
  

Journal of Experimental and Theoretical Physics, Vol. 101, No. 3, 2005, pp. 389–400.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 128, No. 3, 2005, pp. 451–463.
Original Russian Text Copyright © 2005 by Afanas’ev, Rubinov, Mikhnevich, Ermolaev.

                                                              

ATOMS, MOLECULES, 
OPTICS
Four-Wave Mixing in a Liquid Suspension 
of Transparent Dielectric Microspheres

A. A. Afanas’ev, A. N. Rubinov, S. Yu. Mikhnevich, and I. E. Ermolaev
Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072 Belarus

e-mail: lvp@dragon.bas-net.by
Received December 6, 2004

Abstract—The process of four-wave mixing in an artificial heterogeneous nonlinear medium—a liquid sus-
pension of transparent dielectric microspheres—is considered. The dynamics of the concentration response to
gradient forces that act on microspheres in the interference field of interacting waves are investigated on the
basis of the Smolukhovskii equation. Kinetic equations for the amplitudes of light-induced concentration grat-
ings that take part in the four-wave mixing are obtained with the use of the Fourier series expansion of the dis-
tribution function of microspheres. The ratios of the microsphere radius to the grating periods are obtained
under which the resultant gradient force vanishes and, hence, a suspension of dielectric microspheres does not
exhibit nonlinear properties irrespective of the intensities of the interacting waves. The kinetics of the process
of four-wave mixing is investigated under efficient energy exchange between reference, signal, and reversed
waves. It is shown that a liquid suspension of transparent dielectric spheres is a highly effective wideband non-
linear medium for reversing the wave front of low-intensity radiation of continuous-wave lasers. © 2005 Ple-
iades Publishing, Inc. 
1. INTRODUCTION

In this paper, we develop a theory of four-wave mix-
ing in a liquid suspension of transparent microspheres
(a heterogeneous medium) whose nonlinearity is asso-
ciated with the variation of the concentration of micro-
spheres under the action of gradient forces in the elec-
tromagnetic field of the interacting waves [1, 2]. It is
well known [3] that, in a liquid suspension of micro-
spheres, the gradient forces arising in the interference
field of laser radiation draw microspheres with greater
refractive index n0 >  (where n0 and  are the refrac-
tive indices of the microspheres and the liquid, respec-
tively) into the region of maximal intensity (to the anti-
nodes of the interference field). The increasing concen-
tration of microspheres in the region with higher
intensity of radiation leads to an increase in the refrac-
tive index of the suspension and to the corresponding
decrease in the refractive index in the region of lower
intensity (at the nodes of the interference field). In the
opposite case, when n0 < , the gradient forces draw
microspheres into the region with lower intensity, thus
increasing the refractive index of the suspension in the
region with higher intensity of radiation. Therefore,
irrespective of the ratio  = n0/ , a liquid suspension
of transparent microspheres—an artificial heterogeneous
medium—behaves as a nonlinear self-focusing medium
with a positive optical Kerr coefficient n2 > 0 [3]. For the
first time, a possible application of such heterogeneous
structures as a nonlinear optical material was pointed
out in [4].

n n

n

m n
1063-7761/05/10103- $26.00 ©0389
The concentration nonlinearity of a heterogeneous
medium associated with the spatial modulation of rela-
tively large particles (microspheres) in a viscous liquid
is characterized by much greater relaxation times
compared with the nonlinearity of ordinary “atomic”
media [5]. Since the size of microspheres is rather large
(on the order of a few micrometers), their spatial mod-
ulation by gradient forces gives rise to abnormally large
nonlinear coefficients. In [3], four-wave mixing exper-
iments were carried out to determine the optical Kerr
coefficient n2 in a water suspension of latex micro-
spheres of radius a = 0.117 µm with the use of argon
laser radiation beams (λ = 5145 Å) with a power of
about 100 mW. The optical Kerr coefficient was mea-
sured to be n2 = 3.6 × 10–3 cm2/MW for the concentra-
tion of microspheres N0 = 6.5 × 1010 cm–3, which turned
out to be greater than the relevant coefficient in CS2 by
a factor of 105. The relaxation times of the concentra-
tion gratings of microspheres for a convergence angle
of 6.4° between copropagating beams were greater than
100 ms. Due to the high values of the optical Kerr coef-
ficient n2, a liquid suspension of dielectric micro-
spheres can be used as a highly effective wideband non-
linear medium for a low-intensity laser impulse of large
duration.

In [6], a theory of four-wave mixing in liquid sus-
pensions of small-size transparent microspheres was
developed in a weak-field limit, when the saturation
phenomena are neglected (the diffusion limit). In the
diffusion limit, the gradient forces modulate the con-
centration of microspheres and produce two orthogonal
 2005 Pleiades Publishing, Inc.
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concentration gratings; coherent scattering of radiation
by these gratings leads to the formation of a reversed
wave and the amplification of the test wave. In spite of
the fact that only a small number of microspheres are
involved in the four-wave mixing, the reflection coeffi-
cient of the reversed wave may reach significant values
(η > 1). A factor that substantially restricts the applica-
tion of the results of the theory developed in [6] is the
approximation of small microspheres; in this approxi-
mation, the intensity of effective radiation inside micro-
spheres is assumed to be constant irrespective of the
position of the microspheres on the interference pattern
of the field. In this case, the steady-state amplitudes of
the gratings do not depend on the convergence angle of
the interacting waves, and the coefficient of parametric
coupling between these waves is proportional to the
squared volume of a microsphere, i.e., to a value of a6.
In particular, we will show below that the theory of
four-wave mixing developed in the approximation
of constant intensity of radiation inside the micro-
spheres [6] is valid in a very narrow interval of the
microsphere radii, gives a considerably overstated
value of the reflection coefficient η of the reversed
wave in the region of 2ka ≥ 1 (k is the wavenumber),
and does not predict the oscillating behavior of the
function η = η(a). In this paper, we develop a four-wave
mixing theory that is free of these constraints; the
results obtained here include the results of [6] as a par-
ticular case.

The theory developed below is based on a simulta-
neous system of truncated wave equations and the two-
dimensional Smolukhovskii equation for the concen-
tration of microspheres; a solution to the latter equation
is represented as a Fourier series with time-dependent
amplitudes of multiply periodic concentration gratings
induced by the interacting waves. The gradient forces
that arise in the interference field of co- and counter-
propagating waves are calculated in the Rayleigh–Gans
approximation. The amplitudes of the gradient forces,
which are determined by the overlap integral of a
microsphere and a periodically modulated intensity of
the effective radiation that takes into account the non-
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Fig. 1. Geometry of four-wave mixing: 2θ is the conver-
gence angle of waves, and L is the length of the cell with a
suspension.
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uniform distribution of this radiation inside a micro-
sphere, are obtained in the explicit form in spherical
coordinates. The theory predicts the suppression of
four-wave mixing due to the vanishing of the resultant
components of gradient forces for certain dimensions
of microspheres and the convergence angles of the
interacting waves. We investigate the dynamics of the
formation and relaxation of concentration gratings that
are induced by the interacting light waves. We analyze
the steady-state regime of four-wave mixing in the dif-
fusion limit and determine conditions under which a
parametric generation of a pair of mutually conjugate
waves occurs with regard to the radiation loss due to the
Rayleigh scattering by microspheres. We discuss the
applicability scope of the results of [6] and the charac-
teristic features of four-wave mixing in the diffusion
limit, which are attributed to the nonuniformity of the
effective radiation inside the microspheres. We present
the results of the numerical simulation of the four-wave
mixing process without any constraints imposed on the
amplitudes of the interacting waves.

2. BASIC EQUATIONS

We will consider the process of four-wave mixing in
a liquid suspension of transparent microspheres in the
Rayleigh–Gans approximation [7]:

(1)

where λ is the radiation wavelength. Using inequali-
ties (1), we can neglect the diffraction of radiation by
microspheres [7], assuming that the effective field is
specified; i.e., we can apply the so-called electrostatic
approximation [8].

Let us represent the effective electromagnetic field
as a sum of linearly polarized plane waves of fre-
quency ω:

(2)

where El(z, t) are the wave amplitudes and kl are the
wavevectors (see Fig. 1). We will assume that the inter-
acting waves are polarized in the direction perpendicu-
lar to the plane zx.

During the four-wave mixing, the microspheres are
in the field of two pairs of counterpropagating waves of
comparable intensities. Therefore, one can neglect
small radiative forces of light pressure in the theory in
question [8, 9]. In this case, a key contribution to the
light-induced formation of a concentration response is
made by gradient forces, whose amplitude is given
by [10]

(3)

m 1–  ! 1 and 4πa m 1–  ! λ ,
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1
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where

(4)

is the specific polarizability of a microsphere,

(5)

is the time-averaged intensity of the effective radiation,
|E0 |2 = , V = (4π/3)a3 is the volume of a micro-
sphere, kz = kcosθ and kx = ksinθ are the corresponding
projections of the wavevector, k = (ω/c) , and Ul = |El |2.
In fact, the integral in (3) is the overlap integral of a
microsphere and the nonuniform intensity of the effec-
tive radiation.

We will assume that the products of complex conju-
gate amplitudes of the interacting waves are slowly
varying functions of the longitudinal coordinate:

(6)

In this approximation, with regard to (5), the integral in
formula (3) can be calculated in spherical coordinates
exactly [11]. After the integration in (3), we obtain the
following expression for the gradient force:

(7)

where j and k are unit vectors;

(8)

are the components of the gradient-force vector F∇ , and
κ = {x, z}. The amplitudes of the harmonics of the com-
ponents Fκ are defined by

(9)

where

(10)

α0
3

4π
------n2 m2 1–

m2 2+
---------------=

E
2 1

2
--- E0

2 E1E2* 2i kzz kxx+( )( )exp[+{=

+ E3E4* 2i kzz kxx–( )( )exp

+ E1E4* E2*E3+( ) 2ikzz( )exp E1E3* E2*E4+( )+

× 2ikxx( )exp c.c. ] }+

Ull 1=
4∑

n

∂ ElEl'*

∂z
------------------ ! kz ElEl'* .

F∇ jFx kFz,+=

Fκ Fκ 0 2i kzz kxx–( )[ ]exp=

+ Fκ 1 2i kzz kxx+( )[ ]exp Fκ 2 2ikκκ( )exp c.c.+ +

Fx0 iα0kxE3E4*V0– kx/kz( )Fz0,–= =

Fx1 iα0kxE1E2*V0 kx/kz( )Fz1,= =

Fx2 iα0kx E1E3* E2*E4+( )V x,=

Fz2 iα0kz E1E4* E2*E3+( )Vz,=

V0 aΛ0( )3/2J3/2 2πa/Λ0( ),=

Vκ aΛκ( )3/2J3/2 2πa/Λκ( ),=
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J3/2(ξ) is the Bessel cylindrical function, and Λ0 = π/k
and Λκ = π/kκ are the periods of the interference pat-
terns of the corresponding pairs of waves. The constant
coefficients V0 and Vκ in (9) result from the integration
of (3) and take into account the nonuniformity of radi-
ation inside the microspheres. One can easily show that
V0 = Vκ = V for ξ ! 1. It is obvious that |Fx/Fz | ∝  ;
hence, in the region of small angles θ ! π/2, the domi-
nant role in the formation of the concentration response
is played by the longitudinal (zth) component of the
gradient force. It follows from (9) that, for certain ratios
of the microsphere radius to the periods Λκ of the inter-
ference pattern of the field, namely, for 2πa/Λκ = ξi

(where ξi are the roots of the Bessel cylindrical function
J3/2(ξ), i = 1, 2, …), the corresponding component of
the gradient force vanishes irrespective of the positions
of the microspheres. The so-called effect of “zero
force” is attributed to the fact that the oppositely directed
components of this field that act on the corresponding
elements of a microsphere are equal. This effect was the-
oretically predicted independently in [8, 11]. It follows
from (9) that, for certain values of the parameters of the
system (for example, for 2kxa = ξ1 and 2kza = ξ2), the
components Fκ2 of the gradient forces vanish (i.e.,
Vκ = 0) irrespective of the intensity of the effective radi-
ation. Using the values of the first two roots of the
Bessel function J3/2(ξ) [12], one can show that the con-
dition Vκ = 0 is fulfilled for a/λ = 0.709 and

tanθ = ξ1/ξ2 ≈ 0.58,

i.e., θ ≈ 30°. It is obvious that this condition is also sat-

isfied for θ = 45° and ka = ξi. In this case, the min-
imal value of the ratio a/λ corresponds to ξi = ξ1 and is
equal to a/λ = 0.506. By virtue of inequalities (1), the
conditions obtained above can be satisfied in suspen-
sions with small values of the relative refractive index
|  – 1| ≤ 10–2.

Thus, due to the zero force effect, the process of
four-wave mixing, to which the main contribution is
made by the components Fκ2, can be nearly completely
suppressed for appropriate values of the microsphere
sizes and the convergence angle of the interacting
waves. Note also that, depending on the radii of the
microspheres, the amplitudes of gradient forces (9) are
alternating functions. Therefore, the microspheres of
appropriate sizes may be drawn either to the antinodes
(when J3/2(ξ) > 0) or to the nodes (when J3/2(ξ) < 0) of
the interference pattern of the field. This motion of
microspheres can physically be explained by the ten-
dency to cover a maximal number of antinodes of the
interference pattern of the field [8, 11].

To determine the concentration response of micro-
spheres induced by an electromagnetic field (see (1)),

θtan

2

m

SICS      Vol. 101      No. 3      2005



392 AFANAS’EV et al.
we apply the two-dimensional Smolukhovskii equation1

(see, for example, [13])

(11)

where N is the concentration of microspheres (cm–3),
D = kBT/6πνa is the diffusion coefficient (cm2/s), kB is
the Boltzmann constant, T is temperature (K), ν is the
viscosity of the liquid, b = D/kBT is the mobility of
microspheres, and ∆⊥  = ∂2/∂z2 + ∂2/∂x2. Equation (11) is
valid in the domain t > t* provided that the gradient
force F∇  is a slowly varying function on the time t* and
space l* scales defined by the relations [13, 14]

(12)

where m0 is the mass of a microsphere. In particular, for
a water suspension of latex microspheres of radius a =
1.17 × 10–5 cm with density 1 g/cm3, which was used in
the experiment in [3], we have t* ≈ 3 × 10–9 s and l* ≈
7 × 10–9 cm at room temperature.

It is convenient to represent the solution to Eq. (11)
as a harmonic series

(13)

where N00 = 〈N〉x, z = N0 = const is the initial concentra-
tion of microspheres, 〈…〉x, z denotes spatial averaging,
and  = N–m, –n. Substituting solution (13) into
Eq. (11) and taking into account expression (8), we
obtain the following system of kinetic equations for the
amplitudes Nmn(t) of concentration harmonics:

(14)

1 This equation is known as the Planck–Nernst equation in
English-language literature [6].

∂N
∂t
------- D∆⊥ N=

– b N
∂Fx

∂x
---------

∂Fz

∂z
--------+ 

  Fx
∂N
∂x
------- Fz

∂N
∂z
-------+ 

 + ,

t* bm0, l*
kBT
m0
---------t*,= =

N x z t, ,( )

=  Nmn t( ) 2i mkzz nkxx+( )[ ] ,exp
m n, ∞–=

∞

∑

Nmn*

∂
∂t
----- Wmn+ 

  Nmn amnNm 1– n 1+,=

– amn* Nm 1+ n 1–, bmnNm 1– n 1–,+

– bmn* Nm 1+ n 1+, cnNm n 1–, cn*Nm n 1+,–+

+ dmNm 1– n, dm*Nm 1+ n, ,–
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where

(15)

When the radii of the microspheres and the conver-
gence angles of the interacting waves are small, i.e.,
a ! Λ0 and θ ! π/2, we can neglect the component Fx

of the gradient force; then, the system of equations (14)
is reduced to

(16)

The nonlinear polarization of a suspension of micro-
spheres induced by the variation of their concentration
under gradient forces is defined by [6]

(17)

Substituting formulas (2) and (17) into the wave equa-
tion, we obtain the following system of truncated equa-
tions for the amplitudes of the interacting waves:

(18)

Wmn 4D mkz( )2 nkx( )2+[ ] ,=

amn 2α0b mkz
2 nkx

2–( )E3E4*V0,=

bmn 2α0b mkz
2 nkx

2+( )E1E2*V0,=

cmn 2α0bnkx
2 E1E3* E2*E4+( )V x,=

dmn 2α0bmkz
2 E1E4* E2*E3+( )Vz.=

∂
∂t
----- Wmn+ 

  Nmn 2α0bVmkz
2 E3E4*Nm 1– n 1+,[=

– E3*E4Nm 1+ n 1–, E1E2*Nm 1– n 1–,+

– E1*E2Nm 1+ n 1+, E1E4* E2*E3+( )Nm 1– n,+

– E1*E4 E2E3*+( )Nm 1+ n, ] .

P
1
2
---α0VN x z t, ,( )=

× El z t,( ) i ωt k– r⋅( )–[ ]exp
l 1=

4

∑ c.c.+

θ
∂E1

∂z
---------cos

1
v
----

∂E1

∂t
---------+

=  iγ E1 χ11E2 χ01E3 χ10E4+ + +( ) ρE1,–

θ
∂E2
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---------cos–

1
v
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∂E2

∂t
---------+

=  iγ E2 χ11* E1 χ10* E3 χ01* E4+ + +( ) ρE2,–
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∂E3
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=  iγ E3 χ01* E1 χ10E2 χ1 1–, E4+ + +( ) ρE3,–

θ
∂E4

∂z
---------cos

1
v
----

∂E4

∂t
---------+–

=  iγ E4 χ10* E1 χ01E2 χ1 1–,* E3+ + +( ) ρE4,–
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where v  = c/  is the velocity of light in the suspension,

In Eqs. (18), we took into account the equation  =
N–m, –n and phenomenologically introduced the ampli-
tude coefficient of loss [6, 14]

(19)

due to the Rayleigh scattering by microspheres. Equa-
tions (18) imply that only two pairs of gratings from the
spectrum of excited concentration gratings (13) take
part in the process of four-wave mixing: one pair of
orthogonal gratings,

leads to the parametric coupling of waves and the
energy exchange among them, and the other pair,

leads to self-action phenomena. Due to the spatial aver-
aging of the wave equations, other concentration grat-
ings do not make a direct contribution to four-wave
mixing. The indirect role of these gratings reduces to
the influence on the values of the amplitudes of the
main gratings Nκ and N±.

The simultaneous system of wave equations (18)
and kinetic equations (14) subject to the boundary con-
ditions

(20)

and the initial conditions

(21)

describes the process of four-wave mixing of waves of
arbitrary intensities on the concentration nonlinearity
due to the action of gradient forces on transparent
microspheres.

3. KINETICS OF A CONCENTRATION 
GRATING OF MICROSPHERES

Based on Eqs. (14), we consider the kinetics of a
concentration grating of microspheres induced by the
interference field of two waves. Assume, for definite-
ness, that E2 = E4 = 0. Then, amn = bmn = dm = 0 and cn =

n

γ 2π k

n2
-----α0V N0, χmn

Nmn

N0
---------.= =

Nmn*

ρ 8π
3

------N0k4 m2 1–

m2 2+
--------------- 

 
2

a6,=

Nκ 2kκκ( ), κcos∝ x z,,=

N± 2 kzz kxx±( )[ ] ,cos∝

E1 0 t,( ) E10 t( ), E2 L t,( ) E20 t( ),= =

E3 0 t,( ) E30 t( ), E4 L t,( ) 0= =

Nmn t ∞–=( ) 0, m 0, n 0,≠≠=

N00 t ∞–=( ) N0=
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2α0bn VxE1 ; hence, the amplitudes Nmn of the con-
centration gratings and the relaxation constants Wmn

depend only on the index n (Nmn ≡ Nn and Wmn ≡ Wn). In
this case, Eqs. (14) are significantly simplified and
reduced to

(22)

where Wn = 4Dn2  and A = 2α0b VxE1 .

For relatively weak waves, when higher order grat-
ings (n > 2) can be neglected, Eqs. (22) yield

(23)

where Γ = 4D .

For rectangular pulses (El(t) = El = const for t ≥ 0,
l = 1, 3), a solution to system of equations (23) can be
obtained in the explicit form (see Appendix A). It fol-
lows from solution (A.3) that, due to the excitation of
the second-order grating N2, the amplitude of the main
grating N1 contains two components whose relaxation
times are less than t = 1/Γ. The greater relaxation time
of the main grating N1 is estimated by the relation

(24)

which is valid for U1U3 < 6D2/(α0bVx)2. Thus, in the
approximation used, the relaxation time τ1 of the main
grating decreases linearly as the product of the intensi-
ties of the exciting waves increases. It follows from
Eqs. (23) that the relaxation times  of the concentra-
tion gratings are determined by the diffusion coefficient
and the periods of the gratings:

In particular, for the parameter values D = 1.88 ×
10−8 cm2/s and Λx = 3.5 × 10 cm–4, which correspond to
the experiment of [3], we have  = 165 ms; this result
agrees well with the relaxation time  = 140 ± 40 ms
of the main grating N1 measured in [3].

Figure 2 shows the time dependence of the normal-
ized amplitude of the main grating, calculated from
Eqs. (22), for various values of the intensities of the
effective radiation. Figure 3 shows the relaxation time
τ1 of the main grating as a function of the radiation

kx
2 E3*

∂Nn

∂t
--------- WnNn+ n ANn 1– A*Nn 1+–( ),=

kx
2 kx

2 E3*

∂N1

∂t
--------- Γ N1+ AN0 A*N2–( ),=

∂N2

∂t
--------- 4Γ N2+ 2AN1,=

kx
2

τ1
1
Γ
--- 1

2
3
--- A 2

Γ2
--------– 

 ≈

=  
1

4Dkx
2

------------- 1
1
6
---

α0bV x

D
--------------- 

 
2

U1U3– ,

τn

τn 1/n2Γ , n 1 2.,= =

τ1

τ1
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intensity I = (c /8π)U0 and the convergence angle θ of
the interacting waves. The analysis shows that, for the
maximal value of the intensity of the interacting waves,
it suffices to restrict the consideration to gratings with
n ≤ 8 in Eqs. (22).

4. THEORY OF FOUR-WAVE MIXING
IN THE DIFFUSION LIMIT

The diffusion approximation [6]

(25)

imposes a constraint on the intensities of the interacting
waves and corresponds to the situation when the terms

n

N z x t, ,( ) N0 N z x t, ,( ), N  ! N0,+=

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6 0.8

1

2

3n1

t, s

Fig. 2. Kinetics of the amplitude n1 = N1/N0 of the main
grating for ξ = 2ka = 3.8 and θ = 3.2° for the parameter val-

ues |%0|2 = 2α0V /kBT = 0.2 × 10–7 (1), 0.4 × 10–7 (2),

and 0.6 × 10–7 (3).

U1U2
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proportional to the amplitudes of the concentration
gratings Nmn (m, n ≠ 0) on the right-hand sides of
Eqs. (14) are neglected. In this case, Eqs. (14) imply the
following relations for the components χmn that deter-
mine the process of four-wave mixing:

(26)

In the diffusion limit, the relaxation times

of the concentration gratings do not depend on the radi-
ation intensity and are determined by the diffusion
coefficients and the periods of the interference pattern
formed by the interacting waves. It follows from
Eqs. (26) and (10) that, due to the nonuniformity of the
radiation intensity inside the microspheres, the steady-
state amplitudes of the concentration gratings depend
on the convergence angle θ of the waves and take
bounded values as the radius a of microspheres
increases. Note that, for small radii of microspheres
(for V0 = Vκ = V) [6], the amplitudes of the concentra-
tion gratings do not depend on the angle θ and indefi-
nitely increase as the microsphere radius increases.

∂
∂t
----- 4Dkx

2+ 
  χ01 2α0V xbkx

2 E1E3* E2*E4+( ),=

∂
∂t
----- 4Dkz

2+ 
  χ10 2α0Vzbkz

2 E1E4* E2*E3+( ),=

∂
∂t
----- 4Dk2+ 

  χ11 2α0V0bk2E1E2*,=

∂
∂t
----- 4Dk2+ 

  χ1 1–, 2α0V0bk2E3E4*.=

τ0
1

4Dk2
-------------

Λ0/2π( )2

D
---------------------- and τκ

1

4Dkκ
2

-------------
Λκ /2π( )2

D
----------------------,= = = =
0.2

0.1

0 2 4 6

θ = 3.2°

τ1, s

I, 104 W/cm2

6.4∞

(a)

0.08

0.04

0 10° 20° 30°

τ1, s

θ

I = 104 W/cm2

(b)

Fig. 3. Relaxation time τ1 of the main grating as a function of (a) the intensity of effective radiation and (b) the convergence angle θ
for ξ = 2ka = 3.8, k = 1.6 × 105 cm–1, α0 = 5.3 × 10–2, and kBT = 4.14 × 10–14 erg.
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In the steady-state regime (for t @ τκ), Eqs. (18) with
regard to (26) are rewritten as

(27)

Neglecting the reaction of weak waves E3 and E4 to the
intense reference waves E1 and E2, from Eqs. (27) we
obtain the following relations for ρ = 0:

(28)

θ
dE1

dz
---------cos

=  iγ 1
α0b
2D
--------- V0U2 V xU3 VzU4+ +( )+ E1





+
α0b
2D
--------- V x Vz+( )E2*E3E4





ρE1,–

θ
dE2

dz
---------cos–

=  iγ 1
α0b
2D
--------- V0U1 VzU3 V xU4+ +( )+ E2





+
α0b
2D
--------- V x Vz+( )E1*E3E4





ρE2,–

θ
dE3

dz
---------cos

=  iγ 1
α0b
2D
--------- V xU1 VzU2 V0U4+ +( )+ E3





+
α0b
2D
--------- V x Vz+( )E4*E1E2





ρE3,–

θ
dE4

dz
---------cos–

=  iγ 1
α0b
2D
--------- V xU1 VzU2 V0U3+ +( )+ E4





+
α0b
2D
--------- V x Vz+( )E3*E1E2





ρE4.–

θ
dE3

dz
---------cos i κ3E3 βE4*E10E20+{=

× iκ1ẑ iκ2 L̂ ẑ–( )+[ ]exp } ,

θ
dE4*

dz
----------cos– i κ4E4* βE3E10* E20*+{–=

× iκ1ẑ– iκ2 L̂ ẑ–( )–[ ] } ,exp
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where

(29)

β = (γα0b/2D)(Vx + Vz) is the coefficient of parametric

coupling,  = z/cosθ, and  = L/cosθ. The solution to
Eqs. (28) subject to the boundary conditions E3(0) = E30

and ( ) = 0 has the form

(30)

where

(31)

is the increment of the parametric amplification of
weak radiation and

(32)

is the phase mismatch of the interacting waves.
It is obvious that the amplitude of the reversed wave

E4 is proportional to the coefficient β of parametric
coupling. Using formulas (10), one can show that, for
certain values of the microsphere radius a and the
convergence angle θ of the interacting waves, the coef-

κ1 γ 1
α0b
2D
---------V0U2+ ,=

κ2 γ 1
α0b
2D
---------V0U1+ ,=

κ3 γ 1
α0b
2D
--------- V xU1 VzU2+( )+ ,=

κ4 γ 1
α0b
2D
--------- VzU1 V xU2+( )+ ,=

ẑ L̂

E4* L̂

E3 z( ) E30 i
∆
2
--- κ3+ 

  ẑexp=

× 2Γ Γ L̂ ẑ–( )[ ]cos i∆ Γ L̂ ẑ–( )[ ]sin+

2Γ Γ L̂cos i∆ Γ L̂sin+
---------------------------------------------------------------------------------------,

E4* z( ) 2iβE30 U1U2=

× i
∆
2
--- κ4– 

  ẑ– κ2 L̂+exp

× Γ L̂ ẑ–( )[ ]sin

2Γ Γ L̂cos i∆ Γ L̂sin+
---------------------------------------------------,

Γ β2U1U2 ∆2/4+=

∆ κ1 κ2– κ3– κ4+=

=  γ
α0b
2D
--------- V0 V x Vz–+( ) U2 U1–( )
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ficient β vanishes. For these values of the parameters a
and θ, due to the zero-force effect, concentration
gratings with periods Λκ , which are responsible for the
four-wave mixing, are not induced and hence a para-
metric generation of the reversed wave E4 does not
occur. Figure 4 represents a family of curves on the
plane aθ that shows the values of the parameters a and
θ at which the coefficient of parametric coupling van-
ishes (β = 0).

1.0

0.4

5° 10° 20° 30°

a, µm

θ

0.8

0.6

0.2
15° 25°

Fig. 4. Family of solutions to the equation β(a, θ) = 0 for
k = 1.6 × 105 cm–1.
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It follows from solutions (30) that the linear theory

of four-wave mixing for ∆ = 0 (Γ = Γ0 = |β| )
imposes a constraint on the intensities of the reference
waves; this constraint is associated with possible
parametric generation of a pair of mutually conjugate
waves E3 and  with the threshold given by the con-
dition [15]

(33)

Taking into account the definition of the coupling coef-
ficient β from (33), we obtain

(34)

It follows from (32) that the condition ∆ = 0 is satisfied
in two cases: either when U1 = U2 or when V0 + Vx –

Vz ≡  = 0. Note that, V0 = Vκ = V for small micro-
spheres, a ! Λ0; hence, the condition ∆ = 0 is met, just
as in the case of ordinary media with the Kerr nonlin-
earity [15], only for U1 = U2.

U1U2

E4*

Γ0L/ θcos π/2.=

2kN0

α0
2b

n2D
---------V V x Vz+ U1U2

L
θcos

------------ 1.=

V

4

π

V ×1016

θ

8

6

2

π/20

4

π

V ×1015

θ

8

6

2

π/20

(b)(a)

0

π

V ×1014

θ

4

2

–4

π/20

(c)

–2

0

π

V ×1013

θ

6

3

–6
π/20

(d)

–3

Fig. 5. Parameter  versus the angle θ for various values of the coefficient ξ = 2ka for k = 105 cm–1; (a) ξ = 1.0, (b) ξ = 2.5,
(c) ξ = 4.5, and (d) ξ = 10.9.
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Figure 5 presents the parameter  as a function of
the angle θ for various values of the coefficient ξ = 2ka.

One can see that the parameter (θ) may vanish in the
region of ξ ≥ 2.5. The threshold value of the coefficient

ξ = ξthr ≈ 2.5 at which  = 0 corresponds to the angle
θ = π/2. When ξ > 2.5, the corresponding values of θ
may be much smaller. Hence, in the region of ξ > 2.5
(a > 0.2λ), for appropriate values of the convergence
angle θ, one can implement conditions under which
weak radiation is generated parametrically at nonequal
values of the intensities of the reference waves, U1 ≠ U2.
Note that, for relatively large values of θ ≥ π/6,
Eqs. (18) must contain derivatives with respect to the
transverse coordinate (sinθ∂/∂x).

A comparison of the results obtained in the diffusion
limit with the similar results of theory [6] is illustrated
in Fig. 6. This figure represents the reflection coeffi-
cient η of the reversed wave, calculated by the second
equation in (30), as a function of the microsphere size
for U1 = U2 = U0 and for various values of the conver-
gence angle θ of the waves. For comparison, the dashed
line represents the reflection coefficient η = η(ξ) calcu-
lated by the theory of [6]. One can see that the theory of
[6], in which a gradient force is determined under the
assumption that the intensity of radiation inside the

microspheres is uniform, F∇  = α0V∇| | 2, predicts a sig-
nificantly overstated value of ηand is valid in the region
of small ξ ! 1. Within the approximations used in [6],
the coefficient η is independent of the convergence
angle θ of the waves and hence is the same for any val-
ues of θ. One can see in Fig. 6 that, for relatively large
values of θ, when the overlap of the microspheres with
the interference pattern of the field becomes significant,
the reflection coefficient η(ξ) is a nonmonotonic func-
tion of the size of microspheres and vanishes at angles
of θ = 30° and θ = 45° (at the points ξ ≈ 8.9 and ξ ≈
6.36, respectively). As pointed out above, these values
of the parameters correspond to the conditions under
which the process of four-wave mixing is suppressed
due to the vanishing of the resultant components Fκ2 of
the gradient force.

One can show that the consideration of linear loss

(ρ ≠ 0) in the case of  = 0 leads to the following rela-
tion, which defines a threshold of the parametric gener-
ation of weak waves (see Appendix B):

(35)

where  =  > 0.

V

V

V

E

V

Γ̂ L̂tan Γ̂ /ρ,–=

Γ̂ β2U1U2 2ρL̂–( )exp ρ2–
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Figure 7 shows the threshold value Γ0 = |β|

as a function of the length  for various values of the
amplitude coefficient of loss ρ. One can see that, for

ρ ≠ 0, the optimal value of  is equal to (ρ )opt ≈ 0.74.

U1U2

L̂

L̂ L̂

1.0

0.4

0
4

0.8

0.6

0.2

6

1

2

3

2 8 ξ

η

Fig. 6. Reflection coefficient η of the reversed wave as a
function of the parameter ξ for γα0VU0L/kBT = 10–4ξ6 and
various values of the convergence angle θ: (1) θ = 3.2°,
(2) θ = 30°, and (3) θ = 45°; dashed curve is calculated by
using the theory presented in [6].
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Fig. 7. Normalized threshold intensity Γ0 of reference

waves versus the length  for various values of the coeffi-
cient ρ.
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For comparison, note that, for an ordinary medium with
cubic nonlinearity, approximate analytic estimates

yield a value of (ρ )opt ≈ 0.69 [16].

5. CONCLUSIONS

The results obtained above show that, within the
approximations used in [6], the concentration nonlin-
earity of a liquid suspension of transparent micro-
spheres cannot be correctly calculated for a wide range
of parameters. In particular, a rigorous calculation of
the concentration nonlinearity yields much smaller val-
ues of the reflection coefficient of a reversed wave com-
pared to those predicted by the theory of [6]. Neverthe-
less, estimates show that a liquid suspension of trans-
parent microspheres—an artificial heterogeneous
medium each of whose components taken separately
does not exhibit nonlinear optical properties—may
serve as a prospective wideband material for reversing
the wave front of low-intensity radiation of continuous-
wave lasers. The theoretical results obtained in the
present paper are in good agreement with the experi-
mental values measured in [3], of the reflection coeffi-
cient η of a reversed wave and the relaxation time τ1 of
a concentration grating versus the intensity of reference
waves.

Figure 8 presents the spatial distributions of the
intensities of the signal U3 and reversed U4 waves that
is obtained by the numerical simulation of the simulta-
neous system of the wave (18) and kinetic (14) equa-
tions for the four-wave mixing of argon laser radiation
(E10(t) = E20(t) = E0 for t ≥ 0, E30(t) = 1) in a water sus-
pension of latex microspheres [3] at room temperature:
n0 = 1.59,  = 1.33, N0 = 6.5 × 1010 cm–3, L = 10–2 cm,
θ = 3.2°, D = 2.2 × 10–13a–1 cm2/s, and the intensities
I = 7.5 × 104 W/cm2 of the reference waves. One can

L̂

n

1.0

6

2

0.20 0.4 0.6
z/ L̂

U3, U4

4

0.8

1

2

3

1

2

3

Fig. 8. Steady-state distributions of the intensities of the sig-
nal U3 (solid lines) and reversed U4 (dashed lines) waves for
various microsphere sizes a: (1) 0.1 µm, (2) 0.11 µm, and
(3) 0.12 µm.
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see in Fig. 8 that, for the chosen range of the parame-
ters, the efficiency of the four-wave mixing is quite sen-
sitive to the size of microspheres. In this case, an
increase in the microsphere radius by 20% leads to
about a threefold increase in the reflection coefficient η
of the reversed wave.

In this study, by analogy with [6], we have taken into
account the radiation damping due to the Rayleigh scat-
tering phenomenologically, by adding a linear loss fac-
tor ρ ∝  N0 to the wave equations (18). Strictly speaking,
the spatial modulation of microspheres by the effective
radiation leads to the dependence of the loss factor on
the radiation intensity, ρ = ρ(|E |2). A rigorous consider-
ation of the nonlinearity of the loss factor is guaranteed
by an appropriate modification of formula (17), which
has the form

in the general case. Hence, generally speaking, the pro-
cesses of Rayleigh scattering also modulate the imagi-
nary part of the dielectric constant of a suspension; i.e.,
amplitude–phase gratings are induced in the suspension
whose amplitude component should be taken into
account provided that ||α0 |V ≥ k–3.

Under relatively high intensities of the interacting
waves, high concentrations of microspheres at the anti-
nodes (nodes) of the interference field may lead to the
formation of clusters even in a rarefied suspension [3];
naturally, this fact leads to a qualitative change in the
process of four-wave mixing. Moreover, in this case,
one should also take into account that the size of micro-
spheres is finite, which restricts the limiting concentra-
tions to Nlim = 1/V.

Thus, a further development of the theory of four-
wave mixing in liquid suspensions of transparent
microspheres should be carried out with regard to the
nonlinearity of the imaginary part of the dielectric con-
stant of the suspension, the formation of clusters of
microspheres, and the saturation of the amplitudes of
the concentration gratings due to the finiteness of the
volume of microspheres.

APPENDICES

APPENDIX A

Upon the substitution of Nn = exp(–4Γt), the sys-
tem of equations (23) is reduced to the following sec-

ond-order equation for :

(A.1)

P
α0V

2
----------N x z t, ,( ) 1 i

8
3
---k

ω
c
---- 

 
2

α0V+
 
 
 

=

× El i ωt k– r⋅( )–[ ]exp
l 1=

4

∑ c.c.+

N̂n

N̂1

d2N̂1

dt2
------------ 3Γ

dN1

dt
----------– 2 A 2N̂1+ 4ΓAN0 4Γ t( ).exp=
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A solution to this equation for λ2 = 9Γ2 – 8|A |2 > 0 is
given by

(A.2)

where C± are integration constants. The initial condi-

tion (0) = 0 implies the relation C+ = –C–. The coef-
ficient C+ is determined from the condition that

as A  0. It can easily be shown that this passage to
the limit is attained for C+ = N0A/3Γ. Taking this fact
into account, from (A.2) we find

(A.3)

Similarly, for N2(t), the second equation in (23) yields

(A.4)

APPENDIX B

For ρ ≠ 0, the first two equations in (27) yield the
following equations for the amplitudes of the reference
waves:

(B.1)

A solution to these equations is given by

N̂1 t( ) 3Γ
2

-------t 
  C+

λ
2
---t 

 exp




exp=

+ C–
λ
2
---t– 

 exp 8
Γ
λ
---AN0

3Γ
2

-------t'– 
 exp

0

t

∫+

× λ
2
--- t t'–( )dt'





,sinh

N̂1

N̂2 0, N̂1
AN0

Γ
---------- 1 Γ t–( )exp–[ ] 4Γ t( ),exp

N1 t( )
2AN0

3Γ
-------------- 5Γ

2
-------t– 

 exp=

× λ
2
---t 

 sinh
3Γ2

2Γ2 A 2+
------------------------+





× 5Γ
2

-------t 
 exp

λ
2
---t 

 cosh– 5
Γ
λ
--- λ

2
---t 

 sinh–




.

N2 t( ) 2A N1 t'( ) 4Γ t t'–( )–[ ]exp t'.d

0

t

∫=

dE1

dẑ
--------- iγ 1

α0b
2D
---------V0 E2

2+ 
  E1 ρE1,–=

dE2

dẑ
---------– iγ 1

α0b
2D
---------V0 E1

2+ 
  E2 ρE2.–=

E1 ẑ( ) E10 iγ ρ–( )ẑ iγ
α0b
2D
---------V0 E20

2+




exp=
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(B.2)

The substitution of solutions (B.2) into the last two
equations in (28) yields

(B.3)

where

The substitutions

(B.4)

× 2ρL̂–( ) 2ρz( )exp zd

0

L̂

∫exp




,

E2 ẑ( ) E20 iγ ρ–( ) L̂ ẑ–( ) iγ
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

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
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ẑ

∫ .
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reduce the system of equations (B.3) to the following
second-order equation for the amplitude %3( ):

(B.5)

where

It follows from (B.5) that, for (θ) = 0, the roots of the
characteristic equation

(B.6)

are given by

(B.7)

Applying the boundary conditions E3(0) = E30 and

( ) = 0, we determine the integration constants C±
of the system of equations (B.3):

(B.8)

The condition λ–exp(–i ) – λ+exp(i ) = 0 implies
formula (35).

ẑ
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dẑ2
------------ 2ρ i∆ ẑ( )+[ ]
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dẑ
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+ β2 E10
2 E20

2 2ρL̂–( )%3exp 0,=

∆ ẑ( ) γ
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2 2ρ L̂ ẑ–( )–[ ]exp{=

– E10
2 2ρẑ–( ) } .exp

V
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2 E20

2 2ρL̂–( )exp+ 0=

λ± ρ i β2 E10
2 E20

2 2ρL̂–( )exp ρ2–±=
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λ+− iΓ̂ L̂+−( )exp

λ– iΓ̂ L̂–( )exp λ+ iΓ̂ L̂( )exp–
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Γ̂ L̂ Γ̂ L̂
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Abstract—Enhanced noncollinear second harmonic generation in a finite one-dimensional photonic crystal is
analyzed theoretically under conditions of pump field localization near the Bragg reflection. It is shown numer-
ically that phase-matched second-harmonic generation can be implemented in a finite one-dimensional photo-
nic crystal that does not satisfy the conventional phase-matching conditions calculated for effective Bloch
modes with narrow spectral lines. The intensity of the generated second-harmonic signal exceeds the second-
harmonic intensity attained under the conventional phase-matching conditions by more than an order of mag-
nitude. This phenomenon is explained by interference between Bloch modes having similar amplitudes, wave-
numbers, and spectral widths. Since the spatial spectra of waves propagating in a bounded medium have finite
widths, the broadened spectral lines of proximate effective Bloch modes resulting from Bragg diffraction of
waves tuned to the first transmission resonances near the photonic bandgap edge overlap, merging into a spec-
tral profile with center shifted relative to the original effective Bloch wavevectors. This effect leads to modified
phase matching conditions for second harmonic generation in a finite photonic crystal, which are written for
the centers of the spectral profiles resulting from modal overlap, rather than for individual effective wavevec-
tors. Substantially different phase matching conditions are obtained for weakly and strongly diffracted beams,
whereas conventional phase matching conditions hold only for transmitted signals in the case of weak diffrac-
tion. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Recent development of new nonlinear optical mate-
rials, photonic crystals [1, 2], has motivated extensive
studies of parametric conversion in periodic nonlinear
structures [3]. Photonic crystal is an artificial structure
with periodically modulated dielectric constant (in the
general case, in three dimensions). When the modula-
tion period is comparable to the optical wavelength, a
light wave cannot propagate into the structure if its fre-
quency or angle of incidence lies within a certain range
called photonic band gap (PBG) [4]. Photonic crystals
are characterized by strong localization of the energy of
a pump (fundamental) beam whose frequency or angle
of incidence corresponds to a PBG edge. The increase
in pump energy density leads to higher amplitudes of
polarization waves and, as a consequence, to higher
intensities of Raman sidebands generated in parametric
conversion processes. For one-dimensional photonic
crystals, this effect was investigated in [5, 6]. We call it
non-phase-matching enhancement. In [7], it was shown
analytically that the energy of a localized pump wave
can be proportional to the number of photonic-crystal
periods cubed. Therefore, non-phase-matching
enhancement provides a very efficient method for
enhancing nonlinear wave interaction in periodically
structured materials, whereas the intensities of signals
1063-7761/05/10103- $26.000401
generated in homogeneous media cannot increase
faster than the sample length squared. It is well known
that conversion of pump energy into Raman sidebands
is efficient only when phase or group-velocity matching
conditions are satisfied, as in birefringent crystals [8],
artificial crystals with regular domain structure [9–11],
or optical waveguides [12–14]. Since phase matching
and non-phase-matching enhancement conditions are
combined in photonic crystals [15–17], conversion effi-
ciency can be additionally enhanced in photonic crys-
tals as compared to homogeneous materials. For a pho-
tonic crystal about ten micrometers thick, the efficiency
of energy conversion from fundamental into second-
harmonic field can exceed 10% [18, 19], which is two
orders of magnitude higher than the efficiency of non-
linear optical conversion in a homogeneous nondisper-
sive medium of similar thickness. Strong spatial disper-
sion near the PBG edge [4] can compensate for the
material dispersion in a photonic crystal, ensuring
phase-matched interaction between fundamental and
generated waves in nonlinear processes. We call this
effect dispersion phase matching (DPM). Simultaneous
fulfillment of the DPM and non-phase-matching
enhancement conditions was predicted theoretically
in [15] and demonstrated experimentally in [16] for
second harmonic generation. Another mechanism of
compensation of phase mismatch between interacting
 © 2005 Pleiades Publishing, Inc.
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waves in photonic crystals involves the reciprocal lat-
tice vector and is known as quasi-phase-matching
(QPM) [10]. QPM conditions are generally fulfilled for
counterpropagating pump and signal waves, whereas
DPM is characteristic of copropagating waves. Sum-
frequency generation under QPM conditions combined
with non-phase-matching enhancement conditions was
demonstrated in [17]. Material dispersion can also be
compensated for signals generated in nonlinear liquid
crystals of certain types [20–22], which can essentially
be treated as natural photonic crystals. However, the
refractive-index modulation amplitude in these crystals
is not sufficient for achieving significant non-phase-
matching enhancement.

According to [15], second harmonic generation can
be implemented in a photonic crystal under phase
matching conditions for effective wavevectors [23] if
the fundamental and second-harmonic frequencies are
tuned, respectively, to the first and second transmission
resonances relative to the corresponding PBG center
frequencies. Experimental evidence of the correspond-
ing second-harmonic intensity peak was obtained
in [16, 24] for structures specially designed to meet
these conditions. However, the efficiency of second
harmonic generation under non-phase-matching
enhancement conditions has never been analyzed for
fundamental wave and second harmonic tuned to other
transmission resonances. The parameters of periodic
structures and pump beams corresponding to optimal
efficiency of Raman sideband generation are generally
calculated by using effective wavevectors [4, 23] in
conventional phase matching conditions similar to
those for waves propagating in infinite homogeneous
media. In this method, the field propagating in a layered
structure is represented as a superposition of Bloch
modes characterized by effective wavevectors instead
of Bloch vectors. However, a real photonic crystal can-
not be treated as a homogeneous medium even approx-
imately. The field inside a bounded crystal has a very
complex structure consisting of Bloch modes with
spectral widths ∆k ~ 2π/L, where L is the sample
length. Therefore, if the shift between two proximate
Bloch modes with comparable amplitudes is approxi-
mately equal to ∆k (when the pump is tuned near the
PGB edge), then the corresponding spectral lines
merge, and the resulting profile has a peak shifted rela-
tive to the effective wavevector. Accordingly, the phase
matching conditions calculated for modes with finite
spectral widths may be shifted relative to the phase
matching conditions calculated by using effective
wavevectors (corresponding to Bloch modes with nar-
row spectral lines), and the maximum shift is π/L. For
example, the peak intensities and frequencies of the
second-harmonic and sum-frequency signals measured
in [17] were shifted relative to those corresponding to
the exact phase conditions calculated for effective
wavevectors.

In this study, we use a special noncollinear geome-
try to ensure non-phase-matching enhancement in a
JOURNAL OF EXPERIMENTAL A
wide frequency range and apply the transfer matrix for-
malism [25] to demonstrate the possibility of efficient
second harmonic generation in a thin one-dimensional
photonic crystal when the fundamental-wave and sec-
ond-harmonic first transmission resonances coincide.
In this case, even though the conventional phase match-
ing conditions calculated for effective wavevectors cor-
responding to Bloch modes with narrow spectral lines
are not satisfied, the signal intensity exceeds that of the
second harmonic satisfying the conventional phase
matching conditions [15, 16]. This effect is explained
by analyzing dynamics of coupled modes and taking
into account the overlapping in both pump and signal
spectra. We propose modified phase matching condi-
tions written for the centers of profiles resulting from
modal overlap in the spatial spectra of coupled waves.
We show that optimal conditions for efficient coupling
between the pump and signal waves are substantially
different in the cases of strong and weak Bragg diffrac-
tion in a photonic crystal.

The paper is organized as follows. In Section 2, we
formulate the problem, outline the method of solution,
and describe the periodic structure to be examined. In
Section 3, we analyze the spatial spectra of waves prop-
agating through periodic structures. The results of Sec-
tion 3 are used in Section 4 to explain the behavior of
the frequency profiles of second-harmonic intensity
obtained in the cases of weak and strong diffraction.

2. SECOND HARMONIC GENERATION
NEAR THE EDGE OF THE PHOTONIC BAND 
GAP IN A BOUNDED PHOTONIC CRYSTAL

We consider second harmonic generation in a stack
of N bilayers characterized by quadratic nonlinearity,
with thicknesses d1 and d2 and complex frequency-
dependent refractive indices n1(ω) and n2(ω), on an infi-
nite substrate with complex refractive index nsubs. Their

second-order susceptibilities  and are assumed
to be constant for simplicity (subscripts 1 and 2 refer to
odd and even layers, respectively). Pump beams with
frequencies ω1 and ω2 are incident from vacuum onto
the crystal surface at arbitrary angles θ1 and θ2, respec-
tively, to the normal vector. The z axis is aligned with
the normal vector and directed into the crystal, the x
axis is parallel to its surface, and the xz plane is the
plane of incidence of the fundamental waves.

Owing to quadratic nonlinearity, a polarization
wave with frequency ω1 + ω2 is created in the photonic
crystal, which gives rise to a sum-frequency signal at
ω3 = ω1 + ω2. The pump and sum-frequency fields
inside the crystal, E1, 2(r, t) and E3(r, t), and the sum-
frequency output fields in vacuum and substrate are
found by solving the nonlinear wave equation

(1)

χ1
2( ) χ2

2( )

rotrotE
1

c2
----∂2D

∂t2
---------+

4π
c2
------

∂2PNL

∂t2
--------------.=
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Here, D(r, t) = n2(r)E(r, t) is electric induction,

is the nonlinear polarization vector, and c is the speed
of light in free space. In this study, the transfer matrix
formalism [17, 25] is applied to solve Eq. (1) in the
monochromatic plane-wave approximation for a pre-
scribed pump field. This model is valid for pulses of
duration up to 200–300 fs [6, 17] and weak nonlinear-
ity. Under these assumptions, the transfer matrix for-
malism can be used to obtain an exact solution to
Eq. (1) (with second spatial derivatives) describing the
complex multiple-mode structure of localized fields in
a thin photonic crystal.

Hereinafter, we consider the degenerate case of
sum-frequency signal with ω1 = ω2 = ω and ω3 = 2ω. To
optimize the fundamental-wave parameters with
respect to maximum generated signal intensity, we use
the noncollinear beam geometry illustrated by Fig. 1a,
which ensures fulfillment of the non-phase-matching
enhancement condition in a wide frequency range. We
vary ω and angle of incidence θ simultaneously to sat-
isfy the non-phase-matching enhancement condition,
i.e., to maximize the energy W of the field localized in
the structure (Fig. 1b),

where z = 0 and z = L = N(d1 + d2) are the input and out-
put surfaces of the photonic crystal. The mismatch
parameters ∆DPM and ∆QPM corresponding, respectively,
to dispersion phase matching and quasi-phase matching
conditions, are expressed in terms of effective wavevec-
tors as

(2)

(3)

where  denotes the z components of the pump
(i = 1, 2) and signal (i = 3) waves, H = 2π/(d1 + d2) is
the magnitude of the reciprocal lattice vector, and l is
an integer called quasi-phase-matching order. Expres-
sion (2) is analogous to the phase mismatch for a
homogeneous medium, while the term proportional to
Hl in (3) takes into account the contribution of Bloch
modes due to Bragg diffraction in a periodic structure.
The parameters in (2) and (3) vary with ω and θ. Phase
matching corresponds to

(4)

Since the fundamental waves have equal frequen-
cies, the corresponding wavevectors are symmetric rel-

PNL r t,( ) χ 2( ) : E r t,( )E r t,( )=

W n2 z( ) E z( ) 2 z,d

0

L

∫=

∆DPM k1z
eff k2z

eff k3z
eff–+( )L,=

∆QPM k1z
eff k2z

eff k3z
eff Hl–+ +( )L,=

kiz
eff

∆DPM ∆QPM, π/2.≤
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ative to the normal: θ1 = +θ0 and θ2 = –θ0, where the
angle of incidence θ0 ensures non-phase-matching
enhancement for a particular ω. Since the tangential
components of the electric field vectors are continuous
across layer boundaries [23], the “angle of incidence”
θ3 for the second harmonic is zero for any ω.

Figure 2a shows the intensities I(+) and I(–) of the
transmitted and reflected second-harmonic signals in
the geometry considered here versus normalized fre-
quency for the stack of 15 bilayers with n1(ω) and n2(ω)
corresponding to AlOx and AlGaAs (nonlinear optical
material), respectively [16]. Here, d1 = λ0/3n1(ω0) and
d2 = 3λ0/4n2(ω0), where λ0 = 2πc/ω0 and ω0 is a refer-
ence frequency; the substrate is vacuum. The intensity
I(±) is normalized to that of the second-harmonic signal
with frequency 2ω0 generated in a homogeneous non-
dispersive medium of thickness D = Nd2 with refractive
index n2(ω0). Figures 2b and 2c show, respectively, the
second-harmonic reflectivity and the phase mismatch
parameters ∆DPM and ∆QPM, respectively. The phase
matching order is l = 4, and all waves are s-polarized.

The second-harmonic intensity spectrum shown in
Fig. 2a exhibits two peaks whose locations are indi-
cated by vertical dash-dot lines A and B. The former
corresponds to the zero of ∆DPM associated with the sec-
ond transmission resonance (relative to the second-har-
monic PBG center frequency). The existence of this
peak was demonstrated in [15, 16, 24]. The latter is
associated with the first second-harmonic transmission
resonance and is not related to any zero of ∆DPM or
∆QPM. This intensity peak is more than an order of mag-
nitude higher than the former; i.e., the corresponding
phase matching conditions cannot be formulated in
terms of effective wavevectors corresponding to Bloch
modes with narrow spectral lines, as in (2) or (3). Its
location should therefore be explained by analyzing a
multiple-mode structure in order to find phase match-
ing conditions different from (2)–(4).

2ω

2ω

ω ω

(a)

–θ0 +θ0

(b)

1

W (arb. units), R

θ0 θ

WR

Fig. 1. Second harmonic generation: (a) noncollinear geom-
etry; (b) reflectivity R and energy W of localized electric
field of the pump beam vs. angle of incidence θ (θ0 corre-
sponds to non-phase-matching enhancement).
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3. SPATIAL SPECTRA OF WAVES DIFFRACTED 
NEAR THE PHOTONIC BAND-GAP EDGE

In the model presented above, an effective wavevec-
tor keff(ω) is calculated to characterize the propagation
of a wave with frequency ω through a multilayered
stack [23]. The linear properties of a photonic crystal
are characterized by the dispersion curve shown in
Fig. 3 (right solid branch). Any layered structure gener-
ates a reflected (backward) wave. Since the magnitude
of the corresponding wavevector is equal to that of the
forward wave, the reflected-wave dispersion curve is
symmetric to the forward-wave one relative to the ω
axis (left solid branch in Fig. 3). However, Bragg dif-
fraction in a periodic structure must give rise to a Bloch
wave related to the incident wave by the Bragg condi-
tion k2 = k1 + mH, where m is the number of the PBG
responsible for diffraction; i.e., in addition to waves
with wavevectors keff and –keff, there must exist Bragg-
diffracted waves with keff – mH and –keff + mH (see
Fig. 3). Thus, we must consider four waves propagating

Fig. 2. Normalized frequency dependence: (a) normalized
intensities I(+) and I(–) of the transmitted and reflected sec-
ond-harmonic signals (solid and dashed curves, respec-
tively); (b) second-harmonic reflectivity R; (c) phase mis-
match parameters ∆DPM (solid curve) and ∆QPM (dashed

curve); ∆(+) (d) and ∆(–) (s). Vertical dash-dot lines A and
B indicate the peak second-harmonic intensities corre-
sponding to the second and first transmission resonances,
respectively.
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in a photonic crystal if diffraction is to be taken into
account: two forward and two backward ones.

The existence of waves with wavenumbers keff – mH
and –keff + mH is easy to demonstrate for a structure
with continuous dielectric constant ε(z), because nei-
ther Fourier series expansion of solutions nor their
matching at the points of discontinuity is required in
this case. Since wave propagation in periodic structures
is governed by qualitatively similar relations, we can
consider a crystal with harmonically modulated dielec-
tric constant:

where ε0 is the background dielectric constant, µ is the
modulation depth, H = 2π/d is the reciprocal lattice vec-
tor, d is the modulation period, L = ΛN is the crystal
length, and z = 0 and z = L are the input and output ends
of the modulated crystal. The electric field distribution
E(z) in a linear medium is found by solving Eq. (1) with
zero right-hand side [23].

Within the interval [0, L], the electric field of a plane
electromagnetic wave with frequency ω can be repre-
sented as

(5)

where kx = k0sinθ is the tangential component of the
wavevector, k0 = ω/c is the wavevector magnitude in

free space, k = k0  is the wavevector magnitude in
the medium, and θ is the angle between the wave prop-

ε z( )
ε0, z 0 L,[ ] ,∉
ε0 1 µ Hz( )cos+[ ] , z 0 L,[ ] ,∈




=

E r t,( ) E0 z( ) i ωt kxx–( )[ ] ,exp=

ε0

Reflected signal Forward signal
ω

–k k
keff – mH –keff keff –keff + mH

0

~ ~ ~ ~

~~

m–
H
2
---- m

H
2
----

PBG

Fig. 3. Dispersion curves for forward (right) and reflected
(left) signals in single-mode approximation (solid curves)
and for diffracted signals (dashed curves). The hatched
region corresponds to PBG. Dots on dispersion curves cor-
respond to the wavenumbers of the forward (keff), backward
(–keff), and Bragg-diffracted (keff – mH, –keff + mH) waves.
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agation direction and the z axis. The complex amplitude
E0(z) is expressed as

(6)

where A+(z) and A–(z) denote the amplitudes of the for-
ward and backward waves, respectively, and

is the z component of the pump wavevector. We assume
that the dielectric-constant modulation depth is suffi-
ciently small to satisfy the condition for slowly varying
amplitudes,

If the diffracted waves are tuned near the edge of the
first PBG, then the parameter δ = kz – H/2 is a small
quantity.

Substituting (5) and (6) into (1) (with PNL set to
zero), neglecting the fast-oscillating terms, and separat-
ing the terms containing exp(ikzz) and exp(–ikzz), we
obtain the system of differential equations

(7)

subject to the boundary conditions

where  is the incident intensity on the left-hand
boundary between the homogeneous and modulated
media, and the latter condition means that no beam is
incident on the right-hand boundary.

Substituting the solution to (7) into (6), we obtain
the following expressions for the forward and back-
ward electric field amplitudes:

(8)
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where

We rewrite the real values of the electric field
strengths given by (8) and (9) as

(10)

(11)

where

Expressions (10) and (11) demonstrate that the field
propagating in medium with modulated dielectric con-
stant consists of four waves, with wavenumbers β+, β–
and –β+, –β– corresponding to forward and backward
waves, respectively, i.e., to keff, –keff + mH and –keff,
keff – mH with m = 1. Since any wave propagating in a
bounded photonic crystal has a finite spectral width
estimated as 2π/L, the modes with spectral lines sepa-
rated by ∆k overlap and the lines merge into a profile
with center shifted relative to their respective centers if

(12)

Let us show that the spectral components of a signal
tuned to the first transmission resonance (relative to the
PBG center frequency) satisfy condition (12).

The reflectivity R for a periodic structure is
expressed as
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Transmission resonances are defined by the condition
R = 0, i.e.,

where n is the number of a resonance and the corre-
sponding wavenumbers are

Accordingly, ∆k = |β+ – β–| = 2πn/L, which entails ∆k =
2π/L for the first transmission resonance, in agreement
with condition (12). Thus, the modes centered at β+ and
β– substantially overlap.

α π
L
---n, n 1 2 3 …,, , ,= =

β+
H
2
----

πn
L

------, β–+ H
2
----

πn
L

------.–= =

Fig. 4. Weak Bragg diffraction in a structure with cosinuso-
idally modulated dielectric constant: (a) reflectivity vs. nor-
malized frequency. Spatial spectra of the forward and back-
ward waves for pump beams tuned to (b) third, (c) second,
and (d) first transmission resonances (A, B, and C, respec-
tively). Vertical dashed and dash-dot lines indicate, respec-
tively, H/2 components and the effective wavevectors of for-
ward, backward, and diffracted waves calculated in the sin-
gle-mode approximation.
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As an example, we consider second harmonic gen-
eration in the 20-period structure with Λ/λ0 = 0.25,
ε0 = 4, and µ = 0.01 (which corresponds to weak Bragg
diffraction) in the case of normal beam incidence. Fig-
ure 4a shows the reflectivity plotted versus normalized
wave frequency for this structure. The third, second,
and first transmission resonances are indicated by A, B,
and C, respectively. Figures 4b–4d show the spatial
spectra

plotted versus k normalized to 2π/L for waves tuned to
the resonances A, B, and C, respectively. Here, the spec-
tra of E–(z) and E+(z) correspond to k < 0 and k > 0,
respectively; vertical dash-dot lines, to keff – mH, –keff,
keff, and –keff + mH with m = 1. Figures 4b and 4c dem-
onstrate that the reflected-wave spectrum contains two
lines of equal intensity centered at keff – mH and –keff,
owing to diffraction of the incident wave. The spectrum
of the forward wave contains only the component cen-
tered at keff, whereas the one centered at –keff + mH (due
to reflected-wave diffraction) is absent in the case of
weak diffraction, because |E–(z)| ~ µ.

A totally different reflected-wave spectrum is
obtained for diffraction near the first transmission reso-
nance C (Fig. 4d). As shown analytically above, the
lines corresponding to keff – mH and –keff overlap and
merge into a single line. Figure 4d demonstrates that
the resulting reflected-wave line is centered at mH/2,
whereas the spectrum of the forward wave is still cen-
tered at keff.

To analyze the case of strong diffraction, we find the
spatial spectra of waves propagating in a medium with
cosinusoidally modulated dielectric constant having
the parameters specified above, except for µ = 0.5. The
equations for slowly varying amplitudes are not appli-
cable in this case, and the field distributions found
numerically by using the transfer matrix formalism.
Figure 5 shows the corresponding reflectivity and the
spatial spectra of the backward and forward waves plot-
ted in the same coordinates as those in Fig. 4.

Figure 5 demonstrates that the spectra of reflected
waves are qualitatively similar in the cases of both
weak and strong diffraction, differing only in ampli-
tude, whereas the forward wave has a distinct compo-
nent characterized by –keff + mH in the latter case. Its
intensity at the transmission resonance B (Fig. 5c) is
higher as compared to A (Fig. 5b), because Bragg
reflection becomes stronger as the pump frequency is
tuned closer to the PBG. Owing to the higher amplitude
of the component with –keff + mH, the center of the
spectral profile resulting from modal overlap for a wave

F k( ) 1
2πL
---------- Re E± z( )[ ] ikz( ) zdexp

0

L

∫=
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tuned to the first transmission resonance C is shifted
from keff in the direction of mH/2 (Fig. 5d).

The results of this section concerning the coupling
efficiency in second harmonic generation can be sum-
marized as follows. Due to the spectral shifts of the
coupled waves involved in second harmonic generation
near the corresponding PBG edge, phase matching con-
ditions (2)–(4) do not hold for the reflected wave in the
case of weak diffraction and for both reflected and for-
ward waves in the case of strong diffraction. Thus, the
degree of spectral overlap of the coupled waves should
be taken into account in determining optimal condi-
tions for second harmonic generation. Since the highest
efficiency of coupling between the fundamental waves
and the second-harmonic signal is attained when the
sum of the wavenumbers of the strongest fundamental-
wave components (i.e., the wavenumber of the nonlin-
ear polarization wave) corresponds to the center of the
second-harmonic spectral profile, the modified mis-
match parameters

(13)

expressed in terms of the centers of broadened spectral
profiles should be used instead of (2) and (3), and the
modified phase matching conditions are written as

, (14)

where the superscripts (+) and (–) correspond to the
forward and reflected pump (i = 1, 2) and signal (i = 3)
waves.

In particular, the centers of the reflected-wave spec-
tra in the case of strong diffraction of waves tuned near
the first transmission resonance are given by the exact

expression  = miH/2, where mi is the number of the
corresponding PBG. Accordingly, the mismatch
parameters defined by (13) can be written for both
reflected and transmitted waves as follows:

Figure 2 illustrates strong diffraction near the PBGs
with m1, 2 = 2 and m3 = 4, in which case we have ∆(±) =
(2 + 2 – 4)HL/2 = 0; i.e., the phase matching conditions
are satisfied exactly. This explains the existence of a
second-harmonic intensity peak at the point B in
Fig. 2a. Parameters (13) are shown as functions of fre-
quency for the forward (closed circles) and reflected
(open circles) waves in Fig. 2c, for which the centers of
spectral profiles were determined directly from the
computed spatial spectra. It is clear that phase matching
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conditions (14) for broadened spectral lines hold near
the first transmission resonances.

4. SECOND HARMONIC GENERATION
NEAR THE POINT OF FORBIDDEN BRAGG 

REFLECTION: WEAK AND STRONG 
DIFFRACTION

Let us demonstrate that modified phase matching
conditions (13), (14) hold for second harmonic genera-
tion near the point of so-called forbidden Bragg reflec-
tion, which is observed when 2k = mH for a wave prop-
agating through a multilayer stack, whereas each indi-
vidual layer can transmit light without reflection. In this
case, total transmission occurs instead of the total
reflection dictated by the Bragg condition. In particular,
forbidden Bragg reflection is observed when a beam is
normally incident on a stack of alternating layers of two
types whose optical thicknesses are multiples of the
beam half-wavelength λ: di = pλ/2ni, where p is an inte-

Fig. 5. Strong Bragg diffraction: (a) reflectivity vs. normal-
ized frequency; (b)–(d) spatial spectra under the corre-
sponding conditions specified in Fig. 4.
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Fig. 6. Normalized intensities I(+) and I(–) of the transmitted and reflected second-harmonic signals (solid and dashed curves, respec-
tively), second-harmonic reflectivity R, and phase mismatch parameters ∆DPM (solid curves) and ∆(+) (d) vs. normalized frequency
for refractive-index contrast ∆n = 0.1 (a), 0.3 (b), and 1.5 (c). Vertical dash-dot lines indicate peak intensities of transmitted second-
harmonic signal.
ger and ni (i = 1, 2) are the refractive indices of the
layers.

Let us examine the variation of the intensity I(±) with
increasing refractive-index contrast ∆n = |n1 – n2| for
the second harmonic generated near the point of forbid-
den Bragg reflection for waves with frequency 2ω when
the incident wave is tuned near the PBG edge. As an
example, we consider noncollinear second harmonic
generation (see Fig. 1) in the stacks of 15 bilayers with
d1, 2 = 3λ0/4n1, 2, n1 = nsubs = 1, and different n2 for the
nonlinear even layers in the absence of material disper-
sion.

Figures 6a, 6b, and 6c show the intensities I(+) (left
ordinate axes) and I(–) (right ordinate axes) of the for-
ward and reflected second-harmonic signals, the sec-
ond-harmonic reflectivity R, and the mismatch parame-
ters ∆DPM and ∆(+) given by (2) and (13) for n2 = 1.1
(weak diffraction), 1.3 (intermediate case), and 2.5
(strong diffraction), respectively. The locations of
peaks of I(+)(ω) on the frequency axis are indicated by
vertical dash-dot lines. The intensities are normalized
as in Fig. 2. For the photonic crystal with the parame-
ters specified above, forbidden Bragg reflection is
observed if the second-harmonic frequency 2ω0 corre-
sponds to the central transmission resonance in the fre-
quency dependence of R (denoted by (0) in Fig. 6). The
first, second, etc., transmission resonances on its left
and right (denoted by (–1), (–2), (+1), and (+2)) are
analogous to those near the PBG in terms of both field
distribution and spectral profiles.

In Fig. 6a, the point of maximum intensity of the
forward second-harmonic signal coincides with the
zeros of the mismatch parameters ∆DPM and ∆(+). By vir-
tue of the beam geometry, the spatial spectra of both
JOURNAL OF EXPERIMENTAL A
forward and backward waves are analogous to those in
Fig. 4d. Accordingly, the spectrum of the forward wave

is centered at , where  is the z component of the
pump wavevector, and the curves of ∆DPM and ∆(+) coin-
cide. The second-harmonic spectra at (±2) and (±1) are
similar in form to those in Figs. 4c and 4d, respectively.
Thus, modified phase matching conditions (14) hold for
the forward signal near resonance (–2), where the stron-
gest spectral components of the coupled waves overlap,
and for the reflected signal near resonances (±1) and the
point of forbidden Bragg reflection.

In the case of intermediate diffraction (see Fig. 6b),
the reflected signal exhibits a qualitatively similar
behavior, with a higher second-harmonic intensity due
to stronger diffraction. The peak of the forward second-
harmonic intensity is shifted to the right from the point
where ∆DPM = 0, and the curves of ∆DPM(ω) and ∆(+)(ω)
do not coincide. These changes are explained by appre-

ciable contributions of the modes centered at –  +
mH to the spectra of linear and nonlinear forward
waves. The zero of ∆(+) coincides with the point of max-
imum I(+).

In the case illustrated by Fig. 6c, the components

centered at –  + mH strongly contribute to the spec-
tra of the forward waves. The spectral profiles resulting
from modal overlap at the fundamental-wave first trans-
mission resonances are very similar in form to those
shown in Fig. 5d, and their centers are located almost
exactly at mH/2. Accordingly, the peak intensities of
both forward and backward second-harmonic signals
correspond to transmission resonances (±1).

2k1z
eff k1z

eff

kz
eff

kz
eff
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5. CONCLUSIONS

Second harmonic generation is considered as an
example to examine optimal conditions for nonlinear
wave coupling in a finite one-dimensional photonic
crystal in the cases of strong and weak Bragg diffrac-
tion. Special noncollinear beam geometry is used to
meet the non-phase-matching enhancement conditions
for the second-harmonic signal and determine the wave
parameters corresponding to the most accurate simulta-
neous fulfillment of phase matching conditions. When
the second harmonic is generated near the PBG or the
point of forbidden Bragg reflection, the phase matching
conditions for forward waves in the case of strong dif-
fraction and for reflected waves in the cases of both
strong and weak diffraction in a bounded medium differ
from the corresponding conventional phase conditions.
The modified phase matching conditions proposed here
for a finite photonic crystal are written for the centers of
the spatial spectral profiles resulting from the overlap
of broadened lines, rather than for the effective
wavevectors of individual Bloch modes. These modi-
fied conditions are used to explain the enhanced phase-
matched second-harmonic generation predicted in this
study in the case when the fundamental-wave and sec-
ond-harmonic first transmission resonances coincide.
The results obtained here can also be used to analyze
conditions for efficient conversion by different mecha-
nisms (parametric amplification, Raman scattering,
etc.) in finite photonic crystals.
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Abstract—Electron transfer between bound states of remote quantum dots driven by an off-resonant electro-
magnetic pulse is analyzed. In the case of nearly equal energies of the states, a two-photon transfer mechanism
related to the high-frequency off-resonant Stark effect is proposed. An equivalent transformation is used to
derive an effective Hamiltonian that provides a basis for correct treatment of continuum (conduction-band)
states. It is shown that optimal conditions for electron transfer correspond to quasi-resonant excitation of states
near the lower edge of the continuum. The characteristics of the process are evaluated. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

One natural line of development in conventional
semiconductor-based microelectronics is the miniatur-
ization of individual elements, which includes exten-
sive studies of quantum effects in nanosized objects and
development of nanotechnologies. One of the most
important tasks in this area is analysis of various
regimes of interaction between electromagnetic field
and nanostructures with a view to finding effective
mechanisms for optical control of electron dynamics.
In [1], the effect of electromagnetic field on a double
quantum well was examined and conditions for elec-
tron confinement in one of the wells were discussed.
In [2–9], the converse process of electron transfer
between two identical quantum dots driven by an elec-
tromagnetic (optical) pulse was considered. It was
shown in [2, 3] that photoinduced electron transfer
between quantum dots in a double-dot system treated as
a qubit can be used to implement quantum logic gates.

Most studies of photoinduced electron transfer have
been focused on resonant (one-photon [2–8] or
Raman [9]) transitions between discrete levels having
substantially different energies. In particular, the analy-
sis presented in [2] was the first study of photoinduced
electron transfer between low-lying states of two iden-
tical quantum dots via a third level at the top of the
potential barrier between the dots (Fig. 1a), with a driv-
ing field in resonance with the transition from the lower
energy levels to the upper level in the three-level sys-
tem. Note that this mechanism is difficult to validate
experimentally, primarily because the preparation of
two nearly identical quantum dots with prescribed
properties is a complicated technical task.

This difficulty does not arise with regard to a
Raman-resonant process of cyclic transition between
states with energies E1 and E2 in a system driven by a
1063-7761/05/10103- $26.000410
bichromatic field with frequencies ω1 and ω2 such that
E2 – E1 ≈ ω1 – ω2 (Fig. 1b) [9] (see also [10–12]).

In this paper, we consider the case when E2 ≈ E1 and
the corresponding bound states are localized in remote
quantum dots, which may not be identical (Fig. 2). In
what follows, we show that electron transfer between
the quantum dots can be implemented by driving the
system with a monochromatic electromagnetic wave of
arbitrary frequency. Thus, the phenomenon under anal-
ysis is a quite general off-resonant two-photon-assisted
process related to the high-frequency Stark effect
(atomic level shift due to virtual two-photon-assisted
transitions) [10–12]. In the case of two particles (mod-

(a)

(b)

E1

E2
ω1

ω2

Fig. 1. Quantum-dot energy levels and driving frequencies
in resonant electron transfer: (a) one-photon resonance in a
three-level system; (b) Raman resonance between levels E1
and E2 with E2 – E1 ≈ ω1 – ω2.
 © 2005 Pleiades Publishing, Inc.
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eled by quantum dots here), an analogous virtual tran-
sition causes not only an energy-level shift, but also a
real transition between degenerate levels in separate
quantum dots.

Effective electron transfer must involve quasi-reso-
nant levels, and it is shown below that states near the
lower edge of the continuum are best suited for quasi-
resonant excitation. Note that continuum (conduction-
band) electronic states have never been taken into
account in analyses of photoinduced electron transfer
[1–7, 9]. It should also be mentioned that most discus-
sions of two-photon and multiphoton coupling mecha-
nisms have focused on multiphoton transitions within a
single quantum well [13, 14] and/or inter- or intraband
transitions [15].

It is important that continuum states required to
implement off-resonant two-photon-assisted electron
transfer can be found for potential-energy profile of any
form, whereas discrete states satisfying the require-
ments for three-level transfer [2–9] exist only in certain
special cases. Moreover, the tuning to the lower edge of
the continuum (which is optimal according to our anal-
ysis) does not require high precision, because a rela-
tively broad range of energy levels is expected to con-
tribute to the process. For these reasons, off-resonant
two-photon-assisted electron transfer offers a more
general model of various processes, in particular, in
terms of scalability.

We show that the proposed mechanism is less spe-
cific with regard to both quantum-dot structure and
driving parameters, as compared to previously ana-
lyzed schemes [2–9]. First of all, note that the condition
that the energies of a pair of bound states be nearly
equal is less restrictive than the requirement of identical
quantum dots [2–8]. This condition can be satisfied, for
example, by empirically adjusting the electrostatic
potential applied to two-dimensional degenerate elec-
tron gas in order to create quantum dots [16].

Since the off-resonant two-photon-assisted electron
transfer described here is a very general mechanism, it
can be analyzed without taking into account individual
characteristics of specific quantum dots. In our study,
we rely only on the fact that the system has two nearly
equal discrete energy levels (in separate dots) and a
continuum (conduction band) defined by specifying its
boundaries.

In the present analysis, we make use of a time-
dependent equivalent transformation to derive an effec-
tive Hamiltonian that provides a basis for correct treat-
ment of continuum states. The model considered here
enriches the collection of problems that are easiest
to solve by equivalent transformation of the Hamilto-
nian [11, 12].

The paper is organized as follows. First, we perform
an equivalent transformation to derive an effective
Hamiltonian for a double quantum dot system coupled
to an electromagnetic wave. In particular, we show that
the off-diagonal matrix elements corresponding to tran-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sitions between nearly equal quantum-dot energy levels
do not vanish. Next, we obtain expressions for criteria
quantifying the efficiency of two-photon-assisted elec-
tron transfer between the quantum dots. These expres-
sions are then used to show that optimal conditions for
electron transfer correspond to quasi-resonance
between the driving frequency and transitions between
the quantum-dot energy levels and the lower edge of the
continuum. We also analyze the effect of single- and
two-photon-assisted transitions to the continuum.
Finally, we evaluate the characteristics of the process
under analysis. In the Conclusions, we discuss possibil-
ities of implementation of analogous processes in
atomic and molecular systems.

2. EFFECTIVE HAMILTONIAN 
OF A DOUBLE QUANTUM DOT SYSTEM 
DRIVEN BY AN OFF-RESONANT FIELD

We consider a system of two quantum dots with
nearly equal bound states (see the quantitative criterion
given below). We assume that the potential barrier
between the dots is sufficiently high for these states to
be treated as localized in the respective quantum dots.
Thus, tunneling between the quantum dots on the time
scale of the system can be neglected in the present anal-
ysis. Tunneling splits nearly equal energy levels.
Detailed analyses of its role in photoinduced electron
transfer were presented in [2, 8].

We seek optimal conditions for two-photon-assisted
electron transfer between the states |1〉  and |2〉  in Fig. 3,
denoting other bound states by|n〉 and continuum states
by |k〉 . Hereinafter, we use subscripts i, j = 1, 2, n, k and

E1 E2

ω ω

Fig. 2. Quantum-dot energy levels and driving frequency in
off-resonant electron transfer between levels E1 and E2 with
E1 ≈ E2.

|n〉

|k〉

|1〉 |2〉

Fig. 3. Energy levels in the proposed model.
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α, β = 1, 2 to refer to the corresponding energy levels.
Energy is measured from the lower edge of the contin-
uum (conduction band).

Dynamics of an electron in this system driven by
coherent electromagnetic field are described by the
Scrödinger equation written in the dipole approxima-
tion (with " = 1) as

(1)

Here,  is the unperturbed Hamiltonian whose eigen-
values correspond to the energy spectrum described
above,

is the electric field vector with slowly varying ampli-

tude e(t), and  is the dipole moment operator. Assum-
ing that the system’s size is much smaller than the driv-
ing-field wavelength, we neglect the variation of the
field in space:

To derive a closed set of equations describing only
transitions between |1〉  and |2〉 , we perform an equiva-
lent transformation of the state vector analogous to that
used in [11, 12],

to rewrite Eq. (1) as

(2)

with the equivalent Hamiltonian

(3)

which is represented by the series

The operators  and  are expanded in powers of elec-
tric field strength:

(4)

i
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+ i Ŝ E d̂⋅,[ ] 1
2
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Ĥ̃ Ĥ̃
0( )

Ĥ̃
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where

Now, we construct an effective Hamiltonian with

matrix elements  ~ exp{–(Ei – Ej)t}, so that Eq. (2)
is equivalent to a system of equations for slowly vary-
ing amplitudes.

We assume that the driving frequency ω is not reso-
nant with transition between |1〉  or |2〉  and any discrete
level of the system. First, we consider the simplest case
when |Ea| > ω. Accordingly, we assume that the matrix

elements of  corresponding to resonant one-photon

transitions vanish:  =  = 0. Then, the equations
for the matrix elements of S(1) have the following form:

where ωαi = Eα – Ei. Since e(t) is a slowly varying func-
tion, we can write an approximate solution to this equa-
tion as

If the system has no bound states whose energies
differ from E1 ≈ E2 by 2ω (i.e., are two-photon reso-

nant), then the nonzero matrix elements  and 

are , , , and . Since ωi2 ≈ ωi1 = ωiα,
they can be expressed as

(5)

(6)

where dij denotes the component of the corresponding
matrix element parallel to the vector ε. Thus, the sec-
ond-order term responsible for two-photon processes in
the effective Hamiltonian contains off-diagonal matrix
elements corresponding to transitions between |1〉  and
|2〉 . Accordingly, these transitions can be described by
expansions (4) limited to the second order. (Higher
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order terms are analyzed separately below.) In final
form, the matrix elements of the effective Hamiltonian

 =  +  +  

describing two-photon-assisted transitions are written
as

(7)

(8)

(9)

where

(10)

denotes Stark shifts and

(11)

is the Rabi frequency.

3. EFFICIENCY CRITERIA 
FOR ELECTRON TRANSFER

To describe electron transfer between |1〉  and |2〉  and
quantify the efficiency of the off-resonant transfer
mechanism discussed here, we seek a solution to
Eq. (2) as a superposition of the eigenstates of the
unperturbed system:

The coefficients ai(t) satisfy the relations

(12)

Substituting (7)–(9) into (12), we obtain a closed sys-
tem of equations describing cyclic transitions between
|1〉  and |2〉:

(13)

where

is the energy difference between the Stark-shifted lev-
els, which plays the role of a detuning.

Ĥ Ĥ̃
0( )

Ĥ̃
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ḃ2 ib1ei∆tΛ ,–=

b j a je
iE j

st
t
,≡

∆ E2 E2
st+( ) E1 E1

st+( )–≡
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Treating Λ as a time-independent quantity and set-
ting b1(t = 0) = 1 and b2(t = 0) = 0 (the electron is ini-
tially in the first quantum dot), we obtain

where

The probability of transfer of the electron to the second
quantum dot is

Accordingly, the corresponding optimal pulse width for
electron transfer is T = π(1 + 2n)/2Ω, where n is an inte-
ger. The corresponding probability of electron transfer
between the quantum dots,

(14)

is close to unity only if the detuning from resonance is
small:

(15)

As an estimate, we use the expansion of (14) in powers
of the small parameter defined by (15) up to the first
nonvanishing term:

(16)

To facilitate further analysis, we represent the
detuning as ∆ = ∆0 + ∆st, where the time-independent
energy difference ∆0 = E2 – E1 is determined by quan-
tum-dot structure, while the Stark-shift difference ∆st =

 –  increases as the field strength squared. Note
that condition (15) does not necessarily imply that both
∆0 and ∆st are smaller than|Λ|. Moreover, additional
electrostatic potentials can be applied to shift energy
levels so that ∆0 ≈ –∆st if the driving field is held con-
stant. However, to elucidate the proposed transfer
mechanism and optimize its parameters, we must sepa-
rately examine the conditions

(17)

. (18)

b1 e it∆/2– Ωtcos i
∆

2Ω
------- Ωtsin+ 

  ,=

b2 i
Λ
Ω
----e it∆/2– Ωt,sin–=

Ω Λ 2 1
4
---∆2+ .=

b2
2 Λ 2

2Ω2
---------- 1 2Ωt( )cos–( ).=

b2 t T=( ) 2 b2 max
2≡ Λ 2

Ω2
---------,=

∆ ! Λ .

b2 max
2 1

1
4
--- ∆2

Λ 2
---------.–≈

E2
st E1

st

∆0 ! Λ ,

∆st ! Λ
SICS      Vol. 101      No. 3      2005



414 BASHAROV, DUBOVIS
4. OPTIMIZATION 
OF THE DRIVING FREQUENCY

Since the time-independent energy difference ∆0 is
determined by the quantum-dot structure and cannot
therefore be reduced, condition (17) can be satisfied
only by increasing the Rabi frequency Λ. This can obvi-
ously be done by increasing the intensity of the driving
field, as well as by adjusting the driving frequency.

Analyzing expression (11) for the Rabi frequency,
we note that it is determined only by states that are not
localized in one of the quantum dots, because d2idi1
vanishes otherwise. Thus, we must take into account
only continuum states and, probably, some discrete
states near the top of the potential barrier between the
dots. Let us explore possibilities to increase Λ by using
continuum states only, since they can be found for a
potential energy profile of any form. A discrete spec-
trum of delocalized states exists only in certain special
cases, and their influence on two-photon processes
should be considered as a correction to the result
obtained by taking into account continuum states.

Changing from summation to integration over the
continuum in (11), we have

(19)

where V is the system’s volume and Eres = E1 + ω. Note
that the matrix elements d2k and dk1 are localized in sep-
arate quantum dots, and the dependence of the result on
their geometry and relative position require a special
numerical analysis. In the limiting case when these
states are localized within a compact region, the inte-
gral in (19) was evaluated in [17]. Here, we deal with
the general case of spatially separated quantum dots,
following the simple analysis presented in [18].

As a first step, we consider only the case of Eres < 0,
when the lower edge of the continuum is above an
energy interval corresponding to quasi-resonance. It is
clear from (19) that the sum in parentheses is a mono-
tonically increasing function of the driving frequency
when E1 < Eres < 0 for arbitrary Ek > 0 and E1 < 0. It fol-
lows from this observation alone that optimal condi-
tions correspond to Eres near the lower edge of the con-
tinuum.

However, this value of the driving frequency should
be used to increase the Rabi frequency for more sub-
stantial reasons. Since the complex factor d2kdk1 in (19)
is characterized by an intricate oscillatory behavior, its
contribution to the integral with respect to k reduces the
Rabi frequency [18]. This effect will be suppressed
when the driving frequency is such that Eres ~ 0,
because the corresponding denominators in (19) are
close to zero and the phases in d2kdk1 can be treated as

Λ ε 2 V

2π( )3
------------- d2kdk1∫–=

× 1
Ek Eres–
-------------------- 1

Ek 2E1– Eres+
------------------------------------+ 

  k,d
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equal for all states near the lower edge of the contin-
uum. Therefore, the integral is dominated by the contri-
butions of these states, which do not cancel one another.
Thus, condition (17) will be fulfilled if the driving fre-
quency is such that Eres is close to the lower edge of the
continuum.

Now, we consider condition (18). Rewriting (10) as

(20)

we see that the oscillation of |dk2|2 – |dk1|2 as a function
of k is slower than that of d2kdk1 in (19). Thus, as Eres
approaches zero and the energy interval indicated
above becomes narrower, Stark-shift difference (20)
increases slower than Rabi frequency (19). Therefore,
the tuning of Eres to the lower edge of the continuum is
also optimal with regard to condition (18).

5. TRANSITIONS TO THE CONTINUUM

Since the results obtained above for Eres < 0 (when
the lower edge of the continuum is above the quasi-res-
onant energy levels) show that the optimal driving fre-
quency corresponds to a vanishing Eres < 0, we should
check whether the condition Eres ≥ 0 is better suited for
electron transfer between quantum dots.

If Eres ≥ 0, then the sums over all continuum states in
(5) and (6) yield resonant terms, which formally tend to
infinity. Following [8], we change from ω to ω  ω +
iδ, where δ = +0 (which corresponds to an adiabatically
switched driving field). Then, we have

where P denotes an expression whose integral is inter-
preted in the sense the Cauchy principal value. Having
performed the change, we write the matrix elements of
the effective Hamiltonian as

(21)

(22)

where

(23)

denotes a Stark shift;

(24)

∆st ε 2 V

2π( )3
------------- dk2

2 dk1
2–( )∫–=

× 1
Ek Eres–
-------------------- 1

Ek 2E1– Eres+
------------------------------------+ 

  k,d

1
ωiα ω– iδ–
----------------------------- P

1
ωiα ω–
------------------ iπδ ωiα ω–( ),+=

Hαα Eα Eα
st iγα ,–+=

H21 Λ iΓ , H12– Λ* iΓ*,–= =

Eα
st ε 2 diα

2 1
ωiα ω+
------------------ P

1
ωiα ω–
------------------+ 

 
i

∑–=

Λ ε 2 d2idi1
1

ωiα ω+
------------------ P

1
ωiα ω–
------------------+ 

 
i

∑–=
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is the Rabi frequency; and

(25)

are non-Hermitian corrections representing decay of
bound states into the continuum.

Substituting (21) and (22) into (12), we obtain

(26)

where the notation used in (13) is retained. To simplify
analysis of these equations, we consider the case of ∆ = 0
(exact resonance). Under this condition, Eqs. (26)
reduce to

(27)

Again, assuming that ε(t) is a slowly varying func-
tion, we treat γ1; 2, Λ, and Γ as constant parameters.
Substituting b1, b2 ~ eµt into (27), we obtain

(28)

The real part of this expression describes the decay of
bound states into the continuum, and its imaginary part
characterizes cyclic transition between bound states.
Therefore, electron transfer between the states |1〉  and
|2〉  will occur with a probability close to unity only if
the real part of (28) is much less than the imaginary
part, which requires that

(29)

This is a reasonable and expectable result, because the
non-Hermitian corrections in (21) and (22) must be
small as compared to the transition frequency of inter-
est. Moreover, if the driving frequency is not tuned
exactly to resonance, then effective electron transfer
requires that condition (15) be satisfied.

First of all, we note that the non-Hermitian correc-
tions in condition (29) are roughly proportional to the
electron density of states N(Eres) in the quasi-resonant
part of the continuum. As an estimate, we use N(E) ~

, which follows from the quadratic dispersion law
for free-electron gas at the bottom of the conduction
band. This assumption obviously implies that the rate
of irreversible decay to the continuum increases with

γα π ε 2 diα
2δ ωiα ω–( ),

i

∑=

Γ π ε 2 d2idi1δ ωiα ω–( )
i

∑=

ḃ1 γ1b1+ b2e i∆t– iΛ* Γ*+( ),–=

ḃ2 γ2b2+ b1ei∆t iΛ Γ+( ),–=

ḃ1 γ1b1+ b2 iΛ* Γ*+( ),–=

ḃ2 γ2b2+ b1 iΛ Γ+( ).–=

µ1; 2

γ1 γ2+
2

----------------–=

±
γ1 γ2–

2
---------------- 

 
2

Γ 2 Λ 2 iΛ*Γ– iΛΓ *––+
 
 
 

1/2

.

Λ  @ Γ ,  γ 1; 2 .

E
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Eres; i.e., it can be minimized by tuning the driving fre-
quency to the lower edge of the continuum.

Now, we consider the Rabi frequency defined
by (24) as a function of Eres. Retaining only the second
term in each summand (since it is much greater than the
first one because of the resonant denominator), we have

(30)

As mentioned above, the value of Λ is mainly deter-
mined by the contributions of energy levels close to
Eres, because the oscillating contributions of other terms
cancel one another. Therefore, we can estimate the Rabi
frequency given by (30) as

where d is the dipole moment averaged over the energy
interval between E' ~ Eres – E0 and E' ~ Eres + E0, whose
width E0 depends on the oscillation period of the func-
tion d2kdk1. Then, we have

For a quadratic dispersion law, this yields

Even though this rough estimate is actually not valid for
Eres = 0, we can conclude that the Rabi frequency
decreases as Eres deviates from the edge of the contin-
uum; i.e., conditions (15) and (29) are satisfied less
accurately.

Thus, the applicability of the result obtained for
Eres < 0 is not restricted by this condition: to optimize
electron transfer between quantum dots, the driving fre-
quency must be quasi-resonant with transitions
between the bound states and energy levels near the
lower edge of the continuum.

The optimal conditions for electron transfer that fol-
low from the expressions obtained above are consistent
with the theory of multiphoton processes, because ideal
conditions correspond to a vanishing rate of irreversible
decay to the continuum. Since the quasi-resonant states
playing the key role in the process include the lowest
levels in the conduction band, the efficiency of photoin-
duced electron transfer can only increase in the case of
nonzero density of states at the lower conduction-band
edge.

Λ ε 2 P
d2kdk1

Ek Eres–
--------------------.

k

∑∼

Λ ε 2d2 P
1

E' Eres–
-------------------

Eres E0–

Eres E0+

∫∼

× N Eres( )
dN Eres( )

dEres
--------------------- E' Eres–( )+ 

  E',d

Λ
dN Eres( )

dEres
---------------------.∼

Λ 1

Eres

------------.∼
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6. ANALYSIS
OF HIGHER ORDER CORRECTIONS

Both general considerations and expression (11)
suggest that the resonant two-photon Rabi frequency is
proportional to the squared strength of the driving field.
Therefore, condition (17) will be satisfied more accu-
rately for stronger fields. However, since the analysis
based on expansion (4) is valid for a relatively weak
field, we should use (4) to derive quantitative criteria
for its applicability.

Omitting tedious intermediate calculations, we
present only the final results here. To demonstrate gen-
eral trends, we consider only the matrix element

(31)

Again, we change from ω to ω + iδ with δ = +0 to allow
for irreversible decay to the continuum. Assuming that
Eres is below the lower edge of the continuum (or
slightly higher, so that the corresponding density of
states is negligible) and using the fact that two-photon

resonant states correspond to  = E1 + 2ω, we
rewrite (31) approximately as

(32)

In what follows, we use the dispersion law for free-
electron gas to show that

(33)

goes to infinity at Eres = 0 and decreases as Eres deviates
up or down from the edge of the continuum. The former
trend can be interpreted as a departure from the disper-
sion law due to resonant coupling between the bound
states and the edge of the continuum. Thus, the first
term in (31) is the minimal detuning of Eres from the
edge of the continuum for which the analysis presented
above holds. The off-resonant mechanism of electron
transfer must remain effective even in the case of
sharper tuning to the edge of the continuum, but expres-
sions (23) and (24) for Stark shift and Rabi frequency
become inapplicable. We estimate below the minimal
value of |Eres| as that corresponding to (33) on the order
of unity. Analysis of the case when (33) is substantially
greater than unity is outside the scope of the present
study.

H̃11
4( ) ε 2 dk1

2

ωk1 ω–
--------------------

ε 2 d p1
2

ωp1 ω–( )2
-------------------------

p

∑
k

∑≈

–
ε 4d1kdkpd pqdq1

ωk1 ω–( ) ωq1 ω–( )
---------------------------------------------- 1

ωp1 2ω–
---------------------- 1

ωp1
--------+ 

  .
k p q, ,
∑

Eres
2( )

H̃11
4( )

–H̃11
2( ) ε 2 dk1

2

ωk1 ω– iδ–( )2
------------------------------------ iπ ε 4–

k

∑≈

× P
d1kdkp

ωk1 ω–
------------------P

d pqdq1

ωq1 ω–
------------------δ ωp1 2ω–( ).

k p q, ,
∑

ε 2 dk1
2

ωk1 ω– iδ–( )2
------------------------------------

k

∑
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It is obvious that electron transfer between quantum
dots can be effective only if the second term in (31)
(two-photon ionization) is small as compared to the
Rabi frequency. In other words, there exists an upper
limit for the driving field strength

(34)

If required, this condition can be reformulated as a
restriction on the Rabi frequency.

7. EVALUATION OF THE RABI FREQUENCY

In accordance with the results obtained above, we
assume that the quasi-resonance values of Eres are near
the lower edge of the continuum, but (33) is much less
than unity. To be specific, we assume that Eres < 0. Since
the second term in (19) is negligible as compared to the
first one, we have

(35)

Using the dispersion law for free-electron gas and

introducing q = , where m* is an effective
electron mass, we rewrite (35) as

(36)

Since this integral is dominated by the contribution
of states with energies close to Eres, and the correspond-
ing wavefunctions are plane waves (distorted near the
quantum dots) with wavelengths decreasing with
increasing energy, the integrand in (36) is characterized
by complicated oscillatory behavior due to two factors.
First, the magnitudes of d2k and dk1 are complicated
functions of k. Second, the integrand’s phase exhibits a
periodic variation that can approximately be repre-
sented as d2kdk1 = |d2k and dk1|eikL, where L is the char-
acteristic distance between the quantum dots. Recalling
that the quantum dots represented by localized states |1〉
and |2〉  are separated by a sufficiently large distance in
the present model (as in real systems of this kind), we
can assume that the oscillatory behavior is mainly
determined by the second factor.

To obtain a rough estimate for (36), we restrict the
limits of integration to the sphere of radius kmax = 1/L
(where the first oscillation is localized) and use con-
stant approximate values of both d2k and dk1:

(37)

π ε 2 P
d1kdkp

ωk1 ω–
------------------P

d pqdq1

ωq1 ω–
------------------

k p q, ,
∑

× δ ωp1 2ω–( ) ! P
d2kdk1

ωk1 ω–
------------------.

k

∑

Λ e 2 V

2π( )3
-------------

d2kdk1

Ek Eres+
----------------------- k.d∫∼

2m* Eres

Λ e 2 V

2π( )3
-------------2m*

d2kdk1

k2 q2+
---------------- k.d∫∼

d2k dk1 ea
a3

V
-----.≈ ≈
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Here, a is the characteristic quantum-dot size, and the
radical reflects the fact that the product of a wavefunc-
tion ψk normalized to V with a function ψ1; 2 localized
in the neighborhood of the corresponding quantum dot
reduces the domain of integration to a volume on the
order of a3. Under these assumptions, we estimate (36)
as

(38)

The estimate for (33) given below shows that Eres can be

such that q2 does not exceed . Recovering dimen-
sional Planck’s constant, we evaluate (38):

(39)

For a ~ 10 nm, L ~ 100 nm, and m* ~ 0.1me ~ 10–28 g
(i.e., under unfavorable conditions with regard to the
requirement of large transition energy), we obtain Λ ~
10–5 eV even for a relatively weak driving field with
|e| ~ 103 V/cm. It should be noted here that the optimal
range given in [2] was Λ ~ 10–5–10–4 eV.

8. ESTIMATES FOR LIMITING CONDITIONS

The results obtained in the preceding section dem-
onstrate that the proposed mechanism has a wide scope
in terms of the energy (and therefore, time) required to
transfer an electron between quantum dots. However,
we should also estimate the upper limit for the driving
field strength given by (34). Repeating the analysis pre-
sented in the preceding section and restricting the
domain of integration to 1/a, we obtain the following
estimate for the right-hand side of (34):

(40)

where d is the characteristic magnitude of the dipole
moment corresponding to transitions between the
bound states and continuum, D is an analogous quantity

for transitions between continuum states,  = E1 +

2ω corresponds to two-photon absorption, and N( )
is the corresponding density of states.

The matrix elements for transitions between contin-
uum states are estimated as

(41)

The nonzero value of this integral is entirely due to the
contributions of the neighborhoods of the quantum

Λ e 2 V

2π( )3
-------------2m*

e2a5

V
----------4π k2 kd

k2 q2+
----------------.

0

kmax

∫∼

kmax
2

Λ e 2e2m*a5

"
2L

--------------------------.∼

ε 2 d1kdkp

ωk1 ω–
------------------

d pqdq1

ωq1 ω–
------------------δ ωp1 2ω–( )

k p q, ,
∑

∼ ε 2 dD
Vm*

a
----------- 

 
2

N Eres
2( )( ),

Eres
2( )

Eres
2( )

D e ψk*rψp r.d∫∼
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dots. The integral over the rest of the space vanishes,
because the transitions between continuum states of
interest here may not preserve quasi-momentum.
Therefore, D is a very small quantity on the order of
a3/V. Note that matrix element (41) couples a state with
energy Ep near the lower edge of the continuum to a
state with Ek comparable to the driving-field energy
quantum; i.e., the wavefunction ψk oscillates faster than
ψp. Therefore, the value of the integral in (41) is deter-
mined by the oscillatory behavior of ψk, and the char-
acteristic interval of variation of the integrand is

Hence, (41) can be estimated as

(42)

Note also that the density of states is

(43)

Combining (37), (40), (42), and (43) and recovering
dimensional Planck’s constant, we reformulate condi-
tion (34) as follows:

(44)

Following [2], we set ω ~ 0.1 eV and find that inequal-
ity (44) yields |ε| ~ 104 V/cm. Using expression (39), we
obtain the limiting condition

(45)

for the Rabi frequency, which yields Λ ! 10–3 eV for
the characteristic values specified above. Since our esti-
mates show that the restrictions due to two-photon ion-
ization can be either irrelevant or essential, they should
be taken into account more accurately. For example,
two-photon ionization can be ignored when the sys-

tem’s parameters are such that  lies in the band gap.

Now, we consider the restrictions due to the first
term in (31). Performing an analysis analogous to (35)–
(39), we obtain the following estimate for (33):

It is clear that, first, the sum is divergent in the case of
sharp tuning to the edge of the continuum and, second,
the sum is much less than unity if

(46)
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It should be noted here that both condition (34) and
estimates (44) and (45) impose physical restrictions
on  electron transfer due to two-photon ionization,
whereas (46) only restricts the applicability of the analyti-
cal expressions used to describe off-resonant electron
transfer, rather than its implementation. If |e| ~ 103 V/cm,
then

(47)

Thus, the estimates obtained meet conditions (46) and

(47). For example, if |Eres| ~ 10–5 eV, then q2 ! ,
which justifies the derivation of estimate (39) from
expression (38).

Finally, we evaluate condition (18), which imposes
the most essential restriction on the mechanism of two-
photon-assisted electron transfer. According to expres-

sions (10) and (11), the Stark shift is  is a quantity
comparable to, or even greater than, the Rabi fre-
quency Λ, irrespective of the driving field strength.
Since identical quantum dots, for which condition (18)

is obviously satisfied (  = ), cannot be created by
using present-day technologies, we should analyze the
effect of dissimilarity between quantum dots on the dif-
ference in Stark shift.

Following the derivation of (35)–(39) and using the

estimate dkα ~ ea0 , where a0(k) ~ min(a, 1/k), we
obtain

(48)

We see that the Stark shift strongly depends on the
quantum-dot size; i.e., condition (18) can be violated
even the difference in geometry is relatively small. Let
consider the unfavorable case when the quantum dots
are similar in shape, but differ in size, i.e., δa ≡ a2 –
a1 ! a. Using estimates (39) and (48), we rewrite con-
dition (18) as

(49)

We note here that a condition less restrictive than (49)
is obtained for quantum dots that are almost equal in vol-
ume, but dissimilar in shape. To extend condition (49) to
arbitrary size and shape, we represent it as follows:

(50)

where C ~ 1–10 is a dimensionless constant character-
izing the combined effect of geometric parameters.

In our estimates presented above, we assumed that
L ~ 10a. Accordingly, condition (50) is satisfied if δa is
smaller than a by at least two orders of magnitude, i.e.,
if δa ~ 0.1 nm, which is smaller than the thickness of an
atomic layer. In other words, electron transfer between

Eres  @ 10 6–  eV.

kmax
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E1; 2
st
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st E2
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Λ
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Λ
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small quantum dots (a ~ 10 nm) will be suppressed
even if they differ in size by only one atomic layer.

Let us now consider more favorable cases, compar-
ing our results with those obtained for electron transfer
in a double-dot system via a third bound state (Fig. 1a)
in [3], where suppression due to the difference between
the dots was analyzed. We assume that the driving field
is sufficiently strong to ensure that ∆st @ ∆0 and
neglect the time-independent energy difference ∆0.
Following [3], we consider two cases.

Case 1:

(51)

If two-photon ionization is negligible, then we can
combine (50) with (16) to obtain the probability of elec-

tron transfer  ≈ 1 – 4 × 10–4C2. For C between 1
and 10, the transfer probability varies from 0.9996 to
0.96.

Case 2:

(52)

In this case,  ≈ 1 – 4.4 × 10–5C2 varies from
0.99996 to 0.996.

We should note here that the parameter values
in (51) were found to be totally unsuitable for electron
transfer, while the electron-transfer probability corre-
sponding to (52) amounted to 0.9. Thus, two-photon-
assisted electron transfer is much less sensitive to dif-
ference between the quantum dots, as compared to the
three-level mechanism analyzed in [2–8]. We also note
that additional electrostatic potentials can be applied to
shift energy levels so that ∆ = ∆0 + ∆st ≈ 0. Under this
condition, difference in quantum-dot geometry will be
insignificant, whereas it is essential for a three-level
system [3].

9. CONCLUSIONS

Off-resonant two-photon-assisted electron transfer
between two quantum dots can be observed and utilized
in various quantum-dot systems. However, it is very
difficult to study in ordinary atomic and molecular sys-
tems, since the process strongly depends on the size of
quantum dots and the distance between them. In partic-
ular, it cannot be observed in a weakly ionized atomic
and molecular gases characterized by normal inter-
atomic distances and depolarizing-collision frequen-
cies. Prospects are somewhat better for Rydberg atoms,
but the most important role can be played by this mech-
anism in magneto-optical trapping and cooling of
atoms. In [19–21], it was shown that magneto-optically
trapped atoms should be modeled by using an energy
level system analogous to that illustrated by Fig. 1b,
and atom transfer between traps with energy levels E1
and E2 driven by a bichromatic pulse was discussed
under the Raman resonance condition ω1 – ω2 ≈ E2 – E1.

a 20 nm, δa 0.2 nm, L 80 nm.= = =

b2 max
2

a = 60 nm, δa = 0.2 nm, L = 240 nm.

b2 max
2
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However, continuum states have never been taken into
account correctly in models of magneto-optical trap-
ping of ultracold atoms. The off-resonant transfer
mechanism proposed here can be extended to atom
transfer between magneto-optical traps with E1 ≈ E2.
The key formulas obtained in this study will hold
within the framework of a simple model of off-resonant
atom transfer, but the corresponding numerical esti-
mates will be different.

Analysis of off-resonant two-photon-assisted elec-
tron transfer in a liquid must allow for interaction
between molecules and may require more accurate
modeling of molecular terms. However, since the com-
plicated pattern of intersecting molecular terms in elec-
tromagnetic field must be give rise to various nonadia-
batic transitions, the transfer mechanism in question
will hardly play any significant role.
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Abstract—We discuss an approach to the discrete quantum gravity in the Regge calculus formalism that was
developed in a number of our papers. The Regge calculus is general relativity for a subclass of general Rieman-
nian manifolds called piecewise flat manifolds. The Regge calculus deals with a discrete set of variables, trian-
gulation lengths, and contains continuous general relativity as a special limiting case where the lengths tend to
zero. In our approach, the quantum length expectations are nonzero and of the order of the Plank scale, 10–33 cm,
implying a discrete spacetime structure on these scales. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Interest in the formulation of general relativity (GR)
in discrete form stems primarily from the complexity of
the theory. In a classical aspect, rewriting the essen-
tially nonlinear equations of the theory, the Einstein
equations, in terms of a discrete set of physical quanti-
ties, i.e., discretizing them, facilitates the use of numer-
ical methods for their solution. In a quantum aspect,
discretization can be introduced, as in any other field
theory, to regularize the originally divergent expres-
sions. However, in the case of GR, we have the follow-
ing two distinctive features. First, according to the stan-
dard classification, GR is a nonrenormalizable theory;
therefore, the dependence of the result on the specific
choice of regularization cannot be eliminated by renor-
malization. Consequently, in this case, discretization
must be not only a mathematical approximation like a
finite-difference approximation of the originally con-
tinuum theory, but be realizable physics specifying the
form of the theory at small distances. Second, the cova-
riance of the theory relative to arbitrary coordinate
transformations is specific to GR, and this property is in
poor agreement with the quantum theory, in which the
time plays a prominent role. To overcome this diffi-
culty, one can try to formulate GR in an explicitly coor-
dinateless form.

In the Regge calculus suggested in 1961 [1], the
exact GR deals with a special case of general Rieman-
nian spacetime, the so-called piecewise flat manifolds,
which are flat everywhere except for the subset of
points of zero measure. Any such spacetime can be rep-
resented as consisting of flat 4-dimensional simplexes
(tetrahedrons). In the n-dimensional case, n-dimen-
sional simplexes σn are considered. An n-dimensional
simplex σn consists of n + 1 vertices each of which is
connected by the edges with the other n vertices. All the
geometrical characteristics of the n-simplex are
uniquely defined by the (freely chosen) lengths of its
1063-7761/05/10103- $26.000420
n(n + 1)/2 edges. The Regge spacetime geometry is
defined by freely choosing the lengths of all its edges,
i.e., 1-simplexes. The link lengths of the two n-sim-
plexes sharing an (n – 1)-simplex as their common face
must be equal on this face. If, however, we consider all
the n-simplexes containing an (n –2)-simplex as an
(n − 2)-dimensional face, then, in general, this mani-
fold cannot be embedded in flat n-dimensional space-
time when the link lengths are chosen freely, since the
sum of the hyperdihedral angles of all the n-simplexes
meeting on this (n – 2)-dimensional face is 2π – α,
where the so-called angle defect α is not necessarily
equal to zero. In the case of parallel translation of a vec-
tor along a closed contour contained in the above n-
simplexes and enclosing the (n –2)-simplex in question,
the vector is rotated through the angle α. This corre-
sponds to a δ-function curvature distribution with the
support on (n –2)-simplexes proportional to the angle
defects on these simplexes. The action for 4-dimen-
sional Regge spacetime is proportional to

(1)

where |σ2| is the area of triangle σ2 (2-simplex),  is

the angle defect on this triangle, and the summation is
over all the 2-simplexes σ2. Friedberg and Lee [2]
showed that action (1) could be obtained from the
expression

(2)

to which the Einstein action is proportional, by passing
to the δ-function limit of the curvature R distribution.
Thus, the Regge calculus is GR in which all the degrees
of freedom except a discrete number of them are fro-
zen, i.e., the so-called minisuperspace theory for GR. In
this way, the first of the requirements mentioned above

α
σ2 σ2 ,

σ2

∑

α
σ2

1
2
--- R gd4x,∫
 © 2005 Pleiades Publishing, Inc.
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is satisfied; more specifically, a Regge manifold is a
special (although partly singular) case of a general Rie-
mannian manifold. In addition, the mutual arrangement
of the vertices (0-dimensional simplexes σ0) and,
hence, the geometry are uniquely fixed by the freely
chosen invariant lengths of the edges (1-simplexes σ1),
which, thus, act as field variables. Therefore, the second
requirement, the possibility of a coordinateless descrip-
tion, is also fulfilled.

Although the Regge calculus is only a subset in the
configuration superspace of GR, this subset is dense in
this superspace. This means that each nonsingular Rie-
mannian manifold can be approximated with an arbi-
trarily high accuracy by a properly chosen Regge man-
ifold. Such a Regge manifold can be constructed by
dividing, for example, a Riemannian manifold into
fairly small regions topologically equivalent to the sim-
plexes σ4 whose edges are geodesics. As the sought-for
piecewise flat manifold, we can take a manifold of this
type with the same topology, vertex connection
scheme, and link lengths as those for the above division
of the Riemannian manifold. Feinberg et al. [3] showed
that the Einstein action (2) is obtained as the limit of the
Regge action (1) for approximating spaces where the
typical edge length (triangulation length) tends to zero. A
more general statement was proven by Cheeger et al. [4]
for the n-dimensional case: the so-called Lipshitz–Kill-
ing curvatures converge to their continuum analogs in
the sense of measures if the decomposition into
4-simplexes becomes increasingly fine; i.e. the inte-
grals of the quantities under consideration over the
spacetime regions converge. The volume of a spacetime
region and the contribution of the region to the Einstein
action and to the Gauss–Bonnet topological term are
special cases of these integrals.

The Regge calculus has exact discrete analogs of
many quantities that can be defined in the continuum
GR. The Einstein equations whose discrete analog was
obtained by Regge by varying action (1) over the link
lengths serve as the first example. It turns out that vary-
ing  in (1) makes no contribution, and the equation

derived by varying the length of a specific edge σ1 is

(3)

Here, ϑ(σ1, σ2) is the angle in the triangle σ2 opposite
to the edge σ1, and the summation is over all the trian-
gles with σ1 as a common edge. Evidently, the discrete
coordinateless formulation in terms of physical quanti-
ties (lengths) is ideally suited for numerical simulations,
and the Regge calculus was originally used precisely for
a numerical analysis of the Einstein equations [5].

However, the Regge calculus aroused the greatest
interest when applied to quantum gravity. In this aspect,
the main problem consisted in constructing a Hamilto-
nian formalism analogous to the Arnowitt–Deser–Mis-

α
σ2

α
σ2 ϑ σ 1 σ2,( )cot

σ2 σ1⊃

∑ 0.=
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ner formalism in the continuum GR [6]. In accordance
with their result, the GR Lagrangian can be reduced to

(4)

with the canonical variables pA and qA and the variables
λα acting during the variation as the Lagrange multipli-
ers whose values and dynamics cannot be determined
from the equations of motion. Thus, GR is a theory
described by the set of constraints Φα(p, q) = 0 and a
zero Hamiltonian. In the case of the basically coordi-
nateless Regge calculus theory, we had to partly return
to the coordinate description, but with regard to only
one coordinate, the time t, to pass from the discrete field
distribution (in our case, the lengths and their func-
tions) to a distribution smooth in t. The passage to the
so-called (3+1) Regge calculus (discrete three-dimen-
sional space plus continuous time) has been undertaken
in a number of papers [7–18]. In general, the authors of
these papers tried to define in one way or another the
discrete analogs of the variables s pA and qA and the
constraints Φα(p, q), with emphasis on the requirement
that the algebra of the Poisson brackets for these con-
straints be close to that in the continuum GR. If we
adhere to the strategy that requires dealing with a spe-
cial case of a Riemannian manifold at each stage, then
the (3+1) Regge calculus is obtained as the limit of the
4-dimensional Regge calculus when the sizes of the
4-simplexes tend to zero in a certain direction chosen as
the direction of time. This passage to the limit was stud-
ied in [7, 8, 15, 16]. In particular, we see a source of dif-
ficulties that did not allow the formulated problem to be
completely solved in the cited papers: it consists in the
singular nature of the description of simplexes using
the link lengths when the sizes along a certain direction
tend to zero. As an illustration, one can imagine a trian-
gle one of the edges of which is infinitesimal: infinites-
imal variations in the two other (finite) edge lengths
then lead to finite variations in the angles. As a result,
not all of the degrees of freedom can be described in the
chosen length-type variables in a nonsingular way, and,
hence, not all of the discrete analogs of the constraints
Φα(p, q) can be found.

2. THE PROBLEM OF CONSTRUCTING
THE QUANTUM MEASURE IN THE REGGE 

CALCULUS

Thus, the singular nature of the passage to continu-
ous time is associated with the use of the lengths alone
as a fundamental set of variables in the Regge calculus.
As long as we are studying the quantum measure on a
completely discrete Regge manifold, this circumstance
is of no importance to us. However, the basic concept
underlying the quantum theory that can be used to con-
struct the quantum measure is canonical quantization;
the latter is defined precisely in the continuous time.
Therefore, the sought-for quantum measure should be

L pAq̇A λαΦα p q,( )
α
∑–

A

∑=
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defined from the requirement that it tend, in a sense, to
the canonical quantization measure (Feynman path
integral) whenever the continuum limit is taken along
any of the coordinates, with the coordinate chosen act-
ing as the time. In other words, the continuous time
limit serves as a probe for defining the quantum mea-
sure in a completely discrete Regge calculus.

The singularities in the continuous time limit can be
bypassed by extending the set of variables via the addi-
tion of new ones that have the meaning of angles con-
sidered as independent variables. The finite rotation
matrices, discrete analogs of the connections in the
continuum GR, are such variables.

3. REPRESENTING THE REGGE CALCULUS 
IN TERMS OF THE FINITE ROTATION 

MATRICES AS INDEPENDENT VARIABLES

The situation considered is analogous to rewriting
the Einstein action (2) in the Hilbert–Palatini form,

(5)

where the tetrad  and the connection  = –  are
independent variables; Eq. (5) is reduced to (2) in terms

of gλµ = eaµ if we substitute the solutions of these

equations of motion for these variables in terms of  =

eaµ for . The Latin indices a, b, c,… are vectorial
with respect to the local Euclidean frames introduced at
each point x. The Regge calculus analog of representa-
tion (5) is obtained if the local Euclidean frame is intro-
duced in each 4-simplex. The transformation matrices

 between the frames in two 4-simplexes σ4 sharing

σ3 as their three-dimensional face defined on 3-sim-
plexes σ3 are then the analogs of the connections. These
matrices are finite SO(4) rotations in the Euclidean case
(or SO(3,1) rotations in the Lorentzian case), in con-

trast to the continuum connections , which are the
elements of the Lee algebra so(4)(so(3,1)) of this
group. In this case, it is important to specify the direc-
tion in which the connection  acts (and, accord-

ingly,  =  acts in the opposite direction);

i.e., the connections Ω are defined on oriented 3-sim-
plexes σ3.

We can also define the curvature matrix  on each

2-simplex σ2 as the product of the connections  on

the 3-simplexes σ3 sharing σ2 that act in a certain direc-
tion along a closed contour enclosing σ2 once and con-

1
2
--- R gd4x∫

⇐ 1
8
--- eabcde

λµνρeλ
aeµ

b ∂ν ων ∂ρ ωρ+,+[ ] cdd4x,∫
eλ

a ωλ
ab ωλ

ba

eλ
a

eλ
a

eλ
a ωλ

ab

Ω
σ3

ωλ
ab

Ω
σ3

Ω
σ3

1– Ωσ3

R
σ2

Ω
σ3

1±
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tained in these 3-simplexes. The matrix  should rep-

resent the rotation around σ2 through the angle .

Apart from the direction along the contour, it is neces-
sary to specify the 4-simplex σ4 ⊃  σ2 in which the con-
tour begins and ends, i.e., the simplex in the local
Euclidean frame of which we define the matrix

(6)

Discrete analogs of the connection and curvature were
discussed by Bander [19, 20, 21] as functions of length.
Our approach is based on treating the connections as
independent variables and studying a representation of
the Regge calculus action (1) analogous to the Hilbert–
Palatini form of the Einstein action (5). To write out this
representation, let us define the dual bivector of the tri-

angle σ2 in terms of the vectors  and  of its edges
defined in a 4-simplex containing σ2:

(7)

The discrete analog of expression (5) suggested in our
work [22] then reads

(8)

where for the two tensors A and B, we defined

in particular, | | = |σ2| is the area of the triangle. It is

important that  and  in (8) be defined in the

same 4-simplex containing σ2. As can be shown, if we
substitute the actual rotations connecting the neighbor-
ing local Euclidean frames and corresponding to the
actual Regge lengths in the equation of motion for 

with action (8) as the variables , we get a closure

condition for the surface of the 3-simplex σ3 (the sum
of the bivectors of its 2-faces being equal to zero) writ-
ten in the frame of one of the 4-simplexes containing
σ3, i.e., an identity. This means that (8) is an exact rep-
resentation for (1).

4. THE NATURALNESS OF PASSING 
TO THE AREA TENSOR REGGE CALCULUS

In the representation based on the rotation matrices,
we can pass to continuous time and develop the canon-
ical formalism in the Regge calculus [23], which has

R
σ2

α
σ2

R
σ2 Ω

σ3
1± .

σ3 σ2⊃

∏=

l1
a l2

a

v σ2
ab

1
2
---eabcdl1

c l2
d.=

S v Ω,( ) v
σ2

v
σ2 ° Rσ2 Ω( )

v
σ2

-------------------------------,arcsin

σ2

∑=

A ° B
1
2
---AabBab, A A ° A( )1/2,= =

v
σ2

v
σ2 R

σ2

Ω
σ3

Ω
σ3
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second-class (i.e., noncommuting) constraints. As a
result, the Feynman path integral contains the determi-
nant of the Poisson brackets of the second-class con-
straints as a factor which is singular in a flat geometry.
The point is that the Regge manifold geometry gener-
ally changes at any variations of the edge lengths except
for the flat case in which these variations are symmetry
transformations. In other words, the division of the con-
straints into those of the first and second classes
changes in the flat case. The 3-dimensional case consti-
tutes an exception. Due to the local triviality of the
3-dimensional gravity, all the dynamical constraints are
first-class ones, and, therefore, the path integral takes a
simple form. In this case, the problem of constructing
the discrete quantum measure formulated in Section 2
can be solved to yield a simple form of this measure [24].

The conditions imposed on the discrete measure in
Section 2 are highly restrictive, and, in general, the
existence of a solution is not obvious. The singularity of
the path integral in 4 dimensions near a flat geometry
per se is not an obstacle to the existence of a solution;
the presence of the above determinant factor in the path
integral is crucial. This factor depends on variables that
are lattice artefacts connected with a specific coordinate
along which the continuum limit is taken, and, there-
fore, it can not be obtained from a universal expression
by assuming a continuous time limit.

Let us try to modify the 4-dimensional Regge calcu-
lus to resemble the 3-dimensional case in canonical
structure. The 3-dimensional Regge calculus in a repre-
sentation analogous to (8) has the edge vectors 

instead of the area tensors . The edge vectors are

independent variables, thereby ensuring the local trivi-
ality of the 3-dimensional gravity. In contrast, the area
tensors are not independent. For example, the tensors of

the two triangles  and  with a common edge sat-
isfy the relation

(9)

The idea is to construct the quantum measure first for
the system with formally independent area tensors, i.e.,
to initially concentrate on the quantization of the
dynamics, while kinematical relations of type (9) are
taken into account at the second stage.

In the area tensor Regge calculus, the problem of
constructing the discrete quantum measure can be
solved to yield a simple form of this measure [25]. Let
us consider the Euclidean case. Since the Einstein
action is known to be not bounded from below, the
Euclidean path integral itself requires a redefinition. In
particular, the result of [25] for the vacuum expecta-
tions of the functions of our field variables v  and Ω can
be written using integration over imaginary areas by a

l
σ1

v
σ2

σ1
2 σ2

2

eabcdv
σ1

2
abv

σ2
2

cd 0.=
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formal replacement for the tensors of a certain subset of
areas π over which the integration in the path integral is
performed,

in the form

(10)

where for the two tensors A and B, we defined

The equation implies a certain structuring of our
Regge lattice that suggests constructing it from leaves,
structurally similar 3-dimensional Regge geometries.
The leaves are numbered by the values of a coordinate t.
The corresponding vertices in the neighboring leaves
are connected by the t-like edges, and there are diago-
nal edges connecting the vertex with the neighbors of
the corresponding vertex in the neighboring leaf. It is
then natural to define the t-like simplexes and the leaf
simplexes as simplexes that either contain a t-like edge
or are completely contained in the leaf, respectively, as
well as the diagonal simplexes as all others. Then, 

is  when σ2 is t-like, and  is  when σ2 is not

t-like, i.e., the leaf or a diagonal simplex. In the Regge
calculus with independent area tensors,  can serve

as dynamical variables, while  must be chosen as

parameters.
In many respects, Eq. (10) resembles the intuitively

expected expression for the quantum measure. In par-
ticular, the expected (from symmetry considerations)
invariant (Haar) measure on SO(4) $Ω arises in the
formal path integral expression corresponding in the
continuous time limit to the canonical quantization

with the kinetic term  °  in the Lagrangian

(the connection variables in the continuous time limit Ω

π iπ,

Ψ π{ } Ω{ },( )〈 〉 Ψ i π{ }– Ω{ },( )∫=

× τ
σ2 ° Rσ2 Ω( )

t-like

σ2
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∑
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naturally correspond not to the tetrahedra σ3, but to the
triangles σ2).

The specific features of the quantum measure
include, first, the absence of the inverse trigonometric
functions arcsin in the exponential, while the Regge
action (8) contains such functions. This is because the
canonical quantization is used at the intermediate stage
of the derivation: in gravity, this quantization is com-
pletely defined by the constraints, the latter being
equivalent to those without arcsin (in a sense, on-shell).
Second, there are no integrations over some of the ten-
sors, , and, thus, the symmetry between different tri-

angles is incomplete. Nevertheless, this symmetry vio-
lation can be considered as spontaneous when some
a priori arbitrary direction denoted by the coordinate t
in (10) is singled out. The curvature matrices R(Ω) on
all but t-like triangles can be chosen as independent
variables; these matrices on the t-like triangles are then
(via the Bianchi identities) functions of these variables.
Integrations over all area tensors would lead to singu-
larities of the type [δ(R – )]2.

This specific feature of the discrete quantum mea-
sure, incomplete symmetry with respect to different
coordinate directions, is consistent with the above
conditions imposed on it in Section 2: In the continuous
limit along some coordinate x (which does not
necessarily coincide with t), the absence of integrations
over the tensors of the t-like triangles implies some of
the simplest kinds of gauge fixing in the limiting mea-
sure, namely, fixing the tensors of some subset of tri-
angles [25].

Given the properties of the invariant Haar measure
and with negligible values of , we obtain factoriza-

tion of the inferred quantum measure into “elementary”
measures on separate areas (which precisely corre-
sponds to the local triviality of the theory) of the form

(11)

In turn, we use the group property

to split the variables (π and the generator of R) into self-
and antiself-dual parts, in particular, π is mapped into
two 3-vectors, +p and –p, in the adjoint representation
SO(3). As a result, measure (11) is the product of two
measures each of which acts in the 3-dimensional con-
figuration space of area vectors,

(12)

As a result, the expression for the expectation of any

τ
σ2

R

τ
σ2

iπ ° R( )d6π$R.exp

SO 4( ) SU 2( ) SU 2( )×=

i π+
 ° R+( )d3 p+ $ R+exp

× i π–
 ° R–( )d3 p– $ R– .exp
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function of the triangle area reads

(13)

In particular, the expectations of the powers of the area
squared,

, (14)

and of the dual product,

, (15)

can be easily obtained by averaging the powers of ±π,

(16)

5. RETURNING TO THE STANDARD 
REGGE CALCULUS

Thus, we obtained finite nonzero area expectation
values in the area tensor Regge calculus. However, we
need the length expectations in the ordinary Regge cal-
culus, which is derived by imposing uniqueness condi-
tions on the lengths calculated in different 4-simplexes.
These conditions are equivalent to the continuity condi-
tions for the metric induced on 3-dimensional faces. In
the configuration space of the area tensor Regge calcu-
lus, these conditions separate out some hypersurface
ΓRegge. The quantum measure can be considered as a lin-
ear functional µarea(Ψ) on the space of functionals
Ψ({v}) on the configuration space (for our purposes, it
will suffice to restrict ourselves to the functional depen-
dence on the set of area tensors{v}; the dependence on
the connections is unimportant). The physical assump-
tion is that we can consider the ordinary Regge calculus
as a kind of state of a more general system with inde-
pendent area tensors. This state can be described by the
functional

(17)

where δRegge({v}) is the (multidimensional) δ-function
with the support on ΓRegge. The derivatives of δRegge have
the same support, but these violate the positivity in our
subsequent construction. To be more precise, the
δ-function is a distribution rather than a function, but it
can be treated as a function being regularized. If the
measure on such functionals exists in the limit when

f π( )〈 〉 f iπ–( )d6π eiπ ° R$R∫∫=

=  f π( )
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regularization is removed, this allows us to define the
quantum measure on ΓRegge,

(18)

The construction of δRegge is unique under the natu-
ral assumption that the lattice artefacts are at a mini-
mum. Let the system be described by the metric gλµ that

is constant in each of the two 4-simplexes  and 
separated by the 3-face

formed by three 4-vectors . These vectors also spec-
ify the metric induced on the face, 

The continuity condition for the induced metric can be
expressed in terms of the δ-function of the metric vari-
ations,

(19)

Naturally, δRegge itself is defined to within a factor,
which is an arbitrary function nonvanishing at nonde-
generate field configurations. In the spirit of the above-
mentioned principle of the lattice artefacts being at a
minimum, it is natural to choose this factor in such a
way that the resulting δ-function factor depends only
on the hyperplane specified by the 3-face, but not on the
shape of this face; i.e., it is invariant with respect to
arbitrary nondegenerate transformations,

This requires multiplying the δ-function by the deter-

minant  squared to give

(20)

Here,  is the set of the squares of the edge lengths of

the 3-face σ3, and  is the volume of this face.

Further, the product of the factors (20) over all 3-
faces should be taken. As a result, for each edge, we
obtain the products of the δ-functions of the variations
in its length between the 4-simplexes taken along
closed contours,

which contain a singularity like the δ-function squared.
In other words, the conditions equating (19) to zero on
different 3-faces are not independent. A more detailed
analysis allows us to cancel out this singularity in a
symmetric (with respect to different 4-simplexes) way
(thereby extracting the irreducible conditions); the
resulting δ-function factor remains invariant with
respect to arbitrary deformations of the faces of differ-

µRegge ·( ) µarea δRegge v{ }( )·( ).=

σ1
4 σ2

4

σ3 σ1
4 σ2

4∩=

ι a
λ

gab
|| ι a

λ ι b
µgλµ .=

∆
σ3gab

|| gab
|| σ1

4( ) gab
|| σ2

4( ).–=def

ι a
λ  ° ma

bι b
λ .

gab
||

det ι a
λ ι b

µgλµ( )[ ] 2δ6 ι a
λ ι b

µ∆
σ3gλµ( ) V

σ3
4 δ6 ∆

σ3Sσ3( ).=

S
σ3

V
σ3

δ s1 s2–( )δ s2 s3–( )…δ sN s1–( ),
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ent dimensions keeping each face in the fixed plane
defined by it [26].

Qualitatively, it is important that our δ-function fac-
tor (in the simplest case, (20)) automatically turns out
to be invariant with respect to the overall length scaling.
Recall, however, that the area tensors , but not ,

are the dynamical variables to be averaged. A more
detailed analysis shows that, having fixed the scale of
the tensors  at a level of ε ! 1, we can consider the

δ-function factor to be also invariant with respect to the
overall scaling of the dynamical variables  alone.

This implies finite nonzero length expectation values in
the ordinary Regge calculus as long as the area expec-
tation values in the area tensor Regge calculus are finite
and nonzero [27].

Strictly speaking, when passing from the area tensor
Regge calculus to the ordinary Regge calculus, we first
need to impose conditions ensuring that the tensors of
the 2-faces in each specific 4-simplex define a metric in
this simplex. These conditions of type (9) can be easily
written in general form if we take a vertex of the given
4-simplex as the coordinate origin and consider the
edges emanating from it to be the coordinate lines λ, µ,
ν, ρ, … = 1, 2, 3, 4. The (ordered) pair λµ then means
the (oriented) triangle formed by the edges λ and µ. The
sought-for conditions are

(21)

The 20 equations of (21) define the 16-dimensional sur-
face γ(σ4) in the 36-dimensional configuration space of

the six antisymmetric tensors1 . The sought-for fac-
tor in the quantum measure is the product of the δ-func-
tions with the support on γ(σ4) over all 4-simplexes σ4.
The covariant form of constraints (21) with respect to
the world index means that these δ-functions are scalar
densities of a certain weight with respect to the world
index, i.e., scalars to within the powers of the volume of
the 4-simplex . Therefore, introducing factors of

the type , we can get the scalar at a certain parame-

ter η. More specifically, the product of the factors

(22)

at η = 20 is a scale-invariant quantity as required by the
principle of the lattice artefacts being at a minimum
(i.e., the sought-for factor should not depend on the size
of the 4-simplex). As a result, the conclusion reached in
the previous paragraph about finite nonzero length
expectation values in the ordinary Regge calculus as long

1 There are also linear constraints of the type  = 0 ensuring
the closure of the surfaces of the 3-faces of our 4-simplex. It is
implied that these constraints have already been resolved.

π
σ2 τ

σ2

τ
σ2

π
σ2

eabcdv λµ
ab v νρ

cd
eλµνρ .∼

v λµ
ab

v±∑

V
σ4

V
σ4
η

V
σ4
η δ21

eabcdv
λµ σ4
ab v

νρ σ4
cd V

σ4eλµνρ–( ) V
σ4d∫

σ4

∏
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as the area expectation values in the area tensor Regge
calculus are finite and nonzero remains valid [27].

6. CONCLUSIONS

Thus, our approach to quantizing the Regge calculus
“from the first principles” includes the following steps
and conditions.

(1) Constructing the quantum measure that reduces
to a Feynman path integral corresponding to the canon-
ical quantization in the continuous time limit irrespec-
tive of which coordinate is taken as the time.

(2) Using the exact representation of the Regge
action in terms of the rotation matrices as independent
variables.

(3) Extending the configuration space of the theory
by considering the area tensors as independent vari-
ables (considering the so-called area tensor Regge cal-
culus).

(4) Reducing the quantum measure from the area
tensor Regge calculus to the hypersurface correspond-
ing to the ordinary Regge calculus using the principle
of the lattice artefacts being at a minimum, i.e., minimal
dependence on the shape and size of the simplexes.

As a result, we obtained quantum Regge length
expectations of the order of the Plank scale, 10–33 cm. If
these length values were zero, this would just imply that
the quantum measure is saturated by arbitrarily small
Regge edge lengths, i.e., smooth Riemannian mani-
folds, and, in fact, we would return to the continuum
GR. Here, a remarkable property of the Regge calculus
appears: this is the minisuperspace GR theory, in other
words, exact GR for certain (piecewise flat) spacetimes.
Therefore, the Regge calculus in the quantum theory
does not mean abandoning continuum GR (it contains
this theory as the limiting point), but is rather a descrip-
tion of the system using an alternative set of variables,
triangulation lengths. Our result, nonzero length expec-
tations, implies that GR is adequately described pre-
cisely by these variables when GR becomes discrete on
the Planck scale dynamically, i.e., via competition
between the various contributions in the functional
integral, including the contribution of smooth mani-
folds.
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Abstract—An experimental procedure employing setups with standard resolution characteristics for multiple
small-angle neutron scattering in fractal and nonfractal media is described. Specific features of the proposed
method, which are related to a limited resolution of the spectrometer, are considered in the case of large-scale
inhomogeneities with the characteristic size exceeding the inverse spatial resolution. A new approach to the
extraction of information about the fractal dimension of the system studied is demonstrated, which takes into
account the dependence of the attenuation and broadening of the transmitted neutron beam on the sample thick-
ness. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The method of small-angle neutron scattering
(SANS) is widely used for the investigation of nuclear
and magnetic inhomogeneities in various materials,
including porous media, alloys, etc., which contain a
high concentration of contrast inhomogeneities with
sizes spread over the scale from tens of ångstöms to
several hundred microns. The SANS experiments in
such media usually reveal a power dependence of the
scattering intensity I on the momentum transfer (scat-
tering vector) q,

in a certain interval of q > 1/R, where R is the charac-
teristic scale of the scattering system. There is a com-
monly accepted trend to perform SANS measurements
in the regime of single scattering (that is, under the con-
dition that L < l, where L is the sample thickness and l
is the neutron mean free path in the medium) and treat
the possible multiple scattering (multiple SANS,
MSANS) as a factor complicating the interpretation of
data. The value of ∆ or its deviation from the Porod
asymptotics (∆ = 4) is used to judge on the fractal char-
acter (dimension) of the system and on the correlator of
scattering inhomogeneities (for more detail, see [1–3]).
However, an analysis of the SANS data in this limit
hardly allows one to extract information concerning the
characteristic scale of the scattering system (of course,
except for the possibility of scale evaluation from the
uncertainty relation). Information of this kind can be
obtained in the case of q < 1/R corresponding to the pas-
sage to the Guinier regime [4]. However, both the q <

I q( ) q ∆– , ∆ 4,≤∝
1063-7761/05/10103- $26.000427
1/R asymptotics and the Guinier regime are difficult to
access for the scattering in strongly dispersive media
with high concentrations of inhomogeneities. More-
over the condition L < l frequently cannot be satisfied
because of the difficulties of preparing sufficiently thin
samples; in such cases, the scattering unavoidably has
a multiple character.

This paper considers the possibility of evaluating, in
principle, the characteristic scale of a scattering system
by measuring both the broadening w of a transmitted
neutron beam and the neutron mean free path in the
sample using the standard SANS setups in the regime
of elastic multiple scattering (L > l). The mean free path
can be estimated from data on the attenuation of the pri-
mary beam as a function of L due to the scattering by
angles Ω > Ωmin, where Ωmin is determined by the reso-
lution of the instrument. Methods for the estimation of
characteristic size using the beam broadening in the
neutron scattering experiments has been widely used
and extensively developed in both experimental and the-
oretical aspects, beginning with the work of Weiss [5]
(see, e.g., [6–8] and references therein). One aim of this
paper is to draw the attention to the relative character of
estimates obtained from simultaneous measurements of
the beam broadening and the integral cross section of
scattering for the angles Ω > Ωmin. In other words, the
resolution of the SANS setup restricts the possibilities
of studying the large-scale inhomogeneities both in the
case of single scattering and in the multiple scattering
regime. Despite this restriction, MSANS is a powerful
tool for the investigation of various substances and the
determination of structural parameters of fractal and
nonfractal objects. However, it should be recognized
 © 2005 Pleiades Publishing, Inc.
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that the real task of such investigations is to experimen-
tally evaluate the characteristic scale of inhomogene-
ities making the main contribution to the scattering
measured in the resolution limits of a given instrument,
rather than analyzing the spectrum of inhomogeneities
that may spread up to sizes that go unrecorded because
of the limited resolution. This paper presents an exper-
imental realization of this approach and shows exam-
ples of the application of MSANS to determining the
structural parameters of systems.

It should be emphasized that multiple scattering
substantially differs from the single scattering event.
Indeed, in the latter case, the information is obtained
using the coherent properties of radiation: the incident
and scattered neutron waves are considered as coherent.
In contrast, multiple scattering is a diffusion process,
and what we measure in experiment is the degree of
coherence. In this context, it is interesting to consider
MSANS using the concept of coherent or correlation
volume of the neutron beam [9].

The correlation volume can be intuitively defined as
a region where the coherent properties of neutrons are
significant. These properties are described using the
correlation function of a collimated beam, which, in
turn, is a Fourier image of the instrument resolution
function. It should be noted that the correlation length
for such a volume in SANS experiments may reach
1000 Å.

When a neutron beam propagates in a medium and
exhibits multiple scattering, the correlation length
decreases, which reflects the loss of the beam coher-
ence, which leads to broadening of the instrumental lin-
ewidth. Naturally, this loss of coherence depends only
on the number of scattering events per unit range (scat-
tering length) or, in other words, on the general integral
cross section of neutron scattering. The attenuation of
the neutron beam is related to decaying amplitude of
the neutron wave inside the coherent volume. This
amplitude consists of two components, the amplitudes
of nonscattered and forward-scattered waves. Obvi-
ously, both the correlation length and the amplitude of
the neutron wave within this length depend on the prop-
erties of a scattering medium.

For this reason, the second but no less important
task of this study is to consider the possibility of
extracting information about the fractal properties of
the scattering medium from data on the broadening and
attenuation of a neutron beam in the regime of multiple
scattering. One difficulty in obtaining reliable informa-
tion on the fractal dimension of the medium in the
regime of single scattering is related to the need for
studying the scattering intensity distribution I(q) in a
broad range of q (over more than three orders of mag-
nitude), which is practically impossible for most exist-
ing SANS setups. The possibility of obtaining such
estimates from data on multiple scattering was demon-
strated by Maleyev [3].
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The aforementioned problems will be considered
based on the results of MSANS, SANS and ultra-small-
angle neutron scattering (USANS) experiments
described below. The measurements were performed
for the model samples of YBCO ceramics, Al2O3 pow-
der, limestone (CaCO3) powder, and carbon (C) carbon
black in a range of sample thicknesses L/l < 5.

The paper is organized as follows. Section 2 briefly
summarizes the main stipulations of the MSANS the-
ory developed in [3, 6, 10, 11], which are used below
for the interpretation of experimental data. The experi-
mental part is presented in Section 3. The results of
experimental data processing are presented and dis-
cussed in Section 4, and Section 5 summarizes the main
conclusions.

2. THEORY

Let us briefly consider the main stipulations of the
theory developed in [3, 6, 10], which are used below for
the interpretation of the results of MSANS measure-
ments in various regimes. The aforementioned papers
considered the regimes of diffraction [3] for α ! 1 and
refraction [10] for α @ 1, where α = kR(U/E) is a
change in the neutron wavefunction over an inhomoge-
neity scale R, k = 2π/λ, is the wavevector of neutrons
with the energy E, U = 2π"2∆(bN0)/mn is the potential
energy of the inhomogeneity (optical potential), mn is
the neutron mass, ∆(bN0) is the difference of the densi-
ties of the scattering lengths for the inhomogeneity and
the medium, b is the coherent scattering amplitude, and
N0 is the number of formula units per unit volume
(cm3). The regime of refraction was analyzed in the
limit of low concentrations of inhomogeneities in the
sample, that is, under the condition that δV/V ! 1,
where V is the sample volume and δV is the volume
fraction accounting for inhomogeneities of the charac-
teristic scale R.

It was shown [3] that the characteristic momentum,
which determines the beam broadening as a result of
multiple scattering (L > l) from a fractal medium in the
diffraction regime in the general case, can be written as

(1)

where ∆ = Dv (Dv < 3 is the dimension of a volume frac-
tal) or ∆ = 6 – Ds (2 < Ds < 3 is the dimension of a sur-
face fractal); µ = f(∆); and g∆ ≈ 1. Accordingly:

In the particular case of ∆ = 4 (the Porod asymptotics),
we have µ = 1/2 and the scattering intensity I(q) is

qL
∆( ) 1

2R
------- L

g∆l
------- 

  µ
, α  ! 1,=

qL
∆( ) L

µv, s, µv∝ Dv 2–( ) 1– 1,>=

1/2 µs< 4 Ds–( ) 1– 1.<=
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described by the diffusion formula:

(2)

Taking into account corrections for the insuffi-
ciently rapid decrease in the single scattering cross sec-
tion with increasing scattering angle [6], the character-
istic momentum can be written as

(3)

where the mean free path length is given by the formula

(4)

According to [3], the scattering intensity distribu-
tion I(q) in the regime of multiple scattering (L > l) is
divided into two parts. The asymptotic part (for

q @ ) is similar to the I(q) distribution in the single

scattering regime. In the central part (for q ≤ ), the
distribution is close to that in the Guinier regime:

(5)

Here, Rg(L) is the effective gyration radius defined as

(6)

where Γ(x) is the gamma function.

The intensity I(q = 0) of forward scattering (i.e., the
attenuation) is expressed as [3]

(7)

where 2µ = 2/(Dv – 2) > 2 and 1 < 2µ = 2/(4 – Ds) < 2
for the volume and surface fractals, respectively, and κ
is the neutron wavevector. In both cases, the intensity
I(q = 0) decreases with the sample thickness L faster
than according to the L–1 law (characteristic of the dif-
fusion model used for analysis of MSANS on inhomo-
geneities with sharp boundaries (2µ = 1)). This behav-

ior of I(q = 0) (as well as of ) in the case of MSANS
in fractal media offers an example of the so-called
anomalous diffusion (superdiffusion) [12].

In the regime of refraction [10] in a sample with a
small concentration of spherical inhomogeneities and a
not very large thickness (l ! L ! L0 = lα2lnα), the

I q( ) q2

2qL
2

--------–
 
 
 

, qLexp∝ 1
2gR
---------- L

l
---.=

qL
1
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l
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l
---ln ,=

l
k2
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qL
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I q( ) I 0( ) 1
q2Rg

2 L( )
3

--------------------– .=

Rg
2 L( ) 3Γ 4µ( )
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2π qL

∆( )( )2
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2µ κR( )2
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 
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intensity of multiple scattering is also described by a
diffusion formula with the characteristic momentum

(8)

For L ≈ L0, the scattering intensity deviates from the
behavior predicted by the diffusion model, and for L @
L0 it is described by the formula [10]

(9)

In the asymptotic limit q @q2, the intensity of multiple
scattering coincides with that of a single scattering and
decreases as q–3 [10].

To our knowledge, multiple scattering in the refrac-
tion regime—neither in the case of a high concentration
of inhomogeneities (whereby δV ~ V as in multidomain
polycrystalline ferromagnets, granulated and ceramic
materials, etc.), nor in fractal media—has not been con-
sidered in the literature.

3. EXPERIMENT

In our MSANS experiments, the attenuation I(q =
0)/I0, the broadening w of the neutron beam, and the
scattering intensity Is(q) (for 5 × 10–3 Å–1 < q < 3.5 ×
10−2 Å–1) were studied as functions of the sample thick-
ness L for YBCO ceramics, Al2O3 powder, CaCO3 pow-
der, and carbon black. The sample parameters impor-
tant from the standpoint of MSANS were as follows:

(i) YBa2Cu3O7 + δ (YBCO) ceramics: bN0 = 4.75 ×
1010 cm–2; density, ρ ≈ 4.9 g cm–3; range of sample
thicknesses, L is from 0.9 to 20 mm; δL/L ≤ 1.5%.

(ii) Al2O3 powder: bN0 = 5.38 × 1010 cm–2; average
grain size, 18–20 µm; L is from 2 to 16 mm;
δL/L ≤ 2.5%.

(iii) Limestone (CaCO3) powder: bN0 = 5.11 ×
1010 cm–2; ρ ≈ 2.93 g cm–3; L is from 0.1 to 8.9 mm;
δL/L ≤ 1.5%.

(iv) Carbon black: bN0 = 6.5 × 1010 cm–2; L is from
0.2 to 9 mm; δL/L ≤ 1.5%.

The MSANS measurements were performed using
the small-angle polarized neutron scattering facility
Vector-20 (WWR-M reactor, Petersburg Nuclear Phys-
ics Institute, Russian Academy of Sciences, Gatchina),
which operated in slit geometry with twenty 3He detec-
tors in the horizontal plane [6]. The scattering intensity
could be scanned in a range of q up to 5 × 10−1 Å–1 by
rotating the detector system. In this experiment, the
polarization technique was used for monochromatiza-
tion of the neutron beam monochromatic. The measure-
ments were performed at a neutron wavelength of λ =
8 Å with ∆λ/λ = 9%, which excluded the Bragg scatter-
ing. The vertical and horizontal resolution calculated

q1
L
l
--- α2L

2l
---------ln

kU
2E
-------.=

I q( )
k2q2

2π q2 q2
2

+( )
3/2

----------------------------------, q2
L

2g∆lR
--------------.= =
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with allowance for the slit geometry [14] of the experi-
mental setup was δqv = 3 × 10–3 Å–1 and δqh = 8 ×
10−4 Å–1, respectively.

In order to obtain independent data on the fractal
dimension of carbon black and verify the MSANS
results, we additionally studied this sample using the
traditional SANS and USANS techniques in a broad
range of momentum transfer (1.5 × 10–6 < q < 1.5 ×
10−1 Å–1). The SANS measurements were performed
using the SANS-1 facility (FRG1 reactor GKSS
Research Centre, Geesthacht, Germany) [15], which
operated in a geometry close to point geometry and was
equipped with a two-dimensional (2D) position-sensi-
tive 3He detector. The working neutron wavelength was
λ = 8.1 Å with ∆λ/λ = 10%. The experiments were per-
formed for four distances between the sample and
detector Rsd = 0.7, 1.8, 4.5, and 9.7 m, which allowed
the momentum transfer to be varied within 3 × 10–3 <
q < 1.5 × 10–1 Å–1). The instrument resolution was
approximated by the Gauss function and calculated
separately for each Rsd value as described in [16].

The carbon black sample was placed in a 1-mm-
thick quartz cell. The initial spectra measured in each q
interval were corrected using standard procedures with
allowance for scattering from the setup parts and the
cell and for the room background [17]. The obtained

0.0183

–0.02

Is(q, L)/I(q = 0), arb.units

q, Å–1
–0.01 0 0.01 0.02 0.03

0.0498

0.1353

0.3679

1.0000

2.7183

0.0067

0.0025

0.0009

0.0003

0.0001

10–5

10–6

1

2 ∝  q–2.6

∝  q–4

Fig. 1. The neutron beam shape measured in a regime of sin-
gle scattering (L < l): (open circles) CaCO3, L = 0.67 mm;
(black circles) carbon black, L = 0.83 mm. Solid curves 1
and 2 show the results of calculations using formula (10);
dashed curve represents the beam shape in the absence of a
sample.
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2D spectra were averaged with respect to azimuth and
normalized to the cross section of noncoherent neutron
scattering in a 1-mm-thick layer of water [17]. For Rsd >
1.8 m, the spectra were normalized to the cross section
determined for Rsd = 1.8 m with additional allowance
for the attenuation factor [17].

The USANS measurements were performed using a
DCD double crystal diffractometer (at the same FRG1
reactor of the GKSS Research Center) at a working neu-
tron wavelength of λ = 4.43 Å with ∆λ/λ = 1 × 10–5 [18].
This instrument was equipped with a double mono-
chromator unit based on perfect silicon crystals cut
along the (1, 1, 1) plane. The first crystal was used to
form the neutron beam and the second crystal per-
formed the monochromator function. The angular dis-
tribution of neutrons in the beam past the sample (situ-
ated behind the double monochromator) was measured
by rotating an analyzer crystal (identical to the mono-
chromator crystal) at a minimum angular step of 2 ×
10−7 deg. The FWHM of the instrument line was w0 =
2.6 × 10–5 A–1. The momentum transfer was varied
within 1.5 × 10–6 < q < 5 × 10–3 Å–1.

Figures 1–3 show the pattern of typical changes in
the shape of the neutron beam, Is(q)/I(0), and in the
attenuation I/I0 (where I0 = I(L = 0)), measured by the
central detector as I(q = 0) as a function of the sample
thickness.

The experimental beam attenuation profiles (Fig. 3)
are normalized to the integral attenuation cased by neu-
tron absorption in the samples.

4. RESULTS AND DISCUSSION

4.1 MSANS

4.1.1. Beam shape. It was found that the shape of
the neutron beam upon scattering can be represented as
a sum of two components: Gaussian, describing the
beam width upon scattering, and Lorentzian of nth
power (n = f(∆)), describing the dependence of the scat-
tering intensity Is(q, L) on q at large momenta:

(10)

where A, B, C, s, and n are free parameters and q01 and q02

are the centering parameters. The quantity sr2 = δ  + 
is a sum of dispersions determining the momentum
uncertainty in the beam (s1 is the s value determined by
fitting the experimental data to formula (10) for sr2 =

δ ). The uncertainty δqh related to the horizontal res-
olution (which is almost ten times as small as the verti-

I q( ) A
q q01–( )2

2s2
----------------------–exp=

+ B
sr2n

q q02–( )2 sr2+[ ] n
------------------------------------------- C,+

qv
2 s1

2

qv
2
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Fig. 2. Variation of the neutron beam shape for (a) carbon black and (b) CaCO3 samples of different thickness L (indicated in mil-
limeters at the curves). Points present the experimental data; solid curves show the results of calculations using formula (10).
cal resolution) is reflected predominantly by the s
value, since

(11)

where ∆w(L) is the beam broadening in a sample of
thickness L and s0 is the beam dispersion in the absence
of the sample. In the course of fitting by least squares to
formula (10), it was established that the dispersion s
varies rather slightly and falls almost within the exper-
imental error limits, irrespective of the fact whether this
value is taken into account or not in the sr product (i.e.,
s ≈ s1). However, only allowance for the s value in the
sr product provides a satisfactory description of scatter-
ing in the region of “tails”. Substitution of a preset
value of s1 instead of the free parameter s into the sr
product significantly simplifies the fitting procedure.
Depending on the sample thickness, the sr product val-
ues fall within sr = (5–6.5) × 10–3 Å–1 (YBCO), (5–8) ×
10–3 Å–1 (CaCO3), (5–8.5) × 10–3 Å–1 (Al2O3), and
(5−7) × 10–3 Å–1 (carbon black). The fitting by least
squares gives the following values of exponent in for-
mula (10): n = 2 (CaCO3, Al2O3, YBCO) and n = 1.3
(carbon black). The dependences calculated using for-
mula (10) with the parameters found through fitting by
least squares are depicted by solid curves in Figs. 1 and 2.

4.1.2. Scattering intensity Is(q). Figure 4 shows the
plots of Is(q) versus momentum q at q > sr for CaCO3
and carbon black (analogous curves were also obtained

s2 ∆w2 L( ) s0
2,+=
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for Al2O3 and YBCO). It was found that these depen-
dences could be satisfactorily described using the
formula

(12)

where ∆ = 4 ± 0.1 (for CaCO3, Al2O3, YBCO) or 2.6 ±
0.1 (for carbon black) and the parameter A1 is virtually
a linear function of L. The scattering data were pro-
cessed by least squares (with corrections for the slit
geometry) and analyzed in the range of momentum
transfer 0.007 Å–1 ≤ q ≤ 0.03 Å–1. A correction for the
slit geometry is essential for q < 10–2 Å–1, where the
experimental data (representing a convolution of the
scattering intensity Is(q) ∝  q–∆ with the instrument res-
olution function) deviate from the q–∆ law (these devia-
tions are not distinguished in Fig. 4). The power depen-
dence of the scattering intensity on the momentum
Is(q, L) ∝  q–2.6, which is observed for carbon black, is
similar to that for scattering on a volume fractal with
the dimension Dv = 2.6 ± 0.1.

4.1.3. Beam attenuation. For small sample thick-
nesses (L < l), the attenuation of the central beam as a
function of L for all samples (Fig. 3) could be satisfac-
torily described using the formula

(13)

Is q( ) A1/q∆,=

I q 0=( )
I0

-------------------- L
lexp
-------– 

  ,exp=
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which was used for determining the neutron mean free
path lexp. The results of lexp determination by this
method are presented in Table 1. The calculated curves
of I/I0 versus L for the parameters determined by least
squares are depicted by solid lines in Fig. 3.

As can be seen from Fig. 3, an increase in the sample
thickness is accompanied by deviation of the experi-
mental data from the exponential dependence, which is
related to the multiple scattering. It was found that
experimental data on the beam attenuation with
increasing sample thickness for nonfractal objects are
well described with allowance for multiple scattering in
terms of expression (2) within the limits of the vertical
and horizontal resolution of the central detector. The

0.2

0
0

I/I0

L, mm
5 10 15 20

0.4

0.6

0.8

1.0

Fig. 3. Attenuation of the beam intensity measured using the
central detector for neutrons scattered with a momentum
transfer q > qmin (qmin is determined by the instrument res-
olution) as a function of the sample thickness L: (d) carbon
black; (s) CACO3; ( ) YBCO; ( ) Al2O3. Solid curves
show the results of fitting to the exp(–L/lexp) law; dashed
curves show the results of calculations using formula (14).
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2D convolution of the diffusion formula (2) at q = 0
with the instrument resolution functions in the two
directions described by Gaussians with dispersions δqh

and δqv, which was used for processing the data on the
beam attenuation for L > 0.5lexp, is as follows:

(14)

where D and F are free parameters and µ = 1/2.

I
I0
----

2Dδqxδqy

2δqx( )2 FL+[ ] 2δqy( )2 FL+[ ]{ } µ-----------------------------------------------------------------------------------,=

10–4

0.11

0.01

Is(q), arb.units

q, Å–1
0.02 0.03

10–3

10–2

10–5
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1.9
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5.78
3.88

1.48

0.28

Fig. 4. Plots of the neutron scattering intensity Is(q) versus
momentum transfer q (q > sr) for (d) CaCO3 and (s) carbon
black samples of various thicknesses L (indicated in milli-
meters at the curves). Solid and dashed curves show the
results of fitting to the Is ∝  q–∆ law. For all sample thick-
nesses, ∆ = 4 ± 0.6 (CaCO3) and 2.6 ± 0.01 (carbon black).
Table 1.  The main parameters of samples determined from an analysis of the MSANS data (see the text for explanations)

Sample lexp, mm ∆ µ D R, Å

Nonfractal

Al2O3 3.9 ± 0.6 4 ± 0.6 0.5 3 203 ± 11

YBCO 9.4 ± 0.3 4 ± 0.6 0.5 3 171 ± 16

CaCO3 1.7 ± 0.1 4 ± 0.1 0.5 3 216 ± 6

Fractal

C (carbon black) 2.5 ± 0.1 2.6 ± 0.1 0.8 ± 0.1 Dv = 2.6 ± 0.1*

Ds = 2.75 ± 0.15** 351 ± 12

**From large-q asymptotics.
**From data on the neutron beam broadening and attenuation.
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The results of least squares fitting to formula (14)
for CaCO3, Al2O3, and YBCO are depicted by dashed
lines in Fig. 3. Expression (14) shows that, in the limit
of δqx, δqy  0, the attenuation asymptotically tends
to I/I0 ∝  1/L in agreement with the theory [3]. The quan-
tity F in formula (14) was treated as a free parameter, but,
if the deviation of the beam attenuation from exponent is
completely described by the diffusion formula (2) within
the aperture of the central detector, we must have FL =

2 . Calculations showed that this relation is valid to
within 3%, provided that the beam attenuation is mea-
sured in an optimized geometry (δqv = 1.8 × 10–3 Å–1),
where qL are taken from an analysis of data on the beam
broadening (Fig. 5).

We have also used formula (14) in the analysis of
data on the beam attenuation at L > 0.5lexp for carbon
black, but the exponent µ was treated as a free parame-
ter. Then, the fitting by least squares gave µ = 0.8 ± 0.1.
In the limit of δqx, δqy  0, this yields the asymptotic
behavior I/I0 ∝  1/L2µ with 2µ = 1.6. According to the
theory [3], this behavior corresponds to the neutron
beam attenuation upon multiple scattering on the sur-
face fractal with the dimension Ds = 4 – 1/µ = 2.75.

4.1.4. Beam broadening. Figure 5 presents our
experimental data on the beam broadening as a function
of the sample thickness, which was determined from
relation (11) as

(15)

As will be shown below, the characteristic scale of
inhomogeneities determined in our experiments is on
the order of several hundred ångströms. For this reason,
the experimental data can be described in the diffrac-
tion approximation. Estimates show that the character-
istic size R0 (corresponding to α ≈ 1) at which the
refraction regime also becomes significant is R0 ≈ 2 ×
10–3 mm. The corresponding characteristic momentum
according to Eq. (8) is q1 < 2 × 10–4 Å–1. Thus, the
refraction scattering component corresponds to the
range of momenta below the limiting resolution of the
instrument and, hence, this component can be ignored
in comparison to diffraction in the analysis of scatter-
ing. Analogous estimates were previously reported
in [11] for SANS in YBCO ceramics.

As can be seen from Fig. 5, the beam broadening
defined as ∆w = qL (see Eqs. (1)–(3)) is satisfactorily

qL
2

∆w2 s2 s0
2
.–=
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described by the formula

(16)

with a nonzero “cutoff” on the abscissa axis for L  0.
This relation was considered in much detail in [6–8].
An analysis of the data on ∆w(L) gave the following
values of the exponent: µ = 0.5 (for CaCO3, Al2O3,
YBCO) or ~0.8 (for carbon black), which is fully con-
sistent with the values obtained above from the analysis
of the central beam attenuation I/I0 as a function of the
sample thickness L.

Within the framework of the diffraction approxima-
tion, the characteristic size R of inhomogeneities mak-
ing the main contribution to the scattering detected
within the limits of resolution of a given instrument can
be determined using formula (1) with the aforemen-
tioned parameters lexp and qL. These estimates of R in all
samples under consideration for L ≥ lexp are presented
in Table 1 and plotted in Fig. 6, where solid and dashed
curves show the data calculated using formula (16).

The scattering from inhomogeneities on this scale
must lead to deviations from power dependences of the
scattering intensity (Fig. 4) for sr < q ≤ 1/2R. However,

∆w a bLµ+=

1

0 1

∆w, 10–3 Å–1

L1/2, mm1/2
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Fig. 5. Plots of the beam broadening ∆w =  versus

sample thickness L for (1) CACO3; (2) YBCO; (3) carbon
black, and (4) Al2O3. Points present the experimental data;
solid curves show the results of calculations using the for-
mula ∆w = a + bLµ.

w
2

w0
2

–

Table 2.  Fractal dimensions determined by analysis of the SANS data for carbon black

Interval of q, Å–1 0.048–0.15 0.013–0.064 0.007–0.022 0.003–0.009

Fractal dimension D 2.54 ± 0.1 2.75 ± 0.05 2.56 ± 0.08 2.62 ± 0.02
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this condition was not met in our experiments, where
the minimum sr value was srmin ≈ 3 × 10–3 Å–1. In order
to observe deviations from the power dependence of the
scattering intensity at low q, the experiments have to be
performed using thin samples and an experimental
setup with sufficient resolution for a momentum trans-
fer of q < 10–3 Å–1.

4.2. SANS and USANS

As can be seen from the MSANS data in Table 1,
which were obtained using measurements of the neu-
tron beam broadening and attenuation as dependent on
the sample thickness L (q ≤ qL), carbon black is a sur-
face fractal with Ds = 2.75 ± 0.15. At the same time, the
exponent ∆ determined from an analysis of the scatter-
ing intensity Is as a function of the momentum q in the
asymptotic limit for q @ qL > 7 × 10–3 Å–1 is 2.6 ± 0.1,
which corresponds to the scattering on a volume fractal
with Dv = 2.6 ± 0.1. These results can be explained by
assuming that (i) the samples of carbon black under
study contain two (surface and volume) fractals and (ii)
the main contributions of these fractals to the scattering
intensity Is(q) are observed in different ranges of q. This
implies that Is(q) plotted on the logarithmic scale must
exhibit a bending point, which corresponds to the pas-
sage from one type of scattering to another. In order to
check for this assumption, it was necessary to obtain
independent estimates of the fractal dimension of car-
bon black. Such estimates can be obtained by measur-
ing the neutron scattering intensity distribution Is(q)
using the SANS and USANS techniques in a single

150

1

R, Å

L/lexp

2 3 4

200

250

300

350

400

5

Fig. 6. Plots of the characteristic scale R of the scattering
system versus L/l for (d) carbon black, (s) CACO3;

( ) YBCO; and ( ) Al2O3. Points present the results of cal-
culations using formula (5); solid and dashed curves show
the results of fitting using formula (16).
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scattering regime in the most broad range of the
momentum transfer q.

Figure 7 shows a plot of the differential cross sec-
tion of neutron scattering dΣ(q)/dΩ measured for a
sample of carbon black with L = 1.5 mm using the
SANS-1 setup in the momentum range 0.003 Å–1 ≤ q ≤
0.15 Å–1. The data were analyzed in terms of the formula

(17)

where A2 is a free parameter and Iinc is a constant quan-
tity, which is independent of q and related to the scat-
tering from inhomogeneities on the order of the wave-
length λ (in this case, from one to several tens of ång-
ströms). The final results were obtained by calculating
a convolution of expression (17) with the instrument
resolution function. The experimental curves of the dif-
ferential cross section dΣ(q)/dΩ were processed by
least squares for each of the four intervals of variation
of the q value. The results of this analysis are summa-
rized in Table 2.

As can be seen from the data in Table 2, the fractal
dimensions fall within 2.54–2.75 depending on the
interval of q values used for the analysis. At the same
time, the fractal dimension (D ≈ 2.65) obtained by aver-
aging over all the q intervals under consideration is
close to the estimate Dv = 2.6 ± 0.1 obtained for the
same sample of carbon black in our MSANS experi-
ments.

Figure 8 shows the results of USANS measurements
for the carbon black samples with L = 0.2 and 1.5 mm

dΣ
dΩ
------- q( ) A2

qD
------ I inc,+=
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Fig. 7. A plot of the differential cross section of neutron
scattering dΣ(q)/dΩ versus momentum transfer for a sample
of carbon black with L = 1.5 mm. Points present the results
of SANS measurements; solid curve shows the results of
calculations using expression (17).
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measured using a double crystal diffractometer [18].
The attenuation of the neutron beam transmitted
through the sample was very large: 1 – I(q = 0)/I0 ≈ 0.84
and 0.97 for 0.2- and 1.5-mm-thick samples, respec-
tively. This implies that the experimental data should be
interpreted in terms of the MSANS theory [3]. In the
standard analysis of USANS spectra for L > l, parame-
ters characterizing the scattering system are usually
determined from the ∆w(L) function [7, 8]. In the case
under consideration, we are interested in determining
the asymptotic behavior of I(q) at large q. As was
pointed out above (and demonstrated previously [3, 6,
9, 18]), the character of this behavior is similar to that
in the case of single scattering.

We have analyzed the scattering intensity I(q) at
large q using a procedure described in [19]. According
to this, the experimental data are approximated using a
function of the type

(18)

where the first term describes the scattering intensity
variation on the wings of the instrument function and
the second term reflects the asymptotic behavior of the
scattering at large q in the sample studied. The values
of the exponent δ determined by least squares fitting to
formula (18) for L = 0.2 and 1.5 mm were δ = 2.35 ±
0.03 and 2.8 ± 0.03, respectively. According to [19], an
increase in δ with the sample thickness is related to the
pre-asymptotic terms of the expansion of I(q) at large q.
The I(q) values calculated using formula (18) with the
parameters determined by least squares are depicted by
solid curves in Fig. 8.

For the correct comparison of USANS data to the
results obtained in the conventional SANS experiments, it
is necessary to take into account that the exponent in the
dependence of the scattering intensity on the momentum
transfer measured using the double-crystal technique is
increased by unity [19]. Therefore, the asymptotic behav-
ior of the scattering intensity I(q) for carbon black in the
interval 3 × 10–4 Å–1 ≤ q ≤ 3 × 10–3 Å–1 is satisfactorily
described by the relation I(q) ∝  q–∆, where ∆ = δ + 1 =
3.35–3.38, which is equivalent to the scattering on a
surface fractal with the dimension Ds = 6 – ∆ =
2.62−2.65. This value is very close to the estimate (Ds =
2.75 ± 0.15) obtained in our MSANS experiments.

Thus, we have measured the small-angle neutron
scattering intensity Is(q) for carbon black in the range of
momentum transfer 0.0003 Å–1 ≤ q ≤ 0.15 Å–1 using the
SANS and USANS techniques. The obtained data
unambiguously indicate that there are two intervals of
q in which the scattering intensity Is(q) obeys the law
Is(q) ∝  q–∆ with different values of the exponent ∆. In
the interval of q ≤ qc (where qc ≈ 0.003 Å–1 is the point
of bending on the Is(q) curve), the exponent is close to
3.35, whereas at q ≥ qc, we have ∆ ≈ 2.65. This asymp-
totic behavior of Is(q) shows the presence of two corre-

I q( )
A3

q2
------

A4

qδ------,+=
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lators, which characterize the system under consider-
ation and predominate in the corresponding interval
of q. The first correlator corresponds to a surface fractal
with the dimension Ds = 2.65, while the second corre-
lator corresponds to a volume fractal with the same
dimension Dv ≈ 2.65.

5. CONCLUSIONS

(i) We have experimentally demonstrated the possi-
bility of using MSANS method [3, 6, 10] for evaluating
the structural parameters (the characteristic scale R and
the mean free path l) of a scattering system using the
standard instruments where these values cannot be
determined in the standard SANS regime.

(ii) A new method has been proposed for estimating
the fractal system dimension using data on the attenua-
tion and broadening of the transmitted neutron beam in
the MSANS regime.

(iii) A comparison of the MSANS data to the values
obtained by the classical SANS and USANS methods
in the regime of single scattering showed a good coin-
cidence of the results. In particular, a volume fractal
with the dimension Dv = 2.6 ± 0.15 in the asymptotic
limit of large q and a surface fractal for carbon black
with the dimension Dv = 2.7 ± 0.15 for q ≤ qL were
observed both in our MSANS experiments and in the
SANS and USANS measurements.
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2 × 10–42 × 10–25 × 10–4
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Fig. 8. Plots of the neutron scattering intensity versus
momentum transfer for carbon black samples with L =
0.2 (1) and 1.5 mm (2). Points present the results of USANS
measurements; solid curves show the results of calculations
using expression (18) for q @ qL.
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Abstract—A broad class of three-dimensional space structures in multisublattice antiferromagnets was found
in the isotropic approximation (the principal chiral field model on the SU(2) group). According to the Andreev–
Marchenko theory, this approximation is applicable to spin glasses and provides qualitative understanding of
structures in real multisublattice antiferromagnets. Special substitutions were used to reduce the equations of
the model to new equations with simple geometric interpretation. A differential geometry method was applied
to obtain various structure types (some of which were determined by arbitrary functions), including localized
and nonlocalized textures, structures with the degree of mapping equal to one, antiferromagnetic “targets” and
three-dimensional sources, and two- and three-dimensional vortex and spiral structures. Possibilities for exper-
imentally checking the presence of localized, vortex, and spiral structures in antiferromagnets were demon-
strated. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In the usual phenomenological theory, complex
magnetic structures are treated as sets of magnetic sub-
lattices inserted into one other. According to a continual
description, each magnetic sublattice is characterized
by the mean magnetic moment density Mj, where j is
the number of the sublattice. This is not an effective
approach to analyzing dynamics and magnetic spatial
structures in the long-wave approximation. When the
major role in a magnetic system is played by exchange
interactions, we can obviate the necessity of using a
large number of magnetic sublattices and find simpler
and more effective dynamical equations [1–4]. The
appearance of magnetically ordered states is always
accompanied by spontaneous distortions of exchange
interaction symmetry. Indeed, the Hamiltonian of
exchange interactions is invariant with respect to arbi-
trary rotations of all spins through equal angles, but no
magnetic structure is invariant with respect to all such
rotations, because there are macroparameters (macro-
scopic multipole moments) that are not invariant with
respect to rotations of all spins through equal angles.
Local spin rotations that depend on the coordinates and
time and change the equilibrium macroparameter val-
ues are elementary magnetic excitations of systems.
Because of the short-range character of exchange
forces, the energy of these elementary excitations
(magnons) vanishes as the momentum tends to zero.
Suppose that the ground state of a magnet is only
invariant with respect to the SO(3) group identity trans-
formation. According to the Andreev–Marchenko [1–3]
and Volkov–Zheltukhin [4] theories, the most general
equation for the long-wave phenomenological potential
1063-7761/05/10103- $26.000437
energy U density (in crystals without an inversion cen-
ter at zero spontaneous magnetization) invariant with
respect to the SO(3) group of spin rotations then has the
form

(1)

Here, ωi, l are invariant with respect to spin rotations
(generated by right shifts under the SU(2) group) and
relate rotations of the spin rotation matrix (G ∈  SU(2)),
whose parameters depend on the coordinates, at the
points xi and xi + dxi as follows:

(2)

Finding two- and three-dimensional structures with an
arbitrary invariant cik, lm tensor, whose components play
the role of elasticity moduli, is a difficult task that has
not been solved completely. In this work, we find new
types of spatial textures in multisublattice antiferro-
magnets in the isotropic approximation on the assump-
tion that

(3)

Although this approximation is strictly applicable to
spin glass only [2, 3], it allows the problem to be sim-
plified and provides qualitative understanding of struc-
tures in real multisublattice antiferromagnets. A similar
approximation is used in the continual theory of nemat-
ics (one-constant approximation) and elasticity theory
when anisotropic crystals are approximated by isotro-
pic media. Further, equivalent forms of the equations

U
1
2
--- cik lm, ωi l, ωk m,( ).=

∂G
∂xk

-------- iσpωp k, G.=

cik lm, δikδlm.∝
 © 2005 Pleiades Publishing, Inc.
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that follow from (1) and (3) can conveniently be used.
It immediately follows from (1), (2), and (3) that, to
within scale transformations, U can be written as

.

This equation describes the nonlinear model of the
principal chiral field on the SU(2) group. Substituting
the decomposition of the G matrix in terms of the Pauli
matrices σj (j = 1, 2, 3) and unit matrix σ0,

(4)

into this equation yields the stationary n-field model

(n ∈  S3), nµ = (n0, n) with the constraint n2 +  = 1, in
the form

(5)

Model (5) is universal and has many physical applica-
tions in field theory and physics of condensed media. It
describes the low-energy dynamics of π-mesons [5]
(field n is proportional to the triplet of pions) and pion
condensate in the stationary case. Model (5) is confor-
mally invariant [6] and integrable [7, 8] by the method
of the inverse scattering problem in spaces (2, 0) and
(1, 1). In the three-dimensional space, the appearance
of spatial structures is strongly impeded because the
equations with the field triplet are nonlinear. In this
work, we find a broad class of solutions to model (1),
(3) with the use of special substitutions, which reveal a
strong relation between this model and classic differen-
tial geometry problems.

The paper is organized as follows. In Section 2, we
use three substitutions that, although they do not com-
pletely cover the diversity of all solutions to (1), (3),
increase the number of equations and reduce system (1),
(3) to new systems with simple geometric interpreta-
tion. The first such system is a trigonal system for har-
monic coordinates. It is solved in Section 3 by the dif-
ferential geometry integration method. First, we per-
form the hodograph transformation, that is, change the
roles played by dependent and independent variables.
However, further, as distinct from the standard
hodograph transformation, we do not replace field
derivatives but define them as new variables related to
the metric tensor components induced by such a trans-
formation. The equation to be solved is then rewritten
in terms of metric tensor components. Since the inde-
pendent variables were originally Euclidean, the curva-
ture tensor is zero in terms of the metric introduced. As
a result, we obtain a self-consistent system of equations
for the metric tensor components. The zero-curvature
equation then proves to be the principal equation, and
the sought system of equations, its reduction. Solving
this system allows classic geometrical equations to be
used to find a solution to the sought differential equa-
tion in the form of implicit functions. We show that, in

1
2
---Sp

∂G 1–

∂xi

-----------∂G

∂xi
------- 

 

G in jσ j n0σ0,+=

n0
2

U
1
2
--- ∂n

∂xi

------- ∂n
∂xi

-------
∂n0

∂xi

--------
∂n0

∂xi

--------+ 
  .=
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spite of its somewhat limited character, this differential
geometry approach based on embedding a nonlinear
partial-derivative equation into a certain differential
relation in the Euclidean space gives a broad class of
spatial structures that are very difficult to obtain by
other methods. As a result, we obtain seven spatial tex-
tures, including vortices, solitons, spatial sources, non-
localized structures, and structures with the degree of
mapping equal to one, which are similar in certain their
properties to topological solitons. Many of these solu-
tions are determined by arbitrary functions. In Section
3, we obtain structures related to the second and third
substitutions. For the second substitution, the field θ
locally depends on the auxiliary field a, θ = θ(a). The
fields a, b, and c are harmonic functions with gradients
related in a certain way. Differential geometry is
applied to find four spatial structures, including antifer-
romagnetic “targets” and spiral vortices, and their
dipole configurations. Lastly, at the end of Section 3,
we discuss spatial spiral structures related to the substi-
tution that allows the solution to model (5) to be
reduced to the R3 solution to the same model, where the
G matrix depends on two harmonic fields with con-
straints on their gradients. In the Conclusions, we dis-
cuss possibilities for experimentally observing the
structures found in this work in antiferromagnets.

2. SUBSTITUTIONS AND THE DIFFERENTIAL 
GEOMETRY INTEGRATION METHOD

In this section, we suggest new substitution types
that transform the equations of model (1), (3) into sim-
pler equations and lead to new differential geometry
problems in the stationary case. In the Euler parameter-
ization of the G matrix, we have 

(6)

with the angles θ (0 ≤ θ ≤ π), b (0 ≤ b ≤ 2π), and c (0 ≤
c ≤ 2π) we obtain the equations

(7)

Broad classes of solutions to model (7) can be found
using the following substitutions:

(1) Equations (7) are satisfied if the fields (θ, b, c)
obey the simple and compact system of equations

(8)

(9)

G = 

b c+( )i
2

------------------ 
  θ

2
---cosexp b– c+( )i

2
-----------------------– 

  i
θ
2
---sinexp

b– c+( )i
2

----------------------- 
  i

θ
2
---sinexp b c+( )i

2
------------------– 

  θ
2
---cosexp

 
 
 
 
 
 
 

,

∆b θ∆ccos θ∇ c∇θsin–+ 0,=

∆c θ∆bcos θ∇ b∇θsin–+ 0,=

∆θ θ∇ b∇ csin+ 0.=

∆b ∆c ∆θ 0,= = =

∇ c∇θ ∇ b∇θ ∇ b∇ c 0,= = =
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which is invariant with respect to permutations of θ, b,
c and the coordinates x, y, and z. The vector fields ∇ c,
∇ b, and ∇θ  are the normals to the surfaces b = const,
c = const, and θ = const, which intersect each other at
right angles. Geometrically, solving (8), (9) determines
triorthogonal harmonic coordinate surfaces. Starting
with fundamental monograph [9], the triorthogonal
coordinate system has been discussed in many mono-
graphs on differential geometry. The problem of con-
structing all triorthogonal coordinate systems has
a long history and has recently been solved by
Zakharov [10] in terms of the inverse scattering prob-
lem. Harmonicity condition (8) is a nontrivial reduction
of the Lame equations and the corresponding U–V pair.

(2) To perform the next substitution, we assume the
θ field to be locally dependent on an auxiliary field a(r),
θ = θ(a). Direct calculations then easily show that
Eqs. (7) follow from the equations

(10)

(11)

(12)

for the fields θ(a), a, b, and c.

(3) Lastly, we use the ansatz generalization sug-
gested in [11, 12] for the n-field model (n ∈  S2). In the
stationary case, the equations that follow from (5) have
the simple form

(13)

Let the fields nµ locally depend on auxiliary fields α(r)
and β(r), that is, α(r), β(r): nµ = nµ(α, β). It is easy to
see that the nµ(α, β) field also satisfies the n-field equa-
tion in the two-dimensional space (α, β),

(14)

if the fields (α, β) obey the equations

(15)

(16)

Equations (15), (16) are a direct generalization of the
analyticity condition to the three-dimensional case,
because they are equivalent to the analyticity condition
for the α + iβ function with respect to the x + iy variable
at D = 2. Geometrically, solving these equations deter-
mines two orthogonal harmonic coordinate surfaces
with equal normal lengths. Systems of type (8), (9)
were discussed in [13] for the introduction of conjugate
harmonic functions in the three-dimensional space.

To summarize, the suggested substitutions lead to
new differential geometry problems, those of the intro-
duction of new coordinate systems that satisfy condi-
tions (8), (9), (11), (12), (15), and (16). Although a gen-
eral solution to (8), (11), and (15) is easy to write, the

θ aa, θ a( ),sin=

∆b ∆a ∆c 0,= = =

∇ c∇ a 0, ∇ b∇ a 0, ∇ a( )2 ∇ b∇ c= = =

∆nµ 0 µ 0 1 2 3, , ,=( ).=

nµ αα, nµ ββ,+ 0,=

∆β ∆α 0,= =

∇β∇α 0, ∇α( )2 ∇β( )2.= =
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inclusion of conditions (9), (12), and (16) then encoun-
ters difficulties that can be removed by using the differ-
ential geometry integration method [11, 12], which
reduces the problems to equations with smaller num-
bers of new independent variables.

3. SPATIAL STRUCTURES RELATED 
TO THE TRIORTHOGONAL COORDINATE 

SYSTEM AND THE DIFFERENTIAL GEOMETRY 
INTEGRATION METHOD

It is pertinent to first briefly discuss the direct
method [14] for obtaining some solutions to (8), (9)
with the use of the 11 popular orthogonal coordinate
systems described in [15]. Let ui = ui(x, y, z) (i = 1, 2, 3)
be a curvilinear orthogonal coordinate system. The
coordinate system obtained via the local substitutions
ui  Wi(ui(x, y, z)) (i = 1, 2, 3) is then also orthogonal.
The Wi (i = 1, 2, 3) harmonic functions can be found for
seven orthogonal coordinate systems as follows. In
these systems, the Laplace operator for an arbitrary
W(u1, u2, u3) function is

where the form of the gi(u1, u2, u3) and fi(ui) (i = 1, 2, 3)
functions is known. The fields wi(x, y, z) = Wi(ui) (i = 1,
2, 3) that satisfy the equations

with constant Ci (i = 1, 2, 3) values are therefore har-
monic and orthogonal.

Obtaining a general solution to (8), (9) requires the
use of classic differential geometry methods. First, let
us perform the hodograph transformation. Put y1 = x,
y2 = y, and y3 = z and x1 = θ, x2 = b, and x3 = c, exchange
the roles played by dependent and independent coordi-
nates, and seek

as a function of x1, x2, and x3. In terms of geometry, this
dependence means the introduction of a curvilinear
coordinate system with the length element

into the Euclidean space with the coordinates y1, y2, y3
(here and throughout, the summation over repeating
indices is implied). The gik metric tensor and the inverse
tensor gik are

(17)

∆W gi u1 u2 u3, ,( )
ui∂
∂

f i ui( )∂W
∂ui

-------- 
  ,

i 1=

3

∑=

f i ui( )
∂Wi ui x y z, ,( )( )

∂ui

-------------------------------------- Ci=

yi yi x1 x2 x3, ,( ) i 1 2 3, ,=( )=

ds2 dyidyi gikdxidxk= =

gik

∂yp

∂xi

--------
∂yp

∂xk

--------, gik ∂xi

∂yp

--------
∂xk

∂yp

--------.= =
SICS      Vol. 101      No. 3      2005



440 BORISOV
For convenience and completeness, we give the nec-
essary differential geometry propositions. In a curvilin-
ear coordinate system, at every point

the local basis

is defined. Its changes in space in the vector

(18)

and coordinate

(19)

forms are determined by the Christoffel symbols

(20)

The condition of system (18) integrability (the con-
dition that the space is Euclidean) results in the vanish-
ing,

Rprsi = 0, (21)

of the Riemann tensor Rprsi

(22)

Here, Γm, ps = gmn . Lastly, note the important rela-
tion

(23)

which is easy to obtain by differentiating the identity

with respect to xj and using (19).
Let us apply classical geometry methods to solve (8),

(9). It follows from (9) that the twice contravariant met-
ric tensor gik = (g–1)ik, which depends on x1, x2, and x3,
has the diagonal form (g12 = g13 = g23 = 0),

(24)

where  (i = 1, 2, 3) are the diagonal components of
the metric tensor gik. As distinct from the standard
hodograph transformation, we treat Hi as new indepen-
dent fields and write the corresponding equations for
them. Condition (21) gives six Lame equations for

r y1 y2 y3, ,( ) r x( )= =

ei r i, r i,
∂r
∂xi

-------= 
 =

ei j, Γ ij
k ek=

yn i j, , Γ ij
k yn k,=

Γ ij
k 1

2
---gkn gin j, g jn i, gij n,–+( ).=

Rprsi

∂Γ p ri,

∂xs

--------------
∂Γ p rs,

∂xi

--------------– Γ rs
m Γm pi, Γ ri

mΓm ps, .–+=

Γ ps
n

∂2xp

∂yi∂y j

--------------- Γ ks
p ∂xk

∂yi

--------
∂xs

∂y j

-------,–=

∂yp

∂xi

--------
∂xi

∂yn

-------- δpn=

g 1–

1/H1
2 0 0

0 1/H2
2 0

0 0 1/H3
2

 
 
 
 
 
 

,=

Hi
2
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determining the Hi functions. They can be written in a
short form using the Darbu symbols

.

The Lame equations then become

(25)

where the i, j, and k indices are different and equal to
one of the numbers 1, 2, and 3. These equations take
into account orthogonality condition (9) and the
Euclidean character of the independent variables x, y,
and z of the fields θ, b, and c. The requirement of field
harmonicity is a reduction of the Lame equations. It
immediately follows from (23) that Eqs. (8) are written
as the nonlinear first-order equations

(26)

for the fields Hi, where Γi, jk stands for the Christoffel
symbols for metric (24). It follows that solving (8), (9)
reduces to the geometric problem of determining a sys-
tem of coordinates with metric (24) in the Euclidean
space with additional conditions, that is, to solving (25)
for H1, H2, and H3 with reductions (26). If the metric
tensor is known, the dependence yi = yi(x1, x2, x3) (i = 1,
2, 3) and therefore the dependence of the fields θ, b, and
c on x, y, and z can be found by the integration of the
redefined but linear system (19).

It immediately follows from system (26) that the
values

do not depend on the variable xi (i = 1, 2, 3). Note that
this condition is a particular case of the Robertson con-
dition [16] for systems of curvilinear coordinates that
admit the separation of variables in the three-dimen-
sional Laplace equation. As a result, the diagonal met-
ric tensor components are factored as

(27)

by the Fi functions (i = 1, 2, 3), now of two variables.
Substituting these relations into Lame equations (25)

βij
1
Hi

-----
∂H j

∂xi

--------- i j≠( )=

∂βij

∂xi

---------
∂βij

∂xi

--------- βikβ jk+ + 0,=

∂βij

∂xk

--------- βikβkj+ 0,=

g jkΓ i jk, 0 i 1 2 3, ,=( )=

H1H2H3

Hi
2

--------------------

H1
1

F2 x1 x3,( ) F3 x1 x2,( )
--------------------------------------------------------,=

H2
1

F1 x2 x3,( ) F3 x1 x2,( )
--------------------------------------------------------,=

H3
1

F1 x2 x3,( ) F2 x1 x3,( )
--------------------------------------------------------=
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yields six equations for determining the Fi fields. The
first three equations have the form

(28)

The second group of equations contain second-order
partial derivatives,

(29)

Let us briefly discuss solution (28), (29). It follows
from (28) that

(30)

First, consider the simple cases when either the numer-
ator, denominator, or both of them simultaneously van-
ish in (30). Otherwise, the condition of their compati-
bility

(31)

leads to the simple equations

(32)

The form of the fields gi (i = 1, 2, 3) that only depend
on x3 is determined by the substitution of (32) into sys-
tem (29). We showed that, as a result, g3 = 2 or g3 = 1/2.
With g3 = 2, we obtain general ellipsoidal coordinates
(see below). After the determination of Fi (i = 1, 2, 3),
the dependences x = x(θ, b, c), y = y(θ, b, c), and z =
z(θ, b, c) are found by solving linear system (19). Since
the metrics that we obtained satisfied the Robertson
condition, these dependences could be found in an
explicit form. For brevity, we omit detailed calculations
for all cases and only give the final results for the fields
Fi (i = 1, 2, 3) and (θ, b, c) (in the cylindrical coordinate
system (r, z, ϕ)),

(1)

(33)

F1F2 x1, F3 x2,– F1 x2, F3F2 x1, F2F3 x1,–( )+ 0=

with cyclically permuted indices  1 2 3, ,( ).

2 F3F1 x2,
2 F2F1 x3,

2+( )– F1 2F3F1 x2 x2, ,(+

+ 2F2F1 x3 x3, , F1 x3, F2 x3,+

– F2 x1, F3 x1, F1 x2, F3 x2, )+ 0=

with cyclically permuted indices  1 2 3, ,( ).

F3 x1,
F3F1 x3, F2 x1,

F2F1 x3, F1F2 x3,–
----------------------------------------,=

F3 x2,
F3F1 x2, F2 x3,–

F2F1 x3, F1F2 x3,–
----------------------------------------.=

F1F1 x2x3,

F1 x3, F1 x2,
----------------------

F2F2 x2x3,

F2 x3, F2 x1,
----------------------=

F1 x3, F1
g3g2, F2 x3, F2

g3g1.= =

F1
1

2α
-------g

x2

2g
------sinh

2
, F2

1
2gα
---------- f 2 x1

2 f
------cosh

2
,= =

F3

2 f 2g
x1

2 f
------

x2

2g
------sinh

2
cosh

2

Q2α 1
2
---

x1

f
-----

x2

g
-----– 

  1
2
---

x1

f
-----

x2

g
-----+ 

 coshcosh

--------------------------------------------------------------------------------------,=
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where f, g, Q, and α are the constant parameters and the
(θ, b, c) fields are determined by the equations

(34)

The vortex solution for the c field is characterized by
index Q, which takes on integral values. At Q = 1, coor-
dinate system (34) is related to the coordinates (u, v, ϕ)
of a prolate ellipsoid of revolution [15] as sinu =
tanh(θ/2f) and coshv  = coth(bg/2). The θ and b fields
determine nonlocalized textures, because we have 0 <
tanh(θ/2f) < 1 and 0 < coth(bg/2) < ∞ over the whole
interval of x, y, and z variations. It follows that 0 < θ <
∞ and 0 < b < ∞.

(2)

(35)

(f, g = const). The c field has a vortex form, and the θ
and b fields determine nonlocalized structures,

(36)

At Q = 1, this coordinate system is related to parabolic
coordinates of revolution [15] by simple substitutions.

(3) The Fi (i = 1, 2, 3) and (θ, b, c) fields then have
the form

(37)

θ
2 f
------tanh

r2 z α–( )2+– r2 z α+( )2++
2α

-------------------------------------------------------------------------------,=

bg
2

------cosh
r2 z α–( )2+ r2 z α+( )2++

2α
--------------------------------------------------------------------------,=

c Qϕ .=

F1
e

x2/g–

4
-----------, F2

e
x1/ f

4
----------,= =

F3
e

x1/ f
f 2g2

f 2 e
x1/ f x2/g+

g2+( )Q2
-------------------------------------------------=

θ f
g z– r2 z2++( )

2 f 2
----------------------------------------

 
 
 

,ln–=

b g
z r2 z2++

2g
---------------------------- 

  , cln Qϕ Q Z∈( ).= =

F3

4 1 e
x2/g

+( )
2

f 2g2 x1

2 f
------cos

x1

2 f
------sin+ 

 
2

Q2 1 e
2x2/g

2e
x2/g x1

f
-----sin–+ 

 
-------------------------------------------------------------------------------------,=

F2 f 2 1
x1

f
-----sin+ 

  , F1
1 e

x2/g
+( )

2
g2

2e
x2/g

-------------------------------,= =
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(38)

θ π
2
--- f

1

8r2
------- 1– 8z2– 1 8r2–( )2

16z2 1 8r2 4z2+ +( )++ 
 arcsin ,–=

b
g
---cosh

1

8r2
------- 1 8z2 1 8r2–( )2

16z2 1 8r2 4z2+ +( )++ + 
  ,=

c Qϕ Q Z∈( )=
(f, g = const). At f = –1, the θ field forms a soliton struc-
ture localized close to the origin (see Fig. 1). The field
changes from zero to π and has the simple asymptotic
behavior

θ  4 z (   0),

θ  z – (R =   ∞).

(4)

(39)

(f, g = const, Q ∈  Z). The c field has a vortex form, and
the θ and b fields give the delocalized textures

2 r2 z2+

1

2R
----------- r2 z2+

F1
1
f
---gQ

x2

g
-----sinh

2
, F2

1
g
--- fQ

x1

f
-----

2
cosh ,= =

F3

2 fg
x1

f
-----

2
cosh

x2

g
-----sinh

2

Q
2x1

f
--------cosh

2x2

g
--------cosh+ 

 
---------------------------------------------------------=

–4

–2

0

2

4

z

4
3

2
1

5

r

3.0

2.8

2.6

θ

Fig. 1. Spatial distribution of the θ(r, z) field. The field tends
to zero as r2 + z2  0.
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(40)

(5) The fields Fi (i = 1, 2, 3) depend on the P(x2, x3)
function,

(41)

which satisfies the Laplace equation

(42)

(f = const). Selecting P as the real part of the complex
function F(x2 + ix3/f) yields a solution in the implicit
form

(43)

This quasi-two-dimensional structure is character-
ized by the simplest dependence of the θ field on the
coordinates and the diversity of two-dimensional solu-
tions for the b and c fields characteristic of velocity
fields for two-dimensional incompressible liquids. For
instance, if F depends linearly on x2 + ix3/f, we obtain
the solutions

(44)

which include vortices (for the c field) and logarithmic
sources (for the b field) at Q = 0 or logarithmic spirals
if Q1 ≠ 0.

θ
f
---cosh

1

2r
--------- 1– r2 z2 r4 1– z2+( )2

+[+ + +{=

+ 2r2 1 z2+( ) ]1/2 }
1/2

,

b
g
---cosh

1

2r
--------- 1 r2 z2– r4 1– z2+( )2

+[+ +{=

+ 2r2 1 z2+( ) ]1/2 }
1/2

,

c Qϕ .=

F3 1, F2 f 2, F1 e
P x2 x3,( )

,= = =

Px2 x2, f 2Px3 x3,+ 0=

θ fz, x iy+
F
2
--- b

ic
f

----+ 
 – 

 exp b.d∫= =

b ϕQ1

Q2 rln
f

--------------,+=

c f Q1 rln( )–
ϕQ2

f
----------+ 

  Q1 Q2, Z∈( ),=
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(6) The structure is determined by the P field,

(45)

(g, k, Q = const), that satisfies the elliptic Liouville
equation

(46)

This equation has a general solution written in terms of
the F(x1 + ix3/gkQ) analytic function and its complex

conjugate (x1 – ix3/gkQ),

Such solutions, however, give imaginary H1 and H3 val-
ues. Selecting a one-dimensional solution to (46) in the
form

yields the structure

(47)

in the spherical system of coordinates R, Θ, ϕ (r =
RsinΘ, z = RcosΘ). This structure has a nonlocal θ
field distribution, the field of a three-dimensional point
source for b, and a vortex for the c field.

(7) The Fi fields depend on the fields µ, ν, and λ,

(48)

as follows:

(49)

Here, k1 = , k is the modulus of the Jacobi ellip-
tic functions, and ci (i = 1, 2, 3) are constants. Equa-
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tions (49) yield a solution for θ, b, and c in the implicit
form

(50)

It follows that the fields µ, ν, and λ are the general ellip-
soidal coordinates (elliptic coordinates in space) [15–
17] if they change over the intervals

(51)

Put

(52)

where K(k) is the total elliptic integral of the first kind.
Mapping (50), (52) of the group manifold SU(2) into R3

is then mutually unambiguous and has a degree of map-
ping [18] equal to one. Although elliptic coordinates in
space in various parameterizations have been described
in several monographs (parameterization (50) coin-
cides with that in [17] to within field shifts and scale
transformations), their more detailed study is necessary
for our purposes. Equation (50) yields the symmetry
relations

which immediately determine the regions of b and c
field values and definition,

0 < b < π(z > 0), π < b < 2π(z < 0),

0 < c < π/2 (x > 0, y < 0),

π/2 < c < π (x > 0, y > 0),

π < c < 3π/2 (x < 0, y > 0),

3π/2 < c < 2π (x < 0, y < 0).

It follows that b = 0 at z = 0, and the c field has a non-
trivial structure of a vortex line directed along the z axis
with a 2π field jump in the x = 0, y < 0 half-plane. Note

x
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that the c field coincides with the ϕ + π/2 polar angle at
z = 0 and k = 0, because we then have

An explicit equation for complex three-dimensional
structure (50), (52) can be obtained as follows. The
equation

(53)

determines the second-order surface. The roots of this
equation t1, t2, and t3 selected in the intervals –1 < t1 <
–1 + k2 < t2 < 0 < t3 < ∞ and known to coincide with ν,
µ, and λ give expressions for the latter in terms of x, y,
and z. The θ, b, and c fields are then found from (48)
by numerical methods. The localized distributions of
the θ field at various z values are shown in Fig. 2.
Equations (48), (53) give

for the asymptotic behavior of the θ field. The b field is
localized at small z values and delocalized at large z
(Fig. 3). The vortex character of the c field is shown in
Fig. 4 for two z values; a field jump by 2π is clearly
seen.

Structures (50) are not topological, because the
absence of constant limits of the b and c fields (as x2 +
y2 + z2  ∞), as with the spherical coordinates Θ and
ϕ, prevents the compactification of the space R3 into
sphere S3 and the introduction of a topological invariant
from π3(SU(2)) [18] that coincides with the degree of
mapping.

x
csin
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4. SPATIAL STRUCTURES RELATED 
TO THE SECOND AND THIRD SUBSTITUTIONS

Let us discuss the solution to (11), (12) for the sec-
ond substitution using the differential geometry inte-
gration method. We will use the notation y1 = x, y2 = y,
y3 = z and x1 = a, x2 = b, x3 = c and seek yi = yi(x1, x2, x3)
(i = 1, 2, 3) as a function of x1, x2, and x3. It then follows
from (12) and (17) that the metric tensor gik = (g–1)ik

related to this transformation is not diagonal,

(54)

After the hodograph transformation, Eqs. (11) are writ-
ten in form (26) with metric tensor (54). We showed
that the solution to these equations had the form

(55)

where the U(x1, x2, x3) field is the sum of three arbitrary
fields that depend on two variables only,

(56)

The explicit form of the Ui field is determined by solv-
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Fig. 2. Localized θ(x, y, z) field structure in a texture related to the triorthogonal harmonic coordinate system (k = 0.3). Solitons at
(a) z = 0 and (b) z = 1 are shown.
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Fig. 3. Field b(x, y, z) structure in a texture related to the triorthogonal harmonic coordinate system (k = 0.3). Field localization at
(a) z = –1 and (b) z = 0.1 and (c) field diagonalization at z = 100 are shown.
ing (21) with metric tensor (55). These equations are
cumbersome, and we give only one of them,

(57)

The first and second matrix rows in this equation are the
derivatives of the third row with respect to x2 and x3,
respectively. This equation has a solution provided the
first or second row is zero or there is a linear depen-
dence between matrix columns,

(58)

The first two conditions are equivalent to one, because
system (11), (12) is invariant with respect to b and c
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permutations. Combined with the solution to (21),
these conditions give the results described below
(items (8) and (9)). It can be shown that the other solu-
tion types compatible with (58) exist provided the f1
and f2 functions are constant or depend on x1. After the
determination of the Ui (i = 1, 2, 3) functions, the
dependences x = x(a, b, c), y = y(a, b, c), and z =
z(a, b, c) are found by solving linear system (19). The
θ, b, and c textures are analyzed using a soliton solu-
tion to (10),

(59)

or a soliton lattice solution,

(60)

We omit the details of all calculations and only discuss
the final results for the hi (i = 1, 2, 3) and Q, b, and c

θ 4 ea,arctan=

θ
2
---cos sn

a
k
--- k, 

  .=
SICS      Vol. 101      No. 3      2005



446 BORISOV
–4
–2

–4
–2

0
2

4

x

6

4

2

0

c

–4
–2

–4
–2

0
2

4

x

6

4

2

0

c

(a) (b)

Fig. 4. Field c(x, y, z) vortex structure in a texture related to the triorthogonal harmonic coordinate system (k = 0.3). Field distribu-
tions at (a) z = –0.1 and (b) z = 1 with a 2π jump in the x = 0, y < 0 half-plane are shown.
fields (in the cylindrical coordinate system (r, z, ϕ)).
(8)

(61)

The b and c fields have a vortex form, and the a field is
the logarithmic potential of a source,

(62)

According to (59), this gives a localized distribution
for θ,

,

over the interval [0, 2π].
(9) The hi (i = 1, 2, 3) fields depend on the R(x1, x2)

function,

(63)

which satisfies the Laplace equation

(64)

Consider a solution to this equation in the form

The structure then has the simplest dependence on z,
and the manifold of solutions is determined by the
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equations

(65)

with constant C and Q values. It follows that a – ib/Q is
an arbitrary analytic function of x + iy. Let us discuss
the simplest structure types with selecting θ in the form
of soliton lattice (60) and the solution for a – ib/Q in the
form

(66)

with complex cs constants. The constants fs and gs can
be found from the condition of unambiguity of the
matrix D (Eq. (5)). The change in the field a in going
around the singularity line must be multiple to 2kK(k)
(the period of the function sn2(a/k, k)), and the change
in the fields b and c must be multiple to 2π. We there-
fore obtain

(67)

At n = 1, formulas (67) describe spiral vortices,

(68)

(69)

The θ, b, and c fields at fixed z with discrete parameters
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N1 ≠ 0, Q1 take on constant values on curves in the (x, y)
plane that are logarithmic spirals. At N1 = Q1 = Q = 1,
the solution to (68) is two spiral domains (regions with
opposite cosθ values) separated by two logarithmic spi-
rals (see Fig. 5). At an N, expression (68) describes an
|N|-turn logarithmic spiral whose chirality (the direc-
tion of spiral twisting) is determined by the sign of the
product N1Q1Q. The k parameter determines the degree
of spiral twisting, which increases as k decreases. The
cosθ field graph and the configuration of domains for a
two-turn spiral are shown in Fig. 6. The width of spiral
solitons (domain boundaries) depends on k and
increases as the distance from the vortex center grows.
At N = 0, we have a system of concentric (with respect
to the r variable) ring domains, that is, an antiferromag-
netic target (Fig. 7), which is an infinite band domain
structure with respect to the lnr variable.

Since spiral structures are characterized by two inte-
gral numbers (N and Q), the structures of dipoles are
more diversified than vortex structures. By way of
example, let us consider several types of spiral dipoles
for the θ field that consist of vortex spirals with the
numbers (N1, Q1) and (N2, Q2). At large distances, such
a dipole transforms into a concrete spiral configuration
with the numbers (N1 + N2, Q1 + Q2). A dipole consist-
ing of two spiral structures with the numbers (–1, 1)
forms a two-turn spiral at large distances (Fig. 8), a
dipole with (–1, 1) and (–1, –1) forms a structure (2, 0)
(Fig. 9) whose field at large distances depends only on
the polar angle, and a dipole with (1, 1) and (–1, 1), an
antiferromagnetic target structure (Fig. 10). The inter-
action of two vortices with the parameters (N, Q) and
(−N, −Q) is attractive in character. The corresponding
solution has the lowest energy and localized character,
θ  π as r  ∞ (Fig. 11).

(10) The structure is determined by the P(x1, x3)
field,

(70)

that satisfies the Liouville elliptic equation

(71)

In the spherical coordinate system, its one-dimensional
solutions P = –2ln(Csech(Cx1)) give the texture

(72)
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Fig. 5. Spatial distribution of cosθ in a one-turn spiral (k =
0.5, N1 = 1, Q1 = 1, and Q = 1). Domains with negative (dark
regions) or positive (light regions) cosθ values are shown in
the inset.
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Fig. 6. Core structure for a two-turn spiral (k = 0.5, N1 = 2,
Q1 = 1, and Q = 1).
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Fig. 7. Spatial distribution of cosθ in an antiferromagnetic
target (k = 0.3, N1 = 0, Q1 = 1, and Q = 1).
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of a vortex for the c field and the field of a vortex and
spatial source for the b field. Although distribution (72)
is similar to (47), Eq. (59) changes the θ field over the
interval [0, 2π].

(11) As with elliptic coordinates in space, the
fields hi (i = 1, 2, 3) are given by three elliptic func-
tions Fi(ui) (there is no summation over repeating
dummy indices) of the variables u1 = x1, u2 =

(x2 + c2x3)/(c1 – c2), and u3 = (x2 + c1x3)/(c1 – c2)c1 c2
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0–4 4 8
–10

0

5

10

Fig. 8. Spiral dipole consisting of two one-turn spirals with
the parameters N1 = –1, Q1 = 1 and N2 = –1, Q2 = 1 that
forms a two-turn spiral at large distances. The distance in
the pair d = 5, Q = 1, and k = 0.7.
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Fig. 10. Spiral dipole consisting of two one-turn spirals with
the parameters N1 = 1, Q1 = 1 and N2 = –1, Q2 = 1 that forms
an antiferromagnetic target at large distances. The distance
in the pair d = 5, Q = 1, and k = 0.7.
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with constant ci values,

(73)
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Fig. 9. Spiral dipole consisting of two one-turn spirals with
the parameters N1 = –1, Q1 = 1 and N2 = –1, Q2 = –1. The
distance in the pair d = 5, Q = 1, and k = 0.7.
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Fig. 11. Spiral dipole consisting of two one-turn spirals with
the parameters N1 = –1, Q1 = 1 and N2 = 1, Q2 = –1 that
forms a uniform state, θ = π, at large distances. The distance
in the pair d = 5, Q = 1, and k = 0.7.
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The Fi(ui) functions satisfy the equation

(74)

The corresponding structure will be described in detail
elsewhere.

Let us discuss the textures related to substitution
(14)–(16). A solution to the system of nonlinear equa-
tions (15), (16) was found in [19] in the implicit form

(75)

with arbitrary analytic functions A(ω) and B(ω) of ω =
α + iβ. Given the form of these functions, α(x, y, z) and
β(x, y, z) are found explicitly by solving complex equa-
tion (75). This equation is an analog of the Riemann
wave for the Hopf equation and admits direct generali-
zation to the N-dimensional space case. Generally, as in
hydrodynamics, the solution to this equation is not
unambiguous, and the determination of unambiguous
spatial structures of the fields θ, b, and c requires invok-
ing ambiguous solutions to (14). For this reason, we
restrict ourselves to consideration of unambiguous
solutions of the simplest form. Put θ = θ(α), b = b(β),
and c = c(β). It then follows from Eq. (14) that

(76)

The θ(α) field satisfies the sine-Gordon equation
(−sinθ(α)Q1Q2/Q2 + θ''(α) = 0), which, at Q1Q2 > 0, has
the solution

(77)

At Q1Q2 < 0, a solution for θ(α) can be derived from (75),
(76) by shifting θ by π. The simplest solution to (75) is
obtained when A(ω) and B(ω) are selected as

(78)

with an arbitrary F function. Then,

(79)

or ω is the antianalytic function ω = F(Ω*) of the com-
plex variable Ω , which is a stereographic projection of
the sphere of a unit radius in the three-dimensional
space (x = sinΘcosϕ, y = sinΘsinϕ, z = cosΘ. Let ω be
given by the potential of a vortex source, ω = α + iβ =
(Q + if)lnΩ (Q, f ∈  R). The solution to (79) is then a lin-
ear defect with singular field θ derivative values on the
z axis (θ  0, θ  π). In going around the singular-
ity line, the change in the b and c fields should be mul-
tiple to 2π, and the change in the argument of the ellip-
tic function in (77) should be multiple to 2K (the half-
period of the sn(u, k) elliptic function), as follows from
the requirement that cosθ, b, and c be unambiguous.
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The structure is then characterized by integral S, Q1,
and Q2 values, and its general form is

(80)

(81)

(82)

At S = 0 and in the simplest (soliton) case (k = 1), we
have

(83)

(84)

and structure (84) leads to the field nµ = (–z/R, 0, –x/R,
–y/R), whose components coincide with the hedgehog
field components (m = –r/|r |).

At S ≠ 0, the θ field has a singular line (z = 0) and the
field cosθ assumes the constant value

on the helicoidal surfaces

that pass through the origin and, at a fixed z = h value,
on spirals of the form

Figure 12 shows cosθ and the field b plotted at S = 1 and
a finite z.

The general unique solution for a system of interact-
ing spatial spirals

(85)

is characterized by an arbitrary meromorphic function
w(Ω), the k parameter, integral Sj and Nj values, and
arbitrary real constants θj and ϕj; it contains a set of sin-
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Fig. 12. Field cosθ(x, y, z) and b(x, y, z) distributions in the z = 4 plane in a three-dimensional spiral structure (k = 1/3, S = 1, Q1 =
–1, and Q2 = –1). (a) Domains with negative (dark regions) and positive (light regions) cosθ(x, y, z) values and (b) vortex b(x, y,
z = 4) field structure with a 2π jump in the y = 0, x < 0 half-plane are shown.
gular rays that issue from the origin at angles θj and ϕj

(j = 1, …, n). At r ! z, the structure described by (77)
and (85) is a set of |Sj |-turn logarithmic spirals.

5. CONCLUSIONS

To summarize, we found new types of three-dimen-
sional textures in multisublattice antiferromagnets and
showed that applying classic differential geometry
methods is fruitful. Substitutions of type (14)–(16)
(combined with the differential geometry method) can
be generalized to the n-field model (n ∈  SN), systems of
orthogonal n-fields on Stiefel manifolds [7], etc., in
spacetime of arbitrary dimensions.

Let us briefly discuss observing the textures found
experimentally in antiferromagnets. Scale-invariant
equations (7) are written in the exchange approxima-
tion only, without including magnetostatic fields, which
are low in antiferromagnets, or anisotropy fields. The
form of the textures found is therefore only valid at dis-

tances r < l =  (α is the exchange interaction con-
stant and β is the anisotropy constant). The influence of
the anisotropy constant would change the structure at
large distances from singular lines. Note that, in ferro-
magnets, quasi-stationary target- and spiral domain-
type magnetic structures are observed in thin magnetic
films with strong perpendicular anisotropy of the easy
axis type after pumping with a harmonic or pulsed mag-
netic field [20, 21]. Recently, magnetic structures in
nanomagnets (magnetic dots) have been the object of
considerable attention. In these structures, various vor-
tex-like states with possible magnetization displace-
ment from the disk plane are observed [22]. The exist-
ence of two-dimensional vortex structures in magnetic
dots was substantiated by electron and magnetic force
microscopy [23]. Switching processes induced by pla-
nar or perpendicular pulsed magnetic fields excite skyr-
mion-type magnetic structures, theoretically predicted

α /β
JOURNAL OF EXPERIMENTAL A
in [24], or spiral structures [25] in such systems. In anti-
ferromagnetic nanosystems, vortex and spiral struc-
tures can be observed by spin-polarized scanning tun-
nel microscopy (SPSTM), especially considering pros-
pects for creating SPSTM with atomic resolution.
SPSTM operates on the principle of scanning the sur-
face of a film with a thin magnetized point (scattering
field on the order of 0.1 T) when recording magnetic
signals. In multisublattice (as in one-sublattice [26])
antiferromagnets, local magnetization is proportional
to the second derivatives of fields and sharply increases
near vortex lines and singular structure centers.
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Abstract—A phase diagram reflecting the main features of the typical phase diagram of cuprate superconduc-
tors has been studied within the framework of the Ginzburg–Landau phenomenology in the vicinity of a tetrac-
ritical point, which appears as a result of the competition of the superconducting and insulating pairing chan-
nels. The superconducting pairing under repulsive interaction corresponds to a two-component order parameter,
whose relative phase is related to the orbital antiferromagnetic insulating ordering. Under weak doping, the
insulating order coexists with the superconductivity at temperatures below the superconducting phase transition
temperature and is manifested as a weak pseudogap above this temperature. A part of the pseudogap region
adjacent to the superconducting state corresponds to developed fluctuations of the order parameter in the form
of quasi-stationary states of noncoherent superconducting pairs and can be interpreted as a strong pseudogap.
As the doping level is increased, the system exhibits a phase transition from the region of coexistence of the
superconductivity and the orbital antiferromagnetism to the usual superconducting state. In this state, a region
of developed fluctuations of the order parameter in the form of quasi-stationary states of uncorrelated orbital
circular currents exists near the phase transition line. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The superconductivity in cuprates appears upon
doping of the parent antiferromagnetic insulator and
takes place in a certain dopant concentration interval
limited both from below and from above: x∗  < x < x*.
At the boundaries x∗  and x* of this interval, the super-
conducting phase transition temperature TC is zero.
Being a function of the dopant concentration, the super-
conducting transition temperature TC(x) reaches the
maximum value at a certain optimum doping xopt. The
antiferromagnetic spin order inherent in the parent
insulator (characterized by the Néel temperature TN(x))
is effectively suppressed by doping, and the long-range
antiferromagnetic order in the form of a spin density
wave (SDW) disappears at a certain doping xN < x∗ . A
short-range antiferromagnetic order (SDW fluctua-
tions) is observed up to x ≈ xopt [1].

As the temperature is increased, the superconduct-
ing phase transition in the region of overdoping (xopt &
x < x*) in the phase diagram acquires, as is commonly
accepted, the features of the superconducting transition
in the usual superconductors [1]. This implies that the
normal state existing at temperatures above TC(x) in the
region of overdoping is a Fermi liquid, so that the phase
transition from superconducting to normal phase in this
region can be satisfactorily described within the frame-
work of the standard Bartdeen–Cooper–Schrieffer
(BCS) mean field theory.
1063-7761/05/10103- $26.000452
In the region of underdoping (x∗  < x & xopt) in the
phase diagram, the system exhibits a phase transition
from the superconducting state to a phase where the
one-particle density of states is strongly suppressed.
This state is characterized by a pseudogap in the spec-
trum of one-particle excitations. Establishing the nature
of this pseudogap is among the basic problems in the
physics of cuprates. The region of the pseudogap state
is manifested in various experiments, but the tempera-
ture interval of these manifestations at a given level of
doping x from the interval x∗  < x & xopt is expediently
divided into two parts [1]. The low-temperature part
(strong pseudogap region) at TC(x) < T <  is charac-
terized by enhancement of the Nernst effect and can be
related to the existence of noncoherent superconduct-
ing pairs. Then,  corresponds to the disappearance
of such pairs, that is, to the rupture of bonds between
particles forming these pairs. In the high-temperature
part (weak pseudogap region) at (x) < T < (x),
anomalies in the physical properties related to suppres-
sion of the one-particle density of states survive until,
at T > (x), the system occurs in a state corresponding
to the Fermi liquid [1].

It would be quite natural to assume that the very
existence of the pseudogap state is caused by a certain
insulating ordering, which is related to the antiferro-
magnetic ground state of the parent insulator and sur-
vives at relatively small carrier densities introduced
into the crystal by doping [2]. In experiment, the values

T str*

T str*

T str* Tw*

Tw*
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of  and , at which the strong and weak
pseudogaps appear with decreasing temperature, are
manifested as the crossover temperatures in the course
of continuous variation of the physical properties,
rather than as the temperatures of phase transitions cor-
responding to anomalies in the thermodynamic quanti-
ties. The concept of crossover quite naturally agrees
with the interpretation of a strong pseudogap, whereas
the explanation of a weak pseudogap (implying insulat-
ing ordering) necessarily leads to the conclusion that

 must correspond to a phase transition from the
insulating state to the state of Fermi liquid. For this rea-
son, it is assumed that the weak pseudogap is actually a
true energy gap corresponding to this (hidden) insulat-
ing ordering, which is difficult to distinguish in experi-
ment. For example, the absence of an anomaly in the
heat capacity on the passage from the normal state to
the pseudogap state can be related to the fact that this
phase transition is of an infinite order [3].

An analysis of the available experimental data
shows that the pseudogap and the superconducting gap
possess the same symmetry. A singlet superconducting
pairing corresponds to an orbital structure of the order
parameter, which can be interpreted both in terms of the
d-wave symmetry (  pairing) and in terms of the

“extended” s-wave symmetry (s + g pairing) [4, 5]. The
identical distribution of zeros in the superconducting
gap and in the pseudogap makes it highly probable that
the insulating pairing channel (leading to the weak-
pseudogap state) is related to the orbital antiferromag-
netic ordering [6].

The features of the phase diagram of cuprates
(Fig. 1) imply the need to consider the competition and
coexistence of various channels of the insulating and
superconducting pairing, which leads to a large variety
of the ordered states. These states can be manifested by
the corresponding phases formed in various regions of
the phase diagram [7, 8]. The orbital antiferromagnetic
order, manifested as a toroidal magnetic state [9] in
three-dimensional (3D) systems, leads to a staggered
flux state [10] in quasi-2D cuprate compounds. This
state corresponds to a checkerboard-ordered distribu-
tion of circular orbital currents in cuprate planes. A
microscopic analysis within the framework of the t–J
model with allowance for the SU(2) equivalence of the
d-wave pairing and the orbital antiferromagnetic (stag-
gered) flux phase [11] shows that the checkerboard
order in the distribution of current circulations survive
in the superconducting state. Such current circulations
can be interpreted either as fluctuations of the orbital
antiferromagnetic order inside the conventional super-
conducting phase or as a special superconducting phase
with the coexistence of two types of ordering (super-
conducting and orbital antiferromagnetic).

In the case when the orbital currents circulate via
chemical bonds between atoms, the orbital antiferro-
magnetic ordering corresponds to a commensurate

T str* Tw*

Tw*

d
x

2
y

2–
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charge density wave [12]. Owing to the presence of
zeros in the order parameter, this d-wave density wave
(DWW) [2] must possess a higher stability with respect
to doping than the SDW possessing the s-wave symme-
try [13]. Moreover, in systems with strong electron–
phonon interactions (including doped cuprates), the
spin antiferromagnetic ordering in the form of SDWs
(having no zeros in the order parameter) is additionally
suppressed. On the contrary, in the case of orbital anti-
ferromagnetic ordering, the electron–phonon interac-
tions play the role of a stabilizing factor. Owing to this,
the region of orbital antiferromagnetic long-range
ordering (e.g., in the form of DDWs [2]) or short-range
ordering (DDW fluctuations [14]) can be expanded to
reach rather high doping levels and high temperatures.

One can suggest that the intervals of doping, in
which the orbital antiferromagnetic ordering coexists
with superconducting ordered states, overlap in
cuprates. A competition between these states may
account for certain features in the phase diagrams of
cuprates, at least in the interval of doping where the
superconductivity exists.

This paper is devoted to the phenomenology of com-
petitive orbital-antiferromagnetic and superconducting
ordered states, which provides for a qualitative inter-
pretation of the features of the phase diagrams of
cuprates. A macroscopic description [15] of the super-
conducting pairing with a large total momentum of the
pair with repulsive interaction (this state can be consid-
ered as a remnant of the antiferromagnetic state with a
close energy, from which the superconducting state
arises upon doping) leads to a two-component order
parameter possessing a zero line that crosses the Fermi
contour in the kinematically allowed domain [16].
Under conditions of ideal mirror nesting of the Fermi
contour [16, 17], an asymptotically exact (even at an
arbitrarily weak repulsion) nontrivial solution of the
self-consistency equation exists provided that a linear

sPG

SCAF

TN TC

xN x* xopt x*

wPG T*
w

T*
w

T

T*
str

Fig. 1. The typical phase diagram of a hole-doped cuprate
compound. AF is the region of long-range spin antiferro-
magnetic order, SC is the region of superconducting state,
and wPG and sPG are the regions of weak and strong
pseudogap, respectively.
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operator with a kernel determined by the repulsive
potential has at least one negative eigenvalue [16]. In
addition, the repulsive potential possessing this prop-
erty leads to the existence of quasi-stationary states of
pairs with large momentum [17], which may exist in a
certain region of temperatures (corresponding to the
pseudogap state) above the superconducting transition
temperature. The pairing with a large momentum under
repulsive interaction admits a natural interpretation of
the two-component order parameter, which allows the
features of the phase diagrams of cuprates to be consid-
ered as resulting from the competition and coexistence
of the superconducting and orbital-antiferromagnetic
phases. Features of the Fermi contour shape and its evo-
lution caused by doping, which are related to the
appearance of an orbital-antiferromagnetic insulating
state [18], ensure realization of the mirror nesting con-
ditions necessary for the superconducting pairing.

2. PAIRNG WITH LARGE MOMENTUM

The insulating singlet orbital antiferromagnetic
order is characterized by a certain vector K (dependent
on the level of doping), which has a physical meaning
of the momentum in the coupled state of an electron–
hole pair. This vector determines the spatial periodicity
of a magnetic structure formed in the cuprate plane. As
a factor competitive with the orbital antiferromagnetic
order, we will consider a superconducting singlet chan-
nel of pairing with a large momentum K. In this case,
the orbital structure of the superconducting order
parameter retains a memory of the antiferromagnetic
state of the parent compound, from which both the
orbital-antiferromagnetic insulating state and the
superconducting state appear as a result of doping.

An analysis of the superconducting pairing within
the framework of the Hubbard model (η-pairing)
showed [19] that, at half-filling, there are numerous
eigenstates of the Hubbard Hamiltonian, which corre-
spond to singlet Cooper pairs with a zero total momen-
tum (η0-pairs) or to the pairs with (π, π) momentum on
a 2D square lattice (ηπ-pairs). As a result of doping, the
total momentum of the pair deviates from (π, π) (the
value at half-filling state) and in the general case
becomes incommensurate [2] (for this reason, the cor-
responding superconducting channel is naturally
referred to as ηK-pairing).

A superconducting pairing with a nonzero (but
small) total momentum also follows from solving the
problem of coexistence of the superconductivity and
ferromagnetism [20, 21]. For K ≠0, there appears a
kinematic constraint on the range of momentum k of
the relative motion of the pair. This corresponds to a
decrease in the number of one-particle states contribut-
ing to the wavefunction of the pair. It should be noted
that, at a commensurate momentum K = (π, π) corre-
sponding to the half-filled state, the kinematically
allowed domain vanishes. If the momentum K of the
JOURNAL OF EXPERIMENTAL A
pair is nonzero, the kinetic energy of the pair vanish
only at certain points of the Fermi contour belonging to
the kinematically allowed domain, rather than over the
entire Fermi contour (as is for K = 0 in the absence of a
kinematic constraint). The density of states of the rela-
tive motion vanishes on the Fermi contour. This elimi-
nates a logarithmic singularity in the self-consistency
equation, so that the superconducting pairing becomes
impossible at an arbitrarily small value of the effective
coupling constant.

For a special shape of the Fermi contour, a situation
is possible in which the energy of a quasi-particle
becomes zero on finite segments of the Fermi contour
within the kinematically allowed domain. This results
in a finite density of states of the relative motion on the
Fermi contour. To this end, it is necessary that, for a
given momentum K of the pair, the electron energy
dispersion ε(k) would obey the mirror nesting condi-
tion [16]

(1)

where µ is the chemical potential of electrons. Owing
to the fact that the Fermi contour in cuprates occurs in
an extended vicinity of the saddle point of the electron
dispersion, condition (1) (restoring the logarithmic sin-
gularity in the self-consistency equation) can be satis-
fied at least approximately. This provides for the possi-
bility of obtaining an asymptotically exact (even for an
arbitrarily small coupling constant) solution for the
superconducting gap [22].

In the case of pairing with a zero total momentum of
the pair, the mirror nesting condition is trivially valid
over the entire Fermi contour owing to the general fea-
ture of the electron dispersion: ε(–k) = ε(k). For an arbi-
trary K ≠ 0 and an arbitrary dispersion, condition (1)
(considered as the equation for the momentum k of the
relative motion) leads to a solution determining two
points on the Fermi contour, which are symmetric rela-
tive to the K direction. However, there are several rea-
sons [16] for which a 2D dispersion can lead to a spe-
cial structure of energy isolines such that, for certain
momenta of the pairs, condition (1) is satisfied on finite
segments of these isolines or even on some closed iso-
lines. As the doping level changes, the Fermi contour
passes from one isoline to another and, in the general
case, the momentum K providing the best mirror nest-
ing condition changes as well.

A simple example of the mirror nesting of the Fermi
contour is offered by the case (typical of cuprates)
observed in angle-resolved photoemission spectros-
copy (ARPES) experiments, whereby the Fermi contour
has the shape of a square with rounded corners [16]. In
this case, a change in the sign of the curvature of almost
rectilinear segments of the Fermi contour (caused by
their proximity to the saddle point of the dispersion
function) leads to an increase in the length of segments

ε K
2
---- k+ 

  ε K
2
---- k– 

  2µ–+ 0,=
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satisfying condition (1). In compounds with the double-
band electron spectrum, condition (1) is quite naturally
satisfied for finite segments of the Fermi contour, which
belong to different energy bands [16]. The appearance
of a quasi-one-dimensional spatially inhomogeneous
stripe structure also leads to the deformation of energy
isolines favoring the validity of condition (1) on finite
segments of the Fermi contour.

According to the ARPES data, a simply connected
Fermi contour is observed in overdoped cuprates. In
contrast, the Fermi contour in underdoped compounds
(where an insulating gap appears in the electron spec-
trum) acquires the shape of hole pockets symmetric rel-
ative to directions of the [π, π] type. In each of these
pockets, the mirror nesting condition is perfectly satis-
fied on the entire Fermi contour for the total pair
momentum directed along this [π, π] direction, pro-
vided that the magnitude of this momentum is two
times the distance to the pocket center [16].

It should be noted that an perfect mirror nesting (in
contrast to the perfect conventional nesting leading to
an insulating instability) is characterized by coinci-
dence of the occupied region of the momentum space
with another occupied region, and of the vacant region
with another vacant region, when the Fermi contour is
shifted by the nesting vector. For the conventional nest-
ing, such a shift leads to coincidence of the occupied
and vacant regions. A Fermi contour having the shape
of hole pockets also features the conventional nesting,
with the nesting vector practically coinciding with the
total momentum of the superconducting pair.

3. SUPERCONDUCTING PAIRING 
UNDER REPULSIVE INTERACTION 

The question what is the predominating mechanism
of pairing interactions in cuprates is still open and,
along with the traditional pairing caused by the elec-
tron–phonon interaction [23–25], the interaction by
exchange with antiferromagnetic magnons [26] and
purely electron (Coulomb) pairing mechanisms have
been also considered. Allowance for the Coulomb
repulsion is of principal importance in cuprates, which
belong to the systems with strong on-site electron cor-
relations [27]. A qualitative analysis of the Coulomb
repulsion, along with the attraction caused by the elec-
tron-phonon interaction, within the BCS scheme leads
to the conclusion that the Cooper pairing appears when
the effective coupling constant for the electron–phonon
interaction exceeds an effective value of the Coulomb
constant reduced by the Tolmachev logarithm [28]
rather than the nonreduced constant.

The Coulomb repulsion can lead to superconducting
pairing even in the absence of the attraction caused by
electron–phonon interaction [29]. The corresponding
superconducting order parameter cannot be a function
of constant sign depending on the momentum of the rel-
ative motion of the pair. It exhibits a zero line crossing
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the Fermi contour at several points, which reflect the
crystal symmetry [16]. The symmetry of the supercon-
ducting order parameter, as dependent on the number
and arrangement of zeros on the Fermi contour, can be
conditionally referred to as the d-wave (in the case of
four zeros, whereby a π/2 rotation in the momentum
space leads to a change in sign of the order parameter)
or the expanded s-wave symmetry.

The superconducting order parameter as a function
of the momentum k of the relative motion of the pair is
conveniently represented an expansion in a complete
orthonormal system of eigenfunctions ϕs(k) of a linear
operator with the kernel U(k – k'), which is equal to
Fourier transform of the pairing screened Coulomb
repulsion potential. Here, the index s runs over the
numbers of eigenfunctions determined by solving the
linear integral equation

(2)

where λs are the corresponding eigenvalues of the
above operator and the integral is taken over the kine-
matically allowed domain.

The maximum area of the kinematically allowed
domain for ηK-pairing corresponds to the momentum K
of the pair along one of the symmetry directions in the
momentum space. For large K, such a domain amounts
to only a small part of the 2D Brillouin zone. Therefore,
the true kernel U(k–k') can be replaced by a degenerate
one, representing the first terms of the expansion into
series in powers of the argument [16]:

(3)

where r0 has the meaning of the effective screening
radius and U0 ~ e2/r0 is the characteristic interaction
constant. This degenerate kernel has two even and two
odd (with respect to the k  –k transformation)
eigenfunctions. The first two correspond to the case of
eigenvalues with opposite signs [17].

The existence of at least one negative eigenvalue of
the interaction operator ensures the existence of a non-
trivial solution of the self-consistency equation [16].
Thus, the screened Coulomb repulsion between elec-
trons may lead to superconducting ordering with an
unconventional symmetry of the order parameter (dif-
ferent from the s-wave symmetry typical of the BCS
model with attraction). It should be noted that, in the
insulating (electron–hole) pairing channel, this interac-
tion corresponds to the attraction between electron and
hole, and it leads, in particular, to orbital antiferromag-
netic ordering.

In the case of repulsion, the complete system of
eigenfunctions of the operator of pairing interaction
contains not less that two functions that are even with
respect to the k  –k transformation [16]. Therefore,

ϕ s k( ) λ s U k k'–( )ϕ s k'( )d2k',∫=

Ud k( ) U0r0
2 1

k2r0
2

2
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the superconducting order parameter also has no less
than two components (coefficients of expansion with
respect to this system of functions). Note that, in the
case of attractive pairing, it is sufficient to have only
one eigenfunction (that corresponding to a single nega-
tive eigenvalue), as in the BCS model.

Figure 2 shows the shape of a repulsive potential U
admitting the ηK-pairing, plotted as a function of the
distance r between particles. Such a coordinate depen-
dence takes place (owing to the Friedel oscillations) for
a screened Coulomb potential in the degenerate elec-
tron system of a crystal. This potential also admits, in
addition to a bound state of the ηK pair corresponding
to the superconducting condensate, the appearance of
quasi-stationary states of the ηK-pairs [17], which can
exist (as noncoherent pair excitations) in a certain tem-
perature interval above the superconducting transition
temperature. Obviously, the attractive pairing does not
admit such quasi-stationary states.

4. THE GINZBURG–LANDAU ηK FUNCTIONAL

The superconducting order parameter dependent on
the momentum k of the relative motion of the pair can
be conveniently expressed in a form explicitly reflect-
ing the crystal symmetry. The kinematically allowed
domain Ξ, in which the momentum k is defined, can be
represented as a superposition of subdomains Ξj, each
of these being the kinematically allowed domain for
one of the crystallographically equivalent momenta Kj

of the pair. In the case of a square lattice, where Kj is
parallel to one of the symmetry axes, the index j runs
from 1 to 4. For large Kj, the subdomains Ξj are usually
only slightly superimposed and their overlap can be
ignored to the first approximation. In this approxima-
tion, solutions to the self-consistency equation can be
independently obtained for each particular subdomain.

U

0

BS

QSS

r

Fig. 2. Schematic pairing repulsive potential U as a function
of the distance r between interacting particles. Solid and
dashed lines show the energy levels of a bound state (BS)
and a quasi-stationary state (QSS) of the pair.
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These solutions Ψj(k) are similar, differing only in the
domains of variation of the momentum of relative
motion.

The order parameter can be written in the form of a
linear combination of Ψj(k) functions:

(4)

where the coefficients γj are normalized as  = 1
and determined by the interaction mixing the momenta
in various crystallographically equivalent kinemati-
cally allowed domains Ξj. Thus, these coefficients set a
one-dimensional irreducible representation of the crys-
tal symmetry group, according to which the order
parameter is transformed.

For each momentum Kj, we can determine a com-
plete orthonormal system of eigenfunctions ϕsj(k) of
the operator of pairing interaction and expand the order
parameter for the Ξj subdomain:

(5)

The quantities Ψs are identical for all j and play the role
of the order parameter components. The dependence of
this parameter on the momentum of relative motion in
Eq. (5) is fully described by the ϕjs(k) eigenfunctions,
which are determined from Eq. (2) independently of the
self-consistency equation. In the case of the simplest
degenerate kernel Ud(k – k') describing the screened
Coulomb repulsion, there are two such components
(s = 1, 2). It should be noted that the minimum number
of the order parameter components necessary for the
description of attractive pairing is one, whereas the
description of repulsive pairing requires not less than
two components.

The zero line of the order parameter separates the
kinematically allowed domain into two parts, each part
being a domain of constant sign for the Ψj(k) function.
The opposite signs of the order parameter in the regions
on different sides from the zero line allow this parame-
ter to be approximately described [30, 31] by setting the
average values (with opposite signs) in the two parts of
the kinematically allowed domain [16]. This approxi-
mate description formally corresponds to modification
of the eigenfunctions used in expansion (5), whereby
one of these functions (that with a positive eigenvalue)
is set constant and the other (with a negative eigen-
value) is piecewise constant with a discontinuity on the
zero line. Defined in this way, the eigenfunctions deter-
mine a new degenerate kernel, which approximately
describes the screened Coulomb interaction [32]. The
average values of the order parameter, which have dif-
ferent signs on the opposite sides of the zero line and
represent real solutions of the self-consistency equa-

Ψ k( ) γ jΨ j k( ),
j

∑=

γ j
2

j∑

Ψ j k( ) Ψsϕ js k( ).
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tion, turn out to be equivalent to two complex compo-
nents, Ψ1 and Ψ2, provided that their relative phase is π.

Not restricting the consideration to this condition,
that is, admitting complex solutions for the amplitudes
uk and vk of the Bogoliubov transformation leading to
the self-consistency equation, we can write the order
parameter as

(6)

where

(7)

are the eigenfunctions of the operator of pairing inter-
action defined in the entire kinematically allowed
domain Ξ. These functions reflect the full symmetry of
the cuprate plane, and the coefficients γj determine an
irreducible representation corresponding to the symme-
try of the order parameter (6). Therefore, it is conve-
nient to select the Bloch phase factor from these coeffi-
cients, such that γj  γjexp(–iKj · R), where R is the
radius vector of the center of mass of the pair and γj  are
numerical factors (independent of R). Since the order
parameter is a scalar function defined in the kinemati-
cally allowed domain Ξ of the Brillouin zone, its con-
travariant components with respect to ϕs(k) must be
written as

(8)

In the case of a weak spatial inhomogeneity of the sys-

tem, the quantities  determining the amplitude of
the order parameter are slowly (on a unit cell scale)
varying functions of R. With respect to the symmetry
properties, the order parameter written in the form (8)
is analogous to that obtained in the Fulde–Ferrel–Lar-
kin–Ovchinnikov generalized state.

The amplitudes (R) and (R) have the
meaning of the components of a wavefunction describ-
ing the motion of the center of mass of the pair. These
functions can be considered as components of the
superconducting order parameter for the repulsive pair-
ing in a system described within the framework of the
macroscopic Ginzburg–Landau phenomenological
scheme [15].

Both amplitudes, as functions of the temperature,
simultaneously vanish at T = Ts, which is the tempera-
ture at which the superconducting order parameter (6)
vanishes in the mean field approximation. In this con-
text, it should be noted that the states of mixed symme-
try such as  + eiθχ (where χ is the contribution of

Ψ k( ) Ψsϕ s k( ),
s

∑=

ϕ s k( ) γ jϕ js k( )
j

∑=

Ψs R( ) Ψs
0( ) γ je

iK j R⋅
.

j

∑=

Ψs
0( )

Ψ1
0( ) Ψ2

0( )

d
x

2
y

2–
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states, e.g., with s-wave or dxy symmetry, and θ is the
relative phase of the order parameter components) cor-
respond in the general case to different mean field tem-
peratures for the phase transitions to the states with

 and χ symmetry. In particular, the phase transi-

tion can be absent for one of such states [33, 34].
In the case of attractive pairing, the superconducting

phase transition in the BCS model corresponds to a sin-
gle-component complex order parameter. The phase of
this complex quantity reflects the establishment of
phase coherence in the system of Cooper pairs upon
spontaneous doubling of the charge of carriers, while
the modulus is determined by the binding energy of the
relative motion of the pair. Therefore, the second com-
plex component of the order parameter in the case of
repulsive pairing probably reflects the other degree of
freedom related to the relative motion of the pair, for
example, the appearance of a spontaneous orbital cur-
rent. Then, the relative phase of the order parameter
components determines the contribution of each degree
of freedom (charge and current) to the superconducting
order parameter.

The free energy density determining the Ginzburg–
Landau functional can be represented as a sum of three
components [15]:

(9)

The first term in the right-hand side is the expansion in
powers of the order parameter, which can be written in
the general case as

(10)

where matrices Ass' and Bss'tt' are functions of the tem-
perature and the doping (which contain three and five
independent components, respectively), and the indices
numbering the order parameter components in the sums
take the values 1 and 2. The second (gradient) term fg in
Eq. (9) can be written as [15]

(11)

where matrix Mss' is positive, depends on the tempera-
ture and doping, and has three independent compo-
nents. The operator of covariant differentiation with
respect to components of the radius vector R of the cen-
ter of mass of the pair is as follows:

(12)

where A is the vector potential determining the mag-
netic induction B = curl A averaged over the relative

d
x

2
y

2–
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motion of the pair. This term includes the contributions
due to both an external field and the field related to the
appearance of spontaneous currents. The third term fm

in Eq. (9) accounts for a change in the energy density of
the medium upon the appearance of the magnetic field:

(13)

where H = B/µ is the magnetic field strength and µ ≈ 1
is the magnetic permeability of the nonsuperconducting
phase. Upon ηK-pairing, the matrices averaged over the
relative motion of the pair, which determine contribu-
tions (10) and (11) to the free energy, are represented by
integrals over the kinematically allowed domain corre-
sponding to momenta Kj of the crystallographically
equivalent pairs of the superconducting condensate [15].

The free energy is invariant with respect to the uni-
tary transformation of the order parameter components,
which is performed using 2 × 2 matrices of the SU(2)
group. By specially selecting such a transformation, it
is possible to diagonalize Ass' and Mss' matrices. Once
this diagonalization is performed, the matrices in rela-
tions (10) and (11) can be expressed as Ass' = Asδss' and
Mss' = Msδss', where As and Ms are functions of the tem-
perature and the doping level.

The superconducting phase transition temperature
Ts(x) corresponding to the mean field approximation is
determined from the condition detAss'(T, x) = 0. After
diagonalization of the Ass' matrix, this condition takes
the form A1(T, x)A2(T, x) = 0. As was noted above, both
components of the order parameter vanish at the same
temperature. Therefore, it is necessary to provide that
two conditions are simultaneously satisfied, A1(T, x) = 0
and A2(T, x) = 0, and this is precisely what takes place
in the case of ηK-pairing under repulsive interaction
condition [15]. Thus, we may assume that, near the

phase transition line, As(T, x) = –τ1 (x), where

(x) are positive functions of the doping level, τ1 =
(Ts – T)/Ts, and it is assumed that |τ1| ! 1. The Bss'tt' and
Mss' matrices do not vanish at T = Ts. For this reason, it
is possible to replace the argument T near the phase
transition line by Ts and consider these matrices as
functions of only the doping x. It should be emphasized
that this approximation is acceptable only in cases
when the superconducting transition temperature TC(x)
coincides with the value Ts(x) according to the mean
field approximation. According to the existing notions,
this coincidence takes place only in the overdoped
region [1].

5. SPATIALLY HOMOGENEOUS ηK-STATES

In the absence of an external magnetic field and
structural inhomogeneities, the state of the system with
a long-range superconducting order is determined from
the condition of minimum of the free energy density f0.

f m H B/8π,⋅=

As
0( )

As
0( )
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Complex components of the order parameter are char-
acterized by their moduli (ψ1, ψ2), the relative phase β,
and the phase Φ corresponding to the superconducting
condensate, which is not included in expansion (10).
Thus, we can write

(14)

A minimum of the free energy at τ1 < 0 corresponds to
the obvious trivial solution ψ1 = ψ2 = 0 with indetermi-
nate relative phase. At τ1 > 0, the problem has nontrivial
solutions for which the thermal equilibrium values of
parameters ψ1, ψ2, and β are determined by the ele-
ments of matrices Ass' and Bss'tt' (which depend on the
doping) and, hence, are also the functions of x.

The ratio ψ1/ψ2 determining the degree of asymme-
try of the order parameter is a continuous function of x.
For this reason, in the qualitative investigation of the
superconducting ordering, we may assume without loss
of generality that ψ1 = ψ2 ≡ ψ. Thus, the problem of the
free energy minimization is reduced to a variational
problem with two unknowns (ψ and β). The free energy
density (10) takes the form

(15)

where a1 = A1 + A2 ≡ –aτ1, B ≡ B1111 + 2B1122 + B2222,
C = 2(B1112 + B1222), and D = 4B1122. Here, the coeffi-

cients a ≡  + , B1111, B1122, and B2222 are defi-
nitely positive, while B1112 and B1222 may have any sign.
For certainty, we assume C > 0 (this choice does not
influence the qualitative conclusions concerning the
character of superconducting states admitted for the
free energy (15).

Investigation of the extrema of function (15) showed
that a minimum of the free energy for τ1 < 0 (i.e., for
T > Ts) corresponds to the solution ψ = 0 at an arbitrary
relative phase. For τ1 > 0 (T < Ts), the minimum is
attained at β = π and ψ ≠ 0 provided that C ≥ D. In the
opposite case (C ≤ D), a nontrivial solution ψ ≠ 0 cor-
responds to the relative phase β ≤ π determined from
the relation cosβ = –C/D.

Since the coefficients C and D are functions of the
doping x, the equality C(x) = D(x) can be considered as
the equation determining the doping x = x0 at which the
system exhibits a qualitative change in the supercon-
ducting order. Let us denote C/D = c(x) and expand this
function in a small vicinity of the point x = x0 as

(16)

Assuming that a superconducting state with the relative
phase β = π corresponds to x > x0, we obtain c'(x0) > 0.
Then, for x < x0, the relative phase is β(x) < π and β is

Ψ1 ψ1eiΦ, Ψ2 ψ2eiβeiΦ.≡ ≡

f 0 a1ψ
2 1

2
--- B 2C βcos D βcos

2
+ +( )ψ4,+=
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0( ) A2
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a continuous function β(x), such that β(x)  π for
x  x0.

The order parameter, which can be used to distin-
guish the thermal equilibrium superconducting phases
with β < π (β phase) and β = π (π phase), is naturally
defined as α = π – β. Then, for x > x0 we have α = 0,
while for x < x0 we have α ≠ 0 (under the above assump-
tion that C > 0 the order parameter falls within 0 < α <
π/2). In the vicinity of the transition (x = x0), the order
parameter α is small and the free energy density can
expanded in even powers of α as

(17)

Here, fπ = –aτ1ψ2 + (B – D)ψ4/2 is the free energy den-
sity of the π phase.

A minimum of the free energy is reached for α = 0,
provided that c'(x0)(x – x0) > 0 (which corresponds to
the π phase, x > x0), and for

(18)

provided that c'(x0)(x – x0) < 0 (which corresponds to
the β phase, x < x0). The square modulus of the equilib-
rium order parameter in a small vicinity of the phase
transition point (x = x0) is ψ2 = aτ1/(B – D). Then
expression (17) for the free energy density of the β
phase can be written as

(19)

where ν = a2D/(B – D)2 > 0.

6. THE ηK-PAIRING AND SPONTANEOUS 
CURRENTS

Real components of the order parameter with differ-
ent signs (corresponding to the relative phase β = π)
necessarily appear in the case of superconducting pair-
ing under repulsive interaction [16]. Deviation of the
relative phase from π corresponds to a solution of the
self-consistency equation with complex coherence fac-
tors and admits a quite clear interpretation. Indeed, a
change in the phase of the operator of annihilation of an
electron with spin σ = ↑ , ↓ at a lattice site with the
radius vector n can be related [35] to the vector poten-
tial of a certain magnetic field A(n):

(20)

Then, the phase β(n, n') of the anomalous average
 (determining the superconducting order

f 0 f π
1
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---Dc' x0( ) x x0–( )ψ4α2 1
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parameter) in the lattice site representation can be writ-
ten as

(21)

Expressing n and n' via the radius vector of the center
of mass R = (n + n')/2 and the radius vector of relative
motion r = n – n' and substituting the obtained expres-
sions into formula (21), it is possible to separate a con-
tribution to the phase of the superconducting conden-
sate that depends only on R: Φ(R) = (2e/"c)A(R) · R.
This contribution does not influence the free energy
density expansion (10).

The additive to Φ(R) in Eq. (21), which depends
only on the radius vector of relative motion, determines
the relative phase α of the order parameter components.
Near the phase transition point (x = x0), where α ! 1,
we obtain an estimate

(22)

where repeated indices of the 2D coordinates xk of the
radius vector r of relative motion imply summation and
take the values 1 and 2.

We may suggest that deviation of the phase of the
superconducting order parameter from π, which is a
natural consequence of ηK-pairing, is related to orbital
antiferromagnetic ordering. This ordering is manifested
in the superconducting state by antiferromagnetically
correlated orbital current circulations [11] and can sur-
vive at temperatures above the superconducting transi-
tion temperature in the form of a long-range [2] or
short-range [14] orbital antiferromagnetic order. In this
case, a real magnetic field in (22), which is related to
the orbital currents, can be considered as a gauge field
establishing correlation between superconducting and
orbital antiferromagnetic degrees of freedom (ψ and α,
respectively). This field is analogous to the gauge field
introduced into the Ginzburg–Landau functional, for
example, in a boson variant of the scheme of charge and
spin separation [36].

The order parameter (6) has a spatial structure cor-
responding to a separation of the cuprate plane into
cells with a period of 2π/Kj (in the general case, incom-
mensurate). The directions of orbital current circula-
tions in the neighboring cells must be opposite. In the
Ginzburg–Landau phenomenology, it is implied that
the order parameter is averaged over the relative motion
of the pair. Therefore, taking into account the checker-
board order in the distribution of orbital currents, the
mean square (within the cell) value of the orbital anti-
ferromagnetic order parameter can be estimated as

(23)
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where B is the cell-average magnetic induction of the
field of orbital currents.

The appearance of orbital currents in the supercon-
ducting state implies that the Ginzburg–Landau func-
tional must take into account the contribution due to the
energy of the magnetic field of these currents. In
expression (13), which describes the magnetic field
effect on the free energy density, this contribution fm(α)
(which is external with respect to the charge degree of
freedom ψ) is formally taken into account provided that
B denotes the magnetic induction due to the field of
orbital currents.

One can readily check that simple addition of a term
of the fm(α) = κα 2 type with a positive coefficient κ to
f0 excludes the possibility of the appearance of a mini-
mum in the free energy density f0 + fm(α) for α ≠ 0. This
fact naturally implies the necessity of considering a
competition between the two channels of pairing:
superconducting ηK-pairing versus insulating orbital-
antiferromagnetic pairing with the order parameter α.
In the Ginzburg–Landau ηK functional (9), this order
parameter is manifested by a current degree of freedom
in the two-component order parameter.

7. COMPETITION
OF THE SUPERCONDUCTING

AND ORBITAL-ANTIFERROMAGNETIC 
CHANNELS OF PAIRING

Spontaneous orbital currents can also arise in the
absence of a superconducting order. The correspond-
ing insulating orbital antiferromagnetic order in a 2D
system is characterized by a single parameter, which
has the meaning of a modulus of the difference of
magnetizations of two sublattices of an orbital antifer-

T
Td

Ts

N

wPG

sPG

Tc

x* xopt x0 xb x* x

β π

Tβπ

c

TC = Ts

c
1

2

3

4
2'

1'

Fig. 3. The region of the phase diagram corresponding to
the existence of an orbital antiferromagnetic and supercon-
ducting phases in the vicinity of the tetracritical point c.
Thick solid curves show the lines of phase transitions. The
inset shows the vicinity of the tetracritical point on a greater
scale: sectors 1c3 and 4c2' corresponds to the region of
developed fluctuations of superconducting pairs and the
region of orbital currents, respectively.
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romagnet. This difference is proportional to α. In the
absence of superconductivity, the free energy density
in the vicinity of the orbital antiferromagnetic phase
transition can be represented as the expansion in even
powers of α:

(24)

where b2 is a positive function of the doping x and a2 is
a coefficient (also dependent on the doping x), which
vanishes at the insulating phase transition temperature
Td(x) corresponding to the mean field approximation. In
the vicinity of the phase transition, the latter coefficient
can be expressed as a2 = –a'τ2, where a' is a positive
function of x and τ2 = (Td – T)/Td (it is assumed that
|τ2 | !1). Note that the energy of the magnetic field of
spontaneous currents fm(α) proportional to α2, which
enters into the Ginzburg–Landau ηK functional, is nat-
urally included into the first term in expression (24)
thus simply redefining the temperature Td(x) of the
insulating phase transition.

A relationship between the two types of ordering is
established in the same natural manner. Still restricting
the consideration to a spatially homogeneous case in
the absence of external magnetic fields (whereby both
ψ and α are independent of the radius vector R of the
center of mass), we must retain only the contribution
due to the field of spontaneous orbital currents in the
gradient term (11) in the Ginzburg–Landau ηK func-
tional. The vector potential A of this field is propor-
tional to α. In the spatially inhomogeneous system
under consideration, the gradient component fg con-
tains only the vector potential related to the field of
spontaneous orbital currents. Then, as can be seen from
Eq. (11), the gradient term averaged over the relative
motion of the pair can be expressed as f12 = b12ψ2α2,
where b12 is a phenomenological parameter dependent
on the doping x. Under the assumption that ψ ! 1 and
α ! 1, the contribution of f12 to the free energy density
is of the fourth order of smallness.

Thus, an expression for the free energy density,
which describes the competition of the superconduct-
ing and orbital-antiferromagnetic ordered states has (to
within fourth-order terms) the following form:

(25)

The free energy density expansion (25) is valid in a
small vicinity of both phase transitions, that is, in a rel-
atively small region of the phase diagram where the
curves Ts(x) and Td(x) either intersect or pass very
closely to each other.

The doping leads to suppression of both the orbital
antiferromagnetism and the superconductivity. The
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temperatures of the corresponding phase transitions,
Td(x) and Ts(x), determined in the mean field approxi-
mation in the absence of coupling between the orbital-
antiferromagnetic and superconducting ordered states
(i.e., for b12 = 0 in expansion (25)) are naturally consid-
ered as monotonically decreasing functions of x. Taking
into account the features of the typical phase diagram of
cuprates (Fig. 1), we may suggest that the orbital anti-
ferromagnetic state, which dominates for small x, in
weakly doped cuprates is suppressed with increasing x
more rapidly than the superconducting order, which
makes possible the intersection of Ts(x) and Td(x)
curves at a certain point. According to formula (19),
this point corresponds to x = x0 (Fig. 3, point c). It
should be noted that we might also assume that, in the
case of weak doping, Ts > Td, but this assumption leads
to a phase diagram that is qualitatively different from
that depicted in Fig. 1. Since the expansion of the free
energy density (25) is valid only in a small vicinity of
the point c of intersection of these curves (circled and
presented on a greater scale in the inset in Fig. 3), the
continuation of lines beyond this small region is rather
conditional.

For T > max(Td, Ts), the free energy minimum is
attained at ψ = 0 and α = 0 (sector 2c1' in Fig. 3), which
corresponds to the normal phase. The 2c segment of the
boundary of this sector is the line of a phase transition
from the normal to orbital antiferromagnetic phase
(α phase). In the latter phase, ψ = 0 and α = –a2/b2. The
insulating α phase exists inside sector 2c3, a part (1c3)
of which occurs in the region of temperatures below
Ts(x). The lower boundary (segment c3) of sector 2c3 is
determined by the condition b2a1 – b12a2 = 0, The c1'
segment of the boundary of the normal phase is the line
of a phase transition from the normal to superconduct-
ing π phase corresponding to sector 1'c4. A part (2'c4)
of this sector occurs in the region of temperatures
below Td(x). The 3c4 sector, where

(26)

corresponds to the superconducting β phase, where the
superconductivity coexists with the spontaneous orbital
antiferromagnetism. It should be noted that, for b12 = 0,
the dielectric α phase, superconducting π phase,
and superconducting β phase would correspond to
sectors 2c1, 1'c2', and 1c2', respectively.

The superconducting transition temperature TC(x) is
represented by line 3c1', in which segment c1' corre-
sponds to a transition from the normal to supercon-
ducting (π) phase at temperature TC(x) ≡ Ts(x), and seg-
ment 3c, to a transition from the orbital antiferromag-
netic to superconducting (β) phase at a temperature

(27)

ψ2 b2a1 b12a2–

b1b2 b12
2–

-----------------------------, α2–
b1a2 b12a1–

b1b2 b12
2–

-----------------------------,–= =

TC Ts
1 λ–

1 λTs/Td–
--------------------------,=
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where λ = b12a'/b2a. This temperature is lower than
Ts(x) and (since we have Ts > Td for x > x0) the TC(x)
function exhibits bending at point c, which implies that
there is a tendency of the transition temperature to

m

(a) (b)

S

(c)
m

M S

S

M S

m

(d)

(e)

S

m

(f)

S mM

Fig. 4. The topology of free energy isolines in the coordi-
nates of ψ (horizontal axis) versus α (vertical axis) showing
sectors of the phase diagram in the vicinity of the tetracriti-
cal point c (Fig,. 1): (a) 2c1'; (b) 2c1; (c) 1c3; (d) 3c4;
(e) 4c2'; (f) 2'c1'. Black points indicate maxima (M), min-
ima (m), and saddle points (S) of the free energy.

f

m

ψα

Fig. 5. Free energy density of the normal phase with the
minimum (m) corresponding to ψ = α = 0.
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decrease as compared to the mean field temperature
Ts(x).

Line c4 corresponding to a phase transition between
the two superconducting states, π  β, determines
the temperature

(28)

where λ' = b12a/b1a'. The Tβπ(x) function of doping x,
corresponds to a line originating from point c and ter-
minating at a certain point x = xb on the x axis. Thus,
point c in Fig. 3 is a tetracritical point at which four
lines of phase transitions intersect [37].

Figure 4 shows the topology of the free energy iso-
lines f(ψ, α) = const. In sector 2c1' corresponding to the
normal phase, the free energy density has a minimum at
ψ = 0 and α = 0 (Fig. 5). Upon crossing line 2c and pas-
sage to the α phase, this minimum shifts along the α axis

to the point (ψ = 0, α = ) (Fig. 6). However, this
minimum is a single special point on the free energy sur-
face only in the upper part (sector 2c1) of the domain of
existence of the insulating α phase (sector 2c3), rather
than in the entire domain. Indeed, on crossing line 1c
and passing to the minimum determining a thermal sta-
ble insulating state, there appears a saddle point at (ψ =

, α = 0), where the free energy has a minimum
with respect to variable ψ at α = 0 (Fig. 7). Sector 3c4
(β phase) corresponds to the region of existence of the
orbital antiferromagnetism and superconductivity. The
free energy density (Fig. 8) has an absolute minimum at
a certain point (α ≠ 0, ψ ≠ 0) and two saddle points (one
on each axis). On line c4 of the phase transition β 
π, the minimum coincides with one of the saddle points
(that occurring on the ψ axis), while on crossing line c2',

     

Tβπ Td
1 λ'–

1 λ'Td/Ts–
---------------------------,=

a2/b2–

a1/b1–

     

f

s

m
ψ

α

Fig. 6. Free energy density of the α phase with the mini-
mum (m) shifted from the origin along the α axis and a sad-
dle point (s) nucleating at the origin.
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the other saddle point (on the α axis) shifts to the origin
(see Figs. 7 and 6, where the coordinate axes should be
interchanged ψ  

 
α

 

).
In the vicinity of the tetracritical point, the states in

sector 
 

1c3
 

 (see the inset to Fig. 3) corresponding to the
absolute minimum and the saddle point have close val-
ues of the free energy. For this reason, there is a rather
large probability of the fluctuational appearance of non-
coherent, long-lived quasi-stationary states of super-
conducting pairs with a relative phase of 

 

π

 

. These states

correspond to the saddle point at (

 

ψ

 

 = , 

 

α

 

 = 0)
in the temperature interval 

 

T

 

C

 

(

 

x

 

) < 

 

T

 

 < 

 

T

 

s

 

(

 

x

 

). The decay
of such a quasi-stationary state, which is accompanied

a1/b1–
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f
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Fig. 7.

 

 Free energy density in the region of developed fluc-
tuations in the 

 

α

 

 phase with a saddle point (

 

s

 

) shifted from
the origin along the 

 

ψ

 

 axis.
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ψ
α
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 Free energy density of the 

 

β

 

 phase with the minimum
(

 

m

 

) at 

 

α

 

 

 

≠

 

 0, 

 

ψ

 

 

 

≠

 

 0 and the saddle points (

 

s

 

) on both axes.
The appearance of a local maximum at the origin is related
to the nucleation of the second saddle point.
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by a decrease in the modulus of the superconducting

order parameter from ψ =  to ψ = 0 while the
relative phase increases from zero to an equilibrium

value of α = , can be considered equivalent to
the appearance of uncorrelated pairs of the oppositely ori-
ented circular currents or the vortex–antivortex pairs [38].
Intermediate states in the process of decay of the afore-
mentioned quasi-stationary states are fluctuational
states of the β phase belonging to the same (or close)
isolines passing from the vicinity of a saddle point to
the vicinity of the absolute minimum of the free energy.

Thus, the temperature Ts(x) for x < x0 (Fig. 3, line 1c)
bounding from above the region of developed fluctua-
tions of the modulus of the superconducting order
parameter is not related to any phase transition. This
line can be considered as the upper boundary of a
region in the phase diagram, where the appearance and
decay of the quasi-stationary superconducting pairs
with a relative phase of π lead to the existence of orbital
vortex currents. Such currents may lead to a significant
enhancement of the Nernst effect observed in cuprates
in the region of a strong pseudogap [39]. For this rea-
son, the temperature Ts(x) for x < x0 can be interpreted
as a crossover bounding this region from above: Ts(x) ≈

(x). It should be noted that a strong pseudogap can
extend to the region of ultimately weak doping (x < x∗ ).

For x∗  < x < x0, a phase transition from the insulating
α phase to a superconducting phase can be formally
described using a single order parameter ψ, provided
that τ = (TC – T)/TC is small (|τ| ! 1). Substituting an
equilibrium value of the relative phase α given by for-
mula (26) into Eq. (25) yields an expansion of the free
energy density in powers of ψ:

(29)

In the vicinity of the α  β phase transition line, we
can assume that (a1 – b12a2/b2) = – τ, where  = a –
b12a'/b2 is a positive function of x. The coefficient at ψ2

in the expansion of the free energy density (29) is deter-
mined by the value of  < a, because the phase transi-
tion temperature TC for x∗  < x < x0 is lower than the
temperature Ts corresponding to the mean field approx-
imation (Ts coincides with TC only in the region of over-
doping, x0 < x < x*). Since it is the coefficient at ψ2 that
determines the slope of the free energy surface in the
vicinity of the minimum, we may conclude that, on
going from the tetracritical point to the region of weak
doping via sector 3c4 (corresponding to the β phase),
there is a tendency toward an increase in fluctuations of
the superconducting order parameter ψ. This conclu-
sion can be considered as evidence for the fact that the
mean field approximation with a single-component
order parameter does not provide an adequate descrip-
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tion of the superconducting phase transition in the
region of underdoping on the phase diagram. On the
contrary, a two-component order parameter, which nat-
urally follows from the concept of ηK-pairing and takes
into account both the charge and current degrees of
freedom, unavoidably leads to the pattern of developed
fluctuations of the order parameter.

On going from the normal phase (Fig. 3, sector 2c1')
to the π phase (sector 1'c4) across line c1', the free
energy minimum shifts from the point (ψ = 0, α = 0) to

the point (ψ = , α = 0). This minimum is the
absolute one in the entire domain of existence of the π
phase (sector 1'c4), but an additional special point—a

saddle point with the coordinates ψ = 0, α = 
appears in sector 2'c4 (see the inset to Fig. 3). In the
vicinity of the tetracritical point, the free energy at the
absolute minimum and at the saddle point in this sector
has close values and, hence, there is a rather large prob-
ability of the fluctuational appearance of quasi-station-
ary orbital vortex currents. The decay of such quasi-sta-
tionary states, whereby the relative phase of the order

parameter decreases from α =  at the saddle
point to α = 0 while the modulus of the order parameter
increases from zero to an equilibrium value of ψ =

, proceeds via states with α ≠ 0 and ψ ≠

 

 0, that
is, via nonequilibrium states of the 

 

β

 

 phase. For 

 

x

 

0

 

 < 

 

x

 

 <

 

x

 

*, the temperature 

 

T

 

s

 

(

 

x

 

) corresponding to the mean
field approximation is the temperature of the phase
transition from the normal phase to the superconduct-
ing 

 

π

 

 phase, so that 

 

T

 

s

 

(

 

x

 

) = 

 

T

 

C

 

(

 

x

 

). For this reason, the
superconducting phase transition from the normal
phase to the 

 

π

 

 phase in the region of overdoping on the
phase diagram can be satisfactorily described within
the framework of the Landau theory of phase transi-
tions with a single-component order parameter and,
hence, this transition exhibits features of the phase tran-
sitions according to the BCS theory.

It should be noted that the level of optimum doping
formally determined from the position of maximum of
the 

 

T

 

C

 

(

 

x

 

) curve is definitely lower than the doping cor-
responding to the tetracritical point: 

 

x

 

opt

 

 < 

 

x

 

0

 

. For this
reason, line

 

 c4

 

 (corresponding to the lower boundary of
the 

 

π

 

 phase) that continues to the region of low temper-
atures terminates at a certain point with 

 

x

 

 = 

 

x

 

b

 

, where

 

x

 

0

 

 < 

 

x

 

b

 

 < 

 

x

 

*. For this reason, the further decrease in the
temperature upon the phase transition from the normal
phase to the 

 

π

 

 phase in the doping interval 

 

x

 

0

 

 < 

 

x

 

 < 

 

x

 

b

 

results in the system falling into the region of developed
fluctuations manifested by quasi-stationary orbital vor-
tex currents, after which the system exhibits a phase
transitions at 

 

T

 

 = 

 

T

 

βπ

 

(

 

x

 

) between the two superconduct-
ing states: the 

 

π

 

 phase and the 

 

β

 

 phase, where the super-
conductivity coexists with the orbital antiferromag-
netism. This phase transition in the superconducting
state can be detected, for example, as an anomaly in the
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a2/b2–

a2/b2–
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temperature dependence of the heat capacity. At the
phase transition temperature Tβπ(x), the modulus of the
order parameter ψ remains continuous, while the rela-
tive phase α changes between zero in the π phase and a
nonzero value at T < Tβπ(x).

In concluding this section, we will outline in accor-
dance with [40] the hierarchy of the symmetry groups
of various phases in the vicinity of the tetracritical
point. If the cuprate plane has a square lattice with a 2D
crystal class G = C4v , then the extended point symmetry
group of the most symmetric normal phase is given by
the direct product GN = G × R × U(1), where R is the
group comprising the identical transformation and the
transformation of time reversal (changing the direc-
tions of currents to the opposite) and U(1) is the group
of gauge transformations.

A transition from the normal to the insulating π
phase corresponds to the loss of the gauge symmetry, so
that a point symmetry group of the π phase corresponds
to the nonmagnetic crystal class Gπ = G × R.

A transition from the normal to the insulating α phase,
which is accompanied by the development of spontane-
ous orbit vortex currents, leads to the loss of some
crystal symmetry. The new symmetry corresponds to
group H, which is an index 2 subgroup of group G. The
point symmetry group of the α phase corresponds to the
superconducting magnetic crystal class with a variety
of elements Gα = (H + RgH) × U(1), where g is an ele-
ment of G not belonging to H.

The loss of the gauge symmetry upon the transition
from the α phase to the β phase results in that the new
point symmetry group of the β phase corresponds to the
magnetic class Gβ = H + RgH. Group Gβ is simulta-
neously a subgroup of Gα and Gπ, which, in turn, are
the subgroups of GN.

Group G = C4v has two index 2 subgroups: H = C4
and H = C2v. However, the first of these possibilities
corresponds to the ferromagnetic crystal class C4v(C4),
while the second variant corresponds to the antiferro-
magnetic class C4v(C2v) exactly reflecting the current
distribution in a 2D flux phase.

8. AN ηK SUPERCONDUCTOR
IN A MAGNETIC FIELD

An external magnetic field with the induction B =
curl A is, like the vector potential A of this field, a
slowly varying (on the scale of interatomic distances)
function of the spatial coordinates and can be readily
included into the general definition (9) of the Ginz-
burg–Landau functional. In addition, the free energy
density (24) of the orbital antiferromagnet must be sup-
plemented by a term dependent on B (besides a change
in the free energy density related to the external mag-
netic field, fm(α), already entering into this functional).
Separating a contribution due to the spontaneous orbital
JOURNAL OF EXPERIMENTAL A
currents from the vector potential, the magnetic field
energy density  can be expressed as

(30)

Here and below, the notation A, B = curl A, and H refers
to the external magnetic field. The first term in for-
mula (30) is related to the spontaneous currents and has
to be combined with the first term in the free energy
density (24) of the orbital antiferromagnet. The terms
linear in B (as well as in A) are eliminated because
determination of the order parameter in the Ginzburg–
Landau phenomenology implies averaging over the rel-
ative motion of ηK-pair.

In a similar manner, we can transform the gradient
term (1) to fg = b12ψ2α2 + , where

(31)

It is assumed that matrix Mss' entering into the definition
of (11) is diagonalized together with Ass' in (10); in
defining the operator of covariant differentiation (12),
we take into account only the vector potential of the
external magnetic field.

In supplementing the free energy of the orbital anti-
ferromagnet with a term dependent on the external
magnetic field, note that the orbital antiferromagnetic
order parameter in the case of two antiferromagnetic
sublattices (to which the consideration here is
restricted) has the form of L = M1 – M2, where M1 and
M2 are the magnetizations of sublattices (with equal
moduli in the absence of an external field [41]). Since
these magnetizations are related to the orbital currents
circulating in the cuprate plane, both M1 and M2 (and,
hence L) are perpendicular to this plane. Therefore, in
2D systems such as cuprate compounds, the orbital
antiferromagnetic order parameter can be determined
by setting a single quantity (i.e., L = |L|) which, in
accordance with the adopted interpretation of the rela-
tive phase of the superconducting order parameter,
must be proportional to α (L ∝  α). The angle θ between
L and B is not a variable parameter, since it is simply
determined by the orientation of the external magnetic
field with respect to the cuprate plane normal. Thus, we
obtain two scalar combinations of the L and B vec-
tors—L2B2 and (L · B)2, which are of the fourth order of
smallness—entering into the free energy of the antifer-
romagnet, which can be written as

(32)

Here, d = d1 + d2cos2θ is a phenomenological parameter
determined by the two positive functions of the doping,
d1(x) and d2(x).
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The free energy acquires the following form:

(33)

where p(α) = (µ–1 + 8πdα2)/8π and f is given by rela-
tion (25). In this equation, the vector potential of the
external field and the parameters ψ and α are variable
functions of the radius vector R of the center of mass of
the pair, which are slowly varying on the scale of the
unit cell.

Variation of the free energy functional with respect
to the vector potential leads to the following equation:

(34)

where M = M1 + M2 is the trace of the matrix, the vector
potential is determined to within a gauge transforma-
tion, A' = A – ("c/2e)∇Φ , and Φ is the phase of the
superconducting condensate.

Variation of the functional (33) with respect to ψ
and α yields two additional equations:

(35)

(36)

Equations (34)–(36) constitute a complete system of
the Ginzburg–Landau equations describing the compe-
tition and coexistence of the ηK and orbital-antiferro-
magnetic ordered states in the vicinity of the tetracriti-
cal point.

Even under the aforementioned simplifying
assumptions, the system of equations (34)–(36) is much
more complicated than a system of two equations
describing a conventional superconductor in an
external magnetic field. For this reason, consideration
will be restricted to some simplest consequences of
Eqs. (34)−(36).

In the absence of ordering (ψ = 0, α = 0), Eq. (34)
shows that µ has a meaning of the magnetic permeabil-
ity of the normal phase: µ = µN = 1 + 4πχN, where χN is
the magnetic susceptibility of the normal phase.

A homogeneous state of the α phase in a magnetic
field corresponds to an order parameter defined as

(37)

Then, the magnetic susceptibility of the α phase in a
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magnetic field can be expressed as

(38)

where  ( ) is the longitudinal (transverse) mag-
netic susceptibility of the α phase relative to the applied
magnetic field. Note that, in writing relations (37), we
took into account that the magnetic permeabilities of
the normal and α phases only slightly differ from unity in
the vicinity of the tetracritical point (where a2 = –a'τ2 < 0
and τ2 ! 1): µN ≈ µα ≈ 1. Since |χN | ! 1, the transition
from a paramagnetic normal phase to a state of the α
phase with giant diamagnetism (observed in the region
of a strong pseudogap in the magnetic field [42]) takes
place at the temperature

(39)

where  = d1 + d2 for the magnetic field oriented across

the cuprate plane and  = d1 for the field parallel to this
plane.

For the superconducting π phase (ψ ≠ 0, α = 0),
Eqs. (34) and (35) lead to the usual Meissner effect.
The depth of the magnetic field penetration into the π
phase is defined as

(40)

In the case of the superconducting β phase, which
corresponds to the coexistence of superconductivity
and orbital antiferromagnetism, the coordinate depen-
dences of both the magnetic field and the parameters ψ
and α can be rather complicated. In particular, the spa-
tial inhomogeneity of one of these parameters leads to
the inhomogeneous distribution of the other parameter.

9. CONCLUSIONS

The question of what is the microscopic mechanism
of superconductivity in cuprate compounds is of princi-
pal importance. Taking into account that the Coulomb
repulsion in cuprates is among the most significant fac-
tors determining their special properties, it would be
natural to assume that this very interaction underlies the
mechanism of superconductivity in cuprates.

If the formation of a superconducting state is caused
by the singlet pairing at a large total momentum K of
the pair, the symmetry of the energy gap ∆(k) is natu-
rally determined by the crystal symmetry of the cuprate
plane. An asymptotically exact (even at an arbitrarily
small intensity of the interaction) nontrivial solution of
the self-consistency equation for ηK-pairing exists in
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the case of the perfect mirror nesting of the Fermi con-
tour. A small deviation from the perfect mirror nesting
results in that a superconducting solution appears for a
finite (albeit rather small) effective coupling constant.
The shape of the Fermi contour in doped cuprates in a
rather broad range of dopant concentrations corre-
sponds to perfect nesting for some large (in the general
case, incommensurate) values of the momentum K.

The formation of the imaginary part of the order
parameter with a relative phase different from π can be
interpreted as the appearance of a contribution of the
current density wave related to the relative motion of
the pair. We can suggest that this ordering is related to
the formation of an insulating antiferromagnetic struc-
ture of orbital currents, while a deviation of the relative
phase from π plays the role of the order parameter. It
should be noted that this parameter of the insulating
ordering naturally appears in the scheme with ηK-pair-
ing under repulsive interaction.

Thus, the region of the phase diagram correspond-
ing to the superconductivity is divided into two parts
reflecting two phases. One of these phases (π phase)
exists in overdoped compounds, wile the other (β
phase) is found in underdoped compositions. The Tβπ
line of the transition between these phases originates
from the tetracritical point (x = x0) and terminates at a
certain point with x = xb > x0 on the T = 0 axis. Upon the
phase transition from the normal phase to the π phase
in the doping interval x0 < x < xb, the further decrease in
the temperature leads to the second phase transition:
from the π phase to the β phase. The region of this tran-
sition, as well as the α  β transition in underdoped
compounds, is preceded by a region of the developed
fluctuations of the order parameter, which are related to
the appearance of a saddle point in the family of free
energy isolines (Fig. 4) in addition to the absolute min-
imum corresponding to the π phase. The saddle point
can be related to certain quasi-stationary states involv-
ing the orbital vortex currents. Thus the phase diagram
exhibits a certain symmetry with respect to the transfor-
mation of parameter ψ  α.

In concluding, it should be noted that a thermody-
namic analysis of the phase diagram in the vicinity of
the tetracritical point with allowance for the competi-
tion between the superconducting and orbital-antiferro-
magnetic states (which is a natural consequence of the
ηK-pairing under repulsive interaction) lead to definite
conclusions concerning the main features of the whole
phase diagram in the regions of temperature and doping
corresponding to superconducting region. These con-
clusions do not contradict the well-known experimental
facts concerning the behavior of cuprates in the corre-
sponding temperature and doping intervals. In particu-
lar, a qualitative interpretation is obtained for enhance-
ment of the Nernst effect in the region of a strong
pseudogap (crossover from strong to weak pseudogap,
related to the disappearance of the saddle point on the
ψ axis, is naturally explained [17] by smearing of the
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level of the quasi-stationary state on approaching a
maximum of the potential barrier depicted in Fig. 2)
and a decrease in the superfluid density [1] and an
increase in the 2∆/TC ratio in underdoped composition
(relative to the universal value of 3.52 according to the
Bartdeen–Cooper–Schrieffer (BCS) theory [43]). It
should be noted that an analysis of the superconducting
phase transition within the framework of the BCS the-
ory is effective only for overdoped compounds, since
the description of the phase transition to the supercon-
ducting β phase using a single-component order param-
eter is inadequate.

A β  π transition between the two supercon-
ducting states, which is a second-order phase transition
and takes place in a relatively narrow doping interval
(x0 < x < xb) can be detected, for example, by measuring
a jump in the temperature dependence of the heat
capacity. It should also be noted that, in the general
case, the maximum of the superconducting transition
temperature TC(x), which corresponds to x = xopt, does
not coincide with the position x = x0 of the tetracritical
pint: xopt < x0 (Fig. 3). This conclusion is confirmed by
experimental data [44]. Therefore, if the region of over-
doping is defined, as usual, by the condition xopt < x <
x*, it is quite natural to assume that strong fluctuations
of the order parameter may arise in this region. Fluctu-
ations, such as the vortex excitations in the form of
quasi-stationary staggered orbital vortex currents, can
be also detected using tunneling microscopy.
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ORDER, DISORDER, AND PHASE TRANSITIONS
IN CONDENSED SYSTEMS
Self-Similar Evolution of the Surface Morphology
of a Stressed Amorphous Alloy Foil
N. N. Gorobei, A. S. Luk’yanenko, and A. E. Chmel
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Abstract—A time-ordered sequence of topographic images of a stressed amorphous Fe70Cr15B15 ribbon is pre-
sented. It is shown that the surface of this material (unlike polycrystalline metal foil) has a fractal structure due
to the nonequilibrium conditions of its formation. As a tensile stress of about 500 MPa is applied to the surface,
the fractal dimension of the surface increases from 1.21 ± 0.02 to 1.34 ± 0.03, then drops to 1.12 ± 0.03, and
finally increases to 1.22 ± 0.02. In about 1.5 hours, a complex surface morphology characterized by a roughness
amplitude of several tens of nanometers evolves into a regular pattern of shear bands with amplitude of about
300 nm. Self-affine changes in surface morphology are explained by competition between several processes,
including crack propagation, surface smoothing, and self-diffusion. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Spatiotemporal self-similarity is a well-known
property of fracture processes demonstrated experi-
mentally on nanoscopic [1], microscopic [2], labora-
tory [3], and geophysical [4] scales. The energy redis-
tribution due to microfracturing and deformation by
external forces gives rise to long-range dynamic inter-
actions (with a characteristic radius much greater than
the size of structural units on the scale level in ques-
tion). As a result, an open, dynamically coupled system
develops fractal properties in quantitative distributions
of its components (such as products of fracture) [5, 6],
their geometry [7, 8], and time-ordered sequences of
fracture events on all scale levels [9, 10]. The common
physical mechanism responsible for the fractal behav-
ior remains unclear. The available specific models (e.g.,
scaling of microstructural parameters in stressed metal
as an analog of self-similar aggregation [11], scale-
invariant dislocation dynamics in a crystal [12, 13], or
atomic rearrangements in glasses [14]) rely on proper-
ties of particular materials or fracture conditions and
cannot be applied to processes controlled by different
mechanisms. Accordingly, the self-similarity of a frac-
ture is generally considered as a common, but insignif-
icant, property of the critical state of a multicomponent
system. This interpretation ignores the fact that a
sequence of fracture events occurring on various struc-
tural levels brings an initially disordered system into a
regular state characterized by a self-similar structure.
This is particularly clear with regard to fracture of
amorphous alloys, where fractal structure evolves in
highly uniform materials containing no structural units.
Structural order in the first coordination shells in metal-
lic glasses (e.g., capped trigonal prisms [15]) reflects
the most probable atomic configurations in clusters
1063-7761/05/10103- $26.000468
rather than exactly reproduced basic structural units,
such as tetrahedra in oxide glasses.

However, available experimental data (see review
in [7]) and some analytical studies [4, 14, 16, 17] sug-
gest that fractal structure is not just a concomitant of a
fracture, but its necessary condition. In other words, a
fracture can nucleate and develop on any structural
level only under conditions favoring the formation of
self-similar structure. This process is examined in the
present study of the evolution of the surface morphol-
ogy of a stressed amorphous alloy foil. In previous
experiments on normal metals (such as gold, copper,
and molybdenum) [18–20], the evolution of the surface
of a stressed sample was interpreted in terms of changes
in dislocation structure. In a methodologically related
study of an amorphous alloy [21], the evolution of the
strained surface was not examined.

2. EXPERIMENT

We used a scanning tunneling microscope (STM) to
investigate the nanoscopic surface structure with a res-
olution of 300 data points per 6-micrometer scan. A
0.03 mm thick amorphous Fe70Cr15B15 ribbon produced
by using the single-roller melt-spinning technique was
bent and attached to a cylinder of diameter 15 mm. Its
outer surface was subjected to a tensile stress of about
500 MPa, which corresponds to approximately one-
tenth of the tensile strength of the foil. The surface was
stressed nonuniformly because of the varying thickness
of foil produced under dynamic conditions. However,
the nonuniformity length scale was much greater than
the scanning area (approximately 20 µm2). Therefore,
the macroscopic stress nonuniformity could not cause
any qualitative change in the microscopic process
 © 2005 Pleiades Publishing, Inc.
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under study. The longitudinal scan time was 30 s per
scan. After scanning a 3 × 6 µm2 area, the probe was
returned to its starting position and a new topographic
image was recorded. The first topographic image was
recorded a few minutes after stress had been applied.
The scanning was continued until regular transverse
groovelike bands appeared (in about 1.5 h under the
stress conditions indicated above). The band pattern
persisted for several hours. We studied the transient pro-
cess that preceded the formation of the persistent pattern,
which was interpreted as shear banding in [22, 23].

3. RESULTS

Figure 1 shows examples of topographic images
obtained before stressing and at certain instants after
stress had been applied. It is clear that the tensile stress
caused a rapid increase in roughness amplitude and a
gradual increase in surface complexity via the disap-
pearance of relatively flat regions characteristic of the
unstressed sample. To perform a statistical analysis,
i.e., to quantify the roughness of the initial and
stretched surfaces, we examined the profiles measured
at successive stages of stressing. To determine the frac-
tal dimension D as a universal characteristic of self-
similar objects, we measured the changes in surface
height associated with small increments ∆ of the coor-
dinate r along the path of the scanning probe. A self-
affine (anisotropic) structure must satisfy the power law

(1)

where h is surface height, H is the Hurst (roughness)
exponent, ∆  0, and the angle brackets denote an
average over all pairs of points in the measured profile.
For a two-dimensional profile,

(2)

The values of H were determined as the slopes of
log–log plots of |h(r + ∆) – h(r)| versus the absolute
value of ∆ averaged over hi (i = 1, 2, …, 300) (Fig. 2).
The deviations of the plots from straight lines at small
and large ∆ are explained by the limitations due, respec-
tively, to STM resolution and lack of representative
data on deep valleys in surface profiles.

Power-law scaling implies that the measured profile
is self-affine (has no characteristic roughness ampli-
tude) [7]. A varying H reflects a gradual change in self-
affine structure. For the initial (unstressed) sample, the
fractal dimension determined by using formula (4) is
D = 1.21 ± 0.02.

This is an unexpected result. In the limit of a flat sur-
face, D = 1. A fractal dimension higher than unity is
characteristic of a self-similar surface profile, which
can hardly be expected to develop as a result of a natu-
ral solidification process (as distinct from a fracture

h r ∆+( ) h r( )–〈 〉 ∆ H,∝

D 2 H .–=
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surface produced under nonequilibrium conditions
[7−9, 17]). For example, DCu = 1.00 ± 0.05 was
obtained for the fractal surface of polycrystalline cop-
per in [20].

The deviation of the surface fractal dimension of an
amorphous alloy from unity (Fig. 2a) should be attrib-
uted to the solidification conditions on a surface pro-
duced by rapid quenching from a melt: the nonequilib-
rium state of the surface is reflected in its geometry.

100 nm

(a)

(b)

(c)

(d)

(e)

Fig. 1. Surface profiles recorded (a) before stressing and
(b) 9, (c) 31, (d) 79, and (e) 150 min after stress had been
applied.
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Fig. 2. Height difference averaged over all points in a measured profile vs. horizontal distance ∆ for a Fe70Cr15B15 ribbon (a) before
stressing and (b) 15, (c) 31, and (d) 89 min after stress has been applied. Lines correspond to (1) with H = 0.79 (a), 0.66 (b), 0.88 (c),
and 0.78 (d).
Figure 3 illustrates the evolution of the surface frac-
tal dimension for Fe70Cr15B15 ribbons under isometric
stress. It is clear that D increases from 1.21 to 1.34 dur-
ing the first 15 min, drops to 1.12 in the next 10 min,
and then gradually increases to 1.22. The three-stage
surface evolution is explained by the competition
between several processes having different effects on
the surface geometry. Note that “nonmonotonic”
behavior of amorphous alloys under stress was
observed in [23].

The initial increase in fractal dimension occurs as a
result of fast propagation of defects from the surface
into the bulk (stage I), which is easy to notice by simply
comparing the roughness amplitudes measured before
and during stressing (see Figs. 1a and 1b). The subse-
quent drop in D (stage II) was also observed in [21] for
the amorphous alloy Fe77Ni1Si9B13, where it was attrib-
uted to an effect analogous to the smoothing of a crum-
pled sheet of paper under tensile stress. However, the
initial value of D was not specified. The increase in D
at the stage of initial crack propagation may have been
overlooked in [21], because only the states of the sur-
face before and after stressing were compared, whereas
the evolution of surface morphology was not analyzed.

In our experiments, the decrease in D due to
smoothing must have been overcome immediately by

D
1.3

1.2

1.1
0 20 40 60 80

t, min

I
II

III

Fig. 3. Fractal dimension of surface profile for a
Fe70Cr15B15 ribbon at successive stages of stressing repre-
sented by line segments.
JOURNAL OF EXPERIMENTAL A
the increase in D due to crack propagation. After the
cracks have stopped growing, the smoothing effect pre-
vails (stage II).

Further evolution (stage III) obviously leads to an
increasingly complex surface structure (Fig. 1d) char-
acterized by monotonic increase in fractal dimension.
We believe that the final stage of surface evolution is
dominated by self-diffusion.

Stage III comes to an end when a steady, trans-
versely oriented texture rapidly develops as D = 1.22 is
reached, which corresponds to H = 0.78 according
to (2). It should be recalled here that H = 0.78–0.80 has
been interpreted as a universal (material-independent)
indicator of “fast” surface fracture in several studies [7,
20, 24]. Since a similar Hurst exponent of 0.79 was
measured here for a rapidly quenched amorphous alloy,
we can now ascertain that this value may be character-
istic of any surface produced under nonequilibrium
(dynamic) conditions.
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Abstract—An anisotropic Heisenberg spin S = 1 model on a two-dimensional hexagonal lattice (formed from
interacting chains) with antiferromagnetic nearest-neighbor interactions of two types is analyzed by the real
space renormalization group method. The problem of the influence of interchain pairing on the critical proper-
ties of the model is studied, and the phase diagram of the model is constructed. The two-dimensional density
matrix renormalization group algorithm is used to calculate the ground state energy for the isotropic case as a
function of the ratio between interchain and intrachain interactions. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In the past decade, magnetic systems with structures
formed from interacting spin systems have been the
object of extensive studies. If the interchain exchange
value is much smaller than intrachain interaction, these
systems possess properties of one-dimensional mag-
nets at fairly high temperatures. Interchain magnetic
interactions, however, begin to play an important role
and determine the magnetic behavior of the system as
the temperature lowers.

In this work, we apply the real space and density
matrix renormalization group methods (RSRG and
DMRG) to study a two-dimensional magnetic system
with a hexagonal lattice formed by antiferromagneti-
cally interacting spin S = 1 chains with intrachain anti-
ferromagnetic interaction, when the model is equiva-
lent to a two-dimensional spin S = 1 antiferromagnet
with nearest-neighbor interactions of two types. For
this purpose, we use the Heisenberg Hamiltonian with
Ising-type exchange anisotropy in the RSRG method
and the isotropic version of the model in DMRG calcu-
lations. Our main goal was to find out how interchain
pairing influenced the critical properties and energy of
the system in its ground state.

Our interest in this problem largely stems from the
preparation of a new class of organic magnets PNNNO
and F2PNNNO. Each of these compounds contains spin
S = 1/2 pairs coupled by the ferromagnetic interaction JF.
The antiferromagnetic interaction between these pairs
forms the corresponding spatial crystal structure.
Because of the strong ferromagnetic interaction JF (on
the order of 600 K), the PNNNO and F2PNNNO com-
pounds can be treated as systems of antiferromagnetic
spin S = 1 chains (see Fig. 2a type I in [1]).
1063-7761/05/10103- $26.000472
It was found experimentally that interchain interac-
tion was three-dimensional in character in PNNNO and
two-dimensional (2D) in F2PNNNO. As a conse-
quence, the properties of PNNNO can be explained
using the model of one-dimensional antiferromagnetic
chains that experience Néel ordering in the three-
dimensional space at a temperature of about 1 K thanks
to weak interchain interaction, whereas the F2PNNNO
compound with comparable antiferromagnetic

JF JAF

J'AF

Fig. 1. Magnetic model of the F2PNNNO compound: uni-
form chains with intramolecular ferromagnetic pairing (JF)
and intrachain antiferromagnetic exchange (JAF). The

chains interact antiferromagnetically ( ). The limiting

variant of the model (JF  ∞) is the antiferromagnetic
hexagonal spin S = 1 lattice.

JAF'
 © 2005 Pleiades Publishing, Inc.
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Fig. 2. Graph used in the renormalization group procedure.
exchange interaction values JAF and  is a two-
dimensional spin S = 1 system on a hexagonal lattice
(Fig. 1).

At the same time, interest in antiferromagnetic spin
S = 1 systems increased after the discovery that the
interaction of 23Na pseudospins related to their fine
structure was antiferromagnetic [2]. A description of
the properties of spin 1 bosons, whose role is played by
ultracold 23Na atoms on an optical lattice under the con-
ditions of one particle per node [3, 4], generally
requires taking into account not only spin (dimeric and
chiral) correlations, which arise in considering mag-
netic spin = 1/2 systems, but also “new” nematic corre-
lations [5].

Lastly, a hexagonal lattice with frustrated interac-
tion between the next-to-nearest neighbors has been
extensively studied within the framework of the quan-
tum dimeric model [6], where singlet phases with crys-
tal-like ordering are formed in the ground state [7, 8] (a
review of the earlier studies of magnetic models on
hexagonal lattices can be found in [9]). This was sub-
stantiated numerically for the Heisenberg spin s = 1/2
(J1 – J2 – J3) model, in which the phase of singlet
valence bonds was formed [10]. Note that measure-
ments of the magnetic properties of F2PNNNO give
direct evidence of the singlet character of its ground
state with a gap in the excitation spectrum. This conclu-
sion is substantiated by magnetization measurements in
high fields (by the presence of an Mz = 0 magnetization
curve plateau). All these observations do not rule out
the formation of a state of the spin liquid type. Note
from the outset that the results obtained for the spin
S = 1 model should be used with caution when the
F2PNNNO system is considered, because, generally
speaking, the structure of the real compound is formed
by spins 1/2.

Lastly, a consideration of the Heisenberg Hamilto-
nian with exchange anisotropy of the Ising type for spin
S = 1 systems by the real space renormalization group
method is of theoretical interest on its own in view of a
recent study of the behavior of a weakly anisotropic
Heisenberg spin S = 1/2 antiferromagnet on a square
lattice at finite temperatures using the Monte Carlo
quantum method [11]. The Ising universality class was
shown to appear already at low anisotropy values (on
the order of 10–2 ∼  10–3 in exchange integral units),
which, according to the authors of [11], virtually ruled
out the possibility of the destruction of long-range

JAF'
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order by quantum fluctuations under these conditions.
These results are quantitatively at variance with RSRG
calculations, which predict a substantially larger criti-
cal anisotropy value (~0.2) for this model.

We shall solve the principal problem using a gener-
alization of the well-known RSRG method, which was
for the first time suggested by Mariz et al. for the quan-
tum anisotropic Heisenberg spin S = 1/2 model [12].
Generalizing this method to spins S > 1/2 is a nontrivial
problem, although here we also encounter usual diffi-
culties related to the necessity of expanding exponen-
tial operators and the “multiplication” of exchange
interactions because of the vector character of spin
operators.

The paper is organized as follows. In Section 2, we
develop the real space renormalization group method
for spin S = 1 and apply it to the quantum anisotropic
Heisenberg model on a hexagonal lattice with exchange
interactions of two types. Section 3 presents the results
of DMRG calculations of the ground state energy for
the isotropic case at various ratios between these
exchange interactions.

2. RSRG ANALYSIS

After the real space renormalization group method
was successfully applied to study two-dimensional
Ising systems [13, 14], a large number of works in
which this approach was used to analyze phase transi-
tions in quantum systems have been published [15–17].
In the past decade, the RSRG method was employed
to calculate the phase diagram of the anisotropic
Heisenberg spin S = 1/2 antiferromagnet on a square
lattice [18, 19]. In these works, a special hierarchical
lattice was used to approximate the initial square lat-
tice, and the renormalization group procedure itself
(cluster enlargement) was performed with summing
over the internal spin states.

Recently, the linear perturbation renormalization
group method (LPRG) has been suggested to study
weakly interacting classical and quantum spin chains
[20]. This method uses the natural small parameter of
the system, namely, the ratio between interchain and
intrachain pairing. It also uses the renormalization
group transformation, which is the standard decimation
procedure for Ising spins and a generalization of the
Suzuki–Takano approximate decimation procedure [21]
for quantum spins. Unfortunately, the LPRG method
based on perturbation theory can only be used when the
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ratio between interchain pairing and intrachain
exchange interaction is small.

2.1. Model

Let us consider a system with anisotropic Heisen-
berg interaction described by the dimensionless Hamil-
tonian

(1)

where β = 1/kBT, Kij ≡ Jij/kBT, Jij is the exchange inter-
action value, 〈ij〉  denotes pairs of the interacting nearest

neighbors, ∆ij is the anisotropy parameter, and {α =
x, y, z} are the components of spin S = 1 on node i.
Hamiltonian (1) corresponds to the Ising (∆ij = 1), iso-
tropic Heisenberg (∆ij = 0), and XY (∆ij = –∞) models.

We shall briefly describe the main elementary oper-
ations central to the renormalization group procedure
suggested in [12]. A pair of bonds placed in parallel and
characterized by the parameters (K1, ∆1) and (K2, ∆2) is
equivalent to one bond with the parameters (Kp, ∆p)
defined as

This rule, which corresponds to the usual Migdal–
Kadanoff procedure [22, 23], can trivially be general-
ized to n parallel bonds.

Combining two series-connected bonds with the
parameters (K1, ∆1) and (K2, ∆2) is not so simple
because the spin operators do not commute with each
other. After applying the renormalization group proce-
dure, scaling, and removing intermediate spins (“deci-
mation”), the Hamiltonian changes its form, and its
new exchange parameters are some functions of the ini-
tial exchange interactions. The initial Hamiltonian has
the form

We must replace two series-connected bonds by one
bond with the interaction Hamiltonian

(2)

This is achieved by imposing the requirement that the
contribution of the interaction of two terminal atoms 1
and 2 to the partition function be invariant; that is,

(3)

where Tr3 denotes the trace over the states of interme-
diate spin 3 and  is some additional constant neces-
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sary for (3) to have a solution. Equation (3) relates the
exchange parameters of the bonds to be combined
(K1, ∆1) and (K2, ∆2) to the renormalized parameters
(Ks, ∆s, ). Note that the corresponding relations can
be written explicitly for the anisotropic Heisenberg spin
S = 1/2 model [12, 18].

To construct the recursive equations for renormal-
ization group transformations (3) in the spin S = 1
model, let us expand both sides of the equality using a
certain matrix basis and equate the corresponding coef-
ficients of this expansion. The problem of the “multipli-
cation of constants” that then arises will be solved by
retaining only those exchange constants that are present
in initial Hamiltonian (1).

Note that, because of the properties of the Pauli
matrices, the matrix representations of H and expH
have the same structure for spin 1/2; that is, the nonzero
matrix elements of H and expH are positioned identi-
cally. This rule does not hold for spin S = 1, which con-
siderably complicates calculations.

Following [12], let us write exp  in the form

where ⊗  is the exterior product and A1, 2 stands for the

usual powers of the spin operators . The 

coefficients depend on Ks, ∆s, and . Since  are
3 × 3 matrices, they can be expanded using the basis set

of polarization matrices  (k = 0, 1, 2 and q = –k, –k +
1, …, k (see Appendix),

The  matrices can in turn be written explicitly in
terms of the spin operators [24]

The exp(H) operation should not change Hamiltonian
H symmetry. The requirement of invariance then gives
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the most general decomposition form,

(4)

,

with a new set of interaction constants α1, α2, α3, β, γ,
and σ (the indices in parentheses are the node num-
bers). Applying (4) yields

(5)

where the matrix elements A12 ≡ α1/3 + α2/2 + α3/6,
B12 ≡ α1/3 – α3/3, C12 ≡ –β/2 – σ/2, D12 ≡ α1/3 – α2/2 +
α3/6, E12 ≡ α1/3 + 2α3/3, F12 ≡ –β/2 + σ/2, and G12 ≡
γ are introduced.

We can similarly obtain a closed equation for the
expansion of Tr3expH123 whose structure is similar to
that for exp ; the coefficients of (4) are then func-
tions of the parameters present in H123.

Calculating exponential functions of matrices
requires the numerical diagonalization of 9 × 9 and
27 × 27 matrices related to  and H123, respectively,
to be performed. The equations

where U12 and U123 are the unitary matrices that diago-

nalize  and H123 into  and , can be used to

numerically find exp  and expH123 as functions of
the corresponding sets of exchange parameters. Direct
numerical calculations show that exp  and
Tr3expH123 have identical matrix structures (5). The

H12'exp α1 T0
0 1( ) T0

0 2( )⊗( ) α2 T0
1 1( ) T0

1 2( )⊗( )+=

+ α3 T0
2 1( ) T0

2 2( )⊗( ) β T1
1 1( ) T 1–

1 2( )⊗(+

+ T 1–
1 1( ) T1

1 2( )⊗ )

+ γ T2
2 1( ) T 2–

2 2( )⊗ T 2–
2 1( ) T2

2 2( )⊗+( )

+ σ T1
2 1( ) T 1–

2 2( )⊗ T 1–
2 1( ) T1

2 2( )⊗+( )

H12'exp

=  

A

 

12

 

0 0 0 0 0 0 0 0

0

 

B

 

12

 

0

 

C

 

12

 

0 0 0 0 0

0 0

 

D

 

12

 

0

 

F

 

12

 

0

 

G

 

12

 

0 0

0
 

C
 

12

 
0
 

B
 

12

 
0 0 0 0 0

0 0  F  
12

 0 E 
12

 0 F 
12

 0 0

0 0 0 0 0

 

B

 

12

 

0

 

C

 

12

 

0

0 0

 

G

 

12

 

0

 

F

 

12

 

0

 

D

 

12

 

0 0

0 0 0 0 0

 

C

 

12

 

0

 

B

 

12

 

0

0 0 0 0 0 0 0 0

 

A

 

12

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ,

H12'

H12'

H12'exp U12 H12
D( )U12

† ,exp=

H123exp U123 H123
D( )U123

† ,exp=

H12' H12
D H123

D

H12'

H12'
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
 

calculations give the sets of parameters {
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. The required renormalization group equa-
tions are obtained by imposing the conditions

(6)

(7)

(8)

and 

(9)

Clearly, the number of these equations exceeds the
number of interactions in initial Hamiltonian (2)
because all possible bilinear interactions between ter-
minal spins are generated. To perform decimation, we
retain three equations (6), (7), and (8) corresponding to
Heisenberg interactions in initial Hamiltonian (1),
which implicitly determine 

 
K

 

s

 
,

 

 

 
∆

 

s

 
, and  as functions

of (

 

K

 

1

 

, 

 

∆

 

1

 

) and (

 

K

 

2

 

, 

 

∆

 

2

 

). This system of equations is a
direct analog of the renormalization group equations
for spin 

 

S 

 

= 1/2 (see Eqs. (12) in [12]).
The next important step of the renormalization

group procedure is the selection of the hierarchical lat-
tice. We will use the simplest lattice variant with
6 nodes and 6 bonds shown in Fig. 2, whose point sym-
metry coincides with that of the initial lattice. Next, we
impose the condition that the initial and renormalized
graphs should be characterized by equal contributions
of the interaction of terminal spins 3 and 6 to the parti-
tion function. At the first stage, we apply decimation 

 

R

 

S

 

,
when the spins 1 and 3 (or 4 and 6) are retained,
whereas the spins 2 and 5 are removed. At the second
stage, the decimation procedure is repeated to remove
the spins 1 and 4. Lastly, we apply the Migdal–
Kadanoff “bond shift” to combine the remaining bonds
placed in parallel and eventually determine the renor-
malized parameters. As a result, we obtain the recursive
equations

(10)

The critical points of the system are defined as the non-
trivial fixed points of these equations, which can conve-
niently be rewritten as the complex function

(11)

Unfortunately, as distinct from the 

 

S

 

 = 1/2 problem,
explicit renormalization group equations cannot be
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obtained; we therefore briefly describe the numerical
procedure that we used. The initial parameters were the
ratio between the interchain and intrachain pairings
C1 = /JAF and the anisotropy parameter ∆ = ∆1. In
addition, we assumed that ∆2 = C1∆, that is, the form of
anisotropy was the same for intrachain and interchain
interactions. Setting an arbitrary starting intrachain

pairing value  (the intrachain interaction constant is

then  = C1 ), we performed two sequential dec-
imation steps to obtain the renormalized pairing con-
stant . At each step, system (6), (7), (8) was solved.

JAF'
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2 3

Fig. 3. Reciprocal critical temperature (Kc) as a function of

the C1 = /JAF ratio calculated using renormalization

group recursive equations for various anisotropy values:
∆ = (1) 1.0, (2) 0.8, and (3) 0.6.
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Fig. 4. (TN, ∆) phase diagram for various C1 = /JAF

ratio values: (1) 1.0, (2) 0.5, and (3) 0.3. The regions above
(below) the critical lines correspond to disordered (ordered)
phases. The dashed lines were drawn by eye.
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(This can be done using the standard procedure for
solving nonlinear systems of equations [25].) Next, we
doubled the result obtained in these transformations to
find the eventual K( f ) value as a function of the starting

value . At the final stage, we determined the fixed

point Kc of the equation  = K( f )( ), for instance,
using the dichotomy method.

2.2. Results

The reciprocal critical temperature Kc = 1/Tc is
shown in Fig. 3 as a function of the C1 parameter for
several anisotropy parameter ∆ values. According to
this figure, the critical temperature rapidly decreases as
interchain interaction weakens. The dependences of the
critical temperature on the exchange anisotropy param-
eter ∆ are presented in Fig. 4; all of them correspond to
the Ising universality class. As distinct from several real
space renormalization group studies for spin S = 1/2,
the phase diagrams for the ferromagnetic and antiferro-
magnetic models are identical; that is, the critical tem-
perature decreases to zero at some nonzero critical ∆c

value. A weakening of interchain pairing strengthens
quantum fluctuations, which results in an increase in ∆c

as C1 decreases.

Note that we did not observe a reentrant behavior of
the (T, ∆) critical line in the temperature range of our
simulations such as was reported in some RSRG stud-
ies of spin s = 1/2 models [18, 19]. The results obtained
in [18, 19] imply the presence of an ordered phase at
relatively high temperatures and its disappearance
when the system is cooled. In this connection, it is per-
tinent to mention work [26]: according to its authors,
these results are an artifact of the method; that is, reen-
trant behavior is observed because of the finite size of
the cluster used in the renormalization group proce-
dure. The effect must disappear as the size of the cluster
increases.

Close to the critical anisotropy value ∆ = ∆c, the
Néel temperature obeys the law

(12)

(see Fig. 5), which is in qualitative agreement with the
result obtained for the spin S = 1/2 model. Unfortu-
nately, numerical calculation results cannot be extrapo-
lated to T = 0. For this reason, we cannot draw any def-
inite conclusions about the character of the ground state
of the model. Scaling equation (12) remains valid at
various ratios between interchain and intrachain pair-
ings. The logarithmic dependence of TN and Tc on the
difference ∆ – ∆c was obtained for an anisotropic spin
s = 1/2 antiferromagnet [27, 28] using scaling theory
and the quantum Monte Carlo method, but with the
∆c = 0 critical value.

K1
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Lastly, let us consider the equivalence (isomor-
phism) of the critical properties of the ferromagnetic
and antiferromagnetic models. It is well known that, in
classical spin models such as the Ising and classical
Heisenberg models, the critical temperature (if any) is
the same for the ferromagnetic (Curie temperature) and
antiferromagnetic (Néel temperature) exchange inter-
actions between the nearest neighbors. This is a direct
consequence of free energy being an even function of
the exchange parameter. Studies of the quantum
Heisenberg spin 1/2 model for the primitive and body-
centered cubic lattices, however, showed that the Néel
temperature was higher than the Curie temperature by
approximately 10%, although this difference rapidly
decreased as S increased [29]. Recently, this problem
was again studied for three-dimensional spin S = 1/2, 1,
and 3/2 models using the method of high-temperature
expansions [30]. For some quantum systems such as the
transverse Ising model and the XY model with quantum
spin 1/2, there is isomorphism of the critical properties of
the ferromagnetic and antiferromagnetic systems [31].
Note that studies of the critical properties of the Heisen-
berg spin 1/2 model with anisotropic exchange on a
square lattice by approximate methods, for instance, by
the method of Green functions, give Tc = TN at all
anisotropy parameter values [32, 33]. The real space
renormalization group method used in [18, 19] gave
TN < Tc for 0 ≤ ∆ < 1. The authors used a special selec-
tion of the hierarchical lattice approximating the square
lattice. The Curie temperature Tc for ferromagnetic
interaction continuously decreases to zero as the anisot-
ropy parameter ∆ becomes smaller, which gives Tc = 0
in the isotropic limit (∆ = 0), in complete agreement
with the Mermin–Wagner theorem [34]. On the other
hand, the results obtained for antiferromagnetic inter-
action were similar to those presented in this work;
namely, Néel ordering was absent below some critical
∆ < ∆c value. Clearly, this problem requires additional
studies.

One of the main qualitative results of our RSRG
analysis is the absence of long-range order in the isotro-
pic limit ∆ = 0. In Section 3, we describe DMRG calcu-
lations of the ground state energy of the model. We
show that this value is substantially lower than that pre-
dicted for classical Néel ordering, which is evidence of
the existence of fairly strong quantum fluctuations in
the system.

3. DMRG ANALYSIS

The density matrix renormalization group (DMRG)
algorithm is one of the most powerful methods for
studying the properties of low-dimensional systems.
This approach allows us to obtain very accurate results
for the wavefunction of the sought state (the ground or
one of the low-lying excited states) and observables
(energy, correlation functions, etc.) using a basis set of
comparatively small dimension m (usually, m ~ 50–150).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The key problem of the DMRG algorithm is the selec-
tion of these m basis functions that should minimize the
difference between the true wavefunction ψ and its
DMRG approximation .

An original one-dimensional DMRG algorithm was
suggested by White [35, 36] in the early 1990s. The
method gives very accurate values for the ground state
energy of Heisenberg spin S = 1/2 and 1 chains and sev-
eral other models [37]. Extending the DMRG algorithm
to two-dimensional systems, however, proved to be a
nontrivial task that has not been formulated uniquely by
now.

The DMRG method was for the first time applied to
the two-dimensional frustrated quantum spin model of
the CaV4O9 compound [38]. More recently, the method
was used to study the two-dimensional t–J model [39–
41] and quantum Hall systems [42, 43]. Various appli-
cations of the DMRG algorithm to two-dimensional
systems are reviewed in [44].

The principal difference between the variants sug-
gested by various authors lies in the method for
“increasing” the system. For instance, one of the sim-
plest extensions to two-dimensional systems is as fol-
lows. Whereas separate nodes are as a rule added to the
system in the one-dimensional DMRG algorithm, we
can add whole columns of spins to the lattice in the two-
dimensional version [45]. The lattice size then remains
constant along the y axis and increases along the x axis
during calculations. Although this approach is fairly
easy to implement, it has an important shortcoming, an
undesirable increase in the amount of computations
because a description of the interaction of two “col-
umns” of spins of height M requires including M addi-
tional bonds into the Hamiltonian at every step. In other
approaches, a system is increased by blocks of an even
more complex shape [46–48], which allows the topo-
logical characteristics of two-dimensional lattices to
remain unchanged but, as previously, which requires

ψ̃
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Fig. 5. (TN, ∆) phase diagram for small TN values close
to ∆c; ∆c ≈ 0.46 for C1 = 1.0.
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including a large number of new bonds and imposes
expensive computation time.

From the point of view of computations proper, the
simplest are “linear growth” methods, when one node is
added at each step of increasing the system. One of
such DMRG algorithm variants was suggested in [49]
to study the two-dimensional Hubbard model. The
algorithm is based on mapping the two-dimensional
spin lattice onto a one-dimensional spin chain (see
Fig. 6). Initially, nearest-neighbor interactions are
taken into account in the two-dimensional system.
However, when this system is appropriately mapped
onto the one-dimensional chain, there appear interac-
tions between nodes situated fairly far from each other.
The traditional DMRG algorithm can be applied to a
one-dimensional chain constructed this way (we used
the variant for finite lattices). We employed this method
to study the properties of the ground state of the isotro-
pic Heisenberg spin S = 1 antiferromagnet on a hexag-
onal lattice with exchange interactions of two types,
J1 = JAF and J2 = .

The ground state energy E0 was calculated for the
6 × 3 cluster. The J2/J1 parameter was varied from 2 to
0.01. In all the calculations, a basis set of dimension
m = 50 was used. The E0 values obtained are listed in
the table in exchange integral J1 units. The same table
contains the energy per bond E0/N. For the 6 × 3 lattice,
the number of bonds is N = 21 (15 horizontal and 6 ver-

JAF'

1 2 3

1

6 5 4

7 8 9

2 3 4 5 6 7 8 9

Fig. 6. Map of two-dimensional lattice to spin chain.

Table

J2/J1 E0 E0/N EN

2.0 –35.1 –1.67 –27.0

1.0 –27.21 –1.296 –21.0

0.5 –23.95 –1.141 –18.0

0.333 –23.08 –1.099 –17.0

0.1 –22.218 –1.0580 –15.6

0.01 –22.1119 –1.0529 –15.06
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tical bonds). According to [35], the ground state energy
of noninteracting isotropic Heisenberg S = 1 chains
should be –1.401 × 15 = –21.0125, which is the sum
over three independent chains each containing five
bonds. It follows from the table that E0 tends to that
value as J2/J1  0, which is evidence that the results
obtained are acceptable.

The ground state energy reaches its limiting value
fairly rapidly, in approximately 50 steps. Note that the
dependence of the ground state energy E0 on the step
number n of the DMRG algorithm is a step function.
A similar behavior of the ground state energy as the
number of iterations increases was reported in recent
work [46], where a spin S = 1/2 antiferromagnet on a
square lattice was studied.

The last column of the table contains the ground
state energy EN for classical Néel ordering. (For the
cluster studied in this work, EN = J1[–15 – 6J1/J2].) The
substantial difference between these values and the val-
ues obtained in the DMRG calculations is evidence of
strong quantum fluctuations in the ground state of the
system.

Note in conclusion that the renormalization group
analysis results, which predict the existence of critical
anisotropy, are in qualitative agreement with studies of
the ground state properties of two-dimensional quantum
spin systems whose ground states can be ordered valence
bond states (VBS). The model of vertex states [50] and
the variational method of tensor products (one of the
density matrix renormalization group variants) [51]
were applied to study spin 3/2 models on a hexagonal
lattice and spin 2 models on a square lattice. These VBS
models contain the so-called “deformation” parameter
(a controlled variational parameter that changes the
weight of maximally polarized states largely present in
the Néel phase), which corresponds to the xxz type of
Hamiltonian anisotropy. It was shown that, in the iso-
tropic case, VBS models described a disordered phase
different from the Néel phase. The main result of these
studies was the existence of a second-order phase tran-
sition from disordered phases with exponentially
damped spin–spin correlation functions into phases
with Néel ordering and long-range correlations as the
deformation (anisotropy) parameter increased. This
phase transition has the universality class of the two-
dimensional Ising model.

An analysis of two-dimensional quantum spin 1 sys-
tems by variational renormalization group methods
encounters objective difficulties. For instance, the
method of matrix products [52, 53] allows VBS states
in one-dimensional spin 1 chains to be successfully
included, but this approach cannot be extended to two-
dimensional systems in the form of the method of ten-
sor products, because such systems do not have the
ground state of ordered valence bonds (the spin S value
is inconsistent with the number of nearest neighbors;
that is, 2S ≠ z). The problem is still open, although the
results that we present lead us to suggest that critical
ND THEORETICAL PHYSICS      Vol. 101      No. 3      2005
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anisotropy and the related phase transition also exist in
the two-dimensional quantum spin S = 1 systems.
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APPENDIX

Spin S = 1 polarization matrices have the form
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Abstract—A theory of magnetic relaxation is developed for geometrically frustrated three-dimensional mag-
nets that can be described by an antiferromagnetic Ising model. These magnetic materials are exemplified by
some of the recently synthesized rare-earth oxide pyrochlores, such as Dy2Ti2O7, Ho2Ti2O7, or Yb2Ti2O7. A
model based on an analogy between the spin ordering in Ising magnets and proton ordering in ice is proposed.
In this model, magnetic point defects treated as noninteracting quasiparticles characterized by well-defined
energies, mobilities, and effective magnetic charges play a fundamental role analogous to that of ion defects in
the physics of ice or by electrons and holes in semiconductors. The proposed model is used to derive expres-
sions for magnetic susceptibility as a function of frequency and temperature. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Some of the recently synthesized rare-earth oxide
pyrochlores, such as Dy2Ti2O7, Ho2Ti2O7, or Yb2Ti2O7,
belong to the class of geometrically frustrated magnets
(GFMs) [1], in which magnetic lattices cannot satisfy
all of the conditions for local magnetic order simulta-
neously. Originally, a physical model of this kind was
considered in a study of the triangular lattice Ising anti-
ferromagnet [2], where spins cannot be antiparallel in
all nearest neighbor pairs simultaneously, because
closed loops of bonds contain an odd number of verti-
ces. In rare-earth oxide pyrochlores, rare-earth mag-
netic ions reside at the vertices of linked regular tetra-
hedra (see Fig. 1). The impossibility of simultaneous
fulfillment of ordering conditions for all spins (frustra-
tion) entails ground-state degeneracy and very special
temperature behavior. At extremely high temperatures
(kT @ J, where k is Boltzmann’s constant and J is the
coupling constant), magnetic coupling is negligible and
the spin system is obviously in a paramagnetic state. At
lower temperatures (kT ~ J), magnetic coupling cannot
be neglected and spins are correlated. However, it was
shown experimentally that spins still exhibit paramag-
netic behavior in the sense that magnetic susceptibility
follows the Curie law, χ ∝  1/T [1, 3, 4]. The persistence
of this behavior of a spin system at extremely low tem-
peratures (kT ! J) has generated the term cooperative
paramagnetism.

What is the mechanism of transition between para-
magnetic and cooperative paramagnetic states? Does
any magnetically ordered state exist at extremely low
temperatures? What is the nature of the cooperative
paramagnetic state? What are its properties? These are
the key questions arising in studies of GFMs. In this
paper, magnetic relaxation in geometrically frustrated
three-dimensional magnets is analyzed in the theoreti-
cal framework of an Ising model. The analysis is
1063-7761/05/10103- $26.000481
focused on the class of models with magnetic lattice
consisting of corner-sharing tetrahedra (see Fig. 1), as
in oxide pyrochlores. It is shown here that the magnetic
behavior exhibited by these systems can be described
by the “magnetic variant” of the theory of proton order-
ing in ice [5, 6]. The present treatment relies on a for-
mal analogy (originally put forward in [7]) between
spin ordering in certain ferromagnets and the proton
ordering governed by the ice rules. Trying to find an
explanation for the ice rules, I proposed a Hamiltonian
for the Coulomb interaction between protons in ice,
which turned out to be formally identical to an antifer-
romagnetic Ising Hamiltonian [8, 9], and derived the
ice rules as an obvious consequence of the short-range
part of the Coulomb interaction. The similarity of the
Hamiltonians suggests that there is a fundamental anal-
ogy in both static ordering and dynamic behavior. In
this study, the analogy is used to describe magnetic

Fig. 1. Magnetic lattice of a rare-earth oxide pyrochlore
schematically represented as a network of regular tetrahedra
with magnetic ions at their vertices. Open and closed circles
are “up” and “down” spins.
 © 2005 Pleiades Publishing, Inc.
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relaxation in the system under analysis, i.e., its
response to applied magnetic field characterized by
arbitrary time dependence.

The presentation below is organized as follows.
First, the Hamiltonian of the system is presented, and
both ground and excited states are described. Next, a
proportional to local magnetization is introduced to
characterize spin ordering, and the relationship
between the dynamics of defects and the configuration
vector is analyzed. Finally, an expression is derived for
frequency-dependent magnetic susceptibility.

2. GROUND STATES AND DEFECTS

Since the present approach substantially relies on
the aforementioned analogy between spin ordering in
rare-earth oxide pyrochlores and proton ordering in
ordinary ice, it should be emphasized that the mecha-
nism of magnetic relaxation considered here is com-
pletely analogous to electrical relaxation in ice as
described by the theory developed mainly in [5, 10–12].
The most elegant formulation of the theory, based on
thermodynamics of irreversible processes, was given in
[5]. A detailed discussion of its applications and com-
parison with experimental results were presented in [6].
Since these publications may not be readily available, a
self-contained analysis including a detailed derivation
of the equations of the Jaccard theory is presented here
instead of simply referring to [5].

It should also be mentioned that some rare-earth
oxide pyrochlores are inherently frustrated Heisenberg
antiferromagnets. These materials are not analyzed in
this paper.

It is most surprising that behavior characteristic of
frustrated magnets is also exhibited by other oxide
pyrochlores (Dy2Ti2O7, Ho2Ti2O7, and Yb2Ti2O7), in

Fig. 2. Diamond lattice dual to the lattice shown in Fig. 1,
with vertices at the centers of the tetrahedra. Open and
closed circles constitute face-centered cubic sublattices.
Each vertex is the junction point of four bonds with the
nearest neighbors. Magnetic ions reside at the midpoints of
bonds, and magnetic anisotropy axes are parallel to bonds.
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which spin–spin interaction per se is described by the
ferromagnetic Heisenberg model (i.e., the correspond-
ing energy proportional to –siα · sjβ. However, these
materials are characterized by strong uniaxial magnetic
anisotropy, with axes pointing from the centers of tetra-
hedra to their vertices. Since the cosine of the tetrahe-
dral angle is –1/3, the effective coupling corresponds to
an antiferromagnetic Ising model [8, 9]:

(1)

where J > 0, the subscript i refers to shaded tetrahedra
in Fig. 1, the subscript α labels the spins in each tetra-
hedron, and the sum runs over all nearest neighbor pairs
(see Fig. 1). The Ising spin σiα can be either +1 or –1.
For convenience, the dual lattice consisting of the tetra-
hedron centers (see Fig. 2) is considered in conjunction
with the magnetic lattice (Fig. 1). For rare-earth oxide
pyrochlores, it is a diamond lattice consisting of two
interpenetrating face-centered cubic sublattices. If one
of these is treated as a basic one, then subscripts i and
α refer to vertices and midpoints of nearest neighbor
bonds in this sublattice, respectively. By convention,
σiα = 1 and –1 for spins that are, respectively, parallel
and antiparallel to the unit vector eiα of a magnetic
anisotropy axis pointing toward the tetrahedron center
(or a unit bond vector in the dual lattice).

The ground state of the four spins at the vertices of
a pyrochlore-lattice tetrahedron corresponds to any
configuration with two spins up and two down. There
exist six distinct configurations of this kind, and the
corresponding energy is –J per spin. The crystal con-
sisting of N tetrahedra is in the lowest energy state
when each tetrahedron is in the ground state, since the
Hamiltonian for the crystal can be represented as a sum
over all constituent tetrahedra. Therefore, the energy of
the ground state of the crystal is –J per spin. The num-
ber of such states can be calculated by following the
approximation proposed by Pauling [13]. There are
16 distinct configurations of a pyrochlore-lattice tetra-
hedron; i.e., the relative number of distinct ground-state
configurations is 6/16. If the spins are uncorrelated,
then the number of ground states of the crystal is (3/8)N

times the total number 22N of distinct spin configura-
tions: w = (3/2)N.

No spin can be flipped without increasing the energy
of the system in any ground state at zero temperature,
whereas flipping a spin at a finite temperature increases
its energy by e± = 4J and creates two defect states sche-
matized in Fig. 3. The positive magnetic defect defined
as the tetrahedral four-spin configuration with three
spins up and one down is a magnetic analog of an ionic
defect in ice. Accordingly, the negative magnetic defect
(with three spins down and one up) is analogous to a
negative ionic defect. Any spin configuration contain-
ing magnetic defects admits spin flips without any

H
J
2
--- σiασ jβ,

nn

∑=
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increase in energy. Indeed, flipping one of the three
identical spins in a magnetic defect is equivalent to
moving the defect to another site without creating a
new defect (see Fig. 3). A sequence of spin flips makes
up the path of a defect considered as a moving quasi-
particle. This explains the fundamental role played by
defects in magnetic relaxation.

Note that the use of the nearest neighbor model with
Hamiltonian (1) implies that the coupling between
defects drops to zero even across the lattice spacing.
This approximation is obviously valid for exchange
(short-range) interaction, whereas the slowly decreas-
ing magnetic dipole–dipole interaction characteristic of
the materials in question may be expected to lift the
degeneracy inherent in the nearest neighbor model.
However, experiments have shown that measured resid-
ual entropy is close to that predicted by Pauling’s
model, no ordered structures have been found, and
computations predict that the relative number of nonde-
generate states is small. Analogously (and even more
surprisingly), the long-range part of the Coulomb inter-
action does not lift the ground-state degeneracy in the
physics of ice, while the ice rules stem from its short-
range part. Even though this problem has been
addressed in a vast literature, its complete solution is
not known to this day (see [14] for the latest results).

A relatively long-range interaction between defects
can be neglected when the concentration of defects is
low, which is normally the case. However, even in the
absence of direct interaction, frustrated systems are
characterized by a specific interaction due to the depen-
dence of entropy on the average distance between
defects. This dependence is determined by the spin–
spin correlation function, which has actually been cal-
culated in [15]. The calculated results suggest that this
interaction decays with increasing distance faster than
the direct Coulomb interaction and can therefore be
neglected. Thus, defects can be treated as noninteract-
ing particles analogous to ions in the lattice gas models
of superionic conductors, mainly because their concen-
tration is low and the ensuing results agree with exper-
iment.

To calculate the equilibrium defect concentration,
note that each vertex of the dual lattice can be in one of
14 states: six defect-free states, four orientations of a
positive defect, and four orientations of a negative
defect. The two states with all spins up or down are
ignored since the corresponding energies are too high.
If the corresponding numbers Ni of vertices in these
states (i = 1, …, 14) are treated as independent, then the
total number of distinct configurations is N!/ΠNi,
including those with correlated and anticorrelated near-
est neighbor vertices (with parallel and antiparallel
spins at the midpoints of nearest neighbor bonds). It is
obvious that configurations of the latter type must be
not be counted. If the probability of a correlated config-
uration is 1/2 (as in Pauling’s model), then the number
of correlated configurations is w± = (1/2)2NN!/ΠNi,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where 2N is the number of bonds in the crystal. If
defects are created in pairs and all defect orientations
are equally probable (N1 = … = N6, N7 = … = N14), the
entropy per spin is –k{2xlnx + (1 – 2x)ln(2(1 – 2x)/3)},
where x = N±/N is the concentration of defects per ver-
tex. Hence, the Helmholtz free energy per vertex is

(2)

and the equilibrium defect concentration is

(3)

At the relatively low temperatures typical for most
experiments, the concentration of defects is exponen-
tially small:

With increasing temperature the concentration tends to
the finite limit x± ≈ 2/7.

3. MAGNETIC CHARGES 
AND GOVERNING EQUATIONS

Magnetic defects can carry effective magnetic
charges. To demonstrate this possibility, an arbitrary
spin configuration is represented as a superposition of
intersecting polygonal strings of dual-lattice bonds
whose magnetic moments are ordered along the corre-
sponding strings. In defect-free configurations (with
two nearest spins up and two down for each dual-lattice
vertex), each string either closes on itself or terminates
on the crystal surface. In a configuration with defects, a
string may terminate on a defect, i.e., inside the crystal.

f x( ) e±x kT+=

× 2x x 1 2x–( ) 2
3
--- 1 2x–( ) 

 ln+ln
 
 
 

,

x±

2
3
---

e±

2kT
---------– 

 exp

1
4
3
---

e±

2kT
---------– 

 exp+

-----------------------------------------.=

x±
2
3
---

e±

2kT
---------– 

  .exp≈

Fig. 3. Fragments of magnetic lattices with (a) no defects,
(b) a pair of magnetic defects created by flipping a spin on
the vertical bond, and (c, d) displacement of a magnetic
defect downwards by a lattice spacing caused by a spin flip
on the vertical bond. Hatched, closed, and open circles rep-
resent defect-free vertices and positive and negative mag-
netic defects, respectively.

(a) (b) (c) (d)
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The magnetic field generated by each string of mag-
netic dipoles is equivalent to the superposition of the
fields of magnetic charges placed at its ends. Even
though this can be demonstrated by straightforward
calculation, a much simpler proof relies on analogy
with macroscopic electrostatics. Indeed, the macro-
scopic magnetic field can be calculated by adding the
applied magnetic field to the field generated by all mag-
netic dipoles. By analogy with macroscopic electrostat-
ics, the latter field is equal to that generated by space
charge with density –divM, where M is magnetic
moment density. Since the divergence does not vanish
only for defects of the type illustrated by Fig. 3, it is
clear that positive and negative defects can be associ-
ated with positive and negative magnetic charges,
respectively.

The absolute value of the magnetic charge carried
by a defect can be expressed in terms of spin magnetic
moment as follows. Since the displacement of a posi-
tive defect to the nearest neighbor dual-lattice vertex in
an applied magnetic field corresponds to flipping one of
its nearest spins, the resulting change in energy is δE =
2µH, where H is the strength of magnetic field parallel
to the spin’s magnetic moment. On the other hand, if
the same displacement is treated the motion of a mag-
netic defect with charge m driven by the force F = mH,
then the energy increment is δE = mHa, where a is the
dual-lattice spacing. Comparing the two expressions,
we obtain m = 2µ/a. To avoid confusion, the ratio of the
force to the magnetic field strength is treated as the key
parameter. Accordingly, the dimension of magnetic
charge is Hm/A, and the corresponding dimension
Hm2/A of µ is that of Coulomb’s magnetic moment,
which is related to Ampére’s magnetic moment µa as
µ = µaµ0, where µ0 is the free-space permeability. Note
that the magnetic field generated by spins cannot be
treated as the field of effective magnetic charges. For
example, the demagnetizing field generated by spins in
a uniformly polarized sample does not vanish even in
the absence of defects. However, this demagnetizing
field can be taken into account in a standard manner by
introducing a surface polarization charge density.

The analysis above is part of a theory in which mag-
netic defects are interpreted as quasiparticles. Accord-
ingly, a correlated spin system should be treated as a
system of defects, while the spins of all ground-state
sites are not taken into account. However, a model of
this kind differs from conventional quasiparticle theo-
ries in that both ground and excited states are infinitely
degenerate. These states are completely characterized
by specifying not only the number and location of mag-
netic defects, but also the spin configuration of the
entire crystal. However, this information is redundant
for many purposes. In particular, it is shown below that
magnetic phenomena can be described in terms of a sin-
gle vector variable: a configuration vector proportional
to local magnetization. Configurations with distinct
spin orderings characterized by equal magnetizations
JOURNAL OF EXPERIMENTAL A
are equivalent in terms of their magnetic properties. In
view of this fact and the analogy with the physics of ice,
the configuration vector is defined as follows [5, 16]:

(4)

where the sum runs over all spins inside a macroscopi-
cally small volume V around the point r. It is clear that
the configuration vector is proportional to the local
magnetization W = M/m.

Another, probably more important, role played by
the configuration vector stems from its relationship to
defect fluxes. Suppose that Ns spins initially parallel to
a unit vector e in a macroscopically small volume V
have flipped. The ensuing change in the configuration
vector is δW = –aeNs/V. Since each spin flip is equiva-
lent to the displacement of a positive defect by dr+ =
−ae or of a negative defect by dr– = ae, the change in
the configuration vector can be represented as δW =
dr+N+ – dr–N–, where N+ and N– denote, respectively,
the number of displacements of positive and negative
defects caused by spin flips (Ns = N+ + N–). Accord-
ingly, ∂W/∂t = j1 – j2, where j1, 2 = v±N±/V denotes the
positive- or negative-defect flux. This relation can be
rewritten in integral form:

(5)

Note also that the residual entropy of the system is
slightly reduced by specifying the configuration vector,
i.e., by more detailed characterization of spin ordering.
It was shown in [16] that this reduction can be repre-
sented as

(6)

Equations (5) and (6) can be used to express the defect
fluxes in terms of applied magnetic field and configura-
tion vector. This can be done in a standard manner by
invoking the expression for local entropy production
density used in thermodynamics of irreversible pro-
cesses [5]. In the present context, it can be written as
follows:

(7)

where i = 1 and 2 correspond, respectively, to positive
and negative defects and m1, 2 = ±2µ/a denote their
respective magnetic charges. The first term in (7) is the
work done by the applied magnetic field per unit time.
The second term related to the aforementioned ordering

W r( ) a
2
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------,
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caused by defect fluxes. Substituting (5) and (6) into (7)
yields

(8)

where η1, 2 = ±1 and Φ = (8/ )akT. Alternatively, the
same quantity can be represented in terms of general-
ized driving forces fi as . Comparing the two
representations, we obtain an expression for the driving
forces:

(9)

Here, the second term reflects spin ordering: when the
spins are partially ordered, there exists a nonzero defect
flux even in the absence of applied magnetic field. This
contribution to the generalized force is due to entropy,
but not to any effect of applied field. By using the
expression for the generalized forces and introducing
mobilities µi and defect concentrations ni = xiN, the
fluxes can be written as

(10)

Here, the off-diagonal elements of the transport coeffi-
cient matrix (cross-field transport coefficients) are
neglected in the linear approximation as quantities of
second order in density.

4. MAGNETIC SUSCEPTIBILITY

Equations (5) and (10) constitute a closed system,
which can be solved to find W and ji for an arbitrary
time-dependent applied magnetic field. These simple
equations are remarkable in that each instantaneous
flux density in (10) depends on its previous values by
virtue of (5).

These equations can be used to find the frequency
dependence of magnetic susceptibility as follows.
When a uniform magnetic field with strength
~exp(−iωt) is applied to the system, the distribution of
magnetic defects (magnetic charge carriers) remains
uniform. Since all relations in the present theory are lin-
ear, all variables are characterized by harmonic time
dependence. Therefore, the Fourier transform of Eq. (5)
yields

By substituting the Fourier transform of (10) for j1ω and
j2ω, magnetization is expressed in terms of the configu-
ration vector as

(11)

TṠ ji miH η iΦW–( ),⋅
i 1=

2

∑=

3

ji f i⋅∑

f i miH η iΦW.–=

ji µini miH η iΦW–( ).=

Wω j1ω j2ω–( )/ iω–( ).=

Mω χ ω( )Hω, χ ω( ) m2/Φ
1 iωτ–
------------------,= =
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where the relaxation time τ is defined by the relation
τ−1 = (µ1n1 + µ2n2)Φ and the low-frequency magnetic

susceptibility is χ(0) = ( /2)(µ2/a3)/kT. The absolute
value of this susceptibility is twice as large as the sus-
ceptibility of normal paramagnet at similar density and
temperature. However, the result obtained for a cooper-
ative paramagnet holds at an arbitrarily low tempera-
ture; i.e., the former susceptibility can be much higher
than the latter. An estimate for the static susceptibility
of a rare-earth oxide pyrochlore at T = 10 K is obtained
by using g ≈ 9 in µ = gµB and a = 2 × 10–10: χa = χ/µ0 ≈
7.5, where the dimensionless susceptibility is defined in
terms of the Ampére’s magnetic moment as χa = Ma/H.

5. CONCLUSIONS

It is shown that magnetic processes in geometrically
frustrated magnets can be described in terms of defect
concentrations, defect flux densities, and a configura-
tion vector (Eqs. (3), (10), and (5), respectively). The
model yields expressions for frequency-dependent
magnetic susceptibility and static magnetic susceptibil-
ity (Eq. (11)). Note also that the “magnetic variant” of
the Jaccard theory developed here provides a basis for
direct treatment of a variety of unusual magnetic phe-
nomena analogous to certain electrical phenomena in
ice: magnetic charge transport, magnetic field screen-
ing, and other physical processes due to the existence of
magnetic charge associated with defects.

Finally, some comments are in order concerning the
scope of the theory and possible lines of further devel-
opment. For simplicity, it is assumed in the present
analysis that the defects are uniformly distributed and
their concentration is given by (3). Since magnetic
defects are created in pairs, this implies that the macro-
scopic density of magnetic charge is zero, i.e., magnetic
field can only be generated externally. In a nonuniform
state, the defect concentrations are functions of coordi-
nates, and two additional equations are required to find
them. As in the theory of electrical properties of ice,
these equations can be derived from the continuity
equation for the fluxes, relation (6), and the magnetic
analog of Poisson’s equation [17].
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Abstract—The process of electromagnetic field penetration through lead-doped lanthanum manganites exhib-
iting colossal magnetoresistance has been studied. The measurements have been performed in a range of radio
frequencies from 20 kHz to 10 MHz in the temperature interval containing a magnetic phase transition. Appli-
cation of a constant external magnetic field leads to an increase in the transmission coefficient. Relative varia-
tions of the electromagnetic field transmission coefficient are several times as large as the relative change in the
dc magnetoresistance. The temperature dependence of the relative change in the transmission coefficient has
been studied. Variations of the transmission coefficient sharply decrease in the vicinity of the phase transition
temperature, but they still remain rather large at temperatures above the Curie point. © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

The discovery of the phenomenon of colossal mag-
netoresistance (CMR) in the vicinity of a magnetic
phase transition temperature in lanthanum manganites
has stimulated an enduring activity in investigations of
the physical properties of a broad class of strongly cor-
related oxide-based materials with perovskite struc-
tures and related mesoscopic systems. It was found that
the physical properties of these materials are deter-
mined by the strong relationship between their struc-
ture and the magnetic and charge subsystems. At
present, the static electrical and magnetic properties of
doped manganites near the magnetic phase transition
temperature have been studied in sufficient detail [1, 2].

A special position in the arsenal of methods used for
the investigation of such systems is occupied by the
dynamic electromagnetic techniques, which provide
diagnostics of the response of the spin subsystem to
external action in a broad frequency range. In applica-
tion to manganites, most extensively developed are the
methods based on the ferromagnetic resonance and
antiresonance in the microwave frequency range. At the
same time, the study of manganites by radio frequency
(rf) techniques has received much less attention. How-
ever, the rf range is of considerable importance because
the effects observed at these frequencies have mach
greater magnitudes than those detected by the dc mea-
surements. By varying the probing signal frequency, it
is possible to control the skin depth and make it compa-
rable to the sample size, thus providing a smooth tran-
sition between various mechanisms involved in the
1063-7761/05/10103- $26.000487
interaction of the probing electromagnetic field with
the spin subsystem of the probed material.

The skin effect in manganites in the rf range has
been studied in [3], where it was pointed out that the
method of electromagnetic field penetration is an effec-
tive tool for the investigation of dynamic properties of
these materials. A detailed study of the magnetoimped-
ance effect was performed in [4, 5], where the data
obtained in a broad frequency range were compared to
the results of CMR measurements in the dc regime. The
magnetic state of manganites in these experimenters
was studied in the region of the magnetic phase transi-
tion temperature TC.

The magnetic susceptibility measured in mangan-
ites at low frequencies and in a constant magnetic field
significantly decreases at T > TC, and the temperature
dependence of the susceptibility frequently deviates
from that according to the Curie law [6, 7]. Data on the
absorption of electromagnetic waves obtained in the
microwave range [7] and from the surface impedance
measurements [8] showed that the effects related to the
magnetic antiresonance exist above the Curie tempera-
ture (TC). These results can probably be interpreted in
terms of conservation of the local magnetic order in
manganites in a certain temperature interval extending
well above TC.

The measurements of the electromagnetic charac-
teristics of manganites in the rf range at temperatures
near the magnetic phase transition and the elucidation
of physical mechanisms responsible for the variation of
these characteristics are very important and interesting
problems. These were the main goals of the present
 © 2005 Pleiades Publishing, Inc.
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study, in which the experiments were performed using
the method of electromagnetic field penetration. This
method has been developed in detail previously and
successfully applied to the investigation of manganites
and some other low-conductivity media [9, 10]. Under
conditions where the thickness of a sample plate
through which the probing field penetrates is smaller
than the skin depth, variations of the electromagnetic
wave transmission coefficient in the applied magnetic
field are determined by changes in the sample imped-
ance. These changes of the impedance are related to
variations of the electric resistance and the dynamic
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Fig. 1. The results of the resistivity (ρ), magnetoresistance
(r) and magnetic susceptibility (χ) measurements for lead-
doped lanthanum manganites: (a) the temperature depen-
dence of resistivity and MR for compositions 1 (circles) and
2 (triangles); (b) the field dependence of the relative MR of
composition 2 at T = 291 K; (c) the temperature dependence
of the magnetic susceptibility of composition 1.
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magnetic permeability. Therefore, by studying rf elec-
tromagnetic field penetration in a sample in the vicinity
of the magnetic phase transition temperature, it is pos-
sible to obtain information concerning the state of the
magnetic subsystem of the sample material.

In our experiments, the electromagnetic field pene-
tration through lead-doped lanthanum manganites has
been studied in a range of radio frequencies from
20 kHz to 10 MHz. Such manganites, exhibiting a mag-
netic phase transition above room temperature, are
model magnetic systems whose static properties are
determined by the double exchange in the presence of
strong spin-lattice interactions. We have studied elec-
tromagnetic field penetration through a manganite plate
at temperatures both below and above the magnetic
phase transition temperature. The results of our investi-
gation of the rf characteristics will be compared to the
results of measurements of the static magnetic and
magnetotransport properties in order to reveal differ-
ences between the static and dynamic properties of
manganites in the vicinity of the magnetic phase tran-
sition.

2. EXPERIMENTAL METHOD

Samples of lead-doped lanthanum manganites
La0.85Pb0.15MnO3 and La0.75Pb0.25MnO3 (below, compo-
sitions 1 and 2, respectively) were synthesized via ther-
mal treatment of preliminarily prepared precursors—
lead and manganese oxalates. The precursors were
annealed for 12 h in air at 800°C and pressed, after
which the blanks were additionally annealed for 12 h in
oxygen flow at 950°C. The content of lead and manga-
nese and the Mn3+/Mn4+ ratio in the pressings were
determined by means potentiometric titration. The elec-
tromagnetic field penetration experiments were per-
formed on 1.2-mm-thick plates cut from the massive
blanks. The results of our measurements of the magne-
toresistance (MR) and the magnetic susceptibility (χ)
are presented in Fig. 1.

The temperature dependences of the resistivity ρ(T)
and the relative MR defined as

(where H is the magnetic field strength) presented in
Fig. 1a are typical of the doped manganites. The data on
the MR presented in Fig. 1 were obtained for H =
10 kOe. At room temperature (T = 291 K) and H = 0,
the resistivity was 0.134 Ω cm for composition 1 and
0.185 Ω cm for composition 2. In both manganites, the
MR is negative and its temperature dependence exhibits
a maximum (which is more pronounced for composi-
tion 2) near the magnetic phase transition temperature.
As the temperature is increased further, the MR
decreases. The maximum relative MR measured at H =
10 kOe did not exceed –6.3 and –5.4% for composi-

r
ρ H( ) ρ 0( )–

ρ 0( )
------------------------------ 100%×=
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tions 1 and 2, respectively. The field dependence of the
relative MR measured at room temperature can be
divided into two parts (Fig. 1b). The first part extends
over field strengths below 600 Oe. In this region, the
MR exhibits a nonlinear dependence on the applied
field strength. In the second region covering the fields
above 600 Oe, the MR exhibits approximately linear
growth with the field strength.

Figure 1c shows the temperature dependence of the
magnetic susceptibility measured for composition 1 at
a frequency of 80 Hz. As can be seen, χ exhibits a sharp
decrease in the region of the magnetic phase transition.
The curves measured in the sample heating and cooling
mode were practically identical. Using the temperature
dependence of χ, we determined the magnetic phase
transition temperature as TC1 = 322 K for composition 1
and TC2 = 341 K for composition 2.

The absolute value of the electromagnetic field
transmission coefficient D was measured in the range of
frequencies from 20 kHz to 10 MHz at various temper-
atures and applied constant magnetic field strengths.
Figure 2 shows a schematic diagram of the experimen-
tal arrangement. The probing alternating (rf) magnetic
field Hin was generated by a coil situated on one side of
the sample plate. The transmitted field Hout on the other
side of the plate was detected using another coil. The
manganite plate served as a screen. The absolute value
of the transmission coefficient was calculated using the
formula |D| = |Hout/Hin|. The constant magnetic field
was always applied in the plane of the sample and was
parallel to the probing alternating field. The absolute
value of D was studied as a function of the applied con-
stant field strength and/or the temperature in a range
from 273 to 365 K.

3. EXPERIMENTAL RESULTS

The rf electromagnetic field transmission coefficient
D strongly depends on the applied constant magnetic
field strength. The fact that the relative change in the
transmission coefficient may exceed the corresponding
value (r) of the static MR was reported previously [9].
The field dependence of the relative change in the trans-
mission coefficient was determined as

Figure 3a shows the plots of rm versus magnetic field
strength for composition 2 measured at room tempera-
ture and various frequencies. As can be seen, the rela-
tive variations of this value reach 85%. As the probing
field frequency is increased, the rm value also grows and
the curve exhibits a maximum. At high frequencies, the
relative variations of the transmission coefficient tend
to decrease.

Figures 3b and 3c show the field dependences of rm

measured at different temperatures: below and above

rm
D H( ) D 0( )–

D 0( )
-------------------------------- 100%.×=
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the temperature of the magnetic phase transition. The
data presented in Fig. 3b were obtained at a frequency
of f = 200 kHz, while the curves in Fig. 3c were mea-
sured at f = 8 MHz. As can be seen, heating a sample

H

Hin Hout

d

1
2

3
4

Fig. 2. A schematic diagram of the experimental arrange-
ment: (1) probing coil; (2) detecting coil; (3) shield;
(4) sample plate.
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Fig. 3. Plots of the relative change rm in the transmission
coefficient versus magnetic field strength for composition 2
measured (a) at room temperature (T = 291 K) and various
frequencies and (b, c) at different temperatures (below and
above TC) at f = 0.2 (b) and 8 MHz (c).
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Fig. 4. The temperature dependences of the rf signal amplitude Uout transmitted through a plate of composition 1 measured at f =
0.2 (a) and 8 MHz (b) in a zero field (1) and in a field of H = 8 kOe (2).
above the phase transition temperature dramatically
changes the field dependence of the transmission coef-
ficient.

Figure 4 shows the temperature dependence of the
amplitude Uout of a signal transmitted through the sam-
ple plate. The Uout value is proportional to the transmis-
sion coefficient D. All these measurements were per-
formed in the sample cooling mode. Figure 4a presents
a curve obtained at f = 200 kHz in the absence of an
applied constant magnetic field. As can be seen the
amplitude of the transmitted signal significantly
decreases at temperatures below the phase transition
temperature. Figure 4b compares the Uout(T) curves
measured at f = 8 MHz before and after application of a
constant field with a strength of 8 kOe. As can be seen
from curve 1 measured for H = 0, the transmitted signal
amplitude also decreases at temperatures below the
phase transition temperature. Curve 2 shows that the
application of an external field sufficient to saturate the
sample removes pronounced features in the region of
the phase transition.

Let us consider the temperature dependences of the
relative change rm in the transmission coefficient mea-
sured for the same sample in the nonmagnetized (H = 0)
and saturation-magnetized (H = 8 kOe) states. Figure 5
shows the results of such comparative measurements at
a frequency of 8 MHz. The data presented in Figs. 4b
and 5 are well consistent with each other. As the tem-
perature increases to approach TC, the efficiency of
action of the applied constant field decreases.

4. THEORY OF THE rf ELECTROMAGNETIC 
FIELD PENETRATION THROUGH

A CONDUCTING FERROMAGNETIC PLATE

This section briefly considers the theory of the elec-
tromagnetic field penetration through a conducting fer-
romagnetic plate. At a sufficiently high (microwave)
frequency on the order of several gigahertz, the transmis-
sion coefficient is significantly influenced by the ferro-
magnetic resonance and antiresonance effects [11, 12].
Let us restrict the consideration to much lower frequen-
JOURNAL OF EXPERIMENTAL A
cies in the rf range. The problem of description of the rf
electromagnetic field penetration through a medium
has been extensively studied. For a theoretical descrip-
tion of the observed phenomena, we will use an approx-
imation ignoring the resonance and antiresonance
effects, but admitting broad variation of the following
parameters: frequency, skin depth, and magnetic per-
meability.

A formula for the coefficient of radiation transmis-
sion through a conducting plate under normal skin
effect conditions [13] is as follows:

(1)

where km = (1 + i)/δ is the wavenumber in the conduct-

ing medium, δ =  is the skin depth, µ = 1 +

D
2Zm

2Zm kmd( )cosh Z kmd( )sinh+
-----------------------------------------------------------------------,=

2ρ/ωµµ0
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Fig. 5. The temperature dependence of the relative change
rm in the transmission coefficient measured for composi-
tion 1 at f = 8 MHz and H = 8 kOe.
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χ is the relative dynamic differential permeability, and
ω = 2πf.

As can be seen, the transmission coefficient D
depends on the relations (i) between impedances of the

sample (Zm) and the surrounding space (Z = )
and (ii) between the plate thickness d and the skin
depth δ. The impedance of the sample plate is given by
the formula

(2)

For a well conducting medium, this value is always
smaller than Z (|Zm| ! Z).

There are two possible situations in which one of the
two terms in the denominator of expression (1) pre-
dominate. The case of low frequencies and thin plates
corresponds to the condition

This condition is satisfied provided that

(3)

In this case, the transmission coefficient is determined
by the formula

which further simplifies for d ! δ to yield

(4)

The corresponding relative change in the transmission
coefficient in this case can be calculated using the for-
mula

(5)

Since d ! δ, we may assume that rm is small. If the MR
is small—that is, ρ(H) ≈ ρ(0)—and the initial perme-
ability is large (µ(0) @ 1 in a saturating field, where
µ(H) ≈ 1 ! µ(0)), a change in the absolute value of the
transmission coefficient is given by the formula

(6)

Thus, a change in the transmission coefficient for the rf
field penetrating through a very thin plate at low fre-
quencies for µ(0) @ 1 are related predominantly to vari-
ations in the magnetic permeability. The change is
small (rm ! 1), has a positive sign, and (in the absence
of frequency dispersion of the material constants) is
proportional to the frequency squared (rm ~ ω2).

µ0/ε0

Zm
1 i+

δ
----------ρ.=

2Zm kmd( ) @ Z kmd( ).sinhcosh

kmd  ! 1, d  ! 2ρ/Z .

D 1/ kmd( ),cosh=

D 1
1
3
--- d

δ
--- 

 
4

.–≈

rm
1
12
------d4ω2µ0

2 µ2 H( )
ρ2 H( )
--------------- µ2 0( )

ρ2 0( )
-------------– 

  .–=

rm

d4µ2 0( )µ0
2

12ρ2 0( )
-------------------------ω2 (for  H ∞).≈
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In the other limiting case in which 2Zm  !

Z  in the denominator of expression (1), the
transmission coefficient is given by the formula

(7)

which yields for a thin screen (d ! δ)

(8)

In this limiting case, the transmission coefficient is real
provided that the material constants are real. Expres-
sion (8) gives the following formula for the relative
variations in the absolute value of the transmission
coefficient:

(9)

where ∆ρ(H)/ρ is the relative change of the resistivity
in the constant magnetic field H and ∆µ(H)/µ is the rel-
ative change of the magnetic permeability. For |∆ρ/ρ| !
1 and µ(H  ∞)  1, we obtain [9]

(10)

Using formula (10), it is possible to evaluate the initial
dynamic magnetic permeability from the correspond-
ing relative change of the electromagnetic field trans-
mission coefficient. In this limiting case, we can also
use relation (8) to derive the following formula taking
into account the MR of the plate:

(11)

Finally, let us consider the case of a thick conduct-
ing plate, which corresponds to d @ δ. In this case, for-
mula (7) yields

(12)

Obviously, a decisive factor influencing the transmis-
sion coefficient in this case is the skin effect. If the
applied constant field exceeds the saturation level, rela-
tion (12) reduces to

Substituting explicit expressions for the skin depth δ =

 for the normal skin affect and assuming

kmd( )cosh

kmd( )sinh

D
2Zm

Z kmd( )sinh
----------------------------

2 1 i+( )ρ
Zδ

----------------------= =

× 1
d/δ( ) d/δ( )cossinh i d/δ( ) d/δ( )sincosh+

-----------------------------------------------------------------------------------------------------,

D
2ρ

Zµd
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ρ
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D
2ρ

Zδ d/δ( )sinh
2
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8ρ
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D H ∞( )
D 0( )

-------------------------------
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that µ(0) @ 1, we eventually obtain

(13)

It should be noted that the above description of the
electromagnetic field penetration through a ferromag-
netic conducting plate has (in addition to the explicitly
formulated assumptions) the following limitations. It
was also assumed that the plate not limited in the xy
plane, while the real experiments are performed with a
plate of finite dimensions. In addition, the theoretical
analysis assumes that the probing rf field is homoge-
neous, whereas in the experiments this field represents
a stray field of the coil. These circumstances affect the
absolute values of the transmission coefficient. How-
ever, from the standpoint of the analysis of the field and
temperature dependences of the transmission coeffi-
cient, the influence of these additional factors on the rm

value is not as significant. Therefore, application of the
proposed simplified approach to the interpretation of
qualitative features of the experimental results is quite
justified.

5. DISCUSSION OF EXPERIMENTAL RESULTS

In order to compare the experimental results to the
theoretical formulas obtained for the relative variations
of the transmission coefficient, it is necessary to deter-
mine the region of parameters in which the measure-
ments were performed. Using the values of the sample
resistivity, it is easy to estimate the skin depth at a rela-

tive permittivity equal to unity: δ1 = . For a
frequency of 1 MHz, this formula yields δ1 = 18.2 and
21.4 mm for compositions 1 and 2, respectively. As can
be readily seen, this implies that the condition δ1 @ d is
satisfied in the entire range of frequencies used in our
experiments.

First, let us consider the results of measurements of
the coefficient D as a function of the magnetic field
strength. The data presented in Fig. 3a were obtained at
room temperature, that is, for the sample occurring in a
ferromagnetic state. As the field magnetic strength
grows, the transmission coefficient increases and, when
the measurements are performed at a frequency of
0.2 MHz, reaches a maximum and saturates in stringer
fields. A difference between the D values at H = 8 kOe
and H = 0 at all frequencies exceeds 10%, while the rel-
ative MR measured in the dc regime at H = 8 kOe is sig-
nificantly lower. Therefore, we may conclude that vari-
ations of the rf electromagnetic field transmission coef-
ficient under these conditions are caused predominantly
by changes in the magnetic permeability.

The growth of the rm value with increasing fre-
quency for f ≤ 3 MHz can be related to the passage from
a low-frequency range (where the changes in D are
small and can be described using formula (5)) to the

D H ∞( )
D 0( )

-------------------------------
ρ H( )

ρ 0( )µ 0( )
-----------------------

d
δ 0( )
----------- .exp=

2ρ/ωµ0
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range where the transmission coefficient obeys for-
mula (9) and exhibits much greater variations. Numer-
ical estimates showed that condition (3) is never real-
ized in our experiments and, hence, even at the lowest
frequencies the system occurs in the state of passage to
the condition 2Zm  ! Z . Then, a
drop in the relative variations of the transmission coef-
ficient at the frequencies above 3 MHz can be related to
the decrease in the dynamic magnetic permeability
caused by the frequency dispersion.

The results of measurements of the field dependence
of D at a frequency of 0.2 MHz for two temperatures
(Fig. 3b) revealed the appearance of a maximum at a
field of about 0.8 kOe on the curve corresponding to
T > TC. It should be noted that the magnitude of rm in
the region of strong fields is practically the same for
both temperatures. The large value of relative changes
in the transmission coefficient suggests that the
observed effect cannot be related to the MR. Then, we
have only to assume that the manganite sample under
study at T = 362 K (i.e., above TC) retains a local ferro-
magnetic order and has a rather large dynamic
magnetic permeability. An estimate obtained using for-
mula (10) for the experimental conditions correspond-
ing to Fig. 3b yields the initial relative magnetic perme-
ability µ(0) ≈ 1.4. Analogous field dependences mea-
sured at 8 MHz are depicted in Fig. 3c. As can be seen,
a change in the transmission coefficient measured at
T = 291 K (i.e., below TC) is always positive and, hence
we may suggest that it is caused by variations of the
permeability µ. Above TC, the character of the observed
field dependence has changed and the transmission
coefficient variations are negative. This sign of rm can
be expected when the MR is a key factor. Note that, at
the higher frequency, the effect of the magnetic perme-
ability at temperature above TC is significantly less pro-
nounced.

The results of measurements presented in Fig. 4 also
generally correspond to the above interpretation.
Indeed, as can be seen from Fig. 4a, the amplitude of
the signal transmitted through the plate significantly
increases at T > TC, which is related to a decrease in the
magnetic permeability. The signal amplitude transmit-
ted in a strong field is significantly higher than that
observed in a zero field (Fig. 4b). An anomaly observed
near the Curie temperature is more pronounced in the
zero field than in a saturating field. The values of rm

reflect differences in the level of signals transmitted in
a zero field and in the saturating field.

The data in Fig. 5 show that, as the temperature
increases and approaches TC, the relative change in the
absolute value of the transmission coefficient sharply
decreases. This is caused by decrease in the initial mag-
netic permeability µ(0). However, significant (about
60%) variations in the transmission coefficient are still
retained near and above TC. These variations cannot be
related to the MR, since the observed changes have

kmd( )cosh kmd( )sinh
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opposite sign and a magnitude several times that of the
MR. Therefore, we must suggest that these changes
even at T > TC are related predominantly to variations
of the magnetic permeability.

Naturally, the results of magnetic susceptibility
measurements presented in Fig. 1c show that the long-
range magnetic order is not retained at T > TC in the
whole sample. These results can be explained if we
assume that a short-range local magnetic order may
exist in a certain temperature interval above TC. The
obtained data do not allow us to estimate the dimen-
sions of such ordered local regions, but they give the
value of the dynamic initial magnetic permeability µ(0)
for a thick sample. According to this, lead-doped man-
ganites are characterized by µ(0) ≈ 1.4–1.6 at frequen-
cies up to several hundred kilohertz. Finally, it should
be noted that the results of experiments [4, 6, 7] per-
formed at higher frequencies (several gigahertz) and
the phenomena observed in [5, 14] can also be related
to the presence of a local magnetic ordering above the
Curie temperature.

6. CONCLUSIONS
Electromagnetic field penetration through lead-

doped lanthanum manganites was studied in a range of
radio frequencies from tens of kilohertz to tens of
megahertz and it was established that the absolute value
of the transmission coefficient sharply increases at tem-
peratures above TC. Application of a constant magnetic
field significantly decreased the relative variations of
the transmission coefficient near and above the Curie
temperature. The data on the electromagnetic field
transmission coefficient were compared to the results of
static measurements of the CMR and the magnetic per-
meability. The results were convincingly interpreted
using the theory of the electromagnetic field penetra-
tion under conditions of the normal skin effect. Using
the obtained expressions for a change in the transmis-
sion coefficient in the applied magnetic field, it is pos-
sible to obtain estimates of the dynamic magnetic per-
meability from the results of experiments on the field
penetration.

The obtained experimental data show evidence that
significant (on the order of 60%) changes in the trans-
mission coefficient in the presence of an applied mag-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
netic field take place in the temperature interval TC <
T < TC + 20 K. These changes are probably related to a
local magnetic order retained in doped manganites in
the vicinity of the Curie temperature.
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Abstract—We have detected experimentally considerable deviations of the frequency dependences of the Sha-
piro step amplitudes and the critical current of Nb/Au/YBa2Cu3Ox thin-film hybrid Josephson heterojunctions
prepared on YBa2Cu3Ox metal-oxide superconductor films with a tilted c axis from the regularities inherent in
Josephson junctions of traditional superconductors with an s-symmetry of the order parameter. It is shown that
possible formation of “splintered” fluxons with a size λs < λJ due to faceting of the interface and formation of
a chain of nanosize 0 and π junctions must be taken into account in describing processes in lumped heterojunc-
tions (whose size L is smaller than the Josephson penetration depth λJ determined from the averaged value of
the critical current density). For heterojunctions with a size λs < L < λJ, a substantial decrease in the maximal
amplitude of the first Shapiro step with increasing voltage (Josephson oscillation frequency) is observed at volt-
ages much smaller than the energy gap in niobium (V ! ∆Nb/e); this effect is manifested most strongly when
the size L is greater than λs. A fractional Shapiro step and a subharmonic detector response have been observed
in the current–voltage characteristics of heterojunctions; the dynamic processes responsible for their emergence
and indicating the presence of the second harmonic in the current–phase relation are studied. It is shown that
the effect of interface faceting on the current–phase relation increases with a heterojunction size L > λs. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

In most metal-oxide superconductors with a high
superconducting transition temperature, the 

symmetry type of the superconducting order parameter
dominates (D superconductors) [1, 2]. In Josephson
junctions of D superconductors misoriented in the ab
plane relative to one another, π junctions are formed
under certain conditions; for such junctions, the ground
state with a phase difference equal to π in the supercon-
ducting order parameter is stable [2–9]. In the case of
faceting of the interface in Josephson junctions of D
superconductors, alternation of 0 and π junctions leads
to alternating modulation of the critical current density
jc(x) along the interface on the nanoscale; as a result,
pairs of “splintered” fluxons [10] containing a magnetic
flux Φ1 < Φ0/2 and Φ2 > Φ0/2, Φ1 + Φ2 = Φ0 are formed
(Φ0 is the magnetic flux quantum). Such fluxes were
detected experimentally in [11] in bicrystal Josephson

d
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2
y

2–
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junctions D0/D45.
1 For a large amplitude of spatial vari-

ation of the critical current, the size of the splintered
fluxon is smaller than the Josephson penetration depth
λJ [10], which provides a new scale of the size depen-
dence of static and dynamic processes in junctions.
Fluxons with a fractional magnetic flux quantum were
observed in junctions (including those formed by ordi-
nary S superconductors) with inhomogeneities on the
order of λJ [12]. Judging from our earlier preliminary
results [4], it cannot be ruled out that such fluxon for-
mations may substantially affect the frequency depen-
dence of dynamic parameters of junctions containing a
D superconductor. Theoretical calculations [13] for
junctions of D superconductors predict singularities in

1 In the D0 superconductor, one of the axes (a or b) in the basal ab
plane is directed along the normal to the bicrystal interface (for
bicrystal Josephson junctions) or to the plane of the junction (for
planar Josephson junctions), while in the D45 superconductor, it
is turned through an angle of θ = 45° relative to these axes.
 © 2005 Pleiades Publishing, Inc.
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the amplitude of the superconducting current compo-
nent for gap voltages V ≈ ∆D/e (∆D is the energy gap in
a D superconductor) analogous to the Riedel singular-
ity observed in junctions of S superconductors. How-
ever, no information is available at present on the fre-
quency dependence of the superconducting current in
junctions of D superconductors under voltages much
smaller than the superconducting gap.

In Josephson junctions of D superconductors, low-
energy bound Andreev states are formed on the (110)
plane [2]; these states are clearly manifested in the form
of a singularity in the conductivity of junctions at low
voltages [2–7, 14] and strongly affect the superconduct-
ing current Is of the junctions. In particular, such states
lead to a deviation of the Is(ϕ) dependence (ϕ is the
phase difference between the wavefunctions of the
electrodes of the Josephson junction) from the sinusoi-
dal shape [2–7, 15]. According to the results of theoret-
ical calculations [10, 11], Josephson junctions with an
alternating critical current density jc contain, along with
the first harmonic (sinϕ), the second harmonic (sin2ϕ).
A nonsinusoidal current–phase relation was observed
in asymmetric bicrystal Josephson junctions D0/D45
in [8, 16]; we also observed earlier an analogous depen-
dence in hybrid heterojunctions Nb/Au/YBa2Cu3Ox

prepared on YBa2Cu3Ox (YBCO) films with a tilted
crystallographic axis c [3]. Note that the second har-
monic (sin2ϕ) was observed in small-size heterojunc-
tions (on the order of tens of micrometers) [3, 17],
while deviations from the sinusoidal dependence in
larger heterojunctions (on the order of tenths of a milli-
meter) were not detected [18].2 It should be noted that
the specific growth of a YBCO film tilted at an angle
specified by a specially oriented (in the (7 10 2) plane)
NdGaO3 substrate is such that facets whose faces are
oriented either along the c axis (001) or in the ab plane
(110) are formed in the junction region of the hetero-
junction [4, 19]. Accordingly, it follows from the results
of theoretical calculations [2, 5–7] that the transport
properties of junctions between such faces and an S
superconductor (Nb in our case) must differ substan-
tially, forming alternating nanojunctions of various
types (S/DC and S/D45) in heterojunctions in view of the
d symmetry of the order parameter.

Here, we report on the results of experimental inves-
tigations of the magnetic field dependences of the
superconducting critical current as well as the fre-
quency dependence of the superconducting current and
Shapiro steps in Nb/Au/YBCO hybrid heterojunctions
on films with a tilted c axis. Assuming the possible for-
mation of fractional fluxons in such heterojunctions
and taking into account size limitations [10], we per-
formed experiments on samples with a size L ranging

2 In view of the smallness of the superconducting current density in
all hybrid heterojunctions studied, the condition for a lumped
Josephson junctions was satisfied: the junction size L was smaller
than the Josephson penetration depth λJ for a magnetic field.
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from 10 to 50 µm. The second harmonic amplitude in
the current–phase relation is estimated quantitatively
and physical mechanisms explaining the experimental
data are discussed.

2. EXPERIMENTAL TECHNIQUE

YBCO epitaxial films with a thickness of 150 nm
were deposited by laser sputtering at a temperature of
770–790°C in oxygen under a pressure of 0.6 mbar. For
growing YBCO films, we chose NdGaO3 substrates
with the (7 10 2) orientation. Detailed studies using
X-ray diffractometry revealed that YBCO films formed
on the (7 10 2) plane of the NdGaO3 substrate as a result
of epitaxial growth have the (1 1 20) orientation, so that
the crystallographic c axis is deflected from the normal
to the substrate plane through an angle α ≈ 11°, remain-
ing in the (110) plane of the YBCO film (see inset (a) to
Fig. 1). Preliminary investigations proved that a film
inclination by 10°–14° is optimal for the electron trans-
port along the ab plane, preserving the monodomain
nature of the film [19] and ensuring the formation of the
crystallographic structure of Nb/Au/YBCO heterojunc-
tions with alternating transitions of the S/DC and S/D45
type. Obtained YBCO films had a superconducting
transition temperature Tc = 87–90 K and a critical cur-
rent density of 104–105 A/cm2 at T = 77 K [3, 4, 17]. The
Au films were deposited in two stages: first by laser
sputtering in situ in the same vacuum chamber at

Fig. 1. IV curve of a Nb/Au/YBa2Cu3Ox heterojunction
with L = 40 µm at T = 4.2 K: autonomous IV characteristic
(dashed curve) and IV characteristic recorded under the
action of electromagnetic radiation of frequency fe = 43.45 GHz
(solid curve). The direction of the bias current is shown by
arrows. Inset (a) is schematic representation of an inclined
YBCO film with the (1 1 20) orientation, α ≈ 11° and β ≈
45°. Inset (b) is the dependence of the critical current den-
sity 〈 jc〉  and the characteristic resistance RNA of the junction
on its linear size L (dashed and solid curves are functional
dependences providing the best approximation of experi-
mental data).
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100°C, which minimized the decrease in the oxygen
content and ruled out the effect of various impurities in
the formation of the YBCO/Au two-layer structure. A
test measurement of the superconducting transition
temperature of the YBCO film after the formation of the
YBCO/Au structure resulted in the value of Tc = 89 K
for a superconducting transition width of ∆T < 0.5 K.
The formation of heterojunctions was completed by
radiofrequency magnetron sputtering of an additional
Au layer with a thickness on the order of 10 nm and a
200-nm-thick Nb film. Photolithography and ion-beam
etching in argon were used for the formation of the
geometry of square planar heterojunctions with an area
A = L2, where L = 10–50 µm [3, 4, 17]. In our opinion,
the superconducting transition temperature of the
YBCO film in completely prepared heterojunctions
decreased to Tc ≈ 84 K during the bombardment of the
film by argon ions in the course of formation of the
structure geometry. The superconducting transition
temperature of Nb films was Tc = 9.1–9.2 K.

Electrophysical parameters of the films and hetero-
junctions were measured using a four-point scheme with
a bias current in a temperature range of T = 4.2–300 K in
magnetic fields H < 50 Oe under the action of electro-
magnetic radiation at frequencies fe = 36–120 GHz.

3. ELECTROPHYSICAL CHARACTERISTICS
OF HETEROJUNCTIONS

The Josephson effect was observed in all hetero-
junctions studied by us; the current–voltage (IV) char-
acteristics of these heterojunctions did not display an
excess current (Fig. 1). This circumstance indicates the
absence of microshorts with direct conductivity, i.e.,
direct “short-circuits” between YBCO and Nb films,
which usually lead to the emergence of excess current.

Sizes and electrophysical parameters of heterojunctions
at T = 4.2 K

No. L, µm Ic, µA RN, Ω Vc, µV βc λj, µm

1 50 198 0.44 87 3 117

2 50 267 0.2 53 4 101

3 40 160 0.36 58 6 104

4 30 60 0.93 55 3 127

5 30 74 0.56 41 5 115

6 20 18 3.6 65 4 156

7 20 8.5 3.1 26 – 227

8 10 0.7 45.3 32 – 390

9 10 2.0 19.8 40 – 233
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In view of the small thickness of the Au interlayer,
mutual diffusion of Nb and YBCO is possible. How-
ever, Nb/YBCO junctions have a very high characteris-
tic resistance due to the formation of oxide layers of
niobium. Additional measurements revealed that the
characteristic resistance of Nb/YBCO junctions is
RNA = 0.1–1 Ω cm2, which is several orders of magni-
tude higher than the characteristic resistance RNA =
10−6–10−5 Ω cm2 of Au/YBCO junctions (RN is the nor-
mal resistance). Using the values of RNA, we estimated
the transparency of the potential barrier at the
Au/YBCO interface averaged over the area of the junc-
tion and over the directions of quasiparticles momenta;
the resulting values of  = 10–5–10–4 are typical of
superconducting tunnel junctions. It should be noted
here that the resistance of the Nb/Au interface is sub-
stantially lower (by several orders of magnitude) than
that of the Au/YBCO interface due to better matching
of the Fermi velocity and the absence of chemical inter-
action of the materials [20].

The superconducting critical current density aver-
aged over the area of the heterojunctions at T = 4.2 K is
given by

where Ic is the critical current. The values of the Joseph-
son penetration depth λJ for a magnetic field, which are
calculated by the formula

(1)

where µ0 is the permeability of vacuum, lie in the inter-
val 100–400 µm and are much higher than the maximal
linear size of the junctions studied here (see table). The
quantity λ ≈ 220 nm in formula (1) is the sum of the
London penetration depths for YBCO and Nb. For the
Nb/Au/YBCO heterojunctions studied here, the con-
dition

(2)

is satisfied; this condition implies that such heterojunc-
tions must possess the properties of lumped Josephson
junctions and the values of 〈 jc〉  and RNA must be inde-
pendent of the junction size L [21, 22].3 However, the
experimentally observed values of 〈 jc〉  and RNA depend
on the size of the heterojunctions (see inset b to Fig. 1).
The increase in the values of RNA observed upon a
decrease in size L ≤ 20 µm indicates a decrease in the
barrier transparency D, which may be due to an oxy-
gen-depleted YBCO layer formed in regions near the

3 For L > 4 λJ, a Josephson junction should be treated as a distrib-
uted structure in which dynamic processes are determined by the
motion of Josephson fluxons.

D

jc〈 〉 Ic/A 1–10 A/cm2,= =

λ J
2 Φ0

2πµ0λ jc〈 〉
--------------------------,=

L 4λ J<
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Fig. 2. Experimental magnetic field dependences of the critical current at T = 4.2 K for heterojunctions with sizes L = 20 µm (a)
and 50 µm (b). The Fraunhofer dependence |sinH|/H is shown by the dashed curve. The solid curve is the calculated Ic(H) depen-
dence in the model of alternating density of the superconducting critical current. The inset shows the image of the (1 1 20) surface
of the YBCO film, obtained using an atomic force microscope. The crystallographic orientations of the growth steps of the YBCO
film are shown by arrows.
edges of the heterojunctions during sample prepara-
tion [20]. For junctions with a size L < 40 µm, the value
of 〈 jc〉  increases in proportion to L and attains satura-
tion for L > 40 µm. With increasing L, the contribution
from the edge regions with a reduced value of 〈 jc〉  to the
total superconducting current through the heterojunc-
tion decreases, and the edge effects can be disregarded
even for L = 30 µm (see inset b to Fig. 1). It should be
noted that the characteristic voltage Vc = IcRN remains
virtually unchanged upon a change in L, which is typi-
cal of tunnel junctions of S superconductors. For
Josephson junctions based on high-Tc superconductors
of metal-oxide materials, the value of Vc depends on
〈 jc〉  as a rule. For example, the value of Vc for bicrystal

YBCO junctions is proportional to Vc ∝   [2, 8],
which is usually explained in the literature by the exist-
ence of different transport mechanisms for the supercon-
ducting and normal components of the current [9, 18].

4. MAGNETIC-FIELD DEPENDENCES
OF THE CRITICAL CURRENT 

OF HETEROJUNCTIONS AND THEIR 
STRUCTURE

For heterojunctions with L = 20 µm, the experimen-
tal Ic(H) dependence of the critical current on the mag-
netic field in the region of the first peak (Fig. 2a) is
close to the “Fraunhofer” dependence |sinH|/H typical
of lumped Josephson junctions with L ≈ 2λJ [22]. It can
be seen from Fig. 2a that as the magnetic field increases
to |H| > 5 Oe, the deviation of the Ic(H) dependence
from |sinH|/H increases, indicating that the distribution
of the superconducting current can be treated as quasi-

jc〈 〉
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uniform [8, 18]. A more accurate approximation of the
experimental Ic(H) dependences in the range of high
fields H ≥ 5 Oe can be obtained using a theoretical model
in which the absolute value, as well as the sign of jc, var-
ies over the length of the junction [8, 10, 11, 23, 24]. It is
impossible to unambiguously determine the distribu-
tion of the superconducting current density jc in a junc-
tion from the experimental dependence Ic(H). The eval-
uation of jc gives at least several solutions that describe
the Ic(H) dependence in the region of peripheral peaks
more exactly than |sinH|/H. The experimentally mea-
sured Ic(H) dependences can be approximated much
better on the basis of alternating rather than unipolar
distributions jc(x). The accuracy of calculations of jc(x)
increases with expansion of the range of the experimen-
tal magnetic field, which was limited in our case by the
trapping of magnetic flux quanta for H ≈ 10 Oe. In
stronger fields, a hysteresis loop was observed in the
magnetic-field dependences and the dependences were
poorly reproduced. In Fig. 2, we represent only repro-
ducible unambiguous Ic(H) dependences.

For junctions of larger size (L > 30 µm), the Ic(H)
dependence strongly differs from |sinH|/H; in the region
of the first peak, it resembles the dependences observed
in distributed junctions, although condition (2) for
lumped junctions is still observed (see Fig. 2b and
table). It was shown theoretically in [10, 11] that the
presence of a faceted interface in a Josephson junction,
for which the conditions λ ! b ! λJ holds (b is the
characteristic size of the facet), leads to the formation
of “splintered” Josephson fluxons with a fractional
magnetic flux quantum. The characteristic size λs of
such a splintered Josephson fluxon for a one-dimen-
SICS      Vol. 101      No. 3      2005
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Fig. 3. Experimental dependence of critical current Ic (s), first I1 (m) and fractional I1/2 (j) Shapiro steps on the dimensionless
amplitude a of the high-frequency current I~ for two heterojunctions at T = 4.2 K: (a) L = 20 µm, fe = 51.42 GHz; (b) L = 40 µm, fe =
50.61 GHz. The theoretical Ic(a) and I1(a) dependences are shown by the solid and dashed curves, respectively. Calculations were
made taking into account the second harmonic in the current–phase relation and the capacitance of the heterojunction (a) and in the
framework of the RSJ (b).
sional dependence jc(x), which can be modeled by the
expression

can be estimated as

(3)

where j1 is the amplitude of alternating modulation of
the critical current density in the junction. For j1 @ 〈 jc〉 ,
the fluxon size is small (λs ! λJ).

In our case, in view of the specific nature of deposi-
tion of YBCO films on inclined NdGaO3 substrates with
the (7 10 2) orientation, growth steps with a height of
about 20 nm and a characteristic length of 200–300 nm in
the plane of the substrate are present on the (1 1 20) sur-
face of the YBCO films (see the inset to Fig. 2a and the
results of atomic-force microscope measurements pre-
sented in [3, 4]). Such growth steps are mainly oriented
along the (001) and (110) crystallographic planes of the
YBCO film. According to the results of theoretical cal-
culations [2, 5–7], the junctions with the (001) and
(110) planes give different types of junctions (S/Dc and
S/D45, respectively) in view of the d symmetry of the
order parameter in the YBCO film. It was shown earlier
in experimental studies [17, 18] that the S/Dc junctions
at T = 4.2 K can be treated as Josephson 0 junctions
with a nonsinusoidal current–phase relation; in this
case, the second harmonic amplitude amounts to about
10% of the critical current. As regards the S/D45 junc-
tions, Andreev states with energies ε ! ∆D are formed
in them in addition to Andreev states with ε ≈ ∆D on the
order of the superconducting gap in a D superconductor

jc x( ) jc〈 〉 j1 2πx/b( ),sin+=

λ s 2
λ J

2 jc〈 〉
b j1

---------------,≈
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like in S/Dc junctions [2, 8]. It was proved theoretically
in [2, 5, 6, 8] that the stable state in the S/D45 Josephson
junctions at helium temperatures is a state with a phase
shift equal to π, with the characteristic voltage

and with a large second harmonic amplitude in the cur-
rent–phase relation. Thus, due to the presence of alter-
nating S/Dc and S/D45 junctions, the structure of the
heterojunctions studied here has the form of a chain of
parallel-connected 0 and π Josephson junctions.

In the heterojunctions studied so far, faceting pre-
dominantly occurs in only one direction [3, 5]; conse-
quently, we can also use one-dimensional expressions
in our case [10]. For example, using our estimates for j1
and 〈 jc〉  we obtain from expression (3) λs ≈ 10 µm for
heterojunction no. 3 with λJ = 104 µm, λ = 0.22 µm and
b = 0.2 µm. It should be noted that the condition λ ! b
which is used in calculations [10] does not hold exactly
in our experiments; for this reason, the estimates of the
value of λs based on formula (3) are correct only in order
of magnitude. However, the other necessary condition
for the existence of splintered fluxons [10, 11],

is satisfied to a high degree of accuracy.
Experiments [11] show that splintered fluxons are

unstable formations. In all probability, the instabilities
on the IV curves and magnetic-field dependences of the
critical current in large-size heterojunctions (L > 40 µm),

Vc

∆D
2 D

ekT
-----------≈

b ! λ J

jc〈 〉
j1

--------- 1 µm,≈
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which were observed in our experiments, are precisely
due to instability of such fluxon formations.

As a result, despite the strict fulfillment of condi-
tion (2), the magnetic-field dependences observed for
the heterojunctions studied here are typical rather for
distributed Josephson structures with an alternating dis-
tribution of the superconducting current density and a
fluxon penetration size λs < λJ.

5. DYNAMIC PROPERTIES
OF HETEROJUNCTIONS

The IV curve presented in Fig. 1 was measured
under the action of external monochromatic electro-
magnetic radiation with a frequency fe = 43.45 GHz for
L = 40 µm. It should be noted that the IV curve exhibits
the first (I1), second (I2), and even fractional (I1/2) Sha-
piro steps. An analogous form of the IV curve is also
observed for heterojunctions with a size L ≥ 20 µm.
Figure 3 shows the dependences of the critical current
amplitudes Ic and first Shapiro step I1 on amplitude a of
the high-frequency current I~ normalized to the critical
current (a = I~/Ic). According to the results of calcula-
tions based on the resistive model of Josephson junc-
tions (RSJ) [21, 22], the Ic(a) and I1(a) dependences
shown in Fig. 3a proved to be proportional to Bessel
functions Jn(a) for small-size heterojunctions with L ≤
20 µm. With increasing L, a considerable deviation of
the experimental Ic(a) and I1(a) dependences from
those calculated in the RSJ is observed. For example,
the difference between the first peak I1max in the I1(a)
dependence from the theoretical value calculated in the
RSJ amounts to 25% for heterojunctions with L =
20 µm (Fig. 3a), while the deviation from the theory for
heterojunctions with L = 40 µm is 70% (Fig. 3b). Fig-
ure 3b shows that the shape of the Ic(a) and I1(a) depen-
dences also changes as the size of junctions increases to
L > 20 µm; this may be due to the enhanced effect of the
second harmonic in the current–phase relation for large
heterojunctions (with L > λs) [10, 11, 21, 22]. It should
be noted that the amplitude of fractional Shapiro steps
increases with junction size L and with the critical
current.

Let us consider the frequency dependences of the
maximal values of the amplitudes of the first harmonic
Shapiro step I1max( fe) shown in Fig. 4 for junctions with
L = 20 and 40 µm. For lumped Josephson junctions, the
value of I1max( fe) is determined by the amplitude of the
first harmonic of Josephson oscillation, which
increases with frequency and attains saturation for hfe >
2eIcRN in accordance with the resistive model (solid
curve in Fig. 4) [21, 22].

For junctions of S superconductors, the RSJ approx-
imation disregarding the presence of a Riedel singular-
ity for V ≈ ∆D/e, which follows from the results of
microscopic theory, correctly describes the available
experimental data up to voltages (Josephson oscillation
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
frequencies) corresponding to the superconducting gap
2∆/e (e.g., ∆Nb/h ≈ 700 GHz for Nb) [22]. However, as
can be seen from Fig. 4, the normalized value of I1max/Ic

in our experiment noticeably decreases even at a fre-
quency fe > 40 GHz, which is much lower than fre-
quency ∆Nb/h. It should be noted that the effect of the
Riedel singularity in tunnel junctions of S superconduc-
tors is manifested in the increase in the ratio I1max/Ic [25].
For large heterojunctions (L = 40 µm) the observed
decrease in the ratio I1max/Ic was stronger than for small
heterojunctions (L = 20 µm).4 The theoretical calcula-
tions performed in [13] for Josephson junctions of D
superconductors reveal a weak frequency dependence
of the superconducting current component up to fre-
quencies ∆D/h corresponding to the gap voltage and
exceeding 1 THz. Consequently, in the framework of
existing theories, the change in the value of I1max/Ic

must be small in the frequency range fe = 35–80 GHz.
A possible reason for the noticeable decrease in the val-
ues of I1max/Ic with frequency may be energy pumping
from the first harmonic of the current–phase relation,
which determines the value of I1max, to the second har-
monic for L ≥ λs [10, 11]. The effect of the nonuniform
distribution of the external microwave current at natural
resonance of heterojunctions on the dynamics of for-
mation of the Shapiro step (and the value of I1max),
which we observed earlier in distributed heterojunc-
tions of S superconductors [26], cannot not be ruled out
either. The resonance frequency of natural electromag-

4 Since the maximal value I1max of the Shapiro step is measured,
the frequency dependence of the heterojunction impedance,
which affects the matching with the external system, can be
ignored.

1.0

0.5

0
40 50 60 70

I1max/Ic

fe, GHz
80

Fig. 4. Dependences of the normalized maximal amplitude
of the first Shapiro step on the frequency of the external
electromagnetic action for heterojunctions with L = 20 µm
(dark circles) and 40 µm (light circles). The solid curve
shows the frequency dependence of I1max/Ic(0) calculate in
the RSJ.
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netic oscillations in the structures under study with a
strongly nonuniform critical current density distribu-
tion may be close to the frequency of formation of
standing waves. This effect is analogous to the Fiske
resonance with the effective velocity of wave propaga-

tion on the order of cs = ωpλs, where ωp = 
is the plasma frequency. As a result, the resonance fre-
quency fs = cs/2L turns out to belong, in order of mag-
nitude, to the frequency range represented in Fig. 4. It
should be noted that the IV curves did not display sin-
gularities corresponding to Fiske resonances.

6. SUPERCONDUCTING CURRENT–PHASE 
RELATION

It follows from Figs. 1 and 3 that the application of
external monochromatic electromagnetic radiation to
heterojunctions with L = 20–50 µm leads to the emer-
gence of fractional Shapiro steps I1/2(a) in addition to
harmonic steps on the IV curves at V = (1/2)(hfe/2e).
For small-size heterojunctions (L = 10 µm), no frac-
tional steps were detected; this is apparently due to the
fact that the expected values of I1/2max(a)/Ic(0) ≤ 0.1 for
these junctions were found to be smaller than the limit-
ing current resolution of the measuring system
(0.2 µA). A possible reason for the emergence of I1/2(a)
steps on the IV curves of the heterojunctions is the
deviation of the current–phase relation from the sinu-
soidal shape [3, 16]:

It should be noted that the IV curves of the heterojunc-
tions (both autonomous and those obtained under the
action of an external electromagnetic field including
those on which fractional Shapiro steps were observed)
were symmetric about V = 0 in contrast to the IV curves
for distributed Josephson junctions for L > 4λJ [27].

Higher harmonics in the current–phase relation
(sin2ϕ, sin3ϕ, etc.) can be observed at low tempera-
tures in Josephson junctions of the superconductor-nor-
mal metal-superconductor (SNS) type [21, 22]. Typical
values of transparency for SNS junctions are  ~ 1.
However, the transparency values typical of our hetero-
junctions are  = 10–5–10–4 ! 1, which enables us to
treat them, rather, as tunnel Josephson junctions [3];
however, in contrast to the latter junctions, their cur-
rent–phase relation is not necessarily sinusoidal.

Under the action of large-amplitude electromag-
netic radiation (with a ≥ 1), the quasiparticles energy
distribution function may change, leading to the emer-
gence of fractional Shapiro steps [28]. For this reason,
we also measured the selective detector response of het-
erojunctions at frequencies fe = 35–120 GHz at a small
amplitude of electromagnetic radiation. Under these

2πIc/Φ0C

Is ϕ( ) Ic1 ϕ Ic2 2ϕ .sin+sin=

D

D
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conditions, the detector response at voltages V ≈
(1/2)(hfe/2e) corresponding to the emergence of the
fractional Shapiro step I1/2(a) was observed for all junc-
tions in which a step was detected. Thus, the emergence
of the second harmonic in the current–phase relation in
the form of fractional Shapiro steps was found to be
independent of the amplitude of the external radiation.
Indeed, the characteristic relaxation times for excited
quasiparticles in superconducting metal-oxide materi-
als are on the order of 10–13–10–12 s [29], which is an
order of magnitude smaller than the period of oscilla-
tions of external electromagnetic radiation in our exper-
iments (10–11 s). Consequently, the quasiparticle energy
distribution function remains close to equilibrium
under the action of electromagnetic radiation with a fre-
quency up to 100 GHz.

Deviations of the current–phase relation from sinu-
soidal shape (and, hence, fractional Shapiro steps) can
be observed on the IV curves of distributed Josephson
junctions in view of a nonuniform distribution of the
superconducting current over the area of the junction
(e.g., when condition (2) of a lumped junction is vio-
lated) [21, 22]. It was noted in Section 3 during the dis-
cussion of size effects that condition (2) holds for all
heterojunctions studied by us. To find the effect of a
nonuniform distribution of the superconducting cur-
rent in a heterojunction on the current–phase rela-
tion, let us first consider heterojunctions for which a
more stringent criterion for a lumped junction as
compared to (2) is satisfied, i.e., L < λs, λJ.

It was shown in Section 4 that the heterojunctions
under consideration can be treated as a chain of Joseph-
son 0 and π nanojunctions S/Dc and S/D45 in view of the
(7 10 2) crystallographic orientation of the YBCO film
and the morphology of its surface. It was noted above
that the YBCO order parameter contains both d-sym-
metric and s-symmetric components, which are respon-
sible for the emergence of current–phase relations of
S/Dc and S/D45 nanojunctions of the first (Ic1) and sec-
ond (Ic2) harmonics, respectively [17]:

(4)

(5)

In these expressions, we assume that the order
parameter in YBCO is described by the expression

where θ is the angle between the electron momentum
and the direction of the a axis, and ∆s is the s compo-
nent of the order parameter. Taking into account the
experimental transparency values  ≈ 10–4, we obtain
from expressions (4) and (5) the ratio of the amplitudes

Ic1RN ∆s∆Nb/e∆D,≈

Ic2RN D∆Nb/e.≈

∆ θ( ) ∆D 2θ ∆s,+cos=

D
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of the harmonics in the current phase dependence,

for values of ∆s/e ≈ 1 mV and ∆D/e ≈ 20 mV typical of
heterojunctions [3]. Such a level of deviation of the
shape of the current–phase relation from sinusoidal
cannot be detected at T = 4.2 K because of thermal fluc-
tuations. At the same time, the contribution from
Andreev levels to the superconducting current of S/D45
junctions leads to substantial increase in the second har-
monic amplitude in the current–phase relation [2, 5]:

A quantitative estimate of the contribution of the sec-
ond harmonic in the current–phase relation to the
height of the harmonic Shapiro step was obtained using
the fact that the height of the nth harmonic step in the
high-frequency RSJ approximation (hfe > 2eIcRN) for
q ≠ 0 varies as the sum of Bessel functions Jn with dif-
ferent phases,

(6)

where x = a/ω(ω2  + 1)1/2; ω = hfe/2eIcRN is the nor-
malized frequency of the varying electromagnetic field;

βc = 4πeIc C/h is the MacCumber parameter, which
is determined by the capacitance C of the Josephson
junction. The maximum of the expression in the brack-
ets is taken for the phase shift Θ between Josephson
oscillation and external radiation [21, 22, 30]. The val-
ues of the MacCumber parameter were obtained from
the hysteresis on the IV curves for the heterojunctions
under investigation and are given in the table; it can be
seen that the value of βc = 3–6 weakly depends on the
size of the junctions. Expression (6) implies that the
value of q at a frequency hfe > 2eIcRN can be calculated
from the minima of the experimental dependence
Ic(a)/Ic(0). For example, at the first minimum, we have

which gives q = 0.14 for the experimental dependence
shown in Fig. 3a. It should be noted that this method of
estimating q rules out the effect of the capacitance of
the junction, but does not allow us to determine the sign
of the second harmonic amplitude in the current–phase
relation.

The finite capacitance of the junction and the second
harmonic in the current phase dependence lead to the

q
Ic2

Ic1
------ D

∆D

∆s

------ 10 3– ,≈ ≈=

q
∆D

3 D
kT∆S∆NbkT
---------------------------- 0.8.≈ ≈

In/Ic 2 Jn x( ) Θsin qJ2n 2x( ) 2Θsin+[ ] ,
Θ

max=

βc
2

RN
2

q
Ic a( )

Ic 0( )J0 2x( )
-----------------------------,=
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formation of fractional Shapiro steps on the IV curves
with a height

(7)

The expression in the brackets is sign-alternating; con-
sequently, the I1/2(a) dependence differs from that
obtained earlier for bicrystal junctions with a low
capacitance [15]: I1/2(a) ∝  J1(2x), x = a/ω. Values of q <
0 provide good agreement with experiment (Fig. 5). For
q > 0, the calculated values of I1/2(a) substantially
exceed the measured values and do not lead to the
experimentally observed minimum between a = 0 and
the first minimum of the Ic(a) function. Negative values
of q follow from theoretical calculations for S/D45 junc-
tions [2, 5–7] and were observed earlier in experimental
investigations of bicrystal Josephson junctions [9].

Pay attention to the fact that a slight change in the
normalized frequency ω of the external radiation
noticeably changes the shape of the I1/2(a) dependence.
This is due to the simultaneous effect of the capacity of
the junction and the nonsinusoidal current–phase rela-
tion on the process of formation of a fractional Shapiro
step (the first two terms in expression (7) have opposite
signs). The same behavior of the I1/2(a) dependence is
also observed in our case (see Fig. 5), although the
maximal value of I1/2(a) differs from the theoretical
estimate by a factor of several units. It should be noted
that we did not use any fitting parameters for comparing
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the experimental and theoretical results in Fig. 5. The
second harmonic amplitude in the current–phase rela-
tion and the amplitude scale of external electromag-
netic radiation were determined from comparing the
results of calculation based on formula (6) with the
experimental Ic(a) dependence (see Fig. 3a).

According to [10, 11], the second harmonic ampli-

tude q ~ L2/  in the current–phase relation must
increase with increasing size of heterojunctions
(L > λs) due to the presence of parallel-connected 0 and
π constants in the junctions. Indeed, the second har-
monic amplitude q = –0.4 determined by formula (6)
from the data presented in Fig. 3b for L = 30 µm
increases to a value of q = –0.9 upon an increase in the
junction size to L = 40 µm; in accordance with the
results of calculations [11], all values of q < 0.

7. CONCLUSIONS

It was found from electrophysical and microwave
properties of Nb/Au/YBCO thin-film hybrid hetero-
junctions that the critical current density in the junction
is nonuniformly distributed over the junction length
even for lumped junctions (which are smaller than the
Josephson penetration depth, L < λJ). Owing to faceting
of the interface in Au/YBCO films and the effect of d
symmetry of the superconducting order parameter in
YBCO, the heterojunctions studied here are correctly
described by the model of a chain of 0 and π junctions.
In such chains, “splintered” Josephson fluxons can be
formed with fractional values of the magnetic flux
quantum and with values of λs several times smaller
than the Josephson penetration depth for a magnetic
field.

It was found experimentally that the maximal value
of the first Shapiro step decreases with increasing fre-
quency of external electromagnetic radiation. Such a
behavior of high-frequency dynamic processes occur-
ring at frequencies fe ! ∆Nb/h may be due to the emer-
gence of splintered fluxons leading to a nonuniform
distribution of the magnetic and microwave fields in
heterojunctions. This effect was enhanced with increas-
ing junction size (L > λs); the departure of the magnetic-
field dependence of the critical current from the Fraun-
hofer dependence also increased.

The fractional Shapiro step and the subharmonic
selective detector response, which were experimentally
observed in the heterojunctions studied here, are asso-
ciated with the presence of the second harmonic in the
current–phase relation. The second harmonic ampli-
tude in the current–phase relation and its sign (the sec-
ond harmonic amplitude is negative for heterojunctions
under investigation) were estimated using experimental
methods.

λ s
2
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Abstract—The response of an intergranular Josephson junction to displacements of an Abrikosov vortex in a
superconducting polycrystal is studied theoretically. The vortex filament in the vicinity of the junction excites
a tunnel current in the junction and also generates a Josephson vortex with which it merges upon emergence at
the surface of the junction. It is shown that the process of the Josephson vortex formation passes through a stage
of overcoming a potential barrier, whose height depends on the distance between the Abrikosov vortex and the
junction, as well as on the effective thickness of the junction, which is determined by the characteristic grain
size, grain anisotropy, and the intensity of the intergranular coupling. The magnetic field dependence of the crit-
ical current of the intergranular Josephson junction is determined for various grain and intergranular
parameters, as well as for the triangular and square configurations of the Abrikosov vortex lattice. The
results indicate that a high degree of texturing in the grain size, anisotropy, and intensity of intergranular cou-
pling is very important for obtaining high critical currents in pure polycrystalline materials. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

Penetration of magnetic field into a type II super-
conductor begins with the formation of vortex filaments
at the superconductor surface, followed by their diffu-
sion to the bulk of the sample [1]. Accordingly, when
the external field decreases to values lower than the crit-
ical field Hc1, the vortex filaments move towards the
surface and are expelled from the superconductor. It
was shown in [2] that an Abrikosov vortex (AV) in the
vicinity of a Josephson junction excites tunnel currents
in it. When the AV is expelled to the contact region, it is
transformed into a Josephson vortex, although the geo-
metrical and energy parameters of these two vortices
are different.

Interesting properties of high-Tc polycrystals, which
are important for applications, stimulated the study of
granular superconductors with Josephson junctions
between the grains. New surface barriers for penetra-
tion of an AV into a grain were predicted theoretically
by one of the authors in [3]. In this case, the vortex
dynamics was controlled by the grain characteristics
and properties of intergranular Josephson SIS junc-
tions, which is caused by structural distortions of the
AV and its interaction with the surface and grain bound-
aries. In light of these concepts, it is natural to expect
that the characteristics of the Josephson medium and
the AV will influence the Josephson effects in the inter-
granular junction and, as a consequence, the magnetic
field dependence of the intergranular critical current.
1063-7761/05/10103- $26.00 0504
In analyzing transport phenomena in type II super-
conductors, it is important that the maximal undamped
current Ic is determined by the interaction of Abrikosov
vortices with crystal defects. Contacts between individ-
ual superconducting grains in ceramic or polycrystal-
line HTSC materials are often treated as defects [4]. In
many cases, the current density in Josephson junctions
or the Josephson phase difference exhibit an ambiguous
dependence on magnetic field H; the form of the field
dependence Ic(H) may strongly differ for different crys-
tals depending on the quality of the material [5, 6].

This study is devoted to analyzing how the vortex
dynamics affects the process of vortex formation in an
intergranular junction of a grained superconducting
structure, as well as how the grain parameters and prop-
erties of the intergranular medium affect the magnetic
field dependence Ic(H) of the critical current. We will
consider a vortex-laminar model of an SIS junction,
presented schematically in Fig. 1. The coordinate sys-
tem is chosen so that the plane of a Josephson inter-
granular junction coincides with the xy plane and the
magnetic field is directed along the y axis parallel to the

grain surface,  = (0, H, 0). The field penetrates the
contact, a grain from the side of the surface and from
the side of the SIS junction to a depth of λJ, λab, and λc,
respectively. The currents induced by the external field
flow in the xy plane. The x axis passes through the junc-
tion and the gain under investigation is bounded on the
z axis by straight lines z = 0 and z = a. Superconducting

Hy
app
© 2005 Pleiades Publishing, Inc.



        

FEATURES OF THE EFFECT OF THE JOSEPHSON MEDIUM PARAMETERS 505

                                                                                                           
laminas are separated from one another by an insulating
layer of thickness t.

The structure of the article is as follows. In Section 2
gives the main equations describing the behavior of the
phase difference ϕ for the order parameters of adjacent
grains separated by a Josephson junction. The solution
to the equation for the additional gradient of phase ϕ is
obtained. In Section 3, the effect of characteristics of
the Josephson medium on the energy of a weak cou-
pling between two grains is considered. The magnetic
field dependence of the critical current in the intergran-
ular junction is determined in Section 4 for various
parameters of the medium, as well as in the cases when
triangular and square configurations of the vortex lat-
tices are formed in the grain by the external magnetic
field. Experimental evidence supporting the results is
analyzed.

2. INTERACTION OF A VORTEX FILAMENT 
WITH AN INTERGRANULAR JOSEPHSON 

JUNCTION

2.1. Basic Equations

Let us consider a vortex filament whose currents
reach the surface and banks of a junction. The position
of the vortex corresponds to coordinates (x0, y0). We
assume that κ @ 1 and the vortex axis coincides with
the y axis and is parallel to the sample surface and to the
inner walls of the grains. The magnetic field added by
the vortex is distorted by the surfaces so that, first, no
additional field is produced either on the surface or in
Josephson junctions (since the field is preset and is

equal to  at the surface and to exp(z/λJ) in the
junctions), and second, the current normal to the sur-
faces vanishes. This can be done by supplementing the
vortex with its mirror image relative to surfaces with
opposite directions of the field and current (Fig. 1). The
energy of the vortex is mainly concentrated in the
region ξab ! x ! λab and ξc ! z ! λc. To analyze the
problem, the structure of the vortex core is immaterial.
It is only important that the order parameter and the
current associated with it decrease as we approach the
center of the core and vanish at the core center. The
field of the vortex satisfies the anisotropic London
equation with 2(2L + 1) sources:

(1)

Here, L is the number of coordination zones counted
from the vortex to its image and images of the images.
Figure 1 shows three superconducting laminas, {–1},
{0}, and {1}, corresponding to a single coordination
zone L = 1 (in the general case, L  ∞); ey is the unit
vector directed along the y axis; Φ0 = h/2e is the mag-

Hy
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L
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netic flux quantum; δ(ρ – ρn) is the 2D Dirac delta func-

tion in the xz plane;  = [x0, (–1)n(z0 – a/2) ± na] is
the position of the vortex (n = 0) and its images (n ≠ 0)
in the region of superconducting grains (along the z
axis), where indices +n and –n correspond to counts to

the right and left from the vortex, respectively;  =
[–x0, (–1)n(z0 – a/2) ± na] is the position of images
located outside the superconducting region (x < 0); and
[λ2] is a tensor describing anisotropy of the material,
which will be treated as a diagonal tensor. We also
assume that a @ ξab, ξc; in this way, we can ignore the
effect of grain boundaries on the order parameter in the
grains. Using the Maxwell equation ∇  × H = J for the
geometry depicted in Fig. 1, we obtain the following
equation for field distribution in a grain:

(2)

This equation differs substantially from the aniso-
tropic London equation in the presence of sources for a
vortex carrying a magnetic flux quantum Φ0 and its mir-
ror images.

ρ n±
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ρ n±
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Fig. 1. Abrikosov vortex 0+ in a type II superconductor in
an external magnetic field H ~ Hc1 and the set of image vor-
tices with positive and negative vorticity in the limit when
the characteristic grain size a/2λc @ 1. The magnetic field
is applied parallel to the surface and grain boundaries and
penetrates a grain to depth of λab from the side of the sur-
face and λc from the side of Josephson junctions, while the
penetration depth in the junction is λJ.
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Steady-state effects of weak superconductivity can
be described using the Ferrell–Prange equation [7]. In
the subsequent analysis, it is necessary to describe the
behavior of phase difference ϕ of the order parameters
of superconducting grains separated by intergranular
SIS junctions in the case when an AV is located in the
vicinity of one of the grains. The effect of this filament
is that it produces a nonzero current at one of the sur-
faces forming the Josephson junction. The presence of
the surface current leads to the emergence of an addi-
tional gradient of phase ϕ, which in turn induces an
additional Josephson tunnel current through the junc-
tion. In this case, the relation between the phase gradi-
ent and magnetic field H is described by the formula [2]

(3)

Here, Λ0 = 2λc, ns is the number of superconducting
electrons, and Jv(x) is the current produced by the vor-
tex filament at the surface of the Josephson junction. To
find this current, we will use the solution to Eq. (2) for
the magnetic field distribution of the vortex filament
with the coordinates x = x0 and z = z0 of the center,
which takes into account the interaction of the filament
with the grain surface and with the intergranular junc-
tion in an anisotropic material [8]:

(4)

where

Here, Λ =  and K0 is the Macdonald function.
Using Eq. (4), we can find the current at the surface of
an intergranular junction in accordance with the Max-
well equation

which is produced by the vortex filament passing

dϕ
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through point (x0, z0):

(5)

Taking into account relation (3), we obtain the follow-
ing equation instead of the Ferrell–Prange equation:

(6)

Here, the increment ∆Jv of the surface current is deter-
mined by relation (5) and Jc0 is the Josephson current
amplitude. The boundary conditions to Eq. (6) can be
written in the form

(7)

These conditions are satisfied under the assumption
that ϕ  0 for x  –∞ and ϕ  2π for x  ∞.

In deriving Eq. (6), we disregarded the reciprocal
effect of the intergranular junction on the structure of
the vortex filament. Such an approach is justified since
surface current (5) is much larger than the maximal
Josephson tunnel current Jc0. Consequently, we can dis-
regard branching of the vortex current associated with
the tunnel junction and assume that the junction itself is
a free surface.

The problem can be formulated as follows. Let the

initial magnetic field H >  (  is the lower critical

field in the grain) decrease to values H < . This
causes the expulsion of vortex filaments to the grain
surface or to the intergranular Josephson junction. Let
an AV be located at point (0, z0(t)). We assume that the
field and current distributions at instant t are described
by expressions (4) and (5), into which we must substi-
tute the coordinate z0(t) of the center of the filament,
taken at the same instant. The use of static formulas is
justified by the fact that the velocity of the AV is much
smaller than the characteristic velocity of electrons in
the vortex (velocities at distances on the order of Λ
from the center of the vortex).

2.2. Weak Intergranular Coupling

Let us find the solution to Eq. (6) for the case when
the coupling intensity between grains is quite low. In
this case, Eq. (6) contains a small parameter facilitating
the construction of the solution. This parameter is the
ratio of λab to the longitudinal size λJ of the Josephson

Jv
c

8π2
--------

Φ0

Λ3
------ Bn 0 z0,( )

n ∞–=

∞

∑=

× 1–( )n 1+

Dn 0 z0 x x0–, ,( )
---------------------------------------K1 Dn 0 z0 x x0–, ,( )[ ]





+
1–( )n 2+

Dn 0 z0 x x0+, ,( )
---------------------------------------K1 Dn 0 z0 x x0+, ,( )[ ]





.

λ J
2∂2ϕ
∂x2
--------- Λ

2Jc0
----------

dJv

dx
---------+ ϕ .sin=

dϕ /dx 0 for x ∞.±

Hc1
G Hc1

G

Hc1
G

ND THEORETICAL PHYSICS      Vol. 101      No. 3      2005



FEATURES OF THE EFFECT OF THE JOSEPHSON MEDIUM PARAMETERS 507
1

2

3

x

ϕ
π

λJ

ν = 1.5
σ = 0.08

–π

1

2

3

x

ϕ
π

λJ

τ = 1.4
σ = 0.08

–π

(a)
(b)

Fig. 2. Dependence of the intergrain phase difference ϕ on the x coordinate: (a) the characteristic grain size τ = 0.2 (1) and 1.4 (2);
(b) anisotropy parameter ν = 0.8 (1) and 2 (2) when the AV is at point z0 = 0.7λc. Curve 3 corresponds to distance z0 = 0 between
the AV and the junction.
vortex: σ = λab/λJ ~ 10–4–10–2. In view of the smallness
of σ, it is sufficient to find the solution to Eq. (6) in the
zeroth approximation, which can be done as follows.

In the region determined by the inequality |x – x0| <
λab, the second term on the left-hand side of Eq. (6),
which is associated with the surface current, is much
larger than the Josephson tunnel current. Consequently,
we assume that the right-hand side of this equation is
equal to zero in this region. This gives the solution in
the form

(8)

Here, integration is formally extended to values of x
since the integrand decreases exponentially outside this
region. Outside the region |x – x0| < λab, surface current
can be ignored in comparison to the Josephson current.
Consequently, the behavior of the solution in this
region is described by the conventional Ferrell–Prange
equation.

The obtained solutions should be joined in interme-
diate regions as follows. In the region –∞ < x < x0 – λab,
phase ϕ(x) satisfies the Ferrell–Prange equation

 

and the following boundary conditions: ϕ(–∞) = 0 and 

 = ϕ(x0 – λab) 
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at the boundary x = x0 – λab , where ϕ(x0 – λab) is defined
by formula (8). In the region |x – x0| < λab, the solution
is defined by formula (3). In the region x0 + λab < x < ∞,
phase ϕ(x) satisfies the Ferrell–Prange equation and the
following boundary conditions:

 = ϕ(x0 + λab) 

at the boundary x = x0 + λab and ϕ(∞) = 0 at infinity.
Here, ϕ(x0 + λab) is also defined by formula (8).

Solution (8) exhibits an explicit dependence on the
characteristic grain size τ = a/2λc and granular anisot-
ropy ν = λc/λab. Figure 2 shows the solutions to Eq. (6)
for various values of τ (Fig. 2a) and ν (Fig. 2b). Curves
1 and 2 correspond to an AV localized at point z0 =
0.7λc, while curve 3 corresponds to z0 = 0. It can be seen
from the figure that the phase jump ∆ϕ increases upon
a decrease in coordinate z0, i.e., as the AV approaches
the intergranular junction. This phase jump generates
phase perturbation along the junction, which corre-
sponds to known results [2]. At the same time, it can be
seen from Fig. 2 (curves 1 and 2) that an increase in the
values of τ and ν also leads to an increase in the phase
jump ∆ϕ. Thus, phase jump ∆ϕ  2π even for z0 ≠ 0.
Such a behavior precisely indicates [2] the generation
of “half” of the Josephson vortex.

Equation (6) is invariant to the substitution of 2πn
for ϕ, where n is an integer. If we add 2π to ϕ(x) for x >
0, we obtain a continuous function ϕ = ϕ(x). In our
case, the phase of only a part of the system (for x > 0)
is transformed, which can be explained as follows. As
an AV moves to the intergranular Josephson junction or
upon an increase in the granular characteristics τ or ν,
it induces in the junction the perturbation ϕ(x), which
becomes more and more similar to a Josephson vortex.
For z0 = 0 or z0 ≠ 0, when the values of τ and ν are such
that they bring the phase jump to ∆ϕ = 2π, a Josephson
vortex is formed all over the intergranular junction

ϕ
x x0 λab+=
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except the central region near λc. The existence of this
region indicates that the AV has not yet decayed. The
decay of the filament begins when its normal core
comes in contact with the junction. The size of the nor-
mal core along the z axis is approximately equal to ξc

(ξc is the correlation length along the c axis, i.e., in a
direction perpendicular to the (001) planes). In this
sense, the increase in τ and ν accelerates the “contact”
with the AV since it effectively increases the thickness
of the Josephson junction and leads to “elimination” of
this part of the junction (it conditionally splits into two
independent parts, each of which can be separately sub-
jected to phase transformation. After the complete dis-
integration of the AV, only the Josephson vortex is left
in the intergranular junction.

2.3. Strong Intergranular Coupling

When the intergranular coupling intensity σ is high,
expression (8) is inapplicable. To find phase ϕ, Eq. (6)
was solved numerically. Figure 3 shows the depen-
dence of phase ϕ on coordinate x for various values of
intensity σ of coupling between grains. Curves 1, 2, and
3 correspond to the case when the AV is far from the
junction at a distance z0 = 0.7λc. It can easily be seen
that the phase jump ∆ϕ  2π with increasing σ. Thus,
an increase in the intergranular coupling intensity
increases the effective thickness of the Josephson junc-
tion, i.e., accelerating the generation of a Josephson
vortex by an Abrikosov vortex.

3. ENERGY OF INTERGRANULAR COUPLING

In accordance with prevailing concepts [9], a high-
Tc superconductor consists of superconducting grains
whose size is small as compared to the London penetra-
tion depth, and the state of the superconductor is
described by the complex order parameter with phase

1

2

3

x

ϕ
π

λJ

τ = 1.4
ν = 0.08

–π

Fig. 3. Dependence of the intergrain phase difference ϕ on
the x coordinate; the intergranular coupling intensity σ =
0.07 (1), 0.125 (2), and 0.15 (3). The distance between the
AV and the junction is z0 = 0.7λc.
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ϕi for each grain i. Grains i and j are coupled in energy
in accordance with the Hamiltonian

(9)

which includes the magnetic field effect, viz., the phase
vector potential

(10)

It was noted by Deutscher and Müller [10] that
expression (9) describes the intrinsic behavior of weak
bonds in high-Tc superconductors. Each phase ϕi in the
superconducting banks couples neighboring banks via
the Josephson interaction parameter Jij. The question
arises: how do intergranular parameters τ and ν, as well
as the parameter σ describing the intensity of coupling
between the grains, affect the energy EJ of intergranular
Josephson coupling? To answer this question, let us
consider the expression for EJ in the form

(11)

where Lx is the linear size of the junction along the x
axis (~λJ).

Expression (11) does not take into account the terms

proportional to  and corresponding to the energy of
the magnetic field of the current of weak couplings and
the kinetic energy of electrons. We will consider an
intergranular junction whose size Lx ≥ λJ. The depen-
dence of phase ϕ on x in such a junction in the presence
of an AV is described by Eq. (6). The results of calcula-
tion of the dependence of EJ on the distance z0 from the
AV to the intergranular junction are shown in Fig. 4. It
should be noted above all that the behavior of the EJ(z0)
curves has the form of potential barriers for generation
of a Josephson vortex. The energy barrier EJ(z0) is rep-

resented, first, by the height  of the potential bar-
rier and, second, by the effective intergranular junction

width teff ≈ 2  (  is the distance between the AV and

the junction, for which EJ( ) = ). It can easily be
seen from the difference of the curves in Fig. 4 that the
barrier height EJ(z0) depends on parameters τ, ν, and σ.
The larger the value of z0 for which EJ starts decreasing,
the sooner the generation of a Josephson vortex by an
Abrikosov vortex moving towards the contact. Let us
consider the effect of variation of the parameters of the
Josephson medium on vortex formation in the junction.

(a) The characteristic size of a grain. A variation of
τ barely changes the potential barrier height EJ, while
the effective thickness teff of the barrier increases with τ.
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(b) Anisotropy. A change in ν barely changes the bar-
rier height EJ, while the value of teff increases with ν.

(c) Intensity of intergranular coupling. It can be seen
from Fig. 4c that the barrier height EJ is proportional to
σ–1, while teff ∝  σ.

The expulsion of the AV to the junction nullifies the
correction to energy associated with superconductivity.
The equilibrium state for generation of a Josephson
vortex sets in when the Josephson coupling energy EJ

assumes the extremal (minimal) energy (point z0 = 0).
In other words, at the instant when the AV comes in
contact with the junction, it completely decays and a
Josephson vortex is formed.

The density n(H) of the field distribution of the AV
plays the role of external magnetic field in the forma-
tion of a Josephson vortex. The process of generation
has the form of energy “pumping.” The potential barrier
EJ formed in this case hampers the formation of a
Josephson vortex as well as its decay in a manner anal-
ogous to the situation at the edge of a superconductor
with an AV entering and leaving it. An increase in the
density n(H) of the AV field suppresses the energy bar-

rier at a certain distance , which depends on the inter-
granular parameters τ and ν as well as the intergranular
coupling intensity σ. It can be concluded that the poten-
tial barrier height EJ in super-small-grain materials also
depends of the “reflectivity” of the material, viz., the
number of “mirror” images of the AV [8], as well as on
the degree of purity of a polycrystalline supercon-
ductor.

4. EFFECT OF CHARACTERISTICS 
OF THE JOSEPHSON MEDIUM 
ON THE CRITICAL CURRENT

OF A SIS JUNCTION

Type II superconductors in an external magnetic
field H acquire AV configurations forming vortex lat-
tices. In view of the AV magnetic field nonuniformity,
the dependence of the critical current in an intergranu-
lar junction on the external field may considerably dif-
fer from the conventional “Fraunhofer” dependence for
homogeneous Josephson junctions [11]. In this section,
we consider the results of analysis of the effect of gran-
ular characteristics τ and ν as well as the intergranular
coupling intensity σ on the Ic(H) dependence. The pres-
ence of singularities associated with the type of the
crystal lattice (with triangular and square symmetry) on
the Ic(H) curves is also discussed.

For the vortex-laminar model under investigation,
the critical current of a SIS junction is defined by the
formula [12]

(12)

z0
c

Ic
2 Ic0

2 iθ x( )( ) xdexp
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L

∫
2

.=
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The phase difference θ depends on the external field H
and AV coordinates (xi, zi) in a grain, as well as on
parameters τ, σ, and ν,

(13)

where N is the number of vortex filaments in the grain.
Solution ϕ(x) for each AV is defined by Eq. (6). For a
low intensity of the coupling between the grains, when
σ ~ 0.01, function ϕ(x) has the form (8).
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Fig. 4. Potential barrier EJ preventing generation of a
Josephson vortex in the intergranular junction by an Abri-
kosov vortex expelled towards the junction as a function of
reduced distance z0/λc: (a) ν = 1.5, σ = 0.075, and τ = 1.4 (1),
0.7 (2), and 0.5 (3); (b) τ = 1.4, σ = 0.075, and ν = 1.5 (1),
2 (2), and 3 (3); and (c) τ = 1.4, ν = 1.5, and σ = 0.075 (1),
0.15 (2), and 0.225 (3).
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It should be noted that the structural pattern in a real
superconducting system is undoubtedly more compli-
cated. The angle ϑ  of disorientation of neighboring
grains [13], the contact area S [14, 15], the orientation
of the intergranular boundary plane relative to the (001)
and (100) planes in which the anisotropic correlation
length assumes extremal values [16], and other factors
noticeably affect the value of current Ic. However, for
the results obtained in this section, the very fact of the
influence of boundaries on the AV and its effect on
phase ϕ and current Ic of the intergranular SIS junction
is significant; therefore, we believe that our model can
be used for analyzing transport properties of supercon-
ducting polycrystals.

4.1. Role of Granular Characteristics

on Ic(H) in the Field Range H ≥ 

In the range of fields slightly stronger than the lower

critical field  in a grain, the equilibrium density nL

of the filaments is low and the distance d between
neighboring AV is large (d > λab, λc). In this case, dis-
tance d is connected with the granular induction via the
relation

(14)

where q = 2/  for the triangular configuration of the
vortex lattice and q = 1 for the square lattice. In gains
with a size a > λc, the number of emerging vortex fila-
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Fig. 5. Dependence of Ic(Φ) for intergranular coupling
intensity σ = 0.07 for various values of characteristic grain
size τ and anisotropy parameter ν: (a) τ = 0.4, 0.7, and 2; ν =
1.5; (b) ν = 0.5, 1.5, and 5; τ = 1.5.
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ments can be quite large since the repulsion of filaments

in fields H >  is exponential, ~exp(–d/Λ) (i.e., hav-
ing a finite range on the order of Λ), and this almost
does not increase the energy of interaction.

In fields H > , the coordinates of the rows in the
vortex lattice, which are closest to the surface and of the
intergranular junction are x ≈ d/2 and z ≈ d/2(a – d/2),
respectively. Since the vortex lattice lies in the region
x ∈  [0, λJ] and z ∈  [0, a], equilibrium values of d for the

given field  can be represented as

Thus, Eq. (6) was solved numerically for various values
of the external field. The resultant contribution from all
AVs to the current-phase behavior was calculated by
formula (12).

4.1.1. Effect of characteristic grain size. Figure 5
shows the dependence of the critical current Ic on the
magnetic field of a grain for various values of charac-
teristic grain size τ and anisotropy parameter ν. It can
be seen in Fig. 5a that the behavior of the function with
increasing τ resembles the familiar Fraunhofer depen-
dence. The maximal intergranular current corresponds
to large values of τ. Such a behavior can be a conse-
quence of a weak dynamic interaction between neigh-
boring intergranular junctions, which emerges due to
nonequilibrium effects [17]. In the model considered
here, the smaller the value of τ, the stronger the interac-
tion and the smaller the value of the order parameter
ΨGB(Φ, T) at the grain boundary. Thus, the Ic(ϕ) depen-
dence is similar to the results obtained in [18] for vari-
ous values of temperature T.

4.1.2. Effect of grain anisotropy on Ic(j). The fol-
lowing effects, which are of interest for technology of
obtaining new materials with a high current-carrying
capacity, are associated with grain anisotropy. Grain
boundaries facilitate the formation of currents flowing
at right angles to the current existing in homogeneous
materials. As a result, the boundaries enhance the man-
ifestation of anisotropy in the penetration of a field in a
granular material. Figure 5b shows the Ic(ϕ) depen-
dence for various values of anisotropy parameter ν. It
can be seen that the behavior of Ic(ϕ) upon a change in
ν resembles the conventional Fraunhofer dependence.
However, the maximal intergranular current Ic is the
smaller, the larger the value of ν. This effect can be
explained from simple considerations. With increasing
anisotropy ν = λc/λab, the depth of magnetic field pene-
tration in a grain from the side of the Josephson junc-
tion increases. As a result, the effective thickness of the
contact increases, while the order parameter ΨGB(Φ, T)
at the grain boundary decreases.
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4.2. Effect of the Intensity on Intergranular 
Coupling on Ic(ϕ)

Important effects of the granular structure of HTSC
materials appear due to the presence of a broad spec-
trum of intergranular coupling intensity σ. The most
convincing proof of the fact that intergranular space is
of Josephson nature and, hence can be defined by the
coupling intensity σ, follows from experiments under
high pressures [19, 20]. The fundamental difference
between the responses of the critical current Ic of an
intergranular Josephson junction and the conventional
pair-breaking current Jcg to pressure is the presence of
the exponential factor Ic ~ exp(–dNU1/2) for SIS junc-
tions and Ic ~ exp(–2dN/ξN) for SNS junctions. For this
reason, experiments in high-pressure physics are based
on a change in the parameters of intergranular junc-
tions, viz., their thickness dN and the barrier height U
(insulator and/or normal layer), which directly change
the intergranular coupling intensity (i.e., Ic ∝  P ∝
σ(∝ )).

Figure 6 shows the field dependence of the Joseph-
son current Ic(Φ) for various parameters σ of the inter-
granular coupling intensity. It can be immediately seen
that strictly sinusoidal behavior of Ic(Φ) corresponds
only to 10–11 periods. In this region, function Ic(Φ) has
the following singularities. First, the maximal current
corresponds to smaller values of σ; second, the larger
the value of σ, the more exactly the given dependence
corresponds to the well-known Fraunhofer dependence
in a small Josephson junction (this dependence has the
form of 1/B with intense oscillations). However, several
qualitative differences exist. The most important is that
the period of oscillations is proportional to σ so that the
frequency of function Ic(Φ) increases by a factor of k as
soon as the value of σ increases k-fold. In other words,
oscillations correspond to the presence of additional
flux quanta passing through a grain. Such a form of
oscillations was observed in experiments with BSCCO
samples, in which the field dependence of stress was
measured [21]. In strong fields, function Ic(Φ) is trans-
formed into a peculiar sinusoidal dependence. This
transition was observed in the Ic(Φ) dependence in a
Josephson junction corresponding to a large-angle grain
boundary in a polycrystalline YBa2Cu3Oδ film [22]. In
addition, Ic ∝  σ in this field region. Such a transport
behavior matches the experimental results [23] in
which a noticeable increase in the value of Ic was
observed (dlnIc/dP = 0.2 ± 0.02 kbar–1), indicating that
application of pressure (increase in σ) improves the
quality of intergranular Josephson coupling.

It should be noted that, first, the structure of grains
and intergranular junctions in real superconducting
polycrystals is highly disordered, which leads to size-
and orientation distributions. This may weaken or even
suppress some of the predicted effects. Second, allow-
ance for symmetry in the order parameter in HTSC

λ J
1–
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materials might be important since it leads to the
growth of π contacts.

4.3. Effect of the Vortex Lattice Symmetry Type 
on Ic(Φ)

In a mixed state, the transport current through the
intergranular junctions depends on the phase distribu-
tion θ(x). This dependence is interesting since a well-
ordered vortex lattice was observed in recent experi-
ments on bulk La1.83Sr0.17CuO4 + δ samples [24]. In
addition, a transition from the triangular to the square

Ic

2 4 6 Φ/Φ08 10

Ic

Φ/Φ01

2

3

1

10 20 30 40 50

Fig. 6. Magnetic field dependence of the intergranular crit-
ical current Ic(Φ) for σ = 0.07 (1), 0.7 (2), and 0.35 (3); τ =
1.5, and ν = 1.5.
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Fig. 7. Field dependence of the intergranular critical current
Ic for triangular (1) and square (2) configurations of the vor-
tex lattice for τ = 0.4 (a), 0.6 (b), σ = 0.07, and ν = 1.5.
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lattice configuration upon an increase in the field. Fig-
ure 7 shows the oscillating dependence Ic(Φ) in the
case of formation of a triangular (curve 1) and square
(curve 2) vortex lattice in a grain for τ = 0.4 (Fig. 7a)
and 0.6 (Fig. 7b), when σ = 0.07 and ν = 1.5. The peak
of the sinusoid is high for the triangular lattice. How-
ever, this tendency is not observed for large values of Φ.
In addition, the phase difference in an anomalous
Fraunhofer-like Ic(Φ) dependence is the larger, the
smaller the value of τ (Fig. 7a). It should be noted that
the latter results correspond only to super-small-grain
structures with a grain size on the order of 1 µm.

5. CONCLUSIONS

A method for investigating phase dynamics in an
intergranular Josephson junction with expulsion of
Abrikosov vortices from grains and the presence of vor-
tex lattices is developed on the basis of the vortex-lam-
inar model. The results correspond to a number of the
most important and fundamental experimental facts in
transport phenomena in grained HTSC materials.

In particular, this approach clarifies the physical
meaning of the main singularities on the magnetic field
dependences Ic(Φ). The characteristic grain size τ,
grain anisotropy ν, and the intergranular coupling
intensity σ directly affect the intergrain critical current
and determine the nature of the transformation of the
AV into a Josephson vortex near the banks of the con-
tact on a scale on the order of ξc.

In addition, the period of oscillations of critical cur-
rent Ic(Φ) may acquire an addition flux quantum Φ0 per
grain upon a change in the intergrain coupling intensity
σ. Our results are in accordance with the experimental
data on the effect of high pressures on the Ic(Φ) depen-
dence obtained for HgBaCaCuO polycrystals. It is
shown qualitatively how the technological parameters
of HTSC materials should be varied to increase their
current-carrying capacity.

It is shown that generation of a Josephson vortex by
an Abrikosov vortex passes though a stage of overcom-
ing the energy barrier EJ in the intergranular junction;
the barrier height depends on the Josephson medium
parameters τ, ν, and σ, as well as on the distance z0
between the Abrikosov vortex and the junction.

The role of the vortex lattice symmetry in the
Josephson critical current is clarified. It is shown that
the type of the vortex lattice may determine the trans-
port properties of the system only in super-small-

grained structures with a ~ 1 µm in fields H ~ .

Our results can be used in the physics of processes
with dynamics described by Eq. (6) as well as in prac-
tical development of Josephson technologies in micro-
and nanoelectronics.

Hc1
G
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Abstract—Cation-ordered manganites of the PrBaMn2O6 system have been obtained using a two-stage syn-
thesis and characterized with respect to the chemical composition, crystal structure, magnetic and magne-
totransport properties, and the stability of the ordered state on heating. The physical properties of the cation-
ordered PrBaMn2O6 manganites obtained using this method significantly differ from the properties of cation-
disordered Pr0.50Ba0.50MnO3 synthesized by means of the conventional ceramic technology and depend on the
degree of ordering of the Pr3+ and Ba2+ cations. In particular, the cation-disordered Pr0.50Ba0.50MnO3 has a

cubic perovskitelike unit cell (SG = Pm m, Z = 1), while cation-ordered PrBaMn2O6 has a tetragonal unit cell
(SG = P4/mmm, Z = 2). Cation states in the system under study are reversible. The cation-ordered PrBaMn2O6
state remains stable upon heating in an oxidizing medium (P[O2] = 1 bar) up to 1300°C. The ordering of the
Pr3+ and Ba2+ cations leads to a significant increase in the critical temperatures of phase transitions. In particu-
lar, PrBaMn2O6 with the maximum degree of ordering is a metallic ferromagnet with the Curie temperature
TC ~ 320 K, whereas TC of a fully disordered sample is on the order of 140 K. The samples with intermediate
degrees of ordering contain two magnetic phases. Slightly below TC, all such samples exhibit a metal–insulator
transition and a peak of the magnetoresistance, which amounts to approximately 10 and 65% in a magnetic field
of 9 kOe for the fully ordered PrBaMn2O6 and disordered Pr0.50Ba0.50MnO3, respectively. The results are inter-
preted in terms of the Goodenough–Kanamori empirical rules for indirect exchange interactions with allowance
for the degree of ordering of the Pr3+ and Ba2+ cations. © 2005 Pleiades Publishing, Inc. 

3

1. INTRODUCTION

Rare earth manganites with a perovskite structure
and the general formula Ln1 – xAxMnO3 (Ln = La, Nd,
Pr; A = Ca, Sr, Ba) have been extensively studied for
more than half a century [1, 2]. The interest in these
compounds is still high [3], which is related, in partic-
ular, to the need for elucidating the nature of the phe-
nomenon of colossal magnetoresistance.

The action of a magnetic field on classical metals
containing free charge carriers leads to an increase in
the resistivity. For this reason, such metals exhibit a
positive anisotropic magnetoresistance (MR), which
depends on the mutual orientation of the current direc-
tion and the magnetic induction vector [4].

Ferromagnetic superconductors, in which fully or
partly localized charge carriers are present at tempera-
tures below TC (the Curie temperature), exhibit a nega-
tive isotropic MR, which is related to the fact that the
mobility of partly localized charge carriers is higher in
a ferromagnetic medium than in a paramagnetic one.
The MR of this type reaches maximum in the region of
TC, which is explained by a shift of the ferromagnetic
ordering toward higher temperature under the action of
the external magnetic field [5]. Such a behavior is typi-
cal of the homogeneous media, while polycrystalline
1063-7761/05/10103- $26.000513
substances exhibit the so-called giant MR, which is
related to the tunneling of charge carriers via a real phys-
ical barrier—the boundary between ceramic grains [6].
As a rule, the MR of this type is maximum at liquid
helium temperature, which corresponds to the maxi-
mum degree of polarization of local spins.

In the beginning of the 1990s, it was established that
systems such as Pr(Nd)1 – xCaxMnO3 exhibit a meta-
magnetic transition from an antiferromagnetic charge-
ordered state to ferromagnetic charge-disordered state
in the external field. Upon this transition, the resistivity
drops by several orders of magnitude. This phenome-
non was termed colossal MR [7].

Subsequent investigations of the properties of man-
ganites showed that the proper understanding of this
phenomenon requires taking into account the presence
and interplay of several degrees of freedom in the sys-
tem under consideration, including the lattice, orbital,
charge, and spin ones [8]. The properties of manganites
depend on a large number of factors such as the chem-
ical composition, stoichiometry, type of unit cell distor-
tion, Mn–O bond length, Mn–O–Mn bond angle, etc.
However, the main factor determining the properties of
manganites is the Mn3+/Mn4+ ratio between the num-
bers of differently charged manganese ions: this ratio
being close to unity is a necessary condition both for
 © 2005 Pleiades Publishing, Inc.
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the realization of exchange interactions of the “double
exchange” type and for the establishment of a charge
order in the system [9]. The magnitude of Mn3+/Mn4+

can be changed by introducing substitutional defects
into three sublattices of the perovskite structure through
(i) Ca2+, Sr2+, and Ba2+ substitution in sublattice A [10];
(ii) Mg2+, Ga3+, Ti4+, and Nb5+ substitution in sublattice
B [11]; and (iii) variation of the oxygen content [12].
Among various substituted manganites, most thor-
oughly studied in recent years are Ba-substituted ones.

In recent years, manganites of the LnBaMn2O6 sys-
tem (Ln = Y and rare earth ions) have been found to
possess unique physical properties, which is related to
the ordering of cations in sublattice A of the perovskite
structure [13–41]. The main structural feature of these
cation-ordered compounds consists in the alternation of
MnO2 planes with two other planes—LnO and BaO,
each containing cations of one type—which results in a
periodic distortion of MnO6 octahedra. The physical
properties of such cation-ordered LnBaMn2O6 manga-
nites cannot be explained taking into account the toler-
ance factor alone, as in the case of a statistical distribu-
tion of substituent cations in manganites of the
Ln0.50Ba0.50MnO3 type.

Previously, it was demonstrated that cation-ordered
compounds can be obtained using the method of revers-
ible topotaxic redox reactions. LnBaMn2O6 manganites
with stoichiometric oxygen content synthesized in air
by means of the conventional ceramic technology pos-
sess a cubic structure with a statistical distribution of
Ln3+ and Ba2+ cations, whereas anion-deficient
LnBaMn2O5 compounds have a tetragonal unit cell
with an ordered distribution of Ln3+ and Ba2+. The basal
planes of the perovskite cubooctahedron are fully occu-
pied by ions of the same type and alternate in the [001]
direction. This crystal structure is similar to that of
YBaCuFeO5 [42]. Oxidation of the anion-deficient
LnBaMn2O5 compounds leads to the formation of a sto-
ichiometric cation-ordered LnBaMn2O6 also possess-
ing a tetragonal structure. This type of cation ordering
increases the temperature of the phase transition from a
metallic ferromagnetic state to a dielectric paramag-
netic state, for example, from T ≈ 140 K to 320 K in the
case of Pr3+. In both cases, the MR effect is observed at
temperatures slightly below TC [22]. Good prospects
for the practical use of such materials are related to the
fact that the phase transitions take place at room tem-
perature.

In cation-ordered PrBaMn2O6 and NdBaMn2O6, the
main magnetic state is the A-type antiferromagnet [40].
In cation-ordered LaBaMn2O6, an antiferromagnetic
phase of the CE type coexist with the ferromagnetic
phase, which implies that the electron phase separation
in manganites is not only related to a statistical occupa-
tion of sublattice A, but that it also depends on the com-
petition between superexchange interactions and
charge ordering. The latter factor is also significantly
JOURNAL OF EXPERIMENTAL A
influenced by even slight changes in local structure on
the level of the first coordination sphere [43].

In this context, it was of interest to study in more
detail the physicochemical properties of cation-ordered
Ba-substituted manganites. This investigation was
devoted to the PrBaMn2O6 system, which was charac-
terized with respect to the chemical composition, crys-
tal structure, magnetic and magnetotransport proper-
ties, and the stability of the ordered state on heating.

2. EXPERIMENTAL METHODS
The initial cation-ordered compound with the for-

mula PrBaMn2O6 was obtained by means of a two-
stage synthesis. In the first stage, cation-disordered
Pr0.50Ba0.50MnO3 was synthesized using the conven-
tional ceramic technology in air at 1550°C and then
reduced by heating in vacuum at 800°C for 24 h to
obtain the O2.50 phase:

(1)

As will be shown below, the O2.50 phase is character-
ized by the ordered arrangement of the Pr3+ and Ba2+

cations in the (001) planes alternating in the [001]
direction. As a result, the unit cell of this phase is dou-
bled, and the phase with double unit cell will be
denoted below “O5.” At the second stage, the anion-
deficient PrBaMn2O5 was oxidized in air at 800°C for
5 h to obtain a stoichiometric O6 phase. Then, the sto-
ichiometric cation-ordered PrBaMn2O6 manganite was
subjected to isochronous step annealing in air for 10 h
at 1100, 1200, and 1300°C.

The chemical composition of samples was studied
by Auger electron spectroscopy (AES) on a PHI Model
660 scanning Auger microprobe. The measurements
were performed in high vacuum before and after clean-
ing the sample surface with an Ar+ ion beam.
The  microstructure of all samples was studied on a
NANOLAB-7 scanning electron microscope. The
quantitative content of chemical elements was deter-
mined and their homogeneous distribution was checked
using two complementary X-ray microprobes: MS-46
(wavelength-dispersive X-ray spectrometer) and sys-
tem 860-500 (energy-dispersive X-ray spectrometer).
Prior to measurements, the samples were degreased by
ultrasonic rinsing in ethanol for 5 min. The oxygen con-
tent was determined by thermogravimetric analysis
(TGA). Thus, the chemical formula of the synthesized
compounds could be written as Pr0.50Ba0.50MnO3 ± 0.01
and PrBaMn2O6 ± 0.02 for the O3 and O6 phases, respec-
tively.

The structure of samples was studied by X-ray dif-
fraction at room temperature on a DRON-3 diffracto-
meter using CrKα radiation filtered by a graphite mono-
chromator. The measurements were performed in the
angle interval 10° ≤ 2θ ≤ 100° at a step of ∆θ = 0.03.

Pr0.5Ba0.5MnO3 0.2Ta+

Pr0.5Ba0.5MnO2.50 0.1Ta2O5.+
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The degree of ordering A for the Pr3+ and Ba2+ cations
for all compounds [PrgBa1 – g]P[Pr1 – gBag]BMn2O6 was
determined from an analysis of the intensity of super-
structural (0 0 1/2) reflection and calculated as

(2)

where []P and []B are the crystallographic positions of
Pr and Ba, respectively, and g is a quantity varying from
0.5 for fully disordered (A = 0%) to 1 for completely
ordered (A = 100%) samples.

The dynamic magnetic susceptibility χ was mea-
sured in a temperature interval from 77 to 350 K using
a mutual induction bridge at an alternating magnetic
field frequency of 1200 Hz. The Curie temperature TC

was determined at a minimum of the derivative of χ
with respect to the temperature (dχ/dT). The resistivity
was studied in a temperature interval from 77 to 350 K
using the standard four-point-probe technique and the
samples with ultrasonically applied indium eutectic
contacts. The negative isotropic MR was determined as

(3)

where ρ(H) and ρ(0) are the resistivities measured in a
magnetic field of H = 9 kOe and in the absence of an
applied magnetic field.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

The oxygen content in all samples was determined
by TGA. It was established that the anion-deficient cat-
ion-ordered O5 annealed in air at 300–800°C converts
into a stoichiometric O6 phase with retained ordered
arrangement of the Pr3+ and Ba2+ cations in the (001)
planes. The subsequent step annealing in air at
900−1300°C did not change the oxygen content in the
O6 phase (Fig. 1). According to the TGA data, the
annealing of a cation-ordered PrBaMn2O6 (A = 100%),
in air for 3 h at 900°C changed the sample mass by less
than 0.06%.

Analysis of all samples by AES did not reveal any
elements other than the main components Pr, Ba, Mn,
and O. Figure 2 shows the typical AES spectrum of a
sample of cation-ordered PrBaMn2O6 (A = 100%). The
ratio between cations in all cases was 1 : 1 : 2 (to within
the measurement accuracy). The AES measurements
were performed in high vacuum before and after clean-
ing of the sample surface with a beam of high-energy
Ar+ ions. The presence of a peak of carbon (C) in the
differential spectrum of the initial sample (Fig. 2a) is
explained by the adsorption of CO2 from air on the
manganite surface. This impurity peak disappears upon
the Ar+ ion bombardment of the sample surface (Fig. 2b).

A 2g 1–( ) 100%,×=

MR
ρ H( ) ρ 0( )–

ρ 0( )
------------------------------ 

  100%,×=
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The sample morphology and the homogeneity of
distribution of the component elements were studied by
scanning electron microscopy (SEM). A typical SEM
micrograph of a cation-ordered PrBaMn2O6 (A =
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Fig. 1. TGA data for a cation-ordered PrBaMn2O6 sample
(A = 100%).
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Fig. 2. Differential AES spectra of a cation-ordered
PrBaMn2O6 sample (A = 100%) measured (a) before and
(b) after cleaning of the sample surface with a beam of high-
energy Ar+ ions.
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100%) sample is presented in Fig. 3. The results of
SEM measurements showed that the initial stoichio-
metric cation-disordered Pr0.50Ba0.50MnO3 sample is
characterized by the average grain size (〈D〉  ≈ 5 µm),
while all cation-ordered PrBaMn2O6 samples (irrespec-
tive of the degree of ordering A contained nanodimen-
sional grains (〈D〉  ≈ 300 nm). By “grains” we imply the
homogeneous regions separated from each other by
continuous boundary surfaces. The nanograins com-
bine to form a certain mosaic structure, which is com-
mon for the entire polycrystalline sample. As can be
seen from Fig. 3, the grains exhibit a certain size distri-
bution. It was also established that all samples are char-
acterized by a homogeneous distribution of chemical
elements corresponding to the nominal chemical for-
mula PrBaMn2O6. The grain size determines, to a cer-
tain extent, the properties of the crystal structure. A
decrease in the grain size to the nanodimensional level
is accompanied by a certain decrease in the unit cell
volume, which is explained by an increase in the forces
of surface tension relative to the bulk elastic forces. It
was also concluded that the sequential “deep” redox
reactions are capable of significantly modifying the
solid surface morphology [44].

Most substituted manganites possess a distorted unit
cell, which is a result of decreasing symmetry relative
to the initial cubic. There are two commonly accepted
factors responsible for the distortion of the oxygen
octahedron in MnO6: (i) a mismatch between the effec-
tive ion radius and the cavity size (size effect) and
(ii) the Jahn–Teller effect inherent in Mn3+ ions in a
high-spin state (S = 2). In the former case, a minimum
free energy of the crystal structure is achieved via rota-
tion of the MnO6 octahedron about the unit cell axes,
while in the second case the energy is minimized at the
expense of deformation of the MnO6 octahedron. A
rotation around the [100], [110], and [111] axes leads to
tetragonal, orthorhombic, and rhombohedral distortion,
respectively. The two factors may superimpose and act
simultaneously [45].

1 µm

Fig. 3. Typical SEM micrograph of a cation-ordered
PrBaMn2O6 sample (A = 100%).
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According to the X-ray diffraction data, the initial
cation-disordered Pr0.50Ba0.50MnO3 manganite at room

temperature is a cubic perovskite (SG = Pm m, Z = 1)
with the unit cell parameters a = 3.901 Å (V = 59.37 Å3).
The X-ray diffractograms revealed no impurity or
superstructural reflections. The presence of a cubic
symmetry was indicative of a statistical distribution of
cations in the crystals structure. All the cation-ordered
PrBaMn2O6 samples exhibited a tetragonal distortion
(SG = P4/mmm, Z = 2), which was related to the order-
ing of the Pr3+ and Ba2+ cations in the (001) planes and
doubling of the cell in the [001] direction. The unit cell
parameters of a cation-ordered PrBaMn2O6 sample
annealed in air for 5 h at 800°C are as follows: a =
3.900 Å, c = 7.775 Å (V = 118.26 Å3). Direct evidence
for the ordering of cations in this compound was the
presence of superstructural reflections in the X-ray dif-
fractograms. Additional evidence was provided by the
results of previous experiments using the methods of
electron diffraction and high-resolution electron
microscopy [22]. The appearance of ordering of the
Pr3+ and Ba2+ cations leads to a decrease (by one for-
mula unit) in the unit cell volume. The cation-ordered
PrBaMn2O6 samples possess a smaller comparable unit
cell volume than the cation-disordered Pr0.50Ba0.50MnO3,
and this volume depends on the degree of ordering in
sublattice A. The main structural feature of these cat-
ion-ordered compounds is the alternation of MnO2
planes with PrO and BaO planes.

The degree of ordering of the Pr3+ and Ba2+ cations
was determined using data on the intensity of the super-
structural (0 0 1/2) reflection relative to that for the ini-
tial cubic cell. For CrKα radiation, this reflection is sit-
uated at 2θ ≈ 17° (Fig. 4). The intensity of this reflec-
tion for the initial cation-disordered Pr0.50Ba0.50MnO3
compound synthesized using the conventional ceramic
technology and for the cation-ordered PrBaMn2O6
sample annealed in air for 10 h at 1300°C was zero.
Therefore, the degree of ordering in these samples was
also A = 0%. The cation-ordered PrBaMn2O6 sample
annealed in air for 5 h at 800°C exhibited the maximum
degree of ordering: A = 100%. For the cation-ordered
PrBaMn2O6 samples annealed in air for 10 h at 1100
and 1200°C, the degree of ordering had intermediate
values of A = 70 and 50%, respectively. Thus, an
increase in the temperature of annealing leads to degra-
dation of the ordered state up to the complete disorder-
ing in the limit at 1300°C. As can be seen from Fig. 4,
a decrease in the degree of ordering is accompanied by
an increase in the unit cell volume, which is manifested
by the shift of the Bragg reflection toward smaller 2θ
angles. It should be noted that the cation states in the
system under consideration are reversible.

Figure 5 shows the temperature variation of the
dynamic magnetic susceptibility χ and its derivative with
respect to temperature (dχ/dT) for the cation-ordered
PrBaMn2O6 samples with various degrees of ordering.
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The initial cation-disordered Pr0.50Ba0.50MnO3 is a fer-
romagnet with TC ≈ 140 K. The ordering of cations
leads to a sharp increase in TC, which reaches TC ≈
320 K for cation-ordered PrBaMn2O6 with A = 100%.
The samples with A = 50 and 70% are characterized by
TC ≈ 166 and 306 K, respectively. In addition, the latter
partly ordered samples exhibit anomalies in the region
of 180 K, which are related to the low-temperature fer-
romagnetic phase. Thus, the step annealing of cation-
ordered PrBaMn2O6 samples leads to degradation of
the high-temperature ferromagnetic phase and a
decrease in the degree of ordering, which corresponds
to restoration of the initial magnetic properties.

Figure 6 shows the temperature dependence of the
resistivity and MR (measured at H = 9 kOe) for cation-
ordered PrBaMn2O6 samples with various degrees of
ordering. All sample exhibit the metal–dielectric transi-
tion and MR peaks slightly below TC. A decrease in the
degree of ordering is accompanied by depression of the
transition temperature and leads to the growth of both
resistivity and MR. For the completely cation-ordered
PrBaMn2O6 sample (A = 100%), the MR peak at TC ≈
311 K amounts to approximately 10%, whereas the
completely cation-disordered sample (A = 0) as MR ≈
66% at TC ≈ 137 K. This property (MR peak observed
above room temperature) makes cation-ordered

16°15° 17° 18° 19° 20°

2θ

10

15

20

25

I, rel. units

a

b

c

Fig. 4. Room-temperature X-ray diffractograms showing
superstructural (0 0 1/2) reflections for the cation-ordered
PrBaMn2O6 samples with A = 0 (a), 70% (b), and 100% (c).
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PrBaMn2O6 manganites promising materials for practi-
cal applications.

There is a certain correlation between the degree of
ordering of the Pr3+ and Ba2+ cations, the unit cell vol-
ume, and the Curie temperature. As can be seen from
Fig. 7, an increase in the degree of ordering is accom-
panied by a correlated decrease in the unit cell volume
and an increase in the Curie temperature.

In order to explain the existence of a metallic ferro-
magnetic state in substituted manganites, Zener [46]
and De Gennes [47] developed the so-called double
exchange model. The main function in this mechanism
is performed by partly collectivized (itinerant) eg elec-
trons, which pass (without their changing spin orienta-

tion) from Mn3+ ( , S = 2) to Mn4+ ( , S = 3/2) via

O2– anions. The total spins of fully localized  elec-
trons are polarized by the jumps of collectivized eg

electrons and the material becomes ferromagnetic
below TC. In addition to the Mn3+/Mn4+ ratio, the mag-
netic properties of manganites are determined to a con-
siderable extent by the following parameters: (i) the aver-
age ion radius 〈rA〉 of the perovskite sublattice A [48],
(ii) the variance σ2 of the radii of chemical elements
occupying sublattice A [49], and (iii) average Mn–O
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Fig. 5. Plots of the (a) dynamic magnetic susceptibility χ
and (b) its derivative dχ/dT versus temperature for (1) the
initial cation-disordered Pr0.50Ba0.50MnO3 and (2–5) cat-
ion-ordered PrBaMn2O6 samples with A = 0 (2), 50% (3),
70% (4), and 100% (5).
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bond length [50]. As a rule, a decrease in the average
radius 〈rA〉  and an increase in the variance σ2 and the
Mn–O bond length lead to a decrease in TC.

The condition that the ratio Mn3+/Mn4+ is close to
unity determines the concentration boundary of the
transition from ferromagnetic to antiferromagnetic
state [51]. For this reason, the spontaneous magnetic
moment and the Curie temperature for such compounds
are somewhat lower than the possible theoretical val-
ues. As the relative content of Mn4+ ions increases, the
manganite state changes from ferromagnetic to antifer-
romagnetic and dielectric. According to the Good-
enough–Kanamori empirical rules [52], the closer the
average Mn–O–Mn bond angle to 180°, the higher the
intensity of exchange interactions. The local distribu-
tion of the Mn–O–Mn bond angles is determined to a
considerable extent by the character of cation arrange-
ment in sublattice A. A statistical distribution of cation
leads to strong local distortions in the distribution of
Mn–O–Mn bond angles, which leads to a decrease in
the intensity of exchange interactions. For this reason,
a low Curie temperature (TC ≈ 140 K) is observed for
the cation-disordered sample.

The ordering of the Pr3+ and Ba2+ cations in sublat-
tice A leads to two consequences: (i) an increase in
periodicity of distribution of the Mn–O–Mn bond
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Fig. 6. Plots of the (a) resistivity and (b) magnetoresistance
(measured at H = 9 kOe) versus temperature for cation-
ordered PrBaMn2O6 samples with A = 0 (1), 50% (2),
70% (3), and 100% (4).
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angles (and, probably, an increase in the average value
of this angle) and (ii) a decrease in the average Mn–O
bond length (as a result of decreasing unit cell volume).
These changes lead to a significant increase in the Curie
temperature (according to the experimental data, up to
TC ≈ 320 K). Intermediate ordered states are character-
ized by intermediate TC values, a decrease in the degree
of ordering leading to a depression of the Curie temper-
ature. The increase in the average value and the period-
icity of distribution of the Mn–O–Mn bond angle and in
the average length of the Mn–O bond leads to an
increase in the integral of eg electron transfer and,
hence, favors the charge carrier transport. As a result,
the critical temperature of the metal–dielectric transi-
tion also increases with the degree of ordering. The
peak of MR also exhibits a shift. Thus, there is a certain
correlation between the spin and charge states.

It should be noted that the nature of the cation-
ordered state formation in Ba-substituted manganites is
by no means completely clear, since no such ordering
has been observed for the other substituents such as Ca
and Sr. At present, we may only ascertain that there are
two factors favoring this ordering: (i) the appearance of
a large number of oxygen vacancies in the initially dis-
ordered Pr0.50Ba0.50MnO3 compound and (ii) a decrease
in the average size of ceramic grains down to the nano-
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Fig. 7. Plots of the (a) unit cell volume V and (b) Curie tem-
perature TC versus degree of ordering for cation-ordered
PrBaMn2O6.
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dimensional level. This decrease in the grain size leads
to an increase in the forces of surface tension relative to
the bulk elastic forces, which produces an additional
compression equivalent to external pressure.

4. CONCLUSIONS

This paper presents the results of an experimental
investigation of the chemical composition, crystal
structure, magnetic and magnetotransport properties of
cation-ordered manganites of the PrBaMn2O6 system.

Using a two-stage synthesis, a series of PrBaMn2O6

manganites with an ordered arrangement of the Pr3+ and
Ba2+ cations were obtained. The stability of this ordered
state was studied on heating to elevated temperatures.

The physical properties of the cation-ordered
PrBaMn2O6 manganites obtained using the two-stage
synthesis significantly differ from the properties of cat-
ion-disordered Pr0.50Ba0.50MnO3 synthesized by means
of the conventional ceramic technology and depend on
the degree of ordering of the Pr3+ and Ba2+ cations.

In particular, the cation-disordered Pr0.50Ba0.50MnO3

has a cubic perovskitelike unit cell (SG = Pm m,
Z = 1), while cation-ordered PrBaMn2O6 has a tetrago-
nal unit cell (SG = P4/mmm, Z = 2). The average grain
size in this cation-ordered compound is about 300 nm.
Cation states in the system under study are reversible.
The cation-ordered PrBaMn2O6 state remains stable
upon heating in an oxidizing medium (P[O2] = 1 bar)
up to 1300°C. As the degree of ordering of the Pr3+ and
Ba2+ cations decreases, the corresponding unit cell vol-
ume grows.

The ordering of the Pr3+ and Ba2+ cations leads to a
significant increase in the critical temperatures of phase
transitions. In particular, PrBaMn2O6 with the maxi-
mum degree of ordering (A = 100%) is a metallic ferro-
magnet with the Curie temperature TC ≈ 320 K,
whereas TC of a fully disordered sample is on the order
of 140 K. The samples with intermediate degrees of
ordering contain two magnetic phases. Slightly below
TC, all such samples exhibit a metal–insulator transition
and show a peak of the magnetoresistance, which
amounts to approximately 10 and 65% in a magnetic
field of 9 kOe for the fully ordered PrBaMn2O6 and dis-
ordered Pr0.50Ba0.50MnO3, respectively. The results can
be interpreted in terms of the Goodenough–Kanamori
empirical rules for indirect exchange interactions with
allowance for the degree of ordering of Pr3+ and Ba2+

cations. It is suggested that such indirect exchange
interactions Mn4+–O–Mn3+ are positive in the orbital-
disordered phase in the case of octahedral coordination
of manganese ions.
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Abstract—The paper develops concepts of the structure of pure amorphous metals and atomic mechanisms of
its formation. It is shown that a stable percolation cluster of interpenetrating and contacting icosahedra whose
vertices and centers are occupied by atoms is formed under the conditions of isothermal annealing of instanta-
neously supercooled iron melt only below the critical temperature ~1180 K identified with the glass transition
temperature. The duration of isothermal annealing up to the formation of the icosahedral percolation cluster
does not exceed ~1.5 × 10–11 s at 900–1180 K. The time of the beginning of homogeneous nucleation was found
to be minimum at the critical temperature above which stable icosahedral percolation cluster did not form.
Arguments are provided in favor of the assumption that the formation of icosahedral percolation cluster inter-
feres with the beginning of crystallization. A quantitative model is suggested to describe the diffusion mobility
of atoms in metallic glasses. In this model, the mean-square displacement of atoms is represented as the sum
of the contributions of the linear (Einstein) and logarithmic components. The latter appears because of irrevers-
ible structural relaxation. The icosahedral percolation transition was shown to change the activation parameters
of the model jumpwise. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In recent years, more and more data have been col-
lected in favor of the concept first formulated in [1] in
terms of the free volume model. According to this con-
cept, percolation transitions play a fundamental role in
structural self-organization of amorphous materials
close to the glass transition temperature Tg. A fractal
percolation cluster is formed in a disordered system
(melt or glass) from local atomic configurations of the
same type (Delaunay simplexes with an increased or
decreased density of filling the space with atoms [2],
icosahedra interpenetrating and contacting with each
other [3, 4], and defects in the network of covalent
bonds [5]). The formation of a percolation cluster is
evidence of system transition into a new structural state
(from liquid to vitreous or vice versa, from vitreous to
liquid) and, as a consequence, a change in atomic
dynamics. Recently, it was shown theoretically on the
basis of a thermodynamic description of structural
defects [5] that glass transition in amorphous SiO2
could be treated as a percolation transition in the system
of network defects presumably consisting of defect SiO
molecules, which substantially influence diffusion and
viscous flow [6]. The suggested approach can in princi-
ple be extended to glass formation in other materials.
Its development, however, requires identifying the
structural elements of percolation clusters for every
type of amorphous materials and studying their thermo-
dynamic parameters. In the majority of cases, this is a
1063-7761/05/10103- $26.000521
difficult problem that cannot be solved analytically. For
instance, as distinct from the structure of amorphous
SiO2, which, by virtue of the special features of local
bonds in it, can be treated as a topologically disordered
three-dimensional network comprising SiO4 tetrahedra
connected by bridge oxygen atoms, the structure of
amorphous metals cannot be given such an unambigu-
ous description and represents a complex mosaic of a
fairly large set of coordination polyhedra of different
types [4].

Currently, one of the most effective approaches to
studying the principles of the structural organization of
disordered systems is computer simulation, which
opens up possibilities for analyzing the atomic struc-
ture and dynamics and the mechanisms governing the
space-time evolution of all system particles [7–11].
This approach inspires certain hopes for constructing a
complete theory of metallic glass structure formation
from melts and their rearrangement during structural
relaxation. For instance, studies of the glass transition
of iron melt by molecular dynamics simulation with the
Johnson pair interatomic interaction potential [12] at a
constant volume [13] and, more recently, at a constant
pressure [14] showed that a correlation of local atomic
stresses appeared below ~1400–1600 K. This was evi-
dence of atomic ordering in the liquid phase followed
by glass transition. These spatial correlations of local
atomic stresses were accompanied by substantial
changes in the dynamic properties of the model. At
 © 2005 Pleiades Publishing, Inc.
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the same time, no significant structural reorganization
was observed; the authors only mentioned an important
phenomenon, namely, a transition between bond
orientation ordering types in the supercooled liquid
phase [13].

A structural model of the glass transition of pure
metals was suggested in [3, 4]. According to this model,
the atomic structures of metallic melts and glasses are
fundamentally different. It was shown in [4] by molec-
ular dynamics simulations with the Pak–Doyama pair
interatomic interaction potential [15] that a central role
in the structural organization of the amorphous phase of
pure iron is played by the formation (at the glass transi-
tion temperature, Tg ~ 1180 K) and growth of a perco-
lation cluster of interpenetrating and contacting icosa-
hedra whose vertices and centers are occupied by
atoms. Interpenetrating icosahedra are those sharing
seven atoms, and contacting ones share three (face con-
tact), two (edge contact), or one (vertex contact) atoms.
The mechanisms that were shown to govern the self-
organization of the icosahedral structure during glass
transition well correlated with the temperature depen-
dences of the main thermodynamic characteristics of
the model [4]; certain features of these dependences were
characteristic of a second-order phase transition [16].
These mechanisms also explained the behavior of ther-
modynamic characteristics at the microscopic level.
The results made it possible to suggest [4] that a fractal
cluster that consists of icosahedra incompatible with
translational symmetry and comprises more than half
of all the atoms plays the role of a binding framework
that hinders crystallization. It is the basic element of the
structural organization of the solid amorphous state of
pure metals that radically distinguishes it from melts.
Because of the closeness of the Johnson and Pak–
Doyama pair potentials, it is also important that a tem-
perature of 1460 K, below which size fluctuations of
small-sized clusters comprising icosahedra interpene-
trating and contacting with each other increase
sharply [4], is fairly close to the temperature at which
local atomic stresses begin to correlate [13, 14].

A more detailed quantitative analysis of structural
rearrangements and the influence of the icosahedral
percolation transition on the diffusion mobility of
atoms and nucleation with subsequent crystallization
can be performed by conducting isothermal annealings
of an instantaneously supercooled melt close to the
glass transition temperature.

In this work, we use the results of a series of com-
puter molecular dynamics experiments to study the
influence of the isothermal annealing temperature on
the kinetics of the icosahedral percolation transition
(which we identify with glass transition) and the begin-
ning of homogeneous nucleation in a supercooled iron
melt. We also consider the influence of the icosahedral
percolation transition on the activation parameters that
determine the diffusion mobility of atoms.
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2. DESCRIPTION OF THE MODEL

The initial molecular dynamics model of liquid iron
was constructed at T = 2300 K and had a density of
7800 kg/m3 (the density was set in conformity with the
data on α-Fe [17] with about a 1% correction for the
amorphous state). The initial structure was a random
close packing of atoms. The interaction between the
atoms was described using the Pak–Doyama empirical
pair potential [15]

(1)

where r is in angstroms. The potential cutoff radius (the
distance at which the potential and its first derivative
smoothly vanished) was taken to be rc = 3.44 Å. The
potential parameters were determined from the data on
the elastic properties of α-Fe. The use of this potential
for modeling liquid and amorphous iron [18–20] and
iron–metalloid alloys [21, 22] provided close agreement
between calculation results and experimental structural
characteristics. The model contained 100000 atoms in a
basic cube with periodic boundary conditions. The
velocities of atoms at the initial time were set according
to the Maxwell distribution. Molecular dynamics simu-
lations were performed by numerically integrating
equations of motion in time steps of ∆t = 1.523 × 10–15 s
using the Verlet algorithm [23]. The system was main-
tained at a fixed temperature for 3000 time steps (iso-
thermal conditions). The temperature was then allowed
to change, and thermal equilibrium at a constant inter-
nal energy (adiabatic conditions) was attained during
the 3000 time steps.

Next, the system was studied under isochoric condi-
tions over the temperature range 1240–900 K in steps
of 20 K. The procedure for modeling involved an
instantaneous drop in melt temperature to the required
value followed by isothermal annealing until a crystal-
line nucleus of a critical size began to grow rapidly. The
structural characteristics of the system were measured
cyclically every 5000∆t, or 0.7615 × 10–11 s. Each
annealing cycle at the required temperature took a time
of 1000∆t under isothermal and 4000∆t under adiabatic
conditions. The thermodynamic characteristics of the
system were averaged over a time period of 2000∆t at
the end of each cycle. Note that the temperature T of the
system under adiabatic conditions and the required
temperature of measurements (the temperature of the
“environment”) did not coincide exactly. After every
cycle, the system was driven to the state with T = 0 K
by the method of static relaxation. The atoms then
occupied equilibrium positions in local potential wells,
and their mean-square displacements were calculated.

The instant of the formation of a crystalline nucleus
of a critical size that began to grow rapidly and of an
icosahedral percolation cluster was identified by two
methods, namely, using statistical geometric analysis

φ r( ) 0.188917 r 1.82709–( )4–=

+ 1.70192 r 2.50849–( )2 0.198294 eV,–
ND THEORETICAL PHYSICS      Vol. 101      No. 3      2005



        

THE INFLUENCE OF THE ICOSAHEDRAL PERCOLATION TRANSITION 523

                                                                                                       
based on Voronoi polyhedra and cluster analysis based
on percolation theory; these methods are described in
detail in [3, 4, 24, 25].

3. RESULTS AND DISCUSSION

We found that, in the model of an instantaneously
supercooled iron melt, the formation and subsequent
growth of a percolation cluster built of icosahedra inter-
penetrating and contacting with each other whose ver-
tices and centers are occupied by atoms occurred only
below the critical temperature Tg ~ 1180 K under iso-
thermal conditions (Fig. 1). Note that this temperature
coincided with the temperature of the formation of
icosahedral percolation cluster during glass transition
of iron melt in the molecular dynamics model under the
conditions of linear cooling at a rate of 4.4 × 1012 K/s [4].
In addition, the glass transition temperature coincided
with the temperature at which the time of annealing up
to the beginning of homogeneous nucleation was
minimum.

This time sharply increases and the number of icosa-
hedra in the system decreases as the temperature grows
(T > Tg). No stable percolation cluster of interpenetrat-
ing and contacting icosahedra does not form then.

The beginning of homogeneous nucleation at tem-
peratures below the glass transition temperature (T <
Tg) is always preceded by the formation and growth of
an icosahedral percolation cluster. Importantly, the
duration of annealing before the formation of an icosa-
hedral percolation cluster did not exceed 1.5 × 10–11 s
in the temperature range studied, 900–1180 K. The for-
mation of an icosahedral percolation cluster was
observed either at the first (t = 0.7615 × 10–11 s) or at the
second (t = 1.523 × 10–11 s) cycle of measurements
counting from the instant of the beginning of isother-
mal annealing.

The time up to the beginning of homogeneous
nucleation, the size to which the icosahedral percola-
tion cluster manages to grow, and the total number of
icosahedra in the system increase as the temperature
decreases. We found that the fractal icosahedral cluster
and the total number of icosahedra continued to grow
for some time after the beginning of homogeneous
nucleation. This is evidence that the formation of crys-
talline nuclei and their growth at early stages occur by
addition of atoms situated in “pores” of fractal icosahe-
dral cluster rather than by absorption of icosahedra. The
presence of a fractal cluster stable toward decompo-
sition limits the mobility of atoms that do not partici-
pate in constructing it. This restrains homogeneous
nucleation.

In order to determine the character and strength of
the influence of icosahedral percolation transition on
the diffusion mobility of atoms, we constructed the
kinetic curves for the mean-square displacements of
atoms close to the Tg temperature. It follows from an
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
analysis of the data obtained in computer experiments
and shown in Fig. 2 that the time dependence of the
mean-square displacement of atoms at temperatures
higher than Tg is linear in conformity with the Einstein
equation 〈∆r2(t)〉  = 6Dt, where D is the self-diffusion
coefficient. Below Tg, this dependence acquires an
essentially nonlinear transition character at the initial
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Fig. 1. Isothermal kinetic diagram of the beginning of
homogeneous nucleation in the molecular dynamics model
of an instantaneously supercooled iron melt (rhombuses).
Pentagons correspond to the formation of a stable icosahe-
dral percolation cluster. No stable icosahedral percolation
cluster is formed at temperatures above Tg ~ 1180 K
(dashed horizontal line).
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Fig. 2. Kinetics of mean-square displacements of atoms in
the molecular dynamics models of liquid and amorphous
iron (from τ = 0.7615 × 10–11 s to the beginning of crystal-
lization) at various temperatures (symbols) and approximat-
ing curves obtained using the model that takes into account
the kinetics of irreversible structural relaxation (solid lines).
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annealing stages, which is especially noticeable when
the temperature decreases, and gradually becomes
steady-state and linear. The appearance of the nonsta-
tionary stage in the kinetics of the mean-square dis-
placement of atoms at T < Tg can only be related to the
formation of icosahedral percolation cluster, that is, to
the transition of a supercooled melt into the metallic
glass state and subsequent structural relaxation.

An analysis of the kinetics of transition processes
and related mean-square displacements of atoms at
temperatures below the glass transition temperature
was performed using the activation energy spectrum
model [26] for irreversible structural relaxation [27].
According to [27], structural relaxation can be treated
as a sequence of spatially isolated irreversible elemen-
tary thermally activated rearrangements in certain
structure regions, which are relaxation centers with dis-
tributed activation energies. The relaxation centers are
physically distinguished structure regions with excess
free volume. There are stoppers that restrain local rear-
rangements of atomic configurations in adjacent struc-
ture regions [27]. Of all the coordination polyhedra that
we encounter in closely packed structures (both ordered
and disordered), the icosahedron is the most compact
and energetically stable. Relaxation centers should
therefore be situated outside both fractal and smaller
icosahedral clusters, that is, in their pores. Thermally
activated stopper removal results in free volume redis-
tribution in volume Ω adjacent to a relaxation center,
which increases the mobility of neighboring atoms and
thereby activates the second stage of the process. This
is the cooperative displacement of atoms in the sur-
rounding region, which can be treated as local viscous
flow [27]. No matter what the character of the activa-
tion energy spectrum, structural relaxation continues up
to the beginning of crystallization, which results in the
cutoff of the spectrum near the activation energy Ec.
This energy is some effective parameter of the model
that we use.

The kinetic equation for the spectral density (distri-
bution function) of relaxation centers n(E, t) has the
form

(2)

where ν0 is the characteristic frequency on the order of
the Debye frequency. Equation (2) is central to the acti-
vation energy spectrum model [26]. The integration of
this equation under isothermal annealing conditions
allows us to track changes in the spectral density of
relaxation centers with time. After annealing at temper-
ature T for time τ, the spectral density of relaxation cen-
ters takes the form

(3)

dn
dt
------ nν0

E
kBT
---------– 

  ,exp–=

n E τ,( ) n0 E( )Θ E τ,( ),=
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where n0(E) is the initial spectral density of relaxation
centers and

(4)

is the characteristic function of isothermal annealing.
The time of preannealing in our computer experiment
was τ = 0.7615 × 10–11 s.

If the n0(E) function is fairly flat, that is, if it changes
much more slowly than the exponential function
Θ(E, t) varies, annealing development is largely deter-
mined by the exponential term. During annealing, the
Θ(E, t) curve shifts along the E axis but virtually does
not change its shape of a step function, which sharply
increases from zero to one near the characteristic
energy E0 = kBTln(ν0t) [26] corresponding to the inflec-
tion point. It follows from the definition of E0 that vir-
tually all the relaxation centers with activation energies
E ≤ E0 come into action by the time t. As a first approx-
imation, the Θ(E, t) dependence can be described by
the Heavyside step function [28] Θ(E – E0). Impor-
tantly, using this approximation does not cause a loss in
the accuracy of structural relaxation kinetics calcula-
tions. To show this, let us consider the exact solution to
the problem.

Time t will be counted from the moment when pre-
annealing during time τ ends. The time t dependence of
the spectral density of relaxation centers then takes the
form

(5)

According to the superposition principle, the total den-
sity of relaxation centers that remain intact by the time
t is given by the equation

(6)

It follows that the mean-square displacement of
atoms under the conditions of irreversible structural
relaxation can be written as

(7)

where δr2 is the mean-square displacement of atoms
that accompanies the thermally activated removal of
one relaxation center.

Θ E τ,( ) ν0τ
E

kBT
---------– 

 exp– ,exp=

n E t,( ) n E τ,( )Θ E t,( )=

=  n0 E( ) ν0 τ t+( ) E
kBT
---------– 

 exp– .exp

NRC t( ) n0 E( )
0

∞

∫=

× ν0 τ t+( ) E
kBT
---------– 

 exp– E.dexp

∆r2 t( )〈 〉 δ r2Ω NRC 0( ) NRC t( )–( ) 6Dt,+=
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According to the popular hypothesis about the acti-
vation energy spectrum of irreversible structural relax-
ation in metallic glasses, this spectrum is generally uni-
form and has no significant singularities [27]. We can
therefore assume that n0(E) = n0 = const to check (7)
(Fig. 3). The upper limit of the integral in (6) can con-
veniently be replaced by Emax  ∞; (6) then takes the
form

(8)

where the notation

is used and

(9)

is the integral exponential function [28]. Under the con-
ditions of the problem under consideration (ν0 ~ 1013 s–1,
and τ = 0.7615 × 10–11 s), we have –Ei(–ν0(τ + t)) < 10–34.
The first term in (8) can therefore be ignored and the
second term can be written using the known expansion
of the integral exponential function into a series [28],

(10)

where C = 0.5772 is the Euler constant. As Ec ! Emax,
the argument under the sum sign in (10) can be esti-
mated as a value much smaller than one. It follows that,
at an arbitrary time moment preceding crystallization,
we have

(11)

This allows Eq. (7) for the mean-square displacement
of atoms to be rewritten as

(12)

In Fig. 2, the time dependences of the mean-square
displacement of atoms before the beginning of crystal-

NRC t( ) n0kBT
x–( )exp

x
-------------------- xd

τ t+( )/tmax

ν0 τ t+( )

∫=

=  n0kBT Ei ν0 τ t+( )–( ) Ei τ t+
tmax
----------– 

 – ,

tmax ν0
1– Emax/kBT( )exp=

Ei x–( )–
x–( )exp

x
-------------------- xd

x

∞

∫=

NRC t( ) n0kBT–=

× C
τ t+
tmax
---------- 

 ln
1–( )i

i!i
------------ τ t+

tmax
---------- 

  i

i 1=

∞

∑+ + ,

NRC 0( ) NRC t( )– n0kBT
t
τ
-- 1+ 

  .ln=

∆r2 t( )〈 〉 δ r2n0ΩkBT
t
τ
-- 1+ 

 ln 6Dt.+=
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lization at several temperatures after preannealing for
τ = 0.7615 × 10–11 s are shown by symbols and their
approximations according to (12), by solid lines. We
see that the model is in close agreement with the com-
puter experiment results. Similar calculations were per-
formed for other temperatures between 1240 and 900 K
(the interval studied in this work) and for 1260 K (the
instant of the beginning of crystallization at this tem-
perature was not determined because of enormous real
time expenditures of molecular dynamics computa-
tions). Our analysis allowed us to obtain the tempera-
ture dependence of the product δr2n0Ω (Fig. 4) and the
self-diffusion coefficient D (Fig. 5).

n0

Ec Emax

~ ~
~ ~

0

Fig. 3. Schematic drawing of changes in the spectral density
of relaxation centers during isothermal annealing (the plane
spectrum approximation).
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Fig. 4. Temperature dependence of the δr2n0Ω product.
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Changes in the spectral density of relaxation centers
as the temperature increases are shown in Fig. 4 within
a factor of δr2Ω . Since δr2Ω weakly depends on tem-
perature, it follows from Fig. 4 that a sharp decrease in
the spectral density of relaxation centers occurs near Tg

as the temperature increases. This is evidence of the
transition of the structure of the model system from the
glassy state to a supercooled melt.

Figure 5 shows that the temperature dependence of
the self-diffusion coefficient both above and below Tg is
well described by the Arrhenius equation D =
D0exp(−Es/kBT). The self-diffusion activation energy Es

and the preexponential factor D0, however, change
jumpwise at T = Tg because of the transition of a super-
cooled melt into the metallic glass state. The activation
parameters for the supercooled melt and metallic glass are

 = 1.05 eV,  = 5.25 × 10–6 m2/s and  =

1.2 eV,  = 2.05 × 10–5 m2/s, respectively.

4. CONCLUSIONS

A stable percolation cluster of interpenetrating and
coming into contact icosahedra whose vertices and cen-
ters are occupied by atoms is formed under isothermal
conditions in the molecular dynamics model of an
instantaneously cooled iron melt only at a temperature
below critical (~1180 K). We identify this temperature
with the glass transition temperature. The formation of
an icosahedral percolation cluster below this tempera-
ture occurs at the initial stages of isothermal annealing,
and the expectation time for the process does not
exceed 1.5 × 10–11 s. The critical temperature above
which no stable icosahedral percolation cluster is

Es
m( ) D0

m( ) Es
g( )

D0
g( )

–1

0.9 1.0 1.1 1.2
Tg/T

1.3

–2

–3

–4

–5

–6

lnD, 10–9 m2/s

Fig. 5. Temperature dependence of the self-diffusion coeffi-
cient.
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formed coincides with the temperature at which the
time of the beginning of homogeneous nucleation is
minimum. The time of the beginning of homogeneous
nucleation and the size of the cluster increase as the
temperature decreases. This substantiates the sugges-
tion that a fractal cluster comprising icosahedra that are
incompatible with translational symmetry and are built
of more than half of all the atoms plays the role of a
binding framework that restrains crystallization and is
the basic element of the structural organization of the
solid amorphous state of pure metals that radically dis-
tinguishes it from melts.

We obtained an equation that correctly describes the
influence of irreversible structural relaxation on the
kinetics of the mean-square displacements of atoms in
metallic glasses. The icosahedral percolation transition
in supercooled liquid iron was shown to cause a sharp
change in the activation parameters that determined the
diffusion mobility of atoms.
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Abstract—Magnetic and galvanomagnetic properties of single crystals of a new dilute magnetic semiconduc-
tor p-Sb2 – xCrxTe3 (x = 0, 0.0115, 0.0215) are investigated in a temperature range of 1.7–300 K. A ferromagnetic
phase with a Curie temperature of TC ≈ 5.8 (x = 0.0215) and 2.0 K (x = 0.0115) is detected. The easy magneti-
zation axis is parallel to the C3 crystallographic axis. Analysis of the Shubnikov–de Haas effect observed in
these crystals in strong magnetic fields leads to the conclusion that the hole concentration decreases as a result
of doping with Cr. Negative magnetoresistance and the anomalous Hall effect are observed in Cr-doped samples
at liquid helium temperature. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Layered semiconductors of the Sb2Te3 type have a

rhombohedral structure (space symmetry group R m–

) with dyad axis C2 and triad axis C3. Five-layered
packets of atomic layers Te1–Sb–Te2–Sb–Te1 (Te1 and
Te2 denote two possible positions of atoms in the lat-
tice) with a covalent-ionic bond form the antimony tel-
luride lattice. A weak Van der Waals interaction is
observed between the five-layered packets (between
layers Te1–Te1). Atoms of the each subsequent layer are
located above the centers of the triangles formed by the
atoms of the preceding layer (i.e., the Te1 and Sb atoms
occupy the octahedral positions in the structure).

Crystals of Sb2Te3 always exhibit p-type conductiv-
ity due to the high concentration of charged point
defects of predominantly antistructural type (i.e., Sb
atoms occupy the positions of Te atoms). The formation
of such defects is due to weak polarity of Sb–Te bonds.

A change in the bond polarity upon doping changes
the concentration of point defects and, hence, the hole

3

D3d
5
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concentration. Consequently, doping by an element of
a certain group of the Periodic Table may lead to either
a donor or acceptor effect irrespective of the number of
the group, since doping affects the polarity of the bond.
By way of example, we can mention In, which belongs
to group III and acts as a donor in Sb2Te3 [1, 2].

Compound Sb2Te3 is a narrow-gap semiconductor
with an indirect forbidden bandgap Eg = 0.25 eV (at
295 K) and Eg = 0.26 eV (at 4.2 K) [3]. The valence
band consists of the upper band of light holes, and the
lower band, of heavy holes, each of which is sixfold
degenerate. The Fermi surface for both bands is a six-
ellipsoidal surface [1, 4]. Anisotropy of the cross sec-
tions of the ellipsoids of the light hole band is η =
Smax/Smin ≈ 3.8, where Smax and Smin are the areas of the
maximal and minimal cross sections of an ellipsoid.
The angle of inclination of the ellipsoids to the basal
plane in Sb2Te3 is θ ≈ 52.5°.

In dilute magnetic semiconductors, a small number
of magnetic ions (e.g., of transition metals or rare-earth
elements) are in a nonmagnetic matrix. The indirect
Frequency F of Shubnikov–de Haas oscillations, concentration P of light holes at T = 4.2 K, resistivities ρ4.2 at T = 4.2 K and
ρ300 at T = 300 K, Hall mobility µ, Hall concentration 1/eRH of holes at T = 4.2 K, and experimentally determined chromium
concentration in Sb2 – xCrxTe3

Sample F, T P, 1019 cm–3 ρ4.2, µΩ cm ρ300, µΩ cm µ, m2/V s 1/eRH, 1019 cm–3 Cr, at %

Sb2Te3 54.7 3.4 38.8 260 0.103 12.5 0

Sb2 – xCrxTe3 (x = 0.0115) 43.4 2.3 142 437 0.029 8.3 0.23

Sb2 – xCrxTe3 (x = 0.0215) 46.2 2.6 106 314 0.066 9.9 0.43
 © 2005 Pleiades Publishing, Inc.



        

FERROMAGNETISM IN A NEW DILUTE MAGNETIC SEMICONDUCTOR 529

                  
1000

100

10 100 T, K

ρ, µΩ cm

(a)

1

2

3

144

2 4
B, T

ρ, µΩ cm

(b)

1

0 6

142

140

138

136

Fig. 1. (a) Temperature dependences of resistivity along the C2 axis and (b) negative magnetoresistance for Sb2 – xCrxTe3 single
crystals studied with different concentrations of chromium: 0.23 at % (1); 0.43 at % (2), and Sb2Te3 (3).
exchange interaction of magnetic moments of the
impurity changes the optical, galvanomagnetic, and
magnetic properties of the original semiconductor [5, 6].
An interesting manifestation of such an interaction is
ferromagnetism observed in dilute magnetic p-type
semiconductors. Hole-induced ferromagnetism was
observed for the first time in bulk crystals of
PbSnMnTe [7], i.e., in a semiconductor consisting of
IV−VI−group elements (IV–VI semiconductor). Sub-
sequently, manganese-doped epitaxial III−V semicon-
ductor films (In, Mn)As on a GaAs substrate, as well as
ferromagnetic films (Ga, Mn)As (see reviews [8, 9]).

Apart from academic interest in hole-induced ferro-
magnetism in dilute magnetic semiconductors, bright
prospects exist for application of this phenomenon in
spintronics (design of devices with controllable spin
transport). Bismuth and antimony tellurides are of spe-
cial interest since these compounds exhibit the highest
thermoelectric efficiency Z [10]. It has been discovered
recently that doping of Bi2Te3 with iron increases the
Seebeck coefficient of this material [11, 12]. In addi-
tion, p-Bi2Te3(Fe) exhibits ferromagnetism at low tem-
peratures [11−14]. Subsequently, ferromagnetism was
also detected in Sb2 – xVxTe3 [15], Bi2 – xMnxTe3 [16],
and Sb2 – xCrxTe3 [17]. It should be noted that ferromag-
netism was not observed in Bi2 – xGdxTe3 [18] or
Sb2 − xMnxTe3 [19]. Here, we study the magnetic and
galvanomagnetic properties of single crystals of the
dilute magnetic semiconductor p-Sb2 – xCrxTe3. For a
better understanding of the effect of chromium on the
properties of original p-Sb2Te3 crystals, the Shubni-
kov–de Haas effect was investigated.

2. MEASURING TECHNIQUE AND SAMPLES

Single crystals were grown by the Bridgman tech-
nique from the components taken in the stoichiometric
ratio corresponding to the required composition
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Sb2 − xCrxTe3. The ingots can easily be cleaved along
cleavage planes perpendicular to the C3 axis, i.e., along
the (0001) planes, which are usually parallel to the
ampoule axis. Samples with a characteristic size of 1 ×
0.5 × 4 mm used for measurements were cut using the
electroerosion technique. Electric contacts were sol-
dered using the BiSb alloy.

The Cr concentration in specific samples was deter-
mined using a JEOL 8621 electronic microanalyzer fol-
lowing magnetic and electric measurements on a given
sample. The measurements also revealed that chro-
mium is distributed uniformly over the sample. It was
found that the Cr concentration amounts to 0.23 and
0.43 at % in two doped samples, which corresponds to
x = 0.0115 and x = 0.0215 in the formula Sb2 − xCrxTe3.

The temperature dependences of the resistance,
magnetoresistance, and Hall effect were measured by
the standard four-probe technique; the current was
directed along the C2 axis. To separate the signals asso-
ciated with the Hall effect and magnetoresistance, mea-
surements were made for two directions of the mag-
netic field. The magnetic field up to 6 T was produced
by a superconducting solenoid and was directed at right
angles to the layers along the C3 axis. The Shubnikov–
de Haas effect was measured in pulsed magnetic fields
up to 54 T with a pulse duration of 10 ms. Magnetic
measurements in the temperature range 1.7–300 K in
magnetic fields up to 5 T were carried out using a
SQUID MPMS-5S magnetometer (Quantum Design
Co., Ltd). Some parameters of the studied samples are
given in table.

3. RESULTS OF MEASUREMENTS
3.1. Galvanomagnetic Properties

Resistivity ρ of all samples decreases upon cooling
and attains saturation at low temperatures (Fig. 1a). In
the temperature range 150–300 K, the ρ(T) ∝  Tm
SICS      Vol. 101      No. 3      2005
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dependence with exponent m ≈ 1.2 is observed. Devia-
tion from m = 1.5, which is typical of phonon scatter-
ing, is apparently due to additional scattering of holes
from ionized impurities and with the temperature
dependence of the effective mass in this temperature
range. Doping with chrome reduces the mobility (see
table), although the decrease is nonmonotonic. The
mobility for a Cr concentration of 0.43 at % in the sam-
ple is higher than for a concentration of 0.23 at %. The
latter circumstance is, in all probability, due to different
amounts of uncontrollable defects in the samples,
which appear during their growth. The resistance in Cr-
doped samples increases, although it is slightly lower in
samples with a higher Cr concentration. The resistance
in doped samples also increases due to additional scat-
tering of holes from localized magnetic moments of
chromium ions. The latter circumstance is confirmed

2 4
B, T

ρxy, mΩ

1

0 6

0.2

0.1
2B, T

0.04

0.02

0 0.4 0.8

1
2

Fig. 2. Hall resistance ρxy of Sb2 – xCrxTe3 samples with a
chromium concentration of 0.23 at % (1) and 0.43 at % (2)
at T = 4.2 K. The inset shows the deviation (anomalous Hall
effect) of the ρxy(B) dependence (symbols) in weak mag-
netic fields from the linear dependence (solid lines).
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0
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0

Fig. 3. Magnetic field dependence of the magnetization of a
pure Sb2Te3 sample at T = 5 K.
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by the existence of a negative magnetoresistance in
weak magnetic fields. By way of example, Fig. 1b
shows the magnetoresistance of a sample with a chro-
mium concentration of 0.23 at % at T = 4.2 K. In a mag-
netic field of B ≈ 1.5 T, the ρ(B) dependence exhibits an
anomaly shown by the arrow.

The Hall coefficient RH is positive in all samples and
increases with chromium concentration, which points
toward a decrease in the hole concentration. However,
it cannot be used for calculating the hole concentration
since bismuth and antimony tellurides contain two
groups of holes with different concentrations and
mobilities, which are unknown. For this reason, the
Hall coefficient in these semiconductors exhibits a
complex dependence on temperature and magnetic
field even in the absence of magnetic impurity [2, 20].
Thus, we used the Shubnikov–de Haas effect for esti-
mating the change in the light hole concentration upon
doping of Sb2Te3 with chromium (see below). To com-
pare different samples, the table contains the values of
1/eRH obtained at B = 0.2 T, which can conditionally be
referred to the “Hall concentrations” of holes. The pres-
ence of a magnetic impurity of Cr led to the anomalous
Hall effect in the samples (see, for example, [21]). The
anomalous Hall effect can be written in the form

(1)

where RH is the ordinary Hall coefficient, Ra is the
anomalous Hall coefficient, and M is the magnetization.
Hall resistivity ρxy as a function of the magnetic field is
shown in Fig. 2. The inset to Fig. 2 shows the deviation
of the ρxy(B) dependence from the linear law (straight
lines) in weak magnetic fields due to the presence of the
anomalous Hall effect. The deviation is small since the
observed ferromagnetism is quite weak.

3.2. Magnetic Properties

Magnetic susceptibility χ of the initial Sb2Te3 single
crystal is diamagnetic, virtually independent of temper-
ature, and amounts to –8 × 10–10 m3/mole in the princi-
pal crystallographic directions. The magnetic field
dependences of magnetization for Sb2Te3 at T = 5 K are
shown in Fig. 3. The slight deviation from the ideal dia-
magnetic behavior for B = 0 may be due to the presence
of impurities in the crystal. For chromium, its concen-
tration would not exceed 1.4 ppm. Such an amount of
impurity may be contained in components from which
single crystals were grown.

Figure 4 shows the temperature dependence of the
magnetic susceptibility of two Sb2 – xCrxTe3 samples per
chromium ion minus the diamagnetic background of
the matrix in the direction of the C3 axis in a magnetic
field of B = 10 mT. It can be seen that the Curie temper-
ature is TC ≈ 5.8 and 2.0 K for Cr concentrations of 0.43
and 0.23 at %, respectively. The absolute value of χ

ρxy RHB Raµ0M,+=
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increases with the chromium concentration in the sam-
ple. Figure 5a shows the dependence of magnetization
on the magnetic field of the sample with a chromium
concentration of 0.43 at % at T = 1.7 K for orientations
of magnetic field B parallel to the C3 and C2 axes. Hys-
teresis loops are shown in Fig. 5b. For B || C3, the loops
are narrow with a coercive force of approximately
15 mT; the saturation magnetization corresponds to
3.8µB per Cr ion. These data indicate the existence of
ferromagnetism in Cr-containing samples and are in
accordance with the temperature dependence of the
magnetic susceptibility obeying the Curie–Weiss law
with a positive paramagnetic Curie temperature. The
data presented in Fig. 5 also show that the C3 axis is an
easy magnetization axis. When the magnetization is
measured along the axis B || C2, the width of the hyster-
esis loop increases to 70 mT, but field B = 2.5 T turns

2.0

20
T, K

χ × 103, m3/mol Cr

10 30

1.5

1.0

0.5

0
0

1

2

Fig. 4. Temperature dependence of susceptibility χ in a
magnetic field B = 10 mT for two Sb2 – xCrxTe3 samples
with different Cr concentrations: 0.23 at % (1) and
0.43 at % (2).
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out to be insufficient for saturation of magnetization.
Similar results can also be obtained for a sample with a
Cr concentration of 0.23 at %; hysteresis loops show
that C3 is an easy magnetization axis (Fig. 6).

3.3. Shubnikov–de Haas Effect

The Shubnikov–de Haas effect was studied at T =
4.2 K in a magnetic field parallel to the C3 axis
(Fig. 7a). For such an orientation, the cross sections of
all six ellipsoids of the upper valance band of light
holes coincide and a single frequency of oscillations is
observed (this can be seen from the Fourier spectra;
Fig. 7b). The amplitude of oscillations in doped sam-
ples noticeably decreases. The oscillation frequencies
are presented in the table. Using these frequencies, we
can calculate the concentration of light holes (see
table). The computational technique is described
in [22, 23]. The light hole concentration is smaller than
the total concentration of holes in the sample; however,
its variation reflects the variation of the total hole con-
centration. It follows from the above data that doping
with chromium reduces the hole concentration,
although this effect is not monotonic: in the sample
with a higher Cr concentration (0.43 at %) the hole
concentration is slightly higher than in the sample
with a Cr concentration of 0.23 at %. It was noted
above that this might be due to different defect con-
centrations of the samples.

The donor action of chromium in the range of low
concentrations is associated with its effect on the polar-
ity of bonds. The weak polarity of the Sb–Te bonds
leads to the presence of a large number of antistructural
defects in the lattice (antimony atoms replace tellurium
atoms). Doping with chromium changes the polarity of
bonds, which leads to a change in the concentration of
charged point defects and, hence, changes the hole con-
centration.
4
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B||C3
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Fig. 5. (a) Dependence of magnetization at T = 1.7 K on magnetic field B for two magnetic field orientations B || C3 and B || C2 for
a Sb2 – xCrxTe3 sample with a Cr concentration of 0.43 at % and (b) hysteresis loops in a weak magnetic field.
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Chromium atoms mainly substitute antimony atoms
in the lattice; the tellurium concentration remains at a
level of 60%; in this way a solid solution of
Sb2 − xCrxTe3 is formed. This assumption is confirmed
by a decrease in the unit cell volume since the covalent
radius of chromium, rCr = 0.127 nm, is slightly smaller
than that of antimony, rSb = 0.138 nm [24]. According
to the results of X-ray diffraction measurements, the
lattice parameters in a Sb2Te3 sample are a =
0.42643(5) nm and c = 3.0427(4) nm, while in a sample
with 0.43 at % Cr, these parameters are a =
0.402602(4) nm and c = 3.0431(3) nm. An increase in
the polarity of the bond upon the substitution of chro-
mium for antimony leads to a decrease in the probabil-
ity of formation of antistructural defects. In the case of
Sb2 – xCrxTe3, Sb atoms with electronegativity XSb = 1.9

4

–1 1
B, T

M, µB/Cr ion

–2 2

2

0

–2

–4
0

B||C2

B||C3

Fig. 6. Dependence of magnetization at T = 1.7 K on mag-
netic field B for two magnetic field orientations B || C3 and
B || C2 for a Sb2 – xCrxTe3 sample with a Cr concentration of
0.23 at %.
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are replaced by Cr atoms with electronegativity XCr =
1.5, which increases the polarity of the bond.

4. DISCUSSION

Direct interaction between magnetic ions in dilute
magnetic semiconductors p-Sb2 – xCrxTe3 studied here
is ruled out in view of their low concentration. Conse-
quently, only the long-range oscillating RKKY interac-
tion executed by holes can be responsible for the ferro-
magnetic transition. The sign of the RKKY interaction
corresponds to a ferromagnetic interaction since the
first zero of the interaction, after which the interaction
reverses its sign and becomes antiferromagnetic, lies at
distances considerably longer (in view of the low hole
concentration) than the length at which the interaction
is truncated. Obviously, ferromagnetism is not
observed for the n-type conductivity since small effec-
tive masses and a small exchange integral for electrons
hamper the ferromagnetic interaction. The theory of
exchange interaction is sufficiently developed for
type III–V semiconductors [9, 25]. For a new family of
dilute magnetic semiconductors of the type of the new
semiconductor Sb2 – xCrxTe3 studied here, such a theory
has not been developed. For this reason, to estimate the
magnetic interaction, we can use the results of publica-
tions [26–28], in which the theory was developed for
homogeneous systems with a random distribution of
localized spins. According to this theory, the Curie tem-
perature TC can be determined from the formula

(2)

where c is the magnetic impurity concentration and S is
the spin of the chromium ion determined from the mag-
netization measurements, Jpd is the constant of

kBTC
cS S 1+( )

3
-----------------------

J pd
2

g*µB( )2
-------------------χ f p T,( ),=
250
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Fig. 7. (a) Shubnikov–de Haas oscillations for B || C3 at T = 4.2 K and (b) Fourier spectrum for Sb2 – xCrxTe3 samples with different
Cr concentrations: 0.23 at % (1), 0.43 at % (2), and Sb2Te3 (3).
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exchange interaction between localized magnetic
moments of the chromium ion and the spins of charge
carriers, g* is the effective Lande factor, µBis the Bohr
magneton, and χ is the magnetic susceptibility, which is
a function of hole concentration p and temperature T. It
should be recalled that formula (2) for dilute magnetic
system was derived by Abrikosov and Gor’kov [29]
(see also discussion in [9]). Disregarding the correla-
tion effects, we can use the Pauli expression for esti-
mating susceptibility,

where EF and kF are the Fermi energy and momentum,
h is the Planck constant, and m* is the effective mass of
holes. Jungwirth et al. [26–28] proposed that an addi-
tional contribution from the exchange interaction be
taken into account,

(ε is the dielectric constant). For a high hole concentra-
tion, as in the case of Sb2Te3, the Pauli contribution
dominates. According to the results of experiments,
chromium ions are in the Cr3+ state with a magnetic
moment

(see Figs. 5 and 6) with a spin S = 3/2. If we take the
mass of a free electron for the effective mass m* of
holes [1], g = 2, S = 3/2, the experimentally determined
temperature TC of transition to the ferromagnetic state,
and the experimental value of the chrome concentration
in the sample, the exchange interaction constants can be
estimated on the basis of formula (2) as Jpd = 0.3 and
0.2 eV nm3 for samples with a chromium concentration
of 0.43 and 0.23 at %, respectively. These values are of
the same order of magnitude as those used for
MnxGa1 − xAs [26]. The exchange energy can be esti-
mated by multiplying the obtained values by the con-
centration of p holes. Using the values from the table,
we obtain a value smaller than 10 meV, which is
smaller than the values for dilute magnetic III–V semi-
conductors [30].

It should be noted in conclusion that dilute magnetic
semiconductors R2 – xMxQ3, where R and Q are ele-
ments of groups V and VI, respectively, and M is a mag-
netic impurity, form a new class of dilute magnetic
semiconductors exhibiting ferromagnetism at low tem-
peratures. As in III–V semiconductors, ferromagnetism
is induced by holes since it is not observed in n-type
samples [31]. Here, we have studied a new dilute semi-
conductor Sb2 – xCrxTe3 with the p-type conductivity, in

χ
gµB( )2 p

EF
--------------------

8
3
---

gµB( )2m*kF

h2
------------------------------,= =

χ
gµB( )2e2m*2

εh4
-------------------------------=

µ gµB S S 1+( ) 3.8µB≈=
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which hole-induced ferromagnetism is observed with a
Curie temperature TC ≈ 5.8 K with a chrome concentra-
tion of 0.43 at %. The easy magnetization axis is paral-
lel to the C3 crystallographic axis. Magnetic measure-
ments show that chromium is in the Cr3+ state. The most
probable mechanism of exchange interaction responsi-
ble for ferromagnetism is the RKKY interaction in
Sb2 − xCrxTe3. Doping with chromium reduces the hole
concentration in the investigated concentration range.
The presence of a magnetic impurity leads to a negative
magnetoresistance and an anomalous Hall effect.
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Abstract—The properties of single crystals of weakly doped lanthanum manganites La1 – xAxMnO3 (A = Ca,
Ce, Sr; x = 0, 0.07–0.1) have been studied in the temperature range from 77 to 400 K. It is established that these
lanthanum manganites exhibit (in addition to the well-known characteristic features observed in the region of
the temperature of magnetic ordering) changes in the electrical and magnetic properties in the region of room
temperature (T ≈ 270–300 K), which is about two times the Curie temperature (TC ≈ 120–140 K) and is far from
the temperature of structural transitions in the samples studied. The results are explained in terms of phase sep-
aration related to the formation of magnetic clusters in the nonconducting medium. The phase separation is
caused by a gain in the exchange energy and by the development of elastic stresses in the crystal lattice and
proceeds via combination of small-radius magnetic polarons into a large-size magnetic cluster containing sev-
eral charge carriers. The short-range order in the cluster appears and the phase separation begins at a tempera-
ture Tps, which is close to TC ≈ 300 K, typical of doped conducting manganites. The results of magnetic mea-
surements show that, as the temperature decreases from 300 to 190 K, the size of superparamagnetic droplets
increases from about 8 to 15 Å. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Despite many years of research, there is no com-
monly accepted opinion concerning the mechanism of
electric conductivity in lanthanum manganites. The
existing double exchange model alone cannot explain
experimental data reported for the semiconductor–
metal transition and the colossal magnetoresistance
observed in La1 – xSrxMnO3 with x = 0.2–0.3 in the
region of the Curie temperature (TC ≈ 300 K). It was
suggested [1] that the electrical properties of these
compounds are determined by the polaronic mecha-
nism, related to a strong electron–phonon coupling and
the Jahn–Teller splitting of levels in Mn3+ ions. Evi-
dence in favor of the polaronic mechanism is provided
by a large difference between the activation energies
determined from the temperature dependence of the
electric resistance and thermopower [2]. The magnetic
and electrical properties of manganites were also con-
sidered within the framework of the double exchange
model assuming that the charge carriers exhibit local-
ization caused by spin disorder and random distribution
of magnetic inhomogeneities [3, 4]. Calculations [4]
showed that, in the presence of a certain nonmagnetic
disorder, a spin disorder in the paramagnetic region
may cause the localization of charge carriers at the
Fermi level and the appearance of the Anderson semi-
conductor–metal transition near the Curie temperature
for x = 0.2–0.3. It was suggested [5] that, in doped man-
ganites with a strong electron–phonon coupling, two
polarons might combine so as to form an immobile
1063-7761/05/10103- $26.000535
bipolaron in the paramagnetic region with a narrow
polaron band. In the ferromagnetic region, the
exchange interaction of polaron carriers with localized
spins breaks bipolarons and increases the electric con-
ductivity because of a sharp growth in the carrier den-
sity while retaining the polaronic character of conduc-
tivity below TC.

Recent investigations [6–8] showed that the proper-
ties of manganites could be also explained [9–11] within
the framework of a phase separation model [12, 13].
According to this model [13], a gain in the exchange
energy makes it favorable for electrons to create con-
ducting ferromagnetic clusters in a nonconducting anti-
ferromagnetic matrix. Such magnetic droplets in anti-
ferromagnetic matrices were detected by neutron scat-
tering techniques [8, 14–16] in single crystals of
La1 − xAxMnO3 (A = Ca, Sr) with x = 0.05–0.08). At liq-
uid helium temperatures, the droplets are anisotropic
and acquire the shape of oblate ellipsoids with dimen-
sions from 8 to 17 Å. No such droplets have been found
in undoped LaMnO3. In La1 – xCaxMnO3 with x ≥
0.1−0.2, magnetic clusters with a size of 14–17 Å have
not been observed either [15]. The authors believe that
magnetic clusters merge together (coalesce) in com-
pounds with x ≥ 0.1. The results of recent neutron scat-
tering investigations [17] showed that an increase in the
level of doping from x = 0.06 to 0.07 led in
La0.93Sr0.07MnO3 to a transition from small-scale (2Rcl ≈
17 Å) to large-scale phase separation, and the average
 © 2005 Pleiades Publishing, Inc.
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linear size of magnetic clusters at 4.2 K amounted to
2Rcl ≈ 200 Å.

Hennion et al. [8] showed that the magnetic droplets
exist in the temperature interval from 2 K up to temper-
atures in the vicinity of the Curie temperature TC ≈
120–140 K of these manganites. In usual magnetic
materials, the magnetic polarons break near the Curie
temperature TC [11]. It was suggested [18] that the
phase separation in lanthanum manganites may pro-
ceed even at higher temperatures. In order to check for
this assumption, it is necessary to study the behavior of
linear expansion coefficients and the electrical, mag-
netic, and other properties of manganites up to high
(about 1000 K) temperatures [18]. Indeed, if the
magnetic clusters are formed due to the phase separa-
tion [15, 17], they probably possess the saturation mag-
netization and the Curie temperature TC ≈ 300 K char-
acteristic of continuous strongly doped lanthanum
manganites and, hence, they must not necessarily break
near the Curie temperature TC ≈ 120–140 K character-
istic of weakly doped lanthanum manganites.

Some experimental data for manganites can be
interpreted as manifestations of the onset of phase sep-
aration in a far paramagnetic region [19–21]. The
room-temperature features in the resistance and magne-
toresistance, thermopower, and magnetic susceptibility
of La0.92Ca0.08MnO3 single crystals [19] and in the lin-
ear and volume expansion coefficients of
La0.93Sr0.07MnO3 single crystals [21] were attributed to
the formation of magnetic clusters near the room tem-
perature. Recently, Kugel’ et al. [22] described the
electrical and magnetic properties of various mangan-
ites (Pr0.71Ca0.29MnO3, (La1 – yPry)0.3Ca0.3MnO3,
La0.8Mg0.2MnO3) in a broad temperature interval in the
paramagnetic region using the model of inhomoge-
neous state and explained the obtained results by the
presence of magnetic droplets with an average size of
about 30 Å.

The phenomenon of phase separation can be most
clearly manifested in the properties of weakly doped
manganites. Unfortunately, the electrical properties of
such manganites are still insufficiently studied and no
qualitative theory (capable of tracing a relation of these
properties to the phase separation) is available for the
electric conductivity in phase-separated media [18].
The qualitative relationship between the magnetoresis-
tance and the magnetic clusters formed at temperatures
near TC in conducting ferromagnetic manganites is
known [6, 7]. However, only elucidation of the mecha-
nisms responsible for the resistance and magnetoresis-
tance of manganites, determination of the dependence
of these properties on the level of doping, and compar-
ison of the experimental data to predictions of the mag-
netic cluster model will apparently provide for real
progress in understanding of the effect of phase separa-
tion on the electrical phenomena and the colossal mag-
netoresistance in manganites. This paper presents the
results of investigation of the problems outlined above.
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In this study, the dc and ac resistance and magne-
toresistance, thermopower, and magnetic properties of
a series of single crystals of weakly doped lanthanum
manganites La1 – xAxMnO3 (A = Ca, Ce, Sr; x = 0.07–0.1)
have been measured in a broad range of temperatures
and magnetic fields. It is established that these manga-
nites exhibit changes in the electrical and magnetic
properties in the region of room temperature (T =
270−300 K), which is about two times the Curie and
Néel temperatures (TC ≈ TN ≈ 120–140 K)) and is sig-
nificantly lower than the temperature of structural tran-
sitions in the samples studied. The observed effects
include changes in the activation energy of the resistiv-
ity (∆Eρ) and thermopower (∆Es), the preexponential
factor (σ0) of the electric conductivity, and the kinetic
coefficient (S0) of thermopower, the appearance of
magnetoresistance, and the spontaneous magnetiza-
tion. The observed behavior is characteristic of a para-
magnetic medium with dispersed magnetic nanoparti-
cles [23]. The single crystals of La0.92Ca0.08MnO3 and
La0.93Sr0.07MnO3, which are characterized by signifi-
cantly different (according to the neutron scattering
data [8, 17]) dimensions of magnetic clusters, have
been studied in more detail.

The results of this comparative study will be inter-
preted in terms of the phase separation model [9–13,
18], which implies the appearance of an inhomoge-
neous magnetic state (cluster) and its variation with
temperature. At high temperatures (T > 300 K) in the
paramagnetic region, small-radius polarons can form as
a result of strong electron–phonon coupling [1, 5] and
localize on the Jahn–Teller lattice distortions. The
interaction of charge carriers with magnetic moments
decreases the system energy for the parallel orientation
of these moments, thus creating a “ferromagnetic”
region—a magnetic polaron—surrounding a charge
carrier. In the usual magnetic materials, these “thermal”
polarons appear near TC [11]. In the case of low doping
(below percolation threshold: x ≤ 0.1 < xper = 1/3), a
state of minimum energy can be achieved due to phase
separation (with the formation of magnetic droplets [12])
even at temperatures much higher than the Curie tem-
perature TC ≈ 125 K for weakly doped lanthanum man-
ganites. A gain in the exchange energy and the develop-
ment of elastic stresses in the crystal lattice allow
small-radius magnetic polarons to combine into a large-
size magnetic cluster containing several electrons (their
number is equal to that of combined polarons). For this
reason, the short-range order in the cluster appears at a
temperature of Tps ≈ 250–300 K, which is close to TC of
doped conducting manganites with x ≈ 0.2–0.3. The
magnetic cluster has a magnetic moment of about
10−12µB (µB is the Bohr magneton) [19] and a radius
Rpol = RMn–Mn = 1a ≈ 4 Å (a is the lattice parameter),
which accounts for a change in the linear expansion
coefficient [21]. As the temperature decreases, the clus-
ter size monotonically increases. The theoretical pre-
dictions agree with the results of magnetic measure-
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The properties of single crystals of weakly doped lanthanum manganites

T, K
∆Eρ,
meV

σ0,
Ω–1 cm–1

∆Es,
meV

S0 W1, meV TC, K TN, K TOO', K

LaMnO3
1 400 > T > 300 330 2300 100 1.1 230 142 140 750

T < 270 250 120 [16] [16]

La0.93Ce0.07MnO3
1 400 > T > 300 390 2700 138 ≈750

Ar T < 270 310 120 – ?

La0.92Ca0.08MnO2 400 > T > 300 220 1350 160 –2.4 60 128 122 580

270 > T > 90 170 200 115 –0.4 55 – [16] [15]

La0.9Ca0.1MnO3
2 370 > T > 300 325 2 × 104 180 –4.5 145 138 112 510

270 > T > 170 145 300 70 ≈0 75 [15] [15] [15]

170 > T > 80 93 8 – – – – – –

La0.875Ca0.125MnO3
2 400 > T > 300 145 1600 60 –1.3 85 158 – 340

T < 270 130 600 45 0 85 [15] – [15]

La0.93Sr0.07MnO3
1 400 > T > 300 280 2100 120 –2.1 160 132 121 ≈490

270 > T > 170 145 160 65 ≈0 80 – [17] [26]

Note: ∆Eρ is the resistivity activation energy; ∆Es is the thermopower activation energy; W1 is the hopping conductivity activation energy;

σ0 is the preexponential factor of the electric conductivity, S0 is the kinetic coefficient (slope) of thermopower; TC is the Curie tem-
perature; TN is the Néel temperature of the noncollinear ferromagnet; and TOO' is the structural phase transition temperature.

1 The crystal was grown by A.M. Balbashov et al. [24] in the Moscow State Power Engineering University (Moscow).
2 The crystal was grown by L. Pinsard et al. [25] in the Laboratoire de Chimic des Solides, Universite Paris–Sud (France).
ments. For example, the magnetic susceptibility mea-
surements for La0.9Ca0.1MnO3 in a magnetic field of up
to 45 kOe showed that superparamagnetic clusters
appear at T ≈ 300 K and their dimensions increase with
decreasing temperature.

2. SAMPLES AND TECHNIQUES

The single crystal sample of La0.92Ca0.08MnO3 rep-
resented a distorted antiferromagnet with a slanting
angle of θ ≈ 13°, TC = 126 K, TN = 122 K, in-plane fer-
romagnetic exchange energy J1 = 1 meV, interlayer
antiferromagnetic exchange energy J2 = –0.28 meV,
and a structural transition temperature of TOO' = 580 K
[15, 16]. The single crystal of La0.93Sr0.07MnO3 repre-
sented a distorted antiferromagnet with a slanting angle
of θ ≈ 25°, TC = 128 K, TN = 121 K [17], and a structural
transition temperature of TOO' = 490 K. Some parame-
ters of the other samples are presented in the table.

The dc resistance measurements were performed
using the conventional four-point-probe technique with
a digital voltmeter possessing the input impedance
above 109 Ω. The microwave conductivity and the per-
mittivity ε' were measured using the resonator tech-
nique at 9.2 GHz [27]. The thermopower was measured
in vacuum using the four-point-probe scheme at a tem-
perature difference of 4–8 K between temperature sen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sors. The magnetic measurements were performed on a
SQUID magnetometer of the MPMS-5XL type (Quan-
tum Design Co.) at the Center for Magnetometry of the
Institute of Metal Physics (Yekaterinburg).

3. RESULTS

According to the results of thermopower measure-
ments, the single crystals under study are semiconduc-
tors of the p-type. As can be seen from the experimental
data presented in Fig. 1, the thermopower S at a fixed
temperature decreases with increasing degree of cal-
cium or strontium substitution. The temperature depen-
dence of S exhibits qualitatively the same behavior in
all samples. In the temperature interval from 400 to
300 K (Fig. 1), this dependence obeys an activation
relation characteristic of semiconductors [28]:

(1)

where ∆Es is the thermopower activation energy, e is
the electron charge, and k is the Boltzmann constant. As
the temperature decreases further, the thermopower
keeps increasing, but the slope of the S versus 1/T curve
exhibits a step at T ≈ 270 K and S remains constant in a
certain temperature interval. This behavior of the ther-

S
k
e
--

∆Es

kT
--------- S0+ 

  ,=
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mopower can be described in terms of temperature-
dependent ∆Es and S0 (see table).

On approaching TC in La0.92Ca0.08MnO3, the slope
of the S versus 1/T curve exhibits slight variations,
while in the other samples the thermopower at this
point sharply decreases. The thermopower slope of
La0.875Ca0.125MnO3 (as well as the resistivity of this
crystal, see Fig. 2) exhibits a jump in the vicinity of the
structural phase transition (TOO' = 340 [15]), changes
sign to negative on approaching TC, passes through a
minimum, and then increases with further decrease in
temperature. It should be noted that a similar change in
the sign of thermopower near TC was observed in
La0.9Sr0.1MnO3 [29].

Fig. 2. Temperature dependences of the dc resistivity of
La1 – xCaxMnO3 (x = 0, 0.08, 0.10, 0.125) and
La0.93Sr0.07MnO3 (dark symbols), and La0.93Ce0.07MnO3
single crystals. Arrows indicate the Curie temperatures TC.
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Fig. 1. Temperature dependences of the thermopower slope
in La1 – xCaxMnO3 (x = 0.08, 0.10, 0.125) and
La1 − ySryMnO3 (y = 0.07) single crystals. Arrows indicate
the Curie temperatures TC.
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The kinetic coefficient S0 in expression (1) for Ca-
and Sr-doped samples is negative and varies from –4.5
to –1.3 (in contrast to semiconductors, where this coef-
ficient is usually positive and characterizes dissipation
processes). In undoped LaMnO3, the value of this coef-
ficient (S0 ≈ 1.1) is close to that in disordered media [28].
Negative values of S0 (about –0.5) were previously
reported in [2, 30] and discussed in [19].

The temperature dependence of the resistivity of
La1 – xAxMnO3 (A = Ca, Ce, Sr) single crystals above
T ≈ 300 K (see Fig. 2) is described by the activation
relation

(2)

At lower temperatures, the resistivity can also be
described by expression (2) with temperature-depen-
dent parameters σ0 (preexponential coefficient of con-
ductivity) and ∆Eρ (resistivity activation energy). The
∆Eρ and σ0 values exhibit a decrease on approaching to
the ferromagnetic region, which is typical of manganites.

In addition, as the temperature decreases below
400 K, the σ0 and ∆Eρ values of doped manganites
exhibit a decrease in the region of room temperature
(T ≈ 300–320 K), which is about two times the temper-
ature of magnetic ordering (TC = 125–140 K) and is far
from the temperature of structural transitions in the
samples studied (see table). In this region, the ∆Eρ
value decreases by approximately 150 meV, while σ0

drops by at least a factor of ten (see table). The resistiv-
ities of undoped and cerium-doped lanthanum mangan-
ites rapidly increase with decreasing temperature and
become unmeasurable (ρ0 > 108 Ω cm) at T < TC. At T <
300 K, the ρ0(1/T) curves for these compounds exhibit
a nearly activation character in a broad range of resis-
tivities. In La0.92Ca0.08MnO3, the ∆Eρ value remains
unchanged in a broad range of resistivity variation
(within seven orders of magnitude) at temperatures
below 300 K. In cerium-doped samples, the ∆Eρ value
exhibits an increase. We can suggest that the increase in
this activation energy observed upon doping with Ce4+

is related to the compensation of holes (Mn4+ ions),
which are probably present in undoped LaMnO3 con-
taining lanthanum and oxygen vacancies. As the degree
of doping with Ca and Sr increases, the ∆Eρ and σ0 val-
ues tend to decrease.

In the region of room temperature, the manganite
samples under study also exhibited a change in magne-
toresistance. Figures 3 and 4 show the temperature
dependences of the resistivity ρ, magnetoresistance
MRH ≡ [ρ(H) – ρ(H = 0)]/ρ(H) and thermopower Sk

in  the single crystals of La0.92Ca0.08MnO3 and
La0.93Sr0.07MnO3. At room temperature (297 K), the
dc magnetoresistance is small and behaves like

ρ0 T( ) 1
σ0
-----≡ 1

σ0
-----

∆Eρ

kT
----------exp

1
σ0
-----

∆Es W1+
kT

----------------------- 
 exp .= =
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MRH  ~ H2. For example, at H = 17 kOe, we have
MRH = –10–3 and –2 × 10–3 for La0.92Ca0.08MnO3 and
La0.93Sr0.07MnO3, respectively. In both samples, the
magnetoresistance exhibited a sharp increase in the
region of T ≈ 260–280 K (Figs. 3 and 4) to reach a level
of MRH ≈ –(2–3)% and then exhibited a slower growth
as the temperature increased up to TC. In addition, the
MRH of the single crystal of La0.92Ca0.08MnO3 exhibited
an abrupt drop in a narrow (±5 K) temperature interval
at T ≈ TC = 128 K. In the vicinity of 100 K, the magne-
toresistance of La0.93Sr0.07MnO3 is almost ten times that
of La0.92Ca0.08MnO3. As can be seen from Figs. 3 and 4,
the MRH value increases at T = 260–280 K, which is
slightly lower than the temperatures corresponding to
changes in ∆Es and ∆Eρ.

As can be seen from Figs. 3 and 4, the resistivity
activation energy ∆Eρ exhibits consistent changes in the
entire temperature interval where the thermopower
activation energy ∆Es varies. As the temperature
decreases below T = 300 K and approaches TC, the
character of the temperature dependences of S and ρ0 of
La0.92Ca0.08MnO3 vary rather slightly, while the analo-
gous quantities in La0.93Sr0.07MnO3 change signifi-
cantly and the ∆Eρ and ∆Es values decrease with tem-
perature. The deviations of S(1/T) and ρ0(1/T) from the
linear dependence and a sharp growth in the magne-
toresistance take place at approximately the same tem-
perature (T ≈ 160 K). Similar consistent variation of the
thermopower and resistivity is observed (see Figs. 1
and 2) in the other weakly doped manganites studied.

The plots of magnetoresistance versus magnetic
field strength at T = 77 K for La0.93Sr0.07MnO3 and
La0.9Ca0.1MnO3 exhibit a similar behavior: in both
cases MRH monotonically increases to approximately
the same level with increasing field strength. Below TC,
the MRH value depends on the magnetic field orienta-
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Fig. 3. The temperature dependences of the thermopower
Sk ≡ S/(k/e), the dc resistivity ρ0, and the dc magnetoresis-
tance MRH at H = 17 kOe in the single crystal of
La0.92Ca0.08MnO3.
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tion relative to the crystallographic axes: the anisotropy
δMRH is about 10% for H = 17 kOe (T = 77 K) [21].
Figure 5 shows the field dependence of the magnetore-
sistance for La0.93Sr0.07MnO3 at temperatures above and
below TC. As can be seen, MRH ∝  H at T > TC and
MRH ∝  H2 at 77 K (T < TC).

The temperature dependences of the ac (microwave)
resistivity ρmw at a frequency of 9.2 GHz in
La0.92Ca0.08MnO3 and La0.93Sr0.07MnO3 far of TC exhib-
ited approximately the same character (Fig. 6). In both
samples, ρmw above T ≈ 275 K are determined by the dc
conductivity: ρmw = ρ0. As the temperature decreases,
the dc conductivity contribution drops rapidly and
becomes insignificant at T = 150–160 K as compared to
the high-frequency component: ρmw ! ρ0. As the tem-
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Fig. 4. The temperature dependences of the thermopower
Sk ≡ S/(k/e), the dc resistivity ρ0, and the dc magnetoresis-
tance MRH at H = 17 kOe in the single crystal of
La0.93Sr0.07MnO3.
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Fig. 5. Plots of the magnetoresistance versus magnetic field
strength for the La0.93Sr0.07MnO3 single crystal at T = 120,
140, 160 K (left and bottom coordinate axes) and 77 K
(right and top coordinate axes).
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perature decreases further, ρmw in La0.93Sr0.07MnO3
exhibits minima in a narrow temperature interval near
TC (T = 115 ± 15 K) on the background of approxi-
mately exponential growth of ρmw(1/T) with ∆Emw ≈
80 meV. In the applied magnetic field, the anomalies of
ρmw shift by ∆T ≈ 20–25 K toward higher temperatures
and practically vanish in the fields above 6–7 kOe. The
anomalous behavior of ρmw is accompanied by an
increase in the permittivity ε' from 19.5 to 21 with
decreasing temperature; the anomaly in ε' is also sup-
pressed by the applied magnetic field [31]. This temper-
ature dependence of the complex permittivity ε* = ε' +

101
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ρ0, ρmw, Ω cm

1000/T, K–1
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ρmw – Sr7

TC

0

H = 6 kOe

Fig. 6. The temperature dependences of the dc (ρ0) and
microwave (ρmw) resistivities of La0.93Sr0.07MnO3 (Sr7)
and La0.92Ca0.08MnO3 (Ca8) single crystals. Points present
the experimental data; dashed line shows the results of cal-
culations ρmw (see the text). The inset is a schematic dia-
gram of the proposed band structure of weakly doped lan-
thanum manganites in the paramagnetic region (EP is the
polaron band; EB is the band of localized states).
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Fig. 7. The field dependences of the differential magnetic
susceptibility χac of La0.9Ca0.1MnO3 measured at 80 GHz
and various temperatures (the inset shows data for weak
fields on a grater scale). Points present the experimental
data; solid and dashed curves show the results of calcula-
tions (see the text).
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iε'' of La0.93Sr0.07MnO3 is characteristic of the polaronic
conductivity and corresponds to relaxation losses of the
Debye type [32, 33]. No such anomalies in ρmw and ε'
at 9.2 GHz near TC are observed in La0.92Ca0.08MnO3.
At the same time, variations of the ε' and ε" values near
the Curie temperature were also reported for some
other weakly doped manganites [26, 34].

Variations have been also observed in the magnetic
properties of weakly doped lanthanum manganites
measured in the region of room temperature. The tem-
perature dependences of the magnetic susceptibility χ0
of undoped samples and those weakly doped with Sr,
Ce, and Ca in the paramagnetic region (T = 200–300 K)
can be approximately described using the Curie–Weiss
law with the effective moments µeff, which are greater
than the theoretical values by (1–2)µB [35]. A charac-
teristic feature of weakly doped lanthanum manganites
is the dependence of their magnetic susceptibility on
the magnetic field strength at temperatures below T ≈
270 K [19, 21]. For example, the differential magnetic
susceptibility χac measured at 80 GHz at temperatures
above Tps ≈ 270 K is independent of the applied con-
stant magnetic field, while below Tps this susceptibility
becomes field-dependent (see the inset to Fig. 7).
Indeed, χac exhibits a sharp drop in the fields below
HN ≤ 500 Oe and weakly depends on the field above
HN. The HN value grows with decreasing temperature.
Similar field dependences of χac with the same charac-
teristic temperature Tps ≈ 270–300 K were observed for
La0.92Ca0.08MnO3 [19] and La0.93Sr0.07MnO3 [21] in
weak magnetic fields (H ≤ 1 kOe). It might seem that
χac could stabilize in stronger fields. However, the mea-
surements of χac in La0.90Ca0.10MnO3 in the fields up to
45 kOe showed (Fig. 7) that χac(H) exhibited no satura-
tion upon an increase in the magnetic field. At T =
350 K, no influence of the applied magnetic field (up to
45 kOe) on χac was observed to within the experimental
accuracy. However, at lower temperatures (T = 300–
190 K), χac decreases with increasing magnetic field
strength and this dependence becomes stronger with
decreasing temperature. Such magnetic behavior is
usually observed in paramagnetic media with dispersed
nanoparticles and in superparamagnets [23].

4. DISCUSSION

The observed temperature dependences of the resis-
tivity and thermopower with the temperature-depen-
dent activation energies ∆Eρ and ∆Es (Figs. 1–4) are
typical of disordered semiconductors. For a simple
energy band structure (see the inset to Fig. 6), taking
into account nonlocalized (valence) and localized (near
the valence band) charge carriers, the dc and ac conduc-
tivities are probably determined by the following mech-
anisms [28].

(a) Transfer of nonlocalized charge carriers. The
temperature dependences of the dc conductivity (for
ND THEORETICAL PHYSICS      Vol. 101      No. 3      2005
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holes) and thermopower can be expressed as

(3)

(4)

where EF is the Fermi level, EV is the top of the valence
band (mobility edge) separating the nonlocalized and
localized states, and σmin ≈ 300–1000 Ω–1 cm–1 is the
minimum metallic conductivity. This mechanism does
not contribute to the ac conductivity at frequencies
below 1015 Hz. As can be seen, the activation energies
for the thermopower and resistivity in this mechanism
coincide: ∆Es = ∆Eρ.

(b) Hopping of carriers localized in the tail of the
valence band. For this process, the dc conductivity and
thermopower are expressed as

(5)

(6)

(7)

where W1 is the jump activation energy, EB – EV is the tail
of the localized states, σ(ω) ~ ωs, and s = 0.8–1 [28, 33].
As can be seen, ∆Eρ = ∆Es + W1 and ∆Emw = ∆Es, that
is, the activation energies for the thermopower and
resistivity in this case are different in the dc mode and
coincide in the ac mode. As a rule, σ2 ≈ 1–10 Ω–1 cm–1,
which is about two orders of magnitude smaller than
σmin [28].

(c) Hopping of carriers localized at the Fermi level.
In this case, the conductivity is expressed as

(8)

where σ3 ≤ σ2 and W2 is the hoping activation energy.
The ac conductivity by this mechanism is either propor-
tional to the temperature or independent of the temper-
ature, and σ(ω) ~ ωs, where s = 0.8–1. This mechanism,
which is usually manifested at rather low temperatures,
where σ0 ~ exp(–B/T1/4), was not observed for the sam-
ples under consideration in the entire temperature range
studied.

The high values of σ0 (103–2 × 104 Ω–1 cm–1)
observed in weakly doped manganites at high tempera-
tures (see table) can be explained by the contribution of
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nonlocalized charge carriers. The temperature depen-
dences of the dc and ac (microwave) conductivities in
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 single crystals below 
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 = 300 K (see
the dashed 
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 line in Fig. 6) were explained [31] as
being determined by the contributions of nonlocalized
charge carriers and those localized in the tail of the
valence band (expressions (3) and (6)). However, the
difference between the 
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zero jump activation energy 
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 are indicative of the
absence of a contribution due to the nonlocalized carri-
ers. A small conductivity at a relatively large acceptor
concentration (
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 0.1) can be explained by the fact that
the charge carriers can be localized (in addition to the
tail of the valence band) at Mn
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 ions with the forma-
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 in the bandgap (see the inset
to Fig. 6). Then, the dc resistivity and thermopower are
described [28, 32] by the expressions of type (5) and
(7), where 
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One characteristic feature of the polaronic mecha-
nism is the frequency dependence of the permittivity
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'' [32, 33]:
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) is the characteristic hopping
time, 

 

E

 

D

 

 is the Debye energy, and 1/

 

τ0 ~ ωph is a con-
stant on the order of the optical phonon frequency. For
the charge carriers localized in the tail of the valence
band, the conductivity increases in proportion to the
frequency, while for polarons, the conductivity exhibits
nonmonotonic variation: it shows a Debye character
with a maximum at ωτ = 1, and ε' monotonically varies
depending on the temperature and frequency.

The anomalies observed in the temperature depen-
dences of ε' and ρmw of La0.93Sr0.07MnO3 near TC
(Fig. 6) are characteristic of the polaronic conductivity
and can be explained by electron hopping between the
two nearest neighbor localized states (e.g., between
Mn3+ and Mn+4 ions) spaced by the distance R and the
potential barrier ED. The narrow temperature interval of
the anomaly in ρmw implies that the Debye energy (i.e.,
the polaron localization energy) is temperature depen-
dent (a possible reason will be considered below). It
should be noted that the frequency and temperature
dependences of ε* = ε' + iε'' observed for weakly doped
single crystals of La1 – xSrxMnO3 of a close composition
with x = 0.075 [36] also revealed relaxation losses of
the Debye type, and it was also concluded that the fre-
quency and temperature dependences of σω were indic-
ative of the contribution due to tunneling between
large-radius polarons.

σω
pol

σω
pol ω2τ

1 ω2τ2+
--------------------, ε'

1

1 ω2τ2+
--------------------,∼∼
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Thus, the high values of the preexponential factor σ0

(see table), the presence of relaxation losses of the Debye
type (Fig. 6), and the results of investigation of the fre-
quency and temperature dependences σ(ω, T) [36], allow
us to conclude that the conductivity of weakly doped
lanthanum manganites contains a contribution due to
the polaronic mechanism. We might also attempt to
explain variations in the character of conductivity
below T ≈ 300 K by assuming that the contribution
from carriers localized in the tail of the valence band
increases with decreasing temperature. However, the
relatively large values of σ0 (>102 Ω–1 cm–1, see table)
and the appearance of anomalies at the same tempera-
tures in the region of T ≈ 300 K in the magnetic and
electrical properties of samples with different levels of
doping allow us to suggest that this phenomenon is
related to a change in the character of the polaronic
conductivity. Previously [19, 21], it was suggested that
such features could be explained by the formation of
magnetic nanoclusters.

The formation of magnetic nanoclusters may also
explain the anomalies in magnetic properties (Fig. 7);
moreover the size of such nanoclusters can be in some
cases evaluated using the results of magnetic measure-
ments. In sufficiently large monodomain particles,
anisotropic forces hold the magnetization vector
aligned in a direction corresponding to the minimum
energy. When the size of droplets approaches the inter-
atomic distances, the particle energy KeffVcl (Keff is the
effective energy of the magnetic anisotropy and Vcl is
the cluster volume) decreases below the thermal level,
the magnetization vector loses stability and starts per-
forming thermal motions of the Brownian type
(although the saturation magnetization and the Curie
temperature may still retain the values characteristic of
the continuous solid) [23]. The dependence of the mag-
netization of such a (superparamagnetic) cluster on the
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Fig. 8. The temperature dependence of the magnetic
moment (Mcl) and radius (Rcl) of superparamagnetic clus-
ters in La0.9Ca0.1MnO3.
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temperature and the magnetic field is described (for
KeffVcl < kBT) by the Langevin formula [37]:

(10)

where x = MclH/kBT, Mcl = nclS is the magnetic moment
of the cluster, S is the molecular magnetic moment, ncl
is the number of molecules in the cluster, and N is the
number of superparamagnetic particles per unit volume
of the sample.

The contribution of the superparamagnetic particle
to the low-frequency differential magnetic susceptibil-
ity can be expressed as

(11)

where C = /kBT is a field-independent coefficient.
At large values of Mcl, all the variations of Icl(H) and
χac(H) in superparamagnetic particles may take place
(even at high temperatures) in readily accessible field
on the order of 104 Oe [37].

The variations of χac(H) in La0.9Ca0.1MnO3 observed
in fields up to 2 kOe can be roughly described in terms
of expression (11) with Mcl = (8–12) × 104µB (see the
dashed lines in the inset to Fig. 7). This case corre-
sponds (in a spherical model) to a cluster with a diam-
eter of about 150 Å or Vcl = 3 × 10–18 cm3, S = 2, and a
distance of RMn–Mn = 4 Å between the neighboring man-
ganese ions. Taking into account that the value of the
magnetic anisotropy in perovskites is on the order of
Heff ≈ 1 kOe [38], we obtain an estimate of Keff ≈
106 erg/cm3. From this we infer that the droplets are
probably not superparamagnetic. The observed growth
in the saturation field for χac with decreasing tempera-
ture (see the inset to Fig. 7) can be explained by an
increase in the demagnetizing field HN = NdemM accom-
panying the increase in the magnetization with the tem-
perature (Ndem is the demagnetizing factor of the drop-
let). Assuming that the increase in the effective moment
µeff in La0.9Ca0.1MnO3 approximately by 1µB above the
theoretical value is entirely due to these clusters, and
using the expression for the magnetic susceptibility
χ(T) of magnetic clusters [22], we can estimate the den-
sity of large clusters as n ≈ 1013–1014 cm–3. This value
corresponds to spacing between clusters exceeding
103 Å. Apparently, this cluster density is very small and
the distances between them are too large to account for
the observed variations in the electrical properties near
T = 300 K. In order to explain the behavior of χac in
strong magnetic fields, it is necessary to assume that the
system contains small clusters in addition to the large
(≥150 Å) ones. The changes in χac(H) of
La0.9Ca0.1MnO3 observed in strong fields at a fixed tem-
perature can be described (see the solid curves in
Fig. 7) using expression (11). The magnetic moment of

Icl NMcl xcoth 1
x
---– 
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χac
cl dIcl

dH
-------- C
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xsinh
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the cluster increases from ≤8µB at 350 K to 100µB at
190 K (Fig. 8). In the spherical model, such effective
magnetic moments correspond to particles with diame-
ters 2Rcl ranging from 8 to about 15 Å.

Figure 9 shows the temperature dependences of the
activation energies ∆Es, ∆Eρ, and W1 for three mangan-
ites, which were calculated using Eqs. (1) and (2). In
determining ∆Eρ, it was assumed that σ0 in relation (2)
is independent of temperature (in the relatively small
temperature interval under consideration, this
assumption insignificantly influences the value of
∆Eρ). As can be seen, the values of ∆Eρ, ∆Es, and W1 are
almost constant at T ≈ 270–400 K for all three samples.
Note that the behavior of these quantities in
La0.93Sr0.07MnO3 and La0.90Ca0.10MnO3 is much alike,
while differing from how they behave in
La0.92Ca0.08MnO3. Below T ≈ 270 K, the values of ∆Eρ
and ∆Es monotonically decrease with decreasing tem-
perature. In La0.93Sr0.07MnO3 and La0.9Ca0.1MnO3, the
values of ∆Es exhibit a sharp decrease near the corre-
sponding values of TC, whereas no such significant
variations of ∆Es at TC is observed for
La0.92Ca0.08MnO3. Below T ≈ 270 K, the values of W1 in
La0.93Sr0.07MnO3 and La0.9Ca0.1MnO3 decrease with
temperature and exhibit a sharp increase at TC. Unlike
this, W1 in La0.92Ca0.08MnO3 weakly varies (remains
practically constant) in the entire temperature range
under consideration.

At present, no simple formulas are known that
would adequately describe the properties of phase-sep-
arated materials [18]. The results presented above can
be qualitatively rationalized using the following
assumptions.

(a) At high temperatures (T > 300 K), the charge car-
riers in manganites exhibit localization (pinning) with
the formation of polarons [1] or bound (immobile)
bipolarons [5], which is caused by a strong electron–
phonon coupling, a spin disorder and random distribu-
tion of magnetic inhomogeneities [3], or the Jahn–
Teller lattice distortion. As a result, the carriers form a
localized impurity band with a gap of ∆/2 in the forbid-
den band [5]. For this reason, the density of charge car-
riers involved in the conduction becomes much smaller
than the number of acceptors and obeys the law n ~
exp(–∆Es/kT). In this temperature range, the values of
∆Eρ, ∆Es, and W1 are practically independent of the
temperature.

(b) An electron trapped by a Mn3+ ion is in fact
bound to six Mn3+ ions in the nearest environment of
the acceptor, thus forming a polaron with the radius
Rpol = RMn–Mn = 1a ≈ 4 Å (a is the crystal lattice param-
eter). Interaction of the charge carrier with magnetic
moments decreases the system energy in the case of a
parallel orientation of spins and create a “ferromag-
netic” region (paramagnetic polaron) around the
trapped charge carrier [39]. In the usual magnetic semi-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
conductors, the magnetic polarons can appear only in
the immediate vicinity of the Curie temperature [11].
Using the concept of “thermal ferrons,” it is impossible
to explain the formation of ferromagnetic clusters at
temperatures 2–2.5 times greater than the Curie tem-
perature TC and the rapid growth of their dimensions
with decreasing temperature (Fig. 8), at weak tempera-
ture dependence of the polaron size (Rpol ∝  T–1/5) [3, 11].
Weakly doped lanthanum manganites offer a unique
possibility of obtaining such clusters at temperatures
significantly higher than their TC values. At a degree of
doping below the percolation threshold (x ≤ 0.1 < xper ≈
0.2–0.3), the density of carriers is small and the crystals
have TC ≈ 120–140 K. However, taking into account
statistical distribution of impurities, this doping admits
the formation of clusters—in the form of nanoislands of
various sizes containing several acceptors—in which
the number of carriers is sufficient to give rise to a fer-
romagnetic order with TC ≈ 300 K in conducting man-
ganites. Sufficiently large droplets contribute to χac

only in weak fields (see the inset to Fig. 7).
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However, there are many more clusters in which the
number of carriers is insufficient to establish a mag-
netic order in conducting manganites at TC ≈ 300. For
x = 0.07–0.1, the average spacing of acceptors (about
9 Å) is close to the size (8 Å) of a polaron in which the
electron is localized and the electron wavefunctions of
the nearest neighbor polarons can overlap. This over-
lapping may render the polarons anisotropic [21] and
favor the interaction of clusters with the formation of
bound polarons. A gain in the exchange energy and the
development of elastic stresses in the crystal lattice
allow several (two, three, etc.) small-radius magnetic
polarons to combine into a large-size magnetic cluster
(droplet) containing several electrons. For this reason,
the short-range order in the cluster appears and the
phase separation begins at a temperature of Tps ≈
250−300 K, which is close to TC of doped conducting
manganites with x ≈ 0.2–0.3. Sufficiently small drop-
lets exhibit superparamagnetic properties.

(c) The exchange interaction between localized (p)
and delocalized (d) charge carriers makes the gap ∆/2
of the aforementioned impurity band dependent on the
magnetization [5]. Calculations showed that, provided
the exchange interaction is sufficiently strong (JpdS > ∆,
where Jpd is the pd exchange energy), the gap in
strongly doped lanthanum manganites with x = 0.25 in
the ferromagnetic region vanishes, the density of
charge carriers increases, and the resistivity sharply
decreases. Upon passage to the ferromagnetic region in
weakly doped manganites possessing low magnetiza-
tion, the gap probably only decreases (rather than van-
ishing completely), which is confirmed by the temper-
ature dependence of ∆Es (Fig. 9). This assumption
agrees with the results of magnetic measurements for
La0.92Ca0.08MnO3, where the magnetization at 100 K is
almost three times as small as that in La0.9Ca0.1MnO3.
Accordingly, the thermopower activation energy (∆Es)
in the former manganite remains virtually unchanged,
while that in the latter sharply decreases near TC. The
appearance of magnetic clusters below T ≈ 300 K and
the related growth of magnetization well explain the
decrease in ∆Es in the paramagnetic region, which can
be seen in Fig. 9.

(d) The theory of the transport properties of phase-
separated manganites [11] assumes that the jump acti-
vation energy W1 (characterizing the mobility of charge
carriers as µ ∝  exp(–W1/kT)) is determined by the Cou-
lomb energy (dependent on the cluster size) [32]:

(12)

where 1/εp = 1/ε∞ – 1/ε0, ε∞ and ε0 being the high- and
low-frequency values of the permittivity [32]. The esti-
mate W1 ≈ 0.2 eV obtained using formula (12) for εp =
10 and Rcl = 4 Å agrees with the experimental values of
W1 (see table and Fig. 9) at high temperatures. A some-

W1
e2

2εpRcl
---------------,≈
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what lower value of W1 in La0.92Ca0.08MnO3 is probably
related to the anisotropy of the properties (mobility) of
charge carriers, which was reported for
La0.93Sr0.07MnO3 [21].

The observed decrease in W1 for La0.9Ca0.1MnO3 at
temperatures below T = 300 K (Fig. 9) qualitatively
agrees with the increasing size of clusters (Fig. 8).
However, a sharp growth in the W1 value in the vicinity
of TC observed for La0.93Sr0.07MnO3 is at variance with
the neutron scattering data, according to which Rcl in
this crystal increases up to 100 Å below TC [17]. The
carrier mobility (characterized by the jump activation
energy W1) not only depends on Rcl, but is also deter-
mined by the distance between clusters Lcl (which influ-
ences the overlap of the wavefunctions of their poten-
tial wells [32]. The conversion of polarons into clusters
leads to an increase in their spacing and to a change in
W1. Upon coalescence of Npol small-radius polarons
into Ncl clusters of radius Rcl, the distance between these
clusters increases as Lcl = (4π/3x)1/3Rcl in proportion to
Rcl (as in the case of formation of dew drops from mist)

and Lcl @ a, where Npol = xa–3, Ncl = Npol/ , and

 = 4π(Rcl/a)3/3 is the number of polarons in the
cluster. For example, Lcl ≈ 4Rcl for x = 0.05–0.08, in
agreement with the neutron data for La1 – xAxMnO3
(A = Ca, Sr) [8, 15, 17]. The probability of jumps
between clusters is given by the formula [28, 32],

(13)

where α0 ≈ a–1 characterizes the overlap of wavefunc-
tions of the neighboring clusters. The first term in for-
mula (13), which is related to the Coulomb blockade,
vanishes or is significantly simplified upon a large-
scale phase separation. For example, W1 decreases from
about 200 to 10 meV when Rcl increases to ~102 Å. The
second term in formula (13), which is related to the tun-
neling length, may lead to a strong decrease in mobility
at α0Lcl @ 1. This can even overwhelm the disappear-
ance of the Coulomb blockade, switch off the cluster
conductivity, and make certain other mechanisms
important (e.g., related to carrier hopping in the tail of
the mobility edge). The increase in W1 for
La0.93Sr0.07MnO3 and La0.9Ca0.1MnO3 near TC (Fig. 9)
probably merely reflects a decrease in the drift mobil-
ity of carriers as a result of the increase in the tunnel-
ing length.

The results of magnetoresistance measurements also
confirm the cluster nature of the resistivity in the samples
studied. The origin of the magnetoresistance in phase-
separated manganites is the variation of Rpol and, hence,
of the Coulomb energy Wp in the magnetic field [11]. At
temperatures T > 270 K, the magnetization of polarons
proceeds via rotation of the magnetic moments of Mn3+

npol
cl

npol
cl

W
W1

kT
-------– 
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and, hence, the polaron size is independent of the mag-
netic field up to very high strengths: Rpol(H) = 1a and
MRpol ≈ 0. The magnetoresistance MR ∝  H2 ≈ 10–3

observed at 297 K and 17 kOe is related to a decrease
in scattering on the magnetic inhomogeneities.

In order to estimate the magnetoresistance in the
paramagnetic region, it is possible to use the expression
MRH = 1 – exp(W1bH/2kT) for the paramagnetic state,
where b ≡ bPM = gSµB/5kTln(2S + 1), where g is the
gyromagnetic ratio [11, 40]. In the paramagnetic

region,  ~ bPMH/T2. As can be seen (Fig. 4),

 ~ H and increases with decreasing temperature

for T < TC, while the estimate of  = 3–5% agrees
with the values of magnetoresistance for
La0.92Ca0.08MnO3 and La0.93Sr0.07MnO3.

In order to analyze the behavior of magnetoresis-
tance at temperatures below TC, it is probably necessary
to take into account variations not only in the mobility of
charge carriers, but in their density as well, which may
account for the higher values of MRH ~ H2. At present,
the nature of the phase separation in doped manganites is
incompletely clear. It is usually believed that the phase
separation has a purely magnetic nature and is caused by
a gain in the exchange energy. However, this assumption
does not take into account the Jahn–Teller character of
Mn3+ ions and a strong interaction between the electron
and ion (lattice) subsystems in manganites [1]. Non-
Jahn–Teller Mn4+ ions produce elastic deformation of the
lattice, which is evidenced by sharp changes in the coef-
ficients of volume and linear expansion observed in man-
ganites in the vicinity of TC [7, 21]. For a correct analysis
of the influence of phase separation, especially large-
scale one, on the electrical properties of manganites, it
is necessary to take into account the elastic energy
related to lattice distortions upon the formation of an
inhomogeneous state [11].

The difference in the size of clusters revealed by the
neutron scattering data [8, 17] may account for the min-
ima of ρmw (Fig. 6) and their strong dependence on the
temperature and applied magnetic field in
La0.93Sr0.07MnO3 with large clusters and for the absence
of such features in La0.92Ca0.08MnO3 with small clus-
ters. The time of tunneling between clusters, which is
determined by the formula τ = τ0exp(ED/kT) for
Eqs. (9), varies in La0.93Sr0.07MnO3 (Fig. 9) within
broad limits because of strong and sudden changes of
W1 and ∆Es depending on the temperature. In this case,
the condition of Debye relaxation ωτ = 1 is satisfied in
a narrow temperature interval. Considerable variation
in the position of the ρmw minimum as a function of the
magnetic field (Fig. 6) is also indicative of a strong
dependence of W1 and, hence of the cluster size, on the
magnetic field. In La0.92Ca0.08MnO3, where the values of
W1 and ∆Es weakly vary with the temperature (Fig. 9)

MRH
PM

MRH
PM

MRH
PM
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and the condition of Debye relaxation it 9.2 GHz is not
satisfied, anomalies in ρmw and ε' are absent.

5. CONCLUSIONS

The properties of single crystals of weakly doped
lanthanum manganites La1 – xAxMnO3 (A = Ca, Ce, Sr;
x = 0, 0.07–0.1), including electric dc and ac (micro-
wave) resistivity and magnetoresistance, thermopower,
and magnetic properties, have been studied in the tem-
perature range from 77 to 400 K. At high temperatures
(T > 300 K), the conductivity can be interpreted within
the framework of the polaronic mechanism. In the para-
magnetic region, polarons are formed as a result of
strong electron–phonon coupling and are probably
polarized. It is established that the lanthanum mangan-
ites studied exhibit variations in the electrical proper-
ties (manifested by changes in the activation energies of
the resistivity, thermopower, jumps, magnetoresis-
tance, etc.) and magnetic properties (the development
of spontaneous magnetization and field-dependent dif-
ferential magnetic susceptibility) in the range below
room temperature (T ≈ 270–300 K), which is about two
times the Curie temperature of manganites and is far
from the temperature of structural transitions in the
samples studied.

It is suggested that the observed changes, as well as
the anomalies in the coefficients of linear expansion [21],
are related to the appearance of a short-range magnetic
order and to an increase in the size of polarons. The
results of magnetic measurements showed the presence
of relatively large (above 100 Å) and small (8–15 Å)
magnetic clusters. The concentration of large clusters is
small (1013–1014 cm–3), so that the conductivity in the
paramagnetic region is mostly determined by the small
clusters, judging by the estimates of the polaron jump
activation energy. The appearance of large clusters
(islands with TC equal to that of the conducting manga-
nites with x = 0.2–0.3) can be related (in addition to
technological artifacts) to the statistical character of
acceptor impurity distribution in the single crystal
matrix. Small clusters can form because of a gain in the
exchange energy and the development of elastic
stresses in the crystal lattice, via combination of small-
radius magnetic polarons (with two, three, or more
acceptors) into large-size magnetic cluster containing
several charge carriers. The short-range order in the
cluster appears and the phase separation begins at a
temperature (Tps ≈ 250–300 K) close to TC of doped
conducting manganites with x = 0.2–0.3. The results of
this study and the estimates obtained agree with the
phase separation model.
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Abstract—Series of experiments are carried out to study the propagation of magnetostatic spin waves in fer-
romagnetic films containing 2D periodic structures formed by etched apertures. For spin waves, such films are
analogous to photon crystals (namely, magnetophoton or magnon crystals). The spectra of waves transmitted
through the structure display features associated with a change in the spin homogeneity due to etching or radi-
ation loss, as well as with Bragg reflection effect or the emergence of forbidden gaps in the spectrum of prop-
agating waves. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A large number of research groups and individual
scientists have been engaged in recent years in investi-
gating the physics and technology of photon crystals
(see, for example, monographs [1–4] and the literature
cited therein). Photon crystals are essentially one-,
two-, or three-dimensional periodic structures, in which
the dielectric properties (refractive index) vary periodi-
cally; when an electromagnetic wave (light) propagates
in such a crystal, forbidden gaps are formed in its spec-
trum. The effects characteristic of photon crystals are
manifested when the length of the propagating wave is
of the same order of magnitude as the period of the
structure forming the photon crystal. Along with pho-
ton crystals in the optical range (which have a photon
bandgap in the visible range), crystals with a photon
bandgap in the microwave frequency range are of con-
siderable interest. However, the size of a photon crystal
in the range of centimeter or millimeter electromagnetic
waves will be quite large, so that practical applications of
such crystals are of no interest. An alternative to a photon
crystal in the microwave range might be ferromagnetic
media (magnetophoton or magnon crystals) [5–15], in
which propagating waves are magnons (spin waves).
Obtaining crystals analogous to photon crystals and
based on magnetic materials (namely, magnon crys-
tals), in which spin waves can propagate, has a number
of advantages over photon crystals. First, the wave-
length of a spin wave and, hence, the properties of such
crystals depend on the external magnetic field and can
be controlled by this field. Second, the wavelength of
propagating spin waves for a wide class of ferromag-
netic materials in the microwave range is on the order
of tens or even hundreds of micrometers. The phase and
group velocities of spin waves are also functions of the
sample size and the applied external field and may vary
over a wide range. As a rule, the velocity of spin waves
1063-7761/05/10103- $26.000547
is several orders of magnitude smaller than the velocity
of electromagnetic waves in a given medium. Thus, it is
possible to obtain crystals with a photon (or magnon)
bandgap whose width is on the order of several milli-
meters. Such crystals may have a planar geometry,
which can be extremely important for designing inte-
grated devices such as narrow-frequency optical or
microwave filters and high-speed switches. In the cited
literature, a theory of microwave properties of magne-
tophoton and magnon crystals was worked out; in par-
ticular, the spectra of electromagnetic and spin waves in
multilayer magnetic structures and 2D periodic struc-
tures was investigated, as well as nonreciprocal and
other properties of magnetophoton crystals. A number
of publications are devoted to optical properties of
magnetophoton crystals [16–21] (see also the recent
review [22]). We proposed [23] a realization of a 2D
magnon crystal based on yttrium iron garnet (YIG)
films and carried out preliminary measurements of the
spectra of magnetostatic spin waves propagating in
such crystals.

In this study, we continue the research aimed at
obtaining 2D magnon crystals and analysis of their
microwave properties; in particular, the propagation of
magnetostatic spin waves in such crystals is studied and
analyzed in detail.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Experiments were made on structures based on a
YIG epitaxial film with the following parameters: satu-
ration magnetization 4πM0 = 1750 G, thickness d ≈
16.1 µm, and the ferromagnetic resonance linewidth
2∆H ≈ 0.6 Oe. The film was grown on a gallium gado-
linium garnet (GGG) substrate with the (100) crystallo-
graphic orientation. A 2D periodic structure with a size
of 6 × 8 mm was etched in the central part of the film of
 © 2005 Pleiades Publishing, Inc.
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size 10 × 20 mm in the form of a system of pits with a
diameter of D ≈ 32 µm (Fig. 1a). We studied films with
two types of 2D lattices. The first lattice had a nearly
rhombic symmetry with a unit cell edge of ar ≈
37−40 µm (Fig. 1b). The second structure had the form

[100]

ρ

k

ϕ

H0

1 2

4 mm

L = 1–10 mm

‡r

‡c

(a)

(b)

(c)

(d)

Fig. 1. (a) General view of a ferromagnetic film with an
etched structure; (b, c) microphotographs of the surfaces of
magnon crystals; (d) model of a delay line based on a YIG
film. Angle ρ in (a) characterizes the rotation of the crystal-
lographic 〈100〉  direction relative to the film edge. Angle ϕ
in (d), defines the direction of propagation of surface mag-
netostatic spin wave relative to the longer edge of the film.
JOURNAL OF EXPERIMENTAL A
of a square lattice with an edge length of ac ≈ 37 µm
(Fig. 1c). For the rhombic lattice, structures with an
etch depth t of pits t1 ≈ 1 µm and t2 ≈ 2 µm were inves-
tigated. The pit depth in the square lattice was t1 ≈ 1 µm.
Measurements were made using a model surface mag-
netostatic spin wave delay line. The YIG films were
fixed to 4-mm-long microstrip transducers with a width
of 30 µm, prepared photolithographically on a polycore
board. The distance L between the transducers could be
varied in the limits L = 1–10 mm. The model of the
delay line (Fig. 1d) was placed in the gap of an electro-
magnet so that the magnetic field H0 was directed along
the transducer. Such a geometry corresponds to the
excitation in an isotropic magnetic film of a surface
dipole Damon-Eshbach magnetostatic spin wave with
the dispersion relation [24]

(1)

where f is the frequency of the surface magnetostatic
spin wave, k is the wavenumber of the surface magne-

tostatic spin wave,  =  + fHfm is the threshold fre-
quency (k  0) of the spectrum of the surface magne-
tostatic spin waves, fH = gH0, fm = g4πM0, and g =
2.8 MHz/Oe being the gyromagnetic ratio.

We studied the amplitude A and phase θ of the signal
transmitted through the model, as well as the level of
power PR reflected from the input transducer for various
orientations of the wavevector k of the surface magne-
tostatic spin wave relative to the axes of 2D lattice,
which are characterized by angle ϕ (see Fig. 1d), as
functions of frequency f for a fixed value of magnetic
field H0 (A( f ), θ( f ), and PR( f )) or of field H0 for a fixed
frequency (A(H0), θ(H0), and PR(H0)). These depen-
dences were compared for the cases when magneto-
static spin waves propagated outside the region con-
taining a 2D lattice (curves 1 in Figs. 3, 5, and 6) or
when at least one of microstrip transducers was in the
region of the film occupied by a 2D lattice (curves 2 in
Figs. 3, 5, and 6). The reflected signal was measured
using a VSWR panoramic gauge and an attenuator
R2-67. The amplitude-frequency and phase-frequency
characteristics were obtained using an FK2-18 phase-
difference and attenuation meter according to the stan-
dard scheme of connection of the delay line model in
the break of the measuring loop. The phase-frequency
characteristics were used for plotting the dispersion
relation f = f(k) by the standard technique [25] assum-
ing that the phase incursion θ( f ) of the surface magne-
tostatic spin wave is connected with its wavenumber by
the relation k( f ) = θ( f )/L.

It should be noted that film etching to a depth t ≤
2 µm did not lead to the emergence of strong additional
anisotropy fields. This follows from a comparison of
the dispersion relations f = f(k) (see Fig. 2a), as well as
orientation dependences of threshold frequencies f0(ϕ)
(see Fig. 2b) corresponding to the etched and unetched

f 2 f 0
2 f m
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4
------ 1 2kd–( )exp–( ),+=
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regions of the film. It can also be seen that the experi-
mental dispersion dependences for spin waves in the
wavenumber range k ≤ 400 cm–1 were correctly
described by the dispersion relations for such waves in
a tangentially magnetized (100) YIG film with a normal
uniaxial anisotropy of the easy plane type [26] for val-
ues of cubic (K1 = HkM0) and uniaxial anisotropy (Ku =
HuM0/2) constants K1 ≈ 6.2 × 103 erg/cm3 and Ku ≈
−104 erg/cm3 and a thickness of the unetched film
region d* = d – t ≈ 14 µm (see Figs. 2a and 2b); here,
Hk and Hu are the cubic and planar uniaxial anisotropy
fields, respectively. We took into account the fact that
the edges of the film form angles ρ ≈ 15° with the 〈100〉
crystallographic directions (see Fig. 1a). However, for
k > 400 cm–1, the uniaxial anisotropy constant was
assumed to be Ku ≈ –1.15 × 104 erg/cm3 for better coin-
cidence of the results of calculations with the measur-
ing data. Such a behavior of the dispersion of surface
magnetostatic spin waves can be explained, for exam-
ple, by nonuniformity of the uniaxial anisotropy con-
stant distribution over the thickness due to elastic
stresses in the film associated with mismatch between
the YIG film and the GGG substrate lattice parameters.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Before analyzing the results of measurements, note
that, in accordance with the data in Fig. 2, the region of
the film containing a 2D structure can be represented in
the form of two contacting layers. The thickness of the
upper layer is determined by the etch pit depth t ≤ 2 µm,
while the thickness of the second layer is d* ≈ 14 µm.
Since surface magnetostatic spin waves with wavenum-
bers k ≤ 1200 cm–1 were excited in our experiments,
which correspond to wavelengths λ ≥ 52 µm (see Fig. 2
and Fig. 4 below), the condition

(2)

is found to be satisfied. This enables us to treat the film
region with the 2D structure as a waveguide of thick-
ness d* with periodically varying electrodynamic
boundary conditions due to the effect of demagnetizing
fields of the pits. In this case, we can expect that a spin
wave will experience scattering from the periodic struc-
ture. Such a mechanism might be manifested most
effectively under the conditions of Bragg’s diffraction
from the periodic structure [27], when wavenumber k
satisfies the condition

(3)

where Λ is the period of the 2D lattice in the direction
of wave propagation. In this case, a bandgap is formed
in the spin wave spectrum [27].

We can also expect that the effect of the 2D lattice is
reduced to a periodic change of not only electrody-
namic, but also exchange boundary conditions for

λ d* @ t>

k kB π/Λ ,≈ ≈
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dynamic magnetization m due to a change in the spin
mobility at excitation frequencies (1) both in the lattice
itself and in a certain transition region at the boundary
between the 2D lattice and unetched volume of the film.
As a consequence, the dynamic spin pinning [28] takes
place in the surface layer; in turn, this effect can be
accompanied by a substantial increase in the efficiency
of dipole wave hybridization with bulk exchange spin
waves [29]. Obviously, in view of lateral inhomogene-
ity of the structure, we cannot expect in our case the
emergence of resonant interaction of spin waves with
bulk exchange modes as is the case in regular film-type
YIG waveguides with pinned surface spins [30]. How-
ever, it can be expected that hybridization of a dipole
spin wave with exchange waves will be manifested in
the form of radiation loss [31].
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Fig. 2. (a) Measured and calculated dependences f = f(k) for
a magnetizing field H0 = 625 Oe. Curves 1 and 2 correspond
to the results of calculations for films of thicknesses d ≈
16.1 µm and d* ≈ 14.1 µm. (b) Measured and calculated
dependences f0 = f0(ϕ) for a magnetizing field H0 = 325 Oe.
Solid and dashed curves in (a) and (b) correspond to cal-
culations for the uniaxial anisotropy field parameters
Hu = –70 Oe and –80 Oe, respectively. Dark circles show
the results of measurements on free regions of the film,
while light circles correspond to the presence of a 2D struc-
ture.
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Fig. 3. Amplitude-frequency characteristic of the model for the spacing between aerials L ≈ 1.5 mm in the case when they are
arranged in the film regions without (1) and with (2) a square lattice for the magnetizing field H0 = 398 (a) and 1190 Oe (b). Curve 3
is the amplitude-frequency characteristic with aerials arranged on the segment with a square lattice at a distance L ≈ 3 mm. Spin
waves propagate along the lattice axis (ϕ = 0).
It should be noted that the effect of surface spin pin-
ning in approximation (2) with allowance for the sym-
metry of 2D structures can be associated with the exist-
ence of a uniaxial surface anisotropy with the axis nor-
mal to the film surface. In the case of a tangentially
magnetized structure [32], such a surface anisotropy
does not limit the mobility of the my component tangen-
tial to the film surface,

(4)

while the mz component normal to the surface is found
to be pinned,

(5)

where parameter h characterizes the degree of spin pin-
ning and has dimensions of cm–1. In this case, the inter-
action between the dipole surface magnetostatic spin
wave with exchange waves can be described by the
effective pinning parameter [32]:

(6)

The dependence of the effective pinning parameter on
frequency (6) reflects the variation of ellipticity of mag-
netization precession in the film with frequency f,

(7)

where α = 3 × 10–12 cm2 is the nonuniform exchange
constant. It can be see from formula (7) that the magne-
tization precession ellipse for f ! fm is extended along
the film surface (mz ! my) and the effect of pinning on
the motion of magnetization is weak. For this reason,
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the value of the effective pinning parameter heff (6) will
also be small.

3.1. Square Lattice

Figure 3 shows the amplitude-frequency depen-
dences of the model with a spacing L between the aeri-
als of approximately 1.5 mm for two values of the mag-
netic field in the case when spin waves propagate along
the axis of a 2D square lattice (ϕ = 0). Comparison of
curves 1 and 2 shows that the lattice noticeably changes
the conditions of spin wave propagation. In the mag-
netic field range H0 ≤ 500 Oe (Fig. 3a), such variations
are manifested in the form of two absorption bands (B1
and B2) of the signal. One of these bands (B1) is
observed near the threshold frequency f0 of the spec-
trum. To make the existence of the B1 band more
visual, Fig. 3a shows the amplitude-frequency charac-
teristic for a distance L ≈ 3 mm between the transducers
(see curve 3). Band B2 is formed in the upper (short-
wave) part of the excitation frequency band for spin
waves. It should be noted that losses change insignifi-
cantly at frequencies that do not fall in absorption
bands B1 and B2. At the same time, the lattice losses for
H0 > 500 Oe noticeably increase in the entire frequency
band corresponding to the existence of spin waves as
compared to losses in a free film (Fig. 3b). The nature
of variations of the amplitude-frequency characteristic
is such that an increase in the loss can mainly be attrib-
uted to the expansion of absorption band B1.

Curve 1 in Fig. 4 shows the dispersion relation of
spin waves in a structure with a square lattice for
parameters corresponding to Fig. 3a, which is plotted
using the phase-frequency characteristic. It can be seen
that a “gap” is formed in the dispersion relation in the
range of wavenumber  ≈ 950 cm–1 at frequencies
fB = 3390 MHz, which belong to absorption band B2. In
this case, no noticeable changes were observed in the
dispersion relation at frequencies corresponding to the
B1 absorption band.

kcub*
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Let us consider dependences A(H0) and PR(H0) for a
signal frequency of fB = 3390 MHz for the same lattice
(Fig. 5). Comparison of curves 1 and 2 shows that the
level of reflected power oscillates in a field H0 ≈
400 Oe, while the A(H0) dependence acquires a region
with strong attenuation, which corresponds to the B2
band on the amplitude-frequency dependence shown in
Fig. 3a. On the contrary, for values of H0 ≈ 500–680 Oe
for which the chosen frequency fB = 3390 MHz is close
to the threshold frequency f0 of the spin wave spectrum
and absorption band B1 is formed on the amplitude-fre-
quency characteristic, no singularities were observed in
the PR(H0) dependence.

It follows from Figs. 3–5 that absorption band B2 is
associated with the gap in the spectrum, within which
the level of reflected power increases. Such a behavior
of dispersion and reflected power indicates that the
emergence of absorption band B2 is associated with
“nontransmission” of the signal through the structure;
the most probable reason for its emergence is Bragg
scattering of spin waves from the periodic structure.
This also follows from the close values of the wave-
numbers corresponding, on the one hand, to the gap
region in the dispersion relation for spin waves in Fig. 4
and, on the other hand, to the fulfillment of the Bragg
resonance condition (3). Indeed, in the case when these
waves propagate along the axes of the square lattice, the
period Λ of the 2D structure coincides with the length
ac of the unit cell edge (Λ = ac ≈ 37 µm). Using Bragg
resonance condition (3), we obtain kB ≈ 850 cm–1,

4000 800 1200

k, cm–1

2.4

2.8

3.2

3.6

4.0
f, GHz

1

2 3

Fig. 4. Dispersion relations for spin waves in 2D structures
with a square lattice for ϕ = 0, H0 ≈ 398 Oe (curve 1);
ϕ = 45°, H0 ≈ 525 Oe (curve 2), and with a rhombic lat-
tice for ϕ = 15° (the direction of the wavevector of the
spin wave is close to the direction of the lattice axis),
H0 ≈ 560 Oe (curve 3).
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which is in good agreement with the values of wave-
numbers in the gap region in Fig. 4 (kB ≈ 850 cm–1 ≈

 ≈ 950 cm–1). The behavior of the B2 band upon a
change in the orientation of wavevector k relative to the
axes of the lattice indicates that its emergence on the
amplitude-frequency characteristic in Fig. 3 is associ-
ated with Bragg resonance on a 2D square lattice. When
the lattice rotates through an angle |ϕ| > 15°, the B2
band on the amplitude-frequency characteristic of the
model vanished and emerged only for values of ϕ ≈ 45°.
In this case, the A(H0) dependence shows a dip, while
the PR(H0) dependence oscillates analogously to the
case of ϕ = 0 depicted in Fig. 5. At the same time, the

period of the 2D lattice for ϕ ≈ 45° is  ≈ 37  ≈
52 µm. In this case, the Bragg resonance should be
manifested for a wavenumber kB ≈ 600 cm–1. Indeed,
the dispersion curve plotted for this case (curve 2 in
Fig. 4) shows a gap in the spin wave spectrum for

 ≈ 630 cm–1.
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Fig. 5. Dependence of the levels of signal A(H0) transmitted
through the model of the delay line (a) and reflected from
the input transducer of microwave power PR(H0) (b) on the
magnetic field H0 for the arrangement of the aerials in
unetched region of the film (curves 1) and in the region con-
taining a square lattice (curves 2). The frequency f =
3390 MHz of the microwave signal corresponds to the posi-
tion of the B2 gap in the amplitude-frequency characteristic
of the model for experimental parameters corresponding to
Fig. 3a.
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Let us now consider the reason for the emergence of
absorption band B1 and loss escalation in an increasing
magnetic field. It follows from Figs. 4 and 5 that no
noticeable deviations from the case of a free film are
observed at frequencies corresponding to the B1 band
either in the dispersion relation f(k), or in the form of
the PR(H0) dependence. Consequently, emergence of
losses in the B1 band and their growth with field H0
should be attributed to the effects accompanying the
wave propagation. It should be noted that an apprecia-
ble increase in losses in the film with a 2D structure
occurs in fields H0 ≥ 500 Oe, when the condition f @
fm/2 ≈ 2.5 GHz holds for the spin wave excitation fre-
quency and, in accordance with relation (6), the effec-
tive pinning parameter for surface spins increases.
These arguments allow us to attribute the emergence of
the B1 absorption band and increase in losses with H0 to
the mechanism of radiation losses due to emission of
bulk exchange spin waves from the film surface [31, 33].

However, we should note a number of substantial
differences in the behavior of radiation loss in our case
and also in YIG films with a spin pinning constant that
does not vary over the film surface, in which the cou-
pling between dipole and exchange waves is propor-
tional to wavenumber k. For a fixed value of field H0,
this leads to an increase in radiation loss with k. On the
contrary, in the case under investigation, radiation
losses attain the highest values and are manifested pri-
marily in the range of small wavenumbers. This differ-
ence can be explained by the following two circum-
stances. First, not only the magnetization components
mz normal to the surface, but also tangential compo-
nents my will be pinned at spin wave frequencies due to
the effect of the demagnetization fields of the pits in the
surface layer of thickness t. Such a pinning mechanism
will clearly be effective in the region of small magne-
tizing fields also. Second, in the range of small wave-
numbers k, the lattice can be treated (relative to the sur-
face magnetostatic spin wave) as a homogeneous layer
with parameters differing from those in the bulk of the

3.0 3.2 3.4 3.6 3.8 4.0
f, GHz

40
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A , –dB
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Fig. 6. Amplitude-frequency characteristic of the model
with a rhombic lattice for spin waves propagating at an
angle ϕ ≈ 15° (the direction of the wavevector is close to the
direction of the lattice axis) for H0 ≈ 560 Oe.
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film since the wavelength is considerably larger than
the lattice period,

(8)

The coupling of a spin wave with exchange waves over
a wavelength is virtually constant, which ensures the
effectiveness of the radiation loss mechanism. As the
values of k increase, condition (8) becomes invalid and
the concept of exchange waves propagating from the
surface in the form of plane waves is violated. As a result,
the overlap integral of the fields of the dipole spin wave
and exchange waves decreases, which in turn reduces
radiation loss upon an increase in wavenumber k.

3.2. Rhombic Lattice

We will consider the effect of a rhombic lattice on
the propagation of a surface magnetostatic spin wave
for pits with an etching depth t2 ≈ 2 µm, for which the
effect is manifested more clearly than for t1 ≈ 1 µm. The
emergence of the B2 absorption band associated with
the Bragg diffraction for orientations of wavevector k
close to the directions ar of the lattice axes was a con-
sequence of the rhombic lattice symmetry. In the lattice
considered here, such situations could correspond to

values of angles  ≈ 25, 90, 155, 210, 270, and 330°
(see Fig. 1d). The experimental values of the angles
were quite close to these values, but could differ by
δϕ ≈ ±(5…10)°. The effect of angle ϕ of radiation
exchange losses and on the B1 band could not be sep-
arated.

The behavior of the amplitude-frequency character-
istic of a surface magnetostatic spin wave in a rhombic
lattice upon an increase in the field was on the whole
analogous to that in a square lattice, depicted in Fig. 3.
However, in the range of not very strong fields H0 in the
shortwave part of the amplitude-frequency characteris-
tic, two B2 absorption bands were observed instead of
one band. Figures 6 and 4 (curve 3) show the ampli-
tude-frequency characteristic and the dispersion rela-
tion, respectively, for ϕ ≈ 20° and H0 ≈ 560 Oe. It can
be seen that interference fading bands B2, correspond-
ing to the emergence of a “gap” in the dispersion rela-
tion, are observed in the amplitude-frequency charac-

teristic at frequencies  ≈ 3730 MHz and  ≈
3830 MHz. The PR(H0) dependences measured at the
signal frequencies fB2 demonstrated, analogously to
Fig. 5, oscillations of reflected power, which indicated
deterioration of matching between the microstrip trans-
ducer and the film. It can be seen from Fig. 4 that the
positions of the gaps in the dispersion relation corre-

spond to wavenumbers  ≈ 780 cm–1 for the first gap

B21 and  ≈ 1050 cm–1 for the second gap B22. If we
take into account the fact that the lattice period Λ ≈ arom ≈

λ  @ Λ .

ϕB
r

f B2
1 f B2

2

kr
1

kr
2

ND THEORETICAL PHYSICS      Vol. 101      No. 3      2005



MAGNETOSTATIC SPIN WAVES IN TWO-DIMENSIONAL PERIODIC STRUCTURES 553
40 µm, relation (3) gives kB ≈ 785 cm–1, which corre-

spond in order of magnitude to values of  ≈ 780 cm–1.

If we also attribute the “second” absorption band
B22 to Bragg diffraction from the 2D lattice, relation (3)
implies that the period of the structure must be on the

order of the pit diameter, Λ ≈ π/  ≈ 30 µm ≈ D ≈

32 µm for the wavenumber  ≈ 1050 cm–1 correspond-
ing to this absorption band. It should be noted that the
effect of exchange radiation losses on the propagation
of spin waves in the rhombic structure studied here is
not as noticeable as in the case of a square lattice. This
can be explained by the lower number density of pits
per unit surface area of the film for the rhombic lattice
(see Figs. 1b and 1c).

4. CONCLUSIONS

Thus, we have studied the propagation of surface
magnetostatic waves in 2D magnon crystals. These
crystals were obtained on the basis of thin ferromag-
netic YIG films with structures formed by etch pits.
When magnetostatic waves propagate in such crystals,
their properties change substantially. The effectiveness
of such a change is determined by the parameters of
magnon crystals and the external magnetic field. In par-
ticular, the spectra of propagating waves display band-
gaps at a frequency determined by the period of the
structure formed by etch pits and the structure symme-
try. Changes in the spectra of waves due to radiation
losses during scattering of waves from surface inhomo-
geneities of the ferromagnetic film are also detected.
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Abstract—The vibrational spectra of structures with InAs quantum dots in an AlGaAs matrix and AlAs quan-
tum dots in an InAs matrix are investigated experimentally and theoretically. The Raman spectra exhibit fea-
tures that correspond to transverse-optical (TO), longitudinal-optical (LO), and interface phonons. The frequen-
cies of interface phonons in InAs and AlAs quantum dots and in an AlGaAs matrix with various concentrations
of aluminum are calculated with the use of experimental values of transverse- and longitudinal-optical phonons
in the approximation of a dielectric continuum. It is shown that the model of a dielectric continuum adequately
describes the behavior of interface phonons in structures with quantum dots under the assumption that the quan-
tum dots are spheroidal. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Periodic semiconductor structures with self-orga-
nized quantum dots, which are characterized by unique
electronic and optical properties, are one of the most
challenging objects of research in semiconductor phys-
ics. These objects attract interest in view of the possi-
bility to design, on the basis of these objects, new
devices such as quantum transistors, high-speed mem-
ory elements, narrowband light-emitting diodes, hetero-
junction lasers, and infrared (IR) photodetectors [1–3].

Progress in the epitaxial growth technology has
made it possible to produce quantum-dot structures
with controllable properties on the basis of a series of
materials (InAs/Ga(Al)As, In(Ga)As/InP [4, 5], Ge/Si,
GaSb/InP, GaN/AlN) [6–9]. The most thoroughly
investigated system is InAs/Ga(Al)As; a large number
of papers have been devoted to the study of its optical
and electronic properties [2]. However, despite the fact
that the vibrational spectrum contains information
about the structural properties (the size, dispersion of
size, and the shape) of quantum dots [10, 11] and
mechanical stress in nanostructures [12, 13], the vibra-
tional properties have been poorly studied even in this
system. The most widespread methods for studying
vibrational spectra are the Raman spectroscopy and the
infrared (IR) spectroscopy. These methods are comple-
mentary because they use different selection rules;
therefore, they allow one to study vibrational excita-
tions of different types of symmetry. The Raman and IR
spectroscopy have been applied to study optical
phonons in stressed [13, 14] and relaxed [12, 15] quan-
1063-7761/05/10103- $26.000554
tum dots, in quantum dots of InGaAs solid solutions [16],
and in a wetting layer [17, 18].

Earlier, a theoretical analysis of the spectrum of
optical phonons in quantum dots was carried out within
the model of valence-force fields [19, 20] and in the
approximation of a dielectric continuum [15]. The
model of valence-force fields is an empirical atomistic
model and allows one to calculate the phonon frequen-
cies in quantum dots consisting of a few thousand
atoms. Calculations with the use of this model involve
large arrays of data; this makes these calculations rather
tedious. The approximation of a dielectric continuum is
a macroscopic model and can rather easily be applied to
the calculation of the frequencies of interface phonons
localized near the interface between the materials of the
quantum dots and the matrix [21].

The simplest model of a dielectric continuum deals
with spherical quantum dots of one material embedded
into the matrix of another material [22, 23]. In this case,
the eigenfrequencies are determined from the condition

, (1)

where e1 and e2 are the dielectric functions of the quan-
tum dots and the matrix, respectively; ωlm are the eigen-
frequencies of interface phonons; and l is a quantum
number of a phonon (l = 1, 2, …).

As a rule, the shape of a real quantum dot is different
from a sphere [24, 25] (a truncated pyramid for a sys-
tem of InAs quantum dots in a GaAs matrix [26], a

e1 ωlm( )
e2 ωlm( )
------------------ 1– 1

l
---–=
 © 2005 Pleiades Publishing, Inc.
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hemisphere for Ge quantum dots in a Si matrix [27],
and an ellipsoid for AlAs quantum dots in an InAs
matrix [28]). Therefore, the model of a dielectric con-
tinuum was further developed in [29, 30], where it was
assumed that quantum dots are spheroidal. The reduc-
tion of the symmetry of quantum dots from spherical to
spheroidal complicates the condition for the eigenfre-
quencies of interface phonons: these frequencies will
now depend on two quantum numbers, l and m.

In [30], the dielectric function of a matrix is consid-
ered that does not depend on frequency; this provides a
unique set of interface modes whose frequencies lie
between the frequencies of TO and LO phonons in
quantum dots. Such an approach is justified if a model
deals with quantum dots in a vitreous or an organic
matrix.

In [29], it was assumed that the dielectric functions
of both the quantum dots and the material of the matrix
depend on frequency; unlike the dielectric-continuum
model considered in [30], this yields two sets of inter-
face modes. The first set, which refers to quantum dots,
lies in the spectral range between TO and LO phonons
in the material of quantum dots. The other set lies in the
frequency range between the corresponding values of
bulk phonons in the matrix material.

Despite the progress made in the theoretical
description of interface phonons in spheroidal quantum
dots, there is a lack of experimental research in inter-
face phonons in structures with self-organized quan-
tum dots [11, 13].

In this paper, we present the results of investigating
interface phonons in structures with InAs and AlAs
quantum dots by the methods of Raman spectroscopy
and compare them with the data obtained by calculating
the interface phonons in the approximation of a dielec-
tric continuum.

2. THEORY

Let us write out the basic equations necessary for
the analysis of the dielectric-continuum approximation
in polar materials [30, 31]. The Born–Huang equation
of motion can be represented as follows:

(2)

where the polarization P can be expressed as

(3)

Here, w = u, where u is a relative displacement
between a pair of ions with reduced mass µ in a crystal
with concentration N, E is the electric field, ωTO and
ωLO are the frequencies of transverse- and longitudinal-
optical phonons, and e0 (e∞) is the static (high-fre-
quency) dielectric constant of a polar material. In addi-

ẇ̇ ωTO
2 w–

e0 e∞–
4π

----------------ωTO
2 E,+=

P
e0 e∞–

4π
----------------ωTO

2 w
e∞ 1–

4π
--------------E.+=

Nµ
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion, we assume that the Lidden–Sacks–Teller relation

/  = e0/e∞ holds.

For the electric field to satisfy the Maxwell equa-
tions, it is necessary that the electric induction

should satisfy the Gauss equation

Using the relation

we can write out the basic equation of dielectric
approximation:

(4)

It is assumed that the time dependence of all the
quantities introduced above is harmonic: f(t) ∝
exp(−iωt). In the absence of damping, the frequency-
dependent dielectric function ε(ω) of a polar material is
defined by

(5)

Interface phonons are directly related to the electric
potential, which must satisfy the Laplace equation
∇ 2ϕ = 0. Therefore, one of the possible solutions to
Eq. (4) is e(ω) ≠ 0 for ω ≠ ωLO. The boundary condition
at the interface S between two media, the continuity of
the normal components of D, is expressed as

(6)

Since the object of our study are interface phonons
in spheroidal quantum dots, it is convenient to pass
from Cartesian coordinates to spheroidal (prolate and
oblate) coordinate systems [30].

The prolate system of coordinates ξ, η, φ is used for
calculating the frequencies of interface phonons for
prolate quantum dots and is expressed in terms of Car-
tesian coordinates as follows:

(7)

whereas the oblate system of coordinates is convenient
for determining the frequencies of interface phonons in
oblate quantum dots:

(8)

ωLO
2 ωTO

2

D e ω( )E E 4πP+= =

∇ D⋅ 0.=

E ∇ϕ ,–=

e ω( )∇ 2ϕ 0.=

e ω( ) e∞
ωLO

2 ω2
–

ωTO
2 ω2–

---------------------.=

e1

∂ϕ1

∂n
---------

S
e2

∂ϕ2

∂n
---------

S
.=

x b ξ2 1–( ) 1 η2–( ) φ,cos=

y b ζ2 1–( ) 1 η2–( ) φ,sin=

z bξη ,=

x b ξ2 1+( ) 1 η2–( ) φ,cos=

y b ξ2 1+( ) 1 η2–( ) φ,sin=

z bξη ,=
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where ξ ≥ 1 for the prolate system, ξ ≥ 0 for the oblate
system, and –1 ≤ η ≤ 1 and 0 ≤ φ ≤ 2π for both systems.
The expression ξ = const describes an ellipsoid of rota-
tion with the rotation axis (z axis) directed along the
principal axes of the ellipsoid; 2b is the interfocal dis-
tance.

Consider an elliptic surface defined by the formula
ξ = ξ0 = const. In our model, the interior domain defined
by 1 ≤ ξ ≤ ξ0 for prolate and oblate systems of coordi-
nates is one of the polar semiconductors with the
dielectric function e(ω) given by (5), where ω is an
eigenfrequency corresponding to interface vibrations of
a spheroidal quantum dot. The exterior, with respect to
the elliptic surface, domain defined by the relation ξ ≥
ξ0 is an infinite medium with the dielectric function
given by (5).

The Laplace equation can be separated in prolate
spheroidal coordinates; a solution to the above-
described model can be sought for in the form

(9)

where Alm are Fourier coefficients and Ylm(η, φ) are
ordinary harmonic spherical functions. The same
expression applies to the oblate system of coordinates
after certain transformations and the replacement
ξ  iξ.

The functions (ξ) and (ξ) in Eq. (9) are
expressed in terms of hypergeometric function F:

(10)

where Γ(x) is the gamma function. For the oblate sys-
tem of coordinates, these functions are expressed in
similar terms; however, after the replacement ξ  iξ
and certain algebraic transformations, they can be rep-

ϕ< AlmRl
m ξ( )Ylm η φ,( ), ξ ξ 0,≤=

ϕ> Alm

Rl
m ξ0( )

Ql
m ξ0( )

-----------------Ql
m ξ( )Ylm η φ,( ), ξ ξ 0≥ ,=

Rl
m Ql

m

Rl
m ξ( ) 2l( )! ξ2 1–( )m/2ξ l m–

2ll! l m–( )!
------------------------------------------------=

× F
m l–

2
----------- m l– 1+

2
--------------------- 1

2
--- l

1

ξ2
-----,–, , ,

Ql
m ξ( ) 2m l m–( )!Γ 1/2( ) ξ2 1–( )m/2

Γ l 3/2+( ) 2ξ( )l m 1+ +
--------------------------------------------------------------------=

× F
l m 1+ +

2
--------------------- l m 2+ +

2
--------------------- l

3
2
--- 1

ξ2
-----,+, , ,
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resented as the following functions of iξ:

(11)

Here, the angular moments of the harmonic functions
take the values l = 1, 2, 3, … and |m| ≤ l.

For ξ = ξ0, the boundary condition (6) defines the
relations

(12)

for the prolate and oblate coordinate systems, respec-

tively. The universal parameters  and  do not
depend on the nature of the material or on the normal-

ization of the functions  and ; however, what is
especially important, they depend on the geometry of
quantum dots. The conditions

(13)

for the eigenfrequencies of interface phonons in prolate
and oblate coordinate systems, respectively, allow one
to calculate the frequencies of interface phonons.

Note that, in contrast to the case of spherical quan-
tum dots, the eigenfrequencies of interface phonons
depend on two quantum numbers, l and m, and on the
parameter ξ0. It can be shown that, for ξ0  0,
Eq. (13) yields the following relation for the eigenfre-
quencies in spherical quantum dots [31]:

(14)

which is identical to formula (1).
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For InAs quantum dots in the form of oblate sphe-
roids in an AlAs matrix, the frequencies of interface
modes as a function of the quantum number m for the
semiaxis ratio Rp/Re = 1/2 are shown in Fig. 1a. The
semiaxis Rp lies in the plane of the layers of the struc-
ture, while Re is perpendicular to the surface. Figure 1a
shows that the calculated values of the frequencies of
interface phonons in InAs quantum dots and in the
AlAs matrix range within the limits of 230–236 cm–1

and 382–392 cm–1, respectively, and lie between the
frequencies of TO and LO phonons. As the quantum
numbers of the calculated modes increase, the frequen-
cies of these modes tend to the frequencies of interface
phonons that propagate along plane heterojunction
boundaries. For AlAs-like phonons, this value is equal
to 383 cm–1, whereas, for InAs-like phonons, it is equal
to 235 cm–1. Note that these values differ by several
inverse centimeters from the frequencies of modes with
small l and large m.

The set of frequencies of interface phonons for pro-
late quantum dots significantly differs form the relevant
set for oblate quantum dots (Fig. 1b). This difference is
especially significant for the frequencies of modes with
small quantum numbers l and m.

In the model considered, the parameter that defines
the shape of a quantum dot is the ratio Re/Rp of large
and small semiaxes.

Figure 2 shows the frequencies of interface phonons
in quantum dots with the quantum numbers (1, 0) and
(1, 1) as a function of the ratio Re/Rp. It is especially
important to determine the frequencies of these modes,
because it is the phonons with small quantum numbers
(l, m) equal to (1, 0) and (1, 1) that should make the
main contribution to the Raman scattering of light [29].

For the ratio Re/Rp ranging from 1/10 to 1 (prolate
quantum dots), the frequencies of the first modes of
interface phonons are shown in the left-hand part of the
diagram, whereas the appropriate frequencies for Re/Rp

ranging from 1 to 10 are shown in the right-hand part.
One can see that the frequencies of interface phonons
exhibit the greatest variation in those quantum dots
whose shape is close to a sphere.

Consider the case when the material of either the
matrix or the quantum dots is a ternary solution
AxB1 − xC. This case is of definite interest because struc-
tures with InGaAs/AlGaAs quantum dots are already
available. Since the dielectric function of a solid solu-
tion (in the absence of damping) is given by

(15)

where  = e∞, 1x + e∞, 2(1 – x), the solution to Eq. (13)
represents three sets of interface phonons one of which
corresponds to the material of a binary compound and
the two other sets correspond to the material of a solid

ea ω( ) e∞
a ωLO 1,

2 ω2–( ) ωLO 2,
2 ω2–( )

ωTO 1,
2 ω2–( ) ωTO 2,

2 ω2–( )
-------------------------------------------------------------,=

e∞
a
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solution. For example, for InAs/AlGaAs quantum dots,
these sets represent interface phonons in InAs quantum
dots and AlAs- and GaAs-like interface phonons in the
matrix. Note that, for structures in which both the
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Fig. 1. Frequencies of interface modes in (a) oblate quan-
tum dots for Rp/Re = 1/2 and (b) prolate quantum dots for
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matrix material and the quantum dots represent solid
solutions, one may expect that four sets of interface
phonons exist.

3. EXPERIMENTAL

The structures studied were grown on GaAs sub-
strates in the Stranski–Krastanov growth mode by
molecular beam epitaxy on a Riber 32P equipment.
Sample A consisted of ten periods each of which con-
tained a layer with InAs quantum dots with a nominal
thickness of 2.25 monolayers and an AlAs layer with a

(‡)

(b)

6 nm

InAs

AlAs

10 nm

InAs

AlAs

5 nm

12 nm

(c)

InAs

GaAs

10 nm

Fig. 3. Cross-sectional electron-microscope pictures of
structures with InAs quantum dots in AlAs and GaAs matri-
ces (samples A (a) and C (c), respectively) and AlAs quan-
tum dots in an InAs matrix (sample B (b)). The insets rep-
resent detailed views of the quantum dots obtained at high
resolution.
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thickness of 25 nm. Sample B, consisting of 50 periods
of AlAs quantum dots embedded into an InAs matrix,
was grown on a silicon-doped (NSi = 2 × 1018 cm–3)
InAs buffer layer of thickness 1.5 µm at a substrate
temperature of 420°C. Each period contained a layer
with AlAs quantum dots with a nominal thickness of
2.4 monolayers and a 12-nm-thick layer of InAs. Sam-
ple C consisted of 20 layers with InAs quantum dots
with a nominal thickness of 2.5 monolayers coated by
a 6-nm-thick GaAs layer.

The samples in which the matrix material was a
solid solution AlxGa1 – xAs consisted of five periods,
each of which contained an 8-nm-thick layer of
AlxGa1 − xAs and a layer with InAs quantum dots. The
content of aluminum was 0, 0.15, 0.25, 0.5, and 0.75. The
structures were coated by a 20-nm-thick layer of GaAs.

The growth process was controlled by the reflection
high-energy electron diffraction technique. According
to the diffraction data, in all the samples, the transition
from two-dimensional to three-dimensional growth
mode (the onset of the formation of quantum dots)
occurs after deposition of 1.9 monolayers of the quan-
tum-dot material. After the formation of quantum dots,
the first 8 nm of the AlAs layer was grown at the same
temperature as the quantum dots (500°C). Then, the
temperature was raised to 600°C and the remaining part
of the AlAs layer was deposited.

The Raman spectra were recorded at a temperature
of 80 K by a Dilor XY800 spectrometer. Ar+- and Kr+-
lasers with wavelengths of 514.5 and 647.1 nm were
used for the excitation. The spectra were measured in
the geometry of backward scattering from a plane sur-
face and from the cleaved edges of the samples oriented
in the (110) plane. The following scattering geometries
were used: z(xx) , z(yx) , y'(zx') , and y'(x'x') ,
where the axes x, y, z, x', and y' were parallel to the

[100], [010], [001], [1 0], and [110] directions, respec-
tively. In the experiments with the geometry of back-
ward scattering from a butt end, we used a microscope
that allowed us to focus a laser beam to a spot 1 µm in
diameter. The spectral resolution was 2 cm–1 through-
out the spectral range.

4. RESULTS AND DISCUSSION

To control the quality of the samples and to deter-
mine their structural parameters, we used high-resolu-
tion transmission electron microscopy. The cross sec-
tions of the samples shown in Fig. 3 indicate that InAs
quantum dots are lens-shaped (samples A and C) and
AlAs quantum dots are spheroidal (sample B). InAs
quantum dots have a base of about 10 nm and a height
of about 1.5 nm. According to the images obtained by
an electron microscope, the average size of AlAs quan-
tum dots is 4–5 nm at the base and 2–4 nm in height.

Figure 4 presents the Raman spectra of the struc-
tures A, B, and C measured in different scattering

z z y' y'

1
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geometries that allow one to observe localized TO, LO,
and/or interface phonons. According to the selection
rules for plane superlattices, only LO phonons manifest
themselves in the z(yx)  and y'(x'x')  scattering geom-
etries and only TO phonons, in the y'(zx')  geometry.
In the z(yx)  and z(xx)  scattering geometries, inter-
face phonons may appear in the resonance conditions.
The figure shows that these selection rules also hold for
the investigated structures with quantum dots.

For example, TO and LO phonons in the matrix
materials of the samples A, B, and C are observed in
allowed scattering geometries at the frequencies
359 and 402 cm–1 (AlAs), 216 and 235 cm–1 (InAs),
and 267 and 291 cm–1 (GaAs), respectively. The fre-
quencies of the observed TO and LO phonons are close
to the values of frequencies in bulk materials. Note that
the Raman spectra of all samples exhibit features corre-
sponding to the TO and LO phonons in the GaAs sub-
strate (267 and 291 cm–1).

Figure 4 shows that, at frequencies of 386, 228, and
277 cm–1, which lie approximately at the midpoint
between the frequencies of the TO and LO phonons, the
spectra exhibit features associated with the interface
phonons in AlAs, InAs, and GaAs matrices, respec-
tively. These features will be discussed below.

The frequencies of optical phonons localized in
quantum dots differ from the frequencies in bulk mate-
rials. For example, in samples A and C, the frequencies
of TO and LO phonons in InAs quantum dots are
shifted by 10–15 cm–1 to higher frequencies with
respect to the frequencies of bulk phonons in InAs due
to mechanical stresses in quantum dots. The lattice con-
stant of InAs (0.60583 nm) is greater than that of GaAs
(0.565325 nm) and AlAs (0.56622 nm); hence,
mechanical stresses in InAs quantum dots in AlAs and
GaAs matrices have the same sign: quantum dots expe-
rience contraction along the layers in which they are sit-
uated and expansion in the direction of growth of the
structure [13].

The signs of mechanical stresses in sample B are
reversed, which gives rise to a low-frequency shift (30–
40 cm–1) of the optical phonons localized in AlAs quan-
tum dots of sample C [13].

Just as in the case of interface phonons in a matrix,
the frequencies of interface phonons in quantum dots
lie between the frequencies of TO and LO phonons
localized in quantum dots. The frequency of an inter-
face phonon in InAs quantum dots in sample A can be
determined from the decomposition of the spectrum in
the frequency region of optical phonons in InAs into
two Lorentz curves that correspond to the lines of inter-
face and LO phonons, as is shown in Fig. 4 by dashed
lines, and is equal to 242 cm–1. The line of interface
phonons in AlAs quantum dots in sample B is observed
at a frequency of 348 cm–1, whereas sample C does not
exhibit features corresponding to the interface phonons
in InAs.

z y'
y'

z z
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Now, let us consider a system in which the matrix
material is a ternary solid solution AlxGa1 – xAs.

Figure 5 represents the experimental Raman spectra
of InAs/AlxGa1 – xAs structures with InAs quantum dots
for various values of x recorded in the z(xx)  and
z(xy)  scattering geometries in the spectral bands of
optical phonons in InAs, GaAs, and AlAs. According to
the selection rules for the Raman scattering,
InAs/AlxGa1 – xAs planar structures should exhibit LO
phonons in the z(xy)  scattering geometry and interface
phonons in the z(xx)  scattering geometry under reso-
nance conditions. Figure 5 shows that these selection
rules are also valid for structures with quantum dots.
The Raman spectra recorded in the z(xy)  geometry
predominantly exhibit LO phonons of InAs quantum
dots and GaAs-like and AlAs-like LO phonons of the
solid solution. In the z(xx)  geometry, one can observe
additional features associated with interface phonons in
the frequency range between TO and LO phonons in
GaAs and AlAs.

z
z

z
z

z

z

Fig. 4. Experimental Raman spectra of (a) InAs/AlAs,
(b) AlAs/InAs, and (c) InAs/GaAs quantum-dot structures.
Vertical bars over the graphs indicate the calculated fre-
quencies of interface modes (IF), and vertical arrows indi-
cate the features corresponding to TO and LO phonons in
InAs/AlAs. The excitation energy of a laser is equal to
2.41 eV (514.5 nm) (spectra (a) and (b)) and 1.91 eV
(647.1 nm) (spectrum (c)).
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In the frequency range corresponding to optical
phonons, InAs exhibits wideband features associated
with the contribution of both interface and LO phonons
in InAs quantum dots to the Raman scattering. The fre-
quencies of these features virtually do not depend on
the composition of the solid solution of the matrix. As
the concentration of aluminum increases, the intensity
of Raman scattering by the phonons of InAs quantum
dots decreases, which may be attributed to the decrease
in the energy of interband transitions in InAs quantum
dots from 1.9 to 1.1 eV (the excitation energy is equal
to 1.91 eV). As pointed out above, the vibrational spec-
trum of a AlGaAs matrix has a two-mode character. As
the concentration of aluminum decreases, the fre-
quency of an AlAs-like LO phonon decreases from
403 cm–1 (for x = 1) to 386 cm–1 (for x = 0.5). In the
z(xx)  geometry, this spectrum exhibits a feature that
corresponds to a line of interface phonons whose fre-
quencies decrease from 386 cm–1 (for x = 1) to 381 cm–1

(for x = 0.5). Because of the small LO–TO splitting of
AlAs-like phonons in AlGaAs with small values of x,

z

GaAsInAs

210 240 280 300 360
Frequency, cm–1

In
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400

1.00
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0.25

0.15

0

AlAs
x

Fig. 5. Experimental Raman spectra of an InAs/AlxGa1 – xAs
structure for different values of x. Dashed lines show the
spectra measured in the z(xx)  scattering geometry, and

solid lines indicate the spectra measured in the z(xy)  scat-
tering geometry. The excitation energy of a laser is equal to
1.91 eV (647.1 nm). The intensity scales of Raman scatter-
ing are different in the three parts of the spectrum.
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z
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the lines of interface phonons and LO phonons in the
Raman spectra are not resolved. In the range of fre-
quencies of optical phonons in GaAs, one can observe
an intense peak associated with an LO phonon in the
GaAs substrate (291 cm–1) and an asymmetric feature
associated with the contribution of interface and GaAs-
like LO phonons, whose frequency increases, as x
increases, from 273 cm–1 (for x = 0.75) to 285 cm–1 (for
x = 0.15). Fitting by Lorentz curves allows one to sep-
arate the contributions of interface and LO phonons.
The results of the fitting and the experimental results
obtained from the Raman spectra are shown in Fig. 6.

Selection rules for the Raman scattering do not
allow one to observe TO phonons in the z(xx)  and
z(yx)  geometries for crystals with the symmetry of
zinc blende. However, the feature at a frequency of
360 cm–1, which weakly depends on the concentration
of aluminum, is likely to correspond to an AlAs-like TO
phonon and manifests itself due to the violation of the
selection rules for structures with quantum dots.

The weak peak at a frequency of 402 cm–1 is
observed in the spectra of all the samples investigated
and corresponds to an LO phonon in thin spacer layers
of AlAs.

Figure 6 shows that the two-mode behavior of opti-
cal phonons in the AlGaAs matrix agrees with the
experimental data of [32] that were obtained for a bulk
solid solution of AlxGa1 – xAs. The frequencies of inter-
face phonons determined from the experiments are
indicated by crosses.

Within the model of a dielectric continuum, we have
calculated the frequencies of interface phonons in an

z
z

380

400
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280

~~

0 0.2 0.6 0.8
x

0.4

Frequency, cm–1

260

220

240

1.0

~~

AlAs
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InAs

Fig. 6. Frequencies of interface phonons as a function of the
composition of the AlxGa1 – xAs matrix. The experimental
values of AlAs- and GaAs-like optical (+) and interface (×)
phonons are obtained from the analysis of Raman spectra.
Solid lines correspond to the values of AlAs- and GaAs-like
phonons in bulk AlGaAs versus the concentration of Al
[14]. Calculated values of the frequencies of interface
phonons in the (1, 0) and (1, 1) modes are shown by the
symbols (d) and (s).
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InAs/AlxGa1 – xAs quantum-dot structure in the approx-
imation of spheroidal quantum dots with the parame-
ters close to the experimental values (Rp/Re = 1/2). The
form of the dielectric function of the AlxGa1 – xAs
matrix that was used in the calculation corresponds to
formula (15). The circles in Fig. 6 represent the calcu-
lated InAs-, GaAs-, and AlAs-like interface modes with
the quantum parameters l = 1 and m = 0, 1, because the
main contribution to the Raman scattering should be
made by modes with small quantum numbers [29]. One
can see that the frequencies of calculated modes are in
good agreement with the experimental data.

5. CONCLUSIONS

The Raman scattering of light by InAs/Al(Ga)As
and AlAs/InAs periodic structures with self-organized
quantum dots has been investigated. The Raman spec-
tra measured in different scattering geometries exhibit
features that correspond to optical TO and LO phonons
and interface phonons. The frequencies of TO and LO
phonons are displaced with respect to the correspond-
ing values in bulk materials in view of mechanical
stresses. The lines of Raman scattering by interface
phonons are observed under conditions close to the res-
onance conditions. The frequencies of interface
phonons lie in the spectral range between the frequen-
cies of TO and LO phonons. The experimental frequen-
cies of optical phonons have been used for calculating
the frequencies of interface phonons in structures with
quantum dots of different shapes in the approximation
of a dielectric continuum. The frequencies of interface
phonons obtained within this model depend on the
shape of the quantum dots. It has been shown that the
dielectric-continuum approximation is an adequate
model for calculating the frequencies of interface
phonons in InAs/AlxGa1 – xAs quantum-dot structures
with any value of x. In this case, it is assumed that the
shape of quantum dots is close to that observed in the
spectra obtained by high-resolution electron micros-
copy. Thus, it has been shown that the Raman spectros-
copy is sensitive to the shape of quantum dots.
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Abstract—A lattice model is used to derive a system of equations describing anomalous transport in the case
of low tracer concentration. In the adopted model, anomalous transport is due to nonequilibrium distribution of
tracer particles over sites in an inhomogeneous lattice. It is shown that a well-known time-fractional differential
equation can be derived from the lattice equations under certain additional assumptions. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

Anomalous transport properties are exhibited by
many physical systems [1–3]. Even though various the-
oretical approaches have been proposed to deal with
transport in these systems, no satisfactory solution has
been found to this day [4–7]. In the new approach pro-
posed in this paper, a macroscopic transport equation is
derived from a master equation without assuming local
equilibrium distributions of particles over sites of dif-
ferent types.

Systems of equations analogous to the one proposed
here were considered in [8–11]. However, since previ-
ous studies relied on a phenomenological approach, the
parameters of the equations have never been related to
microscopic quantities. Moreover, an important dis-
tinction of the system of equations proposed here is its
symmetry with respect to type of lattice sites, which
makes the system more amenable to analytical meth-
ods.

2. SYSTEM OF EQUATIONS

In this section, a lattice model is used to derive a sys-
tem of differential equations for the partial concentra-
tions of molecules occupying sites of several distinct
types. The derivation is based on the following assump-
tions: the medium is macroscopically homogeneous
and isotropic; there are a finite number of types of sites
randomly distributed in space; macroscopic transport is
due to thermally activated hopping of tracer particles
between nearest neighbors; the hopping rate can be rep-
resented as the product of two functions depending
only on the types of the sites occupied by the particle
before and after a jump, respectively. The last assump-
tion holds, for example, in the simple model of random
traps, as well as in the more complicated model taking
into account the varying height of the potential barrier
separating sites [12].
1063-7761/05/10103- $26.000562
In a lattice model, the tracer flux density across a
plane surface element can be written as

(1)

where S is the surface area. The summation in (1) is per-
formed over the pairs of sites that can be successively
occupied by a tracer particle before and after a jump
and can be connected by a straight line intersecting the
surface element. Since only low tracer concentrations
are considered, the hopping rate Wnm is independent of
the site occupation probability Pn.

By treating the probabilities corresponding to sites
of each type as differentiable functions, assuming that
particles can hop only to short lengths, and considering
a small surface element, the probabilities can be
expressed approximately as

(2)

where Pk is the occupation probability for the kth site of
ith type lying in the neighborhood of the surface ele-
ment, Pi is the occupation probability for a site of the ith
type located at the center of the surface element, and rok

is the radius vector from the center of the surface ele-
ment to the kth site.

When the surface element is sufficiently large, cor-
relation between the site locations involved in a jump
across the surface can be neglected, and (2) can be sub-
stituted into (1) to derive the following expression for
the flux vector:

(3)

q
1
S
--- WnmPm WmnPn–( ),

m

∑
n

∑=

Pk Pi rok ∇ Pi⋅ ,+≈

J FBiρi– Di∇ρ i+( ).
i 1=

N

∑–=
 © 2005 Pleiades Publishing, Inc.
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Here, N is the number of types of sites;

(4)

are the diffusivity and mobility associated with sites of
the ith type, respectively; hom and hnm are the projec-
tions of rom and rnm on the normal to the surface ele-
ment; ρi = Pi/Vi is the concentration of particles occu-
pying sites of the ith type; Vi is the average volume per
site of the ith type; hi is the largest hopping length for
particles occupying sites of the ith type; Ni is the num-
ber of sites of the ith type contained in a parallelepiped
with base S and height hi; and F is the force driving the
particles. When the force is weak, the probabilities Wnm

are assumed to change by small increments:

(5)

where the positive coefficient αnm depends on the
potential energy profile in the neighborhoods of the nth
and mth sites. 

In the case of equilibrium distribution of particles
over sites of different types, expression (3) reduces to
the standard expression for the flux vector. However,
essentially different results are obtained in the general
case. In particular, convective flux is not proportional to
the total particle concentration, and diffusive flux is not
parallel to the gradient of the total concentration. An
analogous phenomenological expression for the flux
vector was proposed in [10], but the summation was
performed over some loosely defined “diffusion paths”
rather than types of sites.

The expression for the flux vector can be used to
write the continuity equation as follows:

(6)

where

is the total particle concentration.

To obtain a closed system of equations, Eq. (6) must
be supplemented with equations describing the evolu-

Di

2hi

Ni

------- homWnm,
m i∈
∑

n

∑=

Bi

2hi

Ni

------- αnmhnmWnm

m i∈
∑

n

∑=

Wnm
F Wnm 1 αnm F rnm⋅( )–[ ] ,=

∂ρ r t,( )
∂t

------------------

=  Bi F ∇ρ i r t,( )⋅( )– Di∇
2ρi r t,( )+[ ] ,

i 1=

N

∑

ρ ρi

i 1=

N

∑=
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tion of partial concentrations. To derive the required
equations, consider the master equation

(7)

Suppose that the hopping rate can be represented as the
product of functions depending only on the type of site
occupied before and after a jump, respectively: Wnm =
UiVj, where i and j denote the types of the mth and nth
sites, respectively. Let αi be the relative number of sites
of the ith type in a macroscopic volume. Consider a cell
that is small in the macroscopic sense, but sufficiently
large in the sense that the lattice-site distribution inside
it is similar to that in the entire volume; i.e., the relative
number of sites of the ith type contained in the cell is αi.
The sum of Eqs. (7) for all sites of a particular type in
the cell divided by the cell volume is

(8)

The product αjUj characterizes the partitioning of
hopping particles between sites of different types.
When the sites are randomly distributed in space, this
distribution is independent of the type of site occupied
before a jump. Therefore, the second term in (8) can be
rewritten as a constant quantity independent of the site
type i times αiUi. This constant quantity can be found
by adding up Eqs. (8) and comparing the result with the
continuity equation. This leads to the equation

(9)

where

(10)

(11)

The parameter γi is the relative number of particles
jumping to sites of the ith type, and νi is the frequency
of jumps from sites of the ith type.

An analogous system of equations was derived
in [12], but the derivation presented therein is not phys-
ically correct. In particular, the meaning of the function
representing the transition probability remains unclear.

∂Pn

∂t
--------- WnmPm WmnPn–( ).

m

∑=

∂ρi

∂t
------- ρiVi α jU j

1
V
--- WnmPm,

m

∑
n i∈
∑+

j 1=

N

∑–=

i 1 2 … N ., , ,=

∂ρi r t,( )
∂t

-------------------- ν iρi r t,( )– γiG r t,( ),+=

i 1 2 … N ,, , ,=

G r t,( ) ν jρ j r t,( )
j 1=

N
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+ Bi F ∇ρ i r t,( )⋅( )– Di∇
2ρi r t,( )+{ } ,

i 1=

N

∑

γi

α iUi

α jU j

j 1=

N

∑
--------------------, ν i Vi α jU j.

j 1=

N
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Initially, it was defined as the rate of particle exchange
between macroscopically small volumes containing
large number of sites. Subsequently, it was found that
the same function characterizes the rate of relaxation to
an equilibrium distribution of particles over sites of dif-
ferent types in a macroscopically small volume. This
finding can be explained only by analyzing the mecha-
nism of transport on a microscopic level.

3. EINSTEIN RELATIONS

This section presents the derivation of the Einstein
relations between the mobilities and diffusivities corre-
sponding to particular types of sites. In a lattice model,
these relations can be established only by assuming that
the sites occupied before and after each jump are sepa-
rated by a narrow potential barrier located exactly in the
middle between the sites. Since this assumption is unre-
alistic for a disordered medium, the relations are
derived here without using any lattice model. As a first
step, the Green–Kubo formula is derived that relates
the average displacement of a tracer particle driven by
an external force to the root-mean-square particle
displacement in the absence of forcing. Since standard
assumptions are not valid in the present model, weaker
assumptions are used. First, only particle velocities are
characterized by an equilibrium distribution in unforced
motion. Second, the velocity of an individual particle is
not assumed to be a stationary random process.

Consider the spread of a cloud of particles initially
concentrated at the origin. The particle motion is
assumed to be governed by the laws of classical
mechanics. The particle velocity distribution is
assumed to quickly approach an equilibrium distribu-
tion. Then, the closed system consisting of the hopping
particles and the medium is characterized by the prod-
uct of a time-dependent distribution over generalized
coordinates with an equilibrium distribution over gen-
eralized momenta:

(12)

Suppose that the velocity distribution quickly
approaches a time-independent distribution close to the
equilibrium distribution. Then, the distribution function
for particles driven by a force can be written as

(13)

where δf is a small perturbation and the function f2(q, t)
may substantially differ from f1(q, t). Even though the
spatial distributions of tracer particles executing forced
and unforced motion are substantially different, the
corresponding distributions of particles over sites of
particular type are similar by virtue of the homogeneity
and isotropy of the medium and the random spatial dis-
tribution of lattice sites. Since the forcing is assumed to
be weak, it does not modify the hopping frequency and
the probabilities of hopping to sites of particular type,
merely displacing the particles in a certain direction.

f 0 q p t, ,( ) f 1 q t,( ) f e p( ).=

f q p t, ,( ) f 2 q t,( ) f e p( ) δf p( )+( ),=
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A standard method [13] is then applied to obtain the
following expression for the mean increment of an arbi-
trary dynamical variable B(q, p) characterizing the
forced motion:

(14)

Here, {…, …} denotes the Poisson bracket, dΓ is a vol-
ume element in the phase space, qt(q, p) and pt(q, p) are
the phase coordinates at the instant t for the unperturbed
system with the Hamiltonian H starting from the point
with phase coordinates q and p at the instant t', and ∆H
is the Hamiltonian of the perturbation applied to the
system.

If the x axis is parallel to the applied force, then the
perturbation Hamiltonian and dynamical variable can
be expressed as

(15)

where xi is the x coordinate of the ith tracer particle, F
is the magnitude of the applied force, and Vxi is the x
component of the velocity of the ith tracer particle.

Since the velocities of individual particles are
uncorrelated and fe(p) is a Maxwellian distribution
when the tracer concentration is low, expression (15)
can be substituted into (14) to obtain

(16)

where the angle brackets labeled by superscripts F and
0 denote the averages corresponding to forced and
unforced motion, respectively. The correlation function
in the integrand corresponds to the unforced motion
characterized by distribution function (12). Indeed, the
velocities Vx(t ') and Vx(t) are correlated via the phase
flow of the unperturbed Hamiltonian H. Moreover, Vx(t)
depends only on Vx(t ') and on the type of the site occu-
pied by the particle at the instant t', being independent
of the exact spatial location of the particle. Therefore,
since f1(q, t) and f2(q, t) describe similar distributions of
particles over sites of different types, the function
f2(q, t) in (14) can be replaced with f1(q, t).

The integral of (16) yields the Green–Kubo formula

(17)

which can be used to derive the Einstein relations

(18)

∆B〈 〉 t( ) ∆H f 2 q t',( ) f e p( ),{ }
0

t

∫∫=

× B qt q p,( ) pt q p,( ),( )dt'dΓ .

∆H Fxi, B
i

∑ V xi,
i

∑= =

V x〈 〉 F t( ) F
kT
------ V x t( )V x t'( )〈 〉 0 t'.d

0

t

∫=

∆x〈 〉 F F
6kT
--------- ∆r2〈 〉 0

,=

Bi

Di

kT
------, i 1 2 … N ., , ,= =
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This is done by calculating the averages 〈∆x〉F and
〈∆r2〉0, using Eqs. (9) and (10), and requiring that (17)
hold for arbitrary distributions of particles over sites of
different types.

4. EVOLUTION EQUATION 
FOR TRACER CONCENTRATION

For simplicity, we henceforth assume that the hop-
ping length is equal for tracer particles occupying sites
of any type. Then, the corresponding diffusivity is

(19)

where the constant c is on the order of the mean square
hopping length. This assumption is justified by the fact
that the variation of diffusivity is primarily determined
by the frequency νi.

After substituting (18) and (19) into Eqs. (9) and
(10), the system is reduced to a single equation in the
Laplace variable u:

(20)

where

is the Fokker–Planck operator and

(21)

with βi = /ρ0(r) denoting the relative number of
particles occupying sites of the ith type located at a
point r at t = 0.

To change from the Laplace variable back to physi-
cal time, the functions uψ/(1 – ψ) and (ϕ – ψ)/(1 – ψ)
are expanded in terms of simple fractions. The resulting
integrodifferential equation describes the evolution of
the total particle concentration as a function of r and t:

(22)

where –λi (i = 1, 2, …, N – 1) denotes the nonzero roots
of the equation ψ(u) = 1, and the coefficients ai and bi

are expressed in terms of the parameters of the func-
tions ψ(u) and ϕ(u).

Di cν i, i 1 2 … N ,, , ,= =

uρ r u,( ) ρ0 r( )–

=  
uψ

1 ψ–
-------------cOρ r u,( ) ϕ ψ–

1 ψ–
-------------cOρ0 r( ),+

O ∇ 2 F ∇⋅
kT

------------–=

ψ u( )
γiν i

ν i u+
-------------, ϕ u( )

i 1=

N

∑ βiν i

ν i u+
-------------,

i 1=

N

∑= =

ρi
0 r( )

∂ρ r t,( )
∂t

------------------ a0cOρ r t,( ) ai λ i t t'–( )–[ ]exp
i 1=

N 1–

∑
0

t

∫+=

× cOρ r t',( )dt' bi λ it–( )cOρ0 r( ),exp
i 1=

N 1–

∑+
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The solution to Eq. (22) can be represented as a
series expansion in the eigenfunctions Xn(r) of the oper-
ator cO:

(23)

The functions Tn(t) characterizing the decay of the cor-
responding eigenfunctions are linear combinations of
exponentials.

5. LATTICE WITH SITES OF TWO TYPES

In this section, a lattice with sites of two types is
considered as an example to demonstrate that Eq. (22)
can be used to describe anomalous transport. Anoma-
lous transport is interpreted here as a regime in which
either mean particle displacement under forcing or
mean square displacement in the absence of forcing is
a nonlinear function of time on a macroscopic scale. A
random trap model, with γi equal to αi is considered
here to simplify physical interpretation of results.

According to Eq. (22), if the lattice consists of sites
of only two types, then the mean square displacement
in the absence of forcing is

(24)

where

and D = c/ξ is the equilibrium value of diffusivity.
The parameters ξ and τ can be treated as mutually

independent and may vary from zero to infinity,
whereas b varies between ξ/τ2 and ξ/τ1.

It follows from (24) that the time derivative of the
mean square displacement is 6Db at t = 0 and
approaches 6D with increasing t. The physical meaning
of the corresponding time scale is τ can be elucidated
by analyzing system (9), (10) with zero spatial gradi-
ents. For a lattice with sites of only two types, the sys-
tem reduces to the equation

(25)

which demonstrates that τ is the time of relaxation to a
local equilibrium distribution.

The behavior of 〈r2〉0(t) depends on the initial distri-
bution of particles over sites of different types, i.e., on

ρ r t,( ) X0 r( ) Tn t( )Xn r( ).
n 1=

∞

∑+=

r2〈 〉 0
6D t b 1–( )τ 1 t

τ
--– 

 exp–+
 
 
 

,=

τ
τ1τ2

ξ
---------, a ξ

α1

τ1
-----

α2

τ2
-----+ 

  , b ξ
β1

τ1
-----

β2

τ2
-----+ 

  ,= = =

ξ α 1τ1 α2τ2, τ i+
1
ν i

----, i 1 2,,= = =

∂ρ1

∂t
--------

1
τ
--- ρ1

α1τ1ρ
0

ξ
----------------– 

  ,–=
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the parameter b. When b > 1, the particles are more
likely to be initially distributed over sites characterized
by the shorter waiting time. Since the mobility of the
particles that start moving from these sites is higher, the
initial time derivative of the mean square displacement
exceeds its equilibrium value. As the equilibrium parti-
cle distribution is approached, the time derivative of the
mean square displacement gradually decreases to its
equilibrium value. When b < 1, most particles initially
occupy sites characterized by the lower mobility.
Accordingly, the time derivative of mean square dis-
placement increases with time, approaching its equilib-
rium value. At times longer than τ, every curve (24) is
asymptotically close to the linear function with equilib-
rium slope.

According to (24), the mean square displacement at
t = τ is

Its numerical value may vary within a wide interval,
depending on τ and ξ. If τ and ξ are comparable in order
of magnitude, then the mean square displacement is a
microscopic quantity at t = τ, and its significant
increase begins at t @ τ, which corresponds to a linear
function 〈r2〉  of t; i.e., no deviation from classical diffu-
sion is observed. If τ is greater than ξ by orders of mag-
nitude, then the mean square displacement can reach a
macroscopic value at t = τ. In this case, 〈r2〉  is a nonlin-
ear function of t, i.e., anomalous diffusion is observed.

Thus, the model considered here demonstrates that
anomalous diffusion is due to an order-of-magnitude
difference between the time τ of relaxation to a local
equilibrium distribution of tracer particles over sites of
different types and the mean waiting time ξ. According
to the formulas relating τ and ξ to αi and τi, the condi-
tion τ @ ξ holds if both τ2 @ τ1 and α2 ! 1, i.e., if the
sites characterized by the longer mean waiting time are
relatively scarce.

6. FRACTIONAL DIFFERENTIAL EQUATION

It is well known [6, 14] that a time-fractional differ-
ential equation can be derived from Eq. (20) by setting
ϕ(u) equal to ψ(u) and defining ψ(u) as

(26)

where A > 0 and 0 < n < 1.

The condition ϕ(u) = ψ(u) is physically plausible if
all potential barriers have equal heights, i.e., if γi = αi.
Then, βi = αi; i.e., particles are randomly distributed
over sites of different types at t = 0.

6 b b 1–( ) 1–( )exp–[ ] cτ
ξ
-----.

ψ u( ) 1

1 Au( )n+
-----------------------,=
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Expression (26) can be used to determine the prob-
ability distribution of frequency by solving the integral
equation

(27)

Its solution found by using methods of complex analy-
sis is

(28)

It is a continuous function having a finite value at every
frequency between zero and infinity. Since this result is
inconsistent with the physics of the model considered
here, the fractional differential equation can be used
only as an approximation describing real processes
within a finite time interval. At longer times, this equa-
tion is inapplicable, because it yields a nonlinearly
increasing mean square displacement, whereas a linear
increase is predicted by Eq. (22).

It is generally assumed that

where ν0 is a constant factor and E is an activation
energy. In this case, (28) can be rewritten as a distribu-
tion over activation energies:

(29)

where

The mean activation energy  is related to the param-
eter A as follows:

(30)

Since physically meaningful distribution (29) must
be independent of temperature, the fractional differen-
tial equation cannot describe any process involving
temperature variation. If it is still used as an approxima-
tion, then temperature-dependent A and n can be
expressed in terms of the expected value and variance
corresponding to distribution (29): A is given by (30),
and

(31)

where σ2 is the variance of (29). The parameters  and
σ2 should be treated as temperature-independent con-
stants.

ν
u ν+
------------γ ν( ) νd

0

∞

∫ 1

1 Au( )n+
-----------------------.=

γ ν( ) nπ( )sin

πν Aν( )n Aν( ) n– 2 nπ( )cos+ +[ ]
-------------------------------------------------------------------------------.=

ν ν0
E

RT
-------– 

  ,exp=

γ E( ) nπ( )sin

πRT z( )n z( ) n– 2 nπ( )cos+ +[ ]
-------------------------------------------------------------------------,=

z
1
ν0
-----

ξE E–
RT

---------------.exp=

ξE

A
1
ν0
-----

ξE

RT
-------.exp=

n 1 3σ2

πRT( )2
------------------+

1/2–

,=

ξE
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7. CONCLUSIONS

Since the model of anomalous transport proposed in
this paper contains many parameters, it can describe a
diversity of processes. In this respect, it is more versa-
tile than fractional differential equations, which are
applicable only to a relatively narrow class of anoma-
lous transport processes. Since all of these parameters
characterize physical properties of the medium, they
can be used not only to fit experimental data into the
theoretical framework, but also to extract information
about the microscopic structure of the medium. Even
though practical determination of many parameters is a
difficult problem, its analysis is a necessity because
anomalous transport processes generally occur in
media with complex structure that cannot be character-
ized by just a few parameters.
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Abstract—It is shown that the effect of a time-correlated Gaussian random field of sufficiently high intensity
on the elasticity coefficient of a quantum oscillator manifests itself in the generation of thermal fluctuations with
a 1/ω spectrum in the oscillator. It is also shown that, in any physical system described by the equation of an
anharmonic oscillator, fluctuations with a 1/ω spectrum arise at an above-critical temperature. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

So-called 1/ω noise, or flicker noise, is a quite com-
mon phenomenon [1, 2]. It was discovered in 1925 in
electrical circuits [3]; however, its physical nature is
still a subject of lively discussions [4–8]. It is believed
that there exists a set of microscopic mechanisms of the
generation of this type of noise [9]; however, none of
these mechanisms is universally recognized. The most
common mathematical model of 1/ω noise is based on
the summation of the Lorentzians [7, 8]

(1)

which is equivalent to the assumption that there exists a
spectrum of Gaussian distributions with the weight
function g(τ) in the system. The left-hand side of
Eq. (1) represents a noise emf in the electric circuit.
The problem consists in that the required asymptotic
behavior of the weight function g(τ) ∝  τ–1 as τ  ∞ is
difficult to implement [1, 7]. Therefore, it is unlikely
that such a theory can describe a phenomenon that is so
widespread in nature.

There have been attempts to study the nature of 1/ω
noise by analyzing nonlinear differential equations by
numerical methods [10].

The analysis of a series of experiments (see, for
example, [11, 12]) provides evidence for the thermal
nature of the 1/ω noise. Below, we will show one of the
sources of this noise. Namely, we will show that such
noise arises in a quantum oscillator under the paramet-
ric effect of a time-correlated random field of suffi-
ciently high intensity. The proof of this does not require
any conjectures. It is based on the fundamental equa-
tions of dynamics and on the Gibbs distribution. The
assertion proved implies that the 1/ω noise may arise in

%2〈 〉 ω
g τ( )τ τd

1 τ2ω2+
--------------------

0

∞

∫ 1
ω
----,∝=
1063-7761/05/10103- $26.00 0568
any classical anharmonic oscillator placed in a thermo-
stat with sufficiently high temperature.

Consider a quantum harmonic oscillator that inter-
acts with a certain external field ; the system as a
whole is in a thermodynamic equilibrium state. Assume
that the Schrödinger equation is expressed as

where ω0 is the oscillator frequency, κ and m are certain

positive constants, the creation  and annihilation 
operators satisfy the Bose–Einstein permutation rela-

tions,  is the interaction Hamiltonian of the oscillator

with an external field , and  is the Hamiltonian of
a free external field.

Suppose for a while that  = 0. Introduce the coor-
dinate operator

(2)

in the Heisenberg representation such that

We will need the fluctuation–dissipation theorem [13];
as is known, the mathematical form of this theorem
does not depend on the specific form of the interaction
Hamiltonian. Therefore, it is convenient to obtain an

ϕ̂

i
∂Ψ
∂t

-------- Ĥψ, Ĥ Ĥ
0

H'ˆ ,+= =

Ĥ
0

"ω0 α̂†α̂ 1
2
---+ 

  , ω0
2 κ

m
----,= =

α̂† α̂

H'ˆ

ϕ̂ Ĥϕ

H'ˆ

x t( )
"ω0

2κ
--------- α̂ iω0t–( )exp α̂† iω0t( )+[ ]=˘

Ĥ
0 m

2
---- dx t( )

dt
------------ 

 
2 κ

2
---x2 t( ),+=

m
d2x t( )

dt2
--------------- κx t( )+ 0.=

˘
˘

˘ ˘
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explicit form of this theorem by an example of the free

(  = 0) field (2). Consider a correlator 〈 (t) (0)〉 ,
where the angular brackets denote the averaging of the
operators both over the quantum states and in the statis-
tical sense according to the Gibbs distribution.

One can easily verify by direct calculations that the
Fourier transform of the required correlator has the
form

(3)

where

and T is the temperature of the system. Let us introduce
the retarded Gr and advanced Ga Green functions,

(4)

Here, θ(t) is the Heaviside step function. The direct cal-
culation of the difference of the Fourier transforms
yields

(5)

For the Green functions Gr, a defined in terms of com-
mutators (4), the form of this relation does not depend
on the interaction Hamiltonian. Therefore, the first
expression in (5) is in fact an identity whose validity is
determined by the Gibbs distribution and by the fact
that the system in question and its interaction with the
environment can be described within the Hamiltonian
formalism. Restricting the analysis to the range of clas-
sical frequencies, "ω ! T, we have

(6)

A further objective of this paper is to find an explicit
expression for the Green function Gr, a in the presence

of the interaction Hamiltonian .

H'ˆ x̆ x̆

xx〈 〉 ω eiωt x t( )x 0( )〈 〉 td

∞–

∞

∫=

=  2π δ ω ω0–( )N ω0( ) δ ω ω0+( ) 1 N ω0( )+[ ]+{ }

×
"ω0

2κ
---------,

˘ ˘ ˘ ˘

N ω( ) α†α〈 〉 "ω
T

-------exp 1– 
  1–

,= =

1 N ω( )+ N ω–( ),–=

˘ ˘

G r a,( ) t( ) i
"
--- x t( ) x 0( ),[ ]〈 〉θ t±( ).±= ˘ ˘

xx〈 〉 ω i" 1 N ω( )+[ ] Gr ω( ) Ga ω( )–[ ] ,–=

Gr ω–( ) Gr* ω( ) Ga ω( ).= =

˘ ˘

xx〈 〉 ω
iT
ω
----- Gr ω( ) Ga ω( )–[ ] ,–=

xx〈 〉 ω xx〈 〉 ω– .=

˘ ˘

˘ ˘ ˘ ˘

H'ˆ
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Suppose that the full Hamiltonian of the system has
the form

where g is the parameter of interaction of the oscillator
with the external field  and f(t) is a certain auxiliary
regular classical function, which is assumed to be zero
at the end of calculations. In the Heisenberg represen-
tation, we have

(7)

where (t) = (t) for f = 0. The solution to Eq. (7) can
be represented as

(8)

where the operator Green function (t, t ') satisfies the
equation

(9)

After averaging in the aforementioned sense both sides
of solution (8) and juxtaposing the equality obtained
with the Kubo formula [14], we obtain

In this manner, we will calculate the function Gr that
enters formula (6). Now, let us average Eq. (9) over a
statistical ensemble of systems,

(10)

and determine 〈 〉  with the use of this equation. For
simplicity, we will restrict the analysis to the case of
classical frequencies ("ω ! T), which is quite admissi-
ble when investigating the domain of ω  0. To solve
Eq. (10), we introduce an auxiliary functional

where ρ(t) is a certain smooth classical function. Let us

multiply Eq. (9) by  on the right and sum the result

Ĥ f Ĥ
0

H'ˆ f t( ) x̂, H'ˆ–+
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2
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over an ensemble of systems. For the auxiliary function

,

we have

(11)

In the limit of classical frequencies, we may ignore the
commutation relations of fields. It is obvious that

for ρ = 0. Assuming that δGr(t, t '|ρ)/δρ(z) is an
unknown function, we obtain the following equation
for it by varying expression (11) with respect to ρ(z):

(12)

However, we have obtained an unknown second
variational derivative of Gr(t, t '|ρ). Integrating once
again Eq. (12), we can obtain a special equation for this
derivative. Thus, we obtain a nonclosed chain of equa-
tions. The later we break such a chain, the more accu-
rate the result. We will restrict ourselves to two equa-
tions (11) and (12). This means that more accurate solu-
tions obtained with regard to other equations that we
omitted will only improve the result. If we omit the
variational derivative in Eq. (11) and restrict ourselves
to a single equation, we obtain the Hartree–Fock
approximation. Our system of two equations is suffi-
cient for studying phase transitions. For example, it
allows one to describe the behavior of ferromagnets in
the vicinity of the Curie point [15]. When uncoupling
the equations, it is not required to assume that there is a
small parameter. Below, we will return once again to
the question of the applicability of the results obtained.

Using Eq. (11), we can solve Eq. (12) as follows:

(13)

Gr t t' ρ,( )
Gr t t',( )S〈 〉

S〈 〉
----------------------------=

˘ ˘

˘

m
d2Gr t t' ρ,( )

dt2
------------------------------ κGr t t' ρ,( ) ig

δGr t t' ρ,( )
δρ t( )

---------------------------+=

+ g
ϕ t( )S〈 〉

S〈 〉
--------------------Gr t t' ρ,( ) δ t t'–( ).=

˘ ˘

˘

Gr t t' ρ,( ) G t t'–( )〈 〉= ˘

m
d2

dt2
-------

δGr t t' ρ,( )
δρ z( )

--------------------------- κ
δGr t t' ρ,( )

δρ z( )
--------------------------- ig

δ2Gr t t' ρ,( )
δρ t( )δρ z( )
-----------------------------+ +

+ g
ϕ t( )〈 〉

S〈 〉
----------------

δGr t t' ρ,( )
δρ z( )

---------------------------

+ g i
ϕ t( )ϕ z( )S〈 〉

S〈 〉
-------------------------------– i

ϕ t( )S〈 〉 ϕ z( )S〈 〉
S〈 〉 2

-----------------------------------------+

˘

˘

˘ ˘

˘ ˘
˘˘ ˘ ˘˘

× Gr t t' ρ,( ) 0.=

δGr t t' ρ,( )
δρ z( )

--------------------------- ig Gr t t1 ρ,( )∫=

×
ϕ t1( )ϕ z( )S〈 〉

S〈 〉
---------------------------------

ϕ t1( )S〈 〉 ϕ z( )S〈 〉
S〈 〉 2

-------------------------------------------–

× Gr t1 t' ρ,( )dt1.

˘ ˘ ˘ ˘˘ ˘

˘ ˘

˘

JOURNAL OF EXPERIMENTAL A
If Eq. (12) did not contain variational derivatives, then
formula (13) would provide its exact solution. The sub-
stitution of (13) into (11) shows that one variational
derivative remains uncompensated. The approximate
equality (13) represents a so-called single-loop approx-
imation. Setting ρ = 0 and taking into account that
〈 (t)〉  = 〈 (t)〉  = 0, from formulas (11) and (13) we
obtain a closed integrodifferential equation for the
unknown function 〈Gr(t – t ')〉  that is equivalent to the
following integral equation:

(14)

where

(15)

Suppose that the correlator 〈 (t) (t ')〉  decays
exponentially with the constant γ as the quantity |t – t ' |
increases,

Then, for small γ, the Fourier transform

has a pronounced maximum at the point ω = 0; this fact
allows one to rewrite (15), after the Fourier transforma-
tion, as

(16)

It follows from the derivation of the system of equa-
tions (14), (15) that their validity does not depend on
the statistical properties of the fields considered. From
the system of equations (14), (16), we obtain the
required functions

(17)

ϕ̆ x̆

Gr t t'–( )〈 〉 Gr
0 t t'–( )=

+ Gr
0 t t1–( )Mr t1 t2–( ) Gr t2 t'–( )〈 〉 t1d t2,d∫

m
d2Gr

0 t t'–( )
dt2

--------------------------- κGr
0 t t'–( )+ δ t t'–( ),=

Mr t t'–( ) g2 Gr t t'–( )〈 〉 ϕ t t'–( )ϕ 0( )〈 〉 .= ˘ ˘

ϕ̆ ϕ̆

ϕ t( )ϕ t'( )〈 〉 ϕ 2〈 〉 γ t t'––( ),exp=

ϕ2〈 〉 ϕ 0( )ϕ 0( )〈 〉 .=

˘ ˘ ˘

˘ ˘ ˘

ϕϕ〈 〉 ω iω t t'–( )[ ] ϕ t( )ϕ t'( )〈 〉exp t t'–( )d

∞–

∞

∫=

=  i ϕ2〈 〉 1
ω iγ+
--------------- 1

ω iγ–
--------------– 

 

˘ ˘

˘

Mr ω( ) g2 Gr ω ω'–( ) ϕϕ〈 〉 ω'
ω'd

2π
--------∫=

≈ g2 ϕ2〈 〉 Gr ω( ).

˘ ˘

˘

Mr 0( ) κ
2
--- κ2

4
----- g2 ϕ2〈 〉– ,–=

Gr ω( ) 1

ω2m– κ Mr 0( )–+
----------------------------------------------, ω 0.=

˘
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The sign before the radical is chosen so that Mr(0)  0.
When

,

the operator Mr(0) is real and, according to the fluctua-
tion–dissipation theorem, no noise is generated in the
system at low frequencies. At the point κ = κc, a sui gen-
eris phase transition occurs, and the operator Mr(0)
acquires an imaginary part:

(18)

The sign before the radical is chosen so that the right-
hand side of the first equation in (6) is positive. Accord-
ing to the definition

, (19)

the sign of ImMr(0) is changed together with the sign of
the frequency ω. The substitution of relations (17) and
(18) into identity (6) shows that, at low frequencies, the
noise

(20)

with the characteristic singularity 1/ω is generated in
the system.

According to (19), the operator Mr(0) may have a
finite imaginary part as ω  0 only if the operator
Mr(t) has an asymptote Mr(t) ∝  t–1 for large times. For
the same reason, the Green function has a similar
asymptote for large times: Gr(t) ∝  t–1. At the same time,
it is clear that the correlator  cannot have the sin-
gularity 1/ω for arbitrarily small frequencies. This
would violate the finiteness of the integral

and would lead to the infinite correlator 〈 (0) (0)〉 .
The arising difficulty is associated with the use of the
approximate equality (16). Let us explain this fact in
greater detail. For finite values of γ, the correlator
〈 (t) (0)〉  decays exponentially as the argument
increases; therefore, according to (15), the quantity
ImMr(ω) tends to zero as ω  0, rather than remains
constant as was assumed above. Since the singularity
1/ω in the noise arises only for finite ImMr(0) and when
the constant γ is neglected, the 1/ω spectrum exists only
in the frequency interval

γ ! ω ! ω0. (21)

κ κ c> 4g2 ϕ2〈 〉= ˘

Mr 0( ) κ
2
--- i ω g2 ϕ2〈 〉 κ2

4
-----– .sgn+= ˘

ImMr ω( ) Mr t( ) ωtsin td

0

∞

∫=

xx〈 〉 ω
2T
ω
------ ω

g2 ϕ2〈 〉 κ2

4
-----–

g2 ϕ2〈 〉
--------------------------------sgn=˘ ˘

˘

˘

xx〈 〉 ω˘ ˘

xx〈 〉 ω ωd

0

∞

∫ ˘ ˘

x̆ x̆

ϕ̆ ϕ̆
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Let us return once again to the question of the accu-
racy of the single-loop approximation. To this end,
notice that the problem considered above admits an
exact solution (see the Appendix) for γ  0 under the
assumption that the field  is Gaussian. This solution
can be obtained by expanding the function Gr(ω) in a

series in the parameter g2〈 〉 /κ2 and (with regard to
the identity similar to the Ward [16] identity in electro-
dynamics) by summing all Feynman diagrams. In place
of Eq. (16) for the operator Mr(ω), we obtain

(22)

When

, (23)

this equation has the following asymptotic representa-
tion:

(24)

The presence of this asymptote, which indicates that
ImMr(0) is finite as ω  0 under inequality (23),
clearly proves that there exists 1/ω noise in the fre-
quency interval (21) even if the previous arguments
based on the single-loop approximation seem doubtful.
As regards the single-loop approximation, under ine-
quality (23), it yields

(25)

A juxtaposition of the asymptotic result (25)
obtained in the single-loop approximation and the
asymptotic behavior of the exact solution (24) shows
that, for large interaction constant g, the real part of the
operator Mr(ω) in the single-loop approximation (23)
coincides with the real part of the exact solution. For
correct literal combination, the imaginary part of the
operator Mr(0) in the single-loop approximation turns

out to be overstated by a factor of . Under the
reverse inequality

(26)

the single-loop approximation and the exact solution
yield identical results because they both lead to the first
term of perturbation theory. Thus, the single-loop
approximation has a sufficiently high accuracy so that,
at the first acquaintance with a system, one may judge

ϕ̆

ϕ2˘

Mr ω( ) g2 ϕ2〈 〉 Gr ω( ) 1
d

dκ
------Mr ω( )– .= ˘

κ2

g2 ϕ2〈 〉
---------------- ! 1

˘

Mr 0( ) κ
2
--- 1 κ2

6g2 ϕ2〈 〉
--------------------– 

 =

+ i ω g2 ϕ2〈 〉
2

---------------- 1 κ4

24g2 ϕ2〈 〉 2
-------------------------–

 
 
 

.sgn

˘

˘

˘

Mr 0( ) κ
2
--- i ω g2 ϕ2〈 〉 .sgn+= ˘

2

κ2

g2 ϕ2〈 〉
---------------- @ 1,

˘
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whether or not there is noise with a 1/ω spectrum in this
system. In the intermediate interval between inequali-
ties (23) and (24), the single-loop approximation gives
an interpolatory result and correctly predicts the exist-
ence of a phase transition; however, one should be cau-
tious when dealing with the quantitative description of
this phase transition.

The analysis carried out shows that one does not
need an external noise field (t) to generate 1/ω noise
in the oscillator. A harmonic oscillator placed in a ther-
mostat starts to fluctuate by itself. The amplitude of
these fluctuations increases with temperature. If one
makes it so that the stiffness coefficients of the oscilla-
tor depend on this amplitude, i.e., if one introduces
feedback, then, as shown above, 1/ω fluctuations arise
in the oscillator. Since one type of noise feedback has
already been described by Eq. (16) in determining
Mr(0), we can speak of the generation of 1/ω noise in
nonlinear systems due to a double feedback. Thus, we
can argue that 1/ω fluctuations may exist in any anhar-
monic oscillator, provided that the thermostat tempera-
ture is sufficiently high.

Indeed, consider the equation of an anharmonic
oscillator

(27)

Suppose that the problem has been solved and a solu-
tion to (27) is known. Denote this solution by (t). Let
us rewrite Eq. (27) as

Since the operator (t) is known, for the operator (t),
we obtain Eq. (7), which was studied above. If we
assume that the field  is Gaussian, then, based on the
system of equations (14), (22), we can find an exact
solution to the problem. If we do not make such an
assumption, then, we may restrict the analysis to the
single-loop approximation. As is shown above, for high
anharmonism, the accuracy of this approximation is
quite satisfactory and the results are independent of the
statistical properties of the system. According to
expression (15), we obtain

(28)

In Eq. (28), we will again use the operator  in place of

the operators  in order that the results thus obtained
correspond to the equation of an anharmonic oscilla-
tor (27). After the Fourier transformation, the operator
takes the form

(29)

ϕ̆

m
d2x f t( )

dt2
----------------- κ x f t( ) gx f

2 t( )+ + f t( ).=
˘

˘ ˘

ψ̆

m
d2x f t( )

dt2
----------------- κ x f t( ) gψ t( )x f t( )+ + f t( ).=

˘
˘ ˘˘

ψ̆ x̆

ψ̆

Mr t t'–( ) g2Gr t t'–( ) ψ t t'–( )ψ 0( )〈 〉 .= ˘ ˘

x̆

ψ̆

Mr ω( ) g2 Gr ω ω'–( ) xx〈 〉 ω'
ω'd

2π
--------.∫= ˘ ˘
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Just as above, we will restrict the analysis to the range of
classical frequencies "ω ! T. According to formulas (3)
and (20), we will seek the unknown function  in
the form

(30)

where B = T/2κ and A is an unknown constant. Taking
into account the singularity 1/|ω| in the last expression,
we can take the function Gr at the point ω' = 0 in
Eq. (29) outside the integral sign:

(31)

Here, according to (6), the integration interval is in fact
the half-line [0, ∞). However, if γ is small, then, for t =
0, the greater part of the area of the integrand is concen-
trated in the region of small frequencies due to the sin-
gularity 1/ω. Therefore, we can cut off the upper limit
of integration at a frequency of ω0, which is consistent
with condition (21). The lower limit of integration can-
not be set equal to zero. However, there are no parame-
ters in the model considered from which one could con-
struct the lower limit of integration with the dimension
of frequency. This means that, in the model considered,
the singularity 1/ω may occur at arbitrarily small fre-
quencies. A restriction from low frequencies arises only
due to the interaction of the oscillator with external
fields that guarantee, according to Eq. (21), the lower
limit of integration in (31) in real situations.

Equation (31) represents a system of coupled equa-
tions. The later we break this chain, the higher the accu-
racy of the result. Our concern is the operator Mr(0).
According to (31), we have

(32)

Now, we write out an equation for Mr(±ω0) and,
restricting ourselves to the diagonal approximation,
obtain

Since, according to (19), the function ImMr(ω) is odd,
the last two terms in (32) cancel out. This means that,
in the first approximation, one can neglect the effect of
noise in the resonance domain of frequencies on the

xx〈 〉 ω˘ ˘

xx〈 〉 ω
2πA
ω

----------θ ω0 ω–( )=

+ 2πB δ ω ω0–( ) δ ω ω0+( )+[ ] ,

˘ ˘

Mr ω( ) g2Gr ω( )=

× 2A
ω

------- ωd

γ

ω0

∫ g2B

m ω ω0–( )2– κ Mr ω ω0–( )–+
----------------------------------------------------------------------------+

+
g2B

m ω ω0+( )2– κ Mr ω ω0+( )–+
-----------------------------------------------------------------------------.

Mr 0( )
2g2A

ω0

γ
------ln

κ Mr 0( )–
------------------------- g2B

Mr ω0( )
------------------–

g2B
Mr ω0–( )
---------------------.–=

Mr
2 ω0±( ) 2g2A

ω0

γ
------.ln–=
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formation of 1/ω noise in the oscillator. Now, Eq. (32)
can easily be solved. For

we obtain

(33)

The matching equation for finding the unknown A takes
the form

This equation is rewritten in dimensionless quantities
as

(34)

where

Equation (34) has a solution only when the parameter ζ
is greater than a certain critical value ζc, which deter-
mines the critical temperature Tc. The curves z4 and
ζ2(z – 1/4) osculate at the critical point. Therefore, the
derivatives of these curves coincide at this point; this
allows one to determine the quantities

When T > Tc, Eq. (34) has two solutions. The existence
of one of them is certain because it falls into a domain
where the single-loop approximation holds. The other
solution falls into the interpolation domain and is a sub-
ject for further analysis. It is reasonable to assume that
the single-loop approximation correctly points to the
existence of this solution. As a result, instead of (33),
we have

Thus, when reaching a certain threshold tempera-
ture Tc, 1/ω noise is generated in any anharmonic oscil-
lator. We assume that the proposed mechanism of the

2g2A
ω0

γ
------ln

κ2

4
----->

xx〈 〉 ω
T
ω
---- ω

2g2A ω0/γ( )ln κ2

4
-----–

g2A ω0/γ( )ln
--------------------------------------------------.sgn=˘ ˘

2 xx〈 〉 ω
ωd

2π
-------

γ

ω0

∫ 2A
ω0

γ
------ln 

 
2

=

=  
2T

πg2
-------- 2g2A

ω0

γ
------ln κ2

4
-----–

ω0

γ
------.ln

˘ ˘

z2 ζ z
1
4
---– ,=

ζ 2g2T

πκ3
------------

ω0

γ
------, zln

2g2A

κ2
------------

ω0

γ
------.ln= =

ζ c
2

27
----------, zc

1
3
---, Tc

πκ3

g2 27
---------------

ω0

γ
------ln 

 
1–

.= = =

xx〈 〉 ω z
πκ2

g2ω
---------

ω0

γ
------ln 

 
1–

.=˘ ˘
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onset of thermal 1/ω noise quite adequately describes
the origin of such noise in the spectrum of phonons in
quartz, which was experimentally observed in [12] but
has not yet been explained theoretically.

APPENDIX

Let us derive Eq. (22). If the function (t) describes
a Gaussian random field, Eq. (9) can be solved in the
following way. Rewrite this equation in the integral
form

where

and solve it by an iterative method. We average the aris-
ing series over an ensemble of systems and, using the
properties of the Gaussian distribution, represent the
higher order correlators of the field  in terms of bilin-
ear combinations of these operators. The arising Feyn-
man series is easily summed by the Dyson method. The
summation yields

where

(A.1)

Here, Γ(t1, t2, t ') is a vertex function. Taking into
account the deltalike behavior of the correlator ,
we can rewrite the operator (A.1) after the Fourier
transformation as

(A.2)

If we apply the approximation

we arrive at the equations of the single-loop approxi-
mation.

Structurally, the series representing the propagator

〈 (ω)〉  is similar to the Feynman series for the Green

ϕ̆

Gr t t',( ) Gr
0 t t'–( ) g Gr

0 t t1–( )ϕ t1( )Gr t1 t',( ) t1,d

0

∞

∫–=˘ ˘

m
d2Gr

0 t t'–( )
dt2

--------------------------- κGr
0 t t'–( )+ δ t t'–( ),=

ϕ̆

Gr t t'–( )〈 〉 Gr
0 t t'–( )=

+ Gr
0 t t1–( )Mr t1 t2,( ) Gr t2 t'–( )〈 〉 t1 t2,dd∫

Mr t t',( ) g Gr t t1–( ) ϕ t1 t2–( )ϕ 0( )〈 〉∫=

× Γ t1 t2 t', ,( )dt1 t2.d

˘ ˘

ϕϕ〈 〉 ω˘ ˘

Mr ω ω',( ) g ϕ2〈 〉=

× ω ω1–( )Gr ω1( )Γ ω1 0 ω', ,( )d ω1.d∫
˘

Γ ω1 0 ω', ,( ) 2πδ ω1 ω'–( ),=

Gr
˘
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function in quantum electrodynamics. Reproducing the
well-known arguments of [17], we obtain

(A.3)

The accuracy of this relation is determined by the accu-
racy of the Ward identity [16]. Introduce the notation

and substitute formula (A.3) into (A.2). For the opera-
tor Mr(ω) of interest, we obtain Eq. (22). This equation
can be rewritten as
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