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Abstract—Edge plasma parameters influence plasma performance in many different ways (profile stiffness is
probably one of the best known examples). In the ELMy H-mode plasma, a thin region with improved transport
characteristics (the edge transport barrier) links the core and the scrape-off layer. There is a strong coupling
between these three areas, so that even a modest variation of plasma parameters in one region can lead to a dra-
matic change in the overall plasma performance. A systematic MHD stability analysis and self-consistent inte-
grated predictive modeling of a series of JET ELMy H-mode plasmas, including scans in gas fueling and trian-
gularity, are presented. The main conclusion is that plasma performance indeed sensitively depends on the edge
plasma parameters, which should be modeled in a self-consistent way. © 2003 MAIK “Nauka/Interperiodica”.
* 1. INTRODUCTION

A self-consistent integrated predictive modeling of
ELMy H-mode plasma should ideally include a simula-
tion of the evolution of plasma parameters in the core,
within the edge transport barrier (ETB), and in the
scrape-off layer (SOL). Transport modeling should be
complemented by the MHD stability analysis and a fur-
ther simulation of edge-localized MHD instabilities
(ELMs). The failure of dealing with one of the above-
mentioned items seriously undermines the understand-
ing of the underlying physical processes and can lead to
a loss of predictability. The paper deals with several
characteristic examples of the strong link between core
transport, the ETB, and the SOL: the effect of strong
gas puffing and magnetic configuration on the perfor-
mance of type-I ELMy H-mode plasma. We also dis-
cuss the dynamics of the transition of the type-III ELMs
to type-I ELMs, as well as the role of ballooning and
kink/peeling mode stability in ELM dynamics.

* This article was submitted by the authors in English.
1063-780X/03/2907- $24.00 © 0539
2. BACKGROUND EXPERIMENTAL 
INFORMATION

We have selected four recent JET ELMy H-mode
plasmas, which constitute a scan in gas puffing and tri-
angularity. All of the discharges have very similar val-
ues of the plasma current Ip ≅ 2.5 MA, the toroidal mag-
netic field BT ≅ 2.6 T, ellipticity k ≅ 1.7, and the level of
additional heating provided by Neutral Beam Injection
(NBI): PNBI ≅ 15 MW. Two discharges belong to the tri-
angularity scan (shot no. 53186 has δ = 0.3 and shot
no. 53298 has δ = 0.5) and three shots (nos. 53298,
53299, and 52739) constitute the gas puffing scan (with
Γ = 0 for shot no. 53298, Γ ≅ 4.5 × 1022 s–1 for shot
no. 53299 and Γ ≅ 6.0 × 1022 s–1 for shot no. 52739).
Figure 1 shows the time evolution of the energy content
for these shots together with the Dα signal and energy
confinement time normalized to the H-mode scaling
(H98y). At least two conclusions can be drawn from
this figure:

(1) Plasma with higher triangularity has a better per-
formance (in terms of both plasma stored energy and
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The time evolution of (a) the energy content, (b) the energy confinement-time enhancement factor H98Y2, and (c–f) the Dα
signals for JET shot nos. 53186, 53298, 53299, and 52739.
normalized confinement) than similar low-triangularity
plasma;

(2) Strong gas puffing leads to a significant increase
in the ELM frequency (followed by transition to the
type-III ELMy H-mode in extreme cases). This leads to
a noticeable degradation in the plasma performance. It
is worth noting that an intermediate level of gas puffing
can lead to a decrease of the ELM frequency and a tran-
sition to a mixed type I-II ELMy H-mode (see shot
no. 53299) [1].

We will also discuss the possible cause of the sud-
den transition from type-I to type-III ELMs, which was
observed in many experiments with a modest level of
heating power [2], and try to associate the transition
with a bifurcation in the edge MHD instability.
3. TRANSPORT MODELS, CODES, 
AND OTHER TOOLS USED IN INTEGRATED 

PREDICTIVE MODELING

As we discussed earlier, there is a strong link
between the core transport and plasma parameters
within the ETB and the SOL. To take this coupling into
consideration, we use the COCONUT suite of JET
transport codes, which consists of the 1.5D core trans-
port code JETTO [3] coupled to the 2D edge transport
code EDGE2D/NIMBUS [4]. JETTO explicitly takes
the region of the edge transport barrier into account. It
is assumed that anomalous transport is completely sup-
pressed within the ETB, so that the only remaining
transport is neoclassical [5]. The width of the ETB is
considered an external parameter, which is calculated
using recently developed models [6]. Perpendicular
transport in the SOL is assumed to be neoclassical as
well, with longitudinal transport being classical.
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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Fig. 2. Edge plasma profiles for a gas scan: (a) ion density, (b) ion temperature, (c) bootstrap current density, (d) total current density,
and (e) magnetic shear.
JETTO has a fixed boundary solver of the Grad-Shafra-
nov equation, which generates equilibrium that is con-
sistent with the predicted pressure and current profiles
in the core and ETB. JETTO is linked with the MHD
stability code IDBALL, which generates ideal balloon-
ing stability diagrams in s–α coordinates. Recently,
JETTO has been linked with the much more sophisti-
cated MHD stability code MISHKA [7], which
includes the stability analysis of both finite-n balloon-
ing and kink/peeling modes.

To simulate ELMs, JETTO uses simple analytical
formulas, which evaluate ballooning and kink stability

inside the separatrix: α ≡ –  ≤ αcrit or jETB <

jcrit, where p is the plasma pressure and j is the current
density within the ETB. The αcrit and jcrit parameters are
variable numerical factors, which are checked against
the results of the MHD stability codes IDBALL and
MISHKA and adjusted accordingly. To simulate the
ELM, JETTO temporarily increases the level of anom-
alous transport within the ETB as soon as the stability
criterion is violated. Both the pressure gradient and the
edge current drop as a result, so plasma returns to the
pre-ELM state and the cycle repeats.

2µ0q
2

B0
2ε

-------------- dp
dρ
------ 

 
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4. MODELING OF THE ELMY H-MODE 
WITH STRONG GAS PUFFING

As noted above, we have selected three JET shots
(nos. 53298, 53299 and 52739) to study the role of gas
puffing in type-I ELMy H-mode plasma performance.
Three different levels of gas puffing have been used
throughout the simulations: Γ = 0, 4 × 1022, and 1023 s–1.
We use the COCONUT suite to simulate the time evo-
lution of both core and SOL profiles between ELMs.
Figure 2 shows some characteristic profiles for the
three reference cases. The inspection of these profiles
shows that gas puffing leads to an increase in the den-
sity in both the core and the SOL. However the increase
in density near the separatrix is much stronger than that
in the core. Since in the computations we try to keep the
pressure gradient within the ETB roughly the same for
all three runs, the lower density gradient in the case
with strong gas puffing translates into a higher temper-
ature gradient, which, in turn, results in a lower edge
temperature. Both of these factors lead to a dramatic
increase in the plasma collisionality for the case of
strong gas puffing. Since the bootstrap current
decreases with plasma collisionality, we conclude that
strong gas puffing significantly reduces the edge cur-
rent (see Fig. 2c). Given the essential role played by the
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the light shaded area) of the gas scan shots from Fig. 1: Γ = (a) 0, (b) 4 × 1022, and (c) 1023 s–1. Three operational points are shown:
just inside the ETB (at ψ = 0.93), on the top of the ETB (at ψ = 0.93) and a point at ψ ≈ 0.98–0.99.
edge current in both kink and ballooning stability, we
run the MISHKA code for all three cases. The result of
this analysis is presented in Fig. 3 and allows us to draw
the following conclusions:

(1) The discharge without gas puffing generates a
strong bootstrap current within the ETB (Fig. 3a). This
reduces the magnetic shear and allows access to a sec-
ond ballooning stability region. The maximum stable
pressure gradient corresponds to αcrit ≈ 6 and is limited
by finite-n ballooning/peeling modes, with the radial
localization approximately equal to the width of the
ETB.

(2) A medium level of gas puffing reduces the boot-
strap current only near the separatrix (for the norma-
lised poloidal flux ψ ≥ 0.98). This blocks the access to
the second stability region and reduces the level of the
critical pressure gradient to αcrit ≈ 3.5 for those mag-
netic surfaces outside ψ ≥ 0.98 (see Fig. 3b). The rest of
the ETB still has access to a second stability region
with a high enough critical pressure gradient (αcrit ≈ 6).

(3) The highest level of gas puffing destroys the
bootstrap current across the whole ETB. The entire
edge barrier loses access to the second stability region,
so the maximum achievable normalized pressure gradi-
ent drops to αcrit ≈ 3.5.

To find out how the ELM frequency depends on the
level of αcrit, we first run JETTO for two cases: with
zero gas puffing and with maximum gas puffing. The
same assumptions about the amplitude and structure of
ELM were used but we assume that αcrit ≈ 6 for the case
without gas puffing and αcrit ≈ 3.5 for the case with very
strong puffing (Γmax = 1023 s–1). The result of this study
is shown in Figs. 4a and 4b and allows us to conclude
that qualitatively (both in terms of the ELM frequency
and the change in confinement) the transition from the
second to the first ballooning stability limit corresponds
to a transition from type-I to type-III ELMs. It is worth
noting that the first ballooning stability boundary can
be controlled by the resistive rather than by the ideal
ballooning mode in highly collisional plasma. This can
further reduce achievable level of the critical pressure
gradient to below αcrit ≈ 3.5, which was used in our
analysis. Other effects, such as differential plasma rota-
tion or the diamagnetic effect, may affect the stability
boundaries as well.

To simulate discharge with the medium level of gas
puffing, we split the edge barrier into two parts: exter-
nal (with ψ ≥ 0.98 and αcrit ≈ 3.5) and internal (with
0.94 ≤ ψ < 0.98 and αcrit ≈ 6). The result of the modeling
is shown in Fig. 4c and allows us to conclude that it
qualitatively reproduces the experimentally observed
mixed type I-II ELMy H-mode plasma in JET [1]. 

The next step of our analysis was to look at the
dynamics of the evolution of the plasma parameters
while approaching the MHD stability limit. To do it, we
assume that the plasma parameters within the ETB are
not limited by any edge MHD instabilities (peeling or
ballooning). We just monitor the MHD stability of the
plasma edge during such unrestricted evolution, fully
suppressing any anomalous transport within the ETB.
Figure 5 shows that the trajectory of the “top-of-the-
barrier” operational point is in s–α space, starting from
the L–H transition. One can observe that plasma heat-
ing leads to an increase in the plasma pressure gradient,
which is accompanied by an increase in the edge cur-
rent (both bootstrap and Ohmic) with a corresponding
reduction in the magnetic shear. As a result, the top-of-
the-barrier operational point moves in s–α space so that
it crosses the first ideal ballooning stability limit before
entering the second stability region. We should stress
that this kind of evolution is quite typical; in fact, it is
observed in all of the shots we have simulated so far.

Thus, if the ETB region crosses the ideal ballooning
unstable area before entering the second stability
region, then the question arises as to how the plasma
can overcome this “primary” instability. Numerical
modeling shows that one way to do it would be to avoid
the unstable region by increasing the edge current with-
out increasing the pressure gradient [8]. This method
works indeed, but it requires a certain special current
ramp-up technique only occasionally used in present-
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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day experiments. Another way would be to assume that
the ideal ballooning instability (with n  ∞) gener-
ates relatively small, incremental transport. If this is the
case, then the plasma can be pushed through the unsta-
ble region with the help of “extra” power. We leave the
detailed discussion of this idea for future work and fin-
ish this paragraph with only one remark. It is known
from experiments that the plasma edge passes through
a chain of transformations while the heating power is
increasing. First, the L–H transition occurs, followed
by the type-III ELMy H-mode with the ELM frequency
scaling inversely proportional to the heating power. The
plasma jumps into an ELM-free H-mode state when
more power is applied and finally enters into the type-I
ELMy H-mode with the ELM frequency increasing
with the power. Qualitatively, this chain of transitions is
similar to what we found in our simulations: the plasma
reaches the first ballooning stability limit after the
establishment of the ETB (L–H transition) and stays
there if the power is not high enough. This corresponds
to a type-III ELMy H-mode plasma. With more power,
the plasma enters the second stability region (ELM-free
period), followed by the strong type-I ELMy H-mode,
which is caused by finite ballooning and peeling insta-
bilities.

5. TRIANGULARITY SCAN

It is known from experiments and MHD theory that
the magnetic configuration influences the plasma per-
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
formances in many respects. In particular, a higher tri-
angularity allows a better confinement (see Fig. 1) and
a higher normalised density to be reached [9]. We select
two recent JET shots that are identical in all other
respects but have different triangularities: shot no. 53187
has δ = 0.3 and shot no. 53298 has δ = 0.5. We per-
formed predictive modeling of these two shots with
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Fig. 5. Time evolution of the operational point at ψ = 0.94
(top of the barrier) in s–α space.
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JETTO using the same models for the ETB width [6]
and the same assumptions about the ballooning stabil-
ity. The modeling confirmed that both low- and high-
triangularity plasmas could enter the second stability
after passing through the ballooning unstable region,
with the characteristic width of the unstable region
increasing with triangularity. Using the same assump-
tion for αÒrit leads to either underestimation of the high-
triangularity plasma energy content or overestimation
of the low-triangularity plasma (depending on the level
of αÒrit). To elucidate the situation with MHD stability
we generated a range of magnetic configurations with
the triangularity varying from δ = 0.1 to δ = 0.5 and per-
formed a predictive modeling and full MHD stability
analysis of three otherwise identical plasmas with δ =
0.1, 0.3, and 0.5. Some results of the MHD analysis are
shown in Fig. 6 and allow us to draw the following con-
clusions. The very low triangularity (δ = 0.1) plasma
has no access to a second stability region, mainly
because of the low-n kink/peeling mode. The medium-
triangularity plasma (δ = 0.3) has some access to a sec-
ond stability, but this access is very narrow in the s–α
space and requires an accurate tailoring of the edge
plasma parameters to enter into it. Increasing the trian-
gularity above 0.3 widens the access to the second sta-
bility, although it only slightly increases the maximum
level of αcrit (see [8]).

6. CONCLUSIONS

Self-consistent integrated modeling of a number of
JET type-I and type-III ELMy H-mode discharges has
been carried out using the COCONUT suite of JET
transport codes coupled with the MHD stability codes
IDBALL and MISHKA. It has been shown that, gener-
ally, JET plasmas with an ETB can have access to sec-
ond ballooning stability, with the critical level of the
normalized pressure gradient being controlled by the
medium-n ballooning/peeling modes. Strong gas puff-
ing reduces the edge current and brings the operational
point back into the first ballooning stability region. This
transition is accompanied by a dramatic increase in the
ELM frequency similar to the experimentally observed
transition from type-I to type-III ELMs. A medium
level of gas puffing leads to a mixed type I-II ELMy
H-mode without the serious degradation of the plasma
confinement. Modeling plasmas with different triangu-
larity reveals that a higher triangularity results in better
access to a second ballooning stability, which improves
the plasma performance.
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Abstract—A model that describes the interaction of nonlinear Alfvén packets propagating in opposite direc-
tions parallel to the ambient magnetic field is constructed. This model incorporates both (i) the parametric inter-
action of harmonics propagating in the same direction, which can be responsible for the transportation of the
wave energy to the short-wavelength region of the spectrum, and (ii) the parametric interaction of Alfvén waves
propagating in opposite directions, which can be responsible for the excitation of backward-propagating waves
by the parametric decaylike instability of the forward-propagating fluctuations. © 2003 MAIK “Nauka/Inter-
periodica”.
1 1. INTRODUCTION

Historically, parametric interactions of Alfvén
waves that involve ion acoustic-like modes have been
studied in two different contexts.

On the one hand, it has been well known for a long
time, that finite-amplitude Alfvén waves in plasma are
unstable with respect to the excitation of a backward-
propagating daughter Alfvén wave and a forward-prop-
agating ionacoustic wave (parametric decay instability)
[1]. Parametric interactions of Alfvén waves involving
ion-acoustic modes have been investigated in detail by
many authors [2–13].

In another context, the parametric coupling of
Alfvén waves propagating in the same direction, which
developed through ponderomotively driven density
fluctuations, was also a subject of intensive studies. The
processes of the steepening of the wave profile and the
transportation of the wave energy to the small-scale
part of the spectrum due to this coupling are described
by the so-called derivative nonlinear Schroedinger
(DNLS) equation, which was first derived by Rogister
[14] using kinetic theory and subsequently by several
authors [15–21] in the hydrodynamic approximation. A
shortcoming of the DNLS equation-based approach is
that this equation doesn’t describe the nonlinear inter-
action of waves propagating in opposite directions,
such as the decay-type interaction.

From our point of view, a separation of these two
processes is not warranted as both parametric interac-
tions work on the same order of the wave amplitude.
The goal of this paper is to develop a model that
includes both types of parametric interaction of Alfvén
waves and to study the parametric interaction of Alfvén
packets propagating in opposite directions parallel to
the ambient magnetic field.

1 This article was submitted by the authors in English.
1063-780X/03/2907- $24.00 © 20545
2. EQUATIONS OF THE MODEL 
AND SOLUTION

Let us consider two Alfvén wave packets propagat-
ing in opposite directions along the magnetic field

(1)

Here, vA = /4πn0m is the Alfvén velocity, B0 is
the ambient magnetic field, n0 is the density of the
plasma, m is the proton mass, and τ is the slow time
arising due to the nonlinearity of the waves.

The ion-acoustic-like motions of plasma are excited
because of the nonlinearity of the Alfvén waves; the
equations for density δn and velocity v  perturbations in
these motions can be written in the following form:

(2)

(3)

where cS =  is the ion-acoustic velocity and T is the
sum of the electron and ion temperatures T = Te + Tp.

Taking into account Eq. (1), the nonlinear term in
(2) has the form

(4)

In accordance with the structure of drive force, the solu-
tion of Eqs. (2) and (3) can be written as

(5)

(6)
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Here, δn+, v +, as well as δn–, v –, can easily be found
from (2) and (3):

(7)

where β = .

The last terms in δn and v  arise as a result of the
parametric interaction of Alfvén waves propagating in
opposite directions.

We consider here the decaylike parametric interac-
tion of oppositely propagating wave packets in a small-

β plasma (β =  ! 1). As one can see from
Eqs. (2) and (3), the frequency of driven ion-acoustic-
like perturbations of the density and velocity δnpar and
δv par is on the order of the ion-acoustic frequency or is
defined by the nonlinearity of the Alfvén waves. Thus,
for β ! 1, the problem under consideration is the inter-
action of high-frequency waves (Alfvén waves) with
slow plasma motions (ion-acoustic-like oscillations)
with ω ! kvA, where ω is a characteristic frequency of
low-frequency motions of plasma and k is the wave
number. This interaction includes the decay process, as
well as the modulation instability of Alfvén waves that
was revealed by Vedenov and Rudakov [22] for Lang-
muir waves. As a result, the system of equations
describing the parametric interaction of wave packets
propagating in opposite directions has the following
form:

(8)

(9)

(10)

where ωc is the proton gyro frequency.

It is easy to show that Eqs. (8)–(10) have an integral
of motion that has the form

(11)

This integral is just the conservation of the momentum
in the system that consists of two Alfvén wave packets
and low-frequency motions of plasma.
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We represent the solution of (8)–(10) as

(12)

where λn = 2πn/L, n is an integer number, and L is the
length of the system.

It is easy to see from Eqs. (8)–(10) that the paramet-
ric interaction of Alfvén wave packets involves sets of

three harmonics , , and δn2k. Assuming that the

 harmonic has a finite amplitude and considering

 and δn2k as small perturbations, we obtain a disper-
sion relation for three-harmonic interaction that
describes the parametric excitation of a backward-
propagating Alfvén wave and an ionacoustic-like per-
turbation,

(13)

which is identical to the dispersion relation of the para-
metric decaylike instability [23].

The solution of nonlinear equations (8)–(10) was
obtained numerically. We introduced dimensionless
variables

(14)

where  = 144/ωc,  = 36c/ωp, and ωp is the proton
plasma frequency, and chose the length of the box L =
1130c/ωp.

First, we studied the nonlinear evolution of the
decaylike parametric interaction of the three harmon-
ics. Results of the solution of the nonlinear equations in
this case, which are similar to the standard dynamics of
decay instability [1], are presented in Figs. 1 and 2,
where the nonlinear evolution of  and , as well

as the growth rate of the  harmonic, are shown.

In the general case of parametrically interacting
wave packets, we solved Eqs. (8)–(10) by the spectral
method using the predictor-,-corrector scheme; the
nonlinear terms were calculated with the help of fast
Fourier transform. Periodic boundary conditions were
set at z = 0 and z = l (where l = L/ ), and 2048 harmon-
ics and spatial points –1024 < n < 1024 were assumed
in (11).
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We consider a low-β plasma where the forward-
propagating wave packet  has a large average wave

amplitude B–, while backward-propagating fluctuations
have zero amplitudes, and there are slow motions of the
plasma with small average density perturbations δnavg.
The spectrum of the forward waves was chosen as hav-

ing a power law  ~ |k|–α up to |k | = km and exponen-
tially decreasing for larger |k |. The initial spectrum of
the acoustic-like motions was set in a similar way.

Parametric decay interaction leads to the excitation
of backward-propagating Alfvén fluctuations. The
dynamics of the wave energy density in both wave

packets for β = 0.01,  = 0.25, α = 1.5, m = 16, and

δnavg = 10–2 is shown in Fig. 3, where the thick curve is
for forward-propagating waves and the thin one is for
backward-propagating ones. The wave profiles for the
B–-packet are shown in Figs. 4a–4c for dimensionless
times τ = (a) 0, (b) 1, and (c) 60. One can see from
Fig. 4b that a DNLS-type nonlinearity (the third term in
the left-hand side of (8)–(9)) leads to the steepening of
the wave profile and the generation of typical whistler-
like packets. The wave profile for a long time (τ = 60,
Fig. 4c) significantly differs from the initial one. The
spectral characteristics of the forward-propagating
wave packet at times τ = 0 (thin line) and τ = 60 (thick
line) that are shown in Fig. 5 demonstrate the creation
of higher harmonics due to the nonlinear coupling of
Alfvén waves moving in the same direction. The wave
profile of the wave packet propagating in opposite
direction at time τ = 60 is shown in Fig. 4d, and its spec-
trum is shown in Fig. 6.
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Bk
– 2

Bavg
–

305 10 15 20 250

2.5

0.5

1.0

1.5

2.0

|Bn|

τ
Fig. 1. Nonlinear dynamics of decay-type interaction of the
three harmonics in a plasma with β = 0.01. The thin and

thick curves are the amplitudes of the pump harmonic 

and the daughter harmonic , respectively, and the thin

horizontal line is an integral of equations.

B1
+

B 1–
–
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3. DISCUSSION

In this study, we formulated the model that describe
both (i) the steepening of Alfvén wave profile that leads
to the wave transportation to the short-wavelength
region of spectrum and (ii) the excitation of backward-
propagating waves due to a decaylike instability.
Results of this investigation may be related to some
problems of solar-wind physics.

It is a conventional point of view that outward-prop-
agating waves are excited by impulsive reconnection
events that release the free energy of closed magnetic
loops in to the chromosphere [24]. Because the out-
ward-propagating Alfvén waves are exact solutions of
MHD equations, in an incompressible MHD no spec-

305 10 15 20 250
τ

0.6
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–0.4

–0.2

0
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0.4

–0.8

γ

Fig. 2. The growth rate of the parametric instability γ =

.
dB 1–

–
/dτ

B 1–
–

---------------------

6010 20 30 40 500
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2.0

1.5

1.0

|B|2

Fig. 3. The nonlinear dynamics of the wave energy density
in forward- (thick curve) and backward-propagating (thin
curve) wave packets. The horizontal line is an integral of
Eqs. (8)–(10).
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tral evolution should occur, so the existence of inward-
propagating Alfvén waves is crucial for incompressible
MHD turbulence models of the solar wind (see [25,
26]). At the same time, the nature of inward-propagat-
ing Alfvénic turbulence is still not well understood.
Analysis of observational data [27, 28] brought addi-
tional evidence of the existence of inward-propagating
Alfvénic fluctuations and suggested an interdepen-
dence of the inward- and outward-propagating waves.

Because the WKB theory fails to predict the pres-
ence of any inward-propagating fluctuations in the
expanding solar wind, the so-called mixing mechanism
of the generation of inward-propagating waves was

1000500
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0.2

1500 2000
ζ

0.4
(d)

|B+|
0

0.6

0.8
(c)

|B–|

0.4

0.2

0

0.6

0.8
(b)

|B–|

0.4

0.2

0

0.6

0.8
(‡)

|B–|

0.4

0.2

Fig. 4. The wave profiles B– of forward-propagating fluctu-
ations at times τ = (a) 0, (b) 1, and (c) 60. Panel (d) shows
the wave profile B+ of the backward-propagating Alfvén
fluctuations that were generated due to the parametric insta-
bility of the B– packet.
proposed [29, 30] (see also reviews [25, 26] and refer-
ences therein). The mixing mechanism is a leading
order non-WKB effect associated with reflection from
density gradients; it disappears in a WKB approxima-
tion.

Another scenario is connected with the velocity
shear between fast and slow solar-wind streams. The
velocity-shear instability leads to the generation of both
outward- and inward-propagating large-scale Alfvén
waves (see [25] and references therein).

Our model describes a possible generation mecha-
nism of inward-propagating Alfvén waves by outward-
propagating fluctuations that works even in homoge-

–100 –60
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–20 20 60 100
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0.4
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0.6
|B–

k|

Fig. 5. The spectra of the forward-propagating wave packet
at times τ = 0 (thin curve) and τ = 60 (thick curve). The exci-
tation of higher harmonics takes place due to the nonlinear
coupling of harmonics in the B– packet.

–50 –30
0

0.05

–10 10 30 50
k

0.15

0.20

0.25

0.30

0.35

|B+
k|

0.10

Fig. 6. The spectrum of the backward-propagating Alfvén
fluctuations that were created due to a decaylike parametric
interaction at time τ = 60.
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neous conditions. Taking into account the solar-wind
parameters, it is needed to construct the similar model
for isothermal (Te ≈ Tp) plasma, when parametric decay
interaction is just the induced scattering of waves on
plasma particles. We plan to conduct this study in the
future.
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Abstract—The concept of modulational instability, which results from the coupling of waves modes of very
different time and space scales, was introduced to plasma physics through an elegant paper by Vedenov and
Rudakov in 1964 [1]. Our paper is devoted to the theory of modulational instability resulting from the interac-
tion of lower hybrid waves and slow density perturbations associated with inertial Alfvén waves. The nonlinear
set of equations describing the modulational coupling of these two types of waves is constructed. The lower
hybrid wave trajectories are analyzed within predefined density structures and it is shown that these waves can
be trapped in the vicinity of the density extremum. The density modulations, originally being associated with
inertial Alfvén waves, deepen due to the trapping of lower hybrid waves; this leads to modulational instability.
A dispersion relation describing the modulational instability is constructed and analyzed. The threshold inten-
sity of the lower hybrid waves for the onset of instability is obtained and it is shown that instability can serve
as an efficient mechanism for the excitation of inertial Alfvén waves in the auroral ionosphere. © 2003 MAIK
“Nauka/Interperiodica”.

c,
1 1. INTRODUCTION

Lower hybrid waves (LHWs) play a significant role
in many areas of space physics. These waves are usually
excited by a modified two-stream instability. This type
of instability is driven by the relative motion of the dif-
ferent plasma components at an angle to the magnetic
field and plays a key role in many space-physics prob-
lems. These problems include the following: counter-
streaming ions in the flow of the solar wind reflected
from Earth’s bowshock [2]; mixed plasma populations,
such as solar wind and planetary ions at the boundaries
of the ionospheres of the nonmagnetic planets Mars and
Venus [3]; and mass loading of the solar wind with
newly born cometary photoions in the problem of solar
wind/cometary interaction [4]. The important feature of
the LHWs is their ability to couple light fast electrons
and slow heavy ions in the resonant wave–particle inter-
action (e.g., [5, 6]). This is because the frequency of the
lower hybrid waves is between the electron and ion
gyrofrequencies. Electrons are strongly magnetized in
these waves. They mainly have uniform motion along
the magnetic-field lines. If the velocity of the uniform
motion of electrons coincides with the parallel phase
velocity of the wave, an electron stays in phase reso-
nance with the wave for a longer time. The electron then
acquires energy from the wave or gives energy to it. This
is the so-called Landau wave-particle resonance

(1)

1 This article was submitted by the authors in English.

ω k ||v ||,=
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where ω is the wave frequency and k|| and v || are field-
aligned components of wave vector and electron
velocity.

At the same time, ions do not feel the presence of the
magnetic field, because the frequency of their Larmor
rotation is much less than the wave frequency. LHWs
have wave vectors almost perpendicular to the field
lines (k⊥  @ k||), and they can be considered almost elec-
trostatic (E ~ –∇ϕ ). As a result of this, unmagnetized
ions oscillate across the magnetic-field lines under the
action of the main component of the transverse electric
field, and therefore the wave–particle resonance condi-
tion for ions has the form:

(2)

By comparing resonance conditions (1) and (2), and
taking into account that k⊥  @ k||, it is easy to see that the
lower hybrid waves can be in simultaneous phase reso-
nance with both slow unmagnetized ions and fast mag-
netized electrons. The energy is transferred from one
plasma component to the other. In many cases, the free-
energy source is the heavy ion component, e.g., the pro-
tons of solar wind interacting with comets or the
reflected protons at the Earth’s bowshock. On the other
hand, in the auroral ionosphere, the energy source for
the excitation of LHWs is the energetic precipitated
electrons. In this case, the absorption of LHWs results
in an efficient ion energization across the magnetic
field, which is called the transverse acceleration of ions

ω k⊥ v⊥ .⋅=
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(TAI). This mechanism is responsible for the injection
of heavy ions of ionospheric origin into the Earth’s
magnetosphere (e.g., energetic O+ ions) [7].

One of the significant outcomes of rocket and satel-
lite observations made in the auroral atmosphere is the
detection of localized density depletions filled with
electrostatic waves in the lower hybrid frequency range
[8–10]. These structures are called spikelets, lower
hybrid cavities, and lower hybrid solitary structures
(LHSSs) by different authors. We are going to adopt the
acronym LHSSs in this paper. It is also argued that the
ion acceleration events (TAIs) are closely associated
with these localized wave events (LHSSs) [11]. This
idea makes understanding the mechanisms behind the
formation of these structures even more appealing.

One of the mechanisms, which has been considered
responsible for the formation of LHSSs, is the modula-
tional interaction of lower hybrid waves with slow
background density perturbations associated with ion-
acoustic waves. The physics of this mechanism is sim-
ilar to the instability resulting from the modulational
interaction of short-wavelength and high-frequency
plasma waves and smooth and slow density perturba-
tions, which was proposed by Vedenov and Rudakov
[1]. This type of instability has been investigated in
detail and widely accepted in theoretical plasma phys-
ics [12]. The modulational interaction is initiated by the
ponderomotive forces created by finite-amplitude high-
frequency waves in plasma. These forces result in
plasma modulation with a very low frequency. The den-
sity holes associated with the modulation act as poten-
tial wells, which are effective in trapping the high-fre-
quency mode. The trapped modes are enhanced, which
results in a further deepening of the density holes by the
ponderomotive force, leading to the modulational insta-
bility.

This phenomenon is quite interesting because it
demonstrates the fact that the interaction of different
wave modes with very different time and space scales
can lead to formation of localized structures in plasma.
However, for some technical reasons, modulational
interaction had not been directly observed in laboratory
plasma. This is why the auroral observations, which, in
our point of view, can be evidence for the modulational
interaction between LHWs and low-frequency density
modulations, are very important.

The modulational interaction of LHWs with slow
background density fluctuations associated with ion-
acoustic waves is considered in a number of references
(see, e.g., [13, 14]). As explained above, this interaction
leads to the creation of field-aligned structures that are
strongly localized in the direction perpendicular to the
ambient magnetic field (LHSS). It is also shown that
the evolution of modulational instability leads to the
compression of cavities. At this stage, which is called
the collapse, the LH wave energy cascades to smaller
and smaller scales. Finally, at the final stage of collapse,
the scales are small enough for wave–particle reso-
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
nance and the wave energy is dissipated, resulting in the
energization of ions (TAI).

However, such an interpretation of LHSSs is not
widely accepted and has been criticized in some papers.
Among them, it is necessary to mention the paper by
Pecseli et al. [15]. This paper includes a detailed statis-
tical analysis of the properties of the observed struc-
tures. In this paper, it is stated that the space and time
scales of collapse are not compatible with the observa-
tions. In the analysis presented in Pecseli et al., which
is based on Freja satellite observations, the transverse
scales for the LHSSs change in the interval 40–80 m.

A rough estimation to the transverse scales of the
cavities can be made for the model of modulational
interaction by balancing the nonlinear term with the
dispersion term in the governing equations [14]. This
type of approach yields typical size of the order of

(3)

where n0 is the plasma density; T is the sum of the elec-
tron and ion temperatures; |E0 |2 is the square of the LH
electric field inside the structure; mi and me are the ion
and electron masses; ωce is the electron cyclotron fre-
quency, ωpe is the electron plasma frequency; and
finally, R is the typical scale determining the spatial dis-
persion of the LH frequency:

where s = .

The typical parameters of the auroral ionosphere
that have been used in estimations made in the paper are
presented in the table.
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Typical ionospheric parameters at altitudes ~1700 km

Ambient magnetic field, B0 0.3 G

Electron temperature, Te 3000 K 

Ion temperature, Ti 2400 K 

Average plasma density, n0 103 cm–3 

Mass ratio, mi/me 2000 

Alfvén speed, vA 1.9 × 109 cm/s

Electron cyclotron frequency, ωce 4.8 × 106 rad/s

Electron plasma frequency, ωpe 1.7 × 106 rad/s

Ion plasma frequency, ωpi 3.8 × 104 rad/s

Lower hybrid frequency, ωlh 3.6 × 104 rad/s

Lower-hybrid dispersion length, R 19 cm 

Electron skin depth, c/ωpe 180 m 

β = 8πn0  2  × 10–7 T /B0
2
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For the value of E0 ~ 50 mV/m, L⊥  can be estimated
as ~2 m, which clearly contradicts the observations.
However, the numerical simulations presented in paper
[14] show that the transverse cavity sizes are much
wider than the estimated L⊥ . The result of these numer-
ical calculations that is presented in Fig. 1 is directly
taken from reference [14]. It can be seen that the trans-
verse cavity size is r* ~ 120 when the electric field in
the center of cavity is E*(r) ~ 0.1 in dimensionless
units.

The correct dimensionless units for the electric field
and distance used in this paper are

The numerical factor κ ~ 1.5 and R ~ 0.2 m. Therefore,
the simulations show that for E0 = 100 mV/m, the size
of the cavity is ~35 m. For a weaker electric field, a
wider structure is expected, and these values are in
good agreement with the observations.

Another contradiction with the theory, emphasized
in Pecseli et al. [15], is related to the typical time scale
of the evolution of the cavity collapse. The observations
show that the structure of the cavities is not deformed
during one passage of the satellite, which takes ~10 ms.
This is why the collapse time should be larger then
10 ms, as discussed in [15]. A characteristic time scale
for the formation of cavities similar to (3) can be
obtained from the governing equations by balancing the

E* E/ 16πn0T
me

mi

------
ωpe

2

ωce
2

-------- E
1 V/m( )

--------------------∼=

and r*
r

κR
------- r

0.3 m( )
------------------.∼=

E(r)
0.3

0.2

0.1

0 12060
r

Fig. 1. Evolution of the radial dependence of electric-field
amplitude during collapse. Result of the simulations pre-
sented in [14]. Dimensionless units are explained in the text.
nonlinear term with the time dependence [14]. This
estimations yields

(4)

for the parameters of the table; the electric field at the
center of the cavity is taken to be E0 = 50 mV/m. Again
it is argued in Pecseli et al. that this time is too short for
the theory of modulational instability be acceptable.
However, the numerical solutions described in Shapiro
et al. [14] show that the cavity preliminarily needs
some time before going into collapse. As a result of
this, a typical time of collapse is up to the order of

~700κ2  ~ 50 ms (obtained from simulations in
[14]). This value is also in reasonable agreement with
the observations.

The beam-plasma [5] or fan [16] instabilities due to
the fluxes of the precipitated electrons act as permanent
sources of excitation of lower hybrid waves in the
auroral ionosphere. When such a constant source for
the lower hybrid waves is present in the system, the fol-
lowing scenario, which has been discussed in [17], is
quite plausible: When the energy of LHWs reaches a
certain level, modulational instability evolves and leads
to the formation of LHSSs. The formation of these
structures is followed by their compression (collapse).
The collapse is terminated by dissipation of the LHWs
and ion energization (TAI). After one collapse run is
completed, the “empty” density structures relax with
the speed of sound. During this relaxation, they capture
a new portion of waves, and a new collapse run starts.
In this scenario, a quasi-stationary set of LHSSs is
formed due to the balance between the permanent
inflow of energy of LHWs in large scales by the excita-
tion due to fluxes of precipitated electrons and the
absorption of the energy in short scales by particle ener-
gization.

One characteristic of the observations, which was
underlined in [18], is that the cavities are randomly dis-
tributed in space. One-dimensional numerical simula-
tions of the modulational instability of a similar prob-
lem of Langmuir waves (e.g., [19]) show that the later
stages of the instability result in the random distribution
of cavities. Therefore, the random distribution of cavi-
ties does not contradict the modulational interaction
theory. This point was also mentioned in [20]. It is also
mentioned in paper [18] that the largest value of the
electric field on the satellite path always falls within the
region where cavities are observed. This agrees with the
idea of the self-consistent creation of LHSSs by waves.
The authors conclude from these observations that
some nonlinear process is involved. This conclusion is
also confirmed by other observations, described by
[20], that “deeper cavities tend to have larger electric
fields (statistically).”

These conclusions are in contradiction with the
alternative explanation for the creation of LHSSs,
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which assumes that the density structures acting as
traps for LHWs are not created self-consistently via the
ponderomotive force of the LHWs but are preexisting
in space (see, e.g., [11, 15, 18, 21, 22]). Such a scenario
avoids the answers to the questions for what the mecha-
nism is that is responsible for the creation of these den-
sity structures and why do they have the field-aligned
geometry of the LH ponderomotive force. It is stated in
[23] that the longitudinal dimensions of LHSSs are of
the order of several kilometers, while their transverse
sizes are of the order of hundreds of meters. The typical

wave number for LHWs is k⊥ /k|| ~  ~ 50; this
suggests if the density depletions are created by the LH
ponderomotive force, the density depletions will be
strongly elongated along the field lines with l||/l⊥  ~ 50,
which is consistent with observations.

As every density depletion can result in the trapping
of lower hybrid waves and, at the same time, observed
wave pressures are sufficient for the creation of LHSSs
by ponderomotive forces and modulational instability,
it is possible that both investigated mechanisms play a
competitive role in the formation of LHSSs, which
would explain the controversy between some of the
observations.

In conclusion, we would like to emphasize the fact
that the observational data does not provide any satis-
factory evidence to neglect the possibility of the forma-
tion of LH solitary structures due to the modulational
instability, which is why we think it is worthwhile
investigate the related mechanisms further.

There are two types of density modulations
observed in the auroral ionosphere. The first type is
density modulations produced by low frequency oscil-
lations similar to the ion-acoustic mode; this mode is
electrostatic and has been investigated in detail in the
references mentioned above. The second type can be
identified at observations of Freja satellite.2 Examina-
tion of the Freja data shows that there is evidence of the
correlation between the localizations of strong lower
hybrid wave activity and the very low frequency mag-
netic-field oscillations. Figure 1 demonstrates this cor-
relation. The plots are taken from the 1650 Freja orbit,
on February 8, 1993 (the summary plots are taken from
the referenced websites). The first two panels of Fig. 2a
show the electric field measured by two probes of the
electric-field instrument F1. The third panel is the stan-
dard deviation of the fluctuations of the electric field.
The fourth panel is the F4 wave-instrument data; it
shows the electric-field spectral density. We can see a
strong localization of the electric-field fluctuations with
a large amplitude (≥50 mV/m) and frequency (>2 kHz).
This frequency is close to the lower hybrid frequency
(flh ~ 2.5–6 kHz) in the region. Figure 2b is the data
from the magnetometer F23 for the same orbit. It is the
spectral analysis of the perpendicular magnetic-field

2 http://hurlbut.jhuapl.edu/Freja/FSP/
3 http://hurlbut.jhuapl.edu:80/Freja/F2_ FFT/

mi/me
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fluctuations. Note that the magnetic-field fluctuations
in the frequency range ~10 Hz correlate with the
enhanced lower hybrid activity at UT . 05:59.

The observed deflection of the transverse compo-
nents of the magnetic field is typical for Alfvén waves.
It is reasonable to identify them as short-wavelength
kinetic (inertial) Alfvén waves (IAW), since only this
type of Alfvén wave is compressional and forms den-
sity fluctuations that are able to trap LHWs. At the same
time, these perturbations are not the usual type of
Alfvén eigenmode: it is a driven collective mode
excited by the ponderomotive force created by the fast
LHWs. We shall call it the inertial Alfvén mode (IAM).
It is important to note that the phase velocity of these
driven modes could be different from the Alfvén veloc-
ity vA and therefore the ratio of E/B would also be dif-
ferent from vA/c. 

Since in the low-β plasma of the auroral ionosphere,
the phase velocities of these two low-frequency modes
(inertial Alfvén and ion acoustic) are very different, we
can analyze their interaction with LHWs indepen-
dently. This paper is only dedicated to the theory of
modulational interaction between IAMs and LHWs.

2. VECTOR VERSUS SCALAR NONLINEARITY 
AS A MECHANISM FOR MODULATIONAL 

COUPLING

Below, we shall describe how density structures can
trap the LHWs. The density structures have much lower
typical frequencies than LHWs. Therefore we can
assume that wave evolution develops on the back-
ground of the quasi-stationary density profile. Elec-
trons are magnetized in the lower hybrid oscillations, as
the wave frequency ω ! ωce , where ωce is the electron
gyrofrequency. If the ambient magnetic field is
assumed to be in the z direction, the velocity of the elec-
tron motion across the magnetic field can be written as

(5)

Here, ϕ is the electric potential of the wave. LHWs are
considered to be almost electrostatic. The first term on
the r.h.s is the usual E × B drift. The second term is a
small (~ω/ωce) correction determining the polarization
drift due to the time variation in the electric field.

The perturbation of electron density in the lower
hybrid wave is determined by the continuity relation

(6)

Here, n = n0 + δn(r) is the quasi-stationary density pro-
file of the background across which the wave is propa-
gating. Since the first term in the electron velocity (5) is
the E × B drift and it corresponds to an incompressible
flow (∇  · v = 0), density perturbations can occur only if
the wave is propagating in an inhomogeneous density

ve⊥
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ω
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Fig. 2. Freja satellite data from orbit 1650, on February 8, 1993: (a) the localization of electric field fluctuations with frequencies
>2 kHz; (b) the magnetic field fluctuation with low frequency (~10 Hz) in correlation with localizations of electric field around UT
. 05:59.
background (the second term in the r.h.s of Eq. (6)). On
the other hand, the last term in Eq. (5) is the compress-
ible part of electron motion (∇  · v ≠ 0), which contrib-
utes to the first term in the r.h.s of Eq. (6). Finally, the
density perturbation takes the following form:
(7)

The first nonlinear term in Eq. (7) is smaller by a factor
ω/ωce . Therefore, last term can be dominant even if the

ne'  = 
c

iωB0
------------ iω

ωce

-------- n0 δn+( )∇ ⊥
2 ϕ ∇ϕ ẑ×( ) ∇δ n⋅+ .–
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scale of the density inhomogeneity exceeds the lower
hybrid wavelength.

Ions are unmagnetized in the lower hybrid oscilla-
tions because their gyrofrequency is much lower than
the wave frequency, and the Lorentz force in the equa-
tions of motion is not important. Their velocity and
density can be written as

(8)

(9)

We will consider the WKB-type lower hybrid wave
propagating in the inhomogeneous density background

such that ϕ ~ exp[i(  · r – ωt)]. By combining Pois-

son’s equation and Eqs. (6) and (9) for the electron and
ion densities, the following relation is derived for the
LHW frequency:

(10)

where ωlh = ωpi/  is the lower hybrid frequency,

and s = . The dispersive correction to the lower
hybrid frequency is taken from reference [14]. There
are two corrections to the lower hybrid frequency orig-
inating from the density modulation δn/n0. The first one
is of the scalar type (∝δ n), and has a transparent mean-
ing: the frequency of a wave that is trapped inside the
density well decreases in comparison with the fre-
quency of a freely moving wave quantum. The second
correction is of the vector type. It vanishes when the
wave propagates parallel to the direction of the density
gradient. The second correction is larger than the sca-
lar-type correction by a factor of ωce/ωlh ~ 100. There-
fore, we consider the effect of vector nonlinearity as the
dominant nonlinearity effect in the following analysis.
Taking the periodicity in the azimuthal direction into
account, the wave potential for LHWs can be written as

(11)

where µ is an integer. For such geometry, the nonlinear
and dispersive corrections to the frequency of LHWs
can be rewritten as the following:

(12)

The rocket observations [24] show that there is a phase
shift, which was measured by two antennas positioned
at two different polar angles around the axis along the
ambient magnetic field. The sign of the phase shift indi-
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cates the direction of rotation of the wave mode. If this
phase shift corresponds to right-hand polarization (µ >
0), the frequency of the signal inside the density deple-
tion (dδn/dr > 0) is above ωlh , and if the phase shift cor-
responds to µ < 0, then the wave frequency ω < ωlh . In
the calculations, we took into account that the disper-
sion term is much smaller than the nonlinear term for
relevant parameters, and therefore the nonlinear term
determines the sign of δω. Consequently, it is possible
to observe both right-handed waves above the lower
hybrid frequency and left-handed waves below the
lower hybrid frequency inside density depletions. This
is consistent with observations [24–26].

Hamiltonian equations of motion for wave quanta
can be used to demonstrate how the trapping by the
density structures occurs:

(13)

Let us consider the density structure to be a Gaussian
function that is consistent with the observations [20]:

where nm is the value at the density extremum and a is
the width of the Gaussian. When we substitute the pre-
dicted profile for the density, the dimensionless expres-
sion for frequency (10) takes the form

(14)

where the dimensionless parameters are introduced as
the following:

The following equations can be obtained from the
LHW dispersion relation for the predicted Gaussian
density structure (the bars are omitted for simplicity):

(15)

(16)

These equations determine the trajectory of the
wave packet that is localized in r and has a periodic pro-
file in the azimuthal direction. Theoretically, LHWs can
not exist below ωlh without the existence of density
depletions, as can be seen from Eq. (12). Therefore, for
ω < ωlh, only trapped modes are possible with µ < 0
(clockwise rotation). These modes decay out of the cav-
ity. For ω > ωlh, the modes that exist within the density
cavity can also exist outside. Therefore, we expect the
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LHWs with ω > ωlh to pass through the depletions.
However, solving the equations of motion for r and kr ,
we find that in sufficiently deep depletions, bounded
trajectories exist for modes having frequencies both
above and below ωlh depending on the initial condition.
Figure 3 shows the oscillations in the radial position of
the wave quantum in time for µ = –1 and nm/n0 = –5%;
the initial position of wave quantum is at r(0)/a = 0.4.
The wave quantum is trapped for µ < 0, as expected. If
we solve the equations of motion for µ > 0 for the same
initial conditions and density structure, we obtain an
unbounded trajectory, corresponding to a monotonic
change of the radial position. However for a slightly
deeper density well, the wave quantum with µ > 0 is
also trapped.

In the theory of modulational instability, the density
structures that trap the LHWs are created by the Rey-
nold’s stresses exerted on the background plasma by
the LHWs. The main driver is the longitudinal compo-
nent of the lower hybrid Reynold’s stress:

(17)

where the brackets denote averaging over the fast time
dependence. After taking the average, the remaining
terms will be as follows:

(18)

In the case of scalar nonlinearity, the last term in
expression (5), which is the velocity component along
the wave electric field, is important. The electron veloc-
ity in the magnetic-field direction can be written as

(19)
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Fig. 3. Radial trajectory of the wave quantum with µ = –1
inside a density depletion.
which yields the wave pressure acting on plasma elec-
trons as

(20)

In the case of vector nonlinearity, the first term on
the r.h.s of Eq. (5) is important. This term corresponds
to E × B drift of electrons. Here, the expression for the
longitudinal component of the lower hybrid Reynold’s
stress will be

(21)

which gives the wave pressure acting on plasma elec-
trons

(22)

By comparing Eqs. (20) and (22), it is easy to see
that the wave pressure arising from the scalar-type non-
linearity is smaller by a factor of ωlh/ωce ~ 10–2. This
result shows that the modulational coupling between
LHWs and the low frequency density perturbations is
much stronger in the case of vector nonlinearity. This
was first demonstrated in [27].

Taking into account the periodicity in the azimuthal
direction (11), expression (22) can be written as

(23)

Analyzing this equation, we assume that the wave
potential is maximum in the center of the localization.
As it was observed by Bonnell et al. [24], most LHSSs
show enhancement in the wave power at frequencies
above the lower hybrid cut-off one. This corresponds to
right-handed wave rotation and positive wave pressure,
which lead to density depletions. This is the indication
that the ponderomotive forces created by the LHWs act
in the desired direction; this can lead to the formation
of LHSSs with density depletion at the center. In the
opposite case, when the enhancement of the wave
power occurs at the frequencies below the lower hybrid
cut-off, the negative wave pressure leads to the forma-
tion of density humps.

3. SYSTEM OF EQUATIONS 
FOR MODULATIONAL INTERACTION

We now consider only the vector nonlinearity that
couples LHWs with the extremely low frequency den-
sity fluctuations. The equation for the lower hybrid
electric potential ϕ(t, r) that develops in a background
of very slow density perturbations, was obtained in [6].
The quickly oscillating phase and slowly varying enve-
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lope amplitude of the lower hybrid potential can be sep-
arated as

(24)

(25)

and the equation for envelope amplitude can be written
as

(26)

Here, we used the vector-type nonlinear correction to
the wave frequency, as it was obtained in Eq. (10). The
last three terms on the l.h.s of Eq. (26) determine differ-
ent corrections to the lower hybrid frequency: due to
the thermal particle motion; due to the deviation from a
strictly transverse wave propagation; and, finally, due to
the electromagnetic correction. The term on the r.h.s.
describes the nonlinear coupling between the LHWs
with the slow density perturbations.

As mentioned earlier in the introduction, there are
two types of low-frequency oscillations that can drive
this density modulation: the ion-acoustic waves or the
inertial Alfvén modes (IAMs). In this paper, we assume
that the density modulations are only due to the IAMs.
Because of the large difference between the phase
velocity of the IAMs and the ion-acoustic waves

vA/  ~ 1/  ~ 103 for typical ionospheric con-
ditions, their interaction with the LHWs can be consid-
ered separately.

The IAM is created from an oblique shear Alfvén
wave with k⊥  @ k||. The frequency of the wave is such
that ω ! ωci ! ωce; hence, the electrons and ions are
both magnetized. In the consideration of an ionospheric
plasma with β ! me/mi, the finite electron inertia in the
longitudinal direction leads to the following frequency
dispersion:

(27)

The magnetic field in the z direction remains constant,
while the transverse components of the magnetic field
can be expressed through the mode vector potential as

(28)

The electric field associated with the wave is

(29)

The equations governing the effect of LHWs on IAMs
are obtained considering the IAMs as quasi-neutral.
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The ion density perturbations will arise from compress-
ible ion motion following the transverse electric field.
The electron density perturbations are mainly due to the
electron motion along the magnetic field:

(30)

(31)

We use the longitudinal component of Ampère’s law to
derive the field dependence of the longitudinal electron
motion. With the help of Eq. (28), we obtain the follow-
ing relation:

(32)

Since the IAMs are quasi-neutral, δne = δni = δn, com-
bining Eqs. (30), (31), and (32), we express the rela-
tionship between scalar and vector potentials in IAMs
as

(33)

Thus, the density perturbations in IAMs can be rewrit-
ten as

(34)

As noted previously, the electron motion along the
ambient magnetic field B0 is affected by the Reynold’s
stresses. When the high-frequency waves that create the
Reynold’s stress are LHWs, the wave pressure is not
isotropic, as seen in Eq. (17). Instead, the longitudinal
component of the Reynold’s stress results in a field-
aligned shear flow described by

(35)

Differentiating this equation with respect to y and com-
bining it with Eq. (32), the relationship for the longitu-
dinal component of the electric field is

(36)

We can then obtain a relation for Ey via the transverse
component of Ampère’s law:

(37)

where the first term on the r.h.s is a nonlinear electron
current forced on the plasma by lower hybrid oscilla-
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tions. Induction law in the x direction will relate the y
and z components of the electric field such that

(38)

Differentiating this equation once with respect to time
and using Eqs. (36) and (37) yields the final nonlinear
equation

(39)

The nonlinear current is evaluated in terms of the LH
electron density fluctuations and transverse electron
velocity:

(40)

The Reynold’s stress was already obtained in Eqs. (21)
and (22). Substituting these and (40) into the r.h.s of
equation (39), we obtain

(41)

Comparing the two nonlinear terms of Eq. (41), we note
that the first term describing the nonlinear current is
small with respect to the second term, which describes
the Reynold’s stresses by the factor meωlh/miωA, where
ωA is the frequency of the Alfvén mode. Neglecting the
first term in Eq. (41), we can rewrite Eq. (39) in terms
of the vector potential as

(42)

4. LINEAR THEORY OF THE MODULATIONAL 
INSTABILITY

In this section, we shall analyze the modulational
instability arising from the modulational interaction of
the LHWs with the quasi-neutral density perturbations
in IAMs. This interaction leads to the modulation of the
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amplitude of the LHWs by two satellite waves, which
we will label red (ω0 – ω) and blue (ω0 + ω), where ω0

is the frequency of the pump wave. The wave potential
can be represented as

(43)

For simplicity, we neglect the electromagnetic correc-
tion to the lower hybrid frequency and assume that the
pump wave is propagating across the magnetic field
(k0z = 0).

Wave pressure created by the modulation of the
amplitude of the LHWs results in a density perturbation

(44)

A very important feature of the modulational inter-
action of the LHWs with the low-frequency density
fluctuations is that it is driven by a strong vector nonlin-
earity. When the wave vectors of pump and satellite
waves are parallel (k || k0), the vector nonlinearity van-
ishes. Then, the modulational interaction is driven by a
much weaker scalar nonlinearity, similar to the case of
the modulational interaction of Langmuir waves. For
the scalar nonlinearity, we know that the threshold of
the wave energy for the onset of instability is compara-
ble to the plasma thermal energy (|E |2 ~ nT) [12]. In
typical ionospheric conditions, the wave energy is
much less than the thermal energy, so this condition
cannot be satisfied. However, if the vector nonlinearity
is taken into account, the condition for the instability is
modified. For instance, for a previously studied case of
ion-acoustic waves, the threshold of the wave energy
was evaluated as |E |2 ~ (me/mi)nT, where the factor

me/mi ~ 5 × 10–4 in an auroral ionosphere (one 
is due to the nonlinear frequency shift arising from the
density modulations (Eq. (10)), while the other factor

 is due to the wave pressure creating these den-
sity modulations (Eq. (22)). If the wave vectors are par-
allel and the vector nonlinearity vanishes, any infinitely
small deviation from the parallel case will grow expo-
nentially with a growth rate larger by a factor of

 than the case of scalar nonlinearity. The evolu-
tion of this fast modulational instability will destroy the
alignment of k0 and k. Therefore, we conclude that the
vector nonlinearity is dominant for the modulational
interaction of the LHWs with the slow background den-
sity fluctuations.
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The dispersion equation for the resulting instability
of IAMs can be written as follows:

(45)

where the frequency mismatches between the satellites
and the pump LHWs and the dimensionless pump
amplitude are

(46)

(47)

For the case when the amplitude of the pump wave
is small, this dispersion relation describes the paramet-
ric decay of the pump LHWs into red satellite and iner-
tial Alfvén waves. With the growth of the pump ampli-
tude, this decay evolves into the modulational instabil-
ity with a growth rate comparable to the eigenfrequency
of the Alfvén wave. In this case, the inertial Alfvén
wave is transformed into a driven IAM. If we assume
for simplicity that the pump wave has very short wave-
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length (k ! k0), the expression for the mismatches is
reduced to

(48)

Then, the dispersion equation simplifies to the follow-
ing biquadratic equation that is easy to solve analyti-
cally:

(49)

where α is the angle between the vectors k⊥  and k0.

A strong aperiodic (Reω = 0) modulational instabil-
ity follows from this equation if the pump amplitude of
the LHWs is sufficiently large, such that:

In a more general case, the solution of dispersion
equation (45) can be obtained only numerically. For the
numerical solution, it is convenient to rewrite this dis-
persion equation in the dimensionless form:

(50)
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where the dimensionless parameters are introduced in
the following way:

(51)

(52)

The numerical solution to Eq. (50) for PA = 10–5 and the
ionospheric parameters given in the table is presented
in Fig. 4. This corresponds to a pump wave amplitude
of E0 ~ 80 mV/m and k||/k⊥  ~ 10–3. Note that, for large
k, the growth rate approaches a constant value. This
constant value can be obtained from Eq. (45) by taking
the limit k  ∞:

(53)

The threshold for the onset of instability, which is
obtained numerically, is equal to PA ~ 2 × 10–6. For the
typical ionospheric parameters given in the table, this
corresponds to a pump wave amplitude E0 ~ 35 mV/m.
This value is consistent with amplitudes of the LHWs
observed in the ionosphere.

In conclusion, we have demonstrated that the lower
hybrid wave activity observed in the active regions of
the ionosphere is subject to modulational interaction
with extremely low frequency density perturbations.
These density perturbations could be of two types:
associated with either electrostatic ion-acoustic modes
or electromagnetic modes similar to inertial Alfvén
waves. The nonlinearity that drives the interaction is
vector-type nonlinearity. In the case of vector nonlin-
earity, the value of the wave power for the onset of
modulational instability is sufficiently low and agrees
with observations. The LHWs are trapped in the density
structures resulting from the modulational interaction;
these waves exert Reynold’s stresses on background
plasma and deepen the wells, which leads to a modula-
tional instability.
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Abstract—Using experimental measurements and theoretical analysis, it is shown that the HF/ELF conversion
efficiency is controlled by the timescale for electron temperature saturation. This is a function of the ERP and
frequency of the heater and the ionospheric electron density profile. For the current HAARP parameters, this
corresponds to frequencies between 2 and 4 kHz. Efficiency optimization techniques as applied to the projected
upgrading of the HAARP heater to its design power of 3.6 MW are discussed. © 2003 MAIK “Nauka/Interpe-
riodica”.
1 1. INTRODUCTION

A fundamental plasma physics concept among the
main pioneering by Leonid Rudakov was the concept of
electron magnetohydrodynamics (EMHD) [1]. The
work presented here is a classic example of EMHD
application in the Earth’s ionosphere, in general, and in
the electrojet, in particular.

Electron Hall currents driven by ionospheric electric
fields in the D-region of the high latitude zone are
responsible for a most fascinating plasma property: the
potential to act as a frequency transformer that converts
HF power injected from a high power HF transmitter
into the ionosphere into coherent lower frequency
VLF/ELF/ULF waves. The conversion principle relies
on modulating the electrojet currents in the ionospheric
D and E regions by using amplitude-modulated HF
heating. The low-frequency fields subsequently couple
to the earth–ionosphere wave guide, while a fraction of
their power leaks towards the magnetosphere. Despite
several years of theoretical [2–10] and experimental
[11–16] work, many scientific and technical issues
remain unresolved. Understanding the physics underly-
ing their generation is important in increasing the HF to
ELF/VLF conversion efficiency and utilizing this tech-
nique for ionospheric diagnostics. A puzzling feature of
the experiments has been the variation of the conver-
sion efficiency with frequency and the unusually large
relative amplitude of the harmonics. Figure 1 shows the
frequency dependence of the average field amplitude
normalized to the amplitude at 2 kHz measured near the
HAARP site. These data are typical of many other mea-
surements and consistent with the data reported using
the EISCAT heater [12]. The most important features
seen in Fig. 1 and from previous data are the following:

1 This article was submitted by the authors in English.
1063-780X/03/2907- $24.00 © 0561
(1) An enhanced efficiency relative to the neighbor-
ing frequencies at 2 kHz and its harmonics.

(2) If we ignore the enhanced regions, the maximum
efficiency is in the frequency range between 2 and
4 kHz. The efficiency is proportional to the frequency f
between 2 kHz and 500 Hz. There is a weak increase in
the efficiency between 500 and 100 Hz. The efficiency
is proportional to 1/f between 4 and 10 kHz.

(3) Harmonics with significant relative amplitudes
up to ten or larger are present. The amplitudes of the
harmonics are much higher than expected from the
Fourier analysis of the HF heating waveforms.

Although the various sets of data have been col-
lected under different heating parameters and iono-
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Fig. 1. The average field amplitude measured near the
HAARP site versus the ELF/VLF frequency. The amplitude
is normalized.
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Fig. 2. Temporally resolved waveforms for the N–S components of the magnetic field recorded on March 4, 2001.
spheric conditions, the features described above are
very consistent.

As discussed previously [2, 6, 7] and in the absence
of propagation effects, the conversion efficiency
depends on the value of the ambient electric field in the
modified region and the spatiotemporal behavior of the
modified conductivity in response to the HF heating
pulse. Since the first factor, which basically controls the
maximum value of the modified current, is beyond our
control, our investigation focused on understanding the
physics of the second factor. We present below the first
temporally resolved ELF/VLF waveforms measured
during modulated ionospheric heating. The results are
compared with theoretical models and their implica-
tions are discussed.

2. EXPERIMENTAL RESULTS

The data presented below were obtained using the
HAARP heater in Gakona, Alaska, during two cam-
paigns. The first involved 48 hours of operation during
the period September 17–30, 2000; and the second,
68 hours of operation during the period March 4–14,
2001. In all the results presented here, the heater oper-
ated at 3.3 MHz in the X-mode with power 960 kW and
ERP 73 dBW. Since we are interested in near-field
effects, the ELF/VLF data were recorded at a diagnos-
tic trailer site located 12 km away from the heater. The
magnetic fields were measured with EMI BF–6 sensors
oriented along the magnetic N–S and E–W directions.
The sensor output was digitized at a 24-bit resolution
with a 48 kHz sampling frequency, giving temporal res-
olution of 20 µs in the measured ELF/VLF waveform.
They were generated using square-wave HF amplitude
modulation between 100 Hz and 10 kHz.

Figure 2 shows temporally resolved waveforms for
the dominant magnetic field component (N–S) for the
frequencies recorded on March 4 between 05.32 UT
and 06:00 UT. Two things are apparent. First, the peak
value of amplitude is minimum at 10 kHz. The peak
value increases at lower frequencies and reaches a sat-
uration value at a frequency of 4 kHz. Second, the
waveforms in the VLF range have significant power in
the fundamental frequency. However they deteriorate
significantly at the ELF range (1 kHz or lower). Note
that in this frequency region the waveform is composed
of a spike with duration of 0.125 ms at the beginning of
each cycle, followed by a plateau of approximately
one-third of the peak amplitude for the remaining
pulse. As a result, at low frequencies, the HF-to-ELF
conversion is low for most of the cycle. Furthermore, a
Fourier analysis of the waveforms is consistent with the
presence of harmonics with anomalously high ampli-
tudes.

An additional feature revealed by these data is the
presence of weaker peaks with a form similar to the
driven waveform with a delay time of approximately
0.5 ms. The last feature was previously reported in [11,
17] and correctly interpreted as echoes generated by the
reflection of the original pulse from the ionosphere.
Rietveld et al. [11] have used these features to deter-
mine the ionospheric reflection height and the reflec-
tion coefficient and access the heating and cooling
times in the D region. The data show the appearance of
a plateau in the magnetic field with amplitude approxi-
mately 0.3 of the maximum, similar to the plateau
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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Fig. 3. Variations of the Hall conductivity caused by HF pulses with durations of (a) 50 and (b) 100 µs. Here the solid and broken
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shown in Fig. 2 for the ELF range of frequencies. The
echoes feature is superimposed on the plateau for
pulses longer than 0.5 ms. Referring to Fig. 2 in [17],
we note that the plateau region is either lost in the noise
or filtered by a low-pass filter. The rest of their wave-
form is similar to ours.

The ionospheric diagnostics was provided by a dig-
ital ionosonde, a magnetometer, and a 30-MHz riome-
ter. During the testing period, the HAARP fluxgate
magnetometer showed a moderate 50 gammas predom-
inantly westward magnetic field and a corresponding
southward electrojet current. The 30-MHz riometer
absorption was about 0.5 dB, corresponding to a night-
time ionospheric profile.

3. THEORETICAL MODELING

The physics underlying these observations can be
understood by referring to theoretical modeling. There
are two steps in the computation. The first is to find the
spatial-temporal profile of the current j(r, t) induced by
the heater. The second is to compute the near field at the
observation site, which we take as the origin of the
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
coordinate system, using a retarded potential method
described by the following set of equations:

(1)

. (2)

From these equations and assuming the ambient elec-
tric field E0 in the x direction, the magnetic fields at the
observation point per unit area and per unit electric field
are given by

(3)
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Fig. 4. Experimental results (left column) along with the theoretical predictions (right column) for pulses with durations 1000 µs
(on the top) and 50 µs (on the bottom). 
where σH, P are the Hall and Pedersen conductivities,
S is the HF heated area, k = 1/4πε0c2, ε0 is permittivity
of free space, and  represents derivative with
respect to the retarded time. Note that the first term in
the square brackets in Eqs. (3) and (4) describes the
magnetic field due to the ionospheric current induced
by the HF heating, while the second term is due to the
time derivative of the current. 

The spatial-temporal profile of the conductivity can
be found by using 1D HF heating code, such as the one
described in APTI, Technical Report 5007, 1991. The
inputs to this code are the electron density profile as a
function of altitude and the effective radiated power
(ERP), frequency, polarization, and modulation format
of the heater. A number of ionospheric profiles similar
to the ones discussed in [18] are used depending on the
value the riometer absorption. In the code, the effects of
changing electron temperatures and the ionospheric
absorption characteristics are calculated in a self-con-
sistent manner. The output of the code is shown in
Fig. 3, for a profile consistent with the experimental
times shown in Fig. 2. They were computed for ERP =
73 dBW with a 12.5 µs time step. Figures 3a and 3b
reveal the modified Hall conductivity as a function of
time for pulse lengths of 0.05 ms and 1.0 ms, while
Figs. 3c and 3d display the associated temporal evolu-
tion of the magnetic field on the ground. As shown in
Figs. 3c and 3d the total field, represented by the con-

∆σ̇P H,
tinuous line, is composed of two contributions corre-
sponding to the two terms in Eq. (3) and (4). Further-
more, the dotted line indicates the input from the iono-
spheric current, as discussed above after Eq. (4), while
the slashed line exhibits the input from its derivative. It
clearly explains the behavior observed in Fig. 3.

For times shorter than 0.125 ms, the second term—
the time derivative of the induced ionospheric cur-
rent—dominates, while at later times this term
approaches zero and the dominant contribution is due
to the current itself. Furthermore the HF-to-ELF/VLF
conversion efficiency is by about 10 dB higher in the
first 0.125 ms than the rest of the cycle. This is con-
nected with the saturation of the electron temperature
and the conductivity that is dependent only on the
intensity of the heating wave at the absorption altitude.

To compare quantitatively the experimental results
of Fig. 4 with the theoretical predictions, we took the
area S = 1300 km2, consistent with the HAARP antenna
gain at 3.3 MHz. Since we could not measure the ambi-
ent electric field, we normalized the theoretical value of
the magnetic-field peak achieved after 0.125 ms of
heating to the experimentally observed value. In under-
standing Fig. 4, we have to note that the second spike in
the experimental data, which appears approximately
1 ms after the main spike, represents the ionospheric
reflection of the signal. This effect is not included in the
current model.
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As Fig. 4 shows, the theoretical and experimental
waveforms are in good agreement. Similar agreement
was found for the other pulse lengths, as well as for the
rest of the experimental times. We should remark that
the results of Fig. 4 imply a value of the ambient elec-
tric field of about 30 mV/m.

4. CONCLUSIONS

Temporally resolved ELF/VLF waveforms obtained
during recent experiments at HAARP show that the
efficiency of ELF/VLF generation by the ionospheric
HF heating peaks at 2–4 kHz. In order to interpret the
experimental results, a new model of ELF/VLF gener-
ation by pulsed ionospheric HF heating is presented.
This model consists of two elements. The first is the 1D
numerical code that computes the electron heating
along with the modifications of the conductivity tensor
in the ionosphere. The output of this code is fed into a
model that computes the magnetic field in the near zone
of the virtual ionospheric antenna caused by the HF
heating. The magnetic field computed by the model is
checked against observations made at the HAARP site.
The overall agreement is very good, which implies that
our model includes the essential physics and can be
used to guide further studies and heater design.

Studies of waveforms show that the saturated heat-
ing is the cause of the inefficiency of the ELF produc-
tion. In order to increase the HF-to-ELF/VLF conver-
sion efficiency, we are planning to apply such tech-
niques as painting, frequency chirping, or fast
sweeping.
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Abstract—A quasi-linear prediction of the two-fluid dynamo effect is analyzed with the use of tearing eigen-
functions obtained for force-free equilibrium. In the range of parameters of practical interest, the basic shear
Alfvén mode is decoupled from fast compressional Alfvén and slow magneto-acoustic modes. Kinetic Alfvén

modification of the shear Alfvén wave drives an instability with a growth rate ∝δ 1/3 , where δ is the electron
skin depth and ρs is the ion-sound gyroradius. A net dynamo effect parallel to the magnetic field is calculated

at ρs @ δ for large values of the stability factor ∆' δ2/3 @ 1. The dynamo effect caused by the j × B Hall term
dominates the contribution from the v × B term (the alpha effect) by a factor ∝ (ρs/δ)2 in the narrow electron
layer, while in the broader ion layer these contributions are comparable. The results are compared with the case
of a strong guiding field where ρs ! δ and the tearing instability is described by resistive MHD. © 2003 MAIK
“Nauka/Interperiodica”.

ρs
2/3

ρs
1/3
1 1. INTRODUCTION

The spontaneous generation of a magnetic field (the
dynamo effect) in laboratory and astrophysical plasmas
has been extensively studied through single-fluid mag-
netohydrodynamics (MHD). In the MHD dynamo,
sometimes known as the alpha effect, large-scale mag-
netic fields are driven by correlations between the
smaller scale spatial fluctuations in the velocity and
magnetic field of the plasma. In laboratory plasmas, the
tearing instabilities that induce magnetic reconnection
generate the fluctuations. The tearing-mode dynamo
effect driven by the v × B term in Ohm’s law has been
investigated by quasi-linear theory [1], nonlinear com-
putation [2], and experiment [3]. However, at high tem-
peratures, single-fluid MHD treatment becomes ques-
tionable for various laboratory and astrophysical situa-
tions. This is especially important for tearing modes
where the spatial structure of eigenfunctions near the
resonant surface (in the linear tearing layer) is deter-
mined by the electron skin depth, which is normally
much shorter than the ion gyroradius or c/ωpi .

The smallness of the electron skin depth compared
to the ion scales leads to the decoupling of electrons
from ions in the vicinity of the reconnection layer, the
speeding up of the instability, and the broadening of the
tearing layer. An extreme limiting case of the ion–elec-
tron decoupling is described by electron magnetohy-
drodynamics (EMHD), when ion motion is completely
ignored. Fundamental EMHD theory was developed
and a large variety of applications were investigated in
pioneering works by L.I. Rudakov and coauthors (see,
for example, review paper [4]). In particular, they ana-
lyzed tearing instability and magnetic reconnection
within the scope of EMHD equations in the cold plasma

1 This article was submitted by the authors in English. 
1063-780X/03/2907- $24.00 © 20566
limit, β = 0, and large c/ωpi . In the following presenta-
tion, we extend the ideas of L.I. Rudakov and his col-
leagues for the case of hot plasmas, where ion–electron
decoupling is caused by large ion gyroradii. We extend
our analysis to quasi-linear theory and present calcula-
tions of the quadratic Hall and alpha dynamo terms in
generalized Ohm’s law that are driven by two-fluid
tearing instabilities.

2. STATEMENT OF THE PROBLEM

Two-fluid effects, considered below, affect dynamos
in two ways: by altering the MHD v × B dynamo and
by introducing new dynamo mechanisms. The new
effects are evident in the generalized Ohm’s law,

(1)

where the first three terms on the right-hand side (the
Hall term, the electron pressure gradient, and electron
inertia) are absent in MHD. The dynamo effect caused
by a gradient in the mean electron pressure has been
considered theoretically [5] and experimentally [6].
Two-fluid treatment of the fluid Reynolds stress has
also been evaluated [7]. We consider here that the mean
electron pressure is constant. It is known (see, for
example, [8–10]) that, in this case, two-fluid treatment
accurately describes dynamics on disparate electron
and ion scale lengths. At a uniform mean electron pres-
sure, fluctuations contribute to the parallel component
of the mean field Ohm’s law as follows:

(2)
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where 〈…〉  denotes the average over the fluctuation spa-
tial scale, the parallel components are defined with
respect to B(0), and the superscripts (0) and (1) indicate
mean quantities and linear fluctuations, respectively.
The right-hand side of Eq. (2) contains two dynamo
terms: the alpha effect driven by plasma velocity and a
Hall dynamo that arises from current density fluctua-
tions. All other quadratic terms driven by density and
electron pressure perturbations vanish after the flux sur-
face averaging.

In this paper, we use the two-fluid quasi-linear the-
ory to evaluate the right-hand side of Eq. (2). We calcu-
late the linear eigenfunctions for a two-fluid tearing
instability, from which we form the dynamo terms. We
find that the Hall dynamo driven by the second term in
the right-hand side of Eq. (2) is the dominant dynamo
effect, being more than the order of magnitude larger
than the first term corresponding to the alpha effect.
This strong enhancement takes place in a narrow elec-
tron skin layer. We also find that the alpha effect is
broadened in its spatial width to the order of an ion-
sound gyroradius, ρs = cs/ωBi, ωBi = eB(0)/mic, where the

ion-sound speed  = (γeTe + γiTi)/mi, with γi, e = 5/3 in
the adiabatic case and γi, e = 1 in the isothermal case. At
this larger scale ρs, the Hall dynamo is diminished and
is comparable to the alpha dynamo term. The last one is
broadened in its spatial width to the order of the exter-
nal scale L, which is determined by the spatial distribu-
tion of the mean magnetic field. Thus, our quasi-linear
calculations predict that the Hall dynamo effect in two-
fluid theory is locally much larger than the contribution
from the v × B dynamo term. The effect results from the
decoupling of electrons from ions in the vicinity of the
reconnection layer.

The Hall dynamo is important for many high-tem-
perature astrophysical [11] and laboratory plasmas (in
particular, in reversed-field pinches where the nonlinear
action of tearing instability is to flatten the equilibrium
current profile to the Taylor state of minimum energy
[12]). The possible importance of the Hall dynamo was
inferred in experiments [3], where measurements of the
left-hand side of Eq. (2) were not equal to the measured
〈v(1) × B(1)〉 || term in the right-hand side of this equation.

3. BASIC EQUATIONS AND EIGENFUNCTIONS

An analytic theory is developed for a plasma slab
geometry in a force-free equilibrium. Uniform density,
temperature, and pressure profiles are assumed for elec-
trons and ions. The equilibrium magnetic field consists
of a small shearing component that is created by an
equilibrium current sheet of thickness L and a large
guiding field. It is known that the dynamo effect can be
related to both collisional and collisionless processes
[13]. The effects of electron inertia and plasma resistiv-
ity are included in the combined electron skin depth

δ2 =  + , which consists of collisionless de = c/ωpe

cs
2

de
2 δR

2
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and resistive  = c2η/4πγ parts and accounts for terms
that break the frozen flux theorem, where γ is the
growth rate of purely growing modes.

Linear two-fluid tearing equations are formulated
for a hot plasma with cs @ γL. In this approximation, the
compressional Alfven mode is decoupled and the two-
fluid tearing instability is driven by shear-Alfven (SA)
and magneto-acoustic (MA) modes modified by the
Hall term. We consider the range me/mi ! β ! (δ/di)1/2 ≥

(me/mi)1/4 ~ 15%, with β = 8πp/  and di = c/ωpi ,
where the coupling with the MA wave, as well as the
effect of the diffusion of the magnetic perturbations
parallel to the guiding field, can be ignored. In this sit-
uation, the decoupling of electrons from ions leads to a
mode dispersion typical for kinetic Alfven waves with
ω ∝ k2. In two-fluid theory, this dependence results
from the joint effect of the Hall term and the plasma
compressibility, ∇  · v ≠ 0. The growth rate scales as γ ~

δ1/3  [8] in the large ∆' limit (∆'δ2/3  ≥ 1), where
the stability factor ∆' is defined by formula (6).

An orthogonal reference frame is used with x ori-
ented in the radial direction, and y and z along the

sheared (x) and guiding (x) components of the
unperturbed magnetic field. All perturbations are x
dependent and proportional to expi(ky – ωt), while

∂/∂z = 0. A sheet pinch equilibrium profile (x) =

 is specified for calculations for which x =
0 is the position of the resonance surface determined by
the condition k · B(0)(x) = k (x) = 0. We define the
growth rate γ = –iω, and dimensionless variables v  =

iv x/v a, v a = /(4πρ(0))1/2, Bx, z  Bx, z/ , τA =
L/v a, x  x/L, de, i  c/(ωpe, iL), k  kL,

(x)  . The electron skin depth δ = de(1 +

1/ SγτA)1/2 is γ-dependent, where the Lunquist num-
ber S = τR/τA = 4πL2/τAc2η. Using smallness δ ! ρs we
derive a dispersion relation in terms of δ(γ) that can be
then solved explicitly for γ.

In a contrast to single-fluid MHD, the perturbations

of the guiding magnetic field  are important in the
two-fluid case. They are described by the z component
of the Faraday induction equation. In this equation, ∇  · v
is multiplied by the large factor ; thus, the use of
the incompressible approximation ∇  · v = 0 in this
equation is not correct at β ! 1 [14]. Equation (3) for

 is obtained by expressing ∇  · v ∝ 1/  from the
Faraday equation and substituting it into the equation of
equilibration of total (magnetic + thermal) pressure,
where variations of the thermal pressure are treated as
either adiabatic or isothermal. In the plasma momen-
tum equation, small terms proportional to ∇  · v ∝
1/  can be neglected. Hence, we derive the vorticity
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equation (4). The parallel component of the generalized
Ohm’s law is given by Eq. (5). Using the smallness of

e = /  ! 1, linearized equations for perturba-
tions are (superscript (1) is omitted)

(3)

(4)

(5)

System (3)–(5) coincides with the equations derived in
[15] from the four-field model [16] and in [17] from
two-fluid theory. At small β ! me/mi, equation (3) and
the Bz term in Eq. (5) can be ignored, yielding single-
fluid MHD equations. At larger β, when ρs @ δ, the per-
turbations of Bz dominate on scales smaller than ρs ,
which decouples electron and ion flows in the (x, y)
plane and allows a high growth rate. Solving Eqs. (3)–
(5), we will apply the boundary layer method based on
the asymptotic matching of the tearing inner and ideal
outer solutions with the use of the stability factor

(6)

where ∆' > 0 indicates instability. The ideal equation in
the outer zone follows from Eqs. (3) and (4) as γ  0:

(7)

The sheet pinch profile solution of Eq. (7), which is
even function of x and satisfies the decaying boundary
conditions at infinity, has a discontinuity of dBx/dx at
x = 0,

(8)

with ∆'(k) = 2/k – 2k. At x ! 1 Bx(x) takes the form

(9)

which is used to match tearing inner solutions with (8),
where ∆'(k) = 2C2/C1 > 0 is a function of k. We consider
the limiting case ∆'  ∞ and set C1 = 0, keeping C2 > 0
as an arbitrary constant that defines the amplitudes of
the eigenfunctions.

Assuming tearing parity, we introduce even function
B(x) > 0 by Bx = –B(x)sinky and write v x(x, y) =
V(x)cosky and Bz(x, y) = –Bz(x)sinky, where we deduce
from Eqs. (3) and (4) that V(x) and Bz(x) are odd func-
tions of x. Using ∇  · v = 0, ∇  · B = 0, ∇  · j = 0, and jx =
(ikc/4π)Bz gives the following for vy, By and jx, y: vy(x, y) =
−(1/k)sinky dV/dx, By(x, y) = –(1/k)cosky dB/dx, jy(x, y) =
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(c/4π)sinkydBz/dx, jx(x, y) = –(ck/4π)coskyBz(x). Taking
a projection of –(1/c)v × B and (1/n(0)ec)j × B on
B(0)/B(0) in accordance with Eq. (2) and averaging over
y yields

(10)

where %0 = /(2ck ) and we put

(x)/B(0) . 1 at e ! 1. Equations (10) show that the
three dimensionless functions Bz, B, and V determine
the dynamo effects in two-fluid theory.

Single-fluid MHD (ρs ! δ) contains at large ∆'δ ≥ 1
one scale δ, which separates tearing inner and ideal
outer solutions. In two-fluid theory (ρs @ δ), there are
two inner layers and an ideal outer layer specified as
follows: (a) an inner diffusive layer |x | ! xρ = ρsΓ ! 1,
Γ = γτA/kρs, where electron diffusivity is important,
electrons and ions are decoupled, and the Hall dynamo
term dominates while the contribution from the v × B
term can be ignored; (b) an ideal two-fluid inner layer
xδ = Γδ ! |x | ! 1, where electron diffusivity plays no
role and the electron and ion flows are decoupled; and
(c) an ideal outer layer xρ ! |x | described by Eq. (7),
where electrons and ions are coupled within the scope
of ideal MHD.

From (3) and (7), it follows that in the outer layer
Bz  0; while from Eqs. (4), (5), and (9) the functions
asymptotically become V(x)  ρsΓ C2, u(x) =
dV/dx  0. This determines the matching conditions
for the two-fluid inner and outer solutions of Eqs. (3)–
(5), simplified at x ! 1:

(11)

(12)

Integrating (12) over x yields

(13)

with zero constant of integration at ∆'  ∞
(∆'δ2/3  ≥ 1). In the two overlapping zones (a) and
(b), the inner equations can be further simplified. In
zone (a), one can ignore the V-dependent term in (11),
yielding an even solution for B(x) in terms of the hyper-
geometrical function

(14)
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where Q = . In zone (b), the term proportional
to δ2 in Eq. (11) can be dropped, yielding a solution for
u(x) decaying at x/ρs @ 1:

(15)

where KQ/2(x/ρs) is the modified Bessel function. Dif-
ferentiating Eq. (14) in accordance with Eq. (13) gives
the asymptotic expansion for u(a) at x @ xδ. Matching
this expansion with the expansion of (15) at x ! ρs

yields Γ and a relationship between Cu and B(0). This
matching technique is applicable in two-fluid case
δ/ρs ! 1, when the interval xδ ! x ! xρ exists, where
both solutions (14) and (15) are overlapped. In this
case, automatically, Γ ! 1, Q  1, and the above
expressions are simplified as follows:

(16)

  (17)

Expression (17) represents a good approximation for
u(x) not only in zone (b) but in a whole range of x,
except for a small corrections in zone (a) near x = 0
where du(a)/dx(0) = 0. In particular, expression (17)
gives good accuracy upon integration, determining
V(x):

(18)

Matching (18) with its asymptotic value in the outer
layer, V(x)  ρsΓC2, yields Cu and B(0)

(19)

Integrating Eq. (13) from infinity to x using (20) gives
a good analytical approximation for B(x) except in a
small vicinity near x = 0 where dB(a)/dx(0) = 0:

(20)

The exact eigenfunctions are illustrated in Fig. 1.

4. TWO-FLUID DYNAMO
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this, due to the sharp peak of Bz(x) in zone (a), the prod-

uct BzB contributes to  mainly in this zone,

(21)

where F(µ) = µ [–1/4 – Q/4, –1/4 + Q/4, 1/2, –µ2]/(1 +
µ2), µ = x/(Γδ). In zone (b), this function is

(22)

where H(ξ) is a product of exp(–ξ) and (20) expressed
in terms of ξ = x/ρs. Since the products BzB depend on
the dimensionless variables µ and ξ, their derivatives

can be estimated as (d/dx)(a) ~ (Γδ)–1, (d/dx)(b) ~ ,

yielding estimates for  (in units of %0)

(23)

while estimates for  in the same units are

(24)

%||
j( )

BzB( ) a( )
C2

2
F µ( )

βdiρsΓ
4

kδ
-------------------,=

F2
2 1

BzB( ) b( )
C2

2
H ξ( )

βdiΓ
k

------------,=

ρs
1–

%||
j( )

C2
2

%||a
j( )

 . 
ρs

3Γ 3

δ2
-----------  . 

ρs
2

δ
-----, %||b

j( )
 . ρsΓ  . ρs

2/3δ1/3
,

%||
v( )

%||a
v( )

 . ρsΓ
3
 . δ, %||b

v( )
 . ρsΓ  . ρs

2/3δ1/3
.

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0 0.250.10.030.0050.001 1

δ

B(x)

V(x)

kdiBz(x)

Jz(x)

ρs

Distance from the resonance surface, x/L

Fig. 1. Even B(x), Jz(x) (current density) and odd V(x),
kdiBz(x) eigenfunctions at δ = 0.005, ρs = 0.25, and C2 = 1.
Peaks of Jz(x), Bz(x) are localized on short scale xδ, while
V(x) is broadened to a scale ρs. The intersection of the
curves kdiBz(x) and V(x) at x . ρs ln 2 separates the area
x ! ρs where v e @ v i and the area x @ ρs where ve . v i.

Two-fluid tearing eigenfunctions
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For comparison, in resistive MHD theory (ρs ! δ)

the dynamo effect is driven by the  term, which is
determined by the VB product

(25)

where functions V and B are exact solutions to Eqs. (11)
and (12) without the Hall term x2/Γ2 in Eq. (11) (for
∆'δ @ 1). Approximating d/dx ~ δ–1 yields an estimate

for :

 . δ. (26)
Note that two-fluid estimates (23) and (24) and sin-

gle-fluid one (26) are well matched at ρs ~ δ. Exact
numerical results for functions (10) are illustrated in
Fig. 2 and confirm the analytic estimates.

5. CONCLUSIONS
In summary, we have derived quasi-linear predic-

tions of the dynamo effect using a two-fluid theory
model of tearing-mode instabilities. For sufficiently
high plasma temperatures, the two-fluid theory indi-
cates the appearance of two spatial scales in the tearing
layer; an inner electron layer where the ion motion is
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Fig. 2. Total dynamo effect %||(x) =  +  and the

contribution (x) from the v × B term (102-fold) in the
two-fluid case at δ = 0.005 and ρs = 0.25 (all functions are

even functions of x and normalized to %0).
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Tearing-induced dynamo effect ε(x)
 negligible; and a broader layer, where ion flow plays a
role. With increasing the value of ρs, the Hall dynamo
(1/en(0)c)〈 j(1) × B(1)〉 || dominates the contribution from
the MHD dynamo (1/c)〈v(1) × B(1)〉  by a factor ∝ (ρs/δ)2

in the narrow electron layer |x| ≤ δ4/3 . In the
broader ion layer, the Hall and MHD contributions to
the dynamo are comparable. 

This indicates that two-fluid effects are required to
accurately describe dynamo processes in high-tempera-
ture plasmas. In particular, above conclusions are impor-
tant for the measurements and treatments of dynamo in
reversed field pinch experiments. As an example, we
refer to the Madison Symmetric Torus (MST) experi-
ments. Due to the relatively high plasma temperature and
low guiding magnetic field, the ion-sound gyroradius is
large at the resonant reversal surface, ρs . 2.5 cm, while
the electron skin depth is small in here, δ . 0.5 cm. In
this situation, the amplitude of the Hall dynamo is about
25 times greater than the usual v × B term. This is impor-
tant for nonlinear current flattening and relaxation to the
Taylor’s state of minimum energy. 
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Abstract—The results of experimental studies on the implosion of liners by megaampere currents that were
carried out in the Department of Relativistic Beams of the Russian Research Centre Kurchatov Institute are
reviewed. The main line of research was to study the possibility of realizing the liner–converter (or liner–target)
scheme proposed by L.I. Rudakov. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The low efficiency with which electric energy is
converted into soft X-ray (SXR) emission by electron
drivers and problems related to power sharpening stim-
ulated the search for alternative methods of producing
high-power X-ray pulses with the help of high-current
generators. In the late 1970s, studies aimed at examin-
ing the possibility of employing for these purposes light
cylindrical shells (in particular, liners accelerated by
the magnetic field pressure produced by megaampere
current pulses with characteristic times on the order of
100 ns) were begun in the Department of Relativistic
Beams of the Russian Research Centre Kurchatov Insti-
tute, as well as in other laboratories [1–5].

Unlike ablative acceleration, whose efficiency is no
higher than 10%, the magnetic acceleration of a liner
matched to an external electric circuit can provide a
70% conversion of the electrical energy of the genera-
tor forming line into the kinetic energy of the shell.
Then, this kinetic energy can be converted either into
the electron temperature by adiabatically compressing
the liner material or into X radiation by a collision at the
axis. The latter scheme was successfully implemented
in a number of experiments on the generation of SXR
emission (see, e.g., [6, 7]). Note that the physical pro-
cesses underlying this scheme appeared to be not so
primitive as they seemed previously and still remain
incompletely understood.

Another scheme that was investigated for several
years in the Department of Relativistic Beams is the
liner–target (or liner–converter) scheme proposed by
L.I. Rudakov [8]. This scheme is based on the follow-
ing concept:

(i) During implosion, a significant fraction of the
kinetic energy of the liner, which is initially a hollow
plasma cylinder with a relatively low internal plasma
density, is converted into the thermal energy of the cen-
tral plasma, while the temperature of the liner “wall”
remains not very high.
1063-780X/03/2907- $24.00 © 20571
(ii) A magnetic field provides the thermal insulation
of the hot central plasma from the liner wall, and the
stored plasma energy is transferred via electron heat
conduction along the liner axis to a converter and is
emitted as X rays.

The separation of the functions of the energy storage
unit and the emitter between the central liner plasma
and the converter, respectively, makes it possible to
vary the energy of the generated X-ray photons by
changing the converter material (from several hundreds
of electronvolts for Pb and W to several tens of kiloelec-
tronvolts for Kr and Mo).

The separation of functions provides two significant
advantages of the scheme under consideration:

(i) the possibility of efficiently heating a low-Z (H or
He) plasma to high electron temperatures because of
the low radiation losses, which are many times lower
than those typical of high-Z plasmas, and

(ii) the efficient emission of K lines of the converter
material due to the fast transport of high-energy elec-
trons toward the converter.

In spite of its multistage design, this scheme can
provide the more efficient generation of moderately
hard X-ray emission (10–30 keV) in comparison with
the collisional scheme [9, 10].

The power sharpening and the spatial concentration
of energy, which allow one to produce an intense X-ray
source on the converter, are based on the fact that the

plasma thermal conductivity is proportional to . As
a result, the energy flow sharply increases at the time of
the maximum liner compression, when the electron
temperature reaches its maximum value. Such a strong
nonlinearity, however, complicates the implementation
of this scheme in relatively small devices, because the
emission intensity from the converter rapidly increases
with the current and reaches a substantial value at cur-
rents higher than 10 MA. For this reason, our efforts
were focused on experimentally studying the following
aspects of this scheme:

Te
3.5
003 MAIK “Nauka/Interperiodica”



 

572

        

KALININ

                                                         
(i) the instability of the implosion of light liners and
the possibility of achieving stable implosion,

(ii) the increase in the efficiency of energy transfer
from ions to electrons during magnetic compression,
and

(iii) the realization of the entire process at relatively
low energies and a comparison of its characteristics
with the results of numerical simulations.

2. EXPERIMENTAL FACILITIES
AND DIAGNOSTIC TECHNIQUES

Experiments were carried out in the Module A-5
[11] and S-300 [12] high-current generators with water
lines. In experiments conducted in the Module A-5
device (U = 2 MV, I ~ 0.8 åÄ, τ ~ 140 ns) with an out-
put resistance of ρ = 2.2 Ω , a pulse transformer with
water transmission lines was used [13]. The double
forming line of the Module A-5 generator serves as a
primary line of the pulse transformer. Forty-eight sec-
ondary coaxial transmission lines, each having a wave
impedance of 2 Ω , were placed into a common water-
filled vessel. The transformation ratio of the pulse
transformer was K = 6, and the output impedance was
0.04 Ω .

The pulse-transformer power is supplied to the liner
unit through a three-dimensional energy concentrator
(EC) [14] consisting of 16 nonuniform three-strip mag-
netically-insulated transmission lines (MITLs). The
150-kV voltage from the secondary lines of the pulse
transformer is applied to the MITL electrodes. The
lines join in the central unit of the EC, where the liner
is placed. At a total EC inductance of 3–4 nH, the cur-
rent through the liner attains 2.2 MA.

1 2 3 4 5 6

7

891011
12

Fig. 1. General layout of the liner-implosion experiments:
(1) streak camera, (2) laser system, (3) liner, (4) integral
pinhole camera, (5) open X-ray image tubes, (6, 11, 12) opti-
cal frame image tubes, (7) system for recording laser shad-
owgraphs, (8) X-ray spectrograph, (9) return-current elec-
trodes, and (10) X-ray diodes.
The S-300 device is an eight-module high-current
generator with the output parameters U = 1.3 MV and
P = 10 TW and the current pulse full width at half-max-
imum (FWHM) τ = 45 ns. Its output forming system
consists of 16 planar water forming lines, each having
a wave impedance of 4.8 Ω and an equivalent electric
length of 30 ns. These lines are charged in 180 ns to a
voltage of 3.2 MV by means of 16 uncontrolled seven-
channel water gaps and, then, are switched to the trans-
mission water lines. A specific feature of the forming
system is that the gaps are positioned in the middle of
each forming line, which results in a twofold reduction
in both the electric length of the forming system and the
output resistance (to 0.15 Ω). The voltage pulse is intro-
duced in the vacuum chamber through 16 triple planar
water transmission lines. The liner unit is supplied with
power through a three-dimensional low-inductance
vacuum capacitor with magnetic self-insulation. The
total inductance of the transmission circuit is no higher
than 10 nH.

When the generator capacitors were charged to the
half-maximum voltage (the so-called “cruising
regime”), the current in the short-circuiting regime
attained 4.2 MA and the current through the liner
attained 3.6 MA, the rise time being 50–70 ns.

In magnetic implosion experiments, different types
of liners were used: plastic liners with and without a gas
shell, hollow cylindrical gas puffs with different aspect
ratios, and the combinations of plastic liners with gas
puffs. The liner parameters varied in the following
ranges: the initial diameter was 2–5 cm, the length was
0.5–1 cm, and the mass was 40–300 µg.

In the experiments, the currents and voltages were
measured at different points of the system. The mea-
surements were performed with a wide set of diagnos-
tics:

(i) visible-light electron-optical imaging of an
imploded liner in the frame and streak-camera regimes,

(ii) SXR and XUV electron-optical imaging with
the use of open X-ray image tubes with MCP photo-
cathodes at an exposure time of 2–5 ns,

(iii) vacuum X-ray diodes with metal cathodes and
different filters and X-ray pin-diodes,

(iv) different versions of laser probing, and
(v) X-ray spectrographs with planar and convex

crystals.
Some of the specific features of the diagnostics used

will be described when presenting the relevant experi-
mental results.

A typical schematic of the experiment is shown in
Fig. 1.

3. STUDIES OF THE PLASMA SHELL STABILITY 
DURING MAGNETIC IMPLOSION

A key problem related to the efficiency of the liner–
target scheme, as well as other schemes employing
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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light liners as power sharpeners in devices intended for
inertial confinement fusion (ICF) research, is the prob-
lem of the stability of the liner implosion. In this sec-
tion, we present the results of systematic studies of the
stability of liner implosion that were carried out in the
Module A-5 and S-300 devices.

3.1. Implosion of Composite Plastic Gas-Shell Liners

The inhomogeneities of the density of the current
flowing through the shell substantially increase the pos-
sibility of the onset of various large-scale instabilities.
For this reason, the problem of the formation of a
homogeneous current shell is of great importance.

One of the methods providing the current homoge-
neity is the use of composite plastic gas-shell liners.
Such a liner consists of two coaxial cylindrical nitrocel-
lulose shells with a thickness of 200 to 2000 nm. The
gas between the shells is at a pressure of several torr,
which is close to the minimum of the Paschen curve
[15]. The liner mass can be varied by varying the shell
thickness within the above range. The presence of a gas
between the shells at a pressure close to the minimum
of the Paschen curve substantially decreases the break-
down voltage. As a result, the number of current chan-
nels located on the inner side of the outer shell
increases substantially (an image of breakdown
recorded with the help of laser shadowgraphy is pre-
sented in Fig 2.). This ensures the azimuthal homoge-
neity of the initial electric breakdown and, accordingly,
a homogeneous distribution of the current along the
liner perimeter [16].

In experiments, the degree of the current homogene-
ity was qualitatively assessed from visible-light elec-
tron-optical images of the imploded liner. The degree of
homogeneity of the initial electric breakdown of a plas-
tic liner was compared in the case when the gas density
near the liner surface was 1016 cm–3 and in the case of
the breakdown of a plastic liner in vacuum. In the
former case, an azimuthally homogeneous annular
plasma column was formed, whereas in the latter case,
well-defined surface-breakdown channels were
observed. This effect was also clearly seen in streak
images. In the case of the breakdown of a plastic liner
in vacuum, well-defined luminous channels were
formed, which remained visible at least up to the time
t = 150 ns after the beginning of the current pulse.
When breakdown occurred in the presence of a gas, the
plasma glow was rather uniform.

In view of this fact, it was expected that the implo-
sion of a liner with a well-formed current shell would
be fairly stable. Indeed, the implosion of relatively
heavy liners (with masses larger than 200 µg) turned
out to be stable. The time dependence of the radius of
the glowing plasma (see Fig. 3) and the instant of max-
imum compression, which were determined by pro-
cessing streak images, agree with the one-dimensional
model of the liner motion. For liners with a mass of
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
220 µg and height of 8 mm, the maximum radial veloc-
ity attains 2 × 107 cm/s and the implosion time (counted
from the beginning of the current pulse) amounts to
180 ± 20 ns. The compression ratio R0/r, which is deter-
mined from the frame shadow photographs and streak
images, reaches 10. It follows from the laser shadow
photographs [16] that no more than a few percent of the
total mass of the liner material remain outside the
opaque boundary of the compressed liner. From these
photographs, it is also seen that, at densities n >
1019 cm–3, the surface of the compressed liner is not
exactly cylindrical. This may be attributed to both the
nonuniform compression of the liner material and the
development of MHD instability.

At the instant of maximum compression, XUV and
SXR pulses are generated with a FWHM duration of
nearly 10 ns (Fig. 3) and power of up to 3 × 1011 W.
XUV and SXR plasma images recorded at the instant of
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Fig. 2. Shadow photograph of the breakdown of a double-
shell liner in the Module A-5 device (λ = 5320 Å; the diam-
eters of the outer and inner shells are 2.8 and 2.0 cm, respec-
tively; the gas pressure is 6 torr). Plasma formations are
seen on the inner surface of the outer liner shell.
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maximum compression show that, in a photon energy
range higher than 10 eV, the radiation is emitted from a
cylindrical plasma column 1.5–2 mm in diameter.

It might seem that the implosion of a two-shell liner
of the same design, but with a smaller mass, would be
similar to the implosion of a heavier liner. This would
be promising for achieving higher final velocities.
However, for liners with masses smaller than 200 µg,
there is a discrepancy between the calculated results
and the measured time dependences of the liner radius
deduced from the plasma glow radius:

(‡)

(b)

(c)
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2
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t, ns
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0.5

0
50 100 150 200 t, ns

R, cm
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Fig. 3. Implosion of a double-shell liner with a mass of
220 mg in the Module A-5 device: (a) a visible-light streak
image, (b) the electric parameters (the current I and the volt-
age U at the central unit) and the intensity of SXR emission
Pν, and (c) a comparison of the calculated (solid line) and
experimental (circles) time dependences of the liner radius.
(i) for most of implosion process, the implosion
velocity is almost constant and is smaller than the cal-
culated one;

(ii) the measured implosion time is substantially
longer than the calculated one;

(iii) several tens of nanoseconds before the collapse
of the bulk plasma, a luminous precursor appears on the
axis; and

(iv) XUV and SXR pulses arise well before (50–
100 ns) the instant of maximum compression.

All this indicates that the liner stability is deter-
mined by not only the process of the current-shell for-
mation but also other factors.

3.2. Implosion of Gas Puffs

The use of a light liner as a power sharpener in
devices intended for ICF research requires the compact
acceleration of the entire liner material. However, such
an acceleration can be hampered by the onset of insta-
bility, in particular, the Rayleigh–Taylor instability. It is
well known that, because of the onset of this instability,
shells with a low aspect ratio (R0/∆R < 10) are more sta-
ble during magnetic implosion in comparison with thin
shells (R0/∆R > 10). Consequently, it might be expected
that the implosion of a hollow gas jet would be more
stable in comparison with the implosion of a thin plas-
tic shell. For this reason, a large series of experiments
on the magnetic implosion of gas puffs was performed
in the Module A5-01 and C-300 devices [17–20]. The
main goals in these studies were the following:

(i) to clarify the nature of the instability developing
during the liner implosion and

(ii) to find conditions for the most stable implosion.
The experiments on magnetic implosion were per-

formed with hollow cylindrical gas jets. Such jets were
produced by supersonic annular nozzles with Mach
numbers of 3–5 in combination with high-speed pulsed
(electromagnetic or explosive) valves. The initial den-
sity of the working gas (N2, He, D2, SF6, Ar, Ne, and
their mixtures) were varied over a wide range by vary-
ing the delay time of the high-voltage pulse with
respect to the instant of gas puffing.

A characteristic feature of the implosion of highly
radiative gas puffs (Z > 2), as well as plastic shells, is a
discrepancy between the experimental and calculated
time dependences of the liner radius at small masses
(≤200 µg) of the accelerated shells. The measured
implosion time exceeds the calculated time, and the
measured final velocity and the corresponding kinetic
energy are lower than the those calculated from the
electrotechnical parameters. It is also important that the
liner boundary moves with a nearly constant velocity.
As in the case with a plastic liner, several tens of nano-
seconds before the collapse of the bulk mass of the
liner, a luminous precursor appears on the axis. XUV
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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Fig. 4. Implosion of a gas (N2) puff. A streak image (on the top), a shadow photograph (a), and frame SXR (b) and visible-light
(c) images corresponding to the times marked on the current oscillogram.
and SXR pulses arise well before (50–100 ns) the
instant of maximum compression (Fig. 4).

Such time behavior of the liner can be explained by
the penetration of the current, magnetic field, and rare
plasma inside the liner through discontinuities in the
current shell. The current cannot flow through the dis-
continuous shell; as a result, the shell moves by inertia.

The fact that the instability develops in the early
stage of implosion was confirmed by visible-light and
SXR electron-optical images, as well as by laser
shadow photographs. It can be seen in XUV and SXR
images that, starting from 80–130 ns, a longitudinal
modulation in the form of strata appears in the bright-
ness of the plasma column (Fig. 4). The characteristic
modulation period is in the range 0.8–2.0 mm and
depends on the mass and chemical composition of the
liner. Along with the strata, a luminous precursor
appears on the axis. This radiation corresponds to XUV
and SXR (hν ≤ 100 eV) photons. Then, the irregulari-
ties of the outer boundary increase, but the characteris-
tic spatial modulation period changes insignificantly.
We note that the strata on the laser shadow photographs
correspond to the strata on the electron-optical images
recorded in the frame regime. Their orientation coin-
cides with the direction the magnetic field Bϕ. The best
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
proof of this circumstance is the fact that the strata are
tilted at an angle to the axis when a longitudinal mag-
netic field is applied (see below).

By the time perturbations appear on the liner bound-
ary and the strata appear in the streak images and laser
shadow photographs, the shell boundary has been dis-
placed to a distance that is much shorter than the initial
thickness of the gas jet. It might seem that, in this case,
there is no sense in talking about the onset of the Ray-
leigh–Tailor instability. However, the process of the
current-shell formation turns out to be more compli-
cated. A particular role in the study of this process is
played by laser probing. For this reason, we will
describe this technique and results obtained with it in
more detail.

In these experiments, we employed frame laser
probing and simultaneously obtained shadow and
schlieren photographs of the plasma using the second
harmonic of a YAG : Nd laser (λ = 5320 Å, see Fig. 5).
The laser pulse duration was 7 ns, and the laser energy
at the second harmonic was 20 mJ.

The recording system had an aperture of 0.25, which
was the maximum possible value under our conditions.
In this case, the electron-density gradient that gives
shading due to the refraction in the shadow channel
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must satisfy the condition |—Ne | ≥ 2 × 1021 cm–4, which
follows directly from the formula |—Ne | =

 [21], where Ω is the objective-lens

aperture and l is the laser path in the plasma. For our
experiments, this corresponds to an electron density of
~2 × 1020 cm–3. For a nitrogen gas puff at Te ~ 10 eV,
this corresponds to a line-averaged ion density of
~(5−7) × 1019 cm–3.

In the schlieren channel, a fiber was placed at the
lens focus so that it was parallel to the liner axis. In such
a way, we could visualize the density gradients perpen-
dicular to the axis; in particular, we could resolve the
shell boundaries.

Figure 6 shows the results of the laser probing of a
liner 80 ns after the beginning of the current pulse. It
can be seen from the schlieren photograph that, by the
probing time, the outer liner boundary has been dis-
placed by 3–4 mm and the total number of ions
involved in the acceleration process is no more than
5 × 1018 (i.e., no more than one-half of the total shell
mass). In the shadow photograph, one can see narrow
(~0.01 cm) transparent regions (strata) oriented trans-
verse to the liner axis. The strata are spaced by ~0.1 cm,
and the radiation attenuation in the shadow region is
~5.1 The appearance of a shadow at so small a mass

1 A similar picture was observed in [22], but the authors restricted
the interpretation to the brief comment that they observed sau-
sage instability.
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Fig. 5. Arrangement of simultaneous schlieren and shadow
photography: (1) oscillator, (2) amplifier, (3) nonlinear
crystal (lithium niobate), (4) SZS-22 filter, (5) telescope,
(6) liner, (7) receiving lens, (8) beam splitter, (9) schlieren
fiber, and (10) photographic camera with filters.
involved in the acceleration process indicates that a thin
shell is formed. According to the formula Ni =

7.5ν(ε /Z3g)1/2, where ν is the probing frequency,
ε is the absorption coefficient, and g is the Gaunt factor
(see [23] for details), in order to ensure inverse
bremsstrahlung, the shell thickness must be no more
than 2 × 10–2 cm at an ion density of no higher than 5 ×
1019 cm–3.
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Fig. 6. Results of the laser probing of a gas (N2) puff: (a) the
initial gas-density distribution (solid curve) and the model
distribution of ions at the liner boundary (dashed line) that
is required to provide laser absorption (Ni > 5 × 1019 cm–3);
(b) the return-current electrode with a diagnostic window;
and (c) a shadow and (d) a schlieren photograph of the liner
80 ms after the beginning of the current pulse (the schlieren
fiber is parallel to the liner axis).
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At this density and Te = 10 eV, which approximately
corresponds to the equilibrium between radiative losses
and Ohmic heating, the equality B2/8π = (ni + ne)T
holds in the shell. The above shell thickness is much
smaller than the skin depth δsk = (c2τ/4πσ)1/2, which is
equal to 0.1 cm under our conditions.

We note that the shadow regions visualize the high-
density shell; however, no inferences about the current
flowing through the shell can be made from these data.
The density distribution in the shell is similar to that in
the snow plow model (see Fig. 6) with a compression
ratio higher than 20.

Seemingly, the best fit to the experimental results is
provided by the liner model proposed by Chukbar [24].
In this model, a thin hot current shell is surrounded by
a dense shell comprising almost the entire mass of the
imploding liner. One of the consequences of this model
is that, due to strongly nonuniform heating, the electric
field is not skinned, whereas the magnetic field is
skinned and concentrated in the current shell. This is
because, in the inner cold layers, the conductivity σ
and, consequently, the current almost vanish. As a
result, the electric field can cause breakdowns along the
inner surface of the dense shell, thus giving rise to pre-
cursors.

We note that the implosion of such a thin liner can
be accompanied by the onset of the Rayleigh–Tailor
instability. However, there are good reasons to believe
that the liner instabilities are of different nature.
Numerous experiments allow one to conclude that
these instabilities possess properties that cannot be
described in terms of the Rayleigh–Taylor instability
[20]:

(i) At the same total mass, the imploding gas puffs
made of materials with a lower atomic weight are gen-
erally more stable than those made of materials with a
higher atomic weight. The implosion of heavier shells
is more stable than that of light shells. In particular, at
currents of 2.5–3.0 MA, “heavy” liners with a linear
mass density of 400–500 µg/cm turn out to be stable.

(ii) Instability develops even in the implosion phases
in which the liner moves with a constant velocity. Insta-
bility is also observed in the early stage of implosion
when the shell just begins to move (e.g., when the shell
is displaced by less than one-tenth of its initial radius).

(iii) The characteristic thickness of a dense shell is
2 × 10–2 cm ~ c/ωpi . Under these conditions, the MHD
approach is certainly inapplicable.

On the other hand, the above experimental observa-
tions do not contradict the Hall instability, whose the-
ory was developed in [20, 25, 26]. This instability
results in the deep longitudinal modulation of the shell
thickness, which, in turn, stimulates longitudinal
plasma flows and, finally, can result in the breaking of
the current shell. Perturbations caused by the Hall
instability can also serve as a seed for the subsequent
onset of the Rayleigh–Taylor instability.
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Thus, although the type of the observed instability is
hardly possible to unambiguously identify in the
“crude” experiment (whose physical picture can also be
additionally distorted by many side effects2), all the
experimental evidence allows us to conclude that the
Hall instability plays a dominant role under our experi-
mental conditions.

4. EXPERIMENTAL MODELING
OF THE LINER–TARGET SCHEME

In this section, we present the results of the experi-
mental modeling of the liner–target scheme. The exper-
iments were carried out in the Module A-5 device [28,
29] with a relatively low longitudinal magnetic field.
The use of a low magnetic field was motivated by two
reasons:

(i) the necessity of decreasing the electron heat
transport across the hot plasma column to the dense
cold imploding shell, and

(ii) the aim of increasing the stability of the implod-
ing liner.

From the general considerations, it follows that the
stability of an imploding shell should increase with
increasing shell thickness. This can be achieved, e.g.,
by freezing the longitudinal (axial) magnetic field in the
shell [30, 31]. Moreover, due to the different radial dis-
tributions of the Bϕ and BZ components, the magnetic
field lines at different radii are inclined to the axis at
different angles (i.e., the magnetic field is sheared),
which also increases the stability of the system. We
note, however, that the magnetic shear plays an impor-
tant role only when the axial magnetic field component
is comparable with the azimuthal one. Below, it will be
shown that, in our experiments, this condition is satis-
fied even at a relatively low longitudinal magnetic field
because of the specific structure of gas puffs.

In the experiments carried out in the Module A-5
device, a supersonic (M = 4–6) cylindrical hollow gas
jet was used as a liner. The working gas was deuterium
or helium with 2% diagnostic addition of Ne. The jet
was formed with the help of a high-speed pulsed valve
(with an operating time of ~100 µs) that had a super-
sonic annular nozzle. The nozzle exit served as a nega-
tive electrode of the discharge gap. The anode was
either an annular grid electrode or a wire array in the
form of a spoke wheel. The liner length was 1 cm, and
the outer and inner nozzle diameters varied in the
ranges 2–4 cm and 1.0–2.6 cm, respectively. The mass
per unit length varied from 50 to 100 µg/cm. The ampli-
tude of the current flowing through the liner was
2.5 MA, and the current rise time was 100 ns.

The 15-kG longitudinal quasi-steady magnetic field
in the liner acceleration region was produced by a coil

2 One of the effects of this sort may be the initial small-scale gas
density inhomogeneity that was revealed in our experiments with
the help of Rayleigh scattering [27].
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Fig. 7. Liner implosion in the presence of a longitudinal magnetic field: (1) a schematic of the experiment, (2) an SXR image of the
liner at the instant of maximum current (strata tilted at an angle of ~45° to the axis are seen; applying a reversed longitudinal mag-
netic field changes the tilt angle by 90°), and (3) an SXR image of the liner at the instant of maximum compression.
that was fed by a current pulse with a duration of 20 ms.
A schematic of the experiment is shown in Fig. 7.

The time evolution of the plasma was studied with
the help of a standard set of diagnostics. In order to
simultaneously observe X-ray images of the liner in
different spectral ranges and increase the dynamic
range of the X-ray camera, the liner image on the cath-
ode of each framing X-ray image tube was formed with
the help of two pinhole cameras that had different aper-
tures and filters. Streak-camera laser shadowgraphy
was also used. Let us consider this technique in more
detail.

Frame laser probing is commonly used to diagnose
the time evolution of a dense plasma. This technique
was also used by us in experiments on liner implosion
(see [18]). Probing in the frame regime gives two-
dimensional images, which, however, provide informa-
tion only at some instants of implosion, whereas it is
desirable to obtain information about the entire implo-
sion process.

The main difficulty in the implementation of streak-
camera laser shadowgraphy is the generation of a
smooth laser pulse with a duration of several hundred
nanoseconds. To this end, we created an original and
simple generator consisting of two identical YAG : Nd
lasers that operated in a free-running mode. The pump-
ing intensity was much higher than the lasing-action
threshold; as a result, the number of intensity oscilla-
tions arising due to the spiking character of the emis-
sion (τ = 250 ns) were reduced to 4–5. The two beams
with mutually orthogonal polarization were aligned by
a Glan prism and, then, led into a telescope, forming a
probing beam (Fig. 8). There were no more than two to
three intensity oscillations with a period of 300–400 ns
in such a beam, which is acceptable for streak imaging.

The receiving part of this diagnostics (Fig. 8) con-
sisted of two lenses producing a reduced image of the
object on the slit of an FER-6 streak camera, which was
synchronized with the experimental device. The lasers
started 20–40 µs before the beginning of the liner cur-
rent because, in this time interval, the pulsations of
laser radiation were minimal. To decrease the influence
of refraction, the receiving part was designed so as to
ensure a viewing angle as large as possible. For the
given design of the output unit, this angle attained
0.2 rad, which allowed us to interpret the appearance of
a shadow as the influence of inverse bremsstrahlung in
a plasma with Ne ~ (6–8) × 1019 cm–3 at Te ~ 50 eV.

Experiments have shown that the initial longitudinal
magnetic field with Bz0 ≥ 5 kG (which is much lower
than the azimuthal magnetic field Bϕ ~ 200 kG at the
liner surface in the initial stage of implosion) signifi-
cantly affects the character of the liner acceleration. In
this case, the liner implosion is symmetric (Fig. 9a) and
the acceleration process is stable and reproducible. Fig-
ure 9b shows the experimental time dependence R(t ) of
the liner radius obtained by processing streak images
and the time dependence calculated by the formula that
was derived by the snow plow model with allowance
for the longitudinal magnetic field:
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Fig. 8. Layout of streak-camera laser shadowgraphy (the streak-camera slit lies in the plane of the figure): (1, 2) YAG : Nd lasers
producing radiation with mutually orthogonal polarization, (3) Glan prism, (4) telescope, (5) liner, (6, 7) receiving lenses, (8) filters,
and (9) streak camera.
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Fig. 9. Implosion of a deuterium gas puff in a magnetic field: (a) the dynamics of implosion by the data of (1) laser shadowgraphy
and (2) self-radiation measurements, and (b) the measured (2) and calculated (3) time evolution of the liner radius for the current
waveform given by curve 4.
where m' is the liner mass per unit length, R0 is the ini-
tial liner radius, and Bz0 is the initial longitudinal mag-
netic field. It can be seen from Fig. 9b that the time
dependence R(t) calculated by formula (1) for the
experimental values of the liner current agrees well
with the measured values of the shell radius for deute-
rium jets with a mass of 50–75 µg.

By the end of implosion, the liner velocity attained
3 × 107 cm/s and the compression ratio was R0/Rmin > 8.
The minimum radius of the emitting plasma, which was
determined from laser-shadow streak images and self-
radiation streak images in the visible spectrum,
amounted to 2–3 mm (Figs. 7, 9).

At the instant of maximum compression, an elastic
reflection of the shell occurs, which is observed most
clearly in the laser-shadow streak images. This effect is
quite expectable when the energy loss is smaller than
the kinetic energy of the liner, which is the case under
our experimental conditions. The difference between
the self-radiation and laser-shadow streak images can
be attributed to the onset of instability in the stage of
plasma expansion. In the course of expansion, most of
the plasma mass passes through the magnetic field by
moving apart the field lines. In doing so, the plasma
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
cools and ceases to glow, but continues to absorb laser
radiation. The remaining low-density plasma with a rel-

atively high temperature and the pressure nT ≤ /8π is
confined by the magnetic field for a rather long time
and glows brightly.

The radiation emitted from the internal plasma
region and recorded in streak images is weakly
absorbed by the cold shell (which produces a shadow in
laser-shadow streak images) because the wavelength of
the emitted radiation differs from the laser wavelength.
We note that self-radiation streak images were obtained
by using a light filter with a transmission maximum in
the wavelength range 4000–4200 Å, which is a factor of
2.5 shorter than the laser wavelength. This results in a
sixfold decrease in the absorption coefficient.

As was mentioned above, a fairly homogeneous
implosion can be achieved when an axial magnetic field
with an induction of 5–10 kG (which is smaller than
0.1 Bϕ at the maximum current) is applied to the liner.
This is because, in the course of the liner formation, the
axial magnetic flux that is frozen in the low-density
plasma at the periphery of the jet (the gas corona) is
gathered and pressed by the current-carrying shell

Bϕ
2
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toward the plasma shell that is formed from the gas jet.
As a result, a plasma layer with the frozen-in axial field

Bz = Bϕ is formed (Fig. 10). The layer thickness π[  –

(R0 + R)2]Bz0/2π(R0 + R)Bϕ (where R1 is the radius of
the return-current electrode) is comparable with the
skin depth δsk = (c2τ/4πσ)1/2. For R1 = 4 cm, R0 + R =
1.7 cm, and Bz0 = 104 G, we find that the plasma layer is
2 mm thick. The conclusion that the jet has a corona is
confirmed by the experimental results. First, as is seen
in streak images, the emission at the initial radius does
not appear immediately after the beginning of the cur-
rent pulse, but with a time delay of t0 = 50–70 ns. Sec-
ond, the boundary of the emitting region starts moving
with a finite (rather than zero) velocity (Fig. 11).
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Fig. 10. Model density and magnetic field distributions.

Fig. 11. Streak image of the implosion of a deuterium gas
puff (on the bottom, the calibration curve with a frequency
of 20 MHz is shown). The liner starts glowing 50–60 ns
before the beginning of the current pulse; at this instant, the
shell velocity is ~1.2 × 107 cm/s.
These features of the jet glow can be attributed to the
presence of a corona that comprises 3–10% of the jet
mass and whose radius exceeds the jet radius by a factor
of 2–2.5. The jet starts glowing brightly at time t0, when
the shock wave that is formed in the corona enters the
liner, which immediately begins to implode with the
velocity Bϕ(t0)/(4πρ)1/2 = 1–2 × 107 cm/s.

Figure 10 qualitatively shows the radial profiles of
the magnetic fields Bz and Bϕ and the density ρ that
were found by Rudakov [29]. The bulk of the shell mass
is concentrated in a layer (with the thickness δsk) that is
located on the inner side of the shell. This mass is accel-
erated by the pressure of the field Bz, which is counter-
balanced on the outer side by the skinned field Bϕ.

The shell thickness was estimated experimentally
with the help of laser shadowgraphy. Taking into
account the data on inverse bremsstrahlung for a deute-
rium liner with a 2% addition of Ne and a mass of
~50 µg, we can estimate the thickness of the wall of the
plasma cylinder that contains the bulk of the liner mate-
rial. In the initial stage of implosion, this thickness is no
larger than 0.2 mm, and it is no larger than 2 mm in the
final stage.

According to theoretical predictions, a thin current-
carrying shell accelerated by the pressure of the field Bϕ
is unstable [25, 26, 28]. The skin layer on the outer sur-
face of the liner is unstable against the modulation of its
thickness with a period of 2πωBeτeiδsk. The arising
strata are oriented along the total magnetic field in the
middle part of the skin layer. This field is a superposi-
tion of the longitudinal field Bz and the azimuthal field
Bϕ. In the liner images produced by X rays with photon
energies hν > 100 eV, we observed modulation in
which the strata were oriented at an angle of 30°–60° to
the liner axis, i.e., in the direction of the total magnetic
field (Fig. 7, 2). The interval between the strata was 1–
2 mm. When the direction of the external magnetic field
Bz was reversed, the direction of the strata changed by
90°. Therefore, the appearance of oblique strata is
experimental evidence of the instability of the current-
carrying shell. However, as follows from qualitative
considerations, the field Bϕ cannot break the plasma
with the frozen-in field Bz and, hence, the current can-
not penetrate into the shell.

It can be seen from Fig. 7 that the tubular structure
of the shell is retained at a tenfold compression of the
jet (R0/rmin = 10). The shell radius is ≈1 mm, and the
shell thickness is ≈0.4 mm. The ratio δ/r between the
thickness and radius of the compressed shell is 0.2–0.4.
The transverse size of the high-temperature internal
plasma that is observed in images produced by X rays
with photon energies hν > 900 eV is 0.1–0.15 cm.

From the experimental results listed above, it fol-
lows that a plasma shell is formed in a longitudinal
magnetic field and that the shell acceleration toward the
axis is stable.
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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Fig. 12. SXR images of the liner plasma in two different spectral ranges, (1) 150 < hν < 300 eV and (2) hν ≥ 1 keV, at the instant
of maximum compression in the presence of a longitudinal magnetic field and (3) a schematic of the imploded liner: (C) cathode,
(A) anode, (B) magnetic field lines, and (MC) mica converter.
The shell thickness can be estimated from the fol-
lowing considerations. After the shell moving with
velocity V is stopped by the counterpressure of the

compressed axial magnetic flux π Bz0, the shell is
heated. The shell temperature can be determined from
the energy conservation law and the equality of the
pressures (the radiative and ionization losses are rela-
tively small):

.

From this equation, we find the shell temperature,

.

For a thermal velocity of the shell of 2.5 × 107 cm/s
(Mv 2/2 = 625 eV) and a temperature below 70–80 eV,
the relative shell thickness is δ/r ≤ 0.2. Assuming that
the shell is decelerated by the counterpressure of the
field Bz, we find that the minimum shell radius is 1 mm
at Bz = 104 G, which coincides with the experimental
value. Accordingly, the shell thickness is 0.2 mm.

The success in realizing the stable compression of a
gas shell in a longitudinal magnetic field allowed us to
qualitatively model the heat-conduction scheme of an
X-ray source. As a converter, we used a thin mica plate
placed near the cathode at an angle of ~45° to the axis.
The main diagnostics in this experiment was electron-
optical imaging in two SXR spectral ranges: (i) hν =
150–300 eV and (ii) hν >1 keV. Each X-ray image tube
was equipped with a pinhole camera with two holes of

R0
2

Hz
2

8π
-------πr

2
3niT sh2πδr+

Mv
2

2
-----------2πδnir=

T sh
Mv

2

2
----------- δ

r 3δ+
--------------=
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
different diameter, which were covered with different
filters.

The results of this experiment are shown in Fig. 12,
which presents the images of the plasma shell and the
plasma generated by the converter. The images with an
exposure of 3 ns were made in the above spectral ranges
at the instant of maximum compression. The figure also
shows the relative positions of the shell and the mica
plate.

In the images, we can clearly see the heated plasma
column and a burst of SXR emission generated in the
converter and the surrounding low-temperature plasma.
It is important that no SXR bursts were observed 10 ns
before or after the instant of maximum compression.
This clearly demonstrates the realization of the heat-
conduction scheme of the conversion of the magnetic
field energy into SXR emission.

Later, in joint experiments in the Ambiorix device
(France), the possibility of stabilizing the implosion
process by a longitudinal magnetic field was confirmed
and the generation of SXR emission from the converter
located at the end of the device was detected [32, 33]. It
should be noted that the experimental values of the
plasma parameters and converter emission are in fair
agreement with the results of numerical simulations by
Russian [34] and French [35, 36] codes.

Thus, the experiments carried out in the Module A-5
and Ambiorix devices clearly demonstrated the stabili-
zation effect of the longitudinal magnetic field and the
feasibility of the liner–target scheme, which allows one
to produce an intense SXR source due to the heat trans-
fer from the high-temperature liner plasma to the end of
the plasma column.
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It should be emphasized, however, that this effect is
nonlinear in terms of input energy; moreover, there is a
threshold input energy. Hence, it can be said with assur-
ance that the results agree with the theoretical model
only qualitatively. Nevertheless, comparison of the
experimental and computational results allows us to
conclude that the basic concept of [8] is correct.

5. STUDIES OF THE FORMATION
AND DYNAMICS OF HIGH-CURRENT 

HETEROGENEOUS Z-PINCHES

Remember that a specific feature of the liner–con-
verter scheme is the separation of the functions of the
energy storage unit and the emitter. The electrons of the
low-radiative (hydrogen) plasma, which are heated up
to 10 keV during the magnetic implosion, transfer their
energy by conduction to the highly radiative converter
located at the end of the plasma column. Theory and
numerical simulations [9, 10] show that the efficiency
of such a scheme is higher than that of the conventional
scheme.

The implementation of this scheme requires stable
implosion. In the previous section, it was shown that
applying an axial magnetic field is an efficient method
for suppressing instabilities. However, at large high-
current devices, such a stabilization would require
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Fig. 13. Visible-light electron-optical images of an implod-
ing helium gas puff in the (a) streak-camera and (b) frame
regimes.
magnetic fields of no lower than 100 kG, which is
hardly possible in actual experiments. Therefore, an
important problem is to search for other methods for
stabilizing magnetic implosion.

Theory and numerical simulations [20, 26] show
that, for the currents used in our experiments (~3 MA),
the Hall instability is less pronounced in thick shells of
low-Z gas puffs (H2, He). For this reason, we carried out
experiments on the implosion of a helium jet produced
by an annular nozzle with the Mach number M = 5 and
an outer and inner diameter of 4 and 1 cm, respectively.
These experiments turned out to be successful [37].

Operating conditions were found under which a
liner formed from a thick hollow helium jet is stable in
the initial stage of implosion. The perturbations of the
liner surface, which were recorded in visible light as
strata, did not grow in the course of implosion. More-
over, both the absolute magnitude and the relative value
∆R/R(t) of these perturbations decreased. We believe
that this effect is a manifestation of the two-dimen-
sional Hall dynamics of the low-density coronal
plasma. The Hall effects manifest themselves over
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Fig. 14. (a, b) Visible-light and (c) SXR electron-optical
images of an imploded argon gas puff in the (a) streak-cam-
era and (b, c) frame regimes.

(b)
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scale lengths of about c/ωpi . A decrease in this parame-
ter during implosion leads to a decrease in the modula-
tion of the shell diameter. This results in the stable
implosion of a thick helium liner up to Rin /Rfin = 8–10,
the final velocity being ~5 × 107 cm/s. The streak
images of the implosion of a helium liner are presented
in Fig. 13. For comparison, Fig. 14 demonstrates simi-
lar images of the unstable implosion of an argon gas
puff formed by the same nozzle. Besides the absence of
perturbations, the experimental evidence of stable
implosion is the symmetric shape of the imploded shell
and good reproducibility of the R(t) dependences.

We note that, as early as in 1963, B.B. Kadomtsev
showed that a continuous Z-pinch in which the pressure
does not decrease too rapidly toward the periphery is
stable against hydrodynamic perturbations [38].

However, the implementation of the heat-conduc-
tion scheme with a nearly continuous Z-pinch is ham-
pered because of the contradictory requirements for the
parameters of the liner plasma. In fact, the energy in the
imploding plasma is initially concentrated in the kinetic
energy of the moving shell. During the collision at the
axis, this energy is converted into the thermal energy of
the ions. Then, the ion thermal energy is transferred in
Coulomb collisions to the electrons, which finally
transport it to the converter. Estimates show that, in a
low-Z (H, He) plasma, the slowest process that limits
the efficiency of the entire scheme is the energy transfer
from ions to electrons.

The electron heating can be intensified by increas-
ing the ion charge. However, this leads to a decrease in
the thermal conductivity; as a result, the heat flux can
be insufficient for transferring the required amount of
the plasma energy to the converter during the phase of
maximum liner compression. Furthermore, the mag-
netic implosion of a Z-pinch or liner with a relatively
large ion charge number is accompanied by the forma-
tion of a thin shell, which is unstable (see above). More-
over, in this case, the energy losses related to the emis-
sion in the SXR and XUV spectral regions increase.

These contradictions can be avoided by creating
complex Z-pinches in which the region with the effi-
cient electron-to-ion energy exchange is spatially sepa-
rated from the region with the high electron thermal
conductivity [39].

One of the possible realizations of this approach is
the creation of a moderate-Z plasma by evaporating thin
fibers with an appropriate chemical composition that
are oriented parallel to the axis and form a cylindrical
surface with a radius that is several times smaller than
the initial radius of the gas puff (Fig. 15). The fibers will
be evaporated under the action of the front of a heat
wave generated by a shock wave in a light-gas cylinder
under the action of a magnetic piston. Preliminary esti-
mates show that, for a fiber thickness of 1–3 µm, the
plasma produced expands 1–2 mm in a time of ~10 ns.
Hence, by locating thin fibers compactly, it is possible
to produce a continuous cylindrical plasma with the
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
required Z value. It should be emphasized that this
method of creating a plasma from fibers is not accom-
panied by current instabilities or the mixing of gases
during the formation of a heterogeneous jet.

We carried out experiments on creating heteroge-
neous pinches in the C-300 device [40]. A plasma with
a moderate Z value was produced by evaporating thin
glass fibers in a shock wave propagating through a
helium plasma during the liner implosion. Initially, the
fibers were arranged around the axis at a radius equal to
one-third of the liner radius. With the help of laser prob-
ing and streak imaging (a streak image of the implosion
of a helium liner with fibers is presented in Fig. 16), it
is shown that the expansion of fibers and the formation
of a plasma occur well before the boundary of the liner
(current shell) reaches the fibers. The laser shadow pho-
tographs shows that the spatial nonuniformity of the
fiber plasma expansion is much less than in the case
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Fig. 15. Schematic of the diode gap in experiments on the
implosion of heterogeneous Z-pinches.
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Fig. 16. Streak image of the implosion of a heterogeneous
pinch.
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Fig. 17. X-ray spectrum of an imploding heterogeneous Z-pinch. The resonant line of the helium-like chlorine ion in the first, sec-
ond, and third orders is emitted from a bright spot on the cathode.
when the plasma is produced by a current flowing
through the fibers. This can be regarded as indirect
proof that the fibers are evaporated under the action of
a shock wave at the front of the magnetic piston.

The influence of high-Z impurities on the electron
heating and thermal conductivity was investigated by
recording the spectral lines of helium-like ions of chlo-
rine (these ions were produced from NaCl deposited on
the cathode end of the liner gap). We used an X-ray
spectrograph with a convex mica crystal, which pro-
vided two-dimensional spatial resolution [41].

Figure 17 shows a typical X-ray spectrum, in which
one can distinguish the lines of hydrogen- and helium-
like ions of the glass elements (Al, Si, Ca, etc.) with
excitation energies of up to 4 keV. The electron temper-
ature, which was determined from the intensity ratios of
these lines, is higher than 600 eV. In the spectrum, one
can also see the resonant line of helium-like chlorine,
which is emitted from a bright cathode spot with a
radius of no more than 3 mm. In the absence of glass
fibers, the intensity of this line is several times lower,
which testifies that the thermal conductivity increases
in the presence of impurities.

Therefore, the studies performed show that the
liner–converter scheme with the use of a heterogeneous
Z-pinch is promising for creating a high-power pulsed
X-ray source.

6. CONCLUSIONS

(i) During the implosion of highly radiative gas-
puffs, a thin high-density plasma shell is formed. The
shell thickness is one order of magnitude smaller than
the skin depth, whereas the density is more than one
order of magnitude higher than the initial density.
(ii) Hall instability plays a dominant role in the liner
implosion. This instability is most dangerous for low-
density high-Z liners. This instability can be stabilized
by increasing the initial thickness of the shell prepared
of low-radiative gases (H2, He) (in the limiting case,
this corresponds to the magnetic implosion of a contin-
uous Z-pinch) or applying an external longitudinal
magnetic field.

(iii) The feasibility of the liner–converter scheme, in
which the heat conduction mechanism is used to con-
vert the magnetic energy into X rays, has been demon-
strated experimentally. The experimental data agree
well with the results of numerical simulations.

(iv) It is shown that the presence of local moderate-
Z impurities in a helium Z-pinch increases the energy
flux toward the liner end.
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Abstract—This paper considers the early behavior of the current-carrying coronal plasma formed around the
relatively colder liquid–vapor core of a wire. This has applications to both a wire array before global effects
dominate and a single wire. An analytic, theoretical model is developed where the Joule heating in the coronal
plasma is thermally conducted to the cold core. The balance of both energy and pressure are assumed, and it is
further assumed that the Hall parameter is much less than one throughout the domain. This last assumption will
be violated near the outside radius of the corona where runaway conditions and lower hybrid turbulence can
also occur. The nonlinear second-order differential equation for the normalized temperature variation with a
normalized radius has only one free dimensionless parameter, which is the ratio of the applied axial electric
field to the mean radial temperature gradient (in electronvolts/m). The inverse of this ratio scales essentially as

T2/ , thus showing that both a low Hall parameter and a low magnetic Reynolds’ number can occur when the
mean free path is less than the collisionless skin depth, a criterion for the onset of current or heat-flow driven
electrothermal instabilities. © 2003 MAIK “Nauka/Interperiodica”.

n

1 1. INTRODUCTION

The wire array, dense Z-pinch has demonstrated that
it is an efficient and reproducible source of intense
X-rays with a rise time of 4 to 5 ns and a peak power of
nearly 300 TW [1]. Through a series of smaller scale
experiments [2, 3], it has been shown through X-radi-
ography that the wires melt and the core expands in a
mixed liquid–vapor phase [2]. This is followed by the
breakdown of the vapor around the core to form a coro-
nal plasma, which with single wires can go unstable to
the m = 0 MHD instability [4–6] with a wavelength that
increases with time; this is consistent with the increas-
ing radius of the coronal plasma suggested by computer
simulations [7] and analytic theory [8]. However, in an
array of parallel wires arranged in a circle, it is found
that the coronal plasma is diverted by the global J × B
force toward the axis to form a precursor plasma [9,
10]. Furthermore, there is evidence that the entire cur-
rent flows close to the wire cores, which remain station-
ary until 80% of the implosion time. Thus, it would
appear that the magnetic Reynolds’ number is less than
one, allowing the coronal plasma to slip through the
magnetic field associated with the current-carrying
region close to each wire [8].

The coronal plasma surrounds the relatively cold
liquid–vapor cores of each wire, and in a three-dimen-
sional analytic model [8], it was assumed that the cores
received heat by flux-limited heat flow from the Joule-

1 This article was submitted by the author in English.
1063-780X/03/2907- $24.00 © 20586
heated coronal plasma in each necked region. The pur-
pose of this paper is to consider more formally the
problem of a Joule-heated corona conducting heat radi-
ally inwards towards the core. It will be shown that, to
be consistent with a magnetic Reynolds’ number or a
Lundqvist number less than one for a β = 1 (the mag-
netic pressure balancing the plasma pressure) model,
the Hall parameter ωτ for the electrons should also be
much less than one in much of the domain. Here, ω is
the electron cyclotron angular frequency and τ is the
electron–ion collision time.

2. THE THEORETICAL MODEL

We consider a steady-state equilibrium in which the
electromagnetic energy transferred per unit volume per
unit time, J · E, is balanced by the divergence of the
electron heat flux q. In cylindrical polars with axial and
azimuthal symmetry, this becomes

(1)

where the electrical and thermal conductivities σ and κ
are functions of electron temperature T:

(2)

(3)
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where σ0 and κ0, though containing the classical lnΛ
term, are assumed to be constant. Because of the
assumption of steady state, — × E = 0 is zero, resulting
in Ez being spatially uniform. Therefore, only this equa-
tion needs to be solved to obtain T(r).

The boundary conditions are Neumann at the outer
radius of the corona, r2, and Dirichlet at the interface
with the liquid–vapor core at radius r, with a known
temperature T1. To be more specific, dT/dr is zero (no
heat flow) at r = r2 and T is equal to T1 at r = r1.

The differential equation is second-order and non-
linear but has no singular points in the domain r1 < r <
r2. It will be solved numerically, but since the gradient
is known only at r = r2, it seemed useful to define the
dimensionless parameters as follows, x = r/r2, y = T/T2,

v  = dy/dx, and A = Ezr2/T2. Equation (1)
then becomes

(4)

In terms of Braginskii’s transport coefficients [11],
which are given more accurately by Epperlein and
Haines [12], the parameter A can be written in terms of
the dimensionless parameters αc and κc, which are
functions of ion charge Z, as

(5)

where the temperature T2 (at r = r2) is now in electron-
volts.

The boundary conditions are such that at x = 1, we
have y = 1 and dy/dx = 0. It follows that it is straightfor-
ward to integrate Eq. (4) numerically for a given value
of A by solving the two first-order equations

(6)

(7)

But first, we note an interesting feature of (4); namely,
that the left hand side is positive definite, and since we
expect dy/dx to be positive in the domain (due to the
heat flowing radially inward), the first two terms on the
right-hand side are always negative, forcing d2y/dx2 to
always be negative. Indeed, at x = 1 the last term is the
only nonzero term on the right-hand side, and if it is
always dominant, an analytic first interpretation can be
found by multiplying the equation by 2y–2 dy/dx to give

(8)
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which integrates to give

(9)

3. OTHER PLASMA PARAMETERS

Once the temperature is found, the current density Jz

is given simply by

(10)

From this, the accumulated current I(x),

(11)

can be found assuming that the core carries negligible
current. This becomes

(12)

and so allows the magnetic field Bϑ(x) to be found from

(13)

In turn, this permits the plasma pressure p to be found,
assuming a momentum balance

(14)

(15)

If the boundary condition is that p = 0 at x = 1 (r = r2),
Eq. (15) can be interpreted to give

(16)

and, hence,

(17)

Similarly, the electron number density n(x) can be
found from
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(19)

An parameter important for determining the validity of
this theory is the Hall parameter ωτ, which can be writ-
ten in terms of the dimensionless parameter A and the
integrals leading to its x dependence as follows:

(20)

which is valid provided ωτ < 1. The full implications of
this condition will be discussed later.

4. SOLUTION FOR A = 1

The method of solution proceeds as follows. A step-
wise finite-difference numerical integration of Eqs. (6)
and (7) is undertaken backwards in x from x = 1, where
y = 1 and v  = 0. This is stopped at some x = x1 where y
tends to zero or a value appropriate for the cold-core
interface. Then, knowing y(x), a forward integration is
carried out to find I(x), Bϑ(x), JzBϑ, and the last term in
Eq. (16) from Eqs. (12)–(14). At x = 1, this last integral
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Fig. 1. y(x) for A = 1.
                 

represents , the dimensionless pressure at x = x1,
where

(21)
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0.83, way beyond the physical viability of the model
taking into account the onset of the flux-limited heat
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On the other hand, for A larger than 1, where we
have considered the cases A2 = 10, 100, and 104, we find
that y tends to zero at x1 equal to 0.67, 0.89, and 0.989,
respectively; i.e., the coronal plasma becomes rela-
tively thinner as A is increased. The outer half of the
domain between x1 and 1 has ωτ > 1, again invalidating
the model. However, the region x1 < x < 0.5 (1 + x1) sat-
isfies the model, and as x1 is approached, the source
term A2/2y is overtaken by 5/2v 2/y while the curvature
effects are small.

For A > 1, therefore, we can divide the region into
two parts: an outer region where the source term
approximately balances the dv /dx term, with the first
integration given by Eq. (9) and an inner region, given
by y5/2v, which is constant. At the boundary of the two
regions, we assume that the terms A2/2y and 5/2 v 2/y in
Eq. (7) are equal in magnitude, the former dominating
in the outer region and the latter in the inner region. Put-
ting x = xb, y = yb, and v  = v b at the boundary of these
two regions, the above equality becomes

(26)

and, using Eq. (9),

(27)

It follows that there is an explicit expression for yb

given by

yb = exp(–0.2) = 0.819. (28)
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To find xb, we can integrate Eq. (9) to give the approxi-
mate solution for the outer region,

(29)

The integral can be taken using the substitution

, (30)

giving

(31)

and
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Inserting the value of yb given by Eq. (28) into Eq. (29)
gives
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the integral of which, satisfying the boundary condition
at x = xb, y = yb, is

(35)

In the limit of y  0, x  x1, this gives a value of
0.482 for A(1 – x1), which differs significantly from the
numerical value of 1.123 for A ≈ 100.

To help resolve this, it turns out that, neglecting only
the v /x curvature term in Eq. (7), it is possible to inte-
grate Eqs. (7) and (8) one time analytically without
splitting the region into two, giving

(36)

(This was found by successive integration of Eq. (7)
using the first approximation given by Eq. (9) for the
first substitution into 5/2 v 2; however, the resulting
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Eq. (36), can be confirmed by direct substitution.) A
second analytic integration of Eq. (36) would appear
difficult since the domain includes y = 1. Writing u2 =
y–5, the second integration is

(37)

(38)

The inequality (38) leads to A(1 – x1) < π/  =
1.405. A lower bound to A(1 – x1) can be found by con-
sidering (u2 + 1)3/2 in the denominator of the integrand,
leading to A(1 – x1) > 0.894. The numerical value 1.123
lies between these two bounds.

6. INCLUSIONS OF THE HALL PARAMETER
The problem so far has been analytically tractable

largely because of the neglect of the Hall parameter ωτ,
which can be calculated from Eq. (20). Its dependence
on 1/A is, however, misleading, since the effective
range of integration from x1 to 1 in the other terms,
allowing for A(1 – x1) . 1.123, is dependent on A. In our

calculations with Ti = 0 for A = 1, , 10, and 100, we
find that ωτ ≥ 1 at x = 0.53, 0.84, 0.95, and 0.996,
respectively, compared to the values of x1 = 0.185, 0.67,
0.89, and 0.989 quoted earlier. Thus, half the regime
has ωτ > 1, though ωτ > 10 only close to the plasma
boundary at x = 0.91, 0.97, 0.99, and 0.999 respectively.

The main effect of a finite ωτ effects the reduction
of the thermal conductivity by a term of the order of
(1 + ω2τ2)–1, though we should for consistency also
include the Ettingshausen and Nernst effects (13). As a
result, Eq. (1) is replaced by

(39)

where we use the notation of Braginski (11) and the
results of Epperlein and Haines (12). For large ωτ,
Eq. (39) becomes

(40)
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If ωτ were a constant value @1, the main effect would
be effectively equivalent to increasing the value of A by
ωτ in this region, thus steepening the temperature gra-
dients and reducing the thickness of the coronal
plasma. This is necessary in order to provide the heat
flux that is unaffected by the magnetic field close to the
inner boundary. However, we have neglected the radia-
tion transport, which in the diffusive limit will have a T3

dependent coefficient, thus providing a term similar to
the T5/2 thermal conductivity and tending to compen-
sate for any ωτ reduction in κ.

7. FREE-STREAMING LIMIT

Even though the mean free path λ, which varies as
T2/n, decreases substantially as x decreases to x1, the
ratio of λ to the characteristic gradient scale length
T(∇ T)–1 increases, and could reach the limit of validity
of linear transport theory. The usual criterion for this is
to consider the ratio f of the heat flow to the free stream-
ing limit, 5/2nT(T/m)1/2. This is given in terms of
dimensionless parameters by

(41)

where the magnetic Reynolds’ number is defined by

(42)

with

. (43)

Recalling that experimentally [9, 10] and in a sim-
plified 3-D model [8] the current and associated mag-
netic field essentially remain in the coronal plasma of
the wire array despite an inward flow of the precursor
plasma, it follows that Rm ≤ 1 as was shown earlier [8].
Taking Rm = 0.1 and A = 1, it follows that, close to
x = x1, f typically has a value ≤0.1 as employed in [8].
Lower values of f pertain to larger values of A. Care
must always be exercised to ascertain whether a full
Fokker-Plank treatment is required here.

8. RUNAWAY ELECTRONS 
AND ANOMALOUS TRANSPORT

The critical electric field, ED, commonly called the
Dreicer electric field, above which electrons will run
away, is given by

(44)

Clearly, the applied electric field Ez will exceed this as
r  r2, where ne and p tend to zero. However, here the
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electrons are magnetized (ωτ > 1) and electrons will not
run away. Indeed, the more energetic electrons in this
region will tend to have an E/B drift inwards (the
Ettingshausen heat flow in the direction of J × B).

The ratio

(45)

i.e.,

(46)

where a parabolic pressure profile (see Fig. 4) is
assumed to be a reasonable approximation. For
Rm = 0.1, y = 1, and  having values of 0.166,

0.110, 0.044, and 0.0049 for A = 1, , 10, and 100,
respectively, we find that Ez = ED for g equal to 0.63,
0.98, 2.50, and 22.2. However, g ≤ 1, which means that
for A = 10 and 100 the electric field exceeds the Dreicer
value for runaway production.

Before this happens, however, the drift velocity v d

of the electrons will trigger microscopic turbulence.
Indeed, the ratio of v d to the electron thermal speed is
just the inverse of Eq. (45); i.e.,

(47)

Lower hybrid turbulence will be triggered when v d

exceeds a lower value of the ion sound speed cs. Both
the electrical and thermal conductivities will be
reduced in Eq. (1). It is beyond the scope of this paper
to address this problem.

9. DISCUSSION

We have considered the problem of a cylindrically
symmetric coronal plasma carrying an axial current and
surrounding a cold wire, which acts as a heat sink for
the Joule-heated plasma. By assuming that the Hall
parameter is small, the nonlinear second-order equation
is tractable and leads to profiles of the temperature,
magnetic field, and pressure in terms of a single dimen-
sionless parameter A. This parameter is the ratio of the
applied axial electric field multiplied by the coronal
radius and divided by the electron temperature. Taking
the inverse of A, we find that it orders as follows:

(48)

This is the ratio of the mean free path to the collision-
less skin depth. A value of less than one is a necessary
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condition for the onset of the heat flow-driven electro-
thermal instability [14], which may account for the
instability structure seen in laser probing measure-
ments [3].

If the scale-length r2 in Eq. (42) is ~100 mean free
paths (to account for flux-limited heat-flow), it follows
also that Rm scales as A–2, thus accounting for the lack
of convection of the magnetic flux in the precursor flow
for A > 1. 

The outer half of the coronal plasma is, however,
found to have a Hall parameter greater than 1, necessi-
tating a modification of the model, though radiation
transport may mollify this effect. It is appropriate in the
context of the dedication of this paper that the Hall
parameter cannot be ignored. The free-streaming limit
of the heat flow is approached in the inner region close
to the cold boundary. Throughout the domain, the con-
dition for the onset of electrostatic microinstabilities
and associated anomalous transport, together with run-
away electrons, requires further investigation.
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Abstract—It is shown that a two-component electron distribution can emerge in a cluster under an intense laser
pulse. The bulk of the internal electrons adjusts adiabatically to the laser field, whereas a smaller electron pop-
ulation at the cluster edge can undergo stochastic heating. A self-consistent equilibrium has been found for the
confined electrons. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

This work has been motivated by recent desktop
laser fusion experiments, in which fusion reactions
were produced by the irradiation of deuterium micro-
clusters with a very short and intense laser beam [1–3].
From the outset it was recognized that the observed
phenomenon is associated with the ion acceleration that
takes place during the explosion of the cluster. There
are two conceivable scenarios for such an explosion: an
electrical one (Coulomb explosion) and a thermal one
[4, 5]. The electrical scenario implies that the laser field
quickly pulls the electrons out of the cluster, and the
ions are then accelerated by the electric field of their
space charge. The thermal scenario emphasizes the
electron heating that leads to cluster expansion due to a
high electron pressure. Although both scenarios involve
the space-charge electric field as an accelerating force
for the ions, the essential difference between the two is
that the thermal scenario preserves quasi-neutrality,
whereas the electrical scenario does not.

The picture of the electrical explosion is particularly
simple when the laser field is strong enough to extract
all of the electrons from the cluster. It is apparently
more challenging to describe the case when the extrac-
tion is incomplete. This particular problem is the main
topic of our paper.

In what follows, we will first formulate our basic
assumptions that link the experimental situation to a
properly idealized physics model. The key point here is
the qualitative distinction between the confined and the
extracted electrons, which is reflected in the separate
treatment of these two groups. Next, we construct a
simple analytical solution for an electrical explosion of
an initially uniform spherical cluster. This solution is
presented in Section 2. In Section 3, we develop a
numerical procedure for calculating the space-charge
electric field, together with the electron density distri-
bution inside the cluster, for an arbitrary axially sym-
metric cluster. This procedure is designed to facilitate
simulations of the ion dynamics by eliminating the

1 This article was submitted by the authors in English.
1063-780X/03/2907- $24.00 © 20593
electron time-scales from the problem. However, the
actual modeling of the ion motion goes beyond the
scope of this paper. Finally, Section 4 deals with elec-
tron reflection from the cluster boundary, which causes
phase mixing and gives rise to stochastic electron heat-
ing.

We will limit our consideration to the case in which
the cluster radius (R) is much smaller than the laser
wavelength (λ). This implies that the electric field of
the laser beam can be treated as a spatially uniform,
albeit time-dependent, external field. This external field
oscillates at a laser frequency ω that is typically smaller
than the electron plasma frequency ωpe at a solid-state
density of the cluster. For the sake of simplicity, we will
henceforth assume that ω ! ωpe, which will allow us to
treat the confined electrons adiabatically. As for the
extracted electrons, we assume that they quickly move
far away from the cluster and, therefore, do not contrib-
ute to the local space-charge density (the corresponding
applicability condition is given by Eq. (14) below). The
cluster will thus become positively charged, which hap-
pens so quickly that the ions hardly have time to move
anywhere. We thus formulate the problem of finding an
equilibrium configuration of the confined electrons in
the self-consistent field that is a superposition of the
external electric field and the space-charge field. This
problem needs to be solved for a given spatial distribu-
tion of ions. Clearly, the total electric field and the
space-charge density should vanish in the region occu-
pied by the confined electrons provided that these elec-
trons remain cold (this is indeed the case as long as one
can neglect binary collisions). In other words, the con-
fined electrons behave as a perfectly conducting fluid.
What we need to find, when we look for equilibrium, is
the boundary of that fluid.

In order to demonstrate the relevance of our model to
the cluster experiments, we will relate the applicability
conditions to the specific parameters described in [2].
In that particular experiment, a short pulse laser with a
35 fs pulse-width and a wavelength of 820 nm was
employed at a peak intensity of I = 2 × 1016 W/cm2. The
typical deuterium cluster radius was about R ≈ 2.5 nm
003 MAIK “Nauka/Interperiodica”
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Extracted electrons

Laser field E0
d

r
r1

Fig. 1. Electron confined in a uniform spherical cluster in the presence of a laser field. The outer circle marks the edge of the ion
background. The inner circle marks the boundary of the confined electron population. The shaded area represents the uncompen-
sated ion space charge. The inner circle stays at the edge of the cluster when the electric field E0 increases monotonically in time.
It detaches from the edge and shifts inward when E0 decreases after reaching its maximum.
and the deuterium cluster density was about n ≈ 4.5 ×
1022 cm–3. For these parameters, the cluster radius is
indeed much smaller than the laser wavelength (R/λ ≈
3 × 10–3) and the laser frequency is smaller than the
electron plasma frequency (ω/ωpe ≈ 0.2). For the speci-
fied intensity, there is a core of cold electrons inside the
cluster, because all of electrons can only be extracted at
intensities above I = 6 × 1016 W/cm2 (assuming a uni-
form cluster). Moreover, the extracted electrons do not
contribute to the local space-charge density, since the
corresponding applicability condition given by Eq. (14)
is satisfied: eE0/(meω2R) ≈ 5, where E0 is the laser field
amplitude. The characteristic ion response time is
roughly 1/ωpi ≈ 10 fs. This indicates that the ions do
have time to expand during the entire laser pulse. How-
ever, short time intervals of the order of few laser peri-
ods can still be described under the assumption of
immobile ions.

2. UNIFORM SPHERICAL CLUSTER

It is interesting that the electron equilibrium can be
found analytically for a spherical cluster with a uni-
form ion density ni . In order to do this, we note that
the electric field created by the ion background alone
is given by

(1)

for r ≤ R, where the radius r is measured from the clus-
ter center as shown in Fig. 1. Similarly, a uniformly
charged spherical volume of electrons (with the oppo-
site charge density –|e |ni) creates the field

, (2)

inside the volume, where the radius r1 is measured
from the center of the electron sphere. If we superim-

E
4πni e

3
-----------------r=

E
4πni e

3
-----------------r1–=
pose the electron and the ion spheres, then the total
space-charge field in the region where the two vol-
umes overlap will be

(3)

where d is the distance between the centers. It is note-
worthy that this field is uniform, which allows us to
choose the displacement d in such a way that E cancels
the external electric field E0 satisfying the requirement
that the total electric field vanishes in the region occu-
pied by the confined electrons. We then obtain the fol-
lowing expression for d:

(4)

For this solution to be consistent, the entire electron
sphere needs to be located inside the ion sphere (see
Fig. 1). It may seem that, having found the displace-
ment d, we still have the freedom to choose the radius
of the electron sphere anywhere between zero and R – d.
However, this freedom is deceptive. The radius of the
electron sphere (Re) in our problem is actually deter-
mined by the time history of the external electric field.
First, it is clear that Re should be equal to R – d if the
external electric field grows monotonically from zero.
Indeed, the condition Re = R – d ensures that the poten-
tial well for the electrons has a small leak at the pole of
the cluster where the electron sphere touches the ion
sphere. The need for such a leak is obviously due to the
fact that the cluster is initially neutral and that any
monotonic increase in d in this case requires a mono-
tonic decrease in Re. The situation changes when the
external electric field passes through its maximum. If
the field goes down, then the electron sphere just shifts
closer to the center of the ion sphere with Re being con-
stant, i.e., without a leak. Furthermore, if the next cycle
of the laser field has a larger amplitude, then there will

E
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be a further reduction in Re when the displacement d
brings the electron sphere to the surface of the ion
sphere.

Note that the motion of the electron sphere is caused
by a small residual electric field inside the core. The

value of this field is roughly (ω2/ )E0, since the
acceleration of the core can be estimated as ω2d. The
condition ω ! ωpe ensures that the residual field is
much smaller than the laser field, which is consistent
with our assumption that the electric field vanishes
inside the electron sphere.

If the laser pulse is short enough so that the ions do
not have time to expand during the pulse, then the value
of Re at the end of the laser pulse is

(5)

where |E0 |max is the maximum value of the laser electric
field during the pulse. It is also apparent that the elec-
tron and ion spheres remain concentric after the pulse;
i.e., the cluster consists of a neutral core surrounded by
a positive ion shell. The shell will then expand radially
outwards on the ion time-scale, whereas the core will
remain at rest. This expansion is described by the fol-
lowing equation of motion:

(6)

where mi is the ion mass and r0 is the initial position of
the ion in the shell (R ≥ r0 ≥ R – d). This equation has
a straightforward energy integral that relates the ion
kinetic energy after the expansion to the initial posi-
tion r0:

(7)

3. ARBITRARY CLUSTERS

The analytical solution presented above suggests a
numerical procedure that allows us to quickly find an
equilibrium configuration of the confined electrons for
an arbitrarily shaped cluster. Instead of solving the
actual electron equation of motion, which would
involve many particles and require a very small time
step, we use electron boundary dynamics as described
below.

We introduce a boundary of the electron population,
and we evolve this boundary assuming that its instanta-
neous velocity at any point is proportional to the local
value of the electric field. We take the initial electron
boundary at the edge of the cluster, so that the cluster is
initially neutral, and we freeze the values of the external
field E0 and the ion space-charge density while we
evolve the electron boundary. If any time step takes a
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part of the electron boundary outside the ion popula-
tion, we simply eliminate the protrusion by forcing the
appropriate segment of the electron boundary to the
cluster edge. We also take the total charge density to be
zero everywhere inside the electron boundary, which
means that we calculate the instantaneous electric field
as a sum of the external field and the electrostatic field
created by the exterior ions (those that are outside the
electron boundary). We have implemented this algo-
rithm in a code that allows us to find the electron equi-
librium for an arbitrary axisymmetric ion density pro-
file. For a uniform spherical cluster, the code shows the
rapid convergence to the analytical solution described
above. An example of a calculation for a nonuniform
spherical cluster is shown in Fig. 2. Note that the equi-
librium configuration of the electron core is not spheri-
cal in this case.

The equilibrium solutions described above imply
that the confined electrons remain cold. However, oscil-
lations of the electron core in the laser field lead to
some electron heating due to electron–ion friction. The
corresponding heating rate can be estimated as

(8)

where

(9)

is the characteristic velocity of the core, ε is the electron
energy, and νei(ε) is the electron–ion collision fre-
quency. Taking into account that νei(ε) scales as ε–3/2,
we find that the electron energy increases with time as

(10)

where

(11)

The electron heating broadens the sharp boundary of
the core, which affects the cold-core equilibrium signif-
icantly when the Debye length, estimated as λD ≈

, becomes comparable to d. It follows from
Eq. (10) that the characteristic time τH of the boundary
broadening is given by

(12)

which means that this time can be relatively long when
ω ! ωpe. If the laser pulse is shorter than τH, then the
role of the collisional heating is negligible.
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Fig. 2. Equilibrium of the cold electron core in a spherical cluster with nonuniform ion density: (a) the cluster cross section with a
contour plot and grey-scale coding for the electrostatic potential and (b) the profile of the ion density. The thick inner line in plot
(a) marks the electron core boundary.
4. EXTRACTED ELECTRONS

Once an electron leaves the cluster, it accelerates in
the laser field until its kinetic energy reaches roughly

 (assuming that the electron is nonrelativis-

tic). The corresponding radial excursion of such an
electron is on the order of eE0/meω2. Under the condi-
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tion ω ! ωpe, the excursion is much larger than the
thickness of the ion shell

(13)

and therefore the extracted electrons contribute very lit-
tle to the space-charge density in the shell. However,
the condition ω ! ωpe alone may not be sufficient for

d
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neglecting the extracted electrons. In order to com-
pletely neglect these electrons, one needs the electron
excursion to exceed the cluster radius (not just the shell
thickness); i.e.,

(14)

This inequality presents an applicability condition for
the equilibrium solutions described in Sections 2 and 3.
Equation (14) implies that, once extracted, an electron
typically does not return to the cluster. It also means
that the characteristic energy of an extracted electron,

, is larger than the final energy of an accel-

erated ion from the shell (see Eq. (7)). The expanding
ion shell of the cluster never reaches quasi-neutrality
under condition (14).

The situation is qualitatively different in the oppo-
site limiting case,

(15)

in which most of the edge electrons that cross the ion
boundary remain trapped by the ion space charge and
oscillate through the cluster. As the fast electrons from
the narrow edge layer expand, they spread over the
entire cluster volume. They therefore contribute to the
electron density inside the cold core, causing the core
to expand. This expansion allows some cold electrons
to come close enough to the edge to be extracted by the
laser field during its next period. We therefore conclude
that each period of the laser pulse should convert a
small portion of the cold electrons into warm electrons.
Since d ! R, the converted fraction (per period) is
roughly

(16)

with the typical electron energy from the initial kick

being . This is essentially the effect of the

vacuum heating [6–8]. However, the vacuum heating in
a small cluster has an additional aspect compared to
that described in [6–8]. In the cluster case, the laser
field can stochastically heat the earlier generations of
extracted electrons as these electrons return to the clus-
ter edge in their oscillatory motion in the ion potential
well [9]. The bounce period in the well can be estimated
as R/v, where v  is the electron velocity. Each bounce

oscillation adds roughly  to the electron

energy, so that the rate of energy increase is

(17)
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and the resulting electron energy scales as

(18)

where τ is the laser pulse duration (unless the heated
electrons escape before the end of the pulse). It should
be emphasized that this process of consecutive extrac-
tion and heating only applies to the electrons that cross
the cluster edge. The electrons that are permanently
confined inside the cluster remain relatively cold, as
they adiabatically adjust to the laser field. There is,
therefore, a mechanism for creating a two-component
electron distribution if condition (15) is satisfied.

If the laser pulse is short enough, then a core of cold
electrons will always remain in the cluster, and the cor-
responding number of core ions will not be involved in
the cluster expansion. The ion shell will expand after
the pulse under the hot electron pressure, and this will
continue until the hot electrons cool down adiabati-
cally. The final energy per single-charged ion will be
roughly equal to the average energy of a heated elec-
tron.
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Abstract—The effect of random density inhomogeneities on the anomalous plasma resistivity caused by a cur-
rent-driven ion acoustic instability is considered. It is shown that, under certain conditions, dissipation due to
the plasma inhomogeneity can be more efficient than that due to nonlinear effects. The scenario under consid-
eration can occur in the low-density corona of a high-density Z-pinch. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Some effects associated with fluctuations of the
plasma density in a fast Z-pinch were studied in a paper
written by L.I. Rudakov in collaboration with the
author [1], in which it was shown that such fluctuations,
frequently occurring in nature, can strongly affect the
corona dynamics through the combined action of the
convective transport of a magnetic field (current) [2]
and magnetic reconnection processes. Thus, the pinch
dynamics can be modified by electron magnetohydro-
dynamic (EMHD) effects. The coefficient of the effec-
tive nonlinear magnetic-field diffusion was found to be
equivalent to the Bohm transport coefficients. For-
mally, the expression for the plasma conductivity that
follows from the expression for the magnetic-field dif-
fusion coefficient was also derived from the model of
anomalous resistivity developed by Sasorov [3].

In the EMHD theory [2], self-consistent electron
flows are insensitive to both the dissipation mechanism
and the dissipation coefficients, and even the resistivity
of a plasmoid with the parameters in the applicability
range of the EMHD theory,

(1)

is a universal quantity. This makes it possible not to
focus on the fact that conditions (1) determine, among
other things, the plasma range in which anomalous
resistivity may be important. In particular, under the
condition

, (2)

the dominant mechanism for the anomalous resistivity
should be the current-driven ion acoustic instability.
For Z-pinches, condition (2) is satisfied by a large mar-
gin; in the EMHD theory, however, the dissipation
mechanism, as was said, is unimportant.

On the other hand, the electron flow can be self-con-
sistent and, accordingly, the resistivity can be universal

cS v A ! j/ne ! v Te v Ae, ,

ωpe @ ωBe B
2
 ! nmc

2⇔
1063-780X/03/2907- $24.00 © 20598
only under certain conditions on the plasma geometry.
Specifically, according to [2], the transverse dimension
of the electron flow can be represented as

(3)

where r is the characteristic spatial scale of the problem
and the other notation is standard. In the case of the
anomalous ion acoustic resistivity, which can be esti-
mated, e.g., by the Sagdeev formula

(4)

the estimate that can be obtained for the transverse
dimension of the electron flow is independent of the
current and magnetic field:

(5)

Hence, when the thickness of the current-carrying
shell of the Z-pinch is small in comparison with the
spatial scale determined by formula (5), self-consistent
electron flows cannot form; i.e., the “tongues” of the
field (current loops) that were considered in [1] cannot
arise and the current in the Z-pinch corona will flow
along the axis in a purely resistive regime.

2. FEATURES OF THE ANOMALOUS 
RESISTIVITY OF AN INHOMOGENEOUS 

PLASMA

It is appropriate to utilize the Sagdeev formula (4),
which is valid for sufficiently strong electric fields,

E > , in order to obtain estimates, e.g., for

systems with high-current Z-pinches, i.e., for cases in
which the plasma current is conditioned by an external
circuit and, consequently, the critical quasilinear
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regime [4] is practically impossible. Essentially, for-
mula (4) derives from the analysis of a balance between
the linear excitation of ion acoustic waves by the
plasma current and the nonlinear stimulated scattering
of these waves by ions. However, when the amplitude
of the plasma density fluctuations is sufficiently large,
the plasma resistivity can be determined not by this bal-
ance but by the plasma inhomogeneity, in accordance
with the Hamiltonian equations of motion of the wave
packet,

(6)

It is well known that the problem of the plasma
resistivity is a momentum-transfer problem. The elec-
trons accelerated by an electric field acquire momen-
tum and transfer it to the ions. The classical transfer
mechanism is associated with collisions, while in the
case of anomalous resistivity the transfer mechanism
operates through an intermediate cause, whose role is
played by noises, or, equivalently, a gas of quasi-parti-
cles. Formula (4) implies that momentum is transferred
to the ions in the process of stimulated scattering. On
the other hand, the electrons can transfer their momen-
tum to the entire plasma and, thereby, to the ion compo-
nent. This transfer mechanism is described by the sec-
ond of Eqs. (6).

So, let us consider an object that was frequently
encountered in numerical experiments [5]: a Z-pinch
with a dense core and a low-density current-carrying
corona in which the plasma density is randomly non-
uniform. We assume that the characteristic spatial scale
on which the plasma density fluctuates satisfies the ine-
quality

(7)

where vA = B/ . This inequality, which can
also be written as

allows us to exclude from consideration the effect of a
rapid density redistribution and, accordingly, to assume
that the plasma density is steady-state on ion acoustic
time scales. Thus, even for I ~ 20 MA, we have a @ 4 ×
10–2 cm at r ~ 2 cm.

The dispersion relation for ion acoustic waves,

ωS(k) = kcS/  = ωpi/ , and
Eqs. (6) for an ion acoustic plasmon in an inhomoge-
neous plasma yield the relationships

(8)

Hence, in contrast to a Langmuir plasmon, an ion
acoustic plasmon is not subject to the effect of reflec-
tion; however, it can disappear due to the Landau damp-
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ing by the ions when it moves in the direction in which
the plasma density decreases. In order to describe the
spectrum of incoherent ion acoustic waves (which is
typical of kinetic instabilities), it is convenient to intro-
duce the distribution function of the quasi-particles

(9)

In order to describe quasi-particles, we can use,
instead of Eqs. (6), the Liouville equation for which
Eqs. (6) are the equations of characteristics:

(10)

The third characteristic of Eq. (10) generalizes the tra-
ditional dependence exp(γt) to the case of an inhomo-
geneous medium:

(11)

For a given dependence n(r), the points (k0, r0) and
(k, r) in phase space are connected by characteristics
(8). The integral is taken along the trajectory of an ion
acoustic plasmon. In one-dimensional (and, sometimes,
three-dimensional) geometry, it is often convenient to
write the main formulas in terms of ω rather than k,
because, in the quasi-steady-state problem, the fre-
quency is invariant, while the wave vector k changes
along the trajectory. In Eqs. (10) and (11), the growth

rate γk =  +  is the sum of the electron and ion
terms, which, under the condition ω/k ! vTe, can be
represented as

(12)

where M/m is the ion-to-electron mass ratio and
u = j/ne is the electron current flow velocity. A slight
change in this velocity (as is the case in a plasma with
a fluctuating density) produces a change in the growth
rate. As long as the ions are treated as a passive back-
ground, their response to the change in the phase veloc-
ity is described by the exponential function. However,
in any real problem, resonant ions are always over-
heated because their number is small; as a result, the ion
distribution function f i(v ) in the resonance region is
fairly smooth. That is why it is expedient to compare
the quantity j/(n(x)e), first of all, with the critical veloc-
ity ucr. The critical velocity is usually determined from
the equations
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In the problem of the resistivity of a homogeneous
plasma, it is unlikely that there exists a steady state that
is governed exclusively by the balance of linear growth
rates (12). The reason is that nothing can balance the
momentum acquired by the majority of the ions in the
electric field because there are only a few resonant ions.
The limitation associated with the fact that, in the linear
approximation, there are no electron and ion fluxes
through the boundary of the resonance region can be
overcome by taking into account quasilinear effects and
modifying the dispersion relation [6], in which case,
however, both plasma components tend to asymptoti-
cally go over to the free acceleration regime. This for-
mal solution can hardly correspond to a real situation
because of the influence of nonlinear effects [7]; in
actual experiments, the nonlinear scenario is usually
considered as the only possible one (see [8] and the ref-
erences therein). As was already mentioned, accounting
for the plasma inhomogeneity opens some new possi-

A'

A

B

B'

u = j/(ne) < cS, γ < 0

j/(ne) > cS, γ > 0

u ≅  cSA''

n(x)

x

Fig. 1. The case of a slight density modulation.

2'2

1 1'

γ < 0 γ < 0

γ > 0γ > 0

n(x)

x

Fig. 2. A deeply modulated plasma density. The regions
where the noise density is nonzero are hatched.
bilities. In order to simplify further calculations, we
will use a one-dimensional model. In a sense, such a
model is artificial because, strictly speaking, the anom-
alous resistivity cannot exist in the one-dimensional
approximation. However, the purpose of the present
paper is not to develop a systematic approach to a com-
plete solution of the problem but rather to demonstrate
the main effects pertaining to the subject.

3. SLIGHTLY MODULATED DENSITY 
APPROXIMATION

As an example, we consider a plasma whose density
is modulated by a one-dimensional sinusoid (Fig. 1).
Since the current I is determined by the external circuit,
the current velocity satisfies the relationship |u | ∝  n–1.
The dashed line in Fig. 1 corresponds to the density
value at which |u | = ucr. In accordance with Eq. (11), the
condition for the spectrum to be quasi-steady can be
represented in the form

(13)

where the interval (x0, x1) is the spatial period of the
density perturbation. The equation describing the
momentum transfer between the waves and the plasma
(and, ultimately, the ions) follows from Eqs. (6): ∂k/∂t =
–—ω ≅ –(ωpi/2)(—n/n0). At first glance, momentum trans-
fer is impossible because the momentum of each of the
ion acoustic plasmons does not change after they pass
through the modulation period. Let us, however, com-
pare the intervals A'A'' and A'A in Fig. 1. Over the entire
interval A''A, the growth rate γ is negative, γ < 0; conse-
quently, the number of quasi-particles at the descent
A'A, where they acquire momentum, is less than that at
the ascent A''A', where the waves transfer their momen-
tum to the plasma. In the interval over which the growth
rate is positive, the situation is the same: the number of
plasmons that lose their momentum at the ascent BB' is
larger than that at the descent AB, where they take away
momentum from the plasma. Hence, the waves can
transfer the momentum that they take away from the
electrons to the ions even when none of the nonlinear
mechanisms is operating.

4. MOMENTUM BALANCE IN A PLASMA 
WITH A DEEPLY MODULATED DENSITY

The above model can serve merely for illustrative
purposes. In a system with a prescribed current, there is
no reason why the current velocity should reach a
steady-state level for which condition (13) is satisfied.
The situation that is depicted in Fig. 2, which refers to
a sufficiently deep density modulation, is far more real-
istic. In this case, we are dealing with a sort of trapping
of plasmons between points 1 (1'), which correspond to
the instability threshold, and points 2 (2'), at which the

2γk

∂ω/∂k
--------------- ld

k0 x0,

k1 x1,
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noises are damped to the fluctuation level (the current
flows from left to right, so that the direction of the elec-
tron flow velocity coincides with the positive direction
of the x-axis). Assuming that the mean plasma density
gradient is zero, we can introduce the scale length L as
the distance between the minima (or maxima) of the
density in the trapping region:

(14)

The spatial density of the momentum transferred
between the plasma components is described by the
equations

(15)

where we have switched from the k representation to
the ω representation. In this way, the electron momen-
tum balance can be written in terms of the effective col-
lision frequency:

(16)

In deriving this formula, we took into account the fact
that the electric field of the plasma current produced by
an external circuit is nonzero only within the intervals
(1, 2) and (1', 2'), i.e., in the regions where the density
of the noise and, accordingly, the effective collision fre-
quency υeff are nonzero. For further estimates, we intro-
duce the integral density of the noise, W(x) =

. At first glance, this parameter is far more

general than the spectral density of the ion acoustic
waves; however, as will be seen below, the noise spec-
trum in each individual instability region should be
fairly narrow. As a result, the estimate of the effective
collision frequency can be simplified to

(17)

At points 1, 1', etc., the noise level can be estimated by
the level of thermal fluctuations:

where ND is the number of particles within a Debye
sphere (taking into account the difference between Te

and Ti would lead to an excessive accuracy). From
expressions (11) and (12), we readily obtain
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(18)

The dispersion relation for the ion acoustic waves
yields

(19)

Now, we can transform formula (17) to

(20)

We introduce the mean effective collision frequency
υB in the instability region and the frequency υR aver-
aged over the quasi-period L (the latter frequency deter-
mines the resistivity of the current-carrying corona):

(21)

The integral on the right-hand side of formula (21) can
be taken by parts with allowance for the relationships
Γ(x1, x1) = Γ(x1, x2) = 0:

(22)
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As a result, formula (21) reduces to

(23)

We introduce the spatial scale of an individual den-
sity well, a ≤ L, in such a way that the density near the
bottom has the form n = n(x0)[1 – (x – x0)2/a2] (see
Fig. 3). All the trajectories of quasi-particles in the well

should satisfy the condition k–2 +  = inv. The above
assumptions imply that, at a density lower than n(x1),
the current velocity exceeds the critical velocity for
two-stream instability. The points at which the current
velocity is equal to the critical velocity are determined
by the condition j ≈ n(x1)ecS = n( )ecS. The growth
rate is proportional to [ku/ω – 1]; consequently, the
higher the frequency ω (the smaller the ratio ω/k), the
larger the growth rate γ. From this point of view, the
anomalous resistivity is associated preferentially with
the ion plasma waves. However, an ion acoustic plas-
mon whose invariant frequency approaches ωpi at the
descent of the density well (see arrows 1, 2 in Fig. 3)
will be subject to strong Landau damping (when
ω/k  0) after passing a certain distance within the
instability region. The same is true of the plasmons that
originate behind the density well (arrow 3 in Fig. 3).
Hence, the momentum is preferentially transported by
plasmons that pass through the entire noisy region and
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Fig. 3. Localization of plasmons in a parabolic density well.
whose frequency is the highest, i.e., plasmons whose
frequency is equal to ω = ωpi (x0) exactly at the bottom
of the well. The trajectories of such plasmons extend
over the entire interval (x1, x2) (see the hatched arrow in
Fig. 3). For these plasmons, we can use the estimates

(24)

In the model of a quasi-parabolic plasma density profile
(Fig. 3), we can derive the following relationship
between the length of the “noisy” interval (x1, x2) and
the characteristic spatial scale of the well:

Within the accuracy adopted for these estimates, we
can neglect unity under the square root symbol. As a
result, we arrive at the final estimate for the ratio of the
length of the turbulent region to the characteristic scale
on which the plasma density varies:

(25)

The same (but more accurate) estimate can be obtained
from the condition Γ(x1, x2) = 0; i.e.,

(26)

For a particular density well (Fig. 3), we can intro-
duce the notation x0 = 0, x1 = –∆, and  = ∆, where
∆2/a2 = ( j/n0ecS) – 1. In this notation, invariant (8) can
be rewritten as
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where δ = δ∗ /(1 + δ∗ ) ! 1. It is helpful to introduce the
following dimensionless variables, in which a serves as
a spatial scale:

In terms of these variables, Eq. (26) becomes the tran-
scendental equation

(27)

Estimates (23) can also be rewritten in the dimension-
less form:

(28)

5. CONCLUSION

In principle, formulas (27) and (28) solve the prob-
lem of the plasma resistivity. In this solution, the resis-
tivity depends on the plasma parameters j, a, n0, 〈n〉 , and
T. Let us try to determine the parameter range in which
the effects under consideration dominate over the non-
linear effects. Above, we have derived the rough esti-

mate ∆ ≈ . The restrictions imposed by the

Buneman instability yield ∆ < . Although the
factor that was used to truncate the integral, δ ≈
(k(0)rDe(0))–2 ! 1, is small, it cannot be too small
because of the Landau damping by the ions. It is natural
to set δ ~ Ti /Te . In the nonlinear regime with a pre-
scribed current, the density of the noises can be esti-
mated as follows [9] (see also [8]):

In the case at hand, this gives
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the instability is that associated with the plasma inho-
mogeneity. Hence, the approximate condition for the
applicability of the model developed here can be repre-
sented as

Further progress in developing the theory and refin-
ing the boundaries of its applicability requires the use
of numerical methods. However, this way seems to be
unpromising because of the large number of assump-
tions made in finding the solution. In my opinion, the
fact that it was possible to completely develop the sce-
nario is far more important than the possibility of
obtaining an exact solution. This circumstance is pecu-
liar to the problems of the dynamics of small-scale tur-
bulence in an inhomogeneous plasma: such studies
generally yield either rough estimates [10] or exact
solutions to refined model problems [11]. However,
from the physical point of view, the effects of inhomo-
geneity that determine the deceleration of particle
beams or anomalous resistivity are quite obvious and
are observed experimentally (see, e.g., [12]).

The present investigation is in a sense related to the
research that was carried out in the 1970s and 1980s in
connection with the problem of the resistivity of ran-
domly inhomogeneous media dominated by classical
resistive effects (e.g., the so-called “Dykhne medium”),
in particular, the resistivity of a weakly ionized plasma.
In the present paper, however, a study has been made
only of the mechanism responsible for the resistivity of
a randomly inhomogeneous plasma dominated by col-
lective effects. The construction of a three-dimensional
self-consistent theory is the subject of future work.

In conclusion, I would like to say that the problem
of the anomalous resistivity and turbulent heating of a
weakly inhomogeneous plasma was first brought to my
attention in the late 1960s, when I was a postgraduate
student, by my teacher Leonid Ivanovich Rudakov and
it is a pleasure to dedicate this paper to his 70th birth-
day.
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Abstract—The current density on the open field lines of the Livermore spheromak (SSPX) typically exceeds
the saturation current density of the bulk plasma. We assume that the mechanism that provides conditions for
that is associated with the formation of a thin layer near the cathode surface, where both the plasma and the
neutral density are higher than in the bulk plasma and where intense ionization occurs. The ions formed in this
layer fall back onto the cathode, whereas electrons contribute to the high current density in the bulk plasma.
The particle balance in the ionizing layer is determined by the recycling coefficient, which, in turn, depends on
the cathode temperature and the sheath voltage. As it turns out, these dependences give rise to an instability that
leads to the current filamentation and the formation of hot spots on the cathode surface. The instability can be
characterized in a phenomenological manner without going into the details of the structure of the ionizing layer,
whose effect on the instability shows up in the form of a couple of numerical coefficients of the order of one.
We predict the characteristic size and the shape of the filaments (and the hot spots), which are in a general agree-
ment with discoloration patterns on the surface of the cathode in the SSPX. If the magnetic field is tilted to the
surface, the footpoints of the filaments move with a significant velocity, whose direction depends on the ratio
of the ion gyroradius and the thickness of the ionizing layer. This instability, although primarily considered in
conjunction with the SSPX experiment, may play a role in spherical tokamaks and other systems with coaxial
helicity injection. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

We dedicate this paper to the 70th birthday of
Leonid I. Rudakov. L.I. Rudakov was among the first
plasma theorists to realize importance of the effects of
the edge on the properties of high-temperature plasmas.
A good example is his treatment of the role of cold
near-wall plasma in stabilizing flute perturbations in a
turbulently-heated mirror [1]. Our paper is also related
to edge effects, although in a different setting. We
present a theory of the current filamentation instability
driven by the dependence of the recycling coefficient
on the cathode temperature. Our work has been prima-
rily motivated by the experimental results obtained at
the SSPX spheromak at the Lawrence Livermore
National Laboratory [2–4], where the characteristic
patterns of cathode discoloration were found upon
inspection of the cathode surface after an experimental
campaign (see below). We present a theory that seems
to correctly predict both the spatial scale of these pat-
terns and their orientation.

A schematic of the SSPX experiment is shown in
Fig. 1. The spheromak is formed in the following man-
ner. First, a quasi-static poloidal magnetic field is
formed by external coils. This process is slow and the
field penetrates through all of the conducting shells.

1 This article was submitted by the authors in English.
1063-780X/03/2907- $24.00 © 20605
(The discharge itself is, however, much shorter than the
skin time for the conducting walls, and the magnetic
field remains frozen into these walls for the rest of the
discharge.) After that, a gas is puffed near the “knee” in
the annular part of the device; the gas-puff is approxi-
mately axisymmetric. Then, a voltage is applied
between the inner electrode (cathode) and the outer
electrode (ground), and the gas breaks down and is
expelled by the toroidal magnetic field into the confine-
ment chamber of the device. The plasma pulls out part
of the poloidal flux from the annular region, and a tor-
oidal magnetic configuration is formed in the confine-
ment chamber.

This paper is concerned with the processes occur-
ring in the region of open field lines near the cathode
surface (i.e., near the surface of the inner electrode in
Fig. 1). The pattern that indicates the possible presence
of current filamentation is shown in Fig. 2, where heli-
cal stripes ~1 cm wide are clearly visible. In this paper
we explain the width and orientation of these stripes.

The current density along the field lines in the SSPX
is typically a few times higher than the ion saturation
current density ~envTi (see, e.g., the book [5]), which is
evaluated for the parameters of the bulk plasma. The
model applied to a description of the filamentation
instability must take this factor into account and pro-
vide some explanations for it. We suggest that the cur-
003 MAIK “Nauka/Interperiodica”
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rent higher than the saturation one is attained via the
formation of a centimeter-thick layer with a relatively
high density of neutral atoms near the cathode; the ion-
ization of these atoms serves as a source of electrons for

Fig. 1. Cross section of the SSPX experiment; the poloidal
field coils are shown as shaded rectangles. The magnetic-
flux surfaces correspond to a spheromak sitting in the flux
conserver. The thick line shows the separatrix. We are con-
cerned with the currents on the open field lines outside the
separatrix. It is probable that in some regimes all of the field
lines become open, though they may be quite long.
sustaining a high current density in the bulk plasma,
whereas the ions fall back onto the cathode. We call this
layer the ionizing layer. The idea of an increased neu-
tral density near the material wall is by no means a new
idea: it has been analyzed in great detail in conjunction
with the physics of divertors in tokamaks (e.g., [6–8]).
We just use this idea in a somewhat different context.

We do not present a detailed analysis of the pro-
cesses occurring in the ionizing layer. As we show in
Section 3, a linear dispersion relation can be obtained
based on some very general considerations, in which
the properties of the ionizing layers enter the problem
in a compact way: via a single function µ that relates the
perturbations of the ion flux to the surface and the neu-
tral flux from the surface. This function can be consid-
ered as a phenomenological description of the ionizing
layer, whence the title of our paper comes.

The spheromak external circuit contains a large
inductance, L ~ 2.5 µH, which forces the total current
through the spheromak to be essentially constant on the
time scales of interest for the instability we are consid-
ering. We assume that the cathode potential drop
adjusts itself in a way that maintains the total current at
a constant level. On this background, however, small-
scale perturbations are allowed as long as they do not
cause the total current to vary. Thus, the voltage applied
to the spheromak also does not change in the course of
the instability development.

The instability is driven by the temperature depen-
dence of the recycling coefficient of the cathode: if the
surface temperature increases, the recycling coefficient
increases, leading to an increase of the ion flux, which
increases the heating and causes the instability. The sta-
60
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Fig. 2. A photograph of the SSPX cathode: (a) the whole cathode and (b) the middle part.
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bilizing mechanism is related to the inductive electric
field appearing in the bulk plasma in the course of the
current increase in the flux tube; this inductive field
leads to a decrease in the sheath voltage and a decrease
in the recycling coefficient (thereby introducing a neg-
ative feedback loop).

To explain qualitatively the processes that determine
the spatial scale of the filaments, we consider here the
case of the normal intersection of the magnetic field
with the wall (a general analysis is presented in Sec-
tions 2 and 3). The neutrals generated at the surface of
the cathode have a more or less isotropic velocity dis-
tribution. Accordingly, the neutrals formed at some
point on the cathode surface (Fig. 3) get ionized in a
volume whose projection onto the cathode surface has
a size of the order of ∆, the thickness of the ionizing
layer. The ions produced by the ionization of these neu-
trals get accelerated towards the cathode and shower a
surface element whose size is ~∆. This consideration
shows that the thermal feedback loop is inefficient for a
flux tube with a transverse dimension of less than ∆;
this feedback loop becomes more and more efficient as
the size of the filament increases.

There exists, however, a mechanism that suppresses
instability for sufficiently “thick” flux tubes. This is the
inductive voltage, which is directed against the growing
current and reduces the potential drop across the cath-
ode sheath, thereby reducing the recycling coefficient.
For a given current perturbation, the inductive voltage
scales linearly with the transverse size of the fluxtube,
thereby making positive feedback impossible for suffi-
ciently thick flux tubes.

An optimum scale of the perturbations is established
by an interplay of these two effects. It turns out to be
somewhat larger than ∆ (see Section 3) and, in the case
of a normal intersection, does not depend on the mag-
netic-field strength. If the magnetic field is tilted
towards the surface, the ion trajectories in the ionizing
layer become sensitive to the magnetic-field strength,
and the whole picture becomes more complex. In Sec-
tion 4, we analyze in some detail the situation where the
thickness of the ionizing layer is less than the ion gyro-
radius.

To put our work in the context of previous studies of
the formation of hot spots, we mention an elegant anal-
ysis by Nedospasov and Petrov [9], who showed that
thermal instability in a currentless plasma may occur
due to the temperature dependence of electron ther-
moionic and secondary emission. Later, Nedospasov
and Bezludny [10] considered a similar problem but
including heat transport along the surface. Neither of
these papers consider effects caused by high plasma
currents and neutral recycling, which are crucial in our
model. Cathode arcs have been surveyed by Wolff [11].
They typically have spatial scales much smaller than
the 1- to 2-cm-wide helical patterns observed in the
SSPX. In some areas of the SSPX cathode, chicken-
track patterns are visible, whose width is less than
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
1 mm. They are probably caused by arcing. But they
generally do not overlap with the zone where the afore-
mentioned smooth helical structures with a width of 1–
2 cm are observed.

In the numerical estimates, we will use the follow-
ing assumptions regarding the bulk-plasma parameters:

(1)

where n and T are the density and temperature of the
bulk plasma, B is the magnetic-field strength, and j is
the current in the bulk plasma (which is almost parallel
to the magnetic field). The sheath potential UC can be
quite high. We take as a representative value

UC = 300 V. (2)

A typical experimental “shot” on the SSPX device con-
sists of a formation phase, a sustainment phase, and a
decay phase. The plasma parameters may vary signifi-
cantly between the phases. The set of parameters shown
above corresponds to the situation of relatively long
flux tubes connecting electrodes, with a connection
length of ~10 m or more, and high current densities. On
the other hand, the general dependences found in our
study may be relevant to other phases of the SSPX dis-
charge (although we do not pretend to cover all the con-
ceivable mechanisms of current filamentation in these
other regimes). Our results may be of interest not only
to gun-driven spheromaks (like the SSPX) but also to
other systems with coaxial helicity injection, in partic-
ular, spherical tokamaks [12].

n = 5 × 1013 cm–3, T = 100 eV,

B = 2 kG, j = 300 Ä/cm2,

C
at

ho
de

∆

i e

Fig. 3. The case of a normal intersection of the magnetic
field with the cathode surface. Neutrals (thick arrows) orig-
inating at some point at the cathode surface propagate at
various angles with respect to the magnetic field and are
ionized at the tips of the arrows. The ions (solid arrows) are
pulled back to the cathode by the electric field, whereas the
electrons (dashed arrows) contribute to the current in the
bulk plasma. Although the neutrals originated at one point,
the ions cover an area comparable to the thickness of the
ionizing layer ∆.
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The paper is organized as follows. In Section 2, we
present the physical model used in our analysis. In Sec-
tion 3, which is central in our paper, we derive the lin-
earized equations describing the instability. In Section 4,
we discuss a “toy” model with specific predictions
regarding the properties of the function µ and consider
the role of the magnetic field. In Section 5, we relate
these results to the discoloration patterns on the cathode
of the SSPX. Section 6 contains a discussion of our
results.

2. THE MODEL

2.1. The Recycling Coefficient

The typical spatial scale of the discoloration pattern
in the SSPX is ~1 cm, which is much less than the other
characteristic scales; e.g., the cathode diameter is
~80 cm, and the connection length of the magnetic-
field lines (and current streamlines) between two elec-
trodes is believed to exceed several meters. This allows
us to use the planar model of the cathode surface shown
in Fig. 4. The magnetic field is, generally speaking,
tilted by some angle α to the cathode.

We assume that the surface of the cathode contains
a significant amount of absorbed hydrogen. The num-
ber of neutral atoms R released from the surface when
an ion hits the surface depends, generally speaking, on
the surface temperature Ts and the cathode sheath volt-
age UC (which determines the energy of the ions bom-
barding the cathode):

R = R(Ts, UC). (3)

One can expect R (called the recycling coefficient, [5])
to be a growing function of both Ts and UC in the range
of parameters of interest in our problem (Ts ~ 500–
1500 ä, UC ~ 100–1000 V). In principle, one might also
include in the consideration the dependence of R on the
number σ of hydrogen atoms per 1 cm2 of the surface.
This dependence is weak if this number is greater than
that corresponding to one monolayer. The inclusion of
this dependence does not change our results in an
appreciable way. In the steady-state equilibrium, R is
necessarily equal to one (if, as we assume, there are no

B
z1

z

x1

xα

Fig. 4. The planar geometry. The x axis is directed along the
projection of the magnetic field onto the cathode surface.
The y axis is directed away from the viewer.
external particle sources, such as neutral beam injection
or gas puff). However, in the perturbations, R may devi-
ate from its equilibrium value.

Unfortunately, experimental data regarding the
function R are essentially unavailable. On the other
hand, from a general standpoint, the presence of the
temperature dependence of the recycling coefficient is
not surprising: One can allude here to a mechanism
mentioned in [13] (although for carbon), whereby the
ion bombardment creates point defects (interstitials)
that diffuse to the surface and show up there as atoms
very weakly bound to the surface (the binding energy is
~0.15 eV). Then, thermal activation leads to their sub-
limation. The same line of reasoning shows that R
should also be a growing function of UC. Thus, one can
expect that

(4)

The degree of the dependence of R on Ts and UC at
some specific value of Ts and UC can be characterized
by the dimensionless parameters

(5)

which themselves depend on Ts and UC. The numerical
factor in the first one is introduced to simplify the sub-
sequent equations (see Section 3). As the typical sur-
face temperature is below the expected activation
energy of a few tenths of an electronvolt, ξ1 should be
relatively large. In the numerical examples below, we
take as a representative value ξ1 = 4. With regard to ξ2,
we assume that its representative value is 2. Note that
the growth rate and the characteristic spatial scale of the
perturbations depends on ξ1 and ξ2 relatively weakly
(Eq. (52) below).

We limit ourselves to these general observations.
The development of a consistent theory that would
describe the dependence of R on Ts and UC goes beyond
the scope of this paper. This is another aspect of our
analysis that calls for the qualifier phenomenological in
the title of the paper.

2.2. The Ionizing Layer

The atomic hydrogen released from the surface pen-
etrates into the plasma to a distance ∆ determined by
the ionization process. A rough estimate of this distance
is

∆ ~ v 0/ν, (6)

where v 0 is a characteristic velocity of the neutrals and

ν = n〈σv 〉 i (7)

is the ionization frequency, with n being the electron
density and the averaging being performed over the
electron distribution function. We assume that

v 0 ~ 1.5 × 106 cm/s, 〈σv 〉 i ~ 2 × 10–8 cm4/s. (8)

∂R/∂Ts 0, ∂R/∂UC 0.> >

ξ1

πTs

2
------------- ∂R

∂Ts

--------, ξ2 UC
∂R

∂UC

----------,≡ ≡
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Note that in the range of electron temperatures between
10 and 100 eV, the parameter 〈σv 〉 i varies only by a fac-
tor of 2 [5]. For the plasma parameters in Eq. (1), the
characteristic thickness of the ionizing layer is ~1 cm
and the characteristic ionization time 1/ν ≡ ∆/v0 is
~1 µs.

Charge exchange (e.g., [5]) also has an effect on the
thickness of this layer. On the other hand, for the
plasma parameters of Eq. (1) this effect is relatively
modest. Note also that in the case α ~ 1, the plasma ions
in the ionizing layer move toward the absorbing cath-
ode and fast neutrals generated by the charge exchange
are directed to the wall. The same is true in the case
α ! 1, if ∆ is less than or comparable to the ion gyrora-
dius (which it is in the SSPX).

On the other hand, when α ! 1 and ∆ is much
greater than the gyroradius, the charge-exchange pro-
cess generates some number of neutrals with energies
of the order of Ti ~ 100 eV moving away from the wall.
Some of these fast neutrals would penetrate into the
bulk plasma (e.g., [5]) because of their higher velocity.
But under the conditions we are interested in, viz, when
the current density substantially exceeds the saturation
current density, the fraction of the current generated by
the ionization of these neutrals is small. Accordingly, in
this first rough model we assume that all the neutrals
released from the cathode are ionized in the ionizing
layer, even in the case of small α and a small gyroradius
(Section 4.5).

A sketch of the spatial distribution of unperturbed
plasma parameters is shown in Fig. 5. Note the two-
scale variation of the voltage: there is a steep potential
drop in the Debye sheath near the wall, followed by a
more gradual variation in the layer of a thickness ~∆
where the ionization occurs. For Maxwellian electrons,
the potential difference between the plasma and the
entrance to the Debye sheath will be of the order of Te

(e.g., [5]), whereas the potential drop in the Debye
sheath will be on the order of a few hundred electron-
volts to provide a large enough acceleration for the ions
striking the cathode and thereby make the recycling
coefficient R equal to 1 (we are speaking here about the
quasi-steady state, not about the perturbations). If the
voltage decreases, R drops, leading to a decrease in the
current and restoring the voltage at the required level
via the –LdI/dt term. Conversely, if voltage increases,
this leads to an increase in R, an increase in the current,
and a return of the voltage to the level needed to keep
R = 1. Note that here we are speaking about the uniform
component of the current, which is determined by a
highly inductive external circuit and essentially stays
constant during the times of interest to us. Small-scale
current variations (which we consider below) do not
affect the global current (because their surface average
is zero) and are free of these constraints (see below).

As we are interested in the situations where the cur-
rent density is significantly higher than the saturation
current density, the steady-state voltage UC is high, sig-
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
nificantly higher than Te/e in the vicinity of the cathode.
The electron current to the cathode is therefore almost
totally suppressed and the current to the cathode is
almost entirely generated by the ions formed by the ion-
ization of the neutrals released from the cathode. The
electrons formed in the ionization events move in the
opposite direction, thereby assuring a high current den-
sity in the bulk plasma.

2.3. The Surface Temperature

The energy flux to the cathode can be approximately
represented as

(9)

where ji is the normal component of the ion current den-
sity at the cathode surface. We neglect here the thermal
contribution to the energy flux. This is justified because
of the inequality UC @ T/e. Note that, in the case of the
tilted magnetic field α ≠ π/2) ji is related to the current
density j in the bulk plasma (i.e., the current density
quoted in Eq. (1)) by the following obvious relation:

(10)

The cathode temperature gradually grows with time
from its initial value (room temperature). Assuming
that P in Eq. (9) is constant, one can easily obtain the
following expression for the increase in the surface
temperature of a semi-infinite medium:

(11)

P jiUC,=

ji j α .sin=

Ts P
4τ

πκCp

-------------,=

UC

Te

n0

n

ϕ

∆

Fig. 5. A sketch depicting the spatial distribution of the
plasma parameters in the ionizing layer. For simplicity, we
assume that the cathode is at zero potential. Note the two-
scale structure of the potential drop: a relatively smooth
variation in the ionizing layer followed by a very steep drop
in the Debye sheath.
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where κ is thermal conductivity, Cp is heat capacity, and
τ is the time elapsed since the beginning of the pulse.
Black body radiation from the surface is negligible and
is ignored in Eq. (11).

In the case of the SSPX, the cathode is made of cop-
per coated by 100-µm-thick tungsten. This thickness is
comparable (although somewhat less than) the heat-pen-
etration depth for the characteristic time of the experi-
ment, τ = 1 ms. Thus, the surface temperature will lie
somewhere between the value for copper and tungsten.
For copper, κ = 4 W/(cm K) and Cp = 1.9 J/(cm3 K),
whereas for tungsten, κ = 1.54 W/(cm K) and Cp =
2.63 J/(cm3 K). Taking P = 45 kW/cm2 (this corre-
sponds to ji = 150 A/cm2 and UC = 300 V) and τ = 1 ms,
we find that Ts = 580 K for copper and Ts = 800 K for
tungsten.

3. LINEAR PERTURBATIONS

3.1. Ion Current Perturbation vs. the Perturbation 
of the Neutral Flux

We are looking for the perturbations whose tempo-
ral dependence is exp(Γt), with Γ possibly complex,
and whose spatial dependence over the cathode surface
is exp(ikxx + ikyy). For example, the perturbation of the
normal component of the ion current hitting the wall is

(12)

with δji being the complex amplitude. The positive real
part of Γ corresponds to the instability. By using
Eq. (12), we imply that the spatial scale of perturba-
tions is much less than the “external” spatial scale of
the problem (e.g., the interelectrode distance) and the
growth rate is high compared to the characteristic time-
constant of the discharge τ.

Denoting the complex amplitude of the perturbation
of the neutral flux from the surface by δjn (in the equiv-
alent amperes), we have

(13)

Here and below the quantities not bearing a prefix “δ”
are unperturbed quantities. As in the unperturbed state
R = 1 (see Section 2.1), Eq. (13) can be rewritten as

(14)

According to Eq. (3), the variation of R is caused by
variations of the surface temperature and the cathode
sheath voltage,

(15)

If we want to include the dependence of R on the
parameter σ introduced after Eq. (3), we have to add the
term (∂R/∂σ)δσ to the r.h.s., with δσ = (δji – δjn)/eΓ.
The addition of this term leads to some reduction of the
growth rate for the slowly growing modes (small Γ) but

δ ji Γ t ikxx ikyy+ +( ),exp

δ jn Rδ ji jiδR.+=

δ jn δ ji jiδR.+=

δR
∂R
∂Ts

--------δTs
∂R

∂UC

----------δUC.+=
has little effect on the fastest growing modes. Accord-
ingly, we will ignore this additional term.

Perturbation of the neutral flux (14) causes perturba-
tion of the ion flux; in the linear approximation,

(16)

where µ is a function of k and Γ. Its details depend on
the structure of the ionizing layer, but some general
properties are obvious: At large k (k @ ∆–1, where ∆ is
the thickness of the ionizing layer), µ is much less than
1. This is because the neutrals leave the surface in a
quasi-isotropic fashion, and the neutrals from the
neighboring positive and negative regions of the sinu-
soidal perturbation mix with each other at a distance of
~1/k ! ∆ (Fig. 3), eliminating any neutral density per-
turbation over the major part of the layer. Similarly, µ is
much less than 1 for large Γ, Γ @ v 0/∆. Indeed, the
quantity on the right-hand side of this inequality is
nothing more than the inverse ionization time (see
Eq. (7)). If the characteristic time of the perturbation
growth is much shorter than the ionization time, the
ionization lags behind the increased δjn, and, corre-
spondingly, µ drops. Conversely, for slow (Γ ! v 0/∆)
large-scale (1/k @ ∆) perturbations, all the neutrals
released from the surface get ionized and return to the
surface in the form of ions; accordingly, in this case µ
is close to 1. (We assume here that even though k and Γ
are small in the sense of inequalities Γ ! v 0/∆ and
1/k @ ∆, they are still compatible with our assumption
that Γτ  @ 1 and kL @ 1.) In Section 4, we present an
explicit expression for µ for a particular model of the
ionizing layer.

3.2. Inductive and Resistive Effects

3.2.1. Inductive effects. For perturbations of the
form (12), the net current (the current integrated over
the cathode surface) does not change, and these small-
scale perturbations do not show themselves in the exter-
nal circuit. In particular, the voltage applied to the
spheromak is not affected. This is not to say that local
perturbations of UC (which affect the recycling coeffi-
cient (3)) do not exist. Indeed, as we will show in this
section, the time-varying currents generate inductive
electric fields and lead to variations of UC.

In evaluating UC, it is convenient to use a coordinate
frame (marked with the subscript “1,” Fig. 4) with the
axis z1 directed along the magnetic field, so that

(17)

We assume that the current in the bulk plasma flows
along the magnetic-field lines (a good assumption for a
low-beta plasma) so that only the parallel (z1) compo-
nent is present and that it is equal to δji /sinα, where δji

is the current perturbation at the cathode introduced in
Section 3.1. The spatial dependence of perturbations in

δ ji µδ jn,=

x x1 αsin z1 αcos , y– y1,= =

z x1 αcos z1 α .sin+=
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the frame 1 can be characterized by the wave number
k1 ≡ (kx1, ky1) ≡ (kx/sinα, ky). The magnetic-field pertur-
bation can be found from equation — × δB = (4π/c)δj.
As the current is directed along the z1 axis and does not
depend on z1, the complex amplitude of the magnetic
field perturbation is

(18)

where ez1 is a unit vector in the z1 direction. We neglect
zones in the vicinity of the electrodes, where the sur-
face current makes the magnetic-field perturbation tan-
gential to the wall.

Assume first that the plasma is a perfect conductor
(we consider the resistive effects later), so that the z1
component of the electric field is absent. Then, the
equation — × δE = –(1/c)∂δB/∂t can be rewritten as

(19)

All the terms in this equation, except for the second
term in the l.h.s., are perpendicular to ez1. Therefore,
kxδEy – kyδEx = 0 or, in other words, the electric field in
the plasma is parallel to k1 and varies linearly along z1:

(20)

The integration of this equation along the field line
between the cathode and the anode yields the difference
of the electric field between the plasma side of the ion-
izing layer at the cathode and the plasma side of the
sheath near the anode,

(21)

where L is the length of the field line between the cath-
ode and the anode. We use here separation of scales,
Lk @ 1, L @ ∆, and neglect contributions of the edge
effects. (For distances from the conducting wall of
~1/k, the surface currents in the wall make δB parallel
to the wall, so that Eq. (18) breaks down. However, as
the zones where this happens are small compared to L,
one can neglect their contribution to the r.h.s. of
Eq. (21).)

As the tangential component of the electric field on
the surface of a perfectly conducting electrode is zero,
the presence of the tangential component of the electric
field on the plasma side of the sheaths means that the
sheath potential varies along the surface. We again use
the separation of scales, L @ ∆, which allows us to
clearly separate the sheath zone, where the electric field
can be adequately described in terms of the electrostatic

δB
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potential, and the bulk plasma, where the electric field
has an inductive component. We will denote potential
variations in the cathode and anode sheaths (including
the ionizing layer) by δUC and δUA, respectively. We
define them as the potential difference between the
plasma side of the sheath and the electrode (cathode or
anode). Obviously, δUC = i(δEC · k)/k2 and similarly for
the anode. We then obtain from Eq. (21)

(22)

We can easily show that eδUA/Te = δj/(j + jsat) (see,
e.g., Appendix 2 in [14]). On the other hand, we can
check that, for the most unstable modes, the r.h.s. of
Eq. (22) is UCδj/j. As in the case under consideration
UC @ Te/e, we can neglect the first term in the l.h.s. of
Eq. (22) to obtain

(23)

In principle, it is easy to retain the terms related to
δUA in the l.h.s. of (22), but this does not add any qual-
itatively new effects; it just makes the equations signif-
icantly longer. If the spheromak magnetic field exhibits
stochastic behavior, then L should be understood as the
distance at which flux tubes with a size ~k–1 lose their
identity. In this case, L becomes less than the connec-
tion length.

3.2.2. Polarization current. The presence of the
electric-field perturbation (20) causes a plasma drift in
the k1 × ez1 direction with the velocity

(24)

which varies in time as exp(Γt). Accordingly, a polar-
ization current δjp develops in the bulk plasma,

(25)

Because of the charge-neutrality condition, the parallel
component of the current δj varies along the magnetic
field according to the equation ∂δj/∂z1 = –ik1 · δjp. For
this variation to be small (and the analysis of the previ-
ous subsection to be correct), we have to impose the
following condition (see Eq. (25)):

Γ < vA/L, (26)

where vA is the Alfven velocity. For a connection length
L ~ 10 m, a growth rate Γ ~ 2 × 104 s–1, and the other
parameters as in Eq. (1), this inequality holds by a mar-
gin of 3–4, thereby justifying the use of Eq. (23).

In the hypothetical case where an inequality oppo-
site to (26) holds, the instability will be accompanied
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by the excitation of Alfven waves propagating into the
plasma. This case can be treated in the same way as that
used in [15] for the analysis of another instability
driven by the boundary conditions of the wall.

3.2.3. Resistive effects. If the plasma has finite
resistivity, then a parallel electric field appears in the
plasma, related by the equation

(27)

to δji and independent of z1 (assuming that η and δji are
independent of z1). This field adds to the variation of the
drop of the sheath potential and can be easily incorpo-
rated in Eq. (22) yielding

(28)

In the case of the SSPX, the resistive term is small.
Indeed, we can neglect it compared to the inductive
term under the condition that Γ > ηc2k2/4π. For a
plasma temperature of 100 eV, a wave number of
~0.5 cm–1, Γ ~ 105 s–1, and α ~ 0.3, it is satisfied by a
large margin. Accordingly, in what follows, we neglect
this term.

3.3. Surface Temperature Variation

Variations of the current to the cathode and the
sheath voltage cause variations of energy flux, δP,
through the cathode surface:

(29)

This, in turn, causes variations of the cathode tempera-
ture. We use the following heat conduction equation:

(30)

where Cp is specific heat of the cathode material and κ
is thermal conductivity. We neglect heat transport along
the surface because the inequality Γ > κk2/Cp holds by
a very large margin. For perturbations proportional to
exp(Γt), this equation has the following simple solution
for the perturbation of the surface temperature:

(31)

Rapid variations in the temperature do not penetrate
deeper than the tungsten coating, so the material con-
stants in this equation should correspond to tungsten,
while in the expression for Ts, some averaged constants
should be used. Here we will neglect this (relatively

δEz1
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minor) difference; then, by combining Eqs. (11) and
(31), we obtain

(32)

The energy flux perturbation, according to Eqs. (23)
and (29), can be presented as

(33)

where

(34)

Note that the parameter j that enters Eq. (34) is the bulk-
plasma current density related to ji by Eq. (10). The
numerical value of Deff for the set of parameters of
Eqs. (1) and (2) is

Deff = 1.06 × 105 cm2/s. (35)

The source of instability, as discussed in the Introduc-
tion, is related to the feedback between the temperature
increase and the increase of the current in some spot.
This requires δTs be positive for positive δji . On the
other hand, Eq. (33) shows that, for high Γ, δP and
(according to Eq. (32)) δTs become negative for posi-
tive δji . This obviously imposes the following con-
straint on the instability growth rate:

(36)

For the typical parameters of the SSPX (UC ~ 300 V,
ji ~ 300 A/cm2, L ~ 10 m, and α ~ 0.3) and perturbation
wave number k ~ 0.5 cm–1, one finds that the growth
rate is limited to ~6 × 104 s–1—fast enough to generate
instability in the SSPX (where the characteristic pulse
length is 2 ms).

3.4. Dispersion Relation

Substituting into Eq. (15) the expressions for δTs

and δUC given by Eqs. (32), (33), and (23), and using
Eqs. (14) and (16), one obtains the following dispersion
relation:

(37)
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where ξ1 and ξ2 are positive dimensionless parameters
(5). In further numerical estimates, we will assume that

ξ1 = 4, ξ2 = 2. (38)

As has been mentioned in Section 3.1, for slow
large-scale perturbations, µ becomes close to 1 and the
l.h.s. of Eq. (37) vanishes, yielding a simplified disper-
sion relation. It is convenient to present this equation in
dimensionless units,

(39)

It is also convenient to introduce the parameter η char-
acterizing the direction of the wave vector k with
respect to the tangential component of the magnetic
field:

(40)

where θ is the angle between k and the tangential mag-
netic field. The dimensionless dispersion relation reads

(41)

A series of plots of the dimensionless growth rate
vs. the dimensionless wave vector are presented in
Fig. 6 for ξ1 and ξ2 as in Eq. (38). As an upper limit for
k*, we take the value corresponding to the wave vector
k approaching the applicability limit ~1/∆. To be spe-
cific, we take this limit to be k = 0.5/∆. The correspond-
ing value of k* is obviously

(42)

In evaluating the numerical value of , we have
assumed that τ = 1 ms, ∆ = 1 cm, and Deff is as in

Eq. (35). This value of  is shown as a vertical line

in Fig. 6. In dimensional numbers, kmax = /
is about 0.5 cm–1.

Note that, for θ = 0 the perpendicular wave number
in the bulk plasma is kmax/α (see Section 3.2.1). For the
case of the SSPX, α ~ 0.3 and so the perpendicular
length scale approaches the ion gyroradius. This, how-
ever, does not necessarily mean that the current fila-
ments get mixed with one another, because the current
is carried by the electrons. It would rather mean that
cross-field drifts (Eq.(24)) will be slowed down (by
gyroviscous terms) and the excitation of shear Alfven
waves (Section 3.2.2) will become impossible.

From Fig. 6, we see that the instability favors pertur-
bations with wave numbers that do not deviate signifi-
cantly from the direction of the tangential component
of the magnetic field. This, in turn, means that cathode
patterns have to be stretched in the direction perpendic-
ular to that of the tangential magnetic field. As we dem-
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onstrate in Section 5, this is in agreement with experi-
mentally observed patterns. Maximum growth rates are
much larger than 1/τ, meaning that the instability is fast
and thereby justifying our approach to the background
as being steady state.

For perturbations propagating normally to the tan-
gential component of the magnetic field (θ = π/2), the
parameter η (Eq. (40)) and, accordingly, dispersion
relation (41), do not depend on the angle α at all. In par-
ticular, the case θ = π/2 describes the normal orienta-
tion of the magnetic field to the surface (α = π/2).

Another observation that can be made from Fig. 6 is
that the growth rate remains very small compared to the
ionization frequency ν (Eq. (7)) even for k approaching
∆–1. This means that, in the expansion of µ in the pow-
ers of small parameters, k∆ and Γ/ν,

(43)

where Q, Qi , Qij , etc., are some dimensionless coeffi-
cients, we can neglect the term proportional to Γ/ν and
higher-order terms in Γ; i.e., we can use the expression

(44)

The linear term in the expansion appears only if the
magnetic field is tilted with respect to the wall. One can
show that this term is universally purely imaginary.

µ 1 Qiki∆ Qijkik j∆
2

QΓ /ν … ,+ + + +=
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θ = π/2
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Fig. 6. The dimensionless growth rate vs. the dimensionless
wave number for ξ1 = 4, ξ2 = 2. The solid lines represent the
solution of dispersion relation (41) for various directions of
the wave vector in the xy plane; θ = 0 corresponds to the
wave vector aligned with the magnetic-field projection onto
the plane; the dotted vertical line corresponds to k∆ = 0.5.
The dashed line represents the dispersion curve for disper-
sion relation (37) with µ as in (59). The dashed-and-dotted
line corresponds to dispersion relation (37) with α = π/2 and
µ as in (51).
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4. A SIMPLE MODEL FOR µ; 
MAGNETIC-FIELD EFFECTS

4.1. Main Assumptions

The growth rate in the limit of µ = 1 is an increasing
function of k. Therefore, we have to consider effects
that turn on at large k and make µ less than 1. This will
be done in this section, where we consider perturba-
tions with arbitrary k and Γ, based on a simple model.
We assume that the neutrals emerge from the cathode
surface in the form of an isotropic Maxwellian distribu-
tion. In other words, the neutral distribution function at
the surface of the cathode is assumed to be

(45)

where v 0 is the characteristic neutral velocity. The nor-
malization of this distribution is taken in such a way
that the neutral current from the surface is δjn. Neutrals
released from the surface travel away from it and are
gradually ionized by the plasma electrons.

After an ion is formed, it is pulled towards the cath-
ode by the electric field existing in the ionizing layer.
We assume that the ion does not experience collisions
on its way to the cathode. The ions reach the cathode
very quickly, so we neglect temporal lags in the ions
reaching the surface.

In reality, this simple picture is affected by charge-
exchange processes that would change our results by an
order of one. On the other hand, as will be seen from the
further derivation, the most important features of our
model are qualitatively quite robust.

4.2. Neutral Distribution Function

For perturbations of the form (12), the kinetic equa-
tion for the neutral distribution function reads as

(46)

where ν is the ionization rate (6), which we assume for
simplicity does not depend on the coordinates and time.
As the neutrals move relatively slowly, we retain here
the term Γδfn describing the effects of temporal varia-
tion. The solution of this equation satisfying the bound-
ary condition (45) is

(47)

The neutral density perturbation is

(48)
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4.3. Ion Current to the Wall for the Normal 
Magnetic Field

It is instructive to find δji in the simplest case where
the magnetic field is normal to the wall. In this case,
each ion hits the wall at the point situated just “under”
its point of origin. We neglect here their time-of-flight
delay, because, for the ions with the energy of several
tens of electronvolts it is much smaller than the neutral
delay time. This means that the perturbation of the ion
current to the wall is equal to

(49)

Substituting Eqs. (47) and (48) into (49) and integrat-
ing, first, over dz and, then, over dv z, it is easy to obtain
the following expression for µ:

(50)

In agreement with the preliminary discussion of Sec-
tion 3.1, µ is close to unity for long-wave (k ! ν/v 0 =
∆–1) slow (Γ ! ν) perturbations. Also in agreement with
a qualitative discussion of Section 3.1, µ becomes
much less than 1 if the opposite inequalities hold. For
slow long-wavelength perturbations, the following
approximate (to the lowest-order corrections in Γ/ν and
k∆) expression for µ holds:

(51)

(according to the comment made at the end of Sec-
tion 3.4, we have neglected the term Γ/ν). Because of
the symmetry of the problem, there is no linear (over k)
term in the expansion.

For the conditions of the SSPX experiment, the
analysis of dispersion relation (37) with µ as in Eq. (51)
is simplified because the ratio ∆2/Deffτ in this experi-
ment is small, ~10–2. One can show that in this case the
following approximate expressions for the maximum
growth rate and the corresponding (optimum) wave
number hold:

(52)

Note that indeed (as was mentioned in Section 2.1), the
dependence of the growth rate and especially the char-
acteristic wave number on the parameters ξ1 and ξ2 is
relatively weak. Neither the growth rate nor the opti-
mum wave number depend on the magnetic field. In
particular, kopt is unrelated to the ion gyroradius. The
plot of Γ vs. k for the case of the magnetic field normal
to the wall is shown in Fig. 6 by a dash–dotted line.
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4.4. Effect of a Weak Magnetic Field

The magnetic field affects our analysis if it is tilted
with respect to the surface. To get some qualitative
insights into the corresponding effects, we consider
here only the case where the tilt is strong, i.e., the angle
α is smaller than, say, 0.5 rad (30°). By “weak” we
mean such a magnetic field that the ions born in the ion-
izing layer reach the wall moving across the magnetic
field, as illustrated by Fig. 7.

The electric field in the ionizing layer can be
roughly evaluated as

E ~ 2Te/e∆. (53)

For simplicity, we assume it to be uniform over the
ionizing layer. It can pull the ion to the wall across the
magnetic field through a gap of width ∆ if

(54)

This is what we call a weak magnetic field. For an E as
in Eq. (53), ∆ ~ 1 cm and Te ~ 50 eV. Eq. (54) yields B <
2 kG. Such a situation can often be met in the SSPX.

In this case, the ions formed in the layer will reach
the cathode not exactly under the point where they orig-
inated, but shifted along the y axis by some distance.
We shall evaluate this displacement in the case where B
satisfies condition (54) by some margin. Then the ion
displacement with respect to its point of origin is

(55)

Here, the scale length ρ* (the half amplitude of the cyc-
loidal trajectory of the ion starting at a zero velocity) is

(56)

We recall that, for expression (55) to be valid, the scale
length ρ* must exceed ∆.

The presence of the displacement δy means that, to
evaluate the contribution to the perturbation of the ion
current at some point y, one would have to find the ion-
ization rate at the point off-set by the distance δy in the
y direction. In other words, instead of the integral (49),
we would have now

(57)

As the instability is strong only for the wave numbers
significantly less than the inverse thickness of the ion-
izing layer, the exponent is small compared to 1, and we
can use the following simplified expression for δji:

(58)
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In the same approximation as Eq. (51) (i.e., small wave
numbers and growth rates), we then obtain that

(59)

We will not present a detailed analysis of the disper-
sion relation (37) with µ as in (59). The maximum
growth rate corresponds to ky = 0 (θ = 0) and is there-
fore unaffected by the presence of the last term in
Eq. (59). For ky = 0, the dispersion relation (37)
becomes quite simple. Its solution for α = π/6 is shown
on Fig. 6 by a dashed line. The maximum growth rate
and the corresponding wave number are described by
Eq. (52), in which ξ2 is replaced by ξ2sin2α. The spatial
scale, again, is independent of the magnetic-field
strength and is unrelated to the ion gyroradius.

Although the last term in Eq. (59) does not affect the
maximum growth rate or the characteristic scale of per-
turbations, this term brings with it a new effect, namely,
that the perturbations acquire a finite phase velocity
along the y axis. For the conditions of the SSPX, this
phase velocity ~106 cm/s. Therefore, current filaments
rapidly move in the direction perpendicular to the pro-
jection of the magnetic field on the cathode surface.

4.5. Effect of a Strong Magnetic Field

In the previous section, we looked into the situation
where the parameter ρ* (Eq. (56)) describing the extent
of the ion orbit in the z direction is greater than or com-
parable to the width of the ionizing layer. In this sec-
tion, we will very briefly consider the opposite limiting
case, where the magnetic field is so strong that the ions
are strongly tied to the field lines and the size of the
gyroorbit is negligibly small compared to ∆.

In this case one can assume that an ion formed
within the ionizing layer moves simply along the mag-
netic-field line. The ion that was formed at some point
(x, y, z) hits the surface at the point (x + z/α, y, 0).

µ 1
k

2
v 0

2

ν2
-----------– iky∆

∆
ρ*
------

2πΓ 7/4( )
4

---------------------------.+≈

B

α

δy

1

z

x

y

Fig. 7. Ion displacement in the case of a weak magnetic
field. The dotted line shows the trajectory of an ion originat-
ing at point 1.
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Therefore, instead of expression (49) for δji , we now
have

(60)

Assuming, as before, that Γ ! ν and k∆ ! 1 (but not
necessarily that kx∆/α is small), we obtain the following
expression for µ:

(61)

One can show that the fastest growing perturbations are
now stretched along the magnetic-field projection onto
the cathode surface and the growth rate somewhat
decreases compared to the case of a weak magnetic
field. The perturbations are now moving in the direction
parallel to the magnetic-field projection onto the cath-
ode.

5. RELATION TO THE SSPX EXPERIMENT

A schematic of the SSPX device is shown in Fig. 1.
We are concerned with the vertical part of the cathode
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Fig. 8. Comparing theory predictions with experimentally
observed patterns: (a) the dependence of the vertical and
azimuthal magnetic fields on the distance from the top of
the cathode; (b) the arrows show the projection of the mag-
netic field (near the cathode) onto the cathode surface. The
shaded areas show the predicted shape of the discoloration
patterns for two of the hot spots. The width of the patterns
(not shown to scale) is ~ 1/kopt. The block arrows show the
direction of motion of the hot spots. The overall structure
shown in Fig. 2 is a superposition of a number of such pat-
terns. In the lowest part of the cathode, such structures are
replaced by chicken-track patterns produced by some other
mechanism (possibly, vacuum arcs). One of them is shown
near the bottom of the figure (not to scale).
surface, where the helical pattern is present (Fig. 2).
The current flowing along the cathode surface
decreases from the top to the bottom of the cathode
because a substantial part of it transfers to the plasma.
Accordingly, the azimuthal component of the magnetic
field on the cathode surface varies with the height,
decreasing toward the lower part of the electrode (the
solid line in Fig. 8a). The vertical component of the
magnetic field on the cathode surface, determined
largely by the azimuthal currents flowing in a plasma,
varies along the cathode surface as shown by the dashed
line. Therefore, the projection of the field line onto the
cathode surface varies from the upper to the lower part
of the gun, as is shown in Fig 8b.

According to the instability analysis of Sections 3
and 4, the fastest growing perturbations in the case of
the SSPX are stretched in the direction perpendicular to
the magnetic-field projection onto the cathode surface.
Therefore, the traces made by hot spots on the cathode
surface should look like the shaded areas in Fig. 8b.
This picture looks very similar to the orientation of the
discoloration patterns shown in Fig. 1: the traces are
oriented more or less vertically in the upper part of the
gun and more or less horizontally in the lower part. The
elongated spots shown in Fig. 8 move in the direction
of the thick arrows, creating a characteristic helical pat-
tern with a variable pitch as is visible in Fig. 2.

The characteristic width of the perturbations should
be roughly equal to 1/kopt, where kopt is the wave num-
ber corresponding to the maximum growth rate. Taking
the dashed curve in Fig. 6 (it corresponds to the param-
eters of the SSPX) and using Eq. (39), we find that the
optimum wave number (in dimensional units) is

(62)

Taking Deff as in Eq. (35) and τ = 1 ms, one finds that
1/kopt ~ 1 cm, which is in reasonable agreement with the
width of the discoloration patterns visible in Fig. 2. The
growth rate can be evaluated (in dimensional units) as

(63)

It is much larger than 1/τ, thereby allowing the pertur-
bations to reach large amplitude.

In the lowest part of the gun, the cathode does not
display patterns of the type we have just discussed. It
may mean that the current has already left the cathode
surface higher up and the mechanism we discuss does
not work. In this lowest part of the gun, the cathode sur-
face displays a different type of structure, the familiar
chicken-track patterns (Fig. 8b), but these certainly
have a different origin and may be associated with the
formation of vacuum arcs.

6. DISCUSSION
We have developed a phenomenological theory of

the instability driven by the processes occurring in the

kopt
6

Deffτ
----------------.≈

Γmax 35/τ .≈
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vicinity of the cathode surface, under the condition that
the plasma current density is significantly greater than
the saturation current density. We hypothesize that the
necessary current density is provided by the ionization
of neutral atoms released from the cathode surface. The
layer where an elevated neutral density is present is
postulated to be narrow compared to the global scale.
However plausible this model is, we do not present a
detailed quantitative analysis of the ionizing layer that
consistently accounts for various atomic processes and
the effects of a tilted magnetic field. This is deferred to
a further study, based possibly on the use of codes like
UEDGE [16, 17] and B2/EIRENE [18].

On the other hand, for long-wavelength modes these
processes do not enter the problem at all, whereas for
the modes that determine the maximum growth rate
they enter the problem via numerical coefficients of the
order of one (Qi and Qij in Eq. (44)). This makes our
results quite robust.

We have not touched upon the important issue of the
nonlinear behavior of the perturbations. One can imag-
ine that flux tubes with a higher current density would
gradually starve the rest of the flux tubes of the current,
thereby leading to a significant nonuniformity of the
current density inside the plasma. The natural limit of
the current concentration would be set by reaching sur-
face temperatures close to the activation energy,
thereby terminating the further variation of the recy-
cling coefficient with the temperature. Another limita-
tion may be set by the total current in the high-current
density flux tubes reaching the current set by the exter-
nal circuit. The analysis of these and other possibilities
is a topic for future work.

In the context of spheromak experiments, an inter-
esting question is the possible relation of the current fil-
amentation to the problem of the helicity injection [19]
and plasma rotation: note that, for the fastest growing
perturbations, the flux tubes slide over the surface of the
electrodes (Section 4.4). We can speculate that this may
cause plasma entrainment and give rise to macroscopic
plasma rotation. These issues are also left for future
studies.
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Abstract—Experimental studies performed at the Russian Research Centre Kurchatov Institute on the interac-
tion of high-current relativistic electron beams with various condensed media, including highly porous materi-
als, are reviewed. The experiments on obtaining high pressures and accomplishing the structural and chemical
conversions in the focal spot of a high-current beam are described. The principles of imitating an ultra-high-
speed impact and other energetic actions on an obstacle with the help of high-current relativistic beams are dis-
cussed. The possibility of using such beams for surface modification is considered. Experimental data on the
induced electric conductivity in highly porous SiO2 aerogels in the region of the beam energy deposition are
presented. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Inertial confinement fusion (ICF) research, com-
puter simulations of explosions and high-speed
impacts, and the physics of shocks in condensed media
require information about the physical properties of
matter within a wide region of the phase diagram,
including the region of very high pressures and temper-
atures. This calls for the broadening of the pressure
range attainable under laboratory conditions.

A great body of experimental data on the thermo-
physical properties of matter in the megabar pressure
range has been obtained by using the dynamic methods
employing intense shocks excited by chemical explo-
sives for compressing and irreversibly heating sub-
stances. However, a further increase in pulsed pressures
under laboratory conditions is limited by the relatively
low power flux and volume energy density of chemical
explosions, which do not exceed 1010 W/cm2 and
104 J/cm3, respectively. In this context, it is very impor-
tant to search for methods of further increasing the
pulsed pressure under laboratory conditions. High-cur-
rent relativistic electron beams (REBs) have certain
advantages in comparison with other sources of intense
shocks (such as lasers, electric explosions, and electro-
dynamic devices) and allow one to attain power densi-
ties much higher than those obtained with chemical
explosives.

During the interaction of a high-current REB with a
target, the volume energy density that is released within
a thin target layer is very high. This leads to the explo-
sion of the target surface and the formation of a plasma
corona, which expands toward the electron beam. The
recoil momentum arising due to the expansion of the
corona induces a shock wave, which propagates into
1063-780X/03/2907- $24.00 © 0618
the target and compresses and irreversibly heats the tar-
get substance. Note that laser beams surpass high-cur-
rent REBs in the energy density and power fluxes and
allow one to attain even higher pulsed pressures. How-
ever, because the total energy of an REB is typically
much higher than the laser pulse energy, high-current
REBs enable the irradiation of significantly larger vol-
umes of condensed matter, which facilitates the diag-
nostics of such interaction.

2. OBTAINING HIGH PRESSURES
IN THE FOCAL SPOT OF A HIGH-CURRENT REB

Experiments on the interaction of high-current
REBs with condensed media were begun in the Depart-
ment of Relativistic Beams (headed by L.I. Rudakov)
of the Kurchatov Atomic Energy Institute in the late
1970s. The experiments were carried out in the Kalmar
high-current accelerator [1, 2] in cooperation with the
Institute of High Temperatures of the USSR Academy
of Sciences, the Research Institute of Physicotechnical
and Radio Engineering Measurements, the Moscow
Institute of Steel and Alloys, the Institute of Mechanics
of the Moscow State University, and the Karpov
Research Institute of Physical Chemistry. An external
view of the Kalmar accelerator is shown in Fig. 1.

The first experiments were devoted to the interac-
tion of an electron beam with metals; then, other mate-
rials were subject to irradiation. The effect of a pulsed
electron beam on different materials is illustrated in
Fig. 2.

At the maximum output parameters of the Kalmar
accelerator (J = 200 kA, ε = 0.5 MeV, and τ ≈ 10–7 s), a
single-pulse focused REB interacting with an Al anode
produced, besides backside spalls at the anode, a hemi-
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. External view of the Kalmar accelerator (the accelerator diameter is 1 m).

(a) (b) (c)

Fig. 2. Effect of an electron beam on different materials: (a) aluminum, (b) organic glass, and (c) vacuum rubber.
spherical crater with a depth of 5.0–5.5 mm on the front
surface (Fig. 2a). Occasionally, the beam broke through
the 6-mm-thick Al anode. An unfocused electron beam
produced front- and backside spalls at plates made of
PMMA organic glass, whereas lateral unloading waves
resulted in irreversible changes inside the target
(Fig. 2b).

The phenomenon of backside spalls at a vacuum-
rubber target (Fig. 2c), which is rather difficult to
observe in explosion experiments, is of especial interest
because spalls in rubber usually occur at specific elon-
gations exceeding 600% [3, 4].
SMA PHYSICS REPORTS      Vol. 29      No. 7      2003
In the first experiments, an attempt was made to esti-
mate the pressure in the focal spot of a high-current
REB interacting with a metal anode. In [5], the recoil
momentum caused by the reactive force that arose due
to the expansion of the material evaporated from the
REB focal spot was measured for the first time. By
using a calibrated spring gauge, it was shown that an
REB with a current of 180 kA, an electron energy of
0.5 MeV, a current pulse duration of 10–7 s, and a power
flux of 1012 W/cm2 produced a recoil momentum of
0.15 N s at an Al anode. In subsequent experiments [6],
the dependence of the recoil momentum on the REB
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parameters was determined. Based on the results of the
momentum measurements, the pressure was roughly
estimated as P ≤ 7.5 × 1011 Pa.

Obviously, this pressure is somewhat overestimated
because the contribution to the recoil momentum from
the cold components of the plasma and vapor expand-
ing with a characteristic time longer than 10–7 s was not
taken into account. The pressure in the REB focal spot
was estimated more precisely by means of a metallo-
graphic analysis of Cu samples irradiated with REBs
[5]. Since multiple-slip bands and copper hardening,
which arise at pressures of P ≥ 2 × 1010 Pa, were
recorded at depths of ≤4.5 mm from the anode front
surface, we may conclude that the pressure in the focal
spot area amounts to ~3 × 1011 Pa.

In [7], a detailed study of changes in the microstruc-
ture and mechanical properties of various metals and
alloys irradiated with REBs demonstrated irreversible
phenomena in steel at depths of up to 25 mm.

In subsequent experiments [8], it was shown that the
time-of-flight technique and high-speed photography
can be successfully applied to determine the velocity of
the rear side of the anode plate.

The most comprehensive measurements of the char-
acteristics of shock waves excited by high-current
REBs in metals were carried out in [9, 10]. In those
studies, various techniques that employed long flexible
single-channel fibers, two-stage targets, and targets of
complex configuration were used to determine the mass
velocity and the shock-wave speed. The diagnostics
employed are characterized by a high interference
immunity and high sensitivity and, thus, can be used to
study the equations of state of various materials in the
pressure range (1–2) × 1012 Pa. The measured attenua-
tion of a shock wave during its propagation into metal
agrees well with the results of computer simulations
performed by Akkerman et al. [9–11]. The results of
experiments and numerical simulations show that the
pressure in the REB focal spot at the Kalmar accelera-
tor reaches 2 × 1011 Pa.

Assuming that the heating is isochoric, the pressure
in the REB focal spot can be roughly estimated as

P = Γω, (1)

where Γ is the Gruneisen factor (Γ ≈ 1) and ω is the vol-
ume energy density in the energy deposition region.

In fact, the pressure is lower because of the expan-
sion of the heated substance. Taking into account this
feature and the available experimental data, the follow-
ing scaling for the pressure in the REB focal spot in
terms of the electron beam and target parameters was
proposed in [6, 12]:

(2)P 0.3q0
2/3ρ0

1/3
=

for a rectangle REB pulse and

(3)

for a triangular REB pulse. Here, the maximum power
flux density q0, the initial substance mass density ρ0, the
average depth of the energy deposition region h, and the
REB pulse duration τ0 are in SI units.

The high values of the thermodynamic parameters
attained in the REB focal spot offer wide opportunities
for studying the behavior of the material under extreme
conditions and allow one to perform structural and
chemical transformations. X-ray structure analysis and
the measurements of IR absorption spectra [13, 14]
show that the irradiation of a target containing boron
nitride or graphite with a high-current REB at a power
flux density of q0 = 1012 W/cm2 leads to the formation
of denser diamondlike phases of the initial substance.
The joint action of high pressures and temperatures in
the REB focal spot is of especial interest for chemical
synthesis. Thus, under these conditions, the yield of the
reaction CuBr2 + Cu  2CuBr is 100%. Copper and
iron carbides, which, commonly, require prolonged
heating, are also easily produced. This method seems to
be the most promising for the initiation of chemical
interactions with high activation energies.

3. MODELING OF THE EFFECT
OF AN ULTRA-HIGH-SPEED IMPACT

AND HIGH-POWER IRRADIATION 
ON AN OBSTACLE

In [15], it was shown that high-current REBs can be
used to model many phenomena occurring during an
ultra-high-speed impact or near-surface explosion. It
was noted that the experimental data on ultra-high-
speed impacts are in good agreement with those on the
interaction of REB with matter. In particular, the fol-
lowing estimate for the anode crater depth in the REB
experiments was proposed:

(4)

where H is the crater depth; Cs is the sound speed in the
metal under study; u0 is the mass velocity in the REB
focal spot region; and h and L are the depth and volume
of the REB energy deposition region, respectively. This
expression was obtained by modifying the known
empirical formula for the crater depth in shock experi-
ments. Increasing interest in these phenomena is caused
by the need to protect space vehicles from meteor
showers. The modeling of impacts was carried out
under the program of developing the shields for the pro-
tection of the Vega space vehicle from destruction by
micrometeors [16]. Experiments on the REB interac-
tion with the protective shields and the numerical sim-
ulations of this effect allow one to improve the physical
model of high-speed breakthrough [17] and give rec-

P 0.3
q0

τ0
-----hρ0 

 
1/2

=

H 4.5L
1/3

u0/Cs( )2/3
h,+=
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ommendations of how to increase the reliability of the
protection system as a whole. In particular, the role of
the particles that are produced due to the scabbing of
the first protective shield and can damage the second
shield was investigated.

High-current REBs allow one to model the effects of
other intense radiation fluxes incident on protective
shields [18]. The modeling is based on the similarity
between the destructions that are produced far from the
energy deposition region by pressure pulses caused by
different sources. In practice, the shield thickness is
larger than the depth of the energy deposition region;
hence, unloading from the back is completely deter-
mined by the pressure pulse. In this case, the coinci-
dence between the spatial and temporal characteristics
of the energy deposition process is of minor importance
and the relation between the destruction effects can be
found by numerical simulations with allowance for the
data obtained in the model experiments. Such an
approach is most advantageous when modeling the
effect of pulsed irradiation on heterogeneous materials.
The modeling consists in fitting the electron beam
parameters in such a way that, for a given sample, the
values of the mass removal and mechanical momentum
coincide with those occurring under actual irradiation
conditions. The validity of the results of numerical sim-
ulations is tested in a modeling facility.

4. TECHNOLOGICAL APPLICATIONS 
OF HIGH-CURRENT REBS

High-current REBs are promising energy sources
for the modification and thermochemical treatment of
surfaces; they also can be used to develop new methods
for film deposition. The power flux density q0 can be
varied in a wide range by varying the diameter and
shape of the cathode and the distance between the cath-
ode and anode. At moderate power flux densities (q0 =
108–109 W/cm2), the accelerator anode surface is not
melted and only a thin surface layer is instantly heated
and then cooled, which results in the hardening of the
steel surface. When 40-mm-diameter samples of St45
and St40Kh commercial grade steels are exposed to an
electron beam, a fine-grained layer with a thickness of
~30 µm and microhardness exceeding the initial one by
a factor of 4–5 forms on the surface [19]. The increase
in the power flux density to q0 = (1–5) × 109 W/cm2

leads to the melting and subsequent solidification of a
thin surface layer. The irradiation of easy-to-amorphize
alloys in such a regime results in the formation of an
amorphous layer on the alloy surface. Based on the
results of metallographic, X-ray structural, and electro-
chemical studies, it was shown that the thickness of the
amorphous layer produced on the surface of a 20-mm-
diameter discs made of FeCr8–13P13C7, Ni42Nb58, or
Ni58Ta42 alloy reaches 40–50 µm [20, 21].

At high power flux densities (q0 ≥ 1010 W/cm2), the
anode material is evaporated and, then, deposited onto
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
the different parts of the cathode unit in the form of
melted droplets and ionized atoms, thus forming a coat-
ing.

Cu, Al, and St45 coatings were obtained on various
metals placed in the cathode region. The high cooling
rate caused by heat conduction into the target (up to
107 K/s) leads to the formation of metastable phases,
including amorphous ones. In [21–23], amorphous
FeCr12P13C7 and Ni58Ta42 coatings with thicknesses of
about 10 µm were obtained. The possibility of employ-
ing pulsed electron beams for depositing corrosion-
proof coatings consisting of Fe–Si alloys (with a Si
atomic content of ≥25%) onto substrates made of iron
and St3 grade steel was studied in [24]. In particular, a
coating with an elevated corrosion resistance was
obtained and the possibility of producing multilayer
Fe–Si protective coatings with intermediate layers
made of corrosion-proof ductile metals (such as Pb)
and alloys was demonstrated.

5. INTERACTION OF REBS
WITH POROUS MATERIALS

Recently, much attention has been paid to studying
the behavior of materials under the conditions of rapid
isochoric heating. Interest in these studies is related to
the problem of creating new types of complex targets
for ICF research. A necessary element of such targets is
porous material.

Fig. 3. SiO2 aerogel with the mass density ρ = 0.15 g/cm3.
The balance weight is 0.5 kg.
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On the initiative of V.E. Fortov, a series of experi-
ments on the behavior of SiO2 aerogels under the action
of pulsed energy sources was carried out in the Kalmar
accelerator.

SiO2 aerogels are porous dielectric materials that
possess unique properties. They have a low mass den-
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Fig. 4. Schematic of the experiment: (1) Ti foil, (2) anode,
(3) Al foil, (4) aerogel, (5) Al foil, and (6) receiving plate.

(‡)
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(c)

Fig. 5. Waveforms of (a) the accelerating voltage (the
amplitude is 300 kV), (b) the irradiating bean current (the
amplitude is 2.5 kA), and (c) the total accelerator current
(the amplitude is 10 kA). The time scale is 50 ns/div.
sity (ρ = 0.05–0.36 g/cm3) and a relatively high
mechanical strength (see Fig. 3) and, due to their trans-
parency, allow one to study the interaction of an elec-
tron beam with a porous medium by optical methods.

In our experiments, targets made of SiO2 aerogel
were irradiated with a 10-mm-diameter pulsed electron
beam with a current J = 10–20 kA, electron energy ε =
0.3 MeV, and pulse duration τ ≈ 10–7 s.

By using optical and interferometric measurements,
the excitation of shock waves in aerogels of different
mass densities was investigated and the profiles of the
electron beam energy deposition, the velocity of aero-
gel expansion toward the electron beam, the expansion
velocity of scabbing fragments, and the propagation
velocity of perturbations in aerogels were measured.

It was found that, at aerogel mass densities ρ ≤
0.2 g/cm3, the dimensions of the energy deposition
region are greatly affected by the arising space charge.
In this case, the depth of the energy deposition region is
significantly less than that calculated without allow-
ance for the space charge [25, 26]. To interpret the
experimental data, I.A. Ivonin proposed a model equa-
tion of state for microporous materials. This equation
self-consistently takes into account the change in the
porosity during compression, reflects the fractal prop-
erties of aerogels, and enables the determination of
their thermodynamic characteristics. In this model, the
elastic and shear moduli and the Gruneisen factor
depend on the porosity in a power-law manner, which
is a consequence of the cluster structure of a porous
substance. The calculations by this model show that, in
the absence of shear stresses, the percolation coefficient
(the power index in the dependence of the elastic mod-
ulus on the porosity) agrees with its theoretical value
γ = 1.7. For an unheated aerogel, calculations give γ =
3.2 [27]. Direct experiments confirm the power-law
dependence of the speed of sound in aerogel on its mass
density. The measured percolation coefficient (γ = 3.0)
agrees with that used in earlier calculations (γ = 3.2).

When studying the time evolution of the volume
glow from an aerogel exposed to a pulsed high-power
electron beam, it was found that, together with the con-
ventional glow of a transparent dielectric material
under the action of an electron beam, the glow also had
a slow component (τ ≈ 2 × 10–5 s), whose time behavior
coincides with the dynamics of the unloading wave
propagating into the aerogel. It seems that, this slow
component can be attributed to the volume electrization
of the highly-porous aerogel exposed to an electron
beam [28].

The electric conductivity in the beam energy depo-
sition region is nonzero, because the electrons lying
below the forbidden zone pass to the conduction zone.
To adequately describe the process of electron absorp-
tion in an aerogel, it is necessary to measure the aerogel
conductivity as a function of the irradiation power and
the aerogel mass density. Such experiments were car-
ried out at the Kalmar facility. The measurement tech-
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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nique was the same as that previously used in [29] to
measure the conductivity induced in various crystals
under the action of an electron beam. A schematic of
the experiment is shown in Fig. 4.

A 0.3-MeV electron beam, which is separated with
the help of diaphragms from the total accelerator cur-
rent, passes through an 80-µm-thick Ti foil 1 and a
10-mm-diameter opening in the anode 2 and then hits
an aerogel sample 4 with transverse dimensions 25 ×
25 mm. The front and rear sides of the sample are cov-
ered with 10-µm-thick Al foils 3 and 5. After passing
through the aerogel, the beam arrives at a receiving
plate 6, which is a part of the anode unit. An Al foil 5 is
connected to a low-inductive capacitor C (C = 0.4 µF),
which is charged through a high-ohmic resistor R up to
±400 V. When the aerogel conductivity becomes non-
zero, the capacitor C discharges through the load resis-
tor R0, the signal from which is fed to the input of a
C8-14 oscilloscope. The R0 value is chosen such as to
meet three contradicting requirements, namely, R0 < Ra,
R0C > 1 µs, and L/R0 < 10 ns, where Ra is the aerogel
resistance and L is the inductance of the measurement
system.

The induced conductivity in aerogel samples with
mass densities ρ1 = 0.08 g/cm3, ρ2 = 0.15 g/cm3, and
ρ3 = 0.26 g/cm3 and thicknesses l1 = 7 mm, l2 = 4 mm,

(‡)

(b)

(c)

(d)

(e)

Fig. 6. Waveforms of the currents through the resistor R0 for
different bias voltages: V = (a) +400, (b) +200, (c) 0, (d) –200,
and (e) –400 V. The time scale is 50 ns/div, and the current
scale is 1.5 A/div.
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and l3 = 2.2 mm, respectively, was investigated. The tar-
get thicknesses were approximately equal to one-half
of the depth of the beam energy deposition region in
these samples.

Figure 5 shows the waveforms of the accelerating
voltage, irradiating beam current, and total accelerator
current. It is seen that the duration of the irradiating
beam current pulse is 50 ns, which is shorter than the
duration of the total current pulse. The experiments
were performed for two irradiation regimes with cur-
rent densities j1 = 200 A/cm2 and j2 = 2.5 kA/cm2.

The waveforms of the current through the R0 resistor
are shown in Fig. 6 for j1 = 200 A/cm2, aerogel mass
density ρ1 = 0.08 g/cm3, and different bias voltages. It
can be seen that the current decreases with increasing
magnitude of the negative bias voltage. However, even

Table 1.  Experimental data on the induced conductivity of
aerogels at a beam current of 200 A/cm2

ρ, g/cm3 0.08 0.15 0.26

l, mm 7 4 2.2

R0, Ω 19 19 9

Ra, Ω 175 114 49

σexp, Ω–1 cm–1 5 × 10–3 4.5 × 10–3 5.6 × 10–3

20

15

10

5

I, A

U, V
4002000–200–400

Fig. 7. Current–voltage characteristics of aerogels irradiated
with an electron beam with a current density of 200 A/cm2

for different aerogel mass densities: ρ = 0.08 (circles),
0.15 (triangles), and 0.26 g/cm3 (squares).
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at the highest negative bias voltage of –400 V, the cur-
rent does not change its sign, which is due to the influ-
ence of the positive ac component of the beam current.

Figures 7 and 8 show the current–voltage character-
istics of aerogels of various mass densities for different
irradiation regimes. From the slopes of the characteris-
tics, the total resistance (R0 + Ra) of the circuit and the
aerogel conductivity were calculated. The results of
experiments are presented in Tables 1 and 2, where σexp
and σth are the measured and theoretical conductivities,
respectively.

The theoretical values of the induced conductivity in
aerogels at j = 2.5 kA/cm2 were calculated by I.A. Ivo-
nin based on the theory of ultra-high-energy conductiv-
ity [29].

Table 2.  Experimental and theoretical data on the induced
conductivity of aerogels at a beam current of 2.5 kA/cm2

ρ, g/cm3 0.08 0.15 0.26

l, mm 7 4 2.2

R0, Ω 7 7 4

Ra, Ω 21.5 10.5 4

σexp, Ω–1 cm–1 4 × 10–2 4.8 × 10–2 6.8 × 10–2

σth, Ω–1 cm–1 0.1 0.2 0.3

50

200

100

200 4000–200–400
U, V

I, A

150

Fig. 8. Current–voltage characteristics of aerogels irradi-
ated with an electron beam with a current density of
2.5 kA/cm2 for different aerogel mass densities: ρ = 0.08
(circles), 0.15 (triangles), and 0.26 g/cm3 (squares).
It can seen from Table 2 that the measured and the-
oretical conductivities differ by a factor of more than 2.
The reason for this discrepancy is still unclear. In par-
ticular, it can be caused by an error in measuring the
aerogel current–voltage characteristics at a current den-
sity of 2.5 kA/cm2; such an error may appear, e.g., due
to the presence of a large ac component of the irradiat-
ing beam current.

6. CONCLUSIONS

The possibility of obtaining and recording ultrahigh
pressures in the focal spot of a high-current REB has
been demonstrated. Regardless of the moderate param-
eters of the Kalmar accelerator with an REB power flux
density of 1012 W/cm2, a pressure of 2 × 1011 Pa has
been experimentally recorded in metallic anodes. It can
be expected that modern larger-scale relativistic elec-
tron accelerators with a power flux density of 5 ×
1013 W/cm2 will allow one to attain pressures higher
than 1012 Pa.

This opens new opportunities for the direct study of
the equations of state in this pressure range under labora-
tory conditions, as well as for modeling ultra-high-speed
impacts in a speed range that is unattainable with other
techniques. At a power flux density of ≈1014 W/cm2 and
an REB energy of ≈100 kJ, it is possible to simulate
experiments on aluminum-against-aluminum ultra-
high-speed impacts with speeds of up to ≈50 km/s.

The joint action of the high pressure and tempera-
ture in the REB focal spot is promising for accomplish-
ing structural changes in a substance and initiating
chemical reactions with a high activation energy.

High-current relativistic electron accelerators can
also be used to study new methods of surface modifica-
tion (including steel hardening), surface amorphiza-
tion, and the deposition of protective coatings by means
of melting and sputtering the anode material.

Based on the data obtained in experiments on the
interaction of REBs with SiO2 aerogels (in particular,
the data on the energy deposition profile, the velocity of
aerogel expansion toward the electron beam, and the
propagation velocity of perturbations in aerogels with
different mass densities), a model has been developed
that is capable of describing highly porous materials. In
particular, this model enables one to study the fractal
properties of aerogels and determine their thermody-
namic parameters for a porosity varying by several tens
of times.

Measurements of the induced pulsed conductivity of
SiO2 aerogels irradiated with an REB have shown that,
at a low irradiation power (j = 200 A/cm2), the conduc-
tivity is about 5 × 10–2 Ω–1 cm–1 and is almost indepen-
dent of the aerogel mass density. At a high irradiation
power (j = 2.5 kA/cm2), the conductivity is higher by
one order of magnitude and slightly increases with the
aerogel mass density. To explain a certain discrepancy
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
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between the experimental and theoretical data, more
detailed investigations are required.
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Abstract—The transport of charged particles in a field reversed configuration (FRC) was previously considered
to be turbulent because it is much faster than classical predictions. Classical transport has mainly been devel-
oped for plasmas in which the gyroradii of particles are small compared to the scale lengths of the variation of
the density and magnetic field. This assumption is quite inappropriate for an FRC where the magnetic field van-
ishes on a surface within the plasma. Classical theory has been extended to include large ion gyroradii. A clas-
sical loss-cone process is revealed that is consistent with the transport experiments in which the ion gyroradii
were comparable in size to the plasma radius. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

Field reversed configurations (FRCs) have been
studied for more than 40 years, mainly in the USA and
Japan. There is a considerable amount of literature on
the subject. The 1988 review paper [1] by Tuszewski
contains 416 references. Almost all previous research
employs the Θ-pinch method that was developed by
A.C. Kolb [2] in 1959. The experimental results fall
into two different classes, distinguished by the domi-
nance of drift orbits or betatron orbits, which are illus-
trated in Fig. 1. When the particles move in the diamag-
netic direction, as in Fig. 1a, they always bend towards
the null circle, resulting in a betatron orbit. When they
move in the opposite direction as in Fig. 1b, they
always bend away from the null circle and are in a drift
orbit. The parameter that determines which type of
orbit dominates is the ratio of the size of the plasma to
the average gyroradius of the ions. This parameter is s ≅
Ln/ , where Ln is the length that characterizes the den-
sity gradient. For most of the experiments [1] at the Los
Alamos National Laboratory, 1 ≤ s ≤ 2. For the majority
of experiments at the University of Washington [3], s @ 1.

Transport has been studied in both cases. It involves
the loss rates of ions, electrons, trapped magnetic flux,
and energy. We mainly consider the loss rate for ions.
The measurements involving time-dependent density
were conducted with a microwave interferometer. In
almost all of the measurements, the confinement time
for ions is lower than the expectations based on classi-
cal-transport theory by an order of magnitude.

For the case when s @ 1, there is a well-established
classical theory with which to make comparisons.
Anomalous transport is attributed to turbulence. There
are detailed calculations that are in agreement with
experimental measurements based on turbulence from
low-frequency drift waves [4]. The case when 1 ≤ s ≤ 2
is the main emphasis of this paper. In this case, the beta-

1 This article was submitted by the authors in English.
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tron orbits dominate; the usual classical theory of trans-
port for this case is inapplicable because it was devel-
oped only for small gyroradii. The turbulence calcula-
tion [4] is based on low-frequency drift waves and
depends on similar approximations. This paper con-
tains a purely classical investigation that does not
assume a small ion gyroradius. It leads to a loss-cone
process that accounts for the observed confinement
times in small-s experiments.

2. MOTIVATION FOR LARGE ORBIT IONS

Recent experiments with large tokamaks [5] in the
USA, England, and Japan involved heating plasma with
high-energy neutral beams that were injected and
trapped in the plasma. Detailed measurements revealed
that the transport of the high-energy ions (of the order
of 100 keV) was classical, while the high-density low-
energy plasma (tens of keV) had the usual anomalous
transport.

Transport is caused by fluctuations in electric fields.
There are fluctuations just because particles are dis-
crete, which is the cause for the irreducible Coulomb
scattering of charged particles. There are collective
motions in plasmas that involve waves characterized by
a certain wavelength. For some wavelengths there can
be an instability, which produces a large fluctuation
level. It is essential that there be no long wavelength
instabilities, because they would disrupt magnetic con-
finement on a very short timescale. The fusion effort to
date has been successful in stabilizing long-wavelength
instabilities in many configurations, but some short-
wavelength instabilities, which are believed to be
responsible for anomalous transport, remain in all
devices to date. Wavelengths that are short compared to
the gyro-radius should not cause transport because the
particles average the electric fields. Only wavelengths
of the order of the gyroradius or longer cause transport.
For particles with a very small gyroradius, almost all of
2003 MAIK “Nauka/Interperiodica”



        

CLASSICAL TRANSPORT IN A FIELD REVERSED CONFIGURATION 627

                                                   
z
y

x

A

y

x
–20 20

–20

20

y

x
–20 20

–20

20

(a)

(b) (c)

Null circle Plasma current

Conducting wall

Rotating plasma ring
External current

Fig. 1. Illustration of an FRC (a) and its main particle orbits: a betatron orbit (b) and a drift orbit (c). In plots (b) and (c), the arrows
indicate the direction of rotation of the orbits when seen from the tip of the z axis.
the spectrum of fluctuations can cause transport; for
particles with a large gyro-radius, only long wavelength
fluctuations can cause transport. Long wavelengths
must be stable, and the corresponding fluctuations,
minimal. This intuitive explanation of classical trans-
port for large-orbit particles has been verified by com-
puter simulation [6, 7]. Based on this explanation, we
conjecture that the anomalous transport of ions can be
avoided for a plasma with a high density of large-gyro-
radius ions.

A device with a high density of large-gyroradius
ions is the FRC. Experiments with FRCs were carried
out at the Los Alamos National Laboratory for at least
ten years. There exists a considerable amount of exper-
imental data [1] for FRCs with 1 ≤ s ≤ 2. The confine-
ment time for ions was usually about a factor of ten
shorter than the classical one, which was attributed to
turbulence. The purpose of this paper is to reconsider
what is meant by classical when the average ion gyro-
radius is not small.
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3. ION DYNAMICS IN A SMALL-s FRC

The typical particle orbits in a FRC are illustrated in
Fig. 1. The diamagnetic direction of rotation is counter-
clockwise. Ions that rotate in this direction will always
bend towards the null circle and are in betatron orbits.
At the ends of the FRC plasma, the field lines are closed
and there must be a radial magnetic field in the direc-
tions indicated in Fig. 1. In addition to their rotational
motion, ions have a finite value of v z; after a transit time
they reach the ends of the FRC, where they experience
a Lorentz force Fz = –vθBr/c. For example, at point A in
Fig. 1a, Br < 0, and for vθ > 0, one has Fz > 0, which is
a focusing force. Similar reasoning applies to the other
end of the FRC; i.e., the ions in a betatron orbit will be
reflected at both ends of the plasma.

The drift orbit has a drift velocity

(1)vD
c

qB
2

---------µ ∇ B B×( ),=
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(2)

Here, q is the ion charge; B is the magnetic field; and

µ =  is the magnetic moment, where  is

the perpendicular energy. Outside the null circle, Bz < 0,

 > 0, so vθ is positive, which is in the clockwise or

antidiamagnetic direction. Equations (1) and (2) are
appropriate for small gyroradius particles. The drift
velocity must be small compared to the perpendicular

velocity; i.e.,  = , where ai is the ion gyroradius
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Fig. 2. Direction of the drift orbit of the ions. The crosses
indicate a magnetic field pointing into the paper. The mag-
netic field has a gradient as indicated by the density of the
crosses. The average drift velocity is in the counterdiamag-
netic direction, i.e., clockwise when seen from the tip of the
z axis (see Fig. 1a).
and Ln = B/ |∂B/∂r |. Although the Lorentz force would
be defocusing at the ends, it would be insufficient to
cause significant particle losses because the particles
follow the field lines with a velocity v p @ vθ. Most of
the ions would not spend enough time at the ends to be
ejected. For large-orbit ions, the drift orbit is illustrated
in Fig. 2. In this case, vθ ≈ v ⊥  and most of the ions in
such orbits would be expelled at the ends in the transit
time, which would be a few microseconds.

4. TRANSPORT IN A SMALL-s FRC

Because of the long range of Coulomb forces, colli-
sions with distant particles are more important than col-
lisions with near neighbors. This distinguishes a plasma
from any other state of matter. For fusion plasma, the
cumulative effect of many small deflections from colli-
sions with distant particles is more important than
infrequent large-angle deflections from collisions with
near neighbors by a factor of about twenty. This is the
basis for the theoretical treatment of plasmas. The
cumulative effect of small deflections from collisions
with distant particles on a betatron orbit is illustrated in
Fig. 3a. The orbit expands without changing its topol-
ogy. The net result for a magnetically confined plasma
is diffusion. The particle orbits change slowly but
remain confined for a time determined by the boundary
conditions. The plasma density decays on a time scale
determined by the effective collision frequency, which
may be classical or anomalous. Figure 3b illustrates
how a single large-angle collision can change the orbit
topology from a betatron to a drift orbit. The drift orbit
would not be contained because the Lorentz force at the
ends is defocusing, as was discussed in the previous
paragraph. This is a loss process that may have a shorter
time scale than diffusion. It is similar to the loss-cone
y
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Fig. 3. (a) Cumulative small-angle deflections from distant particle collisions do not change the topology of a betatron orbit. This
leads to conventional diffusion. (b) A large-angle deflection from a near-neighbor collision may change the betatron orbit into a drift
orbit, which is not contained. Such collisions lead to a particle loss channel, which is more rapid than diffusion. 
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process [8] that dominates the confinement time of mir-
ror machines.

In order to evaluate the loss-cone theory, we con-
sider typical data from Los Alamos experiments [1] for
an FRC:

(i) Temperature: Ti . Te = 100 eV.

(ii) Ion rotational energy:  = 1 keV.

(iii) Dimensions:
radius of the null surface, r0 = 10 cm;
gradient length, Ln = 2.5 cm;
distance from the null surface to the separatrix, ∆r =
4.14 cm.
(iv) Gyroradii of ions:

average gyroradius for betatron orbits,  = 10 cm;

average gyroradius for drift orbits,  =  =

0.14 cm;
where

(v) Magnetic fields:
applied field, B0 = 2.5 kG;
maximum field due to plasma current, Bm = 7.5 kG;

Ωi = (B0 + Bm) (in the expression for ).

The ion gyroradius varies from 0.14 to 10 cm. How-
ever, the density also varies from a peak of n0 =
1015 cm–3 to a very low value. The highest density is
near the null surface, where the magnetic field is very
small, and the lowest density is where the magnetic
field achieves its largest value B0 + Bm. The average
gyroradius of the ions  involves a density-weighted

average, s = , with 1 ≤ s ≤ 2 [1].

The diffusion time can be estimated as

where tie is the momentum transfer time due to the Cou-
lomb collisions of ions with electrons. The relevant
numbers are

 = 61.6 µs,

τi = 19.6 ms.

The density and gyroradius change rapidly, so that
averaging is required to obtain a meaningful result for
the classical confinement time. The above value is a
lower bound for the high field region. Where the den-

1
2
---miv θ

2

Ri

ri

v i

Ωi

-----

v i
2 Ti

mi

-----, Ωi
eB
mic
--------.= =

e
mic
-------- ri

ai

Ln/ai

τ i

Ln

ri

----- 
 

2

tie,≅

tie
3
4
--- π

2
---

Te
3/2

4πn0e
4 Λln

---------------------------
mi

m
-------- 

 =
PLASMA PHYSICS REPORTS      Vol. 29      No. 7      2003
sity is low and the field is high, adiabatic dynamics
would prevail and there would be no losses of the drift
orbit particles at the ends. The classical containment
time is, of course, much longer than the observed time
of a few hundred microseconds. This could be
explained by turbulence, as small orbit particles are
sensitive to turbulence. However, for a small-s FRC,
this would only apply to a small percentage of the par-
ticles.

In the low field region, where the density is high and
the gyroradius is large, we expect an insensitivity to tur-
bulence, as we have learned from experiments with
tokamaks [5]. There would be ions with betatron orbits
and drift orbits involving large orbit radii. The betatron
orbits would be contained. The drift orbits would not be
contained due to defocusing at the ends. A topological
change from a betatron to a drift orbit can take place
due to large-angle scattering from Coulomb collisions
with neighboring particles. The confinement time can
be estimated from this process. Whereas only ion–elec-
tron collisions are important for diffusion, ion–ion col-
lisions would be dominant for this loss process.

The lifetime of an ion in a betatron orbit would be

Here,

b = , µ =  (for ion–ion scattering),

Scattering from ions moving at the same azimuthal
velocity would not produce a large-angle scattering in
the laboratory frame. If the ion distribution is of the
form

then the target ions require vθ < v i /2 for an ion at the
average speed to be deflected at a large angle in the lab-
oratory frame. The number of such ions is

The result is that the lifetime of an ion in a betatron
orbit τ ≈ 185 µs.
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5. CONCLUSION

Considering the experience with large-orbit parti-
cles in tokamaks, the above explanation of the lifetime
of small-s FRCs seems more likely than the conven-
tional explanations based on turbulence.
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Abstract—The retrograde motion of an arc in a transverse magnetic field is attributed to the onset of a tangen-
tial flow of gas or vapor. The physics of a polarized plasma jet conducting the current between the cathode and
anode is discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A vacuum arc discharge with a mercury cathode
operates in transverse magnetic fields of up to 2 ×
104 Oe. The arc, together with the cathode spot and
plasma jet conducting the current, moves with a veloc-
ity of ~104 cm/s in a direction opposite to the magnetic
force acting on the current-carrying wire [1–3]. Such
motion is referred to as “retrograde”; accordingly, we
will use the term “retrograde arc.” Retrograde motion is
evidently caused by a nonmagnetic force. Hence, the
retrograde arc somewhat resembles an electric genera-
tor and behaves like a conductor entrained by a vapor
stream. A tangentially propagating vapor flow arises at
the cathode spot and in the plasma train behind the spot.

The motion of a body entrained by a vapor flow is
one of the most important issues of gasdynamics. How-
ever, the retrograde arc is much more complicated than
typical gas-dynamic objects (such as a steam turbine).
The retrograde arc involves a lot of fundamental physi-
cal processes. Therefore, studying this discharge can
reveal some unknown phenomena that may be even
more important than the retrograde arc itself.

The present study is aimed at investigating the most
interesting and important features of the retrograde arc.
Perhaps, it will inspire more comprehensive studies of
this phenomenon.

2. RETROGRADE MOTION

An intense discharge is feasible only if there is a
positive feedback between the electron current from the
cathode and the ion current to the cathode. In this case,
a very rigid requirement is the quasineutrality condi-
tion, which implies that the local ion and electron den-
sities are equal to each other and the counterpropagat-
ing ion and electron flows overlap with an accuracy of
up to the Debye radius. Thus, if the gas flows with a cer-
tain velocity along the cathode surface, then the arc,
together with the cathode spot emitting electrons,
should follow the gas flow with approximately the same
velocity; otherwise, the arc goes out.
1063-780X/03/2907- $24.00 © 20631
Figure 1 illustrates the effect of the relative motion
of the gas and the cathode spot. Rectangle 2 shows an
active plasma layer (APL) in an immobile gas; the APL
with the height L0 resides on cathode spot 1. All of the
ions from the volume with the height L0 reach the cath-
ode spot. Shaded triangle 3 with the height LV < L0

shows the APL region in the gas flowing with a velocity
V along the y-axis. In the gas flow, the APL volume
decreases by a factor of 2L0/LV. The discharge current
decreases either by the same factor or even to zero in
the case of arc extinction. Hence, the arc should be
entrained by the gas flow like a turbine blade. Since ret-
rograde motion occurs in a transverse magnetic field, it
is obviously the magnetic field that is responsible for
the production of the tangential flow of a gas or cathode
vapor.

The mechanism for the production of such a flow
can be outlined as follows. Let a discharge with the

electron current density j =  (where ji is the ion
current density at the cathode and M/m is the ion-to-
electron mass ratio) operate in an immobile gas. The
neutralization of ions at the cathode results in the gen-
eration of an atomic flow from the cathode. Then, these
atoms get ionized again and return to the cathode.
Hence, under steady-state conditions, the atomic den-
sity near the cathode increases to a value of Jn0, where

ji M/m

L 0
L V

2

3

x

y

1

Fig. 1. Schematic of an active plasma layer.
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n0 is the initial gas density and J is the gas compression
ratio [4].

The compression ratio is described by the formula

where σi is the electron ionization cross section, v e is
the electron velocity, ne(x) is the electron density, v g is
the mean atom velocity along the x-axis, and L is the
APL height.

In a transverse magnetic field, the APL height grows
along the y direction due to the magnetic deflection of
fast cathode electrons. If y @ ρ, then the electrons move
diffusely, and we have L(y) ≈ yρ/λ, where λ is the elec-
tron mean free path and ρ is the electron Larmor radius.

If y ≤ ρ ! λ, then L(y) = . 

In both cases,  increases with y, hence,

the compression ratio increases in the direction in
which Ampère force acts.

For a collisionless APL (y ≤ ρ ! λ) at j @ ji , we have

(1)

where

(2)

At χ = 4, the compression ratio increases from 1 to
535 over the interval 0 ≤ y/ρ ≤ 1. The gas pressure P and
the tangential pressure derivative dP/dy change accord-
ingly; as a result, a retrograde atomic flow with a veloc-
ity on the order of the thermal velocity arises. There is
also a gas flow moving in the opposite direction; how-
ever, this flow rapidly leaves the APL and irreversibly
escapes into a vacuum.

The ions arriving at the cathode give rise to a tan-
gential force applied to the surface. Hence, if there is a
liquid (melted) film on the surface, then it can be
entrained in retrograde motion not only by the ther-
mocapillary force but also the ion flow.

Note that the above mechanism for the generation of
a tangential atomic flow occurs also in a non-self-sus-
tained discharge with a heated cathode in the presence
of a transverse magnetic field. If such a cathode is
allowed to move freely, then it will be dragged in the
retrograde direction under the action of ion bombard-
ment.

One can easily imagine a “carousel” of circumferen-
tially spaced identical cathodes in a radial magnetic
field. In this case, each cathode will be blown around by
two oppositely directed gas flows, namely, its own ret-
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rograde cathode flow and the flow produced by the pre-
ceding discharge.

Obviously, the rotation velocity of the carousel
decreases (to a full stop) as the number of cathodes (i.e.,
the total current) increases.

Apparently, intense ion bombardment results in the
positive gradients of the temperature (dT/dy), current
density (dj/dy), and evaporation rate (dq/dy). This pro-
cess is nonlinear and leads to the onset of thermal insta-
bility of the cathode spot surface near the edge toward
which the Ampère force is directed. However, until the
onset of instability, the motion can remain continuous
and steady-state [3].

In general, the calculation of the retrograde motion
velocity is an extremely difficult problem. Similar (but
simpler) problems of gas-dynamics are usually solved
by testing various profiles in a wind tunnel. However, it
is obvious that the maximum velocity of the retrograde
motion does not exceed the atomic thermal velocity.

Instead of measuring the retrograde velocity, it may
be more important to perform certain control experi-
ments. For example, let us consider a retrograde arc
moving circumferentially in a radial magnetic field. In
this case, the following results can be expected:

(i) If the magnetic field is too strong in some sector,
then, at χ ! 1 [see (2)], the arc should go out inside this
sector.

(ii) If the disc cathode is rotated in an axisymmetric
magnetic field in the direction in which the Ampère
force acts, then the arc can be brought to a stop.

(iii) If the disc cathode can rotate freely without fric-
tion, then the retrograde arc is able to spin up the disc
until it becomes destroyed by the centrifugal force.

3. CURRENT-CARRYING PLASMA JET
IN A TRANSVERSE MAGNETIC FIELD

Far from the cathode spot, the gas or vapor density
decreases inversely proportional to the distance
squared; hence, electron collisions can be ignored. A
long quasineutral plasma jet in a transverse magnetic
field is always polarized. Thus, there can exist an elec-
tron beam with the radius of curvature

where v  is the tangential velocity, v d =  is the drift

velocity, and Er is the radial electric field. The case R <
ρ is of no interest. If there is the minus sign in the

denominator, then, at  < 1, we have R > 0, which cor-

responds to rotation in the direction of the electron
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gyration, and at  > 1, we have R < 0, which corre-

sponds to rotation in the direction of the ion gyration.

At   1, we have R  ∞; i.e., the trajectory

becomes straight.
In the general case, a plasma jet can have a complex

configuration, as is shown in Fig. 2.
Since the cathode electrons move toward the anode

along the x-axis, the transverse component of the elec-
tric field is positive (Ey > 0) over the entire plasma jet.
After entering the jet, the gas atoms can turn into ions
via ionization or resonant charge exchange. The accel-
eration of the ions by the jet’s electric field gives rise to
the reactive force, which balances both the magnetic
force and the inertial forces (including the centrifugal
one). Thus, the plasma jet interacts with the gas flow
like a very light and perfectly flexible metal conductor.
If the gas flow varies in space and time, then the plasma
jet twists like a water hose.

At R = ∞, the equilibrium state of the plasma jet cor-
responds to the balance between the transverse mag-
netic force and the reactive force (per square centi-
meter):

(3)

where In is the Hall current (in A/cm) along the jet (this
current is equal to the arc current divided by the jet
width along the magnetic field), ji is the density of the
transverse ion current ejected from the jet, and ∆Vi is
the averaged variation in the particle velocity due to the
interaction with the jet.

If the jet is parallel to the x-axis, then we have v ex =

cEy/H ≅  ; i.e., the current is carried by the
electrons accelerated in the cathode sheath with the
cathode fall voltage ϕ. The electric field Ey is fairly
high, Ey ~ 2.5H V/cm (where H is in units of Oe). At the
jet width on the order of ρ, this value does not contra-
dict the quasineutrality condition, provided that the
electron current density is sufficiently high:

where jB = enB  is the current density at the

Brillouin electron density (ne = nB = ). At H =

104 Oe and ϕ = 16 V, it should be j @ 400 A/cm2, which,
apparently, is always satisfied in a retrograde arc.

The limitation on the transverse potential drop,
namely, Eyb < ϕ, is quite natural and leads to the con-
straint b < ρ/2. However, one should take into account
the jet diamagnetism, which, at 4πIn/c ~ H, signifi-
cantly softens the limitation on b. Equilibrium condi-
tion (3) is not explicitly dependent on the retrograde
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velocity. Hence, the plasma jet merely follows the
motion of the APL and cathode spot. At the same time,
the retrograde direction of motion is the most favorable
from the standpoint of neutralizing the volume charge
of the ion flow ejected from the plasma jet into the
nearly current-free plasma train (in Fig. 2, the plasma
train is shaded). Because of both the resonant charge
exchange and the ambipolar motion of ions along the
magnetic field, the thickness of the plasma train is less

than the ion Larmor radius ρi = ρ .

The plasma-jet problems sketched in this paper have
a long history. For at least 50 years, the problems of the
transverse motion of current-carrying and current-free
plasmas have attracted the attention of researchers in
the fields of controlled nuclear fusion, plasma acceler-
ators, magnetosphere physics, and space electrodynam-
ics [5–7].

Thus, plasma-jet physics is one of the important
areas of plasma physics, rather than merely an issue of
a retrograde arc. The experimental studies of the
plasma jet in a retrograde arc are extremely difficult.
Hence, it is reasonable to model this phenomenon using
special experimental facilities.

4. CONCLUSIONS

The retrograde motion of an arc can be explained by
its entrainment by a vapor flow. Such motion is caused
by a tangentially nonuniform gas compression in the
APL of an intense discharge in a transverse magnetic
field. A detailed experimental study of this phenome-
non is much easier to perform in a non-self-sustained
discharge with a heated cathode; the same is true of a
polarized plasma jet.
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