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Abstract—The process of four-wave mixing in an artificial heterogeneous nonlinear medium—a liquid sus-
pension of transparent dielectric microspheres—is considered. The dynamics of the concentration response to
gradient forces that act on microspheres in the interference field of interacting waves are investigated on the
basis of the Smolukhovskii equation. Kinetic equations for the amplitudes of light-induced concentration grat-
ings that take part in the four-wave mixing are obtained with the use of the Fourier series expansion of the dis-
tribution function of microspheres. The ratios of the microsphere radius to the grating periods are obtained
under which the resultant gradient force vanishes and, hence, a suspension of dielectric microspheres does not
exhibit nonlinear properties irrespective of the intensities of the interacting waves. The kinetics of the process
of four-wave mixing is investigated under efficient energy exchange between reference, signal, and reversed
waves. It isshown that aliquid suspension of transparent dielectric spheresis a highly effective wideband non-
linear medium for reversing the wave front of low-intensity radiation of continuous-wave lasers. © 2005 Ple-

iades Publishing, Inc.

1. INTRODUCTION

In this paper, we devel op atheory of four-wave mix-
ing in aliquid suspension of transparent microspheres
(a heterogeneous medium) whose nonlinearity is asso-
ciated with the variation of the concentration of micro-
spheres under the action of gradient forces in the elec-
tromagnetic field of the interacting waves [1, 2]. It is
well known [3] that, in a liquid suspension of micro-
spheres, the gradient forces arising in the interference
field of laser radiation draw microspheres with greater
refractive index n, > n (where ny and n are the refrac-
tive indices of the microspheres and the liquid, respec-
tively) into the region of maximal intensity (to the anti-
nodes of the interference field). The increasing concen-
tration of microspheres in the region with higher
intensity of radiation leads to an increase in the refrac-
tive index of the suspension and to the corresponding
decrease in the refractive index in the region of lower
intensity (at the nodes of the interference field). In the
opposite case, when n, < n, the gradient forces draw
microspheres into the region with lower intensity, thus
increasing the refractive index of the suspension in the
region with higher intensity of radiation. Therefore,
irrespective of the ratio m = ny/n, aliquid suspension
of trangparent microspheres—an artificial heterogeneous
medium—nbehaves as a nonlinear self-focusing medium
with apositive optical Kerr coefficient n, > 0[3]. For the
first time, a possible application of such heterogeneous
structures as a nonlinear optical material was pointed
outin[4].

The concentration nonlinearity of a heterogeneous
medium associated with the spatial modulation of rela
tively large particles (microspheres) in aviscous liquid
is characterized by much greater relaxation times
compared with the nonlinearity of ordinary “atomic”
media[5]. Sincethe size of microspheresisrather large
(on the order of afew micrometers), their spatial mod-
ulation by gradient forces givesriseto abnormally large
nonlinear coefficients. In [3], four-wave mixing exper-
iments were carried out to determine the optical Kerr
coefficient n, in a water suspension of latex micro-
spheres of radius a= 0.117 um with the use of argon
laser radiation beams (A = 5145 A) with a power of
about 100 mW. The optical Kerr coefficient was mea-
sured to be n, = 3.6 x 10 cm?MW for the concentra-
tion of microspheres N, = 6.5 x 10'° cm3, which turned
out to be greater than the relevant coefficient in CS, by

afactor of 10°. The relaxation times of the concentra-
tion gratings of microspheres for a convergence angle
of 6.4° between copropagating beamswere greater than
100 ms. Dueto the high values of the optical Kerr coef-
ficient n,, a liquid suspension of dielectric micro-
spheres can be used as a highly effective wideband non-
linear medium for alow-intensity laser impulse of large
duration.

In [6], a theory of four-wave mixing in liquid sus-
pensions of small-size transparent microspheres was
developed in a weak-field limit, when the saturation
phenomena are neglected (the diffusion limit). In the
diffusion limit, the gradient forces modulate the con-
centration of microspheres and produce two orthogonal
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Fig. 1. Geometry of four-wave mixing: 26 is the conver-
gence angle of waves, and L is the length of the cell with a
suspension.

concentration gratings; coherent scattering of radiation
by these gratings leads to the formation of a reversed
wave and the amplification of the test wave. In spite of
the fact that only a small number of microspheres are
involved in the four-wave mixing, the reflection coeffi-
cient of the reversed wave may reach significant values
(n > 1). A factor that substantially restricts the applica-
tion of the results of the theory developed in [6] is the
approximation of small microspheres; in this approxi-
mation, theintensity of effective radiation inside micro-
spheres is assumed to be constant irrespective of the
position of the microspheres on the interference pattern
of the field. In this case, the steady-state amplitudes of
the gratings do not depend on the convergence angle of
the interacting waves, and the coefficient of parametric
coupling between these waves is proportional to the
sguared volume of a microsphere, i.e., to avalue of a°.
In particular, we will show below that the theory of
four-wave mixing developed in the approximation
of constant intensity of radiation inside the micro-
spheres [6] is valid in a very narrow interval of the
microsphere radii, gives a considerably overstated
value of the reflection coefficient n of the reversed
wave in the region of 2ka = 1 (k is the wavenumber),
and does not predict the oscillating behavior of the
functionn =n(a). Inthis paper, we devel op afour-wave
mixing theory that is free of these constraints, the
results obtained here include the results of [6] as a par-
ticular case.

The theory developed below is based on a simulta-
neous system of truncated wave equations and the two-
dimensional Smolukhovskii egquation for the concen-
tration of microspheres; a solution to the latter equation
is represented as a Fourier series with time-dependent
amplitudes of multiply periodic concentration gratings
induced by the interacting waves. The gradient forces
that arise in the interference field of co- and counter-
propagating waves are cal cul ated in the Rayleigh—-Gans
approximation. The amplitudes of the gradient forces,
which are determined by the overlap integral of a
microsphere and a periodically modulated intensity of
the effective radiation that takes into account the non-
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uniform distribution of this radiation inside a micro-
sphere, are obtained in the explicit form in spherical
coordinates. The theory predicts the suppression of
four-wave mixing due to the vanishing of the resultant
components of gradient forces for certain dimensions
of microspheres and the convergence angles of the
interacting waves. We investigate the dynamics of the
formation and relaxation of concentration gratings that
are induced by the interacting light waves. We analyze
the steady-state regime of four-wave mixing in the dif-
fusion limit and determine conditions under which a
parametric generation of a pair of mutually conjugate
waves occurswith regard to the radiation loss dueto the
Rayleigh scattering by microspheres. We discuss the
applicability scope of the results of [6] and the charac-
teristic features of four-wave mixing in the diffusion
limit, which are attributed to the nonuniformity of the
effective radiation inside the microspheres. We present
the results of the numerical simulation of the four-wave
mixing process without any constraints imposed on the
amplitudes of the interacting waves.

2. BASIC EQUATIONS

We will consider the process of four-wave mixing in
aliquid suspension of transparent microspheres in the
Rayleigh—Gans approximation [7]:

Im—1 <1 and 4majm—1] < A, (1)

where A is the radiation wavelength. Using inequali-
ties (1), we can neglect the diffraction of radiation by
microspheres [7], assuming that the effective field is
specified; i.e., we can apply the so-called electrostatic
approximation [8].

Let us represent the effective electromagnetic field
as a sum of linearly polarized plane waves of fre-
quency w:

E = %Z E,(z t)exp[=i(wt—k [F)] +cc., ()

=1

where E,(z, t) are the wave amplitudes and k; are the
wavevectors (see Fig. 1). We will assume that the inter-
acting waves are polarized in the direction perpendicu-
lar to the plane zx.

During the four-wave mixing, the microspheres are
inthefield of two pairs of counterpropagating waves of
comparable intensities. Therefore, one can neglect
small radiative forces of light pressure in the theory in
guestion [8, 9]. In this case, a key contribution to the
light-induced formation of a concentration response is
made by gradient forces, whose amplitude is given
by [10]

Fy = O(OJ‘D|I_E|2dV, A3)
\Y
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where

_ 3 om—-1
= =n
41t r—n2+2

Og

(4)

is the specific polarizability of a microsphere,

B = 2{1E)” + [E:ES exp(2i (kz+ kX))

+ E3E; exp(2i(k,z— kX))

()
+(E,EZ + E; Eg)exp(2ik,2) + (E,E5 + ESE,)

x exp(2ikyx) +c.c.]}

isthe time-averaged intensity of the effective radiation,
|Eol2= |4: .U, V= (4rv3)a®isthe volume of amicro-
sphere, k, = kcos and k, = ksin8 are the corresponding
projections of the wavevector, k = (w/c)h, and U, = |E, ]
In fact, the integral in (3) is the overlap integral of a

microsphere and the nonuniform intensity of the effec-
tive radiation.

We will assume that the products of complex conju-
gate amplitudes of the interacting waves are slowly
varying functions of the longitudinal coordinate:

d|EE} .

—|-5'-Z-'—| < k|EE}|. (6)
In this approximation, with regard to (5), theintegra in
formula (3) can be calculated in spherical coordinates
exactly [11]. After the integration in (3), we obtain the
following expression for the gradient force:

Fo = jF+kF,, (7
wherej and k are unit vectors;
Fe = Feoexp[2i(k,z—kX)] ®
+ Fexpl[2i(k,z+ k,X)] + F,,exp(2ik.K) + c.c.

are the components of the gradient-force vector F, and
K ={X, Z} . The amplitudes of the harmonics of the com-
ponents F, are defined by

FXO = _iaOkXE3EZVO = _(kx/kZ)FZO’

Fa = i00k,E B35V = (Kk)F o, ©)
Fro = 100k (ELE3 + ESE)V,,
F, = idok,(EE} + EZ E3)V,,
where
V, = (alg)¥23,,(2malN,),
0 = (a0g) 3y (2maly) 1)

V, = (an) P 3g(2maln,),
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J30(&) is the Bessel cylindrical function, and Ay = 17k
and N\, = 1k, are the periods of the interference pat-
terns of the corresponding pairs of waves. The constant
coefficients V, and V, in (9) result from the integration
of (3) and take into account the nonuniformity of radi-
ation inside the microspheres. One can easily show that
Vo=V, =Vfor& < 1. Itisobviousthat |F,/F,| O tanB;
hence, in the region of small angles 6 < 172, the domi-
nant role in the formation of the concentration response
is played by the longitudinal (zth) component of the
gradient force. It followsfrom (9) that, for certain ratios
of the microsphere radius to the periods A, of the inter-
ference pattern of the field, namely, for 2rma/A, = §;
(where¢; aretheroots of the Bessel cylindrical function
J30(&), 1 =1, 2, ...), the corresponding component of
the gradient force vanishes irrespective of the positions
of the microspheres. The so-called effect of “zero
force” isattributed to the fact that the oppositely directed
components of this field that act on the corresponding
elements of amicrosphere are equal. This effect wasthe-
oretically predicted independently in [8, 11]. It follows
from (9) that, for certain values of the parameters of the
system (for example, for 2k.a = &, and 2k,a = &), the
components F,, of the gradient forces vanish (i.e.,
V, = 0) irrespective of theintensity of the effectiveradi-
ation. Using the values of the first two roots of the
Bessdl function Jy,5(&) [12], one can show that the con-
dition V, = O isfulfilled for a/A = 0.709 and

tand = &,/&, = 0.58,

i.e., 8=230° Itisobviousthat this condition is also sat-

isfied for 8 = 45° and ./2ka = &;. In this case, the min-
imal value of theratio a/A correspondsto &, =&, andis
equal to a/A = 0.506. By virtue of inequalities (1), the
conditions abtained above can be satisfied in suspen-
sions with small values of the relative refractive index
|m —1|< 102

Thus, due to the zero force effect, the process of
four-wave mixing, to which the main contribution is
made by the components F,,, can be nearly completely
suppressed for appropriate values of the microsphere
sizes and the convergence angle of the interacting
waves. Note also that, depending on the radii of the
microspheres, the amplitudes of gradient forces (9) are
alternating functions. Therefore, the microspheres of
appropriate sizes may be drawn either to the antinodes
(when J;5(€) > 0) or to the nodes (when J;,(§) < 0) of
the interference pattern of the field. This motion of
microspheres can physically be explained by the ten-
dency to cover a maximal number of antinodes of the
interference pattern of the field [8, 11].

To determine the concentration response of micro-
spheres induced by an electromagnetic field (see (1)),
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we apply the two-dimensional Smolukhovskii equation1
(see, for example, [13])

oN

— = DAN
ot )
b[N Fr, 0F, B: GND} (
Dax 9z0 Xax zZoz0 ]

where N is the concentration of microspheres (cm3),
D = kgT/61va is the diffusion coefficient (cm?/s), kg is
the Boltzmann constant, T is temperature (K), v is the
viscosity of the liquid, b = D/kgT is the mobility of
microspheres, and A = 8%/022 + 0%/0x2. Equation (11) is
valid in the domain t > t* provided that the gradient
force F isaslowly varying function on the time t* and
space | * scales defined by the relations [13, 14]

t = bmy, I* = /%It*,
0

where m, isthe mass of amicrosphere. In particular, for
awater suspension of latex microspheres of radius a =
1.17 x 105 cm with density 1 g/cm3, which wasused in
the experiment in [3], we havet* = 3x 10°sand |* =
7 x 107 cm at room temperature.

(12)

It is convenient to represent the solution to Eqg. (11)
as a harmonic series

N(x, z,t)

00

g

m,n=—o

. (13)
N, (t) exp[2i(mk,z + nk,X)],

where Nyo = INL] , = Ny = const is the initial concentra-
tion of microspheres, LI..[] , denotes spatial averaging,
and Ny, = N_,_,. Substituting solution (13) into
Eqg. (11) and taking into account expression (8), we
obtain the following system of kinetic equationsfor the
amplitudes N,,(t) of concentration harmonics:

P + W, DN
Cht

mn — amnNm—l,n+1

—ar N i q+b N,
. mn'¥m+1,n-1 mn'¥m-1,n-1 (14)

*
- mnNm+1,n+1+ c:nNm,n—l_Cn Nm,n+1

+ dmNm—l,n_daN

m+1,n

1This equation is known as the Planck—Nernst equation in
English-language literature [6].
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where
W,,,, = 4D[(mk,)* + (nk,)7,
A, = 20,b(MK: —nk3)ELEX V,,

B = 20,b(MK: + nkZ) E,E3 V,, (15)

200bnk;(E,E + ESE4)V,,

Cmn
d., = 20,bmK’(E.EX + EXEJ)V,.

When the radii of the microspheres and the conver-
gence angles of the interacting waves are small, i.e.,
a << \;and 6 < 172, we can neglect the component F,
of the gradient force; then, the system of equations (14)
isreduced to

ng’w ON,,, = 20,bVMK[E;EXN

—E3ENp 101t EES NG 10y
—ETEoNpsyne1 t (E1E3 + ESE3) Ny g

m-1,n+1

(16)

—(ETE;+ E3E3)Npy 10l

The nonlinear polarization of a suspension of micro-
spheres induced by the variation of their concentration
under gradient forcesis defined by [6]

P = %(XOVN(X, Z 1)

4 a7
X z Ei(z t)exp[—i(wt—k [)] +c.c.
=1
Substituting formulas (2) and (17) into the wave equa-

tion, we obtain the following system of truncated equa-
tions for the amplitudes of the interacting waves:

oE, , 108,
dz v ot
= IY(Es + XuE2 + X1 Es + X10E4) —PE1,
0E, 10E,
B P TS
= 1Y(E; + X11E1 + X10Es + Xo1E4) —PE2,
0E; , 10E, (18)
S TS
= 1Y(E3 + X01E1 + X10E2 + X1, 1E4) —PEs,
0E, 10E,
—00s05 Ut
= iY(E4 + X10E1 + X0 B2 + X1 1E3) —pE,,
No. 3 2005
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where v = ¢/n isthe velocity of light in the suspension,

Nmn
No

k
Y = znn_zaOVNOv Xmn =

In Egs. (18), we took into account the equation N7, =
N_, ., and phenomenologically introduced the ampli-
tude coefficient of loss[6, 14]

2 2
p = 8gﬂ:NokélEn]—_:I.D 36,

U+ H

due to the Rayleigh scattering by microspheres. Equa-
tions (18) imply that only two pairs of gratingsfromthe
spectrum of excited concentration gratings (13) take
part in the process of four-wave mixing: one pair of
orthogonal gratings,

(19)

N, O cos(2k.K), K = X, z,
leads to the parametric coupling of waves and the
energy exchange among them, and the other pair,

N, O cos[2(k,z + k,X)],

leadsto self-action phenomena. Due to the spatial aver-
aging of the wave equations, other concentration grat-
ings do not make a direct contribution to four-wave
mixing. The indirect role of these gratings reduces to
the influence on the values of the amplitudes of the
main gratings N, and N.,.

The simultaneous system of wave equations (18)
and kinetic equations (14) subject to the boundary con-
ditions

Ei(0,t) = Ep(t), Eu(L,t) = Ex(t),

(20)
Es(0,t) = Eg(t), Eu(L,t) =0
and the initial conditions
Npn(t =—0) = 0, m#0, n#0,
(21)

Noo(t =—2) = N

describes the process of four-wave mixing of waves of
arbitrary intensities on the concentration nonlinearity
due to the action of gradient forces on transparent
microspheres.

3. KINETICS OF A CONCENTRATION
GRATING OF MICROSPHERES

Based on Egs. (14), we consider the kinetics of a
concentration grating of microspheres induced by the
interference field of two waves. Assume, for definite-
ness, that E,=E,=0. Then, a,,=b,,=d,=0and ¢, =
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20,bnk V,E, E% ; hence, the amplitudes N,,,, of the con-
centration gratings and the relaxation constants W,
depend only on theindex n (N, =N, and W,,,=W,,). In
this case, Egs. (14) are significantly simplified and
reduced to

oN,
at

+WnNn = r"(ANn—l_A* Nn+1)l (22)
where W, = 4Dn2k’ and A = 2a,bk: V,E, E% .

For relatively weak waves, when higher order grat-
ings (n > 2) can be neglected, Egs. (22) yield

aa—'\t'1+er = (ANg—A*N,),
N (23)
—a-i—2+4rN2 = 2ANy,

wherel = 4DK..

For rectangular pulses (E; (t) = E, = const for t = 0,
I =1, 3), asolution to system of equations (23) can be
obtained in the explicit form (see Appendix A). It fol-
lows from solution (A.3) that, due to the excitation of
the second-order grating N,, the amplitude of the main
grating N, contains two components whose relaxation
times are lessthant = 1/I'. The greater relaxation time
of the main grating N, is estimated by the relation

oLy LrpobVyy
) 4Dk§[ 60 D [ UlU?‘]’
which is vaid for U;U; < 6D?(agbV,)2 Thus, in the
approximation used, the relaxation time 1, of the main
grating decreases linearly as the product of the intensi-
ties of the exciting waves increases. It follows from
Egs. (23) that the relaxation times T, of the concentra-
tion gratings are determined by the diffusion coefficient
and the periods of the gratings:

T, =1/nT, n=12
In particular, for the parameter values D = 1.88 x
108 cm?sand A, = 3.5 x 10 cm™, which correspond to

the experiment of [3], we have T, = 165 ms; thisresult

agrees well with the relaxation time T, = 140 £ 40 ms
of the main grating N, measured in [3].

Figure 2 shows the time dependence of the normal-
ized amplitude of the main grating, calculated from
Egs. (22), for various values of the intensities of the
effective radiation. Figure 3 shows the relaxation time
1, of the main grating as a function of the radiation
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t,s
Fig. 2. Kinetics of the amplitude n; = N;/Ng of the main
grating for & = 2ka = 3.8 and 6 = 3.2° for the parameter val-
ues [&qf2 = 200V, /U, U, lkgT =02 x 1077 (1), 04 x 107 (2),
and 0.6 x 107 (3).

intensity | = (ch/8mU, and the convergence angle 6 of
the interacting waves. The analysis shows that, for the
maximal value of theintensity of theinteracting waves,
it suffices to restrict the consideration to gratings with
n< 8in Egs. (22).

4. THEORY OF FOUR-WAVE MIXING
IN THE DIFFUSION LIMIT

The diffusion approximation [6]
N(z x,t) = Ny+ N(z x,t),

IN[ <N, (25)

imposes aconstraint on theintensities of theinteracting
waves and corresponds to the situation when the terms

Tl’ S
0.2 T T

(@)
9=32°
0.1 -

I, 10* W/cm?

0.04+

AFANAS’EV et al.

proportional to the amplitudes of the concentration
gratings N, (m, n # 0) on the right-hand sides of
Eqgs. (14) are neglected. Inthiscase, Egs. (14) imply the
following relations for the components ¥, that deter-
mine the process of four-wave mixing:

D+ 4DKExo, = 20,V,bKE(E,ES + EXE,),

Cht

%f +4DKEx0 = 200V, bKC(E,E} + E3 Ey),

5 (26)
% +4DKxy = 200V obK’E,E},
g +4DKEX, 4 = 200Vobk’ESE].
In the diffusion limit, the relaxation times
1 (N 211)° 1 (A J21)°
To = S = OD and T, = 3= 5
4Dk 4Dk

of the concentration gratings do not depend on theradi-
ation intensity and are determined by the diffusion
coefficients and the periods of the interference pattern
formed by the interacting waves. It follows from
Egs. (26) and (10) that, due to the nonuniformity of the
radiation intensity inside the microspheres, the steady-
state amplitudes of the concentration gratings depend
on the convergence angle 6 of the waves and take
bounded values as the radius a of microspheres
increases. Note that, for small radii of microspheres
(for Vo =V, = V) [6], the amplitudes of the concentra-
tion gratings do not depend on the angle 8 and indefi-
nitely increase as the microsphere radius increases.

Ty, 8
0.08

(b)

I =10* W/cm?

|
20° 30°

6

|
0 10°

Fig. 3. Relaxation time 14 of the main grating as a function of (&) the intensity of effective radiation and (b) the convergence angle 6
for £ =2ka=3.8,k=1.6x10°cm ™, 0g=5.3x 1072, and kgT = 4.14 x 107 erg.
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Inthe steady-state regime (for t > 1,), Egs. (18) with
regard to (26) are rewritten as

dE,
cosea

b
35 (Vo2 + ViUs + VU, |Ey

= |y§:l+

b .0
+ ‘2‘05(Vx +V,)E; EsE, - pE,,
O

dE,
—cose—OE

ayb
35 (VU + ViUs +V,U.) |E,

iy§1+

b O
+ 55 (Vu+ V)EL BB, O-PE,,
. (27)
dE,

cosea

aeb
35 (ViU + VU, +VoUo) |Es

iy§1+

b O
+==(V, + V,)ES E E, - pEs,
2D 0

dE,
—cosBE

b
35 (Vals+ VU, +VoUs) |E,

= |y§:1+

b O
+ =2 (V, + V,)ES E E, - pE,.
2D 0

Neglecting the reaction of weak waves E; and E, to the
intense reference waves E; and E,, from Egs. (27) we
obtain the following relations for p = O:

de; . _
COSGd—Za = |{K3E3+BEZ E10E20

x exp[iK,2+iK,(L—2)]},

—cos0 s - —i{K,E} + BE;E},E} 29
dZ - 44 3~=10~20

x exp[—ik,2—iky(L-2)]},
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where
_ agb
R, = y[l Z‘E)vou }
_ agb
K, = y[l Z‘E)vou } "
_ b
K3 = Y| 1+ 55 (VU1 +VUy) |
_ ob
K = V[ 1+ 55 (VUL +V,02) |

B = (yopb/2D)(V, + V,) is the coefficient of parametric

coupling, Z = z/cosB, and L = L/cos®. The solution to
Egs. (28) subject to the boundary conditions E5(0) = Eg,

and EX (L) =0 hastheform

e

—Os
K ;DZi|

2I'cos[F(L 2)] +iAsin[r (L — z)]
2r cos L +iAsinr i

Ei(2) = 2iBEg./U U,

xexp[—i%—r?% +K ﬂ}

Ei(2) = aneXp[i[lz'*'

(30)

sin[(L-2)]
2l cosl L +iAsinr L’

where

= JB?U,U, + A%/4

is the increment of the parametric amplification of
wesak radiation and

(31)

A=K, —K,—Rs3+K,

b (32)
= Y55 Vot Vi=V,)(U;-Uy)

is the phase mismatch of the interacting waves.

It is obviousthat the amplitude of the reversed wave
E, is proportional to the coefficient B of parametric
coupling. Using formulas (10), one can show that, for
certain values of the microsphere radius a and the
convergence angle 6 of the interacting waves, the coef-
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Fig. 4. Family of solutions to the equation B(a, 6) = 0 for
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ficient 3 vanishes. For these values of the parameters a
and 0, due to the zero-force effect, concentration
gratings with periods A\, which are responsible for the
four-wave mixing, are not induced and hence a para-
metric generation of the reversed wave E, does not
occur. Figure 4 represents a family of curves on the
plane ab that shows the values of the parameters a and
8 at which the coefficient of parametric coupling van-
ishes (B = 0).
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It follows from solutions (30) that the linear theory
of four-wave mixing for A =0 (I =, = |B|J/U,U,)
imposes a constraint on the intensities of the reference
waves, this constraint is associated with possible
parametric generation of a pair of mutually conjugate
waves E; and E; with the threshold given by the con-
dition [15]

NoL/cosB = 1v2. (33)

Taking into account the definition of the coupling coef-
ficient 3 from (33), we obtain

2kN0

V|V +V) JUUp——

cose (34)

It follows from (32) that the condition A = O is satisfied
in two cases: either when U; = U, or when V, + V, —
V,= V = 0. Note that, V, = VK =V for small micro-
spheres, a < A\; hence, the condition A = 0 ismet, just
as in the case of ordinary media with the Kerr nonlin-
earity [15], only for U, = U..
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8 4 8 T
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2r =4 2 y
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0 Y2 m 0 2 T
\_/XI014 ) I_/XIOB 3]
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0 0 Na——"_
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Fig. 5. Parameter V versus the angle 6 for various values of the coefficient & = 2ka for k = 10° cm™; (a) & = 1.0, (b) & = 2.5,

(©) € = 4.5, and (d) £ = 10.9.
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Figure 5 presents the parameter V as a function of
the angle 6 for various values of the coefficient & = 2ka.

One can see that the parameter V (8) may vanish in the
region of & = 2.5. The threshold value of the coefficient

& =&, = 2.5at which V = 0 corresponds to the angle
8 = 2. When ¢ > 2.5, the corresponding values of 6
may be much smaller. Hence, in the region of § > 2.5
(a> 0.2\), for appropriate values of the convergence
angle 8, one can implement conditions under which
weak radiation is generated parametrically at nonequal
values of theintensities of thereferencewaves, U; # U,.
Note that, for relatively large values of 6 = 7176,
Egs. (18) must contain derivatives with respect to the
transverse coordinate (sin6d/0x).

A comparison of theresultsobtained in the diffusion
limit with the similar results of theory [6] isillustrated
in Fig. 6. This figure represents the reflection coeffi-
cient n of the reversed wave, calculated by the second
equation in (30), as a function of the microsphere size
for U; = U, = U, and for various values of the conver-
gence angle 6 of the waves. For comparison, the dashed
line represents the reflection coefficient n = n(§) calcu-
lated by the theory of [6]. One can seethat the theory of
[6], in which a gradient force is determined under the
assumption that the intensity of radiation inside the
microspheresisuniform, F; = ooVl B 2 predictsasig-
nificantly overstated value of nand isvalid intheregion
of small & < 1. Within the approximations used in [6],
the coefficient n is independent of the convergence
angle O of the waves and henceis the same for any val-
ues of 8. One can seein Fig. 6 that, for relatively large
values of 8, when the overlap of the microspheres with
theinterference pattern of the field becomes significant,
the reflection coefficient n(&) is a nonmonotonic func-
tion of the size of microspheres and vanishes at angles
of 8 =30° and 6 = 45° (at the points § =89 and & =
6.36, respectively). As pointed out above, these values
of the parameters correspond to the conditions under
which the process of four-wave mixing is suppressed
due to the vanishing of the resultant components F,, of
the gradient force.

One can show that the consideration of linear loss

(p #0) inthecaseof V =0 leadsto the following rela-
tion, which defines a threshold of the parametric gener-
ation of weak waves (see Appendix B):

tan[ L = —I/p, (35)

where I = ,/B2U,U,exp(-2pL) —p? > 0.
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Fig. 6. Reflection coefficient n of the reversed wave as a
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Figure 7 shows the threshold value Iy = |B|.,/U,U,

as a function of the length L for various values of the
amplitude coefficient of loss p. One can see that, for

p # 0, theoptimal value of L isequal to (pL )oy = 0.74.
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Fig. 8. Steady-state distributions of theintensities of thesig-
nal Us (solid lines) and reversed U, (dashed lines) wavesfor

various microsphere sizes a: (1) 0.1 um, (2) 0.11 pum, and
(3) 0.12 pm.

For comparison, note that, for an ordinary medium with
cubic nonlinearity, approximate analytic estimates

yield avalue of (pL )y, = 0.69 [16].

5. CONCLUSIONS

The results obtained above show that, within the
approximations used in [6], the concentration nonlin-
earity of a liquid suspension of transparent micro-
spheres cannot be correctly calculated for awide range
of parameters. In particular, a rigorous calculation of
the concentration nonlinearity yields much smaller val-
ues of the reflection coefficient of areversed wave com-
pared to those predicted by the theory of [6]. Neverthe-
less, estimates show that a liquid suspension of trans-
parent microspheres—an artificial heterogeneous
medium each of whose components taken separately
does not exhibit nonlinear optical properties—may
serve as a prospective wideband material for reversing
the wave front of low-intensity radiation of continuous-
wave lasers. The theoretical results obtained in the
present paper are in good agreement with the experi-
mental values measured in [3], of the reflection coeffi-
cient n of areversed wave and the relaxation time 1, of
aconcentration grating versustheintensity of reference
waves.

Figure 8 presents the spatial distributions of the
intensities of the signal U, and reversed U, waves that
is obtained by the numerical simulation of the simulta:
neous system of the wave (18) and kinetic (14) equa
tions for the four-wave mixing of argon laser radiation
(E1o(t) = Exp(t) = Epfor t = 0, Egy(t) = 1) in awater sus-
pension of latex microspheres[3] at room temperature:
no =159, n =1.33,N,=6.5x10"°cm=, L =102cm,
8 =3.2° D =22 x 103a* cm?/s, and the intensities
| =7.5 x 10* W/cm? of the reference waves. One can
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see in Fig. 8 that, for the chosen range of the parame-
ters, the efficiency of the four-wave mixing is quite sen-
sitive to the size of microspheres. In this case, an
increase in the microsphere radius by 20% leads to
about athreefold increasein the reflection coefficient n
of the reversed wave.

Inthisstudy, by analogy with [6], we havetakeninto
account the radiation damping dueto the Rayleigh scat-
tering phenomenologically, by adding alinear loss fac-
tor p 0 N, to the wave equations (18). Strictly speaking,
the spatial modulation of microspheres by the effective
radiation leads to the dependence of the loss factor on
the radiation intensity, p = p(|[E[). A rigorous consider-
ation of the nonlinearity of theloss factor is guaranteed
by an appropriate modification of formula (17), which
has the form

_ gV O .8 o
P = 5 N(x,z,'[)Ejl+|3kEbD ao\@

4
x N Eexp[—i(wt—k )] +c.c.
=1

in the general case. Hence, generally speaking, the pro-
cesses of Rayleigh scattering al'so modulate the imagi-
nary part of the dielectric constant of asuspension; i.e.,
amplitude—phase gratings are induced in the suspension
whose amplitude component should be taken into
account provided that [|o|V = k3.

Under relatively high intensities of the interacting
waves, high concentrations of microspheres at the anti-
nodes (nodes) of the interference field may lead to the
formation of clusters even in ararefied suspension [3];
naturally, this fact leads to a qualitative change in the
process of four-wave mixing. Moreover, in this case,
one should also take into account that the size of micro-
spheresis finite, which restricts the limiting concentra-
tionsto N;,, = V.

Thus, a further development of the theory of four-
wave mixing in liquid suspensions of transparent
microspheres should be carried out with regard to the
nonlinearity of the imaginary part of the dielectric con-
stant of the suspension, the formation of clusters of
microspheres, and the saturation of the amplitudes of
the concentration gratings due to the finiteness of the
volume of microspheres.

APPENDICES
APPENDIX A
Upon the substitution of N, = N, exp(—4Tt), the sys-
tem of equations (23) is reduced to the following sec-
ond-order equation for Ny
d’Ny - dN;

2 —3r-at—+2|A|2N1 = AT ANyexp(4rt). (A.1)
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A solution to this equation for A2 = 92 —
given by

Na(t) = expggzrﬁgaexp%%

t

+C. expD—E%+8 AN [expH-=- 3r H (A2
0

x sinh[ﬁ(t—t')dt'} o
2 0
where C, are integration constants. The initial condi-

tion N1 (0) = 0impliestherelation C, = —C_. The coef-
ficient C, is determined from the condition that

A A AN
N2 — 0, Nlﬂ?o[l—exp(—rt)] exp(4rt),
asA —= 0. It can easily be shown that this passage to

the limit is attained for C, = NyA/3I. Taking this fact
into account, from (A.2) wefind

2AN 5r
= epE 5t

=y h@\%+ 3r?

S EStE+ ———
02U 2r24|a?

N, (t) =

(A.3)

X [exp%ﬁ—zr-%— cosh%%—S%sinh%%} E}

Similarly, for N,(t), the second equation in (23) yields
t

No(t) = 2A[Ny(t)exp[4r (t-t)]dt.  (A4)

APPENDIX B

For p # 0, the first two equations in (27) yield the
following equations for the amplitudes of the reference
waves:

dEl_ 5*1

dE ) a,b
__(Ez - |y%|_+—295V0|E1|%E2—pE2.

A solution to these equations is given by

V0|E2|2DE1 pE,,
(B.1)

A 0. . . Ogb
Ei(2) = EloeXpE(ly—p)Z+|V§05Vo|Ezo|2
U
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" 0

x exp(—2p I:)J’exp(2pz) dz %
0 (B.2)

5 0. & . Ogb
Ex(2) = Enexpiy-p)(L-2)-iy55
O

z
0
X Vo|Ey| 2Iexp(—2pz) dzQ
. 0
The substitution of solutions (B.2) into the last two
equationsin (28) yields

T2 = i{Ry(2) + BEGERE]

< expl(iy - P)2+19(2)]} - PEs,
dE? . (B.3)

@ = —i{K4(2) + BELExE;

x exp[—(iy + p)2—id(2)]} —pEJ,
where

s O agb .
Rs(2) = YL+ 55 [ Vil Eud “exp(-2p2)
U
2 N
+ V| Ex exp(—2p(L—z))]%
N O agb .
Ro(2) = yOL+ 55 VA/Ewl exp(-2p2)
O

A~ . Ul
+ V| Ex| exp(=2p(L —2))] 0

z

0(2) =y ZDVO{IEZOI exp(-2pL) I exp(2pz)dz

z

—|Ey J’exp(—sz)dz}.
0

The substitutions
O . 0
%3(z)exp[-|—pz+|J'K3dz],
O 5 O

Es(2) =
(B.4)
R R 0 o
Ei (2 = Z(Z)GXDEFP(L—Z)HIKMZD
O ) O
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reduce the system of equations (B.3) to the following
second-order equation for the amplitude €4(2):

d’¢,

d?

o d65

—[2p +1A(2)] ==

[20 +1A(2)] .
+BZ|E10|2|E20|23XP(—ZPE)%3 =0,

where
" Gob— 2 A~ L
A(2) = vﬁV(G){IEzol exp[-2p(L - 2)]
—|E;d*exp(—2p2)} .

It follows from (B.5) that, for V (8) = 0, the roots of the
characteristic equation

A2 —2p\ + B?|E4*|Ex’exp(—2pL) = 0 (B.6)
are given by
A, = pt iA/[32|E10|2|E20|2exp(—2p£) - pz (B.7)

=p+il.

Applying the boundary conditions E;(0) = E;, and
* (L) = 0, we determine the integration constants C,
of the system of equations (B.3):

A exp(Fil L)
M _exp(<if L) =\, exp(if L)

C. = £E (B.8)

The condition A_exp(— L) —A,exp(if L) = 0 implies
formula (35).
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Abstract—Enhanced noncollinear second harmonic generation in afinite one-dimensional photonic crystal is
analyzed theoretically under conditions of pump field localization near the Bragg reflection. It is shown numer-
ically that phase-matched second-harmonic generation can be implemented in afinite one-dimensional photo-
nic crystal that does not satisfy the conventional phase-matching conditions calculated for effective Bloch
modes with narrow spectral lines. The intensity of the generated second-harmonic signal exceeds the second-
harmonic intensity attained under the conventional phase-matching conditions by more than an order of mag-
nitude. This phenomenon is explained by interference between Bloch modes having similar amplitudes, wave-
numbers, and spectral widths. Since the spatial spectra of waves propagating in a bounded medium have finite
widths, the broadened spectral lines of proximate effective Bloch modes resulting from Bragg diffraction of
waves tuned to the first transmission resonances near the photonic bandgap edge overlap, merging into a spec-
tral profile with center shifted relative to the original effective Bloch wavevectors. This effect leads to modified
phase matching conditions for second harmonic generation in afinite photonic crystal, which are written for
the centers of the spectral profiles resulting from modal overlap, rather than for individual effective wavevec-
tors. Substantially different phase matching conditions are obtained for weakly and strongly diffracted beams,
whereas conventional phase matching conditions hold only for transmitted signals in the case of weak diffrac-

tion. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Recent development of new nonlinear optical mate-
rials, photonic crystals [1, 2], has motivated extensive
studies of parametric conversion in periodic nonlinear
structures [3]. Photonic crystal is an artificial structure
with periodically modulated dielectric constant (in the
general case, in three dimensions). When the modula-
tion period is comparable to the optical wavelength, a
light wave cannot propagate into the structureiif its fre-
guency or angle of incidence lieswithin a certain range
called photonic band gap (PBG) [4]. Photonic crystals
are characterized by strong localization of the energy of
a pump (fundamental) beam whose frequency or angle
of incidence corresponds to a PBG edge. The increase
in pump energy density leads to higher amplitudes of
polarization waves and, as a consequence, to higher
intensities of Raman sidebands generated in parametric
conversion processes. For one-dimensional photonic
crystals, this effect wasinvestigated in [5, 6]. We call it
non-phase-matching enhancement. In [7], it was shown
analytically that the energy of alocalized pump wave
can be proportional to the number of photonic-crystal
periods cubed. Therefore, non-phase-matching
enhancement provides a very efficient method for
enhancing nonlinear wave interaction in periodically
structured materials, whereas the intensities of signals

generated in homogeneous media cannot increase
faster than the sample length squared. It iswell known
that conversion of pump energy into Raman sidebands
isefficient only when phase or group-vel ocity matching
conditions are satisfied, as in birefringent crystals [8§],
artificial crystals with regular domain structure [9-11],
or optical waveguides [12—14]. Since phase matching
and non-phase-matching enhancement conditions are
combined in photonic crystals[15-17], conversion effi-
ciency can be additionally enhanced in photonic crys-
tals as compared to homogeneous materials. For a pho-
tonic crystal about ten micrometersthick, the efficiency
of energy conversion from fundamental into second-
harmonic field can exceed 10% [18, 19], which istwo
orders of magnitude higher than the efficiency of non-
linear optical conversion in a homogeneous nondisper-
sive medium of similar thickness. Strong spatia disper-
sion near the PBG edge [4] can compensate for the
material dispersion in a photonic crystal, ensuring
phase-matched interaction between fundamental and
generated waves in nonlinear processes. We call this
effect dispersion phase matching (DPM). Simultaneous
fulfillment of the DPM and non-phase-matching
enhancement conditions was predicted theoretically
in[15] and demonstrated experimentally in [16] for
second harmonic generation. Another mechanism of
compensation of phase mismatch between interacting

1063-7761/05/10103-0401$26.00 © 2005 Pleiades Publishing, Inc.
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waves in photonic crystals involves the reciprocal |at-
tice vector and is known as quasi-phase-matching
(QPM) [10]. QPM conditions are generally fulfilled for
counterpropagating pump and signal waves, whereas
DPM is characteristic of copropagating waves. Sum-
frequency generation under QPM conditions combined
with non-phase-matching enhancement conditions was
demonstrated in [17]. Material dispersion can also be
compensated for signals generated in nonlinear liquid
crystals of certain types [20—22], which can essentially
be treated as natural photonic crystals. However, the
refractive-index modulation amplitude in these crystals
is not sufficient for achieving significant non-phase-
matching enhancement.

According to [15], second harmonic generation can
be implemented in a photonic crystal under phase
matching conditions for effective wavevectors [23] if
the fundamental and second-harmonic frequencies are
tuned, respectively, to thefirst and second transmission
resonances relative to the corresponding PBG center
frequencies. Experimental evidence of the correspond-
ing second-harmonic intensity peak was obtained
in[16, 24] for structures specially designed to meet
these conditions. However, the efficiency of second
harmonic generation under non-phase-matching
enhancement conditions has never been analyzed for
fundamental wave and second harmonic tuned to other
transmission resonances. The parameters of periodic
structures and pump beams corresponding to optimal
efficiency of Raman sideband generation are generally
calculated by using effective wavevectors [4, 23] in
conventional phase matching conditions similar to
those for waves propagating in infinite homogeneous
media. In thismethod, thefield propagatingin alayered
structure is represented as a superposition of Bloch
modes characterized by effective wavevectors instead
of Bloch vectors. However, areal photonic crystal can-
not be treated as a homogeneous medium even approx-
imately. The field inside a bounded crystal has a very
complex structure consisting of Bloch modes with
spectral widths Ak~ 217L, where L is the sample
length. Therefore, if the shift between two proximate
Bloch modes with comparable amplitudes is approxi-
mately equal to Ak (when the pump is tuned near the
PGB edge), then the corresponding spectral lines
merge, and the resulting profile has a peak shifted rela-
tive to the effective wavevector. Accordingly, the phase
matching conditions calculated for modes with finite
spectral widths may be shifted relative to the phase
matching conditions calculated by using effective
wavevectors (corresponding to Bloch modes with nar-
row spectral lines), and the maximum shift is T/L. For
example, the peak intensities and frequencies of the
second-harmonic and sum-frequency signals measured
in [17] were shifted relative to those corresponding to
the exact phase conditions calculated for effective
wavevectors.

In this study, we use a special noncollinear geome-
try to ensure non-phase-matching enhancement in a
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wide frequency range and apply the transfer matrix for-
malism [25] to demonstrate the possibility of efficient
second harmonic generation in a thin one-dimensional
photonic crystal when the fundamental-wave and sec-
ond-harmonic first transmission resonances coincide.
In this case, even though the conventional phase match-
ing conditions calculated for effective wavevectors cor-
responding to Bloch modes with narrow spectral lines
are not satisfied, the signal intensity exceeds that of the
second harmonic satisfying the conventional phase
matching conditions [15, 16]. This effect is explained
by analyzing dynamics of coupled modes and taking
into account the overlapping in both pump and signal
spectra. We propose modified phase matching condi-
tions written for the centers of profiles resulting from
modal overlap in the spatial spectra of coupled waves.
We show that optimal conditions for efficient coupling
between the pump and signal waves are substantially
different in the cases of strong and weak Bragg diffrac-
tion in a photonic crystal.

The paper is organized as follows. In Section 2, we
formulate the problem, outline the method of solution,
and describe the periodic structure to be examined. In
Section 3, we analyze the spatial spectraof waves prop-
agating through periodic structures. The results of Sec-
tion 3 are used in Section 4 to explain the behavior of
the frequency profiles of second-harmonic intensity
obtained in the cases of weak and strong diffraction.

2. SECOND HARMONIC GENERATION
NEAR THE EDGE OF THE PHOTONIC BAND
GAP IN A BOUNDED PHOTONIC CRY STAL

We consider second harmonic generation in a stack
of N bilayers characterized by quadratic nonlinearity,
with thicknesses d; and d, and complex frequency-
dependent refractive indices n;(w) and ny(w), on aninfi-
nite substrate with complex refractive index ng,.. Their

second-order susceptibilities x'? and x? are assumed

to be constant for simplicity (subscripts 1 and 2 refer to
odd and even layers, respectively). Pump beams with
frequencies w, and w, are incident from vacuum onto
the crystal surface at arbitrary angles 6, and 6,, respec-
tively, to the normal vector. The z axis is aligned with
the normal vector and directed into the crystal, the x
axis is pardlel to its surface, and the xz plane is the
plane of incidence of the fundamental waves.

Owing to quadratic nonlinearity, a polarization
wave with frequency w, + w, is created in the photonic
crystal, which gives rise to a sum-frequency signal at
W;= Wy + W, The pump and sum-frequency fields
inside the crystal, E; ,(r, t) and E4(r, t), and the sum-
frequency output fields in vacuum and substrate are
found by solving the nonlinear wave equation

2 a°P
rotrotE + -1—2(1—[22 = ﬂ;—g—L (1)
c” ot c” ot
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Here, D(r, t) = n?(r)E(r, t) iselectric induction,
P (r,t) = X2 E(r, HE(r, 1)

is the nonlinear polarization vector, and c is the speed
of light in free space. In this study, the transfer matrix
formalism [17, 25] is applied to solve Eq. (1) in the
monochromatic plane-wave approximation for a pre-
scribed pump field. This model is valid for pulses of
duration up to 200-300 fs [6, 17] and weak nonlinear-
ity. Under these assumptions, the transfer matrix for-
malism can be used to obtain an exact solution to
Eq. (1) (with second spatial derivatives) describing the
complex multiple-mode structure of localized fieldsin
athin photonic crystal.

Hereinafter, we consider the degenerate case of
sum-frequency signal with w,; = w, = wand w; = 2w. To
optimize the fundamental-wave parameters with
respect to maximum generated signal intensity, we use
the noncollinear beam geometry illustrated by Fig. 1a,
which ensures fulfillment of the non-phase-matching
enhancement condition in a wide frequency range. We
vary w and angle of incidence 6 ssimultaneously to sat-
isfy the non-phase-matching enhancement condition,
i.e., to maximize the energy W of the field localized in
the structure (Fig. 1b),

L

W = J’nz(z)IE(z)Izdz,

wherez=0andz=L = N(d, + d,) aretheinput and out-
put surfaces of the photonic crystal. The mismatch
parameters Appy and Agpy Corresponding, respectively,
to dispersion phase matching and quasi-phase matching
conditions, are expressed in terms of effective wavevec-
torsas

Dopy = (KT + K3y —kS)L, %)
Doy = (K3 + K50 + K5 —HI)L, 3)

where k& denotes the z components of the pump
(i=1,2) and signal (i = 3) waves, H = 217/(d, + d,) is
the magnitude of the reciprocal lattice vector, and | is
an integer called quasi-phase-matching order. Expres-
sion (2) is analogous to the phase mismatch for a
homogeneous medium, while the term proportional to
HI in (3) takes into account the contribution of Bloch
modes due to Bragg diffraction in a periodic structure.
The parametersin (2) and (3) vary with w and 0. Phase
matching corresponds to

Appm, Dgpm < TV2. (4)

Since the fundamental waves have equal frequen-
cies, the corresponding wavevectors are symmetric rel-
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(a) (b)
W (arb. units), R

Fig. 1. Second harmonic generation: (a) noncollinear geom-
etry; (b) reflectivity R and energy W of localized electric
field of the pump beam vs. angle of incidence 6 (6, corre-

sponds to non-phase-matching enhancement).

ative to the normal: 6, = +6, and 6, = —8,, where the
angle of incidence 6, ensures non-phase-matching
enhancement for a particular w. Since the tangential
components of the electric field vectors are continuous
across layer boundaries [23], the “angle of incidence’
0, for the second harmonic is zero for any w.

Figure 2a shows the intensities | and 10 of the
transmitted and reflected second-harmonic signals in
the geometry considered here versus normalized fre-
guency for the stack of 15 bilayerswith n,(w) and n,(w)
corresponding to AlOx and AlGaAs (nonlinear optical
material), respectively [16]. Here, d; = Ay/3n,(w,) and
d, = 3\y/4n,(wy), Where Ay = 211C/0), and wy, is a refer-
ence frequency; the substrate is vacuum. The intensity
I® is normalized to that of the second-harmonic signal
with frequency 2wy, generated in a homogeneous non-
dispersive medium of thickness D = Nd, with refractive
index ny(wy). Figures 2b and 2¢ show, respectively, the
second-harmonic reflectivity and the phase mismatch
parameters Appy and Agpy, respectively. The phase
matching order is| = 4, and all waves are s-polarized.

The second-harmonic intensity spectrum shown in
Fig. 2a exhibits two peaks whose locations are indi-
cated by vertical dash-dot lines A and B. The former
correspondsto the zero of Appy, associated with the sec-
ond transmission resonance (relative to the second-har-
monic PBG center frequency). The existence of this
peak was demonstrated in [15, 16, 24]. The latter is
associated with the first second-harmonic transmission
resonance and is not related to any zero of Appy OF
Agpy- Thisintensity peak is more than an order of mag-
nitude higher than the former; i.e., the corresponding
phase matching conditions cannot be formulated in
terms of effective wavevectors corresponding to Bloch
modes with narrow spectral lines, as in (2) or (3). Its
location should therefore be explained by analyzing a
multiple-mode structure in order to find phase match-
ing conditions different from (2)—(4).
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3. SPATIAL SPECTRA OF WAVES DIFFRACTED
NEAR THE PHOTONIC BAND-GAP EDGE

In the model presented above, an effective wavevec-
tor k¥"(w) is calculated to characterize the propagation
of a wave with frequency w through a multilayered
stack [23]. The linear properties of a photonic crysta
are characterized by the dispersion curve shown in
Fig. 3 (right solid branch). Any layered structure gener-
ates areflected (backward) wave. Since the magnitude
of the corresponding wavevector is equal to that of the
forward wave, the reflected-wave dispersion curve is
symmetric to the forward-wave one relative to the w
axis (left solid branch in Fig. 3). However, Bragg dif-
fraction in a periodic structure must giveriseto aBloch
wave related to the incident wave by the Bragg condi-
tion k, = k; + mH, where mis the number of the PBG
responsible for diffraction; i.e., in addition to waves
with wavevectors k¥ and —k&, there must exist Bragg-
diffracted waves with k¥ — mH and —k& + mH (see
Fig. 3). Thus, we must consider four waves propagating

1
1.70

L
1.68

0 1.66 w/uy

Fig. 2. Normalized frequency dependence: (a) normalized
intensities 1) and 1) of the transmitted and reflected sec-
ond-harmonic signals (solid and dashed curves, respec-
tively); (b) second-harmonic reflectivity R; (c) phase mis-
match parameters Appy (solid curve) and Agpy (dashed
curve); A™) (@) and AC) (0). Vertical dash-dot lines A and
B indicate the peak second-harmonic intensities corre-
sponding to the second and first transmission resonances,
respectively.
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in a photonic crystal if diffraction is to be taken into
account: two forward and two backward ones.

The existence of waves with wavenumbers k& —mH
and k& + mH is easy to demonstrate for a structure
with continuous dielectric constant £(2), because nei-
ther Fourier series expansion of solutions nor their
matching at the points of discontinuity is required in
this case. Since wave propagation in periodic structures
is governed by qualitatively similar relations, we can
consider a crystal with harmonically modulated dielec-
tric constant:

[EO! ZD [0! L],
e(z) = O
[Eo[1l+pcos(Hz)], zO[O, L],

where g, is the background dielectric constant, 1 isthe
modulation depth, H = 21vd isthe reciprocal |attice vec-
tor, d is the modulation period, L = AN is the crystal
length, and z=0and z= L arethe input and output ends
of the modulated crystal. The electric field distribution
E(2) inalinear medium isfound by solving Eqg. (1) with
zero right-hand side [23].

Withintheinterval [O, L], theelectric field of aplane
electromagnetic wave with frequency w can be repre-
sented as

E(r. 1) = Eo(2)expli(wt—k,x)], ()

where k, = k,Sin® is the tangential component of the
wavevector, k, = w/c is the wavevector magnitude in

free space, k = ky./g, is the wavevector magnitude in
the medium, and 6 is the angle between the wave prop-

W
. 7/ \
Reflected signal |

Forward signal

Fig. 3. Dispersion curves for forward (right) and reflected
(Ieft) signals in single-mode approximation (solid curves)
and for diffracted signals (dashed curves). The hatched
region corresponds to PBG. Dots on dispersion curves cor-
respond to the wavenumbers of the forward (k&), backward
(—&), and Bragg-diffracted (k& — mH, & + mH) waves.
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agation direction and the zaxis. The complex amplitude
Eq(2) isexpressed as

Eo(2) = E.(29) +E(2)

6

- Aok +ADep-kd,

where A,(2) and A_(2) denote the amplitudes of the for-
ward and backward waves, respectively, and

kZ = ko/\l 80 - Snze

isthe zcomponent of the pump wavevector. We assume
that the dielectric-constant modulation depth is suffi-
ciently small to satisfy the condition for slowly varying
amplitudes,

A,
dz’
If the diffracted waves are tuned near the edge of the
first PBG, then the parameter & = k, — H/2 is a small
guantity.

Substituting (5) and (6) into (1) (with Py, set to
zero), neglecting the fast-oscillating terms, and separat-
ing the terms containing exp(ik,2) and exp(-ik,z), we
obtain the system of differential equations

< |2k

Y
Zdz |

d, _.pK =

dzA+ = |———4kZA_exp( 2i102),

g g (7
O A = jHK -

OIZA_ |4kZA+exp(2|62),

subject to the boundary conditions
A (z=0) = A?, A(z=L)=0,

where A? is the incident intensity on the left-hand
boundary between the homogeneous and modulated
media, and the latter condition means that no beam is
incident on the right-hand boundary.

Substituting the solution to (7) into (6), we obtain
the following expressions for the forward and back-
ward electric field amplitudes:

acos[a(L—-2)] —idsin[a(L —2)]

(D = =y cosaL) ~idsin(aL) (®)
xAi’expE‘g%
_uk sin[a(L—2)]
52 = 12k acos(aL) ~idsin(al) (©)

x A2exp B—i —';—%
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where

2 2
_ |x2_ kT
a= [0 k0

We rewrite the real values of the €electric field
strengths given by (8) and (9) as

1

Re[E.(27)] = 2z

Ha +8)2cos(B.2)
[l

2

2
+ (0 —8)*cos(B_2z) — %E cos(2al)

x [cos(PB,2) + cos(B_2)]

(10)

K . _ 0
-t sn(2aL)[sin(.2) - sin(B.2)] LA

1 pk®

4E 4k,

—(a +38)cos(—B_z) + (a +6)cos(2a L) cos(—B.2)
—(a —d&)cos(2aL)cos(—B_2) (11)
—(a +d)sin(2aL)sin(—B.2)

Re[E (7)] = {(a—0)cos(-B.2)

—(a-3)sin(2aL)sin(—B_z)} AL,
where
& = a’cos’(aL) + &°sin’(al),

H
= _+
B+ 2 ai

H
B 5 a.

Expressions (10) and (11) demonstrate that the field
propagating in medium with modulated dielectric con-
stant consists of four waves, with wavenumbers 3., B_
and —3,, {3_ corresponding to forward and backward
waves, respectively, i.e., to k&, k& + mH and —k&,
k" —mH with m = 1. Since any wave propagating in a
bounded photonic crystal has a finite spectral width
estimated as 217L, the modes with spectral lines sepa-
rated by Ak overlap and the lines merge into a profile
with center shifted relative to their respective centersiif

Ak < 2TUL. (12)

Let us show that the spectral components of a signal
tuned to thefirst transmission resonance (relative to the
PBG center frequency) satisfy condition (12).

The reflectivity R for a periodic structure is
expressed as

_|E(z=0)2 _ sin’(aL)
E.(z=0) KT oLy
DHKZD
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(@)
0.02 -
A B C
0.01 l l l
O —t— T
0.80 0.85 0.90 0.95 wwy
(b)
F,7 0.10
Backward A k® ff Forward
wave wave
keff_H _k(e)t:t()0577 0.05 —keff+ H
_k —r"_‘ﬂ\’f\/‘il\—"loff 1 1 1 .| 1 +k
0
(©)
Fyp 0.0 o
0.005-
keff_H _keff
k LY N——0-
0
(d)
Fe—O0.
0.005-+ 0.05
keff_ H _keff
/Nl
-H/2 0

Fig. 4. Weak Bragg diffraction in a structure with cosinuso-
idally modulated dielectric constant: (a) reflectivity vs. nor-
malized frequency. Spatial spectra of the forward and back-
ward waves for pump beams tuned to (b) third, (c) second,
and (d) first transmission resonances (A, B, and C, respec-
tively). Vertical dashed and dash-dot lines indicate, respec-
tively, H/2 components and the effective wavevectors of for-
ward, backward, and diffracted waves calculated in the sin-
gle-mode approximation.

Transmission resonances are defined by the condition
R=0,i.e,

1
a = -n,

3 n=123,...,

where n is the number of a resonance and the corre-
sponding wavenumbers are

_H,m
B+_2 L’

-
Accordingly, Ak = |B, — B_| = 2rm/L, which entails Ak =
217L for the first transmission resonance, in agreement
with condition (12). Thus, the modes centered at 3, and
B_ substantially overlap.

_H n
B—_z
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As an example, we consider second harmonic gen-
eration in the 20-period structure with A/A, = 0.25,
€9 =4, and i = 0.01 (which corresponds to weak Bragg
diffraction) in the case of normal beam incidence. Fig-
ure 4a shows the reflectivity plotted versus normalized
wave frequency for this structure. The third, second,
and first transmission resonances are indicated by A, B,
and C, respectively. Figures 4b—4d show the spatia
spectra

L

F(k) = 2—11TLIRe[ E.(2)] exp(ikz)dz

plotted versus k normalized to 217/L for waves tuned to
theresonances A, B, and C, respectively. Here, the spec-
tra of E(2 and E,(2) correspond to k < 0 and k > 0,
respectively; vertical dash-dot lines, to k¥ — mH, -k,
k&, and —k& + mH with m = 1. Figures 4b and 4c dem-
onstrate that the reflected-wave spectrum contains two
lines of equal intensity centered at k& — mH and —k&,
owing to diffraction of the incident wave. The spectrum
of the forward wave contains only the component cen-
tered at k*, whereas the one centered at k" + mH (due
to reflected-wave diffraction) is absent in the case of
weak diffraction, because |E_(2)| ~ M.

A totally different reflected-wave spectrum is
obtained for diffraction near the first transmission reso-
nance C (Fig. 4d). As shown anayticaly above, the
lines corresponding to k¥ — mH and —k*" overlap and
merge into a single line. Figure 4d demonstrates that
the resulting reflected-wave line is centered at mH/2,
whereas the spectrum of the forward wave is still cen-
tered at k.

To analyze the case of strong diffraction, wefind the
spatial spectra of waves propagating in a medium with
cosinusoidally modulated dielectric constant having
the parameters specified above, except for 1 = 0.5. The
equations for slowly varying amplitudes are not appli-
cable in this case, and the field distributions found
numerically by using the transfer matrix formalism.
Figure 5 shows the corresponding reflectivity and the
spatial spectraof the backward and forward waves plot-
ted in the same coordinates asthose in Fig. 4.

Figure 5 demonstrates that the spectra of reflected
waves are qualitatively similar in the cases of both
weak and strong diffraction, differing only in ampli-
tude, whereas the forward wave has a distinct compo-
nent characterized by —k& + mH in the latter case. Its
intensity at the transmission resonance B (Fig. 5¢) is
higher as compared to A (Fig. 5b), because Bragg
reflection becomes stronger as the pump frequency is
tuned closer to the PBG. Owing to the higher amplitude
of the component with -k + mH, the center of the
spectral profileresulting from modal overlap for awave
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tuned to the first transmission resonance C is shifted
from k&' in the direction of mH/2 (Fig. 5d).

The results of this section concerning the coupling
efficiency in second harmonic generation can be sum-
marized as follows. Due to the spectral shifts of the
coupled waves involved in second harmonic generation
near the corresponding PBG edge, phase matching con-
ditions (2)—(4) do not hold for the reflected wave in the
case of weak diffraction and for both reflected and for-
ward waves in the case of strong diffraction. Thus, the
degree of spectral overlap of the coupled waves should
be taken into account in determining optimal condi-
tions for second harmonic generation. Since the highest
efficiency of coupling between the fundamental waves
and the second-harmonic signa is attained when the
sum of the wavenumbers of the strongest fundamental-
wave components (i.e., the wavenumber of the nonlin-
ear polarization wave) corresponds to the center of the
second-harmonic spectral profile, the modified mis-
match parameters

AW = (K7 + ks —ks)L (13)
expressed in terms of the centers of broadened spectral

profiles should be used instead of (2) and (3), and the
modified phase matching conditions are written as

AP <2, (14)

where the superscripts (+) and (=) correspond to the
forward and reflected pump (i = 1, 2) and signal (i = 3)
waves.

In particular, the centers of the reflected-wave spec-
train the case of strong diffraction of wavestuned near
the first transmission resonance are given by the exact

expression ki(_) = mH/2, where m is the number of the
corresponding PBG. Accordingly, the mismatch
parameters defined by (13) can be written for both
reflected and transmitted waves as follows:

+ HL

Figure 2 illustrates strong diffraction near the PBGs
with my , = 2 and m; = 4, in which case we have A® =
(2+2—-4)HL/2=0; i.e., the phase matching conditions
are satisfied exactly. This explains the existence of a
second-harmonic intensity peak at the point B in
Fig. 2a. Parameters (13) are shown as functions of fre-
guency for the forward (closed circles) and reflected
(open circles) wavesin Fig. 2c, for which the centers of
spectral profiles were determined directly from the
computed spatial spectra. It isclear that phase matching
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Fig. 5. Strong Bragg diffraction: (a) reflectivity vs. normal-

ized frequency; (b)—(d) spatial spectra under the corre-
sponding conditions specified in Fig. 4.

conditions (14) for broadened spectral lines hold near
the first transmission resonances.

4. SECOND HARMONIC GENERATION
NEAR THE POINT OF FORBIDDEN BRAGG
REFLECTION: WEAK AND STRONG
DIFFRACTION

Let us demonstrate that modified phase matching
conditions (13), (14) hold for second harmonic genera-
tion near the point of so-called forbidden Bragg reflec-
tion, which is observed when 2k = mH for awave prop-
agating through a multilayer stack, whereas each indi-
vidual layer can transmit light without reflection. Inthis
case, total transmission occurs instead of the total
reflection dictated by the Bragg condition. In particular,
forbidden Bragg reflection is observed when abeam is
normally incident on astack of aternating layers of two
types whose optical thicknesses are multiples of the
beam half-wavelength A: d; = pA/2n,, wherepisaninte-
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Fig. 6. Normalized intensities| ) and 1) of the transmitted and reflected second-harmonic signal's (solid and dashed curves, respec-
tively), second-harmonic reflectivity R, and phase mismatch parameters Appy, (solid curves) and A (@) vs. normalized frequency
for refractive-index contrast An = 0.1 (a), 0.3 (b), and 1.5 (c). Vertical dash-dot linesindicate peak intensities of transmitted second-

harmonic signal.

ger and n; (i = 1, 2) are the refractive indices of the
layers.

Let us examine the variation of theintensity 1® with
increasing refractive-index contrast An = |n;, — ny| for
the second harmonic generated near the point of forbid-
den Bragg reflection for waves with frequency 2wwhen
the incident wave is tuned near the PBG edge. As an
example, we consider noncollinear second harmonic
generation (see Fig. 1) in the stacks of 15 bilayers with
dy 2 = 3A/4ny 5, Ny = Ngys = 1, and different n, for the
nonlinear even layersin the absence of material disper-
sion.

Figures 6a, 6b, and 6¢ show the intensities | (left
ordinate axes) and 1) (right ordinate axes) of the for-
ward and reflected second-harmonic signals, the sec-
ond-harmonic reflectivity R, and the mismatch parame-
ters Appy and A™ given by (2) and (13) for n, = 1.1
(weak diffraction), 1.3 (intermediate case), and 2.5
(strong diffraction), respectively. The locations of
peaks of 1™)(w) on the frequency axis are indicated by
vertical dash-dot lines. The intensities are normalized
asin Fig. 2. For the photonic crystal with the parame-
ters specified above, forbidden Bragg reflection is
observed if the second-harmonic frequency 2wy, corre-
sponds to the central transmission resonance in the fre-
guency dependence of R (denoted by (0) in Fig. 6). The
first, second, etc., transmission resonances on its left
and right (denoted by (-1), (-2), (+1), and (+2)) are
analogous to those near the PBG in terms of both field
distribution and spectral profiles.

In Fig. 6a, the point of maximum intensity of the
forward second-harmonic signal coincides with the
zeros of the mismatch parameters Appy and A®). By vir-
tue of the beam geometry, the spatial spectra of both
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forward and backward waves are analogous to those in
Fig. 4d. Accordingly, the spectrum of the forward wave

iscentered at 2kifzf , Where kfzf isthe zcomponent of the

pump wavevector, and the curves of Appy and A™ coin-
cide. The second-harmonic spectraat (+2) and (x1) are
similar inform to those in Figs. 4c and 4d, respectively.
Thus, modified phase matching conditions (14) hold for
theforward signal near resonance (—2), wherethe stron-
gest spectral components of the coupled waves overlap,
and for thereflected signal near resonances (+1) and the
point of forbidden Bragg reflection.

In the case of intermediate diffraction (see Fig. 6b),
the reflected signal exhibits a qualitatively similar
behavior, with a higher second-harmonic intensity due
to stronger diffraction. The peak of the forward second-
harmonic intensity is shifted to the right from the point
where Appy = 0, and the curves of Appy(w) and AM(w)
do not coincide. These changes are explained by appre-

ciable contributions of the modes centered at —k&' +

mH to the spectra of linear and nonlinear forward
waves. The zero of A™ coincides with the point of max-
imum 1),

In the case illustrated by Fig. 6¢c, the components

centered at —k&" + mH strongly contribute to the spec-
traof the forward waves. The spectral profiles resulting
frommodal overlap at the fundamental-wavefirst trans-
mission resonances are very similar in form to those
shown in Fig. 5d, and their centers are located amost
exactly at mH/2. Accordingly, the peak intensities of
both forward and backward second-harmonic signals
correspond to transmission resonances (+1).
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5. CONCLUSIONS

Second harmonic generation is considered as an
example to examine optimal conditions for nonlinear
wave coupling in a finite one-dimensional photonic
crystal in the cases of strong and weak Bragg diffrac-
tion. Special noncollinear beam geometry is used to
meet the non-phase-matching enhancement conditions
for the second-harmonic signal and determine the wave
parameters corresponding to the most accurate simulta-
neous fulfillment of phase matching conditions. When
the second harmonic is generated near the PBG or the
point of forbidden Bragg reflection, the phase matching
conditions for forward waves in the case of strong dif-
fraction and for reflected waves in the cases of both
strong and weak diffraction in abounded medium differ
from the corresponding conventional phase conditions.
The modified phase matching conditions proposed here
for afinite photonic crystal arewritten for the centers of
the spatia spectral profiles resulting from the overlap
of broadened lines, rather than for the effective
wavevectors of individual Bloch modes. These modi-
fied conditions are used to explain the enhanced phase-
matched second-harmonic generation predicted in this
study in the case when the fundamental-wave and sec-
ond-harmonic first transmission resonances coincide.
The results obtained here can also be used to analyze
conditions for efficient conversion by different mecha
nisms (parametric amplification, Raman scattering,
etc.) in finite photonic crystals.
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Abstract—Electron transfer between bound states of remote quantum dots driven by an off-resonant electro-
magnetic pulseisanayzed. In the case of nearly equal energies of the states, atwo-photon transfer mechanism
related to the high-frequency off-resonant Stark effect is proposed. An equivalent transformation is used to
derive an effective Hamiltonian that provides a basis for correct treatment of continuum (conduction-band)
states. It is shown that optimal conditionsfor electron transfer correspond to quasi-resonant excitation of states
near the lower edge of the continuum. The characteristics of the process are evaluated. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

One natura line of development in conventional
semiconductor-based microelectronics is the miniatur-
ization of individual elements, which includes exten-
sive studies of quantum effectsin nanosized objectsand
development of nanotechnologies. One of the most
important tasks in this area is analysis of various
regimes of interaction between electromagnetic field
and nanostructures with a view to finding effective
mechanisms for optical control of electron dynamics.
In [1], the effect of electromagnetic field on a double
guantum well was examined and conditions for elec-
tron confinement in one of the wells were discussed.
In[2-9], the converse process of electron transfer
between two identical quantum dots driven by an elec-
tromagnetic (optical) pulse was considered. It was
shown in [2, 3] that photoinduced electron transfer
between quantum dotsin adouble-dot system treated as
aqubit can be used to implement quantum logic gates.

Most studies of photoinduced el ectron transfer have
been focused on resonant (one-photon [2-8] or
Raman [9]) transitions between discrete levels having
substantially different energies. In particular, the analy-
sis presented in [2] was the first study of photoinduced
electron transfer between low-lying states of two iden-
tical quantum dots via a third level at the top of the
potential barrier between the dots (Fig. 1a), with adriv-
ing field in resonance with the transition from the lower
energy levels to the upper level in the three-level sys
tem. Note that this mechanism is difficult to validate
experimentally, primarily because the preparation of
two nearly identical quantum dots with prescribed
propertiesis a complicated technical task.

This difficulty does not arise with regard to a
Raman-resonant process of cyclic transition between
states with energies E; and E, in a system driven by a

bichromatic field with frequencies w, and w, such that
E,—E; = w,—w, (Fig. 1b) [9] (see aso [10-12)]).

In this paper, we consider the case when E, = E; and
the corresponding bound states are localized in remote
guantum dots, which may not be identical (Fig. 2). In
what follows, we show that electron transfer between
the quantum dots can be implemented by driving the
system with amonochromatic el ectromagnetic wave of
arbitrary frequency. Thus, the phenomenon under anal-
ysisisaquite general off-resonant two-photon-assisted
process related to the high-frequency Stark effect
(atomic level shift due to virtual two-photon-assisted
transitions) [10-12]. In the case of two particles (mod-

(a)

Ey (b)

E,

Fig. 1. Quantum-dot energy levels and driving frequencies
in resonant electron transfer: (a) one-photon resonancein a
three-level system; (b) Raman resonance between levels E;

and E2 with Ez—Elz Wy — Wy.
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eled by quantum dots here), an analogous virtual tran-
sition causes not only an energy-level shift, but also a
real transition between degenerate levels in separate
guantum dots.

Effective el ectron transfer must involve quasi-reso-
nant levels, and it is shown below that states near the
lower edge of the continuum are best suited for quasi-
resonant excitation. Note that continuum (conduction-
band) electronic states have never been taken into
account in analyses of photoinduced electron transfer
[1-7, 9]. It should also be mentioned that most discus-
sions of two-photon and multiphoton coupling mecha
nisms have focused on multiphoton transitions within a
single quantum well [13, 14] and/or inter- or intraband
transitions [15].

It is important that continuum states required to
implement off-resonant two-photon-assisted electron
transfer can befound for potential-energy profile of any
form, whereas discrete states satisfying the require-
ments for three-level transfer [2-9] exist only in certain
special cases. Moreover, the tuning to the lower edge of
the continuum (which is optimal according to our anal-
ysis) does not require high precision, because a rela-
tively broad range of energy levelsis expected to con-
tribute to the process. For these reasons, off-resonant
two-photon-assisted electron transfer offers a more
general model of various processes, in particular, in
terms of scalability.

We show that the proposed mechanism is less spe-
cific with regard to both quantum-dot structure and
driving parameters, as compared to previously ana-
lyzed schemes[2-9]. First of al, note that the condition
that the energies of a pair of bound states be nearly
equal islessrestrictive than the requirement of identical
guantum dots[2-8]. This condition can be satisfied, for
example, by empirically adjusting the electrostatic
potential applied to two-dimensional degenerate elec-
tron gasin order to create quantum dots [16].

Since the off-resonant two-photon-assisted electron
transfer described here is avery general mechanism, it
can be analyzed without taking into account individual
characteristics of specific quantum dots. In our study,
we rely only on the fact that the system has two nearly
equal discrete energy levels (in separate dots) and a
continuum (conduction band) defined by specifying its
boundaries.

In the present analysis, we make use of a time-
dependent equival ent transformation to derive an effec-
tive Hamiltonian that provides a basis for correct treat-
ment of continuum states. The model considered here
enriches the collection of problems that are easiest
to solve by equivalent transformation of the Hamilto-
nian [11, 12].

The paper is organized asfollows. First, we perform
an equivaent transformation to derive an effective
Hamiltonian for a double quantum dot system coupled
to an electromagnetic wave. In particular, we show that
the off-diagonal matrix elements corresponding to tran-
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Fig. 2. Quantum-dot energy levels and driving frequency in
off-resonant electron transfer between levelsE; and E, with

El = E2.

=kC

[0

M= |20

Fig. 3. Energy levelsin the proposed model.

sitions between nearly equal quantum-dot energy levels
do not vanish. Next, we obtain expressions for criteria
guantifying the efficiency of two-photon-assisted elec-
tron transfer between the quantum dots. These expres-
sions are then used to show that optimal conditions for
electron transfer correspond to quasi-resonance
between the driving frequency and transitions between
the guantum-dot energy levelsand the lower edge of the
continuum. We aso analyze the effect of single- and
two-photon-assisted transitions to the continuum.
Finaly, we evaluate the characteristics of the process
under analysis. In the Conclusions, we discuss possibil-
ities of implementation of analogous processes in
atomic and molecular systems.

2. EFFECTIVE HAMILTONIAN
OF A DOUBLE QUANTUM DOT SYSTEM
DRIVEN BY AN OFF-RESONANT FIELD

We consider a system of two quantum dots with
nearly equal bound states (see the quantitative criterion
given below). We assume that the potential barrier
between the dots is sufficiently high for these states to
be treated as localized in the respective quantum dots.
Thus, tunneling between the quantum dots on the time
scal e of the system can be neglected in the present anal-
ysis. Tunneling splits nearly equal energy levels.
Detailed analyses of its role in photoinduced electron
transfer were presented in [2, 8.

We seek optimal conditionsfor two-photon-assisted
electron transfer between the states |1Cand [2C0n Fig. 3,
denoting other bound states by|n[Cand continuum states
by |kCIHereinafter, we use subscriptsi, j = 1, 2, n, kand
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a, B =1, 2to refer to the corresponding energy levels.
Energy is measured from the lower edge of the contin-
uum (conduction band).

Dynamics of an electron in this system driven by
coherent electromagnetic field are described by the
Scrédinger equation written in the dipole approxima-
tion (withA = 1) as

= (Ho—E [0)W. (1)

Here, Ho isthe unperturbed Hamiltonian whose eigen-
values correspond to the energy spectrum described
above,

E = g(t)e“ " +ce

is the eectric field vector with slowly varying ampli-

tude (t), and d isthe dipole moment operator. Assum-
ing that the system’s size is much smaller than the driv-
ing-field wavelength, we neglect the variation of the
field in space:

E =g(t)e“+cc
To derive a closed set of equations describing only
transitions between |10and |20) we perform an equiva-

lent transformation of the state vector anal ogous to that
usedin[11, 12],

w = &5,
to rewrite Eq. (1) as

aw
i5; = HY (2

To

with the equivalent Hamiltonian

H = ¢ %foeS—e'E S 'Sd;t ©)
which is represented by the series
A = Ro=i[3 Fdl ~3[5 [5 Adl] - .. ~E @

+i[S E ] + X [S[SE[CI]] . e'Sgte'S.

The operators S and If| are expanded in powers of elec-
tric field strength:
g-an,x?, 89,

s A % . . (4)
H=HR +H()+H(2)+H(3)+...,
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where
Q(O) = |:|o,
X 1)
20 (1) 0 0S
H = _E- i[S™, Hq] + 3
H? = L& e

. s A a2

_%[S(l)H(l)] i3 (2) Fig] +ast

Now, we construct an effective Hamiltonian with

matrix elements Hi; ~ exp{—(E; — E)t}, so that Eq. (2)
is equivalent to a system of equations for slowly vary-
ing amplitudes.

We assume that the driving frequency wis not reso-
nant with transition between |10or [20and any discrete
level of the system. First, we consider the simplest case
when |E,| > w. Accordingly, we assume that the matrix

2 (1) .
elementsof H ~ corresponding to resonant one-photon

transitionsvanish: HY; = A& = 0. Then, the equations

for the matrix elements of 3% have the following form:
IS +io, ) = dy ee™ 4 e%e™),

where wy,; = E, — E;. Since g(t) isaslowly varying func-
tion, we can write an approximate solution to this equa-

tion as
—j wt
dy E[ €ge +
(0 — W)

§ -

If the system has no bound states whose energies
differ from E; = E, by 2w (i.e., are two-photon reso-

i ((f)a iiwtw)} '

nant), then the nonzero matrlx elements H(z) and H(Z)
S M@ M2

are HiY, A%, AY, and A% . Since Wy = Wy = W,
they can be expressed as
M) _ o) 1 1
Hoa = —g|? Z|d,a| Qo,uﬂo oo — (5)

= (2) 2 o 1 1
Hop = —€l°S dy;d; + , (6
“® Iz . BIl’oim +w (’“)iu_(’“D

where d; denotes the component of the corresponding
matrix element parallel to the vector €. Thus, the sec-
ond-order term responsible for two-photon processesin
the effective Hamiltonian contains off-diagonal matrix
elements corresponding to transitions between |10and
[2[] Accordingly, these transitions can be described by
expansions (4) limited to the second order. (Higher
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order terms are analyzed separately below.) In final
form, the matrix elements of the effective Hamiltonian

= (0)

~ = (1) = (2)
A =H

+H  +H

describing two-photon-assisted transitions are written
as

Hoa = Eq+Eq, (7)
Hy = A, Hyp = A%, (8
Han = Hak = O, (9)
where
st _ |2 120 1 1 ]
Ecx |£| Zldml Qk)ia"'w-l-wia—m (10)
I
denotes Stark shifts and
— o2 4 O 1 1 0
|S| dedlll]*)iu +(.0+ (*)ia_(*ﬂ (11)
I

isthe Rabi frequency.

3. EFFICIENCY CRITERIA
FOR ELECTRON TRANSFER

To describe electron transfer between |1Cand [2Cand
quantify the efficiency of the off-resonant transfer
mechanism discussed here, we seek a solution to
Eqg. (2) as a superposition of the eigenstates of the
unperturbed system:

P = Zai(t)e_iEitli 0

The coefficients a(t) satisfy the relations

Zaie_iE‘tI:I,—i.
i

Substituting (7)—9) into (12), we obtain a closed sys-
tem of equations describing cyclic transitions between
|1Cand |20

.. -E

iae

E;t

"+Eae = (12)

by = —ib,e *'A*,
s (13
b2 = -l ble /\,
where
b]- =a ei E; t1

A=(E,+E;)—(E,+E})

is the energy difference between the Stark-shifted lev-
els, which plays the role of a detuning.
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Treating A\ as atime-independent quantity and set-
ting by(t = 0) = 1 and b,(t = 0) = O (the electron is ini-
tidly in the first quantum dot), we obtain

b, = e‘iwz%oth + i%sinm%,

A
b2 = _jRg itA/2

0 sinQt,

where

_ 2, 1,2
Q = H/\|+4A.

The probability of transfer of the electron to the second
guantum dot is

Ib,|* = M(1—cos(2czt))
2 2q? '

Accordingly, the corresponding optimal pulsewidth for
electrontransfer isT=11(1 + 2n)/2Q, wherenisan inte-
ger. The corresponding probability of electron transfer
between the quantum dots,

IN?

|by(t = T)|* = |byl 5 o

(14)

is close to unity only if the detuning from resonanceis
small:

A < |A. (15)

As an estimate, we use the expansion of (14) in powers
of the small parameter defined by (15) up to the first
nonvanishing term:

1A
4IN)*

|b2|§1ax:1

(16)

To facilitate further analysis, we represent the
detuning as A = A, + Ay, where the time-independent
energy difference A, = E, — E; is determined by quan-
tum-dot structure, while the Stark-shift difference Ay =

ES — E; increases as the field strength squared. Note
that condition (15) does not necessarily imply that both
A, and Ay are smaller than|/Al Moreover, additional
electrostatic potentials can be applied to shift energy
levels so that Ay = - if the driving field is held con-
stant. However, to elucidate the proposed transfer
mechanism and optimize its parameters, we must sepa-
rately examine the conditions

Dy < [N, (17)
Ay <IN (18)
No. 3 2005
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4. OPTIMIZATION
OF THE DRIVING FREQUENCY

Since the time-independent energy difference A, is
determined by the quantum-dot structure and cannot
therefore be reduced, condition (17) can be satisfied
only by increasing the Rabi frequency A. Thiscan obvi-
ously be done by increasing the intensity of the driving
field, aswell as by adjusting the driving frequency.

Analyzing expression (11) for the Rabi frequency,
we note that it is determined only by states that are not
localized in one of the quantum dots, because d,d;;
vanishes otherwise. Thus, we must take into account
only continuum states and, probably, some discrete
states near the top of the potential barrier between the
dots. Let us explore possibilitiesto increase A by using
continuum states only, since they can be found for a
potential energy profile of any form. A discrete spec-
trum of delocalized states exists only in certain special
cases, and their influence on two-photon processes
should be considered as a correction to the result
obtained by taking into account continuum states.

Changing from summation to integration over the
continuum in (11), we have

N =
(19)
0o 1 1 0
X +
|:Ek - Er% 2E1 + Erestk
whereV isthe system’s volume and E, = E; + w0 Note

that the matrix elementsd,, and d,; arelocalized in sep-
arate quantum dots, and the dependence of theresult on
their geometry and relative position require a special
numerical analysis. In the limiting case when these
states are localized within a compact region, the inte-
gral in (19) was evaluated in [17]. Here, we deal with
the general case of spatially separated quantum dots,
following the simple analysis presented in [18].

Asafirst step, we consider only the case of E, <0,
when the lower edge of the continuum is above an
energy interval corresponding to quasi-resonance. It is
clear from (19) that the sum in parentheses is a mono-
tonically increasing function of the driving frequency
when E; < E,<Ofor arbitrary E, >0and E; < 0. It fol-
lows from this observation aone that optimal condi-
tions correspond to E, near the lower edge of the con-
tinuum.

However, this value of the driving frequency should
be used to increase the Rabi frequency for more sub-
stantial reasons. Since the complex factor d,dy; in (19)
is characterized by an intricate oscillatory behavior, its
contribution to theintegral with respect to k reducesthe
Rabi frequency [18]. This effect will be suppressed
when the driving frequency is such that E. ~ 0,
because the corresponding denominators in (19) are
close to zero and the phases in d,.d,; can be treated as
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equal for all states near the lower edge of the contin-
uum. Therefore, theintegral isdominated by the contri-
butions of these states, which do not cancel one another.
Thus, condition (17) will be fulfilled if the driving fre-
guency is such that E,is close to the lower edge of the
continuum.

Now, we consider condition (18). Rewriting (10) as

Vv
Ay = —|s|2(2—n)sj(|dk2|2—|dkl|2)
. . (20)
0 . 0
“E-E. E -2 +ELC

we see that the oscillation of |d,,)? — |dy,|* as afunction
of k is slower than that of d,d,; in (19). Thus, as E,
approaches zero and the energy interval indicated
above becomes narrower, Stark-shift difference (20)
increases sower than Rabi frequency (19). Therefore,
the tuning of E, to the lower edge of the continuum is
also optimal with regard to condition (18).

5. TRANSITIONS TO THE CONTINUUM

Since the results obtained above for E, < 0 (when
the lower edge of the continuum is above the quasi-res-
onant energy levels) show that the optimal driving fre-
quency corresponds to a vanishing E,« < 0, we should
check whether the condition E, = O is better suited for
electron transfer between quantum dots.

If E,= 0, thenthe sumsover all continuum statesin
(5) and (6) yield resonant terms, which formally tend to
infinity. Following [8], we changefrom wto w — w +
i0, where & = +0 (which corresponds to an adiabatically
switched driving field). Then, we have

1 -
Wig—W—10

oo M W= ),
where P denotes an expression whose integral is inter-
preted in the sense the Cauchy principal value. Having
performed the change, we write the matrix elements of
the effective Hamiltonian as

Hoa = Eq+ Eq —iVe, (21)
H21=/\_ir, H12=/\*—ir*, (22)
where
st - 2[] 1 1 M
|€| Z|d|q| Q.Om‘*'(x) wia_(*ﬂ (23)
denotes a Stark shift;
— o2 4O 1 + 1
A l€| zdzudu%iu_'_w Pwia—c‘ﬂ (24)
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isthe Rabi frequency; and
Yo = 087y [di|B(wa —w),
! (25)
r= 7T|5|22d2idi15((*1a—°0)

are non-Hermitian corrections representing decay of
bound states into the continuum.

Substituting (21) and (22) into (12), we obtain
b1 +y,b; = —b,eM(iA* + %),

iAt

b2+y2b2 - —ble (|/\+r)

where the notation used in (13) is retained. To simplify
analysis of these equations, we consider the case of A =0
(exact resonance). Under this condition, Egs. (26)
reduce to

by +y,b, = —b,(IA* +T*),
b2 +y,b, = —b,(iIA+T).

Again, assuming that £(t) is a slowly varying func-
tion, we treat v;.,, A\, and I as constant parameters.
Substituting by, b, ~ e into (27), we obtain

(26)

(27)

_ _YitYe
l“ll§2 - 2
5 Dllz (28)
I PP = AP =i —iAT D
0

O
+ DEyl

The rea part of this expression describes the decay of
bound states into the continuum, and itsimaginary part
characterizes cyclic transition between bound states.
Therefore, electron transfer between the states |10and
[20will occur with a probability close to unity only if
the real part of (28) is much less than the imaginary
part, which requires that

A>T,y . (29

Thisis a reasonable and expectable result, because the
non-Hermitian corrections in (21) and (22) must be
small as compared to the transition frequency of inter-
est. Moreover, if the driving frequency is not tuned
exactly to resonance, then effective electron transfer
requires that condition (15) be satisfied.

First of all, we note that the non-Hermitian correc-
tions in condition (29) are roughly proportional to the
electron density of states N(E,.) in the quasi-resonant
part of the continuum. As an estimate, we use N(E) ~

JE, which follows from the quadratic dispersion law
for free-electron gas at the bottom of the conduction
band. This assumption obviously implies that the rate
of irreversible decay to the continuum increases with
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E. i.€., it can be minimized by tuning the driving fre-
guency to the lower edge of the continuum.

Now, we consider the Rabi frequency defined
by (24) as afunction of E,. Retaining only the second
term in each summand (sinceit ismuch greater than the
first one because of the resonant denominator), we have

dzkdkl

TES

A Olel? Z P2 ki (30)

As mentioned above, the value of A is mainly deter-
mined by the contributions of energy levels close to
E,, because the oscillating contributions of other terms
cancel one another. Therefore, we can estimate the Rabi
frequency given by (30) as

EetEp
22 1
A Olel°d J' PEl_Er&c
Eres_EO
dN(E ) :
x AN(Ere) + 5= (E' - E)(E,

where d is the dipole moment averaged over the energy
interval between E' ~ E,— Eyand E' ~ E, + Ey, whose
width E, depends on the oscillation period of the func-
tion d,d,;. Then, we have

dN(E/e)

AN———= dE.

For aquadratic dispersion law, thisyields

A —e

=

Even though thisrough estimate is actually not valid for
E. = 0, we can conclude that the Rabi frequency
decreases as E, deviates from the edge of the contin-
uum; i.e., conditions (15) and (29) are satisfied less
accurately.

Thus, the applicability of the result obtained for
E. < 0 isnot restricted by this condition: to optimize
electron transfer between quantum dots, the driving fre-
guency must be quasi-resonant with transitions
between the bound states and energy levels near the
lower edge of the continuum.

The optimal conditionsfor el ectron transfer that fol-
low from the expressions obtained above are consistent
with the theory of multiphoton processes, becauseideal
conditions correspond to avanishing rate of irreversible
decay to the continuum. Since the quasi-resonant states
playing the key role in the process include the lowest
levelsin the conduction band, the efficiency of photoin-
duced electron transfer can only increase in the case of
nonzero density of states at the lower conduction-band
edge.

No. 3 2005



416

6. ANALYSIS
OF HIGHER ORDER CORRECTIONS

Both general considerations and expression (11)
suggest that the resonant two-photon Rabi frequency is
proportional to the squared strength of the driving field.
Therefore, condition (17) will be satisfied more accu-
rately for stronger fields. However, since the analysis
based on expansion (4) is valid for a relatively weak
field, we should use (4) to derive quantitative criteria
for its applicability.

Omitting tedious intermediate calculations, we
present only the final results here. To demonstrate gen-
eral trends, we consider only the matrix element

~ g|"|d €|"|d
ng) ~ | | | k1| z | | | pll
= W~ (W,
A (31)
|8| dlkdkpdpqdql O 1 10

- + =4
k%q (W — W) (g1 — W) QJL)pl -2 0\)p1D

Again, we changefrom wto w+idwithd=+0toallow
for irreversible decay to the continuum. Assuming that
E. is below the lower edge of the continuum (or
dightly higher, so that the corresponding density of
states is negligible) and using the fact that two-photon

resonant states correspond to Er(ei) = E; + 20, we
rewrite (31) approximately as
2 2
~ ~ el"|d :
H(ﬁ)=—H(121)Z Ch kll. inlg’
(W —w—i0)
(32
dqd dyqd
xy P ~— L PR 5wy, — 2w).
W1 —

k p.q

In what follows, we use the dispersion law for free-
electron gas to show that

lel°|chal*

e e e 33
= (W —w—i8)° 39

goestoinfinity at E,, = 0 and decreases as E, deviates
up or down from the edge of the continuum. The former
trend can be interpreted as a departure from the disper-
sion law due to resonant coupling between the bound
states and the edge of the continuum. Thus, the first
term in (31) is the minimal detuning of E, from the
edge of the continuum for which the analysis presented
above holds. The off-resonant mechanism of electron
transfer must remain effective even in the case of
sharper tuning to the edge of the continuum, but expres-
sions (23) and (24) for Stark shift and Rabi frequency
become inapplicable. We estimate below the minimal
value of |E,| asthat corresponding to (33) on the order
of unity. Analysis of the case when (33) is substantially
greater than unity is outside the scope of the present
study.
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It isobviousthat electron transfer between gquantum
dots can be effective only if the second term in (31)
(two-photon ionization) is small as compared to the
Rabi frequency. In other words, there exists an upper
limit for the driving field strength

dlkdkp dodes
k p.q (34)
Aoy
X 6((}%1—200) < zpm
k

If required, this condition can be reformulated as a
restriction on the Rabi frequency.

7. EVALUATION OF THE RABI FREQUENCY

In accordance with the results obtained above, we
assume that the quasi-resonance values of E, are near
the lower edge of the continuum, but (33) is much less
than unity. To be specific, we assumethat E, < 0. Since
the second termin (19) is negligible as compared to the
first one, we have

dacdia |
(2T[) IEk |Eres|
Using the dispersion law for free-electron gas and

introducing q = ./2m* |E.o{ , where m* is an effective
€lectron mass, we rewrite (35) as

A Olel? (35)

A OlelP—L 2 (L2t gy (36)
+q

2r® JKk2+

Since thisintegral is dominated by the contribution
of stateswith energiescloseto E,, and the correspond-
ing wavefunctions are plane waves (distorted near the
quantum dots) with wavelengths decreasing with
increasing energy, the integrand in (36) is characterized
by complicated oscillatory behavior due to two factors.
First, the magnitudes of d,, and d,, are complicated
functions of k. Second, the integrand’s phase exhibits a
periodic variation that can approximately be repre-
sented as dydy; = |dy and d,,|€", where L isthe char-
acteristic distance between the quantum dots. Recalling
that the quantum dots represented by localized states |10
and [2[lare separated by a sufficiently large distance in
the present model (asin rea systems of this kind), we
can assume that the oscillatory behavior is mainly
determined by the second factor.

To obtain a rough estimate for (36), we restrict the
limits of integration to the sphere of radius k., = /L
(where the first oscillation is localized) and use con-
stant approximate values of both d,, and d,;:

3
~d . ~en |&
d, =d,, =ea v

(37)
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Here, a is the characteristic quantum-dot size, and the
radical reflects the fact that the product of a wavefunc-
tion Y, normalized to V with a function ;. , localized
in the neighborhood of the corresponding quantum dot
reduces the domain of integration to a volume on the
order of a3. Under these assumptions, we estimate (36)
as

% dk
A Olel? 2m* 4 . 38
e e

Theestimatefor (33) given bel ow showsthat E, can be

such that ¢? does not exceed k-, . Recovering dimen-
siona Planck’s constant, we evaluate (38):
le|?e’m* a°

mL

For a~ 10 nm, L ~ 100 nm, and n* ~0.1m,~ 102 g
(i.e., under unfavorable conditions with regard to the
requirement of large transition energy), we obtain A ~
107 eV even for a relatively weak driving field with

le| ~ 10° V/cm. It should be noted here that the optimal
range given in [2] was A ~10°-10*eV.

AO (39)

8. ESTIMATES FOR LIMITING CONDITIONS

The results obtained in the preceding section dem-
onstrate that the proposed mechanism has awide scope
in terms of the energy (and therefore, time) required to
transfer an electron between quantum dots. However,
we should also estimate the upper limit for the driving
field strength given by (34). Repeating the analysis pre-
sented in the preceding section and restricting the
domain of integration to 1/a, we obtain the following
estimate for the right-hand side of (34):

d1kdkp

oy
(*)kl

Ok | ngvm f N(E?),

podas 6( b1 — 20)
(40)

where d is the characteristic magnitude of the dipole
moment corresponding to transitions between the
bound states and continuum, D isan anal ogous quantity

for transitions between continuum states, E = E, +
2w corresponds to two-photon absorption, and N( Efg)

isthe corresponding density of states.

The matrix elements for transitions between contin-
uum states are estimated as

D DeILp’k‘qupdr.

The nonzero value of thisintegral is entirely dueto the
contributions of the neighborhoods of the quantum

(41)
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dots. The integral over the rest of the space vanishes,
because the transitions between continuum states of
interest here may not preserve quasi-momentum.
Therefore, D is a very small quantity on the order of
a®/V. Note that matrix element (41) couples a state with
energy E, near the lower edge of the continuum to a
state with E, comparable to the driving-field energy
quantum; i.e., the wavefunction , oscillatesfaster than
y,,. Therefore, the value of the integral in (41) is deter-
mined by the oscillatory behavior of ), and the char-
acteristic interval of variation of the integrand is

1 1
0= .
K™ J/mw
Hence, (41) can be estimated as
3 3
a 1 a
D DeaovD emv. (42)
Note also that the density of statesis
N(E2) = N(w) DV(m*)* e, (43)

Combining (37), (40), (42), and (43) and recovering
dimensional Planck’s constant, we reformulate condi-
tion (34) asfollows:

714, 1/4
h

le| < (44)

ea I_1/2( *)3/4
Following [2], we set w ~ 0.1 eV and find that inequal-
ity (44) yields|e|~10*V/cm. Using expression (39), we
obtain the limiting condition

aﬁ3/20‘)1/2

L (m*)1/2

for the Rabi frequency, which yields A < 1072 eV for
the characteristic val ues specified above. Since our esti-
mates show that the restrictions due to two-photon ion-
ization can be either irrelevant or essential, they should
be taken into account more accurately. For example,
two-photon ionization can be ignored when the sys-

tem’s parameters are such that Eﬁg liesin the band gap.

A < (45)

Now, we consider the restrictions due to the first
termin (31). Performing an analysis analogousto (35)—
(39), we obtain the following estimate for (33):

z E |dk1| |.€|2e2(m*)2a5 le|%e’(m*)¥%a
(0~ fi'g |

Itisclear that, first, the sum is divergent in the case of
sharp tuning to the edge of the continuum and, second,
the sum is much less than unity if

3/2_5

le|*e (m*)3alO om* L?
B > ELET) & a2 (46)
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It should be noted here that both condition (34) and
estimates (44) and (45) impose physical restrictions
on electron transfer due to two-photon ionization,
whereas (46) only restricts the applicability of the anayti-
ca expressions used to describe off-resonant eectron
trandfer, rather than itsimplementation. If || ~ 10° V/cm,
then

|E. > 10°eV. (47)

Thus, the estimates obtained meet conditions (46) and

(47). For example, if |E,o ~ 105 €V, then @2 < K,

which justifies the derivation of estimate (39) from
expression (38).

Finally, we evaluate condition (18), which imposes

the most essential restriction on the mechanism of two-
photon-assisted electron transfer. According to expres-

sions(10) and (11), the Stark shift is Eif , iIsaquantity
comparable to, or even greater than, the Rabi fre-

qguency A\, irrespective of the driving field strength.
Since identical quantum dots, for which condition (18)

isobviously satisfied (E; = Ej ), cannot be created by
using present-day technologies, we should analyze the

effect of dissimilarity between quantum dots on the dif-
ferencein Stark shift.

Following the derivation of (35)—39) and using the

estimated,, ~ eaOA/a3/V , Where ag(K) ~min(a, k), we
obtain

262 m* 3
Ex2 DlslT- (48)
We see that the Stark shift strongly depends on the
guantum-dot size; i.e., condition (18) can be violated
even the difference in geometry isrelatively small. Let
consider the unfavorable case when the quantum dots
are similar in shape, but differ in size, i.e, da = a, —
a, < a. Using estimates (39) and (48), we rewrite con-
dition (18) as

dalL

A
= 4== < 1.
a

A a
We note here that a condition less restrictive than (49)
isobtained for quantum dotsthat are almost equa in vol-
ume, but dissimilar in shape. To extend condition (49) to
arbitrary size and shape, we represent it as follows:

oaLl
a

(49)

A
A ST
where C ~ 1-10 is a dimensionless constant character-
izing the combined effect of geometric parameters.
In our estimates presented above, we assumed that
L ~ 10a. Accordingly, condition (50) is satisfied if dais
smaller than a by at |east two orders of magnitude, i.e.,
if da~ 0.1 nm, whichissmaller than the thickness of an
atomic layer. In other words, electron transfer between

(50)
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small quantum dots (a ~ 10 nm) will be suppressed
even if they differ in size by only one atomic layer.

Let us now consider more favorable cases, compar-
ing our results with those obtained for electron transfer
in a double-dot system viaathird bound state (Fig. 1a)
in [3], where suppression due to the difference between
the dots was analyzed. We assume that the driving field
is sufficiently strong to ensure that Ay > A, and
neglect the time-independent energy difference A,.
Following [3], we consider two cases.

Case l:

a=20nm, da=02nm$m, L =80nm. (51)

If two-photon ionization is negligible, then we can
combine (50) with (16) to obtain the probability of elec-

tron transfer |b,|2,, =1—4 x 104C2 For C between 1

and 10, the transfer probability varies from 0.9996 to
0.96.

Case 2:

a=60nm, da=02nm, L=240nm. (52)
In this case, |by2, = 1 — 4.4 x 10-5C? varies from
0.99996 to 0.996.

We should note here that the parameter values
in (51) were found to be totally unsuitable for electron
transfer, while the electron-transfer probability corre-
sponding to (52) amounted to 0.9. Thus, two-photon-
assisted electron transfer is much less sensitive to dif-
ference between the quantum dots, as compared to the
three-level mechanism analyzed in [2-8]. We also note
that additional electrostatic potentials can be applied to
shift energy levels so that A = Ay + Ay = 0. Under this
condition, difference in quantum-dot geometry will be
insignificant, whereas it is essential for a three-level
system [3].

9. CONCLUSIONS

Off-resonant two-photon-assisted electron transfer
between two quantum dots can be observed and utilized
in various quantum-dot systems. However, it is very
difficult to study in ordinary atomic and molecular sys-
tems, since the process strongly depends on the size of
guantum dots and the distance between them. In partic-
ular, it cannot be observed in a weakly ionized atomic
and molecular gases characterized by normal inter-
atomic distances and depolarizing-collision frequen-
cies. Prospects are somewhat better for Rydberg atoms,
but the most important role can be played by this mech-
anism in magneto-optical trapping and cooling of
atoms. In[19-21], it was shown that magneto-optically
trapped atoms should be modeled by using an energy
level system analogous to that illustrated by Fig. 1b,
and atom transfer between traps with energy levels E;
and E, driven by a bichromatic pulse was discussed
under the Raman resonance condition w; —w, = E,—E;.
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However, continuum states have never been taken into
account correctly in models of magneto-optical trap-
ping of ultracold atoms. The off-resonant transfer
mechanism proposed here can be extended to atom
transfer between magneto-optical traps with E; = E,.
The key formulas obtained in this study will hold
within the framework of asimple model of off-resonant
atom transfer, but the corresponding numerical esti-
mates will be different.

Analysis of off-resonant two-photon-assisted elec-
tron transfer in a liquid must allow for interaction
between molecules and may require more accurate
modeling of molecular terms. However, since the com-
plicated pattern of intersecting molecular termsin elec-
tromagnetic field must be give rise to various nonadia-
batic transitions, the transfer mechanism in question
will hardly play any significant role.
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Abstract—We discuss an approach to the discrete quantum gravity in the Regge cal culus formalism that was
developed in anumber of our papers. The Regge calculusis general relativity for asubclass of general Rieman-
nian manifolds called piecewise flat manifolds. The Regge calculus deals with adiscrete set of variables, trian-
gulation lengths, and contains continuous general relativity as a special limiting case where the lengths tend to
zero. In our approach, the quantum length expectations are nonzero and of the order of the Plank scale, 1073 cm,
implying a discrete spacetime structure on these scales. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Interest in the formulation of general relativity (GR)
in discrete form stems primarily from the complexity of
the theory. In a classical aspect, rewriting the essen-
tially nonlinear equations of the theory, the Einstein
equations, in terms of a discrete set of physical quanti-
ties, i.e.,, discretizing them, facilitates the use of numer-
ica methods for their solution. In a quantum aspect,
discretization can be introduced, as in any other field
theory, to regularize the originally divergent expres-
sions. However, in the case of GR, we have the follow-
ing two distinctive features. First, according to the stan-
dard classification, GR is a nonrenormalizable theory;
therefore, the dependence of the result on the specific
choice of regularization cannot be eliminated by renor-
malization. Consequently, in this case, discretization
must be not only a mathematical approximation like a
finite-difference approximation of the originaly con-
tinuum theory, but be realizable physics specifying the
form of the theory at small distances. Second, the cova
riance of the theory relative to arbitrary coordinate
transformationsis specific to GR, and this property isin
poor agreement with the quantum theory, in which the
time plays a prominent role. To overcome this diffi-
culty, one can try to formulate GR in an explicitly coor-
dinateless form.

In the Regge calculus suggested in 1961 [1], the
exact GR deals with a special case of general Rieman-
nian spacetime, the so-called piecewise flat manifolds,
which are flat everywhere except for the subset of
points of zero measure. Any such spacetime can be rep-
resented as consisting of flat 4-dimensional simplexes
(tetrahedrons). In the n-dimensional case, n-dimen-
sional simplexes o" are considered. An n-dimensional
simplex o" consists of n + 1 vertices each of which is
connected by the edges with the other n vertices. All the
geometrical characteristics of the n-simplex are
uniquely defined by the (freely chosen) lengths of its

n(n + 1)/2 edges. The Regge spacetime geometry is
defined by freely choosing the lengths of all its edges,
i.e., 1-simplexes. The link lengths of the two n-sim-
plexes sharing an (n— 1)-simplex as their common face
must be equal on thisface. If, however, we consider al
the n-simplexes containing an (n —2)-simplex as an
(n—2)-dimensional face, then, in general, this mani-
fold cannot be embedded in flat n-dimensional space-
time when the link lengths are chosen freely, since the
sum of the hyperdihedral angles of all the n-simplexes
meeting on this (n — 2)-dimensiona face is 21— q,
where the so-called angle defect a is not necessarily
equal to zero. Inthe case of parallel trandlation of avec-
tor along a closed contour contained in the above n-
simplexes and enclosing the (n—2)-simplex in question,
the vector is rotated through the angle a. This corre-
sponds to a &-function curvature distribution with the
support on (n —2)-simplexes proportional to the angle
defects on these simplexes. The action for 4-dimen-
sional Regge spacetime is proportional to

3 aqlol, (1)

where |0?| isthe area of triangle 0® (2-smplex), a . is

the angle defect on this triangle, and the summation is
over all the 2-simplexes o2 Friedberg and Lee [2]
showed that action (1) could be obtained from the
expression

% [RJga"x, @

to which the Einstein action is proportional, by passing
to the &-function limit of the curvature R distribution.
Thus, the Regge calculusis GR in which all the degrees
of freedom except a discrete number of them are fro-
zen, i.e., the so-called minisuperspace theory for GR. In
thisway, the first of the requirements mentioned above
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DISCRETE QUANTUM GRAVITY IN THE REGGE CALCULUS FORMALISM

is satisfied; more specifically, a Regge manifold is a
specia (although partly singular) case of ageneral Rie-
mannian manifold. In addition, the mutual arrangement
of the vertices (0O-dimensional simplexes % and,
hence, the geometry are uniquely fixed by the freely
chosen invariant lengths of the edges (1-simplexes ab),
which, thus, act asfield variables. Therefore, the second
requirement, the possibility of acoordinatel ess descrip-
tion, is aso fulfilled.

Although the Regge calculus is only a subset in the
configuration superspace of GR, this subset isdensein
this superspace. This means that each nonsingular Rie-
mannian manifold can be approximated with an arbi-
trarily high accuracy by aproperly chosen Regge man-
ifold. Such a Regge manifold can be constructed by
dividing, for example, a Riemannian manifold into
fairly small regionstopologically equivalent to the sim-
plexes a* whose edges are geodesics. As the sought-for
piecewise flat manifold, we can take a manifold of this
type with the same topology, vertex connection
scheme, and link lengths as those for the above division
of the Riemannian manifold. Feinberg et al. [3] showed
that the Einstein action (2) isobtained asthe limit of the
Regge action (1) for approximating spaces where the
typical edgelength (triangulation length) tendsto zero. A
more genera statement was proven by Cheeger et al. [4]
for the n-dimensional case: the so-called Lipshitz—Kill-
ing curvatures converge to their continuum analogs in
the sense of measures if the decomposition into
4-simplexes becomes increasingly fine; i.e. the inte-
gras of the quantities under consideration over the
spacetime regions converge. The volume of aspacetime
region and the contribution of the region to the Einstein
action and to the Gauss-Bonnet topological term are
special cases of these integrals.

The Regge calculus has exact discrete analogs of
many quantities that can be defined in the continuum
GR. The Einstein equations whose discrete analog was
obtained by Regge by varying action (1) over the link
lengths serve asthefirst example. It turns out that vary-
ing a . in (1) makes no contribution, and the equation

derived by varying the length of a specific edge ot is

> a_.cotd (o, 0°) = 0. ©)

o’0¢’

Here, 9(ot, 0?) isthe angle in the triangle 62 opposite
to the edge o, and the summation is over al the trian-
gles with o' as a common edge. Evidently, the discrete
coordinatel ess formulation in terms of physical quanti-
ties (lengths) isideally suited for numerical smulations,
and the Regge calculus was originally used precisely for
anumerical analysis of the Einstein equations [5].

However, the Regge calculus aroused the greatest
interest when applied to quantum gravity. In this aspect,
the main problem consisted in constructing a Hamilto-
nian formalism analogous to the Arnowitt—-Deser—-Mis-
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ner formalism in the continuum GR [6]. In accordance
with their result, the GR Lagrangian can be reduced to

L= z pAqA—ZAqua(p, a) @)

with the canonical variables p, and g, and the variables
A, &cting during the variation as the Lagrange multipli-
ers whose values and dynamics cannot be determined
from the egquations of motion. Thus, GR is a theory
described by the set of constraints ®,(p, q) = 0 and a
zero Hamiltonian. In the case of the basically coordi-
nateless Regge calculus theory, we had to partly return
to the coordinate description, but with regard to only
one coordinate, thetimet, to passfrom the discretefield
distribution (in our case, the lengths and their func-
tions) to a distribution smooth in t. The passage to the
so-called (3+1) Regge calculus (discrete three-dimen-
sional space plus continuoustime) has been undertaken
in anumber of papers[7—18]. In general, the authors of
these papers tried to define in one way or another the
discrete analogs of the variables s p, and g, and the
constraints @, (p, q), with emphasis on the requirement
that the algebra of the Poisson brackets for these con-
straints be close to that in the continuum GR. If we
adhere to the strategy that requires dealing with a spe-
cia case of a Riemannian manifold at each stage, then
the (3+1) Regge calculusis obtained as the limit of the
4-dimensional Regge calculus when the sizes of the
4-simplexestend to zero in acertain direction chosen as
the direction of time. This passage to the limit was stud-
iedin[7, 8, 15, 16]. In particular, we see asource of dif-
ficultiesthat did not allow the formulated problem to be
completely solved in the cited papers: it consistsin the
singular nature of the description of simplexes using
the link lengths when the sizes along a certain direction
tend to zero. Asanillustration, one can imagine atrian-
gle one of the edges of which isinfinitesimal: infinites-
imal variations in the two other (finite) edge lengths
then lead to finite variations in the angles. As a result,
not all of the degrees of freedom can be described inthe
chosen length-type variables in anonsingular way, and,
hence, not al of the discrete analogs of the constraints
D, (p, g) can be found.

2. THE PROBLEM OF CONSTRUCTING
THE QUANTUM MEASURE IN THE REGGE
CALCULUS

Thus, the singular nature of the passage to continu-
ous time is associated with the use of the lengths alone
asafundamental set of variablesin the Regge calculus.
As long as we are studying the quantum measure on a
completely discrete Regge manifold, this circumstance
is of no importance to us. However, the basic concept
underlying the quantum theory that can be used to con-
struct the quantum measure is canonical quantization;
the latter is defined precisely in the continuous time.
Therefore, the sought-for quantum measure should be

No. 3 2005



422

defined from the requirement that it tend, in a sense, to
the canonical quantization measure (Feynman path
integral) whenever the continuum limit is taken along
any of the coordinates, with the coordinate chosen act-
ing as the time. In other words, the continuous time
limit serves as a probe for defining the quantum mea-
sure in acompletely discrete Regge calculus.

The singularitiesin the continuous time limit can be
bypassed by extending the set of variables viathe addi-
tion of new ones that have the meaning of angles con-
sidered as independent variables. The finite rotation
matrices, discrete analogs of the connections in the
continuum GR, are such variables.

3. REPRESENTING THE REGGE CALCULUS
IN TERMS OF THE FINITE ROTATION
MATRICES AS INDEPENDENT VARIABLES

The situation considered is analogous to rewriting
the Einstein action (2) in the Hilbert—Palatini form,

%J’ R.J/gd*x
1 AUVp a b cd 4 ®©)
O éfeabcde e e [0, + w,, 0, + w,] "d’x,
wherethetetrad 2 and the connection wi® = —w,* are
independent variables; Eq. (5) isreduced to (2) interms
of g, = eiea“ if we substitute the solutions of these
equations of motion for these variablesin termsof €} =

ey ey, for o.”. TheLatinindicesa, b, c,... are vectorial

with respect to thelocal Euclidean framesintroduced at
each point x. The Regge calculus analog of representa-
tion (5) isobtained if thelocal Euclidean frameisintro-
duced in each 4-simplex. The transformation matrices

Q_. between the framesin two 4-simplexes 0* sharing

o° as their three-dimensional face defined on 3-sim-
plexes a® are then the anal ogs of the connections. These
matrices are finite SO(4) rotationsin the Euclidean case
(or SO(3,1) rotations in the Lorentzian case), in con-
trast to the continuum connections mib, which are the
elements of the Lee agebra so(4)(so(3,1)) of this
group. In this case, it isimportant to specify the direc-
tion in which the connection ch acts (and, accord-

ingly, Q;i = Qs acts in the opposite direction),
i.e., the connections Q are defined on oriented 3-sim-
plexes a®.

We can al so define the curvature matrix R62 on each

2-simplex o2 as the product of the connections Q? on

the 3-simplexes 02 sharing o2 that act in acertain direc-
tion along a closed contour enclosing a2 once and con-
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tained in these 3-simplexes. Thematrix R . should rep-

resent the rotation around o? through the angle a.

Apart from the direction along the contour, it is neces-
sary to specify the 4-simplex o O ¢ in which the con-
tour begins and ends, i.e., the simplex in the local
Euclidean frame of which we define the matrix

Roz = rl Qig (6)

o*0o?

Discrete analogs of the connection and curvature were
discussed by Bander [19, 20, 21] asfunctions of length.
Our approach is based on treating the connections as
independent variables and studying a representation of
the Regge cal culus action (1) analogous to the Hilbert—
Palatini form of the Einstein action (5). To write out this
representation, let us define the dual bivector of the tri-

angle 02 in terms of the vectors 15 and |5 of its edges
defined in a4-simplex containing o2

1
= S€apeal1l2- (7)

Vozab

The discrete analog of expression (5) suggested in our
work [22] then reads

(v, Q) L Vo ROZ(Q) ®
v,Q) = 2 v | arcsin———2—
| o| |V02|

2
a

where for the two tensors A and B, we defined

AoB = %AabBab, A = (Ao A

in particular, |v . |= |0?| isthe area of thetriangle. It is
important that v . and R . in (8) be defined in the

same 4-simplex containing o2. As can be shown, if we
substitute the actual rotations connecting the neighbor-
ing local Euclidean frames and corresponding to the

actual Regge lengthsin the equation of motion for Q .
with action (8) as the variables Q ., we get a closure

condition for the surface of the 3-simplex a® (the sum
of the bivectors of its 2-faces being equal to zero) writ-
ten in the frame of one of the 4-simplexes containing
o3, i.e., anidentity. This means that (8) is an exact rep-
resentation for (1).

4. THE NATURALNESS OF PASSING
TO THE AREA TENSOR REGGE CALCULUS

In the representation based on the rotation matrices,
we can pass to continuous time and devel op the canon-
ical formalism in the Regge calculus [23], which has
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second-class (i.e.,, noncommuting) constraints. As a
result, the Feynman path integral contains the determi-
nant of the Poisson brackets of the second-class con-
straints as a factor which is singular in a flat geometry.
The point is that the Regge manifold geometry gener-
aly changesat any variations of the edge lengths except
for the flat case in which these variations are symmetry
transformations. In other words, the division of the con-
straints into those of the first and second classes
changesin theflat case. The 3-dimensional case consti-
tutes an exception. Due to the local triviality of the
3-dimensional gravity, al the dynamical constraintsare
first-class ones, and, therefore, the path integral takes a
simple form. In this case, the problem of constructing
the discrete quantum measure formulated in Section 2
can be solved toyield asimpleform of thismeasure[24].

The conditions imposed on the discrete measure in
Section 2 are highly restrictive, and, in genera, the
existence of asolution isnot obvious. Thesingularity of
the path integral in 4 dimensions near a flat geometry
per se is not an obstacle to the existence of a solution;
the presence of the above determinant factor in the path
integral iscrucial. Thisfactor depends on variables that
arelattice artefacts connected with aspecific coordinate
along which the continuum limit is taken, and, there-
fore, it can not be obtained from a universal expression
by assuming a continuous time limit.

Let ustry to modify the 4-dimensional Regge calcu-
lus to resemble the 3-dimensional case in canonical
structure. The 3-dimensional Regge calculusin arepre-

sentation analogous to (8) has the edge vectors | ,

instead of the area tensors v .. The edge vectors are

independent variables, thereby ensuring the local trivi-
ality of the 3-dimensional gravity. In contrast, the area
tensorsare not independent. For exampl e, the tensors of

the two triangles o> and o5 with a common edge sat-
isfy the relation

ab cd _
€abcdV 2V 2 = 0. 9)

The idea is to construct the quantum measure first for
the system with formally independent areatensors, i.e.,
to initially concentrate on the quantization of the
dynamics, while kinematical relations of type (9) are
taken into account at the second stage.

In the area tensor Regge calculus, the problem of
constructing the discrete quantum measure can be
solved to yield asimple form of this measure [25]. Let
us consider the Euclidean case. Since the Einstein
action is known to be not bounded from below, the
Euclidean path integral itself requires aredefinition. In
particular, the result of [25] for the vacuum expecta
tions of the functions of our field variables v and Q can
be written using integration over imaginary areas by a
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formal replacement for the tensors of a certain subset of
areas Ttover which theintegration in the path integral is
performed,

m— T,
in the form
w{n. {Q})o= J’“P(—i{TEl AQ)
§ 0
X exp g—t%ercz ° RUZ(Q)é

O O (10)
O O

0 O s
B z T[0_2 o RUZ(QE |_| d T[o_zl_l @903
01 e Ofe

() )

X exp

sJ’W(—i{T@l AR ) darea(=1{T8,{Q}),

where for the two tensors A and B, we defined

AoB = %AabBab.

The equation implies a certain structuring of our
Regge lattice that suggests constructing it from leaves,
structurally similar 3-dimensional Regge geometries.
The leaves are numbered by the values of a coordinatet.
The corresponding vertices in the neighboring leaves
are connected by the t-like edges, and there are diago-
nal edges connecting the vertex with the neighbors of
the corresponding vertex in the neighboring leaf. It is
then natural to define the t-like simplexes and the leaf
simplexes as simplexes that either contain at-like edge
or are completely contained in the leaf, respectively, as

well as the diagonal simplexes as all others. Then, T .
is Ve when a2 ist-like, and T is Ve when a2 is not
t-like, i.e, the leaf or adiagona simplex. In the Regge
calculus with independent area tensors, T, Can serve
as dynamical variables, while t_. must be chosen as
parameters.

In many respects, EQ. (10) resembles the intuitively
expected expression for the quantum measure. In par-
ticular, the expected (from symmetry considerations)
invariant (Haar) measure on SO(4) 9Q arises in the
formal path integral expression corresponding in the
continuous time limit to the canonical quantization

with the kinetic term Tt o QGQQOZ in the Lagrangian
(the connection variablesin the continuoustimelimit Q
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naturally correspond not to the tetrahedra a2, but to the
triangles 0?).

The specific features of the quantum measure
include, first, the absence of the inverse trigonometric
functions arcsin in the exponential, while the Regge
action (8) contains such functions. This is because the
canonical quantization is used at the intermediate stage
of the derivation: in gravity, this quantization is com-
pletely defined by the constraints, the latter being
equivalent to those without arcsin (in asense, on-shell).
Second, there are no integrations over some of the ten-

SOrS, T 2, and, thus, the symmetry between different tri-

anglesisincomplete. Nevertheless, this symmetry vio-
lation can be considered as spontaneous when some
apriori arbitrary direction denoted by the coordinate t
in (10) is singled out. The curvature matrices R(Q) on
all but t-like triangles can be chosen as independent
variables; these matrices on the t-like triangles are then
(viathe Bianchi identities) functions of these variables.
Integrations over al area tensors would lead to singu-

larities of the type [8(R— R)]2

This specific feature of the discrete quantum mea-
sure, incomplete symmetry with respect to different
coordinate directions, is consistent with the above
conditionsimposed oniit in Section 2: In the continuous
limit along some coordinate x (which does not
necessarily coincide with t), the absence of integrations
over the tensors of the t-like triangles implies some of
the simplest kinds of gauge fixing in the limiting mea-
sure, namely, fixing the tensors of some subset of tri-
angles[25].

Given the properties of the invariant Haar measure
and with negligible values of T ., we obtain factoriza-

tion of theinferred quantum measureinto “ elementary”
measures on separate areas (which precisely corre-
sponds to the local triviality of the theory) of the form

exp(ime R)A° NI R. (1)

In turn, we use the group property
SO(4) = SU(2) x SU(2)

to split the variables (Ttand the generator of R) into self-
and antiself-dual parts, in particular, TTis mapped into
two 3-vectors, *rt and =, in the adjoint representation
SO(3). As aresult, measure (11) is the product of two
measures each of which actsin the 3-dimensional con-
figuration space of area vectors,

exp(i'me 'R)d* 2% 'R

(12)
x exp(i e R)A* 7D R.

As aresult, the expression for the expectation of any
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function of the triangle areareads

OF (0 = If (i Tt)dGTtIe”” "R

J'f( )
_ e do I
v(l) = FJsinzq)expE Sincl)%
0

In particular, the expectations of the powers of the area
squared,

vo(I"ml)v(|x))d®*nd®x
|ﬂ|2 |2 4Tt 41’

(13)

s

M? = e = 3wy +2(w)’, (14)
2 2
and of the dual product,
_ 1_ + 2_1_ — \2
Tt TU = 2( n) 2( TC) ’ (15)

can be easily obtained by averaging the powers of 11,

)P0 = 4‘k(2k+1)'(2k)
K

(16)

5. RETURNING TO THE STANDARD
REGGE CALCULUS

Thus, we obtained finite nonzero area expectation
values in the area tensor Regge calculus. However, we
need the length expectationsin the ordinary Regge cal-
culus, which is derived by imposing uniqueness condi-
tions on the lengths calculated in different 4-simplexes.
These conditions are equivalent to the continuity condi-
tions for the metric induced on 3-dimensional faces. In
the configuration space of the area tensor Regge cal cu-
lus, these conditions separate out some hypersurface
I rege- ThE quantum measure can be considered asalin-
ear functional p,e(W) on the space of functionas
W({v}) on the configuration space (for our purposes, it
will sufficeto restrict ourselvesto the functional depen-
dence on the set of areatensors{ v}; the dependence on
the connections is unimportant). The physical assump-
tionisthat we can consider the ordinary Regge calculus
as akind of state of a more general system with inde-
pendent areatensors. This state can be described by the
functional

Y{v}) = W v} )Orege({ v} ), (17)

where Ogeyqe({ V}) is the (multidimensional) &-function
with the support on IMgeyee. The derivatives of dgeyqe have
the same support, but these violate the positivity in our
subsequent construction. To be more precise, the
o-function is adistribution rather than afunction, but it
can be treated as a function being regularized. If the
measure on such functionals exists in the limit when
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regularization is removed, this allows us to define the
quantum measure on I geyee,

uRegge(') = uarea(6Regge({ V} )) (18)

The construction of dgegqe IS UNiQue under the natu-
ral assumption that the lattice artefacts are at a mini-
mum. L et the system be described by the metric g, that

is constant in each of the two 4-simplexes o} and o
separated by the 3-face

3 4 4
0° = 0;n 0,

formed by three 4-vectors 1. These vectors also spec-
ify the metric induced on the face,

I — AH
Oab = lalpOap-

The continuity condition for the induced metric can be
expressed in terms of the d-function of the metric vari-
ations,

A9 € gho(07) — gky(03). (19)

Naturaly, éRegge itsalf is defined to within a factor,
which is an arbitrary function nonvanishing at nonde-
generate field configurations. In the spirit of the above-
mentioned principle of the lattice artefacts being at a
minimum, it is natural to choose this factor in such a
way that the resulting &-function factor depends only
on the hyperplane specified by the 3-face, but not on the
shape of this face; i.e, it is invariant with respect to
arbitrary nondegenerate transformations,

1) — mot.
This requires multiplying the d-function by the deter-
minant gﬂb squared to give

[det(12180,,)] 3° (115D 20y,) = V2:3%(A S .). (20)

Here, S isthe set of the squares of the edge lengths of
the 3-face o3, and V . isthe volume of this face.

Further, the product of the factors (20) over al 3-
faces should be taken. As a result, for each edge, we
obtain the products of the d-functions of the variations
in its length between the 4-simplexes taken aong
closed contours,

0(81—5,)(S, —S3) .. O(Sn = 1),

which contain asingularity like the d-function squared.
In other words, the conditions equating (19) to zero on
different 3-faces are not independent. A more detailed
analysis allows us to cancel out this singularity in a
symmetric (with respect to different 4-simplexes) way
(thereby extracting the irreducible conditions); the
resulting o-function factor remains invariant with
respect to arbitrary deformations of the faces of differ-
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ent dimensions keeping each face in the fixed plane
defined by it [26].

Qualitatively, it isimportant that our &-function fac-
tor (in the simplest case, (20)) automatically turns out
to beinvariant with respect to the overall length scaling.
Recall, however, that the area tensors T2, but not T2,

are the dynamical variables to be averaged. A more
detailed analysis shows that, having fixed the scale of

the tensors T.a alevel of € < 1, we can consider the

o-function factor to be also invariant with respect to the
overall scaling of the dynamical variables Tt . alone.

Thisimpliesfinite nonzero length expectation valuesin
the ordinary Regge calculus as long as the area expec-
tation valuesin the areatensor Regge calculus arefinite
and nonzero [27].

Strictly speaking, when passing from the area tensor
Regge calculus to the ordinary Regge calculus, wefirst
need to impose conditions ensuring that the tensors of
the 2-faces in each specific 4-smplex defineametricin
this simplex. These conditions of type (9) can be easily
written in general form if we take a vertex of the given
4-simplex as the coordinate origin and consider the
edges emanating from it to be the coordinate lines A, ,
v, p, ... =1, 2, 3, 4. The (ordered) pair Ap then means
the (oriented) triangle formed by the edgesA and 1. The
sought-for conditions are

Eabcdviﬁv\czz De)\uvp' (21)
The 20 equations of (21) define the 16-dimensional sur-
face y(o*) in the 36-dimensional configuration space of

thesix antisymmetric tensors® v5,, . The sought-for fac-
tor in the quantum measure isthe product of the d-func-
tions with the support on y(o*) over all 4-simplexes o*.
The covariant form of constraints (21) with respect to
the world index means that these d-functions are scalar
densities of a certain weight with respect to the world
index, i.e., scalarsto within the powers of the volume of
the 4-simplex V .. Therefore, introducing factors of

thetype V24 , We can get the scalar at a certain parame-
ter n. More specifically, the product of the factors

21 b d
|_|IV246 (Gabcd V;MOA V\(jp\GA —V04E)\“vp)dV04 (22)
4
o

at n =20 isascale-invariant quantity asrequired by the
principle of the lattice artefacts being at a minimum
(i.e., the sought-for factor should not depend on the size
of the 4-simplex). Asaresult, the conclusion reached in
the previous paragraph about finite nonzero length
expectation valuesin the ordinary Regge calculusaslong

1 There are also linear constraints of the type Z +v =0 ensuring

the closure of the surfaces of the 3-faces of our 4-simplex. It is
implied that these constraints have already been resolved.

No. 3 2005



426

as the area expectation values in the area tensor Regge
calculus arefinite and nonzero remains valid [27].

6. CONCLUSIONS

Thus, our approach to quantizing the Regge calculus
“from the first principles’ includes the following steps
and conditions.

(1) Constructing the quantum measure that reduces
to aFeynman path integral corresponding to the canon-
ical quantization in the continuous time limit irrespec-
tive of which coordinate is taken as the time.

(2) Using the exact representation of the Regge
action in terms of the rotation matrices as independent
variables.

(3) Extending the configuration space of the theory
by considering the area tensors as independent vari-
ables (considering the so-called area tensor Regge cal-
culus).

(4) Reducing the quantum measure from the area
tensor Regge calculus to the hypersurface correspond-
ing to the ordinary Regge calculus using the principle
of thelattice artefactsbeing at aminimum, i.e., minimal
dependence on the shape and size of the simplexes.

As a result, we obtained quantum Regge length
expectations of the order of the Plank scale, 1033 cm. If
theselength valueswere zero, thiswould just imply that
the quantum measure is saturated by arbitrarily small
Regge edge lengths, i.e., smooth Riemannian mani-
folds, and, in fact, we would return to the continuum
GR. Here, aremarkabl e property of the Regge calculus
appears. thisis the minisuperspace GR theory, in other
words, exact GR for certain (piecewiseflat) spacetimes.
Therefore, the Regge calculus in the quantum theory
does not mean abandoning continuum GR (it contains
thistheory asthelimiting point), but is rather adescrip-
tion of the system using an alternative set of variables,
triangulation lengths. Our result, nonzero length expec-
tations, implies that GR is adequately described pre-
cisely by these variables when GR becomes discrete on
the Planck scale dynamically, i.e., via competition
between the various contributions in the functional
integral, including the contribution of smooth mani-
folds.
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Abstract—An experimental procedure employing setups with standard resolution characteristics for multiple
small-angle neutron scattering in fractal and nonfractal media is described. Specific features of the proposed
method, which are related to alimited resolution of the spectrometer, are considered in the case of large-scale
inhomogeneities with the characteristic size exceeding the inverse spatial resolution. A new approach to the
extraction of information about the fractal dimension of the system studied is demonstrated, which takes into
account the dependence of the attenuation and broadening of the transmitted neutron beam on the sampl e thick-

ness. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The method of small-angle neutron scattering
(SANS) iswidely used for the investigation of nuclear
and magnetic inhomogeneities in various materials,
including porous media, aloys, etc., which contain a
high concentration of contrast inhomogeneities with
sizes spread over the scale from tens of angstoms to
several hundred microns. The SANS experiments in
such media usually reveal a power dependence of the
scattering intensity | on the momentum transfer (scat-
tering vector) q,

I(q)Oq™, A<4,

in acertain interval of q > /R, where R is the charac-
teristic scale of the scattering system. There is a com-
monly accepted trend to perform SANS measurements
intheregime of single scattering (that is, under the con-
dition that L < I, where L is the sample thickness and |
is the neutron mean free path in the medium) and treat
the possible multiple scattering (multiple SANS,
MSANS) as afactor complicating the interpretation of
data. The value of A or its deviation from the Porod
asymptotics (A = 4) is used to judge on the fractal char-
acter (dimension) of the system and on the correlator of
scattering inhomogeneities (for more detail, see [1-3]).
However, an anaysis of the SANS data in this limit
hardly allows oneto extract information concerning the
characteristic scale of the scattering system (of course,
except for the possibility of scale evaluation from the
uncertainty relation). Information of this kind can be
obtained in the case of q < /R corresponding to the pas-
sage to the Guinier regime [4]. However, both the g <

1/R asymptotics and the Guinier regime are difficult to
access for the scattering in strongly dispersive media
with high concentrations of inhomogeneities. More-
over the condition L < | frequently cannot be satisfied
because of the difficulties of preparing sufficiently thin
samples; in such cases, the scattering unavoidably has
amultiple character.

This paper considersthe possibility of evaluating, in
principle, the characteristic scale of a scattering system
by measuring both the broadening w of a transmitted
neutron beam and the neutron mean free path in the
sample using the standard SANS setups in the regime
of elastic multiple scattering (L > 1). The mean free path
can be estimated from data on the attenuation of the pri-
mary beam as a function of L due to the scattering by
angles Q > Q,,, where Q,;,, is determined by the reso-
lution of the instrument. Methods for the estimation of
characteristic size using the beam broadening in the
neutron scattering experiments has been widely used
and extensively developed in both experimenta and the-
oretical aspects, beginning with the work of Weiss [5]
(see, e.g., [6-8] and referencestherein). One aim of this
paper isto draw the attention to the relative character of
estimates obtai ned from simultaneous measurements of
the beam broadening and the integral cross section of
scattering for the angles Q > Q.. In other words, the
resolution of the SANS setup restricts the possibilities
of studying the large-scale inhomogeneities both in the
case of single scattering and in the multiple scattering
regime. Despite this restriction, MSANS is a powerful
tool for the investigation of various substances and the
determination of structural parameters of fractal and
nonfractal objects. However, it should be recognized
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that the real task of such investigationsisto experimen-
tally evauate the characteristic scale of inhomogene-
ities making the main contribution to the scattering
measured in the resolution limits of a given instrument,
rather than analyzing the spectrum of inhomogeneities
that may spread up to sizes that go unrecorded because
of the limited resolution. This paper presents an exper-
imental realization of this approach and shows exam-
ples of the application of MSANS to determining the
structural parameters of systems.

It should be emphasized that multiple scattering
substantialy differs from the single scattering event.
Indeed, in the latter case, the information is obtained
using the coherent properties of radiation: the incident
and scattered neutron waves are considered as coherent.
In contrast, multiple scattering is a diffusion process,
and what we measure in experiment is the degree of
coherence. In this context, it is interesting to consider
MSANS using the concept of coherent or correlation
volume of the neutron beam [9].

The correlation volume can be intuitively defined as
aregion where the coherent properties of neutrons are
significant. These properties are described using the
correlation function of a collimated beam, which, in
turn, is a Fourier image of the instrument resolution
function. It should be noted that the correlation length
for suAch a volume in SANS experiments may reach
1000 A.

When a neutron beam propagates in a medium and
exhibits multiple scattering, the correlation length
decreases, which reflects the loss of the beam coher-
ence, which leads to broadening of theinstrumental lin-
ewidth. Naturally, this loss of coherence depends only
on the number of scattering events per unit range (scat-
tering length) or, in other words, on the genera integral
cross section of neutron scattering. The attenuation of
the neutron beam is related to decaying amplitude of
the neutron wave inside the coherent volume. This
amplitude consists of two components, the amplitudes
of nonscattered and forward-scattered waves. Obvi-
ously, both the correlation length and the amplitude of
the neutron wave within thislength depend on the prop-
erties of a scattering medium.

For this reason, the second but no less important
task of this study is to consider the possibility of
extracting information about the fractal properties of
the scattering medium from data on the broadening and
attenuation of aneutron beam in the regime of multiple
scattering. One difficulty in obtaining reliable informa-
tion on the fracta dimension of the medium in the
regime of single scattering is related to the need for
studying the scattering intensity distribution 1(g) in a
broad range of g (over more than three orders of mag-
nitude), which is practically impossible for most exist-
ing SANS setups. The possibility of obtaining such
estimates from data on multiple scattering was demon-
strated by Maleyev [3].
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The aforementioned problems will be considered
based on theresultsof MSANS, SANS and ultra-small-
angle neutron scattering (USANS) experiments
described below. The measurements were performed
for the model samples of YBCO ceramics, Al,O; pow-
der, limestone (CaCO,) powder, and carbon (C) carbon
black in arange of sample thicknesses L/l <5.

The paper is organized as follows. Section 2 briefly
summarizes the main stipulations of the MSANS the-
ory developed in [3, 6, 10, 11], which are used below
for the interpretation of experimental data. The experi-
mental part is presented in Section 3. The results of
experimental data processing are presented and dis-
cussed in Section 4, and Section 5 summarizesthe main
conclusions.

2. THEORY

Let us briefly consider the main stipulations of the
theory developedin[3, 6, 10], which are used below for
the interpretation of the results of MSANS measure-
ments in various regimes. The aforementioned papers
considered the regimes of diffraction [3] for a < 1 and
refraction [10] for a > 1, where a = kR(U/E) is a
change in the neutron wavefunction over an inhomoge-
neity scale R, k = 217A, is the wavevector of neutrons
with the energy E, U = 21i?A(bNy)/m, is the potential
energy of the inhomogeneity (optical potential), m, is
the neutron mass, A(bNy) is the difference of the densi-
ties of the scattering lengths for the inhomogeneity and
the medium, b isthe coherent scattering amplitude, and
Ny is the number of formula units per unit volume
(cm?3). The regime of refraction was analyzed in the
limit of low concentrations of inhomogeneities in the
sample, that is, under the condition that oV/IV < 1,
where V is the sample volume and &V is the volume
fraction accounting for inhomogeneities of the charac-
teristic scale R.

It was shown [3] that the characteristic momentum,
which determines the beam broadening as a result of
multiple scattering (L > 1) from afractal medium in the
diffraction regime in the general case, can be written as

@ _ 1L

= — <
L =R Ot @

whereA =D, (D, < 3isthedimension of avolumefrac-
tal) or A=6-D, (2 <D< 3isthe dimension of asur-
face fractal); u = f(A); and g, = 1. Accordingly:

q¥oL™, p, = (D,-2)7">1,

1/2<ps = (4-Dy) " <1.

In the particular case of A = 4 (the Porod asymptotics),
we have 4 = 1/2 and the scattering intensity 1(q) is
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described by the diffusion formula:

1 L

O 420
l(q)DexpErﬂq . g = == = @)
quL L ZgR I

Taking into account corrections for the insuffi-
ciently rapid decrease in the single scattering cross sec-
tion with increasing scattering angle [6], the character-
istic momentum can be written as

1 L L
A = 5RJTMT 3)

where the mean free path length is given by the formula

K v
| = — = 2
3 A(bN,)] ROV @

According to [3], the scattering intensity distribu-
tion 1(g) in the regime of multiple scattering (L > 1) is
divided into two parts. The asymptotic part (for

q>q™) issimilar to the I(q) distribution in the single

scattering regime. In the central part (for g < q(LA)), the
distribution is close to that in the Guinier regime:

(@ = 10[1- 150 ®

Here, Ry(L) is the effective gyration radius defined as

2y = _30(4)
i 4T (2p) (™)

where ' (X) is the gamma function.

(6)

The intensity 1(g = O) of forward scattering (i.e., the
attenuation) is expressed as [3]

I(q=0) = BT _

2u(KR)* (Gl ' 5y (7
P— - (2n), ()

oLOo

where2u=2/(D,—-2)>2and 1 <2u=2/(4—-Dy <2
for the volume and surface fractals, respectively, and K
is the neutron wavevector. In both cases, the intensity
[(q = 0) decreases with the sample thickness L faster
than according to the L™ law (characteristic of the dif-
fusion model used for analysis of MSANS on inhomo-
geneities with sharp boundaries (2u = 1)). This behav-
ior of 1(q=0) (aswell asof g ) inthe case of MSANS

in fractal media offers an example of the so-called
anomalous diffusion (superdiffusion) [12].

In the regime of refraction [10] in a sample with a
small concentration of spherical inhomogeneitiesand a
not very large thickness (I < L < L, = la?lna), the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

429

intensity of multiple scattering is also described by a
diffusion formula with the characteristic momentum

2
o ettky
R T T4 (8)

For L = L,, the scattering intensity deviates from the
behavior predicted by the diffusion model, and for L >
L, it isdescribed by the formula[10]
K°q, L

1 q2 = . (9)
(g’ +o3)”” 20,IR
In the asymptotic limit g >q,, the intensity of multiple
scattering coincides with that of a single scattering and
decreases as 3 [10].

To our knowledge, multiple scattering in the refrac-
tion regime—neither in the case of ahigh concentration
of inhomogeneities (whereby &V ~V asin multidomain
polycrystalline ferromagnets, granulated and ceramic
materias, etc.), nor in fractal media—has not been con-
sidered in the literature.

I(q) =

3. EXPERIMENT

In our MSANS experiments, the attenuation I(q =
0)/1,, the broadening w of the neutron beam, and the
scattering intensity 1(q) (for 5 x 103 A1 < q < 35 x
1072 A1) were studied as functions of the sample thick-
nessL for YBCO ceramics, Al,O5; powder, CaCO; pow-
der, and carbon black. The sample parameters impor-
tant from the standpoint of MSANS were as follows:

(i) YBa,Cu;0; ., 5 (YBCO) ceramics: bN, = 4.75 x
10%° cm?; density, p = 4.9 g cm™3; range of sample
thicknesses, L isfrom 0.9 to 20 mm; dL/L < 1.5%.

(ii) Al,O5 powder: bN, = 5.38 x 10'° cm?; average
grain size, 1820 um; L is from 2 to 16 mm;
OL/L < 2.5%.

(iii) Limestone (CaCO;) powder: bN, = 5.11 x
10©%cm=?; p = 293 g cm™3; L is from 0.1 to 8.9 mm;
OL/L < 1.5%.

(iv) Carbon black: bNy = 6.5 x 10'° cm?; L is from
0.2to 9 mm; OL/L < 1.5%.

The MSANS measurements were performed using
the small-angle polarized neutron scattering facility
Vector-20 (WWR-M reactor, Petersburg Nuclear Phys-
ics Institute, Russian Academy of Sciences, Gatchina),
which operated in dlit geometry with twenty *He detec-
torsin the horizontal plane [6]. The scattering intensity
could be scanned in arange of qup to 5 x 10 A by
rotating the detector system. In this experiment, the
polarization technique was used for monochromatiza-
tion of the neutron beam monochromatic. The measure-
ments were performed at a neutron wavelength of A =
8 A with AN = 9%, which excluded the Bragg scatter-
ing. The vertical and horizonta resolution calculated
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Fig. 1. The neutron beam shape measured in aregime of sin-
gle scattering (L < I): (open circles) CaCOg3, L = 0.67 mm;
(black circles) carbon black, L = 0.83 mm. Solid curves 1
and 2 show the results of calculations using formula (10);
dashed curve represents the beam shape in the absence of a
sample.

with alowance for the slit geometry [14] of the experi-
mental setup was 8q, = 3 x 103 A and dq, = 8 x
1074 AL, respectively.

In order to obtain independent data on the fractal
dimension of carbon black and verify the MSANS
results, we additionally studied this sample using the
traditional SANS and USANS techniques in a broad
range of momentum transfer (1.5 x 10°% < g < 1.5 x
101 A-Y). The SANS measurements were performed
using the SANS-1 facility (FRG1 reactor GKSS
Research Centre, Geesthacht, Germany) [15], which
operated in ageometry closeto point geometry and was
equipped with a two-dimensional (2D) position-sensi-
tive ®He detector. The working neutron wavel ength was
A =8.1 A with ANA = 10%. The experiments were per-
formed for four distances between the sample and
detector Ry = 0.7, 1.8, 4.5, and 9.7 m, which allowed
the momentum transfer to be varied within 3 x 108 <
q< 1.5 x 10t A-Y). The instrument resolution was
approximated by the Gauss function and calculated
separately for each Ry, value as described in [16].

The carbon black sample was placed in a 1-mm-
thick quartz cell. Theinitial spectrameasured in each q
interval were corrected using standard procedures with
allowance for scattering from the setup parts and the
cell and for the room background [17]. The obtained
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2D spectra were averaged with respect to azimuth and
normalized to the cross section of noncoherent neutron
scattering in al-mme-thick layer of water [17]. For Ry >
1.8 m, the spectra were normalized to the cross section
determined for Ry = 1.8 m with additional allowance
for the attenuation factor [17].

The USANS measurements were performed using a
DCD double crysta diffractometer (at the same FRG1
reactor of the GKSS Research Center) at aworking neu-
tron wavelength of A = 4.43 A with AMA =1 x 10°[18].
This instrument was equipped with a double mono-
chromator unit based on perfect silicon crystals cut
along the (1, 1, 1) plane. The first crystal was used to
form the neutron beam and the second crystal per-
formed the monochromator function. The angular dis-
tribution of neutronsin the beam past the sample (situ-
ated behind the double monochromator) was measured
by rotating an analyzer crystal (identica to the mono-
chromator crystal) at a minimum angular step of 2 x
1077 deg. The FWHM of the instrument line was w, =
2.6 x 10 AL, The momentum transfer was varied
within 1.5 x 108 < q<5x 103 AL,

Figures 1-3 show the pattern of typical changesin
the shape of the neutron beam, 1(q)/I(0), and in the
attenuation /1, (where I = I(L = 0)), measured by the
central detector as (g = 0) as afunction of the sample
thickness.

The experimental beam attenuation profiles (Fig. 3)
are normalized to theintegral attenuation cased by neu-
tron absorption in the samples.

4. RESULTS AND DISCUSSION
4.1 MSANS

4.1.1. Beam shape. It was found that the shape of
the neutron beam upon scattering can be represented as
a sum of two components. Gaussian, describing the
beam width upon scattering, and Lorentzian of nth
power (n=1f(A)), describing the dependence of the scat-
tering intensity 1(q, L) on g at large momenta:

(9= %a) 2}
2

1(q) = Aexp{ =

, (10)

+B St +C,

[(a—0g)" + 5"
where A, B, C, s, and n arefree parameters and g, and gy,

arethe centering parameters. The quantity 2= 38q + s

is a sum of dispersons determining the momentum
uncertainty in the beam (s, is the s value determined by

fitting the experimental data to formula (10) for sr?2 =
0 q\z, ). The uncertainty q;, related to the horizontal res-
olution (which isamost ten times as small as the verti-
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Fig. 2. Variation of the neutron beam shape for (a) carbon black and (b) CaCO3 samples of different thickness L (indicated in mil-
limeters at the curves). Points present the experimental data; solid curves show the results of calculations using formula (10).

cal resolution) is reflected predominantly by the s
value, since

s = AW(L) + S5, (11)
where Aw(L) is the beam broadening in a sample of
thickness L and s, isthe beam dispersion in the absence
of the sample. Inthe course of fitting by least squaresto
formula (10), it was established that the dispersion s
varies rather slightly and falls almost within the exper-
imental error limits, irrespective of the fact whether this
valueistaken into account or not in the sr product (i.e.,
s=s;). However, only allowance for the s value in the
sr product provides a satisfactory description of scatter-
ing in the region of “tails’. Substitution of a preset
value of s; instead of the free parameter s into the sr
product significantly simplifies the fitting procedure.
Depending on the sampl e thickness, the sr product val-
uesfall within sr = (5-6.5) x 103 A1 (YBCO), (5-8) x
103 A1 (CaCO,), (5-8.5) x 103 A1 (Al,0,), and
(5-7) x 103 A (carbon black). The fitting by least
squares gives the following values of exponent in for-
mula (10): n = 2 (CaCOs, Al,O3, YBCO) and n = 1.3
(carbon black). The dependences calculated using for-
mula (10) with the parameters found through fitting by
least squares are depicted by solid curvesin Figs. 1 and 2.

4.1.2. Scattering intensity 14q). Figure4 showsthe
plots of 1(q) versus momentum g at q > sr for CaCO,
and carbon black (analogous curves were a so obtained
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for Al,O; and YBCO). It was found that these depen-
dences could be satisfactorily described using the
formula

I(q) = AJq”,

whereA =4+ 0.1 (for CaCOg, Al,O5, YBCO) or 2.6 £
0.1 (for carbon black) and the parameter A, isvirtualy
a linear function of L. The scattering data were pro-
cessed by least sguares (with corrections for the dlit
geometry) and analyzed in the range of momentum
transfer 0.007 A1 < q < 0.03 A-L. A correction for the
dlit geometry is essentia for q < 102 AL, where the
experimental data (representing a convolution of the
scattering intensity 14(q) O g with the instrument res-
olution function) deviate from the g law (these devia-
tions are not distinguished in Fig. 4). The power depen-
dence of the scattering intensity on the momentum
I(g, L) O q2¢ which is observed for carbon black, is
similar to that for scattering on a volume fractal with
the dimension D, =2.6 £ 0.1.

(12)

4.1.3. Beam attenuation. For small sample thick-
nesses (L < 1), the attenuation of the central beam as a
function of L for all samples (Fig. 3) could be satisfac-
torily described using the formula

19=0) _ gpa O (13)
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Fig. 3. Attenuation of the beam intensity measured using the
central detector for neutrons scattered with a momentum
transfer g > min (Omin 1S determined by the instrument res-

olution) as afunction of the sample thicknessL: (@) carbon
black; (0) CACOg3; (¢) YBCO; () Al,O3. Solid curves
show the results of fitting to the exp(—L/le) law; dashed
curves show the results of calculations using formula (14).

which was used for determining the neutron mean free
path lep. The results of |, determination by this
method are presented in Table 1. The calculated curves
of I/ly versus L for the parameters determined by least
squares are depicted by solid linesin Fig. 3.

Ascan beseenfromFig. 3, anincreasein the sample
thickness is accompanied by deviation of the experi-
mental data from the exponential dependence, whichis
related to the multiple scattering. It was found that
experimental data on the beam attenuation with
increasing sample thickness for nonfractal objects are
well described with allowance for multiple scatteringin
terms of expression (2) within the limits of the vertical
and horizontal resolution of the central detector. The
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Fig. 4. Plots of the neutron scattering intensity |4(q) versus
momentum transfer g (q > sr) for (@) CaCO5 and (O) carbon

black samples of various thicknesses L (indicated in milli-
meters at the curves). Solid and dashed curves show the

results of fitting to the I O g™ law. For all sample thick-
nesses, A = 4 + 0.6 (CaCOg3) and 2.6 + 0.01 (carbon black).

2D convolution of the diffusion formula (2) at q=0
with the instrument resolution functions in the two
directions described by Gaussians with dispersions dqg;,
and dq,, which was used for processing the data on the
beam attenuation for L > 0.5, isasfollows:

_ 2D<SqX?3qy (14)

|
lo {[(280,)%+ FL][(28q,)? + FL]} "

where D and F are free parametersand = 1/2.

Table 1. The main parameters of samples determined from an analysis of the MSANS data (see the text for explanations)

Sample lexpr MM A U D R A
Nonfractal
Al,O5 3.9+0.6 4+0.6 0.5 3 203+ 11
YBCO 94+£03 4+0.6 0.5 3 171+ 16
CaCOq 17+01 4+0.1 0.5 3 216+ 6
Fractal
C (carbon black) 25+0.1 26+0.1 08+01 D,=26+01*
Dg=2.75+ 0.15** 351+12
*From large-q asymptotics.
**From data on the neutron beam broadening and attenuation.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101 No. 3 2005
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The results of least squares fitting to formula (14)
for CaCO;, Al,O3, and YBCO are depicted by dashed
linesin Fig. 3. Expression (14) shows that, in the limit
of dq,, dq, —= O, the attenuation asymptotically tends
tol/l, 0 /L in agreement with the theory [3]. The quan-
tity F informula(14) wastreated as afree parameter, but,
if the deviation of the beam attenuation from exponent is
completely described by the diffusion formula(2) within
the aperture of the central detector, we must have FL =

qu . Calculations showed that this relation is valid to
within 3%, provided that the beam attenuation is mea-
sured in an optimized geometry (5q, = 1.8 x 103 A-Y),
where g, aretaken from an analysis of data.on the beam
broadening (Fig. 5).

We have also used formula (14) in the analysis of
data on the beam attenuation at L > 0.5, for carbon
black, but the exponent 1 was treated as afree parame-
ter. Then, thefitting by least squaresgavet = 0.8 £ 0.1.
In the limit of &q,, 8, —= O, thisyieldsthe asymptotic
behavior I/l O /L% with 24 = 1.6. According to the
theory [3], this behavior corresponds to the neutron
beam attenuation upon multiple scattering on the sur-
face fractal with the dimension Dg= 4 —1/p = 2.75.

4.1.4. Beam broadening. Figure 5 presents our
experimental dataon the beam broadening asafunction
of the sample thickness, which was determined from
relation (11) as

AW = &-5. (15)

As will be shown below, the characteristic scale of
inhomogeneities determined in our experiments is on
the order of several hundred angstroms. For thisreason,
the experimental data can be described in the diffrac-
tion approximation. Estimates show that the character-
istic size R, (corresponding to o = 1) at which the
refraction regime also becomes significant is R, = 2 x
10-3 mm. The corresponding characteristic momentum
according to Eq. (8) is q; < 2 x 10* AL Thus, the
refraction scattering component corresponds to the
range of momenta below the limiting resolution of the
instrument and, hence, this component can be ignored
in comparison to diffraction in the analysis of scatter-
ing. Analogous estimates were previously reported
in[11] for SANSinYBCO ceramics.

As can be seen from Fig. 5, the beam broadening
defined as Aw = g, (see Egs. (1)—(3)) is satisfactorily

433

Aw, 1073 A1
7 T T T T T T T T T

6+

L1/2 mml/Z

Fig. 5. Plots of the beam broadening Aw = /W2 - wg versus
sample thickness L for (1) CACOs; (2) YBCO; (3) carbon
black, and (4) Al,03. Points present the experimental data;
solid curves show the results of calculations using the for-
mulaAw = a + bLM,

described by the formula

Aw = a+bL" (16)

with anonzero “cutoff” onthe abscissaaxisfor L — 0.
This relation was considered in much detail in [6-8].
An analysis of the data on Aw(L) gave the following
values of the exponent: g = 0.5 (for CaCO;, Al,O5,
YBCO) or ~0.8 (for carbon black), which is fully con-
sistent with the values obtained above from the analysis
of the central beam attenuation 1/1, as a function of the
sample thickness L.

Within the framework of the diffraction approxima-
tion, the characteristic size R of inhomogeneities mak-
ing the main contribution to the scattering detected
within the limits of resolution of agiven instrument can
be determined using formula (1) with the aforemen-
tioned parametersl,,, and g, . These estimatesof Rin all
samples under consideration for L > |, are presented
in Table 1 and plotted in Fig. 6, where solid and dashed
curves show the data cal culated using formula (16).

The scattering from inhomogeneities on this scale
must lead to deviations from power dependences of the
scattering intensity (Fig. 4) for sr < g < 1/2R. However,

Table 2. Fractal dimensions determined by analysis of the SANS data for carbon black

Interval of g, A~ 0.048-0.15 0.013-0.064 0.007-0.022 0.003-0.009
Fractal dimension D 254+0.1 2.75+£0.05 2.56 + 0.08 2.62+0.02
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101 No. 3 2005
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Fig. 6. Plots of the characteristic scale R of the scattering
system versus L/l for (e@) carbon black, (0) CACOg;
(#) YBCO; and (¢) Al,O3. Points present the results of cal-

culations using formula (5); solid and dashed curves show
the results of fitting using formula (16).

this condition was not met in our experiments, where
the minimum sr valuewas st ,;,, = 3 x 103 A-L. In order
to observe deviations from the power dependence of the
scattering intensity at low g, the experiments have to be
performed using thin samples and an experimental
setup with sufficient resolution for a momentum trans-
fer of < 103 AL,

4.2. SANSand USANS

As can be seen from the MSANS data in Table 1,
which were obtained using measurements of the neu-
tron beam broadening and attenuation as dependent on
the sample thickness L (g < q,), carbon black is a sur-
facefractal with Dg= 2.75 + 0.15. At the sametime, the
exponent A determined from an analysis of the scatter-
ing intensity | as afunction of the momentum q in the
asymptotic limit forg> q, > 7 x 103 A1is2.6+0.1,
which corresponds to the scattering on avolume fractal
with D, = 2.6 + 0.1. These results can be explained by
assuming that (i) the samples of carbon black under
study contain two (surface and volume) fractalsand (ii)
the main contributions of these fractalsto the scattering
intensity 1(q) are observed in different rangesof g. This
implies that | (q) plotted on the logarithmic scale must
exhibit a bending point, which corresponds to the pas-
sage from one type of scattering to another. In order to
check for this assumption, it was necessary to obtain
independent estimates of the fractal dimension of car-
bon black. Such estimates can be obtained by measur-
ing the neutron scattering intensity distribution 14q)
using the SANS and USANS techniques in a single
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Fig. 7. A plot of the differentia cross section of neutron
scattering d=(g)/dQ versus momentum transfer for asample
of carbon black with L = 1.5 mm. Points present the results
of SANS measurements; solid curve shows the results of
calculations using expression (17).

scattering regime in the most broad range of the
momentum transfer g.

Figure 7 shows a plot of the differential cross sec-
tion of neutron scattering dx(q)/dQ measured for a
sample of carbon black with L = 1.5 mm using the
SANS-1 setup in the momentum range 0.003 A1 < g <
0.15 AL, The datawere analyzed in terms of the formula

dz $

£ = %+ e (17)
where A, isafree parameter and I, is a constant quan-
tity, which is independent of g and related to the scat-
tering from inhomogeneities on the order of the wave-
length A (in this case, from one to several tens of ang-
stroms). The final results were obtained by calculating
a convolution of expression (17) with the instrument
resolution function. The experimental curves of the dif-
ferential cross section dZ(g)/dQ were processed by
least squares for each of the four intervals of variation
of the q value. The results of this analysis are summa-
rized in Table 2.

As can be seen from the data in Table 2, the fracta
dimensions fall within 2.54-2.75 depending on the
interval of g values used for the analysis. At the same
time, the fractal dimension (D = 2.65) obtained by aver-
aging over al the q intervals under consideration is
close to the estimate D, = 2.6 + 0.1 obtained for the
same sample of carbon black in our MSANS experi-
ments.

Figure 8 showsthe results of USANS measurements
for the carbon black samples with L = 0.2 and 1.5 mm
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measured using a double crystal diffractometer [18].
The attenuation of the neutron beam transmitted
through the samplewasvery large: 1—1(q=0)/I,=0.84
and 0.97 for 0.2- and 1.5-mm-thick samples, respec-
tively. Thisimpliesthat the experimental datashould be
interpreted in terms of the MSANS theory [3]. In the
standard analysis of USANS spectrafor L > |, parame-
ters characterizing the scattering system are usualy
determined from the Aw(L) function [7, 8]. In the case
under consideration, we are interested in determining
the asymptotic behavior of I(q) a large g. As was
pointed out above (and demonstrated previously [3, 6,
9, 18]), the character of this behavior is similar to that
in the case of single scattering.

We have analyzed the scattering intensity 1(q) at
large g using a procedure described in [19]. According
to this, the experimental data are approximated using a
function of the type

I(q) = 2—3+-A—“ (18)

where the first term describes the scattering intensity
variation on the wings of the instrument function and
the second term reflects the asymptotic behavior of the
scattering at large q in the sample studied. The values
of the exponent d determined by least squares fitting to
formula (18) for L=0.2 and 1.5 mmwere d =2.35 +
0.03 and 2.8 £ 0.03, respectively. According to [19], an
increase in & with the sample thicknessisrelated to the
pre-asymptotic terms of the expansion of 1(q) at largeq.
The I(q) values calculated using formula (18) with the
parameters determined by |east squares are depicted by
solid curvesin Fig. 8.

For the correct comparison of USANS data to the
results obtained in the conventional SANS experiments, it
IS necessary to take into account that the exponent in the
dependence of the scattering intensity on the momentum
transfer measured using the double-crystal technique is
increased by unity [19]. Therefore, the asymptotic behav-
ior of the scattering intensity 1(q) for carbon black in the
interval 3 x 104 A < q<3x 103 Aljs satisfactorily
described by therelation I1(q) O g2, whereA=86+1=
3.35-3.38, which is equivaent to the scattering on a
surface fractal with the dimension Dg = 6 — A =
2.62-2.65. Thisvalueisvery closeto the estimate (D, =
2.75 £ 0.15) obtained in our MSANS experiments.

Thus, we have measured the small-angle neutron
scattering intensity | (q) for carbon black in the range of
momentum transfer 0.0003 A< q< 0.15 A-* using the
SANS and USANS techniques. The obtained data
unambiguoudly indicate that there are two intervals of
g in which the scattering intensity 1(q) obeys the law
I(q) O g® with different values of the exponent A. In
theinterval of q < g, (where g, = 0.003 AL is the point
of bending on the I(q) curve), the exponent is close to
3.35, whereas at g = (,, we have A = 2.65. This asymp-
totic behavior of 1q) shows the presence of two corre-
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Fig. 8. Plots of the neutron scattering intensity versus
momentum transfer for carbon black samples with L =
0.2 (1) and 1.5 mm (2). Points present theresults of USANS
measurements; solid curves show the results of calculations
using expression (18) for g = q .

5x10% 1073

lators, which characterize the system under consider-
ation and predominate in the corresponding interval
of g. Thefirst correlator correspondsto a surface fractal
with the dimension D4 = 2.65, while the second corre-
lator corresponds to a volume fractal with the same
dimension D, = 2.65.

5. CONCLUSIONS

(i) We have experimentally demonstrated the possi-
bility of using MSANS method [3, 6, 10] for evaluating
the structural parameters (the characteristic scale R and
the mean free path |) of a scattering system using the
standard instruments where these values cannot be
determined in the standard SANS regime.

(ii) A new method has been proposed for estimating
the fractal system dimension using data on the attenua-
tion and broadening of the transmitted neutron beam in
the MSANS regime.

(iii) A comparison of the MSANS datato the values
obtained by the classical SANS and USANS methods
in the regime of single scattering showed a good coin-
cidence of the results. In particular, a volume fractal
with the dimension D, = 2.6 = 0.15 in the asymptotic
limit of large g and a surface fractal for carbon black
with the dimension D, = 2.7 £ 0.15 for g < g, were
observed both in our MSANS experiments and in the
SANS and USANS measurements.
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Abstract—A broad class of three-dimensional space structures in multisublattice antiferromagnets was found
in theisotropic approximation (the principal chiral field model on the SU(2) group). According to the Andreev—
Marchenko theory, this approximation is applicable to spin glasses and provides qualitative understanding of
structures in real multisublattice antiferromagnets. Special substitutions were used to reduce the equations of
the model to new equations with simple geometric interpretation. A differential geometry method was applied
to obtain various structure types (some of which were determined by arbitrary functions), including localized
and nonlocalized textures, structures with the degree of mapping equal to one, antiferromagnetic “targets’ and
three-dimensional sources, and two- and three-dimensional vortex and spiral structures. Possibilitiesfor exper-
imentally checking the presence of localized, vortex, and spira structures in antiferromagnets were demon-

strated. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In the usual phenomenological theory, complex
magnetic structures are treated as sets of magnetic sub-
latticesinserted into one other. According to acontinual
description, each magnetic sublattice is characterized
by the mean magnetic moment density M;, where j is
the number of the sublattice. This is not an effective
approach to analyzing dynamics and magnetic spatial
structures in the long-wave approximation. When the
major role in amagnetic system is played by exchange
interactions, we can obviate the necessity of using a
large number of magnetic sublattices and find simpler
and more effective dynamical equations [1-4]. The
appearance of magnetically ordered states is aways
accompanied by spontaneous distortions of exchange
interaction symmetry. Indeed, the Hamiltonian of
exchange interactions is invariant with respect to arbi-
trary rotations of all spins through equal angles, but no
magnetic structure is invariant with respect to all such
rotations, because there are macroparameters (macro-
scopic multipole moments) that are not invariant with
respect to rotations of al spins through equal angles.
Local spin rotations that depend on the coordinates and
time and change the equilibrium macroparameter val-
ues are elementary magnetic excitations of systems.
Because of the short-range character of exchange
forces, the energy of these elementary excitations
(magnons) vanishes as the momentum tends to zero.
Suppose that the ground state of a magnet is only
invariant with respect to the SO(3) group identity trans-
formation. According to the Andreev—Marchenko [ 1-3]
and Volkov—Zheltukhin [4] theories, the most general
equation for the long-wave phenomenological potential

energy U density (in crystals without an inversion cen-
ter at zero spontaneous magnetization) invariant with
respect to the SO(3) group of spin rotations then hasthe
form

U= %(Cik,lmwi,lwk, m)- D

Here, w | are invariant with respect to spin rotations
(generated by right shifts under the SU(2) group) and
relate rotations of the spin rotation matrix (G O SU(2)),
whose parameters depend on the coordinates, at the
points x; and x, + dx; as follows:

G

0%y
Finding two- and three-dimensional structures with an
arbitrary invariant ¢ |, tensor, whose components play
the role of elasticity moduli, is a difficult task that has
not been solved completely. In this work, we find new
types of gpatial textures in multisublattice antiferro-

magnets in the isotropic approximation on the assump-
tion that

= 10,0, G- )

Cik,1m U OOy ©)

Although this approximation is strictly applicable to
spin glass only [2, 3], it allows the problem to be sim-
plified and provides qualitative understanding of struc-
turesin real multisublattice antiferromagnets. A similar
approximation is used in the continual theory of nemat-
ics (one-constant approximation) and elasticity theory
when anisotropic crystals are approximated by isotro-
pic media. Further, equivalent forms of the equations

1063-7761/05/10103-0437$26.00 © 2005 Pleiades Publishing, Inc.
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that follow from (1) and (3) can conveniently be used.
It immediately follows from (1), (2), and (3) that, to
within scale transformations, U can be written as

%Sp[@G_ oG

Hox; gxt

This equation describes the nonlinear model of the
principal chiral field on the SU(2) group. Substituting
the decomposition of the G matrix in terms of the Pauli
matrices g; (j = 1, 2, 3) and unit matrix g,

G = in;0; + ny0y, (4)
into this equation yields the stationary n-field model

(nOS), n, = (ny, ) with the constraint n? + n: =1,in
the form

U - l@nan , angdng,

T 20bx0x  ox ox ©)

Mode (5) is universal and has many physical applica
tionsin field theory and physics of condensed media. It
describes the low-energy dynamics of T-mesons [5]
(field nis proportional to the triplet of pions) and pion
condensate in the stationary case. Model (5) is confor-
mally invariant [6] and integrable [7, 8] by the method
of the inverse scattering problem in spaces (2, 0) and
(1, 1). In the three-dimensional space, the appearance
of spatial structures is strongly impeded because the
equations with the field triplet are nonlinear. In this
work, we find a broad class of solutions to model (1),
(3) with the use of specia substitutions, which reveal a
strong relation between this model and classic differen-
tial geometry problems.

The paper is organized as follows. In Section 2, we
use three substitutions that, although they do not com-
pletely cover the diversity of al solutions to (1), (3),
increase the number of equations and reduce system (1),
(3) to new systems with simple geometric interpreta-
tion. The first such system is atrigonal system for har-
monic coordinates. It is solved in Section 3 by the dif-
ferential geometry integration method. First, we per-
form the hodograph transformation, that is, change the
roles played by dependent and independent variables.
However, further, as distinct from the standard
hodograph transformation, we do not replace field
derivatives but define them as new variables related to
the metric tensor components induced by such atrans-
formation. The equation to be solved is then rewritten
in terms of metric tensor components. Since the inde-
pendent variables were originally Euclidean, the curva
turetensor is zero in terms of the metric introduced. As
aresult, we obtain a self-consi stent system of equations
for the metric tensor components. The zero-curvature
eguation then proves to be the principal equation, and
the sought system of equations, its reduction. Solving
this system allows classic geometrical equations to be
used to find a solution to the sought differential equa-
tion in the form of implicit functions. We show that, in
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spite of its somewhat limited character, this differentia
geometry approach based on embedding a nonlinear
partial-derivative equation into a certain differential
relation in the Euclidean space gives a broad class of
spatia structures that are very difficult to obtain by
other methods. As aresult, we obtain seven spatial tex-
tures, including vortices, solitons, spatial sources, non-
localized structures, and structures with the degree of
mapping equal to one, which are similar in certain their
properties to topological solitons. Many of these solu-
tions are determined by arbitrary functions. In Section
3, we obtain structures related to the second and third
substitutions. For the second substitution, the field 6
locally depends on the auxiliary field a, 8 = 6(a). The
fieldsa, b, and ¢ are harmonic functions with gradients
related in a certain way. Differential geometry is
applied to find four spatia structures, including antifer-
romagnetic “targets’ and spiral vortices, and their
dipole configurations. Lastly, at the end of Section 3,
we discuss spatial spiral structures related to the substi-
tution that allows the solution to mode (5) to be
reduced to the R® sol ution to the same model, where the
G matrix depends on two harmonic fields with con-
straints on their gradients. In the Conclusions, we dis-
cuss possibilities for experimentally observing the
structures found in this work in antiferromagnets.

2. SUBSTITUTIONS AND THE DIFFERENTIAL
GEOMETRY INTEGRATION METHOD

In this section, we suggest new substitution types
that transform the equations of model (1), (3) into sim-
pler equations and lead to new differential geometry
problemsin the stationary case. In the Euler parameter-
ization of the G matrix, we have

O . . O
O ((b+o)in .8 O(b+o)in .60
0 &P Dcos2 exp - > D|S|n2D

ng E’

=b+0)ig .0 0 (b+c)ig. 8
Eexpm—2 i sins  eXpE-—5—cos; E
(6)

withtheangles8 (0<8<m),b(0<b<2m),andc(0<
C < 2m) we obtain the equations

Ab + cosOAc—-sn60cO
Ac+ cosbAb—sin60b[®
AB +sn60bc = 0.

Broad classes of solutions to model (7) can be found
using the following substitutions:

(1) Equations (7) are satisfied if the fields (6, b, c)
obey the simple and compact system of equations

Ab = Ac = A® = 0, (8)
=0 b® =0 bc = 0, (9)

0,
0, (7)

Oc®
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which is invariant with respect to permutations of 6, b,
¢ and the coordinates x, y, and z. The vector fields [c,
Ub, and @ are the normals to the surfaces b = const,
c = const, and B = const, which intersect each other at
right angles. Geometrically, solving (8), (9) determines
triorthogonal harmonic coordinate surfaces. Starting
with fundamental monograph [9], the triorthogonal
coordinate system has been discussed in many mono-
graphs on differential geometry. The problem of con-
structing all triorthogona coordinate systems has
along history and has recently been solved by
Zakharov [10] in terms of the inverse scattering prob-
lem. Harmonicity condition (8) isanontrivial reduction
of the Lame equations and the corresponding U-V pair.

(2) To perform the next substitution, we assume the
0 field to belocally dependent on an auxiliary field a(r),
0 = B(a). Direct calculations then easily show that
Egs. (7) follow from the equations

0. = sinB(a),
Ab = Aa = Ac = 0,

(10)
(11)

OcOa =0, ObODa=0, (Ja)’ = 0ObOc (12)

for thefields6(a), a, b, and c.

(3) Lastly, we use the ansatz generalization sug-
gested in [11, 12] for the n-field model (n O S). In the
stationary case, the equations that follow from (5) have
the smple form

An, =0 (L=0,1,2,3). (13)

Let thefields n, locally depend on auxiliary fields a(r)
and B(r), that is, a(r), B(r): n, = ny(a, B). Itiseasy to
seethat the n,(a, B) field also satisfies the n-field equa-
tion in the two-dimensional space (a, ),

Nyaa ¥ Nupe = 0, (19)

if thefields (a, B) obey the equations
AB = Aa = 0, (15)
B@ =0, (@) =(B). (16)

Equations (15), (16) are a direct generalization of the
analyticity condition to the three-dimensional case,
because they are equivalent to the analyticity condition
for thea + i3 function with respect to the x + iy variable
at D = 2. Geometrically, solving these equations deter-
mines two orthogonal harmonic coordinate surfaces
with equal norma lengths. Systems of type (8), (9)
were discussed in [13] for theintroduction of conjugate
harmonic functions in the three-dimensional space.

To summarize, the suggested substitutions lead to
new differential geometry problems, those of the intro-
duction of new coordinate systems that satisfy condi-
tions(8), (9), (11), (12), (15), and (16). Although agen-
eral solution to (8), (11), and (15) is easy to write, the
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inclusion of conditions (9), (12), and (16) then encoun-
tersdifficultiesthat can be removed by using the differ-
ential geometry integration method [11, 12], which
reduces the problems to equations with smaller num-
bers of new independent variables.

3. SPATIAL STRUCTURES RELATED
TO THE TRIORTHOGONAL COORDINATE
SYSTEM AND THE DIFFERENTIAL GEOMETRY
INTEGRATION METHOD

It is pertinent to first briefly discuss the direct
method [14] for obtaining some solutions to (8), (9)
with the use of the 11 popular orthogonal coordinate
systemsdescribed in[15]. Letu, = u(x,y,2) (i=1, 2, 3)
be a curvilinear orthogona coordinate system. The
coordinate system obtained via the local substitutions
U — Wi(ui(x, ¥, 2) (i = 1, 2, 3) isthen also orthogonal.
The W (i =1, 2, 3) harmonic functions can be found for
seven orthogona coordinate systems as follows. In
these systems, the Laplace operator for an arbitrary
W(u,, Uy, Ug) functionis

3

aw = Z 9i (U, Uy, UB)%%i(ui)%\E:

where the form of the g;(u,, u,, uz) and fi(u) (i =1, 2, 3)
functionsisknown. Thefieldswi(x, y, 2 = Wi(u)) (i =1,
2, 3) that satisfy the equations

filuyiey D) - g

with constant C; (i = 1, 2, 3) values are therefore har-
monic and orthogonal.

Obtaining a general solution to (8), (9) requires the
use of classic differentia geometry methods. First, let
us perform the hodograph transformation. Put y; = X,
Yo =y, andy; =zand x; = 6, X, = b, and x5 = ¢, exchange
the roles played by dependent and independent coordi-
nates, and seek

Yi = yi(le X2, X3) (I = 11 2! 3)

asafunction of x;, X,, and 5. In terms of geometry, this
dependence means the introduction of a curvilinear
coordinate system with the length element

ds’ = dy,dy; = gidxdx,

into the Euclidean space with the coordinatesy;, v,, V3
(here and throughout, the summation over repesting
indicesisimplied). The g;, metric tensor and the inverse
tensor g are

= e

o ik _ 0% 0%
kT ax 0%,

= o 17
3y,0Y, (17)
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For convenience and compl eteness, we give the nec-
essary differential geometry propositions. In acurvilin-
ear coordinate system, at every point

r=(YnYaYs) = r(x)
thelocal basis

or
€ =T, E,i = 6_)(5
is defined. Its changesin space in the vector
e, = Mg (18)
and coordinate
Vi = Tii¥ak (19)
forms are determined by the Christoffel symbols
1
:(] - ngn(ng gjnl gl] n) (20)

The condition of system (18) integrability (the con-
dition that the spaceis Euclidean) resultsin the vanish-

ing,
Rys =0, (21)
of the Riemann tensor R4
or . oar,, m
Rprsi = 6)2 a)p( =+ rrs,rm pi rrirm, ps* (22)
Here, 'y, ps = Ol ps Lastly, note the important rela-
tion
azxp _ —p 9X0Xg
aylay] - = ksg)z(sg/—j’ (23)

which is easy to obtain by differentiating the identity
9Yp0%; _
aXi ayn oo

with respect to x; and using (19).

Let usapply classica geometry methods to solve (8),
(9). It follows from (9) that the twice contravariant met-
ric tensor gk = (gY);,, which depends on x;, X,, and X,
has the diagona form (g*? = g'3 = g® = 0),

Huv?2 o o F

¢'=H o uH 0 o (24)
O 2
0o o 0 1/H30O

where Hi2 (i=1, 2, 3) are the diagonal components of
the metric tensor g;. As distinct from the standard
hodograph transformation, we treat H; as new indepen-
dent fields and write the corresponding equations for
them. Condition (21) gives six Lame equations for
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determining the H; functions. They can be written in a
short form using the Darbu symbols

_ 10K,
B = frax (D).

The Lame equations then become

a ij a i
aixij BJ BIkBJk_ '

(25
aBIJ +B|kBk] - 1

where the i, j, and k indices are different and equal to
one of the numbers 1, 2, and 3. These equations take
into account orthogonality condition (9) and the
Euclidean character of the independent variables x, v,
and z of the fields 6, b, and c. The requirement of field
harmonicity is a reduction of the Lame equations. It
immediately follows from (23) that Egs. (8) are written
as the nonlinear first-order equations

¢ T =0 (i=123) (26)

for the fields H;, where I; ; stands for the Christoffel
symbols for metric (24). It follows that solving (8), (9)
reduces to the geometric problem of determining asys-
tem of coordinates with metric (24) in the Euclidean
space with additional conditions, that is, to solving (25)
for H;, H,, and H; with reductions (26). If the metric
tensor is known, the dependence y; = yi(Xy, Xo, X3) (i =1,
2, 3) and therefore the dependence of thefields 6, b, and
conx, Yy, and z can be found by the integration of the
redefined but linear system (19).

It immediately follows from system (26) that the
values

H.HoHs
2

Hi

do not depend on the variable x; (i = 1, 2, 3). Note that
this condition is a particular case of the Robertson con-
dition [16] for systems of curvilinear coordinates that
admit the separation of variables in the three-dimen-
sional Laplace equation. As aresult, the diagonal met-
ric tensor components are factored as

H, = 1
’\/FZ(Xl! X3) /\/FB(le Xz),

H2 = 1 ’ (27)
’\/Fl(X21 X3) /\/F3(Xl1 X7)

H, = 1

’\/Fl(xza X3) /\/FZ(le X3)

by the F; functions (i = 1, 2, 3), now of two variables.
Substituting these relations into Lame equations (25)
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yields six equations for determining the F; fields. The
first three equations have the form

—FiFo Fax, ¥ Fix(FsFax —FoF34) =0

(28)
(with cyclically permuted indices 1, 2, 3).

The second group of eguations contain second-order
partial derivatives,

—2(F4F5 , + FoF3 ) + F1(2FsF o,
+ 2F2F1, X3, X3 + I:l, x3F2, X3
- FZ, xlF3, X1 + Fl, x2F3, xz) =0
(with cyclically permuted indices 1, 2, 3).

Let us briefly discuss solution (28), (29). It follows
from (28) that

(29)

FaFiFax,

Fax = FoFyx—FiFo (30)
F _ _FSFl, XZFZ, Xg
S I:2F1, X3 F1F2, x3.

First, consider the simple cases when either the numer-
ator, denominator, or both of them simultaneously van-
ish in (30). Otherwise, the condition of their compati-
bility

FlFl,xzx3 — F2|:2,><2><3 (31)
Fl,x3|:1,x2 I:Z,XQ,FZ,X1
leads to the simple equations
Fiw = FI'02 Faoy = F200 (32

The form of the fields g; (i = 1, 2, 3) that only depend
0N X3 is determined by the substitution of (32) into sys-
tem (29). We showed that, asaresult, g; =2 or gz = 1/2.
With g; = 2, we obtain general €ellipsoidal coordinates
(see below). After the determination of F; (i = 1, 2, 3),
the dependences x = x(6, b, ¢), y =y(6, b, ¢), and z =
Z(8, b, ¢) arefound by solving linear system (19). Since
the metrics that we obtained satisfied the Robertson
condition, these dependences could be found in an
explicit form. For brevity, we omit detailed calculations
for all cases and only givethefinal resultsfor thefields
F,(i=1,2,3)and (6, b, c) (inthecylindrical coordinate

system (r, z, ¢)),
D

- Loanke 2 Xy
F, = 20(gsmh 2q F, = 2g0(f cosh 5%
2 f2gcosh’ == smh2 X2 (33)
F. = 2f
5 =
1tk XN 1[?<1 X0
Q acosthf gDc sthf gD
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wheref, g, Q, and a are the constant parameters and the
(6, b, ¢) fields are determined by the equations

0 _ —Jr2+(z—a)?+ P+ (z+a)’
tanh—z—f = o s
cosh Jr +(z—a)?+Jr? +(z+a) (34)

2a
c = Qdb.

The vortex solution for the ¢ field is characterized by
index Q, which takes on integral values. At Q =1, coor-
dinate system (34) is related to the coordinates (u, v, ¢)
of a prolate ellipsoid of revolution [15] as sinu =
tanh(6/2f) and coshv = coth(bg/2). The 8 and b fields
determine nonlocalized textures, because we have 0 <
tanh(6/2f) < 1 and 0 < coth(bg/2) < « over the whole
interval of x, y, and z variations. It followsthat 0 < 0 <
wand0<b<oo,

(2)

—X,/g eX1/f
Fl = 4 ’ F2 = 4 l
xllf (35)
Fy = g’
(f2+ eX1/f+X2/ggz)Q2

(f, g = const). The c field has a vortex form, and the 6
and b fields determine nonlocalized structures,

2 2
—z+r + 274
= —flnég( 2 = Zh,

(36)
2 2
b= ginfF—5"5H ¢= Q¢ (QU2).

At Q =1, this coordinate system is related to parabolic
coordinates of revolution [15] by simple substitutions.

(3) TheF, (i
the form

=1, 2, 3) and (8, b, ¢) fields then have

leg 2.2 X 1D
4(1+e )fg%os +S|n2]cD

F3 = f
2x2/g X,/Q ]D
QCi+e™-2¢Tsngy (g
X,/9, 2
_ 2 X1 (1+e”)d
F,=f %.'F Sln?lj, F, = ——2-;);/—9—,
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_ Fsl
farcsin=511- 82 +.(1-8r") +162°(1+8r + 42°f

b

1 2 2\2 2 2 2
cosh=- = — -1+ 87 +«/ 1-8r) +162°(1+8r"+4z°),
o= (1-8r")"+ 167 B

c=Q¢ (QU2Z)

(f, g=const). At f =1, the 8 field forms a soliton struc-
ture localized close to the origin (see Fig. 1). Thefield
changes from zero to 1t and has the ssmple asymptotic
behavior

08—~ 4.2z (Jr’+Z —~0),
0—»z——— (R=Jr’+7Z —» o).

J2R
(4

—1 ] 252 :1’ 25:.[
F, = ngsmh 3’ F, ngcosh ol

2fgcoshzx—1sinhzxa2

: (39)

F —
3 2 XZD
+ cosh—

Q %:osh

(f, g=const, Q I Z). The c field has a vortex form, and
the 6 and b fields give the delocalized textures

Fig. 1. Spatial distribution of the 8(r, 2) field. Thefield tends
tozeroasr?+ 2 — 0.
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(38)
0 1 2,2 4 2,2
cosh- = —{-1+r"+Z+[r+(-1+z
P o [r*+(-1+2)
ror2(1+ A1,
b_ 1 2 2 4 2,2
cosh= = —{1+r"=Z+[r"+(-1+2)" (40)
g 2r
o2+ A1
c = Q¢.
(5) Thefields F; (i = 1, 2, 3) depend on the P(X,, X3)
function,
Fa=1, Fy=f% Fo=¢ 9, (41)
which satisfies the Laplace equation
Pyt TPy, =0 (42)

(f = congt). Selecting P asthe rea part of the complex
function F(x, + ixy/f) yields a solution in the implicit
form

fz, x+iy = Iexpngﬂlqj]db (43)

This quasi-two-dimensional structure is character-
ized by the simplest dependence of the 6 field on the
coordinates and the diversity of two-dimensional solu-
tions for the b and c fields characteristic of velocity
fields for two-dimensional incompressible liquids. For
instance, if F depends linearly on x, + ix4/f, we obtain
the solutions

Qzlnr

b=¢Q,+
(a4)
c= 10 (Qllnr>+"’Qﬂ (QuQ,02),

which include vortices (for the c field) and logarithmic
sources (for the b field) at Q = 0 or logarithmic spirals
if Q. #0.
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(6) The structure is determined by the P field,

(kgQ)*x; _ (kgQ)’
] 2 = X: Xa)!
4 ZGP( 1, X3)

2

FB—Z

(0, k, Q = const), that satisfies the elliptic Liouville
equation

F, =
(45)

e +P, , +oKQP, , =0 (46)

This equation has a general solution written in terms of
the F(x; + ixs/gkQ) analytic function and its complex

conjugate F (x; —ixg/gkQ),
'&D IXs0p
—8F % + 2P - okl
P(Xli X3) - InD % i X )
%%‘ * 3D+ F%‘ grkTIL

Such solutions, however, giveimaginary H, and H; val-
ues. Selecting aone-dimensional solution to (46) in the
form

_ ine2 oonp2KXO
P = InEQk sech >0
yields the structure
_ -9
tanh(kB) = —cos®, b = 2,
anh(kO) cos = 47)
c=0Q¢ (QO2Z)

in the spherical system of coordinates R, ©, ¢ (r =
Rsin®, z = Rcos®). This structure has a nonlocal 6
field distribution, the field of a three-dimensional point
source for b, and avortex for the c field.

(7) The F,; fields depend on the fields 1, v, and A,

2[® 2P | Oy
)\_cnm:l,l% . B:n ,k le
=———, u-= B—D
2 04200 OO0
STl nd' kg (49)
_ _42lC
v = —dn Ck, l%
as follows:
E. = C,Cs3 _ C1C3
YUo(u-v)e, 2 (mA+v)e (49)
E. = C.Co
P (=N +p)cs

Here k; = 4/1— K2 , kisthe modulus of the Jacobi €llip-
tic functions, and ¢; (i = 1, 2, 3) are constants. Equa-
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tions (49) yield asolution for 8, b, and c in the implicit
form
rc
ksnﬂ: l%
2.
kanE, l%dnmg, l%sn%:E kE
y =
a6
OqynCIC
kydng £ K
DG % '
It followsthat thefieldsu, v, and A arethegeneral dlip-

soidal coordinates (elliptic coordinates in space) [15-
17] if they change over the intervals

anb k

, (50)
dn Db k

an, %CHDE,

anb k

{-1<v<—1+K <pu <0< <o} . (51)
Put
0 118 i n U
===, C=——], 52
T RK) 2T Ky © T 2K(F (52)

where K(K) is the total elliptic integral of thefirst kind.
Mapping (50), (52) of the group manifold SU(2) into R®
isthen mutually unambiguous and has a degree of map-
ping [18] equal to one. Although elliptic coordinatesin
spacein various parameterizations have been described
in several monographs (parameterization (50) coin-
cides with that in [17] to within field shifts and scale
transformations), their more detailed study is necessary
for our purposes. Equation (50) yields the symmetry
relations

b(x,y,2) = -b(x,y,-2) + 2m,
c(X,y,2) = —c(X,—Y,2) + 1T = c(—X, -y, 2) + T,
which immediately determine the regions of b and ¢
field values and definition,
O<b<mz>0), m<b<2mz<0),
O<c<1m2 (x>0,y<0),
mw2<c<m (x>0,y>0),
m<c<312 (x<0,y>0),
32<c<2m (x<0,y<0).
It followsthat b = 0 at z= 0, and the c field has a non-
trivial structure of avortex line directed along the zaxis
with a2mtfield jumpinthex =0, y < 0 half-plane. Note
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that the c field coincides with the ¢ + T/2 polar angle at
z=0and k = 0, because we then have

sinc _ __cosc
sin(6/2)’ sin(6/2)

An explicit equation for complex three-dimensional
structure (50), (52) can be obtained as follows. The
equation

2
+ZT =1 (53)

determines the second-order surface. The roots of this
equation t, t,, and t; selected in the intervals -1 < t; <
-1+ k?<t,<0<t;< o and known to coincide with v,
M, and A give expressions for the latter in terms of X, V,
and z. The 6, b, and c fields are then found from (48)
by numerical methods. The localized distributions of
the O field at various z values are shown in Fig. 2.
Equations (48), (53) give

1
2

S5 (KHy+7— o)
X“+y +z

00

for the asymptotic behavior of the 0 field. The b field is
localized at small z values and delocalized at large z
(Fig. 3). The vortex character of the c field isshown in
Fig. 4 for two z values; afield jump by 2mtis clearly
Sseen.

Structures (50) are not topological, because the
absence of constant limits of the b and c fields (as x* +
y? + 72 —» ), aswith the spherical coordinates © and
¢, prevents the compactification of the space R® into
sphere S* and the introduction of atopological invariant
from 15(SU(2)) [18] that coincides with the degree of

mapping.

BORISOV

4. SPATIAL STRUCTURES RELATED
TO THE SECOND AND THIRD SUBSTITUTIONS

Let us discuss the solution to (11), (12) for the sec-
ond substitution using the differential geometry inte-
gration method. We will use the notationy; =X, y, =,
Ys=zand x; =a, X, = b, X3 = cand seek y; = Yi(Xq, Xo, X3)
(i=1, 2, 3) asafunction of x;, X,, and xs. It then follows
from (12) and (17) that the metric tensor g = (g,
related to this transformation is not diagonal,

gm0 o
g =Ho hthD-
O O
00 hihig

(54)

After the hodograph transformation, Egs. (11) are writ-
ten in form (26) with metric tensor (54). We showed
that the solution to these equations had the form

1
hl = 2!
(_ Ux 2Xg szxzux3x3)
.- (Uy) ™ e
2 = )
(U ) (U2, -U, U0 (59)
. v,
3 = 21
U2 (U2, -U, U

wherethe U(xy, X,, X3) field isthe sum of three arbitrary
fields that depend on two variables only,

U(Xy, Xg, X3) = Uj(Xz, X3)

(56)
+ Up(Xq, X3) + Us(Xyq, Xp).

The explicit form of the U; field is determined by solv-

3r (b)

Fig. 2. Localized 6(x, y, 2) field structure in a texture related to the triorthogona harmonic coordinate system (k = 0.3). Solitons at

(& z=0and (b) z= 1 are shown.
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Fig. 3. Field b(x, y, 2) structure in a texture related to the triorthogonal harmonic coordinate system (k = 0.3). Field localization at
(@) z=-1and (b) z= 0.1 and (c) field diagonalization at z= 100 are shown.

ing (21) with metric tensor (55). These equations are
cumbersome, and we give only one of them,

Xoy Xy Xp 7 Xou X9, X3 7 Xy X3, X3

det% U, o, (57)

0 Uy, x,

Xoy X3y X3

U Xo1 X3

[ |
1
o

Thefirst and second matrix rowsin thisequation arethe
derivatives of the third row with respect to x, and Xs,
respectively. This equation has a solution provided the
first or second row is zero or there is a linear depen-
dence between matrix columns,

EUXZ X2 XZE EUXZ X2 X3|:| EUXZ X3 X3
0Us 0,0 = 110U 0, 04 20U, 0 (58)
D 3|:| |:| 2 31 3|:| 31 3D

0 UXZ’Xz 0 0 sz,xs 0 D st,xs 0

The first two conditions are equivalent to one, because
system (11), (12) is invariant with respect to b and ¢
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permutations. Combined with the solution to (21),
these conditions give the results described below
(items(8) and (9)). It can be shown that the other solu-
tion types compatible with (58) exist provided the f;
and f, functions are constant or depend on x,. After the
determination of the U; (i = 1, 2, 3) functions, the
dependences X = x(a, b, ¢), y = y(a, b, ¢), and z =
Z(a, b, ¢) are found by solving linear system (19). The
0, b, and c textures are analyzed using a soliton solu-
tion to (10),

8 = 4arctane®, (59)
or a soliton lattice solution,
cos9 = s l% (60)
2 kL

We omit the details of all calculations and only discuss
the final results for theh; (i =1, 2, 3) and Q, b, and ¢
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BORISOV

Fig. 4. Field c(x, y, 2) vortex structure in atexture related to the triorthogona harmonic coordinate system (k = 0.3). Field distribu-
tionsat (8) z=-0.1and (b) z= 1 witha2mjump inthex = 0, y < 0 half-plane are shown.

fields (in the cylindrical coordinate system (r, z, ¢)).
)

h

_ 0% 0
L = eXpE——,
H/Q.Q

(61)
h,= Qgﬂzexpg ol Epza/alf\/ pl:l D Q2
NQ1Q: «/Qle p Q1
= Q;"expd JLDJ_L Q.Q,>0.

The b and c fields have avortex form, and the a field is
the logarithmic potential of a source,

a=-/QQlnr, b=9gz+¢Q,, c=¢Q,;. (62

According to (59), this gives a localized distribution
for 6,

8= 4arctan(r_m)

over theinterval [0, 211.
(9) Theh; (i = 1, 2, 3) fields depend on the R(x;, X,)
function,

s (63)
_ eR + f496
hy = eR/Z fg !
which satisfies the Laplace equation
P, ¥ QPy, = 0. (64)

Consider a solution to this equation in the form
R(Xq, X5) = T(X;—i%,/Q) + c.C.

The structure then has the simplest dependence on z,
and the manifold of solutions is determined by the
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equations
a—ib/Q

c=%+Gz, X+iy = I e'Mdx (65)

with constant C and Q values. It followsthat a—ib/Q s
an arbitrary analytic function of x + iy. Let us discuss
the simplest structure typeswith selecting 6 in the form
of soliton lattice (60) and the solution for a—ib/Qinthe
form

a—l— Z(f +ig)In(x+iy—cy)

(66)

(fs. 9;UR)

with complex c, constants. The constants f, and g can
be found from the condition of unambiguity of the
matrix D (Eg. (5)). The change in the field a in going
around the singularity line must be multiple to 2kK(k)
(the period of the function sn?(alk, k)), and the change
in the fields b and ¢ must be multiple to 2rt. We there-
fore obtain

_ oe?® -
cosf = 2sn Ek’kD 1, fq Q'
_ KKNg Q (67)
Os = _DTD a\lsa Qsa Q_: 0 ZE
(s=1,2,...,n).
Atn=1, formulas (67) describe spiral vortices,
_ 2|j<¢N1 Qllnr
cosB = —1+2sn 0 l% (68)
KKQN;,Inr
b = Q—nl—chl,
(69)
= Gzt kKNlInr_cI_)_Q?l.
TQ Q

The©, b, and cfields at fixed zwith discrete parameters
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N, # 0, Q, take on constant values on curvesinthe (X, y)
plane that are logarithmic spirals. AtN; = Q, = Q =1,
the solution to (68) is two spiral domains (regions with
opposite cos values) separated by two logarithmic spi-
rals (see Fig. 5). At an N, expression (68) describes an
IN]-turn logarithmic spiral whose chirality (the direc-
tion of spiral twisting) is determined by the sign of the
product N;Q;Q. The k parameter determines the degree
of spiral twisting, which increases as k decreases. The
cost field graph and the configuration of domains for a
two-turn spiral are shown in Fig. 6. The width of spiral
solitons (domain boundaries) depends on k and
increases as the distance from the vortex center grows.
At N =0, we have a system of concentric (with respect
tother variable) ring domains, that is, an antiferromag-
netic target (Fig. 7), which is an infinite band domain
structure with respect to the Inr variable.

Since spiral structures are characterized by two inte-
gral numbers (N and Q), the structures of dipoles are
more diversified than vortex structures. By way of
example, let us consider several types of spiral dipoles
for the O field that consist of vortex spiras with the
numbers (N,, Q,) and (N,, Q,). At large distances, such
adipole transforms into a concrete spiral configuration
with the numbers (N; + N,, Q; + Q,). A dipole consist-
ing of two spira structures with the numbers (-1, 1)
forms a two-turn spiral at large distances (Fig. 8), a
dipolewith (-1, 1) and (-1, 1) forms a structure (2, 0)
(Fig. 9) whose field at large distances depends only on
the polar angle, and adipole with (1, 1) and (-1, 1), an
antiferromagnetic target structure (Fig. 10). The inter-
action of two vortices with the parameters (N, Q) and
(=N, —Q) is attractive in character. The corresponding
solution has the lowest energy and localized character,
0 — masr — oo (Fig. 11).

(10) The structure is determined by the P(X;, X3)

field,
1 P2
h, = ée (=X + G'Xg),
1 2 e"G*
h, = _2(X2_G2X3) Gz+—22, (70)
G (X —G"X3)
1 P2
h; = 2° (=% + G™Xy),
that satisfies the Liouville eliptic equation
2G°¢"+P, , +G°P, , = 0. (71)

In the spherical coordinate system, its one-dimensional
solutions P = —2In(Csech(Cx,)) give the texture

-9 ,-9,6¢
c=ce PER*C
1 G (72)
— 0L O
tanh(aC) = cos@, Tole 0z, c O
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Fig. 5. Spatial distribution of cosd in a one-turn spiral (k=
0.5,N; =1,Q; =1, and Q =1). Domainswith negative (dark
regions) or positive (light regions) cosB values are shown in
theinset.

&
G
IR
R
SRR
PR L
F i
iy \Csmizisirse
it
Uittty
it

Bt i

e
R

)

SRR : i

i
R
Gl
u&\‘\:“:\\‘s\\
i
& \\‘\\‘\\ ‘\\\\\
A
i
.

3

Fig. 6. Core structure for atwo-turn spiral (k= 0.5, Ny = 2,
Q;=1,andQ=1).

AR
s
S

AR
R
b e
N \\mu i “
e
TR
cos® L
A imat LR
1 - i f‘.,:lirlu‘,',«,w,wﬂ\ i .
AR
R R o
i e G
e
il i CERRR Ry
Gl DI
-1 1 1l m\“

Fig. 7. Spatial distribution of cosB in an antiferromagnetic
target (k=0.3,N;=0,Q;=1,and Q =1).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101 No. 3 2005

447



448

10

_10_ 1 1 1 1 .
4 0 4 8

Fig. 8. Spiral dipole consisting of two one-turn spirals with
the parameters N; = =1, Q; =1 and N, = -1, Q, = 1 that
forms a two-turn spiral at large distances. The distance in
thepaird=5,Q=1,andk=0.7.

10 H

-10 K 1 1 1 1 ]
-10 -5 0 5 10 15

Fig. 10. Spiral dipole consisting of two one-turn spiralswith
the parametersN; =1, Q; = 1and N, =1, Q, = 1 that forms
an antiferromagnetic target at large distances. The distance
inthepaird=5,Q=1,andk=0.7.

of avortex for the c field and the field of a vortex and
spatial sourcefor the b field. Although distribution (72)
issimilar to (47), Eq. (59) changes the 0 field over the
interval [0, 2.

(11) As with elliptic coordinates in space, the
fieldsh, (i = 1, 2, 3) are given by three elliptic func-
tions F;(u;) (there is no summation over repeating
dummy indices) of the variables u; = X3, U, =

JC1 (%o + €Xa)/(C,— ), and Ug = . /c, (X + CXa)/(C, —C)
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BORISOV

Fig. 9. Spiral dipole consisting of two one-turn spirals with
the parametersN; = -1, Q; =1and N, = -1, Q, =-1. The
distanceinthepaird=5,Q=1,and k=0.7.

10 H

—10H
-10 -5 0 5 10 15

Fig. 11. Spiral dipole consisting of two one-turn spiralswith
the parameters N; = -1, Q; = 1 and N, = 1, Q, = —1 that
formsauniform state, 6 = 11, at large distances. The distance
inthepaird=5,Q=1,andk=0.7.

with constant ¢, values,
Jewc,
JFi—Fa/—F +F;4
— A/ElA/EzA/(— C, +C)F; —CF, + ¢ Fy (73)
JFi—FoJF,—Fa/—F  +Fy
— J(=cy+C,)Fy + ¢, F,—CyF5
JF1—F,/Fi—F3./F,—F;

2

3
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The F;(u;) functions satisfy the equation

Fiy = —80—asFi(U) —aFi(u) —a;Fi(w). (74)
The corresponding structure will be described in detail
elsewhere.

Let us discuss the textures related to substitution
(14)—(16). A solution to the system of nonlinear equa
tions (15), (16) wasfound in [19] in the implicit form

A(w) + yB(w) * -1 -B*(w) = x (75)

with arbitrary analytic functions A(w) and B(w) of w =
o +ip. Given the form of these functions, a(x, y, z) and
B(x, Y, 2) arefound explicitly by solving complex equa-
tion (75). This equation is an analog of the Riemann
wave for the Hopf equation and admits direct generali-
zation to the N-dimensional space case. Generaly, asin
hydrodynamics, the solution to this equation is not
unambiguous, and the determination of unambiguous
spatial structures of thefields8, b, and ¢ requiresinvok-
ing ambiguous solutions to (14). For this reason, we
restrict ourselves to consideration of unambiguous
solutions of the simplest form. Put 6 = 6(a), b = b(p3),
and ¢ = ¢(p). It then follows from Eq. (14) that

c=[3%—2.

The 8(a) field satisfies the sine-Gordon equation
(=sinB(0)Q,Q,/Q? + 8"(a) = 0), which, at Q;Q, >0, has
the solution

(76)

cosz = snmx “Qle l% (0<k<1).

At Q,Q, <0, asolutionfor e(a) can be derived from (75),
(76) by shifting 6 by Tt The simplest solution to (75) is
obtained when A(w) and B(w) are selected as

(77)

_ - i(=1+F(w))
with an arbitrary F function. Then,
w=FQ), Q= tan%expiq) (79)

or wisthe antianalytic function w = F(Q*) of the com-
plex variable Q, which is a stereographic projection of
the sphere of a unit radius in the three-dimensional
space (X = sin@cosd, y = sin@sing, z= cosO. Let w be
given by the potential of avortex source, w=0a +if3 =
(Q+iDHINQ (Q, fUR). Thesolutionto (79) isthen alin-
ear defect with singular field 6 derivative values on the
zaxis(@ — 0,8 — ). In going around the singular-
ity line, the change in the b and c fields should be mul-
tiple to 21, and the change in the argument of the ellip-
tic function in (77) should be multiple to 2K (the half-
period of the sn(u, K) eliptic function), asfollows from
the requirement that cosd, b, and ¢ be unambiguous.
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The structure is then characterized by integral S, Q,
and Q, values, and its general formis

cosg = sn%—%+%ln%an%A/QlQ2, l% (80)
b= —q)Ql——kSKIn%anaj gl (81)

Cn Qz
= k | 2
c=¢Q,+= KSn%an SAreR (82)

At S=0and in the simplest (soliton) case (k = 1), we
have

o 17 %anza]m
CcosS= = (83)
2 1+ %anzajm
0 =2n+20, c=-b=¢ (Q,=Q,=1) (84

and structure (84) leads to the field n, = (-z/R, 0, /R,
—y/R), whose components coincide with the hedgehog
field components (m =—/|r|).

At S#0, the 6 field hasasingular line (z=0) and the
field cosB assumes the constant value

[£14/ Q104 QleD

COS— = sn
2

on the helicoidal surfaces
= —Rtanh B:l + kSeK (k)

LN, QleD

that pass through the origin and, at afixed z= h value,
on spirals of the form
kS¢ K(k)D

th% n/QiQ."

Figure 12 showscosB and thefield b plotted at S=1 and
afinite z.

The general unique solution for asystem of interact-
ing spatial spirals

r =

W= o+ip = ZEZIkKS +QH
(85)

CF i
?e %+ w(Q)

)

X In%anze —tan
is characterized by an arbitrary meromorphic function
w(Q), the k parameter, integral § and N; values, and
arbitrary real constants 6, and ¢;; it contains aset of sin-
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(a)

4 2 0 2 4

BORISOV

Fig. 12. Field cosB(x, y, 2) and b(X, y, 2) distributionsin the z= 4 plane in athree-dimensional spiral structure (k=1/3, S=1, Q; =
-1, and Q, = -1). (8) Domains with negative (dark regions) and positive (light regions) cosB(x, y, z) values and (b) vortex b(x, Y,
z=4) field structure with a2rtjump in the y = 0, x < 0 half-plane are shown.

gular rays that issue from the origin at angles 6; and ¢,
(=1, ...,n). Atr < z the structure described by (77)
and (85) isaset of |§|-turn logarithmic spirals.

5. CONCLUSIONS

To summarize, we found new types of three-dimen-
sional textures in multisublattice antiferromagnets and
showed that applying classic differential geometry
methods is fruitful. Substitutions of type (14)—16)
(combined with the differential geometry method) can
be generalized to the n-field model (n O SY), systems of
orthogonal n-fields on Stiefel manifolds [7], etc., in
spacetime of arbitrary dimensions.

Let us briefly discuss observing the textures found
experimentally in antiferromagnets. Scale-invariant
equations (7) are written in the exchange approxima-
tion only, without including magnetostatic fields, which
are low in antiferromagnets, or anisotropy fields. The
form of the textures found istherefore only valid at dis-

tancesr <I| = J/a/B (a isthe exchangeinteraction con-
stant and 3 is the anisotropy constant). The influence of
the anisotropy constant would change the structure at
large distances from singular lines. Note that, in ferro-
magnets, quasi-stationary target- and spiral domain-
type magnetic structures are observed in thin magnetic
films with strong perpendicular anisotropy of the easy
axistypeafter pumping with aharmonic or pulsed mag-
netic field [20, 21]. Recently, magnetic structures in
nanomagnets (magnetic dots) have been the object of
considerable attention. In these structures, various vor-
tex-like states with possible magnetization displace-
ment from the disk plane are observed [22]. The exist-
ence of two-dimensional vortex structures in magnetic
dots was substantiated by electron and magnetic force
microscopy [23]. Switching processes induced by pla-
nar or perpendicular pulsed magnetic fields excite skyr-
mion-type magnetic structures, theoretically predicted
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in[24], or spiral structures[25] in such systems. In anti-
ferromagnetic nanosystems, vortex and spiral struc-
tures can be observed by spin-polarized scanning tun-
nel microscopy (SPSTM), especially considering pros-
pects for creating SPSTM with atomic resolution.
SPSTM operates on the principle of scanning the sur-
face of a film with a thin magnetized point (scattering
field on the order of 0.1 T) when recording magnetic
signals. In multisublattice (as in one-sublattice [26])
antiferromagnets, local magnetization is proportional
to the second derivatives of fields and sharply increases
near vortex lines and singular structure centers.
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Abstract—A phase diagram reflecting the main features of the typical phase diagram of cuprate superconduc-
tors has been studied within the framework of the Ginzburg—Landau phenomenology in the vicinity of atetrac-
ritical point, which appears as a result of the competition of the superconducting and insulating pairing chan-
nels. The superconducting pairing under repulsive interaction corresponds to atwo-component order parameter,
whose relative phase is related to the orbital antiferromagnetic insulating ordering. Under weak doping, the
insulating order coexists with the superconductivity at temperatures bel ow the superconducting phase transition
temperature and is manifested as a weak pseudogap above this temperature. A part of the pseudogap region
adjacent to the superconducting state corresponds to devel oped fluctuations of the order parameter in the form
of quasi-stationary states of noncoherent superconducting pairs and can be interpreted as a strong pseudogap.
As the doping level is increased, the system exhibits a phase transition from the region of coexistence of the
superconductivity and the orbital antiferromagnetism to the usual superconducting state. In this state, aregion
of developed fluctuations of the order parameter in the form of quasi-stationary states of uncorrelated orbital

circular currents exists near the phase transition line. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The superconductivity in cuprates appears upon
doping of the parent antiferromagnetic insulator and
takes place in a certain dopant concentration interval
limited both from below and from above: X< x < x*.

At the boundaries xjand x* of thisinterval, the super-

conducting phase transition temperature T is zero.
Being afunction of the dopant concentration, the super-
conducting transition temperature T(X) reaches the
maximum value at a certain optimum doping X,y. The
antiferromagnetic spin order inherent in the parent
insulator (characterized by the Néel temperature Ty(X))
is effectively suppressed by doping, and the long-range
antiferromagnetic order in the form of a spin density
wave (SDW) disappears at a certain doping Xy < X5 A
short-range antiferromagnetic order (SDW fluctua-
tions) is observed up to X = Xy [1].

As the temperature is increased, the superconduct-
ing phase transition in the region of overdoping (X, =
X < X*) in the phase diagram acquires, as is commonly
accepted, the features of the superconducting transition
in the usual superconductors [1]. This implies that the
normal state existing at temperatures above T(X) in the
region of overdoping isaFermi liquid, so that the phase
transition from superconducting to normal phasein this
region can be satisfactorily described within the frame-
work of the standard Bartdeen—Cooper—Schrieffer
(BCS) mean field theory.

In the region of underdoping (X< X = Xy in the

phase diagram, the system exhibits a phase transition
from the superconducting state to a phase where the
one-particle density of states is strongly suppressed.
This state is characterized by a pseudogap in the spec-
trum of one-particle excitations. Establishing the nature
of this pseudogap is among the basic problems in the
physics of cuprates. The region of the pseudogap state
is manifested in various experiments, but the tempera-
ture interval of these manifestations at a given level of
doping x from the interval X< X = X, IS expediently
divided into two parts [1]. The low-temperature part
(strong pseudogap region) at To(X) < T < Tg, ischarac-
terized by enhancement of the Nernst effect and can be
related to the existence of noncoherent superconduct-
ing pairs. Then, T% corresponds to the disappearance

of such pairs, that is, to the rupture of bonds between
particles forming these pairs. In the high-temperature

part (weak pseudogap region) at Tg, (X) < T < Ty (¥),
anomaliesin the physical properties related to suppres-
sion of the one-particle density of states survive until,
at T> Ty (X), the system occursin astate corresponding
to the Fermi liquid [1].

It would be quite natural to assume that the very
existence of the pseudogap state is caused by a certain
insulating ordering, which is related to the antiferro-
magnetic ground state of the parent insulator and sur-
vives at relatively small carrier densities introduced
into the crystal by doping [2]. In experiment, the values
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of Ty and T, a which the strong and weak

pseudogaps appear with decreasing temperature, are
manifested as the crossover temperatures in the course
of continuous variation of the physical properties,
rather than as the temperatures of phase transitions cor-
responding to anomalies in the thermodynamic quanti-
ties. The concept of crossover quite naturally agrees
with the interpretation of a strong pseudogap, whereas
the explanation of aweak pseudogap (implying insulat-
ing ordering) necessarily leads to the conclusion that
Ty, must correspond to a phase transition from the

insulating state to the state of Fermi liquid. For thisrea-
son, it isassumed that the weak pseudogap is actually a
true energy gap corresponding to this (hidden) insulat-
ing ordering, which is difficult to distinguish in experi-
ment. For example, the absence of an anomaly in the
heat capacity on the passage from the normal state to
the pseudogap state can be related to the fact that this
phase transition is of an infinite order [3].

An anadysis of the available experimental data
shows that the pseudogap and the superconducting gap
possess the same symmetry. A singlet superconducting
pairing corresponds to an orbital structure of the order
parameter, which can beinterpreted both in termsof the

d-wave symmetry (dxz_yz pairing) and in terms of the

“extended” s-wave symmetry (s+ g pairing) [4, 5]. The
identical distribution of zeros in the superconducting
gap and in the pseudogap makes it highly probable that
the insulating pairing channel (leading to the weak-
pseudogap state) is related to the orbital antiferromag-
netic ordering [6].

The features of the phase diagram of cuprates
(Fig. 1) imply the need to consider the competition and
coexistence of various channels of the insulating and
superconducting pairing, which leads to alarge variety
of the ordered states. These states can be manifested by
the corresponding phases formed in various regions of
the phase diagram [7, 8]. The orbital antiferromagnetic
order, manifested as a toroidal magnetic state [9] in
three-dimensional (3D) systems, leads to a staggered
flux state [10] in quasi-2D cuprate compounds. This
state corresponds to a checkerboard-ordered distribu-
tion of circular orbital currents in cuprate planes. A
microscopic analysis within the framework of the t—J
model with allowance for the SU(2) equivalence of the
d-wave pairing and the orbital antiferromagnetic (stag-
gered) flux phase [11] shows that the checkerboard
order in the distribution of current circulations survive
in the superconducting state. Such current circulations
can be interpreted either as fluctuations of the orbital
antiferromagnetic order inside the conventional super-
conducting phase or as a special superconducting phase
with the coexistence of two types of ordering (super-
conducting and orbital antiferromagnetic).

In the case when the orbital currents circulate via
chemical bonds between atoms, the orbital antiferro-
magnetic ordering corresponds to a commensurate
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Fig. 1. The typical phase diagram of a hole-doped cuprate
compound. AF is the region of long-range spin antiferro-
magnetic order, SC is the region of superconducting state,
and wPG and sPG are the regions of weak and strong
pseudogap, respectively.

charge density wave [12]. Owing to the presence of
zeros in the order parameter, this d-wave density wave
(DWW) [2] must possess a higher stability with respect
to doping than the SDW possessing the sswave symme-
try [13]. Moreover, in systems with strong e ectron—
phonon interactions (including doped cuprates), the
spin antiferromagnetic ordering in the form of SDWs
(having no zeros in the order parameter) is additionally
suppressed. On the contrary, in the case of orbital anti-
ferromagnetic ordering, the electron—phonon interac-
tions play therole of astabilizing factor. Owing to this,
the region of orbital antiferromagnetic long-range
ordering (e.g., in the form of DDWs[2]) or short-range
ordering (DDW fluctuations [14]) can be expanded to
reach rather high doping levels and high temperatures.

One can suggest that the intervals of doping, in
which the orbital antiferromagnetic ordering coexists
with superconducting ordered states, overlap in
cuprates. A competition between these states may
account for certain features in the phase diagrams of
cuprates, at least in the interval of doping where the
superconductivity exists.

This paper isdevoted to the phenomenol ogy of com-
petitive orbital-antiferromagnetic and superconducting
ordered states, which provides for a qualitative inter-
pretation of the features of the phase diagrams of
cuprates. A macroscopic description [15] of the super-
conducting pairing with a large total momentum of the
pair with repulsive interaction (this state can be consid-
ered as aremnant of the antiferromagnetic state with a
close energy, from which the superconducting state
arises upon doping) leads to a two-component order
parameter possessing a zero line that crosses the Fermi
contour in the kinematically allowed domain [16].
Under conditions of ideal mirror nesting of the Fermi
contour [16, 17], an asymptotically exact (even at an
arbitrarily weak repulsion) nontrivial solution of the
self-consistency equation exists provided that a linear
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operator with a kernel determined by the repulsive
potential has at least one negative eigenvalue [16]. In
addition, the repulsive potential possessing this prop-
erty leads to the existence of quasi-stationary states of
pairs with large momentum [17], which may existin a
certain region of temperatures (corresponding to the
pseudogap state) above the superconducting transition
temperature. The pairing with alarge momentum under
repulsive interaction admits a natural interpretation of
the two-component order parameter, which allows the
features of the phase diagrams of cupratesto be consid-
ered as resulting from the competition and coexistence
of the superconducting and orbital-antiferromagnetic
phases. Features of the Fermi contour shape and itsevo-
lution caused by doping, which are related to the
appearance of an orbital-antiferromagnetic insulating
state [18], ensure realization of the mirror nesting con-
ditions necessary for the superconducting pairing.

2. PAIRNG WITH LARGE MOMENTUM

The insulating singlet orbital antiferromagnetic
order is characterized by a certain vector K (dependent
on the level of doping), which has a physical meaning
of the momentum in the coupled state of an electron—
hole pair. This vector determines the spatial periodicity
of amagnetic structure formed in the cuprate plane. As
a factor competitive with the orbital antiferromagnetic
order, we will consider a superconducting singlet chan-
ne of pairing with alarge momentum K. In this case,
the orbital structure of the superconducting order
parameter retains a memory of the antiferromagnetic
state of the parent compound, from which both the
orbital-antiferromagnetic insulating state and the
superconducting state appear as aresult of doping.

An analysis of the superconducting pairing within
the framework of the Hubbard model (n-pairing)
showed [19] that, at half-filling, there are numerous
eigenstates of the Hubbard Hamiltonian, which corre-
spond to singlet Cooper pairs with azero total momen-
tum (ng-pairs) or to the pairs with (11, ) momentum on
a 2D sguare lattice (n,-pairs). Asaresult of doping, the
total momentum of the pair deviates from (11, ) (the
value at half-filling state) and in the general case
becomes incommensurate [2] (for this reason, the cor-
responding superconducting channel is naturally
referred to as ng-pairing).

A superconducting pairing with a nonzero (but
small) total momentum also follows from solving the
problem of coexistence of the superconductivity and
ferromagnetism [20, 21]. For K #0, there appears a
kinematic constraint on the range of momentum k of
the relative motion of the pair. This corresponds to a
decrease in the number of one-particle states contribut-
ing to the wavefunction of the pair. It should be noted
that, at a commensurate momentum K = (Tt, ) corre-
sponding to the half-filled state, the kinematically
allowed domain vanishes. If the momentum K of the
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pair is nonzero, the kinetic energy of the pair vanish
only at certain points of the Fermi contour belonging to
the kinematically allowed domain, rather than over the
entire Fermi contour (asisfor K = 0inthe absence of a
kinematic constraint). The density of states of the rela
tive motion vanishes on the Fermi contour. This elimi-
nates a logarithmic singularity in the self-consistency
equation, so that the superconducting pairing becomes
impossible at an arbitrarily small value of the effective
coupling constant.

For a specia shape of the Fermi contour, asituation
is possible in which the energy of a quasi-particle
becomes zero on finite segments of the Fermi contour
within the kinematically allowed domain. This results
in afinite density of states of the relative motion on the
Fermi contour. To this end, it is necessary that, for a
given momentum K of the pair, the electron energy
dispersion g(k) would obey the mirror nesting condi-
tion [16]

s%+k%+e%—kg—2u= 0, 1

where | is the chemical potential of electrons. Owing
to the fact that the Fermi contour in cuprates occursin
an extended vicinity of the saddle point of the electron
dispersion, condition (1) (restoring the logarithmic sin-
gularity in the self-consistency equation) can be satis-
fied at |east approximately. This provides for the possi-
bility of obtaining an asymptotically exact (even for an
arbitrarily small coupling constant) solution for the
superconducting gap [22].

In the case of pairing with a zero total momentum of
the pair, the mirror nesting condition is trivialy valid
over the entire Fermi contour owing to the general fea-
ture of the electron dispersion: e(—k) = (k). For an arhi-
trary K # 0 and an arbitrary dispersion, condition (1)
(considered as the equation for the momentum k of the
relative motion) leads to a solution determining two
points on the Fermi contour, which are symmetric rela-
tive to the K direction. However, there are several rea-
sons [16] for which a 2D dispersion can lead to a spe-
cia structure of energy isolines such that, for certain
momenta of the pairs, condition (1) is satisfied on finite
segments of these isolines or even on some closed iso-
lines. As the doping level changes, the Fermi contour
passes from one isoline to another and, in the general
case, the momentum K providing the best mirror nest-
ing condition changes as well.

A simple example of the mirror nesting of the Fermi
contour is offered by the case (typical of cuprates)
observed in angle-resolved photoemission spectros-
copy (ARPES) experiments, whereby the Fermi contour
has the shape of a square with rounded corners [16]. In
this case, achangein the sign of the curvature of almost
rectilinear segments of the Fermi contour (caused by
their proximity to the saddle point of the dispersion
function) leads to an increase in the length of segments
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satisfying condition (1). In compoundswith the double-
band electron spectrum, condition (1) is quite naturally
satisfied for finite segments of the Fermi contour, which
belong to different energy bands [16]. The appearance
of a quasi-one-dimensional spatially inhomogeneous
stripe structure also leads to the deformation of energy
isolines favoring the validity of condition (1) on finite
segments of the Fermi contour.

According to the ARPES data, a simply connected
Fermi contour is observed in overdoped cuprates. In
contrast, the Fermi contour in underdoped compounds
(where an insulating gap appears in the electron spec-
trum) acquires the shape of hole pockets symmetric rel-
ative to directions of the [T, T type. In each of these
pockets, the mirror nesting condition is perfectly satis-
fied on the entire Fermi contour for the total pair
momentum directed along this [11, T direction, pro-
vided that the magnitude of this momentum is two
times the distance to the pocket center [16].

It should be noted that an perfect mirror nesting (in
contrast to the perfect conventional nesting leading to
an insulating instability) is characterized by coinci-
dence of the occupied region of the momentum space
with another occupied region, and of the vacant region
with another vacant region, when the Fermi contour is
shifted by the nesting vector. For the conventional nest-
ing, such a shift leads to coincidence of the occupied
and vacant regions. A Fermi contour having the shape
of hole pockets also features the conventional nesting,
with the nesting vector practically coinciding with the
total momentum of the superconducting pair.

3. SUPERCONDUCTING PAIRING
UNDER REPULSIVE INTERACTION

The question what is the predominating mechanism
of pairing interactions in cuprates is still open and,
along with the traditional pairing caused by the elec-
tron—phonon interaction [23-25], the interaction by
exchange with antiferromagnetic magnons [26] and
purely electron (Coulomb) pairing mechanisms have
been aso considered. Allowance for the Coulomb
repulsion is of principal importance in cuprates, which
belong to the systems with strong on-site electron cor-
relations [27]. A quditative analysis of the Coulomb
repulsion, along with the attraction caused by the elec-
tron-phonon interaction, within the BCS scheme leads
to the conclusion that the Cooper pairing appears when
the effective coupling constant for the el ectron—phonon
interaction exceeds an effective value of the Coulomb
constant reduced by the Tolmachev logarithm [28]
rather than the nonreduced constant.

The Coulomb repulsion can lead to superconducting
pairing even in the absence of the attraction caused by
electron—phonon interaction [29]. The corresponding
superconducting order parameter cannot be a function
of constant sign depending on the momentum of therel-
ative motion of the pair. It exhibits a zero line crossing
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the Fermi contour at several points, which reflect the
crystal symmetry [16]. The symmetry of the supercon-
ducting order parameter, as dependent on the number
and arrangement of zeros on the Fermi contour, can be
conditionally referred to as the d-wave (in the case of
four zeros, whereby a 102 rotation in the momentum
space leads to a change in sign of the order parameter)
or the expanded s-wave symmetry.

The superconducting order parameter as a function
of the momentum k of the relative motion of the pair is
conveniently represented an expansion in a complete
orthonormal system of eigenfunctions ¢ (k) of alinear
operator with the kernel U(k — k"), which is equa to
Fourier transform of the pairing screened Coulomb
repulsion potential. Here, the index s runs over the
numbers of eigenfunctions determined by solving the
linear integral equation

ds(k) = ASIU(k—k')tbs(k')dzk', )

where A, are the corresponding eigenvalues of the
above operator and the integral is taken over the kine-
matically allowed domain.

The maximum area of the kinematically alowed
domainfor n-pairing corresponds to the momentum K
of the pair along one of the symmetry directionsin the
momentum space. For large K, such a domain amounts
toonly asmall part of the 2D Brillouin zone. Therefore,
the true kernel U(k—k") can be replaced by a degenerate
one, representing the first terms of the expansion into
seriesin powers of the argument [16]:

2 k2r2
Ug(k) = Uoro——5, ©

where r, has the meaning of the effective screening
radius and U, ~ €/r, is the characteristic interaction
constant. This degenerate kernel has two even and two
odd (with respect to the k — —k transformation)
eigenfunctions. The first two correspond to the case of
eigenvalues with opposite signs [17].

The existence of at least one negative eigenval ue of
the interaction operator ensures the existence of anon-
trivial solution of the self-consistency equation [16].
Thus, the screened Coulomb repulsion between elec-
trons may lead to superconducting ordering with an
unconventional symmetry of the order parameter (dif-
ferent from the swave symmetry typical of the BCS
model with attraction). It should be noted that, in the
insulating (electron-hole) pairing channel, this interac-
tion corresponds to the attraction between electron and
hole, and it leads, in particular, to orbital antiferromag-
netic ordering.

In the case of repulsion, the complete system of
eigenfunctions of the operator of pairing interaction
contains not less that two functions that are even with
respect to the k — —k transformation [16]. Therefore,
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QSS

BS

Fig. 2. Schematic pairing repulsive potential U asafunction
of the distance r between interacting particles. Solid and
dashed lines show the energy levels of a bound state (BS)
and a quasi-stationary state (QSS) of the pair.

the superconducting order parameter also has no less
than two components (coefficients of expansion with
respect to this system of functions). Note that, in the
case of attractive pairing, it is sufficient to have only
one eigenfunction (that corresponding to a single nega-
tive eigenvalue), asin the BCS model.

Figure 2 shows the shape of arepulsive potential U
admitting the n¢-pairing, plotted as a function of the
distance r between particles. Such a coordinate depen-
dence takes place (owing to the Friedel oscillations) for
a screened Coulomb potential in the degenerate elec-
tron system of a crystal. This potential also admits, in
addition to a bound state of the ny pair corresponding
to the superconducting condensate, the appearance of
guasi-stationary states of the ng-pairs [17], which can
exist (as noncoherent pair excitations) in a certain tem-
perature interval above the superconducting transition
temperature. Obvioudly, the attractive pairing does not
admit such quasi-stationary states.

4. THE GINZBURG-LANDAU nx FUNCTIONAL

The superconducting order parameter dependent on
the momentum k of the relative motion of the pair can
be conveniently expressed in a form explicitly reflect-
ing the crystal symmetry. The kinematically allowed
domain =, in which the momentum Kk is defined, can be
represented as a superposition of subdomains =;, each
of these being the kinematically allowed domain for
one of the crystallographically equivalent momenta K
of the pair. In the case of a square lattice, where K| is
parallel to one of the symmetry axes, the index j runs
from 1 to 4. For large K, the subdomains =; are usually
only dlightly superimposed and their overlap can be
ignored to the first approximation. In this approxima-
tion, solutions to the self-consistency equation can be
independently obtained for each particular subdomain.
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These solutions W, (k) are similar, differing only in the
domains of variation of the momentum of relative
motion.

The order parameter can be written in the form of a
linear combination of W; (k) functions:

Wk) = 5 vi¥i(k), (4)
j

wherethe coefficientsy; are normalized as ) | ly|> =1

and determined by the interaction mixing the momenta
in various crystallographicaly equivalent kinemati-
cally allowed domains =;. Thus, these coefficients set a
one-dimensional irreducible representation of the crys-
tal symmetry group, according to which the order
parameter is transformed.

For each momentum K;, we can determine a com-
plete orthonormal system of eigenfunctions ¢ (k) of
the operator of pairing interaction and expand the order
parameter for the =; subdomain:

Wilk) = S Webjs(k). )

The quantities W, areidentical for all j and play therole
of the order parameter components. The dependence of
this parameter on the momentum of relative motion in
Eq. (5) isfully described by the ¢;4(k) eigenfunctions,
which are determined from Eg. (2) independently of the
self-consistency equation. In the case of the simplest
degenerate kernel Uy(k — k") describing the screened
Coulomb repulsion, there are two such components
(s=1, 2). It should be noted that the minimum number
of the order parameter components necessary for the
description of attractive pairing is one, whereas the
description of repulsive pairing requires not less than
two components.

The zero line of the order parameter separates the
kinematically allowed domain into two parts, each part
being adomain of constant sign for the W, (k) function.
The opposite signs of the order parameter in theregions
on different sides from the zero line alow this parame-
ter to be approximately described [30, 31] by setting the
average values (with opposite signs) in the two parts of
the kinematically allowed domain [16]. This approxi-
mate description formally corresponds to modification
of the eigenfunctions used in expansion (5), whereby
one of these functions (that with a positive eigenval ue)
is set constant and the other (with a negative eigen-
value) is piecewise constant with a discontinuity on the
zero line. Defined in this way, the eigenfunctions deter-
mine a new degenerate kernel, which approximately
describes the screened Coulomb interaction [32]. The
average vaues of the order parameter, which have dif-
ferent signs on the opposite sides of the zero line and
represent real solutions of the self-consistency equa
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tion, turn out to be equivalent to two complex compo-
nents, W, and W, provided that their relative phaseis Tt

Not restricting the consideration to this condition,
that is, admitting complex solutions for the amplitudes
u, and v, of the Bogoliubov transformation leading to
the self-consistency equation, we can write the order
parameter as

W(k) = Zws%(k), (6)
where

¢s(k) = vi¢;s(k) (7)
j

are the eigenfunctions of the operator of pairing inter-
action defined in the entire kinematically alowed
domain =. These functions reflect the full symmetry of
the cuprate plane, and the coefficients y; determine an
irreducible representation corresponding to the symme-
try of the order parameter (6). Therefore, it is conve-
nient to select the Bloch phase factor from these coeffi-
cients, such that y, — y,exp(-K; - R), where R isthe
radius vector of the center of mass of the pair andy, are
numerical factors (independent of R). Since the order
parameter is a scalar function defined in the kinemati-
cally allowed domain = of the Brillouin zone, its con-
travariant components with respect to ¢,k) must be
written as

iK;[R
W(R) = WPy ye (8
]

In the case of aweak spatial inhomogeneity of the sys-
tem, the quantities Wgo) determining the amplitude of
the order parameter are slowly (on a unit cell scale)
varying functions of R. With respect to the symmetry
properties, the order parameter written in the form (8)
is analogous to that obtained in the Fulde—Ferrel-Lar-
kin—Ovchinnikov generalized state.

The amplitudes W (R) and WY (R) have the
meaning of the components of a wavefunction describ-
ing the motion of the center of mass of the pair. These
functions can be considered as components of the
superconducting order parameter for the repul sive pair-
ing in a system described within the framework of the
macroscopic  Ginzburg-Landau phenomenological
scheme [15].

Both amplitudes, as functions of the temperature,
simultaneously vanish at T = T, which is the tempera-
ture at which the superconducting order parameter (6)
vanishes in the mean field approximation. In this con-
text, it should be noted that the states of mixed symme-
try such as dxz_yz + €% (where x isthe contribution of
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states, e.g., with swave or d,, symmetry, and 6 is the
relative phase of the order parameter components) cor-
respond in the general case to different mean field tem-
peratures for the phase transitions to the states with

dxz_yz and x symmetry. In particular, the phase transi-
tion can be absent for one of such states [33, 34].

In the case of attractive pairing, the superconducting
phase transition in the BCS model correspondsto asin-
gle-component complex order parameter. The phase of
this complex quantity reflects the establishment of
phase coherence in the system of Cooper pairs upon
spontaneous doubling of the charge of carriers, while
the modulusis determined by the binding energy of the
relative motion of the pair. Therefore, the second com-
plex component of the order parameter in the case of
repulsive pairing probably reflects the other degree of
freedom related to the relative motion of the pair, for
example, the appearance of a spontaneous orbital cur-
rent. Then, the relative phase of the order parameter
components determines the contribution of each degree
of freedom (charge and current) to the superconducting
order parameter.

The free energy density determining the Ginzburg—
Landau functional can be represented as a sum of three
components [15]:

f=fo+fg+f, (9)

Thefirst term in the right-hand side is the expansion in
powers of the order parameter, which can be writtenin
the general case as

1
fo = z A WsW, + éz Bt Ws W W, W,,  (10)
ss

sstt'

where matrices A and By are functions of the tem-
perature and the doping (which contain three and five
independent components, respectively), and theindices
numbering the order parameter componentsin the sums
take the values 1 and 2. The second (gradient) term f in
Eq. (9) can be written as[15]

2

fy = %Z[bw*mg[bwgl, (1)

where matrix My is positive, depends on the tempera-
ture and doping, and has three independent compo-
nents. The operator of covariant differentiation with
respect to components of the radius vector R of the cen-
ter of mass of the pair is asfollows:

D = —iD—z—eA,

e (12

where A is the vector potential determining the mag-
netic induction B = curl A averaged over the relative
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motion of the pair. Thisterm includes the contributions
due to both an external field and the field related to the
appearance of spontaneous currents. The third term f,
in Eq. (9) accountsfor achangein the energy density of
the medium upon the appearance of the magnetic field:

fn = H[B/8m, (13
where H = B/u isthe magnetic field strengthand p = 1
isthe magnetic permeability of the nonsuperconducting
phase. Upon n«-pairing, the matrices averaged over the
relative motion of the pair, which determine contribu-
tions (10) and (11) to the free energy, are represented by
integrals over the kinematically allowed domain corre-
sponding to momenta K; of the crystallographically
equivalent pairs of the superconducting condensate [15].

The free energy is invariant with respect to the uni-
tary transformation of the order parameter components,
which is performed using 2 x 2 matrices of the SU(2)
group. By specially selecting such a transformation, it
is possible to diagonalize A and M matrices. Once
this diagonalization is performed, the matrices in rela
tions (10) and (11) can be expressed as A, = A0 and
My = My, Where A, and M, are functions of the tem-
perature and the doping level.

The superconducting phase transition temperature
T(X) corresponding to the mean field approximation is
determined from the condition detA.(T, X) = 0. After
diagonalization of the A matrix, this condition takes
the form A.(T, X)Ay(T, X) = 0. As was noted above, both
components of the order parameter vanish at the same
temperature. Therefore, it is necessary to provide that
two conditions are simultaneoudly satisfied, A(T, X) =0
and A,(T, X) = 0, and this is precisely what takes place
in the case of ng-pairing under repulsive interaction
condition [15]. Thus, we may assume that, near the

phase transition line, A(T, X) = -T,A” (x), where

Ago) (X) are positive functions of the doping level, T, =
(Ts—TN)/T,, and it is assumed that |1;| << 1. The By, and
Mg matrices do not vanish at T = T,. For thisreason, it
is possible to replace the argument T near the phase
trangition line by Tg and consider these matrices as
functions of only the doping x. It should be emphasized
that this approximation is acceptable only in cases
when the superconducting transition temperature T(X)
coincides with the value T(x) according to the mean
field approximation. According to the existing notions,
this coincidence takes place only in the overdoped
region [1].

5. SPATIALLY HOMOGENEOUS ng-STATES

In the absence of an external magnetic field and
structural inhomogeneities, the state of the system with
along-range superconducting order is determined from
the condition of minimum of the free energy density f,.
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Complex components of the order parameter are char-
acterized by their moduli (,, U,), the relative phase 3,
and the phase @ corresponding to the superconducting
condensate, which is not included in expansion (10).
Thus, we can write

W, =y, e’ W,=y,ePe®. (14)
A minimum of the free energy at 1, < 0 corresponds to
the obvioustrivial solution Y, = Y, = 0 with indetermi-
nate relative phase. At T, > 0, the problem has nontrivial
solutions for which the thermal equilibrium values of
parameters Y, Y,, and [ are determined by the ele-
ments of matrices A and By, (which depend on the
doping) and, hence, are aso the functions of x.

The ratio Y./, determining the degree of asymme-
try of the order parameter is a continuous function of x.
For this reason, in the qualitative investigation of the
superconducting ordering, we may assume without loss
of generality that ), = s, = . Thus, the problem of the
free energy minimization is reduced to a variational
problem with two unknowns () and ). The free energy
density (10) takes the form

fo = aqu + %(B +2Ccosp + DCOSZB)UJ47 (15)

where a; = A, + A, = —aty, B = Byyyg + 2B11p + B,
C = 2(81112 + 81222), and D = 481122. Here, the COfoI-

centsa= A” + A Biiy1, Biis, and By, are defi-
nitely positive, while By;4, and B;5,, may have any sign.
For certainty, we assume C > 0 (this choice does not
influence the qualitative conclusions concerning the
character of superconducting states admitted for the

free energy (15).

Investigation of the extrema of function (15) showed
that a minimum of the free energy for 1, < 0 (i.e, for
T > T,) corresponds to the solution Y = 0 at an arbitrary
relative phase. For t; > 0 (T < Ty, the minimum is
attained at 3 = tand Y # O provided that C = D. In the
opposite case (C < D), anontrivial solution  # O cor-
responds to the relative phase 3 < 1t determined from
the relation cosp = —-C/D.

Since the coefficients C and D are functions of the
doping x, the equality C(x) = D(X) can be considered as
the equation determining the doping x = x, at which the
system exhibits a qualitative change in the supercon-
ducting order. Let us denote C/D = ¢(X) and expand this
function in asmall vicinity of the point x = X, as

c(x) = 1+c'(Xo)(X—Xo)- (16)
Assuming that a superconducting state with therelative
phase 3 = 1t corresponds to X > x,, we obtain c'(xy) > 0.
Then, for x < x,, the relative phase is 3(xX) < tand 3 is
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a continuous function B(x), such that B(x) — Tt for
X —> X

The order parameter, which can be used to distin-
guish the thermal equilibrium superconducting phases
with B < 1t (B phase) and 3 = 11 (11 phase), is naturally
defined as a = 11— 3. Then, for x > x, we have a = 0,
whilefor x < x, we have a # 0 (under the above assump-
tion that C > 0 the order parameter fallswithin 0 < a <
102). In the vicinity of the transition (X = x), the order
parameter a is small and the free energy density can
expanded in even powers of a as

fo = fut3DC0) (x—X)W'a’ + ZDy'a’. (17)

Here, f, = —ar,? + (B — D)Y*2 isthe free energy den-
sity of the Tt phase.

A minimum of the free energy is reached for a =0,
provided that ¢'(X,)(X — Xo) > O (which corresponds to
the Ttphase, X > X;), and for

o’ = 2¢'(Xo) (X — X), (18)
provided that c'(X,)(X — %) < O (which corresponds to
the B phase, X < X;). The square modul us of the equilib-
rium order parameter in a small vicinity of the phase
transition point (X = X,) is Y? = ar,/(B — D). Then
expression (17) for the free energy density of the
phase can be written as

fo=fg = fr=VIi(Xx—Xp), (19)

wherev = a?D/(B —D)?> 0.

6. THE nk-PAIRING AND SPONTANEOUS
CURRENTS

Real components of the order parameter with differ-
ent signs (corresponding to the relative phase B = m)
necessarily appear in the case of superconducting pair-
ing under repulsive interaction [16]. Deviation of the
relative phase from 1t corresponds to a solution of the
self-consistency equation with complex coherence fac-
tors and admits a quite clear interpretation. Indeed, a
change in the phase of the operator of annihilation of an
electron with spin 0 = 1, | at a lattice site with the
radius vector n can be related [35] to the vector poten-
tial of acertain magnetic field A(n):

N N . e
Chog —> cn(,exp[l fi_cA(n) Eh]. (20)

Then, the phase B(n, n) of the anomalous average
[€,,Cy,0 (determining the superconducting order
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parameter) in the lattice site representation can be writ-
ten as

B(n,n) = n—ﬁ—eC[A(n) h+A(n)h].  (2))

Expressing n and n' via the radius vector of the center
of mass R = (n + n")/2 and the radius vector of relative
motion r = n —n' and substituting the obtained expres-
sionsinto formula (21), it is possible to separate a con-
tribution to the phase of the superconducting conden-
sate that depends only on R: ®(R) = (2e/Ac)A(R) - R.
This contribution does not influence the free energy
density expansion (10).

The additive to ®(R) in Eqg. (21), which depends
only on the radius vector of relative motion, determines
therelative phase a of the order parameter components.
Near the phase transition point (X = X,), where a < 1,
we obtain an estimate

- e aAk

T oo oy, K (22)
where repeated indices of the 2D coordinates x, of the
radius vector r of relative motion imply summation and
take the values 1 and 2.

We may suggest that deviation of the phase of the
superconducting order parameter from 11, which is a
natural consegquence of ng-pairing, is related to orbital
antiferromagnetic ordering. Thisordering is manifested
in the superconducting state by antiferromagnetically
correlated orbital current circulations [11] and can sur-
vive at temperatures above the superconducting transi-
tion temperature in the form of a long-range [2] or
short-range [14] orbital antiferromagnetic order. In this
case, areal magnetic field in (22), which is related to
the orbital currents, can be considered as a gauge field
establishing correlation between superconducting and
orbital antiferromagnetic degrees of freedom () and a,
respectively). Thisfield is analogous to the gauge field
introduced into the Ginzburg—Landau functional, for
example, in aboson variant of the scheme of charge and
spin separation [36].

The order parameter (6) has a spatial structure cor-
responding to a separation of the cuprate plane into
cellswith aperiod of 217K (in the general case, incom-
mensurate). The directions of orbital current circula-
tions in the neighboring cells must be opposite. In the
Ginzburg—Landau phenomenology, it is implied that
the order parameter is averaged over therelative motion
of the pair. Therefore, taking into account the checker-
board order in the distribution of orbital currents, the
mean square (within the cell) value of the orbital anti-
ferromagnetic order parameter can be estimated as

2 T[ZD e DZBZ
& =20 @ @)
J
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Fig. 3. The region of the phase diagram corresponding to
the existence of an orbital antiferromagnetic and supercon-
ducting phases in the vicinity of the tetracritical point c.
Thick solid curves show the lines of phase transitions. The
inset showsthe vicinity of thetetracritical point on agreater
scale: sectors 1c3 and 4¢2' corresponds to the region of
developed fluctuations of superconducting pairs and the
region of orbital currents, respectively.

where B is the cell-average magnetic induction of the
field of orbital currents.

The appearance of orbital currentsin the supercon-
ducting state implies that the Ginzburg—Landau func-
tional must take into account the contribution dueto the
energy of the magnetic field of these currents. In
expression (13), which describes the magnetic field
effect on the free energy density, this contribution f..(a)
(which is external with respect to the charge degree of
freedom ) isformally taken into account provided that
B denotes the magnetic induction due to the field of
orbital currents.

One can readily check that simple addition of aterm
of the f(a) = ka? type with a positive coefficient k to
f, excludes the possibility of the appearance of a mini-
mum in the free energy density f, + f, (o) for a # 0. This
fact naturally implies the necessity of considering a
competition between the two channels of pairing:
superconducting ng-pairing versus insulating orbital-
antiferromagnetic pairing with the order parameter a.
In the Ginzburg—Landau n functiona (9), this order
parameter is manifested by a current degree of freedom
in the two-component order parameter.

7. COMPETITION
OF THE SUPERCONDUCTING
AND ORBITAL-ANTIFERROMAGNETIC
CHANNELS OF PAIRING

Spontaneous orbital currents can also arise in the
absence of a superconducting order. The correspond-
ing insulating orbital antiferromagnetic order in a 2D
system is characterized by a single parameter, which
has the meaning of a modulus of the difference of
magneti zations of two sublattices of an orbital antifer-
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romagnet. This difference is proportional to a. In the
absence of superconductivity, the free energy density
in the vicinity of the orbital antiferromagnetic phase
transition can be represented as the expansion in even
powers of a:

fyq= a2a2+%b2a4, (24

where b, isapositive function of the doping x and a, is
a coefficient (also dependent on the doping x), which
vanishes at the insulating phase transition temperature
T4(X) corresponding to the mean field approximation. In
thevicinity of the phase transition, the latter coefficient
can be expressed as a, = —a't,, where a' is a positive
function of x and 1, = (T4 — T)/T4 (it is assumed that
|t,] <1). Note that the energy of the magnetic field of
spontaneous currents f(a) proportional to a?, which
enters into the Ginzburg—Landau n« functional, is nat-
urally included into the first term in expression (24)
thus simply redefining the temperature Ty4(x) of the
insulating phase transition.

A relationship between the two types of ordering is
established in the same natural manner. Still restricting
the consideration to a spatially homogeneous case in
the absence of external magnetic fields (whereby both
U and a are independent of the radius vector R of the
center of mass), we must retain only the contribution
due to the field of spontaneous orbital currents in the
gradient term (11) in the Ginzburg—Landau ny func-
tional. The vector potential A of this field is propor-
tiona to a. In the spatially inhomogeneous system
under consideration, the gradient component f, con-
tains only the vector potentia related to the field of
spontaneous orbital currents. Then, as can be seen from
Eg. (11), the gradient term averaged over the relative
motion of the pair can be expressed as f,, = b,P?a?,
where b,, is a phenomenological parameter dependent
on the doping x. Under the assumption that < 1 and
o < 1, the contribution of f;, to the free energy density
is of the fourth order of smallness.

Thus, an expression for the free energy density,
which describes the competition of the superconduct-
ing and orbital-antiferromagnetic ordered states has (to
within fourth-order terms) the following form:

f = a0+ a,0°+ 3,0 + by’a’ + Sbya’. (25)

The free energy density expansion (25) is valid in a
small vicinity of both phase transitions, that is, in arel-
atively small region of the phase diagram where the
curves T(xX) and T4(X) either intersect or pass very
closely to each other.

The doping leads to suppression of both the orbital
antiferromagnetism and the superconductivity. The
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temperatures of the corresponding phase transitions,
T4(X) and T(x), determined in the mean field approxi-
mation in the absence of coupling between the orbital-
antiferromagnetic and superconducting ordered states
(i.e., for by, = 0in expansion (25)) are naturally consid-
ered asmonatonically decreasing functions of x. Taking
into account the features of thetypical phase diagram of
cuprates (Fig. 1), we may suggest that the orbital anti-
ferromagnetic state, which dominates for small x, in
weakly doped cuprates is suppressed with increasing x
more rapidly than the superconducting order, which
makes possible the intersection of T(X) and T4(X)
curves at a certain point. According to formula (19),
this point corresponds to X = X, (Fig. 3, point ¢). It
should be noted that we might also assume that, in the
case of weak doping, T, > T, but this assumption leads
to a phase diagram that is qualitatively different from
that depicted in Fig. 1. Since the expansion of the free
energy density (25) isvalid only in asmall vicinity of
the point ¢ of intersection of these curves (circled and
presented on a greater scale in theinset in Fig. 3), the
continuation of lines beyond this small region is rather
conditional.

For T > max(Ty, Ty, the free energy minimum is
attained at ¢ = 0and a = 0 (sector 2c1' in Fig. 3), which
correspondsto the normal phase. The 2¢ segment of the
boundary of this sector is the line of a phase transition
from the normal to orbital antiferromagnetic phase
(a phase). Inthelatter phase, P = 0 and a =—ay/b,. The
insulating o phase exists inside sector 2c3, a part (1c3)
of which occurs in the region of temperatures below
T4(X). The lower boundary (segment c3) of sector 2c3is
determined by the condition b,a; — by,a, = 0, The cl'
segment of the boundary of the normal phaseistheline
of a phase transition from the normal to superconduct-
ing Tt phase corresponding to sector 1'c4. A part (2'c4)
of this sector occurs in the region of temperatures
below T4(X). The 3c4 sector, where

W = _ba; —bypay o = b3 —bypay
by, bl by, bl

corresponds to the superconducting 3 phase, where the
superconductivity coexistswith the spontaneous orbital
antiferromagnetism. It should be noted that, for b,, =0,
the dielectric a phase, superconducting Tt phase,
and superconducting B phase would correspond to
sectors 2¢1, 1'c2', and 1¢2', respectively.

The superconducting transition temperature T(X) is
represented by line 3cl’, in which segment cl1' corre-
sponds to a transition from the normal to supercon-
ducting (1) phase at temperature T(X) = T(X), and seg-
ment 3c, to a transition from the orbital antiferromag-
netic to superconducting (B) phase at atemperature

. (26)

1-A

Te = Tty

(27)
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Fig. 4. The topology of free energy isolines in the coordi-
nates of Y (horizontal axis) versusa (vertical axis) showing
sectors of the phase diagram in the vicinity of the tetracriti-
cal point ¢ (Fig,. 1): (&) 2cl’; (b) 2c1; (c) 1c3; (d) 3c4;
(e) 4c2'; (f) 2'cl'. Black points indicate maxima (M), min-
ima (m), and saddle points (S) of the free energy.

Fig. 5. Free energy density of the normal phase with the
minimum (m) corresponding to Y = a = 0.

where A = by,a/b,a. This temperature is lower than
T,(x) and (since we have T, > T, for X > Xg) the T(X)
function exhibits bending at point ¢, which impliesthat
there is a tendency of the transition temperature to
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Fig. 6. Free energy density of the a phase with the mini-
mum (m) shifted from the origin along the a axis and a sad-
dle point (s) nucleating at the origin.

decrease as compared to the mean field temperature
T(X).

Line ¢4 corresponding to a phase transition between
the two superconducting states, Tt~ [3, determines
the temperature

1-N

Ton = Tag oy 70

(28)

where ' = by,a/b,a’. The Tg(X) function of doping X,
corresponds to a line originating from point ¢ and ter-
minating at a certain point X = x, on the x axis. Thus,
point c in Fig. 3 is a tetracritical point at which four
lines of phase transitionsintersect [37].

Figure 4 shows the topology of the free energy iso-
linesf(W, a) = const. In sector 2¢1' corresponding to the
normal phase, the free energy density hasaminimum at
P =0anda =0(Fig. 5). Upon crossing line 2c and pas-
sagetothea phase, thisminimum shiftsalong the a axis
tothepoint (¢ =0, a = ,/—a,/b,) (Fig. 6). However, this
minimum isasingle specia point on the free energy sur-
face only in the upper part (sector 2c1) of the domain of
existence of the insulating o phase (sector 2¢3), rather
than in the entire domain. Indeed, on crossing line 1c
and passing to the minimum determining athermal sta-
bleinsulating state, there appears asaddle point at (y =

J—a,/b; , a =0), where the free energy has aminimum
with respect to variable  at o = 0 (Fig. 7). Sector 3c4
(B phase) corresponds to the region of existence of the
orbital antiferromagnetism and superconductivity. The
free energy density (Fig. 8) has an absolute minimum at
acertain point (a # 0, Y #0) and two saddle points (one
on each axis). On line c4 of the phase transition f —
11, the minimum coincides with one of the saddle points
(that occurring on the Y axis), while on crossing line c2',
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Fig. 7. Free energy density in the region of developed fluc-
tuationsin the a phase with a saddle point (s) shifted from
the origin along the Y axis.

the other saddle point (on the a axis) shiftsto the origin
(see Figs. 7 and 6, where the coordinate axes should be
interchanged Y ~— ).

In the vicinity of the tetracritical point, the statesin
sector 1c3 (see theinset to Fig. 3) corresponding to the
absolute minimum and the saddle point have close val-
ues of the free energy. For this reason, there is a rather
large probability of the fluctuational appearance of non-
coherent, long-lived quasi-stationary states of super-
conducting pairswith arelative phase of Tt These states

correspond to the saddle point at (¢ = ,/—a,/b;, a =0)
in the temperature interval T(X) < T < T(X). The decay
of such a quasi-stationary state, which is accompanied

Fig. 8. Freeenergy density of the 3 phase with the minimum
(m) at o # 0, Y £ 0 and the saddle points (s) on both axes.
The appearance of alocal maximum at the origin is related
to the nucleation of the second saddle point.
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by a decrease in the modulus of the superconducting

order parameter from ¢ = ,/—a,/b; to Y = 0 while the
relative phase increases from zero to an equilibrium

value of a = ,/—a,/b,, can be considered equivalent to
the appearance of uncorrelated pairs of the oppositely ori-
ented circular currentsor the vortex—antivortex pairs[38].
Intermediate states in the process of decay of the afore-
mentioned quasi-stationary states are fluctuational
states of the 3 phase belonging to the same (or close)
isolines passing from the vicinity of a saddle point to
the vicinity of the absolute minimum of the free energy.

Thus, thetemperature T(x) for x <X (Fig. 3, line 1c)
bounding from above the region of developed fluctua-
tions of the modulus of the superconducting order
parameter is not related to any phase transition. This
line can be considered as the upper boundary of a
region in the phase diagram, where the appearance and
decay of the quasi-stationary superconducting pairs
with arelative phase of 1tlead to the existence of orbital
vortex currents. Such currents may lead to a significant
enhancement of the Nernst effect observed in cuprates
in the region of a strong pseudogap [39]. For this rea
son, the temperature T(x) for x < x, can be interpreted
as acrossover bounding thisregion from above: T(x) =

T% (X). It should be noted that a strong pseudogap can
extend to the region of ultimately weak doping (X < xp).

For X< X < X,, aphasetransition from theinsul ating

o phase to a superconducting phase can be formally
described using a single order parameter U, provided
that T = (T — T)/Tc issmall (JT] < 1). Substituting an
equilibrium value of the relative phase a given by for-
mula (26) into Eq. (25) yields an expansion of the free
energy density in powers of y:

fo=—==

b12a2|:| 2 1 4
2b2+%1_ b2 DLIJ +§bl"l’l .

In the vicinity of the a < [3 phase transition line, we
can assume that (a; — b;,a,/b,) = —-at, where a = a—
b,,alb, is a positive function of x. The coefficient at
inthe expansion of the free energy density (29) isdeter-
mined by the value of a < a, because the phase transi-
tion temperature T for X< X < X, is lower than the

temperature T, corresponding to the mean field approx-
imation (Ts coincideswith T only in the region of over-
doping, X, < X < x*). Sinceit isthe coefficient at ? that
determines the slope of the free energy surface in the
vicinity of the minimum, we may conclude that, on
going from the tetracritical point to the region of weak
doping via sector 3c4 (corresponding to the B phase),
there isatendency toward an increasein fluctuations of
the superconducting order parameter . This conclu-
sion can be considered as evidence for the fact that the
mean field approximation with a single-component
order parameter does not provide an adequate descrip-

2
1a,

(29)
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tion of the superconducting phase transition in the
region of underdoping on the phase diagram. On the
contrary, atwo-component order parameter, which nat-
urally follows from the concept of n¢-pairing and takes
into account both the charge and current degrees of
freedom, unavoidably leads to the pattern of developed
fluctuations of the order parameter.

On going from the normal phase (Fig. 3, sector 2c1')
to the 11 phase (sector 1'c4) across line c1', the free
energy minimum shifts from the point (¢ =0, a = 0) to

the point ({ = ,/—a,/b;, a = 0). This minimum is the
absolute one in the entire domain of existence of the 1t
phase (sector 1'c4), but an additional specia point—a
saddle point with the coordinates = 0, a = ,/—a,/b,
appears in sector 2'c4 (see the inset to Fig. 3). In the
vicinity of the tetracritical point, the free energy at the
absolute minimum and at the saddle point in this sector
has close values and, hence, thereisarather large prob-
ability of the fluctuational appearance of quasi-station-
ary orbital vortex currents. The decay of such quasi-sta-
tionary states, whereby the relative phase of the order

parameter decreases from a = ,/—a,/b, at the saddle

point to a = 0 while the modulus of the order parameter
increases from zero to an equilibrium value of @ =

J—a,/b; , proceeds viastateswith o # 0 and  # O, that
is, vianonequilibrium states of the 3 phase. For X, <x <
x*, the temperature Ty(x) corresponding to the mean
field approximation is the temperature of the phase
transition from the normal phase to the superconduct-
ing Tt phase, so that Ty(x) = T(X). For this reason, the
superconducting phase transition from the normal
phase to the 1t phase in the region of overdoping on the
phase diagram can be satisfactorily described within
the framework of the Landau theory of phase transi-
tions with a single-component order parameter and,
hence, thistransition exhibitsfeatures of the phasetran-
sitions according to the BCS theory.

It should be noted that the level of optimum doping
formally determined from the position of maximum of
the T(X) curveis definitely lower than the doping cor-
responding to the tetracritical point: X,y < Xo. For this
reason, line ¢4 (corresponding to the lower boundary of
the Ttphase) that continues to the region of low temper-
atures terminates at a certain point with x = x,, where
X < X, < X*. For this reason, the further decrease in the
temperature upon the phase transition from the normal
phase to the 1t phase in the doping interval X, < X < X,
resultsin the system falling into the region of developed
fluctuations manifested by quasi-stationary orbital vor-
tex currents, after which the system exhibits a phase
transitionsat T = Tg(X) between the two superconduct-
ing states: the 1t phase and the 3 phase, where the super-
conductivity coexists with the orbital antiferromag-
netism. This phase transition in the superconducting
state can be detected, for example, asan anomaly inthe
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temperature dependence of the heat capacity. At the
phase transition temperature Tg(X), the modulus of the
order parameter Y remains continuous, while the rela-
tive phase a changes between zero in the Tt phase and a
nonzerovaueat T < Tg(X).

In concluding this section, we will outline in accor-
dance with [40] the hierarchy of the symmetry groups
of various phases in the vicinity of the tetracritical
point. If the cuprate plane has a square lattice with a2D
crystal class G = C,,,, then the extended point symmetry
group of the most symmetric normal phase is given by
the direct product Gy = G x R x U(1), where Ris the
group comprising the identical transformation and the
transformation of time reversal (changing the direc-
tions of currents to the opposite) and U(1) is the group
of gauge transformations.

A transition from the normal to the insulating Tt
phase corresponds to the loss of the gauge symmetry, so
that a point symmetry group of the Tt phase corresponds
to the nonmagnetic crystal classG,=G x R.

A transition from the normal to theinsulating o phase,
which isaccompanied by the devel opment of spontane-
ous orbit vortex currents, leads to the loss of some
crystal symmetry. The new symmetry corresponds to
group H, which isan index 2 subgroup of group G. The
point symmetry group of the a phase correspondsto the
superconducting magnetic crystal class with a variety
of elements G, = (H + RgH) x U(1), wheregisan ele-
ment of G not belonging to H.

The loss of the gauge symmetry upon the transition
from the a phase to the B phase results in that the new
point symmetry group of the 3 phase correspondsto the
magnetic class Gg = H + RgH. Group Gg is simulta-
neously a subgroup of G, and G,;, which, in turn, are
the subgroups of Gy.

Group G = C,, has two index 2 subgroups: H = C,
and H = C,,. However, the first of these possibilities
corresponds to the ferromagnetic crystal class C,,(C,),
while the second variant corresponds to the antiferro-
magnetic class C,,(C,,) exactly reflecting the current
distribution in a 2D flux phase.

8. AN nx SUPERCONDUCTOR
IN A MAGNETIC FIELD

An external magnetic field with the induction B =
curl A is, like the vector potential A of this field, a
slowly varying (on the scale of interatomic distances)
function of the spatial coordinates and can be readily
included into the general definition (9) of the Ginz-
burg-Landau functional. In addition, the free energy
density (24) of the orbital antiferromagnet must be sup-
plemented by aterm dependent on B (besides a change
in the free energy density related to the external mag-
netic field, f(a), aready entering into this functional).
Separating a contribution due to the spontaneous orbital
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currents from the vector potential, the magnetic field
energy density f, can be expressed as

fi = ka®+H [B/8m. (30)
Here and below, the notation A, B =curl A, and H refers
to the external magnetic field. The first term in for-
mula (30) isrelated to the spontaneous currents and has
to be combined with the first term in the free energy
density (24) of the orbital antiferromagnet. The terms
linear in B (as well as in A) are eliminated because
determination of the order parameter in the Ginzburg—
Landau phenomenology implies averaging over therel-
ative motion of ng-pair.

In asimilar manner, we can transform the gradient
term (1) to fy = bp,Y?a? + f,, where

. R A
fl = ‘F“Z MJDW . (31)

It isassumed that matrix My entering into the definition
of (11) is diagonalized together with Ay in (10); in
defining the operator of covariant differentiation (12),
we take into account only the vector potential of the
external magnetic field.

In supplementing the free energy of the orbital anti-
ferromagnet with a term dependent on the external
magnetic field, note that the orbital antiferromagnetic
order parameter in the case of two antiferromagnetic
sublattices (to which the consideration here is
restricted) hastheform of L = M; —M,, where M and
M, are the magnetizations of sublattices (with equal
moduli in the absence of an external field [41]). Since
these magnetizations are related to the orbital currents
circulating in the cuprate plane, both M ; and M, (and,
hence L) are perpendicular to this plane. Therefore, in
2D systems such as cuprate compounds, the orbital
antiferromagnetic order parameter can be determined
by setting a single quantity (i.e.,, L = |L[) which, in
accordance with the adopted interpretation of the rela-
tive phase of the superconducting order parameter,
must be proportional to a (L O a). The angle 8 between
L and B is not a variable parameter, since it is smply
determined by the orientation of the external magnetic
field with respect to the cuprate plane normal. Thus, we
obtain two scalar combinations of the L and B vec-
tors—L2B? and (L - B)?, which are of the fourth order of
smallness—entering into the free energy of the antifer-
romagnet, which can be written as

fy = da’B’. (32)
Here, d = d, + d,cos’0 is aphenomenological parameter
determined by the two positive functions of the doping,
d;(X) and dy(x).
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The free energy acquires the following form:

F:Id3RZ

S

7°M,
4m

Bw]*+ f+ p(a)Bz} (33)

where p(a) = (4™ + 8rda?)/8mand f is given by rela-
tion (25). In this equation, the vector potential of the
external field and the parameters Q) and a are variable
functions of the radius vector R of the center of mass of
the pair, which are slowly varying on the scale of the
unit cell.

Variation of the free energy functional with respect
to the vector potential leads to the following equation:

2¢’M 2
WA+ 2p(a)curlcurl A'
mc’ (34)

+4dafla xcurlA'l = 0,

where M = M; + M, isthetrace of the matrix, the vector
potential is determined to within a gauge transforma:
tion, A' = A — (hc/2e)[@ , and P is the phase of the
superconducting condensate.

Variation of the functional (33) with respect to
and a yields two additional eguations:

h° 2e, (T 3 2
-MHD+ AT b +a + by’ + byua’y

(35)
2y @ g = 0
4m 2 ’
—ﬁ—ZM (Y’0%a +2ppE ) +a,a +ba’
am 2 2 2 (36)

+b,P’a + da(curlAY)? = 0.

Equations (34)—36) constitute a complete system of
the Ginzburg-L andau equations describing the compe-
tition and coexistence of the ny and orbital-antiferro-
magnetic ordered states in the vicinity of the tetracriti-
cal point.

Even under the aforementioned simplifying
assumptions, the system of equations (34)—36) ismuch
more complicated than a system of two equations
describing a conventional superconductor in an
external magnetic field. For this reason, consideration
will be restricted to some simplest consequences of
Egs. (34)—(36).

In the absence of ordering () = 0, a = 0), Eq. (34)
showsthat i has a meaning of the magnetic permeabil-
ity of the normal phase: 1 = gy = 1 + 411X, Where X is
the magnetic susceptibility of the normal phase.

A homogeneous state of the a phase in a magnetic
field corresponds to an order parameter defined as

a’ = —(a, + dB%)/b,. (37)
Then, the magnetic susceptibility of the a phase in a
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magnetic field can be expressed as
a 2(d,+d
XI(I):XN+ ( 1b 2)a2'
. (39)
(@) 2d,

Xo =Xnt b, ay,

where X[ (x") isthe longitudinal (transverse) mag-

netic susceptibility of thea phaserelative to the applied
magnetic field. Note that, in writing relations (37), we
took into account that the magnetic permeabilities of
thenormal and a phases only dightly differ from unity in
the vicinity of the tetracritica point (wherea, = -a1?<0
and 1, < 1): Yy = Mo = 1. Since [xy| < 1, the transition
from a paramagnetic normal phase to a state of the a
phase with giant diamagnetism (observed in the region
of astrong pseudogap in the magnetic field [42]) takes
place at the temperature

Ta = Ty(1-byxy/2da), (39)

where d = d, + d, for the magnetic field oriented across

the cuprate plane and d= d, for thefield parallel to this
plane.

For the superconducting 1t phase (§ # 0, a = 0),
Egs. (34) and (35) lead to the usual Meissner effect.
The depth of the magnetic field penetration into the Tt
phase is defined as

mc’b,
Mg = oo,
8nMe’|a,|

In the case of the superconducting B phase, which
corresponds to the coexistence of superconductivity
and orbital antiferromagnetism, the coordinate depen-
dences of both the magnetic field and the parameters
and a can be rather complicated. In particular, the spa-
tial inhomogeneity of one of these parameters leads to
the inhomogeneous distribution of the other parameter.

(40)

9. CONCLUSIONS

The question of what is the microscopic mechanism
of superconductivity in cuprate compoundsis of princi-
pal importance. Taking into account that the Coulomb
repulsion in cupratesis among the most significant fac-
tors determining their special properties, it would be
natural to assumethat thisvery interaction underliesthe
mechanism of superconductivity in cuprates.

If the formation of a superconducting stateis caused
by the singlet pairing at a large total momentum K of
the pair, the symmetry of the energy gap A(K) is natu-
rally determined by the crystal symmetry of the cuprate
plane. An asymptotically exact (even at an arbitrarily
small intensity of the interaction) nontrivial solution of
the self-consistency equation for ng-pairing exists in
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the case of the perfect mirror nesting of the Fermi con-
tour. A small deviation from the perfect mirror nesting
resultsin that a superconducting solution appears for a
finite (albeit rather small) effective coupling constant.
The shape of the Fermi contour in doped cupratesin a
rather broad range of dopant concentrations corre-
sponds to perfect nesting for some large (in the general
case, incommensurate) values of the momentum K.

The formation of the imaginary part of the order
parameter with arelative phase different from 1tcan be
interpreted as the appearance of a contribution of the
current density wave related to the relative motion of
the pair. We can suggest that this ordering is related to
the formation of an insulating antiferromagnetic struc-
ture of orbital currents, while adeviation of the relative
phase from 1t plays the role of the order parameter. It
should be noted that this parameter of the insulating
ordering naturally appears in the scheme with n«-pair-
ing under repulsive interaction.

Thus, the region of the phase diagram correspond-
ing to the superconductivity is divided into two parts
reflecting two phases. One of these phases (11 phase)
exists in overdoped compounds, wile the other (B
phase) is found in underdoped compositions. The Tg,,
line of the transition between these phases originates
from the tetracritical point (x = X,) and terminates at a
certain point with x = x, > X, onthe T = 0 axis. Upon the
phase transition from the normal phase to the 11 phase
inthe doping interval x, < x <X, thefurther decreasein
the temperature leads to the second phase transition:
from the rtphase to the 3 phase. Theregion of thistran-
sition, aswell asthe a — [3 transition in underdoped
compounds, is preceded by a region of the developed
fluctuations of the order parameter, which are related to
the appearance of a saddle point in the family of free
energy isolines (Fig. 4) in addition to the absolute min-
imum corresponding to the 1t phase. The saddle point
can be related to certain quasi-stationary states involv-
ing the orbital vortex currents. Thus the phase diagram
exhibitsacertain symmetry with respect to the transfor-
mation of parameter ) — q.

In concluding, it should be noted that a thermody-
namic analysis of the phase diagram in the vicinity of
the tetracritical point with allowance for the competi-
tion between the superconducting and orbital-antiferro-
magnetic states (which is a natural consequence of the
Nk-pairing under repulsive interaction) lead to definite
conclusions concerning the main features of the whole
phase diagram in the regions of temperature and doping
corresponding to superconducting region. These con-
clusionsdo not contradict the well-known experimental
facts concerning the behavior of cuprates in the corre-
sponding temperature and doping intervals. In particu-
lar, a qualitative interpretation is obtained for enhance-
ment of the Nernst effect in the region of a strong
pseudogap (crossover from strong to weak pseudogap,
related to the disappearance of the saddle point on the
Y axis, is naturally explained [17] by smearing of the
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level of the quasi-stationary state on approaching a
maximum of the potential barrier depicted in Fig. 2)
and a decrease in the superfluid density [1] and an
increase in the 2A/T¢ ratio in underdoped composition
(relative to the universal value of 3.52 according to the
Bartdeen—Cooper—Schrieffer (BCS) theory [43]). It
should be noted that an analysis of the superconducting
phase transition within the framework of the BCS the-
ory is effective only for overdoped compounds, since
the description of the phase transition to the supercon-
ducting 3 phase using asingle-component order param-
eter isinadequate.

A B <— Tt transition between the two supercon-
ducting states, which is a second-order phase transition
and takes place in a relatively narrow doping interval
(X < X < X,) can be detected, for example, by measuring
a jump in the temperature dependence of the heat
capacity. It should also be noted that, in the general
case, the maximum of the superconducting transition
temperature T(x), which corresponds to X = Xy, does
not coincide with the position x = X, of the tetracritical
pint: X < %o (Fig. 3). This conclusion is confirmed by
experimental data[44]. Therefore, if the region of over-
doping is defined, as usuad, by the condition X, < X <
X*, it is quite natural to assume that strong fluctuations
of the order parameter may arise in this region. Fluctu-
ations, such as the vortex excitations in the form of
quasi-stationary staggered orbital vortex currents, can
be also detected using tunneling microscopy.
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ORDER, DISORDER, AND PHASE TRANSITIONS
IN CONDENSED SYSTEMS

Self-Similar Evolution of the Surface Mor phology

of a Stressed Amor phous Alloy Fail
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Abstract—A time-ordered sequence of topographic images of astressed amorphous Fe;oCr5B 5 ribbonis pre-
sented. It is shown that the surface of this material (unlike polycrystalline metal foil) has afractal structure due
to the nonequilibrium conditions of its formation. As atensile stress of about 500 M Pais applied to the surface,
the fractal dimension of the surface increases from 1.21 + 0.02 to 1.34 £ 0.03, then dropsto 1.12 + 0.03, and
finally increasesto 1.22 + 0.02. In about 1.5 hours, acomplex surface morphology characterized by aroughness
amplitude of several tens of nanometers evolves into a regular pattern of shear bands with amplitude of about
300 nm. Self-affine changes in surface morphology are explained by competition between several processes,
including crack propagation, surface smoothing, and self-diffusion. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Spatiotemporal  self-similarity is a well-known
property of fracture processes demonstrated experi-
mentally on nanoscopic [1], microscopic [2], labora
tory [3], and geophysical [4] scales. The energy redis-
tribution due to microfracturing and deformation by
external forces gives rise to long-range dynamic inter-
actions (with a characteristic radius much greater than
the size of structural units on the scale level in ques-
tion). Asaresult, an open, dynamically coupled system
develops fractal properties in quantitative distributions
of its components (such as products of fracture) [5, 6],
their geometry [7, 8], and time-ordered sequences of
fracture events on all scale levels[9, 10]. The common
physical mechanism responsible for the fractal behav-
ior remains unclear. The avail able specific models (e.g.,
scaling of microstructural parameters in stressed metal
as an analog of self-similar aggregation [11], scale-
invariant dislocation dynamicsin acrystal [12, 13], or
atomic rearrangements in glasses [14]) rely on proper-
ties of particular materials or fracture conditions and
cannot be applied to processes controlled by different
mechanisms. Accordingly, the self-similarity of afrac-
tureis generally considered as a common, but insignif-
icant, property of the critical state of a multicomponent
system. This interpretation ignores the fact that a
sequence of fracture events occurring on various struc-
tural levels brings an initially disordered system into a
regular state characterized by a self-similar structure.
This is particularly clear with regard to fracture of
amorphous aloys, where fractal structure evolves in
highly uniform material s containing no structural units.
Structural order in thefirst coordination shellsin metal-
lic glasses (e.g., capped trigonal prisms [15]) reflects
the most probable atomic configurations in clusters

rather than exactly reproduced basic structural units,
such as tetrahedrain oxide glasses.

However, available experimental data (see review
in[7]) and some analytical studies[4, 14, 16, 17] sug-
gest that fractal structure is not just a concomitant of a
fracture, but its necessary condition. In other words, a
fracture can nucleate and develop on any structural
level only under conditions favoring the formation of
self-similar structure. This process is examined in the
present study of the evolution of the surface morphol-
ogy of a stressed amorphous aloy foil. In previous
experiments on norma metals (such as gold, copper,
and molybdenum) [18-20], the evolution of the surface
of astressed samplewasinterpreted in terms of changes
in dislocation structure. In a methodologically related
study of an amorphous aloy [21], the evolution of the
strained surface was not examined.

2. EXPERIMENT

We used a scanning tunneling microscope (STM) to
investigate the nanoscopic surface structure with ares-
olution of 300 data points per 6-micrometer scan. A
0.03 mm thick amorphous Fe;,Cr,5B;5 ribbon produced
by using the single-roller melt-spinning technique was
bent and attached to a cylinder of diameter 15 mm. Its
outer surface was subjected to a tensile stress of about
500 MPa, which corresponds to approximately one-
tenth of the tensile strength of the foil. The surface was
stressed nonuniformly because of the varying thickness
of foil produced under dynamic conditions. However,
the nonuniformity length scale was much greater than
the scanning area (approximately 20 um?). Therefore,
the macroscopic stress nonuniformity could not cause
any qualitative change in the microscopic process
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under study. The longitudinal scan time was 30 s per
scan. After scanning a 3 x 6 um? area, the probe was
returned to its starting position and a new topographic
image was recorded. The first topographic image was
recorded a few minutes after stress had been applied.
The scanning was continued until regular transverse
groovelike bands appeared (in about 1.5 h under the
stress conditions indicated above). The band pattern
persisted for several hours. We studied the transient pro-
cessthat preceded the formation of the persistent pattern,
which was interpreted as shear banding in [22, 23].

3. RESULTS

Figure 1 shows examples of topographic images
obtained before stressing and at certain instants after
stress had been applied. It is clear that the tensile stress
caused a rapid increase in roughness amplitude and a
gradual increase in surface complexity via the disap-
pearance of relatively flat regions characteristic of the
unstressed sample. To perform a statistical analysis,
i.e, to quantify the roughness of the initia and
stretched surfaces, we examined the profiles measured
at successive stages of stressing. To determine the frac-
tal dimension D as a universal characteristic of self-
similar objects, we measured the changes in surface
height associated with small increments A of the coor-
dinate r along the path of the scanning probe. A self-
affine (anisotropic) structure must satisfy the power law

Oh(r +A) —h(r)ooa”, (1)

where h is surface height, H is the Hurst (roughness)
exponent, A — 0, and the angle brackets denote an
average over al pairs of pointsin the measured profile.
For atwo-dimensional profile,

D=2-H. @)

The values of H were determined as the slopes of
log-Hog plots of |h(r + A) — h(r)| versus the absolute
value of A averaged over h; (i =1, 2, ..., 300) (Fig. 2).
The deviations of the plots from straight lines at small
and large A are explained by the limitations due, respec-
tively, to STM resolution and lack of representative
data on deep valleys in surface profiles.

Power-law scaling impliesthat the measured profile
is self-affine (has no characteristic roughness ampli-
tude) [7]. A varying H reflects agradual changein self-
affine structure. For the initial (unstressed) sample, the
fractal dimension determined by using formula (4) is
D=1.21+0.02.

Thisisan unexpected result. Inthelimit of aflat sur-
face, D = 1. A fractal dimension higher than unity is
characteristic of a self-similar surface profile, which
can hardly be expected to develop as aresult of a natu-
ra solidification process (as distinct from a fracture
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Fig. 1. Surface profiles recorded (a) before stressing and
(b) 9, (c) 31, (d) 79, and (e) 150 min after stress had been
applied.

surface produced under nonequilibrium conditions
[7-9, 17]). For example, Do, = 1.00 £ 0.05 was
obtained for the fractal surface of polycrystalline cop-
per in [20].

The deviation of the surface fractal dimension of an
amorphous alloy from unity (Fig. 2a) should be attrib-
uted to the solidification conditions on a surface pro-
duced by rapid quenching from a melt: the nonequilib-
rium state of the surface isreflected in its geometry.
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Fig. 2. Height difference averaged over all pointsin ameasured profilevs. horizontal distance A for aFe;qCrq5B15 ribbon (a) before
stressing and (b) 15, (c¢) 31, and (d) 89 min after stress has been applied. Lines correspond to (1) with H =0.79 (&), 0.66 (b), 0.88 (c),

and 0.78 (d).

Figure 3 illustrates the evolution of the surface frac-
tal dimension for Fe,,Cr;5B,5 ribbons under isometric
stress. It isclear that D increases from 1.21 to 1.34 dur-
ing the first 15 min, drops to 1.12 in the next 10 min,
and then gradually increases to 1.22. The three-stage
surface evolution is explained by the competition
between severa processes having different effects on
the surface geometry. Note that “nonmonctonic”
behavior of amorphous aloys under stress was
observed in [23].

Theinitial increase in fractal dimension occurs as a
result of fast propagation of defects from the surface
into the bulk (stagel), which iseasy to notice by simply
comparing the roughness amplitudes measured before
and during stressing (see Figs. 1a and 1b). The subse-
guent drop in D (stage I1) was also observed in [21] for
the amorphous alloy Fe,;Ni;SigB,3, where it was attrib-
uted to an effect anal ogous to the smoothing of a crum-
pled sheet of paper under tensile stress. However, the
initial value of D was not specified. The increase in D
at the stage of initial crack propagation may have been
overlooked in [21], because only the states of the sur-
face before and after stressing were compared, whereas
the evolution of surface morphology was not analyzed.

In our experiments, the decrease in D due to
smoothing must have been overcome immediately by

¢, min

Fig. 3. Fractal dimension of surface profile for a
Fe;oCr15B15 ribbon at successive stages of stressing repre-
sented by line segments.
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the increase in D due to crack propagation. After the
cracks have stopped growing, the smoothing effect pre-
vails (stage I1).

Further evolution (stage I11) obviously leads to an
increasingly complex surface structure (Fig. 1d) char-
acterized by monotonic increase in fractal dimension.
We believe that the final stage of surface evolution is
dominated by self-diffusion.

Stage 111 comes to an end when a steady, trans-
versely oriented texture rapidly developsasD = 1.22 is
reached, which corresponds to H = 0.78 according
to (2). It should be recalled here that H = 0.78-0.80 has
been interpreted as a universal (material-independent)
indicator of “fast” surface fracturein several studies[7,
20, 24]. Since a similar Hurst exponent of 0.79 was
measured herefor arapidly quenched amorphous alloy,
we can how ascertain that this value may be character-
istic of any surface produced under nonequilibrium
(dynamic) conditions.
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Abstract—An anisotropic Heisenberg spin S= 1 model on atwo-dimensional hexagonal lattice (formed from
interacting chains) with antiferromagnetic nearest-neighbor interactions of two types is analyzed by the red
space renormalization group method. The problem of the influence of interchain pairing on the critical proper-
ties of the model is studied, and the phase diagram of the model is constructed. The two-dimensional density
matrix renormalization group agorithm is used to calculate the ground state energy for the isotropic case as a

function of the ratio between interchain and intrachain interactions. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In the past decade, magnetic systemswith structures
formed from interacting spin systems have been the
object of extensive studies. If the interchain exchange
valueis much smaller than intrachain interaction, these
systems possess properties of one-dimensional mag-
nets at fairly high temperatures. Interchain magnetic
interactions, however, begin to play an important role
and determine the magnetic behavior of the system as
the temperature lowers.

In this work, we apply the real space and density
matrix renormalization group methods (RSRG and
DMRG) to study a two-dimensional magnetic system
with a hexagonal lattice formed by antiferromagneti-
cally interacting spin S= 1 chains with intrachain anti-
ferromagnetic interaction, when the model is equiva
lent to a two-dimensional spin S = 1 antiferromagnet
with nearest-neighbor interactions of two types. For
this purpose, we use the Heisenberg Hamiltonian with
Ising-type exchange anisotropy in the RSRG method
and the isotropic version of the model in DMRG calcu-
lations. Our main goal was to find out how interchain
pairing influenced the critical properties and energy of
the system in its ground state.

Our interest in this problem largely stems from the
preparation of anew class of organic magnets PNNNO
and F,PNNNO. Each of these compounds contains spin
S=1/2 pairs coupled by theferromagnetic interaction Jg.
The antiferromagnetic interaction between these pairs
forms the corresponding spatial crystal structure.
Because of the strong ferromagnetic interaction Jg (on
the order of 600 K), the PNNNO and F,PNNNO com-
pounds can be treated as systems of antiferromagnetic
spin S= 1 chains (see Fig. 2atypel in[1]).

It was found experimentally that interchain interac-
tion was three-dimensional in character in PNNNO and
two-dimensional (2D) in F,PNNNO. As a conse-
guence, the properties of PNNNO can be explained
using the model of one-dimensional antiferromagnetic
chains that experience Néd ordering in the three-
dimensional space at atemperature of about 1 K thanks
to weak interchain interaction, whereas the F,PNNNO
compound with comparable antiferromagnetic

O-OmO-O
C
O-OmO-O

O-OWO-O
D)

O-OmO-O

O-OmO-O

Fig. 1. Magnetic model of the F,PNNNO compound: uni-
form chains with intramolecular ferromagnetic pairing (Jg)
and intrachain antiferromagnetic exchange (Jag). The
chains interact antiferromagnetically (J'AF). The limiting

variant of the model (Jg — ) is the antiferromagnetic
hexagonal spin S= 1 lattice.

1063-7761/05/10103-0472$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 2. Graph used in the renormalization group procedure.

exchange interaction values J,= and J,r is a two-

dimensional spin S= 1 system on a hexagonal lattice
(Fig. 1).

At the same time, interest in antiferromagnetic spin
S = 1 systems increased after the discovery that the
interaction of 22Na pseudospins related to their fine
structure was antiferromagnetic [2]. A description of
the properties of spin 1 bosons, whose roleis played by
ultracold >Naatomson an optical |attice under the con-
ditions of one particle per node [3, 4], generally
requires taking into account not only spin (dimeric and
chiral) correlations, which arise in considering mag-
netic spin = 1/2 systems, but also “new” nematic corre-
lations [5].

Lastly, a hexagonal lattice with frustrated interac-
tion between the next-to-nearest neighbors has been
extensively studied within the framework of the quan-
tum dimeric model [6], where singlet phases with crys-
tal-like ordering are formed in the ground state [ 7, 8] (a
review of the earlier studies of magnetic models on
hexagonal lattices can be found in [9]). This was sub-
stantiated numerically for the Heisenberg spin s = 1/2
(J; — J,— J3) model, in which the phase of singlet
valence bonds was formed [10]. Note that measure-
ments of the magnetic properties of F,PNNNO give
direct evidence of the singlet character of its ground
state with agap in the excitation spectrum. This conclu-
sion is substantiated by magnetization measurementsin
high fields (by the presence of an M, = 0 magnetization
curve plateau). All these observations do not rule out
the formation of a state of the spin liquid type. Note
from the outset that the results obtained for the spin
S=1 model should be used with caution when the
F,PNNNO system is considered, because, generally
speaking, the structure of the real compound is formed
by spins 1/2.

Lastly, a consideration of the Helsenberg Hamilto-
nian with exchange anisotropy of the Ising typefor spin
S= 1 systems by the real space renormalization group
method is of theoretical interest on itsown in view of a
recent study of the behavior of a weakly anisotropic
Heisenberg spin S = 1/2 antiferromagnet on a square
lattice at finite temperatures using the Monte Carlo
guantum method [11]. The Ising universality class was
shown to appear already at low anisotropy values (on
the order of 102 [J 1078 in exchange integral units),
which, according to the authors of [11], virtualy ruled
out the possibility of the destruction of long-range
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order by quantum fluctuations under these conditions.
These results are quantitatively at variance with RSRG
calculations, which predict a substantially larger criti-
cal anisotropy value (~0.2) for this model.

We shall solve the principal problem using a gener-
alization of the well-known RSRG method, which was
for thefirst time suggested by Mariz et al. for the quan-
tum anisotropic Heisenberg spin S = 1/2 model [12].
Generalizing this method to spins S> 1/2 isanontrivial
problem, although here we also encounter usual diffi-
culties related to the necessity of expanding exponen-
tial operators and the “multiplication” of exchange
interactions because of the vector character of spin
operators.

The paper is organized as follows. In Section 2, we
develop the real space renormalization group method
for spin S= 1 and apply it to the quantum anisotropic
Heisenberg model on ahexagonal lattice with exchange
interactions of two types. Section 3 presents the results
of DMRG calculations of the ground state energy for
the isotropic case at various ratios between these
exchange interactions.

2. RSRG ANALYSIS

After the real space renormalization group method
was successfully applied to study two-dimensional
Ising systems [13, 14], a large number of works in
which this approach was used to analyze phase transi-
tionsin quantum systems have been published [15-17].
In the past decade, the RSRG method was employed
to calculate the phase diagram of the anisotropic
Heisenberg spin S = 1/2 antiferromagnet on a square
lattice [18, 19]. In these works, a special hierarchical
lattice was used to approximate the initial square lat-
tice, and the renormalization group procedure itself
(cluster enlargement) was performed with summing
over the internal spin states.

Recently, the linear perturbation renormalization
group method (LPRG) has been suggested to study
weakly interacting classical and quantum spin chains
[20]. This method uses the natural small parameter of
the system, namely, the ratio between interchain and
intrachain pairing. It aso uses the renormalization
group transformation, which isthe standard decimation
procedure for Ising spins and a generalization of the
Suzuki—Takano approximate decimation procedure [21]
for quantum spins. Unfortunately, the LPRG method
based on perturbation theory can only be used when the
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ratio between interchain pairing and intrachain

exchange interaction is small.

2.1. Model

Let us consider a system with anisotropic Heisen-
berg interaction described by the dimensionless Hamil-
tonian

—BH = ZKij[(l_Aij)(SXS}('l-SyS},)+stjz]1 (1)

0, jO

where B = UkgT, K;; = J;/kgT, J; is the exchange inter-
action value, [ij Cdenotes pairs of the interacting nearest

neighbors, 4; is the anisotropy parameter, and S{a=
X, Y, z are the components of spin S= 1 on node i.
Hamiltonian (1) corresponds to the Ising (A;; = 1), iso-
tropic Heisenberg (4;; = 0), and XY (4;; = —») models.

We shall briefly describe the main elementary oper-
ations central to the renormalization group procedure
suggested in[12]. A pair of bonds placed in parallel and
characterized by the parameters (K4, A;) and (Ky, &) is
equivaent to one bond with the parameters (K, 4A)
defined as

K, = Ky +K,,
KA, = KAy + KA,

This rule, which corresponds to the usua Migdal—
Kadanoff procedure [22, 23], can trivially be general-
ized to n parallel bonds.

Combining two series-connected bonds with the
parameters (K,, 4;) and (K,, 4A,) is not so simple
because the spin operators do not commute with each
other. After applying the renormalization group proce-
dure, scaling, and removing intermediate spins (“deci-
mation”), the Hamiltonian changes its form, and its
new exchange parameters are some functions of theini-
tial exchange interactions. The initial Hamiltonian has
the form

His = Ki[(1-A:)(SS+SIS:) + S S
+K[(1-0,)($S: + SS) + SSl.

We must replace two series-connected bonds by one
bond with the interaction Hamiltonian

KI(1-2)(S5S+SS) +SS] +Ko. (2

This is achieved by imposing the requirement that the
contribution of the interaction of two terminal atoms 1
and 2 to the partition function be invariant; that is,

Hi, =

expHy, = TryexpH s, (©)
where Tr; denotes the trace over the states of interme-
diate spin 3 and K, is some additional constant neces-
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sary for (3) to have a solution. Equation (3) relates the
exchange parameters of the bonds to be combined
(Ky, ) and (K,, A,) to the renormalized parameters

(K A, Ky). Note that the corresponding relations can

bewritten explicitly for the anisotropic Heisenberg spin
S=1/2 model [12, 18].

To construct the recursive equations for renormal-
ization group transformations (3) in the spin S= 1
model, let us expand both sides of the equality using a
certain matrix basis and equate the corresponding coef-
ficients of this expansion. The problem of the“multipli-
cation of constants’ that then arises will be solved by
retaining only those exchange constantsthat are present
ininitial Hamiltonian (1).

Note that, because of the properties of the Pauli
matrices, the matrix representations of H and expH
have the same structure for spin 1/2; that is, the nonzero
matrix elements of H and expH are positioned identi-
cally. Thisrule does not hold for spin S= 1, which con-
siderably complicates calculations.

Following [12], let us write expH, inthe form

. i Knn,Ar O A,

n,=0n,=0

expHi, =

where [ is the exterior product and A, , stands for the
usual powers of the spin operators S5 *. The K., ,

coefficients depend on K, A, and K. Since AIZ are
3 x 3 matrices, they can be expanded using the basis set

of polarization matrices T'; (k=0,1,2andq=—k, Kk +
1, ..., k(see Appendix),

A =aTgi)+ Y M)+ c"Th(),
M =Zil,0 M =1-22,i1,0
i =12
The Tg matrices can in turn be written explicitly in
terms of the spin operators [24]

1
3

T2 = [ggsz)z— %%,

T2, = :%[(sxsz +S9) +i(IF+$YY],

To = ==I, Tilzi:—ZL(S’(iiSy),

T% = 31(S)’~ () £i(S'T/+ '],

The exp(H) operation should not change Hamiltonian
H symmetry. The requirement of invariance then gives
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the most general decomposition form,
expHy, = ay(To(1) 0 To(2)) + 0o(To(1) 0 To(2))
+05(To(1) 0 To(2)) + B(T1(1) O T4 (2)
+T4(1) 0 T1(2) (4)
+y(T5(1) O T%(2) + T,(1) O T3(2))

+0(T3(1) O T%(2) + TA(1) O T2(2)),

with anew set of interaction constants a4, a5, 03, B, V,
and o (the indices in parentheses are the node num-
bers). Applying (4) yields

expHi,
HA, 0 0 0 0 0 0 0 07
Eoslzoclzoo 0 oo%
00 0Dy, 0F; 06,0 00
Eoclzoslzoo 0 OOB )
=50 0 F, 0E, 0 F, 0 0@
Eo oooslzoclzog
10 0G, 0F, 0D, 0 00
00O 0 0 0 0Cp O By, 00
H0 0 0 0 0 0 0 0 ALT

where the matrix elements A, = 0,/3 + a,/2 + 04/6,
B, =0,/3—-043,C,=3/2—-0/2, D1, =0,/3—0,/2 +
04/6, Ej» = 04/3 + 204/3, Fy, = /2 + 0/2, and Gy, =
y areintroduced.

We can similarly obtain a closed equation for the
expansion of TryexpH;,; whose structure is similar to

that for expH3,; the coefficients of (4) are then func-
tions of the parameters present in Hy,s.

Calculating exponential functions of matrices
requires the numerical diagonalization of 9 x 9 and

27 x 27 matrices related to H’, and H,,;, respectively,
to be performed. The equations

expHi, = UlzeXp(Hi)z)UJ{za

expH 3 = U123exp(H1D23)U123,

where U,, and U,,; are the unitary matrices that diago-
nalize H}, and Hy,s into HY, and Hos, can be used to
numerically find expH}, and expH,,; as functions of
the corresponding sets of exchange parameters. Direct

numerical calculations show that expHj, and
TryexpH;,3 have identical matrix structures (5). The
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calculations give the sets of parameters {a, o, a3, 3,

y, 6} for expH;, and {d,, @,, 04, B, y, 0} for
TryexpH;.3. The required renormalization group equa-
tions are obtained by imposing the conditions

oy = A+ B+ Dy, = Ap+ B+ D = 0;, (6)

Oy = Ap-Dyp = Ap-Dp = @5, (7)
B=-Cp—Fyp=-Cp—Fp=p )
and
a; = E;,—By, = Ex—Bpp = @5,
y =Gp =G =Y, 9)

0 =F;,-Cpp = Fo—Cypp = 0.

Clearly, the number of these equations exceeds the
number of interactions in initial Hamiltonian (2)
because al possible bilinear interactions between ter-
minal spins are generated. To perform decimation, we
retain three equations (6), (7), and (8) corresponding to
Heisenberg interactions in initial Hamiltonian (1),
which implicitly determine K, A, and K, as functions
of (K, A;) and (K,, A,). This system of equations is a
direct analog of the renormalization group equations
for spin S=1/2 (see Egs. (12) in [12]).

The next important step of the renormalization
group procedure is the selection of the hierarchical lat-
tice. We will use the simplest lattice variant with
6 nodes and 6 bonds shown in Fig. 2, whose point sym-
metry coincideswith that of theinitial lattice. Next, we
impose the condition that the initial and renormalized
graphs should be characterized by equal contributions
of the interaction of terminal spins 3 and 6 to the parti-
tion function. At thefirst stage, we apply decimation Rg,
when the spins 1 and 3 (or 4 and 6) are retained,
whereas the spins 2 and 5 are removed. At the second
stage, the decimation procedure is repeated to remove
the spins 1 and 4. Lastly, we apply the Migdal—
Kadanoff “bond shift” to combine the remaining bonds
placed in parallel and eventually determine the renor-
malized parameters. Asaresult, we obtain the recursive
equations

(Kg Ag) = Rg(Ky, Ay; Ky, Ay),
(Ks As) = Rg(Kg Ag; Ky, Ay),
(Ko Ap) = 2(Kg Ag).

The critical points of the system are defined as the non-
trivial fixed points of these equations, which can conve-
niently be rewritten as the complex function

(Kp1 Ap) = 2Rs(Rs(Ky, Ag; Ky, Ay); Ky, 4y). (11)

Unfortunately, as distinct from the S= 1/2 problem,
explicit renormalization group equations cannot be

(10)
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Fig. 3. Reciprocad critical temperature (K.) as afunction of
the Cy = g /Jar ratio calculated using renormalization

group recursive equations for various anisotropy values:
A=(1)1.0,(2) 0.8, and (3) 0.6.
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Fig. 4. (Ty, &) phase diagram for various C; = Jp [ar

ratio values: (1) 1.0, (2) 0.5, and (3) 0.3. The regions above
(below) the critical lines correspond to disordered (ordered)
phases. The dashed lines were drawn by eye.

obtained; we therefore briefly describe the numerical
procedure that we used. Theinitial parameterswere the
ratio between the interchain and intrachain pairings

C, = J,e /e and the anisotropy parameter A = A;. In
addition, we assumed that A, = C,A, that is, the form of

anisotropy was the same for intrachain and interchain
interactions. Setting an arbitrary starting intrachain

pairing value K{" (theintrachain interaction constant is
then K$ = C,K{"), we performed two sequential dec-
imation steps to obtain the renormalized pairing con-
stant Kg. At each step, system (6), (7), (8) was solved.
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(This can be done using the standard procedure for
solving nonlinear systems of equations [25].) Next, we
doubled the result obtained in these transformations to
find the eventual K(*) value as a function of the starting

value K(li) . At the final stage, we determined the fixed

point K., of the equation K& = K(O(K{"), for instance,
using the dichotomy method.

2.2. Results

The reciprocal critical temperature K, = 1/T, is
shown in Fig. 3 as a function of the C, parameter for
severa anisotropy parameter A values. According to
thisfigure, the critical temperature rapidly decreases as
interchain interaction weakens. The dependences of the
critical temperature on the exchange anisotropy param-
eter A are presented in Fig. 4; al of them correspond to
the lsing universality class. Asdistinct from severa real
space renormalization group studies for spin S = 1/2,
the phase diagrams for the ferromagnetic and antiferro-
magnetic models are identical; that is, the critical tem-
perature decreases to zero at some nonzero critical A,
value. A weakening of interchain pairing strengthens
guantum fluctuations, which resultsin an increase in A,
as C; decreases.

Note that we did not observe areentrant behavior of
the (T, A) critical line in the temperature range of our
simulations such as was reported in some RSRG stud-
iesof spins=1/2 models[18, 19]. Theresults obtained
in [18, 19] imply the presence of an ordered phase at
relatively high temperatures and its disappearance
when the system is cooled. In this connection, it is per-
tinent to mention work [26]: according to its authors,
these results are an artifact of the method; that is, reen-
trant behavior is observed because of the finite size of
the cluster used in the renormalization group proce-
dure. The effect must disappear asthe size of the cluster
increases.

Close to the critical anisotropy value A = A, the
Néel temperature obeys the law

1

TnH In(A-A,)

(12)

(see Fig. 5), which isin qualitative agreement with the
result obtained for the spin S = 1/2 model. Unfortu-
nately, numerical calculation results cannot be extrapo-
lated to T = 0. For this reason, we cannot draw any def-
inite conclusions about the character of the ground state
of the model. Scaling equation (12) remains valid at
various ratios between interchain and intrachain pair-
ings. The logarithmic dependence of Ty and T, on the
difference A — A, was obtained for an anisotropic spin
s= 1/2 antiferromagnet [27, 28] using scaling theory
and the quantum Monte Carlo method, but with the
A. =0 critical value.
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Lastly, let us consider the equivalence (isomor-
phism) of the critical properties of the ferromagnetic
and antiferromagnetic models. It iswell known that, in
classical spin models such as the Ising and classical
Heisenberg models, the critical temperature (if any) is
the samefor the ferromagnetic (Curie temperature) and
antiferromagnetic (Nédl temperature) exchange inter-
actions between the nearest neighbors. Thisis a direct
consequence of free energy being an even function of
the exchange parameter. Studies of the quantum
Heisenberg spin 1/2 model for the primitive and body-
centered cubic lattices, however, showed that the Néel
temperature was higher than the Curie temperature by
approximately 10%, although this difference rapidly
decreased as S increased [29]. Recently, this problem
was again studied for three-dimensional spin S=1/2, 1,
and 3/2 models using the method of high-temperature
expansions[30]. For some quantum systems such asthe
transverse Ising model and the XY model with guantum
spin 1/2, thereisisomorphism of the critical properties of
the ferromagnetic and antiferromagnetic systems [31].
Notethat studies of the critical propertiesof the Heisen-
berg spin 1/2 model with anisotropic exchange on a
square lattice by approximate methods, for instance, by
the method of Green functions, give T, = Ty at all
anisotropy parameter values [32, 33]. The rea space
renormalization group method used in [18, 19] gave
Ty < T.for 0< A< 1. Theauthors used a specia selec-
tion of the hierarchical |attice approximating the square
lattice. The Curie temperature T, for ferromagnetic
interaction continuously decreasesto zero as the anisot-
ropy parameter A becomes smaller, which gives T, =0
in the isotropic limit (A = 0), in complete agreement
with the Mermin—Wagner theorem [34]. On the other
hand, the results obtained for antiferromagnetic inter-
action were similar to those presented in this work;
namely, Néel ordering was absent below some critical
A < A, value. Clearly, this problem requires additional
studies.

One of the main qualitative results of our RSRG
analysisisthe absence of long-range order in theisotro-
piclimit A=0. In Section 3, we describe DMRG calcu-
lations of the ground state energy of the model. We
show that thisvalueis substantialy lower than that pre-
dicted for classical Néel ordering, which is evidence of
the existence of fairly strong quantum fluctuations in
the system.

3. DMRG ANALY SIS

The density matrix renormalization group (DMRG)
algorithm is one of the most powerful methods for
studying the properties of low-dimensional systems.
This approach alows us to obtain very accurate results
for the wavefunction of the sought state (the ground or
one of the low-lying excited states) and observables
(energy, correlation functions, etc.) using a basis set of
comparatively small dimension m (usually, m~ 50-150).
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Fig. 5. (Ty, 4) phase diagram for small Ty values close
to A A.=0.46 for C; = 1.0.

The key problem of the DMRG algorithm is the selec-
tion of these m basis functionsthat should minimizethe
difference between the true wavefunction ) and its

DMRG approximation (.

An original one-dimensional DMRG algorithm was
suggested by White [35, 36] in the early 1990s. The
method gives very accurate values for the ground state
energy of Heisenberg spin S= 1/2 and 1 chains and sev-
eral other models[37]. Extending the DMRG algorithm
to two-dimensional systems, however, proved to be a
nontrivial task that has not been formulated uniquely by
NOW.

The DMRG method was for the first time applied to
the two-dimensional frustrated quantum spin model of
the CaV ,O4 compound [38]. More recently, the method
was used to study the two-dimensional t—J model [39—
41] and quantum Hall systems [42, 43]. Various appli-
cations of the DMRG algorithm to two-dimensional
systems are reviewed in [44].

The principal difference between the variants sug-
gested by various authors lies in the method for
“increasing” the system. For instance, one of the sim-
plest extensions to two-dimensional systemsiis as fol-
lows. Whereas separate hodes are as arule added to the
system in the one-dimensional DMRG algorithm, we
can add whole columns of spinsto the latticein thetwo-
dimensional version [45]. The lattice size then remains
constant along the y axis and increases along the x axis
during calculations. Although this approach is fairly
easy to implement, it has an important shortcoming, an
undesirable increase in the amount of computations
because a description of the interaction of two “col-
umns’ of spins of height M requires including M addi-
tional bondsinto the Hamiltonian at every step. In other
approaches, a system is increased by blocks of an even
more complex shape [46-48], which allows the topo-
logical characteristics of two-dimensional lattices to
remain unchanged but, as previously, which requires
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Fig. 6. Map of two-dimensional lattice to spin chain.

including a large number of new bonds and imposes
expensive computation time.

From the point of view of computations proper, the
simplest are*“linear growth” methods, when onenodeis
added at each step of increasing the system. One of
such DMRG agorithm variants was suggested in [49]
to study the two-dimensional Hubbard model. The
algorithm is based on mapping the two-dimensional
spin lattice onto a one-dimensional spin chain (see
Fig. 6). Initially, nearest-neighbor interactions are
taken into account in the two-dimensional system.
However, when this system is appropriately mapped
onto the one-dimensional chain, there appear interac-
tions between nodes situated fairly far from each other.
The traditional DMRG agorithm can be applied to a
one-dimensional chain constructed this way (we used
the variant for finite lattices). We employed this method
to study the properties of the ground state of the isotro-
pic Heisenberg spin S= 1 antiferromagnet on a hexag-
onal lattice with exchange interactions of two types,

Ji=dpandd, = Jye.

The ground state energy E, was calculated for the
6 x 3 cluster. The J,/J;, parameter was varied from 2 to
0.01. In al the calculations, a basis set of dimension
m = 50 was used. The E, values obtained are listed in
the table in exchange integral J; units. The same table
containsthe energy per bond E/N. For the 6 x 3 lattice,
the number of bondsisN = 21 (15 horizontal and 6 ver-

Table

Joldy E EyN En
2.0 -35.1 -1.67 -27.0
1.0 —27.21 -1.296 -21.0
0.5 —23.95 -1.141 -18.0
0.333 —23.08 -1.099 -17.0
0.1 —22.218 —-1.0580 -15.6
0.01 —22.1119 -1.0529 -15.06
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tical bonds). According to [35], the ground state energy
of noninteracting isotropic Heisenberg S = 1 chains
should be —1.401 x 15 = —21.0125, which is the sum
over three independent chains each containing five
bonds. It follows from the table that E, tends to that
value as J,/J; — 0O, which is evidence that the results
obtained are acceptable.

The ground state energy reaches its limiting value
fairly rapidly, in approximately 50 steps. Note that the
dependence of the ground state energy E, on the step
number n of the DMRG algorithm is a step function.
A similar behavior of the ground state energy as the
number of iterations increases was reported in recent
work [46], where a spin S = 1/2 antiferromagnet on a
square lattice was studied.

The last column of the table contains the ground
state energy Ey for classica Néel ordering. (For the
cluster studied in thiswork, Ey = J;[-15—6J,/J,].) The
substantial difference between these values and the val-
ues obtained in the DMRG calculations is evidence of
strong quantum fluctuations in the ground state of the
system.

Note in conclusion that the renormalization group
analysis results, which predict the existence of critical
anisotropy, are in quaitative agreement with studies of
the ground state properties of two-dimensional quantum
spin systemswhose ground states can be ordered valence
bond states (VBS). The model of vertex states [50] and
the variational method of tensor products (one of the
density matrix renormalization group variants) [51]
were applied to study spin 3/2 models on a hexagonal
lattice and spin 2 modelson asquarelattice. TheseVBS
models contain the so-called “deformation” parameter
(a controlled variational parameter that changes the
weight of maximally polarized states largely present in
the Néel phase), which corresponds to the xxz type of
Hamiltonian anisotropy. It was shown that, in the iso-
tropic case, VBS models described a disordered phase
different from the Néel phase. The main result of these
studies was the existence of a second-order phase tran-
sition from disordered phases with exponentially
damped spin—spin correlation functions into phases
with Néel ordering and long-range correlations as the
deformation (anisotropy) parameter increased. This
phase transition has the universality class of the two-
dimensional Ising model.

An analysisof two-dimensional quantum spin 1 sys-
tems by variational renormalization group methods
encounters objective difficulties. For instance, the
method of matrix products [52, 53] allows VBS states
in one-dimensional spin 1 chains to be successfully
included, but this approach cannot be extended to two-
dimensional systemsin the form of the method of ten-
sor products, because such systems do not have the
ground state of ordered valence bonds (the spin Svalue
is inconsistent with the number of nearest neighbors;
that is, 2S# z). The problem is still open, athough the
results that we present lead us to suggest that critical
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anisotropy and the related phase transition also exist in
the two-dimensional quantum spin S= 1 systems.
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APPENDIX
Spin S= 1 polarization matrices have the form
O O O O
18180708 T=—L800:0
=z0010 =—=0001
30 o 20
0o001g 0ooo0g
i O O O
. 100005 ;10075
T = ﬁﬂloom, To= ﬁﬂoo oD
00100 00—15
41 0 oF Ho-10H
T2= 100 200 TP=-1d0 0 10
60 O 20 O
[DO 0 1 [DO 0 0
, 1 Do 0 oD D001D
T4 = ﬁﬂlooD T;=00000
00-10Q 0ooo0g
0
T?, = EOOOE
% DoooD-
01000
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Abstract—A theory of magnetic relaxation is developed for geometrically frustrated three-dimensional mag-
nets that can be described by an antiferromagnetic 1sing model. These magnetic materials are exemplified by
some of the recently synthesized rare-earth oxide pyrochlores, such as Dy,Ti,O7, Ho,Ti,Oy, or Yb,Ti,07. A
model based on an analogy between the spin ordering in Ising magnets and proton ordering in ice is proposed.
In this model, magnetic point defects treated as noninteracting quasiparticles characterized by well-defined
energies, mobhilities, and effective magnetic charges play a fundamental role analogous to that of ion defectsin
the physics of ice or by electrons and holes in semiconductors. The proposed model is used to derive expres-
sions for magnetic susceptibility asafunction of frequency and temperature. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Some of the recently synthesized rare-earth oxide
pyrochlores, such as Dy, Ti,O,, Ho,Ti,O, or Yb,Ti,Oy,
belong to the class of geometrically frustrated magnets
(GFMs) [1], in which magnetic lattices cannot satisfy
all of the conditions for local magnetic order simulta-
neoudly. Originaly, a physical model of this kind was
considered in astudy of thetriangular lattice Ising anti-
ferromagnet [2], where spins cannot be antiparallel in
all nearest neighbor pairs simultaneously, because
closed loops of bonds contain an odd number of verti-
ces. In rare-earth oxide pyrochlores, rare-earth mag-
netic ions reside at the vertices of linked regular tetra-
hedra (see Fig. 1). The impossihility of simultaneous
fulfillment of ordering conditions for all spins (frustra-
tion) entails ground-state degeneracy and very special
temperature behavior. At extremely high temperatures
(KT > J, where k is Boltzmann's constant and J is the
coupling constant), magnetic coupling isnegligible and
the spin system is obviously in a paramagnetic state. At
lower temperatures (KT ~ J), magnetic coupling cannot
be neglected and spins are correlated. However, it was
shown experimentally that spins still exhibit paramag-
netic behavior in the sense that magnetic susceptibility
followsthe Curielaw, x 0 U/T[1, 3, 4]. The persistence
of this behavior of a spin system at extremely low tem-
peratures (KT < J) has generated the term cooperative
paramagnetism.

What is the mechanism of transition between para-
magnetic and cooperative paramagnetic states? Does
any magnetically ordered state exist at extremely low
temperatures? What is the nature of the cooperative
paramagnetic state? What are its properties? These are
the key questions arising in studies of GFMs. In this
paper, magnetic relaxation in geometrically frustrated
three-dimensional magnets is analyzed in the theoreti-
ca framework of an Ising model. The anaysis is

focused on the class of models with magnetic lattice
consisting of corner-sharing tetrahedra (see Fig. 1), as
in oxide pyrochlores. It is shown here that the magnetic
behavior exhibited by these systems can be described
by the “magnetic variant” of the theory of proton order-
ing inice[5, 6]. The present treatment relies on a for-
mal analogy (originally put forward in [7]) between
spin ordering in certain ferromagnets and the proton
ordering governed by the ice rules. Trying to find an
explanation for theicerules, | proposed a Hamiltonian
for the Coulomb interaction between protons in ice,
which turned out to be formally identical to an antifer-
romagnetic Ising Hamiltonian [8, 9], and derived the
ice rules as an obvious consequence of the short-range
part of the Coulomb interaction. The similarity of the
Hamiltonians suggests that thereis afundamental anal-
ogy in both static ordering and dynamic behavior. In
this study, the analogy is used to describe magnetic

Fig. 1. Magnetic lattice of a rare-earth oxide pyrochlore
schematically represented asanetwork of regular tetrahedra
with magneticions at their vertices. Open and closed circles
are“up” and “down” spins.

1063-7761/05/10103-0481$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 2. Diamond lattice dual to the lattice shown in Fig. 1,
with vertices at the centers of the tetrahedra. Open and
closed circles constitute face-centered cubic sublattices.
Each vertex is the junction point of four bonds with the
nearest neighbors. Magnetic ions reside at the midpoints of
bonds, and magnetic anisotropy axes are parallel to bonds.

relaxation in the system under analysis, i.e, its
response to applied magnetic field characterized by
arbitrary time dependence.

The presentation below is organized as follows.
First, the Hamiltonian of the system is presented, and
both ground and excited states are described. Next, a
proportional to local magnetization is introduced to
characterize spin ordering, and the relationship
between the dynamics of defects and the configuration
vector isanalyzed. Finally, an expression is derived for
frequency-dependent magnetic susceptibility.

2. GROUND STATES AND DEFECTS

Since the present approach substantially relies on
the aforementioned analogy between spin ordering in
rare-earth oxide pyrochlores and proton ordering in
ordinary ice, it should be emphasized that the mecha
nism of magnetic relaxation considered here is com-
pletely analogous to electrical relaxation in ice as
described by thetheory developed mainly in[5, 10-12].
The most elegant formulation of the theory, based on
thermodynamics of irreversible processes, wasgivenin
[5]. A detailed discussion of its applications and com-
parison with experimental resultswere presented in [6].
Since these publications may not bereadily available, a
self-contained analysis including a detailed derivation
of the equations of the Jaccard theory is presented here
instead of ssimply referring to [5].

It should also be mentioned that some rare-earth
oxide pyrochlores are inherently frustrated Heisenberg
antiferromagnets. These materials are not analyzed in
this paper.

It is most surprising that behavior characteristic of
frustrated magnets is also exhibited by other oxide
pyrochlores (Dy,Ti,O;, Ho,Ti,O, and Yb,Ti,O,), in
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which spin—spin interaction per se is described by the
ferromagnetic Heisenberg model (i.e., the correspond-
ing energy proportional to —o;, - 6;5. However, these
materials are characterized by strong uniaxial magnetic
anisotropy, with axes pointing from the centers of tetra-
hedra to their vertices. Since the cosine of the tetrahe-
dral angleis—1/3, the effective coupling correspondsto
an antiferromagnetic Ising model [8, 9]:

J
H = §Z°ia°m’ 1)
nn

where J > 0, the subscript i refers to shaded tetrahedra
in Fig. 1, the subscript a labels the spins in each tetra-
hedron, and the sum runs over all nearest neighbor pairs
(see Fig. 1). The Ising spin o;, can be either +1 or —1.
For convenience, the dual lattice consisting of the tetra-
hedron centers (see Fig. 2) isconsidered in conjunction
with the magnetic lattice (Fig. 1). For rare-earth oxide
pyrochlores, it is a diamond lattice consisting of two
interpenetrating face-centered cubic sublattices. If one
of these is treated as a basic one, then subscriptsi and
o refer to vertices and midpoints of nearest neighbor
bonds in this sublattice, respectively. By convention,
0,, = 1 and -1 for spins that are, respectively, paralel
and antiparallel to the unit vector g, of a magnetic
anisotropy axis pointing toward the tetrahedron center
(or aunit bond vector in the dua lattice).

The ground state of the four spins at the vertices of
a pyrochlore-lattice tetrahedron corresponds to any
configuration with two spins up and two down. There
exist six distinct configurations of this kind, and the
corresponding energy is —J per spin. The crystal con-
sisting of N tetrahedra is in the lowest energy state
when each tetrahedron is in the ground state, since the
Hamiltonian for the crystal can be represented asa sum
over al constituent tetrahedra. Therefore, the energy of
the ground state of the crystal is—J per spin. The num-
ber of such states can be calculated by following the
approximation proposed by Pauling [13]. There are
16 distinct configurations of a pyrochlore-lattice tetra-
hedron; i.e., the relative number of distinct ground-state
configurations is 6/16. If the spins are uncorrelated,
then the number of ground states of the crystal is (3/8)N
times the total number 22N of distinct spin configura-
tions: w = (3/2)N.

No spin can beflipped without increasing the energy
of the system in any ground state at zero temperature,
whereasflipping aspin at afinite temperature increases
its energy by e, = 4J and creates two defect states sche-
matized in Fig. 3. The positive magnetic defect defined
as the tetrahedral four-spin configuration with three
spins up and one down isamagnetic analog of anionic
defect inice. Accordingly, the negative magnetic defect
(with three spins down and one up) is analogous to a
negative ionic defect. Any spin configuration contain-
ing magnetic defects admits spin flips without any
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increase in energy. Indeed, flipping one of the three
identical spins in a magnetic defect is equivalent to
moving the defect to another site without creating a
new defect (see Fig. 3). A sequence of spin flips makes
up the path of a defect considered as a moving quasi-
particle. This explains the fundamental role played by
defects in magnetic relaxation.

Note that the use of the nearest neighbor model with
Hamiltonian (1) implies that the coupling between
defects drops to zero even across the lattice spacing.
This approximation is obviously valid for exchange
(short-range) interaction, whereas the slowly decreas-
ing magnetic dipole—dipol e interaction characteristic of
the materials in question may be expected to lift the
degeneracy inherent in the nearest neighbor model.
However, experiments have shown that measured resid-
ual entropy is close to that predicted by Pauling's
model, no ordered structures have been found, and
computations predict that the rel ative number of nonde-
generate states is small. Analogously (and even more
surprisingly), the long-range part of the Coulomb inter-
action does not lift the ground-state degeneracy in the
physics of ice, while the ice rules stem from its short-
range part. Even though this problem has been
addressed in a vast literature, its complete solution is
not known to this day (see [14] for the latest results).

A relatively long-range interaction between defects
can be neglected when the concentration of defectsis
low, which is normally the case. However, even in the
absence of direct interaction, frustrated systems are
characterized by a specific interaction due to the depen-
dence of entropy on the average distance between
defects. This dependence is determined by the spin—
spin correlation function, which has actually been cal-
culated in [15]. The calculated results suggest that this
interaction decays with increasing distance faster than
the direct Coulomb interaction and can therefore be
neglected. Thus, defects can be treated as noninteract-
ing particles analogous to ionsin the lattice gas models
of superionic conductors, mainly because their concen-
tration is low and the ensuing results agree with exper-
iment.

To calculate the equilibrium defect concentration,
note that each vertex of the dual |attice can be in one of
14 states: six defect-free states, four orientations of a
positive defect, and four orientations of a negative
defect. The two states with al spins up or down are
ignored since the corresponding energies are too high.
If the corresponding numbers N; of vertices in these
states(i = 1, ..., 14) aretreated as independent, then the
total number of distinct configurations is N!/TN;,
including those with correlated and anticorrel ated near-
est neighbor vertices (with paralel and antiparallel
spins at the midpoints of nearest neighbor bonds). It is
obvious that configurations of the latter type must be
not be counted. If the probability of acorrelated config-
uration is /2 (asin Pauling’s model), then the number
of correlated configurations is w, = (1/2)>"N!/IN;,
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Fig. 3. Fragments of magnetic lattices with (a) no defects,
(b) apair of magnetic defects created by flipping a spin on
the vertical bond, and (c, d) displacement of a magnetic
defect downwards by alattice spacing caused by a spin flip
on the vertical bond. Hatched, closed, and open circlesrep-
resent defect-free vertices and positive and negative mag-
netic defects, respectively.

where 2N is the number of bonds in the crystal. If
defects are created in pairs and all defect orientations
areequally probable (N; = ... = Ng, N; = ... =Ny, the
entropy per spinis—k{2xInx + (1 —2x)In(2(1 —2x)/3)},
where x = N,/N is the concentration of defects per ver-
tex. Hence, the Helmholtz free energy per vertex is

f(x) = e, x+KT

O 2
X [Qxlnx+(1—2x)ln%(1—2x)%, @)
O
and the equilibrium defect concentration is
2 o0 €[
3P0 2kT0
X, = 2 . 3
4 0 €0
L 3®POo0

At the relatively low temperatures typical for most
experiments, the concentration of defects is exponen-
tially small:

2 [ €&
%= 3¥PE gD

With increasing temperature the concentration tends to
the finite limit x, = 2/7.

3. MAGNETIC CHARGES
AND GOVERNING EQUATIONS

Magnetic defects can carry effective magnetic
charges. To demonstrate this possibility, an arbitrary
spin configuration is represented as a superposition of
intersecting polygonal strings of dual-lattice bonds
whose magnetic moments are ordered along the corre-
sponding strings. In defect-free configurations (with
two nearest spins up and two down for each dual-lattice
vertex), each string either closes on itself or terminates
on the crystal surface. In aconfiguration with defects, a
string may terminate on adefect, i.e., inside the crystal.
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The magnetic field generated by each string of mag-
netic dipoles is equivalent to the superposition of the
fields of magnetic charges placed at its ends. Even
though this can be demonstrated by straightforward
calculation, a much simpler proof relies on anaogy
with macroscopic electrostatics. Indeed, the macro-
scopic magnetic field can be calculated by adding the
applied magnetic field to the field generated by all mag-
netic dipoles. By analogy with macroscopic el ectrostat-
ics, the latter field is equal to that generated by space
charge with density —divM, where M is magnetic
moment density. Since the divergence does not vanish
only for defects of the type illustrated by Fig. 3, it is
clear that positive and negative defects can be associ-
ated with positive and negative magnetic charges,
respectively.

The absolute value of the magnetic charge carried
by a defect can be expressed in terms of spin magnetic
moment as follows. Since the displacement of a posi-
tive defect to the nearest neighbor dual-lattice vertex in
an applied magnetic field correspondsto flipping one of
its nearest spins, the resulting change in energy is ok =
2uH, where H is the strength of magnetic field parallel
to the spin’s magnetic moment. On the other hand, if
the same displacement is treated the motion of a mag-
netic defect with charge mdriven by the force F = mH,
then the energy increment is 0E = mHa, where a isthe
dual-lattice spacing. Comparing the two expressions,
we obtain m= 2p/a. To avoid confusion, theratio of the
force to the magnetic field strength istreated as the key
parameter. Accordingly, the dimension of magnetic
charge is HnV/A, and the corresponding dimension
Hm?A of p is that of Coulomb’s magnetic moment,
which is related to Ampére's magnetic moment i, as
U = WMo, Where [, is the free-space permeability. Note
that the magnetic field generated by spins cannot be
treated as the field of effective magnetic charges. For
example, the demagnetizing field generated by spinsin
a uniformly polarized sample does not vanish even in
the absence of defects. However, this demagnetizing
field can be taken into account in a standard manner by
introducing a surface polarization charge density.

The analysisaboveis part of atheory in which mag-
netic defects are interpreted as quasiparticles. Accord-
ingly, a correlated spin system should be treated as a
system of defects, while the spins of all ground-state
sites are not taken into account. However, a model of
this kind differs from conventional quasiparticle theo-
riesin that both ground and excited states are infinitely
degenerate. These states are completely characterized
by specifying not only the number and location of mag-
netic defects, but also the spin configuration of the
entire crystal. However, this information is redundant
for many purposes. In particular, it is shown below that
magnetic phenomenacan be described intermsof asin-
gle vector variable: a configuration vector proportional
to local magnetization. Configurations with distinct
spin orderings characterized by equal magnetizations
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are equivalent in terms of their magnetic properties. In
view of thisfact and the analogy with the physicsof ice,
the configuration vector is defined as follows [5, 16]:

Q(r) = 3y 0., )

where the sum runs over al spinsinside a macroscopi-
cally small volume V around the point r. It is clear that
the configuration vector is proportional to the local
magnetization & = M/m.

Another, probably more important, role played by
the configuration vector stems from its relationship to
defect fluxes. Suppose that N spinsinitialy parallel to
a unit vector e in a macroscopicaly small volume V
have flipped. The ensuing change in the configuration
vector is dQ = —aeNJ/V. Since each spin flip is equiva
lent to the displacement of a positive defect by dr, =
—ae or of a negative defect by dr_ = ae, the change in
the configuration vector can be represented as 0Q =
dr N, —dr_N_, where N, and N_ denote, respectively,
the number of displacements of positive and negative
defects caused by spin flips (Ng = N, + N_). Accord-
ingly, 0Q/ot = j; —j,, wherej, , = v.N,/V denotes the
positive- or negative-defect flux. This relation can be
rewritten in integral form:

t

Q(t) -(0) = _[(J'l—]z)dt'- ©)
0

Note also that the residual entropy of the system is
dlightly reduced by specifying the configuration vector,
i.e., by more detailed characterization of spin ordering.
It was shown in [16] that this reduction can be repre-
sented as

S(2)-S,(0) = —%aklﬂlz. (6)

Equations (5) and (6) can be used to express the defect
fluxesin terms of applied magnetic field and configura-
tion vector. This can be done in a standard manner by
invoking the expression for local entropy production
density used in thermodynamics of irreversible pro-
cesses [5]. In the present context, it can be written as
follows:

2
TS = ZjiEmiH + TS, (7)
i=1

wherei = 1 and 2 correspond, respectively, to positive
and negative defects and m; , = +2|/a denote their
respective magnetic charges. Thefirst termin (7) isthe
work done by the applied magnetic field per unit time.
The second term rel ated to the af orementioned ordering
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caused by defect fluxes. Substituting (5) and (6) into (7)
yields

2

TS= Y jiHmH -n,0Q), te)

wheren, , = +1 and ® = (8/./3)akT. Alternatively, the
same quantity can be represented in terms of general-

ized driving forces f; as ) j; ;. Comparing the two

representations, we obtain an expression for the driving
forces:

f, = mH-n,®Q. 9)

Here, the second term reflects spin ordering: when the
spinsare partially ordered, there exists anonzero defect
flux even in the absence of applied magnetic field. This
contribution to the generalized force is due to entropy,
but not to any effect of applied field. By using the
expression for the generalized forces and introducing
mobilities |; and defect concentrations n, = xN, the
fluxes can be written as

Jji = Hin(mH —n;®Q). (10)

Here, the off-diagonal elements of the transport coeffi-
cient matrix (cross-field transport coefficients) are
neglected in the linear approximation as quantities of
second order in density.

4. MAGNETIC SUSCEPTIBILITY

Equations (5) and (10) constitute a closed system,
which can be solved to find  and j; for an arbitrary
time-dependent applied magnetic field. These simple
equations are remarkable in that each instantaneous
flux density in (10) depends on its previous values by
virtue of (5).

These equations can be used to find the frequency
dependence of magnetic susceptibility as follows.
When a uniform magnetic field with strength
~exp(—iwt) is applied to the system, the distribution of
magnetic defects (magnetic charge carriers) remains
uniform. Sinceall relationsin the present theory arelin-
ear, al variables are characterized by harmonic time
dependence. Therefore, the Fourier transform of Eq. (5)
yields

Q, = (J1o=J20)/(H ).

By substituting the Fourier transform of (10) for j,,, and
J 2¢» Magnetization is expressed in terms of the configu-
ration vector as

m/ @
1-inT

My, = X(@)He  X(w) = (11)
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where the relaxation time t is defined by the relation
1= (un, + Kn,)® and the low-frequency magnetic

susceptibility is X(0) = (/3/2)(u%a3)/KT. The absolute
value of this susceptibility istwice as large as the sus-
ceptibility of normal paramagnet at similar density and
temperature. However, the result obtained for a cooper-
ative paramagnet holds at an arbitrarily low tempera-
ture; i.e., the former susceptibility can be much higher
than the latter. An estimate for the static susceptibility
of arare-earth oxide pyrochloreat T= 10 K is obtained
by usingg=9inu=gug anda=2x 1070 x, = X/Hy =
7.5, where the dimensionless susceptibility isdefinedin
terms of the Ampére’s magnetic moment as X, = M/H.

5. CONCLUSIONS

It is shown that magnetic processesin geometrically
frustrated magnets can be described in terms of defect
concentrations, defect flux densities, and a configura-
tion vector (Egs. (3), (10), and (5), respectively). The
model yields expressions for frequency-dependent
magnetic susceptibility and static magnetic susceptibil-
ity (Eq. (11)). Note also that the “magnetic variant” of
the Jaccard theory developed here provides a basis for
direct treatment of a variety of unusual magnetic phe-
nomena analogous to certain electrical phenomena in
ice: magnetic charge transport, magnetic field screen-
ing, and other physical processes dueto the existence of
magnetic charge associated with defects.

Finally, some comments are in order concerning the
scope of the theory and possible lines of further devel-
opment. For simplicity, it is assumed in the present
analysis that the defects are uniformly distributed and
their concentration is given by (3). Since magnetic
defects are created in pairs, thisimplies that the macro-
scopic density of magnetic chargeiszero, i.e., magnetic
field can only be generated externally. In a nonuniform
state, the defect concentrations are functions of coordi-
nates, and two additional equations are required to find
them. As in the theory of electrical properties of ice,
these equations can be derived from the continuity
equation for the fluxes, relation (6), and the magnetic
analog of Poisson’s equation [17].
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Abstract—The process of electromagnetic field penetration through |ead-doped lanthanum manganites exhib-
iting colossal magnetoresistance has been studied. The measurements have been performed in arange of radio
frequencies from 20 kHz to 10 MHz in the temperature interval containing a magnetic phase transition. Appli-
cation of a constant external magnetic field leads to an increase in the transmission coefficient. Relative varia-
tions of the electromagnetic field transmission coefficient are several times aslarge asthe relative changein the
dc magnetoresistance. The temperature dependence of the relative change in the transmission coefficient has
been studied. Variations of the transmission coefficient sharply decrease in the vicinity of the phase transition
temperature, but they still remain rather large at temperatures above the Curie point. © 2005 Pleiades Publish-

ing, Inc.

1. INTRODUCTION

The discovery of the phenomenon of colossal mag-
netoresistance (CMR) in the vicinity of a magnetic
phase transition temperature in lanthanum manganites
has stimulated an enduring activity in investigations of
the physical properties of abroad class of strongly cor-
related oxide-based materials with perovskite struc-
tures and rel ated mesoscopic systems. It was found that
the physical properties of these materials are deter-
mined by the strong relationship between their struc-
ture and the magnetic and charge subsystems. At
present, the static electrical and magnetic properties of
doped manganites near the magnetic phase transition
temperature have been studied in sufficient detail [1, 2].

A special position in the arsenal of methods used for
the investigation of such systems is occupied by the
dynamic electromagnetic techniques, which provide
diagnostics of the response of the spin subsystem to
external action in a broad frequency range. In applica-
tion to manganites, most extensively developed are the
methods based on the ferromagnetic resonance and
antiresonance in the microwave frequency range. At the
same time, the study of manganites by radio frequency
(rf) techniques has received much less attention. How-
ever, therf rangeis of considerableimportance because
the effects observed at these frequencies have mach
greater magnitudes than those detected by the dc mea-
surements. By varying the probing signal frequency, it
ispossibleto control the skin depth and make it compa-
rable to the sample size, thus providing a smooth tran-
sition between various mechanisms involved in the

interaction of the probing electromagnetic field with
the spin subsystem of the probed material.

The skin effect in manganites in the rf range has
been studied in [3], where it was pointed out that the
method of electromagnetic field penetration is an effec-
tive tool for the investigation of dynamic properties of
these materials. A detailed study of the magnetoi mped-
ance effect was performed in [4, 5], where the data
obtained in a broad frequency range were compared to
the results of CM R measurementsin thedc regime. The
magnetic state of manganites in these experimenters
was studied in the region of the magnetic phase transi-
tion temperature Tc.

The magnetic susceptibility measured in mangan-
ites at low frequencies and in a constant magnetic field
significantly decreases at T > T, and the temperature
dependence of the susceptibility frequently deviates
from that according to the Curie law [6, 7]. Dataon the
absorption of electromagnetic waves obtained in the
microwave range [7] and from the surface impedance
measurements [8] showed that the effects related to the
magnetic antiresonance exist above the Curie tempera-
ture (T¢). These results can probably be interpreted in
terms of conservation of the local magnetic order in
manganites in a certain temperature interval extending
well above Te.

The measurements of the electromagnetic charac-
teristics of manganites in the rf range at temperatures
near the magnetic phase transition and the elucidation
of physical mechanisms responsible for the variation of
these characteristics are very important and interesting
problems. These were the main goals of the present

1063-7761/05/10103-0487$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. The results of the resistivity (p), magnetoresistance
(r) and magnetic susceptibility (x) measurements for lead-
doped lanthanum manganites: (a) the temperature depen-
dence of resistivity and MR for compositions 1 (circles) and
2 (triangles); (b) the field dependence of the relative MR of
composition 2 at T =291 K; (c) the temperature dependence
of the magnetic susceptibility of composition 1.

study, in which the experiments were performed using
the method of electromagnetic field penetration. This
method has been developed in detail previously and
successfully applied to the investigation of manganites
and some other low-conductivity media[9, 10]. Under
conditions where the thickness of a sample plate
through which the probing field penetrates is smaller
than the skin depth, variations of the electromagnetic
wave transmission coefficient in the applied magnetic
field are determined by changes in the sample imped-
ance. These changes of the impedance are related to
variations of the electric resistance and the dynamic
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magnetic permeability. Therefore, by studying rf elec-
tromagnetic field penetration in asamplein the vicinity
of the magnetic phase transition temperature, it is pos-
sible to obtain information concerning the state of the
magnetic subsystem of the sample material.

In our experiments, the electromagnetic field pene-
tration through lead-doped lanthanum manganites has
been studied in a range of radio frequencies from
20 kHz to 10 MHz. Such manganites, exhibiting amag-
netic phase transition above room temperature, are
model magnetic systems whose static properties are
determined by the double exchange in the presence of
strong spin-lattice interactions. We have studied elec-
tromagnetic field penetration through amanganite plate
at temperatures both below and above the magnetic
phase transition temperature. The results of our investi-
gation of the rf characteristics will be compared to the
results of measurements of the static magnetic and
magnetotransport properties in order to reveal differ-
ences between the static and dynamic properties of
manganites in the vicinity of the magnetic phase tran-
sition.

2. EXPERIMENTAL METHOD

Samples of lead-doped lanthanum manganites
L&y g5Pbg 15MNO; and L a, 75Pbyg ,sM nO; (bel ow, compo-
sitions 1 and 2, respectively) were synthesized viather-
mal treatment of preliminarily prepared precursors—
lead and manganese oxalates. The precursors were
annealed for 12 h in air at 800°C and pressed, after
which the blanks were additionally annealed for 12 hin
oxygen flow at 950°C. The content of lead and manga-
nese and the Mn®*/Mn* ratio in the pressings were
determined by means potentiometric titration. The elec-
tromagnetic field penetration experiments were per-
formed on 1.2-mm-thick plates cut from the massive
blanks. The results of our measurements of the magne-
toresistance (MR) and the magnetic susceptibility (x)
are presented in Fig. 1.

The temperature dependences of the resistivity p(T)
and the relative MR defined as

r= —p(Hg(B)p(o) x 100%

(where H is the magnetic field strength) presented in
Fig. laaretypical of the doped manganites. The dataon
the MR presented in Fig. 1 were obtained for H =
10 kOe. At room temperature (T = 291 K) and H = 0,
the resistivity was 0.134 Q cm for composition 1 and
0.185 Q cm for composition 2. In both manganites, the
MR isnegative and itstemperature dependence exhibits
a maximum (which is more pronounced for composi-
tion 2) near the magnetic phase transition temperature.
As the temperature is increased further, the MR
decreases. The maximum relative MR measured at H =
10 kOe did not exceed —6.3 and —5.4% for composi-
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tions 1 and 2, respectively. The field dependence of the
relative MR measured at room temperature can be
divided into two parts (Fig. 1b). The first part extends
over field strengths below 600 Oe. In this region, the
MR exhibits a nonlinear dependence on the applied
field strength. In the second region covering the fields
above 600 Oe, the MR exhibits approximately linear
growth with the field strength.

Figure 1c shows the temperature dependence of the
magnetic susceptibility measured for composition 1 at
afrequency of 80 Hz. Ascan be seen, x exhibitsasharp
decrease in the region of the magnetic phase transition.
The curves measured in the sample heating and cooling
mode were practically identical. Using the temperature
dependence of x, we determined the magnetic phase
trangition temperature as T; = 322 K for composition 1
and T, = 341 K for composition 2.

The absolute value of the electromagnetic field
transmission coefficient D was measured in the range of
frequencies from 20 kHz to 10 MHz at various temper-
atures and applied constant magnetic field strengths.
Figure 2 shows a schematic diagram of the experimen-
tal arrangement. The probing alternating (rf) magnetic
field H;,, was generated by acoil situated on one side of
the sample plate. The transmitted field H,,; on the other
side of the plate was detected using another coil. The
manganite plate served as a screen. The absolute value
of the transmission coefficient was cal culated using the
formula |D| = |Hq/Hi,- The constant magnetic field
was always applied in the plane of the sample and was
paralel to the probing aternating field. The absolute
value of D was studied as a function of the applied con-
stant field strength and/or the temperature in a range
from 273 to 365 K.

3. EXPERIMENTAL RESULTS

Therf electromagnetic field transmission coefficient
D strongly depends on the applied constant magnetic
field strength. The fact that the relative change in the
transmission coefficient may exceed the corresponding
value (r) of the static MR was reported previously [9].
Thefield dependence of therelative changein thetrans-
mission coefficient was determined as

- b(H)-D(0) 9
My = D(0) x 100%.
Figure 3a shows the plots of r, versus magnetic field
strength for composition 2 measured at room tempera-
ture and various frequencies. As can be seen, the rela-
tive variations of this value reach 85%. As the probing
field frequency isincreased, ther ,, value also growsand
the curve exhibits amaximum. At high frequencies, the
relative variations of the transmission coefficient tend
to decrease.

Figures 3b and 3c show the field dependences of r,
measured at different temperatures. below and above
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Fig. 2. A schematic diagram of the experimental arrange-
ment: (1) probing coil; (2) detecting coil; (3) shield;
(4) sample plate.

2 4 6 8 10
H, kOe

Fig. 3. Plots of the relative change ry, in the transmission

coefficient versus magnetic field strength for composition 2
measured (a) at room temperature (T = 291 K) and various
frequencies and (b, c) at different temperatures (below and
above Tc) at f = 0.2 (b) and 8 MHz (c).

the temperature of the magnetic phase transition. The
data presented in Fig. 3b were obtained at a frequency
of f = 200 kHz, while the curvesin Fig. 3c were mea-
sured at f = 8 MHz. As can be seen, heating a sample
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Fig. 4. The temperature dependences of the rf signal amplitude U ; transmitted through a plate of composition 1 measured at f =
0.2 (a) and 8 MHz (b) inazerofield (1) and in afield of H = 8 kOe (2).

above the phase transition temperature dramatically
changes the field dependence of the transmission coef-
ficient.

Figure 4 shows the temperature dependence of the
amplitude U, of asignal transmitted through the sam-
pleplate. The U, valueis proportiona to the transmis-
sion coefficient D. All these measurements were per-
formed in the sample cooling mode. Figure 4a presents
a curve obtained at f = 200 kHz in the absence of an
applied constant magnetic field. As can be seen the
amplitude of the transmitted signal significantly
decreases at temperatures below the phase transition
temperature. Figure 4b compares the U,,(T) curves
measured at f = 8 MHz before and after application of a
constant field with a strength of 8 kOe. As can be seen
from curve 1 measured for H = 0, the transmitted signal
amplitude also decreases at temperatures below the
phase transition temperature. Curve 2 shows that the
application of an external field sufficient to saturate the
sample removes pronounced features in the region of
the phase transition.

Let us consider the temperature dependences of the
relative change r,, in the transmission coefficient mea-
sured for the same samplein the nonmagnetized (H = 0)
and saturation-magnetized (H = 8 kOe) dtates. Figure 5
shows the results of such comparative measurements at
afrequency of 8 MHz. The data presented in Figs. 4b
and 5 are well consistent with each other. As the tem-
perature increases to approach T, the efficiency of
action of the applied constant field decreases.

4. THEORY OF THE rf ELECTROMAGNETIC
FIELD PENETRATION THROUGH
A CONDUCTING FERROMAGNETIC PLATE

This section briefly considers the theory of the elec-
tromagnetic field penetration through a conducting fer-
romagnetic plate. At a sufficiently high (microwave)
frequency on the order of severa gigahertz, thetransmis-
sion coefficient is significantly influenced by the ferro-
magnetic resonance and antiresonance effects [11, 12].
L et usrestrict the consideration to much lower frequen-
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ciesintherf range. The problem of description of the rf
electromagnetic field penetration through a medium
has been extensively studied. For atheoretical descrip-
tion of the observed phenomena, we will use an approx-
imation ignoring the resonance and antiresonance
effects, but admitting broad variation of the following
parameters: frequency, skin depth, and magnetic per-
meability.

A formulafor the coefficient of radiation transmis-
sion through a conducting plate under normal skin
effect conditions [13] is as follows:

27,
D = o7 ok d) + Zsnh(k.d)’

(D)

where k,, = (1 +i)/d is the wavenumber in the conduct-
ing medium, & = ,/2p/wH}, isthe skin depth, u=1+

Ty %

90 T T T T
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Fig. 5. The temperature dependence of the relative change
I'm in the transmission coefficient measured for composi-
tionlatf=8MHzand H = 8KkOe.

No. 3 2005



ELECTROMAGNETIC FIELD PENETRATION THROUGH LANTHANUM MANGANITES

X is the relative dynamic differential permeability, and
w = 2rt.

As can be seen, the transmission coefficient D
depends on the relations (i) between impedances of the

sample (Z,) and the surrounding space (Z = ./Wo/€0)

and (ii) between the plate thickness d and the skin
depth 8. The impedance of the sample plateis given by
the formula

_ L1+
Zm - 6 p (2)

For a well conducting medium, this value is always
smaller than Z (|Z,| < 2).

There aretwo possible situationsin which one of the
two terms in the denominator of expression (1) pre-
dominate. The case of low frequencies and thin plates
corresponds to the condition

27, cosh(k,d) > Zsinh(k,d).

This condition is satisfied provided that
kod <1, d< 2p/Z. (3)

In this case, the transmission coefficient is determined
by the formula

D = 1/cosh(k.d),
which further simplifiesfor d < d toyield

pl=1- 38 ()

The corresponding relative change in the transmission
coefficient in this case can be calculated using the for-
mula

1 4 2 ztu(H) u(O)D
dw (5
"2 hy o)

Sinced < &, wemay assumethat r,,issmall. If the MR
is small—that is, p(H) = p(0)—and the initial perme-
ability is large (1(0) > 1 in a saturating field, where
M(H) = 1 < p(0)), achange in the absolute value of the
transmission coefficient is given by the formula

r, =

M= M 5 (for H — o). (6)

12p*(0)

Thus, achange in the transmission coefficient for the rf
field penetrating through a very thin plate at low fre-
guenciesfor p(0) > 1 arerelated predominantly to vari-
ations in the magnetic permeability. The change is
small (r,, <€ 1), has a positive sign, and (in the absence
of frequency dispersion of the material constants) is
proportional to the frequency squared (r,,, ~ w?).
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In the other limiting case in which 2Z,,cosh(k,d) <
Zsinh(k,d) in the denominator of expression (1), the
transmission coefficient is given by the formula

2Zp _2(1+ip
Zsmh(k d ~ Z3
L (7)
8 sinh(d/d)cos(d/d) +icosh(d/d)sin(d/d)’
which yields for athin screen (d < d)

Zud

In thislimiting case, the transmission coefficient isreal
provided that the material constants are real. Expres-
sion (8) gives the following formula for the relative
variations in the absolute value of the transmission
coefficient:

AD(H)
D(0)

where Ap(H)/p is the relative change of the resistivity
in the constant magnetic field H and Au(H)/p isthe rel-
ative change of the magnetic permeability. For |Ap/p| <
land py(H — ) — 1, we obtain [9]

AD(H —» ) _
D(0)

Using formula (10), it is possible to evaluate the initial
dynamic magnetic permeability from the correspond-
ing relative change of the electromagnetic field trans-
mission coefficient. In this limiting case, we can aso
use relation (8) to derive the following formula taking
into account the MR of the plate:

_ Ap(H)/p—Ap(H)/p ©)
1+Ap(H)/p

=u(0)-1. (10)

‘M (12)

D(0)
Finally, let us consider the case of athick conduct-

ing plate, which correspondsto d > &. In this case, for-
mula (7) yields

= nOF+7H

2 8
bl = 8 = Rexn
Z&sinh’(d/d)

Obvioudly, a decisive factor influencing the transmis-
sion coefficient in this case is the skin effect. If the
applied constant field exceeds the saturation level, rela-
tion (12) reducesto

— p(H)3(0) p[ 1 D}

p(0)3(H) QEBTWW

0d
T3 (12

D(H —~ )
D(0)

Substituting explicit expressions for the skin depth 6 =
2p/wp, for the normal skin affect and assuming
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that u(0) > 1, we eventually obtain

‘D(HDB = p(%()ﬂ()O)eXp[a(dO)]

It should be noted that the above description of the
electromagnetic field penetration through a ferromag-
netic conducting plate has (in addition to the explicitly
formulated assumptions) the following limitations. It
was also assumed that the plate not limited in the xy
plane, while the real experiments are performed with a
plate of finite dimensions. In addition, the theoretical
analysis assumes that the probing rf field is homoge-
neous, whereas in the experiments this field represents
astray field of the coil. These circumstances affect the
absolute values of the transmission coefficient. How-
ever, from the standpoint of the analysis of thefield and
temperature dependences of the transmission coeffi-
cient, the influence of these additional factorson ther,,
value is not as significant. Therefore, application of the
proposed simplified approach to the interpretation of
qualitative features of the experimental resultsis quite
justified.

(13)

5. DISCUSSION OF EXPERIMENTAL RESULTS

In order to compare the experimenta results to the
theoretical formulas obtained for the relative variations
of the transmission coefficient, it is necessary to deter-
mine the region of parameters in which the measure-
ments were performed. Using the values of the sample
resistivity, it is easy to estimate the skin depth at arela-

tive permittivity equal to unity: &, = /2p/w,. For a
frequency of 1 MHz, thisformulayields §, = 18.2 and
21.4 mm for compositions 1 and 2, respectively. Ascan
be readily seen, thisimpliesthat the condition &, > dis
satisfied in the entire range of frequencies used in our
experiments.

First, let us consider the results of measurements of
the coefficient D as a function of the magnetic field
strength. The data presented in Fig. 3awere obtained at
room temperature, that is, for the sample occurringin a
ferromagnetic state. As the field magnetic strength
grows, the transmission coefficient increases and, when
the measurements are performed at a frequency of
0.2 MHz, reaches a maximum and saturates in stringer
fields. A difference between the D values at H = 8 kOe
and H = O at al frequencies exceeds 10%, whiletherel-
ative MR measured inthedc regimeat H =8 kOeissig-
nificantly lower. Therefore, we may conclude that vari-
ations of the rf electromagnetic field transmission coef-
ficient under these conditions are caused predominantly
by changesin the magnetic permeability.

The growth of the r,, value with increasing fre-
guency for f < 3 MHz can berelated to the passage from
a low-frequency range (where the changes in D are
small and can be described using formula (5)) to the
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range where the transmission coefficient obeys for-
mula (9) and exhibits much greater variations. Numer-
ical estimates showed that condition (3) is never real-
ized in our experiments and, hence, even at the lowest
frequencies the system occursin the state of passage to
the condition 2Z,,cosh(k,d) < Zsinh(k.,d). Then, a
drop in the relative variations of the transmission coef-
ficient at the frequencies above 3 MHz can berelated to
the decrease in the dynamic magnetic permesability
caused by the frequency dispersion.

The results of measurements of thefield dependence
of D at a frequency of 0.2 MHz for two temperatures
(Fig. 3b) revealed the appearance of a maximum at a
field of about 0.8 kOe on the curve corresponding to
T> Tc. It should be noted that the magnitude of r,, in
the region of strong fields is practically the same for
both temperatures. The large value of relative changes
in the transmission coefficient suggests that the
observed effect cannot be related to the MR. Then, we
have only to assume that the manganite sample under
study at T=362 K (i.e., above T;) retainsalocal ferro-
magnetic order and has a rather large dynamic
magnetic permeability. An estimate obtained using for-
mula (10) for the experimental conditions correspond-
ing to Fig. 3byieldstheinitial relative magnetic perme-
ability n(0) = 1.4. Analogous field dependences mea-
sured at 8 MHz are depicted in Fig. 3c. As can be seen,
a change in the transmission coefficient measured at
T=291K (i.e, below T.) isaways positive and, hence
we may suggest that it is caused by variations of the
permeability p. Above T, the character of the observed
field dependence has changed and the transmission
coefficient variations are negative. This sign of r,,, can
be expected when the MR is a key factor. Note that, at
the higher frequency, the effect of the magnetic perme-
ability at temperature above T issignificantly less pro-
nounced.

Theresults of measurements presented in Fig. 4 also
generally correspond to the above interpretation.
Indeed, as can be seen from Fig. 4a, the amplitude of
the signa transmitted through the plate significantly
increasesat T > T, which isrelated to adecreasein the
magnetic permeability. The signal amplitude transmit-
ted in a strong field is significantly higher than that
observed in azerofield (Fig. 4b). An anomaly observed
near the Curie temperature is more pronounced in the
zero field than in a saturating field. The values of r,
reflect differences in the level of signals transmitted in
azero field and in the saturating field.

The data in Fig. 5 show that, as the temperature
increases and approaches T, the relative change in the
absolute value of the transmission coefficient sharply
decreases. Thisis caused by decreasein theinitial mag-
netic permeability u(0). However, significant (about
60%) variations in the transmission coefficient are still
retained near and above Tc.. These variations cannot be
related to the MR, since the observed changes have
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opposite sign and a magnitude severa times that of the
MR. Therefore, we must suggest that these changes
even a T > T are related predominantly to variations
of the magnetic permeability.

Naturally, the results of magnetic susceptibility
measurements presented in Fig. 1c show that the long-
range magnetic order is not retained at T > T in the
whole sample. These results can be explained if we
assume that a short-range loca magnetic order may
exist in a certain temperature interval above T.. The
obtained data do not allow us to estimate the dimen-
sions of such ordered local regions, but they give the
value of the dynamic initial magnetic permeability j1(0)
for athick sample. According to this, lead-doped man-
ganites are characterized by p(0) = 1.4-1.6 at frequen-
cies up to several hundred kilohertz. Finaly, it should
be noted that the results of experiments [4, 6, 7] per-
formed at higher frequencies (severa gigahertz) and
the phenomena observed in [5, 14] can aso be related
to the presence of alocal magnetic ordering above the
Curie temperature.

6. CONCLUSIONS

Electromagnetic field penetration through lead-
doped lanthanum manganites was studied in a range of
radio frequencies from tens of kilohertz to tens of
megahertz and it was established that the absol ute value
of the transmission coefficient sharply increases at tem-
peratures above T.. Application of a constant magnetic
field significantly decreased the relative variations of
the transmission coefficient near and above the Curie
temperature. The data on the electromagnetic field
transmission coefficient were compared to the results of
static measurements of the CMR and the magnetic per-
meability. The results were convincingly interpreted
using the theory of the electromagnetic field penetra-
tion under conditions of the normal skin effect. Using
the obtained expressions for a change in the transmis-
sion coefficient in the applied magnetic field, it is pos-
sible to obtain estimates of the dynamic magnetic per-
meability from the results of experiments on the field
penetration.

The obtained experimental data show evidence that
significant (on the order of 60%) changes in the trans-
mission coefficient in the presence of an applied mag-
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netic field take place in the temperature interval T <
T < T¢ + 20 K. These changes are probably related to a
local magnetic order retained in doped manganites in
the vicinity of the Curie temperature.
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Abstract—We have detected experimentally considerable deviations of the frequency dependences of the Sha-
piro step amplitudes and the critical current of Nb/Au/Y Ba,Cu;0, thin-film hybrid Josephson heterojunctions
prepared on 'Y Ba,Cu;0, metal-oxide superconductor films with atilted ¢ axis from the regularitiesinherent in
Josephson junctions of traditional superconductors with an s-symmetry of the order parameter. It is shown that
possible formation of “splintered” fluxons with asize A < A; due to faceting of the interface and formation of
achain of nanosize 0 and Ttjunctions must be taken into account in describing processes in lumped heterojunc-
tions (whose size L is smaller than the Josephson penetration depth A ; determined from the averaged value of
the critical current density). For heterojunctions with asize A; < L <A, asubstantial decrease in the maximal
amplitude of thefirst Shapiro step with increasing voltage (Josephson oscillation frequency) is observed at volt-
ages much smaller than the energy gap in niobium (V << Ayy/e); this effect is manifested most strongly when
thesize L isgreater than Ag. A fractiona Shapiro step and a subharmonic detector response have been observed

inthe current—voltage characteristics of heterojunctions; the dynamic processes responsible for their emergence
and indicating the presence of the second harmonic in the current—phase relation are studied. It is shown that
the effect of interface faceting on the current—phase relation increases with a heterojunction sizeL > A, © 2005

Pleiades Publishing, Inc.

1. INTRODUCTION

In most metal-oxide superconductors with a high
superconducting transition temperature, the dxz_y2

symmetry type of the superconducting order parameter
dominates (D superconductors) [1, 2]. In Josephson
junctions of D superconductors misoriented in the ab
plane relative to one another, 1T junctions are formed
under certain conditions; for such junctions, the ground
state with a phase difference equal to Ttin the supercon-
ducting order parameter is stable [2-9]. In the case of
faceting of the interface in Josephson junctions of D
superconductors, alternation of 0 and Ttjunctions leads
to alternating modulation of the critical current density
j«(X) along the interface on the nanoscale; as a result,
pairsof “splintered” fluxons[10] containing amagnetic
flux @, < /2 and P, > D2, D, + O, = O, are formed
(P, is the magnetic flux quantum). Such fluxes were
detected experimentally in [11] in bicrystal Josephson

junctions D0/D45.1 For alarge amplitude of spatial vari-
ation of the critical current, the size of the splintered
fluxon is smaller than the Josephson penetration depth
A; [10], which provides a new scale of the size depen-
dence of static and dynamic processes in junctions.
Fluxons with a fractional magnetic flux quantum were
observed in junctions (including those formed by ordi-
nary S superconductors) with inhomogeneities on the
order of A; [12]. Judging from our earlier preliminary
results [4], it cannot be ruled out that such fluxon for-
mations may substantially affect the frequency depen-
dence of dynamic parameters of junctions containing a
D superconductor. Theoretical calculations [13] for
junctions of D superconductors predict singularitiesin

Linthe Dy superconductor, one of the axes (a or b) in the basal ab
plane is directed along the normal to the bicrystal interface (for
bicrystal Josephson junctions) or to the plane of the junction (for
planar Josephson junctions), while in the D45 superconductor, it

is turned through an angle of 6 = 45° relative to these axes.

1063-7761/05/10103-0494$26.00 © 2005 Pleiades Publishing, Inc.



SUPERCONDUCTING CURRENT IN HYBRID HETEROJUNCTIONS

the amplitude of the superconducting current compo-
nent for gap voltages V = Ap/e (A isthe energy gap in
a D superconductor) analogous to the Riedel singular-
ity observed in junctions of S superconductors. How-
ever, no information is available at present on the fre-
guency dependence of the superconducting current in
junctions of D superconductors under voltages much
smaller than the superconducting gap.

In Josephson junctions of D superconductors, low-
energy bound Andreev states are formed on the (110)
plane[2]; these states are clearly manifested in theform
of a singularity in the conductivity of junctions at low
voltages[2—7, 14] and strongly affect the superconduct-
ing current | of the junctions. In particular, such states
lead to a deviation of the 1(¢$) dependence (¢ is the
phase difference between the wavefunctions of the
electrodes of the Josephson junction) from the sinusoi-
dal shape[2-7, 15]. According to the results of theoret-
ica calculations [10, 11], Josephson junctions with an
alternating critical current density j. contain, along with
the first harmonic (sing), the second harmonic (sin2¢).
A nonsinusoidal current—phase relation was observed
in asymmetric bicrystal Josephson junctions Dy/D,s
in [8, 16]; we also observed earlier an anal ogous depen-
dence in hybrid heterojunctions Nb/Au/Y Ba,CuzO,
prepared on YBa,CuzO, (YBCO) films with a tilted
crystallographic axis ¢ [3]. Note that the second har-
monic (sin2$) was observed in small-size heterojunc-
tions (on the order of tens of micrometers) [3, 17],
while deviations from the sinusoidal dependence in
larger heterojunctions (on the arder of tenths of amilli-
meter) were not detected [18].2 It should be noted that
the specific growth of aYBCO film tilted at an angle
specified by a specialy oriented (in the (7 10 2) plane)
NdGaO; substrate is such that facets whose faces are
oriented either along the ¢ axis (001) or in the ab plane
(110) are formed in the junction region of the hetero-
junction[4, 19]. Accordingly, it followsfrom theresults
of theoretical calculations [2, 5-7] that the transport
properties of junctions between such faces and an S
superconductor (Nb in our case) must differ substan-
tially, forming alternating nanojunctions of various
types (S/D¢ and S/D ) in heterojunctionsin view of the
d symmetry of the order parameter.

Here, wereport on the results of experimental inves-
tigations of the magnetic field dependences of the
superconducting critical current as well as the fre-
guency dependence of the superconducting current and
Shapiro steps in Nb/Au/YBCO hybrid heterojunctions
on filmswith atilted ¢ axis. Assuming the possible for-
mation of fractional fluxons in such heterojunctions
and taking into account size limitations [10], we per-
formed experiments on samples with a size L ranging

2 Inview of the smallness of the superconducting current density in
al hybrid heterojunctions studied, the condition for a lumped
Josephson junctions was satisfied: the junction size L was smaller
than the Josephson penetration depth A j for a magnetic field.
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Fig. 1. IV curve of a Nb/Au/YBay,Cuz0, heterojunction

withL =40 pmat T = 4.2 K: autonomous |V characteristic
(dashed curve) and IV characteristic recorded under the
action of eectromagnetic radiation of frequency fo = 43.45 GHz

(solid curve). The direction of the bias current is shown by
arrows. Inset (a) is schematic representation of an inclined
YBCO film with the (1 1 20) orientation, o = 11° and =
45°. Inset (b) is the dependence of the critical current den-
sity [ [and the characteristic resi stance RyA of the junction
on itslinear size L (dashed and solid curves are functional
dependences providing the best approximation of experi-
mental data).

from 10 to 50 pm. The second harmonic amplitude in
the current—phase relation is estimated quantitatively
and physical mechanisms explaining the experimental
data are discussed.

2. EXPERIMENTAL TECHNIQUE

YBCO epitaxia films with a thickness of 150 nm
were deposited by laser sputtering at a temperature of
770-790°C in oxygen under apressure of 0.6 mbar. For
growing YBCO films, we chose NdGaO; substrates
with the (7 10 2) orientation. Detailed studies using
X-ray diffractometry revealed that Y BCO films formed
onthe (7 10 2) plane of the NdGaO; substrate asaresult
of epitaxia growth havethe (1 1 20) orientation, so that
the crystallographic c axisis deflected from the normal
to the substrate plane through an anglea = 11°, remain-
ing in the (110) plane of theYBCO film (seeinset (a) to
Fig. 1). Preliminary investigations proved that a film
inclination by 10°-14° isoptimal for the electron trans-
port along the ab plane, preserving the monodomain
nature of the film[19] and ensuring the formation of the
crystallographic structure of Nb/Au/Y BCO heterojunc-
tions with alternating transitions of the /D and S/D 45
type. Obtained YBCO films had a superconducting
transition temperature T, = 87-90 K and a critical cur-
rent density of 10°~10°A/cm?at T=77K [3, 4, 17]. The
Au films were deposited in two stages: first by laser
sputtering in situ in the same vacuum chamber at
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Sizes and electrophysica parameters of heterojunctions
aT=42K

No. | L,pm | I, MA | Ry, Q | Vo, WV Be Aj, um
1 50 198 044 | 87 3 117
2 50 267 0.2 53 4 101
3 40 160 036 | 58 6 104
4 30 60 093 | 55 3 127
5 30 74 0.56 41 5 115
6 20 18 3.6 65 4 156
7 20 85| 31 26 - 227
8 10 0.7 | 453 32 - 390
9 10 20| 198 40 - 233

100°C, which minimized the decrease in the oxygen
content and ruled out the effect of variousimpuritiesin
the formation of the YBCO/Au two-layer structure. A
test measurement of the superconducting transition
temperature of theY BCO film after the formation of the
Y BCO/Au structure resulted in the value of T, = 89 K
for a superconducting transition width of AT < 0.5 K.
The formation of heterojunctions was completed by
radiofrequency magnetron sputtering of an additional
Au layer with athickness on the order of 10 nm and a
200-nm-thick Nb film. Photolithography and ion-beam
etching in argon were used for the formation of the
geometry of square planar heterojunctions with an area
A= L2, whereL = 10-50 um[3, 4, 17]. In our opinion,
the superconducting transition temperature of the
YBCO film in completely prepared heterojunctions
decreased to T, = 84 K during the bombardment of the
film by argon ions in the course of formation of the
structure geometry. The superconducting transition
temperature of Nb filmswas T, = 9.1-9.2 K.

Electrophysical parameters of the films and hetero-
junctions were measured using afour-point scheme with
abiascurrent in atemperaturerange of T=4.2-300K in
magnetic fields H < 50 Oe under the action of electro-
magnetic radiation at frequenciesf, = 36-120 GHz.

3. ELECTROPHY SICAL CHARACTERISTICS
OF HETEROJUNCTIONS

The Josephson effect was observed in all hetero-
junctions studied by us; the current—voltage (1V) char-
acteristics of these heterojunctions did not display an
excess current (Fig. 1). Thiscircumstance indicates the
absence of microshorts with direct conductivity, i.e.,
direct “short-circuits’ between YBCO and Nb films,
which usually lead to the emergence of excess current.
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In view of the small thickness of the Au interlayer,
mutual diffusion of Nb and YBCO is possible. How-
ever, Nb/YBCO junctions have avery high characteris-
tic resistance due to the formation of oxide layers of
niobium. Additional measurements revealed that the
characteristic resistance of Nb/YBCO junctions is
RWA = 0.1-1 Q cm?, which is several orders of magni-
tude higher than the characteristic resistance R\A =
1075-10"° Q cm? of Au/YBCO junctions (Ry is the nor-
mal resistance). Using the values of RyA, we estimated
the transparency of the potential barrier at the
AU/YBCO interface averaged over the area of the junc-
tion and over the directions of quasi particles momenta;

the resulting values of D = 10°-10* are typical of
superconducting tunnel junctions. It should be noted
here that the resistance of the Nb/Au interface is sub-
stantialy lower (by severa orders of magnitude) than
that of the Au/YBCO interface due to better matching
of the Fermi vel ocity and the absence of chemical inter-
action of the materials[20].

The superconducting critical current density aver-
aged over the area of the heterojunctionsat T=4.2K is
given by

OO= 1JA = 1-10 Alem’,

wherelisthecritical current. Thevalues of the Joseph-
son penetration depth A ; for amagnetic field, which are
calculated by the formula

2 %
P 2mp

where |, is the permeability of vacuum, liein the inter-
val 100400 um and are much higher than the maximal
linear size of the junctions studied here (seetable). The
guantity A = 220 nm in formula (1) is the sum of the
London penetration depths for YBCO and Nb. For the
Nb/Au/YBCO heterojunctions studied here, the con-
dition

(D

L <4A, 2

is satisfied; this condition implies that such heterojunc-
tions must possess the properties of lumped Josephson
junctions and the values of [j.[Jand RyA must be inde-
pendent of the junction size L [21, 22].2 However, the
experimentally observed values of [j.[and RyA depend
on the size of the heterojunctions (seeinset bto Fig. 1).
The increase in the values of RyA observed upon a
decrease in size L < 20 um indicates a decrease in the
barrier transparency D, which may be due to an oxy-
gen-depleted YBCO layer formed in regions near the

SForL >4 A3, aJosephson junction should be treated as a distrib-

uted structure in which dynamic processes are determined by the
motion of Josephson fluxons.
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Fig. 2. Experimental magnetic field dependences of the critical current at T = 4.2 K for heterojunctions with sizes L = 20 um (a)
and 50 pm (b). The Fraunhofer dependence |sinH|/H is shown by the dashed curve. The solid curve is the calculated | (H) depen-
dence in the model of alternating density of the superconducting critical current. The inset shows the image of the (1 1 20) surface
of the YBCO film, obtained using an atomic force microscope. The crystallographic orientations of the growth steps of theY BCO

film are shown by arrows.

edges of the heterojunctions during sample prepara-
tion [20]. For junctionswith asize L <40 um, thevalue
of O lincreases in proportion to L and attains satura-
tion for L > 40 um. With increasing L, the contribution
from the edge regions with areduced value of [j [0 the
total superconducting current through the heterojunc-
tion decreases, and the edge effects can be disregarded
even for L = 30 um (seeinset b to Fig. 1). It should be
noted that the characteristic voltage V, = IRy remains
virtually unchanged upon a changein L, which is typi-
cal of tunnel junctions of S superconductors. For
Josephson junctions based on high-T, superconductors
of metal-oxide materials, the value of V. depends on
[j.[esarule. For example, the value of V, for bicrystal

YBCO junctions is proportional to V. O ./ [2, 8],
which is usually explained in the literature by the exist-
ence of different transport mechanismsfor the supercon-
ducting and normal components of the current [9, 18].

4. MAGNETIC-FIELD DEPENDENCES
OF THE CRITICAL CURRENT
OF HETEROJUNCTIONS AND THEIR
STRUCTURE

For heterojunctions with L = 20 um, the experimen-
tal 1,(H) dependence of the critical current on the mag-
netic field in the region of the first peak (Fig. 2a) is
close to the “Fraunhofer” dependence |sinH|/H typical
of lumped Josephson junctionswith L = 2A;[22]. It can
be seen from Fig. 2athat asthe magnetic field increases
to |H| > 5 Oe, the deviation of the 1 (H) dependence
from |sinH|/H increases, indicating that the distribution
of the superconducting current can be treated as quasi-
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uniform [8, 18]. A more accurate approximation of the
experimenta 1.(H) dependences in the range of high
fieldsH = 5 Oe can be obtained using atheoretical model
inwhich the absolute value, aswell asthe sign of |, var-
iesover thelength of thejunction [8, 10, 11, 23, 24]. Itis
impossible to unambiguously determine the distribu-
tion of the superconducting current density j. in ajunc-
tion from the experimental dependencel(H). The eval-
uation of j. gives at least several solutions that describe
the I (H) dependence in the region of periphera peaks
more exactly than |sinH|/H. The experimentally mea-
sured |1 (H) dependences can be approximated much
better on the basis of aternating rather than unipolar
distributions j(X). The accuracy of calculations of j.(X)
increases with expansion of the range of the experimen-
tal magnetic field, which was limited in our case by the
trapping of magnetic flux quanta for H = 10 Oe. In
stronger fields, a hysteresis loop was observed in the
magnetic-field dependences and the dependences were
poorly reproduced. In Fig. 2, we represent only repro-
ducible unambiguous | (H) dependences.

For junctions of larger size (L > 30 um), the I (H)
dependence strongly differsfrom [sSinH|/H; in the region
of thefirst pesk, it resembles the dependences observed
in distributed junctions, athough condition (2) for
lumped junctions is till observed (see Fig. 2b and
table). It was shown theoretically in [10, 11] that the
presence of afaceted interface in a Josephson junction,
for which the conditions A < b < A, holds (b is the
characteristic size of the facet), leads to the formation
of “splintered” Josephson fluxons with a fractional
magnetic flux quantum. The characteristic size A, of
such a splintered Josephson fluxon for a one-dimen-
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Fig. 3. Experimental dependence of critical current I (O), first I (a) and fractional 1/, (m) Shapiro steps on the dimensionless
amplitude a of the high-frequency current | for two heterojunctionsat T = 4.2 K: (a) L = 20 pm, fg = 51.42 GHz; (b) L = 40 pm, fg =
50.61 GHz. The theoretical 1(a) and |,(a) dependences are shown by the solid and dashed curves, respectively. Calculations were
made taking into account the second harmonic in the current—phase relation and the capacitance of the heterojunction (a) and in the

framework of the RSJ (b).

sional dependence j(x), which can be modeled by the
expression

jo(x) = O+ jisin(2x/b),

can be estimated as

}\2
A= [23—;“], (3)
bjs
where j, is the amplitude of alternating modulation of
thecritical current density in thejunction. For j, > [.[]
the fluxon sizeissmall (A, << A;).

In our case, in view of the specific nature of deposi-
tion of YBCO filmson inclined NdGaO; substrates with
the (7 10 2) orientation, growth steps with a height of
about 20 nm and acharacteristic length of 200-300 nmin
the plane of the substrate are present on the (1 1 20) sur-
face of theYBCO films (seetheinset to Fig. 2aand the
results of atomic-force microscope measurements pre-
sented in [3, 4]). Such growth steps are mainly oriented
along the (001) and (110) crystallographic planes of the
Y BCO film. According to the results of theoretical cal-
culations [2, 5-7], the junctions with the (001) and
(110) planes give different types of junctions (S/D. and
S/D,s, respectively) in view of the d symmetry of the
order parameter intheYBCO film. It was shown earlier
in experimental studies[17, 18] that the S/D, junctions
a T =4.2K can be treated as Josephson O junctions
with a nonsinusoidal current—phase relation; in this
case, the second harmonic amplitude amounts to about
10% of the critical current. As regards the S/D,5 junc-
tions, Andreev states with energies € < Ap are formed
inthem in addition to Andreev stateswith € = A on the
order of the superconducting gap in aD superconductor
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likein /D junctions[2, 8]. It was proved theoretically
in[2,5, 6, 8] that the stable state in the S/D 45 Josephson
junctions at helium temperatures is a state with a phase
shift equal to 11, with the characteristic voltage

AZD
ekT

V.=

and with alarge second harmonic amplitude in the cur-
rent—phase relation. Thus, due to the presence of ater-
nating S/'D. and S/D,5 junctions, the structure of the
heterojunctions studied here has the form of a chain of
parallel-connected 0 and 1t Josephson junctions.

In the heterojunctions studied so far, faceting pre-
dominantly occurs in only one direction [3, 5]; conse-
guently, we can aso use one-dimensional expressions
inour case[10]. For example, using our estimatesfor j;
and [j.[we obtain from expression (3) A, = 10 pm for
heterojunction no. 3withA;=104 um, A =0.22 um and
b = 0.2 um. It should be noted that the condition A < b
which is used in calculations [10] does not hold exactly
in our experiments; for this reason, the estimates of the
value of A, based on formula (3) are correct only in order
of magnitude. However, the other necessary condition
for the existence of splintered fluxons[10, 11],

b<A,; lEjj—Clj:lum,
1

is satisfied to a high degree of accuracy.

Experiments [11] show that splintered fluxons are
unstable formations. In all probability, the instabilities
on the IV curves and magnetic-field dependences of the
critical current in large-size heterojunctions (L > 40 um),
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which were observed in our experiments, are precisely
due to instability of such fluxon formations.

As aresult, despite the strict fulfillment of condi-
tion (2), the magnetic-field dependences observed for
the heterojunctions studied here are typical rather for
distributed Josephson structureswith an alternating dis-
tribution of the superconducting current density and a
fluxon penetration size A, < A;.

5. DYNAMIC PROPERTIES
OF HETEROJUNCTIONS

The IV curve presented in Fig. 1 was measured
under the action of external monochromatic electro-
magnetic radiation with afrequency f, = 43.45 GHz for
L =40 um. It should be noted that the IV curve exhibits
thefirst (1,), second (I,), and even fractiona (1,,) Sha-
piro steps. An analogous form of the IV curve is aso
observed for heterojunctions with a size L = 20 um.
Figure 3 shows the dependences of the critical current
amplitudes | and first Shapiro step I, on amplitude a of
the high-frequency current | normalized to the critical
current (a = 1/1). According to the results of calcula-
tions based on the resistive model of Josephson junc-
tions (RSJ) [21, 22], the I(a) and I,(a) dependences
shown in Fig. 3a proved to be proportional to Bessel
functions J,(a) for small-size heterojunctions with L <
20 pm. With increasing L, a considerable deviation of
the experimental 1(a) and I,(a) dependences from
those calculated in the RSJ is observed. For example,
the difference between the first peak 1, in the 1,(a)
dependence from the theoretical value calculated in the
RSJ amounts to 25% for heterojunctions with L =
20 um (Fig. 3a), while the deviation from the theory for
heterojunctions with L = 40 pmis 70% (Fig. 3b). Fig-
ure 3b showsthat the shape of thel(a) and 1,(a) depen-
dences also changes asthe size of junctionsincreasesto
L > 20 pm; thismay be due to the enhanced effect of the
second harmonic in the current—phase relation for large
heterojunctions (with L > AJ) [10, 11, 21, 22]. It should
be noted that the amplitude of fractional Shapiro steps
increases with junction size L and with the critical
current.

Let us consider the frequency dependences of the
maximal values of the amplitudes of the first harmonic
Shapiro step |14 ( fo) ShowninFig. 4 for junctionswith
L =20 and 40 um. For lumped Josephson junctions, the
value of |,,.(fe) isdetermined by the amplitude of the
first harmonic of Josephson oscillation, which
increases with frequency and attains saturation for hf, >
2el Ry in accordance with the resistive model (solid
curvein Fig. 4) [21, 22].

For junctions of S superconductors, the RSJ approx-
imation disregarding the presence of a Riedel singular-
ity for V = Ap/e, which follows from the results of
microscopic theory, correctly describes the available
experimental data up to voltages (Josephson oscillation
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Fig. 4. Dependences of the normalized maximal amplitude
of the first Shapiro step on the frequency of the external
electromagnetic action for heterojunctions with L = 20 pm
(dark circles) and 40 um (light circles). The solid curve
shows the frequency dependence of 14 /1 c(0) calculate in
the RSJ.

frequencies) corresponding to the superconducting gap
2A0/e (e.g., Ayy/h = 700 GHz for Nb) [22]. However, as
can be seen from Fig. 4, the normalized value of |/l
in our experiment noticeably decreases even at a fre-
guency f, > 40 GHz, which is much lower than fre-
guency Ay/h. 1t should be noted that the effect of the
Rieddl singularity in tunnel junctions of S superconduc-
torsismanifested in theincreaseintheratio | /1. [25].
For large heterojunctions (L = 40 um) the observed
decreaseintheratio |,/ Was stronger than for small
heterojunctions (L = 20 um).* The theoretical calcula-
tions performed in [13] for Josephson junctions of D
superconductors reveal a weak frequency dependence
of the superconducting current component up to fre-
guencies Ap/h corresponding to the gap voltage and
exceeding 1 THz. Consequently, in the framework of
existing theories, the change in the value of I;,/1;
must be small in the frequency range f, = 35-80 GHz.
A possiblereason for the noticeable decrease in the val-
ues of |,/ with frequency may be energy pumping
from the first harmonic of the current—phase relation,
which determines the value of 1., t0 the second har-
monic for L = A, [10, 11]. The effect of the nonuniform
distribution of the external microwave current at natural
resonance of heterojunctions on the dynamics of for-
mation of the Shapiro step (and the value of I,
which we observed earlier in distributed heterojunc-
tions of S superconductors[26], cannot not be ruled out
either. The resonance frequency of natural electromag-

4 Since the maximal value | 1 Of the Shapiro step is measured,
the frequency dependence of the heterojunction impedance,
which affects the matching with the external system, can be
ignored.
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netic oscillations in the structures under study with a
strongly nonuniform critical current density distribu-
tion may be close to the frequency of formation of
standing waves. This effect is analogous to the Fiske
resonance with the effective velocity of wave propaga

tion on the order of ¢ = W\, Where w, = /211l ./ D,C
is the plasma frequency. As aresult, the resonance fre-
guency f, = c/2L turns out to belong, in order of mag-
nitude, to the frequency range represented in Fig. 4. It
should be noted that the IV curves did not display sin-
gularities corresponding to Fiske resonances.

6. SUPERCONDUCTING CURRENT-PHASE
RELATION

It follows from Figs. 1 and 3 that the application of
external monochromatic electromagnetic radiation to
heterojunctions with L = 20-50 um leads to the emer-
gence of fractional Shapiro steps I,,,(a) in addition to
harmonic steps on the IV curves at V = (1/2)(hfy/2e).
For small-size heterojunctions (L = 10 um), no frac-
tional steps were detected; thisis apparently due to the
fact that the expected values of | 1/,m(8)/1.(0) < 0.1 for
these junctions were found to be smaller than the limit-
ing current resolution of the measuring system
(0.2 uA). A possible reason for the emergence of 1,,,(a)
steps on the 1V curves of the heterojunctions is the
deviation of the current—phase relation from the sinu-
soidal shape[3, 16]:

Is(¢') = Iclsinq) + |C28in2(|).

It should be noted that the IV curves of the heterojunc-
tions (both autonomous and those obtained under the
action of an external electromagnetic field including
those on which fractional Shapiro steps were observed)
were symmetric about V = 0in contrast tothelV curves
for distributed Josephson junctions for L > 4\, [27].

Higher harmonics in the current—phase relation
(sin2¢, sin3¢, etc.) can be observed at low tempera-
turesin Josephson junctions of the superconductor-nor-
mal metal-superconductor (SNS) type[21, 22]. Typical

values of transparency for SNS junctions are D ~ 1.
However, the transparency valuestypical of our hetero-

junctions are D = 10°-10* < 1, which enables us to
treat them, rather, as tunnel Josephson junctions [3];
however, in contrast to the latter junctions, their cur-
rent—phase relation is not necessarily sinusoidal.

Under the action of large-amplitude electromag-
netic radiation (with a = 1), the quasiparticles energy
distribution function may change, leading to the emer-
gence of fractional Shapiro steps [28]. For this reason,
we al so measured the sel ective detector response of het-
erojunctions at frequencies f, = 35-120 GHz at a small
amplitude of electromagnetic radiation. Under these
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conditions, the detector response at voltages V =
(/2)(hfJ2e) corresponding to the emergence of the
fractional Shapiro step |,,,(a) was observed for al junc-
tionsin which astep was detected. Thus, the emergence
of the second harmonic in the current—phase relation in
the form of fractional Shapiro steps was found to be
independent of the amplitude of the external radiation.
Indeed, the characteristic relaxation times for excited
quasiparticles in superconducting metal-oxide materi-
als are on the order of 10131072 s[29], which is an
order of magnitude smaller than the period of oscilla-
tions of external electromagnetic radiation in our exper-
iments (10 s). Consequently, the quasi particle energy
distribution function remains close to equilibrium
under the action of electromagnetic radiation with afre-
quency up to 100 GHz.

Deviations of the current—phase relation from sinu-
soidal shape (and, hence, fractional Shapiro steps) can
be observed on the IV curves of distributed Josephson
junctions in view of a nonuniform distribution of the
superconducting current over the area of the junction
(e.g., when condition (2) of a lumped junction is vio-
lated) [21, 22]. It was noted in Section 3 during the dis-
cussion of size effects that condition (2) holds for all
heterojunctions studied by us. To find the effect of a
nonuniform distribution of the superconducting cur-
rent in a heterojunction on the current—phase rela-
tion, let usfirst consider heterojunctions for which a
more stringent criterion for a lumped junction as
compared to (2) is satisfied, i.e., L <Ag Aj.

It was shown in Section 4 that the heterojunctions
under consideration can be treated as a chain of Joseph-
son 0 and Ttnanojunctions S/D. and S/D 45 in view of the
(7 10 2) crystallographic orientation of the YBCO film
and the morphology of its surface. It was noted above
that the YBCO order parameter contains both d-sym-
metric and s-symmetric components, which are respon-
sible for the emergence of current—phase relations of
S/D. and S/D 5 nanojunctions of the first (I;) and sec-
ond (I,) harmonics, respectively [17]:

lc1Rn = AAnp/€Ap, (4)

I ,Ry= DAy /e. (5)

In these expressions, we assume that the order
parameter in YBCO is described by the expression

A(B) = Apcos20 + A,

where 0 is the angle between the electron momentum
and the direction of the a axis, and A, is the s compo-
nent of the order parameter. Taking into account the

experimental transparency values D = 10, we obtain
from expressions (4) and (5) the ratio of the amplitudes
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of the harmonicsin the current phase dependence,

for values of AJe=1mV and Ap/e= 20 mV typical of
heterojunctions [3]. Such a level of deviation of the
shape of the current—phase relation from sinusoidal
cannot be detected at T=4.2 K because of thermal fluc-
tuations. At the same time, the contribution from
Andreev levels to the superconducting current of S/D,5
junctions leads to substantial increase in the second har-
monic amplitude in the current—phase relation [2, 5]:

ALD

9= (Taakr - 08

A quantitative estimate of the contribution of the sec-
ond harmonic in the current—phase relation to the
height of the harmonic Shapiro step was obtained using
the fact that the height of the nth harmonic step in the
high-frequency RSJ approximation (hf, > 2el Ry) for
g # 0 varies as the sum of Bessdl functions J,, with dif-
ferent phases,

/1. = 2max[J,(X)sSin® + gJ,,(2x)sin20], (6)
(S]

where x = a/w(W?B> + 1)¥2; w = hf/2el Ry is the nor-
malized frequency of the varying electromagnetic field;

B.= 4TreICRﬁ, C/h is the MacCumber parameter, which

is determined by the capacitance C of the Josephson
junction. The maximum of the expression in the brack-
ets is taken for the phase shift © between Josephson
oscillation and external radiation [21, 22, 30]. The val-
ues of the MacCumber parameter were obtained from
the hysteresis on the IV curves for the heterojunctions
under investigation and are given in the table; it can be
seen that the value of B, = 3-6 weakly depends on the
size of the junctions. Expression (6) implies that the
value of g at afrequency hf, > 2el Ry can be calculated
from the minima of the experimental dependence
I(a)/1(0). For example, at the first minimum, we have

1)
4= T10)3(2%)’

which gives g = 0.14 for the experimental dependence
shown in Fig. 3a. It should be noted that this method of
estimating g rules out the effect of the capacitance of
thejunction, but does not allow usto determinethe sign
of the second harmonic amplitude in the current—phase
relation.

Thefinite capacitance of the junction and the second
harmonic in the current phase dependence lead to the
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Fig. 5. Heights of fractional Shapiro steps |/, for hetero-
junctions with g = -0.14 and 3. = 4 as functions of the nor-

malized amplitude a of the external high-frequency current
for frequenciesf, = 51.42 GHz (light squares) and 70.2 GHz

(dark sguares). The dashed and solid curves correspond to
the 14/5(a) dependences calculated by formula (7) for nor-

malized frequencies w = 1.62 and 2.2, respectively.

formation of fractional Shapiro steps on the IV curves
with a height

J1(X)Jo(X)
(B.w)/4+1

L2 = 2maxEsin®[qJ1(2X) + B¢
I e
(7

AR e

O
os@} 0
O

The expression in the brackets is sign-alternating; con-
sequently, the I,,(a) dependence differs from that
obtained earlier for bicrystal junctions with a low
capacitance [15]: 1,5(a) O J,(2X), x = a/w. Values of g <
0 provide good agreement with experiment (Fig. 5). For
g > 0, the calculated values of 1,,(a) substantially
exceed the measured values and do not lead to the
experimentally observed minimum between a = 0 and
thefirst minimum of thel(a) function. Negative values
of g follow from theoretical calculationsfor S/D 45 junc-
tions[2, 5-7] and were observed earlier in experimental
investigations of bicrystal Josephson junctions[9].

Pay attention to the fact that a slight change in the
normalized frequency w of the external radiation
noticeably changes the shape of the I ,,(a) dependence.
Thisisdueto the simultaneous effect of the capacity of
the junction and the nonsinusoidal current—phase rela-
tion on the process of formation of afractional Shapiro
step (thefirst two termsin expression (7) have opposite
signs). The same behavior of the |,,(a) dependence is
also observed in our case (see Fig. 5), athough the
maximal value of |,(a) differs from the theoretical
estimate by afactor of several units. It should be noted
that we did not use any fitting parametersfor comparing
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the experimental and theoretical results in Fig. 5. The
second harmonic amplitude in the current—phase rela-
tion and the amplitude scale of external electromag-
netic radiation were determined from comparing the
results of calculation based on formula (6) with the
experimental 1.(a) dependence (see Fig. 3d).

According to [10, 11], the second harmonic ampli-

tude q ~ L2/)\§ in the current—phase relation must

increase with increasing size of heterojunctions
(L > Ay dueto the presence of parallel-connected 0 and
TT constants in the junctions. Indeed, the second har-
monic amplitude q = —0.4 determined by formula (6)
from the data presented in Fig. 3b for L = 30 um
increases to avalue of g =-0.9 upon an increase in the
junction size to L = 40 um; in accordance with the
results of calculations[11], all values of q < 0.

7. CONCLUSIONS

It was found from electrophysical and microwave
properties of Nb/Au/YBCO thin-film hybrid hetero-
junctionsthat the critical current density in thejunction
is nonuniformly distributed over the junction length
even for lumped junctions (which are smaller than the
Josephson penetration depth, L < A ;). Owing to faceting
of the interface in Au/YBCO films and the effect of d
symmetry of the superconducting order parameter in
YBCO, the heterojunctions studied here are correctly
described by the model of achain of 0 and 1tjunctions.
In such chains, “splintered” Josephson fluxons can be
formed with fractional values of the magnetic flux
guantum and with values of A, several times smaller
than the Josephson penetration depth for a magnetic
field.

It was found experimentally that the maximal value
of the first Shapiro step decreases with increasing fre-
guency of external electromagnetic radiation. Such a
behavior of high-frequency dynamic processes occur-
ring at frequencies f, < Ay,/h may be due to the emer-
gence of splintered fluxons leading to a nonuniform
distribution of the magnetic and microwave fields in
heterojunctions. This effect was enhanced with increas-
ingjunctionsize (L > Ay); the departure of the magnetic-
field dependence of the critical current from the Fraun-
hofer dependence also increased.

The fractional Shapiro step and the subharmonic
sel ective detector response, which were experimentally
observed in the heterojunctions studied here, are asso-
ciated with the presence of the second harmonic in the
current—phase relation. The second harmonic ampli-
tude in the current—phase relation and its sign (the sec-
ond harmonic amplitude is negative for heterojunctions
under investigation) were estimated using experimental
methods.
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Abstract—The response of an intergranular Josephson junction to displacements of an Abrikosov vortex in a
superconducting polycrystal is studied theoretically. The vortex filament in the vicinity of the junction excites
atunnel current in the junction and also generates a Josephson vortex with which it merges upon emergence at
the surface of the junction. It is shown that the process of the Josephson vortex formation passes through a stage
of overcoming a potential barrier, whose height depends on the distance between the Abrikosov vortex and the
junction, as well as on the effective thickness of the junction, which is determined by the characteristic grain
size, grain anisotropy, and the intensity of theintergranular coupling. The magnetic field dependence of the crit-
ical current of the intergranular Josephson junction is determined for various grain and intergranular
parameters, as well as for the triangular and square configurations of the Abrikosov vortex lattice. The
results indicate that a high degree of texturing in the grain size, anisotropy, and intensity of intergranular cou-
pling is very important for obtaining high critical currents in pure polycrystalline materials. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

Penetration of magnetic field into a type |1 super-
conductor beginswith the formation of vortex filaments
at the superconductor surface, followed by their diffu-
sion to the bulk of the sample [1]. Accordingly, when
the external field decreasesto valueslower than the crit-
ica field Hg, the vortex filaments move towards the
surface and are expelled from the superconductor. It
was shown in [2] that an Abrikosov vortex (AV) in the
vicinity of a Josephson junction excites tunnel currents
init. When the AV is expelled to the contact region, itis
transformed into a Josephson vortex, although the geo-
metrical and energy parameters of these two vortices
are different.

Interesting properties of high-T. polycrystals, which
are important for applications, stimulated the study of
granular superconductors with Josephson junctions
between the grains. New surface barriers for penetra-
tion of an AV into a grain were predicted theoretically
by one of the authors in [3]. In this case, the vortex
dynamics was controlled by the grain characteristics
and properties of intergranular Josephson SIS junc-
tions, which is caused by structural distortions of the
AV and itsinteraction with the surface and grain bound-
aries. In light of these concepts, it is natural to expect
that the characteristics of the Josephson medium and
the AV will influence the Josephson effects in the inter-
granular junction and, as a consequence, the magnetic
field dependence of the intergranular critical current.

In analyzing transport phenomena in type Il super-
conductors, it isimportant that the maximal undamped
current | is determined by theinteraction of Abrikosov
vorticeswith crystal defects. Contacts between individ-
ual superconducting grains in ceramic or polycrystal-
line HTSC materials are often treated as defects [4]. In
many cases, the current density in Josephson junctions
or the Josephson phase difference exhibit an ambiguous
dependence on magnetic field H; the form of the field
dependence | (H) may strongly differ for different crys-
tals depending on the quality of the material [5, 6].

This study is devoted to analyzing how the vortex
dynamics affects the process of vortex formation in an
intergranular junction of a grained superconducting
structure, aswell as how the grain parameters and prop-
erties of the intergranular medium affect the magnetic
field dependence I(H) of the critical current. We will
consider a vortex-laminar model of an SIS junction,
presented schematically in Fig. 1. The coordinate sys-
tem is chosen so that the plane of a Josephson inter-
granular junction coincides with the xy plane and the
magnetic field isdirected along they axis parallel to the

grain surface, Hy*® = (0, H, 0). Thefield penetrates the
contact, a grain from the side of the surface and from
the side of the SISjunction to adepth of A, A4, and A,
respectively. The currents induced by the externa field
flow inthe xy plane. The x axis passes through the junc-
tion and the gain under investigation is bounded on the
zaxishy straight linesz= 0 and z= a. Superconducting

1063-7761/05/10103-0504$26.00 © 2005 Pleiades Publishing, Inc.
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laminas are separated from one another by aninsulating
layer of thicknesst.

The structure of the article is as follows. In Section 2
gives the main equations describing the behavior of the
phase difference ¢ for the order parameters of adjacent
grains separated by a Josephson junction. The solution
to the equation for the additional gradient of phase ¢ is
obtained. In Section 3, the effect of characteristics of
the Josephson medium on the energy of a weak cou-
pling between two grains is considered. The magnetic
field dependence of the critical current in theintergran-
ular junction is determined in Section 4 for various
parameters of the medium, aswell asin the cases when
triangular and square configurations of the vortex lat-
tices are formed in the grain by the external magnetic
field. Experimental evidence supporting the results is
analyzed.

2. INTERACTION OF A VORTEX FILAMENT
WITH AN INTERGRANULAR JOSEPHSON
JUNCTION

2.1. Basic Equations

Let us consider a vortex filament whose currents
reach the surface and banks of ajunction. The position
of the vortex corresponds to coordinates (Xg, Yg). We
assume that K > 1 and the vortex axis coincides with
they axisand is parallel to the sample surfaceand to the
inner walls of the grains. The magnetic field added by
the vortex is distorted by the surfaces so that, first, no
additional field is produced either on the surface or in
Josephson junctions (since the field is preset and is

equal to Hy™ at the surface and to HJ™ exp(z/A) inthe

junctions), and second, the current normal to the sur-
faces vanishes. This can be done by supplementing the
vortex with its mirror image relative to surfaces with
opposite directions of thefield and current (Fig. 1). The
energy of the vortex is mainly concentrated in the
region &, < X <€ A, and &, <€ z << A.. To anadyze the
problem, the structure of the vortex core isimmaterial.
It is only important that the order parameter and the
current associated with it decrease as we approach the
center of the core and vanish at the core center. The
field of the vortex satisfies the anisotropic London
equation with 2(2L + 1) sources:

Oxk JJ+H
) 3 (1)
—cboe,z{( —1)"8(p~pr”) + (-1)"""8(p— 0t} -

n=-L

Here, L is the number of coordination zones counted
from the vortex to itsimage and images of the images.
Figure 1 shows three superconducting laminas, {-1},
{0}, and {1}, corresponding to a single coordination
zoneL = 1 (inthe general case, L — =); g, isthe unit
vector directed along the y axis; ®, = h/2e Is the mag-
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Fig. 1. Abrikosov vortex 0" in atype Il superconductor in
an external magnetic field H ~ H, and the set of image vor-

tices with positive and negative vorticity in the limit when
the characteristic grain size a/2A. = 1. The magnetic field

is applied parallel to the surface and grain boundaries and
penetrates a grain to depth of A4, from the side of the sur-

face and A from the side of Josephson junctions, while the
penetration depth in the junction isA .

netic flux quantum; &(p — p,,) isthe 2D Dirac deltafunc-

tion in the xz plane; p{?) = [X,, (-1)"(z, — @/2) + na] is
the position of the vortex (n = 0) and itsimages (n # 0)
in the region of superconducting grains (along the z
axis), where indices +n and —n correspond to counts to

the right and left from the vortex, respectively; p() =

[%, (1)"(z, — &@/2) £ nq] is the position of images
located outside the superconducting region (x < 0); and
[A?] is a tensor describing anisotropy of the material,
which will be treated as a diagonal tensor. We also
assume that a > &, &; in this way, we can ignore the
effect of grain boundaries on the order parameter in the
grains. Using the Maxwell equation [ x H = J for the
geometry depicted in Fig. 1, we obtain the following
equation for field distribution in agrain:

2 2
26 Hy+)\621ba sz_H

Ac
2
4

0X Y

= —q)on:Z_L (—1)"3(x - Xo) -

xé[z—g—(—l)"%o—%—na}

+(=1)"5(x + xo)6[z—g—(—l)”%o— %- na}.

This equation differs substantially from the aniso-
tropic London equation in the presence of sourcesfor a
vortex carrying amagnetic flux guantum ®, and its mir-
ror images.
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Steady-state effects of weak superconductivity can
be described using the Ferrell-Prange equation [7]. In
the subsequent analysis, it is necessary to describe the
behavior of phase difference ¢ of the order parameters
of superconducting grains separated by intergranular
SIS junctions in the case when an AV islocated in the
vicinity of one of the grains. The effect of this filament
is that it produces a nonzero current at one of the sur-
faces forming the Josephson junction. The presence of
the surface current leads to the emergence of an addi-
tiona gradient of phase ¢, which in turn induces an
additional Josephson tunnel current through the junc-
tion. In this case, the relation between the phase gradi-
ent and magnetic field H is described by theformula[2]

_2m
n.ef

do _ 2e/\q
Ix e H J,(X). 3
Here, N\ = 2\, ng is the number of superconducting
electrons, and J,(X) is the current produced by the vor-
tex filament at the surface of the Josephson junction. To
find this current, we will use the solution to Eq. (2) for
the magnetic field distribution of the vortex filament
with the coordinates x = X, and z = z, of the center,
which takes into account the interaction of the filament
with the grain surface and with the intergranular junc-
tion in an anisotropic materia [8]:

— CDO
HV(X’ XOa Z, ZO) - 2_,_[/\2
xS {(=1)"Ko[Dn(z, 2o, X—Xo)] 4)

+(=1)"" Ko[Dn(Z, 2o, X+ Xo)]}

where

Di(2 2o, X £ X0) = J A’ (X2 Xo) + Bi(2 2),

AxEx,) = =2,
ab
z—al2—(-1)"(z,—al/2) —na
B.(2.2,) = ( ))\(Zo ) _

Here, A = /A A and K, is the Macdonald function.

Using Eg. (4), we can find the current at the surface of
an intergranular junction in accordance with the Max-
well equation

C
209 = =2
z=0

which is produced by the vortex filament passing
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through point (X,, Z):

00

> Ba(0,2)

n=—wo

J :i%
Y greAS

X = (_1)n+l
Emwn(a Zo, X = Xo)] (5)

(_1)n+ 2 |:|
D(0, Zp, X + xo)Kl[ Dol0 20, X+ %ol E
Taking into account relation (3), we obtain the follow-
ing equation instead of the Ferrell-Prange equation:

2
2%, A4y _
AJ0X2+2JCO I - sind. (6)
Here, the increment AJ,, of the surface current is deter-
mined by relation (5) and Jy, is the Josephson current
amplitude. The boundary conditions to Eg. (6) can be
written in the form

d¢/dx — O for X —» *oo, (7)

These conditions are satisfied under the assumption
that § — Ofor x — —0 and ¢ — 21tfor x — co.

In deriving Eq. (6), we disregarded the reciprocal
effect of the intergranular junction on the structure of
the vortex filament. Such an approach is justified since
surface current (5) is much larger than the maximal
Josephson tunnel current J,. Consequently, we can dis-
regard branching of the vortex current associated with
the tunnel junction and assumethat the junctionitself is
afree surface.

The problem can be formulated as follows. Let the
initial magnetic fieldH > HS, (HS, isthe lower critical

field in the grain) decrease to values H < Hfl. This

causes the expulsion of vortex filaments to the grain
surface or to the intergranular Josephson junction. Let
an AV be located at point (0, Z(t)). We assume that the
field and current distributions at instant t are described
by expressions (4) and (5), into which we must substi-
tute the coordinate zy(t) of the center of the filament,
taken at the same instant. The use of static formulasis
justified by the fact that the velocity of the AV is much
smaller than the characteristic velocity of electrons in
the vortex (velocities at distances on the order of A
from the center of the vortex).

2.2. Weak Intergranular Coupling

Let usfind the solution to Eq. (6) for the case when
the coupling intensity between grains is quite low. In
this case, Eq. (6) containsasmall parameter facilitating
the construction of the solution. This parameter is the
ratio of Ay, to the longitudinal size A; of the Josephson
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Fig. 2. Dependence of theintergrain phase difference ¢ on the x coordinate: (a) the characteristic grainsizet =0.2 (1) and 1.4 (2);
(b) anisotropy parameter v = 0.8 (1) and 2 (2) when the AV is at point zy = 0.7A. Curve 3 corresponds to distance z = 0 between

the AV and the junction.

vortex: 0 = Ay, /A; ~ 101072 In view of the smallness
of g, it issufficient to find the solution to Eg. (6) in the
zeroth approximation, which can be done as follows.

In the region determined by the inequality [x — Xg| <
Aan: the second term on the left-hand side of Eq. (6),
which is associated with the surface current, is much
larger than the Josephson tunnel current. Consequently,
we assume that the right-hand side of this equation is
equal to zero in this region. This gives the solution in
the form

609 = = Y B.(0.2)

ZooN = —

X 0 (0" -
EmKl[Dn(or Z5, X—Xo)] (8)

(_1)n+2 D
mKl[ Dn(0, 25, X + Xo)] %dx-

Here, integration is formally extended to values of x
since theintegrand decreases exponentially outside this
region. Outside the region |X —X,| < A, Surface current
can be ignored in comparison to the Josephson current.
Consequently, the behavior of the solution in this
region is described by the conventional Ferrell-Prange
equation.

The obtained solutions should be joined in interme-
diateregionsasfollows. Intheregion —oo <X <Xy—Ay,,
phase ¢ () satisfies the Ferrell-Prange equation

2
)\ﬁ% = sing

and the following boundary conditions: ¢(—) = 0 and
Olicyr, = 000—Aa)
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at theboundary X =X, —A,, where ¢ (X, —A ) isdefined
by formula (8). In the region [X — X,| < A, the solution
isdefined by formula (3). Intheregion Xy + Ay, < X< oo,
phase ¢ (x) satisfies the Ferrel|-Prange equation and the
following boundary conditions:

Olye g n, = 000+ Aa)

at the boundary x = x5 + A4, and ¢(e0) = 0 at infinity.
Here, ¢(x, + A,,) is aso defined by formula (8).

Solution (8) exhibits an explicit dependence on the
characteristic grain size 1 = a/2\; and granular anisot-
ropy v = AJA,,. Figure 2 shows the solutions to Eq. (6)
for various values of t (Fig. 2a) and v (Fig. 2b). Curves
1 and 2 correspond to an AV localized at point z, =
0.7A;, while curve 3 correspondsto z, = 0. It can be seen
from the figure that the phase jump A¢ increases upon
a decrease in coordinate z,, i.e., as the AV approaches
the intergranular junction. This phase jump generates
phase perturbation along the junction, which corre-
spondsto known results[2]. At the sametime, it can be
seen from Fig. 2 (curves 1 and 2) that an increasein the
values of T and v also leads to an increase in the phase
jump A¢. Thus, phasejump A — 2mtevenfor z, # 0.
Such a behavior precisely indicates [2] the generation
of “half” of the Josephson vortex.

Equation (6) is invariant to the substitution of 2rm
for ¢, wherenisan integer. If we add 2rtto ¢(x) for x >
0, we obtain a continuous function ¢ = ¢(x). In our
case, the phase of only a part of the system (for x > 0)
is transformed, which can be explained as follows. As
an AV movesto the intergranul ar Josephson junction or
upon an increase in the granular characteristics t or v,
it induces in the junction the perturbation ¢(x), which
becomes more and more similar to a Josephson vortex.
For z, = 0 or z, # 0, when the values of T and v are such
that they bring the phase jump to A = 211, a Josephson
vortex is formed all over the intergranular junction
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< ~
o

1
)\J X
Fig. 3. Dependence of the intergrain phase difference ¢ on
the x coordinate; the intergranular coupling intensity o =

0.07 (1), 0.125 (2), and 0.15 (3). The distance between the
AV and the junction is zy = 0.7A...

except the central region near A.. The existence of this
region indicates that the AV has not yet decayed. The
decay of the filament begins when its normal core
comes in contact with the junction. The size of the nor-
mal core along the z axis is approximately equal to &,
(. is the correlation length along the c axis, i.e., in a
direction perpendicular to the (001) planes). In this
sense, the increase in T and v accelerates the “contact”
with the AV since it effectively increases the thickness
of the Josephson junction and leads to “elimination” of
this part of the junction (it conditionally splits into two
independent parts, each of which can be separately sub-
jected to phase transformation. After the complete dis-
integration of the AV, only the Josephson vortex is left
in the intergranular junction.

2.3. Strong Intergranular Coupling

When the intergranular coupling intensity o is high,
expression (8) isinapplicable. To find phase ¢, Eq. (6)
was solved numerically. Figure 3 shows the depen-
dence of phase ¢ on coordinate x for various values of
intensity a of coupling between grains. Curves1, 2, and
3 correspond to the case when the AV is far from the
junction at a distance z, = 0.7A.. It can easily be seen
that the phase jump A — 2rtwithincreasing 0. Thus,
an increase in the intergranular coupling intensity
increases the effective thickness of the Josephson junc-
tion, i.e., accelerating the generation of a Josephson
vortex by an Abrikosov vortex.

3. ENERGY OF INTERGRANULAR COUPLING

In accordance with prevailing concepts [9], a high-
T, superconductor consists of superconducting grains
whose sizeis small as compared to the London penetra-
tion depth, and the state of the superconductor is
described by the complex order parameter with phase
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¢; for each graini. Grainsi and j are coupled in energy
in accordance with the Hamiltonian

= —Z Jijcos(di—d;—Ay), 9)
G, jo
which includes the magnetic field effect, viz., the phase
vector potential

j
_ 2m
A= 5 OJ'AdI. (10)
|

It was noted by Deutscher and Miller [10] that
expression (9) describes the intrinsic behavior of weak
bonds in high-T, superconductors. Each phase ¢; in the
superconducting banks couples neighboring banks via
the Josephson interaction parameter J;. The question
arises: how do intergranular parameterst and v, aswell
as the parameter o describing the intensity of coupling
between the grains, affect the energy E; of intergranular
Josephson coupling? To answer this question, let us
consider the expression for E; in the form

L
_ NJeo

E, = o J’(l—cosx)dx, 11
0

where L, is the linear size of the junction along the x
axis (~Ay).
Expression (11) does not take into account the terms

proportiona to Jio and corresponding to the energy of
the magnetic field of the current of weak couplings and
the kinetic energy of electrons. We will consider an
intergranular junction whose size L, = A;. The depen-
dence of phase ¢ on xin such ajunction in the presence
of an AV isdescribed by Eqg. (6). The results of calcula-
tion of the dependence of E; on the distance z, from the
AV to the intergranular junction are shown in Fig. 4. It
should be noted above all that the behavior of the E;(z,)
curves has the form of potential barriers for generation
of a Josephson vortex. The energy barrier E;(z,) isrep-

resented, first, by the height EJ* of the potential bar-
rier and, second, by the effective intergranular junction

width ty = 275 (z; isthe distance between the AV and

the junction, for which Ey(z) = E;). It can easily be
seen from the difference of the curvesin Fig. 4 that the
barrier height E;(z,) depends on parameterst, v, and 0.
Thelarger thevalue of z, for which E; starts decreasing,
the sooner the generation of a Josephson vortex by an
Abrikosov vortex moving towards the contact. Let us
consider the effect of variation of the parameters of the
Josephson medium on vortex formation in the junction.

(8 The characteristic size of agrain. A variation of
T barely changes the potential barrier height E;, while
the effective thicknesst; of the barrier increaseswith 1.
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(b) Anisotropy. A changein v barely changesthe bar-
rier height E;, while the value of t4 increaseswith v.

(¢) Intensity of intergranular coupling. It can be seen
from Fig. 4c that the barrier height E; is proportional to

o1, whilety O G.

The expulsion of the AV to the junction nullifies the
correction to energy associated with superconductivity.
The equilibrium state for generation of a Josephson
vortex sets in when the Josephson coupling energy E;
assumes the extremal (minimal) energy (point z, = 0).
In other words, at the instant when the AV comes in
contact with the junction, it completely decays and a
Josephson vortex is formed.

The density n(H) of the field distribution of the AV
plays the role of external magnetic field in the forma-
tion of a Josephson vortex. The process of generation
hastheform of energy “pumping.” The potentia barrier
E, formed in this case hampers the formation of a
Josephson vortex aswell asits decay in amanner anal-
ogous to the situation at the edge of a superconductor
with an AV entering and leaving it. An increase in the
density n(H) of the AV field suppresses the energy bar-

rier at acertain distance z; , which depends on theinter-

granular parameters T and v aswell asthe intergranular
coupling intensity o. It can be concluded that the poten-
tial barrier height E; in super-small-grain materials also
depends of the “reflectivity” of the material, viz., the
number of “mirror” images of the AV [8], aswell ason
the degree of purity of a polycrystaline supercon-
ductor.

4. EFFECT OF CHARACTERISTICS
OF THE JOSEPHSON MEDIUM
ON THE CRITICAL CURRENT

OF A SIS JUNCTION

Type Il superconductors in an external magnetic
field H acquire AV configurations forming vortex lat-
tices. In view of the AV magnetic field nonuniformity,
the dependence of the critical current in an intergranu-
lar junction on the external field may considerably dif-
fer from the conventional “Fraunhofer” dependence for
homogeneous Josephson junctions[11]. In this section,
we consider the results of analysis of the effect of gran-
ular characteristics T and v as well as the intergranular
coupling intensity o on thel (H) dependence. The pres-
ence of singularities associated with the type of the
crystal lattice (with triangular and square symmetry) on
the I (H) curvesis also discussed.

For the vortex-laminar model under investigation,
the critical current of a SIS junction is defined by the
formula[12]

L 2

[exp(i8(x))X . (12)
0

2 _ 2
Ic_lco
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Fig. 4. Potential barrier Ej preventing generation of a
Josephson vortex in the intergranular junction by an Abri-
kosov vortex expelled towards the junction as a function of
reduced distance ZyA: (8) v =1.5, 0 = 0.075, and 1 = 1.4 (1),
0.7 (2),and 0.5 (3); (b) T = 1.4, 0 = 0.075, and v = 1.5 (1),
2(2),and 3 (3); and (c) t=1.4,v =15,and 0 = 0.075 (1),
0.15 (2), and 0.225 (3).

The phase difference 6 depends on the external field H
and AV coordinates (X, z) in a grain, as well as on
parameterst, ¢, and v,

N X
_ 2 2 Px
0 = .zl—/\.[q)(xt X;, Z)dx + DL (13)
i= 0

where N is the number of vortex filamentsin the grain.
Solution ¢(x) for each AV is defined by Eg. (6). For a
low intensity of the coupling between the grains, when
o ~0.01, function ¢(x) has the form (8).
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Fig. 5. Dependence of I(®) for intergranular coupling

intensity o = 0.07 for various values of characteristic grain
size T and anisotropy parameter v: (a) T=0.4,0.7,and 2; v =
15;(b)v=0.5,15and5; 1=15.

It should be noted that the structural patternin areal
superconducting system is undoubtedly more compli-
cated. The angle 9 of disorientation of neighboring
grains [13], the contact area S[14, 15], the orientation
of theintergranular boundary planerelative to the (001)
and (100) planes in which the anisotropic correlation
length assumes extremal values [16], and other factors
noticeably affect the value of current I.. However, for
the results obtained in this section, the very fact of the
influence of boundaries on the AV and its effect on
phase ¢ and current I of the intergranular SIS junction
is significant; therefore, we believe that our model can
be used for analyzing transport properties of supercon-
ducting polycrystals.

4.1. Role of Granular Characteristics
on l(H) in the Field Range H > Hfl
Intherange of fields slightly stronger than the lower
critical field HS, in agrain, the equilibrium density n,
of the filaments is low and the distance d between
neighboring AV islarge (d > A, Ao). In this case, dis-

tance d is connected with the granular induction viathe
relation

B=n, = g0 (14

where q = 2/./3 for the triangular configuration of the
vortex lattice and g = 1 for the sguare lattice. In gains
with asizea > A, the number of emerging vortex fila-
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ments can be quite large since the repul sion of filaments
infieldsH > Hfl is exponential, ~exp(—d/A) (i.e., hav-

ing a finite range on the order of A), and this aimost
does not increase the energy of interaction.

InfieldsH > HS, , the coordinates of the rowsiin the

vortex | attice, which are closest to the surface and of the
intergranular junction are x = d/2 and z = d/2(a — d/2),
respectively. Since the vortex lattice lies in the region
x O[0,A;] andz[O0, a], equilibrium values of d for the

given field H;™ can be represented as

CD ~1/2
d = (axab)”zgqaog .

Thus, Eg. (6) was solved numerically for various values
of the external field. The resultant contribution from all
AVs to the current-phase behavior was calculated by
formula (12).

4.1.1. Effect of characteristic grain size. Figure 5
shows the dependence of the critical current |, on the
magnetic field of a grain for various values of charac-
teristic grain size T and anisotropy parameter v. It can
be seen in Fig. 5athat the behavior of the function with
increasing T resembles the familiar Fraunhofer depen-
dence. The maximal intergranular current corresponds
to large values of 1. Such a behavior can be a conse-
guence of a weak dynamic interaction between neigh-
boring intergranular junctions, which emerges due to
nonequilibrium effects [17]. In the model considered
here, the smaller the value of 1, the stronger the interac-
tion and the smaller the value of the order parameter
Wes(®P, T) at the grain boundary. Thus, the 1 (¢) depen-
denceis similar to the results obtained in [18] for vari-
ous values of temperature T.

4.1.2. Effect of grain anisotropy on | (). Thefol-
lowing effects, which are of interest for technology of
obtaining new materials with a high current-carrying
capacity, are associated with grain anisotropy. Grain
boundaries facilitate the formation of currents flowing
at right angles to the current existing in homogeneous
materials. As aresult, the boundaries enhance the man-
ifestation of anisotropy in the penetration of afieldin a
granular material. Figure 5b shows the 1.(¢) depen-
dence for various values of anisotropy parameter v. It
can be seen that the behavior of I (¢) upon achangein
v resembles the conventional Fraunhofer dependence.
However, the maximal intergranular current | is the
smaller, the larger the value of v. This effect can be
explained from simple considerations. With increasing
anisotropy v = AJA,, the depth of magnetic field pene-
tration in a grain from the side of the Josephson junc-
tion increases. As aresult, the effective thickness of the
contact increases, while the order parameter Weg(P, T)
at the grain boundary decreases.
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4.2. Effect of the Intensity on Intergranular
Coupling on | (¢)

Important effects of the granular structure of HTSC
materials appear due to the presence of a broad spec-
trum of intergranular coupling intensity . The most
convincing proof of the fact that intergranular space is
of Josephson nature and, hence can be defined by the
coupling intensity o, follows from experiments under
high pressures [19, 20]. The fundamental difference
between the responses of the critical current I, of an
intergranular Josephson junction and the conventional
pair-breaking current J., to pressure is the presence of
the exponential factor I, ~ exp(—dyUY?) for SIS junc-
tions and |, ~ exp(—2d,/&y) for SNS junctions. For this
reason, experimentsin high-pressure physics are based
on a change in the parameters of intergranular junc-
tions, viz., their thickness dy and the barrier height U
(insulator and/or normal layer), which directly change
the intergranular coupling intensity (i.e, I, O PO

a(OAH)).

Figure 6 shows the field dependence of the Joseph-
son current | (P) for various parameters o of the inter-
granular coupling intensity. It can be immediately seen
that strictly sinusoidal behavior of 1(®) corresponds
only to 10-11 periods. Inthisregion, function | (®) has
the following singularities. First, the maximal current
corresponds to smaller values of o; second, the larger
the value of o, the more exactly the given dependence
corresponds to the well-known Fraunhofer dependence
in asmall Josephson junction (this dependence has the
form of 1/B with intense oscillations). However, several
qualitative differences exist. The most important is that
the period of oscillationsis proportional to o so that the
frequency of function | (®) increases by afactor of k as
soon as the value of o increases k-fold. In other words,
oscillations correspond to the presence of additional
flux quanta passing through a grain. Such a form of
oscillations was observed in experiments with BSCCO
samples, in which the field dependence of stress was
measured [21]. In strong fields, function | (®) is trans-
formed into a peculiar sinusoidal dependence. This
transition was observed in the 1(®) dependence in a
Josephson junction corresponding to alarge-angle grain
boundary in a polycrystaline YBa,Cu;O5 film [22]. In
addition, I, 0 o in this field region. Such a transport
behavior matches the experimental results [23] in
which a noticeable increase in the value of I, was
observed (dInl/dP = 0.2 + 0.02 kbar?), indicating that
application of pressure (increase in g) improves the
quality of intergranular Josephson coupling.

It should be noted that, first, the structure of grains
and intergranular junctions in real superconducting
polycrystals is highly disordered, which leads to size-
and orientation distributions. This may weaken or even
suppress some of the predicted effects. Second, allow-
ance for symmetry in the order parameter in HTSC
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Fig. 6. Magnetic field dependence of the intergranular crit-

ical current | (®) for 0 =0.07 (1), 0.7 (2), and 0.35 (3); T =
15,andv =15.
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Fig. 7. Field dependence of theintergranular critical current
I for triangular (1) and square (2) configurations of the vor-

tex latticefor 1= 0.4 (), 0.6 (b), 0 =0.07, and v = 1.5.

materials might be important since it leads to the
growth of 1t contacts.

4.3. Effect of the Vortex Lattice Symmetry Type
on | (®)

In a mixed state, the transport current through the
intergranular junctions depends on the phase distribu-
tion 6(x). This dependence is interesting since a well-
ordered vortex lattice was observed in recent experi-
ments on bulk Lay g;Srp,7CuQ,, 5 samples [24]. In
addition, a transition from the triangular to the square
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lattice configuration upon an increase in the field. Fig-
ure 7 shows the oscillating dependence 1(®P) in the
case of formation of atriangular (curve 1) and square
(curve 2) vortex latticein agrain for t = 0.4 (Fig. 7a)
and 0.6 (Fig. 7b), when 0 = 0.07 and v = 1.5. The peak
of the sinusoid is high for the triangular lattice. How-
ever, thistendency isnot observed for large values of @.
In addition, the phase difference in an anomalous
Fraunhofer-like | (®) dependence is the larger, the
smaller the value of 1 (Fig. 7a). It should be noted that
the latter results correspond only to super-small-grain
structures with agrain size on the order of 1 pm.

5. CONCLUSIONS

A method for investigating phase dynamics in an
intergranular Josephson junction with expulsion of
Abrikosov vortices from grains and the presence of vor-
tex lattices is devel oped on the basis of the vortex-lam-
inar model. The results correspond to a number of the
most important and fundamental experimental factsin
transport phenomenain grained HTSC materials.

In particular, this approach clarifies the physical
meaning of the main singularities on the magnetic field
dependences I (®P). The characteristic grain size T,
grain anisotropy v, and the intergranular coupling
intensity o directly affect the intergrain critical current
and determine the nature of the transformation of the
AV into a Josephson vortex near the banks of the con-
tact on a scale on the order of &.

In addition, the period of oscillations of critical cur-
rent 1,(®) may acquire an addition flux quantum @, per
grain upon achangein the intergrain coupling intensity
0. Our results are in accordance with the experimental
data on the effect of high pressures on the | (®) depen-
dence obtained for HgBaCaCuO polycrystals. It is
shown qualitatively how the technological parameters
of HTSC materials should be varied to increase their
current-carrying capacity.

It is shown that generation of a Josephson vortex by
an Abrikosov vortex passes though a stage of overcom-
ing the energy barrier E; in the intergranular junction;
the barrier height depends on the Josephson medium
parameters T, v, and g, as well as on the distance z,
between the Abrikosov vortex and the junction.

The role of the vortex lattice symmetry in the
Josephson critical current is clarified. It is shown that
the type of the vortex lattice may determine the trans-
port properties of the system only in super-small-

grained structureswitha~1 uminfieldsH ~ HCGl.

Our results can be used in the physics of processes
with dynamics described by Eq. (6) aswell asin prac-
tical development of Josephson technologiesin micro-
and nanoel ectronics.
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Abstract—Cation-ordered manganites of the PrBaMn,Og System have been obtained using a two-stage syn-
thesis and characterized with respect to the chemical composition, crystal structure, magnetic and magne-
totransport properties, and the stability of the ordered state on heating. The physical properties of the cation-
ordered PrBaM n,Og manganites obtained using this method significantly differ from the properties of cation-
disordered Prg 50Bay 50MNO; synthesized by means of the conventional ceramic technology and depend on the

degree of ordering of the Pr3* and B&?* cations. In particular, the cation-disordered Pry soBag 5,MNO5 has a

cubic perovskitelike unit cell (SG = Pm3m, Z = 1), while cation-ordered PrBaMn,Og has a tetragonal unit cell
(SG = P4/mmm, Z = 2). Cation states in the system under study are reversible. The cation-ordered PrBaMn,Og
state remains stable upon heating in an oxidizing medium (P[O,] = 1 bar) up to 1300°C. The ordering of the
Pré* and Ba?* cations leads to asignificant increase in the critical temperatures of phase transitions. In particu-
lar, PrBaMn,Og with the maximum degree of ordering is a metallic ferromagnet with the Curie temperature
Tc ~ 320 K, whereas T of afully disordered sample is on the order of 140 K. The samples with intermediate
degrees of ordering contain two magnetic phases. Slightly below T, al such samples exhibit a metal—insul ator
transition and a peak of the magnetoresistance, which amountsto approximately 10 and 65% in amagnetic field
of 9 kOefor the fully ordered PrBaMn,Og and disordered Prg 50Bag 50MNO5, respectively. Theresults are inter-
preted in terms of the Goodenough—Kanamori empirical rulesfor indirect exchangeinteractionswith allowance

for the degree of ordering of the Pr¥* and Ba?* cations. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Rare earth manganites with a perovskite structure
and the general formulaLn; _,AMnO; (Ln = La, Nd,
Pr; A = Ca, Sr, Ba) have been extensively studied for
more than half a century [1, 2]. The interest in these
compoundsis still high [3], which is related, in partic-
ular, to the need for elucidating the nature of the phe-
nomenon of colossal magnetoresistance.

The action of a magnetic field on classical metals
containing free charge carriers leads to an increase in
the resistivity. For this reason, such metals exhibit a
positive anisotropic magnetoresistance (MR), which
depends on the mutual orientation of the current direc-
tion and the magnetic induction vector [4].

Ferromagnetic superconductors, in which fully or
partly localized charge carriers are present at tempera:
tures below T (the Curie temperature), exhibit a nega-
tive isotropic MR, which is related to the fact that the
mobility of partly localized charge carriersis higher in
a ferromagnetic medium than in a paramagnetic one.
The MR of this type reaches maximum in the region of
Te, which is explained by a shift of the ferromagnetic
ordering toward higher temperature under the action of
the external magnetic field [5]. Such abehavior istypi-
cal of the homogeneous media, while polycrystaline

substances exhibit the so-called giant MR, which is
related to the tunneling of charge carriersviaareal phys-
ical barrie—the boundary between ceramic grains [6].
As arule, the MR of this type is maximum at liquid
helium temperature, which corresponds to the maxi-
mum degree of polarization of local spins.

In the beginning of the 1990s, it was established that
systems such as Pr(Nd), _,CaMnO; exhibit a meta-
magnetic transition from an antiferromagnetic charge-
ordered state to ferromagnetic charge-disordered state
in the external field. Upon thistransition, the resistivity
drops by severa orders of magnitude. This phenome-
non was termed colossal MR [7].

Subseguent investigations of the properties of man-
ganites showed that the proper understanding of this
phenomenon requires taking into account the presence
and interplay of several degrees of freedom in the sys-
tem under consideration, including the lattice, orbital,
charge, and spin ones[8]. The properties of manganites
depend on alarge number of factors such as the chem-
ical composition, stoichiometry, type of unit cell distor-
tion, Mn—-O bond length, Mn—-O-Mn bond angle, etc.
However, the main factor determining the properties of
manganites is the Mn®*/Mn** ratio between the num-
bers of differently charged manganese ions:. this ratio
being close to unity is a necessary condition both for

1063-7761/05/10103-0513$26.00 © 2005 Pleiades Publishing, Inc.
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the realization of exchange interactions of the “double
exchange” type and for the establishment of a charge
order in the system [9]. The magnitude of Mn**/Mn*
can be changed by introducing substitutional defects
into three sublattices of the perovskite structure through
(i) Ca?*, Sr?*, and Ba?* substitution in sublattice A [10];
(i) Mg?, Ga**, Ti**, and Nb>* substitution in sublattice
B [11]; and (iii) variation of the oxygen content [12].
Among various substituted manganites, most thor-
oughly studied in recent years are Ba-substituted ones.

In recent years, manganites of the LnBaMn,Og sys-
tem (Ln =Y and rare earth ions) have been found to
possess unique physical properties, which is related to
the ordering of cationsin sublattice A of the perovskite
structure [13-41]. The main structural feature of these
cation-ordered compounds consistsin the alternation of
MnO, planes with two other planes—LnO and BaO,
each containing cations of one type—which resultsina
periodic distortion of MnOg octahedra. The physical
properties of such cation-ordered LnBaMn,Og manga:
nites cannot be explained taking into account the toler-
ance factor alone, asin the case of a statistical distribu-
tion of substituent cations in manganites of the
L no.50B&g soMNO; type.

Previoudly, it was demonstrated that cation-ordered
compounds can be obtained using the method of revers-
ible topotaxic redox reactions. LnBaM n,Og manganites
with stoichiometric oxygen content synthesized in air
by means of the conventional ceramic technology pos-
Sess a cubic structure with a statistical distribution of
Ln* and Ba&?* cations, whereas anion-deficient
LnBaMn,Os compounds have a tetragonal unit cell
with an ordered distribution of Ln®* and Ba?*. The basal
planes of the perovskite cubooctahedron are fully occu-
pied by ions of the same type and alternate in the [001]
direction. This crystal structure is similar to that of
YBaCuFeOy [42]. Oxidation of the anion-deficient
LnBaMn,O; compounds|eadsto the formation of asto-
ichiometric cation-ordered LnBaMn,Og; also possess-
ing atetragonal structure. This type of cation ordering
increases the temperature of the phase transition from a
metallic ferromagnetic state to a dielectric paramag-
netic state, for example, from T= 140K to 320K inthe
case of Pr3*. In both cases, the MR effect is observed at
temperatures dlightly below T [22]. Good prospects
for the practical use of such materials are related to the
fact that the phase transitions take place at room tem-
perature.

In cation-ordered PrBaMn,O; and NdBaMn,Og, the
main magnetic stateisthe A-type antiferromagnet [40].
In cation-ordered LaBaMn,Og, an antiferromagnetic
phase of the CE type coexist with the ferromagnetic
phase, which implies that the electron phase separation
in manganitesisnot only related to a statistical occupa:
tion of sublatticeA, but that it also depends on the com-
petition between superexchange interactions and
charge ordering. The latter factor is aso significantly
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influenced by even dlight changes in local structure on
the level of thefirst coordination sphere [43].

In this context, it was of interest to study in more
detail the physicochemical properties of cation-ordered
Ba-substituted manganites. This investigation was
devoted to the PrBaMn,O, system, which was charac-
terized with respect to the chemical composition, crys-
tal structure, magnetic and magnetotransport proper-
ties, and the stability of the ordered state on heating.

2. EXPERIMENTAL METHODS

The initial cation-ordered compound with the for-
mula PrBaMn,Og was obtained by means of a two-
stage synthesis. In the first stage, cation-disordered
ProsoBansoMnO; was synthesized using the conven-
tional ceramic technology in air at 1550°C and then
reduced by heating in vacuum at 800°C for 24 h to
obtain the O, 5, phase:

ProsBagsMnO; + 0.2Ta
I PFO_SBaO'5M n02_50 + OlTaZO5

Aswill be shown below, the O, 5, phaseis character-
ized by the ordered arrangement of the Pr¥* and Ba&?*
cations in the (001) planes alternating in the [001]
direction. As aresult, the unit cell of this phaseis dou-
bled, and the phase with double unit cell will be
denoted below “Og." At the second stage, the anion-
deficient PrBaMn,O; was oxidized in air at 800°C for
5 h to obtain a stoichiometric O phase. Then, the sto-
ichiometric cation-ordered PrBaM n,Og manganite was
subjected to isochronous step annealing in air for 10 h
at 1100, 1200, and 1300°C.

The chemical composition of samples was studied
by Auger electron spectroscopy (AES) on a PHI Model
660 scanning Auger microprobe. The measurements
were performed in high vacuum before and after clean-
ing the sample surface with an Ar* ion beam.
The microstructure of all samples was studied on a
NANOLAB-7 scanning electron microscope. The
quantitative content of chemical elements was deter-
mined and their homogeneous distribution was checked
using two complementary X-ray microprobes: MS-46
(wavelength-dispersive X-ray spectrometer) and sys
tem 860-500 (energy-dispersive X-ray spectrometer).
Prior to measurements, the samples were degreased by
ultrasonic rinsing in ethanol for 5 min. The oxygen con-
tent was determined by thermogravimetric analysis
(TGA). Thus, the chemical formula of the synthesized
compounds could be written as Pry5,Bay50MNO;. g1
and PrBaMn, Oy , (> for the O3 and O4 phases, respec-
tively.

The structure of samples was studied by X-ray dif-
fraction at room temperature on a DRON-3 diffracto-
meter using CrK,, radiation filtered by a graphite mono-
chromator. The measurements were performed in the
angle interval 10° < 26 < 100° at a step of A6 = 0.03.

(D)
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The degree of ordering A for the Pr3* and Ba?* cations
for all compounds [PryBa; _gp[Pr; _{Bag]gMn,Og was
determined from an analysis of the intensity of super-
structural (0 0 1/2) reflection and calculated as

A = (2g—-1) x 100%, 2

where []p and []g are the crystallographic positions of
Pr and Ba, respectively, and g isaquantity varying from
0.5 for fully disordered (A = 0%) to 1 for completely
ordered (A = 100%) samples.

The dynamic magnetic susceptibility x was mea-
sured in atemperature interval from 77 to 350 K using
a mutual induction bridge at an alternating magnetic
field frequency of 1200 Hz. The Curie temperature T
was determined at a minimum of the derivative of x
with respect to the temperature (dx/dT). The resistivity
was studied in atemperature interval from 77 to 350 K
using the standard four-point-probe technique and the
samples with ultrasonically applied indium eutectic
contacts. The negative isotropic MR was determined as

- () =P, 100%
MR = (=m0 100%, 3

where p(H) and p(0) are the resistivities measured in a
magnetic field of H = 9 kOe and in the absence of an
applied magnetic field.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The oxygen content in all samples was determined
by TGA. It was established that the anion-deficient cat-
ion-ordered Oy annealed in air at 300-800°C converts
into a stoichiometric Oy phase with retained ordered
arrangement of the Pr3* and Ba?* cations in the (001)
planes. The subsequent step annealing in air at
900-1300°C did not change the oxygen content in the
O phase (Fig. 1). According to the TGA data, the
annealing of a cation-ordered PrBaMn,Og (A = 100%),
inair for 3 h at 900°C changed the sample mass by less
than 0.06%.

Analysis of all samples by AES did not revea any
elements other than the main components Pr, Ba, Mn,
and O. Figure 2 shows the typical AES spectrum of a
sample of cation-ordered PrBaMn,Og (A = 100%). The
ratio between cationsin all caseswas1:1: 2 (towithin
the measurement accuracy). The AES measurements
were performed in high vacuum before and after clean-
ing of the sample surface with a beam of high-energy
Ar* ions. The presence of a peak of carbon (C) in the
differential spectrum of the initial sample (Fig. 2a) is
explained by the adsorption of CO, from air on the
manganite surface. This impurity peak disappears upon
the Ar* ion bombardment of the sample surface (Fig. 2b).
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Fig. 1. TGA data for a cation-ordered PrBaMn,Og sample
(A =100%).
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Fig. 2. Differential AES spectra of a cation-ordered
PrBaMn,Og sample (A = 100%) measured (8) before and

(b) after cleaning of the sample surface with abeam of high-
energy Ar' ions.

The sample morphology and the homogeneity of
distribution of the component elementswere studied by
scanning electron microscopy (SEM). A typical SEM
micrograph of a cation-ordered PrBaMn,Og (A =
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Fig. 3. Typical SEM micrograph of a cation-ordered
PrBaMn,Og sample (A = 100%).

100%) sample is presented in Fig. 3. The results of
SEM measurements showed that the initial stoichio-
metric cation-disordered Prys,Bay0MNO; sample is
characterized by the average grain size (IDC= 5 pum),
whileal cation-ordered PrBaMn,O, samples (irrespec-
tive of the degree of ordering A contained nanodimen-
siona grains (IDCx 300 nm). By “grains” we imply the
homogeneous regions separated from each other by
continuous boundary surfaces. The nanograins com-
bine to form a certain mosaic structure, which is com-
mon for the entire polycrystalline sample. As can be
seen from Fig. 3, the grains exhibit a certain size distri-
bution. It was a so established that all samplesare char-
acterized by a homogeneous distribution of chemical
elements corresponding to the nomina chemica for-
mula PrBaMn,Og. The grain size determines, to a cer-
tain extent, the properties of the crystal structure. A
decrease in the grain size to the nanodimensional level
is accompanied by a certain decrease in the unit cell
volume, which is explained by an increase in the forces
of surface tension relative to the bulk elastic forces. It
was also concluded that the sequential “deep” redox
reactions are capable of significantly modifying the
solid surface morphology [44].

M ost substituted manganites possess adistorted unit
cell, which is aresult of decreasing symmetry relative
to the initial cubic. There are two commonly accepted
factors responsible for the distortion of the oxygen
octahedron in MnQg: (i) amismatch between the effec-
tive ion radius and the cavity size (size effect) and
(i) the Jahn-Teller effect inherent in Mn® ions in a
high-spin state (S= 2). In the former case, a minimum
free energy of the crystal structureis achieved viarota-
tion of the MnOg octahedron about the unit cell axes,
while in the second case the energy is minimized at the
expense of deformation of the MnOg octahedron. A
rotation around the [100], [110], and [111] axesleadsto
tetragonal, orthorhombic, and rhombohedral distortion,
respectively. The two factors may superimpose and act
simultaneously [45].
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According to the X-ray diffraction data, the initial
cation-disordered Pr, 5Ba, 5,MnO; manganite at room

temperatureis a cubic perovskite (SG = Pm3m, Z=1)
with the unit cell parametersa = 3.901 A (V =59.37 A3).
The X-ray diffractograms revealed no impurity or
superstructural reflections. The presence of a cubic
symmetry was indicative of a statistical distribution of
cations in the crystals structure. All the cation-ordered
PrBaMn,O, samples exhibited a tetragonal distortion
(SG = P4/mmm, Z = 2), which wasrelated to the order-
ing of the Pr®* and Ba?* cationsin the (001) planes and
doubling of the cell in the [001] direction. The unit cell
parameters of a cation-ordered PrBaMn,O; sample
annealed in air for 5 h at 800°C are as follows: a =
3.900A, c=7.775 A (V = 118.26 A3). Direct evidence
for the ordering of cations in this compound was the
presence of superstructural reflectionsin the X-ray dif-
fractograms. Additional evidence was provided by the
results of previous experiments using the methods of
electron diffraction and high-resolution electron
microscopy [22]. The appearance of ordering of the
Pr3* and Ba?* cations leads to a decrease (by one for-
mula unit) in the unit cell volume. The cation-ordered
PrBaMn,Og samples possess a smaler comparable unit
cell volume than the cation-disordered Pr; 5)B&,5,MNO;,
and this volume depends on the degree of ordering in
sublattice A. The main structural feature of these cat-
ion-ordered compounds is the alternation of MnO,
planes with PrO and BaO planes.

The degree of ordering of the Pr®* and B&?* cations
was determined using dataon the intensity of the super-
structural (0 0 1/2) reflection relative to that for the ini-
tial cubic cell. For CrK, radiation, thisreflection is sit-
uated at 26 = 17° (Fig. 4). The intensity of this reflec-
tion for the initial cation-disordered Pry5,Ba;50MNO;
compound synthesized using the conventional ceramic
technology and for the cation-ordered PrBaMn,Oq
sample annealed in air for 10 h at 1300°C was zero.
Therefore, the degree of ordering in these samples was
also A = 0%. The cation-ordered PrBaMn,Og sample
annealed inair for 5 h at 800°C exhibited the maximum
degree of ordering: A = 100%. For the cation-ordered
PrBaMn,O,; samples annealed in air for 10 h at 1100
and 1200°C, the degree of ordering had intermediate
values of A = 70 and 50%, respectively. Thus, an
increasein the temperature of annealing leads to degra-
dation of the ordered state up to the complete disorder-
ing in the limit at 1300°C. As can be seen from Fig. 4,
adecrease in the degree of ordering is accompanied by
anincreasein the unit cell volume, which is manifested
by the shift of the Bragg reflection toward smaller 20
angles. It should be noted that the cation states in the
system under consideration are reversible.

Figure 5 shows the temperature variation of the
dynamic magnetic susceptibility x and its derivative with
respect to temperature (dx/dT) for the cation-ordered
PrBaMn,O, samples with various degrees of ordering.
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Fig. 4. Room-temperature X-ray diffractograms showing

superstructural (0 0 1/2) reflections for the cation-ordered
PrBaMn,Og sampleswith A= 0 (a), 70% (b), and 100% (c).

The initia cation-disordered Pr;5,Ba,5,MnN0O; is a fer-
romagnet with T = 140 K. The ordering of cations
leads to a sharp increase in T, which reaches T =
320K for cation-ordered PrBaMn,Og with A = 100%.
The samples with A = 50 and 70% are characterized by
Tc= 166 and 306 K, respectively. In addition, the latter
partly ordered samples exhibit anomalies in the region
of 180 K, which are related to the low-temperature fer-
romagnetic phase. Thus, the step annealing of cation-
ordered PrBaMn,Og samples leads to degradation of
the high-temperature ferromagnetic phase and a
decrease in the degree of ordering, which corresponds
to restoration of the initial magnetic properties.

Figure 6 shows the temperature dependence of the
resistivity and MR (measured at H = 9 kOe) for cation-
ordered PrBaMn,O, samples with various degrees of
ordering. All sample exhibit the metal—dielectric transi-
tion and MR peaks dlightly below T.. A decreasein the
degree of ordering is accompanied by depression of the
transition temperature and leads to the growth of both
resistivity and MR. For the completely cation-ordered
PrBaMn,O, sample (A = 100%), the MR peak at T =
311 K amounts to approximately 10%, whereas the
completely cation-disordered sample (A =0) asMR =
66% at T = 137 K. This property (MR peak observed
above room temperature) makes cation-ordered
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Fig. 5. Plots of the (a) dynamic magnetic susceptibility x
and (b) its derivative dy/dT versus temperature for (1) the
initial cation-disordered Prg50Bag spMnO3 and (2-5) cat-
ion-ordered PrBaMn,Og samples with A = 0 (2), 50% (3),
70% (4), and 100% (5).

PrBaMn,Og; manganites promising materialsfor practi-
cal applications.

Thereis a certain correlation between the degree of
ordering of the Pr3* and Ba?* cations, the unit cell vol-
ume, and the Curie temperature. As can be seen from
Fig. 7, an increase in the degree of ordering is accom-
panied by a correlated decrease in the unit cell volume
and an increase in the Curie temperature.

In order to explain the existence of ametallic ferro-
magnetic state in substituted manganites, Zener [46]
and De Gennes [47] developed the so-called double
exchange model. The main function in this mechanism
is performed by partly collectivized (itinerant) e, elec-
trons, which pass (without their changing spin orienta-

tion) from Mn®* (t3,€;, S=2) to Mn* (t3,, S= 3/2) via

O? anions. The total spins of fully localized tgg elec-
trons are polarized by the jumps of collectivized g,
electrons and the material becomes ferromagnetic
below Tc. In addition to the Mn**/Mn** ratio, the mag-
netic properties of manganites are determined to a con-
siderable extent by the following parameters: (i) the aver-
age ion radius [M,of the perovskite sublattice A [48],
(i) the variance o2 of the radii of chemical elements
occupying sublattice A [49], and (iii) average Mn—O
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Fig. 6. Plots of the (a) resistivity and (b) magnetoresistance
(measured at H = 9 kOe) versus temperature for cation-
ordered PrBaMn,Og samples with A = 0 (1), 50% (2),
70% (3), and 100% (4).

bond length [50]. As arule, a decrease in the average
radius [M,(Jand an increase in the variance o2 and the
Mn-O bond length lead to adecreasein Te.

The condition that the ratio Mn®*/Mn** is close to
unity determines the concentration boundary of the
transition from ferromagnetic to antiferromagnetic
state [51]. For this reason, the spontaneous magnetic
moment and the Curie temperature for such compounds
are somewhat lower than the possible theoretical val-
ues. As the relative content of Mn** ions increases, the
manganite state changes from ferromagnetic to antifer-
romagnetic and dielectric. According to the Good-
enough—Kanamori empirical rules [52], the closer the
average Mn—O—-Mn bond angle to 180°, the higher the
intensity of exchange interactions. The local distribu-
tion of the Mn—O-Mn bond angles is determined to a
considerable extent by the character of cation arrange-
ment in sublattice A. A statistical distribution of cation
leads to strong local distortions in the distribution of
Mn-O-Mn bond angles, which leads to a decrease in
the intensity of exchange interactions. For this reason,
alow Curie temperature (T¢ = 140 K) is observed for
the cation-disordered sample.

The ordering of the Pr3* and B&* cations in sublat-
tice A leads to two consegquences. (i) an increase in
periodicity of distribution of the Mn-O-Mn bond
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Fig. 7. Plots of the (a) unit cell volume V and (b) Curie tem-
perature T versus degree of ordering for cation-ordered

PrBaMn,O.

angles (and, probably, an increase in the average value
of this angle) and (ii) a decrease in the average Mn—O
bond length (asaresult of decreasing unit cell volume).
These changes|ead to asignificant increasein the Curie
temperature (according to the experimental data, up to
Tc = 320 K). Intermediate ordered states are character-
ized by intermediate T values, adecrease in the degree
of ordering leading to adepression of the Curie temper-
ature. The increase in the average value and the period-
icity of distribution of the Mn—-O—-Mn bond angleand in
the average length of the Mn—O bond leads to an
increase in the integral of e, electron transfer and,
hence, favors the charge carrier transport. As a result,
the critical temperature of the metal—dielectric transi-
tion also increases with the degree of ordering. The
peak of MR aso exhibitsashift. Thus, thereisacertain
correlation between the spin and charge states.

It should be noted that the nature of the cation-
ordered state formation in Ba-substituted manganitesis
by no means completely clear, since no such ordering
has been observed for the other substituents such as Ca
and Sr. At present, we may only ascertain that there are
two factors favoring this ordering: (i) the appearance of
alarge number of oxygen vacanciesin theinitially dis-
ordered Pr5,Ba, 50MNnO; compound and (ii) adecrease
in the average size of ceramic grains down to the nano-
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dimensional level. This decrease in the grain size leads
to anincreasein the forces of surfacetension relativeto
the bulk elastic forces, which produces an additional
compression equivalent to external pressure.

4. CONCLUSIONS

This paper presents the results of an experimental
investigation of the chemical composition, crystal
structure, magnetic and magnetotransport properties of
cation-ordered manganites of the PrBaMn,Og System.

Using atwo-stage synthesis, a series of PrBaMn,Og
manganiteswith an ordered arrangement of the Pré* and

Ba?* cationswere obtained. The stability of thisordered
state was studied on heating to elevated temperatures.

The physical properties of the cation-ordered
PrBaMn,Oz manganites obtained using the two-stage
synthesis significantly differ from the properties of cat-
ion-disordered Pr,5,Bay 50MNO; synthesized by means
of the conventional ceramic technology and depend on
the degree of ordering of the Pr3* and Ba?* cations.

In particular, the cation-disordered Prg 50Ba; 50MNO;

has a cubic perovskitelike unit cell (SG = Pm3m,
Z = 1), while cation-ordered PrBaMn,Og has a tetrago-
nal unit cell (SG = P4/mmm, Z = 2). The average grain
size in this cation-ordered compound is about 300 nm.
Cation states in the system under study are reversible.
The cation-ordered PrBaMn,Oq state remains stable
upon heating in an oxidizing medium (P[O,] = 1 bar)
up to 1300°C. Asthe degree of ordering of the Pr3* and
Ba?* cations decreases, the corresponding unit cell vol-
ume grows.

The ordering of the Pr3* and Ba?* cations leadsto a
significant increase in the critical temperatures of phase
trangitions. In particular, PrBaMn,Og with the maxi-
mum degree of ordering (A = 100%) isametallic ferro-
magnet with the Curie temperature T = 320 K,
whereas T of afully disordered sampleis on the order
of 140 K. The samples with intermediate degrees of
ordering contain two magnetic phases. Slightly below
Tc, al such samples exhibit ametal—insul ator transition
and show a peak of the magnetoresistance, which
amounts to approximately 10 and 65% in a magnetic
field of 9 kOefor thefully ordered PrBaMn,O, and dis-
ordered Pr, 5sBa, 5,MNO;, respectively. The results can
be interpreted in terms of the Goodenough—Kanamori
empirical rules for indirect exchange interactions with
alowance for the degree of ordering of Pr** and Ba&*
cations. It is suggested that such indirect exchange
interactions Mn*—O-Mn?* are positive in the orbital-
disordered phase in the case of octahedral coordination
of manganese ions.
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ORDER, DISORDER, AND PHASE TRANSITIONS

IN CONDENSED SYSTEMS
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Abstract—The paper devel ops concepts of the structure of pure amorphous metals and atomic mechanisms of
its formation. It is shown that a stable percolation cluster of interpenetrating and contacting icosahedra whose
vertices and centers are occupied by atomsis formed under the conditions of isothermal annealing of instanta-
neously supercooled iron melt only below the critical temperature ~1180 K identified with the glass transition
temperature. The duration of isothermal annealing up to the formation of the icosahedral percolation cluster
does not exceed ~1.5 x 107! sat 900-1180 K. Thetime of the beginning of homogeneous nucleation was found
to be minimum at the critical temperature above which stable icosahedral percolation cluster did not form.
Arguments are provided in favor of the assumption that the formation of icosahedral percolation cluster inter-
fereswith the beginning of crystallization. A quantitative model is suggested to describe the diffusion mobility
of atoms in metallic glasses. In this model, the mean-square displacement of atoms is represented as the sum
of the contributions of the linear (Einstein) and |ogarithmic components. The latter appears because of irrevers-
ible structural relaxation. Theicosahedral percolation transition was shown to change the activation parameters

of the model jumpwise. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In recent years, more and more data have been col-
lected in favor of the concept first formulated in [1] in
terms of the free volume model. According to this con-
cept, percolation transitions play a fundamenta rolein
structural self-organization of amorphous materials
close to the glass transition temperature T,. A fractal
percolation cluster is formed in a disordered system
(melt or glass) from local atomic configurations of the
same type (Delaunay simplexes with an increased or
decreased density of filling the space with atoms [2],
icosahedra interpenetrating and contacting with each
other [3, 4], and defects in the network of covalent
bonds [5]). The formation of a percolation cluster is
evidence of system transition into anew structural state
(from liquid to vitreous or vice versa, from vitreous to
liquid) and, as a consequence, a change in atomic
dynamics. Recently, it was shown theoretically on the
basis of a thermodynamic description of structural
defects [5] that glass transition in amorphous SO,
could betreated asapercolation transition in the system
of network defects presumably consisting of defect SIO
molecules, which substantially influence diffusion and
viscous flow [6]. The suggested approach can in princi-
ple be extended to glass formation in other materials.
Its development, however, requires identifying the
structural elements of percolation clusters for every
type of amorphous materials and studying their thermo-
dynamic parameters. In the majority of cases, thisisa

difficult problem that cannot be solved analytically. For
instance, as distinct from the structure of amorphous
SiO,, which, by virtue of the special features of local
bondsin it, can be treated as atopol ogically disordered
three-dimensional network comprising SiO, tetrahedra
connected by bridge oxygen atoms, the structure of
amorphous metals cannot be given such an unambigu-
ous description and represents a complex mosaic of a
fairly large set of coordination polyhedra of different

types[4].

Currently, one of the most effective approaches to
studying the principles of the structural organization of
disordered systems is computer simulation, which
opens up possibilities for analyzing the atomic struc-
ture and dynamics and the mechanisms governing the
space-time evolution of all system particles [7-11].
This approach inspires certain hopes for constructing a
complete theory of metallic glass structure formation
from melts and their rearrangement during structural
relaxation. For instance, studies of the glass transition
of iron melt by molecular dynamics simulation with the
Johnson pair interatomic interaction potential [12] at a
constant volume [13] and, more recently, at a constant
pressure [14] showed that a correlation of local atomic
stresses appeared below ~1400-1600 K. This was evi-
dence of atomic ordering in the liquid phase followed
by glass transition. These spatial correlations of local
atomic stresses were accompanied by substantial
changes in the dynamic properties of the model. At
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the same time, no significant structural reorganization
was observed; the authors only mentioned an important
phenomenon, namely, a transition between bond
orientation ordering types in the supercooled liquid
phase [13].

A structural model of the glass transition of pure
metalswas suggested in [3, 4]. According to thismodel,
the atomic structures of metallic melts and glasses are
fundamentally different. It was shown in [4] by molec-
ular dynamics simulations with the Pak—Doyama pair
interatomic interaction potential [15] that a central role
inthe structural organization of the amorphous phase of
pureiron is played by the formation (at the glasstransi-
tion temperature, T, ~ 1180 K) and growth of a perco-
lation cluster of interpenetrating and contacting icosa-
hedra whose vertices and centers are occupied by
atoms. Interpenetrating icosahedra are those sharing
seven atoms, and contacting ones share three (face con-
tact), two (edge contact), or one (vertex contact) atoms.
The mechanisms that were shown to govern the self-
organization of the icosahedral structure during glass
transition well correlated with the temperature depen-
dences of the main thermodynamic characteristics of
themode [4]; certain features of these dependenceswere
characteristic of a second-order phase transition [16].
These mechanisms also explained the behavior of ther-
modynamic characteristics at the microscopic level.
Theresults made it possible to suggest [4] that afractal
cluster that consists of icosahedra incompatible with
tranglational symmetry and comprises more than half
of all the atoms plays the role of a binding framework
that hinders crystallization. It isthe basic element of the
structural organization of the solid amorphous state of
pure metals that radically distinguishes it from melts.
Because of the closeness of the Johnson and Pak—
Doyama pair potentials, it is also important that a tem-
perature of 1460 K, below which size fluctuations of
small-sized clusters comprising icosahedra interpene-
trating and contacting with each other increase
sharply [4], isfairly close to the temperature at which
local atomic stresses begin to correlate [13, 14].

A more detailed quantitative analysis of structural
rearrangements and the influence of the icosahedral
percolation transition on the diffusion mobility of
atoms and nucleation with subsequent crystallization
can be performed by conducting isothermal annealings
of an instantaneously supercooled melt close to the
glass transition temperature.

In this work, we use the results of a series of com-
puter molecular dynamics experiments to study the
influence of the isothermal annealing temperature on
the kinetics of the icosahedral percolation transition
(which we identify with glasstransition) and the begin-
ning of homogeneous nucleation in a supercooled iron
melt. We also consider the influence of the icosahedral
percolation transition on the activation parameters that
determine the diffusion mobility of atoms.
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2. DESCRIPTION OF THE MODEL

Theinitial molecular dynamics model of liquid iron
was constructed at T = 2300 K and had a density of
7800 kg/m? (the density was set in conformity with the
data on a-Fe [17] with about a 1% correction for the
amorphous state). The initial structure was a random
close packing of atoms. The interaction between the
atoms was described using the Pak—Doyama empirical
pair potential [15]

o(r) = —0.188917(r — 1.82709)"

(1)
+1.70192(r — 2.50849)* — 0.198294 eV,

wherer isin angstroms. The potential cutoff radius (the
distance at which the potential and its first derivative
smoothly vanished) was taken to be r, = 3.44 A. The
potential parameters were determined from the data on
the elastic properties of a-Fe. The use of this potential
for modeling liquid and amorphous iron [18-20] and
iror—metdloid alloys [21, 22] provided close agreement
between calculation results and experimenta structural
characterigtics. The model contained 100000 atoms in a
basic cube with periodic boundary conditions. The
velocities of atomsat theinitial time were set according
to the Maxwell distribution. Molecular dynamics simu-
lations were performed by numerically integrating
equations of motion in time steps of At =1.523 x 10 s
using the Verlet algorithm [23]. The system was main-
tained at a fixed temperature for 3000 time steps (iso-
thermal conditions). The temperature was then allowed
to change, and thermal equilibrium at a constant inter-
nal energy (adiabatic conditions) was attained during
the 3000 time steps.

Next, the system was studied under isochoric condi-
tions over the temperature range 1240-900 K in steps
of 20 K. The procedure for modeling involved an
instantaneous drop in melt temperature to the required
value followed by isothermal annealing until a crystal-
line nucleus of acritical size beganto grow rapidly. The
structural characteristics of the system were measured
cyclicaly every 5000At, or 0.7615 x 10 s. Each
annealing cycle at the required temperature took atime
of 1000At under isothermal and 4000At under adiabatic
conditions. The thermodynamic characteristics of the
system were averaged over atime period of 2000At at
the end of each cycle. Notethat the temperature T of the
system under adiabatic conditions and the required
temperature of measurements (the temperature of the
“environment”) did not coincide exactly. After every
cycle, the system was driven to the state with T= 0 K
by the method of static relaxation. The atoms then
occupied equilibrium positionsin local potential wells,
and their mean-square displacements were cal culated.

Theinstant of the formation of a crystalline nucleus
of acritical size that began to grow rapidly and of an
icosahedral percolation cluster was identified by two
methods, namely, using statistical geometric analysis
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based on Voronoi polyhedra and cluster analysis based
on percolation theory; these methods are described in
detail in [3, 4, 24, 25].

3. RESULTS AND DISCUSSION

We found that, in the model of an instantaneously
supercooled iron melt, the formation and subsequent
growth of apercolation cluster built of icosahedrainter-
penetrating and contacting with each other whose ver-
tices and centers are occupied by atoms occurred only
below the critical temperature Ty ~ 1180 K under iso-
thermal conditions (Fig. 1). Note that this temperature
coincided with the temperature of the formation of
icosahedral percolation cluster during glass transition
of iron melt in the molecular dynamics model under the
conditions of linear cooling at arate of 4.4 x 1012 K/s[4].
In addition, the glass transition temperature coincided
with the temperature at which the time of annealing up
to the beginning of homogeneous nucleation was
minimum.

Thistime sharply increases and the number of icosa-
hedrain the system decreases as the temperature grows
(T>T,). No stable percolation cluster of interpenetrat-
ing and contacting icosahedra does not form then.

The beginning of homogeneous nucleation at tem-
peratures below the glass transition temperature (T <
Ty) is always preceded by the formation and growth of
an icosahedral percolation cluster. Importantly, the
duration of annealing before the formation of an icosa-
hedral percolation cluster did not exceed 1.5 x 10 s
in the temperature range studied, 900-1180 K. Thefor-
mation of an icosahedral percolation cluster was
observed either at thefirst (t=0.7615 x 10 s) or at the
second (t = 1.523 x 10 s) cycle of measurements
counting from the instant of the beginning of isother-
mal annealing.

The time up to the beginning of homogeneous
nucleation, the size to which the icosahedra percola-
tion cluster manages to grow, and the total number of
icosahedra in the system increase as the temperature
decreases. We found that the fractal icosahedral cluster
and the total number of icosahedra continued to grow
for some time after the beginning of homogeneous
nucleation. Thisis evidence that the formation of crys-
talline nuclei and their growth at early stages occur by
addition of atoms situated in “pores’ of fractal icosahe-
dral cluster rather than by absorption of icosahedra. The
presence of a fractal cluster stable toward decompo-
sition limits the mobility of atoms that do not partici-
pate in constructing it. This restrains homogeneous
nucleation.

In order to determine the character and strength of
the influence of icosahedral percolation transition on
the diffusion mobility of atoms, we constructed the
kinetic curves for the mean-square displacements of
atoms close to the T, temperature. It follows from an
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Fig. 1. Isotherma kinetic diagram of the beginning of
homogeneous nucleation in the molecular dynamics model
of an instantaneously supercooled iron melt (rhombuses).
Pentagons correspond to the formation of a stable icosahe-
dral percolation cluster. No stable icosahedra percolation
cluster is formed at temperatures above Ty ~ 1180 K
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Fig. 2. Kinetics of mean-square displacements of atomsin
the molecular dynamics models of liquid and amorphous

iron (from T = 0.7615 x 10~ sto the beginning of crystal-
lization) at varioustemperatures (symbols) and approximat-
ing curves obtained using the model that takes into account
thekinetics of irreversible structural relaxation (solid lines).

analysis of the data obtained in computer experiments
and shown in Fig. 2 that the time dependence of the
mean-square displacement of atoms at temperatures
higher than T, is linear in conformity with the Einstein
equation [Ar?(t)0= 6Dt, where D is the self-diffusion
coefficient. Below T,, this dependence acquires an
essentially nonlinear transition character at the initia
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annealing stages, which is especially noticeable when
the temperature decreases, and gradually becomes
steady-state and linear. The appearance of the nonsta-
tionary stage in the kinetics of the mean-square dis-
placement of atoms at T < T can only be related to the
formation of icosahedral percolation cluster, that is, to
the transition of a supercooled melt into the metallic
glass state and subsequent structural relaxation.

An analysis of the kinetics of transition processes
and related mean-square displacements of atoms at
temperatures below the glass transition temperature
was performed using the activation energy spectrum
model [26] for irreversible structura relaxation [27].
According to [27], structural relaxation can be treated
as a sequence of spatially isolated irreversible elemen-
tary thermally activated rearrangements in certain
structure regions, which are relaxation centers with dis-
tributed activation energies. The relaxation centers are
physically distinguished structure regions with excess
free volume. There are stoppers that restrain local rear-
rangements of atomic configurations in adjacent struc-
tureregions[27]. Of all the coordination polyhedrathat
we encounter in closely packed structures (both ordered
and disordered), the icosahedron is the most compact
and energetically stable. Relaxation centers should
therefore be situated outside both fractal and smaller
icosahedral clusters, that is, in their pores. Thermally
activated stopper removal resultsin free volume redis-
tribution in volume Q adjacent to a relaxation center,
which increases the mobility of neighboring atoms and
thereby activates the second stage of the process. This
is the cooperative displacement of atoms in the sur-
rounding region, which can be treated as local viscous
flow [27]. No matter what the character of the activa-
tion energy spectrum, structural relaxation continuesup
to the beginning of crystallization, which resultsin the
cutoff of the spectrum near the activation energy E..
This energy is some effective parameter of the model
that we use.

The kinetic equation for the spectral density (distri-
bution function) of relaxation centers n(E, t) has the
form

dn _ _ O En
Gt = VoePIT e

where v, is the characteristic frequency on the order of
the Debye frequency. Equation (2) is central to the acti-
vation energy spectrum model [26]. The integration of
this equation under isothermal annealing conditions
allows us to track changes in the spectral density of
relaxation centers with time. After annealing at temper-
ature T for time T, the spectral density of relaxation cen-
ters takes the form

n(E, 1) = no(E)O(E, 1), ©)
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where ny(E) is the initial spectral density of relaxation
centers and

O(E 1) = exp[—vor exp %—%D}, (@)

is the characteristic function of isothermal annealing.
The time of preannealing in our computer experiment
wasT =0.7615x 10! s,

If the ny(E) functionisfairly flat, that is, if it changes
much more slowly than the exponential function
O(E, t) varies, annealing development is largely deter-
mined by the exponential term. During annealing, the
O(E, 1) curve shifts along the E axis but virtually does
not change its shape of a step function, which sharply
increases from zero to one near the characteristic
energy E, = kgTIn(vgt) [26] corresponding to the inflec-
tion point. It follows from the definition of E, that vir-
tually all the relaxation centers with activation energies
E < E, comeinto action by thetimet. Asafirst approx-
imation, the ©(E, t) dependence can be described by
the Heavyside step function [28] ©(E — Eg). Impor-
tantly, using this approximation does not cause alossin
the accuracy of structural relaxation kinetics calcula-
tions. To show this, let us consider the exact solution to
the problem.

Time t will be counted from the moment when pre-
annealing during time T ends. The timet dependence of
the spectral density of relaxation centers then takes the
form

n(g,t) = n(E, 1)O(E, 1)

= n®ep|vo(r+ep =l

According to the superposition principle, the total den-
Sity of relaxation centers that remain intact by the time
t is given by the equation

Ngc(t) = Ino(E)
0 (6)

E
X exp[—vo(r +t)exp %—kB—TE} dE.

It follows that the mean-square displacement of
atoms under the conditions of irreversible structural
relaxation can be written as

()0 = 3r°Q(Npe(0) — Npe(t)) +6Dt,  (7)

where dr? is the mean-sgquare displacement of atoms
that accompanies the thermally activated removal of
one relaxation center.
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According to the popular hypothesis about the acti-
vation energy spectrum of irreversible structural relax-
ation in metallic glasses, this spectrumis generally uni-
form and has no significant singularities [27]. We can
therefore assume that ny(E) = n, = const to check (7)
(Fig. 3). The upper limit of the integral in (6) can con-
veniently bereplaced by E,,;, — o; (6) then takesthe
form

Vo(T+1)
exp(—x
NRC(t) = nokBT I %dx
(T D)/t (8
_ . T+ ID
= nokBT[El (—vy(T +1)) —Ei D——D},
where the notation
tmac = Vo €XP(Enad kg T)
is used and
_Ei(—x) = EXP(=X) 4 9)
|

X

istheintegral exponential function [28]. Under the con-
ditions of the problem under consideration (v, ~ 10*3 s,
and 1 =0.7615 x 107! s), we have —Ei(—vy(T +1)) <1034
The first term in (8) can therefore be ignored and the
second term can be written using the known expansion
of theintegral exponential function into a series[28],

Nrc(t) = —ngkgT

[

x C+Ingt;q]+ z(__l)iEFL'Di} (10)

O it Dt

max A
i=1

where C = 0.5772 is the Euler constant. As E. < E .,
the argument under the sum sign in (10) can be esti-
mated as avalue much smaller than one. It followsthat,
at an arbitrary time moment preceding crystallization,
we have

Nee(0) = Nee(t) = nokeTIn( + 1

(11)
This alows Eq. (7) for the mean-sgquare displacement
of atoms to be rewritten as

A3t = 8r°ngQkeTInG + 15+ 6Dt.

4 (12)

In Fig. 2, the time dependences of the mean-square
displacement of atoms before the beginning of crystal-
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Fig. 4. Temperature dependence of the 6r2nOQ product.

lization at several temperatures after preannealing for
T=0.7615 x 107! s are shown by symbols and their
approximations according to (12), by solid lines. We
see that the model is in close agreement with the com-
puter experiment results. Similar cal culations were per-
formed for other temperatures between 1240 and 900 K
(the interval studied in this work) and for 1260 K (the
instant of the beginning of crystallization at this tem-
perature was not determined because of enormous real
time expenditures of molecular dynamics computa-
tions). Our analysis allowed us to obtain the tempera-
ture dependence of the product dr’n,Q (Fig. 4) and the
self-diffusion coefficient D (Fig. 5).
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Fig. 5. Temperature dependence of the self-diffusion coeffi-
cient.

Changesin the spectral density of relaxation centers
as the temperature increases are shown in Fig. 4 within
afactor of dr2Q. Since dr?Q weakly depends on tem-
perature, it follows from Fig. 4 that a sharp decreasein
the spectral density of relaxation centers occurs near T,
as the temperature increases. This is evidence of the
transition of the structure of the model system from the
glassy state to a supercooled melt.

Figure 5 shows that the temperature dependence of
the self-diffusion coefficient both above and below T is
well described by the Arrhenius equation D =
Doexp(—EdkgT). The self-diffusion activation energy Eg
and the preexponential factor Dy, however, change
jumpwise at T = T, because of the transition of a super-
cooled melt into the metallic glass state. The activation
parameters for the supercooled met and metdlic glassare

EM™ =105ev, D" =525 x 10° m¥sand E9 =
1.2 eV, D =2.05 x 105 m?/s, respectively.

4. CONCLUSIONS

A stable percolation cluster of interpenetrating and
coming into contact i cosahedrawhose vertices and cen-
ters are occupied by atomsis formed under isothermal
conditions in the molecular dynamics model of an
instantaneously cooled iron melt only at atemperature
below critical (~1180 K). We identify this temperature
with the glass transition temperature. The formation of
an icosahedral percolation cluster below this tempera-
ture occurs at the initial stages of isothermal annealing,
and the expectation time for the process does not
exceed 1.5 x 10 s. The critical temperature above
which no stable icosahedral percolation cluster is
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formed coincides with the temperature at which the
time of the beginning of homogeneous nucleation is
minimum. The time of the beginning of homogeneous
nucleation and the size of the cluster increase as the
temperature decreases. This substantiates the sugges-
tion that afractal cluster comprising icosahedrathat are
incompatible with trandational symmetry and are built
of more than half of all the atoms plays the role of a
binding framework that restrains crystallization and is
the basic element of the structural organization of the
solid amorphous state of pure metals that radically dis-
tinguishes it from melts.

We obtai ned an equation that correctly describesthe
influence of irreversible structura relaxation on the
kinetics of the mean-square displacements of atomsin
metallic glasses. The icosahedral percolation transition
in supercooled liquid iron was shown to cause a sharp
change in the activation parameters that determined the
diffusion mobility of atoms.
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Abstract—Magnetic and galvanomagnetic properties of single crystals of a new dilute magnetic semiconduc-
tor p-Sh, _,Cr, Tez (x =0, 0.0115, 0.0215) areinvestigated in atemperature range of 1.7-300 K. A ferromagnetic
phase with a Curie temperature of T = 5.8 (x = 0.0215) and 2.0 K (x = 0.0115) is detected. The easy magneti-
zation axis is paralel to the C; crystallographic axis. Analysis of the Shubnikov—de Haas effect observed in
these crystalsin strong magnetic fields leads to the conclusion that the hole concentration decreases as a result
of doping with Cr. Negative magnetoresi stance and the anomal ous Hall effect are observed in Cr-doped samples
at liquid helium temperature. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Layered semiconductors of the Sh,Te; type have a
rhombohedral structure (space symmetry group R3 m—
ng) with dyad axis C, and triad axis C,. Five-layered
packets of atomic layers Tel-Sb-Te’>~Sb-Te! (Te! and
Te? denote two possible positions of atoms in the lat-
tice) with a coval ent-ionic bond form the antimony tel-
luride lattice. A weak Van der Waals interaction is
observed between the five-layered packets (between
layers Te'-Te'). Atoms of the each subsequent layer are
located above the centers of the triangles formed by the
atoms of the preceding layer (i.e., the Te and Sb atoms
occupy the octahedral positionsin the structure).

Crystals of Sh,Te; always exhibit p-type conductiv-
ity due to the high concentration of charged point
defects of predominantly antistructural type (i.e., Sb
atomsoccupy the positions of Teatoms). The formation
of such defectsis due to weak polarity of Sb—Te bonds.

A change in the bond polarity upon doping changes
the concentration of point defects and, hence, the hole

concentration. Consequently, doping by an element of
a certain group of the Periodic Table may lead to either
adonor or acceptor effect irrespective of the number of
the group, since doping affects the polarity of the bond.
By way of example, we can mention In, which belongs
to group Il and acts as adonor in Sb,Te; [1, 2].

Compound Sh,Te; is a narrow-gap semiconductor
with an indirect forbidden bandgap E, = 0.25 eV (at
295K) and E; = 0.26 eV (at 4.2 K) [3]. The valence
band consists of the upper band of light holes, and the
lower band, of heavy holes, each of which is sixfold
degenerate. The Fermi surface for both bands is a six-
ellipsoidal surface [1, 4]. Anisotropy of the cross sec-
tions of the ellipsoids of the light hole band is n =
Sad Snin = 3.8, where S, and S, are the areas of the
maximal and minimal cross sections of an dlipsoid.
The angle of inclination of the ellipsoids to the basal
planein Sb,Te;is0 = 52.5°.

In dilute magnetic semiconductors, a small number
of magneticions (e.g., of transition metals or rare-earth
elements) are in a nonmagnetic matrix. The indirect

Frequency F of Shubnikov—de Haas oscillations, concentration P of light holesat T = 4.2 K, resistivitiesp,,a T=4.2K and
Pago & T =300 K, Hall mobility p, Hall concentration 1/eR,, of holesat T = 4.2 K, and experimentally determined chromium
concentrationin Sb, _,Cr, Teg

Sample F,T | P10%cm™ | pyo HQ M| Pag, HQ CM | 1, MV s | 1/eRy, 10° cm= | Cr, at %
Sh,Te; 54.7 34 38.8 260 0.103 125 0
Sh,_,Cr,Te; (x=0.0115) | 43.4 23 142 437 0.029 83 0.23
Sh, _,Cr,Te; (x=0.0215) | 46.2 2.6 106 314 0.066 9.9 0.43

1063-7761/05/10103-0528%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Temperature dependences of resistivity along the C, axis and (b) negative magnetoresistance for Sh, _,Cr,Tez single
crystals studied with different concentrations of chromium: 0.23 at % (1); 0.43 at % (2), and Sb,Te; (3).

exchange interaction of magnetic moments of the
impurity changes the optical, galvanomagnetic, and
magnetic properties of the origina semiconductor [5, 6].
An interesting manifestation of such an interaction is
ferromagnetism observed in dilute magnetic p-type
semiconductors. Hole-induced ferromagnetism was
observed for the first time in bulk crystals of
PbSnMnTe [7], i.e., in a semiconductor consisting of
IV-VI-group elements (IV-VI semiconductor). Sub-
sequently, manganese-doped epitaxial 111-V semicon-
ductor films (In, Mn)As on a GaAs substrate, aswell as
ferromagnetic films (Ga, Mn)As (seereviews[8, 9]).

Apart from academic interest in hole-induced ferro-
magnetism in dilute magnetic semiconductors, bright
prospects exist for application of this phenomenon in
spintronics (design of devices with controllable spin
transport). Bismuth and antimony tellurides are of spe-
cial interest since these compounds exhibit the highest
thermoelectric efficiency Z [10]. It has been discovered
recently that doping of Bi,Te; with iron increases the
Seebeck coefficient of this material [11, 12]. In addi-
tion, p-Bi,Te;(Fe) exhibits ferromagnetism at low tem-
peratures [11-14]. Subsequently, ferromagnetism was
also detected in Sh,_,V,Te; [15], Bi,_ MnTe; [16],
and Sh, _,Cr,Te; [17]. It should be noted that ferromag-
netism was not observed in Bi,_,GdTe; [18] or
Sb,_,Mn,Te; [19]. Here, we study the magnetic and
galvanomagnetic properties of single crystals of the
dilute magnetic semiconductor p-Sh,_,Cr,Te,;. For a
better understanding of the effect of chromium on the
properties of origina p-Sh,Te; crystals, the Shubni-
kov—de Haas effect was investigated.

2. MEASURING TECHNIQUE AND SAMPLES

Single crystals were grown by the Bridgman tech-
nigue from the components taken in the stoichiometric
ratio corresponding to the required composition
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Sh, _,Cr,Te;. The ingots can easily be cleaved aong
cleavage planes perpendicular to the C; axis, i.e., along
the (0001) planes, which are usualy parallel to the
ampoule axis. Samples with a characteristic size of 1 x
0.5 x 4 mm used for measurements were cut using the
electroerosion technique. Electric contacts were sol-
dered using the BiSb alloy.

The Cr concentration in specific samples was deter-
mined using aJJEOL 8621 electronic microanalyzer fol-
lowing magnetic and el ectric measurements on a given
sample. The measurements also revealed that chro-
mium is distributed uniformly over the sample. It was
found that the Cr concentration amounts to 0.23 and
0.43 at % in two doped samples, which corresponds to
x =0.0115 and x = 0.0215 in the formula Sb, _,Cr, Te;.

The temperature dependences of the resistance,
magnetoresistance, and Hall effect were measured by
the standard four-probe technique; the current was
directed along the C, axis. To separate the signal s asso-
ciated with the Hall effect and magnetoresi stance, mea-
surements were made for two directions of the mag-
netic field. The magnetic field up to 6 T was produced
by a superconducting solenoid and was directed at right
angles to the layers along the C; axis. The Shubnikov—
de Haas effect was measured in pulsed magnetic fields
up to 54 T with a pulse duration of 10 ms. Magnetic
measurements in the temperature range 1.7-300 K in
magnetic fields up to 5 T were carried out using a
SQUID MPMS-5S magnetometer (Quantum Design
Co., Ltd). Some parameters of the studied samples are
givenin table.

3. RESULTS OF MEASUREMENTS
3.1. Galvanomagnetic Properties

Resistivity p of all samples decreases upon cooling
and attains saturation at low temperatures (Fig. 1a). In

the temperature range 150-300 K, the p(T) O T™
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B, T

Fig. 2. Hall resistance p,, of Sb, _,CryTe; samples with a
chromium concentration of 0.23 at % (1) and 0.43 at % (2)
at T=4.2K. Theinset shows the deviation (anomalous Hall
effect) of the p,,(B) dependence (symbols) in weak mag-

netic fields from the linear dependence (solid lines).

M, x1073, A m3/mol

2 T T T T T
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Ok .
—1F .
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-2 -1 0 1 2
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Fig. 3. Magnetic field dependence of the magnetization of a
pure SboTes sampleat T =5K.

dependence with exponent m= 1.2 is observed. Devia-
tion from m = 1.5, which is typical of phonon scatter-
ing, is apparently due to additional scattering of holes
from ionized impurities and with the temperature
dependence of the effective mass in this temperature
range. Doping with chrome reduces the mobility (see
table), although the decrease is honmonotonic. The
mobility for a Cr concentration of 0.43 at % in the sam-
pleis higher than for a concentration of 0.23 at %. The
latter circumstanceis, in al probability, dueto different
amounts of uncontrollable defects in the samples,
which appear during their growth. Theresistancein Cr-
doped samplesincreases, dthoughitisdlightly lowerin
samples with ahigher Cr concentration. The resistance
in doped samples also increases due to additional scat-
tering of holes from localized magnetic moments of
chromium ions. The latter circumstance is confirmed
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by the existence of a negative magnetoresistance in
weak magnetic fields. By way of example, Fig. 1b
shows the magnetoresistance of a sample with a chro-
mium concentration of 0.23at % at T=4.2K. Inamag-
netic field of B= 1.5T, the p(B) dependence exhibitsan
anomaly shown by the arrow.

TheHall coefficient R, ispositivein all samplesand
increases with chromium concentration, which points
toward a decrease in the hole concentration. However,
it cannot be used for calculating the hole concentration
since bismuth and antimony tellurides contain two
groups of holes with different concentrations and
mobilities, which are unknown. For this reason, the
Hall coefficient in these semiconductors exhibits a
complex dependence on temperature and magnetic
field even in the absence of magnetic impurity [2, 20].
Thus, we used the Shubnikov—de Haas effect for esti-
mating the change in the light hole concentration upon
doping of Sh,Te; with chromium (see below). To com-
pare different samples, the table contains the values of
1/eR,, obtained at B = 0.2 T, which can conditionally be
referred to the“Hall concentrations’ of holes. The pres-
ence of amagnetic impurity of Cr led to the anomalous
Hall effect in the samples (see, for example, [21]). The
anomalous Hall effect can be written in the form

pxy = RHB+ Rap'OMv (1)

where R, is the ordinary Hall coefficient, R, is the
anomalous Hall coefficient, and M isthe magnetization.
Hall resistivity p,, as afunction of the magnetic field is
showninFig. 2. Theinset to Fig. 2 shows the deviation
of the p,,(B) dependence from the linear law (straight
lines) in weak magnetic fields due to the presence of the
anomalous Hall effect. The deviation is small since the
observed ferromagnetism is quite weak.

3.2. Magnetic Properties

Magnetic susceptibility x of theinitial Sb,Te; single
crystal isdiamagnetic, virtually independent of temper-
ature, and amounts to -8 x 1071° m3/mole in the princi-
pal crystalographic directions. The magnetic field
dependences of magnetization for Sb,Te;at T=5K are
showninFig. 3. Thedight deviation from theidea dia-
magnetic behavior for B =0 may be dueto the presence
of impurities in the crystal. For chromium, its concen-
tration would not exceed 1.4 ppm. Such an amount of
impurity may be contained in components from which
single crystals were grown.

Figure 4 shows the temperature dependence of the
magnetic susceptibility of two Sb, _,Cr, Te; samples per
chromium ion minus the diamagnetic background of
the matrix in the direction of the C; axisin a magnetic
field of B=10 mT. It can be seen that the Curie temper-
atureisTo=5.8and 2.0K for Cr concentrations of 0.43
and 0.23 at %, respectively. The absolute value of X
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Fig. 4. Temperature dependence of susceptibility x in a
magnetic field B = 10 mT for two Sh, _,Cr,Tes samples
with different Cr concentrations: 0.23 a % (1) and
0.43 at % (2).

increases with the chromium concentration in the sam-
ple. Figure 5a shows the dependence of magnetization
on the magnetic field of the sample with a chromium
concentration of 0.43at % at T = 1.7 K for orientations
of magnetic field B parallel to the C;and C, axes. Hys
teresisloops are shown in Fig. 5b. For B || C;, the loops
are narrow with a coercive force of approximately
15 mT; the saturation magnetization corresponds to
3.8 per Cr ion. These data indicate the existence of
ferromagnetism in Cr-containing samples and are in
accordance with the temperature dependence of the
magnetic susceptibility obeying the Curie-Weiss law
with a positive paramagnetic Curie temperature. The
data presented in Fig. 5 also show that the C; axisisan
easy magnetization axis. When the magnetization is
measured along the axis B || C,, the width of the hyster-
esisloop increases to 70 mT, but field B=2.5T turns
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out to be insufficient for saturation of magnetization.
Similar results can also be obtained for asample with a
Cr concentration of 0.23 at %,; hysteresis loops show
that C; is an easy magnetization axis (Fig. 6).

3.3. Shubnikov—de Haas Effect

The Shubnikov—de Haas effect was studied at T =
4.2 K in a magnetic field paralel to the C; axis
(Fig. 7a). For such an orientation, the cross sections of
al six ellipsoids of the upper valance band of light
holes coincide and a single frequency of oscillationsis
observed (this can be seen from the Fourier spectra;
Fig. 7b). The amplitude of oscillations in doped sam-
ples noticeably decreases. The oscillation frequencies
are presented in the table. Using these frequencies, we
can calculate the concentration of light holes (see
table). The computational technique is described
in[22, 23]. Thelight hole concentration is smaller than
the total concentration of holesin the sample; however,
its variation reflects the variation of the total hole con-
centration. It follows from the above data that doping
with chromium reduces the hole concentration,
although this effect is not monotonic: in the sample
with a higher Cr concentration (0.43 at %) the hole
concentration is slightly higher than in the sample
with a Cr concentration of 0.23 at %. It was noted
above that this might be due to different defect con-
centrations of the samples.

The donor action of chromium in the range of low
concentrationsis associated with its effect on the polar-
ity of bonds. The weak polarity of the Sb—Te bonds
leads to the presence of alarge number of antistructural
defectsin the lattice (antimony atoms replace tellurium
atoms). Doping with chromium changes the polarity of
bonds, which leads to a change in the concentration of
charged point defects and, hence, changesthe hole con-
centration.

M, pg/ion Cr M, pg/fion Cr
4 T T Y, p—, 4 T T T
o~ INVNNINVNNI NS
(a) I o--°"71 (b) LA
1 id
21 1 offO/ B||C, 2r ! ) 'A/ ]
4 _ AL B|IC,
ol 1 ol oo000p Aglgggee0-6-80
#D:&@:O-O--OI_O—TO_C)/_%
I o
(#f A / 1A
/
-2r _do' 4 B¢, 1 -2 /5& K B||C; )
)_=0=’ il /
LA A AAAAADNA A
_45’_—A'__4AAAAMA@ I — I ! !
-2 -1 0 1 2 -0.1 0 0.1
B, T B, T

Fig. 5. (a) Dependence of magnetization at T = 1.7 K on magnetic field B for two magnetic field orientations B || C3 and B || C, for
a Sb, _,Cr,Tes sample with a Cr concentration of 0.43 at % and (b) hysteresis loops in aweak magnetic field.
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Fig. 6. Dependence of magnetization at T = 1.7 K on mag-
netic field B for two magnetic field orientations B || C3 and
B||C,for aSh, _,Cr,Tes samplewith a Cr concentration of
0.23 a %.

Chromium atoms mainly substitute antimony atoms
in the lattice; the tellurium concentration remains at a
level of 60%; in this way a solid solution of
Sh, _,Cr,Te; is formed. This assumption is confirmed
by a decrease in the unit cell volume since the covalent
radius of chromium, rg, = 0.127 nm, is dightly smaller
than that of antimony, rg, = 0.138 nm [24]. According
to the results of X-ray diffraction measurements, the
lattice parameters in a Sb,Te; sample are a =
0.42643(5) nm and ¢ = 3.0427(4) nm, whilein asample
with 043 a % Cr, these parameters are a =
0.402602(4) nm and ¢ = 3.0431(3) nm. An increase in
the polarity of the bond upon the substitution of chro-
mium for antimony leads to a decrease in the probabil-
ity of formation of antistructural defects. In the case of
Sh, _,Cr,Te;, Sb atoms with electronegativity Xg, = 1.9

KULBACHINSKII et al.

are replaced by Cr atoms with electronegativity X, =
1.5, which increases the polarity of the bond.

4. DISCUSSION

Direct interaction between magnetic ions in dilute
magnetic semiconductors p-Sh,_,Cr,Te; studied here
isruled out in view of their low concentration. Conse-
quently, only the long-range oscillating RKKY interac-
tion executed by holes can be responsible for the ferro-
magnetic transition. The sign of the RKKY interaction
corresponds to a ferromagnetic interaction since the
first zero of the interaction, after which the interaction
reversesits sign and becomes antiferromagnetic, lies at
distances considerably longer (in view of the low hole
concentration) than the length at which the interaction
is truncated. Obviously, ferromagnetism is not
observed for the n-type conductivity since small effec-
tive masses and a small exchange integral for electrons
hamper the ferromagnetic interaction. The theory of
exchange interaction is sufficiently developed for
type 11—V semiconductors [9, 25]. For a new family of
dilute magnetic semiconductors of the type of the new
semiconductor Sh, _,Cr, Te; studied here, such atheory
has not been devel oped. For this reason, to estimate the
magnetic interaction, we can use the results of publica-
tions [26-28], in which the theory was developed for
homogeneous systems with a random distribution of
localized spins. According to thistheory, the Curietem-
perature T can be determined from the formula

cS(S+1) Jig
3 (9g*Me)
where ¢ isthe magnetic impurity concentration and Sis

the spin of the chromium ion determined from the mag-
netization measurements, Jod is the constant of

KeTc =

>X1(P T, )

R, uQ cm Amplitude, rel. units
250 T T T T T
(a) (b)
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Fig. 7. (8) Shubnikov—de Haas oscillationsfor B || Cz at T=4.2 K and (b) Fourier spectrum for Sh, _,Cr,Te sampleswith different
Cr concentrations: 0.23 at % (1), 0.43 at % (2), and Sb,Tes (3).
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exchange interaction between localized magnetic
moments of the chromium ion and the spins of charge
carriers, g* is the effective Lande factor, pgis the Bohr
magneton, and ¥ isthe magnetic susceptibility, whichis
afunction of hole concentration p and temperature T. It
should be recalled that formula (2) for dilute magnetic
system was derived by Abrikosov and Gor’kov [29]
(see also discussion in [9]). Disregarding the correla
tion effects, we can use the Pauli expression for esti-
mating susceptibility,

(9us)’p _ 8(gHs) m* ke
= 3 h2 '

X:

where E; and kg are the Fermi energy and momentum,
histhe Planck constant, and m* isthe effective mass of
holes. Jungwirth et al. [26-28] proposed that an addi-
tional contribution from the exchange interaction be
taken into account,

2 2 2

i = (GHe) e
eh’

(e isthe dielectric constant). For a high hole concentra-
tion, as in the case of Sh,Te;, the Pauli contribution
dominates. According to the results of experiments,
chromium ions are in the Cr3* state with a magnetic
moment

M = gUs/S(S+1)=3.8Ug

(see Figs. 5 and 6) with a spin S= 3/2. If we take the
mass of a free electron for the effective mass m* of
holes[1], g =2, S= 3/2, the experimentally determined
temperature T of transition to the ferromagnetic state,
and the experimental value of the chrome concentration
inthe sample, the exchange interaction constants can be
estimated on the basis of formula (2) as J,4 = 0.3 and

0.2 eV nm? for samples with a chromium concentration
of 0.43 and 0.23 at %, respectively. These values are of
the same order of magnitude as those used for
Mn,Ga, _,As [26]. The exchange energy can be esti-
mated by multiplying the obtained values by the con-
centration of p holes. Using the values from the table,
we obtain a value smaler than 10 meV, which is
smaller than the values for dilute magnetic 111-V semi-
conductors [30].

It should be noted in conclusion that dilute magnetic
semiconductors R,_,M,Q;, where R and Q are ele-
ments of groupsV and VI, respectively, and M isamag-
netic impurity, form a new class of dilute magnetic
semiconductors exhibiting ferromagnetism at low tem-
peratures. Asin [11-V semiconductors, ferromagnetism
is induced by holes since it is not observed in n-type
samples[31]. Here, we have studied a new dilute semi-
conductor Sh, _,Cr, Te; with the p-type conductivity, in
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which hole-induced ferromagnetism is observed with a
Curietemperature T = 5.8 K with achrome concentra-
tion of 0.43 at %. The easy magnetization axisis paral-
lel to the C; crystallographic axis. Magnetic measure-

ments show that chromium isin the Cr3* state. The most
probable mechanism of exchange interaction responsi-
ble for ferromagnetism is the RKKY interaction in
Sbh, _,Cr,Te;. Doping with chromium reduces the hole
concentration in the investigated concentration range.
The presence of amagnetic impurity leadsto anegative
magnetoresistance and an anomalous Hall effect.
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ORDER, DISORDER, AND PHASE TRANSITIONS

IN CONDENSED SYSTEMS

Room-Temperature Phase Separation
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Abstract—The properties of single crystals of weakly doped lanthanum manganites La, _,A,MnO5 (A = Ca,
Ce, Sr; x=0, 0.07-0.1) have been studied in the temperature range from 77 to 400 K. It is established that these
lanthanum manganites exhibit (in addition to the well-known characteristic features observed in the region of
the temperature of magnetic ordering) changes in the electrical and magnetic properties in the region of room
temperature (T = 270-300 K), which is about two timesthe Curie temperature (T = 120-140 K) and isfar from
the temperature of structural transitionsin the samples studied. The results are explained in terms of phase sep-
aration related to the formation of magnetic clusters in the nonconducting medium. The phase separation is
caused by a gain in the exchange energy and by the development of elastic stresses in the crystal lattice and
proceeds via combination of small-radius magnetic polaronsinto alarge-size magnetic cluster containing sev-
eral charge carriers. The short-range order in the cluster appears and the phase separation begins at a tempera-
ture Ty, Which is close to T¢ = 300 K, typical of doped conducting manganites. The results of magnetic mea-
surements show that, as the temperature decreases from 300 to 190 K, the size of superparamagnetic droplets

increases from about 8 to 15 A. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Despite many years of research, there is no com-
monly accepted opinion concerning the mechanism of
electric conductivity in lanthanum manganites. The
existing double exchange model aone cannot explain
experimental data reported for the semiconductor—
metal transition and the colossal magnetoresistance
observed in La, _,Sr,MnO; with x = 0.2-0.3 in the
region of the Curie temperature (T. = 300 K). It was
suggested [1] that the electrical properties of these
compounds are determined by the polaronic mecha-
nism, related to a strong el ectron—phonon coupling and
the Jahn-Teller splitting of levels in Mn3* ions. Evi-
dence in favor of the polaronic mechanism is provided
by a large difference between the activation energies
determined from the temperature dependence of the
electric resistance and thermopower [2]. The magnetic
and electrical properties of manganites were also con-
sidered within the framework of the double exchange
model assuming that the charge carriers exhibit local-
ization caused by spin disorder and random distribution
of magnetic inhomogeneities [3, 4]. Caculations [4]
showed that, in the presence of a certain nonmagnetic
disorder, a spin disorder in the paramagnetic region
may cause the localization of charge carriers at the
Fermi level and the appearance of the Anderson semi-
conductor—metal transition near the Curie temperature
for x=0.2-0.3. It was suggested [5] that, in doped man-
ganites with a strong electron—phonon coupling, two
polarons might combine so as to form an immobile

bipolaron in the paramagnetic region with a narrow
polaron band. In the ferromagnetic region, the
exchange interaction of polaron carriers with localized
spins breaks bipolarons and increases the electric con-
ductivity because of a sharp growth in the carrier den-
sity while retaining the polaronic character of conduc-
tivity below T.

Recent investigations [6-8] showed that the proper-
ties of manganites could be also explained [9-11] within
the framework of a phase separation model [12, 13].
According to this model [13], a gain in the exchange
energy makes it favorable for electrons to create con-
ducting ferromagnetic clustersin a nonconducting anti-
ferromagnetic matrix. Such magnetic droplets in anti-
ferromagnetic matrices were detected by neutron scat-
tering techniques [8, 14-16] in single crystals of
La, _,A,MnO; (A = Ca, Sr) withx =0.05-0.08). At lig-
uid helium temperatures, the droplets are anisotropic
and acquire the shape of oblate ellipsoids with dimen-
sionsfrom 8to 17 A. No such droplets have been found
in undoped LaMnO;. In La _,CaMnO; with x 2
0.1-0.2, magnetic clusters with asize of 14-17 A have
not been observed either [15]. The authors believe that
magnetic clusters merge together (coalesce) in com-
pounds with x = 0.1. The results of recent neutron scat-
tering investigations [17] showed that an increasein the
level of doping from x = 0.06 to 0.07 led in
L&y g3Sr057MNO5 to atransition from small-scale (2R, =

17 A) to large-scale phase separation, and the average
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linear size of magnetic clusters at 4.2 K amounted to
2R, =200 A.

Hennion et al. [8] showed that the magnetic droplets
exist in the temperature interval from 2 K up to temper-
atures in the vicinity of the Curie temperature T =
120-140 K of these manganites. In usual magnetic
materials, the magnetic polarons break near the Curie
temperature T [11]. It was suggested [18] that the
phase separation in lanthanum manganites may pro-
ceed even at higher temperatures. In order to check for
thisassumption, it is necessary to study the behavior of
linear expansion coefficients and the electrical, mag-
netic, and other properties of manganites up to high
(about 1000 K) temperatures [18]. Indeed, if the
magnetic clusters are formed due to the phase separa-
tion[15, 17], they probably possess the saturation mag-
netization and the Curie temperature T = 300 K char-
acteristic of continuous strongly doped lanthanum
manganites and, hence, they must not necessarily break
near the Curie temperature T = 120-140 K character-
istic of weakly doped lanthanum manganites.

Some experimental data for manganites can be
interpreted as manifestations of the onset of phase sep-
aration in a far paramagnetic region [19-21]. The
room-temperature featuresin the resistance and magne-
toresistance, thermopower, and magnetic susceptibility
of Layg,Cay0sMnO; single crystals [19] and in the lin-
ear and volume expansion coefficients of
L&y g3Sr0,0/MNO; single crystals [21] were attributed to
the formation of magnetic clusters near the room tem-
perature. Recently, Kugel’ et al. [22] described the
electrical and magnetic properties of various mangan-
ites  (Pro71Cay0Mn0O;,  (Lay_Pry)s3Ca93Mn0Os,
LaysMgy,MnO,) in abroad temperature interval in the
paramagnetic region using the model of inhomoge-
neous state and explained the obtained results by the
presence of magnetic droplets with an average size of
about 30 A.

The phenomenon of phase separation can be most
clearly manifested in the properties of weakly doped
manganites. Unfortunately, the electrical properties of
such manganites are still insufficiently studied and no
gualitative theory (capable of tracing arelation of these
properties to the phase separation) is available for the
electric conductivity in phase-separated media [18].
The qualitative relationship between the magnetoresis-
tance and the magnetic clusters formed at temperatures
near T in conducting ferromagnetic manganites is
known [6, 7]. However, only elucidation of the mecha
nisms responsible for the resistance and magnetoresis-
tance of manganites, determination of the dependence
of these properties on the level of doping, and compar-
ison of the experimental datato predictions of the mag-
netic cluster model will apparently provide for redl
progress in understanding of the effect of phase separa-
tion on the electrical phenomena and the colossal mag-
netoresistance in manganites. This paper presents the
results of investigation of the problems outlined above.
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In this study, the dc and ac resistance and magne-
toresistance, thermopower, and magnetic properties of
a series of single crystals of weakly doped lanthanum
manganitesLa, - ,A,MnO; (A =Ca, Ce, Sr; x=0.07-0.1)
have been measured in a broad range of temperatures
and magnetic fields. It is established that these manga-
nites exhibit changes in the electrical and magnetic
properties in the region of room temperature (T =
270-300 K), which is about two times the Curie and
Néel temperatures (T = Ty = 120-140 K)) and is sig-
nificantly lower than the temperature of structural tran-
sitions in the samples studied. The observed effects
include changesin the activation energy of the resistiv-
ity (AE,) and thermopower (AE), the preexponential
factor (0°) of the electric conductivity, and the kinetic
coefficient (S,) of thermopower, the appearance of
magnetoresistance, and the spontaneous magnetiza
tion. The observed behavior is characteristic of a para-
magnetic medium with dispersed magnetic nanoparti-
cles [23]. The single crystals of L&y g,CaysMnO; and
L&y g3Srog/MNO;, which are characterized by signifi-
cantly different (according to the neutron scattering
data [8, 17]) dimensions of magnetic clusters, have
been studied in more detail.

The results of this comparative study will be inter-
preted in terms of the phase separation model [9-13,
18], which implies the appearance of an inhomoge-
neous magnetic state (cluster) and its variation with
temperature. At high temperatures (T > 300 K) in the
paramagnetic region, small-radius polarons can form as
aresult of strong electron—phonon coupling [1, 5] and
localize on the Jahn-Teller lattice distortions. The
interaction of charge carriers with magnetic moments
decreases the system energy for the parallel orientation
of these moments, thus creating a “ferromagnetic”
region—a magnetic polaron—surrounding a charge
carrier. Inthe usual magnetic materials, these “thermal”
polarons appear near T [11]. In the case of low doping
(below percolation threshold: x < 0.1 < X, = 1/3), @
state of minimum energy can be achieved due to phase
separation (with the formation of magnetic droplets[12])
even at temperatures much higher than the Curie tem-
perature T = 125 K for weakly doped lanthanum man-
ganites. A gain in the exchange energy and the devel op-
ment of elastic stresses in the crystal lattice allow
small-radius magnetic polaronsto combineinto alarge-
size magnetic cluster containing several electrons (their
number is equal to that of combined polarons). For this
reason, the short-range order in the cluster appears at a
temperature of Ts= 250-300 K, whichiscloseto T of
doped conducting manganites with x = 0.2-0.3. The
magnetic cluster has a magnetic moment of about
10-12pg (Mg is the Bohr magneton) [19] and a radius
Ruo = Runwmn = 1a =4 A (ais the lattice parameter),
which accounts for a change in the linear expansion
coefficient [21]. Asthe temperature decreases, the clus-
ter size monotonically increases. The theoretical pre-
dictions agree with the results of magnetic measure-
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The properties of single crystals of weakly doped |anthanum manganites

T,K -7 Q_fz’m_l O | g wWmev| TeK | TuK | Too K
LaMnO,! 400>T>300| 330 | 2300 | 100 | 11 | 230 | 142 | 140 | 750
T <270 250 | 120 [16] | [16]
LapgsCeooMnOst | 400>T>300 | 390 | 2700 138 =750
Ar T <270 30 | 120 - ?
Lays:CaogMNO? | 400>T>300 | 220 | 1350 | 160 | —24 60 | 128 | 122 | 580
270>T>90 | 170 | 200 | 115 | —04 55 - [16] | [15]
LaygCapMnO:2 | 370>T>300 | 325 |2x10°| 180 | —45 | 145 | 138 | 112 | 510
270>T>170 | 145 | 300 | 70 | =0 75 | [15] | [18 | [29]
170>T>80 | 93 8 | - - - - - -
L arsCap12sMNOz2| 400>T>300 | 145 | 1600 | 60 | -13 85 | 158 - 340
T<270 130 | 600 | 45 | 0O 8 | [15] - [15]
LaygsSiorMnOs! | 400>T>300 | 280 | 2100 | 120 | -21 | 160 | 132 | 121 | =490
270>T>170 | 145 | 160 | 65 | =0 80 - [17 | [28]

Note: AE, isthe resistivity activation energy; AE is the thermopower activation energy; W; is the hopping conductivity activation energy;
olisthe preexponential factor of the electric conductivity, § isthe kinetic coefficient (slope) of thermopower; T isthe Curie tem-
perature; Ty isthe Néel temperature of the noncollinear ferromagnet; and Toq is the structural phase transition temperature.

1 The crystal was grown by A.M. Balbashov et al. [24] in the Moscow State Power Engineering University (Moscow).
2 The crystal was grown by L. Pinsard et al. [25] in the Laboratoire de Chimic des Solides, Universite Paris-Sud (France).

ments. For example, the magnetic susceptibility mea-
surements for La, oCa,;MnO; in amagnetic field of up
to 45 kOe showed that superparamagnetic clusters
appear a T = 300 K and their dimensions increase with
decreasing temperature.

2. SAMPLES AND TECHNIQUES

The single crystal sample of L&y g,CagsMnO; rep-
resented a distorted antiferromagnet with a slanting
angleof 6 =13°, T =126 K, Ty = 122 K, in-plane fer-
romagnetic exchange energy J; = 1 meV, interlayer
antiferromagnetic exchange energy J, = —0.28 meV,
and a structural transition temperature of Too = 580 K
[15, 16]. The single crystal of Lag ¢3St q;MNO; repre-
sented a distorted antiferromagnet with a slanting angle
of 0=25°, T, =128K, T\ =121 K [17], and astructural
transition temperature of Too = 490 K. Some parame-
ters of the other samples are presented in the table.

The dc resistance measurements were performed
using the conventional four-point-probe technique with
a digital voltmeter possessing the input impedance
above 10° Q. The microwave conductivity and the per-
mittivity €' were measured using the resonator tech-
niqueat 9.2 GHz [27]. The thermopower was measured
in vacuum using the four-point-probe scheme at a tem-
perature difference of 4-8 K between temperature sen-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

sors. The magnetic measurements were performed on a
SQUID magnetometer of the MPM S-5XL type (Quan-
tum Design Co.) at the Center for Magnetometry of the
Institute of Metal Physics (Yekaterinburg).

3. RESULTS

According to the results of thermopower measure-
ments, the single crystals under study are semiconduc-
torsof the p-type. As can be seen from the experimental
data presented in Fig. 1, the thermopower S at a fixed
temperature decreases with increasing degree of cal-
cium or strontium substitution. The temperature depen-
dence of S exhibits qualitatively the same behavior in
al samples. In the temperature interval from 400 to
300K (Fig. 1), this dependence obeys an activation
relation characteristic of semiconductors [28]:

_k [A Es 0
S = ekt T3 @)
where AE; is the thermopower activation energy, e is
the electron charge, and kisthe Boltzmann constant. As
the temperature decreases further, the thermopower
keepsincreasing, but the slope of the Sversus 1/T curve
exhibitsastep at T= 270K and Sremains constant in a
certain temperature interval. This behavior of the ther-
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Fig. 1. Temperature dependences of the thermopower slope
in Ly_,CaMnO3 (x = 008, 010, 0.125) and
L& - ySryMnO;3 (y = 0.07) single crystals. Arrows indicate
the Curie temperatures Tc.

1000/T, K~!

Fig. 2. Temperature dependences of the dc resistivity of
La, _,CaMnO; (x = 0, 0.08 010, 0.125) “and
Laolg3er.o7M nO3 (dark Symbols), and L30.93C30.07M n03
single crystals. Arrows indicate the Curie temperatures T..

mopower can be described in terms of temperature-
dependent AE, and S, (seetable).

On approaching T in Layg,Ca,,sMnO;, the slope
of the S versus /T curve exhibits dight variations,
while in the other samples the thermopower at this
point sharply decreases. The thermopower slope of
L&y g75Cay12sMN0O; (as well as the resistivity of this
crystal, see Fig. 2) exhibitsajump in the vicinity of the
structural phase transition (T = 340 [15]), changes
sign to negative on approaching T, passes through a
minimum, and then increases with further decrease in
temperature. It should be noted that asimilar changein
the sign of thermopower near T. was observed in
L&y oSrosMnO; [29].
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The kinetic coefficient S, in expression (1) for Ca
and Sr-doped samplesis negative and varies from —4.5
to—1.3 (in contrast to semiconductors, where this coef-
ficient is usually positive and characterizes dissipation
processes). In undoped LaMnO;, the value of this coef-
ficient (Sy= 1.1) isclosetothat in disordered media[28].
Negative values of S, (about —0.5) were previously
reported in[2, 30] and discussed in [19].

The temperature dependence of the resistivity of
La _,AMNO; (A = Ca, Ce, ) single crystals above
T= 300 K (see Fig. 2) is described by the activation
relation

_1 _ 1 AE, 1 AE+Wp
P =5 = S5&P1g =GP o @

At lower temperatures, the resistivity can also be
described by expression (2) with temperature-depen-
dent parameters a° (preexponential coefficient of con-
ductivity) and AE, (resistivity activation energy). The
AE, and o° values exhibit a decrease on approaching to
theferromagnetic region, which istypica of manganites.

In addition, as the temperature decreases below
400K, the o® and AE, values of doped manganites
exhibit a decrease in the region of room temperature
(T = 300-320 K), which is about two times the temper-
ature of magnetic ordering (T = 125-140 K) and isfar
from the temperature of structural transitions in the
samples studied (see table). In this region, the AE,
value decreases by approximately 150 meV, while g°
drops by at least afactor of ten (seetable). The resistiv-
ities of undoped and cerium-doped lanthanum mangan-
ites rapidly increase with decreasing temperature and
become unmeasurable (p, > 10 Qcm) a T< T At T <
300 K, the po(L/T) curves for these compounds exhibit
a nearly activation character in a broad range of resis-
tivities. In Lgy,Cay0sMNO;, the AE, value remains
unchanged in a broad range of resistivity variation
(within seven orders of magnitude) at temperatures
below 300 K. In cerium-doped samples, the AE, value
exhibits an increase. We can suggest that theincreasein
this activation energy observed upon doping with Ce**
is related to the compensation of holes (Mn* ions),
which are probably present in undoped LaMnO; con-
taining lanthanum and oxygen vacancies. Asthe degree
of doping with Caand Sr increases, the AE,, and o° val-
ues tend to decrease.

In the region of room temperature, the manganite
samples under study also exhibited a change in magne-
toresistance. Figures 3 and 4 show the temperature
dependences of the resistivity p, magnetoresistance
MRy = [p(H) — p(H = 0)]/p(H) and thermopower S,
in the single crystals of LaygCayggMnO; and
Lag g3Srp oM NO5. At room temperature (297 K), the
dc magnetoresistance is small and behaves like
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Fig. 3. The temperature dependences of the thermopower
S = S(k/e), the dc resistivity pg, and the dc magnetoresis-
tance MRy at H = 17 kOe in the single crystal of

Lag g2Cap 0gMnO;.

MRy, ~ H? For example, a H = 17 kOe, we have
MRy, = -1072 and -2 x 107 for Layg,Cay0sMnO; and
L&y g3Srog/MNO;, respectively. In both samples, the
magnetoresistance exhibited a sharp increase in the
region of T=260-280 K (Figs. 3 and 4) toreach alevel
of MR, = -(2-3)% and then exhibited a slower growth
as the temperature increased up to Tc. In addition, the
MR, of thesinglecrystal of L&, 4,Ca, ;sMnO; exhibited
an abrupt drop in a narrow (5 K) temperature interval
at T=T.=128K. Inthevicinity of 100 K, the magne-
toresistance of La, ¢3St ;M NO; isamost ten times that
of Lag g,Cay0sMNO5. Ascan be seen from Figs. 3and 4,
the MRy, value increases at T = 260-280 K, which is
dlightly lower than the temperatures corresponding to
changes in AE; and AE,,

As can be seen from Figs. 3 and 4, the resistivity
activation energy AE, exhibits consistent changesin the
entire temperature interval where the thermopower
activation energy AE, varies. As the temperature
decreases below T = 300 K and approaches T, the
character of the temperature dependences of Sand p, of
L&y goCay 0sMNO; vary rather slightly, while the analo-
gous quantities in Layg3Sryo;MNO; change signifi-
cantly and the AE, and AE, values decrease with tem-
perature. The deviations of S/T) and py(L/T) from the
linear dependence and a sharp growth in the magne-
toresistance take place at approximately the same tem-
perature (T = 160 K). Similar consistent variation of the
thermopower and resistivity is observed (see Figs. 1
and 2) in the other weakly doped manganites studied.

The plots of magnetoresistance versus magnetic
field strength a& T = 77 K for Layg3Srgo;MnO; and
LayoCay1:MnO; exhibit a similar behavior: in both
cases MRy, monotonically increases to approximately
the samelevel with increasing field strength. Below T,
the MRy value depends on the magnetic field orienta-
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Fig. 4. The temperature dependences of the thermopower
S = S(k/e), the dc resistivity pg, and the dc magnetoresis-
tance MRy at H = 17 kOe in the single crystal of
L&y 93Sr0.07MNO3.

tion relative to the crystallographi c axes: the anisotropy
OMRy, is about 10% for H = 17 kOe (T = 77 K) [21].
Figure 5 shows the field dependence of the magnetore-
sistancefor La, g3Srp ;M NO; at temperatures above and
below T.. As can be seen, MRy O H a T > T and

MR, OH2at 77K (T< To).

The temperature dependences of the ac (microwave)
resistivity p,, a a frequency of 9.2 GHz in
L&y 5oCay 0sMNO; and Lag ¢3St ;M NO; far of T exhib-
ited approximately the same character (Fig. 6). In both
samples, p,,,, above T = 275K are determined by the dc
conductivity: pm, = Po- AS the temperature decreases,
the dc conductivity contribution drops rapidly and
becomesinsignificant at T = 150-160 K as compared to
the high-frequency component: p,, << pPo. AS the tem-

H?, kOe?
0 50 100 150 200 250 30%
T T T T
. ~~~
160 K E
—0.2F )
A %
140 g
—04F —4-0.3
= \-., T
& < 120
p= b Puan 7
-0.6f \.... 77
-0.8 L L L “... -0.6
0 5 10 15 )
H, kOe

Fig. 5. Plots of the magnetoresistance versus magnetic field
strength for the Lag g3Srg g7MNO3 single crystal at T = 120,
140, 160 K (left and bottom coordinate axes) and 77 K
(right and top coordinate axes).
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Fig. 6. The temperature dependences of the dc (pg) and
microwave (pPp,,) resistivities of Lag g3Srgo7MnO3 (Sr7)
and Lag gpCay ;sMnO3 (Ca8) single crystals. Points present

the experimental data; dashed line shows the results of cal-
culations py,y, (see the text). The inset is a schematic dia-

gram of the proposed band structure of weakly doped lan-
thanum manganites in the paramagnetic region (Ep is the
polaron band; Eg isthe band of localized states).

Xac(H)/Xae(H = 0)
1.0 n

300-350K o

0'8 | mooeo—an.

0.6

2 190 7
1

0 10 20 30 40 50
H, kOe

Fig. 7. The field dependences of the differential magnetic
susceptibility X4 Of LaggCag1MnO3; measured at 80 GHz
and various temperatures (the inset shows data for weak
fields on a grater scal€). Points present the experimental
data; solid and dashed curves show the results of calcula
tions (see the text).

perature decreases further, p,,, iN LaygsStoeyMnO;
exhibits minimain a narrow temperature interval near
Te (T = 115 £ 15 K) on the background of approxi-
mately exponential growth of p.,,(L/T) with AE,, =
80 meV. In the applied magnetic field, the anomalies of
Prw Shift by AT = 20-25 K toward higher temperatures
and practically vanish in the fields above 67 kOe. The
anomalous behavior of p.,, is accompanied by an
increase in the permittivity €' from 19.5 to 21 with
decreasing temperature; the anomaly in €' is also sup-
pressed by the applied magnetic field [31]. Thistemper-
ature dependence of the complex permittivity e* = ¢' +
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i€" of Lay g3Srp07MNO; is characteristic of the polaronic
conductivity and correspondsto rel axation losses of the
Debye type [32, 33]. No such anomaliesin p,, and €'
at 9.2 GHz near T are observed in La, ,Cay0sMNO;.
At the sasmetime, variations of the €' and " values near
the Curie temperature were also reported for some
other weakly doped manganites[26, 34].

Variations have been also observed in the magnetic
properties of weakly doped lanthanum manganites
measured in the region of room temperature. The tem-
perature dependences of the magnetic susceptibility X,
of undoped samples and those weakly doped with Sr,
Ce, and Cain the paramagnetic region (T = 200—300 K)
can be approximately described using the Curie-Weiss
law with the effective moments g, which are greater
than the theoretical values by (1-2)lg [35]. A charac-
teristic feature of weakly doped lanthanum manganites
is the dependence of their magnetic susceptibility on
the magnetic field strength at temperatures below T =
270 K [19, 21]. For example, the differential magnetic
susceptibility X, measured at 80 GHz at temperatures
above T, = 270 K is independent of the applied con-
stant magnetic field, while below T, this susceptibility
becomes field-dependent (see the inset to Fig. 7).
Indeed, X, exhibits a sharp drop in the fields below
Hy < 500 Oe and weakly depends on the field above
Hy. The Hy value grows with decreasing temperature.
Similar field dependences of ¥, with the same charac-
teristic temperature T, = 270-300 K were observed for
LapgC0sMNO; [19] and LaygsSrooMnO; [21] in
weak magnetic fields (H < 1 kOe). It might seem that
Xz Could stabilizein stronger fields. However, the mea-
surements of X, in LaggCay 10MNO5in the fields up to
45 kOe showed (Fig. 7) that X.(H) exhibited no satura-
tion upon an increase in the magnetic field. At T =
350 K, no influence of the applied magnetic field (up to
45 kOe) on X, Was observed to within the experimental
accuracy. However, at lower temperatures (T = 300—
190 K), Xa decreases with increasing magnetic field
strength and this dependence becomes stronger with
decreasing temperature. Such magnetic behavior is
usually observed in paramagnetic mediawith dispersed
nanoparticles and in superparamagnets [23].

4. DISCUSSION

The observed temperature dependences of theresis-
tivity and thermopower with the temperature-depen-
dent activation energies AE, and AE; (Figs. 1-4) are
typical of disordered semiconductors. For a simple
energy band structure (see the inset to Fig. 6), taking
into account nonlocalized (valence) and localized (near
the valence band) charge carriers, the dc and ac conduc-
tivities are probably determined by the following mech-
anisms [28].

(&) Transfer of nonlocalized charge carriers. The
temperature dependences of the dc conductivity (for
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holes) and thermopower can be expressed as

E-+E AE
Oy = 0-minexpg_ FkT VB = Ominexpg_‘k—f%a (3)
— kl:EF_EV O _ k[QEs O
STl TWMTedw @

where E isthe Fermi level, E,, isthe top of the valence
band (mobility edge) separating the nonlocalized and
localized states, and G,,,,, = 3001000 Q* cm™ is the
minimum metallic conductivity. This mechanism does
not contribute to the ac conductivity at frequencies
below 10> Hz. As can be seen, the activation energies
for the thermopower and resistivity in this mechanism
coincide: AE; = AE,,

(b) Hopping of carriers localized in the tail of the
valence band. For this process, the dc conductivity and
thermopower are expressed as

_ 0 0 AEn
Oy = GZeXpD_ KT 0~ GzeXpD_ kT Wk (5)

0 Ee—Bay _ 0 Emi
cwDG(w)expD— kT O =0 @)eXpD_-E:l'—D’ (6)

— K F— EB — K Es
s=iFrrsl=firrss o
where W, isthejump activation energy, E; —Ey isthetail
of the locdized states, o(w) ~ w®, and s=0.8-1[28, 33].
As can be seen, AE, = AE; + W, and AE,,, = AE,, that
is, the activation energies for the thermopower and
resistivity in this case are different in the dc mode and
coincidein the ac mode. Asarule, 0, = 1-10 Q' cm™,
which is about two orders of magnitude smaller than
Omin [28]

(c) Hopping of carrierslocalized at the Fermi level.
In this case, the conductivity is expressed as

W E
O, = osexpg—ﬁ% = GgeXpE—E—gT%, ©)

where 0; < g, and W, is the hoping activation energy.
The ac conductivity by this mechanismiseither propor-
tional to the temperature or independent of the temper-
ature, and o(w) ~ w®, where s=0.8-1. Thismechanism,
which isusually manifested at rather low temperatures,
where g, ~ exp(—B/TY4), was not observed for the sam-
plesunder consideration in the entire temperature range
studied.

The high values of g, (10°-2 x 10* Q' cm™)
observed in weakly doped manganites at high tempera-
tures (seetable) can be explained by the contribution of
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nonlocalized charge carriers. The temperature depen-
dences of the dc and ac (microwave) conductivities in
L&y g3Sr0,0/MNO; single crystals below T = 300 K (see
the dashed p,,,, line in Fig. 6) were explained [31] as
being determined by the contributions of nonlocalized
charge carriers and those localized in the tail of the
valence band (expressions (3) and (6)). However, the
difference between the AE, and AE; values and a non-
zero jump activation energy W, are indicative of the
absence of a contribution due to the nonlocalized carri-
ers. A small conductivity at a relatively large acceptor
concentration (x < 0.1) can be explained by the fact that
the charge carriers can be localized (in addition to the
tail of the valence band) at Mn** ions with the forma-
tion of a polaron band E; in the bandgap (see the inset
to Fig. 6). Then, the dc resistivity and thermopower are
described [28, 32] by the expressions of type (5) and
(7), where Ex — E5 should be replaced by Er — E and
0, — 0p Weakly depends on the temperature and can
be greater than o,,;, (being dependent on the polaron
density and mobility) [28].

One characteristic feature of the polaronic mecha-
nism is the frequency dependence of the permittivity
€* =¢'+ ¢" and the ac conductivity cﬁf" ~we'[32, 33):

W't 1

1 E. D b
1+ w’t? 1+ w’t?

|
o' [

(9)

where 1 = 1,eXp(Ep/KT) is the characteristic hopping
time, Ep is the Debye energy, and 1/t, ~ wy, is a con-
stant on the order of the optical phonon frequency. For
the charge carriers localized in the tail of the valence
band, the conductivity increases in proportion to the
frequency, while for polarons, the conductivity exhibits
nonmonotonic variation: it shows a Debye character
with amaximum at wT =1, and €' monotonically varies
depending on the temperature and frequency.

The anomalies observed in the temperature depen-
dences of ¢ and p,, Of LaygSroyMNnO; near T.
(Fig. 6) are characteristic of the polaronic conductivity
and can be explained by electron hopping between the
two nearest neighbor localized states (e.g., between
Mn3* and Mn** ions) spaced by the distance R and the
potential barrier Eg. The narrow temperature interval of
the anomaly in p,,,, implies that the Debye energy (i.e.,
the polaron localization energy) is temperature depen-
dent (a possible reason will be considered below). It
should be noted that the frequency and temperature
dependences of e* =¢' +ie" observed for weakly doped
singlecrystalsof La, _,Sr,MnO; of aclose composition
with x = 0.075 [36] also revealed relaxation losses of
the Debye type, and it was also concluded that the fre-
guency and temperature dependences of o, wereindic-
ative of the contribution due to tunneling between
large-radius polarons.
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Fig. 8. The temperature dependence of the magnetic
moment (M) and radius (Ry) of superparamagnetic clus-
tersin Lag gCag 1MnOs.

Thus, the high values of the preexponential factor o°
(seetable), the presence of relaxation losses of the Debye
type (Fig. 6), and the results of investigation of the fre-
guency and temperature dependenceso(w, T) [36], allow
us to conclude that the conductivity of weakly doped
lanthanum manganites contains a contribution due to
the polaronic mechanism. We might also attempt to
explain variations in the character of conductivity
below T = 300 K by assuming that the contribution
from carriers localized in the tail of the valence band
increases with decreasing temperature. However, the
relatively large values of o (>10% Q~* cm™, see table)
and the appearance of anomalies at the same tempera-
tures in the region of T = 300 K in the magnetic and
electrical properties of samples with different levels of
doping alow us to suggest that this phenomenon is
related to a change in the character of the polaronic
conductivity. Previoudly [19, 21], it was suggested that
such features could be explained by the formation of
magnetic nanoclusters.

The formation of magnetic nanoclusters may also
explain the anomalies in magnetic properties (Fig. 7);
moreover the size of such nanoclusters can be in some
cases evaluated using the results of magnetic measure-
ments. In sufficiently large monodomain particles,
anisotropic forces hold the magnetization vector
aligned in a direction corresponding to the minimum
energy. When the size of droplets approaches the inter-
atomic distances, the particle energy KyVy (Ky is the
effective energy of the magnetic anisotropy and V is
the cluster volume) decreases below the thermal level,
the magnetization vector loses stahility and starts per-
forming thermal motions of the Brownian type
(although the saturation magnetization and the Curie
temperature may still retain the values characteristic of
the continuous solid) [23]. The dependence of the mag-
netization of such a (superparamagnetic) cluster on the
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temperature and the magnetic field is described (for
KgiVy < kgT) by the Langevin formula [37]:

la = NMgbothx - 1)5
where x = MyH/kgT, My = nygSisthe magnetic moment
of the cluster, Sis the molecular magnetic moment, n
is the number of molecules in the cluster, and N is the
number of superparamagnetic particles per unit volume
of the sample.

The contribution of the superparamagnetic particle
to the low-frequency differential magnetic susceptibil-
ity can be expressed as

(10)

cl dl 0 1 -]
= —=C=——+
Xac dH |:| thzx X D!

(11)

whereC= NM ﬁl Ik T isafield-independent coefficient.
At large values of My, all the variations of 14(H) and
Xac(H) in superparamagnetic particles may take place
(even at high temperatures) in readily accessible field
on the order of 10* Oe [37].

Thevariations of x.(H) in La, (Ca, ;MNnO; observed
in fields up to 2 kOe can be roughly described in terms
of expression (11) with My = (8-12) x 10%5 (see the
dashed lines in the inset to Fig. 7). This case corre-
sponds (in a spherical model) to a cluster with a diam-
eter of about 150 A or V4 =3 x 108 cm3, S=2, and a
distance of Ry,u,, =4 A between the neighboring man-
ganese ions. Taking into account that the value of the
magnetic anisotropy in perovskites is on the order of
Hes = 1 kOe [38], we obtain an estimate of Ky =
106 erg/cm?®. From this we infer that the droplets are
probably not superparamagnetic. The observed growth
in the saturation field for X, with decreasing tempera-
ture (see the inset to Fig. 7) can be explained by an
increasein the demagnetizing field Hy = Nge,,M accom-
panying the increase in the magnetization with the tem-
perature (N, 1S the demagnetizing factor of the drop-
let). Assuming that the increase in the effective moment
Mest 1N L8y gCay,MNO; approximately by 1ug above the
theoretical value is entirely due to these clusters, and
using the expression for the magnetic susceptibility
X(T) of magnetic clusters[22], we can estimate the den-
sity of large clusters as n = 10310 cm=3. This value
corresponds to spacing between clusters exceeding
103 A. Apparently, this cluster density isvery small and
the distances between them are too large to account for
the observed variations in the electrical properties near
T = 300 K. In order to explain the behavior of X, in
strong magnetic fields, it is necessary to assumethat the
system contains small clusters in addition to the large
(2150 A) ones. The changes in X (H) of
LayoCay1:MnO; observed in strong fields at afixed tem-
perature can be described (see the solid curves in
Fig. 7) using expression (11). The magnetic moment of
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the cluster increases from <8 at 350 K to 100u; at
190 K (Fig. 8). In the spherical model, such effective
magnetic moments correspond to particles with diame-
ters 2Ry ranging from 8 to about 15 A.

Figure 9 shows the temperature dependences of the
activation energies AE,, AE,, and W, for three mangan-
ites, which were calculated using Egs. (1) and (2). In
determining AE,, it was assumed that o° in relation (2)
is independent of temperature (in the relatively small
temperature interval under consideration, this
assumption insignificantly influences the value of
AEp). Ascan be seen, the values of AE,, AE, andW, are
almost constant at T = 270-400 K for all three samples.
Note that the behavior of these quantities in
L&y g3Sro0/MNO; and La, gsCay1MNO; is much alike,
while differing from how they behave in
L3y 0Cay0sMNO;. Below T = 270 K, the values of AE,
and AE; monotonically decrease with decreasing tem-
perature. In LaygsSrgyMNO; and Lay Cay;MNnO;3, the
values of AE, exhibit a sharp decrease near the corre-
sponding values of T, whereas no such significant
varigtions of AE; a T. is observed for
L&y g,Cay0sMNO;. Below T= 270K, thevaluesof W, in
L&y g3Srog/MNO; and La;gCay;MnO; decrease with
temperature and exhibit a sharp increase at T.. Unlike
this, W, in Layg,Cay,sMnO; weakly varies (remains
practically constant) in the entire temperature range
under consideration.

At present, no simple formulas are known that
would adequately describe the properties of phase-sep-
arated materials [18]. The results presented above can
be qualitatively rationalized using the following
assumptions.

(a) At high temperatures (T > 300 K), the charge car-
riers in manganites exhibit localization (pinning) with
the formation of polarons [1] or bound (immobile)
bipolarons [5], which is caused by a strong electron—
phonon coupling, a spin disorder and random distribu-
tion of magnetic inhomogeneities [3], or the Jahn—
Teller lattice distortion. As aresult, the carriers form a
localized impurity band with agap of A/2 in theforbid-
den band [5]. For thisreason, the density of charge car-
riersinvolved in the conduction becomes much smaller
than the number of acceptors and obeys the law n ~
eXp(-AEJ/KT). In this temperature range, the values of
AE,, AE,, and W, are practically independent of the
temperature.

(b) An electron trapped by a Mn** ion is in fact
bound to six Mn** ions in the nearest environment of
the acceptor, thus forming a polaron with the radius
Ryl = Runwin = 1a=4 A (aisthe crystal lattice param-
eter). Interaction of the charge carrier with magnetic
moments decreases the system energy in the case of a
paralel orientation of spins and create a “ferromag-
netic’ region (paramagnetic polaron) around the
trapped charge carrier [39]. In the usual magnetic semi-
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Fig. 9. Temperature dependences of the activation energies
of (&) thermopower (AEy), (b) resistivity (AE), and (c) hop-
ping conductivity (W;) for LaggsSrgg/MnO3 (Sr7),
Lag g2Cap,0sMNO3 (Cad), and Lag goCag 10MnO3 (Call)
single crystals.

conductors, the magnetic polarons can appear only in
the immediate vicinity of the Curie temperature [11].
Using the concept of “thermal ferrons,” it isimpossible
to explain the formation of ferromagnetic clusters at
temperatures 2-2.5 times greater than the Curie tem-
perature T and the rapid growth of their dimensions
with decreasing temperature (Fig. 8), at weak tempera-
ture dependence of the polaron size (Ry, 0 T-45) [3, 11].
Wesakly doped lanthanum manganites offer a unique
possibility of obtaining such clusters at temperatures
significantly higher than their T values. At a degree of
doping below the percolation threshold (X < 0.1 < Xy =
0.2-0.3), the density of carriersissmall and the crystals
have T¢ = 120-140 K. However, taking into account
statistical distribution of impurities, this doping admits
the formation of clusters—in the form of nanoislands of
various sizes containing several acceptors—in which
the number of carriersis sufficient to give rise to afer-
romagnetic order with T = 300 K in conducting man-
ganites. Sufficiently large droplets contribute t0 X
only in weak fields (see theinset to Fig. 7).
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However, there are many more clustersin which the
number of carriers is insufficient to establish a mag-
netic order in conducting manganites at T = 300. For
x = 0.07-0.1, the average spacing of acceptors (about
9 A) isclose to the size (8 A) of a polaron in which the
electron is localized and the electron wavefunctions of
the nearest neighbor polarons can overlap. This over-
lapping may render the polarons anisotropic [21] and
favor the interaction of clusters with the formation of
bound polarons. A gain in the exchange energy and the
development of elastic stresses in the crystal lattice
allow several (two, three, etc.) small-radius magnetic
polarons to combine into a large-size magnetic cluster
(droplet) containing several electrons. For this reason,
the short-range order in the cluster appears and the
phase separation begins at a temperature of T, =
250-300 K, which is close to T of doped conducting
manganites with x = 0.2-0.3. Sufficiently small drop-
lets exhibit superparamagnetic properties.

(c) The exchange interaction between localized (p)
and delocalized (d) charge carriers makes the gap A/2
of the aforementioned impurity band dependent on the
magnetization [5]. Calculations showed that, provided
the exchange interaction is sufficiently strong (J,sS> A,
where J,4 is the pd exchange energy), the gap in
strongly doped lanthanum manganites with x = 0.25 in
the ferromagnetic region vanishes, the density of
charge carriers increases, and the resistivity sharply
decreases. Upon passage to the ferromagnetic regionin
weakly doped manganites possessing low magnetiza-
tion, the gap probably only decreases (rather than van-
ishing completely), which is confirmed by the temper-
ature dependence of AEg (Fig. 9). This assumption
agrees with the results of magnetic measurements for
L&y 6oCay 0sMNO;, where the magnetization at 100 K is
almost three times as small as that in La, (Ca, ;MnO;.
Accordingly, the thermopower activation energy (AEy)
in the former manganite remains virtually unchanged,
while that in the latter sharply decreases near T.. The
appearance of magnetic clusters below T = 300 K and
the related growth of magnetization well explain the
decrease in AE, in the paramagnetic region, which can
be seenin Fig. 9.

(d) The theory of the transport properties of phase-
separated manganites [11] assumes that the jump acti-
vation energy W, (characterizing the mobility of charge
carriersas g U exp(—W,/KT)) is determined by the Cou-
lomb energy (dependent on the cluster size) [32]:

2
e

W, = Ry (12
where 1/e, = 1/e,, — 1/g,, €., and g, being the high- and
low-frequency values of the permittivity [32]. The esti -
mate W, = 0.2 eV obtained using formula (12) for €,

10 and R, = 4 A agrees with the experimental values of
W, (seetable and Fig. 9) at high temperatures. A some-
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what lower value of W, in La, 3,Ca,0sMnNO; is probably
related to the anisotropy of the properties (mobility) of
charge carriers, which  was reported for
L&y g3Sro07MNO; [21].

The observed decrease in W, for La,¢Cay;MNnO; at
temperatures below T = 300 K (Fig. 9) qualitatively
agrees with the increasing size of clusters (Fig. 8).
However, asharp growth in the W, valuein the vicinity
of T observed for Lay g3Srpi;MNO; is at variance with
the neutron scattering data, according to which Ry in
this crystal increases up to 100 A below T [17]. The
carrier mobility (characterized by the jump activation
energy W;) not only depends on Ry, but is aso deter-
mined by the distance between clustersL (whichinflu-
ences the overlap of the wavefunctions of their poten-
tial wells[32]. The conversion of polaronsinto clusters
leads to an increase in their spacing and to a change in
W,. Upon coalescence of N, small-radius polarons
into N clusters of radius R, the distance between these
clustersincreases as L = (41/3x)V3R, in proportion to
R, (asin the case of formation of dew drops from mist)

and Ly > a, where Ny = xa®, Ny = Ny/n,, and

nf,'o, = 41(R,/a)*/3 is the number of polarons in the
cluster. For example, Ly = 4R, for x = 0.05-0.08, in
agreement with the neutron data for La _,A,MnO;
(A= Ca &) [8, 15, 17]. The probability of jumps
between clustersis given by the formula[28, 32],

oWn
WDexpD kTDexp( —0oly), (13)

where a, = a™ characterizes the overlap of wavefunc-
tions of the neighboring clusters. The first term in for-
mula (13), which is related to the Coulomb blockade,
vanishes or is significantly simplified upon a large-
scal e phase separation. For example, W, decreasesfrom
about 200 to 10 meV when R increasesto ~102 A. The
second termin formula (13), whichisrelated to the tun-
neling length, may lead to a strong decrease in mobility
at agly > 1. This can even overwhelm the disappear-
ance of the Coulomb blockade, switch off the cluster
conductivity, and make certain other mechanisms
important (e.g., related to carrier hopping in the tail of
the mobility edge). The increase in W, for
L&y g3Sro0/MNO; and La, oCay;MnO; near T (Fig. 9)
probably merely reflects a decrease in the drift mobil-
ity of carriers as a result of the increase in the tunnel -
ing length.

The results of magnetoresi stance measurements also
confirm the cluster nature of theresistivity in the samples
studied. The origin of the magnetoresistance in phase-
separated manganitesis the variation of R, and, hence,
of the Coulomb energy W, in the magnetic field [11]. At
temperatures T > 270 K, the magnetization of polarons
proceeds viarotation of the magnetic moments of Mn3*
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and, hence, the polaron size is independent of the mag-
netic field up to very high strengths: R,;,(H) = 1a and
MR, = 0. The magnetoresistance MR O H? = 1073
observed at 297 K and 17 kOe is related to a decrease
in scattering on the magnetic inhomogeneities.

In order to estimate the magnetoresistance in the
paramagnetic region, it ispossible to use the expression
MRy = 1 — exp(W,;bH/2KT) for the paramagnetic state,
where b = b™ = gSQug/5kTIn(2S + 1), where g is the
gyromagnetic ratio [11, 40]. In the paramagnetic

region, MR[" ~ bPMH/T2. As can be seen (Fig. 4),
MR." ~H and increases with decreasing temperature

for T < T, whilethe estimate of MRE" = 3-5% agrees

with the values of magnetoresistance for
L &y .2Cay,0sMNO; and L3y g3Sr0,07MNO;.

In order to analyze the behavior of magnetoresis-
tance at temperatures below T, it isprobably necessary
to take into account variations not only in the mobility of
charge carriers, but in their density as well, which may
account for the higher values of MR, ~ H?. At present,
the nature of the phase separation in doped manganitesis
incompletely clear. It is usually believed that the phase
separation has a purely magnetic nature and is caused by
again in the exchange energy. However, this assumption
does not take into account the Jahn-Teller character of
Mn3* ions and a strong interaction between the electron
and ion (lattice) subsystems in manganites [1]. Non-
Jahn-Teller Mn** ions produce el astic deformation of the
lattice, which is evidenced by sharp changesin the coef-
ficientsof volume and linear expansion observed in man-
ganitesinthevicinity of T [7, 21]. For acorrect analysis
of the influence of phase separation, especialy large-
scale one, on the electrical properties of manganites, it
is necessary to take into account the elastic energy
related to lattice distortions upon the formation of an
inhomogeneous state [11].

The differencein the size of clustersrevealed by the
neutron scattering data[8, 17] may account for the min-
ima of p,, (Fig. 6) and their strong dependence on the
temperature and applied magnetic field in
L&y g35r0,5/MNO5 with large clusters and for the absence
of such features in Lay 4,Cay isMNO; with small clus-
ters. The time of tunneling between clusters, which is
determined by the formula 1 = toexp(Ep/KT) for
Egs. (9), varies in LaygSro;MnO; (Fig. 9) within
broad limits because of strong and sudden changes of
W, and AE; depending on the temperature. In this case,
the condition of Debye relaxation w1 =1 is satisfied in
a narrow temperature interval. Considerable variation
in the position of the p,,,, Minimum as afunction of the
magnetic field (Fig. 6) is also indicative of a strong
dependence of W, and, hence of the cluster size, on the
magnetic field. In L&y g,Cay0sMNO;, where the val ues of
W, and AE; weakly vary with the temperature (Fig. 9)
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and the condition of Debye relaxation it 9.2 GHz is not
satisfied, anomaliesin p,,, and €' are absent.

5. CONCLUSIONS

The properties of single crystals of weakly doped
lanthanum manganites La, - ,A,MnO; (A = Ca, Ce, Sr;
x = 0, 0.07-0.1), including electric dc and ac (micro-
wave) resistivity and magnetoresistance, thermopower,
and magnetic properties, have been studied in the tem-
perature range from 77 to 400 K. At high temperatures
(T > 300 K), the conductivity can be interpreted within
the framework of the polaronic mechanism. Inthe para-
magnetic region, polarons are formed as a result of
strong electrorn—phonon coupling and are probably
polarized. It is established that the lanthanum mangan-
ites studied exhibit variations in the electrical proper-
ties (manifested by changesin the activation energies of
the resistivity, thermopower, jumps, magnetoresis-
tance, etc.) and magnetic properties (the development
of spontaneous magnetization and fiel d-dependent dif-
ferential magnetic susceptibility) in the range below
room temperature (T = 270-300 K), which is about two
times the Curie temperature of manganites and is far
from the temperature of structural transitions in the
samples studied.

It is suggested that the observed changes, as well as
theanomaliesin the coefficients of linear expansion[21],
arerelated to the appearance of a short-range magnetic
order and to an increase in the size of polarons. The
results of magnetic measurements showed the presence
of relatively large (above 100 A) and small (8-15 A)
magnetic clusters. The concentration of large clustersis
small (10%-10%* cm3), so that the conductivity in the
paramagnetic region is mostly determined by the small
clusters, judging by the estimates of the polaron jump
activation energy. The appearance of large clusters
(islands with T equal to that of the conducting manga-
nites with x = 0.2-0.3) can be related (in addition to
technological artifacts) to the statistical character of
acceptor impurity distribution in the single crysta
matrix. Small clusters can form because of againinthe
exchange energy and the development of eastic
stresses in the crystal lattice, via combination of small-
radius magnetic polarons (with two, three, or more
acceptors) into large-size magnetic cluster containing
severa charge carriers. The short-range order in the
cluster appears and the phase separation begins a a
temperature (T,s = 250-300 K) close to T of doped
conducting manganites with x = 0.2-0.3. The results of
this study and the estimates obtained agree with the
phase separation model.
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Abstract—Series of experiments are carried out to study the propagation of magnetostatic spin wavesin fer-
romagnetic films containing 2D periodic structures formed by etched apertures. For spin waves, such films are
analogous to photon crystals (namely, magnetophoton or magnon crystals). The spectra of waves transmitted
through the structure display features associated with a change in the spin homogeneity due to etching or radi-
ation loss, as well as with Bragg reflection effect or the emergence of forbidden gaps in the spectrum of prop-

agating waves. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

A large number of research groups and individual
scientists have been engaged in recent years in investi-
gating the physics and technology of photon crystals
(see, for example, monographs [1-4] and the literature
cited therein). Photon crystals are essentially one-,
two-, or three-dimensional periodic structures, inwhich
the dielectric properties (refractive index) vary periodi-
cally; when an electromagnetic wave (light) propagates
in such acrystal, forbidden gaps are formed in its spec-
trum. The effects characteristic of photon crystals are
manifested when the length of the propagating wave is
of the same order of magnitude as the period of the
structure forming the photon crystal. Along with pho-
ton crystals in the optical range (which have a photon
bandgap in the visible range), crystals with a photon
bandgap in the microwave frequency range are of con-
siderable interest. However, the size of a photon crystal
in the range of centimeter or millimeter electromagnetic
waveswill bequitelarge, so that practical applications of
such crystalsare of no interest. An aternative to aphoton
crystal in the microwave range might be ferromagnetic
media (magnetophoton or magnon crystals) [5-15], in
which propagating waves are magnons (Spin waves).
Obtaining crystals analogous to photon crystals and
based on magnetic materials (namely, magnon crys-
tals), in which spin waves can propagate, has a number
of advantages over photon crystals. First, the wave-
length of a spin wave and, hence, the properties of such
crystals depend on the external magnetic field and can
be controlled by this field. Second, the wavelength of
propagating spin waves for a wide class of ferromag-
netic materials in the microwave range is on the order
of tens or even hundreds of micrometers. The phase and
group velocities of spin waves are also functions of the
sample size and the applied external field and may vary
over awide range. Asarule, the velocity of spin waves

is several orders of magnitude smaller than the vel ocity
of electromagnetic wavesin agiven medium. Thus, itis
possible to obtain crystals with a photon (or magnon)
bandgap whose width is on the order of several milli-
meters. Such crystals may have a planar geometry,
which can be extremely important for designing inte-
grated devices such as narrow-frequency optical or
microwave filters and high-speed switches. In the cited
literature, atheory of microwave properties of magne-
tophoton and magnon crystals was worked out; in par-
ticular, the spectraof electromagnetic and spin wavesin
multilayer magnetic structures and 2D periodic struc-
tures was investigated, as well as nonreciprocal and
other properties of magnetophoton crystals. A number
of publications are devoted to optical properties of
magnetophoton crystals [16-21] (see aso the recent
review [22]). We proposed [23] a redlization of a 2D
magnon crystal based on yttrium iron garnet (YIG)
films and carried out preliminary measurements of the
Spectra of magnetostatic spin waves propagating in
such crystals.

In this study, we continue the research aimed at
obtaining 2D magnon crystals and analysis of their
microwave properties; in particular, the propagation of
magnetostatic spin wavesin such crystalsisstudied and
analyzed in detail .

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Experiments were made on structures based on a
Y 1G epitaxia film with the following parameters: satu-
ration magnetization 4miM, = 1750 G, thickness d =
16.1 um, and the ferromagnetic resonance linewidth
2AH = 0.6 Oe. The film was grown on a gallium gado-
linium garnet (GGG) substrate with the (100) crystallo-
graphic orientation. A 2D periodic structure with asize
of 6 x 8 mm was etched in the central part of the film of

1063-7761/05/10103-0547$26.00 © 2005 Pleiades Publishing, Inc.



(d)

Fig. 1. (8) General view of a ferromagnetic film with an
etched structure; (b, ¢) microphotographs of the surfaces of
magnon crystals; (d) model of adelay line based on aYIG
film. Angle p in (a) characterizes the rotation of the crystal-
lographic [100Cdirection relative to the film edge. Angle ¢
in (d), defines the direction of propagation of surface mag-
netostatic spin wave relative to the longer edge of the film.

size 10 x 20 mm in the form of a system of pitswith a
diameter of D = 32 um (Fig. 1a). We studied films with
two types of 2D lattices. The first lattice had a nearly
rhombic symmetry with a unit cell edge of a =
37-40 um (Fig. 1b). The second structure had the form
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of a sguare lattice with an edge length of a. = 37 um
(Fig. 1c). For the rhombic lattice, structures with an
etch depth t of pitst; = 1 um and t, = 2 um wereinves-
tigated. The pit depthinthe squarelatticewast; = 1 um.
M easurements were made using a model surface mag-
netostatic spin wave delay line. The YIG films were
fixed to 4-mm-long microstrip transducers with awidth
of 30 um, prepared photolithographically on apolycore
board. The distance L between the transducers could be
varied in the limits L = 1-10 mm. The model of the
delay line (Fig. 1d) was placed in the gap of an electro-
magnet so that the magnetic field H, was directed along
the transducer. Such a geometry corresponds to the
excitation in an isotropic magnetic film of a surface
dipole Damon-Eshbach magnetostatic spin wave with
the dispersion relation [24]

2
2 = f§+if(1-exp(-2kd)), 1)

where f is the frequency of the surface magnetostatic
spin wave, k is the wavenumber of the surface magne-
tostatic spin wave, f5 = 2 +f.f, isthe threshold fre-
guency (k — 0) of the spectrum of the surface magne-
tostatic spin waves, fy, = gH,, f,, = g41iM,, and g =
2.8 MHz/Oe being the gyromagnetic ratio.

We studied the amplitude A and phase 6 of the signal
transmitted through the model, as well as the level of
power Py reflected from the input transducer for various
orientations of the wavevector k of the surface magne-
tostatic spin wave relative to the axes of 2D lattice,
which are characterized by angle ¢ (see Fig. 1d), as
functions of frequency f for a fixed value of magnetic
field Hy (A(f), 6(f), and Pg(f)) or of field H, for afixed
frequency (A(Hp), 8(Hg), and Pg(Hyp)). These depen-
dences were compared for the cases when magneto-
static spin waves propagated outside the region con-
taining a 2D lattice (curves 1 in Figs. 3, 5, and 6) or
when at least one of microstrip transducers was in the
region of the film occupied by a 2D lattice (curves2in
Figs. 3, 5, and 6). The reflected signal was measured
using a VSWR panoramic gauge and an attenuator
R2-67. The amplitude-frequency and phase-frequency
characteristics were obtained using an FK2-18 phase-
difference and attenuation meter according to the stan-
dard scheme of connection of the delay line model in
the break of the measuring loop. The phase-frequency
characteristics were used for plotting the dispersion
relation f = f(k) by the standard technique [25] assum-
ing that the phaseincursion 6(f) of the surface magne-
tostatic spin waveis connected with its wavenumber by
therelation k(f) = 0(f)/L.

It should be noted that film etching to a depth t <
2 umdid not lead to the emergence of strong additional
anisotropy fields. This follows from a comparison of
the dispersion relations f = f(k) (see Fig. 2a), aswell as
orientation dependences of threshold frequencies fy(¢)
(see Fig. 2b) corresponding to the etched and unetched
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regions of the film. It can also be seen that the experi-
mental dispersion dependences for spin waves in the
wavenumber range k < 400 cm were correctly
described by the dispersion relations for such wavesin
atangentialy magnetized (100) Y G film with anormal
uniaxial anisotropy of the easy plane type [26] for val-
ues of cubic (K; = H,M,) and uniaxia anisotropy (K, =
H,My/2) constants K; = 6.2 x 10% erg/cm® and K, =
-10% erg/cm® and a thickness of the unetched film
region d* =d—t =14 um (see Figs. 2aand 2b); here,
H, and H,, are the cubic and planar uniaxial anisotropy
fields, respectively. We took into account the fact that
the edges of the film form angles p = 15° with the (1000
crystallographic directions (see Fig. 1a). However, for
k > 400 cm™, the uniaxia anisotropy constant was
assumed to be K, = —1.15 x 10* erg/cm? for better coin-
cidence of the results of calculations with the measur-
ing data. Such a behavior of the dispersion of surface
magnetostatic spin waves can be explained, for exam-
ple, by nonuniformity of the uniaxial anisotropy con-
stant distribution over the thickness due to elastic
stresses in the film associated with mismatch between
theY1G film and the GGG substrate | attice parameters.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Before analyzing the results of measurements, note
that, in accordance with the datain Fig. 2, the region of
thefilm containing a 2D structure can be represented in
the form of two contacting layers. The thickness of the
upper layer is determined by the etch pit deptht < 2 um,
while the thickness of the second layer is d* = 14 um.
Since surface magnetostatic spin waves with wavenum-
bers k < 1200 cm* were excited in our experiments,
which correspond to wavelengths A = 52 um (see Fig. 2
and Fig. 4 below), the condition

A>d* >t 2
isfound to be satisfied. This enables usto treat the film
region with the 2D structure as a waveguide of thick-
ness d* with periodically varying electrodynamic
boundary conditions due to the effect of demagnetizing
fields of the pits. In this case, we can expect that aspin
wave will experience scattering from the periodic struc-
ture. Such a mechanism might be manifested most
effectively under the conditions of Bragg's diffraction
from the periodic structure [27], when wavenumber k
satisfies the condition

k=Kkg=TUA, 3
where A\ is the period of the 2D lattice in the direction
of wave propagation. In this case, a bandgap is formed
in the spin wave spectrum [27].

We can al so expect that the effect of the 2D latticeis
reduced to a periodic change of not only electrody-
namic, but also exchange boundary conditions for
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Fig. 2. (a) Measured and cal cul ated dependences f = f(k) for
amagnetizing field Hy = 625 Oe. Curves 1 and 2 correspond

to the results of calculations for films of thicknesses d =
16.1 um and d* = 14.1 um. (b) Measured and cal cul ated
dependences f = fo(¢) for amagnetizing field Hp = 325 Oe.
Solid and dashed curvesin (a) and (b) correspond to cal-
culations for the uniaxial anisotropy field parameters
H, = —70 Oe and —80 Oe, respectively. Dark circles show

the results of measurements on free regions of the film,
whilelight circles correspond to the presence of a 2D struc-
ture.

dynamic magnetization m due to a change in the spin
mobility at excitation frequencies (1) both in the lattice
itself and in a certain transition region at the boundary
between the 2D lattice and unetched volume of thefilm.
As a consequence, the dynamic spin pinning [28] takes
place in the surface layer; in turn, this effect can be
accompanied by a substantial increase in the efficiency
of dipole wave hybridization with bulk exchange spin
waves [29]. Obvioudly, in view of lateral inhomogene-
ity of the structure, we cannot expect in our case the
emergence of resonant interaction of spin waves with
bulk exchange modes asisthe casein regular film-type
Y 1G waveguides with pinned surface spins[30]. How-
ever, it can be expected that hybridization of a dipole
spin wave with exchange waves will be manifested in
the form of radiation loss [31].

No. 3 2005



550

VYSOTSKII ez al.

|
3.65.0

5.2

54

5.6

f, GHz

Fig. 3. Amplitude-frequency characteristic of the model for the spacing between aerials L = 1.5 mm in the case when they are
arranged in the film regions without (1) and with (2) asquare lattice for the magnetizing field Hy = 398 (a) and 1190 Oe (b). Curve 3

is the amplitude-frequency characteristic with aerials arranged on the segment with a square lattice at a distance L = 3 mm. Spin

waves propagate along the lattice axis (¢ = 0).

It should be noted that the effect of surface spin pin-
ning in approximation (2) with allowance for the sym-
metry of 2D structures can be associated with the exist-
ence of auniaxial surface anisotropy with the axis nor-
mal to the film surface. In the case of a tangentialy
magnetized structure [32], such a surface anisotropy
does not limit the mobility of the m, component tangen-
tial to the film surface,

(4)

while the m, component normal to the surface is found
to be pinned,

om,
37 ©)

where parameter h characterizes the degree of spin pin-
ning and has dimensions of cm™. In this case, theinter-
action between the dipole surface magnetostatic spin
wave with exchange waves can be described by the
effective pinning parameter [32]:

]

2% — {1 + ‘%} 2%
0 fm 0

The dependence of the effective pinning parameter on

frequency (6) reflectsthe variation of elipticity of mag-
netization precession in the film with frequency f,

—hm, = 0,

heﬁ —

(6)

m, if

= 7
m, (")

f+f,+gMyak®

where o = 3 x 10* cn?? is the nonuniform exchange
constant. It can be see from formula (7) that the magne-
tization precession ellipse for f < f,, is extended along
the film surface (m, < m)) and the effect of pinning on
the motion of magnetization is weak. For this reason,
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the value of the effective pinning parameter h" (6) will
also be small.

3.1. Square Lattice

Figure 3 shows the amplitude-frequency depen-
dences of the model with a spacing L between the aeri-
alsof approximately 1.5 mm for two val ues of the mag-
netic field in the case when spin waves propagate along
the axis of a 2D square lattice (¢ = 0). Comparison of
curves 1 and 2 shows that the | attice noticeably changes
the conditions of spin wave propagation. In the mag-
netic field range Hy < 500 Oe (Fig. 3a), such variations
are manifested in the form of two absorption bands (B1
and B2) of the signal. One of these bands (B1) is
observed near the threshold frequency f, of the spec-
trum. To make the existence of the B1 band more
visual, Fig. 3a shows the amplitude-frequency charac-
teristic for adistance L = 3 mm between the transducers
(see curve 3). Band B2 is formed in the upper (short-
wave) part of the excitation frequency band for spin
waves. It should be noted that losses change insignifi-
cantly at frequencies that do not fall in absorption
bands B1 and B2. At the sametime, the | attice lossesfor
H, > 500 Oe noticeably increase in the entire frequency
band corresponding to the existence of spin waves as
compared to losses in a free film (Fig. 3b). The nature
of variations of the amplitude-frequency characteristic
issuch that an increase in the loss can mainly be attrib-
uted to the expansion of absorption band B1.

Curve 1 in Fig. 4 shows the dispersion relation of
spin waves in a structure with a sguare lattice for
parameters corresponding to Fig. 3a, which is plotted
using the phase-frequency characteristic. It can be seen
that a“gap” is formed in the dispersion relation in the
range of wavenumber k%, = 950 cm™ at frequencies
fz = 3390 M Hz, which belong to absorption band B2. In
this case, no noticeable changes were observed in the
dispersion relation at frequencies corresponding to the
B1 absorption band.
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Fig. 4. Dispersion relations for spin wavesin 2D structures
with a square lattice for ¢ = 0, Hy = 398 Oe (curve 1);
¢ = 45°, Hp = 525 Oe (curve 2), and with arhombic lat-

tice for ¢ = 15° (the direction of the wavevector of the
spin wave is close to the direction of the lattice axis),
Hg = 560 Oe (curve 3).

Let us consider dependences A(H,) and Pg(H,) for a
signal frequency of fg = 3390 MHz for the same lattice
(Fig. 5). Comparison of curves 1 and 2 shows that the
level of reflected power oscillates in a field Hy =
400 Oe, while the A(H,) dependence acquires a region
with strong attenuation, which corresponds to the B2
band on the amplitude-frequency dependence shownin
Fig. 3a. On the contrary, for values of H, = 500-680 Oe
for which the chosen frequency fg = 3390 MHz is close
to the threshold frequency f, of the spin wave spectrum
and absorption band B1 isformed on the amplitude-fre-
guency characteristic, no singularitieswere abserved in
the Pr(H,) dependence.

It follows from Figs. 3-5 that absorption band B2 is
associated with the gap in the spectrum, within which
the level of reflected power increases. Such a behavior
of dispersion and reflected power indicates that the
emergence of absorption band B2 is associated with
“nontransmission” of the signal through the structure;
the most probable reason for its emergence is Bragg
scattering of spin waves from the periodic structure.
This aso follows from the close values of the wave-
numbers corresponding, on the one hand, to the gap
regionin the dispersion relation for spinwavesin Fig. 4
and, on the other hand, to the fulfillment of the Bragg
resonance condition (3). Indeed, in the case when these
waves propagate along the axes of the square lattice, the
period A\ of the 2D structure coincides with the length
a. of the unit cell edge (A = a, = 37 um). Using Bragg
resonance condition (3), we obtain kg = 850 cm™,
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Fig. 5. Dependence of the levels of signal A(H) transmitted

through the model of the delay line (a) and reflected from
the input transducer of microwave power Pr(Hg) (b) on the

magnetic field Hg for the arrangement of the aerials in

unetched region of thefilm (curves 1) and in the region con-
taining a square lattice (curves 2). The frequency f =
3390 MHz of the microwave signal correspondsto the posi-
tion of the B2 gap in the amplitude-frequency characteristic
of the model for experimental parameters corresponding to
Fig. 3a

which is in good agreement with the values of wave-
numbers in the gap region in Fig. 4 (ks = 850 cm™ =
k¥ = 950 cm™). The behavior of the B2 band upon a
change in the orientation of wavevector k relativeto the
axes of the lattice indicates that its emergence on the
amplitude-frequency characteristic in Fig. 3 is associ-
ated with Bragg resonance on a 2D square lattice. When
the lattice rotates through an angle |¢| > 15°, the B2
band on the amplitude-frequency characteristic of the
model vanished and emerged only for values of ¢ = 45°.
In this case, the A(Hy) dependence shows a dip, while
the Pg(H,) dependence oscillates analogously to the
case of ¢ = O depicted in Fig. 5. At the same time, the

period of the 2D lattice for ¢ = 45° is A2 = 37./2 =
52 um. In this case, the Bragg resonance should be
manifested for a wavenumber kg = 600 cm™. Indeed,

the dispersion curve plotted for this case (curve 2 in
Fig. 4) shows a gap in the spin wave spectrum for

kK> =630 cmt.
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Fig. 6. Amplitude-frequency characteristic of the model
with a rhombic lattice for spin waves propagating at an
angle ¢ = 15° (the direction of the wavevector iscloseto the
direction of the lattice axis) for Hy = 560 Oe.

L et usnow consider the reason for the emergence of
absorption band B1 and |oss escalation in an increasing
magnetic field. It follows from Figs. 4 and 5 that no
noticeable deviations from the case of a free film are
observed at frequencies corresponding to the B1 band
either in the dispersion relation f(k), or in the form of
the Pr(Hg) dependence. Consequently, emergence of
losses in the B1 band and their growth with field H,
should be attributed to the effects accompanying the
wave propagation. It should be noted that an apprecia-
ble increase in losses in the film with a 2D structure
occurs in fields Hy = 500 Oe, when the condition f >
f./2 = 2.5 GHz holds for the spin wave excitation fre-
guency and, in accordance with relation (6), the effec-
tive pinning parameter for surface spins increases.
These arguments allow us to attribute the emergence of
the B1 absorption band and increase in losses with Hy to
the mechanism of radiation losses due to emission of
bulk exchange spin waves from the film surface[31, 33].

However, we should note a number of substantial
differences in the behavior of radiation lossin our case
and also inYIG films with a spin pinning constant that
does not vary over the film surface, in which the cou-
pling between dipole and exchange waves is propor-
tiona to wavenumber k. For a fixed value of field H,,
thisleadsto an increase in radiation loss with k. On the
contrary, in the case under investigation, radiation
losses attain the highest values and are manifested pri-
marily in the range of small wavenumbers. This differ-
ence can be explained by the following two circum-
stances. First, not only the magnetization components
m, normal to the surface, but also tangential compo-
nents m, will be pinned at spin wave frequencies due to
the effect of the demagnetization fields of the pitsinthe
surface layer of thicknesst. Such a pinning mechanism
will clearly be effective in the region of small magne-
tizing fields also. Second, in the range of small wave-
numbersk, the lattice can be treated (relative to the sur-
face magnetostatic spin wave) as a homogeneous layer
with parameters differing from those in the bulk of the
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film since the wavelength is considerably larger than
the lattice period,

A> A, (8)

The coupling of a spin wave with exchange waves over
a wavelength is virtually constant, which ensures the
effectiveness of the radiation loss mechanism. As the
values of kincrease, condition (8) becomesinvalid and
the concept of exchange waves propagating from the
surfaceintheform of planewavesisviolated. Asaresult,
the overlap integral of the fields of the dipole spin wave
and exchange waves decreases, which in turn reduces
radiation loss upon an increase in wavenumber k.

3.2. Rhombic Lattice

We will consider the effect of a rhombic lattice on
the propagation of a surface magnetostatic spin wave
for pits with an etching depth t, = 2 um, for which the
effect ismanifested more clearly thanfor t; = 1 um. The
emergence of the B2 absorption band associated with
the Bragg diffraction for orientations of wavevector k
close to the directions a, of the lattice axes was a con-
sequence of the rhombic lattice symmetry. In the lattice
considered here, such situations could correspond to

values of angles ¢ = 25, 90, 155, 210, 270, and 330°
(see Fig. 1d). The experimental values of the angles
were quite close to these values, but could differ by
o¢ = +(5...10)°. The effect of angle ¢ of radiation
exchange losses and on the B1 band could not be sep-
arated.

The behavior of the amplitude-frequency character-
istic of a surface magnetostatic spin wave in arhombic
lattice upon an increase in the field was on the whole
analogous to that in a square lattice, depicted in Fig. 3.
However, in the range of not very strong fieldsH, in the
shortwave part of the amplitude-frequency characteris-
tic, two B2 absorption bands were observed instead of
one band. Figures 6 and 4 (curve 3) show the ampli-
tude-frequency characteristic and the dispersion rela-
tion, respectively, for ¢ = 20° and H, = 560 Oe. It can
be seen that interference fading bands B2, correspond-
ing to the emergence of a“gap” in the dispersion rela
tion, are observed in the amplitude-frequency charac-

teristic at frequencies fg, = 3730 MHz and 3, =
3830 MHz. The P(H,) dependences measured at the
signal frequencies fg, demonstrated, analogously to
Fig. 5, oscillations of reflected power, which indicated
deterioration of matching between the microstrip trans-

ducer and the film. It can be seen from Fig. 4 that the
positions of the gaps in the dispersion relation corre-

spond to wavenumbers k; = 780 cm for the first gap

B2! and k = 1050 cmr? for the second gap B22. If we
takeinto account thefact that thelattice period A = a,yp, =
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40 pum, relation (3) gives kg = 785 cnr?, which corre-
spond in order of magnitude to values of kr1 =780 cm .

If we also attribute the “second” absorption band
B22to Bragg diffraction from the 2D lattice, relation (3)
implies that the period of the structure must be on the

order of the pit diameter, A = Wk’ = 30 pm = D =

32 pumfor the wavenumber kr2 = 1050 cm™* correspond-

ing to this absorption band. It should be noted that the
effect of exchange radiation losses on the propagation
of spin waves in the rhombic structure studied here is
not as noticeable as in the case of a square lattice. This
can be explained by the lower number density of pits
per unit surface area of the film for the rhombic lattice
(seeFigs. 1b and 1c).

4. CONCLUSIONS

Thus, we have studied the propagation of surface
magnetostatic waves in 2D magnon crystals. These
crystals were obtained on the basis of thin ferromag-
netic YIG films with structures formed by etch pits.
When magnetostatic waves propagate in such crystals,
their properties change substantially. The effectiveness
of such a change is determined by the parameters of
magnon crystals and the external magnetic field. In par-
ticular, the spectra of propagating waves display band-
gaps at a frequency determined by the period of the
structure formed by etch pits and the structure symme-
try. Changes in the spectra of waves due to radiation
losses during scattering of waves from surface inhomo-
geneities of the ferromagnetic film are also detected.
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Abstract—The vibrational spectraof structures with InAs quantum dots in an AlGaAs matrix and AlAs quan-
tum dots in an InAs matrix are investigated experimentally and theoretically. The Raman spectra exhibit fea-
turesthat correspond to transverse-optical (TO), longitudinal-optical (L O), and interface phonons. Thefrequen-
cies of interface phononsin InAs and AlAs quantum dots and in an AlGaAs matrix with various concentrations
of aluminum are calculated with the use of experimental values of transverse- and longitudinal-optical phonons
in the approximation of adielectric continuum. It is shown that the model of a dielectric continuum adequately
describesthe behavior of interface phononsin structures with quantum dots under the assumption that the quan-
tum dots are spheroidal. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Periodic semiconductor structures with self-orga
nized quantum dots, which are characterized by unique
electronic and optical properties, are one of the most
challenging abjects of research in semiconductor phys-
ics. These objects attract interest in view of the possi-
bility to design, on the basis of these objects, new
devices such as quantum transistors, high-speed mem-
ory elements, narrowband light-emitting diodes, hetero-
junction lasers, and infrared (IR) photodetectors [1-3].

Progress in the epitaxial growth technology has
made it possible to produce quantum-dot structures
with controllable properties on the basis of a series of
materials (INASGa(Al)As, In(Ga)AdInP [4, 5], Ge/S,
GaShb/InP, GaN/AIN) [6-9]. The most thoroughly
investigated system is INASGa(Al)As; a large number
of papers have been devoted to the study of its optical
and electronic properties [2]. However, despite the fact
that the vibrational spectrum contains information
about the structural properties (the size, dispersion of
size, and the shape) of quantum dots [10, 11] and
mechanical stress in nanostructures[12, 13], the vibra-
tiona properties have been poorly studied even in this
system. The most widespread methods for studying
vibrational spectraare the Raman spectroscopy and the
infrared (IR) spectroscopy. These methods are comple-
mentary because they use different selection rules,
therefore, they allow one to study vibrational excita-
tions of different types of symmetry. The Raman and IR
spectroscopy have been applied to study optical
phonons in stressed [13, 14] and relaxed [12, 15] quan-

tum dots, in quantum dots of InGaAs solid solutions[16],
and in awetting layer [17, 18].

Earlier, a theoretical analysis of the spectrum of
optical phononsin quantum dotswas carried out within
the model of valence-force fields [19, 20] and in the
approximation of a dielectric continuum [15]. The
model of valence-force fields is an empirical atomistic
model and allows one to calcul ate the phonon frequen-
cies in quantum dots consisting of a few thousand
atoms. Calculations with the use of this model involve
large arrays of data; this makesthese cal culationsrather
tedious. The approximation of adielectric continuumis
amacroscopic model and can rather easily be applied to
the calculation of the frequencies of interface phonons
localized near the interface between the materials of the
quantum dots and the matrix [21].

The simplest model of a dielectric continuum deals
with spherical quantum dots of one material embedded
into the matrix of another material [22, 23]. Inthiscase,
the eigenfrequencies are determined from the condition

61((.0|m) - _ _1—
o T @)

where e; and e, are the dielectric functions of the quan-
tum dots and the matrix, respectively; w,, arethe eigen-
frequencies of interface phonons; and | is a quantum
number of aphonon (1 =1, 2, ...).

Asarule, the shape of areal quantum dot isdifferent
from a sphere [24, 25] (a truncated pyramid for a sys-
tem of InAs quantum dots in a GaAs matrix [26], a
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hemisphere for Ge quantum dots in a Si matrix [27],
and an dlipsoid for AIAs quantum dots in an InAs
matrix [28]). Therefore, the model of a dielectric con-
tinuum was further developed in [29, 30], where it was
assumed that quantum dots are spheroidal. The reduc-
tion of the symmetry of quantum dots from spherical to
spheroidal complicates the condition for the eigenfre-
guencies of interface phonons. these frequencies will
now depend on two quantum numbers, | and m.

In [30], the dielectric function of amatrix is consid-
ered that does not depend on frequency; this provides a
unique set of interface modes whose frequencies lie
between the frequencies of TO and LO phonons in
quantum dots. Such an approach isjustified if a model
deals with quantum dots in a vitreous or an organic
matrix.

In[29], it was assumed that the dielectric functions
of both the quantum dots and the material of the matrix
depend on frequency; unlike the dielectric-continuum
model considered in [30], this yields two sets of inter-
face modes. The first set, which refers to quantum dots,
liesin the spectral range between TO and LO phonons
inthe material of quantum dots. The other set liesin the
frequency range between the corresponding values of
bulk phononsin the matrix material.

Despite the progress made in the theoretical
description of interface phononsin spheroidal quantum
dots, there is alack of experimental research in inter-
face phonons in structures with self-organized quan-
tum dots [11, 13].

In this paper, we present the results of investigating
interface phonons in structures with InAs and AlAs
guantum dots by the methods of Raman spectroscopy
and compare them with the data obtained by cal culating
the interface phonons in the approximation of a dielec-
tric continuum.

2. THEORY

Let us write out the basic equations necessary for
the analysis of the diel ectric-continuum approximation
in polar materials [30, 31]. The Born—Huang equation
of motion can be represented as follows:

eo_ew 2
4.,.[ ('l‘)TOE’ (2)

where the polarization P can be expressed as

.. 2
W = —WroW +

€r— €, 2 € —
P= [ —wiow+

1
4t 1° 4T E. (3)

Here, w = ./Npu, where u is a relative displacement
between a pair of ionswith reduced mass |1 in a crystal
with concentration N, E is the electric field, w;g and
W, o arethefrequencies of transverse- and longitudinal-
optical phonons, and ¢, (e,,) is the static (high-fre-
guency) dielectric constant of a polar material. In addi-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

555

tion, we assume that the Lidden—Sacks-Teller relation
W o/ Woo = €yle., holds.

For the electric field to satisfy the Maxwell equa-
tions, it is necessary that the electric induction

D = e(w)E = E+4TmP

should satisfy the Gauss equation
OD = 0.
Using the relation
E=-0,

we can write out the basic equation of dielectric
approximation:

e(w)0%d = 0. 4)

It is assumed that the time dependence of al the
quantities introduced above is harmonic: f(t) O
exp(-iwt). In the absence of damping, the frequency-
dependent dielectric function €(w) of apolar material is
defined by

2 2
Wo—W
® 2 2"
Wro— W

e(w) =€ ©)

Interface phonons are directly related to the electric
potential, which must satisfy the Laplace equation
02p = 0. Therefore, one of the possible solutions to
Eq. (4) ise(w) # 0for w# w, o. The boundary condition
at the interface S between two media, the continuity of
the normal components of D, is expressed as

00,7 _  0¢,
El[anL - GZ[ anL' ©
Since the object of our study are interface phonons
in spheroidal quantum dots, it is convenient to pass

from Cartesian coordinates to spheroidal (prolate and
oblate) coordinate systems [30].

The prolate system of coordinatesé, n, @isused for
calculating the frequencies of interface phonons for
prolate quantum dots and is expressed in terms of Car-
tesian coordinates as follows:

x = by/(§?~1)(1-n*)cose,

y = by(®-1)(1-n?sing, )

Z = b&n,

whereas the oblate system of coordinatesis convenient
for determining the frequencies of interface phononsin
oblate quantum dots:

x = by/(§%+1)(1-n?) cose,
y = bJ(£?+1)(1-n’)sing, (8)
z = b&n,
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where ¢ = 1 for the prolate system, & = O for the oblate
system, and—1<n < 1land0< @< 2mfor both systems.
The expression & = const describes an ellipsoid of rota-
tion with the rotation axis (z axis) directed along the
principal axes of the elipsoid; 2b is the interfocal dis-
tance.

Consider an €lliptic surface defined by the formula
& =&, = const. Inour model, theinterior domain defined
by 1< & < &, for prolate and oblate systems of coordi-
nates is one of the polar semiconductors with the
dielectric function e(w) given by (5), where w is an
eigenfrequency corresponding to interface vibrations of
aspheroidal quantum dot. The exterior, with respect to
the eliptic surface, domain defined by the relation & =
&, is an infinite medium with the dielectric function
given by (5).

The Laplace equation can be separated in prolate
spheroidal coordinates; a solution to the above-
described model can be sought for in the form

0 = ALR"E)Y (N, @), E<E&,

> R| (&) (9)
= Q E Ym EZE 1
0 Q|(E.o) F(E)Yim(N, 9), 0

where A, are Fourier coefficients and Y,(n, @) are
ordinary harmonic spherical functions. The same
expression applies to the oblate system of coordinates
after certain transformations and the replacement

& —i¢&.

The functions R"(§) and Q["(€) in Eq. (9) are
expressed in terms of hypergeometric function F:

m/2

I E -n™E "

R8) = 211 (1 —m)!

m—| m—I+11 1
XF[T! 2 1§_|1?i|!
m 2 m/2 (10)
2™ —m)IT (1/2)(8%-1)

F(l+3/2)(28) ™!

Q'(€) =

[+m+11+m+2 31
XF 1 1
[ 2 2 }

where I'(X) is the gamma function. For the oblate sys-
tem of coordinates, these functions are expressed in
similar terms; however, after the replacement & —» i¢
and certain algebraic transformations, they can be rep-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

LADANOYV et al.

resented as the following functions of i&:

miey = (2DIE+ )"
Ri) 211 (1 —m)!

m-|l m-1+11 1
<F T T ’é"‘gz]

(11)

m/2

21 (1 +m)(E2+1)" g Tt

(21 + 1)

Q'(ig) =

>(|:|:|+I‘T‘\+1,|+m+2,|+3’ 1i|.
2 2 2" g2

Here, the angular moments of the harmonic functions
takethevaluesl =1, 2,3, ... and m| < |.

For & = &,, the boundary condition (6) defines the
relations

(80 = 2o = H QT @), EEU%InRF“
HOEPE Edaanl (12
QjEInR'

for the prolate and oblate coordinate systems, respec-
tively. The universal parameters f, and f, do not
depend on the nature of the material or on the normal-
ization of the functions R" and Q|"; however, what is

especially important, they depend on the geometry of
guantum dots. The conditions

W _ €0=€pfim(Z0)
2 P '
) €, —¢€pf
LZO D I;n(EO) (13)
Wim _ € —€p fim(€o)
Wo  €n—epfin(&o)

for the eigenfrequencies of interface phononsin prolate
and oblate coordinate systems, respectively, alow one
to calculate the frequencies of interface phonons.

Note that, in contrast to the case of spherical quan-
tum dots, the eigenfrequencies of interface phonons
depend on two quantum numbers, | and m, and on the
parameter §,. It can be shown that, for &, — O,

Eq. (13) yields the following relation for the eigenfre-
guenciesin spherical quantum dots[31]:

W el +ep(l +1)
o €.l +ep(l +1)

whichisidentical to formula (1).

(14)
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For InAs guantum dots in the form of oblate sphe-
roids in an AlAs matrix, the frequencies of interface
modes as a function of the quantum number m for the
semiaxis ratio RyR, = 1/2 are shown in Fig. 1la. The
semiaxis R, lies in the plane of the layers of the struc-
ture, while R, is perpendicul ar to the surface. Figure 1a
shows that the calculated values of the frequencies of
interface phonons in InAs quantum dots and in the
AlAs matrix range within the limits of 230-236 cm™
and 382-392 cm, respectively, and lie between the
frequencies of TO and LO phonons. As the quantum
numbers of the calculated modesincrease, the frequen-
cies of these modes tend to the frequencies of interface
phonons that propagate along plane heterojunction
boundaries. For AlAs-like phonons, this value is equal
to 383 cm, whereas, for InAs-like phonons, it is equal
to 235 cm™. Note that these values differ by several
inverse centimeters from the frequencies of modeswith
small | and large m.

The set of frequencies of interface phonons for pro-
late quantum dots significantly differsform the relevant
set for oblate quantum dots (Fig. 1b). Thisdifferenceis
especially significant for the frequencies of modes with
small quantum numbers| and m.

In the model considered, the parameter that defines
the shape of a quantum dot is the ratio R./R, of large
and small semiaxes.

Figure 2 shows the frequencies of interface phonons
in quantum dots with the quantum numbers (1, 0) and
(1, 1) as afunction of the ratio R/R,. It is especidly
important to determine the frequencies of these modes,
because it is the phonons with small quantum numbers
(I, m) equa to (1, 0) and (1, 1) that should make the
main contribution to the Raman scattering of light [29].

For the ratio R/R, ranging from 1/10 to 1 (prolate
guantum dots), the frequencies of the first modes of
interface phonons are shown in the left-hand part of the
diagram, whereas the appropriate frequencies for R/R,
ranging from 1 to 10 are shown in the right-hand part.
One can see that the frequencies of interface phonons
exhibit the greatest variation in those quantum dots
whose shape is close to a sphere.

Consider the case when the material of either the
matrix or the quantum dots is a ternary solution
A,B; _,C. Thiscaseisof definite interest because struc-
tures with InGaAgAlIGaAs quantum dots are already
available. Since the dielectric function of a solid solu-
tion (in the absence of damping) is given by

a ((*)Eo, 1— 002)((*)Eo, 2~ 002)
(W 1= 00°) (W50, — W)

e (w) = € (15)

where €5, = €, X + €, (1 —X), the solution to Eq. (13)
represents three sets of interface phonons one of which
corresponds to the material of a binary compound and
the two other sets correspond to the material of a solid
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Fig. 1. Frequencies of interface modes in (a) oblate quan-
tum dots for RyRg = 1/2 and (b) prolate quantum dots for

Ry/Re =2 asafunction of the quantum numbersmand|. The

frequencies of phonons with equal quantum numbers| and
different numbers m are connected by lines.

Frequency, cm™!
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]
3901 Mgrirasaaaag
A(IA’AI)AAAAA‘ SEsEmEEEEm
380F z

0
240-aaaaaaaa, -lllll!(!!!_
] .

e L LLLLL bl

0.1 0.2 1 5 10

Fig. 2. Frequencies of interface phonons with quantum
numbers (1, 0) and (1, 1) asafunction of theratio R/R;, for

oblate (R/R, = 1-10) and prolate (R/R, = 0.1-1) quantum
dots.

solution. For example, for INASAIGaAs quantum dots,
these sets represent interface phonons in InAs quantum
dots and AlAs- and GaAs-like interface phononsin the
matrix. Note that, for structures in which both the
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Fig. 3. Cross-sectiona electron-microscope pictures of
structureswith InAs quantum dotsin AlAs and GaAs matri-
ces (samples A (@) and C (c), respectively) and AlAs quan-
tum dots in an InAs matrix (sample B (b)). The insets rep-
resent detailed views of the quantum dots obtained at high
resolution.

matrix material and the quantum dots represent solid
solutions, one may expect that four sets of interface
phonons exist.

3. EXPERIMENTAL

The structures studied were grown on GaAs sub-
strates in the Stranski—Krastanov growth mode by
molecular beam epitaxy on a Riber 32P equipment.
Sample A consisted of ten periods each of which con-
tained a layer with InAs quantum dots with a nominal
thickness of 2.25 monolayers and an AlAs layer with a

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

LADANOV et al.

thickness of 25 nm. Sample B, consisting of 50 periods
of AlAs quantum dots embedded into an InAs matrix,
was grown on a silicon-doped (Ng = 2 x 10'® cm3)
InAs buffer layer of thickness 1.5 um at a substrate
temperature of 420°C. Each period contained a layer
with AlAs quantum dots with a nhominal thickness of
2.4 monolayers and a 12-nm-thick layer of InAs. Sam-
ple C consisted of 20 layers with InAs quantum dots
with anominal thickness of 2.5 monolayers coated by
a 6-nm-thick GaAs layer.

The samples in which the matrix material was a
solid solution Al,Ga, _,As consisted of five periods,
each of which contained an 8-nm-thick layer of
AlLGa, _,As and a layer with InAs quantum dots. The
content of duminumwasO0, 0.15, 0.25, 0.5, and 0.75. The
structures were coated by a 20-nm-thick layer of GaAs.

The growth process was controlled by the reflection
high-energy electron diffraction technique. According
to the diffraction data, in al the samples, the transition
from two-dimensional to three-dimensional growth
mode (the onset of the formation of quantum dots)
occurs after deposition of 1.9 monolayers of the quan-
tum-dot material. After the formation of quantum dots,
the first 8 nm of the AlAs layer was grown at the same
temperature as the quantum dots (500°C). Then, the
temperature was raised to 600°C and the remaining part
of the AlAs layer was deposited.

The Raman spectra were recorded at a temperature
of 80 K by aDilor XY 800 spectrometer. Ar*- and Kr*-
lasers with wavelengths of 514.5 and 647.1 nm were
used for the excitation. The spectra were measured in
the geometry of backward scattering from a plane sur-
face and from the cleaved edges of the samples oriented
in the (110) plane. The following scattering geometries
were used: z(xx)z, zZ(yx)z, y(zX)y', and Y(XX)y',
where the axes x, y, z, X, and y' were parallel to the

[100], [010],[001], [110], and [110] directions, respec-
tively. In the experiments with the geometry of back-
ward scattering from a butt end, we used a microscope
that allowed usto focus a laser beam to aspot 1 umin
diameter. The spectral resolution was 2 cm through-
out the spectral range.

4. RESULTS AND DISCUSSION

To control the quality of the samples and to deter-
mine their structural parameters, we used high-resolu-
tion transmission electron microscopy. The cross sec-
tions of the samples shown in Fig. 3 indicate that InAs
quantum dots are lens-shaped (samples A and C) and
AlAs quantum dots are spheroidal (sample B). InAs
guantum dots have a base of about 10 nm and a height
of about 1.5 nm. According to the images obtained by
an electron microscope, the average size of AlAs quan-
tum dotsis 4-5 nm at the base and 2—4 nm in height.

Figure 4 presents the Raman spectra of the struc-
tures A, B, and C measured in different scattering
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geometriesthat allow oneto observelocalized TO, LO,
and/or interface phonons. According to the selection
rulesfor plane superlattices, only L O phonons manifest
themselvesinthe z(yx)z and y'(x'x) ¥ scattering geom-
etries and only TO phonons, in the y'(zX)y' geometry.
In the z(yx)z and z(xx)z scattering geometries, inter-
face phonons may appear in the resonance conditions.
The figure shows that these selection rules also hold for
the investigated structures with quantum dots.

For example, TO and LO phonons in the matrix
materials of the samples A, B, and C are observed in
allowed scattering geometries at the frequencies
359 and 402 cmt (AlAs), 216 and 235 cm™ (InAs),
and 267 and 291 cm (GaAs), respectively. The fre-
guencies of the observed TO and L O phonons are close
to the values of frequenciesin bulk materials. Note that
the Raman spectra of all samples exhibit features corre-
sponding to the TO and LO phonons in the GaAs sub-
strate (267 and 291 cm2).

Figure 4 shows that, at frequencies of 386, 228, and
277 cmt, which lie approximately at the midpoint
between the frequencies of the TO and L O phonons, the
spectra exhibit features associated with the interface
phonons in AlAs, InAs, and GaAs matrices, respec-
tively. These features will be discussed bel ow.

The frequencies of optical phonons localized in
quantum dots differ from the frequenciesin bulk mate-
rials. For example, in samplesA and C, the frequencies
of TO and LO phonons in InAs quantum dots are
shifted by 10-15 cm™ to higher frequencies with
respect to the frequencies of bulk phononsin InAs due
to mechanical stressesin quantum dots. Thelattice con-
stant of InAs (0.60583 nm) is greater than that of GaAs
(0.565325 nm) and AlAs (0.56622 nm); hence,
mechanical stressesin InAs quantum dotsin AlAs and
GaAs matrices have the same sign: quantum dots expe-
rience contraction along thelayersinwhich they are sit-
uated and expansion in the direction of growth of the
structure [13].

The signs of mechanical stresses in sample B are
reversed, which givesriseto alow-frequency shift (30—
40 cm™) of the optical phononslocalized in AlAs quan-
tum dots of sample C[13].

Just as in the case of interface phonons in a matrix,
the frequencies of interface phonons in quantum dots
lie between the frequencies of TO and LO phonons
localized in quantum dots. The frequency of an inter-
face phonon in InAs quantum dots in sample A can be
determined from the decomposition of the spectrum in
the frequency region of optical phonons in InAs into
two Lorentz curvesthat correspond to the lines of inter-
face and LO phonons, as is shown in Fig. 4 by dashed
lines, and is equal to 242 cm™. The line of interface
phononsin AlAs quantum dots in sample B is observed
at afrequency of 348 cm, whereas sample C does not
exhibit features corresponding to the interface phonons
inInAs.
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Fig. 4. Experimenta Raman spectra of (&) InAgAIAS,
(b) AIAY/INAS, and (c) InNAS/GaAs quantum-dot structures.
Vertical bars over the graphs indicate the calculated fre-
quencies of interface modes (IF), and vertical arrows indi-
cate the features corresponding to TO and LO phonons in
InNAg/AlAs. The excitation energy of a laser is equal to
241 eV (514.5 nm) (spectra (a) and (b)) and 1.91 eV
(647.1 nm) (spectrum (c)).

Now, let us consider a system in which the matrix
materia isaternary solid solution Al,Ga, _,As.

Figure 5 represents the experimental Raman spectra
of INAS/AlLGa, _,Asstructures with InAs quantum dots

for various values of x recorded in the z(xx)z and

Z(xy)z scattering geometries in the spectral bands of
optical phononsin InAs, GaAs, and AlAs. According to
the selection rules for the Raman scattering,
INAg/ALLGa, _,As planar structures should exhibit LO

phononsin the z(xy) z scattering geometry and interface

phonons in the z(xx) z scattering geometry under reso-
nance conditions. Figure 5 shows that these selection
rules are also valid for structures with quantum dots.
The Raman spectra recorded in the z(xy)z geometry
predominantly exhibit LO phonons of InAs quantum
dots and GaAs-like and AlAs-like LO phonons of the
solid solution. In the z(xx) z geometry, one can observe
additional features associated with interface phononsin
the frequency range between TO and LO phonons in
GaAsand AlAs.
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Fig. 5. Experimental Raman spectra of an InAJAlGa; _,As
structure for different values of x. Dashed lines show the
spectra measured in the z(xx)z scattering geometry, and
solid linesindicate the spectra measured in the z(xy) Z scat-
tering geometry. The excitation energy of alaser isequal to

1.91 eV (647.1 nm). The intensity scales of Raman scatter-
ing are different in the three parts of the spectrum.

In the frequency range corresponding to optical
phonons, InAs exhibits wideband features associated
with the contribution of both interface and L O phonons
in InAs quantum dots to the Raman scattering. The fre-
guencies of these features virtually do not depend on
the composition of the solid solution of the matrix. As
the concentration of aluminum increases, the intensity
of Raman scattering by the phonons of InAs quantum
dots decreases, which may be attributed to the decrease
in the energy of interband transitions in InAs quantum
dotsfrom 1.9 to 1.1 eV (the excitation energy is equal
to 1.91 eV). As pointed out above, the vibrational spec-
trum of aAlGaAs matrix has atwo-mode character. As
the concentration of aluminum decreases, the fre-
guency of an AlAslike LO phonon decreases from
403 cm™ (for x = 1) to 386 cm™ (for x = 0.5). In the
Z(xx)z geometry, this spectrum exhibits a feature that
corresponds to a line of interface phonons whose fre-
quencies decrease from 386 c? (for x = 1) to 381 cnr?
(for x = 0.5). Because of the small LO-TO splitting of
AlAs-like phonons in AlGaAs with small values of X,
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Fig. 6. Frequencies of interface phonons as afunction of the
composition of the Al,Gay _,As matrix. The experimental

values of AlAs- and GaAs-like optical (+) and interface (x)
phonons are obtained from the analysis of Raman spectra.
Solid lines correspond to the values of AlAs- and GaAs-like
phonons in bulk AlGaAs versus the concentration of Al
[14]. Calculated values of the frequencies of interface
phonons in the (1, 0) and (1, 1) modes are shown by the
symbols (@) and (0).

the lines of interface phonons and LO phonons in the
Raman spectra are not resolved. In the range of fre-
guencies of optical phononsin GaAs, one can observe
an intense peak associated with an LO phonon in the
GaAs substrate (291 cmr™) and an asymmetric feature
associated with the contribution of interface and GaAs-
like LO phonons, whose frequency increases, as X
increases, from 273 cm (for x = 0.75) to 285 cm (for
x = 0.15). Fitting by Lorentz curves allows one to sep-
arate the contributions of interface and LO phonons.
The results of the fitting and the experimental results
obtained from the Raman spectra are shown in Fig. 6.

Selection rules for the Raman scattering do not
allow one to observe TO phonons in the z(xx)z and

Z(yx)z geometries for crystals with the symmetry of
zinc blende. However, the feature at a frequency of
360 cm?, which weakly depends on the concentration
of aluminum, islikely to correspondto anAlAs-like TO
phonon and manifests itself due to the violation of the
selection rules for structures with quantum dots.

The weak peak at a frequency of 402 cm™ is
observed in the spectra of al the samples investigated
and corresponds to an LO phonon in thin spacer layers
of AlAs.

Figure 6 shows that the two-mode behavior of opti-
ca phonons in the AlIGaAs matrix agrees with the
experimental data of [32] that were obtained for a bulk
solid solution of Al,Ga, _,As. The frequencies of inter-
face phonons determined from the experiments are
indicated by crosses.

Within the model of adielectric continuum, we have
calculated the frequencies of interface phonons in an
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INAgAlLGa, _,As quantum-dot structure in the approx-
imation of spheroidal quantum dots with the parame-
ters close to the experimental vaues (RyR. = 1/2). The
form of the didectric function of the Al,Ga, _,As
matrix that was used in the calculation corresponds to
formula (15). The circlesin Fig. 6 represent the calcu-
lated INAs-, GaAs-, and AlAs-like interface modes with
the quantum parameters| = 1 and m= 0, 1, because the
main contribution to the Raman scattering should be
made by modeswith small quantum numbers[29]. One
can see that the frequencies of calculated modes arein
good agreement with the experimental data.

5. CONCLUSIONS

The Raman scattering of light by INAJAI(Ga)As
and AlAS/InAs periodic structures with self-organized
guantum dots has been investigated. The Raman spec-
tra measured in different scattering geometries exhibit
features that correspond to optical TO and LO phonons
and interface phonons. The frequencies of TO and LO
phonons are displaced with respect to the correspond-
ing values in bulk materials in view of mechanical
stresses. The lines of Raman scattering by interface
phonons are observed under conditions closeto theres-
onance conditions. The frequencies of interface
phonons lie in the spectral range between the frequen-
ciesof TO and LO phonons. The experimental frequen-
cies of optical phonons have been used for calculating
the frequencies of interface phonons in structures with
quantum dots of different shapes in the approximation
of adielectric continuum. The frequencies of interface
phonons obtained within this model depend on the
shape of the quantum dots. It has been shown that the
dielectric-continuum approximation is an adequate
model for calculating the frequencies of interface
phonons in INAg/ALLGa, _,As quantum-dot structures
with any value of x. In this case, it is assumed that the
shape of quantum dots is close to that observed in the
spectra obtained by high-resolution electron micros-
copy. Thus, it has been shown that the Raman spectros-
copy is sensitive to the shape of quantum dots.
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Abstract—A lattice model is used to derive a system of equations describing anomalous transport in the case
of low tracer concentration. In the adopted model, anomal ous transport is due to nonequilibrium distribution of
tracer particles over sitesin an inhomogeneous attice. It is shown that awell-known time-fractional differential
equation can be derived from the lattice equations under certain additional assumptions. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

Anomalous transport properties are exhibited by
many physical systems[1-3]. Even though variousthe-
oretical approaches have been proposed to deal with
transport in these systems, no satisfactory solution has
been found to this day [4—7]. In the new approach pro-
posed in this paper, a macroscopic transport equation is
derived from a master equation without assuming local
equilibrium distributions of particles over sites of dif-
ferent types.

Systems of equations anal ogousto the one proposed
here were considered in [8-11]. However, since previ-
ous studiesrelied on a phenomenological approach, the
parameters of the equations have never been related to
microscopic quantities. Moreover, an important dis-
tinction of the system of equations proposed hereisits
symmetry with respect to type of lattice sites, which
makes the system more amenable to analytical meth-
ods.

2. SYSTEM OF EQUATIONS

Inthissection, alattice model isused to deriveasys-
tem of differential equations for the partial concentra-
tions of molecules occupying sites of several distinct
types. The derivation is based on the following assump-
tions: the medium is macroscopically homogeneous
and isotropic; there are afinite number of types of sites
randomly distributed in space; macroscopic transport is
due to thermally activated hopping of tracer particles
between nearest neighbors; the hopping rate can be rep-
resented as the product of two functions depending
only on the types of the sites occupied by the particle
before and after a jump, respectively. The last assump-
tion holds, for example, in the simple model of random
traps, as well as in the more complicated model taking
into account the varying height of the potential barrier
separating sites [12].

In a lattice model, the tracer flux density across a
plane surface element can be written as

q-= ég % (anPm _Wmnpn)v (1)

where Sisthe surface area. The summationin (1) isper-
formed over the pairs of sites that can be successively
occupied by a tracer particle before and after a jump
and can be connected by a straight line intersecting the
surface element. Since only low tracer concentrations
are considered, the hopping rate W, is independent of
the site occupation probability P,

By treating the probabilities corresponding to sites
of each type as differentiable functions, assuming that
particles can hop only to short lengths, and considering
a smal surface element, the probabilities can be
expressed approximately as

Py=P; + 1, [P, (2

where P, isthe occupation probability for the kth site of
ith type lying in the neighborhood of the surface ele-
ment, P; isthe occupation probability for asite of theith
typelocated at the center of the surface element, and r
is the radius vector from the center of the surface ele-
ment to the kth site.

When the surface element is sufficiently large, cor-
relation between the site locations involved in a jump
across the surface can be neglected, and (2) can be sub-
stituted into (1) to derive the following expression for
the flux vector:

N
J = _Z(_FBipi"'Dim) i) 3
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Here, N isthe number of types of sites;

Di = ZWhIIZ lehomani
n mOi (4)

Bi = ZWhIIZ z C‘nmhannm

n mOi

are the diffusivity and mobility associated with sites of
the ith type, respectively; h,,, and h,,, are the projec-
tions of r,, and r,, on the normal to the surface ele-
ment; p; = P,/V, is the concentration of particles occu-
pying sites of the ith type; V, is the average volume per
site of the ith type; h; is the largest hopping length for
particles occupying sites of theith type; N; is the num-
ber of sites of the ith type contained in a parallel epiped
with base Sand height h;; and F isthe force driving the
particles. When the force is weak, the probabilitiesW,,
are assumed to change by small increments:

erm = an[l_anm(F |j‘nm)]a (5)

where the positive coefficient a,,, depends on the
potential energy profile in the neighborhoods of the nth
and mth sites.

In the case of equilibrium distribution of particles
over sites of different types, expression (3) reduces to
the standard expression for the flux vector. However,
essentially different results are obtained in the general
case. In particular, convectiveflux isnot proportional to
the total particle concentration, and diffusive flux is not
paralel to the gradient of the total concentration. An
analogous phenomenological expression for the flux
vector was proposed in [10], but the summation was
performed over some loosely defined “diffusion paths”
rather than types of sites.

The expression for the flux vector can be used to
write the continuity equation as follows:

ap(r,t)
ot

y (6)
= 5 [=B(FOp (r, 1) + D,0°pi(r, 1],

i=1

where

N
p= Zpi
i=1

isthetotal particle concentration.

To obtain aclosed system of equations, Eg. (6) must
be supplemented with equations describing the evolu-
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tion of partia concentrations. To derive the required
equations, consider the master equation

oP
a_tn = Z (anPm - Vvmn Pn) . (7)
Suppose that the hopping rate can be represented as the
product of functions depending only on the type of site
occupied before and after a jump, respectively: W, =
U;V,, where i and j denote the types of the mth and nth
sites, respectively. Let a; be the relative number of sites
of theith type in amacroscopic volume. Consider acell
that is small in the macroscopic sense, but sufficiently
large in the sense that the lattice-site distribution inside
itissimilar to that in the entire volume; i.e., the relative
number of sitesof theith type contained inthecell isa;.
The sum of Egs. (7) for al sites of a particular type in
the cell divided by the cell volumeis

op; _ - 1
ar TPV BTy ) WP g
i =12, ..,N.

The product a;U; characterizes the partitioning of
hopping particles between sites of different types.
When the sites are randomly distributed in space, this
distribution is independent of the type of site occupied
before ajump. Therefore, the second termin (8) can be
rewritten as a constant quantity independent of the site
type i times a;U;. This constant quantity can be found
by adding up Egs. (8) and comparing the result with the
continuity eguation. This leads to the equation

LD - vpEyverY,

i=12,...,N,

where

G(r,t) = Zvjpj(r,t)

i=1

N (10)
+ 3 {=B(FOp (r, 1)+ D,I°py(r, 1},
vz Y v,y U, (11)

N
z a;U; =1
j=1
The parameter v, is the relative number of particles
jumping to sites of theith type, and v; is the frequency
of jumps from sites of theith type.

An analogous system of equations was derived
in [12], but the derivation presented therein is not phys-
ically correct. In particular, the meaning of the function
representing the transition probability remains unclear.
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Initially, it was defined as the rate of particle exchange
between macroscopically small volumes containing
large number of sites. Subsequently, it was found that
the same function characterizesthe rate of relaxation to
an equilibrium distribution of particles over sitesof dif-
ferent types in a macroscopicaly small volume. This
finding can be explained only by analyzing the mecha-
nism of transport on a microscopic level.

3. EINSTEIN RELATIONS

This section presents the derivation of the Einstein
relations between the mobilities and diffusivities corre-
sponding to particular types of sites. In alattice model,
these relations can be established only by assuming that
the sites occupied before and after each jump are sepa-
rated by anarrow potential barrier located exactly inthe
middle between the sites. Sincethisassumptionisunre-
aistic for a disordered medium, the relations are
derived here without using any lattice model. As afirst
step, the Green—Kubo formula is derived that relates
the average displacement of atracer particle driven by
an external force to the root-mean-square particle
displacement in the absence of forcing. Since standard
assumptions are not valid in the present model, weaker
assumptions are used. First, only particle velocities are
characterized by an equilibrium distribution in unforced
motion. Second, the velocity of anindividual particleis
not assumed to be a stationary random process.

Consider the spread of a cloud of particlesinitially
concentrated at the origin. The particle motion is
assumed to be governed by the laws of classica
mechanics. The particle velocity distribution is
assumed to quickly approach an equilibrium distribu-
tion. Then, the closed system consisting of the hopping
particles and the medium is characterized by the prod-
uct of a time-dependent distribution over generalized
coordinates with an equilibrium distribution over gen-
eralized momenta:

fo(a. p, 1) = f1(a, 1) fe(p). (12)

Suppose that the velocity distribution quickly
approaches a time-independent distribution closeto the
equilibrium distribution. Then, the distribution function
for particles driven by aforce can be written as

f(a, p.t) = f5(a, )(fe(p) +0f(p)), (13)

where &f isasmall perturbation and the function f,(q, t)
may substantially differ from f,(q, t). Even though the
gpatial distributions of tracer particles executing forced
and unforced motion are substantially different, the
corresponding distributions of particles over sites of
particular type are similar by virtue of the homogeneity
and isotropy of the medium and the random spatial dis-
tribution of lattice sites. Sincethe forcing is assumed to
be weak, it does not modify the hopping frequency and
the probabilities of hopping to sites of particular type,
merely displacing the particlesin a certain direction.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

SHKILEV et al.

A standard method [13] isthen applied to obtain the
following expression for the mean increment of an arbi-
trary dynamical variable B(q, p) characterizing the
forced motion:

t

[ABL{t) = I{{AH, fa(a, t) fo(P)} (14)

xB(q(q, p), pi(q, p))dtdr.

Here, {..., ...} denotesthe Poisson bracket, dI" isavol-
ume element in the phase space, q,(g, p) and pi(q, p) are
the phase coordinates at theinstant t for the unperturbed
system with the Hamiltonian H starting from the point
with phase coordinates g and p at theinstant t', and AH
is the Hamiltonian of the perturbation applied to the
system.

If the x axisis parallel to the applied force, then the

perturbation Hamiltonian and dynamical variable can
be expressed as

AH = YFx, B= YV,
iz 1 iZXI

where x; is the x coordinate of the ith tracer particle, F
is the magnitude of the applied force, and V,; is the x
component of the velocity of theith tracer particle.

Since the velocities of individual particles are
uncorrelated and f(p) is a Maxwellian distribution
when the tracer concentration is low, expression (15)
can be substituted into (14) to obtain

(15)

v () = % VOVt (16)
0

where the angle brackets labeled by superscripts F and
0 denote the averages corresponding to forced and
unforced motion, respectively. The correlation function
in the integrand corresponds to the unforced motion
characterized by distribution function (12). Indeed, the
velocities V(") and V,(t) are correlated via the phase
flow of the unperturbed Hamiltonian H. Moreover, V,(t)
depends only on V,(t") and on the type of the site occu-
pied by the particle at the instant t', being independent
of the exact spatial location of the particle. Therefore,
sincefy(q, t) and f,(q, t) describe similar distributions of
particles over sites of different types, the function
f,(q, t) in (14) can be replaced with f,(q, t).

Theintegral of (16) yields the Green—Kubo formula

- _F
axT = ST ard, (17)
which can be used to derive the Einstein relations
D, . _
B, = T i=12..,N. (18)
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This is done by calculating the averages [Ax(f and
[Ar?[, using Egs. (9) and (10), and requiring that (17)
hold for arbitrary distributions of particles over sites of
different types.

4. EVOLUTION EQUATION
FOR TRACER CONCENTRATION

For simplicity, we henceforth assume that the hop-
ping length is equal for tracer particles occupying sites
of any type. Then, the corresponding diffusivity is

Di=cv, i=212..,N, (29
where the constant c is on the order of the mean square
hopping length. This assumption isjustified by the fact
that the variation of diffusivity is primarily determined
by the frequency v;.

After substituting (18) and (19) into Egs. (9) and
(10), the system is reduced to a single equation in the
Laplace variable u:

up(r, u) —p°(r)

= %cOp(r, u)+q—l)—z—$00p°(r), (<0)
where
O = Dz—%
is the Fokker—Planck operator and
b =TI g = gL
L vitu L Vvitu

i=1 i=1

with 3; = pio(r)/po(r) denoting the relative number of
particles occupying sites of the ith type located at a
pointr att=0.

To change from the Laplace variable back to physi-
cal time, the functions u/(1 — @) and (¢ — Y)/(1 — )
are expanded in terms of simplefractions. Theresulting
integrodifferential equation describes the evolution of
the total particle concentration as afunction of r and t:

%0t = ac0p(r, ) + [ 5 aepl-N(t-1)
N-1 o (22)
x cOp(r, t')dt + z b, exp(—\;t)cOp’(r),

where—A; (i =1, 2, ..., N—1) denotes the nonzero roots
of the equation Y(u) = 1, and the coefficients a; and b,
are expressed in terms of the parameters of the func-
tions Y(u) and ¢(u).
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The solution to Eqg. (22) can be represented as a
seriesexpansion in the eigenfunctions X (r) of the oper-
ator cO:

P(r 1) = Xo(r) + 5 Ta(t)Xq(r). (23)

The functions T,(t) characterizing the decay of the cor-
responding eigenfunctions are linear combinations of
exponentials.

5. LATTICE WITH SITES OF TWO TYPES

In this section, a lattice with sites of two types is
considered as an example to demonstrate that Eq. (22)
can be used to describe anomalous transport. Anoma-
lous trangport is interpreted here as a regime in which
either mean particle displacement under forcing or
mean square displacement in the absence of forcing is
anonlinear function of time on a macroscopic scale. A
random trap model, with y; equal to q; is considered
here to simplify physical interpretation of results.

According to Eq. (22), if the lattice consists of sites
of only two types, then the mean square displacement
in the absence of forcing is

2 - O _ _ D_EDD
Tgnl 6D51+(b 1)1[1 expDTD}%, (24)

where

& = 04T, + 0,7y,

and D = c¢/¢ isthe equilibrium value of diffusivity.

The parameters & and T can be treated as mutually
independent and may vary from zero to infinity,
whereas b varies between &/1, and &/1,.

It follows from (24) that the time derivative of the
mean square displacement is 6Db a t = 0 and
approaches 6D with increasing t. The physical meaning
of the corresponding time scale is T can be elucidated
by analyzing system (9), (10) with zero spatial gradi-
ents. For alattice with sites of only two types, the sys-
tem reduces to the equation

op; _ 1 alTlpOD
E 9)
which demonstrates that T is the time of relaxation to a

local equilibrium distribution.

The behavior of [M2[9(t) depends on theinitial distri-
bution of particles over sites of different types, i.e., on
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the parameter b. When b > 1, the particles are more
likely to beinitially distributed over sites characterized
by the shorter waiting time. Since the mobility of the
particlesthat start moving from these sitesis higher, the
initial time derivative of the mean square displacement
exceedsiits equilibrium value. As the equilibrium parti-
cledistribution is approached, the time derivative of the
mean square displacement gradually decreases to its
equilibrium value. When b < 1, most particles initially
occupy sSites characterized by the lower mobility.
Accordingly, the time derivative of mean square dis-
placement increases with time, approaching its equilib-
rium value. At times longer than 1, every curve (24) is
asymptotically closeto thelinear function with equilib-
rium slope.

According to (24), the mean square displacement at
t=Ttis

6[b—(b—1)exp(—1>]%.

Its numerical value may vary within a wide interval,
dependingontand . If T and & are comparablein order
of magnitude, then the mean sgquare displacement is a
microscopic quantity at t = 1, and its significant
increase begins at t > T, which corresponds to a linear
function [M2of t; i.e., no deviation from classical diffu-
sionisobserved. If Tisgreater than & by orders of mag-
nitude, then the mean square displacement can reach a
macroscopic value at t = 1. In this case, [B?Cisanonlin-
ear function of t, i.e., anomalous diffusion is observed.

Thus, the model considered here demonstrates that
anomalous diffusion is due to an order-of-magnitude
difference between the time 1 of relaxation to a local
equilibrium distribution of tracer particles over sites of
different types and the mean waiting time &. According
to the formulas relating T and & to a; and T, the condi-
tiont > & holdsif both 1, > 1,and a, < 1, i.e, if the
sites characterized by the longer mean waiting time are
relatively scarce.

6. FRACTIONAL DIFFERENTIAL EQUATION

Itiswell known [6, 14] that atime-fractional differ-
ential equation can be derived from Eq. (20) by setting
¢(u) equal to Y(u) and defining Y(u) as

1

P(u) = m

(26)

whereA>0and0<n< 1.

The condition ¢(u) = Y(u) is physicaly plausible if
all potential barriers have equal heights, i.e, if v = ;.
Then, B = a;; i.e., particles are randomly distributed
over sites of different typesatt = 0.
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Expression (26) can be used to determine the prob-
ability distribution of frequency by solving the integral
equation

h v 1
vdv = ———.
,([U+VV( ) l+(AU)n

(27)

Its solution found by using methods of complex analy-
sisis

sin(nm)
V[ (Av)" + (Av) ™ + 2cos(nTr)]

It isacontinuous function having afinite value at every
frequency between zero and infinity. Since thisresultis
inconsistent with the physics of the model considered
here, the fractional differential equation can be used
only as an approximation describing real processes
within afinite timeinterval. At longer times, this equa-
tion is inapplicable, because it yields a nonlinearly
increasing mean sguare displacement, whereas a linear
increase is predicted by Eq. (22).
It is generally assumed that

y(v) = (28)

E
VvV = VoeXpE—-ﬁH,

where v, is a constant factor and E is an activation

energy. In this case, (28) can be rewritten as a distribu-
tion over activation energies:

sin(nt)

E) = , 29
¥(E) TRT[(2)" + (2)™ + 2cos(nT)] )
where
_ 1 &e—E
zZ= V—Oexp RT

The mean activation energy ¢ isrelated to the param-
eter A asfollows:

1 &e
A Voexp BT (30)

Since physically meaningful distribution (29) must
be independent of temperature, the fractional differen-
tial equation cannot describe any process involving
temperature variation. If itisstill used asan approxima-
tion, then temperature-dependent A and n can be
expressed in terms of the expected value and variance
corresponding to distribution (29): A is given by (30),
and

30_2 -1/2
(nRTf} '

where o2 isthevariance of (29). The parameters & and

02 should be treated as temperature-independent con-
stants.

n = [1+ (31)
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7. CONCLUSIONS

Since the model of anomal ous transport proposed in
this paper contains many parameters, it can describe a
diversity of processes. In this respect, it is more versa-
tile than fractional differential equations, which are
applicable only to a relatively narrow class of anoma-
lous transport processes. Since all of these parameters
characterize physical properties of the medium, they
can be used not only to fit experimental data into the
theoretical framework, but also to extract information
about the microscopic structure of the medium. Even
though practical determination of many parametersisa
difficult problem, its analysis is a necessity because
anomalous transport processes generally occur in
mediawith complex structure that cannot be character-
ized by just afew parameters.
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Abstract—It is shown that the effect of atime-correlated Gaussian random field of sufficiently high intensity
on the elasticity coefficient of aquantum oscillator manifestsitself in the generation of thermal fluctuationswith
a L/w spectrum in the oscillator. It is aso shown that, in any physical system described by the equation of an
anharmonic oscillator, fluctuations with a 1/w spectrum arise at an above-critical temperature. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

So-called 1/w noise, or flicker noise, isaquite com-
mon phenomenon [1, 2]. It was discovered in 1925 in
electrical circuits [3]; however, its physical nature is
still a subject of lively discussions [4-8]. It is believed
that there exists a set of microscopic mechanisms of the
generation of this type of noise [9]; however, none of
these mechanisms is universally recognized. The most
common mathematical model of 1/w noise is based on
the summation of the Lorentzians[7, §]

g(T)TdT D

= I1+rw w’

)

which is equivalent to the assumption that there existsa
spectrum of Gaussian distributions with the weight
function g(1) in the system. The left-hand side of
Eq. (1) represents a noise emf in the electric circuit.
The problem consists in that the required asymptotic
behavior of theweight functiong(t) Dt ast — wis
difficult to implement [1, 7]. Therefore, it is unlikely
that such atheory can describe a phenomenon that is so
widespread in nature.

There have been attempts to study the nature of L/w
noise by analyzing nonlinear differential equations by
numerical methods [10].

The analysis of a series of experiments (see, for
example, [11, 12]) provides evidence for the thermal
nature of the 1/w noise. Below, we will show one of the
sources of this noise. Namely, we will show that such
noise arisesin a quantum oscillator under the paramet-
ric effect of a time-correlated random field of suffi-
ciently high intensity. The proof of this does not require
any conjectures. It is based on the fundamental equa-
tions of dynamics and on the Gibbs distribution. The
assertion proved impliesthat the 1/w noise may arisein

any classical anharmonic oscillator placed in athermo-
stat with sufficiently high temperature.

Consider a quantum harmonic oscillator that inter-

acts with a certain external field ¢ ; the system as a
wholeisin athermodynamic equilibrium state. Assume
that the Schrédinger equation is expressed as

6‘-P oL oy
So= e, A= AT
RO = hoooBde +12%, W = =,

where wy, isthe oscillator frequency, k and mare certain

positive constants, the creation G and annihilation &
operators satisfy the Bose-Einstein permutation rela-

tions, H' istheinteraction Hamiltonian of the oscillator

with an external field § , and H, isthe Hamiltonian of
afree external field.

Suppose for awhilethat H' = 0. Introduce the coor-
dinate operator

(1) = S aep(-on) + (0] (@)
in the Heisenberg representation such that

Ao_m[dx(t)D K2
H S0 gt 0 + = x(t)

d’X(t)
2

m +kx(t) = 0.

Wewill need the fluctuati on—dissipation theorem [13];
as is known, the mathematical form of this theorem
does not depend on the specific form of the interaction
Hamiltonian. Therefore, it is convenient to obtain an

1063-7761/05/10103-0568$26.00 © 2005 Pleiades Publishing, Inc.
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explicit form of this theorem by an example of the free
(H' = 0) field (2). Consider a correlator (X (t)x (0)[]
where the angular brackets denote the averaging of the

operators both over the quantum states and in the statis-
tical sense according to the Gibbs distribution.

One can easily verify by direct calculations that the
Fourier transform of the required correlator has the
form

[

kX[, = J'e“*” [X(t)X(0)CTit

= 2n{ & 6 @IN(w) + B(co+ )1+ N(wy)} @
xﬁwo
X;

where

N(w) =

m'a0= gexp )

1+N(w) = -N(-w),

and T isthe temperature of the system. Let usintroduce
the retarded G, and advanced G, Green functions,

G(r,a)(t) = % [IX(t), X(0)1B (£1). (4)

Here, 6(t) isthe Heaviside step function. The direct cal-
culation of the difference of the Fourier transforms
yields

OkxC, = A1+ N(w)][G;(w) ~ Ga()],

e = ©)
Gr(_w) - Gr ((*)) - Ga(w)-

For the Green functions G, , defined in terms of com-
mutators (4), the form of this relation does not depend
on the interaction Hamiltonian. Therefore, the first
expression in (5) isin fact an identity whose validity is
determined by the Gibbs distribution and by the fact
that the system in question and its interaction with the
environment can be described within the Hamiltonian
formalism. Restricting the analysisto the range of clas-
sical frequencies, 7w < T, we have

%, = ~L[G,(w) - Gy(w)],
kx0, = Ckx[,.

(6)

A further objective of this paper isto find an explicit
expression for the Green function G; , in the presence

of the interaction Hamiltonian H'.
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Suppose that the full Hamiltonian of the system has
the form

~

Ar = A+ A= £ (D,

. AWy, ~ At
= [ +
X /2K (a+a),

where g isthe parameter of interaction of the oscillator

with the external field ¢ and f(t) is a certain auxiliary
regular classical function, which is assumed to be zero
at the end of calculations. In the Heisenberg represen-
tation, we have

2\4
md sz(t)

A= 265+ R,

KX (D) +gd(OX:(t) = f(1), (@)

where X; (t) = x (t) for f = 0. The solution to Eq. (7) can
be represented as

Xi(t) = X(t) + Iéra, t,) f(ty)dty, 6)

where the operator Green function é, (t, t") satisfiesthe

equation

mder(t, t')
dt?

After averaging in the aforementioned sense both sides
of solution (8) and juxtaposing the equality obtained
with the Kubo formula[14], we obtain

+KG, (4, t) + gd ()G (t, ) = 3t —t). (9)

G, (t—t)0= G,(t—t).

In this manner, we will calculate the function G, that
enters formula (6). Now, let us average Eqg. (9) over a
statistical ensemble of systems,

2 ¥ \ o
mg—[%r%t_)—m+ K G (t, )0+ g B (D) G(t, )] (10)

= 3(t—t),

and determine Eé, Owith the use of this equation. For

simplicity, we will restrict the analysis to the case of
classical frequencies (fiw < T), which is quite admissi-
ble when investigating the domain of wo — 0. To solve
Eqg. (10), we introduce an auxiliary functional

. o° . .0
S= expE)—le(t)q)(t)dﬂ],
oJ 0

where p(t) isacertain smooth classical function. Let us
multiply Eq. (9) by S on the right and sum the result
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over an ensemble of systems. For the auxiliary function

G, (t, t)SO
GI‘ t, t' = -,
(t, t]p) -
we have
d’G,(t, t'|p) 3G, (t, t'|p)
m————— = kG, (t,t'|p) +ig————

. (11
+gROSES (¢ vy = (t-t).
50

In the limit of classical frequencies, we may ignore the
commutation relations of fields. It is obvious that

G,(t.t]p) = [G(t-t)0

for p = 0. Assuming that &G, (t, t'|p)/dp(2) is an
unknown function, we obtain the following equation
for it by varying expression (11) with respect to p(2):

d?3G (L tlp) , 3G (L. t]p) , 3G(t ]p)
dt®> op(2) 5p(2) 3p(t)3p(2)

R JORINCAT)
s 9p(2) )
N g[_i B1§@S0, ; B(1)SIP (9)S
(80 (ST
xG,(t,t'|p) = 0.

However, we have obtained an unknown second
variational derivative of G(t, t'|p). Integrating once
again Eq. (12), we can obtain a specia equation for this
derivative. Thus, we obtain a nonclosed chain of equa-
tions. The later we break such a chain, the more accu-
rate the result. We will restrict ourselves to two equa
tions (11) and (12). This meansthat more accurate solu-
tions obtained with regard to other equations that we
omitted will only improve the result. If we omit the
variational derivative in Eq. (11) and restrict ourselves
to a single equation, we obtain the Hartree—Fock
approximation. Our system of two equations is suffi-
cient for studying phase transitions. For example, it
allows one to describe the behavior of ferromagnetsin
the vicinity of the Curie point [15]. When uncoupling
the equations, it is not required to assume that thereisa
small parameter. Below, we will return once again to
the question of the applicability of the results obtained.

Using Eqg. (11), we can solve Eq. (12) asfollows:
3G,(t, t'[p) _

(12)

e - 9ot tle)
9 [[i)(tl){ls(z)Sj_ [ (t,)SOD (2)S (13)
(80 B3N)

x G(ty, '[p)dt,.
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If Eg. (12) did not contain variationa derivatives, then
formula (13) would provide its exact solution. The sub-
stitution of (13) into (11) shows that one variational
derivative remains uncompensated. The approximate
equality (13) represents a so-called single-loop approx-
imation. Setting p = 0 and taking into account that
@ (tyO= X (t)Od= 0, from formulas (11) and (13) we
obtain a closed integrodifferential equation for the
unknown function [G,(t — t")[that is equivalent to the
following integral equation:

[G,(t—t)0= GX(t—t)
+ IG?(t ~ )M, (t; — ) (G, (t, — )ty dt,,  (14)

2~0 '
m% +KG(t—t) = B(t—t),
t

where
M, (t—t) = ¢°[G,(t—t)0B (t-t)$(0)0  (15)

Suppose that the correlator [ (t) (t')O decays
exponentially with the constant y as the quantity |t —t'|
increases,

BT = @ Texp(~y [t-t1),
B0 = G (0)$(0)1

Then, for small y, the Fourier transform

(9oL, = [ explic(t—t)] [ () §(t)(t -t

R 1 10
- IBI)ZEE»HV w—iy!
has a pronounced maximum at the point w = O; thisfact

allowsoneto rewrite (15), after the Fourier transforma-
tion, as

M (@) = ¢°[Gi (w0~ o) TBd0, 52

= ¢’ 15, (w).

It follows from the derivation of the system of equa-
tions (14), (15) that their validity does not depend on
the statistical properties of the fields considered. From
the system of equations (14), (16), we obtain the
required functions

2
M(0) = 5 - [ -’ T

1
—wW’m+K—M.(0)

(16)

(17)
G, (w) =
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Thesign beforetheradical ischosen so that M,(0) — O.

When
— I492 BT)ZD,

the operator M, (0) isreal and, according to the fluctua-
tion—dissipation theorem, no noise is generated in the
system at low frequencies. At thepoint K =K., asui gen-
eris phase transition occurs, and the operator M,(0)
acquires an imaginary part:

M, (0) = —+|sgnw /g ) D—ZZ

The sign before the radical is chosen so that the right-
hand side of thefirst equation in (6) is positive. Accord-
ing to the definition

K>K,

(18)

00

ImM,(w) = IM,(t)sinootdt, (29

the sign of ImM,(0) is changed together with the sign of
the frequency w. The substitution of relations (17) and
(18) into identity (6) showsthat, at low frequencies, the
noise

2
2 3 K
g0~

g’ b0
with the characteristic singularity 1/w is generated in
the system.

According to (19), the operator M,(0) may have a
finite imaginary part as w — 0 only if the operator
M, (t) has an asymptote M, (t) O t= for large times. For
the same reason, the Green function has a similar
asymptote for largetimes: G,(t) O t. At the sametime,

itisclear that the correlator [kx[J, cannot havethesin-

gularity L/w for arbitrarily small frequencies. This
would violate the finiteness of the integral

kx0, = %I’ sgnw (20)

kX[, dew
|

and would lead to the infinite correlator X (0)x (0)C]
The arising difficulty is associated with the use of the
approximate equality (16). Let us explain this fact in
greater detail. For finite values of vy, the correlator
[ (1) ()0 decays exponentially as the argument
increases; therefore, according to (15), the quantity
ImM,(w) tends to zero as w —= 0, rather than remains
constant as was assumed above. Since the singularity
Vwinthenoisearisesonly for finite ImM,(0) and when
the constant y is neglected, the 1/w spectrum existsonly
in the frequency interval

V<0< Wy (21)
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L et usreturn once again to the question of the accu-
racy of the single-loop approximation. To this end,
notice that the problem considered above admits an
exact solution (see the Appendix) for y — 0 under the
assumption that the field ¢ is Gaussian. This solution
can be obtained by expanding the function G,(w) in a

series in the parameter g2l [Ik? and (with regard to
the identity similar to the Ward [16] identity in electro-
dynamics) by summing all Feynman diagrams. In place
of Eq. (16) for the operator M, (w), we obtain

M(@) = ¢ BB (@) 1-gM (@) @)

When

2
—— <1
g" B0
this equation has the following asymptotic representa-
tion:

(23)

M) - 5%1‘5“%‘2'5

+isgnw ,g Bb
D 24gBI>

The presence of this asymptote, which indicates that
ImM,(0) is finite as w — O under inequality (23),
clearly proves that there exists L/w noise in the fre-
guency interval (21) even if the previous arguments
based on the single-1oop approximation seem doubtful.
As regards the single-loop approximation, under ine-
quality (23), it yields

M,(0) = g +isgnwy/g’ [T

A juxtaposition of the asymptotic result (25)
obtained in the single-loop approximation and the
asymptotic behavior of the exact solution (24) shows
that, for large interaction constant g, the real part of the
operator M,(w) in the single-loop approximation (23)
coincides with the real part of the exact solution. For
correct literal combination, the imaginary part of the
operator M,(0) in the single-loop approximation turns

out to be overstated by a factor of /2. Under the
reverse inequality

(24)

(25)

2
K

o'
the single-loop approximation and the exact solution
yield identical results because they both lead to the first
term of perturbation theory. Thus, the single-loop

approximation has a sufficiently high accuracy so that,
at the first acquaintance with a system, one may judge

> 1, (26)
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whether or not thereis noise with a 1/w spectrum in this
system. In the intermediate interval between inequali-
ties (23) and (24), the single-loop approximation gives
an interpolatory result and correctly predicts the exist-
ence of a phase transition; however, one should be cau-
tious when dealing with the quantitative description of
this phase transition.

The analysis carried out shows that one does not

need an external noise field ¢ (t) to generate 1/w noise
in the oscillator. A harmonic oscillator placed in ather-
mostat starts to fluctuate by itself. The amplitude of
these fluctuations increases with temperature. If one
makes it so that the stiffness coefficients of the oscilla-
tor depend on this amplitude, i.e., if one introduces
feedback, then, as shown above, 1/w fluctuations arise
in the oscillator. Since one type of noise feedback has
already been described by Eg. (16) in determining
M, (0), we can speak of the generation of 1/w hoisein
nonlinear systems due to a double feedback. Thus, we
can argue that 1/w fluctuations may exist in any anhar-
monic oscillator, provided that the thermostat tempera-
tureis sufficiently high.

Indeed, consider the equation of an anharmonic
oscillator

2~
md X (t)

2 + KX (1) + gX; (1) = F(t).

(27)

Suppose that the problem has been solved and a solu-
tion to (27) is known. Denote this solution by ( (t). Let

usrewrite Eq. (27) as
d*X(t)

m
dt?

+ KX (1) + gP(t)x(t) = f(t).

Since the operator  (t) isknown, for the operator X (t),
we obtain Eq. (7), which was studied above. If we

assume that the field ) is Gaussian, then, based on the
system of equations (14), (22), we can find an exact
solution to the problem. If we do not make such an
assumption, then, we may restrict the analysis to the
single-loop approximation. Asis shown above, for high
anharmonism, the accuracy of this approximation is
quite satisfactory and the results are independent of the
statistical properties of the system. According to
expression (15), we obtain

M, (t-t) = g°G,(t—t) Op(t—t)P(0)T

In Eq. (28), we will again use the operator x in place of

the operators  in order that the results thus obtained
correspond to the equation of an anharmonic oscilla-
tor (27). After the Fourier transformation, the operator
takes the form

(28)

Mi(@) = ¢°[Gi(wo- o) ®O,EE. (9
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Just as above, we will restrict the analysisto the range of
classical frequencies i < T. According to formulas (3)

and (20), we will seek the unknown function [kx[J, in
the form

2TA
We(wo—kvl) (30)

+2mB[3(w— w) + 6(w+ w)],

[kx[, =

where B = T/2k and A is an unknown constant. Taking
into account the singularity 1/|w|in the last expression,
we can take the function G, at the point @ = 0 in
Eq. (29) outside the integral sign:

M, (0) = g°G,(w)

W

0 2
xI%dW 9B (31)
¢ w -mM(W—wy)” +K—M (- w)
2
+ gB

—m(e+ @)+ K —M (0 + @)

Here, according to (6), the integration interval isin fact
the half-line [0, «). However, if yissmall, then, for t =
0, the greater part of the areaof theintegrand is concen-
trated in the region of small frequencies due to the sin-
gularity 1/w. Therefore, we can cut off the upper limit
of integration at afrequency of wy, which is consistent
with condition (21). The lower limit of integration can-
not be set equal to zero. However, there are no parame-
tersinthe model considered from which one could con-
struct the lower limit of integration with the dimension
of frequency. This meansthat, in the model considered,
the singularity 1/ may occur at arbitrarily small fre-
guencies. A restriction from low frequencies arisesonly
due to the interaction of the oscillator with external
fields that guarantee, according to Eq. (21), the lower
limit of integration in (31) in real situations.

Equation (31) represents a system of coupled equa-
tions. Thelater we break this chain, the higher the accu-
racy of the result. Our concern is the operator M, (0).
According to (31), we have

2 AIn%
2g9°Aln ) ng ) ng
K_Mr(o) Mr(wo) Mr(_(*)o).

Now, we write out an equation for M,(xw,) and,
restricting ourselves to the diagonal approximation,
obtain

M,(0) = (32

M%(+0,) = —Zngln%).

Since, according to (19), the function ImM,(w) is odd,
the last two termsin (32) cancel out. This means that,
in the first approximation, one can neglect the effect of
noise in the resonance domain of frequencies on the
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formation of 1/w noise in the oscillator. Now, Eq. (32)
can easily be solved. For

we obtain

2

262 Aln(ooyly) _KZ

kx, = ;—r)sgnwA/ (33)

g°Aln(wyly)

The matching equation for finding the unknown A takes
the form

(A)O 2
2f &iuﬂg—ﬁ - %Aln%‘g
Yy

2T

W K2,
== 2g?AIn2 - K in 22,
g y 4
This equation is rewritten in dimensionless quantities

as
N
zZ =0z 7 (34)
where
2 2
¢ = 2971 ;rlnu—)o, z = 2_ng N,
TIK Y K Y

Equation (34) has a solution only when the parameter ¢
is greater than a certain critical value (., which deter-
mines the critical temperature T.. The curves z* and
(¥(z— 1/4) osculate at the critical point. Therefore, the
derivatives of these curves coincide at this point; this
allows one to determine the quantities

T[K3 W -1
KOO
g’J27- Y
When T > T, Eq. (34) has two solutions. The existence
of one of them is certain because it falls into adomain
where the single-loop approximation holds. The other
solution fallsinto theinterpolation domain and isasub-
ject for further analysis. It is reasonable to assume that
the single-loop approximation correctly points to the

existence of this solution. As a result, instead of (33),
we have

_2 __1 _
Zc_ ’Zc_3! Tc

-1
kx0, = z]TZ—K2 nﬁda .

gw- Y
Thus, when reaching a certain threshold tempera-
ture T, L/w noiseis generated in any anharmonic oscil-
lator. We assume that the proposed mechanism of the
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onset of thermal 1/w noise quite adequately describes
the origin of such noise in the spectrum of phononsin
quartz, which was experimentally observed in [12] but
has not yet been explained theoreticaly.

APPENDIX

Let usderive Eq. (22). If thefunction ¢ (t) describes

a Gaussian random field, Eq. (9) can be solved in the
following way. Rewrite this equation in the integral
form

00

G/(tt) = GX(t-t)—g [GP(t=t)d ()G (1, t)dty,
0

where

2~0 '
mwmei’(t—t') = 5(t—t),

and solveit by aniterative method. We average the aris-
ing series over an ensemble of systems and, using the
properties of the Gaussian distribution, represent the

higher order correlators of thefield ¢ in terms of bilin-
ear combinations of these operators. The arising Feyn-
man seriesis easily summed by the Dyson method. The
summation yields

[G,(t—t)0= G(t-t)
+ jG?(t — )M, (ty, ) G, (t, — t')CHt, dit,,
where

Mi(t 1) = g[Gi(t-t) 6 (t, —t,)$(0)0
x [ (ty, t,, t')dt,dt,.

(A1)

Here, I'(t;, t,, t) is a vertex function. Taking into
account the deltalike behavior of the correlator [§¢ [,

we can rewrite the operator (A.l) after the Fourier
transformation as
M (@ ) = gD
(A.2)
de(oo— W) G, ()l (wy, 0, w)dw,.

If we apply the approximation
r(wll O’ w’) = 2-’-[& (q_w')l

we arrive at the eguations of the single-loop approxi-
mation.

Structurally, the series representing the propagator
[G, (w)Lis similar to the Feynman series for the Green
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function in quantum el ectrodynamics. Reproducing the
well-known arguments of [17], we obtain

IM(wy, 0, w) = 21Mgd( W, — W)
d ' (A.3)
~g5 M (0, &),

The accuracy of thisrelation is determined by the accu-
racy of the Ward identity [16]. Introduce the notation

M (w, &) = 2N w— WM, (w)
and substitute formula (A.3) into (A.2). For the opera-

tor M, (w) of interest, we abtain Eq. (22). This equation
can be rewritten as

M, (@) = 62 ThH In[-ma + K M, ()]

0" BT InG; ().
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