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Abstract—A normalizer of the symmetry group defined on a three-dimensional sphere S3 of rotation is con-
sidered in the four-dimensional Euclidean space E4 . The sphere S3 is treated as the first approximation of the
three-dimensional crystallographic space. The analysis of the normalizer 1 of the direct product & = G1 × G2
of space crystallographic rotation groups G1 and G2 is reduced to the study of transformations characterized by
the positive determinants of the subgroups 1+(G1) and 1+(G2). These subgroups correspond to the Euclidean
normalizers 1 = 1+(G1) × 1+(G2) of the components of the direct product. We derived a table including the
groups of automorphisms induced by the transformations corresponding to the normalizers under study. Ana-
lyzing the general operation of multiplication of three-dimensional rotations in E4 , we refined the distribution
of the supersymmetry operators of the three-dimensional sphere of rotations, S3, for the symmetry groups con-
sidered earlier. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A normalizer 1 of the symmetry group & is widely
used in crystallography [1, 2] alongside with a more
general concept of symmetrizer. In [3, 4], this normal-
izer was used to interpret the additional symmetry
(supersymmetry) arising in the regular divisions of
three-dimensional sphere S3 of rotation (which involves
the center of inversion). The normalizer is defined in a
purely algebraic manner [5] as a group of isometric
transformations of a sphere of rotation, which induces
automorphisms 1&1–1 = & of the symmetry group &.
By definition, a normalizer can lead to the continuous
spectrum of transformations, and hence to the reduced
dimension of the minimum domain of parameters. The
normalizer operators not belonging to the symmetry
group of the space under study can be related to the
medium “dissymmetry” that causes symmetrization of
some lattices formed by the sets of regular, or homolog-
ical, points (in full accordance with the generalized
Curie–Shubnikov principle [6–9]).

Developing [4], we consider the general problem of
the determination of the normalizer 1(&) for the direct
product & = G1 × G2 of the crystallographic rotation
groups G1 and G2 . The group G is a symmetry group on
the three-dimensional manifold belonging to the sphere
of rotation S3 immersed into the four-dimensional
Euclidean space E4. We prove the completeness of this
normalizer in the sense of the full involvement into it of
various automorphisms of the symmetry groups. The
information contained in the normalizer allows us to
construct the minimum parameter domain, and to indi-
cate the exact location of the symmetrized lattices of
regular points. This allows us to refine the structures of
1063-7745/00/4503- $20.00 © 20349
computer-calculated regular divisions. The procedure
is illustrated by two examples.

GENERAL INFORMATION

The transformation

(1)

of the direct product of three-dimensional rotations
p1 = P(l1, ϕ1) and p2 = P(l2, ϕ2) on the sphere S3 about
the unit vectors l1 and l2 through angles ϕ1 and ϕ2 in the
four-dimensional Euclidean space E4(u0, u1, u2, u3) acts
as a linear orthogonal transformation, which can be
written in the quaternion form [10] as

(2)

where u = u0 + u1i + u2j + u3k and u' =  + i + j +
k are the arbitrary and the transformed quaternions,

respectively; s = cos(ϕ1/2) + l1sin(ϕ1/2) and t =
cos(ϕ2/2) + l2sin(ϕ2/2) are the unit quaternions of rota-
tions p1 and p2 . In the vector–matrix form, we can write

(2')

where the orthogonal 4 × 4 matrix Z = ST = TS is equal
to the product of the commuting matrices

p p1 p2×=

u' sut,=

u0' u1' u2'
u3'

u' Zu,=

S =

s0 s1– s2– s3–

s1 s0 s3– s2

s2 s3 s0 s1–

s3 s2– s1 s0 
 
 
 
 
 
 

 and T =

t0 t1– t2– t3–

t1 t0 t3 t2–

t2 t3– t0 t1

t3 t2 t1– t0 
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constructed with the use of the elements of the quater-
nions s = s0 + s1i + s2j + s3k and t = t0 + t1i + t2j + t3k.

To each rotation P(l, ϕ) there corresponds, in addi-
tion to quaternion cos(ϕ/2) + lsin(ϕ/2), also the quater-
nion of the opposite sign, which arises upon the change
of the rotation angle ϕ by ϕ + 360° not changing the
rotation. Therefore, to the direct product (1) of rotations
there correspond ±s, ±t, ±Z, ±S, and ±T and two trans-
formations, (2) and (2'), related by inversion, which
transform the point u ∈  E4 either into u' or –u', and a
pair of diametric points u and –u' either into u' and –u'
or –u' and u', i.e., into the same pair. Therefore, a
unique transformation of the sphere of rotation S3 and
one transformation of tangential space T 3(1, x1, x2, x3)
correspond to product (1). Here, xi = ui/u0, i = 1–3 . The
diametric points at this sphere are assumed to be sym-
metrically identical, because in the transition from S3 to
the tangential space, the diametric points u and –u are
projected to a single point.

The multiplication of pq = (p1 × p2)(q1 × q2) of oper-
ators p = p1 × p2 and q = q1 × q2 is performed from right
to left; the corresponding double quaternion transfor-
mation has the form: u' = sp(squtq)tp = (sp sq)u(tqtp).

Since the multiplication of two quaternions corre-
sponds to the multiplication of rotations described by
these quaternions, then the direct product is written as
p1q1 × q2p2 . Thus, the multiplication of direct products
of rotations

(p1 × p2)(q1 × q2) = p1q1 × q2p2

reduces to the multiplication of left-hand factors in the
same direction, whereas the right-hand factors are mul-
tiplied in the opposite direction. The product of trans-
formations (2') and matrices Z = Z1 and Z = Z2 reduces
to the linear transformation corresponding to the matrix
Z = Z2Z1 .

In addition to individual multiplications of transfor-
mations (1), we also consider the group

3 = P1 × P2

of direct multiplication of three-dimensional rotation
groups P1 and P2 . Let Φ be the automorphism, that is,
the one-to-one mapping of group 3 onto itself retain-
ing the multiplication operation

Φ(pq) = Φ(p)Φ(q), where p, q ∈  3.

Here, Φ(e) = e, e is the unity element of the group (e =
E × E) which is transformed into itself. For the element
p = p1 × p2 in the direct product, we have Φ(p1 × p2) =

 × , where , pi ∈  Pi pi, i = 1, 2. Assuming that 

= Φ1(p1) and  = Φ2(p2), we have

It is easy to check that the transformations Φ1 and Φ2
acting onto the elements of left and right groups P1 and
P2 of the direct product preserve the multiplication

p1' p2' pi' p1'

p2'

Φ p1 p2×( ) Φ1 p1( ) Φ2 p2( ).×=
C

operation, i.e., they also are automorphisms. As a con-
sequence, we have Φ(E × p) = Φ1(E) × Φ2(p) = E ×
Φ2(p) and Φ(p × E) = Φ1(p) × Φ2(E) = Φ1(p) × E. In the
Euclidean space E4, the matrix Z = S of the linear trans-
formation (2') is transformed into the matrix s by auto-
morphism Φ, whereas the matrix Z = T is transformed
into the matrix t. Coming back to direct product (1) of
rotations, we consider some geometrical characteristics
of the resulting operator in E4 [11]. The existence of the
linear orthogonal transformation of the four-dimen-
sional Euclidean space corresponding to direct product
P(l1, ϕ1) × P(l2, ϕ2) of rotations corresponds to the exist-
ence of two invariant orthogonal two-dimensional sub-
spaces, or planes π and π' of rotation through angles
(ϕ1 – ϕ2)/2 and (ϕ1 + ϕ2)/2, which are equal to the half-
difference and the half-sum of initial rotation angles,
respectively, determined by the directions

(3)

and

(4)

whose locations are independent of the initial rotation
angles ϕ1 and ϕ2 . If one of the latter angles changes by
360°, the rotations themselves remain unchanged, but
the rotation angles in the invariant planes π and π'
change by 180°, and the transformation in E4 is com-
plemented with inversion.

In the general case, the first invariant plane π (see
(3)) in the projective tangential space T 3 is represented
by the line of intersection passing through the point
A(2[l1, l2]/|l1 – l2|2) along the l1 – l2 direction, whereas
the second plane π' (see (4)) is represented by the point
B(–2[l1, l2]/|l1 + l2|2) and by the (l1 + l2) direction.

In the particular case of direct product P(l1, ϕ) ×
P(l2, ϕ) of the rotations of the same order, ϕ1 = ϕ2 = ϕ,
the first plane π remains stationary, since the rotation
angle in this plane is (ϕ1 − ϕ2)/2 = 0, whereas the rota-
tion angle in the plane π' is equal to (ϕ1 + ϕ2)/2 = ϕ, i.e.,
to the common angle of the initial rotations. In T 3 , we
have the fixed “rotation axis” of the order of 360°/ϕ. If,
in addition, the initial axes differ only in signs, l2 = –l1 ,
then the vector product becomes zero [l1, l2] = –[l2, l1] =
0, the point A is displaced to the origin of coordinates
in the tangential hyperplane T 3 , i.e., the point A coin-
cides with the pole (1, 0, 0, 0) of the sphere S3 . The
fixed direction of the axis, l1 – l2 = 2l1 , is characterized
by the unit vector l1 . Thus, we have the Hamiltonian
rotation P(l, ϕ) × P–1(l, ϕ) coinciding with the rotation
P(l, ϕ) in T 3 and in three-dimensional coordinate space
E3(u1, u2, u3).

As is seen from (3) and (4), the invariant planes π
and π' are orthogonal, but otherwise they can be located

π: L1 l1 l2, L2– 1
2

l1 l2– 2
------------------ l1 l2,[ ]+= =

π': L1' l1 l2, L2'+ 1
2

l1 l2+ 2
------------------ l1 l2,[ ] ,–= =
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



COMPLETE NORMALIZER FOR A DIRECT PRODUCT 351
arbitrarily in E4 depending on the choice of the direc-
tions of the unit vectors I1 and I2 for the initial rotations.
The rotation angles for the invariant planes can also be
specified arbitrarily. This picture corresponds to the
general case of the orthogonal transformation with the
positive determinant equal to +1 in the Euclidean space
E4 [12−14].

NORMALIZER FOR DIRECT PRODUCT 
G1 × G2 OF SPACE ROTATION GROUPS G1 

AND G2

Consider the symmetry group & of the three-dimen-
sional sphere S3 of rotations in the four-dimensional
Euclidean space E4(u0, u1, u2, u3) specified by the direct
product & = G1 × G2 of three-dimensional rotation
groups G1 and G2 .

The isometric transformation n of the rotation
sphere S3 meeting the operator condition

ngn–1 = g ', (5)

where g is an arbitrary transformation of the symmetry,

g, g' ∈  &,

and defining the mapping of the group & onto itself
with retaining the multiplication operation (the so-
called automorphism (5) of the symmetry group &)
generates, in turn, a group or normalizer 1(&) of the
symmetry group &. The latter forms a part or a sub-
group of the normalizer, & ⊂  1(&).

In accordance with the above consideration, there
are two linear orthogonal transformations correspond-
ing to an arbitrary operator g ∈  & in E4 related by the
inversion

u' = ±Z(g)u.

To the product gg' of the elements g and g' ∈  &, there
correspond two such transformations or the transfor-
mation with the matrix ±Z(gg') = ±Z(g)Z(g'). The rela-
tionship Z(e) = ±E corresponds to the unit element e.
The set of the orthogonal matrices ±Z(g), g ∈  & forms
the group ] or the two-valued representation of the
fourth-order group &.

The isometric transformation n ∈  1(&) of the nor-
malizer in E4 corresponds to two linear orthogonal
transformations related by inversion:

u' = ±Nu. (6)

Condition (5) of the automorphism can be rewritten in
the form of the automorphism for the group ] of the
two-valued representation

NZ(g)N–1 = ±Z(g'). (7)

Let us show that the determinant of the 4 × 4 matrix
±N of the linear orthogonal transformation (6) is posi-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
tive. Since det(−N) = (–1)4detN = detN, it is sufficient
to show that

detN > 0. (8)
If we assume that the opposite condition is valid;

i.e., that there exists an orthogonal 4 × 4 matrix N = η
with the negative determinant detη < 0, then assuming

also that η = µZ, where µ =  and detZ > 0, 

and using the expansion Z = ST proved in the previous
section, we have η = µS · T. Using the parentheses, we
can rewrite transformation (7) of the automorphism as

(9)

In the particular case of the left-hand transformation
g = g × E, the matrix Z(g) = Z(g × E) = S(g)T(E) = S(g)
is reduced to the matrix s, because T(E) = E. In virtue
of the properties of the automorphism for the direct
product, we should have in the right-hand side of (9)
g' = g' × E. Hence, we find that Z(g') = S(g')T(E) =
S(g') is also the s matrix. Since matrices s and t permut-
able, the left-hand threefold product retains S(g)
unchanged and, thus, TS(g)T−1 = S(g)TT–1 = S(g).
Then, taking into account that the product of similar
matrices retains its type, we conclude that the threefold
product of the s-matrices, SS(g)S–1 = S1 , is also a cer-
tain s-matrix. The further multiplication by µ on the left
and by µ–1 = µ on the right reduces to the change of the
sign for the first column and the first line of the matrix.
This leads to the change of the matrix type, µS1µ–1 = T1 .
As a result, (9) reduces to the relationship T1 = S(g')
involving the matrices of different types. The latter sit-
uation is possible only for the case of ±E matrices, i.e.,
if g' = E, g' = E × E, and, thus, if g = e. Similarly, the
assumption that g = E × g leads to the relationship g = e.
Hence, it follows that the group of direct product & =
G1 × G2 can contain only the unit element, that is, this
group is the trivial one. Thus, we proved statement (8)
for the nontrivial group &.

Since the determinant of transformation (6) is posi-
tively defined, one can expand the transformation n into
the direct product of two space rotations n1 and n2

n = n1 × n2.

Substituting the last expression and relationships g =
g1 × g2, g' =  ×  in (5), we can reduce the automor-
phism under study to the two following automor-
phisms:

(10)

for the left and right groups of the direct product & =
G1 × G2 .

1– 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 
 
 
 
 
 

µ S TZ g( )T 1–( )S 1–( ) µ 1– Z g''( ).±=

g1' g2'

n1g1n1
1– g1' ,=

n2
1– g2n2 g2'=
0
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The set of space rotations n1 and n2 generating left
and right automorphisms (10) is characterized by the
positive determinants for orthogonal 3 × 3 matrices;
therefore three-dimensional groups of normalizers 11

and 12 should also be positively defined 11 = 1+(G1)
and 1+(G2).

The normalizer of the symmetry group is split into
the direct products of two positive definite normalizers

1(&) = 1+(G1) × 1+(G2).

Thus, in the case of the 3 × 23 group, the normalizer
can be written as 1(3 × 23) = 1+(3) × 1+(23). Accord-
ing to [1], the subgroups of the rotation group in the
general normalizers of groups 3 and 23 are 1+(3) =
P∞/2 and 1+(23) = 432. Hence, the normalizer sought
is 1(3 × 23) = P∞/2 × 432.

Similarly, the normalizer of the direct product 3 ×
432 appears to be 1(3 × 432) = P∞/2 × 432, that is, it
fully coincides with the previous one.

The symmetry group remains invariant with respect
to the normalizer operators. Thus, the symmetry group
plays the role of the normal divisor of this normalizer.
Automorphism condition (5) is equivalent to the equal-
ity ng = g 'n, where g and g ' ∈  &. Two operators, m and
n, of the normalizer generating the same automor-
phism, mgm–1 = ngn–1, g ∈  &, differ by a factor n = mζ,
where ζ = m–1n. One can readily see that this factor
commutes with an arbitrary g, and, therefore, it belongs
to the centralizer [5] CEN(&) of the group &. The cen-
tralizer CEN(&) ⊂  1(&) leaves the group & at its place
(ζgζ–1 = g, g ∈  &) and possesses the properties of the
normal divisor [5].

It is possible to bring in correspondence to each ele-
ment n ∈  1(&) of the normalizer the automorphism
generated by this element, (5). We denote this automor-
phism by Φn. In such a way, we arrive at homomorphic
mapping n  Φn of the normalizer onto the group ^
of automorphisms corresponding to the symmetry
group &. In this case, to the elements ζ of the central-
izer there corresponds the identical or unit automor-
phism Φζ = Ε. To the elements nζ of the class n ·
CEN(&), there corresponds the automorphism Φnζ =
ΦnΦζ = Φn. Considering the cosets as “enlarged ele-
ments,” we come to the factor group of the normalizer
with respect to the centralizer. This factor group is iso-
morphous to the group of automorphisms

1(&)/CEN(&) Z ^(&). (11)

In contrast to 1(&) and CEN(&), the group ̂ (&) of
automorphisms is always finite, since the symmetry
group in our problem is finite. This can simplify the
analysis of the normalizer structure. Since the groups &
and 1(&) are direct products, each individual automor-
phism Φn, n = n1 × n2 , is split into the product Φ = Φn1 ×
Φn2 of independent automorphisms corresponding to
C

the left and right groups G1 and G2 generated by the ele-
ments n1 and n2 , respectively. The group of automor-
phisms splits into the direct product ^(&) = ^(&1) ×
^(&2) of the three-dimensional groups ^(G1) and
^(G2) corresponding to the automorphisms of the left
and right components of the symmetry group & =
G1 × G2 .

The groups of automorphisms for crystallographic
rotation groups calculated with the use of the positive
definite normalizers [1] are listed in the table in the con-
ventional notation and settings. The dots indicate the
common products of the complemented subgroups.
The groups of automorphisms are described either in
terms of the normalizer subgroup (upon the reduction
of the fraction in (11) by CEN(&), resulting in the
decomposition of the normalizer into the semidirect
product, [15]) or in terms of the isomorphous equiva-
lents.

The direct exhaustion of the substitutions for the Gi

group elements shows that the automorphisms pre-
sented in the table cover all the automorphisms of the
group. In contrast to the purely algebraic construction
of the group automorphism with the aid of the holo-
morph [5], the revealed possibility of describing an
arbitrary automorphism of the rotation group Gi in
terms of the rotation in E 3 (the Bieberbach theorem
[16]) allows one (with due regard for our results) to
describe an arbitrary automorphism of the direct prod-
uct G1 × G2 in terms of the positively defined transfor-
mation n in S3  [5].

APPENDIX

The operator n of the normalizer transforms the
operation m into the equivalent or conjugated operation
m = nmn–1 (the geometrical element ' = n ). Similar
to the diagram, the partition of the crystallographic
space into the unit cells with respect to the symmetry
group, the points and the operators of the sphere S3

independent or nonequivalent with respect to the nor-
malizer form the minimum or fundamental domain of
parameters.

As an example, consider the action of the symmetry
group 3 × 23 onto the sphere S3 of rotation. The normal-
izer of this group 1(3 × 23) = P∞(001)/2 × 432 was
determined in the previous section. Among the normal-
izer transformations, there are the independent rota-
tions in S3 and T 3 described by the direct products of
the similar rotations. It is quite clear that all the similar
three- and fourfold rotation axes in the right-hand com-
ponent 432 of the normalizer group are equivalent and
transformed into each other by the group operations.
Let us assume that the rotations 4(00 ) = 4–1(001) and

3( ) are independent. Arbitrary rotations around the
twofold axes can be considered as two independent

m̂ m̂

1

111
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Groups of automorphisms of three-dimensional crystallographic rotation groups

i Gi CEN(Gi) 1+(Gi) 1+(Gi)/CEN(Gi) ~ ^(Gi)

1 E ∞ ∞ E

2 2 P∞ × 2(100) P∞ × 2(100) E

3 3, 4, 6 P∞ P∞ × 2(100) 2(100)

4 222 222 432 = 222 × 322 3(111) × 2( 10) ~ 322

5 322 2(001) 622 = 2 × 322 322

6 422 2(001) P8(001) × 2(100) ~422

7 622 2(001) P12(001) × 2(100) ~622

8 23, 432 E 432 432

1

                 
rotations: vertical one 2(001) and diagonal one 2(110).
Combining these rotations with the similar independent
rotations of the left-hand group P∞(001)/2 of the nor-
malizer, we find six products:

  

      (12)

The presented domain of parameters for the group
under study was used in the schematic form [17] for
attaining uniform scanning.

(1)  4 001( ) 4 
1– 001( ), × 

(2)  3 001( ) 3 111( ), ×

(3)  2 001( ) 2 001( ), × 

(4)  2 100( ) 2 001( ), ×

(5)  2 001( ) 2 110( ), × 

(6)   2 100( ) 2 110( ). ×                                                     
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The full diagram of the fundamental domain within
the minimum boundaries in T 3 is shown in Fig. 1. The
diagram includes the rotation axes of the normalizer
distributed at its periphery. All the independent geomet-
ric loci of the rotation axes listed in (12) are presented
in this figure.

The point group 422 of the Hamiltonian rotation
axis located at the origin of coordinates is characterized
by the vertical fourfold axis 4(001) = 4(001) × 4–1(001)
coinciding with the rotation axis from row 1 of product
(12), by the twofold axis 2(100) = 2(100) × 2(100) par-
allel to the horizontal axis and apparently equivalent to
the rotation axis from row 4 of product (12) with
respect to transformation E × 3(111) of the normalizer,
and finally, by the diagonal twofold axis 2(110) ×
2(110) = 2(110) transformed to the dyad of row 6 by the
automorphism, generated by the one-side transforma-

tion  × E of the normalizer.P8
1–

                                                                                                            
0.1

4(001) 0.1 2(001) × 2(011) 2(010) × 2(011)

2(100)

x1

x2

2(110)3(001) × 3(111)

2'

2''

0 B

A

Fig. 1. Arrangement of point operators corresponding to the normalizer of the symmetry group 3 × 23 along the boundary of the
planar minimum domain of parameters in T3.

2(010)

–

– –
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(a) (b)

Fig. 2. Stereohedra corresponding to the regular partition of the fundamental domain of parameters for two symmetry groups at the
general extremum point B(0.414, 0, 0): (a) 3 × 23, p2/p0 = 14/20 and (b) 3 × 432, p2/p0 = 12/16, where p2 is the number of faces and
p0 is the number of vertices in the polyhedron of the 222-type symmetry (supersymmetry).
Among the rotations of the point group 322 located
at the upper corner point A (0.366, 0.366) of the mini-
mum domain of parameters, we have the threefold axis,
which is simultaneously a symmetry axis 3(001) ×
3( ) and coincides with the rotation axis corre-
sponding to row 2 in product (12). Twofold axis 2(110)
orthogonal to the latter and passing along the bisector
of the coordinate angle was mentioned above. Two
other axes, 2' and 2'', are obtained from the first one by
counterclockwise rotations about the threefold symme-
try axis in the same way as in the 2(110) dyad. As a
result, they are equivalent to the item 6 rotation.

Each point of the boundary line between A and B has
its own equivalent of twofold axis 2'' corresponding to
the point group 322 of the normalizer. This equivalent
is obtained using one-side operator Pα(001) × E corre-
sponding to the “descent” at different values of the
parameter α. As a result, we obtain a continuous array
of inclined twofold supersymmetry axes beginning at
point A by the 2'' axis and ending with the dyad
2(010) × 2(011) at point B (0.414, 0, 0) on the horizontal
axis. The third twofold axis 2(001) × 2(011) of the
supersymmetry group 222 at point B is equivalent to the
rotation indicated in row 5 according to transformation
E × 3(111) of the normalizer.

At the computer scanning [17] of the independent
domain, the point B is overlapped from the left and the
right sides by two neighboring nodal points. The exist-
ence of the supersymmetry group 222 was indirectly
confirmed being as a nonisometric homology group [8]
in divisions corresponding to the nearest nodal points
retaining the same combinatorial and topological type.

111
C

The stereohedron corresponding to the regular partition
of the parameter domain at point B is shown in Fig. 2a.

The results obtained can be extended, without any
modifications, to the diagram describing the boundaries
of the fundamental parameter domain of the symmetry
group 3 × 432 [18] having the same normalizer as the
group 3 × 23. The configuration of the limiting stereo-
hedron corresponding to point B of the parameter
domain is shown in Fig. 2b.
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DIFFRACTION AND SCATTERING OF X-RAY 
AND SYNCHROTRON RADIATION

           
Normalization of Intensity Curves in X-ray Diffraction 
by Disordered Systems
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Abstract—The application of the method of graphic construction of the background line (widely used in elec-
tron diffraction analysis of amorphous films) to the normalization of X-ray intensity curves obtained by the
“reflection” method has been considered. © 2000 MAIK “Nauka/Interperiodica”.
The present study is devoted to the normalization of
experimental scattering curves by the method sug-
gested earlier by one of the authors for the X-ray study
of disordered materials (melts, glasses, solutions,
amorphous substances) [1–3]. Despite the fact that this
method was initially developed and used in the electron
diffraction study of amorphous films, it can also be suc-
cessfully applied to X-ray diffraction studies of disor-
dered systems [4].

The major goal of the primary processing of the
experimental diffraction data for disordered materials
is the reliable separation of the coherent component
from the intensity curve of the scattered radiation. With
this aim, the experimental curve is first normalized to
the absolute values. This procedure is most often based
on the law of intensity conservation, within which the
normalization coefficient K is determined from the
equation [5]

(1)

where I(s) is the experimental value of the intensity of
the scattered radiation in arbitrary units, f 2(s) is the
atomic scattering factor, Iin(s) is the intensity of inco-
herent scattering, P is the polarization correction, s =
4πsinθ/λ is the diffraction vector, θ is the scattering
half-angle, and λ is the wavelength of the radiation
used. Constructing the X-ray Iin(s) curve, one most
often uses the tabulated intensity values for the Comp-
ton scattering calculated within a certain approxima-
tion [6].

Strictly speaking, equation (1) is applicable only to
a system of independently scattering particles, because
the curve is normalized to the sum of atomic ampli-
tudes of coherent (f 2(s)) and incoherent (Iin(s)) scatter-
ing. However, in condensed systems, there are also
some additional scattering mechanisms introducing
certain contributions to the total intensity of the scat-
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tered radiation. These are single and multiple scatter-
ing, scattering by phonons, plasma scattering, etc.
Therefore, the experimental intensities of the radiation
scattered by condensed systems should be normalized
to the total sum of the atomic amplitudes of all types of
scattering taking place in such systems [2]. This impor-
tant fact should be necessarily taken into account when
normalizing the experimental data, because it is one of
the main sources of nonuniqueness of such structural
parameters as the shortest interatomic distances, coor-
dination numbers, etc.

In connection with the above stated, the process of
separation of the coherent component in electron dif-
fraction of amorphous materials includes the stage of
constructing a background line for the experimental
scattering curve. This procedure was considered in
detail elsewhere [1] and, therefore, we skip it here. If
one uses the “reflection” method in X-ray diffraction,
then, depending on the nature and composition of the
sample and the beam monochromatization, one can
encounter a situation in which incoherent scattering (or,
using an analogy with electron diffraction, back-
ground) cannot be reduced to the Compton scattering
alone. Such materials are those consisting of chemical
elements with small atomic numbers characterized by
low values of the atomic scattering factors and absorp-
tion coefficients. In this case, the penetration depth of
X-rays considerably increases and “reflection” is pro-
vided not only by the surface layer, but also by deeper
ones, which results in partial beam defocusing, multi-
ple scattering, and the action of other scattering mech-
anisms which are difficult to take into account when
normalizing the intensity curve of the scattered radia-
tion. In this situation, it is expedient to use the normal-
ization method suggested in [1].

Many of the above problems can be eliminated by
placing the monochromator into a diffracted beam,
although the technical implementation of the method
often dictates the use of the conventional variant of
beam monochromatization.
000 MAIK “Nauka/Interperiodica”
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The efficiency of the procedure of constructing the
background line used in electron diffraction [1] is
determined by the fact that the nature of incoherent
scattering (which, as was indicated above, can be rather
complicated and cannot be estimated theoretically) in
this case becomes unimportant. The only requirement
to be met is that the intensity curve should uniformly
oscillate about the background line, following in turn,
from the requirement of uniform oscillation of the
structure factor around the unity (a(s) = I '(s)/f 2(s),
where I '(s) is the intensity of coherent scattering in
electron units). For a more convenient construction of
the background line, the experimental scattering curve
is reduced to the form I(s)/Pf 2(s) with much more pro-
nounced oscillations, which provides their more reli-
able separation at large scattering angles.

The initial criterion for drawing of an appropriate
background line (Ib(s)/f2(s)) is the fulfillment of the
equality

(2)

Then

(3)

and the normalization coefficient can be determined in
the following way [1–2]:

(i) as the average between the maximum and mini-
mum values of the functions I(s)/Pf 2(s) and Ib(s)/f 2(s),
namely

(4)

(ii) from the curve of the radial distribution of atoms
in the range R < R1, where R1 is the shortest interatomic
distance

(5)

It follows from (5) that at R < R1 ρ(R) = 0, we have
–4πR2ρ0, and the curve KF(R) should become a parab-
ola described as –4πR2ρ0. However, the F(R) curve in
the range of small R values have some spurious oscilla-
tions caused by the measurement errors and experimen-
tal-data processing a result, the F(R) curve oscillates
around the parabola –4πR2ρ0. Therefore, the areas
limited by the curves KF(R) and –4πR2ρ0 should be
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equal to

(6)

whence one can readily calculate the normalization
coefficient. In (6), R0 is the radius in the vicinity of the
first coordination maximum, where the function F(R) is
still negative.
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Fig. 1. I(s)/Pf 2(s) curves and the background lines,
Ib(s)/f 2(s), constructed by (2) for some liquid metals.

Structural parameters of liquid silver obtained by the graphic
and analytic* methods of normalization

K a(s1) R1, Å Z1

0.03507 2.45 2.85 7.3

0.03437 2.50 2.85 7.3

0.03370 2.55 2.86 7.3

0.03722* 2.55* 2.86* 7.3*

* Parameters obtained using (1).
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In practice, the normalization coefficient is deter-
mined by the method of successive approximations
from equations (4)–(6). As the first approximation, one
uses the value obtained from (4), whereas the subse-
quent corrections are obtained from equations (5) and
(6) under the requirement of uniform oscillations of the
curve KF(R) around the parabola –4πR2ρ0. In the sec-
ond case, the control is performed visually by display-
ing the KF(R) and –4πR2ρ0 curves on the display
screen. Thus, one cycle of the calculations includes the
setting of the normalization coefficient and the calcula-
tion of the structure factor and the radial distribution
function (RDF) of atoms in the range where R < R1.
This procedure is repeated until the optimum K value
satisfying all the above criteria is attained.

The application of the method to liquid metals is
illustrated by Fig. 1, which shows the experimental
curves I(s)/Pf 2(s) and the background line constructed
using (2). Figure 2 shows the portion of the RDF for
liquid iron at R < R1, which corresponds to the optimum
value of the normalization coefficient. We also studied
the influence of the error deliberately introduced into
the normalization coefficient on the structural parame-
ters such as the height of the first maximum of the
structure factor (a(s1)), the shortest interatomic dis-
tance, R1, and the coordination number, Z1. These data
for liquid silver together with the corresponding data
obtained by the conventional normalization method (1)

4.0

2.0

0

–2.0

–4.0

–6.0

–8.0

KF(R)

0 0.5 1.0 1.5 2.0 2.5
R, Å

Fig. 2. KF(R) (solid line) and –4πR2ρ0 (dashed line) curves
for liquid Fe in the range R < R1 at the optimum value of the
normalization coefficient.
C

suggested by Vainshtein are listed in table. The Z1 val-
ues were determined by the “symmetrical resolution”
of the first maximum of the Gaussian RDF curve whose
position is set by R1 with the left-hand branch coincid-
ing with the experimental data. The symmetric resolu-
tion of the maximum performed manually yielded
Z1 = 7.5.

It is seen from table that in the vicinity of the opti-
mum normalization coefficient (0.03437 ± 0.00070),
the structural parameters determined by both methods
coincide. The relationship between the structure-factor
curves for liquid silver are shown in Fig. 3. The atomic
radial distribution curves are not shown in Fig. 3,
because they are exactly the same. For six liquid metals
studied (with the exception of aluminum) (Fig. 1), both
methods yield the identical results, whence it follows
that the incoherent background is determined by the
Compton scattering alone. For aluminum the lightest of
these elements), the Vainshtein method fails to yield the
appropriate structure-factor curve, despite the fact that,
in our experiments, the differential filters were located
in the diffracted beam and that the use of the
MoKα-radiation provided a smooth “cutting-off” of the
Compton scattering intensity beginning with the value
s ≈ 6 Å–1 [7]. Nevertheless, the Compton scattering at
θ = 30°–40° is responsible for half of the coherent scat-
tering intensity. It is most probable that in this case,
some additional scattering mechanisms indicated

3.0
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1.5
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0.5

0 2 4 6 8 10 12
s, Å–1
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Fig. 3. Structure-factor curves for liquid silver; the dashed
line indicates normalization by (1); the solid line is obtained
by the graphical method of normalization.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



NORMALIZATION OF INTENSITY CURVES 359
above also work. The method of graphical normaliza-
tion provides the adequate calculation and yields the
structural parameters (a(s1) = 2.45, R1 = 2.82 Å, Z 1 =
7.5) corresponding to the published data.

Thus, the use of the above method should include
the performance of the following operations:

1. The preliminary processing of the experimental
data, i.e., interpolation, smoothing, introduction of the
polarization correction, the calculation and displaying
on the display of the curve I(s)/Pf 2(s) screen.

2. The graphical construction of the background line
in accordance with (2).

3. The computation of the normalization coefficient
by (4), with its subsequent refinement by (6), with an
allowance made for the requirement of one-dimen-
sional oscillations of the KF(R) curve around the parab-
ola –4πR2ρ(R). The optimum value of the normaliza-
tion coefficient is then used for reducing the experi-
mental scattering curve I(s) to electron units and
calculating the atomic radial distribution function.

The above graphic method is a simple and physi-
cally justified method, which is more universal then all
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
the other normalization methods, in particular, the
Vainshtein method.
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in External Fields of Certain Types. I. Atomic Displacements 

and the Corresponding Diffraction Patterns
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Abstract—The problem of the theoretical description of X-ray diffraction from ideal mosaic crystals under the
effect of various external fields has been formulated. Electric, magnetic, electromagnetic, and acoustic pertur-
bations are considered. The atomic displacements in crystals under the effect of external fields and the types of
the corresponding diffraction patterns are analyzed for various types of perturbations. The crystal classes are
determined in which atomic displacements can be recorded experimentally. Diffraction patterns formed under
the effect of various external factors are considered on the basis of the derived dependence of the structure factor
on the characteristics of an applied force field. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The experimental studies of X-ray diffraction in
crystals in various external fields attract ever growing
attention [1–9]. It is clear that under certain external
fields, the traditional kinematic theory of X-ray diffrac-
tion becomes invalid. In order to be able to study the
changes in the crystal structure and the electron-density
distribution under the effect of various external pertur-
bations, one has, first of all, to consider and describe
X-ray diffraction for ideal mosaic crystals in external
fields. The present study is aimed to solve this problem
for crystals in electric, magnetic, electromagnetic, and
acoustic fields weak in comparison with the corre-
sponding fields inside the crystals.

The study is addressed to scientists studying the
crystal structure and electron-density distributions by
the X-ray diffraction methods, because these scientists
may encounter the effect of the external perturbations
in their work. Earlier, the author described in detail
almost all the major problems of the kinematical theory
of diffraction [10]. Here, the author considers only
some of the results important for understanding the
essence of the above formulated problem.

ATOMIC DISPLACEMENTS IN A CRYSTAL 
UNDER THE EFFECT OF EXTERNAL 

PERTURBATIONS

There is a widespread opinion that under the effect
of external fields, atoms in a crystal are displaced to so
small distances that they cannot be recorded in diffrac-
tion experiments. However, the analysis performed
below allows one to choose objects that allow the reli-
able record of atomic displacements in precision X-ray
diffraction experiments.
1063-7745/00/4503- $20.00 © 20360
Atomic displacements under the effect of an
external field Eext. A linear dielectric in a magnetic
field acquires the macroscopical polarization P = ε0κE
(where ε0 is the dielectric constant, κ is the dielectric
susceptibility, and E is the macroscopic field inside the
crystal). Since P is proportional (Z) to the average
atomic displacements 〈∆r〉 , we can state that 〈∆r〉  Z E
(it is assumed that these vectors are parallel). For piezo-
electrics, this effect is enhanced, because the inverse
piezoeffect gives rise to the following atomic displace-
ments rij = dmijEm (where i, j, and m takes the values
from 1 to 3 and dmij and rij are the components of the
tensor of piezomodules and strains, respectively)
[11, p. 165]. The relationship 〈∆r〉  Z E is valid not only
for polarization due to ionic displacements, but also for
polarization due to electron displacements.

In practice, it is more convenient to measure not the
field inside a crystal, but the external field Eext (or the
potential difference U between the crystal faces). The
relationship between these fields is established from the
boundary conditions. If the applied field Eext is normal
to the face of a crystal in vacuum, then Eext = εE (where
ε is the dielectric constant of the crystal), we have
〈∆r〉  Z Eext.

It can readily be shown that in the transition from
the average, 〈∆r〉 , to the local, ∆rs, displacements
(where s is the atomic number), we have ∆rs =

Eext(rs). In this case,  depends on the kind of an
atom and its position and should be considered as a sec-
ond-rank tensor relating the vectors Eext(rs) and ∆rs. In

the general case, the values of the components  of

the tensor  depend on the orientation of the vector

âs âs

alm
s( )

âs
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Eext with respect to the crystallographic coordinate sys-
tem. Hereafter, we assume that Eext || a. Then

(1)

where l = 1–3; ∆xs, 1 ≡ ∆x; ∆xs, 2 ≡ ∆y; and ∆xs, 3 ≡ ∆z.
Following the conventional X-ray diffraction studies, it

is natural to consider  as parameters that can be
refined by the least squares method. If the field Eext is
inhomogeneous, then the periodicity of the atomic
structure is disturbed, and the traditional kinematic the-
ory should be modified.

We should like to emphasize that it is very important
to choose appropriately the objects for the experimental
recording of the atomic displacements under the effect
of an electric field. Consider, e.g., the contribution of
the piezoelectric component (having the largest value)
to the total average atomic displacement. For linear
dielectrics, the piezomodulus d is usually of the order
of 10–6–10–8 CGSE units (we do not use here the tensor
notation). Therefore, applying the potential difference
U ~ 10 CGSE units = 3 kV to the opposite crystal faces
(which corresponds to the field E ≈ 3 × 106 V/m at the
crystal dimension l ≈ 1 mm), we obtain the deformation
of ∆l/l ≈ 10–4–10–6. The maximum ∆l/l value is at the
accuracy limit in recording the changes in the heavy-
atom positions. However, the piezoelectric constants
for ferroelectrics considerably exceed the correspond-
ing values for conventional linear dielectric. Thus, for
the tetragonal BaTiO3 modification, the coefficient d is
equal to d ≈ (10–5–10–6) CGSE units ([11], p.192).
Therefore, at U ≈ 10 CGSE units, the average relative
atomic displacement equals ~10–3–10–4, i.e., has the
value that can be detected by the X-ray diffraction
method. Close estimates can also be obtained for other
ferroelectrics, e.g., for Seignette salt, triglycine sulfate,
lithium niobate, etc.

Atomic displacements under the effect of a mag-
netic field Hext. In most cases, magnetostriction in
para- and diamagnetics is rather low, ∆l/l ~ 10–6–10–7.
However, recent studies recorded anomalously high
(gigantic) magnetostriction in paramagnetics of rare-
earth metals and in some alloys [12, p. 117]. Thus,
magnetostriction of the TmLiF4 paramagnetic in a field
of about ~10 kOe equals ~2 × 10–4, and in the field of
~30 kOe, it attains the value of ~10–3 (at low tempera-
tures), and, therefore, can be recorded by the X-ray dif-
fraction method. The functional dependence of magne-
tostriction in the paraprocess on the field H is given in
[12, p. 35]. This dependence shows that ∆l/l is propor-
tional to H2 (and, therefore also to (Hext)2), because the
magnetic susceptibility for paramagnetics is µ ≈ 1 . This
was confirmed experimentally [12, p. 35]. Passing from
the average displacements to the local atomic displace-
ments ∆xs, l, one can write

(2)

∆xs l, al1
s( )

E
ext rs( ),=

al1
s( )

∆xs l, cl
s( )

H
ext rs( )( )

2
,=
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where the proportionality coefficients  are indepen-
dent of the field Hext, but, because of anisotropy in mag-
netostriction, depend on the field orientation.

For ferro- and ferrimagnetics, magnetostriction can
also attain gigantic values of the order of ~10–4–10–2

[12, Chs. 3 and 4], and, therefore, can be studied in the
X-ray diffraction experiment. However, because of the
specific behavior of the spontaneous-magnetization
vector Is in a magnetic field Hext, in the general case, the
dependence of magnetostriction on Hext is of a compli-
cated nonlinear nature and cannot be described analyt-
ically. The numerous graphic dependences of magneto-
striction ∆l/l on Hext [12, Chs. 3, 4] are rather intricate.
Therefore, it is expedient to write the dependence of the
atomic displacements ∆xs, l on the field Hext as

(3)

under the assumption that the coefficients  are the
functions of Hext. The chemical formulas for a number
of compounds possessing gigantic magnetostriction
and the corresponding values of the field intensities and
temperature are given in [12, Chs. 3 and 4].

As to the effect of harmonic perturbations (electro-
magnetic and acoustic fields), it is clear that, except for
some particular cases, the time-averaged displacements
∆rs are equal to zero, i.e., ∆xs, l = 0.

The estimation of the changes |∆I | in the integrated
intensity I presents no difficulty either. At 〈∆x〉  ~ 10–4–
10–2, these changes are |∆I | ~ I × 10–3–0.8 for the far
reflections, where I is the intensity of the diffraction
peak in the absence of any external factors. The error in

the intensities measured on diffractometers is σI ~ ,

therefore, σI/I ~  and, for rather strong reflections,
we have I ~ (103–104) pulse/min, σI/I ~ (3–1) × 10–2.
The latter value dictates a very thorough selection of
the experimental strategy in order to reveal the effect.

In the general case, in addition to the contribution
into the change of the integrated intensity due to atomic
displacements (the changes in their coordinates), one
can also observe the contributions due to the variation
in the temperature and extinction parameters and the
deformation of the electron density of the outer valence
shells. However, it is rather difficult and, in some cases,
even impossible to estimate these contributions. We
indicate here only that, in some cases, these contribu-
tions would increase the value of |∆I |/I, and the above
estimates should be considered as the lower limit of the
relative change in the intensity under the effect of the
above external factors.

EXPRESSION FOR A STRUCTURE FACTOR 
AND ANALYSIS OF DIFFRACTION PATTERNS

The expression for the structure factor F(S) is one of
the basic relationships of the traditional theory. There-

cl
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∆xs l, bl1
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H
ext rs( ),=

bl1
s( )

I
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fore, it is expedient to consider the changes in the
expression for F(S) and to analyze the diffraction pat-
tern obtained from crystals in external fields. Hereafter,
S is the reciprocal-lattice vector, whose components sl

(l = 1–3) can take any values; the vector H has its con-
ventional meaning, and the components hl are integers.

Let Aext be the amplitude of an external homoge-
neous force field resulting in the displacement of atoms
by a value ∆xs, l. These fields can be induced, e.g., by
some electric, magnetic, and mechanical factors. The
periodicity of the crystal in a homogeneous field is pre-
served, therefore the expressions for F1(H) (hereafter,
the subscript 1 indicates the presence of external pertur-
bations) can be obtained from the traditional F(H) by
expanding exp2πiH(rs + ∆rs) into series within the
accuracy of the linear term (because of the smallness of
∆xs, l). Then

(4)

In the above expression, we used the expressions of
types (1) and (3) and assume that f1, s(H) ≈ fs(H). Rela-
tionship (4) yields the dependence F1(H) on the applied

field, Aext. The unknown quantities  can be consid-
ered as the parameters to be refined.

General expression for structure factor in inho-
mogeneous external fields. In this situation, the initial
crystal periodicity is disturbed, and, therefore, it is nat-
ural to introduce the concept of the structure scattering
amplitude by the whole crystal, Fcr(S). Let Rmnp be a
translation vector determining the origin of a certain
(mnp)th averaged unit cell of a prismatic crystal (m, n,
and p are integers ranging from 0 to M1, M2 , M3 ,
respectively). At small displacements ∆rs, mnp, one can
expand Fcr(S) into a Taylor series:

(5)

where, within the diffraction peak, we have F(S) ≈
F(H). The latter quantity is the structure factor which
describes scattering by only one unit cell, where atoms
are located in the positions rs. To pass from the sum

2πiSRmnp) to the integral form, we have to

introduce a new vector e ≡ S – H. For a specimen in the
shape of a parallelepiped with the linear dimensions
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ext

+=

× f s H( )hlal1
s( )

2πiHrs( ).exp
s l,
∑

al1
s( )
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(exp
mnp∑
C

L1 = M1a1, L2 = M2b1, and L3 = M3c1, we obtain

(6)

where integration is performed over the crystal volume
v, V is the unit cell volume, and εl = sl – hl. Assuming

that  is independent of Aext and taking into account
(5) and (6), we can write Fcr(S) in the form

(7)

Relationship (7) describes the diffraction pattern in the
space of structure factors as a function of Aext(x). The
first term describes discrete peaks localized at the
reciprocal-lattice points H characteristic of the periodic
crystal. Their shapes (angular dependence) are

described by the function sinπεl Ml )/πεl, and
the amplitude is equal to F(H) [13, p. 47]. The second
term characterizes the deviation of the diffraction pat-
tern from the pattern predicted by the kinematic theory.
It depends on the form of the external factor Aext(x). The
shape of the peaks formed along the axis a* is deter-
mined by the integral in (7). Here, broadening of the
diffraction peak because of the finite value of the spec-
tral interval ∆λ, crystal mosaicity, and incident-beam
divergence is ignored. The shapes of the peak along b*
and c* remain the same. To predict the form of the dif-
fraction pattern, consider several characteristic cases.

Homogeneous perturbations as a particular case
of general expression (7). At Aext = const, the integral
in (7) equals Aext(sinπεl Ml)/πε1. In this case, the dif-
fraction pattern is a set of discrete peaks localized at the
reciprocal-lattice points sl = hl. Their shapes are

described by the function sinπεlMl)/πεl, and

the amplitude depends on Aext. Naturally, this result
also correlates with (4).

External factor of the type Aext(x) =

cos2πk1x. It should be remembered that in the
X-ray diffraction, x is a dimensionless quantity, and,
therefore, the “wave number” is k1 = a/λ1. The role of
the external factor can be played by inhomogeneous
electric and magnetic fields and electromagnetic or

2πiSRmnp( ) 1
V
--- 2πier( )exp vd

v

∫≈exp
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∑
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Fcr(s1)

1 – k1 2
M1

2
M1

1 + k1 2 + k1
s1

h1 = 1 h1 = 2

Fig. 1. Schematic view of the one-dimensional section of the peaks of the function Fcr(S) for two reciprocal-lattice points, h1 = 1

and h1 = 2, under the applied external fields of the form  Aext(x) = cos2πk1x. The case where λ1 < L1/2. Only the real values of

Fcr(S) are considered.

A0
ext
acoustic standing waves, whose amplitudes are charac-
terized by the above dependence. The integral in (7) is

equal to π(k1 ± ε1)M1]/2π(k1 ± ε1). There-
fore, in addition to the main peak at sl = hl, there are two
additional (auxiliary) peaks at s1 = h1 ± k1, s2 = h2, and
s3 = h3 (Fig. 1). Their shape along the a*-axis is
described by the function sin[π(k1 ± ε1)M1]/2π(k1 ± ε1)

with the amplitude ∂F(H)/∂xs, l ) . Equa-
tion (7) also yields the overlapping condition of the
main and the auxiliary peaks. These peaks overlap if
λ1 > (L1/2). At λ1 = L1 , the center of the auxiliary max-
imum coincides with the edge of the major peak
(Fig. 2). It is the case of the maximum peak overlap-
ping, because, at λ1 > L1, the periodic effect of external
perturbation has no physical sense. It should be indi-
cated that the allowance for primary beam divergence,
nonmonochromaticity, etc. broadens both main and
auxiliary peaks, so that some peaks on the experimental
diffraction pattern are not resolved. However, the above
analysis should necessarily be performed, because the
integrated intensities of the measured reflections are
independent of the above experimental conditions and
are determined by the interference function under con-
sideration. Moreover, it is clear that the diffraction the-
ory describes most completely the “ideal experiment”,
because the main quantities used in the theory are inde-
pendent of the details of the experimental setup.

The case considered above allows one to analyze the
diffraction pattern from the crystal in an external field
of a more general form as well. Indeed, if Aext(x) is a
superposition of perturbations of different frequencies,
it can be expanded into a Fourier series, namely,

Aext(x) = cos2πnk1x, where  is the ampli-
tude of the nth harmonic. Then, in accordance with (7),
to each frequency (wave number), there correspond two

A0
ext

[sin±∑

A0
ext

(
s l,∑ al1

s( )

A0n
ext

n∑ A0n
ext
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additional maxima located at the points s1 = h1 ± nk1,
s2 = h2, and s3 = h3 . Figure 3 shows the diffraction pat-
tern at n = 1, 2.

External factor of the type Aext(x) =

( /2π)exp(–αx2). We assume that the constant α
allows to extend the integration limits in (7) to infinity.
Therefore, this integral is equal to

( /2 )exp(−π2 /α). As a result, the diffraction
peaks on the diffraction pattern are not broadened along
the a*-axis and their heights remain constant (Fig. 4).
The above transformation depends on the parameters α
and  of the external field.

External factor of the type Aext(x) =

exp(−2pax). Choosing the constant α in such a
way that Aext(x) rapidly decreases within the crystal, we
can use the integration limits from zero to infinity. Then,

the integral in (7) equals (α + iε1)/2π(α2 + ). The

A0
ext

A0
ext πα ε1

2

A0
ext

A0
ext

A0
ext ε1

2

1 – 1/M1 1 + 1/M1 2 – 1/M1 2 + 1/M1

h1 = 1 h1 = 2

Fcr(s1)

Fig. 2. The same as in Fig.1 for the case λ1 = L1. The dashed
and dashed-dotted lines represent individual terms in (7),
the solid line shows their sum.

s1
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Fig. 3. Schematic form of one-dimensional section of the peaks of the function Fcr(S) for two reciprocal-lattice points h1 = 1 and

h1 = 2 under the effect of an applied field of the form Aext(x) = cos2πnk1x. Only the real values of Fcr(S) are considered.A0n
ext

n 1=
2∑

Fcr(s1)

1 – 2k1 1 – k1
2

M1

2
M1

2
M1

1 + k1 2 – 2k1 2 + k1 2 + 2k1

s1

h1 = 1 h1 = 2
modulus of this function has the maximum at the peak
center and provides a broadening of the diffraction line
and a change of its height. These changes are determined

by the parameters of the external factor, α and .

The transformations occurring in the diffraction pat-
tern can also be analyzed for other forms of external
factors in a similar way.

Now, estimate the intensities of auxiliary maxima
Iaux with respect to the intensity of the main peak Imain

under the effect of a periodic external factor. The corre-
sponding relationships are determined by the atomic
displacements ∆xs, l. For the averaged 〈∆x〉  value (aver-
aging is performed over the subscript l and the number
of independent atoms s), we obtain the ratio I aux/Imain ~

(〈∆x〉π )2 . As a result, if 〈∆x〉  ~ 10–3–10–2 (the

above estimates), we have Iaux ~ 2 × (10–3–10−1)Imain;

for the high-angle reflections,  ~ 14.

It should be indicated that the changes in the diffrac-
tion pattern can also be observed in the transitions from
the ideal to a real single crystal because of certain mod-

A0
ext

hll∑
hll∑

Fcr(s1)

h1 = 1 h1 = 2
s1

Fig. 4. The same as in Fig. 3 under the field of the form

Aext(x) = ( /2π)exp(–αx2). The dashed and dashed-dot-

ted lines represent individual terms in (7), the solid line
shows their sum.

A0
ext
C

ulations of their lattices in the process of crystal formation.
The above description can be useful in this case as well.
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Abstract—The intensity distributions of diffuse X-ray scattering caused by domains characterized by the trans-
verse wave of atomic displacements polarized in the (010) plane and propagating along the [001] direction are
calculated by numerical methods analyzed in the kinematical approximation. The regular changes in the inten-
sity and half-width of the satellite peaks are revealed as functions of the wave amplitude and the average domain
size. The characteristic features of diffraction are considered in the case where the defect-density wave in the
crystal affects the parameters of the displacement wave. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION
The static waves of atomic displacements arise in

some crystals due to changes of the thermal parameters
(temperature, pressure) or the composition [1–9]. Such
modulated states of the crystals are usually related to
the changes in the magnetic [1–3] or electron [4–6]
subsystems or in the characteristic features of atomic
interactions in dielectric (ferroelectric) crystals [7–9].
Therefore, the experimental measurement of such
structural characteristics in the modulated state
(wavevector, amplitude, polarization plane, tempera-
ture range, etc.) provides an additional insight into the
changes in the electron and magnetic properties of the
crystal or the interactions between its structural compo-
nents.

The state of the crystal characterized by the incom-
mensurate displacement wave can arise as an interme-
diate state accompanying the transitions between the
commensurate phases or between the nonmodulated
paraelectric phase and the phase with the commensu-
rate modulation [9]. Two types of changes of the dif-
fraction patterns are observed in such cases. In the first
one, the displacements of the satellite peaks to the posi-
tions characteristic of the commensurate displacement
wave (position q of the satellite peak with respect to the
nearest reflection is determined by wavelength λ of the
displacement wave). In the other one, new peaks appear
in the positions typical of the commensurate phase,
whereas the transformation process is accompanied by
the redistribution of intensities among the peaks char-
acterizing the commensurate and incommensurate
phases [10]. In some experiments, in the region of the
two-phase state [11], the additional satellite peaks are
observed between the peaks, corresponding to
1063-7745/00/4503- $20.00 © 20365
wavevectors q1 and q2 of the phases with the commen-
surate modulation.1 These additional peaks appear in
the positions corresponding to the sum (q1 + q2) and the
difference (q2 – q1) of the wavevectors corresponding
to the coexisting phases. The formation of these addi-
tional peaks is also observed under the long-term ther-
mal treatment of thiourea at a fixed temperature within
the existence range of the incommensurate phase [12].
In the first case, the formation of the “sum” and “differ-
ence” peaks can be explained either by certain synchro-
nization of the displacement waves in the correlating
phases or by the superposition of these waves in the
crystal. According to [11, 12], the additional peaks aris-
ing after the preliminary thermal treatment at a fixed
temperature within the existence range of the incom-
mensurate phase are explained by the formation of the
defect density wave [13–20] and pinning of the struc-
ture modulation at these waves.

The theoretical analysis of the X-ray diffraction in
crystals modulated by the displacement waves was first
reported in [4–9]. The estimates [4] of the relationship
between the intensities of the main peak and the first-
order satellite peak demonstrate that their values differ
by two orders of magnitude. The allowance for the
Debye–Waller factor leads to an additional decrease in
the predicted intensity of the satellite peak. Therefore,
it was proposed to study the modulated crystals by
X-ray methods and measure only the intensity varia-
tions of the main peaks or to use electron diffraction. In
the latter case, in is possible to fulfil the conditions of
dynamic scattering [5]. However, the experimental

1 Below, the satellite peaks of the peaks due to the displacement
wave with vector q are referred to as additional peaks.
000 MAIK “Nauka/Interperiodica”
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studies of real crystals by the X-ray diffraction methods
show that, in some cases, the intensities of the satellite
peaks can be comparable with the intensity of the main
peak [11, 12] or even can considerably exceed this
intensity [10].

The above discussion demonstrate that the further
theoretical analysis of X-ray scattering in crystals with
unusual distribution of the structure defects and in crys-
tals with several types of displacement waves is quite a
burning problem.

In this paper, we present the model calculation of
X-ray scattering in crystals with different types of frag-
mentation in the direction of the modulation wave
(domains, twins, phase boundaries) and with the defect
density waves. An emphasis is made on the conditions
supporting the formation of additional peaks within the
reciprocal lattice period.

In the first part of this article, we analyze the X-ray
intensity distributions in the case of a single-wave mod-
ulation in crystals. In the second part of the article, the
case of the two-wave modulation in crystals is dis-
cussed.

λ

a3

a1

a2

Fig. 1. Schematic picture of atomic positions in the initial
crystal (filled circles) and in the crystal with a transverse
displacement wave (empty circles).
C

CALCULATION TECHNIQUE

To calculate the intensity of diffracted radiation, we
used the numerical method based on the kinematical
approximation. An orthorhombic crystal modulated by
the by the transverse wave of atomic displacements
along the [001] direction and polarized in the (010)
plane (Fig. 1) was considered as a model object. In this
case, the displacements of atoms along the [100] direc-

tion can be represented as dn = Asin  + ϕ , where

A = A · a1. Here, A is the amplitude of the displacement
wave, λ is its wavelength in the units of the interlayer
distance along the [001] direction, n is the number of
the atomic layer, and ϕ is the initial phase of the dis-
placement wave. The transverse displacement wave
causes the changes in the mutual relative positions of
atomic layers, and, hence, it disturbs the atomic-layer
packing along the [001] direction. Therefore, the scat-
tering intensity can be written as

(1)

where |C|2 is the structure factor for scattering by an
atomic layer (the two-dimensional Laue function), N3 is
the number of atomic layers along the [001] direction,
S = H ·  + K ·  + L ·  is the reciprocal-lattice vec-
tor of the crystal with the basis vectors a1, a2, and a3 ,
and rn' is the position of the “zeroth” atom in the nth
atomic plane. Within the framework of the statistical
approach to intensity calculation, relationship (1) can
be rewritten as

(2)

where the angular brackets denote averaging over all
the pairs of atomic layers separated by m = n' – n other
atomic layers, N – |m| is the number of pairs of atomic
layers located at the interlayer distances m from one
another. Taking into account that rn = n · a3 + dn and that
the interlayer distances remain unchanged along the
[001] direction (transverse displacement wave), we can
write (2) as

(3)

where dn and dn + m are the projections of the position of
the zeroth atoms in the nth and (n + m)th atomic layers
onto the zeroth atomic layer.

2πn
λ
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With due regard for the fact that the factor |C|2 has
the nonzero value only at the integer values of H and K
and that at H = 0, the expression in angular brackets is
unity, it follows from (3) that diffuse scattering caused
by the transverse displacement wave (or waves) should
be localized along the reciprocal-lattice rods with H ≠ 0.

We calculated the values of the expression in the
angular brackets at different m for a crystal consisting
of 100000 atomic layers. The crystal was “grown” by
the Monte Carlo method. We assumed that the crystal is
divided into domains with the planar boundaries nor-
mal to the wavevector crossing the whole crystal.
A polydomain crystal modulated by a single displace-
ment wave can be represented as alternation of domains
with equal amplitudes and wavelengths, but with differ-
ent initial phases. The boundaries between such
domains can be considered as “antiphase” boundaries.
The formation of these boundaries can be the conse-
quence of non-correlated nucleation and growth of
modulated regions. In modeling, we assumed that the
domain size has an arbitrary value which is not less
than the wavelength.

Substituting the values of the vectors determining
the positions of atomic layers in the (001) plane into the
expression in angular brackets, we find

(4)

It should be noted that the amplitude A of the dis-
placement wave enters expression (4) for the scattered
intensity via the product A · H. Therefore, at the same
value of A, the diffuse scattering by the reciprocal-lat-
tice rods can have different intensities and different H
values. Taking this into account, we consider here
only two limiting situations: small and large displace-
ment “amplitudes” (low and high values of the product
A · H).

SMALL DISPLACEMENT “AMPLITUDES”

The small displacement “amplitudes” are under-
stood as those amplitudes that have such A · H values
that the intensity ratio of the satellite of the first and the
higher order considerably exceeds the value of ten. In
the experiment, such ratios are observed rather often,
and, as will be shown below, such values are preferable
for the analysis of the domain structure in the crystal
based on the satellite-peak profile.

Let us consider the crystal in which the initial phase
of the displacement wave in each domain is the random
value from the set {2πn/λ}, where n = 0, 1, … .

2πiS dn dn m+–[ ]{ }exp〈 〉

=  2πiAH
2πn

λ
--------- ϕn+ 

 sin




exp

– 2π n m+( )
λ

------------------------- ϕn m++ 
 





  .sin
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The intensity distributions for such a crystal calcu-
lated at A · H = 0.1 and at different values of the dis-
placement wavelength for the fixed average number of
atomic layers in domains are shown in Fig. 2. The
intensity distribution has two first-order satellite peaks
and two low-intensity satellite peaks (the second-order
satellites). The diffraction pattern is symmetric with
respect to points L ± 0.5, where L are the coordinates of
the reciprocal-lattice points in the unmodulated crystal.
The positions of satellite peaks with respect to the near-
est peak if the initial crystal is determined by the wave-
length q = 1/λ as for a single-domain crystal. In other
words, the domain (“antiphase”) boundaries do not
affect the satellite-peak positions. It follows from Fig. 2
that for the structural transition of the crystal from the
state modulated by one displacement wave to the state
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λ = 4.2
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Fig. 2. Intensity distributions calculated for various wave-
lengths λ of the displacement waves at the A · H = 0.1 and
the average domain thickness equal to D = 30 atomic layers.
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modulated by another displacement wave through
some intermediate states with different degrees of
incommensurability, the positions of satellite peaks
should continuously vary without the formation of any
additional intensity peaks.

An increase of the mean domain thickness gives rise
to the monotonic decrease of the half-width of the sat-
ellite peaks. It was established that the half-width of the
satellite peaks is almost independent of the displace-
ment wavelength, and, therefore, the average domain
thickness (D) can be determined from the experimen-
tally measured intensity distribution with the use of the
calculated dependence of the half-width of the satellite
peak on D (Fig. 3).

LARGE DISPLACEMENT “AMPLITUDES”

The large displacement “amplitudes” are under-
stood as such amplitudes in which the intensity of at
least one satellite of the order higher than the first dif-
fers from the intensity of the last satellite by a factor
less than ten. In the framework of the model of a mod-
ulated crystal under study (with random values of the
initial phases of the waves in different domains), the
second-order satellite peaks attain this intensity value
at A · H values approximately larger than 0.15. 

An increase of the peak intensity for the higher-
order satellites with an increase of the displacement
“amplitude” is accompanied by a decrease in the inten-
sity of the Bragg peaks for the initial crystal. The inten-
sity ratios of the satellite peaks for satellites of different
orders also undergo some changes (Fig. 4). The latter
fact can be used to determine the amplitude A of the dis-
placement wave by comparing the measured intensity
ratios for satellites of various orders for a specified
reciprocal-lattice rod (with the given H value) with the

calculated values of these ratios corresponding to the
same H.

The aforementioned features of the diffraction pat-
tern at large A · H values lead to the qualitative differ-
ences in the transformation of the intensity distribution
in the transition from one modulated structures to
another at the continuous variation of λ (Fig. 5) in com-
parison with the case of small displacement “ampli-
tudes.” The intensity distributions shown in Figs. 2 and
5 show that the transition from the state of the crystal
modulated by a commensurate displacement wave with
a large “amplitude” to the incommensurate modulation
is accompanied by the changes in the peak location in

0.03
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0.01

0 50 100 150 200
D

∆L

Fig. 3. Half width ∆L of the first-order satellite peak versus
domain thickness.
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Fig. 4. Intensity distributions calculated for various values
of A · H at the wavelength of the displacement wave λ = 2.7
and the average domain thickness D = 30 atomic layers.
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accordance with the wavelength and also by the forma-
tion of “additional” peaks.

DEFECT DENSITY WAVE

The theory predicts that if the crystal is modulated
by an incommensurate displacement wave, the mobile
defects can redistribute and form the defect-density
[13–16, 20–22]. The formation of the defect-density
wave at the thermal treatment at a fixed temperature
within the range of existence of an incommensurate
phase gives rise to the anomalies in the physical char-
acteristics in the range of existence of the commensu-
rate phase [11, 12]. This gives ground to believe that the
defect-density wave is stable and can exist for some

time also in the range of existence of the commensurate
phase. Therefore, one can assume at the repeated pas-
sages of the range of the incommensurate phase, the
formation of modulated domains in the crystal and their
parameters would depend on the existing defect density
wave.

Currently, there are no theoretically verified con-
cepts of the “interaction” between the defect-density
wave and the displacement waves. Therefore, we con-
sider the effect produced by the defect density wave on
each of the parameters characterizing the displacement
wave.

Synchronization of the initial phase of the dis-
placement waves. In contrast to the case discussed
above, now we assume that the initial phase of the dis-
placement wave in each domain is determined by the
phase of the defect density wave λd propagating
through the whole crystal. As a result, the initial phases
of the displacement waves in all the domains are syn-
chronized and obey the relationship

, (5)ϕ i

2πni

λd

-----------=

–0.1 0 0.1 0.2 0.3 0.4 0.5
L
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Fig. 5. Intensity distributions calculated for various wave-
lengths λ of the displacement wave at A · H = 0.4 and the
average domain thickness D = 60 atomic layers. Numbers
1–4 denote the satellite peaks of the corresponding order.
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to λd = 5.1 passing through the whole crystal.
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where ni is the number of the initial atomic layer which
“begins” the ith domain. Figure 6 shows the intensity
distributions calculated for such a crystal at different
values of the displacement wavelength. It is seen that
the synchronization of initial phase gives rise to the for-
mation of a δ-function-like additional peak with the
intensity increasing with a decrease in the difference
q – qd (where qd is the wavevector of the defect density
wave).

Spatial synchronization. If the probability of
nucleation of a displacement wave is related in some
way to the value of defect density at the given site of the

crystal, then the waves of atomic displacements are
synchronized not only with respect to the initial phase,
but also with respect to their positions as well.

Let α be the probability that the beginning from a
certain atomic layer nj (where nj are the numbers of the
atomic layers with the extremum value of the defect
density, for example, with the minimum value) crystal
has a modulation wave. In the limiting case (at
α  1), the crystal consists of alternating domains
modulated by the displacement waves with the equal
initial phases and arranged orderly with respect to one
another, that is, the spacing between the front part of

I, arb. units
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Fig. 7. Intensity distributions calculated for the case where the defect-density wave  λd determines the spatial arrangement of
domains and synchronizes the initial phases of the displacement wave λ = 3.5 in them. The curves are calculated at different values
of α (a) and λd (b).



CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000

X-RAY DIFFRACTION BY POLYDOMAIN CRYSTALS 371

each domain is spaced from the front part of the previ-
ous one by a distance multiple of λd.

The results of calculations illustrating the evolution
of intensity distribution with an increase of α are shown
in Fig. 7a. It is seen that the spatial correlation in the
domain positions introduced in addition to the synchro-
nization of the initial phases of the displacement waves
provides, the formation of additional peaks whose
intensities increase with α. Note that the correlation
only in the positions of domains (with random values of
the initial phases) does not cause any qualitative
changes in the intensity distribution in comparison with
the case of uncorrelated domain positions. However, in
the limiting case, where the distribution of domain
thicknesses tends to the δ-function-like distribution, the
domain arrangement should acquire the long-range
order. As a result, additional peaks are formed whose
number and positions are determined by the period of
this superlattice [23].

Similar to the case of the phase synchronization
alone, the diffraction effects caused by both phase and
spatial modulations are strongly dependent on the
degree of incommensurability of the waves with λd and
λ. It is seen (Fig. 7b) that the additional peaks in the
presence of both phase and spatial synchronization
between the defect density wave and the displacement
wave are observed only in the case where λd/λ ≠ n with
n = 0, 1, 2, … . The intensities of additional peaks are
also sensitive to this ratio.

Phase modulation. Let a defect density wave mod-
ulate the phase of the displacement wave. From the for-
mal viewpoint, this model is similar to the existence of
a “phason” in the crystal. The only difference is that the
phase modulation in our case is not caused by phonons,
in contrast to the situation discussed, e.g., in [4]. If such
a “phason” really exists in the crystal, then the atomic
displacements can be described as

(6)

where Φ is the amplitude of the phase modulation.

It is seen from Fig. 8 that the phase modulation gives
rise to the formation of additional peaks located at q +
qd and q – qd, whose intensities increase with both
amplitude of phase modulation, Φ, and displacement
“amplitude,” A · H. At a certain ratio between Φ and
A · H, some additional peaks can also arise in the posi-
tions corresponding to the sum and difference of the
vectors qd and q/2 (second-order satellites). Another
characteristic feature of the intensity distribution in the
presence of “phasons” is the diffuse peak in the vicinity
of the peaks corresponding to the initial structure.

Amplitude modulation. Assuming that the dis-
placement of atoms under the effect of the defect den-
sity wave is proportional to the defect density, we can

dn A 2πn
λ

--------- ϕ Φ 2πn
λd

--------- 
 sin+ + ,sin=

write the following expression for the atomic displace-
ments

(7)

It is seen Fig. 9 that the amplitude modulation gives rise
to the formation of additional peaks symmetric with
respect to the satellite peak q. The distance between the
satellite and additional peaks is proportional to qqd. The
number of the peaks and their relative positions are
strongly dependent on the degree of incommensurabil-
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Fig. 8. Intensity distributions for the case where the phase of
the displacement wave with wavevector q (λ = 4.1) is mod-
ulated in the domains by a defect density wave with the
wavevector qd (λ = 5.0 atomic layers). The curves are calcu-
lated at different values of A · H and amplitude Φ of the
phase modulation by the defect-density wave: (1) the addi-
tional peak corresponding to q + qd; (2) q – qd; (3) 1 – (2q +
qd); and (4) 2q – qd.
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ity qd with respect to the initial lattice and the relation-
ship between q and qd.

DISCUSSION AND CONCLUSIONS

The results obtained above demonstrate that, in the
general case, the diffraction pattern from a polydomain
crystal modulated by a single wave of atomic displace-
ments can be rather complicated. Even in the simplest
situation corresponding to “independent” domains, it is
useful to measure the intensity distributions for two
types of reciprocal lattice rods with H indices satisfying
the conditions imposed on large and small displace-
ment amplitudes A · H, respectively. In order to deter-
mine the average domain size, it is preferable to con-
sider the reciprocal-lattice rods, which are responsible
for the formation of first-order satellite peaks. This pro-
vides the determination of their profiles with sufficient
accuracy. On the other hand, in order to determine the
amplitudes of displacement wave, it is necessary to use
the intensity distributions along the reciprocal-lattice
rods satisfying the condition of the large A · H values.

If in addition to the static wave of atomic displace-
ments, another type wave propagates in the crystal, e.g.,
the defect density wave, then both waves can “interact”
in some way. The calculations showed that, in this case,
the additional peaks in the intensity distribution can
appear at any type of the correlation between the defect
density wave and the parameters of the displacement
wave. These additional peaks are arranged with respect
of the satellite ones differently in all the cases under
study. This fact can be used for determining the type of
the “interaction” between the defect-density wave and

the displacement wave. Another important feature is
the possibility to determine in the experiment the wave-
length of the defect density wave.

In addition to the results of the earlier theoretical
studies obtained by many authors also showed, we
demonstrated that the domain structure corresponding
to the single-wave modulation does not influence the
positions of the main satellites, but can change their
half-widths. The correlation between the parameters
characterizing the displacement wave in each domain
or the correlation between the domain positions pro-
vide the formation of additional peaks. The additional
peaks appear also if the parameters of the displacement
waves are influenced by the modulation of another type
(the waves of defect density, chemical composition,
etc.). Within the framework of a rather simple model,
we showed that the characteristic features of the
arrangement of additional peaks with respect to the
main satellites are uniquely determined by the type of
the “interaction” between the displacement wave and
the waves of other types.

The results obtained open new vistas for the diffrac-
tion methods in the studies not only of the parameters
characterizing the wave of atomic displacements, but
also in the studies of the microstructure of modulated
crystals.
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Abstract—X-ray diffraction in an orthorhombic crystal modulated by two transverse-displacement waves
propagating along one of the crystallographic directions has been numerically studied within the framework of
the kinematic approximation. Crystal models are considered that allow the superposition of the displacement
waves or the coexistence of domains modulated by the displacement waves with different parameters. It is
shown that the formation of peaks additional to the satellite ones is possible not only due to the superposition
of the displacement waves, but also due to a certain correlation of the displacement waves in each domain.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the transition from one modulated structure of a
crystal to another, one can expect the appearance of two
static waves of atomic displacements propagating
along one of the crystallographic directions. The dif-
fraction pattern, which can be interpreted as a conse-
quence of this modulated state in the crystal, was first
observed in [1]. In addition to the satellite reflections
corresponding to the displacement waves with
wavevectors q1 and q2 , some additional peaks were
observed at positions corresponding to q1 + q2 and q2 –
q1 . These additional peaks can be caused, in particular,
by the superposition of displacement waves in the pres-
ence of two modulation modes in the crystal [1]. Within
the framework of the single-wave model, it was shown
[2] that such additional peaks could also arise on the
diffraction patterns from modulated crystals with poly-
domain structures in which the displacement waves in
domains are synchronized in a certain way.

The multiwave modulation for the displacement
waves propagating along three different directions in a
single crystal was analyzed earlier [3]. In this paper, we
consider X-ray diffraction from a polydomain crystal
modulated by two displacement waves along one of the
crystallographic direction. Taking into account the
results obtained in [2], we paid special attention to the
effect of modulations synchronization in domains on
the form of the diffraction pattern. Such a synchroniza-
tion can be caused either by the coherency of the
1063-7745/00/4503- $20.00 © 20374
domain boundaries or by the “interaction” of the dis-
placement waves, e.g., with the defect-density wave.

Modeling of the intensity distributions in the recip-
rocal space was performed numerically in the frame-
work of kinematic approximation according to the
computation scheme described in [2], in which the
intensity of the scattered radiation was expressed in
terms of the “layer–layer” pair correlation functions
calculated for the given crystal structure. The crystal
was “grown” by the Monte Carlo method under the
assumption of a random arrangement of domain bound-
aries. Similar to the case of the single-wave modula-
tion, the planar domain boundaries were take to be nor-
mal to the wavevector and propagating through the
whole crystal.

UNCORRELATED DISPLACEMENT WAVES

As a starting model, we consider the case where the
domains and static displacement waves in these
domains do not “interact.”

Let each domain have only one of two possible dis-
placement waves with the parameters, which do not
correlate with the corresponding parameters of the
waves in the neighboring domains. Then, the atomic
displacements in the crystal can be represented as

(1)

where n is the ordinal number of the atomic layer in the
direction of the wavevector, Ai is the amplitude, λi is

dn Ai
2πn
λ i

--------- ϕ i+ 
  ,sin=
000 MAIK “Nauka/Interperiodica”
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the wavelength corresponding to the displacement
wave polarized in the (010) plane measured in the units
of the interlayer spacing in [100] and [001] directions,
respectively; i = 1 or i = 2 depending on the domain
type, and ϕi is the initial phase of the wave in the ith
domain. The phase ϕi takes random values from the set
determined by all the possible atomic positions in a
crystal modulated by the displacement wave λi corre-
sponding to ϕi = 0.

Figure 1 shows the fragments of the intensity distri-
butions calculated within the framework of the “nonin-
teracting” domain model. They illustrate the evolution
of the diffraction pattern with the change of the relative
volume content of the domains with the waves of two
different types. The intensity distributions are plotted
for a reciprocal-lattice half-period along the 10L rod
because the distributions constructed for the whole
period have the symmetry point L = 0.5 ± å, where
M = 0, 1, 2, … (see [2]). These diffraction patterns are,
in fact, the superpositions of two intensity distributions
characteristic of a crystal modulated by waves of each
type (denoted hereafter as λ1 and λ2). The redistribution
of the volume fractions of the domains with the λ1 and
λ2 waves results in the corresponding changes in the
intensities of the satellite peaks characteristic of these
waves. It was shown [2] that the half-widths of the sat-
ellite peaks are determined by the average domain
thickness. At the random location of domain bound-
aries within the crystal, the average thicknesses D1 and
D2 for domains of two types are related to their volume
fractions W1 and W2: D1/D2 = W1/W2 . Therefore, an
increase of the volume fraction of a certain component
results in an increase of the average size of domains
giving rise to a decrease of the half-widths of the corre-
sponding satellite peaks. The change in the amplitude
of one displacement wave or the change in the average
thickness of domains corresponding to this wave pro-
duce no effect on the intensity and the position of the
satellite peaks corresponding to the crystal modulation
by the other wave.

COHERENT DOMAIN BOUNDARIES

In a crystal consisting of “noninteracting” domains,
their boundaries can include the regions, where the dis-
placements of the atomic planes considerably exceed
the displacement amplitude of each of the waves. Then,
one can expect that the crystal would tend to relaxation
of these “defects” by “correlating” the modulations in
different domains.

One of the methods for attaining such a correlation
is the “adjustment” of the initial phases in the neighbor-
ing domains in a way to minimize the relative displace-
ments of the atomic layers at the domain boundary
(a “coherent” boundary). Thus, passing from the ith to
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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tions W of these domains in the crystal, with the modulation
“amplitude” being constant, A1 · H = A2 · H = 0.1.
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the jth domain, we can determine the initial phase ϕj in
the jth domain by minimizing the following expression:

(2)

where n0 is the ordinal number of the last atomic layer
in the ith domain, i ≠ j.

An example of the intensity distribution for this
case is shown in Fig. 2 alongside with the intensity
distribution calculated for the “noninteracting”
domains, with the parameters of the displacement
wave being the same. It is seen that the half-widths of
the satellite peaks are almost the same in both cases,
but the diffuse background between the peaks is more
pronounced for the “coherent” boundary. The calcula-
tions for different λ1 and λ2 demonstrate that the back-
ground intensity depends on the spacing between the
satellites: the closer the satellites, the higher the inten-
sity. If the relation between λ1 and λ2 provides the
close location within the reciprocal-lattice period of
the second-order satellites, then the diffuse back-
ground is enhanced between these satellites and is
absent between the first-order satellites. Similar to the
case of “noninteracting” domains, the coherent “cor-
relation” of the waves in the neighboring domains
does not result in the formation of any additional
peaks.

Ai

2πn0

λ i

------------ ϕ i+ 
  A j

2π n0 1+( )
λ j
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Fig. 2. Intensity distributions calculated at λ1 = 2.2, λ2 =
2.5, A1 = 0.15, A2 = 0.2, and D1 = D2 = 30 for the case of
independent displacement waves in domains (dashed line)
and the case of phase correlation at the domain boundaries
(solid line).
PHASE CORRELATION OF THE WAVES

The correlation of displacements in the domains can
be also determined by the long-range forces. For exam-
ple, one can imagine the situation where the initial
phases of the displacement waves in each domain are
“dictated” by the defect-density wave (hereafter called
“the correlating wave”).

It was shown [2] that an additional peak is formed in
the vicinity of the satellite peak on the intensity distri-
bution, if the crystal with the single displacement wave
has the domain structure and if the initial phase ϕi in
each domain is determined by the phase of correlating
wave. The number of additional peaks increases in
addition to the initial phase correlation for the displace-
ment wave there also exists a certain correlation
between the domain positions also dependent on the
correlating wave. Similar diffraction phenomena are
also observed in the case of two displacement waves.

The intensity distributions in Fig. 3 are obtained for
a crystal consisting of randomly located domains with
the displacement waves λ1 and λ2 and the initial phases
determined by the phase of the correlating wave. It is
seen that the correlation between the initial phases of
the modulation waves in different domains provides the
formation of an additional peak in the position corre-
sponding to wavevector qd of the defect-density wave,
whereas its intensity depends on the distance to the
nearest satellite peak: the less the distance, the higher
the peak intensity.

SUPERPOSITION OF THE DISPLACEMENT 
WAVES

The existence of a defect density wave in a crystal
can hinder the formation of the displacement waves
with the wavelengths different from the wavelength of
the defect-density wave. In this case, the transition
from one modulated structure to another can occur via
a continuous decrease in the amplitude of the displace-
ment wave stabilized by the defect-density wave and an
increase in the amplitude of the displacement wave
characteristic of the equilibrium state at the given tem-
perature. Then, two displacement waves coexist in each
domain at the intermediate stages of the structural
phase transition. An atomic displacement under the
action of these two waves can be written as

(3)

where λ1 , λ2, A1 , and A2 are the wavelengths and the
amplitudes of the displacement waves, ϕ1 and ϕ2 are the
initial phases of the displacement waves, which are
chosen for each domain from the set of the values obey-
ing the condition ϕ1 = ϕ2 = 0 at n = 0.

The intensity distributions shown in Fig. 4 were cal-
culated for the different ratios of the amplitudes A1 and

dn A1
2πn
λ1

--------- ϕ1+ 
  A2

2πn
λ2

--------- ϕ2+ 
  ,sin+sin=
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



X-RAY DIFFRACTION IN POLYDOMAIN CRYSTALS 377
A2 corresponding to two displacement waves present in
one domain. On the corresponding diffraction pattern,
in addition to the satellite peaks in the positions q1 =
1/λ1 and q2 = 1/λ2 (which correspond to the modulation
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Fig. 3. Intensity distributions for the case when the initial
phases of the displacement waves with λ1 = 2.5 and λ2 = 5.1
domains are dictated by the phase of correlating wave λd
(D1 = D2 = 30, A1 = 0.2, A2 = 0.15). The peak corresponding
to the wavevector of the correlating wave is indicated by an
arrow.
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of the crystal by the displacement waves with λ1 and
λ2), there are also the peaks at the positions q1 + q2 and
q1 – q2. The intensities of these additional peaks are
equal, with their values being dependent not only on the
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Fig. 4. Intensity distributions calculated for the superposi-
tion of two waves with λ1 = 5.2 and λ2 = 7.1 in one domain
at different ratios of their amplitudes A1 and A2 (D = 30): 1
and 1', 2 and 2' are first- and second-order satellites for the
waves of the first and the second type, 3 and 4 are the addi-
tional peaks corresponding to q1 + q2 and q1 – q2.
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absolute values of the amplitudes A1 and A2, but also on
their ratio.

Considering the large amplitudes (with increasing
A · H value for each of the displacement waves), we see
that alongside with the additional peaks at positions
q1 + q2 and q1 – q2 , there are also some peaks located
at the distance from the main and the satellite peaks
multiple of q1 · q2 (Fig. 5b). These additional peaks
were observed for the intensity distributions calculated
for the displacement wave with the modulated ampli-
tude [2]. This is not surprising, because expression (3)
can be represented as a product of two harmonic func-
tions. If A1 = A2 and ϕ1 = ϕ2, this transformation has a
rather simple form

Comparing this expression with the relationship deter-
mining the position of atomic layers in the case of the
amplitude modulation (equation (7) in [2]), we see that
they are similar, and, therefore, we may expect the

dn A πn
1
λ1
----- 1

λ2
-----+ 

  πn
1
λ1
----- 1

λ2
-----– 

  .cossin=
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Fig. 5. Intensity distributions for the superposition of two
displacement waves with λ1 = 5.2 and λ2 = 7.1 at (a) A1 =
A2 = 0.1 and (b) A1 = A2 = 0.2. For notation see Fig. 4.
Arrows indicate the peaks with the positions corresponding
to multiples of q1 · q2 .
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manifestation of analogous diffraction effects also in
the case under consideration.

DISCUSSION

One of the characteristic features of the intensity
distributions for two-wave modulation is an increase of
the background intensity between the nearest satellite
peaks in the presence of coherent interdomain bound-
aries. This fact can be used to confirm the existence of
a similar state in a crystal. On the other hand, this dis-
tortion of the intensity profile should also be taken into
account in the full-profile analysis for determining the
average domain size and the volume fractions of
domains having different types of modulation.

The peaks additional to satellites are formed on the
diffraction pattern at the correlation of the phases of the
waves and at the superposition of the displacement
waves. In the former case, the intensity distribution has
a δ-function-like peak whose position is independent of
the wavevectors q1 and q2 of the displacement waves is
determined only by wavevector qd of the correlating
wave. Similar to the case of the single-wave modula-
tion in a polydomain crystal [2], the intensity of this
peak increases with a decrease of the distance to the
nearest satellite peak (Fig. 3). The superposition of the
displacement waves also leads to the formation of addi-
tional peaks, but the positions of these peaks are deter-
mined by the sum and the difference of the wavevectors
q1 and q2 (Fig. 4).

A special attention should be paid to the models that
lead to qualitatively similar intensity distributions. For
example, the single-wave model for “noninteracting”
domains at certain values of A · H leads to two intensity
peaks (first- and second-order satellites) within a half-
period of the reciprocal lattice. In general, the spacing
between these peaks cannot be multiple of the
wavevector. Therefore, qualitatively, the corresponding
diffraction pattern can be considered as a pattern with
two first-order satellite peaks with different q values
(Fig. 1 in this paper and Fig. 4 in [2]).

The models in which the correlating wave (e.g., a
defect density wave) modulates the phase of the waves
in the domains in the case of one wave and the model
providing the superposition of the waves in the two-
wave case can also give similar diffraction patterns.
The effect of the correlating wave on the phase of the
displacement wave manifests itself in the formation of
peaks additional to the satellite on the intensity distri-
butions. The positions of these additional peaks are
determined by the sum and the difference of the
wavevectors qd and q characterizing the correlating and
the displacement waves, respectively (see Fig. 9 in [2]).
If the intensity distribution for a crystal modulated by a
single displacement A · H is large enough to detect a
second-order satellite, then, the diffraction pattern
obtained at certain values of q and qd can also be inter-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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preted as a result of the superposition of two displace-
ment waves.

Therefore, a model providing the adequate descrip-
tion of the structure of a modulated crystals in such
cases can be constructed only upon the quantitative
analysis of the intensity distributions in the reciprocal
space. Here, of great importance are the experimental
data obtained for the reciprocal-lattice rods with differ-
ent H indices.
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Abstract—The subsolidus region of the phase diagram of the RbTiOPO4–CsTiPO5 system has been studied in
the temperature range 700–1000°C, and the boundaries between the stability fields of the orthorhombic phase
with the KTiOPO4-type structure and the cubic phase with the pyrochlore-type structure have been determined.
Single crystals of the RbTiOPO4 and CsTiPO5 based solid solutions were synthesized by crystallization from
flux. The crystal structure and the physical properties of the first members of the series were studied. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, single crystals of the compounds of the
potassium titanyl phosphate family, such as KTiOPO4

(KTP), RbTiOPO4 (RTP), TlTiOPO4 (TTP) and of sim-
ilar arsenates attract much attention as promising mate-
rials for nonlinear optics [1] and new ferroelectrics and
superionic conductors [2]. The alkaline metal ions play
an important role in the crystals with the KTP-type
structure, since they participate in ionic conductivity
and in the formation of spontaneous polarization [2, 3].
As a result, mutual substitution of alkaline ions can sig-
nificantly affect the physical properties of these crys-
tals. The K1 – xRbxTiOPO4 [1], K1 – xTlxTiOPO4 , and
Rb1 – xTlxTiOPO4 [4, 5] form a continuous series of
solid solutions, whereas the K1 −  xNaxTiOPO4 and
Rb1 − xCsxTiOPO4 systems form solid solutions only
within the limited range [5].

The RbTiOPO4–CsTiPO5 system is of special inter-
est, because the RTP and CsTiPO5 (CTP) phases form
different crystal structures at room temperature: the
RTP phase has a KTP-type orthorhombic structure [6],
and the CTP phase has a pyrochlore-type disordered
cubic structure [5, 7]. The RTP, TTP, and CsTiOAsO4

(CTA) crystals undergo, in addition to the ferroelectric
phase transition, also the structural transition into the
same cubic phase at higher temperatures [8]. Since the
CTP-type cubic structure can be considered as an orig-
inal structure for the crystals of the KTP family, the
detailed studies of the RTP–CTP system can shed the
light on the specific features of the crystal structure and
the physical properties of all the compounds of the KTP
family. The present study is focused on some details of
the phase diagram of the RbTiOPO4–CsTiPO5 system
1063-7745/00/4503- $20.00 © 20380
and the structure and properties of crystals with mixed
compositions.

SYNTHESIS OF SPECIMENS 
AND EXPERIMENTAL PROCEDURE

The studies of phase relationships in the subsolidus
region of the RTP–CTP system were performed on
ceramic specimens obtained as a result of two-stage
annealing in the temperature range 700–1000°C (with
the temperature step of 50°) followed by quick cooling.
The relative content of rubidium and cesium in the
specimens was changed with a step of 5 at. %. The
extra-pure grade Rb2CO3, Cs2CO3, TiO2, and
NH4H2PO4 reagents were used. The phase composition
of the specimens was checked by the X-ray diffraction
analysis on a DRON-2.0 diffractometer.

The structural features and the physical properties
of the crystalline phases of different compositions were
studied in more detail on single crystals grown by crys-
tallization from flux in the quaternary Rb2O–Cs2O–
TiO2–P2O5 system. The starting compositions of some
melts, the temperature modes of crystallization, and the
experimental results obtained are listed in Table 1. In
these experiments, the reagents were mixed for 2–3 h in
an agate ball mill, annealed in a muffle furnace at
600°C, and then were loaded into 50 ml-large platinum
crucibles. Then, they were heated for 24 hours at the
maximum temperatures specified in Table 1 and cooled
at a rate of 0.5–2.0 deg/h. Upon the attainment of the
lower temperature limit, the solution was poured out,
and the crystals grown on the crucible walls were
cooled down to room temperature at a rate of 50 deg/h.

Note that the crystallization fields in the solid solu-
tions with the KTP-type (Rb1 −  xCsxTiOPO4 , RTP : Cs)
000 MAIK “Nauka/Interperiodica”
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Table 1.  Results of the experiments on crystal growth from flux in the Cs2O–Rb2O–TiO2–P2O5 system

Experi-
ment

Melt composition, mol %
Temperature mode, °C Crystal type

Cs2O Rb2O TiO2 P2O5

1 15 30 20 35 920–620, 1 deg/h RTP : Cs; 1 mm

2 15 30 25 30 1000–650, 1 deg/h RTP : Cs; 2–3 mm

3 23.3 10 33.3 33.3 1140–950, 1 deg/h CTP : Rb; 1–2 mm

4 25 13 25 37 1000–750, 2 deg/h CTP : Rb; 0.5 mm

5 20 20 30 30 1100–850, 2 deg/h CTP : Rb; 0.5 mm

6 22 22 22.5 33.5 950–600, 2 deg/h RTP : Cs; 1 mm

7 7 33 20 40 1100–800, 2 deg/h RTP : Cs; 4–5 mm

8 7 35 25 33 1050–900, 2 deg/h RTP : Cs; 6–7 mm

9 21 21 25 33 950–800, 1 deg/h RTP : Cs; 1 mm

10 19 19 25 37 1050–870, 0.5 deg/h CTP : Rb; 1 mm

11 23.5 11.5 25 40 1050–900, 1 deg/h Rb3Ti3P5O20 : Cs

12 27 13 20 40 950–750, 1 deg/h Rb3Ti3P5O20 : Cs

13 30 15 20 35 1050–710, 2 deg/h Cs2TiP2O8 : Rb

14 25 10 20 45 1000–800, 1 deg/h RbTi2(PO4) : Cs

15 28 14 25 33 1100–700, 1 deg/h Glass

16 30 15 25 30 1050–650, 2 deg/h Glass

17 25 20 25 30 1100–70, 1 deg/h Glass

18 30 5 30 35 1000–800, 1 deg/h Cs2TiP2O8 : Rb
and pyrochlore-type (Cs1 −  xRbxTiPO5 , CTP : Rb)
structures in the quaternary system are relatively nar-
row and are located in the direct vicinity of the broad
crystallization fields of the Rb3Ti3P5O20 [9, 10],
Cs2TiP2O8 [11], and RbTi2(PO4)3 [12] compounds and
the solid solutions on their basis, which considerably
hinders the preparation of RTP : Cs and CTP : Rb single
crystals.

The X-ray data for the structural refinement of the
crystals obtained were collected on a CAD-4F auto-
mated diffractometer (MoKα radiation, graphite mono-
chromator, room temperature). The crystal density was
determined by hydrostatic weighing in toluene; the
morphology was studied on a ZRG-3 goniometer. The
chemical composition of the solid solution crystals was
checked by X-ray microanalysis on a Camebax SX50
analyzer. The RbTiOPO4 and CsNb3O8 single crystals
served as the standards.

The temperature dependences of permittivity and
electric conductivity were measured on a Tesla
BM-431E bridge at a frequency of 1 MHz; optical diag-
nostics of the crystals was performed on a polarization
microscope.

RbTiOPO4–CsTiPO5 SYSTEM

The study of the phase relationships on ceramic
specimens in the RTP–CTP system revealed that, in the
subsolidus region, this system is binary and forms a
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
limited series of solid solutions with the KTP-type
(RTP : Cs) and CTP-type (CTP : Rb) structures (Fig. 1).
The width of the existence region of the former com-
pound was 0 < x < 0.2 at 700°C and decreased at higher
annealing temperatures. At higher Cs concentrations

0
RbTiOPO4 → Cs(at. %) CsTiPO5

20 40 60 80 100
700

800

900

1000

T, °ë

A

A + B

B

Fig. 1. Phase diagram of the subsolidus region in the
RbTiOPO4–CsTiPO5 system: (A) RTP : Cs and
(B) CTP : Rb solid solutions.
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and temperatures, the pyrochlore-type structure
becomes stable. The change in the unit-cell parameters
of the RTP : Cs and CTP : Rb solid solutions caused by
the change of their composition follows Vegard’s law
(Figs. 2, 3). According to the chemical analysis, the dis-
tribution coefficients of Cs and Rb during growth were
0.3 for RTP : Cs and ~1.1 for CTP : Rb.

STRUCTURE AND PROPERTIES 
OF CRYSTALS GROWN

The crystals of the solid solutions with the KTP-
type structure were transparent, colorless, and well-fac-

0
Cs, at. %

5 10 15 20
896

900

904

908

6.50

6.52

10.60

10.62

10.64

13.00

13.02

13.04

13.06

~~

~~

~~

~~

~~

~~

a,
 Å

c,
 Å

b,
 Å

v,
 Å

3

Fig. 2. Parameters and volume of the orthorhombic unit cell
for the RTP : Cs solid solutions. Ceramic specimens upon
annealing at 700°C.

Table 2.  Unit-cell parameters of RbTiOPO4 (1),
Rb0.95Cs0.05TiOPO4 (2), and Rb0.89Cs0.11TiOPO4 (3) crystals

Parameter 1* 2 3

a 12.948(2) 12.959(1) 12.982(1)

b 6.494(3) 6.501(1) 6.512(1)

c 10.551(1) 10.544(1) 10.545(1)

* See [14].
C

eted; however, their growth forms were of two types:
one was characteristic of pure RTP crystals (the
absence of the {100} and {110} faces), and the other
was conventional for KTP [13] but with poorly devel-
oped {100} faces. The crystals of the cubic CTP : Rb
solid solutions had the shape of the octahedra with the
{111} faces. The violet color of the crystals indicated
partial reduction of titanium and nonstoichiometry. The
observations in the polarized light showed that the crys-
tals were considerably stressed and inhomogeneous,
which prevented their detailed X-ray study.

The preliminary X-ray studies of the RTP : Cs crys-
tals obtained in experiments 8 and 9 revealed their
orthorhombic symmetry (Table 2). The a and b unit-cell
parameters increase with the Cs content, whereas the
c-parameter remains almost constant. The best small
Rb1 – xCsxTiOPO4 single crystals of two compositions
(x ≈ 0.05 and x ≈ 0.10) were subjected to the detailed
X-ray diffraction analysis. The crystals were rolled to
the spherical shape. The specimens thus prepared were
first subjected to the preliminary X-ray study. As a
result, two single crystals of different compositions
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Fig. 3. The a-parameter and volume of the cubic unit cell for
the CTP : Rb solid solutions. Ceramic specimens upon
annealing at 1000°C.
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Fig. 4. Temperature behavior of (a) permittivity ε33 and (b) electric conductivity σ33 of (1) RbTiOPO4, (2) Rb0.96Cs0.04OPO4, and
(3) Rb0.93Cs0.07OPO4 single crystals.
characterized by the best diffraction-peak profiles and
the closest correspondence of the intensities of sym-
metrically equivalent diffraction reflections were
selected for the further detailed analysis.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
The characteristics of the data collection for the
complete X-ray structure studies of the
Rb1 − xCsxTiOPO4 crystals with x ≈ 0.05 and x ≈ 0.10
and the details of the least-squares refinement of the
Table 3.  Characteristics of the experiments and the crystallographic data for (Rb0.95Cs0.05)TiOPO4 and (Rb0.89Cs0.11)TiOPO4
single crystals

Compound (Rb0.95Cs0.05)TiOPO4 (Rb0.89Cs0.11)TiOPO4

Radiation MoKα MoKα

Diffractometer Enraf-Nonius Enraf-Nonius

Monochromator Graphite Graphite

Scan mode ω/θ ω/θ
(sinθ/λ)max 1.0 1.0

Total number of reflections 9477 10142

Number of independent reflections 2820 2853

Rav (|F|) 0.026 0.023

Radius of the specimen, mm 0.131 0.144

Sp. gr. Pna21 Pna21

a, Å 12.9591(11) 12.9821(8)

b, Å 6.5005(6) 6.5124(4)

c, Å 10.5441(18) 10.5447(5)

V, Å3 888.2(2) 891.5(2)

µ, cm–1 143.7 148.9

Reliability factors R/Rω 0.037/0.020 0.026/0.018
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Table 4.  Interatomic distances (Å) in the (Rb0.95Cs0.05)TiOPO4 (I) and (Rb0.89Cs0.11)TiOPO4 (II) structures

Distances I II Distances I II

Ti(1)–O(9) 1.705(1) 1.715(1) Rb, Cs(1)–O(1) 2.765(2) 2.774(2)

O(2) 1.936(1) 1.948(1) O(10) 2.810(2) 2.811(2)

O(10) 1.981(1) 1.968(1) O(5) 2.862(2) 2.873(2)

O(6) 2.031(1) 2.027(1) O(7) 3.013(2) 3.024(2)

O(5) 2.089(1) 2.088(1) O(2) 3.058(2) 3.120(1)

O(1) 2.151(1) 2.143(1) O(4) 3.088(2) 3.048(2)

Ti(2)–O(10) 1.728(1) 1.737(1) O(8) 3.085(2) 3.136(2)

O(7) 1.949(1) 1.956(1) O(3) 3.037(2) 3.116(2)

O(4) 2.011(1) 2.016(1) O(9) 3.058(2) 3.110(2)

O(8) 2.000(1) 1.984(1)

O(3) 2.061(1) 2.064(1) Rb, Cs(2)–O(1) 2.990(2) 3.033(2)

O(9) 2.098(1) 2.089(1) O(5) 2.929(2) 2.994(2)

P(1)–O(1) 1.522(1) 1.513(1) O(10) 3.128(2) 3.159(2)

O(2) 1.552(1) 1.550(1) O(8) 2.864(2) 2.853(2)

O(3) 1.540(1) 1.540(1) O(7) 3.172(2) 3.193(2)

O(4) 1.541(1) 1.539(1) O(2) 2.755(2) 2.744(2)

P(2)–O(5) 1.532(1) 1.537(1) O(3) 2.768(2) 2.780(2)

O(6) 1.527(1) 1.534(1) O(9) 2.805(2) 2.790(2)

O(7) 1.554(1) 1.550(1)

O(8) 1.532(1) 1.537(1)
structural models are summarized in Table 3. All the
calculations were performed using the AREN and the
PROMETHEUS program packages. The occupancies
of the (Rb,Cs) positions were refined along with the
atomic structural parameters under the restriction that
the positional and thermal parameters of Rb(1), Cs(1),
Rb(2), and Cs(2) atoms coincide and that the total
occupancy of each position (1 and 2) by the Rb and Cs
atoms is unity. In the crystal of Rb1 – xCsxTiOPO4 with
x ≈ 0.05, the refinement of the occupancy of position 1
soon yielded 0.933(3) for Rb(1) and 0.067 for Cs(1).
The values for position 2 were 0.970(3) for Rb(2) and
0.030 for Cs(2). In other words, Cs atoms populate the
two positions of rubidium atoms with different proba-
bilities. A similar arrangement of Cs atoms is observed
in the second structure studied—Rb1 – xCsxTiOPO4

with x ≈ 0.10. The refinement of the structural model of
this compound resulted in the following position occu-
pancies: 0.822(4) for Rb(1), 0.178 for Cs(1), 0.956(4)
for Rb(2), and 0.044 for Cs(2) atoms. Thus, according
to the occupancies q obtained, the chemical formulas of
the specimens studied should be written as
Rb0.95Cs0.05TiOPO4 and Rb0.89Cs0.11TiOPO4. The table
of atomic coordinates and thermal parameters is avail-
able from the authors. The selected interatomic dis-
tances in the structures are listed in Table 4.
C

Crystals of Rb0.95Cs0.05TiOPO4 and
Rb0.89Cs0.11TiOPO4 are isostructural to the KTP crys-
tals. The three-dimensional framework formed by
apex-sharing TiO6-octahedra and PO4-tetrahedra is
characterized by wide helical channels along the c-axis
which accommodate weakly bound Rb and Cs cations.
It is seen from Table 4 that Cs atoms tend to occupy the
more “spacious” position 1. Substitution of cesium for
rubidium results in an increase of the mean Me–O dis-
tance for positions with the coordination numbers equal
to nine (from 2.975 to 3.001 Å) and eight (from 2.929
to 2.943 Å). It is assumed that one of the factors provid-
ing a considerable increase of the nonlinear-optical sus-
ceptibility is the distortion of the TiO6 octahedra. Sub-
stitution of cesium for rubidium is accompanied by less
distortion of these octahedra (Table 4).

The temperature behavior of permittivity ε33 and
ionic conductivity σ33 in RbTiOPO4 single crystals and
two solid solutions on its basis with different Cs-con-
tent are illustrated by Fig. 4. It is seen that small
amounts of cesium substituting for rubidium reduce the
temperature of the ferroelectric phase transition and
enhance the ionic conductivity. This can be explained
by a loosening of the crystal structure due to incorpora-
tion into it of large Cs+ cations.
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SYNTHESIS, ATOMIC STRUCTURE, AND PROPERTIES OF CRYSTALS 385
ACKNOWLEDGMENTS
This study was supported by the Russian Founda-

tion for Basic Research (project no. 00-02-16059) the
Leading Scientific Schools, project no. 00-15-96633,
and the Ministry of Higher Education of Russia (grant
no. 5017 within the program “Russian Universities”).

REFERENCES
1. F. C. Zumsteg, J. D. Bierlein, and T. D. Gier, J. Appl.

Phys. 47 (11), 4980 (1976).
2. V. K. Yanovskiœ and V. I. Voronkova, Phys. Status Solidi

A 93, 665 (1986).
3. J. D. Bierlein and C. B. Arweiler, Appl. Phys. Lett. 49,

917 (1986).
4. M. Jannin, C. Kolinsky, G. Godefroy, et al., Eur. J. Solid

State Inorg. Chem. 33, 607 (1996).
5. V. I. Voronkova, E. S. Shubentsova, and V. K. Yanovskiœ,

Neorg. Mater. 26 (1), 143 (1990).
6. I. Tordjman, R. Masse, and J. C. Guetel, Z. Kristallogr.

139, 103 (1974).
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
7. M. Kunz, R. Dinnebier, L. K. Cheng, et al., J. Solid State
Chem. 120, 299 (1995).

8. L. K. Cheng and J. D. Bierlein, Ferroelectrics 142, 209
(1993).

9. R. Duhlev, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun. 50, 1523 (1994).

10. I. N. Geœfman, N. G. Furmanova, P. G. Nagornyœ, and
I. S. Golovina, Kristallografiya 41 (1), 109 (1996) [Crys-
tallogr. Rep. 41 (1), 101 (1996)].

11. J. Protas, B. Menaert, G. Marnier, and B. Boulanger,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 47,
698 (1991).

12. M. R. Masse, Bull. Soc. Fr. Mineral. Crystallogr. 93, 300
(1970).

13. V. I. Voronkova and V. K. Yanovskiœ, Kristallografiya 31
(1), 207 (1986) [Sov. Phys. Crystallogr. 31, 123 (1986)].

14. J. A. Kaduk and R. H. Jahrman, Z. Kristallogr. 204, 285
(1993).

Translated by I. Polyakova
0



  

Crystallography Reports, Vol. 45, No. 3, 2000, pp. 386–388. Translated from Kristallografiya, Vol. 45, No. 3, 2000, pp. 429–431.
Original Russian Text Copyright © 2000 by Liu Wen, Sorokina, Voronkova, Yanovski

 

œ

 

, Verin, Vigdorchik, Simonov.

                                                                                                

STRUCTURE OF INORGANIC COMPOUNDS

                                                              
Crystal Structure of KTi0.93Sn0.07OPO4

Liu Wen*, N. I. Sorokina**, V. I. Voronkova*, V. K. Yanovskiœ*, I. A. Verin**, 
A. G. Vigdorchik**, and V. I. Simonov**

* Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
** Shubnikov Institute of Crystallography, Russian Academy of Sciences, 

Leninskiœ pr. 59, Moscow, 117333 Russia
Received July 19, 1999

Abstract—To reveal correlations between the atomic structure and properties of the KTi1 –xSnxOPO4 solid
solutions, single crystals of the KTi0.93Sn0.07OPO4 composition were synthesized and their structure was deter-
mined. The crystals belong to the KTiOPO4 family; orthorhombic, sp. gr. Pna21. The unit-cell parameters are
a = 12.831, b = 6.410, and c = 10.584 Å. The partial substitution of Sn atoms for Ti atoms results in the forma-
tion of more symmetric coordination polyhedra in the structure framework and the change of the physical
properties of the crystals. © 2000 MAIK “Nauka/Interperiodica”.
At present, single crystals of potassium titanyl phos-
phate (KTP), which exhibit both ferroelectric and supe-
rionic properties, attract the attention of researchers as
a promising material for nonlinear optics. The numer-
ous crystals of the KTP family have different composi-
tions [1]. In distinction from KTP crystals possessing
unique properties, the crystals in which Ge or Sn sub-
stitute for Ti show an almost zero signal of the second-
harmonic generation [1, 2]. It was found that the struc-
tures of these compounds are closer to the structure of
the corresponding paraelectric phases [3, 4].

Single crystals of KSnOPO4 were first synthesized
in a narrow concentration range of the K2O–P2O5–SnO2
system with the K2O : P2O5 ratio ranging within 1.30–
1.46) [5]. The conditions for preparing the
KTi1 − xSnxOPO4 solid solutions were reported in [2]. It
was also established a significant decrease in the inten-
sity of the second harmonic upon the substitution of Sn
for Ti.

We aimed to continue our studies of the structural
characteristics and the ferroelectric and nonlinear-opti-
cal properties of the crystals of the KTi1 – xSnxOPO4
solid solutions and to establish correlations between the
structure and physical properties for this family of com-
pounds. A number of single crystals with different tin
contents were grown. Below, we reported the determi-
nation of the atomic structure of a single crystal with
~10% substitution of tin for titanium. 

Single crystals of KTi0.93Sn0.07OPO4 were obtained
by spontaneous crystallization from the flux of the
K2O–TiO2–SnO2–P2O5 quaternary system by the
method described elsewhere [6]. The colorless crystals
obtained had a platelike shape with the developed
{100} faces. The crystal density measured by hydro-
static weighing in toluene was 3.04 g/cm3.
1063-7745/00/4503- $20.00 © 20386
Small perfect single crystals chosen for X-ray struc-
ture analysis were rolled into a spherical shape. The
specimens, thus, prepared were subjected to the prelim-
inary X-ray study. As a result, a single crystal, 0.12 mm
in radius with the best diffraction-peak profiles and the

Table 1.  Characteristics of the experiment and crystallo-
graphic data for KTi0.93Sn0.07OPO4 single crystals

Parameter Value

Radius of the specimen, mm 0.12

µ, cm–1 42.085

ρobs, g/cm3 3.04

Diffractometer CAD-4F Enraf Nonius 

Radiation MoKα

Monochromator Graphite

Scan mode ω/θ
(sinθ/λ)max 1.0

Space group Pna21

a, Å 12.831

b, Å 6.410

c, Å 10.584

V, Å3 870.50

Total number of reflections 13036

Number of unique reflections 3564

Rav (|F|) 0.029

Structure type KTiOPO4

Programs used PROMETHEUS, AREN

Weighting scheme ω = 1/σ2

Number of parameters refined 147

Discrepancy factors R/Rω 0.0331/0.0355
000 MAIK “Nauka/Interperiodica”
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Table 2.  Atomic coordinates, site-occupation factors (q), and equivalent (isotropic) parameters of thermal motion (Beq) in
the KTi0.93Sn0.07OPO4 crystal structure

Atom x/a y/b z/c q Beq

Ti(1) 0.37244(2) 0.50013(5) 0.0000 0.978(2) 0.461(5)

Sn(1) 0.37244 0.50013 0.0000 0.022 0.461

Ti(2) 0.24635(2) 0.26558(4) 0.25115(5) 0.893(2) 0.461(5)

Sn(2) 0.24635 0.26558 0.25115 0.107 0.461

P(1) 0.49815(4) 0.33689(7) 0.25812(7) 1 0.447(5)

P(2) 0.18055(4) 0.50250(9) 0.51012(6) 1 0.468(6)

K(1) 0.10545(5) 0.69973(11) 0.06399(8) 1 1.626(9)

K(2) 0.37801(5) 0.78033(9) 0.30955(8) 1 1.548(9)

O(1) 0.4853(2) 0.4873(3) 0.1481(2) 1 0.77(2)

O(2) 0.5102(1) 0.4663(3) 0.3808(2) 1 0.76(2)

O(3) 0.4008(1) 0.1998(3) 0.2771(2) 1 0.68(2)

O(4) 0.5933(1) 0.1939(3) 0.2375(2) 1 0.72(2)

O(5) 0.1118(1) 0.3119(3) 0.5375(2) 1 0.72(2)

O(6) 0.1116(1) 0.6924(3) 0.4850(2) 1 0.82(2)

O(7) 0.2526(1) 0.5376(3) 0.6252(2) 1 0.79(2)

O(8) 0.2525(2) 0.4628(3) 0.3967(2) 1 0.79(2)

O(9) 0.2241(1) 0.0422(3) 0.3869(2) 1 0.74(2)

O(10) 0.2251(1) –0.0317(3) 0.6397(2) 1 0.70(2)
closest correspondence of the intensities of the sym-
metrically equivalent diffraction reflections, was cho-
sen. A complete X-ray structure study was performed
on an Enraf–Nonius CAD-4F automated diffractometer
using the MoKα radiation.

The main crystallographic parameters of the speci-
men, the characteristics of the X-ray diffraction study,
and the details of the least-squares refinement of the
structural model are summarized in Table 1. The atomic
coordinates, site occupancies factors (q), and equiva-
lent (isotropic) thermal parameters (Beq) are listed in
Table 2.

The KTi0.93Sn0.07OPO4 crystals are isostructural to
KTiOPO4 [3] and KSnOPO4 [3] crystals. The unit-cell
parameters of these compounds are given in Table 3.

Table 3

Compound a, Å b, Å c, Å V, Å3

KTiOPO4 12.819(1) 6.399(1) 10.584(1) 868.19

KTi0.93Sn0.07OPO4 12.831(1) 6.410(1) 10.584(1) 870.50

KSnOPO4 13.145(1) 6.526(1) 10.738(1) 921.15
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
The changes in the a and b parameters and the unit-cell
volume correlate with the ratio of the ionic radii of Sn4+

(0.71 Å) and Ti4+ (0.68 Å) cations, whereas the c
parameter is independent of the type of the tetravalent
cations. Since the ionic radius of Sn4+ ions is larger than
that of Ti4+ ions, the partial substitution of Sn4+ for Ti4+

ions results in an increase of almost all bond lengths in
both Ti(1)O6- and Ti(2)O6-octahedra. The longest
Ti,Sn(1)–O(1) and Ti,Sn(2)–O(9) bonds are an excep-
tion: the Ti(1)–O(1) distance shortens from 2.154 to
2.135 Å, and the Ti(2)–O(9) distance shortens from
2.099 to 2.048 Å. The complete substitution of Sn4+ for
Ti4+ ions breaks the alternation of long and short Sn–O
bonds in the chains of octahedra [3]. The tendency of
Sn4+ ions to surround themselves with less distorted
oxygen octahedra provides the location of Sn4+ ions
mainly in less distorted Ti(2)O6-octahedra (Table 2)
upon partial substitution of Sn4+ for Ti4+ ions in the
KTi0.93Sn0.07OPO4 structure. It is reasonable to assume
that if is the less distortion of the Ti(Sn)O6-octahedra in
the structure under study that is responsible for a
decrease of the signal of the second-harmonic genera-
tion in this crystal.
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STRUCTURE OF INORGANIC COMPOUNDS
Crystal Structure of Double Vanadates Ca9R(VO4)7. 
II. R = Tb, Dy, Ho, and Y
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Abstract—Crystal structures of the compounds Ca9R(VO4)7 (R = Tb (I), Dy (II), Ho (III), and Y (IV) have
been studied by the method of the full-profile analysis. All the compounds are crystallized in the trigonal system
(sp. gr. R3c, Z = 6) with the unit-cell parameters (I) a = 10.8592(1), c = 38.035(1), V = 3884.2(2) Å3; (II) a =
10.8564(1), c = 38.009(1) Å, V = 3879.6(2) Å3, (III) a = 10.8565(1) and c = 37.995(1) Å, V = 3878.3(2) Å3,
and (IV) a = 10.8588(1), c = 37.995(1) Å, V = 3879.9(2) Å3. In structures I–IV, rare earth and calcium cations
occupy three positions—M(1), M(2), and M(5). Rare earth cations occupy the R3+ positions almost in the same
way: 2.7–2.6(2) cations in the M(1) position; 2.7–2.3(2) cations in the M(2) position, and 0.6–1.0(1) cation in
the M(5) position. At the same time, the occupancy of the M(5) position regularly increases with a decrease of
the R3+ radius. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This study continues our investigation of the
Ca9R(VO4)7 (R = RE, Y) structures and determination
of the distribution of R3+-cations over the positions of
the initial Ca3(VO4)2 structure [1]. The Ca3(VO4)2 [1]
and β-Ca3(PO4)2 [2] compounds are often used as the
matrices for the synthesis of materials with the valuable
optical valuable properties [3–6]. The data on the distri-
bution of R3+ cations over the positions of the
Ca3(VO4)2 structure [1] allows the purposeful modifi-
cation of the optical (luminescence) properties of the
materials, in particular, to appropriate choice of the cat-
ions–diluters in order to reduce the concentration-
induced quenching of the active cation.

Depending on the character of the variation in the
unit-cell parameters depending on the radius R3+ [7],
the Ca9R(VO4)7 (R = RE, Y) compounds can be divided
into two groups. The a- and c- parameters of the first
group of compounds (RE = La–Eu) decrease almost
linearly with the radius of R3+. The a-parameter of the
second group of compounds (RE = Tb–Lu and Y) is
almost independent of the radius, whereas the c-param-
eter decreases with the radius of R3+ quite dramatically.
The study of the compounds of the first group (R = La,
Pr, Eu) showed that the R3+ cations occupy three posi-
tions, M(1), M(2), and M(3), of the initial Ca3(VO4)2

structure [8]. The M(5) position in these compounds is
filled with Ca2+ cations, whereas the M(4) position is
empty. Each of the compounds with R = La, Pr, Eu is
characterized by its own distribution of the R3+ cations
over the M(1)–M(3) positions. The occupancy of the
M(3) position with R3+ cations decreases, and occupan-
1063-7745/00/4503- $20.00 © 20389
cies of the M(1) and M(2) positions increase with a
decrease of the R3+ radius [8].

Below, we describe the study of the compounds
Ca9R(VO4)7 with R = Tb (I), Dy (II), Ho (III), and
Y (IV) belonging to the second group.

EXPERIMENTAL

Compounds I–IV were synthesized from the solid
phase by the method described elsewhere [7]. The
X-ray diffraction data were obtained on a SIEMENS
D500 powder diffractometer with a BRAUN position-
sensitive detector at 297 K (CuKα1-radiation, λ =
1.5406 Å, SiO2-monochromator). The effective expo-
sure at each point was ~30 min, the 2θ-scan was per-
formed at a step of 0.01°. Other experimental conditions
are indicated in Table 1. The structures were refined by
the Rietveld method [9] using the RIETAN-94 program
[10, 11].

The structure was refined with the use of the
f-curves for Ca2+, R3+, V5+, and O–. The peak profiles
were described by the modified pseudo-Voight function
(Mod-TCH pV) [9]). The background profile was
described by the polynomial of degree five. The occu-
pancies of the vanadium and oxygen positions have not
been refined.

The initial model for the structure refinement was
based on the coordinates of the Ca3(VO4)2 structure [1].
At the first stage of the model-parameter refinement,
the cations were set using the f-curve of Ca2+ cations.
The analysis of the thus obtained occupancies (Table 2,
nf-Ca) showed that the R3+ cations are distributed over
the M(1), M(2), and M(5) positions. The occupancy of
the M(4) position was close to zero, and that of the M(3)
000 MAIK “Nauka/Interperiodica”
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Table 1.  Experimental conditions and results of the refinement of the Ca9R(VO4)7 structures (R = Tb (I), Dy (II), Ho (III)
and Y (IV))

Parameter
Compound

I II III IV

Range of angles 2θ, deg 10–110 10–110 10–110 10–140
Imax (pulse) 23805 24443 25040 32759
Unit-cell parameters (sp. gr. R3c, z = 6)

a, Å 10.8592(1) 10.8564(1) 10.8565(1) 10.8588(1)
c, Å 38.035(1) 38.009(1) 37.995(1) 37.995(1)
V, Å3 3884.2(2) 3879.6(2) 3878.3(2) 3879.9(2)

Number of reflections 548 546 546 745
Number of refined parameters* 17 + 63 17 + 61 17 + 63 17 + 64
Reliability factors**

RWP; RP 4.25; 3.18 3.97; 2.90 4.08; 3.08 4.42; 3.36
RI; RF 2.28; 1.43 2.46; 1.48 1.72; 1.10 2.60; 1.59
S 1.71 1.67 1.50 1.49
D–Wd 0.77 0.78 0.91 0.93

  * The first figure indicates the total number of the parameters describing the background and the profile, the scale factor, and the unit-cell
     parameters; the second figure indicates the total number of the positional and thermal parameters, and the position occupancies.
** Calculated by the formulas [10]:

 

RF = (Σ|[I(obs)]1/2 – [I(calc)]1/2 |)/(Σ[I(obs)]1/2), 

S = [(Σwi[yi(obs) – yi(calc)]2)/(N – P)]1/2 (N is the number of the experimental points, P is the number of the refined parameters), D–Wd

(Durbin–Watson statistic): d = Σ(∆yi – ∆yi – 1)2/Σ(∆yi)
2, ∆yi = yi(obs) – yi(calc).

RWP Σwi yi obs( ) yi calc( )–[ ]2( ) Σwi yi obs( )[ ]2( )⁄[ ]1 2⁄
,=

Rp Σ yi obs( ) yi calc( )–( ) Σyi obs( )( )⁄ ,=

RI Σ I obs( ) I calc( )–( ) ΣI obs( )( )⁄ ,=
Table 2.  Occupancies of the M(1), M(2), and M(5) positions in
structures I–IV and the number of R3+ cations in each position

Position
Compound (radius rVIII (Å) [15])

I; 1.04 II; 1.03 III; 1.02 IV; 1.015

M(1) nCa 0.85(1) 0.85(1) 0.86(1) 0.85(1)
mR 0.15(1) 0.15(1) 0.14(1) 0.15(1)
Number of 
R3+ cations

2.7(2) 2.7(2) 2.6(2) 2.6(2)

nf-Ca 1.28(3) 1.29(3) 1.27(2) 1.15(1)
M(2) nCa 0.85(1) 0.86(1) 0.85(1) 0.87(1)

mR 0.15(1) 0.14(1) 0.15(1) 0.13(1)
Number of 
R3+ cations

2.7(2) 2.6(2) 2.6(2) 2.3(2)

nf-Ca 1.28(3) 1.29(3) 1.26(2) 1.13(1)
M(5) nCa 0.90(1) 0.87(1) 0.87(1) 0.83(1)

mR 0.10(1) 0.13(1) 0.13(1) 0.17(1)
Number of 
R3+ cations

0.6(1) 0.8(1) 0.8(1) 1.0(1)

nf-Ca 1.23(3) 1.31(3) 1.26(2) 1.20(2)

Note: nCa and mR are the occupancies of the positions with Ca2+

and R3+ cations in the model structure, respectively; nf-Ca is
the occupancy of the position in the structure model obtained
using only f-curves of Ca2+.
C

position, to unity. At the second stage of the refinement,
we studied the distribution of the R3+ cations over the
M(1), M(2), and M(5) positions with due regard for
position multiplicities (nCa + mR = 1). The M(4) position
was taken to be empty. For the cations in the M(3) posi-
tions, the f-curve of Ca2+ was used. The thus refined
number of R3+ cations in the unit cell was close to six
(Table 2) and corresponded to the composition
Ca9R(VO4)7 (Z = 6).

At the final stage of the refinement, the f-curves for
each position were set proceeding from the cation dis-
tribution obtained at the previous stage of the refine-
ment, and then all the model parameters (including the
occupancy of the cation positions) were refined again.
The thermal parameters of some oxygen atoms (those
which had negative values) were fixed and were not
refined. The occupancies (n) of the M(1)–M(3), and
M(5) positions in the refined models were close to unity
(Table 3). The experimental and the calculated X-ray
diffraction patterns (Fig. 1) were quite consistent. The
electron-density maps ρ(xyz) and ∆ρ(xyz) (calculated
using the GSAS program) showed no additional peaks
with intensities exceeding > ±1 eÅ–3. The refined unit-
cell parameters and the reliability factors R are indi-
cated in Table 1. The atomic coordinates, the thermal
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Table 3.  Structural parameters in the Ca9R(VO4)7  compounds (R = Tb (I), Dy (II), Ho (III), Y (IV))

Atom R3+ n** x y z Biso, Å2

M(1)*** I 0.98(2) 0.723(2) 0.860(2) 0.4301(8) 1.1(2)

II 1.00(2) 0.727(2) 0.862(2) 0.4303(9) 1.0(2)

III 1.02(2) 0.725(1) 0.861(1) 0.4308(6) 1.1(2)

IV 1.00(1) 0.7249(7) 0.8606(8) 0.4310(4) 0.6(2)

M(2)*** I 0.98(2) 0.613(1) 0.824(2) 0.2334(8) 0.4(2)

II 0.99(2) 0.615(1) 0.823(1) 0.2336(8) 0.1(2)

III 1.01(2) 0.615(1) 0.825(1) 0.2340(6) 0.9(2)

IV 0.99(1) 0.6134(7) 0.8223(8) 0.2341(4) 0.5(2)

Ca(3) I 1.02(2) 0.125(2) 0.267(1) 0.3238(8) 0.7(2)

II 0.99(2) 0.124(2) 0.267(1) 0.3249(9) 1.4(2)

III 1.02(2) 0.122(1) 0.2678(8) 0.3250(6) 0.6(2)

IV 1.02(1) 0.1238(8) 0.2686(6) 0.3244(4) 0.9(2)

M(5)*** I 1.01(3) 0 0 0 1.0(2)

II 1.02(3) 0 0 0 1.5(2)

III 1.01(2) 0 0 0 0.7(2)

IV 1.01(1) 0 0 0 0.7(2)

V(1) I 1 0 0 0.2670(8) 0.2(3)

II 1 0 0 0.2679(8) 0.7(4)

III 1 0 0 0.2672(6) 1.4(3)

IV 1 0 0 0.2666(4) 1.1(2)

V(2) I 1 0.683(1) 0.858(2) 0.1336(8) 0.7(3)

II 1 0.686(1) 0.859(2) 0.1341(8) 0.4(4)

III 1 0.6834(9) 0.857(1) 0.1334(5) 1.1(3)

IV 1 0.6827(6) 0.8558(7) 0.1334(4) 0.6(2)

V(3) I 1 0.655(2) 0.847(2) 0.0318(8) 0.5(3)

II 1 0.657(2) 0.849(2) 0.0321(9) 0.8(4)

III 1 0.655(1) 0.848(1) 0.0317(6) 0.7(3)

IV 1 0.6550(8) 0.8486(7) 0.0319(4) 0.3(1)

O(11) I 1 0 0 0.315(2) 0.5(4)

II 1 0 0 0.315(2) 0.2(5)

III 1 0 0 0.312(1) 0.5*

IV 1 0 0 0.314(1) 1.6(4)

O(12) I 1 0.012(6) 0.855(4) 0.267(2) 1.6(5)

II 1 0.017(5) 0.857(4) 0.259(1) 0.4(5)

III 1 0.012(4) 0.858(3) 0.257(1) 1.6(5)

IV 1 0.013(2) 0.857(2) 0.2572(7) 0.(4)

O(21) I 1 0.699(5) 0.895(5) 0.179(2) 1.2(5)

II 1 0.693(6) 0.899(6) 0.176(2) 3.3(5)

III 1 0.705(4) 0.902(4) 0.177(1) 3.4(5)

IV 1 0.708(3) 0.903(3) 0.1785(9) 2.6(5)

O(22) I 1 0.760(5) 0.752(5) 0.125(1) 0.5*

II 1 0.765(6) 0.763(6) 0.124(2) 1.6(5)

III 1 0.758(4) 0.762(5) 0.124(1) 1.8(5)

IV 1 0.760(3) 0.757(3) 0.1237(9) 1.5(5)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Table 3.  (Contd.)

Atom R3+ n** x y z Biso, Å2

O(23) I 1 0.729(6) 0.023(5) 0.112(2) 0.6(4)

II 1 0.724(6) 0.019(5) 0.113(2) 0.5*

III 1 0.725(4) 0.015(4) 0.113(1) 0.7(5)

IV 1 0.722(2) 0.019(2) 0.1125(7) 0.2(4)

O(24) I 1 0.497(5) 0.753(6) 0.127(1) 0.6(4)

II 1 0.505(5) 0.759(6) 0.126(1) 0.4(5)

III 1 0.505(3) 0.755(5) 0.126(1) 1.3(5)

IV 1 0.501(2) 0.751(3) 0.1232(9) 1.5(4)

O(31) I 1 0.589(6) 0.953(5) 0.048(2) 0.9(5)

II 1 0.588(5) 0.953(5) 0.047(2) 0.5*

III 1 0.595(4) 0.953(4) 0.046(1) 0.5*

IV 1 0.594(2) 0.953(2) 0.0450(8) 0.5*

O(32) I 1 0.566(5) 0.682(5) 0.052(2) 0.5*

II 1 0.574(6) 0.684(5) 0.052(2) 0.5*

III 1 0.563(4) 0.681(4) 0.050(1) 1.5(5)

IV 1 0.567(3) 0.679(3) 0.0484(8) 1.4(4)

O(33) I 1 0.824(4) 0.913(6) 0.047(1) 0.6(5)

II 1 0.834(4) 0.915(7) 0.050(1) 0.5*

III 1 0.832(3) 0.920(5) 0.048(1) 1.2(5)

IV 1 0.828(2) 0.921(3) 0.0425(9) 0.4(4)

O(34) I 1 0.633(4) 0.831(5) 0.991(1) 0.1(5)

II 1 0.633(4) 0.829(6) 0.990(1) 0.5(5)

III 1 0.634(3) 0.828(4) 0.989(1) 0.5(5)

IV 1 0.631(2) 0.828(2) 0.9893(6) 0.2(4)

Note: Notation for oxygen atoms: the first number in parentheses indicates the ordinal number of the vanadium atom, the second number
in parentheses indicates the ordinal number of the oxygen atom in the oxygen tetrahedron. 

       * The fixed value of Biso. 
     ** The position occupancy.
   *** The M(1), M(2), and M(5) positions are filled with Ca2+ and R3+ cations in the ratios indicated in Table 1.
parameters, and the position occupancies are listed in
Table 3.

DISCUSSION OF THE RESULTS

Compounds I–IV are isostructural to Ca3(VO4)2 [1]
and belong to the structure type of the mineral whitloc-
kite [12]. Similar to Ca3(VO4)2 [1] and Ca9R(VO4)7

(R = La, Pr, Eu) [8], the -tetrahedra in com-
pounds I–IV are considerably distorted (the V–O dis-
tances range within 1.57–1.84 Å). The analysis of the
interatomic distances in these structures showed that
the substitution of Ca2+ by RE cations only slightly
affects the framework of the Ca3(VO4)2 structure. Most
interatomic distances in the M(1)O7 and M(2)O8 poly-
hedra in the Ca3(VO4)2 structure and I–IV structures
are equal. Some changes are observed in the M(3)-
polyhedron. The O(21) atom enters the polyhedron of

VO4
3–
C

the M(3) position; the M(3)–O(21) distances in struc-
tures I–IV [2.97(5), 2.87(6), 2.85(4), and 2.87(3) Å]
are longer in comparison with the analogous distance in
Ca3(VO4)2 [2.687(1) Å]. The O(12) atom is not a nec-
essary element of the polyhedron of the M(3) position.
The M(3)–O(12) distance for structures I–IV [2.87(6),
2.81(4), 2.92(4), and 2.88(2) Å) decreases in comparison
with the analogous distance in Ca3(VO4)2 [2.999(8) Å]
and is comparable with the M(3)–O(21) distance. Most
of the other M(3)–O distances in structures I–IV and
Ca3(VO4)2 are the same within the experimental error.
Thus, the coordination number for the M(3) positions in
structures I–IV is nine. Similar variations in the dis-
tances in the M(3)O9 polyhedron are also recorded for
the compounds with R = La, Pr, and Eu [8]. Since the
interatomic distances in the M(1)O7, M(2)O8, and
M(3)O9-polyhedra are almost the same for all the
Ca9R(VO4)7 compounds (R = La, Pr, Eu, Tb, Dy, Ho,
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fragments of the (1) calculated, (2) observed, (3) “difference” X-ray patterns, and (4) X-ray diffraction diagram for Ca9Y(VO4)7.
and Y) and are independent of the character of the R3+-
cation distribution over the structure positions, the dis-
tortion of the M(3)O9-polyhedron in comparison with
the analogous distortion in the Ca3(VO4)2 structure
seems to be associated with the existence of the vacant
M(4) position surrounded with the oxygen atoms O(21)
and O(12). In Ca3(VO4)2, the M(4) position is filled by
50% [1]. It should also be indicated that the thermal
parameter of the O(21) atom in compounds I–IV and in
Ca9R(VO4)7 (R = La, Pr, Eu) has relatively high values [8].

The Madelung constants for whitlockite-like com-
pounds (as has already been indicated, the phases stud-
ied here belong to this structure type) indicate that
trivalent cations are most probably located in the M(1)
and M(2) positions [13]. The analysis of the interatomic
distances in the polyhedra of the whitlockite-type struc-
ture shows that rare earth cations occupy the M(1),
M(2), and M(3) positions [14]. The M(5)-polyhedron in
the initial Ca3(VO4)2 structure is geometrically dis-
torted, because the sum of the ionic radii rVI(Ca2+) +
r(O2–) = 2.4 Å [15] exceeds the average 〈Ca(5)–O〉 dis-
tance (2.3 Å) [1]. Filling of this position with cations
having radii less than 0.9 Å in the M(5) position should
eliminate this distortion. In the compounds Ca9R(PO4)7

(R = Fe [16]; Al, Cr [17]), the trivalent R3+ cations fully
occupy the M(5) position. Unlike the compounds with
R = La, Pr, Eu, where the R3+ cations are distributed
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
over the M(1), M(2), and M(3) positions [8], the R3+ cat-
ions in structures I–IV are distributed over the M(1),
M(2), and M(5) positions. The M(5) position in the
Ca9R(VO4)7 compounds (R = RE, Y) is most readily
filled with Tb [rVI(Tb3+)] = 0.923 Å], which is consis-
tent with the optimum size of the cation calculated on
the basis of the geometrical criteria (0.9 Å) [14].

The R3+ cations in structures I–IV almost equally
occupy the M(1), M(2), and M(5) positions: ~2.7–
2.6(2) of R3+ cations in the M(1) position; ~2.7–2.3(2),
in the M(2) position; and ~0.6–1.0(1), in the M(5) posi-
tion. This differs from the situation in Ca9R(VO4)7 (R =
La, Pr, Eu), where the M(3) position is filled with
~4 La3+ cations and only ~0.8 of a Eu3+ cation [8]. At
the same time, it should be emphasized that in struc-
tures I–IV, a regular increase of the number of R3+ cat-
ions in the M(5) position and the corresponding
decrease of their number in the M(1) and M(2) posi-
tions are observed with a decrease of the R3+ radius.
This fact is consistent with the above statement on the
elimination of the distortion of the M(5) polyhedron.
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STRUCTURE OF INORGANIC COMPOUNDS

       
Model of the Crystal Structure of Np(VI) Sulfate with Dimethyl 
Sulfoxide, NpO2SO4 · 2SO(CH3)2 · H2O
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Abstract—A new complex compound, neptunium(VI) sulfate, was grown from aqueous solutions and studied
by the methods of X-ray structure analysis. The model of the crystal structure was determined by direct methods
within the sp. gr. P21 and was refined in the anisotropic approximation (R = 6.2%, 1044 independent reflec-
tions). The structure is built by tetragonal and hexagonal Np bipyramids. A hexagonal bipyramid can be con-
sidered as a polyhedron derived from a pentagonal bipyramid, in which one equatorial O atom is replaced by
two atoms located above and below the equatorial plane. The polyhedra are linked in chains through S-tetrahe-
dra. The chains are linked into a three-dimensional framework by hydrogen bonds with the participation of
DMSO groups. © 2000 MAIK “Nauka/Interperiodica”.
The polycrystals of complex compounds of the
AnO2TO4 · 2SO(CH3)2 · H2O type (An = Np or Pu; T =
S, Se, or Cr) were grown from aqueous solutions and
described in [1]. According to the results of X-ray
phase analysis, these compounds are isostructural to
their uranyl analogues [2], whose unit cell parameters
and the sp. gr. (P21/m) are known. The structural model
consists of pentagonal U-bipyramids, linked by tetrahe-
dra sharing the S(Se,Cr) vertices and forming chains
parallel to the [100] direction. Therefore, it was expedi-
ent to determine experimentally the structures of such
complexes also in single crystals.

We grew well-faceted small greenish crystals from
aqueous solutions of the Np(VI)–SO(CH3)2–H2O sys-
tem. The structural model of the NpO2SO4 · 2SO(CH3)2 ·
H2O compound was established by direct methods
within the acentric sp. gr. P21. Using the fragment con-
sisting of two heavy Np atoms, four O atoms of the nep-
tunyl groups, and two sulfate sulfur atoms, we managed
to identified the remaining atoms of the structure, from
the Fourier syntheses (no localization of H atoms were
made). Because of a number of reasons, it was impos-
sible to perform an accurate refinement of the structure.
The major reason was the low quality of the data set
associated with instability of the crystal due to X-ray
radiolysis. However, it is believed that the resulting
model is reliable. The principal parameters and charac-
teristics of single-crystal X-ray diffraction study are
given in Table 1. The atomic coordinates are listed in
Table 2.

The structure consists of polyhedral chains parallel
to the [100] direction (Figs. 1, 2). Unlike the chains
described in [2], these chains, consist of Np bipyramids
1063-7745/00/4503- $20.00 © 20395
of two types (tetragonal and “hexagonal”). In both
polyhedra, the distances to two O atoms are shortened
(1.75 and 1.82 Å in the first polyhedron and 1.71 and
1.82 Å in the second polyhedron), whereas the remain-
ing distances range within 2.12–2.59 and 2.11–2.48 Å,
respectively. The eight-vertex polyhedron has the shape
uncharacteristic of dioxo cations of actinides and can
be considered as a polyhedron derived from the pentag-
onal bipyramid in which one equatorial O atom is
replaced by two atoms located above and under the
equatorial plane. Earlier, this polyhedron was found in
the Np(V) compound (NpO2)2SO4 · H2O [3]. In the
hexavalent actinide compounds, this polyhedron is
observed for the first time. A combination of six- and

b

a

Fig. 1. Projection of the structure onto the (001) plane. The
linear hatching indicates S tetrahedra and dotted hatching
indicates NpO2 polyhedra. Sulfur atoms of DMSO groups
and water molecules are represented by solid and empty cir-
cles, respectively.
000 MAIK “Nauka/Interperiodica”



 

396

        

RASTSVETAEVA 

 

et al

 

.

                                                                                                          
Table 1.  Structural data and details of X-ray data collection

Characteristic Value

Formula NpO2SO4 · 2SO(CH3)2 · H2O

Unit-cell parameters, Å, deg a = 12.13(1)

b = 7.96(1)

c = 12.99(3)

β = 95.5(2)

Unit-cell volume, Å3 1249.2

Sp. gr., Z P1211; 2

Radiation, λ, Å MoKα, 0.71073

Linear absorption coefficient, mm–1 6.1

Density, g/cm3 2.87

Crystal dimensions, mm 0.15 × 0.1 × 0.07

Diffractometer SYNTEX P

Scanning mode θ/2θ
sinθ/λ, Å–1 <1.08

Range of data collection 0 < h < 16, 0 < k < 11, –18 < l < 17

Total number of reflections 1065 I > 2σ (I)

Number of independent reflections 1044 |F| > 4σ (F)

R-factor of the refinement 0.062

Program used in computations AREN [5]

Absorption correction DIFABS [6]

1

Table 2.  Atomic coordinates and equivalent thermal parameters

Atom x/a y/b z /c Biso, Å2 Atom x/a y/b z/c Biso, Å2

Np(1) 0.8638(2) 0.5861(1) 0.2123(1) 3.52(7)* O(3) 0.430(9) 0.650(9) 0.350(9) 5.0(9)

Np(2) 0.3723(1) 0.6104(5) 0.2234(1) 2.52(5)* O(4) 0.307(1) 0.732(1) 0.115(9) 1.8(9)

S(1) 0.638(9) 0.430(2) 0.259(2) 2.7(7)* O(5) 0.676(4) 0.579(9) 0.274(3) 5(2)

S(2) 0.148(9) 0.465(9) 0.262(8) 1.1(3)* O(6) 0.631(2) 0.356(5) 0.353(2) 2.2(9)

S(3) 0.986(2) 0.221(4) 0.156(2) 5.2(5) O(7) 0.552(4) 0.484(6) 0.178(3) 6(2)

S(4) 0.886(9) 0.307(2) 0.421(9) 3.9(4) O(8) 0.734(2) 0.400(3) 0.191(2) 0.6(6)

S(5) 0.480(9) 0.990(9) 0.165(9) 2.2(9) O(9) 0.045(2) 0.473(5) 0.207(4) 5(1)

S(6) 0.833(2) 0.885(3) 0.410(9) 3.3(4) O(10) 0.195(2) 0.620(4) 0.301(2) 0.3(7)

C(1) 0.907(3) 0.120(6) 0.064(3) 1(1) O(11) 0.241(5) 0.352(4) 0.211(3) 3.5(8)

C(2) 0.102(9) 0.025(9) 0.155(6) 5.7(9) O(12) 0.134(9) 0.289(9) 0.340(7) 5(1)

C(3) 0.919(3) 0.088(7) 0.436(3) 3.1(8) O(13) 0.940(3) 0.409(4) 0.120(3) 1.9(8)

C(4) 0.099(9) 0.916(9) 0.444(9) 4.1(8) O(14) 0.856(3) 0.870(4) 0.269(3) 3(1)

C(5) 0.736(6) 0.237(7) 0.454(6) 2(1) O(15) 0.844(3) 0.318(6) 0.303(2) 0.2(8)

C(6) 0.489(4) 0.214(6) 0.183(2) 1(1) O(16) 0.438(1) 0.810(1) 0.140(9) 0.7(9)

C(7) 0.616(3)   0.000(6) 0.120(4) 2.1(8) H2O(1) 0.344(3) 0.337(8) 0.369(8) 4(1)

C(8) 0.721(4) 0.990(9) 0.421(4) 1.9(9) H2O(2)** 0.440(9) 0.111(9) 0.437(6) 5(1)

O(1) 0.922(4) 0.506(5) 0.327(2) 0.5(9) H2O(3)** 0.359(4) 0.912(7) 0.409(4) 0.1(8)

O(2) 0.812(2) 0.686(3) 0.091(2) 0.6(8)

  * Beq.
** The position occupancy equals 0.5.
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eight-vertex polyhedra in the structure under consider-
ation is also unique for actinides with tetrahedral
anions.

Unlike the hypothetical structure described in [2],
two independent sulfur tetrahedra (the average S–O
distances are 1.42 and 1.54 Å) are tridentate and shared

a

c

Fig. 2. Projection of the structure onto the (010) plane. For
notation, see Fig. 1.
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the edge and the vertex, with the Np-polyhedra. The
shared edges of small sulfur tetrahedra and rather bulky
Np(V) polyhedra were also observed in a number of
structures, in particular, in Cs3[NpO2(SO4)2 · 2H2O [4].
Free vertices of both Np(VI) polyhedra (one vertex in
the tetragonal bipyramid and three vertices in the “hex-
agonal” bipyramid) are occupied by the O atoms of the
DMSO groups participating in hydrogen bonding
between adjacent chains. The chains are additionally
linked by the H atoms of the crystallization water mol-
ecules. One of these molecules statistically occupies
two equally probable positions between the chains.
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Abstract—Crystalline hydrogen selenate–phosphates M2H3(SeO4)(PO4) [M = Rb (I) or K (II)] and
M4H5(SeO4)3(PO4) [M = K (III) or Na (IV)] were obtained by reactions of Rb, K, and Na carbonates with mix-
tures of selenic and phosphoric acid solutions. The X-ray structure study of single crystals revealed that I and
II are isostructural (sp. gr. Pn). In these structures, SeO4 and H3PO4 tetrahedra are linked by hydrogen bonds
to form corrugated layers. Structures III and IV (sp. gr. P ) have similar arrangements of non-hydrogen atoms
but different hydrogen-bond systems. In III = K4(HSeO4)2{H[H(Se,P)O4]2}, the HSeO4 groups branch from
the infinite anionic {H[H(Se,P)O4]2} chains. In IV = Na4[H(SeO4)2]{H[H1.5(Se,P)O4]2}, the anionic
{H[H1.5(Se,P)O4]2} chains are crosslinked by hydrogen bonds formed by the [H(SeO4)2] dimers. © 2000 MAIK
“Nauka/Interperiodica”.

1

INTRODUCTION

Alkali-metal hydrogen sulfates and selenates attract
the considerable interest of researchers, because some
of these compounds undergo phase transitions into the
states with high protonic conductivity [1]. No particular
attention has been given to combined-anion potassium
[2] and ammonium [3] hydrogen sulfate–phosphates,
although they have already been known for more than
15 years. However, the superionic phase transitions
[4−6] were observed in cesium hydrogen sulfate–phos-
phates of the compositions Cs3(HSO4)2(H2PO4) [4] and
Cs5(HSO4)3(H2PO4)2 [5]. Continuing the study of the
synthesis and structures of these compounds, we pre-
pared rubidium derivatives with S/P ratio equal to 1 : 1
and 3 : 1 [7].

In view of the close analogy in the chemical behav-
ior of sulfates and selenates, we also studied alkali-
metal hydrogen selenate–phosphates. Three com-
pounds with the selenate-to-phosphate ratios 3 : 2; 2 : 1;
and 3 : 1 were isolated for cesium derivatives [8]. Later,
hydrogen selenate–phosphates of other alkali metals
(sodium, potassium, and rubidium) and ammonium
were also found. Below, we report the results of our
studies of hydrogen selenate–phosphates with the Se/P
ratio equal to 1 : 1 and 3 : 1. The compositions and
structures of the compounds M2(SeO4)(H3PO4), where
M = Rb (I) or K(II), K4(HSeO4)2{H[H(Se,P)O4]2}
(III), and Na4[H(SeO4)2]{H[H1.5(Se,P)O4]2} (IV) were
determined by single-crystal X-ray diffraction analysis.
1063-7745/00/4503- $20.00 © 20398
EXPERIMENTAL

Synthesis. Alkali-metal carbonates M2CO3 (Fluka),
85% orthophosphoric acid, and 72% selenic acid
served as starting materials for preparing hydrogen sel-
enate–phosphates. The simplest method of synthesiz-
ing these compounds consisted in dissolving the appro-
priate carbonate in the stoichiometric mixture of acids.
The subsequent slow concentration of the solution
resulted in the formation of the crystalline phases. The
drawbacks of this approach are the difficulties associ-
ated with carbonate dosing. As is well known, they are
highly hygroscopic and their first portions are violently
dissolve with possible splashing at the initial stages of
the process.

An alternative procedure consists in a preliminary
preparation of neutral selenates M2SeO4 by neutraliza-
tion of selenic acid with a carbonate and crystallization
of the salt by evaporating solution. Then, M2SeO4 is
dissolved in a mixture of selenic and phosphoric acids.
Hydrogen selenate–phosphates were crystallized dur-
ing slow evaporation of water in air at room tempera-
ture (I; 3 weeks), in an exsiccator under P4O10
(II; 7 days), or on heating (III; 24 h at 65°C). Thus, sin-
gle-phase crystalline specimens of compounds I and II
were obtained. Compound III was obtained in the form
of 3–4-mm-long crystals. All the three compounds
were stable in air.

All the attempts to isolate the rubidium compound
with the Se/P ratio equal to 3 : 1 by varying the reagent
ratios, acidity, temperature, and the rate of crystalliza-
tion have failed. The corresponding solutions of the sto-
ichiometric composition always provided the mixture
of I and RbHSeO4.
000 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic characteristics and details of X-ray data collection and structure refinement for I–IV

Parameter I II III IV

Formula Rb2(SeO4)(H3PO4) K2(SeO4)(H3PO4) K4(HSeO4)3(H2PO4) Na4(HSeO4)3(H2PO4)

Crystal system Monoclinic Monoclinic Triclinic Triclinic

Sp. gr. Pn Pn P P

a, Å 7.546(3) 7.260(2) 7.412(3) 7.029(4)

b, Å 7.697(3) 7.520(2) 7.662(3) 7.089(4)

c, Å 7.744(3) 7.558(2) 7.735(3) 7.130(4)

α, deg 90 90 71.92(3) 79.84(4)

β, deg 101.19(3) 100.11(3) 87.98(3) 85.57(4)

γ, deg 90 90 86.03(3) 80.34(4)

V,  Å3 441.2(3) 406.2(2) 416.5(3) 344.3(3)

Z 2 2 1 1

ρcalc, g cm–3 3.110 2.609 2.732 2.994

µ(MoKα), cm–1 154.03 58.50 77.94 83.43

Crystal dimensions, mm 0.6 × 0.5 × 0.2 0.4 × 0.4 × 0.2 0.4 × 0.3 × 0.1 0.4 × 0.4 × 0.2

θmax, deg 30 35 30 27

Number of independent reflections 2574 1795 2423 1496

Number of reflections with I > 2σ (I) 1650 1527 1682 1013

Number of reflections/number of pa-
rameters 1743/121 1586/121 1908/124 1231/122

R1/wR2 0.0421/0.1093 0.0238/0.0633 0.0316/0.0641 0.0444/0.0935

1 1
It was found that sodium hydrogen selenate–phos-
phate, IV, can be prepared by crystallization from solu-
tions with a considerable H3PO4 excess. Otherwise,
Na2SeO4 was formed. At room temperature a solution
of Na2SeO4 in 100% H3PO4 yielded only crystalline
NaHSeO4, whereas the hot solution provided the for-
mation of Na2Se2O7 pyroselenate [9], partly decompos-
ing into Na2SeO4 and SeO2 at 100°C (a sublimate above
the solution). Platelike sodium hydrogen selenate–
phosphate crystals are formed only in the course of
slow crystallization from a viscous solution. The crys-
tals grown were placed into sealed capillaries (to avoid
water absorption) for further studies.

X-ray diffraction study. The X-ray data for the
structure analysis were collected on a STADI-4 four-
circle diffractometer (Stoe) at room temperature
(MoKα radiation, graphite monochromator, and ω-2θ
scan). The crystal data collected for compounds I–IV
are listed in Table 1. Since the compounds contain Se
and Rb, they are characterized by high linear absorp-
tion coefficients. Therefore, the data were collected on
regularly shaped crystals installed symmetrically with
respect to the ϕ-axis of the diffractometer. The empiri-
cal collection for absorption was introduced on the
basis of ϕ scans of 5–8 reflections. The numerical
allowance for absorption yielded the similar values.

The structures were solved by the direct method
(SHELXS86 [10]). The positional and the anisotropic
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
thermal parameters of all non-hydrogen atoms were
refined by the SHELXL93 Program [11]. The Se and P
atoms in the structures could unambiguously be distin-
guished due to the large difference in the scattering
power of these atoms. The ambiguity in the distribution
of the S and P atoms is typical of the structures of sul-
fate–phosphates [7]. In structure II, there are some
positions statistically occupied by Se and P atoms in the
9 : 1 and the 1 : 9 ratios. In structures III and IV, one of
the tetrahedral positions is fully occupied by selenium,
whereas the other position is shared by selenium and
phosphorus atoms in the equal proportions. All hydro-
gen atoms were located from the difference Fourier
maps and were refined in the isotropical approxima-
tion; soft geometrical restraints were used for some of
these atoms. The atomic coordinates and the equivalent
thermal parameters for structures I–IV are deposited in
the Karlsruhe Fachinformationszentrum under the CDS
registration nos. 411 002–411005. The selected inter-
atomic distances are listed in Table 2.

RESULTS AND DISCUSSION

Numerous attempts to synthesize alkali-metal
hydrogen selenate–phosphates varying the ratios of the
reagents and the crystallization conditions allow us to
conclude that the systems containing different kinds of
alkaline metals essentially are different. Also, they
allow one to compare the selenate–phosphate and sul-
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Table 2.  Interatomic distances (Å) in Rb2(SeO4)(H3PO4) (I), K2(SeO4)(H3PO4) (II), K4(HSeO4)3(H2PO4) (III), and
Na4(HSeO4)3(H2PO4) (IV) structures

Distance I II* Distance III IV

Se–O(1) 1.606(7) 1.608(3) Se(1)–O(1) 1.608(3) 1.619(5)

Se–O(2) 1.648(6) 1.640(3) Se(1)–O(2) 1.603(3) 1.667(5)

Se–O(3) 1.637(8) 1.633(3) Se(1)–O(3) 1.607(3) 1.618(5)

Se–O(4) 1.649(8) 1.636(3) Se(1)–O(4) 1.715(3) 1.625(5)

P–O(5) 1.490(8) 1.497(3) (Se,P)–O(5) 1.572(3) 1.624(6)

P–O(6) 1.557(8) 1.562(3) (Se,P)–O(6) 1.587(3) 1.572(5)

P–O(7) 1.575(9) 1.570(3) (Se,P)–O(7) 1.590(3) 1.560(5)

P–O(8) 1.545(8) 1.562(3) (Se,P)–O(8) 1.585(3) 1.564(6)

M(1)–O 2.882–3.397 2.719–3.010 M(1)–O 2.733–2.975 2.376–2.814

M(2)–O 2.876–3.351 2.728–2.979 M(2)–O 2.659–2.918 2.393–2.571

* Distances for the atoms located mainly in the Se and P positions.
fate–phosphate systems of the same alkaline metal. The
largest number of selenate–phosphate phases (three
compounds with the Se/P ratio equal to 3 : 2, 2 : 1, and
3 : 1) was found in the system with cesium [8]. In this
case, the analogy with the sulfate–phosphates [4–6]
consists in that the compounds with X/P = 2 : 1 are iso-
structural and the compounds with X/P = 3 : 2 can exist
in both systems, but show different hydrogen bonding.
In the rubidium selenate–phosphate system, a single
compound with Se/P = 1 : 1 was isolated, whereas in
the rubidium sulfate–phosphate [7] and the potassium
sulfate– and selenate–phosphate [2, 12] systems, the
phases with X/P = 1 : 1 and 3 : 1 were revealed.

In this study, we managed to isolate a single com-
pound with the Se/P ratio equal to 3 : 1 from the sodium
selenate–phosphate system, whereas in the sulfate–
phosphate system, no compounds with the empirical
formula corresponding to a sodium hydrogen sulfate–
phosphate were revealed. Instead, the adduct of sodium
hydrogen sulfate to phosphoric acid NaHSO4 · H3PO4
was isolated [12].

The positions of the non-hydrogen atoms in struc-
tures I–IV were determined by single-crystal X-ray dif-
fraction analysis with a high accuracy. The consider-
able difference between the scattering powers of the Se
and P atoms provides the establishment of the popula-
tion of the positions: the Se or P atoms in the tetrahedral
positions (I), the occupation of such positions mainly
by the atoms of one kind (II), and their equally proba-
ble filling with both Se and P atoms (III and IV). The
modes of position occupation observed correlate with
the average X–O distances (Table 2) characteristic of
the SeO4 and PO4-tetrahedra and intermediate values in
the (Se,P)O4-tetrahedra.

If the position is occupied mainly with one of the
two kinds of atoms (~90%), the average X–O distances
become only slightly shorter (Se in structure II) or
longer (P in structure II).
C

In some cases, the difference between the distances
within a tetrahedron allowed us to establish the X–O
and X–OH bonds, whereas the consideration of the
O···O distances provided the reconstruction of the
hydrogen-bond system in all the structures. The posi-
tions of H atoms confirmed the validity of our descrip-
tion of the hydrogen-bond systems.

The distribution of the X–O bond lengths in struc-
tures I and II (the absence of elongated distances in the
SeO4-tetrahedron and three elongated distances in the
PO4-tetrahedron) indicate that all of the three hydrogen
atoms are attached to the PO4 tetrahedron (Table 2).
This assumption was confirmed by H atoms spaced by
0.8–0.9 Å from three oxygen atoms of the PO4 groups.
This result allows one to consider compounds I and II
as adducts of rubidium and potassium selenates to the
phosphoric acid M2(SeO4)(H3PO4) and not as hydrogen
selenate–phosphates M2(HSeO4)(H2PO4). “Migration”
of a proton from hydrogen selenate to dihydrogen phos-
phate group was also observed earlier in
Cs4(SeO4)(HSeO4)2(H3PO4) and in ammonium hydro-
gen selenate–phosphate (NH4)2SeO4(H3PO4) [13],
whereas no such migration was ever observed in other
cesium hydrogen selenate–phosphates [8]. Despite the
above examples, we refer (somewhat loosely) to all the
compounds obtained in the hydrogen selenate (sul-
fate)–phosphate systems as to hydrogen selenate (sul-
fate)–phosphates. At the same time, we also indicate
the actual hydrogen position in all the cases where it
could be determined from the experiment.

The systems of hydrogen bonding in structures I
and II are similar. These bonds link anions into slightly
corrugated networks parallel to ( 01). Each tetrahedral
group forms three bonds: H3PO4 provides three H
atoms, and the SeO4 group serves as their acceptor
(Fig. 1). The O–H···O distances of lengths 2.50–2.57 Å
correspond to strong hydrogen bonds.

1
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Fig. 1. K2(SeO4)(H3PO4) (II) structure projected along the x-axis.
Coordination of the M+ ions with oxygen atoms is
characterized by large coordination numbers (9 for Rb
and 7–8 for K) and, in accord with the ionic radii,
longer Rb–O distances (Table 2).
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Considering similar ratios of the linear parameters
for the triclinic unit cells in III and IV we could draw a
conclusion about their isostructurality. Although the
arrangements of the M+-cations and the tetrahedral
Table 3.  Hydrogen bonds in structures I–IV

D–H···A bond D–H, Å H···A, Å D···A, Å ∠ D–H···A, deg

Rb2(SeO4)(H3PO4), I

O(6)–H(1)···O(2) 0.80(3) 1.79(5) 2.566(7) 162(11)

O(7)–H(2)···O(3) 0.84(3) 1.75(3) 2.566(11) 166(11)

O(8)–H(3)···O(4) 0.79(3) 1.72(4) 2.501(10) 170(12)

K2(SeO4)(H3PO4), II

O(6)–H(1)···O(2) 0.82(3) 1.75(3) 2.552(3) 166(6)

O(7)–H(2)···O(3) 0.81(3) 1.77(3) 2.567(4) 167(7)

O(8)–H(3)···O(4) 0.82(3) 1.69(3) 2.511(4) 173(7)

K4(HSeO4)3(H2PO4), III

O(4)–H(1)···O(5) 0.84(7) 1.72(7) 2.556(4) 171(7)

O(6)–H(2)···O(7) 0.83(3) 1.74(3) 2.528(4) 158(8)

O(7)–H(3)···O(6) 0.85(10) 1.71(10) 2.528(4) 160(10)

O(8)–H(4)···O(8') 0.81(3) 1.76(3) 2.561(4) 171(12)

Na4(HSeO4)3(H2PO4), IV

O(2)–H(1)···O(2) 0..80(3) 1.81(5) 2.601(11) 170(20)

O(5)–H(2)···O(4) 0.79(3) 1.85(5) 2.619(8) 164(10)

O(6)–H(3)···O(7) 0.88(3) 1.87(3) 2.747(8) 173(16)

O(8)–H(4)···O(8') 0.82(3) 1.69(6) 2.481(11) 163(2)
0



402 TROYANOV et al.
O(2)

O(4)Se

O(1)

O(3)

H(1)

O(7)

O(8)

H(2)

H(3)O(5) O(6)

K(2)

K(1)

(Se,P)

0

Z

Y

H(4)

Fig. 2. K4(HSeO4)2{H[H(Se,P)O4]2} (III) structure projected along the x-axis.
XO4-groups are similar, the essential differences in the
systems of hydrogen bonding make III and IV isostruc-
tural only to some extent. Both structures contain two
independent M+ cations [K(1) with c.n. = 8 and K(2)
with c.n. = 6 in III; Na(1) with c.n. = 7 and Na(2) with
c.n. = 6 in IV; Table 2], one SO4-group, and one
(Se,P)O4-group with the statistical filling of the tetrahe-
dral site. In structure III, one of the bonds in the SeO4-
tetrahedron is elongated to a value characteristic of a
Se–OH bond [Se–O(4) is 1.715 Å]. At the same time,
no obvious differences in the distances within the
(Se,P)O4-tetrahedron were observed. The analysis of
the O···O distances revealed hydrogen bonds confirmed
by the location of hydrogen atoms (Table 3). The only
asymmetric (characterized by a single maximum)
hydrogen bond in the structure is O(4)–H(1)···O(5).
Two other bonds, O(6)···O(7) and O(8)···O(8'), have
two maxima each. These maxima correspond to the
positions of H atoms populated only by 0.5. The H(2)
and H(3) atoms involved in the O(6)···O(7) interaction
are symmetrically independent, whereas the H(4) and
H(4') atoms involved in the O(8)···O(8') hydrogen
bonding are related by a center of inversion. The system
of hydrogen bonding is shown in Fig. 2. The dimeric
structural units [H(Se,P)O4]2 are linked by symmetrical
hydrogen bonds O(8)H(4)O(8') into infinite chains
C

{H[H(Se,P)O4]2} running along the [ 01] direction.
The HSeO4-groups are bound to the chains by the
O(4)–H(1)···O(5) hydrogen bonds and form terminal
branches. Therefore, the formula of compound III
reflecting the existence of the H atoms attached to tet-
rahedra should be written as
K4(HSeO4)2{H[H(Se,P)O4]2}.

The non-hydrogen atoms in structure IV (Fig. 3) are
designated as in III. This facilitates the comparison of
pseudoisostructural compounds. The structures of such
compounds differ mainly in the participation of the H
atoms in the system of hydrogen bonding. The Se–O(4)
bond length of 1.625 Å shows that the O(4) atom of the
SeO4-tetrahedron in IV is no more a hydrogen donor.
The Se–O(2) bond is slightly elongated (1.667 Å) due
to formation of the O(2)–H(1)···O(2) hydrogen bond
(2.60 Å), in which the H(1) atom is disordered over two
positions related by a center of inversion. The O(4)
atom is an acceptor in the 2.62 Å-long O(5)–
H(2)···O(4) hydrogen bond. The elongation of the
O(6)–H(3)···O(7) hydrogen bond to 2.75 Å allows us to
assume that the position of the H(3) atom is half occu-
pied, which is consistent with the composition of the
compound. Pairs of such bonds form weakly bound
[H1.5(Se,P)O4]2 dimers which, in turn, are linked by the
short symmetrical O(8)H(4)O(8') hydrogen bond

1
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Fig. 3. Na4[H(SeO4)2]{H[H1.5(Se,P)O4]2} (IV) structure projected along the x-axis.
2.48 Å to form infinite chains (Fig. 3). As a result,
the chains observed in structure III are characteristic,
to a certain extent, of structure IV. In IV, the chains
are crosslinked by hydrogen bonds involving the
dimeric [H(SeO4)2] groups. Hence, the formula of
compound IV should be written as
Na4[H(SeO4)2]{H[H1.5(Se,P)O4]2}.

Comparing the projections of structures III (Fig. 2)
and IV (Fig. 3) we see that, in the latter structure, the
SeO4-tetrahedra are shifted toward the unit-cell center
and linked by a hydrogen bond. In III, no similar bond
between the considerably spaced SeO4-tetrahedra exist.
A higher density of the sodium compound than of the
potassium compound of the same stoichiometry is
apparently associated with the above difference.

Thus, the data of the X-ray structure analysis of the
alkali-metal hydrogen selenate–phosphates reported in
this paper for Na, K, and Rb derivatives together with
the data on cesium derivatives [8] allow us to conclude
that the distribution of hydrogen atoms between SeO4
and PO4 groups in the structure corresponds either to

the coexistence of HSe  and H2P  monoanions, or

coexistence of the Se  dianion and the neutral
H3PO4 molecule. This versatility corresponds to the

O4
– O4

–

O4
2–
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K2(H2SeO4)/K1(H3PO4) ratio of the constants of hydro-
gen dissociation slightly exceeding unity. It should also
be noted that in the known structures of Rb and Cs
hydrogen sulfate–phosphates only the combination of
HS  and H2P  ions was revealed [2–7]. Appar-
ently, this difference is explained by stronger acidic
functions of selenic acid in comparison with sulfuric
acid.
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Abstract—The crystal structure of the new synthetic compound Ba5[B20O33(OH)4] · H2O was established by
the methods of X-ray diffraction (a Stoe IPDS diffractometer, λMoKα , 1860 independent reflections, anisotro-
pic refinement, R = 1.95%, localization of hydrogen atoms): a = 9.495(2) Å, b = 6.713(1) Å, c = 11.709(2) Å,
β = 95.09(1)°, sp. gr. P2, Z =1. The structure is based on double pseudohexagonal layers consisting of BO4-
tetrahedra and BO3 triangles linked into three-membered rings in two mutually perpendicular directions. The
double layers adjacent along the [100] direction are linked together through the Ba-polyhedra and hydrogen
bonds with the participation of the OH-groups occupying the “end” vertices of two B-triangles. The interlayer
space is also filled with a sheet of Ba-polyhedra. The structure of the compound is compared to the structures
of topologically similar Ba and Ca borates and hydroborates. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The interest in growth and study of borates is stim-
ulated by search for materials possessing nonlinear
optical properties. The relationship between the crystal
structure and the optical properties of borates in general
and, in particular, of alkali and alkaline-earth borates
has been extensively studied in recent years. A consid-
erable number of publications describe the attempts to
establish the correlation between the structure and the
nonlinear optical properties of the BaB2O4 (BBO) and
LiB3O5 crystals. These crystals are characterized by a
wide transparency range, large values of nonlinear the
optical coefficients, a high destruction threshold, and
high temperature stability and are successfully used for
the second-harmonic generation of YAG : Nd lasers [1].
Recently, several Ba-borates have been synthesized,
including α-BaB2O4 [2], β-BaB2O4 [3], Ba[B(OH)4]2 ·
H2O [4], Ba[B(OH)4]2 [5], and BaB4O7 [6]. Although
these compounds have close compositions, their struc-
tural characteristics show considerable variations. Thus
they have different configurations of anionic com-
plexes, different dimensions of Ba-polyhedra, different
coordination numbers of Ba atoms, different types of
distortions of B-tetrahedra and B-triangles. In this con-
nection, the structural study of a new representative of
this group was of a considerable interest, because it
would allow further study of the correlation between
1063-7745/00/4503- $20.00 © 20405
the composition and the structure in these closely
related compounds.

EXPERIMENTAL

Crystals of the new barium hydroborate were grown
by the hydrothermal method when studying the charac-
teristic features of the phase formation in the BaO–
PbCO3–B2O3–H2O system. The 20 day-synthesis was
performed in standard fluoroplastic-lined autoclaves
under a pressure of 100 atm at temperature 250°C. The
charge was a mixture of BaO and B2O3 oxides in a ratio
of 1 : 2. The incorporation of Ba atoms into the struc-
ture is confirmed by the results of the electron probe
analysis (a Cameka SX 50 microprobe, a 20 mA-cur-
rent at the accelerating voltage of 15 kV).

The transparent colorless crystals were up to
0.2 mm in size and had a pseudohexagonal pyramidal
habit. A single crystal of dimensions 0.17 × 0.1 ×
0.1 mm was chosen for an X-ray structure study. The
X-ray diffraction data were collected on an automated
Stoe IPDS diffractometer equipped with a position-sen-
sitive detector. The absorption correction was intro-
duced in the course of data processing by the FACIET
(Stoe) program.

All the subsequent computations necessary for the
structure solution were performed by the AREN pro-
gram package [7]. The structure was solved by the
direct method. Three Ba-atoms were localized from the
E synthesis with the lowest R factor being attained
000 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic and experimental data

Formula Ba5[B20O33(OH) · H2O]

Unit-cell parameters, Å a = 9.495(2)

b = 6.716(1)

c = 11.709(2)

β = 95.09(1)°

Sp. gr. P2

Unit-cell volume V, Å3 743.4(2)

Number of formula units, Z 1

Calculated density ρ, g/cm3 3.388

Absorption coefficient µ, mm–1 6.675

Molecular weight 1516.96

F000 690

Diffractometer Stoe IPDS

Radiation, wavelength MoKα, 0.71073 Å

Temperature of data collection, K 293(2)

Total number of reflections 7123

Number of independent reflections with I > 2σ(I) 1860

Rint , % 4.47

RF in the isotropic approximation, % 4.05

RF in the anisotropic approximation, % 1.95

Flack factor 1.07(2)

Extinction coefficient, E 0.00081(8)

Maximum and minimum values on the difference electron density map, e/Å3 ∆ρmax = 0.732

∆ρmin = 0.737
within the sp. gr. P2. The positions of B- and O-atoms
were established from a series of successive difference
electron density syntheses. The model determined was
refined anisotropically by the full-matrix least-squares
method using the SHELXL93 program [8]. The calcu-
lation of the valence balance [9] allowed us to establish
O-atoms belonging to OH groups and H2O molecules.
The H atoms of the hydroxyl groups were localized
from the difference electron density syntheses. The H
atoms of water molecules were not localized. The
choice of the acentric sp. gr. P2 was confirmed by the
enantiomorph parameter (the Flack factor) [10]. The
crystallographic data and the characteristics of the
structure refinement are given in Table 1. The coordi-
nates of the basis atoms are listed in Table 2. The final
R factor obtained upon the refinement of the positional
and isotropic thermal parameters of hydrogen atoms
corresponds to the composition Ba5[B20O33(OH)4] ·
H2O (Z = 1, dcalcd = 3.388 g/cm3).
C

RESULTS AND DISCUSSION

The crystal structure of barium hydroborate consists
of double pseudohexagonal boron–oxygen
[B20O33(OH)4] layers perpendicular to the [100]-direc-
tion. These layers are formed by five crystallographi-
cally independent B-tetrahedra (the average B–O dis-
tances are 1.474, 1.481, 1.482, 1.472, and 1.472 Å) and
five B-triangles (the average B–O distances are 1.363,
1.367, 1.372, 1.373, and 1.367 Å). The are three types
of rings in the boron–oxygen layers of the structure
(Fig. 1). The rings of the first type are formed by two
B-tetrahedra and one B-triangle (I in Fig. 1). Analogous
isolated rings were found in the structures of inyoite
Ca[B3O3(OH)5] · 4H2O [11], inderite Mg[B3O3(OH)5] ·
5H2O [12], inderborite CaMg[B3O3(OH)5] · 6H2O [13],
meyerhofferite Ca[B3O3(OH)5] · H2O [14], and syn-
thetic Ca-borate Ca[B3O3(OH)5] · 2H2O [15]. In the
structures of colemanite and hydroboracite, these rings
are directly linked to form chains. On the contrary, the
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 1. Boron–oxygen layers in the Ba5[B20O33(OH)4] · H2O structure. Boron triangles are shown by black color. The unit cell is
shown by solid lines.
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Fig. 2. Structure projection along the [010] direction. 
rings of the second type consist of two triangles and one
tetrahedron (II in Fig. 1). Analogous isolated rings were
also observed in the structure of the synthetic crystals
of metaboric acid β-H2[B3O4(OH)3]. In the boron–oxy-
gen layers of the structure under consideration, one can
separate the columns along the [010] direction. In these
layers, the rings of both types are linked via two addi-
tional B-tetrahedra and two B-triangles. The columns
containing rings of the either the first type or of the sec-
APHY REPORTS      Vol. 45      No. 3      200
ond type alternate along the [001]-direction (Fig. 1).
The columns are linked by two additional B tetrahedra,
which are not involved in the three-membered rings,
and two B triangles whose terminal vertices are occu-
pied by the OH groups and thus form layers which con-
tain nine (III in Fig. 1) and three-membered rings. The
configuration of the networks thus formed is very close
to the boron–oxygen layers in gowerite
Ca[B5O8(OH)][B(OH)3] · 3H2O [16]. The boron–oxy-
0
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Table 2.  Coordinates and thermal parameters (Å2 × 103) of
the basis atoms

Atom x/a y/b z/c Ueq

Ba(1) 0.0 0.0003(1) 0.0 12(1)

Ba(2) 0.6159(1) 0.7669(1) 0.6976(1) 9(1)

Ba(3) 0.3822(1) 0.2503(1) 0.8246(1) 8(1)

B(1) 0.7162(3) 0.2692(4) 0.8569(2) 8(1)

B(2) 0.6331(3) 0.9393(4) 0.9653(2) 11(1)

B(3) 0.0456(3) 0.7859(4) 0.6893(2) 11(1)

B(4) 0.9299(3) 0.2827(4) 0.7532(2) 16(1)

B(5) 0.6788(3) 0.5756(4) 0.9916(2) 5(1)

B(6) 0.7019(3) 0.3074(4) 0.6421(2) 6(1)

B(7) 0.3443(3) 0.0753(4) 0.5165(2) 9(1)

B(8) 0.2435(3) 0.8074(4) 0.8450(2) 9(1)

B(9) 0.2873(3) 0.7742(4) 0.6389(2) 11(1)

B(10) 0.3289(3) 0.4255(4) 0.5544(2) 10(1)

O(1) 0.8732(2) 0.2813(3) 0.8565(1) 17(1)

O(2)* 0.9027(2) 0.7796(3) 0.6553(1) 23(1)

O(3) 0.6335(2) 0.7299(3) 0.9222(1) 12(1)

O(4) 0.0881(2) 0.7995(3) 0.8025(1) 10(1)

O(5) 0.6499(2) 0.3583(2) 0.7515(1) 7(1)

O(6) 0.3138(2) 0.2287(2) 0.5908(1) 11(1)

O(7) 0.2559(2) 0.9562(2) 0.9358(1) 9(1)

O(8) 0.5 0.0085(4) 0.0 12(1)

O(9) 0.6740(2) 0.0615(2) 0.8671(1) 14(1)

O(10) 0.1364(2) 0.7699(3) 0.6067(1) 14(1)

O(11)* 0.0777(2) 0.2676(4) 0.7557(1) 28(1)

O(12) 0.8560(2) 0.2848(3) 0.6512(1) 16(1)

O(13) 0.6714(2) 0.3795(2) 0.9571(1) 12(1)

O(14) 0.2828(2) 0.6061(2) 0.8934(1) 10(1)

O(15) 0.6646(2) 0.4660(2) 0.5570(1) 12(1)

O(16) 0.6378(2) 0.1187(2) 0.5948(1) 11(1)

O(17) 0.3573(2) 0.8806(2) 0.5495(1) 8(1)

O(18) 0.3271(2) 0.8584(2) 0.7507(1) 7(1)

O(19) 0.3436(2) 0.5617(2) 0.6409(1) 11(1)

O(20)** 0.0 0.5998(5) 0.0 54(1)

H(1) 0.886(3) 0.769(5) 0.578(2) 27(5)***

H(2) 0.101(3) 0.271(6) 0.690(3) 56(6)***

     * OH,   ** H2O, *** Uiso.
C

gen frameworks, which are related by a twofold rota-
tion axis along the b axis, form double layers sharing a
vertex [O(8) of the B(2) tetrahedron] (Fig. 2).

The above-described double layers are as a new type
of boron–oxygen complexes. They complement the
classification schemes of natural and synthetic borates
developed earlier. According to Strunz’s classification
scheme [17], barium hydroborate described by
the  formula of the borate complex 20(10n + 10T)
belongs to megaborates and is an intermediate com-
pound between dodecaborate 12(12T) rhodizite
(K, Cs)Al4Be4[B11BeO24O4] [18] and dimorphs
26(12n + 14T) Ca9[B26O34(OH)24]Cl4 · 13H2O (pring-
leite and ruitenbergite) [19].

Barium hydroborate contains three types of Ba-
atoms, which have different oxygen environment. The
Ba(1) atoms are located within the hexagonal pyramids
(the Ba(1)–O distances range within 2.623–2.864 Å),
which link the double boron–oxygen layers. The H2O
molecule is located in the O(20) vertex of the Ba(1)
seven-vertex polyhedron. These interlayer contacts are
strengthened via hydrogen bonds with the participation
of the protons from OH groups occupying the “end”
vertices of the BO2(OH) triangles. The ten-vertex poly-
hedra of Ba(2) (the Ba(2)–O distances range within
2.632–3.025 Å) and the eleven-vertex polyhedra of
Ba(3) (the Ba(3)–O distances range within 2.703–
3.153 Å) form the polyhedral layers parallel to the
[100]-direction with the polyhedra sharing their edges.
Analogous ten-vertex polyhedra of Ba(2) were
observed in the structures of synthetic BaB4O7 crystals
[6] (in which the Ba–O distances range within 2.718–
3.122 Å) and Ba[B(OH)4] · H2O [4]. An eleven-vertex
Ba(3) polyhedron is formed as a result of the attach-
ment of one more oxygen atom spaced by 3.153 Å from
the central Ba-atom.
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Abstract—The crystal structure of strontium hilgardite, CaSr[B5O9]Cl · H2O, was established by the method
of X-ray diffraction analysis (synchrotron radiation; diffractometer equipped with a position-sensitive detector;
λ = 0.688 Å; 3191 reflections with F > 4σ(F); R = 0.045 in the anisotropic approximation). The triclinic unit-
cell parameters are as follows: a = 6.5732(6) Å, b = 6.4445(6) Å, c = 6.3693(6) Å, α = 60.995(2)°, β =
61.257(2)°, γ = 77.191(2)°, sp. gr. P1; Z = 1. The Ca and Sr atoms were found to be disordered over two posi-
tions. The structures of strontium hilgardite and hilgardite-1A differ in the configurations of the seven-vertex
Sr- and Ca(2)-polyhedra. The structure solved in this work is consistent with two series of borates studied pre-
viously. One of these groups involves pentaborates with different degrees of hydration of borate complexes, and
the second group includes Sr-containing borates. © 2000 MAIK “Nauka/Interperiodica”.
The crystal structures of aqueous calcium pentabo-
rates, namely, monoclinic hilgardite-4M and triclinic
hilgardite-3A (parahilgardite), with the triple unit cells
contain the anionic [B5O9]-frameworks consisting of
three B-tetrahedra and two B-triangles [1, 2]. Accord-
ing to Ghose [3], these frameworks are formed by
linked pentaborate [B5O12] complexes with two config-
urations. In the complexes of the first type (the l config-
uration), two BO3-triangles are located on the same
side (in the cis positions) of three BO4-tetrahedra shar-
ing vertices, whereas in the complexes of the second
type (the d configuration), the BO3-triangles are located
on each side (in the trans positions) of three BO4-tetra-
hedra. In terms of stereoisomerism, the structure of
monoclinic hilgardite-4M can be considered as the
alternation of bulky packets along the a-axis. In turn,
these packets are formed by chains either of l- or of
d-complexes parallel to the c-axis. The algorithm of
this alternation can be written as ld… The triclinic
structure of hilgardite-3A consists of two packets
formed by the l-complexes separated by single packets
formed by d-complexes along the [100] direction and
forming the lld… sequence.

Recently, the topological analysis of boron–oxygen
frameworks in minerals of the hilgardite family, in
which the l- and d-layered complexes were established,
was supplemented with the results of structure determi-
nation of the centrosymmetric monoclinic
Pb2[B5O9](OH)H2O [4]. In hilgardite-4M and synthetic
Ca2[B5O9]Br crystals, whose structures were solved
earlier [5], the complexes are related to each other by
the a planes and twofold rotation axes, respectively.
Unlike these structures, the Pb2[B5O9](OH)H2O struc-
1063-7745/00/4503- $20.00 © 0410
ture contains the complexes related by a center of inver-
sion.

In addition to hilgardite-4M and hilgardite-3A, one
more representative (1A) of this mineral group has been
structurally studied [6]. This mineral has a triclinic unit
cell, whose volume is three times less than that of hil-
gardite-3A. Using the above-considered notation, we
can write the algorithm of repeated packets containing
the borate [B5O11]-chains in this structure can be writ-
ten as l… The parameters, the volume, and the content
of the unit cell of this mineral fully correspond to yet
another natural calcium borate—tyretskite, which dif-
fers from hilgardite-1A by the substitution of Cl atoms
OH groups. Based on this similarity, the authors [6]
suggested that hilgardite-1A may be a structural ana-
logue of tyretskite.

The unit-cell parameters of strontium hilgardite,
whose chemical composition and X-ray characteristics
were reported in [7], are close to those of hilgardite-1A
and tyretskite. The X-ray diffraction study of strontium
hilgardite [8] demonstrated that the Debye patterns
obtained from two samples were somewhat different,
which was attributed to slightly different compositions
of these samples. A discovery of strontium hilgardite in
the Nepskoe deposit of potassium salts (Irkutskaya
oblast, East Siberia) gave an impetus to the structure
study of this mineral. The major objective was to estab-
lish the character of the distribution of Ca and Sr atoms
over two crystallographically independent positions
and the structural changes in strontium hilgardite in
comparison with hilgardite-1A caused by the replace-
ment of half of Ca atoms by Sr.

The borate mineralization from the Nepskoe deposit
(where strontium hilgardite occur in dolomite, dolo-
2000 MAIK “Nauka/Interperiodica”



        

CRYSTAL STRUCTURE OF STRONTIUM HILGARDITE 411

                                                           
Table 1.  Crystallographic characteristics and details of X-ray diffraction study

Formula CaSr(B5O9)Cl · H2O

Unit-cell parameters, Å, deg a = 6.5732(6)

b = 6.4445(6)

c = 6.3693(6)

α = 60.995(2)

β = 61.257(2)

γ = 77.191(2)

Unit-cell volume, V, Å3 206.88

Sp. gr. P1

Number of formula units, Z 1

Calculated density ρ, g/cm3 3.044

Molecular weight 379.22

Absorption coefficient µ, mm–1 7.48

F000 182.0

Diffractometer Brucker AXS SMART CCD

Wavelength, Å 0.6883

Range of data collection Reflection sphere

θ Scanning range, deg 3.41–33.83

Total number of reflections 4243

Number of independent reflections 3211

Rint 0.0205

Number of reflections with |F| > 4σ(F) 3191

Rhkl in the anisotropic approximation 0.045

wR 0.1095

Enantiomorph parameter, x 0.028(5)

∆ρmax, e/Å3 1.59

∆ρmin, e/Å3 –0.81
mite–anhydrite, and sylvinite beds. In this mineraliza-
tion, strontium hilgardite forms associations with mag-
nesite, quartz, boracite, and conventional low-stron-
tium hilgardite [9]. The chemical composition of this
mineral (electron probe microanalysis; Camebax
microbeam; analyst I.M. Kulikova, Institute of Miner-
alogy, Geochemistry, and Crystal Chemistry of Rare
Elements, Moscow) is as follows: CaO, 14.99; SrO,
23.62; B2O3, 42.45; Cl, 9.58; –O=Cl2, 2.16; the total
88.49 (wt %). No direct determination of the water con-
tent was made. Hence, the empirical formula of the
mineral was first written as Ca1.09Sr0.94B5.02O9Cl1.12

(× nH2O). The mineral is characterized by high Sr-con-
tent and a constant Sr : Ca ratio equal to ~1.0. Accord-
ing to the IR spectral data and the X-ray powder pat-
tern, this mineral considerably differs from low-stron-
tium hilgardite.

The X-ray diffraction study of the mineral was per-
formed on a single crystal of linear dimensions 0.32 ×
0.26 × 0.24 mm3. The X-ray diffraction data were col-
lected with the use of synchrotron radiation (9.8 syn-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
chrotron station at the Daresbury Laboratory Center,
England) on an automated diffractometer equipped
with a position-sensitive detector (rotation around ω;
0.15°-rotation frames were exposed for 1 s each) [10].
The data obtained were processed according to [11].
The coefficient of reduction to the absolute scale and
the absorption correction were calculated by the
SADABS program written by G.M. Sheldrick on the
basis of the procedure reported in [12]. The crystallo-
graphic characteristics and the main characteristics of
X-ray diffraction study and structure refinement are
given in Table 1. The axial unit vectors were chosen
according to [7]. The unit cell of hilgardite-1A reported
in [6] was transformed into the unit cell of strontium
hilgardite by the matrix 0 1 –1/1 0 0/0 0 –1.

The structure solution and all the computations
including the correction for anomalous scattering were
performed by the SHELXL program package [13]. The
absolute configuration of the structure was determined
from the results of the calculations of the x-parameter
(0.028(5)) [14]. The calculations of the valence balance
at anions confirmed the presence of a water molecule in
0
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Table 2.  Atomic coordinates and displacement parameters

Atom x/a y/b z/c , Å2

Ca 0.2599(1) 0.8359(1) 0.3075(1) 0.077(1)

Sr 0.72040(2) 0.36847(2) 0.97888(2) 0.01346(9)

Cl 0.7945(2) 0.8832(2) 0.5199(2) 0.0179(2)

B(1) 0.3788(5) 0.3553(5) 0.6547(6) 0.0038(4)

B(2) 0.1679(6) 0.5044(5) 0.0034(6) 0.0048(5)

B(3) 0.2266(6) 0.2754(5) 0.4104(6) 0.0043(4)

B(4) 0.2690(6) 0.9448(6) 0.7901(7) 0.0064(5)

B(5) 0.8304(6) 0.4002(6) 0.4421(7) 0.0057(5)

O(1) 0.6746(5) 0.9274(6) 0.0496(6) 0.0167(5)

O(2) 0.6074(4) 0.3889(5) 0.6228(5) 0.0082(4)

O(3) 0.3038(4) 0.1053(4) 0.8521(5) 0.0076(4)

O(4) 0.3902(4) 0.4086(4) 0.3970(5) 0.0049(4)

O(5) 0.2124(4) 0.5149(4) 0.7549(4) 0.0051(3)

O(6) 0.2388(5) 0.7181(4) 0.9832(5) 0.0095(4)

O(7) 0.9063(4) 0.4802(4) 0.1735(5) 0.0080(4)

O(8) 0.2799(1) 0.3053(4) 0.1504(54) 0.0047(3)

O(9) 0.2509(5) 0.0164(4) 0.5618(5) 0.0079(4)

O(10) 0.9881(4) 0.3429(4) 0.5458(5) 0.0074(4)

H(1) 0.62(5) 0.83(7) 0.247(16) 0.3(2)

H(2) 0.81(3) 0.87(4) –0.07(4) 0.12(7)

* For H atoms, the Uiso values are given; Ueq = aiaj .

Ueq
*

1
3
--- Uij

j
∑

i
∑ ai

* a j
*

the O(1) position. The difference electron density syn-
thesis revealed the positions of two protons located at
distances of 1.00(4) and 1.00(3) Å from the O(1) atom
of the H2O molecule (∠ H(1)–O(1)–H(2) is ~118°). The
O–H distances determined are consistent with the data
obtained from X-ray diffraction studies. The final coor-

B(1)

B(3)

B(5)

B(2) B(4)
B(1)

B(5)

H2OCa

Sr

Cl

a

c

Fig. 1. Structure of strontium hilgardite projected along
[010].
C

dinates of the basis atoms, the atomic displacements
(which were calculated with the use of anisotropic ther-
mal corrections for all non-hydrogen atoms), and the
interatomic distances for Ca- and Sr-polyhedra are
given in Tables 2 and 3. The atomic coordinates in the
structure of hilgardite-1A can be related to those in the
structure of strontium hilgardite by the relationships
X = y, Y = x, Z = –(y + z) with the corresponding dis-
placement of the origin of coordinates by a vector with
the components ~0.260, ~0.836, ~0.307 along the unit
cell axes (where X, Y, and Z are the atomic coordinates
in the structure of hilgardite-1A). The experimental and
theoretical [15] X-ray powder patterns (Table 4) are
very close. Different projections and the stereoview of
the structure (the ATOMS program [16]) are shown in
Figs. 1–4. It should also be noted that the projection of
the triclinic structure of hilgardite-1A along the [001]-
direction [6] is somewhat distorted because the authors
neglected the nonorthogonality of the three axes.

The structure of strontium hilgardite is essentially
similar to that of hilgardite-1A. It is based on the zeo-

lite-like boron–oxygen [ O9]-framework consist-
ing of tetrahedral [B3O9]-chains parallel to the [001]-
direction (Fig. 1). The links of these chains are formed

B2
nB3

t

RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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by three tetrahedra. The contacts between the tetrahe-
dra are strengthened by two (B,O)-triangles. The inter-
atomic B–O distances (〈1.470〉  and 〈1.362〉  Å for the
tetrahedra and the triangles, respectively) have standard
values. The Ca- and Sr-cations, water molecules, and
Cl-anions are orderly located in the framework cavities,
whereas Cl atoms and water molecules are located in
the channels parallel to the [001]-direction (Fig. 2) and
Sr- and Ca-atoms, in the channels parallel to the [010]-
and [100]-directions, respectively (Fig. 2) (Fig. 3).

The main difference between these structures is
associated with the rearrangement of Ca(2)-polyhedra
in the structure of hilgardite-1A (in strontium hilgardite
they are occupied by the Sr atoms) (Fig. 4). In both
structures, these polyhedra are formed by seven anions
but have essentially different configurations. The
Ca(2)-polyhedron is a distorted pentagonal bipyramid,
one axial vertex of which is occupied by a Cl atom. The
Sr-polyhedron is a hexagonal pyramid, and a Cl atom
located at a distance 3.134(1) Å cannot be inclined into
the nearest environment of the Sr atom. Therefore,
unlike all the other structurally studied minerals of this
group, in which Cl atoms are involved in both cationic
polyhedra, the Cl atoms in the structure of strontium
hilgardite are involved only in the Ca polyhedra and
cannot act as ligands in the Sr polyhedra. However, tak-
ing into account the standard average distances
(~2.65 Å) in the seven- and eight-vertex Sr polyhedra,
it is reasonable to complete the coordination polyhe-
dron of the Sr atom with the O(5) atom located at a dis-
tance of 3.007 Å from the central cation. The corre-
sponding distance in the structure of hilgardite-1A
(3.13 Å) led the authors [6] to a conclusion that the
O(5) atom cannot be included into the polyhedron of

Fig. 2. Structure of strontium hilgardite projected along
[100].

B(5) B(2)

B(1)Sr
B(3)

B(4)

B(5)
Ca ClH2O

c

b

B
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the Ca(2) atom. The seven-vertex polyhedra of Sr
atoms were observed earlier in the structures of
SrB12H12 · 7H2O [17], Sr2LiInB4O10 [18], Sr2B2O5
[19], etc.

The structure under study is consistent with two
series of borates studied previously. One of these
groups involves pentaborates with different degrees of
hydration of borate complexes, and the second group
includes Sr-containing borates. The main building
blocks of zeolite-like borate frameworks of minerals of
the hilgardite group are two triangles and three
tetrahedra. The borate layers of similar composition,
[B5O8(OH)], which are characterized by the replace-
ment of one O2– anion by the OH– group, are formed
with the participation of three triangles and two
tetrahedra. These layers were found in the structures
of   nasinite Na2[B5O8(OH)] · 2H2O [20], veatchite

Table 3.  Interatomic distances (Å) for the Ca and Sr polyhe-
dra in the structure of strontium hilgardite

Ca-polyhedron Sr-polyhedron

Ca–O(1) 2.438(3) Sr–O(1) 2.694(3)

O(3) 2.459(2) O(2) 2.636(2)

O(4) 2.558(2) O(4) 2.604(2)

O(5) 2.492(2) O(5) 3.007(2)

O(6) 2.590(3) O(7) 2.517(2)

O(8) 2.669(2) O(8) 2.602(2)

O(9) 2.384(3) O(10) 2.515(3)

Cl 2.700(1) 〈2.654〉
〈2.536〉 Sr–Cl 3.134(1)

Fig. 3. Structure of strontium hilgardite projected along
[001].

a

b

B(1)B(3)

(2)

B(5)

B(4)

Ca Cl

H2O

Sr



414 FERRO et al.
Fig. 4. The Ca- and Sr-polyhedra in the strontium hilgardite structure.

O(5) O(4)

O(6)

O(9)

O(8)
O(4)

O(7) O(5)
O(2)

O(10)
O(3)

O(1)

Sr

CaCl

H(1)

H(2)

c

b

Sr2[B5O8(OH)]2[B(OH)3] · H2O [21], high-calcium
p-veatchite Sr(Ca0.8Sr0.2)[B5O8(OH)][B(OH)3] · H2O
[22], gowerite Ca[B5O8(OH)][B(OH)3] · 3H2O [23], bir-
inguccite Na4[B5O8(OH)OB3O7(OH)] · 2H2O [24], and
the synthetic crystals of K2[B5O8(OH)] · 2H2O [25].

The involvement of one more OH– group into the
pentaborate complex of tuzlaite Na,Ca[B5O8(OH)2] ·
3H2O [26] provides the preservation of the layers
whose major building units are two triangles and three
tetrahedra. A further increase in the number of
hydroxyl groups in the pentaborate complexes is

Table 4.  X-ray diffraction powder pattern from strontium
hilgardite (an RKD camera, λFe Kα)

hkl dexp dcalc Iexp Icalc

010 5.71 5.64 9 6.5

101, 001, 011 5.09 5.02, 5.01, 5.00 7 2.7, 0.6, 2

1-10, 110 4.07 4.06, 4.01 5 3.8, 1.3

112, 1-1-1, 201 3.24 3.18 9 6.8

200 2.93 2.89 10 10

020 2.83 2.82 9 9

2-10 2.56 2.58 6 1.4

210 2.53 2.55 4 2.8

222 2.47 2.48 2 0.5

2-1-1, 312, 20-1 2.15 2.14, 2.13, 2.12 9 1.9, 1.9, 2

1-21, 132 2.10 2.10 6 3.1

113 2.07 2.06 6 3.6

322, 032 1.90 1.94 3 3.8

232, 2-2-1 1.88 1.90 4 3.3

21-1, 321, 231 1.85 1.87, 1.85 6 1.6, 1.4

3-12 1.70 1.72 3 1.2
C

accompanied by a successive change of their configura-
tion in passing to probertite NaCa[B5O7(OH)4] · 3H2O
[27] containing the (B,O) chains and further to ulexite
NaCa[B5O6(OH)6] · 5H2O [28] containing the isolated
(B,O) groups.

On the whole, a small group of natural strontium
borates is characterized by a high degree of condensa-
tion of borate complexes forming the layers in the
structures of pentaborate veatchite
Sr2[B5O8(OH)]2[B(OH)3] · H2O [21], hexaborates tun-
ellite Sr[B6O9(OH)2] · 3H2O [29], strontioborite
Sr[B6O9OHOB2O(OH)3] [30] and strontioginorite
SrCa[Sr14O20(OH)6] · 5H2O [31] and also a zeolite-like
framework in the structure of strontium hilgardite
under study.
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Abstract—The X-ray crystal structure of trinuclear iron acetate [Fe3O(CH3COO)6(H2O)3]2[ZnCl4] · 2H2O was
determined. The crystal has a ionic structure. It is monoclinic, a = 25.363(7), b = 14.533(4), c = 15.692(4) Å,
β = 103.11(2)°, space group C2/c, and R = 0.0685. The structure of the cationic complex
[Fe3O(CH3COO)6(H2O)3]+ is typical of trinuclear iron(III) compounds containing a µ3-O bridge: the iron
atoms are situated at the vertices of an almost equilateral triangle with the O atom at the center. Each Fe atom
is coordinated by four O atoms of bridging carboxy groups, the µ3-bridging O atom, and the water molecule in
the trans position to the latter O atom. Mössbauer spectroscopy evidence indicates the high-spin state (S = 5/2)
of the iron(III) ions. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Extensive studies of 3d-metal carboxylates are due
to their specific structural features, which determine
specific physicochemical properties important for fun-
damental and applied chemistry [1, 2]. Literature data
[2–5] suggest possible applications of 3d-metal carbox-
ylates in catalysis and analytical chemistry; they can
also be used as precursors for preparation of magnetic
materials, etc. Polynuclear iron carboxylates, which
mimic different metalloprotein centers [6–8] (ferritin,
hemerythrin, and others), are of particular interest. The
first structural study of iron(III) acetate
[Fe3O(CH3COO)6(H2O)3]ClO4 dates back to 1969 [9].
Since then, data on the syntheses and structures of bi-,
tri-, tetra-, hexa-, octa-, nona-, deca-, undeca-, dodeca-,
hexadeca-, heptadeca-, and nonadecanuclear-contain-
ing iron complexes with carboxylate bridging anions
have been reported [6, 10–13].

The problem of the packing of trinuclear clusters in
a crystal is of special interest. Such molecules (or cat-
ions) are bulky; thus, their packing contains cavities,
which accommodate anions or solvent molecules, in
particular, water. It was shown that the compounds
[Fe3O(CH3COO)6(H2O)3]NO3 · 4H2O [14] and
[Cr2FeO(CH3COO)6(H2O)3] · NO3 · CH3COOH [15]
crystallize in the same space group with close unit cell
parameters. The compounds differ only in dimensions
of solvation molecules. Four H2O molecules in the
former compound and a molecule of acetic acid in the
latter compound occupy the same volume. The rear-
rangement of hydrogen bonds in the crystal does not
change the mutual arrangement of anions and cations.
1063-7745/00/4503- $20.00 © 0416
In this case, the large organometallic cation determines
the crystal packing. In [14, 16–18], we tried to reveal
the role of an anion and a solvation molecule in the
packing of trinuclear cations in a crystal.

In this paper, along with the data on the structure of
[Fe3O(CH3COO)6(H2O)3]2[ZnCl4] · 2H2O, we report
the results of its Mössbauer and IR spectroscopic
studies.

EXPERIMENTAL

X-ray diffraction study. A prismatic single crystal,
0.2 × 0.2 × 0.6 mm, was chosen for the X-ray study. To
prevent the crystal from decomposition during data col-
lection, it was sealed in a capillary containing vapor of
the mother liquor. The experimental data were obtained
on a KUMA KM-4 diffractometer with graphite-mono-
chromated MoKα radiation. The unit-cell parameters
were determined by a least-squares procedure using
25 reflections in the range 15° ≤ θ ≤ 20°. The intensities
were measured by the ω/2θ scan technique up to θmax =
25.07°. The intensities of three standard reflections
measured every 100 reflections varied within ±2%.

The structure was solved by direct methods. The
non-hydrogen atoms were refined by a least-squares
procedure in the anisotropic approximation. All calcu-
lations were performed with the SHELXS86 [19] and
SHELXL93 [20] program packages. The positional
parameters of the hydrogen atoms of the CH3 groups
were calculated geometrically. The hydrogen atoms of
the coordinated water molecules were located from dif-
ference Fourier syntheses and verified by the geometric
2000 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic characteristics of compound [Fe3O(CH3COO)6(H2O)3]2[ZnCl4] · 2H2O

Empirical formula C12H24Cl2Fe3O17Zn0.50

Molecular weight 711.45

Temperature, K 293(2)

Wavelength, Å 0.71073

Space group C2/c

Unit cell parameters:

a, Å 25.363(7)

b, Å 14.533(4)

c, Å 15.692(4)

β, deg 103.11(2)

V, Å3 5633(3)

Z 8

ρcalcd, g/cm3 1.678

Absorption coefficient, mm–1 2.196

F(000) 2872

Crystal size, mm 0.2 × 0.2 × 0.6

Range of θ angles, deg 1.63–25.05

Index range –29 ≤ h ≤ 29, 0 ≤ k ≤ 17, 0 ≤ l ≤ 18 

Number of reflections:

measured  5180

unique 4990 [Rint = 0.0277]

Method of refinement Full-matrix least-squares procedure

Ratio of the number of reflections to the number of parameters 4318/341

Goodness-of-fit on F2 1.007

R factors [I > 2σ(I)] R1 = 0.0685, wR2 = 0.2013 

R factors (for all reflections) R1 = 0.1012, wR2 = 0.2537

The highest peak and deepest minima on the zero difference synthesis, e Å–3 1.471 and – 0.702
parameters of hydrogen bonds. The values of the isotro-
pic thermal parameters of the hydrogen atoms were
fixed equal to 1.2Ueq of the corresponding C or O
atoms.

In the process of structure solution, it was found out
that the [ZnCl4]2– anion is disordered over two systems
of points in the vicinity of the twofold axis in space
group C2/c. One of the chlorine atoms, Cl(1), lies on
the twofold axis, and the remaining three chlorine
atoms and the Zn atom occupy general positions. This
disordering is apparently due to the formation of large
cavities in the crystal. The refinement revealed that the
positions of Zn, Cl(2), Cl(3), and Cl(4) atoms are pop-
ulated by less than 50%. This suggested that, along
with the [ZnCl4]2– anions, the crystal contains Cl– ions.
The final occupancies with due regard for the multiplic-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
ity of the special position are 0.40 for [ZnCl4]2– anions
and 0.10 for Cl– anions.

Main crystallographic parameters and structure
refinement details are summarized in Table 1. The
atomic coordinates are listed in Table 2.

Synthesis of [Fe3O(CH3COO)6(H2O)3]2[ZnCl4] ·
2H2O (I). Weighed portions of FeCl3 · 6H2O (5.40 g,
20 mmol) and CH3COONa (3.3 g, 40 mmol) were dis-
solved in 15 ml of water at room temperature. A portion
of solid (NH4)2ZnCl4 (6.0 g, 25 mmol) was added to the
solution obtained, and the mixture was allowed to stand
at room temperature until the solid salt completely dis-
solved. The solution was filtered and allowed to stand
in an open crystallization basin at room temperature.
Within 2–3 weeks, the crystals precipitated in the form
of “rosettes” composed of red-brown sticks.
0
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Table 2.  Atomic coordinates (×104) and equivalent isotropic thermal parameters Ueq (Å2 × 103) 

Atom x y z Ueq Atom x y z Ueq

Fe(1) 7303(1) 3681(1) 3202(1) 27(1) C(1F) 6386(3) 2554(5) 3559(4) 36(4)

Fe(2) 6848(1) 5803(1) 3161(1) 25(1) C(2F) 6236(4) 1779(5) 4097(6) 50(2)

Fe(3) 6022(1) 4116(1) 2327(1) 26(1) O(1) 6725(2) 4537(3) 2889(3) 25(1)

Zn 4570(1) 1217(2) 7536(2) 70(1) O(1W) 7970(2) 2807(4) 3555(3) 47(1)

Cl(1) 5000 –196(4) 7500 110(3) O(2W) 6946(2) 7199(3) 3409(3) 34(1)

Cl(2) 3843(3) 1191(5) 6382(4) 66(2) O(3W) 5267(2) 3678(4) 1651(3) 39(1)

Cl(3) 5151(3) 2273(6) 7317(8) 107(4) O(4W) 4805(4) –1926(7) 8769(10) 141(5)

Cl(4) 4206(5) 1538(8) 8739(6) 115(4) O(1A) 7880(2) 4497(4) 2920(4) 43(1)

Cl 4711(6) 968(9) 6680(9) 34(3) O(2A) 7599(2) 5930(3) 2964(4) 43(1)

C(1A) 7950(3) 5345(5) 2930(4) 30(1) O(1B) 7500(2) 4126(4) 4440(3) 51(2)

C(2A) 8510(3) 5690(6) 2920(6) 53(2) O(2B) 7166(2) 5538(3) 4424(3) 42(1)

C(1B) 7390(3) 4843(5) 4809(4) 33(2) O(1C) 6579(2) 6163(4) 1877(3) 38(1)

C(2B) 7549(4) 4869(6) 5796(5) 55(2) O(2C) 5922(2) 5131(4) 1428(3) 40(1)

C(1C) 6205(3) 5799(5) 1315(5) 37(2) O(1D) 6137(2) 6043(3) 3462(4) 41(1)

C(2C) 6079(5) 6199(8) 405(6) 81(4) O(2D) 5613(2) 4821(3) 3107(3) 34(1)

C(1D) 5739(3) 5556(5) 3499(4) 31(1) O(1E) 6294(2) 3293(4) 1500(3) 41(1)

C(2D) 5382(4) 5895(6) 4092(7) 58(2) O(2E) 7185(2) 3145(3) 1961(3) 32(1)

C(1E) 6748(3) 3060(4) 1392(4) 30(1) O(1F) 6012(2) 3061(4) 3164(3) 43(1)

C(2E) 6767(3) 2615(6) 536(4) 42(2) O(2F) 6880(2) 2645(3) 3545(3) 40(1)

Note: Ueq = 1.3ΣiΣjUijaiaj .ai
*ai

*

The crystalline precipitate was quickly filtered off
and washed with ethanol and diethyl ether (the yield
was 47%). The crystals were kept in a closed vessel,
because they lost water in air.

We failed to prepare the target product (I) by the
reaction of [Fe3O(CH3COO)6(H2O)3]Cl · 5H2O with
(NH4)2ZnCl4. This mixture gave a brown gelatinous
substance.

RESULTS AND DISCUSSION

Structure of the cationic complex. The structure of
the cation (Fig. 1) is typical of µ3-oxo carboxylate com-
plexes of transition metals [5, 9]. Three iron atoms are
situated at the corners of an almost regular triangle:
Fe(1)–Fe(2) is 3.288(2), Fe(1)–Fe(3) is 3.287(2), and
Fe(2)–Fe(3) is 3.295(2) Å. These distances are close to
those observed in [Fe3O(CH3COO)6(H2O)3][FeCl4] ·
2CH3COOH (3.296−3.302 Å) [16],
[Fe3O(CH3COO)6(H2O)3]NO3 · 4H2O (av. Fe–Fe is
3.29 Å) [14], [Fe3O(CH3COO)6(H2O)3]Cl · 6H2O
(3.285–3.295 Å) [17, 21], [Fe3O(C6H5COO)6(H2O)3] ·
3ClPyH · (CH3C6H4SO4)2 · 2H2O (3.283–3.324 Å) [18],
and other compounds containing either three Fe atoms
or the Fe2Cr or Fe2Co nuclei [9, 22–26].
C

Trinuclear clusters in the compounds of this type
owe their formation mainly to the bridges of two types:
The µ3-oxo atom is situated at the center of an almost
regular triangle and connects three Fe atoms. The Fe–
O(1) distances range between 1.897 and 1.903 Å. Three
iron atoms and the O(1) oxygen atom are coplanar. The
sum of bond angles at the O(1) atom is 360.0(2)°.

Six acetate ions act as bidentate syn-syn bridges [1]
and link pairs of iron atoms in the cluster. The Fe–O
distances are within 1.991–2.054 Å. Note that the par-
ticipation of carboxylate oxygens in the hydrogen-bond
system as acceptors (see below) naturally increases the
Fe–O bond lengths. Thus, the average Fe–O distance
for these atoms is 2.049 Å; for the remaining atoms,
2.005 Å.

Water molecules complete the coordination of iron
atoms; the Fe–O(H2O) distances are 2.068–2.087 Å.
Thus, the coordination polyhedron of iron is an octahe-
dron, and the coordination number is six. The Fe atoms
deviate from the equatorial plane of their octahedra
formed by four oxygen atoms by 0.159–0.182 Å toward
the µ3-O atom. The C–O distances in the carboxylate
groups have close values and range between 1.241 and
1.263 Å. The C–C(methyl) bond lengths are 1.514 Å.

The ZnCl4 anion has a tetrahedral structure. The
angles at the Zn atom range from 104.4(4)° to
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 1. Cationic complex [Fe3O(CH3COO)6(H2O)3]+.
118.0(3)°, and the range of Zn–Cl distances is 2.208–
2.331 Å.

System of hydrogen bonds in the crystal. The sys-
tem of hydrogen bonds (Table 3) interlinks
[Fe3O(CH3COO)6(H2O)3]+ cations, [ZnCl4]2– anions,
and outer-sphere water molecules in the 2 : 1 : 2 ratio
into corrugated layers parallel to the xy plane of the
crystal (Fig. 2). All of the three coordinated H2O mole-
cules act as proton donors. The cations are linked
through double O(3W)–H···O(2D) bridges of 2.875 Å
into dimers. The reference and symmetry-equivalent
(with coordinates 1 – x, y, 0.5 – z) cations that form such
associates are related by twofold axes parallel to the y
direction of the crystal. The dimers are linked into lay-
ers through hydrogen bonds O(1W)–H···O(1C) and
O(2W)–H···O(2E) 2.798 and 2.768 Å long, respec-
tively. The [ZnCl4]2– anions and the O(4W) water mol-
ecule play specific roles in the association of cations
within the layer. The O(1W)–Cl(4) and O(2W)–Cl(2)
bonds (Table 3) additionally link the neighboring cat-
ions within the layer. The Cl(1) atom of the anion per-
forms a similar function with the difference that it does
not contact the cations directly but is involved in the
O(3W)–H···O(4W)–H···Cl(1) scheme. One of the H
atoms of the O(4W) molecule is not involved in hydro-
gen bonding. This, apparently, results from the disor-
dering of the [ZnCl4]2– anion over two sites and its par-
tial replacement by the Cl– anion. The Cl– anions are
 REPORTS      Vol. 45      No. 3      200
not involved in the hydrogen-bond system. Probably,
the competition of the Cl– and [ZnCl4]2– anions during
the crystal growth is responsible for the disordering of
the latter ions. We cannot exclude that, along with Cl–

ions, some water amount is included in the packing.

Mössbauer spectra. The Mössbauer spectra of the
complex represent a doublet. The parameters of its
components are given in Table 4. The analysis of these
data allows us to conclude that the iron(III) ions in the
complex are in the high-spin state (S = 5/2) [27].

Table 3.  Characteristics of possible hydrogen bonds

Donor (D) ... Acceptor (A) D ... A, Å D–H ... A
angle, deg

O(1W)···O(1C) (1) 2.798(8) 134

O(1W)···Cl(4) (2) 3.226(8) 141

O(2W)···O(2E) (3) 2.768(8) 142

O(2W)···Cl(2) (4) 3.145(8) 153

O(3W)···O(2D) (5) 2.875(8) 161

O(3W)···O(4W) (6) 2.617(8) 158

Symmetry transformations for A: (1) 1.5 – x, – 0.5 + y, 0.5 – z;
(2) 0.5 + x, 0.5 – y, – 0.5 + z; (3) 1.5 – x, 0.5 + y, 0.5 – z; (4) 1 – x,
1 – y, 1 – z; (5) 1 – x, y, 0.5 – z; and (6) 1 – x, –y, 1 – z.
0
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Fig. 2. A fragment of the crystal structure of compound [Fe3O(CH3COO)6(H2O)3]2[ZnCl4] · 2H2O.
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Fig. 3. Mössbauer spectra of a complex powder at different temperatures.
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Lowering temperature results in the increase in iso-
mer shift due to the second-order Doppler effect, which
is usual for the 57Fe isotope [28]. No distinct change in
the value of the quadrupole splitting and, hence, in the
electric-field gradient, is observed upon substitution of
a [ZnCl4]2– anion for chlorine counterions. Apparently,
as predicted by quantum-chemical calculations
[29, 30], the major contribution to the value of quadru-
pole splitting is made by valence electrons rather than
by the lattice.

At room temperature, the doublet Mössbauer spec-
trum (Fig. 3) is distinctly asymmetric (the ratio of peak
intensities Ileft/Iright is 1.14), apparently, because of
relaxation processes [31].

IR spectra. In the IR spectrum of the complex con-
sidered, very broad absorption bands are observed in
the 3600–3000 cm–1 region. They are assigned to the
νOH stretching vibrations of the coordinated and crys-
tallization water molecules that are involved in hydro-
gen bonding. The intense absorption bands characteris-
tic of the acetate groups appear at ca. 1575 and
1440 cm–1. They are assigned to νas(COO–) and
νs(COO–), respectively [5]. The moderate band
assigned to the δ(OCO) vibrations is observed at ca.
665 cm–1. The vibrations characteristic of the Fe3O
fragment [νas(Fe3O)] [5] give rise to a moderate band at
600–610 cm–1.
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STRUCTURES OF COORDINATION COMPOUNDS

                  
Crystal Structure 
of catena-Poly[diaqua(m-iminodiacetato-N,O,O' : O'')cobalt(II)]
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Abstract—The crystal structure of the [Co(C4H5NO4)(H2O)2] complex has been determined by X-ray diffrac-
tion analysis (λMo, R = 0.0237 for 768 reflections). The crystals are orthorhombic, a = 14.345(1) Å, b =
5.234(1) Å, c = 9.780(1) Å, Z = 4, dcalcd = 2.045 g cm–3, and space group Pca21. The donor atoms (one N and
two O atoms) of the iminodiacetate ion (Ida) are located on the same octahedron face around the Co atom [Co–
N, 2.120(3) Å; Co–O, 2.063(3) and 2.151(3) Å]. The O atoms of two water molecules are in the trans positions
relative to the O atoms of the carboxylate groups [Co–O, 2.126(3) and 2.157(3) Å]. The sixth coordination site
is occupied by the O atom of the adjacent Ida ion [Co–O, 2.054(3) Å], which results in the formation of infinite
chains in the structure. © 2000 MAIK “Nauka/Interperiodica”.
EXPERIMENTAL

X-ray diffraction analysis of the cobalt(II) complex
with the iminodiacetate ion (Ida) was carried out. The
compound [Co(Ida)(H2O)2] (I) was prepared upon slow
cooling of a hot solution of equimolar amounts of
Co(CH3CO2)2 · 4H2O and HN(CH2CO2H)2. Crystals I
are orthorhombic, a = 14.345(1) Å, b = 5.234(1) Å, c =
9.780(1) Å, V = 734.30(9) Å3, Z = 4 (the formula unit
is C4H9CoNO6), dcalcd = 2.045 g cm–3 and space group
Pca21. The intensities of reflections were measured on
a Siemens P4 automated diffractometer (λMoKα,
graphite monochromator, 2θmax = 50°). The structure
was solved by the direct method and then was refined
by the full-matrix least-squares procedure in the aniso-
tropic approximation to R1 = 0.0237 and wR2 = 0.0607
for 768 reflections with I > 2σ(I). The positions of the
hydrogen atoms were determined at the final stage of
calculations. All the calculations were performed with
the use of the XP [1] and SHELXTL [2, 3] software
packages. The atomic coordinates and the equivalent
thermal parameters are listed in the table.

RESULTS AND DISCUSSION

The Co atom adopts a distorted octahedral coordina-
tion formed by three donor atoms (one N and two O
atoms located on the same octahedron face) of the Ida
ligand, the O(1w) and O(2w) oxygen atoms (in the
trans positions relative to the carboxylate O atoms) of
two water molecules, and the O(4A) atom of the adja-
cent Ida ion. Thus, the Ida ligand is bonded to two
Co(II) ions, and, each of them, in turn, coordinates two
Ida ligands, which results in the formation of the infi-
1063-7745/00/4503- $20.00 © 0422
nite chains [Co(Ida)(H2O)2]n (figure). Therefore, crys-
tals I have a polymeric structure. Each chain involves
the hydrogen bonds O(1w)–H···O(3') (1 – x, 1 – y, 1/2 +
z) 2.932(5) Å, and particular chains are linked together
into a three-dimensional network through the hydrogen
bonds O(2w)–H···O(2') (1/2 + x, 1 – y, z) 2.659(4) Å
and O(2w)–H···O(4') (1 – x, –y, 1/2 + z) 2.931(5) Å.

The completely deprotonated ion Ida acts as a tri-
dentate ligand virtually in all the known complexes
with metal ions (the bidentate coordination of the Ida
ion was described, for example, in [4]). To the best of
our knowledge, among the M(Ida)-type complexes
containing no additional ligands (except water mole-

Atomic coordinates (×104) and equivalent isotropic thermal
parameters (×103, Å2)

Atom x y z Ueq

Co 4356(1) 3782(1) 5045(1) 19(1)

O(1) 3444(2) 6683(5) 5540(4) 28(1)

O(2) 2088(2) 8403(5) 5026(6) 37(1)

O(3) 4672(2) 5363(5) 3068(3) 25(1)

O(4) 4586(2) 4104(5) 896(3) 26(1)

O(1w) 3946(3) 1399(7) 6698(4) 31(1)

O(2w) 5302(2) 783(7) 4441(4) 28(1)

N 3202(2) 2598(7) 3850(4) 20(1)

C(1) 2477(3) 4575(9) 3908(5) 28(1)

C(2) 2686(2) 6695(6) 4913(5) 25(1)

C(3) 3574(3) 2137(8) 2466(5) 24(1)

C(4) 4332(2) 4035(7) 2138(5) 20(1)
2000 MAIK “Nauka/Interperiodica”
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O(4A)Co(A)

O(4B)Co(B)

O(2w)

O(1w)

O(1) C(2)

Co

O(3)
C(4)

O(4)

O(2)

C(3)

C(1)

N

A fragment of the [Co(Ida)(H2O)2]n chain. Bond lengths (Å): Co–O(1w), 2.126(3); Co–O(2w), 2.157(3); Co–O(1), 2.063(3); Co–
O(3), 2.151(3); Co–O(4A), 2.054(3); and Co–N, 2.120(3). Bond angles: O(3)CoN, 77.4(1)° and O(1)CoN, 81.3(1)°. Symmetry
transformation for the O(4A) atom: 1 – x, 1 – y, z + 1 / 2.
cules or hydroxyl ions), only the crystals of
[Cu(Ida)(H2O)2] [5, 6] and [Al2(µ-OH)2(Ida)2(H2O)2] ·
2H2O [7] have hitherto been characterized structurally.
The former crystals, like I, involve chain polymers,
whereas the latter crystals consist of the hydroxo-
bonded dimers. As regards the Co(II) complexes with
the Ida ion, only the structure containing the discrete
ions [Co(Ida)2]2– was described in the literature [8].
The bond lengths and angles in the coordination octa-
hedron of the Co(II) ion in structure I are comparable
to those in the [Co(Ida)2]2– ion [8] or complexes with a
related ligand—the nitrilotriacetate ion [9].
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Abstract—The X-ray crystal structure of calcium (ornithinato-N(α)N(δ)N(δ)-triacetato)cobaltate(III) octahy-
drate Ca[Co(Orntra)]2 · 8H2O has been determined. The crystals are orthorhombic, a = 21.163(4) Å, b =
8.391(2) Å, c = 19.101(4) Å, V = 3391.9(9) Å3, Z = 4, and space group Pca21. In the trinuclear linear molecule
[Co(µ-Orntra)]2Ca(H2O)5, two independent anions [Co(Orntra)]– are joined with the Ca2+ cation by the bridg-
ing bonds through the terminal O atoms. In each [Co(Orntra)]– anion, the Co atom occurs in the octahedral
environment of two N atoms and four O atoms of the Orntra ligand and closes four five-membered and one
seven-membered chelate rings. Two O atoms of two anions occupy axial vertices in a pentagonal bipyramid of
the Ca2+ ion. Five O(H2O) atoms are located in the equatorial plane. The asymmetric C atoms in the anions
bound to the same Ca2+ cation have an identical absolute configuration. The crystal involves the molecules
belonging to both configurations. The coordinated and outer-sphere H2O molecules participate in an extended
system of hydrogen bonds. © 2000 MAIK “Nauka/Interperiodica”.
The most abundant chelating compound—ethylene-
diaminetetraacetic acid H4Edta—is comprised of 1,2-
ethanediamine with two carbon atoms between nitro-
gen atoms. There exist Edta analogues based on 1,3-
propanediamine (1,3-Pdta) and 1,4-butanediamine
(1,4-Bdta), in which the bridge between nitrogen atoms
consists of three or four carbon atoms. Ornithine
H2N(δ)–(CH2)3–CH(COOH)N(α)H2 (HOrn), which
belongs to the natural amino acids, involves two nitro-
gen atoms linked by a chain of four carbon atoms. This
amino acid can be used in synthesis of the diaminopo-
lycarboxylate ligands. In order to obtain an Edta ana-
logue, i.e., a hexadentate ligand, three carboxyalkyl
groups should be attached to the nitrogen atoms. The
synthesis of the cobalt(III) complex with the ornithine-
triacetate (Orntra) ion was described in [1]. The Orntra
ion can occur in two isomer forms differing in the dis-
tribution of three acetate groups over two nonequiva-
lent nitrogen atoms of the ornithine fragment. Reason-
ing from the 1H NMR spectrum, it was assumed that
two acetate groups are attached to the N(α) atom [1]. In
the present work, we attempted to verify this assump-
tion and to reveal the general structural features of the
Orntra ligand in the octahedral complex. For this pur-
pose, we prepared single crystals of Ca[Co(Orntra)]2 ·
8H2O (I) and determined their structure by the X-ray
diffraction analysis.
1063-7745/00/4503- $20.00 © 20424
EXPERIMENTAL
Synthesis of compound I. Complex I was synthe-

sized from the Ba[Co(Orntra)]ClO4 compound accord-
ing to the procedure described in [1]. A solution of
Ba[Co(Orntra)]ClO4 was passed through a column
with a cation in the H+ form, and the eluate was neutral-
ized by calcium carbonate. A slow evaporation of the
obtained solution resulted in the precipitation of crys-
tals I.

X-ray diffraction analysis. Compound I crystal-
lizes in the orthorhombic crystal system. The unit cell
parameters are as follows: a = 21.163(4) Å, b =
8.391(2) Å, c = 19.101(4) Å, V = 3391.9(9) Å3, M =
906.5, F(000) = 1880, dcalcd = 1.775 g/cm3, µ(åÓ)  =
1.23 mm–1, Z = 4, and space group Pca21.

A set of experimental data for X-ray structure anal-
ysis was collected on a Syntex P21 automated diffracto-
meter (λåÓKα, graphite monochromator, θ/2θ scan
mode, 2θ ≤ 60°). A total of 6454 reflections were mea-
sured, of which 6433 reflections with F ≥ 4σ(F) were
used in the structure refinement.

The structure was solved by the heavy-atom
method. Hydrogen atoms of the ligand were specified
from geometric considerations at a distance of 0.96 Å
from the corresponding basis atoms and refined with
them according to the riding-atom model with the same
isotropic thermal parameter equal to 0.08 Å2. The
000 MAIK “Nauka/Interperiodica”
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Table 1.  Atomic coordinates and thermal parameters Ueq in structure I

Atom x y z Ueq, Å2

Ca 0.1827(1) 0.4228(2) 0 0.0417(3)
Co(1) 0.35977(4) 0.0049(1) 0.1834(1) 0.0317(2)
Co(2) –0.06418(4) 0.4845(1) –0.1681(1) 0.0327(2)
N(1a) 0.3794(3) 0.0068(8) 0.0834(3) 0.038(1)
N(2a) 0.4012(3) –0.1916(7) 0.2125(3) 0.036(1)
O(1a) 0.4346(3) 0.1211(7) 0.1978(3) 0.041(1)
O(2a) 0.5070(3) 0.264(1) 0.1420(4) 0.059(2)
O(3a) 0.3128(3) 0.1914(6) 0.1608(3) 0.039(1)
O(4a) 0.2544(4) 0.2930(8) 0.0757(4) 0.058(2)
O(5a) 0.3404(3) 0.0357(6) 0.2787(3) 0.039(1)
O(6a) 0.3681(4) –0.038(1) 0.3852(4) 0.064(2)
O(7a) 0.2852(2) –0.1180(6) 0.1738(3) 0.041(1)
O(8a) 0.2475(3) –0.3608(8) 0.1945(4) 0.054(1)
C(1a) 0.4604(4) 0.178(1) 0.1416(4) 0.044(2)
C(2a) 0.4293(4) 0.132(1) 0.0727(4) 0.046(2)
C(3a) 0.2916(4) 0.195(1) 0.0972(4) 0.041(1)
C(4a) 0.3189(4) 0.064(1) 0.0502(4) 0.042(1)
C(5a) 0.3707(4) –0.0527(9) 0.3226(4) 0.042(1)
C(6a) 0.4121(5) –0.179(1) 0.2892(4) 0.047(2)
C(7a) 0.2914(4) –0.2679(9) 0.1884(5) 0.044(1)
C(8a) 0.3601(4) –0.3267(8) 0.1916(5) 0.043(2)
C(9a) 0.3780(5) –0.396(1) 0.1207(6) 0.053(2)
C(10a) 0.3641(5) –0.294(1) 0.0571(6) 0.058(2)
C(11a) 0.4034(4) –0.143(1) 0.0470(5) 0.048(2)
N(1b) –0.1325(3) 0.4505(8) –0.2353(3) 0.037(1)
N(2b) –0.0104(3) 0.3056(7) –0.1887(4) 0.040(1)
O(1b) –0.0236(3) 0.6069(7) –0.2372(3) 0.042(1)
O(2b) –0.0401(3) 0.7333(9) –0.3379(4) 0.058(2)
O(3b) –0.1157(3) 0.6587(7) –0.1385(3) 0.046(1)
O(4b) –0.2183(4) 0.716(1) –0.1263(5) 0.072(2)
O(5b) –0.0020(3) 0.5444(7) –0.1024(3) 0.043(1)
O(6b) 0.0958(4) 0.4996(9) –0.0680(4) 0.061(2)
O(7b) –0.1003(3) 0.3539(7) –0.0975(3) 0.040(1)
O(8b) –0.0958(3) 0.1134(7) –0.0508(3) 0.052(1)
C(1b) –0.0574(4) 0.645(1) –0.2903(4) 0.043(2)
C(2b) –0.1240(4) 0.574(1) –0.2921(5) 0.047(2)
C(3b) –0.1754(4) 0.634(1) –0.1494(4) 0.044(2)
C(4b) –0.1906(4) 0.490(1) –0.1946(5) 0.043(1)
C(5b) 0.0503(4) 0.471(1) –0.1063(5) 0.045(2)
C(6b) 0.0541(3) 0.3450(9) –0.1614(5) 0.046(2)
C(7b) –0.0802(4) 0.210(1) –0.0959(4) 0.041(1)
C(8b) –0.0370(4) 0.1588(9) –0.1569(4) 0.041(1)
C(9b) –0.0777(4) 0.066(1) –0.2074(5) 0.047(2)
C(10b) –0.1424(2) 0.140(1) –0.2252(5) 0.048(2)
C(11b) –0.1406(4) 0.290(1) –0.2724(5) 0.044(2)
O(w1) 0.1064(4) 0.224(1) 0.0386(5) 0.070(2)
O(w2) 0.2039(3) 0.2211(8) –0.0850(4) 0.056(1)
O(w3) 0.2786(4) 0.4950(9) –0.0611(5) 0.067(2)
O(w4) 0.1954(5) 0.723(1) –0.0086(5) 0.078(2)
O(w5) 0.1449(4) 0.543(1) 0.1099(4) 0.065(2)
O(w6) 0.2038(3) 0.3795(9) –0.2142(4) 0.059(2)
O(w7) –0.0900(5) 0.607(1) 0.5304(6) 0.088(3)
O(w8) 0.0071(6) 0.639(2) 0.4433(7) 0.103(3)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



426 ANTSYSHKINA et al.
O(2b)

C(1b)

C(2b)

C(11b) Co(2)

O(1b)

N(2b)

O(4b)

C(3b)

N(1b)

C(4b)

O(3b)

C(6b)

O(5b)

C(8b)

C(7b)

O(8b)

O(7b)

C(9b)

C(10b)

C(5b) O(6b)

O(w4)
O(w2)

O(w3)

O(w1)
O(w5)

Ca
O(4a)

O(3a)

O(7a)

O(8a)

C(3a)

C(4a)

N(1a) O(10a)

C(11a)

C(2a)
O(2a)

O(1a)

C(1a)

C(9a)

N(2a)

C(8a)
C(6a)

C(5a)

O(6a)

O(5a)

C(7a)

Co(1)

Fig. 1. A general view of neutral molecule I.
hydrogen atoms of H2O molecules were not located.
The non-hydrogen atoms were refined by the full-
matrix least-squares procedure in the anisotropic
approximation. The final values were as follows: R1 =
0.0408 (0.045 for 6454 reflections), wR2 = 0.099, and
GOOF = 1.046.

The calculations were performed on a Pentium-75
IBM computer according to the SHELXL93 [2] soft-
ware package.

Table 1 lists the atomic coordinates.

RESULTS AND DISCUSSION

The trinuclear linear molecules [Co(µ-Orn-
tra)]2Ca(H2O)5 (Fig. 1) and the crystallization water
molecules are the structural units of the crystals. In the
molecular complex, the two independent anions
[Co(Orntra)]– are joined with the Ca2+ cation by the
bridging bonds through the terminal O atoms. Five H2O
molecules are coordinated to the Ca2+ cation. In each
[Co(Orntra)]– anion, the Co atom occurs in the octahe-
dral environment of two N atoms and four O atoms of
the Orntra ligand, thus closing four five-membered and
one seven-membered chelate rings. In both anions, two
acetate groups are attached to the N(δ) (N(1a,1b)) atom,
and one acetate group is bound to the N(α) (N(2a,2b))
atom. These findings disprove the assumption on the
distribution of these groups, which was made in [1]
from the analysis of the 1H NMR spectra of [Co(Orn-
tra)]– ions in acid solutions.

In both anions, the seven-membered chelate rings
formed upon chelation of the Orntra4– ligand are
completely identical. In each chelate ring (Fig. 2), it
is possible to distinguish a triangular fragment
involving the central metal atom and the N atoms
bonded to it. The rest of the chelate ring, i.e., the
C

N(1)N(2)C(8)C(9)C(10)C(11) fragment, represent a
certain invariant of seven-membered rings, because this
fragment retains its configuration from compound to
compound. The six-membered fragment with the
approximate C2 symmetry involves the planar trapezoid
N(1)N(2)C(9)C(10) depicted by dashed lines in Fig. 2.
The C(8) and C(11) atoms in the ring deviate from the
trapezoid plane in opposite directions by approxi-
mately the same distances. The most essential differ-
ence in conformations of the seven-membered rings in
different compounds is the deviation of the six-mem-
bered fragment (and its trapezoid part) from the plane
of the central NCoN core. Table 3 presents the selected
parameters characterizing the seven-membered chelate
rings in compounds: cis-[Co(NO2)2(Tmd)2](NO3) ·
nH2O (II) and trans-[Co(NO2)2(Tmd)2](NO3) · nH2O

C(11)

C(10) C(9)

C(8)

N(2)
N(1)

Co

Fig. 2. Projection of the seven-membered ring onto the
plane of characteristic trapezoid (depicted by dashed lines).
The C(8) and C(11) atoms are deviated from the figure plane
in opposite directions (see Table 3).
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Table 2.  Parameters characterizing the conformation of seven-membered chelate rings in cobalt(III) compounds

Compound C–C, Å N···N, Å ∆Å ∆C(8) ∆C(11) ∆Co ∠ NCoN Reference

IIa 1.52 2.84 0.01 0.76 –0.76 0.00 93° [3]

IIb* 1.508 2.88 0.01 0.75 –0.75 0.02 92° [3]

IIc 1.51 2.85 0.03 0.78 –0.78 0.08 92° [3]

IId 1.515 2.84 0.02 0.75 –0.79 0.12 93° [3]

IV* 1.517 3.16 0.05 0.62 –0.70 0.17 105° [4]

IIIa 1.524 2.87 0.02 0.63 –0.77 0.57 93° [3]

IIIb* 1.525 2.87 0.03 0.60 –0.75 0.69 93° [3]

Va 1.567 2.91 0.01 0.75 –0.79 0.79 95° [5]

Vb 1.581 2.905 0.04 0.81 –0.82 0.73 96° [5]

Ia* 1.512 3.01 0.02 0.69 –0.74 0.83 101° This work

Ib 1.504 2.99 0.03 0.68 –0.74 0.82 101° This work

Note: ∆ is the root-mean-square deviation of atoms of the central trapezoid N(1)C(9)C(10)N(2); and ∆C(8), ∆C(11), and ∆Co are the devi-
ations of atoms (or their analogues taken from the cited works) from the trapezoid plane (in Å).

       * The data correspond to Fig. 3.

Table 3.  Conformations of the chelate rings in the [Co(Orntra)]– anions

[Co(1)(Orntra)]–

Parameter N(δ) N(α)

G ring R ring G ring R ring

Co(1)N(1)C(4)C(3)O(3) Co(1)N(1)C(2)C(1)O(1) Co(1)N(2)C(6)C(5)O(5) Co(1)N(2)C(8)C(7)O(7)

Q, Å 0.48 0.20 0.23 0.26

ϕ, deg 22.7 24.4 21.8 242.1

Conformation T12 T12 T12 T23  –E3

[Co(2)(Orntra)]–

G ring R ring G ring R ring

Co(2)N(1)C(4)C(3)O(3) Co(2)N(1)C(2)C(1)O(1) Co(2)N(2)C(6)C(5)O(5) Co(2)N(2)C(8)C(7)O(7)

Q, Å 0.48 0.21 0.23 0.23

ϕ, deg 22.3 23.0 30.9 229.9

Conformation T12 T12  –E2  T12 T23  E2
(III) (where Tmd is 1,4-butanediamine) [3],
[Co(Dbata)][Mg(H2O)6] (IV) (where Dbata is the 1,4-
butanediamine N,N,N',N'-tetraacetate) [4], and the
[Co(Orn)2]+ cation (where HOrn is ornithine) [5]. Fig-
ure 3 demonstrates the structures of the known Co(III)
complexes in the same aspect, which permits one to
visually assess the degree of deviation of the six-mem-
bered fragment from the conventionally equatorial
plane of the corresponding octahedral complexes. In
the aforementioned compounds, the tilt angle τ of the
invariant fragment of the ring, i.e., the angle of folding
along the N(1)···N(2) straight line, varies from 0° to
42°. Until presently, all attempts to reveal the regularity
of variations in this parameter have failed, because no
correlation is observed even with such a seemingly
characteristic parameter as the N(1)CoN(2) angle.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
Hence, a pronounced correlation between the τ angle
and the type of complexing metal cannot be expected as
well. Most likely, this parameter is affected by external
factors such as steric hindrances (for example, the
effect of van der Waals interactions of the axial NO2

groups in the trans-[Co(NO2)2(Tmd)2]+ cation [3]). The
largest angles τ = 42.2° and 41.5° are observed in both
cationic complexes of the studied compound I (Fig. 3),
which is apparently due to the participation of the C(8)
atom in the formation of the adjacent “rigid” five-mem-
bered ring. As follows from Table 3, the five-membered
ring, in turn, undergoes a strong deformation. In all the
compounds presented in Table 2, the six-membered
fragment of the seven-membered chelate ring adopts
the conformation of a slightly distorted chair, which,
probably, is the most appropriate for the relaxation of
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Fig. 3. Evolution of the conformation of the seven-membered chelate rings in cobalt(III) compounds. Fragments of the complexes:
(a) cis-[Co(NO2)2(Tmd)2]2+ (Tmd is 1,4-butanediamine) [3], (b) [Co(Dbata)]2– (Dbata is the 1,4-butanediamine N,N,N',N'-tetraac-
etate) [4], (c) trans-[Co(NO2)2(Tmd)2]2+ [3], and (d) [Co(Orn)2]+ (Horn is ornithine) [5] and this work.
thermal vibrations and the van der Waals interactions of
the adjacent complexes. A similar situation is also
observed in seven-membered rings with a different com-
position, for example, CaOCNCCO in the calcium com-
pound with oxamidediacetic acid [Ca(Oada)(ç2é)2] ·
2ç2é [6].

Table 3 lists the Q and ϕ parameters characterizing
the ring conformation according to Cremer and Pople
[7], which were calculated for the [Co(1)(Orntra)]– and
[Co(2)(Orntra)]– anions. It is evident that the glycinate
rings at the N(δ) atom in both anions correspond in the
degree of deformation to the rings in the [Co(Edta)]–

complexes [8]: Q = 0.40–0.49 Å for the equatorial G
rings (in the N–Co–N plane) and 0.07–0.19 Å for the
axial R rings. Although the glycinate rings at the N(α)
atom correspond in their position to the G rings in the
[Co(Edta)]– ion, they are distorted to a considerably
C

lesser extent. As expected, the C atoms in the chelate
rings are located on the same side of the NCoO plane.
The conformations of the chelate rings can be more rig-
orously described with the use of the ϕ coefficient and
the conformations of the five-membered rings from the
table given in [9]. The ideal values of ϕ for the T12, T23,
E2, and E3 conformations are equal to 18°, 234°, 216°,
and 252°, respectively.

For both anions, the endocyclic angles in the glyci-
nate rings at the N(δ) atom are not identical to each
other, which is characteristic of the [Co(Edta)]– com-
plexes. For example, the endocyclic angles in the G
rings are somewhat less than those in the R rings (83.3°
and 87.6°, respectively). In the other part of the com-
plex (the rings involving the N(α) atom), this difference
is not observed, and all the angles fall in the range
86.1°–86.6°.
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Fig. 4. Projection of structure I onto the (010) plane. The double column (consisting of the complexes with different absolute con-
figurations) perpendicular to the figure plane is shaded. The numbering of hydrogen bonds corresponds to that in Table 4.
The lengths of the bonds Co–N (1.925–1.955 Å)
and Co–O (1.880–1.904 Å) in structure I correspond to
the normal values. There is a difference in lengths of
the C–O bonds for the oxygen atoms involved and not
participating in the cobalt coordination: the mean
length of the C–Ocoord bonds is equal to 1.29 Å, and the
mean length of the C–Oterminal bonds is 1.22 Å. Note
also a certain decrease in the difference between the C–
O bond lengths for one group bound to the Ca2+ ion
[C(5b)–O(5b), 1.23 Å and C(5b)–O(6b), 1.27 Å].
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As already mentioned, in the trinuclear molecular
unit {[Co(µ-Orntra)]2Ca(H2O)5} (Fig. 1), the two inde-
pendent anionic complexes are joined together through
the central Ca2+ cation. These anions are bound to the
Ca2+ cation through the terminal oxygen atoms of the
glycinate rings. These are the O(4a) oxygen atom of the
acetate group attached to the N(δ) atom in the
[Co(1)(Orntra)]– anion and the O(6b) oxygen atom of
the acetate group attached to the N(α) atom in the
0
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Fig. 5. Structure of the column (along its axis) in projection onto the central plane passing through the Co(1) and Co(2) atoms.
[Co(2)(Orntra)]– anion. Therefore, each Orntra4–

ligand fulfills a heptadentate (2N + 5O) function—the
hexadentate (2N + 4O) function with respect to the rel-
evant Co atom and the bridging (µ-O) function relative
to the Ca atom. The O(4a) and O(6b) atoms occupy the
axial positions in the coordination polyhedron of the
Ca2+ ion, which has the shape of a pentagonal bipyra-
mid with the equatorial plane formed by the oxygen
atoms of five H2O molecules. The deviations of the
equatorial oxygen atoms from the mean plane fall in the
range from –0.52 to 0.63 Å. The Ca atom lies in this
mean plane. The bipyramid axis is somewhat bent: the
O(4)CaO(6) angle is equal to 166°. The Ca–O(Orntra)
distances to the axial oxygen atoms (2.342 and
2.364 Å) are somewhat shorter than the equatorial Ca–
O(H2O) bonds (the mean length is 2.449 Å). A similar
structure of the Ca polyhedron with about the same
ratio between lengths of the axial and equatorial Ca–O
bonds is observed in the compounds Ca[Mo2O4(Edta)] ·
9H2O [10] and [Ca(H2O)7][Co(Edta)] [8]. In the former
compound, the axial Ca–O bonds are equal to 2.300
and 2.334 Å, and the equatorial Ca–O bonds are, on
average, 2.402 Å. In the latter compound, the corre-
sponding values are equal to 2.350, 2.344, and 2.422 Å,
respectively.
C

The asymmetric C(8) carbon atoms in both anions
bound to the same Ca2+ cation adopts an identical abso-
lute configuration (either S or R). In the crystal, the
number of molecules belonging to the S configuration
is equal to that of the R configuration, which corre-
sponds to the racemic ornithine employed in the syn-
thesis.

Figure 4 shows the packing of the neutral dumbbell-
like molecules Ca(H2O)5[Co(Orntra)]2. If we visualize
that the Ca2+ cations (they form chains along the coor-
dinate y-axis aligned perpendicular to the figure plane)
are isolated from the structure, then the columns con-
sisting of double complexes and lying along the same
direction will clearly manifest themselves in the
remaining anionic part. One of these columns is shaded
in Fig. 4. Two crystallographically independent anions
take part in the formation of columns. Figure 5 depicts
the projection of the column onto the plane passing
through the Co(1) and Co(2) atoms and lying parallel to
the y-axis. This plane (perpendicular to the plane of
Fig. 4) is rather arbitrarily oriented in the unit cell. It
can be seen from Fig. 5 that the anions in the column
are related by the glide reflection pseudoplane; i.e., the
crystallographically independent anionic complexes
[Co(1)(Orntra)]– and [Co(2)(Orntra)]– belonging to
different molecules are the geometrical isomers and, as
mentioned above, have different absolute configura-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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tions. The hydrogen bonds N–H···O(1)[O(2)] (Table 4,
nos. 18, 19) are primarily responsible for the column
formation. It seems likely that, under the external
action associated with the cations, the H atom at the
N(α) atom [the distance to the terminal atom
N(2b)···O(2b) is equal to 3.11 Å] is switched to the
interaction with another (less convenient for this pur-
pose) coordinated O(1) atom of the carboxyl group of
the adjacent complex in the chain [the distance
N(2a)···O(1a) is 3.16 Å].

All the other hydrogen bonds are formed with the
participation of at least one oxygen atom located out-
side the column associates (Table 4, nos. 1–17), and
none of the hydrogen bonds acts directly between the
columns. This indicates that all the water molecules,
including the molecules surrounding the Ca2+ cations,
are located in cavities (channels) between four different
columns of the anionic complexes. The water mole-
cules have a rather random arrangement, so that the
molecules with quite similar bonds and functions can-
not be distinguished. All the water molecules are inter-
linked by the hydrogen bonds. The strongest hydrogen
bond [O(w7)···O(w8), 2.65 Å] is realized between the
molecules located outside the coordination sphere of
the Ca2+ cation. These H2O molecules, together
with the Ca2+ cations, form original aquacationic
channels penetrating the structure along the y-axis
between rather symmetrically arranged anionic col-
umns. Actually, the columns of oval cross-section are
slightly rotated with respect to each other (at the right
of Fig. 4) and exhibit a close packing with a quadratic
motif. The motif of aquacationic channels more closely
resembles a hexagonal one. The structure, as a whole,
is intermediate between these two radically different
structures.

There are good grounds to believe that the formation
of column associates is the first stage of forming crys-
tals I, followed by the cocrystallization (together with
the Ca2+ cations) of the neutral product from an aque-
ous solution. Owing to their sufficient mass and shape
(extension in a certain direction), the associates consti-
tute the basis of the crystal. The cations surrounding by
water molecules form the aquacationic channels, move
the columns apart, rotate them relative to each other,
and partially affect the internal structure of the associates
(the aforementioned redistribution of hydrogen bonds),
thus breaking the possible higher symmetry of the crys-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
tal. These mutual effects are responsible for the forma-
tion of the neutral molecular structure of crystals I.
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Table 4.  Hydrogen bonds in structure I

No. A···B bond d(Å) No. A···B bond d(Å)

1 O(w1)····O(2a) 2.89 11 O(w6)····O(3a) 2.89

2 O(w1)····O(w7) 2.81 12 O(w6)····O(8a) 2.98

3 O(w2)····O(w6) 2.81 13 O(w7)····O(6a) 2.97

4 O(w2)····O(6a) 2.72 14 O(w7)····O(2b) 2.93

5 O(w3)····O(4b) 2.73 15 O(w7)····O(w8) 2.65

6 O(w3)····O(8b) 2.82 16 O(w8)····O(5b) 2.80

7 O(w5)····O(8a) 2.82 17 O(w8)····O(8b) 2.83

8 O(w5)····O(2b) 3.07 18 N(2a)····O(2b) 3.16

9 O(w4)····O(w7) 2.75 19 N(2b)····O(1a) 3.11

10 O(w4)····O(4b) 2.94
0
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STRUCTURES OF COORDINATION COMPOUNDS
An Unusual Function of the Anion of 1-Hydroxyethane-1,1-
Diphosphonic Acid (H4L): Crystal Structure 
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Abstract—Crystals of [Ni(Phen)3](H3L)2 · 2H2O (H4L is 1-hydroxyethane-1,1-diphosphonic acid) have been
synthesized, and their structure has been determined by X-ray diffraction analysis. The cationic complexes
[Ni(Phen)3]

2+, the centrosymmetric dimeric anions H7  and H5 , and the molecules of crystallization

water are the structural units of the crystal. The outer-sphere function of the H4L anions in transition metal com-
pounds and also the presence of differently charged dimeric anions are revealed for the first time. The structural
units are joined together by an extended system of hydrogen bonds, including symmetric (or pseudosymmetric)
hydrogen bonds in dimeric anions (O···O, 2.436 and 2.466 Å). The Ni–N(Phen) bond lengths fall in the range
2.074–2.107 Å. The compound has the structural formula [Ni(Phen)3](H7L2)0.5(H5L2)0.5 · 2H2O. © 2000 MAIK
“Nauka/Interperiodica”.

L2
–

L2
3–
The crystal structures of a number of 3d-metal com-
plexes have been determined in the systematic investi-
gation into the properties and structure of the
compounds based on 1-hydroxyethane-1,1-diphospho-
nic acid CH3C(OH)(PO3H2)2 (H4L). The metal-to-
ligand ratio, specific features of the central atom (M)
and the outer-sphere cation, and the presence
(or  absence) of the second ligand are responsible for
the realization of a particular structural type, coordina-
tion modes of the H4 – nLn– ligand, geometric isomers, a
certain degree of distortion of six-vertex polyhedron,
etc. Specifically, the monomeric complexes with the
ratio M : L = 1 : 2 have a trans octahedral structure both
in complexes of the isostructural series
[(C2H5)2NH2]2[M(H2O)2(H2L)2] (where M = Cu [1],
Co [1], Zn [2], Mg [2], Ni* [2], and Mn* [2]) and in the
compound β-[Cu(H2O)2(H3L)2] · 3H2O [3] and also a
cis octahedral structure both in complexes of the isos-
tructural series [(HOCH2CH2)3NH][M(H2O)2(H2.5L)2] ·
5H2O (where M = Cu [4], Mn* [4], Mg* [4], Zn [5],
Co* [5], and Ni* [5]) and in the compound
(NH4)2[Ni(H2O)2(H2L)2] · 7H2O [6].1 In all these com-
plexes, the H4 – nLn– ligands fulfill a bidentate-chelating
function. However, two compounds of the general for-
mula Cat2Cu(H2L)2 · 2H2O (where Cat2 = (NH4)2 [7]
and (H5O2)Rb [8]), which are similar in composition to
the aforementioned monomeric complexes, exhibit a

1 For six compounds marked by an asterisk, only the unit cell
parameters have been determined.
1063-7745/00/4503- $20.00 © 20432
polymeric chain structure, such as [Cu(µ2-H2L)2 ,

with a tridentate chelate–bridging function of the H2L2–

ligands. The same polymeric chain structure, but with a
different (tetradentate chelate–bridging) function of the
H2L2– ligand was revealed for two copper(II) com-
pounds with the ratio Cu : L = 1 : 1. In this case, the
presence of the second ligand determines the coordina-
tion number of the metal. In the Na[Cu(H2L)Cl] · 3H2O
structure [9], the chlorine atom is the bridging ligand,
and the copper atom is located at the center of a (4 + 2)
elongated tetragonal bipyramid in the anionic complex
[Cu(µ2-H2L)(µ2-Cl) . In the [Cu(H2O)(H2L)] ·

3.5H2O structure [10], the H2O terminal ligand com-
pletes the copper(II) five-vertex polyhedron [a (4 + 1)
tetragonal pyramid] in the neutral complex
(Cu(H2O)(µ2-H2L)]∞.

In aqueous solutions at low pH, nickel(II) and
1-hydroxyethane-1,1-diphosphonic acid form proto-
nated complexes [11–14], specifically the [Ni(H2L)2]2–

( Kst = = 4.03) [14]. It is evident that the introduc-
tion of 1,10-phenanthroline (Phen) into these solutions
in the molar ratio Ni(II) : Phen = 1 : 3 and more leads
to the formation of the thermodynamically stable cat-
ionic complex [Ni(Phen)3]2+ ( Kst = 23.9), and the
H4L anion is displaced into the outer sphere of the com-
plex.

In this work, we synthesized the Ni(Phen)3(H3L)2 ·
2H2O compound (I), which was isolated from an aque-

]∞
–

log

log
000 MAIK “Nauka/Interperiodica”
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ous solution, and determined its structure by the X-ray
diffraction analysis. According to the X-ray diffraction
data, the structural formula of I is represented as
[Ni(Phen)3](H7L2)0.5(H5L2)0.5 · 2H2O.

EXPERIMENTAL

Synthesis. A weighed portion of H4L · H2O (2.24 g,
0.01 mol) was dissolved in water (10 ml), and nickel(II)
carbonate hydroxide tetrahydrate (0.62 g, 0.0025 mol;
Ni content, 47.00%) was added portionwise with stir-
ring. The suspension was heated to the complete disso-
lution of the precipitate:

The obtained solution was added to a green solution of
Phen · H2O (2.97 g, 0.015 mol) and then was heated to
the complete dissolution of 1,10-phenanthroline:

Prismatic crystals of complex I precipitated upon slow
evaporation of the red solution. The solution was
poured out, crystals were quickly washed with cooled
water, wrung out using a paper filter, and dried in air at
room temperature to a constant weight. Crystals suit-
able for X-ray structure analysis were chosen from the
resulting crystal samples.

According to the chemical analysis, polycrystalline
compound I has the composition Ni(Phen)3(H3L)2 ·
2H2O, which coincides with the composition deter-
mined by X-ray diffraction analysis for the single crys-
tal.

For C40H42N6NiO16P4 anal. calcd. (%): C, 45.96; H,
4.05; Ni, 5.61; L4–, 38.65.

Found (%): C, 46.3; H, 4.2; Ni, 5.4; L4–, 38.5.
Chemical analysis. The carbon and hydrogen con-

tents in complex I were determined on a CHN analyzer.
The nickel content was found by the chelatometric
technique after the thermal decomposition of the com-
plex at 800°C.

The anion in the nickel(II) complexes with H4L can
be quantitatively determined using the modified proce-
dure, which was described in [15], with 1,10-phenan-
throline as a reagent masking nickel(II) [16]. Nickel(II)
1-hydroxyethane-1,1-diphosphonate (50–100 mg) was
dissolved in water (20 ml). 1,10-Phenanthroline mono-
hydrate was added in such amounts that the molar ratio
Ni(II) : Phen was equal to 1 : 3.5–4, and the solution
was heated for 5 min to weak boiling. After the cooling
to room temperature, a 1 M HCl solution (2 ml) and a
0.05 M LaCl3 solution (10.00 ml) were added to the
reaction mixture. The solution was heated for 10 min to
weak boiling and then was diluted to 40 ml. After the
dilution, two drops of a 0.1% Xylenol Orange solution
and hexamethylenetetramine were added until the color

4H4L Ni OH( )2 NiCO3 2Ni H3L( )2⋅+

+ 3H2O CO2↑ .+

Ni H3L( )2 3Phen Ni Phen( )3 H3L( )2.+
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changed from yellow to violet. The solution was heated
for 5 min to a weak boiling. Then, the hot solution was
titrated with a 0.05 M ethylenediaminetetraacetic acid
solution with the use of a microburette until the color
changed from violet to yellow.

The correctness and reproducibility of the analysis
were checked against the reference compound
(C2H5)2NH2(H3L) with addition of a NiCl2 solution
(molar ratio, 2 : 1). Found: 99.3 ± 1.0%, Sr = 0.012 at
n = 8.

Complex I was analyzed for the L4– content accord-
ing to the above procedure by adding 10 mg of Phen ·
H2O per 100 mg of the complex.

X-ray diffraction analysis. Crystals I are triclinic,
a = 9.926(2) Å, b = 13.359(3) Å, c = 18.132(4) Å, α =
103.25(3)°, β = 103.33(3)°, γ = 102.80(3)°, V =
2179.6(8) Å3, ρcalcd = 1.593 g/cm3, µMo = 6.73 cm–1,

M = 1045.4, F(000) = 1080, Z = 2, and space group P .

The experimental data were collected at room tem-
perature on a Syntex P21 four-circle automated diffrac-
tometer (λMoKα, graphite monochromator, θ/2θ scan
mode, 2θmax = 60°). A total of 7600 independent reflec-
tions was measured, of which 7134 reflections with I ≥
2σ(I) were used in the structure determination.

The structure was solved by the direct method and
refined by the least-squares procedure (for F2) in the
anisotropic approximation for the non-hydrogen atoms.
The hydrogen atoms of the water molecules and the
H3L– anions (except the hydrogen atoms of the methyl
groups) were located from the difference Fourier syn-
thesis and refined in the isotropic approximation under
the constraint that similar bonds O–H(H2O) and
O−H(H3L–) are identical to within ±0.05 Å. The posi-
tions of the hydrogen atoms in the Phen molecules and
the H(Me) atoms in the H3L– anions were calculated
geometrically (C–H, 0.96 Å). These hydrogen atoms
were used in the refinement at the fixed positions (UH =
0.08 Å2). A total of 655 positional and thermal param-
eters were refined.

The final refinement parameters were as follows:
R = 0.0357 and wR = 0.0880 for the reflections with
I ≥ 2σ(I); R = 0.0369 and wR = 0.0895 for all the reflec-
tions; GOOF = 1.076; the extinction coefficient was
0.0037(4); and the maximum and minimum peaks in
the “zero” electron density distribution were equal to
0.431 and –0.402 eÅ–3, respectively.

All the calculations were carried out according to
the SHELXS86 [17] and SHELXL93 [18] software
packages.

Table 1 lists the atomic coordinates and the thermal
parameters Ueq/UH.

1

0
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Table 1.  Atomic coordinates and thermal parameters in structure I*

Atom x y z Ueq/UH, Å2

Ni 0.17554(4) –0.04075(3) 0.27589(2) 0.0223(1)

P(1) 0.48017(8) 0.41597(6) 0.35599(5) 0.0303(2)

P(2) 0.76703(9) 0.52676(6) 0.49074(5) 0.0310(2)

P(3) 0.61661(8) 0.49925(6) 0.11268(4) 0.0262(2)

P(4) 0.92621(8) 0.48091(6) 0.11388(4) 0.0273(2)

O(1) 0.4246(3) 0.3397(2) 0.3990(2) 0.0408(5)

O(2) 0.4366(3) 0.3644(2) 0.2665(2) 0.0456(6)

O(3) 0.4370(3) 0.5208(2) 0.3731(2) 0.0428(6)

O(4) 0.7317(3) 0.4580(2) 0.5432(1) 0.0404(5)

O(5) 0.9275(3) 0.5625(2) 0.4985(2) 0.0465(6)

O(6) 0.7192(4) 0.6297(2) 0.5071(2) 0.0412(5)

O(7) 0.7375(3) 0.5160(2) 0.3436(2) 0.0438(6)

O(8) 0.6457(3) 0.5365(2) 0.2004(1) 0.0411(5)

O(9) 0.4612(2) 0.4355(2) 0.0667(1) 0.0381(5)

O(10) 0.6654(3) 0.5969(2) 0.0814(1) 0.0323(4)

O(11) 1.0082(3) 0.4000(2) 0.1214(2) 0.0396(5)

O(12) 0.9431(3) 0.5350(2) 0.0501(2) 0.0436(6)

O(13) 0.9695(3) 0.5752(2) 0.1923(2) 0.0378(5)

O(14) 0.7231(3) 0.3442(2) 0.1454(2) 0.0401(5)

N(1) 0.0798(3) 0.0810(2) 0.2659(1) 0.0242(4)

N(2) 0.0319(3) –0.1103(2) 0.1612(1) 0.0267(5)

N(3) 0.2799(3) –0.1607(2) 0.2645(2) 0.0277(5)

N(4) 0.3350(3) 0.0248(2) 0.2272(2) 0.0290(5)

N(5) 0.0436(3) –0.1159(2) 0.3328(2) 0.0281(5)

N(6) 0.2983(3) 0.0372(2) 0.3942(1) 0.0268(5)

C(1) 0.1034(3) 0.1752(2) 0.3191(2) 0.0301(6)

C(2) 0.0491(4) 0.2573(2) 0.2998(2) 0.0376(7)

C(3) –0.0293(4) 0.2425(2) 0.2235(2) 0.0372(7)

C(4) –0.0566(3) 0.1438(2) 0.1658(2) 0.0287(5)

C(5) –0.1384(4) 0.1200(3) 0.0843(2) 0.0366(7)

C(6) –0.1663(4) 0.0227(3) 0.0320(2) 0.0370(6)

C(7) –0.1125(3) –0.0606(2) 0.0557(2) 0.0293(5)

C(8) –0.1417(4) –0.1649(3) 0.0044(2) 0.0375(7)

C(9) –0.0852(4) –0.2382(3) 0.0324(2) 0.0400(7)

C(10) 0.0017(4) –0.2081(2) 0.1111(2) 0.0341(6)

C(11) –0.0278(3) –0.0380(2) 0.1341(2) 0.0246(5)

C(12) –0.0003(3) 0.0650(2) 0.1902(2) 0.0233(5)

C(13) 0.2508(4) –0.2521(2) 0.2832(2) 0.0344(6)

C(14) 0.3250(4) –0.3292(3) 0.2671(2) 0.0448(9)

C(15) 0.4304(4) –0.3111(3) 0.2313(2) 0.0465(9)

C(16) 0.4648(4) –0.2149(3) 0.2108(2) 0.0386(7)

C(17) 0.5730(4) –0.1884(4) 0.1727(3) 0.052(1)

C(18) 0.6000(4) –0.0954(4) 0.1535(3) 0.054(1)

C(19) 0.5212(4) –0.0195(3) 0.1710(2) 0.0400(7)

C(20) 0.5436(4) 0.0788(3) 0.1522(2) 0.0491(9)
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Table 1.  (Contd.)

Atom x y z Ueq/UH, Å2

C(21) 0.4644(4) 0.1461(3) 0.1715(2) 0.0434(8)

C(22) 0.3610(4) 0.1173(3) 0.2094(2) 0.0355(6)

C(23) 0.4138(3) –0.0433(2) 0.2085(2) 0.0312(6)

C(24) 0.3853(3) –0.1419(2) 0.2285(2) 0.0299(6)

C(25) –0.0820(4) –0.1925(3) 0.3010(2) 0.0373(7)

C(26) –0.1537(4) –0.2422(3) 0.3468(3) 0.0491(9)

C(27) –0.0928(5) –0.2144(3) 0.4263(3) 0.056(1)

C(28) 0.0400(4) –0.1336(3) 0.4626(2) 0.0450(8)

C(29) 0.1137(6) –0.0961(4) 0.5464(3) 0.060(1)

C(30) 0.2372(6) –0.0165(5) 0.5774(2) 0.061(1)

C(31) 0.3039(4) 0.0345(3) 0.5279(2) 0.0423(7)

C(32) 0.4316(5) 0.1210(4) 0.5568(2) 0.054(1)

C(33) 0.4872(4) 0.1631(3) 0.5052(2) 0.0518(9)

C(34) 0.4192(4) 0.1179(3) 0.4234(2) 0.0367(7)

C(35) 0.2393(3) –0.0029(2) 0.4458(2) 0.0289(6)

C(36) 0.1038(3) –0.0865(2) 0.4128(2) 0.0303(6)

C(37) 0.6778(3) 0.4486(2) 0.3861(2) 0.0279(5)

C(38) 0.7205(4) 0.3435(3) 0.3699(2) 0.0414(7)

C(39) 0.7328(3) 0.4115(2) 0.0932(2) 0.0268(5)

C(40) 0.6751(5) 0.3368(3) 0.0083(2) 0.0493(9)

O(1W) 0.2802(4) 0.4008(4) 0.1547(2) 0.067(1)

O(2W) 1.0260(5) 0.5512(5) 0.3351(2) 0.080(1)

H(O2) 0.389(6) 0.386(5) 0.236(3) 0.13(2)

H(O3) 0.402(5) 0.529(4) 0.403(3) 0.09(2)

H(O5) 1.0000(0) 0.5000(0) 0.5000(0) 0.13(4)

H(O6) 0.650(4) 0.622(4) 0.514(4) 0.07(2)

H(O7) 0.690(5) 0.506(4) 0.302(2) 0.06(1)

H(O10) 0.623(5) 0.588(4) 0.039(2) 0.06(1)

H(O12) 1.0000(0) 0.5000(0) 0.0000(0) 0.10(2)

H(O13) 0.976(5) 0.557(4) 0.228(2) 0.06(1)

H(O14) 0.715(6) 0.379(4) 0.182(3) 0.07(2)

H(1W1) 0.213(4) 0.409(4) 0.148(3) 0.06(1)

H(2W1) 0.327(6) 0.412(6) 0.133(4) 0.09(3)

H(1W2) 0.962(4) 0.541(5) 0.345(3) 0.06(2)

H(2W2) 1.087(5) 0.554(5) 0.364(3) 0.10(2)

* The coordinates of the H(Phen) and H(Me) atoms are available from the authors.
RESULTS AND DISCUSSION

Ruby-red crystals of I are soluble in water, mineral
acids, acetic acid, alkalis, ammonia water (with decom-
position), and glycerol and poorly soluble in dimethyl
sulfoxide, dimethylformamide, ethanol, acetone, diox-
ane, carbon tetrachloride, and benzene. The pH value of
0.01 M aqueous solution is equal to 2.45, which corre-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
sponds to the dissociation of the compound according
to the following scheme:

The compound is nonhygroscopic and does not lose
crystallization water on keeping in air.

Ni Phen( )3[ ] H3L( )2 Ni Phen( )3[ ] 2+
2H3L

–
,+

H3L
–

H2L
2–

H
+
.+
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Fig. 1. Structure of the [Ni(Phen)3]2+ cationic complex.
The structural units of crystal I are the [Ni(Phen)3]2+

cationic complexes, anions of 1-hydroxyethane-1,1-
diphosphonic acid, and molecules of crystallization
water.

In the cationic complex (Fig. 1), the nickel atom is
bonded to six nitrogen atoms (in vertices of the octahe-
dron) of three bidentate–chelating phenanthroline mol-
ecules. The Ni–N(Phen) bond lengths fall in the range
2.074–2.107 Å. For each phenanthroline molecule,
either of the Ni–N(Phen) bonds is shorter than the other
bond: the Ni–N(1), Ni–N(3), and Ni–N(5) bond lengths
are equal to 2.074–2.089 Å [the mean bond length is
2.081(3) ± 0.008 Å]; and the Ni–N(2), Ni–N(4), and
Ni–N(6) bond lengths are 2.093–2.107 Å [the mean
bond length is 2.098(2) ± 0.008 Å]. The NNiN angles
in the five-membered metallocycles (79.8°–80.0°) are
considerably less than the NNiN exocyclic angles
(89.1–97.6°). Similar to the Ni–N bonds, the pairs of
the N–C bonds for all six nitrogen atoms N(1), N(2),
N(3), N(4), N(5), and N(6) in phenanthroline mole-
cules are asymmetric: one bond is short [1.325–
1.334 Å; mean bond length, 1.331(4) ± 0.006 Å] and
the other bond is long [1.359–1.366 Å; mean bond
length, 1.361(4) ± 0.005 Å] The C–C(Phen) bond
lengths lie in the range 1.334–1.443 Å.

One of three five-membered metallocycles NiN2C2
[with the N(1) and N(2) atoms] adopts an envelope con-
C

formation, in which a “flap” (the Ni atom) deviates
from the plane of the remaining atoms by 0.325 Å. Two
other chelate rings are substantially flatter [to within
±0.016–0.032 Å for the ring with the N(3) and N(4)
atoms and ± 0.010–0.039 Å for the ring with the N(5)
and N(6) atoms]. However, their conformations can be
more correctly represented as a flattened envelope with
deviations of flaps (Ni atoms) by 0.122 and 0.134 Å,
respectively.

Three NiN2C2 metallocycles in the cationic complex
are approximately perpendicular to each other: the
angles between their mean planes are equal to 96.5°,
76.9°, and 93.5°.

Structure I exhibits an unusual feature—the anions
of 1-hydroxyethane-1,1-diphosphonic acid fulfill the
function of the outer-sphere ions. In all the transition
metal complexes studied earlier, the H4 – nLn– ions enter
as ligands into the coordination sphere of the central
atom. Particularly, in the mixed-ligand complex
[Cu(Bipy)(H2O)(H2L)] · 2H2O [19], the metal atom is
located inside the tetragonal pyramid with the oxygen
atom of water molecule in the apical position. Two
O(H2L2–) atoms and two N(Bipy) atoms are bonded to
the Cu atom by the bidentate–chelating mode to form
the equatorial plane of the pyramid. The
[Co(H2O)6](trans-HO3PCH=CHPO3H) · 2H2O com-
plex [20] is the sole example of the structure, in which
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 2. Centrosymmetric dimeric anions (a) H7  and (b) H5 .L2
–

the anion of diphosphonic acid is not bonded to the
transition metal atom.

In structure I, there are two independent differently
charged anions: formally, H3.5L0.5– and H2.5L1.5–. Each
anion forms the centrosymmetric dimer with the adja-
cent anion of the same kind via the strong linear hydro-
gen bond (Fig. 2). The interionic contacts O···H···O in
both dimers H7  and H5  are the strongest in the

structure [O···O, 2.436(4) and 2.466(4) Å and H···O,
1.22 and 1.23 Å, respectively].

Therefore, the structural formula of compound I can
be written as [Ni(Phen)3](H7L2)0.5(H5L2)0.5 · 2H2O.

A similar dimer, namely, H5 , in which the

H2.5L1.5– “halves” are related by the crystallographic
axis 2 (O···O, 2.508 Å; H···O, 1.28 Å; and OHO angle,
160°), was found in the (NH4)3(H5L2) · 2H2O com-
pound (II) [21]. It should be mentioned that the pres-
ence of highly symmetric hydrogen bonds in the H7

and H5  anions of structures I and II is most likely

due to a superposition of two equally probable orienta-
tions of the statistically disordered fragments H4L and
H3L– for H7  and the H3L– and H2L2– fragments for

H5 . In this case, the structural formula of com-

pound I can be represented as
[Ni(Phen)3](H3L)(H2L)0.5 · 0.5H4L · 2H2O.

Note also that the identification of dimers in struc-
ture I is sufficiently conventional. Actually, the struc-

L2
–

L2
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–
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–

L2
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ture additionally involves at least three short interionic
contacts O(L)–H···O(L): O···O, 2.482–2.578 Å and
H···O, 1.84–1.90 Å (Table 2). Moreover, the outer-
sphere anions are joined with the water molecules by
hydrogen bonds with the participation of all active pro-
tons (O···O, 2.468–2.912 Å and H···O, 1.69–2.22 Å).
On the other hand, the interionic contacts C–H···O,
which join the cationic complexes and the H4 – nLn–

anions together, are appreciably weaker (C···O, 3.019–
3.463 Å; H···O, 2.36–2.74 Å; and CHO angles, 101°–
169°).

In the H4 – nLn– anions, the P–O distances, as is often
the case, are divided into three groups: short distances
to the terminal oxygen atoms [1.491–1.517 Å; mean
distance, 1.505(3) ± 0.014 Å], intermediate distances to
the oxygen atoms linked by the bridging proton [P–
OH0.5, 1.519 and 1.521 Å; mean distance, 1.520(3) ±
0.001 Å], and the longest distances to the terminal OH
groups (P–OH, 1.525–1.566 Å). However, the last-
named distances are clearly subdivided into two sub-
groups depending on the strength of donor hydrogen
bonds involving a given OH group. Indeed, the P(1)–
O(2) (1.525 Å), P(1)–O(3) (1.539 Å), and P(2)–O(6)
(1.540 Å) bonds [mean bond length, 1.535(3) ±
0.010 Å], on the average, are 0.030 Å shorter than the
P(3)–O(10) (1.563 Å) and P(4)–O(13) (1.566 Å) bonds
[mean bond length, 1.565(3) ± 0.002 Å]. Note that the
O–H···O hydrogen bonds for the former P–O bonds
(O···O, 2.468–2.524 Å and H···O, 1.69–1.90 Å) are
somewhat stronger than those for the latter bonds
(O···O, 2.578 and 2.629 Å and H···O, 1.84 and 1.92 Å).
The other mean distances in the H4 – nLn– anions are as
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Table 2.  Geometric parameters of the shortest intermolecular, intraionic, and interionic contacts O–H···O in structure I

A–H···B* bond
Distance, Å

AHBangle, deg
A···B H···B A–H

O(2)–H(O2)···O(1W)a 2.468(5) 1.69(5) 0.80(6) 165(6)

O(3)–H(O3)···O(4)b 2.524(4) 1.84(5) 0.71(5) 165(5)

O(5)···H(O5)···O(5)c 2.436(4) 1.22 1.22 180

O(6)–H(O6)···O(1)c 2.482(4) 1.90(6) 0.72(5) 138(6)

O(7)–H(O7)···O(8)a 2.644(4) 1.95(4) 0.76(4) 153(5)

O(10)–H(O10)···O(9)d 2.578(3) 1.84(4) 0.75(4) 173(5)

O(12)···H(O12)···O(12)e 2.466(4) 1.23 1.23 180

O(13)–H(O13)···O(2W)a 2.629(5) 1.92(4) 0.73(4) 164(5)

O(14)–H(O14)···O(8)a 2.870(4) 2.33(6) 0.74(5) 130(5)

O(1W)–H(1W1)···O(11)a 2.625(5) 1.95(4) 0.69(4) 168(6)

O(1W)–H(2W1)···O(9)a 2.699(5) 2.01(7) 0.69(7) 176(8)

O(2W)–H(1W2)···O(7)a 2.843(6) 2.18(5) 0.69(5) 163(6)

O(2W)–H(2W2)···O(4)b 2.912(5) 2.22(5) 0.69(5) 172(6)

* The superscripts correspond to the following coordinates of the atoms: (a) x, y, z; (b) 1 – x, 1 – y, 1 – z; (c) 2 – x, 1 – y, 1 – z; (d) 1 – x,
1 – y, –z; (e) 2 – x, 1 – y, –z.
follows: P–C, 1.842(3) ± 0.011 Å; C–O, 1.442(4) ±
0.011 Å; and C–C, 1.533(5) ± 0.006 Å.
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STRUCTURES OF COORDINATION COMPOUNDS
Crystal and Molecular Structures of a Samarium Complex 
with the 3,5-Di-tert-Butyl-1,2-Quinone-1-(2-Hydroxy-3,5-Di-tert-
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Abstract—X-ray structure analysis of Sm(C28H40NO2)3 is performed. The crystals are monoclinic, a =
13.490(2) Å, b = 27.955(5) Å, c = 23.000(6) Å, β = 105.30(2)°, Z = 4, space group P21/c, and R = 0.0332 for
9670 reflections. The coordination number of the Sm atom is nine (tricapped trigonal prism with the O atoms
in the base and the N atoms at the caps). The approximate symmetry of the complex is D3. The mean C–O and
C–N bond lengths (1.266 and 1.342 Å, respectively) correspond to the monoanion redox form of the ligands.
In distinction to the earlier studied complexes ML2 with the same ligands, the six-membered rings in the ligands
of this complex are essentially noncoplanar: the dihedral angles between them are 42.8°, 34.0°, and 41.1°.
© 2000 MAIK “Nauka/Interperiodica”.
 Recently [1], a series of complexes between
Group III metals and lanthanides with the tridentate
3,5-di-tert-butyl-1,2-quinone-1-(2-hydroxy-3,5-di-tert-
butylphehyl)imine ligand (I), which is able to provide
the utmost ninefold coordination of a trivalent metal in
its trischelates, have been obtained for the first time by
the template synthesis. Due to the symmetry of the
structure and the electronic mesomerism of deproto-
nated ligand I, the trischelates (II) of the above metals
are promising as active dyes in the long-wavelength
regions of the spectrum (visible 730–770 nm and infra-
red 820–825 nm), magnetic materials (with lanthanide
metals) for microelectronics, and catalysts of hydra-
tion, oxidation–reduction, and polymerization [2, 3].

The goal of this study was to directly determine the
structure of metal chelates II by X-ray diffraction anal-
ysis in order to reveal the following regularities and
specific features of their structure: (1) the type and
geometry of the coordination polyhedron, including

M3+  = Al, Sc, Ga, Y, In, La, Ce, Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
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ninefold metal coordination (MIIIO6N3), (2) the specific
structural features of the tridentate chelate moiety of
ligand I in complexes II, (3) the conformation of three
ligands and their mutual orientation about the complex-
ing metal with respect to the steric shielding by tert-
butyl groups and the van der Waals repulsion of the
atoms in the ortho positions of the six-membered rings
closely approaching each other, and (4) the dependence
of the above characteristics on the type of complexing
metal.

A large group of 19 new metal complexes II [1] con-
sists of the complexes with all lanthanides and five
Group III metals. Slow evaporation of benzene solu-
tions afforded single crystals of X-ray quality only for
the samarium trischelate.

EXPERIMENTAL

A single crystal (0.18 × 0.32 × 0.44 mm in size) was
used for the X-ray diffraction study. The unit cell
parameters were determined using 24 reflections mea-
sured on an Enraf–Nonius CAD-4F automated X-ray
diffractometer (λMoKα, graphite monochromator). The
crystals are monoclinic, a = 13.490(2) Å, b = 27.955(5) Å,
c = 23.000(6) Å, β = 105.30(2)°, dcalcd = 1.125 g/cm3,
µ(MoKα) = 7.656 cm–1, Z = 4, and space group P21/c.

The intensities of 16 062 reflections, of which 9670
reflections had I > 3σ(I) were measured on the same
diffractometer by the ω-scan technique in the region
θ ≤ 25°. All the calculations necessary for structure
determination and refinement were performed with the
AREN program package [4].
000 MAIK “Nauka/Interperiodica”
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Coordinates (×105 for Sm and ×104 for the remaining atoms) and equivalent isotropic thermal parameters of non-hydrogen
atoms

Atom x/a y/b z/c Beq, Å2 Atom x/a y/b z/c Beq, Å2

Sm 5464(1) 30 298(1) 67 968(1) 2.48(2) C(13B) 4344(3) 4257(1) 9052(2) 4.4(3)
O(1A) 1248(2) 2869(1) 5954(1) 3.5(2) C(14B) 4570(4) 4798(2) 9130(2) 6.8(4)
O(2A) –752(3) 3600(1) 6826(1) 3.6(2) C(15B) 4078(4) 4074(2) 9619(2) 7.4(4)
N(A) –212(2) 3513(1) 5815(1) 2.8(2) C(16B) 5301(4) 4003(2) 8982(3) 7.7(4)
C(1A) 1163(2) 3161(1) 5527(1) 2.9(3) C(17B) 3101(3) 4450(1) 6772(1) 3.4(3)
C(2A) 355(2) 3527(1) 5414(1) 3.0(3) C(18B) 2093(3) 4683(1) 6420(2) 4.9(3)
C(3A) 321(3) 3890(1) 4970(1) 3.6(3) C(19B) 3939(3) 4841(1) 6902(2) 4.6(3)
C(4A) 1032(3) 3896(1) 4646(2) 4.0(3) C(20B) 3417(3) 4052(1) 6392(2) 5.0(3)
C(5A) 1744(3) 3506(1) 4717(1) 3.9(3) C(21B) –355(4) 3888(1) 9539(2) 5.3(3)
C(6A) 1826(2) 3143(1) 5117(1) 3.4(3) C(22B) –96(5) 3637(2) 10153(2) 7.7(4)
C(7A) –1372(2) 3763(1) 6351(1) 3.2(2) C(23B) 235(6) 4350(2) 9588(3) 9.4(4)
C(8A) –1122(2) 3724(1) 5774(1) 3.0(2) C(24B) –1547(5) 3979(2) 9372(3) 9.0(5)
C(9A) –1871(2) 3851(1) 5229(1) 3.3(3) C(25B) –1178(3) 2309(1) 8411(2) 4.2(3)
C(10A) –2817(3) 4015(1) 5246(2) 3.6(3) C(26B) –409(4) 1908(1) 8395(2) 6.2(3)
C(11A) –2989(2) 4110(1) 5826(2) 4.0(3) C(27B) –1686(5) 2203(2) 8924(2) 7.1(4)
C(12A) –2313(3) 4007(1) 6365(2) 3.7(3) C(28B) –2021(3) 2317(2) 7818(2) 5.5(3)
C(13A) 1136(4) 4320(1) 4238(2) 5.6(3) O(1C) 2184(1) 2702(1) 7317(1) 3.7(2)
C(14A) 1316(7) 4121(2) 3635(3) 10.8(5) O(2C) –950(1) 2590(1) 6248(1) 3.4(2)
C(15A) 281(8) 4647(4) 4140(6) 20.0(5) N(C) 723(2) 2105(1) 6772(1) 2.9(2)
C(16A) 2148(8) 4569(3) 4540(4) 14.3(6) C(1C) 2448(2) 2279(1) 7229(1) 3.4(3)
C(17A) 2593(3) 2729(1) 5171(2) 4.3(3) C(2C) 1680(2) 1930(1) 6919(1) 3.3(2)
C(18A) 1997(4) 2255(1) 5087(3) 6.8(4) C(3C) 1993(3) 1470(1) 6763(2) 4.2(3)
C(19A) 3169(4) 2761(2) 4675(3) 7.4(4) C(4C) 3013(3) 1348(1) 6921(2) 4.8(3)
C(20A) 3395(3) 2750(2) 5781(2) 6.3(3) C(5C) 3732(3) 1673(1) 7281(2) 4.9(3)
C(21A) –3713(3) 4079(1) 4683(2) 4.4(3) C(6C) 3511(3) 2124(1) 7440(1) 3.8(3)
C(22A) –4165(4) 4584(2) 4659(2) 6.3(4) C(7C) –1056(2) 2145(1) 6314(1) 2.9(2)
C(23A) –3402(4) 3999(2) 4108(2) 6.3(3) C(8C) –162(2) 1853(1) 6600(1) 2.9(3)
C(24A) –4562(4) 3718(2) 4719(3) 8.0(4) C(9C) –293(3) 1360(1) 6719(1) 3.5(3)
C(25A) –2519(3) 4117(1) 6978(2) 4.8(3) C(10C) –1222(3) 1147(1) 6536(2) 4.1(3)
C(26A) –1636(4) 4421(2) 7356(2) 6.5(4) C(11C) –2080(3) 1429(1) 6209(2) 4.1(3)
C(27A) –3507(4) 4410(2) 6898(2) 7.9(4) C(12C) –2039(3) 1903(1) 6092(1) 3.4(3)
C(28A) –2619(5) 3651(2) 7312(2) 6.8(4) C(13C) 3411(4) 882(2) 6711(3) 7.0(4)
O(1B) 1618(1) 3722(1) 6943(1) 3.3(2) C(14C) 4024(8) 613(2) 7232(4) 13.6(6)
O(2B) –66(2) 2707(1) 7614(1) 3.4(2) C(15C) 2564(6) 565(3) 6389(6) 15.6(6)
N(B) 1130(2) 3465(1) 7833(1) 2.8(2) C(16C) 4112(8) 1015(3) 6294(5) 14.4(6)
C(1B) 2150(2) 3898(1) 7336(1) 2.7(2) C(17C) 4321(3) 2462(1) 7831(2) 4.7(2)
C(2B) 1933(2) 3764(1) 7906(1) 3.0(2) C(18C) 3986(4) 2593(2) 8392(2) 7.0(3)
C(3B) 2624(3) 3897(1) 8467(1) 3.5(3) C(19C) 5381(4) 2203(2) 8051(3) 8.6(3)
C(4B) 3469(3) 4167(1) 8477(1) 3.5(3) C(20C) 4437(4) 2913(2) 7475(2) 6.8(3)
C(5B) 3587(2) 4353(1) 7916(1) 3.4(3) C(21C) –1418(4) 624(1) 6666(2) 5.5(2)
C(6B) 2966(2) 4242(1) 7362(1) 3.0(2) C(22C) –1827(5) 356(1) 6061(3) 7.3(3)
C(7B) –38(2) 2942(1) 8089(1) 3.1(3) C(23C) –441(6) 369(2) 7010(3) 9.2(3)
C(8B) 598(2) 3370(1) 8235(1) 3.0(2) C(24C) –2218(6) 608(2) 7032(3) 9.3(3)
C(9B) 514(3) 3669(1) 8720(1) 3.6(3) C(25C) –2978(3) 2191(1) 5738(2) 4.1(2)
C(10B) –128(3) 3551(1) 9067(1) 3.9(3) C(26C) –2742(4) 2405(2) 5174(2) 6.2(3)
C(11B) –641(3) 3095(1) 8963(1) 4.0(3) C(27C) –3935(4) 1876(2) 5549(3) 7.2(3)
C(12B) –613(3) 2789(1) 8513(1) 3.3(3) C(28C) –3223(3) 2596(2) 6127(2) 5.7(2)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 1. A general view of the molecule (H atoms are omitted).
The coordinates of the Sm atom were found from
the Patterson function, and the light non-hydrogen
atoms were revealed in two successive syntheses of
electron density. The structure was refined by the least-
squares procedure first in the isotropic approximation
(R = 0.0715) and then in the anisotropic approximation
(R = 0.0470). Next, two successive difference syntheses
revealed 116 H atoms; the coordinates of the remaining
four atoms were calculated. The refinement of the posi-
tional parameters of the H atoms at fixed thermal
parameters (Bj = 7 Å2 for the tert-butyl groups and 5 Å2

for the remaining atoms) resulted in the final value of
R = 0.0332. The coordinates and thermal parameters of
the non-hydrogen atoms are listed in the table (the table
of the coordinates of the H atoms is available from the
authors).

RESULTS AND DISCUSSION

A general view of the molecule is displayed in
Fig. 1. The structure of an isolated ligand and the
atomic numbering are shown in Fig. 2. The arrange-
ment of ligands about the samarium atom follows a pro-
peller pattern so that the coordination polyhedron of
samarium has the shape of a slightly twisted (by ~15°)
tricapped trigonal prism (the coordination number is
nine) with the O atoms at the vertices of the prism and
OGRAPHY REPORTS      Vol. 45      No. 3      200
the N atoms at the caps over its side faces. The basal
planes of the prism are almost parallel: the angle
between them is 1.8°. The plane defined by the N atoms
forms angles of 0.9° with both bases. The Sm–N dis-
tances (2.597–2.605 Å) are longer than the Sm–O dis-
tances (2.383–2.417 Å).

A similar coordination of the Sm atom is observed
in its complex with another tridentate ligand, namely,
2'-[α-(2-pyridyl)benzylidene]salicylhydrazide [5]. How-
ever, in this case, the coordination of the Sm atom is
less symmetric: one base of the prism is built up of a
pyridyl N atom and two O atoms, and the other base is
built up of an O atom and two pyridyl N atoms; the N
atoms of the azo groups form the caps. The interatomic
distances are close to those in the compound reported
in this paper: Sm–O, 2.345–2.392 Å; Sm–N(pyridyl),
2.632–2.659 Å; and Sm–N(azo), 2.572–2.583 Å.

Unlike the latter complex, the triaqua-tris(3-ami-
nobenzoato)samarium complex [6] has a high symme-
try: in the crystal, it is located in the threefold rotation
axis. The bidentate aminobenzoate ligands occupy the
base of the prism and the caps, and the second base is
occupied by water molecules.

The complex under study occupies a general posi-
tion in the crystal. However, its approximate symmetry
is 32 (D3), and the symmetry of each ligand is close to
0
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Fig. 2. Structure of an isolated ligand and its bonds with the Sm atom. The atomic numbering and the bond lengths and angles aver-
aged over all ligands and two halves of each ligand are shown.
2 (C2). Thus, both six-membered rings in each ligand
have the same electronic structure, which is intermedi-
ate between the aromatic and purely quinoid types.

Earlier, we studied a series of complexes of this
ligand (L) with the ML2 composition, in which L exists
in two anionic redox forms, namely, an anion or a dian-
ion radical

Depending on the valence of the metal, the formula
of these complexes can be written as MII(Cat-N-BQ)2,
MIII(Cat-N-BQ)(Cat-N-SQ), or MIV(Cat-N-SQ)2. The
summary table of the main geometric parameters of the
structures studied by then is represented in [7]. In 1996,
the structure of CuL2 was reported in [8], and the struc-
ture of ZnL2 [9] was also cited in this paper. The most
characteristic features of the compounds with all the
above formulas are the C–O and C–N bond lengths in
the ligands. In the complexes of bivalent metals, the
mean C–O bond lengths are 1.264 Å for NiL2 [10],

.

N
O– O–

Cat-N-SQ

N

O– O

Cat-N-BQ
C

1.254 Å for CuL2 [8], and 1.264 Å for ZnL2 [9]; and the
mean C–N bond lengths are 1.344, 1.347, and 1.331 Å,
respectively. In the complexes of trivalent metals, the
formally different ligands are equivalent in the crystal;
and the mean C–O bond lengths are equal to 1.305 Å
for CoL2 [11] and 1.287 Å for FeL2 [10], and the mean
C–N bond lengths are 1.361 and 1.357 Å, respectively.
In the complexes of tetravalent metals, these bonds
lengthen further; the mean C–O distances become
1.325 Å in MnL2 [11], 1.324 Å in VL2 [7], and 1.337 Å
in TiL2 [12], and the mean C–N distances are 1.380,
1.380, and 1.363 Å, respectively.

To our knowledge, the structures of the complexes
with the ML3 composition have not been studied earlier.
As already noted, in the Sm complex under study, the
Sm–O and Sm–N bond lengths agree with the values
observed in the Sm(III) complexes. Hence, all three
ligands should be singly charged, that is, exist in the
Cat-N-BQ form. Actually, the C–O and C–N bond
lengths in these ligands are close to those found in
MIIL2: the mean values are 1.266 and 1.342 Å, respec-
tively. The shortest C–O and C–N bonds in the com-
plexes of Cat-N-BQ are attended with the most pro-
nounced o-quinoid structure of their six-membered
rings. The rings in SmL3 are essentially nonplanar: the
atomic deviations from the corresponding planes are up
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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to 0.075 Å, and the torsion angles about the bonds in
these rings are up to 11.5°.

The coordination of the N atoms is planar trigonal:
the maximum atomic deviation from the SmNC(2)C(8)
plane is 0.008 Å. The five-membered chelate rings
adopt an envelope conformation, and the Sm atom
deviates from the OCCN planes by 0.58–0.68 Å.

An increase in the atomic radius of Sm (0.97 Å) in
comparison with those of the metals in the ML2 com-
plexes studied (0.52–0.80 Å) results in a significant
increase in the Sm–O and Sm–N distances and, as a
consequence, a decrease in the O–Sm–O angles to
~126° compared to 151°–171° in ML2. This allows the
location of three L ligands in the coordination sphere of
the Sm atom. However, the conformations of the
ligands in SmL3 and ML2 differ fundamentally: in the
ML2 complexes, the six-membered rings in the ligands
are approximately coplanar (the angles between them
are within 13.4°), whereas in SmL3, the angles are
42.8°, 34.0°, and 41.4° for ligands A, B, and C, respec-
tively. Apparently, this difference is caused by large
steric hindrances, which arise if three, not two, ligands
L are coordinated to a metal atom.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Molecular and Crystal Structures of 3-Benzoyl-4-Hydroxy-4-
Phenyl-(N-Methyl)piperidine and 5-Hydroxymethylene-4-

Phenyl-N-Methyl-1,2,5,6-Tetrahydropyridine
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Abstract—The crystal structures of two compounds—3-benzoyl-4-hydroxy-4-phenyl-(N-methyl)piperidine (I)
[orthorhombic crystals, space group P212121, Z = 4] and 5-hydroxymethylene-4-phenyl-(N-methyl)-1,2,5,6-tet-
rahydropyridine (II) [monoclinic crystals, space group P21/n, Z = 4]—are determined by X-ray diffraction. In I,
the weak intermolecular OH···N hydrogen bonds link the molecules related by the a translation into homochiral
chains. In II, the OH···N hydrogen bonds link the molecules into infinite homochiral chains twisting about
the crystallographic screw axes 21(y). The helices are additionally strengthened by the short CH···O contacts.
© 2000 MAIK “Nauka/Interperiodica”.
Continuing our studies of the molecular structures
of hydropyridine hydroxy derivatives [1–5] and the role
of intermolecular hydrogen bonds in the formation of
their packing [5], we determined the X-ray crystal
structures of two compounds in this series: 3-benzoyl-
4-hydroxy-4-phenyl-(N-methyl)piperidine (I) and
5-hydroxymethylene-4-phenyl-(N-methyl)-1,2,5,6-tet-
rahydropyridine (II).1 

EXPERIMENTAL

The unit-cell parameters and intensities of reflec-
tions were measured on a Siemens P3/PC automated
four-circle diffractometer (T = 20°C, λMoKα, graphite
monochromator, θ/2θ scan mode, θmax = 27°).

Crystals I (C19H21NO2, M = 295.37) are orthorhom-
bic, space group P212121; at T = 20°C: a = 5.830(1), b =
10.377(2), and c = 25.856(8) Å; V = 1564.4(7) Å3; Z =
4; and dcalcd = 1.254 g/cm3.

Crystals II (C13H17NO, M = 203.28) are monoclinic,
space group P21/n; at T = 20°C: a = 9.793(4), b =
7.178(2), and c = 16.508(5) Å; β = 101.08(3)°; V =
1138.9(7) Å3; Z = 4; and dcalcd = 1.186 g/cm3.

The structures were solved by the direct method.
The non-hydrogen atoms were refined by the full-
matrix least-squares procedures in the anisotropic
approximation. The hydrogen atoms were located from
difference Fourier syntheses and refined in the isotropic
approximation. The final discrepancy factors are as fol-
lows: R1 = 0.043 for 1428 reflections with I > 2σ(I) and

1 The compounds were synthesized in the Department of Organic
Chemistry of the Peoples’ Friendship University.
1063-7745/00/4503- $20.00 © 20444
wR2 = 0.103 for all the 2046 unique reflections for com-
pound I; R1 = 0.044 for 1538 reflections with I > 2σ(I)
and wR2 = 0.109 for all the 2238 unique reflections for
compound II. Atomic coordinates and thermal parame-
ters are listed in Tables 1 and 2. All the calculations were
performed with the SHELXTL PLUS (PC Version 5.0)
program package on an IBM PC/AT-486.
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Fig. 1. A general view of molecule I.
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Table 1.  Atomic coordinates (×104) and isotropic (equivalent for non-hydrogen atoms) thermal parameters (Å2 × 103) in structure I

Atom x y z Uiso

O(1) 6646(4) 1086(2) 1456(1) 68(1)

O(2) 7627(4) 3442(2) 1916(1) 45(1)

N(1) 12979(5) 2375(2) 2356(1) 45(1)

C(2) 11123(6) 1520(3) 2195(1) 43(1)

C(3) 10433(6) 1817(3) 1635(1) 36(1)

C(4) 9579(5) 3230(3) 1591(1) 36(1)

C(5) 11445(6) 4112(3) 1813(1) 41(1)

C(6) 12183(7) 3717(3) 2350(1) 45(1)

C(7) 13844(10) 2025(4) 2866(2) 67(1)

C(8) 8692(6) 865(3) 1428(1) 40(1)

C(9) 9472(5) –371(3) 1182(1) 38(1)

C(10) 11611(6) –917(3) 1274(1) 44(1)

C(11) 12142(7) –2107(3) 1053(1) 50(1)

C(12) 10609(7) –2722(3) 735(1) 55(1)

C(13) 8527(7) –2162(3) 630(1) 59(1)

C(14) 7946(6) –997(3) 857(1) 47(1)

C(15) 9089(5) 3606(3) 1030(1) 40(1)

C(16) 10664(7) 3346(3) 640(1) 50(1)

C(17) 10233(8) 3714(4) 132(1) 62(1)

C(18) 8246(8) 4351(3) 8(2) 64(1)

C(19) 6692(7) 4618(4) 390(2) 66(1)

C(20) 7113(6) 4261(3) 900(1) 54(1)

H(2A) 9755(60) 1644(30) 2427(11) 50(9)

H(2B) 11738(52) 644(28) 2226(10) 43(8)

H(3) 11836(54) 1753(27) 1446(10) 40(8)

H(5A) 12824(59) 4110(26) 1583(11) 42(8)

H(5B) 10754(52) 5029(29) 1812(9) 46(8)

H(6A) 10850(49) 3859(25) 2604(10) 37(8)

H(6B) 13437(55) 4259(28) 2475(11) 45(8)

H(7A) 12716(69) 2139(34) 3144(14) 72(12)

H(7B) 15327(79) 2618(41) 2928(16) 104(15)

H(7C) 14207(74) 1150(42) 2898(14) 90(13)

H(10) 12786(63) –525(29) 1475(11) 55(9)

H(11) 13660(66) –2512(31) 1132(12) 64(10)

H(12) 10989(63) –3571(36) 581(13) 71(10)

H(13) 7480(65) –2572(33) 398(13) 72(11)

H(14) 6492(58) –571(29) 791(11) 49(9)

H(16) 12180(59) 2926(29) 717(10) 51(9)

H(17) 11310(71) 3489(38) –113(14) 79(13)

H(18) 7838(66) 4603(31) –355(13) 72(11)

H(19) 5320(66) 5049(33) 306(11) 62(11)

H(20) 5990(64) 4501(32) 1175(12) 65(11)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Table 2. Atomic coordinates (×104) and isotropic (equivalent for non-hydrogen atoms) thermal parameters (Å2 × 103) in structure II

Atom x y z Uiso

O(1) 2722(1) –4359(2) 2120(1) 59(1)

N(1) 2585(2) 510(2) 1178(1) 45(1)

C(2) 3786(2) 1559(3) 1005(1) 54(1)

C(3) 5087(2) 455(3) 1130(1) 47(1)

C(4) 5168(2) –1387(2) 1230(1) 39(1)

C(5) 3849(2) –2483(2) 1229(1) 40(1)

C(6) 2577(2) –1370(3) 832(1) 48(1)

C(7) 1306(3) 1511(4) 822(2) 65(1)

C(8) 6525(2) –2378(2) 1350(1) 40(1)

C(9) 7748(2) –1525(3) 1752(1) 52(1)

C(10) 9026(2) –2394(3) 1816(1) 60(1)

C(11) 9111(2) –4150(3) 1497(1) 59(1)

C(12) 7921(2) –5031(3) 1120(1) 60(1)

C(13) 6637(2) –4178(3) 1050(1) 49(1)

C(14) 3820(2) –3086(2) 2111(1) 41(1)

H(10) 2593(24) –4402(32) 2633(15) 83(8)

H(2A) 3922(19) 2745(30) 1357(12) 68(6)

H(2B) 3601(19) 2051(28) 424(13) 70(6)

H(3) 5930(20) 1149(26) 1121(11) 56(5)

H(5) 3856(16) –3632(23) 908(10) 40(4)

H(6A) 2542(17) –1279(23) 196(11) 51(5)

H(6B) 1725(19) –1976(25) 924(10) 51(5)

H(7A) 1194(20) 1529(28) 195(14) 75(6)

H(7B) 1367(22) 2816(35) 1046(14) 82(7)

H(7C) 493(24) 874(30) 961(13) 75(7)

H(9) 7689(19) –322(29) 1999(12) 61(6)

H(10) 9848(20) –1754(28) 2111(12) 65(6)

H(11) 10053(23) –4736(30) 1539(13) 76(7)

H(12) 7954(21) –6278(32) 906(13) 78(7)

H(13) 5792(20) –4792(26) 781(11) 54(5)

H(14A) 3738(15) –1942(22) 2454(10) 36(4)

H(14B) 4768(18) –3687(25) 2372(10) 50(5)
RESULTS AND DISCUSSION

A general view of molecule I is shown in Fig. 1. The
central piperidine ring of the molecule adopts the clas-
sical chair conformation: the C(2), C(3), C(5), and C(6)
atoms are coplanar within 0.016 Å; the N(1) and C(4)
atoms deviate from this plane by 0.696 and –0.678 Å,
respectively. In the 2-hydroxytetrahydro derivatives
studied earlier [1–5], the conformation of the hydropy-
ridine ring is either a distorted chair or a sofa, and the
environment of the nitrogen atom in the heterocycle has
a planar trigonal configuration. In molecule I, the envi-
ronment of the nitrogen atom in the heterocycle has a
pyramidal configuration; the bond angles about the
N(1) atom are close to the tetrahedral angles: 109.9(3)°,
C

110.3(3)°, and 110.7(3)°. The hydroxyl group at the
C(4) atom is axial relative to the plane of the heterocy-
cle; the C(2)–C(3)–C(4)–O(2) torsion angle is equal to
–60°. This conformation is favorable for the formation
of the intermolecular OH···N hydrogen bond (O···N is
3.14 Å, H···N is 2.54 Å, and the O–H–N angle is
127.7°) in the crystal (Fig. 2). The phenyl group at the
C(4) atom and the benzoyl substituent at the C(3) atom
of the heterocycle are equatorially oriented; the torsion
angles C(2)–C(3)–C(4)–C(15) and C(8)–C(3)–C(4)–
C(5) are equal to 174.6° and –179.6°, respectively. The
plane of the phenyl ring forms an angle of 77.9° with
the mean plane of the piperidine ring; the plane of the
benzoyl phenyl ring is rotated by 121.7° relative to the
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 2. A homochiral molecular chain in structure I.
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Fig. 3. A general view of molecule II.
latter plane. The bond lengths and angles have the nor-
mal values [6, 7].

In crystal structure I, molecules related by the a
translation are linked by the weak intermolecular
OH···N hydrogen bonds into homochiral chains
(Fig. 2). In the crystal, these chains are closely packed
in a herringbone fashion, resulting in the chiral space
group P212121 and, consequently, the spontaneous sep-
aration of enantiomers in the process of crystallization.

A general view of molecule II is shown in Fig. 3.
The length of the C(3)–C(4) double bond in the hetero-
cycle is 1.333(2) Å. Similar to molecule I, the environ-
ment of the N(1) atom in molecule II has a pyramidal
REPORTS      Vol. 45      No. 3      2000
configuration; the C–N–C bond angles are close to the
tetrahedral angles: 109.9(1)°, 109.0(2)°, and 110.8(2)°.
As in the case of the 2-hydroxytetrahydro derivatives
studied earlier [1–5], the conformation of the central
heterocycle is a distorted half-chair: the C(2), C(3),
C(4), and C(5) atoms are coplanar (the rms atomic
deviation is 0.002 Å), and the N(1) and C(6) atoms
deviate from this plane by 0.281 and –0.448 Å, respec-
tively. The orientation of the phenyl ring at the C(4)
atom is pseudoequatorial. The C(8) atom lies in the
plane of the planar part of the heterocycle; the C(8)–
C(4)–C(3)–C(2) torsion angle is 179.9°. However, the
plane of the phenyl ring is rotated relative to that of the
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Fig. 4. A homochiral molecular chain in structure II.
heterocycle by 32.9°. The hydroxymethylene group at
the C(5) atom is pseudoequatorial; the C(3)–C(4)–
C(5)–C(14) angle is –106.4°. The bond lengths and
angles in molecule II have the normal values.

In the crystal, the molecules are linked by the
OH···N hydrogen bonds (O···N is 2.88 Å, H···N is
2.00 Å, and the O–H–N angle is 140.6°) into infinite
homochiral chains twisting about the crystallographic
screw axes 21(y) (Fig. 4). The chains are additionally
strengthened by the short CH···O contacts (H···O is
2.52 Å, and the C–H–O angle is 149.8°). In the crystal,
the double homochiral layers formed by these chains
are clearly distinguished. The crystal as a whole is built
by the alternation of homochiral layers of opposite
chirality resulting in the centrosymmetric space group.
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Abstract—The crystal structure of 4'-cyanobenzo-15-crown-5 is determined by X-ray diffraction. The crystal-
lographic parameters of single crystals are as follows: a = 40.479(6) Å, b = 8.821(2) Å, c = 8.484(2) Å, β =
93.94(2)°, V = 3022.2 Å3, Z = 8, dcalcd = 1.27 g/cm3, and space group C2/c. The structure is solved by the direct
method and refined by the least-squares procedure to R = 0.068. The conformation of the macrocycle in 4'-
cyano-B15C5 is described by the a–a–g––a–a–g–g––a–a–g–a–g–a–a–s sequence of torsion angles. © 2000
MAIK “Nauka/Interperiodica”.
Earlier [1–3], we revealed that the selectivity and
membrane properties of a benzo crown ether are
affected by a substituent in the benzene ring. The study
on membrane activity of the compounds we synthe-
sized showed that acyl substituents with 3–5 carbon
atoms in the side chain increase the conductivity of the
crown ethers through the Ca2+ and Mg2+ ions [1]. At the
same time, diacetyl-DB18C61 exhibits no ionophoric
activity. Moreover, it is a blocker of calcium ion-con-
ductivity channels formed by phospholipids of sar-
coma-45 cells [2, 3]. The tert-butyl and sec-butyl sub-
stituents endow the DB18C6 molecule with the proper-
ties of K+-ionophore [4] and Mg2+-ionophore [5],
respectively. Apparently, one of the factors affecting
the complex formation is a change in the conformation
of the macrocycle, which depends on the nature of the
substituent introduced. Conformational studies of dif-
ferent substituted benzo crown ethers make it possible
to obtain further insight into the problem of the substit-
uent effect. For this purpose, we synthesized 4'-
cyanobenzo-15-crown-5 and determined its X-ray
crystal structure. The cyano derivative of benzo-15-
crown-5 (B15C5) was obtained from 4'-B15C5-thio-
carbamide, which was synthesized by the procedure
developed in our earlier work [6]: thioamidation of
benzo crown ethers with potassium thiocyanate in
polyphosphoric acid. Methylation of 4'-B15C5-thio-
carbamide in an alkaline medium yields 4'-cyano-
B15C5.

1 DB18C6 is dibenzo-18-crown-6.
1063-7745/00/4503- $20.00 © 200449
Table 1.  Coordinates (×104) and thermal parameters (A2 × 103)
of non-hydrogen atoms in the structure of 4'-cyano-
benzo-15-crown-5

Atoms x/a y/b z/c Ueq

N(1) –285(1) 3257(6) –878(6) 83(2)

O(1) 1167(1) 525(4) 2149(4) 56(1)

O(2) 1838(1) 219(5) 2045(5) 78(2)

O(3) 2161(1) 2894(6) 3709(6) 99(2)

O(4) 1468(1) 5409(4) 3274(4) 65(1)

O(5) 967(1) 3110(4) 3105(4) 57(1)

C(1) 758(1) 2397(5) 2006(5) 46(2)

C(2) 460(1) 2980(6) 1413(6) 51(2)

C(3) 276(1) 2181(6) 237(6) 55(2)

C(4) 389(1) 823(6) –330(6) 59(2)

C(5) 685(1) 224(6) 306(6) 53(2)

C(6) 871(1) 1000(5) 1468(5) 45(2)

C(7) 1308(1) –833(6) 1556(7) 63(2)

C(8) 1639(1) –1016(7) 2405(7) 74(2)

C(9) 2149(2) 225(9) 2956(10) 102(3)

C(10) 2301(2) 1707(9) 2880(10) 109(3)

C(11) 1846(2) 3427(9) 3093(9) 118(4)

C(12) 1773(2) 4792(11) 3753(10) 123(4)

C(13) 1208(1) 5283(6) 4300(6) 63(2)

C(14) 905(1) 4681(6) 3446(6) 54(2)

C(15) –37(2) 2790(6) –388(7) 64(2)
00 MAIK “Nauka/Interperiodica”
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Fig. 1. Molecular structure of 4'-cyanobenzo-15-crown-5.
EXPERIMENTAL

Single crystals of 4'-cyanobenzo-15-crown-5
(Tmelt = 86–88°C) were grown by slow evaporation of a
dilute solution in the hexane : acetone (10 : 1) mixture.
The crystallographic parameters of a single crystal
were determined and refined on a Syntex P21 auto-
mated four-circle diffractometer using 15 reflections.
These parameters are a = 40.479(6) Å, b = 8.821(2) Å,
c = 8.484(2) Å, β = 93.94(2)°, V = 3022.2 Å3, Z = 8,
M = 293, dcalcd = 1.27 g/cm3, and space group C2/c.

The integrated intensities of 2162 reflections were
measured by the θ/2θ scan technique with graphite-
monochromated CuKα radiation. After the Lorentz and
polarization factors were introduced and the weak
reflections with F < 4σ(F) were rejected, the data set
contained 1498 reflections. The structure was solved by
the direct method with the SHELXS86 program pack-
age on an IBM-386 personal computer [7] and refined
with the SHELX76 programs [8]. The hydrogen atoms
were located from the difference Fourier syntheses, and
their coordinates were not refined. After the final cycle
of refinement of the positional and anisotropic thermal
parameters for the non-hydrogen atoms the discrepancy
factor is R = 0.068. The atomic coordinates are listed in
Table 1.
C

RESULTS AND DISCUSSION

The molecular structure of 4'-cyano-B15C5 is
shown in Fig. 1. The benzene ring is planar. The mean
atomic deviation from the rms plane is 0.008 Å. The
dihedral angle between the planes passing through the
atoms of the benzene ring and those of the macrocycle
is 31.6°. A comparison between the torsion angles in
the molecule of 4'-cyanobenzo-15-crown-5 and torsion
angles for three related compounds is shown in Table 2.
The macrocycle exhibits the gauche conformation rel-
ative to three bonds, namely, C(7)–C(8), C(9)–C(10),
and C(13)–C(14), and the trans conformation relative
to the C(11)–C(12) bond. A similar conformation is
observed in the molecule of 4'-hexanoylbenzo-15-
crown-5 [9]. In the molecules of unsubstituted benzo-
15-crown-5 [10], 4',5'-dibromobenzo-15-crown-5 [11],
and a sodium-containing complex of 4'-benzo-15-
crown-5-sulfonate [12], the C(11)–C(12) part has the
gauche conformation. The O(2)⋅⋅⋅C(11) fragment of the
macrocyclic chain in the molecule studied forms an
angular fragment with the a–g–g––a bond sequence
resulting in the intramolecular C(11)⋅⋅⋅O(2) contact
(2.97 Å). The C–C–O–C dihedral angles in the frag-
ments of the macrocycle adjacent to the benzene ring
deviate from the ideal value (180°) by 5°–14°. The
C(12)–O(4)–C(13)–C(14) angle shows the largest devi-
ation from the ideal value.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 2. Crystal structure of 4'-cyanobenzo-15-crown-5.
Analysis of the conformation of the macrocycle in
benzo-15-crown-5 and its derivatives [9–12] reveals
that the condensation of the macrocycle with the ben-
zene ring causes the C(1)–C(6) bond to adopt the cis
conformation. The conformation of the macrocycle as
a whole in 4'-cyanobenzo-15-crown-5 is characterized
by nine anti bonds, five gauche bonds, and one cis
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
bond. The sequence of torsion angles is a–a–g––a–a–g–
g––a–a–g–a–g–a–a–s.

The bond lengths and angles have the normal val-
ues. The only exception is provided by the C(11)–C(12)
bond (1.369 Å), which is shorter than the commonly
observed bonds (1.45–1.54 Å). This shortening can
Table 2.  Torsion angles, deg

Angle

Value

4'-cyano-B15C5 4'-hexanoyl-B15C5 4',5'-dibromo-B15C5 Na complex of 
B15C5-sulfonate

C(6)–C(1)–O(5)–C(14) 166.0 –168.6 –164.3 –170.8

C(6)–O(1)–C(6)–C(1) –175.3 173.1 169.9 172.3

O(1)–C(6)–C(1)–O(5) 2.2 0.3 –3.3 –1.3

C(6)–O(1)–C(7)–C(8) 175.4 –175.6 –167.5 –179.4

C(9)–O(2)–C(8)–C(7) 173.4 –170.0 –159.7 –170.0

O(2)–C(8)–C(7)–O(1) –62.4 75.9 71.9 61.0

C(10)–C(9)–O(2)–C(8) –162.8 82.4 93.1 86.1

C(11)–O(3)–C(10)–C(9) –70.6 –87.9 –162.4 –177.5

O(3)–C(10)–C(9)–O(2) 71.2 70.3 51.3 58.3

C(12)–C(11)–O(3)–C(10) –167.1 –150.6 174.4 –179.5

C(13)–O(4)–C(12)–C(11) 103.6 –81.2 –86.4 –86.1

O(4)–C(12)–C(11)–O(3) –178.4 –170.3 –66.1 –60.0

C(14)–C(13)–O(4)–C(12) –129.4 130.4 159.2 172.2

C(1)–O(5)–C(14)–C(13) –164.7 167.4 167.3 177.1

O(5)–C(14)–C(13)–O(4) 70.8 –74.5 –68.0 –60.2
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result from increased thermal vibrations of atoms or
from the atomic disordering in this region. The
observed decrease of the C(sp3)–C(sp3) bond lengths in
the macrocycle of the molecule studied is characteristic
of other crown ethers as well [9–12].

The molecules in the crystal are packed in a “tail-to-
tail” fashion (Fig. 2). Short intermolecular contacts are
absent.
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STRUCTURES OF ORGANIC COMPOUNDS
Crystal Structure 
of 5-(2'-Aminophenyl)-2-Dimethylamino-1,3,4-Thiadiazole

S. T. Malinovskiœ*, G. G. Rusu*,**, N. A. Barba**, M. Z. Krimer*, and J. Lipkowski***
* Institute of Chemistry, Academy of Sciences of Moldova, Academiei 3, Chisinau, 20-28 Moldova
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Abstract—The crystal structure of 5-(2'-Aminophenyl)-2-dimethylamino-1,3,4-thiazole is determined by
X-ray diffraction. The compound is prepared by an unusual recyclization of 3-N,N-dimethylthioureidoquinazo-
lin-4(3H)-one. The crystal is monoclinic, space group P21/c, a = 7.420(2) Å, b = 10.466(5) Å, c = 14.752(9) Å,
β = 109.2(4)°, ρcalcd = 1.359 g/cm3, and Z = 4 for the C10H12N4S composition. The molecule consists of the
thiadiazole and phenyl rings and the dimethylamine N(CH3)2 and amine NH2 groups attached to the rings. The
molecule as a whole is planar. The dihedral angle between the rings is 8.9°. The N(1) and N(4) atoms in the
molecule are bound through the intramolecular interaction (2.76 Å). Molecules, which are linked in pairs by
antiparallel hydrogen bonds, form a framework structure. © 2000 MAIK “Nauka/Interperiodica”.
Derivatives of 3-aminoquinazolin-4(3H)-one are
widely used in organic synthesis and exibit a wide spec-
trum of physiological properties [1–3]. The thiocar-
bamoyl derivatives form a class of compounds that are
least studied both chemically and biologically. We
found that the heating of 3-N,N-dimethylthioure-
idoquinazolin-4(3H)-one (I) with concentrated sulfuric
1063-7745/00/4503- $20.00 © 20453
acid in 1,4-dioxane at 90–95°C results in a new com-
pound, whose composition is C10H12N4S. Based on the
composition and the results of 1H and 13C NMR and IR
spectroscopic studies, we suggested that the compound
obtained is 5-(2'-aminophenyl)-2-dimethylamino-
1,3,4-thiadiazole (II)
H

N

N

O
N

S

N(CH3)2
S

NN
N(CH3)2

NH2

conc. H2SO4/1,4-dioxane

90–95°ë

I II

.

In order to determine the structure directly and to reveal
specific structural and conformational features of the
compound obtained, we performed its complete X-ray
diffraction study.

The experimental data were obtained from a color-
less single crystal (0.2 × 0.3 × 0.5 mm in size) of an
irregular shape. The crystal is monoclinic, space group
P21/c, a = 7.420(2) Å, b = 10.466(5) Å, c = 14.752(9) Å,
β = 109.2(4)°, ρcalcd = 1.359 g/cm3, and Z = 4 for
C10H12N4S. The data were collected on an Enraf–Non-
ius Nicolet P3 diffractometer (CuKα radiation, θ–2θ
scan technique). The structure was solved by the direct
method within the SHELX program package [4]. The
calculations were performed for 2127 unique reflec-
tions with I ≥ 3σ(I).
The non-hydrogen atoms were refined in the aniso-
tropic approximation, and the hydrogen atoms were
refined isotropically. The final R factor was 0.051. The
atomic coordinates are listed in the table.

The molecule consists of the thiadiazole (1) and
phenyl (2) rings and the dimethylamine N(CH3)2 and
amine NH2 groups, which are attached to rings 1 and 2,
respectively (Fig. 1). The molecule as a whole is planar;
the dihedral angle between its rings is 8.9°. The atomic
deviations from the root-mean-square plane of the thi-
adiazole ring fall in the range 0.001–0.005 Å. In the
phenyl ring, the carbon atoms are coplanar within
0.007 Å. The N(3) nitrogen atom of the dimethylamine
fragment deviates from the plane of ring 1 by 0.017 Å,
and the N(4) atom of the amine group deviates from the
plane of ring 2 by 0.019 Å. The selected torsion angles
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Molecular structure of the C10H12N4S compound.
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Fig. 2. A fragment of the molecular packing: arrangement of molecules in flat networks.
are shown in Fig. 1. The bond lengths and angles in the
molecule agree well with the available data on the
structures of organic molecules [5, 6]. A slight differ-
ence in the S–C(7) and S–C(8) bond lengths (1.738 and
1.748 Å, respectively) and the bond angle at the sulfur
atom (87.1°) apparently can be explained by the elec-
trostatic 1,4-interaction between the S and C(2) atoms
(3.07 Å). The intramolecular interaction between the
C

N(1) and N(4) atoms (2.76 Å) in the molecule can be
considered as the N(4)–H···N(1) hydrogen bond [N(4)–
H, 0.93 Å; N(4)···N(1), 2.09 Å; and the angle at the H
atom is 154°].

The packing of the molecules in the structure is of
particular interest. The intermolecular hydrogen bonds
C(3)–H···S [C(3)···S, 3.60 Å; C(3)–H, 1.02 Å;
S···H(C3), 2.92; and angle C(3)–H···S, 145°] link mol-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 3. Crystal structure of the C10H12N4S compound.
ecules into centrosymmetric dimers, which are
arranged in flat networks parallel to the xy plane
(Fig. 2). The flat networks of dimers, in turn, are inter-
linked by the hydrogen bonds N(2)···H–N(4)
RAPHY REPORTS      Vol. 45      No. 3      200
[N(2)···N(4c), 3.15 Å; N(2)···H, 2.32 Å; N(4c)–H,
0.91 Å, and angle N(4c)–H···N(2), 175°]. As a whole,
the crystal structure can be considered a layered struc-
ture (Fig. 3).
Atomic coordinates (×104) and equivalent thermal parameters (Å2 × 103) for the structure

Atom x y z Ueq Atom x y z Ueq

S(1) 8741(1) 1938(1) 4927(1) 47(1) C(4) 4001(4) –1590(3) 2769(2) 61(1)

N(1) 10030(2) 1239(2) 3604(1) 47(1) C(5) 5502(4) –1600(2) 2417(2) 58(1)

N(2) 11312(3) 2149(2) 4128(1) 50(1) C(6) 7048(3) –754(2) 2764(1) 47(1)

N(3) 11844(3) 3470(2) 5478(2) 64(1) C(7) 8616(3) 1018(2) 3918(1) 39(1)

N(4) 8497(4) –792(2) 2396(2) 69(1) C(8) 10836(3) 2591(2) 4848(1) 46(1)

C(1) 7043(3) 120(2) 3497(1) 40(1) C(9) 13591(5) 3971(3) 5383(2) 76(1)

C(2) 5483(3) 113(2) 3828(1) 47(1) C(10) 11186(5) 3969(3) 6223(2) 71(1)

C(3) 3971(3) –720(2) 3476(2) 56(1)
0
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Thus, the data of the X-ray diffraction analysis con-
firmed that, under the action of concentrated sulfuric
acid, 3-N,N-dimethylthioureidoquinazolin-4(3H)-one
undergoes recyclization with the formation of 5-(2'-
aminophenyl)-2-dimethylamino-1,3,4-thiadiazole.
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Quasi-Rayleigh Waves in Sandwich Structures: Dispersion 
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Abstract—The dispersion equation for quasi-Rayleigh acoustic modes in transversely isotropic sandwich-type
structures (an elastic layer between two substrates) has been obtained in the analytical form. The equation is
analyzed for three types of structures—a layer between two soft substrates, a layer between a soft and a hard
substrate, and a structure consisting of two contacting substrates with markedly different values of hardness.
Eigenmodes are determined for all three structures. Depending on the combination of the material parameters
in these structures, these eigenwaves are either Rayleigh-type waves localized at interfaces in the substrates and
accompanying a Lamb wave in the interlayer (in the absence of an interlayer, forming a Stoneley wave) or the
leaky modes characterized by a small imaginary addition to the phase velocity and the presence of bulk partial
waves of leakage providing some energy removal from the interfaces. Without any calculations, simple criteria
were established that allow one to predict the existence of a leaky mode in the given structure and the number
of leakage fluxes it contains. The resonance reflection is analized for the case where the incidence angle of the
wave in the substrate corresponding to the velocity v of the wave-front propagation along the interface is close
to the value of the real part of the phase velocity of the leaky mode. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known [1, 2], acoustic waves propagating
in the isotropy plane common for all the layers of vari-
ous structures consisting of isotropic or transversely
isotropic elastic layers exist as two independent fami-
lies of which one is polarized in the propagation plane,
and the other normally to it. It is much simpler to ana-
lyze the latter case because all the partial modes in such
a wave (incident, reflected, refracted, and localized at
the interface) are polarized in the same way, and the
problem reduces, in fact, to the calculation of scalar
amplitudes of these waves. Among the waves of this
class are the so-called Love waves formed in the struc-
ture consisting of a layer on a semiinfinite substrate.
The method of resonance excitation of such waves in a
sandwich structure (a layer between two substrates)
was suggested in [3].

An example of the waves belonging to the first fam-
ily is a Lamb wave propagating in a plate and polarized
in the propagation plane. Along with an infinite number
of the Lamb wave-guide-type modes propagating via
successive reflection of the bulk waves from the plate
surface, there also exist one or two inhomogeneous or
the so-called quasi-Rayleigh modes polarized in the
propagation plane and transforming into a Rayleigh
surface wave in the limiting transition corresponding to
an infinite increase of the plate thickness in comparison
with the wave length. The resonance excitation of such
waves in a layer on a substrate due to a specially chosen
incidence angles was considered in [4].
1063-7745/00/4503- $20.00 © 20457
The resonances discussed in [3, 4] are based on the
same physical concept [5, 6]. If an additional substrate
with a certain hardness value and wave characteristics
is added to the surfaces of the structure under consider-
ation, the corresponding eigenwaves in these structures
(the Love or the quasi-Rayleigh Lamb waves) become
leaky waves and acquire some partial volume leakage
components, which remove the energy into the bulk of
the attached substrate. If one directs the bulk wave at
the interface of this substrate in such a way that the
reflected wave coincides with the wave of leakage, then
the resonance excitation of the corresponding eigen-
modes arises in the initial structure.

Below, we describe the study of the same phenome-
non as in [4]—a sagittal polarized family of waves in a
more complicated structure than that in [4]. In other
words, we consider the properties of quasi-Rayleigh
eigenwaves in a sandwich substrate–layer–substrate
structure. We consider here three types of structures: an
elastic layer between two soft substrates, a layer
between soft and stiff substrates, and the limiting struc-
ture corresponding to the zeroth layer and the direct
contact of two substrates with essentially different
hardness. We determine the eigenwaves in these struc-
tures and establish the simple criteria for the case where
the wave fields are conventional inhomogeneous waves
localized at the boundaries and for the case where these
waves belong to the class of leaky waves. We also ana-
lyzed possible resonance excitation of eigenwaves in
the above structures.
000 MAIK “Nauka/Interperiodica”
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FORMULATION OF THE PROBLEM 
AND INITIAL RELATIONSHIPS

A sandwich structure intersected by the {x, y} sag-
ittal plane coinciding with the transverse-isotropy plane
is shown in Fig. 1. An elastic layer between two sub-
strates has the thickness d = 2a. We have to consider the
elastic moduli of this layer, c11 and c66 , and its density
ρ, the material parameters determining the velocities of
the longitudinal (l) and transverse (t') bulk waves polar-
ized in the {x, y} plane and propagating in it:

(1)

The wave field of elastic displacements in the layer
(and also in the substrates) is a superposition of four
partial waves:

(2)

Here  (α = l, t') are the scalar amplitudes of the par-
tial waves,

(3)

The quantities  are the polarization vectors nor-
malized to unity, v is the reduced phase velocity
defined as v = ω/k, where ω is the frequency, and k is
the x-component of the wave vectors that is common

for all the partial waves, k ≡ kx. Obviously,  = ±ipαk.

v l c11 ρ⁄( )1/2, v t' c66 ρ⁄( )1/2.= =

u x y t, ,( ) al
+ul

+ al
–ul

– at'
+ut'

+ at'
–ut'

–.+ + +=
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±

uα
± x y t, ,( ) uα

0( )± e
pα ky+−

eik x vt–( ),=

a y a.≤ ≤–

uα
0( )±

kαy
±

1/vL
1/vl

~~

1/vt'
~~

c11, c66, ρ~~ ~~ ~~

c11, c66, ρ d = 2a
x

yc11, c66, ρ~ ~ ~

1/vl
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~

1/vt'

1/vt'
~

Fig. 1. Sandwich structure and its major acoustic character-
istics. Semicircumferences indicate the slowness curves of
bulk waves; the dashed arrows correspond to leakage fluxes
in the leaky mode (the cross indicates the real part of the

reciprocal velocity  of this mode).v L
1–
C

The vectors  in (2) and (3) are independent solutions
of the equations of motion

(4)

where  is the elastic-moduli tensor and ∇  = (∂/∂x, ∂/∂y).
Substituting (3) into (4) and performing some simple
calculations, we arrive at

(5)

(6)

The choice of the signs in (6), which was made when
solving equation

(6a)

was dictated by the following requirement. The inho-
mogeneous mode (increasing with the distance from
the surface) should be transformed into a homogeneous
mode incident onto the surface in the transition of the
velocity v through the point v = vα.

Now consider the wave field distribution in the sub-
strates. In the upper and lower substrates (Fig. 1) char-
acterized by the material constants , ,  and ,

, , respectively, the wave fields can be described

by relationships (2)–(6) with the amplitudes , polar-

ization vectors , the parameters pα and qα, and the
velocities vα marked with one or two tildes, respec-
tively.

The boundary conditions at the interfaces between
the media (y = ±a) are determined by the requirement
of continuity of displacements and normal stress com-
ponents:

(7)

Here, n is the normal to the boundaries under consider-
ation. The continuity conditions (7) form a system of
eight linear equations with eight unknowns—four

amplitudes of the partial waves in the layer  (α = l, t')

and four amplitudes of the waves in the substrates, 

and , corresponding either to inhomogeneous local-

ized modes with the real parameters  and , or to
the reflected and refracted bulk waves that transfer the

uα
±
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energy from the interfaces with the imaginary parame-

ters  and . In the general case, the right-hand side

of this system contains four amplitudes  and  con-
sidered to be known. Those of the amplitudes that cor-

respond to real  or  (which signifies that they are
the amplitudes of nonphysical inhomogeneous modes
exponentially increasing with the distance from the
interface) should be taken to be zero, whereas all the
other amplitudes correspond to the incident waves of
the reflection problem and can be set arbitrarily. In this
case, the velocity v, included as a parameter in the coef-
ficients of the system, is determined by the angle of
incidence used. The standard solution of this system
has the form

(8)

where the common denominator D(v, k) is the determi-
nant of the matrix of the coefficients before unknowns.
The eigenwave modes of the sandwich structure stud-
ied can consist of the partial waves alone, which are
localized at the interfaces, or can also include the bulk
waves of leakage that transfer the energy away from the
interfaces. In this formulation of the problem, the
velocity v is determined from the condition of the exist-
ence of nontrivial solutions of the homogeneous system
of equations

(9)

Thus, the velocities of eigenmodes are determined by
the poles of the functions that provide solution (8) of
the reflection problem.

DISPERSION EQUATION 
FOR EIGENMODES

Dispersion equation (9) that sets the dependence of
the velocity v on the wave number k (in what follows,
we use the dimensionless parameter K ≡ ka) can be
obtained in an explicit form. Omitting cumbersome
transformations, we indicate here only the final result

(10)

where, the function F1 has the form

(11)

p̃α pα
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and the following notation is introduced

(12)

The expressions for , , and  are obtained from

the above formulas for , , and  by substituting 

by  and  by . The transition from the functions
with the subscript s to the functions with the subscript
a (e.g., Rs  Ra) reduces to the substitution tanh 
cotanh.

The expression for the function F2 in (10) can be
represented in the form

(13)

where

(14)

The curly brackets introduced here for the sake of brev-
ity denote the following combinations

(15)

Also, in (13), we also use the notation

(16)

The function  is transformed into  by marking the
corresponding quantities in (14) with a tilde. Expres-

sions for  and  are obtained from the expressions

for  and  by substituting Ra, s by fa, s.

Finally, the last term in (10) has the form

(17)

where
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To the eigenmodes localized in the vicinity of the
layer there correspond the velocities v [the roots of dis-
persion equation (10)] in which all the parameters 

and  are real. This takes place if

(20)

Of course, in the general case, dispersion equation (10)
does not necessarily has real roots. Their existence
depends on the relationships between the material char-
acteristics of the media.

Another class of solutions is described by complex
roots

(21)

corresponding to the so-called leaky eigenwaves
including the bulk partial modes (wave of leakage) that
remove the energy from the layer into the bulk of one
or both substrates. In fact, the solutions of type (21)
have an obvious physical sense only if

(22)

i.e., only if the wave field in the layer decays relatively
feebly—at the distance of a wave length along the inter-
faces. Condition (22) automatically provides low
amplitude values for bulk waves of leakage. Obviously,
the number of the waves of leakage is determined by
the relationship between the velocities vL, , and 
and ranges from one to four. The latter case take place if

(23)

Below, we determine the parameters of the local-
ized- and leaky-type eigenwaves for two different
three-layer structures and a bicrystal.

LOCALIZED AND LEAKY QUASI-RAYLEIGH 
MODES IN SANDWICH-TYPE STRUCTURES

Plate between two soft substrates ( ,  ! 1).
Consider a plate between two soft substrates. We

assume that the elastic moduli in the substrates,  and

, and their densities,  and , are small in compari-
son with the corresponding parameters of the plate. At
the same time, the velocities  and  of the bulk
waves in the substrates and the corresponding parame-

ters  and  remain finite. This allows the descrip-

tion of the problem by two small parameters  =

/c66 and  = /c66.

+ rs{ } pt' r̃ p̃l Ñ t'
2

r̃ p̃l Ñ t'
2

+( )

+ η sra{ } pl r̃ p̃t'Ñt'
2

r̃ p̃t'Ñt'
2

+( ) ] .

˜ ˜ ˜

˜ ˜ ˜

p̃α

p̃α
˜

v min ṽ t' ṽ t',( ).< ˜

v v L iv L' ,–=

v L'   !  v L ,

ṽ α ṽ α
˜

v L max ṽ l ṽ l,( ).> ˜
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ṽ α ṽ α
˜

p̃α p̃α
˜
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c̃66 Γ̃̃ c̃66
˜

C

                 

 

In the zeroth approximation (the hardness values of

the substrates tend to zero and, therefore, 

 

  0 

 

and

 

  0

 

), dispersion equation (10) is simplified to the
form

 

(24)

 

and describes a symmetric (

 

R

 

s

 

(

 

v

 

) = 0

 

) and an antisym-
metric (

 

R

 

a

 

(

 

v

 

) = 0

 

) Lamb waves. The detailed analysis
of these equations and the explicit form of the corre-
sponding wave fields of types (2) and (3) were studied
elsewhere [4]. As is well known, an antisymmetric
inhomogeneous Lamb wave exists at the free bound-
aries of an isotropic (or transversely isotropic) plate
irrespectively of the value of the wave number 

 

K

 

 = 

 

ka

 

.
The symmetric inhomogeneous eigenmode also exists
irrespectively of the 

 

K

 

 value, but only if 

 

c

 

66

 

/
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11

 

 > 3/4

 

.
At lower values of the 
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 ratio, a threshold number

 

K

 

0

 

 arises. It limits from below the range of existence of
the symmetric inhomogeneous wave: 

 

K

 

 > 

 

K

 

0

 

. If 

 

K

 

 

 

< 

 

K

 

0

 

;
this mode is transformed into the waveguide mode with
the bulk component (or components) and propagates
along the plate via a successive reflection from the sur-
face.

At small but finite values, , 

 

 

 

!

 

 1

 

, equation (10)
in the linear approximation with respect to these
parameters takes the form

 

(25)

 

One important remark should be made. As is well
known, with an increase of the parameter 

 

K

 

, the roots
of unperturbed equation (24) (the velocities 

 

v

 

(

 

s

 

)

 

 and

 

v

 

(

 

a

 

)

 

) approach (from above and from below, respec-
tively) the velocity 

 

v

 

R

 

 of the Rayleigh wave and, at suf-
ficiently high 

 

K values, become exponentially close to
the velocity vR. In this limiting case, one has to con-
sider independent Rayleigh waves propagating in the
subsurface layers of the plate. The penetration depths
of these waves are considerably less than the plate
thickness. Therefore at K @ 1, the problem reduces to
the independent influences of both substrates on the
corresponding Rayleigh waves. Similar to [4], we
assume that the wave number K belongs to the range,
where the parameters Rs(v(a)) and Ra(v(s)) are not small,

at least, in comparison with  and .

With due regard for the above stated, one can deter-
mine the substrate-induced perturbations in the veloci-
ties v(s, a):

, (26)

Γ̃

Γ̃̃

RsRa 0=

Γ̃ Γ̃̃

RsRa Γ̃ F̃2
R

2 f̃ Γ̃ F̃2
R

2 f̃⁄+⁄+ 0.=˜ ˜ ˜

Γ̃ Γ̃̃

v s( ) v s( ) ∆v s( ), v a( ) v a( ) ∆v a( )++
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(27)

where, the following notation is introduced  = /ρ =

/  and  = /ρ = / .

At the velocities v(s, a) satisfying inequality (20), all

four parameters , , , and  are real. With due
regard for (12) and (16), one can readily show that the
increment in velocity (27) remains real even if both or
one of the parameters pt' and pl are imaginary. As was
indicated above, this is really observed for the symmet-
ric wave at K < K0, which, in this case, is transformed
into the mode of the waveguide type. Thus, if v(s, a) <

min( , ), the three-layer structure has an eigen-
wave with the real phase velocity. This wave is formed
by an inhomogeneous or waveguide-type Lamb wave
in the plate and accompanies the Rayleigh-type surface
modes in the substrates.

If the substrate materials are chosen in such a way
that either the velocity v(s) or both velocities v(a) and

v(s) exceed min( , ) (it should be remembered that
v(s) > v(a) in all the cases), then some of the parameters

 and  become imaginary, and the corresponding
increment ∆v(s, a) becomes complex, i.e., corresponds
to the leaky mode. The number of leakage fluxes in
such a wave coincides with the number of imaginary

parameters from the set (v(s, a)), (v(s, a)), (v(s, a)),

and (v(s, a)). Thus, for the material parameters indi-
cated in Fig. 1, the following parameters are imaginary
[see (6)]:

(28)

This situation corresponds to the existence of two leak-
age fluxes in the upper substrate and the formation of a
Rayleigh-type surface wave in the lower one. One can
readily see that in the case under consideration, all the

parameters in (27) (except of  and ) remain real.
Therefore the separation of ∆v(s, a) into the real and
imaginary parts

(29)

is trivial.

∆v s a,( ) ∂Rs a, ∂v⁄ ) 1–( rs a, Γ̃ r̃ f̃⁄ Γ̃ r̃ f̃⁄+( ) ---
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ṽ t' ṽ t'
˜
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However, we indicate here the explicit form of the

imaginary velocity component , one of the major
characteristics of the leaky mode,

(30)

Unfortunately, the expression for  is not as com-
pact as (30) for all the combinations of possible leaky
fluxes. Thus, if there are two fluxes (one for each sub-
strate), then, in addition to the complex parameters 

and , four more parameters become complex,

namely, , , , and . However, even in this case (as
in all the other cases of the combination of the imagi-

nary or real parameters  and ), the separation
(27) into the real and the imaginary parts presents no
essential difficulties.

A plate between the soft and the hard substrates

(  ! 1,  @ 1). As earlier, consider a wave field polar-
ized in the plane of incidence in a three-layer structure
consisting of a layer between a soft and a hard sub-
strate. In the zeroth approximation, corresponding to

the limiting case   0 and   0, dispersion
equation (10) acquires the form

(31)

The explicit form of this equation and its detailed anal-
ysis can be found in [4]. In a plate whose one surface is
free, whereas the other surface is clamped, the wave
field does not decompose into a system of independent
symmetric and Lamb waves. According to [4], there
always exists an interval 0 < K < K0 corresponding to
the waveguide-type propagation of the eigenwave,
where at least one of the partial components is a bulk
wave successively reflected from the surfaces. In this
range of K variation, at least one of the parameters pt'
and pl is imaginary. At K > K0, both pt' and pl parameters
are real, and the eigenwave is inhomogeneous.

Substrates “perturb” equation (31) of the zeroth
approximation. In the first order with respect to the

parameters  and , equation (10) takes the form

(32)

The corresponding perturbation of the solution,
v(0)  v(0) + ∆v, is equal (with the same accuracy) to

(33)

Similar to the previous section, the real or the complex
increments in the velocity ∆v are fully determined by

v 'L
s a,( )

v 'L
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2
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the parameters  and  and are independent of the

parameter pt', l. At v(0) < min( , ), all the  and

 parameters and the increment in the velocity ∆v
are real, and the eigenwave is formed by an inhomoge-
neous or waveguide-type Lamb mode in the plate and
the Rayleigh-type surface waves in the substrates.

At v(0) > min( , ), the eigenwave is transformed

into a leaky wave. Consider the case v(0) > max( , )
corresponding to the existence of four leakage fluxes
(two for each substrate). In this case,  = –i  and

 = –i , and the separation of ∆v into the real and
the imaginary parts, ∆v = ∆vL – i , yields

(34)

(35)

Here  = /  is a small parameter.

Analyzing the wave fields in the plate on a substrate
[4] with the similar polarization, we did not consider
the boundary problem of a plate on a soft substrate with
the clamped external surface. The trivial limiting tran-

sition   0 in formulas (32)–(35), which make all
the expressions twice shorter, can fill this gap.

Limiting situation d  0: bicrystal. If the layer
thickness d in a sandwich structure tends to zero, two
semiinfinite substrates directly contact each other
(Fig. 2). Then, cumbersome equation (10) is consider-
ably simplified

(36)

Thus, we arrive at the dispersion equation for Stoneley
waves (see [1, 2]).
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ṽ t' ṽ t'
˜
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˜
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rsRa{ } r̃ R̃⁄ ] } v v
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× γ̃ f s{ } pt'q̃l η s f a{ } plq̃t'+[ ](

+ γ̃Γ̃ 2–
Rs{ } pt'q̃l η sRa{ } plq̃t'+[ ] ) } v v
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2 ṽ t'

2˜
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c̃66
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Fig. 2. The same as in Fig. 1 but for two elastic half-spaces
in the absence of any layer in between.
C

Now, assume that one of the contacting substrates is
much harder than the other. For definiteness, let  @

. In this limiting case, the dispersion equation in the
zeroth approximation takes the form

(37)

and describes a Rayleigh wave propagating in the lower
substrate. The perturbed dispersion equation in the
approximation linear with respect to the small parame-

ter Γ = /  has the form

(38)

The corresponding correction ∆v to the velocity vR set
by this equation is

(39)

Obviously, at vR < , all the  and  parameters
are real, and solution (39) describes the conventional
Stoneley wave propagating in the bicrystal under study

with a velocity v = vR + ∆v. At  < vR < , the 
parameter becomes imaginary, and the first wave of

leakage is formed. Finally, at vR > , the first wave of
leakage is followed by the second wave of leakage
(Fig. 2). The real and the imaginary parts of the veloc-

ity increment ∆v = ∆vL – i  acquire the form

(40)

(41)

ON RESONANCE EXCITATION 
OF QUASI-RAYLEIGH WAVES 

IN THE STRUCTURES STUDIED

We had already considered the ideology of reso-
nance reflection in the vicinity of the leaky eigen-
modes. The principle reduces to the choice of an inci-
dence angle for a pumping wave which provides the
propagation of the reflected wave along the partial
wave of leakage of the eigenwave mode in the struc-
ture. Such a “coupling” “swings” the system as a
whole, i.e., provides the resonance excitation of the
eigenwave. In this case, the incident wave compensat-
ing the removal of the energy from the interface by
leakage fluxes provides the restoration of the steady-
state energy flow along the interface, and, at the same
time, also makes the phase velocity real. On the other
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4 ṽ t'
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hand, the energy equivalence of the pumping wave to
the total leakage flow, which is only a small part of the
eigenwave energy, reflects the efficiency of such exci-
tation.

To characterize the resonances under study qualita-
tively, consider the excitation coefficients of inhomoge-
neous partial waves localized at the interfaces. In the
simplest situation (Fig. 2), these coefficients are the
ratios of the amplitudes of inhomogeneous waves in the
lower substrate and incident bulk pumping waves in the
upper substrate,

(42)

Here α, β = l, t'. In other words, the above ratio takes
into account an ambiguous (double) choice of the
pumping wave. According to the results obtained in
[3, 4] for the simplest structures, the determination of
the dependence of the coefficients sαβ(v) (42) on the
phase velocity v set by the incidence angle of the
pumping wave is a rather complicated problem, but the
shape and the height of the resonance peaks of the
sαβ(v) functions, (42), can qualitatively be estimated
proceeding only from the general considerations with-
out any complex calculations.

The shape of the resonance peak is determined from
the simple universal consideration based on the well
known fact that the velocities of the eigenmodes are
determined by the poles of the excitation (and reflec-
tion) coefficients in the problems of wave reflection
from the intefaces of any structures [see (8) and (9)].
Thus, in the vicinity of the leaky mode velocity, vL –
i , the excitation coefficients sought, (42), should
have the form

(43)

where the coefficients ηαβ, being the smooth functions
of the velocity v, can be determined at v = vL.

As follows from (43), the width of the resonance
peaks should be of the order of . The estimation of
the heights of the resonance peaks is a more compli-
cated problem. We have to take into account the condi-
tions for the energy balance for energy flows of the
wave fields at the interfaces. We also take into account
that this peak has the same order of magnitude as that
of the ratio of the amplitudes of inhomogeneous waves

 and the bulk waves of leakage  in the leaky
eigenmodes [3, 4].

The initial relationship used in such estimates is the
general relationship for the energy flows of the wave of
elastic displacements u giving rise to the formation of
the field of mechanical stresses  [7]:

(44)

sαβ v( ) ãα
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– .⁄= ˜
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Using the above expression, one can readily estimate
the order of the magnitude of the time-averaged leak-
age flow in a leaky eigenmode in the upper substrate

(45)

Here  is the characteristic value of the elastic moduli
in the upper substrate.

On the other hand, the time-averaged energy flux in
the lower substrate, where the localized wave field
exists, can be estimated in the same way as in the upper
substrate (45):

(46)

where  is the characteristic value of the elastic moduli
in the given medium. In the zeroth approximation
(ignoring the perturbing factors considered above), this
energy flux is parallel to the interface. Now, we invoke
the property of an inhomogeneous wave: the time-aver-
aged energy flux is always normal to the imaginary part
of its wave vector [8]. We also take into account that
perturbations give rise to an imaginary addition to the
velocity , which is uniquely related to the imaginary
addition to the wave-vector component parallel to the
interface:

(47)

The imaginary addition  makes the imaginary

wave-vector components, Im , of the partial waves in
the lower substrate not parallel to the interface (as was
the case in the absence of perturbations). The vectors

Im  deviate from the normal to the interface by the
angle

(48)

As a result, a leakage flux is also formed in the lower
substrate because of the rotation of the energy flux of
the wave fields in this substrate by an angle δ (48).
Thus, the order of magnitude of the energy-flux compo-
nent normal to the interface is

(49)

This component should be balanced by the energy leak-
age flux of the wave in the upper substrate. Equating
(45) and (49), we arrive at the estimate of the excitation
coefficients (42) at the resonance (where v = vL):

(50)

Comparing (43) and (50), we arrive at the estimate of
the order of the magnitudes of the coefficients ηαβ:

(51)

The final estimates for different cases of leaky mode
formation are obtained by representing the small addi-
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tions to the velocity  in (50) and (51) in terms of the
factors determining the perturbation.

If the upper substrate is softer than the lower one,
i.e., if Γ ! 1, we have

 ~ ΓvL. (52)

Then, formulas (50) and (51) provide the following
estimates for the height of the resonance peak and the
coefficients ηαβ:

(53)

In this case, the height of the resonance peak is of the
order of unity, whereas at the wings, where |v – vL| @

, the excitation coefficient sαβ(v) drops to zero.

If the resonance is excited from the harder upper
substrate, where

(54)

we arrive at the following estimates:

(55)

Under these conditions, the resonance peak is anoma-
lously high, whereas at the wings, the excited inhomo-
geneous waves have the amplitudes comparable with
the amplitude of the incident pumping wave.

All these estimates are consistent with the corre-
sponding data obtained by direct calculations in [3, 4].
Moreover, formulas (43) and (51) also adequately
describe the excitation resonance of a Rayleigh wave in an
anisotropic half-space (the case Γ ~ 1) because of the sim-
ilar reflection in the vicinity of the leaky eigenwave [5].

In some particular cases [9, 10], where the wave
number K = kd lies in the range where exp(pαK) @ 1,
the above simplified estimates are not sufficient for the
waves in the plates on the substrates, which is seen, in
particular, from the exact formulas obtained in [3, 4].

CONCLUSION
The dispersion equation is obtained in the general

form. It describes the wave fields polarized in the plane
of the wave propagation, which coincides with the
plane of the transverse anisotropy of a three-layer struc-
ture consisting of a plate between two semiinfinite sub-
strates. Using this equation, we managed to solve the
problem of eigenwaves for two types of sandwich
structures, namely, for the case where both substrates
are soft and for the case where one substrate is soft,
whereas the other is hard (in comparison with the plate
material). In the zeroth approximation, the solution is
obtained for the Lamb waves in the plate under the cor-
responding boundary conditions. Depending on the
parameter combination, the substrates provides differ-
ent perturbations of the Lamb solutions.

If the unperturbed velocity of a Lamb wave lies in
the range of inhomogeneous waves in both substrates
(irrespectively of their hardness), i.e., is less than the

v L'

v L'

sαβ v L( ) 1, ηαβ v L' Γv L.∼ ∼∼

v L'

v L' Γ 1– v L∼

sαβ v L( ) v L v L' Γ  @  1, η αβ v L . ∼∼⁄∼             
C

velocity of the slowest bulk wave of all the waves polar-
ized in the symmetry planes of the substrates, then the
perturbed solution is described by the superposition of
the Lamb wave in the plate with the Rayleigh-type sur-
face waves in the substrates. Although the phase veloc-
ity of these superimposed waves differs from the veloc-
ity of the unperturbed Lamb wave, it remains real.

Another situation arises if the velocity in the zeroth
approximation admits the propagation of the bulk wave
in at least one of the substrates. Then, the perturbation-
induced variation in the phase velocity is complex,
which indicates that the resulting wave belongs to the
class of leaky waves. The latter waves have the bulk
components which transfer the energy from the plate
into the substrate (or substrates) bulk. The number of
leakage fluxes can range from one to four.

A similar situation can also take place in a “limit-
ing” structure formed by two substrates of different
hardness without any layer in between. In this case, the
solution in the zeroth approximation is a Rayleigh wave
in a hard plate. The perturbed solutions can be of two
types: a conventional Stoneley wave or a leaky wave
with the leakage flux in the soft substrate.

The existence of solutions for leaky eigenwaves
with weak leakage fluxes admits their resonance exci-
tation by bulk waves incident at such angles that the
velocity of the signal propagation along the surface
coincides with the real part of the phase velocity in the
eigensolution. As a result, the pumping flux fully com-
pensates the leakage flux of the leaky mode, which pro-
vides the steady-state energy transfer along the inter-
face and makes the phase velocity real.

Being a function of the phase velocity v, the shape
of the resonances is characterized by the universal
width of the order of an imaginary component of the
leaky-wave velocity. However, there are two types of
resonances which behave differently at the curve max-
imum and at the wings. The resonance of the first type
is characterized by a high maximum, the ratio of the
amplitude of the excited wave to the amplitude of the
pumping wave is proportional to ~vL/  @ 1. The res-
onance of the second type is characterized by a high
selectivity of excitation (infinitesimal signal beyond the
peak of width ~ ). The first type of the resonance is
observed if the pumping wave propagates in a hard
medium, whereas the excited wave propagates in a soft
medium. The second type of behavior is observed if the
pumping wave propagates in the soft medium, whereas
the excited wave, in the hard one. This is characteristic
of various sandwich structures considered in the
present article and in [4], and also for the Love-type
waves [3] characterized by polarization in the orthogo-
nal plane of propagation. The universal character of
these characteristics follows from the qualitative esti-
mates made in the previous Section.

Concluding the article, we should like to emphasize
that both in [3, 4] and in the present article, we
restricted ourselves to the consideration of the waves

v L'

v L'
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polarized either in the propagation plane or in the plane
normal to it, which really takes place if the propagation
plane coincides with the symmetry plane. In this con-
nection, we should like to mention the studies of the
leaky waves and the corresponding resonances in a
sandwich structure [11, 12], although the physical
mechanism of the leakage considered in these papers is
quite different. The authors considered the mechanism
related to the anisotropy of a thin (

 

K

 

 

 

!

 

 1

 

) layer on an
isotropic substrate or a similar layer in the sandwich
structure (with the equivalent isotropic substrates). In
this case, the propagation plane does not coincide with
the symmetry plane, which provides the simultaneous
excitation of the modes with mutually orthogonal
polarizations. Under such conditions, the waves polar-
ized in the propagation plane are accompanied by leaky
currents caused by “mixing” with the bulk partial
waves polarized normally to the propagation plane.
Since the leaky waves and the main wave propagate in
the same medium, one has to put Γ ~ 1 in (51). This
results in the fact that the resonances are of the same
type as in [5], in full accord with the calculations made
in [11, 12].
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LATTICE DYNAMICS
On the Effect of Ordering on Vibrational Spectrum of Relaxor 
Ferroelectric PbSc1/2Ta1/2O3 in Paraphase
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Abstract—The effect of the ordering of Sc3+ and Ta5+ ions on the behavior of the phonon subsystem in the

relaxor ferroelectric PbSc1/2Ta1/2O3 from the numerous A O3 family has been studied. The nature of an
additional contribution to the light-scattering spectra has been analyzed on the experimental data on Raman
scattering in PbSc1/2Ta1/2O3, SrAl1/2Ta1/2O3, SrAl1/2Nb1/2O3 , and BaMg1/3Ta2/3O3 compounds and inelastic
neutron scattering in PbSc1/2Ta1/2O3 . It is shown that broadening of the lines in the Raman spectra of
PbSc1/2Ta1/2O3 crystals is caused by additional scattering by phonons from various points of the Brillouin zone.
© 2000 MAIK “Nauka/Interperiodica”.

Bx' Bx 1–''
INTRODUCTION

Multicomponent perovskite-like ferroelectrics with
a diffuse phase transition dubbed “relaxor ferroelec-
trics” or “relaxors,” have attracted much attention for
many years. Relaxor ferroelectrics differ from the clas-
sic perovskites described by the formula ABO3 by pres-
ence of B' and B'' ions with valence occupying crystal-
lographically equivalent positions in the B-sublattice.
Because of unique physical properties (such as, e.g.,
giant permittivity, “diffused” anomalies of many phys-
ical properties in the vicinity of the phase transition,
etc.), these numerous compounds are considered as a
separate family described by the general formula

A O3 [1].

The relaxor ferroelectric PbSc1/2Ta1/2O3 (PST)

belongs to the A O3 family of perovskite-like
compounds with Sc3+ and Ta5+ ions located in the posi-
tions of the B sublattice. The PST crystals are a model
object for studying physical properties of relaxor ferro-
electrics, because the degree of Sc3+ and Ta5+ order may
be controlled by heat treatment [2]. A disordered PST
crystal exhibits a typical relaxor behavior (a wide max-
imum of permittivity, appreciable frequency disper-
sion, etc.) and the so-called mean Curie temperature
TC ~ 270 K, whereas an ordered PST crystal undergoes
a conventional ferroelectric phase transition with the
Curie temperature TC ~ 300 K [3]. The symmetry of the
paraphase of PST crystals was established by the
method of high-resolution neutron powder diffrac-
tion—sp. gr. Fm3m [4].

The PST vibrational spectrum was studied by the IR
and Raman spectroscopy methods [5–8]. The group
theoretical analysis of the PST Raman spectra in the

Bx' B1 x–''

Bx' B1 x–''
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praphase and paraphase was performed in [5], the
authors checked where the consistency of the
paraphase spectra with the sp. gr. Fm3m and considered
in detail the high temperature transition from praphase
described by the sp. gr. Pm3m. Special attention was
paid to the effect of ordering on the Raman spectra and
it was shown [9] that the degree of order influences the
shape and the intensity of the lines of the Raman spec-
tra. The present paper continues the study of the effect
of order on the vibrational spectrum of the paraphase of
the relaxor PST ferroelectric by the methods of the
Raman and inelastic neutron scattering with due regard
for the known and newly obtained data.

RAMAN SCATTERING IN PbSc1/2Ta1/2O3

The Raman spectra of a PST crystal were excited by
an argon laser (λ = 613.5 nm) and analyzed using a
Cary-82 triple spectrophotometer. The samples were
2 × 2 × 1-mm-large PST single crystals with various
degree of cation order. We studied the spectra with the
X(ZZ)Y and X(ZX)Y polarizations, with the X-, Y-, and
Z-axes being parallel to the fourfold symmetry axes of
the cubic unit cell.

Figure 1 shows the Raman spectra of the paraphase
of PST crystals with various degrees of order. It is
clearly seen that the degree of crystal order affects the
spectra. A lower degree of crystal order increases the
half-width and the intensity of the lines, on the spectra
with the maximum values attained for spectra of the
PMN crystals [9]. At first, it was assumed that the line
widths and the other parameters of the Raman spectra
of relaxor ferroelectrics depend on ordering of the B'
and B'' ions in the B-sublattice [9]. The high-resolution
electron microscopy data show the existence of nanore-
gions with the cation ratio B' : B'' = 1 : 1; the symmetry
000 MAIK “Nauka/Interperiodica”
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of these regions is described by the sp. gr. Fm3m
[10, 11]. This leads to an assumption that the Raman
spectra are formed from these nanoregions, which also
explains the live broadening of the experimental spec-
tra. However, the recent studies showed that the real sit-
uation is much more complicated. For comparison,
consider some other compounds of the A O3
family—SrAl1/2Ta1/2O3 (SAT), SrAl1/2Nb1/2O3 (SAN),
and BaMg1/3Ta2/3O3 (BMT) also characterized by the
presence of nanoregions with 1 : 1 or 1 : 2 ion ratios in
the B-sublattice [12]. The Raman spectra of these
compounds (Fig. 2) are quite consistent with the
sp. gr. Fm3m established by the method of X-ray dif-
fraction analysis. Figure 2 illustrates the differences
between the spectra of PST and other related com-
pounds. The line half-width on the PST is about 30–
50 cm–1, whereas for all the other compounds it is about
2–10 cm–1. Thus, it is evident that the existence of nan-
oregions is not responsible for such a pronounced line
broadening. Neither can it be caused by anharmonicity
of the crystal lattice, defects, and the other well-known
mechanisms, since we consider narrow lines with half-
widths of the order of 2–10 cm–1. Obviously, the differ-
ences between the SAT, SAN, and BMT spectra, and
the spectra of the relaxor ferroelectrics are caused by
other factors. Among such obvious differences are the
existence of the ferroelectric phase transition in relax-
ors (really observed or suppressed under normal condi-
tions) absent in SAT, SAN, BMT, and in a number of
other compounds [12]. Thus, one can assume some
dynamic contributions to the Raman spectra, or a rather
dynamic violation of the translational symmetry, which
provides the phonon contributions to the Raman spec-
trum from the É-point that come from other points in
the same Brillouin zone.

INELASTIC INCOHERENT NEUTRON 
SCATTERING

The experiments on inelastic neutron scattering
(INS) were performed on a spectrometer with inverse
geometry (designed KDSOG-M at the Joint Institute
for Nuclear Research, Dubna). The samples were
ordered (s = 0.85) and nominally disordered PST pow-
ders (120-g in weight). The degree of order was
checked on a DRON-2 X-ray diffractometer by mea-
suring the I001/I111  intensity ration. The INS spectra
were simultaneously recorded for eight scattering
angles ranging from 30° to 140° in the mode of neutron
energy loss, which made it possible to make measure-
ments at low temperatures. At zero energy transfer, the
resolution was 0.6 MeV. Upon subtraction of the back-
ground due to the sample holder, the spectra obtained
were summed over the scattering angles for more pre-
cise averaging over momenta transferred by neutrons.
Finally, the experimental data were processed in the
single-phonon incoherent approximation to reconstruct
the generalized density of the vibrational states G(E).

Bx' B1 x–''
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Fig. 1. Raman spectra of PST crystals with various degree
of order for the (a) X(ZZ)Y and (b) X(ZX)Y polarizations.
(PSTo) and (PSTd) indicate a more and a less ordered sam-
ple, respectively.
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Fig. 2. Raman spectra of PbSc1/2Ta1/2O3 (PST),
SrAl1/2Ta1/2O3 (SAT), and SrAl1/2Nb1/2O3 (SAN). The
F2g, Eg, and A1g modes active in the Raman spectra
(sp. gr. Fm3m) are indicated.
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No multiple and multiphonon processes were taken
into account [13].

Figure 3 shows generalized density of vibrational
states of the ordered and disordered PST samples at the
temperature T = 320 K (in the range of the energy trans-
fer of 15–400 cm–1, the measurement error corresponds
to the dimensions of the symbols used in Fig. 3). Evi-
dently, there are no noticeable differences in the densi-
ties of the vibrational states over all the whole energy
range studied. The weakly marked discrepancy
between G(E) values at the transferred energies in the
range higher than 400 cm–1 might be caused by mul-
tiphonon processes neglected in the calculation of G(E)
from INS data. It is well known that the generalized
density of vibrational states G(E) retains the character-
istics of the true density of states g(E). In this connec-
tion, the coincidence of the G(E) plots for ordered and
disordered PST powders gives the grounds to believe
that the phonon-state densities of these two compounds
are equal.

CONCLUSIONS

Thus, analysis of the experimental data allows one
to assume that the change in widths and intensities of
the lines on the Raman spectra of the relaxor PST fer-
roelectrics with different degrees of order are caused by
additional phonon contributions from various points of
the Brillouin zone. These contributions are different for
compounds with different degrees of order. Since the

0
Frequency, cm–1

200 400 600 800 1000

PSTd
PSTo

G(E), arb. units

Fig. 3. The generalized density of vibrational states for
ordered (PSTo) and disordered (PSTd) relaxor (PST) ferro-
electrics at T = 320 K.
C

scattering intensity increases with the distance from the
É-point of the Brillouin zone to the zone boundary for
more disordered PST samples, the intensity of the lines on
their Raman spectra should also increase. The differences
in the Raman spectra are clearly seen in Fig. 1.

The cause of the appearance of the dynamic contri-
bution from different points of the Brillouin zone is still
obscure. Possibly, it comes from developed fluctuations
admissible within the Tagantsev model [3].
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Abstract—The statistical model of successive phase transitions in the family of crystals described by the gen-
eral formula ACBX4 has been studied. It is assumed that tetrahedral BX4 groups in the disordered tetragonal
phase can be located in four equally probable equilibrium positions. Five representatives with different
sequences of phase transitions in this family of crystals are considered. The effective equilibrium constants of
interactions between tetrahedral groups are calculated within the framework of the electrostatic model. The cor-
responding phase diagrams and the thermodynamic characteristics of the phase transitions are studied by the
Monte Carlo method. The experimental data provided the establishment of the sequence of phase transitions in
Rb2ZnCl4 and K2SeO4 crystals with the formation of an intermediate incommensurate phase. The character of
the structure modulation in this phase is established. The calculated thermodynamic characteristics of the phase
transitions agree quite well with the experimental data for all the crystals under consideration. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

A family of crystals with the general formula
ACBX4 (A and C are alkali metals and BX4 are tetrahe-
dral SO4, SeO4, CrO4, ZnCl4, etc. groups) have
attracted attention for many decades. The interest in
these compounds is associated with the fact that,
depending on the chemical composition and the exter-
nal conditions, they show a large variety of structural
phase transitions with unusual physical characteristics.
Some crystals of this family also have incommensurate
phases, whose study is of great interest for solid state
physics. The ACBX4 compounds were repeatedly stud-
ied and the information about their structures, phase
diagrams, and physical properties can be found, e.g., in
[1] and in the review articles [2, 3] and the references
given there.

It should be emphasized that all the structures of
these compounds studied by now have one common
property—they all are the derivatives of a highly sym-
metric hexagonal phase described by the sp. gr.

P63/mmm ( ). An important characteristic of this
hexagonal phase is the distribution of BX4 tetrahedra
over several equilibrium positions. Thus, it was natural
to assume that the distorted structures observed are
formed due to phase transitions provided by homoge-
neous and inhomogeneous ordering in these crystals.

The Rb2ZnCl4 (RZC), CsLiSO4 (CLS), and
CsLiCrO4 (CLC) crystals are characterized by the
β-K2SO4 (KS) structure with four molecules in the
orthorhombic unit cell (sp. gr. Pnam). At the tempera-
ture of 302 K, the RZC crystals experience a phase
transition into the incommensurate phase with the mod-

D6h
4

1063-7745/00/4503- $20.00 © 20469
ulation vector q = (1 – δ)c*/3, where c* is the first recip-
rocal-lattice vector directed along the sixfold axis. It
should be emphasized that the δ-values determining the
long-wavelength modulation inside the incommensu-
rate phase in Rb2ZnCl4 and K2SeO4 are rather low. With
further crystal cooling, δ decreases and completely dis-
appears at 189 K, and the system is transformed into
(locked-into) the ferroelectric commensurate phase
described by the sp. gr. Pna21, where the pseudosixfold
axis disappears and the unit cell contains 12 molecules.
With still further cooling, the RZC undergoes one more
phase transition at 74 K and becomes monoclinic, but
its space group has not been established as yet. Being
cooled, the CLS and CLC crystals undergo only one
phase transition into the monoclinic phase, sp. gr. P2/n
occurring at the constant unit-cell volume. On the other
hand, the KS and K2SeO4 (KSe) crystals at high tem-
peratures possess a disordered hexagonal phase (sp. gr.
P63/mmm) and at the temperatures 860 and 745 K,
respectively, undergo the transition to the orthorhombic
phase (sp. gr. Pnam). With further cooling, KSe under-
goes the same phase transitions as RZC, whereas,
according to [4], KS undergoes no more phase transi-
tions and is described by P2/n up to the temperature T =
0 K. However, according to [5], at T = 60 K it under-
goes the transition into a phase, whose structure has not
been established as yet.

Below, we describe our study of the model of phase
transitions in the ACBX4 family. The model is based on
the assumptions that these crystals have a hexagonal
parental phase described by the sp. gr. P63/mmm and
that the sequence of phase transitions observed is
000 MAIK “Nauka/Interperiodica”
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caused by ordering of BX4 tetrahedra over four equally
probable equilibrium positions in the structure.

MODEL. CALCULATION OF THE INTERACTION 
CONSTANTS. STUDY OF PHASE DIAGRAM

The projection of the hexagonal ACBX4 structure is
shown in Fig. 1a. The effective interaction constants

x

y

BX4(I)

BX4(II)

(a)

1

2

3

4

(b)

Fig. 1. (a) Rb2ZnCl4 structure in the phase described by the

sp. gr.  projected onto the plane normal to the sixfold

axis and (b) (1–4) the positions of ZnCl4-tetrahedra in this
phase.

D6h
4

Table 1.  Lattice parameters used in calculating effective in-
teraction constants

Crystal a0, Å c0, Å αA, Å3 αC, Å3 I3 × 10–45, 
C m3

CLS 5.46 8.82 0.39 0.06 11.8

CLCr 5.68 8.90 0.39 0.06 18.2

RZC 7.30 10.58 0.9 1.29 27.9

KSe 6.14 8.90 0.6 0.24 17.0

KS 5.94 8.61 1.2 0.14 17.2
C

and the thermodynamic characteristics were calculated
for the model under the assumption that the BX4 tetra-
hedra in the hexagonal phase are statistically distrib-
uted over four equilibrium positions (1–4) [6] (Fig. 1b).
The interaction constants are calculated within the
framework of the electrostatic model.

The detailed calculation of the interaction matrices
were considered in [7]. Here, we consider only the
results of these calculations. Table 1 lists the unit-cell
parameters of the hexagonal phase (which is a hypo-
thetical phase for RbZC, CLS, and CLC and the real
one for KS and KSe) used in these calculations.

Calculating the octupole–dipole interactions, we
took into account the interactions between BX4 tetrahe-
dra and metal atoms from the first (A-type) and the sec-
ond (C-type) coordination spheres. The dipole–dipole
interactions were calculated by the Ewald method.
Integration over the q space was performed by the
Gauss method. The polarizabilities are also indicated in
Table 1. They were chosen from the condition that, at
low temperatures, the experimentally observed phase
should have the lowest energy.

The octupole moments of the BX4 of the I3 groups
were fitted using the experimental temperatures of
high-temperature transition in the crystals (Table 1).

The effective interaction constants (R) = (R)

and (R) were calculated within 19 coordination
spheres up to R = 2c0. The interaction constants oscil-
late both in sign and amplitude with the distance, thus
indicating an essential competition between various
interactions.

The thermodynamic properties of the model were
studied by the conventional Monte Carlo method used
for Ising-type models [8, 9]. We considered two types
of boundary conditions: periodic boundary conditions
and the boundary conditions with phantom spins.

We also made an attempt to use free boundary con-
ditions, but in this case the system rapidly returned to
metastable states (even at rather high temperatures) and
could not be taken away from these states at any reason-
able number of steps of the Monte Carlo method. This
is explained by the fact that, due to a large number of
interactions, even for large lattices, too many spins are
still free, and the competition of these interactions
makes the system unstable. The calculations were per-
formed on (16 × 16 × 24) and (24 × 24 × 48) three-
dimensional hexagonal nets.

Table 2 lists the calculated and the experimental
temperatures of successive transitions in the crystals. It
should be emphasized that the calculated temperature
of the transition from the hexagonal to the orthorhom-
bic phases (Tc1 ≈ 700, 770, and 1400 K for RZC, CLS,
and CLC, respectively) considerably exceeds the
decomposition temperature, and therefore these transi-
tions could never be observed in these crystals. The cal-
culated transition temperatures agree with the corre-

Vij
I,  I Vij

II,  II

Vij
I,  II                                              
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Table 2.  Phase symmetries and the temperatures of successive phase transitions in ACBX4 crystals

CLS  (z = 2)  (z = 4)  (z = 4)

CLCr  (z = 2)  (z = 4)  (z = 4)

KS  (z = 2)  (z = 4)  (z = 16)

RZC  (z = 2)  (z = 4) J  (z = 12)

KSe  (z = 2)  (z = 4) J  (z = 12)

* The experimental temperatures are indicated above the arrows in parentheses.

D6h
4 770 K (–)* D2h

16 202 K (202 K) C2h
5

D6h
4 1400 K (–) D2h

16 370 K (427 K) C2h
5

D6h
4 860 K (860) D2h

16 76 K (?) C2h
5

D6h
4 700 K (–) D2h

16 302 K (302 K) 200 K (192 K) C2v
9

D6h
4 745 K (745) D2h

16 177 K (129 K) 115 K (93 K) C2v
9

sponding experimental data [10–12]. The phase-transi-
tion temperature were determined from the Monte
Carlo peaks of the temperature dependence of heat
capacity (Fig. 2). The determination of the “lock-in
temperature” was somewhat hindered because the heat-
capacity data for the incommensurate phase are charac-
terized by a considerable scatter (Fig. 2), which
remains almost the same with an increase of the lattice
dimension. Therefore, the lock-in temperature was
determined from the inflection of the temperature
dependence of the internal energy.

Consider the incommensurate phase in RZC and
KSe. Its structure is spatially modulated along the
pseudohexagonal axis with the temperature-dependent
modulation vector. As follows from the Monte Carlo
data, ordering of BX4-tetrahedra in the layers normal to
the sixfold axis occurs in the same way irrespectively of
the temperature, including the temperature range of the
modulated phase. However, inside this phase, the
degrees of tetrahedra ordering in the layers are differ-
ent. The long-wave modulation inside the incommen-
surate phase depends on the temperature, which is
especially well seen if one uses the boundary condi-
tions with phantom spins and the system “chooses” the
modulation period itself. Thus, the periodic boundary
conditions at all the temperatures force the system to
accept their period.

To determine the temperature dependence of the
modulation period, we calculated the structure factor
S(q) in terms of the correlation function G11(R)

(1)

DISCUSSION. COMPARISON 
WITH EXPERIMENT

The temperature dependences of heat capacity for
CLS, KSe, and RZC obtained from the Monte Carlo
data are shown in Fig. 2. Solid line indicates the exper-

S q( ) G11 R( ) iqR( ),exp
R

∑=

G11 R( ) C1 ri( )C1 ri R–( ).
i 1=

n n n1××

∑=
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imental dependence of heat capacity. The agreement
between the calculated and experimental dependences
is quite satisfactory including the region of existence of
the modulated phase, where, as was already indicated,
the Monte Carlo data are characterized by a consider-
able scatter.

The structures of the modulated RZC and KSe
phases were determined in [13, 14]. It was shown that
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Fig. 2. Temperature dependences of heat capacity for (a)
KSe, (b) RZC, and (c) CLS. The Monte Carlo data (circles)
are compared with the experimental data [10–12] (squares).
Ti is the temperature of transition into the incommensurate
phase, Tc2 is the temperature of transition into the mono-
clinic phase, and R is the universal gas constant.
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the structure modulation was determined mainly by the
nonuniform rotation of BX4-tetrahedra toward the pseu-
dosixfold axis and is of the long-wavelength nature.
Qualitatively, the long wavelength modulation of the
structure obtained by the Monte Carlo method qualita-
tively agrees with the corresponding experimental data.

The temperature dependence of the modulation-vec-
tor magnitude in the incommensurate RZC and KSe
phases was studied in [13, 14]. Figure 3 shows the exper-
imental and calculated (by the Monte Carlo method)
intensities at different temperatures of the modulated
phase. Obviously, the agreement between the calculated
and the experimental dependences is only qualitative.
The peak of the experimental intensity curve is consider-
ably narrower than that of the calculated one.

As was indicated in the introduction, at low temper-
atures, RZC and KSe undergo one more transition—the
transition to the monoclinic phase whose structure has
not been determined as yet. Using the molecular-
dynamics method [15] and the constants of the inter-
and intramolecular interactions determined from the
first principles, Lu and Hardy [15] determined the
structure of this phase (sp. gr. C1c1) with 48 molecules
per unit cell. The Monte Carlo method becomes invalid
at low temperatures, and, therefore, the transition to the
monoclinic phase could not have been studied. In KSe,
the phase described by the sp. gr. C1c1 is characterized
by an energy close to that of the ferroelectric phase; and
lowering of the temperature can give rise to the transi-
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0.33 0.36 0.39
0
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130 ä
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165ä

Fig. 3. Profile of the first X-ray satellite along the (0, 0, q)
direction for KSe. The Monte Carlo data are indicated by the
dashed curves (the boundary conditions with phantom
spins), the solid lines show the experimental data [13, 14].
C

tion into this phase. However, the energy of this phase
for RZC calculated for the finite lattice at T = 0 [15]
was considerably higher than the energies of several
other phases with other types of ordering of ZnCl4-tet-
rahedra. Therefore it is hardly probable that this phase
can really be formed in RZC at low temperatures.

In conclusion, indicate the main results obtained.
The model calculated with due regard for the interac-
tion constant between the BX4 tetrahedra in the electro-
static approximation adequately describes the sequence
of phase transitions in ACBX4 crystals, including the
transition into the intermediate modulated phase. The
calculation of the transition temperatures and the ther-
modynamic characteristics agree quite well with the
corresponding experimental data. In K2SO4, a low-tem-
perature transition is revealed, and the symmetry of the
low-temperature phase is determined.
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Abstract—Some aspects of the relationship between quasicrystal and crystal structures not considered earlier
are discussed. It is shown that the atomic positions in a quasicrystal lattice are intermediate between the posi-
tions of periodic incommensurate crystal lattice. For the octagonal symmetry, two such generating lattices can
be square and equal to one another. Then any quasicrystal position lies exactly between two crystal positions in
different lattices. The classical (phason) mechanism of the quasicrystal–crystal phase transition is interpreted
as a relative homogeneous deformation of generating crystal lattices leading to the commensurability of these
lattices. The order parameter of such a transition is defined. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

For more than 20 years, the nonperiodic structures
characterized by the long-range order are described in
terms of the multidimensional crystallography, which
considers these structures to be periodic in a space of
the dimension equal to the minimum number of vectors
which provide the expansion of any reciprocal-space
vector of an incommensurate structure with integral
coefficients. Prior to discovery of quasicrystals in 1984
[1], the n-dimensional crystallography was only used as
a method to describe incommensurate structures. For
any modulated structure, it was possible to determine
the average crystal structure and the system of density
waves modulating this structure. For a quasicrystal, it is
impossible to choose a 3D-periodical subsystem of
strong Bragg reflections and, as a consequence, to
determine the average crystal structure with small dis-
tortions, which can form a quasicrystal. Therefore, qua-
sicrystal structures differ much more pronouncedly
from crystal structures than the modulated or the com-
posite structures [2]. The possible mechanism of the
quasicrystal–crystal phase transformation has been
actively discussed since 1985 [3, 4].

The present study had the aim to illustrate the close
relation of crystal and quasicrystal structures and to
determine the physical nature of the order parameter at
the corresponding phase transition. With this aim, the
specific features of quasicrystal order are discussed and
various modes of distortion of the ideal octagonal net-
works into imperfect periodical structures are consid-
ered. The choice of the octagonal symmetry to illustrate
the specific features of the quasicrystal order and prop-
erties of quasicrystal–crystal phase transition was dic-
tated by the fact that the orientational symmetry in this
transition changes by a factor of 2.
1063-7745/00/4503- $20.00 © 20473
THE SIMPLEST IDEAL OCTAGONAL NETWORK 
AS THE AVERAGE OF TWO SQUARE LATTICES

For a two-dimensional octagonal quasicrystal, one
can select four reciprocal-space basis vectors in the
form [5]

(1)

where P/Q = .
The phase space, hereafter denoted as E, is deter-

mined as a space of four variables: ni = eiR, where R is
a radius-vector. The density function of a quasicrystal
can be expanded in a Fourier series in harmonics, i.e.,
the density waves with the wave vectors which are the
linear combinations of vectors (1) with integral coeffi-
cients. Formally, this density function can be consid-
ered not as a function of radius-vector, but as that of
independent variables ni and is invariant with respect to
the operations of the symmetry group that is a direct
product of the point group C8v and the subgroup of
four-dimensional translations. Each of the latter trans-
lations corresponds to the change in the corresponding
phase (i.e., to the change of the variable ni for a number
multiple to 2π). Since the variables ni show the linear
dependences, the density function of the quasicrystal,
being the function of the radius-vector, is determined
on the plane of the phase space denoted as E||. All the
translations of the phase space bring this plane into
coincidence with other equivalent planes. If the section
of the phase space is rational and close to E||, some of
the translations bring the section plane into coincidence
with itself and correspond to the crystal translations of
the structure known as an approximant of a quasicrys-
tal. If the atomic positions in the real space are assumed
to be points, the density function in the phase space can
be represented by two-dimensional limited atomic

e1 P0〈 〉 , e2 QQ〈 〉 ,= =

e3 0P〈 〉 , e4 QQ–〈 〉 ,= =

2
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planes [6]. The probability of occupation of these posi-
tions can depend on the coordinate of the point at which
the atomic plane intersects E||. The simplest model is
that of a quasicrystal whose density function can be
modeled in the phase space by the planar atomic planes
of one type passing through the centers or the vertices
of all cells of the phase space. The symmetry group of
such atomic planes is C8v or has even higher symmetry.
A similar model was also used to describe a quasicrys-
talline state in Mn12Si5 [5, 7]. In this case, each of N
positions in the quasicrystal lattice can be described
with the aid of four half-integral indices n1, n2, n3 , and
n4 corresponding to the ordinal number of the atomic
plane in the phase space intersected by E||. The coordi-
nates of this position are set by the following expres-
sions:

(2)

under the condition that the vector with the components

(3)

lies within this atomic plane. Expressions (2) and (3)
can be readily obtained since they are the basis vectors
of two two-dimensional vector representations of the
group C8v . Let us discuss the crystallogeometrical
meaning of (2) and (3). Consider two square lattices
with the occupied cell centers (with the coordinates 0.5,
0.5) rotated by 45° with respect to each other around
the common fourfold axis passing trough the same ori-
gin of coordinates. We choose the lengths of the main
lattice periods in such a way that the vectors e1 , e2 and

xN Pn1 Q n2 n4–( )+{ } / P2 2Q2+( ),=

yN Pn3 Q n2 n4+( )+{ } / P2 2Q2+( )=

x⊥
N 2Qn1 P n2 n4–( )–{ } / 2PQ( ),=

y⊥
N 2Qn3 P n2 n4+( )–{ } / 2PQ( )=

Fig. 1. Octagonal quasicrystal network. Crosses and oblique
crosses indicate the sites of the generating lattices. Circles
indicate lattice positions.
C

e3, e4 are the reciprocal-space vectors and the vectors
a1, a3 and a2, a4 are the direct-space vectors of the first
and the second lattices, respectively. All the vectors
have the same length, |ai| = 1/P. Moreover, ai || ei. Then,
one can transform the expressions (2) and (3) to the
form

(4)

Relationships (4) show that the positions of the
octagonal quasicrystal lattice are located between the
neighboring positions of two square lattices rotated
with respect to one another (Fig. 1). Similarly, the vec-

tors  of the perpendicular space can be interpreted
as the vectors connecting the positions in these lattices.
The probability of occupation of the positions of the

octagonal network is a function of  with the symme-
try C8v or higher. The lattices (or the structures) whose
averaging leads to the formation of a quasilattice are

called the generating lattices. If a set of vectors  (4)
“sweeps away” the region lying inside a regular octa-
gon with the distances between the opposite edges
equal to 1/P, then one position in a quasicrystal is
formed by the nearest pair of the positions in the crys-
tal. The concentration of empty positions in each sub-

lattices ≥1/(3 + 2 ). For a given quasicrystal network,
the generating lattices can also be other lattices, for
example, square lattices larger or smaller by a factor of

(1 + ) (the coefficient of self-similarity of the octag-
onal network).

Thus, the quasicrystal order can be considered as the
average of two incommensurate crystal orders. How-
ever, similar to the fact that the same crystal lattice can
be set by two different sets of basis vectors, the quasic-
rystal order can be set by the averaging of two or more
generating crystal orders. For example, a simple icosa-
hedral quasicrystal network can be obtained by averag-
ing five equivalent fcc or two primitive cubic networks
with their lattice parameters being related the “golden

mean” (  + 1)/2, provided that all the additional sim-
ple conditions for incorporating the positions into a
resulting lattice are fulfilled. Here, one can invoke the
following analogy. It is well known that, if in the phase
transition from a highly symmetric phase to a low-sym-
metric phase, there are no specific conditions providing
formation of single domains, then the average symme-
try upon the transition remains unchanged. Therefore,
if the deformation contribution into the structure distor-
tion during the group–subgroup phase transition is
taken into account appropriately, the structure formed
by the averaging of all domains, including the orienta-
tional and translational ones, will coincide with the
structure of highly symmetric phase. In our case,
square networks rotated by 45° with respect to one

RN n1a1 n3a3 n2a2 n4a4+++( ),=

R⊥
N n1a1 n3a3 n2a2 n4a4––+( ).=

R⊥
N

R⊥
N

R⊥
N

2

2

5
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another can be considered as two types of domains
forming, upon averaging, an octagonal network.

MECHANISM AND ORDER PARAMETER 
OF THE QUASICRYSTAL–APPROXIMANT 

PHASE TRANSITION

None of the known quasicrystal–crystal phase tran-
sitions provides the transformation into one of the gen-
erating structures. Any small deformation providing
their mutual commensurability is energetically more
advantageous. Let us analyze this mechanism of phase
transition considering the following example. We
assume that the crystalline state of the approximant
corresponds to the ratio P/Q = 3/2 in (1), whence it fol-
lows that the basic periods of the first generating lattice

Fig. 2. Structure of the simplest approximant.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
can be written as a1 = 〈1/3, 0〉 , a3 = 〈0, 1/3〉 , and those
of the second one as a2 = 〈1/4, 1/4〉 , a4 = 〈1/4, 1/4〉 . Fig-
ure 2 shows the structure of the simplest approximant
whose primitive cell corresponds to a square shown by
solid lines. The points of the first square lattice with the
periods a1 and a3 correspond to the intersection of the
horizontal and vertical lines, whereas the points of the
second lattice coincide with the points of intersections
of the inclined lines. Two types of the positions of the
approximant, fourfold and eightfold positions, corre-
spond to the vertices of the larger and the smaller octa-
gons and are located approximately between the adja-
cent points of the generating lattices. It is seen from
Fig. 2 that the approximant is formed as a result of the
homogeneous isotropic deformation of the generating
lattices with respect to one another. The transition into
the crystal phase corresponds here to a small but finite
deformation satisfying the requirement of commensu-
rability of the lattices. The order parameter of this tran-
sition can be obtained from the components of the
deformation tensors of the generating structures that
are transformed into one another by the symmetry
operations of the group C8v . However, for the icosahe-
dral symmetry this approach is too complicated (one
has to use 30 functions corresponding to the compo-
nents of five deformation tensors to obtain the order
parameter). On the other hand, the thus obtained order
parameter cannot be used, e.g., to describe a small rel-
ative rotations of the generating lattices, which can also
lead to mutual commensurability of these lattices.

One can avoid these complications in the attempt to
describe complex deformation during the quasicrystal–
crystal transition in the reciprocal space. It seems to be
reasonable, first, to classify such deformations, and
only then to determine those of them that provide lat-
tice commensurability. First, consider how the octago-
Â2

Â1
Â4

Â3

(a) (b) (c)

(f)(e)(d)

Fig. 3. All the possible “irreducible” deformations of the reciprocal-space basis vectors of a two-dimensional octagonal quasicrystal.
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Fig. 4. Displacements of the reciprocal-space points during the transition of a quasicrystal to the approximant.
nal quasicrystal density function of the general type
loses its symmetry at the arbitrary changes of the basis
vectors in reciprocal space (1). These distortions can be
classified using the irreducible representations of the
point group C8v . All such “irreducible” distortions are
illustrated by Fig. 3. Figures 3a and 3b show changes in
reciprocal-space basis vectors for a two-dimensional
octagonal crystal in the case of homogeneous deforma-
tion. For a three-dimensional crystal structure, one can
construct six linear combinations from nine compo-
nents of three vectors corresponding to the changes in
the basis vectors (of the direct or the reciprocal space),
that are transformed by the same representations as the
components of the deformation tensor. Three remain-
ing combinations correspond to the rotation of the
structure as a whole. For a quasicrystal lattice (the num-
ber of the components of the reciprocal-space basis
exceeds the dimension of the physical space), the linear
but inhomogeneous deformations of the reciprocal
space can exist that are also transformed by the repre-
sentations of the point group of a quasicrystal. The
changes in basis vectors of the reciprocal space of the
quasicrystal corresponding to these deformations are
shown in Figs. 3c–3f. In the first two cases, the symme-
try C4v is preserved. Figure 3d (the direct space) should
be interpreted as a deformation of isotropic compres-
sion of one generating lattice and expansion of the
other lattice. Figure 3c corresponds to lattice rotation
with respect to one another. In both cases, the transition
C

into a crystalline state results in certain strain values. It
should be emphasized that the deformation of one gen-
erating lattice with respect to the other as a whole
should be accompanied by atomic hoppings, the so-
called phasons. At such deformations, the pairs of near-
est crystal positions generating one quasicrystal posi-
tion are “split,” which results in the disappearance of
some quasicrystal positions and the formation of some
new ones. The displacement of positions in the recipro-
cal space of a quasicrystal during its transition into a
crystal (Fig. 3c) was observed experimentally in the
Cr–Ni–Si system and was interpreted as a motion of
projections of the points of the four-dimensional space
during certain homogeneous (phason) deformation [8].
Figure 4 shows a field of displacements of the points of
the reciprocal space providing an essential contribution
to the density function of a quasicrystal during its tran-
sition into a crystal for the case depicted in Fig. 3d. The
initial coordinates of the reciprocal space point (n1, n2,
n3, n4) of a quasicrystal are given by the expression

where P/Q =  and P is equal to the basis-vector mag-
nitude of the reciprocal space of the quasicrystal. The
displacements of reciprocal-space points proportional

kx Pn1 Q n2 n4–( ),+=

ky Pn3 Q n2 n4+( ),+=

2

RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



ORDER PARAMETER IN THE QUASICRYSTAL–CRYSTAL TRANSFORMATION 477
Fig. 5. The arrangement of the sites in the quasicrystal and the approximant with due regard for the contribution of the full-symmetry
(homogeneous and isotropic) deformation of the reciprocal space. The positions of the octagonal network are indicated by small
asterisks, the positions of atoms in the approximant structure are shown by large (fourfold position) and small (eightfold position)
circles.
to the change of basis vectors (Fig. 3d) are set as

(5)

where α is proportionality coefficient.
Expressions (5) at α = 1 coincide with the expres-

sions for the vector components in the so-called per-
pendicular reciprocal space. It is well known that the
considerable structure amplitudes of the quasicrystal
density function can correspond only to those (n1, n2,
n3, n4) values for which the magnitude of the vector per-
pendicular to the reciprocal space is small [9]. There-
fore, all the strong reflections are displaced insignifi-

∆kx αP n1 n2 n4–( )/ 2–( ),=

∆ky αP n1 n2 n4+( )/ 2–( ),=
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
cantly during the quasicrystal–crystal transition; some
moderate and weak reflections merge together, whereas
the corresponding structure amplitudes are summed up.
The quantity P in (5) is taken out of parentheses to
make α a dimensionless quantity. Thus, from the above
stated, it becomes clear that α, which is transformed by
the one-dimensional representation of the group C8v , is
a measure of such a distortion of the quasicrystal struc-
ture (linear inhomogeneous deformation) which pro-
vides the occurrence of the transition into a crystal
approximant. The coefficient α plays the role of a spe-
cific order parameter. In this approach, the crystal
phase becomes a limiting phase [10, 11] because to an
approximant there corresponds a fixed value of the
0
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order parameter, α = (17 – 12 ). In the similar way,
one can also define the order parameter for the quasic-
rystal–crystal phase transition for any symmetry of a
quasicrystal. The attempts to introduce the measure of
a distortion of the quasicrystal structure during its tran-
sition into a crystal structure have repeatedly been
made. Thus, in [12], the order parameter is defined in
terms of tangents of rotation angles of the physical space
in the phase space. Most often, the order parameter is not
considered as a quantity possessing symmetry properties,
and the transformation is characterized by linear (phason)
homogeneous deformations of a multidimensional phase
space (see, e.g., [8]). The first method does not take into
account the symmetry of the order parameter at all. The
second method makes the construction of a thermody-
namic model of the transition very difficult as well as the
allowance for the interactions of the order parameter with
external fields, such as, e.g., the stress field.

In [7, 13], the system of rational planes translation-
equivalent in the phase space was considered, which
corresponds to the equivalent approximants displaced
in the vicinity of the sites of the so-called T-lattice, with
respect to one another in the physical space. It was
shown that the density function of a quasicrystal, ρq,
can be approximated by the density function of the
approximant, ρc. Figure 5 illustrates the correspon-
dence of an ideal quasicrystal structure to a perfect
approximant of the P/Q = 3/2 type. The crosses in Fig. 5
depict the points of the T-lattice. The basic periods t1
and t2 of the T-lattice are obtained from (1) as

t1 = 〈1/d, 1/d〉 ,   t2 = 〈1/d, –1/d〉 ,

where d = (4 – 3 )P. The role of an order parameter
in the phase transition can be played by the homoge-
neous isotropic deformation in the reciprocal space. In
this case, a quasiperiodic structure is projected along
the direction not coinciding with E⊥  in the phase space
onto the crystal structure. Figure 5 corresponds to the
case where the structure is projected made along the
rational direction close to E⊥  in phase space. The posi-
tions of the reflections 〈22〉 and 〈–22〉 of the approxi-
mant in this case coincide with the positions of the qua-
sicrystal reflections 〈0100〉  and 〈0001〉 , respectively. In
the direct space, the corresponding generating lattice is
not distorted during the transition. The regions in which
the structures of an approximant and a quasicrystal are
locally similar (the centers of these regions are shown
by eight-ray asterisks) are repeated with the periods 

and  (within the accuracy of homogeneous isotropic
deformation)

where t1 and t2 are the periods of the T-lattice. The average
displacements of the positions at such deformation are
smaller, so that this mechanism seems to be more favor-
able. The participation of the homogeneous deformation
of the reciprocal space in the mechanism of a phase tran-

2

2

t1
c

t2
c

t1
c 2 t1 t2+( ), t2

c 2 t1 t2–( ),= =
C

sition can be established experimentally by measuring the
displacements of the reflections upon the transformation
and determining independently the jump in the volume or
density of the substance upon the transition.

CONCLUSIONS

The quasicrystal order can be considered as a result
of the averaging of several incommensurate generating
crystal orders. The description of the mechanism of the
quasicrystal–crystal transition with the aid of the defor-
mation of a multidimensional space, which is tradi-
tional for the n-dimensional crystallography, can be
interpreted as the relative deformation (strain) of the
generating structures in the real physical space. The
order parameter of the quasicrystal–crystal transition is
obtained from the displacements of the basis-vector
components in the reciprocal space of a quasicrystal
and is, in fact, a linear inhomogeneous deformation
which is transformed by the irreducible representation
of the point group of a quasicrystal.
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Abstract—The data obtained from the analysis of the solubility phase diagrams have been used in growth of
K2Ni(SO4)2 · 6H2O crystals. The X-ray diffraction studies of the crystals grown showed that, at room temper-
ature, the crystals belong to the diffraction class 2/m. The crystal structure is similar to the structures of the Tut-
ton salts. The study of the absorption spectra and the differential scanning calorimetry (DSC) revealed a pro-
nounced anomaly in the vicinity of 45–46°C, which seems to be associated with the structural changes in the
crystal. © 2000 MAIK “Nauka/Interperiodica”.
The crystals of double sulfates hexahydrates of the
composition K2Ni(SO4)2 · 6H2O (KNSH) belong to the
family of the Tutton salts [1] described by the general

formula M2+(XO4)2 · 6H2O, where M+ is an alkali
metal or ammonium, M2+ is a bivalent metal, and
XO4 = SO4 or SeO4. These compounds form an isos-
tructural series and belong to the monoclinic system.
The crystals of some Tutton salts undergo phase transi-
tions. Thus, NH4Cu(SO4)2 · 6H2O crystals at 67°C
undergo the transition from the phase described by the
sp. gr. P21/a to the phase described by the sp. gr. Pmnm
accompanied by partial dehydration and the transfor-
mation of hexahydrate into dihydrate [2]. The neutron
diffraction studies [3] showed that KNSH crystals
belong to the monoclinic class 2/m. Unfortunately, the
structures of these crystals are studied insufficiently
and their properties almost not at all. We aimed to
determine the structure of K2Ni(SO4)2 · 6H2O crystals
and to study their spectroscopic, calorimetric, and
dielectric properties.

Soboleva [4] analyzes the solubility phase diagram
of the ternary K2SO4–NiSO4–H2O system and deter-
mined the optimum crystallization conditions for
KNSH growth. She grew KNSH crystals by the method
of temperature decrease.

The structural studies were performed on an auto-
matic KUMA KM4 diffractometer (CuKα-radiation,
graphite monochromator). The experimental data
obtained were processes by the program SHELX-97 to
R = 00155. It was established that KNSH crystals are
monoclinic (sp. gr. P21/c) with the unit-cell parameters
a = 6.1250 Å, b = 12.159 Å, c = 8.980 Å, β = 105.06°,

M2
1+
1063-7745/00/4503- $20.00 © 0479
Atomic coordinates (×104) and parameters of atomic thermal
vibrations Bef (Å

2 × 103) for KNSH crystals at 20°C

Atom x/a y/b z/c Bef

K(1) 6572(1) 1544(1) 3658(1) 31(1)

S(1) 7263(1) 8650(1) 4118(1) 19(1)

O(11) 6184(1) 9386(1) 2835(1) 25(1)

O(12) 9483 8248 3944 28(1)

O(13) 5745(1) 7703(1) 4095(1) 33(1)

O(14) 7552(1) 9252(1) 5564(1) 40(1)

Ni(1) 0 0 0 16(1)

O(1) 3014(1) 668(1) 4(1) 23(1)

O(2) 1629(1) –1109(1) 1675(1) 24(1)

O(3) –355(1) 1126(1) 1664(1) 23(1)

H(11) 3228(23) 600(11) –781(16) 38(3)

H(12) 3322(26) 1363(13)   271(17) 54(4)

H(21) 2866(25) –874(12) 2100(17) 45(4)

H(22) 938(23) –1252(12) 2349(16) 39(3)

H(31) 474(27) 1011(14) 2547(19) 58(4)

H(32) –68(21) 1742(10) 1425(14) 28(3)
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. Projection of the KNSH structure onto the (010) plane.
V = 645.8 Å3, Z = 2, dobs = 2.248 mg/m3. Table lists the
coordinates and the thermal parameters of atoms. Fig-
ure 1 shows the crystal structure determined. The X-ray
diffraction analysis confirmed the chemical composi-
tion of the KNSH crystals and showed that their struc-
ture is built by potassium ions and complex [Ni ⋅ 6H2O]
to sulfate ions [SO4] cations located at the center of
inversion and linked by a system of hydrogen bonds.

The differential scanning calorimetry (DSC) mea-
surements of KNSH crystals were performed on a
Netsch DSC-200 setup. The specimen was heated at a
rate of 0.2°C/min. The measurements revealed an
anomaly in the vicinity of 45–46°C (Fig. 2), which
indicates the dependence of the KNSH properties on
temperature in the vicinity this temperature. The dielec-
tric measurements over a wide range of crystal temper-
atures showed that the KNSH crystals possess no ferro-
electric or ferroelastic properties. The studies of the
absorption spectra in a polarized light were performed
on a Hitachi spectrophotometer with the special attach-
ment in the temperature range from 20 to 120°C. The
crystal plates were oriented in such a way that the two-
fold axis of the crystal in the plate was parallel to the
polarization plane of the incident light. Analyzing the
temperature dependences obtained, we considered the
band of the most uniform absorption with the maxi-
mum at 390 nm (25000 cm–1), according to [5], this
band corresponds to the spin-allowed 3Ag2g(F)–3Tig(P)
transition. Our measurements show (Fig. 3) that, with
C

an increase in the temperature, the absorption band
shifts to the long-wave length range of the spectrum,
whereas the position of the short-wave length edge
remains unchanged. Thus, a nonuniform broadening of
the absorption band was observed. To study the
changes in the absorption-spectra, we constructed the
temperature dependences of the wavelength of the
absorption maximum (Fig. 4, a) and the optical density
(Fig. 4, b). It is seen that at the temperature of 45–46°C,
the temperature dependences show clearly pronounced
changes. These changes cannot be explained only by

0.15

0.10

0.05

0
20 40 60 80 100 120

T, °C

DSC signal, mW/mg

Fig. 2. Differential scanning calorimetry curve for KNSH
crystals.
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Fig. 3. Absorption spectra of KNSH crystals at various temperatures: (1) 22, (2) 45.5, (3) 56.5, (4) 67, (5) 90, (6) 108.5, and
(7) 116.5°C.
the change in the contribution of normal vibrations to
the absorption intensity characteristic of this band.
These changes should also be associated with some
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Fig. 4. a, temperature dependences of the absorption-maxi-
mum position (wavelength) and b, the optical absorption
density for the KNSH crystals. 
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structural rearrangements occurring in this temperature
range. Thus, the nature of the anomalies observed by
the methods differential scanning calorimetry and spec-
troscopy is still unclear and requires further X-ray stud-
ies in the above temperature range.
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Abstract—A precision study of slow polarization in a polydomain ferroelectric has been performed on an
example of triglycine sulfate samples in weak electric fields prior to and upon their γ-irradiation at doses of 0.2
and 0.3 Mrad. It is shown that in all the cases, relaxation obeys the universal temporal power law. The phenom-
enological analysis of the experimental data was performed in the approximation of noninteracting relaxation
centers (nuclei), which provided the restoration of the spectra of potential barrier distribution for domain walls
in the crystal. The transformation of the spectrum of a γ-irradiated ferroelectric indicates the simultaneous for-
mation of new small and gigantic barriers in the crystal. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ferroelectrics subjected to ionizing irradiation have
repeatedly been studied [1–3]. One of the major con-
clusions made from these experiments is that irradia-
tion at low doses gives rise to the formation of small
domains with polarization opposite to the polarization
of their environment. In other words, the number of
domain walls increases [3, 4] and, at doses exceeding
some critical value, domain walls are pinned in their
positions because of higher energy barriers and, thus,
stabilize the domain structure [1–3]. As a result, all the
physical properties sensitive to the domain structure
undergo considerable changes. In particular, the elec-
tric polarization and the dielectric constant increase at
low irradiation doses (radiation annealing) and
decrease at high ones. In this case, the dielectric hyster-
esis shows characteristic distortions because of a dras-
tic increase of structure-relaxation time in an electric
field [1–3].

All the parameters of irradiated ferroelectrics deter-
mined by the standard methods give only partial infor-
mation on the domain structure, because at high mea-
suring-field frequencies (~10 Hz and higher) [3], the
slow processes characteristic of many inhomogeneous
materials with a long-living metastable state do not par-
ticipate in polarization. Moreover, these parameters
characterize only the electric response to the external
field, which is averaged over the volume of an essen-
tially inhomogeneous material. Therefore, many con-
clusions on the changes in the structural properties of
crystals upon their irradiation based on the electric
measurements are only of a qualitative nature.

Below, we report the study of polarization of a fer-
roelectric irradiated in a weak electric field on an exam-
ple of triglycine sulfate (TGS) samples. The measure-
ments were made by the method of dielectric spectros-
1063-7745/00/4503- $20.00 © 20482
copy at infralow frequencies, which allowed the
observation of slow relaxation processes. The experi-
mental data obtained were used to restore the spectra of
relaxation-time distribution of the domain structure or
the energy-barriers distribution of domain walls and
provided their evaluation and comparison with the sim-
ilar characteristics of unirradiated TGS crystals.

EXPERIMENTAL

Electric polarization of TGS crystals was measured
with the use of a bridge with unequal shoulders by the
compensation electrometric method, which provided
the detection of small charge variations on the sample
surface. The zero-indicator was a V7-29 electrometer
with the maximum voltage sensitivity 0.1 mV and the
charge sensitivity (at the optimum choice of the scheme
elements) ~10 –8 µC. The voltage compensation in the
bridge diagonal and polarization were automatically
measured with the aid of an electronic system, which
also provided the viewing of the curves of polarization
versus the electric field and time on a monitor screen of
an IBM PC computer. The system and its operation are
described in detail elsewhere [5].

The γ-radiation from a Co60 source had the power
~700 R/s in the irradiation zone. The samples were 4 ×
5 × 1 mm large rectangular plates cut normally to the
polar Y-axis. The large faces of the plates were polished
and coated with silver-paste electrodes. The error in the
temperature stabilization did not exceed 0.03 K.

The electric field polarizing the crystal was less
intense than the coercive field, so that only slow relax-
ation processes in the domain structure were taken into
account (the thermally activated processes proceeded
through the energy barriers of domain walls). The coer-
cive field was evaluated from the measurements of qua-
000 MAIK “Nauka/Interperiodica”
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sistatic loops of dielectric hysteresis under a slow step-
wise variation of the field. One loop was measured for
~1.5 h.

RESULTS AND DISCUSSION

Under the conditions of slow variation of the
domain structure and polarization, the relaxation cen-
ters (nuclei) are independent from one another, and it is
therefore possible to assume that their contribution to
the total polarization P is additive. Then, the following
equation is valid for the dimensionless quantity y(t) =
(Pe – P(t))/(Pe – P0) (where Pe is the equilibrium polar-
ization, P(t) is the polarization at the moment t, and P0
is the initial polarization at t = 0):

(1)

Here f(τ) is the normalized distribution function of

local relaxation times τ for nuclei, (τ)dτ = 1.

The f(τ) distribution can readily be determined if the
analytical expression for the function y(t), which
describes the experimental data, is known, because y(t)
and τ2f(τ) are the Laplace transform and the initial inte-
gral Laplace transformation, respectively. As was the
case in [5], for all the crystals studied, this function is
satisfactorily described by the power law

(2)

Here a and n are the free parameters characterizing the
relaxation processes in each sample, and the distribu-
tion f(τ) has the form [6]

(3)

where Γ(n) is the gamma-function.
The relaxation time τ and the potential barrier U for

the domain wall are related by the Arrhenius law τ =
τ0exp(U/kT), where τ0 is the kinetic coefficient, i.e.,
U = kTln(τ/τ0) is the quantity proportional to lnτ.
Therefore, it is sometimes more convenient to construct
the following dimensionless function using the experi-
mental data:

(4)

This function characterizes the distribution density lnτ,
i.e., reproduces the shape of the barrier distribution U
in the sample. Then g(τ)d(lnτ) singles out the region of
the spectrum g(τ) with the width d(lnτ) = dU/kT.

When analyzing the experimental data, we assumed
that the equilibrium value of Pe in (1) is equal to the
spontaneous polarization Ps (Pe = Ps). This assumption
seems to be quite justified, because for crystals with
strictly defined coercive field (such as TGS crystals) it

y t( ) f τ( ) t/τ–( ) τ .dexp

0

∞

∫=

f

0

∞

∫

y t( ) 1/ 1 t/a+( )n.=

f τ( ) an/Γ n( ){ } 1/τ( )
n 1+

a/τ–( ),exp=

g τ( ) τ f τ( ) 1/Γ n( )( ) a/τ( )n a/τ–( ).exp= =
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coincides with the general concepts of the specific fea-
tures of a ferroelectric polarization in a weak electric
field [7].

The dependences P(t) and y(t) were approximated
by the least squares method using the standard pro-
grams. The experimental errors in the determination of
the parameters a and n and the spectra f(τ) and g(τ) can
be readily determined by differentiating (2), (3), and (4)
with respect to a and n:

(5)

It is seen from (5) that the accuracy of the estimates
are higher for a longer time of measurements and that

   and   0 at t  ∞.

The experimental P(t) and y(t) dependences for two
TGS samples (prior to and upon γ-irradiation) are
shown by circles in Fig. 1, whereas the dependences
calculated by formula (2) are shown by solid lines. It is
seen that these data agree quite well (the deviation of

the experimental  values from the calculated ones

does not exceed 0.005). The first sample was irradiated
at a dose of 0.2 Mrad (Fig. 1a), the second, at a dose of
0.3 Mrad (Fig. 1b). The relaxation parameters a and n
used in formula (2) in all the cases are listed in table. It
is seen from Fig. 1 that irradiation of crystals even at
low doses essentially decreases the time-averaged rate
of polarization relaxation. A decrease of this rate is
especially pronounced upon irradiation at a dose of
0.3 Mrad. Therefore, in this case, relaxation was
recorded in a more intense polarizing field than for a
non-irradiated sample (Fig. 1b, table).

The continuous spectra of the f(τ) and g(τ) distribu-
tions calculated from the experimentally determined
parameters a and n by formulas (3) and (4) are shown
in Fig. 2. The f(τ) spectra constructed on the logarith-
mic scale of relaxation times τ have the bell shape. For
both non-irradiated crystals, the parameters are rather
close [the maximum of fmax, the spectrum width ∆τ, the
area S ~ fmax∆τ/2 under the curve f(τ), but for the second
sample (Fig. 2b), the spectrum is somewhat displaced
toward lower τ values in comparison with the first sam-
ple (Fig. 2a). The width ∆τ = τ2 – τ1, the maximum τ2
and the minimum τ1 τ values, the range of the barrier-
energy ∆U = kTln(τ2/τ1) distribution, and the area S
were determined at the level f(τ) = 0.1fmax. It is impor-
tant that for both samples the area is close to unity, S ~
0.9, i.e., that the spectra of non-irradiated samples in
Fig. 2 include almost the complete set of relaxation
times τ.

The maxima of the f(τ) spectra of irradiated samples
are broader and displaced toward lower τ values in
comparison with those of non-irradiated samples. At
first glance, one can get an erroneous idea that irradia-
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tion increases the average rate of structure relaxation.
But, in fact, the areas S between the curves f(τ) and the
straight line f(τ) = 0.1, fmax = const are much less than
unity (~0.09 at a dose of 0.2 Mrad and ~0.02 at a dose
of 0.3 Mrad) and therefore the largest parts of the sam-
ple (~0.91 and ~0.98 of the sample volume, respec-
tively) have a considerably higher τ values at the
“wings” of the f(τ) distributions, which can hardly be
distinguished on the scale of Fig. 2. The parameters of
all the f(τ) spectra are indicated in table.
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Fig. 1. (1, 2) Polarization P and (3, 4) dimensionless quan-
tity y = (Ps – P)/(Ps – P0) as functions of time t for two TGS
samples at T = 20°C. (1, 3) non-irradiated samples, (2, 4)
samples irradiated at a dose (a) 0.2 and (b) 0.3 Mrad. Polar-
izing field E: (1, 3) (a) 56, (b) 17, and (2, 4) 260 V/cm. Cir-
cles denote the experimental data, solid lines indicate the
data calculated by formula (2) with the values of the relax-
ation-parameters a and n indicated in table.
C

The g(τ) spectra are the most informative for the
analysis (Figs. 2c, 2d). It is seen that the spectrum of the
irradiated sample acquires quite different shape and
becomes asymmetric, shows a relatively fast increase
of g, attains the maximum gmax, and then very slowly
decreases at high τ. With an increase of the irradiation
dose (Fig. 2d), the g spectrum is shifted to the right, and
the slope of g to the abscissa becomes even smaller,
which indicates that the fraction of the regions with rel-
atively low barrier energies U reduces, whereas the
fraction of the regions with high U energies increases.
If the sample irradiated at a dose of 0.3 Mrad was polar-
ized in a less intense electric field, E, the segregation of
the low and high barriers in the sample would have
been even more pronounced so that the g spectrum
would have been transformed into a “step” with a very
low dg/dτ value at high τ values (because, it is well
known, that less intense E fields result in the shift of the
whole g spectrum of the crystal toward high τ values
[5]). Consider the slow variations of g in Figs. 2c, 2d at
high τ values using formula (4). At τ = 107, 1010, and
1015 min, the relative decrease in g/gmax equals 0.80,
0.67, and 0.54 at a dose of 0.2 Mrad and 0.96, 0.92, and
0.87 at a dose of 0.3 Mrad, respectively. Such an inter-
polation of the experimental data indicate the existence
of gigantic τ values in the g spectra of irradiated
crystals.

It should be emphasized that we used only relatively
low doses of γ-radiation, which usually cause only
slight changes in the traditionally measured crystal
characteristics, which then are averaged over the sam-
ple [3]. The insets in Figs. 2c, 2d show the quasistatic
hysteresis loops for nonirradiated and irradiated sam-
ples. It is seen that unlike the g spectra, the loops are
only slightly changed upon irradiation: at a dose of
0.2 Mrad, they are almost unchanged (one observes
only a slight unipolarity, Fig. 2c); at a dose of 0.3 Mrad,
the coercive field increases and the middle part of the
loop becomes somewhat narrower (Fig. 2d), which,
with a further increase of the dose, should provide the
formation of a “double” hysteresis loop [1–3].

The main characteristics of the spectra agree with
the well-known data on the macroscopic properties of
the irradiated crystals. Thus, the short relaxation times
for the spectra of the crystals irradiated at low doses can
be associated with formation of new small domains [4],
which increase the domain-wall density and, therefore,
make an additional contribution to the dielectric con-
stant [3]. The stabilization of the domain structure and
a decrease of the electric response of the crystal in alter-
nating fields at high irradiation doses seems to be the
consequence of a drastic increase of the fraction of high
barriers for domain walls and the gigantic relaxation
times τ.

The empiric power law for relaxation [2] seems to
be a universal law for inhomogeneous systems with the
long-living metastable states. This law is satisfactorily
fulfilled for the slow polarization of TGS crystals with
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Fig. 2. The (a, b) f(τ) and (c, d) g(τ) spectra (1) prior to and (2) upon γ-irradiation of TGS crystals at a dose (a, c) 0.2 and (b, d)
0.3 Mrad. The spectra were calculated by formulas (3) and (4) with the parameters determined from the experimental data shown in
Fig. 1, t0 = 1 min. In the insets: quasistatic loops of dielectric hysteresis (1) prior to and (2) upon irradiation.
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different states of the domain structure and the surface
[5], for the dielectric constant of mixed K(1 – x)LixTaO3

crystals in the glassy state [8] and, as we showed, for
slow thermoactivated polarization of other polydomain
ferroelectrics. The universal nature of this law is also
confirmed by the fact that some laws recorded earlier
are only the particular cases of this universal law. Thus,
at t @ a, the law described by (2) coincides with the
power law y ~ 1/tn observed for large relaxation times
in dielectrics [9, 10]; at n ! 1, it coincides with the log-
arithmic law y ~ 1 – nln(1 + t/a) characteristic of
numerous inhomogeneous systems with slow relax-
ation and, in particular, for magnetic [11] and dielectric
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
[12, 13] systems. One can readily show that, unlike the
data for unirradiated crystals, the experimental data for
irradiated crystals can approximately be represented by
a logarithmic temporal law with the distribution func-
tion g [because of low n values (n ! 1, see table)]. This
distribution function is equal to zero at τ < τmin and τ >
τmax and is constant in the range τmin < τ < τmax [11, 12].
In many respects, this function reminds the distribution
g corresponding to power law (2) in Figs. 2c, 2d. The
answer to the question of which relaxation law and
which distribution function τ should be used in the
analysis of the experimental data depends on the accu-
0
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Parameters of the spectrum of the relaxation-time distribution f(τ) for a TGS crystal prior to and upon its γ-irradiation

Sample Dose, 
Mrad E, V/cm a, min n τ1, min τ2, min τm , min ∆U, eV S

1 0 56 900 ± 2 5.7 ± 0.1 65 ± 0.3 350 ± 1.6 134 ± 0.6 0.04 ± 0.002 0.9

0.2 56 0.4 ± 0.05 0.019 ± 0.004 0.1 ± 0.01 9.5 ± 1.3 0.38 ± 0.05 0.12 ± 0.007 0.09

2 0 17 34 ± 0.2 0.502 ± 0.001 5.79 ± 0.02 260 ± 1 23 ± 0.1 0.1 ± 0.007 0.9

0.3 260 4.5 ± 2.3 0.005 ± 0.0007 1.0 ± 0.5 117 ± 52 4.5 ± 2.3 0.12 ± 0.007 0.02
racy of the measured relaxation parameters, which con-
siderably decreases at low n [see formulas (5)].

It can also be shown that, within quite a long period
of time, relaxation follows the well-known empiric
Kohlrausch law y ~ exp(–t/τ)β [14], where τ is a certain
average relaxation time and β < 1. However, the power
law described by (2) is more advantageous at short
times, because, first, the derivative dy/dt for the Kohl-
rausch law is infinite at t = 0, whereas for (2), this deriv-
ative is finite in full accord with the experimental data,
and, second, formula (2) takes into account the idea
about the existence of the spectrum of relaxation time τ
and a simple distribution function of τ.

CONCLUSION

The data obtained for slow kinetics of nonequilib-
rium polarization of a polydomain ferroelectric illus-
trate the possibilities provided by the method of electric
measurements used, which can be called the precision
infralow frequency dielectric spectroscopy. The lower
frequency boundary of the method is about 10–5 Hz or
even lower. Unlike the traditionally measured macro-
scopic properties (which are the characteristics aver-
aged over the sample volume), the infralow frequency
spectra provide detailed quantitative information on the
fine details of the energy distribution of the potential
barriers for domain walls in crystals and its changes.
The spectrum parameters are the dynamic characteris-
tics of a ferroelectric, which are rather sensitive to the
variations in its domain and defect structures and, in
particular, to those induced by ionizing radiation. Thus,
these spectra show that even irradiation at low γ-irradi-
ation doses gives rise to the formation of new relaxation
centers (nuclei) with low barriers and to a drastic
increase of pronounced barriers for domain walls with
gigantic relaxation times. A further increase of the irra-
diation dose rapidly displaces the spectrum of barrier-
energy distribution toward higher values, which is con-
sistent with the known characteristics of the behavior of
physical properties. The reconstruction of the spectra of
barrier-energy distribution from the experimental data
is rather simple because of the temporal power law of
relaxation seems to be universal for a large class of
inhomogeneous materials with various rates of their
approaching to the thermodynamic equilibrium.
C
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Abstract—Propagation of electromagnetic waves in stratified bianisotropic chiral structures is described by the
4 × 4 matrix method. At arbitrary layer parameters, the amplitude and the polarization characteristics (intensity,
polarization azimuth, and ellipticity) of reflected and transmitted electromagnetic waves are studied as func-
tions of the angle of the wave incidence onto the structure. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, we have evidenced the fast development
of the theory of electromagnetic waves (EMW) propa-
gation in bianisotropic chiral media, such as composite
materials, liquid crystals, and other optically active
substances [1]. Chiral media exhibit two basic proper-
ties: the optical activity (difference of phase velocities
for the left- and right-handed circular polarizations)
and chiral dichroism. Within the microwave range,
such media are formed by the inclusion of metallic or
ceramic helicoids into a dielectric matrix [2, 3]. Within
the optical range, the role of such helicoids can be
played by molecules possessing no mirror symmetry
[4]. These properties are inherent in cholesteric and
smectic liquid crystals, which, despite the appreciable
differences in the properties and structures, have one
common characteristic—they are all formed by mole-
cules possessing the left- or right-hand symmetry
(chiral molecules) and spatially periodic with the
period usually lying within the optical range [5, 6].
Similar phenomena can also be obtained by using heli-
coid swastika or Ω like inclusions [7, 8]. In the general
case of arbitrary orientations of the anisotropy axes, the
symmetry axis of the stratified structure and the propa-
gation directions, the analysis of the characteristics of
EMW propagation in bianisotropic chiral media is an
important but rather complicated problem. Today, a
number of particular problems of electrodynamics of
bianisotropic and chiral media has been solved. The
studies in this field are progressing rapidly [9–12].

Below, the propagation of electromagnetic waves in
chiral structures is described by the method of 4 × 4
matrices, which is efficient for any kind of anisotropy
and number of layers. Vanous modifications of this
method are used to describe the EMW propagation in
media with the anisotropy of different nature, in partic-
ular, in dielectric, magnetic and liquid–crystal struc-
tures [13, 14]. In the majority of publications, the
authors restricted themselves to the consideration of
particular cases of chirality and the simplest stratified
1063-7745/00/4503- $20.00 © 20487
structures. Below, such cases are considered as particu-
lar cases of the general method. In these cases the
parameters of the reflected and the transmitted EMWs
(intensity, polarization azimuth, and ellipticity) are
determined.

4 × 4 PERMITTIVITY MATRIX

Consider a medium composed of anisotropic chiral
layers parallel to the XY-plane, with the Z-axis coincid-
ing with the symmetry axis of the structure. Let a plane
monochromatic EMW with the wave vector k, parallel
to XZ-plane propagate in this medium. Then, the elec-
tric and the magnetic fields of the wave, E, D, H, and
B, are proportional to exp[i(ωt – kxx)], and the Maxwell
equations have the form

(1)

where ∇  = , k0 = ω/c, ω is frequency, and

c is the velocity of light in vacuum. To describe the
bianisotropic chiral medium in the general form, we
write the material equations as [15]:

(2)

The above equations include four tensors—those of

dielectric , magnetic , and magnetooptical  and 
permittivities, which relate the strengths of the electric
and magnetic fields with the electric and magnetic
inductions. Substituting (2) into (1), we arrive at the
following system of equations:

(3)

∇ E ik0B, ∇ H ik0D,––=

ikx 0
∂
∂z
-----, ,– 

 

D ε̂E α̂H, B– µ̂H β̂E.+= =

ε̂ µ̂ α̂ β̂

Ey' ik0 µ̂H β̂E+( )x, Hy' ik0 ε̂E α̂H+( )x,–= =

Ex' ik0 µ̂H β̂E+( )y nxEz+[ ] ,–=

Hx' ik0 ε̂E α̂H+( )y nxHz–[ ] ,=
000 MAIK “Nauka/Interperiodica”
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where prime denotes differentiation with respect to z
and nx = kx/k0. Excluding the field components Ez and
Hz parallel to the structure axis and introducing the vec-
tor g = (Ex, –Ey, Hx, Hy), having four tangential field
components, we can represent the system (3) of the
wave equations for planar layered medium in terms of
the following differential matrix equation:

(4)

where, the matrix  of the dimension 4 × 4 is deter-
mined by the local properties of the medium, i.e., has
the same form in both homogeneous and inhomoge-
neous media and contains no differential operators. It is
constructed using four permittivity tensors and allows
the most general consideration of bianisotropic and

chiral properties of the medium. In order to write the 
matrix in the most concise form, introduce the follow-
ing notation:

where i, j = x, y, and |A| is the determinant of the matrix A.

Now, the matrix  can be represented as a sum of three
terms proportional to different powers of nx:

nxEy µ̂H β̂E+( )z, nxHy ε̂E α̂H+( )z,–= =

g' ik0Ĝg,–=

Ĝ

Ĝ

%ij

εij εiz α iz

εzj εzz α zz

βzj βzz µzz

, }ij

µij βiz µiz

α zj εzz α zz

µzj βzz µzz

,= =

!ij

α ij εiz α iz

α zj εzz α zz

µzj βzz µzz

, @ij

βij βiz µiz

εzj εzz α zz

βzj βzz µzz

,= =

eij = 
εij α iz

βzj µzz

, mij
µij βiz

α zj εzz

, d
εzz α zz

βzz µzz

,= =

aiz
α iz εiz

α zz εzz

, azj
α zj α zz

µzj µzz

,= =

biz
βiz µiz

βzz µzz

, bzj
βzj βzz

εzj εzz

,= =

Ĝ

Ĝ
1
d
---

@yx @yy– }yx }yy

@xx @xy– }xx }xy

%yx– %yy !yx– !yy–

%xx %xy– !xx !xy 
 
 
 
 
 
 

=

C

(5)

For a homogeneous medium,  is independent of the
z-coordinate, and the solution of matrix equation (4) is
the superposition of the eigenwaves

(6)

where aj are waves amplitudes corresponding to the

eigenvectors gj of the  matrix. The eigenvalues nzj =
kzj/k0 of this matrix are the roots of the dispersion equa-
tion

(7)

where  is the unit matrix. In general case, it follows
from (6) and (7) that there are four eigenvalues with dif-
ferent polarizations, propagation directions, and refrac-

tive indices nj =  quartic in nzj and defined by
equation (7).

If the medium is homogeneous along the z-axis, the
study of EMW propagation is reduced to the solution of
the boundary–value problem: the medium is divided
into thin layers, whose boundaries lie in the XY plane
and the material parameters are constant within each
layer.

PLANAR LAYERED STRUCTURE

Consider EMW propagation in a planar layered
medium. The tangential components of the electric-
and magnetic-fields strengths or, which is equivalent,
the four-component vector g, should be continuous
across the boundaries of the adjacent layers. Let the
superposition of the eigenwaves with the amplitudes

 be incident onto the boundary between the nth and
(n + 1)th layers. For the wave entering the (n + 1)th
layer, the amplitudes obtained from the continuity con-
ditions for the g vector components at the boundary are
determined by the matrix equation:

(8)

+
nx

2

d
-----

0 α zz 0 µzz–

0 0 0 0

0 εzz– 0 βzz

0 0 0 0 
 
 
 
 
 

–
nx

d
-----

ezx myz ezy– azx azy byz+

0 mxz 0 bxz

bzx ayz– bzy– mzx mzy eyz–

0 axz 0 exz 
 
 
 
 
 
 

.

Ĝ

g a jg j ikzjz–( ), jexp∑ 1 … 4,, ,= =

Ĝ

det Ĝ nz Î–( ) 0,=

Î

nx
2 nzj

2+

a j
n( )

ai
n 1+( ) Mij

n( )a j
n( ),=
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



LIGHT PROPAGATION IN STRATIFIED CHIRAL MEDIA 489
where the elements of propagation matrix  at the
nth boundary have the form

(9)

Here,  are the vectors complementary to , i.e.,

the vectors satisfying the condition  = δij. The
EMW propagation through the homogeneous nth layer,
with no account for the boundary, is described by the

diagonal  matrix with the elements

(10)

where ln is the thickness of the nth layer. For the system
consisting of p layers, the resultant propagation matrix
is the product of the propagation matrices for particular
boundaries and layers

(11)

The amplitude of the transmitted wave is given by

(12)

Let us mark the eigenwaves propagating in the forward
direction with subscripts 1 and 2 (nz > 0), and those
propagating in the backward direction, with 3 and 4
(nz < 0). The waves with subscripts 1, 3 and those with
subscripts 2, 4 have the same polarization. Now, intro-

duce the matrix  =  inverse with respect to 
and write down the corresponding elements of reflec-
tion and transmission matrices of the layered structure:

(13)

Above, we used the notation  = NijNkl – NilNkj.

In semi-infinite media, labelled with subscripts “0”
and “p,” separated by the layered structure, the vectors
gj are normalized in such a way that the energy fluxes
corresponding to each wave are equal (e.g., |Sj| = |Ej ×

 +  × Hj| = 1). Then the quantities |r|2 = |rj1|2 +
|rj2|2 and |t |2 = |tj1|2 + |tj2|2 determine the ratios of energy
fluxes of the reflected and the transmitted waves to that
of the incident wave. Other types of normalization are
also possible, e.g., such that r and t would be the ratios

M̂
n( )

Mij
n( ) g̃i

n 1+( )g j
n( ).=

g̃i
n( ) g j

n( )

g̃i
n( )g j

n( )

T̂
n( )

Tij
n( ) δij ikzj

n( )ln–( ),exp=

M̂ M̂
p( )

T̂
p( )( ) M̂

p 1–( )
T̂

p 1–( )( )… M̂
1( )

T̂
1( )( )M̂

0( )
.=

a p( ) M̂a 0( ).=

N̂ M̂
1–

M̂

r11
a3

0( )

a1
0( )--------

a2
0( ) 0=

L31
22

L11
22

-------, r12
a4

0( )

a1
0( )--------

a2
0( ) 0=

L41
22

L11
22

-------,= = = =

r21
a3

0( )

a2
0( )--------

a1
0( ) 0=

L32
11

L11
22

-------, r22
a4

0( )

a2
0( )--------

a1
0( ) 0=

L42
11

L11
22

-------,= = = =

t11
a3

p( )

a1
0( )--------

a2
0( ) 0=

N22

L11
22

--------, t12
a4

p( )

a1
0( )--------

a2
0( ) 0=

N21

L11
22

--------,= = = =

t21
a3

p( )

a2
0( )--------

a1
0( ) 0=

N12

L11
22

--------– , t22
a4

p( )

a2
0( )--------

a1
0( ) 0=

N11

L11
22

--------.= = = =

Lij
kl

H j* E j*
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of the amplitudes of the corresponding fields. In inter-
mediate layers, normalization is not necessary, because
no determination of the eigenwave amplitudes is
required.

The method under consideration is a unified
approach to the problem of EMW propagation in planar
layered structures. It allows the consideration of vari-
ous problems of electro- and magnetooptics, including
the optics of bianisotropic and chiral media.

APPLICATION OF THE METHOD TO SIMPLEST 
CHIRAL STRUCTURES

1. Bianisotropic medium. For an isotropic

medium, , , , and  are the diagonal tensors of the

type εij = εδij, so that the  matrix acquires the simple
form

(14)

Then, the solution of dispersion equation (7) yields the

following eigenvalues of the  matrix:

(15)

Using the expressions for , we can determine the
refractive indices of the eigenwaves as:

(16)

The eigenvalues of the  matrix, determined from the

equation (  – nz )g(c) = 0, have the following compo-
nents:

(17)

The above vectors specify the eigenwaves of the biiso-
tropic medium, which are the left-hand (upper signs) or
right-hand (lower signs) polarized waves propagating

in the forward (  > 0) or the backward (  < 0) direc-
tions.

Introducing the parameters of nonreciprocity χ =
(α + β)/2 and chirality κ = i(α – β)/2 instead of magne-
toelectric permittivities, we obtain the refractive indi-
ces for the eigenwaves in the medium in the form:

n± =  ± κ. With due regard of complexity of

ε̂ µ̂ α̂ β̂
Ĝ

Ĝ

0 sα β– 0 µ 1 s–( )
β 0 µ 0

0 ε 1 s–( ) 0 sβ α–

ε 0 α 0 
 
 
 
 
 

, s
nx

2

εµ αβ–
-------------------.= =

Ĝ

nz
± εµ 1 s–( ) 1

2
--- α sβ α–( ) β sα β–( )+[ ]+=

---± i α β–( ) εµ α β+( )2/4–
1/2

.

nz
±

n± εµ α β+( )2/4– i α β–( )/2.±=

Ĝ

Ĝ Î

g c( )

=  nz
± n± iα+−( ) iεµ β n± iα+−( ) iεnz

± εn±,±,+±,( ).

nz
± nz

±

εµ χ2–
0



490 IVANOV, SEMENTSOV
the introduced parameters (χ = χ' + iχ'', κ = κ' + iκ''),
the above relations lead to two general types of biiso-
tropic non-absorbing media. For such media, the imag-
inary part of the chirality parameter is zero, while either
imaginary or real part of the nonreciprocity parameter
has nonzero value. The dependence of the refractive
indices of eigenwaves on nonreciprocity for two types
of media is quite different. For the first type (χ'' = 0) the
refracting index monotonically decreases; for the sec-
ond type (χ' = 0), the value of n± monotonically
increases.

2. Reflection from the dielectric–chiral medium
interface. Let a wave from dielectric with material
parameters ε0, µ0 be incident onto the plane interface
with a semi-infinite chiral medium. For an isotropic
C

dielectric, all the waves irrespectively of their polariza-
tion are eigenwaves; therefore, we may resolve the field
into the p- and s-polarized waves, for which the vector
g has the components

where σ0 = , η0 = , and the
signs “±” correspond to two opposite directions of
wave propagation. According to (9), the propagation

matrix  at the boundary between the media can be

written as  = , then the Nij =  matrix
has the form

gp
0( ) σ0 0 0 η0, , ,±( ), gs

0( ) 0 1 η0σ0 0,±, ,( ),= =

1 nx
2
/ε0µ0– ε0/µ0

Mij
0( )

Mn
0( ) g̃i

c( )g j
0( ) g̃i

0( )g j
c( )
(18)

N̂

η0 0 0 σ0

0 η0σ0 1 0

η0– 0 0 σ0

0 η0σ0 1– 0 
 
 
 
 
 
 

=

×

nz
+ n+ iα–( ) nz

– n– iα+( ) nz
+ n+ iα–( )– nz

– n– iα+( )–

iεµ β n+ iα–( )+ iεµ– β n– iα+( )+ iεµ β n+ iα–( )+ iεµ– β n– iα+( )+

iεnz
+ iεnz

–– iεnz
+– iεnz

–

εn+ εn– εn+ εn– 
 
 
 
 
 
 

.

Using of (13) and (18), one may find the coefficients of
the EMW reflection from the interface between the
dielectric and chiral media. For normal incidence, these
coefficients for the s- and p-polarized waves are

(19)

where γ =  an η = . Thus, the charac-
teristics of reflected wave are independent of the
medium chirality specified by the parameter κ but are
essentially dependent on the nonreciprocity parameter
χ. The polarization characteristics of the reflected
wave, i.e., polarization azimuth θr and ellipticity angle
Er, are obtained from the relationship 

(20)

At low values of the nonreciprocity parameter (|χ|! 1),

rpp rss–
η2 η0

2–

η2 η0
2 2ηη0γ+ +

----------------------------------------,= =

rps rsp

2χηη0/ εµ
η2 η0

2 2ηη0γ+ +
----------------------------------------,= =

1 χ2/εµ– ε/µ

θr iEr–( )tan
rps

rpp

------
2χηη0/ εµ

η2 η0
2–

-----------------------------.= =
they have the form

(21)

For a non-absorbing chiral medium, either the rotation
of the polarization plane (the medium of the first type)
or the ellipticity (the medium of the second type) of the
reflected radiation can take place.

For an oblique EMW incidence onto the interface
between two media, we obtain in the first approxima-
tion in small parameters κ and χ:

(22)

θr

2χ' ε0µ0

εµ0 ε0µ–
-----------------------, Er

2χ'' ε0µ0

εµ0 ε0µ–
------------------------.= =

rpp

ησ0 η0σ–
ησ0 η0σ+
-------------------------,=

rps

2ηη0σ0 χσ2 iκ σ2 1–( )+( )
σ εµ η0σ0 ησ+( ) ησ0 η0σ+( )
----------------------------------------------------------------------------,=

rsp

2ηη0σ0 χσ2 iκ σ2 1–( )–( )
σ εµ η0σ0 ησ+( ) ησ0 η0σ+( )
----------------------------------------------------------------------------,=

rss

η0σ0 ησ–
η0σ0 ησ+
-------------------------,=
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where σ = . In this approximation, rpp and rss are
of the standard form, i.e. coincide with the well-known
expressions for reflection of an electromagnetic wave
from the interface between two dielectrics. The polar-
ization characteristics of the reflected wave depend on
both nonreciprocity and chirality of biisotropic
medium. Figure 1a shows the ellipticity and Fig. 1b the
polarization azimuth of the reflected wave as a function
of the angle of incidence ϕ at the interface between the
dielectric and chiral media with ε = 4 and µ = 1. The
curves are obtained at various values of the nonreci-
procity and chirality parameters. The dependence Er(ϕ)
is plotted for the medium with chirality κ = 0.1 and
nonreciprocity χ = 0 (solid curve) and χ = 0.04 (dashed
curve). The dependence Er(ϕ) is plotted for the medium
with chirality κ = 0 and χ = 0.06 (solid curve) and ξ =
0.02 (dashed curve). If the incident wave is s-polarized,
the polarization characteristics of the reflected wave are
almost independent of the incidence angle. For a
p-polarized incident wave, the changes in θr and Er are

1 s–

0
30 60 90

ϕ, deg

(a)

Εr

s

p
ϕb

π/4

–π/4

0 30 60 90
ϕ, deg

(b)

υr

s

p

ϕb

π

π/2

Fig. 1. (a) Ellipticity angle Er and (b) polarization azimuth
θr as functions of the incidence angle ϕ of p- and s-polarized
reflected wave: (a) κ = 0.1, χ = 0 (solid curve), χ = 0.04
(dashed curve); (b) κ = 0, χ = 0.06 (solid curve), χ = 0.02
(dashed curve).
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most pronounced near the angle ϕ close to the Brewster
angle ϕb. At ϕ = ϕb, the reflected p-wave is linearly
polarized with the polarization plane being rotated by
angle of π/2 with respect to that of the incident wave.
On departure of ϕ from ϕb-value the ellipticity angle
first rapidly increases (at χ = 0 it reaches the value π/4,
i.e., the wave becomes circularly polarized) and then
gradually decreases and becomes almost zero, at the
normal and the grazing incidence. When the incidence
angle ϕ attains the value of the Brewster angle, the
polarization plane of the reflected p-wave is rotated by
an angle close to 180°. This rotation occurs the slower,
the higher the nonreciprocity of the medium.

Typical values of the chirality parameter κ normal-

ized to the refractive index  for natural and synthe-
sized biisotropic media range from 0.05 to 0.3. The
nonreciprocity effect observed in Cr2O3 natural crystals
is much weaker, the corresponding parameter for these
crystals is also lower, χ ≈ 10–5 [16]. For a clearer repre-

εµ

π
dk0

2π 3π

1

2

1.0

0.5

0

(a)

T, R

6

3

0

–3

–6

(–∆T, ∆R) × 105

π 3π

(b)

2π

Fig. 2. Power transmittance T (a, curve 1) and reflectance R
(a, curve 2) versus chiral layer thickness at χ = 0.01 and (b)
their variations, ∆T and ∆R, with respect to the dielectric
layer with the same permittivities and χ = 0.

εµ

dk0 εµ
0
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sentation of the nonreciprocity effects, we use higher
values of this parameter.

3. Chiral layer in dielectric. To find the reflectance
and transmittance of an EMW in a layer of thickness d
in a dielectric with the material parameters ε0 and µ0,
we represent the resultant propagation matrix (11) as
the product of transmission matrices for the first inter-
face, layer, and second interface:

(23)

Using this relationship and formula (13), we can obtain
the expressions for amplitude coefficients of reflection
and transmission for an EMW normally incident onto
the layer:

(24)

In this case, the ratio rps/rpp, determining the polariza-
tion characteristics of the reflected wave, coincides
with the analogous expression (20) for the interface
between two semi-insinite media. Polarization charac-
teristics of the transmitted wave linearly depend on the
layer thickness and are determined by the chirality
parameter, namely, θt – iEt = κk0d. For non-absorbing
medium (κ'' = 0), the transmitted wave shows only the
rotation of the polarization plane by the angle θt = κ'k0d.
Figure 2 presents dependences of the transmittance T =
|tpp|2 + |tps|2 and reflectance R = |rpp|2 + |rps|2 on the layer
thickness (Fig. 1a), and also their variations ∆T =
T(χ) – T(0) and ∆R = R(χ) – R(0) (Fig. 1b) due to
medium nonreciprocity. For a non-absorbing medium,
the total energy of the reflected and transmitted waves
is conserved, with ∆T being equal to –∆R.

CONCLUSIONS

The above solutions and their analysis demonstrate
the efficiency and versatility of the method based on the

M̂ M̂0
1–
T̂ M̂0, Tij δij ik0nzjd–( ).exp= =

t pp tss 2/D( )ηη0γ κk0d( ),cos= =

t ps tsp– 2/D( )ηη0γ κk0d( ),sin= =

rpp rss– 1/D( )i η2 η0
2–( ) dk0γ εµ( ),sin= =

rps rsp 1/D( )2iηη0
χ
εµ

---------- dk0γ εµ( ),sin= =

D 2ηη0γ dk0γ εµ( )cos=

+ i η2 η0
2+( ) dk0γ εµ( ).sin
C

reduction of the Maxwell equations for plane EMW
propagating in a layered bianisotropic medium, to the
matrix first-order differential equation for a four-com-
ponent vector, with the tangential field components.
The method proposed can be used for determining the
intensity and polarization characteristics of transmitted
and reflected EMWs for continuous inhomogeneous
chiral structures and structures with an arbitrary num-
ber of uniform layers.
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Abstract—The results of the study of the potassium laurate–1-decanol–water lyotropic composition are pre-
sented. The procedure of preparation of micellar solutions provides the good reproducibility of the phase dia-
grams. The configurations of the domains of the liquid crystal order are constructed on the concentration plane
at the constant temperature as well as the temperature sections (T, C1-decanol) (at the constant ratio of potassium
laurate to water) and (T, Cwater) (at the constant ratio of potassium laurate to 1-decanol). The liquid-crystal
phases observed are described. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known [1, 2], mesogenic systems, i.e.,
compounds that can form liquid crystal phases, are
divided into two classes—thermotropic and lyotropic.
The division reflects the fundamental distinctions,
which can be traced even at the level of the elementary
structural units. For thermotropics, such a unit is a mol-
ecule, whereas for lyotropics, it is an associate of mol-
ecules called a micelle. The complexity of the structural
units makes a lyotropic a complex compound as a
whole. Because of the relatively low energy of the
shape-forming bonds, micelles are very sensitive to the
composition and the external conditions (they change
their shape and size).

To identify the systems of such type, de Gennes [3]
even has purposely introduced the term soft matter. In
turn, the Mesoscopic transformations occurring in soft
matter, influence the symmetry of the implemented
order [4], the macroscopic parameters of the material
[5], etc.

The chemical aspect of the synthesis of a thermotro-
pic liquid crystal reduces to the requirement to synthe-
size the material with a sufficiently high purity grade,
whereas for the synthesis of lyotropic (micellar) sys-
tems, the composition of the mixture used is also a key
factor, because the domain of liquid crystal order on the
ternary phase diagram is rather small, whereas its posi-
tion is sensitive to the effect of impurities. At present, a
number of nematogenic lyotropic compositions are
known [6]. They posses rather interesting properties,
1063-7745/00/4503- $20.00 © 0493
namely, the existence of several nematic-phase modifi-
cations [7], the occurrence of the second-order isotro-
pic  nematic transitions [8, 9], very low light scat-
tering in the visible range, and the ability to keep dis-
persed particles in the composition [9, 10].

The present paper is devoted to the study of the
nematogenic system potassium laurate (KL)–1-
decanol–water. The choice of the composition was dic-
tated by the fact that it is the most well known [6] phase
and, at the same time, is far from being exhaustively
studied. Moreover, the known experimental results
[7, 11, 12] are inconsistent.

The article consists of sections three. First, the nec-
essary requirements to chemical purity and the aggre-
gate state of each component are formulated. The sec-
ond section describes the method of the composition
preparation and the studies of liquid-crystal states
proper. We found the method for mixing the compo-
nents that provides the synthesis of lyotropic solutions
with well reproducible physicochemical properties.
And finally, the phase diagrams constructed are dis-
cussed in Section 3.

1. PREPARATION OF LYOTROPIC 
KL–1-DECANOL–WATER SOLUTIONS

1.1. Potassium laurate. The main component of the
composition, potassium laurate (KL), was synthesized
from the following commercial products: (1) lauric
acid, LA (Fluka) with Mr = 200.32 g/mol and the nom-
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Fig. 1. IR spectra of (1) lauric acid and (2) KL in the crystalline state.
inal content of the main product not less than 99% and
(2) potassium hydroxide (KOH) (Prolabo) with Mr =
56.11 g/mol and the nominal content of the main prod-
uct not less than 86%. The total content of other alkali
metals did not exceed 1%.

The lauric acid solution in a 50% water–alcohol
medium was neutralized with the aqueous KOH solu-
tion (~9M) until the attainment of pH of 10.8–10.9. The
dried product was a white crystalline substance.

The purity of potassium laurate was checked by
recording IR spectra on a UR-20 spectrometer. The
comparison of the LA and KL, absorption spectra
(Fig. 1) shows that the main difference is caused by the
absence of a hydrogen atom in a KL molecule. The car-
boxyl group of LA gives an intense peak due to non-
symmetric valence vibrations in the range 1650–
1725 cm–1 [13]. The absorption spectrum of potassium
laurate shows the shift of this maximum observed due
to the appearance of a heavy potassium atom. Another
essential difference in the spectra consists in disappear-
ance of the bands due to deformation vibrations of the
hydroxyl group in the ranges 850–960 and 1240–
1300 cm–1 and the valence vibration band in the range
2500–3400 cm–1 [13–15]. Thus, the absence of
C

hydroxyl bands in the spectrum can serve an indicator
of the purity of potassium laurate from the lauric acid.

1.2. Components. The components for preparing the
ternary system the components were water, 1-decanol,
and an aqueous solution of potassium laurate. Water
was purified by single distillation and had the pH ~ 6.
The commercial chemical 1-decanol (Fluka) with Mr =
158.3 g/mol with the nominal content of the main prod-
uct not less than 99%. The potassium laurate aqueous
solution was prepared preliminary by dissolving crys-
talline KL in water at the temperature 80–100°C until
the attainment of the concentration of ≥35 wt % and
then was cooled down to 22°C. It should be emphasized
that, unlike the previous studies [7, 8, 11, 12], we
excluded the solid KL from the set of components used,
because it is difficult to control in situ its complete dis-
solution.

1.3. Method of mixing. The components were
always mixed at room temperature. To prepare a sam-
ple of the composition corresponding to the given point
on the ternary phase diagram, the calculated compo-
nent amounts (KL, 1-decanol, and water) were placed
into the mixing vessel. Upon pouring each portion of
water, the vessel was sealed and weighed with an accu-
racy of 10 µg on an electronic scale (Mettler). This pro-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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vided a more accurate determination of the mixture
composition than the use of the volume dosage of liq-
uid components. The weighing procedure continued
within 5–10 s. The mixing vessels were 9 ml-test tubes
of the volume with tight silicone covers. The prepara-
tion in the tube occupied a volume not exceeding 3–4
ml.

Components were stirred for 60–100 min in the
closed mixing vessels by a vibromixer at a frequency of
10–20 Hz. To remove the stable foam, the mixture in
the mixing vessel was centrifuged for 1–3 min at the
rotational velocity of 1000–2000 rev/min, which
restored the solution homogeneity. The small amount
of highly dispersed foam at the free surface did not
hinder any further work.

The compounds obtained were used to study of the
behavior of the phases in the ternary system KL–1-
decanol–water at 20 ± 1°C. The results obtained are
summarized in the phase diagram shown in Fig. 2.

The sections of the concentration phase diagram and
its temperature sections (the concentration–tempera-
ture diagrams) were obtained as follows. First, the solu-
tion of the composition corresponding to the initial,
point of the diagram was prepared. The mixing vessels
were 50 ml glasses. They were filled up to 3/4 of their
volumes, closed with screw Teflon tops, and the content
was homogenized as described above.

The solution prepared was poured into 8 to 10 9 ml-
test tubes, which were preliminarily carefully
weighted. This procedure provided the identity of the
starting material for all 8–10 points on the sections of
the phase diagram to be studied. The filled tubes were
weighted and an appropriate portion of the admixture–
components was introduced, and the tube was weighted
anew in order to determine the amount of admixture
and to calculate the composition of the final mixture.
Then, the material in tubes was homogenized by stir-
ring and the subsequent centrifuging.

The addition of 1-decanol resulted in the formation
of a number of mixtures with the constant water/KL
ratio and various content of 1-decanol (Sections 1, 2,
and 3 in Fig. 2). The addition of water resulted in the
mixtures with the constant KL/1-decanol ration but
variable water content (Section 4 in Fig. 2). Similar sets
of solutions were also used to study the behavior of var-
ious phases as function of temperature.

Consider the lyotropic compositions obtained. The
solutions formed in mixing vessels under the above
conditions were homogeneous transparent liquids
occupying the whole sample volume. Each of the
observable phases existed for not less than six months.
Upon five months, the samples showed no noticeable
changes in the phase diagrams.

The laboratory practice of synthesizing KL and the
final product, the lyotropic nematogenic composition,
provided the formulation of the conditions necessary
for obtaining the lyotropic nematics with reproducible
phase diagrams. The content of unreacted lauric acid in
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
     

the KL should not exceed 1 wt %, the pH of the solu-
tions obtained at the liquid crystal concentrations used
(KL ~ 25–33 wt %) should the range within 10.4–10.8.
The IR spectroscopy control should be used at all
stages of the synthesis.

2. PHASE DIAGRAMS OF LYOTROPIC 
SOLUTIONS IN THE VICINITY 

OF THE NEMATIC DOMAIN

2.1. Equipment and materials. The lyotropic solu-
tion was poured out either into 1 ml-cylindrical glass
test tubes closed with a polyethylene cover or into flat
0.1 mm-thick and 2.0 mm-wide capillaries (Vitro
Dynamic) placed onto slides carefully sealed up with
molten paraffin. Then, these preparations were coated
with several layers of the transparent water-repellent
varnish.

Each of the solution samples (corresponding to one
point on the concentration diagram) consisted of three
identical test tubes or 4–6 capillaries necessary for
studying the conditionally reversible phase transforma-
tions (see Sect. 3.4). The phases were identified visu-
ally on a crystallographic polarizing microscope
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Fig. 2. KL–1-decanol–water concentration plane. (For nota-
tion see the text.) The hatched domain represents the phase
N; the fluctuation zone IF is represented by a light band
along the boundary of the I  N transition. The slanted
hatching indicates the phase H; the crossed lines, the region
of phase G. The indicated plane for the phase space (T, PL,
1-decanol, and water) is the section at T = 20 ± 1°C. Each of
the segments 1–4 is the trace of the two-dimensional sec-
tion, namely: (1) (T, C1-decanol) at Cwater/CKL = 2.08, (2)
2.28, (3) 2.51, (4) (T, Cwater) at CKL/C1-decanol = 4.10. Cir-
cles denote the boundaries of the domain of the nematic
phase. Squares are the reference points: point a (28.4, 7.0,
64.6) is common for sections 2 and 4, point b (30.6, 7.6,
61.8) is common for sections 1 and 4, and point c (26.7, 6.6,
66.7) is common for sections 3 and 4. The coordinates of the
points correspond to the sequence KL, 1-decanol, water.
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(POLAM R-11, LOMO) adjusted to observe the menis-
cuses in inclined tubes and determine the sign of the
optical anisotropy [16]. The fast control the solutions
was made in crossed polarizers.

2.2. Methods of phase observations. A number of
tubes with preparations corresponding to a given con-
centration section were placed into a thermostat and
were kept there for about 40 min until thermal equilib-
rium was reached. The preparation stop showing any
visual changes, which indicated the attainment of the
phase equilibrium. Each tube was taken out of the ther-
mostat for about 1 min for the identification of the
phase type in a microscope. A special device allowed
the fixation of the test tube at an angle of 10°–25° to the
direction of observation. A meniscus edge was located

0.1 mm

Fig. 3. Marble texture characterizing the nematic order. It is
observed for all the solutions within the domain N on the
phase diagram.

0.1 mm

Fig. 4. Emulsion of flat liquid-crystal droplets in an isotro-
pic medium which characterizes the G-1 state.
C

                   

between the crossed polarizers, thus providing the con-
figuration of a wedgelike layer with a free boundary
which yields sufficient information for phase identifica-
tion (the criterion of the phase identification is consid-
ered below). The meniscus of the isotropic phase was
black. The nematic phase showed the characteristic tex-
ture typical of this state (Fig. 3). The meniscus in the
state G-1 appears as the suspension of colored droplets
against the background of isotropic medium (Fig. 4).
The meniscus in the states H and C showed the smectic-
like texture (Fig. 5).

The above phases and states could be also reliably
identified visually in the polarized light. For the quali-
tative identification phase identification we used the
polarization cell with crossed polaroids.

Special observations were performed to understand
the effect of temperature variation on the phase organi-
zation of the solutions under study. For about one
minute, no phase changes were recorded. This allows
us to conclude that short abrupt changes in the thermal
mode produce no effect on the phase state of the solu-
tion.

Some solutions were studied in the “classic” way as
well [1, 2]. A flat capillary was filled with the prepara-
tion. Then the sign and the symmetry of the orienta-
tional order were determined by the conventional meth-
ods [16]. Being rather laborious, this procedure was
employed only for a limited number of the samples,
whose composition corresponded to the characteristic
points of the phase diagram.

 

2.3. Phases and heterogeneous states of lyotropic
solutions.

 

 The state of the solution is considered to be
equilibrium, if it shows no apparent changes for a long
period of time (several months). The phase diagram
constructed from the data measured at 20

 

°

 

C is shown in
Fig. 2. The lines, representing the domain boundaries

       

0.1 mm

 

Fig. 5. 

 

Texture corresponding to the H domain (presumably,
the hexagonal mesophase); on the phase diagrams, this zone
is shown by slanted hatching.
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are drawn using the data analyzed for more than
300 samples. Figure 2 shows only eight of these points
(black circles). Straight lines 1–4, connecting the pairs
of these points are the projections of the experimentally
studied temperature sections of the phase diagram. The
phase-diagram sections by the planes (T, C1-decanol) and
(T, Cwater) are shown in Figs. 6 and 7, respectively.

The temperature–concentration region studied has
five clearly seen states.

The isotropic phase (I) is located in the region of
low concentrations <4 wt % of 1-decanol and <30 wt %
of KL (T = 22°C). The solution consists of a transparent
optically isotropic liquid, with the viscosity being of
the same order of magnitude that the viscosity of water.

The nematic phase (N) is located in the domain hav-
ing a complicated shape (Fig. 2) and, occupies mainly
the regions with 5–8 wt % of decanol and 25–32 wt %
of KL (T = 22°C). The solution is a transparent opti-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
cally anisotropic liquid, with the viscosity of the order
of magnitude the viscosity of glycerol. The solution in
test tubes (thick samples) provides complete depolar-
ization of light; whereas the solution in capillaries and
meniscus edge (thin samples) exhibits the structure typ-
ical of nematics (Fig. 3). The measurements on oriented
samples indicate the positive sign of the optical anisot-
ropy and the uniaxial symmetry of the solution in the
state of mechanical equilibrium (i.e., in the absence of
hydrodynamic perturbations). The comparison of the
defects observed with those known for lyotropic liquid
crystals [6] showed that the textures formed in our sys-
tem at 18–22°C correspond to a lyotropic nematic with
the discotic structure-forming units. At the tempera-
tures over the range 30–40°C, we also observed in
some samples the formation of defects typical of the
nematic calamitic structure.

The hexagonal state (H). The domain of the hexag-
onal state H (Fig. 2) is a narrow stripe above the domain
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of the nematic phase. The aggregate state resembles
swollen soap showing no flowability. In a polarized
light, thick layers have a white color. The liquid-crystal
texture of the thin oriented layers (Fig. 5) is similar to
that formed in hexagonal lyotropic phases [17]. The
1-decanol concentrations for such textures lie within a
rather narrow (0.5%) range.

The gellike state (G). The domain of the gelike state
is adjacent to those of the isotropic and the nematic
states and also to those of the polycrystal and hexago-
nal structures. Near the boundary with the isotropic
phase (denoted as G-1), the sample is a suspension of
optically anisotropic droplets within the isotropic
medium (Fig. 4). The droplets are anisometric they
have mainly disklike shape and are characterized by
concentric color rings in the polarized light. The extinc-
tion of the fringes in a polarizing microscope indicates
the uniaxial optical anisotropy of the droplet substance.
In the unpolarized light, thick layers of the G-1 emul-
sion are turbid. This inhomogeneous system is rather
stable.

In the middle of the domain, there is the state
denoted on the phase diagrams as G-2. Here, the sam-
ple loses fluidity and, rheologically, is very similar to
the H phase. The polarization–optical experiments with
the thin layers of the G-2 gel revealed no appreciable
tendency to orientation. In unpolarized light, the thick
specimens are of turbid white color. Close to the
boundary with the nematic domain, the system restores
its fluidity.

The polycrystalline phase (C). The domain of this
phase is adjacent to those of the isotropic, hexagonal,

80
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Fig. 7. Phase diagram in the (T, Cwater) coordinates for
CKL/C1-decanol = 4.10. For notation see Fig. 2.
C

and gellike states. It is determined from the observa-
tions on thin layers and looks like the accumulation of
numerous small polydomain regions. Inside these
regions, the sign of the optical anisotropy can vary,
which may be explained by the presence of spherulites
and similar formations. The phase C is characterized by
the absence of the large-scale structures similar to those
observed in the H phase. The aggregate state resembles
a swollen soap. Thick layers are of white color in both
polarized and unpolarized light.

2.4. Phase transitions. Studying the transition
between the isotropic and the nematic phases, we estab-
lished two types of such transitions, which is most
clearly seen on in the (T, C1-decanol) diagrams at the con-
stant KL/water ratio.

The transition from the isotropic to the nematic
phase may occur either through the intermediate gel
state (for example, at T = 35°C, see Fig. 6b) or directly
(for example, at T = 20°C). The transitions themselves
occur qualitatively differently. In particular, in the
phase transformation I  G  N, the isotropic one-
phase solution, first, laminates to give the stable emul-
sion (its morphology is illustrated by Fig. 4). With addi-
tion of 1-decanol, the droplets of the new optically
anisotropic phase gradually increase in size and num-
ber. It should be pointed out that the method of the tex-
ture analysis used does not allow the reliable determi-
nation of a type of the droplet-forming mesophase.
Moving along the C1-decanol axis, we arrive at the G-2
region, where, most likely, the essential restructuring
takes place. The G-1 phase is a liquid, whereas the G-2
phase is a gel with a considerable shear stress. With the
further increase of the 1-decanol concentration
(approaching the nematic-domain boundary) the sys-
tem restores its fluidity. The transition to the nematic
phase occupying the whole sample volume proceeds
within a very narrow temperature or concentration
range. The actual width of the transition zones
appeared to be less than the accuracy of our measure-
ments. Hence, the boundary between the domains of
the G and H states is shown by a line in Figs. 6 and 7.

The G  N transition may occur with the changes
in both concentration (1-decanol and/or water) and
temperature. Our observations indicate the possibility
of the reversible N  G  N transformation
depends on the “penetration depth” into the state G. If,
the transformation results in the gel state, then it is
impossible to return to the nematic state using only the
temperature variation. However, repeating the mixing,
one can again observe the nematic state at the given
temperature. If the system preserves its fluidity, then
the nematic state is restored with a decrease of the tem-
perature. In our opinion, the possibility of reversible
N  G  N transformation indicates that the nem-
atic is a true phase and not a metastable state. The
seeming irreversibility of the N  G-2 transition
(with respect to the temperature) is associated solely
with the kinetic difficulties of restructuring.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Another scenario of the I  N transition involves
no droplet formation and the transformation occurs
between the homogeneous states. Of particular interest
is the pattern of the pretransitional phenomena. An iso-
tropic solution located rather closely to the nematic-
domain boundary responds to the small mechanical dis-
turbances (vibration) by the formation of macroscopic
regions with the uniaxial optical anisotropy, i.e., with
giant orientational fluctuations. In the light transmitted
through crossed polaroids, a slight shaking of the test
tube results in a bright light flash against the black (in
the equilibrium) background. The intensity of the
response noticeably increases with an approach to the
boundary of the I  N transition irrespective of
whether it is caused by the change in temperature or
concentration. This “fluctuation” interval is denoted by
IF in Figs. 6 and 7. A similar phenomenon was also
reported for the lyotropic system sodium dodecyl sul-
fate–1-decanol–water [11].

Visually, the N  H transition and I  G-1 the
transition are quite similar. The former transition is also
reversible. Each time, the formation of a new phase
starts from the appearance of the nucleation centers,
which looks like the regions with smectic-like (lamel-
lar) order.

3. DISCUSSION AND CONCLUSIONS

Nematic order in a lyotropic system is a fine effect
[1]. This is indicated by the narrow region of the nem-
atic domain in Fig. 2 in comparison with the entire con-
centration plane and the strong dependence of the poly-
morphism on the conditions of the compound prepara-
tion. In the Sections 1 and 2, a number of rules was
formulated, whose thorough fulfillment provided the
preparation of lyotropic compounds with the reproduc-
ible phase diagrams. The reproduced properties were
observed at both concentration and temperature varia-
tions. Because of pronounced orientational–optical
effects, the liquid crystal phases and transitions
between them can readily be observed even using a
simple polarization cell.

The study of the systems prepared provided: (1) the
precise localization of the nematic phase N in the three-
dimensional space of the thermodynamical variables of
the system (the temperature and the concentrations of
any two components), (2) the demonstration of the pos-
sibility of the first- and the second-order I  N phase
transitions and the establishment of the qualitative dif-
ferences between them, (3) the determination of the
two-phase domain (G), in which the system has the
form either of a gel or an emulsion, and the study of its
morphology, (4) the demonstration of the fact that, in
addition to the temperature and partial concentrations,
an important parameter characterizing the state of the
lyotropic solution is also pH.

The present study is the first one, which considers
the problem of reproducibility (and, thus also, the pos-

     

     

          

                         
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
sible standardization) of the properties of the lyotropic
solutions. As far as we know, all the preceding publica-
tions [7, 8, 11, 12] implied the reproducibility as a nat-
ural fact, because none of them had any detailed
description of the synthesis of a lyotropic system. At
the same time, the experimental results reported by var-
ious authors are inconsistent. Thus, comparing the rep-
resentative points of the ternary diagrams of the sys-
tems KL–1-decanol–water, the data of [7, 8, 12] differ
within 1 wt %. With the widths of the phase domains
under discussion ranging from 0.1 to 1 wt %, this con-
tradiction seems to be quite serious.

The above quantitative approach to the synthesis of
the lyotropic system KL–1-decanol–water opens the
way for studying the nematic state, for which many
serious problems should be solved. For example, until
now the problem of the “fine structure” of this phase
remains open. Thus it was concluded [7, 18] that the
nematic domain (N) has several modifications which
are characterized by different micelle shapes. These are
the discotic Nd, the calamitic Nc, and biaxial Nbx phases
with the elementary units in the shape of a disk, a cyl-
inder, and a biaxial ellipsoid or a parallelepiped,
respectively.

Studying the existence domain of the nematic
phase, we found out the transitions through its external
borders are of a complicated nature (see diagrams in
Figs. 2, 6, and 7). In particular, either the transforma-
tion from the isotropic to the nematic state can be
implemented only by the mechanism with obvious fea-
tures of the first-order transition, the phases N and I, are
separated by a rather wide domain G, where both these
phases coexist or else the I  N transition occurs,
which is very close to second-order phase transition
and is accompanied by a drastic increase in the orienta-
tion fluctuations with an approach to the boundary
(region IF in Figs. 2, 6, and 7). The character of the tran-
sition changes at the point of intersection of the bound-
aries of the I, G, and N domains. It should also be indi-
cated that not far from the point indicated, above in the
phase N the conoscopic observations showed the biax-
iality. Although all the biaxial textures were formed
under the action of mechanical perturbations and then
relaxed to the uniaxial configuration, their formation
signifies that it is in the vicinity of the intersection point
mentioned above that the lines separating the still hypo-
thetical N

 

d

 
, N

 

c

 
, and 

 
N

 

bx

 
 phases pass.

It is worth noting to indicate some characteristic
features of the two-phase domain G that separates the
nematic and the isotropic phases. In particular, the
“entering” into this domain from the side of any of the
homogeneous phases results in an abrupt phase segre-
gation. In our observations at the spacial resolution not
exceeding 10

 

–2

 

 cm at the time scale of 

 

≥

 

1s, the appear-
ance of droplets (Fig. 4) was observed at once in the
amounts comparable with the volume of the initial
homogeneous phase. This fact points to the unconven-
tional shape of the spinodal in our system. So far, we do
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not have enough data for a detailed description of the
domain G and the constituting states (their division into
G-1 and G-2 only reflects the difference in their rheol-
ogies). The detailed study of this domain is the objec-
tive of future studies.

In this connection, it should be indicated that the
kinetic effects substantially hinder the implementation
of the “cyclic” transition N  G  N with respect
to temperature. As an example, consider Fig. 3c. Heat-
ing of the nematic to the temperatures characteristic of
the region G-2 does not directly lead to gel formation.
The gel is formed with a time lag of 5–10 min. Prior to
gel formation, a decrease of the temperature “returns”
the “overheated” nematic to the domain N. If the gel
had enough time to be formed, a decrease in the
temperature provides only the “freezing” of this state
and the time necessary for the return to the nematic
state, indefinitely increases. Thus, the supercooled gel,
being, in fact, metastable, behaves in practice as the
stable one.
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Abstract—The theory of transition from the nematic to the isotropic phase for liquid crystals in the system of
rodlike particles with large longitudinal dipoles has been developed with due regard for the equilibrium between
monomers and antiparallel molecular pairs—dimers. The order parameters of monomers and dimers are deter-
mined as well as the dimer fraction. It is shown that, in accordance with the results obtained earlier, for low
values of dipole moments, the temperature of the nematic–isotropic phase transition increases with an increase
of the dipole moment. However, for large dipoles, the transition temperature starts decreasing with an increase
of the dipole moment because of higher dimer concentration. This provides the interpretation of the recent com-
puter simulation, which showed a destabilization of the nematic phase in the system of rigid rods with pro-
nounced central dipoles. The temperature dependence of the dimer fraction is also studied. The qualitative rela-
tion between the sign of the jump in the dimer fraction at the transition point and the effect of dimerization on
the transition temperature are established. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many of the well known nematic crystals consist of
polar molecules. Constant dipoles improve the elec-
trooptical properties of liquid-crystalline materials and
their chemical stability. As is well known, the physical
properties of polar liquid crystals are essentially differ-
ent from those of nonpolar liquid crystals. In particular,
strongly polar liquid crystals can form reentrant and
other complicated smectic phases [1–3].

The effect of molecular dipoles on the nematic
phase has been studied insufficiently. However, there
are some experimental data on the influence of mole-
cule polarity on the nematic–isotropic phase transition.
Some interesting effects were observed in mixtures of
the polar and nonpolar nematics, where the transition
temperature is a nonlinear function of the relative com-
ponent concentration [4, 5]. No such phenomena were
observed in mixtures of nonpolar nematics.

At the microscopic level, such effects are explained
by the fact that antiparallel molecules form dimers. The
existence of such dimers is confirmed by X-ray scatter-
ing data [6, 7] and measurements of the dielectric con-
stant [8]. Of course, these dimers are not stable parti-
cles, but one can consider the dynamic equilibrium
between monomers and dimers. The coexistence of
dimers and monomers is a characteristic feature of
strongly polar nematics and therefore should be taken
into account in the molecular theory describing the
nematic–isotropic phase transition.

The effect of constant molecular dipoles on the
nematic–isotropic phase transition was considered in
several theoretical studies [9–12], most of which were
1063-7745/00/4503- $20.00 © 20501
devoted to systems of rigid spherocylinders or ellip-
soids with constant dipoles. Phase transition in such
systems occur as a result of the changes in the particle
concentrations at a constant temperature. Recent stud-
ies showed [9–11] that central dipoles stabilize the
nematic phase. Some qualitative results were obtained
in the studies of polar thermotropic nematics [12]. It
was shown that, in the approximation of a two-particle
cluster, the transition temperature rapidly increases
with an increase of the dipole moment.

However, the above results are inconsistent with
computer experiments [13, 14]. Computer simulation
indicates either a destabilization of the nematic phase
by constant dipoles [13] or the absence of any essential
effect of constant dipoles on the nematic–isotropic
phase transition [14].

The inconsistent data obtained in the statistical the-
ory and computer experiments are explained by the
insufficient accuracy of the theory. The theoretical stud-
ies of polar nematics are based on the Onsager theory
[9, 10] or on the two-particle cluster approximation
used to construct of the lattice model [11]. In the cited
studies, the orientational correlations were taken into
account, but the results obtained are applicable only to
weak dipoles. For strong dipoles, the results becomes
insufficiently accurate owing to strong translational
correlations resulting in dimer formation. The free
energy in the Onsager theory depends mainly on the
second-order virial coefficient, whereas in the case of
strong dipoles, this coefficient is determined by large

value of the factor exp(d2/kT ) @ 1, where R0 is the
minimum intermolecular distance. Higher order virial

R0
3
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coefficients also include this factor. Moreover, with an
increase of the dipole moment, they increase even
faster than the second-order virial coefficient. As a
result, the virial series becomes divergent.

Below, this problem is solved with the aid of dimers
introduced into consideration and the subsequent eval-
uation of the dynamic equilibrium between these
dimers and monomers. The molecular configuration
possessing the minimum energy (the main difficulty
encountered in this approach) is taken into account by
the saddle-point method.

2. STATISTICAL THEORY OF NEMATIC 
ORDER IN THE SYSTEM CONSISTING 

OF MONOMERS AND DIMERS

Consider a system of strongly polar molecules as a
mixture of monomers and dimers with the densities ρ1

and ρ2 , respectively. In the nematic phase, these mono-
mers and dimers are also characterized by the orienta-
tional distribution functions f(1)(a · n) and f (2)(a · n),
where the unit vector a is directed along the long axis
of the particle. The free energy of such a mixture is a
functional of the densities ρi(a) = ρi f (i)(a · n), where i =
1, 2. Taking into account only the direct pair correla-
tions between the particles, we can write the free
energy as [15]

(1)

where N is the number of molecules, V is the molecular
volume, Φ = ρ0V is the volume fraction of molecules in
the system, Λ  is the de Broglie wave number, R12 is the
intermolecular vector, and Cij(1, 2) (i, j = 1, 2) are the
effective direct correlation functions of the particles of
the kinds i and j.

The last term in equation (1) describes the internal
energy of dimers. Here E0 is the binding energy of a
dimer corresponding to the configuration of two con-
stituent molecules in which the interaction potential
between the molecules has the principal minimum. The

Φ
NkTV
---------------F ρ1 a1( ) ρ1 a1( )Λ3[ ] 1–ln{ } d

2a1∫=

+ ρ2 a1( ) ρ2 a1( )Λ3[ ] 1–ln{ } d
2a1∫

–
1
2
--- ρ1 a1( )ρ1 a2( )C11 1 2,( )d

2a1d
3R12d

2a2∫

– ρ1 a1( )ρ2 a2( )C12 1 2,( )d
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3R12d
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2
--- ρ2 a1( )ρ2 a2( )C22 1 2,( )d
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3R12d

2a2 ρ2

E0

kT
------,–∫
C

dimer energy is given by the formula

(2)

where θ(R12 – x12) is the stepwise function describing
the steric effects. If the molecules penetrate one
another, the function equals zero, θ(R12 – x12) = 0, oth-
erwise it equals unity, θ(R12 − x12) = 1. The potential
Udd(1, 2) describes the energy of the dipole–dipole
interaction

(3)

where d is the molecular dipole.

For considerable values of the dipole moment, the
effective binding energy E0 is determined mainly by the
energy of the dipole–dipole interaction for the most
probable configuration of two polar molecules.

Below, we consider a simple model of a polar mol-
ecule represented by a spherocylinder with the longitu-
dinal central dipole. For long spherocylinders, such a
dimer consists of two parallel neighboring monomers
with antiparallel dipoles. The binding energy of such a
dimer depends on the value of –k(d*)2, which describes
the dipole–dipole interaction in the antiparallel config-

uration, where d* = d/  is the reduced dipole
moment. It should be noted that the effective binding
energy given by (2) also depends on the configurations
determined by thermal fluctuations [16]. The calcula-
tion of E0 is considered in detail in Appendix B. Here,
we only give the result obtained for E ≡ ρΛ3exp(E0/kT):

(4)

The free energy given by (1) is a functional of two
densities, ρ1 and ρ2. However, these densities are not
independent, because the total density of all the mole-
cules (monomers or dimers) is fixed. This fact is
described by the law

(5)

where ρ0 is the total density of all the molecules.

Minimizing free energy (1) with respect to the vari-
ables ρ1 and ρ2 under condition (5), we arrive at the fol-
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lowing system of equations for these variables:

(6)

where the parameter λ* is determined from equation (5).
Equations (6) can be rewritten in a more convenient

form:

(7)

where p = ρ1/ρ0 is the molar fraction of monomers, and
the quantities Aij (i, j = 1, 2) are the corresponding
effective one-particle potentials given by the formulas

(8)

and λ = expλ*/(ρΛ3). The equation for the parameter λ
is obtained by integrating each equation of system (7)
with respect to a1:

(9)

where

(10)

(11)

The positive root of equation (9) is

(12)

Now, we can obtain the equations for the order
parameters S1 and S2 of the monomers and dimers in
terms of the generalized Maier–Saupe theory. With this
aim, we have to expand the one-particle potentials
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Aij(a · n) into Legendre polynomials and retain only the
first two terms,

(13)

As a result, we arrive at the following equations for
the order parameters Sj (j = 1, 2):

(14)

where

(15)

(16)

The coefficients  (i, j = 1, 2) depend on the temper-
ature and structure of the molecules under study.

3. DISPERSION AND ELECTROSTATIC 
INTERACTIONS BETWEEN MONOMERS 

AND DIMERS

The system of equations for the order parameters S1
and S2 and the monomers fraction p can be solved

numerically if the coefficients  and  are known.
These coefficients are the moments of the effective
direct correlations functions Cij(1, 2).

In the generalized theory of a mean field, the func-
tions Cij(1, 2) are expressed in a simple analytical form

(17)

where Uij(1, 2) are the potentials of intermolecular
interactions averaged over all the orientations of the
short axes b1 and b2 of both interacting particles and
(ai · bi) = 0, i = 1, 2.

In this study, we take into account the dispersion
interaction between the particles of any kind (mono-
mers and dimers) and also the electrostatic dipole–
dipole interactions between the monomers. A dimer
consisting of two monomers possesses an effective
quadrupole, which results in the occurrence of dipole–
quadrupole and the quadrupole–quadrupole interac-
tions in the system. However, these are relatively weak
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short-range interactions, which can be neglected in the
following consideration.

Thus, the interactions between monomers can be
written in the form

(18)

where (1, 2) is the energy of the dispersion inter-

action and (1, 2) is the dipole–dipole potential.

It should be indicated that, upon averaging, the elec-
trostatic interaction in equation (8) disappears. Thus,
the electrostatic interactions provide no contribution to
the free energy in the approximation of the mean field.
It is possible to improve this approximation by consid-
ering the dipole–dipole interactions within the second-
order virial approximation. In this case, the direct cor-
relation functions can be written in the following way:

(19)

The dispersion interactions in (19) are considered in the
mean-field approximation, whereas the dipole–dipole
interactions between the monomers are considered in
the second-order virial approximation. In (19), we
neglected the dipole–quadrupole interactions between
monomers and dimers and the quadrupole–quadrupole
interactions between the dimers.

The quantity A11 consists of the dispersion and the
dipole–dipole terms.

(20)

The quantities  and  can be expanded into
Legendre polynomials

(21)

(22)

Then, in accordance with formula (13), we arrive at

(23)

The coefficients of the dipole–dipole interactions,
 and , are estimated in Appendix A. The coeffi-

cients of the dispersion interactions,  and ,
depend on the structure of the molecules and can be
estimated in the similar way within the framework of
the chosen molecular model. In [17], the coefficients of
dispersion interactions are determined within the
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framework of the so-called block model in which a
molecule is represented by a chain of spherical blocks
interacting according to the Lennard–Jones law. In this
study, we invoke the results obtained in [17].

4. DISCUSSION OF RESULTS
In order to describe the temperatures dependences

of the order parameters S1 and S2 and the monomer
fraction p, we solved numerically system of equations
(14). The system has two sets of solutions. One of these
set (S1 = 0, S2 = 0, and p = p0) corresponds to the isotro-
pic phase, whereas the other (S1, S2, and p) corresponds
to the nematic phase. The phase transition takes place if
the free energy F(S1, S2, p) has a value lower than
F(0, 0, p0). The numerical value of the free energy was
calculated by the formula

(24)

obtained from the above calculations. In particular, all
the three equations of system (14) can be obtained from
formula (24) by independent minimization of the free
energy with respect to the variables S1 , S2 , and p.

Thus, the S1(T), S2(T), and p(T) curves have jumps
at the transition point, whereas the transition point itself
is dependent on the dipole-moment value. The depen-
dence of the transition temperature TNI on the squared
reduced moment, (d*)2, is shown in Fig. 1. In our cal-
culations, we used the coefficient of the dispersion
interactions calculated within the block model and the
axial ratio L/D = 5 (as in [13]) and Φ = 0.3. The dashed
line in Fig. 1 shows the corresponding curve calculated
without the allowance for dimerization.

For weak dipoles, the transition temperature
increases with an increase of the dipole moment in both
cases, which is determined by an increase of the effec-
tive orientational interactions between monomers
caused, in turn, by an increase of the dipole–dipole
interactions between these monomers. Since the num-
ber of dimers in this region is rather small (see the tem-
perature dependence of the monomer fraction p for
(d*)2 = 2500 K, curve 1 in Fig. 2), they can only slightly
affect the system behavior.

At the same time, for strong dipoles, the number of
dimers is considerably higher (curve 3 in Fig. 2), which
results, first, in a decelerated rise of the TN1(d*)2 curve,
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and then also in a decrease of the transition tempera-
ture, with an increase of the dipole moment. This is
explained by the fact that, unlike monomers interacting
with their own dipoles, the dimers show no noticeable
electrostatic interactions. Since the initial rise of the
TNI(d*)2 curve in Fig. 1 is explained mainly by an
increase of the dipole–dipole interactions, the decrease
in the number of monomers (because of an increase in
the number of dimers) results in decay of the TNI(d*)2

curve (Fig. 1).

It is characteristic that even in the region of weak
dipoles, an increase of the transition temperature is
slower than was predicted by the theory, which
neglected dimerization. This in turn makes it possible
to interpret the results of the computer simulation
of which some indicate destabilization of the nematic
phase in strongly polar liquids [13], whereas other
results indicate that the central molecular dipoles
do not affect the nematic–isotropic phase transition
at all [14].

It should be emphasized that at low values of the
dipole moment (see the left-hand part of Fig. 1), the
transition temperature is higher than the transition tem-
perature obtained without the allowance for dimeriza-
tion. This indicates that in the case of weak dipoles,
dimers stabilize the nematic phase. Such a situation is
obtained within the framework of the block model, in
which a dimer seems to have a more mesogenic shape
than a monomer. In the absence of another, more
important, factor—electrostatic interactions—the
shape plays the decisive role, which results in the fact

314

312

310

308

306

304

302

300

298
2500 3000 3500 4000 4500 5000

(d*)2, ä

TNI, ä

Fig. 1. Dependence of the transition temperature on the
squared reduced dipole moment. The dashed line shows the
corresponding dependence obtained without the allowance
for dimers, L/D = 5, Φ = 0.3.
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that the solid curve in the left-hand side of Fig. 1 runs
above the dashed curve.

At a certain value of (d*)2 , the effect of electrostatic
interactions is balanced by the shape effect. At this
point, henceforth called the balance point for sake of
brevity, the solid and the dashed curves in Fig. 1 inter-
sect one another. The point of their intersection is
unique because, at this point, dimers produce no effect
on the system, and the latter behaves as if there were no
dimers at all.

0.80

p, arb. units

0.75

0.70

0.65
240 260 280 300 320 340 360 380

T, ä

1
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3

Fig. 2. Temperature dependence of the monomer fraction.
The squared reduced dipole moment is (1) 2500, (2) 2850,
and (3) 3200 K.
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Fig. 3. Temperature dependence of the order parameters for
(1) monomers and (2) dimers. The squared reduced dipole
moment equals 3200 K.
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12
1 2

2 21
1

1 2

{1} {2} {3} {4} {5}

Fig. 4. Five relative monomer orientations providing the determination of the minimum distance and  X between monomers, ξ{n}:

ξ{1} = ξ{3} = 1; ξ{2} = q; ξ{4} = ξ{5} = , where q ≡ L/Deff is the effective axial ratio and {n} indicates the ordinal number of

the orientation.

q 1+
2

------------
Consider the behavior of the system of monomers
and dimers in the vicinity of the balance point in Fig. 1.
Curve 1 in Fig. 2 represents the temperature depen-
dence of the monomer fraction p at the point (d*)2 =
2500 K lying on the left of the balance point. It is seen
from Fig. 2, that at the transition point, the monomer
fraction has an upward jump, which indicates that it is
more favorable for dimers to be in the ordered phase,
which is quite consistent with the above statement that,
in this region, dimers are more mesogenic.

Curve 3 in Fig. 2 represents the temperature depen-
dence of the monomer fraction p at the point (d*)2 =
3200 K lying on the right of the balance point. It is seen
that, in this case, the monomer fraction has a downward
jump, which indicates that it is more favorable for
dimers to be in the isotropic phase. This confirms the
fact that, on the right of the balance point, dimers are
less mesogenic than monomers.

At the balance point proper, p displays no jump at
all. The corresponding temperature dependence of the
monomer fraction at the balance point (d*)2 = 2850 K
is represented by curve 2 in Fig. 2. Thus, at this point,
dimers do no affect the thermodynamic properties of
the system at all.

d2

d1
R12

ϕ12

θ12

θ
ϕ

Fig. 5. Local coordinate system with the z-axis parallel to
the dipole moment d1 of one of the spherocylinders forming
a dimer. This system was used to estimate the dimer energy
in Appendix B.
C

Figure 3 shows the temperature dependence of the
order parameters S1 and S2 of monomers and dimers at
the point (d*)2 = 3200 K. It is seen that the allowance
for dimers does not essentially influence the behavior
of the order parameter, which decreases with the tem-
perature as in the conventional Maier–Saupe theory.
However, the transition point is sensitive to the balance
between monomers and dimers (Fig. 1).

The above results clearly show the following ten-
dency. The transition temperature, even for weak
dipoles, increases much slower than in the theory
neglecting dimerization, whereas for strong dipoles it
even decreases. Therefore, with an increase of the
dipole moment of the molecule, the range of the varia-
tions of the transition temperature becomes narrower
than it was indicated in the previous theoretical studies
[12]. As has already been indicated, this is consistent
with the results obtained in computer experiments [13,
14]. The data obtained in the present study are also con-
sistent with the pronounced effect of constant molecu-
lar dipoles on the transition to the smectic phase.

The method used in the present study is also appli-
cable to the transitions of the polar systems to various
smectic phases and the studies of liquid-crystalline
ordering in polymer systems with constant dipoles.

The above theory describes the phase transition
from the nematic to the isotropic phase in strongly
polar thermotropic liquid crystals. This theory can also
be used to develop a theory of phase transitions in
strongly polar lyotropic systems.

APPENDIX A

DIPOLE–DIPOLE INTERACTIONS 
OF MONOMERS

Let us determine the coefficients of dipole–dipole
interactions. In our model, a dipole is located in the
center of a molecule parallel to its long axis.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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Expand the effective dipole–dipole potential into
Legendre polynomials and retain only two first terms:

(A1)

where the potential of the dipole–dipole interaction is
set by formula (3).

Consider, first, the integral taken over the intermo-
lecular vector R12 in formula (A1). The integral over
the absolute value of R12 can be taken directly, and,
therefore, we obtain

(A2)

where u = R12/|R12|. In formula (A2), the minimum dis-
tance between the centers of two molecules,
ξ12(a1, u, a2), depends on the relative orientations of the
contacting molecules. It is impossible to calculate the
function ξ12 analytically even for the simplest molecu-
lar model. However, similar to [18], one can use the
interpolating expressions, which can be obtained in the
following way.

First, expand  into a series in the complete sys-
tem of spherical invariants and retain only several terms
of the expansion

(A3)

Now, in order to exclude the integration domain in
which two molecules should be considered as a dimer
(and not as independent monomers), introduce the
effective diameter of the molecule, Deff = 1.62 D.

Substituting (A3) into (A2), we arrive at the expres-
sions for  and 

(A4)

A11
es a1 n⋅( ) Φ

2V kT( )2
--------------------- f

1( ) a2 n⋅( )θ R12 x12–( )∫=

× U11
dd

1 2,( )[ ]
2
d

3R12d
2a2

=  J0
es

J2
es

S1P2 a1 n⋅( ) …,+ +

A11
es Φd

4

6V kT( )2
--------------------- f

1( ) a2 u⋅( ) a1 a2⋅( )[∫=

– 3 a1 u⋅( ) a2 u⋅( ) ] 2ξ12
3– a1 u a2, ,( )d

2ud
2a2,

ξ12
3–

ξ12
3–

Deff
3– α β1P2 a1 u⋅( ) β2P2 a2 u⋅( ) 1

2
---+ +





=

+ γP2 a1 a2⋅( ) δ 9
2
--- a1 u⋅( ) a2 u⋅( ) a1 a2⋅( )+

–
3
2
--- a1 u⋅( )2 3

2
--- a2 u⋅( )2

–
3
2
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– 1+




.

J0
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J2
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J0
es 4

9
---π

ΦDeff
3

V
--------------
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T
2

-------------=

× α 1
5
---β1

1
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1
25
------γ 1

25
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(A5)

Now, consider five coefficients, α, β1, β2, γ, and δ in for-
mulas (A4) and (A5) as free parameters [19] and stipu-

late that expression (A3) for  coincide with the
exact result for five orientations of two molecules
shown in Fig. 4.

Now, using the quantities ξ{n} (Fig. 4), we arrive at
the following expressions for the coefficients in formu-
las (A4) and (A5):

(A6)

APPENDIX B

DIMER ENERGY

A dimer is built by two molecules located in the
vicinity of the minimum of the energy of interaction
between these molecules. The configuration with the
minimum energy for a pair of spherocylinders with lon-
gitudinal dipoles is obtained for neighboring dipoles
having the antiparallel orientations.

The total energy of all the dipoles (see Sect. 2)
equals

(B1)

Since the dipole–dipole interactions are polar and, thus,
on the average, equal zero, we cannot use the mean-
field approximation when calculating E. At the same
time, the dimer energy shows the well pronounced prin-
cipal maximum and therefore can be estimated by the
saddle-point method.

The dipole–dipole interaction in formula (B1) is
determined by the expression

(B2)

J2
es 4

9
---π

ΦDeff
3

V
--------------

d*( )4

T
2

-------------=

× 1
5
---α 1

7
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1
7
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37
35
------γ 101

245
---------δ+ + + + .

ξ12
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α 2
9
--- 2

1
2
---q

3–
2 q 1+( )/2[ ] 3–

+ +
 
 
 

=

βi
2
9
--- 2– q
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q 1+( )/2[ ] 3–

+ +{ } , i 1 2,= =

γ δ 2
9
--- 1 q
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2 q 1+( )/2[ ] 3–

–+{ } .= =

E
1

4π
------ρ θ R12 x12–( )∫=

×
Udd 1 2,( )

kT
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  1–exp d
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3R12d
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Udd 1 2,( ) 1

R12
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R12
2

-------------------------------------------------–⋅ .=
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Now, introduce a cylindrical coordinate system in
which the polar axis is directed along the dipole
moment of one of the two molecules forming a dimer
(Fig. 5). In this coordinate system, the vectors in for-
mula (B2) have the following coordinates

In the vicinity of the energy minimum, we can write:

where 

Now, retaining in (B2) only the terms ~(θ12 –

π)i ξk, where i + j + 2k ≤ 2, we have

(B3)

Introducing the notation µ = , we can rewrite

(B1), with due regard of the above stated, in the follow-
ing form:

d1 d

0

0

1 
 
 
 

, d2 d

θ12 ϕ12cossin

θ12 ϕ12sinsin
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,= =
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C

where J0 is the zeroth-order Bessel function. We

assume that J0 3iµ(θ12 − π)  ≈ 1. Then

(B4)

Formula (B4) yields the correct value of E if µ =
(d*)2/T > 1. As is seen from Fig. 1, the temperature
range studied satisfies this condition.
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Nematic–Isotropic Phase Transition in Polar Liquid Crystals. 
2. Role of Dispersion Interactions
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Abstract—The present study furthers the development of the theory of the nematic–isotropic phase transition
in the system of rodlike particles with large longitudinal dipoles. The effect of dispersion interactions between
single molecules (monomers) and molecular pairs (dimers) on the transition temperature is considered. The cru-
cial point of the approach used is existence of dimers in the system. Dispersion interactions are estimated within
the framework of the model in which molecules consist of spherical blocks interacting according to the Len-
nard–Jones law. The direct pair-correlation functions are approximated by spherical invariants forming a com-
plete system of functions. Then, these correlation functions are varied in order to study the behavior of the
phase-transition temperature depending on the choice of the molecular model. It is shown that, depending on
the molecule shapes, dimers can either destroy or stabilize the nematic order. It is also shown that the presence
of dimers in the system decelerates an increase of the transition temperature (and, in many instances, can even
reduce it) with an increase in the value of the molecular dipole. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the first part of this article [1], we studied the
effect of constant molecular dipoles on the transition
from the nematic to the isotropic phase. Unlike in pre-
vious theoretical studies [2–5], we took into account
the formation of dimers—molecular pairs with antipar-
allel dipoles. As a result, we established that dimers
produce a strong effect on the behavior of liquid-crys-
talline system and, at large values of the dipole
moments, destroy the nematic order. These results pro-
vide the qualitative interpretation of the data of com-
puter simulation [6, 7].

In the first part of this article [1], we derived a sys-
tem of equations for the equilibrium values of the order
parameters S1 and S2 of monomers and dimers and for
the monomer fraction p, [equations (14) in [1]]. Their
numerical solution yields the temperature dependences
of these quantities. Equations (14) include the parame-
ters of the quantity Aij, which, in turn, are determined
by the effective dispersion and electrostatic interactions
in formula (23) in [1]. Appendix A in [1], gives the esti-
mates of the electrostatic dipole–dipole interactions
between monomers (formulas (A4) and (A5) for coef-

ficients  and  in [1]). Electrostatic interactions
between monomers and dimers are weak short-range
interactions which, within the approach used, could be
ignored.

However, in [1] we did not determine the coeffi-

cients of dispersion interactions,  and . Neverthe-
less, the relationships between these coefficients for

J0
es

J2
es

J0
ij

J2
ij
1063-7745/00/4503- $20.00 © 0510
particles of different kinds (monomers and dimers)
would considerably influence the system behavior. In
particular, the range of the values of a molecular dipole
in which dimers either stabilize or, on the contrary,
destroy the nematic order is strongly dependent on the

/  ratio. The coefficients of the dispersion interac-
tions within the so-called block model of a molecules
are estimated in Section 2. The consequences of the
variations in these coefficients are considered in Sec-
tion 3.

2. DISPERSION INTERACTIONS 
WITHIN THE FRAMEWORK OF THE BLOCK 

MODEL

In order to estimate the coefficients  and , con-
sider the block model of a molecule [8–10] in which a
monomer consists of five spherical blocks (Fig.1a),
whereas a dimer consists of ten blocks (Fig. 1b).

Each block of a particle (a monomer or a dimer)
interacts with each block of another particle according
to the Lennard–Jones law, ε0[(D/r)12 – (D/r)6], where D
is the block diameter. The total potential of all the inter-

actions between the particles,  (i, j = 1, 2),
includes the double sum taken over all the correspond-
ing blocks of both particles.

Expand the effective dispersion one-particle poten-

tials  into Legendre polynomials and retain only
the two first terms, (see formula (8) and formula (17)

J2
22

J2
11

J0
ij

J2
ij

Uij
disp

Aij
disp
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(a) (b)

Fig. 1. Block model of a molecule: (a) a monomer, (b) a dimer.
for the correlation functions Cij in [1]):

(1)

With this aim, take the integral, first, over the absolute
values of R12 and then along the short axis b2 in (1) and
introduce the following functions

(2)

Then, we arrive at the expression

(3)

The functions Yij (a1, u, a2) depend on the orientations
of the long axes of the particles and the orientations of
the intermolecular vectors. We use here the same inter-
polating expression for Yij as for the dipole–dipole
interaction in [1] (see also [11]):

(4)

Substituting (4) into (3), we arrive at the following

expressions for the coefficients  and :
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(6)

We consider here the coefficients  and  in (5) and
(6) as free parameters [12] and require that expression (4)
would be valid for five orientations of the long axes a1
and a2 with respect to the orientation of the vector u
(see Fig. 4 in [1]). Thus, we obtain for  and :

(7)

In order to determine the coefficients , where the
subscript n

 

 indicates the ordinal number of the long-
axis orientation in Fig. 4 in [1], one has to take the inte-
gral over the vector 
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2

 

 in (2) for each of the five orien-

tations. Introduce the functions 
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 which are
equivalent to the integrals taken over the intermolecular
distances for each fixed orientation 
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 of the long axes:
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If the interacting particles are monomers (
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), then the integration in (9) yields
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In the present study, we obtained the  values by per-
forming the numerical integration of the block potential
over the distances 
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 between the centers of monomers
using the expression (8) for each of 
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 orientations
shown in Fig. 4 in [1].
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Fig. 2. Nine relative orientations of a monomer and a biaxial dimer used for calculating nine  coefficients by formula (14). Fig-

ures in parentheses indicate the ordinal number of the orientation {nm}.

Znm
12
For interacting monomers and dimers (i = 1, j = 2),

the value of  depends on the orientation of the short
dimer axis b2. This dependence cannot be obtained ana-
lytically. In order to estimate the integral in (9), we have

to approximate (b1, u, b2) by polynomials,

(11)

Substituting (11) into (9), we have

(12)

The free parameters for  in (11) can be obtained
from the condition that these expressing are valid for

Zn
12

Zn
12

Zn
12 αn

12 βn
12

P2 b2 u⋅( ), n+ 1 3 4, ,= =

Z2
12 α2

12
=

Z5
12 α5

12 β5
12

P2 b2 a1⋅( ).+=

Yn
12 αn

12
.=

Zn
12
C

nine orientations of the monomer and the dimer shown

in Fig. 2. Then we obtain for :

(13)

The quantities  with the double subscript {nm}
indicating the number of the particle orientation
(Fig. 2) are also obtained by the numerical integration
of the block potential over the distance R12 between the
monomer and the dimer centers for each of the {nm}
orientations (Fig. 2) using the following expression

(14)

αn
12

αn
12 1

3
--- 2Zn1

12
Zn2

12
+( ), n 1 3 4 5, , ,= =

α2
12

Z21
12

.=

Znm
12

Znm
12 1

D
3
k

--------- θ R12 x12–( )U12
disp

1 2,( )R12
2

dR12.∫=
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The same procedure can also be applied to two
dimers (i = 2, j = 2) with the only difference—the poly-
nomials P2(b1 · u) and P2(b1 · b2) are added to the inter-

polating expressions for  [see the analogous expres-

sions (11) for ]. Therefore, instead of the use of
nine orientations shown in Fig. 2, we estimated the

interpolation coefficients for  with the use of 16 ori-
entations at different directions of the vector b1. Similar

to the case of a monomer and a dimer, the value of 
for two dimers is determined only by the free coeffi-

cients  in the expansion for :

(15)

The -values in formula (10), the -values in

formula (12), and the -values in formula (15) were

substituted for the coefficients  and  into (7), and
those, in turn, were substituted for the coefficients of

dispersion interaction  and  in expressions (5)
and (6). In the numerical integration of the potential,
we put ε0/k = 5350. As a result, we obtained the coeffi-

cients  and  for the block model which are listed
in table.

3. MAJOR RESULTS AND CONCLUSIONS

The coefficients of dispersion interaction given in
table were obtained for the block model and were used
to estimate the effective one-particle potentials, see for-
mula (23) in [1]. At such a choice of the coefficients

, the numerical solution of system (14) from [1]
with respect to the order parameters S1 and S2 and the
monomer fraction p yields the temperature T depen-
dences of these quantities for any fixed value of the
dipole moment. The dependence of the transition tem-
perature on the squared reduced dipole moment for the
block model is shown by curve 1 in Fig. 3. The dashed
line in Fig. 3 corresponds to the solution of the first
equation of the system in which p equals unity (the case
of the dimer absence). The comparative analysis of the
behavior of the solid and dashed curves in Fig. 3 shows
the possibilities provided by the allowance for dimer-
ization. On the left of the intersection point of these
curves in Fig. 3 (the balance point), dimers stabilize the
nematic phase, whereas on the right of the balance
point, they destroy it. (For more details see [1]). At the
balance point proper, dimers produce no effect on the
system behavior at all.

In order to understand in which way the choice of
the molecular model influences the behavior of the tem-
perature of the nematic–isotropic phase transition of
the system consider the variation in the anisotropic

Zn
22

Zn
12

Zn
22

Yn
22

αn
22

Zn
22

Yn
22 αn

22
.=

Yn
11

Yn
12

Yn
22

α ij' γij'

J0
ij

J2
ij

J0
ij

J2
ij

J0 2,
ij
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coefficients of the dispersion interaction. We vary these
coefficients in accordance with their values listed in
table. We do not vary the isotropic coefficients, because
they only slightly affect the transition temperature (and
only via the monomer fraction p). For comparison, in
the conventional Maier–Saupe theory, the isotropic
coefficient in the expansion of the one-particle poten-
tial into Legendre polynomials does not affect the sys-
tem behavior. New anisotropic coefficients are chosen

in such a way that the /  ratio exceeds this ratio
for the initial block model. Thus, anisotropic interac-
tions of dimers become more pronounced than aniso-
tropic interactions of monomers. In this case, dimers
become slightly more mesogenic than in the initial
model. The corresponding dependence of the transition
temperature on the squared reduced dipole moment is
shown by curve 2 in Fig. 3. First, it is seen that the
region where dimers are more mesogenic than mono-
mers is broadened (the balance point is shifted to the
right). Second, on the right of the balance point, where
monomers are more mesogenic than dimers, the dimers
destroy the nematic order to a lesser degree than in the
block model (the difference between the solid and
dashed lines is much less). Moreover, at the point
where curve 2 in Fig. 3 attains its maximum, the num-

J2
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J2
11
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Fig. 3. Dependence of the transition temperature on the
squared reduced dipole moment (1) for the block model and
(2) upon the variation of the interaction coefficients, L/D =
5, Φ = 0.3. Dashed lines indicate the correspondent depen-
dences obtained without the allowance for dimer existence.
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ber of monomers becomes so small that they can only
insignificantly affect the system behavior. Therefore
curve 2 attains the saturation. It should be indicated that
assuming that dimers do not interact electrostatically so
that their total interaction is independent of the value of
the molecular dipole, one arrives to the same situation.
Figure 4 shows the temperature dependence of the
monomer fraction p for the dipole moment correspond-
ing to the maximum in Fig. 3. Curve 1 in Fig. 4 corre-
sponds to the coefficients of disperse interactions
obtained within the framework of the block model and
curve 2, to the coefficients upon their variation. It is
seen that in the second case, the number of monomers
is considerably lower than in the first one.

All the above stated leads to the conclusion that
dimer formation results in a decrease of the tempera-
ture nematic–isotropic phase transition with an
increase of the dipole moment only if the anisotropy of
dimer interactions is rather weak (curve 1 in Fig. 3). To
the right from the balance point, dimers, always being
less anisotropic than monomers, can still make the tem-
perature decrease barely noticeable or even unobserv-
able (curve 2 in Fig. 3). The situation is determined by
the choice of the molecular model most adequately
describing the type of the molecule. Possibly, these

0.7

p, arb. units

0.6

0.5

0.4

0.3

0.2

0.1

260 300 320 340 360 380
T, ä

1

2

280240

Fig. 4. Temperature dependence of the monomer fraction
(1) for the block model; (2) upon the variation of the inter-
action coefficients. In both cases, the values of the molecu-
lar dipole correspond to the maximum transition tempera-
ture.
C

considerations can explain the fact [6] that computer
simulation of polar systems indicates the temperature
decrease for stronger dipoles, whereas in [7], it was
stated that molecular dipoles do not affect the transition
temperature at all. In any case, the allowance for dimer-
ization is very important for this approach, because the
results of the above studies show only a feebly marked
increase of the transition temperature with an increase
of the dipole moment in comparison with its increase
observed without allowance for dimerization.
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SURFACE

       
Influence of the Surface on the Properties 
of Macro- and Nanocrystals
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Abstract—The influence of the surface energy on the properties of macro- and nanocrystals has been consid-
ered. It is shown that the properties of small crystals (several microns and less) depend on their dimensions,
which is explained by an increase of the number of surface atoms in the total number of all the atoms in a crys-
tal. On the basis of the energy criterion of crystalline substance amorphization, a formula relating the surface
energy of a crystal to its crystal-lattice parameters is derived. The surface energies of elemental crystals are cal-
culated. It is assumed that anisotropy in contact-melting temperature of single crystals can be observed exper-
imentally. © 2000 MAIK “Nauka/Interperiodica”.
The surface, being an unavoidable defect of a crys-
tal, influences its physical and chemical properties. The
surface is the site of occurrence of various chemical and
catalytic reactions, it influences the chemical and cata-
lytic activity, adsorption ability, and sintering tempera-
ture of powder-like substances. The surface state deter-
mines the mechanical properties of crystalline materi-
als and the most important properties of semiconductor
devices based on the use of single-crystal surfaces.

At the present, the effect of the surface on the prop-
erties of nanocrystals (in which the number of surface
atoms is comparable with the number of atoms in the
bulk) has been studied in detail. The formulas relating
the properties of nanocrystals with their linear dimen-
sions are derived with due regard of the surface-energy
contribution into the chemical potential of a nanocrys-
tal. Thus, according to the Gibbs–Thomson equation, a
spherical nanocrystal melts at a lower temperature [1]:

where T(R) is the melting point of a nanocrystal of the
radius R, σ is the specific surface energy of the crystal–
melt interface, L is the latent heat of melting, and ρ is
the material density.

Earlier [2], we formulated the energy criterion of
crystalline substance amorphization, according to
which amorphization starts at the moment when the
heat content in a crystal attains (no matter in which
way) the value [2]:

where cp is the heat capacity and Tm is the melting point
of the crystalline substance under consideration.

T R( ) T ∞( ) 2σT ∞( )/LρR,–=

Q cp T ,d

0

Tm

∫=
1063-7745/00/4503- $20.00 © 20515
Using this criterion, we calculated the limiting
dimensions of inorganic and metal nanocrystals at an
arbitrary temperature, T < Tm, beginning from which
the material undergoes amorphization, and also the
decrease in the melting point of nanocrystals as a func-
tion of their dimensions [2]. It should be indicated that
the formula derived contained not the latent melting
heat of the crystal, L, which characterizes the structure
rearrangement during the transformation of a crystal
into a liquid, but the heat content at the melting point,
Q, i.e., the thermal energy accumulated in the crystal by
the moment of its melting. It is clear that it is the heat
Q that initiates the onset of the phase transformation of
a crystal into a liquid.

The dependence of the crystal properties on its dimen-
sions is clearly seen from the change of the average coor-
dination number (c.n.) in crystals with a decrease of their
dimensions. We derived the formulas relating the change
in the coordination number (c.n.) of nanocrystals and their
linear dimension l for the simplest cubic structures with
the lattice parameters a [3, 4]:

c.n. Pm3m Z 1=,( ) 6
l/a

l/a 1+
----------------,=

c.n. Im3m Z 2=,( ) 16
l/a( )3

l/a 1+( )3 l/a( )3+
-------------------------------------------,=

c.n. Fm3m Z 4=,( )

=  48
l/a( )3

l/a 1+( )3 3 l/a( )2 l/a 1+( )–
--------------------------------------------------------------------,

c.n. Fd3m Z 4=,( )

=  32
l/a( )3

2l/a 1+( )3 3 l/a( )2 2l/a 1+( )–
--------------------------------------------------------------------------.
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The calculations performed by these formulas show
considerable changes in the physical and chemical
properties of nanocrystals observed to submicron
dimensions [3].

A similar dependence was also obtained for col-
umn-type crystalline elements on a single-crystal sub-
strate. Such elements are used in silicon technologies
for manufacturing large-scale integrated (LSI) circuits
with submicron elements. Such calculations for silicon
columns were performed by the formula [5]

where l is the width and h is the height of a single-crys-
tal column.

The calculations showed that physical and chemical
properties depend on element dimensions to the linear
dimensions of the order of 0.25 µm. The influence of
the dimensions on the physical and chemical properties
of a 0.25 µm-wide column is comparable with the effect
of vacancies with a concentration exceeding 1019 cm–3

[5]. With due regard for the fact that the equilibrium
vacancy concentration at the melting point does not
exceed 1016 cm–3 and that some of these vacancies are
electrically active centers, the importance of the allow-
ance for the variation of silicon properties on submi-
cron dimensions of the crystalline elements of large-
scale integrated circuits becomes quite obvious.

Thus, the effect of the surface on the properties of a
nanocrystal is confirmed both experimentally and theo-
retically (thermodynamic calculations). For macrocrys-
tals, many of the above effects become negligible
already at micron dimensions of the crystal. However,
irrespectively of the crystal dimension, the surface has
the determining effect on such crystal properties as cat-
alytic activity, adsorption ability, mechanical strength,
and melting. The catalytic and adsorption properties at
the surface and mechanical properties of crystals
important for science and technology have repeatedly
been considered in various publications. The relation of
these properties to the energy and the physical state of
the surface is obvious. At the same time, the effect of
the surface on crystal melting which is not that obvious.

It was shown that thermal vibrations of surface
atoms occurring normally to the crystal surface are
more pronounced (by 50–100%) than in the bulk [6].
Therefore, proceeding from the Lindemann criterion
(according to which a crystal starts melting when the
root-mean-square deviations of the atoms attain a value
of about 25% of the lattice constant), Zangwill assumed
[7] that crystal starts melting on the surface at a temper-
ature considerably lower than the melting point in the
bulk and then “propagates” from layer to layer over the
whole crystal bulk. Even earlier, Ubbelohde [8]
assumed that if the surface energy of the crystal is
anisotropic, melting on different faces would start at

c.n. Si( )

=  2
16l2h/a3 2l2/a2 2l/a 1+ + +

8l2h/a3 2l2/a2 4lh/a2 2l/a h/a 1+ + + + +
-----------------------------------------------------------------------------------------------------,
C

different temperatures. However, this assumption was
not confirmed experimentally. The existence of this
effect would have contradicted the assumption that the
melting process is a first-order phase transition,
because the anisotropy of the melting point of the crys-
tal would have resulted in a diffuse phase transforma-
tion with respect to temperature. In the present study,
the question which crystal layer passes into the melt
under the effect of the surface energy was not consid-
ered. At the same time, the fact of the surface-energy
effect on the melting process in a macrocrystal was
recorded.

It is also possible to assume that crystal melting at
various faces starts at the same temperature. But then
the layers of different thicknesses should pass into the
melt per unit time. The thicknesses of such layers are
proportional to the thickness of the first coordination
sphere of atoms (or molecules, in the case of molecular
crystals) along the given direction [9]. Similar to [7, 8],
the melting of the surface layer is initialed by an exces-
sive energy in such a layer stored in the form of the sur-
face energy [9]. Using the energy criterion of crystal-
line-substance amorphization [2], we derived the for-
mula relating the specific free surface energy of the
crystal (σhkl) on the (hkl) planes and the thickness of the
first coordination sphere (lhkl) along the [hkl] direction:

(1)

where ρ is the density of the crystalline substance and
M is the mass of atoms (molecules) occupying the crys-
tal-lattice points [9]. The above formula allows one to
take into account the anisotropy in the surface energy of
crystals. For crystalline metals, the relation between
l100, l110, and l111 is determined by the spatial arrange-
ment of atoms within the first coordination sphere and,
for cubic crystals, has the form:

for primitive lattices, l100 = 2a; l110 = a , and l111 =

2a/ ;

for body-centered lattices l100 = a; l110 = a , and

l111 = a/ ;

for face-centered lattices l100 = a; l110 = a/ , l111 =

2a/ .

Table lists the specific surface energies of metal and
nonmetal simple crystals calculated by formula (1) and,
for comparison, also the values from [10–18]. It is seen
that the calculated surface energies only slightly differ
from the experimentally obtained ones and the values
calculated with the invocation of other theoretical
approaches and thus confirm our approach to the
description of the beginning of melting [9]. This is also
confirmed by the qualitative correlation of the surface-
energy ratios σ100/ σ110 for tungsten and copper crystals

σhkl ρlhkl/M( ) cp T ,d

0

Tm

∫=

2

3

2

3

2

3
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Specific free surface energies of elemental crystals calculated by formula (1) and the known experimental data

Element hkl σhkl, mJ/m2

(calculated data)
σhkl, mJ/m2 

(known data) Element hkl σhkl, mJ/m2

(calculated data)
σhkl, mJ/m2 

(known data)

H 0001 11.1 As 100 1710
He 100 1.76 Se 100 752
Li 100 304 Br 100 110
Li 110 430 377 [10] Kr 111 56.8 52.8 [12]
Li 111 180 Rb 110 143 75 [10]
Be 0001 1840 1500 [11] Sr 100 518 303 [10]
B 100 2820 Y 0001 1285
C 0001 2168 Zr 0001 2017
N 0001 43.6 Nb 110 2646 1927 [10]
O 100 100 Mo 100 2306 2240 [10]
F 100 124 Tc 0001 2990
Ne 100 16.3 Ru 0001 3200
Ne 110 11.5 Rh 100 2560 2610 [10]
Ne 111 18.8 19.7 [12] Pd 100 2090 1685 [10]
Na 100 189 171 [10] Ag 100 1246 1140 [16]
Na 110 267 Ag 110 881
Na 111 109 Ag 111 1439
Mg 0001 867 728 [10] Cd 0001 668 650 [18]
Al 100 921 964 [10] In 100 336
Al 110 651 Sn 100 488 765 [10]
Al 111 1063 Sb 100 1130
Si 100 1530 Te 0001 543 520 [10]
Si 110 2164 I 100 195
Si 111 1767 1240 [13] Xe 100 57.0
S 001 75.8 Xe 110 40.3
Cl 100 75.2 Xe 111 65.8 62.11 [12]
Ar 111 44.3 43.2 [12] Cs 100 85
K 100 124 105 [10] Ba 100 365
Ca 100 630 La 0001 900
Sc 0001 1584 Ce 100 724
Ti 0001 2226 Pr 0001 930
V 100 1961 1878 [10] Nd 0001 1025
Cr 100 2017 1591 [10] Pa 100 1390
Mn 100 1502 Pa 001 1150
Fe 100 1832 1940 [15] Th 100 1380
Co 100 2317 1368 [10] U 001 1544
Ni 100 2405 1440 [10] Np 100 1210
Cu 100 1686 1500 [14] Np 001 840
Zn 0001 953 770 [17] Pm 0001 1030
Ga 100 303 Tb 0001 1326
Ge 100 1175 Dy 0001 1408
Sm 100 747 Re 0001 4460
Eu 100 472 Os 0001 4210
Gd 100 1182 Ir 100 3090
Gd 0001 1683 Pt 100 2280 2480 [10]
Ho 0001 1415 Pt 110 1612
Er 001 1510 Pt 111 2633
Tm 0001 1500 Au 100 1360 1250 [16]
Yb 100 610 Hg 100 283
Lu 0001 1623 Tl 100 343
Hf 0001 2130 1553 [10] Pb 100 430 546 [10]
Ta 100 2530 2388 [10] Bi 100 595
W 100 3020 2455 [10] Po 100 416
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measured experimentally and calculated by formula (1).
The corresponding ratios determined experimentally
for W and Cu are equal to 0.926 and 1.2, whereas those
calculated by formula (1) are equal to 0.707 and 1.414,
respectively. To simplify the calculations, we neglected
the temperature dependences of σhkl, ρ, lhkl, and cp,
because they can only slightly affect the results
obtained [9].

It follows from (1) that with the change of the sur-
face energy on one of the crystal faces, the melting tem-
perature of the crystal on the face under consideration
also changes. In other words, under certain conditions,
it is possible to observe the anisotropy of the meting
point in the crystal. For example, the anisotropy can be
observed during adsorption of impurities on one of the
crystal faces, chemically interacting with the impuri-
ties. Under the conditions of crystal heating, these
impurities can melt and form a chemical compound at
the temperature lower that the melting point of the crys-
tal. Moreover, the anisotropy in the melting point is
also observed in contact melting of crystals forming a
eutectics. This phenomenon was repeatedly observed,
but was interpreted somewhat differently. Thus, Savint-
sev [19] showed that melting of zinc single crystal
wrapped into a foil of the eutectic cadmium–lead alloy
takes place only along the basis zinc faces. Earlier [8],
it was indicated that some faces of some metal single
crystals of some metals are not wet with melt. It was
explained by selective impurity adsorption on these
faces.

All the above stated facts prove that studying phys-
ical and chemical properties of nano- and macrocrys-
tals, one has necessarily to take into account the prop-
erties of the crystal surfaces such as, e.g., the specific
surface energy.
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Abstract—The mass transfer in a cylindrical inclusion of the melt with a rectangular cross-section in an aniso-
tropic crystal in a nonstationary thermal field has been analyzed with due regard for the nonlinear solid–liquid
interfacial kinetics. The possibility of the existence of a new effect is substantiated—alternation of the direction
of the flows of liquid components depending on the rate of temperature variation. It is shown that the inclusion
shape can be controlled by changing the shape of the temperature oscillations. © 2000 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Migration of liquid inclusions in an anisotropic
solid [1] is of interest as a method for studying of the
mechanism and the kinetics of crystallization, diffusion
in high-temperature melts, and the segregation coeffi-
cients of the components [2]. Moreover, the study of
thermal migration is a promising method of semicon-
ductor technology, which provides the formation of
doped regions of complicated geometries in the sub-
strate bulk and, thus, can be used for the manufacturing
new semiconductor devices and large-scale integrated
circuits. The possibilities of thermomigration as a
research method are determined by understanding of
the mechanism of mass transfer. In terms of technology,
the control of the shape of migrating inclusions is very
important, because it is the inclusion shape that deter-
mines the dimensions and the shape of the recrystal-
lized doped regions in the bulk of the semiconductor
substrate.

Small characteristic size of liquid-phase layers
(<100 µm) and, in the general case, the nonlinear
boundary conditions for the mass transfer equations
provide a high sensitivity of the thermomigration pro-
cess to deviations of thermal conditions from the sta-
tionary ones [3]. In the case of a non-one-dimensional
mass transfer characteristic of the discrete liquid-phase
inclusions inside an nonuniformly heated anisotropic
solid material, the deviation from the stationary condi-
tions should result not only in the change of the migra-
tion velocity (as is the case of planar inclusions [3]),
also to the change in the inclusions shape because of the
anisotropy of growth and dissolution kinetics.

The goal of this paper is to demonstrate the possibil-
ity of controlling the shape of liquid inclusions under
the nonstationary thermal conditions.
1063-7745/00/4503- $20.00 © 20519
MODEL

The rigorous approach to the description of the mass
transfer in limited liquid-phase inclusions in an aniso-
tropic medium requires the allowance for step motion
from the “reentrant angles” and the capillary effects
caused by the tendency of the system to have the mini-
mum free energy. The solution of this problem can be
obtained only by numerical modeling of the mass trans-
fer on a computer. However, at the first stage of the
study, the analytical solution of the problem can be
obtained for a simplified model, which can also be used
for the qualitative analysis of the above effects.

Consider a cylindrical inclusion of the composition
A–B having a rectangular cross section in a uniformly
heated anisotropic crystal (Fig. 1) consisting of mainly
the substance A with the substance B being a solvent.
The phase diagram of the system A–B is assumed to be
known with the slope of the liquidus line ac(h) = dT/dC
being equal to m.

The dimensions lx and ly of the inclusion (Fig. 1) are
assumed to be rather small, so that one cannot neglect
the effect of the solid–liquid interfacial kinetics on the
mass transfer in the liquid-phase bulk [2], on the one
hand, but can neglect the convective stirring of the liq-
uid phase [4]. For simplicity, the segregation coefficient
of the solvent B in the A–B system is assumed to be
zero.

Two interfaces (parallel to the axis x, Fig. 1) are
assumed to be singular and the growth and dissolution
processes at these interfaces are assumed to proceed by
the mechanism of two-dimensional nucleation. For fur-
ther simplification, we assume that supersaturations
necessary for formation and dissolution of nuclei have
the same absolute values equal to ∆C. Two other inter-
faces are assumed to be nonsingular, and therefore the
growth and dissolution processes at these interfaces are
assumed to proceed by the normal growth mechanism.
000 MAIK “Nauka/Interperiodica”
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Let the crystal temperature be decreased at a rate of
ac < 0. Now, calculate the flows of the substance A to
the interfaces of different types. The mass transfer in
the system can be described by the following two-
dimensional diffusion equation:

(1)

where C(x, y, t) is the concentration of the substance A
at the point with coordinates x, y at a moment t and D is
the coefficient of mutual diffusion in the A–B system.

If the temperature variations occur at a constant rate
and for a rather long time, the distribution of supersat-
urations δC(x, y) of the substance A in the liquid-phase
bulk measured from the equilibrium concentration Ce(t)
becomes time-independent. Then equation (1) can con-
siderably be simplified. It should be emphasized that
the equilibrium concentration Ce(t) in our model does
not depend on the coordinate (because of the absence of
a temperature gradient) and is determined from the liq-
uidus line of the phase diagram of the A–B system with-
out taking into account the capillary effects.

The concentration of the substance A in the liquid
phase can be represented as a sum of supersaturations
and equilibrium concentrations,

Then equation (1) can be rewritten as

(2)

Such a transformation of equation (1) to (2) is justi-
fied if the duration of the process of crystal cooling con-
siderably exceeds the time of supersaturation relax-
ation in the liquid inclusion due to diffusion, τr. The
relaxation time for a liquid–phase volume of the
selected shape depends on the cross section dimensions

lx and ly, and, if lx > ly, can be estimated as τr = /(π2D).
(If all the interfaces were nonsingular, one had to

C x y t, ,( )∂
t∂

------------------------- D
∂2C x y t, ,( )

x2∂
--------------------------- ∂2C x y t, ,( )

y2∂
---------------------------+ 

  ,=

C x y t, ,( ) δC x y,( ) Ce t( )+=

=  δC x y,( ) Ce 0( ) act/m.++

∂2δC x y,( )
x2∂

-------------------------- ∂2δC x y,( )
y2∂

--------------------------+
ac

mD
---------.=

lx
2

1

0

2

lx x

y

ly

Fig. 1. Cross section of the cylindrical liquid inclusion con-
sidered in the model: (1) singular interfaces; (2) nonsingular
interfaces.
C

choose as the characteristic dimension the smaller
dimension from lx and ly. However, our analysis showed
that if there are some singular interfaces, one had to use
a more severe constrain.). At lx ≈ 3 × 10–3 cm and D =
10–4 cm2/s, equation (2) is valid only for t @ 10–2 s.

It is natural that the maximal supersaturation in the
liquid phase increases with an increase of the cooling
rate. Until the maximal supersaturation δCmax does not
exceed the critical supersaturation for the formation of
two-dimensional nuclei on singular interfaces, ∆C, and
the flows to these interfaces should be equal to zero.
Therefore the derivatives of the supersaturation along
the direction perpendicular to these interfaces appear to
be equal to zero,

Thus, at low cooling rates (the corresponding crite-
rion is derived below), the problem is reduced a one-
dimensional one (δC(x, y) = δC1(x)), and equation (2)
can be replaced by an ordinary differential equation

(3)

Supersaturations at rough (nonsingular) interfaces
(at any mass flows) are assumed to be zero

(4)

(5)

Integrating equation (3) describing the supersatura-
tion distribution along the x-axis with due regard for
conditions (4) and (5) at rough interfaces, we have
(Fig. 2)

(6)

The maximum supersaturation (at x = lx/2) is

To justify the transition to a one-dimensional problem,
it is necessary that this supersaturation would not
exceed the critical supersaturation for nucleation of
crystal layers, ∆C, whence the condition of low cooling
rate can be written in the form

(7)

where a0 is a certain critical value of temperature vari-
ation. In what follows, the rates of temperature varia-
tions satisfying condition (7) are referred to as low
rates.

At high cooling rates, i.e., at ac ! a0, the supersatu-
rations at singular interfaces are assumed to be equal
to ∆C:

δC(x, 0) = ∆C, (8)

δC(x, ly) = ∆C. (9)

∂ δC x y,( )( )
y∂

-----------------------------
y 0 ly,=

0.=

d2 δC1 x( )( )
dx2

---------------------------
ac

mD
---------.=

δC 0 y,( ) δC1 0( ) 0,= =

δC lx y,( ) δC1 lx( ) 0.= =

δC1 x( ) acx x lx–( )/ 2mD( ).=

δC1 lx/2( ) aclx
2/ 8mD( ).–=

ac a0≥ 8D∆Cm/lx
2,–=
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000



ALTERNATION OF THE FLOWS OF LIQUID COMPONENTS 521
1.6

1.2

0.8

0.4

0
0

1
2

3
4

5 50
40

30

20

10

0
1, 3

2 4

δC, 10–3 at. %

∆C

x, µm

y, µm

Fig. 2. Distribution of supersaturations in the liquid phase at the constant cooling rate ac = –0.1 (1, 3); –10 K/s (2, 4). (1 and 2) are
the analytical solutions of equations (6) and (11), respectively; (3 and 4) are the numerical solutions of equation (1).
At high cooling rates for the selected dimensions of the
liquid phase (lx @ ly), the problem again reduces to the
one-dimensional one (within an accuracy of edge
effects).

If temperature variations occur for a rather long

time, t @ /(π2D) – ∆Cm/ac, equation (2) becomes a
one-dimensional equation along the coordinate y:

(10)

where δC2(y) = δC(x, y) at the boundary conditions (8)
and (9). The supersaturation distribution obtained by
integrating equation (10) has the form (see Fig. 2)

(11)

The supersaturation distributions (6) and (11) are
qualitatively different (Fig. 2). In the first case, at low
cooling rates, the flows of the substance A are directed
to the nonsingular interfaces. In the second case, the
flows are directed to the singular interfaces. The alter-
nation of flows is caused by the changes in the cooling
rate.

The results obtained can be readily extended to the
case of a temperature increase occurring at a constant
rate. In this case, one has to change the cooling rate ac <
0 and the critical growth supersaturation ∆C to the rate
of temperature increase ah > 0 and the critical supersat-
uration for the nucleation of dissolution layers –∆C,
respectively (in the general case, the absolute values of
the critical supersaturations necessary for growth and

ly
2

d2 δC2 y( )( )
dy2

---------------------------
ac

mD
---------,=

δC2 y( ) acy y ly–( )/ 2mD( ) ∆C.+=
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dissolution can be different. The assumption about their
equality is made here only to simplify the mathematical
form of the final results).

Now, discuss the effect of temperature oscillations
on the shape of the liquid-inclusion cross section. For
symmetrical temperature oscillations (the rate of tem-
perature variations is low, i.e., condition (7) is fulfilled),
the singular interfaces remain immobile, while the non-
singular interfaces oscillate about their initial positions.
If the temperature variations occur at a high rate, only
singular interfaces can oscillate about their equilibrium
positions (provided that the edge effects are neglected).

The situation is qualitatively different, if the shape
of the temperature oscillations is asymmetric. Let the
system temperature oscillate with a small amplitude,
with the absolute value of the heating rate ah being dif-
ferent from the cooling rate |ac|. Then, the time of the
temperature increase τh is different from the time of the
temperature decrease τc, and the condition for the con-
stancy of average temperature of the system has the
form:

ahτh = |ac|τc. (12)

Now, calculate the flow of the substance A to the sin-
gular interfaces averaged over the period of the temper-
ature oscillations, 

(13)

where  and  are the steady-state flows to the
singular interfaces during heating and cooling,

Jy〈 〉 Jy
hτh Jy

cτc+( )/ τh τc+( ),=

Jy
h Jy

c

0
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respectively.

The average flow to the nonsingular interfaces has the
same absolute value but the opposite sign.

Consider the case of fast heating |ah| > |a0| and slow
cooling |ac| < |a0|. Since during slow heating, there is no
flow to the singular interfaces, expression (13) takes the
form

where the upper sign of the fraction refers to the flow to
the interface y = 0, whereas the lower sign, to the flow
to the interface y = ly.

For the inverse ratio of the heating and the cooling
rates, the averaged flow to the corresponding singular
interface change the sign to the opposite one, because
the quantities ah and ac have different signs,

In accordance with (12), 〈Jy〉  and 〈 〉  have the same
absolute values.

If ah > |ac|, the singular interfaces are dissolved at
average absolute rates

where (CS – CL) is the difference between the concen-
trations of growth substance in the solid and the liquid
phases. The liquid-phase dimension ly increases by 

whereas the lx dimension decreases by δlx, in accor-
dance with the condition of the constancy of the aver-
age liquid-phase volume

At the inverse ratio of the rates of temperature
changes, the signs of the flows and of the dimension
variations change to the opposite ones.

DISCUSSION OF THE RESULTS

First of all, it should be noted that, depending on the
rate of the temperature change, the directions of liquid-
phase component flows also change. At low cooling
rates, the flows of the substance A are directed to the
nonsingular interfaces, whereas at high rates, the flows
are directed to the singular interfaces. With an increase
of the temperature, the flows change their signs to the
opposite ones. The effect of flow alternation depending
on the heating rate is still observed. Let us estimate the
critical rate of the temperature variation a0 at which the
flow alternation should occur. The coefficient of mutual
diffusion in the droplet liquids (melts and solutions of

Jy
h c( ) D

dδC2 y( )
dy

--------------------
y 0 ly,=

– 
  lx.=

Jy〈 〉 ahlylxτh/ 2m τh τc+( )( ),±=

Jy'〈 〉 aclylxτc/ 2m τh τc+( )( ).±=

Jy'

V〈 〉 ahlyτh/ 2m CS CL–( ) τh τc+( )( ),=

δly 2 V〈 〉 τh τc+( ) ahlyτh/ m CS CL–( )( ),= =

δlx ahlxτh/ m CS CL–( )( ).=
C

metals and semiconductors) is of the order of 10–4 ×
10−5 cm2/s [5]. The supersaturation ∆C necessary for
the formation of a critical two-dimensional nucleus in
the Si–(Si + Al) system at the temperature 1000 K esti-
mated from data [6] equals 1.4 × 10–3 at. %. The slope
of the liquidus line is m ≅ 10 K/(at. %). Then at lx = 3 ×
10–3 cm, the critical rate of the temperature variation a0
is of the order of 1 K/s. The amplitude of temperature
oscillations for the heating time 1 s is of the order of
1 K. The attainable rates of pulse heating strongly
exceed the value of 1 K/s. The maximum cooling rate
depends on the experimental conditions. During cool-
ing by radiation into a vacuum one can readily obtain
the cooling rate of the same order of magnitude.

If the absolute values of the heating and the cooling
rates are less than |a0|, the singular interfaces remain
immobile, whereas the nonsingular ones oscillate about
the equilibrium position.

At slow cooling (|ac| < |a0|) and at fast heating (|ah| >
|a0|), the inclusion cross section is somewhat rounded-
off (the singular facets decrease in size). In the opposite
situation, the cross section is flattened (the singular fac-
ets increase in size). For heating and cooling rates
exceeding the critical value, the singular interfaces
should oscillate about their equilibrium positions,
whereas the nonsingular interfaces (within the frame-
work of our model) should remain immobile.

Naturally, the above assumptions essentially sim-
plify the problem under consideration. However, there
are a number of factors that cannot be taken into
account within an analytical model, but it can be made
by the methods of numerical computer modeling. Since
the singular interfaces have the limited dimensions, the
concentration distribution has the extremum in the mid-
dle part, which should distort their planar character and
give rise to the formation of steps, whose motion was
neglected in the simplified model. The motion of steps
from the reentrant angles on the growth stage was not
taken into account either. Moreover, the true depen-
dences of the rates of interfacial processes on supersat-
urations have a more complicated form than the mod-
eled ones [2]. However, all these shortcomings cannot
essentially distort the results obtained. The numerical
modeling of mass transfer under the conditions of non-
symmetric temperature oscillations confirms the results
obtained for the analytical model. The refinement is
mainly associated with the manifestation of the edge
effects (Fig. 2) and the loss of the inclusion-shape sta-
bility—separation of a part of the liquid phase from the
inclusion edges under the condition of not too slow
temperature decrease.

The the rectangular shape of the cross-section of the
inclusion used in the simplified approach and the two-
dimensional character of the problem are not the neces-
sary conditions of such consideration. In the three-
dimensional case, at the existence of two types of inter-
faces (singular and nonsingular) under the conditions
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      2000
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of asymmetric temperature oscillations, the inclusion
shape should change. If the heating rate exceeds the
cooling rate, the dimensions of singular regions of the
interface should decrease, whereas the tendency of the
system to have the minimum surface energy should
lead to rounding-off of the inclusion shape. For the
inverse ratio of the heating and the cooling rates, the
inclusion should be faceted with singular facets.
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Abstract—Kinetics of the Ba(Br2O3)2 · H2O precipitation from aqueous solution and the accompanying lumi-
nescence effects are studied. Specific features of appearance of luminescence during grinding of Ba(Br2O3)2 ·
H2O crystals are also examined. The origin of luminescence effects is interpreted as the result of electric
discharge accompanying cracking of crystals during their growth or grinding. © 2000 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

The effect of light emission during crystallization
from solutions or melts has been known for quite a
long time. However, the mechanism of this phenome-
non is explained only hypothetically. In particular, it
was assumed that luminescence results from synchro-
nized elementary adsorption events at the growth front
[1, 2], that a part of the latent crystallization heat can
be converted into the photons energy of the character-
istic spectrum [3]; that the light emission can be
caused by cavitation during fast melt solidification [4–
6], or due to charge distribution between the phases
[7–9], or due to formation and motion of charged dis-
locations [10].

Most of the above cited studies provide no informa-
tion on the crystallization kinetics. Below, we compare
the temporal characteristics of the luminescence effects
with the precipitation kinetics for Ba(Br2O3)2 · H2O
crystallized from an aqueous solution.

EXPERIMENTAL

Crystallization experiments were conducted in ther-
mostated glass vessels. The solution temperature was
controlled by an UH-4 water ultrathermostat within
±0.1°C. In the course of experiments, the temperature
was lowered from 90 to 25–30°C at a rate of 0.25–
1.0 °C/min according to a linear low. The saturation
temperature of all the solution was Tsat ≈ 87°C.

For measuring the precipitation rate, 75-ml solution
batches poured in to a glass tube (15 mm in diameter)
with a narrow branch tube (8 mm in diameter) in the
lower part for the crystalline precipitate were used. The
1063-7745/00/4503- $20.00 © 20524
thickness h of the precipitate layer accumulated in the
branch tube was periodically measured during solution
cooling in the light. The quantity h was used as a mea-
sure of the crystallized material.

The Figure shows typical plots of the thickness h of
the precipitate layer and the precipitation rate (dh/dt) as
functions of the solution temperature T and time t for
the cooling rate dT/dt = 0.5°C/min. The moment of the
attainment the saturation temperature Tsat is taken to be
the origin. The first crystals appeared in 14 min at T =
80°C. Beginning with this moment, the total amount of
the precipitate increases first rapidly and then at a lower
rate. On covling, the precipitation rate reaches the peak
value of 0.85 mm/min within 25-min upon the attain-
ment of the saturation temperature, at T = 74°C, and
then decreases almost exponentially. The most intense
precipitation is observed in the vicinity of the maxi-
mum of the dh/dt curve, (80–62°C).

In the studies of luminescence of the crystallization
solution, a glass bulb with the solution (60 ml) was
placed into in a light-protected chamber together with a
FEU-85 photomultiplier. The signal from the photo-
multiplier was transmitted through an amplifier to an
S8-17 storing oscillograph with an EN3001-3 plotter.
We recorded the number n of light pulses emitted per
unit time by on a solution cooled in the same mode as
in experiments on crystallization.

The dependences of n on T and t measured at
dT/dt = 0.5°C/min were compared with the dh/dt curve
(figure). It is seen that luminescence is observed with a
certain delay and not simultaneously with precipita-
tion—28 minutes upon the attainment of the saturation
temperature at T = 73°C, when the first precipitated
crystals are sufficiently large. Initially weak lumines-
cence gradually becomes more intense and the attains
000 MAIK “Nauka/Interperiodica”
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The thickness h of the precipitate layer (1), the precipitation rate dh/dt (2), and the number n of light pulses per minute (3) as func-
tions of time and the solution temperature during cooling of the solution at a rate of 0.5°C/min.
its maximum intensity (the maximum signal amplitude
and the highest pulse frequency of n = 110 pulse/min at
the moment t = 50 min and at the temperature T = 62°C.
Later on, the luminescence intensity decreases and one
observes single pulses of ~5 µs duration and some-
times, multiperiod pulses (probably, several superim-
posed pulses).

In addition, we visually observed luminescence dur-
ing crystallization in the solution bulk or during crystal
grinding in a dark room. To enhance the luminescence,
we used a bulb of a larger volume (550 ml).

The solution weak luminescence was observed as a
series of relatively weak flashes of the bluish color
close to the bulb bottom (i.e., close to the precipitated
crystals) and only occasionally in the solution bulk. No
luminescence was observed during stirring of solutions
with the precipitated crystals, or during grinding crystal
of dry powder or powder prepared earlier and powed
into a saturated solution. At the same time, we observed
luminescence during grinding of the precipitate in its
mother solution.

DISCUSSION OF RESULTS

The fact that luminescence is observed only upon a
certain time after the beginning of precipitation can be
explained by a gradual accumulation of defects in the
crystals leading to their cracking. The absence of lumi-
nescence in the stirred solution with the precipitate can
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 3      200
be explained by insufficient intensity of crystal colli-
sions that can cause crystal cracking. The absence of
any luminescence during grinding of a dry powder or a
powder prepared earlier and then poured into the satu-
rated solution may be associated with screening of
charges on the surfaces of crystals in the air due to gas
absorption.

CONCLUSION

The results obtained show that luminescence
accompanying crystal precipitation from solutions is
associated with the processes occurring during crystals
growth rather than with the processes occurring during
their nucleation. The most probable mechanism of
luminescence appearance is the accumulation of
defects in growing crystals giving rise to their cracking,
which, in turn, gives rise to the potential difference
between the crack sides followed by an electric dis-
charge.
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