of the downward-moving particles is negative
(ε < 0); there are no particles with ε > 0 in the flow
falling to the planet, because they go to infinity.
According to the Liouville theorem for Hamiltonian
systems, the distribution function f(r,v) that is the
solution of Eq. (3) is an integral of motion. Therefore,
a function of other integrals of motion is also the
solution of Eq. (3). Thus, the expression for the
sought-for distribution function can be written as

f = Ñ exp
{
−
( m

2kT

) (
ω+

2r0
2 + 2gr0

)}
(6)

× E
(
m

2
(v2r + v2ϕ) − gmr0

2

r
−
mr2v2ϕ
2r02

+mgr0

)

×
[
E

(
−m

2
(v2r + v2ϕ) + g

mr0
2

r

)

+ E
(
m

2
(v2r + v2ϕ) − gmr0

2

r

)
E(vr)

]

× exp
{
−
( m

2kT

)(
v2r + v2ϕ − 2ω+rvϕ − 2g

r0
2

r

)}
.

In expression (6), the factor E(ε − (M2/2mr02) +
mgr0) makes it possible to selectively take into ac-
count the particles whose orbits reach the planetary
surface. This corresponds to the choice of initial con-
ditions when there are no particles (no satellites) in
orbits that do not touch the planet. It can be verified
that the distribution function (6) satisfies the bound-
ary and initial conditions and the kinetic equation (3).
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Given the distribution function, the density and
angular velocity can be easily determined:

n(r, ω+) =

+∞∫
−∞

+∞∫
−∞

fdvϕdvr, (7)

ω(r, ω+) =
1

rn(r, ω+)

+∞∫
−∞

+∞∫
−∞

fvϕdvϕdvr

=
kT

mr2n(r, ω+)
∂n(r, ω+)
∂ω+

+ ω+

(r0
r

)2
.

Let us first calculate the integral over vϕ in the
first formula (7). To this end, we consider the inte-
gral Ψ(r, vr) with appropriate integration limits,

Ψ(r, vr) (8)

=

vϕmax(r,vr)∫
vϕmin(r,vr)

exp
{
−
( m

2kT

)
(vϕ − ω+r)2

}
dvϕ.

In this integral, the integration limits vϕmin(r, vr) and
vϕmax(r, vr) are defined by the unit functions in rela-
tion (6). Let us discuss the physical meaning of the
range of integration in integral (8). Under the cho-
sen boundary and zero initial conditions, particles are
present only in the region hatched by inclined straight
lines in the vϕ, vr plane (see Fig. 1). Particles moving
in elliptical orbits are located in the region with double
hatching, while particles moving in hyperbolic orbits
that go to infinity are located in the region with single
inclined hatching. According to Eqs. (5) and (6), the
line

ε

mgr0
= −1 +

M2

2m2gr03

bounds the region of the particles whose orbits pass
through the r = r0 sphere. Particles moving in finite
orbits that do not cross the planetary surface are
located in the regions with horizontal hatching. In the
absence of collisions, if there were no such particles
according to the initial conditions, then they will not
appear. The particles whose orbits start and end at
infinity without crossing the sphere of radius r0 are
located in the regions with vertical hatching; these
particles are disregarded in our calculations. Thus,
we must take into account only the particles that are
located in the region with inclined hatching. In the
variables vϕ and vr, this region (Fig. 1) is bounded
by the circumference

vr
2 + vϕ2 = 2gr0

(r0
r

)

 
ζ

 

r

 

–

 

ζ

 

1

 

ζ

 

ϕ

 

ζ

 

1

Fig. 1. The regions of velocity space (ζϕ = vϕ/(2gr0)
1/2

and ζr = vr/(2gr0)
1/2) that correspond to particles es-

caping from and returning to the planet (double inclined
hatching); to particles escaping from and not returning to
the planet (single inclined hatching); to satellites (hori-
zontal hatching); and to particles arriving from and going
back to infinity (vertical hatching). The radius of the circle
is ζ1 = (r0/r − ζ2

r )1/2.

that corresponds to a zero total energy ε and by the
hyperbola

vr
2 −
[(
r

r0

)2

− 1

]
vϕ

2 = −2gr0
(r0
r

)( r
r0

− 1
)

that corresponds to the contact of the orbits with the
r = r0 sphere.

Let us write out integral (8). Bearing in mind the
integration over the region with inclined hatching in
Fig. 1, we can write the function Ψ(r, vr) as

Ψ(r, vr) = E(vr − vr1)E(vr2 − vr)Ψ1(r, vr) (9)

+ E(vr − vr2)Ψ2(r, vr).

Here,

vr1 = −r0
(

2g
r

)1/2

,

vr2 = −r0
r

[
2gr0

(
r

r0
− 1
)]1/2

,

Ψ1,2(r, vr , ω+) =
(
πkT

m

)1/2

×
{
erf
[( m

2kT

)1/2
(v1,2 + ω+r)

]

+erf
[( m

2kT

)1/2
(v1,2 − ω+r)

]}
,

where

erf(x) =
2√
π

∫ x

0
exp(−ξ2)dξ
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is the error integral (Handbook... 1964),

v1 =
[
2gr0

(r0
r

)
− vr2

]1/2
,

v2 =
[
vr

2 + 2gr0
(r0
r

)( r
r0

− 1
)]1/2

×
[(
r

r0

)2

− 1

]−1/2

.

Using formula (9), the radial density distribution (7)
can be written as

n(r, ω+) = Ñ exp
{
m

2kT

[
ω+

2(r2 − r02) (10)

− 2gr0
(
1 − r0

r

)]}{∫ vr2

vr1

exp
(
−mvr

2

2kT

)
Ψ1dvr

+
∫ ∞

vr2

exp
(
−mvr

2

2kT

)
Ψ2dvr

}
.

To analyze expression (10), it is convenient to
change to dimensionless variables. It is clear from
general considerations that the solution of the prob-
lem of rarefied-gas kinetics depends on several di-
mensionless parameters. These primarily include the
scale heightH reduced to the planetary radius

h = H/r0.

It is convenient to represent the angular velocity of
the planetω0, themean angular velocity of the upward
moving particles ω+ at r = r0, and the mean local
angular velocity ω as

Ω0 =
ω0

ωb
, Ω+ =

ω+

ωb
, Ω =

ω

ωb
.

Here, ωb is the ballistic angular velocity at r = r0,
which can be determined from the relation mω2

br0 =
mg: ωb = (g/r0)1/2.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
The reduced distance to the planetary center R
and the dimensionless radial and azimuthal particle
velocities, ζr and ζϕ, can be written as

R =
r

r0
, ζr =

vr
(2gr0)1/2

, ζϕ =
vϕ

(2gr0)1/2
.

Let us now analyze the expression for the radial
density distribution (10) by writing it as a function of
the dimensionless variables:

n(R,Ω+) = Ñgr0(πh)1/2 (11)

× exp
{

1 −R
hR

+
Ω+

2(R2 − 1)
2h

}

×




−R−1(R−1)1/2∫
−R−1/2

exp(−ζr2/h)Φ1dζr

+

∞∫
−R−1(R−1)1/2

exp(−ζr2/h)Φ2dζr


 ,

where we introduced the functions

Φ1,2(R, ζr,Ω+) =
{
erf
[

1
h1/2

(
ζ1,2 +

Ω+R√
2

)]

+ erf
[

1
h1/2

(
ζ1,2 −

Ω+R√
2

)]}
.

Here,

ζ1 =
(

1
R

− ζr2

)1/2

,

ζ2 =
[
ζr

2 +
1
R

(R− 1)
]1/2

(R2 − 1)−1/2.

In turn, according to the second formula (7), the
angular velocity
Ω =
h

R2

(
1
n

∂n

∂Ω+

)
+

Ω+

R2
= Ω+ − 1

R

(
8h
π

)1/2

exp
(
−Ω+

2R2

2h

)
(12)

×

[
−R−1(R−1)1/2∫

−R−1/2

exp(−ζr2/h)Ψ1dζr +
∞∫

−R−1(R−1)1/2

exp(−ζr2/h)Ψ2dζr

]
[
−R−1(R−1)1/2∫

−R−1/2

exp(−ζr2/h)Φ1dζr +
∞∫

−R−1(R−1)1/2

exp(−ζr2/h)Φ2dζr

] ,
where

Ψ1,2 = exp
(
−ζ1,2

2

h

)
sinh

(√
2ζ1,2Ω+R

h

)
.

Solutions (11) and (12) depend on two arbitrary
constants, Ω+ and C, which can be determined from
the following considerations. Recall that ω+ is the
mean angular velocity of the particles injected from
the level below which the gas cannot be assumed to
be rarefied. Under this assumption, we can argue that
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the mean angular velocity ω(r0) of the atmospheric
gas at the chosen boundary calculated using for-
mula (7) must be equal to the angular velocity of the
planet, ω(R = 1) = ω0. In dimensionless variables,
this condition is Ω(R = 1) = Ω0 and, according to
(12), it is an equation to determine Ω+. In general
form, this equation can be solved numerically. How-
ever, if Ω+ � 1, which corresponds to a low angular
velocity of the atmosphere compared to the ballistic
particle velocity near the planetary surface, then this
constant can be determined analytically to give
Ω+ = Ω

×




1 − 2
πh

[
−R−1(R−1)1/2∫

−R−1/2

ζ1 exp
(
− ζr

2

h − ζ1
2

2

)
dζr +

∞∫
−R−1(R−1)1/2

exp
(
−ζr

2

h
− ζ

2
2

2

)
dζr

]
[
−R−1(R−1)1/2∫

−R−1/2

exp
(
−ζr

2

h

)
erf
(
ζ1

h1/2

)
dζr +

∞∫
−R−1(R−1)1/2

exp
(
−ζr

2

h

)
erf
(
ζ2

h1/2

)
dζr

]



−1

.

IfΩ+ is known from the condition n(R = 1) = n0,
then the second constant C can be easily calculated
by using relation (11). Having determined these con-
stants, we unambiguously find the solution to our
problem.

SOLVING THE KINETIC EQUATION
WITH WEAK COLLISIONS

In an actual rarefied atmosphere, there are at least
weak collisions that realize Brownian motion in ve-
locity space. For the light helium- and hydrogen-type
molecules concerned, which are well represented in
the upper rarefied atmosphere, Brownian motion is
related to the natural deviation of the gravitational
field from exact axial symmetry. This deviation causes
the angular-momentum invariance to break down.

Assume that the effective scattering centers are
fixed in the laboratory frame of reference. The energy ε
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Fig. 2. The space of integrals of motion: the denser the
hatching, the larger the distribution function.
is then conserved during collisions. The small random
variations in angular momentum M can be taken
into account by substituting the collision term in the
Fokker–Planck form (Javier et al. 1999) into the
right-hand side of Eq. (3):

Stf = vr
∂

∂M

(
D(ϕ, r,M, ε)

vr

∂f

∂M

)
, (13)

where D is a positive diffusion coefficient and vr en-
sures that the total number of particles is conserved.
To be more precise, this factor is related to the recal-
culation of variables in accordance with the formulas

dMdε = m2r|vr|dvϕdvr.

The significance of weak collisions is easiest to
explain on the plane shown in Fig. 2. Transit particles
(the region with inclined hatching) are located in the
collision zone for a finite time. At a low diffusion
coefficient, these give only a small correction to the
distribution function. The situation in the zone of
particles with finite captured satellite-type orbits (the
region with horizontal hatching) is different. These
particles experience collisions for a long time. Over
a long period, the distribution function levels off in
angular momentum M up to ∂f/∂M = 0 through
collisions (13). At the ε = 0 boundary, the distribution
function is continuous. Therefore, the steady-state
distribution function (6) can be extended into the zone
of satellites:

f± = C exp
{
−
( m

2kT

) (
ω+

2r0
2 + 2gr0

)}
(14)

× exp

{
±ω+mr0(2gr0)1/2[(ε/mgr0) + 1]1/2 − ε

kT

}
,

where the “+” and “−” signs correspond, respec-
tively, to particles with the same sense of rotation as
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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Fig. 3. The radial density distribution in the atmospheres
of Venus (V), Earth (E), and Mars (M).

the planet and to particles rotating in the opposite
sense.

Given the contribution of the trapped particles,
the expressions for the density and angular velocity
change. We have the following expressions in place of
formulas (11) and (12):

nSt(R,Ω+) = n(R,Ω+) (15)

+

ζ3∫
−ζ3




−ζ2∫
−ζ1

F−dζϕ


dζr +

ζ3∫
−ζ3




ζ1∫
ζ2

F+dζϕ


dζr.

Here,

F± = C2gr0 exp
{
−(2 + Ω2

+)
2h

±
√

2
Ω+

h

×
(
ζ2r + ζ2ϕ +1− 1

R

)1/2

− 1
h

(
ζ2r + ζ2ϕ−

1
R

)}
,

ζ1 =
(

1
R

− ζr2

)1/2

,

ζ2 =
[
ζr

2 +
1
R

(R− 1)
]1/2

(R2 − 1)−1/2,

ζ3 =
(R − 1)1/2

R
.

In turn, according to the second formula (7), the
angular velocity

ΩSt(R,Ω+) =
n(R,Ω+)
nSt(R,Ω+)

Ω(R,Ω+) (16)
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+
√

2
RnSt(R,Ω+)


−

ζ3∫
−ζ3




−ζ2∫
−ζ1

F−ζϕdζϕ


 dζz

+

ζ3∫
−ζ3




ζ1∫
ζ2

F+ζϕdζϕ


 dζz


 .

Examples of our calculations performed using for-
mulas (15) and (16) are shown in Figs. 3 and 4.

DISCUSSION OF SUPERROTATION
FOR A RAREFIED ATMOSPHERE

Extensive experimental data on flows in plane-
tary atmospheres have been accumulated to date
(Allen 1973; Zasova et al. 2000). According to cur-
rent theoretical views, there are several superrotation
mechanisms: nonuniform atmospheric heating by the
Sun (Dikii 1969; Dobrovolskis and Ingersoll 1980;
Monin et al. 1987; and Izakov 2001), nonuniform
rotation of the planet due to its internal processes
(Hide 1984), and the action of the Ampr̀e force on
the current system (Kundt 1983).

Here, we restricted our analysis to the superro-
tation of a rarefied atmosphere whose properties are
described by kinetic equations. For our case in a
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Table

Planet h0 Ω0 R∗ h

Venus 4.95 × 10−4 2.47 × 10−4 1.93 × 102 0.099

Earth 1.25 × 10−3 0.059 6.63 0.25

Mars 3.24 × 10−3 0.068 6.03 0.324

zero-order approximation, we assumed that a com-
paratively dense atmosphere rigidly rotates with the
angular velocity of the planet because of viscosity.
Our calculations yield the angular velocity of the gas
in the exosphere, which can serve as an upper bound-
ary condition for the lower hydrodynamic flow of the
atmosphere.

Let us summarize the information on physical
conditions in the atmospheres of slowly rotating
planets whose angular velocities are much lower
than the ballistic angular velocity on the surface
that is required for our estimates. We present the
reduced scale heights h0 near the planetary surfaces,
the angular velocities of the planets Ω0, and the
geostationary orbital radii R∗ in tabular form using
data from Allen (1973).

All of the planets under consideration rotate
slowly, because Ω0 � 1 for them. The last column
in the table deserves a special discussion. It gives
the scale heights of the atmospheres where they are
rarefied and where our results are valid. In estimating
these quantities, we took into account the fact that
at large heights, where the gas is highly rarefied,
the temperature differs from the surface temperature
and light (helium and hydrogen) particles dominate.
Therefore, h are many times larger than h0 near the
planetary surface. It would be more appropriate to
take an elevated level as the lower boundary of a
rarefied atmosphere, but this does not change our
qualitative conclusions.

For the tabulated data, we determined the radial
density and angular-velocity distributions using for-
mulas (15) and (16). Superrotation of the type under
consideration is most pronounced for Venus, where
ωmax/ω0 ≈ 30. For the Earth, where ωmax/ω0 ≈ 1.02,
superrotation is indistinct. Superrotation shows up
more clearly in the atmosphere of Mars, where
ωmax/ω0 ≈ 1.03. Note that our conclusions regarding
the exospheric superrotation of Venus should be
treated with care. The point is that the theory of
thermal tides (Monin et al. 1987) plays an important
role in understanding the effect under consideration
in a dense atmosphere. Allowance for the mutual
influence of flows in dense and rarefied atmospheres
requires further studies.
Thus, arbitrarily weak collisions with light (hydro-
gen and helium) particles along with effective “col-
lisions” with gravitational-field nonuniformities in a
steady state cause the distribution function to level off
in the zone of satellites. This leveling leads to different
levels for particles with the same sense of rotation as
the planet and those rotating in the opposite sense.
Satellites are fast particles for slowly rotating planets.
The above superrotation can be explained by the fact
that the ballistic angular velocity on the surface is
higher than the angular velocity of the planet. This
effect vanishes outside the geostationary orbit that
satisfies the condition

R∗ =
(
g

ω2
0r0

)1/3

=
1

Ω2/3
0

.

Therefore, for this superrotation mechanism to take
place, the planetary rotation must also be sufficiently
slow in the sense that 1 � R∗.

The three-dimensional problem of the kinetics
of a rarefied atmosphere corresponds to an actual
situation. It is clear from symmetry that in three-
dimensional calculations, no angular velocity will
appear in the θ direction and that the angular velocity
in the ϕ direction will depend not only on radius but
also on latitude. This is because particles arrive at
the point with the chosen radius and latitude from
the surface in flat orbits that lie in all the planes
passing through the radius vector. Therefore, there
is an effective planetary radius of its own at each
latitude. Our calculations yield estimates of the actual
processes in the equatorial plane.

Atmospheric superrotation can also affect the
electrodynamics of the ionosphere. The point is that at
heights where the density of charged particles ismuch
lower than the density of neutral particles, charged
particles can be treated as a passive scalar entrained
by collisions with neutral particles (Gershman 1974).
This effect produces a conductive plasma sheet that
does not rotate rigidly with the planet. This type
of motion keeps the planetary electric generator,
which produces a kind of a current system in the
ionosphere and atmosphere, running (Bespalov and
Chugunov 1996).

CONCLUSIONS

We have shown that one of the superrotation
mechanisms for rarefied planetary atmospheres is
the separation of particles: some of them fly away
from the planet, while others become its satellites.
Based on the proposed mechanism, we estimated the
superrotation for the exospheres of Venus, Earth, and
Mars.

Our main results are as follows.
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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(1) We found an exact solution of the boundary-
value problem for the two-dimensional collisionless
Boltzmann equation that includes particles with el-
liptical and hyperbolic orbits.

(2) We obtained and analyzed the solution of the
kinetic equation with weak elastic collisions.

(3) We determined the spatial distributions of the
atmospheric-gas density and mean angular velocity
and established the possibility of exospheric superro-
tation.

In conclusion, it should be emphasized that the
separation of particles with weak collisions is a uni-
versal, although, probably, not the only superrotation
mechanism for an upper rarefied slowly rotating at-
mosphere.
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Abstract—The physical processes in the tail of the region where the solar wind interacts with a partially
ionized local interstellar medium are investigated in terms of a self-consistent kinetic–gas-dynamical
model. Resonant charge exchange between hydrogen atoms and plasma protons is shown to cause the
contact discontinuity to disappear far from the Sun. The solar wind plasma cools down and, as a result, the
parameters of the plasma and hydrogen atoms approach the corresponding parameters of the unperturbed
interstellar medium at large heliocentric distances. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: solar wind, heliosphere, interstellar medium.
INTRODUCTION

The Sun and the Solar System are known to move
in a partly ionized local interstellar medium (LISM)
(Lallement 1996). Direct Ulysses measurements of
interstellar helium atoms (Witte et al. 1996) yielded
the translational velocity of the Sun relative to the
LISM, ≈25 km s−1, and the LISM temperature,
≈6000 K. Only these two LISM parameters (veloc-
ity and temperature) can be satisfactorily determined
in the solar neighborhood. Other interstellar param-
eters, such as the degree of ionization, the densi-
ties of the neutral and charged components, and the
magnitude and direction of the interstellar magnetic
field, can be determined only indirectly, by theoret-
ically interpreting various space experiments. Indi-
rect measurements include the backscattered solar
Lyman α radiation experiments onboard the SOHO,
Voyager, and Pioneer spacecraft; pickup-ion mea-
surements onboard the Ulysses and ACE spacecraft;
Voyager solar wind measurements at large heliocen-
tric distances; observations of Lyman α absorption
toward nearby stars; and flux measurements of ener-
getic neutral atoms (ENA). An adequate theoretical
model for the solar wind interaction with the LISM
is required to properly interpret these measurements.
The concept of solar wind interaction with LISM
plasma was suggested in the pioneering paper by
Baranov et al. (1970). It has been developed for the
last 30 years by several research groups [see, e.g.,
Izmodenov (2000, 2002) for a review].

*E-mail: izmod@ipmnet.ru;http://delta.ipmnet.ru/

~izmod/
**E-mail: alexash@ipmnet.ru
1063-7737/03/2901-0058$24.00 c©
The structure of the solar wind–LISM interaction
region is shown in Fig. 1. The contact discontinuity,
which is also called the heliopause (HP), separates
the solar wind from the interstellar plasma. The he-
liopause may be treated as an obstacle both to the
supersonic (with a Mach number of about 10) solar
wind and to the supersonic (with a Mach number
of about 2) interstellar wind. Supersonic flow around
an obstacle is known to be accompanied by shock
formation. The supersonic solar wind passes through
the termination shock (TS) to become subsonic. Af-
ter the passage of the bow shock (BS), the local
interstellar gas becomes subsonic. Below, the solar
wind–LISM interaction region composed of the HP,
TS, and BS is called the heliospheric interface for
short.

Note that when the effect of interstellar atoms is
disregarded, the qualitative flow pattern in the tail
region is more complex. The solar wind flow is sub-
sonic in the nose of the region between the termina-
tion shock and the heliopause. The flow then passes
through the sonic line (Baranov and Malama 1993)
to become supersonic. As a result, a complex gas-
dynamical structure with a Mach disk (MD), a tan-
gential discontinuity (TD), and a reflected shock (RS)
is formed in the tail region (Fig. 1a).

The neutral interstellar component, which con-
sists mostly of hydrogen atoms, interacts with the
plasma component through charge exchange and
strongly affects the locations of the discontinuity
surfaces and the heliospheric interface structure. The
main difficulty in modeling the heliospheric interface
is that the mean free path of neutral atoms is com-
parable to the characteristic size of the heliosphere.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The structure of the heliospheric interface: HP is the heliopause, TS is the heliospheric termination shock, BS is the
bow shock, MD is the Mach disk, TD is the tangential discontinuity, and RS is the reflected shock. The left (a) and right (b)
panels correspond to the calculations without interstellar hydrogen atoms and to the self-consistent solution with interstellar
hydrogen atoms, respectively.
Therefore, a kinetic equation must be solved to
describe the motion of the neutrals. A self-consistent
two-component (plasma and hydrogen atoms) model
of the heliospheric interface was proposed by Bara-
nov et al. (1991) and realized by Baranov and
Malama (1993). The latter authors also performed
the first numerical simulations of the heliospheric
tail. Figure 1 shows the locations of the discontinuity
surfaces with and without an allowance for the effect
of interstellar hydrogen atoms. The effect of atoms
causes the discontinuity surfaces to approach the
Sun. In the tail region, the flow structure changes
qualitatively. The termination shock becomes more
spherical and the Mach disk (MD), the reflected
shock (RS), and the tangential discontinuity (TD)
disappear (Fig. 1).

In particular, the model of the heliospheric inter-
face allows us to answer the following two funda-
mental questions: (1) Where is the boundary of the
Solar System? (2) How far does the influence of the
Solar System on the surrounding interstellar medium
extend?

Answering the first question requires defining the
boundary of the Solar System. The heliopause, the
surface that separates the solar wind from interstellar
plasma, can be assumed to be the natural bound-
ary of the Solar System. Note that the influence of
the Solar System on the interstellar medium extends
much farther than that of the heliopause. The sec-
ondary hydrogen atoms produced by charge exchange
between interstellar atoms and solar wind protons
play a significant role in this influence. The mutual
effects of the charge and neutral components in the
heliospheric interface were studied in detail by Bara-
nov and Malama (1993, 1995, 1996), Baranov et al.
(1998), and Izmodenov et al. (1999, 2000, 2001).
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However, these authors focused mainly on the nose
of the heliospheric interface. At the same time, study-
ing the heliospheric tail region is also of consider-
able interest. For the heliospheric tail, the definition
of the heliopause as the Solar System boundary is
generally incorrect. Indeed, as can be seen from the
calculations based on the Baranov–Malama model,
the heliopause is not a closed surface and, hence, the
solar wind region occupies unbounded space.

Here, our goal is to study the structure of the tail
region of the heliospheric interface. We focus on the
charge exchange processes.

THE MODEL

To investigate the effect of charge exchange
on the structure of the heliospheric tail, we used
the kinetic–gas-dynamical model by Baranov and
Malama (1993). In this model, the solar wind at
the Earth’s orbit was assumed to be steady and
spherically symmetric. The interstellar onflow was
assumed to be uniform and plane-parallel. Under
these conditions, the flow in the interaction region
is steady and axisymmetric.

To describe the charged component (electrons and
protons), we solved the hydrodynamic Euler equa-
tions with the source terms that took into account
the effect of neutral atoms. The motion of interstellar
atoms in the heliospheric interface was determined by
solving the kinetic equation

wH · ∂fH(r,wH)
∂r

+
F
mH

· ∂fH(r,wH)
∂wH

(1)

= −fH(r,wH)
∫

|wH − wp|σHP
ex fp(r,wp)dwp
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+ fp(r,wH)
∫

|w∗
H − wH|σHP

ex fH(r,w∗
H)dw∗

H

− (βi + βimpact)fH(r,wH).

Here, fH(r,wH) is the hydrogen atom velocity dis-
tribution function; fp(r,wp) is the local Maxwellian
proton velocity distribution function; wp and wH are
the individual velocities of the protons and hydro-
gen atoms, respectively; σHP

ex is the cross section for
charge exchange between hydrogen atoms and pro-
tons; βi is the photoionization rate;mH is the mass of
a hydrogen atom; βimpact is the electron impact ion-
ization rate; andF is the sum of the solar gravitational
force and the radiation pressure force.

The charged and neutral components interact
mainly through charge exchange, H +H+ → H+ +
H . Nevertheless, photoionization and electron im-
pact ionization are also included in Eq. (1). The
interaction between charged and neutral particles
results in the exchange of mass, momentum, and
energy between the components. The source term
Q = (q1, q2,z, q2,r, q3)T is on the right-hand sides
of the Euler equations for the charged component,
where q1, q2 = (q2,z, q2,r)T , and q3 are the mass,
momentum, and energy sources, respectively. The
source terms are the integrals of the distribution
function fH:

q1 = nH(βi + βimpact), nH =
∫
fH(wH)dwH,

q2 =
∫

(βi + βimpact)wHfH(wH)dwH (2)

+
∫∫

uσHP
ex (u)(wH − wp)fH(wH)fp(wp)dwHdwp,

q3 =
∫

(βi + βimpact)
w2

H

2
fH(wH)dwH (3)

+
1
2

∫∫
uσHP

ex (u)(w2
H − w2

p)fH(wH)fp(wp)dwHdwp.

Here, u = |wH −wp| is the relative atom–proton ve-
locity.

As the boundary conditions, we assumed that
the velocity of the unperturbed local interstellar flow
was V∞ = 25 km s−1 and that the LISM hydrogen-
atom and proton densities were 0.2 and 0.07 cm−3,
respectively. The LISM temperature was taken to
be 6000 K. The solar wind velocity, density, and
Mach number at the Earth’s orbit were taken to
be 450 km s−1, 7 cm−3 and 10, respectively. The
hydrogen-atom velocity distribution function in the
unperturbed LISM was assumed to be Maxwellian.

The Euler equations with the source term Q were
solved simultaneously with the kinetic equation for
hydrogen atoms. To obtain a self-consistent solution,
we used an iterativemethod. The kinetic equation was
solved by the Monte-Carlo method with trajectory
splitting. In contrast to the previous studies based on
the Baranov–Malama model, we numerically com-
puted the solar wind interaction with the LISM with
various sizes of the tail region. In some cases, the
size of the computational region reached 50 000 AU
along the symmetry axis and 5000 AU perpendicular
to the symmetry axis. To achieve the convergence
of the iterations, we used computational grids with
various resolutions. The dependence of the numerical
solution on outer boundary conditions was estimated
by varying the extent of the tail region.

QUALITATIVE ANALYSIS

Here, we consider the effect of charge exchange
(H + H+ → H+ + H) on the plasma flow in the tail
region of the heliospheric interface. The supersonic
solar wind passes through the heliospheric termina-
tion shock, where its kinetic energy transforms into
thermal energy. If the heliopause in the tail region is
assumed to be parallel to the direction of the inter-
stellar onflow (as follows from our numerical simula-
tions), then the solar windmay be considered as a flow
in a nozzle with a constant cross section. Our com-
putations for the boundary conditions correspond-
ing to the model described above show that in the
case without hydrogen atoms, the solar wind pressure
downstream the termination shock in the tail region is
severalfold lower than the interstellar pressure. Under
these conditions, the solar wind flow must decelerate,
reaching a minimum velocity at infinity. As a result,
the minimum velocity is determined only by the solar
wind parameters downstream the termination shock
and by the interstellar pressure; it depends neither
on the LISM density nor on the relative Sun–LISM
velocity. Thus, in the case without atoms, a solution in
which the solar wind (and, hence, the Solar System)
extends to infinity into the heliospheric tail is pos-
sible in terms of the hydrodynamic equations. Such
qualitative reasoning also remains valid when the he-
liopause expands or contracts, because the solar wind
flowmay then be considered as a flow in an expanding
or contracting nozzle.

A qualitatively different situation arises when the
effect of interstellar hydrogen atoms is taken into
account. Our computations show that in this case,
the solar wind pressure downstream the termina-
tion shock is higher than the interstellar pressure.
The solar wind should then be accelerated by the
pressure gradient. However, interstellar atoms play a
significant role here. They affect the solar wind flow
through charge exchange: having mean free paths
of the order of the size of the heliospheric interface,
ASTRONOMY LETTERS Vol. 29 No. 1 2003



A MODEL FOR THE TAIL REGION OF THE HELIOSPHERIC INTERFACE 61

 

0.6

3000
0

1500

1.2

1.8
 

..........................................................................................................

 

Solar wind velocity

Interstellar plasma velocity

Solar wind density

Interstellar plasma density

 

~3000 AU

 

1

2

3

4

n

 

H,

 

∞

 

 = 0.2 cm

 

–3

 

s

 

, AU

Fig. 2. The distributions of plasma velocity (curves 1 and
2) and density (curves 3 and 4) along the contact surface.
Curves 2 and 4 correspond to the interstellar medium;
curves 1 and 3 correspond to the solar wind. The velocities
and densities are normalized to their interstellar values; s
is the heliocentric distance along the contact surface.

 

400

–4000
0

–8000 0

800

 

x

 

, A
U

 

n

 

H, 

 

∞

 

 = 0.2 cm

 

–3

 

M

 

 

 

∞

 

 = 2

1.4 1.2 0.8

HP
BS

 

~ –3000 AU

 

TS

 

M

 

 = 1

 
.....................................................................

...........
 

z

 

, AU

Fig. 3. Isolines of the gas-dynamical Mach number (M).
The solar wind flow is supersonic at distances larger than
4000 AU. The Mach number approaches its value in the
unperturbed LISMwith increasing heliocentric distance.

the interstellar hydrogen atoms fill its tail region. The
fraction of primary (which did not undergo charge
exchange in the heliospheric interface) interstellar
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atoms increases with heliocentric distance. The tem-
perature (6000 K) and velocity (25 km s−1) of the
primary interstellar atoms are lower than the temper-
ature (100 000 K) and velocity (100 km s−1) of the



62 IZMODENOV, ALEXASHOV

 

1000

–40000 –20000 0

 

z

 

, AU

2000

3000

0

0.30
0.28
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

 

n

 

H

 

, cm

 

–3

 

Hydrogen wall

Heliopause

 

x

 

, A
U

Fig. 5. The two-dimensional density distribution of hydrogen atoms in the heliospheric interface. At heliocentric distances
∼40 000 AU, the atomic density is close to its value in the unperturbed LISM. The hydrogen wall, the increase in the density
of hydrogen atoms in front of the heliopause, is also seen in the figure. The intensity of the hydrogen wall decreases with
increasing heliocentric distance.
post-shock solar wind. Charge exchange produces
new protons with lower average and thermal veloc-
ities than those of the primary solar protons. Thus,
charge exchange leads to the effective cooling and
deceleration of the solar wind. Because of the solar
wind acceleration by the pressure gradient, on the one
hand, and its deceleration by charge exchange, on the
other hand, the heliopause is not always parallel to
the onflow direction. Since the fraction of primary in-
terstellar atoms increases with heliocentric distance,
it would be natural to expect the solar wind velocity,
density, and temperature to approach their interstellar
values.

Despite many assumptions, the above qualitative
analysis is confirmed by our numerical calculations.
In the next section, we present and discuss the results
of our numerical calculations.

RESULTS AND DISCUSSION

Our calculations confirm the above qualitative
analysis. The distributions of plasma parameters in
the heliotail region are shown in Figs. 2 and 3.
Figure 2 presents the plasma-density and velocity
distributions on both sides along the heliopause.
In classical hydrodynamics, the conditions at a
tangential discontinuity, which the heliopause is,
are (1) the absence of mass transport through the
discontinuity and (2) a pressure balance on both
sides of the discontinuity. These conditions admit a
jump in density and tangential velocity when passing
through the heliopause. In the presence of interstellar
hydrogen atoms, momentum and energy are trans-
ferred between the solar wind and the interstellar
medium via charge exchange. Therefore, the jumps in
density and velocity become weaker with increasing
distance calculated along the heliopause from its
nose. At z ≈ −3000 AU, where z is the distance
along the symmetry axis and the minus sign denotes
the direction along the LISM flow, the jumps in
density and tangential velocity disappear (Fig. 2).

The plasma velocity downstream the termination
shock is ≈100 km s−1. This velocity then decreases
as a result of charge exchange and approaches the
interstellar velocity. The solar wind also effectively
cools down through charge exchange. The interstellar
Mach number is M ≈ 2. Figure 3 shows isolines for
Mach numbers in the heliospheric interface. We see
that the solar wind passes through the speed of sound
at z ≈ −4000 AU. The Mach number then increases
with distance from the Sun, approaching its interstel-
lar value. The heliopause is also shown in Fig. 3. The
ASTRONOMY LETTERS Vol. 29 No. 1 2003
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z = −3000 AU line indicates the boundary behind
which there are no jumps in density and velocity at
the heliopause.

Figures 4 and 5 present the distributions of inter-
stellar hydrogen atoms in the heliospheric tail. Fig-
ure 4 shows the densities, velocities, and tempera-
tures of the interstellar atoms along various lines of
sight. The line-of-sight angle θ in these figures is
measured from the LISM onflow direction (Fig. 1).
The parameters of the hydrogen atoms approach their
interstellar values at distances less than or of the order
of 20 000 AU for all lines of sight. The approach is
faster for smaller θ. It is also interesting to note that
the hydrogen wall, the increase in the hydrogen-atom
density in the region between the heliopause and the
bow shock (Baranov et al. 1991; Izmodenov 2000),
is noticeable even at large θ ≈ 150◦–170◦. The two-
dimensional distribution of hydrogen atoms in the
heliospheric tail is shown in Fig. 5.

Note that charge exchange significantly facilitates
the numerical solution of our problem. An importance
circumstance is that the solar wind becomes super-
sonic in the heliospheric tail, which allows us to set
proper boundary conditions.

It should also be noted that here, we considered the
effect of charge exchange alone. In the future, apart of
charge exchange, the effects of various hydrodynamic
and plasma instabilities on the flow structure should
be considered. The interstellar and heliospheric mag-
netic fields can also affect the flow structure. Recon-
nection can be important as well.

CONCLUSIONS

We have studied the effect of interstellar hydrogen
atoms on the structure of the heliotail region. In par-
ticular, we showed the following:

(1) Neutral hydrogen atoms qualitatively change
the flow pattern of the solar wind and the LISM in
the tail region via change exchange: the termination
shock becomes more spherical and the Mach disk,
the reflected shock, and the tangential discontinuity
disappear (Fig. 1). The discontinuities, for example,
the heliopause, that exist in a purely gas-dynamical
solution in the entire tail region become weaker in the
solution that takes into account atoms and disappear
at distances larger than 3000 AU.

(2) The parameters of the hydrogen atoms, the
solar wind plasma, and the LISM in the tail region
at distances above 20 000 AU from the Sun ap-
proach their values in the unperturbed LISM because
of charge exchange. This allows us to estimate the
extent to which the Solar System affects the sur-
rounding interstellar medium and, hence, to estimate
ASTRONOMY LETTERS Vol. 29 No. 1 2003
the Solar System size in the tail region (≈20 000–
40 000 AU). In contrast to the nose of the heliospheric
interface, the Solar System boundary in its tail region
is diffusive in nature.

(3) The effect of hydrogen atoms causes the solar
wind to become supersonic with increasing heliocen-
tric distance (from 4000 AU). This removes the diffi-
culties in specifying boundary conditions and makes
it possible to obtain a proper numerical solution.
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Abstract—We consider the image formation for an extremely distant source in an optically dense,
homogeneous, and isotropic medium. We show that the angular size of the image would presently be
θ0 ≈ 10′, irrespective of the initial redshift z. Parameters of the inhomogeneities capable of producing
the observed effect were estimated. We note that this effect should be taken into account for the baryon
density fluctuations that were damped according to Silk at the prerecombination epoch. The spot radiation
spectrum is shown to be a diluted Planckian spectrumwith a dilution factor much larger than unity.We also
point out the presence of peculiar tangential polarization in the spot, which reaches several tens of percent
at the spot edge. All these observational features clearly distinguish the fluctuations under consideration
from the standard fluctuations. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: theoretical and observational cosmology.
INTRODUCTION
The evolution of matter and radiation in the early

Universe is accompanied by the various processes of
the formation and damping of inhomogeneities and
nonequilibria. These include matter density fluctua-
tions at the inflation stage, primordial black holes,
various nonuniformities in the distribution of matter
and antimatter, strings, and many others (Khlopov et
al. 2000, 2002; Dubrovich and Khlopov 1989; Polars-
ki and Starobinsky 1994; Singh andMa 2001; Nasel-
sky and Novikov 2001; Brandenberger et al. 2002).
Most of these inhomogeneities are local in nature
and are small-scale perturbations. Some of the sug-
gested types of perturbations are the so-called mass-
compensated ones.

However, caution is needed in this case, because
exact compensation can be achieved only at a sin-
gle instant of time, while the rest of the time, due
to the different evolution laws of the energy density
for the mutually compensating components, there is
a mismatch between their contributions (see, e.g.,
Naselsky and Novikov 2001). The evolution of the
gravitational potential for such a protoobject can be
described, for example, by the method of Bashlinsky
and Bertschinger (2002).

RADIATIVE TRANSFER
We consider those inhomogeneities which emerge

from under the horizon at the epoch of complete mat-
ter ionization, i.e., at redshifts zi > 104. The fate of

*E-mail: dubr@MD1381.spb.edu
1063-7737/03/2901-0006$24.00 c©
such inhomogeneities has been repeatedly and exten-
sively studied. The general conclusion reduces to the
assertion that the energy contained in them dissipates
and, hence, all the spatial fluctuations in the CMBR
temperature attributable to them are completely ab-
sent: the fluctuations are “blurred” (Zel’dovich and
Novikov 1975).

The simplest and obvious argument for this con-
clusion is an estimate of the optical depth τT, for
example, for Thomson scattering. It becomes much
larger than unity even at z > 1300 and increases
with z (for z > 104):

τT = neσTct ≈ 10−2(1 + z), (1)

where ne is the electron number density, σT is the
cross section for Thomson scattering by electrons, c
is the speed of light, and t is the cosmological time.

However, in a homogeneous and isotropic Uni-
verse, it is improper to use the logic of the astro-
physics of pointlike objects obscured by an opaque
cloud. The point is that in a strongly scattering
medium, the photons emitted by a point source
cannot move far from the point of their production.
Their motion is diffusive; i.e., the velocity of their
recession from the center significantly depends on τ
and is always effectively lower than the speed of light.
The distance R traversed by a photon in time t for a
constant ne is

R ≈ ct/τ1/2. (2)

As ne ∼ 1/t2 decreases due to the expansion of the
Universe, the photon mean free path increases and
2003 MAIK “Nauka/Interperiodica”
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the size of the region where all of the energy released
by the source is localized is R ∼ t3/2. However, R
is always smaller than the horizon size. The limiting
size is L0 at the time of hydrogen recombination,
when the number of free electrons rapidly decreases
and the Universe becomes transparent. The value
of L0 is equal to the mean free path before the last
photon–electron collision. Numerical estimates yield
L0 ≈ (0.2–0.15)L, where L is the horizon size at z =
1100. It is easy to see that in this logic, there is no
specificity of the different times at which the sources
begin to radiate if only this occurs much earlier than
z = 1100. We emphasize once again that the above
assertion is universal with a high accuracy; i.e., it is
virtually independent of the details of energy transfer
and transformation in the protoobject.

Indeed, let the radiation begin at an epoch with
a high matter temperature, when, for example, elec-
tron–positron pairs are present in large quantities and
the radiation spectrum is very hard. Then, this radia-
tion can heat the surrounding matter, turn into pairs
of particles and antiparticles, produce shock waves,
or transform into other forms of energy. However, it
is clear that none of these transformations allow us
to remove the total radiation energy of a protoobject
from a limited region around it. If there is a pressure
excess in the fluctuation volume, then the hydrody-
namic relaxation will proceed at a velocity equal to the
speed of sound cs at a given time. For large z, cs =
c/
√

3. However, in this case, complete thermalization
within the perturbed volume can proceed only on long
time scales and in a complicated way.

Subsequently, as a result of the cooling of the Uni-
verse, the electron–positron pairs annihilate, thereby
returning the energy transferred to them, and the
shock waves are damped, also giving their energy
back to the matter and establishing a local value of
their temperature because of its strong interaction
with the background radiation. Thus, the entire evo-
lution of the superequilibrium radiation reduces to
its thermalization in a small region centered at the
initial fluctuation position. This most likely occurs at
z ≈ 108 and the subsequent evolution will be purely
diffusive. By this time, the radius of the region where
the object energy is localizedmay significantly depend
on the evolutionary track. However, it is clear that in
any case, the radius is much smaller than the local
horizon size and, hence, it does not affect the final (at
z = 1100) size of the observed spot.

INTENSITY

The intensity I0 in the spot is determined by the
part of the energy that is transferred to photons. In
principle, it depends on zi because of photon red-
dening. The photon diffusion for a rapidly varying
ASTRONOMY LETTERS Vol. 29 No. 1 2003
mean free path requires a special analysis. One may
apparently expect a distribution of intensity I in spot
radius r of the type

I = I0exp(−r2/2L2
0). (3)

As was said above, L0 does not depend on z. The
specific I distribution also depends on the pattern of
variations in the object luminosity with time. Clearly,
for a variability times scale (recalculated for z) shorter
than the photon mean free time, the distribution I(r)
is different.

Let us estimate I0 for given initial fluctuation pa-
rameters Ii and Ri. First, note the obvious fact that if
the expansion of the region occupied by an excess of
photons follows the exact Friedmann law

RF = Ri(1 + zi)/(1 + z), (4)

then the deviation of the photon temperature in this
region relative to the CMBR does not vary with time.
This is due to the simultaneous “correct” variations
in the photon frequency and number density. The
quantity δT/T varies with time, because there is a
mismatch between the rate of change in the volume
occupied by the fluctuation and the rate of photon
reddening. The former is determined by the non-
Friedmann component of the fluctuation expansion
velocity because of diffusion (Rd) and the sound wave
(Rs). The fluctuation radiusR is

R = RF +Rd +Rs. (5)

All three terms in this expression are functions of
time. However, we are primarily concerned with their
values at the time of the last scattering. Without
going into details, we can assert that Rs is much
smaller than Rd = L0. Using this fact, we can easily
estimate the final value of δT/T due to the change in
the protoobject surface area with the correct change
in photon frequency:

δT0/T ≈ δTi/T (RF)2/(RF + L0)2. (6)

A detectability level δT0/T ≈ 10−7 allows us to “see”
a protoobject with an initial amplitude of, for example,
δTi/T ≈ 0.1 and a size RF ≈ 10−2L0. Using expres-
sion (4), into which wemust substitute z correspond-
ing to the last photon collision, i.e., z ≈ 1000, we
obtain

Ri ≈ L0/(1 + zi) ≈ 3 × 1022/(1 + zi) cm. (7)

The size of the local horizonLi is≈1030/(1 + zi)2 cm
and the object size becomes equal to it at z = 3× 108.
This circumstance imposes no bans on zi. The situ-
ation when Ri > Li is also possible. It only requires
that condition (7) be satisfied. Note also another ob-
vious fact: the regular spherical shape of the spot (as
well as its main size L0) is formed during the last
collisions between diffusing photons. Therefore, the
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form of the initial fluctuation intensity distribution (at
z = zi) when condition (7) is satisfied plays no role.
Clearly, the initial asphericity is suppressed by a factor
of ∼RF/L0.

SPECTRUM

A more detailed analysis of this process leads
us to yet another important conclusion. The photon
energy spectrum is not Planckian. This is a direct
result of the non-Friedmann law of variation in
the fluctuation-region radius. Indeed, the Planckian
spectrum unambiguously determines the position of
the intensity peak and the photon number density.
In our case, however, the photon-frequency variation
is determined only by the general expansion of the
Universe, while the density variation is determined
by a specific (non-Friedmann) expansion law of the
perturbed region. This difference shows up most
clearly at the last step when, because of the rapid
decrease in the density of free electrons, the photon
mean free path and, accordingly, R change by several
factors as the photon frequency changes by 10–15%.
A similar situation takes place in the envelopes or
nebulae around stars.

The resulting spectrum is a diluted Planckian
spectrum: this is a standard Planckian spectrum in
which all photon frequencies do not change and the
photon number density at all frequencies was reduced
by the same factor. In this case, the color temperature
of the radiation depends on frequency. More specif-
ically, it is almost constant in the Rayleigh–Jeans
region and the dependence is logarithmic in the Wien
wing.

The spectrum of the observed spot could be deter-
mined by yet another factor. If the initial fluctuation is
formed at 1010 > z > 104, the thermalization of the
superequilibrium radiation is incomplete (Sunyaev
and Zel’dovich 1970; Illarionov and Sunyaev 1974a,
1974b). In the range 108 > z > 105, the radiated en-
ergy transforms into the so-calledµ disturbances. For
even lower z, the observed spectrum is roughly the
same as that at the time of its production with small
so-called y disturbances. In both cases, there is also
dilution.

Such sources must be, in particular, small-scale
fluctuations in the matter density damped according
to Silk. Actually, in this case, the peculiar velocities
of primordial sound waves with small wavelength are
damped. Clearly, the energy of these waves trans-
forms into the heating of matter and photons, but it
will again be unable to go far from the place of its
generation. The contribution of this process to the
spatial CMBR fluctuation spectrum is determined by
the statistical summation of spots of identical sizes
with random coordinates of their centers and with
certain intensities. The separations between the spot
centers and their intensities correspond to a set of
damping harmonics l. However, the final result sig-
nificantly depends on the initial power spectrum in the
range of small scales.

POLARIZATION

An important consequence of the process consid-
ered is a peculiar polarization pattern of radiation in
the spot. For point symmetry, scattering by electrons
yields tangential polarization: the electric vector is
perpendicular to the spot radius. The degree of polar-
ization monotonically increases from zero at the spot
center to ∼80% at its edge, irrespective of the spot
angular size.

CONCLUSIONS

Below, we summarize our main conclusions. In
the presence of large temperature fluctuations or
small-scale entropy inhomogeneities at early (pre-
recombination) evolutionary stages of the Universe,

–a proper allowance for multiple scattering gives
rise to spots of identical sizes in the observed CMBR
intensity distribution; at the epoch of hydrogen re-
combination, this scale is θ ≈ 10′;

–the radiation spectrum in these spots is essen-
tially non-Planckian;

–the radiation in a spot has a strong tangential
polarization.

Naturally, to verify these conclusions by observa-
tions, a more detailed analysis of all the above model
assumptions and detailed numerical calculations are
required.
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