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Abstract—The variations of line profiles in the spectrum of FUOri during several consecutive nights, from
January 3 through January 8, 1999, have been traced for the first time in the entire history of studying this
star. The variations of the Hα andNa I D line profiles are regular in pattern; at each time, the profiles of these
lines were similar to a particular profile observed previously, suggesting that the phenomenon is periodic.
We argue that the profile variations result from the axial rotation of the inner accretion-disk and disk-wind
regions for which the temperature distribution and the wind-streamline orientation are not axisymmetric.
The cause of the asymmetry could be the interaction of circumstellar matter with the stellar magnetic field
if the magnetic axis is greatly inclined to the rotation axis. The possible binary nature of FU Ori seems a
less likely cause of the asymmetry. c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

FU Ori is the prototype of a subclass of young
stars in which a brightening by 4m–6m over a period
of less than ten years was observed (Herbig 1966,
1977). A large increase in the rate of accretion from
the disk around a T Tauri star is currently believed
to be responsible for its outburst [see Hartmann
and Kenyon (1996) and references therein]. As a
result, the accretion luminosity is several hundred
times higher than the luminosity of the central star.
Therefore, the observed spectrum of FU Ori objects
is an accretion-disk spectrum.

The α-disk model (Shakura and Sunyaev 1973)
allowed the following major features of the FU Ori
spectra to be explained not only qualitatively but also
quantitatively: the dependence of spectral type on the
spectral range under study, the decrease in the width
of absorption lines with increasing wavelength, and
the double-peaked structure of their profiles. How-
ever, the α-disk model predicts that the gas temper-
ature Tbl in the boundary layer between the star and
the disk exceeds 104 K, whereas Kenyon et al. (1989)
found no evidence of emission from such a hot gas
in the wavelength range 2600–3200 Å when studying
the IUE spectra of FU Ori star.

To overcome this contradiction, Popham et al.
(1993, 1996) suggested taking into account advec-
tion (the so-called slim model) when describing the
structure of the inner disk regions in FU Ori stars.
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Based on their model, these authors were able to
reproduce the observed ultraviolet spectral energy
distribution of FU Ori with the following parameters:
an accretion rate Ṁa � 2 × 10−4M� yr−1, a stellar
mass M∗ � 0.7M�, a stellar radius R∗ � 5.8R�,
and a stellar rotation period P � 8.5 days. For these
parameters, the maximum temperature is Tmax

bl =
TR=2.2R∗ � 8200 K, in agreement with the IUE
observations.

The accuracy of the parameters obtained for
FU Ori by Popham et al. (1993, 1996) should not
be overestimated, because their model contains a
number of simplifying assumptions. In particular,
in describing accretion, the authors disregarded the
disk-wind contribution to the balance of energy and
angular momentum. Meanwhile, the Balmer lines,
along with the Na I D and Ca II K in the spectrum of
FU Ori, exhibit deep and broad P Cyg profiles, sug-
gesting an intense mass outflow from the neighbor-
hoods of the star (see Fig. 1 andHerbig 1966; Bastian
and Mundt 1985; Croswell et al. 1987; Welty et al.
1992). Croswell et al. (1987) estimated the mass loss
rate to be ∼10−5M� yr−1. This estimate was ob-
tained under the assumption of a spherically symmet-
ric wind, but Calvet et al. (1993) obtained the same
value in a more realistic (cylindrical) geometry. Hart-
mann and Calvet (1995) gave convincing arguments
for the outflow from the surface of a Keplerian disk.

According to Calvet et al. (1993), the wind ob-
served in optical lines blows from the inner (R ≤ 3 ×
1012 cm) accretion-disk regions, with the outflowing
2003 MAIK “Nauka/Interperiodica”
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gas having a low temperature (Tw < 6000 K) and a
high density (N ∼ 1012–1013 cm−3). To explain the
presence of emission components in the Hα, Na I D,
Ca II K, and Mg II h, k lines, D’Angelo et al. (2000)
assumed that there were regions with temperature
inversion (chromosphere) at the wind base. Using a
phenomenological model, they were able to reproduce
the observed Hα profiles in the spectrum of FU Ori
with a reasonable accuracy by assuming that the wind
streamlines and the line of sight were perpendicular to
the disk.

D’Angelo et al. (2000) interpreted the observed
variations of the Hα profile as resulting from axysym-
metric variations in the physical parameters of the
wind or, to be more precise, in the temperature and
velocity distributions along streamlines. Here, our
goal is to present new observational data showing
that the variations of the Hα and Na I D line profiles
in the spectrum of FUOri follow a certain pattern. We
also consider the possible causes of this phenomenon.

OBSERVATIONS

The optical spectra of FU Ori were observed on
each night from January 3 through January 8, 1999.
The spectra were taken with a Reosc echelle spectro-
graph and a 1.82-m telescope at the Padova Astro-
nomical Observatory at Mount Ecar near the town of
Asiago (Italy). The detector was a Thompson THX
31156 1024 × 1024 CCD array with a pixel size of
19 µm. The dispersion of the spectra near the Na I D
and Hα lines was 9.1 and 10.2 Å mm−1, respectively.
The Na I D and Hα line profiles obtained during our
observations are shown in Fig. 1.

The high-resolution IUE ultraviolet spectra were
retrieved from the INES database (http://ines.laeff.
esa.es) and were not subjected to additional re-
duction. Since the spectra had a low signal-to-
noise ratio, we were able to obtain information only
on the Mg II line profiles near 2800 Å. Figure 2
shows the profiles of the h (2802.77 Å) and k
(2795.59 Å) uv1 multiplet lines and the 2790.84 Å
uv3 multiplet line (below, all wavelengths are given
for air). The 2790.84 Å line profile for spectrum
LWR 16741 is not shown because of the low signal-
to-noise ratio. Spectra LWR 13943, LWR 16741,
and LWP 12005 were taken on August 14, 1982
(UT 02:30), September 5, 1983 (UT 21:50), and
October 3, 1987 (UT 20:39), respectively.

DISCUSSION

It follows from Fig. 1 that, over the period of our
observations, the Hα and Na I D line profiles varied
not randomly but with a certain pattern. In all three
lines, the width of the absorption component initially
decreased but subsequently, having reached a min-
imum, began to increase. For Hα, the intensity of
the emission component also varied synchronously.
To quantitatively describe the variability of the Hα
profile, we introduce a quantity W1/2, the width of the
absorption component in the line at (Imax + Imin)/2,
where Imax is the maximum intensity of its emis-
sion component and Imin is the minimum intensity
of its absorption component. It is important to note
that W1/2 does not depend on the level of the con-
tinuum whose location in the spectrum of FU Ori is
determined with a low accuracy.

Figure 3 shows how W1/2 varied between Jan-
uary 3 and January 8, 1999: we clearly see a regular
pattern of variations in the Hα profile. It is important
to note that all of theHα profiles found in the literature
[see D’Angelo et al. (2000) and references therein])
have the same shape as the profiles in Fig. 1. Having
measured W1/2 for the published profiles, we found
the following: in all cases, it lay within the same range
as that for our spectra and only in one case did it
slightly exceed our observed maximum value. These
findings suggest that the variations of the Hα and
Na I D line profiles in the spectrum of FU Ori are
periodic in pattern.

The following two factors can be responsible for
the (quasi-)periodic variations in the profiles of the
lines under considerations: (1) azimuthally nonuni-
form structure of the axially rotating disk and the disk
wind and (2) synchronous variations in the parame-
ters of the disk and the disk wind with axial symme-
try. To choose between these cases, let us consider
the pattern of variations in the ultraviolet Mg II line
profiles with time.

Let us first consider the Mg II h and k resonance
lines shown in Fig. 2. In contrast to the Hα and
Na I D lines, the uv1 doublet lines always exhibit
an emission component whose intensity is variable
(Kenyon et al. 1989). The IUE sensitivity is too low
to judge the continuum level in FU Ori near 2800 Å.
However, we are sure that the Mg II h and k lines
have P Cyg profiles, because the Ca II K line has such
a profile [see Fig. 3 from Bastian and Mundt (1985)]
and the profile of its emission component is identical
to the profiles of the emission components of the h and
k lines.

The continuum of FU Ori is formed in the disk
(Hartmann and Kenyon 1996), i.e., precisely where
the wind originates. Therefore, it would be natural to
assume that the observed shape of the Mg II h, k, and
Ca II K line profiles results from a superposition of
the blue absorption feature formed in the wind on the
broad, initially more or less symmetric emission line
formed at the outflow base (see also D’Angelo et al.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 1. Variations of the Hα and Na I D line profiles in the spectrum of FU Ori from January 3 through January 8, 1999.
2000). We can give an additional argument for this
assumption. According to Herbig (1966), the Ca II H
line has no emission component (although the Ca II K
line has such a component) probably because the blue
absorption wing of the Hε line is superimposed on
it. The wavelength difference between the Ca II H
and Hε lines, in units of velocity, is 120 km s−1;
i.e., it is smaller than the length of the Balmer-line
absorption wings [see Fig. 1 here and Fig. 7 from
Welty et al. (1992)]. Thus, the emission components
of the Ca II H line and, most likely, theMg II h, k, and
Hα lines are formed behind the region occupied by the
wind along the line of sight, i.e., in the inner regions of
the accretion disk and/or the boundary layer. Below,
the emission-component formation region is called
the E region.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
Figure 4 shows part of the Grotrian diagram for
Mg II on which the subordinate uv3 multiplet lines
are marked by letters a, b, and c. The b (2790.84 Å)
line in the spectrum of FU Ori has an abnormally
high intensity: it is more than an order of magnitude
stronger than the a and c lines and only a factor of 3
to 6 weaker than the h and k resonance lines. The
excitation of the 2D3/2 upper level of the b line by
k-line photons is probably responsible for this phe-
nomenon.1 Since the b and k lines are comparable in
intensity, it should be recognized that the excitation is

1As we see from Fig. 4, 2D3/2 is also the upper level for
the a line, but the transition probability for this line is ap-
proximately a factor of 5 lower than that for the b line (van
Hoof 2002).
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Fig. 2. The ultraviolet Mg II line profiles in the spectrum of FU Ori.
produced by photons of the central part of the k-line
profile. The wavelength difference between the k and
b lines, in units of velocity, is �280 km s−1. It thus
follows that the b-line formation region recedes from
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Fig. 4. Part of the Grotrian diagram for Mg II.
the E region, where the k line is formed, at a velocity
close to 280 km s−1: under this condition, in the
frame of reference associated with themoving gas, the
energy of the k photon that arrives from the outside
is equal to the energy difference between the b-line
levels and the 2D3/2 level is excited most effectively.

Thus, it would be reasonable to assume that the
b line originates in the matter outflowing from the
neighborhoods of the star, i.e., in the disk wind. To
be more precise, this line originates in the part (b re-
gion) that moves relative to the E region at a veloc-
ity of about 280 km s−1. At the same time, we see
from Fig. 2 that the FWHM of the b-line profile is
≤50 km s−1. An even more surprising result is that
the radial velocity determined from the b-line peak
is variable: the radial-velocity difference between the
b-line intensity peak and the absorption spectral lines
is nearly zero in spectrum LWP 12005 but reaches
almost 100 km s−1 in spectrum LWR 13943.2

We see no reason why such a large shift in the
b line can arise if it is formed in an axisymmet-
ric region. However, the observed features of the
b-line profiles can be naturally explained if the wind
is not axisymmetric and if the b line is formed in a
region confined within a narrow range of azimuthal
angles∆ϕ. In this case, the radial velocity of the b line
must vary because of the different orientation of the

2Here, we took into account the fact that the radial veloc-
ity of FU Ori determined from optical absorption lines is
+28 km s−1 (Hartmann and Kenyon 1987).
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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b region relative to the observer as the disk and its
associated wind rotate. This interpretation primarily
suggests that the streamline orientation in the disk
wind is asymmetric. It would be natural to assume
that the variations of the Hα and Na I D line profiles
are also attributable to the rotational modulation of
an asymmetric disk wind. Since the variations in the
shape of the absorption components of these lines
are accompanied by variations in the intensity of their
emission components, we conclude that the thermal
structure of the inner disk regions (E region) is not
axisymmetric either (see Fig. 5).

Since the gas velocity in the b region is
�280 km s−1, its streamlines were almost perpendic-
ular to the line of sight when spectrum LWP 12005
was taken and were inclined to the line of sight at an
angle of about 70◦ when spectrum LWR 13943 was
taken. However, we cannot estimate the streamline
inclination in the b region relative to the disk plane
from our data or determine the azimuthal extent of the
region ∆ϕ from the observed 2790.84-Å line width,
because we do not know the phase at which the IUE
spectra were taken.

We can say even less about the streamline ori-
entation outside the b region. Therefore, it makes
sense to postpone discussing the disk-wind stream-
line topology and the azimuthal dependence of the
temperature in the E region until new observational
data will appear. Instead, we consider the possible
causes of the asymmetric disk and wind structure in
FU Ori.

Our data are too scarce to answer the question
of whether the variations of the Hα and Na I D line
profiles are strictly periodic. However, if they are pe-
riodic, then the rotation period of the region in which
the lines under consideration are formed must exceed
5–6 days; i.e., it must be close to the rotation period of
the central star P � 8.5d (Popham et al. 1996). This
circumstance prompted us to consider the effect of
the stellar magnetic field on the structure of the inner
regions in the disk and the disk wind.

According to Shu et al. (2000), a dipole stel-
lar magnetic field limits the inner accretion-disk ra-
dius to

Rx �
(

B4
eR

12
∗

GM∗Ṁ2
a

)1/7

, (1)

where Be is the magnetic-field strength on the stellar
equator. In the case of FU Ori, the magnetic field
probably does not destroy the disk, and it reaches the
stellar surface. However, if we substitute R∗ for Rx
in (1), then we can determine Be at which the field is
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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lar magnetic field lines, and disk-wind streamlines are
shown. The emission components of the lines (E region)
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capable of controlling the gas motion in the disk near
the stellar surface and in the disk wind:

Be �
G1/4M

1/4
∗ Ṁ

1/2
a

R
5/4
∗

.

Substituting M∗, R∗, and Ṁa from Popham et al.
(1996) into this relation yielded Be ∼ 2 kG, a value
typical of the T Tauri stars (Guenther et al. 1999;
Johns-Krull et al. 1999). Thus, if the field strength on
the FU Ori surface exceeds 1 kG and if the magnetic
axis is appreciably inclined to the rotation axis, then
the structure of the inner regions in the disk and the
disk wind will most likely be nonaxisymmetric.

Based on this hypothesis, we might expect the
degree of asymmetry to decrease with distance from
the star and the disk and the wind must be axisym-
metric at large distances. We found from the rela-
tion B2/8π = ρV 2/2 and from the wind parameters
determined by Calvet et al. (1993) that a magnetic
field with strengths of ∼200 and 25 G is enough to
control the motion of the outflowing gas near the
inner and outer wind boundaries, respectively. Thus,
if Be ∼ 2 kG and B ∝ R−3, then the stellar magnetic
field can affect the orientation of the wind streamlines
almost up to its outer boundary.

Alternatively, the binary nature of FU Ori can
cause the disk and wind asymmetry: through the tidal
interaction of the companion with the matter sur-
rounding the central star. In this case, the outer disk
and wind regions must be subjected to the strongest
distortion and the orbital period of the binary system
must be the variation time scale of the line profiles.
While observing FU Ori with the Palomar Testbed
Interferometer at a wavelength of 2.2 µm, Malbet
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et al. (1998) found that the star was not a pointlike
source. The data obtained admit a two-fold inter-
pretation: the star can appear as an extended source
because it is surrounded by an accretion disk and
because it has a companion. If the star is binary, the
separation between its components cannot be less
than 0.3 AU and its orbital period Porb must exceed
60(M/M�)−1/2 days, where M is the total mass of
the binary system. This value of Porb is almost an
order of magnitude larger than the variation time
scale of the Hα and Na I D line profiles. Therefore,
it seems less likely that the binary nature of FU Ori
is responsible for the asymmetric structure of its disk
and wind.

CONCLUSIONS

To explain the regular pattern of variations in the
Hα and Na I D line profiles that we observed from
January 3 through January 8, 1999, we assume that
they are (quasi-)periodic and have a period equal to
the rotation period of the star. Having analyzed the
ultraviolet Mg II line profiles, we concluded that the
variability of the optical and ultraviolet line profiles
arose from the rotation of the disk and wind whose
azimuthal structure is not axisymmetric. Asymmetry
can result from the interaction of the stellar mag-
netic field with circumstellar matter if the stellar field
strength is ≥1 kG and if the magnetic axis is greatly
inclined to the rotation axis. We cannot rule out the
possibility that the asymmetry is due to the binary
nature of FU Ori. However, this interpretation seems
less plausible.

For the structure of the disk wind and the E region
in FUOri to be determined, wemust have muchmore
observational data thanwe have at our disposal. First,
it should be established whether the variations of the
Hα and Na I D line profiles are periodic and if they
are periodic, then what their period is. In our view,
the parameter W1/2 introduced here can be used for
these purposes. We are sure that a systematic study
of the variations in the Ca II H and K line profiles
and analysis of high-quality spectra at wavelengths
shorter than 3000 Å will yield much useful informa-
tion.

In conclusion, note the absorption feature that is
superimposed on the emission component of the Hα
line [see Fig. 1 here and Fig. 1 from Bastian and
Mundt (1985)]. The depth of this feature increases
with increasing intensity of the emission peak in Hα,
implying that the feature originates in the region be-
tween the E region and the observer. Unfortunately,
because of the low spectral resolution and low signal-
to-noise ratio, we were unable to unequivocally iden-
tify this feature. However, we can assert that its wave-
length does not vary with time, which seems quite
strange.
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Abstract—We consider the behavior of charged particles with an anisotropic initial velocity distribution
in a magnetic trap with approaching mirrors in connection with the problem of particle acceleration in
solar flares. We show that, irrespective of the charge sign, the efficiency of confinement and acceleration
increaseswith increasing anisotropy factor of the initial distributionα = (T⊥/T||)1/2. For a positive electric
potential of the trap plasma relative to the mirrors, the emerging additional effect of ion expulsion form the
trap increases with αi. The derived estimate of the electric potential suggests an amplification of the initial
perturbation and the development of instability. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: solar flares, magnetic traps, trapping coefficient, anisotropy parameter, electric poten-
tial, particle confinement region.
INTRODUCTION

This work is a continuation of our study of the
effect of electric fields on the acceleration of charged
particles in collapsing magnetic traps with converg-
ing magnetic mirrors (Kovalev and Somov 2002).
Such traps can be produced by fast magnetic recon-
nection during the impulsive phase of solar flares (So-
mov and Kosugi 1997; Bogashev and Somov 2001).
The trapped particles are accelerated when they are
reflected from the magnetic mirrors (the Fermi accel-
eration mechanism of the first order) located at the
intersection of the trap magnetic lines with a shock
front or at the footpoints of flare loops, where the
magnetic field becomes stronger as its photospheric
sources are approached. In the above paper (Kovalev
and Somov 2002), we formulated and investigated the
problem of the effect of a specified electric potential
on the particle acceleration in a simple mirror trap
with a decreasing length l. We showed that, for an
isotropic Maxwellian distribution of injected particles
in the presence of a positive electrostatic potential
of the trap relative to the mirrors, the efficiency of
confinement and acceleration increased for electrons
and decreased for ions compared to the case without
an electric field. This effect results from the change in
the shape of the boundary of the particle confinement
region in a trap with an electric potential. Instead
of a cone in velocity space, the confinement region

*E-mail: vkovalev@izmiran.troitsk.ru
1063-7737/03/2902-0111$24.00 c©
becomes a two-sheet hyperboloid for electrons and a
one-sheet hyperboloid for ions (Pastukhov 1984).
Meanwhile, according to current theoretical views,

the most probable distributions of the particles in-
jected into a trap are anisotropic. This anisotropy is
attributable to the conditions of particle energization
(heating and acceleration) in a high-temperature tur-
bulent current sheet (Somov 1992) and escape of fast
particles from the current sheet [see the monograph
of Somov (2000) for a discussion of the problem].
In addition, according to Spicer and Emslie (1998),
the magnetic-trap electric potential itself results from
anisotropy of the trapped and precipitating particles.
The kinetic processes in a dynamic collapsing trap
can generate strong electric fields that affect the
Fermi acceleration mentioned above. The question
arises as to the statement of a self-consistent problem
in which the electric potential depends on the particle
distributions. This problem is more general and is
naturally of interest in the physics of solar flares,
particularly in interpreting the latest Yohkoh and
HESSI X-ray observational data.

THE DISTRIBUTION OF INJECTED
PARTICLES

We use the following anisotropic Maxwellian dis-
tributions as the distribution functions of injected
charged particles [electrons (e) and ions (i)]:

f e,i
0 (v||, v⊥) = f e,i

0|| (v||), f
e,i
⊥ (v⊥), (1)
2003 MAIK “Nauka/Interperiodica”
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where

f e,i
0|| (v||) =

exp
(
−v2

||/V
2
Te,i||

)
√
πVTe,i||

,

f e,i
0⊥(v⊥) =

exp
(
−v2

⊥/V
2
Te,i⊥

)
πV 2

Te,i⊥
.

Here,

VTe,i|| =
(

2kTe,i||
me,i

)1/2

and

VTe,i⊥ =
(

2kTe,i⊥
me,i

)1/2

are the thermal electron and ion velocities in the
longitudinal and transverse directions relative to the
magnetic field, respectively.
Because of the presence of magnetic mirrors, the

particles are separated into trapped and escaping
ones. The fragments that correspond to the particles
satisfying the escape conditions are removed from the
distributions of the particles injected into the trap.
Such particles immediately precipitate into the loss
cone and are no longer involved in the acceleration.
Therefore, in the initial problem of the acceleration of
trapped particles, the initial distribution that corre-
sponds to the dimensionless trap length l = 1 differs
from the injected one: f(1) �= f0.
For generality, we assume the injected electrons

and ions to have different temperatures, with Te �
Ti for high-temperature current sheets with ion-
acoustic turbulence (Somov 1992). Furthermore, the
electrons and ions can have different anisotropies.
However, their initial densities are equal: n0e = n0i.

TRAPPED PARTICLES IN THE CASE ϕ = 0
In this simplest case, the cone that corresponds to

the trapped particles (both electrons and ions, irre-
spective of the charge) is

0 ≤ v0|| < v∗, 0 ≤ v0⊥ < ∞,

where
v∗ = Rlv0⊥, R = (B2/B1 − 1)1/2.

However, different injection functions (1) correspond
to the electrons and ions. We omit the subscripts e
and i thus far. For the total number of particles in
the trap and for the distribution function, we have
(Bogachev and Somov 1999)

N(l) = 4πN0

∞∫
0

v0⊥dv0⊥

v∗∫
0

f0(v0||, v0⊥)v0⊥dv0||,

(2)
where

f(v||, v⊥, l) =
N0l

N(l)
Θ(Rlv⊥ − v||)f0(lv||, v⊥) (3)

and

Θ(x ≥ 0) = 1, Θ(x < 0) = 0.

For the anisotropic Maxwellian distribution (1), we
rewrite expression (2) as

Ne(l)
N0

=
4√
π

∞∫
0

y · exp
(
−y2

)
J1(y)dy, (4)

where

J1(y) =

u∗∫
0

exp
(
−x2

)
dx

and

x = v0||/VT ||, y = v0⊥/VT⊥, u∗ = Rly.

We integrate formula (4) by parts as follows:

J1(y) = t, dt =
du∗(y)
dy

exp
(
−u2

∗(y)
)
dy,

dz = y exp
(
−y2

)
dy, z = −1

2
exp

(
−y2

)
.

Since J1(0) = 0 and

1√
π

∞∫
0

exp
(
−ξ2

)
dξ

ξ
= 1,

we obtain
N(l)
N0

= ql (5)

or
n(l)
n0

= q, (6)

where

q =
αR√

1 + α2R2l2
, α =

√
T⊥
T||

.

The results obtained differ from those in the isotropic
case (Bogachev and Somov 1999) by the coeffi-
cient α, which describes the degree of anisotropy of
the injected particles. For αe,i > 1, the particles are
trapped more efficiently than they are in the isotropic
case, because the transverse velocity component pre-
vails. As a result,Ne(l) andNi(l) differ in behavior for
αe �= αi. In the isotropic case, there is no difference.
Increasing α causes the trapping coefficient q to
increase.
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For the electrons and ions, the temperatures and
anisotropy parameters can differ: Te �= Ti and αe �=
αi. In this case,

qe =
αeR√

1 + α2
eR

2L2
, αe =

√
Te⊥
Te||

and

qi =
αiR√

1 + α2
iR

2l2
, αi =

√
Ti⊥
Ti||

.

TRAPPED ELECTRONS IN THE CASE ϕ > 0
Now, the integration domain is (Kovalev and So-

mov 2002)
0 ≤ v0|| < v∗, 0 ≤ v0⊥ < ∞,

where

v∗ = l
(
v2
0⊥R

2 + v2
ϕe

)1/2
, v2

ϕe = 2eϕ/me.

The distribution function is then

Ne(l) = 4πN0

∞∫
0

v0⊥dv0⊥

v∗∫
0

f0(v0||, v0⊥)dv||. (7)

The latter expression for function (1) can be written as

Ne(l)
N0

=
4√
π

∞∫
0

y exp
(
−y2

)
dyJ1(y), (8)

where

J1(y) =

u∗(y)∫
0

exp
(
−x2

)
dx

and
x = v0||/VTe|| , y = v0⊥/VTe⊥ ,

u∗ = αel(R2y2 + u2
ϕe)

1/2, uϕe = vϕe/VTe⊥ .

We integrate (8) by parts:

J1(y) = t, dt =
du∗(y)
dy

exp
(
−u2

∗(y)
)
dy,

dz = y exp
(
−y2

)
dy, z = −1

2
exp

(
−y2

)
.

As a result, given

J1(0) =
√
π

2
erf(luϕe)

and

1√
π

∞∫
0

exp(−ξ)
(ξ + a)1/2

dξ = ea[1 − erf(
√
a)],
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erf(x) =
2√
π

x∫
0

exp
(
−ξ2

)
dξ, a =

u2
ϕ

q2
,

ξ = y
√

1 + R2l2,

we obtain

Ne(l)
N0

= qel exp

(
u2

ϕ

R2

)
(9)

×
[
1 − erf

(
αe

uϕe

qe

)]
+ erf(αeluϕe).

For a weak potential uϕe � 1, using

erf(x) � 2√
π
x +

2
3
√
π
x3,

we have

Ne(l)
N0

� qel

(
1 +

u2
ϕe

R2

)
, (10)

ne(l)
n0

� qe

(
1 +

u2
ϕe

R2

)
. (11)

We see that the additional effect of electron con-
finement due to a positive electric potential [the sec-
ond term in (11)] is enhanced with increasing αe.

TRAPPED IONS IN THE CASE ϕ > 0

The integration domain is (Kovalev and So-
mov 2002)

0 ≤ v0|| < v∗i, vϕi < v0⊥ < ∞,

v∗i = l(v2
0⊥R

2 − v2
ϕi)

1/2.

Then,

N(l) = 4πN0

∞∫
vϕi

v0⊥dv0⊥

v∗i∫
0

f0(v0||, v0⊥)dv||. (12)

Here,

u2
ϕi =

v2
ϕi

V 2
Ti⊥

=
eϕ

kTi⊥
.

Repeating the same operations as those for elec-
trons, we obtain

Ni(l)
N0

= exp
(
−u2

ϕi

)
erf(αilruϕi) (13)

+qil exp(l2u2
ϕi)

2√
π

∞∫
b

ξ
exp

(
−ξ2

)
(ξ2 − a2)1/2

dξ.
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Here,

r =
√
R2 − 1, a =

uϕi

q
,

b = uϕi

√
1 + R2l2, ξ =

v0⊥
VTi⊥

√
1 + R2l2.

In contrast to the previous case, the integral
in (13)

J(u) =

∞∫
b(u)

f(ξ, u)dξ,

where

f(ξ, u)ξ
exp

(
−ξ2

)
(ξ2 − u2/q2)1/2

dξ

cannot be calculated analytically. However, in the
case concerned, uϕi � 1, and using the expansion at
u = 0

J(u) � J(0) +
dJ(u)
du

∣∣∣∣
u=0

u,

where the derivative is

dJ(u)
du

=

∞∫
b(u)

f(ξ, u)
du

dξ − db(u)
du

f(ξ, u)
∣∣∣∣
ξ=b(u)

,

we obtain
Ni(l)
N0

� qil −
2√
π

R2

r
αiluϕi (14)

ni(l)
n0

� qi −
2√
π

R2

r
αiuϕi. (15)

We see from the latter expression that the effect of
ion expulsion from the trap due to a positive electric
potential is enhanced with increasing αi. The com-
peting effects of ion explusion and anisotropy for αi >
1 can offset each other.

DETERMINING THE ELECTRIC POTENTIAL

In the preceding sections, we calculated the par-
ticle distributions as a function of the specified po-
tential. Meanwhile, it is of interest to determine the
potential itself from the Poisson equation. The latter
contains the length parameter, the Debye screening
length,

D =
√

kTe

4πnee2
.

For solar-flare plasma with T � 108 K and ne � 5 ×
109 cm−3, we have D � 1 cm. The corresponding
Langmuir frequency ωPe is 4 × 109 rad s−1. How-
ever, the plasma becomes anisotropic in a dynamic
trap; there is no concept of Debye screening for it. In
nonequilibrium plasma, a large-scale charge separa-
tion is possible.
An estimate is easiest to obtain by assuming that

the plasma is quasineutral: ne = ni. This assump-
tion is valid when we consider motions whose scale
lengths are much larger than the Debye screening
length (Gurevich and Pitaevskiı̆ 1980). Or, as applied
to our problem, the condition under discussion is valid
on time scales t � ω−1

Pe
. Equating (11) and (15), for

αi − αe � αe, we then obtain

uϕe �
√
π

2
r

R2

√
Ti⊥
Te⊥

1 − αe/αi√
1 + α2

eR
2l2

. (16)

We see that the positive electric potential increases as
the trap is contracting. This suggests the amplifica-
tion of the initial perturbation and the growth of in-
stability. The initial potential (for l = 1) is determined
by the mirror ratio and by the difference between the
ion and electron anisotropy coefficients.
It follows that in a trap with the mirror ratio

B1/B2 = 4, the electric potential is �50 V (10 eV)
at the initial time for an isotropic electron distribution
(αe = 1) and anisotropic ion distribution (αi = 1.1).
The value of uϕ = eϕ/kT is 0.02. For the temperature
of the flare plasma Te = 108 K, it corresponds to
energy �200.

CONCLUSIONS

Thus, we have solved the kinetic problem of
charged-particle acceleration in a collapsing mag-
netic trap with a specified electric potential and with
converging magnetic mirrors for an anisotropic initial
particle distribution. In addition to the conclusions
of our previous study (with isotropic injection), we
inferred the following.
(1) The particles with an anisotropic distribution

injected into a magnetic trap are trapped and, nat-
urally, accelerated more efficiently than they are in
the isotropic case if the anisotropy parameter α =
(T⊥/T||)1/2 > 1 (irrespective of the charge).
(2) A specified positive electric potential of the trap

plasma relative to the mirrors produces an additional
effect of decrease in the fraction of the ions confined
in the trap. In this case, the effect is enhanced as αi
increases.
(3) The estimate obtained for a weak electric po-

tential in the approximation of quasineutral plasma
indicates that the initial potential determined by the
mirror ratio and by the difference between the ion and
electron anisotropy coefficients increases with de-
creasing trap length. This suggests the amplification
of the initial perturbation and the growth of instability.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Abstract—Based on a plane-parallel isothermal solar model atmosphere permeated by a horizontal mag-
netic field whose strength is proportional to the square root of the plasma density and in the approximation
of a specified field for vertically propagating and nonpropagating magnetoacoustic-gravity waves, we
consider the nonlinear interaction between the corresponding disturbances, to within quantities of the
second order of smallness. We investigate the efficiency of the nonlinear generation of waves at difference
and sum frequencies and of an acoustic flow (wind) as a function of the magnetic-field strength and the
excitation frequency of the initial disturbances at the lower atmospheric boundary. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: Sun, atmosphere, waves, parametric generation, magnetic field.
INTRODUCTION

As previously (Kaplan et al. 1977; Dubov 1978;
Priest 1982), considerable attention is currently
being given to the linear (Dzhalilov and Zhugzh-
da 1984a, 1984b, 1984c; Cadez et al. 1998) and
nonlinear (Ostrovskii and Petrukhin 1981; Petukhov
and Petukhov 2001, 2002) processes of energy trans-
fer by various types of waves into the upper solar
atmosphere. The latter circumstance largely stems
from an elucidation of the upper-chromosphere and
coronal heating mechanisms that dominate at dif-
ferent heights and of the solar-wind acceleration
mechanism (Kaplan et al. 1977; Priest 1982). There-
fore, the question of whether vertically propagating
acoustic-gravity (AG) waves can exist up to coronal
heights at relatively low frequencies below the Lamb
cutoff frequency ωL seems of current interest (Kaplan
et al. 1977; Dubov 1978; Priest 1982; M. Petukhov
and Yu. Petukhov 2001, 2002).

As we showed previously (M. Petukhov and
Yu. Petukhov 2001), such waves can exist in an
isothermal atmosphere without a magnetic field or,
more specifically, during the nonlinear interaction be-
tween the initially propagating AG waves at radiation
frequencies ω1 > ωL and ω2 > ωL that are gener-
ated by nonpropagating oscillations and propagating
waves at the difference frequency Ω = ω2 − ω1 in the
corresponding range Ω < ωL forbidden for the prop-
agation of AG waves during their linear generation
(Kaplan et al. 1977; Dubov 1978; Priest 1982).

*E-mail: petukhov@hydro.appl.sci-nnov.ru
1063-7737/03/2902-0116$24.00 c©
In actual conditions, the solar atmosphere is
permeated by amagnetic field (see Kaplan et al. 1977;
Dubov 1978; Priest 1982) whose regular vertical
component (for a plane-parallel model atmosphere)
plays a significant role in the energy transfer by
various types of waves almost over the entire height
range (Ulrich 1996). As a result, vertically propa-
gating Alfvén waves (Ulrich 1996) can clearly show
up in certain frequency and height ranges (see Ka-
plan et al. 1977; M. Petukhov and Yu. Petukhov
2002). As was shown previously (M. Petukhov and
Yu. Petukhov 2002), during the nonlinear interaction,
these waves will generate propagating AG waves at a
difference frequency Ω < ωL, as in M. Petukhov and
Yu. Petukhov (2001).

In contrast to the vertical component (see Ul-
rich 1996), the regular horizontal magnetic field in the
solar atmosphere can affect the corresponding wave
processes only at chromospheric heights (Campbell
and Roberts 1989; Evans and Roberts 1990). Never-
theless, studying this effect on the nonlinear interac-
tion and, in particular, on the generation of vertically
propagating magnetoacoustic-gravity (MAG) waves
at a difference frequency Ω < ωL are of considerable
interest, because the horizontal magnetic field can
fundamentally change the pattern of the linear vertical
propagation of MAGwaves (Nye and Thomas 1976a,
1976b; An et al. 1989; Musielak and Stark 1993).

That is why our goal here is to study the nonlin-
ear interaction between vertically propagating MAG
waves in an isothermal solar atmosphere permeated
by a horizontal magnetic field. Since the mathemati-
cal description of vertically propagating MAG waves
2003 MAIK “Nauka/Interperiodica”
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in a uniform horizontal magnetic field is less clear
(see Nye and Thomas 1976a, 1976b; An et al. 1989;
Musielak and Stark 1993) than that of Alfvén waves
in a uniform vertical magnetic field (M. Petukhov and
Yu. Petukhov 2002), we use a model dependence of
its strength proportional to the square root of the
ambient density (Miles and Roberts 1992; Jain and
Roberts 1994). Naturally, in this solar model atmo-
sphere commonly used in the corresponding calcu-
lations, the numerical values of its characteristic pa-
rameters should be chosen to satisfy the condition for
its stable static equilibrium (Thomas and Nye 1975).

FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

Let us consider the vertical propagation of plane
MAG waves in a plane-parallel isothermal atmo-
sphere, z � 0, permeated by a horizontal magnetic
field. Assume that the z axis is directed vertically
upward against the action of gravity whose free-fall
acceleration is constant and equal to g, the magnetic
induction vector B0 = (B0, 0, 0) is directed horizon-
tally along the x axis, and its corresponding compo-
nent falls off with increasing height as the square root
of the decreasing ambient density. The equilibrium
density ρ0, pressure p0, and magnetic field B0 then
depend on height z as follows:

ρ0 = ρ00 exp(−z/H),

p0 =
ρ00c

2
0

γ
exp(−z/H), (1)

B0 = B00 exp(−z/2H).

Here, c0 is the constant adiabatic speed of sound, γ is
the adiabatic index,H is the scale height:

c20 = γp0/ρ0 , H =
1
g

(
c20
γ

+
c2A
2

)
, (2)

ρ00 and B00 are the density and the magnetic induc-
tion at the lower atmospheric boundary (z = 0), re-
spectively; cA is the Alfvén velocity, which, as follows
from (1), is constant:

cA = B0/
√
µ0ρ0 = B00/

√
µ0ρ00 , (3)

µ0 is the magnetic constant. We also assume that
the lower atmospheric boundary executes steady-
state (in time t) vertical oscillations at frequencies ω1

and ω2 with the respective amplitudes A1 and A2 of
the vertical oscillation velocity vz = v:

v|z=0 = A1 cosω1t + A2 cos (ω2t + ϕ) , (4)

−∞ < t < +∞,

where A1 ×A2 > 0 and ϕ is a certain phase.
The frequency range 0 < ω < ωcf forbidden for

the linear propagation of MAG waves is known
ASTRONOMY LETTERS Vol. 29 No. 2 2003
(Dzhalilov and Zhugzhda 1984a) to exist in such an
atmosphere:

ωcf =
(c20 + c2A)1/2

2H
= ωLβ

√
1 + β2

γ
2 + β2

, (5)

where ωcf is the characteristic cutoff frequency of the
MAG waves (ωcf < ωL), ωL = γg/2c0 is the Lamb
cutoff frequency of the AG waves in the absence of
a magnetic field (B0 = 0), and β = c0/cA is a param-
eter that characterizes the relative dominance of the
acoustic or magnetic effects during the propagation
of the MAG waves.

The range of difference frequencies Ω = ω2 − ω1

forbidden for the linear propagation of MAG waves
(Kaplan et al. 1977; Dubov 1978; Priest 1982) is of
greatest interest in studying their parametric genera-
tion:

0 < Ω < ωcf. (6)

Therefore, below, we mainly analyze the fundamental
pattern of the parametric generation of MAG waves
for the specified conditions (1)–(4) and (6), under
which the primary waves at frequencies ω1 > ωcf and
ω2 > ωcf are propagating ones (M. Petukhov and
Yu. Petukhov 2001).

For an approximate analytical description of the
processes concerned, the following nonlinear equa-
tion can be derived from the equations for the con-
servation of momentum, mass, and energy and from
the induction equation (see Priest 1982) for an arbi-
trary dependenceB0(z), to within terms of the second
order of smallness in perturbations of the correspond-
ing hydrodynamic (ρ′/ρ0, p′/p0, v/c0) and magnetic
(B′/B0) quantities:

L̂v = G, (7)

in which L̂ is a linear operator:

L̂ =
∂2

∂t2
−

(
c20 + c2A

) ∂2

∂z2
+

c20 + c2A
H

∂

∂z
, (8)

and the functionG combines the nonlinear terms:

G =
γ

ρ0

∂

∂z

(
p′
∂v

∂z

)
− ρ′

ρ0

∂2v

∂t2
− ∂v

∂t

∂v

∂z

− 2v
∂2v

∂t∂z
+

B0B
′

µ0ρ0

∂2v

∂z2
+

B0

µ0ρ0

∂B′

∂z

∂v

∂z
(9)

+
v

µ0ρ0

(
∂B0

∂z

∂B′

∂z
− B′

2H
∂2B0

∂z2

)
− 1

2µ0ρ0

∂2B′2

∂t∂z
.

Here, ρ′, p′, B′ are the density, pressure, andmagne-
tic-induction perturbations, respectively. Note that
the density, pressure, and magnetic-induction per-
turbations in (9) are linearly related to the oscillation



118 M. Yu. PETUKHOV, Yu. V. PETUKHOV
velocity (see M. Petukhov and Yu. Petukhov 2001):

∂ρ′

∂t
= ρ0

(
1
H

− ∂

∂z

)
v,

∂p′

∂t
= ρ0c

2
0

(
1
γH

− ∂

∂z

)
v, (10)

∂B′

∂t
= B0

(
1

2H
− ∂

∂z

)
v.

THE NONLINEAR GENERATION OF MAG
DISTURBANCES AT A DIFFERENCE

FREQUENCY BY PROPAGATING WAVES

To solve the nonlinear equation (7), we use the
method of successive approximations to within quan-
tities of the second order of smallness for this equa-
tion:

v = v(1) + v(2), ρ′ = ρ(1) + ρ(2), (11)

p′ = p(1) + p(2), B′ = B(1) + B(2).

Here, v(1), ρ(1), p(1), B(1) and v(2), ρ(2), p(2), B(2)

are the quantities of the first and second orders
of smallness, respectively. In the linear approxi-
mation, we derive a standard linear equation (see
Priest 1982) from (7) and (11). Its solutions for
upward-propagating and nonpropagating waves with
frequency ω and initial (at the z = 0 surface) ampli-
tude A are

v(1) = A




exp

[
ηz + i

(
ωt−

√
ω2

ω2
cf

− 1 ηz

)]
,

ω > ωcf

exp

[
iωt +

(
1 −

√
1 − ω2

ω2
cf

)
ηz

]
,

ω < ωcf,
(12)

where η = 1/2H . Note that by solution (12) we mean

its real part v(1)
R = Re

{
v(1)

}
. Therefore, taking into

account the boundary condition (4) and using (10)
and (12), we obtain the following solutions for the
corresponding quantities:

v(1)
R = eηz

2∑
j=1

Aj cos (ωjt− αjz + ϕj) ,

ρ
(1)
R =

ρ00

cF
e−ηz

×
2∑

j=1

Aj

{√
1 −

ω2
cf

ω2
j

cos(ωjt− αjz + ϕj)
+
ωcf

ωj
sin (ωjt− αjz + ϕj)

}
,

p
(1)
R =

ρ00c
2
0

cF
e−ηz (13)

×
2∑

j=1

Aj

{√
1 −

ω2
cf

ω2
j

cos (ωjt− αjz + ϕj)

+
2 − γ

γ

ωcf

ωj
sin (ωjt− αjz + ϕj)

}
,

B
(1)
R =

B00

cF

2∑
j=1

Aj

√
1 −

ω2
cf

ω2
j

cos (ωjt− αjz + ϕj) ,

where

ρ
(1)
R = Re

{
ρ(1)

}
, p

(1)
R = Re

{
p(1)

}
, (14)

B
(1)
R = Re

{
B(1)

}
,

αj = η

√
ω2

j

ω2
cf

− 1, cF =
√
c20 + c2A,

ϕ1 = 0, ϕ2 = ϕ.

For the quantity of the second order of small-
ness v(2), we derive from (7) and (11)

L̂v(2) = G(2) , (15)

G(2) =
γ

ρ0

∂

∂z

(
p
(1)
R

∂v
(1)
R

∂z

)
−

ρ
(1)
R

ρ0

∂2v
(1)
R

∂t2
(16)

−
∂v

(1)
R

∂t

∂v
(1)
R

∂z
− 2v(1)

R

∂2v
(1)
R

∂t∂z
+

B0B
(1)
R

µ0ρ0

∂2v
(1)
R

∂z2

+
B0

µ0ρ0

∂B
(1)
R

∂z

∂v
(1)
R

∂z
+

v
(1)
R B0

2µ0Hρ0

(
∂B

(1)
R

∂z
−

B
(1)
R

2H

)

− 1
2µ0ρ0

∂2
(
B

(1)
R

)2

∂t∂z
,

where the quantities v
(1)
R , ρ(1)

R , p(1)
R , and B

(1)
R are

defined by expressions (13). Separating out the terms
inG(2) (16) responsible for the wave generation at the
difference frequency Ω, we transform Eq. (15) to the
following approximate form:

L̂v(2) � Re {D exp [2ηz + i (Ωt− ξz + ϕ)]} , (17)

in which, for convenience, we use the notation

D = D1 − iD2,
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D1 =
A1A2Ω
2ω2ω1

{
ξc20

[
(2 − γ) η2 − γα1α2

]
(18)

− α2ω1 (ω1 + 2ω2)

+ α1ω2 (ω2 + 2ω1) − 3c2Aα1α2ξ
}
,

D2 =
A1A2η

2ω2ω1

{
ξc20 [γ (α1ω2 + α2ω1)

+ (2 − γ) (α2ω2 + α1ω1)]

− Ω3 + 2c2A
[
α1α2Ω +

(
α2

2ω1 − α2
1ω2

)]}
,

ξ = α2 − α1.

In solving Eq. (17), we use the natural boundary
condition

v(2)|z=0 = 0, (19)

which corresponds to the absence of difference-
frequency waves at the z = 0 boundary surface, and
choose only those solutions which would definitely
correspond to the waves traveling along the z axis
at Ω > ωcf. Representing the general solution of
Eq. (17) as a sum of the solutions of the correspond-
ing inhomogeneous and homogeneous equations, we
then obtain

v
(2)
R = Re

{
v(2)

}
, (20)

v(2) = T
{
eηz+i(Ωt+ϕ)

[
e(η−iξ)z − e−

√
1−Ω2/ω2

cfηz
]}

,

(21)

T =
D

c2F
[
ξ2 + 2iηξ − Ω2/c2F

] . (22)

The first term in (21), which is the solution of
the inhomogeneous equation (17), corresponds to
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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upward-propagating MAGwaves at frequencies Ω <
ωcf. Their oscillation velocity amplitude increases in
inverse proportion to the decreasing ambient density,
while for linear MAGwaves at frequencies ω1 and ω2,
this quantity increases with height in inverse propor-
tion to the square root of the ambient density. In con-
trast, the second term in (21), which is the solution of
the corresponding homogeneous equation (17), cor-
responds to nonpropagating (inhomogeneous) MAG
waves at frequenciesΩ < ωcf whose oscillation veloc-
ity amplitude increases with height muchmore slowly
than that for propagating waves.

Note that the complex quantity D in (18) can
clearly be represented as a finite sum of exponential
functions with different complex exponents:

D = A1A2

N∑
n=1

exp(an + ibn), (23)

where an and bn are the real quantities whose ex-
pressions are simple only in the absence of a mag-
netic field (B0 = 0, N = 8; see M. Petukhov and
Yu. Petukhov 2001). Therefore, these expressions are
not given here, because they are cumbersome.

It follows from (22) and (23) that each term in (21)
describes the corresponding group of a certain num-
ber of waves. More specifically, the first and second
groups consist of propagating and nonpropagating
MAGwaves, respectively. The amplitudes and phases
of the waves in each group are different, while their
phase velocities are equal. The latter implies that a
complex interference structures of the MAG wave
field is formed during the parametric generation of
MAG waves in an isothermal atmosphere at a differ-
ence frequency Ω < ωcf.

The following conclusions can be drawn from the
numerically computed Ω, ω1, and σ = 1/β depen-
dences of the normalized quantity Φ = |c0T/A1A2|



120 M. Yu. PETUKHOV, Yu. V. PETUKHOV

 

0.6

0 0.4 0.8

1.0

 

3

2

1

 

σ

 

0.8

(b)

0.6

1.0
 

3

2

1

 
Φ

 

0.8

(‡)

0.4

Fig. 3. Normalized quantityΦ versus σ = 1 / β for ϕ = 0
и Ω = 0 (а), Ω = 0.5ωL (b): ω = 1.1ωL (1), ω = 1.5ωL

(2), and ω = 10ωL (3).

at ϕ = 0 (see Figs. 1–3), which characterizes the
oscillation velocity amplitude at a difference frequency
in each of the two groups of waves at z = 0.

First, as would be expected (see M. Petukhov and
Yu. Petukhov 2001), the amplitude of the generated
MAG waves increases with difference frequency (see
Fig. 1) in such a way that for ω1 ≈ 4ωcf the quantity Φ
takes on almost equal values over the entire frequency
range 0 < Ω < ωcf of interest (see Fig. 2).

Second, as the Alfvén velocity increases, the am-
plitude of the MAGwaves generated at difference fre-
quencies decreases for initial radiation frequencies ω1

that exceed a certain value ω∗ and increases (or has a
maximum) for ωcf < ω1 < ω∗. The frequency ω∗ itself
decreases with increasing difference frequency Ω. It
should be noted, however, that at radiation frequen-
cies ωcf < ω1 < ω∗, the increase of Ф with Alfvén ve-
locity (see Fig. 3) causes the amplitudes of the MAG
waves to increase only at z smaller than a certain
height zc, because the exponential factor eηz in (21),
which decreases with increasing Alfvén velocity (the
scale heightH increases), causes the amplitude to fall
at z > zc.

Third, the fact that at Ω = 0 the quantity Φ is
nonzero (see Figs. 1–3), as is the quantity

v0 = lim
Ω→0

(
v
(2)
R

)
�= 0 (24)

at z > 0 and ϕ = 0 [see (21)], implies that, as we
showed previously (M. Petukhov and Yu. Petukhov
2001), the nonlinear interaction betweenMAGwaves
in the case under consideration gives rise to a flow—
an acoustic wind.

Let us analyze inmore detail the dependence of the
acoustic wind velocity on characteristic quantities. To
this end, we derive the following expression from (24)
using (21):

v0 = −A1A2 cosϕ
2Hω1

√
ω2

1

ω2
cf

− 1
(
e2ηz − 1

)
. (25)

This expression describes only the part of the acoustic
wind that results from the interaction between two
waves with amplitudesA1 andA2. In deriving a com-
plete expression for the acoustic flow V , we must take
into account the fact that each of these waves at a
zero difference frequency also produces an acoustic
flow with velocities v1 and v2, respectively. Using an
asymptotic procedure (Ω = ω1 − ω1 → 0, Ω = ω2 −
ω2 → 0) similar to that described when deriving re-
lation (25), we obtain the following expression for the
terms additional to v0:

vj = −
A2

j cos2 ϕj

4ωjH

√
ω2

j

ω2
cf

− 1
(
e2ηz − 1

)
, (26)

where j = 1, 2 and ϕ1 = 0, ϕ2 = ϕ. Since we used
the passage to the limit ω2 → ω1 when deriving rela-
tion (25), we obtain the sought-for expression for the
acoustic flow velocity from (25) and (26):

V =
2∑

j=0

vj (27)

= −(A1 + A2 cosϕ)2

4Hω1

√
ω2

1

ω2
cf

− 1
(
e2ηz − 1

)
.

It follows from relation (27) that the acoustic flow
velocity significantly depends on the initial phase
difference between the initial oscillations [see (4)],
which was disregarded previously (M. Petukhov and
Yu. Petukhov 2001). There is no acoustic flow atω1 �
ωcf, while, at relatively high frequencies ω1 
 ωcf, its
velocity is virtually independent of the initial radiation
frequency.
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Furthermore, as follows from our analysis of the
behavior of Φ(σ) (see Fig. 3a) and expression (27),
the dependence of the acoustic flow velocity on
magnetic-field strength [i.e., V (σ)] can have a maxi-
mum only at radiation frequencies close to the Lamb
frequency ωL. The latter can be shown analytically
by using the approximate dependences that follow
from (27) at σ � 2

√
γ − 1/γ and ω1 = ωL, ω1 
 ωL:

V ≈ −(A1 + A2 cosϕ)2
√
γ − 1

4ωLHL
(28)

×




z

HL
σ

(
1 − aσ2

)
, z/HL � 1

e
z

HL σe
− γz

2HL
σ2

, z/HL 
 1,

ω1 = ωL,

V ≈ −(A1 + A2 cosϕ)2

4ωLHL

×




z

HL

(
1 − γ + 2

γ
σ2

)
, z/HL � 1

e
z

HL
(
1 − σ2

)
e
− γz

2HL
σ2

, z/HL 
 1,

ω1 
 ωL,

It clearly follows from (28) that only at ω1 → ωL does
V (σ) reach its maximum for certain σ = σm:

σm �




1/
√

3a , z/HL � 1√
HL/γz, z/HL 
 1 ,

(29)

where

HL = c0/2ωL, a =
7γ2 − 4γ − 4

8 (γ − 1)
. (30)

As we see from (29), the magnetic-field strength for
which the flow velocity is at a maximum is constant
at relatively small heights and decreases with increas-
ing z at relatively large heights.

We see from the numerically computed depen-
dences σm(z) shown in Fig. 4 that, as follows from the
approximate analytical expressions (28) and (29), the
position of the σm maximum in V (σ) at relatively low
radiation frequencies ωcf < ω1 � ωL asymptotically
approaches zero as z → ∞, while, at relatively high
frequencies ω1 
 ωL, the maximum is always located
at σm = 0. However, it turned out that, for radiation
frequencies slightly exceeding the Lamb frequency
ωL, the maximum in V (σ) at σm = 0 exists only at
certain heights; i.e., σm decreases to zero at a finite
height z, which, in turn, decreases with increasing ω1.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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THE NONLINEAR GENERATION OF MAG
WAVES AT THE SECOND HARMONIC

BY NONPROPAGATING DISTURBANCES

Consider the nonlinear generation of MAG waves
at the second harmonic by disturbances from the
forbidden frequency range (see M. Petukhov and
Yu. Petukhov 2001). The latter is of considerable
interest in studying the energy transfer in the solar
atmosphere by the propagating waves generated by
nonpropagating disturbances. To this end, we assume
that the following relations hold:

A1 = A2 = A/2, (31)

ω1 = ω2 = ω < ωcf, 2ω > ωcf .

We then obtain the following expressions for the hy-
drodynamic and magnetic quantities for nonpropa-
gating disturbances from (10) and (12):

v
(1)
R = Ae(η−χ)z cosωt, (32)

ρ
(1)
R =

ρ00A(η − χ)
ω

e−(η+χ)z sinωt,

p
(1)
R =

ρ00Ac
2
0

2ωH

×
(

2 − γ

γ
+

√
1 − ω2

ω2
cf

)
e−(η+χ)z sinωt,

B
(1)
R =

AB00χ

ω
e−χz sinωt,

where

χ = η

√
1 − ω2

ω2
cf

. (33)
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Separating out the term in (16) responsible for the
generation of the second harmonic using (32), we
then transform Eq. (15) to the approximate form

L̂v(2) � A11e
2(η−χ)z sin 2ωt, (34)

where

A11 = A2

{
−γc20ηχ

ω
(η − χ)

(
2 − γ

γ
+

√
1 − ω2

ω2
cf

)

+ ω(2η − χ) − 2c2A (η − χ)χ2

ω

}
.

The solution of Eq. (34) that satisfies the boundary
condition (19) is a sum of the corresponding solutions
of the homogeneous and inhomogeneous equations:

v
(2)
R = T11

{
U − e2(η−χ)z sin 2ωt

}
, (35)

where

T11 =
A11

4ω2
cf

(
1 −

√
1 − ω2/ω2

cf

) ,

U =




exp

[(
1 −

√
1 − 4ω2

ω2
cf

)
ηz

]
sin (2ωt) ,

2ω < ωcf

exp (ηz) sin

[
2ωt−

(√
4ω2

ω2
cf

− 1

)
ηz

]
,

2ω > ωcf.

(36)

We see from (35) and (36) that, as in the absence of a
magnetic field (see M. Petukhov and Yu. Petukhov
2001), disturbances from the forbidden frequency
range can excite propagating MAG waves at the
second harmonic at ω > ωcf/2. The oscillation ve-
locity amplitude of the latter increases with height in
inverse proportion to the square root of the decreasing
ambient density, i.e., as in the case of linear MAG
waves at the corresponding frequencies ω > ωcf.
The oscillation velocity amplitude for nonpropagat-
ing waves at the second harmonic for frequencies√

3ωcf < 2ω � 2ωcf increases with height faster than
that for propagating MAG waves. Thus, only at

certain oscillation frequencies

√
3

2
ωcf < ω � ωcf of

the boundary (z = 0) surface do nonpropagating
disturbances mainly contribute to theMAGwave field
at the second harmonic and at large heights z > H .

The following conclusions can be drawn from
the dependence of the normalized quantity Ψ =
c0 |T11| /A2, which characterizes the amplitude of the
MAG waves at the second harmonic, on the initial
excitation frequency ω.

First, the amplitude of the MAGwaves at the sec-
ond harmonic increases with radiation frequency al-
most over the entire frequency range 0 < ω < ωcf un-
der consideration, except a comparatively narrow fre-
quency interval ωm � ω � ωcf (1 − ωm/ωcf � 1), in
which it decreases; for ω = ωm, the amplitude reaches
its maximum.

Second, the decrease in Ψ (see Fig. 5) and in the
amplitude exponential factors in solution (35) with
increasing Alfvén velocity cA over the entire range of
radiation frequencies implies a similar decrease in the
amplitude of the MAG waves at the second harmonic
over the entire height range z > 0.

PECULIARITIES OF THE NONLINEAR
INTERACTION BETWEEN PROPAGATING
AND NONPROPAGATING MAG WAVES

Given the importance of the nonlinear energy
transformation of oscillations at frequencies ω < ωcf,
let us now consider the parametric generation of
MAG waves at a difference frequency that result
from the nonlinear interaction between primary non-
propagating waves at frequency ω1 (ω1 < ωcf) and
propagating waves at frequency ω2(ω2 > ωcf). In this
case, the solution of the linear equation (7) with the
boundary condition (4) is

v
(1)
R = A1e

(η−χ1)z cosω1t (37)

+ A2e
ηz cos (ω2t− α2z + ϕ) ,

where

χ1 = η
√

1 − ω2
1/ω

2
cf.
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By analogy with the aforesaid, we obtain an equa-
tion for the oscillation velocity v(2) at a difference
frequency from (10), (16), and (37):

L̂v(2) (38)

� Re {R exp [(2η − χ1) z + i (Ωt− α2z + ϕ)]} ,
where

R = R1 − iR2, (39)

R1 =
c20α2 (η − χ1)Ω

2ω1ω2
[(2 − γ) η + γχ1]

+
α2

2ω2

(
ω2

1 + ω1ω2 − 2ω2
2

)

+
c2Aα2χ1 (η − χ1) Ω

ω1ω2
,

R2 =
c20
2

[
α2

2 + χ1η

ω1
[(2 − γ)η + γχ1]

+
η − χ1

ω2

[
γα2

2 − (2 − γ)ηχ1

]]

+ c2A

[
χ1

ω1

(
α2

2 + ηχ1

)
+

α2
2

ω2
(η − χ1)

]

+
1
2

[
ω2

1

ω2
η − ω2

2

ω1
(η + χ1)

+ ω2 (3η − χ1) − ω1 (3η − 2χ1)

]
.

As above, representing the general solution of
Eq. (38) as a sum of the solutions of the correspond-
ing inhomogeneous and homogeneous equations
using the boundary condition (19), we obtain

v(2) = T12 (40)

× {exp [(2η − χ1) z + i (Ωt− α2z + ϕ)] −K} ,
where

T12 (41)

=
R

c2F
[
α2

2 + (2η − χ1)χ1 + 2i (η − χ1)α2 − Ω2/c2F
] ,

K =




exp
[
i (Ωt + ϕ) +

(
1 −

√
1 − Ω2/ω2

cf

)
ηz

]
,

Ω < ωcf

exp [ηz + i (Ωt− α2z + ϕ)] , Ω > ωcf.

(42)

The first term in (40), which is the solution of
the inhomogeneous equation (38), corresponds to
propagating MAG waves over the entire range of
difference frequencies Ω; the higher the frequency ω1

of the primary nonpropagating wave, the faster is
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the increase in the amplitude of these waves with
height. In contrast, the second term in (40), which
is the solution of the corresponding homogeneous
equation (38), corresponds to propagating or non-
propagating MAG waves, depending on whether the
difference frequency Ω is higher or lower than the
cutoff frequency.

It should be noted here that expressions (39)–
(42) can formally be used to describe the generation
of MAG waves at the sum frequency Ω+ = ω2 + ω1

(ω1 < ωcf, ω2 > ωcf) if they are transformed as fol-
lows:

ω1 → −ω1, Ω → Ω+. (43)

We see from (40), (42), and (43) that, if one of the
primary MAGwaves is a propagating one, then solely
propagating waves are generated at the sum fre-
quency.

The following conclusions can be drawn from the
numerically computed ω1, ω2, and σ = 1/β depen-
dences of the normalized quantitiesΦ = |T12c0/A1A2|
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and Φ+ [the expression for Φ+ follows from Φ after
transformations (43)] shown in Figs. 6 and 7, which
characterize the oscillation velocity amplitudes at the
difference and sum frequencies in each of the two
groups of waves at z = 0, respectively.

First,Φ andΦ+ increase with increasing difference
and sum frequencies, respectively; as follows from
Fig. 6 and from expressions (40)–(43), they indef-
initely increase as ω1 → 0 and ω2 → ∞. However,
such an indefinite increase in the amplitudes of each
of the waves at frequencies Ω and Ω+ does not cause
a similar increase in the amplitude of the total oscilla-
tion in the corresponding limiting situations, because
the following relations hold:

v(2)
∣∣∣
Ω
→ − v(2)

∣∣∣
Ω+

,




Ω|ω1→0 → Ω+

Ω|ω2→∞ → Ω+.
(44)

Naturally, significant differences in the behavior of Φ
and Φ+ show up only at radiation frequencies ω1 and
ω2 close to ωcf (see Fig. 6). In this case, the sharp
decrease in thewave amplitudes at difference frequen-
cies to zero at ω1 → ωcf and ω2 → ωcf is attributable
to the absence of an acoustic wind in the correspond-
ing situation: V = 0 for ω1 = ω2 = ωcf [see (27)].

Second, as the Alfvén velocity increases, the am-
plitudes of the nonlinearly generated MAG waves
decrease appreciably (see Fig. 7); the rate of their
increase with height z also decreases [see (40), (42)].

CONCLUSIONS

Below, we formulate our main results and the con-
clusions that follow from them.

Based on a plane-parallel isothermal solar model
atmosphere permeated by a horizontal magnetic field
whose strength is proportional to the square root of
the ambient density, we investigated the parametric
generation of MAG waves in the approximation of a
specified field for vertically propagating MAG waves
at frequencies above their cutoff frequency.

We showed that both nonpropagating (inhomo-
geneous) and propagating MAG waves are excited
in the frequency range of interest above the cutoff
frequency and, hence, forbidden for the propagation
of MAG waves during their linear generation at the
corresponding difference frequency through the non-
linear interaction between initially propagating MAG
waves, as in the case of interaction between AGwaves
(seeM. Petukhov and Yu. Petukhov 2001). The oscil-
lation velocity amplitude for propagatingMAGwaves
at a difference frequency increases with height in
inverse proportion to the decreasing ambient den-
sity, i.e., appreciably faster than it does for primary
waves at the corresponding frequency. For the latter
waves, this amplitude increases in inverse proportion
to the square root of the decreasing ambient density.
The quantity Φ, which characterizes the oscillation
velocity amplitude for the MAG waves at a differ-
ence frequency near the lower atmospheric bound-
ary, reaches its maximum Φ ≈ 1 in the absence of
a magnetic field (see Fig. 3). We found that, as the
magnetic-field strength increases, the amplitude of
the MAG waves at a difference frequency decreases
at radiation frequencies of the primary waves above a
certain selected frequency and increases at radiation
frequencies below this selected frequency only at rela-
tively small heights. We also noticed that the selected
radiation frequency itself decreases with increasing
difference frequency.

We established that during the interaction be-
tweenMAGwaves, as well as AGwaves (seeM. Petu-
khov and Yu. Petukhov 2001), an acoustic flow (wind)
is formed at a zero difference frequency. Its velocity
depends on the initial phase difference between the
oscillations at the lower solar atmospheric boundary.
Increasing with height in inverse proportion to the
decreasing ambient density, it is directed oppositely
to the propagation of MAG waves. We found the
following: first, the acoustic wind velocity does not
depend on the radiation frequency and decreases with
increasing magnetic-field strength at relatively high
radiation frequencies, well above the cutoff frequency;
second, at relatively low radiation frequencies close to
the cutoff frequency, the dependence of the acous-
tic wind velocity on magnetic-field strength has a
maximum whose position changes only slightly at
relatively small (compared to the scale height) heights
and significantly, in inverse proportion to the square
root of the height, at relatively large heights.

In addition, we investigated the nonlinear interac-
tion between nonpropagating and propagating MAG
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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waves. We showed that both nonpropagating and
propagating MAG waves are generated during the
interaction between initial disturbances from the for-
bidden frequency range at a sum frequency above
the cutoff frequency. Their amplitude decreases with
increasing magnetic-field strength. The quantity Ψ,
which characterizes the amplitude of the MAGwaves
at a sum frequency, reaches its maximum Ψ ≈ 0.6 in
the absence of a magnetic field (see Fig. 5). We also
found that, as in the case of interaction between AG
waves (see M. Petukhov and Yu. Petukhov 2001),
nonpropagating MAG oscillations mainly contribute
to the field of the MAG waves at a sum frequency
and at relatively large heights in a certain range of
radiation frequencies.

We established that during the nonlinear inter-
action between initially nonpropagating and propa-
gating MAG waves, both nonpropagating and prop-
agating MAG waves are generated at a difference
frequency below the cutoff frequency and only prop-
agating MAG waves are generated at a sum fre-
quency. The amplitudes of the latter decrease with
increasing magnetic-field strength. The dependences
of the MAG wave amplitudes on radiation frequency
at difference (see Ф in Fig. 6) and sum (see Φ+ in
Fig. 6) frequencies significantly differ only near the
cutoff frequency, where the MAGwave amplitude de-
creases sharply at a difference frequency. However, at
radiation frequencies well above the cutoff frequency,
the amplitudes of these waves become equal Φ/Φ+ ≈
1 (see Fig. 6).

Thus, the transfer of acoustic energy into the
upper solar atmosphere by MAG waves is possible
at relatively low difference frequencies, which are
generated through the nonlinear interaction not only
between propagating waves (see M. Petukhov and
Yu. Petukhov 2001) but also between nonpropa-
gating and propagating MAG waves. Furthermore,
acoustic energy from the forbidden frequency range
can also be effectively transferred into the upper solar
atmosphere by MAG waves at relatively low sum fre-
quencies, which are generated through the nonlinear
interaction not only between nonpropagating waves
but also between nonpropagating and propagating
MAG waves.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Abstract—We investigate the neighborhood of the periodic eight-like orbit found by Moore (1993) and
Chenciner and Montgomery (2000). One-, two-, and three-dimensional scans in body coordinates, veloci-
ties, and masses were constructed.We found the regions of initial conditions in which the maximummutual
separation did not exceed 5 distance units during 2000 time units (about 300 periods of the initial solution).
Larger deviations from the periodic solution lead to distant body ejections and escapes. The identified
regions of finite motions are complex in structure. In some sections, these are simple-connectedmanifolds,
while in other sections, stability zones alternate with escape zones. We estimated the fractal dimensions of
the stability regions in three-dimensional scans: it typically ranges from 2 to 3. In some cases, we found
transitions between motions along the figure of eight in its neighborhood and motions in the vicinity of a
periodic Broucke orbit in the isosceles three-body problem. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: celestial mechanics.
INTRODUCTION

The three-body problem is known to admit no
general analytical solution, which makes special
cases with exactly integrable equations of motion
particularly interesting. These include, for example,
the periodic orbits of von Schubart (1956) and
Broucke (1979) in the rectilinear and isosceles three-
body problems, respectively. Recently, the small
collection of such solutions has been supplemented
with a remarkable periodic solution in which three
bodies move one after another along a closed curve
similar to the figure of eight (Chenciner and Mont-
gomery 2000).

Of particular interest are the stability of exact so-
lutions and the behavior of neighboring orbits in the
vicinity of a periodic orbit. According to the general
theory of nonlinear dynamical systems, stable peri-
odic orbits are commonly surrounded by regions of
regular finite motions. In contrast, a complex trajec-
tory behavior arises in the vicinity of unstable periodic
orbits. This behavior leads to the development of dy-
namic chaos [see, e.g., Schuster 1984).

Simo (2002) was the first to analyze the stability of
a eight-like periodic orbit. He showed that this solu-
tion was stable and constructed the stability region in

*E-mail: vor@astro.spbu.ru
1063-7737/03/2902-0126$24.00 c©
the two-dimensional section of the set of initial condi-
tions. Simo also analyzed the variations in the shape
of the stability region with body masses and showed
that the fraction of stable orbits rapidly decreased
even in the case of small variations in the bodymasses
(∼10−3). A number of accompanying periodic orbits
(choreographies) were also found. In contrast to the
figure of eight, these orbits are unstable.

Here, we continue to study the stability of eight-
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Fig. 1. The initial conditions for a periodic eight-like
orbit.
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The intervals of deviation from the central solution within which t > 2000

Parameter
Body

1 2 3

x [−0.022, 0.018] [−0.018, 0.022] [−0.122, 0.122]

[−0.022, 0.017] [−0.018, 0.022]

y [−0.009, 0.011] [−0.009, 0.008] [−0.009, 0.009]

[−0.009, 0.009]

z [−0.230, 0.230] [−0.230, 0.230] [−0.121, 0.121]

[−0.230, 0.230]

vx [−0.020, 0.015] [−0.020, 0.027] [−0.022, 0.006]

[−0.025, 0.025]

vy [−0.006, 0.003] [−0.005, 0.003] [−0.013, 0.010]

[−0.008, 0.005]

vz [−0.078, 0.078] [−0.076, 0.076] [−0.168, 0.168]

m [−0.00010, 0.00005] [−0.00007, 0.00010] [−0.00005, 0.00003]

[−0.00006, 0.00004] [−0.00007, 0.00005] [−0.00005, 0.00003]
like orbits. To this end, we constructed a set of
one-, two-, and three-dimensional scans in the space
of initial conditions for the problem. Based on new
material and using a new method, we confirm Simo’s
conclusion that regions of finite motions exist in the
vicinity of the initial orbit. Our set of scans also gives
an idea of the structure of these domains and the
geometry of their boundaries. We describe the eight-
like orbit and our method and present our results.

THE EIGHT-LIKE ORBIT

This orbit was found in the plane three-body prob-
lem with equal-mass components and zero angular
momentum (Chenciner and Montgomery 2000). The
initial conditions are (see Fig. 1):

x1 = −x2 = 0.97000436,
y1 = −y2 = −0.24308753,

x3 = y3 = 0 = z1 = z2 = z3 = 0,
ẋ3 = −2ẋ1 = −2ẋ2 = −0.93240737,
ẏ3 = −2ẏ1 = −2ẏ2 = −0.86473146,

ż1 = ż2 = ż3 = 0.

The period of the system is T̄ = 6.32591398 time
units in the system of units used by Chenciner and
Montgomery (2000), where the gravitational con-
stant is G = 1 and the body masses are m1 = m2 =
m3 = 1.

The bodies move one after another along the figure
of eight with no close double and triple encounters.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
Note that this orbit was first found numerically by
Moore (1993).

THE SCANNING ALGORITHM

We carried out all our computations by using the
TRIPLE code that was kindly provided by S. Aarseth
(Cambridge University, Great Britain). This code
uses the regularization of the equations of motion
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Fig. 2. A more detailed structure of the stability region
on the two-dimensional scan in coordinates x1 and x2 of
the extreme bodies. The scanning step is 0.005 in both
coordinates.
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Fig. 3.Displacement of the stability region on the (x1, x2)
plane as the coordinate x3 of the central body varies: (a)
∆x3 = −0.25; (b) ∆x3 = 0, and (c) ∆x3 = 0.25. The
scanning step is 0.05 in both coordinates x1, x2.

for the three-body problem by the method of Aarseth
and Zare (1974) and the integrator of Bulirsch and
Stoer (1966). For checking purposes, we also made
some of the one-dimensional scans by using our
CHAIN code implementing the chain regularization
by the method of Mikkola and Aarseth (1993) and a
fourth-order Runge–Kutta integrator. The two codes
yielded similar results.

First, we made one-dimensional scans in each of
the initial body coordinates and velocities starting
from the initial eight-like solution and proceeding by
increasing and decreasing the corresponding coor-
dinate or velocity. Similarly, we performed scanning
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Fig. 4. Displacement of the stability region on the (y1, y2)
plane as the coordinate y3 of the central body varies: (a)
∆y3 = −0.025; (b) ∆y3 = 0, and (c) ∆y3 = 0.025. The
scanning step is 0.005 in both coordinates y1, y2.

in each of the body masses. In the case of one-
dimensional scanning, the remaining body coordi-
nates, velocities, and masses were assumed to be
equal to the values corresponding to the initial solu-
tion.

The scanning step was 0.001 in coordinates and
velocities and 0.00001 in masses. For each set of
initial conditions, the computations continued either
until 2000 time units (about 300 periods of the so-
lution T̄ ) or until the maximum mutual separation
exceeded five distance units. Note that at the initial
time, the maximum mutual separation was equal to
two distance units. Test computations showed that
in the cases where the latter condition was satisfied,
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 5. Displacement of the stability region on the (z1, z2)
plane as the coordinate z3 of the central body varies:
(a) ∆z3 = −0.25; (b) ∆z3 = 0, and (c) ∆z3 = 0.25. The
scanning step is 0.05 in both coordinates z1, z2.

motions in the triple system almost always lead to
distant body ejections and, in the long run, to the
breakup of the triple system.

We constructed three-dimensional scans in the
vicinity of the initial solution for various combinations
of body coordinates, velocities, and masses and with
various scanning steps. In the process, we identified
the points of the three-dimensional grid at which
t > tc = 2000 time units; the manifold of these grid
points represented the stability region in the scan
considered. Below, we use the term “stability” to
mean “the boundedness of the motions within the
above limits during at least 2000 time units.”
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 6. The stability region on the (vx1, vx2) plane for
∆vx3 = 0. The scanning step in vx1 and vx2 is 0.05.
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Fig. 7. The stability region on the (vy1, vy2) plane for
∆vy3 = 0. The scanning step in vy1 and vy2 is 0.002.

We estimated the fractal dimensions of theseman-
ifolds. To this end, we constructed a rectangular par-
allelepiped around each of the points that were not
too close to the scan boundary that contained the
same number of grid points along each of its faces
and determined the number of points with t > 2000
within this parallelepiped. We then determined the
mean number N of such points over all possible par-
allelepipeds and plotted log N against log n, where n
is the number of grid points lying on the parallelepiped
face. The slope of the log N(log n) curve yields an
estimate of the fractal dimension D. The error of D
can be estimated, for example, by the least-squares
method.

To test the stability of our method against the
choice of a critical time tc, apart from 2000 time units,
we also considered a critical value of 5000 time units
for some of the scans. The two critical times yielded
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Fig. 8. The stability region on the (vz1, vz2) plane for
∆vz3 = 0. The scanning step in vz1 and vz2 is 0.02.
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Fig. 9.The (x1, vx1) sectionwith a scanning step of 0.01.

similar boundaries of the stability region. We found
only a relatively small intermediate zone of points with
2000 < t < 5000 (see the “Results” below).

This result agrees with the analysis by Simo
(2002), who showed that the fraction of nondisrupted
trajectories decreases slowly with increasing time.
This quantity apparently tends to some constant
value as t → ∞.

RESULTS

The results of our one-dimensional scanning are
presented in the table. It gives the boundaries of the
ranges of body coordinates, velocities, and masses
within which t > 2000 time units. Also listed are the
deviations from the initial solution toward smaller and
larger values of a particular parameter. For some of
the scans, independent results were also obtained by
using the CHAIN code. These results are given in
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Fig. 10. The (x3, vx3) section with a scanning step of
0.02 in x3 and of 0.005 in vx3.
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Fig. 11. The (y3, vy3) section with a scanning step
of 0.002.

the lower rows of the table. In general, the boundaries
found with the two different codes are in agreement.

We see from the table that, in the case of one-
dimensional scanning, the maximum size of the sta-
bility region in a given scan is reached when the ex-
treme bodies are displaced along the z axis, when the
central body is displaced along the x and z axes, and
when the z velocity components vary. The stability
of motions is most sensitive to variations in the body
masses.

Consider two- and three-dimensional scans in
several pairs and triples of parameters in the space
of initial conditions. The results are presented in
Figs. 2–15. These figures show the two-dimensional
sections of the three-dimensional scans obtained.
The filled circles correspond to the initial conditions
with t > 2000 time units. At the remaining grid
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 12. The (z3, vz3) section with a scanning step
of 0.05.

points, the maximum separation between the bodies
exceeded five distance units in less than 2000 time
units. The characteristics of the scans and sections
(the parameters in which the scanning was made and
the scanning step) are given in the captions to the
figures.

When the coordinates x1 and x2 of the extreme
bodies are varied for a fixed coordinate x3 of the cen-
tral body, the stability region has the shape of a cross
oriented along the x1 = x2 and x1 = −x2 diagonals
(Fig. 2). As the coordinate x3 increases, this structure
is displaced from the lower left corner to the upper
right corner while remaining self-similar (Fig. 3). The
similarity stems from the fact that the initial configu-
ration as a whole is displaced. Therefore, the evolution
is closely reproduced.

A similar effect also shows up during the dis-
placement in y and z coordinates (Figs. 4 and 5).
During the displacement in y coordinate, other sta-
bility regions also appear in the upper right and lower
left corners when the central body is displaced in
y-coordinate.

When the y and z coordinates of the central body
are varied, the stability region is elongated along the
y2 = −y1 or z2 = −z1 diagonal. In addition to the
continuous region, isolated “tails” elongated along
this diagonal are observed in the vicinity of the initial
solution.

Figures 6–8 show our results for the variations in
initial velocities. The stability regions are elongated
along the principal diagonals vx1 = vx2, vy1 = vy2,
and vz1 = vz2. Note that the stability regions are fol-
lowed by the “tails” of trajectories with long lifetimes
oriented along the same diagonals. As the velocity of
the central body is changed, the entire structure is
displaced along the principal diagonal, as observed in
Figs. 3–5.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 13. The (m1, m2) section with a scanning step of
2 × 10−5.

Figures 9–12 show examples of the sections in
one of the coordinates and the corresponding velocity
component. These are a kind of Poincare sections.
The stability regions have a variety of shapes in these
sections.

The body masses can be treated as the parameters
of the problem. Figures 13–15 show how the shape
of the stability region depends on the masses. We
can see from the table that even small mass varia-
tions (∼10−4) result in the loss of system stability
in the case of one-dimensional scanning. Such a
strong sensitivity of the results to mass variations
is confirmed by two-dimensional scans (Figs. 13–
15). Here, the stability regions have a complex
multiply connected structure. Their fractal dimension
is D ≈ 2.6 for a scanning step of ∆m1 = ∆m2 =
∆m3 = 0.002 and D ≈ 3.0 for smaller scanning
steps, 0.0002 and 0.00002, in each of the masses.
Thus, the distribution of points approaches a uniform
distribution with decreasing scanning step.

Note that at a 2× 10−6 step, a continuous stability
region exists around the initial solution. It also shows
up in Fig. 13. This region is also preserved if we in-
crease the critical time to 5000 units (almost 800 ini-
tial periods). Only in the vicinity of the boundary
of the stability region do several trajectories become
unstable in the time interval from 2000 to 5000 time
units.

The strong sensitivity of the results to small mass
variations agrees with the results of Simo (2000), who
also pointed out a rapid decrease in the fraction of
stable orbits with increasing scanning step in body
masses.

When the initial body coordinates and/or veloci-
ties are varied, the constructed stability regions also
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Fig. 14. The (m1, m2) section with a scanning step of
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Fig. 15. The (m1, m2) section with a scanning step of
2 × 10−3.

exhibit fractal properties, with the fractal dimension
varying between 2 and 3. The specific value of D
depends (within these limits) on the scanning step.

Previously, Heinämäki et al. (1998) found a fractal
dimension slightly exceeding 2 by analyzing the time
series generated by three-body systems in numerical
simulations. A low fractal dimension is character-
istic of the dynamics of triple systems that exhibit
the property of intermittency (Chernin and Valto-
nen 1998).

Finally, when analyzing the trajectories in the
vicinity of the figure of eight, we found the remarkable
cases of the rearrangement of motions from one peri-
odic orbit to another and back: the motions along the
figure of eight change to oscillations near the orbit of
Broucke (1979) for the isosceles three-body problem
and then return to the neighborhood of the figure
of eight. In this case, the motions remain bounded
during at least 2000 time units. This probably means
that the regions of regular finite motions generated by
the periodic Broucke and eight-like orbits close up in
phase space. This effect is currently being analyzed
in more detail and the results will be published
separately.

Note that Simo (2002) performed a detailed anal-
ysis of the stability of a periodic eight-like orbit both
in the linear approximation (by calculating the eigen-
values of the Poincare mapping) and in the general
case (using numerical differentiation). He proved the
stability of this periodic solution in both cases. For
further studies, it is of interest to analyze the stability
of other choreographies and the relative positions of
the stability regions in phase space.
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Abstract—We obtained an order-of-magnitude estimate for the dispersion of light caused by the effect
of quantum fluctuations on the propagation of electromagnetic waves in four-dimensional spacetime. We
calculated the delay of the photons from cosmological gamma-ray bursts (GRBs) for the flat, open, and
closed cosmological models. This delay is attributable to the effect of expansion of the Universe on the
propagation of a dispersive light wave in space. Analysis shows that the delay of GRB photons contains a
regular component related to the expansion of the Universe. We conclude that cosmological models of the
Universe can be selected by the delay of emission of various energies from GRBs; the accuracy of measuring
the parameter ∆t/∆Eγ must be no lower than 10−6 s MeV−1. c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION
It has recently been hypothesized that the global

Lorentz invariance in nature is only an approximate
symmetry and can be violated at sufficiently high
energies of the elementary particles involved in var-
ious physics interactions (Amelino-Camelia et al.
1998; Coleman and Glashow 1999; Stecker and
Glashow 2001). The generation of non-Lorentzian
spacetime metric components through quantum
fluctuations (Ellis et al. 1998) is considered as a
possible mechanism of this violation. For Planckian
spacetime scales, quantum fluctuations significantly
affect the large-scale spacetime structure (Hawking
et al. 1980) by initiating, in particular, the birth of
the Universe from a vacuum and quantum inflation
(Vertogradova and Grishkan 2000). Quantum fluctu-
ations on such small scales also exist at present and
can affect the propagation of light in spacetime. In-
deed, as was shown by Ellis et al. (1998, 2000a), the
quantum fluctuations that constitute spacetime foam
can effectively influence the macroscopic properties
of the flat space metric by forming virtual D-brane-
type topological defects (see, e.g., Rubakov 2001).
When propagating in such space, the photons and
other (almost) massless particles (e.g., neutrinos) are
scattered by defects and the nondiagonal spacetime
metric components are generated during the scatter-
ing (Ellis 2000):

g0α ∼ uα

c
.

*E-mail: vpetkov@yandex.ru
1063-7737/03/2902-0065$24.00 c©
Here, the Greek subscripts take on the values α =
1, 2, 3 and c is the speed-of-light constant. The vec-
tor uα is the effective defect recoil velocity when the
particles propagate in spacetime foam, with its mag-
nitude being u � c.

The existence of a macroscopic recoil velocity vec-
tor uα violates the global Lorentz invariance (Cole-
man and Glashow 1999) and causes the dispersive
properties of the light waves propagating in space to
change:

c(E) = c
(
1 − u

c

)
, (1)

where E = �ω is the energy of the photons of fre-
quency ω. In quantum gravity, in particular, in the
theory of spacetime foam (Ellis et al. 2000a), the ve-
locity vector uα must arise from quantum fluctuations
and at a given energy E is of the order of the ratio of
the energy scale for the recorded photons to the en-
ergy scale on which quantum spacetime fluctuations
show up:

u

c
∼ E

MQG
, (2)

where MQG is the characteristic quantum-gravity en-
ergy scale. To a first approximation, the time delay of
the light signal from an emitting source attributable
to the path difference between the photons that travel
at speeds c and c − ∆u is

∆t =
∆L

c
=
∫ t0

t

∆u(E)
c

dt. (3)
2003 MAIK “Nauka/Interperiodica”
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Here, L is the distance traveled by the light, t is the
photon emission time, and t0 is the photon detection
time that corresponds to the age of the Universe.

Since the light propagates in space filled with
small quantum fluctuations, the spacetime foam
composed of them can be probed by the signals
from distant radiation sources (primarily gamma-
ray burst (GRB) sources) with a sufficiently high
energy E. For delays ∆t of the signals from radiation
sources, the fundamental physical constant MQG,
which characterizes the order of magnitude of the
quantum-gravitational processes, can then be defined
as the ratio

MQG ∼ L∆E

c∆t
. (4)

Extragalactic GRBs can be used as pulsed sources of
high-energy gamma-ray photons. Ellis et al. (2000b)
and Nanopoulos (2000) studied the time delay in
the arrival of photons with various energies from
GRBs by using BATSE and OSSE data (Paciesas
et al. 1999; OSSE Collaboration 1999). For the
quantum-gravity energy scale MQG to be estimated,
the signal delays in the expanding Universe calcu-
lated from the formulas that were derived in terms
of currently accepted cosmological models must
be associated with the experimentally determined
times ∆t. In this case, the possible appearance of
the time delay in the arrival of photons with various
energies attributable to the nature of the GRBs is
disregarded.

THE DELAY OF THE LIGHT PROPAGATING
IN THE EXPANDING UNIVERSE

AS A FUNCTION OF THE REDSHIFT
OF EXTRAGALACTIC OBJECTS

In the expanding Friedmann–Robertson–Walker
Universe with an arbitrary curvature of three-dimen-
sional space, the 0–0 component of the Einstein
equations is [see, e.g., the review article by Sahni and
Starobinsky 2000; Hagiwara et al. 2002]

ȧ2

a2
+

kc2

a2
= H2

0

[
Ωm

(a0

a

)3
(5)

+ ΩΛ

(a0

a

)3(w+1)
+ Ωr

(a0

a

)4
]

,

where a0 is the scale factor at present; a is the scale
factor at time t; and the parameter k = 1, 0,−1 for
the closed, flat, and open models of the Universe,
respectively. The parameters ΩΛ, Ωm, and Ωr are the
ratios of the vacuum, matter, and radiation energy
densities at present time t0 to the critical density

ρc =
3H2

0

8πG
.

The parameter −1 < w < 0 specifies the equation of
state p = wρ for quintessence (Sahni and Starobin-
sky 2000; Huterer and Turner 1999; Peebles and Ra-
tra 2002). The Hubble constant was taken from Wang
et al. (2001):

H0 = 100h km s−1 Mpc−1, h = 0.7 ± 0.1.

At moderately high redshifts z � 1000, we can
disregard the radiation energy density and write
Eq. (5) directly in terms of the redshift and the dimen-
sionless curvature of three-dimensional space ΩK

z =
a0

a
− 1, ΩK = − kc2

a2
0H

2
0

,

H2 ≡ ȧ2

a2
= H2

0

[
Ωm(1 + z)3 (6)

+ ΩΛ(1 + z)3(w+1) + ΩK(1 + z)2
]
.

The condition for the relationship between the
cosmological parameters follows from relations (6):

Ωm + ΩΛ + ΩK = 1. (7)

As we know from observations (Wang et al. 2001;
Efstatiou et al. 2001), the following constraints were
imposed on these parameters:

Ωn = 0.3 ± 0.1, ΩΛ = 0.7 ± 0.1,
ΩK = 0.0 ± 0.06.

Integrating (6) together with (3) yields an expres-
sion for the delay of the light from a source:

∆t =
1

H0

z+1∫
1

∆u

c
(8)

× dx

x[Ωmx3 + ΩΛx3(w+1) + ΩKx2]1/2
.

We now take into account the fact that the dispersion
of light in the linear approximation as it propagates in
curved spacetime is given by expressions (1) and (2)
and that the energy difference between the photons
changes as ∆E = ∆Eγ(1 + z), where ∆Eγ is the
photon energy difference at the detection time. The
ratio of the delay to the energy difference between the
detected photons then takes the form

∆t

∆Eγ
=

1
H0MQG

(9)

×
z+1∫
1

dx

[Ωmx3 + ΩΛx3(w+1) + ΩKx2]1/2
.

For w = −1 (a stable cosmic vacuum without
quintessence), the asymptotic expressions for ∆t
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 1. Theoretical dependences of ∆t/∆Eγ on redshift z
for various values of k = 0, ±1: (1) for the flat cosmolog-
ical model, (2) for the closed cosmological model, (3) for
the open cosmological model. The range of high redshifts
3 < z < 5.5 is shown separately in Fig. 2.

match the expressions from Ellis et al. (2000b) to
within constants of the order of unity:

∆t

∆Eγ
=

1

Ω1/2
Λ H0MQG

z (z → 0), (10)

∆t

∆Eγ
=

2

Ω1/2
m H0MQG

z̃ (z → ∞), (11)

where

z̃ = 1 − (1 + z)−1/2.

Formulas (10) and (11) correspond to the Hubble and
Friedmann expansion of the Universe, respectively.

Thus, formula (11) in the Einstein theory is ob-
tained only in the limit z → ∞. That is why the red-
shift dependence of the signal delay changes in the
exact theory compared to the result obtained in the
Friedmann flat model (Ellis et al. 2000b), which is
important in analyzing experimental data.

POSSIBILITIES FOR SELECTING
COSMOLOGICAL MODELS USING

OBSERVATIONAL DATA ON THE TIME
DELAY OF THE SIGNALS

FROM GAMMA-RAY BURST SOURCES

A stable cosmic vacuum (see, e.g., Saini et al.
2000; Peebles and Ratra 2002) is among the most
probable realizations of dark energy in our Universe.
Therefore, all our calculations were performed by dis-
regarding quintessence (w = −1). Figure 1 shows
the dependences of ∆t/∆Eγ on redshift z obtained
from formula (9) for three cosmological models. The
range of high redshifts 3 < z < 5.5 is shown sepa-
rately in Fig. 2. Here, curves 1, 2, and 3 correspond
to the flat, closed, and open cosmological models,
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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shift 3 < z < 5.5: (1) for the flat cosmological model at
cosmological parameters Ωm = 0.3, ΩΛ = 0.7, ΩK = 0;
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Fig. 3. Fits to the experimental data for GRBs from the
BATSE and OSSE catalogs.

respectively. In this case, the quantum-gravity energy
scale was fixed at a Planckian value of 1019 GeV. We
see from the figure that the models are distinguish-
able between themselves if the accuracy of measuring
∆t/∆Eγ is not lower than 10−6 s MeV−1.

Thus, the delays between gamma-ray photons
of various energies and the GRB redshifts must be
measured to choose a cosmological model (and to
determine the quantum-gravity energy scale). Based
on BATSE and OSSE data (Paciesas et al. 1999;
OSSE Collaboration 1999), Ellis et al. (2000b)
studied the time delay in the arrival of gamma-
ray photons with various energies for five GRBs
with measured redshifts: (1) GRB970508, z = 0.835;
(2) GRB971214, z = 3.14; (3) GRB980329, z = 5.0;
(4) GRB980703, z = 0.966; and (5) GRB990123,



68 VERTOGRADOVA et al.
z = 1.60. The time delay between the pulses recorded
in channel 1 (energy range 20–50 keV) and in
channel 3 (100–300 keV) was obtained for all five
GRBs. Two GRBs, GRB980329 and GRB990123,
were also detected by OSSE (1–5 MeV); the delay
between OSSE and BATSE channel 3 was obtained
for them. Figure 3 shows the values of ∆t/∆Eγ that
we determined from the data of Ellis et al. (2000b) for
five GRBs and two energy measuring channels as a
function of redshift z. It follows from comparison of
Figs. 1, 2, and 3 that the accuracy of the currently
available experimental data is too low to choose
between the cosmological models even if MQG is
known.

CONCLUSIONS

One might expect that the analysis of a more
representative statistical sample of GRB sources with
the simultaneous measurement of the time delays
between gamma-ray photons of various energies at
a known redshift will allow more accurate compar-
isons to be made between theory and experiment than
is currently possible. Clearly, the quantum-gravity
energy scale MQG and the cosmological parameters
cannot be simultaneously determined from the ex-
perimental data on the delay of gamma-ray emission
with various energies from GRBs with measured z.

Two variants of measurements are possible.

(1) The parameter MQG can be determined from
independent measurements, for example, from the
time delay between the gamma-ray photons of var-
ious energies from AGN outbursts. For Markar-
ian 421, such measurements were carried out at
the Whipple Observatory (Biller et al. 1999), which
allowed a constraint to be imposed on the quantum-
gravity energy scale:

MQG � 1016 GeV.

Given MQG, the cosmological parameters can then
be determined in principle from the z dependence of
∆t/∆Eγ .

(2) The cosmological parameters can be reliably
determined from the photometric distance DL for
supernovae (Starobinsky 1998; Huterer and Turner
1999; Nakamura and Chiba 1999; Saini et al. 2000;
Weller and Albrecht 2001; Kujat et al. 2001). The
proposed measurements then allow the quantum-
gravity energy scale MQG to be obtained. Note that
the possibility of using GRBs (and their optical af-
terglows) at high redshifts z � 5 to study the large-
scale structure of the early Universe is currently being
discussed in the literature (Lamb and Reichart 2000).
A lower limit on the quantum-gravity energy scale
can be estimated by using the experimental data from
Ellis et al. (2000) and formula (9):

MQG � 1015 GeV.

If the quantum-gravity energy scale is assumed
to be Mpl ∼ 1019 GeV, then the ratio ∆t/∆Eγ must
be measured with an accuracy of ∼10−6 s MeV−1

to study the delays of the signals from cosmological
GRBs.
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Abstract—We developed an efficient method for determining the surface-density distribution in a self-
gravitating disk with an isolated central point mass from a specified angular-velocity distribution in the
disk. An upper limit for the galactic-disk mass is shown to exist at a given black-hole mass. This limit
significantly depends on the choice of rotation curves. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: galactic disks, rotation curve, black holes.
INTRODUCTION

Supermassive black holes (BHs) in the nuclei of
galaxies and quasars can provide a high luminosity
of these objects through disk accretion (Lynden-
Bell 1969). At present, there are strong arguments
for this hypothesis for a number of disk galaxies
(Rees 1998; for a discussion of the observational data
suggesting the presence of compact nuclei in spiral
galaxies, see Rubin and Graham 1987, Sofue 1996,
Ratnam and Salucci, 2000). Therefore, determining
the BH mass and the disk density distribution from a
specified particle angular-velocity distribution in the
galactic disk is of considerable astrophysical interest.
The rotation curves are generally constructed from
Doppler measurements of the 21-cm, Hα, and other
lines (see Schmidt 1957; de Vaucouleurs 1959; Bur-
bidge et al. 1960; Rubin et al. 1980; Carignan and
Freeman 1985; Persic and Salucci, 1988; Sofue and
Rubin, 2001). Burbidge et al. (1960), Brandt (1960),
Brandt and Belton (1962), Toomre (1963), and Bin-
ney and Tremaine (1987) discussed the mathematical
problem of restoring the mass surface density from
the rotation curves in infinite disks (which model
disk galaxies) in connection with the problem of
dark mass. Mestel (1963) suggested a model of disk
galaxies as self-gravitating disks of finite radius with
a constant angular or linear velocity.

Another important physical aspect of the problem
(which is not discussed here) is related to the forma-
tion of the massive outer parts of accretion disks in
which the attraction to the disk, because of its mass,
is larger than or of the order of the vertical attractive
force from the BH. In this case, the outer part of

*E-mail: sibgatullin@fis.cinvestav.mx
1063-7737/03/2902-0070$24.00 c©
the accretion disk considerably swells and the disk
field plays a significant role in the thermal balance, in
the pressure distribution, etc. (Paczyński 1978; Ko-
zlowski et al. 1979; Kolykhalov and Sunyaev 1980).
The accretion-disk mass over several million years of
accretion can reach 0.001 of the BH mass through
the outflow of angular momentum into the outer part
of the accretion disk (Kolykhalov and Sunyaev 1980).

Here, we ignore the mass of the accretion disk
around the BH and take into account only the grav-
itational field of the galactic disk itself. In the latter,
we disregard the viscosity, pressure, and all deviations
from purely rotational motion, as was done in clas-
sical papers (Schmidt 1957; Burbidge et al. 1960;
Brandt 1960). Because of the low relative velocity
dispersion, we emphasize that the gravitational fields
of the dark matter and the bulge component affect the
rotation curves in the same way as does the luminous
galactic disk itself. Phenomenological expressions for
these potentials are given in the monograph of Binney
and Tremaine (1987, p. 42) and in Lovelace et al.
(1999), although some of the authors are skeptical
about the methods of separating these fields (Burstein
and Rubin, 1985; Persic and Salucci, 1988).

Here, our goal is to discuss a new problem in the
theory of the Newtonian potential for the gravitational
field of a disk that extends to a certain distance from
a central point mass.1 The rotation curve in the disk
is specified and the mass of the central object and the
surface density distribution in the disk are required to
be determined. The solution of the problem is repre-
sented as the two sequential quadratures (20), (21)

1Note that disks with an isolated central body cannot be
obtained by passing to the limit from confocal spheroidal
shells, as was done in previous studies.
2003 MAIK “Nauka/Interperiodica”
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and formulas (19), (23) for the BH and disk masses,
respectively. As an illustration of applying the gen-
eral formulas, we provide a broad family of angular-
velocity distributions and show a strong dependence
of the upper limit for the disk mass on the choice of a
family of rotation curves. Despite a number of strong
assumptions (disregarding the bulge component; ex-
trapolating the data on the circular motion of material
to the outer parts of galactic disks where there is no
emitting gas), our statement can be considered as a
possible approach to solving the problem of hidden
mass in galactic disks with a central black hole.

THE METHOD

In the axisymmetric case, the gravitational field of
a thin infinite disk with a central body of mass M can
be described by the Newtonian potential (in cylindri-
cal coordinates ρ and z)

φ(ρ, z) = 2G

π∫
0

∞∫
a

σ(ρ0)ρ0dρ0dϕ√
ρ2 + ρ2

0 − 2ρρ0 cosϕ + z2

(1)

+
GM

r
, r =

√
ρ2 + z2,

where G is the Newtonian gravitational constant. The
disk matter is distributed in the z = 0 plane outside
the circumference of radius a. As follows from the
condition of equilibrium between the gravitational
and centrifugal forces,

ω2ρ +
∂φ

∂ρ

∣∣∣∣
z→0

= 0 (2)

(here, we do not consider other forces such as the gas
and radiation pressures).

Substituting potential (1) into Eq. (2), we easily
obtain an integral equation with a singular kernel at
ρ = ρ0:

G

∞∫
a

σ(ρ0)K(ρ, ρ0)dρ0 = ω2ρ− GM

ρ2
, (3)

where
ρ

2ρ0
K(ρ, ρ0) =

sign(ρ− ρ0)E(τ)
ρ + ρ0

+
K(τ)
|ρ− ρ0|

, (4)

τ = − 4ρ0ρ

(ρ− ρ0)2
,

and E(τ) and K(τ) are the complete elliptic integrals.
Equation (3) is a complex singular non-Fredholm

integral equation. Even the problem of determining ω
from a specified surface density σ is difficult to solve
not only analytically but also numerically. At the same
ASTRONOMY LETTERS Vol. 29 No. 2 2003
time, from the standpoint of observational astron-
omy, it is much more important to solve the in-
verse problem, i.e., to determine the σ distribution
from a specified ω distribution. This is because σ is
difficult to observe in the galactic disk due to the
problem of hidden (dark) mass,2 whereas the rotation
curves provide information on the periods of rotation
around the galactic center (Schmidt 1957; Burbidge
et al. 1960; Binney and Tremaine 1987) through the
total gravitational field. In this statement (determin-
ing σ from ω), solving Eq. (3) appears hopeless even
by using numerical methods.

To circumvent the problem of solving this complex
equation, instead of (1), we chose φ in the form

φ(ρ, z) =
1

2π2

π∫
0

dθ

∞∫
a

ln[(s − ρ cos θ)2 (5)

+ z2]α(s)ds +
GM

r
,

where the real function α(s) has the meaning of
source density.

This potential satisfies the Laplace equation every-
where, except the z = 0 plane, with the disk sources
being distributed outside the circle ρ < a. A major ad-
vantage of this representation over formula (1) is the
possibility of using the powerful apparatus of analytic
functions on the complex plane in the problem under
consideration, because the first term on the right-
hand side of Eq. (5) can be represented as

∫ π
0 f(z +

iρ cos θ)dθ.

Let us show that

∂φ

∂z

∣∣∣∣
z→+0

=




0, 0 < ρ < a

1
π

ρ∫
a

α(s0)ds0√
ρ2 − s2

0

, a ≤ ρ.
(6)

Indeed, we have from (5)

∂φ

∂z
=

1
2π2

π∫
0

dθ

∞∫
a

(
−i

s− ρ cos θ − iz
(7)

+
i

s− ρ cos θ + iz

)
α(s)ds− GMz

r3
.

Letting z tend to +0 for ρ cos θ = s0 > a and using
the Sokhotskii–Plemel formula for Cauchy-type in-

2In practice, the density is generally restored from photo-
metric data (Freeman 1970; for a critical discussion of this
approach, see Burstein and Rubin 1985, Persic et al., 1996.)
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tegrals3

lim
Z→s0

∫
L

α(s)ds
s− Z

= �
∫
L

α(s)ds
s− Z

± πiα(s0), (8)

we obtain (in our case, Z = s0 ± iz)

∂φ

∂z

∣∣∣∣
z→+0

=




0, 0 < s0 < a

1
π

π∫
0

α(s0)dθ, s0 ≥ a.
(9)

Formula (6) immediately follows from (9).
Consider now the dependence of φ on ρ for ρ > a

and z → 0. We obtain from (8)

∂φ

∂ρ

∣∣∣∣
z→0

= −GM

ρ2
+

1
πρ




∞∫
a

α(s)ds (10)

− 1
π

∞∫
a

α(s)sds �
ρ∫

−ρ

dρ′

(s− ρ′)
√

ρ2 − ρ′2


 .

Using now the formula

1
π
�
ρ∫

−ρ

dρ′

(s− ρ′)
√

ρ2 − ρ′2
=




0, a < s < ρ
1√

s2 − ρ2
, s > ρ,

(11)

we rewrite Eq. (10) as
∂φ

∂ρ

∣∣∣∣
z→0

= −GM

ρ2
+

1
πρ

(12)

×




∞∫
a

α(s)ds−
∞∫

ρ

α(s)sds√
s2 − ρ2


 .

Let us show that if the disk mass is finite, then the
integral

∫∞
a α(s)ds becomes zero. Indeed, we have

for ρ ≥ a from (6)

−4πGσ(ρ) =
[
∂φ

∂z

]
= 2

∂φ

∂z

∣∣∣∣
z→+0

(13)

=
2
π

ρ∫
a

α(s0)ds0√
ρ2 − s2

0

;

hence, the disk mass is

Md = − 1
4πG

2π∫
0

dϕ

∞∫
a

[
∂φ

∂z

]
ρdρ = − 1

G

∞∫
a

m(ρ)dρ,

(14)

3Here, s0 is a point on a smooth contour L: s0 ∈ L; Z → +s0

means that the point Z approaches s0 from the left for the
positive tracing of curveL; the symbol

∫
− denotes a principal-

value integral.
m(ρ) =
1
π

ρ∫
a

α(s0)ρds0√
ρ2 − s2

0

.

For Md to be finite, it is necessary that

lim
ρ→∞

m(ρ) = 0 ⇒
∞∫

a

α(s)ds = 0. (15)

Substituting now (12) into the equilibrium condi-
tion (2) yields

ω2ρ− GM

ρ2
=

1
πρ

∞∫
ρ

α(s)sds√
s2 − ρ2

. (16)

After introducing the new variables t = a2/s2 and
x = a2/ρ2, the latter equation reduces to the Abelian
integral equation

a2

2π

x∫
0

α(t)dt
t3/2

√
x− t

=
a3ω2

x3/2
−GM, (17)

and the standard formula for the solution of this equa-
tion gives (see, e.g., Sneddon 1956, p. 318)

a2α(x)
2x3/2

=
d

dx

x∫
0

dt√
x− t

(
a3ω2

t3/2
−GM

)
. (18)

After substituting (18) into condition (15), we de-
rive a formula for the mass of the central body:

M =
a3

2G

1∫
0

ω2dt

t3/2
√

1 − t
; (19)

i.e., the function α(x) is expressed only in terms of the
known angular-velocity distribution:

α(x)
2ax3/2

=
d

dx

x∫
0

ω2dt
t3/2

√
x− t

(20)

− 1
2
√
x

1∫
0

ω2dt
t3/2

√
1 − t

.

The corresponding surface-density distribution
derived from (13) takes the form

−4πGσ(x) =
√
x

π

1∫
x

α(t)dt
t
√
t− x

. (21)
ASTRONOMY LETTERS Vol. 29 No. 2 2003



DENSITY DISTRIBUTION 73
It follows from (21) and (20) that the asymptotics
of the surface density near the inner disk edge ρ = a
is given by

−4π2Gσ(x) ≈ A
√

1 − x, A = a

1∫
0

(22)

×
[(

ω2

t3/2

)
,t

− 1
2

(
ω2

t3/2
− G(M + Md)

a3

)]
dt√
1 − t

.

As follows from formulas (22), in the presence of
a finite-mass central body, the surface density near
the inner disk edge has no finite limit for a → 0. The
inequality A ≤ 0 imposes a physical constraint on the
angular-velocity distribution.

Thus, we were able to express the density distribu-
tion in the disk only in terms of the presumably known
angular-velocity distribution by using two quadra-
tures. The latter can be easily calculated numerically
in the general case and analytically for a broad family
of special distributions.

The total disk mass, Md = 2π
∞∫
a
σρdρ, can be de-

termined from formulas (18) and (21):

GMd = lim
t→0

a2α(t)
2t

= lim
t→0

a3ω2

t3/2
−GM. (23)

To analytically illustrate our results, consider a
smooth angular-velocity distribution with Keplerian
asymptotics of the form4

ω2ρ3 = a0 + a2
a2

ρ2
+ a3

a3

ρ3
+ . . . + an

an

ρn
(24)

≡ a0 +
n∑

k=2

akt
k/2

(ak are constant coefficients).
Substituting this expression into (18) yields

α(x)
x3/2

=
2√
x

(a0 −GM) (25)

+
n∑

k=2

(k + 1)x(k−1)/2B

(
1
2
, 1 +

k

2

)
ak,

where B(x, y) is the Euler beta function.
We obtain a formula for the BH mass from condi-

tion (19):

2GM = 2a0 +
n∑

k=2

B

(
1
2
, 1 +

k

2

)
ak. (26)

4The coefficient a1 in (24) is equal to zero in view of Eqs. (17)
and (18).
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Substituting (25) into (21) gives

−4π2G
σ(x)√

x
= 4(a0 −GM)

√
1 − x (27)

+
n∑

k=2

(k + 1)B
(

1
2
, 1 +

k

2

)
akJk,

Jk ≡
1∫

x

tk/2dt√
t− x

.

Using integration by parts for the integrals Jk, we
can easily derive the recurrence formula

(k + 1)Jk = 2
√

1 − x + kxJk−2. (28)

Its use in (27) gives an explicit expression for the
surface density:

σ(x) = −x3/2
√

1 − x

2π2G

n∑
k=2

B

(
1
2
, 1 +

k

2

)
ak (29)

×
{

k

k − 1
+ x

k(k − 2)
(k − 1)(k − 3)

+ . . . + x[k/2]−1

× k(k − 2) . . . (k − 2[k/2] + 2)
(k − 1)(k − 3)(k − 2[k/2] + 1)

×
(

1 +
(k − 2[k/2])x√

1 − x
ln

1 +
√

1 − x√
x

)}
.

The inequality A ≤ 0 [(see (22)] imposes the fol-
lowing condition on the range parameters ak:

n∑
k=2

ak

[
k

2
B

(
1
2
,
k

2

)
− 1

2
B

(
1
2
, 1 +

k

2

)]
≤ 0. (30)

If the function ω2ρ3 can be represented as a
polynomial in inverse powers of ρ2, a2k+1 = 0, k =
1, 2, . . . , N , then the surface density is given by

σ(x) =
x3/2

√
1 − x

π2a2G

N∑
s=1

βsx
s−1, (31)

βs =
N∑

k=s

s∑
m=0

× 2k(k!)2(−1)m+1a2k

(2k − 1)!!m!(k − s)!(s−m)!(2k + 2m− 2s + 1)
.

EXAMPLES

(А) Consider the case where the rotation curves
belong to the family of curves with Keplerian asymp-
totics of the form
ω2ρ3 = GM + GMd(1 + b1x + b2x

2 + b3x
3), (32)

ai = GMdb2i, x = a2/ρ2.
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Fig. 1. The domain of positive σ(ρ) on the (b2, b3) plane.

It follows from formula (26) that

b1 = −3
2
− 4

5
b2 −

24
35

b3. (33)

Using (33), we obtain the corresponding sought-
for surface-density distribution from (31):

σ(ρ) =
aMd

√
1 − a2/ρ2

ρ3

[
2 +

16
45

b2 (34)

+
64
175

b3 −
(

64
45

b2 +
128
175

b3

)
x− 256

175
b3x

2

]
.

Formulas (32)–(34) describe the two-parameter
family of angular-velocity distributions and of the
corresponding surface-density distributions. Figure 1
shows the domain D on the (b2, b3) plane in which
the right-hand side of (34) is positive and, hence,
formula (34) has a physical meaning. The bound-
ary of domain D consists of the following: (i) seg-
ments AB and AC tangent to the ellipse at points B

and C (their equations are 1 +
8
45

b2 +
32
175

b3 = 0, 1−
8
15

b2 −
32
35

b3 = 0);5 (ii) the part of the ellipse between

the points of contact whose equation can be obtained
by setting the discriminant of the quadratic trinomial
in the parentheses of the right-hand side of (34) equal
to zero.

Denote the minimum value of the cubic polyno-
mial f(x) by µ(b2, b3):

f(x) ≡ 1 −
(

3
2

+
4
5
b2 +

24
35

b3

)
x + b2x

2 + b3x
3

(35)

5The inequality A ≤ 0 is equivalent to the condition 1 −
8

15
b2 −

32

35
b3 ≥ 0.
 

8

4

0
–10 0 10 20

 

b

 

2

 

M

 

dm
ax

 

/

 

M

 

9

1

0

–1

–12
–14

–17

Fig. 2. Mdmax/M versus b2 for various fixed b3 (b3 =
−21,−17,−14,−12, . . . ,−1, 0, 1, . . . , 9).

on segment (0, 1]. The maximum possible disk mass
can then be calculated by using the condition that the
right-hand side of (32) be nonnegative:

Mdmax(b2, b3) = −M/µ(b2, b3). (36)

The polynomial f(x) can take on its minimum
value either inside interval (0, 1) or at its bound-
ary x = 1. In Fig. 1, the dashed line separates do-
main D into two parts, D1 and D2. Inside D1, in
which f(1) is the minimum value of f(x) on inter-
val (0, 1), the function µ(b2, b3) has a simple form:

µ = −1
2

+
1
5
b2 +

11
35

b3.

In Fig. 2, Mdmax is plotted against b2 for fixed b3.
In this case, the points (b2, b3) belong to D. It fol-
lows from our analysis that the maximum possi-
ble disk mass can reach 9M . The more complex
is the angular-velocity distribution in the disk [i.e.,
the larger is n in polynomial (31)], the more mas-
sive can be the disk in principle: the maximum disk
mass is 5M for the one-parameter family of angular-
velocity distributions and increases to 9M for the
two-parameter family.

Consider three special cases of distribution (32).

(1) The simplest special case, b2 = b3 = 0, was
found by Lemos and Letelier (1994).6 In this case,

ω2ρ3 = GM + GMd

(
1 − 3

2
a2

ρ2

)
, (37)

σ(ρ) =
2aMd

√
ρ2 − a2

π2ρ4
.

It follows from (35) and (36) that the disk mass
cannot exceed two masses of the central body.

6See Semerák and Z̆ac̆ek (2000) for analysis of the corre-
sponding gravitational potential.
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(2) The special case b2 = 15/8, b3 = 0 corre-
sponds to the angular-velocity and surface-density
distributions

ω2ρ3 = GM + GMd

(
1 − 3

a2

ρ2
+

15
8
a4

ρ4

)
; (38)

σ(ρ) =
8aMd(ρ2 − a2)3/2

3π2ρ6
,

the disk mass cannot exceed 5M .
(3) Choosing b2 = 45/8 and b3 = −35/16 gives

ω2ρ3 = GM + GMd

(
1 − 9

2
a2

ρ2
+

45
8
a4

ρ4
− 35

16
a6

ρ6

)
,

(39)

σ(ρ) =
16aMd

5π2ρ3

(
1 − a2

ρ2

)5/2

,

and the disk mass cannot be larger than 6.69M .
(B) To show that the galactic-disk mass can be

arbitrarily large compared to the central BH mass,
consider the rotation curves7

ω2(ρ2 + c2)3/2 = G(M + Md), c = const. (40)

In this case, Eq. (23) holds automatically. Denote
the parameter c2/a2 by b.

Calculating α(x) from formula (20), we obtain

α(x)
2ax3/2

= −b(−1 + (3 + b) + bx2)√
x(1 + b)(bx + 1)2

G(M + Md)
a3

.

(41)

Substituting expression (41) into (21) yields a for-
mula for the surface-density distribution:

σ(x) =
(M + Md)

√
bx3

π2a2
(42)

×
( √

b(1−x)
(1+ b)(1+ bx)

+
arctan

√
b(1−x)/(1+ bx)

(1+ bx)3/2

)
.

An unexpectedly simple formula for the disk mass
follows from formula (19):

Md = bM. (43)

The parameter b in formulas (41)–(43) can be
an arbitrary positive number. Therefore, the galactic-
disk mass (if the linear velocity V = ρω reaches its
maximum at distances much larger than the accre-
tion part of the disk, b � 1) can exceed the BH mass
by many times. For a → 0, the variable x also tends

7The rotation curves (40) were first considered by Kyz’min
(1956); they belong to the family of curves with Keplerian
asymptotics for ρ → ∞ proposed by Brandt (1960) for in-
finite disks without a central black hole as a special case.
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to zero, while b tends to infinity. It follows from for-
mula (43) that M → 0; the Toomre–Kuzmin result
for the surface-density distribution that corresponds
to the rotation curve (40) follows from formula (42):

σ(ρ) =
cMd

2π(ρ2 + c2)3/2
. (44)

CONCLUSIONS

Thus, we were able to solve the problem of deter-
mining the surface density in massive galactic disks
with an isolated central black hole from specified rota-
tion curves. The problem was reduced to determining
the two sequential quadratures (20) and (21), which
can be easily calculated numerically in the most gen-
eral case of smooth angular-velocity distributions.
We also showed how the masses of the central body
and the galactic disk can be calculated if the rotation
curve is known.

Analysis of our formulas leads us to the following
two general conclusions:

(1) In each case, the mass of the galactic disk
around the central body must be smaller than a cer-
tain upper limit, which depends on the concentration
of matter near the inner disk boundary. The disk mass
strongly depends on the shape of the rotation curve
and can in principle exceed the BH mass by many
times.

(2) For an arbitrary nondegenerate smooth angu-
lar-velocity distribution in the disk, the surface
density at the inner boundary tends to zero as√

1 − a2ρ−2. This corresponds to a parabolic disk-
thickness profile for a finite volume density at the inner
boundary. At infinity, the surface density decreases
as ρ−3.

In conclusion, note that the method developed
here is not restricted only to the case of infinite mas-
sive disks with an attractive central body but it also
allows finite disks and ring systems to be considered.
The latter problems are being analyzed and developed
and will become the subject of future publications.
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of Star Formation in the Galaxy IC 1613
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Abstract—We carried out detailed kinematic studies of the complex of multiple H I and H II shells that
represent the only region of ongoing star formation in the dwarf irregular galaxy IC 1613. We investigated
the ionized-gas kinematics by using Fabry–Perot Hα observations with the 6-m Special Astrophysical
Observatory telescope and the neutral-gas kinematics by using VLA 21-cm radio observations. We
identified three extended (300–350 pc) neutral shells with which the brightest H II shells in the complex of
star formation are associated. The neutral-gas kinematics in the complex has been studied for the first time
and the H I shells were found to expand at a velocity of 15–18 km s−1. We constructed velocity ellipses for
all H II shells in the complex and refined (increased) the expansion velocities of most of them. The nature of
the interacting ionized and neutral shells is discussed. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: galaxy IC 1613, star formation, gas kinematics.
1. INTRODUCTION

The giant complex of multiple ionized shells
(Meaburn et al. 1988) in the northeastern sector of
IС 1613 is the most prominent structure in narrow-
band images of this Local-Group dwarf irregular
galaxy located at a distance of 725–730 kpc (Freed-
man 1988a, 1988b; Dolphin et al. 2001) in the Hα,
[O III], and [S II] lines.

Most of the bright H II regions (Sandage 1971;
Lequeux et al. 1987; Hodge et al. 1990; Price et al.
1990; Hunter et al. 1993; Valdez-Gutierrez et al.
2001) and the only known supernova remnant in
the galaxy [Lozinskaya et al. (1998) and references
therein] belong to this complex.

The stellar population of the complex is repre-
sented by some twenty young stellar associations
and clusters (Hodge 1978; Georgiev et al. 1999; and
references therein).

Thismultishell complex and the rich stellar group-
ing represent the only site of ongoing star formation
in the galaxy. This region of violent star formation in
IC 1613 can probably be considered as a very young
and small superassociation (Lozinskaya 2003).

Recent 21-cm radio observations of the complex
have shown that extended neutral shells (supershells
in standard terminology) are associated with multiple

*E-mail: lozinsk@sai.msu.ru
1063-7737/03/2902-0077$24.00 c©
ionized shells (Lozinskaya et al. 2001, 2002; Lozin-
skaya 2002).

The ionized-gas velocities in the region were
first measured by Meaburn et al. (1988); five spec-
trograms for the bright part of the complex with
poor spatial coverage were used to determine the
characteristic expansion velocities of the H II shells,
∼30 km s−1. Valdez-Gutierrez et al. (2001) con-
structed the ionized-gas radial-velocity field in the
Hα and [S II] lines and estimated the shell expansion
velocities from the splitting of the line profile inte-
grated over each of the objects.

The H I and H II shells close up and partially
overlap in the plane of the sky. If their sizes along the
line of sight and in the plane of the sky are assumed
to be comparable, then they can be assumed to be in
physical contact with one another.1

Deep narrow-band Hα images revealed a chain of
bright compact emission-line objects at the boundary
of the two closing shells in the complex. Spectro-
scopic observations show that the compact objects
are early-type giants and supergiants (Lozinskaya

1The galaxy is inclined at an angle of 30◦ to the plane of
the sky and the gaseous-disk thickness 500–700 pc, as
estimated by Afanasiev et al. (2000), is comparable to the
size of themultishell complex. Therefore, a chance projection
of physically unrelated shells located at different distances is
unlikely.
2003 MAIK “Nauka/Interperiodica”
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Table 1. A log of IFP observations for IC 1613

Date of observation IFP type Texp, s Seeing

Nov. 1, 2000 IFP235 32 × 240 2′′
.0

Sep. 12, 2001 IFP501 36 × 200 1′′
.8

et al. 2002). The characteristic ionized- and neutral-
gas morphology suggests that the H I and H II shells
physically interact in the region of the stellar chain
(see also Section 3).

Thus, the complex of star formation shows ev-
idence of the possible collision between expanding
ionized and neutral shells, the interaction of ion-
ized shells with the surrounding H I shells, and the
like. This evidence suggests that the birth of new-
generation stars triggered by shell collisions is proba-
ble here (Chernin and Lozinskaya 2003). That is why
a detailed study of the structure and kinematics of the
ionized and neutral gas in the multishell complex is of
current interest.

The neutral-gas kinematics in the complex of star
formation has not yet been investigated.

Our goal is to study in detail the kinematics of the
neutral and ionized gas components in the shells that
constitute the complex of star formation with high
spatial and spectral resolutions.

To study the kinematics of the ionized shells, we
carried out Hα observations with a scanning Fabry–
Perot interferometer attached to the 6-m Special As-
trophysical Observatory (SAO) telescope. The kine-
matics of the neutral shells was studied by using VLA
21-cm radio observations.

The techniques for optical and radio observations
and for data reduction are described in Section 2.
In Section 3, we use our ionized- and neutral-gas
observations to analyze the overall structure of the
multishell complex in the plane of the sky. The results
of our kinematic study for the H I and H II shells
in the complex are presented in Sections 4 and 5,
respectively. Our results and conclusions regarding
the nature of the multishell complex that follow from
them are discussed in Section 6.

2. INTERFEROMETRIC Hα AND 21 cm
OBSERVATIONS

Fabry–Perot Observations with the 6-m SAO
Telescope and Data Reduction

Interferometric Hα observations were carried out
at the prime focus of the 6-m SAO telescope using
a scanning Fabry–Perot interferometer (IFP). The
interferometer was placed inside the SCORPIO focal
reducer, so the equivalent focal ratio was (F/2.9).
A brief description of the focal reducer is given
on the Internet (http://www.sao.ru/∼moisav/scor-
pio/scorpio.html); the SCORРIO capabilities in IFP
observations were also described by Moiseev (2002).
The detector was a TK1024 1024 × 1024-pixel CCD
array. The observations were performed with 2 × 2-
pixel hardware averaging to reduce the readout time,
so 512 × 512-pixel images were obtained in each
spectral channel. The field of view was 4′

.8 for a
scale of 0′′

.56 per pixel. An interference filter with
FWHM = 15 Å centered on the Hα line was used
for premonochromatization.

A log of IFP observations is given in Table 1. For
our observations, we used two different Queensgate
ET-50 interferometers operating in the 235th and
501st orders of interference at the Hα wavelength
(designated in Table 1 as IFP235 and IFP501, re-
spectively). IFP235 provided a spectral resolution of
FWHM ≈ 2.5 Å near the Hα line (or ∼110 km s−1).
The separation between neighboring orders of in-
terference, ∆λ = 28 Å, corresponded to a range of
∼1270 km s−1 free from order overlapping. The spec-
tral resolution of IFP501was∼0.8 Å (or∼40 km s−1)
for a range of ∆λ = 13 Å (or ∼590 km s−1) free from
order overlapping.

During the exposure, we sequentially took inter-
ferograms of the object for various IFP plate spacings.
Therefore, the number of spectral channels was 32
and 36 and the size of a single channel was δλ ≈
0.87 Å (∼40 km s−1) and δλ ≈ 0.36 Å (∼16 km s−1)
for IFP235 and IFP501, respectively.

We reduced our interferometric observations by
using the software developed at the SAO (Moi-
seev 2002). After the primary data reduction, the
subtraction of night-sky lines, and wavelength cal-
ibration, the observational material represents “da-
ta cubes” in which each point in the 512 × 512-
pixel field contains a 32-channel or 36-channel
spectrum. We performed optimal data filtering—
Gaussian smoothing over the spectral coordinate
with FWHM = 1.5 channels and spatial smoothing
by a two-dimensional Gaussian with FWHM = 2–3
pixels—by using the ADHOC software package.2

The accuracy of the wavelength calibration using
the calibration-lamp line was less than 3 km s−1.
Our radial-velocity measurements of the night-sky
λ6553.617 Å line revealed a systematic shift when
measuring the absolute values of the radial veloci-
ties: −8 ± 3 km s−1 for IFP501 and 15 ± 8 km s−1

2The ADHOC software package was developed by J. Boules-
tex (Marseilles Observatory) and is publicly available in the
Internet.
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for IFP235. It should be noted, however, that these
values were most likely overestimated, because the
sky-line intensity varied during the scanning time.

The bulk of the observational data used here were
obtained with IFP501, which provided a higher spec-
tral resolution. Only when analyzing the observa-
tional data for the supernova remnant, where the
weak line wings were observed at velocities outside
the range free from order overlapping for IFP501, did
we additionally use observations with IFP235.

Observations in the 21-cm Line and Data Analysis

Based on VLA 21-cm observations, we mapped
theH I distribution with a high angular resolution and
studied the neutral-gas kinematics in an extended
region of the galaxy that included the complex of star
formation. An application for the project to study the
neutral-gas structure and kinematics in IC 1613 was
made by E. Wilcots; the first results were published
by Lozinskaya et al. (2001).

The data given in Sections 3 and 4 were obtained
by combining VLA observations in configurations B,
C, and D; the width of a single channel in radial
velocity was 2.57 km s−1. We smoothed the data with
theHunning function. The data were calibrated by the
standard method and transformed into maps using
the AIPS software package.

The reduced data are presented in the form of a
data cube with an angular resolution of 7′′

.4 × 7′′
.0,

which corresponds to a linear resolution of∼23 pc.
To map the integrated 21-cm line intensity dis-

tribution, we summed only 40 of the 127 possible
spectral channels, because no galactic line emission
was detected in the remaining channels.

3. THE OVERALL STRUCTURE
OF THE COMPLEX OF STAR FORMATION

IN THE PLANE OF THE SKY

Figure 1а shows the monochromatic Hα image
of the multishell complex obtained by integrating the
emission over all spectral channels (in the velocity
range from −2 to −584 km s−1) using our interfer-
ometric observations with IFP501. The arrows indi-
cate the objects discussed in Section 5: the chain of
early-type giants and supergiants mentioned above,
the only Of star in the galaxy identified by Lozinskaya
et al. (2002), the only known supernova remnant—
the nebula S8 (Sandage 1971), and the brightH II re-
gion no. 40a, b from the list by Hodge et al. (1990).
Also shown in the figure are the ionized-shell num-
bers from the list by Valdez-Gutierrez et al. (2001).
(Below, we use the notation adopted in this paper for
uniformity.)
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All of the brightest ionized shells in IC 1613
are concentrated in the complex of star formation
(Valdez-Gutierrez et al. 2001; Lozinskaya et al.
2002). In Fig. 1a, these brightest regions are over-
exposed to show the faintest H II shells. The faint
filamentary structures in shells R6, R7, R8, and R3
are clearly seen in the figure; we also managed to
detect weak emission from thin filaments in several
other regions of the complex.

The chain of bright early-type stars is located at
the bright boundary of the ionized shell R1 adjacent to
shell R2. This region falls within square N27 in Fig. 3
from Valdez-Gutierrez et al. (2001) and includes the
nebulae S10 and S13, according to the classification
of Sandage (1971). Association no. 17 from the list by
Hodge (1978) [its eastern part is designated as no. 25
in the list by Georgiev et al. (1999)] also lies here.

Our 21-cm H I observations in IC 1613 with a
high angular resolution allow us to compare the H I
and H II distributions in the complex of star forma-
tion. The results obtained from these observations
are presented in Figs. 1b and 2a. Figure 1b shows
the 21-cm image of the northwestern galactic sector
obtained by integrating the emission over 40 channels
in the velocity range from –279 to –178 km s−1

(indicated by shades of gray) superimposed on the
monochromatic Hα image (indicated by isophotes).
The latter is represented only by the brightest regions.
The H I intensity distribution in the entire galaxy is
shown in Fig. 2a (see Section 4).

Even the first observations by Lake and Skill-
man (1989) with an angular resolution of 60′′ × 60′′
showed that the complex of ionized shells is localized
in the region of the brightest spot on the H I map of
IC 1613. The multishell structure of this bright spot
is clearly seen in Figs. 1b and 2a: the three most
prominent H I shells in the galaxy surround the chain
of bright ionized shells. Below, these bright neutral
shells are called I, II, and III for definiteness.

The central coordinates, sizes, and expansion ve-
locities of the shells estimated in Section 4 are listed
in Table 2. The third column gives the shell sizes
along two axes in arcsec (upper row) and the mean
radius in pc determined by them (lower row).

The shells identified in the star-forming region are
300–500 pc in size. These sizes fall within the region
of the peak in the size distribution of giant H I andH II
shells in the LMC and SMC (seeMeaburn 1980; Kim
et al. 1999; Staveley-Smith et al. 1997).

In addition to these three brightest and most
prominent H I shells, we identified much larger
ring-shaped and arc-shaped structures in IC 1613,
with sizes up to 1–1.5 kpc, supergiant shells in the
terminology of Meaburn (1980). These are clearly
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Fig. 1. (а) The monochromatic Hα image of the multishell complex obtained with a Fabry–Perot interferometer on the 6-m
SAO telescope. The ionized shells R1–R9 and R13 from the list of Valdez-Guterrez et al. (2001) studied here are labeled.
The arrows indicate: a—the chain of early-type supergiants at the boundary of shell R1; b—the only Of-type star identified
by Lozinskaya et al. (2002); c—the only supernova remnant in IC 1613; d—object no. 40a, b from the list of H II regions by
Hodge et al. (1990). (b) The H I intensity distribution (indicated by shades of gray) superimposed on the monochromatic Hα
image of the region (the isophotes corresponding to the brightest regions in Fig. 1a are shown). The Roman numericals I, II,
and III mark the three neutral shells investigated here. (c) The boundaries of the OB associations identified by Georgiev et al.
(1999) superimposed on the intensity distributions in the 21-cm line (indicated by shades of light gray) and in the Hα line
(indicated by shades of dark gray) .
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Table 2. Parameters of the H I shells in the complex of star formation

Shell Central
coordinates (2000)

Size, arcsec
R, pc V (exp), km s−1 Age,

Myr

I 1h5m10s ∼97

2◦9′45′′ 172

II 1h5m4s.5 73 × 81 12–17 5.6

2◦9′19′′ 136

III 1h4m58s 73 × 97 16–18 5.3

2◦9′32′′ 150
seen in the 21-cm image of the entire galaxy shown
in Fig. 2a (see also Section 6).

As follows fromFigs. 1a and 1b, a one-to-one cor-
respondence between the neutral and ionized struc-
tures in size and localization is observed only in one
case: the ionized shell R4 fits well into its surrounding
neutral shell II. The remaining bright H II shells
are smaller than the neutral shells and are located
irregularly: the ionized shell R1 lies within the neutral
shell I near its western boundary rather than in the
central cavity; R6 lies within shell III near its eastern
boundary; the ionized shells R2 andR5 fall on the bars
between shells I and II and between shells II and III,
respectively. As was shown by Kim et al. (1999),
the giant H I shells in the LMC are also interrelated
differently with H II shells and supershells, which
reflects the different evolutionary stages of star for-
mation in the region. This issue is discussed in more
detail in Section 6.

The boundary of the ionized shell R1 with the
chain of blue giants and supergiants coincides with
the thinnest arc-shaped H I bar between the two
H I shell structures. The characteristic morphology of
the ionized and neutral shells suggests that they are
in physical contact: the thin neutral arc adjoins the
ionized shell in the region of the stellar chain from the
outside and the two shells in this region have the same
radius of curvature.

The stellar component of the complex represented
by some thirty stellar associations and clusters is
superimposed on theHα and 21 cm images in Fig. 1c.
The figure shows the association boundaries that
correspond to a new breakdown of the stellar popula-
tion into separate groups in Georgiev et al. (1999).
Here, a number of associations from the list by
Hodge (1978) were split into several smaller groups.

4. NEUTRAL-GAS KINEMATICS
IN THE COMPLEX

The data cube that we constructed from the 21-cm
observations allows us to analyze the H I distribution
ASTRONOMY LETTERS Vol. 29 No. 2 2003
and kinematics in the entire galaxy. The kinematics
of the southeastern region of IC 1613 around a WO
star was studied previously (Lozinskaya et al. 2001).
Here, we consider in detail the neutral-gas kinemat-
ics in the complex of star formation for the first time.

Our 21-cm observations show that this complex
stands out as the dynamically most active region in
IC 1613. Velocities of internal neutral-gas motions
from −195 . . . − 200 to −250 . . . − 255 km s−1 are
observed in the region of the complex (∆RA =
1h2m20s–1h2m40s,∆D = 1◦52′–1◦55′) against the
background of a smooth systematic variation in the
mean H I velocity along the galaxy that was pointed
out by Lake and Skillman (1989).

In searching for the possible expansion of the H I
shells in the complex, we constructed position–radial
velocity diagrams in several bands:

1—in the band that crosses the pair of shells I
and II through their centers;

2—in the band that crosses the pair of shells II
and III in the same way;

3—in the band that passes through the stellar
chain at the boundary of shells I and II;

4, 5, and 6—in the bands that cross each of the
three shells I, II, and III, respectively, in the directions
perpendicular to scans 1 and 2;

7—in the band that includes scans 15 and 16 in
the Hα line (see Section 5) and that passes through
the only supernova remnant in IC 1613.

The directions of scans 1–7 on the H I map are
shown in Fig. 2a. The position–radial velocity di-
agrams constructed for these scans are shown in
Fig. 2b.

We chose the band width when scanning in such
a way that only the central shell region and the two
peripheral regions in the direction of each scan fell
within this width, which corresponded to 11 pixels or
33′′ in the sky.
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Fig. 2. (a) The localization of scans 1–7 shown in Fig. 2b on the H I map of the galaxy. The numbers are given at the beginning
of each scan. (b) The position–H I velocity diagrams for scans 1–7 (the velocity is heliocentric).
The mean H I velocity in the region of the complex
that was determined from the emission of “unaccel-
erated” gas detected on all scans 1–7 outside shells I,
II, and III discussed below is VHel = −230 ± 5 km s−1.
This value is in good agreement with the estimate
obtained by Lake and Skillman (1989) for this part of
the galaxy from low-angular-resolution observations.

Figure 2b shows the radial-velocity variation with
distance typical of an expanding shell at least for the
two objects denoted by II and III. The characteristic
arc-shaped pattern of velocity variation (half of the
“velocity ellipse”) is seen both on the scans along
the pairs of shells I–II and II–III and on the scans
that cross each of shells II and III in a perpendicular
direction (see Fig. 2b). Evidence of shell-II expan-
sion is seen on scan 1 (370–400 arcsec), scan 2
(180–230 acrsec), and scan 5 (130–170 arcsec).
Scan 2 (280–310 arcsec) and scan 6 (140–190 arc-
sec) exhibit shell-III expansion. In both cases, one
side of the expanding shell is clearly seen. The differ-
ence between the unaccelerated-gas velocities on the
periphery of shell II (from –225 to –230 km s−1) and
on its approaching side (from –240 to –242 km s−1)
gives an expansion velocity V (exp)∼ 12–17 km s−1.
For shell III, we find the expansion velocity from the
difference between the unaccelerated-gas velocities
on the periphery (from –228 to –230 km s−1) and
on the receding side (−212 km s−1) to be V (exp) ∼
16–18 km s−1. The neutral shell I exhibits no distinct
expansion.

The inferred expansion velocities of the two H I
shells in IC 1613 fall within the region of the peak in
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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the velocity distribution of neutral supershells in the
LMC (Kim et al. 1999).

The only supernova remnant in IC 1613 lies at the
outer boundary of the densest H I layer in the galaxy
that bounds shell II in the south (see Fig. 1). Another,
fainter neutral shell in which the supernova remnant
is located may adjoin the bright shell II in the south.
Scan 7 (120–170 arcsec) shows traces of expansion
of this fourth neutral shell. The supernova remnant
lies at the inner boundary of this shell (∼120 arcsec).
This scenario—a supernova explosion inside a cavity
surrounded by a dense shell and a collision of the ex-
panding remnant with the shell wall—was suggested
by Lozinskaya et al. (1998) to explain the peculiarity
of this remnant, which combines the properties of
young and old objects and which has high optical and
X-ray brightnesses.

The region at the boundary between shells I and II
where the chain of early-type giants and supergiants
is located exhibits high neutral-gas velocities. A
deficit of 21-cm brightness is observed in this region
on scan 3 (280–310 arcsec). This deficit stems from
the fact that emission from only the thin bar between
shells I and II is detected here when scanning.
However, this weak emission is observed over a wide
velocity range, from �−250 to �−210 km s−1 at
20–30% I(max).

Our expansion velocities and the corresponding
kinematic ages of the bright neutral shells in the
complex of star formation are given in Table 2.

5. IONIZED-GAS KINEMATICS
IN THE COMPLEX

To study in detail the kinematics of the ionized
shells using our Hα observations with IFP501, we
constructed position–radial velocity diagrams for
thirty scans, which cover the entire complex of star
formation almost uniformly. For each of the chosen
directions, we constructed two or three scans of
different widths: from 1 to 40 pixels (from 0.5 to 24′′).
Figure 3a shows the localization of some of these
scans. The width of scans 14 and 17 is 21 pixels or
12′′; the width of the remaining scans shown in Fig. 3
is 11 pixels or 6′′.

The mean velocity of the unshifted feature in the
H II emission line in the complex of star formation
is from –230 to –240 km s−1. We also observe a
smooth velocity variation in the complex between
−220 km s−1 in the southeast and−260 km s−1 in the
northwest, in agreement with the results of Valdez-
Gutierrez et al. (2001).

As was shown in Section 3, the elongated system
of the brightest ionized shells, including R1, R2, R4,
ASTRONOMY LETTERS Vol. 29 No. 2 2003
R5, and R6, is associated with the neutral shells I, II,
and III.

Two scans (v1 and v2) cross this chain of bright
shells in directions that roughly coincide with scans 1
and 2 over the neutral shells I–II and II–III, respec-
tively (see Section 4).

The two scans clearly show Hα splitting along the
entire length of the chain and reveal the characteris-
tic configuration of the velocity ellipse for individual
shells and, possibly, for the chain of bright shells as
a whole. The typical velocities are about −290 . . .
−300 km s−1 for the approaching sides of the elon-
gated system of bright shells and about from−190 . . .
−200 km s−1 for its receding sides. We successively
consider all the ionized shells of this system.

Shells R1 and R2 and the Chain of Stars at Their
Boundary

Shells R1 and R2 and the region at their boundary
where the chain of young stars is located were
scanned repeatedly, in different directions, and in
bands of different widths. All of the scans passing
through the central regions of these shells clearly
reveal the characteristic configuration of the velocity
ellipse related to their expansion.

The mean velocity of the unperturbed gas at the
eastern boundary of shell R1 is −240 km s−1. The
local velocity ellipses on scan v2 suggest that the
bright western part of shell R1 (45–55 arcsec) ex-
pands at a velocity of 50–60 km s−1 relative to this
unshifted feature: the velocity of the approaching side
is −290 km s−1. In shell R2 (55–80 arcsec), the
velocities of the bright approaching and faint receding
sides are from –280 to –300 and −170 km s−1,
respectively. On scan v1 that crosses the same region
in a different direction, we see a similar arc structure
in region R2 and individual clumps in region R1.

Several scans that cross the system of bright
shells in the directions perpendicular to v1 and v2
also clearly reveal an expansion of shells R1 and R2.
Scans 3a, 3b, and 4 clearly show that shell R1
expands at a velocity of 60–70 km s−1 (up to
100 km s−1 in its bright southern part). The bright re-
gions on the shell periphery exhibit the unshifted line
component at a velocity of from –230 to
–250 km s−1; the velocities of the two sides of the
expanding shell are −180 and −320 km s−1 (scan 3).
Scan 4 also shows that the bright southern part of
shell R1 expands faster than does its northern part:
the velocity of the approaching side is the same in the
entire shell, being about −300 km s−1; the velocity
of the receding side is −150 km s−1 in the south and
−180 km s−1 in the north. Scan 2 that crosses the
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fainter eastern half of shell R1 also reveals evidence
of its expansion. The unshifted features on the shell
periphery have a velocity of −240 km s−1, the bright
clump in the northern part is observed at a velocity of
−215 km s−1, and the faint approaching side has a
velocity of−300 km s−1.

Valdez-Gutierrez et al. (2001) identified two fea-
tures in the integrated line profile at velocities of−216
and −274 km s−1 in shell R1 and two features at
velocities of −244 and −147 km s−1 in shell R2. All
these values fall within the range determined by the
velocity ellipses for these two shells.

The region at the boundary between shells R1
and R2 that, in the 21-cm line, corresponds to the
thin bar between the neutral shells I and II, where the
chain of early-type stars is located, is represented by
scans 5 and 6d. Scan 6d exhibits a bright emission
feature in the Hα line at a velocity of about −270 . . .
−280 km s−1, which corresponds to the bright part
of shell R1 with the chain of stars, traces of stellar
continuum emission, and a weaker emission feature
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 3. (Contd.)
in the region of shell R2 at higher velocities, up to
−130 . . . − 150 km s−1. This entire region on scan 6d
(105–150 arcsec) widens toward the center, with the
dense clumps on the periphery and the gas in the
remote part (at 55–85 arcsec) emitting at a velocity
of from –240 to –250 km s−1. The observed picture
suggests an asymmetric gas expansion in shell R2 at
a velocity of about 30 km s−1 into a denser medium
and at a velocity of about 100–110 km s−1 into
a less dense medium. We associate this effect with
shell R2, because the boundary of the expanding
region on scan 6d coincides with the boundary of
this shell. Scan 5 also exhibits irregular motions of
the receding gaseous clumps up to velocities of from
ASTRONOMY LETTERS Vol. 29 No. 2 2003
–150 to –160 km s−1; these are probably related
to the local action of the wind from the chain stars.
The velocity of the near side of shell R2, which is
brighter and more regular, reaches from –280 to
–290 km s−1. Since the bright clumps on the periph-
ery of the velocity ellipse coincide with the boundaries
of shell R2, which is larger than shell R1 here, we
believe that the velocity ellipse on scans 6 and 5 also
reflects the expansion of shell R2.

Shell R4 and Its Possible Collision with Shell R2

R4 is the most extended shell in the chain of
bright shells and the only one that completely fits
into the surrounding neutral shell. Its central regions
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are characterized by weak emission. Scans R4, 9,
v1, v2, and 13r show a deficit of gas in the central
cavity and intense emission on the periphery at a
velocity of about −240 km s−1. The weak Hα emis-
sion features in the central cavity exhibit a blueshift
and a redshift relative to this velocity. Weak diffuse
emission is observed at velocities up to −200 km s−1

(scan R4, 40–55 arcsec; scan 9, 110–120 arcsec)
in the north of the cavity and up to −290 km s−1

(scan R4, 55–70 arcsec; scan 9, 120–130 arcsec) in
the south. The shell expansion velocity determined by
these features is∼45 km s−1.

The monochromatic Hα image shows a charac-
teristic lenticular structure at the boundary between
shells R2 and R4. This structure can be a manifes-
tation of the dense gaseous ring formed in the region
of head-on collision between these shells and oriented
almost edge-on to the observer. The formation of this
ring follows from three-dimensional numerical simu-
lations of the collision between two expanding shells
[see Chernin et al. (1995) and references therein].

In the region that corresponds to the eastern
boundary of shell R4 (scan 7, 95–115 arcsec), we
see no significant deviations from the mean ionized-
gas velocity of −240 km s−1 in the complex. The
inclined ring in the region of collision with shell R2
is observed as two bright unaccelerated clumps and
high-velocity motions between them (scan 7, 120
and 140 arcsec) and as a bright structure with high
velocities of the internal motions (scan 8, from 120
to 140 arcsec). The velocities of the faint features
between the bright clumps are at a maximum; they
reach −140 and −340 km s−1 at 7% I(max) on
scan 7a and −160 km s−1 at 10% I(max) on scan 8.

Shell R5

A characteristic arc structure (110–135 arcsec on
scan 10 and 150–175 arcsec on scan 10d) is observed
at the boundary between shells R4 and R5. This
structure may represent the half of the velocity ellipse
that corresponds to the receding side of shell R5. We
estimated the expansion velocity to be 40–50 km s−1.

Scan 11 (105–135 arcsec) also shows a sym-
metric expansion of shell R5 at a velocity of about
35–45 km s−1; the velocities of the two sides of the
shell are −220 and −310 km s−1.

A compact group of stars with the only Of star
identified in the galaxy (Lozinskaya et al. 2002) is lo-
cated on the periphery of shell R5. Scan 12 shows this
star in a region of 118 arcsec; the star is surrounded
by a bright compact H II region. Given the IFP501
instrumental profile, the line width in the H II region
at 0.5I(max) is 50 ± 5 km s−1.
Shell R13 and the H II Region no. 55 from the List
of Hodge et al. (1990)

Shell R13, which adjoins shell R4 in the north,
consists of two components: a diffuse shell and the
bright compact H II region no. 55 (Hodge et al.
1990). The bright H II region shows a mean velocity
of about −230 . . . − 240 km s−1 [in agreement with
the measurements of Valdez-Gutierrez et al. (2001)]
and stellar continuum at the center (scan 13r, position
85 arcsec). A group of stars may be located here, be-
cause area of the stellar continuum is larger than that
in other regions of the same scan. The line width in the
bright H II region reaches 57 km s−1 at 0.5I(max).

The diffuse shell R13 also exhibits the mean radial
velocity of from –230 to –240 km s−1 typical of the
entire complex. We found no clear evidence of shell-
R13 expansion.

Shells R6 and R8

According to our data, the expansion velocity of
shell R6 does not exceed 20 km s−1: the velocities of
the northern and southern shell boundaries (scan 14,
75 and 120 arcsec, respectively) and the velocity in the
central region (about 100 arcsec on the same scan)
are about−255 km s−1.

Shell R8 exhibits the characteristic arc-shaped
pattern of radial-velocity variation of the far side. The
velocity of the bright boundary regions (scan 14, 25
and 75 arcsec) is−255 km s−1 and the velocity of the
faint far side reaches −190 km s−1, which gives an
expansion velocity of about 65 km s−1. We detected
no emission from the even fainter near side.

The Bright H II Regions nos. 40а,b and 39 (Hodge
et al. 1990)

Valdez-Gutierrez et al. (2001) provided the fol-
lowing parameters averaged over the group of ob-
ject nos. 40а,b and 39: the velocity at the line
peak, −239 km s−1, and the velocity dispersion,
10.4 km s−1. We separately scanned the two bright
sources no. 40a (scan 16) and no. 40b (scan 15); both
also include the emission from the more extended
and fainter region no. 39. As follows from Fig. 3d,
the velocity at the peak of these three regions is
−240 km s−1. The H II region no. 39 is characterized
by a narrow Hα line with no wings with the FWHM
determined by the IFP501 instrumental profile along
the entire length. At the same time, both bright com-
pact H II regions nos. 40a and 40b (scans 16 and 15,
respectively) exhibit weak emission at 10% I(max) in
the velocity range from−310 to−175 km s−1.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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The Supernova Remnant

The bright nebula S8 (Sandage 1971), the super-
nova remnant, shows emission over the entire ve-
locity range from 0 to −600 km s−1 determined by
the IFP501 free spectral range (scans 15 and 16,
19–23 arcsec). The remnant emission is observed
with IFP235 at least in the velocity range from +200
to −600 km s−1 (scan 17). An interfering emission
emerges at higher velocities, +400 and −800 km s−1.
This emission is probably attributable to an improper
allowance for the night-sky 6554-Å line.

This result is in complete agreement with previous
observations of Lozinskaya et al. (1998) and Rosado
et al. (2001).

All of the ionized shells in the complex of star for-
mation for which we managed to reliably detect their
expansion based on the velocity ellipse are collected
in Table 3. For comparison, the fourth column of the
table gives the expansion velocities of the same shells
determined by Valdez-Gutierrez et al. (2001) from
line-profile splitting. Since the shell sizes were mea-
sured from our deep images, they differ slightly from
those of Valdez-Gutierrez et al. (2001). It should be
noted that, given the irregular shape of most shells,
the representation of the observed shells by regular
ellipses is arbitrary and subjective in nature.

In estimating the kinematic ages of the shells from
their radii and expansion velocities, we used the clas-
sical theory of wind-blown bubbles (t = 0.6 R/V ). In
addition to the age, the mean radius and expansion
velocity used for its estimation are given in parenthe-
ses (in the form R/V ) in the last column of the table.
The ages of shells R3 and R6 correspond to the data
from Valdez-Gutierrez et al. (2001).

6. DISCUSSION

The radial-velocity variations with distance from
the center of the ionized shells (velocity ellipses)
found here are generally in agreement with the
observations of Meaburn et al. (1988) and Valdez-
Gutierrez et al. (2001), but they give a clearer picture
of expansion. In the latter paper, the conclusions
regarding expansion were drawn from integrated line
profile splitting in the shells. Since bright peripheral
regions or individual bright clumps can give a sig-
nificant contribution when averaging over the shell
or over its separate fields, the expansion velocity
determined in this way can be underestimated. The
large brightness difference between the approaching
and receding sides of the shells can also cause the ex-
pansion velocity inferred from line splitting to be un-
derestimated. The constructed velocity ellipses allow
these difficulties to be circumvented. The expansion
velocity can be determined from the velocity ellipse by
ASTRONOMY LETTERS Vol. 29 No. 2 2003
Table 3. Parameters of the bright ionized shells in the
complex

Shell Size, pc Vexp,
km s−1

Vexp(V–G),
km s−1

Age, Myr

R1 188 × 138 60–75 29 0.7 (81/67)

R2 145 × 88 50–60 49 0.6 (58/55)

R3 258 × 209 30 1.9 (C–D)

R4 234 × 138 40–45 32 2.2 (93/42)

R5 113 × 113 30–50 38 0.8 (56/40)

R6 226 × 184 ≤20 25 2.0 (V–G)

R8 217 × 154 �65 26 1.7 (185/65)

taking into account the geometrical projection even if
only one shell side is observed, as in the case of R8.
Indeed, as we see from Table 3, our estimates of the
expansion velocity in most shells gave higher values
than those in Valdez-Gutierrez et al. (2001).

In several shells, we detected a distinct asymme-
try in their expansion: the approaching and receding
sides have different velocities.

On scans v1 and v2 crossing the entire chain of
the brightest ionized shells, we clearly see that all of
them generally have similar velocities but an irregular,
clumpy brightness distribution. This irregular bright-
ness distribution may have served as the basis for
the conclusion of Valdez-Gutierrez et al. (2001) that
shells R1 and R2 are at different distances, because
they are observed at different radial velocities. These
scans show that individual bright clumps on the two
sides of these shells actually have different velocities
but they all fall within our velocity ellipses. According
to our measurements, the approaching and reced-
ing sides of the two shells have similar velocities:
from –290 to –320 and from –170 to –190 km s−1,
as inferred from different scans in R1; from –280
to –300 and −170 km s−1 in R2. The far side is
brighter in R1 and the near side is brighter in R2. We
also noted that the southern part of shell R1 recedes
faster (V = −150 km s−1) than does its northern part
(V = −180 km s−1).

Taking into account the structure of R1 and R2
in different velocity ranges, we do not rule out the
possibility that these shells generally constitute a sin-
gle dumbbell-like structure formed on both sides of
a dense neutral-gas layer. However, this assumption
requires additional observational confirmation.

Valdez-Gutierrez et al. (2001) showed that the
the energy of the stellar wind from nearby ОВ asso-
ciations was enough for most of the ionized shells to
be formed. The rapidly expanding shells R1 and R2
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constitute an exception. We further increased the ex-
pansion velocity of these two objects (see Table. 3)
but simultaneously found additional, most intense
sources of the stellar wind at their boundary—early-
type supergiants and giants (Lozinskaya et al. 2002),
which removes the problem of the mechanical energy
sources.

Recall also that the two mentioned shells R1
and R2 exhibit an intense emission feature in the [S II]
6717/6731 Å lines (see Valdez-Gutierrez et al. 2001;
Lozinskaya et al. 2002), typical of the radiation of the
shock waves generated by a supernova explosion.

The neutral shells produced by the combined effect
of the wind and supernovae in ОВ associations are
being widely searched for in nearby galaxies (see,
e.g., the review article by Brinks 1994; Kim et al.
1999; Oey et al. 2002 and references therein). In
most cases, the 21-cm observations either do not
reveal any distinct neutral-gas shell structure around
ОВ associations at all or do not allow the neutral-
gas structures to be unambiguously associated with
H II shells. The studies of neutral gas in the vicinity
of the three well-known ionized supershells in the
LMC carried out by Oey et al. (2002) serve as a clear
example.

The complex of star formation in IC 1613 consti-
tutes a lucky exception. We do not know any other
examples of such a distinct interaction between mul-
tiple ionized and neutral shells that is observed in the
complex under discussion.

Here, we have studied the kinematics of the iden-
tified neutral shells I, II, and III for the first time.
We have also detected expansion and measured the
expansion velocity for the first time.

As was mentioned in Section 3, the derived radii
and expansion velocities of the H I shells in IC 1613
fall within the region of the peak in the distribution
of neutral shells in the LMC and SMC in size and
expansion velocity. The age of the H I shells in the
complex of star formation in IC 1613 (5.3–5.5Myr) is
also in complete agreement with the peaks in the age
distributions of H I supershells in the LMC (4.9 Myr;
Kim et al. 1999) and in the SMC (5.4 Myr; Staveley-
Smith et al. (1997).

We estimated the kinematic ages of the neutral
shells II and III in Table 2 from their mean radii and
expansion velocities by using the classical theory of
a constant stellar wind in a homogeneous medium.
This assumes that the mechanical luminosity of the
wind from the association stars responsible for the
shell formation does not vary with time and that all
stars were formed simultaneously. Of course, both as-
sumptions are not valid, although they are universally
accepted. Allowance for sequential star formation and
for variations in the mass loss rate during the evo-
lution of a rich association as well as for the clumpy
structure of the interstellar medium can change the
age estimate by a factor of 1.5 to 3 (see, e.g., Shull
and Saken 1995; Oey et al. 1996; Silich et al. 1996;
Silich and Franco 1999; and references therein). Nev-
ertheless, we may conclude that the derived ages of
shells II (5.6 Myr) and III (5.3 Myr) agree with the
ages of the stellar associations in the complex of
star formation. Shell I, whose expansion we failed to
detect, is similar in size to shells II and III and is most
likely similar in age.

The three-color photometry of stars in IC 1613
performed by Hodge et al. (1991) gave a minimum
age of the stars in their field no. 1, where the neutral
shells that we identified are located, equal to 5 Myr.
This field includes associations nos. 10, 12, 13, 14,
15, and 17 from the list by Hodge (1978), whose
mean and minimum ages were estimated by Hodge
et al. (1991) to be 17 and 3 Myr, respectively. Recent
estimates by Georgiev et al. (1999) yielded similar
results: the age of the youngest nearby associations
nos. 10 and 14 is about 5Myr and the age of the oldest
associations (nos. 12, 19, and 19) reaches 20 Myr.

The mechanical wind luminosity that is required
for the neutral shells observed in the complex to be
formed and that is determined by using the classical
model (with all of the reservations made above) is 5 ×
1038, 5× 1037, and 5× 1036 erg s−1 in a medium with
an initial density of 10, 1, and 0.1 cm−3, respectively.
These values seem reasonable enough for the stars
found in the region—the sources of a strong stellar
wind (see Valdez-Gutierrez et al. 2001; Lozinskaya
et al. 2002). It should be emphasized, however, that
the spectra of bright stars in the region are required
to adequately discuss the sources of mechanical en-
ergy. Lozinskaya et al. (2002) obtained the spectra
of stars only in three small fields of the star-forming
complex and detected stars with strong winds, blue
supergiants and Of stars, in two of them.

Despite the “suitable” age and input of mechanical
energy, we do not consider it possible to unequivo-
cally associate the formation of neutral shells with the
action of the stellar wind from the OB associations
identified by Georgiev et al. (1999) for the following
reasons.

First, most of the H I supershells identified in
the LMC, the SMC, and other Local-Group galax-
ies are several-fold younger than the corresponding
OB associations (see, e.g., Kim et al. 1999; Staveley-
Smith et al. 1997, and references therein). Therefore,
it may well be that the H I shells that we detected in
IC 1613 were also formed by an older population that
the groups of young stars shown in Fig. 1c.

As follows from Table 3 and from similar estimates
by Valdez-Gutierrez et al. (2001), the ages of most of
the ionized shells in the complex lie within the range
from 0.6 to 2.2 Myr. These ages are much younger
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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than the ages of the OB associations that could be
responsible for their formation. Such a situation is
observed in most galactic and extragalactic ionized
shells and supershells. In general, to explain this mis-
match, either noncoeval star formation is assumed or
the shells are assumed to be formed only by stars at
a late evolutionary stage—WR, Of, and BSG with
a short-duration, but intense wind. The situation in
the complex under consideration ismore complicated,
because the bright ionized shells are localized inside
or at the boundary of the older neutral shells and
their evolution differs significantly from the standard
theory.

In addition, a number of observed facts actually
suggest noncoeval star formation in the complex.

Figure 1c suggests that all of the young OB as-
sociations in the region are localized not at the center
but in the dense peripheral parts of the H I shells [the
only association no. 7 from the list by Georgiev et al.
(1999) is partly located inside shell III). In general,
this picture may provide evidence for the formation of
these associations in dense H I shells. We empha-
size that the new association boundaries delineated
by Georgiev et al. (1999) split the associations of
Hodge (1978) into smaller groups, which are believed
to be the young nuclei of the corresponding associ-
ations. The scenario for triggered star formation in
expanding shells was considered by many authors
[see, e.g., Elmegreen et al. (2002) and references
therein].

Comparison of the ages and mutual localizations
of the ionized and neutral structures in the complex
also suggests noncoeval star formation. All the ion-
ized shells are several-fold younger than the neutral
shells. As was pointed out in Section 3, most of the
bright ionized shells are located in the dense periph-
eral parts of the H I shells. The only exception is
shell R4, which completely fits into the neutral shell II
from the inside. According to our measurements, this
ionized shell is oldest and all the young nuclei of the
OB associations are located in its boundary regions
(see Fig. 1c).

However, these arguments for sequential or trig-
gered star formation, which refer to the neutral shells
of the complex studied in detail here, are speculative,
because the age difference between the H I and H II
shells is small.

The multishell complex itself, which represents
the only region of violent ongoing star formation in
IC 1613, may have been produced by the collision of
two older and more massive giant neutral supershells
(Lozinskaya 2002, 2003). Indeed, in addition to the
three bright and relatively small H I shells consid-
ered here, a giant H I ring south of the star-forming
complex and a giant arc structure in the north, which
probably also represents part of the neutral supershell,
ASTRONOMY LETTERS Vol. 29 No. 2 2003
can be identified in Fig. 2a. The characteristic size
of the two structures is ∼1–1.5 kpc. The complex of
ongoing star formation lies at their common bound-
ary, where the collision of these two giant supershells
could trigger violent star formation. We are planning
to consider this scenario in detail.

7. CONCLUSIONS

We studied in detail the structure and kinematics
of the neutral and ionized gas components in the
only known complex of star formation in the irregular
dwarf galaxy IC 1613.

To study the kinematics of the ionized shells, we
carried out Hα observations with a scanning Fabry–
Perot interferometer attached to the 6-m SAO tele-
scope. The monochromatic Hα image of the multi-
shell complex obtained from our interferometric ob-
servations reveals new faint filamentary structures in
several regions of the complex.

We constructed position–radial velocity diagrams,
which cover the entire complex of star formation al-
most uniformly. The characteristic velocity variation
with distance from the center, the velocity ellipse,
was used to refine (increase) the expansion veloci-
ties of most ionized shells in the complex estimated
by Valdez-Gutierrez et al. (2001). The expansion
in several shells was found to be asymmetric: the
approaching and receding sides of the shells have
different velocities.

Based on our VLA 21-cm observations, we have
studied the neutral-gas kinematics in the complex of
star formation for the first time. The mean H I velocity
in the complex is VHel = −230 ± 5 km s−1, in good
agreement with the estimate obtained by Lake and
Skillman (1989) for this part of the galaxy from low-
angular-resolution observations.

We identified three extended (300–350 pc) neutral
shells with which the brightest ionized shells in the
complex of star formation are associated. The two
H I shells were found to expand at a velocity of
15–18 km s−1.

The sizes, expansion velocities, and kinematic
ages of the neutral shells in the complex fall within
the regions of the peaks in the corresponding distri-
butions for giant shells in the LMC and SMC.

We identified an incomplete H I shell with the only
known supernova remnant in the galaxy located at
its inner boundary. This confirms the scenario for a
supernova explosion inside a cavity surrounded by a
dense shell and a collision of the remnant with the
shell wall suggested by Lozinskaya et al. (1998) to
explain the peculiarity of this remnant, which com-
bines the properties of young and old objects.

We found evidence of the physical interaction be-
tween the H I and H II shells in the region of the chain
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of stars, early-type giants and supergiants, detected
by Lozinskaya et al. (2002). The region at the bound-
ary of the two shells where the stellar chain is located
was shown to be the dynamically most active part of
the star-forming complex. The highest H II and H I
velocities are observed here.

The relative positions and ages of the H I and H II
shells and OB associations in the complex suggest
sequential or triggered star formation in the expand-
ing neutral shells.

In addition to the three brightest and most promi-
nent H I shells, we found supergiant arches and ring
structures in the galaxy whose sizes are comparable
to the gaseous-disk thickness. These may be as-
sumed to be the traces of preceding starbursts in
IC 1613.
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Detection of Giant Pulses from the Pulsar PSR B1112+++50
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Abstract—We detected giant pulses from the pulsar PSR B1112+50. A pulse with an intensity that is
a factor of 30 or more higher than the intensity of the average pulse is encountered approximately once
in 150 observed pulses. The peak flux density of the strongest pulse is about 180 Jy. This value is a
factor of 80 higher than the peak flux density of the average pulse. The giant pulses are narrower than
the average profile by approximately a factor of 5 and they cluster about the center of the average profile.
c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Giant pulses (GPs) are short-duration burstlike
increases in the intensity of individual radio pulses
from pulsars. These are rare events observed only
in three pulsars: the Crab pulsar PSR B0531+21
(Staelin and Sutton 1970), the millisecond pul-
sar PSR B1937+21 (Wolszczan et al. 1984), and
PSR B1821−24 (Romani and Johnston 2001).
For normal pulsars, the intensity of individual

pulses exceeds the intensity of the average pulse by
no more than several factors (Hesse and Wielebin-
ski 1974; Ritchings 1976). The GPs in the Crab
pulsar PSR B0531+21 exceed the average level by
a factor of 20 to 2 × 103 (Lundgren et al. 1995). The
GPs in the millisecond pulsar PSR B1937+21 and
PSR B1821−24 exceed the average level by factors
of 20 to 300 (Wolszczan et al. 1984; Cognard et al.
1996) and 20 to 80 (Romani and Johnston 2001),
respectively.
Kuzmin and Losovskii (2002) detected an ex-

tremely high brightness temperature TB ≥ 4× 1035 К
of GPs in the millisecond pulsar PSR B1937+21.
TheGP duration ismuch shorter than the duration

of the average pulses from these pulsars. The GP
width for the millisecond pulsar PSR B1937+21 at
frequencies of 430, 1420, and 2380 MHz does not
exceed 10 µs, which is a factor of 10 smaller than the
width of the average profile, 100 µs (Kinkhabwala and
Thorsett 2000). The GP position is stable inside the
average profile.
A characteristic feature of the pulsars with GPs

is a two-component intensity distribution: lognormal

*E-mail: akuzmin@prao.psn.ru
1063-7737/03/2902-0091$24.00 c©
for most of the pulses and a power-law N ∝ Sα for
GPs with intensities above a certain level (Argyle and
Gower 1972; Lundgren et al. 1995).

The power-law index for the Crab pulsar is α =
−3.3 (Argyle andGower 1972; Lundgren et al. 1995).
The boundary at which the distribution changes its
pattern corresponds to about a 30-fold intensity of
the average pulse. GPs account for about 2.5% of
the total number of pulses (Lundgren et al. 1995).
Pulses that exceed the average level by a factor
of 50 occur approximately once in 105 pulses (Ar-
gyle and Gower 1972). The power-law index of the
intensity distribution for PSR B1937+21 is equal
to α = −1.8 ± 0.1. Pulses that exceed the average
level by a factor of 20 occur approximately once in
104 pulses. An excess up to 100 times above the
average level is encountered approximately once in
105 pulses (Cognard et al. 1996; Kinkhabwala and
Thorsett 2000).

Johnston et al (2001), Cramer et al. (2002),
and Johnston and Romani (2002) reported the dis-
covery of a new type of GP–GP-microstructure in
the Vela pulsar and PSR B1706−44. The intensity
distribution of this microstructure also contains
a power-law branch with indices of −2.85 and
−2.7, respectively. However, in contrast to classical
GPs (in PSR B0531+21, PSR B1821−24, and
PSR B1937+21), the excess of the intensity of mi-
crostructural GPs above the intensity of the average
pulse is less than a factor of 10 and 4 for the Vela
pulsar and PSR B1706−44, respectively.
Attempts to find GPs in other pulsars (Phinney

and Taylor 1979; Johnston and Romani 2002) have
failed thus far.
2003 MAIK “Nauka/Interperiodica”



92 ERSHOV, KUZMIN

 

25

–200 0 200 400

35

45

Time, ms

(b)

25

35

45

Pu
ls

e 
nu

m
be

r

(‡)

Fig. 1. Examples of GPs from PSR B1112+50: (a) a single GP with a peak intensity of 120 Jy, (b) the strongest GP with a
peak intensity of about 180 Jy, which belongs to the series of six strong pulses.
We detected GPs from PSR B1112+50, which
exhibit the characteristic features of GPs.

OBSERVATIONS AND DATA REDUCTION

Our observations were carried out from January 9
through June 30, 2002, with the Large-Aperture
Synthesis (BSA) Radio Telescope at the Pushchino
Radio Astronomical Observatory of the Astrospace
Center of the Lebedev Physical Institute. The tele-
scope has an effective area of about 30 000 squareme-
ters at zenith. One linear polarization was received.
We used a 128-channel receiver with the channel
bandwidth ∆f = 20 kHz. The frequency of the first
(highest frequency) channel was 111.870 MHz, the
sampling interval was 0.922 ms, and the time con-
stant was τ = 1 ms. We observed individual pulses.
The duration of one observing session was about
5 min; 180 pulses were observed during one session.
We measured the GP flux densities using the cal-
ibration method based on noise measured from dis-
crete sources with known flux densities in units of ra-
dio telescope flux sensitivity δS. The pulsar peak flux
density of the observed pulse Smaxobs was determined
from the relation

Smaxobs = δS/kPSR × (∆fτ)−1/2 × (S/N),

where kPSR = sin(hPSR) is the factor that takes into
account the dependence of the effective area of the ra-
dio telescope on pulsar height hPSR,∆f = 2.56MHz
is the total system bandwidth, τ = 1 ms is the time
constant of the output device, and S/N is the signal-
to-noise ratio. According to Kuzmin and Losovsky
(2000), δS was represented as

δS = δS1000(a + bTbb),

where δS1000 is the flux sensitivity of the radio tele-
scope toward a sky region with the brightness tem-
perature T0 = 1000 К and Tbb is the brightness tem-
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 2. The strongest GP from PSR B1112+50 (solid
line) shown with the average pulse (dashed line). The
amplitude of the average profile was increased by a factor
of 80.

perature of the sky background toward the pulsar.
We assumed δS1000 to be 100 mJy/MHz/s (Ku-
tuzov 2000) and took a = 0.4 and b = 0.0006 from
Kuzmin and Losovsky (2000).

Over the above period, we carried out a total of
105 observing sessions containing 18 900 pulsar pe-
riods. The peak flux density of the average pulse was
Smaxobs

∼= 2.3 Jy. The period-averaged flux density
was S ∼= 56 mJy.
We detected 126 pulses whose peak fluxes ex-

ceeded that of the pulse averaged over 105 days of ob-
servations by more than a factor of 30; for 17 of them
(one pulse per 1100 observed pulses), this excess was
more than a factor of 50. The total flux densities of 114
pulses exceeded the total flux density of the average
pulse by a factor of 10.

Figure 1 shows two GPs as examples. Figure 1a
shows pulse no. 31 of April 23 with a peak flux density
of ∼120 Jy, which is a factor of 50 higher than the
peak flux density of the average pulse.

Of the 126 pulses whose intensity exceeds the
intensity of the average pulse by a factor of 30 ormore,
36 belong to neighboring pairs or triples; hence, we
can estimate the duration of enhanced pulsar activity
to be several seconds. An example of such aGP group
is shown in the Fig. 1b, which presents the strongest
individual pulse in all 105 days of observations (pulse
no. 32 of January 16). This pulse has a peak flux
density of∼180 Jy, which is a factor of 80 higher than
that of the average pulse, and the total flux density of
this pulse exceeds that of the average pulse by a factor
ASTRONOMY LETTERS Vol. 29 No. 2 2003
 

0

–40 0 40
Time, ms

2

0

50

100

G
P 

nu
m

be
r

Fl
ux

 d
en

si
ty

, J
y

Fig. 3. The phases of the observed GPs relative to the
center of the average profile.

of 16. The large increase in pulsar activity lasted for
six periods, i.e., ∼10 s.

Figure 2 shows one of the GPs (January 16, 2002)
in comparison with the average profile. The peak flux
density of the average pulse is about 1/10 of the width
of the noise track of the GP. Therefore, we increased
the average profile by a factor of 80 for convenience.
The GP width is w50 = 4 ms = 0◦.9 at a 0.5 level and
w10 = 7 ms = 1◦.5 at a 0.1 level. The mean width of
the 126 GPs is w50 = 5.1 ± 1.2 ms = 1.1 ± 0◦.3 at a
0.5 level and w10 = 9 ± 2ms = 2 ± 0◦.4 at a 0.1 level.
The dispersion broadening ∆tDM = 1.1 ms and the
receiver time constant 1 ms have virtually no effect on
the GPwidth. The width of the pulsar profile averaged
over 105 observing sessions is w50 = 24 ms = 5◦.2
and w10 = 44 ms = 9◦.6 at 0.5 and 0.1 levels, respec-
tively. Thus, the GPs are narrower than the average
pulse by approximately a factor of 5, typical of the
GPs.

Figure 3 shows the phases of the observed GPs
relative to the center of the average profile. The posi-
tions of GPs are stable inside the average profile and
they cluster in the middle part of the average profile.
The phase difference between the GPs and the av-
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Fig. 4. The distribution of peak intensities of individual
pulses from PSR B1112+50. The ratioR of the GP peak
flux density to the peak flux density of the average profile
is plotted along the x axis. Equal intervals correspond to
an increase in the GP flux density by the same factor.
The ratio of the number of GPs exceeding the peak flux
density of the average profile to the total number of ob-
served pulses is plotted along the y axis. The dashed line
represents the least-squares-fitted lognormal distribution
F (log R) = A exp(−B(log R − C)2) and the solid line
represents the power-law distribution F ∝ (IGP/IAP)

α.

erage profile is ΦGP − ΦAР = −1 ± 4ms∼= (−0.02 ±
0.1)w10.
The GP brightness temperature is

TB = Sλ2/2kΩ,

where λ is the wavelength of the received radio emis-
sion, k is the Boltzmann constant, and Ω is the solid
angle of the radio emitting region. Assuming the size
of the radio emitting region to be l ≤ cw50 GP, where c
is the speed of light, and the distance to the pulsar
to be d = 0.54 kpc (Taylor et al. 1995), we obtain
TB ≥ 1026 K for w50 = 4ms and S = 180 m Jy .
The GPs that we detected are not scintillations.

At the frequency of our observations (111 MHz), the
interstellar scintillation time scale (the time correla-
tion radius) for a pulsar with the dispersion measure
DM = 9.16 pc cm−3 is about 1 min and 1000 days,
respectively, for refraction and diffraction scintilla-
tions (Shishov et al. 1995), which significantly ex-
ceeds the duration of the observed GPs (less than
several seconds). No GPs were detected in several
pulsars with similar or lower dispersion measures
observed during this period.

DISCUSSION

The GPs that we detected from PSR B1112+50
exhibit the characteristic features of classical GPs
from PSR B0531+21 and PSR B1937+21. The GP
peak intensity exceeds the peak intensity of the aver-
age pulse by more than a factor of 30. The fraction
of GPs (0.7%) and the boundary of change in the
distribution pattern (≈30 intensities of the average
pulse) for PSR B1112+50 are comparable to the
same parameters of GPs in the Crab Nebula and
PSRB1937+21 (2.5% and 0.02% of the total number
of pulses and ≈30 and 15 intensities of the average
pulse, respectively). The GPs are several-fold nar-
rower than the average pulse and their positions are
stable inside the average profile.
Figure 4 shows distribution of the ratio R of

the peak flux densities of individual pulses from
PSR B1112+50 to the peak flux density of the
average pulse (in equal bins of the ratio R) in-
ferred from our observations. The distribution was
constructed from 3320 pulses whose intensity ex-
ceeds the sensitivity threshold of our radio tele-
scope. It exhibits the features of a two-component
structure characteristic of GPs: a lognormal dis-
tribution for IGP/IAP < 30 and a power-law dis-
tribution for IGP/IAP > 30. The dashed line rep-
resents the least-squares-fitted lognormal distri-
bution F (log R) = A exp(−B(log R − C)2), where
A = 0.03,B = 9.4, andC = 1.03. Here, F is the ratio
of the number of pulses with a given log R to the
total number of pulses. The solid line represents the
power-law distribution F ∝ (IGP/IAP)α. The index
α ∼= −3.6 of the power-law part of the distribution
needs to be refined because of poor statistics.
The absence in our observations of GPs exceeding

the average pulse bymore than a factor of 80 observed
for PSR B0531+21 and PSR B1937+21 may stem
from the relatively small (because of the long period of
PSR B1112+50) number of observed periods, 18 900
(compared to more than 106 for PSR B0531+21 and
PSR B1937+21). For these pulsars, pulses that ex-
ceed the average level by a factor of 80 occur approx-
imately once in 105 pulses.
Note that PSR B1112+50 does not belong to the

group of pulsars with the strongest magnetic fields
on the light cylinder, an integrated radio luminos-
ity, and a potential difference in the polar-cap gap
(Kuzmin 2002). Therefore, the GP of this pulsar may
be different in nature.

CONCLUSIONS

Wedetected GPs from the pulsar PSRB1112+50.
At 111 MHz, the peak flux density of the strongest
pulse is 180 Jy, which is almost a factor of 80 higher
than the peak flux of the average pulse. Pulses whose
peak intensities exceed the peak intensity of the
average pulse by more than a factor of 30 occur
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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approximately once in 150 periods. The GPs are
approximately a factor of 5 narrower than the average
profile and they cluster in the middle part of the
average profile. The brightness temperature of the
observed GPs is TB ≥ 1026 K.
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K. V. Semenkov1*, M. V. Popov1, V. A. Soglasnov1, and H. Hirabayashi2

1Astrospace Center, Lebedev Physical Institute, Russian Academy of Sciences,
Profsoyuznaya ul. 84/32, Moscow, 117810 Russia

2Japanese Institute for Aeronautics and Space Research, Sagamihara, Japan
Received August 29, 2002

Abstract—We determined the features of pulsars that were disregarded in standard amplitude-calibration
procedures for VLBI observations. We suggest additional amplitude-calibration methods. These methods
were used to process the VLBI observations of the pulsar PSR B0329+54 carried out with the HALCA
ground–space interferometer. Data from the space radio telescope are corrected for a nonuniform reception
band. We estimated the diameter of the scattering disk for this pulsar at a frequency of 1600 MHz:
<1′′

.8 × 10−3. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: pulsars, neutron stars, and black holes.
INTRODUCTION
The overwhelming majority of VLBI experiments

are observations of extragalactic sources. Therefore,
the AIPS (NRAO) and DifMap (CalTech) post-
correlation data processing software packages are
naturally designed to process precisely this type of
data. The radio emission from pulsars exhibit features
that are disregarded by the standard data processing
packages. From an observational point of view, the
pulsars are compact (less than 1′′ × 10−7 in angular
size) periodic sources of pulsed radio emission. The
pulse repetition periods range from 1.5 ms to 8.5 s;
the pulse duration is generally less than 0.1 of the
period. The pulsars are highly variable sources whose
radio intensity varies randomly from pulse to pulse
(the modulation index is 〈δI2〉/〈I〉2 ≈ 1, where I is
the intensity of the received emission and the angular
brackets denote averaging), although each pulsar is
characterized by a certain fluctuation spectrum.

The radio emission from pulsars is scattered by
interstellar electron plasma inhomogeneities. The ef-
fects that are important for VLBI observations in-
clude interstellar dispersion, scintillations, distortions
of the frequency radiation spectrum by scattering, and
angular broadening of the source. We will describe
how these effects show up in observational data and
how they should be taken into account.

PERIOD INCOMMENSURABILITIES
The correlator output contains the correlation

functions integrated over some time interval (usually

*E-mail: kirill@anubis.asc.rssi.ru
1063-7737/03/2902-0096$24.00 c©
several seconds). At the same time, the pulsar period
is generally incommensurable with the integration in-
terval; i.e., the correlator integration interval includes
a noninteger number of pulsar pulses. Therefore, the
variations in the amplitude of the correlation function
caused by this effect arise:

{Tint/P} + 1
{Tint/P} , (1)

where Tint is the correlator integration interval, P is
the pulsar period, and {·} is the integer part.

This effect is particularly noticeable if the correla-
tion is done in the so called gate regime. The pulsar
signal occupies about 10% of the period, while, dur-
ing the remaining 90% of the time, noise is received.
Hence, to increase the signal-to-noise ratio, the data
should be correlated only within the time intervals
containing the pulse. This correction method is called
gating. The gating regime is realized on the VLBA
(NRAO, USA; see Romney 1995; Benson 2000),
S2 (Penticton, Canada; see Carlson et al. 1999),
and K4 (Kashima, Japan, see Sekido 2001; Sekido
et al. 1998) correlators. Using gating increases the
signal-to-noise ratio by a factor of

√
(Tint/kWg),

where k is the number of pulses within the integration
interval (generally, a noninteger number) and Wg is
the correlator gate width, but also increases the beat-
ing in the amplitudes of the correlation functions (see
Fig. 1).

For many problems that do not require accurate
amplitude calibration, for example, for pulsar par-
allax and proper motion determinations, period in-
commensurability may be disregraded. In addition, if
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Results of the correction for incommensurability of the pulsar period and the correlator integration interval: the data
before (a) and after (b) the correction. The amplitude of the autocorrelation function is plotted against time for the Fort Davis
antenna.
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Fig. 2.The dynamic cross spectrum (time variation of the power cross spectrum) for the pulsar PSR B0329+54. The correction
methods described here were not used to obtain the dynamic spectrum. The amplitude calibration was made in the AIPS
package; the spectra from all antennas were then summed and averaged over 1 min.
the pulsar period is much shorter than the correlator
integration time, the beating becomes negligible. If,
ASTRONOMY LETTERS Vol. 29 No. 2 2003
however, accurate amplitude calibration is required,
then the correlation functions must be corrected for
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respectively.
incommensurability of the correlator integration in-
terval and the pulsar period using the formula

Cc =
Cn

kWg/Tint
, (2)

where Cc is the corrected correlation function and Cn
is the noncorrected correlation function.

The quantity kWg for the observed pulsar depends
on the gating model used on the correlator. It is desir-
able that the table of kWg values be contained in the
data obtained from the correlator, as is the case, for
example, on the VLBA correlator, where the output
contains a table of coefficients kWg/Tint.

THE CORRECTION FOR A NONUNIFORM
RECEPTION BAND

Interstellar scattering severely distorts the pulsar
radio spectrum (see Fig. 2). The characteristic “scin-
tillation spots” caused by the loss of signal coherence
in frequency and time intervals exceeding the char-
acteristic values appear in the source dynamic spec-
trum, i.e., in the dependence of the signal power on
frequency and time. These characteristic values are
called the decorrelation band and scintillation time,
respectively. For example, for PSR B0329+54, the
decorrelation band at a frequency of 1.6 GHz is about
10 MHz and the scintillation time is about 15 min
(the estimate was obtained by interpolating the data
from Popov and Soglasnov (1984) and Kondrat’ev
et al. (2001). In addition, the reception band has
a certain amplitude–frequency characteristic typical
of the receiving–recording complex on a given radio
telescope, and it is first necessary to make a correction
for the amplitude–frequency characteristic.

The band correction methods for ground-based
VLBI systems have long been known. They were
developed and implemented in VLBI data process-
ing software packages, for example, in the AIPS
(Astronomical Image Processing System) package,
which is a standard software product used to process
astrophysical VLBI data. The point is that, during
the session of a ground-based VLBI experiment, one
or more extragalactic pointlike reference sources are
commonly observed (calibrators). Since the calibra-
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 4. The amplitude of the visibility function versus baseline. The correction methods described here were not used to obtain
this dependence. The amplitude calibration was made in the AIPS package; the data were then averaged over time within
1 min.
tor spectrum is generally noisy, it is assumed that
the deviation of the power spectrum for a reference
source from the ideal band shape is caused by instru-
mental effects, the calibration function is calculated,
and the calibration results are applied to the main-
source data. However, this technique cannot be used
to processes the pulsar observations with a ground–
space interferometer, because the space radio tele-
scope cannot observe calibration sources because of
its pointing peculiarities. However, if there are obser-
vations of a noise source with a space radio telescope
carried out at a different time, then one can attempt
to correct the data for a nonuniform reception band of
the space radio telescope by assuming that it did not
change significantly in the time elapsed between the
two observations.

To calibrate the pulsar observational data, we
wrote a software package based on CFITSIO (http://
heasarc.gsfc.nasa.gov/docs//software/fitsio/fitsio.
html), a library of functions working with FITS data.
The VLBI observational data in the FITS file are
recorded as the spectra averaged over the correla-
tor integration time (several seconds). The record
contains only harmonics with positive numbers.
ASTRONOMY LETTERS Vol. 29 No. 2 2003
Harmonics with negative numbers can be restored
by using the relation

A(−j) = A∗(j), C(−j) = 0, j = 1, . . . , N,

where A(j) is the power spectrum, C(j) is the power
cross spectrum, N is the number of harmonics (spec-
tral channels), and ∗ denotes a complex conjugate.
Since the power spectrum is a real quantity, we have
A∗(j) = A(j).

We obtained the noise power spectrum by av-
eraging the autospectra of extragalactic calibration
sources. Next, the correction for a nonuniform band
for each of the antennas was made as follows.

(1) The mean power spectrum Aref(j) of the refer-
ence source (in this section, j is the frequency channel
number) was computed for each antenna.

(2) The function Bid(j) that specifies the ideal
reception band is chosen. In the simplest case, the
band is rectangular (Bid(j) = const); however, the
actual band falls off to the edges in some, occasionally
large frequency range. Therefore, asBid(j), we used a
function that also fell off to the edges (see. Fig. 3):
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Bid(j) =




Bmax −Bmin√
1 + exp

(j − jl)(j − jr)
γl(jr − jl)

+Bmin, 0 ≤ j ≤ N/2

δ
Bmax −Bmin√

1 + exp
(j − jl)(j − jr)
γr(jr − jl)

+ Bmin, N/2 < j ≤ N,
(3)
δ
def=

√
1 + exp

(N/2 − jl)(N/2 − jr)
γr(jr − jl)√

1 + exp
(N/2 − jl)(N/2 − jr)

γl(jr − jl)

,

whereBmax andBmin are the maximum and minimum
values of the power spectrum Aref(j), respectively; B
is the reception bandwidth; jl and jr are the lower
and upper boundaries of the ideal band; γl and γr are
the slopes of the left and right band wings; and δ is
the amplitude joining coefficient. At this stage, the
boundaries of the ideal band and the slopes of the
edges are specified by the operator; we used jl = 1,
jr = 27, γl = 6000, γr = 35000.

(3) The correcting function of the amplitude spec-
trum is calculated:

Fcorr(j) =
√
Bid(j)/Aref(j).

(4) The power cross spectrum is corrected for a
nonuniform reception band:

C lm
corr(j) = C lm

real(j)F
l
corr(j)F

m
corr(j),

where C lm
corr(j) is the corrected power cross spectrum,

C lm
real is the noncorrected power cross spectrum, the

superscripts l and m are the numbers of the antennas
involved in the correlation.

Figure 3 presents the results of the band correction
for one of the ground-based antennas and for the
HALCA space radio telescope.

THE CORRECTION FOR INTRINSIC
VARIABILITY AND FOR

SCINTILLATION-RELATED VARIATIONS

The intrinsic variability of pulsar radio emission
(the emission intensity greatly varies from pulse to
pulse) and the variability attributable to interstellar
scintillations distort the dependence of the amplitude
of the visibility function on baseline. (see Fig. 4). In
imaging, the data are usually averaged over several
minutes. If the pulsar is a short-period one (its period
is much shorter than the averaging interval) or if the
scattering is large (the decorrelation time is shorter
than the averaging interval and the decorrelation band
is much narrower than the reception bandwidth), then
this averaging procedure can actually considerably
reduce the effect of pulsar variability. However, one
or both above conditions are often not satisfied. An
example is the pulsar PSR B0329+54 with a period
of 0.714 s and a decorrelation time of ∼15 min at a
frequency of 1.6 GHz. One or two minutes of averag-
ing are sufficient neither to obtain the average pulse
profile nor to average the scattering effects. The in-
trinsic short-period pulsar variability should not affect
the image quality, but it must be taken into account in
flux calibration, while scintillations can generally give
rise to spurious features in the image and can make it
difficult to interpret the results obtained.

The variability effects could be easily taken into
account if each antenna recorded the intensities
of individual pulsar pulses. However, the currently
available VLBI terminals are not equipped with
such recorders of the detected signal. Therefore, we
propose to extract information on the relative power
of the variable pulsar signal from comparison of the
autocorrelation functions obtained on a correlator in
the “gating” regime and in the “standard” regime.

Indeed, letAg and Ak be the autocorrelation func-
tions obtained in the “gating” and “standard” corre-
lation regimes, respectively. For each antenna, they
can be expressed in terms of the noise and signal
powers as

Ag = WgS
2
n + S2

s ,

Ak = WkS
2
n + S2

s ,

Wg = gWk,

where the coefficient g is assumed to be known, Wk
is the correlator integration time (usually several sec-
onds), Wg is the total duration of the correlator gates
within the integration interval, S2

n is the noise power,
and S2

s is the signal power. Hence, we obtain

S2
s =

Ag − gAk

g(1 − g)
. (4)

Next, we assume that on small baselines, the source
is not resolved. Consequently, the expected visibility
function on short baselines is

|V exp
ij | =

√
S2

i,sS
2
j,s, (5)
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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Fig. 5. The real amplitudes of the visibility function versus the expected visibility function |V exp
ij | on the Fort Davis–Kitt Peak

baseline.
where the subscripts i and j denote the antenna
numbers. The actual visibility functions can then be
corrected using the formula

V ∗
ij = Vij/|V exp|, (6)

where |V exp| is the result of averaging (5) over all
small baselines.

REAL DATA PROCESSING
We used the approach described in previous sec-

tions to process the VLBI observations of the pul-
sar PSR B0329+54. The goal of these observations
was to measure the circle of confusion for the pulsar.
The diameter of the scattering disk is one of the
parameters that describe interstellar electron plasma
turbulence.

The visibility function from a source whose emis-
sion has passed through scattering plasma is known
(see, e,g., Cordes et al. 1985) to be

V (r) = V0(r) exp [−D(r)/2]. (7)

Here, r is the baseline vector, V0(r) is the visibility
function in the absence of scattering, and D(r) is the
phase structural function, defined as

D(r) def= 〈[ϕ(s + r) − ϕ(s)]2〉
ASTRONOMY LETTERS Vol. 29 No. 2 2003
= 8πr2
eλ

2

∫
dz′
∫

dq q[1 − J0(qr)P (q, z′),

where re is the classical electron radius, λ is the
emission wavelength, P (q, z′) is the spatial spectrum
of electron plasma density inhomogeneities. If the
inhomogeneity spectrum is a power law (e.g., a Kol-
mogorov one), i.e.,

P (q) = C2
nq

−γ , q0 ≤ q ≤ q1, C2
n = const,

then formula (7) becomes

V (r) = V0(r) exp [−(r/rc)γ−2]. (8)

The angle θs = λ/2πrc is called the scattering angle
or the angular diameter of the scattering disk and the
quantity rc is related to the coefficient C2

n :

rc ∝
[
LC2

n
Γ(2 − γ/2)

(γ − 2)(Γ(γ/2))

]−1/(γ−2)

,

where Γ(·) is the gamma function. Thus, measur-
ing the scattering angle can give information on the
nature of the line-of-sight turbulence. VLBI obser-
vations provide a direct method for measuring the
scattering disk and can also be used to check other
methods of estiming this quantity.
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Fig. 6. The amplitude of the visibility function versus time before (a) and after (b) the correction for intrinsic variability and
scintillation-related variations. The data were averaged over frequency within the band, over time within 1 min, and over all
baselines.
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Fig. 7. The image of PSR B0329+54 after one self-calibration cycle: the images constructed from (a) corrected and
(b) noncorrected data.
PSR B0329+54 (J0332+5434) is one of the
brightest pulsars; its period-averaged flux density
at a frequency of 1.4 GHz is 200 mJy, the period
is 0.714 s, the dispersion measure is 26.8 pc cm−3,
and the equivalent pulse width is 8.7 ms (Taylor
et al. 1993). The VLBI observations of this object
aimed at measuring the circle of confusion were also
carried out previously. Thus, for example, Britton
ASTRONOMY LETTERS Vol. 29 No. 2 2003
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et al. (1998) observed several pulsars, including
PSR B0329+54, during an intercontinental VLBI
experiment at a frequency of 323 MHz. Theywere un-
able to resolve the scattering disk; based on indirect
data, they estimated its size to be 4′′

.3 × 10−3. Bartel
et al. (1985) observed the pulsar at 2.3 GHz; the
following three telescopes were involved in this ex-
periment: Effelsberg (Germany), Green Bank (USA),
and Owens Valley (USA). The authors obtained an
upper limit on the diameter of the scattering disk,
1′′ × 10−3.

Using the HALCAspace radio telescope allows us
to increase the angular resolution and to measure the
diameter of the scattering disk more accurately: the
maximum angular resolution of the ground–space
interferometer at a frequency of 1.6 GHz is approxi-
mately 1′′.5 × 10−3.

The observations were carried out on August 22,
1998, during 12 h. Eleven antennas, including eight
antennas of the VLBA network, two DSN antennas,
and the HALCA space radio telescope, were involved
in them. The data were recorded in two adjacent 16-
MHz bands at frequencies of 1634 and 1650 MHz.
The correlation was done on the VLBA NRAO cor-
relator in the “gating” and “standard” regimes. The
correlator integration interval was ∼2 s; the data in
each of the bands were broken down into 32 500-kHz
frequency channels.

As we see from Fig. 2, which shows the average
power cross spectrum, the scintillations are strong;
the duration of the scintillation spot is 20–30 min.

The data were sequentially corrected for a nonuni-
form reception band, for incommensurability of the
pulsar period and the correlator integration time, and
for source variability.

Figure 3 shows the power autospectra of the pul-
sar radio emission for the ground-based antenna (as
an example, the Fort Davis antenna of the VLBA
network was chosen) and for the HALCA space ra-
dio telescope before and after the corrections for a
nonuniform reception band. To correct the HALCA
reception band, we used the observational data for
the source J0238+16 provided by L.I. Gurvits (JIVE,
Holland).

Figure 1 shows the results of the data correction
for incommensurability of the pulsar period and the
correlator integration time.

Subsequently, we made the correction for source
variability. Because of the scaling effects of the auto-
correlation functions on the correlator, the values of
|V exp

ij | calculated with formula (5) differ from the real
values of |Vij |. The dependence of |V exp

ij | on |Vij | was
found to be satisfactorily fitted by a linear function:
|V real

ij | = A|V exp
ij | + b (see Fig. 5). The coefficients of
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the linear function were determined by the bisector
least-square method (Isobe and Feigelson 1990) for
each baseline and each intermediate frequency. Since
these coefficients for each pair of the antennas slightly
differ, we used the values averaged over short (less
than 1000 km) baselines: a = (0.52 ± 0.01, 0.54 ±
0.01), b = (−3.172 ± 0.03, −3.174 ± 0.03). The two
values of a and b correspond to the two intermediate
frequencies (1634 and 1650 MHz). After the correc-
tion of the relation between |V exp

ij | and |Vij | by our
technique, we made the correction using formula (6).

It turned out that the procedure of correction for
source variability eliminated the systematic varia-
tion in the amplitude of the visibility function due
to scintillations but the spread in corrected values
remained significant, approximately 0.9 (see Fig. 6).
This is presumably because rapid source variability
is disregarded for the existing technique of observa-
tions and correlation of pulsar data. It results in the
violation of the conditions optimal for two-bit signal
quantization, which distorts the correlation function
[see Chapter 8 in Thompson et al. (1986) and Kogan
(1995)]. To compensate for these intensity variations,
an automatic gain control (AGC) system is included
in the receiving channels. However the AGC sys-
tem has a certain triggering time constant and is
not designed to track short pulsar pulses. Note that
when deriving formula (4) we assumed the receiving
channel gain to be constant, i.e., we ignored the AGC
effect.

Thus, the technique for VLBI observations of pul-
sars must be changed. More specifically, AGC must
be switched off and the intensities of individual pulsar
pulses must be recorded independently on each of the
antennas involved in the VLBI experiment.

The data corrected for the three effects described
above were saved in FITS format and subsequently
processed using the AIPS package. We made am-
plitude calibration, a global lobe search, time aver-
aging of the data, and self-calibration imaging (see
Fig. 7). Note that we were unable to reproduce the
processing results of the same experiment obtained
by Minter (2000), i.e., to construct a double image
of the pulsar, with and without additional amplitude
correction. Therefore, we consider that in this case the
double-image effect is spurious.

The proposed amplitude calibration methods al-
low us to obtain an image of acceptable quality with
a smaller number of iterations. However, the unre-
moved large spread in amplitudes does not allow us
to accurately measure the scattering disk. Analysis
of our images suggests that the source could not be
resolved and that the diameter of the scattering disk is
θs < 1′′.8× 10−3. This result is consistent with a priori
estimates of θs.
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CONCLUSIONS

When processing the VLBI observations of
PSR B0329+54, we found that the data calibra-
tion methods existing and implemented in standard
data processing packages, disregard some pulsars
features, more specifically, the pulsed pattern of the
emission, intrinsic amplitude variability, amplitude
and frequency scintillations. We proposed calibration
methods that took into account these features and
applied them to the observations of PSR B0329+54.
The correlated data have retained a considerable
spread in values (about 0.9). The presumed cause
of this effect is that the “standard” VLBI signal
recording technique is not applicable to pulsars. We
estimated the diameter of the scattering disk for this
pulsar to be θs < 1′′

.8 × 10−3.
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