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The results of calculations dHe, 3H, and D production as a result of
the disintegration of primordidiHe by high-energy protons and anti-
protons in the early Universe are reported. It is shown that for primary
particle energie€, ,>0.2 GeV the main role ifHe, *H, and D pro-
duction is played by the secondary proton cascade that develops in the
cosmological plasma and which destrilde most intensively aE
~75 MeV. At the current state of the experimental data one can cal-
culate the number of nuclei produced to within 10%, and investigation
of the inelasticp*He interaction channels &~ 75 MeV will make it
possible to improve substantially the accuracy of calculations of the
additional production of light elements. @999 American Institute of
Physics[S0021-364(109)00109-7

PACS numbers: 26.3%.c, 98.80.Ft, 25.40.Ep, 27.16h, 25.43+t

The additional production of the nuclei of light elements in the interaction of high-
energy protons and antiprotons with the cosmological plasma produced during primordial
nucleosynthesis is being studied in the literature in connection with the possibility of
placing limits on the density of sources of such particles associated witthypetheti-
cal) physics of the very early Universe. Thus the requirement that the amount of D and
3He produced not exceed their observed abundance in the present-day Universe makes it
possible to obtain limits on the parametersof the grand unification mbdeld, on the
density of primordial black holesThe investigation of the possible evolution of the
chemical composition in the early Universe is also of independent interest for cosmology.

A high-energy protoriantiprotor) interacting with a plasma initiates secondary had-
ron and electromagnetic cascades in the plasma. The additional producfible,6H,
and D as a result of the disintegration of primorditle by an electromagnetic cascade
has its own complicated and specific character and can serve to tighten the limits on the
particle sources. This is a subject for a separate paper.

Continuing the investigation of nonequilibrium cosmological nucleosynthesis
(NCN) in the early Universe with the participation of nucledntis letter reports the
results of calculations using a more complicated model reflecting the current state of the
experimental data(ln the present case nonequilibrium means that the energy of the
particles that break ufHe is much greater than the average thermal energy of the
equilibrium particles in the cosmological plasma.
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FIG. 1. The factoﬁp[arf,LemHe/E‘;"], determining the intensity ofHe disintegration by a proton-initiated
secondary cascade. The numbers beneath the curves are the energy of the primary proton, in GeV.

We are studying a uniform cosmological plasma consisting of hydrogen and
helium-4 nuclei and electronsn{yz=0.1my,n.=rmu). The primordial*He is disinte-
grated by the primary particle and by the secondary proton cascade initiated by the
primary particle. The energy distribution of the protons in the secondary cascade is
described by the functiof, (f;) such thatff,;,dE is the total number of nonequilib-
rium secondary protons produced by the primary protamtiproton. The number of
nuclei of the element A¥He, *H, or D) produced by a secondary proton cascade initiated
by a proton can be expressed as

dE,

tot tot O_inel
p p pPHe

WhereEg’t is the total macroscopic proton—plasma interaction cross section, viz.,

(o2 na (Tinel MNape o
H
nAZJ’ fy p*He—AX He e J f, p*He “He O ptHe AX

tot
Zg)t: [O'EJ;I)+ T Coulombl Ny + [O'p%He] Mpe,
and similarly for an antiproton witl, replaced byf .

The amount of primordiafHe disintegrated by the cascade is proportional to the
productfp[ayfk"emHemg’t]. This product as a function of the secondary-proton energy is
displayed in Fig. 1 for a number of values of the primary proton energy. For an
antiproton-initiated cascade the form of the curf/ﬁwg‘f,'*emHe/E}ft] is essentially iden-
tical, but the cascade is less energéticsubstantial fraction of the energy goes into the
annihilation channgl One can see from Fig. 1 that the secondary proton cascade destroys
“He most intensively in the energy rangg~60-100 MeV (this is also valid for an

antiproton-initiated cascagle
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FIG. 2. Amount ofHe, *H, and D nuclei additionally produced by a primary antiprottitick lines and by the
proton cascade initiated by the primary antiprotdimin lines as a function of the antiproton energy. The

amount of deuterium produced in the reactifirle — DX is shown for the minimum R, and maximum R,
estimates of the D yield ip*He annihilatiorf The dotted line shows the amountiie nuclei produced in the
reactionp*He — p°HeX.

For studying the relation between the contributions to the additional production of
3He, ®H, and D from the primary particle itself and from the secondary proton cascade
which it initiates, the antiproton case is more important — see Fig. 2. In explanation of
the figure, it should be mentioned that experimental data on the yield of fragments in

p*He annihilation exist only fofHe, that the tritium yieldcan be estimated with a large
error by making additional assumptions, and that the the estimated deuterium yield varies
over very wide limitst Tritium decays with a half-life~12 yr into *He. For E,>100

MeV the production ofHe + 3H by the secondary cascade starts to exceedteet

3H production due to the annihilation of the primary antiproton. Egr-40 MeV the
production of deuterium by the secondary cascade exceeds the minimum estimate of D
production byp*He annihilation, and foE;>0.2 GeV it exceeds the maximum estimate.

The inelastic nonannihilatioE“He interaction does not play a large role anywhere in the
energy range.

On the whole, the existing experimental data for pfiele interaction are inadequate
for constructing a reliable model of the additioféle + *H and D production in NCN
processes initiated in the early Universe by antiprotons with engpgy0.2 GeV.

Models ofp* He annihilation, with additional theoretical assumptions made in order
to estimate théH and D vyields, are being discussed in the literatisee, for example,
Ref. 5. Such an estimate is especially important for the problem of annihilation of
antimatter in the early Universe. Annihilation occurs at thermal energies, and the second-
ary cascade can be completely neglected. The yieftHef>H, and D will be determined

directly by the yield of these fragments in the annihilation channel oi?fhrdae interac-
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tion. The Coulomb interaction and, after recombination of the Universe, the radiative
capture and rescattering by nuclear bound stgits/ an important role in the annihila-

tion of slow antiprotons, greatly increasing the total annihilation cross section. The Cou-
lomb interaction increases the percentage of annihilations on helium nuclei, and this
increases interest in the experimental investigation ofth@nd D yield inp*He anni-
hilation.

If the primary particle is a proton, then up to enerdigs-0.25 GeV the production
of He + 3H and D occurs mainly through the disintegration“bfe by the primary
proton itself. Disintegration by a secondary proton cascade dominates at higher energies.

At energies where the production is due to a secondary casogde the case when
the primary particle is a proton, at arbitrary energighe model makesit possible to
calculate to within 8—10% the number e, *H, and D nuclei additionally produced in
NCN processes. Because of a lack of reliable experimental data f00.2 GeV, this
computational accuracy is determined by the variations in the estimated cross sections for
the inelastiopp*He interaction channels. The experimental data on inelgétie interac-
tion channels were discussed in detail in a 1972 reviéwr E,<0.2 GeV the situation
remains essentially the same as it was then. However, as is clear from Fig. 1, this range
is the most important for NCN. In this connection attention should be turned to the
method developed at The Institute of Theoretical and Experimental Phijdascow)
and the Joint Institute of Nuclear Resear&ubng for working with acceleratedHe
nuclei bombarding a proton target. This method will make it possible to distinguish the
inelastic p*He interaction channels efficiently. The experimental Hatbtained using
this method make it possible to fit reliably the cross sections for inelp$kie interac-
tion channels folE,>0.2 GeV.

The total amount of additiondHe + *H and D producedby the primary particle
and by the secondary cascadeshown in Fig. 3. The number of nuclei produced by the
proton is presented as bands in accordance with the computational accuracy indicated
above. Similarly, the amount 3He + 3H produced by an antiproton is shown as a band
of possible energies. The experimental data on3He yield and the minimum and
maximum estimates of thtH yield in p*He annihilation were used in the calculation; the
calculation of deuterium production by an antiproton is presented by two curves: for the
minimu?n (Dpin) and maximum(D,,,,,) estimate of the D yield in the*He annihilation
channef.

An estimate of the rati®p /(Sper34) Of the amount of deuterium produced in NCN
to the total amount of helium-3 and tritium produced is very interesting for cosmological
applications. At energies where the disintegratiodléé is due to the secondary proton
cascade it can be estimated tt®4/(Ser34) =0.55+0.08. In the case of a primary
proton, as its energy decreases this ratio approaches 1, since in the near-threshold energy
range the reactiop*He — D3He dominates in the inelastjg*He interaction. For the
annihilation of slow protons it can only be said that the tdtde + H production is
greater than the production of D.

The following problems are important for further refinement of the modehves-
tigation of inelasticp*He interaction channels by the method of accelerétéel nuclei
with energyE,~75 MeV, and 2 the experimental determination of thel and D yields

in E“He annihilation, which falls outside the scope of our needs here. From the standpoint
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FIG. 3. Total amounts ofHe + H and D nuclei additionally producefy the primary particle and by the
secondary cascagé NCN by a proton and antiproton as a function of their energy.

of the present investigation, the energy ramge<0.2 GeV is of primary interest; spe-
cifically, for the problem of annihilation of antimatter in the Universe it is especially

important to investigatqa_f‘He annihilation at rest.

| thank M. Yu. Khlopov, L. A. Kondratyuk, and V. |. Kukulin for a helpful discus-
sion, I. M. Sobol’, whom | consultated concerning the Monte Carlo method used, and
Yu. L. Levitan for his interest in this work.
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According to a reliable ﬁ=0.93 with 36 degrees of freedgrmter-
pretation of the readings of all triggered detector stations in a giant
shower, detected at the Yakutsk array on May 7, 1989 at 13 h 23 min
Greenwich time, in terms of the quark—gluon strings model with the
geomagnetic field taken into account, the energy of this shower was
3x 10 eV. © 1999 American Institute of Physics.
[S0021-364(©9)00209-1

PACS numbers: 96.40.Pq, 13.85.Tp

1. Introduction

After the possible existence of giant air showé@ASS was first mentioned;?
observations of three GASs with energies estimated to be much greatéthd’° eV
were reported—® For this reason, the Greisen—Zatsepin—Kuz'f@ZK) predictior® of
a possible cutoff of the energy spectrum of primary cosmic ray particles due to their
interaction with the microwave relic radiation can be regarded supporting the hypothesis
of a local distribution of sources of superhigh-energy parti¢ithin ~30 Mpc). The
detection of six new showers with energies exceeding’ BY has recently been
reported® These facts can all be interpreted as possible evidence of the existence of either
new forms of mattertopological defects or hypothetical ultraheavy particles, or un-
known mechanisms of charged-particle acceleration in nearby sources, or previously
unknown processes and objects. Thus one can talk about the discovery of a new phe-
nomenon — GASs with energies above’46V.

In view of the critical importance of this phenomenon, the validity, reliability, and
accuracy of estimates of the energy and directions of arrival of a GAS become especially
important. In the present work we have proposed and implemented a new method for
obtaining such estimates on the basis of an interpretation of the readings of all detectors
in terms of the quark—gluon string®GS model° taking external factorégeomagnetic
field) and the normalization of certain computational parameters of the showers into
account in accordance with the experimental data.

0021-3640/99/69(9)/6/$15.00 650 © 1999 American Institute of Physics
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2. New method for obtaining estimates

The experimental data are interpreted in several steps. First, the zenithdasugte
azimuthal anglep characterizing the direction of the GAS axis are estimated from the
data from the time channel of the readings of the detectors. We have Shavan
interpreting the data in terms of not the planar-front model but rather the computed
spatiotemporal structure of the shower for various types of detected particles decreases
the error in the angle estimates from several degrees1&° using the minimumy?
method and to-0.5° for the minimax method. Specifically, for the Yakutsk GAS, which
consisted of muons, we obtained by the minimax method the estimiaté8.2°+0.5°
and ¢=164.2°+0.4°. The value ots(f decreases from-2.2 to~ 0.4 with 14 degrees of
freedom, i.e., the reliability of the interpretation increases substantially.

The next step is to determine the coordinaXeandY of the point of intersection of
the shower axis and the plane of the array and the paramé&80,) (the charged-
particle densities 600 m from the shower axim the basis of the adopted symmetric
spatial distribution functiodSDF) of particles in a plane perpendicular to the shower axis
(in what follows, the shower planeln our view this procedure introduces into the
detector readings additional errors due to the transition from the array plane to the shower
plane. Another important source of possible errors is the fact that the quality of such an
interpretation is virtually ignored. The particle SDF adopted may not correspond to the
actual particle distribution for some reason, but the result of the interpretation — the
value of the parametep(600,4) — will be adopted. For example, for the standard
interpretation of the data on the Yakutsk GA(%: 39.1 (reliability less than 1% It is
obvious that the estimates of the parametg$00,0) and the coordinates of the shower
axis obtained in this case are suboptimal.

We propose that the readings of all detectors in the array plane be interpreted on the
basis of the computed SDF of the detected particles using a selected model taking ac-
count of external factor&he geomagnetic fiejJd The results should be estimates of the
energyE, and the coordinateX andY of the shower axis in the array plane. Thus we
arrive at the problem of minimizing

Xn73= ’ (1)

Pt Pexp) 2
=1

(oa

wheren is the number of triggered detectors amg, and p; are, respectively, the de-
tected and computed particle densities, on the set of possible valXe¥ cdndE,. It is

obvious that even the “best” model and various approximations do not necessarily
correspond to the data at the highest energies. For this reason, a procedure was adopted
whereby the computed characteristics of the GAS are normalized to the experimental data
obtained using the calorimetric determination metffoide., in accordance with the law

of conservation of energy. The details of this normalization are described in Sec. 3.

Figure 1 shows for the Yakutsk GAS a “grid” of ratias of the muon densities
calculated with and without the geomagnetic fi@dThe z=1 plane corresponds t®
=0; the points with error bars correspond to the experimental data for‘Giaded by
the computed densities in tHg=0 approximation. It is evident from Fig. 1 that the
experimental points cluster around the “grid.” Thus the the geomagnetic field greatly
degrades the azimuthal symmetry of the muon SDF, and for this reason the use of a
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FIG. 1. “Grid” of ratios z (vertical axi$ of the muon densities calculated with the geomagnetic fietdken
into account and in th8=0 approximation. Circles with errors — data of Ref.z4: 1 plane —B=0 case.

symmetric SDF in the standard interpretation procedure is a simplification. We proposed
the method(1) precisely because an asymmetric muon SDF can be calculated for each
specific case. Taking account of the geomagnetic figﬁd? 0.93 with 36 degrees of
freedom, i.e., the proposed interpretation of the GAS data is entirely reasonable, while the
reliability of the standard procedure is1%. Neglecting the geomagnetic field gives
x3=2.03 (the probability of agreement is less than 0.03%The values of the coordi-
natesX=1112 m andY=—452 m of the shower axis in the array plane, which are
determined by the new method, differ from the initial estimaXgs- 1055 m andY,=

—406 m, which increases the average value of the pararpé6f0,) by a factor of

1.45. Since this parametp(6004, ¢») also depends on the azimuthal angléthe mini-

mum value can differ from the maximum value by approximately a factor bf5(!) —

see Fig. 1, it should not be used to estimate the enelgy According to the proposed
method, an estimate d&,, just like estimates oK and, is obtained by minimizing
expression(1). Taking into account the normalization of the computed muon densities
(see Sec. B this minimum obtains folE,=3X10?° eV, which is two or three times
higher than the old estimafdt should be noted especially that the interpretation of the
experimental results is finished at this stage, since all required estimates have been
obtained.

In the standard procedure other steps, each of which can lead to additional errors, are
required. For example, switching from the paramet@00,) averaged over azimuthal
angles to its value for vertical showerg= 0), assuming exponential absorption, can lead
to a substantial discrepancy with the theory, which also does not give unequivocal pre-
dictions (see below This is illustrated in Fig. 2, which shows the computediepen-
dence of the charged-particle densit§600,0):

p(6009) = pe(6006) +1.25K,,- p,(6009,=E,,), 2
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FIG. 2. Charged-particle density 600 m from the axis ofal18?° eV shower as a function of the zenith angle

6. Curvesl, 2, and3 correspond to the assumptions of Refs. 14, 15, and 16 about the electron SDF and are
drawn fromp(600,0)=77.6. The two straight lines represent two variants of exponential absorption and are
drawn fromp(600,6) =53.9.

wherep, andp,, are the electron and muon densitieg,= 0.3 GeV, the factor 1.25 takes
into account the muon-decay electrons, dng=1.42 is a normalization factofsee
Sec. 3. Curvesl, 2, and 3 were calculated according to three different hypotheses
concerning the electron SDE — NKG approximationt* 2 — model with a modified
NGK functionl® 3 — approximation used in Ref. 16These curves are drawn from the
new valuep(600,0) =77.6 and demonstrate the nonuniqueness of switchipg@60,0).
The two straight lines correspond to two values of the absorption rangsed at the
Yakutsk array and are drawn from the initial estima{&00,0) =53.9.

The calorimetric determination methddyives the following estimate df, on the
basis of the value of the paramejg(600,0):

Eo=a-p%(600,0, €)

wherea=4.8x10'" eV anda=1. However, since the statistical sample of the events is
limited at superhigh energies, such a calibration is actually obtained in a narrow energy
range where the error in the estimationmfis large. At the highest energies the shower
maximum approaches the observation level and the ratios of the various shower charac-
teristics change. For this reason extrapolating the calibration to superhigh energies is not
entirely sound. For example, calculations in the QGS model with the normalization of the
signal taken into accourisee Sec. Bgive a=4.55< 10!” eV anda=1.07 and therefore

an additional increase in the estimate of the endfgyy a factor of approximately 1.5.

Our method(1) does not contain this step and the additional errors due to it.

3. Normalization of the computed shower parameters

The calorimetric determination methd8which is based on measurements of the
Cherenkov light, is the main advantage of the Yakutsk array. For this reason, the idea of
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FIG. 3. Fraction of muons with enerdy, =1 GeV 600 m from the shower axis as a functiorEgf Curvesl,
2, and3 correspond to the assumptions of Refs. 14, 15, and 16 concerning the electron SDF. Circles — data
from Ref. 19 for6=18°.

normalizing the computed shower parameters with respect to the results of Ref. 12 is of
interest. For the experimentally estimated energigd’ the computed Cherenkov photon
fluxes® are 2%—5% higher than the measured values. This means that the dynamics of
the development of hadron cascades in the atmosphere can be described completely
satisfactorily on the basis of the adopted md¥ahd approximations. The good agree-
ment between the computed cascade cdfvasd the data of Ref. 6 also shows that the
development of a shower in the longitudinal direction can also be described on the basis
of the QGS model at energies3x 10?° eV. However, the computed energy fraction
E,../Eq, which goes into muons and neutrinos, is on average 1.42 times smaller than the
value estimated experimentally. For this reason, the facfer1.42 was introduced in

Eq. (2) for the charged-particle density, i.e., normalization of the computed muon densi-
ties was performed. We also note that fgy=1.42 our computational results for the
muon density agree with the calculations performed using the COSMOS'¢ti¢he

total energy balance this means that the computed fraction of the energy of the electron-
photon component decreases by 2%-3%, i.e., precisely by the amount following from a
comparison of the Cherenkov photon fluxes.

Figure 3 illustrates the fact that for the chosen normalization of the muon densities
(k,=1.42) and the assumption of Ref. 15 concerning the electron SDF the computed
fraction of muons with energies, =1 GeV agrees with the experimental fractiGn,e.,
all existing experimental data can be described well in this case.

In summary, the interpretation of the readings of all triggered detectors in the GAS
detected at the Yakutsk array in terms of the QGS model with the geomagnetic field
taken into account and with normalization of only one parameter of the shtveemuon
density shows to a high degree of reIiabiIity(§=0.93 with 36 degrees of freedgrthat



JETP Lett., Vol. 69, No. 9, 10 May 1999 Antonov et al. 655

the energyE, of this shower is~3x10% eV. This result does not depend on the
assumption made in Ref. 15 about the electron SDF, since the method proposed for
analyzing the muon GAS does not involve switching to shower parameters for the ver-
tical direction. It is interesting that both the energy estimate and the direction of arrival of
this shower agree well with the analogous estimates of the GAS detected in the USA at
the Fly’s Eye array.Without normalizatior(i.e., with k,=1) the energyE, increases to
4.3x10°eV.

In closing, we wish to thank G. T. Zatsepin for a fruitful discussion of the results,
suggestions, and support.
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It is noted that the standard black hole topology admits twisted con-
figurations of the spinor field owing to the existence of twisted spinor
bundles, and they are analyzed using the Schwarzschild black hole as
an example. This is physically linked with the natural presence of Dirac
monopoles on black holes and entails marked modification of the
Hawking radiation for spinor particles. @999 American Institute of
Physics[S0021-364(19)00309-9

PACS numbers: 04.70.Dy, 04.20.Gz

1. A few years ago there appeared an interest in studying topologically inequivalent
configurationgTICs) of various fields on 4D black holes, since TICs might give marked
additional contributions to quantum effects in the 4D black hole physics, e.g., Hawking
radiation? and also might help to solve the problem of laying a statistical foundation for
the black hole entrop§So far, however, only TICs of the complex scalar field have been
studied, more or less on the Schwarzsclii¥V), Reissner—Nordstro (RN), and Kerr
black holes. The next physically important case is that of spinor fields. In the present
paper we begin a study of twisted TICs of spinor fields in a form convenient for physical
applications, restricting ourselves here for the sake of simplicity to the framework of the
SW black hole geometry.

We write down the black hole metric under discussiosing the ordinary set of
local coordinates,r, 9, ¢) in the form

ds’=g, dx“@dx'=adt?—a tdr’—r?(d9¥*+sir* dde?) (1)

with a=1—r4/r, ry=2M, whereM is the mass of the black hole. In addition, we have
lg|=|det(@,,)| = (r?sin9)? andr ;<r<w, 0<9<m, 0<¢<2m.

Throughout the paper we employ the system of units iithc=G=1, unless
explicitly stated otherwise. Finally, we shall denote by(F) the set of the modulo
square integrable complex functions on any manifBldurnished with an integration
measure.

2. The existence of TICs of a spinor field on black holes follows from the fact that
over the standard black hole topolo§yx S? there exists only one Spin-structujieon-
forming to the group Spii,3= SL(2()]. Referring for the exact definition of Spin-
structure to Refs. 5 and 6, we only note here that the number of inequivalent Spin-
structures for a manifold is equal to the number of elementsktt(M,Z,), the first

0021-3640/99/69(9)/8/$15.00 656 © 1999 American Institute of Physics
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cohomologygroup oM with coefficients inZ,. In our caseH(R?x S?,7,) =H(S%,Z,),
which is equal to 0, and thus there exists only the trivial Spin-structure.

On the other hand, the nonisomorphic complex line bundles ldvare classified by
the elements irH?(M,7), the second cohomology group M with coefficients inZ
(Refs. 5 and B In our case this group is equal K?(S2,7)=7, and, consequently, the
number of complex line bundles is countable. As a result, each complex line bundle can
be characterized by an integek Z, which in what follows will be called its Chern
number.

In this situation, if we denote b$s(M) the only standard spinor bundle ovist
=R?xS? and by¢ the complex line bundle with Chern numberwe can construct the
tensor productS(M)®é&. As is known! over any noncompact spacetime the bundle
S(M) is trivial and, accordingly, the Chern number of the 4D vector bud ) ® ¢ is
equal ton as well. Under the circumstances we obtain the twisted Dirac operator
D:S(M)®&{—S(M)® €, and so the wave equation for the corresponding spigidrsith
a massug) as sections of the bund&(M)® & may look as follows:

D= poth, 2

and we can call théstandargispinors corresponding to= 0 (trivial complex line bundle
£) untwisted while the rest of the spinors with#0 should be referred to dawisted

From general consideratioti® the explicit form of the operatdP in local coordi-
natesx* on a X-dimensional(pseudgRiemannian manifold can be written as follows:

1
D=iV,=iy*E4| 9.~ 50,0V —ieA, |, a<b, 3)

whereA=A ,dx* is a connection in the bundand the formsv,,=  ,,,dx* obey the
Cartan structure equationte®= w? /\e® with exterior derivatived, while the orthonor-
mal basisaa=e‘;dx”“ in the cotangent bundle and the dual bdsjs-E%d,, in the tangent
bundle are connected by the relati®¥E,) = 55 . Finally, the matriceg/represent the
Clifford algebra of the corresponding quadratic form(if. Below we shall deal only
with the 2D Euclidean casguadratic formQ,=xa+ x) or with the 4D Lorentzian case
(quadratic formQ, z=x3—x2—x5—X3). For the latter case we take the following choice
for y&:

1 0 0 oy
Y=lo -1/, *=|-¢, 0] b=123, (4)
where theo, denote the ordinary Pauli matrices. It should be noted that, in the Lorent-
zian case, Greek indicgs,v, ... areraised and lowered witg,,, of (1) or its inverse
g“¥ while Latin indicesa,b, ... areraised and lowered byj,,= »?°= diag1,-1,-1,

-1), so thateieﬁg“”= 7P, ESEpd,.,= 7ap @nd so on.

Using the fact that all of the aforementioned bundi#1)® & can be trivialized
over the chart of local coordinateg,i(,9,¢) covering almost the whole manifold
R?X S?, we can concretize the wave equati¢hon the given chart for a TIGs with
Chern numberneZ in the case of metric(1). Namely, we can pute®=/adt,
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el=dr/\a, e?*=rdd, e®=rsindde and, accordingly, E,=d,/\a, E;=\aé,,
E,=dy/r, E3=d,/r sind. This entails

1da

wo1= — 5 Edt, W= — \/adﬁ, w13= — \/aSin ﬁd(,D, Wo3= — COS’L‘}d(P. (5)

As to the connectior, in the bundleé, a suitable one was found in Ref. 1 andAis
=A,dx*=—(n/e)cosdde. Then the curvature of the bundlg is F=dA

=(n/e)sinddd/\de. We can further introduce the Hodge star operator on 2-fdfroé

anyk-dimensionalpseudgRiemannian manifold provided with a(pseudgRiemannian
metricg,,, by the relation(see, e. g., Ref.)8

FA* F=(g"““g”ﬁ—g"“ﬁgV‘”)FWFaﬁ\/@dxl/\dxz- S AdxK (6)

in local coordinates*. In the case of the metrid) this yields *F = (n/er?)dt/\dr, and
integrating over the surfade=const,r =const with topologys? gives rise to the Dirac
charge quantization condition

n
fSZF=47TE=47Tq )

with magnetic charge], so we can identify the coupling constamtwith the electric
charge. Further, the Maxwell equatiod$=0, d-F=0 are clearly fulfilled with the
exterior differentiald= ¢;dt+g,dr+d,dd+d,de in coordinated,r,d,o. We come to

the same conclusion as in the case of TICs of a complex scalartffeirac magnetic
U(1)-monopoles naturally live on black holes as connections in complex line bundles,
and, hence, physically the appearance of TICs for the spinor field should be attributed to
the natural presence of Dirac monopoles on the black hole, and the interaction with them
splits the spinor field into TICs. Also it should be emphasized that the (wtirna)
magnetic charg®,, of the black hole, the result of summing over all the monopoles,
remains equal to zero because

1 > n=0. (8)

€ nez

Qm=

Returning to Eq(2), we see that when all the above is taken into account, it has the
form

1 1 , 1 1
")’Oﬁ(at_iwtoﬂ’o?’l +I71J58r+l72;(<9rEwamlvz)
1 1 1
c .3 1.3 2.3 _
Y g g | deT 50613V Y T S weagy Y FiN COSﬁ‘) b= pot. 9

After a simple matrix algebra computation usif#y and(5), we find that Eq(9) can be
rewritten as

%l

with the operators

= o (10

lﬂl)
o)’
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i 1
szzm, B=ioyB;+ B, (11
where, in turn,
1 df f .
—2 \fa +— Bz—|0'2(?1<}+|0'38|n19 50203 cosy+in cosﬁ).

(12

Now we can use the ansatz=e€'“'r "1F,(r)®(9,¢), ¢,=e“'r F,(r) oD (9, ¢)
with a 2D spinor@z(i;) to get, with the help 0f10)—(12),

1
B+ FDn) U1=i1(pmo—C)o1¥,

1
By + FDn)¢2:_i(Mo+C)01¢1a (13

with ¢=(1/J/a)w and D,=—icB,. It is natural to takeb as an eigenspinor of the
operatorD,,, and, noting that-,D,,= — D04, we can obtain fron{13) the system

1d JE A _
VagFi+| 5 g+ 7 |Fi=imo—o)F2,
1dya X\ _
Vag,Fo+ >dar 1 Fo=—i(uotC)Fy, (14

with an eigenvaluex of the operatorD,,. We should therefore explore the equation
D, ®=\D.

3. It is not hard to see that the operafy, has the form(3) with y°=—io 0,
y'=—io103, €°=d9, e'=sindde, wy=cosdde, A,dx“=—(n/e)cosdde, i.e., it
corresponds to the above-mentioned quadratic f@gmand this is just a twistedEu-
clidean Dirac operator on the unit sphere, and the conforming complex line bundle is the
restriction of the bundl€& on the unit sphere. Again a simple matrix algebra computation
results in

D,= P1n Pan Dy,=ild +Ecotﬁ Don=— =5 (d,+incotd).
" _D2n _Dln , i Y 2 ' an— sind
Then it is easy to see that the equatdpd =NP can be transformed into
O P pond,, @ (¢+) 15
:)\‘ L = 7
DrT 0 0 0 0 d ( )
where
. . 1_ _
DE:DlniDZHZI 0—'194‘ E—l—n coty +%0"<P, (I)t:q)]_iq)z.

From here it follows thaD_D+¢>+ A2® ., D D, ®_=N\?d_ or, with the use of the
ansatzd ., =P.(9)e” im’¢ in explicit form
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) m’2+(nF1/2)°—2m’ (nF 1/2)cosd
dy+cotddy— - P.(9)
siné &
1 2 2

It is known"® that the differential operators of the left-handside(i6) have in the
interval 0< Y=< eigenfunctions whichare finite d@=0,7 only for eigenvalues-k(k
+1), wherek is a positive integer or half-integer, while at the same timen’=n
+1/2, and the multiplicity of such an eigenvalue is equal ka-2.. In our case we have
thatn’=n=*1/2 is half-integer because the Chern numberZ. As a result, we should
put m’=m-—1/2 with an integem and then|m’|<k=1+1/2 with a positive integef
and, accordingly, 1/4n?—\2= —k(k+1), which entails(denoting\ = /(I +1)2—n?)
that the spectrum ob,, consists of the numberg\ with a multiplicity 2k+1=2(l
+1) of each one. Besides, it is clear that under the circumstances one lkas<I
+1,1=|n|. This just reflects the fact that from general consideratibfithe spectrum of
a twisted Euclidean Dirac operator on an even-dimensional manifold is symmetric with
respect the origin. The corresponding eigenfunctiengd) = P;,n,(cosf}) of the above
operators can be chosen in miscellaneous fqises, e.g., Ref.)9with the orthogonality
relation at fixedn’
T J*k K’ . 2

JO P n/(COSH)P ., (cosd)sinddd= mékk, S s (17)
where(*) signifies complex conjugation. As a consequence, we come to the conclusion
that the spinob of (15) can be chosen in the form

k
Cle’n—l/Z) —im’
e (4

®p= k
C2|:)m’n+1/2
with some constant€; ,. Now we can employ the relatiohs
—09PK x| nrcoto— | PE =i kKT DM (W E TP, 18
9P E| N COtY = =a [Py = —IVK(K+ 1) =n"(N" £ )Py 4y (18)

which holds for the function:P'r‘n,n, , to establish thaC,;=C,=C corresponds to the
eigenvalue\, while C;=—-C,=C corresponds to—\. Thus, the eigenspinor®
=($;) of the operatoD,, can be written as follows:

k + pk
(I)i}\:% Prkn’n—1/2: P:1’n+1/2) efim'KP, (19)
l:)m'nfllz_'_ I3m’n+1/2
where the coefficien€ may be defined from the normalization condition
T (27
f f (|®4]%+]|D,|?)sinddOde=1, (20
0 0

which, with the use of relationil7), yields C= /(I +1)/7. These spinors form an or-
thonormal basis irL%(SZ). Finally, it should be noted that the given spinors can be
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expressed in terms of the monopole spherical harmo‘ﬂ',i,qﬁﬁ,@)z P'mn(cosﬁ)e*im‘/’,
which naturally arise when one is considering twisted TICs of a complex scala? field,
we shall not need it here.

4. It follows from what we have said that when quantizing twisted TICs of spinors
we can take the set of spinors

1 Fi(r,=N) Py
elwt -1
Fz(r,i)\)a'lq)i)\

Ya\= (21)

27w

as a basis i 3(R?x $?) and implement the quantization procedure, as usual, by expand-
ing in the modeg21):

©

=2 2 > f do(@gymt+bnmb-),
=N I=[nf m=-1 JoO

©

Z=E J do(@)nmth +Donimb—), 22)

N n\ m=—1|

where y=y%y" is the adjoint spinor and (1) stands for Hermitian conjugation. As a
result, the operatora,,;m, b,.m Of (22 should be interpreted as the creation and
annihilation operators for a spinor particle in the gravitational field of the black hole and
in the field of a monopole with Chern numbrerAs to the functions=, A(r,+\) of (21),

in accordance with Eq$14) we can get the second-order equations for them in the form

ldya ) L1 (d\/_

2 dr _r dr

Jad,

ad,ad,Fqit+a Flz (aug—w?)Fiy. (23

Making the substitutiom™ =r +r 4 In(r/r,—1) and going over to the dimensionless quan-
titiesx=r*/M, y=r/M, k=wM, we can rewrite Eqg23) in the Schrdinger-like form

d2
@Em*‘[kz_(,U«OM)2]E1,2:V1,2(X,)\)E1,2- (24)
where E; ,=E; J(X,K,N\)=F . (Mx), F.(r*)=F Jr(r*)], and the potentialy/, , are
given by
Vi AX,\) +1—)\\/1 2+)\2
X, = —_—
g a0 [y*0 yA0 VYO0 yA(x)
2 (1oM)? (29
y(o |y e

wherey(x) is the inverse function fox(y)=y+2In(0.5/—1), soy(x) is a one-to-one
correspondence between f0,) and (2¢0).

Let us for the sake of simplicity restrict ourselves to massless spinags Q).
Then, as can be see¥; ,—»0 asx— + andV, ,—1/64 asx— —. This allows us to
pose the scattering problem on the whrlaxis for Eq.(24) at k>0:
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L[ sV R 1/64, x——c,
E12

s{32elx, X—+o0,

[ s5Pe 4 1/642, x— —o0,
Eiz (26)

e X sk X oo
with Smatrices{s{?=s{"?(k,\)}. Then by virtue of(14) one can obtain the equality
sk, ) =—s@(k,\). (27)

Having obtained these relations, one can speak about the Hawking radiation process for
any TIC of the spinor field on a black hole. Actually, one can notice that(Bccorre-
sponds to the Lagrangian

i — — —
L= 19V TPy V ,p= (V) v 4= mod ], (28

and one can use the energy—momentum tensor for a TIC with Chern narsbaform-
ing to the Lagrangiari28),

[— — — —
T,U,VZZ[ w’)/;/,vvl//—i_ l;b’)/VV,ul;b_ (Vﬂlp) Yo — (va) ’Y/.Llp]1 (29)

to get, according to the standard prescriptisee, e.g., Ref. 20vith the use 0f20) and
(27), the luminosityL (n) with respect to the Hawking radiation for the TIC with Chern
numbern (in ordinary unit$

st (kN2

L(n)= I|m f (0| Ty/0Ydo= AE 2 2(|+1)f e ———dk, (30)
with the vacuum expectation valy®|T,|0) and the surface elemenlir=r2 sin9dd
Nde, while A= (c%/GM)(ch/G)¥?~0.125728 10°%erg sM~1 (M in g).

We can interpret.(n) as an additional contribution to the Hawking radiation due to
the additional spinor particles leaving the black hole because of the interaction with
monopoles. Under this situation, to obtain the total luminokityf the black hole with
respect to the Hawking radiation for the spinor field, one should sum up ovey iadl.,

L=2/ L(n)=L(0)+221 L(n), (31)

sinceL(—n)=L(n).

As a result, we can expect a marked increase of Hawking radiation from black holes
for spinor particles. But in order to get an exact value of this increase one must apply
numerical methods, inasmuch as the scattering problem for the general eq@aion
does not admit any exact solution and is quite complicated to treat — the potentials
V1Ax,\) of (25 are given in implicit form. We might mention that, for instance, the
corresponding increase for the complex scalar field can amount to 17% of the total
(summed up over all the TIG$uminosity?

It is clear that the most general case is the Kerr—Newman black hole, but for it the
equations will be more complicated, and we shall consider them elsewhere.
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The evolution of the correlation characteristics in three-dimensional
isotropic electronic magnetohydrodynamic turbulence is investigated.
Universal exact relations between the longitudinal and longitudinal—
transverse two-point triple correlations of the components of the fluc-
tuational magnetic fields and the rates of dissipation of the magnetic
helicity and energy are obtained in the inertial range. 1899 Ameri-

can Institute of Physic§S0021-364(9)00409-7

PACS numbers: 52.35.Bj, 52.35.Ra

All statistical theories of turbulence take into account the well-known exact Kol-
mogorov result — the 4/5 ladwhich relates the third-order spatial longitudinal corre-
lations of the velocity with the rate of energy dissipation. In magnetohydrodynamics such
a relation was obtained by Chandrasekh®ecently a similar relatioti2/15 law) was
established for hydrodynamic turbulence with helidifyThe confirmations of the 4/5
law for diverse turbulent hydrodynamic flows are well know@onfirmations have been
obtained for the 2/15 laW for helicity.® It is important to note that such accurate
relations are obtained by solving dynamical equations and are a consequence of the
conservation laws. No dimensional considerations are employed in their derivation. The
fundamental significance of the 4/5 law in hydrodynamics has been examined in detail
in Ref. 7.

Electronic magnetohydrodynami¢€EMHD) pertains to a branch of plasma oscilla-
tions on which the Hall term predominaf®$and it is a limiting case of multicomponent
MHD, where the motion of the ions can be neglected and the motion of the electrons
preserves quasineutrality. In contrast to the standard MHD case, the desc(ipition
uniform density can be reduced to a single nonlinear equation for the magnetic field. The
region of applicability of EMHD are laboratory and industrial plasma setups, the iono-
sphere, the solar photosphere, and sdlitfsin the 1970s the term MHD at helicon
frequencies was also us&Weak turbulence of heliconsvhistler) was studied in Refs.
11-13. The dynamic properties of strong three-dimensional turbulence in EMHD have
been studied in Ref. 14. Arguments supporting the idea that only weak turbulence is
realized in the EMHD mechanism are presented in Ref. 8.

EMDH is described by the equatidH

0021-3640/99/69(9)/5/$15.00 664 © 1999 American Institute of Physics
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dsh+curl J—><h +ccurIJ—:0, D
ne o

== Ih, divh=0 2

j= g curlh, ivh=0. 2

For n=const andos= const obtain

2
c
curfcurlhxh]+——Ah, divh=0. ©)]
4o

aih ¢
U 4qmne

In the frequency domain this corresponds to the range
W; <w< We.

For what follows, we introduce the notatidr- c/4mne and v,,=c?/4mo. The structure
of Eq. (3) is close to the Navier—Stokes equation for an incompressible liquid. We can
verify by direct substitution that it conserves the energy

h2
—dV
fv2

and the helicity

f a-hdVv
\

of the magnetic field.

Let us consider the free evolution of uniform and isotropic fluctuations of the mag-
netic field in EMHD. Writing out the equation for the vector potentiat curl h and
averaging, we obtain equations of thérken—Howarth type for the two-point correla-
tion functions involving the energy and helicity of the magnetic field:

2

i = Fei ——— (N =i ) + 20 h
tHii Sllké’riéfl’m( j.km ]m,k) YmA i
&2
:fsijkm(hkm,j_hjm,k)+2VmArhii' 4
J
9,;i = 2f Fhim,i""ZVmArgii : 5
m
where
hii=(hi(x)hi(x+1)), gi=(a(x)hj(x+r)), (6)
hjm k= (h;(X)hn(X)h(X+r)). (7)

The right-hand sides of Eq#§4) and(5) contain the spatial derivatives with respectrto
of the rank-3 two-point correlation tensor. The general form of such a tensor, with
allowance for the gyrotropy and incompressibility of the magnetic fiefd*is
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2
hij'k(r):V(SJ‘Hrin+8ik|rjr|)+ Fé]rTrirJ‘rk—(rﬂrT+3T)(ri5jk+ rjéik)+2T5ijrk.
tS)

Fluctuations of the magnetic field without helicity were considered in Ref. 2. In that case
the tensoh;; , consists of only the first two terms, which are proportional to the s&alar
which is related to the energy transfer. Taking the helicity into account introduces addi-
tional terms which are proportional to the product of pseudoscalar quantities and odd
combinations of the components of the radius vector. Formally, the solenoidal t8hsor

is identical to the analogous tensor for triple correlations of the velocity field in hydro-
dynamic turbulencd However, in contrast to the latter it does not change under reflection
of the coordinates, i.eh;; ((—r)=h;j; ((r). The properties of homogeneous turbulence
also imply thathk,ij(r)=hijyk(—r).5 Both properties are taken into account in E4).

In what follows we shall need to examine the auxiliary tensgir;(x|r) sh;(x|r)),
where sh(x|r)=h(x+r)—h(x). In homogeneous turbulence it has the form

(Shi(x|r) 8h(x|r)) =By(r)(&;—nin;) + B nin;,

where n=r/|r|. The incompressibility condition implies thaB,=(1/2r) d,(r’B,,)
(Ref. 15. Then

(hi()hi(x+1))=(h*(x))— ir9r(r3Bn)- 9
2r?
We represeng;; in the form
i = (@ (X hi(x+ 1)) =(a(x+rhi(x+r))— Ezar(r3C(r)). (10)
r
Substituting expression®)—(10) into Egs.(4) and (5) we obtain

dem rat o= Lol Lasv |- ol Earcs 11
€m 2 trz (r°Byy)= (2 'y (r°V) 2 r 2 (r°Ber) |, (11

— 2 af (1 2vm [, (2
—2nm— 0y 9 (r’C)=—— | = (r°T) | = —-d¢| r?d;| 5o, (r’C) | |. (12
r r r r r

Here
P AR Ih)? 13
Em= Vm % 7% =vm((curlh)?), (13
P i AL SR 14
Pm=Vm %, %, =vp(h-curlh) (14

are, respectively, the dissipation of the magnetic energy and helicity. Successive integra-
tion with allowance for the regularity of the behaviorras:0 gives

4 8f 5 2vy 4
_§8m_‘?tBrr:_r_4‘9r(r V)_r_4‘9r(r 9 Byr), (15
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7, 2f 2v

— I ge=— 05T - S, (r4,C). (16

3 r r

In the inertial range the time derivatives and dissipation can be neglected, and it is found
that the functiond andV depend only on the rates of dissipation of the magnetic energy
and the helicity and are, respectively,

eplf  ulf
30’ @ 30 a0

Therefore the rank-3 two-point correlation tensor for magnetic field fluctuations becomes

\Y,

enlf Il 2
(hi(x)hj(x)hy(x+T1))= W(Sjkﬂﬁgikﬂj)ﬂ_ 0 IS+ r;di— §5ijrk -
(18)

It should be noted especially that up to numerical factors the tdf8pof coefficients is
identical to the corresponding correlation tensor of the velocity fluctuations in hydrody-
namic turbulencé.

Let us decompose the magnetic field into longitudinal and transverse components
hy=(h-r)r/r?, h=h—h,,
Sh(x|[r)=(hy(x+r)—hy(x))-r/r.

In this notation we obtain

<5h,(x|r)3>=—24Tr=—g?r, (19
2 e
<5h|(x|r)-[ht(x+r)xht(x)]>=4Vr2=ETr2. (20

Therefore the 4/5 and 2/15 laws should hold in homogeneous and isotropic EMHD
turbulence. As one can see from Ef9), it is much simpler to determine the helicity in
EMHD turbulence than in hydrodynamics, where this requires especially accurate mea-
surements of various velocity components or the use of delicate instruments to determine
the gradients, whereas in EMHD it is sufficient to measure only the longitudinal compo-
nents of the fluctuational magnetic fields or currents.

We underscore that no dimensional considerations were used to derive the relations
for T andV, which involve the helicity and energy fluxes. This result, which is only a
consequence of the statistical properties of the isotropic solutions of the EMHD equa-
tions, is universal and does not depend on which kind of turbulence — weak or strong —
develops in the system.

It can be verified by direct substitution that taking the isotropy into account in the
form of an external constant magnetic fidg= const leads only to a modification of the
results obtained. A dependence on the angle between the radius vector and the direction
of the magnetic field will appear, since if homogeneity is preserved, the terms related to
the external field € (hg- V)curlh) will not appear in equations of the ford) and (5)
for the two-point correlation functions.
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TABLE I.
Hydrodynamics EMHD
v h
Nonlinearity [curlvxXv]+V(p+V?/2) f curl[curlhXxh]
Energy dissipation &= v{(curlv)?) em=vm((curlh)?)
n=1w{curlv- curPv) 7m=vm(h-curl h)
415 law (B01(x]r%)=-ger (N =~
(Vi (M) [ve(x+1) X vy (x)]) (Shy(x|r) - [he(x+1) X (X))
2/15 law P 2Em o
= 157" =15§ !

The “extra” curl in EMHD, as compared with the Navier—Stokes equation, leads to
an unusual transposition — for longitudinal correlations the 4/5 law holds, just as in
hydrodynamics, but it is related with the gyrotropic component of the fluctuations, i.e.,
the helicity flux and, conversely, mixed longitudinal-transverse correlations are related
with the magnetic energy flux. Table | gives a comparative summary of the basic results.

In closing, | thank S. S. Moiseev for helpful discussions. This work was supported
in part by the Russian Fund for Fundamental Rese&Biant No. 98-02-17229and
INTAS (Joint Georgia—INTAS Project No. 504
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The experimental results on the change in the crystal structure and
specific heat of nonstoichiometric titanium carbide Ji€0.5<y
<0.65) near disorder—order phase transitions are reported. It is estab-
lished that at temperatures below 1000 K the ordered phag€swilith

cubic and trigonal symmetry and an orthorhombic ordered phage Ti

form in titanium carbide by a close-to-first-order phase transition
mechanism. The temperatures and heats of order—disorder phase trans-
formations are determined. @999 American Institute of Physics.
[S0021-364(99)00509-3

PACS numbers: 61.66.Fn, 65.4Q, 64.60.Cn

Titanium carbide TiG with a B1 (NaCl) type basal structure belongs to a group of
highly nonstoichiometric compounds which includes cubic and hexagonal carbides, ni-
trides, and oxides MXand M,X, (M is a group-IV or -V transition metal, and X stands
for C, N, or O. Even among highly nonstoichiometric compounds, titanium carbidg TiC
is unique, since it can exist even when more than half of all sites in its nonmetallic
sublattice are vacant. No other compounds with such stability with respect to the forma-
tion of structural vacancies are known. The disordered titanium carbidg, TiC
(TiC,0J,_,) possesses an exceptionally wide range of homogeneity — frory 30
TiCq oo (Ref. 1), where the carbon atoms C and the structural vacan¢iesgm a solution
of substitution in the nonmetallic sublattice. The high concentration of structural vacan-
cies creates the prerequisites for ordering of ,Te@rbide. Atom—vacancy ordering ap-
preciably influences the structure and properties of highly nonstoichiometric carbides
MC, (Refs. 2 and B

Calculation$ by the order-parameters functional methdghow that three super-
structures, TiC, Ti;C,, and TgCs, can form upon the ordering of TiCcarbide (0.48
<y=0.96). According to the calculations of Ref. 6, which were performed by the Monte
Carlo method for a narrower range of compositions gl TiCy 7o, in this part of the
region of homogeneity of TiCat T<950 K the ordered phases,T and TiC, are the
thermodynamically equilibrium phases, in agreement with the theoretical results of
Ref. 4. Ordered phases of the typeTiwith cubic (space groug-d3m) and trigonal

(space grou;R?m) symmetries have been observed experimentally in titanium carbide
TiC, in the range 0.5y<0.7 (Ref. 1. There is also indirect evidence of the formation
of the ordered phase J@, (Ref. 6. Reports of a trigonal phase,U with space group

0021-3640/99/69(9)/7/$15.00 669 © 1999 American Institute of Physics
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P3,21 are, of course, due to an error initially made in Ref. 7 and uncritically repeated in
Refs. 8—11; indeed, on the basis of & basal structure such an,M-type trigonal
(space grouf3;21) phase with unit cell periods=b=ag;/\2 (a={1/2 1/2 Q) and
c=3\2ag; (c={2 2 2}g,) is fundamentally impossible, since sites of the metallic and
nonmetallic lattices are partially coincident. Ordering of carbide,Tv@th a higher
relative carbon content>0.7 has practically escaped study.

The specific heat of titanium carbide has been studied very little. The temperature
dependence of the specific heat of close-to-stoichiometric titanium carbidewiilC y
~1.00 atT>300 K is presented in Ref. 12. The specific heat of the carbideggf&hd
TiCy g9in the temperature range 12—300 K has been measured in Ref. 13 by the adiabatic
method. There are no published data on the specific heat of disordered nonstoichiometric
titanium carbide TiG (0.48<y<=1.00) in the entire region of its homogeneity. In Ref. 14
it is shown by the adiabatic calorimetry method that in the temperature range 1.5-5.0 K
the specific heat,, of the annealedordered carbide TiG g,5is 0.4—-0.9 mdmole 1K1
less thanC, of the same carbide in a quenched disordered state. There is no other
published information on the effect of ordering on the specific heat of nonstoichiometric
carbide TiG .

In the present work we studied the effect of ordering on the crystal structure and
specific heat of titanium carbide TjC The specific heat is very sensitive to disorder—
order phase transformations, and by studying the temperature dependély(d pone
can observe directly even weak effects associated with ordering.

Samples of nonstoichiometric titanium carbide JiG TiCysg, and TiG g, were
synthesized by hot pressing of powdered mixtures ofy fi&nd metallic titanium in a
highly pure argon atmosphere at temperature 1800—2000 K and pressing pressure 23—-25
MPa. The phase composition and crystal structure of the synthesizgdsaifiples and
the same samples after annealing or measurement of the specific heat were studied by
x-ray diffraction in CiK « radiation in a step-wise scanning mode wkR 0= 0.02° for
20 ranging from 14° to 130°. In measurements on annealed carbides the exposure time
at each point was 5 s. All synthesized samples were homogeneous and contained only the
disordered phase of TjGwvith B1 (NaCl) structure.

The specific heat was measured in a Netzsch DSC404 differential scanning calorim-
eter in the temperature range 300—1300 K in an atmosphere consisting of “especially
pure” (OCh-grade argon. The measurements were performed with heating and cooling
rates of 20 Kmin~! and a 5 Kstep. To determine the heats of transitions in JiC
accurately, calibration measurements were performed beforehand under the same condi-
tions. High-purity aluminum Al and gold Au were used for calibration. Sapphire was
used as the comparison standard in the calorimetric experiments.

To achieve an ordered state the synthesized samples were annealed for 340 h with
temperature gradually decreasing from 1070 to 770 K; cooling from 770 to 300 K was
performed at the rate 1 Knin~!. Annealing led to the appearance of superstructural
reflections in the x-ray diffraction patterns of the carbidesgEiC TiCqsg, and TiG g».

In the x-ray diffraction pattern of the annealed carbide gE{the first superstruc-
tural peak with wave vectdg| = (2ag;sind)/A~0.870 is observed nea217.8—17.9°
and corresponds to the vectdr2 1/2 1/2 of length|q|~0.866 (here and below, super-
structural vectors are given in units ofr2ag;, whereag; is the period of the disordered
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Bl-type basal structuye The next three superstructural reflections correspond to the
vectors{3/2 1/2 1/2, {3/2 3/2 1/2, and{3/2 3/2 3/2 and are observed at the angleg 2
~34.5°, 45.9°, and 55.4°. The superstructural reflecf®i@ 3/2 1/2 is very weak. The
position of the observed superstructural reflections and the absence of a trigonal splitting
of the structural lineg331)g;, (420g;, and (422g; show that an ordered cubispace
groupFd3m) phase TjC formed in the carbide Tigs, as a result of annealing. All rays

of the star{ko} appear in the channel with the disorder—order phase transitiop TiC
(space groug-m3m) « Ti,C (space group-d3m) (the description of all star§k,} of

wave vectors of the first Brillouin zone of an fcc crystal and their rays is given in Ref. 1

The diffraction pattern of the annealed carbide Jdgcontains superstructural re-
flections {1/2 1/2 1/2, {3/2 1/2 1/2, and {3/2 3/2 3/2 near the angles @~17.9°,
~34.4°, and~55.4°. There is nd3/2 3/2 1/2 reflection. An important difference be-
tween the x-ray diffraction pattern of the annealed carbide, 3j@nd that of the an-
nealed carbide Tigs, is the observed trigonal splitting of the structural lif@20g,

(3121, (33151, (42051, and(422)5,. This means that the trigonépace groufR3m)
ordered phase JC formed in the carbide Tigsg as a result of annealing. It is also
possible that the annealed carbide Jigcontains, together with the trigonal phase, a
certain amount of the cubic ordered phasgCTand a small quantits—7 mass%of the
phase T{C,. The channel with the disorder—order transition J{€pace groug-m3m)

« Ti,C (space groupR3m) includes one rak{? of the star{k)}.

Superstructural reflections, which are not present in the x-ray diffraction patterns of
the carbides Tigs, and TiG, 5, are observed in the diffraction pattern of the annealed
carbide TiG g, together with the reflectionfl/2 1/2 1/2 (26~18.0°) and{3/2 3/2 3/2
(26~55.2°) corresponding to the trigonépace groupR3m) ordered phase JC.
These are reflections neap2 30.6-30.7°,~41.2°, ~42.6°, and~55.4-55.5°, with
wave vectors of lengthg|~1.488, 1.970, 2.038, and 2.607. This analysis has shown that
the first two reflections are related with the raf®={2/3 2/3 @ andk'{®= —k{" of the
star {k,}, and the next two reflections are associated with the kays={1/3 —2/3
—1/2}, k§P=—k§, k) ={-1/3 2/3—1/2}, andk{®= -k’ of the star{ks}. Accord-
ing to Ref. 15, such a set of superstructural reflections can correspond only to the orthor-
hombic (space groupc222;) ordered phase IC,, which forms via a transition channel
including two rays of the stajk,} and four rays of the stdiks}.

It has been suggest&d'®that the cubic superstructure,T is metastable or exists
in a narrow temperature range, so that we performed an additional experiment. The
disordered carbides TiG, and TiG sg were annealed at 1000 K for 135 h and then
quenched to 300 Kquench rate~ 250 K- min~?) to preserve the structural state attained
by annealing. The diffraction patterns of the annealed carbidegsJ#8hd TiG, 55 were
found to be the same as for these carbides after annealing with temperature decreasing
slowly, but the intensity of the superstructural reflections was several times lower. From
this it follows that the cubic and trigonal ordered phase£Teéxist in different concen-
tration intervals and are stable at all temperatures below 1000 K.

The distribution functions(x4,Y;,2;) describing the probability of finding carbon
atoms at the sites={x; y; z;} in the ordered carbide phases Jillave the following
forms:

Ti,C(space groufR3m):n(xy,ys1,2;) =y~ (ne/2)cod m(x1—y1+21)], D
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Ti,C(space groug-d3m):n(Xy,Y1,21)
=y—(nolA{—cod m(x1+y;+2;)]+cog m(—X;+y1+21)]

+cog m(Xy—y1+2z1)]+cog m(x;+y1—2z1) 1}, 2

TisCy(space group222):n(Xq,Y1,Z1)
=y—(n4/3){(1/2co§4m(x,+y1)/3] — (V3/2)sin4m(x; +y1) 31} + (73/2)
x{(1/2+\[316)cod m(2x, — 4y, — 32;)13]+ (1/2— \/316)

X sin w(2x,—4y,—321)/3]+ (1/2— \/§/6)co$ w(—2X,+4y,—32)/3]
+(1/2+ \/3/6)sin 7( — 2%, + 4y, — 32,)/3]}, )

wherex,, y;, andz, are the coordinates of the sites of the nonmetallic face-centered
cubic sublattice undergoing orderingy, 74, and n5 are long-range order parameters
corresponding to the stars of wave vectors whose rays form disorder—order transition
channels. The distribution functiori$)—(3) possess all symmetry elements with respect

to which a particular superstructure is invariant. The formation g€&uperstructures is
related with the Lifshits stafkq} and can occur as a second-order phase transition, which
does not preclude the possibility of a first-order transition. The superstructy@g iBi
described by two critical order parameters, which correspond to non-Lifshits{&tgrs
and{ks}, and it forms only by a first-order phase transition.

An overall lowering of symmetryproduct of rotational and translational lowerings
of symmetry in the transitions TiG— Ti,C (space groulR3m), TiC,— Ti,C (space
groupFd3m), and TiG— Ti;C (space grougC222) is 2, 8, and 144, respectively.

When measuring the specific heat, effects due to an order—disorder equilibrium
transition were observed in the dependerCglT) in the heating regime, and effects due
to an equilibrium transition from a high-temperature disordered into a low-temperature
ordered state were observed on cooling.

On heating from 300 to 1000 K the specific h€at of the annealed carbide TiG,
increases continuously as a result of the excitation of the phonon subsystem. Subse-
quently, a sharp jump in the specific heat is observed at the transition temperature
Tirane= 1000 K (Fig. 1). This jump is due to the equilibrium order—disorder transforma-
tion Ti,C (space groug=d3m) — TiC, 4. The peak in the specific heat negy,,s has
more of a symmetriqFig. 2) and not ax form; the symmetry of the peak is more
characteristic for a first-order than a second-order phase transition. Moreover, weak hys-
teresis of the specific heat is observed on cooling; this also confirms that the transition is
close to a first-order transition. Temperature hysteresis near an order—disorder transition
had previously been observed in the resistivity of nonstoichiometric titanium cdrbide.
The lattice periodag; of the basal phase witB1l structure also increases by a small
amount as a result of ordering. All this taken together makes it possible to interpret the
reversible order—disorder transformationJi(space group-d3m) < TiCys,as a weak
first-order phase transition with a low latent heat of transformation.
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FIG. 1. Change in the specific he@}(T) of annealedordered nonstoichiometric titanium carbides TjG,,
TiCysg, and TiG g, 0N heating: The dashed curves show the specific heat of the carbidgiTa@uenched
nonequilibrium disordered state at temperaturesT ;,s-

The dependenceS,(T) for the annealed carbides Tjgz and TiG 6, (Fig. 1) have
the same form as for the carbide Fig;. However, the peak in the specific heat for the
carbide TiG sgcan be represented as a superposition of two contribuféigs 2), one of
which corresponds to the transformatiop@i— TiC, and the other to the transformation

Cp(d-mol ™ K

950 1000 1050 1100 1150
T(K)

FIG. 2. Specific heat of the carbides T, TiCysg, and TiG, g, near the peaks corresponding to a transition
from an ordered into a disordered state. Dotted curves — superpositional contributions to the specific heat of the
carbide TiG sg that correspond to the transformations@i— TiC, and TgC, — TiC, .
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FIG. 3. Variation of the specific he&,(T) and enthalpy I6I$— Hggg) of the nonstoichiometric carbide TjG,
near the reversible order—disorder phase transformatig@, Tispace groupgC222) < TiCpgy: Tyane= 970
+10 K andAH a4, 1.8+0.2 k3 mole .

TisC, — TiCy. The peaks corresponding to these contributions are broadened compared
with the peaks in the specific heat of the carbidesyEiand TiG g,. Apparently, the
annealed carbide Tiggcontains the ordered phasesTiand T§C,, where the degree of
long-range order is less than in the single-phase ordered carbides.

The most symmetric peak of the specific heat near an order—disorder transition is
observed for the carbide TG, (Fig. 2), in which a TgC, phase forms. A symmetry
analysis showed that the transformatiogQi« TiC, can only be a first-order transition.

Figure 3 shows the change in the enthalpﬂe Hggg) and specific heaC,(T) of the
nonstoichiometric carbide TiG, near a phase transition: It is evident that a jump
(H9r— Hg%) in the enthalpy is observed at the transition temperafyggs.

The measured temperaturg,,s and heatsAH,,.s Of the phase transitions JG
(space groufrd3m) « TiCqs4, Ti,C (space groufr3m) « TiCysg, and TiC, (space
groupC222)) < TiC, g, studied are 1000, 980, and 970 K and# (&2, 1.5-0.2, and
1.8+0.2 kI mole 1, respectively.

The experimental data on the temperature dependence of the specific heat of ordered
titanium carbides with different carbon content were approximated in the temperature
range from 300 to 1000 K by the following equations:

TiCp5a:

Cp(T)=46.5538+ 1.1566< 10" 3T +7.6604x 10 'T?—4631.887T *(J- mole’K™).
TiCqsg:

Cp(T)=31.1767+2.7000< 10 3T+ 1.3772< 10" °T?~1775.7430  *(J- mole’K ™).
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TiCo 62!
Cp(T)=60.8874-2.7600< 10" 3T +1.9196< 10 °T?~6793.182T *(J- mole’K™).

The disordered state of nonstoichiometric carbides is easily preserved as a meta-
stable state al <Tyans: AS One can see from Fig. 1, nedy,,s the specific heat of
quenched disordered carbides i€ greater than that of the same carbides in an equi-
librium ordered state. This behavior 6f, of highly nonstoichiometric carbides M@ear
an order—disorder transitiofthe higher specific heat of the disordered carbide and the
jump in the specific heat at the transition temperagthwad been predicted in Ref. 18.

On the whole our study of the crystal structure and specific heat of titanium carbide
TiC, (0.54<y=0.62) showed that ordering of TjGvith formation of the cubidspace

group Fd3m) and trigonal(space grougR3m) Ti,C superstructures and orthorhombic
(space groupc222) TizC, superstructure occurs at temperature 970—-1000 K as a first-
order transition. The results obtained agree with the phase diagram which is proposed in
Ref. 17 for the system Ti—C and takes account of the ordering of the nonstoichiometric
carbide TiG.

This work was supported by the Russian Fund for Fundamental Resgaajhct
98-03-32890a
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Maxima have been observed experimentally in the dependences of the
current on the uniaxial pressureprtype germanium for crossed direc-
tions of the uniaxial strain and electric field. The effect, which is ob-
served atT=77 K and is absent ai=4.2 K, can be explained by
tunneling transitions of holes, with the participation of acoustic
phonons, from a resonant impurity state to unoccupied states in the
valence subbands of germanium. 1®99 American Institute of Phys-

ics. [S0021-364(09)00609-X

PACS numbers: 72.80.Cw, 62.5(, 72.20.Jv

INTRODUCTION

Induced far-IR emission from hot holes in Ge with an electric field and uniaxial
pressure(UP) applied in the same direction was observedrat4.2 K in Ref. 1. The
emission is accompanied by a severalfold jump in the current flowing through the sample.
This emission arises at total internal reflection modes for sufficiently strong electric fields
E>3 kV/cm and UPsX>8 kbar. In Ref. 2 it is shown that the threshold pressure for the
appearance of radiation and the current jump decreases with increasing impurity density
and increases with increasing temperature. Spectral investightiame established that
the radiation is due to intracenter inversion in the hole distribution. The point is that the
UP lifts the degeneracy of the valence subbands and impurity levels, each level following
its subband as pressure increases.k=00 the splittingA of the subbandssee Fig. 1is
proportional to the UPA=aX (Ref. 4, with the following splitting parametera for
UPs applied along the crystallographic axe$[100] andX || [111]: a;05=6 meV/kbar
and «111=4 meV/kbar. At splittingsA=16 meV the upper impurity leved, falls into
the continuous spectrum of the bottom sublexe} and therefore becomes resondAs
a result, and since the dep#h of this level relative to its own subband is approximately
two times greater than the corresponding depth (for pressures such that— &,
<4,), a population inversion on these levels is produced in a strong electric field.
However, as shown in Refs. 2 and 3, the presence of a static domain with a strong electric
field (which vanishes at the moment radiation generation grisethe sample impedes
the appearance of intracenter inversion and gives rise to large threshold UPs. A static

0021-3640/99/69(9)/6/$15.00 676 © 1999 American Institute of Physics
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FIG. 1. Schematic diagram of the structure of the valence band of uniaxially strained germanium.

domain forms because of the presence of holes with different masses in the direction of
strain in the bottom subband— light holes for hole energies less than the energy
corresponding to the inflection point on the dispersion cusee Fig. 1 and heavy holes

for holes with energy greater than the energy corresponding to the inflection point. In
addition, a clear dependence of the threshold pressures on the crystallographic directions
([100Q] or [111]), along which the electric field is applied, is not observed in the experi-
ment of Ref. 2, though for them the splitting parameters differ substantially. The latter
circumstance is also explained by the presence of a static démain.

At the same time, for mutually perpendicular UP and electric-field directions, the
conditions for the formation of a static domain are not satisfied, since there are no
inflections in the dispersion curve. Therefore it can be expected that in this case the
presence of resonance impurity states can be observed for UPs much less than 8 kbar. On
this basis our objective in the present work was to observe and investigate the possible
influence of resonance impurity states on electric-current flow through a sample with
crossed directions of the electric field and the UP.

2. EXPERIMENT

The experiments were performed B&77 and 4.2 K. AtT=77 K the current-
voltage and pressure-current dependences were investigated for samples in the form of a
cross and a rectangle, while only rectangular samples were used 42 K.

The choice of sample shape was dictated by the following circumstances. In the first
place, if for E|| X || [111] increasing the UP suppresses the injection of nonequilibrium
current carriers(electron$ from the contacts, then electron injection is easier for
ELX|[111]. This is due to the fact that for electric field and UP oriented in the same
directions the effective conduction mass of an electron in the bottom split-off valley
increases, while for electric field perpendicular to the UP, it decreases. For this reason, to
interpret the results obtained correctly it is necessary to eliminate any influence of the
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FIG. 2. Normalized current); is the current aK=0) versus the uniaxial pressuXdor a cross-shaped sample;
t=77 K; E, kV/cm: 0.75 — curved,1’; 1.0 —2,2'. Hole densityNs— Np=8X 10" cm™3; E_LX ||[100] —
curvesl,2 ELX|[111] — 1',2’. Inset: Measurement scheme and the distribution of mechanical stresses on
the cross-shaped sample.

injected electrons on the experimental results. In the second place, the effect of uniaxial
strain on the properties of the contacts deposited over the entire length of a sample was
unclear. On this basis at the first stage the samples were cut out in the shape of a cross,
and the mechanical stresses at the center were calculated by the finite-element method. A
check of the calculation according to the position of the maximum of the transverse
piezoelectric resistanédor rectangular samples showed that the computed and experi-
mentally measured positions of the maximum of the piezoelectric resistance were the
same to within a quite high accuracy of 5%. The shape and dimensions of the experi-
mental samples and the distribution of the mechanical stresses in the saatiare

shown in the inset in Fig. 2. It is evident that the contacts are located outside the zone of
the mechanical stresses. The intensity of the electric field at the center of the samples was
measured with capacitive probes.

At the second stage the experiments were performed on rectangular samples with
contacts deposited along the entire area of the long faces. We note that such a sample
shape is most favorable for generation of longitudivéith respect to the length of the
sample IR-radiation modes. Comparing the pressure—current curves with the analogous
curves obtained for the cross-shaped samples showed that mechanical loads up to 6 kbar
did not change the properties of the contacts. The same conclusion was also confirmed by
repeated measurements of the transverse piezoelectric resistance and current-voltage
characteristics of the rectangular samples, and the reproducibility of the results was quite
high — around 1% for high-resistance samples and 1.5% for doped samples. The dura-
tion of the strong electric field pulses was 120 ns with a 20—-30 ns rise time. The
appearance of nonequilibrium-carrier injection was monitored according to the shape of
the current pulse and for some samples according to the decrease in the Hall constant. For
this purpose, permanent magnets were placed next to the sample. The Hall contacts were
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Insets: Top — normalized current versus the electric field strength with uniaxial preXssfe kbar
(To=77K); bottom — sample shape and measurement scheme.

led out through dies. Such double monitoring made it possible to perform measurements
on rectangular samples in fields where electron injection had no effect on the results
obtained. Loads were applied to the samples in a manner similar to that used in Ref. 2.

DISCUSSION

The experimental results are presented in Figs. 2 and 3. We discuss first the results
obtained alf =4.2 K. The decrease of the current at liquid-helium temperature within the
curves 4—6 in Fig. 3 can be explained by the decrease in the density of states in the lower
subbande _, with increasing pressure and by the effective capture of holes in the reso-
nance state$.An increase in the average hole energy with increasing electric feld
results in an increase of the hole effective magsin the e, subbandfor example, for
X111 Myl e=7 mev/ M1l =20 mev=0.8), as a result of which the normalized current
should decrease with increasing electric field. In Fig. 3 this is reflected as a lowering of
the curves 4—-6 as the curve number increases, which corresponds to an increase in the
electric field.

The position of the maxima on the pressure scal&-a7 K makes it possible to
attribute them to the appearance of resonance impurity states. We underscore that the
maxima are observed only at liquid-nitrogen temperature, and their magnitude depends
on the electric field. The top inset in Fig. 3 shows the dependence of the normalized
current on the electric field at 5 kbar pressuttee pressure at which maxima are ob-
served. This curve was constructed on the basis of an analysis of nine curves similar to
the curves 1-3 in Fig. 3. On this basis it can be inferred that the current growth in the
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curves 1-3 in Fig. 3see also Fig. Ris due to emptying of the bound states in an
electric field and, correspondingly, an increase in the number of holes contributing to the
electric current. FOE=0 the equilibrium population of the resonant states is determined
mainly by scattering of holes by acoustic phonons. When an electric field is switched on,
the rate of escape of holes from a resonant state increases is higher than in the equilib-
rium situation, while the rate of arrival into these states remains essentially unchanged. A
hole which has left the levet, can remain within the bottom subbaed, and it can

also occupy the upper subbaad,. We note that in either case tunneling of a hole in an
electric field with absorption of an acoustic phonon is assumed. In both cases the phonon
energy required for a hole to be transferred out of the resonant state will be less than for
E=0. For example, in the second case the energy of the absorbed phonons can be less
than the gap width, determined by the dispersion law for holes in the upper subband
(€+p(P)— €.)|e—o, as a result of the decrease in the gap with an electric field, increasing
the probability of such processes. Moreover, we underscore that the hole effective mass
in the upper subband is approximately three times less than in the bottom subband, and
the hole contribution to the electric conductivity will be much higher.

The decrease of the current component due to holes in the sulbgndith a
further increase of pressure could be dudjost as in the cas&=4.2 K) a decrease in
the density of states in the bottom subband. The contribution of the upper subband to the
hole current also will decrease, first, because of the decrease in the probability of holes
being transferred out of the lower subbaftide levele, is broadened and correspond-
ingly the lifetime of a hole in the level and the capture probability dechesse, second,
because the intensity of hole scattering with emission of an optical phonon with energy
€, With the final state of the hole in the bottom subband increases. The latter factor is due
to the fact that the difference,— €. (p) decreases with increasing pressure for all holes
with momentunyp in the upper subband below the optical phonon eneggyvhich in an
electric field causes their lifetime with respect to the emission of an optical phonon to
decrease. Since the direction-averaged density of states in the upper subband is approxi-
mately 20 times lower than in the bottom subbdfudt holes with the same energyeven
holes withe~2¢, will be scattered primarily into the bottom subband.

We shall now examine the decrease of the electric current with increasing electric
field intensity at 5 kbar pressufsee top inset in Fig.)3For holes in the bottom subband
such behavior of the current can be explained by analogy to the depent{efijcat T
=4.2 K, specifically, by the increase in the hole effective mass with increasing hole
energy. For holes in the subbaed, increasing the field heats up the holes and therefore
increases the intensity of hole scattering by optical phonons with the final state in the
subbande_,,, which likewise decreases the current.

In conclusion, we note that the relative contribution of holes from each subband to
the experimentally observed current maximum can be estimated on the basis of calcula-
tions matched with experiment.

We thank O. G. Sarlieand M. S. Kagan for fruitful and stimulating discussions of
this work.
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The thermodynamics of a system of Pearl vortices in a superconducting
thin film containing radiation defects is studied. It is shown that three
phase transition scenarios are possible, depending on the defect density.
At low densities there is one stable state of the system. When the first
critical densityny; is reached, there appears a temperature interval in
which the system can be in two stable states. If the density excgeds

then the lower limit of stability of the metastable states shifts abruptly
to zero. © 1999 American Institute of Physics.

[S0021-364(99)00709-4

PACS numbers: 74.76w, 74.80.Dm, 61.82-d

A Kosterlitz—Thouless(KT) transitior> occurs in two-dimensional systems in
which topological defects with a Coulomb interaction can exist. An example of a model
two-dimensional superconducting system is a layered superconductor without a Joseph-
son link between the layers and with two-dimensional magnetic vortices as the topologi-
cal defects. The KT transition in such a system is due to two phenomena — instability of
vortex dipoles with respect to dissociation into a gas of free vortices, appearing in the
system above the temperattife

b3

T 1672A(Tey) W)

TKT

and collective effects in the system of free vortices. Hggds the magnetic flux quan-
tum, A=2\?%/s, \ is the London length, andis the period of the system.

A superconducting thin film with thickness<\ is not a strictly two-dimensional
system. Vortices in such a system have been studied by P&hd.logarithmic interac-
tion of vortices in a film is bounded by the large but finite effective Pearl lerdgth
=2)\2/d. Nonetheless, as was shown in Ref. 6, processes which allow a behavior of the
system close to a KT transition can occur in a system of Pearl vortices. These are the
same instability and collective effects that give rise to a KT transition in a two-
dimensional system. However, in a system of Pearl vortices the correlation length cannot
exceedA, while in a two-dimensional system the Pearl length approaches infinity as the
temperaturdl 1 is approached from above. For this reason, in a Pearl film the phenom-

0021-3640/99/69(9)/6/$15.00 682 © 1999 American Institute of Physics
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ena that are known as a KT transition do not constitute a phase transition in the strict
sense.

In recent years there has been steady interest in the effect of radiatitimnaj
defects on the properties of layered supercondudsws, for example, Refs. 7 andl. 8
These defects are formed by irradiating the samples with high-energy heavy-ion beams.
They consist of nonsuperconducting regions with transverse dimensions of the order of
the coherence length of the superconductor. It has been shown that introduction of
radiation defects is an effective method for intensifying the pinning of magnetic vortices
and thereby increasing the critical current.

Since the behavior of systems of two-dimensional and Pearl vortices is determined
by the same processes, it is natural to expect that radiation defects will also have the same
influence. Their role consists in trapping and confining Pearl vortices, preventing their
motion under the action of the current.

Thermal fluctuations have a different effect on the system of vortices in a supercon-
ductor. It is manifested, for example, in a fluctuational detachment of vortices from
pinning centers, resulting in magnetic flux creep and decreasing the critical current. At
low temperatures, fluctuations in a superconducting thin film lead to the production of
pairs of oppositely directed Pearl vortices and a very small number of free vortices.
Breakup of vortex pairs by a current results in a nonlinear current—voltage characteristic
(IVC). As the temperatur@ of the superconductor increases to the critical temperature
Tyt of the KT phase transition, instability leading to avalanche-like growth of the num-
ber of free vortices, giving rise to a linear behavior of the IVC, appears in the system of
vortices. In a superconductor with pinning centers, such growth of the number of free
vortices can lead to reversible behavior of the system. The thermodynamics of a system
of Pearl vortices in a perfect thin film has been studied by Ryzhov and Tar&yeva.

In the present letter the influence of radiation defects on the KT transition in a
superconducting thin film is studied. It is shown that, depending on the defect defsity
three different phase transition scenarios are possible. Fomjgwless than a critical
density nq;, the transition is continuous, like a second-order transition. i@ Ny
<nq, there exist two thermodynamically equilibrium states of free vortices — individual
and collective. A phase transition then occurs as a first-order transition, and hysteresis
should be observed in the temperature dependence of the resistance. At a high defect
densityny>ny, the lower limit of stability of the metastable states shift§te0. In this
situation the possibility of a transition of the system to a lower metastable state is very
unlikely.

We shall treat Pearl vortices as classical massless particles. They can be in a free
state or they can be trapped by radiation defects. We shall treat free and trapped vortices
as two subsystems in thermal and chemical contact with each other. Free vortices can
appear and disappear in such a system as a result of dissociation and recombination of
vortex dipoles, and they can be trapped by and escape from defects. In an equilibrium
state the temperatures and chemical potentials of the subsystems are the same.

We shall write down the partition function of the system of vortices in a film with
defects. In a real film defects form a random configuration determined by the coordinates
{R.}. Let the system contaiN, andN_ free vortices with two orientationsy;. and
N;_ vortices trapped by defects, alNj>N,, +N;_ radiation defects. Then
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Here 3=1/T, E, is the energy of a vortex cores&? is the size of a cell in the space
occupied by one vortex, and is the interaction energy of free vortices located at the
pointsx; and trapped by defects located the poiRts. The contribution to the partition
function from vortex dipoles due to the polarization of the medium and the interaction
(see below of vortices with empty defects has been neglected.

The free energy must be averaged over the arrangement of the defects. It is obvious
that after averaging the energy of the system will no longer depend on which of the
defects have trapped vortices. For this reason, in expreg2jotihe sum over various
configurations of trapped vortices can be replaced by the number of possible configura-
tions and averaged over one of them. The number of configurations equals the number of
ways in whichN, +N;_ vortices can be distributed ovBly defects. It is easy to see that
this number isNg!/(Ng—N¢y —N;2)!.

We shall now discuss the averaging of the free energy. Only the configurational part
of the energy needs to be averaged, since the entropy part does not depend on the
coordinates of the defects. To calculate the configurational energy we shall formally
expand the exponential function in E@) in a series. As is well knowtf, the logarithm
of the partition function can be expanded in a series of connected diagrams. To perform
the averaging we shall assume that all defects are distributed independently of one an-
other and with equal probability over the entire area of the sample. We shall perform the
averaging by integrating the formal series obtained over the coordinates of the defects
and dividing each integral by the ar8aAs a result of this operation, the contribution of
trapped vortices, which in a specific configuration were pinned at definite @jntss
formally included in the free energy of the system on an equal footing with the contri-
bution of free vortices. The only difference is that the state of the vortices trapped by
defects is energetically more favorable because of the zero-point energy of the core.

Now it is easy to calculate the free energy of the system of vortices. Since we are
interested mainly in collective effects in a system of vortices, we shall confine ourselves
to summing a sequence of ring diagrafisA characteristic feature of systems where
collective effects play the main role is that the integral fdrU(r) over the infinite area
of the film, corresponding to the simplest diagram, diverges. This integral does diverge
for the interaction energy of Pearl vortices. This means that even for a low vortex density
it is not possible to limit the calculation to the interaction of vortices with some number
of nearest neighbors, and it is necessary to take into account the interaction of all of them
with one another. The ring diagrams form the main sequence in the expansion of the
configurational energy in this case.

The situation is different for the interaction of a vortex with an empty defect. The
interaction energy of a Pearl vortex interacting with an empty cylindrical defect has been
calculated in Ref. 11. It decreases with increasing distance from a defect much more
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rapidly than the energy of interaction with a vortex. In this case the intdgrahverges,

and the configurational energy can be expanded in a series in the vortex and defect
densities. The first nonvanishing term in the series will be the second virial coefficient,
which is proportional to the product of the vortex and defect densities. It will give terms

in the equation of equilibrium which are proportional to the densities, which are small
compared with the logarithms of the densities and can be dropped. On this basis, so as not
to complicate the expressions, the contribution to the partition function from the interac-
tion of vortices with empty defects is neglected from the outset.

The free energy of a system of Pearl vortices in the ring approximation has been
calculated in Ref. 9. We need only to substitute the sum of the densities of free vortices
and vortices trapped by defects for the vortex density in the configurational part. Intro-
ducing the dimensionless vortex density=(N/S)w¢? and free-energy density
=(F/S)w&?, we write the free energy of the system as

f=n,(Inn,—L)+n_(Inn_—-1)+n (Inn;; —1)+n,_(Inn,_—1)
+(Ng—Ngy =N )(IN(Ng—ng =N ) — 1)

+p(ny+n_+ni +n_)(1—=Indp(n +n_+n; +n¢))

1
+ mG[leAz(ann,+nt++nt,)]+(n++n,)pe0,

t ! 7 Xx=1
arctan - =, =
1 X Vx—1 2
G[x]=5In—+|1—¥] (3
24 1I 1+1—x 1
_n—' =
2 1-\1-x

Herepey=BE, andp= ¢3/167?AT.

A system of vortices in a thin film is a system with a variable number of particles.
The equilibrium number of particles in such a system must be determined by minimizing
the free energy, and the equilibrium chemical potential is zero. Thus we obtain the
conditions of equilibrium of the system by equating to zero the derivatives of the free
energy with respect to the number. of free vortices and the numbes.. of vortices
trapped by defects:

Inn.—plndp(n,+n_+ny, +n;_)
+4pG'[32pA(n,+n_+n;,+n,_)]+pe=0,

Inni-—In(ng—ny, —n,)—plndp(n +n_+n;, +n;)
+4pG'[16pA(n,.+n_+ny, +n,_)]=0. 4

Subtracting the equation for_ from the equation fon, we find thatn, =n_ in a state
of equilibrium. The two other equations give, =n,_. This decreases the number of
equations of equilibrium to two. In what follows we shall drop theand — signs from
the subscripts.
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FIG. 1. Temperature dependence of the density of free vortices and the density of vortices trapped by defects
for a continuous transitiofa) and for a first-order transitiotb).

The solutions of the system of equations obtained for various values of the defect
densityny are presented in Fig. 1. The temperature dependence of the density of free
vortices(solid line) and trapped vortice&ashed ling at relatively low defect densities
ng<ny, varies continuouslyfFig. 13. The sharp change in the densities near the tem-
peratureT .t is due to an instability similar to that predicted by Kosterlitz and Thotlless
for strictly two-dimensional systems. The same instability is also observed in perfect
films (dashed ling but in the presence of defects it is shifted in the direction of low
temperatures.

At intermediate defect densitiag;; <nq<ny, (Fig. 1b there exists a temperature
range in which the system of vortices possesses two stable states. In the state with the
lower density the screening lengih= &/\8p(n+ny,) for the interaction of vortices is
greater than the effective Pearl length and collective effectgéscreening have only a
weak effect on the state of the system. In the state with the higher defssity, collec-
tive effects renormalize the interaction energy of the vortices and the energy now de-
pends on the vortex density. This is a collective state of the system. Hysteresis of the
resistance, which depends on the density of free vortices, should be observed in this
density range.

For very high defect densitiesy>nys,, the left-hand stability limit of the metastable
states shifts abruptly t6=0. The system will always be in a collective state. A transition
of the system to the lower state is unlikely.

A single general characteristic feature due to the existence of defects appears in all
three scenarios. For any defect density, the demsif/free vortices, to whose presence
the resistive behavior of the superconductor is attributed, is higher than in a defect-free
film, and the resistance jump shifts abruptly in the direction of lower temperatures.

This phenomenon can be explained as follows. In the absence of radiation defects
the equilibrium density of free vortices is formed as a result of the establishment of
dynamic equilibrium between dissociation and recombination of vortex dipoles. Defects
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form an additional reservoir where vortices will accumulate, since the state of a trapped
vortex is energetically more favorable on account of the energy of the core. As a result,
at low temperatures in the state of the system where collective effects are negligible the
density of trapped vortices is always higher than that of free vortices, and the density of
free vortices is only negligibly higher than in a defect-free film. As the temperdire

is approached, the densities of both free and trapped vortices increase. This increases the
influence of collective effects on the state of the system of vortices in perfect films and
films containing defects. However, in the latter the total vortex density is higher, and
collective effects cause the jump in the vortex density to occur at a lower temperature.

The numerical solutions presented were obtained for a model film with the param-
etersey=3, A/¢=10% at T=0, and the ratiol .o/ Txr=1.2. The critical values of the
dimensionless defect density for the indicated parametgrs 0.03 andng,~0.09 are
quite large. They depend on these parameters, decreasing somewhat as the parameters
decrease.

The described behavior of a system of Pearl vortices permits making a humber of
qualitative assertions about the critical current of a film. It follows from what has been
said above that an increase of the critical current should not be observed in the absence
of an external magnetic field. Conversely, the temperature at which resistive behavior of
the film first appears decreases.

In an external magnetic field, an increase of the critical current due to trapping by
the defects of vortices which have entered the sample under the action of a field can be
observed at low temperatures. After the temperature at which avalanche-like growth of
vortex density starts is reached, the critical current should go to zero, since the number of
free vortices grows rapidly. This is one possible depinning mechanism by which a su-
perconductor is brought to a resistive state and which gives rise to reversible behavior of
the magnetization of the sample. In the case of a first-order transition, two lines of
irreversibility can be observed, depending on the direction of change of the temperature
in the experiment.

These remarks are equally applicable to layered superconductors, since the mecha-
nisms responsible for the resistive behavior and magnetization of the sample are the same
as in a Pearl film.
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The dispersion in the entire Brillouin zone and the temperature depen-
dence(right up to the melting temperatyref the anharmonic fre-
guency shift and phonon damping in a number of fcc metals is inves-
tigated on the basis of microscopic calculations. It is found that the
anharmonic effects depend sharply on the wave vector in the directions
I'-X, X=W, andI'-L and, in contrast to bcc metals, the magnitude of
the effects is not due to the softness of the initial phonon spectrum. It is
shown that the relative frequency shifts and the phonon damping near
melting do not exceed 10—20%. The relative role of various anhar-
monic processes is examined, and the relation between the results ob-
tained and existing experimental data is discussed1989 American
Institute of Physicg.S0021-364(09)00809-9

PACS numbers: 63.20.Ry, 63.20.Dj

The investigation of anharmonic effed&Es) in lattice dynamics is a classic prob-
lem of solid-state physics. It is important, specifically, because of the role that such
effects they can play in phenomena associated with structural phase transitions and melt-
ing in crystals(see, for example, Refs. 133t the same time, obtaining any information
about the magnitude and scale of AEs from experiment and theory is a difficult problem.
The experimental study of such “basic” AEs as the frequency shift and damping of
phonons is very difficult and leads to a large uncertainty in the re@sts, for example,
the data presented in Refs. 4 and 5 for bcc and fcc metals, respectidgljto now
first-principles microscopic calculations of AEs have been performed for one point of the
Brillouin zone (N) in the bcc phase of Zr and four pointdl (P, »,G) in Mo.® Detailed
information about AEs in the entire Brillouin zone and their temperature dependence has
been obtained in Refs. 4 and 7 on the basis of pseudopotential theory for the bcc phases
of alkali and alkaline-earth metals. For these metals the most striking manifestations of
AEs are due to the “soft-mode behaviofthe anomalous temperature dependence of the
phonon frequencigof the 3, branch. It is of interest to calculate AEs for the “general
position,” i.e., for crystals which do not possess soft vibrational modes. Such crystals
include most metals with close-packed structures, for example, fcc. There is virtually no

0021-3640/99/69(9)/6/$15.00 688 © 1999 American Institute of Physics
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information about AEs in such metals, not counting Ref. 5, where the damping of
phonons in precious metals and Al was calculated. However, the calculations were per-
formed only for individual points of the Brillouin zone and at room temperatut@ch

is much less than the melting temperatilifg . Moreover, the accuracy of the model used

in Ref. 5 for interatomic interactions is unclear, which is probably the reason for the
qualitative discrepancy between the theoretical and experimental dependences of the
damping on the wave vector. In the present letter the AEs in the lattice dynamics of fcc
metals are investigated in detail on the basis of a systematic anharmonic perturbation
theory.

The calculations were performed for Ir, the fcc phases of Ca and Sr, and the hypo-
thetical fcc phase of K. This choice of objects was determined by the fact that reliable
and at the same simple microscopic models which make it possible to describe a wide
range of lattice properties of these metals e%ist Iridium is an example of an fcc
crystal with a “stiff” interatomic interaction potential, similar to the Lennard-Jones
potential® while K, Ca, and Sr are characterized by potentials with a softer “core.” To
demonstrate the characteristic features of AEs due to the specific nature of the potential
with the same lattice geometry, we present here the results for the “limiting” cases — Ir
and K. The results for Ca and Sr are qualitatively similar to the results for K and will be
presented elsewhere.

The parameters determining the interatomic interaction potential are presented in
Ref. 8 for Ir and in Ref. 4 for K. The calculations were performed on the basis of the
anharmonic perturbation theory taking account of thermal expaigig@asiharmonic con-
tributions, gh) and three- and four-phonon interaction processes to accuwgoyhere
x=(m/M)Y4is the adiabatic smallness parameter, ana@ndM are the electron and ion
masses. The exact formulas actually used in the calculations are presented in Ref. 4. For
a qualitative discussion of the results, we present here their high-temperature asymptotic
representation fol >0 (O is the Debye temperature

A=A+ A%+ AL, (1)
ah AQ
ANk=— %\kkav, 2)
2 2_ 22 2 2, 2
Afk:——T E Vl;,q,k+q 1 (01— w)) ka(wl"'wz), 3
AM3awyy wrg | wiws (02+ ws— 0 )?—doiw)
T 1
Mmoo 3wk @
4|\/|3w)\k o 1% iq
77 K,g.k+q 2
Da=T 32 Viuy L0\ — 01— w2) T 28(w\ T w1~ w3)].  (5)
8M*~ nrq wiw5

Here\, u, andv are the indices of the phonon branchksand g are quasimomenta,
oy, Ak, andI’y are, respectively, the initial phonon frequency and its shift and the
phonon dampingy andW are the amplitudes of three- and four-phonon procetsss
Ref. 4, yy=—3dInwy, /dInQ is the Gruneisen parameter\() is the change in the
volume () per atom due to thermal expansion, ard (Ju,q) and 2=(v, k+q).
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FIG. 1. Temperature dependence of the frequency shift in Ir at the symmetric points of the BrillouirTzone;
— melting temperature@, — Debye temperature. The indices 1 and 2 denote longitudinal and transverse
phonons;w, — ion plasma frequencyd'pr,:871 K, see Ref. 8).

The basic computational results are presented in Figs. 1-5. It is evident from Figs.
1 and 2 that the high-temperature asymptotic representafB)r¢5) obtain very early
(for T=@®p/3). Comparing the analogous results for bcc métitlsan be concluded that
this property is probably quite general. It follows from Figs. 1—4 that the strongest AEs
in Ir occur for longitudinal phonons near the poixt Specifically, the decrease of the
frequency and the increase of the damping with temperature are greatest for these
phonons. The situation differs sharply in this respect from bcc alkali and alkaline-earth
metals*’ where the maximum damping obtains for “soft” phonons, for which the op-
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FIG. 2. Temperature dependence of phonon damping in Ir. All notations are the same as in Fig. 1.
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FIG. 3. Dispersion of the relative frequency shift A/w atT=T,,. Solid line — Ir, dotted line — fcc K. The
numbersl, 2 indicate longitudinal and transverse branches.

posite behavior of the frequency with increasiigs characteristic — hardening instead
of softening. It is evident from Fig. 5 that this difference is due to the fact that in Ir
three-phonon processes dominate over four-phonon processes.

To understand the role of the characteristic features of the interatomic interactions
for the same lattice geometry, the computational results for a hypothetical fcc phase of K
are presented in Figs. 3 and 4. The explicit domination of three-phonon over four-phonon
processes, which causes the frequency shift to be negative over the entire Brillouin zone,
is also seen in this case and is apparently characteristic for all metals with fcc structure.
At the same time, the fact that the neighborhood of the p¥iistdistinguished probably
occurs only for crystals with a “hard” interatomic interaction potential of the type in Ir.
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FIG. 4. Dispersion of the relative phonon dampipg I'/w at T=T,. Solid line — Ir, dotted line — fcc K.
The numberdl, 2 indicate longitudinal and transverse branches.
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FIG. 5. Variation of the anharmonic contributiond" (a), A% (b), andA* (c) in theT —X— W directions in Ir
atT=T,,.

It is well knowrf that the “hardness” of the potential in metals increases with the
effective valenc& (Z=1 for K andZ=4.5 for Ir). In any case Ir is a striking example of

a crystal where AEs are maximum for high-frequency vibrations, in contrast to crystals
with soft modes where the AEs are maximum for low-frequency phonons. The latter can
be easily explained by the high powers of the frequency in the denominators of the Egs.
(3)—(5), but the example of Ir shows that in the general case the question cannot be
solved on the basis of such simple considerations.

According to Fig. 4, an important feature of phonon damping is its nhonmonotonic
dependence on the wave vector in the-L and I'—X directions. According to the
experimental data presented in Ref. 5, such honmonotonic behavior is observed in Al,
Cu, Ag, and Au. It can therefore be supposed that this behavior is typical for all metals
with the fcc structure.

In closing we note that, as follows from Figs. 3—5, the AEs have a strong depen-
dence over the Brillouin zone. For this reason, approximations which take them into
account “on average'{approximations of the type used in the recently published Ref.
10), are dangerous. Finally, from the fact, found in the present work, that three-phonon
processes predominate over four-phonon processes it follows that the well-known ap-
proaches such as the self-consistent phonon approach are inapplicable to metals with a
close-packed structure.

This work was supported by the Russian Fund for Fundamental Research, Project
98-02-16219.
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An ultrasonic investigation of pressure-induced direct and reverse
transformationdda—hda between the amorphous phases of low- and
high-density ice is performed and the change in the shear modulus is
determined. It is found that elastic softening of the amorphous network
precedes both transformations, and the behaviddaphase is similar

to that of hexagonal i1 ice before amorphization. At the same time a
number of features of thela—hda transformation are due to the to-
pological disordering of the amorphous phases, and the kinetics of the
transformation is different from the standard behavior at a first-order
phase transition and also from the compression kinetics of “classic”
glasses of the typa-SiO, anda-GeQ.. It is shown that the difference

in the behavior of thdda and hda amorphous phases under pressure
can be attributed to characteristic features of their spectra of low-
energy two-level states. @999 American Institute of Physics.
[S0021-364(99)00909-3

PACS numbers: 64.70.Kb, 62.50p, 62.80+f, 61.43.Er

Ice can exist at different pressurBsand temperatures in the form of variougat
least 12 crystalline modificationd:? Besides these modifications there exist amorphous
phases of ice, a number of which commonly occur in nattfeln 1984 it was
discoverefl that an amorphous modification can be obtained by low-temperafure (
~77 K) compression of ordinary hexagonal ick. Besides the solid-phase amorphiza-
tion (SPA) of ice, another remarkable phenomenon was discovered in Ref. 6. The amor-
phous modificatiorhda (high-density amorphojisobtained on heating to 120-130 K
under atmospheric pressure transformed into a less dense amorphous modifitzation
(low density amorphoyswith a different structure of the short-range order. It was soon
established that thiela phase obtained in this manner undergoes under compression a
reversible transformation into tHeda modification’

The transitiondda—hda andhda—Ilda were accompanied by a jumplike change
in volume, which made it possible to conclude that first-order transitions can occur
between different amorphous pha$ést the same time a study of transformations in
other amorphous substances, for example, glassy &0 GeQ, showed that the trans-
formation process in these glasses is extended in présstiaed exhibits unusual loga-

0021-3640/99/69(9)/7/$15.00 694 © 1999 American Institute of Physics
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rithmic kinetics'2 To this day ice apparently remains the only example of a material
where sharp transformations into an amorphous state are observed. It has been suggested
in a number of works that a transition between two amorphous phases of ice possesses a
high-temperature continuation in the form of a first-order transformation in supercooled
ice13-15 Despite the fact that so far only indirect evidence for the existence of such a
transformation exist¥ investigations in this field are arousing unusually great interest,
since they make it possible to explain many unusual properties of Water.

The transformationskda«< hda, just as the SPA of ice, occur in the same tempera-
ture range where diffusion processes are largely frozen. Ultrasonic investigations have
established that softening of the elastic constants of the crystal lattice ohipeetedes
the SPA of ice; this is apparently directly related with the mechanism of St can
be inferred that transitions between amorphous phases are accompanied by softening of
the elastic moduli, but in contrast to crystals such softening should occur at different
pressures in different sections of the amorphous netotk'®?°This circumstance is
evidently responsible for the logarithmic kinetitsind the wide pressure extent of tran-
sitions ina-Si0, anda-Ge0,.> 12

The study of transformations between the amorphous phases of ice is of special
interest in this connection. A preliminary investigation of the direct transiida—hda
by the ultrasonic method was conducted in Ref. 21, but the results were qualitative, since
later it was found that théda ice samples investigated contained a large quantity
(~50%) of crystalline phases. In the present work the mechanism and kinetics of the
reversible transitiodda«hda under pressure are investigated and the change in the
shear modulus is determined. The data obtained show a definite analogy between the
transformationsda—hda and lh—hda. At the same time, features associated with the
disordered nature of amorphous ice appear at the transition between the amorphous
phases. It turns out that the characteristic behavior of the amorphous bloiassesd lda
can be interpreted on the basis of recent measurements of the density of low-energy
two-level stategTLS9) in the ice phases studiéd.

The measurements were performed by the pulsed ultrasonic method at pressures
from 0 to 2 GPa in the temperature range 77—300 K on a cylinder—piston type high-
pressure setup, described in detail in Ref. 23. Cylindrical samples, 8—10 mm high and
~17 mm in diameter, were prepared from ice obtained by rapidly cooling distilled water.
The experimental details are described in detail in Refs. 17 and 18. The error in deter-
mining the pressure did not exceed 0.02 GPa. For measurements above 77 K under
thermostatic control the temperature gradient on the sample and the accuracy of the
temperature determination were estimated to be 1-2 K.

Thelda phase was synthesized on the basis of detailed information on the transfor-
mations h—hda andhda—Ilda, which were obtained in Refs. 6-8, as well as from
ultrasonic investigations performed on the present $&fmith continuous monitoring
of the P—V—-T parameters of the phase transformations of ice. fdteephase was ob-
tained first by compressinghlice to 1.7 GPa al =110 K. After decompression to 0.05
GPa and heating td =138 K, a sample consisting primarily of tHda phase with
density~0.96 g/cni was synthesized. According to published datae density ofida
ice is 0.94 g/cr at liquid-nitrogen temperature. The somewhat higher density of the
sample in our case is apparently due to the presence of a small quantitytafapbase
or other microcrystalline inclusions. We note that fda phase is difficult to obtain
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FIG. 1. Variation of the density, transverse ultrasonic velocity, and shear moduluS versus pressure at
T=110 K for the direct and reverse transititta— hda The sectiorab of the reverse transition corresponds

to temperatures 120-130 K. The points where the pressure was held constant for a short time are marked by
vertical bars on the curve(P).

because of the smallness of tReT region where it can be produced.

Figure 1 shows the pressure dependences of the transverse velaxfityltrasound
and the densityp as well as the dependence of the shear modulus calculated in the
uniform medium approximatioﬁ;(P)=pvt2, for the direct and reverse transformations
Ida—hda. The measurements were performed at temperature 110 K. It was found that as
pressure increases, the transverse velocity and shear modulusldé thigase decrease
right up to pressure 0.4 GPa. According to published @& sharp transition occurs in
this region to the higher density phas#a We held the pressure constant at the pofts
(P=0.50 GPaandB (P=0.53 GP& marked in Fig. 1, for 9 and 20 min, respectively.
The large irreversible increase in density and transverse velocity at these points attests to
anlda—hda transition. The subsequent pressure increase leads to an additional increase
of p andv,. The pressure was held constant for 1—-2 min at a number of pGigs.
In this case relaxation of the density and transverse velocity of ultrasound as a function of
time were observed right up to the maximum pressufie4 GPa. The typical change for
p was 0.2-1.0% of the jump at tHda—hda transition and 0.3—2% fas,. On the one
hand this exceeds the measurement error, while on the other similar relaxation changes
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are not observed in transitions between the crystal phases of ice and cannot be attributed
to the error of the measurement method. Therefore the transformidten hda contin-

ues at least to pressure 1.4 GPa, as is confirmed by comparing the direct and reverse paths
in Fig. 1.

There is an obvious analogy between the transformatidlas—hda and Ih
—hda (Fig. 2), since in both cases softening of the shear modulus precedes a transition
into the higher-density phase. Moreover, the pressure derivatives of the shear modulus for
the Ida phase Gy~ —(0.3-0.6)) and the H phase(G,~ —(0.4-0.6) are quite close.
However, there are also appreciable differences between these transformations. The tran-
sition lda—hdais clearly more extended in pressure. This transformation apparently is
completed at a pressure somewhat above 1.4 GPa, since the final value of the density at
1.4 GPa is somewhat lower than the density of hlda phase. It should be underscored
that the sharp jump in properties for the transitida— hda is due to long-time holding
(for a total of about 30 min while the collapse of the hexagonalh ice into thehda
phase is more rapid, and the transformation does not have an extended “tail.” At the
same time, a relatively rapid change in pressure also leads to sharp collapsddz# the
phase but at a somewhat higher presé@r@he extended nature of thela—hda
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transformation has also been observed in previous measurements of the Oé&usity.
comparison, experimental curves for first-order phase transitions between the crystalline
phases I Il — VIl and | — IX —VI are also presented in Fig. 2.

The mechanism of the reverse transformatiaa— Ida, just as that of the direct
transition, is apparently due to the elastic softening of the amorphous network ledahe
phase. This follows from a comparison of the character of the variatio8g ) for the
reverse transition with a sharper jump in the density dependéfige 1). The elastic
softening preceding the jump in volume is even more noticeable when the transformation
hda—Ida occurs with a change in temperatdfe.

Definite information about the transformation mechanism can be obtained by inves-
tigating the transformation kinetics. In our case such measurements were performed
under pressures corresponding to the poktndB. The results are presented in Fig. 3.

We observed an almost linear time dependence for the change in density and the travel
time of an ultrasonic pulse. Such behavior evidently does not correspond to the exponen-
tial kinetics of ordinary first-order phase transitions, which is described by the activation
energies for nucleation and growth of crystals, or to the logarithmic compression kinetics
for a-SiO, anda-GeO,,'2 which is due to the wide spectrum of activation energies for
local structural rearrangements.

In summary, it can be concluded that for the transformatia—hda features
characteristic of first-order phase transitigpsnp in volume, elastic moduli, and so on
and SPA h—hda (softening ofG right up to the transition itselfon the one hand and
typical features for amorphous phase—amorphous phase transformatiat®&@ and
a-GeO, (wide pressure range for the transition and relaxational chamgethe other are
observed. The characteristic features of the transformétian-hda can be explained
on the basis of recent measurements of the density of TLSs in the phase$%f ice.
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The mechanism of SPAncluding the transition h—hda) is associated, as a rule,
with instability of the initial crystal latticé*?° and the instability, being associated with
definite phonon modes, should appear coherently in the entire crystal. For an amorphous
network the variations in the energy states of individual atoms and local atomic stresses
lead to variations in the pressures for structural rearrangement of different nanosections
of the network, and the transformation into the amorphous phase is controlled by local
soft modes. Volume changes should appear at a definite concentration of soft modes that
corresponds to instability of the amorphous network. We assume that the density of
low-energy TLSs in the amorphous phase is related with the phonon density of states,
determining the instability of local sections of the amorphous network under pressure,
both characteristics probably being determined by the topological stiffness of the system.
The behavior of the topologically stiff disordered networks should be similar to that of
the crystal lattices with the same short-range order, while in soft glasses the transforma-
tion will proceed in a wider range of the external parameters.

Measurements of the low-temperature infrared absorption spectra established that
thelda phase, just as thenlmodification, possesses an almost zero density of low-energy
excitations, in contrast to theda phase and conventional glasgaxluding a-SiO, and
a-GeO,).?? That is, thelda phase should behave similarly td ice, as a topologically
stiff network, as is in fact observed experimentally. The negative derivative of the shear
modulus is probably a quite general property of tetrahedrally packed strutuesv-
ever, in the presence of instability of the ordered lattice the rearrangement of the short-
range order should encompass the entire crystal, whereas in the amorphous network of
Ida a substantial number of atoms and nanosections is apparently resistant to a change in
short-range order at the onset of the transition. The transformation of such nanosections
will occur at higher pressures.

In summary, features appear in the transformation of amorphous ice that are general
for disordered systems and are due to the variations in the atomic characteristics. The
behavior of thehda phase before a transformation is similar to that of the “classic”
glasses Si@and GeQ. At the same time the behavior of ice beforéda— hda tran-
sition can be explained by specific features of the structure and phonon spectrum of the
Ida phase. More complete information about the mechanism of amorphous phase—
amorphous phase transformations can be obtained from a detailed comparison of the
transitions kinetics for amorphous ice aa€é5iO, and a-GeO, glasses. Analysis of the
behavior of ice in d@ada—Ida transition and the corresponding kinetic measurements are
also very important for resolving this problem.

This work was supported by the Russian Fund for Fundamental Resgaraht
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The effect of phasons and magnetic fields on the electronic spectrum of
an icosahedral quasicrystal is investigated in the tight-binding approxi-
mation. Phasons smooth the singular spectrum and produce a greater
delocalization of the critical wave functions. A magnetic field shifts the
limits of the spectrum, smooths the spectrum, lifts the degeneracy, and
also delocalizes the wave functions. 99 American Institute of
Physics[S0021-364(109)01009-9

PACS numbers: 71.23.Ft

Measurements of the conductivity of pure, perfect AIPdRe quasicrystals have shown
that a mobility threshold exists and that the Mott law o /exp(—T*/T)** holds at low
temperature$? This shows that in an “ideal” perfect quasicrystal the electronic states at
the Fermi level are localized in the Fermi-glass regithe density of states at the Fermi
level is nonzero and the Fermi level lies below the mobility threshdlbis localization
differs from the Anderson localization, which is due to the disorder in the system, and it
is caused by interference of electronic states as a result of the symmetry characteristics
and structure of the quasicrystal.heoretical analysis of the electronic spectra indicates
that such localization possesses characteristic features. In a one-dimensional quasicrystal
(Fibonacci chainthe density of states is highly singulea Cantor set of gapsand the
measure of the allowed statéebesgue measures zero*® In two-dimensiona(Penrose
tiling)® and three-dimensionéhmman—MacKay networK quasicrystals the spectrum is
also singular, but it does not contain a hierarchical gap strudhwazero Lebesgue
measurg The wave functions are “critical,” i.e., they are not localized, they are not
delocalized, and they decay with increasing distance according to a power law. In con-
trast to the one- and two-dimensional cases, for the three-dimensional crystals the expo-
nent — the localization exponent — is the same for all states. For Anderson localization,
which is due to incoherent scattering by the disorder introduced into the system, the
electronic states are localized, their spectrum is continuous, and the localization is stable
against small perturbatior(¢he mobility threshold shifts continuously with the external
perturbation. In contrast to Anderson localization, the localization of electronic states in
a quasicrystal should be unstable with respect to small perturbations that destroy the
symmetry of the system. This arises the interesting problem of investigating the effect of
intrinsic defect§phasongand external fieldgmagnetic fieldson the electronic spectrum
of a quasicrystal. It is also of interest to compare the “competing” effect of Anderson
localization (the effect of strong substitutional disorder in a quasicrystalline alloy has

0021-3640/99/69(9)/4/$15.00 701 © 1999 American Institute of Physics
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been investigated in Ref).7In this letter we present the basic results of an investigation
of the effect of phason distortions and magnetic fields on the electronic spectrum of a
three-dimensional icosahedral quasicrystal.

Just as in Ref. 7, the electronic spectrum and wave functions of an icosahedral
quasicrystals were investigated in the tight-binding approximation and by the method of
level statistics on the basis of a two-fragment structural m@deiman—MacKay net-
work). The quasicrystal was treated as the structural limit of rational approximants with
increasing periodthe computational method and the method for constructing the struc-
ture using a projection technique are described in detail in RefTle “centered”
decoration of approximants — atoms with amerbital per atom — was considered. The
atoms were placed at the centers of the rhombohedra. The Hamiltonian of the system has
the form

H=2 [Dedil+ 2, It

When only atoms of one kind are present in the system, the diagonal elements
can be set equal to zero, and the hopping integrals can be assumed to be a nonzero
constant only for the nearest neighbotg+ —1) — for atoms belonging to rhombohe-
dra that have a face in common.

Phasons were introduced as follows. For a centered decoration of the rhombohedra
a configuration consisting of two “blunt” and two “sharp” rhombohedra is often en-
countered. In a certain combination these rhombohedra form a rhombic dodecahedron.
Phasons are introduced by flipping the rhombohedra comprising the rhombic dodecahe-
dron. The rhombohedra were flipped in such a way that the surface of the rhombic
dodecahedron remained unchanged and the spatial orientation of the flipped rhombohedra
was preserved. For such flips the atoms at the centers of the rhombohedra were trans-
ferred into positions which are symmetric relative to the geometric center of the rhom-
bododecahedrofthe number of nearest neighbors remained the saffe analog of
such a transformation in the projection technique is a fluctuation of the projection tube.
The ratio of the number of “sharp” rhombohedra to the number of “blunt” rhrombohe-
dra remains unchanged, and the average slope of the projection tube does not change and
correspondingly the volume of the projection of the projection tube on the unphysical
subspace is constant. When phasons were introduced, the coordination environment
changed for atoms at the centers of the rhombohedra, as a result of which the positions of
the nonzero matrix elements of the Hamiltonian changed. A magnetic field was intro-
duced in the standard manner by multiplying the matrix elements of the Hamiltonian
matrix by a phase factor containing the vector potential in the Landau gauge. The mag-
nitude of the field was measured by the ratio of the magnetic flux through a cell to the
flux quantum.

The calculations were performed for the approximant 2/1, 3/2. A number of char-
acteristics, including the integrated density of states, the density of states, the Lebesgue
measure of the spectrum, the coordinate dependence of the wave functions, and the
localization exponents were calculated. In the present letter, we present information only
about the density of states and the localization of the wave functions.

The computational results show that when phasons are introduced the spesgeum
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Fig. 1) becomes less singular and the wave functions more delocdlessl“critical”).
The effect of a magnetic field on the spectrum of a quasicrystal is more complicated. This
will be discussed in detail in a separate paper. Here we give only a qualitative discussion
of the results. A magnetic field lifts the degeneracy of the electronic levels, smears the
spectrum, and shift§quasiperiodically as a function of the field strengte limits of the
spectrum. In contrast to ordinary crystal and amorphous structures, the wave functions

become more delocalized when a magnetic field is switched on.
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It is interesting to compare the results presented above with the effect of “chemi-
cal” disorder (substitutional disordg¢ron the spectrum. In Ref. 7 it was established that
for a high degree of substitutional disordés-ex— eg (€;=€,, €g), the energy spec-
trum is substantially smoothed compared with a quasicrystal without disorder, and the
wave functions tend to localize. Here it is shown that &t 0.1 (i.e., evidently, below
the Anderson localization thresholthe wave functions become more delocalized com-
pared with the wave functions in a perfect quasicrystal.

In summary, it can be considered as proven that the electronic states at the Fermi
level are localized by virtue of coherent interference due to the characteristic features of
the symmetry and structure of the quasicrystal. Small disturbances — phasons, a mag-
netic field, weak chemical disorder — destroy this interference and take the quasicrystal
out of the Fermi-glass regime. Correspondingly, the transport properties and their tem-
perature characteristics will be different from those of a perfect ideal object.

In closing we thank D. V. Olenev for his attention to this work and for valuable
remarks.
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Introduction

It is well known that the gravitational field can be simulated in condensed matter by
motion of a liquid: the propagation of some perturbations in a moving liquid obeys the
same equation as the propagation of relativistic particles in the gravitational field. These
perturbations are sound waves in normal flifdend quasiparticles in superfluids
(phonons in superfluiHe and low-energy Bogoliubov fermions in superfldide-A). If
the fluid motion is radial and spherically symmetric, the effective metric is expressed in
terms of the radial velocity (r) as

ds?=—(c?—v?(r))dt®+2v(r)drdt+dr?+r2dQ?2. (1)

For superfluids is the velocity of the superfluid vacuums.

The kinetic energy of superflow plays the part of the gravitational poterbia:
—v2(r)/2. If one chooses the velocity field corresponding to the potential of a point body
of massM:

v2(r)=—-2®=2GM/r=c?r,/r, 2)

one obtains the Panlev&ullstrand form of the Schwarzschild geomefisee e.g.,

Ref. 2. Herer,, denotes the position of the event horizon, where the velocity of the fluid
reaches the “speed of light’q is the speed of sound for phonons or the slope of the
energy spectrunt= * cp of Bogoliubov fermiong If the fluid moves towards the ori-
gin, i.e.,v(r)<0, this velocity field reproduces the horizon of a black htte so-called
sonic black hol®: Since the velocity of the fluid behind the horizon exceeds the propa-
gation velocityc of the perturbations with respect to the fluid, the low-energy quasipar-
ticles are trapped within the horizon. In quantum Fermi liquids— superfluid phases of
3He — this kind of hydrodynamic black hole will allow one to investigate the quantum
fermionic vacuum in a classical gravitational field in the presence of a horizon.

0021-3640/99/69(9)/9/$15.00 705 © 1999 American Institute of Physics
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The hydrodynamic black hole was first suggested by Unruh for an ordinary fquid.
However, since all the known normal liquids are classical, the most interesting quantum
effects related to the horizon cannot be simulated in such a flow. Also, the geometry is
such that it cannot be realized: in the inward radial flow the liquid accumulates at the
origin, so that this sonic black hole cannot be stationary. In the other scenario a horizon
appears in soliton motion if the velocity of the soliton exceeds the local “speed of
light.” * This scenario has the same drawback: in a finite system the motion of the soliton
cannot be supported for a long time. In the “draining bathtub” geometry suggested in
Ref. 4 the fluid motion can be made constant in time. However, the friction of the liquid
moving through the drain is the main source of dissipation. This will hide any quantum
effects related to the horizon. Superfluidity of the liquid does not help much in this
situation. A horizon does not appear: The “superluming&upercritical motion with
respect to the boundaries is unstable, because the interaction with the walls produces the
Cherenkov radiation of quasiparticles, and the superfluidity collafse=sRef. &

Here we suggest a scenario in which this collapse is avoided. The superfluid motion
becomes quasi-stationary and exhibits an event horizon; the lifetime of the “superlumi-
nally” flowing state is determined by intrinsic mechanisms related to the existence of a
horizon: in particular, by the analog of Hawking radiation.

Simulation of 2D black hole

A stationary black hole can be realized in the following geometry, which is a
refinement of the bathtub geometry of Ref(ske Fig. 1a A superfluid®He-A film is
moving towards the center of the digke., v(r)<0), where it escapes to the third
dimension through an orificéhole). If the thickness of the film is constant, the flow
velocity of the 2D motion increases towards the centewésg=al/r, and atr=ry
=alc it reaches the"speed of light't (now r denotes the radial coordinate in the
cylindrical system If this happens, the hole becomes a black hole: Behind the horizon,
atr<ry,, the(quasjparticles can move only to the hoferifice), since their velocity of
propagation with respect to the superfluid condensate is less than the velazfitthe
condensate.

The black hole analogy is also supported by the effective metric experienced by the
quasiparticles. The energy spectrum of the low-energy Bogoliubov fermions is given by

(E—p-v)2=c?(pi+p)) +vE(p, ¥ pr)Z 3)

Here the axiz is along the normal of the film. This axisalso marks the direction of the

unit orbital vectori, which is the anisotropy axis for the “speed of lightf:is fixed
along the normal to the film. The “speed of light” for quasiparticles propagating along
the film is c~3 cm/sec. It is much smaller than the Fermi veloaity, which corre-
sponds to the “speed of light” for quasiparticles propagating along the normal to the
film. This c is also much smaller than the speed of soundHe-A, and for that reason
the motion of fluid has no effect on the density of the liquid.

Outside the orifice the velocity of the superfluids two-dimensional and radial. For
such a velocity field the energy spectrum in E8) corresponds to the motion of a
Bogoliubov quasiparticle in a space with the following effective metric:
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FIG. 1. Simulation of a 2D black hole in a thitHe-A film. a: “Draining bathtub” geometry. b*He-A film
circulating on the top of 4He film on a torus.
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ds’=—(c?=v?(r)dt*+ 20 (r)drdt+dri+r’d¢?+ —dZ". @
F

Across the horizon thegy, component of the metric changes sign, which marks the
presence of the horizon atr,,, wherev(r,)=c.

The important element of the construction in Fig. 1a is that the moving superfluid
3He-A film is placed on the top of the superfluttie film. This is done to avoid the
interaction of the’He-A film with the solid substrate. The superfldide film effectively
screens the interaction and thus prevents the collapse of the “superluminal” flow of
3He-A.

The motion of the superfluidHe-A with respect to superfluidHe film is not
dangerous. The superfluftie is not excited even itHe-A moves with its superluminal
velocity: the value of for *He-A is much smaller than the Landau velocity for radiation
of quasiparticles in superfluiHe, which is about 50 m/sec. In this analysis we have
neglected the radiation of surface waves, assuming that the thicknéide €ifm is small
enough.

Finally one can close the superflow by introducing a toroidal geometry. Figure 1b

shows the superflow around meridiamsinor circleg of the torus in the cross-sectional
plane. Both superfluid condensatésie and®He-A, circulate around meridians with
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integer number®N, and N5 of superfluid velocity circulation quanta,=2=#/m, and

k3= mhims. If the inner radius of the torus is small, the superfluid velocity is enhanced
in the region close to the inner circle, where it can exoedd this case both a black hole
horizon and a white hole horizon appear.

Since the extrinsic mechanism of friction of tiele-A film — the scattering of
quasiparticles on the roughness of substrate — is eliminated, we can now consider in-
trinsic mechanisms of dissipation of the supercritical flow. The most interesting one is the
Hawking radiation related to the existence of a horizon.

Vacuum in comoving and rest frames

Let us consider the simplest case of the 2D motion along the film in the bathtub
geometry of Fig. 1a. This can be easily generalized to the motion in the toroidal geom-
etry.

There are two important reference framé@3: The frame of the observer, who is
locally comoving with the superfluid vacuum. In this frame the local superfluid velocity
is zero,u =0, so that the energy spectrum of the Bogoliubov fermions as viewed by the
observer ighere we assume a pure 2D motion along the)film

Ecom=*CP. )

In this geometry, in which the superflow velocity is confined in the plane of the film, the
speedc coincides with the Landau critical velocity of the superfluid vacuwiy,ga,
=min(|Econ(Pp)|/p). The vacuum as determined by the comoving observer is shown on
Fig. 2a: fermions occupy the negative energy levels in the Dira¢thesstates with the
minus sign in Eq(5)). It is the counterpart of the Minkowski vacuum but is defined only
locally: The comoving frame cannot be defined globally. Moreover for the comoving
observer, whose velocity changes with time, the whole velocity fiflgt) of the super-

flow is time dependent. This does not allow a correct determination of the energy.

(ii) The energy can be well defined in the laboratory frgthe rest framg In this
frame the system is stationary, though is not static: The effective metric does not depend
on time, so that the energy is conserved, but this metric contains the mixed component
Ooi - The energy in the rest frame is obtained from the local energy in the comoving
frame by means of a Doppler shift. In case of the radial superflow one has

Eres= ZCP+prv(r). (6)

Figures 2b,c show how the “Minkowski” vacuum of the comoving frame is seen by
the observer at regnhote that the velocity is negative (r)<0). In the absence of a
horizon, or outside the horizon, the local vacuum does not change: the states which are
occupied(empty in the Minkowski vacuum remain occupiédmpty) in the rest-frame
vacuum(see Fig. 2h In the presence of a horizon behind which the velocity of superflow
exceeds the Landau critical velocity, the situation changes: Behind the horizon the
vacuum in the rest frame differs from that in the comoving frame. Let us for simplicity
consider the states with zero transverse momernpym 0 on the branchE ¢s= (v(r)
+c)p, in the rest frame. If the system is in the Minkowski vacuum state, in the
ground state as viewed by the comoving obserbe quasiparticles on this branch have
an inverted distribution in the rest frame: the negative energy states are empty, while the
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to empty states outside horizon

FIG. 2. a: Fermionic vacuum in the comoving frame. The states Bjth<0 are occupiedthick lines. The

same vacuum viewed in the rest fraie outside horizon anct) inside horizon. Behind the horizon the branch
Ees= (v+c)p, (for p, =0) has an inverted population as seen in the rest frame: the states with positive energy
E,.e>0 are filled, while the states with <0 are empty. The tunneling across horizon from the occupied
states to the empty states with the same energy gives rise to the Hawking radiation from the horizon.

positive energy states are occupisée Fig. 2k For this branch the particle distribution
corresponds to the negative temperaflire—0 behind the horizon.

Since the energy in the rest frame is a good quantum number, the fermions can
tunnel across the horizon from the occupied levels to empty ones with the same energy.
Thus if the system is initially in the Minkowski vacuum in the comoving frame, the
tunneling disturbs this vacuum state: Pairs of excitations are created: a quasiparticle, say,
is created outside the horizon while its partre a quasihole — is created inside the
horizon. This simulates the Hawking radiation from the black hole.

Hawking radiation

To estimate the tunneling rate in the semiclassical approximation, let us consider the
classical trajectoriep,(r) of particles, say, with positive energg,.s>0, for the sim-
plest case when the transverse momenpyris zero(Fig. 3). The branchE = (v(r)
—c)p, describes the incoming particles wiph<<O which propagate through the horizon
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FIG. 3. Tunneling from the Minkowski vacuum within the horizon to the outgoing mode.

to the orifice(or to the singularity at =0, if the orifice is infinitely sma)l without any
singularity at the horizon. The classical trajectories of these particles are

pr(r)=—Es/[c—v(r)]<O. (7)
The energies of these particles as viewed by the comoving observer are also positive:
Ecom(r)=—cp,(r)=Egs{c/c—uv(r))>0.

Another branchE, .= (v(r)+c)p, in Fig. 3 contains two disconnected pieces de-
scribing the particle propagating from the horizon in two opposite directions:

r>rnp:  p(r)=Egps/[C+v(r)]>0, Econ(r)=cp(r)>0, (8)
r<rn: pP(r)=Ees/[Ctv(r)]<0, Econ(r)=cpi(r)<0. 9

Equation(8) describes the outgoing particles — the particles propagating from the hori-
zon to the exterior. The energy of these particles is positive in both frames, comoving and
rest. Equatior{9) describes the propagation of particles from the horizon to the ofifice

to the singularity. Though for the rest-frame observer the energy of these particles is
positive, these particles, which live within the horizon, belong to the Minkowski vacuum
in the comoving frame.

The classical trajectory in Eq&3) and(9) is thus disrupted at the horizon. There is,
however, a quantum mechanical transition between the two pieces of the branch: quan-
tum tunneling. The tunneling amplitude can be found in semiclassical approximation by
shifting the contour of integration to the complex plane:

w~exp(—2S), (10

TE rest

—_— (11
|U’(r)|r=rh

S=Imj dr p.(r)=
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This means that the wave function of any particle in the Minkowskii vacuum inside the
horizon contains an exponentially small part describing the propagation from the horizon
to infinity. This corresponds to the radiation from the Minkowski vacuum in the presence
of the event horizon. The exponential dependence of the probability on the quasiparticle
energyE, . Suggests that this radiation looks like thermal radiation. The corresponding
temperature, the Hawking temperature, is

THaWking:h|U,(r)|r:rh/277- (12

The radiation leads to the quantum friction: the linear momentum of the flow de-
creases with time.This occurs continuously until the superfluid Minkowski vacuum be-
tween the horizons is completely exhausted and the superfluid state breaks down. This
leads to a phase slip event, after which the numibeof circulation quanta of superfluid
velocity trapped by the torus is reduced. This process will repeatedly continue until the
two horizons merge.

Negative temperature for the chiral 1 +1 fermions

It should be mentioned that there is an example in which a negative temperature
behind the horizon is well defined. This is the case of theldimensional chiral fer-
mions living in the vortex core. For such fermions there is only one brakch,
=wg(¢p)L. HerelL is the angular momentum of the quasiparticle in the vortex core, and
wo( @) is the so-called minigap, which for a nonaxisymmetric vortex core depends on the
azimuthal anglep. This is equivalent to our brandb=c(r)p, in the nonmoving liquid
if the speed of light is coordinate-dependent. If the vortex core is rotated with angular
velocity ), the energy spectrum is time-dependent in the laboratory framey(¢
—Qt)L. But it is time-independent in the frame corotating with the vortex core, where
the energy is well definedE . oraing= (wo( @) —Q)L; this is equivalent to our branch
E.es= (v +C)p, in the rest frame. The horizon can occur if the vortex core rotates with
sufficiently large angular velocity, such th& exceeds the minimal value of the
minigap® In this case, since there is only one branch of the fermions, the negative
temperature is well defined. Behind the horizon the Minkowski vacuum, which is the
state withT=+0 now in the laboratory framéFig. 4a, is really the state withlr=
—0 in the frame corotating with the cof&ig. 4b and vice versa; the state wifh=
—0 in the laboratory frame is the state with= + 0 in the corotating frame.

Such symmetry between the vacua for thellchiral fermions suggests that there
can also be symmetry between the nonzero positive and negative temperatures. Let us
now take the Hawking radiation into account and suppose that at infinity there is a heat
bath with the temperature= T,wking- Then the heat flux from infinity exactly compen-
sates the radiation from the horizon. In such a metastable steady state the distribution of
quasiparticles behind the horizon would correspond to a honzero negative temperature

T=- THawking-

Discussion

The above construction in Fig. 1b allows (@ least in principlgto obtain the event
horizon in the guasi-stationary regime, when the main source of non-stationarity is the
dissipation coming from the Hawking radiation. As to the practical implementation, there
are, of course, many technical problems to be solved.
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Erest Ecorotating

ay(0—QUL

(g(®)-)L

T=+0 T=-0

(a) (b)

FIG. 4. Energy spectrum of fermionic quasiparticles in the vortex cor@.=a0 corresponds to the nonrotating
vortex. The spectrum is linear in the angular momentymy(¢) is the minigap, which depends on the angle

¢ if the core is not axisymmetric. The states with negativare occupied. If the vortex core is rotating with
angular velocity(}, then in the laboratory frame the minigap depends on time. b: The spectrum is well defined
in the coordinate frame corotating with the core. Here the spectrum is shown in the regidrwiiere
wo()<Q, i.e., behind the horizon. If the initial state is the Minkowski vacuum, it is seen by the corotating
observer as the state with=—0.

The situation in which the supercritical flow is described in terms of the event
horizon and Hawking radiation occurs only for the low-energy fermions, whose spectrum
is “relativistic.” Howeverever, the analog of the event horizon persists even in the case
of the “nonrelativistic” spectrum: the “horizon” occurs at the surface where the local
superflow becomes supercritical, i.e., the superfluid velocity exceeds the Landau critical
velocity. Thus it is necessary to extend the consideration of the Hawking type radiation to
higher energies, where the other mechanisms for the decay of the supercritical superflow
can become important.

For example, the radiated particles with energies outside the “relativistic” region
can be Andreev-scattered back to the black hole. Thus both pa¢paetiele and holgof
the Hawking radiation will remain within the horizon. This recalls the phenomenon of
partial reflection of particles witlE>m and total reflection of particles witkE<<m,
created by a black hole, back to the black hole horizon by an effective potential outside
the black hole, created by the spacetime curvature. In the former case, this partial reflec-
tion results in the well-known “greybody” property of the Hawking thermal radiation at
spatial infinity (see, e.g., Ref.)7 For a discussion of the second case, when there is no
radiation at spatial infinity, see, e.g., Ref. 8. In our case the reflection back to the hole is
due not to a potential barrier outside the black hole but rather to the “curvature” of the
quasiparticle spectrum.

This would mean that the particle creation in a high “gravity” field can disturb the
“Minkowski” quantum vacuum inside the horizon without any radiation to the exterior.
In principle such pair creation inside the horizon can be more important for the dissipa-
tion of the “superluminal” (supercritical superflow than the Hawking radiation.
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