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Abstract—The compact conventional six-period torsatron L-V with an aspect ratio of A = 3 has been consid-
ered as a starting point for further computational optimization of the collisionless confinement of the guiding
center orbits of fusion α particles. The configurations obtained possess improved neoclassical transport together
with an equilibrium β limit at a level of 〈β〉  ≈ 10%. The optimization of magnetohydrodynamic (MHD) stability
and the coil design are underway. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

In recent years, significant experimental results have
been obtained using stellarators and in many cases a
good understanding of their physical grounds has been
reached. Nevertheless, experimental studies with suffi-
cient heating power are necessary to verify a variety of
physical concepts. In this connection, the search for an
experimental device that will combine experimental
flexibility and easy access to the plasma is of current
interest. A design for building such a device has been
developed at the Institute of General Physics (Moscow)
[1] and named L-V. This configuration is a small (major
radius ~1.1 m), compact (aspect ratio of helical winding
~2.5) conventional torsatron with L = 2, N = 6, where
L and N are the multipolarity and the total number of
helical magnetic field periods, respectively. Four pairs
of axisymmetric compensating coils make it possible to
produce a broad variety of vacuum magnetic configura-
tions with different magnetic-surface shapes. Addi-
tional compensating helical windings allow the possi-
bility of controlling the value of the magnetic field heli-
cal ripples.

The choice of the structure of the magnetic field
strength, i.e., the functional form of the field strength B
in magnetic coordinates, is the essential issue in deter-
mining the physical properties of a stellarator [2]. Good
collisionless confinement is obtained for helical sym-
metry in B, i.e., quasi-helical symmetry [3] in toroidal
configurations. The HSX device is based on this type of
symmetry [4]. A second type of quasi-symmetry, quasi-
axisymmetry [5], constitutes the basis of new stellara-
tor projects NCSX [6, 7] and CHS-qa [8].

The third type of symmetry, poloidal symmetry,
cannot be met in toroidally closed stellarator configura-

1 This article was submitted by the authors in English.
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tions, in particular, in a linear approximation with
respect to the distance from the magnetic axis. As was
shown during the Wendelstein 7-X optimization (see,
e.g., [9]) and more rigorously formulated in [10], the
improvement of collisionless particle confinement in
systems attempting a nearly equivalent substitute for
this quasi-symmetry can be achieved by optimizing the
contours of the second adiabatic invariant

(1)

to be constant on magnetic surfaces,

(2)

for deeply to moderately deeply trapped particles in
configurations with a truly 3D structure of B (where Bref
is the normalized magnetic field strength at the reflec-
tion point). Because of the proximity of the particle
drift motion to isodynamicity [11], this condition is
called quasi-isodynamicity. Here s, θ, and φ are the
magnetic coordinates; µ is the magnetic moment of a
particle with mass m; and Ft, Fp, It, and Ip are toroidal
and poloidal magnetic and current flux functions,
respectively. As was demonstrated in [12], it is possible
to extend the condition of quasi-isodynamicity to all
reflected particles. Thus quasi-isodynamicity is a spe-
cial case of quasi-omnigeneity (see e.g., [13], [14]) that
corresponds to poloidal quasi-symmetry.

In a previous paper [15], it was shown that a quasi-
omnigenous magnetic-field structure can be achieved
also by the optimization of a conventional LHD-like
ten-period heliotron/torsatron configuration with an
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Fig. 1. Equilibrium profiles of the rotational transform, magnetic well, and plasma pressure and a view of the plasma surface cross
sections at the beginning, at one-quarter, and in the middle of a field period in the L-V-TQ conventional heliotron/torsatron obtained
with the equilibrium code VMEC, 〈β〉  = 2.38%.
inward shifted axis and an aspect ratio of A = 6.5 with
the use of condition (2) expressed in a simple form 

, (3)
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Fig. 2. Main components of the magnetic field strength
spectrum in the L-V-TQ conventional heliotron/torsatron,
〈β〉  = 0.15%. Normalization: B0, 0(0) = 1.00.
where ∆s is the spacing of the normalized-flux grid and
i is the surface index, which becomes zero for deeply to
moderately deeply trapped particles. For the N = 10
quasi-omnigenous configuration obtained, there are
almost no lost α particles during the 0.05 s of their col-
lisionless-flight time.

In the present paper, we perform the same optimiza-
tion procedure for the compact A = 3.3 six-period stel-
larator L-V.

The paper is organized as follows. Section 2
describes the numerical tools used in the optimization.
Section 3 presents the properties of the starting cases
L-V-TQ and L-V-TUD. Section 4 shows the results of
the optimization procedure, which yield two configura-
tions, L-V-MI10 and L-V-MI14, and this is followed by
a summary.

2. NUMERICAL TOOLS

3D numerical codes are an essential part of the stel-
larator theoretical achievements of recent years. The
Wendelstein-7X stellarator [9] was designed with the
help of a computational optimization package at IPP. In
this work, a similar optimization package is applied.
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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Fig. 4. Collisionless confinement of α particles in the L-V-TQ heliotron/torsatron, 〈β〉  = 3.8% calculated with the guiding-center
orbit code MCT [20] with launching surfaces s = (1) 0.0625 and (2) 0.240. The dashed-and-dotted line shows the number of lost
particles for surface 2.
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Fig. 5. Equilibrium profiles of the rotational transform, magnetic well, and plasma pressure and a view of the magnetic surface cross
sections at the beginning, at one-quarter, and in the middle of a field period in the L-V-TUD configuration with 〈β〉  = 0.1%.
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Fig. 9. Main components of the magnetic field strength
spectrum in the L-V-TUD conventional heliotron/torsatron,
〈β〉  = 0.1%. Normalization: B0, 0(0) = 1.00.

The optimization framework is the NAG Fortran
library E04UCF program [16]. This program is
designed to minimize an arbitrary smooth function sub-
ject to constraints (which may include simple bounds
on the variables, linear constraints and smooth nonlin-
ear constraints) using a sequential quadratic program-
ming method.

In the first step of our numerical calculations, we
obtain the Fourier spectrum of the boundary magnetic
surface from 50 magnetic field line tracing intersections
with 16 toroidal cross sections using the DESCUR code
[17].

For the calculation of 3D ideal MHD equilibria, the
variables subject to change by the optimizer are the
components Rmn, Zmn of the plasma boundary magnetic
surface defined in the cylindrical coordinates R, Z, φ by
the relationships

(4)

where ϑ  is a poloidal parametrization determined to
accelerate the convergence in the m-space of the Fou-
rier series in (3) and m and n correspond to poloidal and
toroidal indexes, respectively. These optimizer vari-
ables Rmn, Zmn, together with the plasma pressure and
net toroidal current profiles, are submitted as input to
the equilibrium code in the IPP optimizer package : the
3D equilibrium VMEC code [18], which uses a gradi-
ent method to solve the ideal MHD inverse equilibrium
equations. In this paper, we use the 5.20 version of the
VMEC code, which is suitable for stellarator systems
without a net toroidal current.

R Rmn mϑ nφ–( ),cos∑=

Z Zmn mϑ nφ–( ),sin∑=
In these equilibrium calculations, 33 flux surfaces
and 113 VMEC poloidal and toroidal Fourier compo-
nents in the representation of equilibrium quantities are
used.

The second code in the optimizer package, the JMC
code [19], calculates the magnetic field strength B in
so-called magnetic or Boozer coordinates. The maxi-
mum poloidal mode index in our runs is 9, and the max-
imum toroidal mode index is 8. The transformation
from VMEC angular variables to magnetic coordinates
is helpful because of the simplicity of the co- and con-
travariant magnetic field vector representations in
Boozer coordinates. The Boozer magnetic field spec-
trum is used in almost all MHD stability and transport
codes.

The third code in the optimizer package, JCONT,
uses the Boozer components of the magnetic field
strength to calculate the second adiabatic invariant (1)
as a function of the flux surface, poloidal angle, and
reflection value Bref. The reflection value Bref = 1.00 was
chosen to be equal to the normalized value of the mag-
netic field component B00 at the magnetic axis. The sec-
ond adiabatic invariant J(s, θ) is used to calculate a so-
called objective function in the optimizer, which should
be minimized during the optimization.

To check the confinement properties of 3D configu-
rations, the MCT code is used [20], which follows 1000
collisionless monoenergetic (3.5 MeV) α particle drift
orbits during a typical confinement time of 0.05 s for a
nominal reactor volume of 1000 m3 and B0 of 5 T and
with a given Boozer spectrum of the magnetic field and
given profiles of equilibrium flux quantities.

The optimization package is installed on the NEC-
SX5 supercomputer at the Rechenzentrum Garching
[21]. The NEC-SX5 is one of the top vector supercom-
puter machines with a peak performance on one proces-
sor near 4 gigaflops. The total computational time for
one optimizer evaluation (VMEC + JMC + JCONT) is
about one minute. If the plasma boundary has N mode
components that can be varied, the optimizer will check
the object function for all variables at each of the main
steps of the minimization (no less than three), so that
the total computational time of the optimization can be
estimated as more than 3N min.

In addition to its evaluation in JMC, the Mercier sta-
bility criterion [22] is also calculated for the main L-V
cases with the TERPSICHORE code [23], which
reconstructs the equilibrium state in Boozer magnetic
coordinates.

3. STARTING CASES

In this section, we briefly describe the coil system of
the L-V device and the first results of the 3D calculation
of certain properties of two basic cases of the L-V stel-
larator project, TQ and TUD. The use of four pairs of
axisymmetric compensating coils makes it possible to
produce a variety of vacuum magnetic surface shapes.
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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However, the simplest operation consists in the shifting
of magnetic surfaces with the help of a vertical mag-
netic field. Shifting the magnetic surfaces outward, we
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Fig. 11. Main components of the magnetic field strength
spectrum in the L-V-MI10 configuration obtained, 〈β〉  =
0.56%. Normalization: B0, 0(0) = 1.00.
obtain configurations with a deep vacuum magnetic
well that is favorable for MHD stability. It is pertinent
to note that in strongly outward-shifted vacuum config-
urations, the depth of the magnetic well may be on the
order of ~15%. Shifting the magnetic configuration
inwards improves neoclassical transport, but leads to
the appearance of a vacuum magnetic hill. However,
the average radius of the vacuum separatrix for strongly
outward (inward) shifted configurations is visibly
smaller than that for centered configurations due to the
ergodization of the external magnetic surfaces. There-
fore, two moderately shifted vacuum configurations
were used for our analysis. The outward-shifted config-
uration (TQ) has a vacuum magnetic well. The TUD
configuration obtained by shifting the magnetic sur-
faces inward uses an additional helical coil for ripple
control.

Relevant profiles of the flux-surface quantities and
the magnetic-surface cross sections computed with the
VMEC code at β = 2.38% are shown in Fig. 1. Herein,
β indicates the 〈β〉  value. The magnetic field spectrum
in Boozer coordinates has two main components: (2,1)
and (1,0) (Fig. 2). The L-V-TQ case was chosen as a
case with a deepening vacuum magnetic well due to the
finite-β effect, so that it is stable with respect to the
Mercier criterion up to a level of β = 2% (Fig. 3). How-
ever, the history of collisionless α-particle loss starts
Comparison of L-V configurations

TQ TUD MI10 MI14

ι (0) 0.19 0.18 0.33 0.18 0.40 0.34 0.19

ι (1) 0.63 0.49 0.55 0.64 0.72 0.76 0.81

〈β〉 2.4% 0.15% 0.15% 5.62% 0.15 5.5% 10.5%

Mercier stable All S S > 3/4 S > 3/4 No S > 3/4 No No

0.001s R0 = 1/4

Lost 221 9 1 134 0 0 1

Trapped 313 264 528 451 491 422 305

0.01s R0 = 1/2

Lost 294 85 23 102 0 0 16

Trapped 310 349 604 495 579 542 401

0.05s R0 = 1/4

Lost 261 195 3 234 0 2 111

Trapped 313 264 524 451 491 422 305

0.05s R0 = 1/2

Lost 302 306 59 203 5 8 155

Trapped 310 349 601 495 579 542 401

Main Bmn 2,1; 1,0 2,1; 1,0 0,1; 1.0; 1,1 2,1; 1,1
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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already at small times of 10–5 s and almost all reflected
particles are lost around 0.05 s (Fig. 4).

The L-V-TUD case is characterized by a vacuum
magnetic hill (Fig. 5). Both L-V-TUD and L-V-TQ
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Fig. 15. Main components of the magnetic field strength
spectrum in the L-V-MI14 configuration obtained, 〈β〉  =
0.56%. Normalization: B0, 0(0) = 1.00.
cases have quite a small value of the vacuum rotational
transform on the axis (near 0.2). If the value of β is
increased, the profile of the rotational transform devel-
ops a dangerously small value of ι  = 0.10 (Fig. 6). For
such a small value of ι , the VMEC code demonstrates
very poor convergence; this can indicate an equilibrium
limit at a level of β = 2–3%. The Mercier criterion cal-
culations for different values of β as a function of the
flux label for L-V-TUD are presented in Fig. 7. For
small β = 0.69%, the case is unstable because of the
vacuum magnetic hill. For larger values of β = 1.43%
and β = 1.84%, a small magnetic well appears near the
axis and we see a stable Mercier mode region in the
plasma core (s < 0.5). For β values greater than 2%, the
L-V-TUD case is unstable around s = 0.5.

Collisionless losses in the L-V-TUD case are lower
than in the L-V-TQ case (see Fig. 8). However, a large
fraction of reflected α particles are still lost in 0.05 s.
Figure 9 presents the main components of the magnetic
field for the L-V-TUD case: (m, n) = (0,0), (1,0), (1,1),
(2,0), (2,1), (3,1), (4,1), and (5,1).

4. OPTIMIZATION RESULTS

The numerical optimization for the L-V stellarator
is performed in several directions. The first goal is a
vacuum rotational transform profile with significant
shear and the ι  on the axis at a level of 0.3. This can
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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Fig. 16. Contours of the magnetic field strength on the magnetic surface s = 8/33 in the L-V-MI14 configuration obtained, 〈β〉  ≈
0.56%.
improve the equilibrium β limit, which for the L-V-TQ
and L-V-TUD standard cases is at a level of β = 2%.
The second objective is connected with the quasi-omni-
genity condition, which can be fulfilled for conven-
tional torsatrons with a large aspect ratio, modular tri-
angularity, and a spatial axis [15].

The first result of such an optimization—the case
L-V-MI10 with a vacuum magnetic hill—is shown in
Fig. 10a. For small β = 0.5%, it has ι  = 0.32. The VMEC
equilibrium result for β = 5.6% is presented in Fig. 10b.

The Fourier spectrum of L-V-MI10 (Fig. 11) near
the axis is similar to the spectrum of the W7-X stellar-
ator and consists of (0,1), (1,0), and (1,1) modes. Such
a combination of modes gives a typical figure of the
contours of B with the maximum near θ = π, ζ = 0 and
the minimum near θ = π, ζ = π (Fig. 12).

The quasi-omnigenous structure of J contours in the
near-axis region for the L-V-MI10 configuration
obtained is shown in Fig. 13. According to this plot,
there is no loss of trapped α particles starting from the
plasma center. However, the quasi-omnigeneity condi-
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
tion is not fulfilled in the edge region and the particles
starting there will be lost.

The second configuration numerically obtained,
L-V-MI14, has a larger shear, vacuum magnetic hill,
and vacuum rotational transform ι  = 0.34. L-V-MI14
accommodates a large equilibrium value of β = 10.5%
(Fig. 14). The Fourier spectrum of the magnetic field
has two main components: (m, n) = (2,1) and (1,1)
(Fig. 15), which form exclusively closed contours of B
(Fig. 16) aligned with the helical direction θ = ζ. Using
the notation from [24], this configuration might be
characterized as antipseudosymmetric.

A nice quasi-omnigenous structure of J contours for
the L-V-MI14 case, on the left-hand part of the circle,
is shown in Fig. 17. For this reflection value of Bref =
1.00 and –π/2 < θ < π/2, the integration path is located
in one system period. In the right-hand part of the cir-
cle, the integration path is larger than one period and,
correspondingly, the result for J is not shown.

The table contains the main values obtained for the
four configurations of the stellarator L-V: TQ, TUD,
MI10 and MI14.
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Fig. 17. Second adiabatic invariant contours for Bref = 1.00 in the L-V-MI14 configuration obtained, 〈β〉  = 0.
5. SUMMARY
Vacuum magnetic configurations of a compact con-

ventional torsatron L-V have been considered as a start-
ing point for further computational optimization aimed
at improving the collisionless confinement of the guid-
ing center orbits of fusion α particles and to increase
the equilibrium plasma pressure limit. For these pur-
poses, configurations have been obtained with a vac-
uum rotational transform having a significant shear in
the bulk of the configuration, an increased value at the
magnetic axis, and a minimized poloidal variation of
the second adiabatic invariant on the magnetic surfaces.
Two interesting magnetic configurations that are
important for applications were found that have
improved collisionless orbits together with equilibrium
β limits at a level of 10%. The optimization regarding
the MHD stability and the coil design remain to be
studied.
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Abstract—A mathematical model is constructed that describes the development of the beam–plasma instabil-
ity in a traveling-wave tube amplifier in the presence of a neutral gas. Steady solutions are derived for conditions
of microwave discharges in a magnetized plasma-filled traveling-wave tube amplifier, and their stability is
investigated. It is shown that the steady-state amplification regime may become unstable and change to the self-
modulation regime. The relationships between the amplifier parameters at the instability threshold are obtained,
and the frequencies of the excited ion acoustic waves are determined. The results of numerical modeling are
found to agree well with the analytical results. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most promising approaches to creating
high-power microwave sources employs plasma-filled
waveguide structures (PWSs) in which an electron
beam excites a synchronous wave. In recent years,
PWS-based microwave devices have been developed
that are capable of continuously generating high output
powers in the centimeter range. This is one of a few
lines of research that has become technically feasible in
plasma physics. In contrast to standard vacuum
waveguide structures, the microwave fields produced in
a PWS change the electrodynamic parameters of the
structure. That is why, in order to adequately describe
the excitation of a PWS by an electron beam, it is nec-
essary to elaborate a new self-consistent theory of the
beam–plasma instability with allowance for both the
change in the medium (plasma) parameters under the
action of high-power microwave radiation and the asso-
ciated changes in the generation process and micro-
wave propagation.

Such a theory is constructed by developing and ana-
lyzing the mathematical models that take into account
different aspects of the self-consistent dynamics of
microwaves and plasmas. The first studies in this direc-
tion were carried out by Zakharov [1] and Kuznetsov
[2], who investigated the self-consistent dynamics of
the plasma and of the microwave propagating in it.

In a PWS with an electron beam, it is the excitation
of a synchronous wave (rather than its propagation) that
is primarily affected by the plasma nonlinearity. The
theory that takes into account this property of the
beam–plasma instability (BPI) in a PWS began to be
developed in [3–7] via study of the effect of the micro-
wave ponderomotive force [8] on the generation and
1063-780X/03/2909- $24.00 © 20740
amplification of microwaves in a plasma-filled travel-
ing-wave tube (TWT). In those papers, it was shown
that the ejection of a plasma from the regions of the
most intense microwave generation gives rise to two
new effects: the onset of low-frequency modulation of
the microwave signal and a change in the mechanism
for the instability saturation. These main properties of
the excitation of a PWS by an electron beam were con-
firmed in experiments with hybrid structures [9] and a
magnetized plasma waveguide [7, 10].

In the papers cited above, a study was made of the
motion of the plasma as a single entity under the action
of the microwave fields produced in it. Such a motion is
characteristic of long-pulse devices. In short-pulse
devices, it is only the light (electron) plasma compo-
nent that is typically set in motion. A theory of the res-
onance plasma amplifier that takes into account the
nonlinear nature of the electron motion in a cold plasma
was constructed by Bobylev et al. [11].

In all of the cited papers, it was assumed that the
excited high-power microwave field exclusively causes
a redistribution of the plasma density and has no influ-
ence on the plasma source. This assumption is valid
when the neutral gas is completely (100%) ionized or
when the amplitudes of the excited microwaves are rel-
atively small, so that the oscillatory energy of the
plasma electrons is insufficient to ionize the neutral
plasma component. A beam–plasma discharge (BPD)
that otherwise develops in the system [12] serves as an
additional plasma source, whose power and spatial dis-
tribution are governed by the parameters of the excited
wave. The wave of the density of the additional plasma
thus produced propagates away from the source region
in the direction opposite to that of the beam and can
003 MAIK “Nauka/Interperiodica”
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give rise not only to effects analogous to those occur-
ring under the action of the microwave ponderomotive
force (such as loss of stability of the steady-state ampli-
fication regime and a transition to the self-modulation
regime [5]) but also to radically new effects, which can
be associated with the facts that the BPD has a thresh-
old in terms of the electron oscillatory energy and that,
in contrast to the microwave ponderomotive force, the
discharge creates an increased (in comparison with the
initial level) plasma density in the region of maximum
microwave field.

In the present paper, we develop a theory of a linear
TWT amplifier in which the amplitude of the output
signal is close to the threshold for initiating a BPD. By
“linear” we mean an amplifier in which the output sig-
nal amplitude is small enough that the nonlinearity of
the motion of the beam electrons in the field of the wave
excited by them can be neglected. However, the beam–
wave–plasma system is treated as being nonlinear.

Our paper is organized as follows. In Section 2, we
derive the basic equations and present the restrictions
on the range of their validity. In Section 3, we analyti-
cally investigate the stability of the steady solutions to
these equations. In Section 4, we solve the equations
numerically and compare the results obtained with the
analytical ones. Finally, we summarize the main con-
clusions of the theory proposed here.

2. BASIC EQUATIONS
We consider a TWT amplifier in the form of a slow

wave structure (with the cross-sectional area Sw and
length L) that is filled partially with a plasma (with the
cross-sectional area Sp and initial uniform density n0)
and is penetrated by a nonrelativistic electron beam
(with the cross-sectional area Sb, density nb ! n0, and
velocity v b). We assume that, in the waveguide struc-
ture, there is a residual neutral gas with the density N0
and ionization energy Wi .

Before proceeding to the construction of a mathe-
matical model, we note that the basic equations will be
derived under certain simplifying assumptions that
make it possible to remove from consideration the
effects that are unimportant for our purposes here. The
main assumptions of our model are as follows.

(i) The guiding magnetic field is strong enough that
the radial motion of the beam electrons and plasma par-
ticles can be neglected.

(ii) The condition Sb ! Sp is satisfied in order that
the beam stratification due to the transverse nonunifor-
mity of the field of the excited wave can be ignored.

(iii) Since, in the cases that are of interest for micro-
wave electronics, the inequality v g @ cs (where v g is the

group velocity of the microwave, cs =  is the ion
acoustic speed, Te is the plasma electron temperature,
and M is the mass of a plasma ion) is satisfied by a large
margin, it is also possible to neglect transient processes

Te/M
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accompanying the excitation of the wave by the beam
and to assume that, at each instant, the longitudinal pro-
file of the microwave amplitude is steady-state and cor-
responds to that for an instantaneous longitudinal
plasma density profile.

Using the fact that, for nb ! n0, the spatial growth
rate δk of the beam instability is small (δk ! k0, where
k0 is the wavenumber of a microwave), we represent the
longitudinal component of the electric field of the
amplified wave in the form

(1)

Here, E0(z, t) is the slowly varying complex amplitude
and the function G(r) describes the radial profile of the
field of the eigenmode of the structure. The frequency
of the wave and its wavenumber are related by the res-
onance condition ω0 = k0vb.

In what follows, we assume that the electron beam
amplifies the natural noise fluctuations rather than the
external signal fed through the entrance plane of the
system. If the interaction region is sufficiently long, the
beam instability, being resonant in nature, acts as a nat-
ural narrowband frequency filter whose bandwidth
decreases with increasing system length. Consequently,
we can assume that, to zeroth order in the width of the
amplification band, there exists only a single wave in
the system, specifically, the one that has the maximum
gain. Under the above assumptions, the longitudinal
profile of the amplitude of this microwave is described
by the following time-independent equations for the
beam instability in an unsteady inhomogeneous plasma
[7, 10]:

(2)

Here, ζ = δk · z is the dimensionless longitudinal coor-

dinate, ε =  is the dimensionless wave

amplitude, ϕ = ω(z/vb – t) is the phase of a beam elec-
tron in the wave, ϕ0 is the initial phase in the injection
plane of the beam (z = 0), δk =

 is the spatial growth rate

of the beam instability in a homogeneous plasma, D(ω,
k, ) is a function whose zeros determine the disper-
sion of the eigenmodes of the system, the detuning

1(ζ, τ) = η(ζ, τ) – (ζ, τ)dζ characterizes the

dimensionless deviation of the wave phase velocity
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from the beam velocity (due to the plasma density per-

turbation), η(ζ, τ) =  is the

dimensionless amplitude of the plasma density pertur-
bation, vph is the phase velocity of the microwave,

 ≡  is the normalized

perturbed plasma density averaged over the plasma
cross section, and ζ0 is the distance over which the
microwave is amplified in the linear stage.

The inequality v g @ cs allows us to use the time-
independent equations for the beam instability and to
account for the unsteady nature of the plasma via the
parametric dependence of the plasma density perturba-
tions δnp on the dimensionless time τ = δk · cst.

Equations (2) should be supplemented with bound-
ary conditions. We assume that the beam velocity and
beam density at the entrance to the system (ζ = 0) are
constant and specify the initial field amplitude |ε|0 and
phase as

(3)

These conditions are sufficient to determine the field
amplitude ε at any point of the system, provided that the
longitudinal plasma density profile and, accordingly,
the dependence η(ζ, τ) are known.

In order to arrive at the desired closed set of the
basic equations, we need to write out the dynamic equa-
tions that describe the motion of the plasma as a single
entity in the presence of the source (BPD). To do this,
we make the following additional simplifying assump-
tions.

(i) Because of its resonant nature, the beam instabil-
ity is very sensitive to the degree to which the plasma is
inhomogeneous; hence, we will assume that the condi-
tion δnp ! n0 is satisfied and will describe plasma
motions in the linear approximation.

(ii) In order to eliminate the effect of inelastic colli-
sions, which change the number of particles in the
waveguide volume, we assume that the length of the
interaction region is much shorter than the electron
mean free path with respect to inelastic processes (e.g.,
recombination), in which case the temporal dynamics
of the plasma density and its spatial distribution are
determined by the balance between the plasma particles
produced by the source and those escaping from the
waveguide through its ends.

(iii) The microwave field intensity is such that the
dependence of the cross section σ for ionization of neu-
tral gas molecules by plasma electrons on the mean
electron oscillatory energy W = e2 |E |2/2mω2 can be
approximated by a linear function, σ = σ'(W – Wi),
where σ' = const (note that this assumption is valid over
a fairly wide energy range, –W Wi ≤ W ≤ 1.5Wi).

1 

k0

2δk
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v ph
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Taking into account the above assumptions and
averaging the continuity equations and the equations of
motion for the electron and ion plasma components
over the fast oscillations, we obtain the following equa-
tions of plasma motion:

(4)

Here, u(ζ, τ) =  is the dimension-

less plasma velocity averaged over the plasma cross

section; S = S0(θ1(ζ, τ) – θ2(ζ, τ))(|ε|2(ζ, τ) – ) (where

S0 = (r)ds ×

 is the dimensionless neutral gas

pressure);  =

WiG2(0)  is the squared

dimensionless ionization energy; θ1, 2 = θ(ζ – ζ1, 2)
(where θ(ζ) the Heaviside step function); and ζ1(τ) and
ζ2(τ) are, respectively, the coordinates of the left and
right boundaries of the region of a BPD, which are solu-
tions to the equation |ε|(ζ, τ) = εi (we note that, for
|ε|(l) > εi , where l = δk · L, the right boundary of the
BPD region coincides with the exit end of the amplifier,
ζ2 ≡ l).

Equations (4) should be supplemented with bound-
ary conditions at the entrance (left) boundary of the sys-
tem, ζ = 0, and at its exit (right) boundary, ζ = l. In what
follows, we will use the most general form of the linear
boundary conditions:

(5)

Here, the reflection coefficients of the left and right
ends of the system for an ion acoustic wave are assumed
to be the same and are denoted by γ (–1 < γ < 1). For
γ < 0, the wave phase does not change as the wave is
reflected from the system ends, while, for γ > 0, the
wave phase changes by π.

Under the above assumptions, Eqs. (2) and (4) with
initial conditions (3) and boundary conditions (5) con-

1 We assume that the amplifier is filled with a weakly ionized cold
gas at a low pressure, so that the plasma can be treated as being
weakly collisional, le, n > L (where le, n is the electron mean free
path with respect to elastic collisions with neutral gas molecules).
In this case, the total energy of the electrons is determined mainly
by their oscillatory energy. Under the experimental conditions of
[7, 9, 11], the electron mean free path in question at the beginning
of a BPD is estimated to be le, n > 102 cm > L.
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stitute the basis of a closed mathematical model of a
BPD in a magnetized plasma-filled TWT amplifier. It is
easy to see that, under the prescribed boundary and ini-
tial conditions (for l, |ε|0, and γ), the model contains
only two parameters: S0 and εi .

3. STEADY-STATE LINEAR AMPLIFICATION 
REGIME AND ITS STABILITY

We assume that the output signal amplitude is small,
|ε(l)| ! 1, which allows us to consider the motion of the
beam electrons in the linear approximation. In this case,
the beam interacts linearly with the wave over the entire
length of the system, ζ0 ≡ l.

Equations (2) can be simplified by using the condi-
tion that the wave amplitude is small. To do this, we lin-
earize the second of Eqs. (2) in the small perturbations
δϕ ~ ε ! 1 of the phases ϕ = ϕ0 + δϕ of the beam elec-
trons and carry out integration over the initial phases in
the first of the equations. As a result, Eqs. (2) reduce to
the equation

(6)

and initial conditions (3) become

(7)

Let us find steady solutions to Eqs. (4) and (6) with
boundary conditions (5) and initial conditions (7). The
steady solutions will be denoted by the subscript st. Set-
ting ∂/∂τ ≡ 0 in Eqs. (4), we get

(8)

The coordinates ζ1, 2 of the left and right boundaries of
the BPD region will be determined below.

Now, we turn to Eq. (6). Since, in the steady-state
regime, the plasma is homogeneous, the detuning, by
its definition, is equal to zero, 1st ≡ 0. In this case,
Eq. (6) has the following well-known solution, which
satisfies initial conditions (7):

(9)

where the numbers λi are the roots of the equation λ3 =
i/2. Note that, since the level of the noise fluctuation is
very low, the requirement that the amplification be effi-
cient (|ε(l)|) @ |ε|0) is equivalent to the condition l @ 1.

In order to simplify expression (8), note that knowl-
edge of the microwave field amplitude solely in the
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BPD region is sufficient for determining the plasma
density. Since only one of the roots λi has a positive real

part, λ1 = 2–4/3(  + i), the condition l @ 1 enables us
to neglect the exponentially small terms in solution (9)
over the entire interval ζ2–ζ1 near the right end of the
amplifier and to use the approximate equality εst(ζ) ≅
|ε|0exp(λ1ζ)/3, which holds over the source region.
With allowance for the fact that the dependence |ε|st(ζ)
is monotonic, we obtain from the equality |ε|st(ζ) = εi
the relationships

(10)

where β ≡ Reλ1 = 2–4/3 .

Using relationships (10) and the expression for
|ε|st(ζ), we can readily see that the assumption about the
linear character of the dependence of the ionization
cross section on the electron energy in the range W ≤

1.5Wi is equivalent to the condition l – ζ1 < ln(3/2),

which indicates that the length of the BPD region is
small in comparison with the characteristic scale length
1/β of the microwave field. Taking into account this
condition, we reduce expression (8) to

(11)

Now, we investigate the stability of solutions (9) and
(11), which describe the steady-state amplification
regime. To do this, we determine the behavior of arbi-
trarily small perturbations of the plasma density, δη(ζ,
τ), plasma velocity, δu(ζ, τ), and microwave field, δε(ζ,
τ). Before proceeding to the derivation of the set of lin-
ear equations for these perturbations, we should make
the following two remarks.

The first remark concerns Eq. (6). The plasma den-
sity perturbation gives rise to the detuning δ1(ζ, τ) =

δη(ζ, τ) – (ζ, τ)dζ. In the so-called adiabatic

approximation (i.e., when the scale on which the plasma
density varies is much longer than the characteristic

scale of the microwave field,  !  ~ 1),

the solution to Eq. (6) is well known. Unfortunately, we
cannot use this solution in constructing the theory
because, under the above assumptions, the perturba-
tions of the plasma density and microwave field are not
independent but are related by Eqs. (4). Therefore, it is
incorrect to make an a priori assumption that their spa-
tial scales are significantly different.

The second remark concerns Eqs. (4). In the pres-
ence of perturbations, the condition |ε(ζ, τ)| = εi is sat-
isfied not at the point ζ1 but at some other point ζ3(τ).
To be specific, we assume that this point lies to the right

3
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of the point ζ1 and consider the region ζ1 < ζ < ζ3. Since
its length is proportional to the perturbation amplitude,
the solution to Eqs. (2) in this region is proportional to

 (where δS is the perturbation of the source)

and is thus of the second order of smallness. Conse-
quently, we can exclude this region from consideration
and set ζ3 ≡ ζ1.

To first order in the small detuning δ1, Eq. (6) and
initial conditions (7) have the form

(12)

(13)

where εst(ζ) is given by expression (9).

With allowance for the second of the above remarks,
Eqs. (4) and boundary conditions (5) can be trans-
formed into

(14)

(15)

where δS = 2S0θ(ζ – ζ1)|ε|st(ζ)δ|ε|(ζ, τ).

Assuming that the dependence δ1(ζ, τ) is pre-
scribed, the solution to Eq. (12) that satisfies initial con-
ditions (13) can be found by the method of variation of
constants. The solution thus derived yields the follow-
ing expression for the perturbation of the microwave
field amplitude:

(16)

where

The perturbation of the source, δS, in Eqs. (14) is
determined by the change in the field amplitude exclu-
sively in the source region, in which expression (16)
can be simplified by using a procedure analogous to
that used in obtaining expressions (10) and (11). As a
result, we arrive at the following expression for the per-
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turbation of the field amplitude in the source region l –
ζ1:

(17)

where α = –β(1 + ).
Since Eqs. (14), boundary conditions (15), and

expression (17) are all linear and uniform in the pertur-
bations, we can represent the time dependence of the
perturbation amplitudes in the form ~exp(–iΩτ), in
which case Eqs. (14) reduce to

(18)

and boundary conditions (15) become

(19)

Here,

(20)

Note that the positive and negative imaginary parts
of Ω correspond, respectively, to the stability and insta-
bility of the steady state under consideration. The inter-
mediate case, when the frequency Ω is real, corre-
sponds to the sought-for critical parameter values at
which the steady state loses stability.

For a prescribed dependence δS(ζ), the solution to
Eqs. (18) that satisfies boundary conditions (19) can be
derived by the method of variation of constants:

(21)

where

(22)

Note that the domain of integration in formula (22)
is limited to the BPD region l – ζ1, because the function
δS(ζ), given by expression (20), vanishes outside this
region. Let us consider the characteristic spatial scales
on which the quantities in the integrand vary. These are
the scale 1/β of the microwave field, the length l – ζ1 of
the source region, and the characteristic scale 2π/Ω of
the plasma density variations (in the dimensionless
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variables introduced above, we have K ≡ Ω, where K is
the wavenumber of the low-frequency wave). The scale
of the microwave field is much longer than the length of
the source region; this circumstance has been used in
the above analysis. As will be clear later, we can
assume that the spatial scale of the plasma density vari-
ations in of the same order of magnitude as the scale of
the microwave field; i.e., it is also substantially longer
than the length of the source region. With such relations
between the scales, we substitute expression (22) into
formula (20) and expand the integrand on the right-
hand side of the resulting equality in a series in l – ζ1.
The right-hand side of expression (22) thus expanded
contains only the amplitude of the plasma density per-
turbation outside the BPD region. According to solu-
tion (21), this perturbation amplitude is equal to δη =
C(e–iΩζ – γeiΩζ). We divide both sides of the equality by
C and obtain, to first order in the source length l – ζ1, a
complex expression from which to derive the disper-
sion relation

(23)

and the relationship between the amplifier parameters
at the stability boundary of the steady-state regime,

(24)

Here, we have introduced the quantity P ≡
 and the parameter µn ≡ Ωn/2β, which

characterizes the relationships between the spatial
scales of the excited ion acoustic wave and microwave
field.

The solution with n = 0 is excluded from solutions
(23) because it certainly does not satisfy relationship
(24). Moreover, according to this relationship, the only
ion acoustic waves that can be excited at the stability
boundary of the steady-state regime are those whose
frequency satisfies the condition µn > 1, which, in fact,
indicates that the spatial scale of the microwave field is
longer than the wavelengths of the low-frequency
waves (1/2β > 1/Ωn). This confirms the correctness of
the above remark that the well-known solution to
Eq. (12) in the adiabatic approximation cannot be used
to construct the theory.

As follows from relationship (24), the quantity Pc

has a minimum at µ =  = . This indicates that the
first wave to be excited is an ion acoustic wave whose

frequency Ωk = 2πk/l is closest to  = . The
characteristic spatial scale of this ion acoustic wave is
on the order of the scale of the microwave field. This
circumstance confirms the correctness of the assump-
tion made in deriving dispersion relation (23) and rela-
tionship (24).
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Let us investigate the dependence of the quantity Pc

on the reflection coefficient γ. Relationship (24) implies
that negative values of the reflection coefficient (the
wave phase does not change as the wave is reflected
from the system ends) decrease the value of the quan-
tity Pc in comparison with that for γ = 0 (in the absence
of reflections), while positive γ values (the wave phase
changes by π) increase the value of this quantity. The
reason is that negative and positive values of the reflec-
tion coefficient correspond, respectively, to the intensi-
fication and relaxation of the perturbations. Note that
relationship (24) has two singularities γ = ±1, near
which solution (23) is invalid. Expression (8) implies
that, as γ  –1, the quantity ηst increases without
bound, which violates the applicability condition δnp !
n0 of our mathematical model. In the limit γ  +1, it
is incorrect to retain only the first term in the expansion
of the integrand in formula (22) in a series in the length
l – ζ1 of the BPD region.

To conclude this section, we analyze the main
approximation that was used to derive the basic equa-
tions, namely, the linear approximation for the equation
of plasma motion. Using solution (9), we find the
explicit form of the condition δnp ! n0 in terms of the
parameters of the waveguide structure:

(25)

where ζ1 =  and W0 is the energy level of the

natural plasma fluctuations. Condition (25) can easily
be satisfied by choosing the corresponding ranges of
neutral gas pressures and beam parameters. As can be
seen, the threshold value P = Pc is consistent with this
condition, especially if we take into account the fact
that the spatial growth rate of the beam instability is
small and the BPD region is short (for plasma-filled

waveguides, we have  > 1).

4. NUMERICAL CALCULATIONS

In order to confirm the results obtained analytically,
we numerically solved the basic set of nonlinear equa-
tions (2) and (4) with initial conditions (3) and bound-
ary conditions (5). An electron beam was modeled by
the particle method, and Eqs. (4) were solved by the
method of characteristics. In simulations, we fixed the
amplifier length (l = 7.0), the beam parameters, the gas
species (εi = 0.06), and the coefficient of reflection of
the ion acoustic wave from the ends of the system (γ =
0) and varied the gas pressure (the parameter S0) and the
microwave field amplitude at the left end of the ampli-
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Fig. 1. Dependence of the quantity Pc on the microwave
field amplitude at the left end of the amplifier: (1) calcula-
tions from relationship (24) and (2) numerical computa-
tions.

4

3

2
0.0015 0.0020 0.0025 0.0030

|ε|0

T

1

2

Fig. 2. Dependence of the period of the ion acoustic wave
on the microwave field amplitude at the left end of the
amplifier: (1) calculations from dispersion relation (23) and
(2) numerical computations.
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Fig. 3. Dependence of the length of the BPD region on the
microwave field amplitude at the left end of the amplifier.
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Fig. 4. Time evolution of the amplitude of the output micro-
wave signal in the self-modulation regime.
fier (the parameter |ε|0). The range over which to vary
the parameter |ε|0 was chosen so that, on the one hand,
a microwave is amplified in the linear regime along the
entire system and the microwave field amplitude at the
exit from the system is small (|ε|(l) ! 1) and, on the
other hand, this amplitude is above the threshold |ε| = εi

for the onset of a BPD.
Our numerical simulations confirmed both analyti-

cal conclusions: that the steady-state amplification
regime becomes unstable and that it is threshold in
nature. The results of calculations are illustrated in
Figs. 1–4.

Figure 1 shows the quantity P = Pc calculated as a
function of the microwave field amplitude at the left
end of the amplifier. The closed circles represent
numerical results, and the solid curves are the results
obtained analytically from relationship (24). Figure 2
demonstrates the dependence of the period of the ion
acoustic wave, T = 2π/Ω , on |ε|0 at the instability
threshold, calculated numerically and obtained analyti-
cally from solutions (23). The dependence of the length
of the BPD region, l – ζ1, on the microwave field ampli-
tude at the entrance to the system is given in Fig. 3.

Figures 1 and 2 show that numerical results agree
well with analytical predictions. As is clear from a com-
parison of these figures with Fig. 3, we did not carry out
numerical simulations for a very short BPD region,
because, in this case, the amount of computer time
required to achieve satisfactory accuracy is unreason-
ably large. Good agreement between numerical and
analytical results obtained even for a comparatively
long source region, l – ζ1 ≤ 1, is explained by the fact
that, for γ = 0, the next term in the expansion in the dis-
charge length that was used to derive dispersion rela-
tion (23) and relationship (24) is of the third (rather
than second) order.

Figure 4 shows a typical time dependence of the out-
put signal amplitude |ε|(l) in the self-modulation
regime near the instability threshold. The dependence
is seen to be slightly aperiodic, the characteristic time
scale being much longer than the period of the ion
acoustic wave. Such behavior may be associated with
the nonlinear corrections that were neglected in the pre-
vious section, in particular, those introduced by the
region ζ1 < ζ < ζ3, whose existence is attributed to the
threshold nature of the BPD and whose length in the
self-modulation regime varies periodically with time.

5. CONCLUSIONS

Our theoretical calculations show that, because of
the development of the BPI during the injection of an
electron beam into a homogeneous plasma containing a
neutral component, the amplitude of the excited micro-
wave evolves to a steady-state, axially nonuniform dis-
tribution. Initially, the BPD that develops near the right
boundary of the waveguide structure increases the
plasma density but does not change its uniform distri-
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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bution or the steady character of the amplification
regime. As the neutral gas pressure or the beam current
increases, the steady-state regime of the amplification
of the excited microwave becomes unstable and
changes to the self-modulation regime.

The change of the amplification regime is associated
with the plasma density perturbations that originate in
the BPD region, propagate in the direction opposite to
that of the beam, and affect the conditions for the gen-
eration of microwaves, thereby changing the micro-
wave field amplitude in the region where they origi-
nated. Because of such an influence of the plasma non-
linearity, the beam instability gives rise to a new
effect—distributed delayed feedback, which causes the
microwave amplifier to operate simultaneously as a
generator of low-frequency plasma oscillations.
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Abstract—A study is made of the structure of a relativistic current filament with the azimuthal magnetic field

Bθ in the range 4πnemec
2 !  ! 4πnimic

2, when the plasma quasineutrality near the filament axis is violated
and a narrow peak in electron density is formed there. The ion dynamics in a strong radial electric field of the

filament on time scales of about several inverse ion plasma frequencies  is investigated. The initial ion pres-
sure prevents the ion plasma component from compression to infinitely high densities under the action of the
electric field and leads to the formation of a dense hot plasma core near the axis of the Z-pinch on time scales

of about a dozen . The compression of the ion component in the axial region gives rise to a collisionless
“unloading” shock wave that propagates away from the axis and is accompanied by the vanishing of the radial
ion velocity behind the shock front, the accumulation of positive charge near the axis, and the formation of a
steady-state ion density profile. It is shown theoretically that ion–ion dissipation manifests itself as the destruc-
tion of the hot core of the formed Z-pinch on picosecond time scales. This may serve to explain the explosions
of “hot points” in a current-carrying plasma. © 2003 MAIK “Nauka/Interperiodica”.

Bθ
2

ωpi
1–

ωpi
1–
1. In recent years, interest has grown in systems with
Z-pinches that make it possible to achieve high X-ray
intensities and large neutron yields. The experimentally
obtained characteristic dimensions of the emitting
regions were found to be somewhat less than 0.1 cm,
and their characteristic lifetimes were on the order of
10–8 s [1–4]. Recent space- and time-resolved measure-
ments have shown that reproducible processes in
Z-pinches occur on spatial scales of about 10–4 cm and
time scales of about 3 × 10–12 s [5–7]. Theoretical anal-
ysis performed for this range of scales consists mainly
of laborious numerical calculations in which not only
electrodynamic processes but also radiation and various
dissipative effects in the plasma are taken into account
[7, 8]. Meanwhile, to gain insight into the phenomena
occurring on very short spatial and time scales, when
most of the dissipative processes play an equally impor-
tant role, it is, first of all, necessary to have a clear
understanding of the electrodynamic processes accom-
panying electron and ion motions in strong electric and
magnetic fields [9]. The initial stage of gas breakdown
is dominated by the electric field Ez , which drives and
maintains the ohmic current jz = σEz . However, as the
magnetic field Bθ grows and the dimensionless Hall
parameter increases to large values, σBθ/enec @ 1, the
role of the dissipative processes decreases. Moreover,
in this stage, the electrons can form current-carrying fil-

aments on time scales on the order of  by the Wei-
bel mechanism for generating a quasistatic magnetic

ωpe
1–
1063-780X/03/2909- $24.00 © 20748
field due to the anisotropy of the electron motion [10].
The physical processes governing the formation and
subsequent evolution of current filaments were investi-
gated by present-day computational means in a recent
paper by Sakai et al. [11]. The characteristic radius of
the electron current filaments calculated in that paper is
on the order of the magnetic Debye radius rB ~
Bθ/4πene, which confirms the possibility of the exist-
ence of electron current structures during the evolution
of a pulsed current-carrying plasma. A distinctive fea-
ture of such current structures is the violation of plasma
quasineutrality and the generation of a strong Hall elec-
tric field Er on a spatial scale of about rB (see [12–14]),
on which the electrons within the filament drift along
the z axis in crossed electric (Er) and magnetic (Bθ)
fields, thereby producing the filament current in the
absence of dissipation. In this case, the radial drop in
the electric potential across such a “capacitor” is sub-
stantially higher than the potential difference between
the electrodes. Measurements show that the Z-pinch
starts to emit electromagnetic radiation and neutrons in
the stage in which the voltage at the electrodes drops
considerably; moreover, the characteristic electron
energy in the electron beams observed experimentally
can be higher than the applied voltage [1]. In such a
nonquasineutral electron filament, the compression of

the ion plasma component on a time scale of about 
by the inwardly directed radial electric field gives rise
to a nonlinear unloading wave that propagates away

ωpi
1–
003 MAIK “Nauka/Interperiodica”
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from the axis and in which the radial ion velocity van-
ishes due to the accumulation of hot ions in the core of
the Z-pinch according to a certain effective adiabatic
law.

2. In order to describe a nonquasineutral electron
current structure, we use a set of basic equations con-
sisting of the hydrodynamic equation of electron
motion converted into the form (see [13])

(1)

and Maxwell’s equations

(2)

(3)

Here, me is the mass of an electron, ve is the electron
velocity, pe = γmeve is the electron momentum, γ =

1/  is the relativistic factor, ne is the electron
density, and E and B are the electric and magnetic
fields.

Taking the curl of Eq. (1) and using the continuity
equation for the electrons, we obtain the following
equation for the Lagrangian invariant I:

(4)

The ion dynamics is described by the hydrodynamic
equations

(5)

where ni, vi, and pi are the ion density, velocity, and
pressure, respectively.

Of course, the question may then be raised about the
applicability of the hydrodynamic approach under such
extreme conditions. Estimates show that the ions are
decelerated primarily because they lose their energy in
collisions with electrons; consequently, the ion mean
free path li ~ τi/e|vi | can serve as a characteristic spatial
scale in related physical problems (see Section 7). In
our simulations, collisions were neglected; however,
Sagdeev [15] already pointed out that, under conditions
like those in the highly nonquasineutral plasma under
consideration, a collisional shock wave can form on the
spatial scale rB [13]. In numerical calculations for the
problem as formulated, the formation of steep fronts of
the ion density and velocity in an unloading wave is
undoubtedly associated with the violation of plasma
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quasineutrality at the wave front. Note that, for the
parameters of the problem at hand, these spatial scales
are on the same order of magnitude.

The above equations allow us to investigate the
plasma dynamics in the following range of magnetic
fields:

(6)

The left-hand inequality reflects the basic assumption
that an electron current structure with a characteristic
spatial scale on the order of the magnetic Debye radius
rB ~ B/4πene is nonquasineutral. As will be seen below,
the characteristic time scale is the inverse ion plasma

frequency t0 ~ . The right-hand inequality intro-
duces the small parameter ε = rB/ct0 ! 1, which indi-
cates the quasistatic approximation for electrons and
makes it possible to neglect the time-dependent term in
Eq. (1) and to remove from consideration the ion
motion on a scale of r ~ rB along the z axis.

It is important to stress here that the structure of the
electron current filaments under discussion differs sub-
stantially from the fine structure of filaments that was
calculated numerically in [11]. In that paper, the total
current in the filaments produced by an electron beam
propagating in a plasma is zero because, on very short
time scales, the current of fast beam electrons generates
a return current, which is able to flow in the absence of
dissipation for a fairly long time. In the approach devel-
oped here, it is assumed that, although return current is
initially generated by the current flowing in a filament
(at the expense of the applied electric field Ez), it dissi-
pates on comparatively short time scales. As a result,
only the current flowing in the direction of the applied
field remains within the filament. Estimates show that,
under conditions in which the initial electric conductiv-
ity is fairly low, the return current on micron scales is
dissipated sufficiently rapidly. It is because of the
absence of the return current that, in our model, the fil-
ament does not expand and the ions are not accelerated
toward the filament periphery, in contrast to the numer-
ical results presented in [11]. However, despite the
above differences between the two approaches, the
characteristic radius of the electron filaments calculated
in [11] turns out to be approximately equal to the mag-
netic Debye radius, which can be estimated as rB .

c/ωpe , where εi is the calculated energy of
the accelerated ions.

3. The generation of magnetic fields in laser plasmas
has been investigated in many papers (see [16] and the
references therein). In some studies, the electron vortic-
ity

(7)

was assumed to be zero throughout the entire plasma
evolution [16]. This indicates that the vortex structure
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cannot form, because We ≡ 0. In this limit, the vortices
cannot exist in the plasma and helicon perturbations
cannot propagate in it. In principle, the conservation of
the electron vorticity We can be disturbed by many
mechanisms. The most generally accepted mechanism
is that proposed by Weibel [10], who took into account
the electron pressure anisotropy induced by a high-
power electromagnetic wave whose electric field accel-
erates the electrons. In the nonrelativistic limit, the
hydrodynamic equation for the electron plasma compo-
nent with a nonzero pressure (but without dissipation)
can be represented as

(8)

Taking the curl of Eq. (8) and using the induction equa-
tion, we can obtain

(9)

Hence, if pe depends not only on ne but also on some
other parameters (in the case of the Weibel mechanism,
it is necessary to take into account the pressure anisot-
ropy); then, according to Eq. (9), the vorticity becomes
nonzero and vortex structures may be generated.

For further analysis, it is important to emphasize
that there are two essentially different types of vortex
structures: (i) structures with azimuthal electron cur-
rents jθ, in which the magnetic field is aligned with the
z axis (B = ezBz) and (ii) structures with longitudinal
electron currents jz, which produce an azimuthal mag-
netic field Bθ. Our investigations show that the electron
density in these two types of vortex structures behaves
in radically different ways. In vortex structures with
azimuthal electron currents, the electron density near
the axis is low, so that the axial plasma region of the
structure is charged positively. As a result, the plasma
ions fly apart in the radial direction toward the periph-
ery of the structure [13]. In contrast, in a vortex struc-
ture with a longitudinal electron current and an azi-
muthal magnetic field Bθ, the electron density at the
axis is maximum and the axial plasma region is charged
negatively, so that the ion plasma component collapses
toward the axis, giving rise to a Z-pinch [9].

Note that, for electron structures with azimuthal
electron currents, Berezhiani et al. [16] revealed that,
when We = 0, the electron density at the axis is
depressed, as is the case when We ≠ 0 [13].

Since, at We ≠ 0, the objects in question (i.e., vortex
structures with an azimuthal magnetic field Bθ) are, in
fact, current filaments, we will use this traditional term
for them in our analysis.

4. In what follows, an electron filament is consid-
ered to be a quasisteady formation on time scales much

shorter than the characteristic time  of the evolution
of the ion plasma component. From electron equations

me

dve

dt
-------- eE–

e
c
--ve B×–

1
ne

----— pe.–=

∂We

∂t
---------- —– ve We×( )× — 1

ne

----— pe 
  .×=

ωpi
1–
(1)–(3), the potential of an electron current filament can
be estimated as U ~ J/c (where J is the current on the
spatial scale rB within the filament) [14]. Even for cur-
rents of about J ~ 100 kA, this yields a potential in
excess of one megavolt.

Using the dimensionless formulas describing elec-
tron equilibrium [see formulas (16) and (17) below], we
can obtain the following expression for the absolute
value of the dimensionless potential ϕ0 at the axis of a
current filament:

(10)

Here, the potential at infinity is assumed to be zero, the
ions are assumed to be immobile, and the dimension-
less Lagrangian invariant i at the initial instant has the
form

(11)

where ρ0 is the characteristic spatial scale of the current
filament structure. For calculations, we chose the value
ρ0 = 3. In expression (10), the relativistic factor of the
electrons at the axis, γ0, determines the height of the

peak in the electron density in the axial region, ν0 = .

Calculations carried out on the basis of expression
(10) for two initially equilibrium filaments with the cur-
rents J1 = 153 kA and J2 = 191 kA yielded the following
two values of the potential at the axis: U1 = –6.0 MV
and U2 = –9.1 MV. That the values of the potential are
so high is confirmed to some degree by the experimen-
tal results of [4], where, at a total current of J ~ 400 kA,
ions with an energy of about 1 MeV were recorded by
measuring the Doppler shift of their spectral lines.
These values of the potential in the filament also corre-
late with the numerical results obtained in [11], where
the ions were found to be accelerated to energies of sev-
eral MeV.

It is also instructive to present the maximum mag-
netic field strengths bmax in electron filaments at differ-
ent values of γ0. Figure 1 shows the dependence bmax(γ0)
calculated for a wide range of γ0 values. We can see that
the relativistic factor of the electrons γ0 at the axis
increases with the magnetic field in the filament. (We
note that a similar dependence for the case with We = 0
was found in [16].) As a result, the electron–ion colli-
sions in the system are in fact “switched off” and,
simultaneously, the radiation emitted by the evolving
filament becomes far less intense.

5. The basic equations describing a quasistatic cur-
rent structure can be derived by exploiting the small-
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ness of the parameter ε = rB/ct0 ! 1. To do this, we uti-
lize, together with Eq. (1), the drift equation

(12)

which is valid for ε = rB/ct0 ! 1. We estimate the dis-
placement current using Eq. (12) and exploit the condi-
tion that the structure is quasistatic to obtain from
Eq. (2) the relationship

(13)

The definition of the vorticity component Ωeθ gives

(14)

Then, we express the electric field component Er from
Eq. (12), insert it into Eq. (3), and take the derivatives
in the resulting equation. Finally, using relationship
(13), Eq. (14), and definition (4) for I, we arrive at the
following expression for ne:

(15)

We introduce the dimensionless quantities

(16)

in terms of which we obtain the set of equations
describing a quasistatic electron current structure (see
also [13]):

(17)

As can be seen from these equations, the filament struc-
ture at a given ion density n is completely determined
by the profile of the Lagrangian invariant i. Since the
equilibrium of plasma electrons is quasistatic, the
dependence on time in Eqs. (17) is parametric.

In this formulation of the problem, the dynamics of
the structure is governed by the relatively slow ion
motion in an electric field. In the ion hydrodynamic
equations (5) of our model, only the radial motion of
the ions is taken into account, because the right-hand
inequality in conditions (6) allows us to ignore the ions
moving in the z direction. The corresponding terms in
the equation for radial ion motion turn out to be on the

order of ε2, where ε = rB/ct0 = . All of the
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quantities are assumed to depend only on the radial
coordinate r; hence, the kink instabilities and sausage-
type instabilities are excluded from consideration. By
virtue of the symmetry properties of our problem, the
electron velocity, which enters Eq. (4) for the
Lagrangian invariant I, is expressed from Eq. (2) as fol-
lows:

(18)

With the corresponding nondimensionalization proce-
dure, we arrive at the following time-dependent dimen-
sionless equations, which enable us to close the set of
equations (17) and to determine the time-varying ion
density n and the values of the Lagrangian invariant i:

(19)

(20)

Here, we have introduced the dimensionless time τ and
dimensionless radial ion velocity and pressure:

(21)

The initial conditions on Eqs. (19) and (20) are
n(τ = 0) = 1 and u(τ = 0) = 0, and the boundary condi-
tions for these quantities are n(ρ = ∞) = 1 and u(ρ = 0) =

v er
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Fig. 1. Dependence of the maximum dimensionless mag-
netic field bmax on the relativistic factor γ0 of the electrons
at the axis of the filament.
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u(ρ = ∞) = 0. The adiabatic index was chosen to be
equal to 2. Calculations were carried out for several val-
ues of λ, corresponding to different initial ion pres-
sures. Note that the choice of the adiabatic law in accor-
dance with relationships (21) is somewhat incorrect
because the pressure at infinity is certainly equal to
zero. However, in the case at hand, this choice does not
lead to contradictions, because the formulas contain the
derivatives of the pressure p and because, for the region
where n @ 1, this choice of the adiabatic law is quite
fair.

Equations (17), (19), and (20) can be divided into
two sets. (i) The first set of ordinary differential equa-
tions (17) was used to calculate a steady electron vortex
in an azimuthal magnetic field by finding the functions
b, v, and ν from their solution at given n and i. (ii) The
second set of time-dependent partial differential equa-
tions (19) and (20) was used to follow the evolution of
the ion plasma component and Lagrangian invariant i
by calculating the transport of the quantities n, u, and i
with the corresponding rates. Equations (17) were inte-
grated by the Gear method. Among the integral curves
that originate from the singular point r = 0, which is a
removable singularity, the curves that satisfy the
boundary conditions at r  ∞ were chosen by adjust-
ing the value of ν at r = 0. Equations (19) and (20) were
integrated by a version of the Boris–Book method, spe-
cifically, the LCPFCT version [17], which is the modi-
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Fig. 2. Profile of the Lagrangian invariant i for a filament
with the current J2 = 191 kA and calculated profiles of the
magnetic field b, electron density ν, and electron velocity v .
fication of the nonlinear flux-corrected transport (FCT)
algorithm, ensuring that the solution will always be
monotonic and positive. In numerical integration of the
equations of ion motion by the LCPFCT algorithm, the
artificial viscosity resulted implicitly from the use of a
controlled antidiffusive correction.

6. Figure 2 illustrates the initial equilibrium of an
electron current structure with unperturbed ions. We
can see that the electron density in the initial state is
peaked near the axis of the structure. The peak produces
a radial electric field directed toward the axis. The rela-
tivistic electron motion in the z direction generates an
azimuthal magnetic field, in which case the electrons
drift in crossed electric and magnetic fields. Such a fil-
ament is a universally encountered formation, whose
structure changes due to the slow motion of unmagne-
tized ions in its electric field [9, 13]. The numerical
results obtained in [11] confirm fairly well the validity
of the model used in our simulations. The characteristic
radius of the filaments was calculated to be on the order
of rB, which agrees with the estimates obtained for the
parameters adopted in that paper.

Figure 3 shows time evolutions of the density n and
velocity u of the ions moving in a radial electric field in
the initial stage of development of the current filament.
We can see that accelerated ions moving from the
periphery are decelerated by the pressure gradient of
the ions that have been accumulated in the dense hot
core near the axis. Figure 3 implies that, at the begin-
ning of the process (on time scales τ from about 0.2 to
0.5), the profile of the ion density has already steepened
and a discontinuity has appeared. As a result, after the
time τ = 0.3, the forming unloading wave in which the
radial ion velocity vanishes has a steep front, at which
the accelerating electric field and decelerating pressure
gradient cancel one another. This front, which has
become flatter already on time scales τ . 0.7–1, propa-
gates toward the periphery, leaving behind an essen-
tially immobile, dense hot core. A comparison of the
profile of the dimensionless electric field, e(ρ), with a
narrow peak in the profile of the decelerating force,
(1/n)∂p/∂ρ, shows that the wave front occurs between
the two surfaces whose radii are determined by the
intersections of the profiles, e(ρ) = (1/n)∂p/∂ρ. Figure 3
shows that, at a time of about τ ~ 0.5, positive ion
charge starts to be accumulated within the wave front,
thereby weakening the electric field therein. Presum-
ably, it is because of the weakening of the electric field
(and, accordingly, the decrease in the electron drift
velocity) that the front of the unloading wave propagat-
ing toward the periphery divides the electron-drift
region into two parts and forms an advancing “cloud”
of drifting electrons (Fig. 4). In this case, the front of
the increasing ion density profile and the front of the
velocity profile of the decelerated ions in the wave
propagating away from the axis occur just at the mini-
mum (which falls to zero on longer time scales) of the
absolute value of the electron velocity.
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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Recall that, as a nonlinear unloading wave propa-
gates toward the periphery, the profiles of all the quan-
tities in the wave become flatter on time scales of τ > 1.
Consequently, the wave in this propagation stage can be
interpreted merely as a nonlinear unloading wave. The
ion density and ion velocity profiles in this nonlinear
wave on long time scales are shown in Fig. 5.

Figure 6 displays the ion density as a function of
both the current flowing in the filament and the initial
ion pressure. One can see that, as the current J increases
and the initial temperature [which is described by the
dimensionless parameter λ, see relationships (21)]
decreases, the ion density near the axis becomes higher.
An increase in the steady-state ion density at the axis
with decreasing λ agrees with the experimental results
of [5].

As time progresses, the nonlinear unloading wave
propagating toward the periphery becomes less intense
and an equilibrium plasma structure with hot ions is
formed. The ions in this structure are kept at equilib-
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Fig. 3. Formation of a collisionless unloading shock wave
within a current filament in the initial stage of deceleration
of the inwardly accelerated ions by the pressure gradient in
the dense core of a Z-pinch.
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rium by magnetic and electric fields on a spatial scale
on the order of rB.

The Z-pinch configuration obtained above results
from electrodynamic compression of the ion plasma
component. The equilibrium state in which the config-
uration is maintained is described by the integral rela-
tionship

(22)

which implies that not only the magnetic but also the
electric field plays an important role.

Our numerical calculations show that, e.g., for a
1-cm-long Z-pinch, carrying the current J2 = 191 kA,
the energy transferred to the ions (primarily from the
magnetic field) does not exceed 2–3 J (see also [4]).
Thus, the characteristic amount of the energy trans-
ferred and the spatial and time scales of the processes
in a micropinch with a current of about several hundred
kiloamperes are found to be very close to those in a
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laser plasma produced by a focused laser pulse with an
intensity of 1019 W/cm2 [18]. However, it should be
kept in mind that, in the problem of ion acceleration by
laser radiation, nonquasineutral plasma dynamics in a
quasistatic magnetic field [13, 11] is as important as the
direct action of the ponderomotive pressure force [18].

On longer time scales, the plasma structure is
expected to evolve to an almost quasineutral equilib-
rium state.

7. In the system under consideration, collisions
between particles give rise to dissipation of the electro-
magnetic field energy and lead to additional heating. As
a result, an equilibrium configuration to which the sys-
tem has evolved should be destroyed. Because of the
above-mentioned “switching-off” of the electron–ion
collisions, ion–ion collisions begin to play an important
role [19]. Consequently, there exists a parameter range
in which ion–ion dissipation dominates even when the
electron and ion temperatures are comparable:

(23)

In this case, electron–ion collisions may be important
only when

(24)

where Z1 and Z2 are the charge numbers of different ion
species and M1 and M2 are their masses.

The relative velocity of the ion species, |v1 – v2 |,
which governs the magnetic field diffusion, can be sig-
nificant only when fast inertial ion motion is taken into
account. Such motion is accompanied by the spatial
separation of the ion species. Now, we consider how the
magnetic field in the equilibrium system analyzed
above evolves under the action of ion–ion collisions.
According to [19], the magnetic field evolution is
described by the equation

(25)

where ηk and ξk are the relative mass and charge of the
ion species (k = 1, 2), h = σBθ/(enec), and σ(Ti) is the
conductivity due to ion–ion collisions. Under the ine-
quality

(26)

(where vi = η1v1 + η2v2 is the mass velocity), the quan-
tities ηk and ξk may be considered constant. Here, we
assume that the ion temperature is equalized suffi-
ciently rapidly, so that the conductivity σ(Ti) can also
be regarded constant.
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It is easy to see that, in terms of the variable ζ = r2/t,
Eq. (25) can be represented in a self-similar form
describing the magnetic energy dissipation. Then, we
take into account hydrodynamic equations analogous to
Eqs. (5), namely, those that were derived in [19] for a
multicomponent plasma, and assume that h = h(ζ). As a
result, for a quasineutral plasma, we obtain

(27)

Therefore, when ion–ion dissipation comes into play,
the compression stage should be followed by the stage
in which the quasineutral edge plasma of the heated
core expands radially and the density and magnetic
field both rapidly decrease. Ion–ion dissipation
becomes important under condition (23), which yields
the inequality h > (me/Z2mi)1/4 [19], corresponding to an
ion temperature of Ti ~ 10 keV at an electron density of
ne ~ 1023 cm–3. A dense hot core with a radius of about
r ~ 10–4 cm expands dissipatively on time scales on the
order of 10–12 s, while the time scales of the expansion
due to electron–ion dissipation are two orders of mag-
nitude longer.

Note that, in actual plasma experiments, the expan-
sion stage is preceded by a stage in which collapsing
plasma ions are decelerated by the electrons and which
occurs on time scales shorter than 10–12 s. Although, in
our study, collisions between particles are neglected, it
is expedient to carry out the following simple estimate.
In the electric field of the filament under consideration,
the ions acquire an energy of about several MeV and
lose it mainly due to the deceleration by electrons on a
characteristic time scale of [20]

(28)

where Λ is the Coulomb logarithm.
We substitute the electron density typical of experi-

ments [5–7] into formula (28) and take into account the
fact that such experiments are usually carried out with
heavy ions with masses of about mi ~ 102mp (where mp

is the proton mass) and charge numbers of Z ≥ 10. As a
result, we find that the ions are decelerated on a time
scale shorter than 10–12 s; in this case, their characteris-
tic mean free path is shorter than 10–4 cm (which is just
the characteristic radius of the Z-pinch, rB = Bθ/4πene)
at currents of about several hundred kiloamperes.

Presumably, further evolution of the Z-pinch pro-
ceeds through the equalization of the electron and ion
temperatures and the cooling by emission of radiation
[5–7].

8. Hence, we have shown that a universal non-
quasineutral electron current structure (filament) may
exist in an azimuthal magnetic field, where the charge-
separation electric field produces an electron drift cur-
rent, which self-consistently maintains the magnetic
field of the filament. The electric field accelerates the

ne = t
1–
N ζ( ), Bθ = t

1–
B ζ( ), v ir t

1/2–
V ζ( ).=

τ i/e me

mi

------
meεi

3/2

π 2Z
2
e

4Λne

-------------------------------,≈
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
ions with a given initial pressure, leading to the forma-
tion of a dense hot plasma core in the Z-pinch. As a
result, the pinch evolves to an equilibrium state gov-
erned by the accumulation of positive ion charge near
the axis. Analytic estimates show that taking into
account ion–ion collisions results in a self-similar
expansion of the hot core of the Z-pinch on picosecond
time scales.

In conclusion, we summarize the main results of our
work.

(i) We have numerically investigated the structure of
a universal relativistic current filament at the axis of
which there is a narrow electron density peak, which is
responsible for drift current transport in crossed electric
and magnetic fields within the filament.

(ii) We have considered the compression of the ion
plasma component by the electric field of a non-
quasineutral electron current structure and have shown
that a dense hot plasma core in the Z-pinch is formed
due to the excitation of an unloading shock wave that
propagates away from the axis and is accompanied by
the vanishing of the radial ion velocity behind the shock
front.

(iii) We have analytically revealed that quasineutral
plasma can rapidly expand in a self-similar manner
because of the rapid dissipation of the magnetic field
energy in ion–ion collisions on picosecond time scales.

It should be emphasized that recent space- and time-
resolved measurements of the structure of Z-pinches
[5] and simulations of the evolution of a current-carry-
ing plasma [11], which showed the formation of elec-
tron current structures, provide experimental and com-
putational bases for the model of an electron current fil-
ament that was proposed in [9] and is used in the
present paper.
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Abstract—The transport processes and the parameters of material flows in a low-inductance vacuum spark
excited in a medium produced by erosion of the electrodes are investigated. © 2003 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

High-current (Imax ≥ 100 kA) Z-pinch discharges are
characterized by high values of the plasma parameters:
Te ~ 1–10 keV and ne ~ 1022–1023 cm–3 [1].

A micropinch discharge can be excited in a low-
inductance spark device, which is very simple in design
and reliable in operation. This explains widespread
interest in this type of discharges. Such discharges are
used as laboratory sources of X-ray and XUV emission
from multicharged ions [2]. Micropinch plasma is one
of the promising sources of multicharged ions for
nuclear physics experiments [3]. Methods of X-ray
lithography have been developed for the replication of
VLSICs and for contact X-ray microscopy of biologi-
cal objects with the use of micropinch soft X-ray (SXR)
sources [5]. The effect of polishing the surface of high-
temperature superconductor films irradiated with high-
intensity XUV pulses emitted by micropinch plasma
was revealed in [6]. Low-inductance vacuum sparks
can also be used to deposit thin metal films.

All these applications of a micropinch plasma
require knowledge of mechanisms for the generation
and decay of discharge plasmas. This paper is devoted
to experimental studies of the transport processes and
the parameters of material flows in a low-inductance
vacuum spark (LIVS). Figure 1 shows a schematic of
the discharge device. The discharge was excited in a
vacuum chamber evacuated to a residual pressure of
less than 10–4 torr. The working medium was produced
by the erosion of the electrode material. The electrodes
were made of different materials: the anode was made
of iron, and the cathode was made of brass. As a pulsed
current source, we used a low-inductance high-voltage
capacitor bank with a total capacitance of C = 3–12 µF.
The discharge voltage was V = 5–20 kV, the amplitude
of the discharge current was Imax = 60–200 kA, and the
discharge current period was T = 4–8 µs. The discharge
was initiated by injecting a foreplasma from an auxil-
iary low-current pulsed surface-erosion discharge with
a period of ~0.2 µs. The pinching of the discharge
plasma and the formation of micropinch regions were
1063-780X/03/2909- $24.00 © 0757
usually observed only in the first half-period of the dis-
charge, when the current reached its maximum [17].

2. EXPERIMENTAL TECHNIQUES 
AND RESULTS OBTAINED

1. In order to determine the position of the region in
which a micropinch is formed, we studied the spatial
structure of the radiating discharge plasma by using a
pinhole camera [8] with and without absorbing filters.
As filters, we used 15- and 100-µm beryllium foils and
~1-µm polymeric (Zapon) films. The spatial resolution
of the pinhole images was no worse than 0.1 mm.

Micropinches form at a distance of no less than 1–
3 mm from the electrode surface, usually closer to the
anode. The ~1-mm-thick surface plasma layers near the
electrodes do not emit in the SXR and XUV regions,
but they emit in the UV–visible region.

2. To estimate the heat fluxes transferred by XUV
and SXR radiation, we measured the radiation intensity
in these spectral regions with the help of a photodiode
and a scintillation detector [7]. The radiation pulse
duration was (0.3–0.5) × 10–7 s.

3. To obtain information on the conditions under
which the micropinch is formed (i.e., on the parameters
of the hot dense plasma of the LIVS discharge), we
studied the X-ray line spectrum in the region corre-
sponding to the characteristic radiation (Kα and Kβ
lines) of the electrode material.

The X-ray spectrum was measured by a crystal
spectrograph with the horizontal focusing by the
Johann scheme.

X radiation was output from the vacuum chamber
through a 100-µ-thick beryllium window (which
allowed almost total transmission at wavelengths λ <
2 Å) and fell onto a concave SiO2 (1010) crystal (2d =
8.50 Å; n = 2). The curvature radius of the crystal
(325 mm) was specified by a metal holder consisting of
two ground pieces, between which the 0.2-µm-thick
crystal was clamped. The crystal working area was 40 ×
60 mm2. The crystal holder was mounted on a posi-
tioner, which allowed us to move the crystal in the hor-
2003 MAIK “Nauka/Interperiodica”
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izontal plane and rotate it around the vertical axis. In
this way, we could tune the spectrograph in the wave-
length range 1.35–2.00 Å. The radiation was recorded
on an RT-1 X-ray film.

Attention was primarily focussed on the spectral
intervals from äα (1.93–1.94 Å) to äβ (1.74–1.75 Å)
lines of iron and from äα (1.53–1.54 Å) to äβ
(1.38−1.39 Å) lines of copper.

In the experiments, we reliably detected radiation
from iron ions, (including multicharged ions up to Fe
XXV). Radiation from copper ions was not detected.
Estimates showed that the radiation intensity of copper
ions in this case was at least two orders of magnitude
lower than that of iron ions.

4. In order to obtain information about the parame-
ters and conditions of the formation of the cold periph-
eral plasma of the LIVS discharge, the visible spectrum

6

1

2

3 3

4

5

Fig. 1. Schematic of the discharge device: (1) cathode,
(2) anode, (3) conductors, (4) insulator, (5) pulsed high-
voltage capacitor bank, and (6) discharge-initiation system.
The cathode diameter is 20 mm, and the diameter of the
cylindrical part of the anode is 4 mm. The interelectrode
distance is 6–8 mm.
of radiation was recorded with the help of an STE-1
spectrograph. The radiation was output from the vac-
uum chamber through a quartz window. The spec-
trograph was calibrated against the emission spectrum
of spark and arc discharges excited in the atmosphere
between iron electrodes.

The LIVS emission spectrum consists of groups of
intense lines of singly charged copper and zinc ions and
much less intense lines of atomic and singly charged
iron against the background of recombination radia-
tion. We studied the profiles of the brightest lines of Zn
II ions: 4911.7 Å (4d2D3/2  4f2F5/2); 4924.0 Å
(4d2D5/2  4f2F7/2); 6021.3 Å (5p2P1/2  5d2D3/2);
6102.5 Å (5p2P3/2  5d2D5/2). In order to determine
which mechanism for the line broadening is predomi-
nant, we plotted the logarithm of the line intensity ver-
sus distance ∆λ from the center of the line [9]. A line
broadened due to the Doppler effect has a Gaussian

profile falling as exp , whereas the Stark

broadening gives the profile falling as (∆λ)–2. The
results obtained show that the Stark broadening is pre-
dominant. For the above lines, the measured broaden-
ing amounts to ∆λ = 4–10 Å.

Based on the Stark broadening model, we estimated
the electron density of the radiating plasma. In the qua-
sistatic approximation, the broadening due to the Stark
effect [10] is

(1)

where a = aBn2/z is the orbit radius of an outer electron,
aB = "2/mee2 is the Bohr radius, α = e2/"c, n is the level
number, and z is the charge of the atomic core. For the
group of lines corresponding to the radiation of the
material of the outer electrode (cathode), the calculated
value of the electron density is

(2)

which agrees well with the results of laser interferome-
try of the peripheral plasma density in a micropinch dis-
charge [11].

The electron temperature of the radiating plasma
was determined from the decay in the intensity of
recombination continuum [12]:

(3)

where ∆(ln[ic(ν)]) is the difference between the loga-
rithms of the relative continuum intensities at the ends
of the frequency interval ∆ν and k is the Boltzmann
constant. The electron temperature in our experiments
was estimated as

Te ≅  1 eV. (4)
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5. Using a thermocouple calorimeter (designed at
the Lebedev Physical Institute of the Russian Academy
of Sciences), we studied the spectrum of the LIVS
plasma over a wide spectral range: from the infrared to
the SXR region. The radiation detector in this device is
a 8-mm-diameter plate made of a 100-µm lead foil and
blackened on the outside. The “hot” ends of a copper–
constantan thermoelectric battery are glued to the back
surface of the foil with a heat-conducting glue. The
“cold” ends are glued to a massive metal housing of the
device. The calorimeter was calibrated with a pulsed
IZ-25 YAG laser. The amplitude of voltage pulses aris-
ing at the outputs of the thermoelectric battery was
measured with an F-138 microvoltmeter. The receiving
area of the calorimeter and an IMO-2I standard power
meter were in turn exposed to a laser beam passed
through a diaphragm. Based on the results of numerous
measurements, we determined the sensitivity of the cal-
orimeter. An important advantage of the calorimeter is
that its characteristic (the dependence of the output
voltage on the absorbed energy) is linear.

The high noise level, which exceeded the amplitude
of valid signals, made it necessary to take special mea-
sures in order to suppress noise. Thus, we used a ferrite
stabilizer in the supply circuit of the microvoltmeter
and an LC filter in the measurement circuit at the micro-
voltmeter input, the chassis of the microvoltmeter was
grounded through an individual conductor that was not
connected to the main ground circuit of the device, and
the calorimeter housing was galvanically decoupled
from the vacuum chamber in which the measuring ele-
ment of the calorimeter was placed.

To study the radiation spectrum, the calorimeter was
equipped with a set of absorbing filters. As such filters,
we used 15- to 100-µm beryllium foils; 2- to 20-µm
aluminum foils; 5-µm copper, silver, and bismuth foils;
200-µm silicon plates; 1-mm quartz glass plates; 1-mm
lithium fluoride plates; and 0.25- to 1-µm Zapon films.
The polymeric filters were protected from being dam-
aged by plasma flows from the discharge; for this pur-
pose, a fine metal mesh with a mesh size of 8 × 8 µm
and transmittance of 50% was placed near the dis-
charge. The calculated transmission curves of the filters
were used [13–15].

The radiation spectrum was reconstructed using a
fitting procedure [16], which can be described as fol-
lows. We solved a set of linear algebraic equations writ-
ten on the basis of the data obtained from calorimeter
measurements and the calculated response of the calo-
rimeter to radiation in chosen spectral intervals. The
radiation energy before passing through the filter was
taken to be unity, and the spectral density within each
spectral interval was assumed to be constant. Thus, the
reconstructed spectrum was represented as a histogram
in which the height of a column corresponding to a
given spectral region was equal to the radiation energy
divided by the width of the spectral region expressed in
units of photon energy.
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
We solved the following set of equations:

(5)

where n is the number of filters, m is the number of the
chosen spectral intervals, Ei is the detector signal
behind the ith filter, aik is the calculated detector signal
behind the ith filter exposed to the radiation corre-
sponding to the kth histogram column of unit height,
and Jj is the sought height of the histogram column for
the jth spectral interval. This allowed us to find the lin-
ear combination of the column heights Jj that gives the
minimum difference between the measured and calcu-
lated attenuation curves (the distributions of the energy
absorbed by the detector). The shape of the spectrum
varied insignificantly when a random measurement
error corresponding to the scatter in the detector data in
different discharges was introduced into the detector
signal. A typical reconstructed spectrum of the LIVS
radiation from the infrared to SXR region is shown in
Fig. 2.

The calibration of the calorimeter allowed us to per-
form absolute measurements of the discharge plasma
emission. Figure 3 shows the measured dependence of
the emission energy integrated over the entire spectrum
on the amplitude of the discharge current. Most (≥50%)
of the emission energy is concentrated in the XUV
region.

6. We estimated the fractions of the anode and cath-
ode materials in the total mass of the electrode material
escaping from the discharge. To do this, a preliminarily
etched 10 × 10-mm plane molybdenum target was
placed outside the discharge, 10 cm from the axis of the
discharge gap. During the discharge, the material of the
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Fig. 2. Spectrum of the LIVS plasma at Imax = (1) 45 and
(2) 180 kA (C = 12 µF; T = 8 µs).
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eroded electrodes was deposited on this target. The
chemical composition of the electrode material depos-
ited on the target was analyzed by the method of sec-
ondary ion–ion emission with the help of a SIM device,
designed at the Moscow Engineering Physics Institute.
A 20-keV helium ion beam bombarded the surface of
the exposed target under high-vacuum (~10–8 torr) con-
ditions. The collimated beam of the secondary ions fell
into a magnetic separator, in which the ions with differ-
ent masses were separated and recorded.

Ehν/Eel
0.4
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0 100 200
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Fig. 3. Conversion efficiency of the current-source energy
into the LIVS plasma energy and the radiation energy inte-
grated over the spectrum as functions of the amplitude of
the discharge current. The triangles correspond to a current
source with C = 6 µF (T = 6 µs), and the squares and dia-
monds correspond to a source with C = 12 µF (T = 8 µs).
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Fig. 4. Mass of the material sputtered in one discharge as a
function of the amplitude of the discharge current.
Taking into account that all the fractions of the
eroded electrode material are deposited onto the target
surface under similar conditions and the elements
involved (iron, copper, and zinc) are closely positioned
in the periodic table and have similar physical and
chemical properties, we can suggest that the proportion
between the currents produced by the ions of these ele-
ments in the analyzer coincides with the proportion of
these elements on the target surface. Additional evi-
dence in favor of this suggestion is that the proportion
between the secondary-ion currents for copper and zinc
coincides with the proportion of these elements in the
cathode material (brass).

An analysis of the chemical composition of the
material deposited on the target surface shows that the
number of atoms of the sputtered anode material is at
least one order of magnitude greater than the that of the
sputtered cathode material. However, visual observa-
tions of the state of the electrodes contradict this con-
clusion, because we observed nearly the same erosion
on both electrodes.

7. The amount of the material sputtered in the dis-
charge was estimated from the transmission factor (at
λ = 5893 Å) of the electrode material layer deposited
on a glass plate [17]. The absorption coefficient of this
layer was calculated by the formula

(6)

where κ = 1.63 for iron. The transmission factor,
defined by the formula

was measured with a SPECORD spectrophotometer.
Here, I0 is the radiation intensity at a given wavelength
in the absence of an absorbing layer on the glass plate,
I is the intensity of the radiation passed through the
deposited layer (before passing through the glass), and
δ is the layer thickness. The results of the measure-
ments are presented in Fig. 4, which shows the mass of
the material sputtered into the total solid angle (4π sr)
as a function of the amplitude of the discharge current,
assuming that the sputtering of the electrode material is
isotropic. The mass of the sputtered material increases
rapidly with increasing current. As the current ampli-
tude increases fourfold, the mass of the sputtered mate-
rial increases by nearly two orders of magnitude.

We note that the mass of the sputtered material
depends not only on the amplitude of the discharge cur-
rent, but also on the parameters of the discharge circuit.
The highest sputtering efficiency is observed in the
regime with the highest intensity of short-wavelength
(XUV and SXR) emission.

8. We also studied the energy and charge composi-
tion of the ion bunches leaving the LIVS discharge.
Two methods were used: the separation of particles in
parallel magnetic and electric fields in a Thomson ana-
lyzer with a photoemulsion detector and the time-of-

γ 4πκ/λ ,=

1 I
I0
----– 1 γδ( ),exp–=
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flight technique with a passive collector [18]. The dis-
charge current in these experiments reached Imax ≅
120 kA.

The former method provides the calibrated detec-
tion of each component of the ion flux, and the latter
technique allows one to estimate the number of the
emitted ions and examine the ion energy spectrum over
a wide range. The results of these measurements show
that most of the emitted ions are singly charged iron
ions. The range of the ion energies is 20 eV–50 keV.
The average number of the ions emitted in one dis-
charge is ~1017 ion/sr for ions with energies higher than
5 keV and (3–5) × 1017 ion/sr for ions with energies
lower than 5 keV.

9. Visual observations of the state of the electrodes
exposed to the particle flows generated in the discharge
show that, in the course of discharge, the electrode
material is melted and transferred along the electrode
surface to the discharge periphery. In addition, we
observed a unidirectional transport of the anode mate-
rial toward the cathode and the fragmentation of the
melted electrode material, i.e., the formation of metal
drops with diameters of ~10–100 µm. Judging from the
rate at which the anode length decreases, the mass
leaving the anode surface in one discharge amounts to
~(1–2) × 10–3 g. The degrees of erosion of the cathode
and anode surfaces are comparable to each other.

3. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

In the initial stage of the discharge, the erosion of
the anode occurs under the action of an electron beam
propagating in the interelectrode gap [19]. The heating
of the anode surface layer can be described as follows
[20]:

(7)

where R is the depth to which the anode is heated by the
electron beam, X is the depth to which the deeper anode
layers are heated due to heat conduction, j is the current
density, U is the accelerating voltage, Tb is the boiling
temperature of the anode material, T0 is the initial tem-
perature, and ρ is the mass density of the anode mate-
rial. At electron energies of 0.01 ≤ E ≤ 2 MeV, we have

where Z is the atomic number of the element. The depth
X is equal to

(8)
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where χ is the thermal conductivity of the anode mate-
rial and τh is the heating time.

For an applied voltage of U = 10 kV and a design
value for the device impedance of ~10 Ω , the electron
beam current attains a value of ~1 kA. Then, for a heat-
ing time of τh ≅ (3–5) × 10–7 s [19], we have (R + X) ~
1 µm. Taking into account an uncertainty in determin-
ing the surface area bombarded by electrons, we find
that the mass of the evaporated material is ~10–6–10–5 g.
At a charging voltage of U = 10 kV, the amplitude of the
discharge current is Imax ≅ 60 kA for a capacitor bank
with a capacitance of C = 6 µF and it is Imax ≅  90 kA for
C = 12 µF. It can be seen from Fig. 4 that, at such cur-
rents, the mass of the sputtered electrode material is on
the order of 10–4 g. Therefore, even at relatively low dis-
charge currents, there is no agreement between the
above estimate and the measured mass of the sputtered
material. Hence, the erosion of the electrodes is due to
an electron beam only in the initial stage of the dis-
charge, until the discharge gap becomes bridged by a
sufficiently dense plasma that provides the high con-
ductivity of the gap. When the discharge current
becomes high enough, other mechanisms come into
play. The role of the electron beam is to create a plasma
with a linear electron density of Ne > 1016 cm–1, which
is sufficient to ensure the pinching regime.

The thermal conductivity of the cold plasma, which
exists throughout almost the entire discharge phase, is
also insufficient to provide the observed electrode ero-
sion. The thermal energy transferred to the electrode in
a time on the order of the discharge duration τ ~ 10–5 s
due to the plasma heat conduction at an average elec-
tron temperature of Te ~ 1 eV is estimated as

 J/cm2, (9)

where l ≅  1 mm is the characteristic scale length of
the temperature inhomogeneity, λe ≅ 2.65 ×
10−2(Te[eV])3/2/Λ [W/cm K] is the electron thermal
conductivity [21], and Λ is the Coulomb logarithm.
This corresponds to the evaporation of ~10–6 g of the
anode material.

On the other hand, the observed ion fluxes toward
the cathode surface are sufficient to provide the evapo-
ration and sputtering of ~10–4–10–3 g of the cathode
material.

Powerful electrode-heating mechanisms come into
play at the stage of plasma pinching in the first half-
period of the discharge current. For example, an iron
plasma flow with a velocity of v  ~ 106 cm/s (which is a
characteristic velocity of the cumulative axial plasma
flow in the initial stage of pinching [22]) has an ion den-
sity of ni ~ 1018 cm–3. When this flow is decelerated on

Q λ e

Te

l
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the electrode surface, it provides an energy flux with a
density of

(10)

where mi is the ion mass. During the characteristic
pinching time τ ~ (3– 5) × 10–7 s, this energy flux is suf-
ficient to evaporate up to ~5 × 10–4 g of the cathode
material and ~2 × 10–5 g of the anode material. The dif-
ference is due to the different exposed areas on the cath-
ode and the anode.

The absorption of the short-wavelength radiation
emitted by the micropinch plasma can provide the
evaporation of ~10–2 g of the cathode material and
~10−3 g of the anode material.

For the pinch-plasma temperature Te ~ 20 eV [11],
the characteristic scale length of the temperature inho-
mogeneity l ~ 1 mm, and the pinch lifetime τ ~ (3–5) ×
10–7 s, the energy flux from the pinch plasma due to
heat conduction can evaporate ~2 × 10–3 g of the elec-
trode material.

It is also necessary to take into account the limita-
tions imposed by the thermal conductivity of the metal.
Estimates show that, in a time τ ~ (3 –5) × 10–7 s, the
mass that can be heated to the boiling temperature is
~3 × 10–4 g on the cathode surface and ~10–5 g on the
anode surface.

As follows from the structure of the electrode sur-
face exposed to plasma flows generated in the dis-
charge, mechanical stresses can also significantly con-
tribute to the destruction of the electrode surface. Dur-
ing the pinching, the iron plasma flow produces a
pressure of miniu2 ~ 104 atm on the electrode surface.
This pressure significantly exceeds the strength of the
electrode material [23]. The mechanical action of the
plasma flow on the electrode surface causes the destruc-
tion and fragmentation of the electrode material. If the
size of the produced metal fragments is ~10–100 µm,
then the effective area of the interface separating the
liquid and solid phases from the gaseous one increases
by a factor of ~102–103. Accordingly, the rate of heat
exchange between the discharge plasma and the elec-
trode material increases, which leads to an increase in
the mass of the evaporated electrode material.

We also note that the geometry of the discharge
device is such that, in the course of discharge, most of
the sputtered anode material is entrained by the plasma
flow in the axial direction, whereas most of the sput-
tered cathode material is entrained in the radial direc-
tion and some portion of this material is again deposited
on the cathode.

In a LIVS discharge, the erosion process on the
anode differs from that on the cathode. The discharge
pinching occurs in the plasma produced from the anode
material (iron). Hence, we only observed SXR emis-
sion from iron ions and did not observe SXR emission

Q
1
2
---miv

3
ni,∼
from copper ions. In the visible region, the emission
from the ions of the cathode material (copper and zinc)
is predominant. Based on the estimates of the density
and temperature of the plasma emitting in the visible
region, we suggest that, near the cathode, the plasma is
a weakly ionized, almost saturated vapor of the cathode
material [24]. This explains the shape of the plasma
emission spectrum, which has two distinct maxima:
one maximum is in the XUV and SXR regions and the
other one is in the visible and near-infrared regions. In
other words, there are two plasma regions with different
temperatures and chemical compositions: the cold
region with a plasma temperature of Te ≅ 1 eV, which is
related to the cathode erosion, and the hot region with
Te ≅ 10 eV–1 keV (the temperature varies during the
formation of the micropinch region), which is related to
the anode erosion. Probably, these temperatures deter-
mine the energies of the particles that leave the corre-
sponding regions during the plasma decay and form the
observed particle flows outside the discharge.

Let us consider the results of measurements of the
ion flows and the mass of the material deposited on the
target, as well as the chemical composition of the mate-
rial deposited on the target. The mass carried out by the
ion flow from the discharge (10–4–10–3 g) is close to the
mass of the sputtered anode material. At the same time,
as was mentioned above, the degrees of erosion of the
anode and the cathode surfaces are comparable to each
other, whereas the products of the cathode erosion are
present in a lesser amount on the target. This can be
explained by the fact that the deposition conditions of
the cathode and anode materials on the target are differ-
ent. The sputtered anode material arrives at the target in
the form of relatively high-energy ions, which results in
a high degree of adhesion. In contrast, the sputtered
cathode material arrives at the target in the form of low-
energy neutrals, which are characterized by a low
degree of adhesion.

Let us dwell on another observed phenomenon,
namely, unidirectional transport of the anode material
onto the cathode. Such a transport can be explained by
the action of ponderomotive forces that play the role of
a piston accelerating the plasma in the axial direction as
it occurs, for instance, in plasma accelerators with a
similar configuration of the electrodes. This is con-
firmed by the results of high-speed multiframe photog-
raphy of the LIVS plasma with the help of a pulsed
laser illuminator [25]. It has been revealed that the
boundary of the plasma column in the LIVS is subject
to the Rayleigh–Taylor instability, which results in the
radial shrinking of some segments of the discharge col-
umn with a velocity up to ~4 × 106 cm/s. The constric-
tions produced move along the axis toward the cathode
with velocities of up to ~106 cm/s.
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4. CONCLUSIONS

The results obtained allow us to compile the follow-
ing picture of the processes of material transport in a
LIVS operating in the micropinch regime. In the initial
discharge stage, which lasts ~3 × 10–7 s, the interelec-
trode space is filled with a low-conductivity rarified
foreplasma. This leads to the generation of an electron
beam accelerated in the electric field applied to the
interelectrode gap. The bombardment of the anode sur-
face with accelerated electrons causes the evaporation
and ionization of the anode material. The plasma pro-
duced fills the interelectrode gap and bridges it. As a
result, the Ohmic resistance of the discharge gap
becomes much less than the circuit impedance.

The increase in the discharge current is accompa-
nied by the pinch effect, which results in a substantial
local increase in the plasma density and temperature.
The discharge plasma (more exactly, the micropinch
plasma) becomes an intense radiation source. During a
time of ~(3–5) × 10–7 s, about 10–20% of the energy
stored in the pulsed current source (capacitor bank) is
radiated predominantly in the XUV and SXR spectral
regions. The radiation incident onto the electrode sur-
face, as well as the heat flux from the hot pinch plasma,
causes the melting and evaporation of the electrode sur-
face layer, and the cumulative plasma jet propagating
along the discharge axis from the micropinch region
results in electrode erosion.

The pinching terminates with the decay of a dense
hot plasma produced from the anode material. This
results in the generation of charged particle flows
(including those directed to the electrodes) that escape
from the micropinch region with velocities of
≥106 cm/s. Note that ponderomotive forces lead to a
unidirectional transport of the anode material along the
discharge axis toward the cathode.

Then, the interelectrode space gets filled with a
dense cold plasma, which is predominantly a weakly
ionized, nearly saturated vapor of the cathode material.
This plasma emits for ~10–5 s (mainly in the visible and
near-infrared regions). The outflow of the products of
the discharge decay from the interelectrode gap (as a
rule, the second pinching does not occur) is accompa-
nied by the generation of neutral flows with velocities
of ~105 cm/s at the discharge periphery [11].
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Abstract—The feasibility is considered of igniting thermonuclear reaction during the gas-dynamic compres-
sion of a capsule filled with a gaseous DT mixture by a compact high-speed plasma liner. Semiempirical param-
eters of the liner are chosen by analyzing the results of experiments on X-ray generation in the PBFA-Z device.
Results are presented from one-dimensional scaling calculations of the neutron yield, temperature, and gas
compression ratio over a wide range of liner current. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, significant progress has been
achieved in creating high-speed (~(4–7) × 107 cm/s)
liners with an energy of ~1 MJ (e.g., the PBFA-Z
device). At present, next-generation electrophysical
devices with a liner energy of ≥10 MJ are being devel-
oped. These devices are primarily intended to generate
soft X rays, which then should be used to ignite thermo-
nuclear reaction inside a hollow target. An alternative
method of ignition may be direct gas-dynamic com-
pression of a capsule filled with a gaseous DT mixture.
Hence, it is of interest to compare the potentialities of
these two methods.

The physics of the formation and implosion of a
wire-array liner is rather complicated, and an adequate
description of the processes occurring in it can only be
provided by three-dimensional numerical simulations.
In view of the very different spatial scales on which
these processes occur (the initial wire diameter is
~10 µm, and the displacement of the liner produced is
~1 cm), an efficient computational procedure for full-
scale three-dimensional simulations of such objects can
hardly be created in the near future.

In this paper, we use the model of a compact
plasma liner with the effective parameters that ensure
the generation of X-ray pulses with characteristics
close to those observed in experiments in the PBFA-Z
device [1].

This approach does not pretend to completely
describe the formation and implosion of a liner. Never-
theless, it allows one to compare the potentialities of
the above two methods of igniting thermonuclear
reaction.
1063-780X/03/2909- $24.00 © 20764
2. FORMULATION OF THE PROBLEM

Figure 1 shows the geometry of the problem.

The liner kinetic energy acquired during the interac-
tion with the electromagnetic field is transferred by
impact to a cylindrical target. The target is a high-Z
(Au, W) shell filled with a gaseous DT mixture. The
length z0 of the liner system is 2 cm. The linear mass m
of the liner is equal to that of the cylindrical target. At
the initial instant, we specify the target radius r0, mass
per unit length m, velocity v 0, and liner thickness δ. As

Return current conductor

J(t)

z0

r0

δ

J(t)

– Target

– Tungsten liner

Fig. 1. Scheme of the gas-dynamic compression of a cylin-
drical target filled with a gaseous DT mixture.
003 MAIK “Nauka/Interperiodica”
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in [1], the mass density of the liner material is assumed

to be constant and equal to ρ0 = m/π[(r0 + δ)2 – )].

Two-temperature gas-dynamics equations were
solved numerically using a one-dimensional code ALF
[2]. The code takes into account the following effects
and processes:

(i) physical viscosity, momentum transfer by neu-
trons and fast charged particles, energy release due to
thermonuclear and neutron-nuclear reactions, and mass
variations due to transport of neutrons and fast charged
particles;

(ii) radiation transfer in the model of nonequilib-
rium spectral quasi-diffusion with allowance for Comp-
ton diffusion;

(iii) heat transfer by electrons and ions;

(iv) the kinetics of thermonuclear and neutron-
nuclear reactions;

(v) the transport of fast charged particles produced
in thermonuclear and neutron-nuclear reactions and
due to the elastic scattering of neutrons by the thermal
H, D, T, He3, and He4 recoil nuclei; and

(vi) neutron transport (by calculating the thermal
dispersion of DT neutrons and the energy distribution
of neutrons produced in the nonthermal TD reaction).

In the calculations, we used the equations of state of
the materials according to [3] and the radiation ranges
calculated by the PERST-3 procedure [4].

The liner parameters m, v 0, r0, and δ were deter-
mined by fitting the calculated radiation parameters to
the parameters measured in the PBFA-Z experiments.

Investigations performed in [1] showed that, for a
radiation power of Pr ≅ 290 TW, the liner thickness was
δ ≅ 3.7 mm. As the current increases, the effective liner
thickness may decrease as the number of wires (~J2)
increases due to both the improved conditions of the
shell formation and reduced initial perturbations. For
this reason, we also considered a promising version
with δ ≅  1.6 mm, which corresponds to Pr ≅ 103 TW
under the PBFA-Z conditions.

For a given linear mass m and an initial coordinate
R0, the liner velocity at the instant of its collision with
the target, v 0 = , is determined from the

motion equation

(1)

New-generation devices are similar in design to the
PBFA-Z device; hence, in order to estimate the liner

r0
2

v r r0 δ+=

dr
dt
----- v=

dv
dt
-------

µ0

4πrm
--------------J

2
t( ).–=





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current J, we can use the PBFA-Z equivalent electrical
scheme (Fig. 2) described by the equations [6]

(2)

Here, r and v  are the coordinate and velocity of the
liner, Js is the source current, L(t) = (µ0z0/2π)ln(R0/r(t))
is the liner inductance, and R(t) = (µ0z0/2π)v (t)/r(t ) is
the resistance related to energy losses caused by the
liner acceleration.

In the PBFA-Z device, the voltage of the equivalent
voltage source is Veq ≅  5.8 MV and the electromagnetic
pulse energy is W ≅  5 MJ. For the projected devices,
this energy can be recalculated by the scaling law W ~

.

Equations (1) and (2) were solved with the follow-
ing initial conditions: J |t = 0 = 0, Js |t = 0 = 0, r |t = 0 = R0,
and v |t = 0 = 0. The initial liner radius was chosen to be
R0 = 2 cm.

3. RESULTS OF CALCULATIONS

The calculations have shown that the maximum
number of DT reactions per unit length is attained at the
target radius r0 ≅  0.2–0.3 cm and the liner velocity v 0 ≅
4–5 × 107 cm/s.

The neutron yield and the gas compression ratio as
functions of r and v for different liner thicknesses and
electromagnetic pulse energies are shown in Figs. 3
and 4.

At W = 100 MJ, the DT mixture is not ignited (only
a few tenths of one percent of the mixture is burnt out,
and the maximum temperature is ~2–3 keV); however,

dJ
dt
------ R t( )J

L2 L3 L t( )+ +
----------------------------------+

Zflow Js
2

J
2

–
L2 L3 L t( )+ +
----------------------------------=

dJs

dt
--------

ReqJs

L1
------------

Zflow Js
2

J
2

–
L1

--------------------------------+ +
V eq t( )

L1
--------------.=









V eq
2

Initial load inductance

Req = 0.12 Ω
L1 = 8.93 nH L2 = 2.33 nH L3 = 1.15 nH

Load inductance
[L(0) = 0]

Power supply losses

Equivalent voltage source

Zflow
Veq

Fig. 2. Equivalent electric circuit of the PBFA-Z device [5].
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the system is close to ignition. With a twofold increase
in the energy W, ≈10% of the mixture is burnt out and
the temperature increases to 10 keV.

Estimates show that the magnetic field produced
during the compression of the capsule is high enough
not only for the electron and ion thermal conductivities

1021
N, cm–1

1

2

3
(a)

0.1 0.2 0.3 0.4
r0, cm

(b)

1

3

2

r0/rmin

1020

1019
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1016

25

20

15

10

Fig. 3. (a) The number of DT reactions per unit length and
(b) the gas compression ratio as functions of the target
radius for v0 = 4 × 107 cm/s: (1) δ = 3.7 mm, W = 100 MJ;
(2) δ = 1.6 mm, W = 100 MJ; and (3) δ = 1.6 mm, W =
200 MJ.

ρ0, g/cm3
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31020
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Fig. 5. The number of DT reactions per unit length as a
function of ρ0 for r0 = 0.2 cm and v0 = 4 × 107 cm/s: (1) λe,
λi , Lα ≠ 0; (2) λe, λi = 0, Lα ≠ 0; and (3) λe = λi = Lα = 0.
to be suppressed, but also for the α particles generated
in the DT reaction to be magnetized. To estimate the
influence of these phenomena, we performed calcula-
tions with completely suppressed electron and ion ther-
mal conductivities (λe = λi = 0) and highly magnetized
α particles (the α-particle range is Lα = 0). The calcu-

v , 107 cm/s
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Fig. 4. (a) The number of DT reactions per unit length and
(b) the gas compression ratio as functions of the liner veloc-
ity for r0 = 0.2 cm: (1) δ = 3.7 mm, W = 100 MJ; (2) δ =
1.6 mm, W = 100 MJ; and (3) δ = 1.6 mm, W = 200 MJ.
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Fig. 6. The number of DT reactions per unit length as a func-
tion of the electromagnetic pulse energy for r0 = 0.2 cm and

v0 = 4 × 107 cm/s: (1) λe, λi, Lα ≠ 0 and (2) λe = λi = 0, Lα ≠ 0.
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lated dependences of the neutron yield on the initial gas
density ρ0 for δ = 1.6 mm and W = 100 MJ are shown
in Fig. 5.

In the case of suppressed conductivities, a few per-
cent of the DT mixture is burnt out and the temperature
amounts to ~10 keV; i.e., ignition is possible at the
pulse energy W ≅ 100 MJ.

Figure 6 shows the dependence of the neutron yield
on the electromagnetic pulse energy.

Therefore, the calculations performed by the same
liner model show that the electromagnetic energy
required for the ignition of thermonuclear reaction dur-
ing the direct gas-dynamic compression of a gaseous
DT capsule (W ≈ 100 MJ) is close to that required for
the ignition of reaction during the compression of the
capsule by X radiation (see [1]). The advantages and
disadvantages of both methods depend on the possibil-
ity of attaining the required gas compression ratio. Note
that the problem of stability has been considered in
more detail for compression by soft X rays.
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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Abstract—A study is made of the processes that occur in an inhomogeneous nonisothermal plasma in a strong
external magnetic field and whose characteristic frequencies are lower than the ion Langmuir frequency but
higher than the collision frequency. An expression for the ponderomotive force of the low-frequency field is
derived. The excitation of a long-wavelength low-frequency drift wave during the development of the modula-
tional instability of a drift pump wave is investigated. The growth rates of the instability are obtained, and the
conditions for its onset are determined. The possible relation of the modulational instability to the formation of
structures in the plasma is discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is common practice to associate the ponderomo-
tive force in a plasma with the gradient of the pressure
of a strong high-frequency (HF) field [1]. There are
many papers devoted to the investigation of this effect
and related nonlinear processes, such as parametric,
decay, and modulational instabilities. Interest in this
area of research is related to the problems of the inter-
action of laser radiation with plasma. In such an inter-
action, the excitation of HF fields in a plasma can be
accompanied by the generation of strong low-fre-
quency (LF) potential fields. This situation is encoun-
tered, e.g., in a tokamak wall plasma, where drift waves
can be produced. In a fusion plasma in which a density
of about n ~ 1014–1015 cm–3 is achieved at a temperature
of T ~ 108 K in an external magnetic field with a
strength of B0 ~ 10 T, the characteristic frequency of
drift waves on the scale on which the plasma density
varies (L ~ 10 cm) is on the order of ωd ~ cTe/eB0L2 ~
105–106 s–1. Nevertheless, even at these frequencies,
mean ponderomotive forces are generated and affect
plasma ions. This effect was first pointed out by Ale-
ksandrov et al. [2], who considered the influence of the
LF field of a capacitor on a narrow nonisothermal
plasma slab under conditions such that the field fre-
quency is lower than the ion Langmuir frequency but
higher than the collision frequency in the plasma. In the
one-dimensional one-fluid hydrodynamic approxima-
tion, they derived an expression for the ponderomotive
force of an LF field and compared it with the corre-
sponding HF ponderomotive force. Later, Morales and
Lee [3] obtained an expression for the mean pondero-
motive force of a lower hybrid wave propagating along
1063-780X/03/2909- $24.00 © 20768
the external magnetic field and across the direction in
which the plasma is inhomogeneous, and Benkadda
et al. [4] investigated the modulational instability of
this wave, accompanied by the excitation of LF drift
waves. It should be noted that the frequency of the
lower hybrid waves is on the order of the highest possi-
ble frequency of the drift waves. This indicates that
drift waves with comparatively high frequencies can be
modulationally unstable, which results in the genera-
tion of drift waves with comparatively low frequencies.

The investigation of the effects associated with the
modulational instability of drift waves is of interest not
only in connection with the practical problems con-
cerning the transport of energy and matter across the
magnetic field in an inhomogeneous magnetized
plasma but also from the standpoint of the fundamental
theory of drift plasma turbulence. During the develop-
ment of the modulational instability in a weakly turbu-
lent plasma, the correlations between the wave phases
become increasingly strong; as a result, the plasma
eventually evolves into a strongly turbulent state, in
which the waves interact with each other and with the
plasma particles [5, 6].

Finite-amplitude drift waves become subject to
modulational instability just after their onset in the
plasma. Drift waves can be generated by the instabili-
ties (e.g., the Cherenkov interaction with electrons can
lead to the growth of waves in the drift frequency range
[7]) and also by the external sources (as is the case dur-
ing microwave plasma heating in a tokamak [4]). In the
present paper, we assume that, in the plasma, there is a
source of drift waves that is capable of balancing their
damping.
003 MAIK “Nauka/Interperiodica”
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The dispersion relation for drift waves allows the LF
and HF drift oscillations to be studied separately, in
which case we can introduce a hierarchy of time scales
characteristic of the problem. Such separation of fast
and slow motions makes it possible to formulate a rela-
tively simple set of self-consistent hydrodynamic equa-
tions for a collisionless plasma. Under the condition
that the drift waves are quasineutral, this set can be
reduced to two equations of motion and two continuity
equations for the fast and slow plasma ions. Earlier, the
method of separating the spectrum of waves with the
same dispersion relation into the LF and HF spectral
components was used by Rudakov and Tsytovich [8] to
investigate the modulational instability of ion acoustic
waves.

Our objective here is to derive an expression for the
ponderomotive force of an LF field, to study the modu-
lational instability of the drift waves (under the assump-
tion that they are affected by the modulationally unsta-
ble LF waves), and to analyze the possible formation of
structures in a plasma in the course of modulational
processes. The paper is organized as follows. In Section 2,
we make the main assumptions and formulate the basic
equations. In Section 3, we derive an expression for the
ponderomotive force of an LF field. In Section 4, we
obtain nonlinear evolutionary equations for the drift
waves. In Section 5, we investigate the modulational
instability of a drift pump wave. In Section 6, we exam-
ine one-dimensional solutions to the nonlinear evolu-
tionary equations. Finally, in Section 7, we discuss the
results of our work.

2. BASIC EQUATIONS

We consider an inhomogeneous collisionless
plasma in a uniform external magnetic field B0 and
assume that the density of an unperturbed plasma varies
in the direction perpendicular to the field B0. For defi-
niteness, let the z axis be directed along B0 and let the
x axis point in the direction in which an unperturbed
plasma is inhomogeneous. In other words, we assume
the dependence n0 = n0(x). We also introduce the recip-
rocal of the scale on which the plasma density varies,
κ = –dlnn0/dx, where κ > 0. For simplicity, we assume
that the plasma electron temperature Te is constant. The
ion plasma component is assumed to be cold, which
corresponds to a highly nonisothermal plasma with
Te @ Ti . We are interested in the processes that occur at
frequencies satisfying the inequalities

(1)

where vTi and vTe are the thermal velocities of the
plasma electrons and ions, ωLi is the ion plasma fre-
quency, and νi is the ion–ion collision frequency. Under
conditions (1), the electric field in the plasma can be

kzv Ti ν i ! ω ! kzv Te ωLi ωBi,, , ,
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assumed to be potential and the plasma electrons can be
described by the Boltzmann distribution

(2)

Here and below, the temperature is in energy units. The
electric field strength E is expressed in terms of the
potential φ by the familiar relationship E = –—φ.

Under the conditions such that the plasma dimen-
sions are much larger than the electron Debye radius
rDe ≈ vTe/ωLe , the plasma on the spatial scales of the
drift perturbations (l @ rDe) can be treated as quasineu-
tral, ne = ni = n.

The cold plasma ions are described by the one-fluid
hydrodynamic equations, namely, the ion continuity
equation

(3)

and the equation of ion motion

(4)

where wBi = eB0/mic is the ion gyrofrequency. The
plasma quasineutrality condition and the Boltzmann
distribution for electrons close the set of Eqs. (3) and
(4) with respect to the unknown quantities.

3. PONDEROMOTIVE FORCE
OF THE LOW-FREQUENCY POTENTIAL FIELD

Under the above assumptions, the modulational
instability of the drift waves is associated with the pon-
deromotive force of the LF field in a plasma. That is
why, following [2], we first generalize previous results
obtained on the mean ponderomotive force to the three-
dimensional case of an inhomogeneous magnetized
plasma. We expand all the quantities in powers of the
small parameter ε = eφ/Te , which indicates that each of
them is represented as

(5)

Thus, the plasma density has the form n = n0(x) + εn(1)

+ ε2n(2) +…, where n0(x) ≡ n(0) is the unperturbed
plasma density. The first terms in the expansions of the
remaining quantities are first-order in the perturbed
field.

To first order in the dimensionless parameter ε, we
obtain the equations

(6)

(6')

ne n0
eφ
Te
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∂tni ∇ niv( )⋅+ 0=
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n0
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  ,–=

∂tn 1( ) — n0v 1( )( )⋅+ 0,=
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(6'')

(6''')

in which all first-order quantities are represented as

(7)

We also represent all vector quantities as the sum of the
transverse and longitudinal components, E1 = E1⊥  +
E1ziz and v1 = v1⊥  + v 1ziz, where iz is a unit vector point-
ing in the z direction. Then, the solution to Eqs. (6) can
be written in the form

(8)

Here, the frequency ω and wave vector k satisfy the dis-
persion relation

(9)

where ω∗  = kyv 0, v 0 = κ /ωBi , v s =  is the ion
acoustic speed, and ρs = v s/ωBi is the effective ion gyro-
radius. Note that dispersion relation (9) was derived in
the limit ω ! ωBi .

To second order in ε, we obtain the equations

(10)

(10')

(10'')

Since we are interested in steady solutions, we aver-
age Eqs. (10) over time, assuming that the averaged
quantities satisfy the relationships 〈∂ t f 〉  = ∂t 〈 f 〉  = 0.

This averaging procedure allows us to simplify
Eqs. (10)–(10'') in such a way that the electric field E2
can be determined from Eq. (10''); the velocity v2, from

∂tv 1( )
e
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Eq. (10'); and the density n(2), from Eq. (10). As a result,
we arrive at the expressions

(11)

(12)

(13)

In the general case, the averaged velocity 〈v(2)〉  is
determined to within a vector f satisfying the condition
— · f = 0. We restrict ourselves to a forced solution, spe-
cifically, the one for which f = 0. Inserting 〈v(2)〉  into
expression (12) and taking into account first-order solu-
tions (8) yields the averaged electric field in the plasma,

(14)

which produces the averaged ponderomotive force
〈F〉 = e〈E(2)〉. The electric field potential has the form

(15)

where we have introduced the notation

(16)

For ω ! ωBi, we obtain µ ≈  + /ω2.

Now, we discuss the difference between the force of
an LF field and the ponderomotive force [10] and their
common features. In a strong HF field, it is only the
plasma electrons that oscillate under the action of this
field, whereas the ions undergo a slow motion driven by
the ponderomotive force. Otherwise, in a strong LF
field, only cold plasma ions oscillate, while electrons
have enough time to acquire a Boltzmann distribution.
Nevertheless, in both cases, the mean force causes pre-
cisely the same effect: the plasma is expelled from the
region of the strong field. This effect is easy to demon-
strate using the time-averaged second-order equations.
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Integrating expression (12) with allowance for Boltz-
mann distribution (11) yields Bernoulli’s equation

(17)

in which the left-hand side is constant along the lines of
the external magnetic field B0. Here, ρi = n0mi is the ion

plasma density and rDe =  is the electron
Debye radius. The factor 2 in front of the gas-kinetic
electron pressure Pe = Te〈n(2)〉 stems from an averaging
of the oscillations of the kinetic and potential energies

(  and , respectively) over the
unit volume. We can see that the second term on the
left-hand side of Bernoulli’s equation is associated with
the ponderomotive force because this term is the force
potential to within a constant factor. The third term
accounts for the potential interaction, which leads to
the opposite effect: the plasma is drawn into the region
of the strong field. These two competing effects govern
the sign of the plasma density fluctuations 〈n(2)〉 . For
µ > 1, the plasma is expelled from the region of the
strong field, whereas, for µ < 1, the plasma is drawn
into this region. To conclude the discussion, note that
Bernoulli’s equation (17) was derived from the general
hydrodynamic equations; hence, the results obtained
are valid over the entire applicability range of the
hydrodynamic approach.

4. NONLINEAR EVOLUTIONARY
EQUATIONS

The plasma density modulation considered above
can give rise to the modulational instability of a drift

wave. We consider a drift wave  propagating in a
plasma and having the frequency ω0, wavenumber k0,
and amplitude ψ:

(18)

where ψ = ψ(r, t) is the wave envelope amplitude.

In order to derive the nonlinear evolutionary equa-
tions, we assume that there exists a hierarchy of time
scales, which indicates that the fast and slow processes
occurring in the plasma can be studied separately. Note
that the method of separating the spectrum of waves of
the same nature into the LF and HF components was
used in investigating modulational processes in a
medium with an anomalous dispersion [8, 9, 11]
and the modulational instability of ion acoustic waves
[12, 13].

Below, the rapidly varying quantities will be
denoted by a tilde and a superior bar will mark the
slowly varying quantities. Using the standard method

2Te n 2( )〈 〉
ρi v 1( )

0 2

2
------------------

φ 1( )
0 2

8πrDe
2

--------------–+ const,=

Te/ 4πe
2
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0 2
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2

φ̃

φ̃ ψe
iω0t– ik0 r⋅+

,=
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
of separating the fast and slow processes [1], we arrive
at the equations for slow motions,

(19)

(20)

and the equations for fast motions,

(21)

(22)

Here, the nondimensionalized perturbations of the
plasma density (  and ) are defined by the relation-
ship n/n0 = 1 +  + .

In what follows, we will be interested primarily in
drift waves propagating nearly perpendicular to the
external magnetic field, because such waves are most
important from the standpoint of plasma confinement.
Under the conditions kzv s ! ω ! ωBi, we can neglect
the Reynolds term s = ( )  + ( )  in Eq. (22) and
can consider a two-dimensional case such that ∂z = 0.

The equations for slow motions yield the following
equation for an LF drift wave:

(23)

This LF wave is driven by the modulational instability

of the HF drift wave . Here, the quantity µ is defined
in notation (16), introduced for an HF drift wave, and is

approximately equal to µ ≈ . The first term on the
right-hand side of Eq. (23) accounts for the pondero-
motive effect described by Bernoulli’s equation (17).
The second term corresponds to the drift 〈(  · —) 〉  in
the pump wave field and is of the higher order in the
small parameter ω0/ωBi .

From the second pair of the equations, namely,
Eqs. (21) and (22), we can derive the evolutionary
equation for an HF drift wave:

(24)

Since the slowly varying amplitude φ satisfies the con-
ditions

(25)
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we arrive at the final equation describing the evolution
of the amplitude of the envelope of an HF drift wave:

(26)

Here, we have introduced the notation a = /(v 0k0y)

and b = a/ . The group velocity of the drift wave is
described by the expression

(27)

in which the frequency ω0 and wave vector k are related
by the dispersion relation. The two nonlinear equations
(23) and (26) make it possible to describe the excitation
of LF drift waves due to the modulational instability of
HF drift waves. Below, we will consider the linear stage
of this process. It should be mentioned parenthetically
that, in terms of the familiar Hasegawa–Mima equa-
tion, it is possible to describe only the modulational
instability of a convective cell, accompanied by the
excitation of a drift wave.

5. MODULATIONAL INSTABILITY

Before proceeding to a description of the linear
stage of the modulational instability, we consider an
unperturbed state described by the above nonlinear
equations. We assume that, in the absence of perturba-
tions, the quantities η and |ψ|2 are independent of the
coordinate r and time t. All the unperturbed quantities
will carry the subscript 0. We represent ψ0 in the form
corresponding to a plane monochromatic wave:

(28)

Then, from Eq. (26), it follows that the frequency Ω and
wave vector ∆k satisfy the dispersion relation

(29)

The instability gives rise to small perturbations, so
that we can write η = η0 + δη, ψ = ψ0 + δψ, and ψ* =

 + δψ*. We linearize the initial nonlinear equations
with respect to the small perturbations δη, δψ, and δψ*
and represent the perturbations in the form

(30)
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.=
Substituting expressions (30) into the linearized
equations, we obtain the dispersion relation for the
modulational instability:

(31)

In deriving the dispersion relation, we assumed the fol-
lowing hierarchies of spatial and time scales: ∆k ! k !
k0 and Ω ! ω ! ω0 ! ωB. The drift waves excited in the
case under analysis have the frequency Reω and wave
vector k⊥ , which satisfy dispersion relation (9) with
kz = 0. We assume that the frequency is approximately
equal to Reω ≈ ωd, where

(32)

and that the instability growth rate γmod = Imω is much
lower than the frequency ωd.

We restrict ourselves to considering the long-wave-

length limit in which  ! 1 and the frequency is
approximately equal to ωd ≈ v 0ky. Since dispersion
relation (31) is similar in structure to the dispersion
relation for the well-studied beam instability in the
plasma, we can draw an analogy with the Cherenkov
instability. First, we consider the solutions to dispersion
relation (31) that satisfy the resonance condition

(33)

We can see that the group velocity of a modulationally
unstable drift pump wave plays the same role as the
beam velocity in the Cherenkov instability. It is
assumed that the modulational instability develops at
the resonant frequency; hence, we can write ω = ωd +
δω. We neglect the small term on the order of ω0/ωBi on
the right-hand side of dispersion relation (31) in order
to rewrite it as the following equation with respect to
δω:

(34)
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where µ = . Equation (34) has complex solutions

when the pump wave amplitude  is larger than the
critical value defined by the inequality

(35)

As in the case of the nonlinear Schrödinger equation,
condition (35) for the onset of the instability serves as
a relationship between the absolute value of the wave-
number and the wave amplitude.

Now, we consider particular cases of Eq. (34) with
different values of the wavenumber. Note that reso-
nance condition (33) determines only the propagation
direction of the excited drift wave and does not impose
any restrictions on the absolute value of its wave vector.

For  @ (δω)2, Eq. (34) has no complex solutions.

For ωd |δω|/ω0 ! , Eq. (34) reduces to the equation

(36)

which has complex solutions under the condition

(37)

We introduce the dimensionless quantity ξ through the
relationship

(38)

Under condition (37), the quantity ξ lies within the unit
interval, 0 < ξ < 1. The instability growth rate as a func-
tion of ξ has the form

(39)

where

(40)

The plot of function (40) is shown in the figure.

The maximum growth rate, , is reached at ξ =
ξmax = 0.41 and is equal to

(41)
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The solutions obtained are applicable under the condi-
tion

(42)

The smallness of the right-hand side of this condition
permits it to be simplified to ξ @ (ωd/ω0)3/2.

For  ! |δω|ωd/ω0, dispersion relation (34)
reduces to the quadratic equation

(43)

which has complex solutions only for µ < 1. In this
case, the instability growth rate is equal to

(44)

In terms of , the condition for the applicability of
this solution has the form

(45)

Since ωd = v 0ky ≈ v 0k⊥ , this condition imposes a
lower limit on the pump wave amplitude,

(46)

which determines the instability threshold for super-
long drift waves.

Pursuing the analogy with beam instability, we can
say that, under resonance condition (33), the above
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solutions correspond to those describing the single-par-
ticle Cherenkov effect or, more correctly, the Thomson
excitation mechanism. In addition, there also exists the
collective Cherenkov effect or, in the general case, the
Raman excitation mechanism. In order to consider the
corresponding case in our problem, we introduce the
detuning ∆ of the wave frequency from the resonant fre-
quency:

(47)

The case |δω| @ |∆| is not of great interest because
it leads to the solutions that have been obtained above
and contain a small correction on the order of |∆/δω|.
That is why we consider only the case |δω| ! |∆|, in
which dispersion relation (47) becomes

(48)

The conditions under which the complex solutions exist
have the form

(49)

The latter inequality indicates that the modulational
instability develops only in narrow intervals of ∆
around ± . In other words, there exist resonance
conditions on the detuning ∆.

The growth rate, which is the largest at ∆ = –  <

0 and µ < 1 (or at ∆ =  < 0 and µ > 1), is equal to

(50)

In this case, the condition |∆| @ |δω| takes the form

(51)

To conclude this section, we consider the very non-
resonant case in which the drift wave branch ω1 = ωd

and the soliton mode branch ω2 = vg⊥  · k⊥  ±  are
very different, ω1 ≠ ω2. For drift waves, we represent
the solutions to dispersion relation (31) as ω = ωd + δω,
whereas for soliton modes, we seek the solutions in the
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form ω = ω2 + δω. As a result, we obtain the growth rate
of the instability at the frequency of the drift wave,

(52)

and the instability growth rate for the soliton structures,

(53)

6. ONE-DIMENSIONAL SOLUTIONS

We begin by discussing the case ∂y  0, i.e., the
generation of one-dimensional flows stretched along
the y coordinate (the so-called zonal flows). The disper-

sion relation for long-wavelength (  ! 1) perturba-
tions reduces to

(54)

We seek a solution in the form
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With respect to δω, dispersion relation (54) can be
rewritten as
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and the instability growth rate is

(58)

This indicates that only solitons propagating in the pos-
itive direction of the x axis are amplified. This situation
is analogous to the pattern of waves on shallow water of
varying depth. In the case at hand, the role of the water
depth is played by the plasma density.

The condition |δω| !  is satisfied when

(59)

We consider the case

(60)

which can occur for small wavenumbers,

(61)

In this case, we obtain the dispersion relation

(62)

and the instability growth rate

(63)

so that condition (60) becomes

(64)

For  ! η, we arrive at the dependence

(65)

where

(66)
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The modified nonlinear Schrödinger equation, which
describes the evolution of the wave envelope ampli-
tude, takes the form

(69)

where

(70)

Now, we discuss the case ∂x  0 and kx  0, i.e.,
the generation of flows stretched along the x axis (the
so-called streamers). We define the frequency detuning
from the resonant value through the relationship ωd =
vgyky + ∆. Here, the frequency in the long-wavelength

limit  ! 1 is equal to ωd = v 0ky. We insert the
quantity v gy into the definition of the detuning to obtain
the frequency dependence of ∆:

(71)

where the quantity µ was defined above. For brevity, we
introduce the notation α = ∆/ωd. In order of magnitude,

we have α ~  ~ 1; consequently, the resonance
condition ∆ = 0 cannot be satisfied. Taking into account
the above conditions, we write dispersion relation (31)
in terms of the quantity δω = ω – ωd:

(72)

Note that, since  = (ω0/κv s)2ωd(ky/k0y), the inequal-

ity ky ! k0y is always satisfied by virtue of  ! ∆. In
the case |δω| ! ∆, which corresponds to the excitation
of drift waves, dispersion relation (72) simplifies to

(73)
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and the instability growth rate is equal to

(74)

The expression in the square brackets is positive for any
values of ρsk0y under the condition

(75)

Under the opposite condition, this expression is posi-
tive for

(76)

Therefore, there always exist wavenumbers k0 of the
pump wave that lead to the excitation of LF drift waves
propagating along the y axis.

In the plasma, there are also wave branches obeying

the dispersion relation ω± = v gyky ± . Setting δω± =
ω – ω± ! |ω±|, we arrive at the following dispersion
relation with respect to δω±:

(77)

For |δω±| ! , the instability growth rates are equal
to

(78)

In the opposite case, |δω±| @ , the instability devel-
ops under the condition µ < 1 (by virtue of ω± – ωd < 0)
at the rate

(79)

Hence, the instability growth rate is equal in order of
magnitude to the fastest growth rate under the reso-
nance condition.

7. DISCUSSION OF THE RESULTS

Now, we discuss the theoretical results obtained
above. We have shown that the linear stage of the mod-
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ulational instability of a drift wave is described by a dis-
persion relation that is analogous to the dispersion rela-
tion for the Cherenkov instability. Note that drawing
such an analogy between the dispersion relations for
the modulational instability and stream instabilities is a
conventional practice; this point has been discussed in
a number of papers (see, e.g., [14, 15]). For a drift
wave, the role of the stream velocity is played by the
wave group velocity vg⊥ , and the role of the density is

taken over by the wave amplitude . Under reso-
nance conditions, both types of instabilities have the
largest growth rate. However, the maximum growth

rate of the Cherenkov instability is proportional to 
(where nb is the beam density), whereas the maximum
growth rate of the modulational instability is propor-

tional to .

The modulational instability of a drift wave plays a
significant role as a source of long-wavelength low-fre-
quency perturbations only when its maximum growth
rate exceeds the growth rates of the other linear insta-
bilities. There are at least two linear mechanisms for the
excitation of drift waves. The first one is the mechanism
for Cherenkov dissipation by thermal electrons, whose
damping rate may change its sign in the drift frequency
range, thus resulting in instability. Under conditions (1)
and the condition kz ! {ω/v s, k⊥ }, the growth rate of
this instability is described by the formula

(80)

For the maximum growth rate (41) and the correspond-
ing wavenumber, we see that the modulational instabil-
ity is dominant under the condition |kz |v s >
(me/mi)(ωd/ω0)ωd.

The second mechanism is the beam instability with
the growth rate

(81)

under the conditions  ! 1 and ωd @ kzv s. Here, u
is the directed velocity of the electrons carrying an elec-
tric current. Setting u ≈ Ip/πneR2 and considering an
actual tokamak with the toroidal plasma current Ip =
1.4 MA, major radius R = 0.77 m, plasma density n =
3.5 × 1019 m–3, and electron temperature Te ~ 100 eV, we
obtain an estimate according to which the modulational
instability is dominant when the amplitude of the drift
pump wave satisfies the inequality

(82)

We can see that, in the long-wavelength low-frequency
limit, the drift waves are excited by the modulational
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instability more efficiently than by other linear instabil-
ities.

Real devices suffer anomalous transport of matter
across the magnetic field in the wall plasma regions.
Experimental investigations revealed that the genuine
diffusion coefficient is larger than the theoretically pre-
dicted one. Thus, in the linear theory of drift instability,
the diffusion coefficient is estimated as D ~
DB(γL/ωd) ! DB, where DB = cTe/eB0 is the Bohm dif-
fusion coefficient and γL is the growth rate of the linear
instability. From dimensionality considerations, it fol-
lows that the turbulent diffusion coefficient has the
form [16]

(83)

where τ is the decorrelation time, which is equal in
order of magnitude to τ ~ 1/γmod, and λ⊥  is the charac-
teristic spatial scale of turbulent pulsations across the

magnetic field. It is natural to estimate λ⊥  as λ⊥  ~ .
For γmod and k⊥  given by expressions (39) and (38),
respectively, the diffusion coefficient is estimated as

(84)

For the maximum growth rate (41), the diffusion
coefficient is approximately equal to D⊥  ~ DBω0/ωBi ,
which is below the Bohm value. In the long-wavelength
part of the spectrum, the diffusion coefficient increases
with wavelength and, for

, (85)

becomes larger than the Bohm value. Consequently,
under the condition ωd/ω0 ! ω0/ωBi , the diffusion coef-
ficient can be on the order of the Bohm coefficient.

Assuming that there is a steady-state uniform
energy flux in k space,

we can estimate the density perturbation amplitude 
in a long-wavelength drift wave. In this case, the dielec-
tric function has the form

(86)

Under resonance condition (33) and for the maximum
growth rate (41), the estimate is

(87)

In our study, we have considered a highly noniso-
thermal plasma with Ti ! Te . In this approximation, the
gas-kinetic ion pressure 〈n(2)〉Ti , which may have a sta-
bilizing effect in the course of the modulational insta-
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bility, has been neglected. In addition, in actual devices,
the magnetic field and the field of the plasma velocities
are both sheared. It is well known that the shear of the
plasma velocity parallel to the magnetic field provides
a new mechanism for the onset of drift instability. We
can therefore expect that this shear will produce addi-
tional effects during the development of nonlinear pro-
cesses such as the modulational instability.

We have also neglected collisions in the plasma,
assuming that the collision frequency is much lower
than the frequencies of all the processes under consid-
eration. This neglect imposes an upper limit on the
plasma density. Setting the effective collision fre-

quency equal to νeff ≈ 1.6 × 10–5  (where Te is
expressed in electronvolts and the plasma density is in
particles per cubic centimeter), we obtain an upper esti-

mate for the plasma density, n < 109 , at which col-
lisions can be ignored. In the opposite case, it is neces-
sary to take into account electron collisions. Also, in an
isothermal plasma (Ti ~ Te), an important role is played
by ion–ion collisions, which give rise to an aperiodic
convective mode that is slowly damped by ion viscos-

ity, µi = 0.3Tiνi/( ). The nonlinear energy transfer
to these modes can reverse the sign of the damping rate,
thereby resulting in the excitation of a convective
mode.

The effect considered in this paper, namely, the
modulational interaction between drift waves, can have
a strong impact on the generation of streamers and
zonal flows in a tokamak wall plasma. This has been
illustrated above by one-dimensional solutions to the
evolutionary equations and is to be studied in more
detail in a subsequent paper.
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Abstract—The problem of drift stabilization of the internal resistive-wall modes (RWMs) in tokamaks is the-
oretically investigated. The basic assumption of the model is that, when the drift effects are neglected, these
modes are unstable in the absence of a conducting wall and stable in the presence of a close-fitting perfectly
conducting wall. In the former case, the instability condition is expressed as  > 0, where  is the matching

parameter calculated under the assumption that the wall is removed to infinity. In the latter case, one has  <

0, where  is the external matching parameter of tearing modes calculated assuming a perfectly conducting

wall at the plasma boundary. In the case with a resistive wall, the relevant parameter can be either  or ,
depending on whether the value of the dimensionless parameter ωτs/2m is small or large, respectively (here ω
is the mode frequency, τs is the resistive time constant of the wall, and m is the poloidal mode number). In the
presence of drift effects, the mode frequency ω is approximately equal to the electron drift frequency, ω ≈ ω∗ e.
The value of the parameter ω∗ eτs/2m, which therefore determines the behavior of internal RWMs, is estimated
for several existing tokamaks, namely, AUG (ASDEX-Upgrade), DIII-D, JET, TFTR, and JT-60U, as well as
for the projected ITER-FEAT. It is shown that, although drift effects do not stabilize internal RWMs in current
devices, they should be efficient in suppressing these modes in reactor-grade tokamaks. © 2003 MAIK
“Nauka/Interperiodica”.

∆∞' ∆∞'

∆W'

∆W'

∆∞' ∆W'
1. INTRODUCTION

Resistive-wall modes (RWMs) are suggested as one
of the possible reasons for the limitation of the maxi-
mum plasma pressure in fusion reactors of the tokamak
type [1]. In the cylindrical approximation, RWMs are
divided into external and internal ones, depending on
whether their singular point lies outside or inside the
plasma column, respectively.

In the simplest formulation of the problem, external
RWMs have been studied in [2], where it was shown
that, neglecting toroidicity, they do not lead to a limita-
tion of the plasma pressure. However, according to
numerical simulations [3], such a limitation arises in
toroidal geometry. The mechanism of the toroidicity
effect on external RWMs was discussed in [4, 5] (see
also [6], chapter 27). This mechanism is related mainly
to the appearance of side-band toroidicity-induced
poloidal harmonics with singular points lying inside the
plasma. The numerical simulation of [3] was used in [7]
to explain experimental results obtained in the DIII-D
tokamak. (Later DIII-D experiments relevant to the
topic under consideration were overviewed in [8].)
1063-780X/03/2909- $24.00 © 20779
Internal RWMs were first studied in [9]. Similar to
external RWMs, they do not lead to a limitation of the
plasma pressure when toroidicity is neglected. It was
suggested in [9] that allowance for their toroidal cou-
pling with side-band harmonics could yield such a lim-
itation; however, to the best of our knowledge, this cou-
pling has not yet been investigated.

In general, internal RWMs are conventional tearing
modes [10] modified by the wall resistivity. In order to
influence tearing modes, the perturbed field caused by
the resistive wall currents should penetrate into the
plasma resistive layer of these modes. The strength of
the penetrating mechanism depends on the mode fre-
quency [11]. In the case of a rotating plasma column,
the tearing mode frequency is defined by the plasma
rotation frequency [9]. In addition, according to Coppi
[12] (see also [6], section 22.6), the mode frequency
also depends on the diamagnetic drift effects. Internal
RWMs in the presence of these effects were investi-
gated by Finn [13].

The analysis carried out in [13] concerns the case
where the perpendicular viscosity overcomes the per-
003 MAIK “Nauka/Interperiodica”
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pendicular inertia—a physical situation that is impor-
tant in the presence of anomalous perpendicular viscos-
ity. In this context, it is worth mentioning that the effect
of anomalous perpendicular viscosity has recently been
incorporated into the analysis of neoclassical tearing
modes [14, 15]. One of the major goals of this work is
to analyze the opposite case, namely, when inertia over-
comes viscosity, which is relevant for high-temperature
regimes in the absence of anomalous viscosity.

A further improvement of our analysis is to take into
account the effect of nonzero ion temperature, extend-
ing the model of [13], in which the ion temperature was
assumed to be vanishingly small in comparison with
the electron one.

Another goal of our work is to extend the general
discussion of the influence of drift diamagnetic effects
on RWMs to the investigation of the relevance of these
effects for the conditions of existing and future reactor-
grade tokamaks.

External RWMs were the first ones to be used to
interpret DIII-D experimental data [7]. The results of
computer simulations of these modes (see [3]) were
employed to explain both the beta limitation observed
in [7] and the weakening of this limitation with increas-
ing plasma rotation. Another important point is that the
sensitivity of external RWMs to plasma rotation was
predicted in [3] based on the introduction of an artificial
Landau damping. It was assumed in [3] that the physi-
cal mechanism for such a damping is the resonant inter-
action between waves and particles. However, as was
explained in [16, 17] (see also [6], chapter 28), this
interaction can play a role only when toroidal effects
are neglected. In the presence of toroidicity, most of the
resonant particles become trapped, which leads to a
negligibly weak effect of Landau damping. The results
obtained in [16, 17] were confirmed in [18, 19].

On the whole, the recent theory of external RWMs
is unable to predict the stabilizing effect of plasma rota-
tion on these modes. In contrast, the main essence of
the recent theory of internal RWMs is its ability to pre-
dict that such modes can be stabilized by plasma rota-
tion. Actually, allowance for plasma rotation is a com-
mon element of many works addressed to internal
RWMs, including [9, 13]. The procedure of including
this effect is formally rather simple: the mode fre-
quency in the expression for the internal matching
parameter calculated neglecting the plasma rotation is
substituted by the Doppler-shifted mode frequency,
where the shift is due to plasma rotation. Although the
study of the effect of plasma rotation on internal RWMs
is not the main goal of our paper, we have included such
a rotation in our exposition in order to relate our
approach to the traditional one.

The starting equations that are necessary for our
analysis, together with some preliminary comments,
are presented in Section 2, and the analysis is carried
out in Section 3. Estimations of the role of drift diamag-
netic effects on internal RWMs (for both recent and
projected tokamak experiments) are the subject of Sec-
tion 4. Section 5 is devoted to a discussion of the results
obtained.

2. STARTING EQUATIONS AND PRELIMINARY 
COMMENTS

2.1. Tearing Modes for a Perfectly Conducting Wall

The dispersion relation for the tearing modes,
neglecting the wall resistivity, is given by [10]

(2.1)

where  is the external matching parameter (i.e., the
logarithmic jump in the radial component of the per-
turbed magnetic field) calculated from the solution of
the ideal MHD equations in the presence of a perfectly
conducting wall (the subscript W stands for the wall)
and ∆int is the corresponding matching parameter for
the resistive layer around the singular point (the internal
matching parameter), which in the absence of drift
effects is given by (see [10] for details)

(2.2)

Here, ky = m/rs, m = 2, 3, … is the poloidal mode num-
ber; rs is the radius of the singular magnetic surface;

 = –iω (the time dependence of the perturbations is

taken in the form exp(–iωt)), γR = /(4πσ) is the
plasma resistive decay rate; σ is the plasma electric
conductivity; c is the speed of light; ωA = vA/Ls is the
characteristic Alfvén frequency; vA is the Alfvén veloc-
ity; Ls is the shear length; and I = 4πΓ(3/4)/Γ(1/4) is a
numerical factor, where Γ is the gamma function.

We note that, to a great extent, the value of 
depends mainly on the shape of the current profile [14].
For

(2.3)

it follows from Eqs. (2.1) and (2.2) that the tearing
mode becomes absolutely unstable (Reω = 0) with the
growth rate

(2.4)

where

(2.5)

is the classical growth rate of tearing modes [10].

2.2. Resistive-Wall Tearing Modes

According to [11], in the presence of a thin resistive
wall placed at the plasma boundary, the external match-
ing parameter  is substituted by

  ∆'(ω), (2.6)

∆int ∆W' ,=

∆W'

∆int
kyγ̂

5/4γR
3/4– ωA

1/2–
I .=

γ̂
ky

2
c

2

∆W'

∆W' 0>

Im ω γ≡ γt,=

γt ∆W' /ky( )4/5γR
3/5ωA

2/5≈

∆W'

∆W'
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where

(2.7)

Here,  is the external matching parameter in the
absence of a wall (i.e., when the wall is removed to
r  ∞),

(2.8)

is the resistive time constant, d is the wall thickness, rW

is the radial coordinate, and ηW is the resistivity of the
wall.

If one substitutes Eqs. (2.6) and (2.7) into Eq. (2.1)
(i.e., includes the resistive wall effects), the tearing
mode becomes more unstable, so that it can be excited
even for

(2.9)

Thus, if one takes

  0, (2.10)

(2.11)

one finds, instead of Eqs. (2.4) and (2.5), Reω = 0 and

(2.12)

where γRWt is the growth rate of resistive-wall tearing
modes given by [cf. (2.5)]

(2.13)

Revealing the instability under conditions (2.9) and
(2.11) is the key idea of the theory of internal RWMs
[9, 13].

2.3. Allowance for Diamagnetic Drift Effects

With allowance for drift effects, expression (2.2) for
the internal matching parameter is modified by the sub-
stitution [12]

  (2.14)

where

(2.15)

(2.16)

Here, ω∗ e is the electron drift diamagnetic frequency
defined by the density gradient and ωp∗ i is the ion drift
diamagnetic frequency defined by the pressure gradi-
ent. These values are given by

(2.17)

(2.18)

∆' ω( ) ∆∞'
∆∞' ∆W'–

1 2im/ ωτs( )+
-----------------------------------.–=

∆∞'

τ s 4πrWd/ηWc
2

=

∆W' 0.<

ωτs/2m

∆∞' 0,>

γ γRWt,=

γRWt ∆∞' /ky( )4/5γR
3/5ωA

2/5
.≈

γ̂5 γ̂5Qe
3
Qi,

Qe 1 ω*e/ω,–=

Qi 1 ωp*i/ω.–=

ω*e cTem/eBrsLn,=

ωp*i cTim/eBrsLpi.–=
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Here, Te and Ti are the electron and ion temperatures, B
is the magnetic field, Ln = (–N '/N)–1 is the density gra-
dient scale length, N is the plasma density, Lpi =
(− /pi)–1 is the ion pressure gradient scale length, pi is
the ion pressure, the prime stands for the radial deriva-
tive, and e is the ion charge.

As a result, one arrives at the following dispersion
relation for the drift–tearing modes modified by the
resistive-wall effects:

(2.19)

where ∆'(ω) is given by Eq. (2.7).
Let us now compare dispersion relation (2.19) with

the dispersion relation given by Eq. (9) in [13]. Both the
left- and the right-hand sides of our dispersion relation
are standard: they correspond to the related expressions
given in [12] and [11], respectively. The right-hand side
of Eq. (9) in [13] is the same as that in Eq. (2.19), while
the left-hand side, in dimensionless form, is [ (  +
iω∗ e)5]1/6, which differs from [12]. This difference is
due to the assumption made in [13] that, in the singular
layer, viscosity is more important than inertia, while,
according to the above explanations, our analysis con-
cerns the alternative situation, when the viscosity is
negligible compared with the inertia.

2.4. Allowance for Cross-Field Plasma Rotation

If there is a radial equilibrium electric field Er0 at the
resonant point r = rs, then the mode frequency on the
left-hand side of Eq. (2.19) should be substituted as

ω  ω – Ω, (2.20)

where, as was already discussed in Section 1, Ω is the
Doppler shift of the mode frequency. The frequency
shift Ω is given by

(2.21)

where V0 = –cEr0/B is the cross-field velocity. Then,
instead of Eq. (2.19), one has

(2.22)

This dispersion relation describes the effect of plasma
rotation on resistive-wall drift–tearing modes.

Note also that, when the ion diamagnetic drift
effects are neglected, the frequency shift Ω is repre-
sented as

(2.23)

where Vφ is the toroidal plasma velocity, R is the torus
major radius, and n is the toroidal mode number. It was
assumed in deriving Eq. (2.23) that the poloidal plasma
rotation vanishes due to the neoclassical viscosity, so

pi'

kyγ̂
5/4 Qe

3
Qi( )

1/4
γR

3/4– ωA
1/2–

I ∆' ω( ),=

γ̂ γ̂

Ω mV0/rs,=

ky γ̂ iΩ+( )5/4 1
ω*e

ω Ω–
--------------– 

 
3/4

1
ωp*i

ω Ω–
--------------– 

 
1/4

× γR
3/4– ωA

1/2–
I ∆' ω( ).=

Ω nVφ/R,–=
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that the toroidal plasma velocity becomes determined
by the cross-field velocity.

3. DRIFT–TEARING MODES IN THE PRESENCE 
OF THE WALL-RESISTIVITY EFFECT

3.1. Case of Vanishing Cross-Field Plasma Rotation

In recent tokamaks, operating at a rather high
plasma temperature, the corresponding low value of the
plasma resistivity makes growth rate (2.5) quite small,
while the characteristic drift frequency becomes large.
For this reason, the theory relevant to recent devices
should be based on the condition

(3.1)

Within this approximation and in the case of a perfectly
conducting wall, one finds, instead of Eq. (2.5), (cf.,
e.g., Eq. (22.29) in [6]),

(3.2)

(3.3)

where

(3.4)

We emphasize that, formally, if condition (3.1) is
satisfied, then at ∆'(ω) = , Eq. (2.19) has roots with
ω ! ω∗ e. However, these roots should be rejected
because they do not satisfy the rule of root selection
(physically, these roots correspond to eigenfunctions
divergent in the singular layer).

With allowance for the wall resistivity, instead of
expression (3.3), one has

(3.5)

According to Eqs. (2.6) and (2.7), it follows from
expression (3.5) that the resistive-wall effects can be
important only if [cf. (2.10)]

(3.6)

In the limiting case ω∗ eτs/2m ! 1, expression (3.5)
reduces to

(3.7)

In the opposite case, i.e., for

(3.8)

the effect of the wall resistivity on the modes considered
here is insignificant and one arrives at expression (3.3).

γt ! ω*e ωp*i,( ).

Re ω ω*e,≈

Im ω γ≡ c*
∆W'
ky

------- 
 

4/3

,=

c*
1

2I
4/3

----------γR 1
TiLpi

TeLn

------------+ 
  1/3– ωA

ω*e

--------- 
 

2/3

.=

∆W'

γ c* Re i
π
3
---– 

  ∆' ω*e( )
ky

-------------------
4/3

exp
 
 
 

.=

ω*eτ s/2m 1.≤

γ c*
∆∞'
ky

------ 
 

4/3

.=

ω*eτ s/2m @ 1,
(We emphasize that this statement does not concern
nonlinear modes, such as magnetic islands, where the
situation can be more complicated.)

Thus, the electron diamagnetic drift effect stabilizes
resistive-wall tearing modes, which agrees with the
conclusion of [13] when viscosity overcomes inertia.
As can be inferred from Eq. (3.4), the ion diamagnetic
drift effect results in an insignificant decrease in the
growth rate of these modes.

3.2. Effect of Cross-Field Plasma Rotation
on Resistive-Wall Drift–Tearing Modes

Let us assume that there is a sufficiently strong
cross-field plasma rotation, so that, in addition to ine-
quality (3.1), one has

(3.9)

where Ω is given by Eq. (2.21). Then, instead of
Eq. (3.2), the real part of the mode frequency is given
by

(3.10)

As for the growth rate, it is given by Eq. (3.3) at [cf.
(3.8)]

(3.11)

or by Eq. (3.7) at [cf. (3.6)]

(3.12)

Thus, the cross-field plasma rotation reinforces the
stabilizing effect of the electron diamagnetic drift at
Ω/ω∗ e > 0 and weakens it at Ω/ω∗ e < 0.

4. ESTIMATES FOR CURRENT 
AND PROJECTED TOKAMAKS

Let us analyze whether condition (3.6) is satisfied
under the conditions of the current devices and estimate
whether it will be relevant under the conditions of pro-
jected fusion reactors. Taking into account expression
(2.17) for the electron drift diamagnetic frequency, we
can rewrite condition (3.6) in the form

(4.1)

One can see that, since ω∗ e is proportional to m (ω∗ e ~
m), the poloidal mode number m drops out of condition
(4.1). Nonetheless, condition (4.1) actually depends
implicitly on the value of m for two reasons. First, the
resistive time constant of the wall τs , in contrast to
approximate expression (2.8), does depend on the
poloidal harmonic number m. Second, the position of
the singular magnetic surface q(rs) = m/n also depends
on m, so that the local values of Te(rs) and rsLn(rs) enter-

γt ! Ω,

Re ω ω*e Ω.+≈

ω*e Ω+( )τ s/2m @ 1,

ω*e Ω+( )τ s/2m ! 1.

ω*eτ s

2m
-------------- 0.5

τ s ms[ ]  Te keV[ ]
B T[ ]

------------------------------------------- 1

rsLn( ) m
2[ ]

---------------------------- 1.≤=
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Estimates of the parameter ω∗ eτs/2m for several tokamaks

AUG DIII–D JET TFTR JT-60U ITER-FEAT

B, T 2.2 2.5 3.5 ≤5.0 ≤4.5 5.3

a, m 0.5 0.6 1.0 0.9 0.9 2.0

Te, keV 0.5 1.0 1.0 1.0 2.0 ≥3.0

ω*e/2m, ms–1 0.46 0.56 0.16 ≥0.12 ≥0.27 ≥0.07

τs, ms 7.0 5.0 2.5 5.0 10.0 150.0

ω∗ eτs/2m 3.2 2.8 0.4 ≥0.6 ≥2.7 ≥10.6
ing condition (4.1) vary with varying poloidal mode
number.

To estimate the influence of the profiles of the equi-
librium plasma parameters on the value of rsLn(rs), we
assume that the singular surfaces rs/a for the most
unstable modes with low poloidal mode numbers m = 2
and 3 lie within the interval 0.5 < rs/a < 0.75, where a
is the minor plasma radius. For simplicity, we consider
the plasma density profile in the form

(4.2)

with 2 ≤ α ≤ 4. We then find that the values of rsLn lie
in the range 0.25 ≤ rsLn/a2 ≤ 0.94. In the following esti-
mates, we use the approximation

(4.3)

keeping in mind that, for flat density profiles, it gives an
underestimated value of the electron drift frequency ω∗ e.

In the table, we present the list of parameters enter-
ing condition (4.1), as well as the estimated values of
ω∗ eτs/2m for several tokamaks contributing to the
ITER database [1]. The data from the current tokamaks
AUG (ASDEX-Upgrade), DIII-D, JET (Joint European
Torus), TFTR (Tokamak Fusion Test Reactor), JT–
60U, as well as those foreseen for the projected ITER-
FEAT have been compiled.

It should be noted that, when collecting the parame-
ters B, a, Te, and τs in this table, it is difficult to find the
full data set corresponding to a unique discharge in any
of the listed devices. Besides, most of the available
experimental data of concern do not contain all the nec-
essary information for accurately estimating the value
of ω∗ e. An uncertainty factor of 2 is also imbedded in
the listed values of the wall resistive time constant τs.

Therefore, the calculated values of the parameter
ω∗ eτs/2m for existing devices presented in the table are
rather rough. Nevertheless, from this table one can see
that the wall resistivity can destabilize the drift–tearing
modes in the present-day tokamaks, whereas ITER-
FEAT has a “surplus'' in the value of ω∗ eτs/2m that is
sufficient to practically exclude the destabilizing effect
of the wall resistivity. This surplus originates mostly

N r( ) N0 1 r/a( )α
–[ ]=

rsLn a
2
,=
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from the extremely large wall resistive time constant τs

in ITER due to the large thickness of its resistive wall.

5. DISCUSSION

We have shown that the resistive-wall effects play an
important role in the stabilization of drift–tearing
modes when condition (3.6) is satisfied. If condition
(2.11) is also satisfied, then they lead to a growth of
these modes with the growth rate given by Eq. (3.7) and
to their rotation with the electron diamagnetic drift fre-
quency ω∗ e [see Eq. (3.2)]. The cross-field plasma rota-
tion influences the penetration of the resistive-wall
effects (reinforcing or weakening it, depending on the
sign of the ratio Ω/ω∗ e) and also the rotation frequency
of the modes.

According to the table, the current experiments are
performed under conditions where the inverse resistive
time constant of the wall, 1/τs, is, roughly speaking, of
the same order as ω∗ e/2m. This means that the above
mechanism for the growth of drift–tearing modes is
possible in the existing devices.

Unfortunately, there are practically no experimental
papers related to the investigation of RWMs where the
value of the electron drift frequency has been reported.
Evidently, such information is necessary for the reliable
interpretation of the experimental data. Moreover, it
seems that special experimental studies elucidating the
dependence of the observed modes on drift effects
should be performed. Finding this dependence is
important in order to determine whether the internal
RWMs are actually relevant to the current devices. At
the same time, according to the estimates presented in
the table, the growth of the drift–tearing modes in the
ITER-FEAT seems to be rather impossible. Therefore,
it is not excluded that the general situation with MHD
activity in reactor-grade tokamaks will be more favor-
able than that in the existing devices.
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Abstract—A nonlocal kinetic equation is derived for the symmetric part of the distribution function of suprath-
ermal electrons. It is shown that Albritton equations are merely local approximations to the total kinetic equa-
tion. Even in the simplest situation, the local approximations of the nonlocal effects are impossible to construct
because of the interdependence of the variables. A self-similar solution to the equations under study is pro-
posed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An important but still unresolved problem in the
kinetic theory of plasma is that of a theoretical descrip-
tion of the transport of particles whose mean free path
λ is comparable with the spatial scale L on which the
plasma parameters vary. Under these conditions, trans-
port is nonlocal because the formation of particle fluxes
in a certain region is influenced by the regions that are
as far away as several mean free paths. That such
problems are nontrivial was recognized long ago [1];
tackling them is of vital importance for the physics of
space plasma, laser plasma, and wall plasma in toka-
maks [2–9].

Here, a kinetic description will be developed for
suprathermal electrons in a highly ionized inhomoge-
neous plasma. This problem is highly relevant because
of the need to generalize the Spitzer–Härm classical
theory [10–12]. The description will be formulated on
the basis of the time-independent kinetic equation with
a Fokker–Planck collision integral:

(1)

A series of papers by Gurevich [2, 13, 14] made this
formulation of the problem for runaway electrons gen-
erally accepted. It is worth noting that the problem of

µv
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nonlocal particle transport is also of interest from the
standpoint of general physics. Kramers [15] was one of
the first to point out that the development of a kinetic
description of diffusion in an inhomogeneous medium
is a nontrivial task. He noted the difficulties encoun-
tered in attempting to derive the diffusion equation in
conventional coordinate space,

(2)

from the simplest kinetic equation that takes into
account the spatial inhomogeneity of the medium,

(3)

Even this derivation required a mathematical trick—
switching from ordinary averaging to integration along
trajectories. At that time, however, such difficulties
were not considered to be a convincing reason to intro-
duce heuristic corrections in the kinetic equation. In
fact, Kramers pointed to the conditional character of the
diffusion equation and its close connection with the
behavior of correlation functions.

2. SIMPLE APPROXIMATIONS
FOR NONLOCAL EFFECTS

In view of the difficulties arising in this way, a wide
scope of simple approximations has been proposed for
nonlocal effects. Thus, the heat flux is approximated by
the formula [16, 17]

(4)
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where qSH is the Spitzer–Härm heat flux, λT =
vT(x)/νe(vT) is the mean free path of suprathermal elec-

trons, and vT = .
An interesting formula for the electron distribution

function was suggested by Krasheninnikov [18]:

(5)

where fM is a Maxwellian function.
The kinetic equation is also modified to describe

correlation effects associated with the non-Markovian
character of the nonlocal transport [19–21]. Thus,
Reshetnyak and Shelepin [21] proposed to supplement
the kinetic equation with the terms

(6)

In recent years, the kinetic equation is often treated
with fractional derivatives of the form [22–24]

(7)

It is clear that a deeper understanding of the kinetics of
nonlocal transport can be derived from analytic solutions
to the Fokker–Planck equations. The most simple and
effective method was offered by Albritton [25, 26], who
considered the following kinetic equation for the distribu-
tion function of suprathermal electrons, f(x, v , θ):

(8)

This equation is written in terms of the collision inte-
gral of the form proposed by Gurevich for a kinetic
description of the runaway electrons [13, 14]. To sim-
plify the problem, the term with the electric field in
Eq. (8) is neglected in comparison with the term
describing the effect of the spatial inhomogeneity, and
the distribution function is assumed to be close to a
spherically symmetric function,

. (9)

In this formulation, the problem was reduced to that
of solving the kinetic equation for the symmetric part of
the distribution function,

(10)

where ε =  and dy ∝ n(x)dx.
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An elegant and simple solution can be obtained
through the simplifying replacement of the sought dis-

tribution function by a Maxwellian function,  

. We can see from Eq. (10) that, in this case, the

contribution of suprathermal electrons is underesti-
mated. However, we can now derive a simple analytic
solution for the electron distribution function from the
diffusion equation

, (11)

where the role of the time is played by the variable ω =
ε4/4. The solution so obtained has the form

(12)

Albritton’s assumption of the symmetry of the dis-
tribution function can be justified by using the solution
to the initial equation in terms of the self-similar vari-
ables [27]:

(13)

where ξ = ε/T(x).
The equation that was solved in [27] has the form

(14)

where the following notation was introduced:

(15)

Note that Aleksandrov et al. [28] proposed self-similar
variables that are close to those in Eq. (14). From the
solution to the self-similar kinetic equation [27], we
can see that the distribution function is close to a spher-
ically symmetric function for a plasma with a suffi-
ciently large effective charge,

(16)

It should also be noted that the tail of the self-similar
distribution function behaves in accordance with a
power law:

(17)

∂F0

∂ε
---------

∂FM

∂ε
----------

∂2
F0

∂y
2

----------- β
∂F0

∂ω
---------+ Q ω ε( ) x,( )

Te y( )

ε3
-------------

∂2
FM

∂ε2
------------–= =

F0 ε y,( ) G y y' ε ε', , ,( )
Te y'( )

ε'
3

--------------
∂2

FM ε'( )

∂ε'
2

---------------------.∫–=

f x v µ, ,( ) f ξ µ,( )
T

α
x( )

-----------------,=

γµ αf ξ ∂f
∂ξ
------+ 

  γE µ∂f
∂ξ
------ 1 µ2

–
2x

-------------- ∂f
∂µ
------+ 

 –

=  
1
ξ
--- ∂

∂ξ
------ f

∂f
∂ξ
------+ 

  β
2ξ2
-------- ∂

∂µ
------ 1 µ2

–( ) ∂f
∂µ
------ ,+

γ = 
Te

2

2πe
4Λne

---------------------
d Teln

dx
--------------–  = const, γE = 

eETe x( )

2πe
4Λneγ

------------------------.

β
1 Zeff+

2
----------------- 1

γ1/2
--------.>=

f v( ) 1

V
a

------,∝
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003



NONLOCAL EQUATION FOR THE SYMMETRIC PART OF THE ELECTRON 787
which indicates a limited range of applicability of the
self-similar approach and perhaps of other approxima-
tions used in this way.

3. NONLOCAL KINETIC EQUATION

Here, we consider the problem of the kinetics of
suprathermal electrons in an inhomogeneous plasma in
Albritton’s formulation [see Eq. (8)]. We will try to
obtain closed equations for the symmetric part of the
electron distribution function, but, in contrast to Albrit-
ton’s approach, none of the terms will be omitted. We
introduce the dimensionless variable ξ = ε/T(x), in
terms of which the initial equation for the electron dis-
tribution function takes the form

(18)

We consider only those electron distribution func-
tions that are almost spherically symmetric. To do this,
we represent the electron distribution function as the
sum of two components,

. (19)

Note that the parameter range in which these assump-
tions are valid is known from the self-similar solutions
obtained in [27] by Gurevich and Lebedev’s technique.
The orthogonalization procedure yields the following
set of two equations:

(20)

(21)

It is particularly important here to take into account the
quasi-symmetry of the electron distribution function.
The situation at hand is close to that with the one-
dimensional kinetic equation considered by Kramers.
In order to achieve the Markovian character of the pro-
cesses under the conditions of spatial inhomogeneity,
he had to introduce additional independent variables. In
the situation in question, a similar role is played by the
assumptions that the electron scattering is strong and
the distribution function of suprathermal electrons is
almost spherically symmetric.

The symmetry of Eqs. (20) and (21) enables us to
obtain the functional for the symmetric part of the elec-
tron distribution function. Using Eq. (21), we write the
following equation for the Green’s function:

. (22)
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Now, the asymmetric part of the electron distribution
function can be written in the form

. (23)

The Green’s function can be represented in terms of the
Whittaker functions in a standard way. Then, the total
equation for the symmetric part of the distribution func-
tion of suprathermal electrons becomes

(24)

where the right-hand side makes it possible to obtain a
Maxwellian function on the basis of the competition
between friction and diffusion in velocity space.

The results based on Albritton’s approach corre-
spond to the following equation without the integral
term:

(25)

Here, the kernel of the integral operator is considered to
be in fact a delta function:

(26)

From this, we can conclude that, although the solution
to the Albritton equation is of integral form, it reflects
the nonlocal properties of the particle transport only
roughly. It should also be noted that the variables x and
v  in the integral part of the functional obtained are
interdependent because ξ = ξ(x, v ) = mv 2/2T(x).

The integral equation derived above can only be
solved by making additional simplifying assumptions.
However, it has a simple solution in self-similar vari-
ables [27, 28]:

. (27)

In these variables, we perform the necessary manipula-
tions to obtain the set of equations

(28)

(29)

In the particular case α = 2, we arrive at the sought solu-
tion for the symmetric part of the distribution function
of suprathermal electrons:

. (30)
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Here, a few comments are in order regarding the
character of the self-similar variables [27]. In our anal-

ysis, the quantity γ = –  serves as the self-

similarity parameter. For γ = const, we actually deal
with a differential equation. Since the self-similarity of
the variables imposes an additional requirement on the
density,

(31)
we arrive at the following condition:

(32)

Resolving this equation yields the model profiles of the
plasma parameters:

. (33)
The most interesting point is that, for α > 3/2, the

monotonic behavior of T(x) differs from that of n(x)
[29–31]. For instance, in the direction chosen in our
analysis, the profile T(x) decreases, while the profile
n(x) increases. Hence, the problem of fast electrons in a
divertor, which is of interest from both a theoretical and
an experimental point of view, can be treated in self-
similar variables.

4. CONCLUSIONS

(i) A nonlocal kinetic equation for the symmetric
part of the distribution function of suprathermal elec-
trons has been derived.

(ii) It has been shown that Albritton equations are
merely local approximations of the total kinetic equa-
tion.

(iii) It has been established that, even in the simplest
situation, it is difficult to obtain local approximations
for nonlocal effects because of the interdependence of
the variables x and v.

(iv) A self-similar solution to the kinetic equations
under study has been proposed.
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Abstract—Optical emission spectra from the microwave discharge plasma that is used to activate gas-phase
deposition of carbon films are systematically investigated under various deposition conditions. The line emis-
sion intensities from CH and C2 radicals, which are responsible for the growth of the diamond and graphite
phases, respectively, are studied as functions of the main macroparameters of the process. To find the relation
between the features of the emission spectra and the composition of the films obtained, the films were examined
using Raman spectroscopy and electron microscopy. It is shown that monitoring the relative intensities of the
spectral lines can be used to obtain the desired type of film, in which case the state of the substrate surface and
the presence of a catalyst on it also play an important role. Experiments on the deposition of carbon films in the
pulsed regime of plasma excitation show the possibility of changing the phase composition of the film by vary-
ing both the pulse repetition rate and the off-duty factor. At the same average microwave power, the rate of film
deposition in the pulsed regime of plasma excitation is lower than that in a continuous discharge; however, the
growth rate of the graphite phase decreases insignificantly. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microwave discharges are widely used to activate
gas-phase deposition of various carbon films (poly- and
monocrystalline diamond films, diamond-like films,
and nanocarbon films) and carbon nanotubes [1, 2]. The
structure and composition of these coatings depend on
the macroparameters of the process, such as the micro-
wave power, gas mixture composition, pressure in the
working chamber, substrate temperature, etc. [3, 4].
According to the experimental data, even small varia-
tions in these parameters significantly affect the film
properties. Moreover, the properties of the films
obtained under identical conditions can depend on the
initial transition processes. All this necessitates in situ
monitoring of the gas-phase and surface processes. One
of the most simple and efficient methods for such mon-
itoring is the plasma optical-emission spectroscopy
(OES), which consists in recording plasma emission in
the spectral range of interest.

Under proper conditions, OES can be used to deter-
mine the electron, vibrational, and rotational tempera-
tures of the gas mixture [5]. It is especially interesting
to quantitatively determine the plasma composition
(the concentrations of atoms and radicals involved in
plasmochemical reactions) and to study the influence of
various parameters on the characteristics of the carbon
films obtained [6, 7].

In recent years, a new modification of the method of
gas-phase deposition of carbon films—activation by a
1063-780X/03/2909- $24.00 © 20789
pulsed microwave discharge—has been developed [8,
9]. In the regime of pulsed plasma excitation, during the
time intervals between the pulses, the radicals and ions
recombine with a characteristic time on the order of a
few milliseconds. The difference between the recombi-
nation rates for different plasma components responsi-
ble for the growth or etching of different carbon phases
allows one to shift the deposition process toward the
production of films with the desired characteristics by
varying the pulse parameters (application of this
method to depositing diamond films was studied in
detail in [9]). Thus, varying the pulse repetition rate and
off-duty factor gives an additional degree of freedom
when finding optimal conditions for the deposition of
the desired type of film. By using OES, one can monitor
the concentrations of the plasma components, and, by
varying the pulse parameters, it is possible to control
the plasma composition and, accordingly, the film
structure.

The aim of this study is to systematically investigate
the optical spectra from microwave discharges operat-
ing over a wide range of powers, pressures, and concen-
trations during the deposition of amorphous, nanocrys-
talline, microcrystalline, and doped diamond films, as
well as carbon nanotubes. The characteristic features of
the plasma used for the pulsed deposition of these coat-
ings at different pulse repetition rates are also exam-
ined.
003 MAIK “Nauka/Interperiodica”
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(4) attenuator, (5) waveguide, (6) rod, (7) shorting plunger, (8) flowmeter unit, (9) PC, (10) monochromator with a recording device,
(11) cavity, (12) plasma, (13) substrate holder, and (14) thermostabilized vapor source.
2. EXPERIMENT

2.1. Experimental Facility

The experiments were carried out at the microwave
cavity device designed by the conventional scheme
including a microwave section, gas channel, and dis-
charge chamber (see Fig. 1).

A 6-kW microwave power generated by a magne-
tron operating at a frequency of 2.45 GHz was supplied
through matching elements and a waveguide to the
working chamber. The discharge was ignited in the
working volume (cavity) of the chamber in the antinode
of the microwave electric field. The cavity design
ensured that the microwave energy was focused in the
region above the substrate holder (made of molybde-
num) so that the discharge plasma was in the immediate
vicinity of the substrate. To carry out experiments in the
pulsed regime of plasma excitation and film deposition,
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Fig. 2. Block scheme of OES system. The blocks located
between the CCD array and the memory are the analog
device signal processor (ADSP) of the CCD array, a 12-bit
analog-to-digital converter (AduC812), and the controller
of the programmable logic device (CPLD).
the magnetron output power could be modulated at a
frequency from 100 Hz to 3 kHz with an off-duty factor
of 2 or higher. Two viewing windows in the chamber
sidewall allowed one to measure the substrate tempera-
ture and record the plasma emission spectra. The sub-
strate temperature was measured with the help of a Wil-
liamson Pro 90 double-beam pyrometer.

The working gas mixture was introduced directly
into the discharge region through an inlet in the upper
wall of the discharge chamber. When employing liquid
sources of carbon (e.g., a mixture of ethanol with trim-
ethylborate), we used a thermostabilized vaporizer, in
which hydrogen was passed through the liquid; then,
the mixture produced entered the reactor. By varying
the temperature of the liquid, we could vary the vapor
concentration in the working mixture. The required
temperature of the liquid phase was sustained by a Pelt-
ier element; the system described allowed us to control
the ethanol temperature in the range from –10 to +10°ë
with an accuracy of no worse than 0.1°ë. When
employing a gaseous source of carbon (methane, pro-
pane), the gas mixture composition was monitored with
the help of flowmeters. The pumping-out of the gas
mixture was performed near the removable part of the
chamber bottom. The pressure p in the chamber was
varied in the range 40–160 torr.

To diagnose the discharge plasma, we designed a
spectroscopic system (Fig. 2) that enabled us to mea-
sure the plasma emission spectrum in the wavelength
range from 350 to 800 nm with a resolution of 0.5 nm.
The spectroscopic system, which was connected to the
viewing window, consisted of an optical system with a
light chopper, a quartz light fiber, a B&M Spektronik
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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BM-100 monochromator with a resolution of
0.83 nm/mm and a focal distance of 100 cm, a Toshiba
TCD1201 CCD array with a digitizer board, a control-
ler, and a PC with software for processing the spectral
data.

2.2. Sample Preparation

The sample preparation procedure was determined
by the desired film type. Specifically, to deposit a dia-
mond film, a nanodiamond suspension in a photoresist
was deposited onto a Si(100) surface. This technique
enabled us to obtain a nucleation site density of 1010–
1011 cm–2. To grow CNTs, a silicon surface was covered
with a 100-nm titanium barrier diffusion layer and, over
it, a 10- to 20-nm layer of Ni or Co catalyst.

We carried out experiments in hydrogen, in mix-
tures of ç2 with C2H5OH (the ethanol content was 6.4–
13.6%), and in CH4 : H2 mixtures within the pressure
range 40–80 torr. To obtain doped diamond films
(DDFs), a trimethylborate was added to the mixture.
The concentration of trimethylborate in the liquid mix-
ture was 3%. In the experiments, the substrate temper-
ature was within the range 700–800°ë. The microwave
power deposited into the discharge was varied from 500
to 1500 W. Under these conditions, the gas temperature
of the plasma was typically no higher than 2500 K [10].
At a degree of ionization of 10–6, the electron tempera-
ture was in the range 1.3–1.7 eV [10, 11]; in this case,
the degree of dissociation of hydrogen could be as high
as 15% [10].

2.3. Methods for Studying the Films Obtained

The morphology of the films obtained was studied
by using a scanning electron microscope (SEM) with a
resolution of 10 nm. Raman spectroscopy in the range
500–2000 cm–1 was used to study the phase composi-
tion of the films.

3. RESULTS OBTAINED

A typical emission spectrum from the plasma of a
H2 : C2H5OH : (CH3O)3B gas mixture that was used to
deposit a diamond film is shown in Fig. 3. Intense
molecular bands corresponding to the C2, d3Πg 
a3Πu (λ = 471.5, 473.7, 512.9, 516.5, 558.5, and
563.5 nm) and CH A2∆  X2Π (λ = 431.4 nm) tran-
sitions are clearly seen in the spectrum. The spectral
lines were identified using the data from [12, 13].

The intensity ratios of the characteristic lines of ë2

(d3Πg  a3Πu, 516.5 nm), CH (A2∆  X2Π
431.4 nm), and H (Hβ, H(n = 4)  H(n = 2),
486.1 nm; Hα, H(n = 3)  H(n = 2), 656.3 nm) are of
especial interest because the C2Hx and CHx radicals
take part in the formation of different carbon phases,
whereas atomic hydrogen participates in their etching.
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
The ratio between the radical densities affects the mor-
phology of the films obtained. The implementation of
OES for determining the absolute or relative concentra-
tion of an individual ingredient in the discharge is
rather complicated because the discharge properties in
experiments on the deposition of carbon films are such
that the requirements imposed by different measure-
ment methods (e.g., that the plasma be optically trans-
parent and be in an equilibrium state) are usually not
met in practice. However, the measurements of the rel-
ative intensities of the lines of the radicals that are of
most importance for the growth of carbon films can be
used to determine the channels for film growth; namely,
a change in the ratio of the line intensities [C2]/[CH]
can reflect the change in the sp2/sp3 ratio in the film
obtained. In this connection, we performed a series of
experiments aimed at elucidating the dependence of the
relative intensities of the above lines on the variations
in the most important technological macroparameters.
Concurrently, the films produced were analyzed by
using Raman spectroscopy and an SEM.

3.1. Experiments on the Deposition 
of Doped Diamond Films

To determine the influence of the microwave power
and the ethanol concentration on the film composition
(provided that all the other deposition conditions are
kept constant: p = 80 torr, the hydrogen gas flow rate is
10 l/h, and the substrate temperature Tsub = 800°ë), the
spectra were studied as functions of the deposited
power varying in the range 700–1200 W and the etha-
nol concentration in the gas mixture varying from 7 to
13.6% (the regime of DDF deposition). When varying
the power, the ethanol concentration was kept at a level
of 13%, and when varying the ethanol concentration,
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Fig. 3. Emission spectrum from the plasma of an H2 :
C2H5OH : (CH3O)3B working gas mixture.
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the power was kept equal to 900 W. The dependences
obtained are shown in Figs. 4 and 5.

It can be seen from Fig. 4 that the [ë2]/[ëç] ratio
monotonically increases with increasing power. The
content of the sp2 phase in the films increases in the
same manner. At high powers, there is a tendency
toward the growth of cauliflower-like clusters on the
sample surface. The best-quality diamond films were
deposited at low powers. This fact can be explained by
the increase in the degree of dissociation of hydrocar-
bons (and, consequently, the increase in the production
rate of ë2 radicals acting as sites in which the sp2 phase
originates) with increasing microwave power.

As the ethanol concentration increases, the
[ë2]/[ëç] ratio first increases and then, after reaching
a maximum value of 11%, begins to decrease (Fig. 5).
The best-quality diamond films were obtained at an eth-
anol concentration of 13.6%. Figure 6a presents an
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Fig. 4. Intensity ratio [C2]/[CH] vs. input microwave power.
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Fig. 5. Intensity ratio [C2]/[CH] vs. total concentration of
C2H5OH and (CH3O)3B in the working mixture.
SEM photograph of such a film (the growth time is four
hours). The film is a continuous polycrystalline struc-
ture with a typical size of crystalline grains of a few
microns. The Raman spectrum of the film is shown in
Fig. 7. It is seen that a diamond line is only present in
the spectrum.

For a wide range of applications, the films must be
deposited selectively [14, 15]. This can be ensured by
employing a selective process of nucleation with the
help of a nanodiamond-containing photoresist and a
conventional lithography technique. An SEM photo-
graph of a film thus obtained is shown in Fig. 6b. It is
clearly seen that the film grows only at the points at
which the initial nucleation sites occurred, whereas in
all the other regions, no film was deposited although the
concentrations of active radicals and chemical compo-
nents were the same throughout the entire gas phase.
Therefore, the presence of the required gas-phase com-
position is a necessary, but in sufficient, condition for
the growth of diamond films; the structure and condi-
tion of the substrate surface are also of great impor-
tance.

Nevertheless, the experimental results show that the
monitoring of the [ë2]/[ëç] ratio can be used to deter-
mine, e.g., the optimal power required to obtain a
desired type of carbon film. Apparently, in order to use
OES to determine the optimum ethanol concentration,
it is also necessary to take into account oxygen lines
when measuring the ratios of the spectral line intensi-
ties.

As a diamond film grows, the methane concentra-
tion in the CH4 : H2 gas mixture increases from 0.5 to
14%. In contrast to the case with ethanol, both the
[C2]/[CH] ratio and the content of the diamond phase in
the film monotonically increase. In the concentration
range 0.5–2.5%, polycrystalline diamonds grow. At
elevated concentrations (up to 10%), cauliflower-like
coatings were produced. At even higher concentrations,
nanocrystalline and amorphous carbon films were
obtained.

3.2. Experiments on the Growth
of Carbon Nanotubes

Preliminary studies showed that the composition
and structure of the films produced from a CH4 : H2
mixture significantly depend on the methane concentra-
tion. However, without special treatment of the sub-
strate surface on which the films grow, no nanocarbon
tubes arise. To obtain carbon nanotubes, some amount
of catalyst (iron, nickel, cobalt, etc.) should be depos-
ited on the substrate surface. This was done either by
magnetron sputtering with subsequent annealing (as a
result, metal clusters with dimensions of 10–50 nm are
formed) or by means of chemical (electrochemical)
deposition of the catalyst nanoparticles. Typical condi-
tions under which CNTs were deposited are as follows:
a pressure of 80 torr, microwave power of 400 W, and
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
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substrate temperature of 790°C. The measured depen-
dences of the ratios of the spectral line intensities on the
gas pressure and the methane concentration are shown
in Figs. 8 and 9, respectively. The intensity of the CH
line changes only slightly throughout the entire range in
which the methane concentration and the gas pressure
vary. In contrast, the intensity of the C2 line signifi-
cantly increases with increasing gas pressure or meth-
ane concentration. For example, as the methane con-
centration increases from 2.5 to 14%, the intensity of
the C2 line monotonically increases by nearly two
orders of magnitude, which allows one to expect a sig-
nificant increase in the content of the graphite phase in
films at high methane concentrations in the mixture.
The studies of the films obtained with the help of an
SEM and Raman spectroscopy confirm this prediction:
for substrates covered with a Ti–Ni layer, no film was

1.0 µm6250X(‡)

MR1/6 S1 min
Distance  5.00 µm(b)

Fig. 6. SEM photographs of (a) a high-quality DDF on a sil-
icon surface and (b) a selectively grown high-quality DDF.
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deposited at CH4 concentrations lower than 8%,
whereas at concentrations of 8–14%, a growth of amor-
phous carbon was observed.

In this study, we did not work with higher concen-
trations of CH4. To obtain nanotubes, we used an origi-
nal deposition scheme with a graphite grid as an extra
electrode placed near the substrate surface. This
scheme allowed us to reduce the degree of film etching
by atomic hydrogen and increase the carbon concentra-
tion in the plasma. A graphite grid with 1-mm-diameter
holes and a grid pitch of 2 mm was installed close to the
sample at a distance of 2 mm above it. It was supposed
that, in the gap between the grid and the sample, the
carbon concentration would significantly increase and
the hydrogen concentration would decrease, which
would stimulate the formation and growth of CNTs. In
the methane concentration range 8–14%, the growth of
nanotubes on the nickel surface was observed (Fig. 10).
The use of an additional electrode allows one, if neces-
sary, to vary the sample potential with respect to the
plasma potential in order to provide, e.g., the aligned
growth of nanotubes and additional nucleation. In these
experiments, we did not applied OES to study emission
from the gap; this is a subject for our further research.

3.3. Effect of the Pulsed Regime of Plasma Excitation 
on the Process of Carbon Film Deposition

The use of the pulsed regime of plasma excitation
(with a pulse repetition rate of 500 Hz and an off-duty
factor of 2) enabled us to widen the parameter range
corresponding to the growth of high-quality diamond
films, which agrees with the data of [9].

In the experiments on the growth of CNTs in the
pulsed regime of plasma excitation (with a pulse repe-
tition rate of 500–1500 Hz and an off-duty factor of 2), a
series of CNT films were successfully grown. Figure 11
shows the Raman spectrum of a CNT film obtained
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Fig.7. Raman spectrum of the high-quality DDF shown in
Fig. 6a.
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in such a regime. The spectrum coincides with the spec-
trum of CNT films obtained in the continuous-wave
regime. However, the experiments showed a significant
decrease in the CNT growth rate as compared to the
growth rates in the continuous-wave regime. The possi-
ble reason is the change of the kinetics of plasmochem-
ical processes due to both the difference in the recom-
bination rates of H and CxHy and the significant
increase in the peak electric field in the pulsed regime
as compared to that in the continuous-wave regime at
the same average microwave power. When comparing
the emission spectra obtained in the pulsed and contin-
uous-wave regimes, it was revealed that, in the pulsed
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Fig. 8. Intensity ratio [C2]/[CH] vs. pressure.

1110X 5 µm

tilt60Cryo Lab Moscow Univ

Fig. 10. SEM photograph of a CNT film.
regime, the intensity of the C2 line is significantly
lower, which explains the sharp decrease in the CNT
growth rate. We note that the modulation of the micro-
wave power leads to an insignificant decrease in the
intensities of the H and CH lines; this fact manifests
itself in an insignificant decrease in the growth rate of
the film. Another feature of the plasma emission spec-
trum in the pulsed regime is a strong increase in the
intensity of the Fulcher band of the vibrational transi-

tions of an H2 molecule (d3Πu  , λ = 599–
640 nm).

Later, we are going to use a time-resolved OES tech-
nique to measure the lifetimes of C2 and CH radicals
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Fig. 9. Intensity ratio [C2]/[CH] vs. methane concentration.
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Fig. 11. Raman spectrum of a typical CNT film obtained in
the pulsed regime of plasma excitation: (1) 697, (2) 1345,
and (3) 1613 cm–1.
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and atomic hydrogen, which will allow us to controlla-
bly vary the [C2]/[CH] ratio by varying the parameters
of the pulsed regime of plasma excitation.

4. CONCLUSION

Optical-emission spectra from a microwave dis-
charge plasma during the gas-phase deposition of car-
bon films have been analyzed under various deposition
conditions. The characteristic features of the pulsed
regime of plasma excitation have been studied. The line
emission intensities of CH and ë2 radicals, which are
responsible for the growth of the diamond and graphite
phases, respectively, have been studied as functions of
the deposition conditions, such as the gas mixture com-
position, the microwave power, and the pressure in the
discharge chamber. It is shown that the monitoring of
the relative intensities of certain spectral lines allows
one to control the morphological and phase character-
istics of the films produced.

The presence of the required gas-phase composition
is a necessary (but not sufficient) condition for the
growth of diamond films and carbon nanotubes. The
structure and state of the substrate surface, as well as
the presence of a catalyst on it, are also of great impor-
tance.
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Abstract—The glow intensity profile in a spherically stratified gas discharge is measured. It is shown that the
boundaries of striations are thin spherical glowing shells, whose thickness is proportional to the striation radius.
Based on the analysis of the optical-emission characteristics of spherical striations, the spatial distribution of
the electric field in the stratified discharge region is estimated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Stratification of the positive column of a dc gas dis-
charge in a tube is a well-known and thoroughly inves-
tigated phenomenon [1–4]. A similar phenomenon was
experimentally observed in a volume gas discharge [5–
8]. In this case, the cathode is the metallic wall of the
discharge chamber and the anode is a small electrode
placed in the center of the chamber. Under certain con-
ditions, the glow of the discharge region that corre-
sponds to the positive column of a discharge in a tube
has the form of nested spherical shells. By analogy with
tube discharges, this phenomenon was called spherical
stratification.

Because of the different geometries of the discharge
gap, the plasma characteristics are also different. The
main differences are as follows:

(i) In linear geometry, the current density is constant
along the current lines, whereas in spherical discharges,
it increases toward the central electrode.

(ii) In tube discharges, recombination occurs mainly
on the tube wall [4], whereas in spherical discharges,
only volume recombination is possible.

(iii) In spherical geometry, the voltage polarity is of
importance. Stratification occurs only when a positive
voltage is applied to the central electrode.

(iv) Because of the radial inhomogeneity of a spher-
ical discharge, the local gradients of the current density
vary by two orders of magnitude within the stratified
region, and the relative contributions of the drift and
diffusion components of the current can vary over a
wide range.

(v) In a spherical discharge, the problem is strictly
one-dimensional, in contrast to tube discharges, in
which, due to charge accumulation on the tube wall, the
electric field component normal to the direction of the
average current arises.
1063-780X/03/2909- $24.00 © 20796
Because of these differences, the nature of stratifica-
tion in spherical discharges differs significantly from
that in gas-discharge tubes. In particular, no spherical
stratification was recorded in discharges in pure gases;
it was observed only either after adding the high-
molecular additives [7] or at a highly inhomogeneous
distribution of the density of the working gas flowing
out with a supersonic velocity from the anode [8]. In
this study, which is based on the measurements of the
striation glow intensity, we theoretically analyze the
possible radial profile of the electric field in a spherical
discharge and compare it with floating potential mea-
surements.

2. EXPERIMENTAL SETUP

The experiments were carried out with a cylindrical
steel chamber 60 cm in height and 50 cm in diameter.
In the center of the chamber, a 0.5-cm-radius steel ball
was placed. A positive voltage of U0 = 0–2000 V was
applied from a high-voltage power supply to the ball
through a ballast resistance of 5–24 kΩ . The grounded
chamber wall acted as a second electrode (cathode).
The chamber was pumped out to a residual pressure of
p ~ 0.1 Pa and then filled with a working gas mixture.
The discharge current was varied by varying the output
voltage U0 of the power supply. The discharge was
ignited after a positive dc voltage higher than the break-
down voltage was applied to the central electrode.

After the discharge ignition, from one to ten (or even
more) striations were observed, depending on the gas
mixture pressure p, acetone concentration η, and dis-
charge current J. In the experiments reported in this
paper, the discharge operated in nitrogen with a 15%
admixture of acetone vapor at a total pressure of p =
25 Pa. In this case, from one to five striations were
observed, depending on the discharge current.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the experimental facility: (1) discharge chamber, (2) glow region, (3) focusing lens, (4) multichannel radiation
analyzer, and (5) digitized image display.
The chamber was equipped with transparent win-
dows for visual observations, photographing the dis-
charge, and recording the spatial distribution of the
glow intensity in the visible region by using a multi-
channel emission analyzer. The analyzer was a photo-
diode array composed of 1024 elements with a total
length of 2.5 cm and height of 150 µm. The analyzer
was equipped with a 12-digit analog-to-digital con-
verter, a controller, and an interface through which the
analyzer was connected to a PC. The minimum exposi-
tion time was 2 ms, and the data transfer time was about
10 ms. An optical system produced the discharge image
on the surface of the photodiode array. The spatial res-
olution of the optical system in the object plane, which
passed through the central electrode (Fig. 1), was 0.1–
0.2 mm.

3. RESULTS AND DISCUSSION

The inset in Fig. 1 shows a photograph of a stratified
discharge (with five striations) in air with a 15% admix-
ture of acetone vapor at a discharge current of 50 mA
and total pressure of 25 Pa. Figure 2 presents the results
of measurements of the intensity of optical emission
from a spherical discharge under the same conditions
(curve 1). The measured intensity profile corresponds
to the signal recorded by the multichannel optical ana-
lyzer, onto which the discharge emission was projected.
One can see that the discharge emission is modulated
by striations; however, the modulation is somewhat
smoothed by the optical system. The solid curves in
Figs. 3 and 4 show the results of measurements of the
emission intensity at the same pressure and composi-
tion of the gas mixture, but at different discharge cur-
rents (25 and 15 mA, respectively). It can be seen that
the number of striations and their dimensions (radii)
vary with varying discharge current. The total glow
intensity is nearly proportional to the discharge current.
In Fig. 4, the emission from the cathode sheath is also
present (marked by arrow). It should be noted that the
images obtained do not reproduce the actual distribu-
PLASMA PHYSICS REPORTS      Vol. 29      No. 9      2003
tions of the glow intensity over the discharge cross sec-
tion but reflect the emission intensity integrated along
the line of sight. In this context, let us consider in more
detail the system for recording optical information and
methods for its processing.

It is worth noting that, being averaged over a series
of measurements at different discharge currents, the
radial dependence of the glow intensity normalized to
the discharge current can be well fitted by the exponen-
tial dependence

(1)Im ρ( ) 1
K
----

Im k, ρ( )
Jk

-----------------
k

∑ I0 αρ–( ),exp≈=
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Fig. 2. Glow intensity profile in the image plane for p =
25 Pa and J = 35 mA. Curve 1 shows the experimental data,
and the other curves show the simulation results for differ-
ent relative striations widths: γk = (2) 0.035, (3) 0.07, and
(4) 0.1. The abscissa is the distance in the image plane (the
plane of the radiation detector).
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where Im, k(ρ) is the emission intensity at the point ρ in
the image plane for the kth regime with the discharge
current Jk, K is the number of regimes with different
discharge currents at a given density and a given com-
position of the working mixture, and α is the empirical
coefficient.

To interpret the distribution of the recorded optical
signal, we developed a simple geometrical-optics
model.

It was assumed that, in view of the spherical sym-
metry of the discharge, the radiation density Id(r) at a
point with coordinates r, θ, and ϕ inside the discharge
depends only on the radius r. The intensity of isotropic
emission from the volume element surrounding this
point is

. (2)

This emission is projected by a lens onto the image
plane, in which the radiation analyzer is placed (see
Fig. 1). The radiation emitted from the plane that passes
through the center of the discharge chamber is focused
directly on the image plane. The radiation emitted from
a certain point at the front hemisphere of the discharge
is focused by the lens onto some point on the surface of
an ellipsoid in front of the image plane; then, this radi-
ation diverges and produces a blurred spot on the image
plane. The radiation emitted from the rear hemisphere
of the discharge is focused behind the image plane;
therefore, it also produces a blurred spot on the image
plane. Thus, when the emission from a spherical dis-
charge is projected onto the image plane, the image

dI Id r( )r
2
dr θdθdϕsin=

I, arb. units
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Fig. 3. Glow intensity profile in the image plane for p =
25 Pa and J = 25 mA. The solid curve shows the experimen-
tal data, and the dashed curve shows the simulation results
for the relative striation width γk = 0.035. The abscissa is the
same as in Fig. 2.
obtained turns out to be smeared out. The signal
recorded is an integral convolution of the emission
intensity profile with the instrumental function of the
optical system, which can be found either experimen-
tally or by geometrical-optics modeling with allowance
for the parameters of the optical system. In this case,
the details of the radial structure of the discharge
beyond the object plane are somewhat smoothed when
projecting onto the image plane.

The distribution of the emission density along the
photodiode array Im(ρ) can be represented in the form of
the convolution of the radial profile of the emission
intensity Id(r):

(3)

where the transformation kernel K(ρ, r) for the given
optical system (Fig. 1) is determined by the formulas of
geometrical optics by integrating over the angular vari-
ables θ and ϕ. Figure 5 shows the kernel K(ρ, r) as a
function of ρ for r = 6 cm. In fact, the function K(ρ, r)
is an image of an infinitely thin glowing sphere with a
radius r. It can be seen that the projection of a thin
glowing shell onto the image plane (in which a photo-
diode array is placed) has the shape of a circle that is
somewhat blurred toward the inner region; however, the
outer edge of the image is fairly sharp. We note that it
is the point close to the maximum intensity in the image
plane (rather than the outer edge of the image) that cor-
responds to the radius of the glowing sphere. Taking

Im ρ( ) K ρ r,( )Id r( )r
2

r,d
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∫=
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Fig. 4. Glow intensity profile in the image plane for p =
25 Pa and J = 15 mA. The solid curve shows the experimen-
tal data, and the dashed curve shows the simulation results
for the relative striation width γk = 0.035. The abscissa is the
same as in Fig. 2.
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into account the optical transformation for a given opti-
cal system allows one to adequately reconstruct the dis-
tribution of the emission intensity in the discharge
using the measured intensity profile in the image plane.

By analogy with gas-discharge tubes, we assume
that the spherical striations in a spherical discharge are
related to the formation of regions with a nonuniform
spatial distribution of the electric field (electric double
layers) and other discharge parameters between a
small-sized (point) central anode and a surrounding
cathode. At a given composition of the working mix-
ture, the number of striations decreases with decreasing
current density. In [7], it was shown that, when the dis-
charge operates long enough without circulation of the
working mixture, the strata disappear due to a change in
the chemical composition of the plasma.

The spatial distribution of the emission intensity is
governed by the electron density and the local electron
energy distribution function (EEDF). In subsequent
estimates, we will assume that the emission from a
spherical gas discharge is caused by direct electron
impacts. This assumption agrees with the linear depen-
dence of the integral emission on the discharge current
[see Eq. (1)]. Hence, in a frequency range ∆ν, the spec-
tral intensity for a given optical transition is propor-
tional to the product of the electron current density
je(r) ~ 1/r2 and the effective excitation function ϕ∆ν(r),
which depends on the local EEDF:

(4)

where C = const is the instrumental constant. Further,
we will assume that the EEDF and, consequently, the
excitation rate ϕ(r) are determined by the local reduced
electric field E(r)/N at the point r. Hence, ϕ(r) can be
represented by the formula

(5)

where N is the gas density and A∆ν and B∆ν are the
empirical constants that depend on the gas species and
the spectral interval. Note that expressions (4) and (5)
correspond to the semiempirical dependences of the
coefficients of ionization and electron-impact excita-
tion that are widely used in gas discharge physics [4].

Let us prove now that the spherical striations are
related to the formation of electric double layers in
which the electric field is peaked due to a significant
space charge separation. Without going into details of
the double layer formation, which is related to the
joined action of the nonlinear and nonlocal kinetic and
hydrodynamic phenomena in an inhomogeneous low-
temperature discharge plasma (a comprehensive theory
of these processes has not yet been developed), we will
make some assumptions whose validity can only be
confirmed by comparing with the experimental data. In
this context, it should be noted that, in contrast to the
optical recording of striations, the probe measurements
in the given discharge geometry cannot be performed

Id r( ) C je r( ) ϕ∆ν r( ),=

ϕ∆ν r( ) A∆ν
B∆ν

E r( )/N
------------------– ,exp=
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simultaneously in the entire volume. To determine the
potential profile throughout the entire discharge vol-
ume, we used a 3-mm-long and 0.26-mm-diameter
cylindrical probe that was moved inside the discharge
chamber [7]. The measurement error was composed of
the errors in measuring the electrical parameters, errors
related to the non-steady-state character of the dis-
charge, and errors associated with the perturbations
introduced into the plasma by the probe itself. The spa-
tial resolution of the probe measurements did not allow
us to study in detail the profile of the potential in stria-
tions. This is related to the specific discharge geometry:
the small-size anode and the tendency of spherical stri-
ations to form around electrodes of any shape. Even
when the probe potential only slightly exceeds the local
floating potential (which is necessary to measure the
electron part of the current–voltage characteristic), the
probe causes a significant change in the geometry of
striations with a subsequent formation of the second
anode and a decrease in the current to the main anode.
Thus, the probe measurements can only be used for an
indirect comparison with the results obtained from an
analysis of the optical signal.

To analytically describe the radial profile of the
electric potential U(r) in the “positive column” of a
spherical discharge, we used the expression

(6)
U r( )

∆U0
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Fig. 5. Model kernel K(ρ, r) of the integral transformation
of the optical emission intensity as a function of ρ at r =
6 cm. The plotted curve corresponds to the distribution of
the calculated emission intensity from a thin glowing sphere
with radius r on the photodiode array.
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where rk is the radius of the kth striation; ∆rk = γkrk is
the width of the kth striation; ∆U0 is the potential drop
across the double layer (striation); and Umon(r) is a
smooth monotonic function that describes the cathode
fall and the slowly varying potential in the positive col-
umn, which are characteristic of a nonstratified dis-
charge [7]. The coefficients γk, which are the relative
widths of striations, will be determined below by com-
paring with the results of optical measurements. Poten-
tial profile (6) corresponds to the following radial pro-
file of the electric field:

(7)

where the first term describes the peaks of the electric
field in the double layers and the second term, Emon(r),
corresponds to the regular monotonic behavior of the
electric field in the positive column and the cathode fall
in the absence of striations. Note that, according to for-
mula (7), the electric field in the kth striation is
inversely proportional to its radius rk,

(8)

From Poisson’s equation, one can find the space charge
density, which is equal to the difference between the
densities of the positive and negative charged particles,

(9)

In this expression, the first term describes the space
charge distribution in the double layers, which corre-
spond to the peaks of the electric field (jumps in the
potential), whereas the second term describes the space
charge corresponding to the slowly varying electric
field in the region between striations.

The striation radii rk were determined by the above
procedure from the experimental data presented in
Figs. 2–4. A comparison of the model and experimental
distributions of the emission intensity in the image
plane showed that, within the measurement accuracy,
the relative widths of striations γk can be considered
equal, γ ≈ 0.03–0.04. The increase in the parameter γk to
0.07 or higher leads to the smoothing of the calculated
intensity distributions and the disappearance of the
peaks in the calculated distribution (see Fig. 2). Similar
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dependences and similar relative widths were also
found in other regimes. It is these peaks of the emission
intensity profile that are responsible for the visually
observed glow structure and that allow one to model the
plasma of a stratified discharge with a set of concentric
electric double layers [6, 8].

When estimating the energetic parameters, the
potential drop ∆U0 across a striation was set as constant
and equal to 15 V, which corresponded to the measured
(by the probe technique) voltage drop across a striation
in the positive column of a stratified discharge in the
mixture of nitrogen with acetone vapor. This qualita-
tively agrees with the observations of a similar spheri-
cally symmetric structure in the three-electrode scheme
[9], where a spherical glow around an extra anode
occurred only when the anode potential exceeded the
plasma potential by no less than 20–30 V. The potential
drop ∆U0 is approximately equal to the gas ionization
potential. This circumstance was previously used in the
kinetic model to find the EEDF [6]. In the distributions
measured in [7], the steplike structure of the floating
potential in the striation region is feebly marked
because of the large measurement errors and the influ-
ence of the probe. At the same time, the total voltage
drop across the positive column is proportional to the
total number of striations and the calculated potential
drop across a striation coincides with the above esti-
mate. In a nonstratified discharge, the total voltage drop
between the anode and the boundary of the cathode
sheath is negligibly small as compared to the voltage
drop across a stratified layer.

According to formula (8), the maximum electric
field in striations is about Ek ≈ 250(a/rk) V/cm; i.e., it
changes from 20 to 200 V/cm, depending on the stria-
tion number. At a gas pressure of p = 30 Pa, this corre-
sponds to reduced electric fields from 300 to 3000 Td.
At the same time, in the positive column of a spherical
discharge, the field Emon(r) in the gaps between stria-
tions does not exceed 1–3 V/cm (15–50 Td). However,
it is this field that sustains a constant electron current
between the striations in a spherical discharge.

In the approximation adopted, the electron flux den-
sity can be written in the form

(10)

where We(E/N) is the electron drift velocity, which
depends on the reduced electric field, and De = kTe

We(E/N)/eE is the coefficient of the longitudinal elec-
tron diffusion (here, we assume that the Einstein for-
mula that relates the mobility to the diffusion coeffi-
cient is applicable). We integrate expression (10)
assuming that, beyond narrow double layers (beyond
striations), the electric field and the electron tempera-
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ture (and, accordingly, the drift velocity We and diffu-
sion coefficient De) are constant. As a result, we obtain

(11)

where λ = aWe/De = eEa/kTe is the parameter character-
izing the ratio between the drift and diffusion compo-
nents of the electron current density. At Te ≈ 0.5–1 eV,
we have λ = 1–5. Neglecting the diffusion current in
Eq. (10), we obtain that, at distances from the anode
larger than a/λ, the electron density varies nearly
inversely proportionally to the distance squared:

. (12)

The space charge density at the points where the elec-
tric field is maximum is at least one order of magnitude
lower than the electron and ion densities at these points:

(13)

We introduce the running Debye length

(14)

where the electron temperature Te is assumed to be con-
stant. Taking into account formula (12), we find that the
electron Debye length in a spherical discharge is pro-
portional to the distance from the anode, λD ~ r. This
fact indirectly indicates that the width of the electric
field peaks in striations (the width of the regions with a
significant space charge separation) is proportional to
the striation radius. For ne(a) ~ 1010 cm–3 and Te ~ 1 eV,
we have λD(r)/r ~ 0.01, which agrees in terms of order
of magnitude with the observed relative width of stria-
tions.

Exponential dependence (1) of the averaged emis-
sion intensity on the radius can also be explained within
the approach proposed. The signal at each point is
determined by the radiation peak residing in this region
because the ratio of the intensities in the neighboring
minima and maxima is large and their positions depend
on the current as is shown in Figs. 2–4. After normaliz-
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ing to the total current, we find from Eqs. (4), (5), and
(8) that

With allowance for the fact that r is proportional to ρ,
this expressions agrees with Eq. (1). Therefore, the
coefficient α in expression (1) is a combination of the
parameters related to both the mechanism for the glow
excitation (B∆ν) and the characteristic potential drop
across a striation ∆U0 in a gas with the density N. How-
ever, to implement this dependence in practice, it is
necessary to carry out additional experiments.

To conclude, a comparison between the calculated
and measured distributions of the optical signal inten-
sity in the image plane (Figs. 2–4) has shown that stri-
ations are glowing layers that are thin compared with
their radii. The thickness of these layers has been esti-
mated. It is shown that the emission intensity from a
spherically stratified discharge is proportional to the
discharge current.
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