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Abstract—The results of theoretical study of the condensate of excited states in magnesium are reported. Exci-
tations are described in the framework of the Hartree–Fock method taking into account energy level widths. It
is shown that conditions for the emergence of condensed excited states are created in the optical range of atomic
excitation energies. In the Mg2 system, such conditions are created for any (indefinitely small) excitation fields
in the optical energy range. The weaker the external field, the longer the lifetime and the shallower the potential
well for the condensate of excitations. Most stable excitations in Mg2 were detected at atomic spacings on the
order of 9 Bohr radii. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Excitation condensate (EC) was mentioned for the
first time in [1]. The general theory of EC in atoms,
molecules, and impurity centers of solids was described
in [2]. In [3], experimental and theoretical results on
condensed states in a system of excited cesium atoms
were described. The existence of an isolated region of a
metastable nonideal plasma [4] is not an exceptional
property inherent in cesium alone [5]. It was noted
in [6] that alkali metal atoms attain a size of 10–6–
10−5 cm for excitation energies close to the ionization
energy and may form a metastable condensate for an
atomic density of ~1017–1018 cm–3. EC clusters of
hydrocarbons and EC hydrogen layers on the surface
were mentioned in [7]. In all probability, the EC can
also be formed in a natural way. For example, globe
lightning as an EC was described in [8].

In our opinion, the most important experiments
were performed with excited cesium (see [3, 5–7, 9]
and the literature cited therein). The experiments of
Swedish researchers with a thermionic converter of
thermal energy into electric energy in the form of a
cesium diode, whose emitter and collector are main-
tained at different temperatures, are of prime impor-
tance. Cesium vapor was supplied via a collector grid to
the electrode gap and then condensed on the walls of a
bell jar in which the thermionic converter was placed.
The main evidence of the emergence of an EC was the
peculiar shape of the current-voltage characteristics of
the thermionic converter with a dynamic cesium vapor
supply to the electrode gap (namely, a decrease in the
collector work function to a value below 0.7 eV) and a
considerable increase in the output voltage. Mass spec-
troscopy studies revealed the presence of clusters in the
electrode gap, which contained up to 1000 atoms. Rus-
sian researchers [6] performed experiments analogous
to those described above using improved devices and
1063-7761/05/10102- $26.000197
methods. However, they failed to completely reproduce
the EC characteristics. For example, when the equilib-
rium regime of cesium vapor supply was changed to a
dynamic mode, the work function of the collector
decreased only to 1 eV. According to estimates, the
clusters formed in the EC contain approximately
100 atoms with an EC decay time exceeding the decay
time of a cluster-free plasma by one or two orders of
magnitude.

However, we share the conclusions drawn in [3] that
the idea of condensation of excitations has been
employed insufficiently by theorists as well as experi-
menters in spite of its simplicity and has been consid-
ered only in a limited number of cases in recent years.

Here, we report on the results of theoretical analysis
of EC in magnesium. Excitations are described in the
framework of the Hartree–Fock taking into account the
widths of atomic levels. The idea that atomic level
width should be taken into account was employed for
the first time in [10], where excited hydrogen wave-
functions were calculated. We use this idea for calculat-
ing the wavefunctions of excited states of multielectron
atoms [11]. The basic method in our study was the Har-
tree–Fock method. In our opinion, the one-electron
Hartree–Fock method is the most consistent approach.
All approximations are well-defined in it and it is clear
(at least, in principle) what should be done to leave this
approximation and to obtain more and more exact
results. The main point is that this method makes it pos-
sible to satisfactorily describe the ground state as well
as excitations in simple multielectron systems.

2. COMPUTATIONAL TECHNIQUE

Let us first consider the standard solution to the
spectral problem of the ground state of a multielectron
 © 2005 Pleiades Publishing, Inc.
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atom in the Hartree–Fock approximation:

(1)

The central-field approximation makes it possible to
separate radial and angular variables and to seek the
eigenfunctions of the Fock operator F in the form of the
product of the radial function R(r) and the angular func-
tion Y(θ, ϕ),

(2)

where

(3)

Here, ∆ is the spherical Laplace operator. If we require
that solutions to Eqs. (3) be regular on a sphere for 0 ≤
θ ≤ π, 0 ≤ ϕ ≤ 2π, continuous for θ = 0 and θ = π, and
satisfy the condition Y(θ, ϕ + 2π) = Y(θ, ϕ), we arrive
at the eigenvalue problem permitting solutions for
Eqs. (3) only for integral values of l = 0, 1, 2, … and
m = 0, ±1, …, ±l.

Let us now consider the excited states of an atom in
equilibrium field. Other particles surrounding the atom
under investigation will be included in the concept of a
thermostat. Such excitations may decay spontaneously
over a finite time τ and possess, in accordance with the
indeterminacy relation, a finite width Γ ~ "/τ of the
energy level characterizing a quasi-stationary system.
The wavefunction describing this system must contain
an exponential factor such that the probabilities defined
by the squared modulus of the wavefunction decay
according to the law exp(–Γt/"):

(4)

We assume that the central field approximation is
justified in describing excitations to the same extent as
in describing unfilled shells of the ground state. In this
case, it is convenient to seek the function ψ(r) appear-
ing on the right-hand side of Eq. (4) in form (2). More-
over, let us suppose that angular function Y(θ, ϕ) satis-
fies the same Eqs. (3), but is regular only in ϕ. The
arbitrary behavior of this function on the sphere in vari-
able θ removes the limitation on integral values of
parameter l. We assume that this parameter is complex-
valued in the general case (L = l + x + iy, where as
before, l assumes integral values). The range of the
complex correction x + iy can be limited in this case:
|x | < 0.5 and |y | < 0.5. Thus, the problem of determining
the spectrum of orbital excitations of an atom can be
reduced to the eigenvalue problem for the time-inde-
pendent Schrödinger equation:

(5)

Here, F is the Fock operator, u = x(x + 2l + 1) – y2, and
v  = y(2x + 2l + 1). It should be noted that problem (5)
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for y ≠ 0 is essentially non-Hermitian with complex val-
ues of energy ε = E – iΓ/2. Trying all possible values of
|x | < 0.5 and |y | < 0.5 in the search for self-consistent
solutions of Eq. (5), we can trace the spectral character-
istics of an excited atom from the minimum of its total
energy.

In the subsequent analysis, we will use the atomic
system of units. To pass to this system of units, it is suf-
ficient to assume that in all relations used here, the
Planck constant " = 1, the squared electron charge
e2 = 2, and the electron mass m = 1/2. Then the energy
will be measured in Rydbergs and the distance in Bohr
radii.

3. RESULTS OF COMPUTATION 
AND DISCUSSION

We solved problem (5) using the Routan method in
the basis of the Gaussian functions. For the object of
investigation, we initially chose beryllium, which is
one of the simplest elements in the Periodic Table. As
expected, no EC is formed in beryllium in the X-ray
excitation energy range [11]. It was found that condi-
tions for the EC formation are created in the case of
excitation of atoms in the optical energy range. How-
ever, the fields converting the ground state of atoms into
the system of excited states whose decay may lead to
EC formation are comparable to the fields in the atom
itself. To verify the assumption that conditions for EC
formation can be created in weaker external fields also,
we placed the atom under study in the field of another
beryllium atom. Calculations show that short-lived
excitations with high-intensity electron transitions to
2p-symmetry states are formed in Be2. The Be2 system
becomes more stable for atomic spacings on the order
of four Bohr radii. The results obtained by us suggest
that the EC that can be formed when the atom in ques-
tion is placed in the field of two, three, or a larger num-
ber of atoms is even more stable in energy and has a
longer life. Obviously, the combination of two or three
atoms is not a condensate. Here and below, we treat EC
as a system of atoms, molecules, or impurity centers in
various media, in which a new phase can be formed
owing to the interaction between excited electrons.
Such an EC phase can also be obtained as a decay prod-
uct of a strongly Coulomb-bound low-temperature
plasma.

Using beryllium as an example, we proved that the
engagement of all possible orbitals, including those
with decay, makes it possible to describe the result of
interaction of excited electrons with the fields. The ori-
gin of the fields causing an excitation is immaterial. In
particular, these can be the fields produced by a system
of excited atoms or molecules surrounding the excita-
tion center under study. It is important that we could
discover, along with the ground state, the states with
local minima of total energy characterized by a long
decay time.
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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In our opinion, it is more promising to work with
heavier atoms. To verify the assumption that the heavier
a dimer, the longer its excitation time, we chose magne-
sium, viz., an element also belonging to the second
group in the Periodic system. Calculations were made
in the framework of the above scheme. We solved prob-
lem (5) numerically in a basis of Gaussian-type func-
tions using 12 functions in the expansion in l = 0 and
8 functions in the expansion in l = 1. Our estimates
proved that a basis of such a length is quite suitable for
solving Eqs. (5) with the help of the Routan method for
magnesium atom if |x | < 0.03 and |y | < 0.03 since an
increase in the length of this basis does not change the
required accuracy of all values presented below for dis-
cussion.

The results of calculation of the total energy of an
excited magnesium atom as a function of parameter y
for x = 0, 0.001, 0.002, and 0.003 are presented in
Fig. 1. The real part Re% of the total energy shown in
Fig. 1a decreases monotonically with increasing x
and y. This points towards the existence of more advan-
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Fig. 1. Dependence of the real (a) and imaginary (b) parts
of the total energy of a magnesium atom on parameter y for
x = 0, 0.001, 0.002, and 0.003. The lower the curve, the
higher the value of parameter x corresponding to it.
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tageous excited states (from the energy point of view)
as compared to the ground state. However, the lifetime
of such states, estimated using the uncertainty relation
from the imaginary part Im% of the total energy, is
finite everywhere except in the states for which Im% = 0.
The presence of points at which Im% = 0 on the curves
describing the dependence of Im% on parameter y
(Fig. 1b) indicates that long-lived excitations can exist
in principle in magnesium. The value of Im% = 0,
which is closest to the principal value, is attained for
x = 0 and y = 0.017. However, it is rather difficult to
exert such a strong action on the atom, corresponding to
y = 0.017, in the optical energy range. Nevertheless, a
long-lived excitation can be obtained if, for example,
we place such an atom in the field produced by another
atom. To verify this assumption, we calculated the total
energy of two magnesium atoms as a function of the
distance between them for small values of parameter y.
The results of calculations presented in Fig. 2a show
that Re% (the real part of the total energy of the elec-
trons of two atoms) in the excited state is everywhere
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Fig. 2. Dependence of the real (a) and imaginary (b) parts
of the total energy of electrons of two magnesium atoms on
the distance d between them for three values of parameter y
and x = 0 in the optical excitation energy range; d is mea-
sured in Bohr radii a0.
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Fig. 3. Curves describing the dependence of the energy of 1s (a), 2s (b), 2p (c), 3s (d), and 4s (e) electrons of two magnesium atoms
on the distance d between them for x = 0 and y = 2 × 10–6 in the optical excitation energy range. The energy is measured relative to
the energy of 1s (a), 2s (b), 2p (c), 3s (d), and 4s (e) electrons of a magnesium atom; d is measured in Bohr radii a0.
smaller than the total energy of the ground state for y =
0. Moreover, the value of Re% is the smaller, the larger
the value of y; however, the lifetime of such excitations
decreases with increasing y. For instance, it is on the
order of 80 fs for y = 10–6 and nearly half this value for
JOURNAL OF EXPERIMENTAL A
y = 2 × 10–6. It should be noted that these lifetimes esti-
mated with the help of the uncertainty relation from the
imaginary part of the total energy barely change upon
an increase in the atomic spacing up to seven Bohr radii
for each fixed value of y (see Fig. 2b) in contrast to
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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jump-like behavior of Re% as a function of distance
(Fig. 2a).

We attribute such a jump-like behavior of the real
part of the total energy of two magnesium atoms as a
function of the distance between these atoms to the
rearrangement of the electron structure shown in Fig. 3.
The stepwise change in the spectral structure of the core
states of the 1s symmetry (Fig. 3a) is substantially
smaller than stepwise variations of the spectra of states
with 2s symmetry (Fig. 3b) and 2p symmetry (Fig. 3c).
We believe that the change in the type of bond in
2p-symmetry states with increasing distance led to a
stepwise change in the spectrum in levels with lower
energies also. The 3s (Fig. 3d) and 4s-symmetry
(Fig. 3e) states with higher energies do not experience
jumps, although absolute variations in the spectrum of
these states are the strongest.

The lifetime of electrons in the s-states can be esti-
mated from the value of Γn (the imaginary part of the
electron energy in these states) as a function of the dis-
tance between magnesium atoms, which is shown in
Fig. 4 for x = 0 and y = 2 × 10–6, using the uncertainty
relation. Excitations of electrons in the 3s-I states
belonging to the first atom and in the 3s-II states
belonging to the second atom decay over virtually the
same time on the order of 500 fs. Excitations of elec-
trons in the 4s state turn out to be long-lived for large
distances between the atoms. For smaller distances
beginning from 23 Bohr radii, the lifetime of these exci-
tations rapidly decreases to values on the order of
200 fs, attains its minimum value ~60 fs when the
atomic spacing decreases to 8 Bohr radii, followed by a
sharp increase to 500 fs.

–1
6 11

Γn, 10–4 Ry

16 21 26 d, a0

1

3

5

7

4s

3s-I

3s-II

Fig. 4. Dependence of the imaginary part of the energy of s
electrons of two magnesium atoms on the distance d
between them for x = 0 and y = 2 × 10–6 in the optical exci-
tation energy range; d is measured in Bohr radii a0.
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4. CONCLUSIONS

We proposed here a method for calculating the spec-
tral characteristics and the decay time for excited states.
Analysis of the results of calculations leads to the con-
clusion that excitations of magnesium atoms in the
optical energy range create conditions for the emer-
gence of EC. It has been shown that a condensate of
excited states can be formed in Mg2 for any indefinitely
small external excitation fields in the optical energy
range. The lower the intensity, the longer the lifetime
and the shallower the potential well for EC in Mg2. A
competition exists between the depth of the potential
well for EC and its lifetime. The most stable excitations
exist in Mg2 for atomic spacing on the order of 9 Bohr
radii and in Be2 for atomic spacings of 4 Bohr radii.
Excitation condensate in Mg2 is more stable than in Be2
as regards lifetimes as well as the depth of potential
wells.
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Abstract—The complex permittivity tensor of a magnetically active isotropic medium is expanded, to third-
order accuracy, in terms of a small parameter equal to the ratio of the mean distance between the atoms of the
medium to the wavelength of an electromagnetic wave. A dispersion equation is constructed. On the basis of
this equation, the refractive indices of the medium for normal waves are obtained when a longitudinal magnetic
field is applied to the medium. It is shown that calculations to third-order accuracy yield different values for the
velocities of all four normal waves that propagate in the medium in forward and backward directions. Calcula-
tions are carried out for the experiment conducted with the use of a ring laser for measuring the expansion coef-
ficients of the complex permittivity tensor that are responsible for the small difference between the velocities
of the normal waves propagating in forward and backward directions. It is shown that, in the case of an isotropic
optically nonactive medium, the third-order expansion coefficients can be measured by means of a ring laser
with an absolute accuracy on the order of 10–14. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

By optical nonreciprocity is usually meant the prop-
erty of a material medium to provide different condi-
tions for the propagation of light in forward and back-
ward directions. Nonreciprocity may manifest itself in
the phase (propagation velocity), amplitude, or the
polarization of an electromagnetic wave.

A large number of works have been devoted to the
theoretical and experimental study of optical nonreci-
procity (see, for example, the survey [1] and the refer-
ences therein). In particular, the contributions of the
Faraday effect and the natural optical activity to nonre-
ciprocal phenomena in anisotropic media were studied
in [2]. The phase nonreciprocity in optically active
(gyrotropic) crystals that results from the above-men-
tioned physical factors, however small, can be mea-
sured in experiments with ring lasers. However, the
case considered in [2] does not exhaust all possible
mechanisms of the onset of optical nonreciprocity in
condensed media because the expansions of the inverse
tensor of the complex permittivity used in [2] do not
contain third-order terms (with respect to the ratio of
the mean interatomic distance to the wavelength of the
incident electromagnetic wave), which can be mea-
sured by modern experimental techniques.

Let us show by a simple example of a magnetically
active isotropic medium that the third-order coefficients
must be taken into account, because it is these coeffi-
1063-7761/05/10102- $26.000202
cients that are responsible for the optical nonreciprocity
even in the absence of the first-order spatial dispersion.

Consider a nonmagnetic isotropic medium in an
external magnetic field H. In the general case [3–7], the
relation between the flux densities and the fields is
expressed as

However, taking into account the spatial dispersion, we
may assume that [3]

for nonmagnetic media, where δjm is the Kronecker
delta.

The complex permittivity tensor εmn of such a
medium [3–7] is a function of frequency ω, wavevector
k, and the external magnetic field H. In the transmis-
sion band, this tensor must satisfy the following condi-
tions [3]:

(1)

D j ε jm ω k,( )Em α jm ω k,( )Hm,+=

B j β jm ω k,( )Em µ jm ω k,( )Hm.+=

β jm ω k,( ) α jm ω k,( ) 0,= =

µ jm ω k,( ) δjm,=

εmn* ω k H, ,( ) εnm ω k H, ,( ),=

εmn* ω k H, ,( ) εmn ω– k– H, ,( ),=

εmn ω k H, ,( ) εnm ω k– H–, ,( ).=
 © 2005 Pleiades Publishing, Inc.
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The tensor εmn as a function of k is characterized by a
small parameter δ = a/λ, where a is a characteristic
length of the medium (the size of molecules, the lattice
constant, the mean distance between molecules, etc.)
and λ is the wavelength in the medium. For condensed
media in the optical region of the spectrum, the param-
eter δ is small: δ ~ 10–3.

The measurements [6] of the magnetic rotation
angles of the polarization plane in magnetically active
media show that, for H ~ 103 G, the dependence of the
tensor εmn on the external magnetic field can be charac-
terized by the square of the parameter δ.

Thus, the tensor εmn can be expanded in series in the
small parameter δ ~ 10–3. In the simplest case when the
optical properties of the medium differ from isotropic
ones only in the directions determined by the vectors k
and H, a phenomenological expansion of the tensor εmn

satisfying conditions (1) takes the following form in
Cartesian coordinates in the three-dimensional Euclid-
ean space:

(2)

where χ is an axial scalar (pseudoscalar) that is equal to
+1 in right-hand coordinates and –1 in left-hand coor-
dinates and enmj is the Levi-Civita symbol.

To facilitate further calculations, let us introduce the
following notation:

where S is a unit vector and  is the refractive index of
the medium.

Then, expression (2) is rewritten as

(3)

where ε = ε(ω) is a zeroth-order term in the small
parameter δ; f1 is a first-order term; ε2, f2, and h2 are

εmn ω k H, ,( ) ε α2k2 ω
c
----χα 4k+ + H⋅ δnm=

+ iχ α 1 α3k2+[ ] enmjk j α5knkm+

+ i
ω
c
----α6enmjH j

ω
c
----χα 7 knHm kmHn+[ ] Onm δ4( ),+ +

k
ω
c
---- ñS, f 1

ω
c
----α1, ε2

ω2

c2
------α2, f 2

ω2

c2
------α5,= = = =

h2
ω
c
----α6, β3

ω
c
----α7, h3

ω2

c2
------α4, f 3

ω3

c3
------α3,= = = =

ñ

εmn ω k H, ,( ) ε ε2ñ2 χh3ñS H⋅+ +[ ]δnm=

+ iχ f 1ñ f 3ñ3+[ ] enmjS j f 2ñ2SnSm ih2enmjH j+ +

+ χβ3ñ SnHm SmHn+[ ] Onm δ4( ),+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
second-order terms; f3, h3, and β3 are third-order terms;
and Onm(δ4) stands for small terms of the fourth and
higher orders in δ.

The physical meaning of the expansion coefficients
of the tensor εmn in (3) is obvious: the coefficients f1 ~ δ
and f3 ~ δ3 characterize the optical activity of the sub-
stance in the first- and third-order terms, respectively;
f2 ~ δ2 and ε ~ δ2 describe the effect of spatial dispersion
on the tensor εmn in the second order in δ; h2 character-
izes the magnetic activity of an isotropic substance; and
the coefficients h3 and β3 describe the combined effect
of the spatial dispersion and the magnetic activity on
the tensor εmn in the third order in δ.

In view of the second relation in (1), the scalar coef-
ficients ε, ε2, f2, h3, and β3 in (3) are even functions of
frequency ω, while the coefficients f1, f3 , and h2 are odd
functions.

2. DISPERSION EQUATION 
AND ITS SOLUTION

Consider a plane electromagnetic wave with the
vectors Ew, Dw, and Bw = Hw proportional to
exp{−i[ωt – k · r]}. In this case, the equations of mac-
roscopic electrodynamics are represented as

(4)

Eliminating the vector Hw from the first equation of
system (4) and using the second equation, we obtain the
system of algebraic equations ΠnmEm = 0, where

(5)

As is known, for this system of equations to have a non-
trivial solution, it is necessary that det||Πnm || = 0.

It is convenient to perform further calculations with
the use of the tensor relations obtained in [8, 9].

Let us introduce certain definitions. Consider an
arbitrary second-rank tensor Anm in the three-dimen-
sional Euclidean space whose metric tensor coincides
with the Kronecker tensor δnm in Cartesian coordinates.
We define the Nth power of this tensor, where N is a

nonnegative integer, as a tensor  given by the prod-

k Hw× ω
c
----Dw, k Ew× ω

c
----Hw.–= =

Πnm
ω2

c2
------ ε ε2ñ2 χh3ñS H⋅+ +[ ]δnm{=

+ iχ ñ f 1 f 3ñ2+[ ] enmjS j f 2ñ2SnSm ih2enmjH j+ +

+ χβ3ñ SnHm SmHn+[ ] Onm δ4( ) } knkm k2δnm–[ ] .+ +

Anm
N( )
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uct of N tensors Anm whose indices are contracted by the
rule

Contracting the remaining indices in this expression,
we obtain an invariant of the Nth power of this tensor:

According to this definition, for N = 0, we set  =
δik; as a result, the zero-degree invariant of any second-
rank tensor in the three-dimensional space is equal to
three:

A(0) = 3.

According to [9], the third power of the tensor Anm

in the three-dimensional Euclidean space can be
expressed in terms of lower powers of this tensor and its
invariants:

In this notation, the determinant of the third-order
matrix whose elements are given by the components of
the tensor Anm takes the form

(6)

If det||Anm || ≠ 0 and det||Anm || ≠ ±∞, then one can

construct the inverse tensor , which satisfies the
relation

This tensor is expressed as

(7)

Using formulas (5) and (6), we obtain the following
dispersion equation from the condition det||Πnm || = 0:

Anm
N( ) An j1

A j1 j2
…A jNm .=

      

N

A N( ) A N( )≡ Akk
N( ).=

Aik
0( )

Anm
3( ) Anm

2( )A 1( )
1
2
---Anm A 2( ) A 1( )

2–[ ]+=

+
1
6
---δnm 2A 3( ) 3A 1( )A 2( )– A 1( )

3+[ ] .

det Anm
1
6
--- 2A 3( ) 3A 2( )A 1( )– A 1( )

3+[ ] .=

Anm
1–( )

Anm
1–( )Amp δnp.=

Anm
1–( ) 6Anm

2( ) 6AnmA 1( )– 3δnm A 1( )
2 A 2( )–[ ]+

2A 3( ) 3A 1( )A 2( )– A 1( )
3+[ ]

---------------------------------------------------------------------------------------.=

ε ε ñ2–[ ] 2 χεñ 3εh3 2εβ3 2 f 1h2–+[ ] S H⋅+

+ εñ2 3εε2 ε f 2 f 1
2–+[ ] ñ2h2

2 H2 S H⋅( )2–[ ]+
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(8)

We will seek a solution to this equation in the form

(9)

where F is an unknown function that contains small
quantities.

Substituting (9) into Eq. (8) and solving it, we find
the function F:

(10)

where α = ±1 (the plus sign corresponds to the first nor-
mal wave, and the minus sign, to the second normal
wave).

Thus, in a medium with the complex permittivity
tensor (3), two normal waves with the phase velocities
Vph = ω/k may propagate in each direction:

The refractive indices  = ck/ω of the medium for these
waves are given by

(11)

Note that, by virtue of relations (9) and (10), the formu-
las for the refractive indices of the medium represent

– 4χεñ3 h3 β3+[ ] S H⋅ 2εñ4 2ε2 f 2+[ ]–

+ χ ñ5 h3 2β3+[ ] S H⋅ ñ6 ε2 f 2+[ ]+

+ ñ4 3εε2
2 2εε2 f 2 2ε f 1 f 3– ε2 f 1

2– f 1
2 f 2–+[ ]

– εh2
2H2 2ñ6ε2 ε2 f 2+[ ]–

+ ε ñ2–[ ] ε Omm δ4( ) ñ2SnSmOnm δ4( )–[ ] 0.=

ñ ε F+ ,=

F
1
8ε
----- α ε 8ε f 1 8χ εh2S H⋅+[{=

+ f 1
3 12εε2 f 1 8ε2 f 3+ +[ ] ] 4ε f 1

2 2εε2+[ ]+

+ 4χ ε 2εh3 f 1h2+[ ] S H }⋅ O δ4( ),+

Vph
1 2, c

ε
------ 1

α
2 ε
---------- f 1–





=

+
1
8ε
----- f 1

2 4εε2–( ) 4αχ h2S– H⋅[ ]

–
1

2 ε3
------------ αε2 f 3 χ εh3 f 1h2–( )S+ H⋅[ ]





.

ñ

ñ ω( ) ε α
2
--- f 1

1

8 ε
---------- f 1

2 4εε2 4αχ h2S+ + H⋅[ ]+ +=

+
1
2
--- α ε f 3 f 1ε2+( ) χh3S+ H⋅[ ] .
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expansions in the small parameter δ up to the cubic
terms inclusive.

It follows from (9) and (10) that the phase velocities
of the normal waves and the refractive indices of an
optically active isotropic medium in an external mag-
netic field depend on the sign of S · H. This means that
the medium is optically nonreciprocal, because the
phase velocity of each normal wave depends on which
direction, along or opposite the external magnetic
field H, a wave propagates.

3. POLARIZATION STATES
OF NORMAL WAVES

The solution of dispersion equation (8) for a nonab-
sorbing isotropic medium with the complex permittiv-
ity tensor (3) has shown that, in this medium, two nor-
mal waves with different phase velocities may propa-
gate in each direction.

Now, we consider the polarization states of these
normal waves. In the optics of anisotropic and gyrotro-
pic media, the polarization of an electromagnetic wave
is usually defined by the vector D, which, according to
the equation divD = 0, is perpendicular to the vector k.
Therefore, to study the polarizations of normal waves,
one should rewrite the constitutive equations as

where  is the inverse of the tensor εmp .

Using formulas (3) and (7), one can easily find an

expansion of the tensor  in series in the dimension-
less parameter δ up to the cubic terms inclusive:

(12)

The equations of macroscopic electrodynamics,
expressed in terms of the vector D, take the form

Eliminating Hw from these equations, we obtain

En εnm
1–( )Dm,=

εnm
1–( )

εnm
1–( )

εnm
1–( ) 1

ε4
---- ε ε2 ñ2 f 1

2 εε2–( )+[{=

+ χ ñ 2 f 1h2 h3ε–( )S H ]δnm⋅

– i χ ñ ñ2 ε2 f 3 2 f 1εε2– f 1
3+( )[[

+ f 1ε
2 ]enmjS j ε2h2enmjH j ]+

– εñ2 ε f 2 f 1
2+[ ] SnSm χεñ f 1h2 εβ3+[ ]–

× HnSm HmSn+( ) } Onm δ4( ).+

k Hw× ω
c
----Dw, eijnk jεnm

1–( )Dm
w ω

c
----Hi

w.–= =

ΓnmDm
w 0,=
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where the tensor Γnm has the form

Substituting relation (12) into this expression, we
obtain

(13)

As expected, the equation det||Γnm || = 0 has the same
roots as the equation det||Πnm || = 0.

Let us orient the axes of the right-hand (χ = +1)
coordinate system so that the z axis is parallel to the
wavevector k. Then, k = {0, 0, ξk}, where ξ = 1 for the
wave propagating in the positive direction of the axis z
and ξ = –1 for the wave propagating in the opposite
direction.

It follows from (13) that, in this system, the coordi-
nates of the components Γ31 and Γ32 vanish and Γ33 =
ω/c. Therefore, Dz = 0 in this system of coordinates.

The remaining two equations of the system ΓαβDβ = 0
have a zero determinant. Hence, one of these equations
is independent:

Substituting the coefficients Γ11 and Γ12 calculated in
the chosen system of coordinates to third-order accu-
racy in the small parameter δ into the above relation and
taking into account formulas (11) and (13), we obtain

(14)

where

Γnm
c
ω
---- knkpεpm

1–( ) k2εnm
1–( )–

ω2

c2
------δnm+

 
 
 

.=

Γnm
ω

ε4c
------- ε3 ε ñ2–[ ][ ε ñ4 εε2 f 1

2–[ ]+{=

+ χεñ3 εh3 2 f 1h2–[ ] S H ]δnm⋅

+ SnSm χεñ f 1h2 ε h3 β3+( )–[ ] S[ H⋅

– ε2ε2ñ2 ε f 1
2ñ2 ε3 ]+ +

+ iχenmjS j ñ4 ε2 f 3 2εε2 f 1– f 1
3+[ ] ñ2ε2 f 1+[ ]

+ ienmjH jε
2ñ2h2 iSnempjSpH jε

2h2ñ2+

+ HnSmχεñ2 f 1h2 εβ3+[ ] } ω
c
----Onm δ4( ).+

Γ11Dx Γ12Dy+ 0.=

Γ11 Dx iαξ Dy–{ } 0,=

Γ11
ω

8c ε3
--------------- 8αε f 1 4 ε 3ε f 1

2 2αξ h2Hz+[ ]+{–=

+ 20ξ f 1h2Hz α 17 f 1
3 4ε f 1ε2– 8ε2 f 3+( )+[ ] } .
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Equation (14) yields

This means that both normal waves (α = ±1) in this case
are circularly polarized, but the signs of rotation of the
vector D in these waves are opposite.

4. TRANSMISSION 
OF ELECTROMAGNETIC WAVES 

THROUGH A PLANE-PARALLEL PLATE 
AT NORMAL INCIDENCE

Consider a plane-parallel layer of a substance with
the tensor εnm given by (3). Without loss of generality,
we will assume that the substance layer is enclosed
between the planes z = 0 and z = L.

Suppose that a monochromatic electromagnetic
wave of frequency ω, polarized along the x axis, is inci-
dent on this layer from vacuum and that the vector k of
this wave is parallel to the z axis. In the steady-state
mode, there exist incident and reflected waves in the
region z < 0, two pairs of normal waves that propagate
in opposite directions in the region 0 < z < L, and a
transmitted electromagnetic wave in the region z > L.
Let us find the amplitudes and phases of the reflected
and transmitted waves.

Away from the absorption bands, the refractive indi-
ces of the medium for the normal waves propagating in
the positive direction of the axis z are represented as

(15)

For the waves that propagate in the negative direction of
the axis z, we have

(16)

Dx iαξ Dy.=

n1 ε 1
2
--- f 1

1

8 ε
---------- f 1

2 4εε2+( ) 4h2Hz+[ ]+ +=

+
1
2
--- h3Hz ε f 3 f 1ε2+( )+[ ] ,

n2 ε 1
2
--- f 1–

1

8 ε
---------- f 1

2 4εε2+( ) 4h2Hz–[ ]+=

+
1
2
--- h3Hz ε f 3 f 1ε2+( )–[ ] .

n3 ε 1
2
--- f 1

1

8 ε
---------- f 1

2 4εε2+( ) 4h2Hz–[ ]+ +=

–
1
2
--- h3Hz f 3 f 1ε2+( )–[ ] ,

n4 ε 1
2
--- f 1–

1

8 ε
---------- f 1

2 4εε2+( ) 4h2Hz+[ ]+=

–
1
2
--- h3Hz ε f 3 f 1ε2+( )+[ ] .
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In the region z < 0, the vector E can be represented as

In the region 0 < z < L, it is convenient to represent the
vector E in terms of the components of the vector D:

(17)

Finally, in the region z > L, we have

The unknown components E1x, E1y , D1y , D2y , D3y , D4y ,
E3x , and E3y are determined from the standard condi-
tions that the tangential components of the vectors E
and H = ck × E/ω are continuous across the surfaces
z = 0 and z = L. Taking into account that the relations

hold in the chosen system of coordinates, after simple
but tedious calculations, we obtain

E E0xex iE0yey+{ } iω t
z
c
--– 

 –exp=

+ E1xex E1yey+{ } iω t
z
c
--+ 

 – .exp

Em εm2
1–( ) n1( ) iεm1

1–( ) n1( )+{ } D1y=

× –iω t
zn1

c
-------– 

 exp εm2
1–( ) n2( ) iεm1

1–( ) n2( )–{ } D2y+

× iω t
zn2

c
-------– 

 –exp εm2
1–( ) n3( ) iεm1

1–( ) n3( )–{ } D3y+

× iω t
zn3

c
-------+ 

 –exp εm2
1–( ) n4( ) iεm1

1–( ) n4( )+{ } D4y+

× iω t
zn4

c
-------+ 

 – .exp

E E3xex E3yey+{ } iω t
z
c
--– 

 – .exp=

ε11
1–( ) n( ) ε22

1–( ) n( ), ε12
1–( ) n( ) ε21

1–( ) n( )–= =

E1x E0x– Y1 Y2 Y3 Y4,+ + + +=

E1y i E0y Y1 Y2– Y3– Y4+ +[ ] ,–=

E3x Y1 i
ωL
c

-------n1exp Y2 i
ωL
c

-------n2exp+=

+ Y3 i
ωL
c

-------n3–exp Y4 i
ωL
c

-------n4–exp+

× i
ωL
c

-------– ,exp
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(18)

where

Neglecting the spatial dispersion and the magnetic
activity, we obtain the well-known [3] relations for the
complex amplitudes from (18) in the case when an elec-
tromagnetic wave is transmitted through a plane-paral-
lel layer of an isotropic substance.

If a linearly polarized monochromatic electromag-
netic wave propagates in the negative direction of the

E3y i Y1 i
ωL
c

-------n1exp Y2 i
ωL
c

-------n2exp––=

– Y3 i–
ωL
c

-------n3exp Y4 i–
ωL
c

-------n4exp+

× i–
ωL
c

------- ,exp

D1y

iY1

ε22
1–( ) n1( ) iε21

1–( ) n1( )+[ ]
-----------------------------------------------------,–=

D2y

iY2

ε22
1–( ) n2( ) iε21

1–( ) n2( )–[ ]
-----------------------------------------------------,–=

D3y

iY3

ε22
1–( ) n3( ) iε21

1–( ) n3( )–[ ]
-----------------------------------------------------,–=

D4y

iY4

ε22
1–( ) n4( ) iε21

1–( ) n4( )+[ ]
-----------------------------------------------------,–=

Y1

1 r1+( )E0x

2 1 r1r4 i
ω
c
---- n1 n4+( )Lexp–

--------------------------------------------------------------------------,=

Y2

1 r2+( )E0x

2 1 r2r3 i
ω
c
---- n2 n3+( )Lexp–

--------------------------------------------------------------------------,=

Y3

1 r3+( )r2E0x i
ω
c
---- n2 n3+( )Lexp

2 1 r2r3 i
ω
c
---- n2 n3+( )Lexp–

-------------------------------------------------------------------------------,–=

Y4

1 r4+( )r1E0x i
ω
c
---- n1 n4+( )Lexp

2 1 r1r4 i
ω
c
---- n1 n4+( )Lexp–

-------------------------------------------------------------------------------,–=

rα
1 nα–
1 nα+
--------------, α 1 2 3 4., , ,= =
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axis z, then there are incident and reflected waves in the
region z > L:

In the region 0 < z < L, the vector E is defined by an
expression similar to (17), and, in the region z < 0, there
is a transmitted wave given by

Then, by virtue of the boundary conditions at z = 0 and
z = L, we have

(19)

E E0xex iω t
z
c
--+ 

 –exp=

+ Erxex Eryey+{ } iω t
z
c
--– 

 – .exp

E Epxex Epyey+{ } iω t
z
c
--+ 

 – .exp=

Epx X1 X2– X3– X4,+=

Epy i X1 X2 X3 X4+ + +[ ] ,–=

Erx E0x i
ωL
c

-------– X1 i
ωL
c

-------n1exp+exp–




=

– X2 i
ωL
c

-------n2exp X3 i
ωL
c

-------n3–exp–

+ X4 i
ωL
c

-------n4–




i
ωL
c

-------– ,expexp

Ery i X1 i
ωL
c

-------n1exp–=

+ X2 i
ωL
c

-------n2exp X3 i
ωL
c

-------n3–exp+

+ X4 i
ωL
c

-------n4– i
ωL
c

-------– ,expexp

D1y

iX1

ε22
1–( ) n1( ) iε21

1–( ) n1( )+[ ]
-----------------------------------------------------,–=

D2y

iX2

ε22
1–( ) n2( ) iε21

1–( ) n2( )–[ ]
-----------------------------------------------------,–=

D3y

iX3

ε22
1–( ) n3( ) iε21

1–( ) n3( )–[ ]
-----------------------------------------------------,–=

D4y

iX4

ε22
1–( ) n4( ) iε21

1–( ) n4( )+[ ]
-----------------------------------------------------,–=
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where

5. ANALYSIS OF THE RESULTS

It follows from formulas (18) and (19) that the
reflected and transmitted waves are elliptically polar-
ized; the major axes of these ellipses prove to be rotated
through different angles with respect to the polarization
plane of the incident electromagnetic wave.

Since the refractive indices (15) and (16) of the
medium for all four normal waves in the plane-parallel
layer are different, an isotropic medium placed in an
external magnetic field will be nonreciprocal in phase
to a certain degree of accuracy. This effect should most
clearly manifest itself in experiments with a ring laser.

In our view, one prospective method for determining
the optical nonreciprocity in material media consists in
measuring the difference between the phase velocities
of electromagnetic wave propagating in opposite direc-
tions in this medium.

As is known [10], the relative measurement accu-
racy of the absolute value of the velocity of light is
small, δc/c ~ 10–9 at present. However, in searching for
the optical nonreciprocity in material media, one
should measure the difference between the velocities of
counter propagating waves, rather than the absolute
velocity of light, with relative accuracy on the order of
10–15–10–16.

For this purpose, it is convenient to use a ring laser.
The ring laser [10, 11] represents a triangular, rectangu-
lar, or other closed-loop high-Q optical resonator a part
of whose loop contains an active medium that provides

X1

1 r1+( )r4E0x i
ω
c
---- n4 1–( )Lexp

2 1 r1r4 i
ω
c
---- n1 n4+( )Lexp–

----------------------------------------------------------------------------,–=

X2

1 r2+( )r3E0x i
ω
c
---- n3 1–( )Lexp

2 1 r2r3 i
ω
c
---- n2 n3+( )Lexp–

----------------------------------------------------------------------------,=

X3

1 r3+( )E0x i
ω
c
---- n3 1–( )Lexp

2 1 r2r3 i
ω
c
---- n2 n3+( )Lexp–

--------------------------------------------------------------------------,–=

X4

1 r4+( )E0x i
ω
c
---- n4 1–( )Lexp

2 1 r1r4 i
ω
c
---- n1 n4+( )Lexp–

--------------------------------------------------------------------------.=
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generation of electromagnetic waves propagating along
the loop in opposite directions.

When the identity of conditions for counter propa-
gating electromagnetic waves is violated (for example,
due to the Fizeau effect caused by a gas pumped
through a part of the loop of the ring laser), the genera-
tion frequencies of counter propagating electromag-
netic waves become different. Therefore, if one inserts
a plane-parallel layer of the substance under consider-
ation into the path of the waves in the ring laser and
applies a magnetic field parallel to the propagation
direction of the waves to this layer, then the conditions
for the waves that propagate in this part of the loop in
different directions become different; as a result, the
frequencies of these waves will be different. Since the
modern state of the art in experimental technology
allows one to measure frequency differences of about
δν ~ 10–3 Hz in ring lasers [12], it is clear that the tech-
nique described is one of the most promising methods
for studying the optical nonreciprocity in isotropic
media and for measuring the coefficients h2 and h3 in
expansion (3) of the complex permittivity tensor.

Let us calculate the accuracy to which these coeffi-
cients can be measured in experiments with a ring laser.

In a ring laser, the active medium amplifies only
those electromagnetic waves whose phase is changed
by δΨ = 2πN, where N is an integer, when these waves
make one rotation along the loop.

This condition allows one to determine the genera-
tion frequencies of electromagnetic waves that propa-
gate in opposite directions in the ring laser in the exper-
imental scheme suggested.

Denote by P the perimeter of the ring laser, and
by L, the thickness of the plate inserted into the path of
the waves. Assume that the forward wave (ξ = 1) prop-
agates clockwise along the loop of the ring laser.

The frequency ω of the generated electromagnetic
wave that propagates clockwise in the ring laser can be
determined from the equation

where N+ is an integer and Ψ+ is the phase increment
due to the layer of the substance under investigation in
a dc magnetic field on the path of the forward wave.

The frequency  of the generated backward wave
(ξ = –1) can be determined analogously:

Now, if we extract these waves from the ring laser and
direct them to a detector, then we can obtain the follow-
ing expression for the frequency ∆ω of the output sig-

ω
c
----P Ψ++ 2πN+,=

ω̃

ω̃
c
----P Ψ–+ 2πN–.=
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nal, which is equal to the difference of the frequencies
of the mixed electromagnetic waves:

(20)

Now, we find the phase difference

Since one component of the vector E of electromag-
netic waves in ring lasers is intentionally suppressed
and only the component orthogonal to it is amplified,
we will determine the phase difference ∆Ψ for the com-
ponent Ex .

According to (18), the component E3x of the wave
transmitted through a plane-parallel layer of the sub-
stance under investigation in the forward direction can
be represented as

(21)

Introducing

we obtain

(22)

Analogously, introducing

from expression (19) for the counterpropagating wave,
we obtain

(23)

∆ω ω̃ ω–
c 2π N– N+–( ) ∆Ψ+[ ]

P
------------------------------------------------------.= =

∆Ψ Ψ+ Ψ–.–=

E3x ρ+e
iΨ+.=

k1 ω/c, n1 n1 ω( ), n2 n2 ω( ),= = =

n3 n3 ω( ), n4 n4 ω( ),= =

z1 1 r1
2r4

2 2r1r4 k1L n1 n4+( )[ ] ,cos–+=

z2 1 r2
2r3

2 2r2r3 k1L n2 n3+( )[ ] ,cos–+=

ρ+
2 1 r1r4–( )2

z1
-------------------------

1 r2r3–( )2

z2
-------------------------+=

+
2 1 r1r4–( ) 1 r2r3–( )

z1z2
------------------------------------------------- k1L n1 n2–( )[ ]cos{

– r1r4 k1L n2 n4+( )[ ]cos

– r2r3 k1L n1 n3+( )[ ]cos

+ r1r2r3r4 k1L n4 n3–( )[ ] } .cos

k2 ω̃/c, ñ1 n1 ω̃( ), ñ2 n2 ω̃( ),= = =

ñ3 n3 ω̃( ), ñ4 n4 ω̃( ),= =

Epx* ρ–e
iΨ––

,=
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where

(24)

Formulas (21) and (23) imply

Using (22) and (24), we obtain

(25)

z̃1 1 r̃1
2r̃4

2 2r̃1r̃4 k2L ñ1 ñ4+( )[ ] ,cos–+=

z̃2 1 r̃2
2r̃3

2 2r̃2r̃3 k2L ñ2 ñ3+( )[ ] ,cos–+=

ρ–
2 1 r̃1r̃4–( )2

z̃1
-------------------------

1 r̃2r̃3–( )2

z̃2
-------------------------+=

+
2 1 r̃1r̃4–( ) 1 r̃2r̃3–( )

z̃1z̃2
------------------------------------------------- k2L ñ4 ñ3–( )[ ]cos{

– r̃1r̃4 k2L ñ1 ñ3+( )[ ]cos

– r̃2r̃3 k2L ñ2 ñ4+( )[ ]cos

+ r̃1r̃2r̃3r̃4 k2L ñ1 ñ2–( )[ ] } .cos

∆Ψsin Im
E3xEpx*

ρ+ρ–
---------------- 

  .=

∆Ψsin
1 r1r4–( ) 1 r̃1r̃4–( )

z1z̃1ρ+ρ–
----------------------------------------------=

× k1n1 k2ñ4– k2 k1–+( )L[ ]sin{

+ r1r4 k1n4 k2ñ4 k1 k2–+ +( )L[ ]sin

– r̃1r̃4 k1n1 k2ñ1 k2 k1–+ +( )L[ ]sin

+ r1r4r̃1r̃4 k2ñ1 k1n4– k2 k1–+( )L[ ] }sin

+
1 r2r3–( ) 1 r̃2r̃3–( )

z2z̃2ρ+ρ–
----------------------------------------------

× k1n2 k2ñ3– k2 k1–+( )L[ ]sin{

+ r2r3 k1n3 k2ñ3 k1 k2–+ +( )L[ ]sin

– r̃2r̃3 k1n2 k2ñ2 k2 k1–+ +( )L[ ]sin

+ r2r3r̃2r̃3 k2ñ2 k1n3– k2 k1–+( )L[ ] }sin

+
1 r2r3–( ) 1 r̃1r̃4–( )

z̃1z2ρ+ρ–
----------------------------------------------

× k1n2 k2ñ4– k2 k1–+( )L[ ]sin{

+ r2r3 k1n3 k2ñ4 k1 k2–+ +( )L[ ]sin

– r̃1r̃4 k1n2 k2ñ1 k2 k1–+ +( )L[ ]sin

+ r2r3r̃1r̃4 k2ñ1 k1n3– k2 k1–+( )L[ ] }sin

+
1 r1r4–( ) 1 r̃2r̃3–( )

z1z̃2ρ+ρ–
----------------------------------------------

× k1n1 k2ñ3– k2 k1–+( )L[ ]sin{
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Depending on whether the coefficient f1 is equal to or
different from zero, this formula yields somewhat dif-
ferent results.

When the isotropic medium is gyrotropic in the first
order (f1 ≠ 0), even a plane-parallel plate of thickness
L = 0.1 cm can rotate the vector E of the transmitted
wave by an angle of several radians. Therefore, even
such a thin layer of substance makes it possible to rotate
the vector E by an angle of 90° and thus may suppress
the Ex component in the transmitted wave. To avoid
such a situation, we will assume that the thickness L of
the layer of the substance under investigation is chosen
so that

where m is an integer.
Expanding expression (25) under these assumptions

and retaining only the asymptotically leading terms, we
obtain

(26)

where n0 = .

This formula describes the optical nonreciprocity in
phase, which results from the combined effect of the
Faraday rotation and the first-order spatial dispersion.
A similar expression for this phenomenon in gyrotropic
crystals was obtained in [2].

Another interesting particular case of optical non-
reciprocity, which was not considered in [2], occurs in
a weakly optically active medium.

Let f1 = 0; i.e., let an isotropic medium be not gyro-
tropic in the first order in the small parameter δ. Then,
substituting (15) and (16) into formula (25), expanding
the latter formula in series up to the terms of order δ3

inclusive, and retaining only the asymptotically leading
terms, we obtain

(27)

In this case, the difference (20) of the frequencies of the
generated waves that propagate in opposite directions
in a ring laser is expressed as

+ r1r4 k1n4 k2ñ3 k1 k2–+ +( )L[ ]sin

– r̃2r̃3 k1n1 k2ñ2 k2 k1–+ +( )L[ ]sin

+ r1r4r̃2r̃3 k2ñ2 k1n4– k2 k1–+( )L[ ] } .sin

ωL f 1

c
------------- 2mπ,=

∆Ψ
n0

4 1–( )h2Hz ωLn0/c( )sin
2

2n0
2 4n0

2 n0
2 1–( )2 ωLn0/c( )sin

2
+[ ]

----------------------------------------------------------------------------------,=

ε

∆Ψ
ωh3HzL

c
--------------------.=

∆ω ω̃ ω–
2π N– N+–( )c

P
----------------------------------

ωh3HzL
P

--------------------.+= =
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Thus, it is the third-order coefficient h3 in the expansion
of the tensor εmn that guarantees the phase nonreciproc-
ity in an isotropic optically nonactive (f1 = 0) medium.
Since h3 ranges from 10–12 to 10–13 G–1 in many isotro-
pic optically nonactive media, this phenomenon can
reliably be measured even for a longitudinal magnetic
field of H ~ 102 G.

Now, let us estimate the minimal values of the coef-
ficients h2 and h3 that can be measured by means of a
ring laser.

Suppose that experiments are carried out on a KM-
type ring laser [12] produced by FGUP NII Polyus,
Moscow, with a perimeter of 170 cm and the operating
frequency ν ~ 1014 Hz and that the thickness of the sub-
stance under investigation is 0.17 cm. Since this com-
mercial ring laser allows one to measure values of ∆ν
as small as 10–3 Hz, it follows from formulas (20), (26),
and (27) that, in the single-mode regime (N– = N+), the
coefficients h2Hz and h3Hz can be measured with an
absolute accuracy on the order of 10–14.

Note that we have only demonstrated that, in princi-
ple, ring lasers enable one to observe the phase nonrec-
iprocity and measure the coefficient h2 in optically
active media and the coefficient h3 in optically nonac-
tive media that enter the expansion (3) of the tensor εnm .
To conduct a real experiment, one has to solve a number
of technical problems. One of such problems concerns
the quenching of electromagnetic waves reflected from
a plane-parallel layer, and, first of all, the quenching of
the Ex component of the field. This can be done in sev-
eral ways: either by choosing the thickness L of the sub-
stance layer or by placing a plane-parallel layer at a
Brewster angle with respect to the incident wave.

Besides, we did not take into account the frequency
pedestal in calculations, which is specially introduced
to avoid the locking of the frequency of counter propa-
gating waves in a ring laser.

However, the consideration of all technical features
of the experiments with ring lasers makes the calcula-
tion of this phenomenon more complicated, although
does not rule out the possibility of observing weak
phase nonreciprocity in an isotropic optically nonactive
(f1 = 0) substance in a longitudinal (with respect to the
propagation direction of the electromagnetic wave)
magnetic field and measuring the coefficient h3H ~ δ3 in
expansion (3) of the complex permittivity tensor.

The experimental verification of the results obtained
may serve as a basis for designing a magnetic-field-
controlled nonreciprocal element for various optical
devices.
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Abstract—The particle distribution function is calculated for the Coulomb explosion of a spherically symmet-
ric charged cluster formed through the interaction of intense ultrashort laser pulses with a cluster gas. The par-
ticle density and mean velocity distributions as well as the energy spectra of the accelerated particles are
obtained. These characteristics are analyzed in detail for a cold cluster plasma, where the kinetic effects deter-
mine the physics of multiple flows emerging after the turnover of the cluster particle velocity profile. We find
the boundaries of the multiple-flow regions and study the characteristics of an exploding cluster as a function
of its initial density profile. The energy spectra of the accelerated ions are obtained for a cluster plasma with a
specified cluster size distribution. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The explosion dynamics of a charged cluster is of
interest in connection with the discussed practical
applications of the interaction effects between intense
ultrashort laser pulses and a cluster gas [1, 2] or solid
nanoobjects [3]. It is well known that the explosion of
clusters accelerates ions to high energies [4–6], and, for
example, in the case of clusters of deuterons, their col-
lisions provide thermonuclear neutrons [7], which
opens up prospects for producing subnanosecond neu-
tron sources to be used in material science, nondestruc-
tive testing, etc.

A relatively simple model for describing the explo-
sion dynamics of a cluster can be formulated when it is
exposed to such an intense laser field that the electron
oscillation amplitude, max{1, a}c/ω0, is much larger
than the characteristic cluster radius, rc , and the kinetic
energy of the electrons, mc2a2/2, is much higher than
the energy of their Coulomb interaction with the clus-
ter, ZNe2/rc . In this case, the laser is intense enough to
detach the electrons from the field-ionized cluster
almost instantaneously, and the subsequent Coulomb
explosion will proceed as the explosion of a charged
cluster into a vacuum if the pressure of the surrounding
electron gas, nemc2a2/2, is much lower than the charac-
teristic pressure of the exploding cluster, e2Z2Nn/rc .
Here, m and e are the electron mass and charge, c is the
speed of light, a = eE0/mω0c is the dimensionless vector
potential of the electromagnetic field with electric field
strength E0 and frequency ω0, Z is the ion charge num-
ber, N is the number of atoms in the cluster, ne is the
electron density in the intercluster space, and n is the
atomic density in the cluster. Such conditions are real-
1063-7761/05/10102- $26.00 0212
ized for fairly small clusters with a relatively small
number of atoms in the cluster when exposed to laser
radiation of relativistic intensity [5, 7–10]. For exam-
ple, for a deuterium cluster with a mean atomic density
in the cluster n ~ 3 × 1022 cm–3, this corresponds to the
laser fluxes *1019 W cm–2 at a wavelength of 1 µm and
rc & 100 Å.

For larger clusters or at moderate laser intensities,
the electrons produced through photoionization remain
within the cluster [8]. In this situation, the absorption of
laser radiation energy and the electron heating are
determined by the collision processes and plasma
effects. In an electron–ion plasma cluster in which the
bulk of the energy is concentrated in hot electrons, the
ion acceleration during its explosion is attributable pre-
cisely to the electron component, which gives rise to a
charge-separating field. Under this field, the ions follow
the expanding electron halo with the formation of a
quasi-neutral expanding plasma on long time scales.
This scenario was discussed starting from [11] in both
the hydrodynamic [12] and kinetic [13] models of
spherical plasma expansion. In this paper, we do not
consider this ion acceleration scenario, but study the
Coulomb explosion of a cluster by which we mean both
the cluster proper and any spherically symmetric nano-
structure.

During the Coulomb explosion of a cluster, the
effective acceleration of its ions is attributable to a
strong spatial charge separation [10, 14, 15]. This
regime was investigated using numerical simulations
[16–19]. However, the effects that arise during Cou-
lomb explosions cannot be fully understood without
developing the corresponding theoretical models,
which are clearly lacking. The simplest approach corre-
© 2005 Pleiades Publishing, Inc.
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sponds to the model of an ideal cluster, an exploding
homogeneous spherical bunch of a given radius [6, 16,
20]. This model allows the ion velocity, density, electric
field, and energy distribution of the accelerated ions to
be easily calculated at an arbitrary time. The ion energy
and charge spectra as a function of the cluster distribu-
tion in radius and the parameters of the irradiating clus-
ter ultrashort laser pulse beam were analyzed in [21] in
terms of the model of an ideal cluster. However, as was
shown in [14, 15], for an initially nonuniform ion den-
sity profile in a spherically symmetric cluster, in which
the density decreases monotonically to zero with
increasing distance from the center, the solution con-
structed using the hydrodynamic approximation exists
only for a certain limited time, t < ts . According
to [14, 15], a singularity that corresponds to the ion
density becoming infinite arises in the hydrodynamic
solution at t = ts , and a multiple flow emerges on longer
time scales. This suggests that the well-known bounded
solution for an ideal cluster is actually unstable due to
the large, but finite density gradient at the cluster–vac-
uum boundary. Our results prove that this assumption is
valid.

A consistent allowance for the spatial inhomogene-
ity of a charged cluster is the principal element of our
theory that determines the formation of a Coulomb
explosion “shock wave” [14, 15, 19], which does not
emerge in the popular model of an ideal cluster [6, 16,
20]. Allowance for the nonuniformity of the cluster
density profile is necessitated by a number of practi-
cally important problems. First of all, note that the cur-
rently prepared clusters can be initially spatially inho-
mogeneous due to artificial layering using coverings of
different densities [22]. The cluster ion density distribu-
tion can also be significantly nonuniform due to a
prepulse. Analysis of currently available experiments
shows [23] that the propagation of ultrashort intense
laser pulses is always accompanied by a prepulse with
a typical duration from tens of picoseconds to nanosec-
onds. In this case, the maximum contrast of the laser
radiation does not exceed 108–109 even under extreme
conditions; at laser fluxes higher than 1019 W cm–2, this
inevitably results in a smearing of the cluster ion den-
sity profile with the formation of a transition region
near the outer boundary. Numerical simulations of the
explosion dynamics of a deuterium cluster using the
particle-in-cell code also suggest the formation of a
transition region near the cluster boundary [19]; as a
result, the formation of a singularity in the ion density
distribution attributable to the density nonuniformity is
observed. The discussed [14] and realized [3] interac-
tion of short laser pulses with nanoobjects gives another
example of the possible practical application of target
inhomogeneities, especially in connection with the
well-developed nanosphere [24] and nanotube [25]
production technology.

The analytical description of a spherically symmet-
ric cluster explosion [14, 15] is consistent with the gen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
eral proposition of [26] that the hydrodynamic problem
of a Coulomb explosion (without including the thermal
motion of the cluster particles) that uses the equations
of motion and continuity for the cluster ions and the
Poisson equation has an exact analytical solution. At
the same time, the hydrodynamic description of a Cou-
lomb explosion beyond the singularity, t > ts , is not pos-
sible, and the kinetic approach realized in this paper
should be used.

The emergence of a multiple flow in the explosion
dynamics of a charged cluster is similar to the turnover
of the nonuniform velocity profile of disturbances prop-
agating in a gas of noninteracting particles [27, 28].
Similar phenomena were also discussed in astrophysi-
cal applications [29, 30]. The particle flows emerge and
merge on singular surfaces, caustics. In the dynamics of
a cold self-gravitating gas, the caustics multiply and
crowd over the course of time, which is accompanied
by an increase in the number of regions of multiple
flows, and a structure that was called in [30] a nondis-
sipative gravitational singularity is formed. A charac-
teristic feature of this structure is the formation of an
infinitely deep potential well after the emergence of the
singularity followed by the capture of particles flows in
this well. The description of this process using the adi-
abatic capture theory [29] is also confirmed by numer-
ical simulations [31].

When passing from gravitational problems to the
problem of the expansion of a charged plasma, replac-
ing the forces of mutual attraction between particles
with the forces of repulsion leads to qualitatively differ-
ent particle dynamics beyond the turnover point. Thus,
for example, in a plane geometry, no singularity
emerges in the hydrodynamic approximation when the
gas of charged particles expands with a zero initial
velocity. For a spherically symmetric explosion of a
charged cluster, the potential and its derivative at the
flow turnover point are finite; i.e., the singularity is
kinematic in nature, and the particle flow is not cap-
tured. For a fairly smooth, monotonically decreasing
initial profile, the number of singularities (caustics)
after the turnover does not increase. After the emer-
gence of a singularity, two caustics [14] that separate
the regions of triple and double flows exist on the den-
sity profile, although the region occupied by the triple
flow expands with time.

This paper is devoted to the kinetic description of a
spherically symmetric cluster explosion in which the
cluster ion distribution function can be found by solv-
ing the Vlasov equation in a self-consistent electrostatic
field for a given initial ion distribution in radial velocity
and radius. We obtain a general solution of the kinetic
equation that includes both the transverse thermal
motion of the cluster ions and their thermal radial
velocity spread. This solution is analyzed in detail in
the limit of a negligible thermal cluster ion velocity (a
cold cluster). The kinetic effects here manifest them-
selves in the emergence of regions of multiple flows.
SICS      Vol. 101      No. 2      2005



 

214

        

KOVALEV, BYCHENKOV

                                           
We determine the laws of motion for the boundaries of
these regions in the presence of double and triple flows
and study the spatial ion density and mean velocity dis-
tributions for an exploding cluster and the particle
energy spectrum for several typical initial particle dis-
tributions in radius. By disregarding the thermal parti-
cle motion, we prove that the result of the hydrody-
namic theory for the ion spectrum is also valid in the
case where the hydrodynamic validity conditions are
formally violated; i.e., the emergence of regions of
multiple flows at t > ts does not change the shape of the
accelerated ion spectrum.

2. SOLUTION OF THE CAUCHY PROBLEM
FOR A COULOMB EXPLOSION:

THE KINETIC APPROACH

The dynamics of charged plasma particles (ions) in
a cluster is described by the Vlasov kinetic equation for
the ion distribution function f and by the Poisson equa-
tion for the self-consistent electric field E:

(1)

where M is the ion mass. When the sign in front of the
“field” term on the left-hand side of the Poisson equa-
tion is changed, the system of equations (1) transforms
to the dynamic equations for a gas of neutral gravitating
particles (see, e.g., [26, Section 81] and [29]). For this
reason, there is a close relationship between the dynam-
ics of a self-gravitating gas and the explosion dynamics
of a charged cluster.

The kinetic equation (1) admits of spherically sym-
metric solutions (a spherical cluster). In this case, the
ion distribution function may be assumed to depend
only on the radius r, the radial velocity v, and the square
of the velocity component orthogonal to the radius vec-

tor at a given point, f = f(t, r, v, ). For definiteness,
we assume that the distribution function f is factorized
as follows:

i.e., the transverse velocity distribution is assumed to be
stationary and uniform, for example, Maxwellian, with
temperature T⊥ . The distribution function integrated

over the transverse velocities, F(t, r, v) = dv⊥ , is

then defined by the system of equations

(2)

f t v f r Ze/M( )E f v+ + 0,=

divE 4πZe vf ,d∫=

v⊥
2

f f r t r v, ,( ) f ⊥ v⊥
2( );=

f∫

Ft v Fr
2v
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-------F
1
M
----- ZeE

2T ⊥

r
---------+ 

  Fv+ + + 0,=

r2E( )r 4πZer2 v Fd

∞–

∞

∫– 0,=
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where

is the transverse cluster ion temperature.

The initial conditions for Eqs. (2) correspond to
specifying the ion coordinate and velocity distribution
function, f0(v, r), and the radial electric field that satis-
fies the Poisson equation (the second equation in (2)) at
t = 0:

(3)

since the problem is symmetric and the charge is local-
ized, the latter becomes zero at r = 0 and decreases at
infinity as r  ∞. For uniform initial velocity distri-
butions, the function f0 is represented by the product
f0(v, r) = fc(v)nc(r). In particular, for the Maxwellian
initial ion velocity distribution, this corresponds to a
spatially uniform initial temperature (T = const):

When the Lagrangian variables (velocity and coordi-
nates) are used, the solution of the Cauchy problem (2)
and (3) can be represented as

(4)

where the functions R and U are the solutions of the fol-
lowing initial-value problem:

(5)

We write the solution of the latter separately for posi-

T ⊥
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2d∫
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tive and negative initial velocities ν:

(6)

Here, the functions t0 and R0 are defined by

(7)

Accordingly, the electric field distribution is given by

(8)

Dimensionless variables are used in Eqs. (6)–(8) and
below: we normalize the time to the inverse ion Lang-
muir frequency ωL(0) calculated from the initial density
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at the cluster center nc(0), the coordinates r, h, and R to
rc , ωL(r) to ωL(0), the densities n and nc to nc(0), the
velocities v, ν, , and U to ωL(0)rc , the variable w to

(0) , the distribution functions F and f to
nc(0)/ωL(0)rc and 1/ωL(0)rc , respectively, and the elec-
tric field E to 4πZenc(0)rc . We associate rc with the
characteristic initial cluster radius determined by the
density profile. The presence of a unit step function (the
θ function) in Eq. (8) for the field indicates that the con-
tribution only from the particle for which the condition
R(t, h, ν) ≤ r is satisfied should be taken into account
when calculating this field.

At a zero transverse cluster ion temperature (T⊥  = 0),
the integrals in Eqs. (6) can be calculated in explicit
form to yield the algebraic relations

(9)

The functions t0 and R0 at T⊥  = 0 are defined by

(10)

Similar solutions can be obtained in one-dimensional
and two-dimensional geometries, i.e., for the plane (the
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explosion of a charged plasma layer) and cylindrical
(the explosion of a charged plasma cylinder) cases.

Below, we also give the formulas that describe the
explosion of an ion cluster at a zero radial cluster ion
temperature when T = 0 and fc(v) = δ(v). The suggested
kinetic approach then corresponds to the model of mul-
tiple-flow hydrodynamics [31] arising here from the
first principles. In this case, as follows from (7), we
have R0 = h, t0 = 0, and Eqs. (6) take the form

(11)

To conclude this section, we give the relations that
define such global characteristics of the cluster explo-
sion into a vacuum as the particle density and mean
velocity as well as the ion spectral energy distribution.
As follows from many experiments, the latter is the
main characteristic for describing the Coulomb explo-
sions of clusters. Whether the model used to calculate
the energy of the accelerated ions is adequate can be
judged from the dependence of the shape of the ion
spectrum on macroscopic cluster ion characteristics
(such as the thermal ion velocity, the spatial cluster ion
density profile, the cluster size distribution, etc.). A sig-
nificant dependence of the spectrum of the accelerated
particles in an exploding cluster on the cluster size dis-
tribution was pointed out in several papers [20, 21].

The cluster ion density n(t, r) and mean radial veloc-
ity u(t, r) are defined in a standard way via the zeroth
and first moments of the particle distribution function
F(t, r, v), while the ion energy distribution function (ion
spectrum),

,

is introduced in such a way that, being integrated over
all energies, ε = Mv 2/2, it yields the total number of par-
ticles in the cluster. Assuming that the functions
R(t, h, ν) and U(t, h, ν) are uniquely defined at any t for
all h and ν, let us write the following relations for
n(t, r), u(t, r), and dN/dε using solution (4):
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(12)

Here, we normalize N to nc(0)  and ε to M (0) /2.
In the formulas for the density and the mean velocity,
the summation is over all possible s = 1, 2, …, S roots
of the equation r = R(t, hs, ν) defining the function
hs(t, r, ν). Similarly, in the formula for the ion spec-
trum, the summation is over all possible l = 1, 2, …, L

roots of the equations U(t, hl, ν) = ± .

The formulas presented in this section give a com-
plete kinetic description of the Coulomb explosion of a
plasma cluster including the thermal motion of its par-
ticles (ions). However, even when the thermal motion
of the cluster particles is disregarded, the analytical
results obtained are of fundamental importance, since
they allow the characteristics of the cluster explosion to
be described after the emergence of a singularity at the
hydrodynamic explosion stage, when the hydrody-
namic theory is inapplicable [15]. We discuss this prob-
lem in the next section.

3. THE KINETIC DESCRIPTION
OF THE EXPLOSION OF A COLD CLUSTER

The choice of an initial distribution function in the
form fc = δ(ν) and T⊥  = 0 corresponds to the hydrody-
namic limit of a cold plasma, which is characterized by
the emergence of a singularity in the spatial density dis-
tribution at a certain time ts . The cold-ion approxima-
tion yields a result that is identical to that obtained pre-
viously using the hydrodynamic equations [15] before
the emergence of a singularity. However, it has the
undeniable advantage that it allows one to extend this
solution beyond the singularity, i.e., to describe the mul-
tiple-flow regime of cluster explosion. There is no ana-
lytical description of this regime for a Coulomb explo-
sion as yet. The extension of the “cold” solution [15] to
times t > ts arises as a natural calculation of the integral
with the δ function in (4) and requires no ad hoc
assumptions [14]. Indeed, by performing integration
over the coordinate h and the velocity ν, we can repre-
sent the cold solution (4) in the following form (conve-

u t r,( ) 1
n t r,( )
--------------- ν f c ν( )d

∞–

∞

∫=

× U t hs ν, ,( )
hs

2nc hs( )/R2 t hs ν, ,( )
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s

∑
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2π
ε
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h hl U, ε±= =
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3 ωL
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ε
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nient for calculating the moments of the velocity distri-
bution function):

(13)

Here, the summation is over all possible k = 1, 2, …, K
roots of the equation

that defines the function hk(t, r). When the dependence
of r on h is single-valued, i.e., K = 1, we obtain a hydro-
dynamic solution [15] that is valid only until t = ts . The
value of ts for a smooth initial density profile whose
curvature changes sign with increasing r can be found
from the system of equations that consists of the last
equation in (13) and the following equations (see [15]):

(14)

Beyond the singularity, t > ts , the dependence of r on h
is multivalued, K > 1, which necessitates including the
contributions from various branches of hk(t, r) to the
distribution function F at a given point r.

The phenomenon of multiple flow at t > ts also man-
ifests itself in the integral characteristics of the distribu-
tion function. Thus, for example, the cluster ion density
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n and mean velocity u beyond the turnover point can be
calculated using the formulas

(15)

For definiteness, let us discuss the explosion of a cluster
with an initial density profile nc(r) that monotonically
decreases to zero with increasing radius.

Since the density distribution (15) decreases mono-
tonically at t = 0, it flattens out with time in the inner
regions of the cluster, while the density increases at its
periphery. This stems from the fact that the initially
nonuniform electric field with its maximum inside the
cluster accelerates the cluster ions differently: the ions
at larger radii move more slowly than those between the
center and the region of field maximum. Catching up
with the peripheral ions, the latter at t = ts give rise to a
density singularity called a Coulomb explosion shock
wave in [14] (though this singularity differs from the
shock waves observed in a cluster plasma [32]). This
corresponds to the turnover of the mean velocity profile
in the hydrodynamic model [14, 15] and to the intersec-
tion of particle trajectories. The kinetic approach natu-
rally describes the passage of various particle groups
through one another, which encounters difficulties with
the description in the hydrodynamic model, whose
extension beyond the point t > ts requires at least a mod-
ification of the single-flow model [29]. At t > ts , the
formed singularity breaks up into two singularities
(called leading and trailing shocks in [14]), which can
be associated with the groups of central and peripheral
ions, respectively, described above.

In this paper, we will adhere to the terminology tra-
ditional for the physics of gravitating systems,1 where
the singularities of this type are called caustics (see,
e.g., [31, 34]). For a monotonically decreasing density
profile with an inflection point at t > ts , there exist two
caustic surfaces, the singularities rc1 and rc2, that sepa-

1 It is also well known that discontinuous time functions can be
used in the solutions of the dynamic equations for a one-dimen-
sional gravitating medium, for example, to describe the sticking
of particles [33].
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Fig. 1. Spatial distributions of density n and mean velocity u for a cluster with an exponential initial density profile at times ωL0t =
8 (a) and (20) (b).
rate the regions of existence of single (0 ≤ r ≤ rc1, r >
rc2) and triple (rc1 < r < rc2) flows. The positions of the
caustic surfaces in space at an arbitrary time, t > ts , are
defined by a pair of equations:

(16)

At long times, t @ ts , the radii of the caustic surfaces,
rc1 and rc2, are given by the asymptotic relations

(17)
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The pair of relations (17) is obtained if we discard the
last term in the first equation in (16) at h @ 1. In this

case, the combination t  has a stationary
(t-independent) value. Relations (18) follow from
Eqs. (16) if we assume that q  1 in them, i.e., 1 – q =
δ ! 1. The contributions proportional to δ in the first
two relations of (18) determine the slow time depen-
dence of hc2. For t  ∞, hc2 tends to the stationary

value of hcs that is specified by the equation (hcs) =

w(hcs)/  derived from (18) at δ = 0.

It follows from Eqs. (17) and (18) that at fairly long
t, hc1 and, hence, rc1 increase as t2/3, while rc2 increases
as t. This implies that the separation between the caus-
tics increases as t, i.e., linearly with time. Thus, the
asymptotically outer caustic virtually coincides with
the current radius of the exploding cluster (the front of
accelerated ions), whose size increases linearly with
time.

As an illustration, Fig. 1 shows the density and mean
velocity distributions (15) after the turnover, r > ts ≈
7.1974, for a cluster with an exponentially decreasing

density profile, nc(r) = (4/3 )exp(–r2), for t = 8 and
20. We clearly see that after the formation of a density
singularity, two infinite peaks exist at any time [14]; the
separation between them increases with time according
to the law of motion of the caustics established above.
The transition from a single flow to a triple flow is

2w/h3

ωL
2

hcs
3

π
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Fig. 2. Time evolution of the caustic surfaces for (a) a cluster with an exponential initial density profile and (b) a cluster with a nearly
ideal initial density profile.
accompanied by a discontinuity in density: it changes
abruptly. In addition to the density discontinuity, the
transition from a single flow to a triple flow is also
accompanied by a discontinuity in mean velocity, but
the mean velocity remains finite. Such a pattern was
also observed in a gas of noninteracting particles [28],
suggesting that the singularity is kinematic in nature.
Note that on long time scales, there is a significant
accumulation of particles near the boundary of the
exploding cluster (the upper panel in Fig. 1b) on a shell
with a thickness of the order of the initial gradient
length (rc). This may prove to be important for the
effects attributable to collisions between clusters, for
example, fusion reactions. Figure 2a shows the time
evolution of the caustics (the boundaries of the region
of multiple flows), rc1 (inner) and rc2 (outer). With the
exception of the times near ts , the evolution of the caus-
tics is described well by the asymptotic analytical for-
mulas (17) and (18), which essentially yield a result
based on the exact formulas (16).

For a cluster in which the density distribution has no
inflection point but decreases monotonically to zero at

r = 1, i.e., (1) = 0, for example, for a cluster with a
linear or parabolic density profile, the time at which the
solution becomes multivalued is defined by the root of
the algebraic equation for qs ≡ q(ts, 1):

(19)

As was shown by using the hydrodynamic approach [15],
the solution of this equation, qs ≈ 0.6232, yields the fol-
lowing “universal” formula for the time at which the

solution becomes multivalued: ts ≈ 1.237/ . For
all such clusters that have the same total number of ions
and differ only by the pattern of monotonic decrease in

ωL
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density with increasing radius, the value of w(1) is the
same, w(1) = 1/3, which yields the following singular-
ity time: ts ≈ 2.142. Accordingly, after the singularity
time, t > ts , the multiple-flow region (to be more pre-
cise, the double-flow region, since only one caustic rc2
exists) extends from the radius rb(t) ≡ R(t, 1, 0), which
is implicitly specified by the relations

(20)

to the radius rc2, which coincides with the outer bound-
ary of the cluster.

Equation (20) for rb(t) at w(1) = 1/3 is identical to
the equation that describes the front radius rf(t) for an
ideal cluster [15]; i.e., the inner boundary of the region
of double flow for a cluster with a density profile mono-
tonically decreasing with increasing radius formally
coincides with the outer boundary of an ideal cluster
with the same total number of particles. To illustrate
this assertion, Fig. 3 shows the density and mean veloc-
ity distributions for a cluster in which the initial density
is almost constant up to the outer boundary and
decreases linearly to zero on the ξ scale further out,

(21)

The parameter ξ for Fig. 3 was chosen to be ξ = 0.1. In
contrast to the case with a monotonically decreasing
density profile having an inflection point, a density sin-
gularity emerges here and maintains its position at the
cluster–vacuum boundary over the course of time. The
mean velocity also remains continuous and finite up to
this boundary. The time evolution of the caustic rc2 (the
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Fig. 3. Spatial distributions of density n and mean velocity u for a cluster with a nearly ideal initial density profile (ξ = 0.1) at times
ωL0t = 3 (a) and 8 (b). The dashed line corresponds to an ideal cluster.
outer boundary of the region of double flow) is shown
in Fig. 2b for ξ = 0.1.

For comparison, Fig. 3 shows the spatial density and
mean velocity distributions for an ideal cluster, a cluster

with a sharp density cutoff, (r) = θ(1 – r). We see
that allowance for the small transition region with a
decreasing density profile at the edge of a homoge-
neous cluster gives rise to an infinite density peak at the
time specified by condition (19). This suggests that the
explosion of an ideal cluster is unstable. As follows
from the shape of the density distribution, it differs sig-
nificantly from that for an ideal cluster near the singu-
larity with a size of the order of

The total number of ions in the region of double flow is
determined by the spatial inhomogeneity scale ξ and
for t @ ts is of the order of

i.e., ~ξ/4 for ξ ! 1.
Note that a significant change in density on a small

ξ scale is required for a thin spherical high-density edge
to be formed at the cluster–vacuum boundary in a finite

nc
id

t
2
3
---

3w hc2( )
hc2

------------------- 1– 
  .

1
3
--- 1 1 ξ2 3ξ

2
------– ξ3

4
-----–+– 

  ,
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time; i.e., no singularity emerges for a small jump in
density near the boundary when, in contrast to distribu-
tion (21), the density decreases only slightly near the
cluster edge. An arbitrary small periodic (with the char-
acteristic wavelength smaller than the cluster radius) or
nonperiodic initial perturbation in the constant density
of an ideal cluster does not give rise to a singularity
either. This can be easily understood from Eqs. (16),
which define the conditions for the emergence of a sin-

gularity. The product tq(1 – q2)  in the first
equation in (16) is limited above by a value close to

unity; hence, the factor 1 – h3 (h)/3w(h) must also be
of the order of unity for a singularity to emerge. How-
ever, for a nearly ideal cluster for which the density
nc(h) and w(h) differ from 1 and h3/3, respectively, by
small corrections proportional to a parameter µ ! 1, the

factor 1 – h3 (h)/3w(h) is also ~µ; i.e., the condition
for the emergence of a singularity is not satisfied. In this
way, the stability of an ideal cluster against small den-
sity perturbations is established.

4. THE SPECTRUM
OF ACCELERATED IONS

Let us now discuss the ion spectral distribution
under multiple-flow cluster explosion conditions.
Using an initial distribution function of the form fc =

2w h( )/h3

ωL
2

ωL
2
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Fig. 4. Ion spectral energy distributions for clusters with the initial density profiles and at the times corresponding to (a) Fig. 1a
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Fig. 5. Averaged ion spectral energy distributions for clusters with the same parameters as those in Fig. 4.
δ(ν) in Eq. (12) for dN/dε and Eqs. (9), let us write the
following formula for the ion spectral distribution:

(22)

Here, the summation is over all possible l = 1, 2, …, L
roots of the equation ε = (2w/hl)q2 defining the function
hl(t, ε). In [15], spectrum (22) with allowance made for
the single-valued dependence of the velocity on the
Lagrangian coordinate was represented as the sum of
two terms, (dN/dε)±, that include the contributions to
dN/dε from the particles for which the energy increases
(+) or decreases (–) with increasing h. Formally, this
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breakdown is also possible in Eq. (22). It should be
noted that there can be several regions in which the
velocity increases (or decreases) with increasing h.
However, when passing from a single flow to a multiple
flow, the dependence of U(t, h, 0) on the Lagrangian
coordinate h remains single-valued at any time t. It thus
follows that the formal shape of the cluster ion spectral
distribution remains unchanged irrespective of the sin-
gle- or multiple-flow regime. Thus, when passing to a
multiple flow, the formulas describing the cluster ion
spectral distribution remain the same as those for a cold
cluster in the hydrodynamic model; the validity condi-
tion for this model, t < ts , does not appear any longer. In
this way, we prove that the formula of the hydrody-
namic approximation for the ion spectral distribution is
valid outside the range of its formal validity.

To illustrate the characteristic shapes of the ion
spectra, Fig. 4 shows the ion spectral distributions after
the emergence of a density singularity for the same ini-
tial density profiles and the same times as those in
Fig. 1. As was noted in [15], the ion spectra observed in
an actual experiment with a cluster plasma are
smoother than the theoretical spectra for an individual
cluster, dN/dε. This may be because there is a spread in
characteristic cluster radii in the cluster plasma. This
SICS      Vol. 101      No. 2      2005
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spread is very large for the cluster medium formed
when a gas jet cools down [20], and the cluster size dis-
tribution is nearly Gaussian,

with d ~ r0. Accordingly, the averaged ion energy distri-
bution is determined by the convolution

(23)

Figure 5 shows the averaged ion energy spectra (23) at
d = r0 for the same initial density profiles as those in
Fig. 4. We see that the shape of the averaged spectral
distribution for the initial density profiles in the cluster
under consideration has a smoother energy dependence
and is largely determined by the cluster size distribu-
tion. At the same time, it follows from Fig. 5 that the
height and width of the spectral peak as well as its posi-
tion at a fixed time depend on the atomic density distri-
bution in the cluster. These spectral characteristics
could be the subject of experimental testing.

5. CONCLUSIONS

We have analytically solved the problem of the par-
ticle distribution function in an exploding charged clus-
ter for the first time. We determined the global charac-
teristics of this explosion: the spatial–temporal particle
density and mean velocity distributions and the acceler-
ated-particle spectra. These characteristics were ana-
lyzed in detail for a cold cluster, which is typical of the
problem of the Coulomb explosion of a cluster ionized
by a strong laser field. We showed that the kinetic
effects determine the existence of multiple-flow regions
after the turnover of the cluster particle velocity profile
and found the boundaries of these regions. Passing to a
multiple flow significantly modifies the cluster particle
density and mean velocity distributions: they are
described by functions with discontinuities instead of
smooth functions. At the same time, it was proven that
the cluster particle spectral energy distribution does not
change qualitatively compared to that characteristic of
the hydrodynamic approach if its inapplicability after
the time corresponding to the emergence of a multiple
flow is formally ignored. In this case, the accelerated-
ion spectrum depends on the initial density profile in
clusters, and its detailed experimental study would
allow us to judge whether the theory is adequate.

Note the recently published results of particle-in-
cell numerical simulations of the explosion of a spherical
charged cluster exposed to an intense laser pulse [19].
The formation of singularities, density “shock waves,”
was observed during the cluster explosion, and there is

G rc( ) rc
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a characteristic feature in the spectra of accelerated
cluster ions similar in shape to that in Fig. 4. In this
case, the initial ion distribution was assumed to be
either nearly uniform with a small transition region
near the outer boundary or smoothed through the suc-
cessive irradiation by two laser pulses. The authors
point out that one density shock in the former case and
two shocks in the latter case were formed in the course
of time. Thus, the results of [19] are consistent with our
theory.

The general formulas given in this paper for the
cluster particle distribution function allow the effect of
the thermal ion motion on the global characteristics of
an exploding cluster to be analyzed. This is a problem
for further studies. Its significant complication is
expressed, for example, in the fact that, when the non-
zero thermal cluster particle velocity is taken into
account, the regime of multiple flow is realized from
the very beginning of the cluster explosion. However,
the derived formulas allow certain assumptions about
the pattern of changes in the main characteristics of the
cluster plasma with the thermal particle motion to be
made even now. Thus, for example, at a nonzero longi-
tudinal temperature (T ≠ 0), the cluster particle density
and mean velocity are found as the result of kinetic
“stirring” of the partial cluster particle densities and
velocities. Consequently, instead of the discontinuities
in the density and mean velocity profiles, one may
expect their smoothing. How intense the thermal
motion of the cluster particle must be to noticeably sup-
press the density singularity and to broaden its peaks
during kinetic stirring should be judged from the

parameter T/M .

Kinetic stirring has the following meaning. In con-
trast to the “cold” solution for the dynamic equations of
a cluster existing at a zero thermal velocity, a contin-
uum spectrum of the regions with multiple flows
emerges here when the nonzero radial thermal particle
velocity is taken into account. This assertion is obvious,
since particles moving toward and away from the clus-
ter center exist when the thermal motion is taken into
account. The partial velocities and coordinates for an
ensemble of cluster ions with a given initial velocity
profile change with time in accordance with Eqs. (9).
The total cluster particle density at a given point is
determined by the partial densities of flows with differ-
ent velocities; for flows with nonzero initial velocities,
new singularities emerge in the partial density distribu-
tions that are absent in the cold solution. After the sum-
mation of the partial densities of flows with different
initial velocities, the singularities in the particle density
distribution disappear; kinetic stirring takes place with
the formation of smoother density distributions. Allow-
ance for the transverse thermal particle motion also
leads to a similar effect.

Finally, note that, apart from clusters, our results can
be used to study the impact of intense laser pulses on
various nanostructures, not only spherically symmetric,

ωL
2 rc

2
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but also axially symmetric, and on standard film targets
of submicron thickness. This is of interest, for example,
in connection with the advanced production technology
of such nanoobjects as nanoballs [35], nanospheres [24],
nanowires [36], and nanotubes [25].
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Abstract—A scheme of a generator of electromagnetic-wave radiation is proposed in which a radiating region
moves along a radiator with a velocity greater than the velocity of light in vacuum. The superlight motion of
the generating region leads to the situation in which the resulting radiation has the properties of Vavilov–Cher-
enkov radiation. The electron beam of a superlight source is formed while the particles travel across a
waveguide along which an electromagnetic wave propagates. The construction of the generator makes it pos-
sible to vary the velocity of the radiating region, the radiation pattern, and the radiation beamwidth. Calcula-
tions are performed that allow one to evaluate the parameters of the generator and the characteristics of radia-
tion. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

By a superlight source in vacuum is meant a source
of coherent radiation from a large number of particles
rather from a single charged particle [1]. The source of
radiation is a certain domain that moves with a velocity
greater than the velocity of light, each pulse of radiation
being generated by new particles. Due to the motion of
the radiating domain with a velocity greater than the
velocity of light, the intensity and the spatial distribu-
tion of coherent radiation are characterized by the same
features as Vavilov–Cherenkov radiation. Various
approaches to the design of superlight sources in vac-
uum were considered for the first time in [2]. In partic-
ular, the radiation due to a wave impulse formed by
plane electromagnetic waves that is obliquely incident
on an interface, as well as the radiation emitted when a
charged thread falls onto a conducting surface, were
considered in that paper. The mechanism of radiation of
different particles may be different; however, a charac-
teristic feature of superlight sources is the interference
of waves emitted along the trajectory of the radiating
domain [1]. The electrodynamics of superlight charges
was studied in survey [3].

In recent years, there have been publications in
which the authors describe theoretical and experimen-
tal investigations of superlight sources of radiation.
In [4], the authors considered electromagnetic radiation
emitted when a pulse of X-ray radiation with a plane
front is obliquely incident on a conducting surface. The
X-ray radiation induces a photoelectron emission from
the conducting surface, and the emission front propa-
gates along the surface with a velocity greater than the
velocity of light. In [5, 6], certain schemes of superlight
sources were studied theoretically and the intensities of
the radiation induced by such photoelectron emission
1063-7761/05/10102- $26.00 0224
were evaluated. Later, at the Russian Research Institute
of Experimental Physics, Russian Federal Nuclear
Center, equipment was designed that employs X-ray
pulses, and the time and angular characteristics of the
generated radiation were measured [7, 8]. The X-ray
radiation is generated by a plasma that is formed when
a subnanosecond laser pulse is focused on an aluminum
target. According to the authors of [7, 8], the generation
of electromagnetic radiation with intensities of practi-
cal importance requires electron energies on the other
of hundreds of kiloelectron-volts. Therefore, the photo-
electrons emitted under the irradiation of a plate by
X-ray pulses are further accelerated in the space
between the cathode (the emitting plate) and the grid
anode.

Another type of a superlight source of radiation is
observed when measuring coherent transient radiation
of a bunch of particles accelerated in a microtron [9].
Upon leaving the microtron, the bunch of particles
passes through a metal foil. In the experiment, the hor-
izontal size of the bunch was much greater than its ver-
tical size and the size in the direction of motion; there-
fore, the bunch had the shape of a length of charged
thread that moves at an angle to the surface of the foil.
In addition to the maxima that are typical of the tran-
sient radiation, the measured angular distribution of radi-
ation contains peaks whose asymmetry and directivity
are characteristic of Vavilov–Cherenkov radiation.

In [10, 11], an equipment with a superlight source is
described and experimental results obtained on this
equipment are presented. A characteristic feature of this
equipment is that radiation in it is generated by polar-
ization currents induced in dielectric plates.

In the present paper, we propose a design for a
superlight source in which the domain that emits radia-
© 2005 Pleiades Publishing, Inc.
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tion and moves with a superlight velocity is formed by
a continuous electron beam that travels through the
waveguide and reaches the space of radiation.

2. DESIGN OF THE SOURCE

The schematic diagram of the source is shown in
Fig. 1. The basic element of the source is a rectangular
waveguide W. The cross section of the waveguide has
the dimensions a along the x axis and b along the y axis.
An H10 electromagnetic wave propagates along the
waveguide in the positive direction of the z axis. The
electric and magnetic fields of this wave are described
by the formulas

(1)

where E0 is the electric-field strength of the wave, ϕ =

ωt – kzz, kz = k , k = 2π/λ, and λ is the free-
space wavelength. The H10 wave contains a single elec-
tric component, Ey . The phase velocity v f of the wave
depends only on the transverse dimension a of the
waveguide,

(2)

and is always greater than the velocity of light in vac-
uum c.

There are narrow slots of length d along the z axis in
the upper and lower walls of the waveguide. These slots
are drawn by heavy dashed lines in the figure. If the
width of the slots is much less than the transverse
dimensions of the waveguide, the slots virtually do not
perturb the electromagnetic field in the waveguide.

A source of electrons of small size ∆x in the x direc-
tion and of length d in the z direction is situated under
the waveguide. This source generates a continuous
electron beam, which is injected into the waveguide
through the lower slot. The velocity v i of the injected
particles is directed along the y axis. Consider a beam
of particles that are injected at the point (x0, 0, z0).
Depending on the moment of injection, the particles get
either into a decelerating or an accelerating electric
field of the wave in the waveguide. If the initial velocity
v i of the particles is nonrelativistic and the height b of

Ey E0
πx
a

------ 
  ϕ ,sinsin–=

Hx E0η
πx
a

------ 
  ϕ ,sinsin=

Hz E0
λ

2a
------ πx

a
------ 

  ϕ ,coscos=

Ex Ez Hz 0,= = =

1 λ /2a( )2–

v f
c

1 λ /2a( )2–
--------------------------------,=
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the waveguide and the electric-field strength E0 are suf-
ficiently large, then the bunching of particles occurs in
the waveguide. Some particles of the continuous beam
of electrons are decelerated, change the direction of
their motion, and leave the waveguide through the
lower slot. Other particles are accelerated, pass through
the waveguide, and leave it through the upper slot.
Thus, a continuous beam of electrons injected at the
point (x0, 0, z0) is transformed into a train of bunches at
the output of the waveguide (at the point (x0, b, z0)). The
length lb of the bunches is determined by the initial
velocity v i of the particles, the transverse dimensions a
and b of the waveguide, and the electric-field strength
E0. The distance between the bunches is L = λv k/c,
where v k is the velocity of particles at the output of the
waveguide.

At the point (x0, b, z0 + δz), which is shifted by a dis-
tance δz along the z axis, the time dependence of the
current through the waveguide is the same as that at the
point (x0, b, z0) but the time delay δt = δz/v f . If the out-
put time of the first particle of a bunch at the point
(x0, b, z0) is t0, then the output time of the first particle
of the bunch that leaves the waveguide at the point
(x0, b, z0 + δz) is t0 + δz/v f . Thus, the point at which the
first particles of bunches leave the waveguide moves
along the z axis with the velocity v f , which is greater
than the velocity of light. Since an electron beam, rather
than a single particle, travels through the waveguide, a
certain extended region in which particles travel across
the waveguide moves along the waveguide. This region
moves along the z axis, while the particles themselves
travel in the transverse direction, along the y axis.
While the beam injected into the waveguide is continu-
ous, the output beam represents a train of charged
strips. The length of a strip (the size along the z axis) is
equal to the length d of the slot, the size of a strip along
y is equal to the length lb of a bunch, and the size along
x is equal to the width ∆x of the slot in the waveguide.

(a)

x

θ y

ψ

δ

b

a
z e

dv i

n
R

W

(b)

y

x
δ

b

z

a v i

e
d

N S

Fig. 1. Scheme of a superlight source that employs (a) tran-
sient and (b) synchrotron radiation; W is a waveguide, and
R is a radiator.

R

W
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The strip moves at angle ψ to the z axis such that
 = v k/v f.

If the field strength in the waveguide is small, then
the velocity of the continuous electron beam is modu-
lated while it travels across the waveguide. The velocity
modulation of the beam results in the bunching of par-
ticles while they move inside the waveguide and in the
free space upon leaving the waveguide.

There is a radiating element R at a certain distance δ
from the waveguide (see Fig. 1). It was stressed in [2]
that the particles in a superlight source may have differ-
ent mechanisms of radiation. In particular, the radiating
element of the superlight source shown in Fig. 1a is a
thin foil (a metal grid), and the particles generate tran-
sient radiation while passing through this foil. In the
source shown in Fig. 1b, the particles generate synchro-
tron radiation while moving in an external magnetic
field. The drift space δ is chosen so that, at any point of
the radiating element, the length of the current pulse is
minimal and the amplitude of the current is maximal.

3. NUMERICAL ANALYSIS 
OF A SUPERLIGHT SOURCE

We applied numerical methods to the analysis of the
operation features of a superlight source. As a model,
we used the device shown in Fig. 1a. The width and the
height of the waveguide are a = 60 mm and b = 10 mm,
respectively. An H10 wave with a wavelength of λ =
10 cm propagates along the waveguide in the positive
direction of the z axis. For such a wavelength and the
dimensions of the waveguide, the propagation velocity
is equal to v f = 1.81c. The radiating element is a metal

ψtan

0.25

0
π

βk

ϕiπ/2 3π/2

0.50

1

2

3

Fig. 2. Velocity βk of electrons at the output of the
waveguide as a function of the phase ϕi of injection into the
waveguide for the electric-field strength E0 in the
waveguide equal to (1) 30, (2) 60, and (3) 90 kV/cm.
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foil fixed to the upper wall of the waveguide. In our cal-
culations, we assumed that the drift space δ is zero.

First, we consider the dynamics of particles in the
waveguide. To this end, we solve a relativistic equa-
tion of motion of a particle in a given electromagnetic
field [12],

(3)

where b = v/c and γ = 1/  are the relative veloc-
ity and the energy of the particle, respectively.

The field of the electromagnetic wave is described
by formulas (1). The particles are injected at the point
x = y = z = 0 on the lower wall of the waveguide and
have an initial velocity of v i = 0.025c directed along the
y axis. We consider the motion of two hundred particles
that are injected successively over intervals of dt =
0.005T (T = λ/c is the period of the wave). Such a cal-
culation simulates the motion of a bunch of length lb =
v iT injected into a waveguide within a time period
equal to one period of the wave.

Next, we calculate the positions and the velocities of
particles while they travel in the wave and at the output
of the waveguide. We also calculate the moment when
the particles leave the waveguide. The calculations are
performed for various values of the electric-field
strength E0 of the wave. Figure 2 shows the particle
velocity βk at the waveguide output as a function of the
phase ϕi of particles at the moment of injection. One
can see that not all the electrons that are injected into
the waveguide during the accelerating half-period pass
through the waveguide. Therefore, the bunch length lb

(the distance between the first and the last particles that
travel through the waveguide at a given point within a
time period of T) is less than L/2, and the phase length
of the bunch is less than π. As the field strength
increases, the bunch length decreases and the length of
the flat region of the impulse increases, βk = f(ϕi); i.e.,
the number of particles whose velocity is close to the
maximal velocity increases. Figure 3 shows the posi-
tions of particles on the plane (βk, ϕk), where ϕk is the
particle phase at the output of the waveguide. One can
see that the bunching of particles occurs: the electron
beam, which is continuous while entering the
waveguide, turns into a bunch of electrons concentrated
in a rather narrow phase interval at the output of the
waveguide. Moreover, even in this interval, the parti-
cles are distributed nonuniformly. This fact is illus-
trated by the diagram of the particle density ρ as a func-
tion of phase ϕk shown in Fig. 3. The calculations show
that about 75% of the particles that pass through the
waveguide are concentrated within the phase interval of
0.2π; i.e., at the waveguide output, the phase length of
a bunch is about an order of magnitude less than 2π. If
the slot size along the z axis is much greater than its size
along the x axis and the length of the bunch along the y

db
dt
-------

e
mcγ
---------- E b H b b E⋅( )⋅–×+{ } ,=

1 β2–
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axis (in our case, lb ≈ 5 mm), then we can assume that a
charged thread is incident on the radiator.

Using the data obtained while calculating the
motion of particles across the waveguide, we calculated
the angular distribution of the field strength Er of the
transient radiation in the plane yz. Here, we assumed
that the radiation field at a given frequency generated
by an individual particle that passes through the plane
metal boundary and flies out to vacuum is described by
the formula [13]

(4)

where e is the electron charge, R is the distance form the
point where the particles pass through the radiator to
the observation point, ε is the permittivity of the foil
material, θ is the angle between the particle velocity
and the wavevector n, and tk is the moment at which the
particle leaves the waveguide.

In the centimeter- and millimeter-wave bands, one
may assume that the spectrum of the transient radiation
of a particle is uniform. For most metals, the angular
distribution of the radiation of a single charged particle
has a qualitatively similar character. In the case under
consideration, the transient radiation is generated by
weakly relativistic particles. Therefore, the distribution
has a maximum between 60° and 70°.

The radiation field of the bunch as a whole is equal
to the sum of the fields generated by individual parti-
cles. The contribution of each particle is determined by
the distance R to the observation point and the moment
tk at which the particle leaves the waveguide. Figure 4
(curve 1) shows the angular distribution of the intensity
I ~ (Er)2 of radiation at a wavelength of λ = 3 cm gener-
ated by particles that leave the waveguide at the point
(0, b, 0). One can see that the distribution is symmetric
about the direction of motion of the particles. Such an
angular distribution is characteristic of the radiation
due to an electron beam with small transverse dimen-
sions. Further, we analyze the effect of the slot length d
on the distribution of radiation.

Using formula (4), we can obtain an expression for
the angular distribution of the field of transient radia-
tion generated by a piece of a charged thread that passes
through a metal foil. We will neglect the difference
between the velocities of electrons at the waveguide
output and assume that all particles have the same
velocity βb . In addition, we will assume that the coor-
dinates x and z of a particle at the waveguide output are
the same as those at the injection point. Under such an
assumption, the oscillations and the drift of particles
along the longitudinal z axis are not taken into account.

Eω
r e

πcR
----------

βk ε 1– θ θcossin

ε θ ε θsin
2

–+cos
-----------------------------------------------

 
 
 

i
ω
c
----R iωtk– 

  ,exp=
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Consider the fields at a large distance from the radiation
source, when R @ d. In this case, we have

(5)

where R0 is the distance from the observation point to
the origin and z is the coordinate of the point at which
the particle leaves the waveguide.

Assume that the length of the thread is much greater
than its transverse dimensions (dimensions in the x and
y directions). The moment tk at which the particle that
passes through the waveguide at the point with coordi-
nate z leaves the waveguide can be expressed as

(6)

where t0 is the moment at which the particle injected at
the origin leaves the waveguide.

R R0 z θ,sin–=

tk t0
z

v f
-----,+=

0.25

0 π/4

ρ, arb.units, βk

ϕkπ/2

0.50
1

2

Fig. 3. (1) Velocity βk and (2) density ρ of electrons as a
function of the phase ϕk at the output of the waveguide for
an electric-field strength in the waveguide of E0 =
90 kV/cm.

0.5

0 90°

I, arb.units

θ
–90°

1.0

12

34

Fig. 4. Angular distribution of the radiation intensity at a
wavelength of λ = 3 cm. The radiator is an electron beam
with small transverse dimensions (1) or an electron source
of length d = 3 (2), 10 (3), and 40 cm (4).
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Substituting (5) and (6) into (4), we obtain

(7)

where q is the charge of a unit length of the thread,

(8)

After integrating with respect to z, we obtain the fol-
lowing expression for the strength of the field of the
transient radiation generated by a charged thread:

(9)

where η = αd/2.

It follows from (9) that the angular distribution of
the field strength of the transient radiation generated by
a thread is determined by the field distribution of an iso-
lated charge (given by the expression in parentheses),
the function sinη/η, and the length d of the source of
electrons. The function sinη/η attains its principal max-
imum at η = 0 and oscillates while decreasing as η 
±∞. The condition η = 0 for the principal maximum is
fulfilled when α = 0. It follows from (8) that this condi-
tion corresponds to the radiation angle θmax given by

(10)

Eω
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Fig. 5. Maximal intensity of radiation as a function of the
length of the electron source.
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Substituting v f from (2) into (10) and taking into
account the wavelength λ and the waveguide size a, we
obtain θmax = 56°.

Denote by ψ the angle between the z axis and the
wavevector n (see Fig. 1a). Since ψ = π/2 – θ, we have
the following equation for this angle:

(11)

Formula (11) defines the angle ψmax of Vavilov–Cher-
enkov radiation from a source that moves along the
z axis with a velocity v f greater than the velocity of
light. Note that each particle of a bunch travels along a
normal to the foil and produces only the transient radi-
ation while passing through the foil. However, the radi-
ation source itself moves along the foil at a superlight
velocity. The interference of the waves emitted by indi-
vidual particles results in a directional radiation that is
characteristic of the Vavilov–Cherenkov radiation [14].

We calculated the angular distribution of the inten-
sity of radiation generated by an electron beam for dif-
ferent values of the length d of the electron source.
The results of these calculations are shown in Fig. 4
(curves 2–4). One can see that, as d increases, the angu-
lar distribution becomes asymmetric, and the width of
the angular distribution at the maximum intensity
decreases. Moreover, the angle at which the radiation
intensity is maximal varies from θmax = 70°, which is
typical for the transient radiation of weakly relativistic
particles, to θmax = 34°. Recall that ψmax = π – θmax = 56°
is the angle of the Vavilov–Cherenkov radiation.

All the curves in Fig. 4 are normalized by the maxi-
mal intensity. The radiation intensity as a function of d
is shown in Fig. 5. It follows from the calculations that
the radiation intensity increases with the source length
d; for d > 5λ, the function of the intensity of radiation
emitted at the angle ψmax versus the source length
becomes quadratic, I ∝  d2.

4. CONCLUSIONS

We have considered a variant of a superlight source
of radiation that employs a waveguide for bunching an
electron beam. We have calculated the motion of parti-
cles through the waveguide and the angular distribution
of the intensity of transient radiation generated by an
electron beam. In the millimeter- and centimeter-wave
bands, the spectrum of the transient radiation can be
considered to be uniform. Therefore, such a design of
the source can produce intense radiation over a wide
range of wavelengths. The radiation direction and the
width of the angular distribution can be varied by vary-
ing the shape of the radiating surface and its length.

If a source employs synchrotron radiation (see
Fig. 1b), then the wavelength at which the radiation

ψmaxcos
c

v f

------.=
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005



SUPERLIGHT SOURCE OF RADIATION WITH A WAVEGUIDE 229
power attains its maximum can be controlled by vary-
ing the strength of the magnetic field in the radiator.

The scheme of the radiation source proposed allows
one to realize a radiation mode when the velocity of
radiation region varies along its trajectory. This is
achieved by varying the transverse dimensions of the
waveguide along its longitudinal axis.
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Abstract—Quantum cryptography (secure key distribution) systems must include procedures for correcting
errors in the raw key transmitted over a quantum communication channel. Several reconciliation protocols are
discussed and compared in terms of efficiency. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Quantum cryptography (secure key distribution) [1, 2]
makes it possible, in principle, to implement absolutely
secure “one-time pad” cryptography systems (undeci-
pherable by an eavesdropper even theoretically) [3–5].
The security of quantum key distribution is based on
the fundamental principles of quantum mechanics [6].
More precisely, Heisenberg’s uncertainty principle for-
bids simultaneous measurement of observables repre-
sented by noncommuting operators. In quantum cryp-
tography, these observables are represented by the den-
sity matrices of carrier states corresponding to the
classical bits, 0 and 1. For pure states, the impossibility
of simultaneous measurement (complete indistinguish-
ability) of density matrices is equivalent to nonorthog-
onality of the carrier states [7]. In other words, it is
impossible to distinguish nonorthogonal states with
zero probability of error and leave the system in a post-
measurement state is identical to its initial state. Thus,
any eavesdropping attempt (i.e., a perturbation of the
carrier state) must change the measurement statistics at
the receiver end as compared to the statistics of mea-
surement on the input states. Transformation of quan-
tum states in a noisy quantum channel also leads to
changes in the measurement statistics. In quantum
cryptography, any change in measurement statistics
should be attributed to the eavesdropper’s intervention,
because it is impossible in principle to distinguish
between changes in statistics induced by channel noise
and the eavesdropper.

If the laws of quantum mechanics were such that
only the fact that a carrier state had been perturbed
could be revealed, then this possibility would be of no
use for secure key distribution. However, not only per-
turbation can be detected, but the change in measure-
ment statistics can also be related to the amount of
information that can be extracted by the eavesdropper.
1063-7761/05/10102- $26.00 0230
In quantum cryptography, not only a quantum com-
munication channel (fiber or free space) is required to
transmit quantum states, but also a public classical
communication channel is necessary for the legitimate
partners to check for changes in the measurement sta-
tistics and correct errors in transmissions over the quan-
tum communication channel. The only requirement to
be satisfied by the classical channel is that the published
information cannot be changed by the eavesdropper’s
intervention; i.e., the channel must be unjammable. A
public classical channel of this kind is a mathematical
idealization, because it cannot physically exist. The
integrity of the announced data can be guaranteed only
by using authentication and integrity control proce-
dures, which require the use of a special secret key. If
the Internet is used as a public classical channel, then
authentication keys can be generated by means of the
Diffie–Hellman algorithm [8]. However, the Diffie–
Hellman scheme cannot be used to generate authentica-
tion keys if the same fiber-optic link is employed as
both a public classical and a quantum channel for the
fundamental reason that a “man-in-the-middle” attack
then obviously becomes possible. To deal with this sit-
uation, one needs a short initial key to be used only in
the first session and then discarded. In each subsequent
session, the authentication and integrity of the message
transmitted over the classical channel are guaranteed by
using part of the key generated the preceding commu-
nication. The remaining (longer) part of the key
received over the quantum channel is used for encod-
ing. If the authentication and encryption procedures are
based on a Russian state standard (GOST), then the ini-
tial key must be 256 bits long. However, a much longer
new secret key can be transmitted in a few seconds by
communicating over the quantum channel.

The initial key could obviously be used for encoding
a new key to be sent to the other legitimate partner.
However, the absolute security of the new key would be
© 2005 Pleiades Publishing, Inc.
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guaranteed only if its length did not exceed that of the
key used to encode it. In quantum cryptography, the ini-
tial key is never used directly for transmitting a newly
generated key over the quantum channel. It is shown
below that the amount of information transmitted over
the public classical channel per bit of a new secret key
is less than unity; therefore, key expansion can be
implemented.

The use of a short initial key is more attractive,
because the number of rounds of public communication
required to complete key reconciliation and privacy
amplification can thus be minimized.

In this approach, the main theoretical problem is the
evaluation of the length of a secret key that can be
received under the observed change in measurement
statistics at the receiver end as compared to the statis-
tics of measurement on the unperturbed states. Gener-
ally, the change in measurement statistics is quantified
in terms of the bit error rate, i.e., the probability that a
transmitted 0 is received as a 1 or vice versa. (Note,
however, that alternative measures of change in mea-
surement statistics can be used as well.) The error rate
is evaluated by publicly comparing part of the bit
sequence transmitted over the quantum channel, and
then the disclosed bits are discarded.

At the next stage, Alice and Bob correct errors in the
rest of the bit sequence, communicating over the public
channel. (Alice and Bob are the conventional names of
the sender and receiver, respectively; A and B denote
their respective locations; and Eve is the conventional
name of the eavesdropper.) As a result, Alice and Bob
have shorter strings that are identical with probability
arbitrarily close to one, e.g., 1–2–200 ≈ 1–10–70 (recall that
the estimated number of atoms in the Universe is 1077).

After the key has been reconciled, Eve has a string
of bits, or quantum states stored in a quantum memory,
or both. At the last stage, a final secret key is generated
by compressing the bit string shared by Alice and Bob
(actually, by using a random hash function). The result-
ing compressed string becomes a secret key shared by
the legitimate partners, and it is guaranteed that the
amount of private information known to Eve is expo-
nentially small as a function of a certain security
parameter defined by Alice and Bob.

It is natural to require that error-correction and pri-
vacy-amplification procedures leave as many bits as
possible in the final key. Another requirement is the
minimization of the number of rounds of public com-
munication per bit in the final secret key.

The legitimate partners must not only correct the
errors in the raw key, but also calculate an upper bound
for the amount of information about the remnant key
that can be extracted by Eve from public transmissions.
Error correction can be performed by using various pro-
cedures, including any classical error-correcting code.
Note that it is all but obvious which one will prove the
most efficient by the criteria mentioned above.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In what follows, we discuss error correction by bisec-
tive search, the CASCADE algorithm, and classical
Bose–Chaudhuri–Hocquenghem and Hamming codes.
It is important that the efficiency of any error-correction
procedure cannot be evaluated without taking into
account the quantum part of the key generation protocol.

Irrespective of the error-correction procedure
employed, the analysis presented below shows that the
upper bound for the amount of information about the
final key that can be extracted by Eve corresponds to
the case when she can perform collective measure-
ments on several quantum states stored in a quantum
memory. Even though measurement of many entangled
states is beyond the scope of present-day technology, it
is not forbidden by any fundamental principle of quan-
tum mechanics. This problem is eliminated if Eve’s
instrumentation can be used to perform only individual
measurements.

2. THE QUANTUM PART OF A PROTOCOL
FOR RAW KEY GENERATION

Conceptually, the simplest quantum key distribution
protocol, known as the B92 protocol, makes use of two
nonorthogonal states. Even though attenuation in a
fiber-optic cable is the only factor limiting its imple-
mentation, this protocol works only if the quantum
channel length does not exceed 20 km. Its discussion in
the context of the present study is motivated by the sim-
plicity of its analysis and the fact that it contains all ele-
ments common to other, more practicable, key distribu-
tion protocols.

The quantum part of the protocol has a standard
form [9, 10]. Two nonorthogonal states of the informa-
tion carrier corresponding to classical bits are prepared
by Alice: 0  |u0〉 , 1  |u1〉 . The overlap between
them is conveniently parameterized by the correspond-
ing angle (see Fig. 1):

(1)

The orthogonal basis vectors in the span of |u0〉  and |u1〉
are denoted by |0〉  and |1〉 .
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Bob performs individual measurements described
by the following partition of the identity operator:

(2)

The outcome space Ω consists of three outcomes: Ω =
{0, 1, ?}. The operator A0 represents measurements
whose outcomes are interpreted as 0. In the absence of
Eve’s intervention, such a measurement occurs only if
the state |u0〉  has been sent. If the state |u1〉  has been sent,
then the measurement represented by A1 (but not A0)
can occur, and its outcome is interpreted as 1. The oper-
ator A? represents measurements with inconclusive out-
comes, which may correspond to both |u0〉  and |u1〉 .

The conditional probability Pr(i |j) of an outcome i
(i = 0, 1, ?) when a state |uj 〉  (j = 0, 1) has been sent is
expressed as follows:

(3)

(4)

All possible eavesdropping strategies can be tentatively
classified as follows.

Opaque eavesdropping. (This strategy is also fre-
quently called intercept–resend attack.) Eve intercepts
Alice’s transmission, performs a direct measurement
on it, and resends a new state depending on the mea-
surement outcome.

Entangled translucent eavesdropping. Eve uses
an auxiliary system (ancilla) interacting with the infor-
mation carrier to create an entangled state of the carrier
and the ancilla and performs a measurement on the
ancilla state while the carrier state is forwarded to Bob.

Collective attack. This strategy is analogous to
translucent eavesdropping, with the exception that Eve
stores each ancilla state in a quantum memory and per-
forms a collective measurement on the stored ancilla
states only after Alice and Bob have completed their
error-correction and privacy-amplification procedures
by communication over a public channel. Collective
attacks are more effective than individual measure-
ments.

Joint attack. This strategy is the most general and,
probably, the most effective. It is analogous to a collec-
tive attack, except that Eve performs a measurement on

I A0 A1 A?, A0+ +
I u1| 〉 u1〈 |–( )
1 u1 u0〈 | 〉+

------------------------------,= =

A1

I u0| 〉 u0〈 |–( )
1 u1 u0〈 | 〉+

------------------------------, A? I A0– A1.–= =

Pr 0 0( ) Pr 1 1( ) Tr u0| 〉 u0〈 |A0{ }= =

=  Tr u1| 〉 u1〈 |A1{ } 1 θ,cos–=

Pr 1 0( ) Pr 0 1( ) Tr u0| 〉 u0〈 |A1{ }= =

=  Tr u1| 〉 u1〈 |A0{ } 0.=

Pr ? 0( ) Pr ? 1( ) Tr u0| 〉 u0〈 |A?{ }= =

=  Tr u1| 〉 u1〈 |A?{ } θ .cos=
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a single state from a Hilbert space of large dimension
interacting with the carrier state.

Formally, entangled translucent eavesdropping is
described by a unitary transformation of the ancilla
state |e〉  interacting with the carrier state prepared by
Alice:

(5)

(6)

where |e0〉  and |e1〉  are (nonorthogonal) ancilla states,
and a and b are real coefficients chosen by Eve to spec-
ify the unitary evolution.

While the ancilla and carrier are in an entangled
state after the evolution, Eve and Bob can measure only
the states of the ancilla and carrier, respectively.

In the case of a collective attack, the states measured
by Bob before Eve performs any operation on the
ancilla state are obtained by tracing out the ancilla sub-
space:

(7)

After Bob has performed the measurements
described by (2) on the states represented by (7), condi-
tional probabilities (3) and (4) become

(8)

(9)

The deviation of Bob’s measurement statistics from
Alice’s is quantified by an error rate. In particular, the

u0| 〉 e| 〉 U u0| 〉 e| 〉⊗( )⊗
=  a u0| 〉 e0| 〉 b u1| 〉 e1| 〉⊗+⊗ φ 0| 〉 ,=

u1| 〉 e| 〉 U u1| 〉 e| 〉⊗( )⊗
=  b u0| 〉 e0| 〉 a u1| 〉 e1| 〉⊗+⊗ φ 1| 〉 ,=

ρ u0| 〉( ) TrE φ0| 〉 φ0〈 |{ }=

=  a2 u0| 〉 u0〈 | ab 2γ u0| 〉 u1〈 | u1| 〉 u0〈 |+( )sin+

+ b2 u1| 〉 u1〈 | ,
ρ u1| 〉( ) TrE φ1| 〉 φ1〈 |{ }=

=  b2 u0| 〉 u0〈 | ab 2γ u1| 〉 u0〈 | u0| 〉 u1〈 |+( )sin+

+ a2 u1| 〉 u1〈 | .

Pr 0 0( ) Pr 1 1( ) Tr ρ u0| 〉( )A0{ }= =

=  Tr ρ u1| 〉( )A1{ } a2 1 2γsin–( ),=

Pr 1 0( ) Pr 0 1( ) Tr ρ u0| 〉( )A1{ }= =

=  Tr ρ u1| 〉( )A0{ } b2 1 2γsin–( ),=

Pr ? 0( ) Pr ? 1( ) Tr ρ u0| 〉( )A?{ }= =

=  Tr ρ u1| 〉( )A?{ } 1 a2 b2+( ) 1 2γsin–( ).–=
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probability that a 0 is transmitted and a 1 is received or
vice versa corresponds to the error rate

(10)

The inconclusive outcomes are rejected by communi-
cating over a public channel. To evaluate Q, Alice and
Bob compare by public discussion the bits in a ran-
domly sampled subsequence (with a length of about
half that of the transmitted sequence) and then reject the
published part of the sequence.

The ancilla states stored by Eve and the bits received
by Bob are in one-to-one correspondence. In particular,
if Alice has sent |u0〉  and Bob has received a 0, then the
unnormalized ancilla state is

(11)

If |u1〉  sent by Alice has been received by Bob as a 1,
then Eve has

(12)

Furthermore, if Bob has received a 1, whereas |u0〉  has
been sent by Alice, then the ancilla state will also be
“incorrect:”

(13)

(14)

Table 1 shows the combinations of the bits sent and
received by Alice and Bob, respectively, and the ancilla
states stored by Eve that are possible after the commu-
nication over the quantum channel has been completed
and the inconclusive outcomes have been rejected by
public discussion.

Thus, Q is the fraction of bit errors in the total num-
ber of received bits, and the ancilla states kept by Eve
in a quantum memory are in one-to-one correspondence
with the classical bits received by Bob: 0  |e0〉 and
1  |e1〉 .

3. SECRET KEY LENGTH
IN THE SHANNON LIMIT

After the inconclusive outcomes have been rejected,
Alice and Bob formally have a binary symmetric chan-

Q
Pr 1 0( ) Pr 0 1( )+
Pr 0 0( ) Pr 1 1( )+
--------------------------------------------

b2

a2 b2+
----------------.= =

ρ0 0→
Eve u0| 〉( ) Tr A0 φ0| 〉 φ0〈 | A0{ }=

=  1 Q–( ) e0| 〉 e0〈 | .

ρ1 1→
Eve u1| 〉( ) Tr A1 φ1| 〉 φ1〈 | A1{ }=

=  1 Q–( ) e1| 〉 e1〈 | .

ρ0 1→
Eve u0| 〉( ) Tr A1 φ1| 〉 φ1〈 | A1{ }=

=  Q e1| 〉 e1〈 | ,

ρ1 0→
Eve u0| 〉( ) Tr A0 φ1| 〉 φ1〈 | A1{ }=

=  Q e0| 〉 e0〈 | .
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nel characterized by the conditional probabilities

(15)

and equal a priori probabilities of input states

By virtue of the one-to-one correspondence between
the bits received by Bob and the ancilla states stored by
Eve, the Alice–Eve channel is a quantum binary sym-
metric one with input states

and Eve’s output states

The channel can be described by a superoperator
7AE[…] as a linear, trace-preserving or trace-reducing,
completely positive mapping of Alice’s input density
matrix to Eve’s output density matrix. The unitary rep-
resentation of the superoperator is

(16)

Furthermore,

(17)

Now, let us find an upper bound for the error rate com-
patible with secure key distribution between Alice and
Bob and evaluate the corresponding key length in the
limit of n  ∞ by means of random coding in the
spirit of Shannon’s mathematics. (We note, however,
that this approach is obviously impracticable, since it
will require exhaustive search over an exponentially
large number of code words.) Let the first code word be
the bit string sent by Alice. Then, M – 1 n-bit code
words are randomly generated. All of the M code words

Pr 0 0( ) Pr 1 1( ) 1 Q,–= =

Pr 1 0( ) Pr 0 1( ) Q= =

Pr 0( ) Pr 1( ) 1
2
---.= =

ρ0 u0| 〉 u0〈 | , ρ1 u1| 〉 u1〈 |= =

e0| 〉 e0〈 | , e1| 〉 e1〈 | .

7AE …[ ] TrB A0U …[ ] e| 〉 e〈 |⊗( )U 1– A0{ }=

+ TrB A1U …[ ] e| 〉 e〈 |⊗( )U 1– A1{ } .

7AE u0| 〉 u0〈 |[ ] 1 Q–( ) e0| 〉 e0〈 | Q e1| 〉 e1〈 | ,+=

7AE u1| 〉 u1〈 |[ ] 1 Q–( ) e1| 〉 e1〈 | Q e0| 〉 e0〈 | .+=

 

Table 1. 

 

 Correspondence between Alice’s and Bob’s bit
strings and the quantum states stored by Eve
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are sent to Bob over a public classical channel. We
denote them by

where

(They are obviously known to Eve.)

We note that the total number of code words must be
sufficiently redundant for Bob to be able to identify the
first code word (the bit string sent by Alice over a quan-
tum channel) with probability one. By the Shannon
coding theorem, if the number of code words is

(18)

where CAB(Q) is the capacity of a binary symmetric
classical channel, then the probability of decoding
averaged over the ensemble of code words tends to
unity [11, 12]. Comparing the received bit string with
all of the code words, Bob finds one that is Hamming
closest to the string (i.e., differing from the output
string by the minimal number of bits) and identifies the
bit string sent by Alice with probability one. Then, he
corrects errors in the received string to obtain a raw key.
The probability of decoding error averaged over the
ensemble of code words conditioned on (18) is

(19)

where Pr( |wj) is the conditional probability of
decoding the code word wj. In other words, for any
ε(n, M), there exists an arbitrarily small δ such that (19)
holds for n < N.

The use of M code words randomly sampled from
the 2n-dimensional space of n-bit strings means that the
Hamming distance between the nearest code words is
slightly larger than the number Qn of bit errors, which
makes it possible for Bob to decode the received string
into the input code word with probability one.

Eve can perform either an individual measurement
on each ancilla state stored in a quantum memory or a
collective measurement on all (mutually nonorthogo-
nal) stored ancilla states (see Table 1). In the case of
entangled translucent eavesdropping, the error of dis-
tinction between two nonorthogonal states is mini-
mized by performing an optimal individual measure-

w 1( ) w 2( ) … w M( ),, , ,

w j( ) j1 j2 … jn, , ,( ), jk 0 1.,= =

M 2
n CAB Q( ) δ–[ ]

, δ 0,<
CAB Q( ) 1 Q Q 1 Q–( ) 1 Q–( ),log+log+=

Pe n M,( ) 1
M
----- 1 Pr wB

j w j( )–[ ]
j 1=

M

∑=

≤ ε M 1–( )2
n CAB Q( ) δ–[ ]–

+ ε n M,( ) 0,<

wB
j
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ment represented as the partition of the identity opera-
tor [13]

(20)

where |m0, 1〉  denotes the eigenvectors of the operator
|e0〉〈 e0| – |e1〉〈 e1|. The corresponding probability of error
is

(21)

These results are obtained by using the unitarity and
normalization conditions for the functions |φ0, 1〉
(defined by (5) and (6)), which lead to the relations

(22)

Note that a similar error corresponds to the case when
Eve performs measurement (20) on each transmission
without using quantum memory. However, further anal-
ysis is more transparent when quantum memory is
employed.

Before Bob corrects errors after Eve’s individual
measurements have been completed, the error rates in
the Alice–Bob, Bob–Eve, and Alice–Eve channels are,
respectively,

(23)

(24)

(25)

Therefore, Eve’s error rate is

(26)

Using (21), we rewrite (26) as

If E ≤ Q, then Eve can decode the bit string sent by
Alice with probability one. The equation

Q = E(Q)

determines the highest error rate compatible with
secure key distribution between Alice and Bob.

If the error rate in the Alice–Eve channel is higher
than that in the Alice–Bob channel, i.e.,

I }0 }1, }0 1,+ m0 1,| 〉 m0 1,〈 | ,= =

ε Q( ) 1
2
--- 1 1 e0 e1〈 | 〉 2––[ ] 1

2
--- 1 2γcos–( ),= =

2γsin
1 1 2Q–( )2– 2αsin–

2α 1 1 2Q–( )2– 2αsin 1–[ ]sin
---------------------------------------------------------------------------------.=

2αsin 2ab a2 b2+( ) 2α 2γ,sinsin+=

a2 b2 2ab 2α 2γsinsin+ + 1.=

Pr bA i( ) bB i( )={ } 1 Q,–=

Pr bB i( ) bE i( )={ } 1 ε Q( ),–=

Pr bA i( ) bE i( )={ } 1 Q–( ) 1 ε–( ) Qε.+=

E Q( ) 1 1 Q–( ) 1 ε Q( )–( )– Qε Q( ).+=

E Q( ) Q γcos
2

1 Q–( ) γ.sin
2

+=

CAB Q( ) CAE E Q( )( ),>
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then the length of a secret key that can be shared by
Alice and Bob in the limit of n  ∞ is

nsecret  n. (27)

The probability of Eve’s error averaged over all code
words is

(28)

This expression is actually a corollary to a theorem on
error rate for transmission at a data rate higher than the
capacity of a memoryless classical communication
channel [11, 12, 14]. In other words, relation (28) fol-
lows from the “strong inverse” to the Shannon coding
theorem, where “strong inversion” means that the error
rate tends to unity when the data rate exceeds the chan-
nel capacity. The case when a nonzero upper bound for
error rate does not approach unity with increasing n
corresponds to the “weak inverse” to the coding theo-
rem, as in collective measurements.

When Eve undertakes a collective attack, the quan-
tum Alice–Eve channel is formally described by the
superoperator 7AE[…] that maps Alice’s input density
matrix to Eve’s output density matrix as in (16) and (17).
Eve’s measurements are represented by outcome oper-
ators making up a partition of the identity operator in
the span of ancilla states (see [15–18] for details):

(29)

(30)

where 3 is the projector onto the typical subspace of
the density matrix

(31)

Pe n M,( ) 1
M
----- 1 Pr wE

j w j( )–[ ]
j 1=

M

∑=

≥ 1 O 1( )2
n CAB Q( ) CAE E Q( )( )–[ ]–

1,–

n ∞,

CAE E Q( )( ) 1 E Q( ) E Q( )log+=

+ 1 E Q( )–( ) 1 E Q( )–( ).log

I χ
w

k,
k 1=

M

∑=

χ
w

k 33
w

l

l 1=

M

∑ 
 
 

1/2–

=

× 33
w

k3 33
w

l3
l 1=

M

∑ 
 
 

1/2–

,

1
2
---7AE u0| 〉 u0〈 |[ ] 1

2
---7AE u1| 〉 u1〈 |[ ]+ 

 
⊗ n

=  
1
2
--- e0| 〉 e0〈 | e1| 〉 e1〈 |+( ) 

 
⊗ n

,
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and  is the projector onto the typical subspace of

the density matrix corresponding to the code word wk,

(32)

(33)

The projector  is constructed as the spectral projec-

tor corresponding to the product ΛI =  ·  …  of

eigenvalues of  such that

(34)

where

(35)

with

(36)

being the von Neumann entropy.
According to [15],

(37)

where E denotes an average over all random codes. The
probability of error of decoding by means of Eve’s out-
come operators (30) is

(38)

It was shown in [15, 18] that if
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. (40)

The exponent in (39) contains the classical information
capacity of a noisy quantum channel [15, 18] described
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by superoperator (16), (17):

(41)

where

(42)

(43)

Secure key distribution implies that Eve cannot
decode the transmitted code word. If the number M of
code words used in transmissions over the Alice–Bob
channel is smaller than that in the Alice–Eve channel,
then secure key distribution is impossible a priori; i.e.,
Eve decodes any bit sequence with probability one. If
Eve’s instrumentation can be used to perform only indi-
vidual measurements, while Alice and Bob use a ran-
dom code to correct output errors, then secure key dis-
tribution is possible if

(44)

combined with (28) holds (see also [19]). This means
that Bob can correct all errors in the received bit string
with probability one, while Eve’s error rate tends to
unity (in accordance with the “strong inverse” to the
Shannon coding theorem), and the entire n-bit string
can be used by Alice and Bob as a secret key.

Using instrumentation for collective measurements
described by (29) and (30), Eve can decode the bit
string sent by Alice with probability one if

Accordingly, the critical condition for secure key distri-
bution is

(45)

if Eve can perform collective measurements.

When M > , Eve cannot decode the bit string
sent by Alice even by means of collective measure-
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ments, whereas Bob can correct all errors in an n-bit
string with probability one if

.

The corresponding probability of Eve’s decoding error
averaged over the ensemble of code words is

(46)

i.e., the “weak inverse” to the coding theorem applies.
In contrast to the case of classical or individual quan-
tum measurement, Eve’s error rate tends to unity slower
than any exponential of

When Eve performs individual (essentially, classical)
measurements, if

,

then she fails to decode any n-bit string with probability
one in the limit of large n, and the entire string can be
used by Alice and Bob as a secret key.

In the case of a collective attack (an essentially
quantum measurement), the probability of Eve’s
decoding error per code word is not lower than
CAB(Q) – , and the corresponding probability of
decoding is

A conservative estimate (even slightly biased in favor
of Eve) for the number of code words known to Eve is

 if their total number is M. Since Bob can correct
all errors in a received n-bit string if

,

we can use the space dimension 2n as an estimate for the
number of code words, and then the fraction of all bits

in the entire space known to Eve is /2n. Since the
probability distribution of randomly sampled code
words is uniform, the fraction of bits in each particular
string known to Eve does not exceed n , and the

remaining n[1 – ] bits can be used as secret ones
by the legitimate partners.

Figure 2 illustrates the variation of Bob’s error rate
Q for several values of the angle of overlap between |u0〉
and |u1〉 .

Note that the fact that Eve’s error rate tends to unity
cannot guarantee secure key distribution. Indeed, (27)
and (28) are asymptotic expressions valid in the limit of
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Fig. 2.
n  ∞, whereas any actual bit string has a finite
length. Secure key distribution requires that the amount
of private information contained in an n-bit string wE

singled out by Eve from the ensemble of all possible
strings WE relative to the set of bit strings shared by
Alice and Bob must be an exponentially decreasing
function of the security parameter s,

(47)

In terms of conditional entropy, this requirement is
expressed as

(48)

Thus, the n-bit reconciled key shared by Alice and Bob
still cannot be used as a secret key, because the proba-
bility given by (28) for a finite n may not be exponen-
tially small as a function of s. Recall that

is the probability of a correct guess.
At the last stage, a final key is generated by com-

pressing the n-bit strings shared by Alice and Bob into
a string of length r, and it is guaranteed that condi-
tions (47) and (48) are satisfied. The hashing procedure
(privacy amplification) makes use of a theorem [20]
that relies on the properties of the second-order Renyi
entropy and universal hash functions [21].

A 2-universal hash function is a function

such that, for arbitrary

,

the probability that y1 = y2 (y1 = g(x1) and y2 = g(x2)) is

I W ; WE wE=( ) 2 s–

2ln
--------.<

H W WE we=( ) n
2 s–

2ln
--------.–>

I W ; WE wE=( ) 0=

g x( ) : 0 1,{ } n 0 1,{ } r X Y( )

x1 x2, X , x1 x2≠∈
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not higher than

(|Y | is the volume of the space of r-bit strings). The set
of random functions g ∈  G is a set of 2-universal hash
functions if a random sample from a uniform distribu-
tion on G contains no more than |G |/|Y | functions for
which collision of their values corresponding to distinct
values of the argument is possible. In other words, if a
hash function is randomly sampled from a uniform dis-
tribution, then the probability of its equal values corre-
sponding to two distinct n-bit strings does not exceed 2−r.

With regard to cryptography (including quantum
cryptography), this means that the r-bit string obtained
by compressing Eve’s n-bit string different from that
shared by the legitimate partners with a randomly sam-
pled hash function is identical to the r-bit string shared
by Alice and Bob with a probability not higher than 2−r.

By the privacy amplification theorem, the parame-
ters n, r, and s can be related to the properties of univer-
sal hash functions by means of the second-order Renyi
entropy defined in terms of the conditional probabilities
Pr(W |wE). To do this, we need the following definitions.
Suppose that a random variable x ∈  X is characterized
by the probability distribution PX(x) on X. The collision
probability is defined as the probability that equal val-
ues of x are obtained in two independent trials:

(49)

The second-order Renyi entropy is defined as

(50)

Conditional probability distributions are defined simi-
larly:

(51)

(52)

1
Y
------ 1

2r
----=

Pc X( ) PX
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x X∈
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The mean value of the Renyi entropy is

(53)

To evaluate the amount of private information known to
Eve, the following relations are required:

(54)

For any joint distribution, it holds that

(55)

The following theorem plays a fundamental role in
cryptography.

Privacy amplification theorem [20]. If x ∈  X is a
random variable characterized by the probability dis-
tribution PX(x), R(X) is second-order Renyi entropy,
g ∈  G is a random variable with uniform distribution
on the set G of 2-universal hash functions g : X 
{0, 1}r, and K = G(X), then

(56)

where H(K |G) = H(G(X)|G) is the mean conditional
Shannon entropy.

With regard to quantum cryptography problems, we
have the following important corollary to the theorem.
Suppose that the joint probability distribution  is
not known in the general case; the Renyi entropy is

.

If Alice and Bob use a randomly sampled hash function
from {0, 1}n  {0, 1}r in G with uniform probability
distribution to generate a secret key by hashing their
shared strings from the set K = G(X), then

(57)

The conditional probability distribution (wE)
for individual measurement is

(58)
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where d(wE, W) is the Hamming distance between the
strings W and WE = wE . The corresponding Renyi
entropy is

(59)

The mutual information known to Eve is

(60)

where

(61)

and s is a security parameter.
It is essential for further analysis that compression

ratio depends on the specific procedure used by the
legitimate partners to correct errors in the raw key. The
probability (wE) introduced above is condi-
tioned on the key reconciliation performed by the legit-
imate partners. Initially, Alice and Bob have different
strings:

Accordingly, for Eve’s initial string,

After the error correction by public discussion has been
completed, w = wA = wB and wE ≠ w. Moreover, Eve can
also use these public transmissions to partially correct
errors in her bit string, and the conditional probability
corresponding to the resulting string will be different in
the general case:

Therefore, the legitimate partners must not only correct
errors, but also evaluate the change in the conditional
probability for Eve’s knowledge of their private infor-
mation.

In what follows, we discuss several procedures for
correcting errors in the raw key. Eve’s conditional
information may either change or remain invariant,
depending on the procedure employed. Note that the
efficiency of a particular procedure depends on the final
key length, as well as by the length of the reconciled
key. In particular, when the reconciled key obtained by
using one error-correction procedure is longer than that
obtained by another, the conditional probability for Eve
is higher in the former case and a higher compression
ratio is required (for a given security parameter), which
leads to a shorter final key. It is shown below that this is
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the case when the raw keys are reconciled by using
classical codes.

4. ERROR CORRECTION IN THE RAW KEY
BY BISECTIVE SEARCH (BINARY)

Consider bisective search with subsequent removal
of errors [22], which makes it easy to monitor changes
in conditional probabilities.

After the quantum part of the protocol has been exe-
cuted, Alice and Bob have distinct N-bit strings in the
general case. The states stored in Eve’s quantum mem-
ory are in one-to-one correspondence with the classical
bits received by Bob. The exact number of single-bit
errors in the string received by Bob is not known in
advance. Alice or Bob randomly samples a substring of
length N/2 and announces the bits contained in the sam-
pled positions. Comparing these bits, Alice and Bob
estimate the error rate Q. Then, they execute the follow-
ing procedure for locating bit errors.

1. Using the estimated error rate, Bob calculates the
average size L of a block containing one single-bit
error.

2. Alice partitions her input string into blocks of
size L, calculates the parity bits for each block, and
sends the results to Bob.

3. Bob compares the received parity bits with the
ones corresponding to each respective block in his out-
put string. If the parity bits disagree (the block contains
an odd number of bit errors), then the bisective search
described below is performed.

4. The disclosure of a parity bit for each block leaks
exactly one bit of secret information. Alice and Bob
take out one bit from each block to recover from the
leakage.

5. Alice performs a random permutation of bits in
the remaining string and informs Bob about it. This
operation does not change the amount of mutual infor-
mation known to Eve. The process is then repeated,
starting from step 1.

6. If no error is revealed after repeating the above
steps 20 to 30 times, then Alice’s and Bob’s keys are
likely to be identical.

7. Alice sends a randomly generated string to Bob.
Having compared the parity bits for the sent and
received strings, Alice and Bob exchange the results
and simultaneously take out one bit. If the parity bits
coincide after repeating this step M times, then Alice’s
and Bob’s keys are identical with probability 1 – 2–M.
The choice of the parameter M is dictated by technical
requirements.

Since the average number of single bit errors per
block must not exceed one, the average number of sin-
gle-bit errors in a string of length N/2 characterized by
an error rate Q is Nerr ≈ QN/2, and the block size is
L = p(N/Nerr), where 0 < p < 1. According to numerical
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
experiment, p = 0.5 is a good estimate; i.e., there is one
single-bit error per two blocks.

The following procedure of bisective search is exe-
cuted to locate errors in the blocks for which the parity
bits calculated by Alice and Bob disagree.

1. Bob bisects each block to be searched (increasing
the resulting noninteger subblocks) and sends the parity
bits corresponding to the first subblock to Alice.

2. If the parity bits disagree, then step 1 is executed.
3. If the parity bits corresponding to the first sub-

block agree, then Bob executes step 1 for the second
subblock. All disclosed bits are removed.

4. If the subblock size is less than 4 bits, then the
subblock is removed and the search is terminated. The
revealed errors are also removed.

The results of calculations are illustrated by Figs. 3–5.

5. RELATIONSHIP
BETWEEN THE FINAL KEY LENGTH 

AND THE QUANTUM PART OF THE PROTOCOL

After the error correction has been completed, Alice
and Bob share identical strings. Using the information
extracted from public transmissions, Eve removes the
states corresponding to the bits removed by Alice and
Bob from the ancilla, but does not perform any mea-
surement on the ancilla states. Since the bits in Bob’s
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string are in one-to-one correspondence with the ancilla
states before the error correction, the correspondence
after the error correction will be as shown in Table 2.

The one-to-one correspondence holds, but since
Bob’s string now contains no errors, there are no incor-
rect quantum states in Eve’s quantum memory; i.e., the
probability of any ith bit shared by Alice and Bob con-
ditioned on the corresponding ancilla state is

After Eve has obtained a certain bit string by perform-
ing optimal measurement (20), (21) on the ancilla
states, the conditional probability is as given by (58),
where n should be interpreted as the length of the rec-
onciled key shared by Alice and Bob. The compression
ratio for the final secret key is given by (61), whereas
the relative amount of private information known to
Eve does not exceed that given by (60).

Collective measurement on all states stored in Eve’s
quantum memory is not forbidden by any fundamental
principle of quantum mechanics. The resulting amount
of mutual information gained by Eve can be greater
than in the case of individual measurement.

After the keys have been reconciled, the legitimate
partners have identical bit strings, and Eve can formally
treat the Alice–Eve and Bob–Eve channels as quantum
binary ones carrying classical information. Indeed,
since

0  |e0〉 , 1  |e1〉 ,

Eve can interpret every quantum state |e0〉  and |e1〉  as
corresponding to (encoding) a 0 or 1 randomly gener-

Pr i ei| 〉( ) 1 i 0 1,=( ).=

                                               

Table 2.  Correspondence between Alice’s and Bob’s bit
strings and the quantum states stored by Eve after error cor-
rection

Alice 0 1 … 0

Bob 0 1 … 0

Eve |e0〉 |e1〉 … |e0〉
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ated by Alice or Bob with probability 1/2 and sent to her
over a noise-free quantum channel. Eve wants to
decode every transmission from Alice or Bob that she
has intercepts by quantum measurement with minimum
error, not knowing the classical bit string actually trans-
mitted.

Each code word in the set {w1, w2, …, wM} encoded
into quantum states by Alice and Bob is an n-bit string
wi = {i1, i2, …, in} (ik = 0, 1), where n is the length of the
reconciled key shared by Alice and Bob and M = 2n.
However, we tentatively treat the number M as arbi-
trary.

If the quantum states were orthogonal, Eve would be
able to distinguish between them, i.e., record a bit string
identical to that received by Bob. However, Eve’s mea-
surement error is higher than Bob’s because of the
indistinguishability of nonorthogonal states. Whereas
the outcome of any individual quantum measurement
performed by Eve can be interpreted as a 0 or 1, Eve’s
error rate will be lower if she uses the operators described
below to perform collective measurements [15].

Since each particular code word is generated ran-
domly and independently, the corresponding probabil-
ity is (see details in [15, 18])

(62)

and the expected value of  =  is

(63)

where

(64)

is the density matrix describing the ancilla state.

To decode a code word (i.e., map quantum states to
a bit string), Eve makes use of the collective outcome
operators

(65)
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of the density matrix :

(66)

where  and λJ = …  denote the eigenstates
and eigenvalues of ρE , respectively. The typical sub-
space is defined as

(67)

and it holds that (see [15])

(68)

Here, the von Neumann entropy is equal to the classical
capacity of a quantum binary channel [15]:

(69)

where

are the eigenvalues of ρE .

Eve’s attempt to decode M code words generated by
Alice is characterized by the error [15]

(70)

Therefore (see details in [15]),

(71)

If Eve performed optimal individual measurements
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one-shot classical capacity of a quantum binary chan-
nel [15],

(72)

Note that C(ε(Q)) cannot exceed (ε(Q)) and is actu-
ally equal to the capacity CAE(E(Q)) given by (28).

These results are interpreted as follows. Suppose
that the number of randomly generated n-bit strings is

and one of these is the string encoded by Alice or Bob
into quantum states |e0, 1〉  by using a published substitu-
tion table. Then, Eve can construct outcome rules for
collective measurements and identify the encoded
string among these M strings with probability one.

However, Eve cannot identify the string encoded by
Alice or Bob if

,

After the error correction has been completed, the num-
ber of code words known to Eve is the total number of
n-bit strings, M = 2n. Therefore, the error rate associ-
ated with her measurement is

(73)

This result is the quantum analog of the “weak inverse”
to the coding theorem.

The error rate associated with classical (as well as
individual quantum) measurements tends to unity
exponentially in n[CAB(Q) – CAE(E(Q))] (see (28)), in
accordance with the “strong inverse” mentioned above.

In other words, if

and the number of code words used and announced by
Alice is

,

where n is sufficiently large, then Bob will decode n-bit
string encoded by Alice with probability one, whereas
Eve will fail to decode it with probability one by per-
forming individual measurements (by virtue of (23)
and (26) under condition (27)); i.e., the n-bit string can
be used by Alice and Bob as a secret key.
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Whereas Eve can identify the string encoded by
Alice among M ones by collective measurement if

the probability of decoding in the case of

will be

If R = 1, then a conservative estimate (biased in favor of
Eve) for the number of bits in the string known to Eve
cannot exceed

; (74)

i.e., she will fail to identify

(75)

bits in the key. Therefore, Alice and Bob can generate a
secret key of length

(76)

using a universal hash function

where s is a security parameter preset by Alice and Bob
and n is the length of the key reconciled by using the
BINARY protocol. In this case, the relative amount of
information contained in the final secret key known to
Eve does not exceed the quantity given by (60).

Collective measurements are unfeasible to this day,
but we can rely on the conservative estimate above in
evaluating the length of the final secret key. If Eve’s
instrumentation can be used to perform only individual
measurements, then the final length of the secret recon-
ciled key is

(77)

M 2n C ε Q( )( ) δ–[ ] ,<

M 2n 2n C ε Q( )( ) δ–[ ]>=

1 Pe n M,( )– 1 R C ε Q( )( )–[ ] .–<

nC ε Q( )( )

n 1 C ε Q( )( )–[ ]

r n 1 C ε Q( )( )–[ ] s–=

g : 0 1,{ } n 0 1,{ } r,

r nR ε Q( )( ) s,–=

R ε Q( )( ) ε2 Q( ) 1 ε Q( )–( )2+[ ] ,log–=
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where R(ε(Q)) is the Renyi entropy (cf. (59)).
Figure 6 shows the number of secret-key bits per bit

of an n-bit reconciled key if Eve performs either indi-
vidual or collective measurements and s is set to zero.

The surprising fact that the Renyi entropy calculated
for optimal individual measurements is virtually equal
to the classical capacity of a quantum communication
channel (attainable only in the case of collective mea-
surements) may reflect a hidden fundamental relation-
ship between these quantities.

For example, if s = 200 and Bob’s error rate is 6%,
then a 256-bit final secret key can be generated only if
the raw key contains at least 17812 bits. About half of
these (8900) are removed after the error rate is evalu-
ated. Error correction leaves 16% of the raw key (about
2850 bits, see Fig. 3). Further compression (by means
of a universal hash function) depends on the overlap of
nonorthogonal states of the information carrier pre-
pared by Alice. In particular, 16% of the reconciled key
is left when α = π/8 and Bob’s error rate is 6% (see
Fig. 6b). Thus, the 256-bit string generated by hashing
the 2850-bit reconciled key when s = 200 is the final
secret key, and the relative amount of private informa-
tion known to Eve does not exceed 2–200 according
to (60).

Another important parameter of an error-correction
procedure is the number of bits transmitted over the
public channel per bit of the final secret key, because
the authenticity and integrity of data transmitted over a
public channel must be guaranteed.

We used two approaches to evaluate this parameter.
If a random number generator is available only to Alice,
then the information about the bits randomly sampled
for estimating the error rate, the parity bits calculated
for random strings, etc., must be transmitted between
Alice and Bob over a public channel. Figure 4 shows
the number of transmitted bits per bit of the final secret
key plotted versus the error rate Q estimated by the
legitimate partners. In particular, about 20 bits must be
transmitted per bit of the final secret key if Q = 6%.

The other approach is applied when Alice and Bob
have a short initial key to be used only in the first ses-
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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sion. In this case, the necessary amount of information
to be transmitted over a public classical communication
channel can be reduced if identical pseudo-random
number generators can be used by both Alice and Bob.
Specifically, we used a pseudo-random number genera-
tor based on a cipher standardized in GOST 28147-89
to reduce the required number of transmitted bits to two
to three per bit of the final secret key (see Fig. 5).

6. COMBINED PROCEDURE 
OF ERROR CORRECTION 

IN THE RAW KEY (CASCADE)

The CASCADE protocol is an iterative procedure
including BINARY as a subroutine and using previ-
ously gained information at each new step [23].

Again, Alice and Bob disclose part of the raw bit
sequence to estimate the error rate Q for calculating the
block size to be used in the first cycle. The subsequent
steps are as follows.

1. A hash function is randomly generated in each
cycle. If the size of the current block used in the ith
cycle is ki  and the raw key length is N, then

. (78)

The jth block obtained by partitioning contains the bits
whose positions in the source string,

correspond to collisions in the hash function. In
essence, each particular block is a string of ki randomly
picked bits, which are uniformly distributed when a
hash function is used.

2. Alice calculates the parity bit

for each block and announces the results. Bob com-
pares the received parity bits with the ones correspond-
ing to each respective block in his output string. If the
parity bits disagree, then bisective search is performed.
Each located error is labeled with the corresponding
index j, but not removed, and the parity bits announced
while BINARY is being executed are added up.

3. The set _ is defined as the totality of previously
constructed jth blocks, each containing an odd number
of single bit errors after the jth one has been labeled.

4. BINARY is executed to find an error in the small-
est block in this set, and the located error is labeled by
l and corrected, but not removed. The set @ is defined
as the totality of previously constructed lth blocks.

Fi m( ) : 1 2 … N, , ,{ } 1 2 … N
ki

----, , ,
 
 
 

K j
i m Fi m( ) j={ } ,=

b j
parity bl

l K j
i∈

∑= ⊕
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5. If the set

_' = (@ ∪  _)/(@ ∩ _)

of blocks containing either an odd number of single-bit
errors or none is not empty, then step 1 is executed.

A cycle is terminated when the parity bits of all
blocks are equal. After both single-bit errors and
announced parity bits have been removed, the amount
of information known to Eve is similar to that gained
after the BINARY protocol has been executed. There-
fore, the compression ratio for random hashing is as in
BINARY, but the reconciled key that remains after exe-
cuting CASCADE is longer. Note that all corrected bits
and parity bits can be retained, but then the ensuing
analysis of conditional probabilities becomes much
more complicated.

The efficiency of CASCADE is twice as high as that
of BINARY. For example, the raw key required to gen-
erate a 256-bit final key contains 9500 bits if s = 200
and the error rate is 6%, which is half the size required
in BINARY (see Fig. 7).

If a random number generator can be used only by
Alice, then the required number of bits to be transmit-
ted per bit of the final secret key is half that required in
BINARY (Fig. 8). When identical pseudo-random
number generators can be used by Alice and Bob, this
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number is reduced to a fraction of a bit, i.e., by an order
of magnitude as compared to BINARY (see Fig. 9).

7. ERROR CORRECTION IN THE RAW KEY
BY MEANS OF BOSE–CHAUDHURI–

HOCQUENGHEM CODES

One natural approach to correcting errors in the raw
key relies on the use of classical error-correcting codes.
We reiterate here that the efficiency of such a code can-
not be evaluated without taking into account the quan-
tum part of the protocol, because a classical code
applied in quantum cryptography not only corrects
errors, but also substantially changes the conditional
probabilities for Eve’s measurements on the raw key.

In what follows, we discuss key reconciliation by
means of Bose–Chaudhuri–Hocquenghem (BCH)
codes [24, 25], which constitute a broad class. These
codes can be used to correct several single-bit errors per
block (code word), which makes it possible to dynami-
cally change a code depending on the estimated error
rate Q.

First, we provide the definitions minimally required
to analyze t-error correcting BCH codes.

The Galois field GF(2n) is the vector space of binary
words of length n with arithmetic operations modulo 2.
A linear code % spans a linear subspace in GF(2n). A
code is called cyclic if the fact that c = (c0, c1, …, cn – 1)
(ci = 0, 1) is a code word implies that c' = (c1, …, cn – 1,
c0) is also a code word. A vector from GF(2n) is conve-
niently represented by the polynomial of x of degree not
higher than n – 1 whose coefficients are the components
of the vector:

(79)

A cyclic code is defined by a corresponding generator
polynomial g(x) of degree n – k (k is the number of
information bits), which is a divisor of the polynomial
xn – 1 – 1:

c x( ) c0 c1x c2x2 … cn 1– xn 1– .+ + + +=

xn 1– 1– g x( )h x( ),=
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where h(x) is a parity check polynomial.
A t-error correcting BCH code is constructed as fol-

lows. The primitive element α is defined for the field
GF(2n). (By definition, each element in the field is a
power of the primitive element, and α = α2 in GF(2).)
The generator polynomial g(x) whose roots make up
the set

[α, α2, …, α3, …, α2t] (80)

is constructed for the preset t. The code-word length n
is defined as n = 2m – 1 by choosing a number m. The
polynomials fj(x) of minimal degree whose roots are αj

(j = 1, 2, …, 2t) are found in GF(2) – GF(2n). The gen-
erator polynomial g(x) for a code of length n is calcu-
lated as the least common multiple:

(81)

The Peterson–Gorenstein–Zierler algorithm is used for
decoding [24, 25]. Suppose that the input code word is
c = (c0, c1, …, cn – 1), the output

y = c + e (82)

contains an error vector e = ( , …, ) represented as

e(x) =  + … +  (  = 0, 1), and the number ν
of single-bit errors is not known in the general case.

A decoding cycle consists of three stages: the calcu-
lation of an error syndrome S(x); the construction of an
error locator polynomial Λ(x); and the calculation of
the roots of Λ(x), i.e., the determination of ej and error
correction.

Suppose that the code vector is C(α j) = 0 for sev-
eral α j:

(83)

After introducing

for convenience, an error syndrome is defined compo-
nentwise:

(84)

By the definition of the error syndrome, there exists a
unique solution to this system of equations (nonlinear
in the general case). The error locator polynomial is
defined as

(85)

g x( ) LCM f 1 x( ) f 2 x( ) … f 2t x( ), , ,[ ] .=

ei1
eiν

ei1
x

i1 eiν
x

iν eil

y α j( ) e α j( ).=

Yl eil
, Xl α

il= =

S1 Y1X1 … Yν Xν,+ +=

…………………………

S2t Y1X1
2t …  +  Y ν X ν 

2
 

t
 .+=

Λ x( ) Λνxν … Λxx 1,+ + +=
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with roots  (l = 1, 2, …, ν), i.e.,

(86)

Its roots can be found if the coefficients Λl are known.
If Sl are known, then Λl can be found by solving a linear
system of equations as follows. Since

(87)

the summation of (87) over all l yields

(88)

which can be rewritten as a linear system of equations
for Λl by setting j = 1, …, ν and using (84):

(89)

. (90)

The system of equations (90) is nondegenerate if ν is
equal to the (yet unknown) actual number of single-bit
errors and degenerate otherwise. Accordingly, if the
determinant calculated for ν = t is zero, then ν is
reduced by unity and the calculation is repeated until a
nonzero determinant is obtained for ν equal to the num-
ber of single-bit errors. Then, system (90) is solved to
find a unique set of coefficients Λl , and the roots of
polynomial (85) are determined by successively calcu-
lating its value for each element of the field. Since

the position il of the single-bit error  to be corrected
is found as the exponent in

The procedure of error correction by means of BCH
codes consists of the following steps.

1. An estimate for the error rate Q is obtained by
public comparison of about half the transmitted
sequence. For the preset code-word length n = 2m – 1,
the average number of single-bit errors per code word
is estimated as t = [Q · n]. The sequence is partitioned
into blocks of size n. (We examined the BCH codes cor-
responding to n = 2m – 1 = 15, 31, 63, 127, and 255.)
The generator polynomial g(x) corresponding to n and
t is constructed.

Xl
1–

Λ x( ) 1 xX1–( )… 1 xXν–( ).=

Yl Xl
j ν+ Λ lXl

j ν 1–+ … Λν Xl
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l 1=
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2. Alice generates code words. In each block, the
first 

 

k

 

 bits carry information, and the remaining 

 

n

 

 – 

 

k

 

are used as control bits. The inversion of a necessary
number of bits is announced, which does not change the
private information known to Eve since Alice generates
code words by calculating the control bits as functions
of the information ones. For the code (

 

n

 

, 

 

k

 

) with gener-
ator polynomial 

 

g

 

(

 

x

 

) in the field 

 

GF

 

(2

 

m

 

), the polyno-
mial representing 

 

n

 

 – 2

 

m

 

 – 1 encoding bits is the remain-
der of the division of 

 

i

 

(

 

x

 

) · 

 

x

 

n

 

 – 
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 modulo

where

is the information polynomial. The bits 

 

i

 

l

 

 (

 

l

 

 = 0, …,

 
k

 
 

 
−

 
 1) are the first bits of the blocks in the bit string sent

by Alice.
3. Bob decodes the received code words, and then

Alice and Bob remove the control bits in each code
word.

Table 3 shows the parameters of only those BCH
codes examined in this study for which 

 

t

 

 lie in the inter-
val corresponding to error rates not higher than 

 

Q =

 

0.15 estimated with step 

 

∆

 

Q =

 

 0.01. The extreme right
column lists the highest error rate for each particular
code.

The polynomials 

 

g

 

(

 

x

 

) and 

 

h

 

(

 

x

 

) written out below for
the BCH codes with 15-, 31-, 63-, 127-, and 255-bit
code words correspond to an estimated error rate of
about 10%; i.e., these are 2-, 4-, 7-, 13-, and 26-error
correcting codes, respectively. For the 2-error correct-
ing BCH code [15, 7],

For the 4-error correcting BCH code [31, 11],

For the 7-error correcting BCH code [63, 24],

g x( ) c x( )– Rg x( ) xn k– i x( )[ ] ,–=

i x( ) i0 i1x … ik 1– xk 1– , il+ + + 0 1,= =

g x( ) x8 x7 x6 x4 1,+ + + +=

h x( ) x7 x6 x4 1.+ + +=

g x( ) x20 x18 x17 x13 x10 x9+ + + + +=

+ x7 x6 x4 x2 1,+ + + +

h x( ) x11 x9 x8 x7 x2 1.+ + + + +=

g x( ) x39 x38 x37 x36 x34 x33 x31+ + + + + +=

+ x28 x27 x25 x23 x22 x17+ + + + +

+ x11 x8 x5 1,+ + +

h x( ) x24 x23 x20 x18 x17 x16 x15+ + + + + +=

+ x11 x10 x8 x5 1.+ + + +
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Table 3.  Parameters of BCH codes used in the case of differ-
ent error rates of the legitimate partners

Code-word 
length

Number
of carrier bits

Number of 
errors per word

Critical
error rate

15 = 24–1 11 1 0.066
7 2 0.132

31 = 25–1 26 1 0.032
21 2 0.065
16 3 0.097
11 5 0.161

63 = 26–1 57 1 0.016
51 2 0.032
45 3 0.048
39 4 0.063
36 5 0.079
30 6 0.095
24 7 0.111
18 10 0.159

127 = 27–1 120 1 0.008
113 2 0.016
106 3 0.024
99 4 0.031
92 5 0.039
85 6 0.047
78 7 0.055
71 9 0.070
64 10 0.079
57 11 0.087
50 13 0.102
43 14 0.110
36 15 0.118
29 21 0.165

255 = 28–1 239 2 0.011
231 3 0.012
223 4 0.016
215 5 0.023
207 6 0.024
199 7 0.027
191 8 0.031
187 9 0.035
179 10 0.039
171 11 0.043
163 12 0.047
155 13 0.051
147 14 0.055
139 15 0.059
131 18 0.071
123 19 0.075
115 21 0.082
107 22 0.086
99 23 0.090
91 25 0.098
87 26 0.102
79 27 0.106
71 29 0.114
63 30 0.118
55 31 0.122
47 42 0.165
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For the 13-error correcting BCH code [127, 50],

For the 26-error correcting BCH code [255, 87],

g x( ) x77 x75 x74 x71 x68 x65 x64+ + + + + +=

+ x62 x60 x57 x55 x53 x51+ + + + +

+ x49 x46 x45 x43 x42 x39 x38 x30+ + + + + + +

+ x28 x26 x22 x18 x17+ + + +

+ x15 x9 x8 x4 1,+ + + +

h x( ) x50 x48 x47 x46 x44 x43 x39+ + + + + +=

+ x38 x36 x35 x30 x27 x26+ + + + +

+ x25 x24 x23 x16 x15 x12 x9 x4 1.+ + + + + + + +

g x( ) x168 x165 x159 x157 x156 x155+ + + + +=

+ x154 x152 x151 x150 x149 x148+ + + + +

+ x145 x144 x143 x138 x137 x134 x133+ + + + + +

+ x132 x131 x127 x126 x124+ + + +

+ x121 x120 x119 x118 x116 x112 x111+ + + + + +

+ x110 x108 x106 x103 x102+ + + +

+ x99 x98 x97 x94 x93 x92 x88 x87+ + + + + + +

+ x83 x82 x81 x78 x77 x76 x75+ + + + + +

+ x73 x68 x65 x64 x61 x56 x55 x53+ + + + + + +

+ x52 x51 x49 x46 x44 x42 x41+ + + + + +

+ x38 x36 x34 x32 x31 x30 x28 x27+ + + + + + +

+ x25 x24 x21 x18 x17 x16+ + + + +

+ x15 x13 x9 x7 x6 x3 x2 x 1,+ + + + + + + +

h x( ) x87 x84 x81 x76 x74 x73 x71+ + + + + +=

+ x66 x64 x63 x61 x58 x57 x56+ + + + + +

+ x54 x52 x50 x48 x46 x45 x42+ + + + + +

+ x40 x38 x36 x35 x34 x33 x32 x31+ + + + + + +

+ x29 x27 x23 x22 x21 x20 x17+ + + + + +

+ x16 x15 x14 x13 x11 x9 x7+ + + + + +

+ x6 x5 x4 x 1.+ + + +
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We used these BCH codes to correct errors in the
raw key by executing one cycle. Figure 10 shows the
corresponding reconciled key lengths plotted as func-
tions of estimated error rates Q. Note that the error rate
remains finite after only one cycle is executed, because
new errors are generated (incorrect words are obtained
by decoding) if the number of single-bit errors in a code
word exceeds the number of errors that can be corrected
by a particular code. However, the execution of another
cycle is not justified, because the string length is multi-
plied by k/n after each cycle and the resulting final key
will be too short.

When the code-word length is 127 or 255 and Q =
6%, no errors are left after a single error-correction
cycle has been executed (see Fig. 11). The reconciled
key length is approximately 20% of the raw key length,
i.e., similar to that obtained by executing CASCADE
for Q = 6%. When the code word is 15, 31, or 63 bits
long, the reconciled key generated in a single cycle con-
tains a significant number of single-bit errors, even
though its relative length can amount to 35%, but the
efficiency attained by executing another cycle is lower
than in the procedures discussed above.

The efficiency of “one-cycle” error correction exe-
cuted for 127- or 255-bit code words is comparable to
that of CASCADE. However, it is important that the
conditional probability for Eve’s measurement on the
bit strings shared by Alice and Bob remains invariant
after the error correction in CASCADE with error
removal, being determined by the error ε(Q) of optimal
measurement on nonorthogonal states |e0〉  and |e1〉  (see
(20) and (21)), whereas it changes substantially after a
BCH code is applied. The conditional probability for
Eve’s measurement on the reconciled key determines
the compression ratio for hashing into a final secret key.
Therefore, the fact that the length of the reconciled key
is similar to that in CASCADE does not necessarily
imply that a final key of the same length will be
obtained.

Figure 12 shows the number of bits transmitted over
the public classical channel per bit of the reconciled key
plotted versus Bob’s error rate Q. It is clear that this
number is a fraction of a bit, as in CASCADE.

8. CALCULATION OF EVE’S ERROR RATE 
AFTER ERROR CORRECTION BY MEANS 
OF BOSE–CHAUDHURI–HOCQUENGHEM 

CODES

First, we evaluate the conditional probability for
Eve’s individual measurements. Before error correc-
tion, Eve’s error rate is

(see (26)), and Bob’s error rate is Q. While Bob’s
knowledge of the reconciled key is virtually perfect,
Eve’s error rate is determined as follows.

E Q( ) 1 1 Q–( ) 1 ε Q( )–( )– Qε Q( )+=
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Since the parameters of the error-correcting code
actually employed (code-word length, the number of
information and control bits, partition into blocks, etc.)
are supposed to be known, Eve can try to correct errors
in her output string by using decoding rules. It is well
known that the probability of decoding error is

(91)

where  is the code word generated by Eve from the
code word wi sent by Alice [24, 25]. For the code [n, k],

Pe
1
M
----- Pr wE

i wi≠( ),
i 1=

M

∑=

wE
i
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the error probability is

(92)

where αj is the number of coset leaders with Hamming
weight j and p is the initial error rate per bit. We seek
the error rate per bit Psymb(p), which is known to be
bounded from below (underestimated in favor of Eve):

(93)

Straightforward calculation of Psymb(p) requires
exhaustive search, which is particularly difficult to per-
form for codes with long code words. Therefore, use
should be made of lower estimates. For any code [n, k],

(94)

where

(95)

Pe p( ) 1 α j p
j 1 p–( )n j– ,

j 0=

n

∑–=

Psymb p( )
Pe p( )

k
--------------.≥

Pe p( ) Cn
t 1+ α t 1+–[ ] pt 1+ 1 p–( )n t– 1–≥

+ Cn
i pi 1 p–( )n i– ,

i t 2+=

n

∑

α t 1+ 2n k– 1– Cn
i

i 1=

t

∑– 0,≥=
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and t is the largest integer for which (95) holds.
Eve’s error rate per bit of the reconciled key shared

by Alice and Bob is given by (93) and (94) with

Bob’s error rate after one error-correction cycle is
given by (93) and (94) with p replaced by Q.

Eve’s and Bob’s error rates after one cycle of error
correction by means of the BCH code [63, 39] “tuned”
to Q = 6% are shown in Fig. 13 for several angles of
overlap between the carrier states prepared by Alice.

Eve’s entropy R(Pe(E(Q))) shown in Figs. 13a'–13c'
determines the relative length of the final key. Accord-
ing to Fig. 13, the final key length does not exceed 8%
of the length of the reconciled key. When α = π/16 (the
prepared carrier states are almost orthogonal), the
Renyi entropy approaches zero even for Q ≈ 1%. More
precisely, R(Pe(E(Q))) ≈ 0.02 (see Fig. 13c'); i.e., the
final key length is not greater than 2% of the reconciled
key length.

Figure 14 shows analogous curves of Eve’s and
Bob’s error rates evaluated for several angles of overlap
between the carrier states after one cycle of error cor-
rection by means of the BCH code [127, 78]. In the case
of a significant overlap (α = π/5), the error rates are
almost constant after error correction. When the pre-
pared carrier states are almost orthogonal, Eve’s error

p E Q( ) 1 1 Q–( ) 1 ε Q( )–( )– Qε Q( ).+=
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rate sharply decreases with increasing Q. Eve’s entropy
R(Pe(E(Q))) shown in Figs. 14a'–14c' demonstrates that
the length of the final key does not exceed 4% of the
reconciled key length. Note that error correction by
means of the BCH code [63, 39] leaves 8% even though
the relative length of the reconciled key is larger.

These results illustrate the fact that an efficient
error-correcting code can be used by the eavesdropper
as well as by the legitimate partners: the conditional
probability for Eve’s measurement on the reconciled
key increases with the error-correction efficiency, and
the length of the final secret key decreases accordingly.

Thus, the error-correction efficiency of a code eval-
uated without taking into account the quantum part of
the protocol cannot be used to quantify its efficiency
with regard to the final secret key length.

9. ERROR CORRECTION IN THE RAW KEY
BY MEANS OF HAMMING CODES

For comparison, we perform error correction in the
raw key by means of Hamming codes, which correct
one single-bit error per code word and are the easiest to
decode [24, 25]. (A discussion of these codes as applied
in quantum cryptography can be found in [26].)

The Hamming code with primitive length n = 2m – 1
can be defined by choosing a parity check matrix of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the form

(96)

where α0 is the primitive element of the field GF(2m).
Each code vector c = (c0, c1, …, cn – 1) satisfies the rela-
tions

(97)

or, in the polynomial representation,

(98)

where αi solves the equation c(α) = 0. Since  = 1

(i.e., α is a root of the polynomial  – 1), the min-
imal polynomial fj(x) whose roots are αi in the field

GF(2m) is a divisor of  – 1 and can therefore be
used as the generator polynomial of a code. The code is
parameterized by the length n = 2m – 1 of a code word,
which consists of 2m – 1 – m information bits and m
control bits.
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If the input code word is c(x) and the output one con-
taining one single-bit error is

then

where i is the position of the error. The (single-) error
polynomial has the form

with only one ei = 1.
The error correction in the raw key is performed as

follows.
1. Bob uses the error rate to estimate the number m

of control bits per code word and sends the result to
Alice. Since one single-bit error per code word can be
corrected by means of a Hamming code, the code-word
length is set to minimize the probability of more than
one error. The number of control bits is calculated as

2. Alice partitions the key she has prepared into
2m-bit blocks (with locations in each block labeled by
indices starting from 0) and sends the corresponding
parity bits to Bob.

3. When a parity bit calculated by Bob differs from
the corresponding one sent by Alice, the Hamming
code is applied to the corresponding block (with the
exception of the zeroth bit); i.e., the control bits are
placed at the positions labeled by 1, 2, …, 2i, …, 2m – 1

to make up an m-bit binary word (with positions in the
block labeled by indices starting from 1). The XOR
operation is executed bitwise on the remaining 1’s, and
the results are appended as control bits.

y x( ) c x( ) e x( ),+=

y α( ) c α( ) e α( )+ e α( ) α i,= = =

e x( ) eix
i

i 0=

n 1–

∑=

m max 3 1
Q
----log, 

  .=

0.2

0

Relative length of reconciled key

Error rate
0.050.03 0.07 0.11

0.3

0.5

0.13

0.4

0.1

0.09 0.150.01

Fig. 15.
JOURNAL OF EXPERIMENTAL A
4. Bob performs decoding by executing the XOR
operation bitwise on the indices labeling the nonzero
bits, including the control ones. If the resulting number
(syndrome) is one, then it is the index of an error; oth-
erwise, there are no errors. After the decoding, the con-
trol bits are removed to preclude transfer of any addi-
tional private information to Eve. The decoding proce-
dure applied to a block containing more than one
single-bit error either adds another single-bit error or
corrects the error.

5. Alice and Bob remove the zeroth bit from each
block to preclude transfer of any information with the
parity bit, which is known to Eve since it has been
announced by the legitimate partners.

6. Alice and Bob use the previously estimated error
rate to evaluate a new one (e.g., see [26] for details).

7. Alice performs a random permutation of bits in
the remaining string and informs Bob about the new
sequence, and the process is repeated by starting from
step 1.

The algorithm is executed until a certain number of
cycles are wasted (with parity bits equal for all blocks).

Figure 15 shows the length of reconciled key gener-
ated by means of Hamming error-correcting codes. In
particular, Fig. 15 demonstrates that about 30% of the
raw key is left if Q = 6%, which is comparable to the
efficiency of CASCADE and twice higher than in
BINARY. Moreover, key reconciliation by means of
Hamming codes is more efficient as compared to error
correction by means of BCH codes, because each block
is checked for parity before it is encoded by Alice and
no encoding is performed if the parity bit of the block
is zero (i.e., the block contains an even number of sin-
gle-bit errors, and this number can only be increased by
encoding or decoding the block). If a block contains an
odd number of single-bit errors, then the corresponding
parity bits calculated by Alice and Bob are different.
Since the block size is preset to minimize the probabil-
ity of three single-bit errors per block, almost every
block contains one single-bit error and its correction by
means of a Hamming code is guaranteed. Then, the
remaining bits are permuted, and the procedure is
repeated.

In terms of the number of bits transmitted over a
public classical channel per bit of the reconciled key,
the Hamming codes are comparable to CASCADE and
BCH codes and are twice as efficient as BINARY. Fig-
ures 16 and 17 show the number of bits transmitted over
the public channel per bit of the raw key evaluated in
the cases when a random number generator can be used
only by Alice and by both Alice and Bob, respectively.

Recall that the length of the reconciled key is an
intermediate result. The overall efficiency must be esti-
mated by using the length of the final secret key, which
requires knowledge of the conditional probability for
Eve’s measurement on the reconciled key. We have not
found any conclusive answer to this day, because the
conditional probability remains invariant for blocks
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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that have not been encoded after being checked for par-
ity and changes for the reconciled positions in encoded
blocks. Since the bits corresponding to different condi-
tional probabilities associated with Eve’s measurement
are randomly distributed among the new blocks
obtained by random permutation, it is hardly possible
to find an analytical expression for the new conditional
probability (and Renyi entropy), which determines the
final key length. According to our preliminary esti-
mates, the advantage of Hamming codes over
CASCADE at an intermediate stage is eliminated in the
final key.

Error correction in the case of a nonuniform distri-
bution of conditional probabilities over the key is a sep-
arate problem of special interest.

10. OPEN QUESTIONS CONCERNING 
COLLECTIVE MEASUREMENTS
IN QUANTUM CRYPTOGRAPHY

Even though the B92 protocol is a simplified model,
it contains all elements common to other, more practi-
cable key distribution protocols, such as BB84.

In the case of entangled translucent eavesdropping,
the basic elements can be outlined as follows. After a
measurement has been performed at the receiver end
according to any protocol, the bits measured by Bob are
in one-to-one correspondence with the ancilla states,
ik  , where the state  stored by Eve in a quan-
tum memory is either pure or mixed. This correspon-
dence holds for all bit positions, no matter whether the
corresponding bits are true or wrong as compared to
their counterparts in the string sent by Alice. The
ancilla states stored by Eve depend on the error rate Q
for Bob’s measurements.

Further results depend on the error-correction pro-
cedure used by the legitimate partners. If the procedure
relies on the use of a random code table (which may be
exponentially large), then Eve can extract the secret key
by performing individual measurements when the
capacity of the Alice–Bob channel is higher than that of
the Alice–Eve channel. When n is large (formally, as
n  ∞), the final key length is equal to the length n of
the input string. Since the “strong inverse” to the Shan-
non coding theorem is applicable, the amount of infor-
mation extracted by Eve from the key tends to zero with
increasing n (see (28)). If collective measurements can
be performed on all states stored in Eve’s quantum
memory (which is not forbidden by any fundamental
principle), then Bob’s reconciled n-bit string cannot be
used as a secret key before it is compressed by using a
universal hash function. The compression ratio (relative
length of the secret key) depends on the conditional
probabilities for Eve’s collective measurements,

(99)

     ρik
ρik

P
W WE wE

k=
wE

k( ) Tr χ
wE

k ρ̂W{ } ,=

ρ̂W ρi1
… ρin

,⊗ ⊗=
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where  is a collective outcome operator analogous

to (30) and (65). A measurement outcome  is inter-

preted by Eve as a binary string  = ( , , …, ) if
the true string is W. The compression ratio depends on
the Renyi entropy (52) calculated for the conditional
probabilities given by (99). To the best of our knowl-
edge, no exact inequalities have yet been found for the
Renyi entropy associated with collective measure-
ments.

Error correction performed by legitimate partners
using an exponentially large random code table is not a
constructive procedure. It can be used only to find a the-
oretical upper bound for the error rate corresponding to
secure key distribution. However, questions concerning
collective measurements arise with regard to construc-
tive practical error-correction procedures as well.

The execution of the BINARY or CASCADE proto-
col leads to a situation analogous to that outlined above,
with the only exception that Bob’s string does not con-
tain any single-bit errors. Accordingly, the ancilla states
stored by Eve do not include any of those correspond-
ing to single-bit errors. The reconciled key cannot be
used as a secret one before the hashing (determined by
conditional probabilities (99)) is performed.
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Collective measurements can also be performed by
Eve when a classical error-correcting code is employed.
After the legitimate partners have estimated the error
rate 

 

Q

 

, chosen an appropriate classical code, and parti-
tioned the string into code words, Eve can perform col-
lective quantum measurements on code words. In this
case, the outcome operator defined by (30), (65), or
(99) defines a partition of the identity operator in the
subspace spanned by all code-word vectors, which fur-
ther complicates analysis of compression ratio.

As of today, collective measurements pose a rather
theoretical threat. However, real experiments on quan-
tum memory (e.g., see [27]) may lead to their imple-
mentation in the nearest future.

Thus, the procedure used to correct errors in the raw
key has a drastic effect on the length of the final secret
key. Moreover, since the length of the key depends not
only on the error-correction procedure, but also on the
quantum part of the protocol, knowledge of the effi-
ciency of the procedure is not sufficient to characterize
the overall efficiency including the quantum part of the
protocol.
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Abstract—Mean field theory is used as a basis for a new approach to analyzing fractal pattern formation by
diffusion-limited aggregation. A coarse time scale is introduced to take into account the discrete nature of DLA
clusters. A system of equations is derived and solved numerically to determine the fractal dimension and density
of a cluster as a function of distance from its center. The results obtained are in good agreement with direct
numerical simulations. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Diffusion-limited aggregation (DLA) is the generic
name for a class of models describing the formation of
a cluster by addition of randomly walking particles
sticking to it. The original model introduced in [1] has
drawn continuing attention (e.g., see reviews in [2, 3]),
because it applies to a variety of physical processes,
including dielectric breakdown, solute aggregation, and
growth of bacterial colonies. Moreover, the DLA clus-
ter is of mathematical interest as an object with fractal
dimension.

To date, detailed numerical simulations of the
growth and scaling properties of DLA clusters have
been performed. In particular, the aggregate density
field was found to exhibit fractal behavior: the aggre-
gate mass is a power of its characteristic radius, with
exponent d = 1.71 and 2.50 in the two- and three-
dimensional continuum models, respectively [4].

Furthermore, the statistical properties of an individ-
ual branch of the DLA cluster have been analyzed by
examining quasi-one-dimensional random walk as a
model of fractal aggregate growth in a domain of length
much greater than its width. A summary of early studies
in this area was presented in [5]. It was found that d =
0.66 for the direction of power-law density profile. This
exponent was corrected in extensive numerical experi-
ments: d = 0.72 [6]. Currently, diffusion-limited aggre-
gation in the absence of external forces or interaction
between particles is a well-studied process that may serve
as a benchmark test for new numerical methods [7].

In theory, the most substantial progress has been
achieved by applying renormalization-group methods,
but only in discrete DLA of two types. In one approach,
a parameter is sought that leaves invariant the mean
occupancy distribution in a lattice DLA model [8]. In
the other [9], the cluster is generated by using a confor-
mal map of the unit circle such that the random walker
1063-7761/05/10102- $26.000253
is mapped to a randomly chosen point on the growing
cluster perimeter at each step of an iterative process. A
modification of the latter approach was used in [6] to
simulate one-dimensional diffusion-limited aggrega-
tion in channel geometry.

However, it still remains unclear if DLA is tractable
as a continuum model formulated in terms of differen-
tial equations. In the original model proposed in [10], a
mean field theory that relates the continuous aggregate
density distribution to the probability distribution of a
random walker coming from infinity was developed by
using a power series expansion in cluster density. A
refined mean field theory was proposed in [11]. These
models provided a qualitative explanation of the pro-
cess, but the predicted dimension was substantially
lower than the measured one. For this reason, various
modified mean field approaches were proposed in sub-
sequent studies.

In [12], the growth rate was assumed to be propor-
tional to the gradient of the distribution of the randomly
walking particle, rather than to the distribution itself.
In [13], the growth rate was represented as a power of
the field variable with a phenomenological exponent
greater than unity to cut off growth at small density. As
a consequence, density buildup was observed in the
cluster front zone, and a higher fractal dimension is
obtained. In [14], the latter model was substantiated by
showing that the growth rate is proportional to a qua-
dratic combination of density and its derivatives if the
probabilities of attachment and interaction between
random walkers are equal. This result was obtained by
replacing the Boltzmann collision integral with a sys-
tem of differential equations.

Thus, even though the understanding of aggregation
kinetics has improved owing to progress in the frame-
work of mean field theory, the “final solution” has never
been found. In this paper, we show how the mean field
 © 2005 Pleiades Publishing, Inc.
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theory can be modified to provide adequate description
of the scaling behavior of the system.

2. MODEL

In this section, we formulate a mean field DLA
model based on the equations proposed in [11]. We
present the complete derivation of a system of equa-
tions and demonstrate how a coarse time scale can be
introduced.

2.1. Preliminary Analysis 

Generally, two-dimensional aggregation kinetics
are modeled as follows. While an immobile seed of
diameter a is located at the origin, a particle born at a
distance R from the seed executes a random walk inside
the circle of radius R until it either escapes from the cir-
cle or comes in contact with the seed. The particle
crossing the circle reappears at a random point on it.
The particle that contacts the seed sticks to it, and then
a new particle is launched from a random point on the
circle. As the process repeats, each new particle can
stick to any particle on the cluster boundary. To mini-
mize the effects due to the finite size of the system, the
birth radius R is assumed to be much larger than the
characteristic radius of the cluster.

A typical DLA cluster has a highly ramified fractal
structure (see Fig. 1). New particles are captured in its
front zone. In mean field theory, the structure is
smeared, and the average perimeter of a cluster is diffi-
cult to define.

To describe the growth of a cluster, we introduce the
characteristic function (r, φ), equal to unity at the
locations occupied by the aggregate and zero else-
where. The characteristic function (r, φ) is defined

ρ̂

û

Fig. 1. Typical DLA cluster.
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analogously for the random walker. In mean field the-
ory, these functions are ensemble averaged by assum-
ing that the particle distribution is isotropic. As a result,
we obtain probability density profiles ρ(r) and u(r) for
the cluster and the random walker, respectively.

The entire two-dimensional domain is partitioned
into square cells of area a2, where a is the particle diam-
eter. For each cell containing a particle with probability
one, we set ρ = 1/a2, so that its integral over the cell is
unity. To facilitate analysis, we perform the change
ρ  a2ρ, u  a2u so that ρ or u is unity in each cell
occupied by a particle. Then, the number of particles in
the cluster is expressed as

(1)

where ds is an area element and D is the region occu-
pied by the cluster.

In the model proposed in [11], the cluster growth is
modeled by the system of equations

(2)

supplemented with the boundary condition u(R, t) = c,
which represents a source of random walkers located at
the birth radius. The kinetic equation for the random-
walker distribution describes diffusion and adsorption
onto the aggregate. In the kinetic equation for the clus-
ter density distribution, the terms uρ and a2∆ρ represent
the contributions of random-walker–cluster contact and
the lateral growth due to nonlocal interaction, respec-
tively.

Since random walk is much faster than cluster
growth, we set ut = 0:

As mentioned in the Introduction, this model contains
the basic features of the model, but fails to predict the
correct fractal dimension, because it ignores the dis-
crete nature of the DLA cluster.

This explanation is corroborated by numerical anal-
yses of the following model [15, 16]. The region occu-
pied by the cluster is divided into annuli of width a. The
annulus of radius rn is characterized by the largest num-
ber Mn of particles that can be placed inside it (esti-
mated as Mn ~ 2πrna/a2) and the actual number Nn of
particles contained in it. The probability of adsorption
of a random walker onto the annulus is Nn/Mn . A ran-

N
1

a2
----- ρ s,d

D

∫=

∂ρ
∂t
------ u ρ a2∆ρ+( ),=

∂u
∂t
------ a2∆u u ρ a2∆ρ+( ),–=

∂ρ
∂t
------ u ρ a2∆ρ+( ),=

0 a2∆u u ρ a2∆ρ+( ).–=
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dom walker contained in the nth annulus can be
adsorbed on the (n – 1)th, (n +1)th, or nth annulus. If
Nn/Mn ! 1, then the total adsorption probability can be
approximated as

When a random walker is adsorbed onto the nth annu-
lus, the value of Nn increases by unity. Otherwise, it
drifts into an adjoining annulus with a probability of
1/2 ± a/rn , where the plus and minus signs in ±a/rn cor-
respond to the outer and inner annuli, respectively.

This model is simpler than direct numerical simula-
tion, because it makes use of the axial symmetry of the
cluster and retains information about the number of
particles in each annulus. Nevertheless, the predicted
fractal dimensions agree with measured ones, 1.65 [15]
and 1.72 [16].

Returning to the mean field theory and taking into
account the discrete nature of the cluster, we define
u(r, τ) as the probability distribution for a particle to be
located at a distance r from the origin at an instant τ.
Furthermore, we introduce an initial distribution u(r, 0)
and impose the impermeability condition ur|r = 0, R = 0.
We use a random-walk time variable τ and a discrete
cluster-growth time n to allow for the disparity between
the corresponding time scales, because it is obvious that
the adsorption of a single random walker does not result
in any significant change in the overall cluster geom-
etry.

To derive a kinetic equation for u(r, τ), we use sim-
ple partition into cells in the (x, y) plane. We introduce
the probability ρ(x, y) of finding a cluster particle in the
cell with coordinates x and y and the probability
u(x ± a, y ± a, τ) that the random walker occupies a
neighboring cell (see Fig. 2). Treating the random walk
followed by adsorption onto the cluster and the ensuing
evolution of cluster density as independent processes,
i.e., assuming that the change in cluster density over the
random-walker lifetime is negligible, we write the fol-
lowing difference equation for u(x, y, τ):

(3)

Then, we introduce a time increment δt ~ a2 and use a
Taylor series expansion to rewrite (3) as

(4)

where the Laplacian to be calculated in Cartesian coor-

Nn k+

Mn k+
-------------.

k 1–=

1

∑

u x y τ 1+, ,( ) 1 ρ x y,( )–( ) u x a y τ, ,–( )[=

+ u x a y τ, ,+( ) u x y a τ,–,( ) u x y a τ,+,( )+ + ] /4.

∂u
∂τ
------

a2

4
-----∆u ρ u

a2

4
-----∆u+ 

  ,–=
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dinates reduces to

under the assumption of axial symmetry.
The resulting equation is similar to the second one

in (2) up to second-order terms, but it allows for nonlo-
cal adsorption, vanishing diffusion through fully occu-
pied regions (where ρn(r) = 1), and free diffusion into
unoccupied regions (where ρn = 0). We believe that this
equation provides a more accurate description.

2.2. Refined Model 

Since the asymptotic solution to the diffusion–
absorption equation derived above is such that

there exists a bounded function

describing, up to normalization, the time-averaged ran-
dom-walker distribution in space. The integral of
Eq. (4) with respect to τ from zero to the random-
walker lifetime T* combined with the condition
u(T*) = 0 yields

This equation is supplemented with the impermeability
condition

∆ ∂2

∂r2
-------

1
r
--- ∂

∂r
-----+=

u τ( ) ρτ–( ),exp≤

U r( ) 1
T*
------ u r τ,( ) τd

0

T*

∫=

u r 0,( )–
a2

4
-----∆U r( ) ρ U r( ) a2

4
-----∆U r( )+ 

  .–=

∂
∂r
-----U r( ) r 0 R,= 0.=

ρ(x, y)

u(x, y + a)

u(x + a, y)

u(x, y – a)

Fig. 2. Lattice model.

u(x – a, y)
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The equation for the cluster density ρ corresponding to
the first equation in (2) can be written as

where C is a normalization factor and n is the number
of an iteration step. In the conventional mean field the-
ory, the random walker hitting the cluster “spreads”
over its perimeter, which results in a slight increase in
the cluster size. According to (1), the ensuing change in
the cluster density is such that

Hence,

A numerical analysis of the corresponding system of
equations leads to results analogous to those reported in
[11]; in particular, the fractal dimension of the 2D clus-
ter is unity (see Section 3.1).

However, the adsorption of a particle at a point on
the real cluster perimeter has a negligible effect on the
probability of particle addition at other locations.
Therefore, we can introduce a coarse time scale by
assuming that the density of a cluster changes only after
its entire perimeter is covered by newly adsorbed ran-
dom walkers. Then, we obtain

(5)

∂ρ
∂n
------ CU ρ ∆ρ+( ),=

ρ n 1+( ) ρ n( )–[ ] 2πr r/a2d∫ 1.=

C0
a2

2π U ρ ∆ρ+( )r rd∫
---------------------------------------------.=

C
2πRb

a
------------C0

2πRb

a
------------ a2

2π U ρ ∆ρ+( )r rd∫
---------------------------------------------,= =

1 10 100 r
10–5

10–4

10–3

10–2

10–1

1

ρ, U(ρ + a2∆ρ)

ρ(r)

U(ρ + a2∆ρ)

Fig. 3. Cluster density ρ and density of a newly adsorbed
single-particle layer.
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where Rb is the characteristic distance from the origin
to the cluster boundary.

Figure 3 shows a typical density profile and a curve
U(ρ + ∆ρ) characterizing the location of new adsorbed
particles. The latter curve has a sharp peak in the neigh-
borhood of the cluster boundary and vanishes outside it.
Accordingly, we can approximately replace Rb with r in
expression (5) and write the final system of equations as
follows:

(6)

where

and n is the number of an iteration step at which the
cluster is covered by a new layer of adsorbed random
walkers and its boundary shifts by an increment on the
order of particle diameter.

3. ANALYSIS IN A PLANAR GEOMETRY

3.1. Numerical Analysis 

Using the initial density distribution

we solved Eqs. (6) by successive iteration with steps
corresponding to cluster size increments. At each step,
the second equation in (6) was computed on a 105 point
spatial grid by using an explicit finite-difference
scheme, the distribution ρn(r) obtained at the preceding
step, and

The resulting solution was substituted into (6) to calcu-
late a normalized increment of the cluster distribution.
We set the increment at r = 0 to zero, since the region
occupied by the seed is impenetrable.

The dashed curve in Fig. 4 is a numerical solution to
system (6) for the two-dimensional cluster. Its log–log
slope, –0.22 ± 0.02, corresponds to the cluster fractal
dimension d = 1.78 ± 0.02. The dotted curve predicted
by the mean field theory developed in [11] without
introducing any coarse time scale corresponds to a
lower dimension (d = 1).

ρn 1+ ρn CU ρ ∆ρ+( ),+=

u r 0,( )– ∆U r( ) ρn r( ) U r( ) a2

4
-----∆U r( )+ 

  ,–=

C
2πr

a
--------- a2

2π U ρ ∆ρ+( )r rd∫
---------------------------------------------,=

ρ0 r( ) 2r/a–( ),exp=

u0 r( ) r R–( )2/a2–( ).exp=
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3.2. Analytical Solution 

Since system (6) is amenable to iterative computa-
tion, it can be solved analytically by applying the finite
Hankel transform

where J(pi) is the Bessel function. The desired solution
can be represented by a series expansion:

where pi denotes the roots of the equation J1(pi) = 0.

Using the initial condition

and the boundary conditions

,

we obtain an infinite algebraic system of equations for
U(pi, t):

U pi t,( ) 1

R2
----- U r t,( )J0 pi

r
R
--- 

  r r,d

0

R

∫=

U r t,( ) 2 U pi t,( )
J0 pi

r
R
--- 

 

J0
2 pi( )

--------------------,
i

∑=

u r 0,( ) δ r R–( )/2π r/R( )=

∂
∂r
-----U r( ) r 0 R,= 0=

U pi( ) U pk( )K pk pi,( )
pk

∑+
2R2

πa2
---------

J pi( )

pi
2

-------------,=
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with

By analogy with Fredholm integral equation of the sec-
ond kind, an exact solution to this system can be repre-
sented in terms of a resolvent kernel:

(7)

where

K pk pi,( ) = 

8 1
a2

4R2
--------- pk

2– 
 

a2 pi
2J0

2 pk( )
--------------------------------- ρ r( )J0 pi

r
R
--- 

  J0 pk
r
R
--- 

  r r.d

0

R

∫

U pi( ) 2R2

πa2
---------

J pi( )

pi
2

-------------
1
D
----

J pk( )

pk
2

-------------D pi pk,( )
k

∑+ ,=

0.010

0.025

0.050
0.075
0.100

0.250

0.500
0.750

15 30 45 60 75 90
r

1.000
ρ

Fig. 4. Cluster density vs. radius predicted in [11] (dotted
curve) and by model (6) with coarse time scale (dashed
curve). The fractal density is 1.0 and 1.78 in the former and
latter cases, respectively.
.

D 1 1–( )m
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m 1=

∞

∑
K pα1
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,( ) … K pα1

pαm
,( )
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ρα1

,( ) … K pαm
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∞

∑
α1 1=

∞

∑+= … ……

D pi pk,( ) K pi pk,( ) 1–( )m
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--------------
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αm 1=

∞

∑
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∑
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∞

∑+=
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…

Substituting the derivative of this solution into the
system of kinetic equations, we obtain a recursive
procedure for calculating cluster growth. However,
since it involves calculations of slowly convergent
series and integrals containing Bessel functions,
this procedure is more difficult to use for evaluating
the fractal dimension, as compared to numerical
analysis.
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4. CONCLUSIONS

A new mean field approach to analyzing fractal pat-
tern formation by diffusion-limited aggregation is pro-
posed. Following previous studies (e.g., see [11, 14,
15]), we assume that the aggregate is axially symmet-
ric. The key distinction of the present approach is the
use of a coarse time scale taking into account the dis-
crete nature of DLA clusters. The coarse time scale is
introduced by requiring that the addition of a particle to
the cluster does not lead to any significant effect on the
continuous radial distribution obtained by changing
from the discrete to the continuum model and averaging
over the angle. To meet this requirement, we assume
that the cluster density changes jumpwise only after the
entire accessible perimeter of the cluster is covered by
a new layer of adsorbed random walkers. As a result,
we derive a difference–differential equation with dis-
crete time step. Furthermore, this form of the governing
equation entails the use of a normalization factor C pro-
portional to the accessible cluster perimeter.

The value of the normalization factor depends on
the dimension of the spatial domain of aggregate
growth. For cluster growth on the surface of a cylinder
along its element [5, 18], C = const since the corre-
sponding fractal dimension is evaluated by solving a
quasi-one-dimensional problem on a line parallel to the
direction of aggregate growth. For the two-dimensional
cluster, this factor is proportional to the circle perime-
ter. For the three-dimensional one, it scales with the
volume of a spherical layer with thickness equal to the
particle diameter, where random walkers are adsorbed.
Since the density profile drops near the cluster bound-
ary (see Fig. 3), the function ρ + ∆ρ has a sharp maxi-
mum, which makes it possible to define absorption
region and find the normalization factor.

The approach developed in this study is used to
obtain a fractal dimension of 1.78 in the two-dimen-
sional DLA model, in good agreement with direct
numerical simulations. We have also considered the
quasi-one-dimensional and three-dimensional DLA
models. In the former case, our solution of the proposed
system of equations yields a fractal dimension of 0.80 ±
0.02, in fair agreement with direct numerical simula-
tions [5, 18]. As the space dimension increases to three
and higher, the assumption of isotropy progressively
becomes less accurate (even if physically plausible)
and entails a systematic overestimation of the fractal
dimension of the cluster.
JOURNAL OF EXPERIMENTAL A
Finally, we note that the proposed approach can be
naturally generalized to aggregation in a system of par-
ticles of several types. In particular, if we assume that
particles of the same type stick together, then the nor-
malization factor in each equation corresponding to a
particular type of particles will be proportional to the
largest volume fraction that can be occupied by parti-
cles of this type in the current spherical layer.
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Abstract—The gravitational description given for an electric charge on the basis of exact solution of the Ein-
stein–Maxwell equations eliminates Coulomb divergence. The internal pulsating semiconfined world formed
by neutral dust is smoothly joined with parallel Reissner–Nordstrem vacuum worlds via two static bottlenecks.
The charge, rest mass, and electric field are expressed in terms of space curvatures. The internal and external
parameters of the maximon, electron, and the universe form a power series. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Elementary particles are treated as point objects in
planar spacetime. Their internal structure can be con-
sidered in the space of the general theory of relativity
(GTR), whose curvature is equivalent to the gravita-
tional field [1].

Initially, Einstein planned, first, to geometrize phys-
ical fields and their sources and, second, to represent
the discreteness of spacetime as well as parameters of
elementary particles, their nonlocalizability and sto-
chastic behavior (quantum effects) as manifestations of
properties of a “continuous” gravitational field.

This study provides a simple example illustrating
the possibility of implementation of the first part of this
program. The internal structure of an electric charge is
described on the basis of the exact solution to the Ein-
stein–Maxwell equations for a nonstationary centrosym-
metric dustlike matter (dust) and an electric field [2].

It should be noted that the second part of the pro-
gram has not been realized as yet; i.e., the quantum
behavior of elementary particles has neither been
described in a nonlinear geometrized theory nor inter-
preted, and the spin has not been taken into account; the
solution obtained for an electric charge cannot be
extended to real charged elementary particles (electron,
proton, etc.). We will only consider the description of
geometry of an abstract electric charge whose charge
and rest mass coincide with the corresponding quantum
numbers of the real electron, maximon, universe, etc.

This solution clarifies the meaning of two universal
constants, viz., electric charge e and rest mass m0,
which are found to be first integrals of the Einstein–
Maxwell equations (integrals of motion) and which can
be determined from the spacetime curvatures at any
point of the spacetime.

The procedure in which a source of gravitational
field (energy–momentum tensor of matter appearing on
the right-hand side of the equations) must be specified
“manually” has been usually regarded as poor since
1063-7761/05/10102- $26.00 0259
Einstein’s time. For this reason, the possibility of com-
plete geometrization of physical fields is considered as
dubious.

The solution obtained here shows that this is not
quite correct. We specify only the “filling” of the sys-
tem to be studied (matter, physical fields and interac-
tions, the presence of charges, pressure, rotation, tor-
sion, etc.). Then, in view of the nonlinearity and self-
consistency of the Einstein system of equations and
equations for potentials of physical fields, all physical
parameters of the system (densities, velocities, and field
strengths) are expressed in terms of geometry as a result
of the solution of such a system of equations.

In contrast to the linear situation, which is responsi-
ble in all probability for such an attitude to the Einstein
equations with a right-hand side, it is impossible in the
general case to characterize the properties of the func-
tions satisfying the nonlinear equations prior to their
solution in view of the absence of a superposition prin-
ciple. A nonlinear equation has no “source” or the
“right- and left-hand sides” in the linear sense.

It is also equally important that the spacetime curva-
ture eliminates the main disadvantage of theories in the
Minkowski spacetime, viz., Coulomb divergence of the
field of a point charge, which generates divergences in
the existing quantum theories.

Strictly speaking, a planar space must be empty,
since if the Riemann–Christoffel curvature tensor is
zero, the conservative Einstein tensor must also be zero,
as well as the energy–momentum tensor of matter and,
hence, the densities and potentials of physical fields.

In addition, this solution at last clarifies the reason
for the prevailing concept of negligibility of gravita-
tional effects over the classical length (due to the
extremely small value of the gravitational radius as
compared to the classical radius), as well as the idea
that gravitational interaction (spacetime curvature)
becomes significant either over limiting lengths in the
© 2005 Pleiades Publishing, Inc.
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microworld (such as Planck’s length) or over the scale
of the universe in the macro- and megaworlds.

The reason appears paradoxical: such a situation in
vacuum (vanishing smallness of the “potential gravita-
tional field” as compared to the potential electric field

of an isolated stationary point charge, m0/r2 ! e/r2,
where k is the gravitational constant) is explained pre-
cisely by the large “gravitational mass defect” due to
the strong gravitational field (large spacetime curva-
ture) inside the charge, which reduces the energy of
charge in vacuum observed from outside (from the
“Newtonian” point of view, the gravitation field pos-
sesses a sort of “negative energy”).

The gravitational interaction, in accordance with its
definition, is universal and is manifested over any
length, mapping physical fields on geometry [1].

A brief review of the literature concerning this prob-
lem in GTR and the reason for which a rigorous solu-
tion of the problem of the source of electric charge and
rest mass of a particle could not be obtained earlier are
given in the Appendix.

2. FORMULATION OF THE PROBLEM

Let us suppose that the gravitational field in a cen-
trosymmetric orthogonal nonstationary metric [1] (in
the τ, r, θ, ϕ coordinates)

(1)

in a synchronous comoving frame of reference is
defined by the energy–momentum tensor, whose mixed
components are given by

which corresponds to ideal dustlike generally charged
matter with a charge density ρf , energy density εs(τ, r),
and electromagnetic field with energy density εf(τ, r).

The system of the Einstein–Maxwell equations in
the given case can be written in the form

k

ds2 eνdτ2 eλdr2– R2 τ r,( )dσ2,–=

dσ2 dθ2 θdϕ2sin
2

+=

diag εs ε f+ ε f ε f– ε f–, , ,( ),

Φ 4π
κ

------R 1 e λ– R'2– e ν– Ṙ
2

+( ),=

Φ̇ 4πR2Ṙε f ,=

Φ' 4πR2R' ε f εs+( ),=

ε̇ f 4Ṙε f /R+ 0,=

ε f' 4R'ε f /R+ 8πεf ρ f e
λ /2,=

ε̇s λ̇ 4Ṙ/R+( )εs/2+ 0,=

ρ̇ f λ̇ 4Ṙ/R+( )ρ f /2+ 0=
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(we assume that the cosmological term is zero). Here,

 = ∂R/∂τ, R' = ∂R/∂r, and κ = 8πk/c4 is the Einstein
constant.

The general solution to the Cauchy problem
depends on three arbitrary functions of r, viz., integrals
of motion corresponding to the initial distribution of
energy density εs(0, r) of matter, charge density ρf(0, r),
and radial velocity βr(0, r), which is defined for τ = 0.

For such functions, we can choose [2] the electric
charge in the form

the total energy of matter in the form

,

and the function

where Q0 and E0 are constants and q = ρf/εs .
In terms of these quantities, we can express the

energy densities of matter and field [2]:

The solution to the Einstein–Maxwell equations is
obtained in the cases when one of the arbitrary func-
tions of r becomes constant [2]. There exist three types
of solutions,

where

is the gravitational radius,

is the classical (electromagnetic) radius, and

is the so-called critical radius.
In the given problem, we are interested in the first

type of solutions with a constant electric charge Q0. In
this case, ρf = 0; i.e., the dust is neutral. An interesting
situation arises: charge Q0 is an integral of motion of a
neutral gravitating matter and, in turn, generates an
electromagnetic field with energy density εf and field

Ṙ

Q r( ) 4π ρf e
λ /2R2 r Q0,+d∫=

E r( ) 4π εs ε f+( )R2R' rd∫ Q2/2R E0+ +=

f r( ) e λ /2– R' qQ/R,+=

εs
E'

4πR2R' 1 qQeλ /2/RR'–( )
------------------------------------------------------------, ε f

Q2

8πR4
------------.= =

Q Q0, Rg Rg0, R f R f 0,= = =

Rg κE/4π=

R f Q2/2E Rc
2/Rg= =

Rc kQ/c2=
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strength Er = ±  of the radial electric field in the
comoving reference frame (or is generated by this field
and the neutral matter).

It would be interesting to discover what the inner
and outer (vacuum) worlds of the object called the elec-
tric charge are and to express its physical parameters
(charge, mass, and radius) in terms of the curvature of
the pseudo-Riemannian space of the inner world. Let us
prove that even in the simplest centrosymmetric case in
the absence of inevitable rotation, the charge is a non-
Euclidean topological construction, viz., a semicon-
fined pulsating world with two static extremal surfaces
(bottlenecks) in spacetime.

3. INNER WORLD

We choose an attractive (from the standpoint of
physics) solution for Q = Q0, which corresponds to a
semiconfined time-periodic world [2]

(2)

where

and τr(r) is an arbitrary function of r, which is deter-
mined by the method for measuring time in the congru-
ence of observers.

For Q0 = 0, this solution is transformed to the well-
known nonstationary metrics of the Tolman–Fried-
mann confined world of neutral dust [1]; in the absence
of matter the solution is transformed into the Reissner–
Nordstrem static world of a solitary charge, which in
turn is transformed to the Schwarzschild world of a
point mass.

A remarkable property of metric (2) is the absence
of pointlike singularity of the type of an infinite Gauss-
ian curvature of radial spheres: since δ < 1, the radius
R(τ, r) of the internal scalar curvature of the 2-surface
(τ = const, r = const) never vanishes anywhere
(R(τ, r) ≠ 0) if the integral of motion Rg(r) is defined
appropriately.

Since Er = Q0/R2, gravitation (i.e., the spacetime cur-
vature) removes the Coulomb divergence of the classi-
cal point charge field in the Minkowski spacetime.

8πεf

eν 1, eλ R'2/ f 2,= =

f 2 1, 4R f 1 f 2–( )/Rg 1,<<

R
Rg

2 1 f 2–( )
---------------------- 1 δ ηcos–( ),=

τ τ r–
Rg

2 1 f 2–( )3/2
--------------------------- η δ ηsin–( ),=

δ 1 4R f 1 f 2–( )/Rg–=
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Let us specify the initial conditions for τ = 0. Let us
suppose that the density of matter in the state of maxi-
mal expansion of the inner world is constant:

Here, zero in the parentheses indicates the dependence
of quantities on r for τ = 0. Integrating the relation

for τ = 0, we obtain the relation between the total
energy and the density of matter in the initial state,

(3)

where Cg is the integration constant. All quantities can
now be expressed in terms of R(0) and R (we set
Cg = 0):

4. STATIC SURFACE

Let us define the object, viz., a static 2-surface (h)

The static conditions (  = 0) lead to the conditions

substituting these conditions into Eq. (2), we find that
the scalar curvature radius of a static 2-surface is
always equal to a doubled classical radius,

i.e., to the ratio Rh = /Eh of the squared charge to the
total energy of the inner world for r = rh . For Q0 ≠ 0, this
radius always differs from zero.

All parameters on the given surface can be
expressed in terms of critical radius Rc and dimension-
less parameter ξ:

(4)

η π, Ṙ 0( ) 0, εs 0( ) ε0.= = =

Rg' κ R2R'εs=
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Since  < 1, parameter ξ > 1; consequently, the radius
of curvature of the static sphere is larger than the criti-
cal radius (Rh > Rc) for any charge.

The extremal object for which ξ = 1 is called a max-
imon. It is the only static 3-object with a constant cur-
vature and a constant density, with a spherical system of
coordinates (which is nondegenerate on its surface),
with the minimal radius, and with the maximal gravita-
tional radius.

In solving the Cauchy problem, we choose the ini-
tial conditions so that R(0) ≥ Rh (i.e., the radius of cur-
vature of the static sphere has its minimal value in the
initial state of maximal expansion). In this case, for the
integrals of motion we have

i.e., the total energy of the inner world on the static sur-
face is minimal, while the electromagnetic field energy
is maximal.

Let us define the “rest mass” m0 as the total mass
(energy) of the inner world on the static sphere,

where mc = Q0/  is the maximon mass.

Applying relation (3) to the static sphere and taking
into account relation (4) between its radius and the
gravitational radius, we find that the dust energy den-
sity in the initial state (and, hence, on the given sphere)
is finite and unambiguously determined by its para-
meters,

where εc = 6/κ  is the critical energy density.

5. MAXIMAL EXPANSION STATE

The inner world of a charge in the initial state η = π
can be described by the differential equation

(5)

whose solution can be written in the form

(6)
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where the dimensionless coordinate χ ∈  [0, π] [1],

and eλ(0) is a function of r, which depends on the method
for measuring radial lengths.

Solution (6) implies that a semiconfined world has
two static spheres (geometrical images of charges with
opposite polarities, i.e., charged particles–antiparti-
cles), on which the radial electric field has opposite
directions. These spheres are located at points χh and
π – χh , where

The given solution for Rc = 0 is transformed into the
well-known solution for the Tolman world [1]. The
maximal radial length of the inner world in the con-
fined model is given by

Thus, the radial length of the inner world in the max-
imal expansion state is defined, in accordance with rela-
tion (6), by the energy density of the matter in the initial
state.

For η = π and χ = π/2, quantities R(0) and Rg assume
their maximal values, such that Rmax ≈ Rg max:

The maximal value of the gravitational radius (total
energy) can be juxtaposed to the total mass M of the
inner world in the maximal expansion state:

6. GEOMETRIZATION OF THE CHARGE

The curvature  of the 2-surface S(2) formed by
the coordinate lines {xµ, xν} is perpendicular to coordi-
nates xα, xβ, α ≠ β ≠ µ ≠ ν, and observed from the mea-
surement space a (a = 2, 3, 4, …) can be expressed in
terms of the Riemann–Christoffel tensor of the corre-
sponding space and the modulus of the metric on the
surface [1]:

(7)
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(summation over the indices is not envisaged). In met-
ric (1), we obtain from expression (7)

(8)

(9)

The curvature of the 3-hypersurface S(3) orthogonal
to coordinate xα is equal to the sum of curvatures (7)
over index β:

(10)

The sum of 4-curvatures of all area elements orthog-

onal to the x0 axis is equal to the  component of the
Einstein tensor,

(11)

The sum of 4-curvatures of all area elements orthog-

onal to the x1 axis is equal to the  component of the
Einstein tensor,

where ps is the pressure of the matter (which differs
from zero in the general case).

The scalar curvature of the 4-space (Gaussian, or
internal, curvature [1]) is equal to the sum of all curva-
tures (10) orthogonal to the axes x0, x1, x2, and x3; in the
present case, it is given by

(12)

The Einstein–Maxwell equations lead to the follow-
ing relation between curvatures (7)–(12) and physical
characteristics:
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Relations (13) make it possible to express two fun-

damental constants (charge 

 

e

 

 and rest mass 

 

m

 

0

 

), which
are the first integrals of the given gravitating system (m
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 (relating the
geometry to the physics):
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The electromagnetic field of a charge that is at rest

in vacuum, which is represented outside and inside by
the radial electric field in a reference frame comoving
with the dustlike matter, can also be expressed in the
entire space in terms of its curvatures:

Thus, an interesting possibility of experimental
determination of physical parameters of objects from
measuring geometrical quantities; for fundamental
constants, the same values will be obtained at any point
in space.

7. BOTTLENECK

Let us define a bottleneck in the spacetime as a
2-surface of extremal curvature. In the simplest cen-
trosymmetric case, we can speak of the bottleneck as an
extremal surface of radial spheres, which is orthogonal
to time and radial coordinates. If the bottleneck is static
in the comoving reference frame (i.e., its curvature does
not change with time and it does not move along the
radial coordinate), it coincides with a static sphere and
the conditions for its existence have the form

(15)

The bottleneck will display the maximal curvature of

radial spheres (

 

η

 

 = 

 

π

 

) or inflection for  

 

≤

 

 0, and

the minimal curvature for  > 0 (

 

η

 

 = 0). Substitut-

K a( )
0 r

e
c2

k
------ K 2( ) 1–

0 r K 4( )
0 K 4( )–( )

1/2
[ ] ,=

m0
c2

2k
------ K 2( ) 3/2–

0 r K 4( )
0 K 4( )– K 4( )

0 r+( )[ ] .=

Er
c2

k
------ K 4( )

0 K 4( )–( )
1/2

.=

K 4( )
0 rh 0, K 4( )'

0 rh> 0, K̇
4( )

0 rh 0.= =

K 4( )''
0 rh

K 0( )''
0 rh
SICS      Vol. 101      No. 2      2005



264 KHLESTKOV
ing expressions (8) for curvatures into conditions (15),
we obtain

(16)

(17)

which means that a static bottleneck exists for  = 0
and either for

or for  = 0. In the former case, the quantity Cg in
expression (3) for the gravitational radius cannot be set
equal to zero any longer; R(0) as a solution to Eq. (5)
will be expressed in terms of elliptical functions. Let us
consider the second condition  = 0.

Since  = R'2/f2 = 0 for ξ ≠ 1, the determinant of
the metric tensor vanishes at the bottleneck. Conse-
quently, the spherical system of coordinates degener-
ates on it. However, all its geometrical parameters (cur-
vatures) and the corresponding physical quantities
(mass, dust density, electromagnetic field energy den-
sity, and field strength) are finite; i.e., this singularity is
of purely coordinate nature. It is not reflected in physics
or geometry in any way.

It should also be noted that function eλ(0) in solu-
tion (6) must vanish at the bottleneck in this case.

8. JOINING WITH VACUUM

Solution (2) covers the entire spacetime and does
not require any supplements. Nevertheless, using static
bottlenecks, the inner semiconfined world (2) can be
smoothly continued to two Reissner–Nordstrem vac-
uum worlds. In the curvature coordinates, we have

(18)
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Since joining is carried out over the bottleneck whose
curvature is extremal from inside and on which the met-
ric has a coordinate singularity g11 = 0, metric (18) must
be transformed to another radial coordinate  [1] to
nullify the metric coefficient  on the 2-surface of

joining r = 2rf as in the case of the internal solution.
Naturally, the transformation Jacobian J =  also van-

ishes on this surface (e.g., r =  + 4 /(2rf + ), where

rf = Rfh = /2 ). Direct substitution of an arbitrary

transformation r = r( ) into the Einstein equations [1]
under the condition Jh = 0 readily shows that trans-
formed metric (18), which is independent of the world
time, satisfies these equations at the bottleneck.

At the bottleneck,  =  = 0 and the quantity 
(the mixed component of the Einstein conservative ten-
sor) also turns out to be continuous, which is physically
equivalent to the continuity of the electric field upon a

transition to vacuum. Component  of this tensor
experiences a first-kind discontinuity, which corre-
sponds to a sharp dust–vacuum interface from the
standpoint of physics.

The joining procedure satisfies the Likhnerovich
conditions: if f(xµ) = 0 (equation for the joining surface,
i.e., the equation r – rh = 0 in the present case), product

 is found to be continuous. In fact, cutting a part
r < 2rf from the Reissner–Nordstrem metric, we discard
the singularity r = 0 inherent in the vacuum solution
and obtain an extended (bulk) material Reissner–Nord-
strem field source.

Figure 1 shows qualitatively the hierarchy of spaces
for various simple field sources, where the three-
dimensional hypersurface (observed physical space) is
represented for better visualization by the curve along
which coordinate r changes (i.e., the cross section of a
2D surface of a revolution with one of cyclic coordi-
nates, θ or ϕ, varying along its second direction). The
distance from the rotational axis is proportional to
radius R(r) of the 2D Gaussian curvature; the convexity
or concavity of the surface depends on the signs of cur-

vatures  and . It can be seen from Fig. 1 that
the given field had to be slightly deformed by a trans-
formation (dotted curve) for passing from a pointlike to
a bulk source in the Reissner–Nordstrem metric and for
its smooth joining with the internal solution.

Thus, the electric charge appears geometrically as
two parallel vacuum spaces in which tensions are
equivalent to an electric field and which are connected
via two static bottlenecks with a radius equal to a dou-
bled classical radius. Between these bottlenecks, a non-
stationary confined world is situated, in which tensions
are equivalent to neutral dustlike matter and an electric
field, and which pulsates from the maximal expansion
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state to the maximal compression state. This pattern is
shown qualitatively in Fig. 2 in the form of a 2-surface
of revolution in accordance with the same rules as the
curves in Fig. 1. Quantity R(η, χ) does not vanish any-
where. The strength of the radial electric field attains its
maximal value at the bottlenecks and decreases in
inverse proportion to the square of the Gaussian curva-
ture radius with increasing distance from the bottle-
necks to the inner or outer space of the charge.

The only divergence preserved in view of central
symmetry and nonstationarity of the metric is the kink
on the 2-surface formed by coordinates {r, θ} or {r, ϕ}
when expansion is replaced by compression. The kink
moves according to a definite law χ(η) (singularity of

the type R' = 0,  ≠ 0,   ∞) and corresponds
to an infinitely large value of the energy of the matter
(εs  ∞). However, this singularity is immaterial; it
appears due to the simplicity of the model and is absent
at the bottleneck.

9. EXTERNAL AND INTERNAL PARAMETERS 
OF THE CHARGE

Let us suppose that the electric charge of the world
is equal to the fundamental charge (Q0 = e) and that
constants c, k, and e have experimental values. Then the
parameters of the world at the bottleneck and inside the
charge are determined by the value of ξ. The maximon
(ξ = 1) is an object with the critical parameters

(19)

Here, Rmin is the radius of curvature for η = 0 and χ =
π/2, i.e., in the state of maximal compression. The
parameters of the remaining objects can be expressed in
terms of the critical parameters (19):
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In this model, the value of ξ is not bounded from
above. An important factor is that the experimental
value of ξ for the electron is known exactly from its
external parameters (20a):

ξe e/ km0 2.04 1021×= =

Fig. 2. Geometry of the inner and outer worlds of an electric
charge: the physical 3-hypersurface is simplified to a 2-sur-
face of revolution, which is formed by the radial and one of
cyclic coordinates. This surface is connected with the parallel
vacuum world and an antiworld via two bottlenecks (equiva-
lent to a particle and an antiparticle with opposite charges).

Fig. 1. Geometry of centrosymmetric metrics: planar empty
Minkowski spacetime (1); Schwarzschild solution for the
vacuum field of point mass m0 (2); Reissner–Nordstrem
solution for the vacuum field of point charge e having a rest
mass of m0 (dotted curves show the geometry of the trans-
formed metric with a Gaussian curvature extremum for r =
2rf) (3); Tolman–Friedmann solution for a confined world
of dustlike matter in the maximal expansion state (η = π),
having a singularity in the maximal compression state
(η = 0) (4); solution for the inner world of an electric charge
consisting of neutral dust and a radial electric field pulsating
from the maximal expansion state (η = π) joined by two par-
allel vacuum Reissner–Nordstrem worlds via two static bot-
tlenecks (charges +e, –e) (5).
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Spectrum of electric charge parameters

Parameters External Internal

n Object ξ = qn Rh, cm m0, g Rmax, cm M, g ρ0, g/cm3

0 Maximon 1 1.38 × 10–34 1.86 × 10–6 1.38 × 10–34 1.86 × 10–6 1.69 × 1095

1 Mifion 4.52 × 1010 0.62 × 10–23 4.11 × 10–17 1.99 × 10–13 1.34 × 1015 4.06 × 1052

2 Electron 2.04 × 1021 2.82 × 10–13 0.91 × 10–27 4.06 × 108 2.73 × 1036 0.98 × 1010

3 Universe 0.92 × 1032 1.27 × 10–2 2.02 × 10–38 0.83 × 1030 0.56 × 1058 2.35 × 10–33
                  
(it should be recalled that we are speaking here of an
abstract object with a charge and a rest mass of a real
elementary particle, electron, naturally disregarding
rotation in the simplest case of central symmetry). The
experimental estimate of the value of ξ for our universe is
also known, but now from its internal parameters (20b),
viz., the total mass and radius, under the assumption
that a closed cosmological model is applicable [1]:

We assume that the electric charge of the Universe is
also equal to the fundamental charge.

Consequently, the internal parameters of the elec-
tron and, accordingly, the external parameter of our
universe are known exactly. The result is curious: the
electron contains a universe whose mass in the state of
maximal expansion is M = 2.73 × 1036 g (i.e., on the
order of 103 masses of the Sun) and whose radius
Rmax = 4.06 × 108 cm (i.e., on the order of the Earth’s
radius), and our universe appears from outside as a par-
ticle (bottleneck, see Fig. 2) having a very small rest
mass m0 ≈ 2 × 10–37 g and a curvature radius of Rh ≈
10−3 cm.

It is interesting to note that, if we assume that the
internal radius and the total mass of the observed
universe are two orders of magnitude higher than the
value estimated from the Hubble constant and apply
relations (20) to charges with parameters of the known
objects (maximon, electron, and universe), we will
readily find that they form a power series,

ξ = qn,

where q = 4.52 × 1010. Then one more “particle” (with
n = 1), which can be conditionally called the “mifion,”
can exist between the maximon (n = 0) and the electron
(n = 2). The electron is followed by the universe (n = 3)
(see table).

10. COSMOLOGICAL CONSEQUENCE

The fact that the internal radius and mass of the uni-
verse can be larger than those estimated in astrophysics

ξu 2 2M/mc( )1/2
2Rmax/Rc( )1/2≈ ≈

δ0 1  for  the  Universe ≈( ) .                                   
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in the approximation of the invariability of the Hubble
constant h and from the linear Doppler effect does not
contradict the Einstein–Friedman cosmology [1]: over
long distances and time intervals, we must take into
account the fact that “radius” a(η) does not remain con-
stant during light propagation in an expanding hyper-
sphere, but increases, and that the relationship of the
observed frequency of light with the radiation fre-
quency and the velocity of the source is determined not
by the linear Lorentz transformations (in which the
velocity is limited to the velocity of light), but by gen-
eral covariant transformations.

The relation between the “recession velocity” β =
χdlna/dη and the “red shift” in the homogeneous
model disregarding the charge (in the Friedmann–Tol-
man metric) has the form [1]

(21)

These relations show that the Hubble constant h and
the recession velocity β turn to infinity at singularity
(η = 0) and are zero at the maximal expansion state
(η = π). This does not lead to any contradiction since β
in the present case is not a physical velocity: all points
of the hypersphere are at rest relative to it, and the space
itself expands.

11. EXPERIMENTAL CONFIRMATIONS

The assumption that the charge of the Universe is
equal to e does not contradict the astrophysical data
indicating the presence of a nonvanishing mean electro-
magnetic field in it. It is this field, which is strong
enough in a state close to maximal compression, that
ensures acceleration of relict particles generated (“tem-
pered”) at this stage of evolution of the universe to
ultrahigh energies (1021–1022 eV) [2]. In the present
state, which is close to maximal expansion, these
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particles become primary sources of experimentally
observed extensive air showers (EAS).

It is difficult to explain the presence of such particles
in cosmic noise by other mechanisms (stellar or galac-
tic). A particle may accumulate an ultrarelativistic
energy of 1022 eV on the scale of the Universe. Due to
radiation losses during accelerated motion along a cur-
vilinear trajectory, this energy is lower than the critical

energy ec2/  (the maximon rest energy), which is on
the order of 1028 eV [2].

Further, a rigorous result of the theory is that a
charge with the parameters of the electron contains (in
the case of a uniform density of the inner world in the
initial state) a universe with a mass on the order of
103 masses of the Sun. This can also be verified exper-
imentally if we assume that bursts of supernovas
observed in astrophysics can be interpreted not as a
result of a catastrophic collapse of burnt-out cooled
stars, but as the release of a part of the internal energy
by an elementary particle that loses its stability for one
reason or other (say, as a result of insufficiently consid-
ered experiments on accelerators of civilizations exist-
ing on planets of the given galaxies).

12. CONCLUSIONS

First integrals of the Einstein–Maxwell equations
for the system under study were obtained by Markov
and Frolov in 1972 [3]. In [2], these equations were
integrated completely. The exact solution of the Ein-
stein–Maxwell equations for the inner space of a spher-
ically symmetric electric charge [2, 4] implies that

(i) the electric charge is a gravitational object in the
GTR; the radius of the Gaussian curvature of the bottle-
neck connecting the inner nonstationary pulsating
semiconfined world of dust and the outer Reissner–
Nordstrem vacuum world is equal to a doubled classical
radius; (ii) the space curvature (gravitational field)
removes the Coulomb divergence of the field produced
by a point charge in a planar Minkowski spacetime; the
radial electric field in the comoving reference frame
attains its maximal value on two parallel bottlenecks
and decreases in inverse proportion to the squared
radius of the Gaussian curvature with increasing dis-
tance from the bottlenecks to the bulk of the charge and
to vacuum; (iii) physical constants e and m0 are first
integrals of the Einstein–Maxwell equations; all physi-
cal parameters (electric charge, rest mass, radial elec-
tric field, and dust density) can be expressed in terms of
the curvatures of the 4-space and can be determined by
measuring the curvatures at any point of the space;
(iv) the rest mass is the total (gravitational and
observed) mass of the inner world at the bottleneck; the
smallness of the gravitational radius as compared to the
classical radius of many “elementary” particles indi-
cates not a negligibly small role of gravitational effects
over the classical length, but rather a strong “gravita-
tional mass defect” of the inner world at the bottleneck

k
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due to the focusing (attracting) action of the gravita-
tional field, when the large space curvature reduces the
observed mass of the object; for a charge with the elec-

tron parameters, the value of ξ @ 1: e @ m0; i.e., the
electric charge is much larger than the “gravitational
charge”; (v) an elementary particle (electron, proton,
maximon, etc., in the “nonquantum” representation of
the GTR) and the Universe are formally a single object
considered from outside and inside; i.e., the micro- and
macroworlds are identical; for uniform initial condi-
tions, the “electron” contains a universe with a mass on
the order of 103 masses of the Sun and a maximal radius
on the order of the Earth’s radius, while our Universe (if
its charge is e) appears from outside as a particle whose
mass is on the order of 10–37–10–38 g and a bottleneck
radius on the order of 10–3–10–2 cm; (vi) in the given
problem, the global spacetime is topologically nontriv-
ial and “layered” (this should not be confused with
stratification in the gauge field theory); various objects
(electron, universe, etc.) are tunnels connecting these
parallel layers; this solution theoretically confirms the
correctness of the ideas concerning the neighborhood
of the GTP (e.g., Wheeler’s mole burrows [5]); if an
“electron” emerges in the world (the bottleneck corre-
sponding to a negative charge), a “positron” emerges in
the parallel space (the bottleneck with a positive
charge), which is an antiworld; thus, a world of parti-
cles and an antiworld of charged antiparticles are
located on two parallel orientable 3-hypersurfaces;
(vii) since a charge particle consists of dust, which in
turn is formed by charged particles (burrows between
the layers of vacuum spaces), the space as a whole can
be supplied with a nontrivial topological structure of a
closed set that is not dense anywhere (an everywhere
“perforated” Cantor-type set); consequently, the gen-
eral problem of existence might have a paradoxical
solution: there exists something equal to zero (having
zero measure).

The problem considered here shows that the Ein-
stein GTR can be geometrized: the electromagnetic
field and matter have a gravitational (geometric) map-
ping. This statement is of methodological importance:
the prevailing opinion that gravitation is a field equiva-
lent in properties to other physical fields and having
only a geometrical interpretation like other fields is
archaic. On the contrary, the gravitational field has a
unifying meaning: any physical field possessing an
energy–momentum tensor can be mapped on the geom-
etry of space whose curvature is precisely the gravita-
tional field. Matter is equivalent to a gravitational field,
which is equivalent to curved space. This is the essence
of the Einstein equations proper and of the rigorous
GTR principle of equivalence. All other formulations of
this principle (equality of the inertial and gravitational
masses, local “vanishability” of gravitational field,
local “rectifiability” of space, etc.) are of limited (non-
relativistic) nature.

k
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The prevailing idea that the gravitational field is sig-
nificant either over limiting lengths of the Planck type
(which is approximately an order of magnitude larger
than the critical radius) in the microworld or on the
scale of the Universe in the megaworld is refined in the
GTR: gravitational fields are manifested over any
length as the maps of physical fields onto spacetime
geometry. Thus, a gravitational field cannot be
“weaker” than, say, an electromagnetic field since it is
precisely this field in the form of tensions of the curved
space.

It should be noted that the traditional concept on a
gravitational field as a “classical” field can also be
revised in the near future. The GTR sets no intrinsic
limitations on the values of any parameters. Con-
versely, not gravitational field should be subjected to
quantization, but the origin of discrete quantum effects
should be explained with the help of a “continuous”
gravitational field (it was mentioned above that this
formed the initial Einstein program).
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APPENDIX

A Brief Review of Publications on Nontrivial Geo-
metrical Structures in the Theory of Gravitation

Obtaining regular solutions to the Einstein equa-
tions with a nontrivial topology (black holes, bottle-
necks, burrows, tubes, bubbles, etc.) has been under-
way for a long time and certain advances have been
made in this direction (see, for example, [6–15]). How-
ever, the general conclusion that has been drawn is dis-
tressing [6, 9]: a space with a bottleneck (horn, worm-
hole) and two asymptotically planar worlds can be con-
structed only in “pathological” cases from the
standpoint of the generally accepted concept of causal-
ity (negative energy density of matter generating a
gravitational field, violation of the weak energy condi-
tion [16], etc.).

Nevertheless, we have obtained a solution that
describes the internal structure of an electric charge
without any singularities (geometrical or physical) at
the bottleneck. This can be explained by the difference
JOURNAL OF EXPERIMENTAL A
in the formulation of the problem. In previous works,

static (  = 0) vacuum (εs = 0, ρf = 0) worlds with a sca-
lar field, as well as worlds with an electric and scalar
field with different Lagrangians were considered in the
framework of spherical symmetry [6–15]. In most
cases, metric (1) of these worlds can be reduced to the
form [6] ν(r) + λ(r) = 0. For such worlds, the right-hand
side of the Einstein equations implies that the differ-
ence between two mixed components of the conserva-
tive Einstein tensor must be

on the other hand, it follows from the left-hand side of
the Einstein equations that this difference is given by

In [6–15], the bottleneck was defined as an infinitely
long 3D tube with a finite radius of curvature R(r),
which is minimal on the 2-surface r = rh , i.e.,

It was also assumed that metric coefficient  on this
surface has a finite value. It turns out that these condi-
tions can be satisfied only for a negative sum of the
energy density and pressure of any matter.

Worlds whose source was supplemented with the
so-called cosmological Λ term were considered as a
version. If the latter term is identified as the first type of
energy–momentum tensor according to Petrov [1], we
can consider matter with an energy density Λ/κ and iso-
tropic pressure –Λ/κ as exotic (i.e., matter with an
ultrarelativistic equation of state for which the sign of
energy density is opposite to the sign of pressure). This
is usually regarded as pathology both for Λ > 0 and for
Λ < 0.

Here, we managed to avoid this owing to another
formulation of the problem: we considered a class of

nonstationary metrics (1),  ≠ 0, generated by dustlike
neutral matter and an electromagnetic field, which is
represented by a radial electric field in the reference
frame comoving with the dust.

Now, the left-hand side of the difference of two Ein-
stein equations appears quite differently. It does not
contain the second derivative of radius R of the Gauss-
ian curvature with respect to coordinate r and, by virtue
of the solution to the Einstein–Maxwell equations, is
identically equal to the positive right-hand side:

This expression (as well as other physical and geomet-
rical quantities) remains finite at the bottleneck. If we
define the bottleneck as a 2-surface on which  = 0,

Ṙ

G0
0 G1

1– κ ε s ps+( );=

e λ r( )– R''/R.–

Rh' 0, Rh'' 0.>=

e
νh

Ṙ

G0
0 G1

1– 2 1 f r( )2– Ṙ
2

+( )'/R2' 2 Ṙ̇/R– κε s 0.>= =

Rh'
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 = 0 (this does not exhaust all possible definitions of

the bottleneck), then  = 0 for ξ > 1; i.e., only a purely
coordinate singularity exists at it (the spherical system
of coordinates degenerates).
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Abstract—Equations of motion for an electrically charged string with a current in an external electromagnetic
field with regard to the first correction due to the self-action are derived. It is shown that the reparameterization
invariance of the free action of the string imposes constraints on the possible form of the current. The effective
equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations
for the external electromagnetic fields that admit stationary states of such a ring are derived. Solutions to the
effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in
an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radi-
ation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is
proposed. The effective equations of motion are derived within this model, and a class of solutions to these
equations is found. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The description of the effective dynamics of electri-
cally charged low-dimensional objects, such as parti-
cles, strings, and membranes, is one of the traditional
problems in classical electrodynamics. The application
of such models allows one to considerably simplify the
solution of the system of Maxwell–Lorentz integrodif-
ferential equations. For a nonrelativistic charged parti-
cle, effective equations of motion were obtained
already by Lorentz [1]. The relativistic generalization
of the Lorentz equations was obtained by Dirac [2]. At
present, the effective equations of motion are known for
a point charge in curved-background spacetime [3], for
a spinning particle [4, 5], for a massive particle in
higher dimensions [6, 7], and for a massless charged
particle in four-dimensional spacetime [8]. The general
scheme for the description of the self-action of electric
currents in the string models is given in [9]. In [10], the
general theory of moving, electrically charged relativis-
tic membranes is described.

In the present paper, we present an approximate
(neglecting the effect of radiative friction) Poincaré-
invariant description of the effective dynamics of a thin
electrically charged string with a current. The impor-
tance of studying the effective dynamics of such strings
is beyond doubt because of the numerous applications,
both in practice and theoretical models, of extended
charged and/or conducting objects with negligible
transverse dimensions. For instance, the effective equa-
tions of motion obtained in Section 2 are applied to two
specific models of strings in Sections 3 and 4. In Sec-
tion 3, we consider the effective dynamics of an abso-
1063-7761/05/10102- $26.000270
lutely elastic ring-shaped charged string.1 This model
describes the dynamics of a high-current beam of
charged particles that move along a circle. In Section 4,
we study the effective dynamics of an absolutely non-
stretchable charged string with a current. In Section 2,
we derive the effective equations of motion for a
charged string with a current and discuss some of their
properties; in particular, in the case of reparameteriza-
tion-invariant free action of a string, we find the gener-
ators of gauge transformations and the constraints on
the possible form of the current that flows along the
string.

We will describe a charged string within the model
of an infinitely thin string. It is well known that the self-
action of such a string leads to a diverging expression
for the force of the self-action, because infinitely close
points of an infinitely thin charged string interact with
infinite force. The regularization procedure, whose
physical meaning consists in “smearing” a singular
source of the electromagnetic field, allows one to repre-
sent the self-action force as an asymptotic series in the
regularization parameter—the cross-section radius of
the string—which contains one logarithmically diver-
gent term. The smaller the cross-section radius of the
string, the greater the contribution of this divergent
term to the self-action force. For a sufficiently thin

1 We define an absolutely elastic string as a string that does not sig-
nificantly resist both external forces and the forces induced by its
own fields. For example, an imaginary line with a current may
serve as such a string. One should not confuse this concept with
the well-known model of the Nambu–Goto string in the limit of
zero tension (see, for example, [11]), where the string yet has its
own dynamics.
 © 2005 Pleiades Publishing, Inc.
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string, one can neglect other terms of the asymptotic
series to obtain effective equations of motion for a thin
charged string in the form of a system of differential
equations rather than integrodifferential equations, as
in the case when all terms of the asymptotic series are
taken into account. Similar equations are obtained
when describing the effective dynamics of cosmic
strings (see survey [12]).

2. A CHARGED STRING WITH A CURRENT

In this section, we find the leading contribution of
the self-action of an electrically charged string with a
current and derive equations of motion for the string in
an external field with regard to this correction. We show
that the requirement of the reparameterization invari-
ance of the free action of a string imposes constraints
on the possible form of the current flowing through the
string.

Suppose given a closed string N with coordinates
{τ, σ}, σ ∈  [0, 2π), that is embedded, by a smooth map-
ping x(τ, σ), into the Minkowski space R3, 1 with coor-
dinates {xµ}, µ = 0, 1, 2, 3, and the metric ηµν =
diag(1, –1, –1, –1). Suppose that e(τ, σ) is a vector den-
sity, defined on the string N, that characterizes the elec-
tric current flowing through the string. Then, from the
viewpoint of an ambient space, the current density is
given by (see, for example, [10])

(1)

where c is the velocity of light; it is obvious that the
charge conservation law ∂µjµ = 0 immediately implies
∂iei = 0. Hereupon, the Latin indices run through the
values 0 and 1 and correspond to τ and σ, respectively.

Let us introduce a nondegenerate symmetric scalar
product in a linear space of n-forms on R3, 1 as follows:

(2)

here, ∗  is the Hodge operator that sends n-forms to
(4 − n)-forms, and ∧  denotes the exterior product of
forms. In these terms, the action of the model in ques-
tion is expressed as

(3)

where d is the exterior differential, δ = ∗ d∗ , Aµ is the 4-
potential of the electromagnetic field, and S0[x] is the

jµ x( ) c δ4 x x τ σ,( )–( )ei τ σ,( )∫=

× ∂ix
µ τ σ,( )dτdσ,

X Y,〈 〉 n! X

R
3 1,

∫ ∗ Y∧=

=  Xµ1…µn
Y

µ1…µnd4x;

R
3 1,

∫

S A x,[ ] 1
8πc
--------- A δdA,〈 〉–

1

c2
---- j A,〈 〉– S0 x[ ] ,+=
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action that describes the free dynamics of the string.
The equations of motion for action (3) are given by

(4)

where F = dA is the strength tensor of the electromag-
netic field.

To obtain effective equations of motion of a string,
we should solve the Maxwell equations for an arbitrary
configuration of the string and substitute the solutions
of these equations into the expression for the Lorentz
force. This yields an ill-defined (divergent) expression
for the self-action force of the string:

(5)

where G is an operator whose kernel is a retarded Green
function. Applying a regularization procedure [13] to this
expression, we obtain an asymptotic series in the regu-
larization parameter that contains one logarithmically
divergent term. The regularization parameter makes the
sense of the cross-section radius of the string; when this
radius tends to zero, the radiation-reaction force
diverges. If the cross-section radius is small but finite,
then this divergent term makes the most essential con-
tribution to the self-action force; moreover, the smaller
the cross-section radius, the larger this contribution.

Using the formalism developed in [13], we can eas-
ily show that the logarithmically divergent term that
arises in the expression for the self-action force can be
obtained by varying the action with the Lagrangian2 

(6)

where e2 = eiejhij , hij = ∂ixµ∂jxµ is the induced metric on
the string, h = dethij , the parameter Λ characterizes the
cut-off of the integral at the upper limit (its magnitude
is on the order of the string length), and ε is the cutoff
parameter of the integral at the lower limit (its magni-
tude is on the order of the cross-section radius of the
string).

2 This result can even be obtained without invoking the general
covariant procedure, proposed in [13], for regularizing the radia-
tion reaction in theories with singular sources. The leading diver-
gent term is uniquely determined by the Poincaré invariance and
the reparameterization invariance, as well as by the expression
multiplying the δ function in formula (1). These arguments are
frequently used for deriving leading divergent terms [14, 9, 15].

δF
4π
c

------ j,
δS0 x[ ]

δxµ----------------–
1

c2
---- δj x[ ]

δxµ------------- A,= =

=  
1
c
---Fµνei∂ix

ν,

Fµ
rr x[ ] 4π

c3
------ δj x[ ]

δxµ------------- Gj x[ ], ,–=

Lsing 1
c
---

ei∂ixµe j∂ j x
µ

h
-----------------------------–=

× 2 Λ
ε
----

ε 0→

ln
1
c
--- e2

h
----------2 Λ

ε
----

ε 0→

,ln–=
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Let us introduce a vector field Vi = ei/  and a
1-form v i = hijVi. Then, neglecting the finite part of the
radiation-reaction force, we obtain the following effec-
tive equations of motion of the string:

(7)

where χ = 2ln(Λ/ε) is a dimensionless constant, Fµν is
the strength tensor of the external electromagnetic field,
and ∇ i is a connection compatible with the metric hij .
The traceless tensor Tij represents the density of the
energy–momentum tensor corresponding to
Lagrangian (6); i.e.,

(8)

The tracelessness of the tensors Tij and  follows
from the conformal invariance of Lagrangian (6).

If the free action S0[x] of the string is reparameter-
ization-invariant, then the equations of motion (7) pos-
sess “residual” reparameterization invariance, which
implies that the equations are orthogonal to the vector
Vi∂ixµ. In addition, we have

(9)

In particular, in the absence of an external field, the last
equality and the charge conservation law ∇ iVi = 0 imply

dv  = 0, δv  = 0; (10)

i.e., v  is a harmonic 1-form. If the closed string has no
self-intersections, Eqs. (10) are easily solved. Applying
the conformal gauge

(11)

where the dot denotes the differentiation with respect to
τ and the prime denotes the differentiation with respect
to σ, we obtain the following expressions for the gen-
eral solution to Eqs. (10):

(12)

Here, we used more customary notations λ = e0 and I =
e1; λ0 and I0 are arbitrary constants, and f and g are arbi-
trary 2π-periodic functions. In other words, in the

h

δS0 x[ ]
δxµ----------------

χ
c--- Tij∇ ij xµ ∇ iT

ij∂ j xµ+( ) h=

+
1
c---Fµνei∂ix

ν,

Tij V2hij 2ViV j– ,=

Tµν
sing χ

c--- δ4 x x τ σ,( )–( )∫=

× Tij∂ixµ∂ j xν h dτ σ .d

Tµν
sing

∇ kTi
k 2iVdv i– χ 1– ∂ix

µFµνVk∂kxν.–= =

ẋµx'µ 0, ẋµ ẋµ xµ' x'µ,–= =

λ λ 0 f σ τ+( ) g σ τ–( ),+ +=

I I0 f σ τ+( )– g σ τ–( ).+=
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absence of external field, the energy–momentum con-
servation law implies that the relation between the lin-
ear density of charge and the current is given by (12).

Within our approximation, Eqs. (10) represent a
mathematical expression for the condition that the
string is superconducting: one of these equations states
the charge conservation law, and the other states that, in
the absence of external fields, the time-variation of the
current at a given point of the string is attributed only to
the gradient of the linear density of charge. The fulfill-
ment of these equations follows from the requirement
that the free action S0[x] should be reparameterization-
invariant. The converse is also true: the superconductiv-
ity conditions (10) for an arbitrary configuration of the
string imply the reparameterization invariance of its
free action.

Using the energy–momentum conservation law (9),
we can rewrite the equations of motion of the string in
an external field as

(13)

where

Thus, if the free action of an electrically charged string
with a current is reparameterization-invariant, then its
effective dynamics in an external electromagnetic field
are described by the system of equations (9), (13).

When the contribution of the singular term is suffi-
ciently large, i.e., when the string is sufficiently thin
(χ @ 1) and either the current flowing through it or the
linear density of charge are large, one can neglect the
left-hand sides of Eqs. (7); in this case, the free effec-
tive dynamics of the string are completely determined
by the leading contribution of the self-action force of
the charged string. We say that such a string is abso-
lutely elastic because its internal structure does not
appreciably resist an action.

When the current density increases further, one can
also neglect the effect of the external field; then, the
effective dynamics of the string are described by the
equation

, (14)

provided that v is a harmonic 1-form.
Further, we will solve the system of equations (9),

(13) for the model of a ring-shaped absolutely elastic
string in an external electromagnetic field and consider
the model of an absolutely nonstretchable charged
string with a current; for the latter model, we will derive
the effective equations of motion and obtain certain
particular solutions.

δS0 x[ ]
δxµ----------------

χ
c---Tij∇ ij xµ h

1
c---γµ

ρFρνei∂ix
ν,+=

γµν ηµν hij∂ixµ∂ j xν.–=

Tij∇ ij xµ 0=
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3. A CHARGED RING

As we pointed out in the Introduction, the model of
an absolutely elastic charged string describes a high-
current beam of charged particles; therefore, it is worth-
while to consider its effective dynamics in an external
electromagnetic field. In this section, we consider the
effective dynamics of an absolutely elastic charged
string in the form of a ring (a circle). Further, we derive
equations for external electromagnetic fields that admit
stationary states of such a ring. Then, we find solutions
to free equations of motion and solve the equations of
motion of a uniformly charged ring in an external uni-
form magnetic field. The last model describes the
behavior of a high-current beam of charged particles in
a synchrotron.

Consider a gauge that is convenient for further cal-
culations. Introduce coordinates {τ, σ} so that the vec-
tor density ei is straightened in these coordinates; i.e., it
has the form e = {1, 0}. Let us show that such coordi-
nates can be introduced without changing the coordi-
nate τ.

Suppose that, in the original coordinates {t, l}, the
vector density e has components {λ, I}; then, in the
coordinates {τ, σ}, we obtain

(15)

here, the dots and primes denote the differentiation with
respect to t and l, respectively. Setting e0 = 1, e1 = 0,

 = 1, τ' = 0, and σ' ≠ 0, we obtain the following rela-
tions for σ:

, (16)

provided that λ ≠ 0 at this point. Equations (16) are inte-
grable by virtue of the charge conservation law. For

example, if dl = dσ is a length element of the
string, then the linear density of charge is represented
as

(17)

In other words, the coordinate σ counts the charge on
the string. Next, we will assume that λ ≠ 0 throughout
the string.

In addition to the above gauge, we require that

(18)

Then, the metric induced on the world sheet of the ring

(19)

e0 τ̇λ τ 'I+
τ̇σ' τ'σ̇–
---------------------, e1 σ̇λ σ'I+

τ̇σ' τ'σ̇–
---------------------;= =

τ̇

σ̇ I , σ'– λ= =

∂σx∂σx

λ ∂σx∂σx( ) 1/2– .=

x0 τ σ,( ) cτ τ⇒ t.= =

x0 ct,=

x t σ,( ) r t( ) ϕ t σ,( )cos ϕ t σ,( )sin 0, ,( )=
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and its inverse are given by

(20)

Hereupon, the prime denotes the differentiation with
respect to σ. The determinant of the induced metric is

equal to h = –r2ϕ'2(c2 – ). The functions (t, σ) and
ϕ'(t, σ) are smooth and Q-periodic in the variable σ,
where Q = const is the total charge of the ring. The lin-
ear density of charge is equal to λ = 1/rϕ'; here, we
matched the signs of λ and ϕ'. The fundamental har-
monic of ϕ'(t, σ) with respect to σ is equal to 2π/Q; in
particular, ϕ' = 2π/Q if the ring is uniformly charged.

The absolute elasticity of a string implies that the
free action S0[x] of the string is identically zero. In this
case, Eqs. (13) are rewritten as

(21)

where the external field is redefined as Fµν  χFµν .
Throughout this section, the expressions for the electro-
magnetic fields will contain χ–1. We will also assume
that the external field is cylindrically symmetric and
that Ez = Hr = Hϕ = 0, where, as usual, the subscripts
indicate the projections of a vector onto an appropriate
unit vector. Then, Eqs. (9) and (21) are equivalent to the
following two equations:

(22)

In particular, the first equation implies the equation that
defines the variation law for the effective angular
momentum of an absolutely elastic charged ring:

(23)

hij
c2 ṙ2– r2ϕ̇2– r2ϕ̇ϕ'–
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--------------------------------–

.=

ṙ2 ϕ̇

Tij∇ ij xµ h γµ
ρFρνei∂ix

ν,–=

ϕ̇̇ 2
ϕ'˙ ϕ̇
ϕ'

--------– ϕ''
c2 ṙ2– r2ϕ̇2–

r2ϕ'2
-------------------------------–

+
ṙϕ̇
r

------c2 ṙ2– rṙ̇+

c2 ṙ2–
-------------------------- ϕ'

2
---- c2 ṙ2–( )1/2

cEϕ Hzṙ–( ),=

c2 ṙ2– r2ϕ̇2+( ) c2 ṙ2– rṙ̇–( )
r2ϕ' c2 ṙ2–( )3/2

--------------------------------------------------------------------

=  
rϕ̇
c

------ Eϕ ṙ cHz–( )
Er

c
----- c2 ṙ2–( ).–

d
dt
----- σ rϕ̇

c2 ṙ2–
-------------------d

0

Q

∫ πr cEϕ Hzṙ–( ).=
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Let us consider the stationary states of a charged
ring in the external field; i.e., let us set r(t) = const in
Eqs. (22). Then, we obtain

(24)

where the external fields are, generally speaking, cer-
tain functions of t. Formula (23) can be rewritten as

(25)

The second equation in (24) implies that

(26)

The requirements that the radicand be nonnegative
and that the velocity of the string be less than the veloc-
ity of light impose constraints on the fields Hz and Er

under which stable states of the ring may exist. These
requirements are illustrated graphically in Fig. 1.
For example, if there is no electric field and a ring of

ϕ̇̇ 2
ϕ'˙ ϕ̇
ϕ'

--------– ϕ''
c2 r2ϕ̇2–

r2ϕ'2
---------------------–

c2ϕ'
2

---------Eϕ ,=

c2 r2ϕ̇2+

r2cϕ'
--------------------- rϕ̇Hz– cEr,–=

d
dt
----- σϕ̇d

0

Q

∫ πc2Eϕ .=

rϕ̇
c

------
r2ϕ'Hz

2
----------------–

r4ϕ'2Hz
2

4
------------------- 1 r2ϕ'Er+( )– .±=

y

x

y = –x – 1

y = –2x1/2

–1

–2

1

a

b

Fig. 1. The region where stationary states of a positively
(ϕ' > 0) charged ring may exist is crosshatched. y = r2ϕ'Hz ,

x = 1 + r2ϕ'Er , and  ≥ 0. The region a, which is bounded
from below by the straight line y = –x – 1, corresponds to
the situation when Eq. (26) is taken with sign “+,” and the
region b, which is bounded by the axis y and the curve y =
–2x1/2, corresponds to the branch with sign “–.” In the over-
lap of regions a and b, there may exist stationary states of
the ring that have different angular velocities for the same
values of the external field, charge, and ring radius.

ϕ̇

–1
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radius r is uniformly charged, then the magnetic field
can hold this ring only if

(27)

where Q is the total charge of the ring.
Equations (24) are rather complicated in the general

case; therefore, we restrict the analysis to a uniformly
charged ring (ϕ'' = 0) for Er = 0. Then, we have

(28)

where we used the fact that the equality ϕ'' = 0 implies
the equality  = 0. The substitution of the expression
for  into the equation for  in (28) yields equations
for the fields that admit such stationary configurations.

For example, in the nonrelativistic limit r2  ! c2,
we obtain the following solution to (28):

(29)

whereas, in the ultrarelativistic limit r2  ≈ c2,
Eqs. (28) lead to the equalities

(30)

Thus, a uniformly charged ring does not change its
radius only if the external fields satisfy Eqs. (28) (or
Eqs. (29) and (30) in the nonrelativistic and ultrarelativ-
istic cases, respectively), provided, of course, that
Er = 0.

Now, we proceed to solving the dynamical equa-
tions (22). Consider the case when there are no external
fields. The solution of the second equation in (22)
yields

(31)

Hz r( ) Q

πr2
--------,≥

ϕ̇̇ c2ϕ'
2

---------Eϕ , ϕ'
2π
Q
------,= =

rϕ̇
c

------
πr2Hz

Q
--------------–

π2r4Hz
2

Q2
----------------- 1– ,–=

ϕ'˙
ϕ̇ ϕ̇̇

ϕ̇2

rϕ̇ t( )
c

-------------
Q

2πr2Hz t( )
-------------------------, ϕ' σ( )–

2π
Q
------,= =

2π2r3c2Eϕ t( ) Q2 Ḣz t( )
Hz

2 t( )
-------------,=

ϕ̇2

rϕ̇ t( )
c

-------------
Q

πr2Hz t( )
---------------------, ϕ' σ( )–

2π
Q
------,= =

Ḣz t( ) c
Eϕ t( )

r
------------- 1

πr2

Q
--------Hz t( )+ 

  .–=

r t( ) ρ2 c2 t τ+( )2+ ,=

ρ r 0( ) 1 ṙ2 0( )
c2

------------– ,=

τ r 0( )ṙ 0( )
c2

---------------------.=
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Then, the first equation takes the form

(32)

whence

(33)

If, in addition, we require that  = 0, which physically
means that all points of the ring rotate with the same
velocity, then we obtain the solution

(34)

As expected, the equation for ϕ represents the conser-
vation law of angular momentum.

Solution (31) shows that, after a certain period of
time, the ring will expand with a velocity close to the
velocity of light; therefore, it is worthwhile to consider
the ultrarelativistic limit of Eq. (32); i.e., it is worth-

while to require that c2 –  – r2  ≈ 0. In this case, we
have the following conservation law:

(35)

This equation can be solved by the method of charac-
teristics (see, for example, [16]). In the particular case
when

i.e., when the linear density of the effective angular
momentum is the same at all points of the string, we
obtain

(36)

The last equation should be considered an equation for
σ0(t, σ) for a certain prescribed Q-periodic function
ϕ'(0, σ0) whose fundamental harmonic is equal to 2π/Q.

To conclude this section, consider the effective
dynamics of a charged ring all of whose points move

ϕ̇̇ 2
ϕ'˙ ϕ̇
ϕ'

--------–
ϕ''

ϕ'2
------ c2ρ2

r4
---------- ϕ̇2– 

 – 2
ṙϕ̇
r

------+ 0,=

d
dt
----- σr2ϕ̇d

0

Q

∫ 0.=

ϕ'˙

r2 t( )ϕ̇ t( ) r2 0( )ϕ̇ 0( ), ϕ' σ( ) 2π
Q
------.= =

ṙ2 ϕ̇2

r2 t( )ϕ̇ t σ,( )
ϕ'2 t σ,( )

----------------------------
r2 0( )ϕ̇ 0 σ,( )

ϕ'2 0 σ,( )
-------------------------------.=

ϕ̇ 0 σ,( )
ϕ'2 0 σ,( )
--------------------- λ2 0 σ,( )r2 0( )ϕ̇ 0 σ,( ) b const,= = =

ϕ̇ t σ,( ) br2 0( )
r2 t( )

----------------ϕ'2 0 σ0 t σ,( ),( ),=

σ σ0 t σ,( ) 2br2 0( )
ρc

-------------------–=

× c t τ+( )
ρ

------------------ cτ
ρ
-----arctan–arctan 

  ϕ' 0 σ0 t σ,( ),( ).
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with the same angular velocity (  = 0) in a uniform
magnetic field Hz = const. In this case, from (22) and
(23) we obtain the system of equations

(37)

where M is a certain constant defined by the initial data.
The first equation implies, in particular, that ϕ' = 2π/Q.
Substituting the expression for r  from the second
equation into the first, we obtain an equation for the
function r(t) alone, which has the form

(38)

where v(r(t)) ≡ (t) and k is an integration constant. Let
us express the equations of motion in dimensionless
coordinates. Introduce r0 = |πHz/2Q|–1/2 and redefine r
and t as r  r0r and t  tr0/c. For example, the
velocity in these coordinates is measured in units of the
velocity of light. Then, the equations of motion of a
charged ring are expressed as

(39)

where L = M – sgn(Hz/Q)r2.

The first equation in (39) resembles the equation of
motion of a particle of unit mass with zero total energy
in the potential field,

the only difference between these equations being that
the form of U(r) depends on the initial data r(0), v(0),
and (0) (see Fig. 2). The potential has a single extre-
mum at the point

(40)

and indefinitely increases as r  0 and r  ∞; there-
fore, for any initial data, the system will oscillate about
the equilibrium point rext. Note that the minimal value of

rext is equal to /2, which agrees with the results of the

ϕ'˙

c2 ṙ2– r2ϕ̇2+( ) c2 ṙ2– rṙ̇–( )
r2ϕ' c2 ṙ2–( )3/2

-------------------------------------------------------------------- rϕ̇Hz,–=

rϕ̇

c2 ṙ2–
-------------------

πHz

2Q
---------r2+ M,=

ϕ̇

c2 v 2–
k
r
-- 1 M

πHz

2Q
---------r2– 

 
2

+ ,=

ṙ

v 2

2
------

1
2
--- k2 1 L2+( )2

r2
--------------------- 1–+ 0,=

ϕ̇ k
L 1 L2+( )

r2
-----------------------,=

U r( ) k2r 2– 1 L2+( )2
1–[ ] /2,=

ϕ̇

rext
2 1

3
---

Hz

Q
------ 

  Msgn 4M2 3++ 
 =

2
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previous analysis of the stationary states (27) of a
charged ring.

We can evaluate the ratio of the oscillation fre-
quency ω of the charged ring in the neighborhood of the
equilibrium point rext to the mean angular frequency ω0
of its rotation. In the harmonic approximation, the first
frequency is defined by U''(rext), and the second, by
| (rext)|; hence, we have

(41)

where r = rext . This ratio uniformly increases from 2 to
infinity as rext increases; for large values of rext , it

increases as 8 . For example, a threefold increase
in the linear dimensions of a synchrotron leads to a
ninefold increase in the oscillation frequency for the
same mean angular velocities of the high-current beam
of particles, other characteristics, such as Hz , Q, and χ,
remaining constant.

Thus, an absolutely elastic uniformly charged ring
in a uniform magnetic field oscillates about the equilib-
rium point rext , , according to Eqs. (39), with fre-
quency ω; the ratio of this frequency to the angular fre-
quency of the ring is defined by (41). Therefore, we can
expect that, when the energy inflow compensates the
energy losses, a high-current beam of charged particles
in a synchrotron will also produce radiation at this fre-
quency, in addition to the well-known synchrotron radi-
ation. For example, if one could separate these two
types of radiation by certain characteristics and mea-
sure the ratio ω/ω0, then one would determine the equi-
librium position rext in the units of r0 by formula (41).

ϕ̇

ω
ω0
------ 1

r
---

4r2 4r4 1––( )
1/2

2r2 4r4 1––( )
3/2

--------------------------------------------,≈

2rext
3

ϕ̇ext

0.4

0.2

–0.2

–0.4

1.7 1.8 1.9 r

Fig. 2. The functions of the potential U(r) (heavy line) and
the angular velocity r (r) (thin line). The diagrams corre-
spond to the initial data r(0) ≈ 1.844, v(0) = 0.1, M = 3, and
sgn(Hz/Q) = 1. The potential attains its minimum at the
point rext ≈ 1.755.

ϕ̇
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Among the disadvantages of the model of an abso-
lutely elastic charged string as applied to the descrip-
tion of a high-current beam of charged particles is the
fact that this model does not take into account the radi-
ation reaction due to the synchrotron radiation, which
becomes significant at large angular velocities.

4. AN ABSOLUTELY NONSTRETCHABLE 
STRING

In this section, we consider the dynamics of a thin,
absolutely nonstretchable charged string3

 with a current
with regard to the first-order correction due to the self-
action. We derive equations of motion for such a string,
investigate its stationary states in the absence of an
external electromagnetic field, and find a class of solu-
tions to the equations of motion for a uncharged string
with a current and for a uniformly charged string.

Suppose given a closed string N with coordinates
{τ, σ}, σ ∈  [0, L), that is embedded into the Minkowski
space R3, 1 by a smooth mapping x(τ). In relativistic
mechanics, the concept of nonstretchability makes
sense only in a certain distinguished frame of reference.
Let us introduce a 4-vector nµ, n2 = 1, that characterizes
such a frame of reference; then, the action that
describes the free dynamics of an absolutely non-
stretchable string is given by

(42)

where û, κ0, and κ1 are Lagrange multipliers of the con-
straints that guarantee the nonstretchability of the
string. It is obvious that action (42) is not invariant
under the change of coordinates {τ, σ}; hence, there is
no constraint (9) on the form of the linear density of
charge and current in this case.

The effective equations of motion (7) for a thin
absolutely nonstretchable charged string with a current
in the distinguished frame of reference nµ = (1, 0, 0, 0)
are expressed as

(43)

3 Possibly, a more customary term for the model of an absolutely
nonstretchable string is a perfect weightless thread, which comes
from mechanics. A detailed description of the theory of an abso-
lutely flexible thread can be found, for example, in [17].

S0 x û κ0 κ1, , ,[ ]

=  τ σ û h00 h+( ) κ0 nµ ẋµ c–( ) κ1nµxµ'+ +( ),dd

N

∫

∂i Lij∂ j xµ κ iδµ
0+( )–

1
c
---Fµνei∂ix

ν,=

Lij χ
c
---

hkle
kelhij 2eie j–

h
--------------------------------------- 2û δ0

i δ0
j hhij+( ),+≡

h00 h, ẋ0– c, x'0 0.= = =
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005



EFFECTIVE DYNAMICS OF AN ELECTRICALLY CHARGED STRING WITH A CURRENT 277
The last three equations in (43) represent the condition
of “relativistic nonstretchability.” Indeed, the equation
h00 = –h has the form

(44)

which immediately implies that the coordinate σ is a
natural parameter on the string with a correction for rel-
ativistic contraction. Since σ ranges from 0 to L, the ful-
fillment of equality (44) at any point of the string auto-
matically implies that the string of length L is non-
stretchable.

Since we consider a closed string, all functions
entering Eq. (43) must be periodic in σ. For an open
string with free ends, the periodicity condition is
replaced by the equality

(45)

at the ends of the string.
We will consider the effective dynamics of a closed

string in the absence of external electromagnetic fields.
The unknown fields κi can be obtained from the first
two equations in (43) by setting µ = 0. As a result, we
are left with four equations for four unknown functions
x(t, σ) and û(t, σ):

(46)

The consistency condition for this system yields an
equation for û(t, σ). The physical meaning of the field
û(t, σ) is that it compensates for the forces that stretch
(contract) the string.

Let us find the stationary configurations of the string
that are consistent with Eqs. (46); i.e., set  ≡ 0 in the
equations of motion. We can easily show that, in this
case, the equations of motion are reduced to the system4 

(47)

Taking into account the charge conservation law,  +
I ' = 0, we have

(48)

Thus, if the product of the charge density multiplied by
the current is independent of time and all points of the
string are at rest at the initial moment, then there exists

4 Henceforth, we redefine the Lagrangian multiplier û as follows:
û  –ûχ/c.

x'2 1
ẋ x'⋅( )2

c2 ẋ2–
------------------,–=

L1i∂ixµ κ1δµ
0+ 0=

Lij∂ijx ∂iL
ij∂ jx+ 0, x'2 1.= =

ẋ

2û' λ2( )'
c

----------- 2
λ İ

c3
-----+ + 0,=

2û
λ2

c
----- I2

c3
----+ + 0, x'2 1.= =

λ̇

û
c2λ2 I2+

2c3
---------------------, λ̇ I– λ İ+ 0, x'2 1.= = =
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û(t, σ) such that the string retains its initial configura-
tion. The question concerning the stability of such solu-
tions remains open.

Next, consider the nonrelativistic dynamics of a
string described by Eqs. (46) in the absence of the cur-
rent, I = 0 (charged dielectric), as well as for λ = 0
(uncharged conductor). The nonrelativistic limit is
understood in the following sense. Let l be a character-
istic scale of variation of the field x(t, σ), for example,
the length of the string; then, we formally define the
order of smallness as follows:

(49)

In this case, the order of smallness of û is determined
from Eqs. (46).

For a charged dielectric, when I = 0 and  = 0, we
obtain the following system of equations from (46) in
the nonrelativistic limit:

(50)

where Λ = 2cû + λ2. Note that these equations are
invariant under the Galilean transformations. Equa-
tions (50) can be resolved for the higher derivative only
if Λ ≠ –λ2. In this case, we have

(51)

The consistency condition for system (51) leads to the
following equation for Λ(t, σ):

(52)

Thus, fixing Λ(t, 0) and Λ'(t, 0), as well as x(0, σ) and
(0, σ) subject to the conditions

we can construct a unique solution x(t, σ) that satisfies
Eqs. (51). Recall that all the functions must be L-peri-
odic in the variable σ. This condition imposes con-
straints on the boundary conditions for the function
Λ(t, σ).

One can draw an instantaneous phase portrait for
Eq. (52) (see Fig. 3). This portrait shows that, if
Λ(t, 0) ≠ –λ2, then Λ(t, σ) ≠ –λ2 for all σ ∈  [0, L); i.e.,
the quantity 1 + Λ/λ2 does not change its sign.

ẋ
c
---  ! 1, lk∂σ

k 1+ x[ ] lx'˙
c

------ l ẋ̇

c2
----- 1.= = =

λ̇

λ2

c2
----- ẋ̇ Λx'' Λ'

ẋ̇ x'⋅
c2

-----------Λ+ x'++ 0, x'2 1,= =

λ2

c2
----- ẋ̇ Λx''

λ2Λ'

λ2 Λ+
---------------x'+ + 0, x'2 1.= =

Λ'

λ2 Λ+
--------------- 

  ' Λx''2

λ2
-----------– x'˙ 2

c2
------– 0.=

ẋ

x' 0 σ,( ) x' 0 σ,( )⋅ 1,=

x'˙ 0 σ,( ) x' 0 σ,( )⋅ 0,=
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(a)
p

Λ

–λ2

(b)
p

Λ–λ2

(c) p

Λ–λ2

Fig. 3. The instantaneous phase portrait for Eq. (52); here, p = Λ'/(λ2 + Λ). The circles indicate the singular points of the vector field.

(a) /c2 > x''2 (this case can be referred to as the case of small curvature of the string), (b) /c2 = x''2, and (c) /c2 < x''2.x'˙
2 x'˙

2 x'˙
2

For a uniformly charged string, λ = const, Eqs. (51)
and (52) are rewritten as

(53)

where Θ = ln|1 + Λ/λ2|.
Using similar arguments for an uncharged conduc-

tor with current, λ = 0 and I ' = 0, we obtain the follow-
ing equations for û ≠ 0 (this condition is an analogue of
the inequality Λ ≠ –λ2, which arises in the case of a
charged dielectric):

(54)

where Θ = ln|2c3û/I2|. The instantaneous phase portrait
for the second equation in (54) always has the same
form (with obvious redefinitions) as the instantaneous
phase portrait in the case of a weakly curved charged
dielectric (Fig. 3a). Therefore, periodic (in σ) solutions
to the second equation in (54) may only exist when
û(t, 0) < 0.

Let us find certain particular solutions to the equa-
tions obtained. Setting Θ'(t, σ) = 0 in Eqs. (53) and (54),
we obtain the system

(55)

In this case, the dynamics of a uniformly charged
dielectric and an uncharged conductor are described by
the same system of equations. Let us simplify the situ-
ation by assuming that u(t) = const. Then, there exists a
class of solutions of the form

(56)

ẋ̇
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---- 1 1 Λ

λ2
-----+ 
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Θ'' 1 1 Λ
λ2
-----+ 
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  x''2 x'˙ 2

c2
------–+ 0,=

ẋ̇

c2
---- 1 û( )eΘsgn+( )x'' Θ'x'+ + 0,=

Θ'' 1 û( )eΘsgn+( )x''2– x'˙ 2

c2
------– 0,=

ẋ̇ u2 t( )x''– 0, x'˙ 2 u2 t( )x''2, x'2 1.= = =

x t σ,( ) Vt x0 σ ut+( ),+=
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where V is a certain constant vector and x0(σ),  = 1
defines the initial configuration of the string. Substitut-
ing the general solution of the wave equation into the
remaining two equations, one can show that (56) pro-
vides the only possible solutions to Eqs. (55) for u =
const. Solutions (56) describe a string that “flows”
along itself with velocity u.

5. CONCLUSIONS

We have investigated the effective dynamics of a
thin electrically charged string with a current with
regard to the leading contribution of the self-action.
This approximation has allowed us to describe the
effective dynamics of a string in an external electro-
magnetic field in the form of second-order partial dif-
ferential equations and obtain their exact solutions for
certain simple models of a string in an electromagnetic
field of a special form.

We have not analyzed the question concerning the
stability of the solutions obtained. This problem may
become one of possible directions of further research.
Another direction of research may be the study of radi-
ation characteristics of an absolutely elastic charged
ring (a high-current beam of charged particles) in an
external uniform magnetic field; the existence of such a
radiation was discussed at the end of Section 3. More-
over, it would be interesting to find other solutions to
the effective equations of motion of a string or to carry
out a numerical analysis of these equations.
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Abstract—The two-loop self-energy correction to the ground-state energy levels of hydrogen-like ions with
nuclear charges Z ≥ 10 is calculated without the Zα expansion, where α is the fine-structure constant. The data
obtained are compared with the results of analytical calculations within the Zα expansion; significant disagree-
ment with the analytical results of order α2(Zα)6 has been found. Extrapolation is used to obtain the most accu-
rate value for the two-loop self-energy correction for the 1s state in hydrogen. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

As the simplest atomic system, a hydrogen-like ion
traditionally attracts the rapt attention of both theoreti-
cians and experimenters. In contrast to the hydrogen
atom, whose experimental investigation began in the
19th century, heavy hydrogen-like ions have become
accessible to experimental study relatively recently. At
present, high-accuracy spectroscopic measurements
are being made for the heaviest ions up to hydrogen-
like uranium. A vivid example is the measurement of
the ground-state Lamb shift in the hydrogen-like ura-
nium ion, whose accuracy has increased by a factor of
10 in the past decade. The error of the most accurate
experimental result [1] is 13 eV (about 5% of the com-
plete QED contribution); in the immediate future, the
accuracy of an experiment is expected to increase to
1 eV. This planned experiment is a stimulus for theoret-
ical studies of QED effects to the second order in fine-
structure constant α without the Zα expansion (Z is the
nuclear charge). A consistent allowance for these
effects is required to theoretically describe heavy
hydrogen-like ions with an adequate accuracy.

It can be inferred from the available Zα-expansion
terms that the two-loop self-energy (SE) correction
shown in Fig. 1 makes the largest contribution among
the second-order one-electron QED effects. Because of
slow convergence of the Zα expansion, the value of this
correction based on the available expansion terms and,
hence, the complete second-order QED correction are
uncertain even for moderately heavy ions. This justifies
the necessity of calculating the two-loop SE correction
without the Zα expansion.

Calculating this correction to all orders in Zα is also
topical for light ions, including hydrogen. Despite con-
1063-7761/05/10102- $26.000280
siderable efforts directed at calculating the terms of the
Zα expansion, the numerically large values of the coef-
ficients found suggest that its convergence is very slow
even for Z = 1. At present, the theoretical error of the
ground-state energy in the hydrogen atom originates
mainly from the highest Zα-expansion terms for the
two-loop SE correction [2]. It should be borne in mind
that the difficulty of calculating the expansion coeffi-
cients increases rapidly with their order. The recently
published results for all contributions of order α2(Zα)6

[2–4] were a breakthrough in this field. Performing
such calculations in the next order will probably be
unfeasible in the foreseeable future. Calculating the
two-loop SE correction without the Zα expansion is a
more realistic alternative to such calculations.

Let us briefly consider the results obtained to date
for the Zα-expansion coefficients of the two-loop SE
correction. The correction to the energy is traditionally
expressed in terms of the dimensionless function F
defined as follows (in units " = c = 1):

(1)

where n denotes the principal quantum number of the
state under consideration. The function F can be repre-

∆E m
α
π
--- 

 
2 Zα( )4

n3
--------------F Zα( ),=

(a) (b) (c)

Fig. 1. The two-loop self-energy correction.
 © 2005 Pleiades Publishing, Inc.
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sented as a series in Zα and L = ln(Zα)–2:

(2)

where Gh.o. denotes the contribution from all of the
highest terms in Zα,

The Zα-expansion terms known to date are given below
(see [5] for a review):

(3)

(4)

(5)

(6)

(7)

(8)

Let us now discuss the calculation of the two-loop
SE correction represented by the diagrams in Fig. 1
without using the Zα expansion. It is convenient to
divide the contribution of diagram (a) into two parts:
reducible and irreducible. The reducible part means the
contribution in which the intermediate-state energy in
the spectral decomposition of the mean electron propa-
gator is equal to the initial-state energy, while the irre-
ducible part means the residual. It can be shown that the
irreducible part remains invariant under covariant
gauge transformations. It is commonly analyzed sepa-
rately and is called the loop-after-loop correction. The
main reason for a separate analysis of this contribution
is that the calculations for it are much simpler than
those for the residual part of the two-loop SE correc-
tion, which below we call compact. The loop-after-loop
correction was first calculated to all orders in Zα by
Mitrushenkov et al. [6] for a number of heavy hydro-
gen-like ions. Subsequently, this correction was also
calculated by other teams [7, 8].

The compact part of the two-loop SE correction is
represented by the reducible part of the diagram in
Fig. 1a as well as by the diagrams in Figs. 1b (overlap-
ping diagram) and 1c (nested diagram). The first
attempts to calculate them to all orders in Zα were
made relatively recently by Mallampalli and Sapirstein
[9] and Goidenko et al. [10]. Since the authors of [10]
used a noncovariant renormalization procedure in their
calculations, the results obtained cannot be considered
reliable enough. Mallampalli and Sapirstein used a
completely covariant approach, but the actual calcula-
tion was performed only for a certain part of the com-
plete contribution. These authors divided the compact

F Zα( ) B40 Zα( )B50 Zα( )2+ +=

× L3B63 L2B62 LB61 Gh.o. Zα( )+ + +[ ] ,

Gh.o. Zα( ) B60 Zα …( ).+=

B40 ns( ) 1.409244…,=

B50 ns( ) 24.2668 31( ),–=

B63 ns( ) 8/27,–=

B62 1s( ) 16/27 16/9( ) 2,ln–=

B61 1s( ) 49.838317,=

B60 1s( ) 61.6 9.2( ).–=
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part of the two-loop SE correction into three contribu-
tions referred to as an M term, a P term, and an F term.
(For a detailed discussion of each of these terms, see
below.) Practical calculations were performed only for
the M and F terms; the M term was calculated only for
two ions with Z = 92 and 83 (due to the very long com-
putational time). The P term was not considered in that
paper, since its calculation required developing new
computational methods.

The study by Mallampalli and Sapirstein was con-
tinued in our paper [11], in which we calculated the P
term and obtained the complete two-loop SE correction
for Z = 92 and 83. In our subsequent papers [12, 13], we
performed the first full calculation of the two-loop SE
correction for the ground states of hydrogen-like ions
with Z ≥ 40. Since the calculation was performed only
for relatively high Z and since the calculations in these
papers were not accurate enough, we did not made a
detailed comparison with the analytical calculations
within the Zα expansion, and whether the results
obtained by different methods agree remained an open
question.

The calculations of the two-loop SE correction in
the range of low Z are complicated greatly by the
numerical cancellations, which increase rapidly with
decreasing Z. In this paper, we present a scheme for cal-
culating this correction that is suitable for calculations
in the range of low Z and perform an actual calculation
for Z ≥ 10. The data obtained are compared with the
results of analytical calculations within the Zα expan-
sion. We conclude that our results agree well with the
Zα-expansion terms in the orders α2(Zα)4 and α2(Zα)5,
but disagree with the existing results of order α2(Zα)6.
By extrapolating our data, we obtain the most accurate
result for the two-loop SE correction to the ground-
state Lamb shift in the hydrogen atom.

2. FORMALISM

Let us now consider in detail the two-loop SE cor-
rection. General formulas for the various contributions
to this correction can be easily obtained using the
method of two-time Green functions [14]. These for-
mulas were first derived in [15].

The expression for the loop-after-loop correction
(the irreducible part of the diagram in Fig. 1a) can be
written as

(9)

where (ε) = Σ(ε) – δm(1), Σ(ε) denotes the one-loop
SE operator, and δm(1) is the one-loop mass renormal-

∆ELAL

a〈 |γ0Σ̃ εa( ) n| 〉 n〈 |γ0Σ̃ εa( ) a| 〉
εa εn–

----------------------------------------------------------------,
n

εn εa≠

∑=

Σ̃
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ization counterterm. The one-loop SE operator is
defined as

(10)

where G is the Green function of the Dirac equation
with the Coulomb potential G(ε) = [ε – H(1 – i0)]–1,
H denotes the Dirac Hamiltonian, Dµν is the photon
propagator, αµ = (1, a) is the vector composed of the
Dirac matrices, and x12 = x1 – x2. As follows from
Eq. (9), the loop-after-loop correction can be calculated
by generalizing the numerical scheme developed to cal-
culate the first-order SE correction.

Note that we renormalize the mass by introducing
the mass counterterm in the system’s Lagrangian (see,
e.g., [16]). In this case, each (sub)graph that contributes
to the self energy is accompanied by the corresponding
contribution from the mass renormalization counter-
term.

The contribution from the overlapping (O) diagram
(Fig. 1b) is given by the following expression (below,
for simplicity, we imply the Feynman gauge of the pho-
ton propagator):

(11)

where c.t. denotes the corresponding contribution from
the mass renormalization counterterm. The quantity D
denotes the scalar part of the photon propagator in the
Feynman gauge,

(12)

where the choice of the phase of the square root is fixed

by the condition Im  > 0 and x12 = |x12|. The
vertex operator Λµ is defined as

(13)

Below, for simplicity, we omit the radial arguments in
the functions G, Σ, and Λ in the cases where they can be

Σ ε x1 x2, ,( ) 2iαγ0=

× ωDµν ω x12,( )αµG ε ω– x1 x2, ,( )αν,d

∞–

∞

∫

∆EO 2iα ω1 x1… x4D ω1 x13,( )dd∫d

∞–

∞

∫=

× ψa
† x1( )αµG εa ω1–( )γ0Λµ εa ω1– εa,( )

× ψa x4( ) c.t.,–

D ω x12,( )
i ω2 i0+ x12( )exp

4πx12
---------------------------------------------,=

ω2 i0+

Λµ εa ω1– εa,( ) 2iαγ0 ω2D ω2 x24,( )ανd

∞–

∞

∫=

× G εa ω1– ω2–( )αµG εa ω2–( )αν.
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restored unequivocally. The contribution from the
nested (N) diagram (Fig. 1c) can be written as

(14)

Finally, the reducible (red) contribution from the dia-
gram in Fig. 1a is given by the formula

(15)

where ∆ESE denotes the first-order SE correction,

The compact part of the two-loop SE correction can
be renormalized using the standard technique of free
QED by expanding the bound electron propagators in a
power series of the interaction with the nucleus. Anal-
ysis of the above expressions (see, e.g., [17]) indicates
that each of the contributions (11), (14), and (15) con-
tains ultraviolet (UV) divergences that cancel out in the
complete sum. Thus, the sum of all three contributions
to the energy shift,

(16)

is free from the UV divergences. The expressions for
the reducible and nested contributions also contain
infrared (IR) divergences. These IR divergences (also
called reference-state singularities) can emerge in
bound-state QED when the intermediate-state energy in
the spectral decomposition of the electron propagators
is equal to the initial-state energy. A detailed analysis of
the emerging IR divergences and a proof of their can-
cellation can be found in [13].

Let us now consider a general scheme for practical
calculations of the corresponding contributions. The
main problem is that the expressions containing the
bound electron propagators are much more convenient
to calculate in coordinate space, while the covariant
separation of the UV divergences is usually made in the
momentum representation for the free propagators. For
the first-order SE correction, it proves to be possible to
single out all UV divergences in the form of terms con-
taining no bound electron propagators (the so-called 0
and 1 potential terms; see [18, 19]). These contributions
are calculated in the momentum representation, while
the finite residual (the many-potential term) is consid-
ered in coordinate space. No such separation can be

∆EN 2iα ω1 x1… x4D ω1 x14,( )dd∫d

∞–

∞

∫=

× ψa
† x1( )αµG εa ω1–( )γ0Σ̃ εa ω1–( )

× G εa ω1–( )αµ x4( ) c.t.–

∆Ered ∆ESE a〈 |γ0 ∂
∂ε
-----Σ̃ ε( )

ε εa=
a| 〉 ,=

∆ESE a〈 |γ0Σ̃ εa( ) a| 〉 .=

∆Ecomp ∆EN ∆EO ∆Ered,+ +=
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made in the two-loop case, because there are overlap-
ping UV-diverging blocks in the overlapping and nested
diagrams. Nevertheless, the general strategy in this case
is still based on the expansion of the bound electron
operators in a power series of the interaction with the
Coulomb nuclear potential.

At the first step, we choose the subtractions com-
posed of the diagrams that contain the free rather than
bound electron propagators in such a way that the
point-to-point difference between the corresponding
contributions contains no UV divergences. (The point-
to-point difference means that these subtractions must
be performed at each point, i.e., for the integrand.) Fol-
lowing Mallampalli and Sapirstein [9], we call the
derived contribution an M term. It is schematically
shown in Fig. 2. The M term consists of three parts that
originate from the nested and overlapping diagrams and
the reducible part of the diagram in Fig. 1a. The sub-
tractions were chosen in such a way that each of these
three parts contained no UV divergences.

We must now take into account the subtracted dia-
grams. These diagrams naturally break up into two
parts. Some of them contain only the free electron prop-
agators and, hence, can be calculated using the standard
technique of free QED. The others contain the bound
electron propagators and constitute a bigger problem
for calculations. For these diagrams, we introduce addi-
tional subtractions that reduce the degree of their diver-
gence. The derived point-to-point difference is called a
P term [9]; the corresponding UV subtractions are
schematically shown in Fig. 3. The P term consists of
three parts, the first two of which arise from the nested
diagram, while the third arises from the overlapping
diagram. The latter part must be taken into account
twice, which corresponds to two equivalent subtrac-
tions in the M term. Let us illustrate the achieved reduc-
tion in the degree of divergence using the first differ-
ence in Fig. 3 as an example. It can be shown that this
(point-to-point) UV difference diverges only through
the inner SE loop, while the divergence originating
from the outer SE loop cancels out.

Finally, let us collect all of the remaining subtrac-
tions and call the derived contribution an F term
(Fig. 4). It consists of the diagrams that contain only the
free propagators.

Thus, we divided the compact part of the two-loop
SE correction into three contributions. The meaning of
this division is that each of these terms is calculated
using its own method. The M term is calculated in coor-
dinate space using an analytical representation for the
bound electron propagators. The F term is calculated in
momentum space using dimensional regularization and
Feynman parametrization. The P term is calculated in
the mixed coordinate–momentum representation, with
the bound electron propagators being calculated using
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
a finite basis set for the Dirac equation and the subse-
quent numerical Fourier transform.

2.1. The M Term: Formulation and Analysis 

As follows from Fig. 2, the M term consists of three
parts that we will call the nested, overlapping, and
reducible M contributions, respectively:

(17)∆EM ∆EN M, ∆EO M, ∆Ered M, .+ +=

Fig. 2. Schematic view of the UV subtractions for the M
term. The identity (∂/∂ε)(ε – H)–1 = –(ε – H)–2 is used for
the reducible part.

– – 2

–

– –

Fig. 3. Schematic view of the UV subtractions for the P
term.

∆ESE ×

Fig. 4. Graphical representation of the F term. The extreme
right diagrams in the first two rows must be taken into
account twice.

–

+

∆ESE ×

–

–

–

–

–
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We derive an expression for the nested M contribu-
tion from Eq. (14) using additional subtractions,

(18)

The subtractions are defined by the substitution

(19)

Here,

(20)

µa denotes the projection of the total moment of the
states ψa in Eq. (20), and Σ(2+) is the part of the one-loop
SE operator (10) that contains two or more interactions
with the Coulomb nuclear potential:

(21)

where the superscript denotes the order of the term
of  the potential expansion. The first part of subtrac-
tions (19) cancels the UV divergences, while their sec-
ond part cancels the IR divergences present in the com-
plete nested contribution (14). A direct analysis indi-
cates that the nested M contribution defined in this way
is finite.

Let us now discuss the choice of a contour of inte-
gration over ω1 in Eq. (18) (for simplicity, we assume
that a is the ground state). In the initial expression (14),
the integration over ω1 was along the real axis. How-
ever, for practical calculations, it is convenient to rotate
the contour of integration until it is parallel to the imag-
inary axis. In our calculations, we used a contour CLH

[19, 20] that consists of two parts, low-energy (CL) and
high-energy (CH). The low-energy part extends from
ε0 – i0 to –i0 over the lower edge of the cut of the proton
propagator and from i0 to ε0 + i0 over the upper edge of
its cut (for details, see [19]). The high-energy part is
defined as follows:

The parameter ε0, which divides the contour into two
parts, can be chosen arbitrarily within the range ε0 ∈

∆EN M, 2iα ω1 x1… x4dd∫d

C

∫=

× D ω1 x14,( ) ψa
† x1( )αµG εa ω1–( )γ0Σ εa ω1–( )[

× G εa ω1–( )αµψa x4( ) subtractions ] .–

G εa ω1–( )γ0Σ εa ω1–( )G εa ω1–( )

G εa ω1–( )γ0Σ 2+( ) εa ω1–( )G εa ω1–( )

– G a( ) εa ω1–( )γ0Σ 2+( ) εa( )G a( ) εa ω1–( ).

G a( ) E x1 x2, ,( )
ψa x1( )ψa

† x2( )
E εa– i0+

---------------------------------,
µa

∑=

Σ 2+( ) Σ Σ 0( )– Σ 1( ),–=

CH ε0 i0+ ε0 i∞) ε0 i∞– ε0 i0–,(+ +,[ ] .=
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(0, m + εa). In this paper, we chose this parameter to be
ε0 = εa/2.

To prove the possibility of deforming the contour of
integration in Eq. (18), we must show that the SE oper-
ator Σ(εa – ω1) can be analytically continued into the
required region of the complex ω1 plane. Such a proof
is presented in [13]. It is also shown in the latter paper
that an explicit expression for the SE operator that real-
izes this analytic continuation can be derived from
Eq. (10) by substituting CLH for the contour of integra-
tion in ω over (–∞, ∞). Thus, we conclude that Eq. (18)
remains valid if we substitute CLH for the contour of
integration over ω1 and take the analytic continuation of
the SE operator given above.

We derive an expression for the overlapping M con-
tribution from Eq. (11) using additional subtractions,

(22)

where the vertex operator is defined by Eq. (13) and the
subtractions are defined by the substitution (see Fig. 2)

(23)

Here, G(0) denotes the free Green function of the Dirac
equation, and G(1) is the first-order term in the expan-
sion of the Coulomb Green function in a power series
of the Coulomb potential VC:

(24)

It can be shown that expression (22) is finite.

Just as for the nested M contribution, it is convenient
to numerically calculate expression (22) using contour
CLH for integration over ω1. The fact that the vertex
operator Λµ(εa – ω1, εa) admits of the required analytic
continuation into the complex ω1 plane is proven in the
same way as for the SE operator. An explicit expression
for the analytic continuation of the vertex operator can
be conveniently chosen by substituting CLH for the con-
tour of integration in Eq. (13).

Finally, an expression for the reducible M contribu-
tion can be derived from Eq. (15) with the correspond-

∆EO M, 2iα ω1 x1… x4dd∫d

C

∫=

× D ω1 x13,( ) ψa
† x1( )αµG εa ω1–( )γ0Λµ εa ω1– εa,( )[

× ψa x4( ) subtractions ] ,–

G1G2G3 G1G2G3 G1G2
0( )G3

0( )– G1
0( )G2

0( )G3–

+ G1
0( )G2

0( )G3
0( ) G1

0( )G2
1( )G3

0( ).–

G 1( ) E x1 x2, ,( )

=  zG 0( ) E x1 z, ,( )VC z( )G 0( ) E z x2, ,( ).d∫
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ing subtractions. Using the explicit expression for the
SE operator, we obtain

(25)

where the subtractions are defined by the substitution

(26)

Here, the first and second parts of the subtractions can-
cel the UV and IR divergences, respectively. The choice
of a contour of integration in Eq. (25), along with the
numerical calculation of this contribution, is made in
the same way as for the first-order SE correction [19].

2.2. The P Term: Formulation and Analysis 

A general scheme of the UV subtractions in the P
term is presented in Fig. 3. The P term consists of three
parts,

(27)

which correspond to the three rows in Fig. 3. We will
refer to the individual contributions as the first nested P
term, the second nested P term, and the overlapping P
term, respectively. The latter contribution must be taken
into account twice, which corresponds to two equiva-
lent subtractions in the M term.

The main problem in calculating the P term is that
the subtractions shown in Fig. 3 do not cancel all UV
divergences. For this reason, we will write the general
expressions for the P contributions in the mixed coordi-
nate–momentum representation. In this case, we will
calculate the UV-diverging part in the momentum rep-
resentation (which facilitates the covariant separation
of the UV divergences) and the remaining part of the
expression in the coordinate representation. Using the
coordinate representation significantly facilitates the
analytical calculation of the integrals over angular vari-
ables and the subsequent numerical calculation of the
derived expressions.

The general expression for the first nested P term is

(28)

∆Ered M, 2iα∆ESE ω x1 x2 x3D ω x13,( )ddd∫d

C

∫–=

× ψa
† x1( )αµ G εa ω–( )G εa ω–( ) subtractions–[ ]

× αµψa x3( ),

G1G2 G1G2 G1
0( )G2

0( )– G1
a( )G2

a( ).–

∆EP ∆EN1 P, ∆EN2 P, 2∆EO P, ,+ +=

∆EN1 P, 2iα ω pd

2π( )3
------------- x1 x2dd∫∫d

C

∫=

× D ω x12,( )ψa
† x1( )αµ G E x1 p, ,( )[

× γ0Σ̃ 0( )
E p,( )G E p x2, ,( ) subtractions ]α µψa x2( ),–
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where E ≡ εa – ω, Σ(0) is the free SE operator,  =
Σ(0) – δm(1), the subtractions are defined by the substi-
tution

(29)

and the Green function in the mixed representation is
defined as

(30)

(31)

Note that the last part of subtractions (29) cancels the
IR divergences.

The second nested P contribution is given by the
expression

(32)

where q = p1 – p2, Γµ denotes the free vertex operator
(given by (13) in the case of zero external field), and the
subtractions are defined by the substitution

(33)

Again, the last part of subtractions (33) cancels the IR
divergences.

The expression for the overlapping P contribution is

(34)

where G(2+) denotes the part of the Coulomb Green
function that contains two or more interactions with the
Coulomb field: G(2+) = G – G(0) – G(1).

Σ̃ 0( )

GΣ̃ 0( )
E( )G GΣ̃ 0( )

E( )G G 0( )Σ̃ 0( )
E( )G 0( )–

– G 1( )Σ̃ 0( )
E( )G 0( ) G 0( )Σ̃ 0( )

E( )G 1( )–

– G a( )Σ̃ 0( ) εa( )G a( ),

G ε x1 p, ,( ) x2 ip x2⋅( )G ε x1 x2, ,( ),expd∫=

G ε p x2, ,( ) x1 ip– x1⋅( )G ε x1 x2, ,( ).expd∫=

∆EN2 P, 2iα ω
p1d

2π( )3
-------------

p2d

2π( )3
-------------∫d

C

∫=

× x1 x2D ω x12,( )VC q( )ψa
† x1( )dd∫

× αµ G E x1 p1, ,( )γ0Γ0 E p1; E p2,,( )[

× G E p2 x2, ,( ) subtractions ]α µψa x2( ),–

GΓ0 E E,( )G GΓ0 E E,( )G

– G 0( )Γ0 E E,( )G 0( ) G a( )Γ0 εa εa,( )G a( ).–

∆EO P, 2iα ω
p1d

2π( )3
-------------

p2d

2π( )3
--------------∫d

C

∫–=

× x1

iq– x1⋅( )exp

ω2 q2– i0+
--------------------------------ψa

† x1( )αµG 2+( ) E x1 p1, ,( )d∫

× γ0Γµ E p1; εa p2, ,( )ψa p2( ),
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Let us now discuss the divergences in the expres-
sions for the P contributions. Using dimensional regu-
larization, we first separate out the UV-diverging parts
of the free one-loop operators:

(35)

(36)

where the subscript R denotes the UV-finite part of the
corresponding contribution. Using these formulas, the
Ward identity (L(1) = –B(1)), and the Dirac equation, we
obtain expressions for the UV-diverging parts of the P
contributions:

(37)

(38)

Here, ∆Emany, D = 〈a |γ0Σ(2+)(εa)|a〉  is the many-potential
part of the first-order SE correction, and the subscript D
indicates that this contribution must be calculated in
space of extended dimension D, since it is multiplied by
a diverging renormalization constant. (Fortunately,
there is no need for its practical calculation, because it
cancels out in the sum with the F term.) Expressions for

∆ , ∆ , and ∆  can be derived from

Eqs. (28), (32), and (34) using the substitutions  

ΣR and Γµ  .

It should be noted that our choice of renormalization
constants B(1) and L(1) differs from the standard choice
(see, e.g., [16]). In Eqs. (35) and (36), we single out
only the UV-diverging part of the one-loop operators.
In this case, the constants B(1) and L(1) (in space of
dimension D = 4 – 2e) are given by the following
explicit expression:

(39)

where the constant Ce is

(40)

and µ is a unit parameter that has the dimensions of
mass and that was introduced so that the term with the
interaction in the system’s Lagrangian has the correct
dimensions at D ≠ 4. This choice of renormalization
constants allows the emergence of IR divergences in the

expressions for ∆ , ∆ , and ∆  to be
avoided.

Σ̃ 0( )
p( ) B 1( ) p m–( ) ΣR

0( ),+=

Γµ p1 p2,( ) L 1( )γµ Γ R
µ p1 p2,( ),+=

∆EN1 P, ∆EN2 P,+

=  B 1( )∆Emany D, ∆EN1 P,
R ∆EN2 P,

R ,+ +

2∆EO P, 2L 1( )∆Emany D, 2∆EO P,
R .+=

EN1 P,
R EN2 P,

R EO P,
R

Σ̃
Γ R

µ

B 1( ) L 1( )–
αCe

4πe
----------,= =

Ce Γ 1 e+( ) 4π( )e µ2

m2
------ 

 
e

=

EN1 P,
R EN2 P,

R EO P,
R
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Taking into account the Ward identity, we find that
the P term can be represented by the sum

(41)

where only the first term diverges.

It can be shown that the IR part of subtractions (29)
and (33) in the P term cancels out completely with the
corresponding part of subtractions (19) and (26) in the
M term. Therefore, no need arises to consider the sub-
tracted IR-diverging terms separately.

For the convenience of numerically calculating the
renormalized expressions (28), (32), and (34), the con-
tour of integration over ω should be rotated until it is
parallel to the imaginary axis. In contrast to contour
CLH , which was used to calculate the M term, we used
the standard Wick rotation of the contour ω  iω to
calculate the P contributions. This deformation of the
contour gives rise to the so-called pole contributions
that originate from the intermediate states in the elec-
tron propagators with the energy εn = εa . A detail dis-
cussion of this method of contour rotation and the
expressions emerging in this case can be found in [11].

2.3. The F Term: Formulation and Analysis 

The set of diagrams that contribute to the F term is
shown in Fig. 4. Recall that each (sub)graph contribut-
ing to the self-energy is accompanied by the corre-
sponding mass renormalization counterterm. The F
term is peculiar in that the corresponding diagrams con-
tain only the free electron propagators. Therefore, it
was calculated in momentum space using the standard
technique of free QED. The UV divergences were reg-
ularized by passing to space of extended dimension
D = 4 – 2e.

The diagrams presented in Fig. 4 can be divided into
three parts. The first part consists of the nested and
overlapping diagrams containing no interaction with
the Coulomb field in the electron propagators. We will
call it the 0-potential F term; the corresponding contri-
butions will be marked by the subscript zero. The sec-
ond part consists of the diagrams containing one Cou-
lomb interaction; it is called the 1-potential F term
(one). Finally, the remaining part is called the reducible
F contribution (red). Thus,

(42)

The expression for the 0-potential F contribution

∆EP L 1( )∆Emany D, ∆EN1 P,
R+=

+ ∆EN2 P,
R 2∆EO P,

R ,+

∆EF ∆Ezero
2( ) ∆Eone

2( ) ∆Ered
zero.+ +=
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can be written as

(43)

where p = (εa, p) is the 4-dimensional momentum,

 =  – δm(2),  denotes the free two-loop SE
operator, and δm(2) is the two-loop mass renormaliza-
tion counterterm. The free two-loop SE operator con-
sists of two parts that arise from the nested (N) and
overlapping (O) diagrams. The corresponding contribu-
tions are given by the expressions

(44)

(45)

where  = pµγµ,  =  – δm(1),  and (p1, p2)
denote the free one-loop SE and vertex operators, and
the subscript D emphasizes that they must be calculated
in space of extended dimension. The general structure
of the UV divergences in the free two-loop SE operator
is given by the expression

(46)

where  denotes the renormalized free one-loop SE
operator calculated in space of physical dimension, and
the two-loop renormalization constant is

(47)

The one-potential F term can be expressed in terms
of the corresponding contribution in the two-loop SE
operator as follows:

(48)

∆Ezero
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-------------ψa p( )Σ̃zero
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2
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2( ) p( ),+

ΣR 4,
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B 2( ) α2Ce
2

16π2
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2e
2

--------– 3
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2π( )6
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where p1 = (εa, p1), p2 = (εa, p2), and q = p1 – p2. The

one-potential two-loop SE operator  is represented
by four nonequivalent diagrams in Fig. 4, which can be
derived from two free diagrams by adding the interac-
tion with the Coulomb field at all the possible positions.
When the interaction is added to the central propagator,
we will call this contribution a ladder one; otherwise, it
will be called a side one. The side contributions must be
taken into account twice to allow for the equivalent dia-
grams. Let us now give the general expressions for the
one-potential contributions:

(49)

(50)

(51)

(52)

We also give the general structure of the UV diver-
gences in the one-potential term:

(53)

where (p1, p2) is the free vertex operator calculated
in space of dimension 4, and the renormalization con-
stant L(2) is related to the constant B(2) by the Ward iden-
tity L(2) = –B(2).
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Finally, let us consider the last part of the F term.
The reducible F contribution can be written as

(54)

where ∆ESE, D is the first-order SE correction calculated
in space of extended dimension. By separating out
explicitly the contributions in the limit e  0, we
obtain

(55)

where

and

are the 0- and 1-potential parts of the one-loop SE cor-
rection.

Finally, let us gather together the 0-potential,
1-potential, and reducible F contributions and write the
final result as

(56)

We used the Ward identity and the Dirac equation to
derive this expression. The diverging part of Eq. (56)
cancels out in the sum with the P term (see (41)).

3. THE SCHEME OF CALCULATIONS

The general scheme for calculating the individual
contributions to the two-loop SE correction is described
in [13]. The goal of this paper is to calculate this correc-
tion in the range of low nuclear charges Z, where the
calculations are complicated significantly by the
emerging numerical cancellations. In this section, we
describe the main points that allowed us to achieve a
relatively high accuracy of calculations in the range of
low Z.

The calculation of the M term is most exacting from
the standpoint of computational resources. This is
because after the integrations over angular variables in
Eqs. (18) and (22) and allowance for the selection rules,
the corresponding expressions are represented as a dou-
ble infinite sum over partial waves. To achieve the
required accuracy of the result and to keep the total time
of the calculation within reasonable limits, we must
separate the parts that contain the dominant contribu-

∆Ered
zero ∆ESE D, a〈 |γ0 ∂

∂ p0
--------ΣD

0( ) p( )
p

0 εa=

a| 〉 ,=

∆Ered
zero αCe
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4πe
---------- ∆Ezero ∆Eone+( )–=

+ B 1( )∆Emany D, ∆Ered R,
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∆Eone a〈 |VC q( )γ0Γ R 4,
0 a| 〉=

∆EF B 1( )∆Emany D, ∆Ezero R,
2( )+=

+ ∆Eone R,
2( ) ∆Ered R,

zero .+
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tion in the limit of low Z and that can be calculated
more easily than the complete expressions for ∆EN, M
and ∆EO, M .

For the nested M contribution, this part can be
derived from Eq. (18) by the substitution

(57)

After this substitution, the double summation over par-
tial waves is reduced to a single summation, and the
general structure of the expression is simplified; as a
result, the corresponding numerical calculation can be
performed very efficiently. For the overlapping M term,
we chose the dominant contribution as follows. Denot-
ing the relativistic angular parameters of the first, sec-
ond, and third electron propagators in Eq. (22) by κ1,
κ2, and κ3, respectively, and the angular momenta of
the first and second virtual photons by l1 and l2, we sep-
arated out the contribution with κ1 = κa , κ2 = κ3, and
l1 = 0 and the (identical) contribution with κ3 = κa ,
κ1 = κ2, and l2 = 0. Clearly, these contributions contain
only the single summation over partial waves and,
hence, can be calculated with a better accuracy than the
complete expression.

Let us now consider the general scheme for calculat-
ing the P term. To reduce the expression for the first
nested P contribution to a form convenient for a numer-
ical calculation, we rewrite it as

(58)

Here, we use the spectral representation for the electron
propagators, and the subtractions are defined by
Eq. (29). Let us now introduce the matrix S:

(59)

Its Fourier transform is defined as

(60)

G εa ω1–( )γ0Σ εa ω1–( )G εa ω1–( ) G a( ) εa ω1–( )

× γ0 Σ 2+( ) εa ω1–( ) Σ 2+( ) εa( )–[ ] G a( ) εa ω1–( ).

∆EN1 P,
R 2iα ω pd

2π( )3
-------------∫d

C

∫=

×
an2〈 |αµαµD ω( ) n1a| 〉

εa ω– εn1
–( ) εa ω– εn2

–( )
----------------------------------------------------------------ψn1

† p( )
n1 n2,
∑

∫ × γ0ΣR
0( ) εa ω– p,( )ψn2

p( ) subtractions– .

S ω x1 x2, ,( )
an2〈 |αµαµD ω( ) n1a| 〉

εa ω– εn1
–( ) εa ω– εn2

–( )
----------------------------------------------------------------

n1n2

∑=

× ψn2
x1( )ψn1

† x2( ).

S ω p1 p2, ,( ) x1 x2 ip2 x2⋅ ip1– x1⋅( )expdd∫=

× S ω x1 x2, ,( ).
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We can now write Eq. (58) as

(61)

After the analytical integrations over angular variables,
we used this expression for our numerical calculation.
The matrix S was constructed initially in the coordinate
representation and subsequently in the momentum rep-
resentation using a finite basis set for the Dirac equation
constructed from B-splines [21]. The use of a basis set
satisfying the dual kinetic balance relations [22] was an
important point for achieving the required accuracy of
our calculations in the range of low Z.

To facilitate the numerical calculation, the expres-
sion for the second nested P contribution should be
written in a form similar to (61):

(62)

where the subtractions are defined by Eq. (33). After the
analytical integrations over angular variables, we used
this expression for our numerical calculation. In con-

trast to the calculations for ∆ , this calculation
contains two additional numerical integrations (a triple
integral over p1, p2, and ξ =  ·  instead of a single
integral over p). The range of large momenta p1 and p2
presents a considerable difficulty in performing the
numerical integrations. The reason is that the Green
function constructed using a finite basis set in the coor-
dinate representation is not smooth enough (compared
to the exact Green function). After applying the numer-
ical Fourier transform, this nonsmoothness manifests
itself in the form of oscillations at large momenta,
which, in turn, leads to an insufficient stability of the
numerical integrations in this range. This problem was
solved by choosing the subtractions whose behavior at
large momenta approached the behavior of the inte-
grand in Eq. (62), but whose structure was simpler and
admitted of a more accurate numerical calculation. Our
chosen set of subtractions is given by the following sub-
stitution in Eq. (62):
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2π( )3
-------------VC q( )∫d
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(63)

Clearly, this difference (as a function of p1 and p2)
decreases well at p1 ≈ p2 and p1, 2 @ ω. At the same time,
each of the subtracted terms is easier to calculate
numerically than the initial expression (62).

We numerically calculated the overlapping P term
using Eq. (34) after the analytical integrations over
angular variables. To improve the stability of the
numerical integrations in the range of large momenta p
and q, we used the subtraction

(64)

The numerical calculation of the subtracted contribu-
tion is facilitated greatly by the fact that the integration
for it over ω in Eq. (34) is performed analytically.

4. RESULTS AND DISCUSSION

Table 1 presents our numerical results for the indi-
vidual contributions to the two-loop SE correction to
the ground-state energy of hydrogen-like ions with
nuclear charges Z ≥ 10. The calculations were per-
formed in the Feynman gauge for the point nuclear
charge model. In this paper, we calculated the correc-
tion for Z = 10–30 and significantly increased the accu-
racy for Z = 40, 50, and 60 compared to our previous
calculations of this correction [12, 13]. The numerical
data for Z ≥ 70 in Table 1 were taken from [13]. The
results of our calculations to all orders in parameter Zα
can be compared with the data obtained within the Zα
expansion. This comparison is shown in Fig. 5, where
the dashed line indicates the contribution from all of the
known expansion terms (Eqs. (3)–(8)), while the solid
line and circles represent the results of our calculations
(in units of the dimensionless function F(Zα) defined
by Eq. (1)). We see that the numerical data show a
smooth Z dependence and visually tend to the well-
known result as Z  0. Note that the physical
(~(Zα)4) dependence of the complete correction arises
in our calculations from a delicate cancellation between
the individual contributions (see Table 1). The observed
agreement between the numerical values for the com-
plete correction with the first Zα-expansion terms is an
argument for the reliability of our results.

To make a more detailed comparison of the numeri-
cal data with the first Zα-expansion terms, let us sepa-

–
1
2
--- Γ R
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– Γ R
0 εa p1; εa p1, ,( ) ]

–
1
2
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– Γ R
0 εa p2; εa p2, ,( ) ] .

Γ R
0 εa ω– p1; εa p2, ,( ) Γ R
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– Γ R
0 εa p1; εa p2, ,( ).
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rate the contribution of all orders starting from (Zα)5

from our results:

(65)

Our numerical results for the function (Zα) are pre-
sented in Fig. 6. The overlapping on the vertical axis

denotes the analytical value of (0). A quantitative
comparison with the analytical results was made by
extrapolating the data to the point with Z = 0. For the
extrapolation, we chose a procedure that was first used
by Mohr [23] and has recently been described in detail

F̃ Zα( )
F Zα( ) B40–

Zα
------------------------------ B50 Zα …( ).+= =

F̃

F̃

F

1

0

–1

–2

–3

0 20 40 60 80 100
Z

Fig. 5. The two-loop SE correction in all orders in Zα (cir-
cles and solid line) and the results obtained within the Zα
expansion (dashed line).
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in [24]. This extrapolation applied to our data (the
points with Z = 10 and Z = 15 were not used because of
the large numerical error) reproduces the analytical
value for the coefficient B50 with an accuracy of 15%.
This relatively large extrapolation error results from the
presence of powers of ln(Zα) in the order (Zα)6 and the
absence of numerical results in the range of low Z.
Based on the above analysis, we may conclude that our
data confirm the analytical results for the expansion
coefficients of order (Zα)4 and (Zα)5.

To make a comparison with the analytical calcula-
tions in the next order in Zα, let us separate the residual
Gh.o.(Zα) defined by Eq. (2) from our results. The

(F(Zα) – B40)/Zα

–5

–20

–25
0 20 40 60 80 100

Z

–15

–10

Fig. 6. Numerical results for the function (Zα) defined by
Eq. (65). The overlapping on the vertical axis denotes the
analytical value of this function at Z = 0.

F̃

Table 1.  The individual contributions to the two-loop SE correction

Z ∆ELAL ∆EM Sum

10 –0.3577 822.14(2) –721.34(12) –100.19(10) 0.25(16)

15 –0.4951 292.902(13) –235.205(70) –57.366(48) –0.164(85)

20 –0.6015 136.911(7) –102.026(55) –34.764(16) –0.481(58)

30 –0.7565 44.729(3) –29.410(25) –15.465(5) –0.903(26)

40 –0.8711 19.505(3) –11.575(30) –8.253(5) –1.194(31)

–11.41(15)a –8.27(18)a –1.05(23)a

50 –0.9734 10.025(2) –5.488(26) –5.001(3) –1.437(26)

–5.41(8)a –4.99(6)a –1.34(10)a

60 –1.082 5.723(1) –2.970(18) –3.341(2) –1.670(18)

–2.93(4)a –3.342(21)a –1.63(4)a

70 –1.216 3.497(1) –1.757(25) –2.412(11) –1.888(27)

83 –1.466 1.938 –1.057(13) –1.764(4) –2.349(14)

92 –1.734 1.276 –0.812(10) –1.513(3) –2.783(10)

100 –2.099 0.825 –0.723(7) –1.384(3) –3.381(8)

Note: All of the data are given in units of F(Zα). a The data from [13].

∆EF
R ∆EP

R

ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005



TWO-LOOP SELF-ENERGY CORRECTION IN A STRONG COULOMB NUCLEAR FIELD 291
numerical data for this function are shown in Fig. 7. We
see that the visual limit of Gh.o.(Zα) at low Z is approx-
imately twice that obtained by Pachucki and Jents-
chura [2] for the coefficient B60 = –62(9). Thus, we may
conclude that our data disagree with the available ana-
lytical results in the order (Zα)6. At present, we cannot
unambiguously determine which of the coefficients
(B60, B61, B62, or B63) is responsible for the disagree-
ment. Already after the preliminary results of our calcu-
lations had been obtained, the result from [3] (Eq. (7))
for the coefficient B61 was found by Pachucki [25] to be
incomplete. The missing contribution to B61 is currently
being calculated. It may well be that this extra term will
restore the agreement between the results of different
methods for calculating the two-loop SE correction.

Our results for the higher order contribution
Gh.o.(Zα) can be used to improve the existing results for
the two-loop SE correction in ions with Z < 10. The
hydrogen atom is particularly important from a practi-
cal point of view. Applying the extrapolation procedure
described above to the data with Z ≥ 20 in Fig. 7 yields
the following result for Z = 1:

(66)

This error was obtained by assuming that the possible
additional contribution to the coefficient B61 does not
exceed 10. Result (66) differs significantly from the

Gh.o. 1α( ) 127– 30%.±=
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previous estimate of the higher order contribution
obtained in [2] within the Zα expansion:

(67)

This difference changes the theoretical ground-state
Lamb shift in the hydrogen atom by 7 kHz.

The contributions from the various corrections to
the ground-state Lamb shift in several hydrogen-like
ions are given in Table 2. By tradition, the term “Lamb
shift” is defined somewhat differently for light and
heavy ions. This is because for light ions it is natural to
consider the shift relative to the Dirac energy level with
the correct dependence on the reduced mass (thereby

Gh.o. 1α ; old( ) 61.6– 15%.±=

Gh.o.

0

–100

–120
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Z

–60

–20
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–80

Fig. 7. Numerical results for the function Gh.o.(Zα) defined
by Eq. (2).
Table 2.  The individual contributions to the ground-state Lamb shift in hydrogen-like ions

Z = 1 Z = 54 Z = 79 Z = 92

QED effects, ~α 8168514 43.841 156.48 266.42

Two-loop SE correction, ~α2 2327(4) –0.097(7) –0.67(1) –1.56(1)

Other QED effects, ~α2 –1603 –0.005(9) 0.08(11) 0.30(33)

QED effects, ~α3 2

Finite nuclear size 1163(32)a 3.181(7) 49.11(11) 198.33(52)

1253(50)b

Recoil 2389 0.187 0.33 0.46

Nuclear polarization 5 –0.19(9)

Complete theoretical value 8172797(32)(4)a 47.107(13) 205.33(16) 463.76(62)

8172888(50)(4)b

Experimental value 8172837(22)c 54(10)d 202(8)e 468(13)f

460.2(4.6)g

Note: The data are given in kHz in the second column and in eV in the third, fourth, and fifth columns. a rp = 0.862(12) Fm [26]; b rp =

0.895(18) Fm [27]; c a combination of results from [28, 29]; d data from [31]; e data from [32]; f data from [1]; g data from [33].
SICS      Vol. 101      No. 2      2005



292 YEROKHIN et al.
taking into account much of the recoil effect). For
heavy ions, it makes no sense to separate out the non-
relativistic part of the recoil effect. Thus, to obtain the
ground-state energy of the hydrogen atom, we must add
the following to the Lamb shifts listed in Table 2:

(68)

where M = m + mN is the atomic mass, mN is the nuclear
mass, and mr = mmN/(m + mN) is the reduced mass. The
function f(n, j) is given by the expression

(69)

where n is the principal quantum number,

(70)

and κ is the relativistic angular parameter of the Dirac
equation. To obtain the value for the ground-state
energy level of the electron in heavy hydrogen-like
ions, the following must be added to the Lamb shifts
listed in Table 2:

ED = mf(n, j). (71)

An overview of the current status of the theory for
energy levels of the hydrogen atom can be found in [5].
The two-loop SE correction for Z = 1 given in Table 2
was calculated by taking into account the result
obtained for Gh.o.(1α) in this paper. The error of the cor-
rection corresponds to that in Eq. (66). The nuclear size
effect is given for two proton charge radii: rp =
0.862(12) Fm, which was obtained in the original paper
[26], and rp = 0.895(18) Fm, which was obtained from
a recent analysis of the available experimental data on
electron–proton collisions [27]. Note that we do not use
the more accurate value for the proton radius recom-
mended in [5], since it is based largely on the compari-
son of the theoretical and experimental Lamb shifts in
hydrogen. Note also that the QED corrections given in
Table 2 for hydrogen include a part of the recoil effect
that is taken into account by introducing the reduced
mass in the corresponding formulas (for details,
see [5]). The complete theoretical Lamb shifts for
hydrogen contain two errors: the first corresponds to
the uncertainty in the experimental proton charge
radius, while the second is a purely theoretical error and
originates from the two-loop SE correction. Since the
first error is much larger than the second error, we can
extract the proton charge radius from the comparison of
the theoretical and experimental Lamb shifts. This
method of determination yields

rp = 0.877(8) Fm, (72)

EM M f n j,( ) 1–[ ] mr f n j,( ) 1–[ ] 2 mr
2

2M
--------,–+=

f n j,( ) 1 Zα( )2

n δ–( )2
------------------+

1/2–

,=

δ κ κ2 Zα( )2–[ ] 1/2
,–=
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which is very close to the value of rp = 0.875(7) rec-
ommended in [5]. The proton radius can be deter-
mined more accurately from a muonic hydrogen
experiment [30].

Table 2 also gives the contributions from the indi-
vidual corrections to the ground-state Lamb shift for
several heavy hydrogen-like ions. A detailed analysis of
each of these contributions can be found in our previous
paper [13]. In this paper, we present updated results for
the nuclear size effect obtained from the most recent
data for the charge radii of nuclei and their errors [34].
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Abstract—Phase transitions in the three-dimensional diluted Ising antiferromagnet in an applied magnetic
field are analyzed numerically. It is found that random magnetic field in a system with spin concentration below
a certain threshold induces a crossover from second-order phase transition to first-order transition to a new
phase characterized by a spin-glass ground state and metastable energy states at finite temperatures. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

Critical behavior of disordered systems with
quenched disorder has been the subject of much theo-
retical and experimental interest, because the presence
of quenched defects in most real solids modifies their
thermodynamic characteristics, including critical
behavior. It is well known that quenched disorder man-
ifests itself by temperature fluctuations in ferro- and
antiferromagnetic systems in the absence of external
magnetic field or by magnetic field fluctuations in anti-
ferromagnets in uniform magnetic field.

In the former case, quenched disorder affects the
properties of only those homogeneous magnetic
materials whose specific heat is divergent at the critical
point [1]. Otherwise, the presence of defects does not
change the critical behavior of magnets. This criterion
applies only when the effective Hamiltonian near the
critical point is isomorphic to the Ising model Hamilto-
nian. Disorder-induced critical behavior of the Ising
model was analyzed in numerous recent studies [2]. For
dilute Ising-like systems, it was found that theoretical
calculations are in good agreement with experimental
results and Monte Carlo simulations.

Despite extensive theoretical and experimental stud-
ies of random-field magnets conducted over the past
twenty years [3], very few facts concerning their behav-
ior have been established. In particular, the nature of
phase transition in the random-field Ising model
remains unclear, and the currently available theoretical
results in this area disagree with experiment. The only
theoretically proved fact is that the upper critical
dimension for this phase transition is six (i.e., critical
phenomena in systems of higher dimension are
described by mean field theory) [3], whereas the critical
dimension is four for homogeneous systems. While it
had been argued that the lower critical dimension dl can
1063-7761/05/10102- $26.000294
be both dl = 2 [4] and dl = 3 [5] (i.e., there is long-range
order at finite temperatures if the system’s dimension is
higher), specialists came to the conclusion that dl = 2
after the publication of [6, 7]. However, the nature of
phase transition in the three-dimensional random-field
Ising model remains unclear. According to [8, 9], it is a
first-order phase transition even at very low random-
field strengths; according to [10, 11], it is a second-
order transition.

The effect of random fields on the behavior of mag-
netic systems is described by using two qualitatively
equivalent models: the ferromagnetic random-field
Ising model (RFIM) [12, 13] and the Ising diluted anti-
ferromagnets in a field (DAFF) [14]. Real random-field
magnets are antiferromagnets with quenched nonmag-
netic impurities. Their behavior includes manifesta-
tions of both antiferromagnetic interaction between
nearest neighbor atoms and ferromagnetic interaction
between next-nearest neighbor atoms. The structure of
an antiferromagnet can be represented as several inter-
penetrating ferromagnetic sublattices such that the total
magnetization of the antiferromagnet is zero even
though each ferromagnetic sublattice is magnetically
ordered at a temperature below the Neél temperature.
Examples of two-sublattice antiferromagnets are the
following materials: NiO, MnO, Fe2O3, and MnF2.
Examples of random-field magnets include the uniaxial
Ising-like antiferromagnets MnF2 and FeF2 diluted with
zinc atoms in an external magnetic field [15].

2. MODEL

In this study, a Monte Carlo method is used to sim-
ulate the thermodynamic behavior of a diluted antifer-
romagnetic Ising model in an applied magnetic field on
the simple cubic lattice by taking into account next-
 © 2005 Pleiades Publishing, Inc.
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nearest-neighbor interaction. The Hamiltonian of the
model has the form

(1)

where σi = ±1 is the spin located at site i; µ is the Bohr
magneton; J1 = 1 and J2 = –1/2 characterize antiferro-
magnetic nearest-neighbor and ferromagnetic next-
nearest-neighbor exchange couplings, respectively; h is
the strength of the uniform magnetic field; and pi and pj

are random variables characterized by the distribution
function

(2)

which are introduced to describe quenched nonmag-
netic impurity atoms vacancies distributed over the lat-
tice and characterized by the concentration cimp = 1 – p,
where p is spin concentration. For p = 1.0, the model
with competing interactions has been studied by Monte
Carlo methods for over twenty years [16, 17]. The first
study of effects of disorder on critical behavior based
on this model was presented in [18]. For the DAFF
mentioned above [13], competition between ferromag-
netic order parameters was not taken into account. This
model provides the most realistic physical representa-
tion. Since the strength of random-field effects is deter-
mined by impurity concentration and external field
strength both in the model and in real magnets, the
parameters of the model can be compared to those of
real physical experiments on Ising diluted antiferro-
magnets. However, an analogous comparison of the
random field with the impurity concentration in a sam-
ple and the applied field strength is difficult to perform
for the ferromagnetic random-field Ising model
(RFIM), which is most widely used in numerical simu-
lations. Therefore, random field variation in RFIM can-
not be quantitatively compared with structural disorder
in real systems, which is shown here to be the key factor
that controls phase transitions.

An antiferromagnet is characterized by the stag-
gered magnetization Mstg defined as the difference of
the magnetizations of the two sublattices, which plays
the role of an order parameter. To determine the type of
phase transition, we calculate the Binder cumulant [19]

(3)

where angle and square brackets denote statistical aver-
aging and averaging over disorder realizations. The cal-
culation of the cumulant is a good test for the order of
phase transition: the cumulants plotted versus tempera-

H J1 pi p jσiσ j J2 pi pkσiσk µh piσi,
i

∑+
ik

∑+
ij

∑=

P pi( ) pδ pi 1–( ) 1 p–( )δ pi( ),+=

U
1
2
--- 3

Mstg
4〈 〉[ ]

Mstg
2〈 〉[ ] 2

-----------------------–
 
 
 

,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ture have a distinct point of intersection in the case of
second-order transition, whereas those corresponding
to first-order phase transition have a characteristic
shape and do not intersect.

We also examine spin-glass states. It is well known
that spin glasses are characterized by transition to a
phase with an infinite number of metastable states
separated by potential barriers in the thermodynamic
limit [20]. The complex magnetic ordering in such sys-
tems can be described in terms of the spin-glass order
parameter

(4)

where α and β refer to the spin configurations corre-
sponding to replicas of the simulated disordered system
characterized by equal temperatures, but different ini-
tial disorder realizations.

To obtain correct values of thermodynamic charac-
teristics of critical behavior, both statistical averaging
and averaging over disorder realizations must be per-
formed only after the system has thermalized. Critical
behavior of disordered systems is characterized by
anomalously long relaxation times, which rapidly
increase with the size of the simulated system. To reach
equilibrium at near-critical temperatures and determine
the corresponding thermodynamic characteristics, the
system was quenched with a temperature step of ∆T =
0.1 starting from a temperature at which no metastable
states had been obtained in any sweep. At each temper-
ature step, a relaxation regime was computed in
5000 steps and averaging was performed in 10000 steps
by using the spin configuration obtained at the preced-
ing step as an initial condition. This procedure was exe-
cuted to obtain a stable equilibrium at each temperature
and avoid metastable states [18].

For each lattice size L, thermodynamic characteris-
tics were computed for constant h and p by ensemble-
averaging the results of five sweeps executed for differ-
ent initial spin configurations corresponding to a partic-
ular disorder realization and then averaging over 10 to
20 different disorder realizations.

3. RESULTS

We examined the temperature dependence of sev-
eral thermodynamic characteristics of three-dimen-
sional Ising antiferromagnets in a wide range of impu-
rity concentrations for systems having a size varying
from L = 8 to L = 64 in applied magnetic fields of a
strength between h = 1 and h = 4.

Our analysis revealed several intervals of p corre-
sponding to different behavior for each value of h.
Second-order transition between paramagnetic and
ferromagnetic phases is observed at Tc(h, p) when
pu < p < 1 [18], where pu is the vacancy percolation

qs
1

pL3
--------- σi

ασi
β〈 〉[ ] ,=
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Fig. 1. Temperature dependence of the Binder cumulant on lattices with L = 8 (j), 16 (m), 24 (d), 32 (h), 48 (s), and 64 (n):
(a) p = 0.5, h = 1; (b) p = 0.725, h = 3; (c) p = 0.8, h = 4; (d) p = 0.5, h = 3.
threshold (pu = 0.83 for the present model). When pc <
p < pu, where pc is the magnetic percolation threshold
(pc = 0.17 for the present model), there exist such
p(L', h) that the computed quantities exhibit behavior
characteristic of second- and first-order phase transition
if p > p(L', h) and p < p(L', h), respectively, on lattices
with L < L'. The value of p(L', h) increases with h and
L', approaching the threshold pu = 0.83.

This size-dependent behavior is explained by the
existence of interpenetrating spin and vacancy clusters
whose fractal dimensions vary between 0 and 3,
depending on spin concentration. Therefore, the size-
dependent parameterization of transition from long-
range order to domain structure with characteristic size
Lc by

(5)

proposed for Ising-like systems in [21], where hr is the
random-field amplitude, J is the exchange coupling,

hr

J L( )
-----------

hr

JL
2 df–( )/2

----------------------, Lc
J
hr
---- 

  2/ 2 df–( )
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and df is interpreted as the fractal dimension of the spin
cluster, can be used to predict that antiferromagnetic
long-range order breaks down at df < 2.

Figures 1–4 illustrate the existence of boundaries
separating spin-concentration intervals characterized
by different strength of random-field effects for sys-
tems with L ≤ 64 in applied magnetic fields of strength
between h = 1 and h = 4.

Figure 1 shows the temperature-dependent Binder
cumulants calculated for several lattices with p = 0.5 for
h = 1, with p = 0.5 and 0.725 for h = 3, and with p = 0.8
for h = 4. For spin concentrations close to pu, the Binder
cumulants do not intersect only if L ≥ 64. When p = 0.5
and h = 3, no intersection of Binder cumulants is
observed for lattices of all sizes used in the computa-
tions. Comparing Figs. 1a–1c, we see that the size-
dependent change in the behavior of Binder cumulants
due to the increase in field strength from h = 1 to h = 4
(increasing random-field effects) corresponds to the
spin concentration increasing from p = 0.5 to p = 0.8.

For systems with p < p(L', h), the behavior of Mstg(T)
(Fig. 2) strongly depends on the lattice size for all val-
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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ues of h used in the computations. The decrease in stag-
gered magnetization with increasing L points to the
absence of an antiferromagnetic ground state. Further-
more, the insignificant increase in total magnetization
M with increasing L (Fig. 3a) indicates that the system
breaks up into antiferromagnetic domains of size L < L'
with nearly compensated magnetizations. As the ran-
dom-field effects increase with impurity concentration
and applied magnetic field, both number and size of
antiferromagnetic domains increases (Fig. 2c) and both
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Fig. 2. Temperature dependence of staggered magnetization
on lattices with L = 8 (j), 16 (m), 24 (d), 32 (h), 48 (s), and
64 (n): (a) p = 0.5, h = 1; (b) p = 0.725, h = 3; (c) p = 0.5,
h = 3.
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number and size of ferromagnetic ones increases
(Fig. 3b), while it holds that Mstg + M < 1.

To further elucidate the properties of systems with
pc < p < pu, we examined the temperature dependence
of the spin-glass order parameter. The results obtained
for several disorder realizations are shown in Fig. 4.
The graphs demonstrate that a spin-glass phase with
“frozen” configuration of magnetic moments is
obtained as temperature approaches zero. Thus, a ran-
dom magnetic field induces transition from antiferro-
magnetic to spin-glass ground state in the Ising model
with competing interactions when p < pu . At finite tem-
peratures, the corresponding change in the state of a
disordered system is a first-order transition from a para-
magnetic to a mixed phase. When the spin concentra-
tion is high, the latter consists of antiferromagnetic
domains separated by spin-glass regions. With decreas-
ing spin concentration, the number and size of antifer-
romagnetic domains decrease and the number and size
of ferromagnetic domains increases, while the volume
fraction occupied by the spin-glass phase decreases.

We used the temperature and field dependence of
magnetization, internal energy, and specific heat to cal-
culate the first-order phase transition lines. The T–p
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Fig. 3. Temperature dependence of total magnetization on
lattices with L = 8 (j), 16 (m]), 24 (d), 32 (h), 48 (s), and
64 (n): (a) p = 0.725, h = 3; (b) p = 0.5, h = 3.
SICS      Vol. 101      No. 2      2005



298 PRUDNIKOV, BORODIKHIN
phase diagram shown in Fig. 5 summarizes the results
obtained for h = 3.

4. CONCLUSIONS

The Monte Carlo simulations of thermodynamics of
the three-dimensional random-field Ising model per-
formed in this study demonstrate second-order phase
transition from paramagnetic to antiferromagnetic state
when the spin concentration is higher than pu and first-
order phase transition from paramagnetic to mixed
phase consisting of antiferromagnetic and ferromag-
netic domains separated by spin-glass domains when
pc < p < pu, where pu and pc are vacancy and magnetic
percolation thresholds, respectively. When the spin
concentration is high, the system consists of antiferro-
magnetic domains separated by spin-glass regions.
With decreasing spin concentration or increasing

2
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4 6 8 10 120

0.4

0.6

0.8

1.0

T

q

Fig. 4. Temperature dependence of spin-glass order param-
eter: h = 3; L = 24; p = 0.2 (j), 0.3 (m), 0.4 (r), 0.5 (h),
0.6 (s), 0.7 (w), and 0.725 (n).
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Fig. 5. Phase diagram for random-field Ising antiferromag-
net at h = 3: PM = paramagnet; AFM = antiferromagnet;
D+SG = domain structure and spin glass.
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applied magnetic field strength, both the number and
size of antiferromagnetic domains decrease, both the
number and size of ferromagnetic domains increase,
and the volume fraction of the spin-glass phase
decreases. It is shown that random magnetic field
induces a transition from antiferromagnetic to spin-
glass ground state when pc < p < pu in the three-dimen-
sional random-field Ising model with competing inter-
actions analyzed in this study.
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Abstract—A numerical technique combining Monte Carlo and molecular dynamics simulations is used for the
first time to examine the complex critical dynamics of models of ferromagnetic gadolinium in which both
strong exchange interactions and relativistic effects of several different types are taken into account. A finite-
size scaling technique is used to calculate the corresponding dynamic critical exponents. The role played by
isotropic dipole–dipole interaction in the critical behavior of gadolinium is evaluated. The results obtained pro-
vide an explanation for the anomalous dynamic critical behavior of gadolinium. © 2005 Pleiades Publishing,
Inc. 
1. INTRODUCTION

Analysis of dynamic critical properties is a major
problem in statistical physics and theory of phase tran-
sitions [1–3]. The substantial progress achieved to date
in this field became possible mainly through theoretical
and experimental studies. Nevertheless, the develop-
ment of a rigorous and consistent theory of dynamic
critical phenomena based on microscopic Hamiltonians
remains a challenging problem in the modern theory of
phase transitions and critical phenomena [1, 4].

Current knowledge of critical dynamics has mostly
been gained in mode-coupling and dynamic scaling
theories [1–3], which were developed independently on
the basis of essentially different ideas. However, many
predictions of these theories are in good agreement.
In [3], universality classes of dynamic critical behavior
were proposed in the framework of the dynamic scaling
theory. It was shown that the dynamic universality
classes depend not only on the space dimension d, the
number n of order-parameter components, the interac-
tion range, and the symmetry of the Hamiltonian, but
also on the energy and order-parameter conservation
laws [3]. Classification has played an important role in
understanding critical dynamics and is being used to
this day. The underlying dynamic scaling hypothesis
provides an adequate characterization of dynamic criti-
cal behavior. However, the classification is not flawless:
its basic ideas are not supported by solid evidence, even
though the ensuing predictions are consistent with
many, but not all, experimental findings. Moreover, the
classification is not complete.

The critical dynamics of magnetically ordered crys-
tals, especially ferromagnets, is characterized by a
great diversity and complexity due to the importance of
both exchange interaction and relatively weak relativis-
1063-7761/05/10102- $26.000299
tic effects (such as anisotropy and dipole–dipole inter-
action). The most essential factor of the latter kind is
dipole–dipole interaction, which plays an increasingly
important role as the critical point is approached. Note
that the aforementioned classification of universal
dynamic critical behavior does not allow for any effect
due to dipole–dipole interaction. Further analyses
(see [5–7]) have shown that theories taking into
account dipole–dipole interaction predict dynamics of
two types, normal and stiff, each characterized by a
specific set of critical exponents.

There is no conclusive experimental evidence,
because the available data are mutually inconsistent [4].
Experimental validation is further complicated by the
fact that exchange, anisotropy, and dipole–dipole inter-
action can contribute to the behavior of a real material
simultaneously, in which case critical dynamics obvi-
ously depend on their relative strengths. Moreover,
since there exist crossover regions near the critical
point, the actual critical behavior may change as the
critical point is approached. The real behavior due to
relativistic effects is even more diverse: in particular,
anisotropy can be uniaxial, cubic, etc., while dipole–
dipole interaction can be either isotropic or anisotropic.
Simultaneous influence of these factors may partially
explain the inconsistency of experimental data on the
dynamic critical properties of magnetically ordered
materials.

It is clear that experimental studies can hardly eluci-
date the current discrepancy between observations and
predictions, because high-precision measurement of
critical parameters is a very difficult task. Moreover,
since almost any experimental result is due to the com-
bined effects of all factors, their individual strengths
and contributions are practically impossible to single
out. The problem is also unlikely to be amenable to rig-
 © 2005 Pleiades Publishing, Inc.
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orous theoretical analysis in view of enormous mathe-
matical difficulties.

In recent studies, methods of computational physics
have played an increasingly important role in dealing
with complex issues of this kind. Highly accurate and
reliable calculations of critical parameters can be per-
formed by applying these methods, at least, in studies
of static critical behavior [8]. In particular, the advan-
tages of Monte Carlo and molecular dynamics simula-
tions include not only rigorous mathematical founda-
tions and error control within their respective frame-
works, but also the possibility of evaluating the relative
importance of individual parameters.

The key characteristics of critical dynamics are the
critical exponent w for the relaxation time τ and the
dynamic critical exponent z:

where

In the mid-1990s, a new technique was proposed for
calculating the dynamic critical exponent z, based on
dynamic finite-size scaling theory [9] and a special pro-
cedure for determining the characteristic frequency ωc
[10–12].

In this paper, methods of computational physics are
used to analyze critical dynamics in models of ferro-
magnetic gadolinium. The key questions to be
answered here can be formulated as follows.

I. How does isotropic dipole–dipole interaction
affect dynamic critical behavior?

II. Is there any difference in critical dynamics
between different directions in noncubic crystals?

III. Can the computational technique employed in
this study be used to expose the dependence of critical
dynamics on weak factors, such as dipole–dipole inter-
action?

The present analysis of models of gadolinium is
motivated by the following observations.

1. The static critical behavior of gadolinium is
strongly affected by isotropic dipole–dipole interaction
[13, 14].

2. The controversial results obtained in extensive
experimental studies of the critical dynamics of ferro-
magnetic gadolinium [4, 15–18] do not provide suffi-
cient basis for any final conclusion.

3. The complex dynamic critical behavior of gado-
linium has been analyzed in a number of theoretical
studies [19, 20].

4. The dynamic critical behavior of gadolinium is of
interest per se, because it is determined by the com-
bined effects of three factors: exchange interaction,

τ ε w– , τ ξ z,∝∝

ε T Tc– /Tc, ξ T /Tc 1–( ) ν– .= =
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magnetocrystalline anisotropy, and isotropic dipole–
dipole interaction.

5. The static critical behavior of gadolinium has
been thoroughly examined in both experimental [13]
and numerical [14] studies, and their results provide a
good basis for an analysis of critical dynamics.

Note that the technique employed in the present
analysis of critical dynamics was previously used in our
studies of the dynamic critical behavior of the classical
Heisenberg model [21] and models of the multisublat-
tice antiferromagnet Cr2O3 [21, 22].

2. MODEL

Gadolinium is a rare-earth metal with a hexagonal
close-packed lattice. The Curie temperature of the
order–disorder second-order phase transition between
ferromagnetic and paramagnetic states in gadolinium is
TC = 293 K. In a previous study, we proposed models of
ferromagnetic gadolinium that take into account all
basic properties of these materials [14] and examined
their static behavior. A model Hamiltonian for gadolin-
ium can be represented as follows [14]:

(1)

Here, the first term represents exchange interaction
between a gadolinium ion and its 12 nearest neighbors,
with J > 0; the second term, easy-axis anisotropy along
the hexagonal axis, characterized by an anisotropy con-
stant D; the third one, isotropic dipole–dipole interac-
tion with coupling constant Ddip; M is magnetization.
We considered two models: in model I, only exchange
interaction and anisotropy were taken into account; in
model II, the dipole–dipole interaction was also
included.

According to laboratory experiments [13], D/J =
1.41 × 10–4 and Ddip/J = 1.35 × 10–2. The coordinate sys-
tem was defined so that the z axis was aligned with the
anisotropy axis, i.e., with the hexagonal axis of the
crystal. The values of critical temperature were
obtained in Monte Carlo simulations of the static criti-
cal behavior of these models [14].

3. TECHNIQUE

Our approach relies on dynamic scaling theory [1]
and calculation of space- and time-displaced spin–spin

H
1
2
--- J Si S j⋅( ) D Si

z( )2

i

∑–
i j,
∑–=

– Ddip M〈 〉 Si, Si⋅
i

∑ 1.=
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correlation functions

(2)

where r1, 2 = r1 – r2, (t) (k = x, y, z) is the spin at the

site r1 at an instant t, (0) is the spin at the site r2 at
the initial moment (t = 0), and angle brackets denote
ensemble averaging. At T ≈ TC and sufficiently long
times, the second term on the right-hand side of (2) can
be neglected [11].

The spacetime Fourier transform of (2) defines the
dynamic structure factor

(3)

where q is the wavevector and ω is frequency. In the
general case, the dynamic structure factor is propor-
tional to the directly measurable neutron scattering
function, being shifted by a constant frequency [1].

In accordance with the dynamic scaling hypothesis,
the characteristic frequency is the median frequency
defined by the relation

(4)

In the general case, the characteristic frequency
depends on wavevector q and correlation length ξ. In
dynamic scaling theory [1], it is postulated that

(5)

where Ω is an unknown homogeneous function of qξ.
In the models considered here, expression (3) for a

system of size L simulated at the critical point over a
finite time interval tcutoff is represented as [10]

(6)

and Eq. (5) becomes

(7)

where q = 2πm/L (m = ±1, ±2, …, ±L). The sum in (6)
corresponds to an integral over the space discretized

Ck r12 t,( ) Sr1

k t( )Sr2

k 0( )〈 〉 Sr1

k t( )〈 〉 Sr2

k 0( )〈 〉 ,–=

Sr1

k

Sr2

k

Sk q ω,( ) r Ck r t,( ) i q r⋅ ωt–( )–[ ] t,dexp

∞–

∞

∫d∫=

Sk q ω,( ) ωd

ωc q ξ,( )–

ωc q ξ,( )

∫ 1
2
--- Sk q ω,( ) ω.d

∞–

∞

∫=

ωc q ξ,( ) qzΩ qξ( ),=

Sk q ω,( ) 1

2π
---------- iq r1 r2–( )⋅[ ]exp

r1 r2,
∑=

× iωt( )Ck r1 r2– t,( ) t,dexp

tcutoff–

tcutoff

∫

ωc L z– Ω' qL( ),∝
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into a lattice. Relation (7) is used to evaluate z in prac-
tical calculations. The function Ω' is not known, but it
is known to depend only on the product of q and L.
Therefore, the dynamic critical exponent can be evalu-
ated by keeping it constant while varying the lattice
size.

In each case considered in this study, the wavevector
was aligned with a certain crystallographic axis, aver-
aging over spins lying in alternating planes perpendic-
ular to this axis was performed, and the averaged spins
were used to calculate spin–spin correlation functions.
In the case of a simple cubic lattice, these are crystallo-
graphic planes. The geometry corresponding to the
hexagonal lattice of gadolinium is more complicated.

The correlation functions were computed by using
the system of differential equations of spin dynamics:

(8)

where g is the Landé factor, γ is the gyromagnetic ratio,
and hloc is the local field defined by (1). Before solving
system (8), the standard Metropolis algorithm is exe-
cuted to thermalize the system at the critical tempera-
ture [23].

We simulated systems with L and number N of mag-
netic sites varied from 4 to 18 and from 128 to 11664,
respectively, using periodic boundary conditions and
calculating the three spin components for q aligned
with three crystallographic axis. Note that the distances
between the atomic planes are not equal when the
wavevector is aligned with the a or b axis, whereas they
are equal to c/2 in the case of alignment with the c axis.
The longest simulation time was tcutoff = 130 (in arbi-
trary units), and the time step in computing the differ-
ential equations was ∆t = 0.01. System (8) was solved
by the fourth-order accurate Runge–Kutta method.
Correlation functions (2) were computed by perform-
ing up to n = 350 averaging operations. It was found
that the use of ∆t = 0.005 and n = 700 did not lead to
any significant change in numerical results.

The spin dynamics equations were solved by using
several (up to ten) initial equilibrium configurations for
each lattice size L, and the resulting characteristic fre-
quencies ωc were averaged.

Correlation functions (2) were computed without
using any normalization condition.

4. RESULTS

Figure 1 shows the dynamic structure factor Sk(q, ω)
calculated as a function of frequency in model I for sys-
tems with different N by using the x components of
spins in the case when the wavevector is aligned with
the a axis. The figure demonstrates that the maximum
of the dynamic structure factor shifts toward smaller
values of ω with increasing number of magnetic sites,

∂Si

∂t
------- Si hloc, t× t'

gµB

Jγ
---------, Si 1,= = =
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while the absolute value of the maximum increases.
The latter effect should be explained by the fact that
correlation functions (2) were not normalized. How-
ever, the characteristic frequency is determined by the
shape of the dynamic structure factor rather than its
absolute value.

Figure 2 shows the dynamic structure factors calcu-
lated for different wavevector directions in model I by
using the z components of spins. Expectably, the shapes
of the structure factors calculated for wavevectors
aligned with the a and b axes are nearly identical and
different from those calculated in the case when the
wavevector q is aligned with the hexagonal c axis.

Figure 3 illustrates the dependence of ωc on L in
model I computed for different wavevector alignments
by using the x components of spins and averaging the
characteristic frequency over several initial configura-
tions. These results demonstrate similarity between the
structure factors corresponding to characteristic fre-
quencies ωc for q aligned with the a and b axes and their
substantial difference from those for q aligned with the
c axis.

The results obtained for model II are qualitatively
similar to those presented in Figs. 1–3, but exhibit some
quantitative differences.

The table summarizes the dynamic critical expo-
nents z evaluated by using the three spin components in
both models and substituting the results illustrated by
Fig. 3 into (7) for q aligned with three crystallographic
axes.

In model I, the values of z calculated by using the x
and y spin components for q || a and q || b are in good
agreement with theoretical predictions for anisotropic
magnetic systems (z = 2, model A in [3]). However, the
values of the dynamic critical exponent determined by

0.20 0.4 0.6 0.8 1.0
ω, arb. units

0

1

2

3

4

5
Sx (q, ω)

1
2

3

4

Fig. 1. Dynamic structure factor versus frequency in
model I with qL = 2π and N = 432 (1), 1024 (2), 2000 (3),
and 3456 (4).
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using the z components for q || a and for q || b lie
between those predicted theoretically for anisotropic
magnetic systems (z = 2, model A) and isotropic ferro-
magnets (z = 2.5, model J in [3]). Note that the values
of z calculated by using all three spin components lie
between z = 2 (model A) and z = 2.5 (model J).

The values of z calculated by using the x and y spin
components in model II are higher by approximately
0.2, and those calculated by using the z spin compo-
nents are higher by amounts varying from 0.05 to 0.2.

It is obvious that the difference between the values
of z predicted in models I and II is due solely to the con-
tribution of dipole–dipole interaction in model II,
because all calculations were otherwise similar. Note

0.20 0.4 0.6 0.8 1.0
ω, arb. units

0

2

4

6

8
Sz (q, ω)

Fig. 2. Dynamic structure factor versus frequency in model
I with N = 432 and qL = 2π for wavevector aligned with the
crystallographic axes a (short-dash curve), b (solid curve),
and c (long-dash curve).

62 10 14 18 L

0

0.2

0.4

0.6

0.8

ωc

Fig. 3. Characteristic frequency versus lattice size in
model I with qL = 2π for wavevector aligned with the crys-
tallographic axes a (n), b (,), and c (s).
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also that all calculated critical exponents z have reason-
able values.

It is obvious that some of our results are impossible
to explain within the framework of the scheme pro-
posed in [3], and so are some results obtained in exper-
imental studies of critical dynamics of gadolinium [4,
15–20]. As noted in the Introduction, the classification
of universal critical behavior proposed in [3] ignores
certain additional factors, such as dipole–dipole inter-
action. Therefore, some new universality classes may
have to be introduced. Even more complex behavior
must be observed when several interactions of different
types contribute simultaneously to critical dynamics, in
addition to strong exchange interactions. This behavior
is actually observed both in real materials and in our
model II.

Furthermore, the dynamic critical behavior of a non-
cubic crystal must depend on direction, as suggested by
the data listed in the table. This conjecture is corrobo-
rated by the results presented in [20], where it was dem-
onstrated that longitudinal and transverse scaling func-
tions analogous to Ω in (5) exhibit totally different
behavior depending on temperature (or crossover)
region. Several crossover scenarios depending on tem-
perature regime, anisotropy, and dipole–dipole interac-
tion were described in [20] for Heisenberg models. In
that study, the effects due to anisotropy and dipole–
dipole interaction were treated separately because of
enormous theoretical difficulties. In our model II, these
effects are taken into account simultaneously.

We believe that many special characteristics
exposed here, as well as the anomalous dynamic critical
behavior of real gadolinium, can be explained by the
combined effects of all factors. Note that a new
dynamic universality class, model J*, has been pro-
posed for gadolinium in [19].

Dynamic critical exponent z for three different wavevector
directions and three spin projections in models of ferromag-
netic gadolinium

q || a q || b q || c

Model I

k = x 2.07 ± 0.06 2.11 ± 0.06 2.28 ± 0.06

k = y 2.06 ± 0.06 2.08 ± 0.06 2.36 ± 0.06

k = z 2.30 ± 0.06 2.24 ± 0.06 2.37 ± 0.06

Model II

k = x 2.29 ± 0.06 2.25 ± 0.06 2.47 ± 0.06

k = y 2.26 ± 0.06 2.27 ± 0.06 2.49 ± 0.06

k = z 2.35 ± 0.06 2.35 ± 0.06 2.54 ± 0.06
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
5. CONCLUSIONS

A numerical approach combining Monte Carlo and
molecular dynamics simulations is used to examine the
critical dynamics of real ferromagnetic gadolinium.

1. Dynamic critical behavior of noncubic crystals
depends on the direction of wavevector relative to crys-
tallographic axes.

2. Isotropic dipole–dipole interaction strongly con-
tributes to the critical dynamics of magnetic systems.

3. The critical behavior of gadolinium that is diffi-
cult to explain theoretically should be attributed to the
effects of anisotropy and dipole–dipole interaction
combined with strong exchange interaction.

4. It is obvious that the developing application of
methods of computational physics to dynamic critical
phenomena not only leads to valuable results, but also
reveals subtle effects, such as those due to dipole–
dipole interaction.
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Abstract—We present a theoretical description and electrical conductivity measurements for amorphous
(Gd, Y)xSi1 – x alloys with 0.1 < x < 0.2. In our model, we take into account the strong topological disorder in
the system, causing the appearance of regions with higher electron density (electron “drops”) around nanoscale
structural defects enriched with rare-earth ions (“clusters”). We calculate the local density of electron states in
the drops and in the matrix and establish the criterion for local instability to ferromagnetism. In the framework
of the “local phase transition” approach, we find that short-range ferromagnetic order is more favorable inside
the drops than in the matrix and exists in a wide temperature range. We analyze recent measurements of the
temperature and magnetic-field dependence of the electrical conductivity in these systems and show that the
spin polarization of the electron states in the drops enhances the tendency towards the metal–insulator transi-
tion. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The anomalous transport and magnetic properties of
amorphous (a-) RExSi1 – x alloys (with RE = Gd, Tb, Y,
and 0.1 < x < 0.2) have been the object of controversial
debate in recent years. The standard approach to these
systems, described as disordered magnetic semicon-
ductors, is unable to account for various peculiarities in
a wide range of temperatures and magnetic fields and,
in particular, for transformations in the electronic and
magnetic structure. Various experiments [1–5] reveal
that the presence of doped magnetic moments in a
strongly disordered semiconductor can combine fea-
tures of the usual doping-driven metal–insulator transi-
tion in amorphous systems with the physics of the tem-
perature- and field-driven magnetic (spin glass) transi-
tion. The competition between structural and magnetic
disorder, which is responsible for the features observed
at low temperatures in the magnetic and transport prop-
erties of a-RExSi1 – x , has been analyzed in [6, 7] within
the framework of the Anderson–Mott transition driven
by spin disorder. ESR and dc-magnetization results
show (see [8]) that RE is incorporated as a trivalent ion
(RE3+) in the a-Si matrix. Two (s–d) electrons of RE
form saturated bonds with (s–p) electrons of neigh-
bored Si, while the third (s–d) electron remains itiner-
ant and participates in the conductivity; below, we con-
sider RE as the one-electron donor in the amorphous
silicon host.

¶ The text was submitted by the authors in English.
1063-7761/05/10102- $26.00 0305
So far, the a-RExSi1 – x alloy was considered as a
completely disordered, heavily doped, magnetic semi-
conductor, and the role of the short-range structural and
magnetic order was not discussed. However, as a rule,
different kinds of disorder exist in such amorphous
alloys [9]. The compositional disorder at the atomic
scale distances, associated with dangling bonds, vacan-
cies, and substitutional and interstitial centers, can be
qualitatively described within a model of point defects
in a regular crystal lattice. The structural (topological)
disorder at nanoscale distances, which is originated by
dislocations or inclusions, has to be described in a dif-
ferent way, within a model of continuous defects with a
short-range order, embedded into a completely disor-
dered effective medium (matrix).

As we argue below, sharp spatial fluctuations of the
RE concentration play an important role in a-RExSi1 – x
in a wide temperature range, far above both the para-
magnet–spin glass and the metal–insulator phase tran-
sitions (see, e.g., [9] for a discussion on the role of the
so-called compositional disorder in amorphous semi-
conducting alloys). Experiments [1–5] revealed five
distinct temperature regimes, characterized by different
magnetic and transport properties. For instance, at T >
70 K, the temperature dependence of the electrical con-
ductivity σ in a-GdxSi1 – x is similar to that of its non-
magnetic structural analog a-YxSi1 – x . At T < 50–70 K,
a significant difference in their behavior has been
observed instead, and the conductivity diminishes with
decreasing temperature more rapidly in a-GdxSi1 – x
than in a-YxSi1 – x . This fact points to the magnetic
© 2005 Pleiades Publishing, Inc.
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nature of the phenomenon. In the temperature range
5 < T < 50–70 K, the low-field magnetization qualita-
tively obeys the Curie–Weiss law, although with a small
Curie constant and the effective temperature Θ; large
negative magnetoresistance is found at T < 50 K. At
T < 5 K, the material shows a spin glass freezing. Sam-
ples that are metallic at high temperature show a ten-
dency towards the metal–insulator transition at low
temperature.

To explain these properties, the authors of [10] pro-
posed that the strong structural disorder of the system
favors the formation of clusters, i.e., nanoscale struc-
tural defects with an enhanced concentration of RE
ions, leading to a redistribution of the electron density,
such that regions with the higher electron density (elec-
tron “drops”) appear within the a-RExSi1 – x matrix.
Magnetic ordering inside the drops, more favorable
than in the matrix, was predicted. To verify the mag-
netic state of the drops, a “local” experimental method,
electron spin resonance (ESR), was proposed, together
with conductivity and Hall-effect measurements. Pre-
liminary ESR results were reported in [10] and allowed
a rough estimate of some parameters of the drops. As is
shown below, the typical radius of a drop for
a-GdxSi1 − x is rD ≈ 4.5–6 Å, corresponding to a volume

of vD = 4p /3 ≈ 400–800 Å3; the number of RE ions
inside a cluster is κD ≈ 10–13; the volume fraction
occupied by the drops is f ≈ 0.05–0.1. The short-range
ferromagnetic order inside the drops develops at a tem-
perature T ≈ 100 K and becomes saturated in the tem-
perature range 50 < T < 100 K; for 2–5 < T < 50 K, the
magnetic moments of different drops are uncorrelated,
but at T < 2–5 K, they are frozen by a spin glass transi-
tion in the matrix.

In this paper, we study the a-RExSi1 – x system in the
temperature regime far above the metal–insulator and
paramagnet–spin glass transitions, i.e., at T @ 2–5 K for
the a-GdxSi1 – x alloy. We describe the disordered amor-
phous magnetic semiconductor within a model similar
to the one adopted in [6, 7], taking the short-range
structural, electronic, and magnetic correlations into
account in a semiphenomenological way, within the so-
called “local phase transition” approach [11]. To
describe the effective electron potential and the charge
and spin density distributions of electrons in the drops
embedded into the a-RExSi1 – x matrix, we define the
corresponding “order parameters.” To obtain the
ground-state electron density, we introduce a self-con-
sistency equation in the form of a local electrical neu-
trality condition for an isolated drop. We also derive the
criterion for a ferromagnetic instability and calculate
the temperature of the local ferromagnetic transition
inside a drop. Finally, we discuss some experimental
findings on the behavior of the electrical conductivity
as a function of temperature and magnetic field and
their correspondence to the predictions of our theory.

rD
3
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2. THE MODEL

a-RExSi1 – x alloys are systems with a rather compli-
cated topological and compositional disorder. Itinerant
electrons move in the crystal potential consisting of a
periodic and a disordered part, the latter having compo-
nents with very different characteristic length scales.
Together with the local part, conventional for all amor-
phous alloys, provided by the potentials of Si dangling
bonds and isolated RE ions included in the a-Si net-
work, there is also a continuous part of the disordered
potential. We suppose that it is formed in the vicinity of
the RE clusters by the Coulomb “tails” of the potential
of charged RE ions. Obviously, to make an analytic
treatment possible, we need to simplify the real distri-
bution of the crystal potential within some reasonable
modeling, which we discuss in what follows.

We consider a set of structurally isolated clusters
embedded into a weakly disordered matrix. The matrix
is assumed quasihomogeneous on length scales exceed-
ing the interatomic distances but small compared with
the characteristic cluster size and the intercluster dis-
tance. We assume that the electron structure of the
matrix averaged over the realizations of the local ran-
dom potential is qualitatively described in terms of
quasiperiodic electron states with a finite lifetime.
Following [9], we write the electron Hamiltonian of
our system as a one-band model in the k–r represen-
tation,

(1)

where k = –i∂/∂r is the quasimomentum and E(k) is the
Bloch band dispersion of an ideal periodic lattice. The

operator  annihilates (creates) an electron in the
Bloch state labeled by k with spin projection α, and the

operator (r) annihilates (creates) an electron at the
point r with spin projection α.

The local part of the disordered potential has the
form

(2)

where 9 and ) are the Coulomb and exchange cou-
plings of the electrons with the impurities, respectively,
Si is the local spin vector, and s is the vector of Pauli
matrices. The sum in Eq. (2) ranges over the positions
of the impurities located at the lattice sites ri, which are
randomly distributed.

* E k( )ck α,
† ck α,

k α,
∑=

+ r Uαβ r( ) Φ r( )δαβ+[ ]Ψα
† r( )Ψβ r( ),

α β,
∑d∫

ck α,
†( )

Ψα
†( )

Uαβ r( ) 9δαβ )Si sαβ⋅+( )δ r ri–( ),
i

∑=
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The continuous part of the potential is nonzero only
inside the clusters and can be written as

where Φj(r) is an effective “envelope” Coulomb poten-
tial of the jth cluster. In principle, the equation for Φ(r)
has to be derived and solved self-consistently with the
charge redistribution in the system. However, in our
model, for simplicity, we take Φj(r) = ϕ, independent of
r, inside the jth cluster, and Φj(r) = 0 elsewhere. Within
this simple approximation, ϕ occurs as a local shift of
the bulk chemical potential µ inside a drop, µD = µ + ϕ.

To characterize the drops, we have to specify their
properties. We let ND and NM denote the total number of
RE ions in the clusters and in the matrix, respectively,
with the total number of RE ions N = ND + NM being
fixed. The total volume occupied by the drops is VD and
the volume of the matrix is VM , the total volume of the
system V = VD + VM being fixed. The volume fraction
occupied by the drops is denoted by f ≡ VD/V < 1. The
RE ion density in the clusters is nD ≡ ND/VD = γn, where
γ > 1 is the enhancement factor and n ≡ N/V is the nom-
inal concentration of RE ions. Because VD = fV, we have
ND = fγN, NM = (1 – fγ)N, and using VM = (1 – f )V, we
can calculate the RE ion density in the matrix as 

To proceed further, we have to make some assump-
tions about the drops. For simplicity, we assume the
drops to be equal and spherical, with a radius rD and

volume vD = 4π /3. The number of RE ions in a sin-
gle cluster is then κD = nDvD , and the excess of RE ions
with respect to the matrix is

where κ ≡ nvD is the nominal number of RE ions in a
single cluster. Thus, we have

(3)

and in what follows, we assume that ∆κ is a parameter
of our model, which is possibly determined by the alloy
growing conditions. It is related to the number of RE
ions in a cluster by κD = γκ = κ + (1 – f )∆κ.

We still have to find a connection between f and vD .
Let 1D be the total number of drops. Then, fV = VD =
1DvD , i.e., f = 1DvD/V. Assuming that the number of
drops per unit volume 1D/V is technologically fixed,
we have f proportional to the volume of a drop vD , i.e.,

Ψ r( ) Φ j r( ),
j

∑=

nM

NM

VM

-------≡ 1 fγ–
1 f–
--------------n.=

rD
3

∆κ nD nM–( )v D≡ γ 1–
1 f–
------------κ ,=

γ 1 1 f–( )∆κ
κ

-------,+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to the nominal number of RE ions in a cluster, κ = nvD .
We write f = λκ , with

viewed as a parameter. We must find a physical condi-
tion to determine κ and, hence, all the drop parameters.
As we show in Section 3.1, this is the electrical neutral-
ity condition for an isolated drop.

The potential ϕ, which determines the position of
the local chemical potential in the drops µD = µ + ϕ, can
be qualitatively estimated as an average electrostatic
potential inside a drop of radius rD ,

(4)

Here, e is the electron charge, we take the RE ion as a
donor with the effective uncompensated positive charge
Z|e |, and e is the static dielectric constant of the system.
For a-GdxSi1 – x , we have Z = 1 (see Section 1), e ≈
12−15, the bandwidth of the itinerant electron band is
W ≈ 6–8 eV, and the average volume of the elementary
cell is a3 ≈ 20 Å3; i.e., the average lattice spacing is a ≈
2.7 Å. Thus, for a nominal chemical composition x =
0.14, the average concentration of RE ions is n ≈ 7 ×
1021 cm–3 [4, 5]. From the experimental results [10], we
can estimate ∆κ ≈ 7–9, κ ≈ 3–4, λ ≈ 0.01–0.03. This
gives the estimate 1D/V = f/vD ≈ (6–25) × 1019 cm–3 for
the number of drops per unit volume.

3. LOCAL DENSITY OF ELECTRON STATES
AND BASIC EQUATIONS

In this section, we derive the equations that fix all
the parameters of our model. We start by calculating the
local density of states (DOS) in the matrix and in the
drops, in the paramagnetic phase, through the usual
expression [9] ρ(ε) = π–1Im〈GA(r, r; ε)〉 , where ε is the
electron energy and GA(r, r; ε) is the advanced one-par-
ticle Green function associated with Hamiltonian (1),
averaged over the realizations of disordered potential (2).
Assuming that magnetic order is absent, i.e., 〈Si〉  = 0
everywhere in the system, we obtain the expression

(5)

where the energy ε is measured from the center of the
band of the ideal lattice. The function ρ0(z) in Eq. (5) is
the DOS corresponding to the electron spectrum E(k)

λ
1D

N
--------≡ 1D

Vn
--------=

ϕ Ze2

erD

--------∆κ .=

ρ ε( ) Im
ρ0 z( )

ε z– ΣA ε( )–
------------------------------ zd

π
-----,

∞–

+∞

∫=
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of the ideal lattice, and for definiteness, we adopt the
semielliptic form

(6)

We take energy and length units such that half the band-
width W/2 and the size of the elementary cell a are
equal to one. The advanced self-energy ΣA(ε) is
obtained by averaging over the realizations of the disor-
dered potential U(r) in Eq. (2) within some approxima-
tion scheme. As is customary, we include the average
〈U(r)〉  into the chemical potential µ; if we then assume
that the impurities giving rise to the random potential in
Eq. (2) are uncorrelated over different impurity sites ri ,
we find 〈[U(r)]2〉  ≈ [92 + S(S + 1))2]nimp in the non-
crossing Born approximation, where nimp is the concen-
tration of impurities. Explicit results for Σ(ε) were
obtained in [6, 7] by means of numerical calculations
for different values of the scattering parameter
〈[2U/W]2〉 . For our qualitative purposes, it is sufficient
to assume that the fluctuations of potential (2) lead to a
simple homogeneous broadening of the ideal semiellip-
tic DOS (6) with a finite inverse lifetime 2Γ propor-
tional to the scattering parameter. Thus, the resulting
local DOS in our model is characterized by a tail of
localized states (see Fig. 1). Using Eq. (5) with ΣA(ε) =
iΓ and with ρ0(z) given by Eq. (6), we find

(7)

ρ0 z( )
2
π
--- 1 z2– , z 1,≤

0, z 1.>





=

ρ ε( ) 2
π
--- 52 ε2Γ2+ 5– Γ– 

  ,=
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Fig. 1. Dashed line: the semielliptic DOS (Eq. (6)) of the
ideal lattice. Solid line: the DOS resulting from the inclu-
sion of “local” impurity effects, resulting in a broadening of
the semielliptic DOS (Eq. (7)) with Γ = 0.1. The empty
square marks the position of the mobility edge assumed at
the bottom of the ideal band, εm = –1. The black square,
labeled by M, and the black circle, labeled by D, mark the
value of the DOS in the matrix and in the drops, respec-
tively, for the set of parameters adopted in the text.
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where 5 ≡ (ε2 – Γ2 – 1)/2.

3.1. The Paramagnetic Phase 

We start our analysis by discussing the properties of
the paramagnetic phase. Hereafter, the subscript p indi-
cates that the corresponding quantity is evaluated in the
paramagnetic phase whenever this is expected to have a
different value in the phase with a short-range ferro-
magnetic order, which is discussed in Section 3.2.

The chemical potential of the system in the para-
magnetic phase, µp , is fixed by the condition of conser-
vation of the average number of electrons,

(8)

where the factors 2 account for the spin degeneracy, fp =
λκp is the volume fraction occupied by the drops in the
paramagnetic phase, f(z) = [exp(z/T) + 1]–1 is the
Fermi–Dirac distribution function at the temperature T
(in energy units), and x = na3 is the nominal RE content
of the alloy (here, RE ions are taken as donors with
Z = 1, such that the number of doped electrons in the
conduction band equals the number of RE ions). For
simplicity, we assume that the inverse lifetime Γ is the
same in the matrix and in the drops, although this
assumption plays no role in the following derivation,
and we could even adopt a different DOS ρM, D(ε) in the
matrix and in the drops.

As discussed in Section 2, the excess of RE ions
inside a cluster, ∆κ, causes an increase in the electron
density with respect to the matrix, which is controlled
by the average potential ϕp in Eq. (4) with rD  rD, p
in the paramagnetic phase. We assume that the electri-
cal neutrality condition is satisfied for an isolated drop,
ensuring that the excess of the RE ion density is
screened by the corresponding excess of the electron
density,

(9)

where γp is the density enhancement factor (Eq. (3))
calculated in the paramagnetic phase (i.e., with f  fp ,
κ  κp). With Eq. (9), we can rewrite Eq. (8) in the
simpler form

(10)

whence it is evident that the chemical potential µp is
uniquely determined in terms of the parameters of our

2 1 f p–( ) ρ ε( ) f ε µp–( ) εd
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∫

+ 2 f p ρ ε( ) f ε µp– ϕ p–( ) εd
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∫ x,=
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∫ γpx,=
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Fig. 2. (a) Temperature dependence of the chemical potential µp in the paramagnetic phase as a result of the numerical solution of
Eq. (10) at finite temperature. (b) Temperature dependence of the Coulomb shift ϕp in the paramagnetic phase as resulting from the
numerical solution of Eq. (9) at finite temperature and with µp(T) previously determined. (c) Temperature dependence of the fraction
of itinerant electrons in the paramagnetic phase, xitin, p , calculated according to Eq. (11). In all three panels, the black circle on the
temperature axis marks the transition point to the phase with a short-range ferromagnetic order in the drops.
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model. Once µp is obtained from Eq. (10), Eq. (9) con-
tains κp (or, equivalently, rD, p) as the only variable and
can be easily solved by means of standard numerical
methods.

The simultaneous numerical solution of Eqs. (9) and
(10) at T = 0, e.g., for x = 0.14, W = 8 eV, e = 12, ∆κ = 9,
and λ ≈ 0.029, with Γ ≈ 0.1 (chosen as in [6, 7] to fix
the chemical potential at the mobility edge, µp = –1; see
below) yields κp ≈ 3.1, which gives fp ≈ 0.091 and γp ≈
3.34. Hence, the number of RE ions in a cluster is
rD, p ≈ 10.4, the volume of a drop is vD, p ≈ 440 Å3, and
the radius of a drop is rD, p ≈ 4.7 Å. The value of the
Coulomb shift of the chemical potential in the drops is
ϕp ≈ 0.51 (which corresponds to an energy of approxi-
mately 2 eV). The local DOS at the Fermi level is
ρ(µp) ≈ 0.14 and ρ(µp + ϕp) ≈ 0.50 in the matrix and in
the drops, respectively (the maximum value for the
DOS is ρmax ≈ 0.58 for the chosen set of parameters; see
Fig. 1).

So far, we have discussed only the paramagnetic
phase of the system, and, hence, our results are valid for
both the magnetic alloy a-GdxSi1 – x (at T > TD; see Sec-
tion 3.2) and the nonmagnetic alloy a-YxSi1 – x .

For small fp well below the percolation limit of the
drops, the electron states within the drops are localized
in the volume vD and are separated from the matrix by
a surface energy barrier, which determines the excita-
tion energy of a drop, %D . Also, the electron states
within the tail of the DOS of the matrix are localized at
the scale of interatomic distances. Therefore, at T !
%D , the fraction of itinerant electrons within the ele-
mentary cell in our system can be estimated as

(11)xitin p, 2 1 f p–( ) ρ ε( ) f ε µp–( ) ε,d

εm

+∞

∫=
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where εm is the mobility edge, which depends on the
scattering potential. We assume, for simplicity, that it is
located at the bottom of the ideal lattice band, εm = –1.
Although, strictly speaking, one should define the posi-
tion of the mobility edge self-consistently, from the cal-
culation of the two-particle Green function of the sys-
tem, our simplifying assumption does not play a rele-
vant role.

The variation of xitin, p with increasing temperature
in the paramagnetic phase, together with a tiny varia-
tion of the chemical potential µp and of the Coulomb
shift ϕp , is reported in Fig. 2 for the chosen set of
parameters. As can be seen, because the Fermi level
was fixed at the mobility edge at T = 0, the itinerant
electrons are thermally excited from the localized states
in the tails of the DOS at finite temperature, and their
density increases almost linearly with T. We note that
xitin, p is at most about 0.006x at the highest temperature
reported in Fig. 2 (which corresponds to T ≈ 200 K),
and, therefore, itinerant electrons are a tiny fraction of
all the electrons in the system, the majority being local-
ized into the DOS tails. Therefore, whereas the nominal
density of doped electrons is n ≈ 7 × 1021 cm–3, the den-
sity of thermally excited itinerant electrons is, e.g.,
nitin, p ≈ 4 × 1019 cm–3 at T ≈ 200 K.

3.2. The Phase 
with a Short-Range Ferromagnetic Order 

In this section, we treat the exchange part of Hamil-
tonian (1) in the mean-field approximation, supposing
〈Si〉  = 0 in the matrix and 〈Si〉  ≠ 0 inside the drops. This
assumption is quite reasonable in a wide temperature
range, because the local DOS at the Fermi level is larger
in the drops than in the matrix (see Fig. 1), and, there-
fore, the condition for ferromagnetic ordering in the
presence of an exchange coupling between magnetic
RE ions and electrons is more easily realized in the
SICS      Vol. 101      No. 2      2005
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drops. The magnetic RE ions inside the clusters experi-
ence the effective magnetic field

(12)

where m ≡ )xD〈Sz〉 , xD = γx is the concentration of mag-
netic (e.g., Gd) RE ions per unit cell in a cluster, the
index z defines the direction of the local quantization
axis, and the average value of the spin at the RE site is
defined self-consistently as

where

is the Brillouin function for spin S. For Gd ions, S = 7/2.

The above equations should be solved simulta-
neously, together with the equation for the chemical
potential µ,

(13)

which corresponds to the conservation of the average
number of electrons in the phase with a short-range fer-
romagnetic order within the drops, and the equation for
κ, which enforces charge neutrality for an isolated
drop,

(14)

where γ is the density enhancement factor defined in
Eq. (3). As discussed above, we assume that the number
of excess RE ions ∆κ does not change in passing from
the paramagnetic phase to the phase with a short-range
ferromagnetic order, whereas the radius of the drops
changes from rD, p to rD (i.e., the nominal number of RE
ions within the clusters changes from κp to κ). The vol-
ume fraction occupied by the drops is f = λκ , where λ
is the same as in the paramagnetic phase, assuming that
the number of drops per unit volume does not change
across the local ferromagnetic transition.
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Using Eq. (14), we can rewrite Eq. (13) as

(15)

which coincides with Eq. (10). Therefore, it is evident
that, for a given set of parameters, the chemical poten-
tial has the same value as in the paramagnetic phase at
the same temperature, µ(T) = µp(T).

The typical value of the exchange potential in the
units of W/2 is (S ≈ 0.1–0.2 ! ϕ. In what follows, we
take m as a small expansion parameter and seek solu-
tions of the above self-consistency equations that are
close to the solutions in the paramagnetic phase, rD =
rD, p + η, with η ! rD, p . We observe that ϕ ≈ ϕp –

e2∆κη /e  ≡ ϕp + ζ, with ζ ≡ –ηϕp/rD, p ! ϕp . The
volume of a drop changes as vD ≈ vD, p(1 + 3η/rD, p),
and, hence, κ = nvD ≈ κp(1 + 3η/rD, p), f = λκ  ≈ fp(1 +
3η/rD, p), and γ ≈ γp(1 + 3∆κη /γpκprD, p).

Now, we expand the DOS and the Fermi–Dirac dis-
tribution function as

(here and in what follows, the prime is a short notation
for the derivative with respect to ε). Then, Eq. (14) for
charge neutrality, at this order of approximation, gives

(16)

i.e., Lζ + Mm2 = 0, where the coefficients L and M are
calculated in the paramagnetic phase. The coefficient M
is reexpressed in a more suitable form via integration
by parts that transfers the derivative with respect to ε
from ρ to the Fermi–Dirac distribution function f. At
low temperature T ! ϕp , we find L = 2ρ(µp + ϕp) –
(3x∆κ/κpϕp) and M= ρ'(µp + ϕp).

It is evident that ζ ~ m2, as expected, because the
corrections to the Coulomb shift cannot depend on the
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sign of the magnetization. Finally, expression (12) for
the effective field up to O(m3) becomes

i.e., Heff ≈ Am + Bm3 + Cmζ, where the coefficients A,
B, and C are calculated in the paramagnetic phase. The
coefficients A and B are reexpressed in a more appropri-
ate form via integration by parts that transfers the deriv-
ative with respect to ε from ρ to f. At low temperature,
A = 2)ρ(µp + ϕp), B = )ρ''(µp + ϕp)/3, and C =
2)ρ'(µp + ϕp) = 2)M.

We find the solution of Eqs. (12)–(15) near the local
phase transition, i.e., at temperatures close to the local
Curie point of the drops TD (which is defined below),
where our expansion in powers of m and ζ is valid. We
must expand the Brillouin function, observing that

 ≈ 1/y + y/3 – y3/45, i.e.,

Then, the self-consistency equation for m in the
phase with a short-range ferromagnetic order for T &
TD (TD is defined below), at the same order of approxi-
mation, becomes

(17)

where D = 3A∆κ/γpκpϕp accounts for the variation of γ
(i.e., of xD = xγ) in entering the phase with the short-
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range ferromagnetic order. Equation (17) must be
solved together with Eq. (16) to yield ζ and m2.

It is evident that the local transition temperature for
the drops is TD = )A*S(S + 1)/3, where A* ≡ Axγp =
Aa3κD/vD . We note that, in our simple mean-field
approach and within the approximation of isolated
drops, the full dependence of the transition temperature
TD on the mean RE concentration x might not be cor-
rectly described, because κD and vD are the local
parameters of a drop, which, within our model, are self-
consistently determined by x and by the cluster param-
eters ∆κ and λ, assumed fixed. A more developed the-
ory has to account for both charge and spin correlations
in the system (which may introduce a dependence of ∆κ
and λ on x), as well as an exchange between moments
of different drops, to describe the correct dependence of
TD on x. However, this quantitative description is
beyond the scope of our paper.

For T > TD , Eq. (17) has no real solutions and m = 0.
For T < TD , the ferromagnetic solution within the drops
becomes stable. From Eq. (16), we find ζ = –Mm2/L,
and substituting this in Eq. (17), we obtain the equation
for m2 for T & TD ,
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Fig. 3. Temperature dependence of the magnetization of a
Gd ion in a cluster, 〈Sz〉  ≡ m/)xD , obtained by solving
Eq. (18) for T close to TD . The values of the parameters are
given in the text. The local transition point at T = TD =
0.0016 is marked by a black circle.
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where P and Q are constants which depend on the
parameters calculated in the paramagnetic phase and
whose expression can be easily deduced from Eq. (18).
For a-Gd0.14Si0.86, we have ρ'(µp + ϕp) ≈ 0.35, ρ''(µp +
ϕp) ≈ –0.91, and taking ) ≈ 0.026 (which corresponds
to an energy of 0.1 eV, a typical exchange energy in
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wideband magnetic semiconductors), we find TD =
0.0016 (which corresponds to a temperature of 70 K)

and P + Q/  ≈ 0.45. The magnetization of the mag-
netic RE ions within the clusters, 〈Sz〉  ≈ m/)xD ≈
m/)xγp , near the local transition point TD is reported in
Fig. 3.

We point out that our results are correct only within
the mean-field approximation for the RE spin density.
The finite volume of the drops causes a “tail” of fluctu-
ations of the magnetization to occur at T > TD , in the
temperature range (T – TD)/TD ~ (rD/a)–2 ≈ 0.1–0.2.

4. EXPERIMENTS AND DISCUSSION

The X-ray study of the local structure of a-GdxSi1 – x
revealed a strong local distortion of the matrix around
Gd ions, as well as the absence of fluctuations on mac-
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(σitin/σitin(0)), n/n(0)

T, K

Fig. 4. Temperature dependence of the itinerant electron
conductivity (solid line) and concentration (open circles)
for the nonmagnetic Y0.17Si0.83 sample.
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Fig. 5. (a) Conductivity vs. temperature dependence for the
Gd0.135Si0.865 sample no. 5 at zero magnetic field. (b) Con-
ductivity vs. 1/T at various magnetic fields for the same
sample.
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roscopic scales in the system [12]. Detailed conductiv-
ity and tunneling measurements revealed the coexist-
ence of metallic and semiconducting domains (micro-
or mesoscopic), identifying the percolation nature of
electron transport at low temperatures, near the metal–
insulator transition [13]. Here, we consider some inter-
esting experimental results obtained at temperatures far
above the metal–insulator transition and discuss their
correspondence to the predictions of our theory. The
results are obtained using the samples prepared in Prof.
F. Hellman’s laboratory by a technique described previ-
ously [2]. Amorphous films of a-(Gd, Y)xSi1 – x ,
100−500 nm thick, were grown by e-beam coevapora-
tion on Si/SiN substrates. Magnetotransport measure-
ments were carried out in the temperature range
5−300 K in magnetic fields up to 4 T using the van der
Pauw and standard Hall bar technique.

Experiments [1–5] have clearly shown that the elec-
trical conductivity σ increases almost linearly with the
temperature T in a-YxSi1 – x at T > 2–5 K and in a-
GdxSi1 – x at T > 50–70 K. This dependence is well
described by the expression

, (19)

where σ0 is constant and σitin, p(T) depends on the tem-
perature. To explain these results, we propose that, in
a-RExSi1 – x alloys, the electrically neutral drops play a
significant role in the itinerant electron transport. The
constant part σ0 is associated with the tunneling
between the drops and the matrix through the surface
barrier, while σitin, p(T) = xitin, p(T)νp(T), where νp(T) is
the itinerant electron mobility in the paramagnetic
state. To clarify the role of the itinerant electron con-
centration in the temperature dependence of the elec-
trical conductivity, Hall effect measurements were car-
ried out.

In Fig. 4, we present the experimentally determined
itinerant electron concentration n(T) for nonmagnetic
a-YxSi1 – x , which linearly increases with temperature in
the whole temperature range. According to our model,
this implies that the dependence of νp(T) on T is weak
enough, as a result of the scattering of itinerant elec-
trons on electrically neutral centers. The temperature
dependence of the itinerant electron electrical conduc-
tivity presented in Fig. 4 is built by taking into account
some shunting tunneling conductivity σ0, which does
not contribute to the Hall effect. The data show that
σitin, p(T)/σitin, p(0) ≈ n(T)/n(0) and confirm that the vari-
ation of σitin, p(T) is produced by n(T), which increases
linearly with T.

For the a-GdxSi1 – x magnetic alloys, the increase of
σp(T) with T is strongly nonlinear at T below 50–70 K
and becomes quasilinear only above this temperature
(see Fig. 5). We attribute this nonlinearity to complex
magnetic transformations in the system. Consistently
with the theory developed in Section 2, for T < TD ≈

σp T( ) σ0 σitin p, T( )+≈
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Fig. 6. (a) Conductivity vs. magnetic field dependence for the Gd0.135Si0.865 sample no. 5 at different temperatures. (b) The same
dependence when the conductivity is rescaled by the zero-field value σ(0). (c) The same dependence when the magnetic field is
rescaled by the critical value BC , which evidences the data collapse.
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50−70 K, when the short-range ferromagnetic order is
formed in the alloys containing magnetic RE atoms,
two factors modify the temperature dependence of the
conductivity σ(T).

First, the exchange scattering of electrons occurs on
the noncorrelated magnetic moments of the drops,
which shifts the mobility edge εm in Eq. (11) upwards,

thus decreasing the concentration of itinerant electrons
in the phase with a short-range ferromagnetic order,
xitin(T).

Second, a dependence of the mobility ν(T) of the
itinerant electrons on T appears, which is qualitatively
described as a superposition of the potential and
exchange mechanisms for electron scattering on the
disordered magnetic drops with a characteristic size
that is small compared to the electron mean free path,
ν(T)/νp(T) ~ 1 – β(T). Thus, the reduction of σ(T) with
decreasing temperature is driven, in principle, by both
mechanisms.

The parameter β(T) is zero at T > TD and may be on
the order of 0.01–0.1 at T ! TD if )S/9 ≈ 0.1–0.3, κD ≈
10–12, and λ ≈ 0.01–0.03. From the data in Fig. 5, we
conclude that the variation of the itinerant electron con-
centration plays the major role in our system, and the
variation of the itinerant electron mobility can be
neglected in the following discussion. In any case, the
appearance of a short-range ferromagnetic order obvi-
ously enhances the tendency towards the metal–insula-
tor transition.

∆εm

Γ
--------- β T( )

λ )κ D Sz〈 〉( )2

92
--------------------------------,≡∼
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We briefly discuss the variation of the conductivity
σ of our system as a function of temperature and of
external magnetic field B. At T < 50–70 K, a strong
exponential dependence of the conductivity on the tem-
perature (see Fig. 5b) and on the magnetic field (see
Fig. 6) is observed. There are two regimes of magnetic
fields characterized by a different behavior of σ(B). In
a magnetic field less than some critical value BC , the
conductivity slightly depends on the magnetic field. At
B > BC , the aforementioned exponential dependence of
σ on B is observed (see Fig. 6b); the critical value BC

increases with increasing temperature (see Fig. 7). BC is
determined by the intersection of the local fit of the

4

2

0 20 30

BC, T

T, K
10

Fig. 7. Temperature dependence of the critical magnetic
field BC for the Gd0.135Si0.865 sample no. 5.
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experimental  as a function of B with the
line σ/σ(0) = 1 at low temperatures. For high tempera-
tures, BC is the scaling parameter from Fig. 6c. We sup-
pose that BC corresponds to the critical magnetic field
that aligns the magnetic moments of the drops. At low
magnetic field, the magnetic energy of the drop
κD〈Sz〉mBgB (here, mB is the Bohr magneton and g is the
gyromagnetic ratio) is smaller than the thermal energy
kBT, and the magnetic moments of different drops are
disordered. This leads to an additional fluctuation
potential in the system and raises the mobility edge.
Magnetic fields larger than BC align the magnetic
moments of different drops and eliminate this scatter-
ing channel. This reduces the mobility edge and
increases the itinerant electron concentration, leading
to an increase in conductivity.

It is important that the value of the magnetic
moment of the drop obtained from the low-temperature
part of the curve BC(T) allows us to estimate the average
number of Gd atoms in the cluster, κD . The experimen-
tally determined value of (κD〈Sz〉/S)expt = kBT/mBSgBC is
shown in Fig. 8. At low T, when 〈Sz〉  ≈ S, we obtain
κD, expt ≈ 10, which is consistent with the prediction of
our theory. The experimentally determined κD values
are close for different samples. We suppose that, if the
clusters arise during the sample growth, their size may
depend on the synthesis conditions.

We note that the magnetic-field dependence of the
conductivity has a universal form for different temper-
atures. The experimental dependences of σ/σ(0) vs.
(B/BC) (here, σ(0) is the zero-field conductivity) for dif-
ferent temperatures are presented in Fig. 6c. The exper-

σ/σ 0( )[ ]log

10

2

0 20 30

(kD〈Sz〉/S)expt = kBT/mBSgBC

T, K

10

8

6

4

Fig. 8. Temperature dependence of the mean magnetic
moment of the clusters for the Gd0.135Si0.865 sample no. 5
(open circles), for the Gd0.14Si0.86 sample no. 3 (open
squares), and for the Gd0.145Si0.855 sample no. 7 (open tri-
angles).
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imentally observed behavior of σ/σ(0)(B/BC) obeys
the law

(20)

at B > BC , where BC = kBT/M and M = mB〈Sz〉gκD, expt . At
B @ BC , this gives

(21)

where n(n(0)) is the density of itinerant electrons (at
zero field). Our explanation of this result is as follows.
We suppose that the Zeeman splitting in the matrix
leads to a downward (upward) shift of the bottom of the
itinerant electron spin-up (spin-down) subband with
respect to the Fermi level. At high B, the full splitting
regime sets in when the spin-down subband remains
empty, the local Fermi energy measured from the bot-
tom of the spin-up subband rises linearly with B; and
the itinerant electron concentration increases according
to Eq. (11).

Our experiments, as well as previous data [1–5],
have shown that the application of a strong magnetic
field B suppresses the tendency towards the metal–insu-
lator transition and even induces an insulator-to-metal
transformation in some a-RExSi1 – x alloys with low RE
concentration. This fact is naturally explained within
our model if we take into account either the increase of
the itinerant electron concentration or the suppression
of the electron exchange scattering on the magnetic
drops provided by their coherent orientation in the
magnetic field.

What external influence, besides the magnetic field,
may increase the itinerant electron concentration in the
studied system? A way to vary the electron concentra-
tion is to increase the current I through the sample. To
provide a more uniform current density distribution
over the sample, we used the standard Hall bar geome-
try of measurements. The conductance G and relative
conductivity σ/σ(0) dependences on the current at dif-
ferent temperatures are presented in Fig. 9, where σ(0)
is the conductivity at zero current limit. (G is used
because of the small sample size and not well-defined
geometrical factor for σ calculation.) We note that these
dependences are analogous to such dependences vs.
magnetic field shown in Fig. 10. These figures clearly
demonstrate that the current effect on the system is
analogous to the influence of the external magnetic
field. We suppose that a current flow I through the sam-
ple enhances the effective exchange between the mag-
netic moments of disordered drops, because it increases
the itinerant electron concentration. If I exceeds some
critical value IC , determined by the same procedure
as BC , all the drops on the percolation path become
magnetically ordered, which leads to a suppression of

σ
σ 0( )
----------- B

BC

------ 1– 
 exp≈

n
n 0( )
----------- B

BC

------ 
  ,exp≈
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dependence when the conductivity is rescaled by the zero-current value σ(0). (c) The same dependence when the current is rescaled
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the fluctuation potential of the magnetic disorder.
Increasing the current also leads to the rise of the itin-
erant electron concentration and to the reduction of the
activation energy between the Fermi level and the
mobility edge, which is consistent with Eq. (11).

5. CONCLUSIONS

We presented the theoretical description and electri-
cal conductivity measurements for amorphous a-
(Gd, Y)xSi1 – x alloys with 0.1 < x < 0.2. We took the
strong topological disorder in the system into account:
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in our approach, the nanoscale structural defects
enriched with rare-earth ions (“clusters”) cause the
appearance of regions with higher electron density
(electron “drops”). The value of the local DOS at the
Fermi level in the drops significantly exceeds the value
of the DOS at the Fermi level in the matrix, and, there-
fore, a short-range ferromagnetic order appears in the
drops below some characteristic temperature TD . We
estimated TD in the “local phase transition” approach
and analyzed measurements of the temperature and
magnetic-field dependence of the electrical conductiv-
ity in amorphous (Gd, Y)xSi1 – x alloys, in the frame-
SICS      Vol. 101      No. 2      2005
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work of the drop description. We obtained a qualitative
agreement between the experimental results and the
theoretical predictions. Further ESR measurements,
scanning electron microscopy with polarization analy-
sis (SEMPA), and neutron diffraction (ND) experi-
ments are necessary to reveal details of the electron and
magnetic structure of the drops.

In our theoretical model, we have neglected the low-
temperature effects leading to the metal–insulator tran-
sition and associated with the Mott–Hubbard [6, 7] or
percolation [13] mechanisms. Nevertheless, our exper-
imental results are in accordance with the conclusions
in [13] about the percolation character of the electron
transport and the metal–insulator transition in the stud-
ied system.
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Abstract—The structure of the proton sublattice of ice at an ice–metal interface is analyzed by solving the
Ginzburg–Landau equation for an order parameter describing the proton ordering under an appropriate bound-
ary condition [1, 2]. When the interaction between protons and the substrate is weak, the ice rules that govern
proton order are weaker at the interface as compared to bulk ice, but to a lesser extent than at the free ice surface.
In the case of strong proton–substrate interaction (clean interface and/or high conductivity of the substrate), the
ice rules are stronger at the interface as compared to bulk ice, which corresponds to a more ordered proton sub-
lattice. The latter case corresponds to a lower concentration of defects in the proton sublattice, which determine
important properties of ice, such as adhesion, electrical conductivity, plasticity, and electric field distribution
near the interface. A qualitative correlation is described between electrical properties of the substrate and
mechanical properties of the interface, including adhesion and friction. © 2005 Pleiades Publishing, Inc. 
Ice is one of the most widespread natural materials.
Its unusual mechanical, electrical, thermal, and espe-
cially surface properties determine various aspects of
our everyday life. In particular, we can hardly overesti-
mate correct understanding and controllability of ice
properties, such as adhesion, friction, charge separa-
tion, sintering, and fluidity. A detailed survey of recent
results in the physics of ice can be found in [3].

Most of these properties are related to processes tak-
ing place at the free ice surface or ice–substrate inter-
face. The studies of these processes were pioneered by
Faraday in the 19th century [4]. In one of his experi-
ments, he brought into contact two ice balls suspended
on strings and observed the fast growth of a neck
between the balls. The corresponding self-diffusion
coefficient of water molecules was so high that Faraday
hypothesized that the ice surface is covered by a quasi-
liquid layer.

Shortly afterwards, Thomson put forward a new
hypothesis about the nature of the quasi-liquid layer. He
speculated that the quasi-liquid layer is just a film of
ordinary water [5]. Its presence was explained by the
special behavior of the phase diagram of water, namely,
by the lowering of the melting point with increasing
pressure. According to Thomson, the mechanical pres-
sure between the balls induces local melting of ice and
explains its anomalously high self-diffusion coefficient.
Thomson’s theory became widely known because it
explained the sliding of skates at moderately low tem-
peratures. In fact, his theory fails to provide quantita-
tive explanation for the sintering of ice balls or sliding
motion. The former conclusion was inferred by Faraday
from his careful experiments on extremely weak
1063-7761/05/10102- $26.000317
mechanical stress between the balls. The latter is sup-
ported by available characteristics of the phase diagram
of water. Actually, the pressure exerted by an adult per-
son on ice cannot lower the melting temperature by
more than 0.1°C, i.e., cannot explain sliding at –1°C or
lower temperatures.

Recent studies have provided substantial evidence in
support of Faraday’s theory. In particular, the results of
proton channeling experiments [6], X-ray diffraction [7]
and NMR studies [8, 9], and measurements of low-fre-
quency electrical conductivity [10–12] can be
explained only by the existence of a surface layer
whose properties substantially differ from those of
ordinary water. For example, knowing the surface con-
ductance and layer thickness, we find that the conduc-
tivity of ice is 10–1 Ω–1 m–1, which is higher than the
conductivity of ordinary water by six orders of magni-
tude. The theoretical model proposed in [2] explains the
existence of a quasi-liquid layer near the free ice sur-
face. It is important that the model is based on the same
Hamiltonian of the proton sublattice that has been used
to predict the bulk order governed by the ice rules [1].
The existence of free surface is taken into account by
introducing a boundary condition for order parameter
that reflects the fact that surface protons have fewer
neighbors as compared to bulk protons. The solution to
an appropriate Ginzburg–Landau equation subject to
this boundary condition predicts a decrease in order
parameter near the surface. This corresponds to an
increase in both concentration of defects in the proton
sublattice (local violation of the ice rules) and surface
conductivity due to surface diffusivity. The increase in
defect concentration to a certain critical level, in turn,
can lead to instability of the oxygen sublattice.
 © 2005 Pleiades Publishing, Inc.
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In this paper, we apply a similar approach to analyz-
ing proton ordering at an ice–metal interface. Our study
provides qualitative explanations of surface conductiv-
ity, adhesion force, and friction coefficient of the inter-
face. For consistency of presentation, we briefly
describe the model and present the basic equations.
Next, we derive boundary conditions at an ice–metal
interface and solve the Ginzburg–Landau equation.
Finally, we discuss the results obtained, feasible exper-
iments, and practical applications.

In ordinary ice, protons can be located on lines con-
necting oxygen atoms at a distance of one angstrom
from them. Since the hydrogen bond length is 2.76 Å,
there are two proton sites and one proton per bond. This
implies that each proton site iα (indices i and α label
oxygen sublattice sites and hydrogen bonds, respec-
tively) can be either occupied or vacant. Their occupa-
tion is described here in terms of pseudospin variables
σiα = ±1, where plus and minus correspond to occupied
and vacant sites. The Hamiltonian of proton–proton
interaction can be written in the nearest-neighbor
approximation commonly used in lattice-gas models [1]:

(1)

where summation is performed over all pairs of nearest-
neighbor sites in the proton sublattice and the coupling
constants J1 and J2 correspond to the proton–proton
interaction near an oxygen site and in a hydrogen bond,
respectively. The index α in the second term varies
from 1 to 4, being determined by the combination ij; it
is not a summation index.

The order parameter µiα is defined by the equation

(2)

where the set of λiα = ±1 must be such that the ice rules
are satisfied. Note that Eq. (2) is a simple generalization
of the order parameter for ferromagnets or normal anti-
ferromagnets. Recall that λiα = 1 in the case of a ferro-
magnet. In the case of an antiferromagnet, its sign alter-
nates between the interpenetrating lattices. For an infi-
nite homogeneous medium, the order parameter is
independent of coordinates an can be determined by
minimizing the Helmholtz free energy or solving the
self-consistent equations

(3)

where ai = Ji/kT. At extremely low temperatures, the
order parameter is close to unity, which implies that the
occupancy is close to unity and zero for sites with λiα =
+1 and –1, respectively. The order parameter decreases
with increasing temperature and vanishes at a certain
critical point Tc . In the critical state, the proton site
occupancy is 0.5; i.e., the ice rules are disobeyed. Since

H
J1

2
----- σiασiβ

iαβ
∑ J2

2
----- σiασ jα ,

ij

∑= =

σiα〈 〉 λ iαµiα ,=

σiα〈 〉 a1 σiβ〈 〉 a2 σ jα〈 〉+
β α≠
∑ 

 
 

,tanh–=
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bulk ice with a totally frustrated proton sublattice does
not exist under normal conditions (at zero external
pressure), it is highly plausible that this transition in the
proton sublattice destabilizes the oxygen sublattice,
which leads to the actual melting of ice. For this reason,
we assume that Tc ≈ Tm , as in [2]. The presence of an
interface makes ice an inhomogeneous medium, and
the corresponding order parameter depends on coordi-
nates. In the phase transition region, it is a slowly vary-
ing function that can be found by solving the Ginzburg–
Landau equation [1, 2]

(4)

where c = a2rHH(rOH + rHH)/3 and m(r) is the macro-
scopic order parameter (averaged over interatomic dis-
tances).

Equation (4) must be supplemented with boundary
conditions. In the case of a semi-infinite crystal with
free boundary, the conditions on the surface and in the
bulk ice are written as follows [2]:

(5)

where z > 0 is the domain occupied by ice and τ = T/Tc .
To derive the boundary condition on the ice–metal
interface, we recall the reasoning behind the derivation
of the first equation in (5). Since surface pseudospins
do not have any neighbors belonging to other water
molecules, they satisfy the self-consistent equations

(6)

This means that the Ginzburg–Landau equation that
follows from (3) is not valid on the surface. However,
we can assume that the Ginzburg–Landau equation is
valid everywhere (even on surface) if the order param-
eter satisfies an additional condition entailed by equiv-
alence between Eqs. (3) and (6). Note that a similar
condition leads to the first equation in (5) in the case of
free surface. For an ice–metal interface, the following
equation is obtained instead of (3) or (6):

(7)

The tildes in  and  indicate the difference
between these constants and their analogs for bulk ice
due to the surface relaxation of the oxygen sublattice.
Whereas the second term vanishes in the case of free
surface, its finite value in (7) represents the interaction
between a proton and the electron gas in metal. It is
treated here as the interaction between a proton and a
corresponding mirror image charge. Indeed, the occu-
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pancy of the site iα can be expressed in terms of the

pseudospin σiα as niα = (σiα + 1)/2. The energy – niα
of interaction between an occupied site and the corre-
sponding image charge can easily be represented as a
function of σiα . Then, assuming that the dependence on
coordinates is weak and using relation (2), we obtain

(8)

which differs from the first equation in (5) only by the

factor 1 – /J2. It should be noted that this factor can
be negative in the case of good contact between ice and
metal.

The Ginzburg–Landau equation, boundary condi-
tion (8), and the condition in the bulk ice are rewritten
in dimensionless form as

(9)

Here,

(10)

and the constants are defined as

(11)

The solution to (9), (10) can be represented as

(12)

(13)

where  = /β.
Curve 3 in Fig. 1 shows a solution given by (12)

when the interaction between ice and metal is weak

(  < J2). In this case, the ice–metal interaction effec-
tively reduces the constant β, i.e., disorder in the proton
system. In other words, the ice rules are weaker at the
interface as compared to the bulk ice, but to a lesser
extent than at a free crystal surface (curve 4 in Fig. 1).
As the ice–substrate interaction increases, a state with

 = J2 can be reached. The corresponding solution has
a trivial form: the order parameter is independent of the
spatial coordinate (curve 2 in Fig. 1). The ice rules are
uniform throughout the crystal in this state; i.e., there is

J̃2

rHH
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J̃2

J2
-----– 
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d2 f
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2c( )sinh 2

J̃2

J̃2
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no quasi-liquid layer. When the interaction is so strong

that  > J2, solution (13) is valid, which predicts that
the order parameter is greater (i.e., the ice rules are
stronger) in a surface layer as compared to the bulk
crystal (curve 1 in Fig. 1). Finally, curve 5 corresponds
to a negative constant of proton–substrate interaction
(hydrophobic coating). The curves presented here cor-

respond to Tc = Tm = 272 K; α0 = 0.6; /J2 = 0.9, 1.1,
and –0.9 for weak and strong interactions and hydro-
phobic coating, respectively; and the absolute value of

J̃2

J̃2
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~
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Fig. 1. Order parameter in surface layer vs. distance from
interface for several values of the proton–substrate interac-
tion constant and J2 = 0.4 eV at T = 272 K and Tc = Tm =
273 K.
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Fig. 2. Quasi-liquid layer thickness vs. temperature for free
surface and interface with weak proton–substrate interac-
tion at T = 272 K. The critical point where the quasi-liquid
layer thickness is divergent (Tc = 273) is indicated on the
temperature axis.
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J2 equal to 0.4 eV. Figure 2 shows the quasi-liquid layer
thickness l as a function of temperature. The boundary
of the quasi-liquid layer is defined as the point where
the order parameter decreases to 0.9 times its bulk

value. Curves 2 and 1 correspond to /J2 = 0.9 and

 = 0 (i.e., to curves 3 and 4 in Fig. 1, respectively).
Figure 3 shows the quasi-liquid layer thickness plotted
versus the constant of proton–substrate interaction Js

(Js ≡ ). It should be noted that the theory predicts
continuous curves only for l ≥ a. In the case of free ice
surface (curve 1 in Fig. 2), this condition corresponds
to temperatures ranging from 248 to 273 K; in the case
of weak interaction with the substrate (curve 2 in
Fig. 2), the corresponding temperature interval lies
between 260 and 273 K. This behavior appears to be
analogous to macroscopic electrodynamics, in which
the field is averaged over regions larger than inter-
atomic distances, but the macroscopic permittivity can
be used to obtain adequate results even when applied to
regions comparable to interatomic distances.

It follows from the results obtained here that the
existence and characteristics of a quasi-liquid layer

depend on the single parameter /J2 determined by
the properties of the substrate, which is very difficult to
calculate form the first principles. However, some qual-
itative results can be obtained by using the physical

interpretation of  as a constant of interaction with an
image charge. According to the laws of electrostatics,
both image charge and interaction energy are propor-
tional to (em – ei)/(em + ei), where ei and em denote the
permittivities of ice and substrate material, respec-
tively. In the case of a perfect metal, we have em  ∞,

and both interaction energy and parameter /J2 have

J̃2

J̃2

J̃2

J̃2

J̃2

J̃2

–0.04 –0.02

l, m

Js, eV

0.02
1.0 × 10–9

1.2 × 10–9

0.040

1.4 × 10–9

1.6 × 10–9

1.8 × 10–9

2.0 × 10–9

Fig. 3. Quasi-liquid layer thickness vs. proton–substrate
interaction constant for –J2 < Js < J2 (J2 = 0.4 eV) at T =
272 K.
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maximum values for a given distance between ice and
substrate.

When ei = em, the image charge vanishes, and so
does the interaction constant, as in the case of free ice
surface (curve 4 in Fig. 1). Note that the following argu-
mentation seems plausible when the permittivities are
equal. Consider a plane in bulk ice. Since it can be
viewed as an ice–ice interface (i.e., an interface separat-
ing two materials characterized by equal permittivi-
ties), it may seem that a quasi-liquid layer must exist on
this boundary by analogy with free crystal surface con-
sidered above. Indeed, there is no image charge in the
case of an ice–ice interface. However, we must take into
account the long-range interaction between real pro-
tons, whereas neither image charges nor neighboring
protons exist in the substrate when ei = em. Thus, the
argumentation above does not lead to any physical par-
adox. It should also be noted that we allow only for
direct electrostatic interaction between protons and
substrate electrons, which is generally stronger than
both short-range interactions responsible for chemical
bonding and van der Waals interactions [13].

Finally, we discuss the physical realizability of a

system with  < 0. It is obvious that a constant  cor-
responding to interaction with an image charge cannot
change sign, since the sign of the image charge must be
opposite to that of the proton charge. However, we can
consider a system with positive charges on the substrate
surface. For instance, it may be an ionic material that
has been subjected to special treatment or a molecular
material with outward-pointing dipole moments of sur-
face molecules. In this case, the interaction with posi-
tive charges is stronger than the interaction with image

charges and the constant  can be negative. The pro-
ton disorder at an ice–substrate interface of this kind
must be higher than at the free ice surface (curve 5 in
Fig. 1). Moreover, the quasi-liquid layer at such an
interface must persist at lower temperatures.

Proton disorder enhances the self-diffusion of water
molecules and dislocation motion and can even cause
ice to melt. Therefore, materials with permittivity com-
parable to the high-frequency permittivity of ice or with
positive surface charges (i.e., those characterized by
tendency toward formation of a quasi-liquid layer)
must be least adhesive to ice and have the lowest fric-
tion coefficients. The presence of a quasi-liquid layer
must manifest itself not only in mechanical phenom-
ena, but also in measurements of low-frequency con-
ductivity. Indeed, proton disorder can be interpreted as
an elevated concentration of ionic defects, i.e., charge
carriers in ice. As noted in the Introduction, the conduc-
tivity calculated by rescaling the extra conductance to
the quasi-liquid layer thickness is 10–1 Ω–1 m–1. We
believe that this result calls for a careful quantitative
verification. Indeed, as the critical temperature is
approached, disorder increases not only in the surface
layer, but also in bulk ice (see second equation in (5)).

J̃2 J̃2

J̃2
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When this effect is ignored, the surface conductivity
may be overpredicted. This may explain the fact that
the quasi-liquid layer thickness inferred from electrical
measurements is always higher than that determined by
other experimental methods. The contribution of bulk
ice to the extra conductivity can be separated from the
surface contribution, since it must depend on sample
thickness. Both studies of the quasi-liquid layer and
verification of their results can be advanced by using
electrical measurements with live or grounded interme-
diate electrodes (guard rings). Guard rings made from
materials characterized by strong electrostatic interac-
tion with ice would reduce its surface conductivity to
zero even without applied voltage. These techniques
can also be used to test materials for low adhesion and
low friction coefficients.
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ORDER, DISORDER, AND PHASE TRANSITIONS 
IN CONDENSED SYSTEMS
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Abstract—The effect of isotopic disorder on ultrasound absorption in germanium, silicon, and diamond crys-
tals is considered. The “giant” isotope effect is predicted in the ultrasound absorption coefficient (in contrast to
the isotope effect in the thermal conductivity and thermopower) of these crystals. The parameters determining
the ultrasound absorption coefficients for the crystals under study with different degrees of isotopic disorder are
determined from the known values of elastic moduli of the second and third order. The ultrasound absorption
coefficients are analyzed as functions of temperature and wavevector for isotopically modified crystals. The
possibility of experimental observation of this effect is considered. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The properties of isotopically enriched germanium,
silicon, and diamond crystals have been attracting the
attention of researches over the last decade [1–11]. Like
many other crystals, these crystals consist of two or
more stable isotopes distributed at random over crystal
lattice sites. The parameters of the force interactions
between atoms in isotopically disordered crystals are
virtually independent of the isotopic composition since
the electron shell configuration of an atom weakly
depends on the nuclear mass (the scale of the effect is
on the order of the ratio of the electron and nuclear
masses, i.e., ~ 10–4–10–5). The dependence of atomic
vibrational modes on the isotopic composition emerges
due to the fact that the motion of an atom in the poten-
tial produced by neighboring atoms is determined,
among other things, by its mass Mi . Atomic vibrations
at lattice sites can be treated as motion in a harmonic
potential whose parameters depend on the unit cell vol-
ume of the crystal; in the quasi-harmonic approxima-
tion, the frequency and the squared amplitude of atomic

vibrations are proportional to . As a rule, the
effect of isotopic disorder on the vibrational spectra of
the crystals is weak in view of the smallness of the ratio
|∆M/ |, where ∆M = Mi – , Mi is the mass of the ith

isotope,  =  is the average mass of the iso-
topic composition, and Ci is the concentration of the ith
isotope. However, some kinetic coefficients may
change significantly depending on the isotopic compo-
sition since the isotopic disorder violates translational
invariance of the lattice and leads to phonon scattering.
The effect of isotopic disorder on phonons can be
described in terms of temperature-independent isotope

Mi
1/2–

M M

M CiMii∑
1063-7761/05/10102- $26.000322
scattering of phonons. The relaxation rate of this pro-
cess is proportional to the fourth power of the phonon
wavevector and the isotopic disorder factor

(1)

Upon a transition from germanium crystals with the
natural isotopic composition natGe (g = 5.87 × 10–4) to
crystals enriched to 99.99% in the 70Ge isotope (g =
0.816 × 10–8), the value of g decreases almost by four
orders of magnitude. However, according to [2, 3], the
maximal (in T) values of thermal conductivity increases
by an order of magnitude, while the absolute values of
thermopower [7] increase by more than two times. For
silicon crystals enriched to 99.983% in the 28Si isotope
(g = 3.2 × 10–7), the maximal values of thermal conduc-
tivity increase, according to [4, 5], by a factor of 7.5 as
compared to its value for natSi with the natural isotopic
composition (g = 2.01 × 10–4). It follows from these
results that the observed increase in the maximal values
of thermal conductivity and thermopower is much
smaller than the ratio of the isotopic disorder factors for
natural and enriched compositions of both germanium
and silicon. This is due to the fact that thermal conduc-
tivity is determined by the total time of phonon relax-
ation averaged over all thermally excited phonon states.
The contribution to this quantity comes not only from
isotope scattering, but also from the phonon–phonon
scattering processes associated with anharmonism in
lattice vibrations, phonon scattering at the sample sur-
face, etc.

Here, we pay attention to another kinetic effect,
namely, ultrasound absorption which can be affected by

g Ci

∆Mi

M
---------- 

 
2

.
i

∑=
 © 2005 Pleiades Publishing, Inc.
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scattering of acoustic waves from isotopic disorder
more strongly than thermal conductivity and ther-
mopower.

The absorption coefficient αλ(q) of ultrasound
waves with wavevector q and polarization λ is propor-

tional to the phonon relaxation rate (q, T) (see, for
example, [12, 13]),

(2)

where sλ is the velocity of phonons and T is the temper-
ature. This expression implies that the procedure of aver-
aging over phonon modes is not involved in determina-
tion of absorption coefficient αλ(q, T). Expression (2) is

valid when the inequality ωqλ (q, T) @ 1 holds,

where (q, T) = 1/ (q, T). For this reason, we will
confine subsequent analysis to the range of tempera-
tures and wavevectors q, in which this inequality holds.
The dominant contribution to attenuation of acoustic
waves comes from the boundary scattering of phonons,
scattering from defects (including isotope scattering)
and normal phonon–phonon scattering processes (see,
for example, [12]). We will confine our analysis to these
relaxation processes. Experimental studies of ultra-
sound absorption [12, 13] show that the inequality

ωqλ (q, T) @ 1 holds at low temperatures (namely, at
temperatures lower than 50, 100, and 400 K for germa-
nium, silicon, and diamond crystals, respectively).
Obviously, phonon–phonon Umklapp scattering pro-
cesses are ineffective in these temperature regions. In

the opposite limiting case ωqλ (q, T) ! 1 corre-
sponding to the Akhiezer absorption mechanism, it is
more appropriate to treat phonons as quasiparticles
moving in a smoothly varying field of an acoustic wave.
In this case, we must take into account the phonon–
phonon Umklapp processes [12].

It should be noted that isotope scattering is indepen-
dent of temperature and makes a constant contribution
to the ultrasound absorption coefficient. The relaxation
rates of phonon modes in anharmonic scattering pro-
cesses rapidly decrease upon cooling; consequently
isotope scattering at low temperatures can make the
main contribution to attenuation of acoustic waves. In
this case, for perfect crystal we have

(3)

Since the isotopic disorder factor decreases by more
than 7000 (!) times upon a transition from natGe to 70Ge
(99.99%), the magnitude of the isotope effect for the
ultrasound absorption coefficient may reach giant val-
ues in contrast to isotope effects for thermal conductiv-
ity and thermopower.

νph
λ

αλ q T,( )
νph

λ q T,( )
2sλ

----------------------,=
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λ

αλ gi( ) α0λgi.≈
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One more circumstance that considerably increases
the value of experimental study of ultrasound absorp-
tion in isotopically modified crystals is also worth not-
ing. Namely, such structurally perfect and chemically
pure crystals may exhibit fine features of phonon mode
relaxation associated with anharmonism of lattice
vibrations.

2. ISOTOPE EFFECT IN TRANSVERSE 
ULTRASOUND ABSORPTION IN GERMANIUM, 

SILICON, AND DIAMOND CRYSTALS

Let us consider by way of example the transverse
sound absorption coefficient. In accordance with the
prevailing idea [1–11, 14–16], the main mechanism of
transverse ultrasound relaxation in normal three-
phonon scattering processes is the Landau–Rumer
mechanism, in which a longitudinal phonon is gener-
ated as a result of merging of a transverse and a longi-
tudinal phonon (T + L  L) [17]. This relaxation
mechanism is regarded as the main mechanism for
transverse thermal phonons as well [1–11, 14–16]. It
should be noted that the matrix element of three-
phonon scattering processes for the relaxation mecha-
nism of transverse phonons (T  T + T) is shown to
vanish in the model [18] of an isotropic medium.

For this reason, we will henceforth assume that iso-
tope scattering and normal phonon scattering processes
in the Landau–Rumer mechanism make the dominant
contribution to relaxation of transverse sound. In this
case, in accordance with the Matthiesen rule, we have

(4)

where the transverse phonon relaxation rate for scatter-
ing upon isotopic disorder is given by

(5)

Here, V0 is the volume per atom and sT is the velocity of
transverse photons.

The transverse phonon relaxation rate in the Lan-
dau–Rumer mechanism for cubic crystals has the form

(6)

Coefficient BT(z1, T) was defined in [19]. In the long-
wave limit (z1/z ! 1), at temperatures much lower than
the Debye temperature, expression (6) is transformed
into the Landau–Rumer formula [17] with coefficient

     

νph
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T BiT
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Table 1.  Thermodynamic elastic moduli for Ge, Si, and diamond crystals according to [19, 20], in normalization adopted in
[21] in units of 1012 dyne/cm2

c11 c12 c44 c111 c112 c123 c144 c155 c456

Germanium 1.289 0.483 0.671 –7.10 –3.89 –0.18 –0.23 –2.92 –0.53

Silicon 1.657 0.638 0.796 –8.25 –4.51 –0.64 0.12 –3.10 –0.64

Diamond 10.76 1.25 5.758 –62.6 –22.6 1.12 –6.74 –28.6 –8.23

Table 2.  Parameters ∆C, , , , A, and BT0 for Ge, Si, and diamond crystals in units of 1012 dyne/cm2

∆C A
BT0 (s

–1 K–5)
[100]

Germanium –0.54 –3.25 28.01 –1.63 –0.08 1.2

Silicon –0.57 –4.1 32.4 –1.9 0.71 0.099

Diamond –2.01 –10.24 138.1 –5.4 –27.9 0.0063

c̃112 c̃111 c̃155

c̃112 c̃111 c̃155
BT = BT0, which is independent of the phonon wavevec-
tor and temperature and has the following form for
cubic crystals:

(7)

Here,

sL and sT are the velocities of longitudinal and trans-
verse phonons and cij and cijk are thermodynamic elastic
moduli of the second and third orders. In contrast
to [19], where the Tucker and Rampton normalization
[13] was used for the elastic moduli, we use the normal-
ization adopted in [20–22]. A transition to the Tucker
and Rampton normalization [13] is made by substitut-

ing  = (1/6)cijk . It should be noted that elastic mod-

uli ∆C and  are typical of cubic crystals and distin-
guish these crystals from an isotropic medium. The
equality to zero of these moduli indicates a transition to
the model of an isotropic medium. Consequently, the
first term in formula (7) corresponds to isotropic scat-
tering; the second term corresponds to interference
between isotropic and anisotropic scattering, while the
three last terms correspond to the contribution associ-
ated with cubic anisotropy.

BT0 π3kB
5 S*2 1 S*2–( ) 15"

4ρ3sTsL
8[ ] 1–

=

× A2 A 2S*2 2c̃155 ∆C+( ) 3c̃155 1 S*2–( )+[ ]+{

+ 2c̃155 ∆C+( )2 S*4( )

+ 3 2c̃155 ∆C+( )c̃155S*2 1 S*2–( ) 2.5c̃155
2 1 S*2–( )

2 }+ .

∆C c11 c12 2c44, c̃155–– c155 c144– 2c456,–= =

S*
sT

sL

----, A c12 3c44 2c144 4c456,+ + += =

cijk
TR

c̃155
JOURNAL OF EXPERIMENTAL A
The values of third-order thermodynamic moduli
were determined experimentally in [20, 21] in the nor-
malization adopted by Brugger [22] and are given in

Table 1. A transition to the Birch normalization  [23]
was carried out using the substitution

(8)

It should be noted that the coefficient of transitions to
the Birch normalization for the thermodynamic elastic
modulus c456 given in review [20] is erroneous (1/8
instead of 1/4; see [22, 24]). This coefficient was used
in [19] for calculating the phonon relaxation rates in the
Landau–Rumer mechanism. To correct this inaccuracy,
it is necessary to double the value of modulus c456 given
in [19] (Table 1) in the Tucker–Rampton normalization
[13]. This correction does not qualitatively affect the
results obtained in [19] for relaxation rates in Ge, Si,
and diamond crystals (cf. Figs. 3a, 3b, and 5 for g = 0
in the present paper and Fig. 4 from [19]). The quanti-
tative relations between the values of parameters A and

 characterizing the contributions of isotropic and
anisotropic scattering change in this case, as well as the
relations between different contributions to the relax-
ation frequencies for the crystals under study. The cor-
rected values for calculated parameters ∆C, A, and 
are given in Table 2. Our estimates show that the con-
tribution from isotropic scattering in the crystallo-
graphic [100] direction amounts approximately to 0.1%
for germanium, 6% for silicon, and 52% for diamond;
the interference term gives 5% for germanium and 40%
for diamond, while the contribution from anisotropic
scattering amounts to approximately 95% for germa-
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nium and 8% for diamond. Thus, germanium is the
most anisotropic crystal among those considered here.
The interference term of Ge and diamond crystals is
positive since quantities A and  have the same sign

(see Table 2), while quantities Acub and  for Si crys-
tals have opposite signs. Interference scattering makes
a negative contribution to the transverse phonon relax-
ation rate, its absolute value being one third of the con-
tribution from anisotropic scattering.

Table 2 contains the corrected values for parameters
BT0. It turns out that the values of coefficients BT0 pre-
dicted by the theory of elasticity for Ge and Si crystals
are approximately 40 times the values of the fitting
parameters BT0 used in [3–7, 25, 26] for analyzing the
thermal conductivity of these crystals with various iso-
topic compositions (see Table 2 in [26]). It should be

noted that the relaxation rate (z1, T) for thermal
phonons (z1 > 1) turns out to be much smaller than that
predicted by the Landau–Rumer theory for Ge, Si, and
diamond crystals in the temperature range 1 < T <
100 K. Consequently, the effective value of parameter
BT0 for thermal phonons is substantially smaller than
predicted by the theory of elasticity in the long-wave
approximation (see [19]). However, even if we take this

effect into account, the effective relaxation rates 
averaged over thermal phonons and calculated in the
framework of the theory of elasticity for Ge and Si crys-
tals with different isotopic compositions were found to
be an order of magnitude higher than those obtained
using fitting parameters BT0 [3–5, 25, 26]. This discrep-
ancy between the results obtained using the theory of
elasticity and the results of meticulous fitting of exper-
imental data on the thermal conductivity of Ge crystals
with different isotopic compositions [3–5, 25, 26]
called for additional experimental investigations of
ultrasound absorption coefficients in isotopically mod-
ified crystals of germanium, silicon, and diamond.

It should be noted that, when the temperature depen-
dence of thermal conductivity is approximated in the
framework of the relaxation method [3–16], expres-
sions for the phonon relaxation rates for anharmonic
scattering processes derived in the long-wave approxi-
mation for the isotropic medium model are convention-
ally used. It was shown in [19] that both these approxi-
mations are inapplicable for calculating the thermal
conductivity of Ge, Si, and diamond crystals of cubic
symmetry with noticeable elastic anisotropy of both
second and third orders. It is hardly appropriate to
speak of unambiguity of the procedure for finding the
parameters that determine phonon relaxation rates in
anharmonic scattering processes, which are obtained
using incorrect approximations with variation of four
(!) fitting parameters of the theory. A more reliable esti-
mate of relaxation frequencies can be obtained by cal-
culating the phonon relaxation rates in anharmonic
scattering processes from experimentally determined

c̃155

c̃155

νphN
TLL

νphN
TLL
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second- and third-order elastic moduli for Ge and Si
crystals since cubic anisotropy of the crystal is taken
into account both for harmonic and anharmonic ener-
gies. Such calculations make it possible to find the
absorption coefficient of both long-wave and short-
wave ultrasound. In addition, effective processes of
relaxation of thermal phonons of various polarizations
can be determined and the number of fitting parameters
of the theory required for calculating the thermal con-
ductivity of these crystals can be noticeably reduced. In
this respect, experimental investigations of the absorp-
tion coefficients of longitudinal and transverse ultra-
sound in isotopically modified crystals of germanium,
silicon, and diamond are of vital importance, as well as
calculations of the relaxation rates for thermal and
high-frequency phonons of various polarizations in
anharmonic scattering processes proceeding from
experimentally determined values of elastic moduli of
the second and third orders. It should be noted that the
model of anisotropic continuum is confined to phonon
wavevectors much smaller than the Debye wavevectors
The energies "ωqt of such phonons in kB units are lower
than 50, 100, and 400 K for Ge, Si, and diamond,
respectively.

To analyze the dependence of relaxation rate

(z1, T) on the reduced wavevector z1 and tempera-
ture, it is convenient to introduce the quantities

(z1, T) = (z1, T)/(BT0T5); then, in the Landau–
Rumer approximation, we obtain

(9)

The relaxation rates calculated in [19] for Ge, Si, and
diamond crystals in the [100] directions showed that, in
contrast to isotropic media, their dependences on the
phonon wavevector are nonmonotonic with two peaks,
the second of which lies in the range of high-frequency
phonons, "ωqT @ kBT. These features of relaxation rates

(z1, T) are associated with the angular dependence
of the anharmonic scattering probability and anisotropy
in the elastic properties of the crystals under investiga-
tion. However, we disregarded in [19] the effect of iso-
tope scattering as well as scattering from defects, which
can mask the features associated with anharmonic scat-
tering processes at low temperatures. In contrast
to [19], we will analyze here the effect of isotope scat-
tering on the transverse ultrasound absorption coeffi-
cient. We will prove that the above-mentioned features
of phonon relaxation rate in the Landau–Rumer mech-
anism cannot be observed in Ge, Si, and diamond crys-
tals with a natural isotopic composition. However,
these features can be manifested in isotopically
enriched crystals; accordingly, the dependences of the
ultrasound absorption coefficients on the phonon
wavevector for such crystals have a qualitatively differ-
ent form.
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Let us analyze the temperature dependence of the
absorption coefficient of transverse ultrasound for a
fixed wavevector in crystals with different isotopic
compositions. Formulas (2) and (4)–(6) imply that

(10)

where Tq is the energy of an ultrasonic quantum in
kelvins. Figure 1 shows the temperature dependences
of the transverse ultrasound absorption coefficient for
crystals natGe and 70Ge (99.99%) as well as natSi and 28Si
(99.983%) at a fixed energy of an ultrasonic quantum.
It can be seen from the figure that the isotope effect
attains high values only for high-energy phonons since
the Rayleigh scattering from isotopic disorder domi-
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8.68 BT0νTLL* T5 BiTq
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Fig. 1. Temperature dependence of the ultrasound absorp-
tion coefficient for (a) Ge and (b) Si crystals in the [100]
crystallographic direction for a fixed energy of ultrasonic
quantum: Tq = 1 K (curves 1 and 1'), 10 K (curves 2 and 2'),
and 20 K (curves 3 and 3'). Dashed curves correspond to
natGe and natSi crystals and solid curves, to 70Ge (99.99%)
and 28Si (99.983%) crystals.
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nates precisely for such phonons. Different heights of
plateaus at the origin indicate the role of isotope scat-
tering. It should be noted that coefficient α tends to a
constant typical of isotope scattering for T < Tq and fol-
lows the T4 dependence typical of the Landau–Rumer
mechanism for T @ Tq . The maximal isotope effect is
observed in the temperature range T < Tq (Tq/T = z1 > 1).
In this case, the ratio α(gnat)/α(g99.99%) of the ultrasound
absorption coefficients for Ge crystals at T < Tq tends to
the ratio of the isotopic disorder factors gnat/g99.99%
(which is approximately 7000 for Ge). This rough esti-
mate shows that the isotope effect in the ultrasound
absorption coefficient may reach “giant” values for
high frequencies and low temperatures.

In experiments on ultrasound absorption in crystals,
the following question arises above all: in what crystal-
lographic direction is the magnitude of the isotope
effect in sound absorption maximal in the presence of
competition between isotopic and anharmonic scatter-
ing processes? For this reason, we will consider the
effect of cubic anisotropy in elastic properties on the iso-
tope effect in absorption of transverse ultrasound using
Ge crystals as example. It follows from formula (10) that
the magnitude of the isotope effect in the sound absorp-
tion coefficient in the presence of competition between
isotopic and anharmonic scattering processes is max-
imal in the crystallographic direction, for which coef-
ficient Bi has the maximal value, while coefficient BT0
has the minimal value. In accordance with formula (5),
coefficient Bi has the largest value for the direction in
which the velocity of transverse phonons is minimal.
For example, for Ge crystals, we have sT([100]) =
3.55 × 105 cm/s, sT([111]) = 3.04 × 105 cm/s, and
sT1([110]) = 2.75 × 105 cm/s for a slow transverse wave
and sT2([110]) = 3.55 × 105 cm/s for a fast transverse
wave [11]. If we take the velocity of sound for the slow
transverse mode in the [110] direction, the ratio of coef-
ficients bi = Bi(natGe)/Bi(70Ge(99.99%)) for Ge in differ-
ent crystallographic directions has the form bi([100]) :
bi([110]) : bi([111]) = 1.7 : 3.7 : 2.7. According to esti-
mates, coefficient BT0 is minimal in the [111] direction,
while the ratio of coefficients BT0 for various crystallo-
graphic directions has the form BT0([100]) : BT0([110]) :
BT0([111]) = 1.2 : 0.46 : 0.37.

Numerical analysis of the ratio of the ultrasound
absorption coefficients bα = α(natGe)/α(70Ge(99.99%)),
in accordance with formula (10), in the presence of
competition between isotopic and anharmonic scatter-
ing processes shows that (see Fig.2) the values of ratio
bα for the [111] and [110] directions are close (for the
slow transverse mode), while for the [100] and [110]
directions (for fast transverse mode) the values of bα are
much smaller. It can be seen from Fig. 2 that coefficient
bα(T) tends to unity at T @ Tq; as the temperature
decreases (T < Tq), it rapidly approaches the ratio
gnat/genrich of the isotopic disorder factors. To illustrate
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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the low-temperature behavior of coefficient bα(T) in
various crystallographic directions, Table 3 gives its
values for various temperatures and values of parameter
Tq (an ultrasound frequency of 10 GHz corresponds to
Tq = 0.48 K). It follows from the table that the measure-
ments of the ultrasound absorption coefficient in Ge
crystals at a frequency of 10 GHz should be performed
at temperatures much lower than 4 K to obtain an
appreciable isotope effect. Although coefficient bα in
the [110] direction for the slow transverse mode is
slightly higher than in the [111] direction, transverse
modes are degenerate in the [111] direction and no
additional efforts are required to ensure the preset
polarization of the transverse mode. Thus, the [111]
direction for Ge and Si crystal is optimal for obtaining
maximal values of the isotope effect in sound absorp-
tion in the presence of competition between isotopic
and anharmonic scattering processes.

The manifestation of the isotope effect in the depen-
dence of the transverse ultrasound absorption coeffi-
cient on reduced wavevector z1 at a fixed temperature is
more interesting. To analyze this dependence, we intro-
duce a dimensionless coefficient (z1, T):

(11)

It can be seen from Fig. 3 that, in the long-wave limit
(z1 ! 1), these dependences for crystals natGe and
70Ge (99.99%), as well as for natSi and 28Si (99.983%),
are virtually identical since the Landau–Rumer mecha-
nism dominates in this region (see formulas (9)
and (11)). However, for thermal and high-frequency
transverse modes for z1 @ 1, the dependences of the
ultrasound absorption coefficients for natural and
enriched germanium differ qualitatively. The absorp-
tion coefficient (z1, T) for natGe is a monotonically
increasing function of reduced wavevector z1. How-
ever, for highly enriched crystals 70Ge (99.99%) and
28Si (99.983%), these dependences are nonmonotonic
with a peak at z1 ≈ 4.5 and a minimum at z1 ≈ 7.5. It is
only for values of z1 > 15 that the absorption coefficient

of ultrasound attains the  dependence typical of iso-
tope scattering. However, an interesting situation
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emerges for a higher degree of isotopic enrichment of
Ge and Si crystals: the ultrasound absorption coeffi-
cient as a function of z1 acquires a second peak and a
second minimum (see, for example, curves 3, 3' and 4,
4' for silicon in Fig. 3b). These new features are due to
the dominant role of anharmonic scattering processes
as compared to isotope scattering for short-wave
phonons. Figure 4 illustrates the effect of isotopic dis-
order on the ultrasound absorption coefficient as a func-
tion of reduced wavevector z1 for isotopically modified
Ge crystals investigated in [2, 3]. It can be seen from the
figure that the ultrasound absorption coefficient for iso-
topically disordered crystals as well as crystals of 70Ge
(96.3%, g = 7.57 × 10–5) with a comparatively low
degree of isotopic enrichment is a monotonically
increasing function of reduced wavevector z1; singular-
ities associated with anharmonic scattering processes
are not manifested in these crystals.

An analogous type of dependence is observed for
diamond crystal with the natural and isotopically
enriched compositions (see Fig. 5). For diamond crys-
tals 12C with the natural isotopic composition (98.9%)

104
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1
0.01 0.1 1 10 T, K

α(natGe)/α(70Ge(99.99%))

3'

2'

1'

3
2

1

Fig. 2. Temperature dependences of the ratio
α(natGe)/(70Ge(99.99%)) of the ultrasound absorption coef-
ficients for Ge crystals at fixed energies Tq of an ultrasonic
quantum of 1 K (curves 1, 2, and 3) and 20 K (curves 1', 2',
and 3') in different crystallographic directions: curves 1 and
1' correspond to [100], 2 and 2' correspond to [111], and 3
and 3' correspond to the slow transverse mode in the [110]
direction.
Table 3.  Coefficients bα(T) for Ge crystals in various crystallographic directions for various temperatures and values of
parameter Tq

Tq = 0.48 K Tq = 1 K Tq = 10 K

1 K 4 K 10 K 1 K 4 K 10 K 1 K 4 K 10 K

bα [100] 1.92 1.003 1.00012 9.53 1.031 1.001 6791 367.1 7.79

bα [110] 4.1 1.011 1.0003 59.59 1.18 1.004 7194 4966 86.65

bα [111] 3.57 1.0093 1.00029 51.66 1.16 1.005 7193 4419 69.11
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and for enriched 12C (99.93%), the ultrasound absorp-
tion coefficient shows no singularities associated with
anharmonic scattering processes. Nonmonotonicity
typical of anharmonic scattering processes in cubic
crystals may appear in the dependence of the absorp-
tion coefficient ultrasound only when the concentration
of the 13C isotope is lower than 0.01%. It was noted
above that the nonmonotonicity in the dependence of
the ultrasound absorption coefficient as a function of
the phonon wavevector is associated with cubic anisot-
ropy of the crystals under investigation and the angular
dependence of the phonon scattering probability in
anharmonic scattering processes.

Let us consider the possibility of experimental
observation of a peculiar dependence of the transverse
ultrasound absorption coefficient on the wavevector in
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Fig. 3. Transverse ultrasound absorption coefficient as a
function of reduced wavevector z1 for (a) Ge and (b) Si crys-
tals in the [100] crystallographic direction at fixed tempera-
tures (dashed and solid curves correspond to 10 and 20 K,
respectively): (a) curves 1 and 1' correspond to natGe crys-
tals, 2 and 2'—70Ge (99.99%) crystals, 3 and 3'—monoiso-
topic 70Ge (g = 0); (b) curves 1 and 1' correspond to natSi
crystals; 2 and 2'—28Si (99.983%) crystals, 3 and 3'—28Si
(99.994%) crystals, g = 7 × 10–8; 4 and 4'—28Si (99.998%)
crystals, g = 3 × 10–8; 5 and 5'— monoisotopic 28Si (g = 0).

(a)

(b)
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highly enriched crystals of Ge, Si, and diamond taking
isotope scattering into account (see [19]). At low tem-
peratures, the value of ν*(z1, T) (see Fig. 5 in [19])
weakly depends on temperature and is in fact a function
of z1 alone. The positions of maxima and minima and
their values change by less than 1% in the temperature
range 1–20 K for Ge, 1–60 K for Si, and 1–100 K for
diamond. It can be seen from Figs. 2 and 4 that isotope
scattering in isotopically enriched crystals of Ge, Si,
and diamond for z1 < 6 makes a small contribution to
the ultrasound absorption coefficient. This circum-
stance makes it possible to determine the dependence
of the ultrasound absorption coefficient on the
wavevector (at a fixed temperature) from the measure-
ment of the temperature dependence of coefficient
αT(T) at a fixed phonon energy. For this purpose, we
must determine the value of (z1, T) from the data on

αT(T) and reconstruct (z1, T) as a function of z1 in
accordance with expression (11), assuming that the
temperature is constant. Thus, by measuring the tem-
perature dependence αT(T) for ultrasound with "ωq ≈
10 K in the temperature range 1–50 K, we can deter-
mine (z1) in the range of reduced wavevectors 0.2 <
z1 < 10. This circumstance might be interesting for
experimenters.

3. DISCUSSION OF THE ROLE 
OF BOUNDARY SCATTERING

Up to now, we have considered the volume absorp-
tion coefficient of transverse ultrasound. However,
finite-size samples always exhibit scattering of acoustic
quanta at the boundary, which leads not only to
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Fig. 4. Transverse ultrasound absorption coefficient as a
function of reduced wavevector z1 at 20 K for Ge crystals
with various degrees of isotopic enrichment: curve 1—
70/76Ge crystals (50/50, g = 1.53 × 103); 2—natGe (g =
5.87 × 10–4); 3—70Ge (96.3%, g = 7.57 × 10–5); 4—70Ge
(99.99%, g = 0.816 × 10–7); 5—monoisotopic 70Ge (g = 0).
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momentum relaxation of acoustic waves, but also to a
change in their polarization. The important role of the
change in polarization of scattered waves upon their
reflection from the boundary surface in cubic crystals
was indicated in [27]. Unfortunately, the role of bound-
ary scattering in ultrasound absorption has not been
studied comprehensively (see [12, 13]). For this reason,
we will estimate this effect proceeding from the results
obtained for the lattice thermal conductivity of Ge and
Si crystals [2–5, 25, 26]. The phonon relaxation rate for
scattering at sample boundaries, as well as for scatter-
ing from isotopic disorder, is independent of tempera-
ture and is defined by the formula

(12)

where l is the sample length, S is the cross-sectional
area, P is the probability of specular reflection of
phonons, and Lc is the Casimir length. The length of our
samples [2, 3] was 20–40 mm and the cross-sectional
area was 2–6 mm2. The value of νphB in Ge and Si crys-
tals with various isotopic compositions was (1–2) ×
106 s–1. The necessary condition for observing the iso-
tope effect in the ultrasound absorption coefficient is

the fulfillment of the inequality  > .

For Ge and Si crystals, we can easily derive the fol-

lowing expressions for rates :

(13)

Order-of-magnitude estimates show that the relaxation
rate of transverse phonons scattered from isotopic dis-
order for high-frequency ultrasound with energies Tq ≈
(10, 30, 50) K is  ≈ (10–1, 10, 102) × 106 s–1 both for
germanium and for silicon. Thus, the isotope effect in
the ultrasound absorption coefficient measured on the
same Ge samples as in [2, 3] is strong only for hyper-
sonic quanta with energies Tq > 20 K. However, by
increasing the cross-sectional area of the samples and
polishing the sample surface more thoroughly, it is pos-
sible to reduce boundary scattering by at least an order
of magnitude. This will permit observation of the iso-
tope effect closer to its bulk value for highly enriched
Ge and Si crystals (see above estimates). In this respect,
it would be interesting to use another experimental
geometry [12, 13], namely, to measure the ultrasound
absorption coefficient on disk-shaped samples with
l ! d (where d is the disk diameter) for reflection or
transmission. If the size of the emitter and detector is
much smaller than the disk diameter, we can get rid of
scattering from lateral faces of the sample, while opti-

νphB
λ sλ

Lc

----- 1 P–
1 P+
-------------

Lc

l
-----+

 
 
 

CBλ 106 s 1– ,×= =

CBL CBtS*, Lc 1.12 S,= =

νphi
λ νphB

λ

νphi
T

νphi
T 9.8

g
gnat
--------Tq

4, νphi
T 7.2

g
gnat
--------Tq

4.≈≈

νphi
T

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cal polishing of end faces may substantially reduce the
role of boundary scattering. In this way, it is possible to
lower the ultrasound frequency on which an apprecia-
ble isotope effect can be observed and enhance the
effect at a fixed ultrasound frequency, since boundary
scattering for highly enriched crystals will apparently
determine the lower boundary of the absorption coeffi-
cient. However, the giant isotope effect in ultrasound
absorption can be observed only in the terahertz fre-
quency range (1 THz ≈ 50 K). It should be noted that
the conditions for observation of the giant isotope effect
in Si and diamond crystals are more favorable in view
of higher Debye temperatures as compared to germa-
nium. On account of advances made in studying the
generation, propagation, and absorption of hypersonic
quanta in the terahertz range [28–30], the technical pos-
sibility of such investigations appears as quite realistic.

4. CONCLUSIONS

Thus, we have obtained a number of estimates of the
isotope effect in the ultrasound absorption coefficient in
Ge, Si, and diamond crystals. This effect may reach
“giant” values in contrast to the isotope effect in ther-
mal conductivity and thermopower. It is shown that
investigation of the ultrasound absorption coefficient in
isotopically enriched crystals is undoubtedly of consid-
erable interest as a tool for studying the features of
anharmonic scattering processes in such popular crys-
tals in microelectronics as germanium, silicon, and
diamond.

4

0 10

α*

z1

15 20 25 30 355

8

12

16

20

1 2

3

4

5

1'
2'

3'
4'

Fig. 5. Transverse ultrasound absorption coefficient as a
function of reduced wavevector z1 for diamond crystals in
the [100] crystallographic direction at fixed temperatures
(dashed and solid curves correspond to 50 and 100 K,
respectively): (a) curves 1 and 1' correspond to natural
diamond with 1.1% of isotope 13C (g = 7.5 × 105); 2
and 2'—diamond with 0.07% of 13C (g = 4.9 × 10–6); 3
and 3'—diamond with 0.01% of 13C (g = 6.9 × 10–7); 4
and 4'—diamond with 0.001% of 13C (g = 6.9 × 10–8); 5 —
monoisotopic diamond 12C (g = 0).
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Abstract—The intuition from condensed-matter physics is commonly used to generate ideas for possible con-
finement mechanisms in gauge theories. Today, with a clear but puzzling “spaghetti” confinement pattern aris-
ing from a decade of lattice computer experiments and implying the formation of a fluctuating net of peculiar
magnetic vortices rather than condensation of homogeneously distributed magnetic monopoles, the time has
come to reverse logic and search for similar patterns in condensed-matter systems. The main effect to be sought
in a condensed-matter setup is the simultaneous existence of narrow tubes (P-vortices or 1-branes) of the direc-
tion-changing electric field and broader tubes (Abrikosov lines) of the magnetic field, a pattern dual to the one
presumably underlying the confinement in gluodynamics. As one possible place to search, we suggest systems
with coexisting charge-density waves and superconductivity. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A possible solution of the confinement problem [1–12]
should answer questions at two related but somewhat
different levels.1

(i) It should allow a reliable evaluation of various
quantities, such as the gap in the spectrum of perturba-
tions around a true vacuum, the string tensions in the
area laws for the Wilson loops in different representa-
tions, as well as the masses of glueballs and other had-
rons (when light quarks are taken into consideration).

(ii) It should provide a simple qualitative picture of
how a vacuum is formed, how the linear potential arises
between remote sources with nonvanishing N-alities in
the absence of light quarks, and how massive colorless

¶ The text was submitted by the authors in English.
1 We discuss confinement as a problem in pure gluodynamics and

ignore all issues related to fermion condensates and chiral sym-
metry breaking. In real-world QCD, effects related to light quarks
can be more important for a large part of hadron physics, and
even the dominant confinement mechanism may be different [9].
Therefore, in the study of confinement in gluodynamics, one
should rely more upon computer than accelerator experiments.
We also do not dwell upon the promising “holistic” approaches to
confinement, exploiting various general properties of gluodynam-
ics [10] or building a particular kind of self-consistent approxi-
mation to correlation functions [11, 12]. Instead, we discuss the
lattice experiment results, providing a microscopic description of
relevant field configurations and their common properties, and
address the question of whether this mysterious pattern has ever
been observed in other types of physical systems.
1063-7761/05/10102- $26.000331
hadrons are formed in the absence as well as in the pres-
ence of light quarks.

Of principal importance for the development of the-
oretical (not computer-experimental) quantitative
methods at level (i) would be identification of a true
vacuum |vac〉—a functional of fields at a given moment
of time, which is the lowest eigenstate of the nonpertur-
bative Yang–Mills Hamiltonian—with all the other
eigenstates presumably separated from |vac〉  by a non-
vanishing gap.

The relevant approach to (ii) would instead identify
a relatively small subspace in the space of all field con-
figurations (labeled by a sort of collective coordinates)
and substitute the original problem of Yang–Mills
dynamics by that of a more or less familiar medium, the
QCD ether (like a gas of monopoles or P-vortices, a
dual superconductor, or something else). The underly-
ing belief here is that the original functional integral at
low energies receives a dominant contribution from a
restricted set of field configurations and can therefore
be substituted by some more familiar effective theory,
describing (at least qualitatively) the low-energy quan-
tities as averages over this auxiliary medium and
expressing the problems of low-energy quantum Yang–
Mills theory via those of the medium dynamics.

Understanding confinement requires certain
achievements at both levels (i) and (ii): the existence of
a picture is what distinguishes understanding from just
calculability, while the possibility of making calcula-
 © 2005 Pleiades Publishing, Inc.
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tions or at least estimates is a criterion for selection of
the correct picture among alternative ones.

The problem of confinement consists of two parts:
one should explain why

(i) all gauge fields are screened (i.e., all gluons, elec-
tric and magnetic, acquire effective masses ~ΛQCD) and

(ii) there nevertheless exists a peculiar long-range
color–electric interaction described by a narrow tube
where electric force lines (carrying a flux with nonvan-
ishing N-ality, i.e., in a representation that cannot be
obtained in a product of adjoints, such that the tube is
stable against string-breaking caused by creation of a
set of gluons) are collimated and give rise to the linear

interaction potential V(R) ~ σR at R @  with the

string tension σ ~  and the string width re ~

.

We call this double-face situation the dual Meiss-
ner–Abrikosov (MA) effect.

The spaghetti vacuum pattern [6], discussed below,
implies that, in addition to (i) and (ii),

(iii) one more long-range interaction survives,
described by a very narrow tube (P-vortex or 1-brane),
with collimated color–magnetic force lines, populated
by 0-branes, looking in certain aspects like magnetic
monopoles and antimonopoles, with the direction of the
magnetic field reversed at the locations of the 0-branes;

(iv) the P-vortices can merge, and when split they
form a dense net percolating through the entire volume.

Thus, in some sense, the dual MA effect is comple-
mented by a kind of ordinary MA effect, although the
magnetic Abrikosov tubes carry an essential additional
structure (moreover, as we discuss below, the oversim-
plified description of this structure given in (iii) is not
gauge-invariant and, hence, is not fully adequate).

ΛQCD
1–

ΛQCD
2

ΛQCD
1– RΛQCD( )log

(a) (b)

Fig. 1. The origin of the gauge field mass in the Debye
screening mechanism. (a) The case where charged particles
are originally in the medium. The entire diagram is propor-
tional to the concentration n0 of these particles in the
medium. For nonvanishing temperatures (unavoidable in
any lattice calculations), n0 is never zero (but can be expo-
nentially small). (b) The case where the charged pairs are
created in the medium (including the physical vacuum) by
the gauge field itself. In this case, the screening is usually
much softer and can result in a slow running of the coupling
constant rather than in exponential screening.
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2. SCREENING IN THE ABELIAN THEORY

It is well known that the MA effect per se does not
require a non-Abelian gauge theory for its manifesta-
tion. It can already be discussed at the Abelian level.

There are many ways to obtain a particular kind of
the screening effect (α), and many of them allow a par-
ticular kind of long-range interactions to survive.

Massive photon. Complete screening with no long-
range interactions is described by the effective
Lagrangian of the type

(1)

It explicitly breaks gauge invariance and contains non-
propagating degrees of freedom A0, giving rise to an
instantaneous, but still screened, interaction.

Debye screening. This occurs in ordinary conduc-
tors, electrolytes, and some phases of plasma and is
described by the effective Lagrangian

(2)

It explicitly breaks the Lorentz invariance and com-
pletely screens static electric fields, while magnetic and
time-oscillating electric fields remain long-range. The
massive term is usually produced by the process shown
in Fig. 1, with m2 being proportional to the concentra-
tion n0 of the electric charges in the medium. If these
charges are not originally present, then m2 ∝  n0 either
due to nonvanishing temperature, or, if the temperature
is zero, to the probability of charge–anticharge creation
by an imposed external electric field. This probability,
and hence, m2, normally contains extra powers of
4-momenta, such that the screening mechanism
becomes essentially softened and leads, for example, to
the slow running coupling phenomenon in QED and
QCD, described (in these Lorentz-invariant cases) by
the effective Lagrangian

(3)

In 3 + 1 dimensions, the ∆-dependence is just logarith-
mic, at least in the leading approximation, and, hence,
no real screening occurs; gauge fields remain massless.
In non-Abelian theories, magnetic interactions also
enter the game, producing the antiscreening effect
in (3), outweighing the screening one [13]. It is not
quite clear whether just this antiscreening could lead to
the confinement effect beyond the leading-logarithm
approximation (see, e.g., [11]).

To be more precise, in realistic systems, the effec-
tive Lagrangian (in the case of linear response, i.e.,

1

e2
----Fµν

2 m2Aµ
2 .+

1

e2
----Fµν

2 Ei
m2

∂2
------Ei.–

Fµν
1

e2 ∆( )
-------------Fµν.
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weak fields) is expressed in terms of the dielectric
constant2 

(4)

and is not universal, because the frequency and momen-
tum dependence of e|| and e⊥  can be very different in dif-
ferent regimes. Important for the Debye screening (long-
distance exponential decay of the field correlator) is the
presence of a singularity in the longitudinal dielectric
constant at large distances (small k2) [15]:

where the omitted terms describe a highly nontrivial
frequency dependence. Indeed, the static correlator is

(5)

where P00 = (e|| – 1)k2 is the static value of the compo-
nent of the photon polarization operator Pµν (the “elec-
tric” mass [16]).

Dual Debye screening. This is described by a dual
effective Lagrangian of the type

(6)

and implies screening of static magnetic fields. It is
unclear whether any condensed-matter systems with
this type of behavior have already been discovered. In
ordinary electrodynamics without magnetic charges,
we have a counterpart of (5),

(7)

where the “magnetic” mass P is given by the static
value of the spatial components of the photon polariza-
tion operator (Pij  (δij – kikj/k2) P due to the gauge
invariance). In a gas of magnetic monopoles, it
becomes (see Polyakov’s book in [1])

(8)

2 We note that the formulation in terms of the dielectric constant
and magnetic permeability µ can be useful in the search for solid-
state counterparts of the confinement phenomenon (see, e.g., [14]):
electric confinement (similarly to that in QCD) can be described
by e = 0, while magnetic confinement (similarly to the Meissner
effect in superconductors) is attributed to µ = 0.

eij δij

kik j

k2
--------– 

  e⊥ ω k,( )
kik j

k2
--------e|| ω k,( ),+≡

+ = 
1

e2
---- Fµν

2
e⊥ 1–( )E2

e⊥ e||+( ) divE
1

∂2
-----divE 

 + + ,

e|| 1 e2m2

k2
----------- O ω( ),+ +=

EiE j〈 〉
kik j

e||k
2

----------∼
kik j

k2 P00+
-------------------,=

1

e2
----Fµν

2 Hi
m2

∂2
------Hi+

HiH j〈 〉
k2δij kik j–

k2 P+
--------------------------,=

=ω = 0

HiH j〈 〉 δ ij

kik j

k2 M2+
------------------.–=
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Chern–Simons screening. It is described by the
peculiar gauge-invariant Lagrangian,

(9)

It describes aspects of the Hall effect and related phe-
nomena, is Lorentz-invariant (m is a scalar) only in
2 + 1 dimensions, and—only in this dimension—
makes the photon massive, but the long-range Aha-
ronov–Bohm interaction still survives [17].

Abelian Higgs model. The ordinary (not the dual)
Meissner–Abrikosov effect is modeled by the Abelian
Higgs (Landau–Ginzburg) effective Lagrangian

(10)

After φ condenses, 〈φ〉 = meiθ, the gauge fields become
massive, thus giving rise to effect (i): the Meissner
effect for magnetic and electric fields. However, the
mass is actually acquired not by the Aµ field but by the

gauge-invariant combination  = Aµ – ∂µθ, and hence

the mode  = 0 can still propagate over large dis-
tances, which explains effect (ii): emergence of Abriko-

sov tubes.  = 0 does not imply that Aµ = ∂µθ is a pure

gauge if θ(x) is singular and dxµ ≠ 0 for some con-

tours C. In an Abrikosov tube stretched along the z axis,
θ =  is the angle in the xy plane and C is any
contour in this plane encircling the origin. Because θ is
the phase of the smooth field φ, the modulus |φ| should
vanish on the z axis, where θ is not well defined; i.e., the
condition |〈φ〉| = m is destroyed in the vicinity of z axis,

in a tube with the cross section Σ = . This leads to
an energy of λm4Σ per unit length of the tube, while the
energy of the magnetic flux Φ in the tube is ~(Φ/Σ)2Σ =
Φ2/Σ. Minimization of the sum of these terms with
respect to Σ defines the characteristic width of the tube:

If electric charges q smaller than that of the Higgs
field φ are present in the theory, then qΦ can be smaller
than 1 and the Aharonov–Bohm effect is observed
when such charges travel around the Abrikosov tube at
any distance: thus, even though all gauge fields are
massive, the Aharonov–Bohm interaction also remains
long-range (unscreened) [18].

The technical reason allowing magnetic Abrikosov
lines to exist is that the equation Fxy = δ(x)δ(y) can be

1

e2
----Fµν

2 mα…β
eµνλα…β AλFµν.+

1

e2
----Fµν

2 Dµφ 2 λ φ 2 m2–( )2
.+ +

Âµ

Âµ

Âµ

Aµ
C
∫°

y/x( )arctan

πrm
2

Σm πrm
2 Φ

λa2
------------.∼=
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easily solved:

and the Higgs field just provides a source of the needed
form, with the electric current

rotating around the z axis.
To obtain an electric Abrikosov line, we need to

solve the equation F0z = δ(x)δ(y), which violates Bian-
chi identity and requires the existence of a magnetic
current (rotating around the z axis) and, hence, in a
Lorentz-invariant setting, of magnetic charges (mono-
poles).3 Therefore, in order to describe confinement
with properties (i) and (ii), where the dual MA effect is
needed, the dual Abelian Higgs model (the dual super-

conductor model) is often used where the Higgs field 
is magnetically charged; i.e., it interacts with the dual

field , such that

In this type of scenario, the role of non-Abelian degrees
of freedom is thought to be the imitation of Higgs
degrees of freedom (see, e.g., W± in Eq. (20) below and
[19]), and the problem is to find a mechanism leading
to their appropriate condensation.

As already mentioned, the lattice experiments (see
Section 4 below) imply that the real pattern (and, per-
haps, the mechanism) of confinement can be more
sophisticated and may imply the coexistence of (β)
electric and (γ) structured magnetic tubes. Therefore, it
is important to note that no Abelian model is known that
allows the coexistence of magnetic and electric MA
effects, e.g., no effective Lagrangian of the form

(11)

is allowed. Therefore, if such coexistence is not an arti-
fact of lattice experiments (which is not considered
very probable nowadays), it requires construction of
more sophisticated models. A natural hope is that such
models can be straightforwardly built in modern string
theory (involving branes) and realized in condensed-
matter systems.

3 Similarly, in order to have a magnetic tube, where the field is
not constant along the line (in particular, changes direction at
some points za), we must solve the equation Fxy =

δ(x)δ(y)Πasgn(z – za), which violates Bianchi identity at x =

y = 0, z = za and, therefore, requires magnetic charges (mono-
poles) at these points.

Ax ∂x
y
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--, Ayarctan ∂y

y
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--,arctan= =

Jx = ∂yFxy = δ x( )δ' y( ), Jy = ∂xFxy–  = δ' x( )δ y( )–

1
2
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Ãµ

F̃µν ∂µ Ãν ∂ν Ãµ–
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2
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Ẫµ
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We note that some kind of restoration, at least par-
tial, of electromagnetic duality present in Abelian pho-
todynamics is needed. This duality is usually broken by
all known relevant modifications: by the introduction of
electric charges (without adding their magnetic coun-
terparts), by embedding into a non-Abelian theory
(where electric and magnetic interactions of gluons are
different), by the addition of a Chern–Simons term, or
by coupling to Higgs scalars and going to a supercon-
ducting phase. Lattice experiments strongly suggest the
need for some—yet unstudied (topological, i.e., with
the field content of a field, not string, theory)—stringy
phases with both “fundamental” and D1 strings present,
where screening and MA phenomena do not contradict
the electromagnetic duality.

3. 3d COMPACT QED

The sample example [2] of the confinement proof in
the Abelian (2 + 1)-dimensional compact electrody-
namics (embedded into the non-Abelian Georgi–
Glashow model to justify compactness and provide
ultraviolet regularization, rendering the instanton
action finite) actually deals with random confinement
[6, 12] and with Wilson’s confinement criterion [1]: not
fluxes but their squares acquire vacuum averages, 〈Φ〉  =
0, 〈Φ2〉  ≠ 0, and this suffices to provide the area-law
behavior for the Wilson loop averages. In this example,
the relevant medium in two space dimensions is
obtained as a time slice of an instanton gas with Debye
screening. Instantons in Abelian (2 + 1)-dimensional
theory are just ordinary three-dimensional monopoles
and antimonopoles with magnetic fields

(12)

or

(13)

where e and ξ provide the respective ultraviolet (from
the underlying non-Abelian theory) and infrared (from
the Debye screening in the monopole–antimonopole
gas) regularizations; g is the monopole charge, normal-
ized such that 2eg = integer. Thus, the medium looks
like a set of appearing and disappearing vortex–antivor-
tex pairs with the pseudoscalar 2d magnetic and vector
2d electric fields

(14)

Hµ eµνλ Fνλ g
rµ

r3
----,±= =

Hµ g
rµ

r2 ε2+( )
--------------------e r/ξ– ,±=

B eijF
ij gt

x2 t2+( )3/2
-------------------------,±= =
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j
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The field Ei produced by the time variation of B has
nontrivial vorticity and, hence, contributes to the rect-
angular Wilson average over this medium,

(15)

where the contour C lies in the xt plane and S intersects

the xy plane by a segment . The contribution of a vor-

tex to the integral  · dx is

(16)

for L @  (with the distance  actually
bounded from above by the Debye radius ξ), and fur-
ther integration over t gives

(17)

for the contribution of a vortex provided that the vortex
lies in a slice of width ξ ! L around the surface S. This
flux is one-half of the full flux 4πg of the charge-g
monopole. The factor 1/2 appears here because only
half of the vorticity of E contributes to the integral.
Because contributions of vortices and antivortices have

opposite signs, the average of  itself is, of

course, vanishing, but the even powers of this integral,
and hence the Wilson exponential, can have nonvanish-
ing averages. The simplest estimate with the help of
Poisson distributions gives [20]

(18)

Because the average number of contributing vortices
and antivortices is  = ξASn0, where AS is the area of the
surface S and n0 is the concentration of vortices
(depending primarily on the instanton action, which is
in turn defined by the ultraviolet regularization), we
obtain the area law for the Wilson loop, at least for the
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minimal value eg = 1/2 allowed by the Dirac quantiza-
tion condition.4 The average

(19)

of a spacelike Wilson loop with S lying in the xy plane
and bounded by the curve C can be calculated similarly.
This average is given by the same formula (18).

Another interpretation of the same calculation [3]
implies that the distribution of vortices is affected by
the presence of the loop, such that the vortices and anti-
vortices are concentrated around the surface S and
screen it.

4. CONFINEMENT IN 4D

In 3 + 1 dimensions, no such simple calculation
from first principles is yet known. The main difference
is that ordinary instantons in 3 + 1 dimensions are no
longer charged: their field vanishes too fast at infinity,
and, therefore, the confinement mechanism should
involve an additional dissociation of instantons into
something like magnetically charged merons [3, 22].
Time slices of instantons are now 3D objects, namely
monopole–antimonopole pairs (if viewed with a special
gauge), and the instanton describes the process of their
spontaneous creation and annihilation.

The expectation is that, in a dense instanton gas (or
liquid), recombination takes place between monopoles
and antimonopoles from different pairs, thus picking up
a chain of instantons from the liquid (see Fig. 2).

The spaghetti vacuum pattern implies that such
chains are actually spread out through the entire vol-
ume and form a “percolating cluster” [20, 23].

As in the (2 + 1)-dimensional case, electric fields
with nonvanishing vorticities, caused by the moving
monopoles and antimonopoles, contribute to the Wil-
son averages in 3 + 1 dimensions and give rise to the
area laws.

At present, there is no absolutely convincing theo-
retical argument in favor of these ideas; instead, they
received considerable support from computer experi-
ments.

“Experimental” lattice results. Lattice computer
simulations are primarily targeted at producing qualita-
tive results in the spirit of (i) and, thus, at providing a
proof that the Yang–Mills functional integral indeed
describes a theory with a mass gap, a linear potential, a
realistic hadronic spectrum, and realistic hadron inter-
actions. Remarkably enough, these experiments could

4 There are corrections to this oversimplified calculation [20, 21],
which can, in particular, destroy the prediction in (18) that con-
finement disappears for even magnetic charges (when the relevant
flux Φ is integer).
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also be used for research in direction (ii), and they
indeed produced very inspiring results. However, up to
now, the simulations are not very detailed and the func-
tional integral is actually replaced by a sum over a
rather small random subset of field configurations that
are believed to make the dominant contribution.
According to (ii), one can hope that most of these dom-
inant configurations have something in common—and
this is what actually happens—providing a clear
description of the medium required in (ii).

This experimentally discovered [24, 25] medium
appears somewhat unexpected (see [6] for the original
suggestion of this “Copenhagen spaghetti vacuum”
and [26] for comprehensive modern reviews and refer-
ences): it turns out to be filled with peculiar one-dimen-
sional objects (with two-dimensional world surfaces)—
P-vortices—which, in a certain Abelian approximation
(see the next subsection), look like narrow (with a

width of rm ! ) tubes of magnetic field, directed
along the tube and changing direction to the opposite at
locations of monopoles and antimonopoles, which
form a one-dimensional gas inside the tube.5 Such

5 In contrast to the P-vortices themselves, the monopoles and anti-
monopoles inside them are difficult to define in a gauge-invariant
way. Even the direction of the tentative Abelian magnetic field
and, hence, the exact positions of monopoles and antimonopoles
inside the P-vortex are unphysical: they can be changed by gauge
transformations. Indeed, to change the direction of an Abelian

field strength  at a given point, it suffices to perform a singu-

lar gauge transformation conjugating the fields by a unitary
matrix like σ1 at this point (although it is not absolutely clear how
to perform such an operation consistent with the maximal Abe-
lian projection, described in the next subsection). There is still a
controversy in the literature (see, e.g., [27] for different points of
view) about the actual internal structure of the P-vortices and the
(dis)advantages of visualizing them in terms of monopoles and
antimonopoles.

ΛQCD
1–

Fµν
3

(a)

(b)

(c)

Fig. 2. Possible phases of the recombinant plasma of the
instanton gas. (a) Recombinant phase (ordinary instanton
gas in 3 + 1 dimensions): each instanton is the process of
creation and annihilation of a monopole–antimonopole pair.
(b) Transition to the jumping recombinant phase (instantons
dissociated into merons): created pairs do not coincide with
annihilating pairs. The hatched domain corresponds to a
meron. (c) Jumping recombinant phase: a chain is naturally
formed.

… …

… …

… …
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objects are obviously stable against the creation of
monopole–antimonopole pairs: such processes cannot
break the tube in two, because the magnetic flux
through any section outside the monopole cores is 1/2.6

The net of these direction-changing color–magnetic
tubes fills the entire space [20] (forming a “percolat-
ing cluster” [23]),7 and in this medium, the force lines
of color–electric fields (emitted by sources of nonva-

nishing N-ality) also form tubes (of width re ~ ),
thus giving rise to the confinement phenomenon. In
lattice experiments, the area laws for appropriate Wil-
son-loop averages are explicitly verified, and the
P-vortices from a percolating cluster are shown to
make the dominant contribution to string tensions.
Theoretically, the contribution of P-vortices to the
string tension depends on their abundance, and one of
the tasks of the theory is to explain the origin of the
medium of P-vortices and ensure its consistency with
Lorentz invariance.

So far, there is no clear theoretical explanation of
why and how such a medium is formed in non-Abelian
gauge theories and why—once formed—it can give rise
to a dual Meissner effect and lead to confinement,
although the (lattice) experimental evidence in favor of
this pattern is rapidly growing.

A serious drawback to the published results of lat-
tice experiments is that they do not provide essential
information about instanton-like and meronlike config-
urations and their probable association with the local-
ized P-vortex clusters; furthermore, they have not
explicitly studied the configurations of collimated
color–electric force lines between sources with nonva-
nishing N-ality (which do not need to be fermions).
Information about these color–electric tubes has been
extracted indirectly from the study of Wilson averages.
This is not enough to understand what happens to these
tubes, for example, after the maximal Abelian projec-
tion, and whether their content indeed looks like an
Abelian electric field exactly in the same projection
where the P-vortices look like the tubes of a direction-
changing Abelian magnetic field. Any data touching
upon this issue would be extremely useful for further
clarification.

Maximal Abelian projection. The “P” in “P-vorti-
ces” comes from the word “projection” [29]. It is
inspired from the way they are often sought and stud-
ied, which is not gauge-invariant, even though the
P-vortices themselves are in fact gauge-invariant (see
Fig. 3).

6 This does not contradict the possibility that isolated monopoles
are screened [28].

7 In addition to the percolating cluster, there also exists a variety of
nonpercolating ones also populated by monopoles. There is no
agreement in the literature on whether these nonpercolating clus-
ters are lattice UV artifacts or if they actually contribute in the
continuum limit.

ΛQCD
1–
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A procedure called maximal Abelian projection
(MAP) is commonly used.8 It splits into two steps.

First, for every configuration of the fields (x), taken
with the weight dictated by the true non-Abelian action,
the maximal Abelian gauge is chosen by minimizing

the lattice counterpart of (x)d4x along the

gauge orbit. This first step is absolutely justified
(although technically it suffers from ambiguities
caused by the existence of Gribov copies).

This makes it possible to introduce the induced
effective action (A), obtained after integration over

the other components (  ≡  ± , Dµ(A) ≡ ∂µ +

ie ):

(20)

At the second step, (A) is used to define Abelian
correlation functions

(21)

This step implies that the true non-Abelian action is
used; i.e., contributions from the virtual W±-bosons in
loops are included, although omitted from external
lines. Therefore, the second step—the projection
itself—is an approximation:

(22)

Its experimentally discovered [31], surprising effi-
ciency (as compared to the complete answer including
non-Abelian fields) is often called the hypothesis of
Abelian dominance. Although so far theoretically

8 Comparison with the results of lattice experiments in other Abe-
lian approximations usually demonstrates that the (gauge-nonin-
variant and necessarily approximate) language of monopoles is
most reliable in MAP, the use of this language in other calcula-
tional schemes can often be misleading [30].
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unjustified and uncontrollable, it provides a convenient
language for description (visualization) of the confine-
ment phase: it is at this level that monopoles and anti-
monopoles appear. Figure 3 can serve as an illustration
of how MAP works.

The theoretical problem of evaluating (A) remains
open. We refer to [19] for interesting attempts to iden-
tify condensing modes and vortexlike structures in
functional integral (20) and to [32] for a supersymmet-
ric model with BPS configurations that look like mag-
netic P-vortices populated by monopoles.

5. ARE THERE CONDENSED-MATTER 
ANALOGUES OF CONFINEMENT?

Returning to the lattice results above, a natural ques-
tion to ask is whether anything similar can be found in
other avatars of gauge theories, for example, in con-
densed-matter or plasma physics. There, one would
rather expect to encounter a dual type of medium: elec-
tric P-vortices formed by chains of positive and nega-
tive electric charges, connected by narrow tubes of
electric fields with fluxes ±1/2, and the ordinary (mag-
netic) MA effect, implying formation of magnetic-field
tubes with a constant unit flux (and confinement of
hypothetical magnetic charges), caused by or at least

S̃

(a)

(b)

(c)+–

Fig. 3. This figure, taken from seminal paper [25], is the best
existing illustration of what P-vortices are and what the
maximal Abelian projection does. (a) A fragment of the dis-
tribution on field strength in an original configuration of

fields (x), from the set of those fields that give a domi-

nant contribution to the non-Abelian functional integral.
The strengths are nonvanishing within a narrow tube, the
P-vortex. Actually, the entire configuration looks like a net
of P-vortices, containing the “percolating cluster,” which
has proper scaling properties and survives in the continuum
limit. The arrows indicate directions in color space. (b) The
maximal Abelian gauge is chosen, which minimizes

(x)d4x. It is just a choice of gauge (field strengths

are rotated), no approximation is involved. Certain struc-
tures are clearly seen in the distribution of field strengths
inside the tube. (c) Maximal Abelian projection is per-

formed: (x) are set equal to zero. The structures in

(b) turn into a clear (but approximate) pattern of collimated
magnetic force lines, changing direction at the location of
monopoles and antimonopoles. No peaks of magnetic
energy occur at these locations.

Aµ
a

Wµ
+

Wµ
–

∫

Wµ
±
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consistent with the existence of such electric P-vorti-
ces. In condensed-matter analogues, the underlying
non-Abelian Yang–Mills dynamics responsible for the
formation of P-vortices should presumably be replaced
by some other dynamics (additional forces) allowed in
condensed-matter systems. The whole situation (the
coexistence and even mutual influence of electric
P-vortices and magnetic MA effect) is already exotic
enough to make one wonder if anything like this can
occur in any kind of natural matter systems.

The main effect to be sought in a condensed-matter
setup is the simultaneous existence of narrow tubes
(P-vortices) of direction-changing electric field and
broader tubes (Abrikosov lines) of magnetic field—a
dual pattern to the one underlying the spaghetti confine-
ment mechanism of gluodynamics. This clearly implies
that superconductivity (from the dual superconductor
scenario), if relevant at all, should be of a more sophis-
ticated nature than just the single-field condensation
(monopole condensation), and the superconducting
order should be caused by, or at least coexist with, an
order of some other type (responsible for the formation
of P-vortices). This looks almost like the requirement
that the Meissner–Abrikosov effect (for the magnetic
field) coexists with (or, perhaps, is even implied by) the
dual Meissner–Abrikosov effect (for electric field), but
actually, the tubes of the electric field should be differ-
ent: they should have an internal structure, namely, a
one-dimensional gas of positive and negative electric
charges, and an electric field along the tube that
changes direction at the locations of these charges and
that is stable against possible “string breaking” caused
by creation or annihilation of charge–hole pairs. More-
over, the width of electric tubes should/can be different
(much smaller?) than that of magnetic tubes.

The main goal of this paper is to bring these issues
to the attention of experts in other fields, such as con-
densed-matter and plasma physics, and to emphasize
the fact that the discovery of a similar picture arising
under any circumstances would be of great help for the
development of the confinement theory and, in particu-
lar, for the understanding of possible 2D vortex theories
living on the world sheets of the relevant branes, as well
as of the phase structure of these theories.9 If, on the
contrary, no such pattern exists in condensed-matter
physics, this would once again emphasize the peculiar-
ities of non-Abelian gauge theories (where elementary

9 Among other things, it would be interesting to exploit the idea of
topological confinement, which, in different versions, often
works in condensed-matter physics. A characteristic feature of
topological confinement is that it depends on the dynamics of the
theory only via the properties of particular excitations (quasipar-
ticles), while their interactions do not matter. For example, one-
dimensional objects can be tied and, therefore, be unseparable,
and this can work for real one-dimensional excitations, like Abri-
kosov tubes, and for pointlike magnetic monopoles and/or hedge-
hogs that have Dirac strings attached. In practice, topological
confinement can look very similar to the mechanism we discuss
throughout the paper (see [33, 34] for some examples; see
also [35]).
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quanta carry more structure than just pointlike charges,
and, thus, the naive screening behavior is from the very
beginning substituted by antiscreening and further non-
naive phenomena are naturally expected to occur).

The rest of this paper is purely speculative, added
for encouragement: in order to demonstrate that super-
conductivity (probably responsible for the magnetic
Meissner–Abrikosov effect) can indeed coexist with
some kind of dual order at least (although the example
below falls short of exhibiting narrow tubes of the
direction-changing electric field).

Charge density waves. As a possible (but, by no
means, unique) candidate analog of the electric P-vor-
tices, we suggest the charge density waves (CDWs); the
questions that then arise are:

(a) Are there any tubelike CDWs with a charge den-
sity similar to ρ(x, y, z) ~ δ(2)(x, y)sinz and (perhaps,
direction-changing) electric force lines collimated
along the z axis?

(b) Can CDWs coexist with superconductivity (SC),
which would be a natural reason for the Meissner–
Abrikosov effect?

(c) Can CDWs cause or at least enhance supercon-
ductivity?

(d) Can the widths of CDW-like P-vortices be much
smaller than those of Abrikosov lines (where the Coo-
per–Higgs-like condensate is broken)?

Remarkably, a very similar set of questions is cur-
rently under intense investigation in connection with
high-Tc superconductivity (where an adequate theoreti-
cal pattern also remains unknown), and it looks like the
above possibilities are indeed open, as can be seen in
[36] and references therein. Of course, the real media
appearing in condensed-matter examples have a lot of
additional structure (primarily, the highly anisotropic
crystal lattice in the background, playing a key role in
the formation of realistic CDWs), which one does not
expect to find in gluodynamics. For closer analogues to
gluodynamics, one can also look for phenomena in
liquid He [33], dense relativistic plasma, segnetoelec-
trics [14], or even biological membranes [37]. Still, we
want to emphasize once again that, today, when the for-
mulation of a phenomenological theory of P-vortices is
so important, one needs to consider all examples where
objects of this kind are presumably present, irrespective
of the underlying microscopic structure, and the solid-
state systems with the coexisting CDW and SC orders
should not be neglected—especially because, along
with the confinement in gauge theories, they are now
under close scrutiny and considerable progress can
result rather quickly from comparison of ideas from the
two fields.

The simplest facts and ideas about the CDW–SC sys-
tems, although not immediately coinciding with (a)–(d),
do not seem to be in obvious contradiction. The relevant
properties seem to include the following list:
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005



ON THE NEED FOR A PHENOMENOLOGICAL THEORY OF P-VORTICES 339
—CDW formation causes transition to an insulator
phase (Peierls–Fröhlich–Mott transition), while the SC
transition gives rise to a (super)conductor;

—thus, CDW and SC orders compete with each
other, with CDW usually a stronger competitor than SC
[38];

—the CDW and SC orders can nevertheless coexist
[39, 40];

—even if both CDW and SC orders are not estab-
lished simultaneously at long distances, they interfere
locally, one phase appearing in the regions where the
other is broken: SC appears in the vicinity of CDW vor-
tices, and CDWs appear in the vicinity of Abrikosov
lines [40]. This can be sufficient, for example, to obtain
the SC phase when CDW dislocations percolate
through the entire volume.

The phenomenological description of CDWs is in
terms of electron–phonon interactions [41]. We note
that the vector nature of phonons makes them closer to
W-fields in (20) than to the scalar fields used in the Abe-
lian–Higgs model (10).

6. CONCLUSIONS

The theory of the Copenhagen spaghetti vacuum
should, of course, be developed in the context of string
theory. The appropriate name for P-vortices is 1-
branes. Monopoles living on these 1-branes are, natu-
rally, 0-branes. The coexistence of electric and mag-
netic Abrikosov tubes should be modeled by that of
coexisting “fundamental strings” and D1 branes. The
problems raised in this paper are related to the lack of
any “underlying model” for which the theory of strings
and branes would be an effective model, a lack which
seriously undermines progress in modern string theory.
We emphasize that the spaghetti vacuum in gluody-
namics can by itself provide such a model, and we also
suggest starting a more extensive search for possible
underlying models in modern condensed-matter physics.
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Abstract—Numerical methods are used to analyze the Ginzburg–Landau equations for a superconducting plate
carrying transport current in a magnetic field. Critical current is calculated as a function of the applied magnetic
field strength for superconducting plates with different thicknesses. The relations between the field dependence
of critical current and the distributions of order parameter, magnetic field, and supercurrent in a plate are ana-
lyzed. The field-dependent critical currents computed for plates are used to determine the critical current as a
function of the applied magnetic field strength and local magnetic field and current distributions for multilayers
in parallel magnetic fields. The constituent superconducting layers are assumed to interact only via magnetic
field. A simple method is proposed for analyzing the critical states of multilayers in magnetic fields of arbitrary
strength, based on elementary transformations of the critical current-density distribution over individual layers
in zero applied magnetic field. The method can be used to analyze experimental results. © 2005 Pleiades Pub-
lishing, Inc. 
† 1. INTRODUCTION

Analyses of the behavior of bulk superconductors
in magnetic fields based on the Ginzburg–Landau the-
ory [1] have been presented in numerous studies [2, 3].
Recent publications were focused on mesoscopic
superconductors of various geometries [4–6]. In this
paper, we consider a vortex-free state, in which critical
current density is equivalent to depairing critical cur-
rent density, as a basis for analyzing the critical states
of superconducting plates and multilayers carrying
transport currents perpendicular to applied magnetic
fields parallel to their surfaces. Most studies of the crit-
ical states of superconductors rely on models of the
interaction between the vortex system and crystalline
defects [7]. Analysis of this problem is complicated by
the diversity of quantum properties of the superconduc-
tor vortex lattice as an elastic medium described by
nonlinear electrodynamics. For this reason, simplifying
assumptions are invoked, such as the London approxi-
mation for the vortex system or model distributions of
magnetic field in superconductors [7]. This frequently
leads to poor agreement between theoretical calcula-
tions and experimental results [8]. Even in the simplest
case of ordered defects, as in a multilayer embedded in
parallel magnetic fields, the calculation of critical cur-
rent density is a difficult task. The most interesting
results in this area were obtained in [9, 10]. In [9], the
Ginzburg–Landau equations were solved to find the
field-dependent critical current density in a multilayer

† Deceased.
1063-7761/05/10102- $26.000341
for magnetic field strength close to the upper critical
field. In [10], critical current was found in the London
approximation by representing the vortex lattice as a set
of linear chains and analyzing their interaction with the
layers making up the multilayer. The scope of both
studies was substantially limited by assuming that the
vortex lattice matches the multilayer structure in the
limit of weak order-parameter modulation. For super-
conductors of this kind, this condition implies that the
critical current density is low, whereas more interesting
for practical applications are superconductors with
strong pinning centers, i.e., superconducting multilay-
ers characterized by large amplitudes of order-parame-
ter modulation.

We propose here a new method for analyzing the
critical state of a superconducting multilayer based on
exact solution of the Ginzburg–Landau equation for a
thin film [11]. We consider a multilayer consisting of
superconducting layers in the vortex-free Meissner
state and assume that their mutual influence is mainly
due to their interaction with magnetic field. This
approach makes it possible to develop a rigorous anal-
ysis of the properties of these superconducting struc-
tures. Note that the description of a superconducting
plate in a parallel magnetic field based on the model of
vortex-free state has a limited scope. It was shown
in [12] that vortices begin to penetrate into a film when
the field strength reaches Hs(D) ∝  φ0/D2 (φ0 is the mag-
netic flux quantum, D is the film thickness), which is
substantially stronger than the lower critical field Hc1
characteristic of conventional bulk type II supercon-
 © 2005 Pleiades Publishing, Inc.
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ductors. Furthermore, in the limit of D < λ (magnetic
field penetration depth), the highest superheating field
for the Meissner state corresponds to an even stronger
applied field strength [13]:

where ξ is the coherence length. This field strength
restricts the applicability of our approach in the limit of
κ @ 1, where κ is the Ginzburg–Landau parameter.
Thus, the present approach is valid in sufficiently wide
ranges of magnetic field strength and film thickness. In
recent analyses of properties of superconductors with
κ ~ 1 [14, 15], it was shown that some of their charac-
teristics must be inconsistent with current theories of
both type I and type II superconductors. In this paper,
we consider type II superconductors with κ > 1, which
are of primary practical interest.

This area of research is very important, because the
Ginzburg–Landau equations are of fundamental impor-
tance and their exact solutions can be used to deal with
various problems in superconductivity, including vali-
dation of these equations as applied to high-tempera-
ture superconductors. Moreover, the results of this
study lead to better understanding of the processes tak-
ing place in real superconducting structures.

2. STATEMENT OF THE PROBLEM

We consider a stack of long and wide superconduct-
ing plates of thickness D in a parallel magnetic field H.
Each plate carries transport current perpendicular to the
applied field. The transport current It is defined as the
current density multiplied by the plate thickness, i.e.,
the current per unit plate width. The calculation of crit-
ical current for this structure is divided into two steps.
First, a self-consistent solution to the Ginzburg–Landau
equations is used to find the dependence of the critical
current Ic on the applied magnetic field strength H for
an individual plate, which is assumed to be in the vor-
tex-free state. Second, the critical current is determined
for a multilayer by finding an optimal distribution of
transport current over individual plates.

We start from the Ginzburg–Landau equations [1]
combined with Maxwell’s equation:

(1)

(2)

(3)

where A is the magnetic vector potential (B = curlA), js
is the supercurrent density, and c is the speed of light in

Hs φ0/2πξD,≈

4π
c

------ js
ψ2

λ 2
------

φ0

2π
------ ∇Θ A– 

  ,=

∇ 2ψ ∇Θ 2π
φ0
------A– 

  2

ψ 1

ξ2
----- ψ ψ3–( )+ 0,=

curlcurlA
4π
c

------ js,=
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free space. In the general case, the order parameter is
expressed as Ψ = ψeiΘ, where ψ and Θ are the corre-
sponding magnitude and phase.

We write the Ginzburg–Landau equations in a Car-
tesian coordinate system (x, y, z) with y and z axes par-
allel to the plate surface and z axis parallel to the mag-
netic field, assuming that transport current flows along
the y axis. Using the Landau gauge for A, which entails
A = eyA(x), we can rewrite the Ginzburg–Landau equa-
tions as

(4)

(5)

We introduce dimensionless quantities U(xλ), b(xλ), and
j(xλ) instead of the dimensional potential A, magnetic
induction B, and current density js:

(6)

Since the transport current It carried by the plate gener-
ates the magnetic field

(7)

the total field strengths at the plate surfaces are H ± HI .
Accordingly, Eq. (4) is supplemented with the follow-
ing boundary conditions:

(8)

where

Equation (5) is subject to standard boundary conditions
on the plate surfaces [1]:

(9)

Recalling that both London length λ and coherence
length ξ are functions of temperature, we note that the
relations written out above implicitly depend on tem-
perature, being formally valid at any T. However, the

d2U

dxλ
2

---------- ψ2U– 0,=

d2ψ
dxλ

2
--------- κ2 ψ ψ3–( ) U2ψ–+ 0.=

A
φ0

2πλ
----------U , B
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8π2λ3
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Ginzburg–Landau equations are applicable only at
T  Tc .

To find a self-consistent solution to Eqs. (4) and (5),
we use the following iterative procedure. Introducing a
trial function ψ(xλ), we solve Eq. (4) for U(xλ). We sub-
stitute the resulting U(xλ) into Eq. (5) and use boundary
conditions (9) to find a new ψ(xλ). Then, we solve
Eq. (4) and repeat the procedure until both ψ(xλ) and
U(xλ) become invariant and can therefore be adopted as
a self-consistent solution to the system. It is obvious
that the solution obtained by this method is stable with
respect to small perturbations (see [16] for details). The
critical current Ici carried by the ith plate is set equal to
the value of It corresponding to ψ(xλ) ≡ 0. Thus, we find
the critical current per unit width of a superconducting
plate as a function of the applied magnetic field strength
h. A more detailed description of this method was pre-
sented in [11], where we found the temperature depen-
dence of depairing critical current density for several
values of applied magnetic field strength and plate
thickness. Moreover, it was shown in [11] that the
expression for the Ginzburg–Landau critical current
corresponding to zero applied magnetic field is valid
for films of thickness comparable to coherence length
and magnetic field penetration depth. Its value can be
estimated by using the Ginzburg–Landau theory with a
constant order parameter [17]:

(10)

where Hcm is the thermodynamic critical field. This
expression is obtained for D ! λ, ξ.

Proceeding to the second step, we seek the critical
current for the multilayer. We assume that adjacent
superconducting layers are separated by relatively thick
insulating layers, i.e., the Josephson coupling between
the layers is negligible. To allow for electrical coupling
between the superconducting layers, we assume that
they are connected by superconducting links at y = ±∞.
We seek such a distribution of transport current over the
layers that transition to the normal state occurs in all
layers simultaneously. If hi is the magnetic field corre-
sponding to the ith layer, then the current per unit width
of the film in the critical state equals the critical current
Ic(hi), which is determined by the numerical solution of
the Ginzburg–Landau equations obtained at the first
step. Under this condition, each layer in the structure
carries a corresponding critical current. The current
flowing through the ith plate generates the magnetic
field given by (7), which is independent of the distance
from the plate and has opposite directions on its oppo-
site sides. According to the field superposition princi-
ple, we must add up the contributions of all layers to

Ic
1

3 6
---------- c

π
---Hcm

D
λ T( )
------------,=
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find the magnetic field that acts on the ith superconduct-
ing layer:

(11)

where htj is the dimensionless magnetic field generated
by the transport current carried by the jth layer. The
magnetic field distribution of over the layers that corre-
sponds to their simultaneous transition to the normal
state is found by successive approximation. First, we
set some initial conditions. For example, we assume
that the magnetic field that acts on each layer is equal to
the applied field, and the corresponding critical current
per unit width of the film is Ic(h). Then, we combine
relations (7) and (11) to find the magnetic field for the
ith layer. Using the previously calculated function Ic(h),
we determine the critical currents for the layers in the
respective magnetic fields hi and substitute them
into (7) and (11) to find new values of hi . The iterative
process is terminated when the change in the critical
currents from cycle to cycle becomes negligible. Note
that this method can also be applied to analyze the crit-
ical states of multilayers consisting of different layers.

The magnetic field distribution over a multilayer
consisting of similar layers in zero applied magnetic
field can be found by a simpler method. Suppose that
the number of layers is odd. First, consider a three-layer
structure. By virtue of its symmetry, it is obvious that
the central layer is in zero magnetic field and the corre-
sponding critical current Ic(0) is determined by the
numerical solution of the Ginzburg–Landau equations
obtained at the first step. The magnetic field HI3 acting
on each outer layer is generated by the other two, and
the corresponding critical current Ic3 is

(12)

This quantity can be found by fitting. It is obvious that
there exists a unique value of Ic3(h = 0) satisfying (12)
if the initial Ic(h) is a monotonically decreasing func-
tion. In a five-layer structure, the three central layers
exhibit similar behavior in the critical state, because the
magnetic fields generated by the outer layers compen-
sate each other, and the corresponding critical current

(13)

can also be found by fitting. Adding two outer layers at
a time and calculating the corresponding critical cur-
rent by the method described above, we can find the
critical current for a multilayer consisting of any num-

hi h hij htj,
j i 1+=

N

∑–
j 1=

i 1–

∑+=

Ic3 Ic HI3( ) Ic
2π
c

------ Ic 0( ) Ic3+( ) 
  .= =
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Fig. 1. Critical current (a) and pv = Ich (b) vs. applied magnetic field h for κ = 2 and several values of dimensionless plate thickness
d (indicated at curves). Noise in curves, particularly in (b), is due to limited numerical accuracy.
ber of layers. The critical current in the added outer lay-
ers can be expressed as

, (14a)

where L = (N – 1)/2, and

, (14b)

where L = N/2, for an even and odd number of layers
with N > 2 and N > 3, respectively. The present analysis
shows that there exists a unique distribution of Ici over
the layers in zero magnetic field in the case of a mono-
tonically decreasing Ic(h). Thus, if the field-dependent
critical current Ic(h) for a single layer is known (e.g.,
from experiment), the distribution of transport current
over the layers in zero applied magnetic field can
readily be found for the critical state of a multilayer
consisting of an arbitrary number of layers.

3. NUMERICAL SOLUTION
OF THE GINZBURG–LANDAU EQUATIONS 

FOR A SUPERCONDUCTING PLATE
IN AN APPLIED MAGNETIC FIELD

Figure 1a shows Ic(h) calculated for κ = 2 and sev-
eral values of the superconducting plate thickness d at
the first step. The curves demonstrate that critical cur-
rent decreases with the layer thickness for small h,
whereas Ic(h) is higher for thin plates as compared to
relatively thick ones at a moderate field strength. More-
over, thin superconducting plates can carry relatively
low transport currents without dissipation in much
stronger fields, as compared to thick ones. Note also
that, for layers of thickness d = 6, the curves of Ic(h) are

IcN Ic
2π
c

------ Ic 0( ) IcN 2 Ic2n 1+

n 1=

L 1–

∑+ +
 
 
 

=

IcN Ic
2π
c
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n 1=

L 1–

∑+
 
 
 

=
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indistinguishable; i.e., critical current becomes inde-
pendent of the plate thickness.

We introduce the function pv(h) = Ic(h)/h as a mea-
sure of pinning force in a vortex-lattice model. In the
vortex-free state considered here, the plate boundary is
the only inhomogeneity, and pv(h) characterizes the
effect of the boundary of a thin superconducting plate
on the supercurrent that can be carried by the plate.
Examples of this function are shown in Fig. 1b. Note
that

(15)

for d ≤ 1, where hc2 is the upper critical field for a plate,
whereas there exists a value of applied magnetic field
strength at which the derivative ∂pv(h)/∂h sharply
changes and a slow decrease in pv(h) is observed in
stronger fields. Thus, the curve of pv(h) for a type II
superconductor has three portions corresponding to
domains of different characteristic behavior: an
increasing pv(h) (domain I) and fast and slowly decreas-
ing pv(h) (domains II and III). Note that the curve of
pv(h) for a type I superconductor consists of only two
portions described by (15) for any d.

The approach employed here makes it possible to
obtain detailed information about the distributions of
order parameter ψ(xλ), magnetic induction b(xλ), and
current density j(xλ) for different values of transport
current and applied magnetic field strength h. To under-
stand the behavior of pv(h) in the case of a thick plate,
we analyze these distributions for d = 6. Even though
the vortex-free state can hardly be reached in such a
plate, this case is discussed here to expose the phenom-
ena in question. Figure 2 shows ψ(xλ), b(xλ), and j(xλ)
calculated for several values of h in each domain of
pv(h) and values of transport current close to the critical
current. Curves 1 represent distributions corresponding
to the domain of increasing pv(h) (h = 0.5). Curves 2
and 3 are obtained for values of h (h = 1.09 and 1.1,

pv h( ) h hc2 h–( )∝
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Fig. 2. Distributions of (a) order parameter, (b) magnetic induction, and (c) supercurrent across a superconducting plate for d = 6,
κ = 2, and It/Ic = 0.9 at h = 0.5 (1), 1.09 (2), 1.1 (3), and 4.0 (4).
respectively) close to the field strength at which the
slopes of Ic(h) and pv(h) sharply change (h ≈ 1.095).
Curves 4 correspond to h = 4.0, i.e., the extreme right
point of the Ic(h) curve. The shapes of the curves repre-
senting domains I and II (curves 1 and 2 in Fig. 2) com-
pletely agree with the behavior of the Meissner state. In
these domains, the order parameter is suppressed at the
boundaries of the superconducting multilayer and
slowly varies inside it, and magnetic field penetrates
into the multilayer to a depth on the order of λ. The dis-
tributions obtained for domain III, where pv(h) slowly
varies with increasing magnetic field (Fig. 1b), exhibit
a totally different behavior (see curves 3 and 4 in
Fig. 2). In particular, the order parameter ψ(xλ) strongly
deviates from zero only at the left boundary of the plate
and exponentially decreases toward its right boundary
(curves 3 and 4 in Fig. 2a); i.e., the state of a consider-
able part of the plate is close to normal. Note that the
distributions of all macroscopic characteristics of the
superconducting plate drastically change at the point
h ≈ 1.095 separating the domains of fast and slow
decrease in pv(h), as illustrated by curves 2 and 3 in
Fig. 2. Now, consider the transition to the normal state
caused by variation of transport current at h ≈ 4.0
(curve 4 in Fig. 2). It is obvious that the size of the
region of nonzero order parameter is xλ ≈ 1. Further
increase in applied magnetic field strength leads to
complete suppression of superconductivity even at
zero transport current. Note that the superconducting
order parameter vanishes abruptly at It = Ic , i.e., a first-
order phase transition is observed. Thus, the transport
properties of a thick plate in a strong magnetic field
(see Fig. 1) should be attributed to surface supercon-
ductivity.

Next, we consider the effect of It on the order-
parameter value ψ0 at the plate boundaries as illustrated
by the curves of ψ0(It) plotted in Fig. 3 for κ = 0.5 and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
1.5 (Fig. 3). These curves demonstrate behavior charac-
teristic of both type I and type II superconductors as the
shape of ψ0(It) changes with increasing magnetic field
strength. Note that the order-parameter values ψ0 ≡
ψ(xλ = 0) and ψ1 ≡ ψ(xλ = d) at the plate boundaries sat-
isfy the relation ψ1(It) = ψ0(–It); i.e., the curve of ψ1(It)
is the mirror reflection of the curve of ψ0(–It) with
respect to the line It = 0 in Fig. 3. It is clear that ψ0(It) is
symmetric about the line It = 0 at h = 0 (see Fig. 3a).
This is explained by the fact that suppression of super-
conductivity by transport current at the plate bound-
aries at zero applied magnetic field strength is indepen-
dent of the direction of transport current. According to
Fig. 3b, the symmetry of ψ0(It) is lost in applied mag-
netic field, and Ic decreases with increasing h. The
absence of curves of ψ0(It) for κ = 0.5 in Fig. 3c is
explained by the increase in the upper critical field with
κ: superconductivity is suppressed by magnetic field in
the plate with κ = 0.5, but persists in the plate with
κ = 1.5. Note that ψ0 drops from a finite value to zero
as superconductivity disappears with increase in mag-
netic field strength.

Now, consider the behavior of ψ0(It) in strong mag-
netic fields for type II superconductors as illustrated by
Fig. 3d (h = 1.25 and κ = 1.5). This curve substantially
differs from those discussed above in that it has two
new distinct portions: ψ0(It) ≠ 0 at low transport cur-
rents, whereas ψ0(It) ≈ 0 and ψ1(It) ≈ 1 at high currents
(when |It| is close to Ic). Thus, the low-current state is
similar to a previously considered one and is character-
istic of type I superconductors. The high-current state,
in which the superconducting properties are due to sur-
face superconductivity, is characterized by suppression
of the order parameter at one boundary and its increase
at the other. This state emerges abruptly. Note that the
current state corresponding to the distributions of mac-
SICS      Vol. 101      No. 2      2005
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Fig. 3. Dependence of the order parameter at the boundary of a plate of thickness D = 4λ on the magnitude and direction of transport
current for several values of Ginzburg–Landau parameter and applied magnetic field strength.
roscopic characteristics illustrated by curves 3 and 4 in
Fig. 2 is due to the strong asymmetry of boundary con-
ditions (8). This state exists only in type II supercon-
ductors in strong magnetic fields (domain III in Fig. 1b)
and at transport currents close to the critical current
(Fig. 3d). Therefore, the domain of slowly decreasing
pv(h) in Fig. 1b corresponds to this state.

The functions Ic(h) obtained here can be interpreted
as the upper bounds for the critical currents carried by
superconducting plates with different thicknesses D in
magnetic fields of different strength h. Numerical solu-
tion of the Ginzburg–Landau equations provides
detailed information about macroscopic characteristics
of superconductors in this state.

4. CALCULATION OF THE CRITICAL STATES 
OF SUPERCONDUCTING MULTILAYERS

Figure 4a illustrates the behavior of the average
dimensionless current calculated by the method
JOURNAL OF EXPERIMENTAL A
described above as a function of magnetic field,

where N is the number of layers in a multilayer (indi-
cated at each curve), for κ = 10 and d = 0.3, i.e., D = 3ξ.
When the number of layers is relatively small (several
tens for layered structures of the type analyzed here),
the critical current is close to the Ginzburg–Landau
depairing current given by (10). The magnetic field
generated by the layers increases with their number,
and their increasing role manifests itself by decrease in
critical current. This effect weakens with increasing
magnetic field, and the average critical current
approaches the value of Ic(h) for a single layer. Note
that 〈Ic〉  is a monotonically decreasing function of mag-
netic field strength in the model considered here for
multilayers consisting of any number of layers.

Ic〈 〉 1
N
---- Ici,

i 1=

N

∑=
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Fig. 4. Dependence of critical current density (a) and bulk pinning force (b) on applied magnetic field for several structures with
different number of layers (indicated at curves) for D = 3ξ and κ = 10.
We define a quantity analogous to the bulk pinning
force: Pv(h) = 〈Ic〉h. Note that the individual layers con-
sidered here are in a vortex-free state; i.e., they are
inhomogeneous only at their boundaries. This model
provides a good approximation of the real state of SIS
junctions, because the formation of the strongest pin-
ning centers is due to vortex–boundary interaction. Fig-
ure 4b shows the bulk pinning force as a function of
magnetic field strength calculated by this method. The
most important result demonstrated here is the devia-
tion from similarity. As the role played by the layers
increases with their number, the slope ∂Pv(h)/∂h in the
weak-field limit decreases, and the maximum of the
curve of Pv(h) moves toward higher field strengths,
while its shape tends to that described by (15). Recall
that the weak-field limit for an individual layer corre-
sponds to the Meissner behavior (see curves 1 and 2 in
Fig. 2), whereas transport properties are due to surface
superconductivity (curves 3 and 4 in Fig. 2).

Figure 5 shows distributions of transport current and
magnetic field over individual layers calculated by the
present method for analyzing the critical states of
superconducting multilayers. Here, 〈b〉  denotes either
the magnetic induction averaged over the thickness of a
layer or the strength of the magnetic field acting on the
layer. Our calculations can also be used to obtain
detailed magnetic field, current, and order-parameter
distributions across each layer analogous to those pre-
sented in Fig. 2. In particular, the critical current den-
sity varies from layer to layer. At zero magnetic field
strength, its distribution reaches a maximum in the cen-
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tral layers. When a magnetic field is applied, the maxi-
mum shifts toward one of the multilayer boundaries.
Note that the distribution of transport current predicted
for the critical state is similar to its distribution in at
zero field strength, but is also shifted toward the bound-
ary. This similarity admits the following simple expla-
nation. It is obvious that the applied magnetic field h is
equivalent to the superposition of the magnetic fields
generated by l “virtual” layers if two conditions are sat-
isfied. First, the total strength of the magnetic fields
generated by these layers in each real layer must be
equal to the corresponding applied field strength:

 = h, where hj is the magnetic field generated

by the jth virtual layer. Second, the transport-current
distribution across the multilayer obtained by combin-
ing N real layers with l virtual ones in the critical state
must be similar to the symmetric critical current-den-
sity distribution across the multilayer consisting of
N + l real layers at zero magnetic field strength. How-
ever, the central maximum of the critical current in the
multilayer obtained by adding l virtual layers will not
exactly match the shifted critical-current maximum in a
real multilayer if the shift is not a multiple of the half-
period of the layered structure. When the equivalent
model is applied to determine 〈Ic〉(h), the error due to
this mismatch can be reduced by using the following
algorithm: the maximum of the critical-current distri-
bution over individual layers is shifted with a step equal
to the multilayer half-period, and then the average crit-
ical-current densities and applied magnetic field

h jj 1=
l∑
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Fig. 5. Dependence of critical current (a) and local magnetic induction (b) on the location of a layer in a structure consisting of
200 layers for D = 3ξ and κ = 10. Numbers at curves are applied magnetic field strengths.
strengths corresponding to the resulting distributions
are calculated. Based on this method for calculating Ici ,
we conclude that since the distribution of Ici in zero
magnetic field is unique, the distribution of Ici in a non-
zero magnetic field is also unique. Therefore, a known
Ic(h) for a single superconducting layer can be used to
calculate the average critical current as a function of
magnetic field strength and determine the distribution
of transport current over a layered structure in the criti-
cal state.

Note that the resulting transport-current and mag-
netic field distributions over layers are different from
those predicted by using the Bean [18] and Anderson–
Kim [19] models. In the Bean model, the critical cur-
rent density is constant across the sample, and the mag-
netic field varies as a linear function. In the Anderson–
Kim model, magnetic field is characterized by a para-
bolic distribution. At moderate field strengths (1 ! h !
hc2), the magnetic field distributions shown in Fig. 5b
agree with those predicted by the Anderson–Kim
model, whereas the distributions obtained for strong
fields (h ≤ hc2) tend to exhibit linear behavior, as in the
Bean model. Since the magnetic fields generated by the
low critical currents corresponding to strong applied
fields are weak, the transport current is uniformly dis-
tributed over individual layers in the critical state.

Note that the results presented here will not change
significantly if the Josephson coupling between layers
separated by a dielectric is taken into account, because
the Josephson current density is lower than the depair-
ing current density by several orders of magnitude, and
its effect on the order-parameter modulation amplitude
and the transport-current distribution is weak. How-
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ever, if superconducting layers are separated by nor-
mal-metal layers, the proximity effect induces super-
conductivity in the normal conductors and suppresses
the order parameter in the superconductors. In the thin-
layer limit, this leads to weak order-parameter modula-
tion in a layered structure. In this case, the Ginzburg–
Landau equations can be solved for a structure embed-
ded in a parallel magnetic field of strength close to the
upper critical field [9]. Note that weak modulation of
the order parameter corresponds to weak interaction
between Abrikosov vortices and the lattice induced by
inhomogeneities, i.e., to low critical current density.

5. CONCLUSIONS

The main results of the present study can be summa-
rized as follows.

In the framework of a vortex-free model, a method
based on solution of the Ginzburg–Landau equations is
developed for finding the distributions of order param-
eter ψ(xλ), magnetic induction b(xλ), and current den-
sity j(xλ) for various transport currents carried by a
superconducting plate and various strengths h of paral-
lel applied magnetic field.

The critical current carried by a superconducting
plate is calculated as a function of the applied magnetic
field strength h. The effect of surface phenomena on the
distribution of transport current across a superconduct-
ing plate is examined, and the dependence of processes
taking place in the plate on its thickness D and the Ginz-
burg–Landau parameter κ is analyzed. The existence of
a surface superconductivity regime at hc1 < h < hc2 and a
high transport current is revealed.
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The nonlinear Ginzburg–Landau equations are
solved numerically to calculate critical current as a
function of magnetic field strength and both current and
magnetic field distributions over layers for supercon-
ducting multilayers in parallel applied magnetic fields.
The problem is solved for vortex-free layers whose
mutual influence is entirely due to their interaction with
magnetic field. A simple method is proposed for calcu-
lating and analyzing the critical states of layered struc-
tures in magnetic fields of arbitrary strength, based on
elementary transformations of the critical current-den-
sity distribution over individual layers in zero applied
magnetic field.

The vortex-free Meissner state of the layers
assumed in this study is an important restriction,
because vortices do exist in the layers examined in most
experiments. Moreover, their interaction with pinning
centers is the key factor that determines the critical cur-
rent density. The dependence 〈Ic〉(h) obtained here can
be interpreted as an upper bound for the critical current
carried by a multilayer in a parallel applied magnetic
field. Note that the vortex-free Meissner state cannot
exist in an oblique magnetic field, because the perpen-
dicular field component will induce vortices in the lay-
ers; i.e., the critical current density in an oblique field
will be determined by the pinning of these vortices.
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Abstract—The dissociation of a gas molecule and the formation of a new chemical bond upon adsorption of
this molecule on the surface of a transition metal are studied using the method of equations of motion. It is
shown that both processes involve the formation of a mixed intermediate state during the adsorbate–substrate
interaction. The dissociation is caused by a resonance growth of the vibrational mode, whereby the dissociation
barrier is determined by the hybridization energy and by the frequency of electron transitions between molec-
ular levels and the d electron energy levels of the metal in the mixed intermediate state. The resonance condi-
tions for the formation of new surface structures are established. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The chemical activity (reactivity) of the surface of a
metal consists in the ability to break chemical bonds in
the molecules of a gas or a liquid occurring in contact
with the surface, and to form new chemical bonds. The
surface activity plays a determining role in various
physical phenomena such as adsorption, catalysis, and
corrosion. This activity cannot be explained by consid-
ering only the behavior of electrons [1]. Nevertheless,
the electron structure of solid surfaces has received spe-
cial attention in investigations of the above phenomena.
The results of theoretical calculations [2–4] showed that
the activity of the surface of transition metals and a bar-
rier for the dissociation of various molecules on this
surface are determined by relations between the ener-
gies of the d electron states and the adsorbate states, the
Fermi level, and the hybridization energy. In addition,
the final structure of the adsorbate and the energy of
adsorption depend on the atomic geometry and relax-
ation of the surface [5]. The existing descriptions of
various surface processes [5] leave open the questions
concerning mechanisms of the surface activity. In order
to answer these questions, it is necessary to consider in
detail the quantum kinetics of the many-electron sys-
tem involved in the dissociation of adsorbed molecules
and the formation of new chemical bonds.

During the formation of new chemical bonds, atoms
or molecules (in the absence of dissociation) exhibit a
kind of ordering and form islands with a short-range
order, which are composed of hydrides, oxides, etc.
Under certain conditions, new structures can form and
decay. The adsorbed atoms are not merely kept on the
surface, but are capable of forming new molecules. The
three processes—dissociation and the formation of new
1063-7761/05/10102- $26.00 0350
bonds (structures) and new molecules—can be jointly
considered in the analysis of relaxation of the electron–
ion system of interacting molecules and the surface.

The relaxation of a gas–solid heterogeneous system
is determined by the interactions between electrons of
the gas and phonons of the metal [6, 7]. However, there
is another kind of relaxation in systems such as amor-
phous metals, where short-range-order islands can be
formed [8–10]. In this case, new chemical bonds are
formed in the course of the electron–electron interac-
tions, with the corresponding reconstruction of the
atomic configuration. The results of such a relaxation
strongly depend on the concentrations of components,
the degree of the short-range order, the size of clusters,
and the thermodynamical conditions. All these aspects
are also important for the adsorption processes, which
depend on the degree of surface coverage and on the
systematic heating and cooling of the system [5]. It is
also important to note that hybridization and electron–
electron interactions involved in the adsorption lead to
the formation of a new, mixed intermediate state of the
molecule–surface system, which is essentially a precur-
sor to the final state (oxides, hydrides, etc.) [9]. This
intermediate state features the dissociation of adsorbed
molecules and the formation of new chemical bonds.
The new bonds appear in the course of relaxation of the
excited electrons of gas atoms to a partly filled surface
d electron band. The electron–electron interactions in
this system are mediated by the dynamic concentration
excitations of a boson type [10], rather than by
phonons. This boson-type interaction introduces an
additional uncertainty (besides that related to the
hybridization) in the electron energies, which can lead
to anomalies in the transport properties of a system fea-
turing structural relaxation [8].
© 2005 Pleiades Publishing, Inc.
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Below we will describe such a relaxation by in terms
of the equations of motion and consider the mecha-
nisms and conditions controlling the dissociation of gas
molecules and the formation of new chemical bonds
and compounds—that is, we will analyze the mecha-
nisms and conditions determining the chemical activity
of the surface of transition metals.

2. PHYSICAL MODEL AND HAMILTONIAN

Let us consider two stages in the interaction of a gas
molecule (X2) with the surface of a transition metal
(Me), which are described by the reaction

Me + X2  Me + 2X  MeX2.

In the initial stage of this interaction, the molecule dis-
sociates and then the two atoms are deposited from the
gas phase to form new chemical bonds. Accordingly,
the description can be subdivided into two parts: the
first, devoted to the hybridization of separated electrons
of the dissociated molecule and the metal surface, and
the second, devoted to the interaction of common elec-
tron states with ions of the adsorbate–metal substrate
system.

The first stage will be studied in terms of the stan-
dard Hamiltonian in the secondary quantization repre-
sentation:

(1)

where  (clσ) are the electron creation (annihilation)

operators of the gas molecule;  (amσ) are the d elec-
tron creation (annihilation) operators of the metal sur-
face in the Wannier representation; ε0 and εd are the
electron energies in the molecular states and the d metal
states, respectively (measured relative to the Fermi
level); Vlm are the hybridization matrix elements; m are
the coordinates of lattice sites occupied by atoms of the
d metal; l are the positions of adsorbed atoms (top,
bridge, fourfold hollow, etc.); and σ is the spin index. In
the general case, the surface states with the ε0 and εd

energies are decaying.
In considering the second interaction stage, let us

define states in the ion subsystem as the dynamic
atomic concentration excitations (DCEs) above the
ground state corresponding to the metal surface struc-
ture. Then, we will consider the interaction of these
states with the surface electrons using the method
described in [10]. The corresponding Hamiltonian H2
will include the contributions due to the electron–elec-
tron, DCE–DCE, and the DCE–electron interactions. In
order to write this Hamiltonian, let us consider the

H1 ε0( )lclσ
+ clσ

l σ,
∑ εd( )mamσ

+ amσ

m σ,
∑+=

+ Vlm clσ
+ amσ amσ

+ clσ+( ),
l m σ, ,
∑

clσ
+

amσ
+
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adsorption-induced changes in the ion subsystem and
define the set of occupation numbers Ci(R) for posi-
tions R occupied by atoms of the ith kind, their average
〈Ci(R)〉  (equal to the macroscopic concentration Ci),
and the concentration fluctuations

These fluctuations determine the short-range order in
the new structure, while the Fourier image 〈δCδC〉q
determines the surface wavevector q corresponding to
a certain type of short-range order [11].

In these terms, the second-stage Hamiltonian can be
written as

(2)

where the first term represents the electron part (He is
the electron Hamiltonian with the field operators ψ),
the second term corresponds to the configurational part,
and the third term describes the interaction between the
electron and ion configuration subsystems. In Eq. (2),
W(R – R') is the density of the adsorption energy,

and z is the charge of the adsorbed ion in the metal–
adsorbate “solution.” Interactions of the type

give additive contributions to the spectrum and are not
included into the expression for H2.

The electron operators and the concentration field
can be represented as

(3)

(4)

where b+(R) = (R)αl(R) and b(R) are the operators
of creation and annihilation, respectively, for a pair of
metal and adsorbate atoms (i.e., of the creation and

annihilation of a new chemical bond); (R) corre-
sponds to a metal atom at the mth lattice site and αl(R)

δCi R( ) Ci R( ) Ci.–=

H2 rψ+ r( )Heψ r( )d∫=

+
1
2
--- Wij R R'–( )δCi R( )δC j R'( )

R R',
i j,

∑

+ r g r R–( )ψ+ r( )ψ r( )δC R( ),
R

∑d∫

g r R–( ) z
r R–
---------------,=

r g r R–( )ψ+ r( )ψ r( )∑d∫

ψ+ r( ) ak
+e ik– r⋅ , ψ r( )

k

∑ akeik r⋅ ,
k

∑= =

δC R( ) 1
2
--- C 1 C–( ) b+ R( ) b R( )+[ ] ,=

αm
+ ,

αm
+
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corresponds to an adsorbed atom at the lth lattice site
(the subscripts at b+ and b are omitted, since metal
atoms occur at the fixed lattice sites; Rl ≡ R).

Now it is convenient to pass from the coordinate to
k representation in Eq. (4), because the new bonds
(atomic pairs) form identical bosons and the system
should be symmetric with respect to permutations of
these bosons. The k representation will automatically
take this symmetry into account. In order to pass to this
representation, let us introduce the elementary excita-
tions

(5)

where N is the number of atoms in the lattice on the
metal surface. At small degrees of coverage, these exci-
tations represent the aforementioned bosons. Substitut-
ing relations (3)–(5) into Eq. (2) and determining the
Fourier image of function g(R) as

(6)

we obtain the Hamiltonian in the secondary quantiza-
tion representation:

(7)

where W(q) is the Fourier image of the energy density
W(R), ε(k) is the electron spectrum of the adsorbate–
metal substrate system, and µ is the chemical potential
of elementary excitations.

3. THE METHOD OF EQUATIONS OF MOTION 
AND THE DISSOCIATION OF MOLECULES

Let us consider the first interaction stage using the
method of equations of motion,

(8)

bk
1

N
-------- b R( )eik R⋅ ,

R

∑=

bk
+ 1

N
-------- b+ R( )e ik– R⋅ ,

R

∑=

∆ q( ) C 1 C–( ) g R( )eiq R⋅ ,
R

∑=

H2 ε k( )ak
+ak

k

∑ 1
8
---C 1 C–( )+=

× W q( ) 2bq
+bq b q– bq bq

+b q–
++ +[ ] µ bq

+bq–{ }
q

∑

+ ∆ q( ) ak q+
+ akbq ak

+ak q+ bq
++[ ] ,

k q,
∑

ċlσ
+ i Hl clσ

+,[ ] , ȧmσ i Hl amσ
+,[ ] ,= =
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where […, …] is the commutator. Accomplishing sim-
ple transformations, we obtain the following system of
equations for a single spin subband:

(9)

(10)

where ωlm = (ε0)l – (εd)m (in " units) and γ is the 
mode decay due to hybridization. The decay of d states
is not taken into account. Equations (9) and (10) repre-
sent two interrelated oscillation processes, in which the
hybridization V plays the role of the natural frequency
of the electron density oscillations, ω = ε0 – εd deter-
mines the driving frequency, and the product Vω enters
into the expression for the driving force amplitude. The
amplitude of the external force for the adsorbed mole-
cules is determined by the electron density in the metal;
for the surface, it is determined by the electron density
in the molecule.

As can be seen from Eqs. (9) and (10), the gas mol-
ecules and the metal surface at the very beginning of the
interaction form a new, mixed intermediate state with
common electronic and vibrational modes. At the initial
stage of the interaction, these modes differ only slightly
from those in the initial non-interacting systems, but the
symmetries of these modes and of the new intermediate
state on the whole differ from the initial symmetry of
both the molecule and the surface. Under certain condi-
tions, the evolution of this state leads to the dissociation
of adsorbed molecules. In order to establish these con-
ditions, let us solve system of equations (9) and (10) in
a two-mode approximation by assuming that only the
terms with n = m and p = l are significant in summing
over n and p.

Seeking a solution to Eq. (10) in the form of  =

ρ , we express  from Eq. (10) and substitute this
expression into Eq. (9), which yields

(11)

where Vlm = V and ωlm = ω. This equation describes the
reactive (vibrational) and relaxation motions in terms
of the average values. In both form and meaning,
Eq. (11) is identical to the phenomenological equation of

ċ̇l
+ γċl

+ V ln
2cl

+

n

∑+ +

=  V lnωln ωlnt–( )an
+,exp

n

∑

ȧ̇m
+ V pm

2am
+

p

∑+

=  V pm ωpm iγ–( ) ωlpt( )cp
+,exp

p

∑

cl
+

am
+

eiωt am
+

ċ̇l
+ γċl

+ V2V2 iγω+

V2 ω2–
---------------------cl

++ + 0,=
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motion for fluctuations in the “order parameter” [12], in

this case—in the electron density  in the molecule.

Therefore, the coefficient at  in Eq. (11) is the inverse
susceptibility (χ–1) in the intermediate state of the
system.

As is known, the χ–1 value corresponds to the square
frequency Ω2 of the normal vibrational mode (renor-
malized due to hybridization) of the molecule [12]:

(12)

This relation shows that, for ω2  V2 (ω2 < V2), the
frequency of oscillations exhibits a resonance growth.
This resonance accounts for the dissociation of mole-
cules when the "Ω value becomes equal to the dissoci-
ation energy D. By equating ReΩ to D, we obtain D2 ≈
V2 + ω2 (Dmin ~ |ωmin|). Therefore, the higher the
Fermi energy εF and the closer εd to εF , the faster the
difference ε0 – εd tends to zero and the lower the disso-
ciation barrier: Dmin  0 for εd ≤ εF (i.e. for a nearly
half-filled d band in the metal).

Thus, the values of V, ω, and their ratio determine
the activity of the metal surface with respect to dissoci-
ation. The dissociation proceeds according to the mech-
anism of the “rigid” vibrational mode, which appears
under the conditions of a resonance between ω = ε0 – εd

and V upon the hybridization of electron states of the
molecule and the surface d states of the metal. There are
two possible situations:

(i) The resonance of small V and ω values: low dis-
sociation barrier. In this case, the molecular states are
hybridized with narrow d bands and the ε0 level occurs
in the region of d states below or at the Fermi levels. If
the ε0 level does not coincide with the Fermi level, the
resonance conditions are not obeyed.

(ii) The resonance of large V and ω values: high dis-
sociation barrier. In this case, the hybridized involves
less localized states of the metal and the ε0 level occurs
far from the center of the d band. The mode with the
frequency Ω exhibits substantial decay, which also
complicates the dissociation of molecules.

Now let us consider the regime of electron motions

in the molecule. Substituting  = ρeiωt into Eq. (11),
we obtain the following results:

(i) For γ ! V ! ω, we have χ–1  0 (the system is
far from the resonance) and

(13)

This solution to Eq. (13) decays only when γ < 0 (“neg-
ative friction”). In this stage, the metal surface acts as a
reservoir of energy for the molecule and excites the

cl
+

cl
+

χ 1– Ω2 V2V2 iγω+

V2 ω2–
---------------------.= =

2

cl
+

cl
+ ρ iV2t

ω
---------- V4t

γω2
---------+ 

  .exp=
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molecular states. Thus, in the beginning of the interac-
tion (when a molecule is at a large distance from the
surface), the repulsion increases the energy of electron
states in the molecule until the ε0 level approaches close
to εF so that the system will pass to the other regime. In
this regime, the ε0 level occurs below the Fermi level
and approaches εd , thus driving the system to reso-
nance.

(ii) For γ ! V ≤ ω, we have χ–1  ∞ (the system is
close to the resonance) and

(14)

In this case, the decay at any γ determines the dissocia-
tion of molecules for any ω  V.

(iii) For γ ! ω ≤ V. χ–1  ∞ (far from the reso-
nance) and we have

(15)

The oscillations decay for γ > 0, which implies that the
surface takes the energy from an adsorbed molecule
until it decays at ω  V.

4. THE RELAXATION OF ELECTRON STATES 
AND THE FORMATION OF NEW COMPOUNDS 

ON THE SURFACE

In the stage of interaction involving the relaxation of
electron states and the formation of new chemical
bonds, the ε0 level falls under the Fermi level and
approaches εd . The electrons of adsorbed molecules
form the states with inversed populations relative to the
unoccupied d states of the metal. It should be noted that
falling under the Fermi level can be related to the uncer-
tainty ∆ε in the energy. This uncertainty in the energy
appears because the interaction event is localized in
time with an uncertainty of ∆t ~ 10–15 s, whereas the
characteristic electron interaction time is on the order
of 10–14 s. The resulting value of ∆ε is on the order of
several electronvolts. This implies that electrons of the
molecule, which possess an energy of ε0 ~ εd , may
occur in the surface band of the metal owing to the
uncertainty principle.

For the deposition of atoms on the substrate surface
to be irreversible, it is necessary that the inversely pop-
ulated states would exhibit relaxation. A change in the
population naturally leads to the appearance of polar-
ization which, in turn, leads to the excitation of slower
modes in the ion subsystem. All these processes are
interrelated. In the system under consideration, a
slower mode represents the dynamic concentration
wave forming a region with the new short-range order.

cl
+ ρ iγt

2
------ ω

2 ω V–( )
----------------------– Vt

ω
2 ω V–( )
----------------------– .exp=

cl
+ ρ iVt

ω
2 V ω–( )
----------------------

γt
2
---- ω

2 V ω–( )
----------------------– .exp=
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In order to describe this process, let us write the

equations of motion for the operators , bq of the new
chemical bonds, the operators dkq of the electron polar-

ization due to electron transitions (dkq = ak + q and

 = ak), and the operators σkq of the inverse

population (σkq = ak + q – ak):

(16)

Accomplishing transformations and using the approxi-
mation of exponential relaxation in the absence of

decay of the  mode, we obtain

(17a)

(17b)

(17c)

where ωkq = εk + q – εk ,  Γq is the decay of polarization

related to the electron–electron interaction,  is the
average population at the beginning of the process, and
τσ is the population relaxation time. According to

Eqs. (17), the polarization dq , which excites the 
mode, has the frequency ωkq and decays over a time on

the order of . The last nonlinear term in the right-
hand side of Eq. (17b) describes a change in the polar-
ization related to the change in the population and the
formation of new chemical bonds.

Let us consider a simpler variant of Eqs. (7). The

sum  in the right-hand side of Eq. (17a) allows

us to assume that the  mode does not decay in the sta-
tionary regime and the new phase (at a given coverage)
uniformly occupies most of the metal surface. Then,
taking into account that

we obtain

bq
+

ak
+

dkq
+ ak q+

+

ak q+
+ ak

+

ḃq
+

i H2 bq
+,[ ] , ḋkq

+
i H2 dkq

+,[ ] ,= =

σ̇kq
+

i H2 σkq,[ ] .=

bq
+

ḃq
+

i 2C 1 C–( )W q( ) µ–[ ] bq
+=

+ i∆ q( ) dkq
+ ,

k

∑

ḋkq
+

iωkq Γq–( )dkq
+ i∆ q( )σkqbq

+,–=

σ̇kq σkq
0 t/τσ–( ),exp–=

σkq
0

bq
+

Γq
1–

dkq
+

k∑
bq

+

ik Rn Rm–( )⋅[ ]exp
k

∑ δn m, ,=

dkq
+

k

∑ nq, dkq

k

∑ n q– ,= =

σkq

k

∑ 0, ωkqdkq
+

k

∑ 0,= =
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where nq and n–q are the numbers of emitted and
absorbed electrons. These relations imply that the
inversion population no longer exists. Writing the
explicit time dependences,

considering the exact resonance,

, (18)

and taking the sum over k in Eq. (17a), we eventually
obtain the relations

(19)

where  and  are the numbers of occupied and
vacant states in the energy band of the metal.

Equations (19) show that it is the donor–acceptor
interaction that determines the appearance of a new
chemical bond in the system under consideration. In
addition to the one-electron characteristics (the number
of transferred electrons and the relative posit ions of εk
and εk + q terms), a significant role is played by the
structural and thermodynamic characteristics such as
the electron–bond interactions, the degree of surface
coverage, and the energy of adsorption (more exactly,
the behavior of the potential surface in the region of
wavevectors q corresponding to a given type of the
short-range order).

Thus, Eqs. (7) and (19) interrelate the electron,
structural, and thermodynamic aspects of the formation
of new chemical bonds during dissociative gas adsorp-
tion on a solid surface.

Upon solving Eqs. (19) with the initial conditions

we obtain the following relation for the values averaged
over a nonequilibrium ensemble:

(20)

The resonance condition (18) relates the energy differ-
ence of the donor–acceptor states to the Fourier image
of the adsorption energy density. Under the conditions
formulated above, the quantity ωq = εk + q – εk weakly
depends on C. This implies that the adsorption energy
is inversely proportional to the surface coverage L:

(21)

bq
+ iωqt( )bq

+, nqexp iωqt–( )nq,exp= =

ωkq  =  ω q 2 C 1 C – ( ) W q ( ) µ –=

ḃq
+

i∆ q( )nq
0 iωqt– Γqt–( ),exp=

ḃq i∆ q( )n q–
0 iωqt Γqt–( ),exp–=

nq
0 n q–

0

bq
+bq t 0= 0,=

bq
+bq Nq

2∆ q( )nq
0n q–

0

ωq
2 Γq

2+
----------------------------= =

× Γqt–( ) Γqtcosh ωqtcos–( ).exp

W0
W
N
----- const N⋅

L N L–( )
---------------------- const

L
------------.∝≈=
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In Eq. (20), the Nq value is equivalent to the reaction
yield and η(t) = Nq(t)/N0 is the probability of the depo-
sition reaction, where

is proportional to a product of the numbers of occupied
and vacant electron states in the energy band of the
metal. For d electrons, this product reaches maximum
for the half-filled band. The N0 value grows with
increasing parameter ∆(q) (determining the adsorbate
binding to the substrate) and drops with increasing ωq .
The ∆(q) value determines only the amplitude (N0) and
does not influence the time dependence of η(t).

Let us consider the kinetics of formation of the new
chemical bonds, which is described by the relation

(22)

Figure 1 shows the functions η(t) and (t) (the latter
quantity determines the reaction rate) in the cases of
Wq @ Γq, Wq ~ Γq , and Wq ! Γq . The formation of a
new chemical bond—that is, a change in the number of
atomic excitations with time—is determined by the
electron parameters Γq and ωq , provided that the reso-
nance condition (18) is obeyed. If the condition (18) is
not fulfilled, the value of η(t) only oscillates about zero
and the new bond is not formed.

Now let us consider in more detail the resonance
condition (18). Taking the derivative with respect to the
wavevector from both parts of this equation, we obtain
the following relation for the velocities of electrons par-
ticipating in the formation of the given structure:

For the formation of a stable structure corresponding to
vector q, it is necessary that

and, therefore,

(23)

This result implies that the formation of the new stable
structure involves (via the interaction with DCEs hav-
ing the wavevector q) a certain group of electrons with
Vq = 0 and ω(q) = minω(k), that is, electrons from a flat
band with the minimum difference of energies of the
donor–acceptor states. This condition is obeyed by the
d states in the transition metals and their alloys. The
effect of the d band narrowing on the adsorption energy
is illustrated in Fig. 2.
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0n q–
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----------------------------=
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× Γqcosh 2C 1 C–( )W q( ) µ–[ ] tcos–{ } .

η̇
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.∼

∂W k( )
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-----------------
k q=

0,=

Vq 0, W q( ) minW k( ).= =
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The value of Γq , which is equal to the inverse relax-
ation time of the mixed state, is not less important. The
relation

ωq ≤ Γq (24)

is a necessary condition for the formation of a coherent
standing wave (20), that is, the condition of formation
of the new short-range order. Thus, the greater the total
width of terms, the more actively the new structure is
formed. In the general case, the total width includes (in
addition to the broadening due to the interaction) the
intrinsic widths of atomic and surface electron states. It
is the substantial decay of the surface d states that deter-
mines the increased activity of the surface of transition
metals.

In the case of Wq @ Γq (Fig. 1a), the initial stage of
the process is characterized by the appearance of beats
with a period of T = 2π/ωq . The new structure is formed
for a time of π/ωq and decays for the same time because
of beats in the mixed interference state under the condi-
tions of a weak electron–electron interaction via DCEs.
In this case, the interaction cannot lead to a coherent
alignment in the ion subsystem. (Over long periods of
time, by virtue of the necessary appearance of the new
phase, the η(t) value exhibits saturation.) In the course
of deposition, condition (23) is probably not always
exactly satisfied even when condition (18) is valid. This
may take place at high frequencies ωq , that is, in wide
bands where a small number of electrons can possess
the velocity Vq = 0. In this case, the Doppler line broad-
ening seem to be possible and the resonance conditions
may change. The regime with Wq @ Γq is most favor-
able for the catalytic activity of the surface, since the
binding of gas atoms to the surface is established for a
short time. In the case, say, of oxygen adsorption, the
condition Wq @ Γq will not allow the metal surface to
be oxidized, thus implying all subsequent events.
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, η
(t
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Fig. 1. Kinetics of chemical bond formation in cases of
(a) Wq @ Γq , (b) Wq ~ Γq , and (c) Wq ! Γq . Solid and

dashed curves show η(t) and (t), respectively.η̇
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The situation changes when Wq ~ Γq (Fig. 1b). In
this case, there are no beats and the η(t) value reaches a
maximum and begins to decrease. However, the
decrease is compensated by enhanced interaction and
by narrowing of the band, so that the η(t) value exhibits
saturation for the time t = 2π/ωq . At this point, the
derivative (t) exhibits a minimum. The compensation
leads to an increase in the distance between metal
atoms and to a decrease in their mutual binding.

Finally, the condition Wq ! Γq (Fig. 1c) is most
favorable for the formation of new bonds.

5. CONCLUSIONS

The above analysis shows that the decay of electron
states at the initial stage of adsorption does not play a
decisive role and the dissociation of molecules takes
place as a result of a sharp enhancement of the vibra-
tional mode of molecules in the mixed state. This

η̇

–8 –4 0 4

H (a)

(b)

PdεF

εd

PdεF

εd

0

2

4

N, electron/(atom eV)

–8 –4 0 4

H

–8–12 –4 0 4 8
ε – εF, eV

0

2

4

Fig. 2. Local densities of electron states in the surface layer
of PdTa(001) in cases when the surface exposes (a) a single
monolayer of palladium (Ead = –0.16 eV, εd = –3.14 eV) and
(b) two monolayers of palladium (Ead = –0.43 eV, εd =
−2.06 eV). The insets show the analogous curves for the
adsorbate (hydrogen occurring in a four-fold hollow at the
center of a 2D lattice) on the (001) surface. The calculations
were performed using a full-potential linearized aug-
mented-plane-wave method [13].
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enhancement is caused by the resonance between the
frequency of natural oscillations (the hybridization
energy) and the driving frequency equal to the fre-
quency of transitions between the molecular levels and
the d states of the surface. These frequencies and the
Fermi level position determine the dissociation barrier.
In the absence of the resonance, the dissociation does
not take place and the molecules can adsorb and exist
on the surface. In the second stage involving the forma-
tion of new chemical bonds, the decay of electron states
is among the main factors determining the possibility of
this process. In fact, the physical mechanism of adsorp-
tion consists in the electron–electron interaction medi-
ated by bosons representing the new bonds (atom pairs)
obeying resonance conditions (19), (23) and (24),
which determine the conditions of the new structure
formation.
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Abstract—A new mechanism of prebreakdown generation of electron–hole pairs is considered. It includes a
cascade of interband multiphoton transitions as well as Auger-type processes involving two or three photons.
A combination of these processes leads to the multiphoton avalanche effect. The threshold pumping radiation
intensities required for triggering the avalanche mechanism lie in the range of 1011–1012 W/cm2. The band pop-
ulation balance equations describing the kinetics of pair production are obtained and solved numerically. It is
shown that the proposed mechanism of production of nonequilibrium electron–hole pairs is more effective than
“conventional” multiphoton absorption for intensities exceeding the threshold values. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

The first publications devoted to the breakdown of
transparent insulators and wide-gap semiconductors
induced by high-intensity laser radiation appeared
more than four decades ago (see, for example, [1–4]).
Nevertheless, research in this field remains topical in
view of the diversity and complexity of its physical
aspects and exceptionally important practical applica-
tions of the breakdown effect. Here, we consider only
one aspect of this problem, viz., production of nonequi-
librium electron–hole (e–h) pairs by high-intensity
light with a quantum energy "ω higher than the ener-
gies of vibrational excitations, but smaller than the
band gap Eg of the material. Apparently, the production
of a considerable number of free nonequilibrium carri-
ers under the action of high-intensity light is the main
premise for processes ultimately leading to breakdown
of the material in most cases.

It was noted even in early publications that two
mechanisms of production of nonequilibrium e–h pairs,
viz., avalanche ionization and multiphoton interband
transitions, play the leading role in the breakdown of
high-purity transparent materials. Breakdown due to
avalanche ionization was considered by many authors
(see, for example, [5–13]). However, in the case studied
here (for "ω * 1 eV and Eg * 5 eV), the efficiency of
impact ionization triggering an avalanche is apparently
not high. As a matter of fact, the kinetic energy of an
electron in the conduction band required for the pro-
duction of e–h pairs must exceed the threshold value

(1)Eth
2ζ 1+
ζ 1+

---------------Eg,=
1063-7761/05/10102- $26.000357
where ζ = mc/mv , mc and mv being the effective masses
of electrons in the lower conduction band and holes in
the upper valence band, respectively. Here and below,
we consider electrons for definiteness, although pro-
cesses of the impact ionization type may also occur due
to nonequilibrium holes. Obviously, the allowed band
width ∆Ec can be smaller than Eth ; in this case, impact
ionization mechanism does not work (at least in its sim-
ple form). If, however, ∆Ec > Eth , an electron can
acquire the required kinetic energy either through a
multistage cascade of intraband single-photon transi-
tions, or due to multiphoton intraband transitions. For
"ω * 1 eV, both mechanisms are ineffective. The effi-
ciency of the cascade mechanism is low in view of the
smallness of the intraband absorption coefficient in the
spectral range of interest (the effective cross sections
are on the order of 10–20–10–19 cm2) and a short carrier
relaxation time (on the order of 10–13 s), which is prima-
rily determined by the interaction of charge carriers
with polar optical vibrations of the lattice. The proba-
bilities of five–eight-photon intraband transitions (see,
for example, [14]) in the spectral range under investiga-
tion are obviously lower than the probabilities of mul-
tiphoton interband transitions leading to production of
nonequilibrium e–h pairs.

Multiphoton interband transitions undoubtedly play
an important role in prebreakdown production of e–h
pairs. The concentration of nonequilibrium charge car-
riers sufficient for breakdown is either produced
directly owing to such transitions, or such transitions
generate electrons initiating avalanche ionization. The
role of multiphoton interband transitions in the physics
 © 2005 Pleiades Publishing, Inc.
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of breakdown and various breakdown mechanisms are
considered in [3, 4, 15–19].

In the 1990s, a number of works devoted to break-
down in solids initiated by ultrashort (subpico- and
femtosecond) laser pulses were published. This revived
the discussion of possible breakdown mechanisms
(see [20–28]). In particular, the dependence of the
breakdown threshold on the pulse duration and light
frequency was studied in detail in [20–26]. Some of
these dependences were comprehensively described
in [21, 23] in the framework of a model in which ava-
lanche ionization is the main triggering mechanism,
and multiphoton processes ensured the initial popula-
tion of electrons required for initiating the avalanche.
However, this model, which is based on the Fokker–
Planck equations for electron dynamics in the radiation
field, failed to explain the results of measurement of the
breakdown threshold as a function of the time delay
between two laser pulses [25, 26]. A slightly different
model based on the Boltzmann kinetic equations was
proposed in [27]. In contrast to [21], it was assumed
that multiphoton ionization dominates over avalanche
in the case of a short laser pulse with τp ≤ 200 fs (see
also [17]). The model proposed in [21] was modified
in [28] by taking into account relaxation processes in
the kinetic equations and by describing electron
sources. At the same time, this model lays no claim to a
comprehensive interpretation of the entire body of
available experimental data.

In addition to avalanche ionization and multipho-
ton interband transitions, intermediate-type processes
[29, 30] may contribute to the production of e–h pairs.
If the relation (n – 1)"ω < Eg < n"ω holds, the energy
deficit ∆(n – 1) = Eg – (n – 1)"ω required for the produc-
tion of an e–h pair upon the absorption of n – 1 photons
can be replenished by the kinetic energy of free elec-
trons, which must exceed the threshold value

(2)

in this case. Obviously,  is much smaller than Eth . If

 ! kBT, only those free electrons that possess a large
kinetic energy may take part in the process. This energy
must be acquired only due to interband absorption of
light. Such processes are vital only for the long-wave-
length range of the spectrum, in which the cross sec-
tions of intraband light absorption are large enough. In
particular, the absorption of radiation from a CO2 laser
("ω ~ 10–1 eV) in n-InAs due to three-photon inter-
band transitions involving free electrons was studied
in [29, 30]. Since the rate of production of free carriers
in such processes increases with their concentration, an
avalanche increase in the number of nonequilibrium
e−h pairs becomes possible under certain conditions.
Although the processes studied in [29, 30] can hardly
play a significant role in the problem of breakdown of a

Eth'
2ζ 1+
ζ 1+

---------------∆ n 1–( )=

Eth'

Eth'
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broadband material by micrometer-range radiation
studied here, modified versions of a process of this type
can be quite operative. In particular, such processes
play a key role in the model of prebreakdown produc-
tion of e–h pairs proposed here and based on the photon
avalanche scheme.

The photon avalanche effect is usually employed for
exciting short-wave luminescence with the help of
long-wave pumping. In most publications devoted to
this effect (see, for example, [31–37]), systems of rare-
earth dopant ions are considered. The simplest version
of a photon avalanche is realized in a system of three-
level impurities. We denote the ground state and two
excited states of impurities as 1, 2, and 3. The frequen-
cies of transitions between the ith and the kth states are
denoted as ωik . In the absence of pumping, only state 1
is occupied. If the pumping frequency ω ≈ ω32 > ω21, no
effects are observed in the system for low intensities j
of light. For large values of j, an electron of one of
impurities, which for some reason or other is in excited
state 2, rapidly absorbs a quantum "ω and passes into
the upper state 3. For a high concentration of impuri-
ties, the electron from one of the impurities returns
from state 3 to state 2 due to the cross-relaxation pro-
cess 31  22, while an electron from an adjacent
impurity passes from state 1 to state 2. Then electrons
from two impurities are in state 2. Each of these elec-
trons may in turn participate in such processes. As a
result, many electrons from different impurities are
accumulated in state 2; strong absorption takes place on
the 2  3 transitions and, accordingly, level 3
becomes highly populated. This may result in lumines-
cence on the 3  1 transition at a frequency Ω > ω. A
photon avalanche is characterized by a clearly mani-
fested threshold nature of the effect: the populations of
excited states and light absorption increase jumpwise at
j ≈ jth; at the same time, the time τeq of establishment of
a quasi-equilibrium distribution of the electron popula-
tion also increases sharply. The threshold nature of the
emergence of a photon avalanche makes it possible to
analyze this effect in terms of the Landau theory of sec-
ond-order phase transitions [34].

The effect of photon avalanche in a semiconductor
system with doped quantum wells was considered
in [38, 39]. In this case, switching to the photon ava-
lanche mode may occur over a much shorter time and
with lower energy expenditures than in a system of
rare-earth ions.

A scheme of emergence of a photon avalanche in a
structure with type II quantum wells was proposed
in [40]. It was shown that this scheme makes it possi-
ble to excite a considerable number of nonequilibrium
e–h pairs for moderate pumping intensities (j ~
105−106 W/cm2) and to obtain luminescence at a wave-
length 3–5 times larger than that of the exciting light.
The energy corresponding to switching between
weakly and strongly absorbing states in this case is
ND THEORETICAL PHYSICS      Vol. 101      No. 2      2005
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Esw ~ 1–10 pJ/µm2, which is four to five orders of mag-
nitude lower than in a system of rare-earth ions.

Here, we propose a new mechanism of production
of nonequilibrium e–h pairs by high-intensity light (j ~
1011–1012 W/cm2). This mechanism, which is based on
a photon-avalanche-type effect, includes both “ordi-
nary” multiphoton processes and interband transitions
involving free charge carriers.

2. MULTIPHOTON AVALANCHE MODEL

We assume that the material is free of impurities
whose light-induced ionization could lead to a notice-
able concentration of nonequilibrium charge carriers.
We also assume that inhomogeneities whose local heat-
ing by radiation could lead to breakdown are absent.

Let us consider the model of a crystal, which
includes two conduction bands (c and c1) as well as the
valence band v. For definiteness, we assume that the
energy gap Eg between the valence band and the lower
conduction band c is slightly smaller than n"ω, while
the gap  between the conduction bands is smaller
than l"ω (l < n; Fig. 1). We will consider two versions
of the process: n = 5, l = 3 and n = 5, l = 2. Direct
n-photon v   c transitions lead to the appearance of
a certain number of free electrons in the lower conduc-
tion band c. These electrons arrive at the bottom of the
band over time periods on the order of 10–13 s. Owing
to l-photon transitions between conduction bands c and
c1, electrons pass to the upper conduction band. The
Auger-type process c1 + (n – l)"ω  ccv  plays the
key role in the proposed mechanism; in other words, an
electron in the c1 band generates (with the help of n – l
photons) a pair consisting of a hole in the v  band and an
electron in the c band, passing thereby to the c band,
where two new electrons appear as a result of this pro-
cess. If we compare this with the “classical” scheme of
the photon avalanche effect described in the Introduc-
tion, the n-photon v   c transitions play the role of
low-intensity nonresonant 0  1 transitions; l-photon
c  c1 transitions correspond to rapid resonant
2  3 transitions, while transitions c1 + (n – l)"ω 
ccv  play the same role as cross-relaxation 31  22
transitions.

The mechanism of production of e–h pairs proposed
here will be referred to as a multiphoton avalanche.

Naturally, the model under consideration also
includes the c1  c relaxation process involving
phonons as well as processes of recombination of non-
equilibrium photoexcited electrons and holes.

Obviously, the proposed model gives correct results
only in the range of very strong electromagnetic fields
with an electric field strength of the light wave of Fω *

107 V/cm. For "ω = 1.17 eV, mr = 0.4m0 (  =  +

Eg'

mr
1– mc

1–
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, where m0 is the free electron mass), Eg = 5.7 eV,
and Fω = 107 V/cm, the Keldysh parameter [41, 42]

(3)

assumes a value of γ ≈ 6.4. The large value of parameter
γ leads to the conclusion that the pattern of multiphoton
interband transitions rather than interband tunneling in
the field of a strong electromagnetic wave is adequate
in the situation considered here for intensities lower
than 1013 W/cm2. In this case, the inequality 1/(4γ)2 ! 1
suggests that transitions with the smallest number of
photons permitted by conservation laws occur in fact
between any two bands.1 To estimate the probabilities
of multiphoton interband transitions, we will hence-
forth use the results obtained in [44, 45], where the fol-
lowing formulas were derived for the probabilities of
n-photon interband transitions for arbitrary n

In the region of small values of j, these formulas for
n = 3 coincide with those derived in the framework of
standard perturbation theory. For n @ 1, formulas
from [44, 45] give an asymptotic form close to that

1 Such a situation is typical, but exceptions are also observed
sometimes. For example, it was shown in [43] that the probabili-
ties of n-photon interband transitions with n = 3 and n = 4 in the
indirect gap material AgBr are large than the probabilities of tran-
sitions with n = 2 for j * 1010 W/cm2 (λ = 560 nm) owing to spe-
cific features of the electron band structure and manifestations of
the optical Stark effect under the conditions of double interband
resonance.

mv
1–

γ
ω mrEg

eFω
--------------------=

Wv c
n( ) σv c

n( ) jn.≡

Ec1

Ec

Eg

Eg'

c1

c∆

v

"ω

∆

Fig. 1. Diagram of transitions in a system consisting of
valence band v  and two conduction bands c and c1 (l = 3).
Undulated lines with arrows denote photons (see text for
explanation).
SICS      Vol. 101      No. 2      2005



360 PERLIN et al.
obtained in [41, 42]. The corresponding formulas are
given in the Appendix.

It was noted above that Auger-type transitions c1 +
s"ω  ccv, s = n – l play a key role in the develop-
ment of a multiphoton avalanche. The probabilities of
these transitions,

were calculated in the (s + 1)th order of perturbation
theory (s orders for the interaction of the electron sub-
system with the field of an electromagnetic wave and
one order for the electron–electron Coulomb interac-
tion). The criteria of applicability of the Born approxi-
mation in the Coulomb interaction and the principles
for selecting Feynman diagrams giving the major con-
tribution to the cross section are described in detail
in [46]. The results are presented in the Appendix.

3. BALANCE EQUATIONS
FOR BAND POPULATIONS

The balance equations for electron concentrations nc

and  in the two conduction bands have the form

(4)

with the initial conditions  = 0 and nc = n0 for t = 0.

In formulas (4),  is the rate of relaxation electron
transitions from the upper conduction band to the lower
conduction band and n0 and p0 are the equilibrium con-
centrations of electrons in the lower conduction band
and holes in the valence band, respectively. The rates

 = jl of l-photon transitions between the con-
duction bands c and c1 are described by the formulas,
which can easily be derived using standard perturbation
theory. These formulas are also given in the Appendix.
The terms proportional to  and dc on the right-hand
sides of Eqs. (4) describe the conventional bimolecular
recombination of electrons in the conduction bands
with holes in the valence band. The hole concentration
is defined by the relation

(5)

where p = p0 for t = 0.
At high light intensities, the states near the bottom

of the conduction bands c and c1 are filled, while the
states near the top of the valence band v  are depleted

Wa
s( ) γ s( ) jsnc1

,≡

nc1

ṅc1
Wc1cnc1

– σcc1

l( ) jl f cc1
γ l( ) jn l– nc1

–+=

– dc1
p0 nc n0– nc1

+ +( )nc1
n0 p0–[ ] ,

ṅc Wc1cnc1
σcc1

l( ) jl f cc1
– 2γ l( ) jn l– nc1

+=

+ σv c
n( ) jn 1 f c–( ) 1 f p–( )

– dc p0 nc n0– nc1
+ +( )nc n0 p0–[ ]

nc1

Wc1c

wcc1

l( ) σcc1

l( )

dc1

p nc n0 nc1
p0,+ +–=
JOURNAL OF EXPERIMENTAL A
(i.e., a high concentration p of holes appears). This
affects the rates of multiphoton interband transitions
and multiphoton Auger-type transitions. These effects
are not critical for the problem under investigation.
Nevertheless, they should be taken into account at least
in a rough approximation. For this purpose, real distri-
butions of nonequilibrium electrons and holes are
approximated by the Fermi distribution functions cor-
responding to instantaneous electron and hole concen-
trations nc(t), (t), and p(t). For example, formulas (4)

contain the distribution function  for electrons in

the c band, which corresponds to energy εc( ) at

point  of the l-photon resonance between bands c
and c1:

(6)

Analogously, we can introduce the distributions func-
tions fc and fp of electrons in the c band and holes in the

v  band, which correspond to energies εc( ) and

εv( ) at point  of the n-photon resonance
between the v  and c bands (see also formulas (A.2)–
(A.4) in the Appendix). In the case of relatively large
quanta of exciting light ("ω * 1 eV) and not very small
durations of light pulses (τp * 1 ps), this approximation
turns out to be satisfactory on account of small cross
sections of intraband absorption of light and short times
of intraband relaxation of electrons and holes. Natu-
rally, this approximation is inapplicable for longer
wavelengths ("ω & 0.1 eV) (see [29, 30]).

To calculate chemical potentials µc and µp(µp > 0)
for electrons and holes, which appear in the formulas
for distribution functions, we will use the transcenden-
tal equations

(7)

where  = mc, p/kBT; Nc and Np are the effective den-
sities of states in the conduction and valence bands,
respectively,

(8)

and Φ1/2(x) is the Fermi–Dirac integral,

(9)
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Fig. 2. Solid curves describe the dependences of quasi-equilibrium concentrations of electrons in bands c (a), c1 (b), and holes in
band v  (c), as well as the time of establishment of quasi-equilibrium concentrations (d) on the light intensity for l = 2. The dashed
curves are the same dependences calculated disregarding the process c1 + 3"ω  ccv. Calculations were made using the follow-

ing values of parameters: Eg = 5.5 eV,  = 2.28 eV, "ω = 1.17 eV, mc = 0.9m0,  = 0.03m0, mv  = 0.9m0,  = 3 × 10–4 cm3/ps,

dc = 0.01 cm3/ps,  = 1.0 ps–1, T = 103 K, ε∞ = 4.5, ε0 = 12.4, p0 = 1014 cm–3, and n0 = 1014 cm–3.

Eg' mc1
dc1

Wc1c
Thus, we must obtain a self-consistent solution to
the system of nonlinear differential equations (4) and
transcendental equations (6). The complexity of this
problem rules out a qualitative analysis of the system
dynamics of the type carried out in [34, 35, 39], as well
as the derivation on its basis of simple formulas for the
threshold light intensities and the times of establish-
ment of quasi-equilibrium populations in the electron
system. For this reason, we will use the results of
numerical calculations that will be given in the next
section.

4. RESULTS OF NUMERICAL SOLUTION
OF THE BALANCE EQUATIONS

Figures 2 ad 3 show the results of numerical solution
of Eqs. (4)–(7) for l = 2. Solid curves in Figs. 2a–2c rep-
resent the quasi-equilibrium concentrations of elec-
trons in both conduction bands (nc and ) and holes in
the valence band (p) as functions of light intensity j.
Dashed curves in these figures show the same depen-

nc1
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dences calculated for the same parameters, but disre-
garding three-photon Auger-type processes. Figure 2d
shows the time τeq of establishment of quasi-equilib-
rium populations vs. intensity j. The following features
of these dependences are worth noting. A well-pro-
nounced stepwise increase in the concentration of non-
equilibrium carriers with increasing j occurs in the
vicinity of the threshold value (jth ≈ 2.7 × 1010 W/cm2

for the chosen values of parameters). At this value of
intensity, time τeq increases abruptly. Such features are
typical of the photon avalanche effect (a multiphoton
avalanche takes place in our case). It can also be seen
that the concentration of nonequilibrium carriers for
j > jth turns out to be one or two orders of magnitude
higher than for ordinary multiphoton interband transi-
tions with the probability calculated for the same values
of parameters.

Figure 2d shows that time τeq is ~1 ps for j ~
1012 W/cm2. With decreasing j, times τeq increase rap-
idly and fall in the nanosecond range for j ~
SICS      Vol. 101      No. 2      2005
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1011 W/cm2, while the interaction of shorter pulses
with solids is of utmost practical importance. For this
reason, we must also consider the production of non-
equilibrium e–h pairs for laser pulse durations τp

smaller than τeq. Figure 3 shows the concentrations nc ,
, and p emerging as a result of action of pulses of

durations of 1, 5, 10, and 50 ps as functions of the light

nc1

100

10–2

10–4

100 101

(a)

nc, 1018 cm–3

100

10–2

10–6

100 101

(b)

nc1, 1018 cm–3

102

10–4

10–1

100

10–2

100 101

(c)

p, 1018 cm–3

102

10–4

10–1

j, 1011 W/cm2

Fig. 3. Concentrations of electrons in bands c (a) and c1 (b)
and holes in band v  (c), emerging as a result of action of
pulses of a duration of 1 ps (solid curve), 5 ps (dashed
curve), 10 ps (dot-and-dash curve), and 50 ps (dotted curve)
as functions of light intensity j.
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intensity. These dependences were plotted for Gauss-
ian-shaped pulses. It can be seen that a region of
extremely sharp increase in concentrations with the
light intensity is present in this case as well (when the
value of j increases by 30–40%, the concentrations
increase by four or five orders of magnitude). A situa-
tion is possible when a slight increase in the light inten-
sity is sufficient for transition from the reversible preb-
reakdown excitation of the material to its destruction,
which takes place for nonequilibrium carrier concentra-
tions exceeding 1019 cm–3. If we denote by  the
intensity near which the rate of variation of, say, quan-
tity p( j ) is maximal, we can write the following

approximate dependence:  ∝  .

For l = 3, the multiphoton avalanche effect is clearly
manifested only for relatively long laser pulses (tp *
100 ps). Solid curves in Figs. 4a–4c represent the
dependences of the quasi-equilibrium concentrations of
electrons and holes on the light intensity. The dashed
curves in the same figures show the analogous depen-
dences disregarding two-photon Auger-type processes.
Figure 4d shows the time τeq of establishment of quasi-
equilibrium populations as a function of light intensity.
It can be seen that, in this case, an increase in the non-
equilibrium carrier concentration due to formation of a
multiphoton avalanche is weaker than in the case of l = 2.

5. DISCUSSION

The exceptional complexity of the problem of a
multiphoton avalanche necessitated a simplified
approach to its solution. We will mention some of the
factors that may to a certain extent affect the results of
analysis.

1. Although, in almost all wide-gap materials, there
exist conduction bands (or valence bands) with band
gaps between them and the lowest conduction band (or
upper valence band) that are smaller than Eg , the three-
band model of the energy spectrum considered above is
obviously idealized. Analysis of real band structures of
specific materials will probably require that additional
photoinduced transitions (in particular, intervalley
intraband transitions and indirect multiphoton inter-
band transitions) be included in the model.

2. In spite of the fact that light with "ω ~ 1 eV expe-
riences relatively weak intraband absorption and
intraband relaxation times of carriers are short (see
Section 1), the intra- and interband dynamics of carri-
ers in the high-intensity radiation field should be gener-
ally considered simultaneously. Strictly speaking, the
system of balance equations for carrier concentrations
in the bands in this case is not quite adequate. At the
same time, a rigorous analysis of the carrier dynamics
taking into account all transitions significant for the
problem of a multiphoton avalanche is hardly feasible. 

3. The rearrangement of the energy band spectrum
of a crystal in the field of a high-intensity light wave in

jth'

jth' τ p
1/3–
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Fig. 4. Solid curves describe the dependences of quasi-equilibrium concentrations of electrons in bands c (a), c1 (b), and holes in
band v  (c), as well as the time of establishment of quasi-equilibrium concentrations (d) on the light intensity for l = 3. The dashed
curves are the same dependences calculated disregarding the process c1 + 2"ω  ccv. Calculations were made using the follow-

ing values of parameters:  = 3.45 eV,  = 0.01 ps–1, and dc = 1.0 × 10–3 cm3/ps. The values of the remaining parameters are

the same as in Fig. 2.

Eg' Wc1c
the presence of multiphoton resonances at various
points of the k space may in principle play an impor-
tant role in the breakdown problem (see, for example,
[47, 48]). In this case, two types of effects may take
place. First, the band spectrum may change in such a
way that three-photon interband transitions, whose
probabilities are usually much higher, may occur in
strong fields in the spectral regions where, say, four-pho-
ton transitions were possible in weak fields. Second,
according to [49–51], new critical points (Van Hove sin-
gularities) may appear in the electron density of states
in the field of a strong electromagnetic wave. Since the
positions of these additional critical points depend on
light intensity j, intensity regions in which the rate of
production of the e–h pairs abruptly increases upon a
small increase in j may appear under certain conditions;
this may lead to an abrupt increase in the concentration
of free carriers and to breakdown of the material. How-
ever, in spite of the obvious importance of the effects of
band spectrum rearrangement, their simultaneous anal-
ysis with the processes of development of a multipho-
ton avalanche appears as premature in view of the com-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
plexity of the corresponding calculations and insuffi-
cient clarity of results. Here, we confined our analysis
to multiphoton avalanches, assuming that spectral rear-
rangement effects are insignificant. 

4. Processes of photon reemission may noticeably
affect transition probabilities for light intensities j ~
1010–1012 W/cm2. Reemission effects can be accounted
for in the probabilities of direct multiphoton interband
transitions comparatively easily (see [44, 45, 52]);
however, it is impossible to make allowance for these
effects adequately and obtain a foreseeable result in
calculating the cross sections of Auger-type multipho-
ton processes. Nevertheless, there are no grounds to
assume that reemission processes may critically affect
the development of a multiphoton avalanche. 

5. It should be borne in mind that the above analysis
corresponds to pulses with durations exceeding the
characteristic momentum relaxation times for nonequi-
librium carriers. To describe the production of nonequi-
librium e–h pairs by light pulses of duration tp & 100 fs,
a fundamentally different approach is required (see, for
SICS      Vol. 101      No. 2      2005
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example, [52]),which cannot be based on balance equa-
tions of type (4).

Taking into account the above arguments, we can
refine and supplement the pattern of prebreakdown
generation of nonequilibrium e–h pairs. Nevertheless,
the results obtained here indicate that a multiphoton
avalanche might be much more effective than an “ordi-
nary” multiphoton interband transition for high intensi-
ties of light.

6. CONCLUSIONS

We have proposed a new mechanism of prebreak-
down production of nonequilibrium e–h pairs in wide-
gap insulators and semiconductors by high-intensity
light in the micrometer range. This mechanism is based
on the multiphoton avalanche effect. The probabilities
of direct interband multiphoton transitions, as well as
multiphoton interband transitions involving free carri-
ers, have been calculated in the framework of the three-
band model of the electron energy spectrum of the crys-
tal. We derived a system of nonlinear balance equations
for the populations of carriers in the bands. Numerical
solution of this system proves that the dependence of
populations on the light intensity is of the threshold
nature. The threshold intensities for various materials
and durations of pumping pulses may assume values
ranging from 1010 to 1012 W/cm2. The times of estab-
lishment of quasi-equilibrium band populations sharply
increase for pumping intensities close to threshold val-
ues. For intensities exceeding the threshold values, the
proposed mechanism makes it possible to obtain a
JOURNAL OF EXPERIMENTAL A
larger number of e–h pairs than for “ordinary” mul-
tiphoton absorption. In the case when the material is
exposed to high-intensity picosecond light pulses, the
photon avalanche mechanism can yield a concentration
of nonequilibrium electrons and holes, which is suffi-
cient for breakdown of the material.
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APPENDIX

Probabilities  of s-photon (s = 2, 3) transitions
between bands v  and c involving free electrons in the c1
band are defined by the formulas
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where pcv and  are the interband matrix elements of
the momentum operator, c is the velocity of light in vac-
uum, ζ' = mc/ , δc = (0) – εc(0) + "ω, δv = (Eg –
"ω)/(1 + ζ), and εl and εt are the longitudinal and trans-
verse permittivities.

Probabilities  of n-photon transitions from the
filled valence band v  to the empty conduction band c
can be estimated with the help of the formulas derived
in [44, 45]. In particular, for n = 5, we have

(A.5)

where

(A.6)

The rates of three- and two-photon transitions
between the conduction bands c and c1 for l = 3 and l =
2 can be described by the formulas, which can easily be
derived using the standard perturbation theory:
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Abstract—The substitution of copper for manganese in one position of the double distorted perovskite
Ca(CuxMn3 – x)Mn4O12 leads to a change in the valence of manganese atoms in the other position. This is
accompanied by a sharp increase in the temperature of magnetic ordering and by a change in the conductivity
type from semiconductor to metallic. These perovskites also exhibit a negative magnetoresistance in a broad
temperature range, with the [ρ(H) – ρ(0)] × 100%/ρ(0) ratio (at liquid nitrogen temperature) reaching 10% in
a field of 1 T. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The phenomenon of colossal negative magnetore-
sistance (MR) in complex oxides and chalcogenides of
3d metals is usually observed in the vicinity of the tran-
sition to a magnetically ordered state [1–4]. In this
state, the ferromagnetic (FM) component is related in
many cases to the presence of transition metal ions in
different valence states. In this situation, the magnetic
ordering is due to a double exchange interaction, which
also accounts for high electric conductivity [5]. The
magnetic transitions in substances exhibiting colossal
MR are frequently closely related to structural phase
transitions, since the structures of these compounds
contain Jahn–Teller ions [6].

The double distorted perovskite CaMn3Mn4O12 con-
tains manganese ions in various valence states (one
Mn4+ and six Mn3+ per unit cell), but the magnetic
ordering is observed only at low temperatures (TC =
49 K) and the corresponding FM component is rather
small [7]. The main factor determining the magnetic
behavior of this compound is probably the superex-
change interaction, which possesses an antiferromag-
netic character. A structural phase transition in
CaMn3Mn4O12 takes place at T = 440 K and does not
influence the magnetic properties of this compound [8].

As Mn3+ ions in one position of the parent
CaMn3Mn4O12 structure are replaced by copper ions
(Cu2+), the valence of manganese ions in the other posi-
tion increases from Mn3+ to Mn4+. The end member
CaCu3Mn4O12 in this series of copper-substituted com-
pounds no longer contains transition metal ions in dif-
ferent valence states, but it has a high temperature of
magnetic ordering (TC = 340 K) and is characterized by
a large FM component of magnetization [9, 10]. All
copper-substituted double distorted perovskites of this
series exhibit a negative MR, the magnitude of which
1063-7761/05/10102- $26.000367
increases when the sample temperature moves away
from the Curie point.

The properties of double distorted perovskites of the
Ca(CuxMn3 – x)Mn4O12 series are significantly different
from those of other compounds with perovskitelike
structures [11–15]. This fact spurred us to undertake a
complex investigation of the physical properties of
Ca(CuxMn3 – x)Mn4O12 compounds.

2. SAMPLE PREPARATION

The metal oxide compound CaMn3Mn4O12 belongs
to double distorted perovskites of the AC3B4O12 type
and crystallizes in a rhombohedral lattice of the

NaMn7O12 type (space group ) [16]. Figure 1 shows
the structure of this compound in a polyhedral repre-
sentation. In this structure, MnO4 squares (position C)
contain only Mn3+ ions, while MnO6 (position B) octa-
hedra involve both Mn3+ and Mn4+ ions. The MnO4
squares do not come in contact with each other, while
the MnO6 octahedra have common vertices and form a
framework of the structure under consideration. When
Mn3+ in position C are replaced by Cu2+ ions so that
x > 0.5, the crystal lattice symmetry increases to the
cubic symmetry of the CaCu3Ti4O12 type (space group

) [17].

The samples of Ca(CuxMn3 – x)Mn4O12 with x = 0.5,
1, and 2 were synthesized by pyrolysis of nitrate aero-
sols. The initial reactants CaCO3, Mn2O3, and CuO
were taken in the stoichiometric ratio and dissolved on
heating in excess nitric acid. The obtained solution was
dispersed in an ultrasonic bath and transported with air
flow to a reactor, where the nitrate aerosol mixture was
decomposed at 700°C. Then, submicron particles of the
synthesized powder were pressed into tablets and

R3

Im3
 © 2005 Pleiades Publishing, Inc.
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annealed in oxygen flow for 48 h at T = 850°C. The
samples with x = 2 were annealed in oxygen at a pres-
sure of about 30 bar (48 h, 850°C). The single-phase

character of the samples and their structural type ( )
were checked by X-ray diffraction. Figure 2 shows the
typical morphology of a CaCuMn6O12 sample, which
represented a three-dimensional sponge composed of
submicron grains.

The physical properties of Ca(CuxMn3 – x)Mn4O12

with x = 0.5, 1, and 2 were studied in a range of temper-

Im3

Fig. 1. Crystal structure of Ca(CuxMn3 – x)Mn4O12: Cu2+

and Mn3+ ions in position C occur in the square environ-
ment of O2– ions; Mn3+ and Mn4+ in position B occur in the
octahedral environment of O2– ions; the size of Ca2+ cations
is much greater than that of Mn3+ cations.

1 µm

Fig. 2. A micrograph of the CaCuMn6O12 sample structure
imaged in the Leo Supra 50 VP scanning electron micro-
scope.
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atures from 5 to 300 K and in applied magnetic fields
up to 1 T. The low-field magnetic susceptibility was
measured at a frequency of 2.5 kHz using an ac magne-
tometer (Thermis). The heat capacity was determined
with the aid of an quasi-adiabatic calorimeter (Ther-
mis). The electric resistivity and MR measurements
were performed using the standard four-point-probe
technique.

3. THERMODYNAMIC PROPERTIES

Figure 3 shows the temperature dependences of
the low-field magnetic susceptibility χ of
Ca(CuxMn3 – x)Mn4O12 samples with x = 0.5, 1, and 2.
The shapes of these curves are typical of disordered fer-
rimagnets featuring competitive magnetic interactions.
The initial increase in the χ value with the temperature,
accompanying the transition to a magnetically ordered
state is followed by a decrease related to spin glass
effects. The partial substitution of copper for manga-
nese leads to a growth in the temperature of magnetic
ordering, whereby TC increases from about 90 K for x =
0.5 to ~200 K for x =1 and reaches ~290 K for x = 2.
Note that the TC values observed for the sample studied
virtually coincide with the parameter Θ entering into
the Curie–Weiss law according to which χ =

NAg2 /3kB(T – Θ), which is indicative of the absence
of frustrations in the structure studied. The effective
magnetic moments µeff = 10–12µB in the compounds
studied, which were calculated from the temperature
dependences of χ in the paramagnetic region assuming
that g = 2, are in good agreement with theoretical values
calculated for the corresponding combinations of Cu2+

(S = 1/2), Mn3+ (S = 2), and Mn4+ (S = 3/2) ions.

Figure 4 shows the temperature dependences of the
heat capacity C for the pressed tablets of

µeff
2
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Fig. 3. The temperature dependences of the low-field mag-
netic susceptibility of Ca(CuxMn3 – x)Mn4O12 with x =
0.5 (1), 1 (2), and 2 (3).
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Ca(CuxMn3 − x)Mn4O12 with x = 0.5, 1, and 2. The C(T)
curves for the samples with x = 0.5 and 1 exhibit no
clearly pronounced anomalous features upon the transi-
tion to a magnetically ordered state, whereas the curve
for the sample with x = 2 shows an anomaly in the
vicinity of TC . The absence of clearly distinguishable
features on the C(T) curves is indicative of a magnetic
inhomogeneity of Ca(CuxMn3 − x)Mn4O12 on a molecu-
lar level. Indeed, Cu2+ cations replace Mn3+ cations in
position C in a random way, and both Mn3+ and Mn4+

cations are also randomly distributed in position B.
This inhomogeneity leads to smearing of the phase
transitions and to spreading of the magnetic specific
heat in a broad temperature range. Nevertheless, it is
seen that the heat capacity C(T) of the samples with x =
0.5 and 1 noticeably exceeds that of the sample with
x = 2 at low temperatures. At high temperatures, the
opposite situation is observed. This is related to the fact
that the magnetic specific heat is liberated predomi-
nantly below the Curie point, which is lower in
CaCu0.5Mn6.5O12 (TC ≈ 90 K) and CaCuMn6O12 (TC ≈
200 K) than in CaCu2Mn5O12 (TC ≈ 290 K). These fea-
tures in the heat capacity variations depending on the
degree of copper substitution are more clearly mani-
fested in the reduced heat capacity representation of
C/T versus T (see the inset to Fig. 4).

4. KINETIC PROPERTIES

Figure 5 shows the temperature dependence of the
resistivity ρ measured in the absence of an external
magnetic field. An increase in the content of Cu2+ ions
in the sample structure leads to a sharp decrease in the
resistivity. Moreover, the character of the ρ(T) behavior
changes from the semiconductor type in
CaCu0.5Mn6.5O12 and CaCuMn6O12 to the metallic type
in CaCu2Mn5O12. In the sample with x = 0.5, which had
a rather large resistance, the conductivity activation
energy Ea could be determined from the temperature
dependence ρ = ρ0exp(Ea/kBT) only in the paramag-
netic region (Epara = 125 meV). For the sample with
x = 1, the lnρ versus 1/T curve exhibits a bending point
at the temperature of magnetic ordering, which corre-
sponds to a decrease in the conductivity activation
energy on passage from the paramagnetic state (Epara =
60 meV) to the magnetically ordered ferrimagnetic
state (Eferri = 40 meV). In the sample with x = 2, the lnρ
versus 1/T curve also exhibits bending, which reflects
an increase in the mobility of charge carriers.

All Ca(CuxMn3 − x)Mn4O12 samples (x = 0.5, 1,
and 2) exhibited a negative MR in the entire range of
existence of the magnetically ordered phase, which
qualitatively exhibited the same character of evolution
depending on the temperature. Figure 6 shows plots of
the [ρ(H) – ρ(0)] × 100%/ρ(0) ratio versus the magnetic
field strength H for the sample of CaCuMn6O12. The
shape of the curve exhibits a qualitative change in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
vicinity of the Curie temperature (TC ≈ 200 K). This
behavior is related to the fact that the MR at high tem-
peratures is proportional to the square of the field (ρ ∝
χH2), whereas at low temperatures it is proportional to
the square of the magnetization (ρ ∝  M2). In the tem-
perature range of magnetic ordering, the magnetization
rapidly grows in weak magnetic fields. As a result, the
ρ(H) curves are superlinear at T > TC and sublinear at
T < TC .

In a three-dimensional sponge consisting of sintered
submicron particles, the transport properties depend
not only on the charge transport inside the grains, but
also on the tunneling of carriers between grains. In the
case when the dimensions of magnetic domains are
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Fig. 4. The temperature dependences of the heat capacity of
Ca(CuxMn3 – x)Mn4O12 with x = 0.5 (1), 1 (2), and 2 (3).
The inset shows the same data plotted as C/T versus T.
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Fig. 5. The temperature dependence of the semiconductor
type resistivity in (1) CaCu0.5Mn6.5O12 and
(2) CaCuMn6O12 . The inset shows the temperature depen-
dence of the metal type resistivity in CaCu2Mn5O12.
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comparable to the grain size, application of the mag-
netic field leads to parallel alignment of the magnetic
moments. This mesoscopic effect is also manifested in
the MR behavior.

5. DISCUSSION OF RESULTS

A key role in the formation of a magnetic order in
compounds of the AC3B4O12 type is apparently played
by the cations in position B. The BO6 octahedra share
vertices both with each other and with cations in the
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Fig. 6. The magnetoresistance of CaCuMn6O12 at various
temperatures (a) above, (b) near, and (c) below the temper-
ature of magnetic ordering (TC ~ 200 K).
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Fig. 7. Plots of the temperature of magnetic ordering versus
copper content x in Ca(CuxMn3 – x)Mn4O12: (1) data
from [9]; (2) this study. PM and FM are the regions of the
paramagnetic and ferromagnetic state, respectively.
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CO4 squares, whereas sublattice C has no such short
paths of the magnetic interaction between metal cat-
ions. The presence of manganese ions with different
valences (Mn4+ and 3Mn3+) in positions B of the struc-
ture of the parent compound CaMn3Mn4O12 makes pos-
sible the double magnetic interaction in sublattice B.
This double interaction is realized via eg orbitals of
manganese and is related to the virtual hopping of elec-
trons between Mn3+ and Mn4+ ions. In addition, the
double magnetic interaction is also possible between
Mn4+ ions in position B and Mn3+ ions in position C, but
this interaction is strongly decreased because the
schemes of d shell splitting in the square and octahedral
environment are significantly different. The superex-
change between manganese cations via t2g orbitals
apparently has an antiferromagnetic character,
although this interaction is strongly suppressed due to a
particular local geometry of the Mn–O–Mn bonds. In
the CaMn3Mn4O12 structure, the B–O–B angle is 137°
and the C–O–B angle varies within 108–113° [16]. As
a result, the FM component in the magnetization of
CaMn7O12 is small and the magnetic order is established
only at a sufficiently low temperature (TC = 49 K).

The substitution of Cu2+ for Mn3+ in position C leads
to a change in the ratio of Mn3+ and Mn4+ ions in sub-
lattice B. Indeed, the Mn3+/Mn4+ ratio is 5 : 3 in
CaCu0.5Mn6.5O12, 1 : 1 in CaCuMn6O12, and 1 : 3 in
CaCu2Mn5O12. The Mn–O–Mn bond angles vary only
slightly as compared to those in the parent CaMn7O12
structure. Thus, in explaining the observed monotonic
increase in the Curie temperature and in the FM com-
ponent of magnetization with increasing x, it is neces-
sary also to take into account the interaction between
Cu2+ in position C with Mn4+ in position B. Only this
interaction is retained in the compound CaCu3Mn4O12,
which has the maximum Curie temperature (TC ≈
355 K) in the series of copper-substituted compounds
under consideration [9].

Figure 7 shows a plot of the temperature of mag-
netic ordering versus the content of copper in
Ca(CuxMn3 – x)Mn4O12. According to the analysis of
magnetic interactions [9, 10, 18], the magnetic struc-
ture of these compounds for 0 < x < 3 corresponds to the
ferrimagnetic ordering. In [18], it was postulated that
the superexchange between Mn4+ ions via t2g orbitals in
position B has an FM character. However, we believe
that a more important circumstance is that, at an C–O–
B angle of about 109°, the electron superexchange
interaction between t2g orbitals of Mn4+ and eg orbitals
of Cu2+ has an antiferromagnetic character. 

ACKNOWLEDGMENTS

The authors are grateful to A.G. Veresov, K.V. Kli-
mov, A.V. Knot’ko, and E.A. Popova for their help in
the characterization of samples.
AND THEORETICAL PHYSICS      Vol. 101      No. 2      2005



NEGATIVE MAGNETORESISTANCE IN BINARY DISTORTED PEROVSKITES 371
This study was supported in part by the Russian Foun-
dation for Basic Research, project nos. 03-02-16108,
04-03-08078, and 04-03-32183a.

REFERENCES
1. Colossal Magnetoresistance, Charge Ordering and

Related Properties of Manganese Oxides, Ed. by
C. N. R. Rao and B. Raveau (World Sci., Singapore,
1998).

2. Colossal Magnetoresistive Oxides, Ed. by Y. Tokura
(Gordon and Breach, New York, 1999).

3. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583
(2001).

4. N. A. Babushkina, L. M. Belova, D. I. Khomskii, et al.,
Phys. Rev. B 59, 6994 (1999).

5. A. Rozenzwaig, Phys. Rev. 181, 946 (1969).
6. I. Bersuker, The Jahn–Teller Effect (Cambridge Univ.

Press, Cambridge, 2005).
7. E. A. Pomerantseva, D. M. Itkis, E. A. Goodilin, et al., J.

Mater. Chem. 14, 1150 (2004).
8. I. O. Troyanchuk, L. S. Lobanovsky, N. V. Kasper, et al.,

Phys. Rev. B 58, 14 903 (1998).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
9. Z. Zeng, M. Greenblatt, M. A. Subramanian, and
M. Croft, Phys. Rev. Lett. 82, 3164 (1999).

10. Z. Zeng, M. Greenblatt, J. E. Sustrom IV, et al., J. Solid
State Chem. 147, 185 (1999).

11. H. Hwang, S.-W. Cheong, P. Radaelli, et al., Phys. Rev.
Lett. 75, 914 (1995).

12. P. Schiffer, A. Ramirez, W. Bao, and S.-W. Cheong,
Phys. Rev. Lett. 75, 3336 (1995).

13. A. N. Vasil’ev, T. N. Voloshok, and R. Suriyanarayanan,
Pis’ma Zh. Éksp. Teor. Fiz. 73, 392 (2001) [JETP Lett.
73, 349 (2001)].

14. D. A. Filippov, K. V. Klimov, R. Z. Levitin, et al., J.
Phys.: Condens. Matter 15, 8351 (2003).

15. I. O. Troyanchuk, V. A. Khomchenko, G. M. Chobot,
et al., J. Phys.: Condens. Matter 15, 8865 (2003).

16. B. Bochu, J. L. Buevoz, J. Chenavas, et al., Solid State
Commun. 36, 133 (1980).

17. J. Chenavas, J. C. Joubert, M. Marezio, and B. Bochu, J.
Solid State Chem. 14, 25 (1975).

18. R. Weht and W. E. Pickett, cond-mat/0011316.

Translated by P. Pozdeev
SICS      Vol. 101      No. 2      2005



  

Journal of Experimental and Theoretical Physics, Vol. 101, No. 2, 2005, pp. 372–379.
From Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 128, No. 2, 2005, pp. 428–435.
Original English Text Copyright © 2005 by Golo.

                             

STATISTICAL, NONLINEAR, 
AND SOFT MATTER PHYSICS

  
Three-Wave Interaction
between Interstrand Modes of the DNA¶ 

V. L. Golo
Moscow State University, Vorob’evy gory, Moscow, 119992 Russia

e-mail: golo@mech.math.msu.su
Received February 21, 2005

Abstract—We consider the regime in which the bands of the torsional acoustic (TA) and hydrogen-bond-
stretch (HBS) modes of DNA interpenetrate each other. We propose a simple model accommodating the helix
structure of DNA and, within its framework, find a three-wave interaction between the TA and HBS modes. The
phenomenon could be useful for studying the action of microwave radiation on a DNA molecule. Thus, using
Zhang’s mechanism of the interaction between the system of electric dipoles of a DNA molecule and micro-
wave radiation, we show that the latter could bring about torsional vibrations that maintaining HBS vibrations.
We show an estimate of the microwave power density necessary for generating the HBS mode, which signifi-
cantly depends on the viscous properties of the ambient medium. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

It is generally accepted that the conformational
dynamics of DNA relies significantly on elastic vibra-
tions of the DNA molecule in the region of 109–1012 Hz
[1]. According to Kim and Prohofsky [2], the region
comprises two domains, which correspond with differ-
ent degrees of freedom of the molecule: (1) acoustic
modes, which do not involve hydrogen bonds;
(2) modes that stretch the hydrogen bonds between the
base pairs (HBS modes). A local minimum of the fre-
quency is characteristic of HBS modes [2], its position
depending on the choice of the band. Vibrations of
DNA were observed in the low-frequency Raman scat-
tering [3, 4] and the Fourier-transform infrared absorp-
tion experiments [5]. Globus et al. [6] reported the
existence of internal modes generated by the interaction
of artificial DNA-type molecules with electromagnetic
radiation in the submillimeter range. It should be noted
that the type of modes observed depends on the kind of
DNA samples, i.e., in aqueous solutions, or films and
filaments [6, 7]. The experimental data [1] is not con-
clusive as to the relative positions of the acoustic and
HBS modes.

This study is based on the observation that if TA
bands penetrate the frequency region of HBS modes,
the torsional vibrations of the double helix could peri-
odically change the elastic constants of interstrand
motions and thus provide a energy supply for HBS
modes. If the attenuation is small enough, the TA band,
which has double the frequency with respect to that of
the HBS mode, could maintain an HBS mode through

¶ The text was submitted by the author in English.
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parametric resonance. Thus, one could obtain a means
for generating an HBS mode and studying the interhe-
lical dynamics of DNA.

2. THE ELASTIC DYNAMICS OF TORSIONAL 
AND INTERSTRAND MODES

In considering the dynamics of DNA, one has to
take into account (1) that DNA has two strands; (2) the
base pairs are linked by hydrogen bonds; and (3) there
is helical symmetry. We utilize a quasi-one-dimen-
sional lattice model for the elastic properties of DNA,
which accommodates these requirements.

El Hasan and Calladine [8] set up a scheme for the
internal geometry of the double helix of DNA that
describes the relative position of one base with respect
to the other in a Watson–Crick base pair and the posi-
tions of two base pairs. This is achieved by introducing
local frames for the bases and the base pairs and trans-
lation slides along their long axes. We follow the guide-
lines of [8], but, in an attempt at qualitative description
of the DNA dynamics, we use a simplified set of vari-
ables. We describe the relative position of the bases of
a base pair by means of the vector Y directed along the
long axis (the y axis in [8]; see also [9]); Y is equal to
zero when the base pair is at equilibrium. The relative
position of the base pairs is described by the torsional
angles φn , which give deviations from the standard
equilibrium twist of the double helix. Thus, a twist of
the DNA molecule, which does not involve interstrand
motion or mutual displacements of the bases inside the
pairs, is determined by the torsional angles φn , which
are the angles of rotation of the base pairs about the axis
 © 2005 Pleiades Publishing, Inc.
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of the double helix. The twist energy of the molecule is
given by

,

where I is the moment of inertia and τ is the twist coef-
ficient, which are assumed the same for all base pairs
for simplicity and due to the qualitative picture which
we are trying to obtain. Interstrand motions should cor-
respond to the relative motion of the bases inside the
base pairs, and, therefore, the kinetic energy due to this
degree of freedom may be written as

where M is the effective mass of a couple.

For each base pair, we have the reference frame in
which the z axis corresponds to the axis of the double
helix, the y axis to the long axis of the base pair, and the
x axis is perpendicular to the z and y axes (see Fig. 1
in [8]). At equilibrium, the change in position of adja-
cent base pairs is determined only by the twist angle Ω
of the double helix. We assume that Ω = 2π/10 as for the
B-form of DNA. To determine the energy due to the
interstrand displacements, we need to find the strain
taking into account the constraint imposed by the heli-
cal structure of our system. For this, one may utilize the
method employed by Kirchhoff for the twisted rod, that
is, the covariant derivative, as was done in [10] for the
DNA molecule. But a more simple and straightforward
approach is possible.

We confine ourselves only to the torsional degrees
of freedom of the double lattice and assume the vectors
Yn to be parallel to the xy plane, or two-dimensional.
Consider the displacements Yn and Yn + 1 determined
within the frames of the two consecutive base pairs, n
and n + 1. Since we must compare the two vectors in the
same frame, we rotate the vector Yn + 1 to the frame of
the nth base pair,

Here, R–1(φ) is the inverse matrix of the rotation of the
nth frame to the (n + 1)th one given by the equation

(1)

The matrix R is 2 × 2, since the vectors Yn are effec-
tively two-dimensional. Then, the strain caused by the

I
2
---φ̇n

2 τ
2a2
-------- φn 1+ φn–( )2+

n

∑

M
2
-----Ẏn

2
,

n

∑

Yn 1+
back R 1– φ( )Yn 1+ .=

R φ( ) φcos φsin–

φsin φcos
.=
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displacements of the base pairs is determined by the

difference  – Yn .1 

It is important that the angle φ is given by the twist
angle Ω describing the double helix, in conjunction
with the torsional angles φn , so that

Therefore, the energy due to the interstrand stress is
given by

It corresponds to the fact that the equilibrium posi-
tion of the double helix is the twisted one determined
by Ω and all φn being equal to zero. We suppose that the
size of the DNA molecule is small enough to be visual-
ized as a straight double helix that is not larger than the
persistence length. Hence, the number of base pairs
N ≤ 150, approximately. Combining the formulas given
above, we can write the total energy of the DNA mole-
cule as

(2)

where K and a are the torsional elastic constant and the
interpair distance, respectively. In the summations
given above, n is the number of a site corresponding to
the nth base pair, n = 1, 2, …, N; N being the number of
pairs in the segment of the DNA under consideration.

The last term (e/2)  accommodates the energy of the
interstrand separation due to the slides of the bases
inside the base pairs.

It should be noted that the dynamical variables φn

and Yn are of the same order of magnitude, that is, the
first. Consequently, preserving only terms up to the

1 For this argument, I am indebted to D.I. Tchertov.
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third order, we can transform Eq. (2), so that it takes the
form

(3)

We have used the fact that the axis of the double
helix is directed along the z axis.

Simplifying Eq. (3) by diagonalizing it with the help
of the unitary transformation

which is a 2 × 2 matrix, for the vectors Yn and un are
effectively two-dimensional, their third coordinates
being equal to zero. The equation for energy (3)
becomes

where ∗  signifies complex conjugation.
We can further simplify the equation for the energy

by applying the Fourier transformation given by the
equations
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It is important that, after the Fourier transformation,
the variables un satisfy the following equations for their
complex conjugates:

(4)

The equation for energy can be written as

(5)

The interaction term in Eq. (5) corresponds to the three-
wave process and may result in resonance. We use this
fact for deriving the parametric maintenance of the uq

modes, i.e., the HBS modes (see below).
In the usual way, one can obtain the equations of

motion for , α = 1, 2, and φq from the equation for
energy given above. The essential point is the effects of
dissipation, which are due to ions in the close neighbor-
hood of the molecule and water effects (see [11]). The
dissipation can be accommodated by writing terms lin-

ear in  and . We take the external force, or torque
7q  into account, only in the equation for φq , because it
corresponds to the external degrees of freedom of our
model. Thus, the equations of motion can be written as

(6)

(7)

where

(8)
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are the dispersion laws for the fields , α = 1, 2, and
φq . We see that the spectrum of φq has a typical acoustic

character, whereas that for  has a local minimum
determined by the helical twist Ω . Thus, the spectrum
of our model is in qualitative agreement with the con-
clusions in [2]. The specific nature of the torque is to be
specified elsewhere (see Section 3). For the moment,
we consider the general dynamical phenomena to
which the torque may be conducive.

Suppose that, on the one hand, the amplitudes of the

HBS modes given by  are so small that the quadratic
term in Eq. (7) can be neglected, and on the other hand,
the external torque 7q is appreciable enough to main-
tain the vibration of the torsional mode φq . Thus, we
can visualize the torsional mode as a pump mode that

interacts with the HBS mode  through the nonlinear-
ity in Eq. (6). We confine ourselves to the case of the
torque 7q being nonzero only at q = q∗  and having a
frequency of 2ω. Therefore, the forced wave, or the
pump wave for the HBS mode, has the form

(9)

To obtain larger values for the pump wave φq , the reso-
nance condition

should be satisfied, even though the resonance behavior
of the torsional φq-mode itself could be attenuated by
dissipation; i.e., it may be a mode of small amplitude.

The equations of motion for  in the pumping
regime are

where

Note that the momentum conservation in the q-values is
preserved, as required by the three-wave interaction.
The equations given above can be rewritten in the
matrix form as

(10)

where _ and _+ are Hermitian conjugate, and

.

It is worth noting that Eq. (10) is a kind of the matrix
Mathieu equation. In fact, we can apply Rayleigh’s
method to it for studying parametric resonance [12].
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For this, we seek the solution to Eq. (10) in the form of
a series:

.

Substituting the expression given above into Eq. (10)
and preserving only the terms corresponding to e±iωt,
we obtain the equations

The compatibility condition of the equations given
above can be cast in the form of a determinant for the
block matrix,

(11)

where  is the matrix of frequencies given by Eq. (8),
and ω2 and γuω are the scalar frequencies. We can trans-
form Eq. (11) into a more amenable form. Note that it
is equivalent to the equation

where

, (12)

and the matrices _+ and _ satisfy the equation

We have used the fact that, for the range of frequencies
under consideration, the matrix

is nondegenerate. Therefore, the equation given above
is equivalent to

where the matrix ) is given by )qq' = . We may

u t( ) A1eiωt B1e iωt– A3ei3ωt B3e i3ωt– …+ + + +=

ω2– iγuω+( )( ω̂α
2+[ ] A1 _B1+ 0,=

ω2– iγuω–( )( ω̂α
2+[ ] B1 _+A1+ 0.=

det
ω̂α

2 ω2– iγuω+ _

_+ ω̂α
2 ω2– iγuω–

0,=

ω̂2

det
ω̂α

2 ω2– iγuω+ _

_+ ω̂α
2 ω2– iγuω–







× ( ω̂α
2 ω2– iγuω+( )

1–
–

0 ρ2_+







0,=

ρ Ma2

2K
---------- N

Ωsin
------------=

(– ρ2__+
+ 0.=

ω̂α
2 ω2– iγuω+

det (– ρ2 ω̂α
2 ω2– iγuω+( )+[

× ) ω̂α
2 ω2– iγuω–( ))+ ] 0,=

δq'q q*–
SICS      Vol. 101      No. 2      2005



376 GOLO
rewrite the last equation as

(13)

and it is quite similar to the usual condition for para-
metric resonance. Solutions of Eq. (13) are generally
complex and, therefore, correspond to attenuated
regimes. But there is a specific wavenumber, qres , for
which the solution gives the real frequency ω, and it is
easy to see that it should satisfy the constraint

(14)

Thus, we may cast the condition for parametric reso-
nance in the familiar form [12]

(15)

3. MICROWAVE IRRADIATION
AND THE HBS MODES

We may use the results of the previous section for
assessing the action of microwave (mw) radiation on a
DNA molecule. The key point is accommodating the
fact that the wavelength of radiation is by many orders
of magnitudes larger than the characteristic size of the
region of the molecule involved in the process. It was
Zhang who suggested a mechanism to overcome this
difficulty [13]. The main point of Zhang’s argument is
that the helical configuration of the electric dipoles cor-
responding to the base pairs makes the interaction of
the dipole P and the field E

U = –P · E

angle-dependent. Therefore, different torsional
momenta are applied at the base pairs. The equation for
the energy of interaction between the DNA dipoles and
an incident microwave is given by

where R(nΩ + φn) is the rotation matrix given by Eq. (1)
and P0 is the dipole at the site n = 0. Consequently, even
though the radiation has a plane wave configuration at
the molecular scale, it still twists the DNA molecule
about the double helix axis. Since the momenta change
periodically in time with the incident wave, the irradia-
tion results in a periodic stress that may produce elastic
vibrations in the DNA molecule. Zhang suggested that
the force may generate resonance vibrations, resulting
in a crossover mechanism that takes up initial torsion

ωαq
2 ω2– iγuω–( ) ωαq q*–

2 ω2– iγuω+( )

–
2K

Ma2
---------- Ωsin

N
------------ 

  2

A 2 0,=

ωαq q*–
2 ωαq

2 , q qres.= =

ω2 ωαqres

2–( )2 γ2ω2 2K

Ma2
---------- Ωsin

N
------------ 

  2

A 2–+ 0.=

E
n

∑– R nΩ φn+( )P0,⋅
JOURNAL OF EXPERIMENTAL A
excitations and transforms them into longitudinal
acoustic vibrations.

In the present paper, we try to combine Zhang’s
mechanism [13] and the excitations of the double helix
studied by Prohofsky and Kim [2] with the view of gen-
erating interstrand waves in the DNA by mw radiation.
In contrast to the original idea by Zhang, we do not uti-
lize a crossover into longitudinal acoustic vibrations
but employ the interaction between torsional oscilla-
tions and the interstrand ones, i.e., three-wave interac-
tion, given by Eq. (5).

The main point is that, by expanding the rotation
matrix R(nΩ + φn) in the angles φn and keeping only the
first-order terms, we can write Zhang’s interaction as

(16)

where P0 is the dipole vector at site n = 0. Next, using
Eq. (1) for the matrix R(nΩ) and neglecting the constant
term, we rewrite Eq. (16) as

Applying the Fourier transform for the φn and using
the equation

we obtain the following expression for Zhang’s interac-
tion:

Hence, the torque 7q in Eq. (7) corresponding to *Z

is given by

(17)

where

It should be noted that ±q∗  are the local minima of the
HBS modes. From Eq. (8), we infer that q satisfies the
constraint given by Eq. (14),
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It is worth noting that the wavenumbers q∗  and qres cor-
respond to wavelengths of one and two-thirds turns of
the double helix.

The equations given above allows us to make
numerical, order-of-magnitude estimates, which enable
us to assess the effect of mw radiation on the HBS
modes. From Eq. (17), we infer that the torque 7 has a
size

7 ∝  e2iωtEP,

where E and P are the external field and the dipole
moment of the base pair, respectively. Next, suppose
that the resonance condition

is true, so that the action of the radiation on the tor-
sional modes should be the largest possible. Then, the
amplitude of the pumping wave, , according to

Eq. (7), is on the order of

(19)

Next, we turn to Rayleigh’s condition for the para-
metric resonance of the HBS mode given by Eq. (15).
For a pumping wave corresponding to Eq. (19), it gives

Hence, we have the threshold

(20)

which is the condition that the energy supplied to a
DNA molecule is greater than that dissipated, such that
the maintaining of the HBS mode can take place. We
suppose that the frequency of the HBS modes, given by
Eq. (8), is generally determined by the gap term e/M in
the equation for uαq and that the first factor in Eq. (20)
does not differ much from unity. This signifies that the
energies of the interstrand separation per base pair and
the twist of the relative positions of the two adjacent
base pairs should be comparable. At any rate, the
hypothesis appears not to contradict the data repro-
duced in [2]. If so, we could have the estimate for the
dissipative constants, at least by orders of magnitude,

(21)

Using the relation
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which follows from the expression for the Poynting
vector

where c is the velocity of light, we rewrite Eq. (21) as

(22)

where S is the power density of the interaction. If we
assume

P ~ 1 D or 10–18 CGS

and the inertia coefficient I ~ 10–36 g cm2, correspond-
ing to the mass of the base pair ~10–22 g and the size
~10 Å, then, for a power density of S ~ 100 mW/cm2,
we have γuγφ ≤ 1016 Hz2 or γu, γφ ≤ 108 Hz. The estimate
suggests that the effect produced by mw radiation
should be sought for at the edge of the gigahertz zone,
because, in this case, the requirement on the linewidth
is less stringent. It should be noted that the crucial point
in assessing the feasibility of experiments on mw radi-
ation of DNA and its possible influence is the part
played by the ambient solvent and ions contained in it.
In fact, irradiation may result just in heating of the sol-
vent, such that the dissipation due to the ions takes up
all effects on the molecules of DNA. Generally, the thin
boundary layer of water and ions close to the DNA mol-
ecule may have an important bearing on the dynamics
initiated by the incident mw radiation and result in
overdamping of the molecule’s torsional oscillations.

Davis and VanZandt [11] put forward arguments
that the ions contained in a layer close to the DNA mol-
ecule should have an influence small enough to allow
the survival of the effect due to mw irradiation. The part
played by the dissipation caused by water is more
subtle.

The current arguments [14] about the overdamping
of the DNA elastic modes rely on the Stokes law for the
friction force, F = 6πηRv, for a sphere of radius R mov-
ing in a fluid of viscosity η at a speed v ; and in the spe-
cific case of the DNA, it should involve the gigahertz
frequency region. However, classical hydrodynamics,
that is, Navier–Stokes theory, breaks down in the
region, as can be inferred from the phenomenon of light
scattering in liquids, which is characterized by triplet
structure: the central Rayleigh line ν due to the elastic
scattering and the Mandelstam–Brillouin doublet ν ± f
of the inelastic one, with f being the frequency of elastic
waves in the liquid. Classical hydrodynamics gives a
linewidth in the Mandelstam–Brillouin doublet larger
than the distance between this line and the maximum of
the central line of the triplet, so that the discrete triplet
structure should not be observable; in fact, it is [15].
Mandelstam and Leontovich [15] effected the solution
to this problem by using the relaxational theory of
hydrodynamics, in which liquid is considered as a vis-
cous elastic medium characterized by a viscosity coef-
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ficient η and a shear modulus G, the so-called Maxwell
model. In fact, the theory also takes anisotropy effects
into account [15]. It predicts that, in the region of
hypersound, a few gigahertz or more, the attenuation
coefficient for sound waves, αη, ceases to depend on
frequency ω, whereas in the low-frequency classical
region, in which the Stokes law is valid, the dependence
is αη ~ ω2. Davis and VanZandt [11] used the Maxwell
theory to find estimates for the damping of the DNA
elastic modes, taking the first and the second hydration
layers and the quasicrystalline structure of water in a
neighborhood of DNA into account. They found the
attenuation to be two orders of magnitude smaller than
that given by the Stokes law.

In fact, there is a further reason for rejecting the
approach based on the Stokes law. The water molecules
form hydration shells of DNA [16]. The primary hydra-
tion shell comprises the water molecules immediately
adjacent to the DNA, about 20 molecules per nucle-
otide pair, which constitute a medium different from
bulk water. The secondary hydration shell is generally
considered to be similar to bulk water. However, on the
spatial scale of the diameter of the DNA molecule, that
is, several tens of ångstroms, the water in the second
hydration shell is hardly a condensed medium. Indeed,
in this case, one should have accommodated its local
quasicrystalline structure, described by the icosahedral
model [17, 18], which should result in sophisticated
dynamical equations. The conclusion is that, presently,
it is difficult, if at all possible, to construct accurate the-
oretical estimates for the attenuation of DNA modes.

From the experimental standpoint, the situation is
more advanced. The DNA helical modes were
observed in the experiments on Raman [3, 4, 16] and
far-infrared [5] scattering. Therefore, one may suggest
that the attenuation effects due to viscosity should not
preclude elastic modes of DNA. At the same time,
small relaxation times for damping between DNA and
the first hydration layer, on the order of several tens of
picoseconds (see [19]) should result in concerted
motion of the double helix of the DNA with the sur-
rounding layer of water. The circumstance could be
accommodated within the framework of the semiphe-
nomenological model in the present paper. In fact, the
DNA molecule and its first hydration layer still form a
helix structure, and the mutual motion of constituent
bases of a pair together with hydration water molecules
could be described with the field Y. Of course, the val-
ues of the model constants, K, τ, should be changed,
and for the time being, there is lack of information as to
their size.

It is also worth noting that the effects of dissipation
in aqueous solutions, where a certain form of the Stokes
law could be possible, and in films or fibers, should be
quite different. So far, there has been no comprehensive
theoretical analysis of the dissipation that would allow
comparing the DNA dynamics in solutions and in films.
Nonetheless, the interplay of internal vibration modes
JOURNAL OF EXPERIMENTAL A
and submillimeter electromagnetic irradiation was
recorded in [6] using Fourier transform spectroscopy
and films of poly[A]–poly[U] and poly[C]–poly[G]
double-stranded homopolymers. Employing the con-
cept of normal modes, or oscillators, of macromole-
cules developed earlier for proteins [20] and used later
for DNA [21], Globus et al. [6] performed a numerical
simulation of their experimental results and thus
obtained an estimate for the relaxational parameter γ,
which has the meaning of oscillator dissipation. It
turned out that, in the range of frequencies of several
tenths of a centimeter, the best fit for γ is less than a
tenth of a centimeter, depending on the conformation of
the external electric field and the sample. This value of
γ is too large for Eq. (22), but the region of frequencies
studied in [6] is far from the edge of the gigahertz
region, and therefore one may consider the question of
the acceptable dissipation rate still open and suggest
that studying the effects of mw radiation on DNA
modes may be instrumental in understanding the phe-
nomenon.

4. CONCLUSIONS

We have shown that the elastic dynamics of the dou-
ble helix could have sufficient structure to ensure
stretching of the hydrogen bonds of the base pairs of
DNA or generating the HBS modes. If the vibrational
modes of DNA are not overdamped by the ambient sol-
vent and if the balance between energies supplied and
dissipated is favorable, maintenance of the HBS modes
could be expected at the edge of the HBS zone. The best
technique for studying hydrogen bond stretching is still
Raman spectroscopy, to which certain improvements
have been made (see [22] and the references therein).
Thus, the HBS modes as well as the breathing modes
are well accessible from the experimental standpoint.

The choice of specific means for generating tor-
sional excitations of DNA is important and interesting.
In this paper, we have envisaged mw irradiation of
DNA. In case the interpenetration of the acoustic and
HBS modes takes place, mw radiation would maintain
the HBS modes if the power density is sufficiently
large, 100 mW/cm2 or more. It is important that there is
no need for long exposures of the sample to radiation.
At this point, it is worth noting that our estimate for the
critical power density, 100 mW/cm2, is by orders of
magnitude larger than that officially prescribed, i.e.,
0.1–0.2 mW/cm2.
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Abstract—The effective interaction of a pseudoscalar particle with a photon in a magnetized electron–positron
plasma is investigated. The plasma and field contributions to the effective coupling between the pseudoscalar
particle and the photon are calculated. The effective coupling is shown to be independent of the parameters of
the medium and the particle 4-momentum in certain limiting cases. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

At present, investigation of the physics of elemen-
tary particles in an external active medium, which can
be not only a plasma, but also an external magnetic
field, becomes increasingly topical. Since both compo-
nents of an active medium can be present in astrophys-
ical objects simultaneously, studying the quantum pro-
cesses and, in particular, the processes involving
weakly interacting particles is of indubitable interest
from the standpoint of astrophysical applications. In
general, the emphasis has been on the physics of neutri-
nos. The reason is that the processes involving neutri-
nos play a crucial role in such astrophysical cataclysms
as supernovas explosions or neutron-star mergers, since
it is these elementary particles that carry away almost
all of the energy lost by the star during its explosion
while propagating through a dense plasma and a strong
magnetic field. However, investigation of the processes
involving other particles weakly interacting with matter
can also be of practical importance in describing astro-
physical cataclysms [1]. The light or even strictly mass-
less Goldstone and pseudo-Goldstone bosons that arise
from new symmetry breaking on a certain energy scale
could act as these particles. For example, axions,
familons, majorons, etc., belong to this type of parti-
cles. Since these particles interact weakly with matter,
they have a large penetrability; as a result, the various
processes with their emission could be additional
sources of energy losses by stars [2–9]. Studies of this
kind provide an additional means for placing astrophys-
ical constraints on such parameters of weakly interac-
tive particles as the masses and the coupling constants.
At present, the astrophysical method is being success-
fully used for hypothetical particles.

Another effect of interest from the standpoint of
astrophysical applications is the possible asymmetry in
the escape of weakly interacting particles during super-
1063-7761/05/10102- $26.000380
nova explosions attributable to the presence of a strong
external magnetic field, which could be a beautiful
macroscopic manifestation of mirror symmetry break-
ing in the microscopic world. This phenomenon could
probably solve the problem of high pulsar velocities.
An asymmetry in the escape of such particles from a
supernova could lead to jet thrust; as a result, a nascent
pulsar would acquire a kick velocity.

The extreme physical conditions that exist inside
astrophysical objects have a significant effect on the
properties of particles and their interaction. A dense
plasma significantly affects the processes with the
emission, absorption, and scattering of neutrinos,
which play an important role in the cooling dynamics of
stellar objects. For example, the decay of a plasmon
into a neutrino pair, γpl  , is not only kinemati-
cally possible in a dense medium, but can also be a
dominant source of neutrinos [10]. Being an active
component of the external medium, the external mag-
netic field, just as plasma, can strongly affect the parti-
cle properties. First, the magnetic field is capable of
inducing new particle–particle interactions, for exam-
ple, between a familon and a photon. Second, the exter-
nal field substantially changes the particle kinematics,
which opens the processes that are forbidden in a vac-
uum by the energy–momentum conservation law (e.g.,
the photon decay into an electron–positron pair [11] and
the photon splitting into two photons, γ  γγ [12]). In
addition, the magnetic field can have a catalyzing effect
on the processes suppressed in the absence of an exter-
nal magnetic field (the decay of a massive neutrino,
νi  νjγ [13]).

It should be noted that this effect of the external
magnetic field is particularly significant when the field
strength exceeds a critical field value for the electron,

the so-called Schwinger value, Be = /e = 4.41 ×

νν

me
2

 © 2005 Pleiades Publishing, Inc.
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1013 G.1 Magnetic fields of such or larger strengths can
be generated in certain astrophysical objects. For exam-
ple, the magnetic field generated during supernova core
collapse can reach 1012–1013 G. Such fields emerge dur-
ing one-dimensional collapse, where the fall of matter
is strictly radial. However, there is strong evidence that
the physics of supernovas is much more complex; in
particular, the rotation of the collapsing core should
also be taken into account. Rotation can increase the
magnetic field by a factor of 103–104, as in Bisnovatyi-
Kogan’s rotational supernova explosion model [14].

In this paper, we investigate the effect of a magne-
tized electron–positron plasma on the effective interac-
tion between a pseudoscalar particle and a photon
induced by an external magnetic field. As the pseudos-
calar particle, we consider the familon that arises from
the breaking of horizontal symmetry between the fer-
mion generations [15, 16]. It should be noted that the
familon–photon interaction is possible only in the pres-
ence of an external magnetic field (in contrast, for
example, to the axion). The reason is that the familon

does not have the anomalies Φ( ) and Φ( ) in a
vacuum (Gµν and Fµν are the gluon and electromagnetic
field tensors, respectively).

The effective familon–photon interaction induced
by an external magnetic field is described by the loop
diagram shown in Fig. 1 and can be represented as

(1)

Here, Aα is the 4-potential of the quantized electromag-
netic field,

is a tensor that is dually conjugate to the tensor of the
external magnetic field Fρσ, Φ is the familon field, and
gφγ is the effective familon–photon coupling in a mag-
netized plasma. The φ  γ transition amplitude cor-
responding to Lagrangian (1) is

(2)

where qµ = (ω, k) is the photon momentum 4-vector,
and εµ is the photon polarization 4-vector. In what fol-
lows, the tensor indices in the 4-vectors and tensors in
parentheses are assumed to be folded sequentially, for

example, (ε* q) = ( qν).

Another familon–photon transition channel
becomes possible in the presence of an e–e+ plasma,
more specifically, the Compton-like familon–photon

1 The natural system of units in which c = " = 1 and the elementary
charge e > 0 is used.

GG̃ FF̃

Lφγ gφγF̃
αβ ∂βAα( )Φ.=

F̃
αβ 1

2
---εαβρσFρσ=

M igφγ ε*F̃q( ),=

F̃ εµ*F̃
µν
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forward scattering by plasma electrons and positrons
indicated by the diagrams in Fig. 2. The contribution of
this channel to the effective pseudoscalar particle–pho-
ton interaction has previously been disregarded,
although, as we show below, it can be much larger than
the loop contribution to the effective coupling gφγ
induced by a magnetic field under certain conditions.
The total φ  γ conversion amplitude in a magnetized
plasma can be represented as the sum of the field and
plasma contributions:

(3)

The contributions of the external magnetic field and
the magnetized plasma to the familon  photon tran-
sition amplitude can be determined from the familon–
fermion interaction Lagrangian

(4)

where  = (γµAµ), vφ is the model-dependent energy
scale (for the familon, this is the horizontal symmetry
breaking scale); cf is a dimensionless parameter on the
order of unity, which is also model-dependent; ef and mf

are the fermion (f) charge and mass, respectively; and
Ψf is the fermion field operator. Here, we use the
Lagrangian with a pseudoscalar coupling to describe
the familon–electron interaction. This does not reduce

M MF MP.+=

L
2im f c f–

v φ
-------------------- Ψ f γ5Ψ f( )Φ e f Ψ f ÂΨ f( ),–=

Â

φ(q)

f (p)

f (p)

γ(q')

Fig. 1. Diagram describing the loop contribution to the
φ  γ transition amplitude in a external magnetic field.
The double line corresponds to the exact fermion propaga-
tor in magnetic field.

φ(q)

γ(q')

e–(p)

e–(p)

(a) (b)

e–(p)

e–(p)

φ(q)

γ(q')
+

Fig. 2. Compton-like familon forward scattering by plasma
electrons. The diagrams describing the familon scattering
by plasma positrons can be obtained from the given dia-
grams by substituting p  –p and by changing the direc-
tion of the fermion line.
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the generality of the results, since the diagrams under
consideration (Figs. 1 and 2) contain only one pseudo-
scalar particle line.

In this paper, we derive a general expression for the
φ  γ conversion amplitude and the effective
familon–photon coupling in an electron–positron
plasma in the presence of an arbitrary external mag-
netic field. We consider in detail the strong-field limit
commonly realizable in astrophysical conditions where
only the ground Landau level is populated.

2. THE FAMILON–PHOTON INTERACTION
IN PLASMA IN THE PRESENCE 

OF AN ARBITRARY CONSTANT MAGNETIC 
FIELD

2.1. The Contribution to the Effective Familon–Photon 
Coupling Induced by an External Magnetic Field 

The familon–photon interaction in an external mag-
netic field is indicated by the loop diagram in Fig. 1,
where the summation is over the virtual fermions f in
the loop. Of all fermions, the electron as the particle
with the largest charge-to-mass ratio e/m is most sensi-
tive to the influence of external magnetic field. There-
fore, the electron makes a major contribution to the
sum; the contribution from other fermions can be
ignored.

The φ  γ conversion amplitude induced by an
external magnetic field can be taken from [17]. Per-
forming the substitutions

in Eq. (4.17) from [17] yields

(5)

where  = /B is the dual tensor of the external
magnetic field reduced to dimensionless form, β = eB,

and η = β/  = B/Be . In what follows, the subscript ⊥
on the 4-vector means that the vector lies in the plane
perpendicular to the magnetic field direction (the field is
assumed to be directed along the third axis, B = (0, 0, B),

jP

2imece

v φ
----------------, jVµ eεµ*–

∆MF eceβ–

2π2v φ

--------------- ε*ϕ̃q( )=

× u t iΩ u t,( )–[ ] ,expd

0

∞

∫d

0

1

∫

Ω u t,( ) t 1
q||

2

me
2

------1 u2–
4

--------------–
 
 
 

=

+
q⊥

2

2me
2

--------- η tu( )cos η t( )cos–
η η t( )sin

------------------------------------------------,

ϕ̃αβ F̃αβ

me
2
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while the subscript || denotes the longitudinal 4-vector
components, i.e.,

The integration over the variable t in Eq. (5) is per-
formed in the complex plane along the positive direc-
tion of the real axis. The integrand on the real axis has
a set of poles that should be bypassed below. Let us turn
the contour of integration clockwise until it coincides
with the imaginary semiaxis, which corresponds to the
substitution t  –iτ. After this substitution, Eq. (5)
takes a form that is more convenient for analysis:

(6)

It should be noted that, strictly speaking, ampli-
tude (6) is improper, because it contains the Adler
anomaly. Since the familon interaction is free from the
Adler anomaly, the integral at the tensor structure
(ε* q) is zero at qµ = 0 in the local limit, which is not
the case for amplitude (6). Therefore, the triangular
Adler anomaly should be subtracted in Eq. (6); in our
case, this procedure is reduced to subtracting the field
amplitude in the limit of an infinite fermion mass from
Eq. (6):

The familon  photon transition amplitude in an
external magnetic field can then be written as

(7)

Comparing (7) with (2), we find the contribution to
the effective familon–photon coupling induced by an
external magnetic field:

(8)

q||
µ q0 0 0 q3, , ,( ),=

q⊥
µ 0 q1 q2 0, , ,( ), q||

2 q0
2 q3

2,–= =

q⊥
2 q1

2 q2
2, q2+ q||

2 q⊥
2 .–= =

∆MF ieceβ
2π2v φ

--------------- ε*ϕ̃q( ) u τ Ω u τ,( )–[ ] ,expd

0

∞

∫d

0

1

∫=

Ω u τ,( ) τ 1
q||

2

me
2
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4

--------------–
 
 
 

=

–
q⊥

2

2me
2

--------- ηuτ( )cosh ητ( )cosh–
η ητ( )sinh

--------------------------------------------------------.

ϕ̃

MF ∆MF ∆MF me ∞( ).–=

MF icee
2

2π2v φ

--------------- ε*F̃q( )=

× u τ Ω u τ,( )–[ ]expd

0

∞

∫d

0

1

∫ 1–
 
 
 

.

gφγ
F cee

2

2π2v φ

--------------- u τ Ω u τ,( )–[ ]expd

0

∞

∫d

0

1

∫ 1–
 
 
 

.=
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The derived expression is valid for arbitrary mag-
netic fields.

2.2. The Plasma Contribution
to the Effective Familon–Photon Coupling 

The contribution of an e–e+ plasma to the φ  γ
transition amplitude is attributable to the Compton-like
familon–photon forward scattering by plasma electrons
and positrons (Fig. 2). We will consider in detail the

calculation of the transition amplitude  correspond-
ing to the diagram in Fig. 2b. The amplitude corre-
sponding to the diagram in Fig. 2a and the amplitudes
of the scattering processes by plasma positrons can be

derived from  via the corresponding transforma-
tions.

Using Lagrangian (4), we obtain the following
expression for the S matrix element corresponding to
the diagram in Fig. 2b:

(9)

Here, qα = (ω, k) and q'α = (ω', k') are the familon and
photon 4-momenta, respectively; pα = (En, p) is the
electron 4-momentum;

is the electron energy at Landau level n; ψe and S(y, x)
are, respectively, the solutions of the Dirac equation
and the electron propagator in an external magnetic
field; and  is an element of the phase volume of the

plasma electron. In an external magnetic field directed
along the z axis in the gauge A = (0, Bx, 0), the number
of plasma electron states is defined as follows:

Here, L2 and L3 are the auxiliary parameters defining
the normalization volume, L1L2L3 = V, p3 is the kinetic
momentum along the third axis, p2 is the generalized
momentum defining the position of the center of the
Gaussian packet on the first axis in accordance with the
equation x1 + p2/β = 0, and f(En, µ) is the equilibrium
electron distribution function, which in the rest frame
of the plasma is

(10)

where µ and T are the chemical potential and tempera-
ture of the plasma, respectively.

M1
P

M1
P

S1
P ieceme

v φV ωω'
------------------------ d4xd4y n

e
–d∫

s

∑
n 0=

∞

∑=

× ψe p y,( )ε̂*S y x,( )γ5ψe p x,( )e iqx– eiq'y.

En p3
2 me

2 2βn+ +=

dn
e

–

dn
e

–

d p2d p3

2π( )2
------------------L2L3 f En µ,( ).=

f En µ,( ) 1
En µ–( )/T[ ]exp 1+

-------------------------------------------------,=
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The electron wavefunctions in the chosen gauge can
be written as [18]

(11)

where the bispinor amplitudes corresponding to the two
spin components along the magnetic field direction s =
±1 are

Here,

Hn(ξ) are the Hermitean polynomials, and ξ is a dimen-
sionless coordinate,

The function Vn(ξ) at negative values of the subscript n
is assumed to be zero.

In an arbitrary constant electromagnetic field, the
electron propagator has neither translational nor gauge
invariance. The noninvariant component is separated
out in the form of a phase factor, and the propagator can
be represented as [19]

(12)

Given the explicit form of the electromagnetic field
potential in the chosen gauge, the phase in (12) can be
calculated in explicit form:

The translationally invariant part of the propagator
S(x – y) has various representations; in our case, it is

ψe p x,( ) = 
us p ξ,( ) i Enx0 p2x2– p3x3–( )–[ ]exp

2En En me+( )L2L3

-----------------------------------------------------------------------------------------,
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0
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p3Vn ξ( )– 
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En me+( )Vn 1– ξ( )
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convenient to take this part in the form of a partial Fou-
rier integral expansion:

(13)

where zµ = xµ – yµ , τ is the imaginary Fock–Schwinger
proper time,  is the virtual electron momentum,

After substituting the solutions of the Dirac equa-
tion (11) and the electron propagator (12) into the S
matrix element (9) and after simple, but slightly cum-
bersome calculations, the four-dimensional δ function
is separated out in the S matrix element as a result of the
fact that the initial and final states are formed by neutral
particles. In this case, the δ function corresponding to
the conservation laws for energy and the second and
third photon momentum components is separated out
immediately after integration over the 4-coordinates x
and y in Minkowski space. The missing δ function cor-
responding to the law of conservation of the first
familon (photon) momentum component is separated
out only after integration over the plasma electron
momentum p2. Using the standard definition of the
invariant amplitude [20],

it can be separated from the S matrix element in the
form

(14)
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To calculate the integral over the variable ρ in
Eq. (14), we use the relation

where u = β /2 and Ln(u) are the Laguerre polynomi-
als normalized by the condition

Further integration over ⊥  space of the 4-coordinate
z in polar coordinates d2z⊥  = dz1dz2 = z⊥ dz⊥ dϕ allows
the result to be expressed in terms of the zero-order
Bessel function J0(x):

(15)

Taking the integral over the variable u using the rela-
tion

and passing to the new variable s = –iτ, we find the
amplitude attributable to the Compton-like familon–
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photon forward scattering by plasma electrons corre-
sponding to the diagram in Fig. 2b:

(16)

where

The calculations of the amplitude  correspond-
ing to the diagram in Fig. 2a are identical to the calcu-

lations of  presented above. The result for the tran-

sition amplitude  differs from (17) by the common
sign and the substitution –q for q. Taking into account
the coherent scattering by all plasma electrons and
positrons for the familon  photon conversion ampli-
tude in a magnetized plasma, we obtain

(17)

Comparing the result obtained with amplitude (2),
we find the plasma contribution to the effective
familon–photon coupling:
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(18)

The derived formula, just as the field contribution (8),
is valid for arbitrary magnetic fields. As we show
below, it is simplified significantly in the strong-field
limit.

3. THE EFFECTIVE PSEUDOSCALAR 
PARTICLE–PHOTON COUPLING

IN A STRONGLY MAGNETIZED PLASMA

In this section, we investigate the familon–photon
interaction in the limit of a strongly magnetized plasma
where the magnetic field strength is the largest param-
eter of all the physical parameters that characterize the
magnetize plasma:

(19)

These physical conditions can be realized in certain
astrophysical objects. For example, during a supernova
explosion, a region with a size on the order of several
dozen kilometers exists near the neutrinosphere where
the plasma is relatively tenuous, while the magnetic
fields can reach 1014–1016 G [21].

The field contribution to the effective familon–pho-
ton coupling (8) in the strong-field limit (η = B/Be @ 1)
is reduced to

(20)
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The function H(z) at large and small values of the
argument have the following asymptotic behavior:

(21)

(22)

where Θ(z) is the Heaviside function.
The plasma contribution to the effective coupling gφγ

is determined only by the ground Landau level (n = 0)
under conditions (19), and the integrals over the vari-
ables τ and u in Eq. (18) can be easily calculated:

(23)

where E =  is the electron (positron) energy at
the ground Landau level.

Using (23) and (20) for the effective familon–pho-
ton coupling in a strongly magnetized plasma, we
obtain

(24)

Expression (24) for the effective coupling is simpli-
fied significantly in certain limiting cases.

(1) The case of relatively high familon energies (β @

ω2 @ ). In this limit, the plasma contribution to the
coupling gφγ includes the suppression related to the

electron mass , which is the smallest parameter of
the problem. Thus, the effective familon–photon cou-
pling for hard familons is attributable only to the field
contribution, which is reduced by using (21) to

(25)

(2) The case of soft familons (ω2 ! ). Under
these conditions, since the behavior of the function H(z)
is asymptotic at small values of argument (22), the
effective coupling gφγ is dominated by the plasma con-
tribution, which can be represented as a single integral,
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The integral in Eq. (26) can be easily calculated in
the following cases:

(i) a degenerate plasma (µ @ T):

(27)

(ii) an ultrarelativistic plasma:

(28)

As we see from Eqs. (25), (27), and (28), the
familon–photon coupling at low familon energies (ω !
me) in a degenerate and/or ultrarelativistic plasma and
at high energies (ω @ me) does not depend on the
parameters of the medium and the familon (photon) 4-
momentum.

4. A FAMILON (PHOTON) PROPAGATING 
ALONG THE MAGNETIC FIELD

Interestingly, irrespective of the external magnetic
field strength, a familon (photon) propagating in a mag-
netized electron–positron plasma along the magnetic
field (q⊥  = 0) interacts efficiently only with electrons
and positrons at the lowest Landau level. In this case,
the expression for the effective familon–photon cou-
pling derived in an arbitrary external magnetic field is
reduced to Eq. (24), which defines the coupling gφγ in
the strong-field limit.

To prove this assertion, let us first consider the
plasma contribution to the coupling gφγ described by
Eq. (18). Since

we immediately find that the plasma contribution to the
effective familon–photon coupling for q⊥  = 0 is attrib-
utable only to the ground Landau level. Substituting
this result into (18) and performing integration over the
variable s, we reproduce result (23) obtained in the
strong-field limit.

As regards the field contribution for a “longitudinal”
familon (photon), we can easily remove the integral
over the variable τ by setting q⊥  = 0 in Eq. (8) and repro-
duce result (20).

Thus, the results obtained for an arbitrary magnetic
field for a longitudinal familon (q⊥  = 0) closely repro-
duce results (23) and (20) obtained in the strong-field
limit where only electrons and positrons at the ground
Landau level make a contribution.

gφγ gφγ
P 2cee

2

π2v φ

------------- 1
me

2

µ2
------– ;≈ ≈

gφγ gφγ
P 2cee

2

π2v φ

-------------.≈ ≈

λn 0( )
1, n 0,=

0, n 0,≠



=
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5. CONCLUSIONS

We investigated the pseudoscalar particle–photon
interaction in an electron–positron plasma in the pres-
ence of an arbitrary external magnetic field. The
familon arising from the breaking of horizontal sym-
metry between the fermion generations was considered
as the pseudoscalar particle. However, our results can
be applicable for any particle with a pseudoscalar inter-
action with fermions.

We derived expressions for the plasma and field
contributions to the effective familon–photon coupling.
We considered in detail the strong-field limit where the
plasma electrons and positrons populate only the
ground Landau level. We showed that the effective
familon–photon coupling in a strongly magnetized

plasma at low familon energies (ω2 ! ) is attribut-
able mainly to the presence of a plasma and is constant.

At relatively high familon energies (β @ ω2 @ ), the
effective coupling is dominated by the field contribu-
tion, which does not depend on the parameters of the
medium and the familon 4-momentum in a degenerate
and/or ultrarelativistic plasma, as in the case of low
familon energies.

Our results can be of use in investigating the physics
of pseudoscalar particles in an external active medium,
in particular, under extreme stellar conditions where
both components of the active medium are present
simultaneously: the plasma and the external magnetic
field.
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