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Abstract—We calculate the total and differential cross sections for radiative–collisional excitation of the meta-
stable 21S state of He atoms at collisions with Ne atoms in external radiation fields of various frequencies and
polarizations. The calculations are performed for a thermal collision energy of E = 10–3 atomic units and light
intensity of I = 1 MW cm–2, which corresponds to a single photon absorption by a quasi-molecule during the
collision. Both the differential and total cross sections are shown to depend strongly on the relative orientation
of the radiation polarization vector and the initial relative velocity vector of the colliding atoms. We analyze
the azimuthal scattering asymmetry related to the orientation of the angular momentum of the absorbed pho-
ton. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In recent years, considerable interest has been
shown in analyzing the angular distributions of the
atoms produced during experiments with crossed
atomic beams in a laser radiation field. In particular, the
excitation reaction of Na atoms at collisions with rare-
gas atoms in a quasi-resonant laser radiation field was
used as an example to show that studying the change in
the structure of the differential cross sections with radi-
ation frequency, polarization, and the collision energy
allows one to judge the geometry of radiative–colli-
sional processes [1, 2], to analyze the nonadiabatic
quasi-molecular transitions [3], and to reproduce the
interaction potentials of atoms in the ground and
excited states with a fairly high accuracy [4, 5].

At the same time, the differential cross sections for
the radiative–collisional processes that lead to the col-
lisionally induced radiative excitation of metastable
states in one of the colliding atoms remain essentially
unexplored. These processes are difficult to observe
experimentally, because the dipole moment of the
transition induced by the interaction between atoms
and, accordingly, the radiative–collisional excitation
cross sections are small. Nevertheless, a number of
works on experimental observation of the spectral dis-
tributions formed during the processes of this kind can
be noted [6–9]. Attempts to give an adequate theoretical
description also run into a number of difficulties. In par-
ticular, the widely used close coupling method (see,
e.g., [2]) proves to be inefficient when there are no good
initial data on the atomic interaction potentials and the
transition dipole moment. At the same time, determin-
ing the latter is a complex quantum-chemical problem,
1063-7761/05/10105- $26.000761
especially for the interaction between two compact
atoms in the 1S states, since it requires simultaneously
allowance for the motions of all electrons in the quasi-
molecule. Another method commonly used to analyze
optical collisions is based on the Condon approxima-
tion. However, as was shown in [10], the Condon
approximation is valid only for a smoothly changing
interaction between quasi-molecular states. In contrast,
for an interaction that depends strongly on the internu-
clear distance R, which is peculiar to collisionally
induced radiative transitions (with a zero dipole
moment at large R), the validity range of the Condon
approximation is very limited.

In [11], based on a model for the interaction
between two Coulomb terms that depends exponen-
tially on R [12], which leads to a closed analytical
expression for the scattering amplitude, the authors
estimated the differential cross sections for the reaction
of the collisionally induced radiation,

(1)

Although the results obtained correctly reproduce some
of the general patterns of behavior of the differential
cross sections, using the Coulomb fits for the ground-
and excited-state potentials leads to a definitely incor-
rect quantitative estimate of the cross sections and
makes it impossible to reproduce a number of features
in the differential cross sections related to the short-
range nature of the interaction between ground-state
atoms. In addition, the calculation in [11] was per-
formed in the approximation of identical centrifugal
potentials in both reaction channels. Basically, this

He 11S( ) Ne "ω He 21S( ) Ne.++ +
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implies the neglect of the photon angular momentum
and rules out the possibility of studying the polariza-
tion-related effects.

The goal of this work is to calculate and analyze the
structure of the differential and total cross sections for
reaction (1) with absorption as a function of the polar-
ization. The calculation is based on fairly accurate [10]
exponential fits for the radiative width and interaction
potentials of atoms in the ground and excited 1Σ states
and suggests a proper allowance for the photon angular
momentum.

The mechanism of reaction (1) was described in
detail in [10]. The exponential fits for the potentials of
the ground |1Σ, 11S〉  and excited |1Σ, 21S〉  quasi-molecu-
lar states in the energy range 10–1000 cm–1 based on
data from [13, 14] are

The radiative width of the excited |1Σ, 21S〉  quasi-
molecular state [15] emerges as the atoms approach
each other due to the mixing of the wavefunctions for
the metastable 21S and resonance 21P He atomic states.
The exponential fit for the width is Γ(R) = 4.84 ×
10−5exp(–1.84R). In what follows, unless stated other-
wise, we use the atomic system of units.

2. THEORY OF RADIATIVE TRANSITION
BETWEEN THE TWO 1Σ TERMS

2.1. Quantum Theory 

At low radiation intensities, when the radiative tran-
sition probability is much lower than unity both at each
stage and during the entire collision, the amplitude and
differential cross section for the radiative–collisional
process can be determined using the distorted-wave
method [16]:

(2)

(3)

where µ is the reduced mass of the colliding atoms, ki, f
are the relative momenta of the atoms before and after

the collision, and (R) and (R) are the wave-
functions for the relative motion of the atoms in the ini-
tial and final channels that satisfy the well-known
asymptotics [17].

Since the dipole moment of the transition between
the two 1Σ quasi-molecular states is parallel to the inter-

Ug R( ) 2594 3.439R–( ),exp=

Ue R( ) 0.404 0.917R–( ).exp=

f fi k f ki e, ,( )

=  
µ

2π
------ Ψk f

–( )* R( )V R( )Ψki

+( ) R( )d3R,∫–

dσ
dΩ
-------

k f

ki

----- f fi k f ki e, ,( ) 2,=

Ψki

+( ) Ψk f

–( )
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nuclear axis, dfi = d(R) , where  is a unit vector
along the internuclear axis, the matrix element of the
dipole interaction between the quasi-molecule and an
external electromagnetic field

of intensity I = /8π can be represented as a product
of the radial and angular parts of the interaction:

(4)

where

Expanding the functions (R) and (R) in terms
of partial waves allows the scattering amplitude to be
expressed in terms of elements of the S-matrix:

(5)

where the angles θ and ϕ specify the direction of the
final relative momentum vector of the colliding atoms,
kf (the z axis is assumed to be along the initial relative
momentum vector ki). The spherical components of the
scattering amplitudes are defined by the formulas

(6)

and are related to the Cartesian components by

(7)

The S-matrix elements are

(8)

Here, (R) are the radial, regular (at zero) real wave-
functions normalized to the δ function of energy, and δl

are the elastic scattering phase shifts.
Expressions (6), along with the Legendre polynomi-

als Pl(cosθ), contain the associated Legendre functions

R̂ R̂
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cE0
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(cosθ) that emerge when calculating the matrix ele-

ment of the angular part of the dipole interaction V( )
between the spherical functions that specify the initial
and final rotational quasi-molecular states. Photon
absorption causes a change in the relative angular
momentum of the atoms, l ± 1  l, which corre-
sponds the P and R branches in the theory of molecular
radiation.

For an arbitrary linear polarization,

(9)

the scattering amplitude is

(10)

In this case, the differential cross section is given by the
formula

(11)

Integrating (11) over the solid angle Ω yields an expres-
sion for the total cross section:

(12)

where

(13)

are the total cross sections for polarizations parallel and
perpendicular to the initial relative momentum, respec-
tively. The factor 1/2 appears in the expression for σ⊥
when averaged over the azimuthal angle ϕ. Having
integrated the squares of the magnitudes of the ampli-
tudes, |f0(θ)|2 and |f(1)(θ)|2, over the scattering angle θ
and taking into account the orthogonality of the Leg-
endre polynomials, we obtain

(14)

Averaging the total cross section (12) over the radi-
ation polarizations or over the directions of the initial

Pl
1
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relative velocity of the colliding atoms under gas-cell
conditions yields

(15)

where the factor 2 of σ⊥  corresponds to the two possible
perpendicular polarizations.

When the polarization vector e lies in the collision
plane, we assume the x axis to lie in the same half-plane
as the polarization vector (ϕp = 0). In this case, for an
observer whose head is oriented along the y axis and
whose face is directed along the z axis, ϕ = 0 and π cor-
respond to the leftward and rightward scatterings,
respectively. The expressions for the scattering ampli-
tude and differential cross section take the form

(16)

(17)

where the upper and lower signs correspond to the left-
ward and rightward scatterings, respectively.

In the case of a right-hand or left-hand circular
polarization in the collision plane,

(18)

the scattering amplitude and differential cross section
are

(19)

(20)

The upper and lower signs in Eq. (20) correspond to the
leftward and rightward scatterings, respectively, for a
right-hand circular polarization and vice versa for a
left-hand circular polarization.

2.2. The Condon Approximation 

In the Condon approximation (see, e.g., [2, 10, 11]),
the radiative transitions occur when the atoms are sep-
arated by distance RC . The radius RC depends on the

σ
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radiation frequency and can be determined from the
equation

(21)

where ∆U = Ue – Ug is the difference between the
excited- and ground-state potentials measured from the
energy levels of isolated atoms, and ∆ω is the detuning
of the radiation frequency ω from the frequency of the
forbidden atomic transition ω0. For reaction (1) under
consideration, the difference potential ∆U has a maxi-
mum at R = 4. In this case, Eq. (21) in the frequency
range ∆ω ∈  0–300 cm–1 of interest defines two Condon
points: one lies at R > 6, and the other lies at R < 3.5. It
was shown in [10] that at collision energies E ~
10−3 atomic units, the contribution from the second
Condon point could be ignored, and the analysis could
be restricted to the radiative transitions at R > 6. Thus,
within the framework of the semiclassical treatment,
the scattering through a fixed angle θ is formed via the
contribution from two paths with angular momenta
J1, 2 , which can be determined from the equations

(22)

where the deflection functions

(23)

correspond to the paths for which the radiative transi-
tion takes place when the atoms approach each other
(in) or separate from each other (out).

∆U RC( ) ∆ω,=

η in out, J( ) θ,=

η in out, J( ) π χe χg+( ) ∞ J,( )–=

−+ χe χg–( ) RC J,( ),

χ R J,( ) J
Rd

R2k R( )
------------------,

Rtp

R

∫=

k R( ) 2µ E U R( )–( ) J2

R2
-----– ,=

160

120

80

40

0 5 10 15 20 25 30 35

θ, deg

J

θin

θout
ηin

ηout

250 50 5

Fig. 1. The deflection functions ηin, out(J) and the angles
specifying the directions of the Condon vectors θin, out(J)

calculated for the collision energy E = 10–3 atomic units at
various frequency detunings: ∆ω = 5, 50, and 250 cm–1.
JOURNAL OF EXPERIMENTAL A
Figure 1 shows the deflection functions ηin, out for
various frequency detunings ∆ω. At θ > θC , where the
angle θC corresponds to the maximum angular momen-
tum JC for which the transition point RC is classically
attainable, the in and out paths contribute to the scatter-
ing through θ. At θr < θ < θC , where θr is the minimum
of the deflection function ηout , both paths correspond to
the transition during the separation. The range of angles
θ < θr is classically unattainable. Since θC and θr are
close, we assume below that the semiclassical Condon
approximation is suitable for analyzing the differential
scattering cross sections in the range of angles θ > θC ,
where the scattering is determined by the sum of the
contributions from the in and out paths.

When the linear polarization vector lies in the colli-
sion plane, the expressions for the scattering amplitude
and differential cross section calculated in the semiclas-
sical Condon approximation are [2]

(24)

(25)

Here,

are the single-path scattering cross sections obtained
without the spherically asymmetric part of the interac-

tion ,

is the Landau probability calculated for a single pas-
sage through the nonadiabaticity region [17], VC =
V(RC) is the interaction matrix element at the term
crossing point RC ,

is the difference between the forces at RC , and kC =
ke(RC) = kg(RC) is the relative momentum of the atoms

f FC θ θp,( )
ki

k f

----- 
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Fig. 2. The total cross sections σ|| (solid lines) and σ⊥  (dashed lines) calculated for the collision energy E = 10–3 atomic units: the
blue (a) and red (b) wings of the forbidden line.
at RC . The phases φin, out are defined by the formulas

(26)

(27)

where

are the classical action functions, and δJ are the quasi-
classical WKB asymptotics for the scattering phase
shifts δl. The angles θin, out specify the directions of the

Condon vectors , i.e., the directions of the inter-
nuclear axis at the times of the radiative transitions,

(28)

Figure 1 shows the functions θin, out(J) for various radi-
ation frequencies.

Formulas (24) and (25) correspond to the leftward
scattering (ϕ = 0); when the scattering into the right
half-plane (ϕ = π) is considered, θp should be substi-
tuted with π – θp . The factors cos(θin, out – θp) represent

the angular part of the dipole interaction operator V( ).

In the case of a right-hand or left-hand circular
polarization in the collision plane, the differential scat-
tering cross section is

(29)

The total scattering cross sections for parallel and per-
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2δin out, J( ) δe
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σin

2
-------

σout

2
--------+=

+ σinσout( )1/2 φin φout– θin θout–( )±( ).cos
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pendicular linear polarizations are given by the formulas

(30)

Adding /3 and /3 yields a well-known
expression for the total cross section of a nonadiabatic
transition (see, e.g., [18]), in which the factor 1/3
implies that, on average, only a third of the quasi-mol-
ecules have a dipole moment oriented along the polar-
ization vector under gas-cell conditions.

3. RESULTS OF CALCULATIONS

3.1. Total Scattering Cross Sections 

Calculating the differential (11) and total (14) scat-
tering cross sections is reduced to calculating the
S-matrix elements (8) and summing over the partial
cross sections. For the collision energy E = 10–3 atomic
units under consideration, ~40 partial waves should be
included in the summation (see Fig. 1). The interaction
potentials of the atoms in both the ground and excited
quasi-molecular states are purely repulsive, thereby rul-
ing out the possibility of orbiting effects and the forma-
tion of quasi-bound states. For this reason, the calcula-
tion of the S-matrix elements can be simplified signifi-
cantly by using uniform Langer approximations (see,
e.g., [19]) for the radial wavefunctions of the initial and
final states:

(31)

σ||
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Fig. 3. Partial cross sections  (solid lines) and  (dashed lines) versus angular momentum l calculated for the collision energy

E = 10–3 atomic units at various frequency detunings: ∆ω = 50 (a) and –50 cm–1 (b).

σ||
l σ⊥

l

where

Ai is the Airy function.
The total cross sections calculated using formulas (14)

and (8) are shown in Fig. 2. In the blue wing of the for-
bidden spectral line, the cross section for a perpendicu-
lar polarization dominates over the cross section for a
parallel polarization. As the frequency detuning
decreases, the difference between the cross sections for
parallel and perpendicular polarizations approaches
zero, so that the cross section becomes polarization-
independent at ∆ω = –14 cm–1. As the detuning
decreases further, the situation changes and the cross
section for a parallel polarization begins to dominate
over the cross section for a perpendicular polarization.

The relative behavior of the cross sections for paral-
lel and perpendicular polarizations in the blue wing can
be understood on the basis of the semiclassical Condon
approximation (30). Since the interaction between
ground-state atoms is a short-range one, to a first
approximation, we can set Ug ≡ 0; the directions of the
Condon vectors are defined by simple formulas:

(32)

Substituting θin, out from (32) into Eqs. (30) and inte-

grating over the angular momentum yields  = .
Thus, in the absence of interaction between ground-
state atoms, the total cross section is polarization-inde-
pendent. Including the short-range repulsion in the
ground-state potential causes an increase in the factor
sin2θout and, accordingly, a decrease in cos2θout for
small impact parameters, b < 6 (J < 20), with the cross

ξ R( ) 3
2
---S R( ) 

 
2/3

,=

θin π J
kiRC

-----------, θoutarcsin–
J

kiRC

-----------.arcsin= =

σ||
FC σ⊥

FC
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section  becoming larger than . As the fre-
quency detuning ∆ω decreases, the Condon radius RC

tends to infinity; the range of impact parameters that
contribute to the cross section grows, so that the relative
contribution from the range of small impact parameters
that actually determines the difference between σ⊥  and
σ|| becomes progressively less significant.

Figure 3 shows the partial cross sections for parallel
and perpendicular polarizations. The following pecu-
liarities can be noted for all radiation frequencies. First,

the cross section  becomes zero at l = 0. Second, the

cross section  dominates over  for large l, while
the reverse is true for small l. Indeed, the radiative tran-
sitions for paths with large impact parameters occur
when the internuclear axis is nearly perpendicular to
the initial relative velocity vector of the colliding
atoms, with the dipole interaction being at a maximum
for perpendicularly polarized radiation. In contrast, for
small impact parameters, the internuclear axis is nearly
parallel at the times of the radiative transitions.

3.2. Differential Cross Sections 

Figure 4 shows the differential cross sections σz(θ)
and σx(θ) calculated for parallel and perpendicular lin-
ear polarizations in the collision plane (ϕ = ϕp). The fig-
ures demonstrate the great difference between the cross
sections σz(θ) and σx(θ) in both the blue and red wings
of the forbidden spectral line. A characteristic feature of
the cross section σx(θ) is that it becomes zero at θ = 0.
Indeed, the emission of a photon with the spin projec-
tion mph = ±1 for the 1S  1S transitions causes the
projection of the relative angular momentum of the
atoms m to change by ±1, which is not possible for the
strict forward scattering (for θ = 0, we have mi = mf = 0).
In contrast, the cross section σz(θ) has a distinct maxi-

σ⊥
FC σ||

FC

σ⊥
l

σ⊥
l σ||

l
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Fig. 4. The differential cross sections qz(θ) = (dσz/dΩ)/σ (solid lines) and qx(θ) = (dσx/dΩ)/σ (dashed lines) calculated for two mutu-

ally perpendicular polarizations in the collision plane. The calculation was performed for the collision energy E = 10–3 atomic units
at various frequency detunings: ∆ω = 50 (a) and –50 cm–1 (b). The cross sections were normalized by the condition

 = 1.
2π
3

------ qx qz+( ) θsin θd
0
π∫
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Fig. 5. The differential cross sections q(θ, θp) = (dσ(θp)/dΩ)/σ calculated for a linear polarization, θp = 45°, in the collision plane.

The calculation was performed for the collision energy E = 10–3 atomic units at various frequency detunings: ∆ω = 50 (a), 0 (b),
and –50 cm–1 (c). The negative and positive values of θ correspond to the leftward and rightward scatterings, respectively. The cross

sections were normalized by the condition  = 1.
2π
3

------ q θsin θdπ–
π∫
mum at θ = 0, which is similar in nature to the glory
effect. At small frequency detunings ∆ω, when the rain-
bow angle θr is close to zero (see Fig. 1), almost all of
the particles that have passed to an excited state during
their separation are scattered through small angles, with
the bulk of the cross section σz being concentrated near
the central maximum.

Figures 5 and 6 demonstrate the left–right scattering
asymmetry in the plane formed by the vectors ki and e
for linear and circular polarizations. Figure 5 shows the
differential cross sections calculated using formula (17)
for the polarization angle θp = 45°. The left–right scat-
tering asymmetry is attributable to the asymmetric
location of the polarization vector in the scattering
plane. Thus, for example, in the range of parameters
where the Condon approximation is admissible, the
scattering into both the left and right half-planes is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
defined by Eq. (25). However, as was noted above,
when the scattering into the right half-plane is consid-
ered, the polarization angle θp should be substituted
with π – θp . An interesting feature of the differential
cross section is the disappearance of the scattering
asymmetry for small θ at ∆ω ≈ 0 (Fig. 5b). As more
accurate calculations show, the asymmetry disappears
for E = 220 cm–1 = 10–3 au at ∆ω = 0.3 cm–1 and for E =
100 cm–1 at ∆ω = –2.3 cm–1. The above feature is attrib-
utable to the interference between the particle beams
scattered into different half-planes and cannot be
explained in terms of the classical ideas of scattering.
Nevertheless, a qualitative interpretation based on the
Condon approximation can be offered.

As follows from Eq. (17), the left–right scattering
asymmetry disappears when the real part of the product
SICS      Vol. 101      No. 5      2005
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scatterings, respectively. The cross sections were normalized by the condition  = 1.
2π
3

------ qr l, θsin θdπ–
π∫
f0(θ) (θ) becomes zero. Let us substitute the Leg-
endre functions in Eqs. (6) with their asymptotic
expressions at small θ (see, e.g., [20]). To the first order
in θ, we have

Given also that the small-angle scattering is determined
by large l (in our case, l > 20; see Fig. 1) and making
the standard (for large l) substitution of integration for
summation, we obtain

(33)

Using the Condon approximation for the S matrix ele-
ments (see, e.g., [11]) and given that

and that the small-angle scattering is formed mainly by
the atoms that have passed to an excited state during

f 1*

Pl θcos( ) 1, Pl
1 θcos( ) l l 1+( )θ

2
---.≈ ≈

f 0 θ( ) 4kik f( ) 1/2– Sl 1 l→– Sl 1 l→+–( )J J ,d

0

∞

∫=

f 1( ) θ( ) 4kik f( ) 1/2– θ
2
---=

× Sl 1 l→– Sl 1 l→++( )J2 J .d

0

∞

∫

2δin out, J 1 J±( )

=  2δin out, J J( ) θin out, J( ) π
2
---– 

 ±
JOURNAL OF EXPERIMENTAL A
their separation, we obtain

(34)

As we see from Fig. 1, the deflection function ηout for
∆ω  0 is almost zero at J > 20, so that the scattering
phase

is close to a constant over the entire integration range
significant for small θ. Factoring exp(i2δout) outside the
integral signs, we find that the complex phases for the
scattering amplitudes f0 and f(1) differ by π/2, with
Re[ ] = 0. Thus, we conclude that the disappear-
ance of the left–right scattering asymmetry at ∆ω ≈ 0
has the same origin as the spike in the differential cross
section σz(θ) at θ = 0 and is directly related to the short-
range nature of the interaction between ground-state
atoms.

Figure 6 shows the differential cross sections calcu-
lated using formula (20) for left-hand and right-hand

f 0 θ( ) i
iπ
4
----- kik f( ) 1/2–exp–=

× PL1
1/2 i2δout( ) θoutJ J ,dcosexp

0

JC

∫

f 1( ) θ( ) iπ
4
----- kik f( ) 1/2– θ

2
---exp–=

× PL1
1/2 i2δout( ) θoutJ

2 J .dsinexp

0

JC

∫

2δout ηout Jd∫=

f 0 f 1( )*
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circular polarizations in the scattering plane. The cross
sections demonstrate a displacement of the oscillatory
structure to the left for a right-hand circular polariza-
tion and to the right for a left-hand circular polarization,
in agreement with the results of [2]. Using Eq. (29), we
can obtain a simple semiclassical estimate for the dis-
placement ∆θ between the oscillatory structures of the
cross sections that correspond to right-hand and left-
hand circular polarizations:

(35)

As comparative calculations show, this estimate allows
the displacement between the maxima of the differen-
tial cross sections for right-hand and left-hand circular
polarizations to be determined to within 5% for θ > θC .

4. CONCLUSIONS

Using the first order of the distorted-wave method in
combination with uniform Langer approximations for
the radial wavefunctions of the initial and final quasi-
molecular states, we were able to calculate the differen-
tial and total cross sections for radiative–collisional
excitation of a metastable state in one of the colliding
atoms at various radiation polarizations over a wide
range of radiation frequencies, including both wings
and the line center of the forbidden atomic transition.
The suggested approach imposes certain constraints on
the ranges of admissible collision energies and radia-
tion intensities. Our estimate of the interaction matrix
element shows that the upper limit for the radiation
intensities admissible for the distorted-wave method is
~1011 W cm–2 at collision energies of E ~ 10–3 atomic
units. For its part, using the Langer approximations for
the wavefunctions excludes the effects related to orbit-
ing and resonant scattering at quasi-discrete levels from
the analysis. The latter sets a lower limit for the admis-
sible collision energies that is comparable to the depth
of the potential wells attributable to the forces of polar-
ization attraction between atoms; it is ~20 cm–1 for
reaction (1).

Invoking the Condon approximation made it possi-
ble to qualitatively interpret a number of peculiarities of
the total and differential cross sections in the blue wing
of the forbidden spectral line. At the same time, this
approximation does not allow the structure of the cross
sections in the red wing to be interpreted correctly. This
interpretation may prove to be possible on the basis of
a uniform quasi-classical approximation [10–12, 21]
generalized to the case of a spherically asymmetric
interaction between atoms.

In conclusion, we would like to point out the topi-
cality of the world’s first experiment on studying the
angular distributions of the atoms produced during
reaction (1) or a similar reaction that leads to the exci-
tation of a metastable state in one of the colliding
atoms.

∆θ 2
θin θout–
J in Jout–
--------------------.=
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Abstract—X-ray diffraction is experimentally studied in the Laue geometry in a germanium crystal carrying a
long-wave ultrasonic wave that creates an alternating lattice deformation along the sample surface. Strobo-
scopic equipment is used to separate different phases and, correspondingly, different profiles of a spatial defor-
mation distribution from the periodic deformation. A uniform deformation is shown to change the angular posi-
tion of the X-ray beam, and a nonuniform deformation broadens the angular region of reflection and decreases
the peak intensity. Ultrasound can be used to compensate for the static deformation at the place where the sin-
gle-crystal sample and the resonator are glued together. Apart from the fundamental long-wave harmonic, the
crystal contains a parasitic deformation with a shorter wavelength. A simple theoretical model is developed, and
it rather accurately describes the experimental results. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

X-ray diffraction in crystals subjected to elastic
deformation is now an actively developing field in solid
state physics.

In many works dealing with X-ray-acoustic interac-
tions, researchers attempted to obtain information on
the structure of elastic vibrations using X-ray diffrac-
tion. This information is important for physical acous-
tics; moreover, it is widely used to determine the
parameters and quality of various piezoelectric and
acoustoelectric devices. Some works deal with study-
ing the fundamental features of X-ray-acoustic interac-
tion, such as an X-ray-acoustic resonance [1] resulting
in the suppression of the Borrmann effect with ultra-
sound of a certain frequency.

The possibility of controlling the parameters of an
X-ray beam with ultrasound is also of interest; how-
ever, the physical foundations of this control depend
substantially on the elastic-strain wavelength. We can
distinguish two main groups of interaction for different
relations between the elastic-strain wavelength Λ and
the crystal surface region illuminated by an X-ray
beam D.

(1) High frequencies, where D @ Λ. In this range, an
elastic wave forms a superlattice with a period equal to
the ultrasound wavelength. This superlattice results in
the formation of additional X-ray diffraction maxima—
satellites. This range is studied in most works dealing
with X-ray acoustics (e.g., see [2–6] and references
therein).

(2) Low and medium frequencies, where Λ @ D.
This range features an aperiodic (uniform or gradient)
1063-7761/05/10105- $26.000770
lattice deformation across the section (aperture) of the
X-ray beam, and this range is poorly understood.

At present, works on controlling the X-ray beam
amplitude with ultrasound are being advanced. A large
set of works dealt with the modulation of an X-ray
beam by ultrasound [2–5]. In essence, the authors of
these works propose electronic analogs of a mechanical
interrupter—a chopper [6]. Work [7] on modulation by
long-wave ultrasound is also of interest.

Ultrasound can also be used to change the angular
position of the diffracted X-ray beam. In the case of low
frequencies, this control can be reached by a uniform
change in the lattice parameter across the X-ray beam
aperture due to the mechanical deformation of an ultra-
sonic wave in the crystal. Long-wave ultrasound can
also create a gradient elastic deformation in the crystal,
which affects the structure of the X-ray beam.

Controlling the spatial position and structure of the
X-ray beam with long-wave ultrasound has only been
studied in [8, 9]. The authors of these works showed
that fresh opportunities for developing controlled X-ray
optics appear in the case of low-frequency bending
ultrasonic vibrations for Bragg diffraction.

In this work, we theoretically and experimentally
study the effect of long-wave ultrasonic vibrations on
the characteristics of an X-ray beam under conditions
of dynamical diffraction. We think that our results can
serve as a basis for long-wave ultrasonic vibrations to
be applied for controlling the angular position and spa-
tial structure of the X-ray beam.

By analyzing the use of bending vibrations in the
Bragg geometry, we revealed substantial difficulties in
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. X-ray optical schematic diagram of the experimental setup.

0.2 × 8 mm2

Ge sample
practical realization of this scheme. Therefore, we
designed and actualized a scheme using long-wave
ultrasonic vibrations for Laue diffraction. In this work,
we present the results of the first stage, where we exper-
imentally confirm and theoretically ground the possi-
bility of controlling the spatial characteristics of the
X-ray beam using diffraction in a crystal subjected to
long-wave ultrasonic vibrations. In the next section, we
describe a designed experimental scheme. In Section 3,
we present the time-integrated and stroboscopic exper-
imental results. In Section 4, we develop a theoretical
model to analyze the results obtained and show that this
model can adequately describe the structure of the
appearing deformation from the angular dependence of
the intensity of the diffracted X-ray beam.

2. EXPERIMENTAL SCHEME
The experimental setup was based on a TRS-1 X-ray

spectrometer [10]. The X-ray optical scheme of the
experiment is shown in Fig. 1. We used a double-crystal
dispersion-free X-ray diffraction scheme, MoKα1 radi-
ation, and a 0.2 × 8-mm2 radiation-source focus. The
angle of the main goniometer was set to an accuracy of
0.1″. After a crystal monochromator, the collimated
beam passes through a 0.2-mm slit in the diffraction
plane and falls on the crystal to be studied, where it is
subjected to periodic ultrasonic vibrations. The inten-
sity of the diffracted X-ray beam is measured by a BDS
scintillation detector.

As the monochromator and samples, we used sin-

gle-crystal [110] and [ ] germanium plates, respec-111
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tively. In both cases, we generate the symmetrical (220)
reflection: the monochromator was in the Bragg dif-
fraction position, whereas the sample was in the Laue
diffraction position.

2.1. Scheme for the Excitation
of Ultrasonic Vibrations 

We used the resonance vibrations of an elastic lon-
gitudinal wave along the sample in the Laue diffraction
geometry. When vibrations are excited in the crystal, a
standing wave with the spatial deformation-amplitude
distribution shown in Fig. 2a forms in the ideal case
(pure mode). The deformation distribution along the
crystal is seen to have the shape of a half-sinusoid with
nodes at the sample ends and an antinode at its center.
At the center of the crystal, the deformation distribution
is quasi-uniform; at its periphery, a near-linear defor-
mation gradient appears just as a deformation is created
in statically bent gradient X-ray monochromators. The
difference from this static case consists in a periodic
change in the deformation in time.

The samples were 19.5 × 10 × 0.4 mm3 in size, and
their working surface was elongated in the [110] axis.
They were part of a composite resonator consisting of a
sample and a piezoelectric crystal resonator glued
together (Fig. 3). An alternating electromagnetic signal
was applied to the lateral faces of the crystal resonator
to create longitudinal elastic vibrations along the crys-
tal. To this end, a conducting platinum or nickel layer
was deposited on the lateral surfaces by cathode sput-
tering.
SICS      Vol. 101      No. 5      2005
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The piezoelectric resonators were made of crystal-
line quartz with the (XYtwl-18.5°/0°/0°) cut or lan-
gasite with the (XYtwl-0°/0°/0°) cut. Such resonators
are the best to provide longitudinal tension–compres-
sion vibrations almost without parasitic excitation of
other vibration types. For effective ultrasound excita-
tion, the resonance frequencies of the sample and the
exciting piezoelectric plate must be coincident. In this
case, when an alternating electromagnetic signal with a
frequency equal to the resonance frequency is applied,
high-Q vibrations appear in the crystal–piezoelectric
element system. Then, an elastic half-wavelength with
a deformation maximum at the center of the crystal is
along the length of each plate (Fig. 2a). If parasitic
vibrations are not excited, the deformation amplitude is
a simple sinusoidal function in space and time (see
Fig. 2b). The interface contains a deformation node;
therefore, we can retain the high-Q state of the reso-
nance system and rather simply generate high vibration
amplitudes.

The resonance frequency of the germanium plate
was 126 kHz. The sizes of the piezoelectric elements
were chosen so that the resonance frequencies were
equal, since vibration excitation was most effective in
this case. To generate a pure vibration mode, the width
of the piezoelectric element was several times smaller
than its length. Using this experimental scheme, we can
measure a rocking curve averaged over the ultrasound
period, i.e., the angular dependence of the intensity of

Ge

0 5 10 15

(a)Quartz

0 5 10 15
Coordinate, mm

π/2

(b)

–π –π/2 0 π

Fig. 2. (a) Estimated spatial distribution of the deformation
amplitude in the resonator and sample and (b) the time vari-
ation of the deformation. The hatched region demonstrates
the area illuminated by the beam of the vibrating crystal.

Quartz Ge [110]

20.1(16) mm 19.5 mm

10 mm

0.4 mm

Fig. 3. Schematic diagram of the composite resonator.

(langasite)
111[ ]
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the diffracted X-ray beam for a small rotation of the
sample about the X-ray beam.

2.2. Reflected-Beam Detecting Unit 

The unit for detecting the intensity of the diffracted
X-ray beam consisted of a scintillation detector of
X-ray quanta, an amplifier with a discriminator, and a
stroboscopic system (Fig. 4). This scheme allowed us to
count X-ray quanta reflected by the crystal under study
both continuously and periodically. The counting sys-
tem processed and converted signals from the detector,
and the stroboscopic system differentiated them with
respect to time (i.e., it presented them as a function of
the crystal vibration phase).

In the stroboscopic experiments, a synchronizing
signal from the sinusoidal-signal generator that excited
the crystal resonator was applied to a pulse generator,
whose main purpose was to form a pulse displaced in
phase with respect to the synchronizing signal. The
pulse generator generated pulses with the crystal-reso-
nator vibration frequency and a controlled phase shift
with respect to crystal-resonator vibrations (the vibra-
tion phase was set to an accuracy of 10%). According
to each incoming pulse, the coincidence circuit allowed
the counting system to count the X-ray quanta reflected
by the sample. The counting time (the time of recording
signals from the detector) was set in the coincidence
circuit and was one-tenth of the resonator vibration
period. Using this scheme, we could detect the dif-
fracted X-ray beam only at a given resonator vibration
phase.

3. EXPERIMENTAL RESULTS

We experimentally studied X-ray-acoustic interac-
tion during the excitation of long-wave ultrasound with
and without stroboscopic analysis. As noted above, in
the absence of excited parasitic vibrations, the defor-
mation amplitude should be a simple sinusoidal func-
tion in space and time. If the crystal length is much
larger than the X-ray beam width, we can change the
distribution (gradient) of the ultrasonic-deformation
amplitude within the X-ray beam width by moving the
crystal with respect to the X-ray beam.

3.1. Time-Integrated Measurements 

Information on an actual deformation distribution
along the crystal can be extracted from the evolution of
rocking curve measured when the position of the X-ray
beam is scanned from the free end of the sample to the
place of gluing with the piezoelectric transducer with-
out stroboscopy. The sample thickness meets the condi-
tions of the Borrmann effect with an absorption factor
µt ≈ 12 (where µ is the linear absorption factor and t is
the sample thickness). The samples, i.e., the germa-
nium plates, have a high quality: the FWHM is close to
the theoretical value and does not exceed 6″ along the
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005
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Fig. 4. General experimental scheme for studying the effect of an ultrasonic wave on X-ray diffraction in the crystal.
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whole plate (the angle measurement error was less than
half a percent, and the intensity measurement error was
less than one percent). The only exception is a region
about 3 mm wide next to the place of gluing with the
piezoelectric transducer, since it excites ultrasonic
deformation. In this region, the rocking curve differs
from a Gaussian shape and has a strongly broadened
asymmetric shape caused by a nonuniform static
mechanical deformation in the germanium crystal.
When ultrasound is turned on, the rocking curve width
increases and the integrated intensity remains the same.
The rocking curve is found to change significantly
depending on the X-ray beam position on the crystal.
We measured the dependence of the FWHM on the X-
ray beam coordinate on the sample (Fig. 5). As follows
from Fig. 5, short-wave modulation is superimposed on
the pure deformation mode, when the half-wavelength
of excited ultrasound is along the sample length. This
finding demonstrates the excitation of additional para-
sitic vibrations and allows us to make preliminary con-
clusions regarding a real deformation distribution in the
sample.

As follows from Fig. 5, the wavelength of the para-
sitic harmonic is 2.5 mm. This distance is much larger
than the X-ray beam width on the crystal (0.2 mm).
Note that this modulation substantially increases the
deformation gradient in some areas of the crystal across
the X-ray beam width. On the other hand, using this
modulation, we can create a situation where the acous-
tic deformation compensates for the static deformation
URNAL OF EXPERIMENTAL AND THEORETICAL PHY
and where the total deformation becomes virtually uni-
form in a certain portion of the sample.

When ultrasound is turned on, the rocking curves in
regions close to deformation maxima are strongly
broadened (by almost an order of magnitude at the
ultrasound amplitudes used) (Fig. 6). In regions with a
strong linear ultrasound-deformation gradient, the
rocking curve shape is asymmetric.

30

25

20

15

10

5

0 50 100 150 200

x coordinate, mm

FWHM, arc-sec

Fig. 5. Dependence of the FWHM on the position of an illu-
minated site on the crystal and the assumed deformation
distribution in the case of a pure deformation mode.
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We detected a rather interesting effect in a statically
stressed region (near the place of gluing with the piezo-
electric transducer). In this region, the rocking curve
has a triangular shape with a large half-width when
ultrasound is turned off. If ultrasound is turned on, the
rocking curve changes its shape from an asymmetric
triangular with a half-width of 50″ to an almost Gauss-
ian shape with a half-width of 15″ (Fig. 7).

3.2. Stroboscopic Measurements 

We performed time-resolved (stroboscopic) mea-
surements in several crystal regions with characteristic
deformation distributions. The first is a central region

15000

10000

5000

0
–30 –20 –10 0 10 20 30

Angular position, arc-sec

1

2

3

Intensity, cps

Fig. 6. Rocking curve for Ge(220) at different ultrasound
powers. The ultrasound intensity is indicated in percent of
the maximum power: (1) without ultrasound, (2) 40%
power, and (3) 100% power.

12000

6000

3000

0
–50 –25 0 25 50 75

Angular position, arc-sec

1

2

Intensity, cps

9000

Fig. 7. Effect of ultrasound on the rocking curve shape of
the Ge crystal at the place of gluing with the crystal resona-
tor: (1) without and (2) with ultrasound.
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with a quasi-uniform deformation distribution across
the beam aperture (region 1). Two other chosen regions
have a gradient deformation distribution. One of them
is near the free end (region 2), where the FWHM with-
out ultrasound is close to the theoretical half-width. The
other region (region 3) is chosen near the place of glu-
ing to study the effect of interaction between static and
dynamic deformations. In each region, we measured a
series of rocking curves as a function of the resonator
vibration phase. The equipment used allowed us to per-
form stroboscopic measurements with a given delay.

Region 1. The rocking curves measured when an
X-ray beam passes through the center of the germa-
nium plate at various resonator vibration phases are
slightly broadened (Fig. 8). The rocking curves mea-
sured at phases ϕ = –π/2 and π/2 are shifted –20″ and
+20″ with respect to the rocking curve recorded at ϕ =
0. These shifts can explain the broadening of the rock-
ing curve recorded without stroboscopy.

In the germanium crystal, the Bragg condition
(more specifically, the Bragg angle) changes because of
a periodic change in the lattice parameter, and the cen-
ter of rocking curve shifts with respect to the normal
(zero) position. In this case, the maximum shift at the
center of rocking curve is 40″; the corresponding
change in the lattice parameter is 0.0023 Å; and the rel-
ative change is 0.11%.

Region 2. We also carried out measurements at
three characteristic values of the vibration phase in the
region near the free end of the crystal, where a linear
deformation gradient is assumed to occur. The results
are shown in Fig. 9. The rocking curve corresponding
to a zero vibration phase is the slightly broadened rock-
ing curve of the germanium crystal in the absence of
ultrasound vibrations. The curves corresponding to
vibration phases ϕ = –π/2 and π/2 were recorded at the
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Fig. 8. Rocking curves measured at different resonator
vibration phases. Points stand for experimental data.
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instant of maximum deformation. They have a complex
asymmetric shape that is close to a distorted asymmet-
ric triangle. The FWHM is several times that of the
ideal germanium crystal. An analysis of the rocking
curve suggests that, within the X-ray beam width, the
deformation is nonuniform and the gradient changes its
sign as the sign of the generator vibration phase
changes.

Region 3. Figure 10 shows rocking curves for the
same vibration phases but in the region near the bound-
ary with the piezoelectric element, where the rocking
curve of the unexcited crystal was strongly and asym-
metrically broadened because of gluing-induced
stresses. In this region, as in the previous case, the ultra-
sound-induced deformation gradient is almost linear.
The curve measured at ϕ = 0, as in the previous cases,
agrees well with the curve measured without strobos-
copy. It has a double-humped shape with a small dip at
its center and maxima spaced approximately 100″
apart. The rocking curve measured at ϕ = –π/2 has a
similar shape, but the intermaximum distance increases
approximately to 140″. The amplitude of the higher
maximum decreases, and the amplitude of the lower
maximum increases by a factor of 1.5. The most inter-
esting effect is observed at a vibration phase ϕ = π/2,
where the amplitude of the higher maximum increases
by about an order of magnitude, and the lower maxi-
mum almost disappears. The intermaximum distance
decreases to 60″. An analysis of these curves suggests
that, at different signs of deformation gradients, the
ultrasound-induced dynamic deformation partly com-
pensates for the static deformation and that the dynamic
deformation enhances the static deformation if their
signs coincide.

4. THEORY

In our experiment, the deformation of the crystal
substantially breaks the space uniformity in the direc-
tion normal to the X-ray beam propagation direction;
therefore, the plane wave method, which is usually
applied to calculate the angular dependences of the
X-ray intensity in the case of diffraction in ideal crys-
tals, is invalid in this case. It should be replaced by the
general scheme developed for the calculation of X-ray
topograms or phase-contrast images (see [11, 12]). In
this scheme, a coherent radiation component is sepa-
rated in the first stage; it is the monochromatic compo-
nent of the spherical wave emitted by individual atoms
in the anode of an X-ray tube or by orbital electrons in
the case of synchrotron radiation. The propagation of
this wave along a preferred trajectory (optical axis) is
described by Kirchhoff’s equations in space and by the
Takagi equations in crystals. At the detector, the electric
field (amplitude) of this wave and the local intensity
(the amplitude modulus squared) depend on the coordi-
nates, and this dependence can be measured with a pho-
tographic film or a position-sensitive detector. If the
detector counts all photons, the recorded dimensionless
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
intensity (the number of photons per measurement
time) is an integral of many parameters with respect to
the coherent intensity. The differential intensity should
be integrated with respect to all wavelengths, to the
source size with allowance for the transverse position
of each atom, and to the detector window size. More-
over, we can use the Huygens–Fresnel principle and
introduce a propagator for not only space but also for a
crystal to describe the diffraction of a point source by
the crystal surface.

We have actualized this calculation scheme, and we
will use it in our subsequent works. In this work, defor-
mation in the sample changes very slowly over trans-
verse distances comparable with the region of diffrac-
tion scattering of a point source located on the sample
surface (the so-called Borrmann delta). Moreover, due
to sufficiently strong absorption, the transverse size of
the diffraction region becomes even narrower. There-
fore, by making allowance for the relatively large sizes
of the source and the slit that limits the beam in front of
the crystal, we can use the so-called “ray” approxima-
tion (not to be confused with geometrical optics used
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Fig. 9. Rocking curve measured for Ge in the Laue geome-
try at three characteristic vibration phases in the crystal
region where the ultrasound-induced deformation gradient
is almost linear.
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Fig. 10. Rocking curve measured for Ge at three character-
istic vibration phases in the statically stressed crystal
region. 
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for coherent radiation) to ensure a reasonable accuracy.
In this approximation, independent trajectories of a
coherent X-ray beam in space are considered for each
wavelength and each transverse coordinate (point) in
the source; when this beam enters the crystal, it is dif-
fracted by a local region in the crystal as a plane wave.

The result of diffraction of such a local coherent
X-ray beam that meets a crystal monochromator and a
sample is a function R(∆θ(s)) that describes the rocking
curve. This function is dimensionless and presents the
convolution of the reflection curves of the monochro-
mator and sample with allowance for the local misfit of
the lattice parameters and the angular positions of these
two crystals. It is important that this function is inde-
pendent of the incident-radiation frequency for a dis-
persion-free scheme. More specifically, the argument is
the difference in the Bragg angles in the sample and
monochromator, which depends on the coordinate of
the incident beam on the sample, since the Bragg angle
depends on the coordinate along the plate surface due
to a deformation in the sample. In this approach, all the
coherent properties of the radiation enter in this func-
tion, and various trajectories of the “rays” that corre-
spond to different source points, different frequencies,
and different detector coordinates are assumed to be
incoherent.

For simplicity, instead of a coordinate x on the crys-
tal, we use a coordinate s on the slit located in front of
the crystal. These coordinates are related by a ray tra-
jectory and are at the opposite ends of the trajectory
from the slit to the crystal. Since the slit is usually
located normal to the optical axis, we have

where C1 is the coefficient that is slightly lower than
unity and is equal to the ratio of the source–slit to
source–crystal distance along the ray trajectory. Thus,
we obtain

where ∆θ0 is the angle of rotation of the sample about
the monochromator; in other words, this is a parameter
that changes in experiment. On the other hand, ∆d(s) is
the change in the interplanar spacing in the sample as
compared to the monochromator. This parameter
depends on the crystal deformation, and it is not known
in advance.

We introduce a dimensionless normalized function
B(δE) to describe the spectral line of the X-ray source as
a function of δE = ∆E/E, where E is the photon energy.
For simplicity, we approximate the slit and source by
rectangles of widths S and P, respectively, located nor-
mal to the trajectory, and the coordinate on the source
is denoted by p. Each trajectory begins at a point p on
the source and ends in a point s on the slit. In the middle
section, the trajectory changes its direction upon reflec-
tion by the monochromator, and the point of reflection
by the monochromator depends on the photon fre-

s C1x θB,cos=

∆θ s( ) ∆θ0 ∆d s( )/d( ) θB,tan–=
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quency. Reflection occurs in a very narrow region,
which serves as a basis for applying the ray approxima-
tion. Having passed through the slit, the beam broadens
substantially after Laue diffraction in the crystal; how-
ever, this is not important for us, since the detector
records the integrated intensity. The only important
parameter is the trajectory coordinate in the crystal.
When considering all possible coordinates for the sig-
nal measured experimentally, we obtain the formula

(1)

Here, the left-hand side contains the dimensionless
integrated intensity (the number of photons); δ(x) is the
delta function; LB = L , where L is the source–
sample distance; and I0 is the differential intensity of
the incident radiation per unit transverse source length
for the whole spectral line width. Like the delta func-
tion, this integrated intensity has the dimension of
reciprocal length. Note that, in the absence of deforma-
tion, all integrals only give the coefficient of propor-
tionality, and the result is equal to I0PR(∆θ0).

In our case, a certain simplification can be made,
since the R(∆θ(s)) function is independent of both the
source coordinate and the photon energy. Due to the
presence of the delta function, one integral is easily
computed, and the result can be written in the form

(2)

Formulas (1) and (2) have common features, and the
result depends substantially on the source and slit sizes
via the F(s) weight function.

In our case, P/2 = S/2 = 100 µm and LB = 11.4 cm.
Thus, for the center of the slit (s = 0), the maximum
argument of the function under the integral taken over
the source coordinates is equal to 10–3. This value
should be compared with the half-width of the MoKα1
spectral line used in the experiment, which is equal to
3 × 10–4 [13]. It is obvious that, at these parameters, the
F(s) function is equal to the integrated value of the
spectral function virtually throughout the whole slit
width, and it only halves at the slit edges. To a first
approximation, we may neglect its shape and change it
into unity; then, we have

(3)

I ∆θ0( ) I0 p s δEB δE( )d

∞–

∞

∫d

S/2–

S/2

∫d

P/2–

P/2

∫=

× δ s p– LBδE–( )R ∆θ s( )( ).

θBtan

I ∆θ0( ) I0LB
1– sF s( )R ∆θ s( )( ),d

S/2–

S/2

∫=

F s( ) pB s p–( )/LB( ).d

P/2–

P/2

∫=

I ∆θ0( ) I0 sR ∆θ s( )( ).d

S/2–

S/2

∫=
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005



POSSIBILITIES OF CONTROLLING AN X-RAY BEAM 777
With this formula, we can rather simply interpret the
experimental curves. The reflection intensity upon dif-
fraction is independent of both the radiation wave-
length and the position of a point source, and it is only
specified by the local difference in the Bragg angles in
the crystal and monochromator. The summation of the
local reflection coefficients does not depend on the tra-
jectory of a certain ray, and it is only determined by the
total illumination of each point inside the slit (and,
hence, on the crystal surface). This illumination is vir-
tually uniform inside the space limited by the slit. If the
deformation is uniform inside the beam width, the
experimental curve should be equal to the curve of the
ideal crystal and the peak position can shift if the defor-
mation is nonzero. This experimental result seems to be
obvious. If the deformation is nonuniform inside the
beam width, we have to integrate the reflection inten-
sity with respect to the beam width by making allow-
ance for the local difference in the Bragg angles at each
point.

The experiment shows that some curves have a
width well above the width of the reflection curve of the
undeformed crystal. In terms of the theoretical model
proposed, this means that the deformation in the sample
changes sufficiently strongly inside the beam width, so
that the region of a changed Bragg angle is significantly
larger than the width of the R(∆θ) function. When ana-
lyzing such curves, we may neglect the width of the
R(∆θ) function and replace it by the R0δ(∆θ) function,
where R0 is the integral of the reflection curve of the
undeformed crystal. From a physical standpoint, this
means that only the part of the beam width having the
corresponding Bragg angles is reflected rather than the
whole beam width. The real intensity for every angle of
crystal rotation is determined by the width of this part.
Assuming that the deformation gradient inside the
beam width does not change its sign and using this
approximation, we obtain the simple formulas

(4)

where C is a normalizing constant to be easily deter-
mined from the sizes of the angular and spatial regions.

The t parameter specifies the local deformation, and
the t(s) function describes the desired deformation pro-
file within the beam width. In real practice, we first
determine

(5)

where t0 and t1 are the boundaries of the angular region
with a noticeable intensity between two pronounced
slopes. The desired t(s) function can readily be deter-

t ∆d/d( ) θBtan ∆θ0, ds/dt CI t( ),= = =

s t( ) S/2– C xI x( ),d

t0

t

∫+=

C S xI x( )d

t0

t1

∫ 
 
 

1–

,=
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mined graphically. It directly demonstrates an interpla-
nar-spacing profile in the beam width.

This simple model is found to reliably reconstruct a
deformation profile within the beam width from an
experimental curve. The experimental curves obtained
in region 3 (Fig. 10) satisfy the conditions of its appli-
cability best of all. Figure 11 shows three curves dem-
onstrating such deformation profiles. The deformation
was determined from the angular position of the crystal,
and the zero mark was set at the same accuracy. The
argument is the position of a point in the illuminated
area. The upper curve was calculated by Eqs. (4) and
(5) from the experimental curve for a phase ϕ = –π/2,
and the middle curve, from the curve for a phase ϕ = 0.
It is obvious that, in the second case, the crystal has
only a static deformation, whereas, in the first case, an
ultrasonic deformation is superimposed on the static
deformation. Both deformations have the same sign,
which increases the lattice deformation.

Note that the purely ultrasonic deformation can be
obtained by the subtraction of the lower curve from the
upper curve. For a phase ϕ = π/2, the result obtained
should be subtracted from the purely static deforma-
tion. The lower curve in Fig. 11 is obtained as a result
of this subtraction. It is seen to have an almost flat long
segment in the region of zero deformation. Therefore,
this region should correspond to a sharp reflection peak
with a width close to the width of the reflection curve
of the undeformed crystal. This behavior was detected
in the experiment (see Fig. 10). Thus, the compensation
of static and dynamic deformations can be described in
terms of the model proposed despite the fact that the
assumption of a weakly changing deformation within a
dynamic diffraction region lies on the boundary of
applicability.
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Fig. 11. Deformation profiles calculated from the experi-
mental data for the region near the place of gluing with the
resonator (see Fig. 10).
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Theoretical analysis supports the assumption that,
apart from the fundamental long-wave harmonic, a par-
asitic harmonic with a smaller spatial period is excited
in the crystal.

5. CONCLUSIONS

We were the first to experimentally show the possi-
bility of both uniform and gradient periodic time mod-
ulation of the lattice parameter by long-wave ultra-
sound. This possibility allowed us to electronically con-
trol the angular position and the spatial structure of an
X-ray beam. When ultrasound is excited in a composite
resonator with a thin sample to be measured, we
detected a parasitic deformation with a significantly
smaller period. This issue has to be studied in more
detail. The static deformation was shown to be compen-
sated for by an ultrasound-induced dynamic deforma-
tion in the crystal.

We developed a simple theoretical model for X-ray
diffraction by a crystal with a spatially nonuniform
deformation that is induced by a long-wave ultrasonic
wave along the sample surface. Using this model, we
described the experimental curves even in the case
where deformation changes relatively rapidly.
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Abstract—We have constructed a theory of dispersion polaritons (localized electromagnetic waves) on arbi-
trarily oriented metallized surfaces of optically uniaxial crystals. The domain of existence of polaritons is
defined by the following inequalities for permittivities εo and εe of the crystal and the angle θ between the opti-

cal axis and the surface: –εe  < εo < 0. Thus, polaritons exist only in the range of wave frequencies ω ensur-
ing negative values of εo(ω) for εe > 0. The frequency boundaries of this region are specified for the case when
the εo(ω) dependence corresponds to the model of a single polar excitation. The azimuthal orientation ϕ of the
optical axis projection onto the surface does not appear in the criterion for polariton existence, but affects
(together with angle θ) its main dispersion characteristics, such as the refractive index and partial wave local-
ization parameters. This effect is analytically described in detail. Anomalies in the behavior of polariton param-
eters are studied in the vicinity of the boundaries of the domain of its existence, where the wave fields are espe-
cially sensitive to variations in the angles θ and ϕ. It is shown that a polariton in the plane of propagation (sag-
ittal plane) passing through the optical axis is transformed into a one-partial bulk wave satisfying the boundary
conditions. Accordingly, the wave branch under investigation for close orientations (when the optical axis forms
a small angle with the sagittal plane) describes deeply penetrating (quasi-bulk) polaritons. © 2005 Pleiades
Publishing, Inc. 

θtan
2

1. INTRODUCTION

It is well known [1–6] that localized electromag-
netic waves (polaritons) can propagate under certain
conditions along certain directions on the surface of a
crystal in contact with an isotropic dielectric. Such
modes appear due to strong frequency dispersion of the
crystal permittivity tensor  in the vicinity of certain
resonance states [1–3], for which the tensor compo-
nents of (ω) can be negative. It was shown in [4–6],
however, that surface polaritons can also exist in crys-
tals (owing to dielectric anisotropy) in an ordinary dis-
persion-free version, when tensor  is positive definite
and weakly depends on the wave frequency ω.

A metal coating deposited on the crystal surface
serves as a reflecting screen confining the electromag-
netic field in the crystal. In accordance with the general
theory [7], dispersion-free polaritons in principle can-
not exist in this case. We will demonstrate here that this
prohibition on the existence of polaritons at a metal-
lized surface can be removed if we do not impose the
condition of positive definiteness of tensor  (i.e., we
consider the situation when components of (ω) can
assume negative values).

The theory of localized electromagnetic waves on
the “open” surface of a crystal in contact with a dielec-
tric is usually quite cumbersome even for uniaxial crys-

ε̂

ε̂

ε̂

ε̂
ε̂
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tal and permits analytic solutions only for preferred sym-
metric orientations of the surface and directions of prop-
agation (see, for example, [3, 5, 6]). It turned out that the
theory of surface polaritons at a metallized boundary of
a uniaxial crystal is simpler from the mathematical point
of view and can be constructed in a general analytic form
for an arbitrary geometry of the problem.

In this paper, we determine the conditions for prop-
agation of such polaritons in optically uniaxial crystals
and establish the domain of their existence, which is
defined by certain relations between the components of

 and the angle θ between the optical axis and the sur-
face. It is important that the azimuthal orientation ϕ of
the optical axis projection onto the surface plane does
not appear in the criterion for the emergence of such
polaritons. Nevertheless, the main parameters of a
polariton naturally depend on the azimuth. The orienta-
tion dependences of polariton characteristics, as well as
the properties of polaritons near the boundaries of the
domain of their existence, will be studied analytically
in detail. The boundaries of this domain will be speci-
fied for the case when the dispersion branch εo(ω) of the
ordinary wave corresponds to the model of a single
polar excitation.

It will be shown that the polariton considered here is
transformed into an exceptional bulk wave in the spe-
cial case when the optical axis of the crystal is parallel
to the sagittal plane defined by the set m and n of the

ε̂
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direction of propagation and the normal to the surface.
In the vicinity of this orientation, when the angle
between the optical axis and the sagittal plane is small,
weak localization of the wave is observed; i.e., the
polariton becomes a quasi-bulk mode. Analogous trans-
formations of exceptional bulk waves into quasi-bulk
waves are well known in crystal acoustics [8, 9].

2. FORMULATION OF THE PROBLEM

Let us consider a semi-infinite optically uniaxial
medium with an arbitrarily oriented metallized bound-
ary. We choose the Cartesian system of coordinates
with the y axis directed along the inward normal n to
the surface and the x axis directed along the propaga-
tion vector m. In this case, the xy plane coincides with
the sagittal plane of the wave and the xz plane coincides
with the crystal surface (Fig. 1). In this system of coor-
dinates, the orientation of the optical axis defined by
unit vector c is defined by two angles (θ and ϕ).

The wave fields studied here can be represented as a
superposition of two partial (ordinary and extraordi-
nary) components. Subscripts “o” and “e” mark the
corresponding wave parameters. In the general case,
the structure of such fields has the form

(1)

(2)

E x y t, ,( )
H x y t, ,( ) 

 
 

=  Co
Eo y( )
Ho y( ) 

 
 

Ce
Ee y( )
He y( ) 

 
 

+
 
 
 

× ik x v t–( )[ ] ,exp

Eo y( )
Ho y( ) 

 
  Eo

0( )

Ho
0( )

 
 
 
 

qoky–( ),exp=

Ee y( )
He y( ) 

 
  Ee

0( )

He
0( )

 
 
 
 

ip qe–( )ky[ ] .exp=

Fig. 1. System of coordinates xyz and orientation of the
optical axis c of the crystal relative to this system.
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Here, E and H are the electric and magnetic field
strengths, respectively; k is the common x component
of the wavevectors of the ordinary and extraordinary
partial waves (k = ko · m = ke · m); v  = ω/k is the
reduced phase velocity of the wave; and Co and Ce are
the amplitude factors determined from the boundary
conditions. Complex wavevectors ko and ke appearing
in formulas (1) and (2) differ only in the components
normal to the surface:

(3)

For our purposes, it is more convenient to use the cor-
responding dimensionless refractive vectors

(4)

Here, k0 = ω/c, where c is the velocity of light in vac-
uum, and n = k/k0 = c/v  is the dimensionless slowness
of the wave, which is also known as the refractive
index.

Parameters qo, qe , and p appearing in Eqs. (2)–(4)
depend both on the material characteristics of the crys-
tal (εo and εe) and on the orientation of the unit vector
of optical axis c = (c1, c2, c3) relative to the surface.
Using general relations in the optics of uniaxial crys-
tals [10–12], we can easily obtain these dependences in
explicit form,

(5)

where the following notation has been introduced:

(6)

The value of refractive index n appearing in expres-
sions (5) must be determined from the boundary condi-
tions. According to [10], a specific feature of the bound-
ary conditions for a crystal with a metallized surface is
that the tangential electric field components Et vanish at
the surface:

(7)

This relation automatically implies that the normal
components of magnetic field H and Poynting’s vector
P = E × H also vanish at the surface:

(8)

ko k 1 iqo 0, ,( ), ke k 1 p iqe 0,+,( ).= =

no ko/k0 n 1 iqo 0, ,( ),= =

ne ke/k0 n 1 p iqe 0,+,( ).= =

qo
2 1

εo

n2
-----, qe

2– B
εoA
--------- 1

n2
-----– 

  εe

A
----,= =

p
εo εe–( )c1c2

εoA
------------------------------,=

A 1 c2
2

1 1
κ
---+ 

  ,–=

B 1 c3
2 1 κ+( ), κ–

εo

εe
----.–= =

Et surf 0.=

Hn surf 0, Pn surf 0.= =
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3. DISPERSION RELATION AND DOMAIN
OF EXISTENCE OF POLARITONS

For an arbitrary orientation of the optical axis rela-
tive to the crystal surface, the vector amplitudes of elec-
tric and magnetic fields can be written in the following
specific form [10–12]:

(9)

Taking into account these relations, we can reduce
boundary conditions (7) and (8) for superposition (1) and
(2) of the ordinary and extraordinary waves under
investigation to the equation

(10)

where the function

has been introduced. Nonzero amplitudes Co, e ,

, (12)

exist if the determinant of the matrix in Eq. (10)
vanishes:

(13)

In the complex dispersion equation (13), the real and
imaginary parts must vanish simultaneously:

(14)

For brevity, we introduced the notation s = ε0/n2. After
cumbersome calculations, we can prove that the prob-
lem is not overdetermined and each equation in (14)
can be reduced to the same real quadratic equation in
unknown s. An analogous result has been obtained in
the general theory of surface polaritons in crystals with

Eo
0( )

Ho
0( )

 
 
 
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1
n
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 

c ne ne c⋅( )/εo–

ne c× 
 
 

.=

iqoc1 c2– c3

iqoc3/n2 gc1 iqec2/εo+ 
 
 
 
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Ce 
 
 

0,=

g n( ) 1
εoA
--------- 1

n2
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iqoc1– c2+
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f n( ) g n( )c1
iqe n( )c2

εo
--------------------+ 

 =

× c2 iqo n( )c1–( )n2 iqo n( )c3
2+ 0.=

s 1/A– qo s( )qe s( )– 0,=

s 1 c2
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2/A–[ ] qo s( ) c2
2+ 0.=
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positive definite  [7, 13, 14]. The roots of the resultant
equation have the form

(15)

In this expression, radical r > 0 is defined by the rela-
tion

(16)

The sought localized wave fields can correspond to
only those roots s± in relation (15) which ensure posi-
tive values of parameters n2, qo, and qe . For such roots,
the initial system of equations (14) is solvable if the ine-
qualities

(17)

which are compatible only for A < 0, hold. It can be

seen from formula (16) that |A + | < r in this case also;
consequently, only root s+ from the two roots (15) is neg-
ative and can satisfy system of inequalities (17). Hence,
the dispersion of a polariton in the domain of its exist-
ence is defined by the equation

(18)

To find this domain, we note that the negative value
of the root s+ ≡ ε0/n2 < 0 leads to the necessary condition
for the existence of a polariton:

(19)

On the other hand, taking into account relations (6), we
note that the inequality A < 0 is equivalent to the
requirement

(20)

where θ is the angle of inclination of the optical axis
(see Fig. 1). It follows from relation (20) that, in addi-
tion to necessary negativeness of component εo (19),
positiveness of εe should also be ensured for the exist-
ence of a polariton:

(21)

The system of inequalities (19)–(21) defining the
domain of existence of polaritons can be represented in

ε̂

s±
A c1

2 r±+

2A 1 c2
2–( )

--------------------------.=

r2 A c1
2+( )2

4A 1 c2
2–( ) 1 c3
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=  A c1
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4Ac2
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2.–

1
A
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1
A
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c1
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---------------,< <
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ε0 A c1
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2 1 c3
2
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---------------------------------.= =

εo 0.<

0 κ
εo

εe
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2
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qe(ϕ, θI)

qo(ϕ, θI)

qo(ϕ, θ1)

qe(ϕ, θ1) qe(ϕ, θII)

qo(ϕ, θII)

ϕcr

θ1θ0 θ2

ϕc

θ3

qo(ϕ, θIII)

qe(ϕ, θIII)

qo(ϕ, θIV)

qe(ϕ, θIV)

qo(ϕ, π/2)

qe(ϕ, π/2)

π/2

n(ϕ, π/2)

ϕ π/20

IVIIIII

n(ϕ, θIV)

ϕ π/20

n(ϕ, θIII)

ϕ π/20

n(ϕ, θII)

ϕ π/20

n(ϕ, θ1)

ϕ π/20

n(ϕ, θI)

ϕ π/20

I

Fig. 2. Schematic diagram of dispersion curves qo(ϕ, θ), qe(ϕ, θ), and n(ϕ, θ) for fixed values of θ (marked by arrows) in four regions
of the polariton domain for θ0 < θ ≤ π/2.

θ

a more compact form:

(22)

4. DEPENDENCE OF POLARITON PARAMETERS 
ON THE OPTICAL AXIS ORIENTATION

It is interesting to note that domain (22) of admissi-
ble variations of the parameters of the medium depends
only on angle θ between the optical axis and the surface
and not on its azimuth ϕ (see Fig. 1). This naturally
does not rule out the azimuthal dependence of the main
polariton characteristics such as refractive index n (18)
and localization parameters qo and qe (5):

(23)

Taking into account (6) and the explicit relation of the
components of vector c with spherical angles θ and ϕ

εe θtan
2

– εo 0.< <

qo
2 1

2 1 c3
2–( )

A c1
2 r–+

-----------------------– 1
A c1

2 r+ +

2A 1 c2
2–( )

--------------------------,–= =

qe
2 1

κ A2
---------

A c1
2

r+ +

2 1 c2
2–( )

----------------------- B–
 
 
 

.=
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(see Fig. 1)

(24)

it can easily be verified that all functions n(ϕ, θ),
qo(ϕ, θ), and qe(ϕ, θ), when plotted as polar diagrams in
ϕ for a fixed θ, are symmetric about straight lines ϕ = 0
and ϕ = π/2; consequently, the complete pattern of the
behavior of these functions in any cross sections θ =
const is fully characterized by an interval of 0 ≤ ϕ ≤ π/2.
If we use conventional plots of these functions of argu-
ment ϕ in the given interval instead of polar diagrams
for mapping the above-mentioned azimuthal depen-
dences, these plots must have horizontal tangents at the
ends of this interval since their first derivatives with
respect to ϕ are proportional to sin2ϕ. For any fixed
angle θ, function n(ϕ, θ) increases monotonically,
while function qo(ϕ, θ) decreases monotonically in the
interval 0 < ϕ < π/2 (see Fig. 2), remaining, however,
greater than unity (see Eqs. (5)):

(25)

The behavior of the function qe(ϕ, θ) is as follows,
for ϕ = 0, irrespective of the value of θ, we have

(26)

c c1 c2 c3, ,( ) θ ϕ θ θ ϕsincos,sin,coscos( ),= =

qo 1.≥

qe 0 θ,( ) 0.=
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In the same interval 0 ≤ ϕ ≤ π/2, function qe(ϕ, θ) at θ =
const can exhibit different modes of behavior depend-
ing on the range in which angle θ falls. In the domain
of polariton existence (22), we must distinguish
between four such regions (Fig. 2):

(27)

whose boundaries are determined by the relations

(28)

where

(29)

For angles of inclination θ belonging to regions I, II,
and IV, function qe(ϕ, θ) increases monotonically with
angle ϕ, while for values of θ fixed in region III, this
function only does not decrease monotonically, having
a “cubic” point of zero slope for the azimuth ϕc(θ)
defined by the equation

(30)

In other words, two derivatives of function qe(ϕ, θ) with
respect to ϕ must vanish simultaneously at point ϕc

(i.e., (ϕc, θ) = (ϕc, θ) = 0), and the function must
exhibit a very low sensitivity to variations of ϕ in the
vicinity of angle ϕc (see Fig. 2):

(31)

With increasing angle θ, the position of point of inflec-
tion ϕc (30) in region III shifts from the right to the left
end of the interval 0 ≤ ϕ ≤ π/2.

It should be noted that curves qo(ϕ) and qe(ϕ) inter-
sect only for angles θ fixed in region I (i.e., for ϕ =
ϕcr(θ); see Fig. 2):

(32)

As the value of angle θ increases in interval I, the posi-
tion of the azimuth of intersection ϕcr (32) changes
from ϕcr = π/4 to π/2.

I( ) θ0 θ θ1, II( ) θ1 θ θ2,< << <
III( ) θ2 θ θ3, IV( ) θ3 θ π/2,< << <

θ0 κ , θ1arctan κ1,arctan= =

θ2 κ2, θ3arctan 2κ 1+ ,arctan= =

κ1
1
4
--- 3κ 1– 9κ 2

10κ 1+ ++( ),=

κ2
1
4
--- 3κ 2 9κ 2

4κ 4+ ++ +( ).=

ϕcsin 2 θ 1 2κ( ) 1– 1 θtan
2

–( )+[ ]
1/2

.sin=

qe' qe''

qe ϕ θ,( ) qe ϕc θ,( ) λ ϕ ϕ c–( )3, λ 0.>+≈

2ϕcrcos 1 θsin
2

+( ) 1 κ 1– θtan
2

–( ).=
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Let us introduce the total azimuthal dispersions for
polariton localization parameters qo(ϕ, θ) and qe(ϕ, θ)
for a fixed value of θ:

On the basis of Eqs. (23), we can easily verify that all
functions qo(0, θ), qo(π/2, θ), and ∆qo(θ), as well as
∆qe(θ) = qe(π/2, θ), decrease monotonically with
increasing angle θ in the domain of polariton existence.
In the same interval, functions n(0, θ) and n(π/2, θ)
increase monotonically in accordance with Eqs. (5),
while the difference ∆n(θ) = n(π/2, θ) – n(0, θ) does not
exhibit monotonicity since it vanishes both at the left
and right ends of the interval θ0 ≤ θ ≤ π/2 (see Fig. 2).

5. SOLUTIONS IN THE VICINITY
OF DOMAIN BOUNDARIES

The boundaries of the polariton domain (22) are
defined by the relations

(33)

Let us consider in greater detail the behavior of the
main polariton parameters in the vicinity of these
boundaries.

5.1. Neighborhood of the Lower Boundary 

The lower boundary for εo in inequality (22) corre-
sponds to the limiting value A = 0 which, in accordance
with relations (6) and (20), fixes the slope θ = θ0,

(34)

preserving arbitrariness in azimuth ϕ. Precisely at this
boundary, the polariton is obviously absent since the
refractive index vanishes (n = 0) for A = 0 in accordance
with relations (16) and (18). In other words, k = 0,
which “suppresses” the stationary wave field (1) prop-
agating parallel to the surface. However, in accordance
with the theory developed here, the polariton must exist
in any small neighborhood of boundary (34), albeit
with quite peculiar properties.

For a small but nonzero A (|A| ! 1), dispersion equa-
tion (18) can be simplified so that it assumes the form

(35)

However, localization parameters qo and qe have differ-
ent forms depending on the additional relation between

|A| and , i.e., in two limiting cases

(36)

∆qo θ( ) qo 0 θ,( ) qo
π
2
--- θ, 

  ,–=

∆qe θ( ) qe
π
2
--- θ, 

  qe 0 θ,( )– qe
π
2
--- θ, 

  .= =

εo εe θ, εotan
2

– 0.= =

θ0tan
2 κ εo/εe,–≡=

n
2 εo/qo

2
.–≈

c1
2

(1 ) 0 A ! c1
2, (2 ) 0 A ! 1, c1

2
 ! 1.–<–<
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(1) This limiting case is equivalent to the condition

(37)

In such sections of the crystal, a surface polariton is
characterized by the parameters

(38)

(39)

It can be seen from relation (38) that the localization
parameter of the ordinary component in the given lim-
iting case (37) is automatically large. In accordance
with relations (38) and (39), in this case we have

(40)

Consequently, the localization of the extraordinary par-
tial wave can be smaller or larger than that of the ordi-
nary wave depending on azimuth ϕ.

When angle ϕ in formula (40) approaches π/2 with-
out violating condition (37) so that 1 ! qo ! qe , the
polariton is found to be strongly localized and one-par-
tial almost everywhere and is characterized by parame-
ters of the ordinary component. However, because the
product qoc1 in relation (12) can be either small or large
in this case, we can state that the surface structure of the
polariton becomes anomalously sensitive to small vari-
ations in the orientation of vector c in the vicinity of
θ ≈ θ0, ϕ ≈ π/2.

If, however, azimuth ϕ in relation (40) is close to
zero (i.e., the optical axis forms a small angle with the
sagittal plane), the opposite situation takes place: qo @
qe; in this case, the polariton is mainly determined by
the extraordinary partial wave and its localization can
be controlled arbitrarily by choosing angle ϕ. In partic-
ular, parameter qe can be chosen arbitrarily small and
even equal to zero, which corresponds to a bulk (nonlo-
calized) polariton. This case will be considered sepa-
rately at a later stage.

(2) The other limiting case in (36) is defined by the
system of inequalities

(41)
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The corresponding expressions for the localization
parameters have the form

(42)

In this case, their ratio has a much more complex form
than simple formula (40):

(43)

It can be seen from relations (41)–(43) that subsequent
analysis is determined to a considerable extent by the
value of parameter κ. If we disregard for the time being
the region of small values of κ corresponding to the vicin-
ity of the upper boundary of the polariton domain (22)
(εo  0), which will be considered separately (see
Section 5.2), two possibilities remain: κ ~ 1 and κ @ 1.

For κ ~ 1, the second inequality in system (41) can
be ensured only for small values of cos2ϕ (i.e.,
sin2ϕ ~ 1). Obviously, both localization parameters
must be large in this case and, additionally, qe @ qo in
the immediate vicinity of the boundary (θ  θ0); i.e.,
the pattern is qualitatively analogous to that observed in
the first case for ϕ ≈ π/2.

In the limiting case of κ @ 1, the second inequality
in (41) is observed for any angle ϕ; parameter qo is uni-
versally large, while the value of qe can be either large
or small. For qe ! qo, the polariton is mainly deter-
mined by the extraordinary partial wave and the depth
of its penetration can be controlled arbitrarily by the
choice of the section of the surface determining azi-
muth ϕ. For qe @ qo @ 1, the ordinary component plays
the major role; however, it is strongly localized for any
angle ϕ.

5.2. Neighborhood of the Upper Boundary 

The upper boundary εo = 0 of the polariton domain
corresponds to the limiting values

(44)

Substituting these relations into Eqs. (18) and (23), we
can easily obtain the main parameters of the corre-
sponding limiting polariton:

(45)

Thus, the limiting polariton considered here is com-
pletely delocalized with respect to one (extraordinary)
component for any orientation of the optical axis. Obvi-
ously, the corresponding wave branch acquires weak
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localization in the vicinity of this boundary, becoming
a quasi-bulk wave.

6. EXCEPTIONAL BULK WAVE 
AND A QUASI-BULK POLARITON

Thus, the above system of dispersion relations per-
mits delocalized solutions: bulk waves with a compo-
nent characterized by zero localization parameter may
in principle propagate along some surfaces and direc-
tions.

In accordance with relation (26), the condition of
delocalization of the extraordinary component (qe = 0)
in the entire region of (22) is automatically satisfied for
ϕ = 0, which corresponds to the choice of the sagittal
plane parallel to the optical axis. In contrast to two-par-
tial solution (45), such a bulk wave is one-partial in
principle since, in accordance with relation (12), Ce ≠ 0
and Co = 0 for c3 = cosθsinϕ = 0. For the wave under
investigation, we have

(46)

(47)

The vector amplitude of this wave in terms of relations (1)
and (2) has the form

(48)

The bulk solution considered here belongs to the
continuous branch of polaritons; it emerges in the limit
for ϕ = 0. Consequently, for a small perturbation of ϕ,
it obviously must be transformed into a weakly local-
ized quasi-bulk polariton. Indeed, let us introduce a

small parameter c3 (  ! 1) that draws the optical axis
from the sagittal plane. In this case, the wave field com-
ponents (48) of a bulk wave change in proportion to c3,
while the initial parameters n and p (47) change in pro-

portion to . The initially zero component qe deter-
mining the wave field localization now becomes non-
zero:

(49)

In addition, for the above perturbation, the extraordi-
nary wave with a small amplitude (Co ~ c3Ce) is supple-

c θ θ 0,sin,cos( ), ne 1 p 0, ,( )n,= =

n2 εo θ εe θ, psin
2

+cos
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2n2
----------------------------------.= =
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 

0 1 0, ,( )/n

0 0 1, ,( ) 
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c3
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c3
2

qe

c3
2

c2
----κ

n
--- εe εo– .=
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mented with an ordinary partial wave with the para-
meters

(50)

(51)

In the domain of surface polaritons specified by con-
dition (22), when εo < 0, extraordinary wave (46)–(48)
is a single bulk wave. In this region, the bulk ordinary
wave is impossible in principle since qo ≥ 1 (25) in all
cases.

At the same time, in the region outside domain (22),
where εo > 0, the bulk extraordinary wave (46)–(48)
continues to exist. In addition, another bulk wave, viz.,
an ordinary wave, exists outside region (22). This is a
one-partial wave satisfying the boundary conditions at
the metallized surface in the case when the optical axis
of the crystal is parallel to this surface: θ = 0. In this
case, the optical axis can form an arbitrary angle ϕ with
the direction of propagation. For this wave, we have

(52)

and the polarization is determined by relation (48), in
which the indices should be changed (e  o). It is
important that this bulk mode does not transform into a
“quasi-bulk” polariton as the optical axis slightly devi-
ates from the surface plane, but either disappears or
becomes a wave field component in the reflection prob-
lem (depending on the relative values of εo and εe). In
the limit of an isotropic medium (εe = εo > 0, p = 0), the
expressions for ne (46) and n2 (47) coincide with the
corresponding relations (52). This means that the bulk
wave described by formulas (48) and (52) can propa-
gate in an arbitrary direction along the plane surface of
an isotropic solid.

7. FREQUENCY DISPERSION
IN MODEL DESCRIPTION

In the following analysis, we will use a simple
model of an isolated polar excitation [2, 15], assuming
that function εo(ω) is described by the formula

(53)

Here, a is the oscillator force and ωTO is the frequency
of transverse optical (TO) phonons, for which

For simplicity, we assume that εe = const > 0. In the
model under investigation, the frequency domain of
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c = ϕ 0 ϕsin, ,cos( ), no = 1 0 0, ,( )n, n2 = εo,
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polaritons can easily be determined. Substituting rela-
tion (53) into (22), we obtain

(54)

Here, ωLO is the frequency of longitudinal optical (LO)
phonons, for which εo(ωLO) = 0. This frequency corre-
sponds to the upper boundary of the region of negative
values of εo. It is essential that the lower frequency
boundary  of the polariton domain (54) depend on the
angle θ formed by the optical axis with the surface
(Fig. 3).

For θ  0, expression for (0) coincides with the
LO phonon frequency (  = ωLO) so that the lower fre-
quency boundary of the polariton domain approaches
the upper boundary upon a decrease in the angle
between the optical axis and the surface, and the fre-
quency interval in which it can propagate vanishes. On
the contrary, for an optical axis oriented orthogonally to
the surface (θ = π/2), the frequency domain of polari-
tons is the broadest (ωTO < ω < ωLO). In other words, the
larger the angle of inclination θ, the broader the fre-
quency domain of polaritons (see Fig. 3). On the other
hand, the same figure shows that the higher the fre-
quency ω in the interval (54), the larger the admissible
range of variation of angle θ.

ω θ( ) ωTO 1 a

ε∞ εe θtan
2

+
------------------------------+ 

  1/2
ω<≡

< ωTO 1 a
ε∞
-----+ 

  1/2

ωLO.≡

ω

ω
ω

ωLO

ωTO

ω(θ)

0 π/6
θ

π/3 π/2

Fig. 3. Domain of surface polaritons in the ω vs. θ coordi-
nates (hatched) in the model of a single polar excitation (we
assume that ε∞/a = 1.2 and εo/a = 1.8).
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Let us consider typical examples of characteristic
frequencies determining the domain (54) of polaritons in
optically uniaxial media. Thus, in accordance with [2],
ωTO = 769 cm–1 and ωLO = 832 cm–1 for α-LiIO3 crys-
tals and ωTO = 431 cm–1 and ωLO = 450 cm–1 for LiNbO3
crystals.

8. DISCUSSION

The above analysis was based on the assumption
that metallization of the surface ensures complete con-
finement of electromagnetic fields in the crystal. This is
so as long as the thickness h of the metallic coating con-
siderably exceeds the characteristic depth d of wave
field penetration in the crystal (h @ d). It is well known
that depth d is the smaller, the larger the imaginary part
of the refractive index of the metal (corresponding esti-
mates for many metals are given in [16]). For example,
the penetration depth for copper is d = 6.2 × 10–8 cm for
a wavelength of λ = 10–5 cm (ultraviolet range), while
d = 6.2 × 10–7 cm for λ = 10–3 (infrared range); i.e.,
d ! λ. Thus, the condition h @ d can easily be realized.
At the same time, if the thickness of the coating is com-
parable to the penetration depth (h ~ d), such a coating
becomes transparent for wave fields (specific features
of such a situation are considered in [17]).

In the absence of metallization of the surface, the
geometry and condition for propagation of localized
wave fields radically differ from the situation consid-
ered above. In this case, a surface polariton in the crys-
tal is accompanied by a localized wave in the contact-
ing medium on the other side of the interface. It was
noted in the Introduction that the theory of such polari-
tons becomes much more cumbersome and, in contrast
to the case considered here, does not permit simple ana-
lytic solutions for general position orientations. This
naturally does not imply that the corresponding condi-
tions for the existence of localized natural waves in
such media are more stringent than for crystals with
metallized surfaces. On the contrary, dispersionless
localized solutions [5, 6] can exist in uniaxial (and even
biaxial) crystals along with dispersion polaritons [3] for
positive components of the crystal permittivity exhibit-
ing a weak dependence on frequency. For example,
according to [5], an entire sector of allowed directions
of propagation of dispersionless surface waves exists
on the surface of a uniaxial crystal, which is parallel to
the optical axis (θ = 0) provided that εe > ε > εo > 0 (ε is
the permittivity of the contacting medium). It was
shown above that such solutions do not exist on a met-
allized surface.
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Abstract—A theoretical analysis is presented of the effect of correlation between fluctuations of laser pulse
amplitudes on population transfer between the states of a three-level atom coupled by the laser field. The carrier
frequencies of the pulses are tuned to resonance with the transitions between the ground and excited states, |1〉
and |2〉 , and the excited and metastable states, |2〉  and |3〉, in a lambda-type configuration. The laser pulses are
timed so that population transfer between states |1〉  and |3〉  is made possible by stimulated Raman adiabatic pas-
sage (STIRAP) in the absence of fluctuations. STIRAP does not occur when the laser fields are not correlated.
When the fluctuations of one pulse amplitude duplicate those of the other, STIRAP can be observed for pulse
amplitudes larger than those required in the absence of fluctuations. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

One promising method for control of internal states
of atoms and molecules is stimulated Raman adiabatic
passage (STIRAP), which has been the subject of
numerous theoretical and experimental studies (e.g.,
see the review in [1]). This phenomenon is observed in
an atom or molecule interacting with two temporally
overlapping laser pulses. (In what follows, an atom or
molecule is referred to as an atom.) In the simplest case,
STIRAP can be described by analyzing the three-level
atom schematized in Fig. 1 (lambda-configuration). Ini-
tially, the atom is in a stable or metastable state |1〉 . The
pump pulse couples this state to an excited state |2〉 , and
the latter is then coupled to a metastable state |3〉  by the
Stokes pulse. Population transfer from |1〉  to |3〉  is
observed if the interaction of the atom with the Stokes
pulse precedes its interaction with the pump pulse. It is
important that the simultaneous interaction of the atom
with both pulses during a certain time interval is fol-
lowed by its interaction with the pump pulse only.

Population transfer in a three-level atom interacting
with two pulses is explained by the fact that one of the
eigenstates of the corresponding Hamiltonian (dark
state) is a linear combination of the initial and final
states, |1〉  and |3〉 . If the field variation is sufficiently
slow, then transition from state |1〉  to state |3〉  occurs in
an adiabatic process of atom–field interaction that does
not involve significant population of the excited state
|2〉 . Thus, population transfer via STIRAP is almost
insensitive to spontaneous decay of the excited state.
This is important for experiments on atomic beams,
which are generally characterized by atom–field inter-
action times much longer than the excited-state life-
times.
1063-7761/05/10105- $26.000788
The efficiency of STIRAP transfer depends on how
close it is to a perfectly adiabatic process and on the
precision of maintaining the two-photon resonance
condition in which the dark state is an eigenstate of the
Hamiltonian of an atom interacting with electromag-
netic field. The dependence of population-transfer effi-
ciency on the carrier-frequency detuning from two-
photon resonance (two-photon line shape) was ana-
lyzed in [2–5]. Uncontrollable detuning from two-pho-
ton resonance is caused by fluctuations of laser fre-
quencies. Their effect on population-transfer efficiency
was studied in [5–7]. The effect of field amplitude fluc-
tuations on population transfer via STIRAP has never
been investigated. This problem is addressed in the
present study.

2. BASIC EQUATIONS

To separate the effect of noise on the population-
transfer efficiency from the effect of carrier-frequency

1

2

3
"ωp

γ

"ωS

Fig. 1. Schematic diagram of interaction between three-
level atom and laser pulses. The atom interacts first with a
Stokes pulse characterized by carrier frequency ωS.
 © 2005 Pleiades Publishing, Inc.
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detuning (which was analyzed in [2–5]), we consider
the case when the pump and Stokes carrier frequencies,
ωp and ωS, are resonant with the |1〉  |2〉  and |3〉 
|2〉  transition frequencies, respectively. The electric
field interacting with the atom can be written as

(1)

Assuming that the probability of transition from state
|2〉  to state |1〉  or |3〉  via spontaneous decay is negligible,
we can represent the wavefunction of the atom as

The time variation of the probability amplitude ck(t) of
state |k〉  (k = 1, 2, 3) is described by the Schrödinger
equation with the Hamiltonian

(2)

where

are the Rabi frequencies characterizing the interactions
between the atom and the pump and Stokes pulses,
respectively, and γ is the rate of spontaneous decay of
the excited state into states other than |1〉  and |3〉 .

3. PULSE SHAPES

Analytical calculations and numerical simulations
are performed for two combinations of laser pulse
shapes:

(3)

and

(4)

Here, Ω0 is the maximum pulse amplitude in the
absence of fluctuations, τ is pulse duration, td is the

E Ep t( ) iωpt–( )exp ES t( ) iωSt–( )exp c.c.+ +=

Ψ c1 t( ) c2 t( ) c3 t( ), ,[ ] T .=

H
"
2
---

0 Ωp t( ) 0

Ωp* t( ) iγ– ΩS* t( )
0 ΩS t( ) 0

,=

Ωp t( ) d12Ep t( )/", ΩS t( )– d32ES t( )/"–= =

Ωp t( )
Ω0 f p t( ) πt/τ( ), 0 t τ ,≤ ≤sin

0, otherwise,



=

ΩS t( )
Ω0 f S t( ) πt/τ( ),

1
2
---τ– t

1
2
---τ ,≤ ≤cos

0, otherwise,





=

Ωp t( ) Ω0 f p t( )
t td/2–( )2

τ2
-----------------------–

 
 
 

,exp=

ΩS t( ) Ω0 f S t( )
t td/2+( )2

τ2
------------------------–

 
 
 

.exp=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
delay of the pump pulse relative to the Stokes pulse (τ/2
for pulse shape (3)), and fp(t) and fS(t) represent ampli-
tude fluctuations. In the absence of fluctuations,

We consider two models of envelope amplitude fluctu-
ations of the laser pulses [8]: a Gaussian model with
real fp(t) and fS(t) characterized by correlation functions

(5)

(n = p, S) and a chaotic field model with fn(t) having
fluctuating real and imaginary parts,

(6)

where angle brackets denote ensemble averages. The
factor 1/2 on the right-hand side of (6) is introduced to
ensure that the average values of |fn(t)|2 in models (5)
and (6) are equal. Chaotic field model (6) is a realistic
representation of a multimode laser field [8].

The correlation between the Stokes and pump fields
is assumed to be such that fp(t) is a time-delayed copy
of fS(t):

(7)

The limit cases of tN = 0 and tN = ∞ correspond to per-
fectly correlated and mutually independent pulse fluc-
tuations.

4. IMPLEMENTATION OF CORRELATED 
FLUCTUATIONS

As an example of Stokes and pump fields with cor-
related fluctuations, we consider two circularly polar-
ized pulses generated by the same laser that couple an
atomic state with total angular momentum J = 1 and
magnetic quantum number M = 1 to the excited state
with J = 0 and the excited state to the state with J = 1
and M = –1. The atom moves across parallel laser
beams, first interacting with the Stokes pulse, which
induces J = 0  J = 1, M = –1 transitions. This inter-
action facilitates population transfer from the state with
J = 1 and M = 1 to the state with J = 1 and M = –1, which
must be depopulated by optical pumping before the
interaction. Any desired delay tN is easy to implement

f p t( ) f S t( ) 1.= =

f n t( )〈 〉 0,=

f n t( ) f n t'( )〈 〉 G t t'––( )exp=

f n t( )〈 〉 0, Re f n t( )Im f n t'( )〈 〉 0,= =

Re f n t( )Re f n t'( )〈 〉 1
2
--- G t t'––( ),exp=

Im f n t( )Im f n t'( )〈 〉 1
2
--- G t t'––( ),exp=

f p t( ) f S t tN–( ).=
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by adjusting the path difference between the beams
prior to the atom–field interaction.

5. NUMERICAL SIMULATION
OF FLUCTUATIONS

Sequences of values ξ(tj) of a random variable were
generated to simulate either the real part of fS(tj) (in the
Gaussian model) or its real and imaginary parts (in the
chaotic field model) at instants tj = tj – 1 + ∆t by using the
colored-noise algorithm proposed in [9, 10]:

(8)

where h(tj) has a zero-mean Gaussian distribution with

(9)

in the Gaussian model and

(10)

in the chaotic field model. The sequence h(tj) is gener-
ated by using the standard Matlab function randn.

5.1. Numerical Example 

Figure 2 shows the population of the target state |3〉
versus the delay tN between pump and Stokes pulse
fluctuations computed by using Gaussian model (5), in
which the amplitude of the field fluctuates while its
phase remains constant. When |tN| exceeds the correla-
tion time 1/G, the population-transfer efficiency (i.e.,
the population n3 of state |3〉) substantially decreases,
and this decrease is more pronounced for higher rates of
spontaneous decay. Note that the maximum popula-

ξ t j 1+( ) ξ t j( ) G∆t–( )exp h t j( ),+=

h t j( )2〈 〉 1 e 2G∆t––( )=

h t j( )2〈 〉 1
2
--- 1 e 2G∆t––( )=

1.0

0.8

0.6

0.4

0.2

0
–0.04 –0.02 0 0.02 0.04

n3

tN/τ

1

2
3

Fig. 2. Population of target state |3〉  vs. normalized delay tN
between pump and Stokes pulse fluctuations obtained by
solving the Schrödinger equation for pulse shape (3) and
averaging over 100 realizations of Gaussian amplitude fluc-
tuations. Parameters: Ω0τ = 100 and Gτ = 50 for all curves;
γτ = 0, 10, and 20 for curves 1, 2, and 3, respectively.
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tion-transfer efficiency corresponds to a delay much
smaller than 1/G, rather than to fully correlated pulse
fluctuations, and the maximum values of n3 are almost
equal for different γ. This implies insignificant popula-
tion of the excited state during the atom–field interac-
tion time, which is characteristic of STIRAP processes.

6. GAUSSIAN MODEL 
OF AMPLITUDE FLUCTUATIONS

Since the phases of both fields remain constant
according to (5), we can set them to zero. Assuming
that both pump and Stokes field fluctuations are per-
fectly correlated (tN = 0), we can find an expression for
the efficiency of population transfer from |1〉  to |3〉  in
the case when the decay time of state |2〉  is much shorter
than the atom–field interaction time. The resulting effi-
ciency is lower than the maximum efficiency attained
by adjusting tN. To simplify analysis, we represent the
Rabi frequencies Ωp(t) and ΩS(t) in terms of the rms
Rabi frequency Ωm(t) and the mixing angle θ(t):

(11)

Both Ωm(t) and θ(t) are real quantities. Changing from
the bare-state basis to the dressed-state basis consisting
of the excited state ϕ2 = |2〉 , the bright state ϕb, and the
dark state ϕd, where

(12)

we represent the dressed wavefunction as

where Bk(t) (k = b, 2, d) is the probability amplitude of
the state ϕk . In this basis, the evolution of the atom is
governed by the Hamiltonian

(13)

Before the interaction with the laser beams, the
atom is assumed to be in state |1〉 . As the atom succes-
sively interacts with the Stokes pulse, the combination
of the Stokes and pump pulses, and the pump pulse
alone in the absence of amplitude fluctuations, the mix-
ing angle monotonically varies with time from 0 to π/2:

.

Before the interaction, only the dark state ϕd (i.e., |1〉) is
populated. When Ω0τ @ 1 (the process is nearly adia-
batic in the absence of amplitude fluctuations), the time

Ωp t( ) Ωm t( ) θ t( ),sin=

ΩS t( ) Ωm t( ) θ t( ).cos=

ϕb θ t( ) 1| 〉sin θ t( ) 3| 〉 ,cos+=

ϕd θ t( ) 1| 〉cos θ t( ) 3| 〉 ,sin–=

Ψ Bb t( ) B2 t( ) Bd t( ), ,[ ] T ,=

Hd
"
2
---

0 Ωm t( ) 2iθ̇ t( )
Ωm t( ) iγ– 0

2iθ̇ t( ) 0 0

.=

θ t( ) Ωp t( )/ΩS t( )( )arctan=
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derivative in (13) is negligible, and the population of
the dark state ϕd remains constant during the atom–field
interaction time. After the atom–field interaction, ϕd
reduces to |3〉; i.e., 100% of the population is trans-
ferred from |1〉  to |3〉 . When the derivative of θ(t) is
taken into account in Hamiltonian (13), the states |2〉
and |b〉  are populated; i.e., the population-transfer effi-
ciency is lower. A theory of population transfer driven
by nonfluctuating fields can be developed by using the
series expansion of the wavefunction in terms of the

small parameter (t)τ. A perturbation theory in terms

of (t)τ can also be developed when the amplitude
fluctuations are perfectly correlated (fp(t) = fS(t)) and
θ(t) is independent of fluctuating parameters.

Hereinafter, we consider the case of fully correlated

fluctuations. Accordingly, the derivative (t) can be
neglected in Hamiltonian (13), and its eigenvalues λn

and eigenfunctions χn are

(14)

Owing to the perfect correlation between the Stokes
and pump field fluctuations, the current rms Rabi fre-
quency Ωm(t) has a zero-mean Gaussian distribution.
Therefore, the adiabaticity criterion

cannot be satisfied during the atom–field interaction
time (τcorr = 1/G is the autocorrelation time of field fluc-
tuations). This leads to loss in the dark-state population
and ensuing decrease in the population-transfer effi-
ciency. When the pulse fields fluctuate independently,
the value of |λ3 – λn|τcorr is much larger, because the
probability that two independent variables nearly van-
ish simultaneously is much lower than the analogous
probability for one variable. However, since θ(t) fluctu-
ates with a characteristic time τcorr in this case, the dark-
state population also decreases. Figure 2 demonstrates
that the ensuing population leakage is larger than that in
the case of fully correlated fluctuations. A small delay
(tN ! τcorr) can play a positive role: it causes |λ3 – λn| to
increase, while the fluctuations of θ(t) are insignificant
(except for the time intervals when Ωp(t) or ΩS(t)
approaches zero). This may explain the shift of the
peaks relative to the origin in Fig. 2.

We define

(15)

θ̇
θ̇

θ̇

λ1
1
2
---Ωm t( ), χ1

1

2
------- ϕ2 ϕb+( ),= =

λ2
1
2
---Ωm t( ), χ2–

1

2
------- ϕ2 ϕb–( ),= =

λ3 0, χ3 ϕd.= =

λ3 λn– τcorr @ 1, n 1 2,,=

Φ t( ) 1
2
--- Ωm t'( ) t'd

∞–

t

∫=
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and

(16)

Then, introducing a small parameter ε to reflect the
slow variation of θ(t), we obtain equations for ab(t),
a2(t), and ad(t):

(17)

These equations can be solved perturbatively by repre-
senting ab(t), a2(t), and ad(t) as series expansions in ε
and using the fact that only the dark state is populated
before the atom–field interaction. For arbitrary pulse
shapes, as well as for a two-level atom interacting with
a pulse with resonant carrier frequency [11], a solution
can be found only when spontaneous decay of the
excited state is negligible. Setting γ = 0, we solve (17)
to second order in ε to obtain

(18)

We assume that the correlation time 1/G of amplitude
fluctuations is small as compared to the pulse duration
τ. The opposite case (1/G @ τ), when the amplitudes do
not fluctuate during the atom–field interaction time, but
fluctuate from pulse to pulse, and the problem is solved
by averaging the population-transfer efficiency over the
pulse-amplitude distribution, is not considered here.

Since

(19)

for any zero-mean Gaussian process ξ(t) (see [12]), we
can use (5) and the assumption that Gτ @ 1 to write

(20)

setting ε = 1. Since the dark-state population equals the
population of state |3〉  after the atom–field interaction,

ad t( ) Bd t( )( ),ln=

a2 t( ) B2 t( )/Bd t( ),=

ab t( ) Bb t( )/Bd t( ).=

ȧb t( ) εθ̇ t( ) ȧd t( )ab t( ) iΦ̇ t( )a2 t( ),––=

ȧ2 t( ) ȧd t( )a2 t( )– iΦ̇ t( )ab t( ) γ
2
---a2 t( ),––=

ȧd t( ) εθ̇ t( )ab t( ).–=

ȧd t( ) ε2θ̇ t( ) θ̇ t'( ) Φ t( ) Φ t'( )–( ) t'.dcos

∞–

t

∫–=

iξ t( )( )exp〈 〉 1
2
--- ξ t( )〈 〉 2– 

 exp=

ad t( )〈 〉 θ̇ t'( ) θ̇ t''( )
∞–

t'

∫
∞–

t

∫–=

× 1
8G
------- Ωm t'''( )2〈 〉

t''

t'

∫–




exp

× 2 G t'' t'''–( )( )exp G t''' t'–( )( )exp––[ ] t'''d




dt''dt',
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the efficiency of population transfer from |1〉  to |3〉  is
expressed as

Invoking the expansion

we calculate η as

(21)

η 2ad ∞( )( )exp〈 〉 .=

X( )exp〈 〉 X〈 〉( ) 1
1
2
--- X X〈 〉–( )2〈 〉 …+ + 

  ,exp=

η 2 ad ∞( )〈 〉( ).exp=

1.0
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0.4

0.2

0 100 200 300 400

n3

Ω0τ

1

2

3

Fig. 3. Population of target state |3〉  vs. pulse fluence repre-
sented by Ω0τ obtained by solving the Schrödinger equation
for pulse shape (3) and averaging over 100 realizations of
Gaussian amplitude fluctuations (circles and squares) and
by calculating formula (22) (curves 2 and 3). Error bars rep-
resent rms deviations of transfer efficiencies from their
mean values. Curve 1 corresponds to nonfluctuating ampli-
tudes. Parameters: γ = 0 for all curves; Gτ = 20 and 50 for
curves 2 (circles) and 3 (squares), respectively. Dashed
curve corresponds to Eq. (24).
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n3

Ω0τ
80

Fig. 4. Population of target state |3〉  vs. pulse fluence repre-
sented by Ω0τ obtained by solving the Schrödinger equation
for pulse shape (4) and averaging over 100 realizations of
Gaussian amplitude fluctuations (circles) and by calculating
formulas (21) and (26) (solid curve). Error bars represent
rms deviations of transfer efficiencies from their mean val-
ues. Parameters: γ = 0, Gτ = 50, and τd = τ.
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This approximation is accurate when the rms deviation
of ad(∞) from its mean value is relatively small. It was
used in [7] to analyze the effect of frequency fluc-
tuations on population transfer via STIRAP. Expres-
sions (20) and (21) can be used to find the efficiency of
population transfer driven by pulses with fluctuating
amplitudes and arbitrary time-dependent ensemble-
averaged intensities in the Gaussian model of ampli-
tude fluctuations.

For pulse shape (3), expression (20) can be substan-
tially simplified. Performing the integrals, taking into
account the assumption that Gτ @ 1 used to obtain this
expression, and substituting ad(t) into (21), we obtain

(22)

where z = /(2G)2 and

(23)

is the upper incomplete gamma function. In the limit
case of Ω0 @ G, we have

(24)

because the dominant contributions to expression (20)
in this limit correspond to the values of t''' such that

In the absence of amplitude fluctuations (when fp(t) =
fS(t) = 1), the population-transfer efficiency is found by
using (18):

(25)

Comparing (25) with (24), we see that the limit behav-
ior of the logarithm of the population-transfer effi-
ciency at large Ω0τ changes from (Ω0τ)–2 to (Ω0τ)–1

with increasing frequency of pulse-amplitude fluctua-
tions.

Figure 3 compares the populations of state |3〉  versus
Ω0τ obtained by solving the Schrödinger equation for

η π2

Gτ( )2
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zz
---- Gτ 2–( ) Γ z( ) Γ z z,( )–( )–





exp=

+
2

z2
---- ez 1 Gτ /2–( ) 1–( )





,

Ω0
2

Γ x y,( ) t–( )tx 1– tdexp

y

∞
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η 8π2

Ω0
2τ2

----------- π2 2π
Ω0τ

----------------– ,exp=

G t''' t''–( ) ! 1, G t' t'''–( ) ! 1.

η0
8π2
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 – .exp=
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pulse shape (3) and averaging over 100 realizations for
several values of G–1 in the Gaussian model with those
predicted by calculating (22). Curve 1 is obtained in the
absence of pulse amplitude fluctuations. Its shape is in
almost perfect agreement with (25) at Ω0τ above Ω0τ ≈
20. The results of Monte Carlo computations are con-
sistent with predictions based on formula (22). It is
clear that amplitude fluctuations substantially reduce
the population-transfer efficiency as compared to that
in the absence of fluctuations, but this negative effect
can be compensated for by increasing the pulse inten-
sity. As the pulse intensity increases, the transfer effi-
ciency approaches the dashed curve predicted by (24)
and follows this curve at Ω0 > 4G.

For pulse shapes (4), direct application of expres-
sion (20) involves extensive computations, which are
required to evaluate an integral in three variables. How-
ever, the integral in the exponent of (20) can be calcu-
lated by noting that the dominant contributions corre-
spond to values of t', t'', and t''' that differ by intervals on
the order of 1/G:

(26)

This expression is not valid for small values of /G,
but this case is of little importance, because the corre-
sponding transfer efficiency is low.

Figure 4 compares the population of state |3〉  versus
Ω0τ obtained by solving the Schrödinger equation for
Gaussian pulse shapes (4) in the Gaussian model with
those calculated by using (21) and (26). The figure
demonstrates that the population-transfer efficiencies
predicted by formulas (21) and (26) are in good agree-
ment with the results of Monte Carlo computations.
This suggests that formulas (21) and (26) can also be
used to evaluate the population-transfer efficiency for
non-Gaussian pulses with smooth ensemble-averaged
envelopes.

7. CHAOTIC FIELD MODEL

In the chaotic field model, when the real and imagi-
nary parts of the field amplitude fluctuate indepen-
dently, a theory analogous to that presented above for
the Gaussian model cannot be developed, mainly
because of the difficulty of ensemble averaging of two
independent Gaussian random variables.

Figure 5 demonstrates that population-transfer effi-
ciency higher than 90% can also be achieved for corre-
lated Stokes and pump fields. The figure shows the

ad t( )〈 〉 θ̇ t'( )2 1

4G2
--------- Ωm t'( )2〈 〉–





exp

∞–

t'

∫
∞–

t

∫–=

× 1– G t' t''–( ) G t' t''–( )–( )exp–+[ ]




t'' t'.dd

Ω0
2τ
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
respective populations n1, n2, and n3 of states |1〉 , |2〉 ,
and |3〉  predicted for fully correlated fluctuations (with
tN = 0) and for Stokes amplitude fluctuations shifted by
the correlation time 1/G relative to pump fluctuations.
It is obvious that the populations vary irregularly in the
latter case, whereas the evolution of population in the

1.0

0.8

0.6

0.4

0.2

0
–2 –1 0 2

n1, n2, n3

t/τ1

(b)

1.0

0.8

0.6

0.4

0.2

0
–2 –1 0 2

n1, n2, n3

1

(a)

Fig. 5. Populations states |1〉  (thin curve), |2〉  (dotted curve),
and |3〉  (thick curve) vs. Ω0τ obtained by solving the
Schrödinger equation for pulse shape (4) in a single realiza-
tion of the chaotic field model. Parameters: γ = 0, td = τ,
Gτ = 50, and Ω0τ = 100; tN = 0 (a) and 1/G (b).
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n3
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200

Fig. 6. Population of target state |3〉  vs. Ω0τ obtained by
solving the Schrödinger equation for pulse shape (4) and
averaging over 100 realizations in the chaotic field model.
Parameters: γ = 0, td = τ; Gτ = 20 (circles) and 50 (squares).
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case of tN = 0 is similar to STIRAP transfer in the
absence of fluctuations [1]. Moreover, the excited-state
population is very low when the field fluctuations are
perfectly correlated, as in STIRAP processes driven by
nonfluctuating fields, which makes STIRAP attractive
as a mechanism of population transfer between meta-
stable states.

Figure 6 shows the population n3 of state |3〉  versus
Ω0τ obtained by solving the Schrödinger equation for
pulse shapes (4) and averaging over 100 realizations for
fully correlated Stokes and pump field fluctuations in
the chaotic field model and by calculating formula (22).
As in the Gaussian model, the population-transfer
efficiency substantially increases with the pulse
fluence.

8. CONCLUSIONS

It is shown that laser amplitude fluctuations do not
preclude population transfer between metastable states
of atoms and molecules via STIRAP when the Stokes
and pump fluctuations are perfectly correlated.

In the Gaussian model of amplitude fluctuations, the
target state population is expressed in terms of pulse
parameters when the atom–field interaction time is
shorter than the spontaneous decay time. The predicted
results are in good agreement with those of Monte
Carlo computations.

In the chaotic field model (with independently fluc-
tuating real and imaginary parts of the complex electric
field amplitude), population transfer is analyzed
numerically. The calculated curves of population-trans-
fer efficiency versus pulse fluence are similar to those
obtained in the Gaussian model of amplitude fluctua-
tions.
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Abstract—A theory of coherent resonance tunneling of electrons in a two-well nanostructure (TWNS) in the
presence of a strong electromagnetic field is developed. The TWNS consists of two identical tunnel-coupled
quantum wells to which a dc electric field is applied. Radiative transitions occur between two levels that arise
due to the interwell interference and the dc electric field. The wavefunctions and polarization currents in the
TWNS are found in the case of a strong electromagnetic field, and the oscillation power is determined as a func-
tion of the coherent pumping current and the parameters of the structure. It is shown that oscillations are pos-
sible in the relevant terahertz band, with fine frequency tuning by a dc field. It is found that the interference of
electrons between quantum wells plays a crucial role. This interference significantly suppresses the effect of the
electromagnetic field on the resonance tunneling and enhances the oscillation up to the highest possible level.
It is proved that there exists an optimal regime of strong-field oscillations without inverse population and satu-
ration, which are inherent in conventional lasers. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In 1971, Kazarinov and Suris [1] proposed a new
type of a semiconductor laser in which radiative transi-
tions occur between resonance levels (subbands) of a
quantum well. The pumping of electrons to the upper
level and their extraction from the lower level are per-
formed by means of resonance tunneling. These lasers
(which were called cascade lasers) were developed in
1994 [2].

In 1997, it was demonstrated in [3] that coherent
resonance tunneling (coherent pumping) allows one to
develop an essentially new type of a laser (following [3],
we call it briefly a coherent laser) in which the electron
subsystem, like the photon subsystem, is coherent. In
such a laser, oscillations may occur without dissipative
processes and are described by pure states of quantum
mechanics. The coherent laser is an example of a quan-
tum device in which the interference of electrons plays
a fundamental role. The coherent laser has specific fea-
tures and offers advantages over conventional lasers;
these are oscillations without inverse population, high
efficiency, the absence of the amplification-loop expan-
sion due to a strong field, stability with respect to mul-
timode oscillations and to the Coulomb interaction [3],
and others.

The reason for the remarkable properties of the
coherent laser is that electrons from the emitter are sup-
plied by resonance tunneling (coherent pumping) into
an optimal energy interval with optimal phases and are
coherently taken to the collector. Under these condi-
tions, each electron brought to the upper level of the
1063-7761/05/10105- $26.000795
quantum well makes a single radiative transition and is
taken away to the collector from the lower level. There-
fore, this laser is free of the saturation effect, which
consists in the leveling of the overpopulation due to
multiple transitions of electrons between energy levels
and leads to a steady-state field of a laser. The satura-
tion is responsible for many unwanted phenomena such
as burning through a “hole” in the overpopulation, mul-
timode oscillations, broadening of the laser linewidth,
and the power limitation [4].

In coherent lasers, a steady-state field is obtained in
a fundamentally different way, namely, due to the influ-
ence of the electromagnetic field on resonance tunnel-
ing. The field reduces the rate of resonance tunneling
by changing the energy of the resonance levels. The
absence of saturation removes the above-listed draw-
backs of conventional lasers.

The main problem in the development of coherent
lasers consists in the realization of the condition under
which the electron subsystem in nanostructures is
coherent. The current state of the art in technology can
guarantee coherence over sufficiently large lengths (up
to dozens of quantum wells (see [5])). It should also be
emphasized that a simple condition of coherent tunnel-
ing τΓ < τph (τΓ is time during which an electron stays in
a well and τph is the decoherence time) may be too strin-
gent. Indeed, according to the detailed theory, under
certain conditions, the electron–phonon interaction
does not influence the decay of Bloch oscillations [6],
while the resonance tunneling remains coherent even
for τΓ @ τph [7]. Moreover, the situation strongly
 © 2005 Pleiades Publishing, Inc.
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depends on the frequency band of oscillations and on a
specific nanostructure.

In the present paper, we study a two-well nanostruc-
ture (TWNS) that consists of two identical tunnel-cou-
pled wells to which a dc electric voltage Vdc is applied.
Radiative transitions occur between two levels of the
TWNS that arise due to the interwell interference (the
splitting of a level of an isolated well) and the dc elec-
tric voltage. Such a structure supports electromagnetic
oscillations in the relevant terahertz band (which can
hardly be attained by cascade lasers) with fine fre-
quency tuning and facilitates the fulfillment of coher-
ence conditions (since the oscillation frequency is less
than the frequency of the optical phonon); moreover, it
still offers the above-mentioned advantages that are
inherent in the coherent laser.

In addition, the TWNS is also of interest as the first
step from a single-well structure (which is usually
called a resonance tunneling diode (RTD)) to the Bloch
single-band superlattice.

In this paper, we develop a consistent theory of
oscillations in the TWNS and find the wavefunctions
and the polarization currents for a strong electromag-
netic field, as well as the oscillation power as a function
of the coherent pumping current and the parameters of
the structure. We show that there exists an optimal
regime of strong-field oscillations in which each elec-
tron emits a single photon (the efficiency equals one).
The high efficiency at sufficiently low frequencies is
attributed to the phenomenon, discovered in the present
study, of significant suppression of the electromagnetic
field’s influence on the resonance tunneling due to the
interwell interference and the dc voltage Vdc.

The possibility of oscillations in the TWNS (with
different wells and Vdc = 0) was first pointed out in [8].
In [9], an analytic theory of a TWNS consisting of two
identical wells and with Vdc ≠ 0 was developed for a
weak electromagnetic field, and it was shown that a lin-
ear amplification is much greater than the amplification
in an RTD and that the TWNS allows for frequency tun-

pq2

x

p1p1p

p1npn

α

ε(1)
R

ω
ε

ω

α α

pn ε(2)
R

0 a 2a

Vdc

Figure.

p1n
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ing. The results of the numerical solution of the
Schrödinger equation for this structure are in good
agreement with the results of [9] that were published
in [10].

2. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

We will study the oscillation of an electromagnetic
field in a two-well nanostructure within the model
of [9]. We consider a one-dimensional structure with
δ-shaped barriers at the points x = 0, a, and 2a (see fig-
ure). A dc electric field Vdc is applied to the second well.
A steady stream of electrons proportional to q2 and with

energy ε approximately equal to the energy  of the
first well is incident on the first well from the left
(x  –∞).

An electromagnetic field

(1)

with amplitude E, wavevector k, and frequency ω acts
in the TWNS region. This field is polarized perpendic-
ular to the plane of the well, while the wavevector is
directed along the plane (along the z axis).

The wavefunction Ψ(x, t) of the structure satisfies
the Schrödinger equation

(2)

Here, α is the “power” of the barriers (the product of
the barrier height multiplied by its width), θ(x) is the
unit function, "/2m* = 1, and c = 1. The last term in (2),

(3)

describes the interaction of electrons with the electro-
magnetic field; Ax(t) is the vector potential in the Cou-
lomb gauge.

In this paper, following the approach of [3], we use
the interaction in form (3) (with a vector potential) in
contrast to [9], where we used the interaction in the
form “–xE.” This allows us to find an analytic solution
for a strong electromagnetic field and construct an
oscillation theory. We will show that, in the case of a
weak field, the results for different gauges coincide.
Note that, in (3), just as in [3] (see also [4]), the term
quadratic in A(t) is dropped, which is valid if

(p is the characteristic momentum of an electron);
henceforth, we assume that this condition is fulfilled.

εR
1( )

Ez z t,( ) E kz ωtcossin=

i
∂Ψ
∂t

-------- ∂2Ψ
∂x2
----------– α δ x( ) δ x a–( ) δ x 2a–( )+ +[ ]Ψ+=

– Vdcθ x a–( )Ψ V̂Ψ.+

V̂ x t,( )Ψ i2eAx t( )∂Ψ
∂x
-------- V eiωt e iωt––( )∂Ψ

∂x
--------,= =

V
eE
ω
------,–=

V / p eE/ pω ! 1=
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The steady-state equation for the amplitude E of
the electromagnetic field is expressed as (see, for
example, [3])

(4)

(5)

where Jlc is the active polarization current that
describes transitions with emission (absorption) of pho-
tons in the first (l = 1) and second (l = 2) wells.

As is shown in [9], the energy spectrum of the
TWNS consists of two levels that arise due to the inter-
well interference (splitting of levels) and the dc electric
field Vdc. The parameters of the structure are chosen so

that the energies of the levels  and  are displaced
with respect to the energy εR of the lower resonance
level of an isolated well by a quantity that is small com-
pared with εR .

Obviously, the transitions between energy levels are
most intense when the frequency of the electromagnetic

field is approximately equal to the difference  –

. In the resonance approximation, we can seek
steady-state solution (2) in the form [9]

(6)

(7)

The wavefunctions Ψln (l = 1, 2 is the well number, and
n = 0, 1 is the level number) correspond to the states
with quasi-energies ε and ε – ω and satisfy the system
of equations

(8)

(9)

subject to the boundary conditions (see [3, 9])

E
2τ0
--------

2π
κ

------Jc,=

Jc
1
a
--- xJ1c x( ) xJ2c x( )d

a

2a
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a
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--------------------,≡=
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εR
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εR
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Ψ1 x t,( ) e iεt– Ψ10 x( ) eiωtΨ11 x( )+[ ] ,=

0 x a,≤ ≤

Ψ2 x t,( ) e iεt– Ψ20 x( ) eiωtΨ21 x( )+[ ] ,=

a x 2a.≤ ≤

p2Ψ10 Ψ10''+ VΨ11' , pn
2Ψ11 Ψ11''+ VΨ10' ,–= =

p2 ε, pn
2 ε ω,–= =

p1
2Ψ20 Ψ20''+ VΨ21' , p1n

2 Ψ21 Ψ21''+ VΨ20' ,–= =

p1
2 ε Vdc, p1n

2+ p1
2 ω–= =
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(10)

The boundary conditions describe an incident stream of
electrons from x = –∞, their reflection, and their travel-
ing away into the domain x > 2a, as well as the continu-
ity and jump of the derivatives of the wavefunctions Ψln

at x = 0, a, 2a.
The current Jc(x) can be expressed in terms of the

functions Ψln(x):

(11)

The system of equations (8)–(11) allows one to calcu-
late the currents Jlc and the oscillation power in the
TWNS as a function of the pumping current and the
parameters of the structure.

3. A GENERAL SOLUTION 
TO THE SCHRÖDINGER EQUATION 

FOR THE TWNS
Following [3], we will seek a general solution to

Eqs. (8) and (9) in the form

(12)

(13)

The complex eigenvalues γj and  satisfy the equations

(14)

and the coefficients  are related by the formulas

(15)

The eigenvalues possess the following properties:
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Substituting Ψln(x) from (12) and (13) into boundary
conditions (10), we arrive at the following system of
algebraic equations in the coefficients:

which can be rewritten as the matrix equation

EA = Q, (16)

where

Here, we introduced the following notation:

(17)

(18)
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Taking into account that the parameter V/p is small, we
can represent the roots of Eqs. (14) as

(19)

Accordingly, the quantities εj and  take the form

(20)

(21)

Further, following [3], we will consider the interval of

fields in which the dimensionless parameter  can be
assumed to be small. This fact significantly simplifies
the computations, although is not fundamentally neces-

sary. When  ! 1, the quantities ε3 and ε4 are small,
whereas ε1 and ε2 are large.

4. DETERMINANT OF THE SYSTEM

A key quantity is the determinant ∆(λ) of system
(16), which describes the resonance properties of the
TWNS in an electromagnetic field, in particular, the
influence of a strong field on the resonance tunneling.
To avoid cumbersome calculations, we will consider in
detail a situation in the absence of dc bias voltage Vdc

and then generalize it to the case of Vdc ≠ 0.

If
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The determinant ∆(λ) of the system of equations (16)
can be expressed as a sum of terms that represent a

product of matrices Πiklm , , Kiklm , , ,

and , which are given by

(22)

(23)

(24)

(25)

(26)

(27)

multiplied by the coefficients εj .

In relatively weak fields, when the dimensionless

field  is small (see (21)), we can restrict the analysis
to two types of terms. Other terms make a small contri-
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bution proportional to , , and . As a result, we
arrive at the following expression for ∆(λ):

(28)

(29)

(30)

The symmetric matrices Π3434 and  represent the
determinants of the TWNS in the absence of an electro-
magnetic field for the upper level with the energy ε = p2

and for the lower level, with the energy ε – ω = ,
respectively:

(31)

The properties of the determinants ∆0(2) and ∆n(2) were
studied in detail in [9], where it was shown that they can
be represented as
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(33)

in the neighborhood of the resonance. Here,  and
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Ṽ
4

Ṽ
6

Ṽ
8

∆ λ( ) ε1
2ε2

2 Π3434Π1212
n ε3

ε2
---- Π K+[ ]–

 
 
 

,≈

Π Π 3424Π1213
n Π3423Π1214

n Π2434Π1312
n+ +[=

+ Π2334Π1412
n Π3414Π1213

n Π3413Π1234
n+ +

+ Π1434Π2312
n Π1334Π2412

n ] ,+

K K4234K̃1231
n

K3234K̃1241
n

K̃2344K1123
n+ +[=

+ K̃2343K1124
n K4134K̃1232

n
K3134K̃1242

n
+ +

+ K̃1344K2123
n K̃1343K2124

n ] .+

Π1212
n

pn
2

Π3434 ip–( )e 2ipa– ∆0 2( ),=

Π1212
n i pn–( )e

2i pna–
∆n 2( ),=

∆0 2( ) 2 β–( )3 2β2 2 β–( )e2ipa–=

– β2 2 β+( )e4ipa,

∆n 2( ) 2 βn–( )3 2βn
2 2 β–( )e

2i pna
–=

– βn
2 2 βn+( )e

4i pna
.

∆0 2( ) 8i
Γ t0
------- ε εR

1( ) iΓ+–[ ] ε ε R
2( )– iΓ+[ ] ,≈

∆n 2( ) 8i
Γ t0
------- ε ω– εR

1( )– iΓ+[ ] ε ω– εR
2( )– iΓ+[ ]≈

εR
1( )

εR
2( )
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arise due to the splitting of the resonance level of an iso-
lated well:

(34)

t0 is the value of splitting:

(35)

and Γ is the width of the resonance levels (which is the
same for both levels):

(36)

Note that, for simplicity, we omitted the quadratic (in δ)

corrections in  and t0 (see [9]). Formulas (32) and
(33) are valid in the vicinity of a resonance when the
energy of the electrons coming from the emitter is close

to  or  (ε –  ! ). In what follows, we
assume that this condition is satisfied.

Moreover, it is usually assumed [3, 9] that the width
Γ is much less than the energies εR; i.e., Γ/εR = 2δ2/π ! 1.
It is these conditions under which quantum wells man-
ifest their remarkable properties. It can easily be seen
that the value of splitting t0/εR ≈ δ ! 1 is also small
compared with εR .

The terms Π describe the contribution of electron
transitions between energy levels in the first and the
second wells, and the terms K describe the contribution
of transitions from the first well to the second. If the

dimensionless field  (21) is small, then the ratio

(37)

is also small, and it suffices to restrict the analysis to
two terms (28) and (30) in the determinant. The calcu-
lation of Π and K is associated with certain difficulties
because, as we will see below, the leading terms in the
parameter α/p compensate each other due to the inter-
ference between the contributions of the two wells.

Let us start the calculations from the term K. The

matrices Kiklm , , , and  can be
expressed as

(38)

εR
1( ) p0

2 2 p0δ
a

------------, εR
2( )– p0

2 6 p0δ
a

------------,–= =

p0
π
a
---, δ

p0

α
-----,= =

t0 εR
1( ) εR

2( )–
4 p0

2

αa
--------,= =

Γ
2 p0

3

α2a
---------.=

εR
1 2,( )

εR
1( ) εR

2( ) εR
1( ) εR

1( )

Ṽ

ε3

ε2
---- Ṽ

2
 ! 1≈

K̃iklm Kiklm
n K̃iklm

n

Kiklm MiL̃klm, K̃iklm M̃mLikl,= =

Kiklm
n MinL̃klm

n
, K̃iklm

n
M̃mnLikl

n ,= =
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where the matrices Lklm are given by

(39)

Here, we introduced the following notation:

(40)

(41)

Substituting (38) and (39) into (30), after a series of
transformations, we obtain

(42)

(43)

Let us evaluate the contribution of the three terms
in (42). First of all, consider the important factor
Zn (41), which describes the intensity of radiative tran-
sitions between levels. If the transitions occur between

L̃234 L134– ip 2Zn 2 β–( )e ipa––




= =

+
2x
p

------e
i pna– x

p
---e

i pn–
ψ0





,–

L̃134 L234–=

=  ip 2Znβe
i pna 2x

p
------e

i pna x
p
---e ip– ψ0+ +

 
 
 

,

L̃123
n

L124
n– i pn 2Znβne

i pna
–{= =

2x
pn

------eipa–
x
pn

-----e
i pn–

ψn




,+

L̃124
n

L123
n– i pn 2Zn 2 βn–( )e ipa––





= =

+
2x
pn

------e ipa– x
pn

-----e
i pn–

ψn




.–

ψn 2 βn e
2i pna

1–( )+[ ] ,=

ψ0 2 β e2ipa 1–( )+[ ] ,=

Zn e
i p pn–( )a

1, x– p pn.–= =

K ipi pn( )2 4Zn
2ϕ2 2x2

p pn

---------Znϕ 4 ψ̃0ψ̃n–( )–




=

–
x2

p pn

--------- 4 ψ̃0ψ̃n–[ ] 2





,

ϕ βn 2 β–( )Zn*
x
p
---+ ,–=

ψ̃n e
i pna–

ψn, ψ̃0 e ipa– ψ0.= =
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005



A TUNABLE TERAHERTZ-BAND OSCILLATOR 801
resonance levels of space quantization of the same well
(like in the coherent laser [3]), then p ≈ 2π/a, pn ≈ π/a,
and the factor Zn ≈ –2 takes the maximum possible
value. In the case of the TWNS, when the splitting t0
and, hence, the resonance frequency ω ≈ t0, are small
compared with εR , the factor Zn and the parameter x are
equal to

(44)

respectively. That is, Zn and x/p are small quantities on
the order of δ = p/α. Hence, it is clear that the main con-
tribution to K is made by the first term in braces, 

so that, using the condition ω = t0, we obtain

(45)

Note that each term in K (see (30)) is on the order of

i.e., each term is (α/p)2 times greater than K/8. Hence,
the leading (in α/p) terms in K compensate each other
due to the interference in the TWNS. A similar situation
occurs with the contribution of Πiklm to Π.

This result is of fundamental importance because,
due to the compensation, the effect of the ac field on the
resonance tunneling is sharply reduced and, as a conse-
quence, the oscillation efficiency increases.

Let us pass to the calculation of Π. First of all, we
can show that the last four terms in Π exactly coincide

with the first four terms. The matrices Πiklm and 
entering these terms can be represented as

(46)

(47)

Zn i p pn–( )a i
ωa
2 p
-------  ! 1,≈ ≈

x p pn–
ω
2 p
------, x/ p ! 1,= =

4Zn
2ϕ2 4Zn

2βn
2β2Zn

*2≈ 4 Zn
4βn

2β2,=

K ipi pn( ) 64 2.⋅ ⋅=

ip
α
p
--- 

 
4

4Zn
2 ip

α
p
--- 

 
2

16;⋅≈

Π iklm
n

Π3424 ipe 2ipa– Zn 2 β–( )Π0 1( )–




=

+
x
p
--- Π0 1( )e

i p pn–( )a
2 β–( )ψ0–[ ]





,

Π3423 ip ∆0 2( )e 2ipa– Zn 2 β–( )∆0 1( )+




=

+
x
p
--- ∆0 1( )e

i p pn–( )a
– βψ0+[ ]





,
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(48)

(49)

(50)

(51)

(52)

(53)

Here, we used the following notation:

(54)

(55)

(56)

(57)

Π2434 ip Zn*β∆0 1( )e2ipa ---




=

+
x
p
--- ∆0 1( )e
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– βψ0+[ ]





,

Π2334 ip ∆0 2( )e 2ipa– Zn*βΠ0 1( )–




=
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x
p
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i pna
2 β–( )ψ̃0–[ ]





,
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n i pn Znβn∆n 1( )e
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



=

+
x
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



,
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



=

+
x
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



,

Π1312
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2i pna–
---–





=

+
x
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2i pna–

Πn 1( )e
i pn p–( )a

– 2 βn–( )ψn+[ ]


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,

Π1412
n i pn ∆n 2( )e

2i pna–
– ZnβnΠn 1( ) -+





=

+
x
pn

-----e
i pna–

Πn 1( )eipa 2 βn–( )ψ̃n–[ ]




.

∆0 1( ) 2 β–( )2e 2ipa– β2,–=

Π0 1( ) β 2 β–( ) 2 β+( )e2ipa+[ ] ,=

∆n 1( ) 2 βn–( )2e
2i pna–

βn
2,–=

Πn 1( ) βn 2 βn–( ) 2 βn+( )e
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+[ ] .=
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Substituting (46)–(53) into the expression for Π (29)
and neglecting the terms that are small compared with
unity, after rather tedious transformations, we obtain

(58)

For the one-dimensional determinants ∆n(1) and ∆0(1),
as well as for Πn(1) and Π0(1), we can obtain the fol-
lowing approximations with respect to the parameter
p/α (cf. [9]):

(59)

Substituting (59) into (58) and applying (32) and (33),
we arrive at the following result:

(60)

Finally, we have

(61)

Combining the results, we find the determinant of the
system:

(62)

(63)

(64)

Expression (63) for the determinant of the TWNS is
formally analogous to a similar expression for the
coherent laser, in which radiative transitions occur
between the resonance levels of the same well [3]. The
difference is that the definition of λ2 involves an addi-
tional small factor (p/α)4. It is associated with the

Π 2ip i pn Z 4 βn 2 β–( )Π0 1( )∆n 1( )[{⋅–=

+ β 2 βn–( )Πn 1( )∆0 1( ) ]

+ 2∆0 2( )∆n 2( )e
2i p pn+( )a–

+ e 2ipa– ∆n 2( )2Zn βΠ0e
2i p pn–( )a

βnΠn+[ ] } .

Π0 p 1( )( ) 2β 1
1

αa
------- 1 iπ–( )+ ,≈

Πn p 1( )( ) Π0 p 2( )( ) 2β 1
3

αa
------- 1 iπ–( )+ ,–= =

∆0 p 1( )( ) 2β, ∆n p 1( )( )–≈ ∆0 p 2( )( ) 2β.= =

Π ip i pn 64 2 1 2i
π
-----– .⋅ ⋅⋅=

Π K+ ip i pn 64 4 1 i
π
---– 

  .⋅ ⋅ ⋅=

∆ λ( ) ε1
2ε2

2 p pn
64

Γ2
------∆̃ λ( ),=

∆̃ λ( ) ε εR
1( )– iΓ+( ) ε ω– εR

2( )– iΓ+( ) -=

– λ2 1 i
π
---– 

  ,

λ2 4Ṽ
2Γ2 16

p2

a2
-----Ṽ

2

 
  p

α
--- 

 
4

.= =
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above-mentioned compensation of leading (in α/p)
terms due to the interference and the smallness of the
frequency ω ! εR . The second difference lies in the
term λ2i/π. This term leads to a certain asymmetry in
the tuning mode (see Section 5 below).

The term λ2 in (63) describes nonlinear properties
and reflects the influence of an electromagnetic field on
the resonance tunneling [3], which becomes substantial
when

λ > Γ. (65)

Such fields are called strong fields [3]. The fact that λ
sharply decreases due to the compensation indicates
that the influence of the field is weakened. This fact is
of fundamental importance for increasing the efficiency
of the field generation. Note also that the applicability

scope of the approximation  < 1 sharply decreases
due to the factor (p/α)4. Further, we will restrict our-

selves to the fields  & 1/3 because, for  > 1, the
calculations become extremely cumbersome. The anal-
ysis of the results carried out in a wide range of fields
by numerical methods [10] shows that this approxima-
tion is applicable. Moreover, in the most interesting
case, when the bias voltage is greater than the splitting,

Vdc @ t0 , the domain  < 1 again expands (see Sec-
tion 5 below).

It is of interest to compare the values of λ2 (64) for
the TWNS and for the coherent laser [3],

(66)

As pointed out above, these values differ by (p/α)4;

however, the frequencies entering  are also signifi-
cantly different. For instance, for the TWNS, one
should use a small frequency of

for a coherent laser, a frequency of

As a result, we obtain

(67)

The strong-field criteria for the TWNS and the coherent
laser are expressed as

(68)

Ṽ
2

Ṽ
2

Ṽ
2

Ṽ
2

λ l
2 16 p pn

a2
---------------Ṽ

2
.=

Ṽ
2

ω t0
4 p2

αa
--------;= =

ω 3π2

a2
--------

3
4
--- p2.= =

λ eEa
4

----------
V ac

8
-------, λ l

8eEa

9π2
------------- V ac

l 8

9π2
--------,= = = =

V ac 2eEa, Vac
l eEa.= =

V ac 8Γ , Vac
l 9π2

8
--------Γ .> >
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005



A TUNABLE TERAHERTZ-BAND OSCILLATOR 803
Hence, the field becomes strong if the energy accumu-
lated by an electron over the length of the structure is
comparable with the linewidth. We can see that the dif-

ference between Vac and  is only numerical.

5. WAVEFUNCTION 
AND POLARIZATION CURRENT 

OF THE FIRST WELL

Let us determine the wavefunction and the current in
the first well only, because the currents in the first and
second wells coincide. Indeed, for a weak field, this
was proved in [9]. In the case of a strong field, the dif-
ference is mainly associated with the determinant ∆(λ)
of the system, which is common for the two wells.
Moreover, the numerical calculation of currents [10]
also confirms that these determinants are equal.

Restricting the consideration to the leading terms of

expansion in , after quite tedious calculations, we
obtain from expression (16) the following expressions
for the coefficients A1j (15) of the wavefunction (12):

(69)

(70)

(71)

(72)

(73)

In the limiting case of a weak field λ ! Γ, the coeffi-
cients A1j in expressions (69)–(72) coincide with those
obtained earlier in [9]. The coefficients A1 and B1 are

represented as a sum of two terms. The first term 

( ) is divergent as ω  0 (see [9] for details). The

second term  ( ) is finite as ω  0, and only
this term makes a contribution to the polarization
current.

Let us determine the wavefunctions Ψ10 and Ψ11 (12).
One should retain only the contributions of A13 and A14

V ac
l

Ṽ

ε1A11 A1≡ A1
1( ) A1

2( )+=

=  
2qε1

2ε2
2ε3

∆ λ( )
---------------------ip i pn ∆0 1( )Π1212 βn M1 Φ1–[ ]–{ } ,⋅

ε2A12 B1≡ B1
1( ) B1

2( )+
2qε1

2ε2
2ε3

∆ λ( )
---------------------= =

× ip i pn Π0 1( )Π1212– 2 βn–( ) M1 Φ1–[ ]–{ } ,⋅

A13
∆ λ( )
2q

------------ ip∆0 1( )Π1212ε1
2ε2

2,–=

A14
∆ λ( )
2q

------------ ipΠ0 1( )Π1212ε1
2ε2

2,–=

M1 Zn∆0 1( )Πn 1( ) Zn*Π0 1( )∆n 1( )+[ ] ,=

Φ1 4 Znβ 2 βn–( ) Zn*βn 2 β–( )+[ ] .=

A1
1( )

B1
1( )

A1
2( ) B1

2( )
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in the function Ψ10 and omit the small corrections due

to A11 and A12 that are quadratic in :

In the same approximation, one can represent the
eigenvalues γj (19) as

(74)

Taking into account that, according to (59),

for α/p @ 1, we find that the wavefunction Ψ10(x) is 

(75)

All four terms in the function Ψ11 are of the same order

in . It can easily be shown that, up to the small terms
ω/p2, the coefficients at eipx and e–ipx compensate the

coefficients  at  and  at . This proce-
dure is analogous to the elimination of infrared diver-
gence in a weak field [9]. Taking into account that

 ≈ –  in the leading-order approximation in
(α/p), we can represent the wavefunction Ψ11 as

(76)

Thus, the wavefunction Ψ11(x) depends only on the

coefficient , which is finite as ω  0 (see (80)).

Let us find M1 and Φ1. Assuming, as usual, that the
energy of electrons incident to the TWNS is close to the

energy  of the upper level (i.e., p ≈ p(1)) and using
formula (59) for ∆0(1), Π0(1), ∆n(1), and Πn(1), we
obtain

(77)

Accordingly, for Φ1, we have

(78)

so that the difference of interest is

(79)

Substituting the difference M1 – Φ1 into (69), we

find :

(80)

Ṽ

Ψ10 x( ) A13e
γ3x

A14e
γ4x

.+≈

γ3 γ4– ip, γ1 γ2– i pn.= = = =

∆0 1( ) Π0 1( ), A13– A14,–≈ ≈

Ψ10 x( ) 2iA13 px.sin≈

Ṽ

A1
1( ) e

i pnx
B1

1( ) e
i pnx–

A1
2( ) B1

2( )

Ψ11 x( ) 2iA1
2( ) pnx.sin=

A1
2( )

εR
1( )

M1
α2a2

p4
-----------ω2.≈

Φ1
α2a2

p4
-----------ω2,–≈

M1 Φ1– 2
α2a2

p4
-----------ω2.=

A1
2( )

A1
2( ) Ua 16q( )α

∆ λ( )Γp
--------------------------.–=
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Notice that the frequency is canceled in the denomina-

tor of the coefficient , which becomes finite as
ω  0.

In the limit of a weak field, the expression for 
(80) exactly coincides with the corresponding expres-
sion in [9]. Here, it is important to note that we use dif-
ferent forms of interaction with the electromagnetic field
in [9] and in the present study. Indeed, interaction (3) is
described by a vector potential, whereas, in [9], it is
described as “–xE.”

The wavefunctions Ψ10(x) and Ψ11(x) prove to be
similar to the corresponding functions of the coherent
laser based on a single-well structure [3]; this fact
allows us to determine the current following the method
of [3]. Substituting Ψ10(x) and Ψ11(x) into (11), we
obtain the active component of the reduced polarization
current:

(81)

We calculate the matrix element M12 of the transition
taking into account the fact that the resonance fre-
quency is small compared with εR:

(82)

Substituting  and A13 into (81), we arrive at the final
expression for the current of the first well:

(83)

which coincides with the corresponding current
obtained in [9] in the weak-field limit. In the general
case, it is convenient to represent current (83) in a form
analogous to that of the active current of the coherent
laser [3]:

(84)

(85)

When deriving (84), we used the relation

Formula (84) shows that the TWNS can be consid-
ered as a coherent laser in which radiative transitions

occur between the energy levels  and . Since the

A1
2( )

A1
2( )

J1c i4eM12 A1
2( )A13* c.c.–[ ] .–=

M12
1
a
--- x p pnx pxcossin[d

0

a

∫=

– pn px pnx ]cossin
ωa
4

-------.≈

A1
2( )

J1c Ua ep4q2( )
64 α / p( ) ∆n 2( ) ∆n* 2( )+( )

Γ ∆̃ λ( ) 2
-------------------------------------------------------------,=

J1c
EΓ2Qη
∆̃ λ( ) 2

------------------, Q– pq2, η e2 p2

α
----------,= = =

∆̃ λ( ) 2 λ2 Γ2 ξ2–+( )2
2Γξ λ2

π
-----+ 

 
2

+ .=

∆n 2( ) ∆n* 2( )+ 16.=

εR
1( ) εR

2( )
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photon frequency is small, an additional small factor

p/α appears in current (84). In the determinant (λ),

there appear a factor (p/α)4 at , which plays an
essential role, and a correction λ2/π (see formula (64)).

The current J1c describes nonlinear properties of
amplification and allows us to construct an oscillation
theory that is presented in Section 7 below. It can easily
be shown that, for a fixed energy ξ, the current first
increases with λ, reaches its maximum for λ = λ0, and
then decreases in proportion to 1/λ3. In particular, for
ξ = 0, we have

which corresponds to the value  ≈ 4.6Γ.

Following [3], to calculate the efficiency of the radi-
ation of photons, we introduce the quantity

(86)

which makes the sense of the number of photons emit-
ted by the TWNS per unit time. Obviously, the highest
possible efficiency is achieved when each of 2pq2 elec-
trons incident to the TWNS emits a photon; i.e.,

Then, it is natural to characterize the efficiency by the
parameter

(87)

When ξ = 0, the efficiency  increases with λ, reaches

its maximal value  = 1/2 at λ0 = Γ, and then decreases.
Here, we neglected the small correction 1/π2. The situ-
ation considered is analogous to the coherent laser [3],
the only difference being that the efficiency of the laser
is equal to unity. In [3], it was shown that one can attain
a regime with the highest efficiency for any λ by vary-
ing the energy ξ0 as λ increases. Based on the maximal-
ity condition

we obtain the following equation for ξ0:

(88)

∆̃

Ṽ
2

λ0
2 Γ2

3
----- 1 1

4π2
--------– 

  ,≈

V ac
0( )

P
1

2π
------ t xJc x t,( )E t( )d

0

2a

∫d

0

2π/ω

∫
J1cEa

ω
--------------,= =

Pmax 2 pq2.=

P̃
P

2 pq2
------------

2λ2Γ2

∆̃ λ( ) 2
-----------------.= =

P̃

P̃

dP
dξ
------- 0,=

ξ0
3 ξ0

2 Γ2 λ2–( ) λ2Γ
π

---------+ + 0.=
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If we neglect the last term, then solutions (88) have the
form

(89)

The first solution yields a maximum for λ = Γ. The
symmetric solutions

are realized for λ > Γ and ensure the efficiency

(90)

for any λ. Looking ahead, note that an application of a
dc voltage Vdc > t0 increases the efficiency up to  = 1
(see Section 6).

Taking into account the term Γ/π in expression
(88) leads to a slight asymmetry between the second
and the third solutions and to the shift ξ01 from the zero
value.

6. WAVEFUNCTION 
AND POLARIZATION CURRENT

OF TWNS IN THE PRESENCE OF VOLTAGE

Let us generalize the results obtained. Let a dc volt-
age be applied to the TWNS (see figure). We will seek
the wavefunctions of the first well in form (12) with the
coefficients Alj satisfying system of equations (16) with
p1 ≠ p and p1n ≠ pn .

The determinant (λ) is given by expressions (28)–
(30) in which one should make the following changes:

Πiklm  ,   , Kiklm  ,

  ,   ,   .

The new matrices (supplied with a bar) are given by

(91)

(92)

ξ01 0, ξ0
2 λ2 Γ2, λ– Γ .>= =

ξ02 ξ03, λ2 Γ2+±=

P̃
2λ2Γ2

4λ2Γ2
-------------- 1

2
---= =

P̃

λ0
2

∆̃

Π iklm Π iklm
n Π iklm

n
Kiklm

K̃iklm K
˜

iklm Kiklm
n Kiklm

n
K̃iklm

n
K
˜

iklm
n

Π iklm

Mi Mk 0 0

0 0 M
˜

l M
˜

m

1 1 1 1

ni nk γl γm

,=

Π iklm
n

Min Mkn 0 0

0 0 M
˜

ln M
˜

mn

1 1 1 1

ni nk γl γm

,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(93)

(94)

(95)

(96)

The symmetric matrices  and  represent the
determinants of the TWNS in the absence of an electro-
magnetic field:

(97)

(98)

The properties of ∆10(2) and ∆1n(2) were studied in
detail in [9], where it was shown that, near the reso-
nance and for Vdc ! εR , these determinants can be rep-
resented as

(99)

(100)

Here, (1) and (1) are the energies of levels in
the TWNS that arise due to the splitting of the reso-

Kiklm

Mi 0 0 0

0 M
˜

k M
˜

l M
˜

m

1 1 1 1

ni γk γl γm

,=

K
˜

iklm

Mi Mk Ml 0

0 0 0 M
˜

m

1 1 1 1

ni nk nl γm

,=

Kiklm
n

Min 0 0 0

0 M
˜

kn M
˜

ln M
˜

mn

1 1 1 1

ni γk γl γm

,=

K
˜

iklm
n

Min Mkn Mln 0

0 0 0 M
˜

mn

1 1 1 1

ni nk nl γm

.=

Π3434 Π1212

Π3434 i p1–( )e
2i p1a–

∆10 2( ),=

Π1212 i p1n–( )e
2i p1na–

∆1n 2( ).=

∆10 2( ) 8i
Γ t0
------- ε εR

1( ) 1( )– iΓ+[ ] ε ε R
2( ) 1( )– iΓ+[ ] ,≈

∆1n 2( ) 8i
Γ t0
------- ε ω– εR

1( ) 1( )– iΓ+[ ]=

× ε ω– εR
2( ) 1( )– iΓ+[ ] .

εR
1( ) εR

2( )
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nance level of an isolated well and due to the applied
voltage Vdc ,

(101)

(102)

The value of energy splitting

(103)

increases with Vdc. For Vdc @ t0 (V0 @ 1), the splitting
is determined only by the dc voltage; i.e., t ≈ Vdc. The
width Γ of levels does not depend on Vdc and is given by
formula (36).

Note that, in expressions (101), (102), and (103), the
terms on the order of δ2, (Vdc/εR)2, and (Vdc/εR)δ are
dropped due to their awkwardness. They do not play
any essential role and can again be included if neces-
sary.

In the resonance case of interest, the frequency
grows with Vdc:

(104)

Assuming, as usual, that the energy of pumping elec-
trons (that are brought to the structure from the emitter)
is close to the energy of the upper level (ξ = ε –

(1) ! t), we can represent the determinants ∆10(2)
and ∆1n(2) as

(105)

. (106)

It follows from (105) and (106) that ∆10(2) and ∆1n(2)
increase with Vdc due to the detuning of the exact reso-
nance. This, in particular, reduces the transmission
coefficient through the TWNS:

(107)

The nonsymmetric matrices  and 
describe electron transitions under an ac field between
the energy levels within the first and second wells,

whereas the matrices , , , and 
describe such transitions between the wells.

εR
1 2,( ) 1( ) p0

2 2 p0x1
1 2,( )

a
---------------------,+=

x1
1 2,( ) δ 2 V0+( )– 1 V0

2+± , V0

Vdc

t0
--------.= =

t εR
1( ) 1( ) εR

2( ) 2( )– t0 1 V0
2+= =

ω t t0 1 V0
2+ .= =

εR
1( )

∆10 2( ) 8i
Γ
----- ξ iΓ+( ) 1 V0

2+ ,≈

∆1n 2( ) 8i
Γ
----- ξ iΓ+( ) 1 V0

2+–≈

T εR
1( )( )

t0
2

t0
2 Vdc

2+
------------------

1

1 V0
2+

---------------.= =

Π iklm Π iklm
n

Kiklm K̃iklm Kiklm
n

K
˜

iklm
n
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We begin with the calculation of the matrices K,
which can be represented as

(108)

If we make the following changes:

p  p1, pn  p1n, Zn  Z1n,

where

(109)

then  and  satisfy relations (39). Substituting
(108) into (30), after certain transformations, we obtain

(110)

Taking into account the symmetry properties

(111)

we arrive at the expression

(112)

where

(113)

In the absence of a bias voltage (Vdc = 0),  = L1,  =

L2, and  coincides with (42).

The calculation of Li and  yields

(114)

Kiklm MiL
˜

klm, K
˜

iklm M
˜

mLikl,= =

Kiklm
n

MinL
˜

klm
n

, K
˜

iklm
n

M
˜

mnLikl
n .= =

Z1n e
i p1 p1n–( )a

1,–=

L
˜

ikl L
˜

ikl
n

K M4L123
n M3L124

n+[ ] M
˜

14L
˜

234 M
˜

24L
˜

134+[ ]=

+ M14L234 M24L134+[ ] M
˜

3L
˜

124
n

M
˜

4L
˜

123+[ ] .

L
˜

234 L134, L
˜

134– L234,–= =

L
˜

124
n

L123
n

, L
˜

123
n

– L124
n

,–= =

M14 M
˜

24, M24– M
˜

14,–= =

M3 M
˜

4, M4– M
˜

3,–= =

K L1L2 L1L2,+=

L1 M4L123
n M3L124

n ,+=

L2 M14L234 M24L134,+=

L1 M4L123
n

M3L124
n

,+=

L2 M14L234 M24L134.+=

L1 L2

K

Li

L1 2i pn Zn
2βn 2 β–( ) 2Zn βn β–( )+





=

+
2x
pn

------ x
2 pn

--------e
i p pn+( )a–

ΨnΨ0–




,
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(115)

(116)

(117)

Taking into account that

and

are small, we can easily show that the main contribution
to (114)–(117) is made by the leading terms. Neglect-
ing the small terms, we obtain

(118)

Again (like in the case of Vdc = 0), a number of terms
are compensated due to the interference in the TWNS.
In contrast to K,  involves frequency, which grows
with Vdc:

(119)

Therefore, compared with K,  contains an additional

term (1 + )2:

(120)

After very tedious calculations, we can obtain the fol-
lowing expression for :

(121)

To simplify the formulas, we dropped the small term i/π.

L1 2i p1n Z1n
2β1n 2 β1–( ) 2Z1n β1n β1–( )+





=

+
2x1

p1n

--------
x1

2 p1n

-----------e
i p1 p1n+( )a–

Ψ1nΨ10–




,

L2 2ip Zn
2βn 2 β–( ) 2Zn βn β–( ) 2x

p
------–+





=

+
x

2 p
------e

i p pn+( )a–
ΨnΨ0





,

L2 2i p1 Z1n
2β1n 2 β1–( ) 2Z1n βn β–( ) ---+





=

–
2x1

p1
--------

2x1

p1
--------e

i p1 p1n+( )a–
Ψ1nΨ10+





.

Z1n i
ωa
2 p1
--------≈

x1

p1
----- ω

2 p1
2

--------≈

K 8 Zn
2 Z1n

2i p1 i p1nββ1βnβ1n.⋅≈

K

Zn i
at0

2 pn

-------- 1 V0
2+ , Z1n i

at0

2 p1n

----------- 1 V0
2+ .= =

K

V0
2

K i p1 i p1n 64 2 1 V0
2+( )2

.⋅ ⋅ ⋅≈

Π

Π i p1 i p1n 64 2 1 V0
2+( )2

.⋅ ⋅ ⋅=
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Thus, the total contribution to the determinant (λ)
(see (28)),

, (122)

increases with the voltage Vdc faster than the contribu-
tion of ∆10(2)∆1n(2). However, this factor is canceled
out by the factor that arises due to ω in the denominator

of the expression for  (see (37) and (21)). Hence, the
voltage Vdc does not influence the contribution of the

transitions between levels to (λ). This fact is consis-
tent with the result of [9] that the matrix elements of the
transitions are independent of Vdc (see formulas (134)
below). Combining the results, we find the determinant
of the TWNS for Vdc ≠ 0:

(123)

(124)

(125)

Comparing (λ) with ∆(λ), we can see that, in (λ), a

factor (1 + ) appears, whereas, in (λ),  is

replaced by /(1 + ). Thus, the growth of the prod-
uct ∆10(2)∆1n(2) of resonance determinants weakens the
effect of the ac field on the resonance tunneling. This
result is of fundamental importance and leads to an
increase in the oscillation efficiency.

In addition, when Vdc ≠ 0, the applicability domain

of the approximation  < 1 (for  @ 1) expands
because the strong-field criteria take the form

(126)

Let us determine the wavefunction of the first well
for Vdc ≠ 0. The coefficients A1j are given by expres-
sions (69)–(73), in which one should make the follow-
ing substitutions:

Πiklm  , ∆0(1)  ∆10(1), ∆n(1)  ∆1n(1),

Π0(1)  Π10(1), Πn(1)  Π1n(1), M1  ,

Φ1  , Zn  Z1n,

∆

K Π+ i p1 i p1n 64 4 1 V0
2+( )2⋅ ⋅ ⋅=

Ṽ
2

∆

∆ λ( ) ε1
2ε2

264

Γ2
------ 1 V0

2+( )∆˜ λ( ),=

∆˜ λ( ) ε εR
1( ) 1( )– iΓ+( )[=

× ε ω– εR
2( ) 1( )– iΓ+( ) λ2 ] ,–

λ2
4Γ2Ṽ

2
1 V0

2+( )
V ac

2

64 1 V0
2+( )

--------------------------.= =

∆ ∆

V0
2 ∆˜ V ac

2

V ac
2 V0

2

Ṽ
2

V0
2

λ2 Γ2, Ṽ
2 1

4 1 V0
2+( )

-----------------------,≥ ≥

V ac

Γ
------- 8 1 V0

2+ .≥

Π iklm

M1

Φ1
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where

(127)

(128)

(129)

(130)

(131)

(132)

We omit cumbersome calculations of the current; they
are analogous to the case of Vdc = 0. We just note a few
important moments.

Earlier [9], we showed that

(133)

in the leading-order approximation in p/α (for p ≈ p(1)).
Using (133), we can easily verify that the field Vdc is
dropped from the products ∆10(1)Π1n(1) and
Π10(1)∆1n(1), so that

(134)

Moreover, the coefficient A13 contains ∆10(1), which,
according to (133), depends on V0. Taking into account
the relation

M1 ∆10 1( )Π1nZ1n Π10 1( )∆1n 1( )Z1n*+[ ] ,=

Φ1 4 β1 2 β1n–( )Z1n β1n 2 β1–( )Z1n*+[ ] ,=

∆10 1( ) 2 β1–( ) 1
p1

p
----- β–+ 

  e
2i p1a–

=

– β1 β
p1

p
----- 1–+ 

  ,

∆1n 1( ) 2 β1n–( ) 1
p1n

pn

------- βn–+ 
  e

2i p1na–
=

– β1n βn

p1n

pn

------- 1–+ 
  ,

Π10 1( ) 2 β1–( ) β 1
p1

p
-----–+ 

 =

+ β1 β
p1

p
----- 1+ + 

  e
2i p1a

,

Π1n 1( ) 1 βn

p1n

pn

-------–+ 
  2 β1n–( )=

+ β1n 1
p1n

pn

------- β1+ + 
  e

2i p1na
.

∆1n 1( ) Π1n 1( )–≈ 2iα
pn

--------- V0 1 V0
2+–[ ] ,=

∆10 1( ) Π10 1( )–≈ 2iα
p0

--------- V0 1 V0
2++[ ]=

M1 M1, Φ1 Φ1.= =

∆1n 2( ) ∆1n* 2( )+ 16 1 V0
2+ ,=
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we arrive at the final expression for the current of the
first well:

(135)

(136)

(137)

In a weak field,  ! Γ, the expression for the current

 coincides with the corresponding expression in [9].
The comparison of formulas (135)–(137) with the
expression for the current of the coherent laser on a sin-
gle-well structure [11] shows that a TWNS-based oscil-
lator can be considered as a coherent laser in which
radiative transitions occur between split levels of the
TWNS in the presence of a dc voltage Vdc.

Based on this analogy, we can expect that, as shown
in [3], there exists an optimal oscillation regime when
the energy ξ0 of electrons incident to the TWNS satis-
fies the condition

(138)

Now, let us consider the radiation efficiency of pho-
tons as this was done in Section 5:

(139)

The expression for  differs from the expression for 

in that the former expression involves  instead of λ
and contains an additional factor

.

It is obvious that, for ξ0 = 0 (  = Γ) and  =  –

Γ2 (  > Γ), the expression for the efficiency  reduces
to

(140)

When V0 = 0, the value  = 1/2 coincides with (90),

while, when V0 @ 1, we have  = 1; i.e., the efficiency

J1c
EQΓ2η

∆˜ λ( )
2

------------------, η–
e2 p2

α
----------

V0 1 V0
2++[ ]

1 V0
2+( )

------------------------------------,= =

∆˜ λ( )
2
  =  ξ i Γ + ( ) ξ i Γ + ( ) λ 

2
 – [ ] ,

λ
V ac

8 1 V0
2+

----------------------.=

λ
J1c

ξ0 0, λ Γ ,= =

ξ0
2 λ2 Γ2, λ– Γ ,>=

V ac

Γ
------- 8 1 V0

2+ .>

P
˜ P

2epq2
--------------

2λ2Γ2 V0 1 V0
2++[ ]

∆˜ λ( )
2

1 V0
2+[ ]

----------------------------------------------------.= =

P
˜

P̃

λ

V0 1 V0
2++

1 V0
2+

-------------------------------

λ ξ0
2 λ2

λ P
˜

P
˜ 1

2
---

V0 1 V0
2++( )

1 V0
2+

------------------------------------.=

P
˜

P
˜
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attains its highest possible value when each electron
brought to the TWNS emits a photon and passes
through the structure without reflection.

This result is quite nontrivial. Indeed, the transition
frequency ω is small compared with the energy of the
resonance level of a quantum well, so that the parame-
ter Z1n, which characterizes the frequency resonance, is
small: Z1n ! 1. For comparison, in the coherent laser [3],
where p = 2π/a and pn = π/a, we have Zn = –2.

The high efficiency of the TWNS is associated with
the suppression of the influence of the electromagnetic
field on the resonance tunneling due to the compensa-
tion of a number of terms, which is attributed to the
interwell interference (to the coefficient p/α multiply-

ing  in the determinant). For example, the voltage
Vdc additionally reduces the influence of the ac field due
to the increase of the determinants ∆10(2) and ∆1n(2).

The voltage Vdc also results in an increase in the
maximal value of the current for ξ = 0:

(141)

which is attained at

(142)

When V0 @ 1, the maximal value is doubled.

7. ELECTROMAGNETIC FIELD OSCILLATIONS 
IN THE TWNS

Taking into account the analogy between the polar-
ization currents  in the TWNS and in the coherent
laser, we apply the theory of oscillations in the coherent
laser [3] to describe the electromagnetic field oscilla-
tions in the TWNS. An equation for the field amplitude
is obtained upon the substitution of the expression for
the current  (135) into (4):

(143)

Generally speaking, we need an equation for the oscil-
lation frequency. However, as is shown in [3], under the
condition that the stabilization factor is small (S =
1/Γτ0 ! 1), the oscillation frequency coincides with the
frequency of the resonator, ω = Ω . Since Ω can be var-
ied, we will assume that ω is a free parameter.

Let us determine  as a function of the pumping

current  from Eq. (143):

(144)

Ṽ
2

J1c
m

J1c
m V0 1 V0

2++[ ]

1 V0
2+

------------------------------------,=

V ac
m

Γ
-------

8

3
------- 1 V0

2+ .=

J1c

J1c

1
Γ2Q̃

∆˜ λ( )
2

-----------------, Q̃
4πτ0Qη

κ
--------------------.= =

λ2

Q̃

λ˜
2

ξ2 Γ Q̃ 4ξ2– Γ–[ ] .+=
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The minimal threshold current Qth is obtained if we set

 = 0 and ξ = 0:

(145)

The analysis of Qth is carried out in Section 8 below.
Following [3] (see also Section 5), we can show that

there exists an optimal oscillation regime when the
energy of the electrons brought to the TWNS satisfies
the condition

(146)

In this regime,  is a linear function of the pumping
current:

(147)

and the efficiency is maximal. If we express  in terms
of the number N of photons of frequency ω that are
emitted by the structure per unit time, then from (147)
we obtain

(148)

Thus, for V0 @ 1, the oscillation efficiency is 100%.

8. CONCLUSIONS 

It is of interest to compare the results obtained with
the corresponding results for the RTD and the coherent
laser. According to [11], the threshold current is given
by

(149)

In the low-frequency regime ω ! Γ and for ε = εR + Γ,
this current is α/p times greater than Qth for the TWNS
(typical values of α/p vary from 20 to 100). In the high-
frequency “quantum regime” [11] ε – εR = ω @ Γ, the
ratio

becomes still greater and reaches a value of (α/p)(ω/Γ)4

in the classical regime (ε – εR ~ Γ and ω @ Γ).

λ˜

Q̃th Γ2,=

Qth
κΓ 2

4πτ0η0
-----------------

α 1 V0
2+( )

p V0 1 V0
2++( )

---------------------------------------- ,=

η0 e2 p.=

ξ0
2 λ2 Γ2, λ– Γ .>=

λ2

λ2
Q̃/4=

λ2

N P
J1cE2a

2ω
------------------ Q

V0 1 V0
2++

1 V0
2+

-------------------------------.= = =

Qth
RTD κ

πe2τ0a
----------------=

×
ε εR– ω–( )2 Γ2+[ ] ε ε R– ω+( )2 Γ2+[ ]

ε εR–( )Γ2
------------------------------------------------------------------------------------------------.

Qth
RTD

Qth
TWNS

--------------- α
p
---ω

Γ
----≈
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A comparison with the single-well coherent laser [3],
in which radiative transitions occur between the reso-
nance levels of the well (p – pn = ±π/a) and the fre-

quency is ω ≈ 3π2/a2, shows that the threshold 
is greater by a factor of α/p. This is associated with the
fact that the frequency ω is small compared with εR ,
because the parameter Z1n (see (109)), which character-
izes the intensity of radiative transitions Zn ~ ω, is
small. However, it is this frequency that corresponds to
the relevant terahertz band. At the same time, in the
optimal oscillation regime of the TWNS, the oscillation
efficiency reaches 100% even at this small terahertz-
band frequency. The reason for this is quite nontrivial
and is explained in Section 6.

There are other advantages of TWNS oscillators.
First, they allow for the fine tuning of the oscillation
frequency by a dc bias voltage Vdc, which separates the
resonance levels. Second, the use of TWNS oscillators
facilitates the fulfillment of the coherence condition
because, since the oscillation frequency ω is small
compared with the frequency ω0 of an optical phonon,
the most critical mechanism of relaxation is removed.
Third, one can easily achieve an optimal oscillation
regime because the widths of resonance levels are
equal.

At the same time, the TWNS retains the advantages
of the coherent laser, such as a high efficiency without
inverse population, a narrow amplification loop, the
absence of saturation phenomena, etc. This allows one
to predict the prospectiveness of tunable high-fre-
quency TWNS oscillators.

We can make one more prediction. As pointed out in
the Introduction, the TWNS represents a simple struc-
ture on the way from the RTD toward the single-band
Bloch superlattice. Therefore, one may expect that the
phenomenon of compensation due to the interference
will also be inherent in a coherent oscillator based on a
single-band Bloch superlattice (the Stark ladder) and,
hence, will lead to a high oscillation efficiency. For a

Qth
TWNS
JOURNAL OF EXPERIMENTAL A
two-band Stark ladder, the possibility of an optimal
oscillation regime was proved in [12].
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Abstract—We use the results for the structure function FL for a gluon target with a nonzero transverse momen-
tum squared at the order αs , obtained in our previous paper, for comparison with recent H1 experimental data
for FL at fixed W values and with collinear GRV predictions in the leading-order and next-to-leading-order
approximations. © 2005 Pleiades Publishing, Inc. 
1. The longitudinal structure function FL(x, Q2) is a
very sensitive QCD characteristic and is directly related
to the gluon content of the proton. It is equal to zero in
the parton model with spin-1/2 partons and acquires
nonzero values in the framework of perturbative QCD.
The perturbative QCD, however, leads to quite contro-
versial results. In the leading-order (LO) approxima-
tion, FL amounts to about 10–20% of the corresponding
F2 values at large Q2 and, thus, acquires quite large con-
tributions at low x. The next-to-leading-order (NLO)
corrections to the longitudinal coefficient function are
large and negative at small x [1–5] and can lead to neg-
ative FL values at low x and low Q2 values (see [5, 6]).
Negative FL values demonstrate limitations of the
applicability of the perturbation theory and the neces-
sity of a resummation procedure that leads to the cou-
pling constant scale higher than Q2 (see [5, 7–9]).

The experimental extraction of the FL data requires
a rather cumbersome procedure, especially at small val-
ues of x (e.g., see [10]). However, new precise prelimi-
nary H1 data [11] on the longitudinal structure function
FL presented recently have probed the small-x region
10–5 ≤ x ≤ 10–2.

In this paper, the standard perturbative QCD formu-
las and the so-called kT-factorization approach [12]
based on the Balitsky–Fadin–Kuraev–Lipatov (BFKL)
dynamics [13] (see also [14] and references therein) are
used for the analysis of the above data. The perturbative
QCD approach is hereafter called the collinear approx-
imation and is applied at the LO and NLO levels using

¶ The text was submitted by the authors in English.
1063-7761/05/10105- $26.000811
Gluck–Reya–Vogt (GRV) parametrizations for parton
densities (see [15]). The corresponding coefficient
functions are taken from papers [1–3].

In the framework of the kT-factorization approach,
which we primary consider in this paper, the longitudi-
nal structure function FL was first studied in [16], where
the small-x asymptotics of FL was obtained analytically
using the BFKL results for the Mellin transform of the
unintegrated gluon distribution, and the longitudinal
Wilson coefficient functions for the full perturbative
series were calculated at asymptotically small x values.
In this paper, we follow a more phenomenological
approach in [17], where we analyzed the FL data in a
broader range at small x; we thus use parametrizations
of the unintegrated gluon distribution function Φg(x,

) (see [14]).

A similar study has already been done in our paper
[17] using previous H1 data [18].1 The recent H1 pre-
liminary experimental data [11] is essentially more pre-
cise, which stimulates the present additional study.

2. The unintegrated gluon distribution Φg(x, )
(where fg is the integrated gluon distribution in the pro-
ton multiplied by x and k⊥  is the transverse part of the
gluon 4-momentum kµ),

(1)

1 We note that the FL structure function has also been studied in the
framework of the kT-factorization in [19, 20].

k ⊥
2

k ⊥
2

f g x Q2,( ) k ⊥
2 Φg x k ⊥

2,( )d

Q
2

∫=
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(herein, k2 = – ) is the basic dynamical quantity in the
kT-factorization approach.2 It satisfies the BFKL equa-
tion [13].

In the kT-factorization approach, the structure func-
tions F2, L(x, Q2) are driven at small x primarily by glu-
ons and are related to the unintegrated distribution

Φg(x, ) as

(2)

where ei are charges of active quarks.

The functions (x, Q2, , ) can be regarded
as structure functions of the off-shell gluons with virtu-

ality  (hereafter, we call them hard structure func-
tions in analogy to similar relations between cross sec-
tions and hard cross sections). They are described by

2 In our previous analysis [21], we have shown that the property

k2 = –  leads to the equality of the Bjorken x value in the stan-

dard renormalization-group approach and in the Sudakov
approach.

k ⊥
2

k⊥
2

k ⊥
2

F2 L, x Q2,( ) zd
z
----- k ⊥

2d

Q
2

∫
x

1

∫=

× ei
2Ĉ2 L,

g
x/z Q2 mi

2 k ⊥
2, , ,( )Φg z k ⊥

2,( ),
i u d s c, , ,=

∑

Ĉ2 L,
g

mi
2 k ⊥

2

k ⊥
2
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Fig. 1. Q2 dependence of FL(x, Q2) (at fixed W = 276 GeV).

The H1 preliminary e+p and e–p experimental data are
shown as black points and black and white squares, respec-
tively (see [11]). Theoretical curves are obtained in the
kT-factorization approach with the JB unintegrated gluon
distribution: the solid curve corresponds to a “frozen” cou-
pling constant; the dashed curve, to the analytical coupling
constant; and the dash-dotted curve, to the frozen argument
in the coupling constant and the unintegrated gluon distri-
bution function.
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the sum of the quark box (and crossed box) diagram
contribution to the photon–gluon interaction (e.g., see
Fig. 1 in [17] and [21]).

3. We note that the -integral in Eqs. (1) and (2)
can be divergent at the lower limit, at least for some

parametrizations of Φg(x, ). To overcome this prob-
lem, we change the low Q2 asymptotics of the QCD
coupling constant within hard structure functions. We
here apply two models: the “freezing” procedure and
the Shirkov–Solovtsov analytization.

The “freezing” of the strong coupling constant is a
very popular phenomenological model for the infrared
behavior of αs(Q2) (e.g., see [22]). The “freezing” can
be done in the hard way and in the soft way.

In the hard case (e.g., see [23]), the strong coupling
constant is itself modified: it is taken to be constant at

all Q2 values less than some , i.e.,

In the soft case (e.g., see [20]), the subject of the
modification is the argument of the strong coupling
constant. It contains the shift Q2  Q2 + M2, where
M is an additional scale, which strongly modifies the
infrared αs properties. For massless produced quarks,
the ρ-meson mass mρ is usually taken as the M value,
i.e., M = mρ. In the case of massive quarks with a mass
mi , the M = 2mi value is typically used. Below, we use
the soft version of the “freezing” procedure.

Shirkov and Solovtsov proposed [24] a procedure of
analytization of the strong coupling constant αs(Q2),
which leads to a new strong analytical coupling con-
stant aan(Q2) having nonstandard infrared properties.
Here, we do not discuss theoretical aspects of the pro-
cedure and use only the final formulas for the analytical
coupling constant aan(Q2). They are given by 

(3)

in the LO approximation and

(4)

in the NLO approximation, where β0 and β1 are the first
two terms in the αs-expansion of the β-function and

b1 = β1/ . The constant C1 = 0.0354 is very small.
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The first terms in the right-hand sides of Eqs. (3) and
(4) are the standard LO and NLO representations for
αs(Q2). The additional terms modify its infrared prop-
erties.

We note that numerically, both infrared transforma-
tions, the “freezing” procedure and the Shirkov–
Solovtsov analytization, lead to very close results (see
Fig. 1, as well as [25] and the discussion therein).

4. As was already noted above, the purpose of this
paper is to describe new preliminary H1 experimental
data for the longitudinal SF FL(x, Q2) using our calcu-

lations of the hard structure function (x, Q2, m2,

) given in our previous study [21] and infrared mod-
ifications of αs(Q2) explained above. For the uninte-

grated gluon distribution Φ(x, , ), we use the so-
called Blumlein’s parameterization (JB) [26]. We note
that there are also several other popular parametriza-
tions, which give quite similar results, with a possible

exception of contributions from the small-  range

 ≤ 1 GeV2 (see [14] and the references therein).

The JB form depends strongly on the Pomeron inter-
cept value. In different models, the Pomeron intercept
has different values (see [27]). In our calculations, we
apply the H1 parameterization [28] based on the corre-
sponding H1 data, which are in good agreement with
perturbative QCD (see [28, 29]).

We calculate the structure function FL as the sum of

two types of contributions: that of the charm quark, ,

and of the light quark, :

(5)

For the  part, we use the massless limit of the
hard structure function (see [17, 21]). We always use
f = 4 in our fits, because our results depend on the exact
f value very weakly (for similar results, see fits of
experimental data in [30] and discussions therein). The
weak dependence comes from two basic properties.

First, the charm part of FL , , is quite small at the con-

sidered Q2 values (see [17] for the  study). Second,
the strong coupling constant depends on f very weakly
because of the corresponding relations between Λ val-
ues at different f (see [31]).

In Fig. 1, we show the structure function FL with
“frozen” and analytical coupling constants, respec-
tively, as functions of Q2 for fixed W in comparison
with the H1 experimental data sets (see [11]). The
results mostly coincide with each other. They are pre-

Ĉ2 L,
g

k ⊥
2

k ⊥
2 Q0

2
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2
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2
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c
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l

FL FL
l FL

c .+=

FL
l

FL
c

FL
c
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sented as solid and dashed curves, which cannot be
actually resolved in the figure.

The dash-dotted curve shows the results obtained
with a “frozen” argument also added to the unintegrated
gluon density. The difference between the solid and
dash-dotted lines is not very big, which demonstrates
the unimportance of the infrared modifications of the
density argument. Below, we restrict ourselves only to
the modification of the argument in the strong coupling
constant entering the hard structure function.

Figure 2 contains the same solid curve as Fig. 1 and
also shows the collinear results for FL values. We use
the popular GRV parametrizations [15] in the LO and
NLO approximations. The kT-factorization results lie
between the collinear ones, which clearly demonstrates
the particular resummation of high-order collinear con-
tributions at small x values in the kT-factorization
approach.

We also see excellent agreement between the exper-
imental data and the collinear approach with GRV par-
ton densities in the NLO approximation. The NLO cor-
rections are large and negative and reduce the FL value
by approximately a factor of 2 at Q2 < 10 GeV2.

In Figs. 1 and 2, our kT-factorization results are in
good agreement with the data for large and small parts
of the Q2 range. We have, however, some disagreement
between the data and theoretical predictions at Q2 ≈
3 GeV2. The disagreement exists in both cases: for the
collinear QCD approach in the LO approximation and
for the kT-factorization approach.

1.0

0.8

0.6

0.4

0.2

0

–0.2
100 101 102 103

Q2, GeV2

FL

Fig. 2. Q2 dependence of FL(x, Q2) (at fixed W = 276 GeV).
The experimental points are as in Fig. 1. The solid curve is
the result of the kT-factorization approach with the JB unin-
tegrated gluon distribution and frozen coupling constant,
the dashed curve is the GRV LO calculations, the dash-dot-
ted curve is the GRV NLO calculations, and the dotted
curve is the result of the GRV LO calculations with µ2 =
127Q2.
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Comparing these results with Fig. 4 in Lobodzin-
ska’s talk in [11], we conclude that the disagreement
comes from the use of the LO approximation. Unfortu-
nately, at the moment, only the LO terms are available
in the kT-factorization approach. The calculation of the
NLO corrections is a very complicated problem
(see [32] and the discussion therein).

A rough estimate of the NLO corrections in the
kT-factorization approach can be performed as follows.
We first consider the BFKL approach. A popular

1.0

0.8

0.6

0.4

0.2

0

–0.2
100 101 102 103

Q2, GeV2

FL

Fig. 3. Q2 dependence of FL(x, Q2) (at fixed W = 276 GeV).
The experimental points are as in Fig. 1. The solid curve is
the result of the kT-factorization approach with the JB unin-

tegrated gluon distribution and µ2 = ; the dashed curve

is the GRV LO calculations at µ2 = .

MZ
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MZ
2
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FL

Fig. 4. Q2 dependence of FL(x, Q2) (at fixed W = 276 GeV).
The experimental points are as in Fig. 1. The solid curve is
the result of the kT-factorization approach with the JB unin-

tegrated gluon distribution and at µ2 = 127Q2, the dashed
curve is the GRV LO calculations at µ2 = 127Q2, and the
dash-dotted curve is from the Rworld-parametrization.
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resummation of the NLO corrections is done in [8] in
some approximation. It is demonstrated in [8] that the
basic effect of the NLO corrections is a strong rise in

the αs argument from Q2 to  = KQ2, where K = 127,
i.e., K @ 1, which is in agreement with [5, 7, 9].

The use of the effective argument  in the
DGLAP approach in the LO approximation leads to
results that are very close to the ones obtained in the
NLO approximation (see the dot-dashed and dotted
curves in Fig. 2). Thus, we hope that the effective argu-
ment represents the basic effect of the NLO corrections
in the kT-factorization framework, which in a certain
sense lies between the DGLAP and BFKL approaches,
as was already noted above.

The necessity of large effective arguments is also
demonstrated in Fig. 3, where we show the kT-factor-
ization and collinear results for the nonrunning cou-

pling constant. Its argument is fixed at Q2 = , giving
αs ≈ 0.118 (see [33]); i.e., the considered argument is
larger than the majority of the Q2-values of the consid-
ered experimental data.3 

The results obtained in the kT-factorization and col-

linear approaches based on  argument are pre-
sented in Fig. 4. In comparison with the ones shown in
Fig. 1, they are close to each other because the effective
argument is substantially larger than the Q2 value.
There is a very good agreement between the experi-
mental data and both theoretical approaches.

Moreover, in Fig. 4, we also present the FL results
based on the Rworld parameterization for the R = σL/σT

ratio (see [34]) (because FL = F2R/(1 + R)), improved
in [35, 36] for low Q2 values and the parameterization
of F2 data used in our previous paper [17]. The results
are in good agreement with other theoretical predic-
tions as well as with experimental data.

5. CONCLUSIONS

In the kT-factorization framework, we have applied
the results of the calculation of the perturbative parts

for the structure functions FL and  for a gluon target
having squared nonzero momentum, in the process of
photon–gluon fusion [17, 21], to an analysis of recent
H1 preliminary data. The perturbative QCD predictions
are also represented in the LO and NLO approxima-
tions.

We have found very good agreement between the
experimental data and collinear results based on the
GRV parameterization in the NLO approximation. The
LO collinear and kT-factorization results show dis-
agreement with the data at some Q2 values. We argued

3 The study was also initiated by a conversation with L. Lönnblad,
whom we thank.
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that the disagreement comes from the absence of NLO
corrections in the kT-factorization approach. Another
reason is discussed in [36]. We modeled these NLO
corrections by choosing a large effective argument of
the strong coupling constant and argued for our choice.
The effective corrections significantly improve the
agreement with the H1 data under consideration.
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Abstract—Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum
parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The
number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman
disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix
elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling
of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model
Hamiltonian possessing the “hidden” symmetry of the hydrogen atom. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Feynman disentangling (FD) of noncommuting
operators was applied in [1] to the quantum harmonic
oscillator driven by an arbitrary force f(t) and to quan-
tum electrodynamics [1]. The expression for the transi-
tion probability between the number states of the oscil-
lator with quantum numbers m and n at t  –∞ and
+∞ derived in [1] was considerably simplified in [2].
In [3], FD was used to calculate the time-varying polar-
ization state of a particle with arbitrary spin interacting
with an arbitrary applied magnetic field H(t). However,
FD has never been widely used.

In this study, FD is applied to the quantum paramet-
rically driven oscillator

(1.1)

to obtain a disentangled expression for the evolution

operator (t, t0). The problem is examined from a
group-theoretic perspective, and its relationship to uni-
tary irreducible representations of the group SU(1, 1) is
established, which makes it possible to avoid cumber-
some algebra in finding analytical expressions for tran-
sition probabilities wmn (in terms of Wigner D functions
for this group). FD is applied to describe an atom or ion
interacting with electric field %(t) and to disentangle
the evolution operator for a model Hamiltonian pos-
sessing the “hidden” symmetry of the hydrogen atom.
In Appendices A–C, the Wigner D functions corre-
sponding to the representations of interest for this study
are obtained in explicit form, exact solutions to the Ric-
cati equation arising in FD applications are considered,
and some details of calculations are given.

The results presented here were announced, in part,
in [4].
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2. FEYNMAN DISENTANGLING 
AND GROUP THEORY

The Hamiltonian of the harmonic oscillator contains
noncommuting operators: [p, q] = –i. The frequency
ω(t) can be any function of time satisfying the condi-
tion

(2.1)

which makes it possible to specify initial and final
oscillator number states, |m, ω–〉  and |n, ω+〉 . Defining

(2.2)

we have a closed operator algebra, as in the problem
examined in [1]:

(2.3)

However, straightforward application of FD to the evo-
lution operator

(2.4)

does not lead to the desired result, because the operator
to be disentangled is again contained in the exponential
at the next step of the process. This difficulty is elimi-

ω t( )
ω–, t ∞,–

ω+, t +∞,



Â
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Ŝ t t0,( ) T i
1
2
--- p2 ω2 t '( )q2+ 

  t 'd

t0

t

∫–
 
 
 

exp=
 © 2005 Pleiades Publishing, Inc.



 

818

        

POPOV

                       
nated by using a procedure suggested in [3]. Rewriting
the integrand as

(2.5)

without specifying the function χ(t), we apply Feyn-
man’s disentangling theorem [1] to the first term:

(2.6)

where

(2.6')

Note that t' in both (2.4) and (2.6) is an ordering param-

eter in the sense of [1]. The operator  is also intro-
duced by following [1]. Differentiating (2.6') with
respect to a and using commutation relations (2.3), we
obtain

(2.7)

The condition for disentangling the exponential opera-

tor expression above with respect to the operator  is
the following Riccati equation for a(t):

(2.8)

After disentangling the operator expression with

respect to , the operator (t, t0) is written in the
desired completely disentangled form as

(2.9)

where b(t) and c(t) are expressed in terms of a(t) as
quadratures:

(2.8')
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JOURNAL OF EXPERIMENTAL A
To calculate the transition amplitude between initial
and final states |m, ω–〉  and |n, ω+〉 ,

(2.10)

one should write the initial and final wavefunctions in
the p and q representations, respectively, using the fact

that the operator  has a continuous spectrum of eigen-
values, –∞ < λ < ∞:

This completes the formal solution, but the resulting
integrals are very difficult to calculate analytically. To
derive compact expressions for wmn , FD should be com-
bined with group-theoretic arguments, as done in [3].

To do this, let us change from operators (2.2) to their
linear combinations

(2.11)

which satisfy the commutation relations for the gener-
ators of the SU(1, 1) group,

(2.12)

Here,  =  ± i  = ±i(q  ip)2/4 and  is the
Casimir operator (analog of total angular momentum
squared), which reduces to a c number for the operators
in (2.11):

(2.13)

This means that the irreducible representations of
SU(1, 1) with “weights” j = –1/4 and –3/4 correspond,
respectively, to the even and odd number states, which
do not mix under time evolution because the potential
V(q) = ω2q2/2 is an even function. The spectrum of the

operator  defined in (2.11) consists of λn = (2n + 1)/4
with integer nonnegative n:

for n = 2k, and

for n = 2k + 1 (k = 0, 1, 2, …, where k = 0 corresponds
to the lowest eigenstate in either representation). Both

Amn n ω+,〈 | Ŝ ∞ ∞–,( ) m ω–,| 〉 ,=

Ĉ
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Ĵ0

λn k 1/4+ j– k, j+ 1/4–= = =

λn j– k, j+ 3/4–= =
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representations are unitary (since S+S = 1 for quantum-
mechanical evolution operators) and infinite-dimen-
sional.1 It is well known that all finite-dimensional rep-
resentations of SU(1, 1) are nonunitary (e.g., see (A.2)
in Appendix A).

Thus, the oscillator problem is equivalent to the
problem of SU(1, 1) “rotation” of a pseudospin J:

where ω+ = –ω– = i(1 – ω2)/2 and ω0 = 1 + ω2. By anal-
ogy with the Wigner D functions [10, 11], the finite-
rotation matrix elements are written as

where g = g(ψ, β, ϕ) ∈  SU(1, 1), ψ and ϕ denote the
Euler angles for Euclidean rotations about the x0 axis

(0 ≤ ψ, ϕ < 2π), (β) and the parameter β correspond
to a hyperbolic rotation in the (x1, x2) plane, and µ and

ν are eigenvalues of  (µ = –j for the lowest eigenstate
in an irreducible representation). According to (2.12),

 and  are, respectively, the raising and lowering

operators that change the eigenvalue of  by +1 and
−1 and the energy eigenvalue by +2 and –2 (|n〉  
|n ± 2〉).

The transition probabilities between oscillator
eigenstates are expressed as

(2.14)

where

(2.14')

for even eigenstates;

(2.14'')

for odd eigenstates; and

in either case. These expressions elucidate the group-
theoretic aspects of the problem under analysis.

1 This is a natural consequence of the fact that SU(1, 1) is a non-
compact group [5]. An analogy more familiar to physicists is the
homogeneous (proper) Lorentz group [6–8]. A detailed represen-
tation theory of the Lorentz group can be found in [9].
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An expression for (β) is obtained by analytic

continuation of the Wigner functions2
 (ϑ) for the

unitary group SU(2) to the pseudounitary group
SU(1, 1) by replacing ϑ  with iβ and j = 1/2, 1, 3/2, …
with the values of j given above:

(2.15)

where F(…) ≡ 2F1(…) is Gauss’s hypergeometric func-
tion and k ≥ l (an analogous expression is valid for
k < l). In the particular case of l = 0, we have

(2.16)

and unitarity is readily verified:

After performing some algebra (see details in Appen-
dix A), final expressions for the |m, ω–〉   |n, ω+〉  tran-
sition probability are obtained:

(2.17)

where K = max(k, l), L = min(k, l), and K – L = |m – n|/2.
Since L ≥ 0 is an integer, the hypergeometric series
reduces to a polynomial. Probability (2.17) satisfies the
reciprocity condition

(2.18)

which is specific to harmonic oscillator.

3. EXAMPLES

Let us compare the expressions obtained above with
results of independent calculations.

2 These functions were analyzed in detail in [10, 11] and tabulated
in [11] for j ≤ 5. However, the tables cannot be used directly to

determine the functions (β) derived in Appendix A. The

parameter β in (2.14) (or ρ in (2.15)) characterizes the degree of
excitation of the oscillator (ρ is discussed in Appendix B, where
several exact solutions are considered).
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Example 1. Substituting j = –1/4 and –3/4 into (2.16)
yields the transition probabilities from the two lowest
oscillator eigenstates:

(3.1)

in agreement with [12–14]. For transitions from the
second excited level,

(3.2)

and w20 = ρ /2 (l = 0). Analogous formulas are
obtained for transitions from the next level (m = 3).

Example 2. For diagonal transitions (m = n), we
obtain

(3.3)

As shown in Appendix A, these formulas can be written
in the unified form

(3.4)

by using the generalized hypergeometric series [15]

This representation facilitates analysis when ρ is small
(i.e., when the oscillator is in a low excited state):

(3.5)

where N = n2 + n + 1 (see detailed calculations in
Appendix C). The small parameter in this expansion is
n2ρ, and the coefficient of ρk is a polynomial of N with
the highest degree term (–1)k[(2k – 1)!!/2k(k!)3]Nk.

w0 2l,
Γ l 1/2+( )
l!Γ 1/2( )

------------------------ρl 1 ρ– ,=

w1 2l 1+,
Γ l 3/2+( )
l!Γ 3/2( )

------------------------ρl 1 ρ–( )3/2,=

w2 2l,
lΓ l 1/2+( )
l 1–( )!Γ 3/2( )

---------------------------------- 1
2l 1+

2l
--------------ρ– 

 
2

=

× ρl 1– 1 ρ– , l 1≥

1 ρ–

wnn ρ( ) 1 ρ– pn ρ( )[ ] 2,=

pn ρ( ) F2 1
n
2
---–

n 1+
2

------------ 1; ρ, , 
 =

≡ 1 ρ– F2 1
1 n–

2
----------- n

2
--- 1; 1; ρ+, 

  .

wnn 1 ρ– F3 2 n– n 1+ 1/2; 1 1; ρ, , ,( )=

F3 2 n– n 1+ 1/2; 1 1; x, , ,( )

=  
2k( )!

22k k!( )4
------------------- n k+( )!

n k–( )!
------------------ x–( )k.

k 0=

n

∑

wnn ρ( ) 1
1
2
---Nρ–

1
32
------ 3N2 4N– 3–( )ρ2+=

–
1

576
--------- 5N3 28N2– 11N 48+ +( )ρ3 1

73728
---------------+

× 35N4 520N3– 1706N2 840N 4941–+ +( )ρ4 …,–
JOURNAL OF EXPERIMENTAL A
For any pair of quantum numbers m and n,

(3.6)

In the adiabatic limit, when ρ ! 1, transitions with
|m − n| @ 1 correspond to high-order terms in perturba-
tion series and are therefore strongly suppressed. The
adiabatic regime is further discussed in Section 4,
where formula (3.6) is refined.

Example 3. In the opposite limit of ρ  1, the
probability that the oscillator remains in the initial state
as t  +∞ is very low:

(3.7)

where

i.e., c0 = 1, c2 = 1/4, and cn ~ 1/n for n @ 1.

Thus, comparison with nontrivial examples con-
firms the validity of expressions (2.15)–(2.17), which
are derived here somewhat heuristically (by analytic
continuation of the SU(2) Wigner functions to
SU(1, 1)). Their relationship with the expressions for
wmn obtained in [13] is discussed in Appendix A. Note
that neither (2.17) nor (3.4) can be found in available
literature, whereas both expressions are suitable for cal-
culational purposes. In particular, they entail adiabatic
expansions (3.5) and (4.1).

Example 4. When applied to a D-dimensional oscil-
lator,3 

(3.8)

FD results in the product of D operators having the
form of (2.9). Since these operators commute, the
|0〉   |0〉  transition probability is

For an isotropic oscillator,

(3.9)

It follows from comparison with (A.5) that

(3.10)

in this case, and the |0〉   |2l 〉  transition probability is

(3.11)

3 See also [16, 17] and further references in [17].
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This obviously implies that  = 1 for any D

(i.e., unitarity holds). The parameter ρ characterizes the
probability of transition to the level closest to the
ground level: w2/w0 = Dρ/2.

Since j = –1/2 for D = 2, the corresponding expres-
sion (3.11) is similar to the distribution of n pairs of
charged scalar bosons in a state with definite momen-
tum p created from vacuum by a time-dependent uni-
form electric field %(t):

(3.12)

where ρ depends both on %(t) and on p. This distribu-
tion was obtained in calculations performed in [18, 19],
in particular, in the case of a field with pulse profile
%(t) = %0/cosh2ωt, for which both Klein–Gordon and
Dirac equations can be solved exactly.

In the problem of particle–antiparticle pair creation

from vacuum, if the two-mode SU(1, 1) generators 
are defined in terms of the creation and annihilation

operators (  = a†b† and  = ba for s = 0 and 1/2), then
probabilities (3.12) can easily be calculated [19]. The
group-theoretic aspects of this problem for particles
with arbitrary spin s were discussed in [20]. It should be
noted here that ρ ~ exp(–π%cr/%0), where %cr = m2c3/e"
is the Schwinger critical field in quantum electrody-
namics [21–23]. Its numerical value is %cr = 1.32 ×
1016 V/cm for e±. Being proportional to m2, this quan-
tity is on the order of 1021 V/cm for π mesons. (There-
fore, only the case of s = 1/2 is of real interest.)

In recent years, the experimental observability of
electron–positron pair creation from vacuum by a
focused laser pulse (Schwinger effect) is widely dis-
cussed in the literature (e.g., see [24–26] and references
therein).

4. ADIABATIC REGIME

When the oscillator frequency is a slowly varying
analytic function of t with singular points located at
finite distances from the real axis, the Landau–Dykhne
adiabatic approximation can be applied [27–30]. In this
case, ρ (as well as reflection coefficient ρ = |R|2, where
R is the reflected-wave amplitude in the solution to the
Schrödinger equation obtained by replacing t with x) is
exponentially small (see Appendix B). As ρ  0,
expression (2.17) reduces to

(4.1)

w0 2l,
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This expansion is valid for arbitrary m and n. The tran-
sition probability rapidly decreases with increasing
|m – n|. In particular,

(4.2)

where

(4.2')

The corresponding expansion of the diagonal transition
probability is given by (3.5). For |m – n| ≥ 6, the transi-
tion probabilities are

(4.3)

Hence,

Introducing

(4.4)

and using (4.2), we find

(4.5)

Thus, when ρ is small, the total probability of upward
transition from any level exceeds the total probability
of downward transition for any ω(t). According to
numerical calculations (see Fig. 1), this is true for ρ ~ 1
as well. For comparison, Fig. 2 shows diagonal transi-
tion probabilities. All functions wnn(ρ) are not mono-
tonic except for those with m = 0 and 1. It can readily
be verified that the sum of all expansions in (3.5) and
(4.2) is unity up to terms of order ρ3, which are not writ-
ten out in (4.2). Thus, the unitarity condition is satisfied
to second order in ρ.

Let us compare the expressions obtained here with
Dykhne’s results for transition amplitudes amn corre-
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sponding to n @ 1 (Eq. (3.28) in [28]):

(4.6)

A comparison shows that these formulas with m ≠ n
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2
--- n
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Fig. 1. Probabilities  and  of upward and down-

ward transitions from the mth oscillator state. Values of m
are shown at curves.

Wm
+( )

Wm
–( )
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agree with (4.2) if an + 2, n and an – 2, n in (4.6) are
replaced with an, n – 2 and an, n + 2 , respectively, and the
terms of order unity in the coefficients of the powers of
ρ in the corresponding expansions of wmn = |amn |2 are
neglected (as compared to n2 and n).

Note that the unitarity condition can be used to
uniquely determine the next term in the expansion of
ann when n @ 1:

(4.7)

The value of ann depends not only on ρ = |R |2, but also

on the phase in R = exp(iϕ), which changes with
shift in potential or ω(t) (e.g., see (B.4)), whereas wnn is
independent of ϕ.

5. ATOM
IN TIME-DEPENDENT ELECTRIC FIELD

Let us apply FD to the interaction between an atom
and a laser field. In the dipole approximation (aB =
"2/me2 ! λ, where λ is the laser wavelength), the sin-
gle-electron Hamiltonian is

(5.1)

where %%%%(t) = –c–1 (t) is the field of a plane light wave
and U(r) is the atomic core potential. Hamiltonian (5.1)
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Fig. 2. Probabilities wnn of diagonal transitions vs. ρ: (a) 0 ≤ n ≤ 4; (b) n = 5, 7.
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contains noncommuting operators (e.g., see [31, 32]).
Defining

(5.2)

we have

(5.3)

where  is the identity operator. Thus, we have a closed
operator algebra,4 and FD can be applied to obtain

(5.4)

where

(5.5)

If U(r) is a short-range potential,5 then the evolution
operator can be disentangled:

(5.6)

The Volkov wavefunction ψp = exp(ip · r) of an
electron in electromagnetic field has been employed in
theoretical calculations since a well-known study by
Keldysh [34]. For a nonrelativistic electron,

(5.7)

where P(t) = p – (e/c)A(t). Function (5.7) has been used
to obtain various results in the theory of ionization and

4 Unlike (2.3) or (2.12), it should be a degenerate algebra. How-
ever, it can easily be shown to satisfy necessary conditions for a
Lie algebra [5].

5 This is a good approximation in the case of a negative ion, such
as H– or Na– (e.g., see [33]).

Â
1
2
---p2, B̂ %%%% r, Ĉ⋅ %%%% p,⋅= = =

Â B̂,[ ] iĈ, Â Ĉ,[ ]– 0,= =

B̂ Ĉ,[ ] i%%%%
2
Î ,=

Î

Ŝ t t0,( ) T i Ĥ t '( ) t 'd

t0

t

∫–
 
 
 

exp=

=  
ie
c
----A t( )– r⋅ 

 exp

× T i Â ' U r( )+[ ] t 'd

t0

t

∫–
 
 
 

,exp

Â '
1
2
---eia r⋅ p2e ia– r⋅ 1

2
--- p a–( )2,= =

a
e
c
--A t( ).=

Ŝ t t0,( ) ie
c
----A t( )– r⋅exp=

× i
2
--- p

e
c
--A t '( )–

2

t 'd

t0

t

∫–
 
 
 

.exp

Ŝ

ψp r t,( ) 2π( ) 3/2–=

× i P t( ) r⋅ 1
2
--- P2 t '( ) t 'd

t0

t

∫–
 
 
 

,exp
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excitation of atoms and ions by intense laser fields (e.g.,
see reviews in [35, 36]). Discussion of these results
would be inappropriate here, since we only illustrate the
disentangling of operator expressions containing (5.1).

6. MODEL
WITH A “HIDDEN” SYMMETRY GROUP

The model Hamiltonian

(6.1)

where " = m = e = 1,

(6.2)

L = r × p is the orbital angular momentum, and A is the
Laplace–Runge–Lenz vector [37, 38], can be inter-
preted as the projection of the Hamiltonian of the
hydrogen atom interacting with fields %%%% and H onto the
subspace spanned by the energy eigenstates (see also
remark at the end of this section). It is well known that
the energy eigenstates of the hydrogen atom are degen-
erate. This is explained by a “hidden” symmetry of the
Hamiltonian: the bound states (characterized by princi-
pal quantum numbers n = (–2E)–1/2 = 1, 2, 3, …) are
invariant under SO(4), and the continuum states are
invariant under the Lorentz group SO(3,1) [39–43].
Defining N = (–2H0)–1/2A = nA for the bound states, we
obtain6 

(6.3)

(6.4)

These relations are analogous to the commutation rela-
tions for the SO(4) generators. The eigenvalues of N2

vary between n2 – 1 for s-states and N2 = n – 1 for l =
n – 1 (circular electron orbits). Introducing the opera-
tors I1, 2 = (L ± N)/2, we find

(6.5)

The change from (6.3) to the operators I1, 2 corresponds
to the decomposition SO(4) ~ SU(2) ⊗  SU(2). Introduc-
ing

(6.6)

6 Here, the relation [A, B] = iC is interpreted as [Aj , Bk] = iejkmCm .
Note that [I, I] = iI holds for the SU(2) generators.

Ĥ Ĥ0 w1 t( ) L w2 t( )+ A,⋅ ⋅+=

Ĥ0
1
2
---p2 1

r
---, A–

1
2
--- L p× p L×–( ) r

r
--,+= =

L L,[ ] N N,[ ] iL, L N,[ ] iN,= = =

L2 N2+ n2 1.–=

I1 I1,[ ] iI1, I2 I2,[ ] iI2, I1 I2,[ ]= 0,= =

I1
2 I2

2 n2 1–( )/4, Ĥ0 I1,[ ] Ĥ0 I2,[ ] 0.= = = =

W1 2, t( ) w1 t '( ) 1
n
---w2 t '( )± t 'd

0

t

∫=
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and using the fact that I1 and I2 commute, we obtain

(6.7)

Analogously, for continuum states (with energy E =
k2/2 > 0), we have

.

Hence, the relations

hold for the generators of the Lorentz group instead
of (6.3). Defining J1, 2 = (L ± iN')/2, where J1 and J2
satisfy commutation relations similar to (6.5), we write
the evolution operator as

(6.8)

where

(6.9)

Since the operators I1 and I2 (as well as J1 and J2)
commute, these formulas can be obtained without
invoking FD. Then, the exponentials in the evolution
operator generated by Hamiltonian (6.1) are disentan-
gled (by introducing I+, I0, I–, etc.) by analogy with the
problem of spin precession in a time-dependent mag-
netic field [3], which completes the application of FD.
Even though operator (6.8) is unitary, neither
exp(−i  · J1) nor exp(–  · J2) is a unitary operator,

Ŝ t 0,( ) T i Ĥ t '( ) t 'd

0

t

∫–
 
 
 

exp=

=  iEnt–( ) iW1– I1⋅( ) iW2– I2⋅( ).expexpexp

N ' 2H0( ) 1/2– A
1
k
---A, N '2 l l 1+( ) 1 k 2–+ += = =

L L,[ ] N ' N ',[ ]– iL, L N ',[ ] iN ',= = =

Ŝ t 0,( ) i
k2

2
----t– 

  iW1'– J1⋅( )expexp=

× iW2'– J2⋅( ),exp

W1 2,' t( ) w1 t '( ) ikw2 t '( )+−[ ] t '.d

0

t

∫=

W1' W2'

–e

A +e

Fig. 3. Position of vector A for electron in Kepler motion.
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because J1 and J2 are non-Hermitian operators (  = J2

and  = J1).

The matrix elements for transitions between hydro-
gen atom eigenstates with equal energies E and differ-
ent orbital angular momenta can easily be written out.
For E < 0, we have the Wigner functions for the repre-
sentation $(j1, j2) of the SO(4) group with j1 = j2 = (n –
1)/2. For continuum states, they correspond to the infi-
nite-dimensional7 unitary principal series representa-
tion $(0, ρ) of the Lorentz group [6–9], with the invari-
ant ρ = 2/k corresponding to the eigenvalue

(6.10)

of the scalar operator , where Mµν = xµpν – xνpµ is the
4-momentum operator. (Note that (6.10) is obtained by
replacing n in (6.4) with iρ/2.) The pseudoscalar invari-
ant

of the Lorentz group does not vanish only for nonzero-
spin particles. However, the electron spin is neglected
in (6.1).

A final remark should be made here about the phys-
ical meaning of the term w2 · A in Hamiltonian (6.1). In
classical mechanics, A = L × p + αr/r for a particle
moving in the potential U(r) = –α/r. The inner product
of this relation with r yields the orbit equation

(6.11)

The vector A is aligned with the major axis of the
ellipse, and its magnitude is proportional to its eccen-
tricity e (see Fig. 3). The dipole moment of a particle
with charge –1 averaged over the Kepler period is 〈d〉  =
3ea/2, where a = α/2|E| is the semimajor axis of the
orbit. In the semiclassical approximation, we therefore
obtain

(6.12)

Thus, for eigenstates with energy E (degenerate
with respect to the orbital angular momentum l), the
term w2 · A corresponds to the diagonal matrix element
of the dipole interaction operator %%%%(t)d ∝  (%%%% · r). How-
ever, the off-diagonal elements (proportional to 〈r〉nn')

7 This is clear even from the fact that the orbital angular momen-
tum l is not bounded from above for eigenstates with E > 0,
whereas 0 ≤ l ≤ n – 1 for En = –1/2n2 < 0.

J1
+

J2
+

F̂
1
2
---MµνMµν L2 N '2– 1 ρ2

4
-----+ 

 –= = =

F̂

Ĝ
i
8
---εµνρσMµνMρσ=

r
p

1 e ϕcos–
------------------------, p

L2

α
-----, e

A
α
--- m 1=( ).= = =

A
4
3
--- En d〈 〉 2

3n2
-------- d〈 〉 nn.= =
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are not taken into account here. The reliability of this
approximation requires additional analysis.

7. CONCLUSIONS

It is shown that FD can be used to disentangle the
evolution operators generated by certain Hamiltonians
and find exact solutions to quantum-mechanical prob-
lems. However, this approach is not as versatile as the
Feynman diagram technique in perturbation theory.
This may explain the fact that FD is not widely
employed by physicists. However, when FD is applica-
ble, it can be used to obtain a solution for arbitrarily
varying parameters (force f(t), oscillator frequency
ω(t), etc.).

The oscillator problem considered in [1] involves

only two operators,  and . Since their commutator
[a, a†] = 1 is a c number, the application of FD leads
directly to the desired result. In the models considered
both in [3] and in the present study, a Lie algebra is gen-
erated by three operators contained in a Hamiltonian.
The corresponding operator expressions are disentan-
gled by using a procedure proposed in [3] in the frame-
work of Feynman’s operator calculus and explained by
Eqs. (2.5) and (2.6). Once the group-theoretic structure

of the evolution operator  is elucidated, compact ana-
lytical expressions for transition probabilities wmn can
be written in terms of matrix elements of unitary irre-
ducible representations of the SU(1, 1) group, which
are infinite-dimensional by necessity. Both transition
amplitudes Amn and probabilities wmn = |Amn |2 are deter-
mined by parameters that can be found by solving the
Riccati equations arising in FD applications (see [3] or
Eq. (2.8) above).

It would be interesting to explore the applicability of
FD to Hamiltonians containing n > 3 noncommuting
operators and the role played by group theory in the dis-
entangling process.
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APPENDIX A

Let us discuss here the relationship between the irre-
ducible representations of the groups SU(2) and
SU(1, 1) and derive formulas (2.15)–(2.17).

â â†

Ŝ
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The spinor representation of the SU(2) group has the
form

(A.1)

where ψ, ϑ , and ϕ are Euler angles (0 ≤ ϑ  < π). An anal-
ogous representation of SU(1, 1) is obtained by replac-
ing ϑ  with iβ:

(A.2)

The resulting representation is finite-dimensional and
nonunitary:  = 1, with

By assumption, the matrix elements of unitary rep-
resentations (with j = –1/4, –3/4) can be found by ana-
lytic continuation of the Wigner D functions [10, 11] of
SU(2) with the substitution of

(A.3)

This assumption is substantiated by the following argu-
mentation.

(a) For the SU(2) group, it is known that

(A.4)

Using (A.3), we obtain

(A.5)

After substituting j = –1/4 and –3/4, we have

(A.6)

which agrees with the results presented in [12–14].

g i
ψ
2
----σz– 

  i
ϑ
2
---σx– 

  i
ϕ
2
---σz– 

  ,expexpexp=

g+g 1,=

i
ϑ
2
---σx– 

 exp ϑ /2( )cos i ϑ /2( )sin–

i ϑ /2( )sin– ϑ /2( )cos 
 
 

=

β/2( )cosh β/2( )sinh

β/2( )sinh β/2( )cosh 
 
 

.

g̃g

g̃ σzg
+σz, Ĵ1

i
2
---σx, Ĵ2

i
2
---σy,= = =

Ĵ0
1
2
---σz, J2 3/4.= =

ϑ iβ, 0 β ∞;<≤
j 1/4 or j– 3/4.–= =

d jj
j( ) ϑ( ) d j– j–,

j( ) ϑ( ) ϑ
2
---cos 

  2 j
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1
2
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3
2
--- … ., , , ,=

f j– j–,
j( ) β( ) β

2
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(b) In the more general case of m = 0  n = 2l or
m = 1  n = 2l + 1 transition,8 

(A.7)

This result entails formulas (3.1), which were obtained
independently in [12, 13]. This substantiates the valid-
ity of the analytic continuation.

(c) In the general case, the Wigner D functions of
SU(2) can be expressed in terms of the hypergeometric
function 2F1 (see [11]). Invoking formulas (16) and (17)
from [11, Section 4.5] with µ = l – j and ν = k – j, sub-
stituting (A.3), and using the representations

we obtain expression (2.15) for k ≥ l. Finally, changing
from the argument z in 2F1(…; z) to z/(z – 1) (see Sec-
tion 2.9.3 in [15]), we obtain (2.17).

Note that (e) = δµν if e is the identity of the

group. Therefore, the diagonal elements (β) are
uniquely determined:

(A.8)

where j = –1/4 or j = –3/4 (k = 0, 1, 2, …). The phase
factors corresponding to µ ≠ ν remain undetermined,
but they are not required in calculations of transition
probabilities.

Formula (3.4) is obtained by using the identity9 

8 For details, see [11, 44]. Here, we omit a phase factor, which is
not essential for this presentation. Note that the SU(1, 1) group
was referred to as QU(2) in [44].

9 See Section 4.3.1 in [15]. This is the only case when Gauss’s
hypergeometric function squared can be expressed as the function
3F2 of the same argument.

d j– l j–,
j( ) ϑ( ) C

ϑ
2
---tan 

  l ϑ
2
---cos 

  2 j

,=

C
2 j( )!

l! 2 j l–( )!
------------------------ i l± Γ l 2 j–( )

l!Γ 2 j–( )
----------------------.= =

2 j l–( )!
2 j k–( )!

--------------------- Γ 2 j 1 l–+( )
Γ 2 j 1 k–+( )
-------------------------------- 1–( )k l– Γ k 2 j–( )

Γ l 2 j–( )
-----------------------,= =

Dµν
j( )

f µµ
j( )

f k j– k j–,
j( ) β( ) β

2
---cosh 

  2 j

=

× F2 1 k– k 2 j; 1; β
2
---tanh

2
–, 

 

=  1 ρ–( ) j– k!Γ k s 2 j–+( )
s!2 k s–( )!Γ k 2 j–( )
------------------------------------------------ ρ–( )s,

s 0=

k

∑

F2 1 a b; a, b 1/2; z+ +( )[ ] 2

=  F3 2 2a 2b a b; a b 1/2+ + + 2 a b+( ); z, , ,( ),
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where a = –n/2, b = (n + 1)/2. Analogously, formula (2.17)
for j = –1/4 can be rewritten as

(A.9)

which yields (3.4) when m = n and K = L = n/2.
(d) At first glance, the expression for wmn obtained

in [13],

(A.10)

substantially differs from (2.17) and (A.9). The equiva-
lence of these expressions entails certain relations
between special functions. For example, if m = n, then

(A.11)

This identity can be verified directly for small n, but it
cannot be found in [11, 45]. An analogous identity con-
taining associated Legendre functions holds for arbi-
trary m and n.

(e) It is clear from (A.2) that the unitarity of a repre-
sentation may not be preserved after the substitution
ϑ   iβ, requiring that

(A.12)

These necessary, but not sufficient, conditions are satis-
fied for (3.1) and (3.11) (i.e., for m = 0 and m = 1). How-
ever, these simplest formulas may not be typical
because they correspond to upward transitions. For
m = 2, unitarity condition (A.12) yields

(A.13)

An analogous condition holds for m = 3. These rela-
tions were verified numerically for ρ between 0.01 and
0.99 with a precision of at least 10–12.

APPENDIX B

According to [13, 37], its holds that ρ = |C2/C1|2,
where the constants C1, 2 are determined by solving the

wmn
K!

K L–( )!2L!
----------------------------Γ K 1/2+( )

Γ L 1/2+( )
---------------------------ρK L– 1 ρ–( )1/2=

× F3 2 2L– 2K 1+ K L– 1/2;+, ,(

K L– 1+ 2 K L–( ), 1; ρ ),+
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------- 1 ρ– P m n+( )/2

m n– /2 1 ρ–( ) 2
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2,( )

≡ θcos( )nPn 1/ θcos( ).

f µν
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j( ) β( ) 2

ν
∑ 1.= =

1 ρ–
1
2
---ρ Γ k 3/2+( )

k 1+( )!Γ 3/2( )
-----------------------------------

k 0=

∞

∑+




× k 1 k
3
2
---+ 

  ρ–+
2

ρk
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


1,≡

0 ρ 1.<≤
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classical equation of motion  + ω2(t)x = 0 subject to
the conditions

(B.1)

The parameter ρ can be interpreted as a barrier reflec-
tion coefficient if t and x(t) are replaced with q and
ψ(q), respectively. By changing to a(t) = –i (t)/x(t),
equation (2.8) is obtained and it is found that a(–∞) =
ω– and

(B.2)

Thus, ρ can be calculated by solving the Riccati equa-
tion derived by using FD. Consider the following
examples.

Suppose that

which corresponds to an instant change in oscillator
frequency from ω– to ω+. The Riccati equation is easily
solved: a(t) = ω– at t < t0;

(B.3)

where τ = t – t0. Hence,

(B.4)

In the slightly more complicated case of

(B.5)

the result is

(B.6)

where ρi = , σ1 = (ω0 – ω–)/(ω0 + ω–), and σ2 = (ω+ –
ω0)/(ω+ + ω0). Note that the excitation parameter ρ may
vanish (wmn = δmn); i.e., the oscillator may remain in the
initial state, as t  +∞. In this particular example, the

ẋ̇

x t( )
iω–t( ), t ∞,–exp

C1 iω+t( )exp C2 iω+t–( ), t +∞.exp+
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=

ẋ
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ω+ a t( )+
----------------------

2
.

t ∞→
lim=

ω t( ) ω–θ t0 t–( ) ω+θ t t0–( ),+=

a t( ) ω+=

×
ω+ ω–+( ) iω+τ( )exp ω+ ω––( ) iω+τ–( )exp–
ω+ ω–+( ) iω+τ( )exp ω+ ω––( ) iω+τ–( )exp+

-------------------------------------------------------------------------------------------------------------,

t t0,≥

R
C2

C1
------ 2iω+t0( )

ω+ ω––
ω+ ω–+
-------------------,exp= =

ρ R 2 ω+ ω––
ω+ ω–+
-------------------

2

,= =

β 1 ρ+

1 ρ–
----------------ln

ω>

ω<
------.ln= =

ω t( )

ω–, t 0,<
ω0, 0 t T ,< <
ω+, t T>






=

ρ
ρ1 ρ2 2σ1σ2 2ω0T( )cos+ +

1 ρ1ρ2 2σ1σ2 2ω0T( )cos+ +
---------------------------------------------------------------------,=

σi
2
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corresponding conditions are either ω+ = ω–, ω0T = nπ or

ω0 = , ω0T = (n + 1/2)π. See also formula (B.11)
below, with ω0 = (2n + 1)ω.

An exact solution can also be found for

(B.7)

which corresponds to the Eckart potential [46]. In this
case, the solution to the Schrödinger equation is
expressed in terms of hypergeometric functions [46, 47],
and

(B.8)

where

In the adiabatic limit (ω ! ω±), the reflection coeffi-
cient is exponentially small:

(B.9)

According to [48, 49], the preexponential factor here is
unity.

The dominant contribution to the value of ρ corre-
sponds to the turning point t = t0 nearest to the real axis,
where ω(t0) = 0. The preexponential factor in (B.9) is
unity if there exists only one such point. For example,
if ω0 = ω, then

(B.10)

and the nearest turning point corresponds to n = 0.
In the special case of ω+ = ω–,

(B.11)

and the asymptotic formula

(B.12)

holds instead of (B.9). In this case, there exist two
points ti at equal distances from the real axis where ω(t)
vanishes:

(B.13)

The superposition of their contributions to the transi-
tion amplitude yields a preexponential factor other than
unity. Note also that δ = (k + 1/2)π when ω0 = (2k + 1)ω,
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---=

× ω+
2 ω–
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2 ω–
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2 ω2–
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2
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ρ ηsinh
2 δcos

2
+( )/ ζsinh
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2
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πω0
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---------.= = =

ρ 2πω</ω–( ), ω<exp≈ min ω+ ω–,( ).=

ωt0
n( ) ω–
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1
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---+ 

  π+ln=

ρ δcos
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ζsinh
2 δcos

2
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-----------------------------------, ζ
πω±

ω
----------= =

ρ 4 δ 2πω±/ω–( ), ω ! ω±expcos
2≈

ωt1 2, i
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2
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ω0
2 ω2–

2ω±
----------------------.arcsinh±=
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and therefore ρ ≡ 0 (which corresponds to a nonreflec-
tive potential [27]).

APPENDIX C

The hypergeometric series in (3.4) can be written as 

(C.1)

where

(C.2)

for k ≥ 1 and bk = 0 for k = n + 1, n + 2, …. The product
of (C.1) with the known series expansion of w00(ρ),

(C.3)

yields the coefficients in (3.5). This calculation shows
that the coefficient of ρk in (3.5) is a polynomial of the
kth degree in N.

Notes added in proof. (1) Recently, M.A. Trusov
rigorously proved that the functions given by (2.17) sat-
isfy the unitarity condition. This justifies the analytic
continuation of Wigner functions used here in conjunc-
tion with FD. (2) I was advised by K.G. Boreskov that
relation (A.11) can be derived by using formulas
15.4.10, 15.4.11, and 8.2.1 in [50] under appropriate
choice of parameter values. I thank K.G. Boreskov and
M.A. Trusov for their interest in this study and helpful
remarks.
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Abstract—A continuous spin-reorientation transition from a uniform magnetic state with the in-plane orienta-
tion of the moments of all atomic layers to a nonuniform canted state in the surface region is considered. This
transition was discovered in experiments on the divergence of magnetic susceptibility in a perpendicular mag-
netic field at a temperature of about 240 K, which is lower than the Curie point of gadolinium, equal to 292.5 K.
These experiments were carried out on an ultrathin iron magnetic film deposited on the (0001) surface of a thin
gadolinium film. It is shown that, in the vicinity of the spin-reorientation transition, the thermodynamic poten-
tial has a form characteristic of the Landau theory of second-order phase transitions. The orientation angle of
the moment of the surface atomic layer with respect to the plane of the film, which is chosen as an order param-
eter, exhibits anomalous behavior and increases with temperature. Expressions are derived for the magnetic sus-
ceptibility of each atomic layer. It is shown that, in the vicinity of the transition, the irregular part of the mag-
netic susceptibility of each atomic layer exhibits behavior characteristic of the susceptibility in the Landau the-
ory: it is less by a factor of two in the low-symmetry phase and diverges at the transition point. The regular part
of the magnetic susceptibility of each atomic layer makes an additional contribution to the asymmetry of the
total susceptibility in the vicinity of the transition point; this result follows from the fact that the inhomogeneous
magnetic system considered is semi-infinite. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Magnetic properties of films consisting of layers of
different materials are of considerable fundamental and
applied interest. The phenomenon of giant magnetore-
sistance [1], spin-reorientation transitions, etc., have
been observed in these films. Although there are a large
number of experimental studies on the magnetization
processes and spin-reorientation transitions in these
processes (see, for example, [2, 3]), theoretical models
that have been used until recently either deal with an
infinite medium or rely on numerical analysis [4];
therefore, these models do not give a complete picture
of the behavior of a magnetic structure in an external
magnetic field. The main difficulty associated with the
theoretical analysis of these systems lies in the consid-
eration of the inhomogeneity of the magnetic structure
that is formed near the interface between different
media on the scale on the order of the lattice constant
due to the change in the chemical composition of the
films. As a result, the parameters such as magnetization
and magnetic susceptibility, which characterize differ-
ent magnetic states and phase transitions between them,
become essentially dependent on the number of an
atomic layer at a distance on the order of the lattice con-
stant. Therefore, considerable attention has recently
been paid to the study of the surface and bulk anisotro-
pies and to finding out the role of the exterior surface in
the process of reorientation analyzed by the models that
1063-7761/05/10105- $26.000830
take into account the real geometry of a magnet [5–7].
In the present paper, we apply a method analogous to
that used in [5–7] to analyze the effect of an external
magnetic field perpendicular to the surface of a Fe/Gd
two-layer magnetic film and a continuous spin-reorien-
tation transition discovered in this film.

In experiments with a two-layer film consisting of
one and a half atomic layers of Fe deposited on the sur-
face of a Gd(0001) thin film, it was established that, as
temperature increases, two successive spin-reorienta-
tion transitions occur in this film at temperatures below
the Curie point of bulk Gd, which is equal to 292.5 K
[8]. At low temperatures, a magnetic structure is real-
ized in which the moments of all atomic layers lie in the
plane of the film; in this case, the surface moment is
antiparallel to those of lower lying Gd layers. An
increase in temperature to about 240 K leads to a con-
tinuous spin-reorientation transition to a state that we
call here a Néel-domain-wall-like canted state. In this
state, the surface moment and the moments of lower
lying Gd layers deviate from the in-plane orientation;
deeper into the crystal, the orientation of the moments
of Gd atomic layers gradually approaches the in-plane
orientation. A further increase in temperature leads to a
slow increase in the deviation angle of the surface
moment from the in-plane orientation. At a temperature
as high as 280 K, a discontinuous spin-reorientation
transition occurs from one canted state to another, in
 © 2005 Pleiades Publishing, Inc.
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which the surface moment is virtually perpendicular to
the plane of the film.

Both transitions were discovered and investigated
by means of the spin-polarized secondary electron
emission spectroscopy method. This method is sensi-
tive to the magnetic state of only a few surface atomic
layers. Later, this system, denoted here as
1.5Fe/Gd(0001), was investigated by a method based
on the magnetooptic Kerr effect [9]. This method
allows one to analyze the magnetic state of deeper bulk
layers of Gd. In these experiments, it was established
that the moments of many Gd layers deviate from the
in-plane orientation under spin-reorientation transi-
tions; thus, many Gd layers take part in each spin-reori-
entation transition.

A continuous transition from the state with a uni-
form orientation of the moments of atomic layers to a
domain-wall-like canted state is characteristic of the
films that consist of layers with different chemical com-
positions. In this sense, this type of transition is unique.
Indeed, it does not occur in any magnetic film with
homogeneous chemical composition. In 1954, Néel
showed that the anisotropy of a surface layer may differ
from that of internal layers even in chemically homoge-
neous ferromagnets such as Fe, Co, Ni [10]. Therefore,
one may expect that, when, say, easy-axis anisotropy is
realized in the surface layer, while easy-plane anisot-
ropy is realized in the bulk layers, a domain-wall-like
canted magnetic state can be formed in the subsurface
region. However, the exchange-interaction energy in
these ferromagnets is much greater than the anisotropy
energy; therefore, the surface moment cannot deviate
from the in-plane orientation [11]. Naturally, the redis-
tribution of the electron density between atomic layers
in the surface region occurs even in chemically homo-
geneous films; i.e., the Friedel oscillations of the elec-
tron density and the associated phenomenon of inter-
layer relaxation occur. These factors, together with the
difference between the environment symmetry of
atoms on the surface and in the bulk of a crystal, lead
not only to a difference between the surface and bulk
anisotropies but also to a difference between the
exchange interactions in the surface region and in the
bulk of the crystal. However, experiments with Fe, Co,
and Ni films show that the renormalization of these
parameters is not sufficient for the formation of a
canted domain-wall-like structure in the surface region.
A different situation is realized in the two-layer system
of 1.5Fe/Gd(0001). Here, the deposition of an ultrathin
Fe layer onto the surface of a thin Gd(0001) film with
easy plane anisotropy leads to the formation of an
amorphous Fe/Gd film in the surface region of a sample
up to the Curie point of gadolinium [12]. It is well
known that amorphous Fe/Gd films are characterized
by easy axis anisotropy, which favors a perpendicular
orientation of the magnetic moment with respect to the
plane of the film [13]. As a result, an ultrathin Fe/Gd
film with anisotropy different from the bulk anisotropy
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and enhanced exchange interaction is formed on the
surface of a Gd film. Due to the latter fact, the Curie
point of the surface layer in the 1.5Fe/Gd(0001) sys-
tem, 350 K, turns out to be higher than the Curie point
of Gd, which is 292.5 K [8].

The so-called one-layer approximation provides the
simplest explanation for the transition to a canted state
in the surface region. Within this approach, it is
assumed that only the magnetic state of the topmost
atomic layer is different from the magnetic state of bulk
layers. In the vicinity of the Curie point of Gd, the
energy of exchange interaction JSBMSMB between the
surface atomic layer and the adjacent subsurface layer,
which is assumed to be a bulk layer in the one-layer
approximation, decreases to zero, because the magneti-
zation MB of the bulk layers tends to zero. At the same

time, the surface anisotropy energy KS  remains
finite in this narrow interval of temperatures and is vir-
tually independent of temperature. Therefore, at a cer-
tain temperature, the anisotropy energy of the surface
becomes comparable to the energy of exchange interac-
tion in the surface region. Hence, a spin-reorientation
transition from a state with a uniform orientation of the
moments of atomic layers to a canted domain-wall-like
state occurs in the 1.5Fe/Gd(0001) system. Naturally,
the interpretation of the spin-reorientation transition to
a nonuniform canted domain-wall-like magnetic state
within the one-layer approximation is not quite correct.
In this approximation, the thickness of a domain wall is
on the order of the lattice constant, which contradicts
both the experimental data of [9] and the available data
on the relation between the anisotropy energy and the
exchange-interaction energy in Gd. However, this inter-
pretation at least provides a qualitative explanation for
the deviation of the surface moment from the in-plane
orientation. Below, we describe a continuous spin-
reorientation transition to a canted domain-wall-like
state in the surface region with regard to the deviation
of the magnetic moment in many atomic layers of the
film.

In this paper, we consider only the first of the two
spin-reorientation transitions: a continuous spin-reori-
entation transition from a state with a uniform orienta-
tion of the moments of atomic layers to a canted
domain-wall-like state. This state was discovered by
examining a peak of magnetic susceptibility in a per-
pendicular magnetic field [8]. According to the Landau
theory of second-order phase transitions, the diver-
gence of susceptibility at a certain temperature implies
that a continuous second-order phase transition occurs
at this temperature [14].

The description and the physical interpretation of
the continuous spin-reorientation transition to a canted
state in the surface region require that one should take
into account the deviation of the moments of many
atomic layers from the in-plane orientation. This is a
consequence of the fact that the value of the bulk
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anisotropy is small compared with the energy of inter-
layer exchange interaction. The consideration of many
layers substantially complicates the description of the
continuous phase transition due to the complexity of
the thermodynamic potential that describes this system,

(1)

Nevertheless, the problem of the description of this tran-
sition with regard to many layers, i.e., within model (1),
was largely solved. First, based on stability theory, a
criterion for the transition form a magnetic state with a
uniform orientation of moments to a nonuniform
canted state was derived for a semi-infinite ferromag-
net. The effect of an external field parallel to the plane
of the film on this criterion, the finiteness of the film
thickness, the influence of the anisotropy of the sub-
strate onto which the film was deposited, and the inho-
mogeneity of the chemical composition of the film on
this criterion was studied [15]. However, the effect of a
field perpendicular to the film surface was investigated
only in the limiting case of the infinite constant of bulk
anisotropy KB  ∞. Moreover, a (kS, kB)-phase dia-
gram was constructed that indicates domains where a
uniform magnetic state and a nonuniform canted mag-
netic state in the surface region are realized [15]; kS and
kB are dimensionless surface and bulk reduced ani-
sotropy constants, respectively, which are defined as
follows:

(2)

The parameter γ takes into account, in the simplest
approximation, the inhomogeneity of the film, i.e., the
difference between the surface and bulk values of the
exchange interaction, which is associated with the
inhomogeneity of the chemical composition of the
1.5Fe/Gd(0001) film. Later, a criterion for the transition
to a canted state in the surface region was again
obtained by the method of nonlinear area-preserving
maps [16].

In [17], along with a continuous transition to a
canted state, which occurs at relatively low tempera-
tures, we also described a discontinuous transition,
occurring at a higher temperature, from one canted
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state to another canted state in which the surface
moment is nearly perpendicular to the film plane. In
that paper, we actually calculated the moment of an
atom in each atomic layer and its orientation as a func-
tion of temperature for any set of the model parameters.
Then, using the results obtained, we calculated a signal
recorded in the experiment based on the magnetooptic
Kerr effect with regard to the exponential decrease in
the contribution of each atomic layer as the index of a
layer increases; the curve obtained was compared with
the experimental curve and showed good agreement.

In spite of these achievements, there still remain a
number of questions concerning the description of a
continuous spin-reorientation phase transition from a
uniform magnetic state to a nonuniform canted state in
the surface region. First, the derivation of the criterion
for the transition to a canted state is based on the expan-
sion of thermodynamic potential (1) only up to qua-
dratic terms in the orientation angles θn of atomic lay-
ers, regardless of which method is used, [15] or [16].
This approximation allows one to derive the criterion
itself but does not allow one to unambiguously judge
the kind of the spin-reorientation phase transition
described by model (1). Indeed, according to the Lan-
dau theory of second-order phase transitions, the ther-
modynamic potential can be expanded in a series with
respect to the order parameter η at the transition point
T = TC:

(3)

The transition at T = TC from a low-symmetry state to a
high-symmetry state is a second-order phase transition
if the coefficient of η2 changes its sign at the transition
point and the coefficient B of η4 is positive. Intuitively,
it is obvious that a smooth increase in the surface
anisotropy constant, which favors the perpendicular
orientation of the surface moment, should lead to a con-
tinuous spin-reorientation transition to a canted state in
the surface region. However, based on expression (1)
for the thermodynamic potential of a semi-infinite crys-
tal, it is rather difficult to judge the sign of the coeffi-
cient multiplying the fourth power of the order param-
eter. Moreover, it is not quite clear what physical
parameter can serve as the order parameter under a con-
tinuous transition to a canted state and whether thermo-
dynamic potential (1) in the vicinity of the phase transi-
tion has a form characteristic of the Landau thermody-
namic potential (3). Therefore, in [17], we determined
the kind of the phase transition only for particular val-
ues of the model parameters by numerical simulation
on a computer. We also established that, in the limiting
case of the infinite value of the bulk anisotropy con-
stant, KB  ∞, the boundary that separates the
domain with a canted state from the domain with the in-
plane orientation of the moments of all layers in the
(kS, kB) phase diagram corresponds to a second-order

∆Φ a T TC–( )η2 Bη4.+=
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spin-reorientation phase transition. The first problem
solved in the present paper is the derivation of an
expression for the thermodynamic potential in the form
characteristic of the Landau theory (3) on the basis of
expression (1) for the thermodynamic potential of a
semi-infinite inhomogeneous crystal in the vicinity of
the transition point.

The solution of this problem will allow one to make
an unambiguous conclusion that the spin-reorientation
transition from a magnetic state with a uniform orienta-
tion of the moments of atomic layers to a canted state in
the surface region, which corresponds to the intersec-
tion of a line that separates the relevant domains in the
earlier constructed (kS, kB) phase diagram, is a second-
order phase transition for any values of the model
parameters kS, kB, and γ. Moreover, the Landau theory
implies that the order parameter η that appears in
expression (3) for the thermodynamic potential is equal
to zero in a high-symmetry phase and is different from
zero in a low-symmetry phase. The solution of the first
problem formulated above allows one to answer the
question of what is the order parameter in the continu-
ous spin-reorientation transition considered and how
does it behave with temperature. Finally, the solution of
this problem is necessary for solving the next problem,
which is the main problem of the present paper: the der-
ivation of an expression for the magnetic susceptibility
of an inhomogeneous magnetic film described by ther-
modynamic potential (1) in a perpendicular field in the
vicinity of a continuous spin-reorientation transition.
The magnetic susceptibility of a two-layer
1.5Fe/Gd(0001) film is the basic physical quantity that
is measured in the experiment. However, the tempera-
ture dependence of the magnetic susceptibility of an
inhomogeneous 1.5Fe/Gd(0001) film has not been
investigated theoretically or discussed. According to
the Landau theory, the magnetic susceptibility diverges
in the vicinity of a second-order phase transition, and
its value in a low-symmetry phase is twice that in a
high-symmetry phase. A question of whether these
properties follow from model (1), which describes an
inhomogeneous magnetic film, is the question that can
be answered by solving the second problem considered
in this paper. It is also of interest to consider how the
chemical inhomogeneity and the bounded geometry of
the film influence the above-mentioned features in the
behavior of the magnetic susceptibility in the vicinity
of a continuous phase transition to a nonuniform
domain-wall-like magnetic state in the surface region.
The solution of the second problem considered in the
present paper will also help to answer the question as to
whether it is correct, based on the divergence of the
magnetic susceptibility, to classify the discovered tran-
sition to a canted state as a second-order phase tran-
sition.

One should bear in mind that, in a chemically inho-
mogeneous semi-infinite film, the magnetic suscepti-
bility is a physical parameter that depends on the index
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of an atomic layer. Therefore, the derivation of an
expression for the magnetic susceptibility meets math-
ematical difficulties associated with the fact that one
should derive a separate expression for the magnetic
susceptibility of each atomic layer. To our knowledge,
presently there is only one publication, [18], in which
the authors consider the influence of a perpendicular
field on an inhomogeneous semi-infinite ferromagnet
described by model (1). However, these authors inves-
tigated only the evolution of magnetization profiles
with a perpendicular field within the nonlinear mapping
formulation of the mean-field theory; they did not con-
sider the magnetic susceptibility in a perpendicular
magnetic field.

In Section 1, we establish a relation between the ori-
entation angles of the moments of atomic layers in a
canted state in the surface region of an inhomogeneous
semi-infinite ferromagnet and the orientation angles in
an imaginary infinite domain wall in a homogeneous
magnet (γ = 1) obtained by an artificial continuation of
the semi-infinite magnet beyond its surface. The solu-
tion of this technical problem has been stimulated by
the fact that, to prove that thermodynamic potential (1)
in the vicinity of a continuous spin-reorientation transi-
tion has a form characteristic of the Landau theory (3)
(which is demonstrated in Section 2), one should
express each orientation angle θn in terms of the orien-
tation angle θ1 of the surface layer using the so-called
equilibrium conditions. Then, one should substitute the
expressions obtained into the expression for thermody-
namic potential (1). It turns out that this procedure is
significantly simplified if one uses the above-men-
tioned concept of an imaginary domain wall of an infi-
nite magnet and expresses the orientation angles θn of
the moments of atomic layers in a real canted magnetic
structure in the surface region in terms of fictitious ori-
entation angles Θ1 of the moments of atomic layers in
the imaginary domain wall of an infinite homogeneous
magnet.

In Section 3, we derive expressions for the regular
and irregular components of magnetic susceptibility in
a perpendicular magnetic field as a function of the
index of an atomic layer in the system described by
model (1). We show that, according to the Landau the-
ory of second-order phase transitions, the magnetic sus-
ceptibility of each atomic layer diverges at the transi-
tion point and its value in a low-symmetry phase is half
that in a high-symmetry phase. The theoretical results
obtained are compared with experimental data. The
regular component of the magnetic susceptibility is
analyzed similarly. To conclude this section, we stress
that a direct calculation of the magnetic susceptibility
in a perpendicular field proves to be rather difficult. At
the same time, the derivation of expressions for the
magnetic susceptibility on the basis of the Landau the-
ory and involving the concept of an order parameter
substantially simplifies the solution of this problem.
SICS      Vol. 101      No. 5      2005
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To conclude the Introduction, we make the follow-
ing two remarks concerning formula (1) for the thermo-
dynamic potential. The transition observed in the
experiment occurs at a sufficiently low temperature (at
about 230–240 K, which is by 50–60 K below the Curie
point of Gd, equal to 292.5 K, and by 110–120 K below
the Curie point of the surface, equal to 350 K), the mea-
sured value of the magnetization of Gd layers still being
close to the saturation value. Therefore, there are few
magnons in the system. Thus, one can write out a mean-
field thermodynamic potential by introducing the mag-
netization amplitudes MB(T). The only possible alterna-
tive state for the collinear states to which we restrict our
consideration here is the Néel surface wall. Moreover,
in view of the statement of the first problem (see
above), we only focus on the very beginning of the tran-
sition, when the deviation of moments from the in-
plane orientation is arbitrarily small. Taking into
account that the transition occurs at a low temperature,
we can neglect the possible angular dependence of the
moment of Gd to a good accuracy. In addition, thermo-
dynamic potential (1) is expressed in a discrete layer-
by-layer approximation. The gradient term that enters
the well-known Ginzburg–Landau functional, which is
used, in particular, for describing domain walls, arises
in (1) in the explicit form when passing to a continuum
approximation by the formula

where a is the interlayer distance. Then, we pass from
summation to integration in (1). It can easily be shown
that the shape of a wall is described in this approxima-
tion by the equation

Thus, there is no need to include the gradient term in (1)
because it is already contained there in the implicit
form. The continuum method yields approximate
expressions for the second- and fourth-order derivatives
of the thermodynamic potential with respect to the ori-
entation angle of the surface layer; these expressions
represent the limiting expressions for the exact formu-
las obtained in this paper by a discrete method. We

mean the passage to the limit λ  1 – . The
parameter λ is introduced exclusively for convenience,
to parameterize the bulk anisotropy constant kB by the
formula kB = (1 – λ)2/λ. When λ is varied from zero to
unity, kB varies from zero to infinity. The applicability

condition of the continuum method is given by  ! 1

θn θn 1+–( )cos 1
a2

2
----- dθ x( )

dx
--------------

x na=

2
,–≈

d2θ
dx2
--------

kB

2a2
-------- 2θ x( )( ).sin=

kB

kB
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and λ ≈ 1. In this case, if we pass again to the discrete
variables, the shape of the domain wall is described by
the expression

As λ decreases, the shape of the wall becomes substan-
tially different from that described by this expression.
Therefore, it is essential to verify that the fourth-order
derivative at the transition point is positive for any pos-
sible value of λ in the interval 0 < λ < 1, i.e., for any
value of the reduced bulk anisotropy constant kB from
zero to infinity. Thus, the results obtained below (see
Section 2) are of more general character compared to
those that would be obtained if one used the continuum
method. In spite of this fact, note that the application of
the continuum approximation turned out to be rather
fruitful, for example, for the description and qualitative
explanation of surface magnetism [19–21]. At the same
time, the construction of the (kS, kB) diagram of the
magnetic states of a semi-infinite magnet within the
continuum approximation, which was performed
in [22, 23], proved to be qualitatively incorrect, which
was pointed out in [15]. Here, we focus on finding out
the kind and the physical nature of a continuous spin-
reorientation phase transition precisely from the view-
point of the correct (kS, kB) phase diagram, which was
obtained earlier within the discrete method [15]. This is
another reason why we apply a discrete approximation
in the present study.

2. DERIVATION OF EXPRESSIONS
FOR THE ORIENTATION ANGLES

OF THE MOMENTS OF ATOMIC LAYERS
IN TERMS OF THE ORIENTATION ANGLE
OF THE MOMENT OF THE FIRST LAYER

Using the reduced anisotropy constants kS and kB (2)
introduced in the previous section, we can write out the
following expression for the thermodynamic potential
reduced to the dimensionless form:

(4)

Searching for the state of the system described by
this thermodynamic potential, i.e., the minimization of
this potential over each orientation angle θn , leads to

θn 2
Θ1

2
------ 

  kB n 1–( )( )exptan
 
 
 

.arctan=

ϕ0

Φ0

JBBMB
2

-----------------≡
γkS

2
-------- θ1 γ θ1 θ2–( )cos–sin

2
=

+
kB

2
----- θnsin

2 θn θn 1+–( )cos– 
  .

n 2=

∞

∑
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the following infinite set of equations for the orienta-
tion angles θn:

(5.1)

(5.2)

(5.3)

In the Landau theory, thermodynamic potential (3)
corresponds to a nonequilibrium state until the order
parameter η reaches its equilibrium value; i.e., the
order parameter η is a variable quantity. Below, we will
show that the orientation angle θ1 of the surface atomic
layer may serve as an order parameter for a continuous
spin-reorientation transition to a canted magnetic state
in the surface region described by model (4). Therefore,
the orientation angle θ1 of the surface is interpreted here
as a variable parameter; i.e., it must not be equal to its
equilibrium value. Hence, we will not use the equilib-
rium condition (5.1). The orientation angles of all the
other layers depend on the orientation angle θ1 of the
surface via the recurrence equations (5.2) and (5.3).

In accordance with the formulation of the first prob-
lem of this paper, we must express each orientation
angle θn in terms of the order parameter θ1 and then
substitute the expressions obtained for these angles into
the formula for thermodynamic potential (4). However,
due to the inhomogeneity of the chemical composition
of the film, γ ≠ 1, the equilibrium condition obtained by
the differentiation with respect to the orientation angle
of the second layer (5.2) does not coincide with similar
equilibrium conditions for all the other orientation
angles (5.3). This fact substantially complicates the
solution of the first problem of the present paper. To
avoid this difficulty, we introduce the concept of an
imaginary domain wall in an infinite homogeneous
crystal in which the orientation angle of each atomic
layer satisfies the equilibrium conditions (5.3). In the
present section, we find relations between real orienta-
tion angles in a canted magnetic state in the surface
region and fictitious orientation angles in the imaginary
domain wall of an infinite homogeneous crystal, as well
as their expressions in terms of the order parameter θ1

∂ϕ0

∂θ1
---------

γkS

2
-------- 2θ1( ) γ θ1 θ2–( )sin 0,=+sin=

n 1,=

∂ϕ0

∂θ2
---------

kB

2
----- 2θ2( )sin θ2 θ3–( )sin+=

+ γ θ2 θ1–( )sin 0,=

n 2,=

∂ϕn

∂θn

---------
kB

2
----- 2θn( )sin θn θn 1+–( )sin+=

+ θn θn 1––( )sin 0,=

n 2.>
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in the vicinity of a continuous spin-reorientation transi-
tion to a canted magnetic state.

For γ ≠ 1, the profile of magnetization represents a
part of a domain wall for all atomic layers except for the
first. The equilibrium value of the orientation angle θ1

of the first layer differs from the corresponding orienta-
tion angle in the imaginary domain wall, which is
denoted by Θ1. If the exchange interaction between the
surface and the adjacent subsurface layers is less than
the exchange interaction between adjacent atomic lay-
ers in the bulk of the magnet, γ < 1, then the real orien-
tation angle θ1 of the surface is greater than the ficti-
tious orientation angle Θ1 in the domain wall. If the
exchange interaction between the surface and the adja-
cent subsurface layers is greater than the exchange
interaction between adjacent atomic layers in the bulk
of the magnet, γ > 1, then the real orientation angle θ1

of the surface is less than the fictitious orientation angle
Θ1 in the domain wall. Thus, in an inhomogeneous
magnetic film (γ ≠ 1), there is a jump in the equilibrium
value of the orientation angle θ1 of the surface layer
with respect to the corresponding value of the fictitious
angle Θ1 in the domain wall of a homogeneous magnet,
as illustrated in the figure. Therefore, we use the fol-
lowing notation here: Θn are fictitious angles in a
domain wall in an infinite homogeneous magnet, and θn

are real orientation angles in a canted magnetic state in
the surface region. For n > 1, we have Θn = θn , while for

γ < 1, θ1

γ > 1, θ1

Θ1

θn, Θn

γ = 1, θ1

–4 –3 –2 –1 0 1 2 3 4 n

Fictitious orientation angles of moments (circles) in an
imaginary domain wall and real orientation angles of
moments (crosses) in a canted magnetic structure in the sur-
face region as functions of the number n of an atomic layer.
When γ > 1, the orientation angle θ1 of the surface layer is
less than the corresponding value of the fictitious angle Θ1
in the imaginary domain wall. When γ < 1, the orientation
angle θ1 of the surface layer is greater than the correspond-
ing value of the fictitious angle Θ1 in the imaginary domain
wall. When γ = 1, the angle θ1 coincides with Θ1. For n = 2,
3, 4, …, the real orientation angles θn of moments coincide
with the fictitious orientation angles Θn for any value of the
parameter γ.
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n = 1, the relation between Θ1 and θ1 will be established
below (see (7), (18), and (20)).

The fictitious orientation angles in the imaginary
domain wall satisfy the recurrence equation (5.3). Since
the angle Θ1 also belongs to this domain wall, it must
obviously satisfy a similar equation

(6)

A comparison of this equation with Eq. (5.2) shows that
the relation between the real orientation angle θ1 and
the corresponding fictitious orientation angle Θ1 in the
domain wall is given by the formula

(7)

A transition from the real orientation angle θ1 of the
surface atomic layer to the fictitious orientation angle
Θ1 in the imaginary domain wall allows us to apply,
instead of Eq. (5.2), Eq. (6), which is analogous to
Eq. (5.3); i.e., the system of recurrence equations (5.2),
(5.3) becomes in a sense homogeneous.

To obtain an expansion of thermodynamic poten-
tial (4) up to terms of the fourth order in each orienta-
tion angle, we must first express the fictitious orienta-
tion angles Θn in terms of the fictitious orientation
angle Θ1 of the surface in the imaginary domain wall up
to the cubic terms. To this end, we must expand the left-
hand side of the recurrence equation in a series in terms
of fictitious orientation angles in the imaginary domain
wall,

(8)

up to the cubic terms in each orientation angle Θn . For
n ≥ 2, we will seek a solution in the form

(9)

Obviously, for n = 1, we should set

α1 = 1, β1 = 0 (10)

in this formula. Upon substituting (9) into the left-hand

side of Eq. (8) expanded up to  and setting the coef-
ficients at equal powers of Θ1 to zero, we obtain the fol-
lowing recurrence equations for the coefficients αn

and βn:

(11.1)

(11.2)

Hereinafter, for convenience, we use the parameter λ
instead of the reduced bulk anisotropy constant kB. The

kB

2
----- 2θ2sin θ2 Θ1–( )sin θ2 θ3–( )sin+ + 0.=

γ θ2 θ1–( )sin θ2 Θ1–( ).sin=

kB

2
----- 2Θnsin Θn Θn 1––( )sin+

+ Θn Θn 1+–( )sin 0,=

n 2,≥

Θn αnΘ1

βnΘ1
3

6
------------.+=

Θ1
3

kB 2+( )αn αn 1–– αn 1+– 0, n 2,≥=

kB 2+( )βn βn 1+– βn 1–– η0αn
3, n 2.≥=
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relation between λ and kB is given by

(12)

As λ is increased from 0 to 1, the reduced bulk anisot-
ropy constant kB decreases from +∞ to 0. Then, the
coefficient η0 can be expressed as

(13)

A solution to homogeneous equation (11.1) is given by

αn = λn – 1. (14)

By analogy with the case of inhomogeneous differen-
tial equations, we will seek a solution to the inhomoge-
neous recurrence equation (11.2) as a sum of the solu-
tion to the corresponding homogeneous recurrence
equation and the partial solution to the inhomogeneous
equation (11.2):

(15)

Substituting this expression for βn into the recurrence
equation (11.2), we obtain the following formula for

the coefficient :

(16)

It follows from boundary conditions (10) that  = – .
As a result, we obtain the following expression for an
arbitrary fictitious orientation angle Θn in the imaginary
domain wall as a function of the first fictitious orienta-
tion angle Θ1:

(17)

For small deviations of the moment vector of the
surface atomic layer from the in-plane orientation,
there exists a one-to-one correspondence between the
real orientation angle θ1 and the fictitious orientation
angle Θ1 introduced by formula (7). Let us find the rela-
tion between Θ1 and θ1 up to the cubic terms. To this
end, we must expand both sides of Eq. (7) up to the
cubic terms and apply the expression for Θ2 in the
form (17). A solution is sought in the form

(18)

kB
1 λ–( )2

λ
-------------------.=

η0 4kB λ 1–( )3– 1 1
λ
---– 

  3

+=

=  
1 λ2–( ) λ2 3λ– 1+( )

λ3
---------------------------------------------------.–

βn β̃αn βαn
3.+=

β

β 1 3λ– λ2+

1 λ2+
---------------------------.=

β̃ β

Θn λn 1– Θ1
λ2 3λ– 1+

λ2 1+
--------------------------- λ3 n 1–( ) λn 1––[ ]

Θ1
3

6
------.+=

θ1 aΘ1

cΘ1
3

6
---------.+=
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Expressions for the coefficients a and c can be obtained
after equating the coefficients at equal powers of Θ1:

(19)

The inverse formula, which expresses the fictitious
angle Θ1 in terms of the real orientation angle θ1, is
obtained analogously:

(20)

Finally, we express the fictitious angles Θn for n ≥ 2 in
terms of the real orientation angle θ1 of the surface
atomic layer up to the cubic terms with the use of for-
mulas (17) and (20):

(21)

3. DERIVATION OF EXPRESSION (3) 
FOR THE THERMODYNAMIC POTENTIAL

IN A FORM CHARACTERISTIC
OF THE LANDAU THEORY

According to the Landau theory of second-order
phase transitions, for a phase transition to be of the sec-
ond order, it is necessary that the second derivative of
the thermodynamic potential (3) with respect to the
order parameter η change its sign at the transition point
and that the fourth derivative (the coefficient B) be pos-
itive. In this section, we will show that the thermody-
namic potential (4) of an inhomogeneous magnetic film
satisfies these conditions in the vicinity of a spin-reori-
entation transition from a uniform magnetic state with
the in-plane orientation of the moments of all layers to
a domain-wall-like canted state in the surface region.

Based on the results of the previous section, we can
conclude that, for arbitrary values of the model param-
eters λ and γ there exists a finite interval of values of the
surface orientation angle θ1 in which there exists a one-
to-one correspondence between the orientation angles
θn and θ1 in a canted state in the surface region. The fact
that the system is discrete is insignificant. Then, in the
canted magnetic state, one can expand the thermody-

namic potential (4) in a series in θ1 up to the terms .

a
1 1 γ–( )λ–

γ
-----------------------------,=

c
1 λ–( )3

γ
------------------- 1

γ2
----- 1– 

  β2 1 1
γ
---– 

  ,+=

β2 λ2 3λ– 1+( )λ 1 λ2–

1 λ2+
--------------.–=
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3

6
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1
a
---, ε c

a4
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Θn α̂nθ1
β̃n

6
-----θ1

3, α̂n+
1
a
---λn 1– ,= =
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β
a3
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a4
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a3
-----+ 

  λn 1– .–=

θ1
4

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
For simplicity and convenience, we decompose the
expression for the thermodynamic potential (4) into the
bulk and surface parts:

(22)

(23)

These formulas show that the bulk part ∆ , which
corresponds to a domain wall in a homogeneous mag-
net, does not contain the parameter γ, which takes into
account the inhomogeneity of the exchange interaction
in an inhomogeneous magnetic film. It neither contains
the reduced anisotropy constant kS of the surface atomic
layer, which is different from the reduced anisotropy
constant kB of the bulk layers of the magnet. These
model parameters are contained in the surface part ∆ϕ0S

of the thermodynamic potential. Expanding ∆  in a
series with respect to each fictitious orientation angle
Θn , substituting the expressions of Θn in terms of the
angle Θ1 for Θn by formula (17), and summing the geo-
metric progressions obtained, we derive the following
expression for the bulk part of the thermodynamic
potential ∆ :

(24)

When deriving (24), we omitted all the terms that do
not depend on the orientation angles. Formula (24)
shows that the expression for ∆  does not contain
quadratic terms in Θ1. The increment of the total ther-
modynamic potential can be expanded as follows. First,
we should expand the surface part of the thermody-
namic potential ∆ϕ0S in a series with respect to each ori-
entation angle, both real and fictitious, up to the
fourth-order terms. Second, we should substitute
expression (17) for the fictitious angle Θ2 in terms of
Θ1. Third, we should substitute expression (20) for the
fictitious angle Θ1 in terms of the real orientation angle
θ1 of the surface atomic layer into (23) and (24). As a
result, we obtain the following expression for the incre-
ment of the total thermodynamic potential ∆ϕ0 as a

ϕ0 ∆ϕ̃0 ∆ϕ0S,+=

∆ϕ̃0
λ 1–

2
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2 Θ1 Θ2–( )cos–=

+
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2
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2

n 2=

∑ Θn Θn 1+–( ),cos
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∑–
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2

--------------------------- θ1sin
2

=

+
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2
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2 λ 1–
2
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2

–
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ϕ̃0

ϕ̃0

ϕ̃0

∆ϕ̃0 3
1 λ2–

1 λ2+
--------------

Θ1
4

4!
------.≈

ϕ̃0
SICS      Vol. 101      No. 5      2005



838 ANISIMOV, POPOV
function of the real orientation angle θ1 of the surface
atomic layer:

(25)

Here, kSC is the critical value of the reduced constant
of anisotropy of the surface atomic layer, which
depends on the reduced bulk anisotropy constant kB
and γ (formula (42) in [15]). The graph of the function
kSC(kB) determines the boundary, on the phase diagram
(kS, kB), between the domain corresponding to a homo-
geneous magnetic state with the in-plane orientation of
all moments and the domain corresponding to a canted
state in the surface region. It follows from (25) that the
second derivative of the thermodynamic potential with
respect to the order parameter θ1 changes its sign when
crossing the boundary between these domains on the
(kS, kB) phase diagram. If the condition kS < kSC holds,
then the second derivative of the thermodynamic poten-
tial is negative; i.e., a canted state in the surface region
becomes energetically favorable. When deriving for-
mula (25), we used the following expression for the
critical value of the constant kSC of surface anisotropy
that enters the criterion for the spin-reorientation tran-
sition to a canted state kS < kSC:

(26)

The expression in square brackets in (25) is positive.
Indeed, at the point of spin-reorientation transition, i.e.,
at kS = kSC, the fourth derivative of the thermodynamic
potential with respect to the order parameter θ1 can be
rewritten as

(27)

For γ = 1, the expression for the increment of the ther-
modynamic potential has an especially simple form:

(28)

If the criterion kS < kSC for the transition to a canted
state is satisfied, then we can derive an equilibrium

∆ϕ0
γ
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4
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value of the orientation angle  of the surface atomic
layer from Eq. (25):

(29)

One can verify that this value of the order parameter θ1
satisfies the equilibrium condition (5.1) up to the cubic
terms. Based on the equilibrium condition (5.1) for the
surface atomic layer, one can derive an expression for
the coefficient B that coincides with the expression for
this coefficient defined by formula (25).

Thus, in the vicinity of a continuous spin-reorienta-
tion transition to a canted state in the surface region, the
thermodynamic potential (4) of a semi-infinite inhomo-
geneous magnet has a form characteristic of the Landau

theory (3). The positiveness of the coefficient B at 
shows that this transition is of the second order. Thus,
the spin-reorientation transition from a uniform mag-
netic state with the in-plane orientation of the moments
of all layers to a canted state in the surface region
described by model (4) is a physical realization of the
second-order phase transitions described by the Landau
theory.

Note that, at low temperatures, i.e., for kSC < kS, the
order parameter θ1 vanishes; an increase in temperature
leads to a continuous increase in the order parameter.
Such behavior of the order parameter with temperature
contradicts the vast majority of experimental data on
second-order phase transitions. This makes the contin-
uous spin-reorientation transition observed in the
1.5Fe/Gd(0001) system a unique phenomenon. How-
ever, according to the Landau theory, a decrease in the
order parameter with temperature is not a law of nature
[14], because entropy increases all the same.

To conclude this section, we note that one can
choose the orientation angle of any atomic layer as an
order parameter because the orientation angles of all
atomic layers are interdependent. However, the most
natural choice of the order parameter is the orientation
angle of the surface atomic layer. Obviously, any odd
function of the surface orientation angle, say sinθ1,
may also serve as the order parameter. Similar to the
orientation angles, all values of sinθn are also interde-
pendent; therefore, one can choose the total projection
of the moments of all atomic layers onto the normal to
the film surface as the order parameter.

4. MAGNETIC SUSCEPTIBILITY 
OF ATOMIC LAYERS

IN AN INHOMOGENEOUS MAGNETIC FILM
IN A PERPENDICULAR MAGNETIC FIELD

In the presence of an external magnetic field perpen-
dicular to the plane of the film, the expression for the

θ1
0( )

θ1
0( ) 6γ kSC kS–( )

B
------------------------------.=

θ1
4
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thermodynamic potential contains additional terms
compared to expression (4) for ϕ0:

(30)

Here, h⊥  is the reduced value of the external perpendic-
ular magnetic field, which is defined as

(31)

According to this definition of the parameter h⊥ , the
coefficient µ in the last term in (30) must be set equal to
unity. However, it is more convenient to preserve this
coefficient because it helps to follow up the origin of
different terms when deriving the final formulas for the
susceptibility of each atomic layer in a perpendicular
magnetic field. Therefore, below we treat the parameter
µ1 as the moment of the surface atomic layer and µ, as
the moment of a bulk atomic layer. Of course, in all the
formulas below, we must set µ = 1.

With regard to the notations introduced, the equi-
librium conditions for each orientation angle are rewrit-
ten as

(32.1)

(32.2)

(32.3)

The switching on of the external field changes the ori-
entation angle of the moment of each atomic layer com-
pared to the equilibrium value at h⊥  = 0. In the bulk of
the film, far from the surface, the deviation of the
moment from the in-plane orientation is defined by the
angle ΘB, which is independent of the index of an
atomic layer:

(33)

Then, the expression for the magnetic susceptibility χB
of a bulk atomic layer in a perpendicular field is given

ϕ ϕ 0 µ1h⊥ θ1sin– µh⊥  Θn.sin
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--------.= =
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-------- 2θ1sin γ θ1 Θ2–( )sin+=
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2
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n 2.>

ΘBsin
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by the formula

(34)

Now, we will find an expression for the magnetic sus-
ceptibility of an arbitrary atomic layer in the surface
region near the point of a continuous spin-reorientation
transition to a canted state. In the canted state and at
h⊥  = 0, the equilibrium profile with respect to the orien-
tation angles represents a part of a Néel wall. Under the
application of an external perpendicular field, the pro-
file of the orientation angles represents a part of a mod-
ified Néel wall. Thus, the nonequilibrium thermody-
namic potential of the canted state depends not only on
the variable orientation angle θ1 of the surface, the
order parameter, but also on the external magnetic field
h⊥ . In addition, the orientation angles of other layers,
n = 2, 3, …, are determined by Eqs. (32.2) and (32.3)
for a fixed value of the orientation angle of the surface
atomic layer:

(35)

Let us show that the first derivative of the total thermo-
dynamic potential ∆ϕ0 with respect to the external field
h⊥  vanishes as the field value tends to zero. Indeed, after
the rearrangement of terms, the expression for this
derivative for a fixed value of the orientation angle θ1 of
the surface moment has the form

(36)
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Here,  are the equilibrium values of orientation
angles for a fixed value of the orientation angle of the
surface moment in zero external field for n ≥ 2. Each set
of square brackets in (36) contains the left-hand side of
the equation for the equilibrium values of the orienta-
tion angles given by (5.2) and (5.3). Hence, the switch-
ing on of a weak perpendicular external field for a fixed
value of the orientation angle of the surface moment
does not change the total energy of the system, i.e., the
sum of the exchange-interaction and anisotropy ener-
gies. This means that the first term ∆ϕ0(θ1, h⊥ ) in the
thermodynamic potential (35), being expanded in a
series with respect to the field h⊥ , does not contain a
term linear in h⊥ .

The magnetic susceptibility of each atomic layer in
a canted state in the surface region represents a Laurent
series in the parameter (kSC – kS) ≡ kS:

. (37)

Below, we determine only the first two terms in this
series: the irregular term An/∆kS and the constant Bn . In
the previous section, we obtained an expression for the
expansion of the thermodynamic potential ϕ0(θ1, 0) in
the orientation angle θ1 of the surface moment up to the
fourth-order terms (25). Here, we must generalize this
expansion to the case of a nonzero perpendicular exter-
nal magnetic field h⊥ . To find an expression for the sus-
ceptibility in a canted state (a low-symmetry phase)
with regard to the constant Bn in series (37), we should
expand the second and third terms in (35) with respect
to the orientation angle θ1 of the surface moment up to
the cubic terms in θ1. This can be done by formula (17),
in which the orientation angles Θn ≡ θn for n > 1 are
expressed in terms of the fictitious orientation angle Θ1
of the surface in the imaginary domain wall, as well as
by formula (20), in which the fictitious orientation
angle Θ1 of the surface moment is expressed in terms of
the real orientation angle θ1 of the surface moment in a
canted state:

(38)

As a result, a generalized expression for the expansion
of the thermodynamic potential in the orientation angle
θ1 of the surface moment can be represented as

(39)
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The perpendicular component of the moment of the
surface atomic layer can be expressed as µ1⊥  = µ1sinθ1.
This formula implies that the susceptibility χ1 of the
surface atomic layer can be represented as

(40)

The differentiation of thermodynamic potential (39)
with respect to the orientation angle θ1 of the surface
moment followed by the differentiation with respect to
the field h⊥  leads to an equation in the parameter η1 that
gives an expression for the susceptibility χ1 of the sur-
face atomic layer. The solution of this equation and the
substitution of the obtained expression for η1 into the
formula (40) for χ1 leads to the following expression for
the susceptibility of the surface atomic layer in the
vicinity of the spin-reorientation transition to a canted
state:

(41.1)

(41.2)

When deriving this expression, we used expression (29)
for the equilibrium orientation angle of the moment of
the surface atomic layer in zero external magnetic field
h⊥  = 0.

Now, we pass to the determination of the suscepti-
bilities χn of other layers, n ≥ 2. According to the defi-
nition of the perpendicular component of the moment
of the nth atomic layer, µn⊥  = µsinΘn , the expression for
the susceptibility of the nth atomic layer in a perpendic-
ular field h⊥  can be represented as

(42)

According to the Landau approach, which underlies the
present study, the orientation angle Θn (n = 2, 3, 4, …)
of the moment of an arbitrary atomic layer is a function
of the order parameter, i.e., the orientation angle θ1 of
the surface moment, and the external perpendicular

χ1
∂µ1⊥

∂h⊥
-----------

h⊥ 0=

µ1 θ1
0( )( )η1,cos= =

η1
∂θ1

0( )

∂h⊥
-----------

h⊥ 0=

.=

χ1

µ1
2 1 µγkSC/µ1kB–( )

γ kS kSC–( )
------------------------------------------------, kS kSC,>=

χ1

µ1
2 1 µγkSC/µ1kB–( )

2γ kSC kS–( )
------------------------------------------------=

+
3
2
---

µ1
2

B
----- µ

µ1
----- D

γkSC

kB
-----------+ 

  2– ,

kS kSC.<

χn µ Θn h⊥ 0=
dΘn

dh⊥
----------

h⊥ 0=

cos=

≡ µ Θn h⊥ 0= ηn.cos
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field h⊥ : Θn = Θn(θ1(h⊥ ), h⊥ ). According to this
approach, the derivative of the orientation angle Θn

with respect to the field for h⊥  = 0 and the equilibrium

value of the order parameter  can be expressed as

(43)

According to expansion (21), the parameter νn is
defined by the formula

(44)

The partial derivatives  satisfy the system of recur-
rence equations obtained by differentiating Eqs. (32.2)
and (32.3) (n ≥ 2) with respect to the field h⊥  at h⊥  = 0

and θ1 = . The superscript in  points to the fact
that this partial derivative is calculated at the equilib-
rium value of the order parameter, the orientation angle
of the moment of the surface atomic layer:

(45.1)

(45.2)

It is important that, when calculating the partial deriva-
tive of the orientation angle Θn = Θn(θ1(h⊥ ), h⊥ ) with
respect to the field h⊥ , one should assume that the sec-
ond term in (43), the order parameter θ1, is constant.
This is why the system of equations (45) for the partial

derivatives  does not contain the parameter η1 in the
penultimate term in (45.1). For the same reason, the
system of equations (45) does not contain the partial
derivative of the first equation (32.1) with respect to the
field h⊥ .

When determining the susceptibility χn in a uniform
state with the in-plane orientation of the moments of all
layers, kS > kSC, the orientation angle of each atomic
layer, including the surface layer, must be set equal to
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zero, because it is these values of the orientation angles
that correspond to the ground state under the condition
kS > kSC . In this particular case, the system of equa-
tions (45) takes the form

(46)

A solution to this system of recurrence equations is
given by

(47)

When determining the susceptibility χn in a canted
state in the surface region (kS < kSC), the orientation
angle Θn (n ≥ 2) of the moment of each atomic layer in

the system of equations for the parameter  can be
expressed in terms of the orientation angle of the
moment of the surface atomic layer by (21). As a result,
the solution to system of equations (45) can be
expanded in a series in θ1. Since Eq. (45) contains only
cosines, this expansion contains only even powers
of θ1:

.

According to (42) and (43), taking into account the qua-

dratic term bn( )2 in this expansion implies that this
term appears in the expression for the susceptibility.

However, in view of (29), ( )2 ∝  ∆kS. Thus, taking
into account the quadratic term in the expansion

implies that the term proportional to ∆kS in expres-
sion (37) for the susceptibility χn should be taken into
account. However, as pointed out above, in the present
paper, we determine only the first two terms in the Lau-
rent series expansion in ∆kS (37). Therefore, when
determining the susceptibility in a canted state in the
surface region (kS < kSC), system of equations (45) for

the parameters  is again transformed to system of

equations (46) with a similar solution for  defined
by formula (47). In other words, in both cases, kS < kSC
and kS > kSC, system of equations (45) is reduced to sys-
tem of equations (46).

Using (42)–(47) and (29), we obtain the following
expressions for the susceptibility of the nth atomic
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layer to the left and right of the transition point, respec-
tively:

(48.1)

(48.2)

The first term in (48.1) and (48.2) represents the
intrinsic susceptibility of the homogeneous substrate
(n ≥ 2) perturbed by the presence of the surface atomic
layer of different nature. The summation of the first
term over the layers (n = 2, 3, …, N) yields the follow-
ing result for this part of the susceptibility of the sub-
strate:

(49)

It follows from formula (49) that, in the case of γ = 0,
which means the absence of the surface atomic layer,
the susceptibility of each layer is equal to its bulk value
(  = 0). Conversely, the presence of the surface
atomic layer (γ ≠ 0) with the negative anisotropy con-
stant (kS < 0) reduces the susceptibilities of layers in the
subsurface region, because a surface atomic layer with
negative anisotropy constant favors the perpendicular
orientation of the moments of atomic layers with
respect to the plane of the film. This effect is analogous
to the application of a local perpendicular magnetic
field to the second atomic layer.

The second term in (48.1) and (48.2) is the so-called
irregular part of the susceptibility, which diverges at the
point of the spin-reorientation transition. The expres-
sion for this term shows that the irregular part of sus-
ceptibility in a canted state is half the irregular part of
susceptibility in the uniform magnetic state with the in-
plane orientation of the moments of all atomic layers.
This result agrees with the results of the Landau theory,
in which the susceptibility of a low-symmetry phase is
half the susceptibility of a high-symmetry phase. In
both (48.1) and (48.2), the irregular part of susceptibil-
ity decreases to zero as λn (0 < λ < 1) as the index of
atomic layer increases; this result points to the fact that
a continuous spin-reorientation phase transition occurs
precisely in the surface region. The summation of the
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irregular parts of the susceptibility over all layers,
including the surface layer, yields the following result:

(50.1)

(50.2)

In a real experiment with a 1.5Fe/Gd(0001) film, the
measurement of the susceptibility in a perpendicular
field actually reduces to the measurement of the spin
polarization of secondary electrons that are knocked
out from the surface region in a short period after
switching off the external field. In the simplest approx-
imation, we can assume that the contribution of individ-
ual atomic layers to the resulting signal exponentially
decreases with increasing layer number. It is obvious
that the summation of the irregular parts of susceptibil-
ity (48.1) and (48.2) with an exponential factor gives
rise to identical factors on the right-hand sides of (50.1)
and (50.2). In other words, this procedure does not
remove the divergence at the transition point; neither
does it lead to other significant changes in the structure
of formulas (50.1) and (50.2). Therefore, the identifica-
tion of a continuous spin-reorientation transition to a
canted state as a second-order phase transition by the
divergence of the susceptibility at the transition point
[8] is justified.

Finally, the summation of the last terms in (48.2)
over the indices of atomic layers of the substrate with
regard to a similar term in (41.2) for kS < kSC yields the
following expression for this component of the regular
part of susceptibility:

(51)

This term, just like the subsequent terms in expansion (37)

that are proportional to ∆kS, ∆ , …, makes an addi-
tional contribution to the asymmetry in the behavior of
the susceptibility in the vicinity of the spin-reorienta-
tion transition point, in addition to the well-known
asymmetry of the irregular part of susceptibility, which
is less by a factor of 2 in the low-symmetry case.
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Abstract—Electron–phonon interaction is sequentially derived from a realistic p–d multiband model for the
cuprates under conditions of strong electron correlations. The electronic structure is described using the repre-
sentation of the Hubbard X operators in a generalized tight-binding method. Dependences of the diagonal and
off-diagonal (on lattice sites) matrix elements of electron–phonon interaction on the wavevectors are found for
three phonon modes, namely, breathing, apical breathing, and bending modes. The interactions of the breathing
and bending modes with electrons are shown to contribute to the formation of kinks in the (0; 0)–(π; π) and
(0; 0)–(π; 0) directions, respectively. A low-energy t–J* model with phonons is developed; apart from electron–
phonon interaction, it also includes spin–phonon interaction. The elimination of phonons gives an effective
electron–electron interaction that depends on the occupation number of a multielectron term and on the carrier
concentration due to strong electron correlations. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Despite significant progress reached in studying
high-temperature superconductivity (HTSC) in layered
cuprates, the HTSC mechanism is still unclear. Among
numerous mechanisms proposed in the initial stage of
investigating HTSC, the following two mechanisms
have been most often discussed recently: the traditional
mechanism of electron–phonon interaction (EPI) and
the spin-fluctuation mechanism [1]. The latter is known
to be caused by strong electron correlations that result
in a long-range antiferromagnetic (AFM) order in
undoped dielectric cuprates and to a short-range AFM
order in weakly doped cuprates. Interest in electron–
phonon interaction, which is present in all substances
and can be strong in layered cuprates due to specific
features of their crystal structure, has currently quick-
ened because of inflection points (kinks) detected in
electron dispersion laws in ARPES (angle-resolved
photoemission spectroscopy) measurements [2]. Note
that kinks were found in many hole cuprates, but they
are absent in the electron cuprates with a T ' structure
(Nd2 – xCexCuO4). The kink energy measured from the
Fermi level (ωk ≈ 70 meV) is virtually universal, and the
effect is most pronounced in the form of a bend in the
dispersion law in the diagonal direction Γ  M,
(0; 0)–(π; π) of the Brillouin zone. A kink at an energy
ωk ≈ 40 meV was also detected in the vicinity of the
X((π; 0), (0; π)) and Bi2212 points [3], and it increases
sharply as the temperature decreases below Tc (see the
review of ARPES data in [4]). The nature of the kink is
obviously related to electron–boson interaction; how-
1063-7761/05/10105- $26.000844
ever, the question of what bosons, namely, phonons or
spin fluctuations, are responsible for these renormaliza-
tions of an electronic spectrum near the Fermi level is
a matter of dispute [5]. The kink can result from inter-
action with optical phonons [6] or with spin fluctua-
tions [7, 8].

Thus, to describe both superconducting pairing and
the properties of the normal state in the cuprates, one
has to take into account the interactions of electrons
with phonons and spin fluctuations. To describe opti-
mally or strongly doped compositions, one can start
from ordinary band theory; however, to discuss the
entire phase diagram of cuprates, beginning from
undoped antiferromagnetic dielectrics, one has to
describe electrons in the strong-correlation regime.
Various modifications of the one- and multiband Hub-
bard models led to a low-energy effective t–J model
that describes electron interaction with spin fluctua-
tions in the Hubbard bands [9, 10]. However, electron–
phonon interaction in the strong-correlation regime has
been studied to a lesser extent (see recent review [11]).
As a rule, researchers consider the t–J model with local
interaction of electrons with a certain optical mode. At
the same time, to discuss the symmetry of the supercon-
ducting state and the differences in kinks located in dif-
ferent regions of the Brillouin zone, it is necessary to
know an explicit dependence of the matrix elements
g(ν)(k, q) of electron–phonon interaction on the incom-
ing momentum k transferred by q and the number ν of
the phonon mode. The purpose of this work is to
sequentially derive electron–phonon interaction from a
 © 2005 Pleiades Publishing, Inc.
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realistic p–d multiband model for cuprates in the
strong-correlation regime [12] and to realistically
describe the phonons that interact most strongly with
electrons.

In the general case, we can distinguish diagonal and
off-diagonal contributions to the electron–phonon
interaction in the nodal representation. Strong electron
correlations and the diagonal electron–phonon interac-
tion were simultaneously taken into account in [13–17].
It was found that the following three phonon modes
interact most strongly with electrons: the longitudinal
breathing mode (oxygen-ion vibrations in the CuO2

plane that deform the Cu–O bond), the apical breathing
mode (vibrations of apical oxygen ions that deform the
Cu–O bond along the c axis), and the bending mode
(oxygen-ion vibrations in the CuO2 layer normal to the
Cu–O bond) (Fig. 1). Neutron-scattering experiments
revealed the maximum softening of the breathing mode
at the boundary of the Brillouin zone, at the (π/a; 0; 0)
point [18, 19]. The joint effect of EPI and spin-fluctua-
tion interaction on the superconducting pairing without
regard for strong electron correlations was analyzed
in [20]. As follows from the results of all these works,
the breathing mode interacts most strongly at a phonon
quasi-momentum q ~ Q = (π/a; π/a) and breaks pairing
with the  symmetry; the bending mode has max-

imum interaction at small q; and the apical breathing
mode has a matrix interaction element that is indepen-
dent of the in-plane wavevector q. Oxygen-ion vibra-
tions normal to the CuO2 plane strongly modulate the
ionic component of the chemical bond in the cuprates
by changing the Madelung potential; hence, they
strongly interact with electrons [11].

Kinks in ARPES experiments at the nodal (k =
(π/2a; π/2a)) and antinodal (k = (π/a; 0)) points have
different boson frequencies and different temperature
dependences; therefore, their analysis requires a
detailed description of EPI, in particular, the descrip-
tion of the dependence of the matrix elements g(ν)(k, q)
on not only the transferred momentum q but also on the
incoming momentum k [21]. The latter dependence can
only be caused by the off-diagonal part of EPI. When
the authors of [22, 23] derived EPI, they took into
account strong electron correlations within the frame-
work of the three-band p–d model and diagonal and off-
diagonal EPIs and only considered the breathing mode.
As a result, they constructed an effective t–J model with
EPI. In this work, we investigate the interaction of
strongly correlated electrons with all three modes given
above and find diagonal and off-diagonal contributions
to EPI. By comparing the crystal structures and phonon
spectra of LSCO (T structure) and NCCO (T ' structure),
we could reveal the contributions to EPI that disappear
when passing from the T to the T ' structure and could

d
x

2
y

2–
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explain why the EPI in the T ' structure is significantly
weaker than that in the hole cuprates.

2. DERIVATION
OF ELECTRON–PHONON INTERACTION 

USING A MULTIBAND p–d MODEL
FOR LAYERED CUPRATES

The Hamiltonian of the CuO2 layer in the multiband
p–d model can be written as follows (in the hole repre-
sentation) [24]:

(1)

Here, niλσ = ajλσ ,  is the operator of production
of a hole on the site i ≡ Ri in the orbital state λ with the
spin projection σ and the energy εiλ; µ is the chemical

potential;  is the matrix element of an atomic jump;

and  and  are the matrix elements of the Cou-
lomb and exchange interactions, respectively. Unlike
the three-band p–d model [25, 26], the multiband
model takes into account both the  and  ≡

 copper orbitals (although the other three t2g orbitals

can also be included, they are filled by electrons and
their energy levels in the electron valence band are well
below the low-energy range (E ≤ 1 eV) to be studied
here). For oxygen ions lying in the CuO2 layer, we take
into account the px and py orbitals, and the pz orbitals of
the apical oxygen (which are present in the T structure
and are absent in the T ' structure) are also considered.
Important microscopic model parameters are the fol-
lowing: tpd is a hopping between the  copper and

the in-plane oxygen; tpp is a hopping between neighbor-
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Fig. 1. Schematic diagram for atomic displacements for
(a) the breathing mode, (b) the bending mode, and (c) the
apical breathing mode.
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ing (Ox and Oy) oxygen ions; and  and  are hop-
pings between copper and the apical oxygen and the in-
plane and apical oxygen, respectively. From the Cou-
lomb interactions, we distinguish the intra-atomic
interactions of two holes in one (Ud is the Hubbard
parameter) and different (Vd) orbitals, the correspond-
ing interactions (Up and Vp) for oxygen, the Coulomb
interaction of neighboring copper and oxygen (Vpd),
and the interaction of neighboring oxygen ions (Vpp).
From the exchange interactions, we distinguish intra-
atomic (Hund) exchange parameters Jd and Jp . A
detailed analysis of Hamiltonian (1) and various matrix
elements, as well as a procedure for the calculation of
the band structure of quasiparticles with allowance for
strong electron correlations using a generalized tight-
binding (GTB) method, are given in [12, 27].

After the Wannier functions have been constructed
in the framework of the GTB method, Hamiltonian (1)
is written as the sum of intracell (Hc) and intercell (Hcc)
parts [12, 27]

(2)

Here, the f and g sites are only related to the copper sub-
lattice (the cell is the CuO6 or CuO4 cluster), since the
Wannier functions are centered at the Cu sites. The
superscripts a and b indicate the symmetries of the
Wannier functions: the  copper states are hybrid-

ized inside the cell with the molecular b1g orbital of the
in-plane oxygen, and the  copper states are hybrid-

ized with the a1g states of the in-plane oxygen and the
pz states of the apical oxygen. Apart from one-particle

p–d and p–p hoppings inside the cell, the  and 
Hamiltonians contain intracell Coulomb interactions.
For example, Up and  are involved in all three Hf

terms. However,  only contains Coulomb and
exchange interactions, since the Wannier functions
inside the cell are orthogonal. They are mixed due to
hoppings between neighboring cells, and this mixing is

contained in the  term.

To take into account strong electron correlations
within the framework of the GTB method, we first
exactly diagonalize the Hf Hamiltonian and use its com-
plete set of eigenstates {|p〉} to construct the Hubbard X

operators  ≡ |p〉〈 q|. In the second stage, the intercell
Hamiltonian part Hcc is written in the X representation,

t pd' t pp'

H Hc Hcc,+=

Hc H f , H f

f

∑ H f
b( ) H f

a( )
H f

ab( )
,+ += =

Hcc h fg
b( ) h fg

a( ) h fg
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h fg
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pq
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and it has the same operator structure (~tfgXfXg) as the
hopping Hamiltonian in the standard Hubbard model.
This fact allows us to find the Green function and a
band structure using perturbation theory. A dispersion
equation for the calculation of a band structure in the
GTB method has the form (in the paramagnetic phase)

(3)

where the coefficients γλσ(m) of the representation of
the one-electron operators in terms of the Hubbard X
operators,

, (4)

are calculated after the exact diagonalization of Hf . The
Ωm energies have a one-particle meaning, and they are
defined as resonances between multielectron terms |p〉
and |q〉: Ωm = Ep – Eq . The filling factors Fm = 〈Xpp〉  +
〈Xqq〉 , just like the Ωm energies, are calculated after the
exact diagonalization of Hf . Finally, the intercell hop-
ping matrix elements Tλλ '(k) are defined by different
p−d and p–p hoppings. For example, electron produc-
tion at the bottom of the conduction band of undoped
La2CuO4 or Nd2CuO4 is related to a resonance between
the vacuum (|0〉 , the d10p6 configuration) molecular
orbitals and the one-hole (|σ〉, σ = ±1/2; a mixture of the
d9p6 and d10p5 configurations) molecular orbitals. Hole
production near the valence band top is related to reso-
nances ΩS between the one-hole |σ〉 states and the two-
hole |s〉  1A singlet that is mixed with the band of triplet
excitations ΩT (|1, σ〉  |2, T〉) with the participation
of the two-hole 3B triplet.

In the one-hole sector of the Hilbert space, the
blocks of the Hf matrix with the b and a symmetries
have the form

(5)

(6)

where the hopping parameters τ and the energies of the
oxygen b and a orbitals are renormalized as compared
to the initial atomic values due to the construction of the
Wannier functions. The corresponding matrices in the
two-hole sector have a large dimension; they are given
in an explicit form in [12, 27] and are not discussed
here.

det
E Ωm–

Fm

-----------------δmm' γλσ m( )Tλλ ' k( )γλ'σ m'( )
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After diagonalizing the intracell Hc part and after
passing to the X-operator representation, we can write
electron Hamiltonian (1) as

(7)

At low energies near the bottom of the conduction band
and the top of the valence band, we restrict ourselves to
the following set of |nγ〉 terms: n = 0, |0〉; n = 1, |σ〉, σ =
±1/2; n = 2, singlet |s〉  and triplet |T, M〉 , M = 0, ±1 [12].
Indices m, m' denote various hole excitations. For this
set of |nγ〉 terms, the disappearance of a hole with a spin
σ in Eq. (4) is described by the following quasiparti-
cles: at m = 0, (0, σ); at m = 1, ( , s); at m = 2, ( , T0);
and at m = 3, (σ, T2σ).

As usual, when EPI is derived in terms of the GTB
method, it is necessary to take into account the modula-

tion of the intra-atomic (εiλ) and interatomic ( )
parameters upon atomic displacements. Moreover, in
our case, EPI is contributed by the modulation of the
Coulomb interatomic interaction. It is important that
the modulation of the one- and two-particle Hamilto-
nian parameters due to atomic displacements contrib-
utes to not only the one-particle but also the two-parti-
cle terms; in the general case, it also contributes to the
multiparticle terms Enγ (where n is the number of elec-
trons, and γ is the set of quantum numbers) that deter-
mine the resonance energies Ω in Eq. (3), whence
a diagonal contribution to EPI appears. The modulation
of various atomic-jump and Coulomb-interaction
parameters also causes an off-diagonal contribution to
EPI. As a result of atomic displacements, the energies
of the |nγ〉 terms become site-dependent:

(8)

Similarly, the hopping and interaction parameters
depend on the difference in the sites Ri – Rj = Ri0 –
Rj0 + uij , uij = ui – uj . In a linear approximation, we
have

(9)

Here, a set of the phenomenological gnγ and Vmm'

parameters specifies the diagonal and off-diagonal con-
tributions to EPI. As a result, we obtain electron Hamil-
tonian (7), in which all energies belong to the undis-
turbed lattice (i.e., Enγ(0) and tfg(0)), and the EPI Hamil-
tonian

(10)

in the system of strongly correlated electrons.

Hel Enγ nµ–( )X f
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Using the breathing mode as an example, we con-
sider characteristic displacements and modulation of
the corresponding Hamiltonian parameters. Figure 1
shows a fragment of the CuO2 layer and the directions
of oxygen-ion displacements for the three phonon
modes under discussion. For the breathing mode, a dis-
placement of the O2– ion along the Cu–O bond (Fig. 1a)
changes the Madelung potential and, thus, the d-level
energy in the crystal field:

(11)

In the approximation that is linear in displacements,
modulation of the εp level on oxygen is absent because
of the symmetry, since the contributions from the left
and right copper ions are canceled (Fig. 1a). As a result,
we have modulation of the charge transfer energy: ∆i =
εp – εi( ) = ∆0 – g · ui . Analogous linear-in-dis-

placement contributions appear in the parameters of
hoppings between copper and the in-plane oxygen
(tpd(i) = tpd(0) + δtpd), between oxygen and the oxygen
inside the CuO2 layer (tpp(i) = tpp(0) + δtpp), and
between the apical oxygen and the in-plane oxygen
( (i) = (0) + ); they also appear in the param-
eters of the Coulomb interaction of copper with oxygen
(Vpd(i) = Vpd(0) + δVpd) and of oxygen with oxygen
(Vpp(i) = Vpp(0) + δVpp).

In [12], the parameters of Hamiltonian (1) were con-
sidered as phenomenological and were found from a
comparison with ARPES experimental data for
undoped Sr2CuO2Cl2 oxychlorides. These parameters
have recently been calculated using the LDA and
LSD + U band-theory methods [28]. All hopping inte-
grals were found to be of the same order of magnitude:
tpp ≈  ≈ 0.4–0.5tpd . The displacement dependence of
the parameters has not been calculated; therefore, in
this work we cannot describe EPI without using fitting
parameters. The modulation corrections to the hopping
integrals are assumed to be of the same order of magni-
tude: δtpd ~ δtpp ~  ~ .

Apart from the modulation of the Coulomb interac-
tions and the crystal field, all these linear-in-displace-
ment modulations renormalize the energies of the one-
hole b1g doublet |σ〉 and the two-hole 1A singlet and 3B
triplet, which results in the modulation of the ΩS and ΩT

energies (diagonal contribution to EPI). The off-diago-
nal contribution results from the modulation of Tλλ ' in
dispersion equation (3). Since the distance depen-
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848 OVCHINNIKOV, SHNEŒDER
dences of all matrix elements of Hamiltonian (1) are
unknown, we introduce two parameters of the diagonal
and off-diagonal EPIs for each electron band and each
phonon mode (ν). Using the completeness condition

(12)

for the multielectron basis of the cell, we can eliminate
one parameter of the diagonal EPI and write

(13)

As usual, the displacement vector is represented in the
form

(14)

where Mα is the ion α mass, Rα is the ion radius vector
in the Rf cell, eα, ν is the polarization vector, and ϕq, ν =

bq, ν +  and bq, ν( ) are operators of annihila-
tion (production) of phonon ν with the q wavevector.
Neglecting the copper-ion displacements (which are
small as compared to the oxygen-ion displacements),
for the breathing optical mode (ν = 1) we find

(15)

As a result, the diagonal part of EPI for the ν mode can
finally be written as

(16)

where for the breathing mode we have

(17)

The off-diagonal part of EPI for this mode is

(18)
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and can be represented as

(19)

where

(20)

and γ(q) = (cosqxa + cosqya)/2.
For the apical breathing mode (ν = 2), the displace-

ments of the apical oxygen ions along the z axis modu-
late the crystal field on copper and, thus, δεd , the
Cu−Oap bond length, the  hoppings, and the 
hoppings between the apical and in-plane oxygen
(Fig. 1b). All these effects contribute only to the diago-
nal EPI, since they change the parameters only inside
the Rf cell. Of course coupling between neighboring
CuO2 layers also appear; however, we restrict ourselves
to only one-layer cuprates in this work. Strong EPI for
this mode and its doping-induced softening were pre-
dicted in [29].

For a two-dimensional vector q = (qx, qy), we have
q · Ra = 0; therefore, we can write

(21)

so that

(22)

depends only weakly on q through the ωq, 2 dispersion.
The off-diagonal part of EPI for the apical breathing
mode is absent:

(23)

For the bending mode (ν = 3), displacements in the
tetragonal phase are transverse to the Cu–O bond
(Fig. 1c), and the microscopic nature of EPI for this
mode is not so obvious. Indeed, because of the symme-
try, the Cu–O bond lengths, the crystal field, and the tpd

hopping cannot be modulated in the linear-in-displace-
ment approximation; their modulations are propor-
tional to the displacement squared [13]. Linear contri-
butions appear only in the corrugated CuO2 layer owing
to orthorhombic distortions, and they are small due to

Hoff
ν( ) 1

N
-------- goff mm',

ν( ) k q,( )Xk q+

†
m Xk

m'ϕq ν, ,
mm'

∑
kqν
∑=

goff mm',
1( ) k q,( )

8iVmm'
1( )

2MOωq 1,

--------------------------=

× ex Ox( )
qxa
2

--------sin ey Oy( )
qya
2

--------sin+

× γ k( ) γ k q+( )+[ ]

δt pd' δt pp'

u f 2,
1

N
--------

ez Oap( )
2MOωq 2,

--------------------------ϕq 2, e
iq R f⋅

,
q

∑=

gdia m,
2( ) q( )

gm
2( )

2MOωq 2,

--------------------------ez Oap( )=

goff
2( ) k q,( ) 0.=
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Fig. 2. EPI matrix element for the breathing mode at the kn nodal point: (a) the total element, (b) the diagonal part, and (c) the off-
diagonal part.
the small angle of corrugation. It should be noted that,
in [13] and most related works, EPI is derived from an
analysis of displacements using a simplified Hubbard
model or the three-band p–d model with absent apical-
oxygen states. In our p–d multiband model, the pres-
ence of the apical oxygen leads to the modulation of the
distance between the in-plane and apical oxygen
(Fig. 1c). As a result, the  and  parameters are
modulated in the linear-in-displacement approxima-
tion. Moreover, for this mode, the modulation of the
Madelung potential (the ionic component of the chem-
ical bond) contributes significantly to EPI [11], since
oxygen-ion vibrations transversely to the CuO2 plane
are weakly shielded.

Finally, the diagonal EPI with the bending mode can
be written in the form of Eq. (16) with the matrix ele-
ment

(24)

The matrix element of the off-diagonal EPI with the
same mode is

(25)

By summarizing the results of this section, we write the
EPI Hamiltonian as

(26)
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The gdia and goff matrix elements for the three phonon
modes under study are given by Eqs. (17), (20),
(22)−(25).

It should be noted that the introduction of two phe-

nomenological parameters (  and ) for the
diagonal and off-diagonal EPIs for each mode is related
to not only a large amount of different microscopic con-
tributions but also to incomplete knowledge of the dis-
tance dependences of various parameters. For example,
even for the simplest particular case of EPI in the t–J
model with the breathing mode, two works ([22, 23])
solving similar problems give different results: a large
diagonal contribution (~0.25 eV) and a two orders of
magnitude smaller off-diagonal contribution in [22] in
contrast to virtually the same (~0.03 eV) diagonal and
off-diagonal contributions to EPI in [23]. When several
EPI mechanisms are taken into account, different con-
tributions begin to interfere; for instance, the contribu-
tion of δVpd decreases the contribution of δtpd by
approximately 30% [22]. When passing to a realistic
model with a large number of contributions to EPI, the
estimation errors of matrix elements accumulate; there-
fore, we think that the decision to restrict ourselves to
phenomenological parameters was reasonable.

3. ANALYSIS OF THE SYMMETRY 
OF ELECTRON–PHONON INTERACTION

It is convenient to consider the dependences of the
matrix elements on k and q, which were obtained by
analyzing the atomic displacements in each mode,
using maps in which |g(ν)(k, q)|2 is presented as a func-
tion of the phonon momentum q at fixed values of the
initial electron momentum k. The values of k were cho-
sen according to ARPES data in which renormalization
of the effective electron mass, which indicates interac-
tion between electrons and collective excitations, was
detected in the nodal direction for kn = ((1 – δ)π/2; (1 –
δ)π/2) and in the nodal direction for kan = (π(1 – δ); δ)
(where δ ~ 0.1). Figures 2–5 show maps for the diago-

gm
ν( ) Vmm'

ν( )
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Fig. 3. EPI matrix element for the breathing mode at the kan antinodal point: (a) the total element, (b) the diagonal part, and (c) the
off-diagonal part.
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Fig. 5. EPI matrix element for the bending mode at the kan antinodal point: (a) the total element, (b) the diagonal part, and (c) the
off-diagonal part.
nal and off-diagonal matrix elements for EPI with the
breathing and bending modes at the nodal and antinodal

points. All the maps were plotted for  =  = 1.

The total intensity | (q) + (k, q)|2 for quasi-

gm
ν( ) Vmm'

ν( )

gdia m,
ν( ) goff mm,

ν( )
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particles that are diagonal in the band index m,

(k, q) is characterized by interference of the gdia

and goff matrix elements. An example of interference is
shown in Fig. 2a for the breathing mode, where the
peak height at q = (3π/4, 3π/4) in the total matrix ele-

gmm
ν( )
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ment is smaller than that in the partial |goff(k, q)|2 con-
tribution (Fig. 2c) for the same q point.

For the nodal kn point, the |g(1)(kn, q)|2 maxima of
the breathing mode (Fig. 2a) near the q points equal to
(3π/4; 3π/4), (π; 0), and (0; π) correspond to an off-
diagonal contribution (Fig. 2c), and the diagonal part
(Fig. 2b) causes a weak maximum at the (π; π) point. (It
is easy to see that the off-diagonal contribution for q =
(π; π) becomes zero, just as in [23].) The maximum
effective electron–phonon interaction is determined by
vibrations with the wavevectors q located at the edges
of the Brillouin zone. It is these phonons that transfer an
electron from k ~ kF into states with the final momen-
tum k' = k + q lying at the Fermi surface. The intensity
of interaction with electrons for the half-breathing
mode q = (π; 0) is higher than that for the full breathing
mode q = (π; π). This finding agrees well with experi-
ments. As was shown in inelastic neutron scattering
experiments, the spectrum renormalization with doping
for the (π; 0) mode is about 20%, whereas it is only 5%
for vibrations with the (π; π) wavevector [30, 31]. Note
that the softening and the line broadening and asymme-
try of the half-breathing mode were detected in a num-
ber of HTSCs (e.g., in LSCO [32], YBCO [33],
BKBO [34]). Moreover, the frequency of this vibration
(70−85 meV) falls in the range of the kink energy in the
nodal direction. The energy of the full breathing mode
is 85–90 meV, which is higher than this value.

The interaction of the breathing mode with electrons
having an initial momentum kan is effectively small.
The |g(1)(kan, q)|2 maximum at the (0; π) point (Fig. 3a)
corresponds to the scattering of electrons having an ini-
tial momentum kan near the Fermi surface into the final
state k' = k + q ≈ (π; π), which is far from the Fermi sur-
face. (Similar considerations are valid for the maxi-
mum at the (π; 0) point). Note that the diagonal contri-
bution at the maxima is small (Fig. 3b), and the off-
diagonal contribution is the main contribution (Fig. 3c).

For the bending mode, the effective interaction is
maximal at small values of the phonon momentum in
both the nodal (Fig. 4) and antinodal (Fig. 5) directions.
In both cases, the result depends on the diagonal contri-
bution to the total matrix element.

For the apical breathing mode, electron–phonon
interaction is independent of the k and q vectors.

Thus, an analysis of the atomic displacements of the
vibrations under study shows the following. The inter-
action of electrons at the nodal point is maximal for the
half-breathing mode with q = (π; 0) and for the bending
mode with small values of the wavevector q. The bend-
ing mode also strongly interact with electrons at the
antinodal point at small values of q. Moreover, the
matrix element squared (|g(1)(k, q)|2) for the half-
breathing mode is higher than that for the full breathing
mode q = (π; π) at any values of the initial electron
momentum k.
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4. ELECTRON–PHONON INTERACTION 
IN AN EFFECTIVE LOW-ENERGY MODEL

Intersite hoppings in Hamiltonian (7) contain intra-
band hoppings in the lower Hubbard hole band (m = 0,
the conduction band bottom in the electron representa-
tion) and in the upper Hubbard hole band (m = 1, the
valence band top). The corresponding Hubbard opera-

tors are  ≡  and  ≡ .

Moreover, there are interband hoppings with excita-
tion through a gap with charge transfer ∆ that are
described by the terms

(27)

The elimination of the interband hoppings result in the
effective low-energy one-band t–J∗  model [35]; for the
lower Hubbard band (electron doping), it can be written
in the form

(28)

Here, Jfg = 2( )2/∆ is the exchange integral; Sf and nf

are the spin operator and the operator of the number of
particles at the site; and  = –σ.

Off-diagonal EPI processes in Hamiltonian (10)
contain intraband processes of the form

(29)

Their elimination in the second order in V01 corre-

sponds to the corrections δJfg ~ (V01)2 /∆ to the
exchange integral, and we neglect them, since we
restrict ourselves to linear-in-displacement contribu-
tions. At the same time, a combination of two perturba-
tions (27) and (29) gives a linear-in-displacement cor-
rection to the exchange integral (spin–phonon interac-
tion):

(30)

Since the displacements are small and since V01u ! t01

in series (9), we have δJ ! J. The spin–phonon interac-

X f
0 X f
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Ht–J H 3( ),+=
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tion Hamiltonian is

(31)

Analogous linear-in-displacement corrections also
appear in the three-center terms:

(32)

In (30) and (32), we ignore the corrections that are lin-
ear in displacements but small in the V01 · u/∆ para-
meter.

Thus, by making allowance for electron–phonon
interaction, we can write the effective low-energy t–J*
model as follows:

(33)

The band structure of the p-type cuprates is formed
with the participation of two-particle 1A1 singlet and 3B1
triplet and is more complex [12]; however, the contribu-
tion of the triplet band ΩT to the dispersion and the den-
sity of states manifests itself mainly below (by 0.5 eV)
the valence band top, near which the Fermi level is
pinned upon doping up to an optimum concentration
(x ≤ xopt). Therefore, to discuss the kinks and supercon-
ducting mechanisms, we may neglect the triplet band;
then, we obtain an effective hole Hamiltonian that is
identical to Hamiltonian (33) in which the operator X0σ

of the lower Hubbard hole band is replaced by the oper-

ator  of the upper band (m = 0  m = 1).
We now consider the simplest EPI contribution to

the electron mass operator,

(34)

Detailed computation of spectrum renormalizations is
beyond the scope of this work, and we only present

Hs–ph A fg q ν,( ) S f Sg
1
4
---n f ng–⋅ 

 
fgqν
∑=

× bq ν, b q– ν,
†+( ),

A fg q ν,( )
2it fg

01/∆
2M0ωq ν,

-------------------------e
iq R f Rg+( )⋅

=

× V01 x,
ν( ) δ f g x±, V01 y,

ν( ) δ f g y±,+( ).

Hel–ph
3( ) V01 t fmumg u fmtmg+( )

∆
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f gmσ
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× X f
σ0Xm

σσXg
0σ X f

σ0Xm
σσXg
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Heff Ht–J* Hph
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0 ωq ν, bq ν,
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σ0 Xk
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N
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d∫
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∑=
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qualitative notes. First, electrons in the strong-correla-
tion regime in the t–J model are described as quasipar-
ticles in the Hubbard subband, and their spectral weight
is specified by the filling factor Fm in the numerator of
the Green function (see Eq. (3)). For electron doping in
Nd2 – xCexCuO4, we have

and for hole doping in La2 – xSrxCuO4 we have

This spectral weight of quasiparticles appears in the
Hartree–Fock Green function G in Eq. (34); as a result,
the dimensionless EPI parameter for free electrons,
λ0 = (g2/ωD)N(0), decreases by the filling factor: λ =
λ0(1 + x)/2.

Second, based on EPI intensity maps and on the
energy and momentum conservation laws, we can qual-
itatively analyze the modes that contribute to the kinks.
In this analysis, we assume that the electron energy in
the superconducting phase is described by the
Bardeen–Cooper–Schrieffer formula

,

the ∆k gap has the  symmetry, and ∆(k) =

∆0(coskxa – coskya)/2.
We now consider Σ(k, ε) at the nodal point kn = ((1 –

δ)π/2; (1 – δ)π/2), δ ≤ 0.1. For the breathing mode, we
have interaction maxima with transferred momenta
q1 = (3π/4; 3π/4) and q2 = (π; π) (Fig. 2). An electron
with kn – q1 is far from the Fermi surface, and the state
with kn – q2 is near the Fermi level. Here, E(kn – q2) ≈
∆(kn – q2) = 0 both above and below Tc; therefore, for a

kink energy ε(kn) = |E(kn – q) – |, we obtain ε(kn) =
70 meV, which corresponds to the breathing-mode
energy. An EPI maximum at the point q3 = (π; 0) (the
half-breathing mode) is also visible in Fig. 2. The vec-
tor kn – q3 ≈ (–π/2; π/2) is close to the nodal point;
therefore, this mode obeys the energy conservation law.
For the bending mode with an energy ω ≈ 35 meV, EPI
maxima are at the points q = (0; 0) and q = (π; π)
(Fig. 4) and the vectors kn – q are close to kn; however,
the energy conservation law with ε(kn) = 70 meV does
not hold true. Thus, contributions to the electronic-
spectrum renormalizations at the nodal point are caused
by diagonal EPI with the breathing mode and by off-
diagonal EPI with the half-breathing mode, with the
kink energy being temperature-independent because of
the gap symmetry ∆(k).

Similarly, for the antinodal point kan, EPI with the
breathing mode has maxima for q2 = (π; π) (from a
diagonal matrix element) and for q3 = (π; 0) (from an

F0 X00〈 〉 Xσσ〈 〉+ 1 x+( )/2,= =

F1 Xσσ〈 〉 XS S,〈 〉+ 1 x+( )/2.= =

E k( ) εk
2 ∆k

2+±=

d
x

2
y

2–

ωq
1( )
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off-diagonal matrix element) (Fig. 3). The state with
kan – q2 is close to the antinodal point and E(kan – q2) ≈
∆(π; 0) ~ ∆0 ≈ 35 meV (this is true of optimally doped
Bi2212, where kinks with energies of 40 meV at T =
100 K and of 70 meV at T = 10 K were detected [4]).
The state with kan – q3 lies far from the Fermi surface
and is of little interest. The contribution from the
breathing mode does not obey the energy conservation
law at both T > Tc and T < Tc . However, EPI with the
bending mode at q = 0 obeys all conservation laws
(Fig. 5). At T < Tc , we have

and at T > Tc we have

According to [4], a sharp decrease in the kink ampli-
tude at the antinodal point above Tc is caused by two
factors: a decrease in the density of states at εF in the
normal phase as compared to the superconducting
phase and temperature-induced smearing. Thus, as
in [4], we arrive at the conclusion that the kink at the
antinodal point is mainly contributed by the bending
mode.

5. DISCUSSION 

The consideration of EPI given above implied the
La2 – xSrxCuO4 structure (the T structure). Let us quali-
tatively discuss changes in the EPI when going to the
Nd2 – xCexCuO4 structure (the T ' structure). The T '
structure has no apical oxygen above and below the Cu
ions; therefore, the main change is caused by the
absence of the apical breathing mode with a strong EPI
(ν = 2 in our designations in Eq. (26)). Moreover,

(k, q) decreases substantially for EPI with the

breathing mode, since the  and  contribu-
tions, which give linear-in-displacement terms in EPI
for this mode (see discussion before Eq. (24)), disap-
pear.

As for EPI with the breathing mode, the basic con-
tribution is generated by oxygen-ion displacements in
the Cu–O plane; therefore, we conclude that the values

of (k, q) for the T and T ' structures differ only
slightly. Inelastic neutron scattering experiments also
indicate that the doping-induced changes in the phonon
spectra of the breathing mode in La2 – xSrxCuO4 and
Nd2 – xCexCuO4 are similar [19]. A comparison of the
EPIs in the T and T ' structures makes it clear why the
kink in the antinodal direction (0; 0)–(π; 0) is absent in
Nd2 – xCexCuO4: it is absent because the interaction
with the bending mode is smaller than that in
La2 − xSrxCuO4. If the EPI with the breathing mode
changes only weakly, it is unclear why the kink in the
nodal direction (0; 0)–(π; π) is absent. The ARPES data

ε kan( ) 70 ∆0 ωq
3( )+ ,≈=

ε kan( ) ωq
3( )

.≈

gmm'
3( )

δt pp' δV pp'

gmm'
1( )
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for Nd2 - xCexCuO4 in [36] imply weaker specific fea-
tures in this direction.

To develop a superconducting theory, the effective
Hamiltonian in which EPI is excluded using the Frolich
transform is of interest [37]. Until we restrict ourselves
to an effective Hamiltonian for the CuO2 layer, the non-
adiabatic effects caused by vibrations with wavevectors
qz along the c axis are insignificant [38]. For the t−J*
model with phonons (33), the Fröhlich transform in
terms of the X operators is nontrivial; therefore, we
briefly dwell on it. We write a Hamiltonian as

(35)

where Hel is the Hamiltonian of the t−J* model
(Eq. (33)) for the conduction band bottom (m = 0) or for
the valence band top (m = 1) and Hel–ph is described by
Eq. (26). In the canonical transformation HS =
exp(−S)Hexp(S), the S operator is chosen to be

(36)

As usual, we find the α and β coefficients from the con-
dition

(37)

and write Heff as

(38)

In solving Eq. (37), we neglect the interband contri-
butions in Eq. (36). First, the EPI interband matrix ele-
ments are always smaller than the intraband elements,
since the former elements only contain off-diagonal
contributions (see Eq. (26)); second, interband excita-
tions go through a large gap ∆ between the lower and
upper Hubbard subbands, so that the corresponding

contributions are ~ /∆ ! 1. In solving Eq. (37), we
also use a Hubbard-I type approximation in the [Hel, S]
commutator. As a result, for the m band we obtain

(39)

where tm(k) = exp(ikR). The dependence of α
and β on the filling factor Fm and, hence, the dopant
concentration appears as the effect of strong correla-
tions. As a result, the effective Hamiltonian can be writ-
ten as

(40)
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†
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where Ht–J* is described by Eq. (28) and Hel–ph–el is
defined as 

(41)

Here, m = 0 and m = 1 give effective Hamiltonians for
the cuprates with electron and hole doping types,
respectively.

In contrast to the analogous effective interaction of
weakly correlated electrons, the effective interaction in
the regime of strong electron correlations depends on
the occupation numbers and, hence, on the concentra-
tion, temperature, and the magnetic field.

6. CONCLUSIONS

We have derived EPI within the framework of a
multiband realistic model of cuprates in the regime of
strong electron correlations. The number of different
microscopic contributions is large, and they are caused
by the modulation of all interatomic-distance-depen-
dent parameters upon ionic displacements; these
include one-electron parameters (tpd and tpp hoppings
between various p and d orbitals and the one-electron
energies of p and d orbitals in the crystal field) and two-
electron parameters (Coulomb matrix elements). For
each vibration mode ν, we combine different micro-
scopic contributions to form two parameters that char-
acterize diagonal EPI (on lattice sites) and off-diagonal
EPI. Explicit dependences of the gdia(q) and goff(q)
matrix elements on the wavevectors were found for
three modes, namely, breathing, apical breathing, and
bending modes. A symmetrical analysis of these matrix
elements allowed the qualitative conclusion that EPI
with the breathing mode is involved in the formation of
a kink in an electronic spectrum in the nodal direction
(0; 0)–(π; π) and that the bending mode is responsible
for a kink in the antinodal direction (0; 0)–(π; 0).

It does not follow from our results that the kinks are
only caused by EPI. We do not exclude additive EPI
contributions and interaction with spin fluctuations.
Note that the recent calculation [39] of electronic-spec-
trum renormalizations by the nonperturbation varia-
tional Monte Carlo method, which also includes inter-
action with spin fluctuations, has not revealed kinks and
has detected weaker electronic-spectrum renormaliza-
tions.

A comparison of EPIs in the n-type cuprates with
the T ' lattice and in the p-type cuprates with the T lattice
showed a weaker EPI in the T ' lattice as compared to
the T lattice. However, the EPIs for the breathing mode

Hel–ph–el Vkk'q
mm Xk q+

+
m Xk' q–

+
m Xk'

m Xk
m,

m

∑
kk'qν
∑=

Vkk'q
mm gmm

ν( ) k q,( )gmm
ν( ) k' q–,( )ωq ν,=

× tm k( ) tm k q+( )–( )2Fm
2 wq ν,

2–[ ] 1–
.
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differ only weakly for these two types of cuprates. An
additional origin of electron–hole asymmetry in the
cuprates is related to different natures of the carrier
bands: in the hole cuprates, carriers are holes moving
along the oxygen pσ orbitals, whereas in the electron
cuprates carriers are predominantly electrons of the

 orbital of Cu.

The effects of strong correlations in EPI manifest
themselves in the filling factors Fm , which are self-con-
sistently determined via the occupation numbers of
multielectron terms and are functions of the carrier con-
centration, the temperature, and the magnetic field. The
same factors specify the nonintegral spectral weight of
the Hubbard quasiparticles, i.e., the specific features of
a band structure in strongly correlated systems.
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Abstract—The propagation of a polarized ultrashort laser pulse is analyzed by the inverse scattering method
under initial conditions including a spatial pulse profile, a state of the medium, and a “switched-on” resonant
atom–field interaction. Magnetic degeneracy of atomic levels is taken into account. The Maxwell–Bloch equa-
tions are rewritten in Hamiltonian form without redefining the spatial and temporal variables. The inverse scat-
tering method is based on an analysis of a new spectral problem. Gelfand–Levitan–Marchenko-type equations
are derived, a soliton solution is obtained, and the changes in parameters of two solitons after their collision are
calculated. A possible experimental setup for implementing the system under analysis is discussed. © 2005 Ple-
iades Publishing, Inc. 
1. INTRODUCTION

Pulse propagation in resonant media has long since
attracted the attention of experimentalists and theorists
by the diversity of propagation regimes and related phe-
nomena of practical interest, its amenability to various
analytical methods, and a broad scope of numerical
analysis. Problems of interest include propagation of
single resonant ultrashort pulses (USPs) and simulta-
neous propagation of such pulses combined with waves
having different carrier frequencies or long background
pulses. These processes are of interest as feasible
regimes of pulse propagation with group velocities
much lower than the phase velocity of light and as
impressive demonstrations of soliton propagation in
optics. In the simplest case of a single-mode pulse
propagating in a resonant medium, concurrent absorp-
tion and stimulated emission processes sustain a time-
independent shape of a pulse propagating with a group
velocity that may be much lower than the phase velocity
of light in the medium. Such pulses are described by soli-
ton solutions to the Maxwell–Bloch equations. This phe-
nomenon is known as self-induced transparency [1].

To date, the common setting for both experimental
and theoretical studies of self-induced transparency has
been as follows [2, 3]. At the input end (point z = 0) of
a resonant medium occupying the half-space z ≥ 0, the
temporal pulse profile (minus the profile of the reflected
pulse) is %0(t) This profile is used as an initial condition
in solving the Cauchy problem for appropriate Max-
well–Bloch equations. The propagation of the pulse
into the medium is treated as its evolution in time. Note
that the Maxwell–Bloch equations are written in the
semi-light-cone gauge in terms of z and t – z/c. Previous
studies, inverse scattering method, its application to
1063-7761/05/10105- $26.000856
mathematical models of self-induced transparency, and
a variety of solutions were reviewed in [4].

In this paper, the problem of USP propagation is
considered in the following setting. After an off-reso-
nant USP propagating in a medium has traveled far
from the boundary and its spatial profile can be
described by a function %0(z), resonant interaction
between the pulse and the medium is “switched on” at
the instant t = 0. Thus, the spatial profile %0(z) is used
as an initial condition in the Cauchy problem for the
same Maxwell–Bloch equations written in the original
variables z and t, and the profile of the evolving pulse is
treated as a function of t.

Mathematically, the proposed and conventional
statements of the problem are essentially different, even
though the starting equations may be similar, as in the
case of boundary value problems for the same operator.
In terms of the inverse scattering method used to solve
these problems, the difference can be explained as fol-

lows. Suppose that Lax operators  and  define the
zero-curvature representation of the original system of
equations. Then, different inverse scattering problems

for the operators  and  are to be solved. For waves
propagating in a Kerr medium, this difference in state-
ment and solution of the problem was discussed in [5].

An analysis of possible physical implementations of
USP propagation in a resonant medium suggests that it
can be treated by applying the widely used Stark-pulse
technique [6]. However, this technique has previously
been used to analyze coherent optical phenomena, such
as photon echoes, optical nutation, and optical free-
induction decay. The idea behind the Stark-pulse tech-
nique as applied in those studies is as follows. Instead
of generating a USP in a medium, a cw laser is focused

L̂ Â

L̂ Â
 © 2005 Pleiades Publishing, Inc.
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into the medium placed in a capacitor. The electric field
generated by applying voltage across the capacitor for
a short time shifts the atomic energy levels in the
medium, and atomic transitions are brought into reso-
nance with the laser beam. This is equivalent to irradi-
ation of atoms by a resonant ultrashort pulse. Thus,
pulse propagation, interaction with atoms, and their
excitation are substituted by briefly switching the
capacitor electric field on and off and thus manipulating
resonant interaction conditions by means of Stark
effect.

In the setting proposed here for analysis of self-
induced transparency, the Stark-pulse technique is
applied by “switching on” resonant interaction with an
ultrashort pulse propagating in a medium, i.e., by
manipulating resonance conditions as in studies of
other coherent transient processes. As an example, con-
sider a USP propagating in a resonant medium placed
in a capacitor where static electric field is already
applied. Due to the Stark shift, the USP propagation
takes place under off-resonance conditions. Then, con-
ditions for resonant USP propagation can be created by
switching off the Stark field.

In physical terms, the proposed setting for USP
propagation in a resonant medium can be interpreted as
USP propagation under manipulated resonance condi-
tions or as a special Stark-pulse technique designed to
study self-induced transparency.

The present analysis of USP propagation under
manipulated resonance conditions is performed for an
arbitrary USP polarization and magnetically degener-
ate resonant energy levels. The novelty of the mathe-
matical statement of the problem can be explained as
follows. According to [7], the generalized Maxwell–
Bloch equations taking into account USP polarization
and degeneracy of energy levels can be solved by the
inverse scattering method. In the conventional
approach, this solution involves analysis of the spectral
problem formulated by Manakov [8]. In the proposed
approach, solution of the Cauchy problem by the
inverse scattering method leads to a new spectral prob-
lem. In this study, an analysis of the Jost matrices is pre-
sented, and the Gelfand–Levitan–Marchenko-type
equations required to solve the inverse scattering prob-
lem are derived.

It should be noted that the proposed approach can be
applied not only to single-mode USP propagation
under one-photon resonance conditions, but also to
other problems of USP propagation in resonant media.
In particular, analogous settings can be discussed for
two-frequency USPs of polarized light under condi-
tions of double resonance with degenerate transitions or
for USP combined with a long background pulse under
double-resonance or Raman-resonance conditions. The
present analysis is focused on polarized USP propaga-
tion in a two-level medium with magnetically degener-
ate energy levels with magnetic quantum numbers 0
and 1. An analogous problem was considered in [9]
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
without taking into account energy-level degeneracy
and pulse polarization. Note that the proposed setting
can also be used to analyze superfluorescence, which is
generally considered in the framework of the conven-
tional spectral problem [10].

Finally, the present analysis of a spectral problem
can serve as a basis for correct description of quantum
solitons of the Maxwell–Bloch lattice without redefin-
ing the spatial and temporal variables, because the
semi-light-cone quantization [11], strictly speaking,
corresponds to a somewhat different problem.

It should also be noted that USP propagation in real
resonant media is usually complicated by inhomoge-
neous broadening of spectral lines. More precisely, as
the Stark field is switched on, the electromagnetic wave
is detuned from resonance with the initially resonant
transitions in one group of atoms and brought into res-
onance with another group of atoms within an inhomo-
geneously broadened spectral line (see Fig. 1). Accord-
ingly, when the Stark shift is not sufficiently large, the
USP is always in resonance with atomic transitions in a
group of atoms, which complicates the pattern of inter-
action between the USP and the medium under Stark
shift. Analysis of an analogous pattern in photon echoes
has resulted in the discovery of a new effect [12, 13].
Self-induced transparency is described by the Max-
well–Bloch equations with detuning depending on spa-
tial coordinates and time, for which two different
Cauchy problems can also be formulated and solved by
an inverse scattering method with spectral parameter
depending on time (or coordinate). This approach has
been successfully applied to some problems of this kind
[14–17], but its applicability to the problem considered
here remains an open question. Note that both photon
echoes [12, 13] and USP propagation in optically dense

(a) (b)

ωω0 ω0

ω0'ω0'

Fig. 1. Manipulation of resonance conditions by Stark shift-
ing for (a) narrow or (b) broad spectral lines. Bell-shaped
curves represent the number of atoms vs. transition fre-
quency between two energy levels. The central frequencies
ω0 and  of these distributions correspond to zero and

nonzero Stark field strengths, respectively. The USP fre-
quency is ω0. Hatched areas correspond to groups of atoms
involved in resonant interaction at zero and/or nonzero
Stark field strengths. In the reversed setting,  and ω0 are

the central frequencies of atom distributions in zero and
nonzero Stark fields, respectively.

ω0'

ω0'

ω
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media could be described here by a unified model anal-
ogous to that considered in [18]. However, the present
analysis is restricted to the simplest conditions illus-
trated by Fig. 1a, in which case the aforementioned
dependence of coefficients in the Maxwell–Bloch
equations can be eliminated by the method described in
Section 2.

In Section 2, we formulate the problem, derive the
generalized Maxwell–Bloch equations, and write out
their zero-curvature representation. In Section 3, the
Maxwell–Bloch equations are rewritten in Hamiltonian
form without redefining the spatial and temporal vari-
ables. In Section 4, we determine fundamental Poisson
brackets. In Section 5, we analyze a new spectral prob-
lem under the simplest boundary conditions, which cor-
respond to a medium in thermodynamic equilibrium,
and derive Gelfand–Levitan–Marchenko-type equa-
tions. In Section 6, we discuss other regimes of reso-
nant USP propagation for which solutions can be
obtained by solving similar spectral problems. We also
discuss the problem corresponding to nonequilibrium
boundary conditions. In Section 7, we present a one-
soliton solution and the results of the collision of polar-
ized solitons described by solving the new spectral
problem.

2. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

Suppose that the carrier frequency ω = kc of an
ultrashort pulse with the electric field strength

is resonant with the frequency ωba = (Eb – Ea)/" of the
allowed optical transition between energy eigenstates
|Ea, ja, ma〉  and |Eb, jb, mb〉  of particles in the medium,
where Ea and Eb are energies, ja and jb are total angular
momenta, and ma and mb are the magnetic quantum
numbers. The eigenstates are magnetically degenerate.
The particles are placed in a capacitor, and the Stark
shift and splitting are such that the USP is not resonant
with any allowed optical transition.

We assume that the USP enters the medium when
the static field is switched on and therefore propagates
under off-resonance conditions, with a phase velocity c.
At t = 0, the capacitor electric field is switched off, and
the propagating USP is brought into resonance with the
medium. Starting from this instant, the particles can be

E %%%% z t,( ) i kz ωt–( )[ ]exp c.c.+=

mb = 0

ma = 0ma = –1 ma = 1

ε–1 ε1

ma = 0

mb = 0mb = –1 mb = 1

ε–1ε1

Fig. 2. Transitions between Zeeman sublevels of resonant
levels for a two-level system with angular momentum val-
ues 0 and 1.
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treated as two-level atoms with degenerate states
|Ea, ja, ma〉  and |Eb, jb, mb〉  (see Fig. 2). The USP propa-
gation is then described by the equation for the pulse
envelope

(1)

and the Schrödinger equation for the wavefunction

of resonant particles written for the probability ampli-
tudes as

(2)

The dynamic Stark effect is neglected here. Using the
standard definition of the spherical components of the
vector potential A,

we express the matrix elements of spherical compo-
nents of the dipole moment operator in terms of the
reduced dipole moment d as follows:

For jb = 1 and ja = 0, we have

∂
∂z
-----

1
c
--- ∂

∂t
-----+ 

  %%%% i2πkN Qma

a*dmamb
Qmb

b ,
ma, mb

∑=

Ψ| 〉 Qma

a Ea ja ma, ,| 〉
iEat

"
---------– 

 exp
ma

∑=

+ Qmb

b Eb jb mb, ,| 〉 i∆t–( )
iEbt

"
---------– 

 expexp
mb

∑

i"
∂Qma

a

∂t
------------ dmamb

q %q*Qmb

b ,
q, mb

∑–=

i"
∂Qmb

b

∂t
------------ "∆Qmb

b+ 1–( )q%q
dmbma

q– Qma

a .
q, ma

∑–=

A 1± 2 1/2– Ax iAy±( ), A0+− Az,= =

dmbma

q 1–( )
ja mb– jb 1 ja

mb– q ma 
 
 
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jb ma– ja 1 jb

ma– q mb 
 
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d*.=
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 
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d
d

3
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,= =
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 
 

d*–
d*

3
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∂
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1
c
--- ∂
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  %q
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3
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,

for jb = 0 and ja = 1,

By introducing the polarization vector 3333 and the popu-
lation matrices 1 and }q'q defined as

for jb = 1 and ja = 0 and

for jb = 0 and ja = 1, Eqs. (1) and (2) are rewritten in the
form of generalized Maxwell–Bloch equations:

(3)

(4)

(5)

For simplicity, we assume here that the inhomogeneous
broadening of the atomic transition line is negligible.

The initial conditions for Eqs. (3)–(5) for the Stark
pulse switched on to start resonant USP propagation at
t = 0 are

(6)

i"
∂Qa

∂t
--------- d*

3
-------% q– *Qq

b,
mb

∑=

i"
∂Q q–

b

∂t
----------- "∆Q q–

b+ %q d

3
-------Qa=

dmbma

q 0 1 1

0 q ma 
 
 

d
d

3
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dmamb

q 1–( )
ma 1 1 0
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 
 
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3
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,–= =

∂
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3
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  %%%% i2πkN3333,–=
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We consider the following boundary conditions:

(7)

We assume that the state of the resonant atoms inter-
acting with the Stark pulse has not changed under off-
resonance conditions. To ignore the reflected wave after
the Stark field is switched off, we also assume that the
atoms behave as a gas:

(8)

where L is the USP length along the z axis and N is
the density of two-level atoms with transition fre-
quency ωba .

We write the generalized Maxwell–Bloch equa-
tions (3)–(5) in dimensionless form as

(9)

(10)

(11)

To be specific, we consider the case of jb = 0 and ja = 1
and recall that the atomic density matrix and the matrix
describing the atom–field interaction in the resonance
approximation are proportional, respectively, to

(12)
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,
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0
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Accordingly, we can rewrite Eqs. (9)–(11) as

(13)

where J3 = diag(1, –1, –1).

Equations (9)–(11) can also be rewritten as a system
analogous to (1) and (2),

(14)

(15)

where the new variables are related to those in (9)–(11)
as follows:

Recall that the index q = ±1 denotes the spherical com-
ponents of both e and p. In certain cases, it is conve-
nient to use the index j = 0, 1, –1, so that

Then,

and

Equations (13) can readily be represented as com-
patibility conditions for solutions to auxiliary systems
of linear equations:

(16a)

(16b)

where

(17)

Compatibility condition (13) has the form

or

i
∂
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i
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pq QqQ*, 1 QQ*, }q 'q– QqQq '*.–= = =

Q j j 0= Q, Q j j 1±= Q±.= =

R jj ' 1–( ) j j '+ Q j*Q j ' ,=

Q jQ j*
j

∑ const.=

∂lq Lq,=

∂ζ ∂l+( )q Âq,=

L̂ L 0( ) λ L 1( ), Â+ λ 1– A 1–( ).= =
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by virtue of (17), and splits into the following equa-
tions:

These equations are equivalent to (13) if

(18)

We then rewrite Eqs. (16) as

(19a)

(19b)

The initial conditions at l = 0 are reformulated cor-
respondingly,

in order to analyze the time evolution of the distribu-
tions of the field and atomic probability amplitude (or
density matrix). In the limit case of this formulation, the
atomic probability amplitudes distribution in space (or
density matrix) is prescribed at zero field strength, and
the evolution of the field is analyzed. The conventional
formulation of this problem (so-called superfluores-
cence problem) was given in [10].

3. HAMILTONIAN FORM
OF GENERALIZED MAXWELL–BLOCH 

EQUATIONS

Equations (14) and (15) are represented in the
Hamiltonian form:

(20)

where {,} and H denote the generalized Poisson (Dirac)
bracket and the Hamiltonian function, respectively. The
Poisson brackets are anticommutative,

satisfy the Jacobi identity

and are consistent with the product rule for differentia-

∂ζ ∂l+( )L 0( ) A 1–( ) L 1( ),[ ] ,=

∂ζ ∂l+( )L 1( ) 0, 0 ∂lA
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L̂ i λ δ
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tion with respect to each argument,

The Hamiltonian function should be sought in the form

(21)

and the following relations must hold simultaneously:

(22)

The remaining Poisson brackets must vanish. It can be
shown by direct calculation that Eqs. (20) combined
with (21) and (22) are equivalent to Eqs. (14) and (15).
In particular, we have

.

4. FUNDAMENTAL POISSON BRACKETS

The Poisson bracket { (ζ, λ), (ζ', λ')}
between elements of the matrix A', with λ and ζ corre-
sponding to Eq. (19b), plays a fundamental role [19]. It
are conveniently written and calculated in tensor nota-

tion. By definition, (A ⊗   = AijBkm for square
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matrices A and B of equal size. Accordingly, we express

the Poisson bracket as {A⊗ ,  = {Aij, Bkm}. Then,

Finally, we obtain

(23)

Here, the square bracket denotes a commutator, and Π

 

is a permutation matrix having the following pro-
perties:

Thus, the classical 

 

r

 

-matrix 

 

r

 

(

 

λ

 

) = 

 

Π

 

/2

 

λ

 

 that deter-
mines the Poisson bracket between elements of transfer
matrices for spectral problem (19b) (see (25) below
and [18]) is similar to the 

 

r

 

-matrix for spectral prob-
lem (19a) in the theory of self-induced transparency
extended to describe interaction of a polarized electro-
magnetic wave with a system with degenerate resonant
levels. This may be interpreted as an algebraic similar-
ity between the Hamiltonian structure of the Maxwell–
Bloch equations written in the semi-light-cone gauge
and in the original coordinates, at least, with regard to
the simplest problem considered in the next section. An
analogous similarity has been established for the sine-
Gordon equation written in the original and light-cone
coordinates [19].

5. SPECTRAL PROBLEM

Consider Eq. (19b) with the operator 

 

A

 

' modified by
adding a multiple of the identity matrix:

(24)
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Here, the value of N depends on the boundary condi-
tions and is such that

(25)

for  ~ δqq' . If jb = 1 and ja = 0, then  =

 = Nb/3, 10 = Na , and

If jb = 0 and ja = 1, then  =  = –Na/3, 10 =
−Nb , and

Define the transfer matrix over the interval (ζ2, ζ1),

(26)

as the solution to the equation

(27)

subject to the condition (λ) = I. It is obvious that

U λ( ) Â ' ζ λ,( )
ζ ∞±→
lim i λ δ

2
---

n0

4λ
------–+ 

  J3–= =

}qq '
0 }11

0

} 1– 1–
0

n0 Na

Nb

3
------, N–

Na

2
------

Nb

6
------.+= =

}11
0 } 1– 1–

0

n0
Na

3
------ Nb, N–

Na

6
------–

Nb

2
------.–= =

Tζ1

ζ2 λ( ) Â ' ζd

ζ1

ζ2

∫exp=
←

∂ζ2
Tζ1

ζ2 λ( ) Â 'Tζ1

ζ2 λ( )=

Tζ
ζ

Tζ1

ζ2 λ( )( )
1–

Tζ2

ζ1 λ( ), Tζ2

ζ3 λ( )Tζ1

ζ2 λ( ) Tζ1

ζ3 λ( ),= =

detTζ1

ζ2 λ( ) 1, ∂ζ2
Tζ1

ζ2 λ( ) Â ' ζ2( )Tζ1

ζ2 λ( ),= =

∂ζ1
Tζ1

ζ2 λ( ) Tζ1

ζ2 λ( ) Â ' ζ1( ).–=
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For rapidly decreasing εq and pq and  ~ δqq' as
ζ  ±∞, we define e(ζ, λ) as the solution to the equ-
ation

subject to the condition e(0, λ) = I:

The Jost matrices defined (for real λ) as

obviously have the asymptotic form

The Jost matrices satisfy Eq. (27). Their triangular rep-
resentations are

(28)

}qq '
0

∂ζe ζ λ,( ) U λ( )e ζ λ,( )=

e ζ λ,( ) i λ δ
2
---

n0

4λ
------–+ 

  J3ζ– .exp=

T± ζ λ,( ) Tζ1

ζ2 λ( )e ζ1 λ,( )
ζ1 ∞±→
lim=

T± ζ λ,( ) e ζ λ,( ) o 1( ) as ζ ∞ .±+=

T+ ζ λ,( ) e ζ λ,( )=

+ Γ1+ ζ ζ ',( ) 1
λ
---Γ2+ ζ ζ ',( )+ 

  e ζ ' λ,( ) ζ ',d

ζ

∞

∫
T– ζ λ,( ) e ζ λ,( )=

+ Γ1– ζ ζ ',( ) 1
λ
---Γ2– ζ ζ ',( )+ 

  e ζ ' λ,( ) ζ ',d

∞–

ζ

∫

e ζ λ,( ) i λ δ
2
---

n0

4λ
------–+ 

  σ3ζ– 
 exp=

=  

i λ δ
2
---

n0

4λ
------–+ 

  ζ–exp 0 0

0 λ δ
2
---

n0

4λ
------–+ 

  ζexp 0

0 0 i λ δ
2
---

n0

4λ
------–+ 

  ζexp
 
 
 
 
 
 
 
 
 
 

,

where

(29)

J3Γ1+ ζ ζ,( ) Γ1+ ζ ζ,( )J3– iJ39,=

Γ2+ ζ ζ,( )J3 J3Γ2+ ζ ζ,( )–

=  iJ3

2R ' n0J3+
4

-------------------------– J3

2R ' n0J3+
n0

-------------------------J3Γ2+ ζ ζ,( ).+
The triangular representations in (28) can be proved by
transforming the equations for their respective kernels
into a Goursat-type problem.

The triangular representations entail the analyticity
of the Jost matrices. Denote the first, second, and third

columns of the Jost matrices by (ζ, λ), (ζ, λ),T±
1( ) T±

2( )
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and (ζ, λ), respectively. If n0 > 0, then (ζ, λ),

(ζ, λ), and (ζ, λ) admit analytic continuation
into the upper half-plane of complex λ, while

(ζ, λ), (ζ, λ), and (ζ, λ) admit analytic
continuation into the lower λ half-plane.

The monodromy matrix

(30)

relates the Jost matrices:

(31)

Here, indices 1, 2, and 3 correspond to j = 0, 1, –1,
respectively.

The zeros of T11(λ) lying in the upper λ half-plane
determine the bounded solutions to the spectral prob-
lem. Denoting them by λ1, λ2, …, we have

T±
3( ) T+

2( )

T+
3( ) T–

1( )

T+
1( ) T–

2( ) T–
3( )

T λ( ) e ζ2– λ,( )Tζ1

ζ2 λ( )e ζ1 λ,( )
ζ1 ∞–→
ζ2 ∞→

lim=

T– ζ λ,( ) T+ ζ λ,( )T λ( ),=

T–
1( ) ζ λ,( )11 T+

1( ) ζ λ,( )T11 λ( )=

+ T+
2( ) ζ λ,( )T21 λ( ) T+

3( ) ζ λ,( )T31 λ( ).+

T–
1( ) ζ λ s,( ) γs

2( )T+
2( ) ζ λ s,( ) γs

3( )T+
3( ) ζ λ s,( ).+=
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Rewriting (31) as

and making use the analytic continuability of the left-
hand side of this relation into the upper λ half-plane, we
can use the transform

Using the completeness conditions

,

we obtain

1
T11 λ( )
----------------T–

1( ) ζ λ,( ) T+
1( ) ζ λ,( ) T+

2( ) ζ λ,( )
T21 λ( )
T11 λ( )
----------------+=

+ T+
3( ) ζ λ,( )

T31 λ( )
T11 λ( )
----------------

1
2π
------ i λ δ

2
---

n0

4λ
------–+ 

  ηexp λ ,d∫
1

2π
------ 1

λ
--- i λ δ

2
---

n0

4λ
------–+ 

  ηexp λ .d∫

λd

λ2
------ i λ 1

λ
---– 

  xexp

∞–

∞

∫ 2πδ x( ),=

λd
λ
------ i λ 1

λ
---– 

  xexp

∞–

∞

∫ 0,=

λ i λ 1
λ
---– 

  xexpd

∞–

∞

∫ 2πδ x( )=
 

(32)

(33)

Γ1+
1( ) ζ η,( )– F0 s, ζ η+( )g s( )

s 2 3,=

∑=   + Γ 1+ 
s

 
( ) ζ ζ ' ,( ) F 0 s , ζ ' η + ( )( 

ζ

∞

 ∫  

s

 

2 3

 

,

 

=

 ∑  Γ 2+ 
s

 
( ) ζ ζ ' ,( ) F 1 s , ζ ' η + ( ) ) d ζ ',+

Γ2+
1( ) ζ η,( )– F1 s, ζ η+( )g s( )

s 2 3,=

∑= Γ1+
s( ) ζ ζ ',( )F1 s, ζ ' η+( )(

ζ

∞

∫
s 2 3,=

∑ Γ2+
s( ) ζ ζ ',( )F2 s, ζ ' η+( ) )dζ ',+ +

F0 s, Y( ) i
Ts1 λ j( )
T11' λ j( )
-----------------

j

∑–= iY λ j
δ
2
---

n0

4λ j

--------–+ 
  1

2π
------

Ts1 λ( )
T11 λ( )
----------------

∞–

∞

∫+exp iY λ δ
2
---

n0

4λ
------–+ 

  dλ ,exp

F1 s, Y( ) i
Ts1 λ j( )

λ jT11' λ j( )
----------------------- iY λ j

δ
2
---

n0

4λ j

--------–+ 
 exp

1
2π
------

Ts1 λ( )
λT11 λ( )
-------------------

∞–

∞

∫+ iY λ δ
2
---

n0

4λ
------–+ 

  dλ ,exp
j

∑–=

F2 s, Y( ) i
Ts1 λ j( )

λ j
2T11' λ j( )

----------------------- iY λ j
δ
2
---

n0

4λ j

--------–+ 
 exp

1
2π
------

Ts1 λ( )
λ2T11 λ( )
---------------------

∞–

∞

∫+ iY λ δ
2
---

n0

4λ
------–+ 

  dλ ,exp
j

∑–=

g 2( )
0

1

0 
 
 
 
 

, G 3( )
0

0

1 
 
 
 
 

,= =

Γ1+ 1,
2( ) Γ1+ 2,

1( )*, Γ1+ 1,
3( )– Γ1+ 3,

1( )*, Γ2+ 1,
2( )– Γ1+ 2,

1( )*,–= = =

Γ2+ 1,
3( ) Γ1+ 3,

1( )*, s– 2 3.,= =
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Finally, we write out the evolution equations for scat-
tering data:

(34)

6. GENERALIZED SPECTRAL PROBLEMS

Gelfand–Levitan–Marchenko-type equations (32),
(33) can readily be extended to the (K + 1) × (K + 1)
generalization of spectral problem (24), for which

(35)

with

Then, the summation in s in (32) runs from 2 to K + 1,

 = – ,  = – , and  = dis (s = 2, 3,
…, K + 1). The spectral problem with K = 4 corre-
sponds to the a two-frequency pulse of polarized light
(simulton) interacting with an ensemble of three-level
V- or Λ-type atoms with zero angular momentum of the
common level b and unit angular momenta of the levels
a and c (see Fig. 3). It is also assumed that the detuning
from resonance is δ for both b  a and b  c tran-
sitions, and the oscillator strengths of these transitions
are equal. The corresponding matrices (18) in the zero-

∂
∂l
----T λ( ) i λ δ

2
---+ 

  J3 T λ( ),[ ] .=

U λ( ) Â ' ζ λ,( )
ζ ±∞→
lim i λ δ

2
---

n0

4λ
------–+ 

  J3,–= =

J3 diag 1 1– … 1–, , ,( ).=

    

K

Γ1+ 1,
1( )* Γ1+ s,

1( )* Γ2+ 1,
s( )* Γ1+ s,

1( )* gi
s( )

                           

mb = 0

mc = –1 mc = 1

ε–1
2 ε1

2

ma = 1ma = –1

ε–1
1

ε1
1

mb = 0

ma = –1 ma = 1

ε–1
2

mc = 1mc = –1

ε–1
1

ε1
1

ε–1
2

(a)

(b)

Fig. 3. Transitions between Zeeman sublevels of resonant
levels in a double-resonance experiment for a three-level
system with angular momentum values 0 and 1.
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curvature equation are determined by the following
matrices (see [4, 20]):

(36)

Here, the electric field amplitude vectors ei = ( , )
with i = 1 and 2 correspond to modes resonant with the
b  a and b  c transitions, respectively; pi =

( , ) are the polarization amplitude vectors for
these transitions; 1

 

 is the population of the level 

 

b

 

; and
the matrices 

 

}

 

 and 

 

_

 

describe the distributions over the
Zeeman sublevels of 

 

a

 

 and 

 

c

 

, respectively. The matrix

 

7

 

 characterizes the coherence of the two-photon pro-
cess 

 

a

 

  

 

c

 

.
The spectral problem considered in the preceding

section is consistent with the boundary conditions,

 ~ 

 

δ

 

qq

 

'

 

, and both 

 

ε

 

q

 

 and 

 

p

 

q

 

 rapidly decreasing as

 

ζ

 

  

 

±∞

 

. These conditions correspond to an equilib-
rium state of the system before and after its interaction
with a propagating USP. Assuming that the system is in
a nonequilibrium steady state before and after the pulse
propagation, e.g.,

(37)

as 

 

ζ

 

  

 

±∞

 

, we have

5

1 p1
1– p1

1 p2
1– p2

1

p1
1*–

} 1– 1– } 11– 7 1– 1– 7 11–

p1
1* }1 1– }11 71 1– 711

p2
1*–

7 1– 1–* 71 1–* _ 1– 1– _ 11–

p2
1* 7 11–* 711* _1 1– _11 

 
 
 
 
 
 
 
 
 

,=

9

0 ε1
1– ε1

1 ε2
1– ε2

1

ε1
1*–

0 0 0 0

ε1
1* 0 0 0 0

ε2
1*–

0 0 0 0

ε2
1* 0 0 0 0 

 
 
 
 
 
 
 
 
 

.=

εi
1– εi

1

          

pi
1– pi

1

     

}qq '
0

}qq '
0 m ir

ir– m 
 
 

,=

U λ( ) Â ' ζ λ,( )
ζ ∞±→
lim

i
2λ
------

10
0 0

0 m0 ir

0 ir– m 
 
 
 
 

–= =

– i λ δ
2
---+ 

 
1 0 0

0 1– 0

0 0 1– 
 
 
 
 
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instead of (25). Here, the positive constant m character-
izes the population of the coupled Zeeman sublevels,
and the coherence induced between them is described
by the parameter r (|r | ≤ m). A nonequilibrium system
of this kind can be prepared by using additional cw
laser beams that are not resonant with the transition in
question. Performing the canonical transformation

we obtain the spectral problem

(38)

with operator having the asymptotic form

(39)

This problem cannot be reduced to that considered
above and must be analyzed separately. An analogous
spectral problem arises when there is no coherence
between the Zeeman sublevels and their steady-state
populations are different.

7. ONE-SOLITON SOLUTION AND COLLISION 
OF TWO SOLITONS

Consider again a system in equilibrium. The one-
soliton solution is found by retaining one spectral com-
ponent in each function F, i.e., setting λ1 = iσ + ξ and
T21(λ) = T31(λ) = 0, and performing standard calcula-
tions:

(40)

Here, l is the unit polarization vector and l0 is a constant
“phase.” Thus, the one-soliton solution to spectral prob-

q S 1– q̃, Ã ζ λ,( ) SÂ ' ζ λ,( )S 1– ,= =

S
1

2
-------

1– 0 0

0 1 i–

0 i 1– 
 
 
 
 

,=

∂ζ q̃ Ãq̃=

Ũ λ( ) Ã ζ Λ,( )
ζ ∞±→
lim=

=  
i

4λ
------

10
0 0

0 2m 2r– 0

0 0 2m 2r+ 
 
 
 
 

–

– i λ δ
2
---+ 

 
1/2 0 0

0 1– 0

0 0 1– 
 
 
 
 

.

e ζ l,( ) 2σl

2σ l ζ 1 1

4σ2
---------+ 

 – l0– 
 

 
 
 

cosh

----------------------------------------------------------------------------.=
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lem (24) has the form of a classical hyperbolic secant
pulse. Since the velocity of soliton (40),

is determined by σ, two propagating solitons of this
form can collide and interact. It should be noted here
that soliton (40) has an arbitrary polarization l by virtue
of initial and boundary conditions corresponding to a
state of equilibrium. When the system deviates from
these conditions, the soliton cannot be arbitrarily polar-
ized.

Consider two propagating such pulses. At the point
where the resonant interaction is “switched on,” the
field amplitude is

(41)

If σ2 > σ1 and l02 > l01, then the second soliton overtakes
the first one, their polarization vectors change, and the
total field amplitude becomes

(42)

where

(43)

According to (43), if the solitons are linearly polar-
ized before their collision, then their polarizations will

4 σ 2

1 4 σ 2+
---------------------

e ζ l, 0=( )
2σ1l1

ζ 2σ1
1

2σ1
---------+ 

  l01+ 
 cosh

--------------------------------------------------------------=

+
2σ2l2

ζ 2σ2
1

2σ2
---------+ 

  l02+ 
 cosh

--------------------------------------------------------------.

e ζ l,( )
2σ1l1'

2σ1 l ζ 1 1

4σ1
2

---------+ 
 – l01'– 

 cosh
------------------------------------------------------------------------------=

+
2σ2l2'

2σ2 l ζ 1 1

4σ2
2

---------+ 
 – l02'– 

 cosh
------------------------------------------------------------------------------,

l1' f l1–
2σ2

σ2 σ1–
-----------------l2 l1 l2*⋅( )+ ,=

l2' f l2–
2σ1

σ2 σ1–
-----------------l1 l2 l1*⋅( )+ ,=

f  = 1
4σ1σ2

σ2 σ1–( )2
------------------------ l1 l2*⋅ 2

+
1/2–

,

l1' l2'*⋅( ) = l1 l2*⋅( ),

l01' l01
1

2σ1
---------

σ1 σ2+
σ2 σ1–
----------------- f ,ln+=

l02' l02
1

2σ2
---------

σ1 σ2+
σ2 σ1–
----------------- f .ln–=
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remain linear after the collisions. However, their
respective polarization vectors will rotate to different
angles:

(44)

As could be expected, these relations are similar to
those for the polarization vectors of the solitons in the
Manakov spectral problem [8].

Note that the generalized problem corresponding to
double resonance in the system schematized by Fig. 3a
also has a soliton solution, which describes a two-fre-
quency pulse characterized by a single polarization
vector (simulton) [4]. Collisions of simultons result in
interrelated rotations of their respective polarization
vectors and energy redistribution between the single-
mode components of the simulton, which are similar to
those described in [20].

8. CONCLUSIONS

Current areas of topical research interest include
optical phenomena in so-called artificial media, such as
photonic crystals, “left-handed” media, quantum dots
and wires, and atoms in magneto-optical traps or opti-
cal lattices. The artificial media may also exhibit optical
properties induced by various electromagnetic and
acoustic fields. It should be expected that technological
progress in development of artificial media will make it
possible to effectively manipulate resonance conditions
and thus control nonlinear propagation of optical
pulses. The Stark-pulse technique is the simplest
among those in the experimentalist’s toolkit. However,
the analysis presented in this paper shows that even the
simplest modification of resonance conditions leads to
new mathematical problems.

The generalized Maxwell–Bloch equations are spe-
cial in that they admit zero-curvature representation
and can be solved by the inverse scattering method,
which relies on analysis of the spectral problem for an
appropriate linear operator [4]. The conventional USP
propagation problem and the problem considered here
are solved by inverse scattering methods associated
with spectral problems for different operators. Since
these spectral problems are not gauge equivalent, the
Gelfand–Levitan–Marchenko-type Eqs. (32) and (33)
required to solve the new spectral problem are derived
in this study. Combined with evolution equation (34),
these equations describe resonant interaction between a
USP with a prescribed initial spatial profile and a two-

l1' l1⋅ θ1cos 1 B12 θcos
2

+( )–= =

× 1 B12B21 θcos
2

–( )
1/2–

,

l2' l2⋅ θ2cos 1 B21 θcos
2

+( )–= =

× 1 B12B21 θcos
2

–( )
1/2–

,

B12

2σ2

σ1 σ2–
-----------------, B21

2σ1

σ2 σ1–
-----------------, θcos l1 l2.⋅= = =
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level system with magnetically degenerate levels. In
this paper, only the simplest soliton solution (40) is pre-
sented, and its transformation in a soliton collision is
described. The self-induced transparency pulse
described by the new model is a secant soliton similar
to most soliton solutions. This result is easy to explain
when the self-induced transparency pulse interacts with
a system in equilibrium: the pulse energy is absorbed at
the leading edge and emitted by the excited system at
the trailing edge. The pulse shape remains invariant,
and the initial conditions of its interaction with the
medium determine only the amplitude of the self-
induced transparency pulse by the area theorem. These
conditions are independent of whether temporal or spa-
tial pulse profile is prescribed. Moreover, the operator
in the spectral problem defines a class of isospectral
deformations [21]. This may explain the relation
between soliton solutions to gauge-inequivalent spec-
tral problems discussed above.

Solutions to different problems should be substan-
tially different only when the region where resonant inter-
action with a USP is “switched on” deviates from equilib-
rium conditions. Solution of spectral problem (38) for a
nonequilibrium system, with an operator having an
asymptotic form (39) different from (25), is beyond the
scope of this study.

The approach developed here provides a basis for
canonical quantization of the Maxwell–Bloch equa-
tions without redefining the spatial and temporal vari-
ables. Fundamental Poisson bracket (23) defines com-
mutation relations for the elements of the quantum
monodromy matrix T(λ), and the quantization is per-
formed in the framework of the canonical approach [22].
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Abstract—The possibility of implementing a quantum-spin-liquid-type state in a two-layer triangular spin-1/2
antiferromagnet at T = 0 is investigated. The ratio of intra- to interlayer exchange constants (j) is found under
which a transition from the classical state with 120° triangular order to a quantum state with zero magnetization
per site occurs; in this case, the spins of adjacent layers form singlets that are separated from triplet excitations
by an energy gap. Compared with an analogous system with the square lattice, the range of j in which the clas-
sical ordered state is realized turns out to be an order of magnitude smaller due to the effects of frustration; in
this case, the behavior of thermodynamic quantities is analogous, on the whole, to that in two-layer square lat-
tices; a difference manifests itself in the behavior of the gap in the spectrum of quasiparticles in an external mag-
netic field h. For small fields h, a j–h phase diagram is constructed that determines the domains in which the
120° and the singlet phases exist. It is established that, in the neighborhood of the second-order phase transition,
the contribution, to the thermodynamic quantities, of longitudinal spin fluctuations, which are disregarded in
the spin-wave description, is comparable to the contribution of transverse fluctuations. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

It is well known that the formation of a spin gap
between a lower singlet state and excited magnetic lev-
els in magnets leads to the situation when there is now
magnetic ordering in these magnets at low tempera-
tures. Moreover, the phenomenon of high-temperature
superconductivity is likely to have a spin-gap nature.
Therefore, a large number of model objects and real
compounds possessing the above properties have
recently been studied [1–19]. Quantum phenomena
most clearly manifest themselves in low-dimensional
systems, systems with small coordination number, low-
spin systems, and frustrated systems [20–26]. Frustra-
tions, in particular, create or enhance the degeneracy of
the ground state [27], thus giving rise to new types of
ordering as a result of competition between quantum
phenomena and weak perturbations of different nature;
on the other hand, they lead to the effective damping of
coupling, thus significantly changing the domain where
a quantum-disordered phase can be realized.

In the present paper, we consider conditions under
which singlet and magnetic phases arise, as well as the
thermodynamic properties of a system consisting of
two layers of a triangular ferromagnet. Theoretical
interest in bilayer systems has been stimulated in part
by experimental factors. Experiments show that certain

† Deceased.
1063-7761/05/10105- $26.00 0868
high-temperature semiconductors contain pairs of
CuO2 layers separated from other layers by nonmag-
netic interlayers [28, 29]. Layers with a triangular lat-
tice formed by ferromagnetic He3 have also been
deposited in experiments [30].

Investigations in two-dimensional triangular
Heisenberg antiferromagnets have shown [31–34] that,
at T = 0, long-range ordering exists even in spin-1/2
systems; in this case, the magnetization per site is half
the classical magnetization and has virtually the same
value as that in square lattices [35, 36]. At the same
time, it is well known that, under certain relations
between intra- and interlayer exchange constants, the
interaction between layers in two-layer square antifer-
romagnets may lead to the transition to a singlet state
with complete quantum reduction of the spin [37–39].

The possibility of quantum behavior in bilayer anti-
ferromagnets is clear from the following consider-
ations. In a bilayer system consisting of Heisenberg 1/2
spins with the intralayer exchange constant J1 and the
interlayer constant J2, in the limiting case of J1 = 0, we
have a system of noninteracting dimers in which one of
the following four states is realized at each site: a sin-
glet or one of three triplet states, whose energies differ
from the ground-state energy by the value of the
exchange constant J2. Obviously, the inclusion of the
weak intralayer exchange J1 does not substantially
change the situation: the width of the gap is not equal to
J2 as in the case of noninteracting dimers but is on the
© 2005 Pleiades Publishing, Inc.
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order of J2 (a confirmation of this fact is given in the
text; see formula (14) below). Therefore, for a weak
interlayer exchange (J2 ! J1), the gap is small, the trip-
let states at every site are populated, and the mean mag-
netization is different from zero and, in a bilayer trian-
gular antiferromagnet, should correspond to the classi-
cal 120° ordering. In the limit of large J2 (J2 @ J1), the
triplet magnetic levels are separated from the ground
state by a too large gap, and the system should live in a
singlet state with zero magnetization per site.

The Hamiltonian of the model (J1, J2 ≥ 0) is given by

(1)

where 〈i, j 〉  is a pair of nearest neighbors in each layer
and 1 and 2 are the layer numbers. The apparent redun-
dancy in the last terms is due to the fact that, under a

systematic enumeration in , each interacting pair

of spins is counted twice, while, in , it is counted

once. A pair of nearest-neighbor spins of adjacent lay-
ers is called a dimer.

2. SPIN-WAVE CALCULATIONS

We carried out standard spin-wave calculations in
the ordered triangular phase with the use of the Hol-
stein–Primakov transformation from spin operators to
the operators of creation and annihilation of magnon
deviations from the 120° triangular order. We estab-
lished that the excitation spectrum consists of two
branches each of which contains a Goldstone boson:
the first branch contains this boson at a wavevector of
k = (0, 0), which corresponds to fermionic ordering,
and the second, at k = q = (4π/3, 0), which corresponds
to the 120° triangular order:

(2)

(3)

In the first order in 1/S, we obtained the magnetization
per site and the velocity of spin waves in the neighbor-

H J1 S1iS1 j

i j,〈 〉
∑ J1 S2iS2 j

i j,〈 〉
∑+=

+ J2 S1iS2i

i

∑ J2 S2iS1i,
i

∑+

i j,〈 〉∑
i∑

Ek1
HP 3J1S 1 νk–( ) 1 2νk 2 j+ +( ),=

Ek2
HP 3J1S 1 2νk+( ) 1 νk– 2 j+( ) Ek1

HP,>=

νk
1
3
--- kxcos 2

kx

2
---- 3

2
-------kycoscos+ 

  , j
J2

3J1
--------.≡ ≡
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
hood of a symmetry wavevector k = q (here, N is the
number of dimers).

(4)

3. BOND-OPERATOR REPRESENTATION

In another limiting case, a spin-wave description is
inapplicable to a singlet phase with zero magnetization
per site; therefore, we used the bond-operator represen-
tation, which was first introduced in [35] and was later
applied to Heisenberg models with a competing inter-
action [2, 5, 36] and to two-layer antiferromagnets with
a square lattice [38, 39]. We introduce a system of
dimer states

(5)

and three bosons a, b, and c that describe a transition
from the singlet state |0〉  to one of the three triplet
states:

(6)

The creation and annihilation operators of the singlet
state are defined as

(7)

The operators s+ and s thus defined are equal to each
other and to a constant:

s+ = s ≡ u,

which indicates that the singlet state is a condensed
state. The operator u defined by the normalization con-
dition allows us to rule out the existence of several trip-
let excitations at a single site. At a given moment, one
of the four states is realized at a site and the operator of
the total number of particles at the site is 1:

Therefore,

(8)

In terms of the new operators, the components of the

N0 S
1
2
---

S
2N
-------

3J1 J2 3J1νk/2+ +

2Ekα
HP

---------------------------------------------,
α k,
∑–+=

c
3 3

2 2
----------J1S 1

4
9
---

J2

J1
-----+ .=

ta| 〉 ↑↑ 1 1,| 〉 ,= =

tb| 〉 ↓↓– 1 1–,| 〉 ,= =

tc| 〉 1

2
------- ↑↓ ↓↑+( ) 1 0,| 〉 ,= =

0| 〉 1–

2
------- ↑↓ ↓↑–( ) 0 0,| 〉= =

a+ 0| 〉 ta| 〉 , b+ 0| 〉 tb| 〉 , c+ 0| 〉 tc| 〉 .= = =

s+ 0| 〉 0| 〉 , s 0| 〉 0| 〉 .= =

s+s a+a b+b c+c+ + + 1.=

s+s u2 1 a+a– b+b– c+c– u⇒= =

=  1 a+a b+b c+c+ +( )– .
SICS      Vol. 101      No. 5      2005



870 GEKHT, BONDARENKO
ferro- and antiferromagnetism vectors

of the dimer are expressed as

(9)

Following [38], we introduce a parameter λ in the root
of the operator u,

which allows us to expand u in the approximation of
λ ! 1. Then, similar to the 1/S expansion in the usual
spin-wave theory, we set λ = 1 in the final results. In
order that the spin commutation relations

(10)

remain unchanged, we introduce the factor 1/  into
the three components of the vector L:

(11)

Substituting (9) and (11) into the initial Hamiltonian (1)
and taking into account that the relation

holds for a dimer with S = 1/2, we obtain (  ≡ Jij/λ)

(12)

M S1 S2, L+ S1 S2–= =

Mz a+a b+b, M+– 2 a+c c+b–( ),= =

M– 2 c+a b+c–( ), Lz c+u uc+( ),–= =

L+ 2 a+u ub+( ), L– 2 b+u ua+( ).= =

u 1 λ a+a b+b c+c+ +( )– ,=

Mα Mβ,[ ] iεαβγMγ, Lα Lβ,[ ] iεαβγMγ,= =

Mα Lβ,[ ] iεαβγLγ=

λ

Lz c+u uc+( )/ λ ,–=

L+ 2 a+u ub+( )/ λ ,=

L– 2 b+u ua+( )/ λ .=

S1S2
3
4
---– a+a b+b c+c+ + +=

Jij*

H
3
2
---J2N– 2J2 ai

+ai bi
+bi ci

+ci+ +( )
i

∑+=

+ Jij ci
+ai bi

+ci–( ) a j
+c j c j

+b j–( )




ij

∑

+ Jij* bi
+ui uiai+( ) a j

+u j u jb j+( )

+
1
2
---Jij

*
ci

+ui uici+( ) c j
+u j u jc j+( )

+
1
2
---Jij ai

+ai bi
+bi–( ) a j

+a j b j
+b j–( )





,
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where the operators a, b, and c satisfy the boson permu-
tation relations

4. THE SPECTRUM OF A DISORDERED PHASE

In a disordered state, the bosons a, b, and c are
equivalent and a quadratic form of Hamiltonian (12) is
expressed as (u ≈ 1)

(13)

The stability domain of the singlet phase can be deter-
mined by analyzing the excitation spectrum of quasi-
particles. The excitation spectrum of a disordered state
is determined without taking quantum corrections into
account by the diagonalization of the quadratic form. In
view of the equivalence of the bosons a, b, and c, the
spectrum is triply degenerate and has a gap at the
wavevector q of the 120° triangular order:

(14)

As explained in the Introduction, the gap in the spec-
trum of elementary excitations of a disordered phase
(including the domain J2 @ J1) is on the order of J2 and
is equal to the exact value of J2 in the case of noninter-
acting dimers (J1 = 0).

When j > 1, the spectrum is everywhere real; when
j < 1, the spectrum becomes partially imaginary: the
system should pass to a new state. At the point of the
phase transition, j = 1, the gap in the spectrum vanishes;
therefore, the energy of excitations associated with the
formation of the 120° triangular order vanishes. A
Goldstone boson Ek(k = q) = 0 arises that points to the
symmetry reduction associated with the condensation
of the new state—the 120° triangular order—for j < 1.
Thus, in this approximation, the 120° triangular order is
stable in the domain of j < 1, while the singlet phase is

ai a j
+,[ ] δ ij, ai

+ a j
+,[ ] 0,= =

ai a j,[ ] 0, ai b j,[ ] 0,   etc.= =

H
9
2
---J2N– Ak ak

+ak bk
+bk ck

+ck+ +(
k

∑+=

+ a k– a k–
+ b k– b k–

+ c k– c k–
+ )+ +

+ Bk ak
+b k–

+ bk
+a k–

+ b k– ak+ +(
k

∑

+ a k– bk ck
+c k–

+ c k– ck ),+ +

Ak 3J1* j νk+( ), Bk 3J1*νk, j
J2

3J1*
---------.≡= =

Ek Ak
2 Bk

2– J2 1
1
j
---2νk+ ,= =

∆abc J2 1 1/ j– Ek k q=( ).= =
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stable for j > 1. The velocity of spin waves at the tran-
sition point is c = (3/2) .

5. MODIFICATION OF OPERATORS
IN THE 120° PHASE

In the ordered phase, the operators a, b, and c are
modified so as to guarantee that the mean value of the
spin at a site corresponds to the 120° triangular order.
This can be done by separating the mean value of oper-
ators of kind c at the wavevector k = q. If we set

(15)

then, for the mean value of the spin at a site in the sec-
ond layer, we obtain

where β ≡ λα 2. One can see that  behaves as a pro-

jection of the modulus  onto the z axis at an angle
αi = qRi , where αi is changed by 4π/3 · 1 = 240° ⇔
−120° (rotation of the spin) under the transition from a
certain site to the neighboring one (Ri = 1). At each site,
the spins of the first layer are opposite, as it must be, to
the spins of the second. Thus,

is the mean value of the spin at a site in the zero approx-
imation, and representation (15) guarantees the 120°
triangular order.

The equilibrium value of β is determined from the
minimum of the ground-state energy. In the mean-field
approximation, the energy of the ground state and β
(∂E0/∂β = 0) are given by

(16)

Thus, the mean value of the operators c (~α) and the
mean value of the spin at a site make sense for j < 1, i.e.,
in the ordered phase; at the point j = 1 of the phase tran-
sition in the mean-field approximation, all the means
vanish.

6. THE EXCITATION SPECTRUM
OF THE ORDERED PHASE

To determine the excitation spectrum in the ordered
phase, one should find a quadratic form of Hamilto-
nian (12) with regard to relations (15).

J1*

cq〈 〉 Nα ck Nαδkq εk,+⇔=

S2i
z〈 〉 β 1 β–( )

λ
------------------------ qRicos N0

mid qRi,cos≡=

S2i
z〈 〉

N0
mid

N0
mid β 1 β–( )

λ
------------------------≡

E0
3
2
---J2N– 2J2N

β
λ
--- 6J1*N

β
λ
--- 1 β–( ),–+=

β0
1
2
--- 1 j–( ).=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The Hamiltonian of the ordered phase can be repre-
sented as

where H⊥  is a part that is quadratic with respect to the
operators a and b and H|| is a part that is quadratic with
respect to the operators ε. H|| yields the spectrum of lon-
gitudinal fluctuations of the spin (the operators c and ε
determine the mean value of the spin at a site), and H⊥
determines the spectrum of transverse oscillations.

6.1. The Spectrum of Transverse Oscillations 

Let us explain how we determine the quadratic form
by the operators a and b (H⊥ ). To this end, in Hamilto-
nian (12), it suffices to use, as u, the expression

in the terms that explicitly contain a, b, and u, and the
approximation

in the terms containing c and u; for c in H⊥ , we every-
where use the mean value

c = 〈c〉 .
As a result, after the transition to the k space, H⊥  takes
the form

(17)

The spectrum of transverse modes is doubly degener-
ate, is gapless, and contains a Goldstone mode with k =
q (for any j):

(18)

(19)

H E0 H ⊥ H ||,+ +=

u u〈 〉 1 β–= =

u 1
λ
2
--- a+a b+b+( )–=

H ⊥ Ak
⊥ ak

+ak bk
+bk a k– a k–

+ b k– b k–
++ + +( )

k

∑=

+ Bk
⊥ ak

+b k–
+ bk

+a k–
+ akb k– bka k–+ + +( ),

Ak
⊥

3J1*
--------- a⊥≡ j β νk 1

3
2
---β– 

  ,+ +=

Bk
⊥

3J1*
--------- b⊥≡ νk 1 β

2
---– 

  .=

Ek
⊥ Ak

⊥ 2

Bk
⊥ 2

– J2 1 β
j
---+ 

 = =

× 1
β

j β+
-----------νk– 

  1
1 β–
j β+
------------2νk+ 

  ,

Ek
⊥ β0( ) 3

2
---J1* 1 j+( ) 1 2νk+( ) 1

1 j–
1 j+
-----------νk– 

  ,=
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where (β0) is the mean-field approximation. The
presence of a Goldstone boson in the spectrum of oscil-
lations in the plane of the layer is obviously associated
with symmetry breaking due to the 120° Néel ordering
in the plane of the layer for j < 1. The velocity of spin
waves near k = q is equal to

6.2. The Spectrum of Longitudinal Oscillations 

The terms that are quadratic in ε and form the
Hamiltonian H|| are contained in the following compo-
nents of Hamiltonian (12):

where it suffices to apply the relations

Ek
⊥

c
3
2
---J1* 1 β0–( ) 1

β0

2
-----– 

  .=

H || 2J2 εi
+εi

i

∑=

+
1

2λ
------ Jij ci

+ui uici+( ) c j
+u j u jc j+( ){

ij

∑
– ci0

+ ui0 ui0ci0+( ) c j0
+ u j0 u j0c j0+( ) } ,
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,

and expand u in powers of λ. The condensate state that
is included in the sum with minus sign is already taken
into account in the ground-state energy (16). Upon sep-
arating the part quadratic in ε and passing to the k
space, we obtain

(20)

The spectrum of longitudinal oscillations has a gap

( (β0) is the mean-field approximation) and is repre-
sented as

u 1 λc+c– , c c0 ε+= =

H || e||
0 Ak

|| εk
+εk ε k– ε k–

++( ){
k

∑+=

+ Bk
|| εk

+ε k–
+ εkε k–+( ) } ,

e||
0 3

2
---J1*N

β2

1 β–
------------,=

Ak
||

3J1*
--------- ak

||≡ j 2β β2

2 1 β–( )
-------------------- 1 2νk+( ) νk 1 3β–( ),+ + +=

Bk
||

3J1*
--------- bk

||≡ β β2

2 1 β–( )
-------------------- 1 2νk+( ) νk 1 3β–( ).+ +=

Ek
||
(21)
Ek

|| Ak
||2 Bk

||2–=

=  3J1* j β+( ) j 1 β–( ) β 2β 3–( )–
1 β–

------------------------------------------------- 1
2β 1–( )2

j 1 β–( ) β 2β 3–( )–
-------------------------------------------------2νk+ ,
(22)

The gap is closed at the phase-transition point β0 = 0. In
the neighborhood of the critical point (β0  0), the

value of the gap is small (∆||(β0) ~ ); therefore, in
calculating various physical quantities, one may expect
that the contribution of longitudinal fluctuations will be
comparable to the contribution of transverse ones.

7. CORRELATION FUNCTIONS

We investigated the behavior of correlation func-
tions between nearest-neighbor spins in a layer,
〈SniSnj 〉 , and between the layers, 〈S1iS2i 〉 , in both phases:

(23)

Ek
|| β0( ) 3J1* 1 2νk j2+ ,=

∆|| β0( ) 6J1* β0 1 β0–( ) Ek
|| k q=( ).= =

β0

S1iS1 j〈 〉
Mi Li+

2
------------------

M j L j+
2

------------------- ,=

S2iS2 j〈 〉
Mi Li–

2
------------------

M j L j–
2

------------------- ,=
where we used relations (9) and (11) and restricted the
analysis to a quadratic approximation with respect to
operators. For example, in a disordered phase, we
obtained the following expression for 〈SiSj 〉1, 2:

The mean values in this expression are obtained by a
Bogolyubov transformation to new operators in terms
of which the original Hamiltonian (the Hamiltonian of
a disordered state in this case) is diagonal. As a result,
these means contain constants and the operators of the
number of particles of certain kinds with a definite
value of k; according to the Bose distribution, these
operators are equal to zero in the case, which is consid-
ered here, of a magnon gas with a chemical potential of
µ = 0 at T = 0. The remaining correlation functions are

SiS j〈 〉 1 2, 1
4λN
----------- 2 ak

+b k–
+〈 〉 akb k–〈 〉+


k

∑=

+ ak
+ak〈 〉 bk

+bk〈 〉 ck
+ck〈 〉+ +

+
1
2
--- ck

+c k–
+〈 〉 ckc k–〈 〉+[ ] 

 k∆.cos
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determined analogously. The results for a disordered
phase look as follows (j > 1):

(24)

We do not present analytical results for the ordered
phase (j < 1) in view of their awkwardness. A detailed
account of all the results discussed can be found in [40].
The behavior of correlation functions is shown in
Fig. 1. As it should be, in the limit of j  ∞, the cor-
relation between spins of the same dimer 〈S1iS2i〉  have
the asymptotics –3/4, while intralayer correlations
〈SiSj 〉  tend to zero. At the transition point, the correla-
tion functions are continuous. In the limit of j = 0, the
terms in 〈SiSj 〉  that are attributed to the longitudinal
fluctuations total zero; i.e., they make zero contribu-
tion. In contrast to modified spin-wave methods, the
correlations between spins in a layer in the singlet
phase have a finite value and increase as approaching
the phase-transition point (j = 1). The correlations
between spins in adjacent layers decrease with j and
reach a value of –0.47, which is less than that in the
modified spin-wave theory.

8. GROUND-STATE ENERGY 
WITH REGARD TO FLUCTUATIONS

After the diagonalization, the components H⊥  and
H|| of the Hamiltonian of the ordered phase have a stan-
dard form that allows us to calculate the ground-state
energy E with regard to fluctuation corrections,

(25)

SiS j〈 〉 1 2, 3
4λN
----------- k∆cos

1
2νk

j
--------+

----------------------,
k

∑=

S1iS2i〈 〉 9
4
---–

3
2N
-------

1
νk

j
-----+

1
2νk

j
--------+

----------------------.
k

∑+=

H ⊥ Ek
⊥ α k

+α k βk
+βk α k– α k–

++ +(
k

∑=

+ β k– β k–
+ ) 2 Ek

⊥ Ak
⊥–( ),

k

∑+

H || e||
0 Ek

|| γk
+γk γ k– γ k–

++( )
k

∑+=

+ Ek
|| Ak

||–( ),
k

∑

E E0 e||
0 2 Ek

⊥ Ak
⊥–( )

k

∑+ +=

+ Ek
|| Ak

||–( ),
k

∑
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and to refine the equilibrium value of the parameter β
(∂E/∂β = 0). An equation for the equilibrium β has a
self-consistent form:

(26)

We calculated Zb(β) to a first approximation by trans-
forming the exact values of β and then used the mean-
field approximation β0 for β. The roots of the equation
are determined by the method of interval bisection with
an accuracy of 0.01. A family of functions β(j) that cor-
respond to different λ is shown in Fig. 2. One can see
that there exists an asymptote

as λ  0. A characteristic feature of these functions
for large values of λ is the two-valuedness of β(j) in the
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Fig. 1. Correlation functions between nearest-neighbor
spins (the mean-field approximation).
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region of small β, which is physically meaningless.
Such results are attributed to Gaussian fluctuations that
indefinitely increase as the phase transition (β  0) is
approached; this fact was discussed in detail in [38].
Therefore, using the values of β that were calculated
away from the phase transition, we approximate the
functions in the neighborhood of the phase transition
(β ≈ 0) so as to avoid the two-valuedness (Fig. 2).
According to this approximation, the point at which β
vanishes for λ = 1 is given by j = J2/3J1 = 0.132; i.e.,
J2/J1 = 0.4. In a similar system with a square lattice, the
point of transition to a disordered phase corresponds to
the values of J2/J1 ranging from 1.86 to 4.5 depending
on the computation method [38, 39]. As expected, the
classical 120° state triangular ordered decays much
faster than that in the square system: the domain of val-
ues of j in which the ordered state is realized is less by
an order of magnitude. Such a significant difference
may be attributed in part to the in-plane frustratedness
of bonds. For equal J1 and J2 in square and triangular
systems, the effective interaction of two spins in the

plane of the triangular lattice  proves to be weaker by
a factor of two and the ratio J2/J1 at the transition point
is effectively greater (approaching that in the square lat-
tice), because the spin is not oriented according to the

J̃1

0.2
λ = 0

0.2 0.4 0.8 1.00
j

0.6

0.5

0.4

0.3

0.1

λ = 1.0

λ = 0, 0.1, 0.2, ..., 1.0

β = (1 – j)/2

β

Fig. 2. Equilibrium β with regard to quantum corrections.
The dots represent a solution to the self-consistent equation
(26) for λ = 0.1, …, 1.0; the solid curves represent an
approximation that eliminates the unphysical two-valued-
ness of the function, which is associated with the divergence
of Gaussian fluctuations near the phase transition
(β  0). The point at which β vanishes for the physical
case of λ = 1 is j = 0.132.
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local energy minimum. It is qualitatively clear that an
effective increase in J2/J1 leads to an increase in the gap
between the singlet and the triplet levels, whereby the
singlet orbital turns out to be populated earlier (in j) and
the 120° triangular order is destroyed.

9. SPONTANEOUS MAGNETIZATION

The mean value of the spin at a site in the 120° phase
is equal to

(27)

Up to the terms that are quadratic in the operators, we
have

(28)

The means are determined by the Bogolyubov transfor-
mation, which was obtained in Section 7. As a result,
we obtain

(29)
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Here,

is the approximation of magnetization without fluctua-
tions.

An approximation of spontaneous magnetization,
which is independent of the table of values of β(j), can
be obtained with the use of the first iterative approxima-
tion for β:

Then, setting

and taking into account that λ ! 1, we obtain the
approximation of magnetization that is shown in Fig. 3.
This approximation has an significant drawback: the
points at which N0 and β vanish (the phase-transition
point) do not coincide. However, it reveals the follow-
ing characteristic feature of the function: the presence
of a small maximum in the region of small j, which is
especially manifest for medium values of λ; this
behavior is analogous to that in two-layer square lat-
tices [38].

We have established that, in the limit of j = 0, longi-
tudinal waves do not contribute to the magnetization
because the terms in Za that are associated with longitu-
dinal fluctuations total zero. In the other limiting case,
in the neighborhood of the phase transition (β  0),

the magnetization vanishes as N0 ∝  , and all the
terms in Za(β = 0), both transverse and longitudinal,
prove to be of the same order of magnitude. Thus, lon-
gitudinal spin fluctuations, which are neglected in the
spin-wave description, prove to be comparable with
transverse fluctuations in the neighborhood of the phase
transition.

It may seem that the obtained table of equilibrium
values of β(j) allows one to determine the exact behav-
ior of magnetization. However, this is a fallacy, because
the substitution of the values of β(j) determined with
regard to fluctuations into the integral functions Za(β)
and Zb(β), which contain the spectrum, and are calcu-
lated only in the quadratic approximation with respect
to the operators of secondary quantization without tak-
ing quantum corrections into account, is an excess of
accuracy. In the quadratic approximation, the spectrum
is determined in the range of j ∈  (0, 1), the point of the
phase transition is j = 1, and the equilibrium value is
β = (1/2)(1 – j). The substitution of the refined values of
β(j) < (1/2)(1 – j), which are determined in the interval

β 1 β–( )
λ

------------------------
c0

+u0〈 〉
λ

----------------=

β β1≈ β0 λZb β0( ).–=

Za Za β0( ), Zb Zb β0( ),≈ ≈

β
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of j ∈  (0, 0.132), makes the spectra of the ordered phase
partially imaginary (for example, the transverse spec-
trum is positive definite in the entire Brillouin zone
only if β ∈  ((1/2)(1 – j), 1)). Thus, a more accurate
determination of the behavior of the magnetization and
other quantities requires that one should either deter-
mine the excitation spectrum and the equilibrium β in
the same consistent approximation, which is often asso-
ciated with the elimination of unphysical states in
higher orders of expansion in the operators, or apply the
Monte Carlo method. We restricted ourselves to an
approximate determination of the behavior that is based
on the knowledge of the phase-transition point and the
characteristic form of the function. An approximate
behavior of magnetization is shown by a dashed line in
Fig. 3. According to this figure, the magnetization van-
ishes simultaneously with β(j) at j = J2/3J1 = 0.132. The
calculations performed allow us to evaluate the mean
value of the spin at a site; it ranges from about 1/4 to 0.
Thus, the quantum reduction of the spin in the 120° tri-
angular phase ranges from 50 to 100% depending on j.

10. INITIAL SUSCEPTIBILITY

We have calculated the initial susceptibility in a field
H = Hx that is perpendicular to the plane of the layers.
Instead of the a and b bosons, it is convenient to use
operators s and p in the field Hx ,

which satisfy the relation

;

s
a b+

2
------------, p

a b–

2
-----------,= =

a+a b+b+ s+s p+ p+=

0.2

λ = 0.7

0.1 0.2 0.4 0.50 j0.3

0.4

0.1

N0

λ = 1.0

0.132

0.3

Fig. 3. Spontaneous magnetization with regard to fluctua-
tions. The solid curves are obtained with the use of the first
iterative approximation for β, and the dashed curve illus-
trates the approximate behavior corresponding to the table
of equilibrium β(j) for λ = 1.0.
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the ferro- and antiferromagnetism vectors are given by

(30)

The convenience of the new operators is associated
with the fact that a field applied along the x axis induces
the condensation of the p field alone, which occurs at
the wavevector k = q. Indeed, the expected value of
induced magnetization

must not depend on a site; this fact imposes a constraint
on the admissible form of the operators p. In the general
case, we have

therefore,

(31)

Mx c+ p p+c, My+ i c+s s+c–( ),= =

Mz s+ p p+s, Lx+
1

λ
------- s+u us+( ),= =

Ly i
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1
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ci
+ ci

+〈 〉 ε i
+, pi+ pi〈 〉 χ i;+= =

M ⊥ Sx〈 〉 ci
+ pi〈 〉 ci

+〈 〉 pi〈 〉 ε i
+χ i〈 〉+= = =

≡ M ⊥
0 i( ) ∆M ⊥ i( )+ const i( ),=

M ⊥
0 i( ) ci

+〈 〉 pi〈 〉 α iqRi–( ) pi〈 〉exp= =

=  const i( ) pi〈 〉⇒ α ˜ iqRi( ),exp=

pk N α̃δkq χk,+=

M ⊥
0 αα̃ βγ

λ
----------, γ λα̃2;≡= =

2

Quant. fluct.

0.132 10 j2

1

h

120°
3

Singlet

Fig. 4. j–h phase diagram for small h. The solid curve shows
the position of the phase boundary in the mean-field
approximation, and the dashed curve shows the same
boundary with regard to fluctuations. As the field
h increases, instead of the 120° structure [41], other seven
phases become the ground state in the region of small j.
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i.e., bosons c and p condense at a wavevector k = q. The
induced magnetization and the susceptibility are given
by

(32)

The parameters β and γ can be determined from the
minimum of the ground-state energy  in a magnetic

field. In the mean-field approximation (h ≡ Hx/3 ),
we have

(33)

(34)

On the curve

,

the parameters β0 and γ0 vanish simultaneously for
h ≠ 0. This function represents a curve of phase transi-
tions in the mean-field approximation because the 120°
triangular order vanishes in this case. Figure 4 shows
the corresponding j–h phase diagram of the model.
The dashed curve in this figure illustrates how the
phase diagram changes when one takes into account the
effect of quantum fluctuations. The magnetic field dis-
places, as it should, the point of phase transition to a
disordered state to a domain of greater values of j. How-
ever, such behavior of the equilibrium curve is only
characteristic of small h; as the magnetic field
increases, the 120° triangular order is no longer the
ground state, and the j–h phase plane exhibits an intri-
cate structure in the region of small j and h and defines
the existence domain of seven phases with different
types of spin ordering [20, 41, 42]. Note that thermal
fluctuations in purely two-dimensional systems lead to
complete destruction of ordering at h = 0 due to the van-
ishing of the effective spin length (the Mermin–Wagner
theorem). The temperature behavior of quasi-two-
dimensional triangular antiferromagnets has recently
been investigated in [43] with the example of
RuFe(MnO4)2.
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Using the obtained values of β0 and γ0, we deter-
mine the mean-field approximation to the induced mag-
netization and the initial susceptibility:

(35)

In the limiting case of j = 0, we have  = 1/18J1,
which coincides with the results for single-layer trian-
gular lattices.

To calculate the fluctuation corrections to the mag-
netization,

,

we should find the eigenfunctions of the Hamiltonian in
a magnetic field; in the quadratic approximation, this
Hamiltonian can be reduced to

where Hs and Hcp are the quadratic forms with respect
to the s and εχ operators, respectively. We have

(36)

The spectrum of s excitations has a gap,

(37)

(38)

In contrast to square lattices, the gap depends on j;
moreover, it is closed in zero field. The spectrum of s
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excitations in zero field transforms into the spectrum of
transverse oscillations of the ordered phase. We have

(39)

An analytic expression for the spectrum of cp excita-
tions in a magnetic field is given by

(40)
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Unfortunately, this spectrum cannot be represented as a
compact function of the variables (j, h), (β, γ), or others.
The spectrum of cp excitations contains two branches.
The lower branch contains a Goldstone boson for k = q
and, at h = 0, turns into the spectrum of transverse (ab)
modes of the ordered phase. The upper branch has a gap
and turns into the spectrum of longitudinal (c) oscilla-
tions at h = 0; the value of the gap in the mean-field
approximation is

(41)

The diagonalization of Hs yields

As h  0, the diagonalization of Hcp leads to the fol-
lowing expression (εc and εp are the spectra for h  0):

(42)
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Fig. 5. Initial susceptibility. The solid curves are obtained
with the use of the mean-field approximation for β, and the
dashed curve represents an approximate behavior that cor-

responds to β(j) with regard to fluctuations: χ⊥  ~ ; there-
fore, β and χ⊥  vanish simultaneously at j = 0.132.

β
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The ground-state energy in a magnetic field for h  0,

(43)

allows us to determine the equilibrium values of β and
γ (upon setting ∂Eh/∂β = 0 and ∂Eh/∂γ = 0). It suffices to
refine one parameter, γ; the other parameter can be
taken in the mean-field approximation because β and γ
enter the equation

as a product. As a result, we obtain

where ϕ = ϕ(β, γ, j, h) is an integral that contains the
coefficients of the Hamiltonians Hs and Hcp .

Thus, taking into account a renormalized value of γ
and diagonalizing transformations, we obtain the fol-
lowing expressions for the induced magnetization:

and the initial susceptibility,

where the mean fluctuation components are given by
(here, h  0, β = β0, and j ≈ 1 – 2β0)

(44)
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Here,

The form of the function χ⊥  is shown in Fig. 5. This
function is nonmonotonic with a small maximum in the
neighborhood of small j. The dashed line represents the
behavior corresponding to the table of equilibrium val-
ues of β(j).

In this paper, we did not consider the possibility of
the formation of singlet pairs in a layer. In our view,
consideration of this possibility should lead to vanish-
ing of the spin at a site of χ⊥  for j ≈ 0; thus, the interval
of the 120° triangular phase will become even nar-
rower.
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Abstract—The rate constant of spin exchange between two paramagnetic particles with arbitrary spins is cal-
culated within a model of diffusion passage through a region of exchange interaction that exponentially depends
on the interparticle distance. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Studying a bimolecular change in the spin state of
paramagnetic particles caused by exchange interaction
is important from various standpoints. Spin exchange is
one of the model elementary processes, and its investi-
gation can be instructive for analysis of other bimolec-
ular processes, such as energy transfer, electron trans-
fer, the recombination of electron–hole pairs, the
recombination of radical pairs, and so on. Indeed, data
on the spin-exchange rate can be used to determine the
binary-collision frequency, the motion kinematics of
colliding partners, and the orbital overlap of unpaired
electrons for two meeting paramagnetic particles [1].
Moreover, studying bimolecular spin exchange is inter-
esting in itself, since many processes are related to spin
exchange. One of them is the quenching of positronium
atoms by paramagnetic additives. The positronium
atom can have a total spin equal to unity (ortho-positro-
nium, long-lived state, τ ∝  10–7 s) or zero (para-positro-
nium, short-lived state, τ ∝  10–10 s) [2]. Spin exchange
between the positronium atom and a paramagnetic par-
ticle can transform the positronium atom from the long-
lived to the short-lived state, thus quenching positron-
ium [2, 3]. Similarly, spin exchange between radical
pairs and paramagnetic particles can result in spin
catalysis (e.g., see [4]). Spin exchange manifests itself
in the shape of electron paramagnetic resonance (EPR)
spectra, causing the exchange-induced broadening of
spectral lines and the exchange narrowing of a spec-
trum [1]. The EPR sensitivity can be increased by cre-
ating nonequilibrium polarization of electron spins.
One of such methods is based on the fact that the non-
radiative intersystem crossing from a singlet into a trip-
let state in electronically excited molecules is spin-
selective; as a result, the triplet sublevels are populated
with different probabilities. Then, the triplet polariza-
tion can be transferred to other paramagnetic particles,
1063-7761/05/10105- $26.000881
e.g., to stable free radicals, due to spin exchange (e.g.,
see [5]). 

Considerable attention has been given to the calcu-
lation of the rate constant of spin exchange between
spin-1/2 paramagnetic species, e.g., between free radi-
cals [1]. Two collision models have been analyzed. In
most cases, the so-called sudden collision model is con-
sidered. In this model, exchange interaction between
paramagnetic particles with an exchange integral J is
turned on suddenly at the instant of contact, at the min-
imum distance between the centers of the particles, and
it is also suddenly turned off after a collision time τc ,
when the particles cease to be in contact. An alternative
model takes into account re-encounters between collid-
ing particles in condensed matter, the spin dynamics of
the particles in the time intervals between re-encoun-
ters, and the extended character of exchange interac-
tion. The interdiffusion of collision partners randomly
modulates the exchange interaction. By assuming that
the exchange integral decreases exponentially with
increasing interparticle distance and that the interdiffu-
sion is described by a continuous diffusion model, the
spin-exchange rate constant was he calculated for
spin-1/2 paramagnetic species [6]. For paramagnetic
particles with a spin S > 1/2, the spin-exchange rate
constant has not been calculated with allowance for the
extended character of the exchange integral and for dif-
fusion passage through an interaction region. We only
know of [7], in which the rate constant of spin exchange
between triplets was calculated, and [8], in which the
rate constant of spin exchange between spin-1/2 parti-
cles and paramagnetic ions with an arbitrary spin was
calculated. The authors of [8] used the so-called thin
reaction layer approximation: an exchange integral was
assumed to be constant and equal to J inside a thin layer
and to be zero outside this layer. However, it is neces-
sary to calculate the rate constants of spin exchange
 © 2005 Pleiades Publishing, Inc.
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between paramagnetic particles having arbitrary spins.
For example, the spin exchange between electronically
excited metalloporphyrin molecules and free radicals
plays a key role in the redistribution of nonequilibrium
spin polarization in mixed solutions [5]. The spin of an
electronically excited metalloporphyrin can acquire
different values depending on the central ion. There-
fore, it is necessary to know the rate constant of spin
exchange between a pair of paramagnetic particles with
an arbitrary spin S (metalloporphyrin) and with a spin
of 1/2 (free radical).

In this work, we calculate the rate constant of spin
exchange between paramagnetic particles with arbi-
trary spins upon their diffusion passage through an
exchange-interaction region in the case of an exponen-
tial decrease in the exchange integral with increasing
interparticle distance.

2. MODEL AND KINETIC EQUATIONS

We consider a solution containing two types of para-
magnetic particles (particles A and B). Their concentra-
tions, spins, and Larmor frequencies are denoted by CA

and CB , SA and SB, and ωA and ωB , respectively. We
restrict ourselves to the study of dilute solutions in
order to neglect three-particle, four-particle, etc., colli-
sions and to only analyze the bimolecular collisions of
paramagnetic particles. Let Reff be the effective radius
of spin exchange between colliding particles (it will be
defined below). The condition of applicability of the
binary collision approximation is

(1)

To calculate the spin-exchange efficiency in a pair of
colliding paramagnetic particles A and B, we have to
choose a spin Hamiltonian for this pair. In the general
case, it contains the Zeeman interaction of spins with a
constant applied magnetic field, the splitting energy in
a zero magnetic field, and the exchange and dipole–
dipole spin–spin interactions between A and B. We
neglect the anisotropic components of the spin Hamil-
tonian, which substantially simplifies computations but
limits the field of applicability of the results obtained.
This approximation is reasonable as applied to spin
exchange in nonviscous liquids, since the rotational dif-
fusion of paramagnetic particles effectively averages
the anisotropic components of the spin Hamiltonian to
zero in this case. Thus, the spin Hamiltonian for the pair
is chosen to be

(2)

where J(r) is the exchange integral for the pair of inter-

4π
3

------Reff
3 CA CB+( ) ! 1.

H "ω0
ASZ

A
"ω0

BSZ
B

"J r( )SAS,B+ +=
JOURNAL OF EXPERIMENTAL A
acting particles:

(3)

The constant κ in Eq. (3) characterizes the rate of
decrease of the exchange integral with the distance; r is
the distance between the colliding particles; and r0 is
the distance of closest approach. The relative diffusion
motion of the partners in the pair randomly modulates
the interaction of the pair spins. The spin–spin interac-
tion energy is assumed to be much lower than the
kinetic energy of the relative motion of the colliding
partners; therefore, we neglect the effect of their spin
states on the collision kinematics. As a consequence,
the distance r between the colliding particles is taken to
be an external (classic) parameter. The relative motion
of the colliding particles is described by a continuous
diffusion model.

The collision time τc in nonviscous liquids is
0.1−1 ns; hence, the inequality (ωA – ωB)τc < 1 can hold
true in moderate constant magnetic fields. Then, to cal-
culate the spin-exchange efficiency, we may neglect the
difference in the Larmor frequencies during collision
and can use the spin Hamiltonian

(4)

instead of Eq. (2) to calculate the collision efficiency at
t ≤ τc . (The collision time τc and the effective spin-
exchange radius Reff will be determined below by solv-
ing a kinetic equation.) The model spin Hamiltonian (4)
has the following important property: it retains the
square of the total spin (SA + SB)2 and its projection on
the direction of the applied magnetic field. This prop-
erty allows us to solve the problem analytically and to
find compact analytic expressions for the spin-
exchange rate constants, the effective spin-exchange
radius, and the effective collision time (or, in other
words, the time of meeting of two particles in con-
densed matter, since a pair of particles that move diffu-
sionally can undergo re-encounters in the course of
their meeting.)

The spin-exchange efficiency is not only a function
of the spin Hamiltonian. The kinematics of the collid-
ing particles plays a key role. Therefore, to calculate the
spin-exchange efficiency, we have to consider a kinetic
equation for the spin matrix of a certain pair of particles
A and B. To this end, we divide an ensemble of pairs
into subensembles of pairs with a given distance r
between pair partners A and B. In terms of the model
chosen, a kinetic equation for the partial density matrix
ρ(r, t) of the pair subensemble with a given distance r
between pair partners has the form

(5)

J r( ) J r( ) J0 κ r r0–( )–{ } .exp= =

H ' "ω0 SZ
A SZ

B+( ) "J r( )SASB+=

∂ρ r t,( )
∂t

------------------
i
"
--- H ' ρ r t,( ),[ ]– D∆rρ r t,( ),+=
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where D is the interdiffusion coefficient of A and B. We
use kinetic equation (5) for the spin density matrix of
the pair of colliding particles A and B to find a collision
term in kinetic equations for the one-particle spin den-
sity matrices of paramagnetic particles.

Kinetic equations for the one-particle spin density
matrices of the subensembles of particles A and B with
allowance for bimolecular collisions were proposed
in [9, 10]:

(6)

The collision term in Eqs. (6) is written from the fol-
lowing considerations. As is well-known from statisti-
cal mechanics, a change in the one-particle spin density
matrix of, e.g., particle A caused by its pairwise interac-
tion with particles B (VAB) is expressed in terms of the
two-particle density matrix ρ2 of a pair of particles A
and B as follows:

(7)

The sum in the right-hand side of Eq. (7) is taken over
all particles B; TrB means the convolution over the spin
variables of particles B; and the integral is taken over
the entire volume V. When passing to the thermody-
namic limit for V, we have NB  ∞, so that NB/V 
CB , where NB is the number of particles B and CB is
their concentration. Taking into account that, statisti-
cally, all particles B give the same contribution to colli-
sions with particles A, we can rewrite Eq. (7) in the
form

(8)

It is well-known from statistical mechanics that an
equation for a pair density matrix is linked to a three-
particle density matrix. If condition (1) is satisfied, the
probability of the fact that at least one particle is near
the two chosen partners within the times comparable to
their meeting time τc is negligibly small. Therefore, to

dσA t( )
dt

---------------- i ω0
ASZ

A σA t( ),[ ]–=

– CBTrB PσA t( )σB t( )[ ] ,

dσB t( )
dt

---------------- i ω0
BSZ

B σA t( ),[ ]–=

– CATrA PσA t( )σB t( )[ ] .

dσA t( )
dt

---------------- i ω0
ASZ

A σA t( ),[ ]–=

–
i

"V
-------TrB V AB rK( ) ρ2 rK t,( ),[ ] rK .d∫

K

∑

dσA t( )
dt

---------------- i ω0
ASZ

A σA t( ),[ ]–=

–
i

"V
-------CBTrB V AB r( ) ρ2 r t,( ),[ ] r.d∫
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
derive a kinetic equation for a one-particle density
matrix from Eq. (8) by making allowance for only
bimolecular collisions, we can use the density matrix
ρ(r, t) of an averaged isolated pair of particles found by
solving Eq. (5) instead of the two-particle density
matrix ρ2(r, t) in the right-hand side of Eq. (8). To
obtain the kinetic equation, the pair density matrix in
Eq. (8) should be expressed in terms of one-particle
density matrices. To this end, the solution to Eq. (5) for
the pair density matrix is written as (see [11])

(9)

We substitute this expression in Eq. (5). In this equa-
tion, the interaction of the chosen pair is taken into
account in an explicit form. Therefore, since we neglect
triple collisions, we do not take into account collision-
induced changes in the one-particle matrices (see
Eq. (6)) in the expression

in the left-hand side of Eq. (5), and we use the approx-
imation

During particle collisions, we neglect the differences in

the Zeeman frequencies, that is,  =  = ω0. Then,
we obtain the following equation for G(r, t) written in
the Liouville representation [9]:

(10)

where

(11)

and 

(12)

In the right-hand side of Eq. (10), the term with W(r)
describes a change in the pair density matrix induced by
spin–spin interaction. The term with the commutator
having Q0 is related to a change in the state of a pair of
spins caused by their motion in an applied magnetic

ρ r t,( ) G r t,( )σA t( )σB t( ).≈

dρ
dt
------

dG
dt
-------σAσB G

dσA

dt
---------σB GσAdσB

dt
---------+ +=

dσA t( )
dt

---------------- i ω0
ASZ

A σA t( ),[ ] ,–=

dσB t( )
dt

---------------- i ω0
BSZ

B σB t( ),[ ] .–=

ω0
A ω0

B

∂G r t,( )
∂t

------------------- iW r( )G r t,( )=

+ i Q0 G r t,( ),[ ] D∆rG r t,( ),+

W r( )IK LM,

=  J r( ) SASB( )MKδLI SASB( )ILδKM–[ ] ,

Q0 IK LM,

=  ω0 SZ
A SZ

B+( )MKδLI SZ
A SZ

B+( )ILδKM–[ ] .
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field, and the last term takes into account the fluxes of
the pair density matrix between the subensembles of
pairs with different values of r that are caused by the
interdiffusion of pair partners.

As noted above, spin Hamiltonian (4) commutes
with the operator of the total spin squared (SA + SB)2.
Hence, it is convenient to perform computations using
the basis of the eigenfunctions of this operator. Here,
the nonzero elements of the W and Q0 matrices are only
their diagonal elements WIK, IK and Q0, IK, IK , respec-
tively, where I ≠ K. If I = K, then WKK, KK = 0 and
Q0, KK, KK = 0. Therefore, the equations for the diagonal
GIK, IK elements become substantially simpler in the
basis of the eigenfunctions of the total spin, since the
diagonal elements of the commutator [Q0, G(r, t)]IK, IK
in Eq. (10) become zero. Equation (10) for the GIK, IK
elements takes the form

(13)

As a result of the degeneracy of transitions between dif-
ferent levels, [Q0, G(r, t)]IK, MN can also vanish for some
off-diagonal elements. In this case, an equation similar
to Eq. (13) is also valid for the corresponding off-diag-
onal GIK, MN(r, t) element.

Under steady-state conditions, G(r, t) satisfies the
equation

(14)

at times t > τc . The diagonal G(r) elements satisfy the
equation

(15)

Let us formulate boundary conditions for the G(r)
correlator. When the partners of a pair are separated, the
correlation between their states should weaken [11].
Therefore, we suppose that G(r) tends to a unit matrix
E with increasing r:

(16)

At the distance of closest approach, the particles are
completely reflected; that is, the spin states of the pair
partners have no time to change within the times when
the partners are at the minimum distance. Whence, we
have the second boundary condition

(17)

A collision superoperator P describes a change in
the pair density matrix in an interaction region; accord-

∂GIK IK, r t,( )
∂t

------------------------------

=  iWIK IK, r( )GIK IK, r t,( ) D∆rGIK IK, r t,( ).+

D∆rG r( ) i Q0 G r( ),[ ] iW r( )G r( )+ + 0=

D∆rG r( )IK IK, iW r( )IK IK, G r( )IK IK,+ 0.=

G r( ) E at r ∞.

∇ rG r r0=( ) 0.=
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ing to Eqs. (8) and (9), it is defined as [10]

(18)

For the diagonal elements of the collision superopera-
tor, Eq. (18) can be represented in a equivalent form,
taking into account that

according to Eq. (15). Therefore, for the diagonal ele-
ments of P, Eq. (18) can be rewritten as [9]

(19)

Using the divergence theorem and boundary condi-
tion (17), we can represent Eq. (19) as the diffusion
flux of the pair-correlation gradient D∇ rGIK, IK(r)
through a sphere of radius r  ∞:

(20)

For applied computations, the form of Eq. (20) is more
convenient. However, to calculate the off-diagonal ele-
ments of P, it is better to use Eq. (18).

Using the considerations given above and the model
developed (see Eqs. (14), (15)), we rewrite Eq. (14) for
an arbitrary element GIK, MN(r) in terms of the basis of
the eigenfunctions of the total spin squared:

(21)

where

and

In the expression for aIK, MN , SK and SI are the total spins
of the pair characterizing the two-particle K and I
states, respectively; in the expression for bIK, MN , SZI ,
SZK , SZM , and SZN are the projections of the total spin on
the direction of the applied magnetic field in the two-
particle I, K, M, and N states, respectively.

The terms containing a are caused by the spin–spin
interaction of pair partners, and the terms containing b
describe the spin dynamics in an applied magnetic
field. At different values of the a and b coefficients, we

P i W r( )G r( ) r.d∫–=

iW r( )IK IK, G r( )IK IK,– D∆rG r( )IK IK,=

PIK IK, D ∆GIK IK, r( ) r.d∫=

PIK IK, 4πD r2∂GIK IK, r( )
∂r

-------------------------.
r ∞→
lim=

1

r2
---- ∂

∂t
----- r2∂GIK MN, r( )

∂r
--------------------------- 

 

+ i aIK MN, e κ r– bIK MN,+( )GIK MN, r( ) 0,=

aIK MN, δIMδKN

J0e
κ r0

2D
------------- SK SK 1+( ) SI SI 1+( )–( )=

bIK MN,
ω0

D
------ SZI– SZK SZM SZN–+ +( ).=
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obtain different types of solutions to Eq. (21). If
aIK, MN ≠ 0 and bIK, MN ≠ 0, Eq. (21) only has a trivial zero
solution under boundary conditions (16) and (17). If
aIK, MN = 0 and bIK, MN = 0, the general solution to
Eq. (21) has the form GIK, MN(r) = CIK, MN/r + FIK, MN .
Using these boundary conditions, we have CIK, MN = 0
and FIK, MN = δIMδKN . However, according to Eq. (18),
the elements

do not contribute to the spin-exchange efficiency. This
is rather obvious, since the situation aIK, MN = 0 means
the absence of spin–spin interaction between the part-
ners of the colliding pair of particles. The G(r) elements
for which bIK, MN ≠ 0 and aIK, MN = 0 also should not con-
tribute to the spin-exchange efficiency, since spin
exchange cannot occur in the absence of spin–spin

GIK MN, r( ) δIMδKN=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
interaction between the partners. Thus, in the situation
under study, spin exchange is only contributed by the G
elements for which aIK, MN ≠ 0 and bIK, MN = 0; that is,
only the diagonal GIK, IK(r) elements have nontrivial
solutions (see Eq. (15)). The general solution to
Eq. (15) is expressed in terms of the zeroth-order
Bessel and Neumann functions:

(22)

Using boundary conditions (16) and (17), we have

G r( )IK IK,
C1

r
------J0

4aIK IK, i

κ2
-------------------e κ r/2–

 
 
 

=

+
C2

r
------N0

4aIK IK, i

κ2
-------------------e κ r/2–

 
 
 

.

(23)

Substituting Eqs. (22) and (23) into Eq. (20), we obtain an expression for the diagonal elements of the collision
superoperator:

(24)

C1 IK IK,
π
κ
---

κr0e
κ r0/2– 4aIK IK, i

κ2
-------------------N1 e

κ r0/2– 4aIK IK, i

κ2
-------------------

 
 
 

2N0 e
κ r0/2– 4aIK IK, i

κ2
-------------------

 
 
 

–

κr0e
κ r0/2– 4aIK IK, i

κ2
-------------------J1 e

κ r0/2– 4aIK IK, i

κ2
-------------------

 
 
 

2J0 e
κ r0/2– 4aIK IK, i

κ2
-------------------

 
 
 

–

------------------------------------------------------------------------------------------------------------------------------------------------------------,=

C2
π
κ
---.–=

PIK IK, 4πD r0
1
κ
---

J0 SK SK 1+( ) SI SI 1+( )–( )
2Dκ2

--------------------------------------------------------------------- 
  2C i

π
2
---±+ln C1 IK IK,–+

 
 
 

,=
where C ≈ 0.57721566… is the Euler–Mascheroni con-
stant;

and Jk(x) and Nk(x) are the kth-order Bessel and Neu-
mann functions, respectively. The sign of imaginary
unit in Eq. (24) is equal to the sign of the expression
J0(SK(SK + 1) – SI(SI + 1))/2. As follows from Eq. (24),
the elements of the collision superoperator depend only
on the difference in the squares of the total spins of the
two-particle states and do not depend on the total-spin
projection on any preferred direction. Moreover, the

C1 IK IK,
π
κ
---

N1 z0( )z0κr0 2N0 z0( )–
J1 z0( )z0κr0 2J0 z0( )–

------------------------------------------------------,=

z0 2
i J0 SI SI 1+( ) SK SK 1+( )–( )

2Dκ2
-----------------------------------------------------------------------,=
exchange integral and the total spin of the pair appear
only in the combination J0(SK(SK + 1) – SI(SI + 1))/2.
This combination gives the difference in the energies of
the pair states with the total spins SK and SI . The off-
diagonal elements of the collision superoperator are
equal to zero. The diagonal elements of P having I and
K indices denoting states with the same total spin are
also equal to zero. Therefore, the indices of the nonzero
elements of the collision superoperator are taken to be
the values of the total spin characterizing a certain state.
Substituting the results obtained for the collision super-
operator into Eq. (6), we can obtain kinetic equations
for one-particle density matrices.

We are planning to use these equations to analyze
the manifestation of spin exchange in EPR spectra. In
this case, observable values are the transverse compo-
nents of spin magnetization; therefore, we have to know
kinetic equations for the one-particle matrix elements
SICS      Vol. 101      No. 5      2005
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 and . From Eqs. (6), for the matrix

elements  and  we obtain the follow-
ing equations:

(25)

where  are the Clebsch–Gordan coeffi-

cients [12].

3. KINETIC EQUATIONS 
FOR THE TRANSVERSE MAGNETIZATIONS 

OF A AND B PARTICLES

In EPR spectroscopic experiments, observable val-
ues are the transverse magnetization components

(26)

Assuming that the spins under study are in a near-
equilibrium state and linearizing Eq. (25) in small devi-
ations of the one-particle matrices from the diagonal
matrices, we obtain kinetic equations for the transverse
magnetization components of spin subensembles (see
Appendix):

(27)
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JOURNAL OF EXPERIMENTAL A
The spin-exchange rate constants are

(28)

where

.

In the expressions for K1 and K2, the sums are taken
over the transitions in the two-particle system that cor-
respond to a change in S by unity. Each transition is
characterized by a specific S parameter due to the non-
equidistance of a spectrum. The dependences of the
spin-exchange rate constants on the molecular-kinetic
parameters are involved in the corresponding leff(S)
sets. A set of weight multipliers N(S)/(SA/B(SA/B + 1)) has
a purely statistical nature, since it is obtained via the
convolution of the products of the Clebsch–Gordan
coefficients in the kinetic equations for the transverse
magnetizations over all indices (see Appendix).

Equations (28) demonstrate that the K1 and K2 coef-
ficients are related as the partner spins squared, i.e., as
the magnetic moments of the colliding partners. There-
fore, the spin exchange caused by the collisions of para-
magnetic particles A and B broadens the EPR lines of
these particles differently. According to Eqs. (28), the
exchange-induced broadening of the EPR lines of par-
ticles A and B satisfies the relation

(29)

Note that a relation similar to Eq. (29) was also
obtained in [1] for the exchange-induced broadening of
EPR lines in the framework of the sudden collision
model applied for the collisions of spin-1/2 paramag-
netic particles with particles having arbitrary spins. For
the case of collisions of particles with the same spins
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(1/2 or 1), Eqs. (28) and (29) reproduce the results
obtained in [6] and [7].

We now give explicit expressions for spin-exchange
rate constants in certain particular cases. For spin
exchange between radicals (SA) and triplets (SB), we
have

(30)

For spin exchange between two different triplet
states, we have

(31)

For spin exchange between spin-1/2 particles and
those with spin SB, we obtain

(32)

The spin-exchange rate constants (28) can be rewrit-
ten as

(33)

where Reff is the effective spin-exchange radius.

The effective spin-exchange radius depends on the
interaction parameters J0 and κ, the interdiffusion coef-
ficient D of colliding particles, and the distance r0 of
closest approach. Depending on these parameters, the
effective radius can vary in a wide range. For compari-
son, we note that, in the sudden collision model, these
radii are expressed by the formulas

(34)

for the spin exchange between paramagnetic particles
with a spin SA = 1/2 and particles with an arbitrary
spin SB [1]. According to these formulas, the effective
radius cannot exceed r0/2. This result is caused by the
fact that the sudden collision model does not take into
account the extended character of spin–spin interac-
tion. In the situation of the diffusion passage of the par-
ticles through an exchange-interaction region, which is
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considered in this work, the following expressions for
effective radii can be derived from Eqs. (28):

(35)

These expressions for effective radii can be substantially

simplified in the limiting cases. At  < 1,
we obtain

(36)

(37)

Two limiting cases are possible here, depending on the
relation between r0 and 1/κ. If the exchange integral
decreases slowly with increasing interparticle distance,
i.e., if r0 < 1/κ, we have

(38)

In this case, as could be expected, the effective spin-
exchange radius is virtually independent of the mini-
mum distance r0 between the centers of the colliding
particles, and the characteristic meeting time is

(39)

In other words, this is the time of diffusion passage
through a region of width 1/κ.
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If the exchange integral decreases rapidly, i.e., if
r0 > 1/κ, we have

(40)
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Fig. 1. Dependence of /r0 (see Eqs. (35)) on the inter-

diffusion coefficient D. Different curves are plotted at dif-
ferent rates of decrease κ of the exchange integral: κ =
(1) 2 × 108, (2) 1 × 108, (3) 0.6 × 108, and (4) 0.4 × 108 cm–1.
The calculations were performed at SA = 1/2, SB = 1, r0 =

5 × 10–8 cm, D = 10–7–10–5 cm2/s, and J0 = 1010 rad/s.
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Fig. 2. Dependence of /r0 (see Eqs. (35)) on the inter-

diffusion coefficient D. Different curves are plotted at dif-
ferent values of the exchange integral J0: J0 = (1) 1010,

(2) 1011, (3) 1012, and (4) 1013 rad/s. The calculations were
performed at SA = 1/2, SB = 1, r0 = 5 × 10–8 cm, D = 10–7–

10–5 cm2/s, and κ = 108 cm–1.

Reff
A
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In this case, spin exchange occurs in a sufficiently thin
layer (of thickness 1/κ), and the characteristic meeting
time is

(41)

In other words, this is the time of diffusion passage
through a thin layer located between spheres with radii
r0 and r0 + 1/κ. As would be expected, at small

, the spin-exchange rate constants are pro-
portional to (J0)2 and the leff(S) components are propor-
tional to (J0S)2.

At  @ 1, we have (S)  0, and the
effective spin-exchange radius depends logarithmically
on the exchange integral:

(42)

In this case, the characteristic meeting time is specified
by the time of diffusion passage through a region of
radius 1/κ (see Eq. (39)). Since the exchange integral
changes exponentially, we should expect a logarithmic
dependence of the effective spin-exchange radius on
the interaction intensity and the diffusion coefficient at
high values of J0, and a sufficiently small rate of its
decrease with increasing distance.

To illustrate the results obtained, we show some
examples of the dependences of the effective radius on
the molecular-kinetic and magnetic-resonance parame-
ters (Figs. 1, 2). The parameters for these calculations
were chosen as follows. At room temperature, the dif-
fusion coefficient of molecules in water is about
10−5 cm2/s. The viscosity inside micellae is two orders
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of magnitude higher than the water viscosity; therefore,
the diffusion coefficient of paramagnetic particles in
micellae should be on the order of 10–7 cm2/s. For inter-
atomic interaction, the exchange integral decreases e
times within a distance of about 0.3 × 10–8 cm, which
corresponds to the slope of κ = 3.3 × 108 1/cm. In mol-
ecules, unpaired electrons are delocalized and the
exchange interaction can be affected by ligands or
chains of chemical bonds; therefore, the rate of
decrease of the exchange integral can be smaller than
the rate given for interatomic interaction. For atoms, the
exchange integral at the distance of their van der Waals
radii is about 1012 rad/s [1].

An analysis of Figs. 1 and 2 reveals the following
features. The effective spin-exchange radius decreases
with increasing rate of decrease of the exchange inte-
gral with increasing distance between colliding parti-
cles. The rate of decrease of the exchange integral
affects the volume of the effective spin–spin interaction
region. The higher the rate of decrease of the exchange
integral, the smaller this volume and the shorter the
interaction time of colliding particles. As a result, the
effective spin-exchange radius should decrease as the
rate of decrease of the exchange integral increases. It is
this behavior that is observed in Fig. 1.

The effective spin-exchange radius can substantially
exceed the minimum distance r0 between the centers of
the colliding particles, which can be explained by the
fact that spin–spin interaction also changes the spin
states at distances longer than r0. The effective spin-
exchange radius decreases with increasing diffusion
coefficient. This behavior should be expected, since the
time within which pair partners are in an interaction
region decreases with their increasing mobility. The
effective spin-exchange radius increases with the
exchange integral J0 (Fig. 2).

4. CONCLUSIONS

The spin-exchange rate constants K1 and K2 can be
determined by EPR spectroscopy from the broadening
of EPR lines or from the exchange-induced narrowing
of an EPR spectrum [1]. To interpret experimental data,
one has to calculate the effective spin-exchange radii.
In this work, we calculated the effective radii of bimo-
lecular spin exchange for particles with arbitrary spins,
as applied to nonviscous liquids. The calculations were
performed with allowance for the extended character of
exchange interaction on the assumption of diffusion
particle motion. The calculation algorithm used here
can also be applied to viscous liquids. In this case, the
spin Hamiltonian of a system must also take into
account anisotropic terms. As a result, linked parabolic
equations for the elements of the GIK, MN(r) operator are
obtained, and they can be solved only numerically.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Thus, the spin-exchange rate constants have the
form

(43)

and can be determined from EPR experiments. At least
one of the unknown parameters can be found from a
comparison of experimental data with theoretical cal-
culations. For example, the concentrations of paramag-
netic particles can be determined from a comparison of
experiment with theory if the magnetic-resonance
parameters, the spins of colliding particles, the
exchange integral at the collision radius, the rate of
decrease of the exchange integral, the collision radius
of the particles, and their interdiffusion coefficient are
known from independent sources. This possibility can
be very important in studying molecule collisions in
complex systems, such as biological objects (e.g.,
see [1]). The study of the dependence of the spin-
exchange rate constant on the diffusion coefficient can
be rather fruitful (see Figs. 1, 2). The diffusion coeffi-
cient can vary when the temperature or solvent is
changed. By comparing the theoretical results obtained
with experimental data on spin exchange, we can deter-
mine the exchange integral at the maximum approach
of colliding particles and the rate of decrease of the
exchange integral.
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APPENDIX

We derive kinetic equations for the transverse mag-
netizations of the subensembles of spins A and B for
one-particle density matrices.

Equations (6) written for the matrix elements of
one-particle density matrices that enter into magnetiza-
tion have the form of Eqs. (25). We consider systems
that are close to equilibrium at high temperatures, so
that the quadratic terms in Eqs. (25) can be linearized
as follows. The diagonal elements of the one-particle
density matrices are taken to be equal to 1/(2SA + 1)
plus first-order infinitesimals in the σA matrix and equal
to 1/(2SB + 1) plus first-order infinitesimals in the σB

matrix. The off-diagonal elements are assumed to be
first-order infinitesimals. If we retain only terms up to

K 4πDReff SA SB J0 κ D, , , ,( )C=
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the first order of smallness inclusively in Eqs. (25), then
the first-order infinitesimals

would correspond to these terms for the first equation in
Eqs. (25), and the first-order infinitesimals for the sec-
ond equation in Eqs. (25) would have the form
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The expressions for the zeroth-order terms contain the
products of the Clebsch–Gordan coefficients that have
the same sums of the projections of spins A and B and
the projections of the total spin differing by unity.
According to the definition of the Clebsch–Gordan
coefficients, this means that these terms are identically
zero. Thus, the linearized equations form a closed sys-
tem for the matrix elements entering into the transverse
magnetizations of subensembles A and B.

We now write kinetic equations for the transverse
magnetizations of subensembles A and B (convolution
over all indices is implied in the right-hand sides of
these equations):
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Using the well-known properties of the Clebsch–
Gordan coefficients [12], we find that, after convolution
over mA and mB , the terms with the S and S ' indices that
differ by less than unity are retained in the equations
obtained. The terms with the same S and S ' give no con-
tribution, since the corresponding PS, S; S, S multipliers
are equal to zero. Note that the convolution over these
projections does not require the linearization of the pair
density matrix; this requirement appears for convolu-
tion over the other indices. Thus, the transverse magne-
tization transfer rate constants are only contributed by
the diagonal PS1, S2; S1, S2 elements with S1 and S2 differ-
ing by unity, irrespective of whether the pair density
matrix was linearized or not. This circumstance is
related to the fact that the transverse magnetizations are
irreducible first-order tensor operators; in the basis of
the total spin of a two-spin system, they have nonzero
matrix elements between the states whose total spins
differ by not more than unity (the triangle rule).

By making allowance for this circumstance and
using the well-known relations for the vector summa-
tion coefficients [12], we convolute the right-hand sides
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of these equations over all projections of the angular
momenta of the subsystems. As a result, we have

We introduce the designations leff(S) = (PS, S – 1; S, S – 1 +
PS – 1, S; S – 1, S)/4 and

and obtain Eqs. (27) and (28).
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Abstract—The excitonic representation method for describing collective excitations in the quantized Hall
regime makes it possible to simplify analysis of the spectra and to obtain new results in the strong magnetic
field limit, when EC ! "ωc (ωc is the cyclotron frequency and EC is the characteristic Coulomb energy). For an
integer odd filling factor ν greater than unity (i.e., for ν = 3, 5, 7, …), the spectra of one-cyclotron magneto-
plasma excitations are calculated. For unit filling factor, the existence of a spin biexciton (bound state of two
spin waves) corresponding to excitation with a spin change (δS = δSz = –2) is proved. The exact equation deter-
mining the ground state of the biexciton is derived in the thermodynamic limit Nφ  ∞ (Nφ is the system
degeneracy). The exchange energy of this state is lower than for a single spin wave (with δS = δSz = –1) for the
same value of the 2D wavevector q. In the limit q  ∞ corresponding to the decay of a biexciton into a pair
of quasiparticles one of which is a trion with a spin of –3/2, the energy is found to be lower than the energy

(e2/εlB)  required for exciting an electron–hole pair in the strictly 2D case (lB is the magnetic length and ε
is the dielectric constant), although this energy is higher than another “classical” result (e2/2εlB) , corre-
sponding to the excitation of a skyrmion–antiskyrmion pair (|δS| = |δSz | @ 1). The solution of the exact equation
gives the trion binding energy and the activation gap for quasiparticles whose excitation corresponds to a
change in the total spin by δS = δSz = –3. The energy of a spin biexciton is calculated for values of the wavevec-
tor such that qlB @ 1. © 2005 Pleiades Publishing, Inc. 

π/2

π/2
1. INTRODUCTION

The Coulomb interaction is one of the main factors
determining the behavior of the electron system in the
regime of the quantum Hall effect [1]. If a 2D electron
gas is an insulator, this interaction determines or sub-
stantially renormalizes the activation gap in the excita-
tion of dissipative current. A typical example is the
fractional quantum Hall effect, in which the gap for fill-
ing factors ν = 1/3, 1/5, … is completely determined by
the interaction [1, 2]. At the same time, the Zeeman gap
(ν = 1, 3, 5, …; the total spin is equal to the number of
electrons at the upper Landau level, S = Nφ/2, where

Nφ = L2/2π  and L × L is the area of the system) and
the cyclotron gap (ν = 2. 4. …; the system is not polar-
ized, S = 0), which already exist in the absence of cor-
relations, are found to be much larger in actual practice
due to the interaction even for an integer filling factor.

In all quantum-Hall dielectrics of this type, low-
lying excitations are zero-charge (neutral) collective
excitations of the type of electron density waves [3],
excitons [2, 4–10], or exciton complexes [6, 10–14].
The emergence of Fermi quasiparticles in the system
[15] is the result of the limiting transition to infinitely
large values of the wavevector in the spectra of these
excitations [4–7]. Thus, generation of charge carriers

lB
2

1063-7761/05/10105- $26.000892
(and, hence, the existence of an activation gap) is
closely associated with the lower part of the spectrum
of a 2D electron gas.

It should be noted that this problem remains topical.
The analytic solution turns out to be possible only for
three simplest excitations even for an integer filling fac-
tor and even in the first approximation in the small
parameter rC = EC/"ωc (EC = αe2/εlB , where α is the
form factor determined by the finite electron gas width;
α < 1 in all cases). These excitations are a cyclotron
magnetoplasma wave corresponding to an upward elec-
tron transition to a Landau level (δn = 1) without a
change in spin (δS = δSz = 0 [5–7], a spin wave with an
odd filling factor (δS = δSz = –1 and δn = 0) [4–7] and
a spin-cyclotron exciton with even filling factor (δS =
δSz = –1 and δn = 1) [7]. In the remaining cases, Cou-
lomb corrections to the exciton spectra were calculated
not exactly, but only in the framework of the reduced
Coulomb interaction model, which is a version of the
mean field approximation as applied to exciton excita-
tions [7–9].

Here, we will use the excitonic representation for
calculating Coulomb corrections in the simple and
familiar cases, as well as in more complex cases. We
consider a 2D electron gas with an integer filling factor
ν and confine our analysis to a first-order approxima-
 © 2005 Pleiades Publishing, Inc.



        

EXCITONIC REPRESENTATION: COLLECTIVE EXCITATION SPECTRA 893

                             
tion in parameter rC . Such a system is an insulator or a
quantum-Hall ferromagnet for an odd ν. (In the latter
case, all electron spins in the ground state at the half-
filled upper Landau level are aligned along the mag-
netic field in view of the fact that the Lande factor in
gallium arsenide structures is negative.) The simplest
excitations in this system are excitons formed by an
electron placed on an unfilled or half-filled Landau
level with or without spin flip and an effective hole
emerging thereby on the previous level.

The exciton creation operator is defined by the for-
mula [10–13, 16–21]

(1.1)

where ap  and bp  are the annihilation (cre-
ation) operators for an electron in the states correspond-
ing to the Landau gauge conditions; subscripts a and b
denote one-electron states with different numbers n of
Landau levels and with spin sublevels σ;

(1.2)

and p is the internal quantum number of the Landau
level. The one-electron energy Ea(b) corresponding to
subscripts a (or b) is given by

(1.3)

where g is the Lande factor. In addition to notation (1.2),
we will use another notation for sublevels: subscripts
a = n and a =  correspond to n = (n, ↑ ) and  = (n, ↓ ).

The basis of one-exciton states is determined with
the help of operators (1.1):

(1.4)

where the ground state |0〉  is set in the zeroth approxi-
mation. For an integer filling factor, this means that
states (1.4) exist if sublevel a in the ground state is com-
pletely filled, while sublevel b is completely empty.
Then states (1.4) are mutually orthogonal and normal-
ized,

here, δa, b ≡ . To estimate the energies e(q) of
one-exciton excitations, we can consider the secular
equation

(1.5)

4̂abq
† 1

Nφ

---------- iqx plB–( )bp qylB/2+
† ap qylB/2– ,exp

p

∑=

4̂abq 4̂ba q–
†

,≡

ap
†( ) bp

†( )

a na σa,( ),=

Ea "ωc na 1/2+( ) gµBB σa,–=

n n

ab; q| 〉 4̂abq
†

0| 〉 ,=

q2; b2a2 a1b1; q1〈 | 〉 δa1 a2, δb1 b2, δq1 q2, ;=

δna nb, δσa σb,

det 0〈 |4̂a 'b 'q Ĥ 4̂abq
†

,[ ] 0| 〉 e q( )δa a ', δb b ',–{ } 0.=
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Generally speaking, this approach does not lead to a
correct result since system of equations (1.5) corre-
sponds to the above-mentioned mean-field approxima-
tion for excitons. However, for some important cases
associated with low-lying excitations (i.e., for specific
sets of ab pairs), the total Hamiltonian including the
Coulomb interaction can be diagonalized to a first approx-
imation in rC in the basis of one-exciton states (1.4). In
this case, the commutator in Eqs. (1.5) is determined
only by one-electron terms in the Hamiltonian and by
the above-mentioned reduced interaction, i.e., by the

 part of Coulomb Hamiltonian , which can be
diagonalized in the basis of all possible one-exciton
states for arbitrary ab pairs. In this case, we can carry

out the substitution    in Eqs. (1.5). It was
mentioned above that this equation leads to a correct
result for the spectrum e = eab(q) to a first approxima-
tion in rC for some simplest excitations. It should be

noted that, after the substitution of  for , not

only the Zeeman energy gµBB  is conserved (since

[ , ] = [ , ] ≡ 0 in all cases), but also the
one-electron orbital energy corresponding to the ope-
rator

In other words, the effect of “Landau level mixing” is

ignored in this model since [ , ] ≡ 0 (although

[ , ] ≠ 0 in the general case). The fact that the
result is exact for some sets of ab pairs in the first order
in rC only leads to second- and higher-order corrections
in the interaction. Changes in the orbital and Zeeman
energies are determined by the values of "ωcδn and
gµBBδSz , where quantum numbers δn and δSz are given
by

(1.6)

These conditions must hold for all a'b' pairs taken into
account in Eqs. (1.5). Other a'b' pairs either do not
appear in these equations, or they correspond to the
case  –  ≠ δn and, hence, lead to higher-order cor-
rections in rC . As a result, we can always write

(1.7)

where (q) is the energy associated with the
Coulomb interaction.

Ĥ int
ED

Ĥ int

Ĥ int Ĥ int
ED

Ĥ int Ĥ int
ED

Ŝz

Ŝz Ĥ int Ŝz Ĥ int
ED

Ĥ1
"ωc

2
--------- a†ap.

a p,
∑=

Ĥ1 Ĥ int
ED

Ĥ1 Ĥ int

δn nb na– nb' na'– …,= = =

δSz σb σa– σb' σa'– ….= = =

nb' na'

e q( ) "ωcδn gµBB δSz– Eδn δSz–, q( ),+=

Eδn δSz–,
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2. EXCITONIC REPRESENTATION

Henceforth, we will use variables with dimensions
of length and wavevector in units of lB and 1/lB , respec-
tively. The total Hamiltonian has the form

(2.1)

where the Coulomb part can be written as follows:

(2.2)

Here, the annihilation operators ap, bp, cp, and dp corre-
spond to their binary indices (1.2). The factors

(2.3)

can be expressed in terms of the dimensionless Fourier
component V(q) of the Coulomb potential (V(q) = 2π/q
in the ideal 2D case) and the functions (see, for exam-
ple, [6, 7, 9, 13, 17]),

(2.4)

where q– = i(qx – iqy)/  and  are generalized
Laguerre polynomials. It should be noted that func-
tions (2.4) are also encountered in the description of the
interaction between an exciton and the external field
[12, 14, 16–18].

Before considering the excitonic representation of
Hamiltonian (2.2), we write the commutation relations
for operators (1.1):

(2.5)

A part of these relations was given in [19] in a different
formulation and for a single Landau level, when a, b, c,
and d are only (0, ↑ ) or (0, ↓ ) (see also [12–14, 16–18]).
Commutation relations (2.5) thus form a Lie algebra. If

Ĥ gµBBŜz Ĥ1 Ĥ int,+ +=

Ĥ int
1

2Nφ
--------- Vbdca q( )

p p 'q,
a b c d, , ,

∑=

× iqx p p '–( )[ ] bp qy–
† d p '

† cp ' qy– ap.exp

Vbdca q( )

=  
e2V q( )
2πεlB

-----------------hnanb
q–( )hncnd

q( )δσa σb, δσc σd,

hkn q( ) k!
n!
----- q2

4
-----– 

  q–( )n k– Lk
n k– q2

2
----- 

  ,exp=

2 Ln
j

4̂cdq1

†
4̂abq2

†
,[ ] 1

Nφ

----------≡

× i
2
--- q1 q2×( )z– δb c, 4̂adq1 q2+

†
exp





–
i
2
--- q1 q2×( )z δa d, 4̂cbq1 q2+

†





.exp
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sublevel a is filled and b is completely empty in state

|0〉 , we have |0〉  = bp |0〉  ≡ 0. In terms of exciton oper-
ators, these equalities correspond to the equalities

(2.6)

where we introduced the operators of “displacement”
within sublevels:

Using now definition (1.1) and commutation rela-
tions (2.5), we can write Hamiltonian (2.2) in the exci-
tonic representation:

(2.7)

It should be noted that the one-electron part of Hamil-
tonian (2.1) in this representation has the form

(2.8)

where  =  and  = .

The next step is extraction of the exciton-diagonal-

izable part  from expression (2.7). This operator at
least should not change the one-electron energy (i.e., it
must commute with Hamiltonian (2.8)); consequently,
we retain in Eq. (2.7) only the terms for which na + nc =
nb + nd . A part of these terms form an operator for
which states (1.4) are eigenstates. This diagonal part is
given by

(2.9)

where

(2.10)

(2.11)

ap
†

Âq
†

0| 〉 δ0 q, 0| 〉 , B̂q
†

0| 〉 0,= =

Âq
† 1

Nφ

----------4̂aaq
†

, B̂q
† 1

Nφ

----------4̂bbq
†

.= =

Ĥ int
1
2
--- Vbdca q( )4̂abq

†
4̂cd q–

†

q a b c d, , , ,
∑=

– 1
1
2
---δa b,– 

  Vbaba q( )B̂0
†
.

q a b, ,
na nb≤( )

∑

gµBBŜz Ĥ1+
1
2
--- gµBB N̂n N̂n–( )

n

∑=

+ "ωc n
1
2
---+ 

  N̂n N̂n+( ),
n

∑

N̂n Nφ4̂nn0
†

N̂n Nφ4̂nn0
†

Ĥ int
ED

ĤED
di

Ĥa Ĥab,
a b,

a b≠ na, nb≤( )

∑+
a

∑=

Ĥa
1
2
--- Vaaaa q( ) NφÂq

†
Âq Â0

†
–( ),

q

∑=

Ĥab Vabba q( )NφÂq
†
B̂q[

q

∑=

+ Vbaba q( ) 4̂abq
†

4̂abq B̂0
†

–( ) ] .
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To find the contribution to the excitation energy, we

must calculate the action of commutator [ , ]
on the ground state |0〉 for the chosen ab pair. In doing so,

we should not retain in  the terms which obviously

commute with  in accordance with relation (2.5).
Using rules (2.5) and (2.6), we can also easily verify

that, although commutator [ , ] differs from
zero, its action on state |0〉  is always equal to zero. Thus,
we can easily prove that

(2.12)

in all cases. At the same time, if ν > 1 and we consider
excitations with δn = nb – na > 0, the off-diagonal part

is also significant in the expression for . Acting on
state (1.4), this off-diagonal part leads to a linear com-
bination of other one-exciton states |a'b'; q〉 , but with
the same spin δSz = σb – σa and with the same value
of δn. Thus, we can write

(2.13)

In contrast to definition (2.9), summation in this for-
mula is carried out only over ab pairs, for which sub-
level a is filled and sublevel b is empty in state |0〉 . The
terms constituting the sum (2.13) are as follows:

(2.14)

It can easily be verified that

(2.15)

Here, summation is carried out over the a'b' pairs, such
that δn = nb – na = nb' – na' = …, δSz = σb – σa = σb' –
σa' = …. Thus, Eqs. (2.12) and (2.15) form a system of
a finite number of equations that determine the eigen-

states of Hamiltonian  and, accordingly, the ener-
gies of these states for a given set of quantum numbers
δn, δSz , and q.

ĤED
di

4̂abq
†

ĤED
di

4̂abq
†

Ĥb 4̂abq
†

ĤED
di

4̂abq
†

,[ ] 0| 〉

≡ Ĥa Ĥab Ĥac Ĥbc+( )
c a b,≠
∑+ + 4̂abq

†
, 0| 〉

=  %ab q( )4̂abq
†

0| 〉

Ĥ int
ED

ĤED ĤED
di

Ĥab
off–di

.
a b,
∑+=

Ĥab
off–di

Vadcb q( )4̂cdq4̂abq[
q

∑
c d a≠ b, ,

na nd+ nb nc+=

∑=

+ Vadbc q( )4̂caq
†

4̂dbq ] .

Ĥab
off–di

4̂abq
†

,[ ] 0| 〉 %a 'b '
ab( )

q( )4̂a 'b 'q
†

0| 〉 .
a ' b ', a b,≠
∑=

ĤED
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The remaining terms of the Coulomb Hamiltonian

 =  – , with which operator  does not
commute, have the form

(2.16)

Acting on exciton (1.4), operators (2.16) generally gen-
erate “additional” two-exciton states that cannot be
reduced to one-exciton states. Nevertheless, a part of
terms in sums (2.16) commute with the one-electron
Hamiltonian (2.8); in other words, these terms lead to
two-exciton states corresponding to the same quantum
numbers δn, δSz , and q.

Even in the framework of the first approximation
in rC , these terms must be taken into account in calcu-
lating the excitation energy. Additional two-exciton
states emerge in all cases when δn ≥ 2 or even for δn =
1 if δSz = –1.

Let us consider a specific example. In the case of
unit filling factor, for the spin-cyclotron excitation

(δn = –δSz = 1; i.e., a = 0, b = ), the terms

(2.17)

must be taken into account along with  =  +

 (it should be noted that the contributions from
other operators appearing in Eq. (2.12), as well as off-

diagonal components of  in Eqs. (2.15) are
reduced to zero).

The excitonic representation is suitable in the case
when a 2D electron gas is an insulator (i.e., in the
absence of free electrons and holes). This representa-
tion indicates a change from the Fermi creation opera-
tors, which generate the eigenstates of the ideal gas and
are multiply degenerate in parameter p, to the exciton
operators, which act on the vacuum state |0〉  and form
the system of basis states diagonalizing the Hamil-
tonian

The latter includes a considerable part of the Cou-
lomb interaction; consequently, for states of the new
basis (1.7), which are classified by the natural quantum
number q, degeneracy is removed. In some cases, we

can ignore the difference between operators  and

*̂int Ĥ int ĤED 4̂abq
†

Ĥab' Vgacd q( )4̂dgq
†

4̂acq

q

∑
c d, a b,≠

g a≠

∑=

+ Vcdbg q( )4̂dcq
†

4̂dbq

q

∑
c d, a b,≠

g b≠

∑ H.c.+

1

Ĥ01
' V1010 q( )4̂01q

†
4̂01q

q

∑ H.c.+=

ĤED Ĥa

Ĥab

Ĥab
off–di

gµBBŜz Ĥ1 Ĥ int
ED

.+ +

Ĥ int
ED
SICS      Vol. 101      No. 5      2005



896 DICKMANN et al.
 and obtain correct results for the excitation energy
in the first order in rC . In a number of other cases, we

can treat the terms  as a perturbation [13] and use
exciton states as basis vectors.

The excitonic representation has a number of other
obvious advantages. First, it is independent of the spe-
cific features of the gauge used for single-electron
wavefunctions. In a different gauge, the definition of
operator (1.1) changes, but commutation relations (2.5)
and the representation of the total Hamiltonian in the
form (2.7) and (2.8) remain unchanged. Second, the
Hamiltonian of the Coulomb interaction from the four-
operator expression (2.2) is transformed into the two-
operator expression (2.7). Finally, the excitonic repre-
sentation gives the explicit form of the eigenstates of a
many-electron system and makes it possible to easily
calculate (using commutation algebra (2.5)) the transi-
tion matrix elements that determine the probability of
various kinetic processes in an electron gas in accor-
dance with the Fermi golden rule. These transitions can
be associated, for example, with electron–phonon,
electron–impurity, and other interactions (in this case,
the interactions are renormalized into exciton–phonon
[12, 17, 18], exciton–impurity [14, 20], exciton–exciton
[16], and other interactions).

In special cases, operators (1.1) were used in [10, 11]
for studying an abstract two-component Fermi system
with a symmetric model of interaction. It subsequently
turned out that in actual practice this model corre-
sponds to “intervalley waves” in a 2D semiconductor
for ν = 1 in the strong magnetic field approximation
[19, 22] or to spin waves in a quantum-Hall ferromag-
net [5–7, 12, 14, 16, 21]. Specific many-exciton states
associated with the presence of the so-called zero-exci-
ton condensate in the system were also considered
in [10−12, 14].

3. SOME RESULTS 
FOR LOW-LYING EXCITATION SPECTRA

Thus, in the first order in rC , excitations are charac-
terized by quantum numbers δn, δSz , and q and their
energies are defined by formula (1.7). Since filling fac-
tor ν is also a parameter of the system, we can classify
eigenstates using the notation |n; δn, –δSz, q〉 . For an
integral filling factor in the framework of the exciton-

diagonalizable part of Hamiltonian , solutions are
found with the help of Eqs. (2.12) and (2.15). To calcu-
late energy , we must project these equations

onto all possible states |a'b'; q〉  corresponding to chosen
values of δn and δSz (1.6) and then find the quantities

Ĥ int

*̂int

Ĥ int
ED

Eδn δSz–,
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(q) and %ab(q). After this, the problem reduces to
solving the secular equation

(3.1)

(here, the indices of matrix elements are ab and a'b'
pairs, in which sublevels a and a' are occupied, while b
and b' are empty). Such an algorithm is conventional
and is much simpler in actual practice than the Green
function method used in the well-known paper [7]. In
fact, for each specific type of states |ν; δn, –δSz, q〉 , we

can easily choose specific operators , , ,

, , and , which make contributions to the
commutators of Eqs. (2.12) and (2.15).

However, as a matter of fact, this method (as well as
the one used in [7]) gives a correct result only for exci-
tations

(here m is an integer). In this case, the order of Eq. (3.1)
is not higher than the second. We will not give here the
results for the states

since these results were obtained in [5–7].

However, we will demonstrate how to calculate the
energy of state |2m + 1; 1, 0, q〉  for m ≥ 1 since this
quantity is given incorrectly in [7] (see also [23]) and
the correct solution has not been reported to our knowl-
edge. The basis vectors of excitation |2m + 1; 1, 0, q〉
are excitons  and |mm + 1; q〉 . Details of
transformation of Eqs. (2.12) and (2.15) are given in
Appendix 1. It should be noted here that, if m < 2 (i.e.,
ν < 5), the sum over c of the operators on the left-hand
side of Eq. (2.12) makes zero contribution to %ab; how-
ever, for all m ≥ 1, we obtain

(3.2)

%a 'b '
ab( )

det %ab Eδn δSz–,–( )δa a ', δb b ',

+ %a 'b '
ab( )

1 δa a ', δb b ',–( ) 0=

Ĥa Ĥb Ĥab

Ĥac Ĥbc Ĥab
off–di

ν 2m 1; δn+ 0= = δSz–, 1 q,=| 〉 ,
2m 1; 1+ 0 q, ,| 〉 ,

2m; 1 0 q, ,| 〉 , 2m; 1 1 q, ,| 〉

2m 1; 0, 1, q+| 〉 , 1; 1, 0, q| 〉 ,

2m; 1, 0, q| 〉 , 2m; 1, 1, q| 〉 ,

m 1– m; q| 〉

%m 1– m q( ) Em um q( ) v m q( )+ ,≡=

%mm 1+ q( ) Em 1+ ,=
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where

(3.3)

(3.4)

J0 is the Bessel function, while off-diagonal matrix ele-
ments determined from Eq. (2.15) are given by

where

(3.5)

(these off-diagonal terms were obtained in [7, 23]).

Consequently, the energy e = "ωc + (q) of both
modes is determined by the following Coulomb correc-
tions:

(3.6)

Figure 1 shows the results of calculations. It is note-
worthy that the Coulomb energy of both modes is pos-
itive for all values of q. Exactly the same property is
inherent in the corrections calculated in the first order
in the interaction for other spinless excitations [5–7]. It
should be noted that, conversely, the second-order cor-
rection in rC is negative in most cases. In particular, for
q = 0, it is this correction that determines the negative
exchange shift for the spin–cyclotron mode |2m; 1, 1,
q = 0〉  [24].

More complex excitations cannot be calculated in
the exciton basis (1.7). In this case, we must extend the
basis and go beyond the scope of the reduced model

um q( ) 1
Nφ
------ Vm 1mmm– 1– p( ) 1 ip q×( )zexp–{ }

p
∑=

=  
e2

εlB

------- p pd
2π

----------V p( ) p2

2
-----– 

  Lm 1–
p2

2
----- 

 exp

0

∞

∫

× Lm
p2

2
----- 

  1 J0 pq( )–[ ] ,

v m q( ) Vm 1mm– 1m– q( )=

=  
e2q

2
V q( )

4πεlBm
---------------------- q2

2
-----– 

  Lm 1–
1 q2

2
----- 

 
2

,exp

%mm 1+
m 1– m( ) %m 1– m

mm 1+( )
Wm q( ),= =

Wm q( ) Vmmm 1m– 1+ q( )=

=  
e2q2V q( )

4πεlB m 1+( )m
----------------------------------------- q2

2
-----– 

 exp

× Lm 1–
1 q2

2
----- 

  Lm
1 q2

2
----- 

 

E1 0,
±

E1 0,
± q( )

Em q( ) Em 1+ q( )+
2

------------------------------------------=

± Em q( ) Em 1+ q( )–
2

------------------------------------------

2

Wm q( )[ ] 2+ .
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based on Hamiltonian  to obtain the solution. For
example, for an excitation of the type |ν = 1; 2, 0, q〉 ,
exciton |02; q〉  exhibits quantum fluctuation to the two-

exciton state |0〉  (orthogonal to |02; q〉) due

to the presence of  = (p)  in
expression (2.16). In this case, we must seek the solu-
tion in an extended basis; i.e., we must represent the
state in the form

(3.7)

after which the solution (in the first order in rC) can be
reduced to the following specific mathematical prob-
lem: substitute expression (3.7) into the Schrödinger
equation,

where

,

and project this equation onto |0〉  and

|0〉 . This gives a system of two integral
equations for the function ϕ20, which contain the
sought quantity E2, 0(q) as a parameter.

Ĥ int
ED

4̂01q p–
†

4̂01p
†

Ĥ02' V1120p∑ 4̂01p
†

4̂12p

1; 2, 0, q| 〉 4̂02q
†

0| 〉=

+
1

Nφ

---------- ϕ20 s( )4̂01q/2 s–
†

4̂01q/2 s+
†

0| 〉 ,
s

∑

Ĥ int 1; 2, 0, q| 〉 E2 0, q( ) 1; 2, 0, q| 〉 ,=

Ĥ int Ĥ0 Ĥ1 Ĥ01 Ĥ02 Ĥ02'+ + + +=

4̂02q
†

4̂01q p–
†

4̂01p
†

1.0

0.8

0.6

0.4

0.2

0

0 1 2 3 4

Energy

q

E+
1.0

E–
1.0

Fig. 1. Dispersion of magnetoplasma modes (q) and

(q) vs. the wavevector plotted in units of 1/lB . Calcu-

lations are made using formula (3.6) for filling factor ν = 3
(m = 1). The energy in units of e2/εlB is plotted along the
vertical axis.

E1 0,
+

E1 0,
–
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Analogously, the spin–cyclotron excitation for ν = 1
can be presented in the form

(3.8)

(exciton | ; q〉  is mixed with the combination of sin-
gle-cyclotron magnetoplasmon and a spin wave due to
the presence of terms (2.17) in the Hamiltonian). After
this, the problem for ϕ11 and E1, 1(q) is reduced to solv-
ing two integral equations.

We will not give here the cumbersome numerical
calculation of the energies of states (3.7) and (3.8). We
will consider instead a simple two-exciton excitation
|ν = 2m + 1; δn = 0, –δSz = 2, q〉 , which is not mixed
with any one-exciton excitation.

4. TWO-EXCITON STATES

First, we will consider some general properties of
two-exciton states. We will discuss only one type of
such excitations, namely, the case when the sublevel
indices in both exciton operators are the same,

(4.1)

(naturally, |ab; q, s〉  ≡ |ab; q, –s〉 . This state is orthogo-
nal to any other two-exciton state |a'b'; q', s'〉  only if
(a, b) ≠ (a', b') or q' ≠ q. At the same time, orthogonality
for s ≠ s' is determined in a special way. Let us consider
the following combination:

(4.2)

In fact, physical meaning can be attached only to the
projection of this state on some other state. Using com-
mutation algebra (2.5), we can find that

(4.3)

Here, we define the “antisymmetrization” transforma-
tion in the following way:

(4.4)

Applying this transformation twice is equivalent to the

single transformation  = . Consequently, if

we carry out the substitution fs  fs + gs –  in the

1; 1, 1, q| 〉 4̂01q
†

0| 〉 ∫=

+
1

Nφ

---------- ϕ11 s( )4̂00q/2 s–
†

4̂01q/2 s+
†

0| 〉
s

∑

01

ab; q s,| 〉 1
2
---4̂abq/2 s–

†
4̂abq/2 s+

†
0| 〉=

f s ab; q s,| 〉 .
s

∑

f s ' s q; ba|ab; q ' s ', ,〈 〉
s '

∑ δq q ', f s
a( ).≡

f s
a( ) 1

2
--- f s

1
Nφ
------ f s ' i s s '×( )z[ ]exp

s '

∑–
 
 
 

.=

f s
a( ){ } a( )

f s
a( )

gs
a( )
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sum (4.3) (gs is an arbitrary function), this will not
affect the result. Thus, function fs is determined ambig-
uously and contribution comes only from its “antisym-

metric” component . Analysis shows that such a
property of the envelope function fs in representation (4.2)
is the result of commutation relations for the Fermi
operators in definition (1.1) (i.e., a consequence of per-
mutation antisymmetry of the electron gas wavefunc-
tion; see [6]). If fs = , we can use relation (4.3) to
derive the orthogonality condition for the basis states in
the form

where  = (  + )/2 and, accordingly,

Normalizability of state (4.2) indicates the finiteness of

sum . If we pass from summation to integra-
tion with respect to s and, accordingly, redesignate fs =

f(s), the normalizability is ensured by the finite-
ness of the integral,

(4.5)

We assume that exciton |ab; q〉  belongs to simple
excitations for which energy e(q) (1.7) can be calcu-
lated in a first order in rC using the exciton-diagonaliz-

able Hamiltonian . Applying the total Hamiltonian
(see formulas (2.1) and (2.7)) to state (4.1), we find that
the energy of this state is given by

Consequently, this state corresponds (to within EC/Nφ)
to two noninteracting excitons. In particular, if ν =
2m + 1 and a = m, while b = , two-exciton state (4.1)
is formed by two noninteracting spin excitons (two spin
waves) with the total energy |gµBB| + E0, 1(q/2 – s) +
E0, 1(q/2 + s). Here, E0, 1 is the exchange energy defined
as (see [4–7])

(4.6)

which can easily be verified using expression (2.12).

f s
a( )

δs s0,

s q; ba, ab; q0 s0,〈 | 〉 δq q0, δs s0,
a( )

,=

δs s0, δs0 s, δ s– 0 s,

δs s0,
a( ) 1

4
--- δs0 s, δs0 s–, ---+=

–
1

Nφ
------ i s s0×( )z[ ] i s0 s×( )z[ ]exp+exp( ) .

f s f s
a( )

s∑
Nφ

1/2–

sf * s( ) f a( ) s( )d∫ ∞.<

ĤED

e
q
2
--- s+ 

  e
q
2
--- s– 

  O
EC

Nφ
------ 

  .+ +

m

E0 1, q( ) 1
Nφ
------ Vmmmm p( ) 1 i p q×( )zexp–{ }

p

∑=

=  
e2

εlB

------- p pd
2π

----------V p( ) p2

2
-----– 

  Lm
p2

2
----- 

 
2

1 J0 pq( )–[ ] ,exp

0

∞

∫
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Let us now calculate the energy of two-exciton
state (4.2) in the case when a = m and b = . To the first
order in interaction, we can confine our analysis to the
reduced Hamiltonian (as in the case of a single spin
exciton); in this case, the Schrödinger equation can be
reduced to

(we denoted f (s) = ϕ02, s). Let us now project this
equation onto state (4.1) with ab = . Using formu-
las (2.10) and (2.11), commutation relations (2.5), and
identities (2.6), (4.3), and (4.4), we arrive at the integral
equation for function ϕ02,

where operator +q[ϕ02(s)] is given by

(4.7)

Here, E0, 1 is defined by formula (4.6). In our case, a dis-
tinguishing feature of operator (4.7) is that

consequently, the equations for  and ϕ02 (prior to
antisymmetrization) appear identical. Formally, we
could simply solve the equation for ϕ02,

(4.8)

without imposing any constraints on the symmetry of
the solutions.

For unit filling factor, Eq. (4.8) was derived in [25]
using a different approach. This equation describes an
excitation corresponding to δn = 0 and δS = δSz = –2.
Obviously, the solutions to this equation include singu-
lar normalized functions (see condition (4.5)), such that

(4.9)

These are functions from the continuum, which corre-
spond to a pair of free spin waves. The exciton–exciton

m

ϕ02 s, s( ) Ĥm Ĥm Ĥmm+ + 4̂mmq/2 s–
†

4̂mmq/2 s+
†

,[ ] 0| 〉
s

∑

=  E ϕ02 s, s( ) mm; q s,| 〉
s

∑

mm

Eϕ02
a( ) s( ) +q ϕ02 s( )[ ]{ } a( )

,=

+q ϕ02 s( )[ ] E0 1,
q
2
--- s+ 

  E0 1,
q
2
--- s– 

 +=

× ϕ02 s( ) 1
π
--- pϕ02 p( )Vnnnn p s+( )d∫+

× p s×( )z[ ]cos
p q×( )z

2
-------------------

s q×( )z

2
------------------+cos–

 
 
 

.

+q f[ ]{ } a( ) +q f a( )[ ] ,=

ϕ02
a( )

Eϕ02 s( ) +q ϕ02 s( )[ ] ,=

ϕ02 s( ) 2 C δ s s0–( ) δ s s0+( )+[ ] .=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
interaction in this case is negligibly weak. Indeed, sub-
stituting expression (4.9) into (4.8) nullifies the integral
term in the thermodynamic limit Nφ  ∞ so that the
energy becomes

It should be noted that the lower edge of such a spin-
exciton band is determined (for a given value of total
momentum q of the pair) by

(4.10)

Obviously, we always have Em(q) < E0, 1(q); i.e., if we
disregard the Zeeman energy, the formation of such a
pair is thermodynamically more advantageous than the
formation of a single spin wave with the same value
of q. The upper edge of the band is independent of q
and is attained for s0  ∞.

The following question is of fundamental impor-
tance: does a regular solution to Eq. (4.8), which is inte-
grable in quadratures and for which the integral term in
Eq. (4.7) differs from zero, also exist in addition to
solutions (4.9)? The existence of such a solution would
indicate the existence of a spin biexciton. We can give
an affirmative answer to this question (at least, for unit
filling factor (for m = 0)): a spin biexciton, viz., the
bound state of two spin waves, must exist for all finite
values of q except the point q = 0. This conclusion fol-
lows from analysis of Eq. (4.8) in the limit q  ∞.

5. DECAY OF A BIEXCITON: 
CHARGED SPIN EXCITON (TRION)

We assume that the sought excitation (a spin biexci-
ton) exists. As in the case of a magnetic exciton [4, 5,
7], transition q  ∞ indicates its decay. Indeed, for
large values of q, at least one exciton in the two-exciton
state (4.1), (4.2) is characterized by a large mean dis-
tance between the electron and effective hole constitut-
ing it (this quantity for exciton is R = q × ez , where ez

is a unit vector along the z axis; see [4, 7]). At the same
time, if the function f(s) is localized within an interval
|s| & 1, state (4.2) obviously transforms for q  ∞
into the four-particle state corresponding to two nonin-
teracting electrons and two holes. The energy of such a
state is not minimal, but the maximum possible energy
of the four-particle excitation. To determine the state
with the minimal energy (i.e., the ground state in the
case of decay with q  ∞), we must seek a function
f(s), which is obviously localized within an interval
|s − q/2| & 1. One of the excitons decays into an elec-
tron and a hole, while the other exciton forms a bound
state with one of decay quasiparticles (i.e., it forms a
cooperative Fermi excitation—a charged spin exciton
(trion)). These states are well known in the regime of
the quantum Hall effect (see [15, 26] and the literature
cited therein).

E E0 1, q/2 s0+( ) E0 1, q/2 s0–( ).+=

Em q( ) E0 1, q/2 s+( ) E0 1, q/2 s–( )+[ ] .
s

min=
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Let us now turn to Eq. (4.8). It is difficult to find a
correct limit as q  ∞ (namely, with ϕ02 localized in
the neighborhood of s ≈ q/2) in expression (4.7). We
transform this equation as follows. First, we choose the
direction of q parallel to the y axis: qx = 0, qy = q. We
retain only the antisymmetric part in Eqs. (4.7), (4.8)

(i.e., we assume that ϕ02 = ) and apply to it the Fou-
rier transformation in variable sx . Preserving the same
notation sx for the new conjugate variable, we obtain
instead of Eq. (4.8)

(5.1)

where

(5.2)

It follows from the property of antisymmetry (ϕ02 =

) and parity of ϕ02 in each variable that

(5.3)

i.e., function Φ is even and possesses the Fermi permu-
tation symmetry. Equation (5.1) is special in that the

ϕ02
a( )

E 'Φ sx sy,( ) 1
2π
------=

× w U w
sx sy–

2
--------------+ w

sy sx–
2

--------------+, 
 





d

∞–

∞

∫

× Φ w
sx sy+

2
---------------+ w

sx sy+
2

---------------–, 
 

+ U w
sx sy+

2
---------------+ w

sx sy+
2

---------------–, 
 

× Φ w
sx sy–

2
--------------+ w

sy sx–
2

--------------+, 
 

– U q/2 sy+ w sx+,( ) U q/2 sy– w sx+,( )+[ ]Φ w sy,( )

– U q/2 sx+ w sy+,( )[

--+ U q/2 sx– w sy+,( ) ]Φ sx w,( )




,

Φ sx sy,( ) sx' isxsx'–( )ϕ02 sx' sy,( ),expd

∞–

∞

∫=

U sx sy,( ) sx isxsx'–( )Vmmmm sx' sy,( ),expd

∞–

∞

∫=

E ' E
1
π
--- d2p Vmmmm p( )∫– E 2E0 1, ∞( ).–≡=

ϕ02
a( )

Φ sx sy,( ) Φ sx– sy,( )=

=  Φ sx sy–,( ) Φ sy sx,( );–=
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unknown function is a function of two variables,
whereas Eq. (5.1) contains a single integral. This sim-
plifies numerical solution of the problem.

As in the case of function ϕ02, the function Φ in vari-
able sy is localized in the neighborhood of sy ≈ q/2.
Thus, in view of properties (5.3), the neighborhoods of
all four points on the (sx, sy) plane, i.e., (q/2, ±q/2),
(±q/2, q/2) must be important for function Φ. We carry
out the substitution

where function F is on the order of unity in both vari-
ables in the vicinity of point x = y = 0. It follows from
properties (5.3) that

and, in addition, F(x, y) = –F(y, x). At the same time,
function F apparently does not exhibit parity in vari-
ables x and y. If we now perform the substitution of
variables

it can be seen in view of the above arguments concern-
ing the localization of F that some terms in the inte-
grand become negligibly small for q  ∞. As a result,
we obtain

(5.4)

Thus, we have derived the equation for function
F(x, y), which plays the role of the wavefunction of a
2D trion, viz., a new quasiparticle with spin δSz = –3/2.
(The other quasiparticle emerging as a result of decay
has a spin of –1/2.) The following two circumstances
should be emphasized. First, Eq. (5.4) is a limiting case
for the biexciton equation (5.1), which is equivalent to
Eq. (4.8); consequently we can state that this equation
describes a biexciton for q @ 1. Second, it is important
that Eq. (5.4), as well as Eqs. (4.8) and (5.1), is asymp-
totically exact in the thermodynamic limit; in other
words, in the given approximation, this equation corre-
sponds to an infinitely large number of particles
(Nφ = ∞). In this respect, our solution differs consider-
ably from the approaches used in [15, 26].

Φ q/2 x+ q/2 y+,( ) F x y,( ),=

Φ q/2– x+ q/2 y+,( ) F x– y,( ),=

Φ q/2 x+ q/2–, y+( ) F x –y,( )=

sx q/2 x, sy+ q/2 y,+= =

E 'F x y,( )

=  
1

2π
------ w U w

x y–
2

-----------+ w
y x–

2
-----------+, 

 




d

∞–

∞

∫

× F
x y+

2
------------ w+ x y+

2
------------ w–, 

  U y w x+,( )–

---× F w– y,( ) U x w y+,( )F x w–,( )–




.
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In the special case of unit filling factor (provided
that the gas is perfectly two-dimensional), i.e., for

the minimal energy (4.10) of two “free” spin excitons
with a total momentum q = ∞ is Em(∞) = E0, 1(∞) =

 (here and below, we give numerical values of
energy in units of e2/εlB). In this case, the momentum of
one spin exciton is infinitely large, while the momen-
tum of the other exciton is equal to zero, Energy E3/2 =
E' + 2E0, 1(∞) is, as expected, lower than this quantity
by the trion binding energy δE3/2 = Em(∞) – E3/2 > 0. In
spite of its apparently simple form, numerical solution
of Eq. (5.4) is a complicated problem. Indeed, it is bind-
ing energy δE3/2 , which is much smaller than energy
E' ≈ E0, 1(∞), that is a physically significant quantity. In
actual practice, this means that the smallest eigenvalue
E ' should be determined with an error not exceeding
10–4. It should be noted that kernel U can be represented
in an integral form (see Appendix 2) convenient for
computation and tabulation, which can be subsequently
used for substituting into this equation.

Let us solve Eq. (5.4) with the help of expansion in
an orthogonal basis, for which we can take Hermite
polynomials Hi (i = 0, 1, 2, …) with the corresponding
weight function

(5.5)

where Aik = –Aki . Substituting expansion (5.5) into
Eq. (5.4) and projecting it subsequently onto basis
functions

,

we arrive at a secular equation in E', in which matrix
elements Ii'k', ik are triple integrals (if we disregard inte-
gration in the representation for kernel U). One integra-
tion can be carried out analytically; however, the high
accuracy necessary for determining E' requires high
accuracy in evaluating integrals and a large number of
terms in expansion (5.5). The total number of integrals
Ii'k', ik  to be evaluated is K(K + 1)/2, where K is the num-

ν 1 m 0=( ),=

Vmmmm
e2

εlBq
---------- q2

2
-----– 

  ,exp=

π/2

F x y,( ) 1

2 i k+( )/2 πi!k!
---------------------------------AikHi x( )Hk y( )

i k 0= =

imax kmax,

∑=

× x2 y2+
2

----------------– 
  ,exp

1

2i ' k '+ πi '!k '!
-------------------------------Hi ' x( )Hk ' y( ) x2 y2+

2
----------------– 

 exp
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ber of different (with allowance for substitution x 
y) factors Aik in expansion (5.5). Consequently, K =
M(M + 1)/2, where M = imax = kmax. Calculations are
performed up to M = 27. Details are given in Appen-
dix 2. We give here the result for the binding energy:

(5.6)

Our solution contains no information on the charge
of quasiparticles emerging for q  ∞. It follows from
symmetry considerations [27] that a quasiparticle with
a spin of –1/2 may turn out to be an electron or a hole
with the same probability; analogously, an excitation
with δSz = –3/2 may have a charge of +e or –e. This fea-
ture of the solution does not at all mean that the ground
state of a biexciton determined for q  ∞ is dege-
nerate. Conditionally speaking, the representation of
states (4.1) and (4.2) determines only the mutual orien-
tation of the momenta of interacting excitons. We can in
principle pass from state (4.2) in the conjugate space to
a four-particle wavefunction in a real 2D space. The lat-
ter function must be such that its amplitude for q  ∞
is the same for both configurations: a hole plus a nega-
tive trion (h + X–) and an electron plus a positive trion
(e + X+).

Trions X+ and X– possess energy E0, 1(∞) – δE3/2 and
–δE3/2, respectively. Both excitations (X+ and X–) corre-
spond to the triplet state of a trion. Indeed, the change
in the total spin S of the system is δS = δSz = –1; this is
also valid when a spin exciton with a nonzero momen-
tum is added both to the electron (transition from the

|0〉  to  state) and to the effective hole (tran-

sition ap|0〉   ap |0〉). Such a charged triplet exci-
ton corresponds to the bound state determined by us. A
singlet exciton does not form a bound state.1 

Concluding the section, we note that other methods
also exist for calculating the binding energy of the trion.
First, we can mention the method of exact diagonaliza-
tion for a finite number of electrons Ne = Nφ ± 1 (the
case when Nφ = 80 is considered, for example, in [15]);
the error of this method is determined by the finiteness
of the value of Nφ. Second, it is an approach based on
the fact that the given many-particle problem can be
reduced to the quantum-mechanical three-body prob-
lem (for h + h + e or h + e + e) in the thermodynamic

1 In terms of the excitonic representation, a charged singlet exciton
would correspond to the limiting case s = q/2  ∞ of the two-
exciton state (4.1), in which one exciton is a “zero” exciton (i.e.,
its momentum is exactly equal to zero). The zero spin exciton
corresponds to a change in the spin numbers δSz = –1, but δS = 0.
It is just the rotation of the spin system as a whole about the
direction of the z axis. The zero exciton has zero dipole moment
and does not form a bound state with an electron or a hole.

     

δE3/2 0.05444.=

bp
† 4̂00q

†
bp

† 0| 〉

4̂00q
†
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limit if we disregard the Landau level mixing. However,
the three-body Schrödinger equation with the Coulomb
interaction for each pair of quasiparticles cannot be
written exactly since only its projection onto one level
makes sense. In this case, the limited number of basis
functions of the Landau level determines the methodi-
cal error of the calculation performed in [26]. Neverthe-
less, the results obtained in [26] are very close to our
result (namely, δE3/2 = 0.0544 [15] and 0.0545 [26].

6. DISCUSSION

The physical meaning of the formation of a trion can
be grasped even from the following simple consider-
ations. If the spin exciton momentum is small (q ! 1),
its energy is a quadratic function of the momentum
(E0, 1 ≈ q2/2 , where  is the spin exciton mass).

At the same time, the field produced by the exciton due
to the dipole moment eq × ez is linear in q; conse-
quently, for an appropriate effective arrangement of the
charges, the total energy might be lower than for a qua-
siparticle with the same charge, but with a spin of –1/2.

Let us discuss again the existence of a biexciton. It
should be emphasized that we are speaking of the state
of the system corresponding to the lowest energy for

M
s

–
X

M
s

–
X

Fig. 2. Dependence of excitation energies on the wavevec-
tor. The hatched region of spin-wave pair energy E0, 1(q/2 +
s) + E0, 1(q/2 – s) corresponds to solutions (4.9), for which
the integral term in Eq. (4.7) vanishes. The lower boundary
of this region is determined by formula (4.10). The solid
curve in this region describes the spin exciton energy
E0, 1(q) (for q  ∞, this energy is equal to the energy of
the free hole formed at the lower spin sublevel since the
electron energy is zero). The solid curve outside this region
is the spin biexciton energy E0, 2(q) (see formula (6.1)),
while the dashed curve describes the predicted behavior of
this energy for q & 1. The energies of an effective hole
(s) and a positive trion (d), as well as the energy of the for-
mation of a skyrmion–antiskyrmion pair (w), are indicated.
Calculations are performed for the ideal 2D case. The
energy in units of e2/εlB is plotted along the vertical axis and
the reciprocal wavevector in units of lB is plotted along the
horizontal axis.

~~
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preset quantum numbers δS = δSz = –2, and q. We have
determined this state for q  ∞. Obviously, it also
exists for finite but large values of q (and, hence, for the
large distance between a trion and a quasiparticle in the
real space). The energy is the sum of the trion energy
and the energy of the remote quasiparticle minus its
binding energy with the trion.

For definiteness, we consider a biexciton formed by
a positively charged exciton X+ and electron e for large
values of q. The energy of trion X+ is E0, 1(∞) – δE3/2.
The electron energy at infinity is zero. Let us now esti-
mate the binding energy of X+ and e. We know the bind-
ing energy of hole h and electron e (δE0, 1(q) = E0, 1(∞) –
E0, 1(q)). At large distances, the power expansion in
R−1 = 1/q holds. Naturally, in addition to charge, the
trion also possesses a quadrupole moment, but the field
produced by the positive charge plays the major role for
large values of R; i.e., the trion does not differ from a
hole in this respect. Consequently, in the main approx-
imation in 1/q, the binding energy of X+ and e is the
same as the binding energy of h and e. In this approxi-
mation, we obtain the following expression for the
biexciton energy:

(6.1)

In Fig. 2, the exciton energy E0, 1 is plotted as a func-
tion of the reciprocal wavevector (solid curve); the
biexciton energy E0, 2(q) is also presented (the solid
curve passing to the dashed curve). For 1/q = 0, this
quantity is equal to the trion energy E0, 1(∞) – δE3/2 . The
hatched region in the figure corresponds to the band of
free spin exciton pairs. The lower edge Em(q) of this
band is determined by Eq. (4.10), while the upper edge
is bounded by the straight line 2E0, 1(∞). All states of
this band naturally correspond to the same quantum
numbers δn = 0 and δS = δSz = –2; consequently, the
E0, 2(q) curve must pass below Em(q). Otherwise (i.e., in
the case of equality E0, 2(qc) = Em(qc) for a finite value
of qc), it would turn out that the lowest state of the sys-
tem for fixed quantum numbers δS, δSz , and q is degen-
erate, which cannot be explained by symmetry consid-
erations or certain other special factors. At the same
time, for q = 0, both energy Em and the biexciton energy
E0, 2 obviously vanish. In other words, the biexciton
does not exist at point q = 0, and function ϕ02 describing
it is formally reduced to singular form (4.9) with s0 =
0.2 It should be noted that point q ≡ 0 is “pricked out”
for the states corresponding to the edge of the spin-

2 Coulomb energy E0, 2 cannot become negative. Otherwise, it
would turn out that the ferromagnetic ground state |0〉  with filling
factor ν = 1 decays since the total spin turns out to be smaller
than its maximal value S0 = Nφ/2.

E0 2, q( ) E0 1, ∞( ) δE3/2– δE0 1, q( )–≈
=  E0 1, q( ) δE3/2 q @ 1( ).–
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exciton band also. This is due to the fact that excitation

| ;0, 0〉  = (1/2) |0〉  corresponding to the
Coulomb energy Em(0) = 0 has spin numbers δSz = –2
and δS = 0, not δSz = δS = –2 (see [12, 14] and Foot-
note 1 at the end of Section 5).

We found that the gap that is associated with the cre-
ation of fermions X+ and e (or X– and h) upon the tran-
sition q  ∞ leading to biexciton dissociation is
smaller than the value of E0, 1(∞) determined by the
decay of a spin exciton. The gain in energy (5.6) in field
B = 10 T corresponds approximately to 9 K in the ultra-
two-dimensional limit. We have disregarded the differ-
ence in the Zeeman energies for excitations with δSz =
–1 and δSz = –2. At the same time, this energy (|gµBB| ≈
2.9 K for B = 10 T) apparently does not compensate the
substantial difference in the Coulomb energies. We can
also consider larger quantum numbers |δSz | analyzing,
for example, a 3-exciton, etc. The numerical calcula-
tions made in [15] show that the Fermi gap for the con-
ventional Lande factor for GaAs (g = –0.44) is deter-
mined by small values of |δSz | ~ 1, and a fermion exci-
tation is realized for ν = 1 in the form of the so-called
skyrmion only as g  0 (in this case, δSz = –∞ and the

gap is equal to (1/2) ). Our result for the gap with
δSz = –2 is therefore intermediate between the case of
the decay of a spin exciton into an electron and an effec-
tive hole and the case of formation of a skyrmion–anti-
skyrmion pair.

Let us now consider the activation energy for an
excitation corresponding to the change δS = δSz = –3.
Obviously, for q  ∞, such a 3-exciton must also
decay into two Fermi excitations. If these excitations
have spins δSz = –3/2, the energy of the gap has already
been calculated by us. Taking into account the Zeeman
energy, we can write the gap energy as

(6.2)

i.e., the decrease in the gap due to the exchange interac-
tion amounts to 2δE3/2 ≈ 0.109. The “asymmetric” ver-
sion of dissociation into fermions with δSz = –1/2 and
δSz = –5/2 leads to a smaller gain in energy. Indeed,
such a decay would be more advantageous in the case
when a quasiparticle with a spin of –5/2 ensures an
energy gain δE5/2 larger than 2δE3/2 . However, in accor-
dance with the physical meaning (which is also con-
firmed by calculations [15]), the inequality

must hold for any K (K ≥ 1, δE1/2 = 0). For K = ∞, the

binding energy is δE∞ = 0.25  ≈ 0.31 [28].

00 4̂000
†

4̂000
†

π/2

3 gµBB E0 1, ∞( ) 2δE3/2,–+

δE
K

3
2
---+

δEK 1/2+– δEK 1/2+< δEK 1/2––

π/2
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Naturally, the above arguments pertain only to the
approximation linear in parameter rC. Even a second-
order correction (taking into account the fact that this
parameter is not small in actual practice) may introduce
a substantial correction to the calculated values of the
gaps, which reduce their values. In addition, it should
be borne in mind that the excitation spectrum is in fact
truncated for a finite q due to inevitable presence of a
smooth random potential in the 2D channel (because of
impurities located behind the spacer). Indeed, in the
case of a spin exciton, its existence is due to the fact that
the force |dE0, 1(q)/dq| of interaction between an elec-
tron and an effective hole exceeds the force |∇φ|  deter-
mined by random potential φ(r) (the characteristic val-
ues of |∇φ|  ~ 0.05–0.1 K/nm). This condition is violated
even for q * 4; i.e., the gap turns out to be much smaller
than the value formally determined for q  ∞. One
more correction appears if we take into account the
thickness of the 2D gas in the direction of the z axis.
This correction reduces the excitation energy by
approximately 30%. Thus, the experimental data on the
fermion gap (which is determined from the activation
energy in the regime of the quantum Hall effect [29])
generally do not contradict the theoretical concepts. If
corrections for disorder, the finiteness of rC , and the
finiteness of the gas thickness are taken into account,
the gap turns out to be quite close to the value given by
formula (6.2).
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APPENDIX 1

Let us consider by way of example Eqs. (2.12)
and (2.15) in the specific case of filling factor ν = 2m +

1 and pairs (ab) =  and (a'b') = (mm + 1).

Using the definitions of operators  and  (see
Eqs. (2.10) and (2.11) as well as the definition of “dis-

placement” operators , , , … in terms of oper-
ators (1.1)), commutation relations (2.5), and rules (2.6)

m 1– m( )
Ĥa Ĥab

Âq
†

B̂q
†

Ĉq
†
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of action of the operators, we can directly find

(A.1.1)

(we do not mark by the bar the spin index in quantities
V… since we always have Vklmn =  =  =

).

In the same way, we obtain

(A.1.2)

(this contribution emerges when m ≥ 2). We substitute
expressions (2.3) and (2.4) for V… into these formulas
and carry out summation over nc in (A.1.2). For this
purpose, we use the following functional identity for
the generalized Laguerre polynomials:

(A.1.3)

Summing expressions (A.1.1) and (A.1.2) and chang-
ing from summation to integration with respect to p, we
obtain quantity (q) in accordance with
Eq. (2.12) (see Eq. (3.2) and (3.4)). The other matrix
element %mm + 1(q) can be calculated analogously.

As regards Eq. (2.15), the contribution to its left-

hand side for the pair (ab) = ( ) comes only from
the following terms appearing in sum (2.14):

(A.1.4)

Ĥa Ĥab+ 4̂abq
†

,[ ] 0| 〉 Vm 1mm– 1m– q( )




=

+
1

Nφ
------ Vm 1m– 1m– 1m– 1– p( ) Vm 1mm– 1m– p( )–[

p

∑





– Vm 1mmm– 1– p( ) i p q×( )z[ ] ]exp



4̂m 1– mq

†
0| 〉

V
klmn

Vklmn

Vklmn

Ĥac Ĥbc+( ) 4̂abq
†

,[ ] 0| 〉
c

∑

=  
1

Nφ
------ Vm 1ncm– 1– nc, p( )[

p

∑
nc 0=

m 2–

∑




---– Vmncm nc, p( ) ]



4̂m 1– mq

†
0| 〉

k!
n!
-----zn k– Lk

n k– z( )[ ] 2





k 0=

n

∑

–
k!

n 1+( )!
-------------------zn 1 k–+ Lk

n 1 k–+ z( )[ ] 2





Ln z( )Ln 1+ z( ).=

%m 1– m

m 1– m

Vm 1m– 1mm+ q( )4̂mm 1q+
+

4̂m 1– mq[
q

∑

+ Vm 1m– 1m+ m, q( )4̂mm 1– q
+

4̂m 1mq+ ] .
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Accordingly, the contribution for the pair (a'b') =
(mm + 1) is determined by the terms

(A.1.5)

Using commutation relations (2.5), we find from

Eqs. (2.15) that the off-diagonal elements  =

 are determined by quantity (3.5).

It should be noted that identity (A.1.3) is also useful
in calculating excitations |2m; 1, 0, q〉  and |2m; 1, 1, q〉
to simplify the sum over c in Eq. (2.12) only if m ≥ 2
(i.e., ν ≥ 4).

APPENDIX 2

In Eq. (5.4), we must specify the function of kernel
U. Definition (5.2) of this function implies that

(A.2.1)

in units of e3/εlB (we consider the case when m = 0 and
V(q) = 2π/q). However, this formula is inconvenient for
tabulating the values of U(x, y) since the integral in this
formula converges slowly and the accuracy of calcula-
tions is insufficient. We transform expression (A.2.1) as
follows. Taking into account the presence of branching
point u = −i|y|, we modify the integration contour. For
|x| < |y|, it consists of segments &1 + &4, where

If, however, |x| > |y|, integration is carried out over con-
tour &1 + &2 + &3 + &4, where

(integration over an infinitely small loop in the vicinity
of u = –i|y| makes zero contribution).

Vmmm 1m– 1+ q( )4̂m 1– mq
+

4̂mm 1q+[
q

∑

+ Vmmm 1+ m 1–, q( )4̂m 1– mq
+

4̂mm 1q+ ] .

%mm 1+
m 1– m( )

%m 1– m

mm 1+( )

U x y,( ) y2

2
----– 

 exp≡

× ud

∞–

∞

∫ u2/2– i x u–( )exp

u2 y2+
----------------------------------------------

&1 e3iπ/2 x ∞– e3iπ/2 x, 0–( ),=

&4 e iπ/2– x 0+ e iπ/2–, x ∞+( ).=

&2 e3iπ/2 x y–( ) e iπ/2– y 0,–+[=

0 e3iπ/2⋅ e iπ/2– y 0 ] ,–+

&3 e iπ/2– y 0+ e iπ/2– x 0+,( )=
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First, we perform the substitution u = –i|x| + z in
Eq. (A.2.1) and integrate over segment &1 + &4. The
corresponding contribution is

(A.2.2)

where

(A.2.3)

To integrate over contour &2 + &3, we carry out the
substitution

in Eq. (A.2.1) and obtain the result, which can be writ-
ten in the following form convenient for numerical
calculations:

(A.2.4)

The final result is

(A.2.5)

Formulas (A.2.2)–(A.2.5) make it possible to create
an array of values of U(x, y) for use in the numerical
solution of Eq. (5.4). All calculations were made with
an accuracy to four decimal places. With increasing

U1 x y,( ) y2

2
----– 

 exp≡

× u
u2/2– i x u–( )exp

u2 y2+
----------------------------------------------d

&1 &4+

∫

≡ x2 y2+
2

----------------– 
  z2/2–( )exp

i x– z+( )2 y2+
-------------------------------------------

∞–

∞

∫exp

≡ 2 y2 x2+
2

----------------– 
  z

z2

2
----– 

 expd

0

∞

∫exp

×
Rx y, z( ) z2 y2 x2–+ +

Rx y, z( )
------------------------------------------------------,

Rx y, z( ) z2 y2 x2–+( )2
4x2z2+ .=

u y e iπ/2– w2e3iπ/2 for &2,

w2e iπ/2– for &3



+=

U2 x y,( ) y2

2
----– 

  u
u2/2– i x u–( )exp

u2 y2+
----------------------------------------------d

&2 &3+

∫exp≡

≡ 2 2 xy–( )exp

× w
w4/2 w2 y x–( )+[ ]exp

y w2/2+
------------------------------------------------------------.d

0

x y–

∫

U x y,( )
U1 x y,( ), x y ,<
U1 x y,( ) U2 x y,( ), x+ y .>




=
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maximal index M of the Hermite polynomials used in
expansion (5.5), the sought minimal eigenvalue of
matrix Ii'k', ik decreases (i.e., its absolute value
increases since E' < 0). Figure 3 demonstrates this
dependence. With increasing M, the dependence natu-
rally becomes weaker. The value of jump D(M) =
E'(M) – E'(M + 1) is shown in the inset. It can be seen
that D(M) exhibits a characteristic quasi-periodic
behavior, which makes it possible to extrapolate the
D(M) curve analytically to the range of values of M >
27 and in this way to calculate the value of E'(∞).
Extrapolation can be carried out in various ways, which
leads to a certain spread in the results for E'(∞). The
spread is found to be within an error of 10–5; conse-

quently, we arrive at the value of E'(∞) = –  –
δE3/2 , where the value of δE3/2 is given in Section 5.
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Abstract—Electron transport in a three-dimensional quantum wire is analyzed by taking into account electron
scattering by a single point impurity. It is shown that the magnetoconductance plotted versus chemical potential
µ has narrow peaks and closely located peaks separated by a dip when the scattering length is positive and neg-
ative, respectively. The peaks lie near the conductance steps. The thermopower plotted versus µ has narrow
peaks and closely located peaks separated by a dip when the scattering length is positive and negative, respec-
tively. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Since the discovery of conductance quantization in
quantum wires, scattering by impurities in these
nanostructures has been a subject of considerable inter-
est [1–14]. It was shown in [1–3, 12, 13] that even a sin-
gle impurity can cause conductance quantization break-
down in quantum wires and constrictions (quasi-ballis-
tic transport regime). The breakdown is most
significant in the neighborhoods of conductance steps.
Electron scattering in quantum channels, wires, and con-
strictions has been studied both for extended [15, 16] and
point impurities [1–14, 17–20]. Analyses of resonance
peaks of Breit–Wigner and Fano types in the conductance
of certain nanostructures were presented in [15, 16].

Magnetic field applied to a nanostructure induces
band hybridization in the electron spectrum and
enhances the lateral confinement of electrons. More-
over, conductance may depend not only on magnetic
field strength, but also on its direction [21]. Note also
that magnetic field may change the characteristics of
conductance steps.

In a number of papers, it was shown that the conduc-
tance curve may contain both peaks and dips near con-
ductance steps; i.e., the presence of an impurity may
cause both resonant reflection and resonant transmis-
sion.

Thermopower in quantum wires was examined
in [22, 23]. A variety of model potentials have been
proposed to describe geometrical confinement in a
wire. In this paper, we used the symmetric harmonic
potential

where m* is the effective mass and ω0 is the character-
istic frequency of the confinement potential (l0 =

, where l0 is the effective wire radius).

U x y,( ) m*ω0
2 x2 y2+( )/2,=

"/m*ω0
1063-7761/05/10105- $26.000907
The wire Hamiltonian describing the unperturbed
one-electron states in the absence of impurities is

(1)

In this paper, we analyze quasi-ballistic transport in
a quantum wire with symmetric cross section. We
examine scattering by impurities as manifested in such
transport characteristics as magnetoconductance and
magnetothermopower. In this study, we consider only
the case of a magnetic field B parallel to the wire,
because an exact analytical expression for the magneto-
conductance of a quantum wire can be obtained by
using a Dirac-delta model potential in this particular
case.

We use symmetric gauge

for the vector potential corresponding to B. Hamilto-
nian (1) has a well-known spectrum:

(2)

where ωc is the cyclotron frequency and Ω =

 (n = 0, 1, …, m ∈  Z).

The solution to the Schrödinger equation with
Hamiltonian (1) is conveniently written in cylindrical
coordinates:

(3)

H0
1

2m*
----------- p

e
c
--A– 

 
2 m*ω0

2

2
-------------- x2 y2+( ).+=

A yB
2

------–
xB
2

------ 0, , 
 =

Emnp

"ωc

2
---------m

"Ω
2

-------- 2n m 1+ +( ) p2

2m*
-----------,+ +=

ωc
2 4ω0

2+

ψmnp
0 ipz

"
------- imϕ( )exp

2π
------------------------Rmn ρ( ),exp=
 © 2005 Pleiades Publishing, Inc.
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where

(4)

Here,  denotes generalized Laguerre polynomials,

l = , and

(5)

According to (3) and (4), the electron density
reaches a maximum on the symmetry axis of the wire
and exponentially toward its periphery. Therefore, only
impurities located near the wire axis can effectively
scatter the electron modes propagating in the wire.
Comparing the values of l and l0, we see that the mag-
netic field squeezes the electron wavefunction in the
plane perpendicular to the magnetic field vector. In
what follows, we analyze the particularly interesting
case when the impurity located on the axis of the wire
and the effects due to scattering are most pronounced.
We consider short-range impurities, which are ade-
quately modeled by Dirac-delta potentials.

2. QUASI-BALLISTIC TRANSPORT 
DUE TO SCATTERING BY IMPURITIES

The ballistic regime of conductance in a parallel
magnetic field was studied in [12]. The contribution to
conductance due to impurity scattering is expressed as

(6)

where γ = a/ l, G0 is the conductance quantum, a is
the scattering length (which may be either positive or
negative [24]), ψ(x) is the logarithmic derivative of the
Euler gamma function,

is the generalized Riemann zeta function, N is an inte-
ger, and 0 < δ < 1. In (6), we use the chemical potential

Expression (6) was derived in [12], where it was shown
that only s waves are scattered (for which the magnetic
quantum number is m = 0).

Rmn ρ( ) cmnρ
m ρ2

4l2
-------– 

  Ln
m ρ2

2l2
------- 

  .exp=

Ln
m

"/m*Ω

cmn
1

l m 1+
------------ n!

2 m n m+( )!
-------------------------------.=

Gi

G0
------ γ2 2 Imζ( )2– N 1+( ) ψ N δ+( ) ψ δ( )–[+{=

+ N δ+( ) 1– ] } 1 γReζ+( )2 γImζ( )2+{ } 1–
,

2

ζ ζ 1
2
--- 1

2
--- µ

"Ω
--------–, 

 =

µ "Ω N δ 1/2+ +( ).=
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It is important for further analysis that γ ~ 0.1 for
realistic values of a and l; i.e., the contribution to con-
ductance due to scattering (proportional to γ2) is small.

However, the value of Gi is not small in a certain
range of µ.

It follows from the Hermite and shift formulas for
the zeta function [25] that

(7)

Using the shift formula for the imaginary part of the
zeta function, we obtain

(8)

It follows from (7) and (8) that Reζ(1/2, 1 – δ)
remains finite as δ  0, while

Combining expressions (6)–(8), we find that

When γ > 0 (a > 0), the curve of Gi(µ) has the shape of
a very narrow peak. Since conductance steps are
observed only at very low temperatures, the thermal
smearing of the peak can be neglected. This is demon-
strated by the following estimates. When δ ! 1, expres-
sions (6)–(8) yield

in a small neighborhood of the peak. Using the standard
approach, we estimate the thermal smearing of the
Fermi–Dirac distribution as

(9)

with

Reζ 1
2
--- 1

2
--- µ

"Ω
--------–, 

  ζ 1
2
--- 1 δ–, 

 =

≈ 1

1 δ–
---------------- 1

2 2 δ–
------------------- 2 2 δ––

1

24 2 δ–( )3
-----------------------------.+ +

Imζ 1
2
--- 1

2
--- µ

"Ω
--------–, 

  n δ+( ) 1/2– .
n 0=

N

∑–=

Imζ 1
2
--- 1

2
--- µ

"Ω
--------–, 

  ∞.

Gi/G0
δ 0→
lim N 1.–=

Gi

G0
------ N 1–

1 γ 2– δ+
-------------------≈

Gi µ T,( )
Gi µ 0,( )
-------------------- 1

π2

3
-----

kBT
"Ω
--------- 

 
2 1 δ0γ

2–+

δ0 γ2+( )2
-----------------------,+≈

µ "Ω N δ0 1/2+ +( ).=
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For T ≈ 1 K, γ ~ 0.1, and δ0 ~ 0.01, the estimated
correction is on the order of 10–2. For 1 – δ ! 1, expres-
sion (6) yields

When γ > 0, the correction to conductance due to
impurity is small everywhere outside this neighbor-
hood. When γ < 0, Gi is not small if 1 + γReζ = 0,
because the factors γ2 in the numerator and denomina-
tor of (6) cancel out. The resonance condition is also
satisfied for small γ when δ is close to unity.

An analogous estimate yields

where δ0 evaluated from the condition 1 + γReζ = 0 is
0.01. The numerical estimate for the correction is on the
order of 0.01. In Fig. 1b, the two conductance peaks are
very close to one another. However, estimates show that
they are separated by an interval ∆µ ≈ 7kBT at T ≈ 1 K,
which is much greater than kBT; i.e., the thermal smear-
ing of the peaks is small.

When N > 1 and γ < 0, there is a narrow antireso-
nance (dip in the curve) on the left of a conductance
step, where the correction is negative since

Gi

G0
------ A N( ) 1 δ–( )

1 γ 1– 1 δ–+( )2
---------------------------------------.≈

Gi µ T,( )
Gi µ 0,( )
-------------------- 1

π2

4
-----

kBT
"Ω
--------- 

 
2

–≈

× γ 1–

1 γ 1– 1 δ0–+( )2
1 δ0–( )3/2

------------------------------------------------------------------,

2 Imζ( )2 N 1+( ) ψ N δ+( ) ψ δ( ) 1
N 1+
-------------+ + .>
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The ballistic contribution Gb to conductance can be
derived from the results obtained in [21]. For conve-
nience, we henceforth represent it as Gb = Gmon + Gosc.
The monotonic part of conductance is expressed as

(10)

The oscillating part of conductance is

Gmon

G0
-----------

1

2"
2ω0

2
--------------- µ2 π2kB

2 T2

3
-----------------

1
12
------"

2 ωc
2 ω0

2+( )–+ .=

8

6

4

2
4 5 6 7 8

G/G0

µ, 10–14 erg

(a)

8

6

4

2
4 5 6 7 8

G/G0

µ, 10–14 erg

(b)

Fig. 1. Conductance vs. chemical potential for positive
(a) and negative (b) scattering lengths: Ω = 1.8 × 1013 s–1,
B = 2 T, γ = 0.1, and T = 1.5 K.
(11)

Gosc

G0
--------- 2πkBT 1–( )n 1+ 1

" Ω ωc+( )
-------------------------

2πnµ/" Ω ωc+( )[ ]cos

2π2nkBT /" Ω ωc+( )[ ] πn Ω ωc–( )/ Ω ωc+( )[ ]sinsinh
-----------------------------------------------------------------------------------------------------------------------------------

n 1=

∞

∑=

+
1

" Ω ωc–( )
-------------------------

2πnµ/" Ω ωc–( )[ ]cos

2π2nkBT /" Ω ωc–( )[ ] πn Ω ωc+( )/ Ω ωc–( )[ ]sinsinh
---------------------------------------------------------------------------------------------------------------------------------- .
The ratio Gosc/Gmon is estimated as

(12)

This result has a consequence important for further
analysis: when Ω < µ, Gosc/Gmon ! 1 at temperatures not
higher than 1 K. Figure 1 shows curves of magnetocon-
ductance in the quasi-ballistic regime, with plateaus
corresponding to propagating electron modes with m ≠
0 and peaks at the conductance steps. When γ > 0 and
m = 0, there is a single peak on the right of a step; when

Gosc

Gmon
-----------

π" Ω ωc–( )
µ

----------------------------
kBT
µ

---------.∼
γ < 0, there are two peaks (at a step and on the left of it)
separated by a narrow dip. The curves correspond to the
analytical results presented above. Figure 1a demon-
strates that the plateau width may vary. This result was
explained in [26].

Now, let us consider the thermopower in a quantum
wire. Thermopower S is expressed in terms of conduc-
tance by the well-known formula [22]

(13)S
π2kB

2 T
3e

---------------G' µ( )
G µ( )
--------------.=
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Since Gmon @ Gosc and Gi @ Gosc, we have

(14)

Using (6), we obtain

(15)

To calculate the derivatives in (15), we use the fact
that both Gi and (Gi)' do not vanish only in small right
neighborhoods of conductance steps (when γ > 0) or
only in small left and right neighborhoods of steps
(when γ < 0). Therefore, we can set N = const in these
neighborhoods and use derivatives with respect to δ
instead of derivatives with respect to µ. Using the for-
mula [25]

(16)

S
π2kB

2 T
3e

---------------≈
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
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N δ+
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we obtain

(17)

for N = const.
Since it holds that

(18)

for derivatives with respect to δ, we can substitute

(19)

into (15).
Using the formulas for derivatives obtained above,

we find

where

(20)
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Here, use is made of the identities

Substituting (20), (21), (10), and (11) into (13), we
obtain an expression for the thermopower (which is too

ζ 3/2 1 δ–,( ) n δ–( ) 3/2– ,
n 1=

∞

∑=

ζ 3/2 N– δ–,( ) N δ n–+( ) 3/2– .
n 0=

∞

∑=
cumbersome to be written out here). Figure 2 shows the
thermopower as a function of chemical potential. The
curves demonstrate that the thermopower drops to a
negative value near a conductance peak when γ = 0.1
(Fig. 2a). Outside the neighborhoods of the peaks, the
thermopower exhibits a nearly sinusoidal behavior.
However, the thermopower curve obtained for γ = –0.1
(Fig. 2b) has two closely located peaks and two dips
near those conductance steps where the contribution of
scattering is substantial. Outside the neighborhoods of
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005



QUASI-BALLISTIC ELECTRON TRANSPORT IN QUANTUM WIRES 911
the peaks, the thermopower also exhibits a nearly sinu-
soidal behavior.

3. CONCLUSIONS

Electron magnetotransport in three-dimensional
quantum wires in parallel magnetic fields is analyzed.
The contribution of the Dirac-delta potential to the con-
ductance and thermopower as functions of chemical
potential is examined.

It is shown that the shape of the conductance curve
depends on the sign of the scattering length a. When a
is positive, the curve of G(µ) has a peak at a conduc-
tance step. The conductance curve obtained for a < 0
has an analogous peak, but it also has an additional
peak and a dip on the left of the step. Figure 3 compares
the curves of S(µ) obtained for ballistic and quasi-bal-
listic transport regimes corresponding to different signs
of the scattering length.

In the limit of ωc , ω0  0, the cases of a > 0 and
a < 0 correspond to the existence and absence of a
bound state, respectively [24]; i.e., the quantum well

0.4

0.3

0.2

0.1

4 5 6 7 8

S, kB/e

µ, 10–14 erg

(a)

0

0.4

0.3

0.2

0.1

4 5 6 7 8

S, kB/e

µ, 10–14 erg

(b)

0

–0.1

–0.2

Fig. 2. Thermopower vs. chemical potential for positive
(a) and negative (b) scattering lengths: Ω = 1.2 × 1013 s–1,
B = 5 T, γ = 0.1, T = 0.2 K (solid curves) and T = 1.5 K (dot-
ted curves).
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represented by a Dirac-delta potential has a larger
effective depth when a > 0.

It is shown that the thermopower as a function of
chemical potential exhibits a nearly sinusoidal behavior
outside the neighborhoods of the conductance peaks.
Near magnetoconductance peaks, the thermopower
curve has a sharp peak and a dip when the impurity
scattering length is positive and two closely located
peaks and two dips when the scattering length is nega-
tive. The analytical results of this study are illustrated
by curves of G(µ) and S(µ).
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Abstract—The conductivity and permittivity spectra of the intermediate-valence semiconductor TmSe have
been measured by terahertz and infrared spectroscopy in a frequency range of 10–104 cm–1 and a temperature
range of 5–300 K. At low temperatures (5 K < T < 100 K), the spectra contain a gap ∆ ≈ 2.5 meV, whose appear-
ance is considered to be related to conduction-electron localization at local magnetic moments. At high temper-
atures (100 K < T < 300 K), the dielectric response is specified by two electronic components: “light” conduc-
tion electrons and “heavy” hybridized f–d states. The microscopic parameters of both components, such
as the concentration, mobility, effective mass, relaxation frequency, and the plasma frequency, are determined.
© 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Despite significant progress in understanding the
physical processes that occur in heavy-fermion and
intermediate-valence compounds [1, 2], there is no gen-
erally accepted viewpoint regarding the nature of their
ground state. Some recent transport, optical, magnetic,
and thermodynamic experiments indicate a substan-
tially larger variety of their low-temperature properties
as compared to the predictions of the periodic Anderson
model. Therefore, it is necessary to comprehensively
study the interaction mechanisms of conduction elec-
trons with localized magnetic moments in intermetallic
compounds. One of the most effective methods for
studying such mechanisms is optical spectroscopy,
which can directly probe the dynamic properties of
charge carriers [1]. The terahertz–subterahertz fre-
quency range is of particular importance, since it corre-
sponds to the energies (of about several millielectron-
volts) characteristic of mass renormalization and the
fermion relaxation frequency. Measurements in this
range, which had not been achieved earlier, have
become possible only recently due to the creation of
BWO spectrometers (BWO is a backward wave oscil-
lator, a coherent terahertz–subterahertz radiation oscil-
lator) [3]. As a result, researchers can now systemati-
cally study correlation effects in heavy-fermion and
intermediate-valence systems by terahertz BWO spec-
troscopy. Even the first such measurements performed
for typical representatives of these families (SmB6,
UPd2Al3, UPt3) revealed new information on low-tem-
perature excitations and specific features in the density
of states at energies E < 1 meV, which are likely to be
1063-7761/05/10105- $26.000913
the characteristic features of the ground state for the
materials of these classes [4, 5]. To search for general
dependences in the low-temperature properties of inter-
mediate-valence compounds, we continued studying
their spectroscopic characteristics. In this work, we
study thulium selenide TmSe.

Unlike other members of the family of intermediate-
valence semiconductors, both valence sates of the thu-
lium ion in TmSe (Tm2+, Tm3+) are magnetic; the aver-
age thulium valence is +2.75 [2]. At a Néel temperature
TN = 3.5 K, TmSe transforms into an antiferromagnetic
phase [6]. Because of these two features, TmSe is con-
sidered to exhibit a number of properties that are atyp-
ical of this class of materials: its transport properties
and neutron absorption depend on the magnetic field,
the pressure, and the temperature, and its optical
absorption is complex at E ~ 1 meV. Eventually, these
specific features should be related to the microscopic
mechanisms of ionic-valence fluctuations and to charge
dynamics, which are being extensively studied. It
should be noted that researchers mainly investigate the
magnetically ordered phase existing at T < TN. How-
ever, even at higher temperatures (up to room tempera-
ture), some properties of TmSe cannot be explained.
These are the absence of the activation behavior of the
electrical resistivity and the Hall constant, as in the
related YbB12 and SmB6 compounds; complex behavior
of the electrical resistivity ρ as temperature decreases to
35–40 K, below which its behavior is characteristic of
Kondo scattering (ρ ∝  –logT); and the behavior of the
dynamic conductivity in the infrared region, which can-
not be explained in terms of the conductivity mecha-
 © 2005 Pleiades Publishing, Inc.
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nism that is typical of conductors and is described by
the Drude model.

2. EXPERIMENTAL

We studied high-quality TmSe single crystals grown
by the method described in [7]. The crystals were dark
orange and 3 × 4 mm2 in size. We measured the fre-
quency dependences of the coefficient R(ν) of reflec-
tion from a specially prepared flat polished crystal face
with two spectrometers, namely, Bruker IFS113V
(20 cm–1 < ν < 104 cm–1) and a terahertz quasi-optical
BWO spectrometer [3] (10 cm–1 < ν < 30 cm–1). The
spectra recorded were joined to yield a general picture,
which was analyzed with the Kramers–Kronig relations
to obtain the frequency dependences of the conductiv-
ity (σ(ν)) and the permittivity (ε'(ν)). The reflectance
spectra were approximated to a zero frequency using
the Hagen–Rubens relations [8]

R 1 4ν/σ0,–=
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Fig. 1. Frequency dependences of (a) the dynamic conduc-
tivity σ, (b) the permittivity ε', (c) the relaxation frequency
γ, and (d) the effective mass m*/mb for TmSe at various tem-
peratures. The dashed lines in (a, b) for T = 300 K illustrate
the ε'(ν) and σ(ν) dependences processed by the least
squares method using Eqs. (1) and (2) of the Drude model
of conduction. The heavy horizontal segments demonstrate
the static conductivities measured at 300, 100, and 5 K
(from top to bottom). The frequency dependences of γ and
m*/mb were obtained within the framework of the general-
ized Drude model (see text). The inset shows the frequency
dependence of the absorptivity α at T = 5 K. The solid and
dashed lines illustrate the results of fitting by the least

squares method using the expression α ∝   (see
text).

ν ∆/h–
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where σ0 is the measured static conductivity. The high-
frequency extrapolations were based on the reflectance
spectra recorded in [9]. The resistivity ρ was measured
by the standard four-probe method on a sample in the
form of a parallelepiped 0.15 × 0.04 mm2 in cross sec-
tion and several millimeters in length. The contacts
were made of gold conductors fixed to the sample by a
special technique with a silver paste; the contact resis-
tance was less than 10 Ω . For comparison with the fre-
quency dependences of the dynamic conductivity, the
resistivity was calculated to give the static conductivity
1/ρ. All measurements were carried out in the paramag-
netic phase at temperatures of 5–300 K in a zero mag-
netic field.

Figure 1 shows the frequency dependences of the
conductivity and permittivity of TmSe. On the whole,
they are similar to those measured in [2, 9] (note that
the conductivity in [9] is given in terms of s–1). At fre-
quencies ν > 100 cm–1, ε'(ν) and σ(ν) are virtually tem-
perature-independent and have a shape typical of con-
ductors: at 100 cm–1 < ν < 1000 cm–1, ε'(ν) and σ(ν)
have no dispersion; at ν > 1000 cm–1, the conductivity
decreases and the permittivity does not increase (on the
chosen scale). To obtain the characteristics of charge
carriers, we processed these spectra by the least squares
method using the corresponding expressions within the
framework of the Drude model of conduction [8]

(1)

(2)

where σ0 = /2γ, νp is the plasma frequency, and γ is
the carrier relaxation frequency. The values of νp =
39000 cm–1 (hνp = 4.8 eV) and γ = 4800 cm–1 thus
obtained agree with the data of [9].

At low frequencies (ν < 100 cm–1), the ε'(ν) and σ(ν)
dependences deviate strongly from the simple Drude
curves at both high and low temperatures. Although
these deviations were mentioned in [9], they have not
been studied. It will be low frequencies that we now
direct our attention to when analyzing the dielectric
response of TmSe. At T = 300 K, the conductivity
increases and the permittivity decreases as the fre-
quency decreases below 100 cm–1. This indicates an
additional Drude-type dispersion mechanism operating
at low frequencies; in other words, this evidences that
the dynamic response of TmSe is contributed by an
additional component of mobile charge carriers that
differs from the component specifying the properties of
the compound at ν > 100 cm–1. We processed the spec-
tra at T = 300 K using a sum of Drude relations (1)
and (2) (Fig. 1, dashed line) to determine the parameters
of this component: γ = 70 cm–1 and νp = 2750 cm–1. As
the temperature decreases from 300 to 200 K, the ε'(ν)
and σ(ν) spectra are almost unchanged. Upon further

σ ν( ) σ0γ
2 γ2 ν2+( ) 1–

,=

ε' ν( ) 2σ0γ γ2 ν2+( ) 1–
,–=

ν p
2
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cooling, the low-frequency hump in the frequency
dependence of the conductivity begins to lose its spec-
tral weight. At T < 50–100 K, a trough forms at its
place; this trough is similar to the trough in the fre-
quency dependence of the conductivity that appears due
to the appearance of an energy gap in the density of states,
e.g., in semiconductors or superconductors [10, 11] and
other heavy-fermion and intermediate-valence com-
pounds [4, 5]. The nature of this gap feature in the fre-
quency dependence of the conductivity of TmSe will be
discussed below. The permittivity behaves according to
the dynamic conductivity: the gap feature in the fre-
quency dependence of the conductivity (a decrease in σ
toward low frequencies) causes a characteristic
increase in ε' to about 4500 at T = 5 K at frequencies ν =
10–20 cm–1.

Figure 2 shows the temperature dependence of the
static conductivity of TmSe. A specific feature near the
magnetic phase transition temperature (TN = 3.5 K) is
clearly visible. Beginning from T = 300 K, σ0
decreases; at TN < T < 20–30 K, its behavior is
described by the Kondo dependence [12] σ0 = (a –
blogT)–1 (where a and b are constants), which can be
used to estimate the Kondo temperature for TmSe (TK ≈
20–30 K). Note that, as in [9], at T = 200–300 K, the
static conductivity is well below the low-frequency
dynamic conductivity; at T < 50 K, this difference
almost disappears.

3. DISCUSSION OF THE RESULTS

The detected features of the low-frequency response
of TmSe can be explained using the schematic diagram
of the density of states shown in Fig. 3 [2, 9]. Figure 3
shows a portion of this diagram, namely, the bottom of
the 5d conduction band overlapping with the 4f13 level
of the Tm2+ ion of the localized electrons. The hybrid-
ization of the 5d and 4f electrons results in a Kondo
peak (resonance) of width W at the Fermi level EF, and
this peak includes mixed states of the 4f13–4f125d type.

We believe that the Kondo resonance in the density
of states of TmSe exists even at room temperature.
(Although the resonance is thought to appear only near
TK [2, 13], its presence at T @ TK was experimentally
observed for a number of heavy-fermion compounds
[2, 14].) This means that, in the vicinity of ±W/2 near
the Fermi level, the electronic states of TmSe are
hybridized and have a complex f–d character, whereas,
at higher energies, the degree of hybridization
decreases and electrons mainly have the d character. In
this situation, probing electromagnetic radiation with a
quantum energy of hν < W should be sensitive to the
hybridized f–d electrons, and the response at higher fre-
quencies (hν > W) is determined by the d electrons.
This behavior causes two corresponding Drude compo-
nents in the frequency dependence of the dielectric
response of TmSe at temperatures T = 200–300 K,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
namely, the low-frequency (ν < 100 cm–1) and high-fre-
quency (ν > 100 cm–1) components. Using the ε'(ν) and
σ(ν) dependences, we can estimate the width of the
Kondo resonance: W/h ≈ 100 cm–1, or W ≈ 10 meV.
Then, using the relation W ≈ kBTK (where kB is the
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Fig. 2. Temperature dependence of the static conductivity of
TmSe. The temperature TN corresponds to the magnetic
phase transition. Short dashes show the dependence pro-
cessed by the least squares method using the formula σ0 =

(a – blogT)–1, which describes incoherent Kondo scatter-
ing. Long dashes illustrate the dependence processed by the
formula σ0 ∝  exp(T0/T)–1/4, which describes the conductiv-
ity of disordered systems. The inset shows the temperature
behavior of the resistivity, which exhibits the Mott depen-
dence of ρ in the temperature range 20–300 K (the dashed
straight line).
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Fig. 3. Portion of the schematic diagram of the density of
states for TmSe: the bottom of the conduction band, the 5d-
electron band, and the 4f13 electronic level coinciding with
the Fermi level. The Kondo resonance width is denoted
as W.
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Boltzmann constant), which holds true for intermedi-
ate-valence systems [2, 15], we estimate the resonance
width at a lower temperature: W(T ≈ TK) ≈ 2–3 meV. In
other words, an increase in the temperature leads to the
broadening of the Kondo resonance, which is consis-
tent with the theoretical calculations of [16].

The effects of hybridization and the corresponding
renormalization of the effective mass and the electron
relaxation frequency are usually analyzed within the
framework of the so-called generalized Drude model
[1, 17]. This model introduces a complex relaxation fre-
quency

which replaces the relaxation frequency in the standard
expression for the complex Drude conductivity:

(3)

Here, σ2 = ω(ε – ε')/4π, ωp = 2πνp , τ is the relaxation
time, mb is the carrier mass in the conduction band, ω =
2πν, and ε is the high-frequency permittivity. The quan-
tity λ(ω) = m*(ω)/mb – 1 characterizes the increase in
the effective mass and is related to the relaxation time τ
by the Kramers–Kronig relations [17]. The relaxation
frequency τ–1 and the effective mass m* can be
expressed in terms of σ and σ2:

(4)

(5)

We used Eqs. (4) and (5) to calculate the frequency
dependences of γ = (2πτ)–1 and m*/mb shown in Fig. 1c.
As is seen, the renormalization effects are negligible at

Γ ω( ) τ 1– ω( ) iωλ ω( ),–=

σ* ω( ) σ ω( ) iσ2 ω( )+
ωp

2

4π
------ Γ ω( ) iω–[ ] 1–= =

=  
ωp

2

4π
------ τ 1– ω( ) iωm* ω( )

mb

----------------–
1–

.

τ 1– ω( )
ωp

2σ ω( )
4π σ2 σ2

2+( )
-----------------------------,=

m* ω( )
mb

----------------
ωp

2σ2 ω( )
4πσ σ2 σ2

2+( )
---------------------------------.=

Parameters of the mobile d and hybridized f–d electrons for
TmSe at T = 200–300 K: the plasma frequency νp, the relax-
ation frequency γ, the effective mass m*, the concentration

n = /4πe2, and the mobility µ = e/2πm*γ

νp,
cm–1

γ,
cm–1 m*/m0 n, cm–3 µ,

cm2/V s

d electrons 39000 4800 1.6 6.8 × 1020 1.2

f–d electrons 2750 70 16 3.4 × 1019 8

ν p
2 m*
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high frequencies and the relaxation frequency is about
4200 cm–1. This value corresponds to the relaxation of
carriers in the d state and is close to the value (γ =
4800 cm–1) calculated from the ε'(ν) and σ(ν) spectra
with Drude relations (1) and (2). At ν < 100 cm–1, the
relaxation frequency decreases, which means an
increase in the lifetime of the hybridized f–d states. The
effective mass behaves similarly: at high frequencies
(ν > 100 cm–1), the response is determined by carriers
in the d state, for which m* = mb ≈ 1.6m0 [9] (where m0

is the free-electron mass), whereas, at ν < 100 cm–1, an
addition of the f states results in an increase in the car-
rier mass to m* ≈ 10mb ≈ 16m0.

Using the data obtained for the effective mass, we
can calculate the microscopic parameters of the two
components of mobile charges that are responsible for
the high- and low-frequency responses of TmSe at T =
200–300 K, namely, the parameters of the uncorrelated
conduction electrons and the heavy hybridized f–d elec-
trons. The results obtained are given in the table.

Let us consider the frequency dependences of the
dielectric spectrum of TmSe at low temperatures. We
assume that the gap feature in the low-temperature con-
ductivity spectra cannot be related to the opening of a
hybridization gap in the density of states, as in the
related intermediate-valence semiconductors (such as
YbB12 or SmB6) [2, 18, 19], due to the following rea-
sons. The Hall constant in TmSe do not demonstrate
activation behavior, and its magnetic susceptibility
does not increase with decreasing temperature. These
factors are two typical signs of the presence of a gap in
the density of states [2]. Second, the paramagnetic
TmSe phase contains an odd number of f and d elec-
trons per unit cell; therefore, according to the Luttinger
theorem [13], the hybridization of the mobile d and
localized f electrons cannot cause the formation of an
energy gap in the density of states [20, 21]. A hybrid-
ization gap can appear only during a phase transition
into the antiferromagnetically ordered phase at T = TN,
when the unit cell of TmSe doubles and acquires an
even number of f and d electrons. Indeed, such a gap
(∆hybr = 1–2 meV) is observed in the infrared conductiv-
ity spectra [2]. Third, in the case of TmSe, the coher-
ence temperature (below which quasiparticles should
behave like the Fermi liquid and a hybridization gap
should open) is equal to T* = ∆hybr/5kB = 2–5 K [2, 22],
which is well below the temperatures at which the low-
frequency gap behavior of the conductivity spectra of
TmSe is observed.

We believe that the decrease in the low-frequency
(ν < 100 cm–1) conductivity of TmSe is related to the
appearance of a mobility gap in the spectrum of elec-
tronic states at low temperatures and to the fact that, at
the microscopic level, this gap is caused by conduction-
electron localization at magnetic moments. A typical
sign of incoherent electron scattering by magnetic
moments is the characteristic behavior of the static con-
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005
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ductivity, σ0 = (a – blogT)–1 [12], at T < TK (Fig. 2).
This decrease in the static conductivity with decreasing
temperature should result in the corresponding suppres-
sion of the low-frequency spectral weight in the con-
ductivity spectrum up to the frequencies corresponding
to the gap energy or the electron binding energy at a
magnetic center, kBTK = 1.7–2.6 meV (for TK =
20−30 K). The gap width can also be determined from
the measured dependence of the electromagnetic-radia-
tion absorptivity, α = 4πk/λ (where k is the extinction
coefficient and λ is the radiation wavelength), shown in
the inset to Fig. 1 for T = 5 K. The smooth solid line
demonstrates the spectrum processed by the least
squares method using an expression for α at the edge of
fundamental absorption in semiconductors caused by

an energy gap ∆ (α ∝   [10]). The best fit is
obtained at ∆ = 2.5 meV, which agrees with the estimate
calculated above. The dashed line in the inset shows the
calculation result for ∆ = 0, and it again evidences the
presence of a finite energy gap. Nonzero absorption at
frequencies below ∆/h = 20 cm–1 is related to nonzero
conductivity at ν < 100 cm–1.

Note that the specific features of the dielectric
response detected in this work in TmSe can also be typ-
ical of other intermediate-valence and heavy-fermion
compounds. As the temperature of such materials
decreases, first (at T = TK), incoherent electron scatter-
ing by magnetic moments appears, which results in the
Kondo behavior of the resistivity (ρ ∝  –logT). In addi-
tion, this scattering should cause a mobility gap in the
absorption spectrum (in the frequency dependence of
the dynamic conductivity). The gap width is deter-
mined by the electron binding energy at a magnetic
center. Upon a further decrease in the temperature and
a transition into the coherent state at T < T*, spin scat-
tering becomes coherent and the mobility gap becomes
a real hybridization gap. According to the reasons given
above, such a gap in the case of TmSe appears only in
the magnetically ordered phase below TN = 3.5 K,
which is found to be virtually coincident with the
coherence temperature (T* = 2–5 K).

Finally, we consider the temperature behavior of the
dynamic and static conductivities and the resistivity of
TmSe at temperatures T > TK. As is seen from Fig. 2,
the static conductivity and resistivity in this range are
well described by Mott’s relation σ0(T) ∝  exp(T0/T)–1/4

(or ρ(T) ∝  exp(T0/T)1/4) (Fig. 2, inset), which is charac-
teristic of disordered three-dimensional systems [23].
At a dimensionality n, this relation is written as

where T0 is a constant. According to [23–25], the low-
frequency conductivity of such systems increases with
the frequency as σ(ν) ∝  νs (s ~ 1), which also agrees
with our observations for TmSe: at T > 50 K, the

∆/h–

ρ T( ) T0/T( )1/ n 1+( ),exp∝
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dynamic conductivity at ν ≈ 10 cm–1 is significantly
higher than the static conductivity. These two specific
features of the temperature–frequency behavior of the
conductivity of TmSe indicate that the localization or
disordering effects can influence the transport proper-
ties of this compound at 50 K < T < 300 K. It should be
noted, however, that the realization of the Mott mecha-
nism of conduction at such high temperatures seems to
be unlikely and that the nature of electron transport in
TmSe at T = 50–300 K requires further investigation.

4. CONCLUSIONS

We measured the frequency dependences of the con-
ductivity and permittivity of the intermediate-valence
semiconductor TmSe using quasi-optical BWO and
infrared Fourier spectroscopies in the frequency range
10–104 cm–1 and the temperature range 5–300 K. At T =
200–300 K, the spectra are determined by two sub-
systems of free carriers: light (m* = 1.6m0) conduction
electrons and heavy (m* = 16m0) electronic states
appearing due to the hybridization of the mobile d and
localized f electrons. The microscopic parameters of
both components, such as the concentration, mobility,
relaxation frequency, and the plasma frequency, were
determined. At T = 5 K, a gap was found in the dielec-
tric spectra. We showed that its nature could not be
caused by coherence effects in electron scattering by
magnetic moments, as in the related intermediate-
valence compounds (such as YbB12 or SmB6). This gap
is assumed to be associated with conduction-electron
localization at magnetic moments, and it is assumed to
be a mobility gap.
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Abstract—Based on the previously suggested model of nanoscale dislocation-induced Josephson junctions
and their arrays, we study the magnetic-field-induced electric polarization effects in intrinsically granular
superconductors. In addition to the new phenomenon of chemomagnetoelectricity, the model also predicts a few
other interesting effects, including charge analogs of Meissner paramagnetism (at low fields) and a “fishtail”
anomaly (at high fields). The conditions under which these effects can be experimentally measured in nonsto-
ichiometric high-Tc superconductors are discussed. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Both granular superconductors and artificially pre-
pared arrays of Josephson junctions (JJAs) proved use-
ful in studying the numerous quantum (charging)
effects, including blockade of Cooper pair tunneling
[1], Bloch oscillations [2], propagation of quantum bal-
listic vortices [3], spin-tunneling related effects with
specially designed SFS-type junctions [4, 5], novel
Coulomb effects in SINIS-type nanoscale junctions [6],
and recently observed geometric quantization phenom-
ena [7] (see, e.g., [8] for a recent review on charge and
spin effects in mesoscopic two-dimensional Josephson
junctions).

More recently, it was realized that JJAs can also be
used as quantum channels to transfer quantum informa-
tion between distant sites [9–11] through the imple-
mentation of the so-called superconducting qubits,
which involve both charge and phase degrees of free-
dom (see, e.g., [12] for a review on quantum-state engi-
neering with Josephson-junction devices).

At the same time, imaging of the granular structure
in underdoped Bi2Sr2CaCu2O8 + δ crystals [13] revealed
an apparent charge segregation of its electronic struc-
ture into superconducting domains (on the order of a
few nanometers) located in an electronically distinct
background. In particular, it was found that, at low lev-
els of hole doping (δ ≤ 0.2), the holes become concen-
trated at certain hole-rich domains. Tunneling between
such domains leads to intrinsic granular superconduc-
tivity in high-Tc superconductors (HTS). As was shown
earlier [14], granular superconductivity-based phenom-
ena can shed some light on the origin and evolution of

¶ The text was submitted by the author in English.
1063-7761/05/10105- $26.00 0919
the so-called paramagnetic Meissner effect (PME),
which manifests itself in both high-Tc and conventional
superconductors [15, 16].

In this paper, within a previously suggested [14]
model of JJAs created by a regular two-dimensional
network of twin-boundary dislocations with strain
fields acting as an insulating barrier between hole-rich
domains in underdoped crystals, we address another
class of interesting phenomena that are actually dual to
the chemomagnetic effects described in [14]. Specifi-
cally, we discuss the possible existence of a nonzero
electric polarization P(B, δ) (chemomagnetoelectric
effect) and the related change of the charge balance in
an intrinsically granular nonstoichiometric material
under the influence of an applied magnetic field. In par-
ticular, we predict an anomalous low-field magnetic
behavior of the effective junction charge Q(B, δ) and
concomitant magnetocapacitance C(B, δ) in the para-
magnetic Meissner phase and a charge analog of a
“fishtail-like” anomaly at high magnetic fields.

2. MODEL

We recall that the regular two-dimensional disloca-
tion networks of oxygen-depleted regions with the size
d0 of a few Burgers vectors, observed in HTS single
crystals [13, 17–20], can provide a quite realistic possi-
bility for the existence of a two-dimensional Josephson
network within the CuO plane [21, 22]. In this regard,
it is also important to mention the pioneering works by
Khaikin and Khlyustikov [23–25] on twinning-induced
superconductivity in dislocated crystals.

At the same time, in underdoped crystals, there is a
realistic possibility to facilitate oxygen transport via the
© 2005 Pleiades Publishing, Inc.
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so-called osmotic mechanism [14, 19, 20, 26], which
relates the local value of the chemical potential

with the local concentration of point defects as

and allows explicit incorporation of the oxygen defi-
ciency parameter δ into our model by relating it to the
excess oxygen concentration of vacancies cv ≡ c(0) as

δ = 1 – cv .

Assuming the relation between the variation of
mechanical and chemical properties of planar defects,

where

is the screened strain field produced by tetragonal
regions in a d-wave orthorhombic YBCO crystal, Ω0 is
an effective atomic volume of the vacancy, and K is the
bulk elastic modulus, we can study the properties of
twin-boundary induced JJs under the intrinsic chemical
pressure ∇µ  (created by the variation of the oxygen
doping parameter δ). More specifically, a single SIS-
type junction (comprising a Josephson network) is
formed around the twin-boundary due to a local depres-
sion of the superconducting order parameter ∆(x) ∝
e(x) over distance d0, thus producing a weak link with
the Josephson coupling

where

(here, J0 ∝  ∆0/Rn , with Rn being the resistance of the
junction). We note that, in accordance with observa-
tions, for a stoichiometric situation (when δ ≈ 0), the
Josephson coupling J(δ) ≈ 0 and the system loses its
explicitly granular signature.

To describe the influence of chemomagnetic effects
on the charge balance of an intrinsically granular super-
conductor, we use the model of two-dimensional over-
damped Josephson junction array based on the well-
known Hamiltonian

(1)

We introduce a short-range (nearest neighbor) interac-
tion between N junctions (which are formed around

µ x( ) µ 0( ) ∇µ x⋅+=

c x( ) µ x( )/kBT–( ),exp=

µ x( ) KΩ0e x( ),=

e x( ) e0 x /d0–( )exp=

J δ( ) e x( )J0 J0 δ( ) x /d0–( ),exp= =

J0 δ( ) e0J0 µv /KΩ0( )J0= =

* Jij 1 φijcos–( )
i j,

N

∑ qiq j

2Cij

----------.
i j,

N

∑+=
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oxygen-rich superconducting areas with phases φi),
arranged in a two-dimensional lattice with coordinates
xi = (xi, yi). The areas are separated by oxygen-poor
insulating boundaries (created by twin-boundary strain
fields e(xij)), producing a short-range Josephson cou-
pling

Thus, typically for granular superconductors, the
Josephson energy of the array varies exponentially with
the distance xij = xi – xj between neighboring junctions
(with d being the average junction size). As usual, the
second term in the right-hand side of Eq. (1) accounts
for Coulomb effects, where qi = –2eni is the junction
charge, with ni being the pair number operator. Natu-
rally, the same strain fields e(xij) are also responsible for
dielectric properties of oxygen-depleted regions via the
δ-dependent capacitance tensor

If, in addition to the chemical pressure

the network of superconducting grains is under the
influence of an applied frustrating magnetic field B, the
total phase difference through the contact is given by

(2)

where  is the initial phase difference (see below),

and

with λL being the London penetration depth of the
superconducting area and l, the insulator thickness
(which, within the scenario discussed here, is simply
equal to the twin-boundary thickness [26]).

As usual, to safely neglect the influence of the self-
field effects in a real material, the corresponding
Josephson penetration length

must be larger than the junction size d. Here, jc is the
critical current density of the superconducting (hole-

Jij J0 δ( ) xij /d–( ).exp=

Cij δ( ) C e xij( )[ ] .=

∇µ x( ) KΩ0∇ e x( ),=

φij φij
0 πw

Φ0
------- xij nij∧( ) B

∇µ xijt⋅
"

--------------------,+⋅+=

φij
0

nij

Xij

Xij

---------, Xij

xi x j+
2

---------------,= =

w 2λL T( ) l,+=

λ J

Φ0

2πµ0 jcw
---------------------=
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rich) area. As we see below, this condition is rather well
satisfied for HTS single crystals.

3. CHEMOMAGNETOELECTRICITY
In what follows, we are interested in the behavior of

the magnetic-field-induced electric polarization
(chemomagnetoelectricity) in chemically induced
granular superconductivity described by a two-dimen-
sional JJA. We recall that a conventional (zero-field)
pair polarization operator within the model under dis-
cussion is given by [27, 28]

(3)

In view of Eqs. (1)–(3) and the usual “phase-number”
commutation relation

it can be shown that the evolution of the pair polariza-
tion operator is determined by the equation of motion

(4)

Solving this equation, we obtain the net value of the
magnetic-field-induced longitudinal electric polariza-
tion

(along the x axis) and the corresponding effective junc-
tion charge

(5)

where S = 2πd2 is the properly defined normalization
area, τ is the characteristic time (see Discussion), and
we made the usual substitution

valid in the long-wavelength approximation [28].
To capture the very essence of the superconducting

analog of the chemomagnetoelectric effect, we assume
for simplicity in what follows that a stoichiometric
sample (with δ ≈ 0) does not have any spontaneous
polarization at zero magnetic field, that is, P(0, 0) = 0.

p qixi.
i 1=

N

∑=

φi n j,[ ] iδij,=

dp
dt
------

1
i"
----- p *,[ ] 2e

"
------ Jij φij t( )xij.sin

i j,

N

∑= =

P δ B,( ) px t( )〈 〉≡

Q δ B,( )
2eJ0

"τd
----------- t t 'd

0

t

∫d

0

τ

∫=

× d2x
S

-------- φ x t ',( )x x /d–( ),expsin∫

1
N
---- Aij t( ) 1

S
--- d2xA x t,( )∫

i j,
∑
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According to Eq. (5), this condition implies that  =
2πm for the initial phase difference with m = 0, ±1,
±2, ….

Choosing the applied magnetic field along the c axis
(and normal to the CuO plane), that is, B = (0, 0, B), we
finally obtain

(6)

for the magnetic field behavior of the effective junction
charge in chemically induced granular superconduc-
tors. Here,

with J0(δ) defined earlier,

and

where

φij
0

Q δ B,( ) Q0 δ( ) 2b̃ b 1 b̃
2

–( )+

1 b2+( ) 1 b̃
2

+( )
2

-----------------------------------------=

Q0 δ( ) eτ J0 δ( )/"=

b B/B0, b̃ b bµ,–= =

bµ Bµ/B0 kBTτ /"( )δ,≈=

Bµ δ( ) µv τ /"( )B0=

0.9

0.6

0.3

0

–0.3
0 1 2

B/B0

Q(δ, B)/Q(δc, 0)

δ = 0

0.1

0.2

Fig. 1. The effective junction charge Q(δ, B)/Q(δc, 0)
(chemomagnetoelectric effect) as a function of the applied
magnetic field B/B0, according to Eq. (6), for different val-
ues of the oxygen deficiency parameter: δ ≈ 0 (solid line),
δ = 0.1 (dashed line), and δ = 0.2 (dotted line).
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1.0

0.6

0.4

0.2

0 0.2 0.4
δ

Q(δ, 0)/Q(δc, 0)

0.8

Fig. 2. Chemically induced effective junction charge
Q(δ, 0)/Q(δc, 0) in zero applied magnetic field (true chemo-
electric effect).

1.0

0.4

0.2

0

–0.4
1 2

B/B0

C(δ, B)/C(δc, 0)

δ = 0

0.1

0.2

–0.2

0.8

0.6

0

Fig. 3. The effective flux capacitance C(δ, B)/C(δc, 0) as a
function of the applied magnetic field B/B0, according to
Eq. (7), for different values of the oxygen deficiency param-
eter: δ ≈ 0 (solid line), δ = 0.1 (dashed line), and δ = 0.2
(dotted line).
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is the chemically induced contribution (which disap-
pears in optimally doped systems with δ ≈ 0) and

is the characteristic Josephson field.
Figure 1 shows changes in the initial (stoichiomet-

ric) effective junction charge Q (solid line) with oxygen
deficiency δ. We note a sign change of Q (dotted and
dashed lines) driven by nonzero values of δ at low mag-
netic fields (a charge analog of a chemically induced
PME). According to Eq. (6), the effective charge
changes its sign as soon as the chemomagnetic contri-
bution Bµ(δ) exceeds the applied magnetic field B (see
Discussion).

At the same time, Fig. 2 presents a true chemoelec-
tric effect with the concentration (deficiency) induced
effective junction charge Q(δ, 0) in zero magnetic field.
We note that Q(δ, 0) exhibits a maximum around δc ≈
0.2 (in agreement with the classical percolative behav-
ior observed in nonstoichiometric YBa2Cu3O7 – δ sam-
ples [17]).

It is also of interest to consider the magnetic field
behavior of the concomitant effective flux capacitance

which, in view of Eq. (6), is given by

(7)

where

Figure 3 depicts the behavior of the effective flux
capacitance C(δ, B) in an applied magnetic field for dif-
ferent values of the oxygen deficiency parameter: δ ≈ 0
(solid line), δ = 0.1 (dashed line), and δ = 0.2 (dotted
line). We note a decrease of the magnetocapacitance
amplitude and its peak shifting with increase of δ and a
sign change at low magnetic fields, which is another
manifestation of the charge analog of a chemically
induced PME (cf. Fig. 1).

4. CHARGE ANALOG 
OF THE “FISHTAIL” ANOMALY

So far, we neglected a possible field dependence of
the chemical potential µv of oxygen vacancies. We
recall, however, that, in sufficiently high applied mag-
netic fields B, the field-induced change of the chemical
potential

B0 Φ0/wd=

C
τdQ δ B,( )

dΦ
-------------------------,≡

C δ B,( ) C0 δ( )1 3bb̃– 3b̃
2

– bb̃
3

+

1 b2+( ) 1 b̃
2

+( )
3

-----------------------------------------------,=

Φ SB, C0 δ( ) τQ0 δ( )/Φ0.= =

∆µv B( ) µv B( ) µv 0( )–≡
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becomes tangible and should be taken into account [14,
29, 30]. As a result, we obtain a superconducting analog
of the so-called magnetoconcentration effect [14] with
field-induced creation of oxygen vacancies

which, in turn, leads to a fishtail-like behavior of the
high-field chemomagnetization (see [14] for more
details).

Figure 4 shows the field behavior of the effective
junction charge in the presence of the above-mentioned
magnetoconcentration effect. As is clearly seen,
Q(δ(B), B) exhibits a fishtail-like anomaly typical of the
previously discussed [14] chemomagnetization in
underdoped crystals with intragrain granularity (for
symmetry and better visual effect, we also plotted
−Q(δ(B), B) in the same figure). This more complex
structure of the effective charge appears when the
applied magnetic field B matches the intrinsic chemo-
magnetic field Bµ(δ(B)) (which now also depends on B
via the magnetoconcentration effect). We note that the
fishtail structure of Q(δ(B), B) manifests itself even at
zero values of the field-free deficiency parameter δ(0)
(solid line in Fig. 4), thus confirming the field-induced
nature of intrinsic granularity [13, 17–20]. Likewise,

cv B( ) cv 0( ) ∆µv B( )/kBT–( ),exp=

0.9

0.3

0

–0.9

1 2
B/B0

Q(δ(B), B)/Q(δc, 0)

δ(0) = 0

0.1

0.2

–0.6

0.6

0 3 4 5

–0.3

Fig. 4. A fishtail-like behavior of the effective charge
Q(δ(B), B)/Q(δc, 0) in the applied magnetic field B/B0 in the
presence of a magnetoconcentration effect (with field-
induced oxygen vacancies δ(B)) for three values of the field-
free deficiency parameter: δ(0) ≈ 0 (solid line), δ(0) = 0.1
(dashed line), and δ(0) = 0.2 (dotted line).
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Fig. 5 depicts the evolution of the effective flux capac-
itance C(δ(B), B) in the applied magnetic field B/B0 in
the presence of a magnetoconcentration effect (cf.
Fig. 3).

5. DISCUSSION

Thus, the present model predicts the appearance of
two interrelated phenomena (dual to the previously dis-
cussed behavior of chemomagnetism [14]), a charge
analog of Meissner paramagnetism at low fields and a
charge analog of the fishtail anomaly at high fields. To
see whether these effects can be actually observed in a
real material, we estimate the order of magnitude of the
main model parameters.

Using the values λL(0) ≈ 150 nm, d ≈ 10 nm, and jc ≈
1010 A/m2 typical [17, 19] of HTS single crystals, we
estimate the characteristic field as B0 ≈ 0.5 T and the
chemomagnetic field as Bµ(δ) ≈ 0.5B0. Therefore, the
predicted charge analog of PME should be observable
for applied magnetic fields B < 0.25 T. We note that, for
the above set of parameters, the Josephson length is on
the order of λJ ≈ 1 µm, which means that the small-
junction approximation assumed in this paper is valid
and the “self-field” effects can be safely neglected.

0.6

0.3

0

–0.3
0 1 2

B/B0

Q(δ(B), B)/Q(δc, 0)

δ(0) = 0

0.1

0.2

3

Fig. 5. The behavior of the effective flux capacitance
C(δ(B), B)/C(δc, 0) in the applied magnetic field B/B0 in the
presence of a magnetoconcentration effect for three values
of the field-free deficiency parameter: δ(0) ≈ 0 (solid line),
δ(0) = 0.1 (dashed line), and δ(0) = 0.2 (dotted line). 
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Furthermore, the characteristic frequencies ω ≈ τ–1

needed to probe the effects suggested here are related to
the processes governed by tunneling relaxation times
τ ≈ "/J0(δ). Because the deficiency parameter δ = 0.1
for oxygen, the chemically induced zero-temperature
Josephson energy in nonstoichiometric YBCO single
crystals is on the order of J0(δ) ≈ kBTCδ ≈ 1 meV, we
obtain the required frequencies ω ≈ 1013 Hz and the
estimates of the effective junction charge Q0 ≈ e = 1.6 ×
10–19 C and flux capacitance C0 ≈ 10–18 F. We note that
the above estimates fall into the range of parameters
used in typical experiments for studying single-electron
tunneling effects both in JJs and JJAs [1, 2, 12, 31], thus
suggesting quite an optimistic possibility of observing
the predicted field-induced effects experimentally in
nonstoichiometric superconductors with pronounced
networks of planar defects or in artificially prepared
JJAs. (It is worth mentioning that a somewhat similar
behavior of the magnetic-field-induced charge and
related flux capacitance has been observed in 2D elec-
tron systems [32].)

Finally, it can be easily verified that, in view of
Eqs. (1)–(5), the field-induced Coulomb energy of the
oxygen-depleted region within our model is given by

(8)

with Q(δ, B) and C(δ, B) defined by Eqs. (6) and (7).
A thorough analysis of the above expression reveals

that, in the PME state (when B ! Bµ), the chemically
induced granular superconductor is always in the so-
called Coulomb blockade regime (with EC > J0), while,
in the fishtail state (for B ≥ Bµ), the energy balance tips
in favor of tunneling (with EC < J0). In particular,

and

It would be also interesting to verify this phenomenon
of field-induced weakening of the Coulomb blockade
experimentally.

6. CONCLUSIONS
In conclusion, within a realistic model of two-

dimensional Josephson junction arrays created by a
two-dimensional network of twin boundary disloca-
tions (with strain fields acting as an insulating barrier
between hole-rich domains in underdoped crystals), a
few novel electric polarization related effects expected
to occur in an intrinsically granular material under

EC δ B,( )
qiq j

2Cij

----------
i j,

N

∑≡ Q2 δ B,( )
2C δ B,( )
----------------------=

EC δ B, 0.1Bµ=( ) π
2
---J0 δ( )=

EC δ B, Bµ=( ) π
8
---J0 δ( ).=
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applied magnetic fields were predicted, including a
phenomenon of chemomagnetoelectricity, an anoma-
lous low-field magnetic behavior of the effective junc-
tion charge (and flux capacitance) in the paramagnetic
Meissner phase, and a charge analog of a fishtail-like
anomaly at high magnetic fields, as well as field-depen-
dent weakening of the chemically induced Coulomb
blockade. The experimental conditions needed to
observe the effects predicted here in nonstoichiometric
high-Tc superconductors were discussed.
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Abstract—A third-order nonlinear envelope equation is derived for surface waves in finite-depth water by
assuming small wave steepness, narrow-band spectrum, and small depth as compared to the modulation length.
A generalized Dysthe equation is derived for waves in relatively deep water. In the shallow-water limit, one of
the nonlinear dispersive terms vanishes. This limit case is compared with the envelope equation for waves
described by the Korteweg–de Vries equation. The critical regime of vanishing nonlinearity in the classical
nonlinear Schrödinger equation for water waves (when kh ≈ 1.363) is analyzed. It is shown that the modula-
tional instability threshold shifts toward the shallow-water (long-wavelength) limit with increasing wave inten-
sity. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The classical nonlinear Schrödinger (NLS) equation
was originally derived in nonlinear optics [1, 2] and sub-
sequently applied to various problems in physics [3]. For
water waves, it was derived in [4–6]. The dynamics
described by the equation for water waves can be qual-
itatively different, depending on the relative values of
coefficients, which are functions of water depth. As
applied to waves in relatively deep water (kh > 1.363,
where k is the carrier wavenumber and h is the unper-
turbed water depth), the equation describes the nonlin-
ear modulational instability discovered in [7] and subse-
quently observed in experiments. In the opposite limit,
the modulated wavetrain is stable. For three-dimensional
water waves described by modified NLS equations, the
structure of the modulational instability domain in the
parameter space is more complicated [8, 9].

The NLS equation is a uniquely versatile integrable
nonlinear partial differential equation. In many cases,
its analysis can be simplified by invoking the theory of
its soliton solutions. However, its applicability is
restricted in terms of nonlinearity magnitude and spec-
tral width. These disadvantages are frequently elimi-
nated by adding higher order nonlinear and dispersive
terms. Models of this kind are currently used to describe
short pulse propagation in optical fiber links [10]. The
Dysthe equation originally derived in [11] and its sub-
sequent modifications are most widely employed to
describe ocean wave propagation. Related equations
(for different physical variables) were presented in dif-
ferent forms in various papers. Frequently, coefficients
in these equations were mutually inconsistent. Most of
these equations were derived for waves in infinitely
deep water. Recently, a closed second-order nonlinear
1063-7761/05/10105- $26.000926
Schrödinger equation was derived for the displacement
envelope [12]:

(1)

where ε is a small parameter. Equation (1) is reduced to
the classical NLS equation by dropping the terms of
order ε2. In the limit of infinitely deep water, the coef-
ficients in (1) obtained in [12] are equal to those in the
equations used by Dysthe and Trulsen with coworkers
in their recent publications (e.g., see [13]). Equation (1)
arises in other applications as well. A review of papers
focused on generalized NLS equations can be found
in [12].

Modulational instability is an important property of
NLS-type equations. The modulational instability van-
ishes as the depth decreases below the critical value
corresponding to kh ≈ 1.363, because the nonlinear
coefficient α1 changes sign. Since the cubic nonlinear-
ity is anomalously weak in the critical region, quintic
nonlinearity must be taken into account to ensure cor-
rect description of nonlinear effects. For equations
derived by the conventional asymptotic method, this
requirement is dictated by a change in the relative val-
ues of the small nonlinearity and dispersion parameters.
In particular, this approach was used in [14, 15]. Origi-
nally, the nonlinear equation for kh ≈ 1.363 was derived
in [14], where the coefficients corresponding to the crit-
ical region were given and the modulational instability
domain was analyzed. In [15], an alternative derivation

i
∂A
∂t
------ V

∂A
∂x
------+ 

  εβ1
∂2A

∂x2
--------- εα1 A 2A+ +

+ iε2β2
∂3A

∂x3
--------- iε2α21 A 2∂A

∂x
------ iε2α22A2∂A*

∂x
----------+ + 0,=
 © 2005 Pleiades Publishing, Inc.
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of the equation (written in somewhat different form)
was presented:

(2)

with α1 = O(ε1/2) and coefficients expressed as func-
tions of depth. In addition to the higher order nonlinear
term, Eq. (2) contains nonlinear dispersive terms. It was
noted that the coefficients in the new equation were
inconsistent with those in [14], and different conclu-
sions were made about the instability domain.

Equations (1) and (2) contain similar nonlinear dis-
persive terms. However, different coefficients of these
terms were obtained in [12, 14, 15]; in particular, they
increase indefinitely as kh  ∞ [15]. Equation (2)
was derived from a generalized Korteweg–de Vries
(KdV) equation in [16], where an analysis of modula-
tional instability was also presented. Vanishing nonlin-
earity can be associated with new effects in dynamics of
large-amplitude waves (e.g., see [17, 18]).

In this paper, the conventional asymptotic expansion
scheme is used to derive an equation describing weakly
nonlinear, weakly modulated finite-depth water waves.
The equation is the generalization of (1) taking into
account the next-order nonlinear terms. In the shallow-
water limit, the generalized NLS equation derived here
is compared with the envelope equation for waves
based on the Korteweg–de Vries equation. It is shown
that the nonlinear dispersion coefficients in the derived
equation increase indefinitely (to the asymptotic order
taken into account) as kh  ∞. A next-order general-
ization of the Dysthe equation is obtained for deep-
water waves, with finite coefficients. In the special case
of kh  1.363, the generalized NLS equation has the
form of (2). An analysis of modulational instability
using the calculated coefficients is presented.

2. STATEMENT OF THE PROBLEM

The classical statement of the problem is considered
(e.g., see [12, 19]). Since the calculations required to
derive the coefficients in the envelope equation present
a formidable task, the Maple symbolic computation
package was employed. Here, the procedure is pre-
sented in a form suitable for algorithmic implementa-
tion. Consider weakly nonlinear waves on the surface
of an incompressible inviscid fluid in the presence of
gravity. The system of equations consists of two bound-
ary conditions on the fluid surface,

(3)

(4)

i
∂A
∂t
------ V

∂A
∂x
------+ 

  εβ1
∂2A

∂x2
--------- εα1 A 2A+ +

+ iεα21 A 2∂A
∂x
------ iεα22A2∂A*

∂x
---------- εα31 A 4A+ + 0=

ϕ z η t ϕ xη x, z+ η ,= =

ϕ t gη 1
2
--- ϕ x

2 ϕ z
2+( )+ + 0, z η ,= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and the Laplace equation for the “bulk” water motion
supplemented with the bottom impermeability con-
dition,

(5)

(6)

Here, z and x are the vertical and horizontal coordi-
nates, respectively; η(x, t) is the surface displacement;
and ϕ(x, z, t) is the velocity potential (v = ∇ϕ ). The
assumption of potential flow is frequently used in anal-
yses of surface waves. For weakly modulated waves
(with narrow-band spectrum), the solution can be rep-
resented as a superposition of harmonics:

(7)

where ω and k denote the frequency and wavevector of
the fundamental harmonic (carrier wave). Small-ampli-
tude approximation is introduced by assuming that
δ ! 1 in (7). To ensure that ϕ(x, z, t) and η(x, t) are real-
valued functions, the following conditions must hold:

Since the surface displacement is small, the condi-
tions on the boundary z = η(x, t) can be set for z = 0 after
the functions of depth are represented by Taylor series
expansions. Then, system (3), (4) is rewritten as

(8)

(9)

Weak dispersion, i.e., slow variation of the envelope
as compared to the carrier wavelength, is taken into
account by introducing a slow coordinate x1,

(10)

∆ϕ 0, h– z η ,≤ ≤=

∂ϕ
∂z
------ 0, z h.–= =

ϕ x z t, ,( )
η x z t, ,( ) 

 
 

δ ϕn x z t, ,( )
ηn x z t, ,( ) 

 
 

En,
n

∑=

En 1, n 0,=

1/2( ) inωt inkx–( ), n 0,≠exp



=

ϕ n– ϕn*, η n– ηn*.= =

η j∂z
j 1+ ϕ
j!

--------------------
j 0=

∞

∑ η t η x

η j∂z
jϕ x

j!
----------------, z

j 0=

∞

∑+ 0,= =

η j∂z
jϕ t

j!
---------------

j 0=

∞

∑ gη 1
2
---

η j∂z
jϕ x

j!
----------------

j 0=

∞

∑ 
 
 

2

+ +

+
1
2
---

η j∂z
j 1+ ϕ
j!

--------------------
j 0=

∞

∑ 
 
 

2

0, z 0.= =

∂
∂x
------ ∂

∂x0
-------- µ ∂

∂x1
--------, µ ! 1,+
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and slow times ti ,

(11)

The solution is represented as a series expansion in
powers of ε:

(12)

Thus, the potential and displacement are repre-
sented as

(13)

(14)

The relative values of the small parameters δ and µ
may vary depending on the relative strength of disper-
sion effects and nonlinearity. The small parameter ε is
used to represent the desired solution as an asymptotic
series. It should be specified by taking into account the
relative values of δ and µ. In the classical NLS equa-
tion, where the cubic nonlinearity and the first disper-
sive correction correspond to the same asymptotic
order, it is required that ε ~ µ ~ δ. In what follows, it is
assumed that µ = ε and δ = ε; i.e., a single small param-
eter ε is used.

Since the dominant contribution to the solution is
due to the first harmonic, only the zeroth, first, and
“minus first” (conjugate) harmonics are retained: ϕn0 =
0 for |n | > 1. The terms with ϕ00 represent the mean
wave-induced flow, and ηn0 = 0 for n ≠ ±1. Since all har-
monics other than the zeroth one are excited by nonlin-
ear interaction between components, it can be assumed
that ϕnm = 0 and ηnm = 0 for |n | > m. These conditions
are imposed to reduce the required calculations, even
though can be obtained in the course of analysis.

Next, expressions (13) and (14) are substituted into
Eqs. (8) and (9), change of variables is performed
according to (10) and (11), and the terms corresponding
to the same order of harmonic (exponent n of E) and the
same asymptotic order (exponent m of ε) are collected
alternately. Hereinafter, the resulting equations are
labeled by the double index {n, m}. To derive a closed
system of equations, Laplace equation (5) subject to
boundary condition (6) is solved. Then, Eq. (9) is used
to successively find the displacement components ηnm .

∂
∂t
----- ∂

∂t0
------- ε ∂

∂t1
------- ε2 ∂

∂t2
-------+ +

+ ε3 ∂
∂t3
------- ε4 ∂

∂t4
------- …, ε ! 1.+ +

ϕn

ηn 
 
 

εm ϕnm

ηnm 
 
 

.
m 0=

∞

∑=

ϕ x z t, ,( ) δ En εmϕnm x0 x1 z ti, , ,( ),
m 0=

∞

∑
n ∞–=

∞

∑=

i 1 2 …,, ,=

η x t,( ) δ En εmηnm x0 x1 ti, ,( ),
m 0=

∞

∑
n ∞–=

∞

∑=

i 1 2 … ., ,=
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Finally, these expressions are substituted into Eq. (8) to
obtain the desired evolution equation.

3. SOLUTION OF THE LAPLACE EQUATION

Consider Eq. (5) supplemented with boundary con-
dition (6). By using the slow coordinates and series
expansions of functions introduced above, it is rewrit-
ten as

for all n or

(15)

for all n and m. Expansion (15) of the Laplace equation
can be solved order by order for m ≥ 0. Its solutions can
be written as

(16)

(17)

(18)

(19)

(20)

for 0 ≤ m ≤ 4 and n = 0 and

(21)

(22)

(23)

(24)

Lnϕn 2µink∂x1
ϕn– µ2∂x1

2 ϕn+ 0,=

Ln ∂z
2 n2k2,–=

Lnϕnm 2ink∂x1
ϕn m 1–,– ∂x1

2 ϕn m 2–,+ 0=

0 0,{ } : ϕ00 A00 xi ti,( ),=

0 1,{ } : ϕ01 A01 xi ti,( ),=

0 2,{ } : ϕ02 A02 xi ti,( ) 1
2
--- z h+( )2∂x1

2 A00,–=

0 3,{ } : ϕ03 A03 xi ti,( ) 1
2
--- z h+( )2∂x1

2 A01,–=

0 4,{ } : ϕ04 A04 xi ti,( ) 1
2
--- z h+( )2∂x1

2 A02–=

+
1
24
------ z h+( )4∂x1

4 A00

n 0,{ } : ϕn0 An0 xi ti,( ) nk z h+( )cosh
nkhcosh

----------------------------------,=

n 1,{ } : ϕn1 An1 xi ti,( ) nk z h+( )cosh
nkhcosh

----------------------------------=

+ i∂x1
An0 z h+( ) nk z h+( )sinh

nkhcosh
---------------------------------,

n 2,{ } : ϕn2 An2 xi ti,( ) ∂x1

2 An 0,
z h+( )2

2
------------------– 

 =

× nk z h+( )cosh
nkhcosh

---------------------------------- i∂x1
An1 z h+( ) nk z h+( )sinh

nkhcosh
---------------------------------,+

n 3,{ } : ϕn3 An3 xi ti,( ) ∂x1

2 An1
z h+( )2

2
------------------– 

 =

× nk z h+( )cosh
nkhcosh

----------------------------------

+ i∂x1
An2 z h+( ) i∂x1

3 An0
z h+( )3

6
------------------– 

 
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(25)

for n ≠ 0. The functions Anm(xi, ti) in (16)–(25) are yet
undetermined.

4. CLASSICAL NLS EQUATION

Order {1, 0} terms are used to find the dispersion
relation

(26)

Order {1, 1} terms yield

(27)

This equation describes linear waves propagating in a
medium characterized by the dispersion relation (26)
with the group velocity

(28)

Order {1, 2} terms lead to an evolution equation con-
taining the zeroth and second harmonics. The equation
for the zeroth harmonic derived by collecting order
{0, 2} terms is

(29)

Equation (29) is combined with (27) to obtain

(30)

where Vlong is the linear long-wave velocity correspond-
ing to the free solution for the zeroth harmonic. In the
model considered here,

(31)

× nk z h+( )sinh
nkhcosh

---------------------------------,

n 4,{ } : ϕn4 An4 xi ti,( ) ∂x1

2 An2
z h+( )2

2
------------------–

=

+ ∂x1

4 An0
z h+( )4

24
------------------

 nk z h+( )cosh
nkhcosh

----------------------------------

+ i∂x1
An3 z h+( ) i∂x1

3 An1
z h+( )3

6
------------------– 

 

× nk z h+( )sinh
nkhcosh

---------------------------------

ω kgσ, σ kh( ).tanh= =

∂A10

∂t1
----------- V

∂A10

∂x1
-----------+ 0.=

V
g

2ω
------- σ kh 1 σ2–( )+( ).=

gh
∂2A00

∂x1
2

-------------
∂2A00

∂t1
2

-------------– Γ1
∂

∂x1
-------- A10

2.=

∂
∂t1
------- V

∂
∂x1
--------+ 

  ∂2

∂t1
2

------- V long
2 ∂2

∂x1
2

--------–
 
 
 

A00 0,=

V long gh,=

∂A00

∂t1
----------- V

∂A00

∂x1
-----------+ 0;=
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i.e., the leading-order zeroth harmonic is assumed to
propagate with the velocity of the driving (surface)
wave. Then, Eq. (29) becomes

(32)

The expressions for the coefficients obtained below are
given in the Appendix.

Order {2, 1} terms yield an expression for the sec-
ond harmonic having the form

(33)

Order {1, 2} terms combined with (27), (31), and (33)
lead to the equation

(34)

A closed evolution equation is derived from (34)
and (32):

(35)

Since an equation for the displacement is to be
derived, we use the relation between velocity potential
and displacement

(36)

which is obtained by solving Eq. (9). In physical vari-
ables, the NLS equation is written as

(37)

and the surface displacement is given by the formula

(38)

Equation (37) is the classical first-order NLS equa-
tion with well-known coefficients. In particular, the
coefficient β1 is strictly positive, whereas the nonlinear
coefficient α1 changes sign as kh  1.363 (see fig-

∂A00

∂x1
----------- γ1 A10

2,=

γ1 Γ1/Vd
2, Vd

2 gh V2.–= =

A21 iχ1A10
2 .=

i
∂A10

∂t2
----------- β1

∂2A10

∂x1
2

------------- ρ̃11 A10
2A10+ +

+ ρ̃12A10

∂A00

∂x1
----------- 0.=

i
∂A10

∂t2
----------- β1

∂2A10

∂x1
2

------------- α̃1 A10
2A10+ + 0.=

η10 iλ A10, λ ω
g
----,–= =

i
∂η10

∂t
---------- V

∂η10

∂x
----------+ 

  εβ1

∂2η10

∂x2
------------- εα1 η10

2η10 0,=+ +

α1 α̃1/λ2,=

η Re η10 iωt ikx–( )exp( ).=
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ure), which implies a change from focusing (for α1 > 0)
to defocusing type of Eq. (37).

5. SECOND-ORDER NONLINEAR EVOLUTION 
EQUATION (SEDLETSKY EQUATION)

The second-order nonlinear NLS equation for finite-
depth water waves was derived in [12]. On the whole,
the present analysis follows that derivation, except for
a different treatment of the derivative of the zeroth-har-
monic velocity potential with respect to t2. It was
assumed in [12] that the propagation velocity of the lead-
ing-order zeroth harmonic (ϕ00) is V not only to the first
(as in (31)), but also to the next, asymptotic order. How-
ever, this assumption is inconsistent with relation (32)
between the first and zeroth harmonics. By virtue
of (32), the derivative of A00 with respect to t2 is calcu-
lated by using (35) and does not vanish. When the cor-
responding term is retained, corrections to nonlinear
dispersion coefficients must be taken into account
(however, this does not entail any change in the limit of
kh  ∞).

To the second asymptotic order, the surface dis-
placement is expressed as

(39)

The equation derived here describes the evolution of
the combination A10 + εA11. The function A11 (the
homogeneous part of solution (22) to the Laplace equa-
tion) is yet undetermined. To derive an equation for dis-
placement, functions of the potential must be expressed
in terms of the displacement represented by (39). The

η1 η10 εη11 O ε2( ),+ +=

η11 iλ A11 i p1

∂A10

∂x1
-----------+ 

  .=

3

2

1

0

–1

–2

–3
0 1 2 3 4 5 6 7

α33

α21

α34

α22

α35

α32α1

α31

Dimensionless nonlinear coefficients in Eq. (66) as func-
tions of kh (see table).

kh
JOURNAL OF EXPERIMENTAL A
calculations can be simplified by using the fact that A11
is an arbitrary function and setting,

(40)

in which case

(41)

The second-order nonlinear evolution equation for
the first harmonic derived from the asymptotic expan-
sion to order {1, 3} is

(42)

An expression for the second to last term in (42) can be
found by using (32) and (35):

(43)

(The corresponding contribution to nonlinear disper-
sion coefficients was ignored in [12].) Then, (42) is
rewritten as

(44)

Equation (44) contains a zeroth-harmonic term. The
equation for this term is derived from the asymptotic
expansion to order {0, 3}:

(45)

In addition to the relations found above, the deriva-
tion of Eqs. (44) and (45) makes use of the condition

(46)

and the expression

(47)

for the second-harmonic component derived from the
asymptotic expansion to order {2, 2}. Equations (44)

A11 i p1

∂A10

∂x1
-----------,–=

η1 iλ A10 O ε2( ).+=

i
∂A10

∂t3
----------- iβ2

∂3A10

∂x1
3

------------- iP21 A10
2∂A10

∂x1
-----------+ +

+ iP22A10
2 ∂A10*

∂x1
----------- sA10

∂A00

∂t2
----------- ρ̃12A10

∂A01

∂x1
-----------+ + 0.=

∂A00

∂t2
----------- iβ1γ1 A10

∂A10*

∂x1
----------- A10*

∂A00

∂x1
-----------– 

  .–=

i
∂A10

∂t3
----------- iβ2

∂3A10

∂x1
3

------------- iρ̃21 A10
2∂A10

∂x1
-----------+ +

+ iρ̃22A10
2 ∂A10*

∂x1
----------- ρ̃12A10

∂A01

∂x1
-----------+ 0.=

∂A01

∂x1
----------- iγ2 A10

∂A10*

∂x1
----------- A10*

∂A10

∂x1
-----------– 

  .=

∂A01

∂t1
----------- V

∂A01

∂x1
-----------+ 0=

A22 χ2A10

∂A10

∂x1
-----------=
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and (45) are combined to obtain the second-order evo-
lution equation

(48)

Combining (48) with (27) and (35) and using (41),
we obtain a complete second-order equation for the dis-
placement envelope:

(49)

The total surface displacement

(50)

contains contributions of the zeroth, first, and second
harmonics. The expressions for the displacement com-
ponents are found by solving (9):

(51)

(52)

An equation similar to (49) was derived in [12], with
coefficients equal to those obtained here for s = 0. It is
a generalization of the classical NLS equation to the
next asymptotic order. However, the nonlinear term
(with coefficient α1) vanishes when kh ≈ 1.363, and the
resulting equation (as well as (37)) fails to describe the
nonlinear wave dynamics. For this reason, the evolution
equation extended to the next asymptotic order is con-
sidered below.

6. THIRD-ORDER NONLINEAR EVOLUTION 
EQUATION

To the third asymptotic order, the surface displace-
ment is expressed as

(53)

where

(54)

i
∂A10

∂t3
----------- iβ2

∂3A10

∂x1
3

------------- iα̃21 A10
2∂A10

∂x1
-----------+ +

+ iα̃22A10
2 ∂A10*

∂x1
----------- 0.=

i
∂η10

∂t
---------- V

∂η10

∂x
----------+ 

  εβ1

∂2η10

∂x2
------------- εα1 η10

2η10+ +

+ iε2β2

∂3η10

∂x3
------------- iε2α21 η10

2∂η10

∂x
----------+

+ iε2α22η10
2 ∂η10*

∂x
---------- 0,=

α21 α̃21/λ2, α22 α̃22/λ2.= =

η ε2η01 εRe η10 iωt ikx–( )exp( )+=

+ ε2Re η21 2iωt 2ikx–( )exp( ) O ε2( )+

η01 r̃01 A10
2 r01 η10

2, r01 r̃01/λ2,= = =

η21 r̃21A10
2 r21η10

2 , r21 r̃21/λ2.–= = =

η1 iλ A10 ε2η12 O ε3( ),+ +=

η12 iλ A12 p21

∂2A10

∂x1
2

------------- p22 A10
2A10+ +

 
 
 

.=
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Here, freedom in defining A12 can be used:

(55)

Then,

(56)

The equation for the first harmonic derived from the
asymptotic expansion to order {1, 4} is

(57)

and the related equation for the zeroth harmonic is

(58)

These equations are derived by using the condition

(59)

and the following expressions for components of the
second and third harmonics:

(60)

(61)

The derivatives of the zeroth-harmonic components
multiplied by s in (57) are calculated by using the rela-

A12 p21

∂2A10

∂x1
2

-------------– p22 A10
2A10.–=

η1 iλ A10 O ε3( ).+=

i
∂A10

∂t4
----------- β3

∂4A10

∂x1
4

------------- P31 A10
4A10+ +

+ P32 A10
2∂2A10

∂x1
2

------------- P33A10
2 ∂2A10*

∂x1
2

-------------+

+ P34A10

∂A10

∂x1
-----------

∂A10*

∂x1
----------- P35A10*

∂A10

∂x1
----------- 

 
2

+

+ sA10

∂A01

∂t2
----------- sA10

∂A00

∂t3
----------- ρ̃12A10

∂A02

∂x1
-----------+ + 0,=

∂A02

∂x1
----------- γ31 A10

4 γ32 A10

∂2A10*

∂x1
2

------------- A10*
∂A10

∂x1
2

-----------+
 
 
 

+=

+ γ33

∂A10

∂x1
-----------

∂A10*

∂x1
-----------.

∂A02

∂t1
----------- V

∂A02

∂x1
-----------+ 0=

A23 iχ31 A10
2A10

2 iχ32A10

∂2A10

∂x1
2

-------------+=

+ iχ33

∂A10

∂x1
----------- 

 
2

,

A32 ν1A10
3 .=
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tions obtained above:

(62)

(63)

Substituting (62) and (63) into (57) yields

(64)

A closed third-order nonlinear evolution equation
for the first harmonic is obtained by combining Eq. (64)
with (58):

(65)

and the corresponding complete equation for displace-
ment is

∂A01

∂t2
----------- γ2α̃1 A10

4=

+ γ2β1 A10

∂2A10*

∂x1
2

------------- A10*
∂2A10

∂x1
2

------------- 2
∂A10

∂x1
-----------

∂A10*

∂x1
-----------–+

 
 
 

,

∂A00

∂t3
----------- γ1

α̃21 α̃22+
2

--------------------- A10
4–=

– γ1β2 A10

∂2A10*

∂x1
2

------------- A10*
∂2A10

∂x1
2

-------------
∂A10

∂x1
-----------

∂A10*

∂x1
-----------–+

 
 
 

.

i
∂A10

∂t4
----------- β3

∂4A10

∂x1
4

------------- ρ̃31 A10
4A10+ +

+ ρ̃32 A10
2∂2A10

∂x1
2

------------- ρ̃33A10
2 ∂2A10*

∂x1
2

-------------+

+ ρ̃34A10

∂A10

∂x1
-----------

∂A10*

∂x1
-----------

+ ρ̃35A10*
∂A10

∂x1
----------- 

 
2

ρ̃12A10

∂A02

∂x1
-----------+ 0.=

i
∂A10

∂t4
----------- β3

∂4A10

∂x1
4

------------- α̃31 A10
4A10+ +

+ α̃32 A10
2∂2A10

∂x1
2

------------- α̃33A10
2 ∂2A10*

∂x1
2

-------------+

+ α̃34A10

∂A10

∂x1
-----------

∂A10*

∂x1
----------- α̃35A10*

∂A10

∂x1
----------- 

 
2

+ 0,=

i
∂η10

∂t
---------- V

∂η10

∂x
----------+ 

  εβ1

∂2η10

∂x2
------------- εα1 η10

2η10+ +

+ iε2β2

∂3η10

∂x3
------------- iε2α21 η10

2∂η10

∂x
---------- iε2α22η10

2 ∂η10*

∂x
----------+ +

+ ε3β3

∂4η10

∂x4
------------- ε3α31 η10

4η10 ε3α32 η10
2∂2η10

∂x2
-------------+ +
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(66)

The displacement envelope is expressed as

(67)

with components given by (51), (52), and the formulas

(68)

(69)

(70)

Equation (66) is a generalization of the equation
derived in [12] to the next asymptotic order.

Note that the right-hand sides of (32), (45), and
Eq. (58) integrated by parts are similar in form to the
first three conservation laws for the first-order NLS
equation [19]:

(71)

(72)

(73)

This fact is directly related to the possibility of rep-
resenting the zeroth-harmonic components of potential

+ ε3α33η10
2 ∂2η10*

∂x2
------------- ε3α34η10

∂η10

∂x
----------

∂η10*

∂x
----------+

+ ε3α35η10*
∂η10

∂x
---------- 

 
2

0,=

α31 α̃31/λ4, α32 α̃32/λ2, α33 α̃33/λ2,= = =

α34 α̃34/λ2, α35 α̃35/λ2.= =

η ε2 η01 εη02+( ) εRe η10 iωt ikx–( )exp( )+=

+ ε2Re η21 εη22+( ) 2iωt 2ikx–( )exp( )

+ ε3Re η32 3iωt 3ikx–( )exp( ) O ε4( )+

η02 ir̃02 A10

∂A10*

∂x
----------- A10*

∂A10

∂x
-----------– 

 =

=  ir02 η10

∂η10*

∂x
---------- η10*

∂η10

∂x
----------– 

  , r02 r̃02/λ2,=

η22 ir̃22A10

∂A10

∂x
----------- ir22η10

∂η10

∂x
----------,= =

r22

r̃22

λ2
------,–=

η32 ir̃32A10
3 r32η10

3 , r32

r̃32

λ3
------.–= = =

I1 A10
2 x1,d

∞–

∞

∫=

I2 A10

∂A10*

∂x1
----------- A10*

∂A10

∂x1
-----------– 

  x1,d

∞–

∞

∫=

I3 A10
4 2β1

α̃1

-------- ∂A10

∂x1
-----------

2
– 

  x1.d

∞–

∞

∫=
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Coefficients in equations corresponding to special cases

Special cases of generalized NLS equation (66) Generalized Dysthe 
equation (81)kh  0 kh = 1.363 kh  ∞

Vk/ω 1 0.6793 1/2

β1k2/ω (kh)2/2 0.2657 1/8

α1/k2/ω (–9/16)/(kh)4 0.0002 1/2

β2k3/ω (kh)2/6 –0.1114 –1/16

α21/k/ω (–9/8)/(kh)4 0.6833 3/2

α22/k/ω (–27/16)/(kh)4 –0.2678 1/4

β3k4/ω (19/72)(kh)4 –0.0066 –5/128

α31/k4/ω (81/1024)/(kh)10 0.3864 1/2

α32/ω (–15/16)/(kh)2 –0.4433 kh/6 –5/8

α33/ω (9/4)/(kh)4 0.7798 kh/6 3/32

α34/ω (9/8)/(kh)4 0.2394 kh/3 –3/16

α35/ω (–9/16)/(kh)4 –0.6467 –19/32

γ1ω/k3 (–3/4)/(kh)2 –0.4935 –1/(2kh) –

γ2ω/k2 (–3/4)/(kh)2 –0.1351 1/(8kh) –

γ31ω3/k7 (–81/64)/(kh)4 –0.6239 –1/(8kh) –

γ32ω/k (3/4)/(kh)2 0.1343 –kh/12 –

γ33ω/k (–3/4)/(kh)2 –0.3705 –kh/6 –

r01/k (–3/4)/(kh)3 –0.4479 –1/(4kh) 0

r02 (–3/4)/(kh)3 –0.3116 (–1/32)/(kh)2 0

r21/k (3/4)/(kh)3 0.8265 1/2

r22 (–3/2)/(kh)3 –0.2669 1/2

r32/k2 (27/64)/(kh)6 0.8250 3/8
by expressions (43), (62), and (63), which do not con-
tain integrals. Indeed, it follows from (32) that

(74)

By substituting (43), the integral in (74) is found to
vanish. Therefore, the integral on the left-hand side
in (74) is a conserved quantity. The integral I1 is also
conserved in the second-order NLS equation by virtue
of (63), and expression (62) implies that I2 is an integral
of motion of the first-order NLS equation. It is well
known that the classical NLS equation has an infinite
number of conservation laws. However, it can be shown
that the integral I1 is conserved in Eq. (66) only when a
certain relation between the nonlinear dispersion coef-
ficients α32, α33, and α35 is satisfied. This implies
breakdown of conservation laws of high-order NLS equa-

∂
∂t2
------- γ1 A10

2 x1d

∞–

∞

∫ ∂
∂t2
-------A00

x1 ∞–=

x1 ∞=

.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tions in the general case. Even though expression (58) is
similar in form to I3, it does not entail (73) in the gen-
eral case. Since terms analogous to those with coeffi-
cients s in (42) and (57) should be expected to appear in
higher order asymptotic expansions, higher order equa-
tions may contain nonlocal terms (derivatives of zeroth-
order harmonic components of the potential expressed
in terms of indefinite integrals).

7. LIMIT OF INFINITELY DEEP WATER 
(kh  ∞)

The coefficients α32, α33, and α34 in Eq. (66) are
divergent in the limit of kh  ∞ (see table and figure).
Asymptotic expansion can be used only if higher order
terms are smaller than lower order ones. This require-
ment is violated for the zeroth-harmonic expansion

ϕ0 εϕ00 ε2ϕ01 ε3ϕ02 ε4ϕ03 ε5ϕ04 O ε6( ).+ + + + +=
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Indeed, as kh  ∞, expressions (18) and (19) tend to
the following limits:

(75)

(76)

Thus, both ϕ02 and ϕ03 increase indefinitely if A10
and A01 remain finite in the limit of infinitely deep
water. The secular terms can be eliminated by using the
freedom in defining A02 and A03:

(77)

, (78)

as done in [12]. However, this is not the only possible
choice. Substitutions of this kind cannot be used to
change the closed equation or the coefficients therein,
but can modify coefficients in the system of equations
for the first and second harmonics.

As kh  ∞, the component ϕ04 behaves as follows:

(79)

where P1 and P2 are polynomials containing the terms
in parentheses. It is obvious that a bounded ϕ04 can
always be obtained by appropriate choice of A04,
whereas the corresponding derivatives of ϕ04 with
respect to z remain indefinitely increasing functions as
kh  ∞. The substitution of such expressions as (77)
and (78) does not lead to any substantial change in the
form of (79). Therefore, the evolution equation must

ϕ02 A02
k2

2ω
-------+

× z
h
2
--- 1

8k
------+ + 

  ∂
∂x1
-------- A10

2,

kh → ∞

ϕ03 A03 i
k

8ω
-------–

× z
h
2
--- 1

8k
------–+ 

  ∂
∂x1
-------- A10

∂A10*

∂x1
----------- A10*

∂A10

∂x1
-----------– 

  .

kh → ∞

A02 A02
k2h
4ω
-------- ∂

∂x1
-------- A10

2,–

A03 A03 i
kh

16ω
---------- ∂

∂x1
-------- A10

∂A10*

∂x1
----------- A10*

∂A10

∂x1
-----------– 

 +

ϕ04 A04
k6

8ω3
--------- z

h
2
--- 2

k
---+ + 

  ∂
∂x1
-------- A10

4+
kh → ∞

+
1
ω
----P1 k2h3 kh2 k2h2z h khz k2z2h

1
k
--- z kz2 k2z3, , , , , , , , , 

 

× ∂
∂x1
-------- A10

∂2A10*

∂x1
2

------------- A10*
∂2A10

∂x1
2

-------------+
 
 
 

+
1
ω
----P2 k2h3 kh2 h khz k2z2h

1
k
--- z kz2 k2z3, , , , , , ,, 

 

× ∂
∂x1
--------

∂A10

∂x1
-----------

∂A10*

∂x1
----------- 

  ,
JOURNAL OF EXPERIMENTAL A
contain terms with coefficients that increase indefi-
nitely as kh  ∞; i.e., the ensuing asymptotic series
is divergent.

Indefinitely increasing terms appear in the series
because the depth h is not small as compared to the
length scale L of the zeroth harmonic, which makes it
impossible to represent the zeroth harmonic in the solu-
tion to the Laplace equation as a power series
(see (15)). Whereas this does not rule out analysis in the
limit of kh  ∞ for the classical NLS equation or the
second-order generalized equation, Eq. (66) cannot be
used to describe waves in infinitely deep water.

An evolution equation in the limit of kh  ∞ can
be derived as an envelope equation by in the manner
of [11]. Suppose that h @ L (L/h = O(µ)). The mode
structure of the wave-induced flow is not prescribed,

(80)

By following the derivation of (66), a generalized
Dysthe equation is obtained:

(81)

(82)

(83)

(84)

Equation (81) is derived by using condition (59), the

ϕ0m A0m z xi ti, ,( ), m 0.≥=

i
∂η10

∂t
----------

ω
2k
------

∂η10

∂x
----------+ 

  ε ω
8k2
--------

∂2η10

∂x2
------------- εωk2

2
--------- η10

2η10+ +

– iε2 ω
16k3
-----------

∂3η10

∂x3
------------- iε23ωk

2
---------- η10

2∂η10

∂x
---------- iε2ωk

4
-------η10

2 ∂η10*

∂x
----------+ +

– ε3 5ω
128k4
--------------

∂4η10

∂x4
------------- ε3ωk4

2
--------- η10

4η10+

– ε35ω
8

------- η10
2∂2η10

∂x2
-------------

+ ε33ω
32
-------η10

2 ∂2η10*

∂x2
------------- ε33ω

16
-------η10

∂η10

∂x
----------

∂η10*

∂x
----------–

– ε319
32
------η10*

∂η10

∂x
---------- 

 
2

kη10

∂A02

∂x
-----------+ 0,=

∂A02

∂z
-----------

ω
2
---- ∂

∂x
------ η10

2, z 0,= =

∂2A02

∂z2
-------------

∂2A02

∂x2
-------------+ 0, h– z 0,< <=

∂A02

∂z
----------- 0, z –h= .=
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identities A00 ≡ 0 and A01 ≡ 0, and the relation

(85)

Note that (82) and (85) are identical to the expressions
for these derivatives that follow from (75) and (76),
respectively. The last (wave-induced) term in (81) is
similar to the analogous term in the classical Dysthe
equation. This is due to the assumption that L/h = O(µ)
(more restrictive than L/h = O(1)), which is required to
simplify the derived equation. Equation (81) is applica-
ble if kh ≥ 1/ε2.

The third-order NLS equation obtained by dropping
the last term in (81) is valid in the limit of infinitely
deep water, and the coefficients therein are equal to the
bounded ones in Eq. (66) (see table). Note that the con-
tribution of the zeroth harmonic (wave-induced flow) is
not only represented by the last term in (81), but it is
also contained in other nonlinear coefficients.

The total displacement envelope field described by
Eq. (81) is represented by expression (67). An analysis
of the limit behavior of rij using the fact that (kh)–1 is
small shows that the contribution of the zeroth harmonic
exceeds the accuracy of the present model, even though
this contribution is retained in Dysthe’s model [13].

8. SHALLOW-WATER LIMIT (kh  0)

As kh  0, the coefficients tend to infinity under
the normalization conditions used here (see table), but
the terms in asymptotic series expansions remain small.
With increasing water depth, the sign of α31 changes
from plus to minus and then back to plus (see figure).

The NLS equation for kh  0 can also be derived
by starting from the KdV (shallow-water) equation [5]

(86)

This method for deriving the envelope equation was
used to verify the coefficients obtained above, and com-
plete agreement was demonstrated. The third-order
nonlinear equation for weakly modulated waves based
on the KdV equation is similar to (66), except for
α32 = 0; the remaining coefficients are given in the table
(see the kh  0 column in table). The coefficient α32
vanishes because it behaves as a different power of kh
(see table).

When terms of the next order are retained in the
KdV equation, the values of the coefficients in the enve-
lope equation are corrected. In particular, the correc-
tions to α1 obtained by using Eq. (86) modified by
including a cubic nonlinear term may result in a change

A03

∂z
------- i

ω
8k
------ ∂

∂x
------ η10

∂2η10*

∂x2
------------- η10*

∂2η10

∂x2
-------------–

 
 
 

,–=

z 0.=

∂η
∂t
------ gh

∂η
∂x
------ 3 gh

2h
-------------η∂η

∂x
------ h2 gh

6
----------------∂3η

∂x3
---------+ + + 0.=
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from focusing to defocusing type of the equation [20].
However, this change does not occur in water wave
dynamics.

In [16, 20], higher order envelope equations were
derived for the KdV equation generalized by adding a
cubic nonlinear term. The derivation presented in [16]
followed [15] in relying on a modified relation between
small parameters and made use of the condition for
vanishing nonlinearity in the first-order envelope equa-
tion. In the present study, the envelope equation is
derived by starting from a generalized KdV equation
without using this condition (classical relation between
small parameters), and agreement with the results
of [16] is achieved for near-critical values of α1.
In [20], a solution was sought to the second asymptotic
order, whereas the present derivation shows that third-
order corrections contribute to α31 as well.

9. VANISHING CUBIC NONLINEARITY
(kh ≈ 1.363)

A nonlinear evolution equation for the modulated
envelope in the limit of kh  1.363 was originally
derived in [14] and later in [15]. In the former paper,
numerical values of the coefficients corresponding to
kh = 1.363 were given; in the latter, expressions for the
coefficients as functions of depth were presented (dif-
ferent from those in the former and divergent in the
limit of infinitely deep water).

To formulate the evolution equation for kh ≈ 1.363,
one should rewrite Eq. (66), factoring out the small
parameters associated with nonlinearity (δ) and disper-
sion (µ):

(87)

When the term with α1 is dropped and the next-
order nonlinear and first-order dispersive terms (with
α31 and β1, respectively) are taken into account as terms
of similar asymptotic order, a new relation between the
small nonlinearity and dispersion parameters is

i ε
∂η10

∂t
---------- µV

∂η10

∂x
----------+ 

  µ2β1

∂2η10

∂x2
------------- δ2α10 η10

2η10+ +

+ iµ3β2

∂3η10

∂x3
------------- iδ2µα21 η10

2∂η10

∂x
---------- iδ2µα22η10

2 ∂η10*

∂x
----------+ +

+ µ4β3

∂4η10

∂x4
------------- δ4α31 η10

4η10+

+ δ2µ2α32 η10
2∂2η10

∂x2
-------------

+ δ2µ2α33η10
2 ∂2η10*

∂x2
------------- δ2µ2α34η10

∂η10

∂x
----------

∂η10*

∂x
----------+

+ δ2µ2α35η10*
∂η10

∂x
---------- 

 
2

0.=
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obtained: δ2 ~ µ. Then, retaining only the first-order
corrections to the KdV equation, we obtain the modi-
fied equation

(88)

Here, ε = µ = δ2, and the cubic nonlinear term is
retained under the assumption that α1 is an order ε1/2 or
smaller quantity.

Equation (88) describes nonlinear dynamics of sur-
face waves when kh ≈ 1.363; i.e., it should be used
instead of (37) in this parameter region. Even though
the terms contained in Eq. (88) are obtained by using
expansions to order ε5, it is essentially a first-order
equation. In this study, the coefficients in this equation
are well defined for any kh (in contrast to [14]) and are
always finite (in contrast to [15]). Their values corre-
sponding to kh = 1.363 are listed in the table. The sur-
face displacement is given by formula (38).

The modulational instability of the simplest (plane-
wave) solution to Eq. (88) was analyzed in [15, 16]. If
the solution is represented as

(89)

where K and Ω are the wavenumber and frequency
detunings, respectively, then the modulational instabil-
ity criterion is

(90)

The wavenumber interval corresponding to unstable
perturbations is determined by the relation

(91)

(the total wavenumber is k + K + ∆K), and the largest
growth rate exponent is

(92)

The type of instability varies, depending on the sign
of D. For kh = 1.363, the results listed in the table can
be used to obtain

(93)

i
∂η10

∂t
---------- V

∂η10

∂x
----------+ 

  εβ1

∂2η10

∂x2
------------- εα1 η10

2η10+ +

+ iεα21 η10
2∂η10

∂x
---------- iεα22η10

2 ∂η10*

∂x
----------+

+ εα31 η10
4η10 0.=

η10 A i Ω ω+( )t K k+( )x–( )( ),exp=

β1α1 D 0, D>+ β1K α22 α21–( )=

+ A2 2β1α31
1
2
---α22

2– 
  .

0 ∆K A
β1
----- 2 β1α1 D+( )<<

ImΩ( )max
A2

β1
------ β1α1 D+( )=

for ∆Kmax
A
β1
----- β1α1 D+ .=

D ω2 0.2527
K
k
----– 0.2311 kA( )2+ 

  .≈
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The coefficients in (93) differ from those found
in [15]. However, since the sign of D corresponding to
the Stokes wave (K = 0) is the same, the conclusions
about unstable behavior made in that study remain valid
in the present context: there always exist unstable per-
turbations of the Stokes wave when kh > 1.363,
whereas modulational instability develops for kh <
1.363 only if

(94)

The latter condition corresponds to an instability
threshold for intense waves shifted from kh = 1.363
toward the shallow-water limit. The shift can be esti-
mated by setting K = 0 and kA = 0.1 (typical steepness
of ocean waves) or kA = 0.4: the critical depth corre-
sponds to kh ≈ 1.3508 and kh ≈ 1.2520, respectively.

10. CONCLUSIONS

A third-order NLS equation for waves in finite-
depth water that generalizes the equation obtained
in [12] is derived without assuming that the wave-
induced-flow velocity is equal to the group velocity of
the fundamental wave to high orders of accuracy. The
derived equation is valid for waves characterized by a
small steepness and narrow-band spectrum when the
water depth is small as compared to the modulation
length. The latter condition is formally violated as
kh  ∞ (power-series representation of the compo-
nents of the zeroth harmonic of velocity potential
breaks down). In this limit, a third-order generalized
Dysthe equation with finite coefficients is obtained that
takes into account weak wave-induced flow. The gener-
alized NLS equation obtained in the shallow-water
limit is consistent with the envelope equation based on
the KdV equation. In the special case of vanishing
cubic nonlinearity (kh ≈ 1.363), a generalization of the
first-order NLS equation is derived and the coefficients
therein are calculated. The analysis of modulational
instability performed in this case shows that the modu-
lational instability threshold shifts toward the shallow-
water limit with increasing wave intensity.
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APPENDIX

Coefficients of Equations 

In what follows, the coefficients of terms corre-
sponding to higher asymptotic orders are expressed in

D β1α1– 0.> >
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terms of lower order coefficients. These representations
are suitable for verifying calculations and understand-
ing the contributions of various effects. The expression
for V is substituted into the coefficients in some equa-
tions and is not substituted into others to reduce the size
of expressions.

Coefficients of Field Components 

Coefficients of Nonlinear Interaction Terms 

p1 hσ V
ω
----,+=

p21
β1

ω
----- k2h23σ4 2σ2– 1+

4k2σ2
--------------------------------- kh

2k2σ
------------

1

4k2
--------,+ + +=

p22
α̃1

ω
-----

k2Vσ2 ωk–

ω2
----------------------------γ1 k2 σ4– 2σ2– 1+

ω σ2 1+( )
----------------------------------χ1+ +=

+ k4σ2 5σ2 8–( )
8ω2

----------------------------.

χ1 3k2σ4 1–

8ωσ2
--------------,=

χ2 kh
σ2– 3+
kσ

------------------- 1
k
---+ 

  χ1=

+ 3k2h
σ4 1–( ) 3σ2 1+( )

16ωσ3
------------------------------------------- 9k

σ4– 1+

16ωσ2
-------------------,+

χ31 2
σ2 1+

ωσ2
---------------α̃1χ1– k2σ4 4σ2 3+ +

8ω2σ2
------------------------------α̃1+=

+ k2h
σ2 1–( ) 3σ2 1–( )

2ωσ3
------------------------------------------ k

σ2 5+

2ωσ2
---------------+ 

  γ1χ1

+ k4h
σ2 1–( )2 σ2 1+( )

4ω2σ
----------------------------------------- k32σ6 σ4 2σ2 3+ + +

8ω2σ2
---------------------------------------------–

 
 
 

γ1

+ k4σ4 4σ2– 19+

4ω2
---------------------------------χ1 3k2 1 σ4–( ) 5σ2 3+( )

4ωσ2 3σ2 1+( )
-------------------------------------------ν1+

+ k6 21σ6– 4σ4 27σ2– 52–+

96ω3
-------------------------------------------------------------,

χ32 2
σ2 1+

ωσ2
---------------β1χ1– k2σ4 4σ2 3+ +

8ω2σ2
------------------------------β1+=
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Linear Dispersion Coefficients 

These coefficients can be calculated by using disper-
sion relation (26).

Coefficients of Wave-Induced Flow Components 

+ kh
σ2 3–
2kσ

-------------- 1
2k
------– 

  χ2

+ k2h2σ6 9σ4– 15σ2 1+ +

8k2σ4
------------------------------------------------ kh

σ4– 6σ2 1–+

4k2σ3
----------------------------------+



+
σ2 1+

8k2σ2
---------------

 χ1 k2h2 17σ8– 4σ6 14σ4 4σ2– 3+ + +

32ωσ4
--------------------------------------------------------------------------+

+ kh
σ4 1–( ) 9σ2 1+( )

16ωσ3
------------------------------------------- σ2 1+( )2

32ωσ2
----------------------,–

χ33 kh
σ2 3–
2kσ

-------------- 1
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8k2σ4
------------------------------------------------


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Coefficients in Equations 

– 2
V
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Abstract—A kinetic approach to Bose–Einstein condensates (BECs) is proposed based on the Wigner–Moyal
equation (WME). In the semiclassical limit, the WME reduces to the particle-number conservation equation.
Two examples of applications are (i) a self-phase modulation of a BE condensate beam, where we show that
part of the beam is decelerated and eventually stops as a result of the gradient of the effective self-potential, and
(ii) the derivation of a kinetic dispersion relation for sound waves in BECs, including collisionless Landau
damping. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Presently, Bose–Einstein condensates (BECs) pro-
vide one of the most active and creative areas of
research in physics [1, 2]. The dynamics of BECs are
usually described by a nonlinear Schrödinger equation
(known in this field as the Gross–Pitaevskii equation
(GPE) [3, 4]), which determines the evolution of a col-
lective wavefunction of ultracold atoms in BECs,
evolving in the mean field self-potential.

In this paper, we propose the use of an alternative
but nearly equivalent approach to the physics of BECs,
based on a kinetic equation for the condensate. We also
show that this kinetic theory can lead to a more com-
plete understanding of the physical processes occurring
in BECs, not only by providing an alternative method
for describing the system but also by improving our
global view of the physical phenomena. It is our hope
that this will also lead to the discovery of new aspects
of BECs.

The key point of our approach is the use of the
Wigner–Moyal equation (WME) for BECs, describing
the spatiotemporal evolution of the appropriate Wigner
function [5]. Wigner functions for BECs were dis-
cussed in the past [6, 7], and the WME has been used
sporadically [8], but no systematic application of the
WME to BECs has previously been considered. In the
semiclassical limit, this equation reduces to the parti-
cle-number conservation equation, which is a kinetic
equation formally analogous to the Liouville equation,

¶ The text was submitted by the authors in English.
1063-7761/05/10105- $26.00 0942
but with a nonlinear potential. A description of BECs in
terms of the kinetic equation is adequate in a series of
problems, as is exemplified here, and can be seen as
intermediate (in accuracy) between the GPE and the
hydrodynamic equations usually found in the literature.

This paper is organized as follows. In Section 2, we
establish the WME and discuss its approximate version
as a kinetic equation for the Wigner function. We then
apply the kinetic equation to two distinct physical prob-
lems. The first one, considered in Section 3, is the self-
phase modulation of a BEC beam. A similar problem
has been studied numerically in the past [9]. Here, we
derive explicit analytical results and show that a part of
the BEC beam is decelerated and eventually comes to a
complete halt as a result of the collective forces acting
on the condensate. The second example is considered in
Section 4, where we establish a kinetic dispersion rela-
tion for sound waves in BECs, giving a kinetic correc-
tion to the usual Bogoliubov velocity of sound [10, 11]
and predicting the occurrence of Landau damping [12,
13]. Our description of Landau damping is significantly
different from that previously considered for transverse
oscillations of BECs [14]. Finally, in Section 5, the vir-
tues and limitations of the present kinetic approach are
briefly discussed.

2. WIGNER–MOYAL EQUATION
FOR THE BOSE CONDENSATE

It is known that, for an ultracold atomic ensemble
and, in particular, for BECs, the ground-state atomic
quantum field can be replaced by a macroscopic atomic
© 2005 Pleiades Publishing, Inc.
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wavefunction ψ. In a large variety of situations, the evo-
lution of ψ is determined by the GPE

(1)

where V0 ≡ V0(r) is the confining potential and Veff is the
effective potential that takes the interatomic interac-
tions inside the condensate into account; in the simplest
form,

where g is a constant [3, 4].
We consider the situation where this wave equation

can be replaced by a kinetic equation. To construct such
an equation, we introduce the Wigner function associ-
ated with ψ via [5]

(2)

It is then possible to derive (see Appendix) the evo-
lution equation for the Wigner function:

(3)

where

(4)

is a bidirectional differential operator that acts to the
left on V and to the right on W [5]. In this equation, the
potential is

(5)

where

(6)

can be considered a noise term associated with the
square mean deviations of the quasiprobability, deter-
mined by the Wigner function W with respect to the
local quantum probability, which is determined by the
wavefunction ψ.

Equation (3) can be seen as a WME describing the
space and time evolution of BECs, and it is exactly
equivalent to GPE (1). However, it is of little use in the
above exact form, and it is convenient to introduce

i"
∂ψ
∂t
------- "

2

2m
------- ∇ 2ψ– V0 V eff+( )ψ,+=

V eff r t,( ) g ψ r t,( ) 2,=

W r k t, ,( ) ψ r
s
2
--- t,+ 

  ψ* r
s
2
--- t,– 

 ∫=

× ik s⋅–( ) s.dexp

"
2

2m
-------k ∇ i"

∂
∂t
-----–⋅ 

  W 2V Λsin( )W ,–=

Λ ∂
∂r
----- ∂

∂p
------⋅ 

 =

V V0 g W r k t, ,( ) kd

2π( )3
------------- δV ,+∫+=

δV g ψ r t,( ) 2 W r k t, ,( ) kd

2π( )3
-------------∫– 

 =
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some simplifying assumptions. This is justified in the
important case of slowly varying potentials. In this
case, we can neglect the higher order spatial derivatives
and introduce the approximation sinΛ ~ Λ. This corre-
sponds to the semiclassical approximation, where the
quantum potential fluctuations can also be neglected,
viz., δV  0. Introducing these two simplifying
assumptions, valid in the semiclassical limit, we reduce
the WME to the much simpler form

(7)

where v = "k/m is the velocity of the condensate atoms
corresponding to the wavevector state k and F = –∇ V is
a force associated with the inhomogeneity of the con-
densate self-potential. The nonlinear term in GPE (1) is
hidden inside this force F. As we see in what follows,
this nonlinear term looks very much like a ponderomo-
tive force term, similar to radiation pressure.

We note that this new equation is a closed kinetic
equation for the Wigner function W. In this semiclassi-
cal limit, W is just the particle occupation number
for translational states with momentum p = "k. Equa-
tion (7) is equivalent to a conservation equation, stating
the conservation of the quasiprobability W in the six-
dimensional classical phase space (r, k), and can also
be written as

(8)

This kinetic equation can then be used to describe
physical processes occurring in a BEC, as long as the
semiclassical approximation of slowly varying poten-
tials is justified. The interest in such kinetic descrip-
tions is illustrated with the aid of two simple and differ-
ent examples, to be presented in the next two sections.
Many other applications can be envisaged and will be
explored in the future.

3. SELF-PHASE MODULATION 
OF A BEAM CONDENSATE

We first consider the kinetic description of self-
phase modulation of a BEC gas moving with respect to
the confining potential V0(r). Here, we can explore the
similarity of this problem to that of self-phase modula-
tion of short laser pulses moving in a nonlinear optical
medium, which is well known in the literature [15]. To
simplify our description, we consider the one-dimen-
sional problem of a beam moving along the z axis and
neglect the axial variation of the background potential,
∂V0/∂z ≈ 0. The radial structure of the beam can easily
be introduced later and does not substantially modify

∂
∂t
----- v ∇ F

∂
∂k
------⋅+⋅+ 

  W 0,=

d
dt
-----W r k t, ,( ) 0.=
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the results obtained here. Kinetic equation (7) can then
be written as

(9)

with v z and Fz given by

(10)

where we have used the intensity of the beam conden-
sate defined by

(11)

We assume that an ultracold atomic beam has the
mean velocity v 0 = "k0/m. This suggests the use of the
new space coordinate η = z – v 0t. In terms of this new
coordinate, the semiclassical equations of motion of a
cold atom in the beam can be written as

(12)

where we have introduced the Hamiltonian function

(13)

Here, ω(η, k, t) is the Hamiltonian in the rest frame
expressed in the new coordinate. A straightforward
integration of the equations of motion leads to

(14)

At this point, it is useful to introduce the concept of
the beam energy chirp, 〈e(η, t)〉 , in analogy with the fre-
quency chirp of short laser pulses [15]. By definition, it
is the beam mean energy at a given position and a given
time,

(15)

where the weight function W(η, k, t) is the solution of
one-dimensional kinetic equation (9). A formal solu-
tion of this equation can be written as

(16)

∂
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----- v z

∂
∂z
----- Fz

∂
∂k
------+ + 

  W z k t, ,( ) 0,=

v z
"k
m
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∂
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----- I z t,( ), Fz+ dk

dt
------ g

∂
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----- I z t,( ),–= = =

I z t,( ) W z k t, ,( ) kd
2π
------.∫=

dη
dt
------ ∂h

∂k
------

1
m
---- k k0–( ),= =

dk
dt
------ ∂h

∂η
------–

g
"
--- ∂

∂η
------ I η t,( ),–= =

h η k t, ,( ) ω η k t, ,( ) kv 0–=

=  
k
m
---- k

2
--- k0– 

  g
"
--- I η t,( ).+

k t( ) k0
g
"
--- ∂

∂η
------ I η t',( ) t'.d

0

t

∫–=

e η t,( )〈 〉 " W η k t, ,( )ω η k t, ,( ) kd
2π
------,∫=

W η k t, ,( ) W η0 η k t, ,( ) k0 η k t, ,( ) t0, ,( ),=
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where η0 and k0 are the initial conditions corresponding
to the observed values at time t, as determined by
dynamical equations (12). With (16) used in Eq. (15),
we obtain

(17)

From Eq. (14), we see that dk = dk0. Neglecting
higher order nonlinearities, we can then rewrite the
above expression as [15]

(18)

where 〈e(0)〉  ≡ 〈e(η0, t0)〉  is the initial beam energy
chirp.

We first consider the case where the beam profile
I(η) is independent of time. This is, of course, only
valid for very short time intervals where the beam
velocity dispersion is negligible. In this simple case, we
have

(19)

The maximum energy shift is attained at some posi-
tion inside the beam profile, η = ηmax, determined by
the stationarity condition

(20)

To deduce more specific answers, we assume a
Gaussian beam profile

(21)

where σ determines the beam width. For this profile, we

have ηmax = ±σ/ , which leads to the maximum
energy shift

(22)

This is similar to the well-known result in nonlinear
optics that states that the maximum energy chirp due to
a self-phase modulation is proportional to t, or to the
distance traveled by the beam, d = v 0t. This result
clearly indicates that the initial beam eventually splits
into two parts, one being accelerated to higher transla-
tional speeds and the other being decelerated. This cor-
responds to the redshift and blueshift observed in non-

e η t,( )〈 〉 " W η0 k0 t0, ,( ) k2

2m
-------

g
"
--- I η t,( )+

kd
2π
------.∫=

e η t,( )〈 〉 e 0( )〈 〉
k0

m
----g

∂
∂η
------ I η t',( ) t',d

0

t
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e η t,( )〈 〉 e 0( )〈 〉 "v 0g
∂I
∂η
------t.–=

∂
∂η
------ e η t,( )〈 〉 ∂2I

∂η2
--------- 0.= =

I η( ) I0 η2/σ2–( ),exp=

2

∆e t( ) e t( )〈 〉 max e 0( )〈 〉–≡

=  
" 2

σ
----------gv 0I0

1
2
---– 

  t.exp±
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linear optics. The decelerated beam eventually stops
after a time t ≈ τ, such that ∆e(τ) = 〈e(0)〉 . This deter-
mines the condition for translational beam freezing.

We note that the same result could also be obtained
directly from GPE (1), but the present derivation is
interesting, because it demonstrates the irrelevance of
the phase of the wavefunction ψ, which was ignored in
our kinetic calculation. Therefore, instead of the self-
phase modulation, it would be more appropriate to call
it the beam self-deceleration.

Another interesting aspect of our kinetic approach is
that it can be easily refined, as is briefly shown here. We
can improve the above calculation by considering the
beam dispersion. It inevitably becomes relevant
because of the linear velocity dispersion of the atomic
beam. Such a dispersion decreases the chirping effect,
because of the decrease of ∂I/∂η in time. To model it,
we can assume a time-varying Gaussian beam shape, as
described by

(23)

If we now assume that

where

is proportional to the initial energy spread ∆e0, we
obtain a new expression for the maximum energy shift,
of the form

(24)

where ∆e(t) is determined by Eq. (22). It is clear that the
linear beam velocity dispersion decreases the maxi-
mum attainable chirp, by changing the linearity with
time into a logarithmic law. However, this only occurs

for very long times, t ~ 1/ , which are not relevant for
ultracold atomic beams with a very low translational
energy dispersion ∆e0.

The other cause of the beam dispersion is the non-
linear process itself, which eventually breaks the initial
pulse into two distinct pulses. In this case, the self-
phase modulation process is not attenuated because the
beam width is conserved, but the two secondary pulses
suffer self-phase modulation themselves and eventually
break up later, resulting in the formation of several sec-

I η t,( ) I0

σ0
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---------- 

 
1/2 η2
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------------– 

  .exp=

σ t( ) σ0 1 δt2+( ),=

δ 2m

"
2

-------
∆e0

σ0
--------=

∆ed t( ) tln
t

-------∆e t( ),=

δ
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ondary pulses with different mean energies. However,
the nonlinear dispersion is also negligible whenever

A more complete description of all these dispersion
regimes can be obtained by solving kinetic Eq. (9)
numerically.

4. KINETIC DESCRIPTION
OF BOGOLIUBOV OSCILLATIONS

The second example of an application of the kinetic
equation for BECs deals with the dispersion relation of
sound waves. For simplicity, we again consider the one-
dimensional model and neglect the radial structure of
the oscillations. This allows us to treat the lowest order
oscillating modes of the condensate. We assume some
given equilibrium distribution W0(z, k, t), for instance,
corresponding to the Thomas–Fermi equilibrium solu-
tion in a given confining potential V0(r⊥ , z) [16], and
after linearization of the one-dimensional kinetic equa-

tion (9) with respect to the perturbation , we obtain

(25)

where the perturbed force is determined by

(26)

We now assume perturbations of the form ,  ~
exp(ikz – iωt). From the above equations, we then
obtain a relation between the perturbation amplitude of

the Wigner function  and the perturbed beam inten-

sity ,

(27)

where we now specify the particle wavenumber state
with k' in order to avoid confusion with the wavenum-
ber k of the oscillation that we intend to study. The
velocity corresponding to this particle state is v ' =
"k'/m. Integration over the momentum spectrum of the
particle condensate then leads to the equation

(28)

This is the kinetic dispersion relation for axial perturba-
tions in BECs. We illustrate this result by considering
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the simple case of a condensate beam with no transla-
tional dispersion or with a translational temperature
exactly equal to zero. The equilibrium state of the beam
can then be described by

(29)

where

is the particle number density in the condensate.
Replacing this in dispersion relation (28), we have

(30)

where  = /m = /m is the beam velocity. This
can also be written as

(31)

where

(32)

is nothing but the Bogoliubov velocity of sound. Obvi-
ously, Eq. (31) is the Doppler-shifted dispersion rela-
tion of sound waves in the BEC gas. In its reference
frame, it reduces to ω = kcs .

We now consider a situation where, instead of distri-
bution (29), we have a beam with a small translational
velocity spread, such that the number of particles with
a velocity v ' ~ cs is small but nonzero. In this case, the
resonant contribution in the integral of Eq. (28) has to
be retained, although it is still possible to neglect the
kinetic corrections in the principal part of the integral.
The dispersion relation can then be written, in the con-
densate frame of reference, as

(33)

where  = mcs/" is the resonant momentum. The
imaginary term in this equation can lead to damping of
sound waves. Writing ω = kcs + iγ, with |γ| ! kcs , we
obtain the expression for the damping coefficient

(34)
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This expression corresponds to the noncollisional Lan-
dau damping of Bogoliubov oscillations in BECs. The
present approach can also be generalized in a straight-
forward way to higher order oscillations of the conden-
sate, where the radial structure has to be taken into
account [11, 17].

5. CONCLUSIONS

We have proposed a kinetic view of the Bose–Ein-
stein condensate physics, based on the Wigner–Moyal
equation. In the semiclassical limit, the latter can be
reduced to a closed kinetic equation for the correspond-
ing Wigner function. The kinetic approach to BECs can
be seen as an intermediate step between the GPE and
the hydrodynamic equations for the condensate gas,
often found in the literature.

We have discussed two different physical problems,
in order to illustrate the versatility of the kinetic theory.
One is a self-phase modulation of a BEC beam. The
other is the dispersion relation of the Bogoliubov oscil-
lations in the condensate gas. The first example shows
that due to the influence of its own inhomogeneous self-
potential, nearly half of the beam is accelerated, while
the other half is decelerated. Under certain conditions,
the decelerated part of the beam tends to a complete
halt. The second example shows that a kinetic disper-
sion relation for sound waves in BECs can be estab-
lished where Landau damping is automatically
included. The present results only involve the lowest
order modes, but the same approach can be used to
describe higher order oscillations of BECs, including
their radial structures, as well as the coupling to a back-
ground thermal gas. This investigation is beyond the
scope of the present work, however.

Several other different problems relevant to BECs
can also be considered in the framework of the kinetic
theory, such as modulational instabilities [18] and the
wakefield generation. This indicates that the kinetic
theory is a very promising approach to the physics of
BECs, which will eventually allow introducing new
ideas in this stimulating area of research and suggesting
new configurations to the experimentalists. However,
the present work also clearly states that the present the-
ory is only valid in the semiclassical limit, and there-
fore, some relevant problems, where the phase of the
BEC wavefunction plays an important role can only be
treated by means of the GPE. Surprisingly, the self-
phase modulation is not one of them, as demonstrated
here.
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APPENDIX

Derivation of the Wigner–Moyal Equation 

In this derivation, we follow a procedure already
used in other cases, for instance, in the case of electro-
magnetic waves moving in a space- and time-depen-
dent dielectric medium [19] (for a different but nearly
equivalent derivation of the WME, see the Appendix
in [8]). We consider two distinct sets of values for space
and time coordinates, (r1, t1) and (r2, t2), and use the
notation ψj = ψ(rj, tj) and Vj = V(rj, tj) for j = 1, 2. This
allows us to write two versions of GPE (1) as

(35)

Multiplying the j = 1 equation by  and the con-
jugate of the j = 2 equation by ψ1, and subtracting the
resulting equations, we obtain

(36)

where we set C12 = . The above equation suggests
the use of two pairs of space and time variables, 

(37)

We can then rewrite the above equation as

(38)

It can also easily be shown, by expanding the poten-
tials Vj around V(r, t), that

(39)

We now introduce the double Fourier transform of
the function C12 ≡ C(r, s, t, τ) in the variables s and τ,
defined by

(40)
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It can be rewritten in terms of the wavefunction ψ as

(41)

Using this in Eq. (38), we obtain the equation

(42)

for the Fourier transform, where we use the differential
operator

(43)

acting to the left on the potential V(r, t) and to the right
on W.

This is a formidable equation for W, which can be
simplified by noting that the GPE implies the existence
of a well-defined relation between energy and momen-
tum. This means that ω must be equal to some function
of k, or ω = ω(k). Hence, we can state that

(44)

This leads to a much simpler evolution equation for
W(r, k, t). Before writing it, we also note that the non-
linear term in V depends on |ψ|2 and not on the function
W. Thus, we can finally write

(45)

where Λ is the simpler differential operator

(46)

The function W(r, k, t) can be seen as the Wigner
function associated with the GPE, and Eq. (45), as the
WME equation that describes its spatiotemporal behav-
ior. This equation is equivalent to the initial wave equa-
tion (1), but it is not a closed equation for the quasiprob-
ability function W. Therefore, some simplifying
assumptions have to be introduced in order to make it
more tractable, as explained in Section 2.
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Abstract—Spatial evolution of a Langmuir wave excited by external sources in a weakly inhomogeneous elec-
tron plasma without external sources is considered for a small positive gradient of the plasma concentration in
the direction of propagation of the wave. At the first state of the evolution, the dispersion of the wave is close
to linear. When the phase velocity is doubled, the second stage of the evolution begins. The wave loses its indi-
viduality and becomes a hybrid of two waves. Its profile acquires the shape of an alternating sequence of frag-
ments of these waves. The wave dispersion is determined by the dispersion of each fragment. In the course of
evolution, the spacing between the equilibrium values of the wave fragments increases; as a result, the wave
decays into two waves, which are also loaded by trapped electrons. Prior to decay, the humps of the wave
become steeper; as a result, at the instant of the decay, the wave is transformed into a sequence of solitons with
different polarities. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Nonlinear phenomena emerging during the evolu-
tion of a wave in an inhomogeneous plasma as a result
of the resonant interaction with particles were consid-
ered by many authors [1–6]. This type of problems can
be solved completely only with the complete system of
the Vlasov–Maxwell equations. In most cases, this sys-
tem was solved either after linearization of the equa-
tions, or using asymptotic methods [7–9]. In the case
when the wave parameters change insignificantly over
distances commensurate to the wavelength, the electron
distribution is described with an exponential accuracy
with the help of adiabatic invariants [10–12]. The appli-
cation of such invariants leads to less cumbersome
expressions for all possible moments of the distribution
function as compared to asymptotic methods and
makes it possible to separate the resonance and nonres-
onance components in these moments without solving
the wave equation [1, 12]. The main difficulty encoun-
tered in solving the Vlasov–Maxwell equations is the
construction of self-consistent solutions. However, the
solution of a self-consistent problem using the adia-
batic approach is simplified since it is not necessary to
describe the motion of charged particles in detail; it is
sufficient to find the function of distribution over adia-
batic invariants or integrals of motion [13, 14].

We will describe the evolution of a Langmuir wave
after its initiation by external sources in a weakly inho-
mogeneous plasma with a positive gradient of the elec-
tron concentration (dN/dz > 0). The evolution is charac-
terized by three stages. At the first stage, anharmonism
of the wave and the difference of its dispersion from the
1063-7761/05/10105- $26.000949
linear dispersion are taken into account by a nonlinear
correction. With increasing concentration and phase
velocity, the electrons trapped in potential wells of the
wave are condensed at the bottom of these wells and the
vacated region of the phase space is gradually filled
with newly trapped electrons [2, 12]. The effect of
trapped electrons on the wave profile is local since it
results in deepening of the potential wells of the wave
only in the vicinity of their minima. As a matter of fact,
the Maxwell distribution function rapidly decreases
exponentially; consequently, the number of electrons
trapped at the initial instant of evolution as the phase
velocity increases is considerably larger than the num-
ber of electrons trapped at any subsequent instant. The
electrons trapped at the beginning of evolution are con-
densed at the bottom of the potential wells of the wave;
as a result, a characteristic energy level H0 is formed,
such that most of such electrons are below this level.
The current of electrons with an energy H < H0

becomes large, exceeding the current of the remaining
electrons. However, the phase interval of motion of
these electrons is bounded by the walls of the potential
wells. Consequently, the current of such electrons may
change the wave profile, mainly in the phase interval
|ψ| < θ0, θ0 = ϕ–1(H0): the wave displays “sagging” of
the potential in the region of its minima. The sag depth
increases in the course of evolution and the sag is trans-
formed into a fragment of the new wave. As a result, the
Langmuir wave at the second stage of evolution can be
represented as a sequence of alternating fragments of
two waves with different wavelengths, which are con-
tinuously transformed into each other. The upper part of
 © 2005 Pleiades Publishing, Inc.
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the wave consists of positive humps of the initial wave,
while the lower part consists of negative humps of the
newly generated wave. Each sequence of fragments
possesses its own dispersion (their wavelengths vary
independently in the course of evolution). Conse-
quently, a hybrid of two waves is in fact a wave with
double dispersion in contrast to the classical Langmuir
wave obtained by linearizing the Vlasov–Maxwell
equations. The features of the evolution of the wave
with double dispersion at the second stage are consid-
ered in Section 3.

The size of the fragments of both waves increases
during evolution, and the formation of fragments is
completed at the end of the second stage: each fragment
has its own wavelength and amplitude. Consequently,
when the difference between two equilibrium values of
fragments of two waves becomes larger than the sum of
their amplitude (A1 + A2), the hybrid decays into two
waves loaded with trapped electrons. However, the
nonlinearity of the wave produces a strong effect during
the short period prior to the decay; as a result, the pos-
itive and negative humps of this wave become steeper.
The wave profile acquires the shape of a sequence of
alternating solitons with the positive and negative
polarities. The evolution of such solitons is considered
in Sections 4 and 5.

The phenomenon of unstable decay of a high-fre-
quency plasma wave is well known [15, 16]. The decay
of this wave into two low-frequency waves is possible
under the synchronization condition ω0 = ω1 + ω2, k0 =
k1 + k2, where the subscripts 0, 1, and 2 correspond to
the initial wave and the two waves resulting from the
decay, respectively. In the decay of a wave in a weakly
inhomogeneous plasma, considered below, the condi-
tions for conservation of the mean densities of energy
flux and current comprise these two conditions.

2. FORMULATION OF THE PROBLEM: 
CURRENTS OF TRANSIT 

AND TRAPPED ELECTRONS

Let us consider the time-independent self-consistent
problem of generation and propagation of a longitudi-
nal slow wave in a weakly inhomogeneous electron
plasma whose concentration slowly varies along the z
axis in the following formulation. We assume that
external sources located in the region z < 0, where the
plasma is homogeneous in zero field, slightly feed the
slow wave being generated so that the amplitude of the
wave propagating along the z axis increases from zero
at z  –∞ to A(0) at z = 0. The unperturbed electron
distribution function f0(v 2/2T) at z  –∞ is known.
External sources are intended for sustaining the self-
consistent field of the wave of a preset type, taking into
account its self-action. In the case of small amplitudes,
we can show that, for a wave initiated in this way, the
currents of resonance transit and trapped electrons
compensate each other to within terms proportional
JOURNAL OF EXPERIMENTAL A
to ; consequently, the dispersion relation is close to
linear at the stage of wave initiation. Since the variation
of the amplitude (provided that it is small) does not
affect the change in concentration N, the phase velocity
of the wave in the course of initiation can be treated as
constant and equal to u0. In the region z > 0, where
external sources are absent, the electron plasma con-
centration N increases very slowly along the z axis
(dN/dz > 0). The evolution of the wave in the region of
its initiation, as well as in the region z > 0 without exter-
nal sources, occurs so slowly that it can be disregarded
over distances comparable to the wavelength.

We will employ the dimensionless form of notation,
in which time t and coordinate z are divided by ω–1 and

, respectively; the phase velocity and the velocities
of electrons are divided by u0 = ω/k0; the distribution

function f0(v 2/ ), which is normalized to unity, is
divided by k0/ω; the electron concentration N is divided
by ncr ≡ mω2/4πe2; the current density j is divided by

eωncr/k0; the electron temperature T = /2 is

divided by ; and potential ϕ is divided by /e.

It was shown in [1] that arbitrary functions f ±(I±) for
transit electrons and fT(J) for trapped electrons form a
solution of the self-consistent system of Vlasov–Max-
well equations for a Langmuir wave in a weakly inho-
mogeneous plasma. Here,

are the adiabatic invariants of transit and trapped elec-
trons [17]; the plus and minus signs correspond to lead-
ing and retarded transit electrons, respectively; ψ1 and
ψ2 are turning points for which the radicand in the inte-
grand vanishes; and

is the electron energy in the noninertial reference
frame. For a small wave anharmonism, we have

(2.1)

where κ2 = H/2A is the trapping parameter,

and K(κ) and E(κ) are the first- and second order ellip-
tic integrals.
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In the region z > 0, most leading transit electrons
whose velocity becomes equal to the phase velocity of
the wave become retarded upon an increase in the phase
velocity; however, a small part of these electrons are
trapped by the wave. If Ns = N(us) and us are the electron
concentration and velocity at the instant of their trap-

ping by the wave, (R) = G ± R and R = J(H = ϕm) are
the values of the adiabatic invariants of transit and
trapped electrons at the separatrix, G = u2/2 + ϕm , and
ϕm is the maximal value of ϕ, the electron distribution
after their trapping can be written in the form [1]

(2.2)

where G ≈ /2, R0 = R(z = 0), and N0 = N(z = 0). The
concentration NT of trapped electrons in formula (2.2)
is defined with the help of the Liouville equation.
Equating the value of adiabatic invariant (2.1) at the
instant of electron trapping by the wave to its value at
any point z > 0, at which the amplitude and phase
velocity are equal to A and u > 1, while B(κ) ≈ 1, we
express G in terms of u and H and substitute it into rela-
tions (2.2),

(2.3)

where γ = u2/8TAA0 and H0 is the value of energy sepa-
rating the electrons trapped during the initiation of the
wave (z < 0) from the electrons trapped in the region
z > 0, where external sources are absent (H0 ≈
2 /u). Only leading transit electrons are trapped
over the time interval during which the phase velocity
increases; consequently, the distribution of trapped
electrons is completely determined by the distribution

of transit electrons in the region v  > u0. If f0(v 2/ )
decreases monotonically, the peak value in Eq. (2.3) is
attained for H = H0; i.e., electrons are condensed in the
vicinity of this energy level. In the case of the Maxwell
function, this can easily be explained if we take into
account the fact that number of electrons trapped in the
potential wells in the course of evolution upon an
increase in the phase velocity of the wave is much
larger for low values of the phase velocity than for its
larger values. Obviously, the largest number of elec-
trons are trapped at the beginning of the wave evolu-
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tion, especially in the case when the phase velocity of
the wave is close to the thermal velocity of electrons.

Using Eq. (2.3), we can write the electron current in
the region z > 0 in the form

(2.4)

(2.5)

where

The first term in formula (2.5) is the current of electrons
trapped during initiation of the wave and accelerated by
the wave to a velocity equal to u; the second term in
Eq. (2.5) and the first term in Eq. (2.4) describe the cur-
rent of electrons trapped in region z > 0, while the sec-
ond term in the expression for jU is the current of reso-
nance transit electrons. Their mean currents are given
by

respectively, where

In formulas (2.4) and (2.5), the integration domain H >

ϕmax is split by point  [1]. The mean current
〈 jT0 + jT + jUr〉  coincides with the recoil momentum of
the plasma. It was noted earlier that resonance currents
of transit and trapped electrons compensate each other
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in the course of wave initiation (i.e., their mean current
is zero). Therefore, the mean electron current density at
any instant of evolution is preserved and is equal to
zero, which can be easily verified directly. In the course

of prolonged evolution of the wave (f0(u2/ ) !

f0( )), the current of resonance transit electrons
becomes negligibly small and is hence disregarded in
the further analysis. The condition ϕ ≤ H0 is equivalent
to the constraint on the phase |ψ| ≤ θ0, where θ0 is the
smallest root of the equation H0 = ϕ(θ0). Consequently,
phase oscillations of electrons trapped in the region
z < 0, as well as electrons trapped in the vicinity of
point z = 0, are bounded by the interval |ψ| ≤ θ0. Their
contribution to the total current in the form of both inte-
grals (2.5) for a prolonged evolution of the wave
becomes larger than the contribution from electrons
whose phase oscillations are performed outside this
interval.

3. EVOLUTION OF A WAVE
WITH DOUBLE DISPERSION

The evolution of a wave in a weakly inhomogeneous
plasma is described by the equation [1]

(3.1)

which is a consequence of the Vlasov–Maxwell equa-
tions and has the first integral

(3.2)

where

is the effective potential. The dispersion equation for
the wave after integration of Eq. (3.2) can be written as
the condition of periodicity of potential ϕ in phase ψ,

(3.3)

where ϕmin and ϕmax are the roots of the radicand in the
integrand. Let us integrate Eqs. (2.4) and (2.5) first with
respect to ϕ and then with respect to H. Since, in the
case of the Maxwell distribution, the function

decreases exponentially rapidly with increasing H, the
main contribution in the second integrand in Eq. (2.5)
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comes from electrons with energy H = H0 (for this rea-

son, we take  out of the integral during integra-
tion, setting H = H0) and Nsus ≈ N0; the remaining inte-
grals can be evaluated exactly [18],

where

(3.4)

(3.5)

Here,

D–ν(x) is a function of a parabolic cylinder, Φ(x) is the
error function, and cU is a constant ensuring the conti-
nuity of U(ϕ). The effective potential U(ϕ) can be cal-
culated exactly by expanding the integrand defined by
relation (2.5). The result of this calculation is cumber-
some and will not be given here; it is shown graphically
in Fig. 1 for the following values of the plasma and
wave parameters: T = 106 K, vT = 0.55 × 107 m/s,
vT/u0 = 0.7, u/u0 = 2.5 (1) and 3.5 (2).

At the first stage of evolution, the relief of U(ϕ) is
mainly determined by two points, viz., potential ϕ0 at
which the minimum of the effective potential is attained
and a potential equal to H0 (henceforth, ϕ10 = ϕ0).
Potential ϕ = H0 defines the region ϕ > H0, in which
U(ϕ) is very close to the effective potential in the linear
case, from region ϕ < H0, where qualitative changes
caused by condensation of electrons at the bottom of
the potential wave accumulate. With increasing phase

velocity of the wave, the value of H0 = 2 /u
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decreases, while the value of ϕ0 increases together with
〈 jT〉  ≈ uNPϕ0. Assuming that H0 = ϕ0, we can determine
the value of the phase velocity at which the first stage

terminates, u1 = 2 /ϕ0 ≈ 2. The dispersion of the
wave at the first stage is described in [1], where the non-
linear correction to the linear dispersion equation is
determined.

Let us find out how the condensation of electrons
trapped in potential wells of the wave affects the pro-
cess of its evolution. If the wave evolution is long,
u > 2, the value of H0 decreases to H0 < ϕ0 and the neg-
ative contribution introduced by the terms proportional
to b0 to U1(ϕ), as well as the terms proportional to b1
and b2 to U2(ϕ), is shifted to the region ϕ < ϕ0. For this
reason, in accordance with relation (3.4), the effective
potential U1(ϕ) first increases upon a decrease in ϕ (see
Fig. 1) and then decreases after attaining its maximal
value for the potential

(3.6)

in the region ϕ < ϕb . Being a continuation of U1(ϕ), the
effective potential U2(ϕ) also decreases with ϕ due to
the negative contribution of the terms proportional to b1
and b2, but then increases after attaining its minimal
value at

Thus, after a long evolution of the wave, the effective
potential U(ϕ) acquires the second potential well on the
left from the main minimum ϕ0 due to the local increase
in the current of trapped electrons within the phase
interval –θ0 < ψ < θ0, θ0 = ϕ–1(H0) (see Fig. 1). After the
emergence of this well, the second stage of the wave
evolution begins—the variation of potential ϕ is
bounded not by the left branch of the parabola U(ϕ) ~
(ϕ – ϕ0)2, as at the first stage, but by the left wall of the
new well (see Fig. 1). As a result, the lower part of the
wave ϕ < ϕb is lowered still further relative to its upper
part in the interval –θ2 < ψ < θ2, ϕ(θ2) = ϕb (Fig. 2).
Condensation of electrons at the bottom of the potential
wells of the wave leads to a peculiar effect, viz., sag-
ging of its potential in the region of the minima of the
potential wells. Since the shape of the sag is determined
by the profile of the second well of the effective poten-
tial, the sag can be treated as a fragment of a new wave.
After the formation of the second well in the effective
potential U(ϕ), variation of potential ϕ takes place
alternately in both potential wells. Consequently, the
Langmuir wave at the second state of evolution can be
represented as a sequence of alternating fragments of
two waves with different wavelengths, which are con-
tinuously transformed into each other. As the phase
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velocity of the wave increases, potential (3.6)
decreases, leading to an increase in the height of the
barrier separating the wells and shift to the left (see
Fig. 1). At a certain instant, the height of the effective
potential U(ϕ) becomes close to the value of the first
integral U(ϕb) ≈ W, remaining smaller than this integral.
At this instant, the formation of wave profiles is com-
pleted; i.e., we can speak of the amplitudes of the first
and second waves, which are A ≈ ϕ10 – ϕb and A2 ≈
ϕb − ϕ20, where ϕ10 ≈ ϕ0 and ϕ20 ≈ H0 are the equilib-
rium values for the first and second waves, respectively.

1

0.5

0 1 2

U

1

2

W

ϕϕ20 ϕb ϕ10

Fig. 1. Dependences of the effective potential on the poten-
tial of the wave; u/u0 = 2.5 (1), 3.5 (2). 

ϕ

ϕb

ϕp

2

1

–4 –2 0 2 4

2A2

θ2–θ2
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Fig. 2. Sagging of the wave potential.
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We will use Eq. (3.1) for analytically describing the
evolution of the wave taking into account the sagging of
its potential. We evaluate the integrals in Eqs. (2.4) and
(2.5) and expand the resulting expressions into series in

 = ϕ – ϕ10,  = ϕ – ϕ20 to the leading order in 

and . After substituting expansions into Eq. (3.1), in
the reference frame associated with the wave, we obtain

(3.7)

where z' = z – ut, g1 = g1(γ, ϕ0),
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It should be noted that system of equations (3.7) at
the second state of the evolution is not self-consistent as
yet. The difficulty encountered in solving any self-con-
sistent problem is that the electron distribution is deter-
mined by the electric field potential; however, to find
this potential, we must know this distribution. The dis-
tribution at the second stage of the evolution is not
known. Nevertheless, the solution of the self-consistent
problem is facilitated if we take into account the fact
that the distribution of trapped electrons is formed in
the course of capture of leading transit electrons, whose
distribution is known. The distribution of trapped elec-
trons is also determined by the potential well profile;
however, this dependence is weaker. Indeed, the shape
of the wave should be taken into account only in calcu-
lating adiabatic invariants such as (2.1). However, the
value of an adiabatic invariant is primarily determined
by the amplitude and phase velocity of the wave and
depends on its shape to a smaller extent. Taking into
account these remarks, we will solve the self-consistent
problem of evolution of the wave at the second stage tak-
ing the distribution (2.3) of electrons trapped at the first
stage as the initial distribution and assuming that A and
u are the amplitude and phase velocity of the wave at
the second stage.

An approximate solution of system (3.7) in both
cases has the form
(3.8)ϕ ψ( )
A1 1 ψ1 θ1 θ2––( )cos+( ) ϕ p, 2m θ1 θ2+( ) θ2 ψ1 θ1 2m 1+( ) θ1 θ2+( ),+< <++

A2 1 ψ2cos–( ), 2m θ1 θ2+( ) θ2 ψ2 θ2 2m θ1 θ2+( ), m+< <– 0 1 2 …,, , ,=



=

where A1 and A2 are the amplitudes of wave fragments,

and ϕp = ϕ10 – A1 is the potential sag. The curve in Fig. 2
shows that, at the second stage of evolution, the value
of ϕb decreases from ϕ0 ≈ A1 to 2A2, while the value of
ϕmax increases from 2A1 to 2(A1 + A2) (we assume that
ϕmin = 0). Consequently, if we take into account the fact
that A2 ≈ A1 at the beginning of the second stage, the
values of θ1 and θ2 increase during this stage from π/2
to the maximal value equal to π. The period of poten-
tial (3.8) is 2(θ1 + θ2).

For the initial equations describing dispersion of
wave fragments, we choose

(3.9)

ψ1 k1 z t, ψ2–d∫ k2 z t,–d∫= =

θ1 2
ϕmax ϕb–

2A1
----------------------, θ2arcsin 2

ϕb

2A2
---------,arcsin= =

k1
2 NP 1 g1–( ), k2

2 NP 1 g2+( ).= =
Obviously, λ1 > λ2; λ1 = 2π/k1 and λ2 = 2π/k2 are the
wavelengths of the first and second fragments. The cor-
rections to wavelengths, which are determined by
Eqs. (3.9), are quadratic in A and can be disregarded
when A ! 1.

Expressions (3.9) show that the dispersions of two
mutually supplementing fragments are different; when
the potential sag appears, the wavelength of the
sequence of fragments forming the lower part of the
wave (where electron condensation takes place)
becomes smaller than the wavelength of the other
sequence of fragments, which form the upper part of
the wave.

Thus, an important feature of the steady-state non-
linear solution of the system of Vlasov–Maxwell equa-
tions for a Langmuir wave evolving in a plasma with a
positive concentration gradient distinguishing it from
other linearized solutions of this system of equations
(e.g., the Van Kampen mode) is that solutions can exist
in the form of double-dispersion waves, i.e., the waves
formed by the sequence of alternating fragments of two
waves, each of which has its own dispersion.
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The wavelength is equal to the sum of the lengths of
its fragments (l1 = 2θ1/k1 and l2 = 2θ2/k2). Taking into
account formulas (3.8) and (3.9), we can write

(3.10)

At the beginning of the second stage, ϕb ≈ ϕ0 ≈ A1 ≈ A2,
ϕmax – ϕb ≈ A1, g1 ≈ 0, and g2 ≈ 0; consequently, the dis-
persion is close to linear (u2NP ≈ 1). At the end of the
second stage, ϕb = 2A2 and ϕmax = 2(A1 + A2); if we dis-
regard g1 and g2, relation (3.10) leads to the dispersion

equation u  = 2. Doubling of the right-hand side as
compared to the case of a linear dispersion equation is
due to the fact that the wavelength of the hybrid of two
waves at the end of the second stage is twice as large as
the wavelength of each fragment (In the linear approx-
imation, the wavelengths λ1 and λ2 of the fragments are
identical).

To make solution (3.8), (3.10) self-consistent, we
must calculate the adiabatic invariant of electrons in the
field of potential (3.8) and use it to find the electron dis-
tribution function at the second stage of the evolution.
As a result of these calculations, we must replace γ in
the expression for g2 appearing in Eqs. (3.7) and (3.9)
by the coefficient

The reason for the transformation of the Langmuir
wave into the hybrid of two waves can be explained
considering the plasma as a system with many vibra-
tional degrees of freedom. At the first (quasi-linear)
stage of evolution, the wave has only one vibrational
degree of freedom; however, when the wave forms a
flow of trapped electrons, the plasma system acquires
one more degree of freedom determined by the flow
parameters. The proposed decay scenario is possible
for a wave loaded with trapped electrons with a distri-
bution in which the majority of trapped electrons are
condensed at the bottom of the potential wells of the
wave. In this respect, the model of wave decay studied
here differs from the models described in [15, 16, 19].

4. LANGMUIR WAVE PRIOR TO DECAY

The behavior of the wave and the variation of its
profile prior to the decay are most interesting. At the
end of the second stage, when the barrier height U1(ϕb)
is close to W, we cannot state that anharmonism of wave
fragments is small and that solution (3.8) can be used.
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If we expand the exact expressions for the effective
potentials U1(ϕ) and U2(ϕ) into series in  = ϕ – ϕ10

and  = ϕ – ϕ20 in the vicinity of their minima ϕ10 and

ϕ20, retain the terms proportional to  and , and
substitute the resulting expressions into Eq. (3.2), after
integration we will obtain instead of (3.8) a solution
containing elliptic cosines cn(ψ1 – θ1 – θ2, τ1) and
cn(ψ2, τ2) instead of ordinary cosines, where

It follows hence that anharmonism of the wave frag-
ments with amplitudes A1 and A2 is noticeable only
close to the thermal velocity (when u ≈ vT , vT ≈ 1). For
the first wave, this can be explained by the fact that the
nonlinear correction to term (ϕ1 – ϕ0)2 in the expression
for U1(ϕ) is exponentially small outside the region ϕ ≈
ϕb . Consequently, formula (3.8) can be used for
describing the shape of the pulses with positive and
negative polarities in the region of equilibrium values
of ϕ10 and ϕ20 right up to the wave decay. In the region
ϕ ≈ ϕb , in which potential U1(ϕ) attains its maximal
value, the wave profile substantially differs from a sinu-
soid. To find out how the shape of the wave potential
changes in the vicinity of ϕ ≈ ϕb, let us consider curve 2
in Fig. 1. In a field whose potential has the same shape
as curve 2, a particle executes a finite motion, being
reflected from the walls of a potential well and rapidly
passes through the region containing these wells.
Above the top of the barrier, the motion of the particles
becomes slower. The change in potential ϕ correspond-
ing to the motion of the particle in the case when W –
U(ϕb) ! W is a sequence of alternating pulses of posi-
tive and negative polarity (Fig. 3). To determine the
wave potential in the vicinity of ϕ ≈ ϕb , we confine our
analysis to the search for effective potentials U1(ϕ) and
U2(ϕ) in this neighborhood. First, we obtain the distri-
bution of electrons with an energy of H ≈ ϕb in the field
of potential (3.8). Prior to the decay, ϕb ≈ 2A2; conse-
quently, trapped electrons with an energy ϕb < H < ϕmax
will be transit electrons relative to wave fragments with
amplitude A2, while electrons with an energy H0 < H <
ϕb will be trapped. The adiabatic invariant for the
former electrons is

where  = H/2A2, while for the latter electrons,
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ϕ̃2
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4
π
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κ2
2
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we have

Electrons with an energy H ≈ ϕb are trapped at the
beginning of the second stage after the emergence of
the second potential well. Consequently, having deter-
mined the value of function (2.1) at this instant and
equating the result to the values of adiabatic invariants

J1 and J2 in the approximation E( ) ≈ 1, B(κ2) ≈ 1, we
obtain the distribution of trapped electrons with energy
H ≈ ϕb prior to decay:

(4.1)

Let us calculate the effective potential

(4.2)

and expand it into power series in  = ϕ – ϕb in the
vicinity of ϕ = ϕb . Retaining the terms up to those pro-

J2
4
π
---u A2κ2

2B κ2( ).=

κ2
1–

f Tb

f 0 β1H( ), ϕb H ϕmax,< <

β1
u2

2v T
2 A0

----------------,=
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4v T
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----------------------.=












=

U1 ϕ( ) u2NP ϕ ϕ 0–( )2=

– 4u Nsus f Tb 2 H ϕ–( ) H , ϕ H0,>d

ϕ

ϕmax

∫

ϕ̃

ϕ

θ2 ψ
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Fig. 3. Decay of a sequence of solitons with different polar-
ities into two sequences of positive and negative solitons.
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portional to , we obtain

(4.3)

where

for ϕb < H < ϕmax, 

q1 = q1(β2) = g2(β2, ϕb) 

for H0 < H < ϕb . Under the condition

,

the coefficient of  in formula (4.3) is negative, which
is required for the emergence of a soliton solution. Hav-
ing determined approximately the roots of the equation
W – U1( ) = 0, we factorize the expression W – U1( )
in the region of ϕ > ϕb ,

(4.4)

where

Integrating Eq. (3.2) in the vicinity of ϕ ≈ ϕb with the
radicand determined above with the help of the substi-
tution

(4.5)

we obtain

(4.6)

where

while the value of ξ0 can be determined from the equa-
tion
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As U(ϕb)  W, we set F(ξ0, τs) ≈ K(τs) in formula (4.6).
After inversion of the incomplete elliptical integral in
Eq. (4.6) and substitution of the result into Eq. (4.5), we
obtain

(4.7)

where

In this expression, z' = z – ut is counted from the point
at which  attains its maximal value. Since expres-

ϕ̃ a a2 c2+
1 cn ksz' τ s,( )–
1 cn ksz' τ s,( )+
----------------------------------- 

 –
 
 
 

,±=

ks

NPq2 a2 c2+
3

----------------------------------.=

ϕ̃
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sion (3.8) is a good approximation for the potential in
the vicinity of ϕ10 and ϕ20, and expression (4.7) success-
fully describes the potential at the foot of solitons, these
solutions should be joined. Equating relations (3.8)
and (4.7), we obtain the points at which the half-wave
of amplitude A1 is joined with the foot of the positive
soliton ϕ ≈ ϕb: ±l+ ≈ ±π/k1, as well as the points at
which the half-wave of amplitude A2 is joined with the
foot of the negative soliton: ±l– ≈ ±π/k2,

At the end of the second stage, the wave potential in the
reference frame attached to the wave in the interval
−λs/2 < z' < λs/2 assumes the form

k1 2, NP 1 g1 2,+−( ).=
(4.8)ϕ̃

A1 1 k1 z'
λ s

2
-----± 

 
 
 cos+
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q1 1–
--------------sn ks z'
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4
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4
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A2 1 k2z'( )cos+( ), l– z' l–,< <––

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





=

where λs is the soliton period; the minus sign in front of

 corresponds to –λs/2 + l+ < z' < –l–, while
the plus sign corresponds to l– < z' < λs/2 – l+. The origin
of the coordinate system coincides with one of the min-
ima of the potential.

Solution (4.8) is a periodic function with a period
(wavelength) λs = 4K(τs)/ks . In the limit U(ϕb)  W,
the wavelength increases in accordance with the loga-
rithmic law [20]

(4.9)

5. DECAY OF A LANGMUIR WAVE

The evolution of plasma oscillations U1(ϕb) ≈ W at
the instant of wave decay should be considered sepa-
rately since the distance between the positive and neg-
ative pulses increases indefinitely. This obviously does
not affect the distribution function of trapped electrons
within the negative pulse. The lower part of potential
ϕ ≤ ϕb is determined by formula (4.8) as before. In the
limit δw  0, c  0, potential (4.7) becomes a soli-
ton [20, 21]; it was noted above, however, that the self-

δw/ q1 1–( )

λ s
4 3

aNPq2

--------------------- 4

1 τ s
2–

-----------------, τ s 1.ln≈
consistent solution can be written only for negative
solitons:

(5.1)

Here,

±l– ≈ ±π/k2 are the points at which the potential corre-
sponding to the foot of the soliton is joined with a neg-
ative pulse.

To construct a self-consistent solution for a
sequence of positive solitons, we first find the distribu-
tion of electrons trapped by the field of the sequence of
these solitons. We assume that the potential of positive
solitons differs from zero only in a very small interval
∆z' ! λs , where λs is the spacing between solitons. In
this case, the adiabatic invariant describing the motion

ϕ
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of electrons trapped by the field of a periodic sequence
of solitons is given by

This adiabatic invariant has sense if the motion of elec-
trons is periodic, which is possible for a finite distance
λs between solitons. It will be shown below that,
although the distance between the solitons at the instant
of decay of the wave U(ϕb) = W increases unlimitedly
upon a decrease in the growth rate of the barrier height,
it remains finite if this rate does not vanish. The distri-
bution of electrons trapped by a sequence of positive
solitons, which is calculated using this adiabatic invari-
ant, has the form

Comparing this distribution with (4.1), we note that
effective potential U1( ) remains in the previous
form (4.3) except that β1 must be substituted for βb in
coefficients q1. Consequently, formula (4.7) can be
used for describing potential ϕ ≈ ϕb at the foot of posi-
tive solitons. In the limit δw  0, c  0, this poten-
tial becomes a soliton; consequently, for ϕ > ϕb , we can
write

(5.2)

where a = 3(q1(βb) – 1)/q2 and l+ ≈ π/k1. It should be
noted that the solution obtained in the form of alternat-
ing negative and positive solitons (5.1) and (5.2) is pos-
sible if the plasma becomes homogeneous for
U(ϕb)  W. In this case, the wave does not experience
a decay and the distance between solitons increases
indefinitely.

The proposed scenario of the evolution of the Lang-
muir wave does not lead to the dispersion relation at the
instant of wave decay. In the case when U(ϕb)  W,
the unlimited increase in the distance between solitons
can be easily explained using the analogy between
mechanical motion of a particle and variation of the
potential defined by Eq. (4.3). When the particle moves
above the top of the barrier and its total energy is equal

J
uks
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to the barrier height, the time of flight of the particle
above the barrier increases indefinitely. Since the dis-
tance between solitons and their phase velocity increase
indefinitely at the instant of wave decay, the question
arises: does the decay occur at all? To answer this ques-
tion, we must take into account the fact that the time of
flight of a particle above the barrier (or, to be more pre-
cise, the time of particle transition from the trapped
to the transit state and vice versa) becomes finite due to
a change in the barrier height (even if it is very slow)
[22, 23]. Analogously, if the barrier height U(ϕb)
increases (even very slowly), the distance between soli-
tons remains finite.

Let us consider the case of a linear increase in the
barrier height

where zd is the wave decay point. Let us analyze the
evolution immediately before the wave decay over a
distance on the order of several λs to the point zd of
decay. Having for convenience chosen the point at
which a positive soliton attains its maximum value at
t = 0 as the origin, we denote in relation (4.4)

In this case, Eq. (3.1) for the right slope of a positive
soliton in its own reference frame assumes the form

(5.3)

where ϕr = ϕr(ksz') = ϕ(ksz') – ϕb . The minus sign in
front of the radical is chosen because dϕr/dz' < 0 on the
right slope of the soliton. For ϕ ≈ ϕb , we can write solu-
tion (5.3) in the highest order in ε under the condition

in the form

(5.4)

Setting ϕ = ϕb , in the approximation lnz' ! ksz', we
obtain

(5.5)

Thus, prior to decay, the wave acquires the form of
a sequence of alternating solitons with different polari-
ties (see Fig. 3). The spacing between the solitons
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increases in the course of wave evolution and attains the
value λs (5.5) at the instant of decay (i.e., the spacing
remains finite if the rate of increase in U(ϕb) differs
from zero). Consequently, the application of the adia-
batic invariant is justified at the instant of decay also
provided that λs ! L, where L is the characteristic size
of inhomogeneity. It should also be noted that

therefore, the approximation c2 ≈ εz holds in spite of the
very large value of λs . Since ∆W ~ ε, the value of W has
no time to change in the course of decay over distances
comparable to the wavelength:

Let us find the potential of waves after the decay
(U(ϕb) > W). This can be done within the adiabatic
approximation if the phase velocities of the sequence of
solitons before and after the decay are identical. The
question arises: what will happen after the instant of
U(ϕb) = W upon a small change in the effective poten-
tial profile U(ϕ) if this change only involves an increase
in the barrier height U(ϕb) > W? The height of the effec-
tive potential barrier separating potential wells
increases with the phase velocity of the wave; conse-
quently, a gap appears between two sequences of posi-
tive and negative solitons (see Fig. 3). We can assume
that the two waves are formed at the instant U(ϕb) = W.
In the linear approximation, the currents of these waves
are determined by the distribution of transit electrons,
which does not change in the course of decay. This
means that the change in the relief of effective poten-
tials U1(ϕ1) and U2(ϕ2) at a distance from the top of the
barrier is reflected only in corrections in A1 and A2 of an
order higher than second. Thus, the shape of the shape
of positive and negative pulses in the linear approxima-
tion in the amplitude coincides with the shape defined
by expression (4.8) in the course of decay. At the feet of
these pulses, we can put ϕ ≈ ϕb; in this case, the distri-
bution of trapped electrons in the given approximation
at the instant of decay remains unchanged. As in the
case (4.2), this enables us to write the effective potential
immediately after the decay in the vicinity of ϕ ≈ ϕb for
the first and second waves,

(5.6)

ελ s
ε 0→
lim 0;=
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lim 0.=
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2
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ϕ̃2
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∫
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where  = ϕ1 – ϕb1,  = ϕ2 – ϕb2, and ϕb1 and ϕb2 are
the minimal and maximal values of the potentials of the
first and second waves. The expansion of effective
potentials U1(ϕ1) and U2(ϕ2) into power series in 

and  in the vicinity of ϕ ≈ ϕb , in which we retain only

the terms containing  and  to a power not higher
than third, coincides with expression (4.3). However,
the results of factorization of W – U1(ϕ1) and W –
U2(ϕ2) differ from expression (4.4) in the sign of δw.
Therefore, we have

(5.7)

where

We assume that the amplitudes 2A1 and 2A2 of positive
and negative pulses do not change in the course of
decay. Substituting expression (5.7) into (3.2) and inte-
grating the result, we can write the potentials of the
waves after the decay in the form

Here,

the plus and minus signs correspond to positive and
negative solitons, respectively; and λd is the soliton
period. The solutions obtained above show that the gap

between the feet of negative and positive pulses
increases with the barrier height. The phase velocities
of the waves after the decay can be determined from the
condition of conservation of the mean energy flux den-
sity in the course of the decay:
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Here [1],

are the mean energy flux densities of the field before
and after the decay (ϕ+ = ϕ for ϕ > 0 and ϕ– = ϕ for
ϕ < 0);

are the mean density of vibrational energy fluxes for
trapped electrons before and after the decay; and 

where f0 = f0(v 2/2T) and ub is the phase velocity of the
wave, at which the electrons having energy H = ϕb at
the instant of decay were trapped. If we disregard the
difference between a and ad, we can assume that ϕ+ =
ϕ1 and ϕ– = ϕ2 at the instant of decay; consequently, the
energy balance equation implies that the phase veloci-
ties before and after the decay are close (u ≈ u1 ≈ u2). It
should be noted that their values differ only by

. The wavelength after the decay is given
by

(5.8)

Comparing formulas (4.9) and (5.8), we note that the
wavelengths before and after the decay are identical if
ad ≈ a. Comparison of the potentials of the waves before
and after the decay shows that the shape of positive and
negative pulses changes insignificantly (mainly at their
feet). The shape of positive and negative solitons after
they pass the decay point changes only in the way that
the edges of positive solitons, which were formerly
connected with the edges of negative solitons, are now
connected to each other; the same is observed for neg-
ative solitons. Such a change in the soliton shape does
not lead to any appreciable change in the distribution
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function of trapped electrons (the more so, of transit
electrons).

6. CONCLUSIONS

The simplest example of decay is the generation of
new harmonics in a nonlinear medium [16]. The har-
monics are formed immediately after the decay and
their increase begins from zero intensity. In the case of
parametric instability, the existence of small perturba-
tion waves against the background of a pumping wave
is presumed [15]. Decay instability with two perturba-
tion waves forms a particular case. The proposed model
of the decay differs from the known models since it can
be applied only to a wave loaded with trapped elec-
trons. The main distinguishing feature of our model is
that the wave experiences a qualitative rearrangement
prior to the decay. In the bulk of the wave, fragments of
a new wave are generated. Prior to the decay, a hybrid
of two waves possessing its own dispersion is formed.
After the complete formation of wave fragments, the
difference between their equilibrium states becomes
equal to the sum of the amplitudes A1 + A2. Beginning
from this instant, the new wave can separate itself from
the original wave. If, however, the waves remained
periodic at the instant of decay, their potentials before
and after the decay could not be joined. Indeed, the
phases of the waves at the decay point will be different
at different instants in view of the difference in the
phase velocities of the waves before and after the decay.
This problem can be solved if we take into account the
fact that the positive and negative humps become
steeper prior to the decay and that the distance between
the humps increases indefinitely. In other words, to give
rise to two new waves loaded with trapped electrons,
the original wave is transformed prior to the decay into
a sequence of solitons with different polarities, which is
not periodic at the instant of the decay. For a single
event of decay, an increase in the phase velocity by a

factor of 2  is sufficient, which can easily be
realized. It follows hence that new waves loaded with
trapped electrons will “gemmate” from the initial
Langmuir wave after the decay described above. Thus,
the evolution of a Langmuir wave in a weakly inhomo-
geneous plasma with a positive concentration gradient
is accompanied by the emergence of weak turbulence
with a scenario of evolution analogous to that proposed
by Landau for turbulence of a hydrodynamic flow of a
viscous liquid.
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Abstract—A self-consistent two-length scale theory of the interaction between a hydrophobic molecule and a
water environment is considered. This theory allows the width of the hydrophobic layer to be calculated for
molecules of arbitrary geometry by explicitly taking into account the water structure through the correlation
function of a pure liquid. This approach is used to calculate the density profile ρ(r) around a molecule of arbi-
trary geometry and the solvation free energy ∆G(R) related to the transport of the molecule from a vacuum to
a liquid. The model parameters are adjusted by comparing the results of numerical Monte Carlo simulations
taken from the literature with predictions of the model for molecules of spherical geometry. The free energy of
the interaction ∆G(D) between two spheres of radius R separated by distance D is also determined using the
developed approach. The model is generalized to electrostatic interactions within the framework of a self-con-
sistent scheme in which water is modeled by a gas of point dipoles. Analysis of the derived equations shows
that this theory coincides with the electrostatic theory of a continuous medium with an effective permittivity in
the limit of weak electric fields. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

This work should be considered as a preliminary
step in constructing a general theory of the interaction
between solute molecules and a solvent. The ultimate
goal of the study is to calculate the binding constants
between biologically active molecules in a water envi-
ronment at a level of accuracy comparable to that of
molecular-dynamical calculations. Specifically, we
consider the narrower problem of quantitatively deter-
mining the solvation free energy of hydrophobic mole-
cules of arbitrary geometry in water.

There are many approaches to solving this problem
in the literature. In our view, they can be classified as
follows.

Explicit approaches. These include explicit molec-
ular-dynamical calculations and Monte Carlo simula-
tions of the behavior of a solute molecule in an environ-
ment of solvent molecules. The shortcoming of these
approaches is that they allow the dynamics of the sys-
tem to be traced on time scales that are several orders of
magnitude shorter than those required to reach thermo-
dynamic equilibrium and to determine the correspond-
ing equilibrium parameters. In addition, the computa-
tional time increases greatly as the number of mole-
cules in the system increases.
1063-7761/05/10105- $26.000962
Empirical approaches. The main idea behind these
approaches is to choose an appropriate parameteriza-
tion of the solvation energy. The relation between the
surface area of a solute molecule accessible to a solvent
and the solvation energy or, more precisely, the part of
it associated with the formation of a cavity of the corre-
sponding size in the solvent is most commonly
assumed to be linear. Studies based on the idea of an
effective renormalization of the interaction in a vacuum
using solubility, evaporation, and other data to allow for
the influence of water [1–3] also belong to this type of
works.

Semiempirical approaches. These approaches are
based on the solution of the exact statistical equations
that describe the microscopic properties of the corre-
sponding systems. Unfortunately, these equations can
be solved only in certain special cases by introducing
simplifying assumptions (see, e.g., [4]). Nevertheless,
there is hope that the parameterization arising in these
approaches is more consistent with the physical picture
than the parameterization of “empirical” models. In
addition, these approaches retain many advantages of
“explicit” models.

The assumption that the solvation energy is propor-
tional to the molecular surface area, which is com-
monly used in empirical approaches [5, 6], appears
plausible in the case where the size of the solute mole-
 © 2005 Pleiades Publishing, Inc.
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cule is much larger than that of the water molecule. In
contrast, for small molecules and molecules of complex
geometry, the corresponding surface area is often deter-
mined using rough empirical assumptions, for example,
by “rolling” a water molecule around a solute molecule.
This kind of calculations can hardly be considered sat-
isfactory from both theoretical and practical points of
view. Modifications of this approach can be found
in [7]. Another solution of this problem can be obtained
in terms of the Gaussian approximation suggested, for
example, in [8].

In our view, the following approaches are most con-
sistent and constructive among the theoretical
approaches devoted to the solute–solvent interactions.

1. Directly calculating the correlation function of a
solvent in the presence of a solute (with or without elec-
trostatic interactions). This scheme suggests two possi-
ble ways: (i) introducing special collective variables,
weighted densities, and constructing an appropriate
functional whose form is completely determined by
physical constraints [4] or (ii) choosing an empirical
closure condition for the correlation function that satis-
fies the hierarchy of integral equations [9]. Once the cor-
relation functions have been calculated, the remaining
thermodynamic parameters can be determined easily.

2. Calculating the mean density profile of a fluctuat-
ing field in the presence of a solute molecule (with or
without electrostatics). The discrete structure of the liq-
uid on small scales is taken into account via the corre-
lation function of a pure solvent unperturbed by the sol-
ute. The solute molecule is taken into account by the
requirement that the total solvent density be expelled
from the volume occupied by the solute [10–13]. The
solvation energy and the density profile near the solute
molecule can then be calculated by minimizing the free
energy.

3. The SPT [14, 15] and IT [16] theories. Both
approaches use the relationship between the probability
of spontaneous formation of a cavity of a given shape
and volume containing a fixed number of particles and
the solvation energy of the molecule that forms this
cavity. The cavity formation probability can be calcu-
lated from combinatorial considerations.

Our work may be placed into the second group of the
above list. We mainly use the ideas set out in [10–12], in
which a two-length scale model of the interaction
between hydrophobic molecules and a solvent was con-
sistently developed and modified. In this approach, the
solvent density is described by a fluctuating field with a
separated component that changes greatly at distances
on the order of the size of the water molecule; it may be
interpreted as a fluctuation of the medium. The remain-
ing part of the density is assumed to change slowly,
with the definition of a mean observed solvent density
being assigned to it. In our view, this approach is opti-
mal for the following reasons: on the one hand, being
“semimicroscopic,” it is physically clear; on the other
hand, being computationally much simpler and faster
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
than the corresponding explicit approaches, it allows
the detailed structure of the solvent to be effectively
taken into account. Thus, our objective is to construct a
quantitative theory of the solute–solvent interaction for
molecules of arbitrary geometry. We take into account
the correlations of the medium (water) by specifying a
correlation function and adjust the remaining indepen-
dent model parameters by comparing them with avail-
able published data of numerical or actual experiments
for molecules of the simplest (spherical) geometry.

In our view, the approach being developed here has
the following advantages over other phenomenological
theories.

1. The solvation energy of a molecule of arbitrary
geometry and the interaction energy of two or more sol-
vated objects are calculated in terms of a unified
approach. The derived equations require no special
modification to allow for several solvated objects.

2. The discrete water structure on small scales is
taken into account.

3. No empirical recipes like the rolling of the water
molecule around the solvent surface are required to
determine the geometrical parameters of the solute. The
geometry of the solute molecule can be uniquely
related to the features of the interaction potential
between the latter and the solvent molecules. Although
some freedom in choosing the surface remains, it can
be removed by properly adjusting the free parameters.

4. The model contains a small number of free
parameters that can in principle be determined from
(numerical or real) experiments.

The paper is structured as follows. In Section 2, we
describe the model and derive the basic equations for
the equilibrium density and the solvation free energy of
molecules of arbitrary geometry. Here, we also com-
pare the numerical solution of the derived equations by
Monte Carlo simulation in [13] and adjust the free
model parameters. In Section 3, we calculate the solva-
tion free energy of alkanes and the free energy of the
interaction between two spherical molecules in water.
In Section 4, we discuss the results and derive the equa-
tions that allow the electrostatic interactions in the sys-
tem to be taken into account.

2. MODEL

Following the general scheme set out in [10–12], we
consider a solvent whose density profile is described by
a field ρ(r). The part related to the fluctuations whose
length scale is specified by the correlation function of a
pure solvent, χ(r, r'), which below is denoted by ω(r),
can be separated in the field ρ(r). The density n(r) =
ρ(r) – ω(r) is the spatially averaged component of the
field ρ(r) that changes greatly at distances that are large
compared to the size of the water molecule. Since the
solvent cannot penetrate into the volume v in occupied
by the solute, we must impose the condition ρ(r) = 0 on
the field ρ(r) for r ∈  v in . The equality to zero of the
SICS      Vol. 101      No. 5      2005
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density ρ(r) inside the volume occupied by the solute
results in efficient interaction between n(r) and ω(r). In
general, however, direct interaction between n(r) and
ω(r) should be added to it.

The thermodynamic properties of a pure solvent
(water) are determined by the free energy functional in
terms of the Ginzburg–Landau (GL) expansion, which
describes the liquid–vapor phase transition. The density
n(r) acts as an order parameter. The interaction between
the small-scale and large-scale densities, ω(r) and n(r),
can shift the state of the system into the evaporation
region. This, in turn, can cause a large decrease in the
water density near the solute surface, an effective dry-
ing-out of the surface. By minimizing the free energy
functional, we calculate the density profile and the sol-
vation free energy. It should be noted that the presence
of two length scales in our theory is the result of the
mean-field description in terms of the GL interaction
functional between water molecules. In a completely
microscopic theory, the division of the density into
small-scale and large-scale components is a redundant
procedure—all must be described in terms of the den-
sity ρ(r) alone. In this case, the theory must contain a
description of the interaction between water molecules
on a microscopic level. An attempt to construct a com-
pletely microscopic theory was made in [4]. In our
view, the computational difficulties in [4] severely limit
the applicability of this theory to the solvation of mole-
cules with large sizes and complex geometry.

Before we turn to a detailed description of the
approach, let us consider the differences between our
model and similar (in content) models discussed
in [10–12]. In [12], the large-scale density n is des-
cribed in terms of a lattice model in which the entire
space is divided into cells. The description of the densi-
ties by continuous functions used in our paper allows
this procedure to be avoided. In addition, in our paper,
all densities are calculated in a self-consistent way,
without invoking additional averaging over the fluctua-
tions, as, for example, in [11]. Thus, our model describes
more accurately the solvation of objects of complex
geometry and the interaction between solvated objects at
small distances than the models in [11, 12]. In addition,
we generalize the mean-field description of the solva-
tion of hydrophobic molecules to charged molecules.

A. Free Energy Functional 

In our model, the state of the liquid in the absence of
a solute is described by the functional

(1)

Here, n(r) is the slowly changing (mean) density of the
liquid, which is considered in our case as an order

^0 ω n,[ ] 1
2
--- ω r( )χ 1– r r ',( )ω r '( ) r r 'dd∫=

+
a
2
--- ∇ n r( )( )2 W n r( )( )+

 
 
 

r.d∫
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parameter; ω(r) is the field that corresponds to the
small-scale density fluctuations; χ(|r – r'|) is the corre-
lation function of the unperturbed liquid; a is the phe-
nomenological parameter that must be defined by the
microscopic theory (see below); W(n(r)) is the self-
consistent potential specified in a standard way as the
Ginzburg–Landau expansion in terms of the order
parameter n(r) by a fourth-degree polynomial:

(2)

where n1 and n2 are the values of the order parameter n
in vapor and water, respectively (below, unless stated
otherwise, it is assumed that n1 = 0); b is the coupling
constant that, together with a, defines the surface ten-
sion (see (10)). Functional (1) consists of two (so far
independent) parts. The first term describes the nonlo-
cal small-scale Gaussian fluctuations of the solvent
whose spatial correlation is defined by the correlation
function χ(|r – r'|),

(3)

The large-scale part with the gradient term in (1) is the
excess of free energy with respect to a homogeneous
liquid when the vapor–liquid interface is formed and,
thus, describes the density fluctuations related to the
vapor–liquid phase transition.

To some extent, the functional form of potential (2)
is chosen arbitrarily. In general, the functional form
must satisfy the requirements that directly follow from
the physical formulation of the problem. As was men-
tioned above, functional (1) with potential (2) must
describe the liquid–vapor transition near the solute sur-
face. The presence of a solute shifts the parameters of a
pure liquid into the vapor–liquid phase equilibrium
region [11]. On the other hand, this requirement may be
considered as an effective allowance for the repulsive
part of the solute–water interaction potential, thereby
fixing the mechanism of the hydrophobic effect. The
general form of the functional that describes the behav-
ior of the solvent in the phase coexistence region is
known; this is a potential with two minima that is usu-
ally parameterized by the GL expansion (see Fig. 1).
The specific form of the parameterization is not
exhausted by the polynomial form of the GL theory; the
main requirement is that the corresponding parameter-
ization describe correctly the vapor–liquid transition
region under nearly normal conditions. In general, the
GL expansion is enough to elucidate the main features
of the physical picture. One possible way of improving
the model in the future is to choose a more realistic
form of potential (2) that appears in the large-scale part
of the functional. Figure 1b displays an asymmetric
potential that belongs to a broader class of potentials
than that described by Eq. (2). The figure is shown for
n1 = 0.

W n( ) b
2
--- n n1–( )2 n n2–( )2 0 n1 n2 1≤ ≤ ≤( ),=

χ r r '–( ) ω r( )ω r '( )〈 〉 .=
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The potential W(n) in the GL expansion depends on
four parameters (a, b, n1, n2), two of which (n1 and n2)
are fixed by the solvent density in the coexisting phases.
The parameters a and b are considered as free adjust-
able parameters of the theory. Assuming the more gen-
eral form of potential (2) shown in Fig. 1b, more specif-
ically,

we may consider the relative difference between the
values at the minima of the potential, µ(n2 – n1), as an
additional parameter. This quantity is closely related to
the asymptotic behavior of the solvation energy in the
limit of large molecules. The asymmetry of the poten-
tial contributes to the volume-dependent part of the sol-
vation energy. This contribution tends to PVsol as the
solute volume Vsol increases [14] (here, P is the liquid
pressure). Simple estimates show that the contribution
from the volume part to the solvation energy on nanos-
cales is negligible compared to the part proportional to
the solute surface area [13]. Thus, we may disregard the
asymmetric form of the potential in Fig. 1b and con-
sider a potential that is symmetric relative to the phase
change, as in Fig. 1a. It is this form of the potential that
is given in (2).

In the absence of interaction between the fields n
and ω, minimizing functional (1) leads to the system of
equations

(4a)

(4b)

The solution of Eq. (4a) corresponds to the state of
a homogeneous liquid, ω(r) = const, while the solutions
of Eq. (4b) complemented by appropriate boundary
conditions describe the following: (i) the plane vapor–
liquid interface in the one-dimensional case, n(–∞) ≡
n1 = 0 (n(∞) = n2) and (ii) the density profile near an
extended surface of macroscopic sizes in the two- and
three-dimensional cases. In this case, n = 0 on the solute
surface and ∇ n = 0 for |r |  ∞. In this section, for the
simplicity, we restrict our analysis to objects of spheri-
cal geometry (discussion of the solvation of objects
with a complex shape is deferred for Section 3).

The solutions obtained can be qualitatively analyzed
by calculating the first integrals of motion by analogy
with classical mechanics [17]. Writing the Laplace
operator in spherical coordinates,

multiplying (4b) by

W̃ n( ) W n( ) µ n n1–( ),+=

χ r r '–( )ω r '( ) r 'd∫ 0,=

a∆n r( )– δW n r( )( )
δn r( )

------------------------+ 0.=

∆n r( ) n '' r( ) 2
r
---n ' r( ),+=

n ' r( ) dn r( )
dr

-------------≡
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and integrating from the sphere radius rin to ∞, we
obtain

(5)

The integration in (5) yields

(6)

Using (6) and the explicit form of potential (2), we can
calculate n'(r) at r = rin . The value of n'(r) determines
the qualitative behavior of the density profile. Since the
potential-related part in our case disappears, the density
monotonically increases from n1 in rin to n2 in |r | = ∞.
In practice, the density profile reaches its equilibrium
value at a certain distance from the solute surface. The
asymmetric potential can be analyzed in a similar way.

The meaning of the parameters a and b becomes
clear in the limit of large radii, rin @ δ, where δ is the

a
d
rd

----- n ' r( )( )2

2
------------------ rd

rin

∞

∫ a
2
r
--- n ' r( )( )2 rd

rin

∞

∫––

+
W r( )d

rd
--------------- rd

rin

∞

∫ 0,=

n ' ∞( ) 0.=

n ' r( )( )2
r rin=

4
r
--- n ' r( )( )2 rd

rin

∞

∫=

+
2
a
--- W n rin( )( ) W n ∞( )( )–[ ] .

W

nn2

W

nn2

Fig. 1. Possible forms of the potential W(n). Case (a) corre-
sponds to Eq. (2) and is considered in this paper.

(a)

(b)
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characteristic size of the water–vapor transition layer
(see below). Substituting (2) into (4b) and replacing the
interaction of n(r) with the solute molecule by the
boundary condition, we obtain

(7)

where navr = (n2 + n1)/2. Assuming that r @ δ in (7) and
expanding the Laplace operator in a Taylor series,

we derive an equation that defines the liquid–vapor
interface in the one-dimensional case:

(8)

The solutions that describe the density profile near the
solute are

(9)

It is easy to see that in the case of a symmetric potential
parameterized by the GL expansion, the large-scale
part of the functional contains only one parameter. This
parameter, δ, fixes the width of the liquid–vapor inter-
face. Calculating the functional yields the following sol-
vation energy per unit area of a spherical molecule [18]:

(10)

where

has the meaning of surface tension. When deriving
Eq. (10), we substituted the exact boundary condition

a∆n r( )– 2b n r( ) navr–( )+

× n r( ) n1–( ) n r( ) n2–( ) 0,=

n r rin=( ) n1,=

n ' ∞( ) 0,=

∆ d2

dr2
-------

2
r
--- d

dr
-----

r  @ δ

+ d2

dr2
------- O

δ
r
-- 

  ,+= =

añ '' r( )– 2b ñ r( ) navr–( )+

× ñ r( ) n1–( ) ñ r( ) n2–( ) 0,=

ñ rin( ) navr,=

ñ ' ∞( ) 0.=

ñ r( )
n2 n1–

2
----------------

r rin–
δ

------------- 
 tanh

n2 n1+
2

----------------,+=

δ 2
n2 n1–
---------------- a
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------------
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------------=

× a
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2
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---------- n2 n1–( )3 O
δ
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----- 
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σ ab
6

---------- n2 n1–( )3=
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n(rin – δ) = 0 with the approximate n(rin) = navr , which
clearly can be done for 0 < δ/rin ! 1.

B. Correlation Function 

An important initial component of our theory is the
bulk correlation function of a pure solvent, χ(|r – r'|)).
By definition,

(11)

Here,  is the mean solvent density in the bulk, h(r –
r') = g(r – r') – 1, and the function g(|r – r'|) has a clear
physical meaning:

(12)

The function g(r) can be either directly determined
from experimental data, or derived by numerical simu-
lation, or calculated from a self-consistent integral with
an appropriate closure condition [19].

The following relation directly results from the def-
inition of χ(r – r'):

(13)

The latter equality may be considered exact, because
the compressibility of the liquid is infinitesimal. We

define the inverse correlation function (r, r') as

(14)

It should be noted that the integration in (14) is only
over the volume v in occupied by the solute; therefore,
the inverse correlation function possesses no transla-
tional invariance.

In this paper, we use two correlation functions:
(i) the correlation function of water derived from
numerical molecular-dynamical simulations [20] and
(ii) the correlation function of hard spheres derived
from the solution of the self-consistent Percus–Yevic
integral equation [21–23]. The functions h(r) for water
and hard spheres are shown in Fig. 2. Both functions
correspond to the dimensionless water bulk density
n2 = 0.7. Other approximate equations of the statistical
theory of liquids can be found, for example, in [19].

Having the correlation functions of water and hard
spheres at our disposal, we can compare the sensitivi-

χ r r '–( ) nδ r r '–( ) n2h r r '–( ).+=

n

n2 r( )g r( ) V 1– δ r ri– r j+( )
i j≠
∑ .=

n g r r '–( ) 1–( ) r 'd∫
=  4πn h r( )r2 rd∫ 1.–≈

χ in
1–

r ''χ in
1– r r '',( )χ r '' r '–( )d

v in

∫ δ r ' r–( ), r v in,∈=

χ in
1– r r '',( ) 0, r v out.∈=
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ties of the density profile and the solvation energy to the
detailed structure of the liquid and to check the conver-
gence of the numerical scheme: the computational
result must be virtually independent of the specific
choice of the correlation function far from the solute
surface.

The correlation function naturally defines the length
scale ξ in the theory. Below, we fix ξ = 2.78 Å, the dis-
tance from the coordinate origin to the first peak of the
correlation function.

C. Partition Function 

Let us now turn to the solvent–solute interactions.
We take into account the solvation of the molecule,
first, by requiring the absence of a solvent within the
volume occupied by the solute, v in:

, (15)

and, second, by introducing a direct interaction
between the small-scale and large-scale solvent densi-
ties in the simplest form,

(16)

where c is the coupling constant. Below, all analytical
calculations are performed for an arbitrary c; the results
of our numerical calculations are presented only for
c = 0. The case of c ≠ 0 requires a separate analysis.

We define the solute–solvent partition function as

(17)

where

(18a)

(18b)

We write the constraints imposed by the Dirac δ func-
tion in (17) using the functional Fourier transform as

(19)

ρ r( ) n r( ) ω r( ) 0≡+=

V ω n,[ ] c ω r( )n r( ) r,d∫=

Z $ ω r( ){ } δ ρ r( )[ ] e ^– ,
r V in∈
∏∫=

^ ^0 ω n,[ ] V ω n,[ ] rϕ r( )ρ r( ),d∫+ +=

ρ r( ) n r( ) ω r( ).+=

δ ρ r( )[ ]
r v rm∈
∏ 1

2π( )1
-------------- $ ψ r( ){ }∫=

× i ρ r( )ψ r( ) rd

v in

∫ 
 
 

.exp
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Here, 1 is the number of space points in the product

, and the integration is over all points of

all fields ψ(r):

This representation allows the partition function in (17)
to be written as a functional integral over the fields
ψ(r):

(20)

where Ξ is a constant that depends on the normalization
of the partition function Z.

The partition function Z with the action S[ω, n, ψ]
defined by (20) is a key object of the theory. Such basic
quantities as the total, ρ(r), and mean, n(r), densities,
the solvation free energy ∆G, and the interaction free
energy of several solvated objects, can be determined
using the generating functional Z.

D. The Mean Density 

Having first integrated all fields in (20), we deter-
mine the mean (large-scale) density n(r) by requiring
that

(21)

…( )r v in∈∏

$ ψ r( ){ } ψ r( ).d
r v in∈
∏≡

Z Ξ 1– $ ω r( ){ } $ ψ r( ){ } e S ω n ψ, ,[ ]– ,∫=

S ω n ψ, ,[ ] ^ ω n,[ ] i ρ r( )ψ r( ) r,d

v in

∫+=

δS n r( )[ ]
δn r( )
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Fig. 2. The correlation function of water and the Percus–
Yevic correlation function of hard spheres. The distance is
in dimensionless units r/ξ (ξ = 2.78 Å, the dimensionless
bulk density of water in these units is n2 = 0.7; the solid and
dashed lines represent hard spheres and water, respectively.
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represent water and hard spheres, respectively.
or, in explicit form,

(22a)

and

(22b)

Thus, condition (21) leads to a system of integro-differ-
ential equations that relate the density n(r) in the inner
region, v in, occupied by the solute and the density n(r)
in the outer region, vout .

In this paper, we consider only the case of c = 0, i.e.,
when there is no direct coupling between the small-

a∆n r( )– δW n r( )( )
δn r( )

------------------------ 2cn r( )–+

– c r ' r ''χ in
1– r r ',( )χ r ' r ''–( )n r ''( )d

v out

∫d

v in

∫

+ r 'χ in
1– r r ',( )n r '( )d

v in

∫ 0,=

r v in∈

a∆n r( )– δW n r( )( )
δn r( )

------------------------ c2 r 'χ r r '–( )n r '( )d

v out

∫–+

+ c2 r ' r '' r '''χ r r '–( )d

v out

∫d

v in

∫d

v in

∫
× χin

1– r ' r '',( )χ r '' r '''–( )n r '''( )

– c r ' r ''χ r r '–( )χ in
1– r ' r '',( )n r ''( )

v in

∫d

v in

∫ 0,=

r v out.∈
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scale and large-scale fluctuations. In this case, the equa-
tions are simplified significantly:

(23a)

(23b)

The following technique is used to numerically solve
system (23a), (23b). When Eq. (14) is solved, the deter-

mination of (r, r') takes the bulk of the com-
putational time. To speed up this procedure, let us mul-
tiply (23a) by χ(|r – r' |) and, integrating over the entire
space v tot (v tot = v in ∪  vout), make use of (14). We then
obtain

(24)

These equations no longer explicitly contain (r, r');
therefore, (14) may not be solved at all, thereby reduc-
ing significantly the computational time.

The general form of the density profile n(r) for a
spherical molecule at certain (so far arbitrary) constants
a and b is shown in Fig. 3. The vapor (n1) and water (n2)

a∆n r( )– δW n r( )( )
δn r( )

------------------------+

+  r ' χ in
1– r r ' ,( ) n r ' ( )  = 0, d  

v

 

in

 ∫  r v in , ∈

a∆n r( )– δW n r( )( )
δn r( )

------------------------+ 0, r v out.∈=

χ in
1–

n r( ) r 'χ r r '–( )d

v in

∫+

× a∆n r '( )– δW n r '( )( )
δn r '( )

--------------------------+ 
  0, r v in,∈=

a∆n r( )– δW n r( )( )
δn r( )

------------------------+ 0, r v out.∈=

χ in
1–
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densities are n1 = 0 and n2 = 0.7, respectively. The
numerical solutions of (24) were obtained by using the
correlation functions of hard spheres (dashed line) and
water (solid line).

The presence of regions with a negative density
should not be considered an erroneous result, since
only the total density ρ(r) should be positive, while the
density n(r) is auxiliary in nature, defining the remain-
ing quantities in a self-consistent way, and has no literal
physical meaning. That the averaged large-scale den-
sity n(r) has a negative mean value within the solute
just implies that the density fluctuations are asymmetric
in this region, so locally 〈ω〉 ≠ 0.

The total density ρ(r) = n(r) + ω(r) that corresponds
to the minimum of functional (20) satisfies the system
of equations

(25)

As in the case of system (23), Eqs. (25) at c = 0 can
be written in a form that does not explicitly contain

(r, r') [10].

E. Solvation Free Energy 

We define the solvation free energy ∆G as the
energy that should be spent to transport the solute from
the solvent to a vacuum (we make no difference
between ∆F and ∆G, since PVsol ! ∆G). The partition
function of the solvent containing the solute molecule
can be written by directly using (17) as

(26)

where ^ is defined by Eq. (18a). The solvation free
energy ∆G can be calculated in a standard way as the
logarithm of the ratio of the corresponding partition
functions,

(27)

ρ r( ) 0, r v in,∈=

ρ r( ) n r( ) r ' r ''χ r r '–( )d

v in

∫d

v in

∫–=

× χin
1– r ' r '',( )n r ''( )

+ c r ' r '' r '''χ r r '–( )d

v in

∫d

v in

∫d

v in

∫
× χin

1– r ' r '',( )χ r r '''–( )n r '''( )

– c r 'χ r r '–( )n r '( ),d

v out

∫
r v out.∈

χ in
1–

Zsolv–sol $ ω r( ){ } δ ρ r( )[ ] e ^– ,
r v sol∈
∏

v solv

∫=

∆G
Zsolv–sol

Zsolv
----------------.ln–=
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Here, Zsolv is the partition function of a pure solvent in
the absence of a solute. At first glance, it seems natural
to write Zsolv as

(28)

However, the divergences that are formally related to
the emergence of an uncompensated product of the
Gaussian integrals in the ratio Zsolv–sol/Zsolv arise
when (28) is directly used to calculate (27). Physically,
these divergences are associated with the difference
between the statistical ensembles in which the corre-
sponding partition functions are calculated. When we
represent Zsolv–sol in form (26) by imposing constraints
in the form of a δ function, we fix a certain total density
ρ within the solute volume v in; thus, with regard to the
field ρ, we are dealing with a canonical ensemble. At
the same time, calculating Zsolv using (28), we take into
account all the possible configurations of the field ρ
within the volume occupied by the solute, which corre-
sponds in meaning to a large canonical ensemble.

Equation (28) can be regularized by using the rela-
tion between the solvation free energy and the probabil-
ity of spontaneous formation of a cavity with a given
volume in the solvent [11]. Let us represent ∆G in (27) as

(29)

where Zv(N) is the partition function of the solvent, pro-
vided that N solvent molecules are in the volume v in .
Let us pass from the summation in (29) to integration
by introducing the corresponding continuous variable

 = N/v in , the mean density of the solvent molecules
within the volume v in . Zsolv can then be written in regu-
larized form as

(30)

In this paper, we use a different expression for Zsolv that
can be derived from the above expression via integra-
tion over the variable  by the stationary phase method,

(31)

Thus, definition (27) with the partition functions (26)
and (31) naturally arises from simple physical consid-

Zsolv $ ω r( ){ } e ^– .

v solv

∫=

∆G
Zv 0( )

Zv N( )
N 0≥
∑
-------------------------,ln–=

ñ

Zsolv ñ $ ω r( ){ }
v solv

∫d

0

∞

∫=

× δ ρ r( ) ñ–[ ] e ^– .
r v sol∈
∏

ñ

Zsolv $ ω r( ){ } δ ρ r( ) n–[ ] e ^– .
r v sol∈
∏

v solv

∫=
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erations and no longer contains any divergences. It is
important to note that the equilibrium density profile n
minimizing Zsolv in (30) coincides with the equilibrium
bulk density of a pure solvent, ; therefore, the effec-
tive action in (31) that corresponds to this density pro-
file is exactly equal to zero.

The solvation free energy ∆G can be calculated by
substituting the equilibrium density profile neq(r) ≡
n(r) derived by solving system (22a), (22b) into func-
tional (18a). The solvation free energy G ≡ ^{neq} can
then be represented as the sum of three terms:

(32)

where

(33)

As in the calculations of the mean density n(r), we con-
sider only the case of c = 0. Using (23a) and (23b), we
can rewrite (32) without the inverse correlation func-

tion (r, r') as

(34)

n

∆Gsolv v in( ) ∆Gcorr ∆Gsurf ∆Gint,+ +=

∆Gcorr
1
2
--- neq r( )χ in

1– r r ',( )neq r '( ) rd r ',d

v in

∫=

∆Gsurf
a
2
--- ∇ neq r( )( )2 r,d∫=

∆Gint W neq r( )( ) r.d∫=

χ in
1–

∆Gsolv v in( ) W n( ) n
2
---δW

δn
--------– 

  r.d∫=
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In Fig. 4, the normalized solvation energy

(35)

for a spherical molecule is plotted against its radius Rin .
Also shown here are the corresponding specific contri-

butions {∆ , ∆ , ∆ } = {∆Gcorr, ∆Gsurf,

∆Gint}/(4π ).

The solvation free energy of a spherical hydropho-
bic molecule [10–12] is proportional (as expected) to
the volume of the solute molecule for fairly small Rin
and to its surface area for fairly large Rin . We clearly see
a nonmonotonic behavior of the solvation free energy
as a function of the size of the solute molecule, which
has already been discussed previously (see, e.g., [13]).

F. Adjusting the Model Parameters 

The free parameters a and b of functional (1), (2)
were chosen to satisfy the following requirements

The theoretically calculated normalized solvation

free energy ∆  = ∆Gsolv/(4πR2) for a spherical mol-
ecule of radius R (see (35)) should closely agree with
the results of Monte Carlo simulations [13].

The theoretically calculated total density ρ(r |R) for
several radii R of a spherical molecule (25) should
reproduce the behavior g(r) of the correlation function
near a spherical cavity of radius R derived from Monte
Carlo simulations [13].

The corresponding results are shown in Fig. 5 for
a = 9 and b = 30.

∆G̃solv ∆Gsolv/4πRin
2=

G̃corr G̃surf G̃int

Rin
2

G̃solv

n
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The dashed and solid curves represent the results
obtained using the correlation functions of hard spheres
and water, respectively, under normal conditions. The

solvation free energy ∆  is presented in Fig. 5 in
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tension of a plane liquid–vapor interface. The numeri-
cal value of γ ≈ 72 mJ m–2 was taken from [13].

The solvation free energies ∆Gsolv and ∆  calcu-
lated by directly using (34) and (35) can be converted
to standard units using the scaling relations

G̃solv
(36)

∆Gsolv dimensionless  units [ ] 0.2479 × ∆ G solv kcal/mol, , = 

∆

 

G

 

˜

 

solv

 

dimensionless  units [ ] 0.2479

2.78
 

( )
 

2
 ----------------- × ∆ G ˜ solv kcal/ mol Å 

2 ( ) . , = 






                                       
In all of the subsequent calculations, these scaling fac-
tors are used without modifications.

3. RESULTS AND DISCUSSION: THE SOLVATION 
OF ARBITRARILY SHAPED OBJECTS

Using our theory, we calculated the solvation free
energy of neutral molecules (linear alkanes) and the
interaction energy of several objects of simple geome-
try (spheres).

A. Solvation of Alkanes 

As noted above, the model parameters and the scal-
ing factors were adjusted in a such a way that the
numerically computed solvation free energy and sol-
vent profile near the solute agreed closely with the
Monte Carlo simulations for hard spheres (see the pre-
vious section); subsequently, they no longer changed.
We used the same values of the parameters to compute
the solvation free energy of alkanes. As we show below,
the results obtained are in excellent agreement with
predictions of the scaled particle theory (SPT), whose
parameters were specially adjusted to alkanes [24].

This close agreement requires elucidations. There is
the opinion [25–27] supported by numerical simula-
tions that the solute–solvent interaction energy can be
divided into two parts: (i) the cavitation component of
the cavity formation free energy, ∆Gcav, and (ii) the dis-
persion (attractive) part corresponding to the tail of the
Van der Waals (VdW) potential, ∆Gdisp . The numerical
simulation methods based on thermodynamic integra-
tion allow each of the contributions, ∆Gcav and ∆Gdisp ,
to be calculated separately [27]. They can also be cal-
culated separately in the SPT suggested in [14, 15]. The
corresponding calculations were performed in [24],
whose authors reported excellent agreement between
the sum ∆Gcav + ∆Gdisp and the experimental data.
Extreme caution should be exercised with regard to the
latter assertion. The point is that the experimental sol-
vation free energies for alkanes are extracted from data
SICS      Vol. 101      No. 5      2005
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Fig. 6. Schematic view of a solvated cylinder with hemispherical edges (a) and two spherical solute molecules (b).
on their solubility in different solvents, in particular, in
water. The universally accepted procedure for deter-
mining the solvation free energy is described in [28].
Some of the authors attempt to apply various kinds of
corrections to the solvation free energies obtained in
this way (more specifically, to the dispersion tails of the
VdW potential) [29], which can significantly change
the corresponding quantities. The “corrected” experi-
mental data from [29] are given in [24]. In general, the
cavitation component remains unchanged. Therefore,
we will focus our attention on the determination of this
quantity.

In the model described above, the solute is consid-
ered as an object surrounded by a hard wall; thus, only
the cavitation part of the solvation free energy is taken
into account. The attractive part of the VdW potential
has not yet been considered. In our view, there are no
fundamental difficulties of including this part of the
interaction in our model. In addition, the δ-function
constraint in (19) can be modified to describe the VdW
potential in the region v in more accurately. The corre-
sponding computations are being performed and will
be the subject of a separate analysis. The cavitation part
of the alkane solvation free energy calculated in our
model and the results obtained in [24] and [30] are
given in the table.

Recall once again that the parameters a = 9 and
b = 30 in our model and the scaling factors (36) were
adjusted to agree with the results of Monte Carlo simu-

Comparison of the calculated cavitation part of the solvation
energy for alkanes, ∆Gcav, for our model with the results
obtained in [24] and [30]

Alkanes
∆Gcav, kcal/mol

(our model) 
∆Gcav,

kcal/mol [24]
∆Gcav,

kcal/mol [30]

CH4 5.69 5.61 5.36

C2H6 7.54 7.53 7.15

C3H8 9.07 9.13

C4H10 10.52 10.8

C5H12 11.96 12.8

C6H14 13.24 14.8 14.22
JOURNAL OF EXPERIMENTAL A
                     

lations without any additional adjustment for alkanes.
The volume 

 

v

 

in

 

 occupied by the alkane molecule was
calculated as follows. Having taken the coordinates of
the centers of all atoms from a standard database, we
surrounded them by spheres of radius 3.5 Å for all car-
bon atoms (the length of the C–O bond in water) and
3.05 Å for all hydrogen bonds (the length of the O–H
bond in water) by defining 

 

v

 

in

 

 as the union of the corre-
sponding spherical volumes. We determined the
lengths of the C–O and O–H bonds by calculating the
pair correlation function [C(methane)–O(water] and
[H(methane)–O(water)] of a system composed of
216 water molecules and one methane molecule by the
Monte Carlo method [31]. Similar values of the param-
eters can be extracted from the force fields suggested
in [32].

As was mentioned above, the dispersion part of the
VdW potential can be easily included in the model. The
simplest way is to add the following term to the original
GL functional:

where 

 

U

 

(

 

r

 

) is the attractive part of the VdW potential.
With this modification, Eqs. (23a) and (23b) for the
equilibrium large-scale mean density change somehow.
More specifically, Eq. (23a) remains unchanged, while
an additional term related to the presence of potential

 

U

 

(

 

r

 

) in the region 

 

r

 

 

 

∈

 

 

 

v

 

out

 

 appears in Eq. (23b):

(37)

 

B. Solvation of Cylindrical Objects
and the Interaction between Two Distant Spheres 

 

In this section, we consider the solvation free energy
of a cylindrical cavity and the interaction energy of two
spherical cavities in a fluctuating medium (i.e., water).
Both systems are schematically shown in Fig. 6.

The analysis of these questions has a double meaning.
(1) First, we analyzed the skin depth of the solvated

object. A direct calculation of the solvation free energy

Udisp U r( )n r( ) r,d∫=

a∆n r( )– δW n r( )( )
δn r( )

------------------------ U r( )+ + 0.=
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for biological systems such as ligand-proteins take sig-
nificant computational time. Indeed, according to (24),
the large-scale density n(r) must be taken into account
at all points of the solute within the volume v in . On the
other hand, it is clear that the hard-wall constraint pre-
vents the density n(r) from penetrating deep into this
region. The penetration depth of the density n(r) into
the volume v in can be estimated by considering the sol-
vation of cylindrical molecules of various radii and
lengths.

The solvation free energy ∆Gcyl(L |R) is plotted
against the length L for several radii R in Fig. 7a.

As we see from Fig. 7b, the slope of the curves in
Fig. 7a is constant for R > R0 ≈ 1.4ξ = 3.9 Å. This
implies that the fluctuating density field for R > R0 pen-
etrates into the solute to distances up to a certain fixed
value (i.e., to the skin depth). Thus, the part of the inner
volume located at a distance larger than the skin length,
R0 ≈ 3.9 Å, inward from the solute surface may be dis-
regarded.
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(2) Second, we analyzed the interaction energy
∆Gsph = ∆Gsph(D |R) – ∆Gsph(D  ∞|R) of two spher-
ical molecules of radius R as a function of the distance
D between their centers. The interaction free energy
minus the solvation free energy of the separate spheres,
or the mean-force potential [33, 34] ∆Gsph(D |R), was
calculated for the potential of a hard wall U(D),

i.e., we again considered only the cavitation part of the
interaction energy by disregarding the dispersion
(attractive) part of the VdW potential between the
impenetrable spheres of radius R. Even for this simpli-
fied model situation, we found the behavior of
∆Gsph(D |R) with distance to be qualitatively different
for different R with respect to the scale length ξ. It
should be noted once again that ∆Gsph is the interaction
free energy of spherical cavities minus the solvation

U D( )
∞, D 2R,≤
0, D 2R;>




=
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free energy of the two spheres dissolved separately,
∆Gsph(D  ∞|R). The qualitative behavior of this
quantity is shown in Fig. 8.

For all values of the radius, R = 0.4ξ Å, 0.7ξ Å, and
0.9ξ Å, we reproduce the nonmonotonic D dependence
∆Gsph(D). The nonmonotonic behavior of this type is
related to the oscillations of the water correlation func-
tion. A qualitatively similar behavior was found earlier
using direction simulations consistent with SPT predic-
tions (see [33] and references therein) and calcula-
tions based on the concept of solvent surface accessi-
ble area [34]. Including the attractive part of the VdW
potential can significantly change the behavior of
∆Gsph(D); nevertheless, the nonmonotonic behavior of
∆Gsph(D) will remain.

Comparison of Figs. 8a and 8c shows that the
dependence ∆Gsph(D) is sensitive (even on a qualitative
level) to the radius R of the interacting spheres. The
effective attraction between smaller spheres is weaker
than that between larger spheres. Qualitatively, the
emerging picture can be understood from the following
simple considerations. For fairly large sphere radii,
R * ξ, the fact that the molecules are closely spaced is
attributable to the loss of free energy, which can be
interpreted as a classical manifestation of the Casimir
effect. At the same time, small (with R & ξ) objects fit
into the spontaneously forming (through fluctuations)
cavities in water with sizes of the order of ξ; as a result,
the loss of energy that corresponds to the spheres being
closely spaced is much smaller than that for larger
objects. Moreover, it can be noticed (Fig. 8a) that the
mean-force potential has the attractive (negative) part
that corresponds to the second molecular water shell.
Thus, two fairly small spherical objects can form a
spontaneous bound state, being separated by a mono-
molecular water shell. The detected effect is in qualita-
tive agreement with the results of [23], in which the
authors analyzed the mean-force potential acting
between two spherical molecules.

4. ELECTROSTATICS
IN A FLUCTUATING DIPOLAR MEDIUM

There are several alternative ways of including the
electrostatic interactions in our model. In the simplest
standard scheme, the permittivity of the solvent, ε, is
assumed to depend linearly on its density n(r), i.e.,
ε(r) = 1 + αn(r). Here, we do not use this assumption;
instead, we treat the solvent as a gas of dipoles, obtain-
ing a system of self-consistent equations as a result.
Our approach is ideologically close to the model of
Debye screening in an electrically neutral plasma [35].
In contrast to the plasma, this model imposes holo-
nomic constraints on the motion of charges of opposite
signs, resulting in the formation of dipoles. Many
papers are devoted to the screening in systems com-
posed of charged extended objects. The theory that is
most suitable for our purposes was developed in [36].
JOURNAL OF EXPERIMENTAL A
Below, we derive the basic equations that include
both the electrostatic and hydrophobic interactions in a
fluctuating medium.

Let us introduce the following quantities: (r, τ)
is the charge distribution in the solvent molecule with a
given orientation τ and the center of mass located at the

coordinate origin ( (r, τ) = 0 outside the molecule);

(r) is the charge distribution in the solute; and
φeff(r) is the effective mean electrostatic field.

According to the logic of the mean-field approach [36],
the molecules of the medium are in an effective electro-
static field φeff(r). Averaging over the spatial charge
distribution in the molecule yields the mean energy of
a molecule:

(38)

The electrostatic potential φeff(r) is defined by the Pois-
son equation

(39)

where µ(r) is the polarization charge of the medium
associated with the orientation of the molecules along
the electric field,

(40)

and ρ(r) = n(r) + ω(r) is the fluctuating density of the
medium. Disregarding the small-scale fluctuating part
ω(r), we can write the following in the mean-field
approximation:

(41)

The free energy functional for the system can be
written as

(42)

ρmol
q

ρmol
q

ρsol
q

φ r τ,( ) φeff r '( )ρmol
q r ' r– τ,( ) r '.d∫=

∆φeff r( ) 4π
εsol
-------ρsol

q r( )– µ r( ),–=

µ r( ) e βφ r ' τ,( )– 1–( )ρmol
q r r '– τ,( )∫∫=

× ρ r '( )
Ωτd

4π
---------d3r ',

µ r( ) e βφ r ' τ,( )– 1–( )ρmol
q r r '– τ,( )n r '( )∫∫=

×
Ωτd

4π
---------d3r '.

^ n r( ) φeff r( ),[ ] r
a
2
--- ∇ n r( )( )2 W n( )+ 

 d∫=

+
1
2
--- r r 'n r( )χ in

1– r r ',( )n r '( )dd

v in

∫

+ λ r ∇φ eff r( )( )2,d∫
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where λ is a coefficient that depends on the chosen sys-
tem of units; it is commonly assumed to be equal
to 1/(8π).

According to [37], the minimum of the functional
corresponds to equilibrium charge density and electric
potential distributions, provided that the relation
between the charge density and the potential in the form
of the Poisson equation is retained. It thus follows that
we must vary the functional

(43)

in which the field ϕ appears as the Lagrange multiplier,
for the constraint specified by the Poisson equation.

Minimizing  in fields ϕ(r), φeff(r), and n(r), we
obtain a system of self-consistent equations whose
solution yields the corresponding equilibrium field and
density distributions in our problem.

So far, the charge density distribution in the solvent
molecule has been assumed to be arbitrary. Let us illus-
trate the application of the theory outlined above for a
liquid of point dipoles. In this case, the charge density

 is given by

(44)

where d is the dipole moment of the molecule. Then,

(45)

This equation, together with the linearized form (40),
leads to the following expression for the polarization
charge density µ(r):

(46)

^̃ n r( ) φeff r( ),[ ] r
a
2
--- ∇ n r( )( )2 W n( )+ 

 d∫=

+
1
2
--- r r 'n r( )χ in

1– r r ',( )n r '( )dd

v in

∫

+ λ r ∇φ eff r( )( )2d∫
+ rϕ r( ) ∆φeff r( ) 4π

εsol
-------ρsol

q r( ) µ r( )+ + 
 d∫

F̃

ρmol
q

ρmol
q r( ) eδ r l

2
---– 

  eδ r l
2
---+ 

 –=

≈ el∇δ r( )– d∇δ r( ),–=

φ r d,( ) = r 'φeff r '( )d d∇ r 'δ r ' r–( ) = d∇φ eff r( ).∫–

µ r( ) r '
Ωdd
4π

---------βd∇ r 'φeff r '( )d∇ rδ r r '–( )d∫∫=

=  
d2β
3

--------∇ n r( )∇φ eff r( )( ).
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Substituting the latter relation into functional (43) and
minimizing it yields

(47)

This system of equations should be complemented by
physically justified boundary conditions such as

(48)

It is easy to verify that Eqs. (47) transform into the
standard equations for a continuous medium with an
effective permittivity dependent on the density of the
medium in the limit of a weak electric field. Indeed,
when the field φeff is weak enough, in view of the sec-
ond equation of system (47),

φeff ~ ϕ, (49)

which implies that

(50)

Given relations (49) and (50), it can be seen that
Eqs. (47) split in the first order in φeff . Therefore, they
can be written as

(51)

where

(52)

δ^̃
δn
-------- a∆n r( )– δW

δn
-------- r 'χ in

1– r r ',( )n r '( )d

v in

∫+ +=

–
d2β
3

--------∇ϕ r( )∇φ eff r( ) 0,=

δ^̃
δφeff
----------

d2β
3

--------∇ n r( )∇ϕ r( )( )=

– λ∆φPA ∆ϕ r( )+ 0,=

δ^̃
δϕ
-------- ∆φeff

4π
ε

------ρÕ}\§. 
q r( )+=

+
d2β
3

--------∇ n r( )∇φ eff r( )( ) 0.=

∂ϕ r( )
∂r

-------------- 0, r ∞;

φeff r( ) 0, r ∞;

n r( ) n, r ∞.

∇ϕ∇φ eff φeff
2 .∼

a∆n r( )– δW
δn
-------- r 'χ in

1– r r ',( )n r '( )d

v in

∫+ + 0,=

∇ ε n r( )( )∇ϕ r( )( ) 4π
ε

------ρ*†‡
q r( )+ 0,=

ε n r( )( ) 1
d2β
3

--------n r( ).+≈
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The closed system of equations (51), (52) describes the
electrostatics in a continuous medium with a permittiv-
ity proportional to the density of the medium.

It should be noted that our model suggests the
absence of a correlation between the orientational
degrees of freedom of the water molecules in the bulk
and in the immediate vicinity of the solute surface. We
can preaverage µ(r) in (41) over the corresponding ori-
entational degrees of freedom only in this case. Our
assumption is based on the conclusions drawn in [38, 39]
from numerical simulations: the effects related to the
reorientation of water molecules near a hydrophobic
surface play a secondary role in solvation thermody-
namics (see [27] for details).

5. CONCLUSIONS

Below, we briefly present our results.

(1) The method described here provides a good
basis for a consistent description of the solvation effects
for objects with an arbitrarily shaped hard surface. The
well-known cavitation contributions to the solvation
free energy of alkanes can be described using the two-
length scale fluctuational continuous model with free
parameters adjusted to agree with the results of Monte
Carlo simulations on the solvation of hard spheres
without any additional adjustment to the parameters.

(2) Two different problems can be analyzed in terms
of a unified approach: (i) calculating the solvation free
energy of cylindrical objects and (ii) calculating the
free energy of two spheres separated by a certain dis-
tance. Analysis of the first problem leads us to conclude
that the skin depth (i.e., the penetration length of the
fluctuating field into the solute) is ~1.4ξ Å, where ξ is
the characteristic length scale in the problem (the dis-
tance to the first maximum of the solvent correlation
function). Analysis of the second problem leads us to
conclusions about the mean-force potential between
two hard spheres in a fluctuating medium.

(3) The developed approach can be easily general-
ized to include the dispersion part of the solute–solvent
interaction and the electrostatic interactions between
charged molecules. The main steps needed for the cor-
responding modifications were described in this paper.

ACKNOWLEDGMENTS

We are grateful to I. Erukhimovich, I. Bodrenko,
E. Tkalya, O. Khoruzhy, V. Zosimov, A. Danchev,
M. Subbotin, M. Olevanov, and V. Ozrin for fruitful
discussions. We also thank M. Lewitt and C. Queen for
valuable comments and suggestions. This work was
supported in part by grant no. ACI-NIM-2004-243
“Nouvelles interfaces des mathématiques” (France).
JOURNAL OF EXPERIMENTAL A
REFERENCES

1. P. George, C. W. Bock, and M. Trachtman, J. Comput.
Chem. 3, 283 (1982).

2. A. Gavezzotti, Modell. Simul. Mater. Sci. Eng. 10, R1
(2002).

3. A. Finkelstein and L. Pereyaslavets (in press).

4. Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993); Y. Rosen-
feld and P. Tarazona, Mol. Phys. 95, 141 (1998).

5. T. Ooi, M. Oobatake, G. Nemethy, and H. A. Sheraga,
Proc. Natl. Acad. Sci. USA 84, 3086 (1987).

6. G. Makhatadze and P. L. Privalov, Adv. Protein Chem.
47, 307 (1995).

7. M. L. Connolly, Science 221, 709 (1983).

8. T. Lazaridis and M. Karplus, J. Mol. Biol. 288, 477
(1999).

9. Q. Du, D. Beglov, and B. Roux, J. Phys. Chem. B 104,
796 (2000).

10. D. Chandler, Phys. Rev. E 48, 2898 (1993).

11. K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B
103, 4570 (1999).

12. P. R. Wolde, S. X. Sun, and D. Chandler, Phys. Rev. E 65,
011201 (2002).

13. D. M. Huang, Ph. L. Geissler, and D. Chandler, J. Phys.
Chem. B 105, 6704 (2001).

14. H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem.
Phys. 31, 369 (1959).

15. R. A. Pierotti, Chem. Rev. 76, 717 (1976).

16. G. Hummer, S. Garde, A. García, et al., Proc. Natl. Acad.
Sci. USA 93, 8951 (1996).

17. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 1: Mechanics, 3rd ed. (Nauka, Moscow,
1973; Pergamon, Oxford, 1976).

18. D. M. Huang and D. Chandler, J. Phys. Chem. B 106,
2047 (2002).

19. G. N. Sarkisov, Usp. Fiz. Nauk 169, 625 (1999) [Phys.
Usp. 42, 545 (1999)].

20. A. K. Soper, Chem. Phys. 258, 121 (2000).

21. J. K. Percus and G. J. Yevic, Phys. Rev. 110, 1 (1958).

22. M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).

23. J. Throop and R. J. Bearman, J. Chem. Phys. 42, 2408
(1965).

24. M. Irisa, K. Nagayama, and F. Hirata, Chem. Phys. Lett.
207, 430 (1993).

25. B. Lee, Biopolymers 24, 813 (1985).

26. B. Widom, Chem. Phys. 86, 869 (1982).

27. E. Gallicchio, M. M. Kubo, and R. M. Levy, J. Phys.
Chem. 104, 6271 (2000).

28. A. Ben-Naim and Y. Marcus, J. Chem. Phys. 81, 2016
(1984).
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005



A QUANTITATIVE MEAN-FIELD THEORY OF THE HYDROPHOBIC EFFECT 977
29. K. A. Sharp, A. Nicholls, R. Friedman, and B. Honig,
Biochemistry 30, 9686 (1991).

30. A. A. C. C. Pais, A. Sousa, M. E. Eusébio, and J. S. Red-
inha, Phys. Chem. Chem. Phys. 3, 4001 (2001).

31. V. Ozrin, private communication.

32. T. A. Halgren, J. Comput. Chem. 17, 490 (1996); 17, 520
(1996); 17, 553 (1996); 17, 587 (1996); 17, 616 (1996).

33. N. T. Southall and K. A. Dill, Biophys. Chem. 101–102,
295 (2002).

34. S. Shimizu and H. S. Chan, Proteins: Struct., Funct.,
Genet. 48, 15 (2002).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
35. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 5: Statistical Physics, 2nd ed. (Nauka,
Moscow, 1964; Pergamon, Oxford, 1980), Part 1.

36. A. R. Khokhlov and K. A. Khachaturian, Polymer 23,
1793 (1982).

37. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 8: Electrodynamics of Continuous Media,
2nd ed. (Nauka, Moscow, 1982; Pergamon, Oxford,
1984).

38. B. Madan and B. Lee, Biophys. Chem. 51, 279 (1994).
39. S. Durell and A. Wallquist, Biophys. J. 71, 1695 (1996).

Translated by V. Astakhov
SICS      Vol. 101      No. 5      2005


	761_1.pdf
	770_1.pdf
	779_1.pdf
	788_1.pdf
	795_1.pdf
	811_1.pdf
	817_1.pdf
	830_1.pdf
	844_1.pdf
	856_1.pdf
	868_1.pdf
	881_1.pdf
	892_1.pdf
	907_1.pdf
	913_1.pdf
	919_1.pdf
	926_1.pdf
	942_1.pdf
	949_1.pdf
	962_1.pdf

