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2p, and 3d states of the hydrogen atom are ionized by a superstrong ultrashort laser pulse. © 2005 Pleiades Pub-
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1. INTRODUCTION

Recently, significant progress has been made in the
experimental investigation of the ionization of atoms by
a superstrong laser field. In particular, this applies to the
detailed measurements of the energy distribution of
electrons [1–4], as well as to the dependence of the ion-
ization probability on the phase of the light field that
arises in ultrashort laser pulses [5].

New experimental results have stimulated theoreti-
cal studies in which the ionization of atoms in a strong
laser field is considered both by analytical and numeri-
cal methods (see [6], as well as [7–11]). The basic prob-
lem of the theory is associated with taking into consid-
eration how the Coulomb field of an atomic residual
affects the motion of an electron in the continuum. The
point is that, for an electron bound by short-range
forces, the ionization theory in a strong field was devel-
oped as early as the classical work by Keldysh [12]. The
development of this method carried out in [13] (see
also [14]) allowed one to obtain the spectra of tunneling
electrons that are in good agreement with the experi-
mental data of [15]. The authors of [13] put forward a
hypothesis that, after a simple modification, analytical
formulas that describe the electron spectra for the pho-
todetachment from negative ions (a short-range poten-
tial) can also be applied to describe the ionization of
neutral atoms and positive ions with long-range Cou-
lomb interaction. The verification of this hypotheses is
one of the goals of the present paper.

Analytical methods for the description of electron
spectra under the ionization of neutral atoms and posi-
tive ions were also developed in [16, 17]. In [17], the
author applied the Volkov functions with a Coulomb
correction to describe the motion of a free electron in
the Coulomb field and the field of an electromagnetic
field; however, [18] cast serious doubt on the accuracy
of these functions in the case of a strong field.
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In the present work, we carried out the calculations
on the basis of adiabatic approximation that we pro-
posed and tested earlier in [19]. Recall that the basic
idea of the adiabatic approximation used is based on the
results of [20]. In that paper, the probability, found by
Keldysh, of the tunneling detachment of an electron
from a short-range potential was generalized to the case
of the tunneling ionization of an atom. This was done
by formally replacing the strength of the electric field in
the probability of tunneling in a dc field [21] by the
strength of an ac electric field of the light wave fol-
lowed by the averaging of this probability over the field
cycle. In the adiabatic approximation [19], the ac field
is replaced by a dc field at an earlier stage, in the elec-
tron wavefunctions, which can be used for calculating
various quantities, e.g., the electron spectra in the
present case. After that, the quantities obtained are
averaged over the period of the field. It is obvious that
the accuracy of such an approach must be no less than
the accuracy of calculating the total probability of tun-
neling [22]. Other variants of the adiabatic approxima-
tion were considered in [23].

In this paper, we use the atomic system of units (" =
e = m = 1).

2. WAVEFUNCTIONS IN CONTINUUM

Consider an electron that moves in the Coulomb
potential due to a charge Z and in a laser field of
strength F(t) that is linearly polarized along axis z. The
wavefunction of the electron in the dipole approxima-
tion satisfies the Schrödinger equation

(1)

Let us construct a solution to the Schrödinger equa-
tion (1) that is valid in the case of low frequencies ω of
the field. We restrict consideration to the case of the

i
∂
∂t
-----Ψ r t,( ) 1

2
--- ∇ 2– Z

r
---– zF t( )+ Ψ r t,( ).=
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continuum. We will use the adiabatic approximation,
according to which the motion of an electron is adjusted
to the variation of the field. Physically, this means that
we neglect the inertial properties of the electron when
it interacts with the field. According to the classical law
of variation of momentum, the applicability condition
of the adiabatic approximation in a continuous spec-
trum can be formulated as follows:

(2)

where F is the characteristic value of the field strength
and E is the characteristic value of the electron energy.
Condition (2) improves the applicability condition of
the adiabatic approximation that was formulated
in [19]: F/ω ! 1. Formula (2) is analogous to the rele-
vant condition that was first proposed in [16].

We write an adiabatic solution to Eq. (1) as follows:

(3)

where ΦE(F, r) is a solution to the stationary
Schrödinger equation in a uniform dc field F:

(4)

One can see that function (3) and energy E depend
on time parametrically; this is the main approximation
of the present work.

It is convenient to solve stationary Schrödinger
equation (4) in squared parabolic coordinates µ, ν, ϕ [24]
that are related to the Cartesian coordinates by the for-
mulas

(5)

Coordinates (5) are related to the conventional para-
bolic coordinates (ξ, η) by simple formulas µ2 = ξ and
ν2 = η. Squared coordinates are convenient for the
numerical solution of Schrödinger equation (4) because
the integration domain becomes more compact [25].

F
ω
----  @ E,

Ψ r t,( ) ΦE F r,( ) F F t( )= iEt–( ),exp=

1
2
--- ∇ 2– Z

r
---– zF+ ΦE F r,( ) EΦE F r,( ).=

x µν ϕ , ycos µν ϕ , zsin
1
2
--- µ2 ν2–( ).= = =

0

Veff

0µ µ µ

Z1/2

Veff

Z2/2

ν ν ν

Fig. 1. Effective potentials for the one-dimensional
Schrödinger equations (7) (a) and (8) (b).

(a) (b)
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The main properties of the squared parabolic coordi-
nates are summarized in Appendix A.

In these coordinates, the variables in Eq. (4) are sep-
arated,

(6)

and lead to two one-dimensional Schrödinger equations,

(7)

(8)

in which the separation constants Z1 and Z2 are related
by

Z1 + Z2 = 4Z.

Equation (7) describes a finite motion, and its eigen-
functions are characterized by a parabolic quantum
number n1. Equation (8) describes an infinite motion,
and its eigenfunctions can be characterized by the total
energy E (Fig. 1). Thus, the adiabatic solution to time-
dependent Schrödinger equation (1) can be expressed
as a parabolic wave

(9)

A detailed description of the algorithm used for the
numerical solution of Eqs. (7) and (8) is presented in
Appendix B.

3. AMPLITUDE AND PROBABILITY
OF THE PROCESS

Let us choose a laser pulse in the form

(10)

where Θ is the phase of the light field, which is essential
for short pulses, and T is the FWHM of the pulse.

The differential (with respect to energy) probability
of the bound–free transition between the initial |i〉  and
final |f 〉  states is given by

(11)

ΦE F r,( ) 1

2πµν
------------------M F µ,( )N F ν,( )eimϕ ,=

d2

dµ2
--------- 1 4m2–

4µ2
------------------ 2Eµ2 Fµ4– Z1+ + + M F µ,( ) 0,=

d2

dν2
-------- 1 4m2–

4ν2
------------------ 2Eν2 Fν4 Z2+ + + + N F ν,( ) 0,=

ΨEn1m r t,( )

=  
1

2πµν
------------------MEn1m F µ,( )NEn1m F ν,( ) F F t( )=

× i mϕ Et–( )[ ] .exp

F t( ) F0
πt
2T
------ 

  ωt Θ–( ), tcoscos
2

T ,≤=

dP fi

dE
---------- A fi t( ) td

T–

T

∫
2

,=
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where the wavefunction of the final state is assumed to
be normalized to the δ function over the energy scale.
The transition probability is

(12)

Thus, in contrast to the well-known study by
Keldysh [1, 2], who chose the Gordon–Volkov function
that describes the motion of an electron in a plane elec-
tromagnetic field as the wavefunction of the final state,
here we choose adiabatic functions that turn, as ω  0,
into an exact solution to the Schrödinger equation that
describes the motion of an electron in the Coulomb and
dc electric fields.

The wavefunction of the initial state in squared par-
abolic coordinates is expressed as

(13)

Here,

(14)

1F1 is a degenerate hypergeometric function, and E0 =
−Z2/2n2 is the energy of the bound state.

After the substitution of (9) and (13) into (12), the
expression for the amplitude of the process is rewritten
as

(15)

where

(16)

and )k differs from (k by the replacements µ  ν,
  , and n1i  n2i . Thus, the ioniza-

A fi t( ) F t( ) f〈 |z i| 〉 .=

i| 〉 n1in2im| 〉
Z i mϕ E0t–( )[ ]exp

πn3µν
-----------------------------------------------= =

× f n1i m µ Z
n
--- 

  f n2i m ν Z
n
--- 

  .

n n1i n2i m 1,+ + +=

f n 'm x( ) 1
m!
------ n ' m+( )!

n '!
---------------------=

× x 2m 1+( )/2 F1 1 n '– m 1; x2+,( ) x2

2
-----– 

  ,exp

AE n1in2i,
m( ) n1( )

=  1E n1in2i,
m( )

n1 t,( ) i E E0–( )t[ ]exp t,d

T–

T

∫

1E n1in2i,
m( )

n1 t,( ) ZF

2n3
------------ (4)0 (0)4–[ ]

F F t( )=

,=

(k µkMEn1 m F µ,( ) f n1i m µ Z
n
--- 

  µ,d

0

∞

∫=

MEn1 m NEn1 m
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tion amplitude of the bound state is the Fourier image
of function (16) with respect to time at the frequency
E – E0:

(17)

Strictly speaking, expression (16) is valid only for pos-
itive half-cycles of the laser field. When integrating
in (11) over negative half-cycles, one should make an
additional change n1i  n2i on the right-hand side
of (16) because the coordinates µ and ν exchange their
roles for F < 0. Recall that the projection of the orbital
momentum of an electron onto the direction of linear
polarization is preserved; therefore, amplitude (17)
depends on m parametrically. Note that, generally
speaking, the adiabatic approximation cannot be
applied at the moments when the field F(t) changes its
sign. However, this restriction does not significantly
tells on the amplitude in view of the common multiplier
F(t) in (12).

According to (11), the differential (with respect to
energy) probability of emission of an electron with a par-
abolic quantum number n1 is obtained by squaring (17):

(18)

The energy distribution of electrons integrated over
angles is obtained by summing the probabilities (18)
over all values of the parabolic quantum number n1:

(19)

Thus, the use of parabolic coordinates does not
require the solution of a system of coupled differential
equations. One should only carry out a summation over
the contributions of all parabolic partial waves.

If the initial state is defined by the principal ni and
the orbital li quantum numbers, one should take as the
initial state |i〉  an appropriate superposition of
states (13) with parabolic numbers n1i and n2i (see, for
example, [26]):

(20)

The summation indices in (20) run over nonnegative
integers that satisfy condition (14) and do not allow the
Clebsch–Gordan coefficient to vanish identically.

4. DISCUSSION OF THE RESULTS
All the numerical results obtained in this paper refer

to the energy dependence of the emission probability of

AE n1in2i,
m( ) n1( ) 1E n1in2i,

m( )
n1 Ω,( ) Ω E E0–= .=

d
dE
-------PE n1in2i,

m( ) n1( ) AE n1in2i,
m( ) n1( ) 2

.=

d
dE
-------PE n1in2i,

m( ) AE n1in2i,
m( ) n1( ) 2

.
n1 0=

∞

∑=

i| 〉 nilim| 〉=

=  Cni 1–

2
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m n1i n2i–+

2
------------------------------

ni 1–

2
-------------

m n2i n1i–+

2
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∑
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electron integrated over angles. First, note that the adi-
abatic approximation considered does not allow us to
compare our results with those of the studies [27–29],
in which the authors carried out analogous calculations
for the ground state of the hydrogen atom. The laser
parameters used in those papers satisfy adiabaticity
condition (2) only for low energies. The energy spec-
trum of an electron turns out to be rather wide. It appre-
ciably decreases only for energies that fall outside adi-
abaticity condition (2).

Therefore, we carried out calculations for the ion-
ization of excited (2s, 2p, and 3d with |m | = 2) states of
the hydrogen atom for ω = 0.056, F = 0.1, and T =

0.5

dP/dE, au
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Fig. 2. The spectra of electrons when the hydrogen atom is
ionized from the 2s (a) and 2p (b) states with m = 0. Solid
lines correspond to a cosine-shaped pulse; dashed lines, to
a sine-shaped pulse; dot-and-dash lines represent the results
of the kinetic model (25) based on the data of [13]; and the
dotted line represents the results of the kinetic model based
on the results of [17]. Radiation parameters (10) are as fol-
lows: ω = 0.056 au (λ = 800 nm), the peak intensity is 3.45 ×
1014 W/cm2 (F0 = 0.1 au), and T = 2.5 fs.
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2.5 fs. The electron spectra for the ionization from
excited states are narrower than those for the ionization
from the ground state, and the electron yield decreases
by several orders of magnitude for the energies that sat-
isfy the adiabaticity condition (2). Moreover, for
excited states, the energy of an electron in a field with a
maximal strength of F = 0.1 is greater than the binding
energy of the electron in atom; therefore, formally, the
results presented correspond to the case of barrier-sup-
pressed ionization. The question concerning the ioniza-
tion from the excited states of an atom was repeatedly
raised in the literature (see, for example, [4, 30]).

The results of calculations are represented in Figs. 2
and 3; the electron energy is measured in the units of

ponderomotive energy Up = /4ω2.

The results are compared with analogous results
obtained in the models considered in [13, 17]. In these

F0
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Fig. 3. The spectra of electrons when the hydrogen atom is
ionized from the 2p state with |m | = 1 (a) and from the 3d
state with |m | = 2 (b). The notation and the parameters are
the same as those in Fig. 2.
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works, analytic formulas were presented for the ioniza-
tion rates of an atom by linearly polarized monochro-
matic radiation. In these formulas, the ionization rates
naturally depend on the number of absorbed photons.
In both models, the quantity Wn was obtained by the
numerical integration of the differential (with respect to
angles) ionization rate:

The form of the latter formula depends on the model
used.

In [13], the initial state of an electron was taken
from the model of a short-range potential, the final state
of the electron was described by the Gordon–Volkov
wavefunction, and the calculations were carried out in
the semiclassical approximation. The result for linearly
polarized radiation has the form

(21)

Here, the upper and lower signs correspond to µ = 1 and
µ = 2, respectively;

(22)

P is the Legendre polynomial; ξ = F · p/ω2; E0 is the
binding energy of the electron in the initial state; and l
and m are the orbital and magnetic quantum numbers of
the electron, respectively. The constants A, ν, and κ =

Wn 2π
Wnd
Ωd

---------- θsin θ.d

0

π

∫=

dWn

dΩ
----------

pA2

4π
--------- κ

ω
---- 
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---+ 
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l m+( )!

----------------------

× Pl
m 1 p2 θsin
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κ2
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µ 1 2,=

∑
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 are determined by the wavefunction of the initial
state

(23)

for a short-range potential, ν = 0.

For a neutral atom or a positive ion, formula (23)
with ν = 1 provides a correct asymptotic description of
the wavefunction with appropriate replacements of the
normalization factor A and the binding energy E0;
therefore, an assumption was made in [13] that for-
mula (21) can also be applied to describe the ionization
electron spectra of neutral atoms, rather than solely for
negative ions. However, the neglect of the effect of the
Coulomb field of an atomic residual on the motion of a
free electron implies the neglect of rescattering phenom-
ena that have been observed in the recent work [31];
from the formal point of view, this is not admissible in
the case of a strong field.

In [17], the Gordon–Volkov wavefunction with a
Coulomb correction was used for describing the final
state of an electron. Here, we present a result for the
barrier-suppressed ionization of the s state of a hydro-
gen-like atom with the charge number Z and the princi-
pal quantum number np by linearly polarized radiation:

(24)

Here,

γ = ωZ/Fnp is the Keldysh parameter; p|| and p⊥  are the
longitudinal and transverse (with respect to the polar-
ization vector) components of momentum, respec-
tively; and Ai is the Airy function. Paper [17] does not
contain analytic expressions for the ionization rate of
the states with l > 0.

The rates (21) and (24) of ionization from the
excited states of the hydrogen atom prove to be so large
that their product multiplied by a time interval on the
order of the laser-pulse duration yields a probability
greater than 1. Therefore, in the present case, these
quantities should be treated precisely as transition rates
rather than transition probabilities per unit time.

To obtain reasonable results with the rates (21) and
(24), we wrote kinetic equations that were solved for a
pulse with the envelope from formula (10) (unfortu-

2E0

Φ0 r( ) Arν 1– e κ r– Ylm θ ϕ,( ),=

dWn

dΩ
----------

p2ω2ZD2

π2 2F( )4/3np
2

----------------------------Ai2 Z2/np
2 p⊥

2 p||
2γ2/3+ +

2F( )2/3
------------------------------------------------

 
 
 

.=

D
4Z3

Fnp
4
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  np

,=
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nately, the dependence on the initial phase of the pulse
in this case is lost):

(25)

Here, Cn is the probability of ionization with the
absorption of n photons, C0 is the initial concentration
of neutral atoms, and Nmax is the maximal number of
absorbed photons taken into account in the calcula-
tions.

System (25) can formally be solved in quadratures,
which, however, cannot be applied to numerical calcu-
lations in view of the insufficiently smooth behavior of
the integrands. Therefore, it is more convenient to solve
numerically the kinetic equations themselves. Unfortu-
nately, this problem is stiff [32]. For such systems, spe-
cial numerical methods were developed in [33].

The solution of system (25) results in a set of ioniza-
tion probabilities that differ by the number of absorbed
photons. Then, these probabilities are interpolated over
a continuous spectrum of energies. The values of the
probabilities contain at most seven correct digits; this
restricts Nmax and, hence, the upper boundary of the
energy spectra of electrons.

As additional information, Fig. 4 presents a compar-
ison of the electron spectra obtained in [29], when the
hydrogen atom is ionized from the ground state, with
the results obtained in [13] by multiplying the ioniza-
tion rate by the length of the laser pulse. One can see

dC0

dt
--------- Wn 'C0,

dCn

dt
---------

n ' 1=

Nmax

∑– WnC0,= =

C0 T–( ) 1, Cn T–( ) 0, n 1 … Nmax., ,= = =

0 2

Probability density

10–4

64 8 10 12 14

1

10–8

10–6

10–2

10–10

Fig. 4. Electron yield under the tunneling ionization of the
hydrogen atom from the 1s state. Comparison of the results
of [29] (solid line) with those of the model of [13] (rhombs)
and the kinetic model (25) based on [13] (dot-and-dash
line). Radiation parameters are as follows: ω = 0.074 au
(λ = 680 nm), and the peak intensity is 2 × 1014 W/cm2

(F0 = 0.076 au).

E/Up
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that the spectrum obtained in [13] has a substantially
steeper slope compared with the results of [29]; appar-
ently, this is associated with the neglect of rescattering
processes. The results of [29] cannot be compared with
the model of [17] because, for the radiation parameters
chosen in [29], the Keldysh parameter is not suffi-
ciently small.

The diagrams in Fig. 4 show that the electron spec-
tra do not contain plateaulike regions in which the elec-
tron distribution relatively weakly depends on energy.
This conclusion is in agreement with the results of [34],
in which the authors established theoretically and
experimentally that such plateaulike regions disappear
as the intensity of laser radiation intensity increases.

5. CONCLUSIONS

The main results obtained in the present paper are as
follows.

1. Within an adiabatic model, we have calculated the
energy spectra of electrons generated as a result of ion-
ization of hydrogen atoms from excited states by an
intense laser pulse.

2. A kinetic model based on the analytic formulas
of [13] well describes the spectra of electrons in the
low-energy domain; however, in the high-energy
region, the agreement between the results of this model
and our results is worse. This fact by no means implies
that the model of [13] is inapplicable in the general
case, because our calculations were performed for a
very short laser pulse.

3. The same conclusion applies to the model pro-
posed in [17]. The results of this model can be compared
with the results of our calculations only in the case of
ionization of the hydrogen atom from the 2s state.
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APPENDICES

Appendix A

Squared Parabolic Coordinates

Here, we present the form of the scale factors (see, for
example, [24]) for squared parabolic coordinates (5):

(A.1)hµ hν µ2 ν2+ , hϕ µν .= = =
ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005
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Using these factors, we can construct all vector differ-
ential operators as applied to the given system of coor-
dinates. For example, the volume element has the form

(A.2)

The components of the operator ∇  are expressed as

(A.3)

Finally, the Laplacian in the variables (µ, ν, ϕ) has the
following structure:

(A.4)

Appendix B

General Description of the Algorithm

Formally, Eq. (7) corresponds to a finite one-dimen-
sional motion with “energy” Z1/2 (Fig. 1a). The bound-
ary conditions for M(E, µ) are given by

(B.1)

(B.2)

Let  be the first classical turning point. A conve-
nient method for solving Eq. (7) is given by the step-by-
step expansion of M(F, µ) in power series [25]. To this
end, the function M(F, µ) is first expanded in a power
series

(B.3)

in the neighborhood of zero up to the point µ = µ1 = 1
and then is expanded in power series in the neighbor-
hoods of other points µ1 < µi ≤  that lie at a distance
of 0.5 from each other:

(B.4)

d3r µν µ2 ν2+( )dµdνdϕ .=

∇ µ
1

µ2 ν2+
--------------------- ∂

∂µ
------, ∇ ν

1

µ2 ν2+
--------------------- ∂

∂ν
------,= =

∇ ϕ
1

µν
------ ∂

∂ϕ
------.=

∇ 2 1

µ µ2 ν2+
------------------------- ∂

∂µ
------ µ

µ2 ν2+
--------------------- ∂

∂µ
------ 

 =

+
1

ν µ2 ν2+
------------------------ ∂

∂ν
------ ν

µ2 ν2+
--------------------- ∂

∂ν
------ 

  1

µ2ν2
----------- ∂2

∂ϕ2
---------.+

M F µ,( ) µ 0→ µ 2 m 1+( )/2,∼

M F µ,( ) µ ∞→
1
µ
--- F1/2

3
--------µ3–

F

F1/2
--------µ+ 

  .exp∼

µ̃

M F µ,( ) µ 2 m 1+( )/2 C0 pµ
2 p

p 0=

∞

∑=

µ̃

M F µ,( ) Cip µ µi–( )p;
p 0=
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∑=
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i.e., in each interval [µk, µk + 1], a separate expansion of
the function M(F, µ) is used. The method of calculating
the coefficients Cip is described below. The summation
of series (B.3) and (B.4) is terminated when the abso-
lute values of three consecutive terms of the series are
less than the maximal of these values by a factor of
1012. This method, which was proposed in [25], is con-
venient since it does not require the partition of the inte-
gration interval into a large number of subintervals and
thereby significantly speeds up the calculations. The
oscillations of the function M(F, µ) do not produce any
appreciable effect on the stability of the algorithm.

Nevertheless, in the classically inaccessible domain
(µ > ), this method leads to incorrect results due to the
effect of the exponentially growing solution of (7) that
violates the boundary condition (B.2). To overcome this
drawback, we performed a standard numerical integra-
tion of Eq. (7) in the classically inaccessible region
starting from the point  satisfying the condition

to the point ; i.e., we integrated in backwards. The
boundary condition was chosen according to (B.2). The
separation constant Z1 was determined from the condi-
tion of sewing together the logarithmic derivatives of
the function M(F, µ) on the left and right of the turning
point :

(B.5)

The parameter Z1 takes discrete values numbered by
the parabolic quantum number n1 = 0, 1, …, which is
equal to the number of zeros of the function M(F, µ).
For a given n1, it is convenient to seek the quantity

 by solving (B.5) for Z1 in a small neighborhood

of its semiclassical value  (see below):

As a rule, the difference between the exact and semi-
classical values of  is no greater than 1%. This dif-
ference decreases as energy E increases. For E > 1, the
contribution of the classically inaccessible region to the
observable characteristics of the ionization process
does not exceed 0.5%. In this case, we can set the wave-
function M(F, µ) equal to zero in the domain of µ > 
and restrict the analysis to the semiclassical formulas
for the expansion constant Z1.

µ̃

µ̃

1
µ̃
--- F1/2

3
--------µ̃3–

E

F1/2
--------µ̃+ 

 exp 10 6–<

µ̃

µ̃

d
dµ
------ M F µ,( )ln

µ µ̃ 0–=

d
dµ
------ M F µ,( )ln

µ µ̃ 0+=
.=

Z1 n1,

Z1 n1,
WKB( )

Z1 n1,
WKB( ) ∆Z– Z1n1

Z1 n1,
WKB( ) ∆Z ,+≤ ≤

∆Z 0.1 Z1 n1 1+,
WKB( ) Z1 n1,

WKB( )–[ ] .≈

Z1n1

µ̃
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Equation (8) formally differs from (7) by the
replacements

F  –F, Z1  Z2 = 4Z – Z1. (B.6)

For E > 0, Eq. (8) corresponds to an infinite one-dimen-
sional motion with energy Z2/2 (see Fig. 1b). Thus,
while moving in the direction of ν, an electron passes
over the barrier. Denote by  the value of the coordi-
nate at which the barrier height attains its maximum:

where

The integration of Eq. (8) over the interval 0 ≤ ν ≤ 
reproduces the corresponding procedure with Eq. (7)
up to the replacements (B.6). However, the boundary
condition for ν  ∞ differs from (B.2); namely,

(B.7)

where A is a normalization constant and φ0 is the phase
calculated during the integration.

During the numerical integration of Eq. (8), the
asymptotic representation (B.7) proves to be virtually
inaccessible, because it becomes valid only for ν ~
1000. The phase φ0 was calculated with the use of an
improved semiclassical approximation for the function
N(F, ν) (see below):

(B.8)

(B.9)

(B.10)

ν̃

ν̃2 1
3
--- V a– a2

V
-----– 

  ,=

V
1

21/3
-------- b 4a3 b+( ) 2a3– b–[ ]

1/3
,=

a
E
F
---, b

27
8F
------- 4m2 1–( ).= =

ν̃

N F ν,( ) ν ∞→

≈ A
ν
--- F1/2

3
--------ν3 E

F1/2
--------ν φ0+ + 

  ,sin

NWKB F ν,( )

=  
D

X ν( )
---------------- X ν '( ) ν 'd

ν

∫ β+ ,sin

X2 ν( ) k2 ν( ) 1

4k2 ν( )
---------------- d2

dν2
--------k2 ν( )–=

+
5

16k4 ν( )
------------------- d

dν
------k2 ν( )

2

,

k2 ν( ) 1 4m2–

4ν2
------------------ 2Eν2 Fν4 Z2.+ + +=
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Here, β is a constant phase determined by the lower
limit of the phase integral and k2(ν) makes the sense of
the square of the classical momentum. It can be shown
that, for ν  ∞, expressions (B.8)–(B.10) imply for-
mula (B.7). In the domain of ν > , the numerical inte-
gration of Eq. (8) is continued with a variable step,

which allows one to avoid a large number of oscilla-
tions at each step. Introducing the notation

we obtain the following expression for the constant D
in the function (B.8):

(B.11)

The numerical integration of Eq. (8) is performed
until the difference between the values of D at two con-
secutive steps becomes less than 10–6–10–7. The value
of ν =  at which the integration is terminated is com-
parable with the value of  in magnitude. Thus, the
numerical solution to Eq. (8) is correctly brought to the
required asymptotic form (B.7) by using the semiclas-
sical approximation (B.8). The constant D in (B.8) is
related to the constant A in (B.7) by the formula D =
AF1/4.

It is convenient to normalize the states of the contin-
uous spectrum (6) as follows:

(B.12)

The possibility of normalizing to the δ function over
the energy scale is guaranteed by the infinite motion in
the direction of ν. In this case, the main contribution to
the integral with respect to ν is made by the domain of
ν @ 1, and condition (B.12) is simplified:

(B.13)

(B.14)

ν̃

∆ν i ν i ν i 1––≡ π
X ν i 1–( )
-------------------,=

a1 N F ν i 1–,( ) X ν i 1–( ),=

a2 N F ν i,( ) X ν i( ),=

α X ν( ) ν ,d

νi 1–

νi

∫=

D2 a1
2 a2

2 2a1a2 αcos–+( ).=

ν
µ

ΦE 'n1' m '' F r,( )ΦEn1m F r,( )d3r∫
=  δm 'mδn1' n1

δ E ' E–( ).

MEn1' m* F µ,( )MEn1m F µ,( ) µd

0

∞

∫ δn1' n1
,=

ν2NE 'n1m* F ν,( )NEn1m F ν,( ) νd

0

∞

∫ δ E ' E–( ).=
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The normalization constant of the function N(F, ν)
is chosen according to its asymptotic behavior with the
use of (B.14). For large values of ν, the function N(F, ν)
can be expressed in terms of a linear combination of
outgoing Nout and incoming Nin parabolic waves. The
normalization to the δ function over the scale of ener-
gies in atomic units is equivalent to the normalization to
the value of the flux in the outgoing wave Iout = 1/2π
[35]. Under condition (B.13), this assertion is equiva-

lent to the requirement that D = .

When ν > , one can apply the semiclassical form
of the wavefunction (B8). Its convenient form for cal-
culations is given below.

Appendix C

Calculation of Coefficients in the Expansions 
of the Function M(F, µ)

The substitution of (B.3) and (B.4) into (7) leads to the
following recurrence relations for the coefficients Cin:

(C.1)

(C.2)

According to the boundary condition (B.1), we must
set

and choose the constant (B.1) with a nonzero initial
value. The initial values of Cin (i > 0) are calculated
from the condition of sewing together the series (B.3)
and (B.4) at the boundaries of their domains of defini-
tion. The sewing consists in equating the functions and
their first and second derivatives to the left and right of
the boundary point µi . The second derivatives are
equated so that the one-dimensional Schrödinger equa-

2/π
ν

C0n

Z1C0 n 1–, 2EC0 n 2–, FC0 n 3–,–+
4n n m+( )

----------------------------------------------------------------------------,–=

Cin
1

n n 1–( )µi
2

-------------------------- 2 n 1–( ) n 2–( )µiCi n 1–,




–=

+ n 2–( ) n 3–( ) 1
4
--- m2– Z1µi

2 2Eµi
4 Fµi

6–+ + +

× Ci n 2–, 2 Z1µi 4Eµi
3 3Fµi

5–+( )Ci n 3–,+

+ Z1 12Eµi
2 15Fµi

4–+( )Ci n 4–,

+ 4 2Eµi 5Fµi
3–( )Ci n 5–, 2E 15Fµi

2–( )Ci n 6–,+

--– 6FµiCi n 7–, FCi n 8–,–




.

C0 1–, C0 2–, C0 3–, 0= = =
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tion (7) hold at the boundary point µi itself. Here, we
present the final results. For i = 1, we have

For i > 1, we have

Here, ∆µi = µi – µi – 1 .

Appendix D

Semiclassical Formula 
for the Separation Constant

To calculate the separation constant Z1 for E > 0, a
semiclassical formula was derived in [36]. Here, we
present it as applied to squared parabolic coordinates.

Introduce the notation k = . For

we have

where the parameter t > 1 is determined from the equa-
tion

C10 µ1
2 m 1+( )/2 C0nµ1

2n,
n 0=

∞

∑=

C11 µ1
2 m 1+( )/2 2n m

1
2
---+ + C0nµ1

2n 1– ,
n 0=

∞

∑=

C12
1
2
---µ1

2 m 1+( )/2 2n m+( )2 1
4
---– C0nµ1

2n 2– ,
n 0=

∞

∑=

C1 1–, … C1 5–, 0.= = =

Ci 0, Ci 1– n, ∆µi( )n,
n 0=

∞

∑=

Ci 1, nCi 1– n, ∆µi( )n,
n 1=

∞

∑=

Ci 2,
1
2
--- n n 1–( )Ci 1– n, ∆µi( )n,

n 2=

∞

∑=

Ci 1–, … Ci 5–, 0.= = =

2E

k3 3π n1
1
2
--- m 1+( )+ F<

Z1 n1,
WKB( ) t

t 1–( )2
-----------------k4

F
----,=

t

t 1–( )3/2
-------------------- F2 1

1
2
---–

1
2
---; 2; t–, 

  4 n1
1
2
--- m 1+( )+

F

k3
----,=

n1 0 1 … ., ,=
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For

we have

The spectrum Z1 is bounded from below: Z1 ≥ –E2/F.

Appendix E

Improved Semiclassical Approximation

A solution to the equation

(E.1)

where W(ν) > 0, is sought for in the semiclassical
approximation as

(E.2)

The substitution of (E.2) into (E.1) leads to the fol-
lowing nonlinear equation for the unknown function
X(ν):

(E.3)

If the function X(ν) varies slowly, all the terms
of (E.3) that contain derivatives make a small contribu-
tion. Therefore, we use an iterative method for solving

Eq. (E.3) by taking X =  as the zeroth step of itera-
tion. As is known, the traditional semiclassical approx-
imation corresponds to this zeroth iteration step. The

first iteration step, i.e., the substitution of X =  into
the derivatives in (E.3), yields

(E.4)

As a rule, Eq. (E.3) allows one to reproduce up to
eight significant digits obtained by numerically solving
Eq. (E.1). The second iteration step yields up to 14 sig-

k3 3π n1
1
2
--- m 1+( )+ F>

Z1 n1,
WKB( ) t

t 1+( )2
------------------k4

F
----,–=

t 1–( )2

t 1+( )3/2
-------------------- F2 1

1
2
--- 3

2
---; 3; 1 t–, 

 

=  16 n1
1
2
--- m 1+( )+

F

k3
----.

d2N

dν2
---------- W ν( )N ν( )+ 0,=

N ν( ) D

X ν( )
---------------- X ν '( ) ν 'd

ν

∫ β+ .sin=

X2 ν( ) 1
2X
-------d2X

dν2
--------- 3

4X2
--------- dX

dν
------- 

 
2

W+ + + 0.=

W

W

X2 ν( ) W
1

4W
--------d2W

dν2
----------

5

16W2
------------- dW

dν
-------- 

 
2

.+–=
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nificant digits; however, in this case, the formula for
X(ν) proves to be unstable with respect to the variation
of the parameter W(ν). Setting W(ν) = k2(ν) in (E.4), we
arrive at (B.8).

Appendix F

Calculation of the Outgoing Flux

In squared parabolic coordinates, the flux I through
the surface S defined by the equation ν = const is
expressed as

(F.1)

where eν is a unit vector in the direction of ν. It is well-
known that the current density j in the state with the
wavefunction Ψ is given by

(F.2)

The components ∇  in the squared parabolic coordinates
are given by formulas (A.3). 

In the state (6) with the asymptotics (B.7), the out-
going component has the form

(F.3)

Substituting (6) into (F.2) and (F.1), we obtain

(F.4)

Appendix G

Calculation of the Phase Integral

For definiteness, we choose  as the lower limit in
the phase integral of the function (B.8). Then,

where N(F, ν) is a normalized solution to Eq. (8).

I Sνd

S

∫∫ j,⋅=

dSν µν µ2 ν2+ dµdϕeν,=

j
1
2i
----- Ψ*∇Ψ Ψ∇Ψ *–( ).=

Nout F ν,( ) A
2i
-----1

ν
---=

× i
3
--- Fν3 iE

F
-------ν iφ0+ + 

  .exp

Iout
A2

4
------ F M2 µ( ) µ.d

0

∞

∫=

ν

φ0 N F ν,( ) πX ν( )
2

--------------- ,arcsin=
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Let us single out analytically the growing terms
from the phase integral. To this end, we represent the
integrand as

where

and transform it by integrating by parts and singling out
e(ν) = 2Eν2 + Fν4:

Here,
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Abstract—Corrections of the α3, α4, and α5 orders are calculated for the Lamb shift of the 1S and 2S energy
levels of muonic hydrogen µp and muonic deuterium µd. The nuclear structure effects are taken into account
in terms of the charge radii of the proton rp and deuteron rd for one-photon interaction, as well as in terms of
the electromagnetic form factors of the proton and deuteron for the case of one-loop amplitudes. The µd–µp
isotope shift for the 1S–2S splitting is found to be equal to 101003.3495 meV, which can be treated as a reliable
estimate when conducting the corresponding experiment with an accuracy of 10–6. The fine-structure intervals
E(1S) – 8E(2S) in muonic hydrogen and muonic deuteron are calculated. © 2005 Pleiades Publishing, Inc. 
                   
1. INTRODUCTION

The structure of the energy levels of hydrogen-like
atoms is an important test for the Standard Model and
can be used to obtain more accurate values of a number
of fundamental constants (the fine structure constant,
the electron and muon masses, the proton charge
radius, etc.) [1–3]. In recent years, considerable interest
in this area is associated with the muonic hydrogen
atom [4–6]. This interest is primarily stimulated by the
intensification of experimental investigations of the
2P–2S Lamb shift and hyperfine structure of the
muonic hydrogen atom. Measurement of the 2P–2S
Lamb shift with an accuracy of 3 × 10–5 will make it
possible to obtain the proton charge radius with an
accuracy of 10–3, which is by an order of magnitude
better than the currently available accuracy known from
various sources including electron–proton scattering
and the 2P–2S Lamb shift in the hydrogen atom. Mea-
surement of the hyperfine splitting of the ground state
of the muonic hydrogen with a similar accuracy would
enable one to determine a new value of another funda-
mental parameter of the theory, the Zemach radius [7],
with an accuracy of 10–3 [8, 9]. Then, it would be used
to calculate a new theoretical value for hyperfine split-
ting in the hydrogen atom and to obtain bounds on the
proton polarizability correction [10–12].

Finally, there is an additional experimental problem
of investigating the 1S–2S large fine structure in the
muonic hydrogen atom and the muonic hydrogen–
muonic deuterium isotope shift for this splitting [13, 14],
which makes it possible to acquire new data on the
charge radii of the proton and deuteron. It is worth not-
ing that both indicated quantities are among the most
accurately measured quantities for the hydrogen atom.
In particular, the current value of the hydrogen–deute-
1063-7761/05/10106- $26.001021
rium isotope shift measured for the 1S–2S splitting, the
measurement accuracy for which increases by three
orders of magnitude in the past decade, is equal to [15]

(1)

and the 1S–2S interval in hydrogen was measured with a
record accuracy of several hundredths of kilohertz [16]:

(2)

Experimental investigations of intervals (1) and (2) in
muonic hydrogen are yet under preliminary prepara-
tion.

Various contributions to the energy levels of muonic
atoms were theoretically evaluated many years ago in
[17–19] (see also other references in review [1]). In
recent years, various corrections in the energy spectrum
of muonic hydrogen were primarily calculated for the
2P–2S Lamb shift and the hyperfine structure of the S
levels [12, 20–23]. In those works, a particle interaction
operator was constructed, which provided α5- and
α6-order corrections for the 2P–2S interval and the
hyperfine splitting of the 1S and 2S levels (α is the fine
structure constant). At present, it is necessary to theo-
retically analyze corrections of orders α3, α4, and α5 in
the Lamb shift of the 1S and 2S levels of muonic hydro-
gen and muonic deuteron, in the µp–µd isotope shift for
the 1S–2S transition, which remains unknown to date,
and in the fine structure interval E(1S) – 8E(2S). Such
calculations may promote more active experimental
investigations of fine structure intervals (1) and (2) in

∆νIS E 2S( ) E 1S( )–[ ] D E 2S( ) E 1S( )–[ ] H–=

=  670994334.64(15)  kHz,

∆ν1S–2S H( ) 2466061413187103(46) Hz,=

δ 1.9 10 14– .×=

                         
 © 2005 Pleiades Publishing, Inc.
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muonic hydrogen and, as a result, more accurate deter-
mination of fundamental physical constants such as the
charge radii of the proton and deuteron and the muon
mass.

In this work, numerical results are obtained for con-
tributions of the α3, α4, and α5 orders in the 1S–2S split-
ting and in the µp–µd isotope shift for this splitting.
Numerical values of certain contributions are calcu-
lated by known analytical formulas. Most contributions
for the 1S and 2S energy levels in muonic hydrogen and
the isotope shift are obtained for the first time in the
integral form, which is used for numerical estimates.
The dependence of the overwhelming majority of cor-
rections on the principal quantum number is nontrivial;
i.e., it is not reduced to a factor of 1/n3. The cause of
such a dependence is associated with the characteristic
photon momenta and will be discussed below. The aim
of this work is to calculate quantum-mechanical correc-
tions in the muonic hydrogen–muonic deuteron isotope
shift for the 1S–2S transition and in the fine structure
interval E(1S) – 8E(2S), as well as to obtain the numer-
ical values of these quantities with an accuracy of 10–9.
These values can be considered as reliable checkpoints
both for the realization of corresponding experiments
and for the extraction of more accurate values for the
charge radii of the proton and deuteron and the muon
mass from these experimental data.

The fine structure of the energy spectrum of hydro-
gen-like atoms has long been studied using various
methods [1, 14, 24]. With the accuracy to the (Zα)4

terms, the energy levels of the S states of a hydrogen-
like atom consisting of the particles with masses m1 and
m2 are given by the expression

(3)

Although the relative theoretical error in Eq. (3), which
is attributed to uncertainties in the fine structure con-
stant α and particle masses, is on the order of 10–7, we
present the numerical values in Eq. (3) with an accuracy
of 0.0001 meV, which is important for analyzing vari-
ous intervals of the fine structure of the energy spec-
trum. We used the following values of the fundamental
physical constants [3]:

α–1 = 137.03599976(50),

mµ = 0.105658357(5) GeV,

mp = 0.938271998(38) GeV,

md = 1.875612762(75) GeV.

En = m1 m2
µ Zα( )2

2n2
-----------------–

µ Zα( )4

2n3
----------------- 1 3

4n
------– µ2

4m1m2n
-------------------+–+

=  

µp 1S( ): 1043927826470.3586 meV;

µp 2S( ): 1043929722866.0601 meV,

µd 1S( ): 1981268455762.7537 meV;

µd 2S( ): 1981270453188.8081 meV.







JOURNAL OF EXPERIMENTAL A
The contribution of Eq. (3) to the µp–µd isotope shift
for the 1S–2S transition is decisive (see table). At the
same time, a number of important effects of both elec-
tromagnetic and strong interactions should be consis-
tently taken into account in order to obtain the isotope
shift with the accuracy to α5 terms inclusively.

2. EFFECTS OF ONE- 
AND TWO-LOOP VACUUM POLARIZATION

IN ONE-PHOTON INTERACTION

Our calculations of the energy spectra of hydrogen-
like atoms are performed using the quasipotential
method, where a bound state of two particles is
described by the Schrödinger-type equation [25, 26]

(4)

where

µR = E1E2/M is the relativistic reduced mass, and M =
E1 + E2 is the bound-state mass. The quasipotential of
Eq. (5) is constructed in QED perturbation theory by
means of off-shell two-particle scattering amplitude T
projected onto the positive frequency states at zero rel-
ative energies of the particles:

(5)

. (6)

Since the muon mass is larger than the electron
mass, the Bohr radius of µp is smaller than the Bohr
radius of the hydrogen atom. As a result, the Bohr
radius of µp and the electron Compton wavelength are
of the same order of magnitude:

where me is the electron mass and µ is the reduced mass
of two particles in the µp atom. For this reason, vacuum
polarization effects in the energy spectrum of muonic
hydrogen increase significantly [27]. Figure 1 shows
one- and two-loop vacuum-polarization effects in the
one-photon interaction.

In order to evaluate the contribution from the dia-
gram shown in Fig. 1a (electron vacuum polarization) to

G f[ ] 1– ψM
b2

2µR
--------- p2

2µR
---------– 

  ψM p( )≡

=  
qd

2π( )3
-------------V p q M, ,( )ψM q( ),∫

b2 E1
2 m1

2– E2
2 m2

2,–= =

V V 1( ) V 2( ) V 3( ) …,+ + +=

T T 1( ) T 2( ) T 3( ) …,+ + +=

V 1( ) T 1( ), V 2( ) T 2( ) T 1( )G f T 1( ) …,–= =

"
2

µe2
--------   " 

m
 

e

 
c
 --------- 0.737384,=
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deuterium and in the isotope shift ∆EIS

∆EIS
Formula, 

Ref.2S

5 6 7

270453188.8081 101030.3530 (3)
[1]

(5)

(6)

–245.3205 204.7085 (13)

0.0014 –0.0010 [28]

(15)

–0.2811 0.2616 (16)

(19)

–1.5606 1.2476 (20)

[30]

(23)

–0.0004 0.0004 (24)

[30]

(25)

–0.0035 0.0023 (26)

–0.0050 0.0035 [30]

[19]

0.0322 –0.0480 (29)

[19]

–0.0696 0.0413 (39)
        

Corrections of the 

 

α

 

3

 

, 

 

α

 

4

 

, and 

 

α

 

5

 

 orders in the Lamb shift of the 1

 

S

 

 and 2

 

S

 

 energy levels of muonic hydrogen and muonic 

    

Contribution
to the atomic energy

 

µ

 

p

 

, meV

 

µ

 

d

 

, meV

    

1

 

S

 

2

 

S

 

1

 

S

   

1 2 3 4

Fine-structure formula

 

E

 

n

 

 = 

 

m

 

1

 

 + 

 

m

 

2

 

 –  –  

 

×

 

 

1043927826470.3586 1043929722866.0601 1981268455762.7537 1981

 

α

 

(

 

Z

 

α

 

)

 

2

 

-order contribution of one-loop vac-
uum polarization to 1

 

γ

 

 interaction

–1898.8379 –219.5849 –2129.2820

 

α

 

(

 

Z

 

α

 

)

 

4

 

-order Wichmann–Kroll contribution 0.0114 0.0012 0.0126

 

α

 

2

 

(

 

Z

 

α

 

)

 

2

 

-order contribution of two-loop vac-
uum polarization (VP–VP) to 1

 

γ

 

 interaction –1.8816 –0.2426 –2.1871

α2(Zα)2-order contribution of two-loop vac-
uum polarization (2-loop) to 1γ interaction –12.6144 –1.4112 –14.0141

α3(Zα)2-order contribution of three-loop 
vacuum polarization (VP–VP–VP) to 1γ 
interaction

–0.0029 –0.0003 –0.0034

α3(Zα)2-order contribution of three-loop 
vacuum polarization (VP–2-loop) to 1γ 
interaction

–0.0223 –0.0030 –0.0251

α3(Zα)2-order contribution of three-loop 
vacuum polarization (Π (p6)) to 1γ interac-
tion

–0.0340 –0.0045 –0.0380

α3(Zα)2-order contribution of relativistic ef-
fects and vacuum polarization in first-order 
perturbation theory 0.1962 0.0249 0.2515

α3(Zα)2-order contribution of relativistic ef-
fects and vacuum polarization in second-
order perturbation theory –0.2644 –0.0559 –0.3194

µ Zα( )2

2n2
------------------ µ Zα( )4

2n3
------------------

1 3
4n
------ µ2

4nm1m2
--------------------+–
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5 6 7

(41)

–0.1750 0.3114 (42)

(43)

–0.0005 0.0009 (45)

(46)

–0.0021 0.0005 (47)

[1]

0.7594 –0.7164 [19]

0.0052 –0.0051 [1]

[1]

0.0029 –0.0027 [19]

0.0253 0.1053 [1]

26.6825 –152.6597 (48)

[1, 23]

–0.3674 2.4429 (51)

[19, 23]

(52)

0.1824 –1.0478 (53)

(54)

0.0898 –0.6823 (55)

[38]

11.5064 –80.6577 [36, 39]

[40]

–0.0126 0.0128 [41]

270452980.2974 101003.3495
Table 1.  (Contd.)

1 2 3 4

α2(Zα)2-order contribution of two-loop vac-
uum polarization in second-order perturba-
tion theory –2.0343 –0.1532 –2.3675

α3(Zα)2-order contribution of three-loop 
vacuum polarization (VP–VP, VP) in sec-
ond-order perturbation theory –0.0061 –0.0002 –0.0073

α3(Zα)2-order contribution of three-loop 
vacuum polarization (2-loop VP, VP) in sec-
ond-order perturbation theory –0.0059 –0.0016 –0.0069

α(Zα)4-order muon self-energy contribution 
and muon vacuum polarization contribution

5.1180 0.6543 0.9395

α(Zα)5-order radiative corrections 0.0355 0.0044 0.0414

Radiative corrections and α2(Zα)4-order 
vacuum polarization

0.0178 0.0025 0.0209

(Zα)5-order recoil correction 0.3009 0.0428 0.1781

(Zα)4-order nuclear structure contribution 38.5711 4.8214 213.4218

(Zα)5-order nuclear structure contribution –0.1464 –0.0183 –2.9384

α(Zα)4-order nuclear structure contribution 
and vacuum polarization

0.2127 0.0274 1.4155

α(Zα)4-order nuclear structure contribution 
and vacuum polarization in second-order 
perturbation theory 0.1327 0.0135 0.8913

(Zα)5-order nuclear polarizability contribu-
tion

–0.1291 –0.0161 92.0511

α(Zα)4-order hadron vacuum polarization 
contribution

–0.0864 –0.0108 –0.1010

Resulting contribution 1043927824598.8893 1043929722650.1499 1981268453925.6873 1981
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the particle interaction operator, it is necessary to make
the following change in the photon propagator [27]:

(7)

For the hydrogen atom,

,

where µe is the reduced mass of two particles in the
hydrogen atom. In this case, neglecting the first term in
the denominator on the right-hand side of Eq. (7), one
obtains

At the same time, when

,

where m1 is the muon mass, as in muonic hydrogen, the
parameters µα and me are of the same order of magni-
tude and the expansion in α in the denominator of
Eq. (7) is invalid. In this case (for muonic hydrogen),
the particle interaction operator should be constructed
in the one-photon approximation, using exact expres-
sion (7). In what follows, we will take into account that
electron vacuum polarization makes α3-, α4-, and
α5-order contributions to the energy spectrum of the S
states.

Taking into account Eq. (7), the modification of the
Coulomb potential

due to vacuum polarization is given by the following
expression in the momentum representation [27]:

(8)

The Fourier transform of Eq. (8) yields the correspond-
ing operator in the coordinate representation:

(9)

This expression makes it possible to obtain the α3-order
correction for electron vacuum polarization in the

1

k2
---- α

3π
------ s

s2 1– 2s2 1+( )
s4 k2 4me

2s2+( )
---------------------------------------.d

1

∞

∫

k2–( ) k2 µe
2 Zα( )2 me

2 Zα( )2∼ ∼=

α
15πme

2
----------------.–

k2 µ2 Zα( )2 m1
2 Zα( )2∼ ∼

VC k( ) Ze2/k2–=

VVP
C k( ) 4πZαα

π
--- ξ2 1–

3ξ4
------------------ 2ξ2 1+( )

k2 4me
2ξ2+

--------------------------- ξ .d

1

∞

∫–=

VVP
C r( ) α

3π
------ ξ ξ2 1– 2ξ2 1+( )

ξ4
-----------------------------------------d

1

∞

∫=

× Zα
r

------- 2meξr–( )exp– 
  .
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energy spectrum of the 1S and 2S states of the muonic
hydrogen atom. Using the wavefunctions of the 1S and
2S states in the form

(10)

where W = µZα, we represent this correction as

(11)

where

and

(12)

where

Electron vacuum polarization effects are very sensitive
to the structure of the bound state, because the charac-
teristic momentum of particles in the muonic hydrogen
atom is equal to µ(Zα). For this reason, the contribution
of the amplitudes under consideration with electron
vacuum polarization is not reduced to the factor

Its dependence on the principal quantum number is
more complex and is given by Eqs. (11) and (12). The

ψ100 r( ) W3/2

π
----------e Wr– ,=

ψ200 r( ) W3/2

2 2π
--------------e Wr/2– 1 Wr

2
-------– 

  ,=

∆E1γ VP, 1S( ) µ Zα( )2α
3π

---------------------- ρ ξ( ) ξ 1

p1
2 ξ( )

-------------,d

1

∞

∫–=

p1 ξ( ) 1
meξ
W

---------, ρ ξ( )+
ξ2 1– 2ξ2 1+( )

ξ4
-----------------------------------------,= =

∆E1γ VP, 2S( ) µ Zα( )2α
6π

----------------------–=

× ρ ξ( ) ξ 1

p2
2 ξ( )

------------- 2

p2
3 ξ( )

------------- 3

2 p2
4 ξ( )

-----------------+– 
  ,d

1

∞

∫

p2 ξ( ) 1
2meξ

W
------------.+=

ψC 0( ) 2
1/n3.∼

(a) (b) (c) (d)

Fig. 1. One- and two-loop vacuum polarization effects in
the one-photon interaction.
ICS      Vol. 101      No. 6      2005
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numerical values

(13)

of the contribution of electron vacuum polarization for
the 1S and 2S states of muonic hydrogen and muonic
deuteron differ from each other due to the reduced mass
of two particles. The contribution of muon vacuum
polarization can be obtained from Eq. (8) by changing
me  m1. This α5-correction in the energy spectrum
of the muonic hydrogen-like atom is presented in the
table along with the muon self-energy correction.

Let us consider the modification of the Coulomb
potential due to the two-loop vacuum polarization (see
Fig. 1). The contribution of the first diagram containing
two sequential loops can be found by means of double
change (7) in the photon propagator. In the coordinate
representation, the corresponding particle interaction
operator has the form

(14)

and makes the following contribution to the energy
spectrum:

(15)

(16)

∆E1γ VP,

µp 1S( ): –1898.8379 meV;

µp 2S( ): –219.5849 meV,

µd 1S( ): –2129.2820 meV;

µd 2S( ): –245.3205 meV,







=

V1γ VP–VP,
C r( ) α2

9π2
-------- ρ ξ( ) ξ ρ η( ) η Zα

r
-------– 

 d

1

∞

∫d

1

∞

∫=

× 1

ξ2 η2–
---------------- ξ2 2meξr–( )exp η2 2meηr–( )exp–( )

∆E1γ VP–VP, 1S( ) µα2 Zα( )2

9π2
------------------------–=

× ρ ξ( ) ξ ρ η( ) η 1

ξ2 η2–
---------------- ξ2

p1
2 ξ( )

------------- η2

p1
2 η( )

--------------–
 
 
 

d

1

∞

∫d

1

∞

∫

=  
µp: –1.8816 meV,

µd: –2.1871 meV,



∆E1γ VP–VP, 2S( ) µα2 Zα( )2

18π2
------------------------–=

× ρ ξ( ) ξ ρ η( ) η 1

ξ2 η2–
----------------d

1

∞

∫d

1

∞

∫

× ξ2 1

p2
2 ξ( )

------------- 2

p2
3 ξ( )

-------------– 3

2 p2
4 ξ( )

-----------------+ 
 

– η2 1

p2
2 η( )

-------------- 2

p2
3 η( )

--------------– 2

2 p2
4 η( )

-----------------+ 
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To calculate the contributions from the diagrams
shown in Figs. 1c and 1d, which are determined by the
second-order polarization operator, it is necessary to
use the following substitution into the photon propaga-
tor [29]:

(17)

In this case, when calculating the numerical value of the
contribution, it is convenient to use the coordinate rep-
resentation and to reduce the particle interaction poten-
tial to the form

(18)

This potential provides the following corrections in the
Lamb shift of the S levels of muonic hydrogen and
muonic deuteron:

=  
µp: –0.2426 meV,

µd: –0.2811 meV.



1

k2
---- α

π
--- 

 
2 f v( )

4me
e k2 1 v 2–( )+

----------------------------------------- vd

0

1

∫

=  
α
π
--- 

 
22
3
--- v

v

4me
2 k2 1 v 2–( )+

-----------------------------------------d

0

1

∫

× 3 v 2–( ) 1 v 2+( ) Li2
1 v–
1 v+
-------------– 

  2Li2
1 v–
1 v+
------------- 

 +




+
3
2
--- 1 v+

1 v–
------------- 1 v+

2
-------------

1 v+
1 v–
------------- vlnln–lnln

+
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16
------ 3 v 2–( ) 1 v 2+( ) v 4

4
------+

1 v+
1 v–
-------------ln

+
3
2
---v 3 v 2–( ) 1 v 2–

4
--------------- 2v 3 v 2–( ) vln–ln

+
3
8
---v 5 3v 2–( )
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 r -------–= 
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 2 -------–=
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(19)

(20)

where

Since we numerically evaluate the contribution to the
energy spectrum, the corresponding results are pre-
sented with an accuracy of 0.0001 meV.

3. THREE-LOOP VACUUM POLARIZATION
IN ONE-PHOTON INTERACTION

The three-loop vacuum polarization amplitudes in
one-photon interaction also make α5-order contribution
(see Figs. 2a and 2b). The diagram shown in Fig. 2a
makes the following contribution to the potential:

(21)

× f v( ) vd

1 W 1 v 2–
me

------------------------+
 
 
 

2
------------------------------------------

0

1

∫

=  
µp: –12.6144 meV,

µd: –14.0141 meV,



∆E1γ 2-loop  VP ,  2 S ( ) 
1

12
 

π
 2 ----------- µα 

2
 Z α( ) 

2
 

W
 

2

 
m

 

e

 2 -------–=

× f v( ) vd

1 W 1 v 2–
2me

------------------------+
 
 
 

2
------------------------------------------ 1 2

p3 v( )
--------------– 3

2 p3
2 v( )

------------------+

0

1

∫

=  
µp: –1.4112 meV,

µd: –1.5606 meV,



p3 v( ) 1

1
2me

W 1 v 2–
------------------------+

----------------------------------.=

VVP–VP–VP
C r( ) Zα

r
------- α3

3π( )3
------------- ρ ξ( ) ξd

1

∞

∫–=

× ρ η( ) η ρ ζ( ) ζd

1

∞

∫d

1

∞

∫

× 2meζr–( ) ζ4

ξ2 ζ2–( ) η2 ζ2–( )
------------------------------------------exp

+ 2meξr–( ) ξ4

ζ2 ξ2–( ) η2 ξ2–( )
------------------------------------------exp

+ 2meηr–( ) η4

ξ2 η2–( ) ζ2 η2–( )
------------------------------------------- .exp
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Using Eqs. (7) and (17), the contribution of the dia-
gram shown in Fig. 2b to the potential can be repre-
sented in the integral form

(22)

The corrections to the energy spectrum of the µp and µd
atoms that correspond to these interactions are

(23)

VVP–2-loop  VP
C

 
4

 
µα

 

3

 
Z

 
α( )

 
9

 
π

 3 -------------------------–=

× ρ ξ( ) ξ f η( )
η

------------ η1
r
---d

1

∞

∫d

1

∞

∫

× 2meηr–( ) η2

η2 ξ2–
---------------- 2meξr–( ) ξ2

η2 ξ2–
----------------expexp .

∆EVP–VP–VP 1S( ) µα3 Zα( )2

27π3
------------------------–=

× ρ ξ( ) ξ ρ η( ) η ρ ζ( ) ζd

1

∞

∫d

1

∞

∫d

1

∞

∫

× ξ4

ξ2 η2–( ) ξ2 ζ2–( )p1
2 ξ( )

--------------------------------------------------------

+
η4

η2 ξ2–( ) η2 ζ2–( )p1
2 η( )

----------------------------------------------------------

+
ζ4

ζ2 ξ2–( ) ζ2 η2–( )p1
2 ζ( )

--------------------------------------------------------

=  
µp: –0.0029 meV,

µd: –0.0034 meV,



∆EVP–VP–VP 2S( ) µα3 Zα( )2

54π3
------------------------–=

× ρ ξ( ) ξ ρ η( ) η ρ ζ( ) ζd

1

∞

∫d

1

∞

∫d

1

∞

∫

(a) (b) (c)

G̃ G̃

Fig. 2. Three-loop vacuum polarization effects in the
(a, b) one-photon interaction and (c) third-order perturba-
tion theory.
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(24)

(25)

(26)

In the function f(v ) specified by Eq. (17), it is necessary
to make the substitution

There are additional diagrams that express three-
loop corrections in the polarization operator. They were
first calculated for the 2P–2S Lamb shift by Kinoshita
and Nio [30, 31]. The largest contribution to the energy
spectrum comes from the sixth-order vacuum polariza-
tion diagrams with one-electron loop (Π(p6) contribu-
tions [30]). The estimate of their contribution to the

× ξ4

ξ2 η2–( ) ξ2 ζ2–( )
------------------------------------------ 1

p2
2 ξ( )

------------- 1

p2
3 ξ( )

-------------–
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η4

η2 ξ2–( ) η2 ζ2–( )
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2 η( )
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p2
3 η( )

--------------–

+
ζ4

ζ2 ξ2–( ) ζ2 η2–( )
------------------------------------------ 1

p2
2 ζ( )
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p2
3 ζ( )

-------------–




=  
µp: –0.0003 meV,

µd: –0.0004 meV,
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µp: –0.0223 meV,

µd: –0.0251 meV,
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µp: –0.0030 meV,

µd: –0.0035 meV.
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Lamb shift of the 1

 

S

 

 and 2

 

S 

 

energy levels is presented
in the table.

4. VACUUM POLARIZATION EFFECTS
WITH THE INCLUSION

OF RELATIVISTIC CORRECTIONS
Calculation of the energy spectrum of the 

 

S

 

 states of
muonic hydrogen with an accuracy of 

 

α

 

5

 

 requires the
construction of the quasipotential using Eqs. (5) and (6)
and taking into account relativistic effects of this order
(Breit Hamiltonian 

 

∆

 

V

 

B

 

). Taking into account electron

vacuum polarization, the Breit Hamiltonian 

 

∆

 

 was
obtained by Pachucki [19]. Omitting the spin-depen-
dent terms in the interaction operator, we represent
these Hamiltonians in the form

(27)

(28)

In first-order perturbation theory, potential (28) makes
the following contribution to the energy spectrum after
averaging over Coulomb wavefunctions (10):

(29)

These corrections are of the 
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4

 

 order. The second-
order perturbation corrections in the energy spectrum
of the hydrogen-like system are determined by the

VB
VP

∆VB p4 1

8m1
3

--------- 1

8m2
3

---------+ 
 –=

+
πZα

2
----------- 1

m1
2

------ 1

m2
2

------+ 
  δ r( )

–
Zα

2m1m2r
------------------- p2 rir j pi p j

r2
------------------+ 

  ,

∆VB
VP α

3π
------ ρ ξ( ) ξ Zα

2
------- 1

m1
2

------ 1

m2
2

------+ 
 





d

1

∞

∫=

× πδ r( )
me

2ξ2

r
----------- 2 meξr–( )exp–

–
Zαme

2ξ2

m1m2r
------------------- 2meξr–( ) 1 meξr–( )exp

–
Zα

2m1m2
---------------- pi

2meξr–( )exp
r

---------------------------------

× δij

rir j

r2
-------- 1 2meξr+( )+ p j.

∆E1 B,
rel VP, ψ1S 2S,〈 |∆V B

VP ψ1S 2S,| 〉=

=  
µp 1S( ): 0.1962 meV; µp 2S( ): 0.0249 meV,

µd 1S( ): 0.2515 meV; µd 2S( ): 0.0322 meV.
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reduced Coulomb Green function [32], whose partial
expansion has the form

(30)

The radial function (r, r') was obtained in [32] in the
form of the Sturm expansion in Laguerre polynomials.
For the 1S and 2S states, this function has the form

(31)

(32)

where x = µZαr and

(33)

are the Laguerre polynomials. Certain terms of the qua-
sipotential include δ(r) and, therefore, it is necessary to

know (r, 0). The expression for the reduced Cou-
lomb Green function in this case was derived in [33]
using the Hostler representation for the Coulomb Green
function as a result of the subtraction of the pole term
in the form

(34)

(35)

where C = 0.5772… is the Euler constant. In second-
order perturbation theory, one-loop vacuum polariza-
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tion makes the contribution

(36)

Calculating the matrix element of the operator p4, we
first use the substitution

and then the algebraic transformations

(37)

The sums arising after the integration with reduced
Coulomb Green function (30) with respect to the coor-
dinates r and r' are calculated taking into account that
1 < ξ < ∞ and

The characteristic matrix element for the 1S state has
the form

(38)

Omitting numerous other intermediate analytical
expressions, we present the resulting numerical values
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of the corrections for the 1S and 2S levels in second-
order perturbation theory (36):

(39)

5. TWO- AND THREE-LOOP VACUUM 
POLARIZATIONS 

IN SECOND-ORDER PERTURBATION THEORY

Two-loop vacuum polarization makes the following
contribution in second-order perturbation theory (see
Fig. 3a):

(40)

This matrix element can be calculated using
Eqs. (9), (31), and (32). As a result, we arrive at the fol-
lowing α2(Zα)2-order corrections for the 1S and 2S
energy levels:

(41)

(42)

∆E2 B,
rel VP,

=  
µp 1S( ): –0.2644 meV; µp 2S( ): –0.0559 meV,

µd 1S( ): –0.3194 meV; µd 2S( ): –0.0696 meV.
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Fig. 3. Two- and three-loop vacuum polarization correc-
tions in second-order perturbation theory.
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where

The contributions from three-loop vacuum polariza-
tion in second-order perturbation theory that are shown
in Figs. 3b, 3c, and 3d are of the α3(Zα)2 order. To cal-
culate them, it is necessary to use the expressions for
one- and two-loop polarization operators. Integrating
with respect to the coordinates of the wavefunctions,
we represent these contributions in the form

(43)

where
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where the function f(ξ, ζ) is specified by Eq. (42);
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where

and

(47)

where

in the expression for the function 

 

f

 

(

 

ξ

 

, 

 

v

 

). The contribu-
tion of the corrections given by Eqs. (41)–(47) to the
isotope shift is equal to 0.3125 meV and individual
contributions for the 

 

S

 

 levels are presented in the table.
Analysis of the contribution of three-loop vacuum
polarization in third-order perturbation theory in
Fig. 2c shows that it is an order of magnitude smaller
than the contribution from the diagram shown in Fig. 3c
and thereby can be neglected.

6. EFFECTS OF THE STRUCTURE
AND POLARIZABILITY OF A NUCLEUS 

AND VACUUM POLARIZATION

Strong interactions, which are associated with the
distributions of the electric charge and magnetic
moment of a nucleus, play an important role in the
energy spectrum of muonic hydrogen. In the leading
(
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 order, the nuclear-structure effects are deter-
mined by the nuclear charge radius 
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, which is a dif-
ferential characteristic of the electric-charge distribu-
tion. To calculate one-loop corrections, it is necessary
to know the form of electromagnetic form factors of the
nucleus. The contribution of nuclear structure effects
both to the hyperfine structure of energy levels and to
the Lamb shift was studied in [1, 19, 20, 23, 36]. The
leading nuclear-structure correction of the (
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4

 

 order
in the energy spectrum of the 

 
S

 
 levels of muonic hydro-

gen has the form (see the diagram shown in Fig. 4a)
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 is the rms proton radius. The numerical values
of this correction for the levels with
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= 1 and 2 (at 
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 =
0.891 fm [1]) that are presented in the table have a sig-
nificant relative weight. For this reason, the reduction
of the error in determining the proton charge radius is a
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very urgent problem for obtaining a more accurate the-
oretical value for the Lamb shift of the S levels. In the
case of deuterium, we use the value rd = 2.094 fm for
the deuteron charge radius [23].

Two-photon exchange amplitudes shown in Fig. 5
provide (Zα)5-order corrections to the nuclear struc-
ture. In this case, the two-photon interaction quasipo-
tential can be evaluated using Eqs. (5) and (6) [19, 20]
and the corresponding correction to the energy spec-
trum has the form of the one-dimensional integral

(49)

where

(50)

∆E
str Zα( )5,

nS( ) µ3 Zα( )5

πn3
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(a) (b)

Fig. 5. Nuclear-structure corrections of the (Zα)5 order. The
thick points in the diagrams are the nuclear vertex operators.

(a) (b) (c)

G̃

Fig. 4. Nuclear-structure and vacuum-polarization correc-
tions.
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To perform numerical calculations based on Eq. (49),
we use the Dirac F1 and Pauli F2 form factors in the
parameterization obtained in [37]. Similar contribu-
tions for muonic deuteron were found in [23]. The
α5-order contribution associated with the nuclear struc-
ture also comes from electron vacuum polarization
effects shown in Figs. 4b and 4c. The particle interac-
tion operator corresponding to the amplitude in Fig. 4b
is given by the expression

(51)

and the contributions to the energy spectrum of the 1S
and 2S levels have the form
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and
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respectively. The contribution from electron vacuum
polarization and nuclear structure in second-order per-
turbation theory (see the diagram shown in Fig. 4c) is
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determined by the reduced Coulomb Green function

(r, 0) given by Eqs. (34) and (35). In this case, the
contributions to the shift of the S levels are equal to

(54)

(55)

Two additional contributions of strong interaction to
the Lamb shift are caused by nuclear polarizability and
hadron vacuum polarization. The contribution of
nuclear polarizability to the shift of the S levels and the
hyperfine structure was obtained in [38] for muonic
deuteron and in [20, 21] for muonic hydrogen. The
α(Zα)4-order contribution from hadron vacuum polar-
ization to the shift of the S levels was studied in [40, 41]
and is also presented in the table.

7. CONCLUSIONS

In this work, various QED effects, effects of the
structure and polarizability of the proton, and hadron
vacuum polarization have been calculated for the Lamb
shift of the 1S and 2S energy levels in muonic hydrogen
and muonic deuteron, as well as for the µp–µd isotope
shift for the 1S–2S splitting. Corrections of the α3, α4,
and α5 orders, as well as certain α6-order contributions
enhanced by lnα, are evaluated. We take into account
that the ratio µα/me is close to unit and focus on calcu-
lation of the effects of electron vacuum polarization.
The numerical values of the contributions obtained in
this work were presented in the table. The table also
contains the Wichmann–Kroll correction [1, 28], muon
self-energy correction, and α(Zα)4-order contribution
from muon vacuum polarization [1, 19], α(Zα)5-order
radiative corrections with a coefficient of about 10 [1],
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α6-order contributions from muon radiative effects with
the inclusion of electron vacuum polarization [1, 34],
and (Zα)5-order recoil correction from two-photon
exchange diagrams, which is known in the analytical
form [35]. References to many works are given, where
similar corrections were analyzed analytically or
numerically, although numerical results for the 1S and
2S levels are absent in those works. For comparison of
the results obtained in this work with calculations by
other authors, [1] is often used, because it accumulates
the recent results for the energy spectrums of simple
atoms and contains detailed references to previous
investigations.

Let us list a number of the features of the calcula-
tions.

(i) For muonic hydrogen, vacuum polarization
effects are important and give rise to the modification of
both the Breit particle interaction potential and the total
interaction operator, which provides the α5-order cor-
rections to the energy spectrum.

(ii) In the leading (Zα)4 order and in the one-loop
amplitudes, proton-structure effects in the energy spec-
trum of the S states are expressed in terms of the charge
radius of a nucleus (proton and deuteron) and in terms
of the nuclear electromagnetic form factor, respec-
tively.

(iii) Contributions to the nuclear polarizability (sec-
ond contribution of strong interaction) are estimated
using relations obtained in [20, 21, 38]. Contributions
from the structure and polarizability of a nucleus intro-
duce the largest theoretical error to the 1S–2S interval,
as well as to the isotope shift for this splitting.

The resulting numerical values of the energies of the
1S and 2S states in muonic hydrogen and muonic deu-
teron, as well as the isotopic shift for the 1S–2S transi-
tion, are presented in the table. They can be treated as a
reliable estimate for future experiments concerning
both the muonic hydrogen–muonic deuteron isotope
shift and the 1S–2S large fine-structure interval in
muonic hydrogen and muonic deuteron. The numerical
values of the corrections were calculated with an accu-
racy of 0.0001 meV. For the 1S–2S transition, the theo-
retical error of the results is determined by uncertainties
of the fundamental parameters (the fine structure con-
stant and the masses of the proton, deuteron, and
muon), which are on the order of 10–7. The α6-order
QED corrections provide an error on the order of 10–8.
Uncertainties in the charge radii of the proton and deu-
teron make the largest contribution to the theoretical
error. Their relative contribution is on the order of 10–6

(rp = 0.891 fm and rd = 2.094 fm are used for the charge
radii of the proton and deuteron, respectively). Further
improvements of theoretical results presented in the
table are primarily associated with corrections to the
structure and polarizability of a nucleus. In view of this
circumstance, the fine structure interval E(1S) – 8E(2S),
where the effects of the structure and polarizability of
SICS      Vol. 101      No. 6      2005
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the nucleus are absent in the leading (Zα)4-order cor-
rection, is of particular interest for the comparison of
the performed theoretical calculations with experimen-
tal data. The numerical values for this interval for
muonic hydrogen and muonic deuteron are 

(56)

The relative value of that part of the theoretical error in
Eq. (56) which is attributed to higher order corrections
is very small (on the order of 10–15).

The isotope shift in the muonic hydrogen–muonic
deuteron system for the 1S–2S splitting is an important
characteristic of the energy spectrums of these hydro-
gen-like atoms. The difference in the wavelengths emit-
ted by the isotopes of one element appears due to the
difference in the isotope masses, as well as to the differ-
ence in the distributions of the charge of the nuclei. At
present, the proton and deuteron masses are known
with a quite high accuracy, whereas the characteristics
of the nuclear structure are determined less accurately.
Using the calculation results, one can express the dif-
ference of charge radii between the deuteron and proton
in terms of the isotope shift:

(57)

where the theoretical value ∆  does not include the
(Zα)4-order correction to the nuclear structure. Thus,
measurement of the µp–µd isotope shift would provide
an additional test of QED and make it possible to obtain
a more accurate value of the deuteron charge radius
from Eq. (57) after the determination of the proton
charge radius in the PSI experiment [4].
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Abstract—Multidimensional configurations with a Minkowski external spacetime and a spherically symmetric
global monopole in extra dimensions are discussed in the context of the braneworld concept. The monopole is
formed with a hedgehoglike set of scalar fields φi with a symmetry-breaking potential V depending on the mag-
nitude φ2 = φiφi. All possible kinds of globally regular configurations are singled out without specifying the
shape of V(φ). These variants are governed by the maximum value φm of the scalar field, characterizing the
energy scale of symmetry breaking. If φm < φcr (where φcr is a critical value of φ related to the multidimensional
Planck scale), the monopole reaches infinite radii, whereas in the “strong field regime,” when φm ≥ φcr , the
monopole may end with a finite-radius cylinder or have two regular centers. The warp factors of monopoles
with both infinite and finite radii may either exponentially grow or tend to finite constant values far from the
center. All such configurations are shown to be able to trap test scalar matter, in striking contrast to RS2 type
five-dimensional models. The monopole structures obtained analytically are also found numerically for the
Mexican hat potential with an additional parameter acting as a cosmological constant. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

According to a presently popular idea, our observ-
able Universe can be located on a four-dimensional sur-
face, called the brane, embedded in a higher-dimen-
sional manifold, called the bulk. This “braneworld”
concept, suggested in the 1980s [1], is broadly dis-
cussed nowadays, mainly in connection with the recent
developments in supersymmetric string/M-theories [2].
One reason why we do not see any extra dimensions is
that the observed matter is confined to the brane and
only gravity propagates in the bulk. There are numerous
applications of the braneworld concept to particle phys-
ics, astrophysics, and cosmology, such as the hierarchy
problem and the description of dark matter and dark
energy [3].

Most of the studies are restricted to infinitely thin
branes with deltalike localization of matter. A well-
known example is Randall and Sundrum’s second
model (RS2) [4], in which a single Minkowski brane is
embedded in a five-dimensional anti-de Sitter (AdS)
bulk.

Thin branes can, however, only be treated as a rough
approximation, because any fundamental underlying
theory, be it quantum gravity or string or M-theory,

¶ The text was submitted by the authors in English. 
1063-7761/05/10106- $26.001036
must contain a fundamental length beyond which the
classical spacetime description is impossible. It is
therefore necessary to justify the infinitely thin brane
approximation as a well-defined limit of a smooth
structure, a thick brane, obtainable as a solution of cou-
pled gravitational and matter field equations. Such a
configuration is then required to be globally regular,
stable, and properly concentrated around a three-
dimensional surface that is meant to describe the
observed spatial dimensions. Topological defects
emerging in phase transitions with spontaneous sym-
metry breaking (SSB) are probably the best candidates
for this role.

It should be mentioned that the evolution of the Uni-
verse, according to modern views, contained a
sequence of phase transitions with SSB. A decisive step
toward cosmological applications of the SSB concept
was made in 1972 by Kirzhnits [5]. He assumed that, as
in the case of solid substances, a symmetry of a field
system, existing at sufficiently high temperatures,
could be spontaneously broken as the temperature falls
down. A necessary consequence of such phase transi-
tions is the appearance of topological defects. The first
quantitative analysis of the cosmological conse-
quences of SSB was given by Zel’dovich, Kobzarev,
and Okun’ [6]. Later, the SSB phenomenon and various
topological defects were widely used in inflationary
 © 2005 Pleiades Publishing, Inc.
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Universe models and in attempts to explain the origin of
the large-scale structure of the Universe (see, e.g., [7, 8]).

The properties of global topological defects are gen-
erally described with the aid of a multiplet of scalar
fields playing the role of an order parameter. If a defect
is to be interpreted as a braneworld, its structure is
determined by the self-gravity of the scalar field system
and may be described by a set of Einstein and scalar
equations.

In this paper, we analyze the gravitational properties
of candidate (thick) braneworlds with the four-dimen-
sional Minkowski metric as global topological defects
in extra dimensions. Our general formulation covers
such particular cases as a brane (domain wall) in five-
dimensional spacetime (one extra dimension), a global
cosmic string with winding number n = 1 (two extra
dimensions), and global monopoles (three or more
extra dimensions). We restrict ourselves to Minkowski
branes, because most of the existing problems are
clearly seen even in these comparatively simple sys-
tems; on the other hand, in the majority of physical sit-
uations, the inner curvature of the brane itself is much
smaller than the curvature related to brane formation,
and, therefore, the main qualitative features of
Minkowski branes should survive in curved branes.

Brane worlds as thick domain walls in a five-dimen-
sional bulk have been discussed in many papers (see,
e.g., [9] and references therein). Such systems were
analyzed in a general form in [10, 11] without specify-
ing the symmetry-breaking potential; it was shown, in
particular, that all regular configurations should have an
AdS asymptotic form. Therefore, all possible thick
branes are merely regularized versions of the RS2
model, with all concomitant difficulties in matter-field
confinement. Thus, it has been demonstrated [11] that a
test scalar field has a divergent stress–energy tensor
infinitely far from the brane, at the AdS horizon. The
reason for that is the repulsive gravity of the RS2 and
similar models: gravity repels matter from the brane
and pushes it towards the AdS horizon. To overcome
this difficulty, it is natural to try considering a greater
number of extra dimensions. This was one of the rea-
sons for us to consider higher-dimensional bulks.

We study the simplest possible realization of this
idea, assuming a static, spherically symmetric configu-
ration of the extra dimensions and a thick Minkowski
brane as a concentration of the scalar field stress–
energy tensor near the center. The possible trapping
properties of gravity for test matter are then determined
by the behavior of the so-called warp factor (the metric
coefficient acting as a gravitational potential) far from
the center, and we indeed find classes of regular solu-
tions where gravity is attracting.

Some of our results repeat those obtained in [12, 13],
which have discussed global and gauge (’t Hooft–
Polyakov-type) monopoles in extra dimensions; a more
detailed comparison is given in Section 7.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The paper is organized as follows. In Section 2, we
formulate the problem, introduce spacetimes with glo-
bal topological defects in the extra dimensions, write
the equations and boundary conditions, and demon-
strate a connection between the possibility of SSB and
the properties of the potential at a regular center. In Sec-
tion 3, we briefly discuss the trapping problem for RS2-
type domain-wall models and show that they always
have repulsive gravity and are unable to trap matter in
the form of a test scalar field. Section 4 is devoted to a
search for regular global monopole solutions in higher
dimensions by analyzing their asymptotic properties far
from the center. All regular configurations are classified
by the behavior of the spherical radius r and by the
properties of the potential. This leads to separation of
“weak gravity” and “strong gravity” regimes, related to
maximum values of the scalar field magnitude.

In the weak gravity regime, the spherical radius r
tends to infinity along with the distance from the center.
Such moderately curved configurations exist without
any restrictions of fine-tuning type. If the scalar field
magnitude exceeds some critical value, the radius r
either tends to a finite value far from the center or
returns to zero at a finite distance from the center, thus
forming one more centers, which should also be regu-
lar. Some cases require fine tuning of the parameters of
the potential, and, hence, one may believe that static
configurations can only exist if the scalar and gravita-
tional forces are somewhat mutually balanced.

In Section 5, we show that, in contrast to domain
walls, global monopoles in different regimes do pro-
vide scalar field trapping on the brane. Section 6 is a
brief description of numerical experiments with the
Mexican hat potential admitting shifts up and down,
equivalent to introducing a bulk cosmological constant.
Their results confirm and illustrate the conclusions in
Section 4. Section 7 summarizes the results.

2. PROBLEM SETTING

2.1. Geometry 

We consider a (D = d0 + d1 + 1)-dimensional space-

time with the structure  × Ru ×  and the metric

(1)

Here,

is the Minkowski metric in the subspace ,

dΩ is a linear element on a d1-dimensional unit sphere

; α, β, and γ are functions of the radial coordinate u

M
d0

S
d1

ds2 e2γ u( )ηµνdxµdxν=

– e2α u( )du2 e2β u( )dΩ2+( ).

ηµνdxµdxν dt2 dx( )2–=

M
d0

ηµν diag 1 1– … 1–, , ,( );=

S
d1
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with the definition domain Ru ⊆  R, to be specified later.
The Riemann tensor has a diagonal form, and its non-
zero components are

(2)

where

(3)

and similarly for . Greek indices µ, ν, … correspond
to the d0-dimensional spacetime, and Latin indices a, b,

… to d1 angular coordinates on . We mostly bear in
mind the usual dimension d0 = 4, but keep d0 arbitrary
for generality.

A necessary condition of regularity is the finiteness
of the Kretschmann scalar

(Capital indices A, B, … correspond to all D coordi-
nates.) In our case, _ is a sum of squares of all nonzero

. Hence, in regular configurations, all compo-
nents of Riemann tensor (2) are finite.

For the Ricci tensor, we have

(4)

2.2. Topological Defects 

A global defect with a nonzero topological charge
can be constructed as a multiplet of d1 + 1 real scalar
fields φk, in the same way as, e.g., in [14]. It comprises

a hedgehog configuration in Ru × :

Rµν
ρσ e 2α– γ'2δρσ

µν ,–=

Rab
cd e 2β– e 2α– β'

2
–( )δcd

ab,=

Ruµ
uν δν

µe γ– α– eγ α– γ'( ) ',–=

Rua
ub δb

ae β– α– eβ α– β'( ) ',–=

Raµ
bν δν

µδb
ae 2α– γ'β',–=

δρσ
µν δρ

µδσ
ν δσ

µδρ
ν–=

δcd
ab

S
d1

_ RAB
CDRCD

AB.=

RAB
CD

Rµ
ν δµ

νe 2α– γ'' γ' α '– d0γ' d1β+ +( )+[ ] ,–=

Ru
u e 2α– d0 γ'' γ'

2 α 'γ'–+( )[–=

+ d1 β'' β'
2 α 'β'–+( ) ] ,

Rm
n e 2β– d1 1–( )δm

n=

– δm
n e 2α– β'' β' α '– d0γ' d1β'+ +( )+[ ] .

S
d1

φk φ u( )nk xa( ),=
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where nk is a unit vector in the (d1 + 1)-dimensional
Euclidean target space of the scalar fields:

nknk = 1.

The total Lagrangian of the system is taken in the
form

(5)

where R is the D-dimensional scalar curvature, κ2 is the
D-dimensional gravitational constant, and V is a sym-
metry-breaking potential depending on φ2(u) = φaφa.

In the case where d1 = 0, there is only one extra
dimension. The topological defect is a flat domain wall.
Combined with d0 = 4, it is widely considered with ref-
erence to our Universe. Regular thick Minkowski
branes supported by scalar fields with arbitrary poten-
tials were analyzed in [10, 11] (see also Section 3
below).

The case where d1 = 1 is a global cosmic string with
the winding number n = 1. If d0 = 2, it is a cosmic string
in four dimensions, whose gravitational properties are
reviewed in [15]. The case d0 = 4 corresponds to a string
in extra dimensions.

The case where d1 = 2 and d0 = 1 is a global mono-
pole in our four-dimensional spacetime. We have ana-
lyzed it in detail in [16]. The case where d1 > 2 and
d0 = 1 is its multidimensional generalization to static
spherically symmetric spacetimes with d1-dimensional
rather than two-dimensional coordinate spheres [14]. It
was shown that such a heavy multidimensional global
monopole leads to a multidimensional cosmology
where the symmetry-breaking potential at late times
can mimic both dark matter and dark energy.

In the case where d0 = 4 and d1 > 2, we have a mul-
tidimensional global monopole entirely in the extra
spacelike dimensions. Different models of this kind
were studied in [12, 13, 17, 18]. In particular, such a
monopole in extra dimensions was used in an attempt
to explain the origin of inflation [17].

2.3. Field Equations 

We use the Einstein equations in the form

where  is the stress-energy tensor of the scalar field

L
R

2κ2
--------

1
2
---gAB∂Aφk∂Bφk V φ( ),–+=

RA
B κ2T̃ A

B
, T̃ A

B
– T A

B δA
B

D 2–
-------------TC

C,–= =

T A
B

ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005



GRAVITATING GLOBAL MONOPOLES IN EXTRA DIMENSIONS 1039
multiplet. For our hedgehog configuration,

So far, we did not specify the radial coordinate u.
For our purposes, the most helpful is the Gaussian
gauge with the real distance l along the radial direction
taken as a coordinate,

(6)

and the metric

(7)

Then, two independent components of the Einstein
equations take the form (the prime now denotes d/dl)

(8)

(9)

The Einstein equation

(where  is the Einstein tensor) is free of second-
order derivatives:

(10)

The scalar field equations

combine to yield an equation for φ(l):

(11)

Due to the Bianchi identities, it is a consequence of Ein-
stein equations (8)–(10). On the other hand, (10) is a
first integral of Eqs. (8), (9), and (11).

T̃µ
ν 2Vδµ

ν

D 2–
-------------,–=

T̃u
u 2V

D 2–
-------------– e 2α– φ'

2
,–=

T̃a
b 2Vδa

b

D 2–
-------------– e 2β– δa

bφ2.–=

u l, α 0,≡ ≡

ds2 e2γ l( )ηµνdxµdxν dl2 e2β l( )dΩ2+( ).–=

γ'' d0γ'
2

d1β'γ'+ +
2κ2

D 2–
-------------V ,–=

β'' d0β'γ' d1β'
2

+ +  = d1 1– κ2φ2–( )e 2β– 2κ2

D 2–
-------------V .–

Gl
l κ2Tl

l–=

GA
B

d0γ' d1β'+( )2 d0γ'
2

– d1β'
2

–

=  κ2 φ'
2

2V–( ) d1e 2β– d1 1– κ2φ2–( ).+

∇ A∇ Aφk ∂V

∂φk
--------+ 0=

φ'' d0γ' d1β'+( )φ' d1e 2β– φ–+
dV
dφ
-------.=
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In our analytical study, we do not specify any partic-
ular form of V(φ). However, we suppose that V has a
maximum at φ = 0 and a minimum at some φ = η > 0,
and, hence, V'(0) = V'(η) = 0. For convenience, we do
not single out a cosmological constant, which may be
identified with a constant component of the potential V
or, in many cases, with its minimum value.

The parameter η (as the scalar field itself) has the
dimension [l–(D – 2)/2] and thus specifies a certain length
scale η–2/(D – 2) and energy scale η2/(D – 2) (we use natural
units such that c = " = 1). In the conventional case
D = 4, η has the dimension of energy and characterizes
the SSB energy scale.

2.4. Regularity Conditions: A Regular Center 

For the geometry to be regular, we must require
finite values of all Riemann tensor components (2). In
Gaussian gauge (6), the regularity conditions simply
state that

β', β'', γ', γ'' are finite. (12)

For d1 > 0, in addition to (12), a special regularity
condition is needed at the center, which is a singular

point of the spherical coordinates in Ru × . The cen-
ter is a point where the radius r ≡ eβ turns to zero. The
regularity conditions there, also following from the
finiteness of Riemann tensor components (2), are the
same as in the usual static, spherically symmetric
spacetime: in terms of an arbitrary u coordinate, they
are given by

(13)

where γc is a constant that can be set to zero by a proper
choice of scales of the coordinates xµ. The second con-
dition in (13) follows, for d1 > 1, from the finiteness of

the Riemann tensor components  (see (2)). Its geo-
metric meaning is the property of being locally Euclid-
ean at r = 0, which implies that dr2 = dl2, i.e., the correct
circumference-to-radius ratio for small circles. In the
special case where d1 = 1, with the quotient space Ru ×

 being two-dimensional, we obviously have

 ≡ 0, but the second condition in (13) should still
be imposed to avoid a conical singularity.

It is natural to put l = 0 at a regular center, then l is
the distance from the center.

Regularity of the Ricci tensor components  =

 implies regularity of the stress–energy tensor

, whence it follows that

(14)

at any regular point and with any radial coordinate.

S
d1

γ γc O r2( ),+=

eβ α– β' 1 O r2( ) as r 0,+=

Rcd
ab

S
d1

Rab
cd

RB
A

RAC
BC

T A
B

V ∞, e β– φ ∞, e α– φ' ∞< < <
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2.5. Boundary Conditions 

Domain walls. For d1 = 0, the metric in (1) or (7)
describes a plane-symmetric five-dimensional space-
time, the coordinate l ranges over the entire real axis,
and the broken symmetry is Z2, the mirror symmetry
with respect to the plane l = 0. The topological defect is
a domain wall separating two vacua corresponding to
two values of a single real scalar field φ, e.g., φ = ±η.
Accordingly, we assume that φ(l) is an odd function,
whereas γ(l) and V(φ) are even functions, and the con-
ditions at l = 0 are

(15)

We thus have three initial conditions for the third-order
set of equations (8) and (10) (Eq. (11) is their conse-
quence), because the unknown function β is absent in
this case.

Global strings and monopoles. For d1 > 0, the reg-
ular center requirement leads to the following boundary
conditions for Eqs. (8)–(10) at l = 0:

(16)

We have five initial conditions for a fifth-order set of
equations. However, l = 0, being a singular point of the
spherical coordinate system (not to be confused with a
spacetime curvature singularity), is also a singular
point of our set of equations. As a result, the require-
ments of the theorem on the solution existence and
uniqueness for our set of ordinary differential equations
are violated. It turns out that the derivative φ'(0)
remains undetermined by (16). If we set φ'(0) = 0, we
obtain a trivial (symmetric) solution with φ ≡ 0 and a
configuration without a topological defect. In the case
where V(0) = 0, we arrive at the flat D-dimensional met-
ric: we then have γ ≡ 0 and r ≡ l in (7). If, however,
V(0) ≠ 0, the corresponding exact solutions to the Ein-
stein equations for d0 > 1, d1 > 1 still need to be found.
A direct inspection shows that it cannot be the de Sitter
or AdS space: the constant curvature metrics are not
solutions of the vacuum Einstein equations with a cos-
mological constant.

Nontrivial solutions exist if φ'(0) ≠ 0 and can corre-
spond to SSB. We note that the very possibility of SSB
appears as a result of violation of the solution’s unique-
ness at r = 0 provided that a maximum of the potential
V(φ) at φ = 0 corresponds to the center. The lacking
boundary condition that may lead to a unique solution
can now follow from the requirement of regularity at
the other extreme of the range of l, whose nature is in
turn determined by the shape of the potential.

In what follows, assuming a regular center, we try to
find all possible conditions at the other extreme of the
range Rl of the Gaussian radial coordinate, providing the
existence of globally regular models with metric (7). In
other words, we seek solutions with asymptotic forms
such that the quantities in (2) are finite. Other regularity

γ 0( ) γ' 0( ) φ 0( ) 0.= = =

φ 0( ) γ 0( ) γ' 0( ) r 0( ) 0, r ' 0( ) 1.= = = = =
JOURNAL OF EXPERIMENTAL A
conditions, such as (14), then follow. In doing so, we do
not restrict the possible shape of the potential V(φ) in
advance. The cases under consideration are classified
by the final values of r = eβ (infinite, finite, or zero) and
V (positive, negative, or zero). The scalar field φ is
assumed to be finite everywhere.

Without loss of generality, we assume that φ'(0) > 0
near l = 0, i.e., that φ increases, at least initially, as we
recede from the center.

3. DOMAIN WALLS AND THE PROBLEM
OF MATTER CONFINEMENT

Below, we mostly consider configurations with d1 ≥
2 that correspond to a global monopole in the spheri-

cally symmetric space Ru × . Before that, we
briefly discuss the problem of matter confinement on
the brane and the complications involved in the five-
dimensional case.

The metric coefficient e2γ in (1), sometimes called
the warp factor, actually plays the role of a gravitational
potential that determines an attractive or repulsive
nature of gravity with respect to the brane. If it forms a
potential well with a bottom on (or very near) the brane,
there is the hope that matter, at least its low-energy
modes, should be trapped.

It has been shown, in particular, that spin-1/2 fields
are localized due to an increasing warp factor in (1 + 4)-
and (1 + 5)-dimensional models [19, 20]. It has also
repeatedly been claimed that, in (1 + 4) dimensions, a
brane with an exponentially decreasing warp factor (as,
e.g., in the RS2 model) can trap spin-0 and spin-2
fields. Our calculation for a scalar field shows that this
is not the case.

A gravitational trapping mechanism suggested
in [21] was characterized there as a universal one, suit-
able for all fields. It is based on nonexponential warp
factors, which increase with distance from the brane
and approach finite values at infinity. This mechanism
was exemplified in [22] with a special choice of two so-
called “smooth source functions” in the stress–energy
tensor, describing a continuous distribution of certain
phenomenological matter and vanishing outside the
brane.

Our analysis uses more natural assumptions: a sca-
lar field system admitting SSB, without any special
choice of the symmetry-breaking potential, under the
requirement of global regularity.

We briefly show, following [10, 11] (but in other
coordinates), that this approach in (4 + 1) dimensions
always leads to a decaying warp factor for any choice
of V(φ) and that such a system cannot trap a test scalar
field. We consider a domain wall in five dimensions,
and, hence, l ∈  R, we set d1 = 0 in our equations, the

S
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GRAVITATING GLOBAL MONOPOLES IN EXTRA DIMENSIONS 1041
unknown β(l) is absent, and Eqs. (8) and (11) for γ and
the single scalar field φ are given by

(17)

(18)

Their first integral in (10) reduces to

(19)

The initial conditions at l = 0 corresponding to the Z2
symmetry (broken for the scalar field but preserved for
the geometry) have form (15).

Eliminating V from (17) and (19) and integrating
subject to (15), we obtain

(20)

and we conclude that γ'(l) is negative at all l > 0 and
describes gravitational repulsion from the brane; more-
over, e–γ monotonically grows with growing l. The only
possible regular solution corresponds to |γ'(∞)| < ∞.
Because γ''(∞) = 0 in this case, it follows from Eq. (17)
that V(∞) < 0, corresponding to a negative cosmological
constant Λ = κ2V(∞). Hence, the only possible regular
asymptotic form is AdS, with

(21)

The constant a depends on the particular shape of V(φ).
At l = ∞, there is an AdS horizon (eγ = 0), which, like a
black hole horizon, attracts matter and prevents its trap-
ping by the brane.

We show this for d0 = 4 and a test scalar field χ with
the Lagrangian

(22)

where χ* is the complex conjugate field and the last
term describes a possible interaction between χ and the
wall scalar field φ; λ is the coupling constant. The field
χ(xA) satisfies the linear homogeneous (modified Fock–
Klein–Gordon) equation

(23)

Its coefficients depend on l only, and χ(xA) may be
sought in the form

(24)

γ'' d0γ'
2

+
2κ2

d0 1–
--------------V ,–=

φ'' d0γ'φ' dV
dφ
-------–+ 0.=

γ'
2 κ2

d0 d0 1–( )
------------------------ 2V φ'

2
–( ).–=

d0 1–( )γ' l( ) κ φ'
2

l,d

0

l

∫–=

eγ ae hl– , a h,≈ const, h Λ/6– .= =

Lχ
1
2
---∂Aχ*∂Aχ 1

2
---m0

2χ*χ–
1
2
---λφ2χ*χ ,–=

1

g
-------∂A ggAB∂Bχ( ) λφ2 m0

2+( )χ+ 0.=

χ xA( ) X l( ) i pµxµ–( ), µexp 0 1 2 3,, , ,= =
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where pµ = (E, p) is a constant four-momentum. The
function X(l) determines the χ field distribution across
the brane and satisfies the equation

(25)

The χ field is able to describe particles localized on

the brane only if its stress–energy tensor [χ] is finite
in the whole five-space and decays sufficiently rapidly
at large l. As an evident necessary condition of localiza-
tion, the χ field energy per unit three-volume of the
brane must be finite, i.e.,

(26)

Inequality (26) implies a finite norm of the χ field
defined as

(27)

At large l, because e–2γ  ∞, the terms with λ and
m0 in Eq. (25) can be neglected and the equation deter-
mining the behavior of χ at large l can be written as

(28)

It is solved in terms of Bessel functions, and the solu-
tion has the asymptotic form

(29)

where C and ϕ0 are integration constants. We see that
quantity (29) is not only nonvanishing as l  ∞, but
even oscillates with increasing amplitude. As a result,

the stress–energy tensor components [χ] are infinite

at l = ∞. Moreover, integral (26) behaves as dl and

diverges. However, normalization integral (27) con-
verges because the integrand behaves as e–hl. This result
is sometimes treated as a sufficient condition for local-
ization, but, in our view, it is not true, because the very
existence of the brane configuration is put in doubt if
the test field stress–energy tensor is infinite somewhere.

Thus, a test scalar field with any mass tends to infin-
ity as l  ∞ and develops an infinite stress–energy

X '' 4γ'X ' e 2γ– E2 p2–( ) λφ2– m0
2–[ ] X+ + 0.=

Tµ
ν

Etot χ[ ] Tt
t g ld

∞–

∞

∫=

=  e4γ e 2γ– E2 p2+( )X2[
0

∞

∫
+ m0

2 λφ2+( )X2 X '
2 ]dl+ ∞.<

χ 2 gχ*χ ld

∞–

∞

∫ e4γX2 l.d

∞–

∞

∫= =

X '' 4hX '– P2e2hlX+ 0, P2 E2 p2–

a2h2
-----------------.= =

X Ce3hl/2 Pehl ϕ0+( ), z ∞,sin=

Tµ
ν

ehl∫
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1042 BRONNIKOV, MEIEROVICH
tensor; even its interaction with the φ field that supports
the brane does not improve the situation. We conclude
that a single extra dimension is insufficient for provid-
ing gravitational attraction of matter to a regular iso-
lated brane.

4. A SEARCH 
FOR REGULAR ASYMPTOTIC REGIMES

We now consider field equations (8)–(11) for global
monopoles, assuming d1 ≥ 2. The string case d1 = 1 is
left aside, because it has some peculiarities that require
a special study.

4.1. Solutions with the r  ∞ Asymptotic Regime 

We define

(30)

Evidently, l  ∞ as r  ∞, because, otherwise,
we would have β'  ∞, violating the regularity con-
ditions. The derivatives β' and γ' should tend to certain
constant values to be denoted by  and , respec-
tively. Both β'' and γ'' vanish as l  ∞. Moreover, the
second term in the right-hand side of Eq. (9) also van-
ishes. Therefore, in the leading order of magnitude,
Eqs. (8) and (9) take the form

(31)

We consider the cases when  ≠ 0 and  = 0 sep-
arately.

A1.  ≠ 0. Equations (31) immediately give

(32)

An evident necessary condition of the existence of reg-
ular configurations is  ≤ 0. We thus obtain

and the metric takes the asymptotic form

(33)

with some positive constants C1 and C2. Equation (10)
holds automatically if φ'(∞) = 0, as should be the case
if we assume a finite asymptotic value of φ. Finally, in
Eq. (11), all terms except dV/dφ manifestly vanish as
l  ∞, and, hence, dV/dφ also vanishes, which should

V
2κ2V
D 2–
-------------, V∞ V r ∞→ .= =

β∞' γ∞'

γ∞' d0γ∞' d1β∞'+( ) V∞,–=

β∞' d0γ∞' d1β∞'+( ) V∞.–=

V∞ V∞

V∞

β∞' γ∞' V∞/ D 1–( )– , V∞ 0.<= =

V∞

eβ eγ e
β∞' l

,∼ ∼

ds2 C1e
2β∞' l

ηµνdxµdxν dl2– C2e
2β∞' l

dΩ2,–≈
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be the case if the field φ reaches an extremum of the
potential V.

The finiteness condition for φ as l  ∞ separates a
family of regular solutions among the continuum of
integral curves leaving the regular center with different
slopes φ'(0). As is confirmed by numerical experiments,
if the potential has only one extremum (minimum)

 < 0, then there can be only one regular solution
with r  ∞, l  ∞. However, there can be numerous
regular solutions if the potential has several extremum
points  < 0.

In particular, if the initial maximum of the potential
is located below the zero level, V(0) ≤ 0, then there can
be a continuum of regular integral curves starting from
the regular center and returning to φ = 0 at l  ∞. As
can be verified numerically (see Section 4), there is a
bunch of such curves parametrized by φ'(0) ∈  (0, ),

where φ'(0) =  corresponds to a limiting regular curve
(separatrix), also starting at φ(0) = 0 but ending at the
minimum V(η).

The metric in (33) solves the Einstein equations

with the stress–energy tensor  = V∞ having the
structure of a (negative) cosmological term. Moreover,
according to (2), the Riemann tensor has the structure
of a constant-curvature space at large l. In other words,
such solutions have an anti-de Sitter (AdSD) asymptotic
form far from the center. But the metric in (33) is not a
solution to our equations in the whole space even in the
case where φ = const. As already mentioned, for d0 > 1
and d1 > 1, constant-curvature metrics (dSD and AdSD)
are not solutions of the vacuum Einstein equations with
a cosmological constant.

A2.  = 0.

Equations (31) are solved either by

or by

.

However, when we substitute the second condition in
Eq. (10), taking into account that φ'  0 at large l, we
obtain

and return to

Thus, both β' and γ' vanish at infinity, and we can try to
seek them as expansions in inverse powers of l:

(34)

V∞

V∞

φs'

φs'

T A
B δA

B

V∞

β∞' γ∞' 0= =

d0γ∞' d1β∞'+ 0=

d0γ∞'
2

d1β∞'
2

+ 0=

β∞' γ∞' 0.= =

β'
β1

l
-----

β2

l2
----- …, γ'+ +

γ1

l
-----

γ2

l2
----- ….+ += =
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Then, O(l–2) is the leading order in the Einstein equa-
tions, and, to avoid contradiction,

should be on the order of O(l–2) or smaller. Moreover,
because we assume that φ tends to a finite value φ∞ > 0,
we have φ' = o(1/l) and scalar field equation (11) shows
that

or smaller; i.e., φ∞ should be an extremum of V(φ). If
φ(l) grows monotonically to φ∞ > 0, then φ∞ is a mini-
mum of V because, according to (11),

However, if V(0) = 0, one cannot exclude that φ returns
to zero as l  ∞ (see item (c) below).

In the case where φ  φ∞ > 0, because

V(φ) is decomposed as

(35)

where

and, therefore,

As a result, Eqs. (8)–(10) lead to

(36)

(37)

(38)

Now, it can be easily verified that we must necessar-
ily set β1 = 1. Indeed, for any β1 ≠ 0, we have

Therefore, β1 < 1 is excluded, because it leads to r ! l,
contrary to the above requirement. However, if we sup-

r 2– e 2β–=

dV
dφ
------- O l 2–( )=

dV
dφ
------- 0 as φ φ∞.<

V∞ dV /dφ φ∞( ) 0,= =

V φ( ) 1
2
---Vφφ φ∞( ) φ φ∞–( )2 …,+=

Vφφ
d2V

dφ2
---------,=

V o l 2–( ).=

γ1 1– d0γ1 d1β1+ +( ) 0,=

β1 1– d0γ1 d1β1+ +( ) l2

r2
---- d1 1– κ2φ∞

2–( ),=

d0γ1 d1β1+( )2 d0γ1
2– d0β1

2–

=  d1
l2

r2
---- d1 1– κ2φ∞

2–( ).

r eβ l
β1.∼=
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pose that β1 > 1, then l2/r2  0 as l  ∞, and
Eq. (38) leads (if γ1 = 0) to

or (if γ1 ≠ 0 and then d0γ1 + d1β1 = 1) to

Both possibilities contradict the assumption that β1 > 1.

Thus, β1 = 1, and, hence,

at large l.
Equation (36) now leaves two possibilities,

γ1 = 0

and

and we consider them separately in items (a) and (b).
Item (c) describes the case where expansions (34) do
not work.

(a) If γ1 = 0, then Eq. (37) yields

(39)

and Eq. (10) in the same order is satisfied automatically.
The metric takes the asymptotic form

(40)

where γ∞ is a constant (we cannot turn it to zero by res-
caling the coordinates xµ, because such an operation has
already been done for making γ = 0 at the center).

Thus, the whole metric has a flat asymptotic form,
up to a solid angle deficit in the spherical part due to
k2 ≠ 1. Such a deficit is a common feature of topological
defects in the cases where they have (almost) flat
asymptotic forms. Its appearance due to cosmic strings
and global monopoles in spacetimes without extra
dimensions is discussed in detail in [8]. For a global
monopole in extra dimensions in the particular case
where d0 = 4 and d1 = 2, it was treated by Benson and
Cho [18]. We stress that the situation of a quasiflat
asymptotic form with a solid angle deficit is not gen-
eral. It occurs only for potentials with zero value at the
minimum,

and even in that case, not always, see item B below.

β1
2 0=

d0γ1
2 d1β1

2+ 1.=

r kl, k≈ const 0,>=

γ1

d1 1–
d0

--------------,–=

k2 1
κ2φ∞

2

d1 1–
--------------,–=

ds2 e
2γ∞ηµνdxµdxν dl2– k2l2dΩ2,–=

V φ∞( ) 0,=
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Namely, this geometry requires

(41)

i.e., φ∞ should be smaller than the critical value φcr
related to the D-dimensional Planck length. As φ∞
approaches φcr , k  0, the deficit absorbs the whole
solid angle, and the above geometry disappears.

Scalar equation (11) shows how φ approaches φ∞: in
the leading order, we have 

(42)

Assuming

we obtain

(b) If γ1 = –(d1 – 1)/d0, then Eq. (37) leads to

i.e.,

while a substitution in (10) gives

contrary to our assumption that d1 – 1 > 1. Therefore,
this possibility does not lead to a regular asymptotic
regime.

(c) If V(0) = 0, then a regular integral curve, starting
at l = 0 and φ = 0, can finish again with φ  0 as
l  ∞. For large l and r, scalar field equation (11) for
|φ| ! 1 reduces to

(43)

where

Because φ = 0 is a maximum of V(φ) by assumption, we
assume that V2 < 0.

If we further assume that the function

satisfies the condition

s''/s  0 as l  ∞

φ∞ φcr := 
d0 1–
κ

------------------,<

d1

k2l2
---------– Vφφ φ∞( ) φ φ∞–( ).=

Vφφ φ∞( ) 0,≠

φ φ∞– 1/l2.∼

κ2φ∞
2 d1 1,–=

φ∞ φcr,=

d1 1–( ) d0 d1 1–+( ) 0,=

φ'' d0γ' d1β'+( )φ' V2φ–+ 0,=

V2 Vφφ 0( ).=

s l( ) e
d0γ d1β+

=
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(which is the case, e.g., for any power-behaved func-
tion), the solution of Eq. (43) is an oscillating function
at large l,

(44)

where φ0 and l0 are arbitrary constants. Substituting this
in Eq. (8) and averaging cos2  1/2, we obtain

(45)

It is easy to verify that, for d1 > 2, when the integral
in (45) converges, the asymptotic form of the solution
for r = eβ and γ is r ≈ l and

i.e., we have a flat asymptotic regime.
In the special case where d1 = 2, the integral diverges

logarithmically and the solution may be approximated
as (again)

r ≈ l

and

This “logarithmic” asymptotic from resembles the
behavior of cylindrically symmetric solutions in stan-
dard general relativity.

4.2. Solutions 
with the r  r∗  > 0 Asymptotic Regime 

Evidently, a regular solution cannot terminate at
finite r and l < ∞. Therefore, we seek a regular asymp-
totic regime as l  ∞, where r and φ tend to finite lim-
its, r∗  and φ∗ , and, hence, the quantities β', β'', φ', and
φ'' vanish.

Moreover, in a regular solution, γ' should tend to a
finite limit as l  ∞, and, hence, γ''  0. As a result,
Eqs. (8) and (9) at large l lead to

(46)

where  = (φ∗ ). We see that  ≤ 0 and, in addi-
tion, the scalar field should be critical or larger, φ∗  ≥ φcr .
According to (46), at large l,

(47)

and Eq. (10), as in the previous cases, simply verifies
that the solution is correct in the leading order. The sca-

φ φ0e
d0γ d1β+( )/2–

V2 l l0–( )[ ] ,cos≈
l ∞,

e
d0γ d0κ

2 V2 φ0
2

2 D 2–( )
-------------------------- l ld

r
d1

------

l

∫ , l ∞.≈

γ γ∞ γ1/l
d1 2–

, γ1 γ∞,– const,= =

eγ const l.ln⋅≈

d0γ'
2

V*–
1

r*
2

----- κ2φ*
2 d1– 1+( ),= =

V* V V*

γ'± h := V*/d0– 0,≥≈
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lar field equation gives a finite asymptotic value of Vφ ≡
dV/dφ:

(48)

This value is negative if φ∗  > 0.

We obtain different asymptotic regimes for nega-
tive, positive, and zero values of γ'.

B1. eγ ~ e–hl, h > 0. The metric has the asymptotic
form

(49)

The extra-dimensional part of the metric again
describes an infinitely long cylindrical tube, but now
the vanishing function gtt = e2γ resembles a horizon. The
substitution e–hl = ρ (converting l = ∞ to a finite coordi-
nate value, ρ = 0) brings metric (49) to the form

(50)

Thus, ρ = 0 is a second-order Killing horizon in the
two-dimensional subspace parametrized by t and ρ; it is
of the same nature as, e.g., the extreme Reissner–Nord-
ström black hole horizon, or the AdS horizon in the sec-
ond Randall–Sundrum braneworld model. A peculiar-
ity of the present horizon is that the spatial part of the
metric, which at large l takes the form ρ2(dx)2, is degen-
erate at ρ = 0. The volume of the d0-dimensional space-
time vanishes as l  ∞, and it remains degenerate
even if we pass to Kruskal-like coordinates in the (t, ρ)
subspace. However, the D-dimensional curvature is
finite there, indicating that the transition to negative
values of ρ (where the old coordinate l no longer works)
is meaningful.1 

One more observation can be made. According
to (46), the potential V is necessarily negative at large l.

1 One might wonder why we here do not obtain simple (first-order)
horizons, like those in the Schwarzschild and de Sitter metrics,
while such horizons generically appeared in the special case
d0 = 1, which corresponds to spherically symmetric global mono-
poles in general relativity, considered in detail in [14, 16]. 

The reason is that for d0 = 1,  in (3) is zero, and the corre-

sponding component of the Riemann tensor is also zero regard-
less of the values of γ'. In terms of the Gaussian coordinate l, a
simple horizon occurs at some finite l = lh , near which gtt = e2γ ~

(l – lh)2, such that γ'  ∞. When d0 = 1, this does not lead to a

singularity, because only the combinations γ'' + γ'2 and β'γ' are
then required to be (and actually are) finite. In the case where
d0 > 1, instead of a horizon, we would have a curvature singular-
ity at finite l, a situation excluded from the present study.
We thus have a general result for the metric in (1): for d0 > 1,
horizons can only be of order 2 or higher.

Vφ φ*( ) d1φ*r*
2– .–=

ds2 C2e 2hl– ηµνdxµdxν dl2– r*
2 dΩ2.–=

ds2 C2ρ2ηµνdxµdxν dρ2

h2ρ2
----------– r*

2 dΩ2.–=

δρσ
µν
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On the other hand, Eq. (8) may be rewritten in integral
form:

(51)

The lower limit of the integral corresponds to a regular
center, where the left-hand side of (51) vanishes. As
l  ∞, it also vanishes due to γ  –∞. Thus, the
integral in the right-hand side, taken from zero to infin-
ity, is zero. This means that the potential V(φ) has alter-
nate sign and is positive in a certain part of the range
(0, φ∗ ).

Thus, purely scalar solutions of the monopole type
may contain second-order horizons. The degenerate
nature of the spatial metric at the horizon does not lead
to a curvature singularity, and the solutions may be con-
tinued in a Kruskal-like manner. Nevertheless, we do
not consider these solutions as ones describing viable
monopole configurations, because the zero volume of
the corresponding spatial section makes the density of
any additional (test) matter infinite. It is then impossi-
ble to neglect its backreaction, which evidently
destroys such a configuration.

B2. eγ ~ ehl, h > 0. The metric has the asymptotic
form

(52)

Thus, in the spherically symmetric extradimensional
part of the metric, we have an infinitely long d1-dimen-
sional cylindrical “tube” with an infinitely growing
gravitational potential gtt = e2γ.

With this cylindrical asymptotic form, according
to (47) and (48), the potential V tends to a negative
value and has a negative slope. Moreover, the integral
in Eq. (51) is negative and diverges at large l due to
growing eγ.

Regular solutions with γ'(∞) > 0 naturally arise if the
potential V(φ) is negative everywhere. We note, how-
ever, that, when V(0) is above zero, by (51), the func-
tion γ(l) decreases near the center (l = 0) due to V > 0
and grows at large l. It therefore has a minimum at some
l > 0.

B3.  = 0. This case contains one more asymptotic
regime where the extra space ends with a regular tube.

Indeed, we can once again use expansions (34), but
now with φ∗  instead of φ∞ and β1 = 0 in accordance with
r  r∗ . Equation (9) (order O(1)) shows that

e
d0γ d1β+

γ' e
d0γ d1β+

V l.d

0

l

∫–=

ds2 C2e2hlηµνdxµdxν dl2– r*
2 dΩ2,–=

C const 0.>=

V*

κ2φ*
2 d1 1,–=
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i.e.,

φ∗  = φcr.

Equation (11) (order O(1)) gives a finite value of the
derivative

Further, Eq. (8) (order O(l–2)) yields

showing that

(or even smaller). Because

we have to conclude that

or smaller.
Now, assuming

we can find V2 directly as the leading term in

and, independently, from Eq. (9) (order O(l–2)), obtain-
ing the two expressions

and

whence it follows that d1 = D – 2, or d0 = 1. Such a “crit-
ical” asymptotic regime (φ  φcr , gtt  0, and r 
const) was indeed found for d0 = 1 in our papers [14,
16] describing (d1 + 2)-dimensional spherically sym-
metric global monopoles, but, as we see, it does not
exist in the case under consideration, d0 > 1.

The only remaining possibility is that

and

γ  γ∗  = const,

dV /dφ φ*( ) d1φ*/r*
2 .–=

γ1 d0γ1 1–( )/l2 V ,–=

V O l 2–( )=

V dV /dφ φ*( )( ) φ φ*–( ) o φ φ*–( ),+=

φ φ*– O l 2–( )=

V φ( ) V2/l2 …,+=

dV /dφ φ*( )( ) φ φ*–( )

V2 d1

φ*φ2

r*
2

-----------–=

V2 D 2–( )
φ*φ2

r*
2

-----------,–=

φ φ*– o l 2–( )=
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i.e., a solution tending, at large l, to the following sim-
ple “flux-tube” solution, valid for any d0 and d1:

(53)

Such a solution can exist if the potential V(φ) has the
properties

and

and the last equality in (53) then relates the constant
radius r to dV/dφ(φcr).

4.3. Solutions with the r  0 Asymptotic Regime 

The limit r  0 means a center, and for it to be reg-
ular, conditions (12) must hold, and, hence, for our sys-
tem, initial conditions (16) with l = 0 should be
replaced, e.g., with l = l0 > 0.

We now recall that conditions (16) determine the
solution to the field equations for a given potential V(φ)
up to the value of φ'. In particular, if there is one more
center at l = l0, then, starting from it and choosing

we obtain the same solution in terms of l0 – l instead of
l. We thus obtain a solution with two regular centers
that is symmetric with respect to the middle point l =
l0/2, to be called the equator. To be smooth there, it must
satisfy the conditions

(54)

which implicitly restrict the shape of the potential.
Given a potential V(φ), conditions (54) create, in gen-
eral, three relations among l0, φ'(0), and the free param-
eters of V(φ)(if any). Eliminating l0 and φ'(0), we must
obtain a single “fine tuning” condition for the parame-
ters of the potential.

A necessary condition for the existence of such a
solution is that V(φ) has a variable sign. This follows
from Eq. (51) by integration over the segment (0, l0/2):
the integral vanishes because γ' = 0 at both ends.

Moreover, as follows from Eqs. (9) and (10) with (54),

(55)

r const, γ const, φ φcr,= = =

V 0, dV /dφ d1φcr/r
2.–= =

V φcr( ) 0=

dV /dφ φcr( ) 0,<

φ' l0( ) φ' 0( ),–=

β' γ' φ' 0 at l l0/2,= = = =

re
2– d1 1– κ2φe

2–( ) D 2–
d1

-------------Ve βe'' Ve,+= =
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Classification of global monopole solutions for arbitrary V(ϕ) by asymptotic types. Attraction or repulsion is understood with
respect to the center

Notation r V(ϕ) ϕ γ Asymptotic type

A1 ∞ V(η) < 0 η < ϕcr ∞ AdS, attraction

A2(a) ∞ 0 η < ϕcr const Flat, solid angle deficit

A2(c), d1 > 2 ∞ 0 0 const Flat

A2(c), d1 = 2 ∞ 0 0 ∞ “Logarithmic”, attraction

B1 r∗ V∗  < 0 ϕ∗  > ϕcr –∞ Double horizon, repulsion

B2 r∗ V∗  < 0 ϕ∗  > ϕcr ∞ Attracting tube

B3 r∗ 0 ϕ∗  = ϕcr const Trivial tube

C 0 V(0) 0 const Second center
                 
leading to

(where the index “e” refers to values at the equator). If
r = eβ is assumed to grow monotonically from zero to
its maximum value at the equator, we have  < 0.

Hence,  < 0, and (55) implies that φe > φcr ; i.e., the
scalar field at the equator must exceed its critical value.

The existence of asymmetric solutions with two reg-
ular centers, corresponding to

is also possible. In this case, there would be no equator
in general, because β and φ would have maxima at dif-
ferent l; moreover, we would have in general,

and γ(l) could even have no extremum. However,
because γ' = 0 at both centers, the integral in (51) taken
from 0 to l0 should vanish and hence, again, V would
have alternating sign.

The whole configuration with two regular centers

has the topology  × , with closed extra
dimensions in the spirit of Kaluza–Klein models. The
main difference from them is that all variables now
essentially depend on the extra coordinate l.

The main properties of all regular asymptotic
regimes found, which lead to a classification of possible
global monopole configurations in extra dimensions,
are summarized in the table. The word “attraction” cor-

d1βe'' d0 1–( )Ve=

βe''

Ve

φ' l0( ) φ' 0( ),≠

γ l0( ) γ 0( )≠ 0,=

M
d0

S
d1  +  1               
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responds to an increasing warp factor far from the
brane.

5. SCALAR FIELD TRAPPING 
BY GLOBAL MONOPOLES

We consider a test scalar field with Lagrangian (22)
in the background of global monopole configurations
described in Section 4. After variable separation (24),
the field equation for a p-mode of the scalar field χ
becomes

(56)

where

is the d0-momentum squared and

is the effective mass squared. The trapping criterion
consists, as before, in the requirements that the χ field
stress–energy tensor must vanish far from the brane and
the total χ field energy per unit volume of the brane
must be finite, i.e.,

(57)

The first requirement means that each term in the
square brackets in (57) must vanish at large l.

We now check whether these requirements can be
met at different kinds of asymptotic regimes listed in
the table.

X '' d0γ' d1β'+( )X ' e 2γ– p2 µ2–( )X+ + 0,=

p2 pµ pµ E2 p2–= =

µ2 m0
2 λφ2+=

 E 
tot

 χ[ ] gd d
 1 1+ x ∫ = 

×

 

e

 

2

 

γ

 

–

 

E

 

2

 

p

 

2

 

+

 

( )

 

X

 

2

 

µ

 

2

 

X

 

2

 

X

 

'

 

2

 

+ +

 

[ ]

 

dl

 

∞

 

.

 

<
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A1. Attracting AdS asymptotic regime β ~ γ ~ kl,
k > 0. At large l, Eq. (56) reduces to the equation with
constant coefficients

and its solution vanishing as l  ∞ is

(58)

It can be directly verified that the trapping requirements
are satisfied for all momenta p and all µ2 ≥ 0.

A2(a). A quasiflat asymptotic regime with a solid
angle deficit. At large l, Eq. (25) reduces to

where

and γ∞ is the limiting value of γ at l = ∞. In terms of

this equation is (at large l) rewritten as

while trapping condition (57) implies that

Therefore, only an exponentially falling Y(l) is suitable.
In other words, the trapping condition is P2 < 0, or

(59)

where, now,

We note that

is nothing else but the observable mass of a free χ-par-
ticle if the observer watches its motion in the
Minkowski section l = 0 of our manifold, i.e., on the
brane. Hence, condition (59) means that the brane traps
all scalar particles of masses smaller than the critical
value mcr depending on the model parameters.

X '' D 1–( )X µ2X–+ 0,=

X e al– ,∼

a
1
2
--- D 1–( )k D 1–( )2k2 4µ2++[ ] .=

X '' d1X/l P2X+ + 0,=

P2 p2e
2γ∞–

µ2–=

Y l
d1/2

X ,=

Y '' P2Y+ 0,=

l
d1 X2 l( ) ld∫ ∞.<

p2 mcr
2  := µ2e

2γ∞,<

µ2 m0
2 λ2η2.+=

p2 E2 p2–=
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A2(c) (d1 > 2). This case differs from the previous
one only by the asymptotic value of φ, which is now
zero, and, hence, µ = m0.

A2(c) (d1 = 2). A “logarithmic” asymptotic regime,
eγ ~ lnl. Because e–2γ ~ 1/(lnl)2  0, the term with p2

drops out of Eq. (56), which then leads to the decreas-
ing solution

and a χ-particle is trapped provided µ = m0 > 0.
B1. A horizon. As was remarked previously, we do

not regard this configuration viable and omit it from our
discussion.

B2. An attracting tube, r  r∗  and γ ≈ hl, h > 0 as
l  ∞. Equation (56) takes the form

and has the decreasing solutions

(60)

As in item A1, it is easy to verify that the trapping con-
ditions hold provided µ2 > 0.

B3. A trivial tube, both β and γ tend to constants as
l  ∞. In Eq. (56), the term with X' drops out at large
l, and an exponentially decreasing solution exists under
condition (59), where

C. These configurations have no large l asymptotic
regimes and are not interpreted in terms of branes.

A conclusion is that scalar particles of any mass and
momentum are trapped by global monopoles with A1
and B2 asymptotic regimes with exponentially growing
warp factors and A2(c) with a logarithmic asymptotic
regime; they are trapped under restrictions (59) on the
particle’s observable mass by monopoles with A2 and
B3 asymptotic regimes whose warp factors tend to con-
stant limits far from the brane.

6. NUMERICAL RESULTS: 
MEXICAN HAT POTENTIAL

In this section, we present the results of our numer-
ical calculations, which confirm the classification of
regular solutions given above. We have used the Mexi-
can hat potential in the form (Fig. 1)

(61)

It has two extremum points in the range φ ≥ 0: a maxi-
mum at φ = 0 and a minimum at φ = η. The SSB energy

X l 1– e µl– ,∼

X '' d0hX ' µ2X–+ 0=

X e al– , a∼ 1
2
--- d0h d0

2h2 4µ2++( ).=

µ2 m0
2 λ2φcr

2 .+=

V
λη 4

4
--------- ε 1 φ2

η2
-----– 

 
2

+ .=
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scale is characterized by η2/(D – 2), while η deter-
mines, as usual, the length scale. The nonconventional
parameter ε introduced in (61) moves the potential up
and down, which is equivalent to adding a cosmological
constant to the usual Mexican hat potential.

Given potential (61), the nature of the solutions
essentially depends on its two dimensionless parame-

λ

ε > 0

ε = 0

0 > ε > –1

–1 > ε

η 
0

V

φ

Fig. 1. Mexican hat potential.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ters: ε, fixing the extremal values of the potential with
respect to zero, and κ2η2, characterizing the gravita-
tional field strength: as we remember from Section 4,
the asymptotic regime r  ∞ only exists when φ∞ <
φcr , which is the same as

If ε > 0, potential (61) is always positive, and, in
accordance with item A1, regular solutions are absent.

In the conventional case where ε = 0, in the range

there are asymptotically flat regular solutions with a
solid angle deficit (class A2).

The most complex case 0 > ε > –1 contains a variety
of possibilities. Regular solutions with the asymptotic
behavior r  ∞ as l  ∞ having  > 0 (case A1)
exist in some range 0 < η < ηs , where the separating
value ηs depends on d0, d1, and ε. As an example, such
a regular solution with κ2η2 = 5, ε = –0.75, d0 = 4, and
d1 = 3 is presented in Fig. 2.

κ2η2 d1 1.–<

0 κ2η2 d1 1,–<<

γ∞'
1.0

0.5

0 5 10 15 20 25
l

φ
60

20

0 5 10 15 20 25
l

r

40 r(l)

l

4

0

0 5 10 15 20 25
l

γ

2

–2

Fig. 2. A regular solution with an AdS asymptotic regime (type A1) for potential (61) with κη2 = 5, ε = –0.75, d0 = 4, d1 = 3.

0.2

0 5 10 15

l

φ

1.6

0 5 10 15 20

l

r

1.8

2.0

0

0 2 4 6 8

l

γ

1.5

–0.5

0.4

0.6

0.8

2.0

2.2

1.4

2.4

0.5

1.0

Fig. 3. Regular (except for dotted curves) solutions with the B2 asymptotic regime (attracting tube), such that r  r∗  < ∞ and

 > 0.γ∞'
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1.0

0.2

0 2 4 6 8 10

l

φ r γ

0.4

0.6

0.8

6

0 2 4 8 10

l

2

4

6

l

r(l)

0

0 1 2 3 4

l

–0.5

–1.0

Fig. 4. A regular solution with the asymptotic regime r  r∗  < ∞ and  < 0 (case B1, horizon).γ∞'

0.2

0 5 10 15

l

φ

1

0 5 10 15

l

r
0.1

0

0 2 10 15

l

γ

–0.5

0.6

0.8

1.0

2

3

4

0.4

3

2

1 1

2

3

3 2 1

–0.4

–0.3

–0.1

–0.2

Fig. 5. Type-C solutions with two regular centers (r  0, φ  0, γ'  0 as l  l0).

1.0

–0.5
0 2 4 6 8 10

l

φ r γ

0

0.5

0 10 20 30
l

20

40

1.0

0 2 4 8 10
l

0.5

6

Fig. 6. Regular solutions starting and terminating at φ(0) = φ(∞) = 0. The limiting solid curve with φ'(0) =  = 0.4401425 (sepa-

ratrix) terminates at φ(∞) = η.

φc'
Depending on the parameters of the potential, there
are regular solutions with the asymptotic regime r 

r∗  < ∞ and  > 0 (case B2) in a certain range ηs1 < η <

ηs2 (see Fig. 3). Here, ε = –0.9, d0 = 4, d1 = 3. The curves
are given for κ2η2 = 10, 12, 15, 20, 30, 40, and 45 (from
top down). The dotted curves (κ2η2 = 10 and κ2η2 = 45)

γ∞'
JOURNAL OF EXPERIMENTAL A
correspond to singular configurations. It follows that,
for ε= –0.9, d0 = 4, d1 = 3, the lower bound of this
parameter that leads to regular models is somewhere
between 10 and 12, while the upper bound is between
30 and 45.

An example of a regular solution with the asymp-
totic regime r  r∗  < ∞ and  < 0 (class B1), corre-γ∞'
ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005
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sponding to a second-order Killing horizon, is shown in
Fig. 4.

The value κη2 = 17.37 is fine-tuned to the parame-
ters ε = –0.75, d0 = 4, d1 = 2 of this particular solution.

Other examples of fine-tuned regular solutions,
namely, type C with two regular centers (r  0, φ 
0, γ'  0 at l  l0), are presented in Fig. 5.

For all three curves, d0 = 4 and d1 = 2. The curves (1,
2, and 3) correspond to ε = –0.15, –0.5, and –0.9626,
respectively. The fine-tuned values of κ2η2 are approx-
imately 2.637, 6.17, and 100.

In the case ε ≤ –1, the maximum V(0) ≤ 0 is at or
below the zero level, and there is a possibility for the
integral curves to start and finish at the same value
φ(0) = φ(∞) = 0. We then observe a whole family of
such regular curves in the range 0 < φ'(0) <  (see
Fig. 6).

For the particular example presented (ε = –1.5,
κη2 = 1, d0 = 4, d1 = 3), the values of φ'(0) for the dotted
curves ending with φ = 0 are 0.2, 0.3, and 0.4 (from bot-
tom up). The limiting solid curve with φ'(0) =  =
0.4401425 (separatrix) is a regular solution ending at
the minimum of the potential: φ  η as l  ∞.

The Mexican hat potential (61), with its only two
extrema at φ = 0 and φ = η, cannot demonstrate the
whole variety of solutions that appear with more
sophisticated potentials having additional maxima
and/or minima. Thus, for instance, class-A solutions
may have a large-r asymptotic regime at any such extre-
mum.

7. CONCLUSIONS

We have obtained as many as seven classes of regu-
lar solutions of the field equations describing a
Minkowski thick brane with a global monopole in extra
dimensions (see table).

Some of these classes, namely, A1 with an AdS
asymptotic behavior and B2 ending with an attracting
tube, have the exponentially growing warp factor e2γ at
large l and are shown to trap linear test scalar fields
modes of any mass and momentum.

Others, A2(a) and A2(c) for d1 > 2, ending with a flat
metric at large l, have a warp factor tending to a con-
stant whose value is determined by the shape of the
potential V(φ). They are also shown to trap a test scalar
field, but the observable mass of the field is restricted
from above by a value depending on the particular
model of the global monopole.

Lastly, for d1 = 2, i.e., a three-dimensional global
monopole in the extra dimensions, class A2(c) solu-
tions have a logarithmically growing warp factor. All
test scalar field modes are trapped by this configuration,
but the slow growth of γ(l) probably means that the test
field is strongly smeared over the extra dimensions.

φc'

φc'
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
All such configurations, in sharp contrast to RS2-
like domain walls in five dimensions, are able to trap
scalar matter. It is certainly necessary to check whether
nonzero-spin fields are trapped as well and Newton’s
law of gravity holds on the brane in conformity with the
experiment. We hope to consider these subjects in our
future publications.

In addition to the trapping problem, a shortcoming
of RS2-type Minkowski branes is that they are neces-
sarily fine-tuned. Many of the global monopole solu-
tions, at least those existing in the weak gravity regime
(class A), are free of this shortcoming and are thus bet-
ter for thick brane model building.

Some results and conclusions of this paper were pre-
viously given in [12, 13]. The main difference of our
approach from theirs is their boundary condition, which
is φ = η in our notation. This excludes the cases where
the solution ends at a maximum or slope of the poten-
tial, such as symmetric solutions with two regular cen-
ters. Another difference is that they consider solutions
with an exponentially decreasing warp factor as those
leading to matter confinement on the brane. In our view,
such solutions with second-order horizons do not rep-
resent viable models of a braneworld. We conclude that
the present paper gives the most complete classification
of all regular solutions for global monopoles in extra
dimensions, which, even without gauge fields, seem to
be promising as braneworld models.
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Abstract—The cross section of the process e+e–  π+π– was measured in the spherical neutral detector

experiment at the VEPP-2M collider in the energy region 400 <  < 1000 MeV. This measurement was based
on about 12.4 × 106 selected collinear events, which include 7.4 × 106 e+e–  e+e–, 4.5 × 106 e+e–  π+π−,
and 0.5 × 106 e+e–  µ+µ– selected events. The systematic uncertainty of cross section determination is 1.3%.
The ρ-meson parameters were determined as mρ = 774.9 ± 0.4 ± 0.5 MeV, Γρ = 146.5 ± 0.8 ± 1.5 MeV, and
σ(ρ  π+π–) = 1220 ± 7 ± 16 nb and the parameters of the G-parity suppressed decay ω  π+π– as
σ(ω  π+π–) = 29.9 ± 1.4 ± 1.0 nb and φρω = 113.5 ± 1.3 ± 1.7°. © 2005 Pleiades Publishing, Inc. 
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1. INTRODUCTION

The cross section of the e+e–  π+π– process in the

energy region  < 1000 MeV can be described within
the vector meson dominance model and is determined
by the transitions V  π+π– of the light vector mesons
(V = ρ, ω, ρ', ρ'') into the final state. The main contribu-
tion in this energy region comes from the ρ  π+π–

and from the G-parity violating ω  π+π– transitions.
Studies of the e+e–  π+π– reaction allow determina-
tion of the ρ and ω meson parameters and provide
information on the G-parity violation mechanism.

At low energies, the e+e–  π+π– cross section
makes the dominant contribution to the well-known
ratio

which is used for calculation of the dispersion integrals
(for example, for evaluation of the electromagnetic run-
ning coupling constant at the Z-boson mass αem(s =

) or for determination of the hadronic contribution

 to the anomalous magnetic moment of the muon,

s

R s( ) σ e+e– hadrons( )
σ e+e– µ+µ–( )

--------------------------------------------------,=

mZ
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hadr

¶ The text was submitted by the authors in English.
1063-7761/05/10106- $26.00 1053
which is nowadays measured with very high accuracy
5 × 10–6) [1, 2].

Assuming conservation of the vector current (CVC)
in the isospin symmetry limit, the spectral function of
the τ±  π±π0ντ decay can be related to the isovector
part of the e+e–  π+π– cross section. The spectral
function was determined with high precision in [3–5].
The comparison of the e+e–  π+π– cross section with
what follows from the spectral function provides an
accurate test of the CVC hypothesis.

The process e+e–  π+π– in the energy region

 < 1000 MeV has been studied in several experi-
ments [6–19] for more than 30 years. In the present
work, we report on the results of the e+e–  π+π–

cross section measurement with a spherical neutral

detector (SND) at 390 ≤  ≤ 980 MeV.

2. EXPERIMENT

The SND [20] operated from 1995 to 2000 at the
VEPP-2M [21] collider; it worked in the energy range

 from 360 to 1400 MeV. The detector contains sev-
eral subsystems. The tracking system includes two
cylindrical drift chambers. The three-layer spherical
electromagnetic calorimeter is based on NaI(Tl) crys-
tals. The muon–veto system consists of plastic scintil-
lation counters and two layers of streamer tubes. The

s

s

s
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calorimeter energy and angular resolutions depend on
the photon energy as

and

The tracking system angular resolution is about 0.5°
and 2° for the azimuthal and polar angles, respectively.

In 1996–2000, the SND collected data in the energy

region  < 980 MeV with an integrated luminosity of
about 10.0 pb–1. The beam energy was calculated from
the magnetic field value in the bending magnets of the
collider. The accuracy of the energy setting is about
0.1 MeV. The beam energy spread varies in the range

from 0.06 MeV at  = 360 MeV to 0.35 MeV at  =
970 MeV.

3. DATA ANALYSIS

The cross section of the e+e–  π+π– process was
measured as follows.

(1) The collinear events e+e–  e+e–, π+π–, µ+µ–

were selected.
(2) The selected events were sorted into the two

classes: e+e– and π+π–, µ+µ– using the energy deposition
in the calorimeter layers.

(3) The e+e–  e+e– events were used for inte-
grated luminosity determination. The events of the
e+e−  µ+µ– process were subtracted according to the
theoretical cross section, integrated luminosity, and
detection efficiency.

(4) To determine the cross section of the e+e– 
π+π– process, the number of e+e–  π+π– events in
each energy point were normalized to the integrated

σE/E( )% 4.2%/ E GeV[ ]4=

σφ θ, 0.82°/ E GeV[ ] 0.63°.⊕=

s
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Fig. 1. Energy deposition spectra for electrons with energies
of 180, 300, 390, and 485 MeV in experiment (dots) and
MC simulation (histogram).
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luminosity and divided by the detection efficiency and
radiative correction.

The detection efficiency was obtained from Monte
Carlo (MC) simulation [20]. The MC simulation of
SND is based on the UNIMOD [22] package. The SND
geometrical model description comprises about
10000 distinct volumes and includes details of the
SND’s design. The primary generated particles are
tracked through the detector media with the following
effects taken into account: ionization losses, multiple
scattering, bremsstrahlung of electrons and positrons,
Compton effect and Rayleigh scattering, e+e– pair pro-
duction by photons, photoeffect, unstable particles
decay, interaction of stopped particles, and nuclear
interaction of hadrons [23–25]. After that, the signals
produced in each detector element are simulated. The
electronic noise, signal pile up, actual time, and ampli-
tude resolutions of the electronics channels and broken
channels were taken into account during processing of
the Monte Carlo events to provide an adaptable account
of variable experimental conditions.

The Monte Carlo simulation of the processes
e+e−  e+e–, µ+µ–, π+π– was based on the formula
obtained in [26–28]. The simulation of the process
e+e−  e+e– was performed with the cut 30° <  <

150° on the polar angles of the final electron and
positron.

The e+e–  e+e–, µ+µ–, and π+π– events differ by
energy deposition in the calorimeter. In the e+e– 
e+e– events, the electrons produce an electromagnetic
shower with the most probable energy losses about 0.92
of the initial particle energy. The distributions of the
energy deposition of the electrons with different ener-
gies are shown in Fig. 1. The experimental and simu-
lated spectra are in good agreement. Muons lose their
energy by ionization of the calorimeter material
through which they pass, and their energy deposition
spectra are well modeled in simulation (Fig. 2). Similar
ionization losses are experienced by charged pions, and
this part of the charged pion energy deposition is well
described by simulation (Fig. 3). However, pions also
lose their energy due to nuclear interactions, which is
not so accurately reproduced in simulation. This leads
to some difference in the energy deposition spectra in
experiment and simulation for charged pions (Fig. 4).

The discrimination between electrons and pions in
the SND is based on the difference in the longitudinal
energy deposition profiles (deposition in calorimeter
layers) for these particles. To fully use the correlations
between energy depositions in the calorimeter layers,
the corresponding separation parameter was based on
the neural network approach [29]. For each energy
point, the neural network, a multilayer perceptron, was
constructed. The network had an input layer consisting
of seven neurons, two hidden layers with 20 neurons
each, and an output layer with one neuron. As the input
data, the network used the energy depositions of parti-

θ
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cles in calorimeter layers and the polar angle of one of
the particles. The output signal Re/π is a number in the
interval from –0.5 to 1.5. The network was trained by
using simulated e+e–  π+π– and e+e–  e+e– events.
The distribution of the discrimination parameter Re/π is
shown in Fig. 5. The e+e–  e+e– events are located in
the region Re/π > 0.5, and the e+e–  π+π–, µ+µ– events
are located at Re/π < 0.5.

3.1. Selection Criteria 

During the experimental runs, the first-level trigger
[20] selects events with one or more tracks in the track-
ing system and with two clusters in the calorimeter with
a spatial angle between the clusters of more than 100°.
The threshold of energy deposition in a cluster was
equal to 25 MeV. The threshold of the total energy dep-
osition in the calorimeter was set equal to 140 MeV in

the energy region  ≥ 850 MeV, and to 100 MeV, or
was absent altogether, below 850 MeV. During process-
ing of the experimental data, event reconstruction is

s
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Fig. 2. Energy deposition spectra for the 500 MeV muons in
experiment (dots) and MC simulation (histogram).
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Fig. 4. Energy deposition spectra of the pions with the
energy Eπ = 300 MeV. Dots, experiment; histogram, MC
simulation.
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performed [20, 30]. For further analysis, events con-
taining two charged particles with |z | < 10 cm and r <
1 cm were selected. Here, z is the coordinate of the
charged particle production point along the beam axis
(the longitudinal size of the interaction region depends
on the beam energy and varies from 1.5 to 2.5 cm) and
r is the distance between the charged particle track and
the beam axis in the rφ plane. The polar angles of the
charged particles were bounded by the criterion 55° <
θ < 125°, and the energy deposition of each of them
was required to be greater than 50 MeV. The following
cuts on the acollinearity angles in the azimuthal and
polar planes were applied: |∆φ| < 10° and |∆θ| < 10°. In
the event sample selected under these conditions, one
has the e+e–  e+e–, π+π–, µ+µ– events, cosmic muons
background, and a small contribution from the e+e– 

π+π–π0 reaction at  ≈ mω. The muon system veto was
used for suppressing the cosmic muon background
(veto = 0).

s
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Fig. 3. Spectra of the ionization losses of the pions with the
energy Eπ > 360 MeV in the first calorimeter layer. Dots,
experiment; histogram, MC simulation.
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Fig. 5. The e/π discrimination parameter distribution for all

collinear events in the energy region  from 880 to
630 MeV. Dots, experiment; histogram, MC simulation.
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3.2. The Background from Cosmic Muons
and from the e+e–  π+π–π0 Process 

The number of background events from the e+e– 
π+π–π0 process was estimated as

(1)

where σ3π(s) is the cross section of the e+e–  π+π–π0

process with the radiative corrections taken into
account, IL(s) is the integrated luminosity, and e3π(s) is
the detection probability for the background process
obtained from the simulation under the selection crite-
ria described above. The values of s3π(s) were taken
from the SND measurements [31]. Although σ3π(mω) ≈
1300 nb, the e+e–  3π process contribution to the
total number of collinear events at the ω resonance peak
is less than 0.3%. The leading role in the suppression of
this background was played by the cuts on the acol-
linearity angles ∆θ and ∆φ. In order to check the esti-
mate in (1), the events containing two or more photons

N3π s( ) σ3π s( )e3π s( )IL s( ),=
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mγγ, MeV

0

Events
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Fig. 6. Two-photon invariant mass mγγ distribution at

 ≈ mω.s

10 000

5000

0

Eventes

–10 –5 0 5 10
z, cm

Fig. 7. Distribution of the z coordinate of the charged parti-
cle production point along the beam axis for collinear

events at  = 180 MeV. Histogram, all events; dashed dis-
tribution, events with muon system veto (veto = 1).

s
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with energy depositions of more than 200 MeV were
considered.

Because our selection criteria select the e+e–  3π
events with collinear charged pions and, therefore, the
neutral pion in these events has relatively low energy,
the constraint on the photon energy deposition greatly
suppresses the events other than e+e–  3π events. To
obtain the e+e–  3π event number n3π, the invariant
mass spectrum mγγ (Fig. 6) was fitted by the sum of a
Gaussian function and a second-order polynomial:

The value of n3π agrees with events number calculated
according to (1).

The cosmic muon background was suppressed by
the muon–veto system. The z coordinate distribution
for the charged particle production point along the
beam axis is shown in Fig. 7 for collinear events. The
e+e– annihilation events have the Gaussian distribution
peaked at z = 0, while the cosmic background distribu-
tion is nearly uniform and clearly extends outside the
peak. As Fig. 7 shows, the muon system veto (veto = 1)
separates cosmic muons from the e+e– annihilation
events. The residual event number of the cosmic muon
background was estimated from the formula

(2)

where νµ ≈ 1.3 × 10–3 Hz is the frequency of cosmic
background detection under the applied selection crite-
ria and T is the time the data was taken. The value of νµ
was obtained by using data collected in special runs
without beams in the collider. The first-level trigger
counting rate in these runs was 2 Hz. The contribution
of the cosmic background to the total number of

selected collinear events depends on the energy  and
varies from 0.1 to 1%.

The e+e–  π+π–π0 events are concentrated in the
Re/π discrimination parameter region Re/π < 0.5. The

cosmic background events at energies of  > 600 MeV
also fall in the area Re/π < 0.5, because the energy dep-
osition of the cosmic muons is much lower than the
energy deposition in the e+e–  e+e– events. For lower
center-of-mass energies, the cosmic background moves
to the area Re/π > 0.5, because the energy depositions
are close in this case.

3.3. Detection Efficiency 

The ∆φ and ∆θ distributions of the e+e–  e+e– and
e+e–  π+π– events are shown in Figs. 8–11. Experi-
ment and simulation agree rather well. As a measure of

G mγγ( )n3π P2 mγγ( ) n n3π–( ).+

Nµ νµT ,=

s

s
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the systematic uncertainty due to the ∆θ cut, the follow-
ing value was used:

(3)

where

Here, nx(|∆θ| < 10°) and mx(|∆θ| < 10°) are the numbers
of experimental and simulated events selected under
the condition |∆θ| < 10°, while Nx(|∆θ| < 20°) and
Mx(|∆θ| < 20°) are the numbers of experimental and
simulated events with |∆θ| < 20°. δ∆θ does not depend
on energy, its average value is equal to 0.999, and it has
a systematic spread of 0.4%. This systematic spread
was added to the error of the cross section measurement
at each energy point. The systematic error due to the ∆φ
cut is significantly lower and was neglected.
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Fig. 8. The ∆φ distribution of the e+e–  e+e– events.
Dots, experiment; histogram, MC simulation.
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Fig. 10. The ∆θ distribution of the e+e–  e+e– events.
Dots, experiment; histogram, MC simulation.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The polar angle distributions for the e+e–  e+e–

and e+e–  π+π– processes are shown in Figs. 12 and
13. The ratio of these θ distributions is shown in
Fig. 14. The experimental and simulated distributions
are in agreement. To estimate the systematic inaccuracy
due to the θ angle selection cut, the following ratio was
used:

(4)
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Fig. 9. The ∆φ distribution of the e+e–  π+π– events.
Dots, experiment; histogram, MC simulation.
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Fig. 11. The ∆θ distribution of the e+e–  π+π– events.
Dots, experiment; histogram, MC simulation.
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e+e−  e+e– event numbers in the angular range θx <
θ < 180° – θx . The maximal difference of δθ from unity
was found to be 0.8%. This value was taken as a sys-
tematic error δθ = 0.8% associated with the angular
selection cut.

60 80 100
θ, deg

0

Ni/N

0.025

0.075

0.050

120

0.100

Fig. 12. The θ angle distribution of the e+e–  e+e–

events. Dots, experiment; histogram, MC simulation.
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Fig. 13. The θ angle distribution of the e+e–  π+π–

events. Dots, experiment; histogram, MC simulation.
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Fig. 14. The ratio of θ distributions of the e+e–  π+π–

and e+e–  e+e– processes. Dots, experiment; histogram,
MC simulation.
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In the tracking system, the particle track can be lost
due to reconstruction inefficiency. The probabilities of
finding the track were determined by using the experi-
mental data themselves. It was found to be εe ≈ 0.996
for electrons and επ ≈ 0.995 for pions. In simulations,
these values do not actually differ from unity, while in
reality, the probability of finding the track for electrons
is slightly greater than for pions. Therefore, the detec-
tion efficiency was multiplied by the correction coeffi-
cient

(5)

Pions can be lost due to the nuclear interaction in the
detector material before the tracking system, for exam-
ple, via the reaction π±N  π±N, with the final pion
scattered at a large angle, or via the charge exchange
reaction π±N  π0N. As a measure of systematic inac-
curacy associated with this effect, the difference from
unity of the following quantity was used:

(6)

Here, N and M are the pion numbers in experiment and
simulation; n and m are the pion numbers in experiment
and simulation in the case where a track in the drift
chamber nearest to the beam pipe was detected, but the
corresponding track in the second drift chamber and
associated cluster in the calorimeter was not found. The
probability of particle loss was divided by 3, the ratio of
the amounts of matter between the drift chambers and
before the tracking system. The deviation of δnucl from
1 was taken as a systematic error, σnucl = 0.2%.

Uncertainties in simulation of pion nuclear interac-
tions imply that the cut on the particle energy deposi-
tion leads to an inaccuracy in the detection efficiency of
the e+e–  π+π– process. To take this inaccuracy into
account, the detection efficiency was multiplied by the
correction coefficients. The correction coefficients
were obtained by using events of the e+e–  π+π–π0

reaction [30–32]. Pion energies in the e+e–  π+π–π0

events were determined via the kinematic fit. The pion
energies were divided into 10-MeV-wide bins. For each
bin, the correction coefficient (Fig. 15) was obtained as

(7)

where i is the bin number, Ni and Mi are the pion num-
bers in experiment and simulation selected in the ith bin
by the kinematic fit without any cut on the energy dep-
osition in the calorimeter, and ni and mi are the pion
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numbers in experiment and simulation under the condi-
tion that the pion energy deposition is greater than
50 MeV. To estimate systematic errors in determining
these correction coefficients, we considered the ratio of
the probability that both pions in simulated e+e– 
π+π– events have an energy deposition of more than
50 MeV to the quantity (mi/Mi)2. This ratio is 0.994 at

 > 420 MeV and about 0.97 at  < 420 MeV. The
difference of this ratio from unity was taken as a sys-
tematic error σE > 50 in determining the δE > 50 correction

coefficient: σE > 50 = 0.6% at  > 420 MeV and

σE > 50 = 3% at  < 420 MeV.

In the energy region  = 840–970 MeV, the prob-
ability of hitting the muon–veto system for muons and
pions varies from 1 to 93% and from 0.5 to 3%, respec-
tively. The usage of the muon system veto for event
selection (veto = 0) leads to inaccuracy in the determi-
nation of the measured cross section due to the uncer-
tainty in the simulation of the muons and pions travers-

ing the detector at  > 840 MeV. To obtain the neces-
sary corrections, the events close to the median plane
φ < 10°, 170° < φ < 190°, φ > 350°, where the cosmic
background is minimal, were used. The e+e–  π+π–

cross section was measured with (veto = 0) and without
(veto ≥ 0) using the muon system, and the following
correction coefficient was obtained for each energy
point:

(8)

It was found that δveto = 0.95 at  = 970 MeV and
quickly rises to 1 for lower energies.

The detection efficiencies of the processes e+e– 
π+π–, µ+µ–, and e+e– after all the applied corrections are
shown in Fig. 16. The detection efficiency is indepen-
dent of energy for the e+e–  e+e– reaction, but
depends on it for the e+e–  µ+µ– and π+π– processes.
The decrease in the e+e–  µ+µ– process detection

efficiency at  > 800 MeV is caused by the fact that
the probability of muons hitting the muon system
increases with energy. The detection efficiency of the

e+e–  π+π– process at  > 500 MeV is determined
mainly by the cuts on the pion angles. Below 500 MeV,
the detection efficiency decreases due to the cut on the
pion energy deposition in the calorimeter. A statistical
error of ≤1% for the detection efficiency determination
was added to the cross section measurement error at
each energy point. The total systematic error of deter-
mining the detection efficiency σeff = σE > 50 ⊕  σnucl ⊕

s s
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σθ is σeff = 1% at  ≥ 420 MeV and σeff = 3.1% at

 < 420 MeV.

3.4. Measurement 
of the e+e–  π+π– Cross Section 

The number of selected events in the regions Re/π < 0.5
and Re/π > 0.5 are

(9)

(10)

Here, N and M are the event numbers in the respective
regions Re/π < 0.5 and Re/π > 0.5. Nµ , Mµ and N3π, M3π
are the numbers of background events due to cosmic
muons and the e+e–  π+π–π0 process, calculated as
described above. The e+e–  µ+µ– process event num-
ber can be written as

(11)

(12)

where σµµ is the e+e–  µ+µ– process cross section
obtained according to [27], εµµ is the process detection

s

s

N Nππ Nee Nµµ Nµ N3π,+ + + +=

M Mππ Mee Mµµ Mµ M3π.+ + + +=

Nµµ σµµεµµ 1 eµµ–( )IL,=

Mµµ σµµεµµeµµIL,=
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Fig. 15. The dE > 50 correction coefficient associated with
the pion energy deposition cut vs. the pion energy Eπ.
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Fig. 16. The detection efficiencies εππ (w), εee (j), and

εµµ (d) of the e+e–  π+π–, µ+µ–, and e+e– processes.
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efficiency, eµµ is the probability for the e+e–  µ+µ–

process events to have Re/π > 0.5, and IL is the inte-
grated luminosity,

(13)

where εee and eee are the detection efficiency and the
probability of having Re/π > 0.5 for the process e+e– 
e+e–, and σee is the process cross section with the 30° <
θ < 150° angular cut for the electron and positron in the
final state. The cross section σee was calculated using
the BHWIDE 1.04 [33] code with the accuracy 0.5%.
The e+e–  π+π– process event number with Re/π > 0.5
and the e+e–  e+e– process event number with Re/π <
0.5 can be written as

IL
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Fig. 17. The percentage of the e+e–  e+e– (1), π+π– (2),
µ+µ– (3), π+π–π0 (4), and cosmic background (5) vs. the
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MC simulation.
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The e+e–  e+e– process event number with Re/π > 0.5
and the e+e–  π+π– process event number with Re/π <
0.5 are

(14)

(15)

where

The percentage of each process in the selected events

versus the energy  is shown in Fig. 17. The experi-
mental angular distributions agree with the sum of dis-
tributions for each process weighted according to its
contribution (Fig. 18).

The e+e–  π+π– process cross section is calcu-
lated from the formula

(16)

To estimate the systematic uncertainty due to e–π
discrimination, the pseudo ππ and pseudo ee events in
the experiment and simulation were formed. The
pseudo ππ events were constructed by using pions from
the e+e–  π+π–π0 reaction. To construct the pseudo
ππ event with pions having an energy E0, two charged
pions with energies Eπ such that |E0 – Eπ| < 10 MeV
were used from two separate e+e–  π+π–π0 events.
Of course, such pseudo ππ events are in general not col-
linear, but this is irrelevant for our purposes here. The
pseudo ee event was constructed analogously from the
particles of two separate collinear events such that their
partners in these events have energy depositions in the
calorimeter layers typical for electrons. Figures 19 and
20 show the probabilities for the discrimination param-
eter to have values less than some magnitude in exper-
iment and simulation for such pseudo events. Using
these distributions, the corrections to the probabilities
for the separation parameter Re/π to be greater or less
than 0.5 was obtained. The difference between cross
sections measured with and without these corrections

Mee
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was taken as a systematic error, and its value does not
exceed 0.5% for different energy points.

The cross sections obtained, together with the radi-
ative corrections δrad , including the initial- and final-
state radiation, are presented in Table 1. The δrad radia-
tive correction was calculated according to [28]. The
accuracy of its determination is 0.2%. Given the radia-
tive corrections, the Born cross section for the e+e– 
π+π– process can be obtained as

(17)

The value of δrad(s) depends on the cross section at
lower energies, and it was therefore calculated itera-
tively. The iteration stops when its value changes by not
more than 0.1% in consecutive iterations. The form fac-
tor values

are also listed in Table 1. To evaluate the value of

which is used in calculating dispersion integrals, the
bare cross section e+e–  π+π– is used (the cross sec-
tion without vacuum polarization contribution but with
the final-state radiation taken into account),

(18)

where Π(s) is the polarization operator calculated
according to [27] from the known e+e–  hadrons
cross section [34]. The last factor takes the final-state
radiation into account, and a(s) has the form [35]

σ0 s( )
σππ s( )
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Fπ s( ) 2 3s
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4mπ
2

s
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Here,

The values of (s) are listed in Table 1.

The total systematic error of the cross section deter-
mination is

Here, σeff is the systematic error of the detection effi-
ciency determination, σsep is the systematic error asso-
ciated with the e–π separation, σIL is the systematic
error of the integrated luminosity determination, and
σrad is the uncertainty of the radiative correction calcu-
lation. The magnitudes of various contributions to the
total systematic error are shown in Table 2. The total
systematic error of the cross section determinations is

Li2 x( ) t 1 t–( )/t.lnd

0

x

∫–=

σππ
pol

σsys σeff σsep σIL σrad.⊕ ⊕ ⊕=

0.2 0.6 0.8
Re/π
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P(Re/π < R0)

0.98

0.99

1.00

1.0 1.20.4

1.01

Fig. 19. The probability of the pseudo ππ events to have an
Re/π value less than some R0. Dots, experiment; histogram,
MC simulation.
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Fig. 20. The probability of the pseudo ee events to have an
Re/π value greater than some R0. Dots, experiment; histo-
gram, MC simulation.
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Table 1.  The results of the e+e–  π+π– cross section measurements. σππ is the e+e–  π+π– cross section with the radi-
ative corrections due to the initial- and final-state radiation taken into account, δrad is the radiative correction due to the initial-
and final-state radiation, σ0 and |Fπ|2 are the cross section and the form factor of the e+e–  π+π– process after the radiative

corrections were undressed, and  is the e+e–  π+π– undressed cross section without vacuum polarization but with the

final-state radiation. Only uncorrelated errors are shown. The correlated systematic error σsys is 1.3% for  < 420 MeV and

3.2% for  < 420 MeV

, MeV σππ, nb δrad σ0, nb |Fπ|2 , nb

970.0 118.12 ± 2.76 1.491 79.20 ± 1.85 3.91 ± 0.09 7.53 ± 1.81
958.0 137.16 ± 2.94 1.454 94.34 ± 2.02 4.56 ± 0.10 92.16 ± 1.97
950.0 150.02 ± 2.85 1.430 104.88 ± 1.99 4.99 ± 0.09 102.35 ± 1.94
940.0 166.55 ± 2.27 1.400 119.00 ± 1.62 5.56 ± 0.08 116.01 ± 1.58
920.0 204.99 ± 7.14 1.340 152.96 ± 5.33 6.89 ± 0.24 148.60 ± 5.18
880.0 310.82 ± 3.52 1.220 254.67 ± 2.88 10.65 ± 0.12 245.94 ± 2.78
840.0 513.80 ± 4.76 1.106 464.48 ± 4.30 17.99 ± 0.17 446.64 ± 4.13
820.0 676.03 ± 5.99 1.055 640.60 ± 5.68 23.86 ± 0.21 614.57 ± 5.45
810.0 760.19 ± 6.58 1.032 736.34 ± 6.37 26.90 ± 0.23 704.79 ± 6.10
800.0 856.66 ± 7.32 1.013 845.61 ± 7.23 30.28 ± 0.26 807.33 ± 6.90
794.0 890.86 ± 7.43 1.009 883.09 ± 7.37 31.25 ± 0.26 838.38 ± 7.00
790.0 892.35 ± 17.70 1.015 879.09 ± 17.44 30.86 ± 0.61 829.16 ± 16.45
786.0 926.47 ± 7.84 1.031 898.19 ± 7.60 31.28 ± 0.26 842.92 ± 7.13
785.0 941.34 ± 9.33 1.032 911.99 ± 9.04 31.70 ± 0.31 858.12 ± 8.51
784.0 989.76 ± 20.12 1.025 966.05 ± 19.64 33.51 ± 0.68 915.22 ± 18.61
783.0 1060.12 ± 11.38 1.010 1050.08 ± 11.27 36.35 ± 0.39 1005.99 ± 10.80
782.0 1123.55 ± 26.83 0.989 1136.34 ± 27.14 39.26 ± 0.94 1102.62 ± 26.33
781.0 1158.03 ± 10.80 0.971 1192.83 ± 11.12 41.13 ± 0.38 1169.48 ± 10.90
780.0 1211.67 ± 9.98 0.957 1266.56 ± 10.43 43.59 ± 0.36 1252.62 ± 10.32
778.0 1273.38 ± 9.47 0.944 1349.27 ± 10.03 46.25 ± 0.34 1343.80 ± 9.99
774.0 1282.06 ± 9.49 0.938 1366.85 ± 10.12 46.48 ± 0.34 1361.99 ± 10.08
770.0 1249.25 ± 9.26 0.935 1336.51 ± 9.91 45.08 ± 0.33 1330.42 ± 9.86
764.0 1247.24 ± 9.35 0.932 1338.62 ± 10.04 44.61 ± 0.33 1331.35 ± 9.99
760.0 1244.74 ± 9.58 0.927 1342.60 ± 10.33 44.39 ± 0.34 1335.30 ± 10.27
750.0 1219.07 ± 21.50 0.920 1325.56 ± 23.38 42.95 ± 0.76 1321.82 ± 23.31
720.0 989.95 ± 6.62 0.910 1087.59 ± 7.27 33.15 ± 0.22 1091.88 ± 7.30
690.0 717.99 ± 7.78 0.915 784.79 ± 8.50 22.50 ± 0.24 789.95 ± 8.56
660.0 515.95 ± 5.87 0.923 558.83 ± 6.36 15.07 ± 0.17 561.19 ± 6.39
630.0 382.69 ± 8.35 0.933 410.32 ± 8.95 10.41 ± 0.23 411.22 ± 8.97
600.0 287.18 ± 10.56 0.940 305.50 ± 11.23 7.30 ± 0.27 305.61 ± 11.23
580.0 255.24 ± 14.39 0.945 270.24 ± 15.24 6.22 ± 0.35 269.85 ± 15.22
560.0 226.60 ± 12.41 0.948 239.01 ± 13.09 5.30 ± 0.29 238.63 ± 13.07
550.0 217.52 ± 17.51 0.950 228.99 ± 18.43 4.99 ± 0.40 228.29 ± 18.37
540.0 212.67 ± 13.55 0.952 223.47 ± 14.24 4.78 ± 0.30 222.82 ± 14.20
530.0 200.04 ± 22.75 0.953 210.00 ± 23.88 4.42 ± 0.50 209.43 ± 23.82
520.0 178.13 ± 10.25 0.954 186.73 ± 10.75 3.87 ± 0.22 186.26 ± 10.72
510.0 174.28 ± 16.65 0.954 182.60 ± 17.45 3.73 ± 0.36 181.82 ± 17.38
500.0 175.22 ± 10.78 0.955 183.52 ± 11.29 3.70 ± 0.23 182.77 ± 11.24
480.0 165.18 ± 9.58 0.955 172.90 ± 10.03 3.41 ± 0.20 172.29 ± 9.99
470.0 143.94 ± 13.21 0.955 150.71 ± 13.83 2.94 ± 0.27 150.22 ± 13.78
450.0 141.32 ± 14.21 0.954 148.10 ± 14.89 2.86 ± 0.29 147.42 ± 14.82
440.0 116.15 ± 15.58 0.953 121.86 ± 16.35 2.35 ± 0.32 121.34 ± 16.28
430.0 111.27 ± 12.60 0.952 116.86 ± 13.23 2.26 ± 0.26 116.41 ± 13.18
410.0 127.38 ± 19.11 0.949 134.23 ± 20.14 2.64 ± 0.40 133.84 ± 20.08
390.0 121.81 ± 22.48 0.944 128.98 ± 23.80 2.65 ± 0.49 128.76 ± 23.76

σππ
pol

s

s

s σππ
pol
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σsys = 1.3% at  ≥ 420 MeV and σsys = 3.2% at  <
420 MeV.

4. THE e+e–  π+π– CROSS SECTION ANALYSIS
4.1. Theoretical Framework 

In the framework of the vector meson dominance
model, the cross section of the e+e–  π+π– process is

(19)

Here, Pππ(s) is the phase space factor:

The amplitudes of the γ*  π+π– transition are given
by

(20)

where

Here, f denotes the final state of the V vector meson
decay, mV is the vector meson mass, and ΓV = ΓV(mV).
The following forms of the energy dependence of the
vector meson total widths were used:

Here,

Wρπ(s) is the phase-space factor for the ρπ  π+π–π0

final state [30–32]. In the energy dependence of the ρ,

s s
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ρ', ρ'' mesons widths, only the V  π+π– decays were
taken into account. This approach is justified in the

energy region  < 1000 MeV. Nowadays, the ρ', ρ''
decays are rather poorly known, and therefore the same
approximation was also used for fitting the data above
1000 MeV. The ω-meson mass and width were taken
from the SND measurements: mω = 782.79 MeV and
Γω = 8.68 MeV [31].

The relative decay probabilities were calculated as

In the analysis presented here, we used σ(ω  π0γ) =
155.8 nb and σ(ω  3π) = 1615 nb obtained in the
SND experiments [31, 36].

The parameter φρV is the relative interference phase
between the vector mesons V and ρ, and, hence, φρρ =
0. The phases φρV can deviate from 180° or 0°, and their
values can be energy-dependent due to mixing between
vector mesons. The phases φρρ' and φρρ'' were fixed at
180° and 0°, because these values are consistent with
the existing experimental data for the e+e–  π+π–

reaction.

s

B V X( ) σ V X( )
σ V( )

-----------------------------,=

σ V( ) σ V X( ),
X

∑=

σ V X( ) 12πB V e+e–( )B V X( )
mV

2
---------------------------------------------------------------------------.=

Table 2.  Various contributions to the systematic error of the
determination of the e+e–  π+π– cross section. σsys is the
total systematic error, and σeff = σE > 50 ⊕  σnucl ⊕  σθ is the sys-
tematic inaccuracy of the detection efficiency determination

Error
Contribution

at  ≥ 420 MeV, %

Contribution

at  < 420 MeV, %

σE > 50 0.6 3.0

σnucl 0.2 0.2

σθ 0.8 0.8

σeff 1.0 3.1

σsep 0.5 0.5

σIL 0.5 0.5

σrad 0.2 0.2

σsys 1.3 3.2

s s
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Taking the ρ–ω mixing into account, the ω  π+π–

and ρ  π+π– transition amplitudes can be written
as [37, 38]

(21)

where

The superscript (0) denotes the coupling constants of
the bare, unmixed state. Πρω is the polarization operator
of the ρ–ω mixing:

(22)

and Im(Πρω(s)) can be written as

(23)

where

We neglected the contributions to Im(Πρω(s)) due to the
VP intermediate state (V = ω, ρ, P = π, η). The real part
Re(Πρω(s)) can be represented as

(24)

where

(25)

is the one-photon contribution to Re(Πρω(s)). We
assume that the energy dependence of Re( (s)) is
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negligible and can then be expressed by using the mea-
sured branching ratio

(26)

as

(27)

Equation (21) can be rewritten as

(28)

where

and

The theoretical value of the phase φρω can be calculated
from the above expressions:

The phase φρω is almost independent of energy. In this
calculation, we assumed that the ω  π+π– transition

proceeds only via the ρ–ω mixing, that is,  = 0. To

determine the , , and  coupling constants,
the corresponding measured decay widths were used.

4.2. Fit to the Experimental Data 

The ρ' and ρ'' parameters were determined from the
fit to the e+e–  π+π– cross section measured in the
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energy region  < 2400 MeV by OLYA and DM2
detectors [17, 39], together with the isovector part of
the e+e–  π+π– cross section calculated by assuming
the CVC hypothesis from the spectral function of the
τ−  π–π0ντ decay measured by CLEO II [5],

(29)

where mi is the central value of the π–π0 pair invariant
mass for the ith bin, ∆mi is the bin width, Ni is the num-
ber of entries in the ith bin, N is the total number of
entries, |Vud | is the CKM matrix element, and SEW =
1.0194 is the radiative correction [3, 5, 40].

The ρ' and ρ'' parameters obtained were used in fit-
ting to the SND data (Table 3, Fig. 21). The free param-
eters of the fit were mρ, Γρ, σ(ρ  π+π–), σ(ω 
π+π–), φρω, and σ(ρ'  π+π–). The first fit was per-
formed with σ(ρ''  π+π–), ρ' and ρ'' masses, and
widths fixed at the values obtained from the fit to the
CLEO II and DM2 data. The second and third fits were
done without the ρ'' meson. The ρ' mass and width were
fixed by using the results of the fit to the CLEO II and
DM2 data (the second variant in Table 3) and to the
OLYA data (the third variant in Table 3). The values of
the ρ and ω parameters exhibit a rather weak model
dependence.

5. DISCUSSION

The comparison of the e+e–  π+π– cross section
obtained in the SND experiment with other results [8,

s
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9, 17–19] is shown in Figs. 22–25. In the energy region

 < 600 MeV, all experimental data are in agreement
(Fig. 22). Above 600 MeV, the OSPK (ORSAY–ACO)
[8] and DM1 [9] points lie about 10% lower than the
SND ones (Fig. 23). The SND cross section exceeds the
OLYA and CMD measurements [17] by (6 ± 1)% in this
energy region (Fig. 24). The systematic error of OLYA
measurement is 4%, and the OLYA data agree with the
SND result. The systematic uncertainty of the CMD
result is 2%, and, hence, the difference between the
SND and CMD results is about 2.5 of the joint system-
atic error. At the same time, the SND and CMD data
below 600 MeV agree well (Fig. 22). The average devi-
ation between CMD2 [18] and SND data is (1.4 ±
0.5)%; the systematic inaccuracies of these measure-
ments are 0.6 and 1.3%, respectively. In the KLOE
experiment at the φ-factory DAFΦNE, the form factor
|Fπ(s)|2 was measured by using the “radiative return”
method with the systematic error 0.9% [19]. In [19], the

s

400 600 800

σ, nb

s MeV,

500

1000

Fig. 21. The e+e–  π+π– cross section. Stars are the
SND data obtained in this work; the curve is the result of
fitting.
Table 3.  Fit results. The column number N corresponds to the different choices of the ρ' and ρ'' parameters

N 1 2 3

mρ, MeV 774.9 ± 0.4 774.9 ± 0.4 774.9 ± 0.4

Γρ, MeV 146.2 ± 0.8 146.4 ± 0.8 146.3 ± 0.8

σ(ρ  π+π–), nb 1222 ± 7 1218 ± 7 1219 ± 7

σ(ω  π+π–), nb 30.2 ± 1.4 30.3 ± 1.4 30.3 ± 1.4

ϕρω, deg 113.6 ± 1.3 113.4 ± 1.3 113.5 ± 1.3

mρ' , MeV 1403 1403 1360

Γρ' , MeV 455 455 430

σ(ρ'  π+π–), nb 3.8 ± 0.3 1.8 ± 0.2 1.9 ± 0.2

mρ' ', MeV 1756

Γρ' ', MeV 245

σ(ρ''  π+π–), nb 1.7

χ2/Ndf 50.2/39 48.8/39 49.4/39
SICS      Vol. 101      No. 6      2005
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bare form factor is listed. In order to compare the
KLOE result with the SND one, we therefore appropri-
ately dressed the form factor. The results of this com-
parison are shown in Fig. 25. The KLOE measurement
is in conflict with the SND result as well as with the
CMD2 one.

The ρ-meson parameters mρ, Γρ, σ(ρ  π+π–)
were determined from the study of the e+e–  π+π–

cross section. The ρ meson mass and width were found
to be

mρ 774.9 0.4 0.5 MeV,±±=

Γρ 146.5 0.8 1.5 MeV.±±=

600 700 800

σexp/σfit

s MeV,

0.8

1.0

1.2

900

Fig. 24. The ratio of the e+e–  π+π– cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (w, this work), OLYA (m), and
CMD (s) [17] results are presented.

400 450 500

σexp/σfit

s MeV,

0.8

1.0

0.6

1.2

1.4

550

Fig. 22. The ratio of the e+e–  π+π– cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (w, this work), CMD (s),
OLYA (m), and DM1 (.) [9, 17] results are presented.
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The systematic error is related to the accuracy of the
determination of the collider energy, to the uncertainty
of the model, and to the error of determination of the
cross section. The ρ-meson parameters were studied in
other e+e– experiments by using the processes e+e– 
π+π– [17, 18], e+e–  ρπ  π+π–π0 [32, 41], and the
τ–  π–π0ντ decay [3, 5]. The SND results are in
agreement with these measurements, as is shown in
Figs. 26 and 27.

The parameter σ(ρ  π+π–) was found to be

σ ρ π+π–( ) 1220 7 16 nb,±±=

600 700 800

σexp/σfit

s MeV,

0.8

1.0

1.2

900

Fig. 23. The ratio of the e+e–  π+π– cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (w, this work), DM1 (.), and
OSPK (h) [8, 9] results are presented.

600 700 800

σexp/σfit

s MeV,

0.9

1.0

1.2

900

1.1

Fig. 25. The ratio of the e+e–  π+π– cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (w, this work), CMD2 (j), and
KLOE (d) [18, 19] results are presented.
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which corresponds to

The systematic error includes systematic uncertainties
in the cross section measurement and the model depen-
dence. A comparison of the Γ(ρ  e+e–) obtained in
this work with other experimental results [8, 17, 18]
and with the PDG world average [42] is shown in
Fig. 28. The SND result exceeds all previous measure-
ments. It differs by about 1.5 standard deviations from
the CMD2 measurement [18] and by two standard devi-
ations from the PDG world average [42]. The differ-
ence of the ρ-meson leptonic widths obtained by SND
and CMD2 should be attributed mainly to the differ-
ence in the total widths of the ρ-meson rather than to
the difference in the cross section values. The value
σ(ρ  π+π–) = 1198 nb, which can be obtained by
using the CMD2 cross section data reported in [18],
agrees with the SND result within the measurements
errors.

The parameter σ(ω  π+π–) was found to be

which corresponds to

The systematic error is related to the model depen-
dence, to the error of determination of the cross section,

B ρ e+e–( )B ρ π+π–( )

=  4.991 0.028 0.066±±( ) 10 5– ,×

Γ ρ e+e–( ) 7.31 0.021± 0.11 keV.±=

σ ω π+π–( ) 29.9 1.2± 1.0 nb,±=

B ω e+e–( )B ω π+π–( )

=  1.247 0.062± 0.042±( ) 10 6– .×
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Fig. 26. The ρ-meson mass mρ measured in this work
(SND-05) and in [3, 5, 17, 18, 32, 41]. The shaded area
shows the average of the previous results.
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and to the accuracy of determination of the collider
energy. In the previous studies of the e+e–  π+π–

reaction, the relative probability of the ω  π+π–

decay was also reported. The comparison of B(ω 
π+π–) = 0.0175 ± 0.0011 obtained by using the SND
data and the PDG value of the ω  e+e– decay width
[42] with the results of other experiments is shown in
Fig. 29. The SND result is the most precise.

The phase φρω was found to be

This value differs by six standard deviations from 101°,
which is expected under the assumption that the ω 

φρω 113.5 1.3± 1.7°.±=
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Fig. 27. The ρ meson width Γρ measured in this work
(SND-05) and in [3, 5, 17, 18, 32, 41]. The shaded area
shows the average of the previous results.
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Fig. 28. The value of Γ(ρ  e+e–) obtained in this work
(SND-05) and in [8, 17, 18]. The shaded area shows the
world average value [42].
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π+π– transition proceeds via the ρ–ω mixing mecha-

nism. If the ratio /  is the free parameter of the
fit instead of the phase φρω, it follows that

This ratio corresponds to the too large direct transition
width

while the natural expectation is

We note that the analysis of the OLYA and CMD2 data

gωππ
0( ) gρππ

0( )

gωππ
0( )

gρππ
0( )---------- 0.11 0.01.±=

Γ 0( ) ω π+π–( ) 1.82 0.33 MeV,±=

Γ 0( ) ω π+π–( ) α2Γρ 8 keV.≈≈

0.03

0.02

0.01

B(ω → π+π–)

SN
D

–0
5

C
M

D
2–

02

D
M

1–
78

O
L

Y
A

–8
5

O
SP

K
–7

2
Fig. 29. The value of B(ω  π+π–) obtained in this work
(SND-05) and in [8, 9, 17, 18]. The shaded area shows the
world average value [42].

600 700 900
0

δππ

50°

100°

150°

s MeV,
800500

Fig. 30. The ππ scattering phase in the P-wave. Dots and
circles are the results of the phase measurements in [43, 44]
by using the reaction πN  ππN. The curve is the phase
of the amplitude Aρ → ππ +  obtained from the fit

to the SND data presented in this work.

A
ρ π+π–→
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[17, 18] gives similar values of the φρω phase. This
result can point out that a considerable direct transition
ω  π+π– exists. On the other hand, this discrepancy
can also be attributed to inadequacies of the applied
theoretical model.

The comparison of the phase arg(  +

) with the ππ scattering phase in the P-wave

[43, 44] is shown in Fig. 30. These phases must be
equal in the purely elastic scattering region. The agree-
ment is satisfactory, and, in any case, no significant dif-

ference is observed in the energy region  ≈ mρ.

The comparison of the e+e–  π+π– cross section
obtained under the CVC hypothesis from the τ spectral
function of the τ–  π–π0ντ decay [3, 5] with the
isovector part of the cross section measured in this
work is shown in Fig. 31. The cross section obtained by
SND was undressed from the vacuum polarization, and
the contribution from the ω  π+π– decay was
excluded. The cross section calculated from the τ spec-
tral function was multiplied by a coefficient that takes
into account the difference in the π± and π0 masses:

The average deviation of the SND and τ data is about
1.5%. For almost all energy points, this deviation is

A
ρ π+π–→

A
ρ ' π+π–→

s

δ
qπ s( )
q

π± s( )
-------------- 

  3 A
π+π– s( ) 2

A
π0π± s( ) 2

------------------------,=

q
π± s( ) 1

2 s
--------- s m

π0 m
π±+( )2–( )[=

× s m
π0 m

π±–( )2–( ) ]1/2
.

400 600 800

σexp/σfit

0.8

1.0

1.2

s MeV,
1000

Fig. 31. The ratio of the e+e–  π+π– cross section cal-
culated from the τ–  π–π0ντ decay spectral function
measured in [3, 5] (s, CLEO II; d, ALEPH) to the isovector
part of the e+e–  π+π– cross section measured in this
work. The shaded area shows the joint systematic error.
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within the joint systematic error (about 1.6%). The 10%

difference between the e+e– and τ data at  > 800 MeV,
which was claimed in [45], is absent.

Using the (s) cross section (Table 1), the contri-
bution to the anomalous magnetic moment of the muon
due to the π+π–(γ) intermediate state in the vacuum
polarization was calculated via the dispersion integral

where smax = 970 MeV, smin = 390 MeV, K(s) is the
known kernel and

The integral was evaluated by using the trapezoidal
rule. To take the numerical integration errors into
account, the correction method suggested in [46] was
applied. As a result, we obtained

This is about 70% of the total hadronic contribution to
the anomalous magnetic moment of the muon (g – 2)/2.

If the integration is performed for the energy region
corresponding to the CMD2 measurements [18], then
the result is

which is 1.8% (one standard deviation) higher than the
CMD2 result:

Hence, no considerable difference between the SND
and CMD2 results is observed.

6. CONCLUSIONS

The cross section of the process e+e–  π+π– was
measured in the SND experiment at the VEPP-2M col-

lider in the energy region 390 <  < 980 MeV with an

accuracy of 1.3% at  ≥ 420 MeV and 3.4% at  <

s

σππ
pol

aµ ππ 390, s 970 MeV≤ ≤( )

=  
αmµ

3π
---------- 

 
2 R s( )K s( )

s2
----------------------- s,d

smin

smax

∫

R s( )
σππ

pol

σ e+e– µ+µ–( )
-------------------------------------------,=

σ e+e– µ+µ–( ) 4πα2

3s
------------.=

aµ ππ 390, s 970 MeV≤ ≤( )

=  488.7 2.6± 6.6±( ) 10 10– .×

aµ ππ( ) 385.6 5.2±( ) 10 10– ,×=

aµ ππ( ) 378.6 3.5±( ) 10 10– .×=

s

s s
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420 MeV. The measured cross section was analyzed in
the framework of the generalized vector meson domi-
nance model. The following ρ-meson parameters were
obtained:

The parameters of the G-parity suppressed process
e+e−  ω  π+π– were measured with high preci-
sion. The measured value

corresponds to the relative probability

The relative interference phase between the ρ and ω
mesons was found to be

This result is in conflict with the naive expectation
φρω = 101° from the ρ–ω mixing. The SND result
agrees with the cross section calculated from the τ spec-
tral function data within the accuracy of the measure-
ments. Using the measured cross section, the contribu-
tion to the anomalous magnetic moment of the muon
due to the π+π–(γ) intermediate state in the vacuum
polarization was calculated:
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Abstract—Singularities in the metric of classical solutions of the Einstein equations (the Schwarzschild, Kerr,
Reissner–Nordstroem, and Kerr–Newman solutions) give rise to generalized functions in the Einstein tensor. A
technique based on the limiting sequence of solutions is used to analyze these functions, which can have a more
complex behavior than the Dirac δ function. We show that the solutions will satisfy the Einstein equations
everywhere if the energy–momentum tensor has an appropriate singular addition of nonelectromagnetic origin.
When this addition term is included, the total energy turns out to be finite and equal to mc2, while the angular
momentum for the Kerr and Kerr–Newman solutions is mca. Since the Reissner–Nordstroem and Kerr–New-
man solutions correspond to a point charge in classical electrodynamics, the result allows us to take a fresh look
at the divergence of the self-energy of a point charge. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

One of the main principles of general relativity is the
equality of the inertial and gravitational masses. How-
ever, at first glance, the classical (Schwarzschild, Kerr,
Reissner–Nordstroem, and Kerr–Newman) solutions of
the Einstein equations do not satisfy this principle. For
the Schwarzschild and Kerr solutions, the energy–
momentum tensor and, hence, the self-energy are equal
to zero; for the Reissner–Nordstroem and Kerr–New-
man solutions, the self-energy is infinite, while the
gravitational mass is finite for all these solutions.

The fact that the above solutions do not satisfy the
Einstein equations in the entire space may be responsi-
ble for this inconsistency. A common property of the
solutions is the presence of 1/r and 1/r2 singularities in
the metric. This suggests that the Einstein tensor, which
depends on the second derivatives of the metric, may
contain generalized functions that are lost after direct
differentiation1

 and, therefore, are disregarded in the
energy–momentum tensor. Previously, this question
was explored for the solutions mentioned above in the
Kerr–Schild representation [1, 2]. It was shown in these
papers that the Einstein tensor actually contains gener-
alized functions that can have a more complex behavior
than the Dirac δ function.

The self-energy and the angular momentum can be
defined in an invariant way. We supplemented the stud-
ies [1, 2] by considering other representations of the

1 For example, in electrostatics, the potential of a point charge is

∆ϕ = –4πeδ(r), while direct differentiation yields  = 0.
1

r
2

---- ∂
∂r
----- r

2∂ϕ
∂r
------ 
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solutions and calculated the total self-energy and the
angular momentum. Singular additions to the energy–
momentum tensor lead to finite energy and angular
momentum. Possible physical causes of the finiteness
of the self-energy in general relativity were also consid-
ered in [3].

2. ANALOGY WITH ELECTROSTATICS
A method that allows one to determine whether a

generalized function appears when differentiating a
singular function is easiest to explain using electrostat-
ics as an example. The potential of a point charge

(1)

satisfies the Poisson equation

(2)

where ρ = eδ(r). One way to make sure that this is the
case consists in the following. Let us substitute poten-
tial (1) with a nonsingular function of the form

(3)

where θ(x) is the Heaviside step function (θ(x) = 1 for
x > 0 and θ(x) = 0 for x < 0). Substituting this potential
in (2), we find that  is the solution of the Poisson
equation for the charge density

(4)

ϕ e
r
--=

∆ϕ 4πρ,–=

ϕ̃ e
r
--θ r r0–( ) 3e

2r0
------- er2

2r0
3

-------–
 
 
 

θ r0 r–( ),+=

ϕ̃

ρ ∆ϕ̃
4π
-------–

3e

4πr0
3

-----------θ r0 r–( ).= =
 © 2005 Pleiades Publishing, Inc.
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The volume integral of (4) does not depend on r0 and is
equal to e. If we pass to the limit r0  0, then

  e/r, ρ  eδ(r);

i.e., the limit of solution (3) corresponds to the presence
of a point source with charge e at the coordinate origin
and is the solution of Eq. (2). It is easy to show that this
result does not depend on the chosen potential in the
region r < r0; the behavior of the potential at r = r0 is not
necessarily smooth. The result is always the same: in
the limit r0  0, the potential is ϕ = e/r and the charge
density is ρ = eδ(r).

A method of describing point sources that is simpler
than the method presented above, more specifically, the
Fourier transform, is commonly used in classical elec-
trodynamics. This method is efficient in electrodynam-
ics, because the Maxwell equations are linear. How-
ever, in the case of general relativity, the equations are
nonlinear, and probably the simplest approach to study-
ing point objects consists in the solution smoothing
procedure described above. Below, we apply this proce-
dure to the classical solutions of the Einstein equations.

3. SELF-ENERGY
What the self-energy means in general relativity is

not a trivial question. In general, this question is solved
using the energy–momentum pseudotensor (see,
e.g., [4] and references therein). The shortcoming of
this approach is that the definition of the self-energy of
a system is tied to a special (Cartesian) coordinate sys-
tem and is not invariant relative to coordinate transfor-
mations. The energy–momentum pseudotensor allows
an energy density to be assigned to the gravitational
field, which, however, cannot be localized.

The self-energy can be defined using the energy–
momentum tensor only for fields and matter. For sta-
tionary or static solutions, there is a Killing vector, ξ =
∂/∂t that generates a conserved current,

(5)

where  is the energy–momentum tensor and ξk =
(1, 0, 0, 0) are the contravariant components of the vec-
tor ξ [5]. Since ∇ iJi = 0, the following conservation law
holds:

(6)

If the energy density is defined as the zero component
of this current, then the total energy

(7)

will not depend on the coordinates used.

ϕ̃

Ji Tk
i ξk,=

Tk
i

d
dt
----- d3x g– J0∫ Sα g– J0

α .d∫–=

E d3x g– J0∫ d3x g– Tk
0ξk∫= =
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4. REISSNER–NORDSTROEM METRIC

The Reissner–Nordstroem solution [6] in Cartesian
coordinates can be represented as

(8)

where

(m and Q are the mass and the charge, respectively),2

n = x/r. This solution satisfies the Einstein equations

(9)

where

is the energy–momentum tensor of the electromagnetic
field everywhere, except the point r = 0 at which the
solution is singular. The structure of the singularity of
the tensor Gik and the behavior of the emerging gener-
alized function can be clarified using a procedure simi-
lar to that described in Section 2.

Let us consider a metric of form (8) with the follow-
ing continuous function substituted for Φ:

(10)

In this case, the metric becomes nonsingular and trans-
forms to metric (8) in the limit r0  0. The require-
ment that the metric be continuous is necessary, since
the first derivatives of the metric tensor appear in the
Einstein equations nonlinearly. If we admit of disconti-
nuities in the functions gik , then the squares of the δ
functions will appear in the equations. At the same
time, the second derivatives appear in the equations lin-
early; therefore, we may admit of discontinuities in the
first derivatives if we understand the next differentia-
tion in the sense of generalized functions.

2 We use the units in which the gravitational constant and the speed
of light are equal to 1.

ds2 Φdt2 1
Φ
---- 1– 

  ndx( )2– dx2,–=

Φ r2 2mr– Q2+

r2
---------------------------------=

Gik 8πTik,=

Tik 1
4π
------ Fl

iFlk 1
4
---gikFlmFlm+ 

 =

Φ̃ 1

r2
---- r2 2mr– Q2+( )θ r r0–( )=

+
1

r0
2

---- r0
2 2mr0– Q2+( )θ r0 r–( ).
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The energy–momentum tensor corresponding to the
smoothed metric can be derived from the Einstein equa-
tions. The (0, 0) component of this tensor is

(11)

The first term on the right-hand side is the energy den-
sity of the electrostatic field in the region r > r0. The
second term, which arose from the metric smoothing,
does not vanish in the limit r0  0. The self-energy of
the constructed solution is

(12)

It can be shown that result (12) does not depend on
the metric smoothing method. In the limit r0  0,
Eq. (11) can be written as

(13)

Here, Ã(r) is a generalized function defined by the fol-
lowing integration rule:

(14)

where f(r) is a bounded smooth function. The limiting
expression (13) does not depend on the metric smooth-
ing method either. The Fourier transform of the func-
tion Ã(r) is

(15)

The function

everywhere, except the point x = 0; therefore, the quan-
tity (1/2)Q2ω(r) in Eq. (13) describes the energy den-
sity of the electrostatic field. Since there is a singularity
at the coordinate origin, (k = 0) = 0; i.e., the integral
of Ã(r) is zero throughout the space. This implies that
the divergence of the electrostatic field energy is offset
by an infinite negative energy at the center.

The remaining components of the energy–momen-
tum tensor in the limit r0  0 are

(16)

(17)

T0
0 1

8π
------G0

0 Q2

8πr4
-----------θ r r0–( )= =

+ m

4πr2r0

---------------- Q2

8πr2r0
2

----------------–
 
 
 

θ r0 r–( ).

E
Q2

2r0
------- m

Q2

2r0
-------– 

 + m.= =

T0
0 mδ r( ) 1

2
---Q2

Ã r( ).+=

f r( )Ã r( )d3x∫ f r( ) f 0( )–

4πr4
----------------------------d3x,∫=

Ã̃ k( ) Ã r( )e ik– r⋅ d3x∫≡ π
4
--- k .–=

Ã r( ) 1

4πr4
-----------=

Ã̃

Tα
0 0,=

Tβ
α 1

2
--- m 3nαnβ δαβ–( )δ r( )[=

+ Q2 2nαnβ δαβ–( )Ã r( ) ] .
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The Fourier transform of the spatial energy–momen-
tum tensor components is

(18)

For the Schwarzschild metric (Q = 0 in (8)), the term

mδ(r) in , which corresponds to a point charge, can
be obtained directly if the presence of the term ∆(1/r) in

 is taken into account. A more complex generalized
function Ã(r) emerges as the source in the case of
Q ≠ 0. It owes its origin to the fact that ∆(1/r2) appears

in .

Thus, the Schwarzschild and Reissner–Nordstroem
solutions can be extended to the entire space if a point
source is added to the energy–momentum tensor. This
assertion can be applied both to a point charge and to a
black hole, since the charge–mass relation was used
nowhere.

In standard units, Eq. (13) can be written as

(19)

where Ã(r) is defined in (14). Note that the gravita-
tional constant does not appear in this expression. It is
easy to verify that the limiting formulas (16)–(18) for
the energy–momentum tensor do not depend on the
gravitational constant either. Therefore, the results are
also valid for flat space–time. Thus, general relativity
allows the energy–momentum tensor of a stationary (or
uniformly moving) point charge to be found in classical
electrodynamics. In this case, the total energy of the
charge is finite.

5. KERR–NEWMAN METRIC

Let us use the same procedure to analyze the struc-
ture of the singularity in the Kerr–Newman metric [7]:

(20)

Here,

(21)

where a is a space vector, a is its magnitude, and r is

T̃β
α πQ2k

16
------------- δαβ

kαkβ

k2
----------– 

  .=

Tk
i

Gk
i

Gk
i

T0
0 mc2δ r( ) 1

2
---Q2

Ã r( ),+=

ds2 η ikdxidxk=

+ Ψ dt
r2xα r x a×[ ] α aα a x⋅( )+ +( )dxα

r r2 a2+( )
--------------------------------------------------------------------------------–

 
 
 

2

.

Ψ Q2 2mr–

r2 a x⋅( )2

r2
-----------------+

----------------------------,=
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defined by the equation

(22)

It is easy to show that this is the standard Kerr–
Schild representation if the vector a is directed along
the z axis. The surfaces of constant r are ellipsoids of
revolution whose axis coincides with the direction of
the vector a. At r = 0, the ellipsoid degenerates into a
disk of radius a. On this disk, the metric is continuous,
but the components of the metric and the 4-potential of
the field have a kink, while the electromagnetic field
strengths have a discontinuity (see the figure). This
implies that there is a singular distribution of mass,
charge, and currents on the disk that is not embodied in
the energy–momentum tensor of the electromagnetic
field.

r4 r2 x2 a2–( )– a x⋅( )2– 0.=

2.0

1.5

1.0

0.5

0

z/a

2.0

1.5

1.0

0.5

0
0.5 1.0 1.5 2.0

r/a

(a)

(b)

Fig. 1. Electric (a) and magnetic (b) field lines for the Kerr-
Newman solution. The region of closed electric field lines is
hatched.
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Let us construct a solution similar to solution (10)
by substituting Ψ with the function

(23)

The constructed solution is continuous everywhere, but
its derivative has a discontinuity at r = r0. To satisfy the
Einstein equations, the (0, 0) component of the energy–
momentum tensor must have the form

(24)

where

The contribution from each of the three parts of  to
the self-energy for r0  0 is a diverging quantity, but
the divergences remarkably cancel out in the sum:

(25)

where

Ψ̃ Q2 2mr–

r2 a x⋅( )2

r2
-----------------+

----------------------------θ r r0–( )=

+
Q2 2mr0–

r0
2 a x⋅( )2

r0
2

-----------------+

----------------------------θ r0 r–( ).

T0
0 1

8π
------G0

0 Q2

4π
------ a2

ρ3
----- r2

ρ3
-----– 1

2ρ2
--------– 

  θ r r0–( )= =

+
r0

2 2Mr0 Q2–( ) r0
4 3 a x⋅( )2–( )

8πr2 r4 a x⋅( )2+( )
-----------------------------------------------------------------------

×
r4r0

4 a x⋅( )4– r6a2 r2 a x⋅( )2a2+ +( )

r0
4 a x⋅( )2+( )3

---------------------------------------------------------------------------------------θ r0 r–( )

+  
r
 
0 

Mr
 

0 
r

 
0
4

 
3

 
a x

 
⋅( )

 

2

 
–

 
( )

 
Q

 

2

 
r

 
0
4

 
a x

 
⋅( )

 

2

 
–

 
( )

 
–

 
( )

 
8
 
π
 

r
 

0
4

 
a x

 
⋅( )

 
2

 
+

 
( )

 3 -----------------------------------------------------------------------------------------------------

× r0
2a2 a x⋅( )2–( )δ r r0–( ),

ρ r2 a x⋅( )2/r2.+=

T0
0

E
Q2

4r0
-------

Q2 r0
2 a2+( )λ

4r0
2a

-------------------------------+=

+ 2mr0 Q2–( )
5r0

2 a2+( )λ
4r0

2a
--------------------------- 3

4r0
-------–

 
 
 

–
2Q2 5mr0–

2r0
----------------------------

2Q2r0 m 5r0
2 a2+( )–( )λ

2r0a
---------------------------------------------------------+ m,=

λ a
r0
---- 

  .arctan=
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The first, second, and third rows of this formula are the
contributions from the regions r > r0, r < r0, and the sur-
face r = r0, respectively. The contribution from each of
the regions depends on the metric smoothing method.
For example, if the functions gik are chosen in such a
way that the derivatives ∂gik/∂r are continuous at r0,
then the term with the δ function will disappear in
Eq. (24). However, the total energy E, as in the case of
the Reissner–Nordstroem metric, does not depend on
the metric smoothing method (see Appendix). The
result obtained can also be extended to the Kerr metric
(it will suffice to set Q = 0 in Eqs. (20)–(25)).

The energy–momentum tensor also allows the total
angular momentum of the system to be determined.
Because of the azimuthal symmetry, there is a Killing
vector, η = ∂/∂ϕ, that allows the following conserved
current to be introduced:

(26)

The total angular momentum is defined by the equality

(27)

The contributions from the regions r > r0, r < r0, and the
surface r = r0 to integral (27) in the limit r0  0
diverge, but these divergences cancel out, and the total
angular momentum proves to be finite, irrespective of
the metric smoothing method:

(28)

In our calculations, we used the Mathematica 5 code
(Wolfram Research, Inc.).

6. CONCLUSIONS

As we showed here, for the Schwarzschild, Kerr,
Reissner–Nordstroem, and Kerr–Newman solutions to
satisfy the Einstein equations in the entire space,
including r0 = 0, singular terms containing generalized
functions must be added to the energy–momentum ten-
sor. In this case, the total energy for all solutions is
finite and equal to mc2. For solutions with a nonzero
charge, this addition plays the role of Poincaré tensions;
i.e., an infinite negative mass that compensates for the
electrostatic energy of the charge is located at the cen-

Ii Tk
i ηk, ∇ i I

i– 0.= =

M d3x g– I0∫ d3x g– Tk
0ηk.∫= =

M
Q2

4
------ λ a

r0
----

r0

a
----+ 

  2 r0

a
----– a

r0
----+ 

 =

+ 2mr0 Q2–( ) λ 3
2
---

5r0
2

4a2
-------- a2

4r0
2

-------+ +
 
 
  5r0

4a
-------– 3a

4r0
-------–

 
 
 

– a2 r0
2+( ) λ m

2r0
-------

5mr0 2Q2–

2a2
----------------------------+

 
 
  Q2

ar0
------- 5m

2a
-------–+

 
 
 

ma.=
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ter. The emergence of a negative mass when regulariz-
ing the metric was also pointed out in [8].

The fact that the gravitational attraction for test par-
ticles transforms to repulsion even at the classical
radius Q2/mc2 also suggests the existence of a negative
mass for solutions with a nonzero charge. This can be
verified by analyzing the equations of motion for test
particles.

It follows from the results obtained that a self-con-
sistent classical electron model cannot be constructed
without invoking additional fields (or matter) with
unusual properties. These fields must give a negative
contribution to the energy.
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APPENDIX

The smoothed solutions and the corresponding total
energy were analyzed in a number of papers (see,
e.g., [8] and references therein). Here, we show that our
definition of E (Eq. (7)) yields a result that is not only
invariant relative to coordinate transformations, but
also does not depend on the metric smoothing method
in the important special case where the Kerr metric
structure (20) is retained after smoothing.

The commutator of the covariant derivatives (see,
e.g., [9]) is

(29)

where Rmikl is the Riemann tensor. Multiplying this
expression by gik yields the Ricci tensor on the right-
hand side:

(30)

In this formula, ξi is an arbitrary vector. Let ξi be the
Killing vector. The second term in (30) then vanishes,
and the following relation is obtained:

(31)

Since ξi; k is an antisymmetric vector, we have

(32)

and arrive at the equality

(33)

∇ k∇ l ∇ l∇ k–( )ξ i ξmRmikl,=

∇ i∇ lξ
i ∇ l∇ iξ

i– ξmRml.–=

∇ iξ
i; k Rklξ l.–=

∇ i∇ kξ
i; k 1

g–
---------- ∂2

∂xi∂xk
----------------ξ i; k 0= =

∇ k Rklξ l( ) 0.=
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It turns out that not only Tklξl , but also the vector Rklξl

is conserved. It thus follows that the equality

(34)

where R is the scalar curvature, is valid. However, the
latter expression is obvious, since the Killing vector is
a generator of transformations that do not change the
metric.

It follows from equality (31) written in the form

(35)

that the quantity

; (36)

thus, it does not depend on the metric smoothing
method in the region r < r0.

For a metric of form (20) with an arbitrary function
Ψ(r, θ), the scalar curvature is

(37)

The formula can be verified by direct, but cumbersome
calculations. Therefore, the integral of the scalar curva-
ture appearing in the total energy,

(38)

does not depend on the behavior of Ψ(r, θ) in the region
r < r0. In other words, quantity (38) does not depend on
the metric smoothing method in the region r < r0 either.

∇ k Rξk( ) ξk ∂R

∂xk
-------- 0,= =

Rklξ l
1

g–
---------- ∂

∂xi
------- g– ξ i; k( )=

d3x g– Rklξ l∫ Si g– ξ i; kd∫°=

R
θsin

g–
----------- ∂2

∂r2
------- r2 a2 θcos

2
+( )Ψ r θ,( )[ ] .–=

1
2
--- R g– rd θ ϕdd∫–

1
2
---=

× ∂2

∂r2
------- r2 a2 θcos

2
+( )Ψ r θ,( )[ ] r θ θ ϕ,ddsind∫
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We only need to require that the following equality
hold:

It follows from Eqs. (36) and (38) that the scalar

(39)

which is proportional to self-energy (7), is insensitive
to the metric smoothing method.

In a similar way, we can prove that the total angular
momentum (27) does not depend on the metric smooth-
ing method either. The proof is easier, since the term
with the scalar curvature does not contribute to the total
angular momentum.
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Abstract—The temperature dependence of the zero-field susceptibilities of 2D and 3D Ising lattices with
anisotropic coupling is analyzed. Infinite 2D and 3D lattices are approximated, respectively, by ensembles of
independent L × ∞ and L × L × ∞ chain clusters that are infinitely long in the strong-coupling (J) direction. This
approach is used as a basis for a quantitative description of available experimental data on the magnetic suscep-
tibilities of the 2D anisotropic Ising ferromagnet [(CH3)3NH]FeCl3 · 2H2O (FeTAC) and the quasi-one-dimen-
sional 3D systems CoCl2 · 2NC5H5 and FeCl2 · 2NC5H5 in the entire experimental temperature range. A method
is proposed for determining the relative interchain coupling strength J'/J from the maximum susceptibility
value, which improves the accuracy of estimates for J'/J by more than an order of magnitude. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

Various currently known materials are Ising mag-
nets [1, 2]. Even though the Ising coupling has an
extremely simple form, the macroscopic properties of
these materials, such as magnetic susceptibility, are
very difficult to calculate. It should be noted that no rig-
orous closed-form expression for the longitudinal com-
ponent of susceptibility has been obtained to this day
even in exactly solvable Ising models. Moreover, there
are reasons to believe that no such expression can be
found in the class of differentially finite (holonomic)
functions [3–5] (see also [6]).

The subject of this study is the magnetic susceptibil-
ity of quasi-one-dimensional Ising magnets. Systems of
two types are considered: anisotropic square lattices
with coupling constants J and J' such that |J'/J| ≤ 1, and
simple cubic lattices with dominant interaction along
one axis represented by J and equal constants J' of
interaction along the remaining two orthogonal axes.

Crystals of [(CH3)3NH]FeCl3 · 2H2O (FeTAC) have
a 2D magnetic lattice consisting of bonded spin chains
lying in a plane [7–10]. In crystals of CoCl2 · 2NC5H5
[11–14] and FeCl2 · 2NC5H5 [15–17], chains of mag-
netic ions are bonded into 3D systems. All of these
materials are typical quasi-1D Ising superantiferromag-
nets that can be modeled by effective spin-1/2 Hamilto-
nians (with J > 0 and J' < 0). As temperature decreases,
ferromagnetically ordered spin chains become antifer-
romagnetically ordered. Their magnetic susceptibilities
1063-7761/05/10106- $26.001077
have distinct maxima at temperatures Tmax above the
respective critical points Tc. The phase transition man-
ifests itself in the susceptibility curve as an inflection
point where the tangent line to the curve is infinitely
steep (in the ideal case).

The susceptibility of a 2D Ising lattice was calcu-
lated in [18] for the entire temperature range (in theory,
from zero to infinity). The approximation used in that
study (decoupling of many-spin correlation functions)
is accurate within 0.35% in the isotropic model. How-
ever, the analysis presented below shows that the error
in the coordinates of the susceptibility maximum
amounts to tens of percent even for J'/J = –0.1 (J > 0).
Therefore, this approximation cannot be applied to
quasi-1D systems in practical calculations.

The results obtained for 3D systems are even less
accurate. The most reliable calculations of susceptibil-
ity for such systems make use of power series expan-
sions. For the zero-field longitudinal susceptibility of
the isotropic simple cubic Ising lattice, high-tempera-
ture expansions to the 25th- and even 32th-order terms
were obtained in [19, 20] and [21], respectively. How-
ever, analogous expansions for anisotropic lattices are
known only to the 10th- or 11th-order terms (see [22]
and [23], respectively). Moreover, partial sums of the
series rapidly diverge with increasing lattice anisotropy.
In what follows, it is demonstrated that the available
high-temperature series expansions of superantiferro-
magnetic susceptibility [24] result in unacceptably
large errors for |J'|/J = 10–2 (even after their conver-
 © 2005 Pleiades Publishing, Inc.
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gence is improved by Padé–Borel resummation). Note
that interpretation of the experimental data discussed
here requires modeling with an even smaller value of
this parameter.

In this paper, susceptibilities are calculated by using
cluster simulation. It is well known [25–27] that vari-
ous characteristics calculated by this method (including
susceptibility) converge to their values for an infinite
system at an exponential rate with increasing cluster
size everywhere in the parameter space except for a nar-
row critical region. However, this region cannot be
resolved by modern experimental methods for the
quasi-1D materials discussed here.

In view of the specific anisotropy to be modeled,
chain clusters of infinite length in the direction of the
dominant interaction J are used as subsystems (L × ∞
strips and L × L × ∞ parallelepipeds for 2D and 3D sys-
tems, respectively). Undesirable surface effects are
eliminated by setting periodic boundary conditions in
the transverse directions for subsystems of both types.
Furthermore, frustration is obviated by using chains of
length L = 2, 4, … (measured in units of the lattice con-
stant), with the only exception of a single chain (L = 1).
Thus, the magnetic lattice of an Ld – 1 × ∞ superantifer-
romagnetic cluster (in space of dimension d = 2 or 3)
consists of two identical interpenetrating sublattices
with opposite magnetic moments.

In Section 2, formulas for susceptibilities are pre-
sented, including both general expressions well suited
for computations and exact asymptotic ones. The cum-
bersome analytical formulas derived for few-chain sub-
systems are relegated to the Appendix. In Section 3, the
strip width ensuring the accuracy required to calculate
the susceptibility of FeTAC is determined. In Section 4,
the corresponding calculated results are presented. Sec-
tions 5 and 6 contain results for 3D systems analogous
to those presented in the preceding two sections. Sec-
tion 7 summarizes the principal results of this study.

2. CALCULATION OF SUSCEPTIBILITIES

The anisotropic Ising Hamiltonian is written as

(1)

where the Pauli matrices  are localized at the sites of
a square or simple cubic lattice. The sums with 〈i, j〉  and
[i, j] are taken over the nearest-neighbor pairs along the
directions corresponding to J and J', respectively.

According to Kubo’s linear response theory [28, 29],
the static zero-field susceptibility tensor is

(2)

H
1
2
---J σi

zσ j
z 1

2
---J' σi

zσ j
z,

i j,[ ]
∑–

i j,〈 〉
∑–=

σi
z

χµν β Mν〈 〉 Mµ〈 〉– β' Mν β'( )Mµ〈 〉 .d

0

β

∫+=
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Here, µ and ν stand for x, y, or z; β = 1/kBT is the inverse
temperature measured in energy units (kB is Boltz-
mann’s constant); angle brackets denote ensemble-
averaged quantities; Mµ is the projection of the mag-
netic moment of the system on the µ axis; and Mν(β) =
eβHMνe–βH is a component of magnetization in the Mat-
subara representation.

Note that superantiferromagnets, being character-
ized by zero total spontaneous sublattice magnetiza-
tions, have zero magnetic moments in the absence of
applied field: 〈Mν〉  = 0. Therefore, the first term on the
right-hand side of (2) vanishes under the conditions
considered in this study.

The component of the magnetic moment parallel to
the z axis is

(3)

where g|| is the longitudinal g factor, µB is the Bohr
magneton, and N is the total number of particles in the
system. Since Mz commutes with Hamiltonian (1) and
〈Mz〉 = 0, the expression for the molar zero-field longitu-
dinal (parallel) susceptibility obtained by substituting (3)
into (2) is

(4)

where NA is Avogadro’s number and i0 is any particular
site in a uniform lattice (χ|| is independent of its loca-
tion). To evaluate the longitudinal susceptibility, one
must calculate and add up all spin–spin correlation
functions and take the infinite-lattice limit.

The longitudinal susceptibilities of single-, double-,
and four-chain Ising models are known in analytical
form (see Appendix). An analysis of these formulas
shows that the predicted variation of the susceptibilities
of superantiferromagnetic clusters with temperature is
in qualitative agreement with experimental data. The
susceptibility curve has a peak (see Fig. 1), and its mag-
nitude indefinitely increases with lattice anisotropy. At
temperatures below the maximum point, the suscepti-
bility curve has an inflection point that approximately
corresponds to the critical point of the entire system.
The slope of the tangent line at the inflection point
increases with the number of chains in a subsystem,
approaching infinity.

For subsystems consisting of a larger number of
chains, the susceptibility can be found only by numeri-
cal methods. One formula well suited for computing

Mz
1
2
---g||µB σi

z,
i 1=

N

∑=

χ|| T( )
NA

N
-------χzz

N ∞→
lim≡

NAg||
2µB

2

4kBT
------------------- σi0

z σ j
z〈 〉 N ,

j 1=

N

∑
N ∞→
lim=
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the longitudinal susceptibility of an Ld – 1 × ∞ Ising
cluster by the transfer matrix method is [30, 31]

(5)

Here, the primed sum skips the term with s = 1; n =
Ld − 1 is the number of chains in a cluster; λs and fs

denote eigenvalues and the corresponding eigenvectors
of the transfer matrix, respectively (the largest eigen-
value λ1 is nondegenerate by the Perron–Frobenius the-
orem [32]); and the matrix  is defined as

(6)

In this direct product of n matrices, the kth multiplicand
is the Pauli matrix σz, and the remaining ones are two-
dimensional identity matrices. The 2 × 2n-by-2 × 2
transfer matrix V has the elements

(7)

where σi = ±1 are collinear spins in the cross section of
an Ld – 1 × ∞ lattice, K = J/2kBT, and K' = J'/2kBT. The
transfer matrix V is a positive real symmetric one.

Expression (5) follows from (4); i.e., it can be
derived from Kubo’s linear response theory. A physi-
cally equivalent expression that has a somewhat differ-
ent form was obtained by developing a perturbation
series in external field for the transfer matrix [33, 34].

The key problem in evaluating the susceptibility is
thus reduced to the eigenvalue–eigenvector problem for
the transfer matrix V. Here, this problem is solved either
by direct numerical diagonalization of the matrix V or
by diagonalizing the subblocks constituting the transfer
matrix block diagonalized by using cluster symmetries.

Starting again from Kubo’s formula (2), one can
readily show that the expression for the transverse sus-
ceptibility χ⊥  is a linear combination of a finite number
of local σz correlation functions. These correlation
functions and χ⊥  have been calculated only for isotropic
2D Ising lattices [35–37].

The available analytical expressions for the trans-
verse susceptibilities of single- and double-chain Ising
models are written out in the Appendix. Figure 2 shows
these susceptibilities as functions of temperature and
demonstrates that the transverse susceptibility of a
quasi-2D system only slightly deviates from that of a

χ||
L
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single chain in the entire temperature range, in contrast
to the longitudinal susceptibility. Therefore, practical
calculations of the transverse susceptibility of a typical
quasi-2D magnet can be performed by using the for-
mula for a single chain.

1.2
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0.4

0 1 2 3

1

2

3

χ||

kBT/J

Fig. 1. Longitudinal susceptibility for Ising chain models

(measured in units of /J) vs. normalized tempera-

ture: (1) linear ferromagnetic chain; (2) double chain with
z'J'/J = –0.5 (J > 0); (3) four-chain cylinder with J > 0 and
z'J'/2J = –0.1.
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Fig. 2. Zero-field transverse susceptibility (measured in

units of /J) vs. normalized temperature: (1) 1D

chain (J' = 0); (2) double chain with z'|J'/J| = 0.1; (3) free
spins (J = J' = 0).
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An Ising magnet is an easy-axis one. The suscepti-
bility of such a material in polycrystalline (powder)
form is

(8)

At high temperatures, the longitudinal susceptibility
of an Ising magnet obeys the Curie–Weiss law:

(9)

This expression follows from the lowest order terms in
the high-temperature expansion of the susceptibility of an
infinite Ising lattice with anisotropic coupling [22, 23].
The Curie constant in (9) is expressed as

(10)

and the Curie–Weiss temperature is

(11)

Here, z' is the number of nearest-neighbor chains in the
system: z' = 2 and 4 for 2D and 3D lattices, respectively.

It follows from exact low-temperature expansions
obtained in [36, 38, 39] that the longitudinal suscepti-
bility of the entire system in the two- or higher dimen-
sional space vanishes exponentially as T  0. At
absolute zero temperature,

(12)

Since the clusters with even L considered here have
zero magnetic moments and an infinitesimal external
field cannot induce any magnetic moment that
requires a finite amount of work to be done, boundary
condition (12) is automatically satisfied for Ld – 1 × ∞
subsystems with d > 1.

At high temperatures, the transverse susceptibility
obeys the Curie law [36, 40]:

(13)

(It is equal to the magnetic susceptibility of free spins.)
The Curie constant in (13) is expressed as

(14)

where g⊥  is the transverse g factor. As T  0, the
transverse susceptibility tends to a finite limit [35, 36]
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(see also [40]). For the anisotropic lattices of interest
for the present study,

(15)

An expression for the relative interchain coupling
strength is found by combining (11), (14), and (15):

(16)

For |J'|/J > 0, it entails the constraint

(17)

Thus, the susceptibility measured at high temperatures
imposes a constraint on its value at extremely low tem-
peratures. A comparison shows that the experimental
data obtained for FeTAC in [7] satisfy inequality (17).

According to (8)–(11), (13), and (14), the powder
susceptibility at high temperatures also decreases as

(18)

where

(19)

(20)

At zero temperature, the powder susceptibility reduces
to its transverse component:

(21)

Expressions (19)–(21) combined with the inequality

(  – )2 ≥ 0 yield a constraint on the relative cou-
pling strength in an anisotropic system:

(22)

This inequality, in turn, entails an upper bound for the
low-temperature plateau in powder susceptibility with
Θ > 0:

(23)
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It is shown in Section 6 that available experimental data
for CoCl2 · 2NC5H5 [11] support this inequality.

3. CONVERGENCE ANALYSIS 
OF CLUSTER EXPANSIONS FOR 2D SYSTEMS

Before applying any particular approximation to
quantify experimental data, it should be verified that the
systematic error of the approximation is smaller (at
least, not greater) than the measurement errors.

First, let us analyze the convergence of cluster
expansions for 2D systems. Figures 3 and 4 show the
longitudinal susceptibilities of L × ∞ Ising strips with L
varying from 2 to 10 computed for |J'|/J = 1 and 10–3,
respectively. The interval between these extreme values
contains the relative interchain coupling strengths char-
acteristic of most Ising magnets actually used in exper-
iments. When |J'/J| is smaller, dipole–dipole interaction
plays a significant role.

The susceptibilities were computed by using for-
mula (5), where the eigenvalues and eigenvectors were
found by direct numerical diagonalization of the start-
ing transfer matrices having dimensions no higher than
210 = 1024 with the use of the C subroutines tred2 and
tqli [41]. The output data also included the coordinates
of the susceptibility maximum.

Figures 3 and 4 illustrate the convergence of suscep-
tibility with increasing subsystem size. In both extreme
cases, |J'|/J = 1 and 10–3, the curves obtained for the

0.12
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0 1 3

χ||
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4
6

8 10 |J '|/J = 1

2

Fig. 3. Longitudinal susceptibility for L × ∞ superantiferro-
magnetic Ising strips with L = 2–10 and |J'|/J = 1 (measured

in units of /J).NAg||
2µB

2
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strips with L = 8 and 10 nearly coincide; i.e., these
results correspond to the infinite 2D lattice up to the
resolution of the graphs.

The approximation accuracy can be reliably esti-
mated by comparing the maximum values of longitudi-
nal susceptibility. The maximum is in the subcritical
region, where the convergence follows a stretched
exponential, if not a power, law.

Table 1 lists the coordinates of the longitudinal sus-
ceptibility maxima for Ising cylinders. The extrapola-
tion to the thermodynamic limit (L = ∞) was performed
by applying the Shanks transform [26, p. 225], which
maps a sequence {al} to { } according to the formula

(24)

The results presented in Table 1 demonstrate the fol-
lowing trends. The relative estimation error decreases
with weakening interchain coupling from 1.3% for
|J'|/J = 1 to 0.27% for |J'|/J = 10–3. Furthermore, the
maximum longitudinal susceptibility increases with
decreasing |J'|/J as

(25)
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Fig. 4. Longitudinal susceptibility for L × ∞ superantiferro-
magnetic Ising strips with L = 2–10 and |J'|/J = 10–3 (mea-

sured in units of /J).NAg||
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However, the error of estimation of the maximum
value, unlike kBTmax/J, is almost independent of lattice
anisotropy. For L = 10, it is approximately 0.2%. This
accuracy is sufficient for quantitative description of
available experimental data.

Let us now discuss the accuracy of the approxima-
tion used in [18]. According to Table 1, we find that the
maximum longitudinal susceptibility of the 2D lattice
with |J'|/J = 10–1 corresponds to kBTmax/J = 0.538(3),

and its value is  = 1.050(2). On the
other hand, the results presented in [18, Fig. 5] for the
same superantiferromagnet demonstrate that the maxi-

mum has the coordinates kBTmax/J ≈ 0.656 and  ≈
0.809 (with redefined coupling constants). Thus, the
errors of estimation of the maximum value and the cor-
responding temperature in the approximation used
in [18] are 22 and 23%, respectively; i.e., the theory
developed in [18] is too inaccurate to be applicable to
experimental data even for weakly anisotropic lattices.

The inverse variation of maximum longitudinal sus-
ceptibility of superantiferromagnetic lattices with rela-
tive interchain coupling strength described by empiri-
cal formula (25) can be explained as follows. The criti-
cal temperature for anisotropic 2D Ising lattice satisfies
the equation [42]

(26)

Jχ||
max( )/NAg||

2µB
2

Jχ||
max( )

J
kBTc
----------- J'

kBTc
-----------sinhsinh 1.=

Table 1.  Coordinates of longitudinal-susceptibility maxima
for cyclic L × ∞ superantiferromagnetic Ising strips with dif-
ferent L and ∆ = |J '|/J (J > 0, J ' < 0): upper and lower values

are kBTmax/J and / , respectively. Extrapola-
tion to 2D strips with L = ∞ is performed by applying Shanks
transform (24) to strips with L = 6, 8, and 10.

L ∆ = 1 ∆ = 10–1 ∆ = 10–2 ∆ = 10–3

2 1.957443 0.593380 0.301827 0.193399

0.080142 0.853605 8.577071 85.786055

4 1.723455 0.563281 0.292302 0.189102

0.097244 1.000137 10.019720 100.203811

6 1.640401 0.550014 0.287992 0.187135

0.101008 1.034448 10.360714 103.612905

8 1.603729 0.543665 0.285905 0.186177

0.102075 1.044801 10.463915 104.644760

10 1.587364 0.540669 0.284914 0.185721

0.102404 1.048171 10.497584 104.981419

∞ 1.57(2) 0.538(3) 0.2840(9) 0.1853(5)

0.1026(2) 1.050(2) 10.51(2) 105.1(2)

Jχ|| max,
L ∞×( ) NAg||

2µB
2
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As |J'|/J  0, this equation yields

(27)

On the other hand, the longitudinal susceptibility of a
typical quasi-1D Ising superantiferromagnet at temper-
atures slightly above the maximum point is well
approximated by the formula for the longitudinal sus-
ceptibility of a single Ising chain. Moreover, the maxi-
mum point approaches the critical temperature with
increasing lattice anisotropy. Therefore, assuming that

Tmax ≈ Tc and  ∝  (Tmax), we combine (27)
with (A.1) to obtain

(28)

The data listed in Table 1 demonstrate that relation (28)
holds in a surprisingly wide interval extending almost
to |J'| = J.

4. ZERO-FIELD MAGNETIC SUSCEPTIBILITY
OF SINGLE-CRYSTAL FeTAC

Single crystals of ferrous trimethylammonium chlo-
ride (FeTAC) are characterized by the most pronounced
quasi-one-dimensional magnetic ordering among the
class of compounds described by the formula
[(CH3)3NH]MX3 · 2H2O, where M denotes a metal
(such as Co, Fe, or Ni) and X is chlorine or bromine
(see [8, 43] and references therein). Physical properties
of FeTAC are the subject of extensive experimental
studies.

The static zero-field magnetic susceptibility of
FeTAC single crystals was measured in [7] at tempera-
tures ranging from 1.4 to 300 K. The susceptibility
along the easy axis (crystallographic b axis) is inter-
preted as the longitudinal susceptibility: χb ≡ χ||.

According to [7], its maximum value  =
100 cm3/mol is reached at Tmax = 3.18(2) K, and the
critical temperature determined from the steepest
slope of longitudinal susceptibility below Tmax is Tc =
3.12(2) K (i.e., Tmax/Tc ≈ 1.02). At temperatures well
above Tmax, the susceptibility obeys the Curie–Weiss law.

The quantitative interpretation of measured suscep-
tibilities presented in [7] is based on the single-chain
approximation. Therefore, it is applicable only at tem-
peratures above Tmax. By fitting the longitudinal sus-
ceptibility of the 1D Ising chain to experimental data
points in the interval between 6 and 18 K, it was found
that Cb = C|| = 5.52(4) cm3 K/mol (Curie constant) and
ϑ  ≈ J/kB = 16.6(1) K [7]. Combining these results
with (10), we obtain the longitudinal g factor: g|| =
7.67(3).
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Moreover, the relative interchain coupling strength
was estimated in [7] by using a well-known expression
for the susceptibility of a quasi-1D system with cou-
pling between chains described in the molecular field
approximation [44],

(29)

By fitting this theoretical formula to experimental data
on susceptibility in the interval between 3.2 K (again
above Tmax) and 18 K, the approximate value J'/J ≈ –2 ×
10–3 was obtained [7].

According to the results of measurements of the spe-
cific heat of FeTAC reported in [8], Tc = 3.125(5) K and
J/kB = 17.7(3) K. Onsager’s solution (26) was used
in [8] to obtain |J'/J| = 1.3 × 10–3 for FeTAC.

Before discussing the results on FeTAC obtained in
the present study, let us note that the use of dependence
of kBTc/J on J'/J is not the best method for finding the
interchain coupling strength in quasi-1D systems.
Indeed, (27) entails the following relation between the
relative errors in normalized interchain coupling and
reduced temperature:

(30)

Therefore, the error in |J'|/J estimated from Tc increases
with coupling anisotropy (since kBTc/J decreases).

The same conclusion can be reached in a different
manner. Transcendental equation (26) is easily solved
on a computer to obtain curve 1 in Fig. 5. However, the
inaccuracy of input data should be taken into account.
Following [8], let us use Tc = 3.125 ± 0.005 K and
J/kB = 17.7 ± 0.3 K. Then, kBTc/J = 0.177 ± 0.003, the
corresponding relative error is 1.7%, and the relative
error in the result |J'|/J = (1.1–1.4) × 10–3 obtained by
solving (26) is 12%. This sharp increase in error is
explained by a rapid increase in the steepness of curve 1
with decreasing J'/J (see Fig. 5).

Alternatively, the ratio |J'|/J can be determined for a
superferromagnetic system by using maximum suscep-
tibility values (curve 2 in Fig. 5). According to (25),

/NA  varies in inverse proportion to |J'|/J.
This relation obviously implies that the respective rela-
tive errors in these parameters are equal; therefore,

(31)

One important advantage of this method for estimating
|J'|/J over the one discussed above is that the error is
independent of lattice anisotropy.
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The principal result of this section is a quantitative
description of the magnetic susceptibility of FeTAC in
the entire temperature range down to absolute zero.
Computations were performed for a 10-chain strip to
ensure that the approximation error is much smaller
than measurement errors. (
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and larger could easily be simulated on a modern com-
puter if necessary.)

Expression (5) for longitudinal susceptibility con-
tains three parameters: 
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Figure 6 demonstrates that the curve computed in
the present study agrees with experimental data for
FeTAC obtained in [7]. It should be reiterated here that
the theoretical description of experimental data on sus-
ceptibility given in [7] is valid only at temperatures
above the maximum point, when the single-chain
approximation is applicable.
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5. CLUSTER EXPANSIONS
FOR 3D SYSTEMS

Modern computers can be used to simulate 3D Ising
chain clusters only for L ≤ 4. Note that exact expres-
sions are available for the susceptibilities of the double-
chain cluster and the 2 × 2 × ∞ parallelepiped (see
Appendix).

To find the eigenvalues of the 65536 × 65536 trans-
fer matrix of the cyclic 4 × 4 × ∞ Ising parallelepiped,
both lattice and spin symmetries were used to represent
it in a block diagonal form consisting of 433 × 433 and
372 × 372 subblocks, whose eigenvalues and eigenvec-
tors are required to calculate the susceptibility given
by (5) [34]. Exact diagonalization of these relatively
small subblocks can readily be performed on a PC.

The next larger cluster that should have been simu-
lated in the present study is the 6 × 6 × ∞ parallelepiped.
However, the corresponding transfer matrix is 236 × 236,
and the dimensions of the subblocks in its block diago-
nal form determined by using the symmetries of the
system (as in the case of the 4 × 4 × ∞ cluster) are
119583470 and 119539680 [34]. The complete solu-
tion of the spectral problem for these matrices is far
beyond the capabilities of present-day supercomputers.
To date, computations have been performed for the 6 ×
6 × ∞ Ising system only at the quantum limit and a few

100
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0 2 12

χb, cm3/mol

T, K

60

20

FeTAC

4 6 108 14

Fig. 6. Magnetic susceptibility of FeTAC along the crystal-
lographic b axis: measurement data from [7] (symbols) and

(T) calculated for J/kB = 16.6 K, g|| = 7.67, and

J'/J = –1.38 × 10–3 (curve).

χ||
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lowest eigenvalues of the corresponding sparse Hamil-
tonian matrix have been calculated [45].

For this reason, the present analysis is restricted to
2 × ∞, 2 × 2 × ∞, and 4 × 4 × ∞ clusters. Figure 7 illus-
trates the convergence of the zero-field susceptibilities
computed for 3D clusters (curves 2–4) with respect to
the number of chains in a cluster. The trends shown
here are qualitatively similar to those manifested in the
2D simulations (Figs. 3 and 4): the maximum suscepti-
bility increases with the cluster size, while the corre-
sponding reduced temperature decreases. As L  ∞,
the coordinates of the maximum must approach their
respective limits. However, these limits cannot be cal-
culated by Shanks extrapolation for lack of solution for
the 6 × 6 × ∞ cluster. (Unfortunately, the 2 × ∞ chain
cannot be used in an extrapolation process, because it is
not a truly 3D cluster.)

The accuracy of the 4 × 4 × ∞ approximation used
here for comparison with experiment can be estimated
indirectly by invoking the results of a Padé–Borel
resummation of high-temperature expansions for the
susceptibility of an anisotropic 3D Ising lattice [24]. In
that study, the coordinates of the superantiferromag-
netic susceptibility maximum were presented as func-
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Fig. 7. Longitudinal susceptibility for Ising clusters with

|J'|/J = 10–2 (measured in units of /J): (1) linear

ferromagnetic chain; (2) double chain with quadrupled
interchain coupling; (3) cyclic 2 × 2 × ∞ and (4) cyclic 4 ×
4 × ∞ parallelepipeds. The cross is the maximum calculated
in [24]. The transverse susceptibility of a linear Ising chain

(measured in units of /J) is shown for comparison

(curve 5).
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tions of J'/J (see Table 1 in [24]). In the isotropic case
(|J'|/J = 1), when high-temperature expansions must
lead to reliable results, it was found that kBTmax/J =

2.400(25) and /NA  = 0.058 [24]. In this

study, /NA  = 0.05547 is obtained for
the 4 × 4 × ∞ lattice, which is lower by 4.35%. By anal-
ogy with the 2D simulations, it can be assumed that the
relative error in the maximum value is independent of
lattice anisotropy. (Actually, the error even slightly
decreases with |J'|/J, which can easily be demonstrated
by using the results for L = 4 presented in [24, Table 1].)
Then, the error of the 4 × 4 × ∞ approximation must be
about 4%. Since theoretical results are compared here
with experimental data on powder susceptibility, which
are not very accurate, the 4 × 4 × ∞ cluster approxima-
tion is well suited for such a comparison.

As mentioned in the Introduction, high-temperature
expansions lead to increasingly inaccurate results with
decreasing |J'/J|, because they contain a small number
of terms. The cross in Fig. 7 represents the susceptibil-
ity maximum calculated in [24] for |J'|/J = 10–2, with

kBT/J = 0.385(5) and Jχ||/NA  = 4.40(75). Accord-
ing to the figure, high-temperature expansions are even
less reliable than the 2 × 2 × ∞ approximation for this
degree of anisotropy. These results cannot be compared
to experimental data for such highly anisotropic super-
antiferromagnets as CoCl2 · 2NC5H5 (with |J'|/J < 10–2).
Now, it is clear that the formal quantitative comparison
of this kind presented in [24] is groundless.

Table 2 summarizes the coordinates of the suscepti-
bility maximum calculated for the 4 × 4 × ∞ superanti-
ferromagnetic cluster. (The maximum longitudinal sus-
ceptibility is divided by 3 with a view to comparing
with powder susceptibility.) As in the case of 2D lattice,
the maximum longitudinal susceptibility varies in
inverse proportion with |J'|/J:

(32)

This behavior is explained by analogy with the 2D case:
when the coupling between chains is described in the
molecular field approximation (while the intrachain
coupling is modeled exactly), the critical temperature
for the ferromagnetic simple cubic Ising lattice satisfies
the transcendental equation [44]

(33)

Since Tmax ≈ Tc and the maximum susceptibility is on

the order of (Tmax) for anisotropic superantiferro-
magnetic lattices with sufficiently high anisotropy, the
law formulated in (28) follows again from Eq. (A.1).
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Table 3 lists the coordinates of the inflection point
below the maximum and the corresponding slopes of
the susceptibility curve. It is clear that the abscissa of
the inflection point is a lower bound for critical temper-
ature (cf. [34]). The numerical results presented in
Table 3 demonstrate a rapid increase in the normalized
χ' = ∂χ/∂T with decreasing |J'|/J and show that the sus-
ceptibility at the critical point also varies in inverse pro-
portion to |J'|/J.

6. POWDER MAGNETIC SUSCEPTIBILITY
OF CoCl2 · 2NC5H5 AND FeCl2 · 2NC5H5

The spin systems of crystals of the pyridine com-
plexes of cobalt and iron(II) chlorides are 3D Ising lat-
tices with quasi-1D coupling [1, 2]. In these com-
pounds, Co2+ or Fe2+ ions are linked by next-nearest-
neighbor superexchange coupling through chlorine into
linear chains separated by pyridine rings, which are
responsible for interchain coupling. At temperatures on

Table 2.  Normalized coordinates of longitudinal-suscepti-
bility maximum as a function of J '/J for 4 × 4 × ∞ lattices
with J > 0 and J ' < 0

J '/J kBTmax/J

–1.0000 2.5833625 0.01849229

–0.1000 0.7155626 0.18871242

–0.0100 0.3399309 1.89015328

–0.0095 0.3346111 1.98964522

–0.0090 0.3301889 2.10018741

–0.0085 0.3254978 2.22374800

–0.0080 0.3207257 2.36273906

–0.0075 0.3158513 2.52025948

–0.0070 0.3105331 2.70029750

–0.0065 0.3052407 2.90802557

–0.0060 0.2996506 3.15038075

–0.0055 0.2936108 3.43680225

–0.0050 0.2875449 3.78048335

–0.0045 0.2808194 4.20055926

–0.0040 0.2738453 4.72563875

–0.0035 0.2661257 5.40079611

–0.0030 0.2578018 6.30088685

–0.0025 0.2483499 7.56111673

–0.0020 0.2378198 9.45146198

–0.0015 0.2252555 12.6019164

–0.0010 0.2095811 18.9030324

1
3
---χ|| max,

4 4 ∞××( )
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the order of the critical temperature, the only signifi-
cantly populated level in the energy level system of
metal ions modified by the single-ion anisotropy field is
the ground-state Kramers doublet, which is separated
from higher levels by a large energy gap. Therefore, the
coupling between these ions can be modeled by an
effective spin-1/2 Hamiltonian.

The data points in Fig. 8 represent the zero-field
magnetic susceptibilities of polycrystalline CoCl2 ·
2NC5H5 and FeCl2 · 2NC5H5 powders measured in [11]
and [17], respectively.

For CoCl2 · 2NC5H5 crystals, the Curie constant is
C = 2.82(5) cm3/mol, the Curie–Weiss temperature is
Θ = 4.95(5) K, and the low-temperature limit value of
powder susceptibility is χp(0) = 0.14(1) cm3/mol [11].
These numerical values are consistent with upper
bound (23). Unfortunately, inequality (22) cannot be
used to obtain any useful quantitative information

Table 3.  Normalized coordinates of the inflection point of
longitudinal susceptibility below its maximum and the values
of susceptibility and its temperature derivative at the inflec-
tion point as functions of J '/J for 4 × 4 × ∞ lattices with J > 0
and J ' < 0

J '/J kBTc/J

–1.0000 1.947425 0.06298528 0.01244998

–0.1000 0.621899 3.41073780 0.13753748

–0.0100 0.311571 110.197410 1.39414706

–0.0095 0.307526 119.120733 1.45608732

–0.0090 0.303649 127.885372 1.53655666

–0.0085 0.299877 139.597874 1.63723231

–0.0080 0.296189 151.066706 1.76240864

–0.0075 0.291462 166.471661 1.85697964

–0.0070 0.287312 182.003965 2.00942967

–0.0065 0.281839 205.372014 2.11081321

–0.0060 0.277612 227.136261 2.33597593

–0.0055 0.272541 254.505992 2.55608624

–0.0050 0.267087 290.445604 2.81257312

–0.0045 0.260747 336.356921 3.06639337

–0.0040 0.254937 394.237723 3.50292699

–0.0035 0.248861 473.481579 4.10957821

–0.0030 0.241041 591.045463 4.72049719

–0.0025 0.232527 745.165859 5.60393984

–0.0020 0.222934 1017.23093 6.95010013

–0.0015 0.211715 1510.16621 9.23674430

–0.0010 0.197356 2567.00852 13.6273345

1
3
---χ|| c,'

4 4 ∞××( ) 1
3
---χ|| c,

4 4 ∞××( )
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because of a large experimental error. However, large
values of maximum susceptibility (see Fig. 8) suggest
that the interchain coupling is weak. The corresponding
contribution to longitudinal susceptibility can be
ignored, since it is much smaller than the χp(0) mea-
surement error. If the contribution of J' is also ignored,
then the decoupled system (19)–(21) yields J/kB =
11.4 K, g|| = 6.26, and g⊥  = 5.05, and only the value of
J'/J is required to calculate the susceptibility curve.

The critical temperature and maximum susceptibil-
ity calculated for the 3D Ising lattice as functions of
|J'|/J are qualitatively similar to those shown in Fig. 5
for the 2D model. Numerical values of kBTc/J in the 3D
Ising model can be found in a recent paper ([34],
Table 3, the values in the Tc column divided by 2).
Using these values and taking Tc = 3.17(2) K and J/kB =
10.6(6) K for CoCl2 · 2NC5H5 from [11], we obtain

|J'|/J =  with an error of 30%. Analo-
gously, taking Tc = 6.6(3) K and J/kB = 25(2) K for
FeCl2 · 2NC5H5 from [17], we obtain |J'|/J =

; i.e., the corresponding error is even
larger. Therefore, |J'|/J should again be determined
from the maximum susceptibility.

Figure 7 demonstrates that the transverse suscepti-
bility in the neighborhood of the longitudinal-suscepti-
bility maximum point is almost constant, and its value

predicted by (15) combined with (A.12) is [ (0) +

]/2 ≈ 0.27496 (measured in units of J/NA .
Accordingly, the maximum powder susceptibility of
quasi-1D superantiferromagnets with 10–3 ≤ |J'|/J ≤ 10−2

can be calculated as

, (34)

with /3NA  taken from Table 2.

Using the experimental value  = 3.9 cm3/mol
for CoCl2 · 2NC5H5 determined from Fig. 4 in [11] and
applying the 4 × 4 × ∞ cluster model, we find that
|J'|/J = 6.53 × 10–3.

Curve 1 in Fig. 8 is the powder susceptibility

(35)

calculated by using the parameters obtained for CoCl2 ·
2NC5H5. Here, the maximum is located at 3.48 K,
which agrees with Tmax = 3.51(1) K measured in [11].
The inflection point below the maximum of the theoret-
ical curve is located at 3.2 K. This result is also consis-
tent with Tc = 3.17(2) K determined by measuring spe-
cific heat in [11].

0.0069 0.0016–
+0.0022

0.0038 0.0015–
+0.0033

χ⊥
1D( )

χ⊥ max,
1D( ) g⊥

2 µB
2

Jχp
max( )

NAg||
2µB

2
------------------- 1

3
---

Jχ|| max,
4 4 ∞××( )

NAg||
2µB

2
------------------------ 0.1833

g⊥

g||
----- 

 
2

+≈

Jχ|| max,
4 4 ∞××( ) g||

2µB
2

χp
max( )

χp T( ) 1
3
--- χ||

4 4 ∞××( ) T( ) 2χ⊥
1D( )

T( )+[ ]≈
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The experimental data for FeCl2 · 2NC5H5 presented
in [17] were used to obtain C = 4.5 cm3/mol, Θ = 8.5 K,

χp(0) = 0.12 cm3/mol, and  = 2.7 cm3/mol. Again,
the model parameters were adjusted to find J/kB =
24.5 K, |J'|/J = 5.65 × 10–3, g|| = 7.07, and g⊥  = 6.85.
These parameters were used in (35) to obtain curve 2 in
Fig. 8, for which Tmax = 7.2 K and Tc = 6.7 K. According
to [17], J/kB = 25(2) and Tc = 6.6(3); i.e., the estimates
for J/kB and Tc obtained in this study agree with exper-
imental data within measurement error.

7. CONCLUSIONS

The temperature dependence of the longitudinal and
transverse zero-field susceptibilities of 2D and 3D Ising
lattices with anisotropic coupling is analyzed. The anal-
ysis is based on approximations of the original lattices
with ensembles of independent chain clusters that are
infinitely long in the strong-coupling direction.

A detailed treatment is presented of the ferromag-
netic intrachain and antiferromagnetic interchain cou-
plings that constitute the superantiferromagnetic cou-
pling characteristic of the modeled systems. For this
coupling configuration, longitudinal susceptibility has
a maximum whose value varies in inverse proportion to
interchain coupling strength. An explanation is pro-
posed for the inverse proportionality.

It is found that the relative error in the value of the
maximum calculated for clusters of the same finite size
L is independent of lattice anisotropy.

χp
max( )

3

0 10

χp, cm3/mol

T, K

4

1

20 30

2

1

2

Fig. 8. Temperature dependence of CoCl2 · 2NC5H5 (1) and
FeCl2 · 2NC5H5 (2) powder susceptibility: measurement
data from [11] (circles) and [17] (crosses) and theoretical
predictions based on (35) with J/kB = 11.4 K, J'/J = –6.53 ×
10–3, g|| = 6.26, and g⊥  = 5.05 for CoCl2 · 2NC5H5 and

J/kB = 24.5 K, J'/J = –5.65 × 10–3, g|| = 7.07, and g⊥  = 6.85
for FeCl2 · 2NC5H5 (curves).
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For highly anisotropic superantiferromagnets, it is
shown that the interchain coupling strength can be
determined much more accurately by using the maxi-
mum value than the critical temperature, whereas the
latter method is applicable to weakly anisotropic sys-
tems.

A convergence analysis of cluster expansions per-
formed for 2D systems shows that L × ∞ strips of width
L = 10 can be used to calculate the maximum suscepti-
bility up to an error of 0.2%. If required, clusters of
larger size can be used to improve accuracy. Currently,
strips of width L ≤ 10 can be simulated on a standard
PC. Simulations for widths up to L = 16 can be per-
formed on supercomputers. Strips of larger size can be
simulated by using the symmetry of L × ∞ cylinders and
representing the transfer matrix in block diagonal form.

Three-dimensional simulation is an essentially dif-
ferent task. The susceptibility of L × L × ∞ Ising sys-
tems with L ≤ 4 can be calculated on a PC, whereas the
6 × 6 × ∞ problem cannot be solved on any supercom-
puter even after the transfer matrix is reduced to a block
diagonal form.

The approximation accuracy achieved in this study
is sufficient for a well-founded quantitative description
of the magnetic susceptibilities measured for real 2D
and 3D anisotropic Ising superantiferromagnets. The
present numerical results obtained are valid in the
entire experimental temperature range.

The agreement achieved between theory and exper-
iment strongly suggests that FeTAC, CoCl2 · 2NC5H5,
and FeCl2 · 2NC5H5 can be very accurately treated as
Ising magnets.

The accuracy of estimation of |J'|/J is improved from
one or two to three digits.
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APPENDIX

The formulas given below were used in analyzing
experimental data.

Longitudinal Susceptibility 

The zero-field longitudinal susceptibility of a 1D
Ising chain is

(A.1)

The longitudinal susceptibility of a double-chain 1D
(2 · 1D) Ising model is expressed as follows [46, 47]

χ||
1D( ) T( )

NAg||
2µB

2

4kBT
-------------------e

J /kBT
.=
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(see also [48]):

(A.2)

where

(A.3)

The expression for the longitudinal susceptibility of
a four-chain (4 · 1D) Ising model (a truly 3D cluster,
such as 4 × ∞ cylinder or 2 × 2 × ∞ parallelepiped)
is [30]

(A.4)

where

(A.5)

with x = J/kBT and y = z'J'/2kBT.

According to these formulas, the longitudinal sus-
ceptibility either increases indefinitely or vanishes
(exponentially) as T  0, depending on whether the
zero-temperature ordered state has nonzero or zero
magnetic moment. In particular, if J > 0 and J' < 0, then
the longitudinal susceptibility vanishes at T = 0. As
T  ∞, the susceptibility vanishes according to the
Curie–Weiss law (9). It should be noted here that the
constant parameters in the law are the correct Curie
constant and Curie–Weiss temperature given by (10)
and (11), respectively.

χ||
2 1D⋅( ) T( )

NAg||
2µB

2

4kBT
------------------- e

J /kBT

A z'J'/2kBT( )cosh
--------------------------------------------=

× A
J

kBT
--------- z'J'

2kBT
------------sinhcosh+ 

 

× A
J

kBT
--------- z'J'

2kBT
------------sinsinh+ 

  ,

A 1
J

kBT
--------- z'J'

2kBT
------------sinh

2
cosh

2
+ 

  1/2

.=

χ||
4 1D⋅( ) T( )

NAg||
2µB

2

16kBT
-------------------=

× A2 4e2y xsinh
4

–( )F 4AGey xsinh+

A2 2Aey 2x y 4e2y xsinh
4

+coshsinh–( )R1R2

-----------------------------------------------------------------------------------------------------------,

R1 2, 1 2 x ysinhcosh ycosh±( )2
+[ ]

1/2
,=

A 2 x y y R1+sinh+coshcosh( )=

× 2 x y y R2+sinh–coshcosh( ),

B 4 1 2 x y y R1+cosh+sinhcosh( )+[=

× 2 x y y R2+cosh–sinhcosh( ) ] ,

F y 2 x ysinh
2

cosh
2

R1R2 B 3,–+ +–cosh
2

=

G 2 2 R1 R2+( )= x y 2B F–( ),sinhcosh+
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Transverse Susceptibility 

The zero-field transverse susceptibility of a linear
Ising chain is [36, 49, 50]

(A.6)

The zero-field transverse susceptibility of a double-
chain Ising model with interchain coupling strength z'J'
has the form [51]

(A.7)

where

(A.8)

,

(A.9)

χ⊥
1D( ) T( )

NAg⊥
2 µB

2

4J
--------------------=

× J
2kBT
------------tanh

J /2kBT

J /2kBT( )cosh
2

------------------------------------+ .

χ⊥
2 1D⋅( ) T( ) 1

16
------NAg⊥

2 µB
2 A1 B1G1–(=

+ 2A2G2 2B2G3– A3G4 B3G5–+ ),

A1
1

2J z'J'+
-------------------- 2J z'J'+

kBT
--------------------sinh

1
2J z'J'–
--------------------+=

× 2J z'J'–
kBT

--------------------sinh
2

z'J'
------- z'J'

kBT
---------,sinh+

A2
1

2J z'J'+
-------------------- 2J z'J'+

kBT
--------------------

1
2J z'J'–
-------------------- 2J z'J'–

kBT
--------------------,sinh–sinh=

A3
4

2J z'J'+
-------------------- 2J z'J'+

kBT
--------------------sinh A1 2A2––=

B1
1

2J z'J'+
-------------------- 2J z'J'+

kBT
--------------------cosh 1– 

 =

–
1

2J z'J'–
-------------------- 2J z'J'–

kBT
--------------------cosh 1– 

  2
z'J'
------- z'J'

kBT
---------cosh 1– 

  ,+

B2
1

2J z'J'+
-------------------- 2J z'J'+

kBT
--------------------cosh 1– 

 =

+
1

2J z'J'–
-------------------- 2J z'J'–

kBT
--------------------cosh 1– 

  ,

B3
4

2J z'J'+
-------------------- 2J z'J'+

kBT
--------------------cosh 1– 

  B1 2B2;––=
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1
R
--- J

kBT
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1
R
--- J
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(A.10)

with

(A.11)

The transverse susceptibility is invariant under the
sign changes J  –J and J'  –J'. At absolute zero
temperature, susceptibility (A.7) reduces to (15), which
is the correct value for a system of any dimensionality.
Figure 2 demonstrates that the transverse susceptibility
is nearly constant at low temperatures, reaches a maxi-
mum at a higher temperature, and follows the high-tem-
perature Curie law (13), (14).

The coordinates of the maximum of transverse sus-
ceptibility (A.6) are

(A.12)

For the double-chain Ising model with z'|J'/J| = 0.1
(curve 2 in Fig. 2), the transverse-susceptibility maxi-
mum has the coordinates (0.480876, 0.288263).
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ORDER, DISORDER, AND PHASE TRANSITIONS
IN CONDENSED SYSTEMS
Transition from the Ferromagnetic State
to the Spin Glass State in Ordered Fe0.75 – xAl0.25 + x Alloys 

and the Temperature Evolution of the Magnetic Structure
of the Fe0.70Al0.30 Alloy
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Abstract—The magnetic structure of ordered alloys Fe0.75 – xAl0.25 + x (x = 0, 0.025, and 0.05) is studied by
Mössbauer 57Fe spectroscopy in a temperature range of 5–295 K. An increase in the Al concentration at T = 5 K
induces a transition from collinear ferromagnetism (x = 0) to a magnetic structure of the cluster-spin-glass type
(x = 0.05). The unexpectedly strong effect of aluminum on the magnetic structure is explained by the anoma-
lously high probability of formation of frustrated magnetic configurations with a large number of Al atoms in
the nearest neighborhood of Fe atoms. This anomaly is associated with the establishment of a short-range order,
which is a key factor determining the radical change in the magnetic structure in a narrow range of Al concen-
tration. The “intermediate” phase of the Fe0.70Al0.30 alloy (100 K < T < 200 K) is a mixed-type magnetically
ordered phase whose magnetic structure is determined by the competition of opposite exchange interactions.
The nominally “ferromagnetic” phase of this alloy (T > 200 K) is characterized by strong violation of the
long-range ferromagnetic order, which is due to the effect of the antiferromagnetic superexchange interac-
tion. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Ordered Fe0.75 – xAl0.25 + x alloys with a DO3-type
structure exhibit interesting and unexpected magnetic
properties in a narrow range of concentrations x = 0–
0.05. The Fe0.75Al0.25 alloy is a collinear ferromagnet
with a high Curie temperature (TC ≈ 750 K); however, a
slight increase in the Al concentration induces an
abrupt low-temperature transition to the spin glass
phase (at x = 0.05). The magnetic phase diagram of the
Fe0.70Al0.30 alloy includes three magnetic phases with
different properties [1–4]. At temperatures above T ~
200 K (up to TC ~ 400 K), the behavior of the magnetic
susceptibility corresponds to the ferromagnetic (FM)
type of ordering. A decrease in temperature from T ≈
200 K to T ≈ 100 K is accompanied by a monotonic
decrease in the magnetization. A blurred peak observed
in the vicinity of TSG ≈ 100 K indicates a transition to
the spin glass (SG) phase. The FM (T > 200 K) and SG
(T < 100 K) phases are separated by a broad region of
an “intermediate” phase, whose magnetic origin
remains unknown. In accordance with the phase dia-
gram proposed in [1–4], the intermediate phase may be
paramagnetic (or superparamagnetic); however, this
assumption has not been directly confirmed in experi-
ments at the microscopic level.

Important information on the magnetic properties of
the ordered Fe0.70Al0.30 alloy has been obtained recently
1063-7761/05/10106- $26.001091
by neutron scattering method. The small-angle neutron
scattering method was used in [5] for studying the slow
spin dynamics typical of SG systems. The measure-
ments were made at temperatures below 100 K (within
the SG phase of the Fe0.70Al0.30 alloy). In the model pro-
posed in [5], the SG phase contains FM clusters of var-
ious size with a random orientation of magnetic
moments, as well as regions with rapidly fluctuating
magnetic moments (paramagnetic zones). The inelastic
neutron scattering method was applied in [6] for study-
ing spin excitations for the SG and FM phases (at 18
and 294 K). It was found that the spin dynamics in these
two phases is anomalous. Strong perturbations of the
long-range FM ordering were observed for the nomi-
nally ferromagnetic phase. Anomalies in the spin
dynamics in the SG phase are explained by the forma-
tion of FM-type clusters formed at low temperatures as
a result of spin correlations over short distances. The
results of these publications indicate a complex mag-
netic behavior of the ordered Fe0.70Al0.30 alloy and
necessitate more detailed studies at the microscopic
level.

Here, we report on the results of investigation of
local spin configurations in ordered Fe0.75 – xAl0.25 + x
alloys (x = 0, 0.025, 0.05) and temperature evolution of
the magnetic structure of the Fe0.70Al0.30 alloy using
Mössbauer 57Fe spectroscopy. Mössbauer spectroscopy
is an effective method for studying magnetic systems
 © 2005 Pleiades Publishing, Inc.
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with a complex magnetic structure. The efficiency of
the method is determined by the high sensitivity of
hyperfine interaction parameters to the properties of
local spin configurations. Analysis of hyperfine field
distribution (HFD) functions makes it possible to
observe various types of local spin configurations and
to classify these configurations in accordance with the
hyperfine field intensity and temperature dependences
of HFD components. In particular, objective informa-

Fig. 1. Crystal structure of the ordered alloy Fe0.75Al0.25.
Large light circles denote Fe-I atoms, hatched circles denote
Fe-II atoms, and small circles are Al atoms.
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Fig. 2. Mössbauer spectra of the Fe0.75 – xAl0.25 + x alloys
(x = 0, 0.025, and 0.05) measured at T = 5 K (left) and 295 K
(right). Solid curves are the results of approximation of the
spectra by the superposition of magnetic subspectra or the
hyperfine magnetic field distribution function.
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tion can be obtained on frustrated and paramagnetic
states (if such states are present in the system), on the
effect of the competition of opposite exchange interac-
tions on the magnetic structure, and on the behavior of
magnetic configurations in an external magnetic field.

2. EXPERIMENT

Alloys with different aluminum concentrations
(Fe0.75Al0.25, Fe0.725Al0.275, and Fe0.70Al0.30) were pre-
pared by arc melting in argon using metals with a purity
not worse than 99.98%. The ingots were homogenized
at 1200 K over a week. To obtain alloys in the ordered
state, the powders prepared from the ingots were
annealed at 400 K during a week, after which the tem-
perature was gradually reduced to 300 K during the
next week. The Mössbauer absorption spectra for 57Fe
were measured in a temperature range of 5–295 K
embracing all the three above-mentioned magnetic
phases of the Fe0.70Al0.30 alloy. Resonance detectors
were used to enhance the resonant absorption effect and
the resolving power for detecting Mössbauer radiation.
The Mössbauer spectra were analyzed using two differ-
ent procedures. The HFD functions for all spectra were
calculated using the histogram technique [7]. In our
calculations, we took into account possible differences
in isomer shifts for configurations with different values
of the hyperfine field. The method for calculating the
HFD functions made it possible to use the procedure of
direct minimization of χ2 functional, which rules out
the indeterminacy associated with the smoothing pro-
cedure. The spectra with a well-resolved structure were
also analyzed using the procedure of approximation of
spectra by a superposition of discrete magnetic sub-
spectra.

3. RESULTS

Figure 1 shows the crystal structure of the
Fe0.75Al0.25 alloy in the case of perfect ordering of the
DO3 type (space group Fm3m). The unit cell consists of
two mutually penetrating sublattices, one of which con-
tains only Fe atoms (Fe-II sites with coordinates (1/4,
1/4, 1/4), while the other contains Fe atoms (Fe-I sites
with coordinates (0, 0, 0)) as well as Al atoms (sites
with coordinates (1/2, 0, 0)). In the case of perfect
ordering, the occupancy ratio of Fe-I/Fe-II sites is 0.5.
Fe-I and Fe-II atoms have eight and four Fe atoms as
their nearest neighbors, respectively (configurations
Fe(8) and Fe(4)). The magnetic moment of an Fe atom
strongly depends on the number of neighboring Fe
atoms and is approximately 2.5µB for an Fe-I site and
approximately 1.50µB for an Fe-II site [8]. In accor-
dance with the neutron diffraction data [2], excess Al
atoms are predominantly localized in the Fe-I/Al
sublattice in the case of a deviation from stoichiometry
(x > 0).
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3.1, Mössbauer Spectra of Fe0.75Al0.25, Fe0.725Al0.275, 
and Fe0.70Al0.30 Alloys at 5 and 295 K 

Figure 2 shows the Mössbauer absorption spectra
for three Fe0.75 – xAl0.25 + x alloys (x = 0, 0.025, and 0.05)
measured at temperatures of 5 and 295 K. It can be
clearly seen that a slight increase in the Al concentra-
tion strongly affects the spectral structure. At T = 5 K,
the discrete structure of the spectra is observed for all
three alloys; however, alloys with x > 0 exhibit a sharp
decrease in the intensity of the high-field components
of the spectra. For the Fe0.75Al0.25 and Fe0.725Al0.275
alloys, the discrete structure of the spectrum is pre-
served at T = 295 K also, while no such structure is
observed for the Fe0.70Al0.30 alloy at this temperature
and the intensity of the low-field components (central
part of the spectrum) sharply increases. These results
clearly indicate that the substitution of Al atoms for
even a small part of Fe sites is accompanied by a strong
perturbation of the ferromagnetic structure typical of
the Fe0.75Al0.25 alloy. The results of approximation of
the spectra for the Fe0.75Al0.25 and Fe0.725Al0.275 alloys
by the superposition of magnetic subspectra at T = 5 K
are given in the table. For the stoichiometric Fe0.75Al0.25
alloy, about 96% of the entire intensity are determined
by the four subspectra (A, B, C, and D), which corre-
sponds to a high degree of alloy ordering. The most
intense subspectra with magnetic hyperfine fields (Bhf)
of 33.5 and 23.9 T correspond to Fe-I and Fe-II sites
with eight and four nearest Fe atoms, respectively (Fe(8)
and Fe(4) configurations; see, for example, [9, 10]). The
presence of B and C subspectra indicates a slight viola-
tion of the perfect long-range atomic order (it is well
known that perfect atomic ordering is never attained in
the Fe0.75Al0.25 alloy). A small part of Al atoms is local-
ized at the sites of the Fe-II sublattice; a corresponding
part of Fe-II atoms move to the Al sites of the Fe-I/Al
sublattice. As a result, Fe(7) (subspectrum B) and
Fe(5) (subspectrum C) configurations appear. Low-
intensity subspectra E and F correspond to Fe-II sites in
configurations Fe(3) and Fe(2) (the origin of these sub-
spectra will be considered below).

The spectrum of the Fe0.725Al0.275 alloy at T = 5 K
acquires new subspectra, and the intensity of the sub-
spectra corresponding to Fe-II sites with Bhf ≈ 18 and
14 T sharply increases. It can be seen from the table
that the intensity of the F subspectrum (Fe-II(2) config-
uration) is practically equal to the intensity of the E
subspectrum (Fe-II(3) configuration). This result can-
not be explained by the assumption on the statistical
nature of substitution of Al atoms for Fe sites. Even if
we assume (in accordance with the results obtained
in [2]) that all excess Al atoms are localized in the
Fe-I/Al sublattice, the probability of the emergence of
the Fe-II(2) configuration, which is expected from the
binomial distribution, turns out to be several times
lower than the observed probability. The interpretation
of this anomaly is of key importance for determining
how the Al concentration affects the magnetic proper-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ties of Fe–Al alloys since the formation of low-field
configurations directly reflects the frustration of
exchange bonds, which accompanies the transition to
the state with a magnetic structure of the SG type.

The Fe0.70Al0.30 alloy at T = 5 K exhibit a sharp
increase in the number of the low-field HFD compo-
nents and in their relative intensity. The total intensity
of components with Bhf < 20 T exceeds 40%; compo-
nents with Bhf < 10 T (with a total intensity of about
20%) also appear. It is important to note, however, that
the HFD function at T = 5 K has no components with
zero hyperfine field; the minimal observed value of Bhf

is approximately 2.5 T. At the same time, components
corresponding to the FM type of ordering are observed
with an appreciable probability. In particular, the rela-
tive intensities of the components corresponding to
unperturbed configurations Fe-I(8) and Fe-II(4) in the
Fe0.70Al0.30 alloy are approximately 5 and 17%, respec-
tively. Such an HFD structure corresponds to a mag-
netic structure of the cluster spin glass type, in which
FM clusters separated by walls with a high concentra-
tion of frustrated sites are formed. Our results show that
FM clusters constitute at least 40−50% of the alloy vol-
ume and that sites at the interfaces are characterized by
a broad distribution of exchange fields.

3.2. Temperature Dependence
of the Mean Hyperfine Field and Isomer Shift 

The temperature dependences of the hyperfine field
(both mean value of the field and individual HFD com-
ponents) for alloys with x = 0 and 0.025 do not display
any noticeable anomalies and are typical of systems
with FM ordering. The temperature dependence of the
mean hyperfine field 〈Bhf 〉  for the ordered Fe0.70Al0.30
alloy is shown in Fig. 3. This dependence exhibits typ-

Results of approximation of the Mössbauer spectra of the
Fe0.75Al0.25 and Fe0.725Al0.275 alloys by the superposition of
magnetic subspectra at T = 5 K; Bhf is the hyperfine magnetic
field and I is the relative intensity of the subspectrum (in data
processing, relative intensities are normalized to 100%). The
errors in determining Bhf and I are 0.1 T and 1–2%, respectively

x = 0 x = 0.025

Bhf, T I, % Bhf, T I, %

A 33.5 26 33.3 11

B 31.6 13 31.5 10

C 27.9 14 29.8 4

27.8 10

D 23.9 43 23.9 37

22.6 10

E 18.5 3 18.3 10

F 14.0 1 14.0 8
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ical features reflecting the temperature evolution of the
magnetic structure of the alloy. In the region of the SG
phase (T < 100 K), an increase in temperature is accom-
panied by a rapid decrease in the mean hyperfine field.
Upon a further increase in temperature, mean field vari-
ations become smoother and do not exceed approxi-
mately 2 T in the entire temperature range from 100 to
295 K. In the vicinity of T ≈ 150 K, a clearly manifested
broad minimum of 〈Bhf 〉  is observed. It can be seen
from Fig. 3 that this minimum disappears upon the
application of a weak magnetic field (Bappl = 0.2 T).
Beyond this minimum, such a magnetic field does not
noticeably affect the value of 〈Bhf 〉 .

The behavior of 〈Bhf 〉  in the region of the SG phase
resembles the temperature dependence of 〈Bhf〉 typical of
reentrant spin glasses (RSGs) (see, for example, [11]), in
which a transition from the SG to FM phase takes place
at T = TSG. However, the situation for the Fe0.70Al0.30
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Fig. 3. Temperature dependence of the mean hyperfine
magnetic field 〈Bhf 〉  for the Fe0.70Al0.30 alloy. Light and
dark circles correspond to measurements in zero external
magnetic field and in the field Bappl = 0.2 T, respectively.
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Fig. 4. Dependence of the isomer shift of the Mössbauer
line on the number of Fe atoms in the nearest neighborhood.
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alloy radically differs from that for ordinary RSGs
since a transition not to the FM phase, but to a state with
a different magnetic structure (intermediate phase)
occurs at TSG. In the region of the intermediate phase,
the value of 〈Bhf 〉  remains substantial, although consid-
erably smaller than in the case of FM ordering. This
phase is obviously neither ferromagnetic nor paramag-
netic, but is a “mixed” phase whose magnetic structure
is formed as a result of competition between compara-
ble ferromagnetic and antiferromagnetic (AFM)
exchange interactions. The broad minimum on the tem-
perature dependence of 〈Bhf 〉  in the vicinity of T ≈
150 K indicates that exchange FM and AFM interac-
tions exhibit different temperature dependences and
that the concentration of frustrated sites emerging as a
result of competition of the FM and AFM interactions
attains its maximal value at T ≈ 150 K. Since such sites
are characterized by strong thermal fluctuations of the
magnetic moment, the fraction of Fe atoms with a weak
hyperfine field increases. Frustration of Fe sites is
accompanied by the formation of a broad distribution
of exchange fields. The exchange fields for a certain
fraction of Fe sites turn out to be close to zero (which
determines the emergence of a low-field peak in the
HFD function; see Section 3.3). The Fe atoms occupy-
ing these sites are partly aligned in the applied weak
magnetic field, which explains the disappearance of the
〈Bhf 〉  minimum in the field of 0.2 T (Fig. 3).

It follows from the temperature dependence of the
magnetic susceptibility that the role of the ferromag-
netic exchange should increase with temperature. It can
be expected that the corresponding change in the bal-
ance of the competing interactions should be accompa-
nied by an increase in the value of 〈Bhf 〉 . It can be seen
from Fig. 3 that a certain increase in the value of 〈Bhf 〉
is observed in the region of transition from the interme-
diate phase to the nominal FM phase (in the tempera-
ture range of 180–220 K); however, the increase in 〈Bhf 〉
is quite small (less than 10%). This means that the AFM
component of the exchange interaction in a wide tem-
perature range is not small and does not vanish in the
region of the nominal FM phase (T > 200 K); for this
reason, the transition between the two phases occurs
smoothly, without sharp variations in the exchange field
distribution. This assumption is confirmed by the
results of analysis of the temperature evolution of the
HFD (see Section 3.3).

Figure 4 shows the dependence of the isomer shift
(IS) of the Mössbauer line on the number n of nearest
Fe atoms. (The data were obtained as a result of approx-
imation of the Mössbauer spectra by the superposition
of the magnetic subspectra for alloys with x = 0 and
0.025.) It can be seen that the IS rapidly increases upon
a decrease in the number of neighboring Fe atoms from
7 to 4. (In particular, this makes it possible to reliably
identify the HFD components corresponding to a Fe-I
configuration with a large number of neighboring Fe
atoms.) Such a behavior of the IS corresponds to the
ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005
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theoretical model of the Fe–Al atomic interaction,
according to which this interaction is local and is deter-
mined by the 3d(Fe)–3p(Al) hybridization [12]. With
increasing number of neighboring Al atoms, the screen-
ing effect of hybridized electrons on the s component of
the electron wavefunction becomes stronger, which
causes a decrease in the electron density in the region
of the nucleus (and hence an increase in the value of
the IS).

3.3. Hyperfine Field Distribution Function 
for the Fe0.70Al0.30 Alloy 

Figure 5 shows the Mössbauer spectra of the
Fe0.70Al0.30 alloy at several temperatures in the region of
the SG phase and corresponding HFD functions. At
temperatures below approximately 50 K, the well-
resolved discrete structure of the HFD is preserved. At
temperatures above 50 K, the HFD discrete structure is
blurred; the intensity of high-field components
decreases most rapidly in the region of Bhf = 20–35 T.
Accordingly, the intensity of the low-field components
increases; at T = 85 K, the relative intensity of compo-
nents with Bhf ≤ 7 T is close to 25%. The observed vari-
ations of the HFD structure are obviously due to rapid
enhancement of thermal fluctuations of the magnetic
moment for Fe sites with a suppressed exchange field.
It can be seen from Fig. 5 that a local HFD peak formed
at T = 105 K in the region of 3–5 T corresponds to sites
with the maximal degree of frustration. Suppression of
exchange interactions leads to decomposition of the SG
cluster structure; however, a considerable fraction of Fe
sites remain in states with a well-defined magnetic
moment and with values of Bhf exceeding 10 T. We can
state that the phase emerging at temperatures above the
SG transition point is not paramagnetic and contains
regions with the FM type of ordering.

The behavior of the HFD function at high tempera-
tures appears unexpected. In accordance with the mag-
netic phase diagram proposed in [1–4], the Fe0.70Al0.30
alloy at T > 180–200 K is ferromagnetic. It would be
natural to expect that an increase in temperature would
lead to gradual formation of the HFD structure typical
of a system with FM-type ordering. (Such a transfor-
mation of the HFD can be expected if the exchange
AFM interaction decreases much more rapidly than the
FM interaction upon an increase in temperature.)
Experimental data do not confirm this assumption. In
the entire range of temperatures corresponding to the
intermediate phase (100–200 K), the HFD function
experiences only slight changes associated with varia-
tion of the low-field peak height in the region of 3–5 T.
Competing exchange interactions exhibit different tem-
perature dependences, but this difference is not as large
as expected. Moreover, the HFD function changes
insignificantly upon a transition to the nominal “ferro-
magnetic” phase as well (T > 200 K). The HFD func-
tion at temperatures of 150 and 270 K are compared in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Fig. 6. It can be seen that the two distributions are quite
similar. The main difference is associated with a slight
change in the shape of the low-field peak and an
increase in the peak height in the region of Bhf ≈ 15 T at
T = 270 K. This corresponds to a small change in the
value of 〈Bhf 〉  upon a transition from the region of the
intermediate phase to the nominal ferromagnetic phase
(see Fig. 3). The high-field wing of the HFD function
(Bhf > 10 T) is represented by a broad distribution of
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Fig. 5. Mössbauer spectra of the Fe0.70Al0.30 alloy at sev-
eral temperatures in the region of the SG phase (left) and the
corresponding hyperfine field distribution functions (right).
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hyperfine fields and has no a well-defined structure that
could indicate predominant formation of certain spin
configurations of the FM type. The results clearly dem-
onstrate that the role of the AFM exchange is quite
important in the entire temperature range studied here.
At T > 200 K, the ferromagnetic exchange interaction
dominates; however, violation of the long-range FM
order in the nominal ferromagnetic phase is significant
and the magnetic structure of this phase is determined
to a considerable extent by the competition of opposite
exchange interactions.

4. DISCUSSION AND CONCLUSIONS

4.1. Dependence of the Magnetic Structure of the Alloys 
at T = 5 K on the Aluminum Concentration 

In accordance with the generally accepted assump-
tion, the variations of magnetic properties of Fe–Al
alloys are determined by the competition of opposite
exchange interactions, viz., the direct FM interaction
between neighboring Fe atoms and the indirect (super-
exchange) AFM interaction via Al atoms (Fe–Al–Fe)
[3, 13, 14]. An increase in the Al concentration
increases the number of exchange AFM bonds, which
must suppress the resultant exchange interaction and
gradually transform the FM structure into an AFM
structure or a structure of the SG type. This process can
be considered, for example, in the framework of the sta-
tistical model of distribution of exchange fields, which
is based on the percolation theory [15]. However, the
change in the magnetic structure occurs in a very nar-
row concentration range in the alloys studied here,
which is difficult to explain in the framework of the sta-
tistical approach. In accordance with theoretical esti-
mates (see [3] and literature cited therein), the ratio
−JAFM/JFM of competing exchange interaction constants
is close to 0.3. It can easily be seen that the necessary
condition for the formation of frustrated sites is that six
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Fig. 6. Comparison of the HFD functions for the
Fe0.70Al0.30 alloy at T = 150 K (solid curve) and T = 270 K
(dashed curve).
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out of eight exchange bonds be antiferromagnetic
(Fe(2) configuration). Such a configuration is ruled out
for Fe-I sites, but is possible for Fe-II sites (which have
four AFM-type bonds for the stoichiometric composi-
tion Fe0.75Al0.25). However, in the case of the statistical
distribution of Al atoms over the sites of the Fe-I/Al
sublattice of nonstoichiometric alloys, the probability
of formation of the Fe-II(2) configuration is quite low
(~0.05 for x = 0.025 and ~ 0.15 for x = 0.05). These esti-
mates strongly contradict the experimental data,
according to which the probabilities of formation of
frustrated Fe-II sites (Bhf < 18 T) is approximately
thrice as high (~0.15 for x = 0.025 and ~ 0.45 for x =
0.05). The anomalously high probability of formation
of frustrated Fe-II sites should be regarded as the main
reason for the strong influence of Al atoms on the mag-
netic structure. This anomaly can easily be interpreted
from the standpoint of physics. We believe that the only
possible explanation is the assumption on the emer-
gence of the short-range atomic order (SRO) resulting
in a considerable increase in the probability of forma-
tion of configurations for Fe-II sites with a large num-
ber of neighboring Al atoms (Fe(2) configurations in
the alloy with x = 0.025 and the Fe(2) and Fe(1) config-
urations in the alloy with x = 0.05). This mechanism
should be treated as a consequence of the strong Fe–Al
atomic interaction determined by the formation of
hybrid electron orbitals 3d(Fe)–3p(Al) [12]. It should
be noted that the tendency towards the establishment of
the SRO is observed even in the stoichiometric
Fe0.75Al0.25 alloy (in the form of a slight violation of
regular alteration of Fe and Al atoms in the Fe-I/Al sub-
lattice). In nonstoichiometric alloys with an elevated Al
concentration, the SRO becomes the key factor deter-
mining the rapid transition from ferromagnetism to a
magnetic structure of the spin glass type. Analysis of
relative intensities of the HFD components correspond-
ing to the Fe-II(3), Fe-II(2), and Fe-II(1) configurations
makes it possible to gain information on the nature of
distribution of Al atoms in the establishment of the
SRO. To explain the high probability of formation of
the Fe-II(2) and Fe-II(1) configurations, we must
assume that extended regions with a high local Al con-
centration are formed in the planes of the Fe-I/Al sub-
lattice (the size of these regions is equal to several lat-
tice constants). The formation of such regions explains
the observed intensity ratio I(Fe(2))/I(Fe(3)) (which
increases with the effective radius of Al-enriched
regions). For a random distribution of excess Al atoms,
this ratio must be equal to 0.17 (for x = 0.025) and 0.36
(for x = 0.05), while the experimentally observed value
are approximately equal to 0.9 and 2.0, respectively.

If we assume (in accordance with the result obtained
in [2]) that Al atoms are practically absent in the Fe-II
sublattice, all exchange bonds for Fe-I sites in the
Fe0.70Al0.30 alloy remain ferromagnetic (Fe-I–Fe-II).
However, for the experimentally obtained high concen-
tration of frustrated Fe-II sites, most Fe-I atoms (about
ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005
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60%) have at least four frustrated Fe-II atoms with a
suppressed exchange field and a small magnetic
moment among their nearest neighbors. Attenuation of
exchange bonds of the FM type changes the balance of
the competing interactions and leads to destruction of
the long-range ferromagnetic order in regions with ele-
vated local Al concentration. These regions form the
boundaries between clusters, while the FM-type order-
ing is preserved in regions with a lower local Al con-
centration. Mössbauer spectroscopy data confirm the
results obtained by the neutron scattering method,
according to which the low-temperature phase of the
Fe0.70Al0.30 alloy is a cluster spin glass [2, 4–6]. How-
ever, our results do not confirm the model [5], accord-
ing to which FM clusters at a low temperature are sep-
arated by extended paramagnetic zones containing Fe
atoms with rapidly fluctuating magnetic moments.
Such regions should correspond to states of Fe atoms
with zero hyperfine field; however, no such states were
observed at low temperatures.

4.2. Temperature Evolution of the Magnetic Structure 
of the Fe0.70Al0.30 Alloy 

Analysis of the temperature dependence of the HFD
shows that the cluster SG structure of the Fe0.70Al0.30
alloy is rapidly destroyed at temperatures above 50 K.
This process is primarily determined by the behavior of
Fe atoms at the interfaces between the clusters. For Fe
sites with a suppressed exchange field, an increase in
temperature enhances thermal fluctuations of the mag-
netic moment (and reduces the observed value of the
hyperfine field). This leads to a rapid decrease in the
value of 〈Bhf 〉  (see Fig. 3) and to an increase in the inten-
sity of low-field HFD components (see Fig. 5).

Our results do not confirm the hypothesis according
to which the intermediate phase of the Fe0.70Al0.30 alloy
(in the temperature range 100–200 K) is paramagnetic.
The high relative intensity of components with strong
hyperfine fields (close in value to the hyperfine fields in
the ferromagnetic phase) clearly indicates the presence
of a long-range magnetic ordering. At temperatures
above TSG ≈ 100 K, the relative intensity of HFD com-
ponents with zero hyperfine field does not exceed 10%,
while the total intensity of the low-field components
with Bhf = 3–5 T does not exceed 30%. It cannot be
stated either that the FM clusters determining the prop-
erties of the low-temperature SG phase are preserved at
T > 100 K. Since the HFD exhibits no resolved discrete
structure in the region of the intermediate phase, our
results do not provide detailed information on the mag-
netic structure of this phase. At the same time, these
data undoubtedly indicate that the intermediate phase is
magnetically ordered rather than paramagnetic. We can
assume that a network of spins whose mutual orienta-
tion is randomly determined by the balance of the
exchange FM and AFM bonds at the local level is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
formed at T > 100 K. In all probability, many local spin
configurations are noncollinear in this case. This does
not follow directly from the experimental data, but
makes it possible to explain the absence of a discrete
structure in the high-field part of the HFD.

The behavior of the HFD during a transition to the
nominal ferromagnetic phase (T > 200 K) appears unex-
pected. The results considered above (see Section 3.3)
indicate that this transition is not accompanied by a rad-
ical change in the HFD structure and, hence, the mag-
netic structure of the ferromagnetic phase differs from
the structure of the intermediate phase less strongly
than expected. Moreover, the expected significant
increase in the value of 〈Bhf 〉  was not observed either
during a transition to the ferromagnetic phase (see
Fig. 3). These results lead to the conclusion that viola-
tion of the FM order observed earlier by the neutron
scattering method is strong and that the magnetic struc-
ture of the Fe0.70Al0.30 alloy at T > 200 K is far from the
structure predicted for a collinear ferromagnet. Among
other things, this means that although the role of the
competing AFM exchange interaction decreases upon
an increase in temperature, it remains significant in the
entire temperature range studied here.
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Abstract—Magnetic properties of GdFe3(BO3)4 single crystals were investigated by 57Fe-Mössbauer spectros-
copy and static magnetic measurements. In the ground state, the GdFe3(BO3)4 crystal is an easy-axis compen-
sated antiferromagnet, but the easy axis of iron moments does not coincide with the crystal C3 axis, deviating
from it by about 20°. The spontaneous and field-induced spin reorientation effects were observed and studied
in detail. The specific directions of iron magnetic moments were determined for different temperatures and
applied fields. Large values of the angle between the Fe3+ magnetic moments and the C3 axis in the easy-axis
phase and between Fe3+ moments and the a2 axis in the easy-plane phase reveal the tilted antiferromagnetic
structure. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The crystal GdFe3(BO3)4 belongs to the family of
rare-earth borates RM3(BO3)4, where R is a rare-earth
element and M = Al, Ga, Fe, Sc, and has a trigonal sym-

metry with the space group R32 ( ) [1, 2]. These
materials first attracted great interest because of prom-
ising nonlinear and laser properties [3–5]. Quite
recently, a magnetoelectrical effect was found in
GdFe3(BO3)4, which suggests that this crystal be con-
sidered as a new multiferroic material [6].

The crystal structure of GdFe3(BO3)4 can be repre-
sented by layers oriented perpendicular to the C3 axis
and consisting of trigonal GdO6 prisms and smaller
FeO6 octahedrons [2]. The FeO6 octahedrons are con-
nected by edges and create one-dimensional spiral
chains directed along the threefold C3 axis (Fig. 1). The
shortest Fe–Fe interionic distance in chains is about
3.155 Å and that between chains is 4.361 Å, whereas
the shortest Fe–Gd distance is 3.746 Å [2]. Exchange
interaction between iron ions from different chains is
weak and the chains are mutually independent.

Magnetization and magnetic susceptibility mea-
surements have shown that GdFe3(BO3)4 is an antifer-
romagnet with the Néel temperature TN = 38 K and its
magnetic moments are directed along the crystal C3
axis [7, 8]. It was suggested that magnetic ordering
relates to Fe ions, whereas Gd ions are paramagnetic at

D3h
7

¶ The text was submitted by the authors in English.
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least down to liquid-helium temperature [7]. However,
recent studies of antiferromagnetic resonance [9] indi-
cated that a possible magnetic ordering of the Gd ions
at low temperatures can play an essential role in mag-
netic anisotropy of the crystal and influence the direc-
tion of the iron magnetic moment. The competition of
the magnetic anisotropy and indirect coupling between
Fe–O–Fe chains via Gd3+ results in a range of interest-
ing magnetic behavior and, in particular, may be
responsible for the spin-reorientation effect observed
in [7, 10]. In addition to the low-temperature magnetic
transitions, a structural phase transition was observed at
156 K [11]; two electronic and structural phase transi-
tions induced by high pressures at P = 26 GPa and P =
42 GPa and at room temperature were found by optical
and X-ray studies [12].

Calculations predicted [6] that the electric polariza-
tion and the magnetostriction appearing in
GdFe3(BO3)4 at low temperatures (the magnetoelectri-
cal effects) are the result of changes in magnetic sym-
metry during the spin-reorientation transition induced
by an applied magnetic field.

Thus, detailed information about distinctive features
of the spin-reorientation effect in GdFe3(BO3)4 is
extremely important for understanding the low-temper-
ature properties and the nature of the magnetoelectrical
effect in this material.

In the present paper, in addition to static magnetic
measurements, 57Fe-Mössbauer spectroscopy studies
were carried out at different temperatures and in an
applied magnetic field with single-crystalline samples
 © 2005 Pleiades Publishing, Inc.
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of GdFe3(BO3)4. The temperature and magnetic-field
induced spin-reorientation transitions of the Fe3+ mag-
netic moments were found and investigated on both
macroscopic and microscopic scales.

2. EXPERIMENTAL

High-quality crystals of GdFe3(BO3)4 were grown
by the flux method [7]. The crystals were transparent
and had green color. The unit cell parameters are a =
9.5491(6) Å and c = 7.5741(5) Å. For the Mössbauer
measurements, a platelet with dimensions of 8 × 5 mm2

and thickness of 0.3 mm was cut from the bulk single
crystal. The C3 axis was in the plane of the platelet.

Static measurements of magnetization and magnetic
susceptibility were carried out using a vibrating-sample
magnetometer with a superconducting magnet in the
temperature range 4.2–300 K. An external magnetic
field up to 7.5 T was applied parallel and perpendicular
to the C3 axis.

The 57Fe-Mössbauer spectra were recorded in trans-
mission geometry with standard spectrometers operat-
ing in the constant acceleration regime. Gamma-ray
sources of 57Co(Cr) and 57Co(Rh) were used. Three sets
of Mössbauer experiments have been carried out with
the single-crystalline sample.

In the first set, the Mössbauer spectra were recorded
at temperatures of 5, 20, 40, and 300 K in zero applied
magnetic field and with the propagation vector kγ of the
Mössbauer gamma rays directed perpendicular to the
crystal platelet.

In the second set, the spectra were recorded at 4.2 K
in external magnetic fields H = 0, 0.3, and 1.0 T applied
in the plane of crystal platelet perpendicular to the
direction of the sample C3 axis. The propagation vector
of the Mössbauer gamma rays was directed perpendic-
ular to the crystal platelet; i.e., the C3 axis, the applied
field, and the gamma rays were all mutually perpen-
dicular.

In the third set, the spectra were recorded at 4.2 K in
external magnetic fields H = 0, 2.0, and 4.0 T applied in
the plane of the crystal platelet, but parallel to the C3
axis.

3. RESULTS AND DISCUSSIONS

3.1. Summary Results 
of the Static Magnetic Measurements 

Temperature dependences of the direct χ and recip-
rocal 1/χ magnetic susceptibility with the applied field
0.1 T are shown in Fig. 2. Two anomalies are observed
when the field H is applied parallel and perpendicular
to the crystal C3 axis. At 38 K, the deviation of χ–1(T)
from the linear law implies a transition from the para-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
magnetic to an antiferromagnetic state, and the sharp
anomaly near 10 K indicates a change of the magnetic
structure of GdFe3(BO3)4.

The field dependences of the magnetization M(H) at
4.2 K are shown in Fig. 3. When the magnetic field is
perpendicular to the C3 axis, the M(H) dependence is
almost linear in the range of 0 < H < 3 T, and magneti-
zation vanishes at zero field (see Fig. 3, inset a). This
behavior indicates that the ground state of GdFe3(BO3)4
is a compensated antiferromagnet. When H is parallel
to the C3 axis, a sharp increase in magnetization was
observed at the critical field Hreor ≈ 0.6 T. At this point,
M reaches the value typical of that for the case when
H is perpendicular to the C3 axis (see Fig. 3). This indi-
cates that a magnetic moment reorientation from the C3
axis to the plane perpendicular to the C3 axis occurs.
With a further increase in field, an additional anomaly
is observed near H ≈ 3.1 T (see inset b to Fig. 3), which
can be attributed to the appearance of the spontaneous
magnetic moment induced in the basal plane.

We found that the critical field of reorientation,
Hreor, decreases with increasing temperature. Figure 4
presents tentative magnetic phase diagrams showing

z

x y

Gd FeO6

Fig. 1. A fragment of the GdFe3(BO3)4 crystal structure
showing the oxygen octahedra (the iron ions sites) generat-
ing helical chains along the C3 axis [2].
SICS      Vol. 101      No. 6      2005
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Fig. 2. Temperature dependences of the reciprocal 1/χ and direct χ magnetic susceptibility in the magnetic field H = 0.1 T applied
parallel (a) and perpendicular (b) to the C3 axis.
the values of critical fields Hreor and corresponding tem-
peratures at which the magnetic moment reorientation
occurs when the external field is parallel and perpendic-
ular to the C3 axis. Along with our data of the static
magnetic measurements, the results in [6] from electric
polarization and magnetostriction measurements and
the results in [9] from the antiferromagnetic resonance
measurements are also included in the phase diagram of
Fig. 4. One can see that different methods give good
agreement for the critical field and its dependence on
temperature. The dashed line is a visual guide that sep-
arates the two magnetic phases at the reorientation tran-
sition from the easy-axis state to the easy-plane state.

3.2. 57Fe-Mössbauer Spectroscopy Results 

1. The 57Fe-Mössbauer spectra of the first set of
measurements in zero applied field are shown in Fig. 5.
At temperatures of 5 and 20 K, the magnetic hyperfine
splitting of resonance lines indicates a magnetic order-
ing of the Fe ions. A single six-line spectrum with a
rather narrow linewidth shows that all iron ions occupy
equivalent crystal sites, even though the antiferromag-
netic ordering implies the existence of at least two iron
magnetic sublattices. The magnetic hyperfine field Hhf

at a 57Fe nuclei and the isomer shift (IS) values are typ-
ical of the high-spin Fe3+ state (see table). At 40 and
300 K, the spectra show a slightly asymmetric quadru-
pole doublet characteristic of the iron paramagnetic
state. The line broadening at 40 K (see table) is appar-
ently related to a trace of magnetic ordering because the
Néel temperature is very close to this temperature. The
decrease of the IS value with increasing temperature
from 5 to 300 K (see table) is related to the second-
JOURNAL OF EXPERIMENTAL A
order Doppler shift. However, the evident increase of
the IS at the transition from the antiferromagnetic to
paramagnetic state is an indication of some changes in
the chemical bonds and/or the electronic state of the
iron ions, which can be related to crystal distortion at
the magnetic transition [6].

Special attention should be paid to the behavior of
the line intensities in the spectra at 5 and 20 K (see
Fig. 5). In general, the line intensities are defined by the
probabilities of the Mössbauer transitions between
nuclear sublevels and depend on the angle θ between
the propagation vector kγ of the gamma rays and the
direction of magnetic hyperfine field Hhf at the 57Fe
nuclei, which should coincide with the iron magnetic
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Fig. 3. The field dependences of GdFe3(BO3)4 magnetiza-
tion at 4.2 K in the magnetic field applied parallel (1) and
perpendicular (2) to the C3 axis. Insets (a) and (b) show the
observed anomalies on an enlarged scale.
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Fig. 4. The tentative magnetic phase diagram for GdFe3(BO3)4 showing the values of critical fields Hreor and corresponding tem-
peratures at which the iron moments reorientation occurs when the external field is parallel (a) and perpendicular (b) to the C3 axis.
Along with our data (j), the data from the electric polarization (∗ ) and magnetostriction (s) measurements [6] and the data from
the antiferromagnetic resonance measurements (m) [9] are shown. In both (a) and (b), the dashed line is a visual guide for the eye
and separates the two magnetic phases at the reorientation transition from the easy-axis state to the easy-plane state.
moment. For a thin absorber, the intensities Ii (i = 1,
2,…, 6) of a six-line Zeeman spectrum are in a ratio of

where

(1)

In a powder sample, a spherical average of the angle
distribution (cos2θ = 1/3, sin2θ = 2/3) gives

I1 : I2 : I3 = I6 : I5 : I4 = 3 : 2 : 1.

At a random orientation of a single crystal, the θ value
can be obtained from

(2)

Thus, it follows from the spectra in Fig. 5 that at
temperatures between 5 and 20 K, the iron magnetic
moment in GdFe3(BO3)4 changes its orientation. From
the line intensity ratio in Eq. (2), we found that the iron
moments make the angle θ = 68 ± 3° with the kγ vector
at 5 K, and this angle changes at 20 K. The low-temper-
ature value of θ indicates that the iron magnetic
moments are not in the crystal plane but deviate from it
by the angle β = 90° – 68° = 22 ± 3°.

Additional information on the direction of the iron
magnetic moment can be obtained from the behavior of
the quadrupole shift in the Zeeman spectrum below the

I1 : I2 : I3 I6 : I5 : I4 3 : α  : 1,= =

α 4 θsin
2

1 θ2cos+
-----------------------.=

θcos
2

1
2 I2 I1+( )

Ii

i 1=

6

∑
-----------------------.–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
40

20

5

–16 –8 0 8 16
v , mm/s

298 K

Fig. 5. The 57Fe-Mössbauer spectra of the GdFe3(BO3)4
single crystal recorded at temperatures 5, 20, 40, and 298 K
in zero applied magnetic field.
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Fig. 6. Effects of reorientation of the Fe magnetic moments in GdFe3(BO3)4 deduced from the Mössbauer measurements under the

assumption that the hyperfine magnetic field Hhf at the 57Fe nuclei coincides with the iron magnetic moment M. Mutual directions
of the crystal C3 axis, the main axis of the electric-field gradient Vzz , the applied magnetic field H, the gamma-ray propagation vec-
tor kγ, and the iron magnetic moments M are shown for different temperatures (a) and applied magnetic fields (b). In the case where
the antiferromagnetic iron sublattices are collinear, the arrow M in (a) and (b) represents the iron antiferromagnetic vector L.
Néel temperature. When the magnetic hyperfine inter-
action is much stronger than the electric quadrupole
interaction, the quadrupole shift of the spectral lines
observed below the Néel temperature, (e2qQ)obs , and
the true quadrupole splitting e2qQ (which can be
obtained above the Néel temperature) are related by

(3)

Here, Q is the nuclear quadrupole moment and ϕ is the
angle between the direction of the iron magnetic

e2qQ( )obs e2qQ
3 ϕcos

2
1–

2
--------------------------.≈
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moment and the main axis of electric-field gradient
eq = Vzz = ∂2V/∂z2 [13]. We neglect the asymmetry
parameter η = (Vxx – Vyy)/Vzz in Eq. (3) because of the
local C3 symmetry.

Thus, the angle dependence of (e2qQ)obs can be used
to find the direction of iron moment relative to the crys-
tal axes if the main axis of the electric-field gradient Vzz

is known. Due to crystallographic reasons, we suppose
that in the paramagnetic state of GdFe3(BO3)4, the sign
of the quadrupole interaction is negative. From the qua-
drupole shift at T = 5 K (Fig. 5), we found the angle ϕ
between Fe moments and Vzz direction to be 18 ± 2°. It
Hyperfine parameters of the 57Fe-Mössbauer spectra of the GdFe3(BO3)4 single crystal: Hhf is the hyperfine magnetic field
at a 57Fe nuclei, IS is the isomer shift relative to α-Fe at room temperature, QS is the quadrupole shift (splitting), Γ is the
linewidth, H is the applied magnetic field, and ϕ is the angle between the direction of iron magnetic moments and the main
axis of electric-field gradient Vzz

T, K H, T Hhf , kOe IS, mm/s QS, mm/s Γ, mm/s ϕ

5 0 526.5(2) 0.503(3) –0.247(6) 0.365(8) 18.3 ± 2.0°

20 0 481.7(2) 0.504(2) +0.107(4) 0.333(6) 72.8 ± 2.0°

40 0 ~0 0.554(2) 0.290(2) 0.431(3) –

300 0 0 0.390(2) 0.292(2) 0.300(3) –

External field H is perpendicular to the C3 axis

4.2 0 527.7(6) 0.485(7) –0.269(15) 0.39(2) 12 ± 8°

4.2 0.3 527.7(5) 0.497(6) –0.270(15) 0.37(2) 12 ± 8°

4.2 1.0 527.2(4) 0.497(5) –0.243(11) 0.38(2) 19.2 ± 2.0°

External field H is parallel to the C3 axis

4.2 0 527.8(4) 0.510(5) –0.232(10) 0.380(13) 21.5 ± 2.0°

4.2 2.0 529.8(2) 0.500(4) +0.120(7) 0.362(10) 76.2 ± 1.5°

4.2 4.0 529.4(2) 0.493(3) +0.144(6) 0.349(8) 87.3 ± 1.5°
AND THEORETICAL PHYSICS      Vol. 101      No. 6      2005
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is significant that the angles β = 22 ± 3° and ϕ = 18 ±
2° agree within their uncertainties and indicate that Vzz

coincides with the crystal C3 axis. This suggests that the
main axis of the electric-field gradient at an iron nuclei
is directed along the local threefold axis of an oxygen
octahedral (see Fig. 1). This also shows that at 5 K, the
iron moments are not directed precisely along the C3
axis, but rather at an angle of about 20°.

From the quadrupole shift, we derive an increase of
the ϕ angle to 73 ± 2° at 20 K. If there are no structural
transitions between 5 and 20 K, the Vzz direction should
remain along the C3 axis. This means that at 20 K, the
iron magnetic moments include the angle 73 ± 2° with
the C3 axis (Fig. 6a) and deviate from the basal plane by
about 18 ± 2°. The intensities of the second and fifth
spectral lines also change (Fig. 5), supporting the rota-
tion of the iron spins.

Thus, two independent Mössbauer spectra parame-
ters, the line intensity and the quadrupole shift, indicate
that the reorientation of iron magnetic moments occurs
in GdFe3(BO3)4 at temperatures between 5 and 20 K. In
Fig. 6a, mutual directions of the crystal C3 axis, the
main axis of the electric-field gradient Vzz , the gamma-
ray propagation vector kγ, and the iron magnetic
moments M are shown for different temperatures under
the assumption that the direction of the magnetic hyper-
fine field Hhf at 57Fe nuclei coincides with the direction
of the iron magnetic moments.

2. In the second setup of experiments, the kγ vector,
the C3 axis, and the external magnetic field H were all
mutually perpendicular. The spectra of this series
recorded at 4.2 K are shown in Fig. 7a. The external
fields of 0.3 and 1.0 T applied perpendicular to the crys-
tal C3 axis do not significantly change the hyperfine
parameters at 4.2 K (see table). The iron magnetic sub-
lattices do not lead to the absorption line split and the
values of the magnetic hyperfine field Hhf are
unchanged (see table). This correlates with the sugges-
tion that H and Hhf are almost perpendicular. The areas
of spectral lines 2 and 5 show that the fields Hhf (and the
Fe moments) are not perpendicular to the gamma-ray
beam but are at angles of about θ = 68 ± 5° (at H = 0
and H = 0.3 T) and θ = 65 ± 5° (at H = 1.0 T) to the kγ
vector. The values of the angle ϕ between the Fe
moments and Vzz (i.e., the C3 axis), estimated from the
quadrupole shift, are the same for all H and close to the
value estimated above at 5 K for zero applied field (i.e.,
ϕ is near 20°) within experimental error.

Thus, this series of experiments supports the conclu-
sion derived in Section 3.2.1 that in the low-tempera-
ture phase of GdFe3(BO3)4 near 4.2 K, the Fe moments
deviate from the C3 axis by an angle of about 20°.

3. The spectra of the third set of experiments with
the external field applied along the C3 axis are shown in
Fig. 7b, and the hyperfine parameters are listed in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
table. At a fixed temperature of 4.2 K, the changes in
intensities of spectrum lines 2 and 5 clearly show the
spin reorientation effect induced by the applied field. In
the field of 4.0 T, all Fe magnetic moments line up

–16 –8 0 8 16
v , mm/s

H = 0

2 T

(b)

4 T

–16 –8 0 8 16
v , mm/s

H = 0

0.3 T

(a)

1.0 T

Fig. 7. 57Fe-Mössbauer spectra of the GdFe3(BO3)4 single
crystal recorded at 4.2 K in external magnetic field applied
perpendicular (a) and parallel (b) to the crystal C3 axis.
SICS      Vol. 101      No. 6      2005
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along the kγ vector (θ ≈ 0). This means that the angle β
between the iron moments and the C3 axis is near 90°.
The behavior of the quadrupole shift supports this
observation: the estimated angles ϕ are about 76.2 ±
1.5° at H = 2 T and 87.3 ± 1.5° at H = 4 T (see Fig. 6b).
The agreement of the β and ϕ angle values at H = 4 T
again supports the conclusion made in Section 3.2.1
that Vzz direction coincides with the crystal C3 axis.

Thus, the external field applied along the C3 axis
rotates the iron spins in the (aC3) plane of the crystal
towards the basal plane (see Fig. 6b). At H = 4 T, the
iron moments are oriented perpendicular to the C3 axis
and also perpendicular to the applied field.

It should be noted that if the antiferromagnetic iron
sublattices are collinear, the arrow M in Fig. 6 repre-
sents the iron antiferromagnetic vector L.

In the basal plane of GdFe3(BO3)4, there are three
twofold a2 axes at the angles 120° relative to each other.
However, the Mössbauer experiment shows that in spite
of the equivalence of the three a2 axes, the iron
moments in the basic plane are aligned completely
along only one of the a2 axes, just the one directed per-
pendicular to the crystal platelet. It seems that in a thin
crystal platelet, the surface anisotropy plays an impor-
tant role in the iron spin orientation.

In the case of collinear antiferromagnetic ordering
of two Fe sublattices, the external field applied along
the antiferromagnetic vector would increase (Htot =
Hhf + H) or decrease (Htot = Hhf – H) the total field Htot

at iron nuclei in these sublattices. But the Mössbauer
spectra in Fig. 7 show that the applied field does not
split the absorption lines and only slightly modifies the
Htot value. Rotation of the iron spins normal to H with
a negligible contribution of the Hhf projection onto H
explains this behavior.

4. SUMMARY

From the two series of Mössbauer measurements on
GdFe3(BO3)4 single crystals, we have established that
the main axis of the electric-field gradient, Vzz , is
directed along the crystal C3 axis.

Our phase diagram in Fig. 4 obtained from the mag-
netic static measurements shows good agreement with
magnetic resonance [9] and electrical polarization and
magnetostriction data [6]. The 57Fe-Mössbauer spec-
troscopy data confirm the spin reorientation transition,
first observed in GdFe3(BO3)4 by the magnetic static
measurements, and give new information on the spe-
cific orientation of the iron magnetic moments and the
values of angles between the moments and crystal axes
at different temperatures and applied fields. In the
JOURNAL OF EXPERIMENTAL A
ground state at 4.2 K, the GdFe3(BO3)4 crystal is an
easy-axis compensated antiferromagnet. However, the
easy axis of the iron moments deviates from the crystal
C3 axis by about 20°.

At about 10 K, the iron magnetic moments reorient
spontaneously from the easy axis towards the basal
plane. However, at 20 K, the moments are not entirely
in the basal plane but deviate from it at about 18°. At
4.2 K, the external field of 1.0 T, applied perpendicular
to the C3 axis, does not influence the iron spins direc-
tion. This correlates with the magnetization behavior
shown in inset a to Fig. 3. The field H applied along the
C3 axis gradually rotates iron moments in the (aC3)
plane toward the basal plane, and at H = 4 T, the
moments are entirely in the plane. In the basic plane,
the iron moments are directed along the crystal a2 axis,
which is perpendicular to the crystal platelet.

Thus, we have found that the magnetic structure of
GdFe3(BO3)4 is more complicated than it was sug-
gested in [9]. The large values of the angle between the
Fe3+ magnetic moments and the C3 axis in the easy-axis
phase and between the Fe3+ moments and the a2 axis in
the easy-plane phase reveal a tilted antiferromagnetic
structure. The origin of this tilting is the competition of
the two contributions to the magnetic anisotropy from
the Fe3+ and Gd3+ sublattices. The decreasing of sym-
metry below the structural phase transition at T = 156 K
and also below the Néel temperature TN = 38 K [6] pro-
vides an additional contribution to the deviation of the
magnetic moments from the crystallographic axes.
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Abstract—The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square
2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external mag-
netic field has been analyzed. Such a model is applicable for sufficiently small dots with perpendicular anisot-
ropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic
moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire
set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low
fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dots in
strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of
the system, then near the extended sections of the surface, and finally expands over the entire interior of the
array. The critical field at which this simplest state is destroyed is much more weakly than the value character-
istic of the ideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing
field always begins far from the borders. Despite such different behaviors, the magnetic structure in the inter-
mediate range of fields that is obtained with both increasing and decreasing field for finite arrays strongly differs
from that characteristic of the ideal infinite system. The role of simple stacking faults of the magnetic dot lattice
(such as single vacancies or their clusters) in the remagnetization of the system has been analyzed. The presence
of such faults is shown to give rise to the appearance of local destructions of the chessboard antiferromagnetic
order at fields that are much weaker than those for an ideal lattice. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION AND FORMULATION
OF THE PROBLEM

In recent years, considerable attention in the physics
of magnetism has been focused on artificial magnetic
materials created using current nanotechnologies.
Among these materials are magnetic superstructures
containing ferromagnetic elements (films, clusters, and
small magnetic particles) that have a characteristic size
of tens or hundreds of nanometers and are separated by
nonmagnetic layers (see [1–3]). Such materials are
important for applications in systems of high-density
magnetic recording and can be used to realize logical
operations [4]. Moreover, such materials are of interest
as essentially new objects of the fundamental physics
of magnetism.

One-dimensional superstructures consisting of fer-
romagnetic metal films that have a thickness of several
atomic layers and are separated by layers of nonmag-
netic or antiferromagnetic metals are most widely
known. Active study of 2D superstructures such as lat-
tices of submicron magnetic particles (which are often
called magnetic dots) on a nonmagnetic substrate began
1063-7761/05/10106- $26.001106
in the last decade. Magnetic dots are often manufac-
tured from soft magnetic materials such as iron, nickel,
cobalt, and permalloy [1–3, 5, 6], but materials with
high anisotropy such as dysprosium [7] are also used.
Interaction between single particles in such a system is
determined by the magnetic dipole interaction of their
magnetic moments; i.e., they constitute a pure realiza-
tion of dipole magnets, which have been studied theo-
retically for more than fifty years [8–12]. For dipole-
coupled systems, many physical properties that are
absent for standard crystal magnets with exchange spin
interaction are known, such as the existence of the
degenerate ground state with nontrivial degeneration
[9–11]. For dipole 2D systems, the Mermin–Wagner
theorem is inapplicable and true long-range order is
present [13]. Two-dimensional systems with Ising
dipoles exhibit a cascade of phase transitions induced
by the external magnetic field [14].

Creation and experimental investigation of arrays of
magnetic dots introduce a new physical content to the-
oretical study of dipole coupled systems. For many
materials, such as compounds containing rare earth
 © 2005 Pleiades Publishing, Inc.
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ions, granulated magnetic materials, diluted solid solu-
tions of paramagnetic ions in nonmagnetic crystals, the
situation seems to be similar to that inherent in arrays
of magnetic dots. However, arrays of magnetic dots
have physical properties that are absent for all of the
above systems. First, these systems, in contrast to lay-
ered crystals, are truly two-dimensional. For the dipole
interaction, in contrast to the case of exchange cou-
pling, the behavior of purely two-dimensional layered
systems significantly differs from that of quasi-two-
dimensional layered systems [13]. Second, the scale of
the dipole interaction between two spins does not
exceed several kelvins even for high spins S = 7/2,
whereas even for the smallest magnetic dots with a vol-
ume of 105–106 nm3, the characteristic magnetic
moment exceeds 104 µB, where µB is the Bohr magne-
ton and the characteristic energy is comparable to or even
higher than the energy of thermal motion at room temper-
ature (see the discussion of this problem in [12, 14]).
Moreover, for compounds with the high density of rare
earth ions, the exchange interaction is weak but is not
completely negligible. A quite weak (compared to
dipole) ferromagnetic or antiferromagnetic exchange
interaction between nearest neighbors leads to different
inhomogeneous magnetic states: labyrinth domains
[15–22], stripe domains [15–19], or vortices [20–22].
These states significantly differ from the chessboard
antiferromagnetic structure that appears due to the
dipole interaction [14, 16], and such systems cannot be
treated as purely dipole.

A large magnetic moment is also characteristic of
granulated magnetic materials, but arrays of magnetic
dots, in contrast to the latter materials, are characterized
by high spatial regularity. It is worth recalling a new
class of materials, namely, molecular crystals of high-
spin molecules whose total magnetic moment reaches
tens of Bohr magnetons [23]. However, these materials
are three-dimensional and it is important that the size of
the magnetically active part of a molecule is much
smaller than the size of the entire molecule. For this
reason, the interaction between magnetic moments is
weak.

Thus, arrays of magnetic dots are specific materials
with a purely two-dimensional, very regular, lattice
structure and long-range dipole interaction between
magnetic moments at a sufficiently high temperature
[12, 14]. It is reasonable to call them artificial antiferro-
magnetic materials. Phase transitions induced by the
strong magnetic field, including the spin-flop transition
known for a crystalline antiferromagnet, are possible in
them [24, 25]. However, there is a specific point com-
mon for one- and two-dimensional superstructures. All
superstructures are large (to hundred layers in the one-
dimensional case and tens of thousands dots in the two-
dimensional case), but finite systems. The border ele-
ments (surface) are expected to play much more con-
siderable role for them in the formation of the proper-
ties of the transition. Long ago, Mills [26] and Keffer
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and Chow [27] found that in antiferromagnets in which
the border of a crystal contains spins of only one sub-
lattice, the spin-flop transition begins near the border at

a field that is weaker by a factor of  than the transi-
tion field in the interior. It is clear that the possibility of
realizing this interesting phenomenon is primarily
determined by the quality of the surface and it is diffi-
cult to observe this phenomenon for the real (not atom-
ically smooth) surface of the crystal. Probably for this
reason, attempts to experimentally find the surface
spin-flop transition at the border of a single crystal have
been unsuccessful [28]. However, such a transition was
observed for one-dimensional superstructures in the
form of multilayer Fe/Cr films with antiferromagnetic
interaction between layers grown on an anisotropic
MgO(110) substrate [29–31]. Two-dimensional sys-
tems provide a higher possibility of realizing localized
transitions at the border of the surface system, as well
as on various irregularities of arrays of dots (defects).

In this work, we analyze both analytically and
numerically the ground state of a square array of mag-
netic dots in the presence of the external magnetic field
for both finite arrays of dots and arrays with irregulari-
ties. The model is described in Section 2. We primarily
consider the Ising case, where the state of a single dot
can be described by a certain effective magnetic
moment, which is perpendicular to the plane of the sys-
tem. Such a simplification is applicable for sufficiently
small dots with perpendicular anisotropy that are in a
single-domain state [6, 7], but it can also be applied for
dots in a strongly inhomogeneous vortex state (see [32,
33] and below). For the magnetic field perpendicular to
the system plane, the entire set of the states is analyzed
from the chessboard antiferromagnetic order of mag-
netic moments in weak fields to the ferromagnetic state
of the system with the parallel orientations of the mag-
netic moments of different dots in strong fields. For the
infinite system, such a model exhibits a rich set of states
at intermediate magnetic field strengths [14]. As will be
shown in Sections 3 and 4, in the presence of the border
or stacking faults in the lattice, the critical fields at
which the indicated simple phases lose stability are
much weaker than those for the infinite system. In Sec-
tion 5, intermediate magnetic structures are found using
numerical simulation. The forms of the structures in the
intermediate field range strongly differ from those char-
acteristic of the ideal infinite system and are consider-
ably determined by the form of the array. The results
are discussed in Section 6.

2. DESCRIPTION OF THE MODEL

To describe the system, we suppose that the state of
the array is represented by the set of the total magnetic
moments ml of dots. We consider a system of the mag-
netic moments of dots located at the sites l = a(nex + ley)
of the square lattice, where a is the lattice constant, n
and l are integers, and ei is the unit vector of the corre-

2
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sponding axis. The Hamiltonian of the system that
includes the dipole interaction of such a system of mag-
netic moments in the presence of both the external mag-
netic field and magnetic anisotropy for each dot can be
written in the form [34]

(1)

Here, the first term describes the dipole interaction
between the magnetic dots, n = (l – l')/|l – l'|, β is the
anisotropy constant for a single dot, and the external
field H is assumed to be parallel to the normal vector to
the system plane. Anisotropy is supposed to be uniaxial
with the easy axis along the z axis, which is perpendic-
ular to the system plane, so that β > 0 and the state of a
single dot is characterized by perpendicular magnetiza-
tion; in this case, ml = ±µ0ez , where µ0 is the magnetic
moment of one dot. This property is inherent in dots
elongated along the z axis (for details, see [6, 12]).
Another important system for which the model of Ising
dipoles is applicable is an array of magnetic dots in the
vortex state. Such a state is realized for approximately
circular dots made of soft magnetic materials when the
radius is larger than a certain critical value R ≥ R0; R0 <
100 nm for permalloy. For quite thin dots with thick-
ness L ! R (dots with L ≈ 20–30 nm are really studied),
the magnetization M can be considered as independent
of the z coordinate perpendicular to the magnetic dot
plane; i.e., M = M(r, χ), where r and χ are the polar
coordinates in the dot plane. In this case, the structure
of the vortex is similar to the structure well known for
magnetic vortices in two-dimensional easy-plane ferro-
magnets (see, e.g., [35]). The vortex corresponds to the
magnetization

where Ms is the saturation magnetization and θ = θ(r) is
the polar angle of magnetization. For magnetic dots, the
same distribution is realized with ϕ0 = ±π/2, which
gives divM = 0 and leads to the closure of the magnetic
flux, i.e., to a decrease in the magnetostatic energy [32].
Taking ϕ0 = π/2 for definiteness, we write

(2)

Two values θ(r) = 0 and π are possible and, correspond-
ingly, cosθ(r = 0) = p = ±1 at the center of the dot (at
r = 0). For r @ ∆0, the function θ(r) exponentially

approaches π/2. Here, ∆0 =  is the exchange
length, where A is the inhomogeneous exchange con-

Ĥ
ml ml '⋅ 3 ml n⋅( ) ml ' n⋅( )–

l l '– 3
-------------------------------------------------------------

l l '≠
∑=

– β ml ez⋅( )2 ml H⋅+[ ] .
l

∑

M Ms ez θcos θ ex χ ϕ 0+( )cos[sin+{=

+ ey χ ϕ 0+( ) ] } ,sin

M Ms ez θcos ex χsin– ey χcos+( ) θsin+[ ] .=

A/4πMs
2
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stant. For permalloy, ∆0 ≈ 5 nm. The discrete index p is
called the vortex polarization and has the sense of the
π2 topological charge of the vortex [35]. Thus, out-of-
plane magnetization is nonzero only in the core region
r ≤ ∆0, and the magnetic moment m of the dot may
assume two values

(3)

where ξ = 1.361. Since ∆0 ! R, the magnetic moment
of the core is much smaller than the value for the satu-
rated dot. As a result, the state of the dot is quadruple
degenerate, i.e., double degenerate in ϕ0 = ±π/2 and
double degenerate in the core polarization p = ±1. Tak-
ing into account only the dipole interaction between
dots in the framework of the model given by Eq. (1),
one can consider that all dots are in two states, up and
down. Here, the difference between the energies of a
magnetic dot in the vortex state and a dot magnetized in
the system plane serves as magnetic anisotropy.
Detailed experimental and theoretical investigations of
the ground state of arrays of dots show that this anisot-
ropy is large enough to ensure the Ising orientation of
the magnetic moments of dots (see, e.g., [6, 12] and ref-
erences therein).

Thus, both above cases, though exhibiting signifi-
cantly different physical pictures, can be described
using model (1) under the assumption that the moments
of all dots are parallel or antiparallel to the normal vec-
tor ez to the system plane. We assume that the external
field H is also parallel to the z axis and perform analyt-
ical calculations only for this Ising case. In this case,
the sign of the magnetic moment at a given site is deter-
mined only by the sign of the projection of the effective
field on the z axis and a quite complete analysis can be
performed analytically. The numerical analysis is per-
formed without the restriction ml || ez using the total
Hamiltonian given by Eq. (1) (see Section 5).

3. EFFECTS OF THE FINITENESS
OF THE ARRAY UNDER MAGNETIZATION

For the description of the ground state and magneti-
zation processes for real arrays of magnetic dots (in
contrast to the idealized model of the infinite array), the
problem of the effect of system borders is most substan-
tial, because in principle it cannot be removed. An
important role is played by the array edge, where the
effective field of the dipole interaction is expected to be
minimal and the corresponding magnetic dots are the
most sensitive to the external magnetic field. We restrict
our analysis to the simplest case, where the array of
dots is square. In this and following sections, we also
assume that the array is large enough to ignore the
direct effects of the size of the system. We primarily
consider only the simplest geometry of the system, sup-
posing that the array has the rectangular shape with the
borders parallel to certain translation vectors of the ini-

m pµ0ez, p 1, µ0± 2πξL∆0
2Ms,= = =
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tial array of magnetic dots. We will consider the (1, 0)
and (1, 1) vectors. In this case, analysis of the stability
of the most significant states, saturated and antiferro-
magnetic, can be performed analytically using only one
dipole sum, which should be determined numerically,
for each of these states.

For the infinite array of dots, analysis of possible
states in the presence of the magnetic field is simplified
due to the invariance of the system under translation by
the translation vector of the array of dots. States peri-
odic with a translation period multiple to the period a of
the array of dots were considered in [14]. Among these
states, only two states—saturated, which we call ferro-
magnetic (FM), and chessboard antiferromagnetic
(CAFM) stable at weak fields—had the same square
symmetry as the initial array of dots. The remaining
states realized in the intermediate field range were char-
acterized by lower oblique symmetry. The existence of
any translational invariance significantly simplifies the
problem and enables one to reduce it to the search for
the finite configuration of dots with the minimum
energy for given average magnetization, which is in
essence the difference between the numbers of up- and
down-magnetized dots. In the case under consideration,
there is no translational symmetry, but other properties
can be used. Indeed, analyzing the effect of the borders,
we primarily analyze the behavior of the dots located at
the border, treating the remaining dots of the array as a
reservoir governing the behavior of the border dots. The
set of the dots of the array generates the dipole interac-
tion field HD on the border dots with magnetic moment
m0. This field is given by the formula

where  is the Hamiltonian of the dipole interaction
between magnetic dots, which is specified by the first
term in Eq. (1). If the total magnetic field Ht = H + HD
acting on this dot is parallel to its magnetic moment, the
state of the dot is energetically favorable and stable. If
the vector Ht becomes antiparallel to the vector m0 at a
certain value Hc of the external field H, the magnetic
moment of this dot is reversed. It is expected that, in the
immediate vicinity of Hc , this reversal does not lead to
change in the state of magnetic dots forming the reser-
voir. We verify the applicability of this approach by
comparing the results with the data of the numerical
analysis. In essence, this approach is equivalent to the
energy approach, which is used in [14] to analyze the
stability of the ferromagnetic and CAFM states (see
below).

We start with the simplest case of the square array of
dots with sides parallel to the elementary-translation
vectors. We consider the most significant cases of the
ferromagnetic array for which mn = µ0ez and the CAFM
state in which the magnetic moment of the dot in the
site specified by the numbers n and l is equal to
(−1)n + l + 1. These states in the infinite array are stable

HD ∂ĤD/∂m0,–=

ĤD
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for H > H1 and H < H0, respectively, where the charac-
teristic fields H0 and H1 are on the order of µ0/a3,
H0 < H1 and were calculated in [14]. In what follows,
we will sometimes use the dimensionless quantity h =
H(µ0/a3)–1. In order to calculate the field on a given dot,
it is convenient to take the coordinate system with the
origin at this dot and with the axes parallel to the border
of the array (Fig. 1). The dipole magnetic field at the dot
located in the coordinate origin n = l = 0 is generated by
all other dots of the array and is given by the expression
HD = HDez , where

(4)

Here, the factor pn, l = ±1 gives the magnitude of the
magnetic moment ml = pn, lµ0ez of the dot with the coor-
dinate l = (nex + ley)a and n and l are integers at least
one of which is not equal to zero.

For all cases of interest, namely, for a magnetic dot
located at the edge of the array or at its border and for
arrays of dots in the ferromagnetic or CAFM states, a
certain common property is easily seen. The sum in
Eq. (4) can be expressed in terms of two auxiliary
sums: the single sum σ| over dots located at the ray
beginning at the coordinate origin (half the coordinate
axis) and the double sum σz over dots located in one of
the array sectors that is bounded by the dashed line in
Fig. 1. These sums are defined as

(5)

HD

µ0

a3
-----

pn l,

n2 l2+( )3/2
-------------------------.

n l,
∑–=

σ|
p0 n,

n3
---------, σz

n 1=

∞

∑ pn l,

l2 n2+( )3/2
-------------------------

n 1=

∞

∑
l 1=

∞

∑= =

5

4

3

2

1
0

–1

–2

–3

–4

y/a

x/a

Fig. 1. Semi-infinite lattice of magnetic dots and the choice
of the coordinate axes.
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and can be easily calculated. The sum σ| is expressed in
terms of the Riemann ζ function, whereas the sum σz

can be determined numerically and its values will be
presented below. It is easy to see that, for the simplest
ferromagnetic and CAFM structures, the field of the
dipole interaction at a border dot is determined by these
two sums. The field on a magnetic dot located at the
infinite rectilinear border (such as the y axis in Fig. 1)
far from the edges has the form

(6)

and the field on a magnetic dot at the edge of the array
is given by the expression

(7)

In order to compare this with the results obtained in [14],
we write the field on the dot inside the infinite array in
a similar form,

(8)

We begin with the ferromagnetic state, for which
both sums (5) are positive and are equal to

,

where the latter sum is calculated numerically with the
summation up to n = l = 104. For definiteness, we sup-
pose that all moments are directed upward. In this case,
the dipole field is negative on all dots of the array, i.e.,

Hborder ez

µ0

a3
----- 3σ| 2σz+( ),–=

Hedge ez

µ0

a3
----- 2σ| σz+( ).–=

Hvol 4ez

µ0

a3
----- σ| σz+( ).–=

σ|
F ζ 3( ) 1.202057, σz

F 1.056439= = =

(a)

(b)

(c)

Fig. 2. Magnetic structure of the border and edge of the
square array of magnetic dots in the external magnetic field
H = hµ0/a3, where (a) h = hedge = 1.562, at which the rever-
sal of the magnetic moment occurs at the edge of the sys-
tem; (b) h = hborder = 2.222, at which the first reversal of the
magnetic moment occurs at the border of the system; and
(c) h = 2.264. The distribution of reversed moments at the
border when the field increases is illustrated in panel (c) and
Fig. 3. In this and all following figures, magnetic dots mag-
netized upward and downward are shown by light and dark
circles, respectively.
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HD = –HDez , and for the stability of the ferromagnetic
state, the presence of an upward external magnetic field
exceeding HD is necessary. It is easily seen that the HD
value at the border points is less than that in the volume.
For this reason, when the saturating magnetic field
decreases, magnetic dots located at the center of the
system are the first dots that lose stability at the field

The substitution of σF values yields H1 = 9.03622µ0/a3,
which was previously obtained in [14]. The character-
istic fields at the border or edge are much weaker
than H1:

(9)

and the ferromagnetic states for them remains stable in
a much wider interval of the external magnetic field.
This property does not mean that the effect of the bor-
der on the formation of the state, where the magnetic
moments of some dots are reversed, is negligibly small.
As will be shown below, the presence of the border is
also substantial in this case. In fact, the border for the
ferromagnetic state serves as “repulsive inhomogene-
ity” for all states containing reversed spins. Numerical
analysis confirms this statement (see Section 5). How-
ever, a “classical” surface effect, such as the surface
spin-flop transition [26, 27, 29–31], where the nucle-
ation of inhomogeneity occurs near the border of the
system and then extends to the interior of the sample, is
absent for the ferromagnetic state with decreasing
external magnetic field.

The above scenario is realized for the CAFM state,
which is the ground state in the absence of field and
holds stability to a certain critical field. For the infinite
system, this critical value is H0 = 2.645886µ0/a3 [14].
Numerical analysis shows that such a CAFM state is
also the ground state for finite systems not only of rect-
angular shape with sides parallel to the (1, 0) and (0, 1)
vectors but also of various shapes with acute angles, as
well as of circular shape. However, as the field
increases, the instability of the CAFM state is devel-
oped by reversing the magnetic moments of dots in
“weak sections,” first at the edge of the array and then
at its border (see Fig. 2). In order to demonstrate this
behavior, we note that, for the case of the CAFM struc-
ture, sums (5) with allowance for the factor pn, l =
(−1)n + l + 1 have different signs:

Note that the sum  does not contain any contri-
bution from the nearest neighbors of the edge spin and

H H1< 4
µ0

a3
----- σ|

F σz
F+( ).=

H1
border 5.718868

µ0

a3
-----, H2

edge 3.4604624
µ0

a3
-----,= =

σ|
AF 3

4
---ζ 3( )– 0.901543, σz

AF– 0.2400712.= = =

σz
AF
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is small in absolute value as compared to , , and

. This is explained by the faster decrease in the alter-
nating sums corresponding to the CAFM structure. Fur-
thermore, it is clear that the dipole field on a magnetic
dot at the edge of the array is parallel to the magnetic
moment of the dot, and its magnitude is

(10)

For a dot with the upward magnetic moment, the
external magnetic field, which is supposed to always be
directed upward, stabilizes this state. The state of the
magnetic dot at the edge of the array in the CAFM state
with the downward magnetic moment becomes unsta-

ble at the magnetic field H ≈ . Further, the mag-

netic moment of this dot is reversed at H ≥ . This
reversal can be treated as the beginning of the destruc-
tion of the CAFM state in the finite array. We note that
it occurs at the field that is much weaker (by a factor
of 1.7) than the instability field for the infinite system.
This state is then stable and does not change until the
external field increases to the value

(11)

at which the reversals of spins at the border of the array
begin. The critical fields presented above are in good
agreement with the values obtained in numerical simu-
lation of this system for a quite small size of the system
(30 × 30 dots, see Figs. 2, 3). It is interesting that the
field at which the reversal of the magnetic moment in
the interior of the system occurs (at this instant, the bor-
der is yet incompletely saturated, see Fig. 3) is quite
close to the value h0 = 2.646 obtained for the infinite
system. All of these facts clearly demonstrate the rapid
convergence of dipole sums for antiferromagnetic con-
figurations of the dipoles.

The further evolution of the distribution of magnetic
moments proceeds due to the reversal of the moments
of dots in the interior of the system (see Section 5). It is
worth noting that the border, which contains a large
number of moments aligned with the field, quite signif-
icantly affects the distribution of the magnetic moments
of dots in the interior. Thus, it becomes necessary to
analyze other forms of arrays.

As an example, let us discuss a case opposite in
some respects to that discussed above. It is an “oblique-
square” array, i.e., a rectangular system with borders
parallel to the diagonals of the elementary cell of the
array of dots, i.e., to (1, 1) vectors (see Fig. 11a). For
numerical analysis, we take the array that has a shape
close to a square, sides containing only downward and
upward magnetic moments, and different configura-

σ|
AF σ|

F

σz
F

HAF
edge µ0

a3
----- 2 σ|

AF σz
AF–( ) 1.5630142

µ0

a3
-----.= =

HAF
edge

HAF
edge

HAF
border µ0

a3
----- 3 σ|

AF 2σz
AF–( ) 2.2244816

µ0

a3
-----,= =
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tions of magnetic moments at the edges of the system.
For the ideal CAFM state, the left and right edges con-
tain dots with the downward and upward moments,
respectively, and both these dots belong to the section
of the border with the upward and downward moments,
respectively. Two remaining edges of the system, upper
and lower, contain a compensated pair of magnetic
dots. Analysis shows that these two edge states are quite
stable against the action of the magnetic field. Figure 4a
shows the fragment of such a system in the state with
one reversed moment at the edge.

An edge with the downward magnetized magnetic
dot and the adjacent border with the same-type dots evi-
dently constitute a weak link of the CAFM structure
against remagnetization. The calculation of instability
fields of these fragments is similar to the procedure
described above. In this case, it is not necessary to
numerically calculate two-dimensional dipole sums
additional to those already known. Indeed, let us repre-
sent the instability field of the edge dot in the form

where σ| is the sum of the fields of the dots located at
the border ray and σz are the sum of the fields of the
remaining dots. In the border ray parallel to the (1, 1)

axis, the distance between dots is equal to a and,

therefore, σ| = ζ(3)/2  = 0.424991. It is easy to deter-
mine σz , because 4(σ| + σz) is the sum of the fields of
all dots in the CAFM structure of the infinite system.
This quantity naturally coincides with the above-dis-
cussed instability field of the infinite CAFM structure,
which is equal to –4(σ| + σz) = 2.645886. From this

Hedge 2σ| σz+( )µ0/a3,=

2

2

Fig. 3. Magnetic structure of the square array of magnetic
dots at the first reversal of the magnetic moment far from the
border for the field h = 2.642.
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relation, it is easy to find the double sum σz =
−1.0864628 without numerical calculation. Further, the
instability field of the magnetic dot located at the edge,
where downward magnetized borders converge, is
found as

(12)

As expected, this field is small compared to all of the
above-presented instability fields for the array with the
border along the (1, 0) and (0, 1) vectors and is one
tenth of the value for the infinite system. Correspond-
ingly, the instability field of dots in the downward mag-
netized border for the array with sides along the (1, 1)
vectors is also small:

(13)

[cf. Eqs. (12) and (13) with Eqs. (10) and (11)].

H↓
edge 2σ| σz+( )

µ0

a3
-----– 0.2364802

µ0

a3
-----.= =

H↓
border 3σ| 2σz+( )

µ0

a3
-----– 0.897952

µ0

a3
-----= =

(c)

(a)

(d)

(b)

Fig. 4. Evolution of the magnetic structure of the oblique-
square array of magnetic dots (see text): (a) h = hedge =
0.239, the reversal of the magnetic moment at the edge of
the system; (b) h = hborder = 0.899, the first reversal of the
magnetic moment at the border; (c) h = 2.55, the end of the
magnetization of the border layer; and (d) h = 2.642, the first
reversal in the interior of the system.
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Both these values are in good agreement with values
obtained numerically (Figs. 4a and 4b). Then, the mag-
netization of the oblique-square system occurs via
almost the same scenario as in the case of the square
system with sides along the (1, 0) and (0, 1) vectors.
Since the characteristic fields Hedge and Hborder are
smaller than the respective values for the direct-square
system, the magnetization of the border of this system
is realized in a wider field interval. From the value

 = 0.2365µ0/a3 to the volume field H0 =
2.642µ0/a3, only the states of magnetic dots on the ini-
tially downward magnetized surface change (Figs. 4b
and 4c). The border is almost completely remagnetized
to the instant that reversed moments appear in the inte-
rior of the system (Fig. 4d).

4. MAGNETIZATION 
OF THE ARRAY OF DOTS WITH DEFECTS

When analyzing the properties of real arrays of
magnetic dots, the question arises about the role of vio-
lation of the ideal array structure. Methods used for the
production of arrays of magnetic dots enable one to
obtain samples with very high spatial regularity. How-
ever, for technological applications, it may be neces-
sary to produce arrays with controlled irregularities the
simplest of which is a vacancy in the array of magnetic
dots. Such vacancies single or united into clusters also
evidently constitute a weak link for the destruction of
the CAFM order of the array of dots with increasing
field, as occurs for the spin-flop transition in low-dimen-
sional antiferromagnets with atomic vacancies [36].
Analytical calculation of the instability field of the
CAFM structure near such defects appears to be easy,
and the corresponding fields strongly differ from both
the volume field H0 and the above-discussed fields Hedge

and Hborder. It will be shown that the magnetization of a
given cluster of vacancies occurs via several jumps of
the magnetic moment at certain field values. Analyzing
such a step curve, one can determine the presence of
certain defects in the array of magnetic dots without
detailed scanning of the entire array, which can be used
for diagnostics of the series of samples.

We start with the analysis of a single vacancy in the
CAFM state of the square array. It is evidently suffi-
cient to analyze only one of two equivalent cases,
where a dot with the upward or downward moment is
removed from the structure. For definiteness, we sup-
pose that the vacancy corresponds to the removal of the
dot (or dots) with the upward total moment. Then, dots
with the uncompensated downward magnetic moment
are located near it. They constitute a weak link of the
system in the presence of the positive field, which is
discussed here.

Hereinafter, the structure of the vacancy is denoted
by the fractional number, where the numerator is the
number of removed magnetic dots and the denominator

H↑
edge
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is their magnetic moment in the CAFM state. For a sin-
gle vacancy (index 1/1, see Fig. 5), the most “vulnera-
ble” dot is a magnetic dots with a downward magnetic
moment that is located immediately near the site from
which the magnetic dot is removed. Its magnetic
moment is expected to be the first that is reversed. It is
evident that the field at this dot is weaker than that for
the ideal array by µ0/a3, which is the field that is gener-
ated at this site by the dot removed from the array.
Therefore, the first-instability field is equal to

which is in good agreement with a value of 1.642µ0/a3

(Fig. 5b). This value is somewhat higher than the value
Hedge = 1.56µ0/a3 for the direct square array, but is
noticeably less than the value for the infinite system.
The calculation of the reversal field for the second mag-
netic moment is also trivial. Formally assuming the
existence of an “antidot” with the doubled magnetic
moment at the place of the dot with the reversed mag-
netic moment, we obtain

(Fig. 5c).

Simple analysis shows that the reversals of subse-
quent magnetic moments near the single vacancy occur
at fields exceeding the volume field H0. Thus, the exist-
ence of the single vacancy gives rise to the appearance
of two jumps of the total magnetic moment by a value
of 2µ0, which are well separated in the field value. In
other words, two minimum “quanta” of the magnetic
moment of a given system may be localized at the sim-
plest single vacancy; then vacancy is saturated and is
not already involved in the magnetization process.

Let us now consider the compensated double
vacancy formed when two neighboring dots that belong
to different sublattices in the CAFM structure (index
2/0) are removed. It is intuitively clear that such a
defect is weaker than the uncompensated defect.
Indeed, elementary calculation shows that the instabil-
ity field for the magnetic moment is higher than the
value for the single vacancy:

(numerical simulation gives a coefficient of 1.753,
Fig. 6). An additional reason to treat this defect as weak
is that it can localize only one elementary deviation of
the magnetic moment. If one moment is reversed, no

H1/1
1( ) H0

µ0

a3
-----– 1.645886

µ0

a3
-----,= =
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2( ) H1/1

1( ) 2µ0

2a( )3
-------------+ 1.895886
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a3
-----= =

H2/0 H0

µ0

a3
----- 1 1

8
---– 

 + 1.770886
µ0

a3
-----= =
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instabilities near the defect are observed when the field
increases from H2/0 to H0.

Double, triple, etc., uncompensated vacancies are
stronger and stronger attractive centers. For an uncom-
pensated double vacancy, which is obtained by remov-
ing two nearest magnetic dots with moments parallel in
the CAFM structure (Fig. 7), the first instability field is
already weaker than the field Hedge of the reversal of the
angular magnetic moment for the most typical square
array with the sides along the (1, 0) and (0, 1) axes. In
this case, the first reversed magnetic moment is the
magnetic moment of the dot equidistant from both
empty sites and the field of this reversal is equal to

There are two such dots, but the reversal occurs at one
of them. After the reversal of the first dot, the field at the

H2/2
1( ) H0

2µ0

a3
--------– 0.645886

µ0

a3
-----.= =

(a) (c)(b)

Fig. 5. Evolution of the magnetic structure of the array of

magnetic dots near a single vacancy: (a) h <  = 1.642,

(b) h = 1.642, the first reversal, and (c) h =  = 1.892, the

second reversal.

h1/1
1( )

h1/1
2( )

Fig. 6. Magnetic structure near the compensated double

vacancy: (a) h < , chessboard order and (b) h =  =

1.753, the reversal of the moment.

h2/0
1( )

h2/0
1( )

Fig. 7. Evolution of the magnetic structure of the array of
magnetic dots near a double uncompensated vacancy:

(a) h < , unperturbed state; (b) h =  = 0.642, the

first reversal; and (c) h =  = 1.349, the second reversal.

h2/2
1( )

h2/2
1( )

h2/2
2( )

(b)(a)

(c)(a) (b)
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second dot increases and its magnetic moment is stable
up to the field

The verification of the fields on the remaining dots and
numerical simulation show that the role of such a defect
ends at this point, see Fig. 7. The double uncompen-
sated vacancy, as well as the single vacancy, may local-
ize two elementary magnetic moments. This defect
should be treated as quite strong, because the character-
istic fields are noticeably lower than those for the above
case of the single vacancy.

The three simple examples discussed above provide
sufficient understanding of how to calculate fields at
which local reversals of dots near rather complex
defects. Let us consider the general problem for a
vacancy that is obtained by removing a certain number
of magnetic dots from the sites v of the ideal lattice. In
order to determine the first reversal field, it is sufficient
to calculate the field at all dots for which the reversal of
the moment is expected. This field at a certain magnetic

dot located at the site n (nth dot), Hn = ez ,

Hn = µ0/a3, is determined by the finite sum over
vacancies:

(14)

where the numbers pv = ±1 determine the sign of the
magnetic moment in the ideal CAFM structure at the
site v of the array from which the magnetic dot is
removed. The reversal of the magnetic moment in the

external field H(1) = | | occurs at the dot for which

 is negative and its absolute value is minimal. In
order to find the next candidate for the reversal, it is
necessary to find the fields Hn on other sites neighbor-
ing the vacancy with allowance for the field change at
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-----.= =
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1

2
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Fig. 8. Evolution of the magnetic structure of the array of
magnetic dots near a triple vacancy: (a) the unperturbed
state and (b) the state with four reversed moments. Digits 1–
4 in the circles indicate the order of reversals of the corre-
sponding moment. According to numerical simulation,

these reversals occur at fields h =  = 0.552, h =  =

0.802, h = 1.869, and h = 1.892. We point to the closeness
of the last two reversals (see text).
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the reversal of the first dot. As a result, for the system
with vacancies located at the dots with vectors v, where
several magnetic moments of the dots located at the
sites l are already reversed, the field at the nth dot is
determined by the expression

(15)

Here, we use the fact that a reversal always occurs from
the downward position to the upward position and the
sign of the corresponding terms is defined. The appear-
ance of a factor of 2 in the sum over the reversed dots
was explained above. The reversal of the nth dot is pos-
sible for Hn < 0, which occurs when the external field
increases to |Hn |.

We now apply this general consideration to describe
the system of three uncompensated vacancies located
along one line (Fig. 8). In this case, two reversals of
magnetic moments occur according to the same sce-
nario as for the double vacancy. They occur for dots
equivalent in the CAFM structure, but the moments of
these dots are not reversed simultaneously. The dis-
tance between them is small enough so that the reversal
of the first dot delays the reversal of the second dot. The
corresponding fields are given by the expressions

The next change in the magnetic state of the system has
the following feature: two magnetic moments are

reversed almost simultaneously at close fields 

and :

The difference between these fields is caused by the
mutual effect of two quite strongly spaced magnetic
dots (see Fig. 8). Thus, the triple vacancy localizes four
states: two single states and one double state.

The above examples well demonstrate the laws of
the appearance of deviations in magnetic moments
localized at various defects. For a cluster consisting of
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any finite number of vacancies, calculation is reduced
to that of a finite sum and, although it becomes rather
cumbersome as the number of vacancies increases, it is
quite easy.

Let us also present the minimum instability field for
the CAFM structure in the presence of extended
defects—compensated and uncompensated infinite
lines of vacancies. It is clear that, for the uncompen-
sated line of vacancies, in which upward magnetized
dots are removed from a certain line parallel to the array

vector (1, 1) or (1, –1), the instability field  is min-
imal and equal to

which is in good agreement with the value of
0.3895µ0/a3 obtained in numerical simulation.

For the compensated line of vacancies that is paral-
lel to the (1, 0) or (0, 1) array vector, the instability field
of one of the magnetic dots adjacent to the line of
vacancies is given by the expression

Numerical simulation yields a value of 2.212µ0/a3.
Finally, for the compensated line of vacancies of the

above type that ends with the magnetic dot with the
downward moment, the instability of this end occurs at
the quite low field

This value is in good agreement with the value of
1.7351µ0/a3 obtained in numerical simulation.

The results for fields at which the localized viola-
tions of the CAFM structure appear at a given defect,
are systematized in Fig. 9. For comparison, the horizon-
tal straight lines in this figure show the characteristic
fields H0 of the volume instability, as well as the rever-
sal fields for the magnetic moment at the edge and bor-
der of the square array. It appears that two characteristic
fields of different natures, namely, the instability field
of the magnetic dot near the compensated line of vacan-
cies and the field of the dot reversal at the end of the
uncompensated line are close to each other. These val-
ues are also close to the border-instability field. For this
reason, all these values are shown by the same horizon-
tal dashed line in this figure. The difference between
them appears in the third decimal place and this close-
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ness is likely accidental. We emphasize that the charac-
teristic instability fields for the interior and for
extended defects (the infinite line of vacancies and the
border) are in essence the lower borders of regions
where a series of instabilities develops (see, e.g., Figs. 2
and 4). In order to emphasize this fact, the correspond-
ing regions located above these fields (“continuous
spectrum of instabilities”) are shown by different
hatchings.

5. PROCESSES OF MAGNETIZATION
OF THE ARRAY IN INTERMEDIATE FIELDS

In the preceding sections, we showed that the insta-
bility field Hborder of the CAFM structure near the bor-
der of magnetic dots is much lower than the value H0
determined in [14] for the infinite array. In the entire
field interval Hborder < H < H0, an increase in the mag-
netic moment occurs due to the reversals of the mag-
netic moments of dots at the border. Further, for H ≥ H0,
the volume instability is realized and the presence of
the completely (or partially) remagnetized borders of
the system almost does not affect this field for the
CAFM structure. Analysis of the states of the system
for intermediate fields was performed by numerical
minimization of total Hamiltonian (1) without the con-
straint mn || ez , which was realized by means of an orig-
inal code.

Numerical analysis was performed with the stan-
dard Gauss–Seidel algorithm. The ferromagnetic or

2.5

2.0

1.5

1.0

0.5

0
2/0 1/1 2/2 3/3 I II

h

Fig. 9. Instability fields of the CAFM structure of the square
array of magnetic dots. The horizontal straight lines are the
fields for the defect-free system: the solid line is the bulk-
instability field H0; the dashed and dotted lines are the
reversal fields for the magnetic moment at the border and
edge of the array, respectively; the short dashes are the char-
acteristic fields for the defects of the array that are shown
over the defect index, see text. The data are given for (I) the
uncompensated line of vacancies and (II) the end of the
compensated line of vacancies. Two close fields for the tri-
ple vacancy in the real scale of the figure are represented as
the thicker dash. In this scale, the three characteristic fields
mentioned in the text are indistinguishable.
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CAFM state realizing the minimum for strong and
weak fields, respectively, is taken as the initial state.
Calculation was performed beginning with a weak or
strong field and with a given step ∆h from 2.5 × 10–4 to
10–2 and most calculations were performed with steps
of ∆h = 2.5 × 10–3 and 5 × 10–3 (the latter value for
larger systems). Simulation corresponds to two regimes
usually used in experiment, namely, the magnetization
of a sample from the unmagnetized state when the field
increases from zero and the demagnetization of the sat-
urated state when the field decreases. Calculation
shows quite rapid convergence of the iteration proce-
dure. The code provides automatic calculation of not
only energy but also the z projection of the total mag-
netic moment. The specific feature of this problem is
the presence of single-site anisotropy due to which it is
necessary to accurately determine the direction of the
magnetic moment in a given site at each iteration step
with the inclusion of both interaction with neighbors
and the effective field of single-site anisotropy. (With-
out single-site terms, it is sufficient to perform itera-
tions by reversing the magnetic moment along the
effective interaction field.)

It is important that the inclusion of single-site
anisotropy does not affect the energy of the Ising states
found above and that the anisotropy constant β does not
appear in all of the above formulas for the critical fields.
However, analysis of the general problem with allow-
ance for both the possibility of the deviation of the mag-
netic moment from the given axis and the presence of
single-site anisotropy is fundamentally important for
determining the stability of Ising states with respect to
the transition to planar states. We are primarily inter-
ested in Ising states, which are easily studied analyti-
cally, but the inclusion of the transverse components of
moments, as well as the oblique field, is not difficult in
numerical minimization. Numerical calculations were
performed with two anisotropy constants β = 1/a3 and
5/a3. Most calculations were carried out with β = 1/a3,
because it is difficult to find a minimum at larger β val-
ues. For such a small β value, the transition to planar
states is sometimes observed. These states correspond
to very complex noncollinear structures, which are con-
siderably determined by the shape of the array. For β =
5/a3, the Ising structure is always stable. Thus, the sta-
bility of structures obtained in [14] under the assump-
tion β  ∞ is corroborated at moderate β values.

Our numerical analysis shows that the bulk-instabil-
ity field for sufficiently small arrays (from 30 × 30 to
50 × 50) of various shapes coincides (with an accuracy
to three decimal places) with the previously determined
value h = 2.642. However, the bulk magnetization pro-
cess in the presence of the field increasing from H0 is
much more sensitive to the existence of borders.

Both investigation of the ideal infinite system and
our numerical analysis show that, as the dimensionless
field increases by a quite small value, the finite density
of magnetic dots with reversed (with respect to the
JOURNAL OF EXPERIMENTAL A
CAFM structure) forms in the array. We characterize
this value by the parameter

(16)

where Mtot is the total magnetic moment of the system
at a given field and N is the number of the magnetic dots
in the system. In the CAFM and saturated ferromag-
netic states, m = 0 and 1, respectively; i.e., this param-
eter serves as the reduced magnetization. When a non-
zero [even small (m ≤ 0.05)] density of the reversed
dots appears in a sufficiently large system, the effect of
the borders on the behavior of the system becomes sig-
nificant.

Indeed, in an infinite system at a given small m
value, the structure is formed due to the dipole interac-
tion of reversed dots against the background of the
CAFM structure. For a finite system, there is an addi-
tional factor of the mean magnetic field induced by
reversed dots. It is expected that the density of reversed
dots is approximately constant in the greater part of a
sufficiently large system. However, the magnetic field
generated by magnetization is not constant over the
array space even in this case. As was shown above, this
field is maximal at the center, is weaker at the border,
and is minimal at the edge of the array, so that these
three field values are in a ratio of 9 : 6 : 3 [see Eq. (8)].
Thus, the magnetization-induced “macroscopic” field
depends on the distance from the center of the system;
moreover, its symmetry presents the geometry of the
array.

An additional factor is directly associated with the
field of magnetic dots that are located at the border and
are upward magnetized for H ≤ H0. Already, when the
field only slightly exceeds this critical value, the
appearance of a superlattice of reversed dots whose
density is low for small H – H0 values is expected even
in the infinite system. However, such a “network” of
reversed dots is in contact in its periphery with the bor-
der and is completely sensitive to the presence of the
border. For uncompensated borders, which exist in sys-
tems such as an oblique square, the difference is stron-
ger and is determined not only by the shape of the array
but also by the property of the border, which can be
magnetized upward or downward. The effect of the
completely or partially magnetized border dictates a
certain structure for periphery regions adjacent to it and
this structure expands to the central region of the array.
Since different sections of the border are oriented dif-
ferently, such a quasi-constant action of the border sec-
tions on the central region is often contradictory and
can give rise to frustration effects.

This simple analysis clearly demonstrates the com-
plexity and ambiguity of all factors affecting the mag-
netic structure of a finite array of dipole-coupled dots
for H > H0. In this case, it is reasonable to use direct
numerical simulation. We start with the most character-
istic example of the square array with sides parallel to

m M tot/µ0N ,=
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(a) (b) (c)

(d) (e)

Fig. 10. Magnetic structures of the central region of the square array of magnetic dots for the reduced magnetization m = (a) 1/16,
(b) 1/3, (c) 4/9, (d) 2/3, and (e) 11/12 and the dimensionless field h = (a) 2.748, (b) 4.134, (c) 5.154, (d) 7.102, and (e) 8.168.
the (1, 0) and (0, 1) vectors and then briefly discuss
other geometries of the system.

Figure 10 shows the central regions of the square
array, where surface layers containing the completely
magnetized border and adjacent layer are removed for
clearness. These data generally corroborate the afore-
mentioned tendency: the structure of the central region
of a finite array is formed as compromise due to the
competition between several contradictory factors. As a
result, the ordered lattice of reversed dots characteristic
of the infinite system does not appear even for small m
values such as 1/16 (Fig. 10a).

As the field increases further, the number of
reversed moments increases and the distance between
them becomes much shorter than the size of the system.
However, this increase proceeds against the back-
ground of the already formed network of deviations
from the CAFM structure, which is considerably
adapted to the shape of the system and the macroscopic
dipole filed generated by magnetization. For this rea-
son, for moderate values m = 0.3–0.5, oblique superlat-
tices, which are characteristic of the infinite system and
whose elements are observed for small m values, are
not observed. Instead of them, the fragments of the rect-
angular superlattice of deviations from the CAFM state
are formed. The basic element of such a lattice is the
line of upward magnetized magnetic dots that is paral-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lel to the (1, 0) or (0, 1) axis (horizontal or vertical sec-
tions consisting of open circles in figures). Approxi-
mately equal numbers of the horizontal and vertical
sections of such lines are clearly seen in a wide m range
(see Figs. 10b–10d). For m values close to 1/2, the
square lattice covers the greater part of the array (see
Figs. 10c and 12a for m = 4/9 and 1/2, respectively).
This square lattice should be considered as most favor-
able with allowance for symmetry dictated by the bor-
der. It is worth noting that, for m values close to 1/2
(data for m = 4/9, 1/2, or 5/9 were presented in [14]),
various oblique lattices of reversed magnetic moments
are realized in the infinite array. Their characteristic
feature is the presence of (2, 1) and (1, 2) translation
vectors; i.e., they are in poor agreement with closed sur-
faces with the (0, 1) or (1, 0) borders discussed above,
as well as with the (1, 1) and (−1, 1) borders that will be
briefly discussed below. As was mentioned in [14], the
difference between the energies of different structures
with a given m value is small. For this reason, even a
small surface effect may strongly change the structure
of the lattice and the result obtained above is not sur-
prising.

With a further increase in the field h to 7.5–8, an
almost saturated state is formed, where magnetic dots
with the downward moment form a structure with quite
a low density. In this state, the specific orienting effect
SICS      Vol. 101      No. 6      2005
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of the borders is already absent (the borders, as well as
the most part of the array, are upward magnetized), but
the inhomogeneity of the mean field of the array that is
generated by magnetization m ≤ 1 is completely mani-
fested. In this case, the properties are the same as for
H ≥ H0: the local short-range order is similar to that
arising for lattice states in the infinite system, but more
or less amorphous structure really appears for a finite
system (see Fig. 10e). The presence of an extremely
irregular structure near the saturation field corresponds
to experiment (see Fig. 10 in [6]).

The appearance of the same structures accompanies
the destruction of the saturated ferromagnetic state,
which occurs when the field decreases from H1. For this
process, the effect of the finiteness of the array that is
associated with the total inhomogeneous dipole field is

(a) (b)

Fig. 11. Magnetic structures arising after the destruction of
the saturated state for (a) the oblique square array and
(b) approximately circular array.

(c) (d)

(a) (b)

Fig. 12. Magnetic structure corresponding to the reduced
magnetization m = 1/2 for the central region of the arrays of
magnetic dots of the shape of (a) square, (b) oblique square,
(c) circle, and (d) structure obtained in [14] for the infinite
lattice (shown for comparison).
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clearer. In the saturated state, the field of the magnetic
dipole interaction at each dot is negative; i.e., it is
directed opposite to the magnetic moment of the dot.
For this reason, such a state exists only for finite field
values H > H1. The absolute value of the dipole field is
maximal at the center of the array and is minimal at its
periphery (at the border and particularly at the edges).
Therefore, as the field decreases, the magnetic
moments of dots at the center of the system are first
reversed. However, the nonzero, even very small, den-
sity of reversed dots cannot be formed due to their
strong dipole interaction. When a dot is reversed,
change in the field at neighboring dots is on the order of
2µ0/a3, which is comparable with the difference
between h1 and hborder. Therefore, competition between
the interaction of nearest neighbors and the total field
generated by all dots of the array is important in the
process of the destruction of the ferromagnetic state.
Similar to the process of the destruction of the CAFM
order in weak fields (but owing to another cause), the
border here dictates the structure of the state with a low
density of reversed dots for small H1 – H values. With a
further decrease in the field, this structure affects the
global symmetry of magnetic states with m ≈ 0.5. As a
result, with both an increase in the field from the CAFM
state and a decrease in the field from the ferromagnetic
state, similar structures appear in the intermediate
region. It is worth noting that the hysteresis effects
appear to be weak in such a seemingly nonergodic sys-
tem. The dependence of the form of the structure real-
ized in intermediate fields on the magnetic field varia-
tion step ∆h in the simulation process is also negligibly
weak in the range from 2.5 × 10–4 to 10–2.

Thus, analysis of the square array shows that the
shape of the array strongly affects the distribution of the
magnetic moments of dots in the array. To demonstrate
that this conclusion is general, we perform numerical
simulation for an oblique square array with sides along
the (1, 1) and (–1, 1) vectors and for an approximately
circular array. Both arrays are cut from the 50 × 50 lat-
tice. Detailed analysis of numerous numerical data for
these two cases is beyond the scope of this paper and
we discuss only general properties.

The most characteristic case is the destruction of the
saturated ferromagnetic state when the field decreases.
As was already mentioned above, the structure arising
in this case is a result of the competition between the
interaction of nearest dots and interaction of each dot of
the array with the weakly inhomogeneous total field of
the almost saturated arrays. Analysis of the destruction
of the ferromagnetic state for two above-indicated
geometries shows that, similar to the direct square con-
sidered above, the structure whose general geometry is
determined by the shape of the system is formed at the
initial stage. The structure of the cloud of reversed dots
for H values close to H1 almost completely reproduces
the shape of the array (Fig. 11).
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For states with moderate magnetization, the struc-
ture is harder, but the shape of the array is again prima-
rily determined by the distribution of the magnetic
moments of dots. Figures 12a–12c show the identical
square fragments of the arrays of three different shapes
described above that are cut from the central part of the
array. The field values are chosen such as to ensure the
same magnetization m = 1/2 in the periphery region
after cutting. Figure 12d shows the periodic structure
corresponding to the energy minimum of the infinite
lattice for m = 1/2. The differences between these states
are clearly seen. The ideal structure with m = 1/2 con-
stitutes a weakly deformed triangular lattice, which is
the feature of such structures for many m values [14].
For finite systems, the structure elements in the form of
an almost regular hexagon are almost invisible except
one such fragment in the right upper quadrant in Fig.
12c for the case of the circular system. From the view-
point of global properties, the ideal structure has lower
symmetry, because it is noninvariant under rotation by
90°. This property is manifested in the orientation of its
specific elements, which are the lines that contain
upward magnetized magnetic dots and are aligned
(Fig. 12d) along the (0, 1) direction. It is clear that the
structure rotated by 90° with the same lines along the
(1, 0) direction is energetically equivalent to the struc-
ture shown in Fig. 12d, which determines the low sym-
metry of these states. In contrast, such an anisotropy is
absent for all structures of real systems. In view of this
circumstance, the case of the square array (Fig. 12a) is
instructive, where, as in the ideal case (Fig. 12d), finite
sections of such lines with upward magnetized dots
exist, but the orientation of these fragments is chaotic.
For an oblique square, such lines are almost absent, but
“relicts” of the CAFM structure appear in the form of
lines that contain magnetic dots with downward mag-
netic moments and are directed along the diagonals of
the initial square lattice (Fig. 12b). Such lines are
absent for the ideal structure and they are very slightly
manifested for the circular array. The existence of these
lines parallel to the borders of the system is evidently
the manifestation of the geometry of the array borders
in the magnetic structure of its central part. It is inter-
esting that such a structure is closest to that observed
experimentally (see Fig. 10 in [6]) for a field equal to
almost half the saturation field. Unfortunately, data on
the shape of the array are absent in that paper. For the
circular system, where the effect of the symmetry of the
system borders on its magnetic structure is expected to
be minimal, the ideal structure shown in Fig. 12d is also
not observed in the pure form. Only one important frag-
ment of it, which is absent for square arrays, is present:
the existence of pairs of magnetic dots with downward
moments that are connected by the (2, 1) or (1, 2) trans-
lation vector, which represents the property of the ideal
lattice at the level of the short-range order. We point to
a higher symmetry of the state as a whole. Indeed, only
pairs of such dots that are connected by one of these
vectors, e.g., vector (2, 1) in Fig. 12d, are present for the
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ideal lattice, whereas pairs with both such vectors are
present with the same probability for the finite array.
We also emphasize that such elements are almost
absent for the square geometry cases (Figs. 12a, 12b).

6. DISCUSSION AND CONCLUSIONS

In summary, it is reasonable to briefly discuss prob-
lems that remain beyond the scope of this paper. The
numerical analysis of the problem of the transition from
the out-of-plane (Ising) states to planar states when the
magnetic field varies for various anisotropy constants β
is of interest. In fact, this means the construction of a
phase diagram on the (h, β) plane. Analysis of the zero
field case shows [12] that, even for an extremely dense
lattice of cylindrical magnetic dots made of soft mag-
netic materials, Ising states are stable for sufficiently
large shape factors L/R > 2, where R and L are the
radius and height of a dot. In fact, these states are stable
when the anisotropy energy is comparable with the
energy of interaction between neighboring dots. The
experiment presented in [6] corroborates this rule.

It is rather difficult to theoretically analyze planar
states. Our preliminary numerical data indicate that
they correspond to complex noncollinear structures,
which are characterized both by significant two-dimen-
sional inhomogeneity with a scale of about the sample
size, and by the presence of regions where neighboring
magnetic moments are substantially noncollinear. The
character of these structures is considerably determined
by the shape of the array. It is evident that such states
can be analyzed only numerically.

The effect of the violation of pure axial symmetry
on Ising states analyzed above is also of interest. The
simplest example of such a violation is the deviation of
the external field from the given axis of the array
(z axis). Preliminary numerical investigations of this
case show that, for moderate values of the anisotropy
constant β = 5/a3 and for the field hz = 1 along the sym-
metric direction, the inclusion of the transverse mag-
netic field h = 0.2 (field inclination by approximately
11°) gives rise to the appearance of small deviations
(less than 1.5°) of magnetic moments from the given
axis, but does not affect the out-of-plane structure of
magnetic moments that is of interest. More detailed
investigations of the role of anisotropy and the mag-
netic-field inclination and the properties of planar
states, as well as a discussion concerning a very inter-
esting question on the effect of the random spread of the
parameters of single magnetic dots, are beyond the
scope of this work.

Thus, the above results may be applied to the sys-
tems of magnetic dots with various properties of a sin-
gle dot under the condition that magnetic moments are
collinear to the given axis of the system. In this case, the
anisotropy of a single dot is unimportant and the char-
acteristic field H∗  = µ0/a3 is the only parameter impor-
tant for comparison with experiment. The characteristic
SICS      Vol. 101      No. 6      2005
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instability fields studied here and in [14] range from
0.23H∗  [see Eq. (12)] to H1 ≈ 9H∗ . Let us discuss these
fields for various systems, primarily those realized
experimentally. We start with the case of dots in the
homogeneous state. Consider magnetic dots in the form
of a right circular cylinder with a diameter D = 2R and
height L made of a material with the saturation magne-
tization Ms. In this case, µ0 = πR2LMs . For dense lat-
tices, the diameter D of a dot is comparable with the lat-
tice constant a and the thickness of the dot may signif-
icantly vary. For this reason, it is convenient to
introduce the shape parameter λ = L/R and write the
characteristic field in the form

(17)

The system of dots with 2R = L = 200 nm made of
dysprosium (4πMs = 34 kOe) and organized in a not too
dense square lattice with a period a = 500 nm was used
in [7] and is characterized by a field H∗  = 200 Oe. Mag-
netic dots made of soft magnetic materials such as per-
malloy constitute a more standard case. In these sys-
tems, perpendicular magnetization is realized for λ ≥ 2
[12] and quite dense lattices with a up to 1.1 × 2R are
studied [1–3, 5, 6]. Detailed experimental data are pre-
sented in [6] for sufficiently large (several centimeters
squared) lattices of magnetic dots with a period of
100−200 nm, which are made of various soft magnetic
materials with perpendicular magnetization and have a
diameter of 60–180 nm and L/R ≤ 6. Even for lower sat-
uration magnetization of soft magnetic materials (e.g.,
4πMs = 10 and 6 kOe for permalloy and nickel, respec-
tively), such systems may have higher H∗  values reach-
ing several kilo-oersteds due to the high lattice density
and large λ value.

For magnetic dots in the vortex state made of stan-
dard materials such as permalloy for which Ms is high,
the vortex core size does not exceed 15–20 nm. For this
reason, H∗  is quite low and is 30 Oe even for the opti-
mum sizes L = 50 nm and 2R = a = 200 nm. However,
weak effective fields of remagnetization of single mag-
netic dots are a positive factor for their use in the logic
elements of computers. The scheme of such a device
was realized in [4] on the basis of a system of dots with
a radius of less than 50 nm and planar magnetization.

Thus, our analysis reveals the considerable effect of
borders on the character of the magnetization of finite
arrays of dipole-coupled particles (magnetic dots). Dif-
ferences in the behavior of a real system and idealized
model of the infinite lattice are most substantial in the
region of the destruction of the CAFM order. For a
finite system, this destruction first occurs at the edges of
the system, then near the extended regions of the sur-
face, and only then expands to the entire interior of the
array. In this case, the critical field at which this sim-
plest state is destroyed is much weaker than the field
characteristic for the ideal infinite system. In contrast to

H* πλMs R/a( )3.=
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this scenario, when the field decreases, the destruction
of the saturated state always begins far from the bor-
ders. By means of numerical analysis, we determine
intermediate magnetic structures that are formed after
the loss of the stability of the indicated simple phases.
It turns out that magnetic structures in the intermediate
field region, which are obtained when the field both
increases and decreases, for finite arrays strongly differ
from those characteristic of the ideal infinite system.

We showed that, in the presence of simple stacking
faults such as single vacancies or their clusters in the
lattice, localized deviations from the CAFM structure
appear on these faults for quite weak fields. The mag-
netization curve of clusters of vacancies consists of sev-
eral jumps with very characteristic relations between
the fields and jump values. In essence, the section of
such a step magnetization curve can be treated as an
indicator of this magnetic defect. Therefore, analysis of
the magnetization process for an array of magnetic dots
for fields weaker than the instability field of the ideal
CAFM structure can be used for diagnostics on the
structure quality of series of samples. For comparison
with experiment, it is important that all characteristic
fields for both a finite array with the ideal lattice and lat-
tice with vacancies are expressed in terms of the quan-
tity H∗  that is universal for a given system and is spec-
ified by Eq. (17). This characteristic field is determined
by the lattice constant for dots and the material and
magnetic structure of a single dot of the array, is prima-
rily sensitive to the lattice density, and may vary from
tens to thousands of oersteds for various systems.
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Abstract—High-frequency (HF) conductivity in systems with a dense (with a density of n = 3 × 1011 cm–2)
array of self-organized Ge0.7Si0.3 quantum dots in silicon with different boron concentrations nB is determined
by acoustic methods. The measurements of the absorption coefficient and the velocity of surface acoustic waves
(SAWs) with frequencies of 30–300 MHz that interact with holes localized in quantum dots are carried out in
magnetic fields of up to 18 T in the temperature interval from 1 to 20 K. Using one of the samples (nB = 8.2 ×
1011 cm–2), it is shown that, at temperatures T ≤ 4 K, the HF conductivity is realized by the hopping of holes
between the states localized in different quantum dots and can be explained within a two-site model in the case
of ωτ0 @ 1, where ω is the SAW frequency and τ0 is the relaxation time of the populations of the sites (quantum
dots). For T > 7 K, the HF conductivity has an activation character associated with the diffusion over the states
at the mobility threshold. In the interval 4 K < T < 7 K, the HF conductivity is determined by a combination of
the hopping and activation mechanisms. The contributions of these mechanisms are distinguished; it is found
that the temperature dependence of the hopping HF conductivity approaches saturation at T* ≈ 4.5 K, which
points to a transition to the regime of ωτ0 ≤ 1. A value of τ0(T*) ≈ 5 × 10–9 s is determined from the condition
ωτ0(T*) ≈ 1. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Quantum dots represent a limiting case of low-
dimensional systems in which the motion of particles is
restricted in all three dimensions. Quantum dots are
often called artificial atoms, because their electron
spectra are discrete in spite of the fact that a real dot
may consist of tens of thousands of atoms. The conduc-
tivity of dense arrays (ensembles) of quantum dots is
different from zero even at very low temperatures. The
transport properties of germanium quantum-dot ensem-
bles in silicon δ-doped with boron with a density of n =
3 × 1011 cm–2 were studied in detail in [1]. The authors
of these studies came to the conclusion that the conduc-
tivity at low temperatures is realized by the hopping
of holes between the localized states of different quan-
tum dots.

The complexity of the objects to be investigated and
the ambiguity in the interpretation of their transport
properties requires application of other experimental
1063-7761/05/10106- $26.001122
methods, for example, acoustic methods, that allow one
to determine the high-frequency (HF) conductivity of a
system in a contactless way. This method has already
been used by the present authors, in particular,
for investigating the HF conductivity in a system with
pure germanium quantum dots in silicon at low temper-
atures [2]. These investigations have also led to the con-
clusion about the hopping mechanism of HF conduc-
tivity.

For the first time, the absorption of surface acoustic
waves (SAWs) by a system with quantum dots was used
in [3] for studying the properties of large (250–500-nm)
quantum dots in n-GaAs/AlGaAs samples that were
obtained by holographic lithography followed by ion
etching. The authors of [3] interpreted their results as
relaxation absorption associated with the transitions of
the electrons localized in quantum dots between the
energy levels within the same quantum dot [4].
 © 2005 Pleiades Publishing, Inc.
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In the present paper, we apply acoustic methods to
investigate the HF conductivity of an ensemble of
Ge0.7Si0.3 quantum dots in a silicon matrix. The compo-
sition was determined by the Raman scattering tech-
nique. The dc transport properties of such systems [5]
differ from the properties of samples with pure germa-
nium quantum dots [1]. This difference is likely to be
associated with the fact that the potential well for holes
in the region of Ge0.7Si0.3 dots is shallower than that in
the case of pure germanium dots.

2. EXPERIMENTAL RESULTS

Acoustic methods consist in measuring the acousto-
electric characteristics—the absorption and the veloc-
ity of SAWs; this allows one to determine the HF con-
ductivity of systems by a noncontact method.

Since germanium and silicon are not piezoelectric
materials, we applied a hybrid technique, in which a

200 nm
undoped silicon

10 nm
undoped silicon

δ-layer of boron

50 nm
undoped silicon

Si(001),
substrate doped

nB = 1014 cm–3

GeSi

with boron

Fig. 1. Structure of samples.
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SAW propagates along the surface of a piezodielectric
LiNbO3 plate, while a sample is slightly pressed by a
spring to the surface of the LiNbO3 plate. In this case,
the electric field induced by the SAW and having the
same frequency as the SAW penetrates into the sam-
ple; however, mechanically, the sample remains
uncoupled [6]. The absorption of the SAW and the
change in its velocity are determined by the HF conduc-
tivity of the sample under investigation.

The measurements were carried on four samples
with a dense array (n = 3 × 1011 cm–2) of self-organized
G0.7Si0.3 quantum dots in a magnetic field of 18 T. The
structure of samples is shown in Fig. 1. The layer
of  quantum dots lies at a depth of 2000 Å from the
surface of a sample. The quantum dots have the shape
of pyramids with a 120 × 120 Å2 square base and a
height of about 20 Å. The samples were δ doped with
boron with a concentration of nB= 2.7 × 1011 cm–2 and
6.8 × 1011 cm–2 (sample 1), 8.2 × 1011 cm–2 (sample 2),
and 11 × 1011 cm–2 (sample 3). The measurements were
carried out in the range of temperatures from 1 to 20 K
with SAWs of frequencies from 30 to 300 MHz. A mag-
netic field was applied perpendicular to the plane in
which the quantum dots were formed. The measure-
ments of the sample with nB = 2.7 × 1011 cm–2 did not
reveal any acoustoelectric phenomena within the mea-
surement accuracy.

Figure 2 represents the absorption ∆Γ ≡ Γ(H) – Γ(0)
and the velocity ∆V/V ≡ [V(H) – V(0)]/V(0) of a SAW
of frequency f = 28 MHz as a function of the magnetic
field strength for sample 2 in the range of temperatures
from 1 to 4 K. In high magnetic fields, these quantities
approach saturation. It is worth noting that, as the mag-
netic field increases, the absorption decreases; i.e.,
∆Γ < 0. In magnetic fields of H < 5 T, both the absorp-
tion and the velocity of the SAW are proportional to H2.
For H > 5 T, the magnetic-field dependence of the
1

0

–1

–2

–3

–4

–5

–6
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0

(b)

0 2 4 6 8 10 12 14
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3

2
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Fig. 2. (a) Absorption ∆Γ and (b) relative velocity variation ∆V/V of a SAW as a function of magnetic field H for sample 2 at T =
1–4 K and f = 28 MHz.
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absorption ∆Γ deviates from the quadratic behavior as
demonstrated in Fig. 3 by measurements carried out on
sample 2 at T = 4.2 K and f = 29.5 MHz.

All the other samples exhibit similar behavior, but in
different temperature intervals: the higher the boron
doping level, the lower the temperatures at which the
samples exhibit this behavior. Sample 1 exhibits such
behavior up to 8 K, sample 2, up to 4.2 K, and sample 3,
only up to 2.8 K.

Figure 4 represents the function ∆Γ(H) for sample 2
in the temperature interval 5–20 K and at a SAW fre-
quency of 28 MHz. One can see that, when T > 5, the
quantity ∆Γ(H) is negative and increases with tempera-
ture; when T > 6 K, it changes its sign.

As temperature increases, ∆Γ becomes positive in
all the samples; in samples with higher concentration of
boron, ∆Γ changes its sign at lower temperatures.

0

–1

–2

–3

–4
0 10 20 30

H2, T2

∆Γ, dB/cm

Fig. 3. The function ∆Γ(H2) for sample 2 at T = 4 K and f =
29.5 MHz.
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16

Fig. 4. The function ∆Γ(H) for sample 2 for T = 5–20 K and
f = 28 MHz.
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3. DISCUSSION 
OF EXPERIMENTAL RESULTS

3.1. Low Temperatures 

At low temperatures (Fig. 2a), the absorption mono-
tonically decreases as the magnetic field increases,
∆Γ(H) < 0. Such behavior in ∆Γ(H) is typical of the
hopping HF conductivity and is usually associated with
a decrease in the overlap of the wavefunctions of elec-
trons (holes) localized at the centers between which the
hopping occurs. The function ∆Γ(H) was quantitatively
analyzed in [7] within the model of hydrogen-like dot
centers. The hopping character of the HF conductivity
in the objects under investigation was also confirmed
by dc measurements [5]; the results of these measure-
ments were interpreted under the assumption that the
hopping of holes occurs between the states that are
localized in different quantum dots.

Within this model, the hopping absorption of SAWs
by localized carriers in a strong magnetic field is
described by the interpolation formula

(B is a coefficient), which can rigorously be justified in
the case of hydrogen-like centers [8]. This formula
makes it clear that a strong transverse magnetic field
suppresses the hopping absorption and that ∆Γ(H) = –
Γ(0) as H  ∞. Thus, it becomes possible to deter-
mine the absorption Γ(0) in the absence of a magnetic
field. The function ∆Γ(H) in a strong magnetic field
approaches saturation, which is clearly seen in sample 2
at very low temperatures (Fig. 2a). When the saturation
could not be attained in the magnetic fields available in
the experiment, we determined the value of Γ(0), which
corresponds to the intersection of the linear function
∆Γ(1/H2) with the vertical axis as 1/H2  0; this situ-
ation is demonstrated in Fig. 5 for sample 1.

The simultaneous measurement of the absorption
and the velocity of a SAW allows one to determine the
complex HF conductivity

at a frequency of ω = 2πf [6]. As pointed out above, in
the range of magnetic fields H  ∞, the parameters Γ
and ∆V/V and the conductivities σ1 and σ2 in the
absence of a magnetic field can be determined by the
formulas

(1)

∆Γ H( ) Γ 0( )– B/H2+=

σhf σ1 ω( ) iσ2 ω( )–=

∆V
V

------- H ∞( ) ∆V
V

------- 0( ) = A 1
1 Σ2 0( )+

Σ1
2 0( ) 1 Σ2 0( )+[ ] 2+

-----------------------------------------------– ,–

Γ 0( )
kAΣ1 0( )

Σ1
2 0( ) 1 Σ2 0( )+[ ] 2+

--------------------------------------------------.=
ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005



MECHANISMS OF LOW-TEMPERATURE HIGH-FREQUENCY CONDUCTIVITY 1125
Here,

k and V are the wavevector and the velocity of a SAW,
respectively; the functions b(k) and t(k) depend on k,
the gap a between a sample and the lithium niobate
plate, the depth d of the plane with quantum dots, and
the dielectric constants of lithium niobate and vacuum;
and εs is the dielectric constant of a sample [6].

One can solve this system of equations for Σ1(0) and
Σ2(0) (and, hence, determine σ1(0, ω) and σ2(0, ω))
only if the gap a between a sample and the surface of
the lithium niobate plate is known. Unfortunately, the
earlier developed method [6] cannot be directly applied
to this case because it is based on the assumption that
the conductivity does not depend on frequency. This
assumption was justified for delocalized electrons [6]
and is inapplicable to the study of dielectric samples
with quantum dots. Therefore, we determined the gap
by the number of Newton’s rings produced at the con-
tact of the sample and lithium niobate planes; for this
purpose, we made a hole in the sample holder. This
method is not very accurate; however, it makes it possi-
ble to evaluate the absolute values of the conductivities
σi(0, ω) and to determine their dependence on the mag-
netic field, frequency, and temperature. In our experi-
ment, the gap a varied from 0.3 to 0.7 µm, depending
on the sample setup.

By solving the system of equations (1) with a known
value of the gap a for Σ1(0) and Σ2(0), we determined
σ1(0, ω) and σ2(0, ω) for various SAW frequencies and
temperatures. The conductivity components σ1 and σ2
proved to be independent of frequency to within 15 and
25%, respectively. The temperature dependence of
σ1(0) and σ2(0) for sample 2 at low temperatures is
shown in Fig. 6; one can see that σ1 > σ2 at these tem-
peratures. In all the samples, the temperature depen-
dence of the real part of conductivity is well described

by the power law  = BiT2.4, where Bi is the propor-
tionality factor and i is a sample number. To illustrate

this fact, in the inset to Fig. 6, we plot /Bi as a func-
tion of T2.4 for different samples. One can see that all
points lie on the same straight line to a good degree of
accuracy. The power-law dependence of the HF con-
ductivity σ1(0) on temperature and its independence of
frequency qualitatively agree with the predictions of
the two-site model of hopping HF conductivity under
the assumption that the period of a SAW is much
smaller than the typical relaxation time τ0 of the popu-
lation of sites [7, 8]. According to this model, the
absorption of a SAW and the variation of its velocity are

A 110.2b k( ) 2k a d+( )–[ ] ,exp=

Σi

4πσi

εsV
-----------t k( ),=

σ1
i( )

σ1
i( )
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associated with the absorption and emission of phonons
during the relaxation of the populations of two-site
clusters to their adiabatically equilibrium values. When
ωτ0 @ 1, the real part of conductivity must be propor-
tional to 1/τ0 ∝  Tα, where the exponent α depends on
the interaction mechanism. Thus, if the hopping con-
ductivity is dominant, then the temperature behavior of
σ1 must be the same for different samples, as is demon-
strated in the inset to Fig. 6.

Another prediction of the two-site model is a transi-
tion to a temperature-independent absorption at low
frequencies, where the condition ωτ0 ! 1 is fulfilled. In
this regime, absorption must be proportional to fre-
quency. In spite of relatively low frequencies of the
SAWs, such a regime has not been directly observed at
low temperatures.
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Fig. 5. The function ∆Γ(1/H2) for sample 1 for temperatures
of T1 = 5.5 K and T2 = 8 K and a SAW frequency of f =

143 MHz.

Fig. 6. σ1(0) and σ2(0) versus temperature for sample 2.
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If we assume that all the holes from boron atoms
populate the states in the quantum dots, then there are,
on average, 2.3 holes per dot in sample 1, 2.7 in sam-
ple 2, and 3.7 in sample 3. This means that, in samples
1 and 2, two lower lying states are predominantly occu-
pied, while the third excited state is occupied only in
some of the dots.

It is natural to assume that the hops (in which
phonons take part) between dots with occupied and
empty states may lead to the relaxation absorption like
in macroscopically homogeneous doped semiconduc-
tors. In this case, the dc conductivity corresponds to a
percolation cluster constructed from localized states of
quantum dots. Therefore, the dc conductivity must
decay exponentially with temperature, as observed in
sample 2 [5].

According to the two-site model, which is based on
hydrogen-like localized states, the transition from the
dependence ∆Γ ∝  H2 in a weak magnetic field to ∆Γ ∝
H–2 in a strong field occurs at aH ≈ ξ, where aH =

 is the magnetic length and ξ is the decay
length of a localized state [9]. This formula allows one
to evaluate the decay length ξ. Unfortunately, this pro-
cedure cannot be quantitatively applied to the present
situation because the effective attenuation length ξeff in
a system consisting of granules may be substantially
renormalized (see, for example, [10–13]). In a typical
situation, the effective attenuation length increases
compared with the attenuation length in the intergranu-
lar region, and reliable estimates can be made only for
ξeff @ l @ ξ, where l is the intergranular distance. If we
apply the two-site model with renormalized parameters
to study a system of quantum dots, then we obtain ξeff =
80 Å for sample 1 and ξeff = 120 Å for samples 2 and 3.
Since the strong inequalities presented above are not
satisfied, these estimates must be considered as merely
tentative ones. Apparently, the strong inequality σ2 @
σ1, which follows from the theory of hopping HF con-
ductivity for hydrogen-like dot centers, is not satisfied
for the same reason.

3.2. High Temperatures 

The figures presented above show that, in strong
magnetic fields, the quantity |∆Γ(H)| increases up to
T = 4.2 K (see Fig. 2a); for T > 4.2 K, it starts to
decrease (Fig. 4). If the hopping mechanism of conduc-
tivity, which was assumed to be dominant at low tem-
peratures (1–4.2 K), was the only mechanism, then,
according to theoretical predictions, the condition
ωτ0 ! 1 would hold at sufficiently high temperatures
and the temperature dependence would approach satu-
ration. Since there are no such phenomena in the exper-
iment, it is natural to assume that there is another con-
ductivity mechanism that plays the dominant role at
high temperatures.

c"/eH
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We assume that, at high temperatures, the main role
is played by the activation of carriers to the mobility
threshold. Below, we will show that this assumption is
self-consistent. Since the imaginary part of the HF con-
ductivity in the region of diffusion at the percolation
level is small, formulas (1) for an arbitrary magnetic
field can be substantially simplified:

This yields the following useful relation:

where η(H) = γ(H)/ν(H). In particular, if the experi-
mentally measured absorption Γ(H) has a maximum at
a certain value of magnetic field H = Hmax, then
Σ1(Hmax) = 1, and Σ1(0) is determined from the mea-
sured value of η(Hmax) as

(2)

It is this method by which the HF conductivity was
determined in the interval of temperatures T = 7–8 K,
where the function Γ(H) attains its maximum. The con-
ductivity Σ1(0) at T = 12 K was determined by a formula

of type (1) under the condition (0) @ 1. It turns out
that the temperature dependence of conductivity has the
form σ1(0) ∝  exp(–Ea/kBT), where Ea is the activation
energy; i.e., σ1(0) obeys the activation law. However,
this exponential dependence was measured in a very
narrow temperature interval. To extend this interval, we
chose the value of σ1 at T = 4.2 K as the fourth point, so
that this value does not exceed 20% of the hopping con-
ductivity at the given temperature. From this depen-
dence, the activation energy Ea(H = 0) was found to be
2.5 meV.

The exponential behavior of the conductivity as a
function of 1/T and its large absolute value, σ1(0) ~
10−5 Ω–1 for T > 12 K, confirm our hypothesis that the
absorption is attributed to the diffusion at the mobility
threshold. The results thus obtained, together with the
low temperature data, are represented by dots in Fig. 7.

In the range of intermediate temperatures (4–7 K),
the HF conductivity is determined by a sum of the con-
tribution of hopping between localized states in differ-
ent quantum dots and the contribution of diffusion at
the percolation level. The latter contribution depends
on temperature by an activation law and should slightly
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differ from the experimentally observed static conduc-
tivity. Interpolating the experimental results from the
low- and high-temperature regions by a smooth curve
(Fig. 7) and subtracting from this curve the result
obtained by extrapolating the high temperature data, we
obtain the temperature dependence of the purely hop-
ping contribution to the conductivity. This dependence
is shown in Fig. 8. One can see that the temperature
dependence of the hopping contribution approaches
saturation, which is in qualitative agreement with the
predictions of the renormalized two-site model. If the
saturation region starts at a temperature of T* ≈ 4.5 K,
as in Fig. 8, then the condition ωτ0(T*) ≈ 1 is fulfilled,
where ω = 2πf (f = 30 MHz); hence, τ0(T*) ≈ 5 × 10–9 s.

3.3. Nonlinear Regime 

We investigated the dependence of ∆Γ and ∆V/V on
a magnetic field for various intensities of SAWs.

Figure 9 represents ∆Γ = Γ(H) – Γ(0) as a function
of the magnetic field strength for various intensities of
SAWs for sample 2. The SAW frequency was 28 MHz;
the measurements were carried out at T = 4.2 K. When
the SAW intensity at the input of a sample increased
(the output power of the HF generator increased by
23 dB), ∆Γ was independent of the SAW intensity W;
with a further increase of W, |∆Γ| started to decrease in
absolute value and changed its sign at a certain value
of W. The quantity ∆V/V was virtually independent
of W.

Within the model that accounts for the temperature
dependence of ∆Γ(H), one may assume that the contri-
bution of delocalized charge carriers to the conductivity
increases with the SAW intensity.

Figure 10 represents ∆Γ as a function of the signal
attenuation at the output of the HF generator for a mag-
netic field strength of H = 5.8 T. It is worth noting that
this effect is of threshold character. According to the
preliminary analysis, the threshold value of the electric
field %c induced by the SAWs is roughly proportional
to the SAW frequency and weakly depends on the mag-
netic field. The presence of the threshold and the pro-
portionality of the threshold field to the SAW frequency
qualitatively agree with the assumption that the nonlin-
earity mechanism is attributed to the so-called impurity
breakdown—the tunneling of holes to the mobility
threshold in the inhomogeneous field of the acoustic
wave. This nonlinearity mechanism was observed in
bulk InSb samples [14]. Let us estimate the threshold
electric field %c for this mechanism:

where e is the electron charge. For Ea ≈ 2.5 meV and
f = 30 MHz, such an estimate yields a value of %c ≈
1 V/cm.

%c kEa/2e,=
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The electric field induced by a SAW can be deter-
mined by the following formula [15]:

(3)

where K2 is the electromechanical coupling constant
for LiNbO3; W is the SAW power at the input of a sam-
ple divided by the width of the acoustic beam (which is
equal to the aperture of the interdigital transducers that
generate a SAW in lithium niobate); and b1(k) is a func-
tion that depends on the gap a, depth d of the layer with
quantum dots, and the dielectric constants of lithium
(ε1), vacuum (ε0), and a sample (εs).
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Fig. 10. ∆Γ as a function of the attenuation value at the out-
put of the HF generator for sample 2 at H = 5.8 T and T =
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However, the electric field induced by a SAW at the
input of a sample is very roughly determined in the
experiment because, in addition to the transducer loss,
one should take into account the loss in the transmis-
sion line, which is not matched to a sample. Therefore,
the power at the input of a sample is measured to within
an order of magnitude. Our experimental estimate of
the threshold field by formula (3) yields %c ≈ 4 V/cm,
which, with regard to the aforesaid, does not contradict
the assumption about the impurity breakdown. How-
ever, the unambiguous identification of the nonlinearity
mechanism requires additional investigations.

4. CONCLUSIONS

The complex HF conductivity of samples with a
self-organized lattice of Ge0.7Si0.3 quantum dots in sili-
con has been determined by acoustic methods. We have
shown that, in the low-temperature region (T ≤ 4 K), the
HF conductivity is determined by the hopping over sev-
eral quantum dots and is reasonably interpreted in
terms of the two-site model with a renormalized local-
ization length [9–12]. At extremely low temperatures,
the characteristic relaxation time τ0 is greater than the
period of the acoustic wave. This leads to a weak (log-
arithmic) frequency dependence and power-law tem-
perature dependence of the HF conductivity. As tem-
perature increases, the relaxation time decreases, and,
at T ≈ 4.5 K, the temperature dependence of the hop-
ping contribution approaches saturation, which is
attributed to the transition to the regime of ωτ0 ≤ 1,
where the two-site model predicts very weak (logarith-
mic) temperature dependence and allows one to evalu-
ate the time τ0(4.5 K) ≈ 5 × 10–9 s. As temperature
increases, there arises an additional contribution to the
HF conductivity that depends on temperature by the
activation law. As temperature increases further, this
mechanism becomes the principal one and is inter-
preted as a diffusion over the states at the mobility
threshold. Figure 11 represents, for comparison, the dc

conductivity  measured in a sample whose prop-
erties are close to those of sample 2, and the HF con-

ductivity (  determined from the acoustic measure-
ments on sample 2, as functions of temperature. One
can see that these curves diverge at low temperatures;

moreover,  < , which is characteristic of the
region of hopping conductivity. The curves approach
each other in the range of temperatures where the con-
ductivity through delocalized states seems to appear on
the scene; in this case, the HF conductivity should not
differ from the static conductivity.

In [5], the temperature dependence of magnetoresis-
tance in samples 1 and 2 was studied in magnetic fields
of up to 6 T. The activation behavior of the resistance at
low temperatures in different magnetic fields was
explained within the model of multiparticle correla-

σ1
dc( )

σ1
hf

σ1
dc σ1

hf
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tions of holes localized in quantum dots, which lead to
the formation of electron polarons in a disordered two-
dimensional system. However, the results of the present
paper do not give any grounds for this assumption,
because they are explained by simpler arguments. The
observed temperature dependence of the electric con-
ductivity for T > 5 K was interpreted in [5] as a mani-
festation of variable-range hopping conductivity. In our
view, the absolute value of the conductivity (greater
than 10–6 Ω–1) is too large for the realization of this
mechanism.

Thus, in our view, the hopping mechanism of con-
ductivity in Si/Ge systems with a dense array of self-
organized Ge0.7Si0.3 quantum dots (n = 3 × 1011 cm–2) is
changed, as temperature increases, to the conductivity
through delocalized states. We could distinguish these
mechanisms and investigate their characteristics as
functions of temperature and a magnetic field.

Note that the nature of states at the percolation level
in the material investigated is not quite clear. Appar-
ently, the high density of quantum dots and their large
size may lead to a significant overlap of the wavefunc-
tions of individual quantum dots, as well as to the
strong Coulomb interaction of carriers in different dots.
It is likely that the delocalized states are formed by the
impurity band of boron in silicon; however, the nature
of delocalized states in these systems requires addi-
tional analysis.
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ELECTRONIC PROPERTIES
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Deformation of a Charge Density Wave in the Vicinity 
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Abstract—The current–voltage characteristics of Cu–K0.3MoO3 point contacts between a metal and a semi-
conductor with a charge density wave (CDW) are studied for various diameters of the contacts in a wide range
of temperatures T and voltages V. In the interval 80 K & T & 150 K, the current–voltage characteristics are cor-
rectly described in the framework of a semiconductor model: screening of an external electric field causes CDW
deformation, shifts the chemical potential of quasiparticles, and changes the point contact resistance. It is shown
that the chemical potential is above the middle of the Peierls gap in equilibrium and approaches the middle upon
an increase in temperature. The current–voltage characteristics of point contacts with a diameter d * 100 Å
exhibit a sharp decrease in resistance for |V | > Vt , which is associated with the beginning of local CDW sliding
within the contact region. The Vt(d, T) dependence can be explained by the size effect in the CDW phase slip.
© 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A charge density wave (CDW) emerges in a low-
dimensional conductor upon a decrease in temperature
as a result of the Peierls transition. In this case, an
energy gap 2∆ is formed on the Fermi surface, as a
result of which the conductor passes to a semimetallic
(NbSe3) or semiconducting (blue bronze K0.3MoO3 and
TaS3) state [1]. The emerging state is characterized by
a periodic modulation of electron density ρ = ρ0 +
ρ1cos(qx + φ), where ρ0 and ρ1 are the mean value and
amplitude of electron density modulation, q = 2kF is the
wavevector of the CDW, and φ is the CDW phase.
Three-dimensional CDW ordering allows us to treat it
as an electronic crystal. In the Peierls state at a finite
temperature, single-electron excitations (electrons and
holes) always exist and determine the conductivity and
other kinetic properties of the system in electric fields
below the critical value (i.e., when a CDW cannot move
in the crystal as a single entity). Allowance for the
effect of single-electron excitations is most important
for CDWs with complete dielectrization of the electron
spectrum. In this case, a Peierls conductor possesses
physical properties analogous to those of a semicon-
ductor. However, considerable differences between the
properties of semiconductors with CDWs and conven-
tional semiconductors exist even in weak electric fields.
For example, any change in the CDW wavevector is
associated with a change in the CDW charge and, hence
(in view of electroneutrality), with a change in the bal-
ance between thermal single-electron excitations [2].
This, in turn, may lead to a considerable change in the
linear conductivity ensured by these excitations at a low
1063-7761/05/10106- $26.001130
temperature. Thus, a change in the CDW wavevector
plays the same role in semiconductors with CDWs as
doping in conventional semiconductors—it changes the
concentration of electrons and holes. The concept of a
semiconductor with CDWs as an ordinary semiconduc-
tor with a doping level depending on external perturba-
tion (temperature T or electric field E) was used
in [3, 4] for describing the thermopower and conductiv-
ity of TaS3.

The development of these ideas led to the construc-
tion of a semiconductor model of CDWs [5]. The
essence of this model is that transport properties for a
stationary (pinned) CDW are determined by electron
and hole excitations over the Peierls gap 2∆, while the
difference p – n in the linear concentrations of quasipar-
ticles changes upon a change in the CDW wavevector
q: q – q0 = (p – n)/π, where q0 is the value of q at T = 0.
It was shown in the framework of this model that the
temperature dependence of conductivity in unipolar
semiconductors with CDWs is mainly determined by
the q(T) dependence, q(T) – q0 ∝  exp(−∆/kT), where k
is the Boltzmann constant. The behavior of the ther-
mopower, Hall effect, and temperature hysteresis in
conductivity was adequately explained for various
compounds in terms of the shift in the chemical poten-
tial ζ relative to the middle of the band gap. The chem-
ical potential shift δζ is in one-to-one correspondence
with the CDW deformation δq, i.e., with deviation of q
from the equilibrium value caused by a change in tem-
perature or electric field.

The application of an electric field smaller than or
on the order of the threshold field Et to a Peierls semi-
 © 2005 Pleiades Publishing, Inc.
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conductor in the vicinity of contacts with a conducting
metallic leads results in the extension or compression
of the CDW. Upon a further increase in the field, the
deformation attains its critical value, the CDW is rup-
tured and generated or annihilated over a CDW period;
i.e., phase slip centers are formed and the CDW begins
its motion.

In traditional geometry for measuring transport
properties, the area of contact leads made of a normal
metal is comparable to the transverse size of samples
with CDWs; in this case, the critical shift in the chemi-
cal potential is as a rule on the order of a few millielec-
tronvolts (i.e., is much smaller than the value of kT
practically at all temperatures). The conversion of the
current of normal charge carriers into the CDW current
in this geometry was studied in detail in [6, 7]. Mea-
surements of the spatial variation of the CDW wavevec-
tor showed that the CDW deformation in the contact
region exists on the macroscopic scale of lengths. It was
shown in our previous publication [8] that the situation
changes qualitatively if the metal–CDW contact is of
microscopic size. In this case, the electric field is
mainly localized in the contact region with a size on the
order of the contact diameter [9]. A very large CDW
deformation and, accordingly, a considerable shift in
the chemical potential for a stationary CDW can be
attained. The proposed technique makes it possible in
principle to determine the local position of the chemical
potential level at various temperatures.

Here, we report on the results of a detailed experi-
mental study of the characteristics of Cu–K0.3MoO3

point contacts in a temperature range of 77–200 K. The
experimental results are used for determining the tem-
perature dependences of the position of the chemical
potential and the electric field screening coefficient
near the contact between the normal metal and blue
bronze. We also show that a transition to the local slid-
ing of a CDW can be observed upon an increase in the
contact diameter. The behavior of the threshold charac-
teristics of CDWs in this case can be considered from
the standpoint of the existence of a peculiar size effect
associated with the fact that the phase slip conditions
are determined by the diameter of the point contact.

In Section 2, physical processes in the vicinity of a
point contact are described in the framework of the
semiconductor model. The experimental technique is
described in Section 3. The results of measurements of
the temperature evolution in high-resistance Cu–
K0.3MoO3 contacts are described in Section 4. In Sec-
tion 5, the results of analogous studies for low-resis-
tance contacts are considered. The effect of the contact
diameter on the characteristics of a Peierls conductor in
the vicinity of the contact with a normal metal are also
discussed. In Section 6, the results are considered in the
framework of the semiconductor model of CDWs.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. THEORETICAL MODEL

It was mentioned above that the electric field is
localized in a small region in the vicinity of a point con-
tact [9]. If both materials are isotropic, the size of this
region is approximately equal to the contact diameter.
In our case of the contact between a normal metal and
an anisotropic semiconductor with CDWs, the depth of

this region is larger by a factor of , where A is the
conductivity anisotropy (of the order of 103 for
K0.3MoO3 [1]) in the case when the current flows along
conducting chains. Let us consider the processes occur-
ring in such a region for a contact between a metal (Cu
in our case) and blue bronze (K0.3MoO3) upon the
application of a positive voltage. The results obtained
in [8] show that the CDW deformation δq in the vicin-
ity of the point contact under the action of the electric
field disturbs the balance between electrons and holes
(i.e., leads to a change in the concentration difference
p – n). Consequently, a chemical potential shift δζ ≈
δq(dζ/dq) emerges in this case. As a result, the contact
resistance changes.

It is known from the measurements of thermopower
and the Hall effect [10] that blue bronze exhibits n-type
conductivity in the Peierls state. This means that the
chemical potential in equilibrium is shifted above the
effective middle of the Peierls energy gap determined
from the condition µnn = µpp, where µn and µp are the
mobilities of electron and hole excitations, respectively.

Figure 1 shows the energy band diagram in the
vicinity of a point contact. The positive sign of the bias
voltage V corresponds to the downward shift of the
chemical potential (we assume that δζ > 0). In this case,
the maximum of the contact resistance corresponds to
the position of the chemical potential at the effective

A

E

eV

ζ

Fig. 1. Diagram illustrating distortion of energy bands in the
vicinity of a metal–CDW (n-type semiconductor) point con-
tact for a positive bias voltage. The dashed curve marks the
effective middle of the Peierls gap (electrostatic potential);
ζ is the chemical potential measured from the middle of the
gap. In the vicinity of the contact, the electric field is partly
screened: the slope of the electrostatic potential is smaller
that of the electrochemical potential (middle solid curve).
The electrochemical potential intersects the middle of the
gap (transition from the n-type to p-type conductivity).
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middle of the gap. Upon a further increase in the volt-
age, a transition from electron to hole conductivity
takes place. Indeed, it can be seen from Fig. 1 that the
CDW deformation near the contact occurs in such a
way that the electric field determined by the electro-
static potential gradient (dashed curve in Fig. 1)
decreases in the vicinity of the contact: the CDW is
deformed under the action of this electric field until the
field vanishes or its action is compensated by pinning
forces.

For an appreciable CDW deformation, the chemical
potential may be located below the middle of the gap,
which corresponds to the hole-type conductivity. The
dependence of the contact resistance R on the bias volt-
age is asymmetric with a peak shifted to the region of
positive voltages. The transition through the peak is
precisely the transition to the hole-type conductivity. To
obtain a quantitative description of the R(V) depen-
dence, we must take into account the fact that the
change in the resistance of the contact region occurs
nonuniformly (see Fig. 1). For simplicity, we present R
as the sum R(δζ) + R0, where R0 is independent of V,
while R(δζ) is determined by the conventional formula
for the conductivity of quasiparticles (µnn + µpp). We
assume that quantity δζ is proportional to the voltage
(δζ = bV). The case when b = 1 corresponds to complete
screening of the applied field, i.e., the absence of bend-
ing in the energy bands depicted in Fig. 1. In other
words, we represent the region of the voltage drop as
the series connection of two subcircuits (with a uniform
shift of the chemical potential and with a resistance
independent of V):

(1)

This is an expression with four fitting parameters: V0
corresponds to the maximal resistance (the chemical
potential is at the effective middle of the gap), while
quantity bV0 gives an estimate of the initial shift ζ0 in
the chemical potential relative to the effective middle of
the gap. The value of R1 is several times higher than R0
as a rule; i.e., the CDW is deformed practically in the
entire region of the contact voltage drop. Formula (1)
was successfully used in [8] for describing the R(V)
dependences for Cu–K0.3MoO3 point contacts at T =
77 K. The properties of Cu–TaS3 point contacts were
studied and analyzed analogously [11]; voltage V0
turned out to be negative, which corresponds to the
p-type quasiparticle conductivity, which is known to be
inherent in TaS3 [12].

3. EXPERIMENT

Blue bronze crystals differ from other quasi-one-
dimensional conductors with CDWs in their relatively
large sizes, which facilitates the preparation of point
contacts, including those for passage of current through

R V( )
R1

b V V0–( )/kT[ ]cosh
------------------------------------------------- R0.+=
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chains. We selected crystals with a perfect surface per-
pendicular to the b axis of the crystal. In some cases, the
surface was obtained by directional cleavage of the ini-
tial crystal. Electrochemically sharpened copper wires
50 and 75 µm in diameter were used as normal elec-
trodes. The radius of the tip curvature did not exceed
1 µm. Point contacts were formed directly at a low tem-
perature with the help of a precision mechanical trans-
mission system. The contact diameter d was estimated
from the value of its resistance R using the Sharvin for-
mula [13]

where ρ = 0.2 Ω cm is the resistivity of K0.3MoO3 along
the chains at T = 77 K and l = 10 nm is the mean free
path [1]. The entire system was in a gaseous heat-
exchange medium, in which the temperature can be
varied from 77 to 300 K. We prepared and studied con-
tacts in a wide range of contact resistances from units
to several hundreds kiloohms at T = 78 K. Applying a
voltage to high-resistance contacts (R * 30–40 kΩ ,
d & 100 Å), we could not attain the critical CDW defor-
mation corresponding to the beginning of phase slip. In
the case of large-area contacts, we could observe a local
CDW sliding in the contact region. It was difficult to
obtain temperature dependences for high-resistance
contacts due to their low stability (especially upon a
change in temperature). In some cases, however, we
could trace the characteristics of such contacts in wide
temperature ranges. In addition, temperature evolution
of the contact characteristics was also studied as fol-
lows: the characteristics of two or three contacts were
measured at each preset temperature.

4. HIGH-RESISTANCE CONTACTS

It was shown in [8] that an appreciable CDW defor-
mation can be attained for point contacts with a small
characteristic size (as a rule, d & 100 Å); in this case,
the chemical potential may be shifted below the effec-
tive middle of the Peierls gap (δζ > ζ0). The measure-
ments were made at the liquid nitrogen temperature. In
this section, we describe the results of analysis of char-
acteristics for such contacts upon a change in tempera-
ture. Figure 2 shows the R(V) dependences for a con-
tact, for which the measurements could be made in a
temperature range of 80–190 K. At a low temperature,
the curves are asymmetric and the resistance peak is
displaced towards positive voltages.

It can be seen that the voltage V0 corresponding to
the resistance peak decreases upon an increase in tem-
perature and becomes close to zero at T ≈ 140 K. At
T > 140 K, the R(V) dependence becomes almost sym-
metric. It is interesting to note that the nonlinearity of
the current–voltage characteristic (IV curve) is also
preserved above the Peierls transition temperature TP =

R
ρl

a2
-----, a≈ d A,=
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183 K, which indicates the existence of a fluctuation
CDW in K0.3MoO3 at T > TP . In this case, the observed
nonlinearity may be associated with a lowered density
of states near the Fermi level, which is a result of fluc-
tuations of the CDW order parameter at T > TP

(pseudogap) [14]. In accordance with the results
obtained in [15], the fluctuation threshold contribution
to conductivity was observed for thin TaS3 samples at
temperatures exceeding the Peierls transition tempera-
ture by 40 K.

At T < 80–90 K, the R(V) curves become noticeably
asymmetric not only about V = 0, but also relative to V0
(i.e., these curves cannot be described by expression (1)
any longer). Such a form of the R(V) dependence obvi-
ously reflects low-temperature anomalies of CDWs
[16]. Such effects will not be considered here. The
results of investigation of point contacts between a nor-
mal metal and blue bronze at low temperatures are
described in [17].

To verify whether or not the observed characteristics
of point contacts can be attributed to the properties of
microscopic volumes of a Peierls conductor, it is expe-
dient to compare the temperature dependences of the
point contact resistance with an analogous dependence
obtained for a bulk sample. Light circles in Fig. 3 show
the resistance obtained for the point contact whose
characteristics are represented in Fig. 2 at V = 0, while
dark circles correspond to V = V0. The solid straight
line corresponds to the activation dependence at an acti-
vation temperature of T0 = 720 K, which is in good
agreement with the available results of measurement of
the Peierls gap ∆ ≈ 50–70 meV (500–700 K) in
K0.3MoO3, which were obtained in tunnel experi-
ments [18] in which the reflection and absorption of
light [19] were measured. The obtained value of T0 is
also in good agreement with the activation energy of
conduction for bulk blue bronze samples [1, 10]. The
experimental values of R for V = V0 at low temperatures
are in better agreement with the activation dependence
than the values of resistance at V = 0. This result could
be expected: in accordance with relation (1), the value
of R(V0) corresponds to the position of the chemical
potential at the middle of the gap.

To obtain more reliable information in a temperature
range of T = 80–200 K, we measured the characteristics
of various contacts at several preset values of tempera-
ture. In spite of the spread in these values, the qualita-
tive pattern of temperature variation of the IV curves
was the same for all contacts and corresponded to the
data depicted in Fig. 2. For example, the value of volt-
age V0 decreased with increasing temperature. At high
temperatures (T > 140 K), the R(V) dependences for all
contacts became almost symmetric relative to the
change in the polarity of the applied voltage.

Figure 4 shows by way of example the results
obtained for three different contacts at T = 119.6 K. At
a fixed temperature, the voltage corresponding of the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
resistance peak on the R(V) curves was almost the same
for all contacts and corresponded to approximately the
same value of bias voltage.

5. LOW-RESISTANCE CONTACTS

Point contacts with a resistance R(V) < 30 kΩ at
nitrogen temperature exhibited a considerably higher

10

1

0.006 0.008 0.010 0.012

T–1, K–1

R = V/I, kΩ

Fig. 2. R(V) dependences for a contact in the temperature
range 80–190 K.
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172.9
188.7180.6

Fig. 3. Temperature dependences of the resistance of the
same contact as in Fig. 2 at V = 0 (light circles) and V = V0
(dark circles). The slope of the straight line corresponds to
the activation energy T0 = 720 K.
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1134 SINCHENKO, POKROVSKIŒ
stability, which allowed us to analyze their characteris-
tics in detail in a wide temperature range. A distinguish-
ing feature of the characteristics of such contacts is a
sharp decrease in the resistance at a certain bias voltage

35

–200 –100 0 100 200
V, mV

Rd, kΩ

25

15

5

Fig. 5. Rd(V) dependences for a Cu–K0.3MoO3 contact with
R = 26 kΩ at T = 77 K and V = 0.

Fig. 4. Experimental R(V) dependences for three different
Cu–K0.3MoO3 contacts at T = 119.6 K (solid curves). The
dashed curves describe the results of fitting with the help of
formula (1).
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±Vt , which is often of the “breakdown” type. For better
visualization, it is expedient to plot the differential and
not the ordinary resistance of such contacts as a func-
tion of voltage. Figure 5 shows the dependence of the
differential resistance Rd = dV/dI on the bias voltage at
T = 77 K for a contact in which this effect is manifested
most clearly. For V = Vt > 0, the resistance of this con-
tact abruptly decreases by almost an order of magni-
tude. For V = –|Vt |, a sharp variation of Rd can also be
seen. However, the amplitude of the resistance jump for
the negative bias voltage is much smaller than for the
positive bias voltage. In most cases, the jump in differ-
ential resistance can be clearly traced for both voltage
polarities.

Figure 6 shows the temperature evolution of the
Rd(V) dependence for a contact of this type in a temper-
ature range of 80–154 K. It should be noted that the
Rd(T) curve for zero bias voltage follows the activation
dependence with an activation energy of T0 ≈ 700 K in
this case also.

At a high temperature (T > 130 K), the dependences
become almost symmetric about V = 0 and the curves
are qualitatively similar to differential IV curves for a
typical conductor with CDWs. In the latter case, a sharp
decrease in the differential resistance is observed after
the attainment of the threshold electric voltage corre-
sponding to the beginning of CDW slip. Figure 7 shows
the temperature dependence of voltage Vt for the same
contact.

In some cases, we could trace the variation of the
parameters of contacts upon a decrease in the resistance

10

–200 –100 0 100 200
V, mV

Rd, kΩ

1

Fig. 6. Temperature evolution of the Rd(V) dependence for
a low-resistance Cu–K0.3MoO3 contact. The temperature
increases from 80 to 154 K in the downward direction.
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(i.e., upon an increase in their area). The latter was
attained by smoothly increasing the force applied to the
tip of the normal electrode. Figure 8 shows the differ-
ential IV curves obtained at T = 77 K for one of the con-
tacts. It can be seen that, upon a decrease in the contact
resistance, the value of Vt monotonically decreases.

6. DISCUSSION

We begin the discussion of results with high-resis-
tance contacts. Using formula (1), we obtained the the-
oretical R(V) dependences and varied the fitting param-
eters to attain the best agreement with the experimental
data. Dashed curves in Fig. 4 illustrate the results of this
procedure. Dark circles in Fig. 9 show the initial posi-
tion of the chemical potential at various temperatures,
obtained as a result of the above procedure for the sam-
ple whose R(V) dependences are depicted in Fig. 2.
Light circles in the same figure represent the data
obtained as a result of fitting for the R(V) dependences
measured at these temperatures for various contacts.
The spread in the values in the latter case can be
explained by the fact that pinning leads to spatially non-
uniform deformation of CDWs, which can be mani-
fested in spatial fluctuations of the chemical potential

on the order of  [20], which may reach
1 meV at low temperatures. However, qualitative
agreement between the results obtained in both types of
experiments can be clearly seen. In further analysis of
the results, we will disregard the initial deformation (at
zero bias voltage).

It can be seen from Fig. 9 that the upward shift in the
chemical potential decreases upon heating and virtually
vanishes at T ≈ 140 K. Above this temperature, negative
values of V0 were obtained in some cases (the initial
position of the chemical potential is lower than the mid-
dle of the energy gap). A certain additional shift of the
chemical potential may be due to the initial CDW
deformation (at zero bias voltage) discussed above.

However, the most probable explanation is as fol-
lows. With increasing temperature, the resistance of the
contact region of blue bronze decreases. The relative
contribution from the resistance of the boundary
increases accordingly. In this case, one should expect a
manifestation of barrier (tunnel) effects in the charac-
teristics of point contacts (namely, the effect of reflec-
tion of normal carriers injected from the normal metal
from the barrier associated with the Peierls energy gap)
[21, 22]. The reflection of carriers is manifested in the
experiment in the form of excess differential resistance
of the contact between the normal metal and the semi-
conductor with CDWs in the region of |V | < ∆. This
effect was reliably observed in the system with CDWs
with incomplete dielectrization of the electron spec-
trum (in NbSe3) [23, 24], in which the presence of non-

Et dζ /dq( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
condensed carriers in CDWs ensures effective screen-
ing of the electric field and, hence, the absence of a
noticeable band distortion in the contact region.

Figure 10 shows the curves describing the differen-
tial resistance of the contact whose characteristics are
depicted in Fig. 2 in the range of low bias voltages at
temperatures close to TP . It can be seen that, as we
approach TP , the curves become more and more asym-
metric relative to the Rd peak and exhibit a fine struc-

50

0.006 0.008 0.010 0.012

T–1, K–1

Vt, mV

60

–200 –100 0 100 200

V, mV

Rd, kΩ

40
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30
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10

Fig. 7. Temperature dependence of the bias voltage Vt
applied to the contact whose IV curves are shown in Fig. 6.
The dashed line describes the function V = V0exp(T0/T),

where T0 = 200 K.

Fig. 8. Rd(V) dependences for a Cu–K0.3MoO3 contact
upon a decrease in its resistance (increase in diameter) at
T = 77 K.
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ture. An asymmetric form of the IV curves for a tunnel
structure of the metal–insulator–CDW type was
recently obtained theoretically in [25]; for |V | > ∆/e,
where oscillations of the density of states are pre-
dicted (!). Such a behavior can be explained by the
presence of the open CDW boundary.

Differential IV curves of a direct metal–CDW con-
tact (without an insulating barrier) also reflect peculiar-
ities of the density of states, which is confirmed by the
results obtained by studying materials with CDWs and
with a semimetallic ground state [23, 24]. In the case of

80 120 160 200

T, K

ζ0, meV

10

5

0

–5

Fig. 9. Temperature dependence of the initial chemical
potential shift relative to the middle of the energy gap for
the contact shown in Fig. 2 (dark circles) and for various
contacts formed at fixed temperatures (light circles).

0.8
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Rd, kΩ

0.6

0.4

0.2

156.3 K

166.5

172.9

184.5

188.7

179.2

Fig. 10. Temperature dependence of the differential IV
curves of the contact shown in Fig. 2 in the region of small
bias voltages at a temperature close to TP . The arrows indi-
cate approximate positions of voltages corresponding to the
energy gap.
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complete dielectrization of the spectrum upon the
Peierls transition (the case with K0.3MoO3) at low tem-
perature, these features are indistinguishable against
the background of much stronger effects of CDW
deformation in the contact region. Tunnel effects in the
metal–K0.3MoO3 point contact can be manifested at
temperatures close to TP . Obviously, the energy gap is
strongly blurred at so high temperatures. Arrows in
Fig. 10 denote the approximate positions of the bias
voltages corresponding to the Peierls energy gap. It can
be seen that this singularity in IV curves is manifested
at T ≈ 160 K. It should be noted once again that these
features of IV curves corresponding to the Peierls
energy gap are also observed at T > TP , which may indi-
cate the existence of the fluctuation order parameter of
CDWs.

As a result of manifestation of tunnel effects, the
dependences of resistance R = V/I on the bias voltage in
a temperature range near TP are also asymmetric with
the resistance peak displaced to the region of negative
voltages. Consequently, the description of characteris-
tics of contacts only in the framework of the semicon-
ductor model based on formula (1) disregarding tunnel
effects in the temperature range 160–190 K is not quite
correct.

An interesting result was obtained for the screening
coefficient b in approximating the R(V) dependences by
formula (1). Figure 11 shows the temperature depen-
dence of coefficient b for the same contact as in Fig. 2.
It can be seen that screening of the field by a CDW
decreases with temperature, which may indicate an
increase in transverse rigidity and, hence, coherence of
the CDW. Indeed, the electric field deforms the CDW in
the local region in the vicinity of the contact. However,
owing to the interaction with neighboring chains (pin-
ning), the deformation region turns out to be larger and
increases upon cooling. This process can be treated as
an effective increase in the coherence volume.

Conversely, CDW screening at T > 140 K becomes
almost complete; i.e., the electrostatic potential does
not change at the sample surface. The screening param-
eters obtained for individual contacts at fixed tempera-
tures exhibited a considerable spread in the values of b
and are not shown in the figure. However, the general
tendency towards a decrease in screening (coefficient b)
upon cooling could be traced in all cases.

The electric field penetration depth in the semicon-
ductor with CDWs increases with the contact diameter.
Phase slip is facilitated in this case. Indeed, a single
event of phase slip corresponds to the emergence or dis-
appearance of a CDW period. In this case, the change
in the wavevector can be estimated as δq ≈ 2π/a, where

a ≈ d  is the diameter of the region of field penetra-
tion to the bulk of the sample; the corresponding value

A
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of δζ2π can easily be determined if we know the temper-
ature dependence R(T) of the resistance:

(2)

The value for dζ/dq was borrowed from [20], where the
temperature dependence of mobilities µ was ignored.
Until δζ reaches a value approximately equal to δζ2π,
phase slip, as well as the propagation of the CDW, is
ruled out. The value of δζ2π is inversely proportional to
a and, hence, to the contact diameter d. As the value of
d increases, it becomes possible to attain the critical
deformation of the CDW at a certain bias voltage Vt . In
a certain sense, this voltage can be treated as the critical
voltage for the onset of local (over a length on the order
of a) CDW sliding. At a lower voltage (i.e., smaller
value of δζ), the appearance or disappearance of a
CDW period over length a is disadvantageous since it
would lead to the emergence of an even stronger CDW
deformation of the opposite sign.

The above scenario of CDW depinning determined
by phase slip is apparently realized in low-resistance
contacts whose characteristics are depicted in Figs. 5,
6, and 8. Estimate (2) gives a reasonable value of δζ2π;
substituting T = 120 K, R(T)/R(300 K) = 30, and a =
300 Å into this formula, we obtain δζ2π ≈ 10 meV,
which is comparable with the value of Vtb (see Figs. 7
and 11). To obtain this estimate, the value of the bulk
threshold field is not required; i.e., CDW breakdown is
not determined by impurity pinning in the given model.

The temperature behavior of the threshold voltage Vt

in point contacts differs from the temperature evolution
of the threshold field Et in bulk K0.3MoO3 samples.
Indeed, the value of Et for blue bronze at T > 50 K either
increases monotonically with temperature [10], or
increases in the interval 50 K < T < 100 K and decreases
upon a further increase in temperature [26] depending
on the crystal quality. It can be seen in Fig. 7 that the
value of Vt in our case monotonically decreases in the
entire temperature range 80–160 K. This is not aston-
ishing since the beginning of CDW slip in the case of a
point contact is determined by phase slip rather than by
CDW pinning. Expression (2) qualitatively describes
the increase in Vt upon cooling. From the standpoint of
physics, such a behavior is associated with an increase
in the CDW elastic modulus dζ/dq. The experimental
results are satisfactorily described by a dependence of
the type V = V0exp(T0/T), where T0 = 200 K (dashed
straight line in Fig. 7). This activation energy is less
than half the value of ∆, which contradicts formula (2).
Some experimental data indicate, however, that the
CDW elastic modulus increases upon a decrease in
temperature at a lower rate [27]. The decrease in the
value of dζ/dq is probably associated with a finite den-
sity of states in the gap. The existence of such states in
semiconductors with CDWs was predicted theoreti-

δζ2π δq
dζ
dq
------ kT

2π
aq
------ R T( )

R 300 K( )
------------------------.≈ ≈
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cally in [28] for amplitude solitons. In addition, fluctu-
ation-induced blurring of the edges of the electron and
hole bands should also be taken into account.

Figure 12 shows the dependence of voltage Vt on the

quantity 1/  proportional to the contact diameter
[13]. It can be seen that the threshold voltage monoton-
ically decreases with increasing contact diameter,
which also agrees with expression (2). A increase in the
threshold field upon a decrease in the transverse size of
the samples was observed earlier in the study of the size
effect in NbSe3 [29–31] and in TaS3 [4]; it was con-
cluded that Et ∝  1/d, where d is the sample thickness. It

Rd 0( )
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b
1.0

0.8

0.6

0.4

0.2

0

Fig. 11. Temperature dependence of the screening coeffi-
cient b for the contact whose characteristic are given in
Fig. 2.
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Fig. 12. Dependence of the threshold voltage Vt on

1/  ∝  d for the contact shown in Fig. 8 at T = 77 K.

The dashed curve corresponds to the hyperbolic depen-
dence Vt ∝  1/d.

Rd 0( )
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can be seen from Fig. 12 that our experimental values
of Vt are also in good agreement with the hyperbolic
dependence (dashed curve). However, in accordance
with relation (2), CDW breakdown is associated not
with overcoming of bulk pinning, but with the size lim-
itation imposed on phase slip (i.e., phase slip occurs
over a limited length). Thus, relation (2) describes the
dependences of Vt on the temperature and size of the
contact; these dependences can be explained by the size
effect in phase slip.

7. CONCLUSIONS

Thus, we have studied and analyzed the evolution of
the properties of metal–CDW point contacts upon a
change in the contact diameter and temperature. In the
temperature range 80–150 K, the experimental data can
be adequately described in the framework of the semi-
conductor model of CDWs [5]. We demonstrated that
the contact resistance is determined by a microscopic
region whose size is determined by the contact diame-
ter and anisotropy in the conductivity of a Peierls sam-
ple. It is in this region that the conductivity changes
appreciably under the action of the electric field:
screening of the external electric field leads to CDW
deformation, chemical potential shift for quasiparticles,
and a change in the point contact resistance. The tem-
perature dependence of the position of the chemical
potential has been determined. It is shown that the
chemical potential in equilibrium is above the middle
of the Peierls gap and approaches its middle upon an
increase in temperature. It is found that local movement
of CDWs in the contact region can be observed only for
large values of the contact diameter (d * 100 Å). For
this type of contacts, we have determined the depen-
dence of the CDW breakdown voltage on the contact
diameter and temperature and proposed a model
explaining these dependences by the size effect in the
CDW phase slip. At temperatures close to TP , the dif-
ferential IV curves of the contacts reveal the features of
the spectrum of single-particle excitations. The
observed nonlinearity of the IV curves at T > TP is
explained by the existence of the CDW fluctuation
order parameter.

On the whole, the results open a new field in CDW
physics, i.e., semiconductor and dynamic properties of
CDWs in microscopic volumes under huge electric
fields and CDW deformation. It is shown that a point
contact can be used as a local probe for studying the
energy structure of CDWs. Point-contact studies of
CDWs are being continued. It would be interesting to
study point contacts using metals with various values of
the work function as well as samples with various val-
ues of the bulk threshold field Et as normal counterelec-
trodes. Of special importance is the study of metal–
CDW point contacts at temperatures below liquid nitro-
gen temperature.
JOURNAL OF EXPERIMENTAL 
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Abstract—Nonlinear evolution of two-dimensional convection patterns is considered for an incompressible
binary mixture with negative Soret coupling in a horizontal layer subjected to finite-frequency vertical vibration
of arbitrary amplitude. A numerical analysis is performed under impermeability conditions on rigid boundaries,
which can be implemented in a laboratory experiment. The dependence of flow intensity on vibration amplitude
is examined for the first and second resonance regions in the parameter space of thermal vibrational convection.
The numerical results agree with the stability boundaries of equilibrium states predicted by linear theory. A
qualitative difference in the dynamics of nonlinear oscillation is exposed between the regions corresponding to
critical perturbations at the subharmonic and fundamental frequencies. Regular and chaotic dynamics, as well
as hysteretic transitions between the fundamental and subharmonic modes, are revealed. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

Investigations of phenomena leading to pattern for-
mation in homogeneous systems date back to studies by
Bénard and von Kármán. Self-organization processes in
multicomponent fluid mixtures lead to various flow
regimes. Recent experimental [1–3] and theoretical [4–7]
investigations of convection in binary fluid mixtures
have revealed regimes characterized by diverse spatial
and temporal behavior. The complexity of convection
patterns has been attributed to thermodiffusion (Soret
effect), which manifests itself as a concentration gradi-
ent induced by a temperature gradient. In the case of
negative Soret coupling, when diffusion of the lighter
component toward the “cold” boundary reduces buoy-
ancy effects, binary-mixture convection under constant
gravity can be caused by oscillatory instability. Nonlin-
ear evolution of perturbations under supercritical con-
ditions can result in the formation of stationary pat-
terns, standing or traveling waves, localized traveling
waves, and “chevrons.”

In applications, the performance of technological
systems can be altered by vibration, ac electric field, or
temperature modulation. The Kapitza pendulum is a
classical example of vibration-induced qualitative
change in the response of a physical system to pertur-
bation of its state of equilibrium [8]. Stability and non-
linear dynamics of convective systems are also strongly
modified by external modulation [9], which can be used
1063-7761/05/10106- $26.001140
to control fluid dynamics and heat or mass transfer in
various technological systems.

The effect of vibration on the regime of binary fluid
convection, steady flow pattern, and the possibility of its
destabilization is a subject of considerable interest [10].
The analysis presented in [11] was focused on convec-
tive stability of a quasi-equilibrium state and supercrit-
ical regimes of Soret-driven binary-mixture convection
between impermeable horizontal solid plates in the
limit of high-frequency vibration with interdependent
amplitude and frequency under off-resonance condi-
tions. It was shown that thermally driven convection in
a binary mixture with negative Soret coupling evolves
into a stationary pattern rather than an oscillatory
regime of thermal vibrational convection. The thresh-
old for the onset of this pattern differs from the critical
condition predicted by linear stability theory and
depends on the nonlinear dynamics of the system.

In this paper, we analyze the nonlinear stage of con-
vection driven by a temperature gradient across a hori-
zontal layer of a mixture with negative Soret coupling
between impermeable solid boundaries. The system is
subjected to finite-frequency vertical vibration of arbi-
trary amplitude. We examine the effect of vibration
amplitude on the evolution of convection patterns cor-
responding to different resonance regions in the param-
eter space and reveal hysteretic transitions between
nonlinear oscillations at the fundamental and subhar-
monic frequencies, as well as transitions between regu-
lar and chaotic dynamics.
 © 2005 Pleiades Publishing, Inc.
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2. STATEMENT OF THE PROBLEM

Consider the layer of a binary fluid mixture between
perfectly heat-conducting impermeable solid plane
boundaries located at z = 0 and z = h and held at con-
stant temperatures T(0) = Θ and T(h) = 0. (The cases of
Θ < 0 and Θ > 0 correspond to heating from above and
below, respectively.) Even though no concentration
gradient is imposed, the relative motion of the mixture
components due to thermodiffusion (Soret effect) gives
rise to a concentration gradient even in an initially
homogeneous mixture [12].

The equation of state is

(1)

where  is the mixture density corresponding to the
mean values of temperature and concentration; T and C
are the deviations of temperature and concentration
from their respective mean values; and

are the thermal and solutal expansion coefficients,
respectively. Assuming that C is the concentration of
the lighter component, we have βC > 0.

The layer harmonically oscillates along the z axis,
with frequency Ω and amplitude b. In the oscillating
frame of reference, the modulated gravitational acceler-
ation is g + bΩ2sin(Ωt)n, where g is the static gravita-
tional acceleration and n is the unit vector along the z
axis.

The equation of motion for the binary mixture con-
tains terms representing the forces due to concentration
gradients in a modulated gravity field. In addition to the
heat and continuity equations, the model includes an
evolution equation for the concentration of the lighter
component in which the concentration flux contains
both Fickian and Soret diffusion terms:

where D is the diffusion coefficient and α is the Soret
coefficient. The temperature and concentration gradi-
ents are antiparallel and parallel in systems with α < 0
and α > 0 (positive and negative Soret coupling),
respectively. In what follows, both D and α are assumed
to be independent of temperature.

Using h, h2/ν, χ/h, Θ, βTΘ/βC , and νχ/h2 (where ν
is kinematic viscosity and χ is thermal diffusivity) as
reference length, time, velocity, temperature, and pres-

ζρ 1 βTT– βCC–( ),=ζρ

ζρ

ζρζρβT
1--- ∂

∂T
------ 

  , βC–
1--- ∂

∂C
------- 

 –= =
ζρζρ

ζρj D ∇ C α∇ T+( ),–=

ζρ
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sure, respectively, we write the convection equations in
the Boussinesq approximation as

(2)

Here, v is the flow velocity, and p is the dynamic pres-
sure. The dimensionless parameters include the separa-
tion ratio ψ (ψ > 0 and ψ < 0 correspond to positive and
negative Soret coupling, respectively), Gr is the
Grashof number, Grv is the vibrational Grashof number,
Pr is the Prandtl number, and Sc is the Schmidt number.

Boundary conditions of different types can be used
to analyze binary fluid convection. In terms of experi-
mental feasibility, the most realistic conditions corre-
spond to impermeable isothermal rigid boundaries:

(3)

In a state of hydrostatic equilibrium, the vertical
concentration and temperature gradients are balanced:

(4)

Pressure is eliminated by introducing the stream-
function Ψ defined by the relations

(5)

∂v
∂t
------

1
Pr
----- v ∇⋅( )v+ ∇ p– ∆v+=

+ Gr Grv ωtsin+( ) T C+( )n,

∂T
∂t
------ v ∇ T⋅+

1
Pr
-----∆T , divv 0,= =

∂C
∂t
------- v ∇ C⋅+

1
Sc
------∆ C ψT–( ),=

Gr
gβΘh3

ν2
----------------, Grv

bΩ2βΘh3

ν2
------------------------, Pr

ν
χ
---,= = =

ψ
βCα
βT

----------, Sc–
ν
D
----, ω Ωh2

ν
----------.= = =

z 0: v 0, T 1, ∂C
∂z
------- ψ∂T

∂z
------– 0,= = = =

z 1: v 0, T 0, ∂C
∂z
------- ψ∂T

∂z
------– 0.= = = =

v 0, T0 z, C0– ψ z 1/2–( ),–= = =

p0
Gr Grv ωtsin+( )z2

2
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v x
∂Ψ
∂z
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∂Ψ
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Then, the system of equations describing thermal vibra-
tional convection in a binary mixture is rewritten in
terms of the vorticity y-component ϕ = (curlv)y , tem-
perature, and concentration as follows:

–3 –2 –1
log2(π/ω)

0

2000

4000

6000

0

2

km

Grvm

Fig. 1. Critical values of wavenumber and Grashof-number
modulation amplitude vs. inverse modulation frequency for
ψ = –0.3 (negative Soret coupling). In the absence of vibra-
tion, the system is in a state of stable equilibrium (Gr =
4000).

4

0

–4

Ψ, Gr* × 10–3

198 199 200

t

Fig. 2. Time variation of streamfunction (dashed curve) and
modulated Grashof number (solid curve) at a point inside
the convection cell: Grv = 2720, ω = 21.10 (first resonance
region).
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(6)

The boundary conditions are rewritten accordingly:

(7)

To compute convection in a cell of length L, we use
periodic boundary conditions on the vertical cell
boundaries, which facilitates comparison of nonlinear
dynamics of convection patterns with the behavior of
critical perturbations with wavenumber k = 2π/L pre-
dicted by the linear analysis of stability of a binary mix-
ture under modulated gravity.

3. NONLINEAR EVOLUTION 
OF FUNDAMENTAL-FREQUENCY

AND SUBHARMONIC PERTURBATIONS

The results presented in this paper were obtained for
Pr = 0.75 and Sc = 1.5, which are characteristic of a gas-
eous mixture.

Figure 1 shows the critical wavenumbers and
boundaries of resonance regions in the parameter space
corresponding to the onset of instability predicted by
the Floquet theory for a mixture with negative Soret
coupling (ψ < 0).

When Grv = 0, the system with ψ = –0.3 becomes
convectively unstable as the Grashof number increases
to Grm = 4347. The corresponding neutral perturbations
have the frequency ω0 = 10.64. At Gr = 4000 < Grm , the
binary mixture remains at rest. The hydrostatic equilib-
rium of the mixture becomes unstable with increasing

∂ϕ
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Fig. 3. Visualization of (a) streamfunction, (b) temperature, and (c) concentration fields in the subharmonic mode: Grv = 2720, ω =
21.10 (first resonance region).
Grv. The strongest destabilizing effect of resonant mod-
ulation is predicted for ω = 21.10 ≈ 2ω0 (subharmonic
resonance). Under this condition, the horizontal length
scale of the convective pattern is determined by the crit-
ical wavenumber km = 2.71, and the corresponding crit-
ical vibrational Grashof number Grvm = 680.30 is sub-
stantially lower than that in the case of positive Soret
coupling. The minimum of the neutral curve corre-
sponding to the fundamental resonance region is
located at ω = 7.75 ≈ ω0, and the corresponding critical
parameters are km = 2.48 and Grvm = 3754. Additional
minima correspond to 2ω0/m, where m is an integer. In
those regions, the destabilizing effect is weaker. The
critical wavenumbers for parametric instability with
respect to subharmonic and fundamental-frequency
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
perturbations shown in the top panel of Fig. 1 monoton-
ically decrease with increasing perturbation period
within the respective instability regions.

To compute the vorticity, temperature, and concen-
tration fields, we solved nonlinear problem (6), (7) by
the fractional time-stepping method, using an alternat-
ing-direction implicit scheme. The streamfunction was
found by the successive overrelaxation method at each
time step.

The parameters used in computer simulations of
finite-amplitude convection regimes were taken from
the results of the linear analysis. Numerical simulations
were performed for parameter values lying on the ver-
tical lines in Fig. 1.
SICS      Vol. 101      No. 6      2005
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Fig. 6. Time variation of streamfunction (dashed curve) and
modulated Grashof number (solid curve) at a point inside
the convection cell: Grv = 3950, ω = 7.75 (second resonance
region).
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When m = 1 and ω = 21.10 (first resonance region),
oscillatory perturbations with km = 2.71 evolve into a
subharmonic regime of thermal vibrational convection.
The variation of the streamfunction at a particular point
inside a convection cell (e.g., at x = L/4, z = 1/2) is rep-
resented by the dashed curve in Fig. 2. Its period is
twice the modulation period:

The convection pattern is a standing wave: the stream-
function, temperature, and concentration fields oscil-
late about their mean values at every point. The spatial
distributions of these variables at a certain instant are
represented by the contour maps shown in Fig. 3. The
curve of Ψmax(Grv) shown in Fig. 4 demonstrates that
local bifurcation of the equilibrium state to a standing-
wave pattern occurs as a result of a soft-mode instabil-
ity at Grv = 625. The critical Grashof numbers predicted
by linear theory and nonlinear computations differ by
approximately 8%. It should be noted that the outcome
of pattern formation in a modulated field is qualitatively
different from that in the limit of high-frequency vibra-
tion, when a slow transient oscillatory process leads to
the formation of a stationary convection pattern that
exists in a subcritical region of the parameter space as
well. This can be explained by the resonant effect of
modulation on natural oscillatory convection in a
binary mixture.

In the region of instability with respect to funda-
mental-frequency perturbations (corresponding to
m = 2), the system exhibits hysteretic transitions
between different convection patterns. Figure 5 shows
the flow intensity (maximum value of streamfunction)
versus Grv. Above the threshold Grm = 3700 (which dif-
fers from that predicted by linear theory by not more
than 1.5%), a soft-mode instability leads to nonlinear
oscillation at the gravity-modulation frequency illus-
trated by the dashed curve in Fig. 6, which represents
the time evolution of the streamfunction at a particular
point in the convection cell (x = L/4, z = 1/2). Figure 6
demonstrates that the period of nonlinear oscillation is
equal to the modulation period of Gr∗ . Note that the
streamfunction has a nonzero mean value in this
regime. With increasing modulation amplitude, the
oscillation amplitude reaches a maximum and
decreases to zero at Grv = 5105.

At Grv = 5119, a hard onset of oscillation at the sub-
harmonic frequency is observed, with an amplitude
several times larger than that of the fundamental-fre-
quency mode. This regime remains stable with further
increase in Grv.

Gradually reducing the parameter Grv, we observe
how the oscillatory pattern of convection becomes
more complicated. Figures 7a–7f show the oscillation
spectra obtained by post-processing numerical data

Gr* ωt( ) Gr Grv ωt( ).sin+=
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Fig. 7. Spectra of regular and chaotic oscillations in the second resonance region: Grv = 5612 (a), 5400 (b), 5255 (c), 5161 (d),
4692.5 (e), 4692.4 (f).
with a fast Fourier transform algorithm. The spectrum
obtained for Grv = 5612 (Fig. 7a) contains the subhar-
monic mode with frequency ν1/2 = ν/2 = 0.617 (ν =
ω/2π) and higher subharmonic modes with frequencies
νk = kν1/2 (k = 1, 3, 5, …); i.e., this spectrum corre-
sponds to a subharmonic regime of regular oscillation.
At lower vibration frequencies, sidebands with fre-
quencies (νki ± νkj)/2 appear, as illustrated by Fig. 7b for
Grv = 5400. In the interval 4692.5 < Grv < 5375, we
observe chaotic oscillations with continuous spectra
dominated by the half-frequency and higher subhar-
monic modes, as illustrated by Figs. 7c and 7e for Grv =
5255 and 4692.5, respectively. It should be noted here
that chaotic convection is observed at relatively low
supercriticality, when Grv/Grv0 < 1.27. The interval of
modulation amplitude indicated above contains a peri-
odicity window where a 1/3-subharmonic oscillation
mode is observed, as illustrated by the spectrum for
Grv = 5161 shown in Fig. 7d. At Grv < 4692.5, the cha-
otic regime becomes unstable and the system oscillates
at the fundamental frequency (ν = 1.234) with a smaller
amplitude (see Fig. 7f). At 4692.5 < Grv < 5105, the res-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
onance regions in the parameter space overlap and two
convection regimes characterized by different heat
transfer rates emerge and disappear via hysteretic tran-
sitions as the modulation amplitude increases or
decreases.

4. CONCLUSIONS

The results obtained in this study illustrate the emer-
gence, nonlinear evolution, and stabilization of ther-
mally driven convection patterns in a horizontal layer of
a binary mixture with negative Soret coupling sub-
jected to vertical vibration with arbitrary frequency. It
is shown that the supercritical flow regimes characteris-
tic of the first and second resonance regions in the
parameter space develop via soft-mode transitions at
threshold parameter values consistent with predictions
of linear stability theory. A spectral analysis of time-
domain data performed to examine the behavior of non-
linear convection patterns in the second resonance
region reveals diverse regular and chaotic regimes
involving transitions between fundamental-frequency
and subharmonic modes.
SICS      Vol. 101      No. 6      2005
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Abstract—The kinetic theory of gases is applied to analyze slow translational motion of low-concentration
particles driven by an external force in a homogeneous gas. The analysis takes into account the diffusion due
to the difference in acceleration between particles and molecules in internal and external force fields. A general
expression is derived for the particle drag force in hydrodynamic, free-molecular, and intermediate regimes.
This expression reduces to a simple relation between the drag force and its values in the hydrodynamic and free-
molecular limits and the force of intermolecular interaction between particles and gas molecules. In the case of
spherically symmetric potential of interaction between the particle and molecules, the drag force is the har-
monic mean of its limit values. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The last decade has seen rapid progress in nanotech-
nologies (e.g., see [1–3]). The need to develop methods
for synthesis and assembly of nanostructures stimulates
theoretical prediction of their characteristics based on
available experimental data, which obviously include
characteristics of motion of nanoparticles and nanopar-
ticle aggregates in gases [4–9]. Even though the kinetic
theory of gases can be considered complete [10, 11],
intermolecular interaction between polyatomic gas
molecules or atoms and a particle or an ion remains an
issue [10–14]. Moreover, expressions (e.g., for particle
or ion drag force or mobility) obtained in the free-
molecular and hydrodynamic limits of the theory are
mutually inconsistent [11]. One simple method for
determining the characteristics particle motion in the
intermediate regime relies on the use of formal averag-
ing procedures or correction factors involving empiri-
cal parameters. In particular, the coagulation rate in the
intermediate regime has been successfully determined
by using the harmonic-mean approximation [15, 16]. In
the most accurate calculations of the particle drag
force, a correction factor is introduced into the Stokes
law [17, 18]. Despite numerous attempts to match the
expressions for the drag force obtained for limit
regimes, in particular, by correcting boundary condi-
tions or introducing empirical parameters, the problem
remains unsolved [11].
1063-7761/05/10106- $26.00 1147
Generally, it is assumed that an external force field
does not accelerate the motion of a particle or an ion in
both free-molecular and hydrodynamic limits. In the
free-molecular limit, when the gas is not perturbed by
particle motion, the drag force on a particle or an ion
moving in a gas with a mass-average velocity Vp is
related to the binary diffusion coefficient by the
Stokes–Einstein formula [12]

(1)

where kB is Boltzmann’s constant and T is temperature.
Note that this relation is exact only in the limit of van-
ishing external field [12]. The subscript “diff” in (1)
refers to the free-molecular limit interpreted as the
regime of diffusive particle motion (when forces are
negligible). The subscript “hydr” used below refers to
the hydrodynamic limit, in which the particle velocity
is constant, the force acting on it is finite, and diffusion
is negligible. In both limits, particle acceleration is
neglected and diffusion due to the difference in acceler-
ation between particles and molecules moving in a
force field is ignored accordingly. In the intermediate
regime, the acceleration of particles or ions by a force
field becomes increasingly important as the particle–
molecule collision frequency decreases with particle
size. In this paper, we analyze particle motion in both

Fdiff

kBT
D12
---------Vp,–=
© 2005 Pleiades Publishing, Inc.



 

1148

        

SHANDAKOV 

 

et al

 

.

                                                                                
limit regimes and in the intermediate regime, taking
into account particle acceleration by a force field.

2. AVAILABLE MODELS

In the free-molecular limit, when the perturbation of
the state of the gas caused by a moving particle is neg-
ligible, the expression for the binary diffusion coeffi-
cient known from the kinetic theory of gases can be
used to rewrite (1) for a sphere as follows [10]:

(2)

where p is the gas pressure; µ = mgmp/(mg + mp) is the
reduced mass; mp and mg are the particle and gas-mole-
cule masses, respectively; R and Rg are the correspond-

ing radii;  is the reduced collision integral; and
λ is the mean free path related to the absolute viscosity
ηg by the formula

In the hydrodynamic limit, the motion of the gas
perturbed by a moving particle is approximately
described by the Stokes equations subject to the imper-
meability and no-slip conditions

(3)

where Ug and Up are the respective gas and particle
velocities, and the subscripts n and τ denote the gas-

Fdiff

8 p R Rg+( )2Ω12*
1 1,( )

3 kBT /2πµ( )1/2
-----------------------------------------------Vp–=

=  
8πηg R Rg+( )2Ω12*

1 1,( )

3λ
----------------------------------------------------- µ

mg
------Vp,

Ω12*
1 1,( )

λ
πkBT /2mg( )1/2ηg

p
-----------------------------------------.=

Ugn Upn, Ugτ Upτ ,= =
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Drag force predicted for intermediate regimes of particle
motion between hydrodynamic and free-molecular limits:
(1) Stokes law; (2) Basset’s formula; (3) Epstein’s approxi-
mation; (4) Millikan’s formula; (5) harmonic mean.
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velocity components normal and tangential to the parti-
cle surface.

Available solutions to the Stokes equations for vari-
ous systems have been used to obtain expressions for
the drag force [19]. In particular, the drag force acting
on a spherical particle executing a translational motion
is given by the classical Stokes law

(4)

It can be shown that this expression (valid in the
hydrodynamic limit) is inconsistent with expression (2)
(valid in the free-molecular limit). In one attempt to
match them, the no-slip condition was replaced with a
partial slip boundary condition for the flow around a
body. A solution to the Stokes equation for slip flow
around a sphere was found by Basset (see [19]):

(5)

where the slip coefficient β vanishes and goes to infinity
in the case of mirror and diffuse reflection of molecules
from the particle surface. A more accurate calculation
(see [11]) leads to the expression

(6)

with a+ = 1.0161.
By introducing empirical parameters A, a1, and a2

into the Stokes law, the following expression attributed
to Cunningham, Knudsen, Weber, and Millikan has
been obtained for the drag force on a spherical particle:

(7)

where Kn = λ/R is the Knudsen number. The values of
A, a1, and a2 are based on experimental data obtained
for small particles by Millikan with coauthors. The fol-
lowing values have been adopted by taking into account
the results of subsequent experiments: A = 1.257, a1 =
0.40, and a2 = 1.1 [17]. Expression (7), hereinafter
referred to as Millikan’s formula, is generally used as a
standard for validating other theoretical models [18].
However, this expression does not allow for intermo-
lecular interaction in an intermediate regime, which
strongly depends on the molecular species [11].

The figure shows results obtained by using expres-
sions (2), (4), (6), and (7) as the dimensionless drag
force versus the Knudsen number. The collision inte-
gral in (2) is represented in Epstein’s approximation,

 = 1 + απ/8, with accommodation coefficient
α = 1. The figure demonstrates that the results calcu-
lated by using expressions (4) and (6) deviate from the

Fhydr 6πηgRUp.–=

Fhydr 6πηgRUp

1 2ηg/Rβ+
1 3ηg/Rβ+
----------------------------,–=

Fhydr 6πηgRUp

1 2a+ 2/πλ/R+

1 3a+ 2/πλ/R+
-----------------------------------------–=

F
6πηgRUp

1 Kn A a1 a2/Kn–( )exp+( )+
----------------------------------------------------------------------,–=

Ω12*
1 1,( )
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predictions based on (2) as Kn  ∞; i.e., the hydro-
dynamic model overestimates the force.

To match the expressions for the drag force in the
hydrodynamic and free-molecular limits, we consider
below possible modifications in solutions to the Stokes
equation made by introducing corrections allowing for
difference in molecule and particle acceleration by a
force field into the gas-molecule and particle velocity
distributions.

3. PARTICLE ACCELERATION 
BY A FORCE FIELD

We consider the effect of particle diffusion due to
the difference in acceleration between particles and gas
molecules by a force field on their motion in an inter-
mediate regime. For simplicity, our analysis is
restricted to slow translational motion of low-concen-
tration particles driven by an external force in a homo-
geneous gas. Under this restriction, we can ignore both
nonlinear terms with respect to the hydrodynamic
velocity of a particle and changes in pressure, tempera-
ture, and concentrations of particles and molecules.
However, this model can be applied to solve a broad
variety of practical problems.

Following [11], we introduce corrections taking into
account acceleration of particles and molecules by a
force field into the corresponding velocity distribution

functions  (k = 1 and 2 for molecules and particles,
respectively):

(8)

Here,  denotes a velocity distribution functions in
the zeroth approximation; Ck and Vk are the thermal and
total velocities of the kth component, respectively; nk is

the concentration of the kth component; and  is the
perturbation of the molecule or particle distribution
function caused, respectively, by particle or molecule
motion. For isothermal incompressible flows, this cor-
rection is written as

(9)

where n is the total concentration of mixture compo-
nents, ηk is the absolute viscosity of the kth component,

 = (Ck), and the thermodynamic force that drives

f k
1( )

f k
1( ) f k

0( ) 1 ϕk
1( )+( ),=

f k
0( ) nk βk/π( )3/2 βkCk

2–( ),exp=

Ck Vk Uk, βk– mk/2kBT .= =

f k
0( )

ϕk
1( )

ϕk
1( ) 2βkηk

p
--------------CkCk∇ Uk–

1
n
--- Dk

l Ck d1⋅( ),
l

∑–=

Dk
l Dk

l
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the kth component in the absence of concentration and
overall pressure gradients is expressed as

. (10)

For a binary mixture, when d1 + d2 = 0, this expression
reduces to

(11)

where m1 and m2 are the molecule and particle masses;
ρ, ρ1, and ρ2 are the total, gas, and particle densities;
and F1 and F2 are the forces acting on the molecule
and particle, respectively. We use expression (11) to
rewrite (9) as follows:

(12)

where summation over repeated indices is assumed; i,
j = 1, 2, and 3 denote vector components in a coordinate
system (n, t1, t2).

The function  = (Ck) is defined in terms of dif-
fusion coefficients Dkl by an integral relation [11]:

(13)

According to [11], the coefficients Dkl for a binary mix-
ture are related to D12 can be represented as

(14)

Equation (12) is derived without taking into account
internal degrees of freedom of molecules and particles.
Even though difficult problems arise in analyzing the
effects due to internal degrees of freedom and configu-
ration of interacting particles, polyatomic gases can be
described by methods developed in the kinetic theory of
gases [10, 11]. In these methods, description of the
dependence of a velocity distribution function on
molecular or particle rotation characteristics is reduced
to representation of transport coefficients as functions
of these characteristics. Following this approach, we
apply expression (12) to polyatomic molecules and par-
ticles, assuming that the influence of rotation character-

dk
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p
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istics can be described by formulas for viscosity and
diffusion coefficients.

The expression for the drag force in the hydrody-
namic limit is obtained by assuming that the particle
velocity is determined by its hydrodynamic velocity.
Accordingly, we calculate the particle velocity aver-
aged over molecular and particle velocities and volume,
using the above particles and gas-molecule distribution
functions modified by taking into account the accelera-
tion of particles and gas molecules by a force field:

(15)

Here, the angle brackets denote averaging over a volume
v. Since the direction of translational motion of particles
is parallel to the external force, expression (15) is written
in scalar form with nz denoting the unit vector in the
direction of the external force. We rewrite this expres-
sion as

(16)

where Up is the hydrodynamic velocity. The diffusion
velocity Udiff depends on the difference in acceleration
between molecules and particles by a force field:

(17)

(18)

(19)

(20)

where the diffusion velocities  and  are asso-
ciated with the external and internal forces acting on
particles. Expression (18) is written by assuming that
the external force acts only on particles; for particle
moving with constant velocities, it is counterbalanced
by the drag force (F2 = –F1). Expressions (19) and (20)

Vp〈 〉 1
npng
----------=

× nz Vp⋅( ) f p
0( ) f g

0( ) 1 ϕg
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1( )+ +( ) Vpd Vgd
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∫
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.
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-----------------
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are written by using the fact that the internal forces
〈F2〉v exerted on the particle by surrounding molecules
are counterbalanced the respective forces 〈F1〉v exerted
by the particle on the molecules:

〈F1〉v = –〈F2〉v .

The force F1 contained in expression (20) is exerted by
the particle on a gas molecule. Since the particle con-
centration is assumed to be low, interparticle interac-
tions are not taken into account.

Using (13) to calculate the integral of expression (18)
with respect to velocities, we obtain

. (21)

Substituting (14) and using the expression p = nkBT, we
rewrite it as

(22)

When the particle concentration in the gas is low, this
expression reduces to

(23)

To calculate diffusion velocity (19), we must know
certain characteristics of the forces acting on molecules
and particles. In the case of central forces, the volume-
averaged accelerations of molecules and particles van-
ish; i.e., these forces do not contribute to the diffusion
velocity. Otherwise, we have to take into account the
asymmetry of internal forces.

Using (13) and (14) to calculate the integral of
expression (19) with respect to velocities, we obtain

(24)

where Fint, z is the component of the force exerted on the
particle by surrounding molecules parallel to the external
force. For low-concentration particles, expression (24)
reduces to

(25)

According to expressions (24) and (25), if the force
Fint exerted by gas molecules on the particle is asym-
metric, then its volume-averaged value is finite. For
example, if the center of charge of a particle moving in
external electric field falls behind its center of mass,
then the force exerted on the particles by the molecules

Udiff
ext ρ1ρ2

pρ
----------- D22 D21–( )F–=

Udiff
ext ρ1 ρ2–( )

nm1ρ1

ρ3
---------------

D12

kBT
---------F.–=

Udiff
ext D12

kBT
---------F.–=

Udiff
int ρ1 ρ2–( )

nm1ρ1

ρ3
---------------

D12

kBT
---------Fint z, ,=

Udiff
int D12

kBT
---------Fint z, .=
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polarized by the field generated by the particle is paral-
lel to the direction of its motion, and so is its diffusion
velocity. When both interaction potential and particle’s
orientation are known, the mean value of Fint can be
represented in explicit form. In particular, if the charge
distribution is known for a charged particle, then we
can find the ion–dipole interaction force between the
particle and neutral molecules polarized by the field
generated by the particle [13].

Using (23) and (25), we rewrite expression (16) as

(26)

According to (16) and (26), the mean particle veloc-
ity is a linear combination of its hydrodynamic and dif-
fusion velocities. Therefore, the mean velocity 〈Vp〉
(interpreted as hydrodynamic velocity) in formulas
derived in the hydrodynamic limit should be replaced
by the velocity Up determined from (26):

(27)

Using Stokes–Einstein formula (1), we rewrite this
expression as

(28)

Thus, when the acceleration of particles and mole-
cules by a force field is taken into account, the drag
force can be expressed in terms of its values in the
hydrodynamic and free-molecular limits and the force
of interaction between a particle and surrounding gas
molecules. The value of the force in the hydrodynamic
limit used in this expression is determined without
allowance for the effects of diffusion and slip. The latter
effect is taken into account in the expression for the
force in the free-molecular limit in terms of the binary
diffusion coefficient.

In the case of a central interaction potential, the drag
force can be represented as the harmonic mean of the
drag forces determined in the free-molecular and
hydrodynamic limits:

(29)

The results of calculations using expression (29)
shown in the figure demonstrate that the values of the
drag force given by the harmonic mean and Millikan’s
formula are virtually equal in both hydrodynamic and
intermediate regimes. The discrepancy between these
predictions at high Knudsen numbers can be explained
by the neglected interaction between particles and mol-
ecules.

Vp〈 〉 Up

D12

kBT
---------F–

D12

kBT
---------Fint z, .+=

F
Fhydr

Vp〈 〉
----------- Vp〈 〉

D12

kBT
---------F–

D12

kBT
---------Fint z,+ 

  .=

F Fhydr

Fdiff Fint z,+
Fdiff Fhydr+
---------------------------.=

1
F
--- 1

Fdiff
---------

1
Fhydr
-----------.+=
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Expressions (28) and (29) are obtained by represent-
ing the drag force in terms of the mean particle velocity,
which is a linear combination of the limit velocities.
Therefore, expressions analogous to those presented
above may be valid for other characteristics determined
by particle velocities. In particular, particle coagulation
rate can be calculated as a harmonic mean [15, 16] by
assuming its proportionality to the frequency of colli-
sions between particles, which is determined by the
their relative velocity.

Thus, it is shown here that the harmonic mean is a
theoretically well-grounded approximation applicable
when particle–molecule interactions can be described
by a spherically symmetric potential.

Expressions (28) and (29) determine the particle
drag force when its values in the hydrodynamic and
free-molecular limits are known. Since particle dynam-
ics in the limit regimes have been well studied for par-
ticles of various shapes, these expressions can be used
to calculate the drag force for particles of any size,
including nanoparticles.

Note that the free-molecular regime is interpreted
here as particle motion driven by an external force that
does not perturb the state of the gas; i.e., the force is set
to zero in the free-molecular limit. This approach is
used only to determine the diffusion coefficient defined
without taking into account the diffusive fluxes due to
difference in acceleration between molecules and parti-
cles. The validity of the diffusion coefficients obtained
in the free-molecular limit for large particles is ques-
tionable because of limited applicability of Boltz-
mann’s equation to kinetics of large particles. However,
methods other than the classical one (Chapman–
Enskog method) can be applied to solve Boltzmann’s
equation. In particular, the probability of collisions
between molecules of the same species can be higher
than the collision probability between molecules of dif-
ferent species [20]. A solution based on this model can
be applied to particles of size much greater than the
mean free path. When the gas is treated as isothermal
and incompressible, this solution reduces to the Chap-
man–Enskog approximation. Thus, we can apply the
formulas obtained for the drag force Fdiff in the free-
molecular limit, at least, to nanoparticles.

4. CONCLUSIONS

The kinetic theory of gases is applied to analyze the
effect of external and internal forces on slow transla-
tional motion of low-concentration particles in a homo-
geneous gas. The expressions for the drag force
obtained in the hydrodynamic limit are matched with
those obtained in the free-molecular limit by introduc-
ing a correction allowing for difference in molecule and
particle acceleration by a force field. The simple
expression presented in this paper is a simple relation
between the drag force and its values in the hydrody-
namic and free-molecular limits and the force of inter-
SICS      Vol. 101      No. 6      2005
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molecular interaction between particles and gas mole-
cules. When this interaction can be described by a
spherically symmetric potential, the drag force is the
harmonic mean of its limit values. The results of this
study make it possible to calculate the drag force for
particles of any size by using known expressions
obtained for the limit regimes.
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Abstract—A relativistic generalization of quasi-Chaplygin (quasi-gas) equations describing the evolution of
unstable media with negative compressibility is proposed. Examples of the media whose dynamics can be
described by the proposed equations are considered. An analytic solution to these nonlinear equations is
obtained for the 1D case. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Nonlinear evolution of many unstable media can be
described in the long-wave approximation by quasi-
Chaplygin equations (QCEs)

(1.1)

(1.2)

where ρ∗  is the effective density (dimensionless quan-
tity), v is the velocity, c0 is the velocity of “sound” and
m is the parameter referred to as the azimuth number.
These equations differ from the ideal gas equations
only in that they contain negative compressibility.
However, this difference is essential since, instead of
running waves inherent in conventional gases, standing
perturbations growing in time become prevalent. Such
instabilities are encountered in nature quite often; for
instance, about 50 such examples are considered in [1, 2],
where a general theory of the QCEs is formulated. The
properties of the system of QCEs were studied system-
atically later in [3]. Media whose evolution is described
by QCEs are usually referred to as quasi-Chaplygin or
quasi-gaseous media. The existence of analytic solu-
tions to nonlinear equations (1.1), (1.2) is a consider-
able advantage of these equations both in the 1D case
and 2D (stationary) case. Consequently, generaliza-
tions of these equations for which analytic solutions
exist are of interest for describing specific physical pro-
cesses as well as for testing numerical methods
employed for solving similar nonlinear equations
belonging to the class of incorrect problems for which
small-scale perturbations that grow the most rapidly
play a decisive role.

In this paper, we propose a relativistic generaliza-
tion of QCEs (1.1) and (1.2) and demonstrate its rela-

dv
dt
------ c0

2m∇ρ *
1/m,

d
dt
----- ∂

∂t
----- v∇( ),+= =

dρ*
dt

---------- ρ* ∇ v( )+ 0,=
1063-7761/05/10106- $26.001153
tionship with a number of physical problems. In the 1D
case, these equations have the form

(1.3)

(1.4)

The time coordinate in these equations is τ = ct, c is the
velocity of light,

is the Lorentz parameter, z is the coordinate, and u =
γv /c = sinhy is the spatial component of the four-
dimensional velocity; the meaning of rest of the nota-
tion remains unchanged. Equations (1.3) and (1.4) will
be referred to as relativistic quasi-Chaplygin equations
(RQCE) since these equations are transformed into
one-dimensional equations (1.1) and (1.2), respec-
tively, in the nonrelativistic limit (v /c  0). In this
generalization, we proceeded from Eqs. (1.3) and (1.4)
derived earlier in [4] for m = –1, which describe the
dynamics of a plasma in a relativistic skinned current
pinch in the “narrow channel” approximation in zero
longitudinal magnetic field. The plasma was treated as
nonrelativistic in its own coordinate system and was
described using the conventional isentropic equation
with an exponent of 5/3. These equations (for m = –1)
were used in [4, 5] for analytically calculating the
energy spectrum of particles accelerated in a pinch
when sausage-type instabilities grow in it. It was found
that this spectrum successfully describes the energy
spectrum of galactic ultrarays in the entire range of
observed energies, which led to the hypothesis on gen-
eration of galactic ultrarays in cosmic current pinches.

γ ∂
∂τ
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∂
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-----+ 

  y m u
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-----+ 

  c0
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c2
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1/m,=
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∂
∂z
-----+ 

  ρ*ln u
∂
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  y.–=

γ 1 v 2/c2–( ) 1/2–
ycosh= =
 © 2005 Pleiades Publishing, Inc.



 

1154

        

VLASOV

                                                                         
Equations (1.3) and (1.4) can be derived from the
equations of motion and continuity in relativistic fluid
dynamics [6]:

(1.5)

(1.6)

where w = e + p is the enthalpy; e = ρc2, ρ, p, and n are
the mass density, pressure, and number density n in the
intrinsic frame of reference; and xk, uk, and uk are the
4-vectors of coordinates and velocity, uk = (γ, γv/c).
Three spatial components of Eq. (1.5) form a relativis-
tic generalization of the Euler equation, while the tem-
poral component is the consequence of the former three
components (the scalar product of the velocity vector
and the vector equation of motion (i = 1, 2, 3) leads to
Eq. (1.5) for i = 0). Equation (1.6) is a continuity equa-
tion.

To derive Eqs. (1.3) and (1.4) from Eqs. (1.5) and
(1.6), we assume that

(1.7)

for quasi-Chaplygin media with m ≠ –1 and p =

− lnρ∗  for m = –1. The above expressions for “pres-
sure” p can be derived from Eq. (1.1) by multiplying it
by ρ∗  and writing its right-hand side in the conventional
form –∇ p. It should be noted that quantities e and p in
formulas (1.7) have dimensions of the square of veloc-
ity. Henceforth, we will disregard pressure in the for-
mula for enthalpy, setting w ≈ ρ∗ c2. Substituting
Eq. (1.7) into (1.5), we obtain the relativistic quasi-
Chaplygin equation of motion,

(1.8)

where pef = – m . In the 1D case, this equation has
the form of Eq. (1.3).

Let us now consider the continuity equation (1.6).
Substituting ρ∗  for n in this equation leads to Eq. (1.4).
It should be noted that this substitution automatically
implies that “effective” density ρ∗  in Eq. (1.6) pertains
to the intrinsic frame of reference; i.e., under the
Lorentz transformation, this quantity behaves as con-
ventional density.

Concluding the section, we can make a few brief
remarks concerning the generalization of quasi-Chap-
lygin equations to the case of strong gravitational fields,
i.e., the form of the QCE in the general theory of rela-

wuk ∂ui

∂xk
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∂xi
------- uiu

k ∂p

∂xk
--------,–=

∂ nui( )
∂xi

--------------- 0,=

e ρ*c2, p
c0

2m
1 m+
-------------ρ*

1 1/m+–= =

c0
2

γ d
dt
----- γv( ) ∇ pef–

γ
c
-- 

 
2

v
d
dt
----- pef,–=

c0
2 ρ*

1/m
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tivity. Since the RQCE were derived from Eqs. (1.5)
and (1.6) of relativistic fluid dynamics, the above-men-
tioned generalization of the QCE should be carried out
in accordance with the algorithm employed in relativis-
tic fluid dynamics. For this purpose, conventional
derivatives in Eqs. (1.5) and (1.6) should be replaced by
covariant derivatives (see [6]) and then relations (1.7)
should be used.

2. REDUCTION
OF NONLINEAR EQUATIONS (1.3) 
AND (1.4) TO LINEAR EQUATIONS

To solve the “1D” RQCE, we will employ the locus
technique, according to which a transition should be
made to reciprocal functions z = z(x, y) and τ = τ(x, y)

with the variable x = (c0/c)2 . Differentiating these
functions with respect to τ and z, we obtain the expres-
sions for the derivatives,

(2.1)

where

is the Jacobian of the transition. Substituting Eqs. (2.1)
into RQCEs (1.3) and (1.4), we arrive at the equations

(2.2)

Then we introduce coordinate z' and time τ' = ct ' of an
event in the intrinsic frame of reference (in which the
volume element under investigation is at rest). These
quantities are related to coordinate z and time τ of the
same even in the laboratory reference frame via the
Lorentz transformation:

(2.3)

Differentiating functions z'(x, y) and τ'(x, y) with
respect to variables x and y and taking into account rela-
tions (2.2), we obtain the expressions

(2.4)

which lead to the following equation:

(2.5)
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Let us first consider this equation in the nonrelativistic
approximation (v /c  0), in which y ≈ εη, where η =
v /c0 and ε = c0/c ! 1. Passing in Eq. (2.5) to variables

η and r = x1/2/ε =  and proceeding to the limit
ε  0, we arrive at the Darboux equation for function
τ(x, y), which is transformed into τ' in the nonrelativis-
tic approximation:

(2.6)

For m = –1/2, Eq. (2.6) is a 2D Laplace equation, while
for other values of m it can be reduced, in accordance
with [1], to a 3D Laplace equation. From the multitude
of solutions to the Laplace equation, we will be inter-
ested only in solutions describing perturbations in
unstable media, which vanish in the limit t  –∞. In
the general theory of the QCEs, such perturbations and
solutions are referred to as spontaneous. Their evolu-
tion occurs smoothly, without breaking or sharpening
of profiles typical of nonlinear systems without dissipa-
tions.

Spontaneous solutions were obtained in [1, 2] using
a method based on analogy with electrostatic problems.
In this analogy, function τ(r, η) is treated as an electro-
static potential and the unperturbed state of the system
(ρ∗  = 1, v  = 0) corresponds to point r0 = 1, η0 = 0 in the
r, η space. The “electrostatic” potential τ(r, η) pos-
sesses the required singularity τ  –∞ at this point if
we place “electric charges” at this point. Analytically,
this is reduced to substitution of the density of these
charges for zero on the right-hand side of Eq. (2.6), i.e.,
to a transition from the Laplace equation to the Poisson
equation.

The same substitution should also be performed in
the general equation (2.5) by writing it in the form

(2.7)

where σ(x, y) is the density of the “charges” concen-
trated at point x0 = ε2, y0 = 0, which corresponds to the
unperturbed state of the medium (ρ∗  = 1, v  = 0). In this
case, solutions to Eq. (2.7) are spontaneous solutions of
the RQCEs.

3. THE GREEN FUNCTION 
OF RELATIVISTIC QUASI-CHAPLYGIN 

EQUATIONS

Before writing the Green function of Eq. (2.7), we
will write particular solutions to homogeneous equa-

ρ*
1/2m

∂2τ
∂r2
--------

1 2m+( )
r

---------------------∂τ
∂r
----- 4m2 ∂2τ

∂η2
---------+ + 0.=

x
∂2τ '

∂x2
--------- 1 m xm–+( )∂τ '

∂x
-------+

+ m2 ∂2τ '

∂y2
--------- τ '– 

  σ x y,( ),=
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tion (2.5). For positive azimuthal numbers m > 0, these
solutions have the form

(3.1)

where (xm) are Laguerre polynomials. For negative
azimuthal numbers m < 0, particular solutions have a
different form:

(3.2)

We will seek the Green function G of Eq. (2.7) (σ =
δ(x – x0)δ(y – y0)) in the form of a series in the Laguerre
polynomials, which form a complete set of functions.
As a result of simple transformations, we obtain an
expression for G, which is applicable both for m > 0 and
for m < 0; this equation has the form

(3.3)

where ζ = x|m | = ε2r2|m |, Γ is the gamma function, and
quantities qn are defined by formulas (3.1) and (3.2).
For m > 0, function B(ζ, ζ0) depends only on ζ0:
B(ζ, ζ0) = b(ζ0), where

and function B(ζ, ζ0) for m < 0 is a function of ζ alone:
B(ζ, ζ0) = b(ζ).

Let us pass to the nonrelativistic case (v /c  0).
For ε = c0/c  0, we replace sum (3.3) by an integral.
Taking into account the formula

which is valid for ζ  0 and n @ |m | (see [7]), we can
write this integral in the form

(3.4)

where
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This formula is valid both for m > 0 and for m < 0; it
should be noted that the exponent of factor (r0/r)m con-
tains azimuthal number m and not its absolute value.
The integral in formula (3.4) can be expressed in terms
of the second-order Legendre function Q|m | – 1/2 [8]:

(3.5)

Let us multiply the Green function by “charge” e∗  =
2πc0t∗ |m |, where the positive constant t∗  has the dimen-
sion of time (it will be shown in the next section that
2πc0t∗  is the wavelength of a perturbation along the z
axis). Using Eqs. (3.4) and (3.5) in the nonrelativistic
case and the values  = 0 and r0 = 1 for the unperturbed
state of the medium, we obtain the formula given in [1, 2],

(3.6)

where

Expression (3.4) can be derived directly from
Eq. (2.6). Its particular solutions have the form

where Jm(qr) is the Bessel function and u' = η/2|m | =
v/2|m|c0. Consequently, to derive the Green function (3.4)
from Eq. (2.6), we must carry out the substitution 0 
δ(r – r0)δ(η – η0) on the right-hand side of Eq. (2.6) and
then use the familiar Fourier–Bessel integral transfor-
mation (Hankel transformation):

(3.7)

This leads to the previous result (3.4)

4. PARAMETRIC COORDINATE 
REPRESENTATION

The formula for coordinate z' can be obtained by
integrating Eqs. (2.4) into which we must substitute the
expression τ' = e G. Let us first perform these calcula-

J m qr( )J m qr0( ) u ' u0'– q–( )exp qd
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∞

∫
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--------------------------.= =
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∗

tions for the linear stage of evolution of perturbation,
for which u'  0 and r  1 so that formula (3.6) can
be reduced to

(4.1)

Here, we have used the asymptotic form for the Leg-
endre function (Q|m |(cothξ) ≈ ξ for ξ  ∞), which can
be obtained from the hypergeometric representations of
this function (see [7]). Expressions (2.4) and (4.1) lead
to the following expression for the coordinate:

Thus, we obtain the formulas

(4.2)

for the density and velocity, which describe perturba-
tions periodic in coordinate z.

Let us consider the general case in which the Green
function G can be expressed by formula (3.3). Using
formulas (2.4) and (3.3), we obtain

(4.3)

where the plus and minus signs are used for y – y0 > 0
and y – y0 < 0, respectively, and gn is the nth term of
sum (3.3) for G,

(4.4)

It should be noted that factor ζ/m in the formula for Fn

contains azimuthal number m itself and not its absolute
value. The nonrelativistic limit of formula (4.3) can be
obtained in the same way as in a transition from expres-
sion (3.3) to (3.4).

Let us consider in detail this transition for a Chaply-
gin gas, for which dependences ρ∗ (z, t) and v(z, t) in the
nonrelativistic case are described by explicit formulas.
For quasi-Chaplygin media with m < 0, including the
Chaplygin gas, formula (4.3) for v /c  0 leads to the
formula

(4.5)

t
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1
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2
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m
m
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ρ* r2m 1 4m
t
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c0t*
----------,cosexp–= =

v
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---- 4m

t
t*
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c0t*
----------sinexp=

z ' e*B ζ ζ 0,( ) gnFn,
n 0=

∞

∑±=

Fn
1
qn

----- 1
ζ
m
---- d

dζ
------ B ζ ζ 0,( )Ln

m ζ( )[ ]ln+
 
 
 

.=

z '
c0t*
---------- πr m 1+ J m 1+ qr( )J m q( )

0

∞

∫±=

× u ' q–( )dq,exp
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in which the plus sign is take for u' = v /2|m |c0 < 0 and
the minus sign corresponds to u' > 0. We will consider
below only a Chaplygin gas for which m = –1/2. For
such a gas, integral (4.5) can easily be evaluated since
the Bessel functions appearing in it have a simple form:

Integrating expression (4.5) and considering that for-
mula (3.6) assumes in the present case the form
(see [7])

(4.6)

we obtain, using the Lorentz transformation, the fol-
lowing expression for coordinate z pertaining to the lab-
oratory system of coordinates:

(4.7)

Inverting formulas (4.6) and (4.7), we obtain the
explicit dependences for the density and velocity on the
coordinate and time,

(4.8)

which were given in [1, 2]. For t  –∞, these expres-
sions are transformed into expressions (4.2) for m =
−1/2, which describe the linear stage of evolution of a
perturbation.

5. UNSTABLE MEDIA DESCRIBED
BY RELATIVISTIC QUASI-CHAPLYGIN 

EQUATIONS

We will consider below the following examples: a
1D Chaplygin gas, a Van der Waals gas in the instability
domain, and a cylinder of a liquid with surface tension.
In the nonrelativistic case, the evolution of these media
can be described by quasi-Chaplygin equations (1.1)
and (1.2), in which the azimuthal numbers are m = –1/2,
1, and –2, respectively (see [1, 2]). We will prove that
the dynamics of these quasi-Chaplygin (or quasi-gas-
eous) media in the relativistic case can be described by
RQCEs (1.3) and (1.4). To this end, we use the equation
of motion (1.5) and continuity equation (1.6) in relativ-

J1/2 q( ) 2
πq
------ q,sin=

J3/2 q( ) 2
πq
------

1
q
--- qsin qcos– 

  .=

t
t*
----

1
2
--- u '

2
r 1–( )2+

u '
2

r 1+( )2+
------------------------------- ,ln=

z
c0t*
----------

2u 'r

u '
2

1 r2–+
--------------------------.arctan–=

ρ* z t,( ) 1
r
---

t/t*( )sinh–
t/t*( )cosh z/c0t*( )cos–

------------------------------------------------------------,= =

v z t,( )
c0

----------------
z/c0t*( )sin

t/t*( )sinh
---------------------------,=
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istic fluid dynamics. Disregarding pressure in the for-
mula for entropy (p ! ρc2), we can write these equa-
tions for the 1D case,

(5.1)

(5.2)

where all quantities have the previous meaning and the
zero subscript corresponds to unperturbed values of the
corresponding quantities. The continuity equation (5.2)
can be written in the form (1.4) for ρ∗  = n.

One-dimensional Chaplygin gas. This hypothetic
gas considered by Chaplygin [9] is characterized by a
peculiar adiabat p = p0ρ0/ρ along which the pressure
increases upon a decrease in density. If we introduce
the dimensionless effective density ρ∗  = ρ/ρ0,
Eqs. (5.1) and (5.2) for such a gas assume the form of

the RQCEs (1.3) and (1.4), in which m = –1/2 and  =
p0/ρ0.

Van der Waals gas in an unstable domain. The
equation of state for real gases can be approximately
described by the familiar Van der Waals model

where all quantities are reduced to their values at the
critical point [10]. We will consider an isothermal pro-
cess. It is well known that at a temperature lower than
the critical point (T < 1), region 0 ≤ ρ ≤ 3 contains an
interval of values of ρ in which dp/dρ < 0, while
dp/dρ ≥ 0 to the left and right of this region. Standing
perturbations increasing with time emerge in the gas
precisely in this interval of densities, where the deriva-
tive dp/dρ is smaller than zero. The evolution of such
perturbations can be described analytically using quasi-
Chaplygin equations. For this purpose, we must repre-
sent dp/dρ as a power function of density. It can easily
be verified that this can be done only at low tempera-
tures in the interval 8T/9 ! ρ ! 3, in which dp/dρ ≈
−6ρ < 0; this leads to RQCEs with an azimuthal num-
ber of m = 1. However, the gas pressure is negative in
this density range and, hence, the quasi-Chaplygin
description is formal in the present case.

A cylinder of liquid with surface tension. Let us
consider perturbations of such a cylinder, which are
distributed along its axis and which split the cylinder
into drops due to surface tension. For the long-wave
perturbations that will be considered below, the pres-
sure produced by surface tension can be described by
the formula p = σ∗ /a(z, t), where σ∗  is the surface ten-
sion and a(z, t) is the radius of the cylinder. We will use
for the same perturbations the narrow channel or jet
approximation [6], in which the pressure, density and

γ ∂
∂τ
----- u

∂
∂z
-----+ 

  y
p0

ρ0c2
----------

ρ0

ρ
----- u

∂
∂τ
----- γ ∂

∂z
-----+ 

  p
p0
-----,–=

∂
∂τ
----- nγ( ) ∂

∂z
----- nu( )+ 0,=

c0
2

p 8Tρ 3 ρ–( ) 1– 3ρ2,–=
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longitudinal velocity of a liquid in a cylinder are
assumed to be constant over the cross section. Under
these conditions, the equation of longitudinal motion
assumes the form (5.1), while the continuity equation,
as shown in [1, 4], has the form of Eq. (5.2), in which
number density n should be replaced by the effective

density ρ∗  = ρa2/ρ0 . Further, we assume that the den-
sity of the liquid changes insignificantly (i.e., we set
ρ = const). As a result, the equation of motion and the
continuity equation can be written in the form of the

RQCEs, in which m = –2,  = σ∗ /2ρ0a0, and ρ∗  =

a2/ .

This instability leads to extrusion of particles from
waists to bulge regions located between waists; liquid
particles are accelerated in this process. At the instant
the waists rupture, the energy distribution function for
the macroscopic motion of particles is completely
formed. We denote this function by F(E), where E =
γMc2 is the energy and M is the rest mass of a particle.
Let us calculate the function F(E). An analogous prob-
lem was considered in [4] for a skinned plasma pinch.
Here, we repeat the calculation procedure as applied to
our problem. The number of particles over an element
of length dz of a cylinder of radius a(z, t) is dN =
γnπa2dz, where γn and n are the number densities of
particles in the laboratory and intrinsic frames of refer-
ence. Consequently, we obtain the equation

(5.3)

for function F(E), in which zero indices correspond to
unperturbed values of quantities. Evaluating the deriv-
ative

,

we must bear in mind that the F(E) spectrum is calcu-
lated at a fixed instant τ(ζ, y) = const, which gives

As a result, we obtain

(5.4)

where

In these formulas, τ and z are the time and coordinate in
the laboratory system of coordinates, which are con-

a0
2

c0
2

a0
2

F E( ) dN
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2n0ρ*
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-------------dz

dy
------= =
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------ ∂z
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∂ζ
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dy
------+=
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∂τ
∂y
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∂ζ
------ 

 
1–

.–=

F E( ) Kρ*
γ
u
--- ∂z

∂y
-----∂τ

∂ζ
------ ∂z

∂ζ
------∂τ

∂y
-----– 

  ∂τ
∂ζ
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1–

,=

K
πα0

2n0

Mc2
--------------- const.= =
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nected with time τ' and coordinate z' in the intrinsic sys-
tem of coordinates via the Lorentz transformation (2.3).

Henceforth, we will consider only perturbations that
are periodic along the cylinder. In accordance with the
general theory of QCEs [1, 2], such perturbations can
be described by the “Coulomb” solution to Eq. (2.7),
i.e., by the Green function (3.3), in which ζ0 = ε2|m | and
y0 = 0. At the instant of rupture of waists, the radius of
bulges between the waists tends to infinity so that ζ 
0 in the bulges. In this case, for m = –2, we obtain from
Eqs. (3.3) and (2.4) the following expressions for the
bulge region: τ' ≈ ζ2f0(y) and z' ~ ζ3. In these expres-
sions, we have

(5.5)

where  is a Laguerre polynomial with superscript 2.
Using Lorentz transformations (2.3), we obtain from
these formulas the following expressions for τ and z:

Substituting these formulas into Eq. (5.4) and consider-
ing that ρ∗  = 4ε4/ζ2, we obtain the following expression
for the F(E) spectrum:

(5.6)

For ultrarelativistic energies, we retain in formula (5.5)
for f0(y) only the term with n = 0. Considering that E =
γMc2 ~ ey for γ @ 1, we find that the spectrum is given
by

(5.7)

Plasma pinch. Concluding the section, we recall
that the relativistic dynamics of skinned plasma pinch
in zero longitudinal magnetic field can also be
described by the RQCEs with azimuthal number m =
−1 (see [4]).

6. CONCLUSIONS

Quasi-Chaplygin equations describe the evolution
of many unstable media (with a negative compressibil-
ity) encountered in nature. Analytically, these media
differ in the value of parameter m known as the azi-
muthal number. A distinguishing feature of these non-
linear equations is that they have analytic solutions. In
view of these two circumstances, it is natural to carry
out a relativistic generalization of quasi-Chaplygin

f 0 y( ) 1
4
---

n!Ln
2 0( )Ln

2 2ε2( )
qnΓ n 3+( )

-------------------------------------- y qn–( ),exp
0

∞

∑–=

qn 1 1 n+
2

------------+ ,=

Ln
2

τ ζ 2 f 0 y( ) y, zcosh ζ2 f 0 y( ) y.sinh≈ ≈

F E( ) const
f 0 y( )

ysinh
-------------.=

F E @ Mc2( ) E 1 3/2+( )– .∼
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equations and construct analytic solutions for them.
This was done in the present study, In this generaliza-
tion, we proceeded from the equations of one-liquid
relativistic fluid dynamics as well as from the results
obtained in [4], where a relativistic generalization of
quasi-Chaplygin equations for m = –1 was obtained for
a plasma pinch. In [4], a relativistic pinch was treated
as a source of acceleration for cosmic rays.

In our work, we carry out this generalization for
equations with an arbitrary value of azimuthal number
m and give examples of the media (Chaplygin gas, Van
der Waals gas in an unstable domain, and a cylinder of
liquid with surface tension) whose dynamics can be
described by the proposed relativistic quasi-Chaplygin
equations. An analytic solution to these nonlinear equa-
tion is obtained for the 1D case.
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Abstract—Acousto-optic soliton generation via stimulated Brillouin self-scattering is predicted for light prop-
agating at the speed of sound under electromagnetically induced transparency conditions. As in stimulated
Raman self-scattering, the frequency of the electromagnetic component is gradually Stokes shifted as its inten-
sity increases; the acoustic component has no carrier frequency. This phenomenon is explained by the possibil-
ity of forward stimulated Brillouin scattering, which is forbidden in nondispersive media. In contrast to stimu-
lated Raman self-scattering, the Stokes shift of the electromagnetic component approaches a constant limit after
the pulse has propagated to a certain distance. It is shown that the predicted soliton generation does not involve
any threshold condition and can occur at extremely low input pulse intensities. © 2005 Pleiades Publishing,
Inc. 
1. INTRODUCTION

Investigation of various acousto-optical effects is a
major area of research in nonlinear optics. The most
outstanding examples are stimulated Raman scattering
(SRS) and stimulated Brillouin scattering (SBS) [1], in
which scattered Stokes waves are generated by interac-
tion of light with optical and acoustic phonons, respec-
tively [2]. In both phenomena, an important role is
played by energy transfer from the pump and Stokes
waves to vibrational modes of the medium.

The discovery of stimulated Raman self-scattering
(SRSS) of femtosecond optical pulses [3] has opened
new prospects for SRS studies and applications, partic-
ularly in fiber optics [1]. The occurrence of this phe-
nomenon does not depend on any threshold condition,
because femtosecond pulses have wide bandwidths and
therefore become coherently coupled with optical
vibrational modes as soon as they enter the nonlinear
medium [3, 4]. As the pulse continues to propagate in a
dispersive medium, an increasingly Stokes-shifted soli-
ton is generated. In a nondispersive medium, SRSS
does not lead to soliton generation and the optical-pulse
spectrum substantially broadens, splitting into lines [4].

Unlike SRS or SRSS, forward SBS is forbidden by
energy and momentum conservation in elementary
photon–phonon scattering events [1, 2]. This is true for
weakly dispersive media, where the relative SBS fre-
quency shift can barely reach 0.01%. Therefore, the
refractive indices corresponding to the input and scat-
tered-wave frequencies cannot be substantially differ-
ent, and light scattering by acoustic phonons cannot
lead to any phenomenon analogous to soliton genera-
tion via SRSS.
1063-7761/05/10106- $26.00 0979
However, recent experimental observations of
ultraslow light propagation in gases [5] and solids [6]
under electromagnetically induced transparency (EIT)
conditions have revealed new possibilities for control-
ling dispersion characteristics of optical materials. It
was shown in [7] that SBS characteristics drastically
change as the group velocity of light approaches the
speed of sound in the medium. The most important con-
sequence is the possibility of forward scattering due to
combined effects of nonlinearity and dispersion [7].
Since solitons can be generated in a nonlinear disper-
sive medium, a question arises about the possibility of
stimulated Brillouin self-scattering (SBSS, an analog
of SRSS) leading to simultaneous generation of a
Stokes-shifted soliton and a coherent acoustic phonon.
This possibility is explored in the present study.

The paper is organized as follows. In Section 2, non-
linear wave equations are derived for collinearly prop-
agating optical and longitudinal acoustic waves under
EIT conditions. The slowly-varying-envelope approxi-
mation is applied to rewrite the general system of inte-
grodifferential equations as Zakharov-type equations
for an optical pulse envelope, which are then reduced to
the Yajima–Oikawa system in a unidirectional approxi-
mation. In Section 3, the physics of the soliton solution
to this system is analyzed. The results of this analysis
and numerical estimates suggest that soliton generation
via SBSS can be observed in experiments. In Section 4,
the defocusing of an SBSS acousto-optic soliton by
transverse perturbations is analyzed. The Conclusions
section summarizes the principal results and highlights
the similarities and distinctions between SBSS and
SRSS.
© 2005 Pleiades Publishing, Inc.
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2. NONLINEAR WAVE EQUATIONS

Consider an isotropic medium characterized by an
ultraslow group velocity v g of light propagation under
EIT conditions, which are characterized by an almost
vanishing resonant absorption coefficient and coherent
population trapping [8].

Following [7], let us start with the energy and
momentum conservation laws for an SBS event:

(1)

where ωin and ωout are the frequencies of the incident
and scattered photons, respectively; Ω is the acoustic-
phonon frequency; and kin , kout , and ka are the corre-
sponding wavevectors.

The second equation in (1) yields

(2)

where θ is the angle between kin and kout . Since ka = Ω/a
(a is the speed of sound in the medium) and kin, out =
ωin, outnin, out/c @ ka (c is the speed of light in free space,
and nin, out = n(ωin, out) are the refractive indices at ωin
and ωout , respectively), it holds that

where v g is the group velocity of light at ωin . Therefore,
Eq. (2) can be rewritten as

(3)

In the general case, Eq. (3) should be treated as a
quadratic equation for the Stokes shift Ω due to SBS.
For a nondispersive medium, v g ≈ c/nin . Since nin ~ 1,
c @ a, and Ω ! ωin , the second terms in both parenthe-
ses can be neglected and Eq. (3) reduces to a well-
known expression [2, 9]:

If v g = a under EIT conditions, then it follows from
Eq. (3) that Ω = ninωina/c for θ ≠ 0. In the case of θ = 0
(forward scattering), Eq. (3) is an identity for any Ω;
i.e., the Stokes shift due to forward SBS cannot be
determined from energy and momentum conservation
in a scattering event.

The polarization response (r, t) of an unde-
formed dispersive medium to a linearly polarized field
E(r, t) can be represented as

(4)
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where  is the dielectric susceptibility of the host
material (treated as a nondispersive medium in the case
of an off-resonance optical-pulse carrier frequency) and
χ0(τ) is the susceptibility of the dispersive medium con-
sisting of resonant impurities (which are responsible
for EIT).

The modulation of both host and resonant-impurity
susceptibilities due to the coupling between electro-
magnetic waves and acoustic phonons is described by
performing the change (see [2, 9])

(5)

where u(r, t) is longitudinal strain, γ1 = –(∂χm/∂u)0 is the
electrostriction coefficient [9], and the index “0"
denotes the properties of the undeformed medium.

Modulation of the nonlocal susceptibility χ0(τ) in
expression (4) is taken into account by substituting χ0(t)
with χ(τ, u(r, t)). The delay in the impurity polarization
response to strain is neglected here, because the acous-
tic phonon spectrum is separated from the resonant
optical absorption spectrum.

The Taylor series expansion of χ(τ, u(r, t)) in u(r, t)
about τ yields

(6)

where

Expressions (4)–(6) are used to write the photon–
phonon coupling term responsible for SBS as

(7)

The polarization response modulated by the coupling
with acoustic phonons is

(8)

Since the first terms in the brackets in (7) and (8)
correspond to acoustic modulation of the susceptibility
of a nonresonant host crystal, they do not represent the
effect of SBS on EIT. The second terms in these brack-
ets describe the effect of acoustic phonons on the non-
local polarization response of a resonant impurity,
which is responsible for slow light propagation under
EIT conditions. In other words, these terms describe the
effect of SBS on EIT conditions. As mentioned above,
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the effect of EIT on SBS primarily manifests itself by a
decrease in the group velocity of light to the speed of
sound and the ensuing possibility of forward scattering.

Expressions (4), (7), and (8) are combined with
Maxwell’s equation for the electric field of the optical
pulse,

(9)

and the Hamiltonian density of the acoustic field,

(10)

where ρm is the mean density of the medium, a is the
longitudinal speed of sound, s is the displacement field
related to the strain field u by the equation u = ∂s/∂z
(both optical and acoustic pulses propagate along the z
axis), and p is the displacement momentum density.

Using the Hamiltonian equations

with

and substituting (8) into (9), we obtain

(11)

(12)

where

is the refractive index of the host crystal.
Integrodifferential equations (11) and (12) provide a

self-consistent model of SBS in a dispersive medium.
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The electric field of a quasi-monochromatic pulse
with carrier frequency ω and wavenumber k can be rep-
resented as

(13)

where ψ(r, t) is a slowly varying envelope (see [10]).
Expression (13) is substituted into (11), and the

function ψ(r, t – τ) is represented by the Taylor series
expansion in τ. Restricting the expansion to the lowest
order dispersive terms, we write

(14)

where

The integral

in (11) and (12) is represented by an analogous expan-
sion.

Substituting (13) and (14) into Eqs. (12) and (11)
and dropping the fastest oscillating terms, we obtain

(15)
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i
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1
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---------–+

=  
2πω
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-------––
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1
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--------–

1
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-----------–=

× ∂2
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------- γ ψ 2 i

2
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is the total refractive index,

is the group-velocity dispersion parameter,

and ∆⊥  is the transverse Laplace operator.
Whereas electromagnetic field is represented by an

envelope in Eqs. (15) and (16), acoustic waves are rep-
resented by strain, because the acoustic pulse has no
carrier frequency in the general case.

Since χ(ω) = 0 [8] and ∂2n/∂ω2 = 0 [11] at the
absorption-line center frequency under EIT conditions,
it follows that n = nm and k2 = 2(∂n/∂ω)/c > 0 (group dis-
persion is positive at the absorption-line center).

The resonant-impurity concentration in solids used in
experiments on EIT varies within 0.05–0.1% of the con-
centration of atoms of the nonresonant host material [6].
Therefore, γ2 ! γ1 and it can be assumed that γ ≈ γ1.

The ratios of the terms containing the factor
(∂γ2/∂ω) to the first terms in the respective brackets are
on the order of (ωτp)–1 ! 1, where τp is the pulse dura-
tion. The former terms characterize the nonlinear dis-
persion due to the effect of SBS on EIT. Both nonlinear
dispersion and the last term on the left-hand side of
Eq. (15) can be neglected for nanosecond optical pulses
(with ω ~ 1015 s–1), because (ωτp)–1 ~ 10–6. Then,
Eqs. (15) and (16) reduce to Zakharov-type equations
[12] in the absence of transverse perturbations.

The analysis of system (15), (16) presented here
shows that the effect of SBS on EIT conditions is neg-
ligible in the case of a quasi-monochromatic resonant
optical pulse. However, EIT substantially modifies SBS
characteristics; in particular, forward scattering of light
with v g = a becomes possible. This equality is the con-
dition for the Zakharov–Benney resonance between
long and short waves [13]: the group velocity of a short-
wave (electromagnetic) component is equal to the
phase velocity of a long (acoustic) wave. Indeed, it fol-
lows from Eqs. (1) written for collinear propagation
that

This condition corresponds to the highest efficiency of
coupling between acoustic waves and ultraslow light.

k2
∂ 1/v g( )

∂ω
-------------------=

k3
2π
cn
------ 6

ω
---- ∂

∂ω
------- ω∂χ

∂ω
------- 

  ω∂3χ
∂ω3
---------+ ,=

γ γ1 γ2,+=

γ2 ω( ) Γ τ( ) iωτ–( )exp τ ,d

0

∞

∫=

a
Ω
ka
----

ωin ωout–
kin kout–
---------------------- ∂ω

∂k
-------≈ v g.= = =
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In this case, Eq. (16) can be conveniently rewritten in a
quasi-unidirectional approximation [13]. Since (5) is
actually an expansion, the first term on the right-hand
side in (16) is small. In the paraxial approximation

which is valid if (l||/R)2 ! 1 (l|| and R are the longitudinal
and transverse pulse dimensions, respectively), trans-
verse perturbations can be treated as long-wavelength
ones; i.e., the acousto-optic pulse is quasi-one-dimen-
sional. Introducing the “local” time

and the “slow” coordinate

ζ = µz

with a small parameter µ on the order of the right-hand
side in (16), neglecting terms on the order of µ2, and
dropping the terms representing nonlinear dispersion
and third-order linear dispersion, we rewrite Eqs. (15)
and (16) as

(17)

(18)

where

3. ACOUSTO-OPTIC SOLITON

Equations (17) and (18) are equivalent to the
Yajima–Oikawa system [14], which has the one-soliton
solution

(19)

where

∆⊥ u ! 
∂2u

∂z2
--------,

τ t z/a– t z/v g–= =

i
∂ψ
∂z
-------
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2
----∂2ψ

∂τ2
---------+ αuψ–

c
2nmω
--------------∆⊥ ψ,+=

∂u
∂z
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∂τ
----- ψ 2( ) a

2
---∆⊥ u τ ',d

∞–

τ

∫+=

α 2πωγ
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--------------, β γ
2ρma3
---------------.= =

ψ ψm i Ωt qz–( )–( ) t z/v–
τp
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  ,sechexp=

u um
t z/v–

τp
---------------- 

  ,sech
2

=

ψm

k2

τp
------- Ω

αβ
-------, um

k2

ατ p
2

--------,= =

q
Ω
a
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k2

2
---- 1

τp
2

---- Ω2– 
  ,+=
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and the propagation velocity v  is determined by the
relation

(20)

According to the expression for um, the acoustic
component corresponds to compressive strain if γ < 0
and to dilatational strain otherwise.

Solution (19) contains two free parameters, which
can be defined as the duration τp and amplitude ψm of
the electromagnetic component. The parameter Ω
should be interpreted as a “nonlinear” shift of the car-
rier frequency due to forward SBS. It follows from the
expressions for α, β, and ψm that Ω ≥ 0. In view of (13)
and (19), this implies that the optical pulse frequency is
Stokes shifted,

ω  ω – Ω;

i.e., energy is transferred from the photon to the phonon
generated in each SBS event. As shown in Section 2,
the value of Ω cannot be determined by using energy
and momentum conservation laws for a photon–
phonon scattering event if v g = a and θ = 0.

The value of Ω depends on the input pulse parame-
ters and can be determined by solving an appropriate
inverse scattering problem [14]. Alternatively, the shift
can be found by solving system (17), (18) numerically
for different values of the input pulse parameters. Note
also that the asymptotic value of the Stokes shift is pro-

portional to the input pulse intensity Iopt ~ , which
characterizes an ensemble of photons rather than an
individual photon. The shifted optical pulse is detuned
from resonance with a quantum transition in impurity
atoms, and its group velocity increases according
to (20), because the slowest light propagation under
EIT conditions is observed in the transparency window,
which corresponds to exact resonance with the impurity
transition [8].

It follows from the analysis presented above that
there are no formal restrictions for the value of Ω in for-
ward scattering when v g = a. However, there exists an
upper limit for Ω for physical reasons. First, Ω ! ω since
ψ is a slowly varying envelope (see (13) and (19)). Sec-
ond, the value of Ω must be much smaller than the EIT
window, which is determined by the pump Rabi fre-
quency Ωp: Ω ! Ωp. Note that the entire optical-pulse
spectrum must remain within the transparency window.
This restriction can be written as

The present analysis of soliton solution (19) shows
that stimulated Brillouin self-scattering analogous to
SRSS can be implemented under conditions of forward
SBS (light propagation at the speed of sound). Indeed,

1
v
---- 1

a
--- k2Ω.–=

ψm
2

τp @ 
1

Ωp
------.
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the Stokes shift Ω of the pulse carrier frequency gradu-
ally increases with the input pulse intensity to the upper
limit indicated above, while there is no lower limit
for Ω . Therefore, SBSS is analogous to SRSS in that it
does not involve any threshold condition [3, 4].

It follows from Eqs. (15) and (16) (or (17) and (18))
that the input pulse generates an acoustic video pulse (a
carrier-free elastic wave), whereas the acoustic pulse
cannot generate an electromagnetic wave in the
absence of incident light.

Soliton generation via SBSS can be interpreted as
gradual energy transfer from an optical pulse to an elas-
tic wave. Eventually, the shift approaches a limit value;
i.e., the wave evolves into soliton (19) with a constant
Ω . This “Stokes saturation” is explained by the lower
efficiency of the photon–phonon coupling (responsible
for forward SBS) in a pulse detuned from the center of
the EIT window.

Let us estimate the parameters of an acousto-optic
soliton described by (19). Experiments on ultraslow
light propagation were performed at a temperature of
5 K on an insulator (Y2SiO5 crystal) doped with rare-
earth (praseodymium) ions to a concentration of 0.05%
[6], because these ions are characterized by narrow
inhomogeneous broadening of transition lines. The
group velocity of light with input intensity Ip ≈
470 W/cm2 was slowed down to v g ≈ 4.5 × 103 cm/s,
while the speed of sound was higher by two orders of
magnitude. Since the group velocity of ultraslow light
under EIT conditions varies as does the pump Rabi fre-
quency squared (i.e., linearly with Ip) [5], the condition
v g ≈ a is satisfied when Ip ~ 50 kW/cm2. The corre-
sponding Rabi frequency is

where d is the dipole moment of the resonant-impurity
transition. For d ≈ 5 × 10–18 SGSE units and nm ≈ 2, it
follows that Ωp ~ 1011 s–1. Setting Ω ~ 1010 s–1 and τp ~
1 ns in (19) in accordance with conditions imposed
above and using the fact that a ! c, we obtain

Since ∂2n/∂ω2 = 0 for an optical pulse resonant with an
impurity transition, we have

(21)

If nm ≈ 2, γ ~ 1 [9], ρm ≈ 2 g/cm3, a ≈ 5 × 105 cm/s, and
ω ≈ 3 × 1015 s–1, then the intensity of the soliton’s elec-

Ωp
d
"
---

4πnmIp

c
-----------------,≈

1
v g
------

1
c
--- n ω∂n

∂ω
-------+ 

  ω
c
---- ∂n

∂ω
------- 1

a
---.≈ ≈=

k2
∂

∂ω
------- 1

v g
------ 

  2
c
--- ∂n

∂ω
------- 

  2
ωa
-------.≈= =
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tromagnetic component is

The corresponding values of the relative strain
amplitude um and acoustic pulse intensity Is are

Thus, a soliton whose duration is a few nanoseconds
has an extremely low intensity, which is primarily
determined by its electromagnetic component.

It follows from Eqs. (14) and (15) that

Using the estimates above, we obtain 2Ω/ω ~ 10–5.
Thus, the propagation velocity of an acousto-optic soli-
ton described by (19) differs from the linear speed of
sound only by a negligible 10–3%.

Note that the electromagnetic component of the
pulse vanishes when Ω = 0; i.e., the input pulse energy
is entirely converted into the energy of an elastic-strain
soliton. To find conditions for this phenomenon to
occur, one must solve a boundary value problem for
Eqs. (17) and (18), which requires a separate analysis.

4. EFFECTS
OF TRANSVERSE PERTURBATIONS

Experimental observability of soliton (19) depends
on its stability with respect to transverse perturbations.
The Ritz–Whitham averaged-Lagrangian method is
applied here to allow for transverse dynamics [17].

The Lagrangian density corresponding to system (17),
(18) is

(22)

where U is related to strain by the equation

Iopt
c

4π
------ψm

2 nma

π2
---------Ω

ω
---- ρc2

ωτpγ( )2
------------------- 10 W/cm2.∼≈ ≈

um

cnm

πaγ ωτp( )2
-------------------------- 10 8– ,∼≈

Is ρma3um
2 /2 10 6–  W/cm2.∼≈

1
v
---- 1

a
--- 1 2

Ω
ω
----– 

  .≈

L
i
2
--- ψ∂ψ*

∂z
---------- ψ*

∂ψ
∂z
-------– 

 =

+
k2

2
---- ∂ψ

∂τ
-------

2
α ψ 2∂U

∂τ
------- c

2nmω
-------------- ∇ ⊥ ψ 2–+

+
α
2β
------ ∂U

∂z
-------∂U

∂τ
------- a

2
--- ∇ ⊥ U( )2– ,

u
∂U
∂τ
-------.=
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In view of the remark about the quasi-one-dimen-
sional dynamics of the acousto-optic pulse made at the
end of Section 2, a trial solution is sought in the form of
modified one-dimensional soliton (19):

(23)

The dynamic variables ρ and Φ introduced here can be
interpreted as the inverse soliton duration and the
eikonal of its electromagnetic component, respectively.
They are to be determined as functions of coordinates,
while Ω is treated as a constant parameter of a well-
developed soliton.

After substituting (23) into (22), an averaged
Lagrangian is found by integration with respect to the
“fast” variable τ (as done in [18] for different nonlinear
equations):

(24)

where

The Euler–Lagrange equations for ρ and Φ corre-
sponding to (24) are

(25)

System (25) has a one-dimensional solution equiva-
lent to (19),

which substantiates the validity of the averaged-
Lagrangian method.

ψ k2
Ω
αβ
-------ρ iΩ t

z
a
---– 

 –
nmω

c
----------Φ–exp=

× ρ t
z
v
----– 

  ,sech

U
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z
v
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2nmωΩk2
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∞
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-------–
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+
ck2

2nmω
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Transverse perturbations are taken into account in
the left- and right-hand sides of the second equation
in (25). According to the definition of b, this coefficient
vanishes as ω ~ 1/λ  ∞, which corresponds to the
eikonal approximation in geometric acousto-optics
(λ is the wavelength of the electromagnetic compo-

nent). Therefore, the term b∆⊥ /  in (25) repre-
sents diffraction effects in the transverse pulse dynam-
ics, while the term (∇ ⊥ Φ)2/2 is responsible for the trans-
verse dynamics in the eikonal approximation
(nonlinear refraction) [18, 19].

In the general case, nonlinear system (25) is difficult
to analyze. As a first step, consider soliton (19) weakly
perturbed by transverse perturbations:

where

Substituting

into Eq. (25) linearized with respect to ρ1 and Φ1, we
obtain the “dispersion” relation

(26)

Since κ2, Ω > 0, this relation holds only if q|| is real.
Therefore, acousto-optic soliton (19) is stable with
respect to small transverse perturbations.

Before proceeding to a quantitative analysis of non-
linear behavior of transverse perturbations, note that
system (25) with zero right-hand sides is formally
equivalent to the continuity equation and Cauchy theo-
rem for inviscid flows [20], with ρ, Φ, and z correspond-
ing to fluid density, velocity potential, and time, respec-
tively. Comparing the second equation in (25) with the
Cauchy theorem written as

where P corresponds to static pressure, we obtain the
following “isentropic” equation

Then, the criterion for the soliton’s stability with
respect to self-focusing is identical to the stability con-

ρ ρ

ρ 1
τp
---- ρ1, Φ+ Φ0 Φ1,+= =

ρ1 ! 
1
τp
----, Φ1 ! Φ0.

ρ1 Φ1, i q||z q⊥+ r⊥⋅( )[ ] ,exp≈

q||
2 1

2
---

ck2

nmωτp
2

--------------- bq⊥
2+ 

  q⊥
2 .=

∂Φ
∂z
-------

∇ ⊥ Φ( )2

2
------------------ Pd

ρ
------∫+ + const,=

dP
dρ
-------

ck2

nmω
----------ρ2.=
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dition of the “inviscid flow” described by Eqs. (25) with
zero right-hand sides:

(see [21, 22]). Since k2 > 0 for the process considered
here, we conclude that nonlinearity has a defocusing
effect in the eikonal approximation. This is an expected
result, because solitons can be generated under condi-
tions of defocusing nonlinearity only in the spectral
region of normal group dispersion [1, 10].

To perform a general analysis of transverse dynam-
ics (including self-diffraction effects), we drop the
assumption that transverse perturbations are small.
Then, system (25) is equivalent to a quintic nonlinear
Schrödinger equation:

(27)

where

and the complex-valued function Q is defined by the
relation

(28)

Thus, stability analysis of the soliton described by
Eq. (19) is equivalent to stability analysis of the spatial
“beam” described by Eq. (27). Here, the integral
moment method developed in [23] is applied.

Equation (27) corresponds to the “Hamiltonian”

(29)

and entails the conservation of

where the integral is performed over the xy plane. If the
soliton radius squared is defined as the second-order
moment

(30)

where r is radius in a cylindrical coordinate system

dP
dρ
------- 0>

i
∂Q
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η
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g
b
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--------------,= =
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ck2Q2

nmω
--------------z Φ+ 

  .exp=

H̃ g2 ∇ ⊥ Q 2 η
3
--- Q 6+ 
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(see [23]), then it follows from Eq. (27) that

(31)

where

The derivative of Eq. (31) yields

(32)

Since k2 > 0, both η and  are strictly positive;
i.e., (32) implies that

Therefore, acousto-optic soliton (19) must exhibit
defocusing behavior.

Assuming that the electromagnetic component has a
plane wavefront at z = 0,

and substituting the expression for j into (31), we
obtain

Then, the solution to Eq. (32) is

(33)

where R0 is the “initial” soliton radius and

is the soliton defocusing length.
The first and second terms on the right-hand sides

in (27) and (29) represent the contributions to trans-
verse dynamics due to diffraction and nonlinear disper-
sion, respectively. These terms play a dominant role in
the eikonal approximation and in the limit of g  ∞,
respectively. Their relative importance can be quanti-
fied by introducing the dimensionless parameter

If τp ~ 1 ns (see above) and R ~ 30 µm, then δ ~ 10−3,
and the inequality (l||/R)2 ! 1 holds because l|| ~ aτp ~

dR2

dz
---------

2
N
---- j∫ rdS,⋅=

j ig Q ∇ ⊥ Q*( ) Q* ∇ ⊥ Q( )–[ ] ρ∇ ⊥ ϕ .= =

d2R2

dz2
-----------

16
N
------H̃ const.= =

H̃

d2R2

dz2
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z 0=

0.=

R R0 1 z/l( )2+ ,=

l R0 N /8H̃=

δ R/ acτp( )2
.∼
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10 µm. Under these conditions, diffraction effects are
much stronger than those due to nonlinear refraction;
i.e., the first terms on the right-hand sides in (27)
and (29) are much larger than the second ones. Since
|Q |2 = ρ, we have

Then,

where ld is the diffractive spread. In this limit, Eq. (27)
reduces to a linear equation. Suppose that a well-devel-
oped soliton has an axially symmetric Gaussian trans-
verse profile with characteristic radius R0 at z = 0:

where ρ0 is the inverse duration of the soliton on its cen-
terline and r is radius in a cylindrical coordinate sys-
tem. Then, the solution to Eq. (27) with zero last term is

(34)

Comparing (34) with (28) and dropping the first
term in the exponent in the latter expression by virtue
of the inequality δ ! 1, we find ρ and Φ in trial solu-
tion (23):

(35)

(36)

where R is given by (33) with l replaced by ld.
An analysis of expressions (23) and (36) shows that

the paraxial portions of the electromagnetic pulse com-
ponent move faster than its peripheral portions; i.e., the
pulse is defocusing.

According to (33), the acousto-optic soliton exhibits
diffractive spread analogous to that characteristic of
quasi-monochromatic beams propagating in free space.
Moreover, expressions (33)–(36), which describe the
diffractive spread of the soliton, are similar to analo-
gous expressions for quasi-monochromatic beams [24].

The pulse radius increases by a factor of  over the
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distance ld, while the amplitudes of its electromagnetic
and acoustic components decrease by a factor of 2
and 4 according to (35) and (23), respectively. For the
parameters of the pulse and optical material used
above,

The dynamics of a soliton with 2R0 ~ 0.1 cm is dom-
inated by nonlinear refraction. Retaining only the sec-
ond term in (29), we obtain l = ldef, where

is the defocusing length under nonlinear-refraction
conditions. For the parameter values used above, ldef ~
103 cm. This implies that the defocusing is sufficiently
slow; i.e., soliton generation via SBSS can be observed
experimentally.

5. CONCLUSIONS

The analysis presented above shows that forward
Brillouin scattering of ultraslow light propagating at the
speed of sound under conditions of electromagnetically
induced transparency makes it possible to observe a
new phenomenon: soliton generation via stimulated
Brillouin self-scattering. The Stokes shift of an optical
pulse can have any value within an interval, depending
on the input conditions, rather than a certain value
determined by the sound-to-light speed ratio and the
input carrier frequency, as in the case of “classical”
SBS. The shift increases with input pulse intensity,
being limited from above by the condition that the opti-
cal-pulse spectrum remains within the EIT window.

This paper presents the simplest model of SBSS. As
in the analyses of SRSS presented in [1, 4], the group-
velocity dispersion parameter is assumed to be constant
within the carrier bandwidth of the optical pulse. This
assumption is justified by the fact that the center fre-
quency of the EIT window corresponds to an inflection
point in the frequency dependence of the resonant-
impurity refractive index; i.e., its frequency derivative
varies very slowly within the transparency window. In
the general case, a numerical analysis of system (11),
(12) should be performed, with χ(τ) and g(τ) defined,
respectively, as the Fourier preimages of the frequency-
dependent susceptibility χ(ω) and electrostriction coef-
ficient γ2(ω) within the EIT window.

SBSS is analogous to SRSS in that it does not
involve any threshold condition. It is also important that
SBSS can be observed when the input pulse intensity is
as low as 10 W/cm2, which is generally sufficient for
manifestation of nonlinear effects under EIT conditions
[7, 15, 16]. One fundamental distinction between SRSS
and SBSS lies in the fact that the latter phenomenon can
manifest itself only by soliton generation; i.e., disper-

ld ωR0
2/c 1 cm.∼ ∼

ldef R0ωτp nma/c=
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sion is essential. Otherwise, forward SBS is impossible,
whereas it is a key prerequisite for SBSS.

The Stokes shift in the optical-pulse frequency is
associated with the generation of an acoustic video
pulse, which evolves into an acousto-optic soliton. This
effect is of both fundamental and applied interest: soli-
ton generation via SBSS can be considered as a mech-
anism of optical-to-acoustic pulse conversion. Conver-
sion mechanisms of this kind were analyzed for col-
linear (under EIT conditions) and noncollinear
propagation of acoustic pulses and light in [25] and [26],
respectively.

SBSS offers a mechanism for generation of optical
solitons with tunable carrier frequency depending on
input intensity, as in SRSS. The Stokes shift due to
SBSS is on the order of 10–3% of the carrier frequency,
which is much smaller than that due to SRSS. Further-
more, the substantially lower intensity of the solitons
generated via SBSS and the generation of carrier-free
acoustic pulses are distinctive features of the phenome-
non predicted in this study that have no analogs in
SRSS.
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Abstract—We investigate theoretically the spectrum of weak probe field absorption by three-level atoms with
the Λ configuration of levels in the field of a strong electromagnetic wave acting on an adjacent transition and
colliding with buffer gas atoms. Analysis is carried out for the general case of arbitrary collisional relaxation of
low-frequency coherence at a transition between two lower levels. It is shown that, in the absence of collisional
relaxation of low-frequency coherence, the probe field spectrum always exhibits clearly manifested anisotropy
with respect to mutual orientation of wavevectors of the strong and probe radiation (even under small Doppler
broadening). It is found that the probe field spectrum may acquire under certain conditions supernarrow reso-
nances with a width proportional to the diffusion coefficient for atoms interacting with radiation. This fact may
form the basis for a spectroscopic method for measuring transport frequencies of collisions between absorbing
and buffer particles. A large-amplitude supernarrow resonance (with an amplitude much larger than the ampli-
tude of the resonance near the line center), which is observed in the far wing of the absorption line, exhibits
collisional narrowing (a nonlinear spectroscopic analog of the Dicke effect) at collision frequencies several
orders of magnitude lower that the Doppler linewidth. Simple working equations proposed for describing the
probe field spectrum are convenient for experimental data processing. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The probe field method in nonlinear spectroscopy is
an effective tool for studying spectroscopic characteris-
tics and various relaxation processes in quantum sys-
tems. The essence of the method is that a weak (probe)
fields “probes” the structure of atomic states perturbed
by another strong field [1–3].

A large number of publications are devoted to probe
field spectroscopy. One of the most actively investi-
gated systems is the three-level Λ system, in which
transitions between the upper and each of the two lower
levels of the system are dipole-allowed (see, for exam-
ple, [1–10] and the literature cited therein). In their
studies, most authors used simple relaxation models. In
particular, it was assumed that complete phase mis-
match is observed in induced polarization at all transi-
tions during collisions leading to a change in the veloc-
ity. On the other hand, this assumption is not valid for a
number of real experimental objects. For example, col-
lisions of alkali metal atoms with nonmagnetic buffer
particles do not break coherence between the hyperfine
structure components of the ground electron state [11].
It was found that this circumstance leads to a radical
change in the shape of spectral lines, which is undoubt-
edly important for solving a number of problems that
1063-7761/05/10106- $26.00 0989
have aroused a revival of interest (e.g., coherent capture
of occupancies [12, 13], electromagnetically induced
transparency [14], and lasing without population inver-
sion [12–17]).

Here, we analyze theoretically the spectrum of
probe field absorption by three-level atoms with the Λ
configuration of the levels in the field of a strong elec-
tromagnetic wave acting on the adjacent transition. We
assume that atoms are in the atmosphere of a buffer gas
and experience collisions with its particles. Analysis is
carried out for the general case of arbitrary collisional
relaxation of low-frequency coherence at the transition
between two lower levels (collisional relaxation may
either be absent or, on the contrary, be quite effective).
At the same time, we assume that collisions completely
disturb the phase of the dipole moment induced by radi-
ation at optical transitions between the common upper
level and the lower levels.

Unexpectedly, the probe field spectrum turned out to
be highly sensitive to collisions and motion of atoms
even in cases when such factors can apparently be dis-
carded. For example, the Dicke collisional narrowing
effect for the probe field resonance in the far wing of the
absorption line, which was discovered in the present
study, may be strongly manifested at collision frequen-
© 2005 Pleiades Publishing, Inc.
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cies several orders of magnitude smaller than the Dop-
pler width (it should be recalled that the Dicke effect in
traditional spectroscopic problems [1, 2] is noticeably
manifested only at collision frequencies larger than the
Doppler width).

In the case of small Doppler broadening (relative to
the collision frequency), the probe field spectrum
should apparently be insensitive to the mutual orienta-
tion of the wavevectors of strong and probe radiations.
Nevertheless, the probe field spectrum is strongly
anisotropic to mutual orientation of wavevectors even
in this case.

This study is devoted to analysis of these and other
previously unknown features of the probe field spec-
trum of three-level Λ systems.

2. GENERAL EXPRESSIONS

Let us consider the interaction of strong and probe
radiation with the gas of three-level absorbing particles
mixed with a buffer gas. The energy level diagram of
absorbing particles is shown in Fig. 1. Let a strong field

be in resonance with the m–n transition and a weak field

be in resonance with the adjacent m–l transition. The
polarization of the medium at the probe field frequency
is determined by the density matrix element ρml(v),
where v is the particle velocity. These matrix elements
can easily be found from the system of kinetic equa-

ReE ik r iωt–⋅( )exp

ReEµ ikµ r iωµt–⋅( )exp

n

m

E Eµ

l

Fig. 1. Energy level diagram. Solid arrows denote transi-
tions induced by radiation, while dashed arrows show spon-
taneous radiative transitions.
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tions for density matrix elements (resonance approxi-
mation, see [1, 2])

(1)

where

(2)

Here, ρii(v) is the velocity distribution of particles at the
ith level (i = m, n); S[ρij(v)] are collision integrals; Γm

is the total spontaneous rate of decay of the excited
level m (via the m  n and m  l channels); dmn and
dml are the matrix elements of the dipole moments of
the m–n and m–l transitions; and ωmn and ωml are the
frequencies of the m–n and m–l transitions.

We will consider the case when collisions com-
pletely disturb the phase of the dipole moment induced
at the m–l transition, but when collisional relaxation of
low-frequency coherence ρnl(v) is arbitrary. We assume
that collision integral S[ρml(v)] in relation (1) satisfies the
conventional approximation for the present case [1, 3]

(3)

where the “departure” frequency νml is a complex quan-
tity in the general case. For the collision integral
S[ρnl(v)], we will use the model of strong collisions [1],

(4)

where W(v) is the Maxwell velocity distribution and ν
and  are the “departure” and “arrival” frequencies,
which are generally complex quantities. The value

 = 0 corresponds to the absence of phase memory in
collisions (collisions induce complete relaxation of
coherence ρnl(v)). In the case of absolute phase mem-
ory in collisions (the absence of collisional relaxation
of coherence ρnl(v)), the frequencies ν and  of depar-
ture and arrival are real-valued and identical [1],

(5)

where νtr has the meaning of the average transport fre-
quency of elastic collisions between active and buffer

d
dt
-----

Γm

2
------ i Ω0µ kµ v⋅–( )–+ ρml v( )

=  S ρml v( )[ ] iGµ ρll v( ) ρmm v( )–[ ] iGρnl v( ),+ +

d
dt
----- i Ω0 Ω0µ– kµ k–( ) v⋅+[ ]+

 
 
 

ρnl v( )

=  S ρnl v( )[ ] iG*ρml v( ) iGµρnm v( ),–+

Ω0 ω ωmn, Ω0µ– ωµ ωml,–= =

G
dmnE
2"

------------, Gµ
dmlEµ

2"
--------------.= =

S ρml v( )[ ] ν mlρml v( ),–=

S ρnl v( )[ ] νρ nl v( )– ν̃ρnlW v( ),+=

ρnl ρnl v( ) v,d∫≡

ν̃

ν̃

ν̃

ν̃ ν ν tr,= =
ND THEORETICAL PHYSICS      Vol. 101      No. 6      2005



PROBE FIELD SPECTROSCOPY IN THREE-LEVEL Λ SYSTEMS 991
particles [18]. Quantity νtr is connected with diffusion
coefficient D for particles interacting with radiation via
the relation [19]

(6)

where vT is the most probable velocity of absorbing
particles.

Under steady-state and spatially homogeneous con-
ditions, we obtain the following relations from Eq. (1)
combined with (3) and (4):

(7)

where

(8)

In view of the low intensity of the probe field, matrix
elements ρii(v) and ρnm(v) in Eqs. (7) can be assumed to
be known and determined by the action of the strong
field alone. Further, we assume that collisional transi-
tions between levels n and l are absent. In this case, all
particles pass from level n to level l under the action of
the strong field. Consequently, in Eqs. (7) we can set

(9)

where N is the total concentration of absorbing particles.
Here, we will analyze the probe field absorption

spectrum. Using system of equations (7) combined
with relations (9), we derive the following expression
for the probability Pµ of probe field absorption at fre-
quency ωµ (the number of radiation absorption events
per unit time for an absorbing atom):

(10)

where

(11)

Thus, the calculation of the probe field spectrum in the
model of strong collisions is reduced to evaluation of
the corresponding integrals.

D v T
2 /2ν tr,=

λ1 v( )ρml v( ) iGµ ρll v( ) ρmm v( )–[ ] iGρnl v( ),+=

λ2 v( )ρnl v( ) ν̃ρnlW v( ) iGµρnm v( )–=

+ iG*ρml v( ),

λ1 v( )
Γm

2
------ νml i Ω0µ kµ– v⋅( ),–+=

λ2 v( ) ν i Ω0 Ω0µ q v⋅+–( ),+=

q kµ k, ρij– ρij v( ) v.d∫≡ ≡

ρmm v( ) ρnm v( ) 0, ρll v( ) NW v( ),= = =

Pµ
2
N
----Re iGµ*ρml[ ]–≡

=  2 Gµ
2Re I2

ν̃ G 2J2

1 ν̃ I1–
------------------–

 
 
 

,

J
W v( ) vd

λ1 v( )λ2 v( ) G 2+
-------------------------------------------,∫=

Ii

λ i v( )W v( ) vd

λ1 v( )λ2 v( ) G 2+
-------------------------------------------, i∫ 1 2.,= =
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3. ANALYSIS
OF THE PROBE FIELD SPECTRUM

It is difficult to analyze expression (10) in the gen-
eral form, although the specific probe field spectrum for
various sets of parameters (intensity of strong radiation,
its frequency, collision frequencies, and the extent of
manifestation of the phase memory) can easily be
obtained from numerical calculations. To clarify the
physical pattern, we will first consider various special
cases for which relatively simple analytic results can be
obtained from expression (10).

3.1. Homogeneous Broadening 

We begin our analysis from the case of homoge-
neous broadening of the absorption line at the m–l tran-
sition, when the Doppler width kµvT is smaller than Γ:

(12)

In this case, for not very high radiation intensity, such
that

(13)

formula (10) for the probe field absorption probability
can be substantially simplified and assumes the form1 

(14)

Here, the following notation has been introduced:

(15)

Here and below, prime and double prime indicate the
real and imaginary parts of a complex number, respec-
tively.2 

Formula (14) for the absorption probability is simi-
lar in structure to the corresponding formula for parti-
cles at rest (see, for example, [1, 2]). The only differ-

1 It should be noted that condition (13) depends on radiation fre-
quency detuning Ω and can be satisfied even for |G | * Γ for large
detunings (|Ω| @ Γ).

2 A formula analogous to expression (14) was recently derived
in [10], where the probe field spectrum for a three-level Λ system
is considered under possible conservation of phase memory dur-
ing collisions at all atomic transitions simultaneously. The main
attention in [10] was paid to analysis of the shape and positions of
the components of the Autler-Townes doublet associated with
field splitting of the upper level in the Λ system.

Γ  @ kµv T , Γ
Γm

2
------ Reνml.+=

G 2
 ! ν Γ iΩ–( ) ,

Pµ 2 Gµ
2Re Γ iΩµ– G 2

Γ1 iε–
----------------+ 

 
1–

 
 
 

.=

Γ1 ν ν̃–( ) '
qv T( )2

2 ν i Ω0 Ω0µ–( )+[ ]
----------------------------------------------, ε+ Ωµ Ω,–= =

Ωµ Ω0µ νml'' , Ω– Ω0 ν ν̃– νml–( ) '',+= =

q kµ k– .≡
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Fig. 2. Dependences of the probe field absorption probability Pµ on the frequency detuning Ωµ in the case of homogeneous broad-
ening of the absorption line at the m–l transition (Γ @ kµvT) and in the absence of collisional relaxation of low-frequency coherence

at the n–l transition (  = ν), |G |/kvT = 5, ν'/kµvT = 10; Γm/kµvT = 10–2, and (k – kµ)/k = 10–4; solid and dashed curves correspond
to kµ ↑↑  k and kµ ↑↓  k, respectively; Ω = 0 (a), Ω/kvT = 15 (b), and 50 (c); the inset shows the resonance in the vicinity of Ωµ =

 ≈ Ω + |G |2/Ω on a magnified scale.

ν̃

Ωµ
+( )
ence is that the relaxation constant Γ1 should be gener-
alized to take into account the diffusion motion of
particles (second term in formula (15) for Γ1). In the
case of phase memory conservation in collisions at the
n–l transitions, relaxation constant Γ1 is determined
only by the second (diffusion) term. Thus, motion of
atoms should always be taken into account in analysis
of the probe field spectrum, even in the case of small
Doppler broadening relative to the collision frequency.

The quantity Γ1 is anisotropic to mutual orientation
of wavevectors of strong and probe radiation. If phase
memory is preserved at the n–l transition and the mag-
nitudes of the wavevectors differ insignificantly
(|k − kµ| ! k), the value of Γ1 for counterpropagating
(kµ ↑↓  k) and unidirectional (kµ ↑↑  k) waves may dif-
fer by many orders of magnitude. This means that the
probe field spectrum exhibits a clearly manifested
anisotropy to mutual orientation of the wavevectors of
the strong and probe radiations even in the limit of
small Doppler broadening.

Considering the limiting case Γ1  0 in formula (14),
we can easily note that the maximal values of Pµ are
attained under the condition

This condition leads to the well-known result (see, for
example, [1, 2]) that the probe field spectrum has two
components whose peaks lie in the vicinity of Ωµ =

, where

(16)

εΩµ G 2.=

Ωµ
±( )

Ωµ
±( ) 1

2
--- Ω ΩR±( ), ΩR 4 G 2 Ω2+ .≡=
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In accordance with these formulas, the distance
between the spectral component peaks is ΩR . In spite of
the limitations used in deriving formula (16), it defines
the position of spectral components to a high degree of
accuracy for any values of the parameters of the
problem.

Figure 2 shows the general form of the probe field
spectrum for various detunings Ω of the strong field fre-
quency in the case of homogeneous broadening (12)
and phase memory conservation at the n–l transition. In
the case of exact resonance for the strong field (Ω = 0),
a “negative” symmetric structure exists at the line cen-
ter (dip in Fig. 2a). With increasing |Ω|, a narrow reso-
nance peak appears in the wing of the absorption line in

the vicinity of Ωµ =  (Figs. 2b and 2c). The behav-
ior of this resonance is quite peculiar: its amplitude
remains unchanged and equal to the amplitude of the
resonance near the absorption line center even for a
large detuning |Ωµ| @ Γ (far wing of the absorption line;
see Fig. 2c); the resonance width rapidly decreases with
increasing |Ω| and may be smaller than the natural lin-
ewidth Γm . In the vicinity of Ωµ = Ω , the probe field
spectrum acquires a dip (see Fig. 2); absorption of radi-
ation becomes much weaker and practically vanishes
under certain conditions (“dark resonance” [12, 13]). In
all figures, the unit of measurement is the quantity P0,
viz., the absorption probability for probe radiation at
the line center at the m–l transition in the limit of a low
intensity of the strong field. In accordance with for-
mula (10), we have

(17)

Ωµ
+( )

P0 2 Gµ
2Re

W v( ) vd
λ1 v( )

-------------------.∫=
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In the case of homogeneous broadening of the absorp-
tion line (Γ @ kµvT), we have

in the case of Doppler broadening (Γ ! kµvT), we have

Let us consider in greater detail various regions of
the probe field spectrum. For a small strong field fre-
quency detuning

|Ω| ! Γ, (18)

it follows from formula (14) that the probe field spectrum
can be described by the formula3 

(19)

In accordance with this formula, the probe field spec-
trum contains two Lorentz profiles, which are summed
with different signs. The first term in the braces
describes the Lorentz absorption line of width Γ, which
is typical of the case with an extremely low intensity of
the strong field. The second term describes the dip in
the vicinity of Ωµ = Ω with the half-width Γ1 + |G |2/Γ
against the background of the Lorentz profile with half-
width Γ, which is associated with the first term. The dip
width is anisotropic to mutual orientation of the
wavevectors of the strong and probe radiations
(Fig. 3a). It can be seen from the figure that the reso-
nance in the case of counterpropagating waves is broad-
ened to such an extent that the dashed curve is almost
horizontal.

Anisotropy is manifested most strongly in the case
of a low radiation intensity (|G |2 ! ΓΓ 1), when the half-
width of the dip is equal to Γ1. In the case of phase
memory conservation at the n–l transition, quantity Γ1
in formula (19) satisfies the following expression:

Γ1 = q2D. (20)

3 In the formulas for the probe field spectrum, quantity Γ1 (15) can
be assumed to be real-valued (we can carry out the substitution
Γ1  ReΓ1) under the condition ν' @ qvT , which is in fact
always satisfied in the case (12) of homogeneous broadening of
the absorption line).

P0

2 Gµ
2

Γ
---------------,=

P0

2 π Gµ
2

kµv T

----------------------.=

Pµ 2 Gµ
2=

× Re 1
Γ iΩµ–
------------------ G 2

Γ2 Γ1
G 2

Γ
--------- i Ωµ Ω–( )–+

---------------------------------------------------------------–

 
 
 
 
 

.
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Thus, the dip width in this case turns out to be propor-
tional to diffusion coefficient D for particles interacting
with radiation. This circumstance may serve as the
basis for a spectroscopic method for measuring the dif-
fusion coefficient of absorbing particles in the buffer
gas atmosphere.

With increasing radiation intensity (for |G |2 ~ ΓΓ 1),
the widths of the dips for unidirectional and counter-
propagating waves become comparable; however, in
the latter case no appreciable bleaching of the medium
takes place (Fig. 3b). As the radiation intensity

–5

0.5

0 5
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Ωµ/kµvT

1.0

0

Pµ/P0

–0.01

0.5

0 0.01
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Pµ/P0
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30–30
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Fig. 3. Dependences Pµ(Ωµ) in the case of homogeneous
broadening for exact resonance for the strong field (Ω = 0);
collisions preserve phase memory at the n–l transition,
ν'/kµvT = 10, (k – kµ)/k = 10–4, Γm/kµvT = 10–2; solid and
dashed curves correspond to kµ ↑↑  k and kµ ↑↓  k, respec-
tively; |G |/kvT = 0.1 (a; the inset shows the general view of
the spectrum) and 1.5 (b).
ICS      Vol. 101      No. 6      2005
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increases further (for |G |2 @ ΓΓ 1), the anisotropy of the
probe field spectrum practically disappears (see
Fig. 2a).

Let us consider the case of extremely strong detun-
ing of the strong field frequency:

|Ω| @ Γ. (21)

In this case, formula (14) for the probe field absorption
probability can be transformed to

(22)

In accordance with this formula, the probe field spec-
trum consists of two Lorentz profiles with half-widths
Γ and Γ1 + γ, which are located in the vicinity of

and

respectively.
The width 2(Γ1 + γ) of the resonance in the far wing

of the line (in the vicinity of Ωµ ≈ Ω) is anisotropic to
mutual orientation of the wavevectors of the strong and
probe radiations (see the inset to Fig. 2c) and may be
smaller than the natural linewidth Γm .

If phase memory is preserved during the n–l transi-
tion, the quantity Γ1 is defined by formula (20) and,
hence, the resonance width depends on the diffusion
coefficient D of particles interacting with radiation. The
ratio a of the amplitude of the resonance in the far wing
of the line to the amplitude of the resonance in the
vicinity of the line center is given by

(23)

and is close to unity for Γ1 ! γ (see Fig. 2c). Thus, for
Γ1 ! Γ, the amplitude of the resonance in the far wing
of the line does not decrease with increasing strong
field frequency detuning up to values of

Pµ
2 Gµ

2

Γ
--------------- Γ2

Γ2 Ωµ G 2/Ω+( )2
+

------------------------------------------------




=

+
Γ1 γ+( )γ

Γ1 γ+( )2 Ωµ Ω– G 2/Ω–( )2
+

---------------------------------------------------------------------------




,

γ G 2Γ
Ω2

-------------.=

Ωµ Ωµ
–( ) G 2

Ω
---------–≈=

Ωµ Ωµ
+( ) Ω G 2

Ω
---------,+≈=

a
γ

Γ1 γ+
---------------=

Ω G Γ /Γ1.∼
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In the absence of phase memory at the n–l transition,
we have Γ1 ~ Γ @ γ and, hence, the resonance in the
wing of the line is weakly pronounced (its relative
amplitude a is small).

Expressing quantity Γ1 from Eq. (23), we arrive at
the relation

(24)

which can be used to find the extent of phase memory
conservation in collisions, characterized by parameter

/ν' (0 ≤ /ν' ≤ 1) from the relative amplitude a of the
resonance in the line wing. The second approximate
equality in formula (24) (with diffusion coefficient D
on the right-hand side) is in fact exact in the case of a
high extent of phase memory conservation at the n–l
transition (for 1 – /ν' ! 1) since we can set

on the right-hand side of the first equality in this case.

3.2. Doppler Broadening 

Let us now analyze the case of Doppler broadening
of the absorption line at the m–l transition (kµvT @ Γ).
Figure 4 shows typical probe field spectra for various
values of detuning Ω . As compared to the case of
homogeneous broadening considered earlier, the line
profile Pµ(Ωµ) experiences considerable changes: the
spectrum anisotropy increases, and the amplitude of the
narrow resonance in the absorption line wing (in the

vicinity of Ωµ =  increases with detuning Ω
(Figs. 4b and 4c) and is found to be much larger than
the amplitude of the resonance near the line center
when |Ω| @ Γ (see Fig. 4c).

Let us consider in detail the most interesting case of
Doppler broadening for a large detuning of the strong
radiation frequency,

(25)

Let us suppose that the radiation intensity is not too
high (see relation (13)) and the following conditions are
satisfied:

(26)
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and

(27)

We can prove that formula (22) for the absorption prob-
ability under conditions (25)–(27) correctly describes
the resonance in the line wing (in the vicinity of Ωµ =
Ω + |G |2/Ω , the second term in formula (22)). However,
the resonance at the line center (in the vicinity of Ωµ =
–|G |2/Ω) cannot be described by formula (22); this res-
onance should be analyzed proceeding from the general
formula (10).

To analyze the resonance in the vicinity of the
absorption line center, let us consider the special case of
equality of the wavevectors of the strong and probing
radiation (kµ = k). In this case, formula (10) for Pµ can
be substantially simplified and assumes the form

(28)

Ω Γ  @ kµv T( )2 or ν ' @ kµv T( )2 G 2

Ω 3
---------,

for q kµ
G 2

Ω2
---------+ 0.=

Pµ
2 π Gµ

2

kµv T

----------------------=

× Re
w b( )

1 πν̃ G 2w b( )
kµv T ε i ν ν̃–( ) '+[ ] ε 1 iν '+( )
---------------------------------------------------------------------–

------------------------------------------------------------------------------

 
 
 
 
 

,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                         

where

(29)

w(b) being the probability integral of a complex argu-
ment, which is tabulated in [20].

Under Doppler broadening conditions for the
absorption line (Γ ! kµvT), parameter b in formula (28)
may be small (|b | & 1). In this case, we can set

,

which immediately leads to the following expression
following from formula (28) in the absence of colli-
sions (ν,  = 0):

(30)

Numerical analysis shows that, in the absence of colli-
sions, formula (30) is a good approximation of the
exact, but more cumbersome expression (28) for any
value of parameter b. This is due to the fact that the con-
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dition |b | & 1 of applicability of this formula in the

vicinity of spectral components (near Ωµ = ) is
always satisfied (the exponent in formula (30) vanishes

for Ωµ = ). However, in the detuning range, where
|b | @ 1, the absorption probability is low (as compared
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Fig. 5. Dependences Pµ(Ωµ) in the vicinity of Ωµ = Ω +

|G |2/Ω in the case of Doppler broadening; Ω/kvT = 10,

Γm/kµvT = 10–2; (k – kµ)/k = 10–4; solid and dashed curves
correspond to kµ ↑↑  k and kµ ↑↓  k, respectively;

(a) |G |/kvT = 0.5, ν'/kµvT = 10–2;  = ν (1), /ν' = 0.99 (2),
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/ν (7); the inset shows curves 6 and 7 on a magnified

scale; (b) |G |/kvT = 0.1 (|G | = |Ω| ), Ωshift/kµvT =

10.002; ν = 0 (1); ν'/kvT = 10–6 (2), 10–5 (3), 10–4 (4);

10−3 (5); 10–2 (6), 10–1 (7); kµ ↑↓  k for any ratio ν'/kvT (8).
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to the unit of measurement P0) and, hence, the difference
between the results of calculation by formulas (28) and
(30) is small.

In addition, numerical analysis shows that for a
large detuning of the strong radiation frequency (25),
formula (30) correctly describes the resonance near the
line center in the presence of collisions and for any rela-
tion between kµ and k as well, in spite of the fact that
this formula was derived for the special case when kµ =
k and ν,  = 0. Summarizing the above arguments, we
conclude that the probe field absorption probability for
a large value of |Ω| in the case of Doppler broadening
(under conditions (25)–(27)) is described by the
formula

(31)

In accordance with this formula, the probe field
spectrum consists of a Lorentz profile with half-width
Γ1 + γ, which is located in the far wing of the line (in the
vicinity of Ωµ = Ω + |G |2/Ω) and a Doppler profile of
half-width kµvT , which is located near the line center
(in the vicinity of Ωµ = –|G |2/Ω). The ratio A of the
amplitude of the resonance in the far wing of the line to
the amplitude of the resonance near the line center is
given by

(32)

and can be much larger than unity (see Fig. 4c).
Expression (32) can be used for deriving a relation

connecting the relative amplitude A of the resonance in
the line wing with the degree of phase memory conser-
vation in collisions:

(33)

For a high degree of phase memory conservation at the
n–l transition (for 1 – /ν' ! 1), the collision fre-
quency ν' on the right-hand side of Eq. (33) can be
expressed in terms of diffusion coefficient D:

Pay attention to the fact that the amplitude and width
of the resonance in the line wing are strongly sensitive
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to phase memory effects in collisions in spite of the
smallness of the collision frequency as compared to the
Doppler width (Fig. 5a).

It is well known (see, for example, [1, 2]) that the
Dicke effect is noticeably manifested in traditional
spectroscopic problems only when the collision fre-
quency is much larger than the Doppler linewidth.
However, in the case considered here, the Dicke effect
is strongly manifested even for a collision frequency
much smaller than the Doppler width. The physical rea-
son for this effect can easily be grasped using the con-
cepts of field-induced level splitting (such a splitting is
also known as the Autler–Townes effect, or the
dynamic Stark effect).

In a strong field, level m with unperturbed energy

 splits into two sublevels with quasi-energies .

For particles moving at a velocity v, quasi-energy 
is a function of v due to the fact that the frequency of
the field acting on a particle depends on its velocity:

(34)

For particles with a fixed velocity v, detuning (v) of
the probe field frequency at the transition between the

sublevel with quasi-energy (v) and level l with

energy  is given by

(35)

For |G | ! |Ω|, we obtain

(36)

For an insignificant difference between the wavevectors

(kµ ≈ k, q ! k), the Doppler shift in detuning (v) is
small as compared to kµ · v. This is precisely the reason
for strong manifestation of the Dicke effect in the case
of collisions preserving phase memory for the reso-
nance in the line wing for low collision frequencies (for
ν' @ qvT, kvT |G |2/Ω2 ; however, ν' can be much smaller
than kµvT). For q ! k, the condition for manifestation of
the Dicke effect, which was derived from the qualitative
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pattern, coincides with condition (26) weakly selective
to the rates of interaction of atoms with radiation.

It can be seen from relations (36) that the Doppler

shift in detuning (v) in the particular case when
q = –k|G |2/Ω2 (we can substitute kµ for k in the case
when q ! k) disappears and all atoms resonantly inter-
act with the probe field irrespective of their velocity.
Thus, a resonance free of Doppler broadening emerges
in this case in the vicinity of Ωµ = Ω + |G |2/Ω . This res-
onance is correctly described by formula (31) even in
the absence of collisions if the condition |Ω|Γ @ (kµvT)2

is satisfied (see formula (27)).
Figure 5b illustrate the behavior of the resonance

free of Doppler broadening in the line wing (for q =
−k|G |2/Ω2) as a function of the collision frequency in
the case when phase memory is preserved. The ampli-
tude of the resonance is a complex function of the col-
lision frequency. When the value of ν' increases from
zero to a certain small value (to ν'/kµvT ~ 10–5 for the
parameters corresponding to Fig. 5b), the resonance
amplitude first decreases (curves 1, 2, and 3) and then
increases substantially with increasing ν' (curves 4
and 5), attaining its maximum value for ν'/kµvT ~ 10–3.
Upon a further increase in ν', the resonance amplitude
decreases again (curves 6 and 7).

4. CONCLUSIONS

In this paper, the spectrum of a weak probe field
absorption by three-level atoms with the Λ configura-
tion in the presence of a strong field at an adjacent tran-
sition is studied theoretically. It was assumed that
atoms are in the buffer gas atmosphere and experience
collisions with gas particles.

It is shown that most interesting features in the
probe field spectrum are observed in the absence of col-
lisional relaxation of low-frequency coherence at the
transition between two lower levels of the Λ system. In
this case, the absorption spectrum always exhibits
clearly manifested anisotropy to mutual orientation of
the wavevectors of the strong and probe radiations even
in the limit of weak Doppler broadening relative to the
collision frequency. Supernarrow resonances with a
width much smaller than the natural width may appear;
the characteristics of such resonances (width and
amplitude) are connected in a certain manner with the
diffusion coefficient for atoms interacting with radia-
tion. This may form the basis for the development of a
spectroscopic method for measuring the atomic diffu-
sion coefficient.

The resonance in the far wing of the absorption line
may experience Dicke collisional narrowing even for
very small (as compared to the Doppler width) collision
frequencies. Unexpectedly, it was found that the ampli-
tude of the resonance in the far wing of the absorption
line may exceed the amplitude of the resonance at the
line center by several orders of magnitude. This result

∆µ
+( )
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is beyond the framework of conventional concepts,
according to which the cross section of nonresonant
radiative processes is always smaller than the cross sec-
tion of resonant processes. Simple working equations
are derived, which can be used for determining param-
eter /ν', viz., the degree of phase memory conserva-
tion in collisions at the n–l transition, from the relative
amplitude of the resonance in the line wing.

The features of the probe field spectrum noted in
this study are manifested most clearly for a high degree
of phase memory conservation in collisions at the n–l
transition (for 1 – /ν' ! 1). For atoms of alkali metals
(which are successfully simulated by the Λ level dia-
gram) in the atmosphere of inert buffer gases, the cross
section of collisional transitions between the n and l
hyperfine structure components of the ground state is
6−10 orders of magnitude smaller than the gas-kinetic
cross sections [11]. Consequently, we can expect for
such objects a high degree of phase memory conserva-
tion in collisions, so that 1 – /ν' & 10–6. Thus, atoms
of alkali metals in the atmosphere of inert gases are
suitable objects for detecting and studying the effects
considered in this work.
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Abstract—Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to sup-
port persistent currents due to the Aharonov–Bohm flux, and the “spontaneous” persistent currents without the
flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-sym-
metric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal peri-
odicity, which is further restored at the increasing field, however. The dynamics of the Aharonov–Bohm loop
in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that
transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied
to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that
can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence
of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches
between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers. © 2005 Ple-
iades Publishing, Inc. 
1. PERSISTENT CURRENTS
IN MESOSCOPIC SYSTEMS

Persistent currents have been predicted for mesos-
copic conducting ballistic or quasiballistic loops ([1]1

and references therein, [2]) that do not show the effect
of superconductivity and that have been extended to
diffusive rings [3]. The current appears in the presence
of a magnetic field as a result of the Aharonov–Bohm
effect [4], demonstrating the special role of the vector
potential in quantum mechanics. As discussed in [5],
persistent currents are similar to orbital currents in nor-
mal metals first considered by Teller [6] in his interpre-
tation of Landau diamagnetism in metals [7], but are
specific to the doubly connected geometry of conduc-
tors (loops, hollow cylinders, etc.). Persistent currents
have been observed in indirect [8, 9] as well as direct
[10, 11] experiments, showing the single-flux-quantum
Φ0 = hc/e periodicity in the resistance of thin Nb wires
[8] and networks of isolated Cu rings [9], and in single-
loop experiments on metals [10] and semiconductors
[11]. In [12], the periodic variation of resistivity in

¶ The text was submitted by the author in English. 
1 This paper proved exact periodicity of ring energy as a function

of the magnetic flux with the period hc/e, although with an indef-
inite amplitude.
1063-7761/05/10106- $26.000999
molecular conducting cylinders (carbon nanotubes)
was attributed to the Altshuler–Aronov–Spivak effect
[13], a companion to the classical Aharonov–Bohm
mechanism with the twice smaller periodicity in mag-
netic flux Φ1 = hc/2e. A further trend in macromolecu-
lar persistent currents [14–16] is in the quantum com-
putational [17] prospects of using the Aharonov–Bohm
loops as qubits with an advantage of easier (radiation-
free) manipulation of qubit states, and in the increased
decoherence times compared to macroscopic
“Schrödinger cat” structures (Josephson junctions).

The present paper focuses on ballistic Aharonov–
Bohm rings, like those naturally found in molecular
crystals with metalloorganic complexes as the building
blocks [18, 19]. We approximate such macromolecular
structures as rings with resonant hopping of electrons
between the near-site atoms or complexes serving as
electron localization sites. As shown in [14], the small-
est (three-site) persistent current ring displays a
Λ-shaped energy configuration (Fig. 1) with two degen-
erate ground states, at the external flux through the ring
equal to half the normal-metal flux quantum, Φ = hc/2e.
At a certain number of electrons in the ring, persistent
current appears at zero field (the “spontaneous” cur-
rent). The spontaneous persistent current loop, to be
discussed below, achieves the degenerate state at zero
 © 2005 Pleiades Publishing, Inc.
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field or, if the degeneracy is lifted by the electron–
phonon coupling, at reasonably small fields.

Persistent current is a voltage-free nondecaying cur-
rent that exists as a manifestation of the fact that the
ground state of a doubly connected conductor in a mag-
netic field is a current-carrying one. This statement was
proved for ballistic loops [2] and for diffusive rings [3].
There is no principal difference between these
extremes. Counterintuitively, a ballistic structure does
not show infinite conductivity, as was sometimes
naively supposed; a dc resistance of the loop is infinite
rather than zero when a dc electric field is applied to the
system. In the case where a current is fed through the
structure, no voltage appears provided the magnitude of
the current is smaller than a certain critical value. This
applies to both elastic and inelastic scatterings. The
magnitude of the critical current of a ballistic ring
smoothly matches the current of the diffusive ring when
the mean free path of the electron becomes large. In a
dirty limit, l ! L, where l is the electron mean free path
and L is the ring circumference, the critical value of the
persistent current decreases proportionally to l/L

|0〉

|c〉

|1〉

Fig. 1. A Λ-shaped energy configuration in the Aharonov–
Bohm ring. Arrows indicate a transition between degenerate
states |0〉  and |1〉  through virtual transition to the control
state |c〉 .

J

Φ Φ
J

R
Φ L1

L2

(a) (b) (c)

Fig. 2. (a) Models of mesoscopic and nanoscopic Aha-
ronov–Bohm loops: a one-dimensional continuous loop;
(b) a discrete loop with regularly spaced centers of electron
localization (sites); (c) a 3-dimensional loop in the form of
a cylinder with a longitudinal dimension of L = 2πR and
transverse dimensions of L1, L2.
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according to [20], or to (l/L)1/2 according to numerical
simulation [5]. The nondecaying current does not even
require severe restrictions on the so-called “phase
breaking” mean free path lϕ . In fact, the normal-metal
supercurrent is an analogue of the “nonquantum”
Josephson effect [21, 22], the one in which the phase of
superconductor is considered a classical variable.
Stronger criteria (the dephasing length larger than the
system size, and the analogous requirement in the time
domain, that the “decoherence time” is larger than the
characteristic time of observation) apply to persistent
current rings as quantum computational tools, which
are analogs of macroscopic quantum tunneling [23–
26]. Persistent current is a thermodynamic property,
clearly distinct from the dissipative currents in conduc-
tors, and can in principle exist in a system that has the
vanishing Ohmic conductance.

2. SPONTANEOUS PERSISTENT CURRENTS

Persistent current in a ballistic ring appears due to
the Aharonov–Bohm flux. The current, however, can
also occur when the external magnetic field is zero, in
which case it is called the spontaneous current. Such a
situation was noticed accidentally by various authors,
in particular, [27, 28], but did not seem convincing, did
not attract attention due to fixed chemical potential con-
figuration studied, and was attributed to the effect of
Peierls instability in the ring [29–32] (with the latter
paper criticized [33, 34] in regard to the inaccuracy of
the mean-field approximation). In fact, the fixed-num-
ber-of-particle ring with an odd number of electrons
displays a number of structural instabilities, of which
the Peierls transformation [35] and the Jahn–Teller
effect [36] are the best known examples, or generally,
a more complex atom rearrangement when the ground
state proves degenerate in a symmetric configuration.

The origin of the spontaneous current can be under-
stood as follows. We consider a one-dimensional ring in
the field of a vector potential created by a thin, infinitely
long solenoid perpendicular to the plane of the ring and
piercing the ring (Fig. 2a). The electron energy in the
ring is

(1)

where A = Φ/L is the angular component of the vector
potential (Φ is the total magnetic flux of the solenoid)
and n = 0, ±1, ±2, …. Such a state corresponds to the
current

which is zero at Φ = 0 and n = 0, but is nonzero at n ≠ 0
even at zero flux. At T = 0, electrons, in the total number
N, occupy the lowest possible energies compatible with
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the Pauli exclusion principle, i.e., such that each state is
occupied with two electrons with opposite spins at
most. Therefore, the ground state of one or two elec-
trons is that of n = 0, and hence has zero current at
Φ = 0. But the state with the next electron number,
N = 3, already resumes at n = 1 or n = –1, or is in a
superposition of these states, α|1〉  + β|–1〉 , depending
on the way the state at the initial condition is prepared,
and therefore carries a current unless α ≠ β. If there is
no decoherence of the state due to the interaction of the
loop with the environment, the current persists in time
without any voltage applied along the loop. This
applies to a ballistic perfectly symmetric ring. The
inhomogeneity in the ring, as well as scattering of elec-
trons by impurities, may result in a nondegenerate cur-
rent-free state. This is illustrated in Fig. 3 for the ring
with a δ-functional barrier V0δ(x), which results in the
Kronig–Penney equation for energy,

(2)

The electron energy is ε = ε0k2, where k = kn is one of
solutions to Eq. (2) and ε0 = h2/2mL2. The same conclu-
sion is obtained for a discrete Aharonov–Bohm ring
(Fig. 2b), to be considered in detail below.

Figure 4 shows the maximum value of persistent
current, as well as that of the spontaneous current intro-
duced above, versus the number of electrons in a three-
dimensional ballistic ring (the one with the electron
mean free path l = ∞) modeled as a finite-length hollow
cylinder (Fig. 2c) with the rectangular cross section
L1 × L2 containing a finite number of perpendicular
electron channels

We note that the magnitude of the current in a ballistic
ring is not evF/L, as is sometimes suggested (vF is the
Fermi velocity), but

(see also [2]). The dependence Jmax(N) at T = 0 is irreg-
ular due to the contribution to the total current of both
the negative and positive terms originating from differ-
ent electron eigenstates.

Figure 5 explains the origin of persistent current as
a bistability effect in a ring. While the electron energy
has a minimum at Φ = 0 for an even number of elec-
trons, it acquires a maximum when the number of elec-
trons is odd. The inductive energy, to be included
below, shifts the position of minima in that curve only
very slightly. The spontaneous current has the same
order of magnitude as the maximum persistent current,

2πk( )cos
V0L
2ε0
--------- 2πk( )sin

2πk
----------------------+ 2πΦ

Φ0
------ 

  .cos=

N ⊥
L1L2kF

2

2π2
-----------------.=

Jmax

ev F

L
---------N ⊥

1/2∼
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and it is an inseparable part of the Aharonov–Bohm
effect in a ballistic ring.

In a one-dimensional loop, discrete quantum states
are

, (3)ψn
1

L
-------einθ=

–0.25
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Φ/Φ0

–0.50
–1.0
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1.0
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J/E, arb. units

1
2

3

3

1 2

Fig. 3. Ground state energies and currents in the continuous
ring with 3 electrons at various strengths of the barrier: g =
0 (1), 1 (2), 2 (3).
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Fig. 4. Persistent current versus the number of electrons in
a ring with ratio cross-sectional dimensions L : L1 : L2 =
10 : 1 : 1 (configuration with spin). The upper curve is the
maximum current in units of J0 = evF/L at given N; the dot-
ted curve is the amplitude of the first harmonic of Jpers(Φ);
and the curve at negative J is the spontaneous persistent cur-
rent, also in units of J0. The dashed curve is the square root
of the number of perpendicular channels N⊥ .
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where θ is the azimuthal angle, with the energies given
by (1) plus the inductive energy of the current. For the
loop with three electrons, this gives the total energy,

(4)

corresponding at Φ = 0 to two spin-1/2 states with n =
0 and one state with n = 1 or n = –1. The last term in
Eq. (4) is the magnetic inductive energy and + is the
inductance (of the order of the ring circumference, in
the units adopted). The current

is equal to

(5)

and is nonzero at f = 0 in either of the states ±. The ratio
of the magnetic energy to the kinetic energy is on the
order of

(6)

where a0 is the Bohr radius. This is a very small quan-
tity, and therefore the magnetic energy is unimportant
in the energy balance of the loop. The total flux in the
loop is f = fext + 2ηj(f), where fext is the external flux and
j(f) = J(f)/J0. The correction to the externally applied

E f( ) ε0 f 2 1
2
--- 1± f–( )2+

+J0
2

2c2
---------- j2 f( ),+=

J
e
h
---∂E
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------–=

J f( ) J0 1± 3 f–( ), J0
eε0
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-------= =

η
+J0

2

2c2ε0

------------- e2

4πmc2R
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R
-----,∼≈=
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0.5–0.5
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2

Fig. 5. Examples of the occurrence of a bistable configura-
tion in a ring. Energy versus flux in a ring of 10 (1) and
11 (2) electrons. Curve 2 is shifted downward for conve-
nience but is not reset.
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flux is significant only at very small fields fext ~ η; oth-
erwise we can ignore this contribution.

When a persistent-current loop is placed in an elec-
tric field perpendicular to a magnetic field, the system
coherently switches between the discreet states of the
loop providing for quantum transitions (quantum logi-
cal gates) in the loop performing as a qubit in a quan-
tum computer. This aspect of persistent currents in bal-
listic loops is analyzed in Section 3.

The property of a nonzero spontaneous persistent
current thus demonstrated for noninteracting electrons
survives strong electron–electron coupling but col-
lapses when the coupling to the lattice is included. This
is considered in detail in Section 4. In what follows, the
structural transformation in the ballistic ring is investi-
gated in an exact way by considering the ring dynamics
in the tight-binding approximation [37, 38]. The “lat-
tice” (the atomic configuration of the loop) can respond
to the bistable state by a readjustment of atoms similar
to the Peierls transition (doubling of the lattice period
in a one-dimensional atomic chain, see, e.g., [39, 40]),
or by a more general lattice transformation that does not
reduce to simple doubling. When the loop is in the rigid
background in the periodic lattice on a substrate of a
much stronger bound solid, the degeneracy may not be
lifted, or may remain in a very narrow interval of the
externally applied field.

3. DYNAMICS OF PERSISTENT CURRENTS
IN CROSSED ELECTRIC 
AND MAGNETIC FIELDS

The Hamiltonian of the ring consisting of N sites
localizing electrons at equidistant angular positions is
θn = 2πn/N is

, (7)

where  is a fermionic operator creating (and an , anni-
hilating) the electron at the site Rn in the ring with the
periodic boundary condition aN + 1 = a1, and α =
2πΦ/NΦ0 is the phase related to the Aharonov–Bohm
flux threading the ring. Placing the ring in the homoge-
neous electric field perpendicular to the magnetic field
(Fig. 6) results in the extra term

(8)

being added to the Hamiltonian. The Hamiltonian H0 is
diagonalized by the angular momentum (i.e., m = 0, 1,

H0 τ an
+an 1+ eiα an 1+

+ ane iα–+( )
n 1=

N

∑–=

an
+

H1 V0
2πn

N
---------an

+ancos
n 1=

N

∑=
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…, N – 1) eigenstates  such that

(9)

These states have the energies

(10)

plotted versus the flux in Fig. 7. The electronic config-
uration at Φ = Φ0/2 has a Λ-shaped energy structure
with two degenerate ground states shown in Fig. 1,
which were suggested as |0〉  and |1〉  components of a
qubit in [14, 15]. The time evolution of angular-

momentum eigenstates  is periodic at certain val-
ues of V0 and at the value of the flux equal to half the
flux quantum Φ0/2 = hc/2e.

In the eigenbasis of the operators Am , the Hamilto-
nian H0 + H1 at N = 3 in the absence of an electric field
is transformed into the diagonal form (we scale all ener-
gies in units of τ)

(11)

and the Hamiltonian H1 becomes

(12)

where v  = V0/2τ. We let the m = 1 and m = 3 states be
denoted by |0〉  and |1〉 , in the qubit terminology, and the
excited state m = 2 by |c〉  (the “control” state coupling
qubit states to the “qugate,” or the quantum logic gate).

The eigenstates of H0 + H1 versus v  at Φ = Φ0/2 are
presented in Fig. 8. We assume that at t ≤ 0, the poten-
tial is V0 = 0, such that the system at t = 0 is a superpo-

sition of the angular momentum states  with cer-
tain amplitudes Cm(0). At a later time and at a constant
value of V0, Cn(t) evolves as

(13)
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For a step function V(t) = V0θ(t), this gives the depen-
dence [14]

(14)

where εk(V0) are eigenenergies of the Hamiltonian H0 +
H1(V0) and Snm(V0) are the unitary matrices transform-
ing from the noninteracting eigenbasis (the one corre-
sponding to H0) to the eigenbasis of the full Hamilto-
nian H0 + H1. It is implied in Eq. (14) that at a fixed
value of V0, the time evolution is performed as the inter-
play between the three different eigenenergies. This is
sufficient evidence that if the eigenenergies are appro-
priately adjusted, the population of the auxiliary state

Cn t( ) Skn
1– V0( ) iEkt–( )Smk V0( )Cm 0( ),exp

m k,
∑=

Flux

+ –

+

E-field

Fig. 6. Scheme of a 3-site qubit in the electric field perpen-
dicular to the magnetic field.
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Fig. 7. Curves 1 and 3 are energy versus magnetic flux
dependences in the degenerate states carrying opposite cur-
rents. The current is found as the derivative j = –c∂ε/∂Φ.
Curve 2 corresponds to the zero-current virtual state at the
operating point of a qubit at the half-flux quantum Φ =
Φ0/2.
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(in the angular-momentum basis) can vanish for certain
initial conditions. At these time instants, the three-state
system instantaneously collapses into the qubit sub-
space without loss of any information if the auxiliary
state |c〉  was initially unoccupied. A necessary condi-
tion for the instantaneous collapse into the qubit sub-
space (i.e., the degenerate-level subspace) is a com-
mensuration condition between the eigenenergies
εk(V0), k = 1, 2, 3 such that the exponential factors in
Eq. (14) destructively interfere at fixed tune instants to
destroy the nondiagonal correlations. The required
commensuration can be expressed by the condition

(15)

for integer ν. Equation (15) guarantees periodic col-
lapses of the wavefunction onto the desired basis, and
the next step is to find whether the desired qugate oper-
ations can be realized simultaneously in this basis. For
the corresponding values of the potential respecting
Eq. (15), we find

(16)

In particular, we note that for ν = 1, we have  = –2
and at ν = 3, we have

and we succeeded in finding two qugates in our first few
attempts. As shown below, these two cases yield the bit-
flip and Hadamard transformations of the qubit [17].

ε3 ε1– ν ε2 ε3–( )=

V0 ν( ) 2
3ν
------ ν2 ν 1 ν 1–( ) ν2 4ν 1+ ++ + +[ ] .–=

V0
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9
--- 13 2 22+( )– 4.9735,–= =
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E
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3

Fig. 8. Energy versus electrostatic potential. Curves 1 and 3
(solid and dotted lines) are the energies that become degen-
erate at V0 = 0, and curve 2 (the dashed line) is the energy
of the auxiliary control state |c〉 . The arrows indicate the val-
ues of the potential V0 corresponding to the operational
points of the bit-flip and Hadamard gates.
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The ν = 1 case can be explicitly proved by verifying
the identity

(17)

where

At s = 0 (i.e., c = ±1), the transformation matrix of qubit
states is block-diagonalized in the subspace of states 1,
3 (i.e., the qubit states |0〉 , |1〉) and the upper state 2 (i.e.,
the auxiliary “control” state |c〉). In particular, for c =
−1, the bit-flip is performed between the qubit states.

In Fig. 9, the populations pn(t) = |Cn(t)|2 of the states
are plotted for the mentioned cases ν = 1 and ν = 3. The
instantaneous collapse to the qubit subspace is obtained
at t = t1 for ν = 1 and at t = t3 for ν = 3 if the auxiliary
level is unoccupied at t = 0. We found these critical
times as (in units of "/τ)

(18)

where the eigenenergies are

(19)

for V0 ≤ 0. We note that the configuration (t1, ν = 1) per-
forms the bit-flip |0〉   |1〉 , whereas (t3, ν = 3) creates
the equally populated Hadamard-like superpositions of
|0〉  and |1〉 . These operations are represented in the qubit
subspace by the matrices (overall phases are not shown)

(20)

The dotted lines show the time dependence of the aux-
iliary population. The arrows indicate the “operational
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point” of the qugate, the time of evolution correspond-
ing to the return to the invariant qubit. The G1 transfor-
mation manifests the bit-flip (NOT gate) and G3 is
similar to the Hadamard gate [17] except for the phase
shift π/2.

4. QUANTUM BISTABILITY 
AND SPONTANEOUS CURRENTS

IN A COUPLED ELECTRON–PHONON SYSTEM

In the tight-binding approximation, the Hamiltonian
of the loop in the secondary quantized form is given by

(21)

,

where τj is the hopping amplitude between two adjacent
configurational sites, j and j + 1,

(22)

and

(23)

is the Aharonov–Bohm phase (a Peierls substitution for

the phase of hopping amplitude). Next,  is the cre-
ation (and ajσ is the annihilation) operator of the elec-
tron at site j with spin σ; θj , j = 1, 2, …, N are the angles
of distortion of site locations from their equilibrium

positions  = 2πj/N satisfying the requirement

and g is the electron–phonon coupling constant. The
interaction in Eq. (22) reflects the property that the hop-
ping amplitude depends on the distance between the
localization positions and assumes that the displace-
ment θj – θj + 1 is small in comparison to 2π/N. U and V
are Hubbard parameters of the on-site and intrasite
interactions. W is the binding energy of the loop to
external environment (a substrate) such that the loop
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passes into the azimuthally symmetric configuration

θi =  as W  ∞.

The parameters are assumed such that the system is
not superconductive (e.g., U > 0; anyway, the supercon-
ductivity is not allowed for a 1D-system and it is for-
bidden for a small system). The last term in Hamilto-
nian (21) is the elastic energy and K is the stiffness
parameter of the lattice.

In the smallest loop, the one with three sites (N = 3),
only two free parameters of the lattice displacement, X1

and X2, remain:

(24)

θi
0

θ1 X1 X2, θ2+ X1– X2, θ3+ 2X2,–= = =
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Fig. 9. Evolution diagrams of the quantum gate G1 (a) and
G3 (b). Solid and dashed lines are the time dependences of
the population of states |0〉  and |1〉 . The dotted line shows the
time dependence of the auxiliary-state population. The
arrow indicates the “operational point” of the qugate, i.e.,
the evolution time corresponding to the return to the invari-
ant qubit subspace.
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which are decomposed with respect to secondary quan-
tized Bose operators b1 and b2 as

(25)

System (21) is solved numerically with the ABC com-
piler [41], which includes the creation–annihilation
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Fig. 10. Lower curve: current versus magnetic flux in a
3-site loop with 3 noninteracting electrons. Upper curve:
energy versus flux in the loop. The hopping parameter is
τ0 = –1. The energy is reset and arbitrarily shifted upward
for clarity.
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Fig. 11. Spontaneous persistent current versus flux for τ0 =
–1 and various values of the Hubbard parameter U: U = 0
(1), –2 (2), 2 (3), –5 (4), 5 (5), –10 (6), 10 (7).
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operators as its parameter types. These are generated as
compiler macros with sparse matrices

(26)

where 1(N) is the unit matrix of size 2N; , n = 1, …,
N are Fermi/Bose operators in a space of the same
dimension,

(27)

and a, u, and v  are the 2 × 2 matrices (with ⊗  being the
symbol of the Kronecker matrix product):

(28)

and

(29)

The bosons are considered hardcore bosons, such that
there are only two discrete states for each mode of dis-
placement. We calculate the ground state of Hamilto-
nian (21) as a function of the magnetic flux f (a classical
variable). In application to real atomic (macromolecu-
lar) systems, we can consider X1 and X2 as classical
variables because quantum uncertainties in the coordi-
nates (∆X1, 2 ~ ("/Mω)1/2) are typically much smaller
than the interatomic distances (M is the mass of an atom
and ω ~ 1013 s–1 is the characteristic vibration fre-
quency). The energy of the loop is calculated as a func-
tion of X1 and X2 and further minimized with respect to
X1 and X2 for each value of f. The nonzero values of X1
and X2 signify a “lattice” (the ionic core of the macro-
molecule) instability against the structural transforma-
tion, analogous to the Peierls transition.

In the noninteracting system (U, V, W, g = 0), the
energy versus the flux f shows a kink with a maximum
at f = 0 (Fig. 10) in the half-filling case, i.e., at a number
of electrons n equal to the number of sites N, as well as
in a broader range of values of n at larger N. Actually,
as is clear from Fig. 4, such a dependence is typical of
any N ≥ 3 system for a number of (fixed) values of n.

The 3-site loop’s E(f) dependence is shown in
Fig. 10 together with the dependence of the current
on f. The latter shows a discontinuity at f = 0 of the
same order of magnitude as the standard value of the
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persistent current. The current at f = 0 is paramagnetic
because the energy vs. flux has a maximum rather than
a minimum at f = 0. The on-site interaction reduces the
persistent current amplitude near zero flux (Fig. 11) but
does not remove its discontinuity at f = 0. Therefore, the
strongest opponent of the Aharonov–Bohm effect, the
electron–electron interaction, leaves the current quali-
tatively unchanged.

On the other hand, the electron–phonon interaction
(considered here classically in regard to lattice vibra-
tion) flattens the E(f) dependence near the peak value
(see Fig. 12a). At large stiffnesses K, this flattening
remains important only for small magnetic fluxes,
much smaller than the flux quantization period ∆Φ =
Φ0. We note that the persistent current peak reduces in
its amplitude only slightly near Φ = 0. As is seen from
Fig. 12b, the electron–phonon interaction splits the sin-
gularity at Φ = 0 to two singularities at Φ = ±Φsing. Out-
side the interval –Φsing < Φ < Φsing, the structural trans-
formation is blocked by the Aharonov–Bohm flux. The
range of magnetic fluxes between –Φsing and Φsing deter-
mines the domain of the developing lattice transforma-
tion, which signifies itself with nonzero values of lattice
deformations X1 and X2. This property allows us to sug-
gest that the spontaneous persistent current state (a
peak of dissipationless charge transport at or near the
zero flux) remains at a nonzero Φ when the electron–
phonon coupling is not too strong or when the lattice
stiffness is larger than a certain critical value.

5. DISCUSSION

In conclusion, we considered the Aharonov–Bohm
effect in an angular-periodic macromolecular structure,
like that of an aromatic cyclic molecule, and estab-
lished the existence of a persistent current and also a
spontaneous current when the Aharonov–Bohm flux is
not applied to the ring. Strong coupling of electron hop-
ping to the ion core of the molecule removes the spon-
taneous current, which is nevertheless restored at a
(small) magnetic field, or when the loop has large stiff-
ness or is strongly bound to an external azimuthal-peri-
odic environment (a substrate). Degenerate states of the
loop at Φ = Φ0/2 and at Φ = 0 may serve as components
of a qubit that are operated by static voltages applied in
the plane of the loop perpendicular to the direction of
the Aharonov–Bohm flux.

The papers of Gatteschi et al. [18, 19] are particu-
larly noteworthy, in which an azimuthal-periodic
molecular structure (a “ferric wheel”
[Fe(OMe)2(O2CCH2Cl)]10) exhibited periodic variation
of its magnetization as a function of the magnetic flux;
we assume that the periodicity with large period can be
attributed to persistent currents. The above macromo-
lecular structure is more complex than the one we con-
sidered because it contains magnetic ions with strong
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
exchange interactions such that the actual magnetic
field in the ring may be larger than the externally
applied field. If this suggestion proves correct, it will
open the possibility of engineering macromolecular
structures (qubits and qugates) based on the Aharonov–
Bohm effect, for purposes of quantum computation.
Apart from this, the very existence of a nonzero nonde-
caying current in a nonsuperconductive system is, in
our opinion, of fundamental physical interest.
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parameter K: K = 2 (1), 3 (2), 5 (3), 10 (4), 20 (5).
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