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Abstract—A possible mechanism for the generation and motion of so-called blobs—peculiar perturbations
that are observed in atokamak edge plasma—is proposed. It is suggested that blobs are self-contracting plasma
filaments generated either by the thermal-radiative instability of aplasmawith impurities or by the nonradiative
resonant charge-exchange instability resulting from the presence of neutral hydrogen atoms near the tokamak
wall. Instability occursin a narrow temperature range in which pressure is a decreasing function of density.
Under these conditions, the most typical perturbations are the local ones that originate spontaneously in the
form of separate growing hills and wells in the density. The temperature at the centers of the hillsislower than
that in the surrounding plasma, but they are denser and, consequently, brighter than the background. The
(denser) hills should move (“sink”) toward the separatrix, while the (less dense) wells should “rise” in the oppo-
sitedirection, asis observed in experiments. It may even be said that they behave in accordance with a peculiar
Archimedes principle. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Observations in some tokamaks have revealed fila-
ments—commonly referred to as “blobs’—that
appeared sporadically in the edge plasma, were
stretched along the main magnetic field, and moved
toward the chamber wall. Figure 1, borrowed from the
paper by Marmar [1], presents six successive film
frames of an individual blob that moved at a speed of
2 km/s toward the edge of the plasma column in the
Alcator C-Mod tokamak (the frames were taken with
an exposure time of 4 us). Blobs have also been
observed in the DIII-D tokamak, whose cross section is
shownin Fig. 2, in which the arrow indicates the obser-
vation region.

From Fig. 1, we can see that, as a blob crosses the
separatrix magnetic surface, it breaks into two parts,
one of which stays inside the separatrix and the other
passes through the separatrix and continues to move
toward the wall. Blobs originate in the edge plasma, in
which neutral impurities play an important role. In

some papers, it was pointed out that the temperature at
the center of ablob iscloseto 20 eV, which seemsto be
more than mere coincidence. The fact that a blob
divides into two parts in crossing the separatrix likely
provides evidence for its double structure.

The mechanism by which blobs move was consid-
ered by Krasheninnikov [2], who supposed that a blob
is a magnetic tube that becomes polarized in a nonuni-
form peripheral tokamak magnetic field by the differ-
ence between the gradient drifts of the electrons and
ions and then continues to move with the velocity V =
cE/B toward the wall, while at the same time being
spread out by diffusion. However, in [2], nothing was
said about the mechanism by which blobs originate.

In the present paper, we consider possible causes of
the generation of blobs and the mechanism for their
motion. Although the mechanism of motion to be con-
sidered here differs somewhat from that proposed in
[2], it yields the same motion picture of the blobs.

Fig. 1. Six successive frames of ablob in the Alcator C-Mod tokamak. The dashed curve shows the separatrix.
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Fig. 2. Cross section of the DII1-D tokamak. The arrow indi-
cates the region where the blobs are observed.
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Fig. 3. Factor Q(T) for C, O, Fe, Mo, and W impurities.

2. THERMAL-RADIATIVE INSTABILITY

We think that one of the possible mechanisms for
the generation of blobs is thermal-radiative instability,
during which the plasma heating power W is balanced
by the power W,,, of radiative losses from impurities
arriving from the chamber wall. In this case, the pres-
sure p, asarule, becomes a decreasing function of den-
Sity, thereby giving rise to the instability.

It isimportant to note that, in such specific unstable
media (in [3, 4], they were caled “quasi-Chaplygin
media’), there are no running waves that causally con-
nect the neighboring regions. Consequently, more typi-
cal disturbancesin these mediaareindividual local per-
turbations that are spontaneously generated and grow
until they reach their saturation level. These perturba-
tions qualitatively resemble blobs. In addition, the
blobs observed in experiments originate in arather nar-
row temperature range around a value of ~20 eV. It is
noteworthy that the model based on the thermal-radia-
tive instability gives the same temperature value. Note
that thermal-radiative instability is also referred to as
radiative condensational instability and, in the particu-
lar case of Joule heating, is called thermal-ionizational
instability [5].

Let us discuss this hypothesis in more detail. The
inductive voltage around the circumference of the torus
is approximately equal to V [V] = 3.6/B,[T] [6], so that
the longitudinal electric field can be assumed to be con-
stant during the discharge, E;; = const. The Joule heating
power W, = E’n is deposited in the central plasma and
heats it. However, blobs originate in the scrape-off
layer (SOL) plasma, in which an important role is
played by impurities arriving from the tokamak wall.

This is why, in considering the first illustrative
example, we assume that the electrical conductivity in
the peripheral plasma is created by collisions of elec-
tronswith neutral atoms and is described by the formu-
las

— 2 —
r] =€ ne/meveai Vea - naoeaVTe1

2
Ogg = A", V1o = JTJM,,

where 0, is the cross section for collisions and v, is
the electron thermal velocity.

2.1

In the SOL plasma, impurity atoms are ionized and
become ions with a certain density n,. The electrons
recombine with impurity ions, emitting radiation with
the specific power W,,, = n.n, Q. The dependence of the
factor Q on the electron temperature T, for typical
impurities (such as C, O, Fe, Mo, and W) is shown in
Fig. 3, borrowed from [7].

We can see that, for heavy impurities, this factor is
nearly constant and is approximately equal to Q =
1077 [cm? erg/g]. In the simplest model at hand, the
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equality W, = W,,, yields the dependencen, /T, =C, =
E;€°/n,0.,Q./m, = const.

If we introduce the ratio of the density of impurity
ions to the electron density, n,/n, = a, and take into
account the electron pressure p = n.T,, then we arrive at

the following inverse dependence of the pressure of the
electrons on their density:

&7

p=-

. (2.2)

_ b’
C, = Og0 = const.

It is this inverse dependence that leads to a peculiar
kind of quasi-Chaplygin instability, which will be ana-
lyzed below.

3. THEORY OF QUASI-CHAPLYGIN
INSTABILITIES
Here, the theory of quasi-Chaplygin instabilities,
which was presented in detail in [3, 4], is described
only briefly. We begin with the conventional hydrody-
namic equations

ad _

5P*V [{pv) = 0O,
5 1 (3.1)
(3_tV+(V W)v = —F—)Vp,

but supplement them with an unusual equation of state
in which the pressure decreases according to a power
law as the density increases, p = py(p/py) ", where p,
and p, are the unperturbed pressure and density of a
homogeneous background medium, respectively. Intro-
ducing the dimensionless density p= p/p,, we find it

expedient to rewrite the equations as
o, +Vp.) = 0,
P (3.2)
V()Y = pegVpt,
wherec, = ./|S po/po iSthe growth rate of the perturba-

tions and the parameter L =—1/(1 + |s|) will be referred
to as the azimuthal number.

In alinear approximation such that p=1 + ¥ and
Y < 1, the parameter p drops out of Egs. (3.2). If we
pass over from the timet to thetime T = ¢yt (having the
dimensionality of length), then we reduce these two
equations to the equation AW + W, = 0. Asaresult, in

one-, two-, and three-dimensional geometries, the cor-
responding L aplace equations have the form

LIJ" + LIJII = 0, LIJIl + LIJ" + l_lJ" - O,
XX T XX yy 18 (3.3)
Wi+ W+ WL W = 0
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Fig. 4. Density profilesin an individual well and an individ-
ual hill that develop spontaneously against the background
of an initially homogeneous medium (borrowed from [3,
4]). Curves I refer to t = —o0. The evolution proceeds from
curves 2 to curves 3.

The simplest solutions to Egs. (3.3) are those describ-
ing spatially periodic standing perturbations that grow
exponentially intime: W(t, r) ~ exp(yt + ikr). However,
these perturbations can only originate from spatialy
periodic seeds, which, in turn, cannot appear for no rea-
son whatever because, in such media, there are no run-
ning waves that causally connect the neighboring
regions. That is why the most interesting solutions are
those corresponding to spontaneous local perturba-
tions. We require that these solutions vanish at an infi-
nitely distant past (t — —o), thereby modeling the
property of perturbations to originate spontaneously
and grow progressively.

Thus, in three-dimensional spherical geometry, in
which W, x, vy, 2 = Y(Rexp(yt) (where R =

N y2 + zz), we obtain the following equation and
local solution for Y(R):

1 " sinkR
Ay = S(RP)me = KW, Y = AS 2=, (B4)
where k = y/g, = 217A. At the center R = 0, the dimen-
sionless density changes according to the law pj=1 +

W =1 + Aexp(yt), so that there is no perturbation at
t — —co. However, as time elapses, the perturbation
grows progressively, forming either a hill (at A > 0) or
awell (at A <0) inthe density.

In one-dimensional geometry, in which py= pt, X),

nonlinear Egs. (3.2) can be solved exactly. Figure 4
shows two examples of exact solutionsin the form of a
local density hill and a local density well, which
devel op against the background of an initially homoge-
neous medium.
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In the next section, we will consider exact solutions
typical of two- and three-dimensional geometries.

4. TWO- AND THREE-DIMENSIONAL MODELS
OF THE BLOBLIKE OBJECTS

In the above illustrative example with Q = const,
Is| =1, and p = -1/2, we can construct a two-dimen-
sional solution describing an object whose cross sec-
tion partially resembles that of a blob. Specifically, we
consider a solution of the form

_ Po(t) Vo = Xé
Px A/ 2 2’ X a’
1+ (x/a)” + (y/b) 4.1)
_ b
Vy - va

where the three functions a, b, and p, depend on the
time t. We rewrite the continuity equation as

(%Inp* +(vIV)Inp, = -V s,

in which we substitute expressions (4.1) to obtain the
relationship abp, = M7= const. The two components of

the vector eguation for the velocity v yield the follow-
ing two equations for the functions a(t) and b(t):

4.2)

N d - 0
a=F,= _%Ueffv b=F,= _a_bueffl
5 4.3)
Ug = }C*(ab)2>0, Ci = C—E = const.
2 M,

Hence, the function U,; might be considered as an
effective potential energy for the motion of a“test par-
ticle’ of unit mass (m= 1) inthe (a, b) plane, in which
case the “total energy” of the particle is conserved,

&’ + b’ + C{ab)? = const.

Note that the two equations (4.3) can be solved only
numerically. Inthe particular casea=b, wearrive at the

equation a = —J(C* /2)(a§]aX —a4) , Whose solution is

an elliptic cosine function.

For the dliptic solution, dimensionless density (4.1)
becomes

= M*

A/azbz + X2b2 + y2a2
As may be seen, this density is maximum at the origin
of the coordinates, x = y = 0. Since, in our model, the

density is related to the temperature by n = const/./T,
the temperature distribution has the form of a parabo-
loid with an elliptical cross section,

T = T(t, x,y) = Cr(a’h’ +x%b’ + y?a’),

P (4.4)

4.5)
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where C; = congt. In the simplest model at hand, the
contours of the same value of density, pressure, and
temperature are elipses (x/a)’ + (y/b)> = f(t). It is
important to stress that, although the temperature in the
central region of the ellipses is the lowest, radiation
from thisregion is most intense because of the elevated
density. This unusua situation islikely to take placein
the observed blobs.

In three-dimensional geometry, we also can obtain
an exact nonlinear ellipsoidal solution

A
P = 20 2 2’
a,3,a51+ (Xlay)’ + (y/a,)* + (Za;)’  (4.6)
A, = congt,

inwhich the three semiaxes of thedlipsoid, g (i = 1, 2, 3),
decrease with time according to the equations

. 0
q = _E—_Ueﬁ’ Ug = Cs (a1a2a3)2>0,
q 4.7)

C, = const.

We can see that atest particle starting from a point with
coordinates (a,, a,, a;) should slide down the slope of
the potentia energy well and, at a certain time, should
occur intheplanea, =0, or inthe planea, =0, or in the
plane a; = 0. This indicates that the self-contraction of
the ellipsoid parallel to one of its axes has come to an
end. In attempting to apply this theoretical model to
actual blobs, it is necessary to take into account addi-
tional dissipative effects that are capable of preventing
the ellipsoid from being compl etely self-contracted.

Such dissipative effects are not incorporated into
our model equations (3.1). However, for thecase |y|= 1
and p = -1/2, we can construct an even more general
self-similar solution of the form v; = M, %, (with sum-
mation over k), in which the off-diagona elements of
the matrix M;(t) describe the rotation of the ellipsoid.
In turn, the rotation may counteract the self-contraction
and may even stop it.

We see that the above illustrative model with the
Joule heating of neutrals, which leads to the Chaplygin
adiabatic equation of state p ~ 1/p, reflects important
features of the behavior of actual blobsin tokamaks, in
particular, the spontaneity of the onset of individual
local density hills and wells of different sizes A and
their growth on time scales of T ~ A/2TwC,.

Near the tokamak wall, however, the current density
is comparatively low and the SOL plasmais heated not
by the Joule mechanism but by thermal conduction
from the central region of the plasma column. Hence, a
more complicated model is to be constructed, capable
of explaining why the temperature at the centers of the
blobs remains essentially constant in time. To do this,
we consider the emission from impurities in tokamaks
in more detail.
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5. RESONANT EMISSION FROM CARBON
ATOMS

The main impurity ions in a tokamak plasma are
carbon ions with the atomic number Z = 6 and different
charge numbers. Their density n. is about a = 10 of
the electron density n.. Near thewall, however, the den-
sity of carbon ions can be markedly higher, although,
their density at the wall is, of course, zero, while the
density of the influx of neutral atoms from the wall is
nonzero.

For the power W,,; = n.n-Q radiated by carbonions,
the dependence of the factor Q(T,) on the electron tem-
perature is aready presented in Fig. 3; however, in
order to provide a better insight into the subject, this
dependenceis aso shown in Fig. 5, which is borrowed
from the familiar paper by Post et al. [7].

The factor Q is seen to have a narrow resonance
peak: it reaches a maximum, Q,,,, = 10'® [cm? erg/9),
a T, =7eV andis aready two orders of magnitude
smaller at T = 20 eV. These theoretical estimates were
obtained in the average-ion approximation by using the
coronal equilibrium model. However, as was pointed
out, e.g., in [8], taking diffusive fluxes into account
should lead to adeviation of the distribution of impurity
ionsfrom being coronal and to a corresponding change
inthetotal radiation intensity. In this case, according to
[8], the maximum value of the factor and the half-width
of the peak both remain the same, but the maximum
should occur at a temperature of T, = 20 eV (see
Fig. 7, curve ¢), which corresponds approximately to
electron temperatures observed at the centers of blobs.
Strictly speaking, in considering such rapidly moving
objectsasblobs, it is necessary to account for adelay in
the formation of the distribution of impurity ions over
the charge states, as was done, in particular, by Krash-
eninnikov et al. [9]. Also, radiative instabilities are
known to be highly sensitive to the magnetic field
strength. However, these effects are not expected to
gualitatively change blob behavior.

If further experiments will confirm that it is indeed
the manifestation of this strange “law of temperature
conservation at the centers of blobs’ that has been
noticed in observations, then, in our opinion, its expla:
nation liesjust in the resonant nature of (i.e., the narrow
peak in) the intensity of emission from carbon impuri-
ties (for oxygen ions, the dependence Q(T) isaso of a
resonant nature, but these ions are practically absent in
large tokamaks). In particular, the narrowness of the
peak in thefunction Q(T) allowsusto rule out the above
assumption that the radiation power W,,; = n.n;Q is
balanced exclusively by the Joule heating power.

It would be more correct to assume that, in toka-
maks, the power of radiative losses from impuritiesis
balanced by the power of the heat flux from the central
region of the plasma column. From the heat-conduction

equation (3n,T); = Wy =V - (kVT) = kT,, we can see
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Fig. 5. Factor Q(T) for carbon ion impurities (borrowed

from [7]).

2.0

1.5

n, 1013 cm™3

T, eV

R—-R,,, cm

sep»

Fig. 6. Decreasein the density and temperaturein theregion
around the separatrix and near the wall, where the blobs are
observed in the DIII-D tokamak (borrowed from [10]).
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Fig. 7. Factor Q(T): (a) Post’s curve, (b) approximation by
a parabola proposed here, and (c) shifted parabola.

that W, > 0, provided that T,, > 0. Figure 6 presentsthe
density (n,) and temperature (T,) profiles that were

observed experimentally around the separatrix and near
the wall in the DIII-D tokamak (see [10]). We can see
that, in the separatrix region, T,, > 0; i.e, the heat is
released there. In steady state, the power of the heat flux
from the central region of the tokamak plasma should
be balanced by the radiative loss power, indicating that
the relationship Wy = W.,4, which is not associated with
the electric conductivity n and currents, is satisfied.

In this model, blobs do not carry filamented cur-
rents, nevertheless, in a certain narrow temperature
range &T around the peak in the function Q(T), they
may behave as unstable self-contracting objects.

6. A QUASI-CHAPLYGIN SITUATION
AROUND THE EMISSION PEAK

It is important to point out the following circum-
stance. If we assume that the generation of blobs is
associated with the presence of carbon ions that come
from the wall, reach the separatrix, and penetrate the
plasmato a certain depth, then a quasi-Chaplygin situ-
ation, which givesrise to the thermal-radiative instabil-
ity, inevitably occursin the emitting layer, regardless of
the way in which heat is supplied to it. In this case, the
heating power W may be pumped into the plasma by
any means. by the injection of fast particle beams; by
the electron-cyclotron, ion-cyclotron, or lower hybrid
heating; etc.

In the quasi-Chaplygin situation, the equation for
the local heat balance in the emitting layer, W=W,,, =
n.n;Q(T), yields a certain relationship between the
electron density n, and the factor Q(T), which should
have the form

ne ni = N(W! T)st

(6.1)
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where the factor N(w, T) depends on both the heating
method, symbolized by the letter w, and temperature.
Since the factor Q(T) exhibits a sharp peak at T = T
we can insert this peak temperature into N(w, T) and
assumethat N = N[jis constant, which gives n, = N,
where s is a certain positive (s = |s|) or negative (s =
—|s|) power index.

For example, for s = 1, the density and pressure are
described by the parametric formulas n= NQ(T) and
p=nT = NrQ(T). We can see that, as the temperature
T > Tjincreases at the right slope of the peak, the den-

sity decreases but the pressure can increasein a certain
narrow temperature range; this indicates that we are
dealing with an unstable quasi-Chaplygin situation
(symbolically, p~ 1/n). Inthe opposite case (s=-1), we
have n = N/Q(T) and p= NI/Q(T). We seethat, asthe
temperature decreases from the peak value Tl eftward,

the density increases, but the pressure can decreasein a
certain temperature range, which again indicates an
unstable quasi-Chaplygin situation.

Let us illustrate these general qualitative consider-
ations about the role of the carbon peak by a specific
example. In[7], the function Q(T) for carbon ions near
the first maximum in the temperature range 3-20 eV
was approximated by thefifth-degree polynomial y(x) =

10325 akxk, where y = log(Q [cm® erg/9]); X =

k=0
log(T, [keV]); and the six coefficients are equal to
a, = 1.965300, a, = 4.572039, a, = 4.159590, a; =
1.871560, a, = 0.4173889, and a5 = 0.03699382.

The plot of the function y(x) is shown by curve a in
Fig. 7. Near the maximum, the function iswell approx-
imated by the parabolay =y, — a(X — X,,,,)% for the
parameter values adjusted above, namely, V... =
-18.08, a=9, and x,,,, = 10g(0.0065) , the parabolais
shown by curvebinFig. 7.

In [7], numerical calculations were carried out in
terms of the corona equilibrium model. However,
coronal equilibrium isdistorted by anomalous diffusive
fluxes. In [8], it was pointed out that, even when these
fluxes are taken into account only approximately, the
entire curve is shifted rightward so that its maximum
occurs at X,,,, = 109(0.020) , the values of the parame-
tersy,... and a being unchanged. This shifted parabola
isshown by curvecin Fig. 7. For a=9, it corresponds
to the following mutually inverse formulas:

Q = Quuep[-8gnH |

T = T*exp[i /%In%x}

where Q,,,, = 1071308 [cm? erg/g], B = 3.9, and the peak
temperatureis set to be T7= 20 eV. The plus and minus

(6.2)
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signs refer to the right and left slopes of the peak,
respectively.

We now can draw the following hypothetical sce-
nario of the generation of blobs. Hot plasma diffuses
from the center toward the periphery and progressively
cools down. Close to the separatrix, this plasma enters
the wall layer of carbon impurities. If the plasma tem-
perature by that time has approached the peak value Tp;

from the right, the emission from this layer increases
abruptly. Then, as was described above, the balance
between the heating power and the radiative | oss power
will lead to a state characterized by a certain relation-

ship n= N

7. TWO REGIONS OF THE “CARBON”
INSTABILITY

Next, we consider the following two cases. s=|s| >0
and s= —|s| < 0. Inthefirst case, we obtain the relation-

: T
shipn=const -exp| -B,Inf] | (whereB,=s|p>0)

which indicates that taking into account the power
index |s| will merely change the parameter 3. In other
words, we are dealing with two situations: for |s| > 1,
the half-width of the peak decreases and, for |s| < 1, the
half-width of the peak increases. Presumably, the latter
situation more closely corresponds to the experimental
conditions, because blobs can originate at higher
plasma temperatures, i.e., deeper within the plasma
and, accordingly, farther from the separatrix. So, for the
right slope of the peak (T > T, formulas (6.2) with n ~

Q' can be rewritten as
n _ T Dz
N - exp[_BsanT_*D i| < 1,

T oo [Lnd
ﬁ = exp[ lenv}>1,

where n,,, is anew constant. Then, setting, e.g., |s| =
V2 and Bs=|s|B=3.9/2=1.95, wearrive at the follow-
ing dependence of the density on pressure:

(7.1)

p = 2nT = 2n,, T, PP (v),

(7.2)
Wy = 10
P™(v) = vexp%).?l In\—)D.

Thefunction PM(v) isplotted in Fig. 8a. We seethat the
pressure decreases with increasing density only at the
right edge of the plot, in anarrow range of temperatures
(T(v) ~ 20-25 eV), densities (v ~ 0.9-1), and pressures
(PO(v) ~ 1.134-1); it is in this range that the quasi-
Chaplygin instability can develop.

We now analyze the second case, in which the
power index is negative, s= —|s| < 0;i.e, n~ Q™. In
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Fig. 8. Dependence of the pressure and temperature on the
density: (a) at the right slope of the peak, P{)(v), and (b) at
the left slope of the peak, PP(v).

this case, instead of formulas (7.2), we dea with the
formulas

2
v =t = e[ BIHnTH 51,
= exp[-/(1/|B4)Inv] <1,

wheren,;, isanew constant. In formulas(7.3), we have
n>n,,;, and T < T3 which corresponds to the |eft slope

of the peak. Thisiswhy we have chosen the minus sign
() in front of the square-root sign in the exponential
function for the temperature. The dependence of the
density on pressure has the form

(7.3)

b

p=2nT = 2n,, T« P(Z)(v),
(7.4)

P(z)(v) = vexp(-0.71/1nv).

The function P (v) is plotted in Fig. 8b. Again, we see
that the pressure decreases with increasing density, but
only at theleft edge of the plot in anarrow range of tem-
peratures (T(v) = 16-20 eV), densities (v = 1-1.1), and
pressures (P?(v) = 0.88-1), precisely where quasi-
Chaplygin instability can develop. In the two cases at
hand, we have N ~ QFl and n® ~ Q. This indicates
that, if the parameters of the medium lie within the
parameter range of the quasi-Chaplygin instability,
then the thermal-radiative instability (which is aso
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called radiative condensational instability) can occur.
For both of the approximating profiles P(v) obtained
above, the nonlinear equations cannot be solved anal yt-
ically, but it is easy to see that their solutions are unsta-
ble. Note that the above instability range near the peak
isfairly narrow, which agreeswell with observations of
the distinctive properties of blobs. In some papers (see,
e.g., [11]) devoted to radiative condensational instabil-
ity, different heating models yielded a wider instability
range, 7-50 eV, which agrees less closely with the
observational data on blobs. However, in the range 30—
50 eV, the instability is likely to be suppressed by
plasma heat conduction.

It is also important to stress that the presence of a
sharp peak in the emission intensity stops the self-con-
traction process and produces a peculiar effect—the
flattening of perturbations. This effect is hard to calcu-
late numerically but, at a qualitative level, it can be
described as follows. If the temperature goes beyond
the instability range, the perturbations stop growing
and saturate at a certain level. However, the perturba
tions in the neighboring regions of the medium should
continueto grow to thislevel and inevitably resultin the
formation of a flat-top hill in the density or a density
well with a flat bottom, resembling lunar craters. The
effect of flattening the perturbations is well illustrated
by a number of numerical solutions given by Meerson
in hisreview [12] on the radiative condensational insta-
bility. Although Meerson also presented some analytic
solutions, he said nothing about our simplest bloblike
ellipsoidal solutions (4.1), (4.6), and (9.3), which, how-
ever, were mentioned in [3, 4].

The fact that blobs can have different sizes (see[2])
provides indirect evidence that the flattening effect is
indeed possible, provided that the blobs originate at dif-
ferent distances from the separatrix and thus differ in
their “ages of formation.”

Let us, however, consider another possible quasi-
Chaplygin instability that is not associated with the
emission of radiation.

8. NONRADIATIVE CHARGE-EXCHANGE
INSTABILITY

We assume that there are no impuritiesand set n,=n,
and T, = T,. In this case, the therma energy of a unit

plasmavolumeisegua tow = g(ne +ny)T, and itstime

derivative obviously has the form

9. _3 a

at" = (M TDan +gnD

(ot © 0

We also assume that, near the separatrix, the density n,
of the neutral hydrogen (or deuterium) atomsthat come
from the wall and enter the plasma is sufficiently high.
Inthis case, because of the resonant charge exchange of

8.1
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the plasmaionswith neutrals, the density of the hotions
will decrease according to the equation

6 N
6t i —_F— - —n‘noole,

CcX

(8.2)

wheret,, = 1/n,0Vvy; isthe charge-exchange time and o
is the cross section for resonant charge exchange. It is
well known that this cross sectionisnearly constant: for
ion temperatures of 10-100 eV, it decreases gradually
fromo =(3.6-2.6) x 10°°t02.6 x 101 cm? (see[13]).
Hence, instead of the power of recombination losses
(i.e., the power of radiation emitted by the recombining
carbon ions, W.,;, = n.n;Q,.4(T)), we can consider the
power lost in nonradiative charge-exchange processes,

W,, = NenyQe(T), where the factor Q. =

the same role as the factor Q,,; used above.

It has already been shown that the emission intensity
exhibits a sharp peak, Qry = 108 [cm?® erg/s], at Tpj=
20 eV. The charge exchange—related factor for hydro-
gen atoms can be expressed by the formula Q =
1078(T eV/20)%2 [cm? erg/s]. We can see that this factor
exceeds the emission—related factor everywhere except
at the peak, at which they are equal. We thus can con-
clude that hot charge-exchange neutrals produced near
the separatrix fly away to the nearby wall almost instan-
taneously, thereby carrying energy outward from the
plasma.

On the other hand, cold neutrals that are knocked
out of the wall surface fly into the SOL plasma and
become ionized in charge-exchange processes. The
depth to which cold neutrals penetrate into the plasma
can be estimated from the formula L, = v, T, =
V,/Nyo vy, which can be rewritten as Lyn,o = v, /vy =

 To/ Ti . Thetemperature of the charge-exchanged ions
isapproximately equal to T; ~ 100-200 eV and thetem-
perature of the wall is about T, ~ 1000 K = 0.1 eV, s0
that we have v, /v; = 1/45. SettingL, =10 cmand 0 =
3 x 101 cn?, we arrive at the estimate n, ~ 7 x 10'! cmr?
for the neutral density in the region in front of the sep-
aratrix, where blobs are thought to originate. At such a
density of the neutrals, charge exchange—related heat
losses from a unit volume would be equal to

gTovTi plays

3
erg/lem” s
(8.3)

= nnyQq = 10™ x (7 x 10") x 107°
= 0.7 W/em®.

WCX

Under the assumption that the thickness of the charge
exchange-dominated wall layer is approximately equal
to 10 cm, the heat flux to the entire wall surface can be
estimated at 7 W/cm?, which corresponds to a power
flux of 700 W to a surface 10 x 10 cm in area (figura-
tively speaking, this is the power of an ordinary flat-
iron).
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The above situation with charge exchange—related
heat losses does not yet have features peculiar to the
guasi-Chaplygin instability (specificaly, the decrease
in pressure with increasing density). There are also cer-
tain difficulties associated with the absence of a reso-
nance peak analogous to the peak in the intensity of
emission from carbon impurities. As was seen above,
the presence of such a peak alows us to expect that a
quasi-Chaplygin situation inevitably occursin acertain
narrow range of the parameters n, and T, of the back-
ground plasma, regardless of how heat is supplied to the
emitting layer, provided that it is transported in such a
way that the background parameters in question fall
within the “dangerous’ instability range.

For instance, at a high heating power in the JT-60U
tokamak, the electron plasma density n, is maintained
at afairly low level by injecting high-energy neutrals.
As aresult, the temperature at the center of the plasma
column is approximately 40 keV and, even near the
separatrix, the temperature is as high as about 4 keV.
Under these conditions, blobs are not generated, pre-
sumably because the background parameters do not fall
in the dangerous range.

At the same time, blobs are observed in the DIlI-D
tokamak, in which the plasmais also heated by neutral
beam injection but the plasma density isextremely high
(i.e., is close to the familiar Greenwald density limit;
see [14]) and the temperature at the separatrix is equal
to40eV (seeFig. 6). Wethink that it isthese conditions
that correspond to the quasi-Chaplygin instability
range, in which blobs can originate.

In this section, however, we are assuming that the
mechanism for generating blobs is associated not with
emission from carbon impurities but with the power
lost in nonradiative resonant charge-exchange processes,
W,, = n;nyQ,,, Where the charge exchange—related fac-
tor is equal to Q, = 107'8 (T [eV]/20)*? [cm? erg/s].
In this case, even in the absence of a narrow peak, we
can nevertheless arrive at an unstable quasi-Chaplygin
situation if we assume that the power of charge
exchange losses is balanced by a constant power con-
tinuously supplied to the plasma, W, = const, which
depends neither on the plasma density nor on the
plasma temperature.

In particular, thissituation occursin aplasmaheated
by neutral beam injection (as well as by any other
means) in such away that the power fed into the plasma
isconstant and is high enough to provide efficient oper-
ation of atokamak in a steady mode. In the phenome-
nological approach at hand, we do not specify the
mechanism by which heat istransported from theinjec-
tion region to our hypothetical “ charge-exchange layer”
(it may be heat conduction, diffusion, convection, or
some other mechanism) and merely assume that W, =
W, = const. If we further assumethat o = n,/n, = const,

PLASMA PHYSICS REPORTS  Vol. 29

No. 10 2003

811

then we obtain the desired quasi-Chaplygin relation-
ships

232

W, = W, Oan, T™" = const,

const (8.4)

n Oconst T, p = 2nT OTY D 22
n

inwhich the pressure decreases with increasing density,
and thus again arrive at instability, aswill be clear later.

9. NONLINEAR SOLUTIONS
FOR ARBITRARY p VALUES

If, asbefore, weintroduce the dimensionless density
P= n/ny, then we can write the equations of motionin

the standard quasi-Chaplygin form:

0 _
a_tp* +V psv) =0,

9.1

gv+ (VvIV)v =

Lgp = pevpl
3 pr HCo VP

where cg = Po/3P, > 0. The azimuthal number is equal

to 4 = =3/4 < 0, which is close to the value of this
parameter in the first example with Joule-heated neu-
trals, p = —1/2 < 0. Consequently, the overall pattern of
the instability due to charge-exchange losses is qualita-
tively very similar to that of the instability in the first
example.

In alinear approximation such that pj= 1 + ¥ with

Y < 1, the azimuthal number drops out, leaving the
equations

0.4, _ 0
5;[‘P -V Iy, 3

1
ALP+—2

Co

=V = cOVLP

9.2)
Yy =0

to describe the growing standing perturbations. In a
nonlinear approximation with u = -3/4 < 0, we can, as
before, construct a self-similar two-dimensional ellip-
soidal solution. Moreover, aswill be shown below, such
asolution can also be constructed for arbitrary values of
the azimuthal number 1.

To do this, we seek a salf-similar solution in the

form
[A(t)%[+—+ } vV, = Xg,
(9.3)

In this case, thefirst of Egs. (9.1), namely, the continu-
ity equation, gives the relationship A(t) = C{ab)~'¥,
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where C7> Oisaconstant, and the second of Egs. (9.1)

yields the equations
0 " 0

a= —é—aueff, b = —56

Ugr = 2U2Cc2>C* (ab)—lfu’

Uefh
9.4)

where the function U, = U(a, b) plays the role of the
potential energy of a“test” particle of unit massmoving
in the (a, b) plane. For negative azimuthal numbers
(u <0), thisenergy is maximum at thelinesa=b =0,
toward which the test particle should tend during the
self-contraction of the ellipsoid.

By analogy, it iseasy to construct asolution describ-
ing the self-contraction of athree-dimensional ellipsoid
paralel to one of its axes. We thus see that solutions
describing self-contracting blobs can aso be con-
structed in the model with nonradiative charge
exchange losses.

We now consider the motion of the blobs.

10. POSSIBLE MECHANISM
FOR BLOB MOTION

As has already been noted, the mechanism for blob
motion was described by Krasheninnikov [2] (see dso
[14]), who considered a blob as a magnetic tube in a
magnetic field B, decreasing toward the plasma edge.
The difference between the gradient drifts of the elec-
trons and ions polarizes the magnetic tube and produces
a polarization electric field E, in which charged parti-
cles drift with the velocity V = cE x B/B?.

Our quasi-Chaplygin model is also capable of
describing blob motion; moreover, it providesasimpler
motion pattern than do the modelsdeveloped in [2, 14],
because it is based on the one-fluid MHD approxima-
tion, which makes no distinction between plasmaions
and electrons. The equation of blob motion obtained in
our model makes it possible to draw an analogy with
Archimedes' principle: the (denser) hills in the plasma
density “sink toward the bottom” (i.e., toward the toka-
mak chamber wall), while the (less dense) wells “rise
upward” (from the wall toward the plasma center). The
same effect was captured in [2, 14] and was aso
observed experimentally. In this respect, the two
approaches are equivalent. There is, however, prelimi-
nary information that blobs were observed both on the
inner and outer sides of the torus. If this information
finds further confirmation in experiments, then the
models developed by Krasheninnikov and others need
to be improved.

We now describe the motion of blobs in our model
in more detail. The plasma motion in atokamak can be
divided into three stages. First, the plasma diffuses
from the central regionstoward the periphery and cools
down. Near the separatrix, the plasma parametersfall in
the dangerous instability range; thisis followed by the

VLASOV, TRUBNIKOV

second stage—the generation of blobs. Inthis stage, the
density n, = n; of the plasma and itstemperature T, =T,
are such that the growing perturbations of the plasma
density in the form of hills and wells of different sizes
(which depend on the sizes of the initial spontaneous
seed perturbations) can be generated. The perturbations
continue to grow and develop until the plasma within
them behaves in accordance with the quasi-Chaplygin
equation of state p ~ pI¥l However, at acertaintime, the
temperature of the blobs goes beyond the dangerous
range and the plasma enters a third stage.

In this final stage, a blob that has already been
formed can be regarded as a small ball (in a three-
dimensional model) or athin magnetic tube (in a two-
dimensional model) whose interior is fully ionized
plasma obeying the conventional adiabatic equation of
state with a positive power index, p ~ p>-.

The motion of this (perfectly conducting) plasmain
a magnetic field is described by the standard equation
of motion

d 1.
PV = ~Vp+fn, i xBl,
where f, is the magnetic Ampere force. In the equato-
rial plane z = 0 of atokamak, the radial component of
the Ampere forceis equal to

fmn =

(10.1)

1,. .

fi C(J"’BZ I2By) or8m ,20r 81’ (10.2)
It should be mentioned parenthetically that j, =
(c/41r)A(rBy)/0r at z= 0. In equilibrium, we obviously
have dp/dr =f,. Let us, however, consider atwo-dimen-
sional, fully developed blob as amagnetic tube that has
asmall cross-sectional area Sand is stretched along the
tokamak magnetic field. The mass m, = Sp per unit
length of the tube should be regarded as being con-
served during its small displacements near the separa-
trix.

Then, multiplying Eq. (10.1) by S we write the fol-
lowing equation for radial motion of the tubein the sep-
aratrix region:

mi = _ml(%%}' +F,

(10.3)
where m is the mass of an ion. On the right-hand side
of the equation, the first term, which is the gradient of
the enthalpy, describes the force that pushes the tube
toward the separatrix (toward the bottom). The second
term describes the magnetic force
1 .
F, = Sf, = E(Jq,BZ—jZ‘Pq,) (10.4)
(where J, = j,Sand W, = B,S), which pushes the tube
away from the separatrix. On the one hand, the mag-
netic flux W, = B,Sthrough the cross section of the tube
is frozen in the plasma and, therefore, does not change
PLASMA PHYSICS REPORTS  Vol. 29
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during displacements of thetube. On the other hand, the
current J, = j,Sflowing in the tube can also be regarded
as being conserved. Consequently, we can assume that
the net magnetic force F, is constant. It is also impor-
tant to note that this net forceisindependent of the mass
per unit length of the blob, m, = pS, but depends on its
cross-sectional area S.

It is easy to see that Eq. (10.3) is equivalent to
Archimedes’ principle. In acoordinate system in which
the z axis points downward along the gravity force g,
the motion of amassive cylinder of mass m;, cross-sec-
tiona area S, and length L, in water is obvioudy
described by the equation

Fa = (SLipw)ldl,

where p,, is the water mass density and F, is the buoy-
ancy force. This analogy implies that the denser blobs
(hills) should “sink toward the bottom” (i.e., toward the
separatrix and farther toward the wall or the divertor),
while the less dense blobs (wells) should “rise upward”
(from the separatrix toward the plasma center).

mZ = mylgl —F,, (10.5)

This motion pattern can apparently provide arealis-
tic interpretation of Fig. 1, which presents six succes-
sive film frames of a moving blob. It is reasonable to
assume that the blob shown in the framesin Fig. 1isa
hill (rather than a well) approaching the separatrix.
When the separatrix is reached, the blob breaks into
two parts. The lighter (substantially depleted) part,
which is more likely to be awell (rather than ahill) in
the plasma density, stops moving inside the separatrix
and gradually dissipates. The heavier (far more mas-
sive) part, which is more likely to be a hill, passes
through the separatrix and continues to move toward
the wall, in which case, however, it is dissipated by the
divertor and, accordingly, is progressively slowed
down.

11. ROTATION OF DENSER BLOBS

Our nonlinear quasi-Chaplygin model is also capa-
ble of describing the rotation of blobs that has been
observed in some tokamak experiments. This can be
done by taking into account the off-diagonal elements
of the matrix M(t) in the self-similar solutions v, =
Mi % In this case, the equation of motion withy = -1
yields the relationships

dt (M|I+MlkMkJ)X
(11.1)
1 1
= 0P = —3c0px
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which allow usto look for an ellipsoidal solution such
that

A(t)

Pr = g S = Bi(D)Xj%
(11.2)
1 Co
—0Lip = BiX-
P A’(t)

Using relationships (11.2), we can express the matrix

B in terms of the matrix M, B = «(A(t)/cp)*(Mj; +
M;ixMy). In this way, the continuity equation leads to
the following two equations:

A

0
=Inpx +(VIVM)Inp, = -VI¥ = -M;; = =,
P« +(VIV)Inp A (113)

ot
Bik = —2M;;By,,
in which summation is implied over the repeated indi-

ces.

To illustrate this point, we consider a simple two-
dimensional cylinder rotating as a solid body. In this
case, we have

X =rcosp, y=rsing, ¢ = wt,
X = =y, Y = WX,

and, therefore, M,; = M,, =0, M}, = —w, and M,, = w.
Thefirst of Egs. (11.3) yields A =0 and A= A, = const,
and the second gives By, ~ &, and, consequently, S =

By X %, ~ r2. If we write the final solution in the form of
ahill in the density,

(11.4)

Ao

J1+(r/a)?

then we can readily see that this hill can be in equilib-
rium only when it rotates as a solid body with a certain
angular frequency, w = c¢,/aA,, such that centrifugal
forces prevent its quasi-Chaplygin self-contraction. At
large radial distances r, however, this exact nonlinear
solution decreases too gradually (as p* = ¢y/w,) and,
therefore, can hardly be said to correspond to actual
blobs. Thisremark also appliesto al of the above exact
nonlinear solutionsin the form of collapsing ellipsoids.

In real situations, the rotation of blobs can be attrib-
uted to the fact that, outside the separatrix, their edges
are in contact with the limiters or with the divertor
plates, which primarily absorb electrons. The remain-
ing (excess) ions create a positive space charge within
the blob filament, so that it begins to rotate about its
axis because of the electric drift in the toroidal mag-
netic field By,

Experiments show that blobs moving in the radia
direction and approaching the wall are also displaced
poloidally just downward from the equatorial planez =
0,i.e, inadirection oppositeto that of the gradient drift

Px = (11.5)
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of the ions (see Fig. 2). That the blobs move in this
direction may be qualitatively explained by assuming
that, near the wall, the blob filament, rotating counter-
clockwise, interacts directly with the SOL plasma and
rolls down the layer like a toothed wheel, clinging to
the wall but with a certain diding factor kg < 1.

Thisvivid picture, which isillustrative in character,
makes it possible to obtain a rough estimate for the
poloidal velocity of blobs. Thus, if the radia electric
field within a blob filament is 100 V/cm, then, in the
magnetic field B = 20 kG, the filament rotates about its
axiswith the angular velocity V,,, = cE/B =5 km/sand
slides down the wall with the poloida velocity v, =
kyV.. The experimentally observed values of the
poloidal velocities, v, ~ 500 m/s[10], show that, inthis
case, the diding factor is approximately equa to
kg ~ 1/10. The development of a more exact theory of
the poloidal motion of rotating charged blobs may
require the inclusion of the transverse viscosity of the
SOL plasma, in the spirit of the formulas that were used
in the cited papers by Krasheninnikov et al. to describe
nonrotating blobs.

12. CONCLUSIONS

In conclusion, we summarize the results obtained.
We have discussed the following distinctive features of
observed blobs:

(i) the randomness (spontaneity) of their onset,

(i) their local nature (blobs areindividual local per-
turbations),

(iii) the presence of wells and hills in the plasma
density,

(iv) great diversity in size (0.3-3 cm), and

(v) motion in accordance with Archimedes' princi-

ple (the hills sink to the separatrix, while the wellsrise
in the opposite direction).

These features allow us to conclude that blobs may
be thought of as a kind of so-called quasi-Chaplygin
medium and thus should be described by the corre-
sponding equations. In our model, blobs are considered
as self-contracting plasma objects. In order for the self-
contraction of local blobs to occur, certain conditions
must be met, specifically, the equation of state of the
blob matter should describe such a situation that, asthe
density n increases, the pressure p = nT decreases
because of an even faster decrease in the blob tempera-
ture due to some particular mechanism for heat removal
from the blob.

I'n our opinion, amechanism for the self-contraction
of blobs may be associated either with the nonradiative
resonant charge-exchange instability, resulting from
the presence of cold neutral hydrogen (deuterium)
atoms near the tokamak wall, or with thermal-radiative
instability, driven by the presence of carbon or oxygen
impurities in the plasma. Note that thermal-radiative
instability isalso referred to as radiative condensational
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instability, thetheory for which wasformulatedin[3, 4]
andin[11, 12, 15, 16].

A characteristic feature of carbon and oxygen impu-
ritiesis that their emission spectra exhibit sharp peaks
(maxima) at certain (comparatively low) temperatures
near the tokamak wall. Of course, additional experi-
mental investigations are needed to make the final
choice between the above two possible self-contraction
mechani sms—nonradiative charge exchange with neu-
trals and radiation from impurities.

In this context, we should mention tokamak experi-
ments performed by Lazarev et al. [17], who observed
the sporadic appearance of small plasma bunches that
were carried away from the plates of alithium divertor
and manifested themselves as individual small bright
spots at the plates. These plasma bunches might have
developed from lithium blobs.

If future experiments on different tokamaks will
confirm that such impurities as carbon and oxygen
(with the corresponding spectral lines) are indeed
present in a blob, then the phenomenon of blobs may
turn out to be closely akin to the MARFE phenomenon,
since it is commonly accepted that MARFES originate
from the thermal -radiative instability of carbon impuri-
ties. Note, however, that MARFEs have been observed
to be comparatively long-lived (on time scales of about
T ~ 1000 ps) immobile bright formations occurring on
theinner side of thetorus. Asfor blobs, they rapidly (at
avelocity of about several kilometers per second) move
through the SOL plasma toward the wall and last for
much shorter times (t ~ 50-100 ps). In most of the
papers on the subject, it is reported that blobs are
observed on the outer side of the torus; however, some
papers reported the occurrence of blobs on the inner
side. We thus can conclude that MARFEs and blobs are
likely to have very different properties.
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Abstract—Equilibrium effects, neoclassical tearing modes, and resistive wall modes are discussed as phenom-
enalimiting attainable plasma pressure, with emphasis on the current progressin theoretical studies at the Kur-
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1. INTRODUCTION

High-p steady-state operation is a long-run objec-
tive of fusion research (here, B =2 p/B? istheratio of
the averaged plasma pressure p to the magnetic field
pressure B2/2). There are two distinct mechanisms of 3
limitation in toroidal systems: those related to MHD
equilibrium and MHD stability. In general, equilibrium
issues can be more easily resolved. However, the stabil -
ity problem remains critical for toroidal systems,
though considerable progress has been gained in toka-
mak operation [1]. The range of MHD phenomena that
can result in B limitation in toroidal systems is rather
wide. Thistopic wasthoroughly discussed in the funda-
mental work [1], which gives an excellent review of the
today’s physics of tokamaks. Here, we discussthe equi-
librium and stability effects that can influence the 3
limit, with emphasis on recent theoretical results, in
particular, on neoclassical tearing modes (NTMs) and
resistive wall modes (RWMs), since they can put the
most severe B limitations for large long-pulse ITER-
like tokamaks. One goal of these theoretical studiesisa
more precise calculation of the balance between stabi-
lizing and destabilizing effectsfor NTMs, the contribu-
tions from the bootstrap current and the polarization
current in the generalized Rutherford equation. Another
goa is the analysis of the feedback suppression of
RWMs. This includes the study of double-wall effects
on RWMs, the modeling of ideal and conventional
feedback systems, and the comparison between feed-
back algorithms with different input signals.

2. EQUILIBRIUM

The plasma equilibrium in magnetic confinement
systems is described by the equations

0=-Vp+jxB, (1)
j=VxB, VB =0. )

Here, p isthe plasma pressure, j is the current density,
and B is the magnetic field.

Equation (1) multiplied by Vr and integrated over
the plasma volume (assuming p = O at the boundary)
gives

ﬁ’dv +[(ixB) Vrav =0, 3)

wherer isthe radiusin the cylindrical coordinatesr, ¢,
and z, attached to the main axis of the system. Thefirst
termin thisintegral equilibrium condition describesthe
ballooning force, which increases with plasma pres-
sure. The equilibrium limit is the maximum pressure at
which the electromagnetic force j x B is till able to
oppose this ballooning force.

Analytical estimates lead to the following scaling
for the equilibrium B limit for a large-aspect-ratio
(R/b > 1) circular plasmain tokamaks and stellarators
[2, 3]

b
Beq 0 uzﬁ 4)

Here, u isthe rotational transform and b and R are the
minor and major radii, respectively.

Thisformulashowsthat 3, islarger in systemswith
a smaller aspect ratio R/b (compact systems) and/or
with a larger rotational transform. However, the range
M > 1is adangerous area because the p = 1 surface in
the plasma makes it unstable against the m/n = 1/1
mode, which strongly affects the overall performance.
Thisis equally true for tokamaks[1, 4, 5] and stellara-
tors [6-8].

In addition to high f3,,, compact systems have other
advantages and are attracting increased interest [9-15].
Spherical tokamaks have aready demonstrated their
ability to operate with 3 up to 20 and even 30% [10—
12]. Recent resultsfrom the NSTX spherical toruswere
presented by Maingi at the 11th International Congress
on Plasma Physics (Sydney, 2002) [16]. Here, we dis-
cuss only conventional tokamaks and stellarators.

Another way of increasing 3, in toroidal systemsis

plasma shaping, mainly the vertical elongation of the
plasma cross section. It is known that, besides increas-
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ing B.,, the plasmashaping in tokamaks has great many
other advantages. Proper shaping improves plasma sta-
bility and energy confinement [1, 17—26]. The benefits
of plasma shaping were widely recognized long ago,
and tokamaks (including the mentioned spherical toka-
maks) now operate with noncircular (D-shaped)
plasma.

In conventional stellarators, similar shaping allows
the increase in B, by a factor of 1.5-2, depending on
the rotational transform [27, 28]. Estimates for large-
aspect-ratio configurations with K = const show that

[27]

Bea(K) _ 3K*+1p 2K 7
Beg(1) 4 Lz qH?

where K is the toroidally averaged plasma elongation.
The formula can be applied to tokamak and stellarator
configurations without shear. It shows that a double
increase in 3, is achieved at K = 2. This valueis quite
reasonable. For comparison, K = 1.7 in JET [29], K <
1.8 inASDEX Upgrade [30] and JT-60U [31], K =1.85
in DII-D [32], 1.1 <K < 2.8inthe TCV tokamak [23,
26], and K = 1.7-2.0in ITER [33]. A remarkable fea-
ture of stellarators with shear isamuch stronger depen-
dence of (., on the plasma elongation than that
described by formula (5). Therefore, the elongation K =
1.2-1.3 may be sufficient to double (B, in stellarators
[27]. Thisconclusion isvalid for conventional stellara-
torswith planar circular axis; typical representatives of
this family are CHS[34] and LHD [35].

In contrast to tokamaks, conventiona stellarators
have not yet used the tokamak-like plasma shaping as a
standard technique. However, this possibility was ana-
lyzed and even tested in experiments in the ATF torsa-
tron [36-38]. When stellarators face the problem of
achieving 3 several times higher than valuestypical for
present-day experiments, plasma shaping must be
accepted as a natural way of expanding the capabilities
of stellarators.

Plasma shaping allows the combined improvement
of several important properties, whereas some other
means of increasing 3, can actually bring severe limi-
tations on 3 due to the deterioration of plasma stability.
An example is the inward (high-field-side) shift of the
plasma column in conventional stellarators. In princi-
ple, this method allows the suppression of the Pfirsch—
Schltter current [39] to such an extent that the configu-
ration can become amost independent of the plasma
pressure (in some cases, theoretically, completely inde-
pendent) [40, 41]. Such a configuration was first
described by Greene and Johnson in 1961 [42], and
another examplewas given in 1966 [43]. The described
configurations looked rather exotic (R/b = 100 and
100 periods of the helical field in [43]), independence
from the plasma pressure was never observed in con-
ventional stellarators, and there was no convincing the-
ory explaining the underlying physics and relations

)
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between the main parameters. That is why the unusual
predictions of [42, 43] remained unnoticed and unex-
plained for a long time. Interest revived when experi-
ments on Heliotron E produced some results [44, 45]
that contradicted the expectations based on customary
notions. It was proved later [40, 41] that these results
were a manifestation of the same mechanism that was
responsible for the pressure independence in [42, 43].
Theory [40, 41] aso explained why the pressure inde-
pendence was never observed experimentally and pre-
dicted that it could be achieved in Heliotron E, though
in a regime rather far from the standard operation. It
was areal success that, afterwards, the experiment [46]
indeed demonstrated the predicted phenomenon. L ater,
the analytical predictions[40, 41] and the experimental
results [46] were confirmed by precise numerical calcu-
lations [47, 48]. Complete agreement between different
theoretical approaches and experimental results was an
impressive demonstration of the predictive power of the
MHD equilibrium theory.

It is known that inward shifting also improves the
neoclassical transport and confinement of high-energy
particles in stellarators. On the other hand, the inward
shift deteriorates MHD stability [49-53]. The very low
stability limitin strongly inward-shifted stellarator con-
figurations makes them unpractical. To be precise, we
should note that these statements about stability are pri-
marily based on theoretical knowledge. At the same
time, some experimental results from LHD seem to
demonstrate a better stability of inward-shifted config-
urations than was expected from theory.

Stellarators are inherently three-dimensional sys-
tems. When 3D shaping is alowed, it is possible to
optimize a system in such a way that the Pfirsch—
Schldter current is much lower than that in conven-
tional stellarators. Accordingly, 3., becomesvery large.
For example, NUhrenberg and Zille numerically found
a configuration [54] that was almost insensitive to the
plasma pressure even at 3 = 50% (which implies that
Beq > 50%). The reduction of the Pfirsch—-Schl(ter cur-
rent became one of the key elements in the concept of
the W7-X stellarator [55, 56].

High 3., has many advantages: the Shafranov shift
and variations in the rotational transform profile are
small, and the plasma pressure affects the shape of the
plasma boundary only slightly. It seems, however, that
high B, is dways related to a relatively low stability
limit. Even in the perfectly optimized W7-X stellarator,
thislimit is below 5% [55, 56].

The above is true for the static equilibrium
described by Egs. (1) and (2). However, tokamaks and
stellarators sometimes operate with rotating plasma.
For example, in the DII1-D tokamak, the toroidal veloc-
ity reaches 300 km/s[57]. Therelated centrifugal force
increases the balooning expansion of the plasma.
Therefore, one could expect that the rotation would
lower the equilibrium [ limit. This can be analyzed
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using the formula of [58] for the Shafranov shift [2, 59]
with plasma rotation taken into account,

(0)
where
o[l ,p-p

fs = R[2+2 B; } @
isa“static” part of A'[2, 59], the prime denotes d/da, a
isthe minor radius of amagnetic surface, Risthe major
radius of thetorus, Bg(a) = J/(21R) isthefield produced
by the longitudinal current J flowing through the tube
a = const, the bar stands for cross-sectional averaging,
p isthe plasmamass density, v, isthe toroidal velocity,
and

|, =BZ/B? ®)

is the internal inductance of the plasma tube a = const
per unit length.

Itisclear that Ag isnegative for radially decreasing
p(a). Equation (6) shows that the rotation with a
decreasing profile of p vt2 increases |A'|; consequently,
the shift A becomes larger. On the other hand, one can
reduce |A'| by making pvt2 agrowing function of a so

that pv{ < pv{. Both of these conclusions were

clearly formulated in [58]. However, the reduction of
|A'] inthe central part of the plasmacolumn does not yet
guarantee an increase in the equilibrium pressure limit.
A complete solution of the equilibrium problem must
include integration of A" with proper boundary condi-
tions. Finally, for a free-boundary equilibrium with p

and pvf vanishing at the boundary, the effect of toroi-
dal plasma rotation on the equilibrium 3 limit can be
estimated as [60, 61]
pv?
Brot = Bstatic_ _221
0

where B, is the toroidal field at the axis. The last term
here is small, so that the decrease in the equilibrium 3
limit due to the toroidal plasma flow is negligible for
typical plasma parameters [61]. Therefore, for fusion
plasmas, the plasma rotation effects in global equilib-
rium can beignored. The sameistrue for poloidal rota-
tion under reasonabl e conditions. Notethat Egs. (6) and
(7) show a simple way to generalize the results of the
classical theory of plasma equilibrium in tokamaks to
the case with a toroidal rotation: in expressions
obtained with the use of Shafranov’s formula (7), it is

sufficient to replace 2p by 2p + pvt2 :

)

PUSTOVITOV

One may conclude that toroidal magnetic configura-
tions can be optimized in such away that plasma equi-
librium is possible, theoretically, up to rather high f.
However, only stable equilibria can be realized. There
are alot of instabilities that can destroy equilibrium at
B< B[, 4,5, 39, 62, 63]. We consider here the stabil-
ity limitationsrelated to NTMs and RWMs. A potential
danger of these instabilities was recognized quite
recently, and these fields are now being extensively
studied.

3. NEOCLASSICAL TEARING MODES

During the past decade, NTMs have been identified
as one of the most serious potentia limitations on the
attainable plasma pressure in long-pulse tokamak dis-
charges [1, 64, 65]. It was found that the critical 3 for
the onset of the myn = 3/2 mode (often called a soft beta
limit) is

By <2in TFTR (supershot) [66],

By =2.3inDIlI-D (long-pulse ELMy H-mode) [67],

By = 2.5 in JT-60U (long-pulse ELMy H-mode)
[68],

By = 2.2-2.6, depending on the plasma shape, in
ASDEX Upgrade (ELMy H-mode) [69, 70], and

By = 25-2.6 in JET (ITER-like discharges, ELMy
H-mode) [71].

The normalized beta, sometimes called Troyon (3, is
defined as

Bu = Lo 2L,

where | is the plasma current and B is the magnetic
field.

For a tokamak-reactor, the attractive range is 3 <
By < 4 [1]. Sometimes, even higher By (up to By =6
[72]) are mentioned. That iswhy NTMs, which have a
relatively low onset limit, became a concern for the
fusion community. The problem is aggravated by the
fact that, in experiments, the dependence of the onset
By on p* (the ion gyroradius normalized to the plasma
column radius) is unfavorable for large tokamaks. Ear-
lier observations provided the following scalings for
the onset of the my/n = 3/2 mode:

By O p* inASDEX Upgrade [73],

By O (p*)%1B3(v¥)232in DIII-D [64], and

By O (p*)264(v*)01in JET [74].
Here, v* is the collision frequency normalized to the
bounce frequency (see[1], p. 2144). These scalings are
clearly incompatible. However, experimental progress,
the accumulation of data, and their comparison and
analysis have recently led to the opinion [75] (in con-
trast to earlier conclusions) that the NTM data from
DIlI-D and JET are, nevertheless, consistent with the
linear scaling of the onset By on p* observed in
ASDEX Upgrade. Although there is a substantial scat-
PLASMA PHYSICS REPORTS  Vol. 29
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ter in the JET datain the plot By vs. p*, the correlation
and scatter are substantially improved when using local
parameters [76]. A linear scaling was also observed in
JT-60U [77]: By O p*(v*)0-3,

If the linear scaling could be valid for much smaller
p* than that in the existing devices (e.g., by factor of 3),
the critical By in ITER with p* = 2 x 10~ might be
about 0.5 [65], which isfar below the acceptable level.

This number isjust an estimate based on an incom-
plete theory and insufficient data. NTMs are a rather
complicated phenomenon involving several competing
processes. Therefore, all theoretical predictions remain
uncertain and somewhat restricted even for present-day
tokamaks. A great deal of work is needed to develop a
reliable predictive theory.

The existing theory of NTMsis based on the gener-
alized Rutherford equation for the time evol ution of the
width W of amagnetic island (see, e.g., [64, 78, 79]):

TdW _

re dt rA (W)
10
p[CW  Cm Gy Ceo
PW2 W(Z) W W3 W’

Heret,= uori/(l .22n) istheresistive time at the reso-

nant surface of radiusr, n isthe neoclassical resistivity,
A' isthe conventional tearing parameter (do not confuse
this with equilibrium A' in the previous section), B, is
the poloidal betaat the resonant surface, W, isthe char-
acteristic island width below which the cross-field
transport dominates over paralel transport and equal-
izes the plasma pressure along the island, the term with
C,, accountsfor the destabilizing neoclassical bootstrap
drive, the term with C,,, is related to the stabilizing
effect of the magnetic well, the term with C, describes
the effect of the so-called polarization currents induced
by the diamagnetic motion of the island through the
plasma, and the last term with Cj is associated with
the stabilizing effect of a properly localized current
drive.

The term with C is usually considered to be stabi-
lizing: C, > 0. A model based on this assumption with
C, O (p*)?, which isknown as the ion polarization cur-
rent model, is frequently used to estimate (3. It was
asserted that experimental observations of tearing
modes in ASDEX Upgrade could be satisfactorily
explained by the ion polarization current model [73,
80]. However, some data from other devices demon-
strated somewhat different behavior [81]. Also, thereis
an obvious disagreement between the semiempirical
models and the theoretical predictions [82]. Neverthe-
less, there is a genera tendency to accept the polariza-
tion current model as superior in predicting the scaling
and magnitude of the critical 3 [75].
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Waelbroeck and Fitzpatrick pointed out [83] that the
true value and even the sign of C, may differ from the
generally accepted ones. Evident theoretical contradic-
tions stimulated further studies [84] that led to the con-
clusion [85] that, although the analysis of [83], which
was based on asimplified model, is somewhat ambigu-
ous, the statement that the polarization current in the
absence of drift effects is destabilizing (C, < 0) is cor-
rect. However, the question remained as to whether the
models used were adequate.

The dilemma whether the effect of the polarization
current on NTMsiis stabilizing or destabilizing and the
origin of these contradictions were discussed in [86,
87], where it was shown that a less restrictive model
gives a stabilizing polarization current. Favorable pre-
dictions about the role of the polarization current were
obtained in [87, 88], where different profile functions
were used to describe the electrostatic potential and
density perturbations instead of the common profile
function used in the existing theory. For example, with
an assumption; drift effects taken into account, the
result is[88]

CpD(w*i_w)(w+k*w*i)- (11)

where wistheisland rotation frequency inthereference
frame with avanishing equilibrium radial electric field,
wrj istheion drift (diamagnetic) frequency, and kisa
positive number.

One can see that C, < 0 when the ratio wp/w is

small, which agrees with the results of [83, 89]. It is
known, however, that in DIII-D [75] and JT-60U [90],
themoderotatesin theion diamagnetic direction. Inthe
DI11-D tokamak, the observed island rotation frequency
liesin the range 0 < w < w; [75]. Under this condition,

C, > 0andtheterm with C; is stabilizing. Recent theory
showsthat it can also be stabilizing even in the absence
of the ion drift effects due to the shear of the plasma
flow [87].

The discussion about the sign of C, reflects the fact
that C, “oscillates’ around zero. Since the sign of C,
can be easily changed in a narrow range of w, one can
conclude that C, should be small. If so, its stahilizing
role cannot be substantial. This is however, it is aso
supported by the detailed NTM analysis that takes into
account thefiniteratio of theion gyroradiusto the mag-
netic island width, p;/W [91]. It is shown in that paper
that both C,, and C, are actually smaller than the values
used in the existing theory, devel oped in the approxima:
tion p;/W — 0. What issurprising isthat, according to
[91], the dependence of C, on p;/W cannot be ignored
even at p;/W = 10'-102 (remember that p; = 1 cm at
T=10keV and B=1T). The conclusion is that the
onset 3 can be one-half of the traditionally estimated
NTM limit. This result of [91] is most unfavorable for
large tokamaks, which again demonstrates that the
problem is rather complicated and challenging.
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The destabilizing effect of the bootstrap current
dependsnot only on C, in Eg. (10), but al'so onthevalue
of W,. The larger the W, the smaller the destabilizing
term. In the generally accepted model [64], W, is
related to the competition of the perpendicular and par-
alel heat trangport inside the island, which results in
the weakening of the perturbed bootstrap current.
Recently, a generalized transport threshold model of
NTMs in tokamaks was proposed in [92, 93]. In addi-
tionto transverse and parallel heat transports, the model
takes into account several other mechanisms opposing
the instability drive. According to [92, 93], with
account taken of the parallel convection and magnetic
island rotation, the equation for the island width evolu-
tion has the same form as Eg. (10). However, in these
cases, the value of W, may be different, sinceit is deter-
mined by the smallest value of the characteristic scales
related to the above three mechanisms. This means that
W, may sometimes be smaller than the value used in the
existing theory. Accordingly, the stability B limit must
again be lower.

Incorporation of the perpendicular viscosity
changes the structure of the equation for W, It is shown
in[93] that, in this case, one should make a substitution
in Eq. (10):

C,W W
2 2 Cy
W™+ W,

2
2 2 CZWH 2 = »(12)
W™+ W, W(W +Wu)("~)*i

where W, is the characteristic length related to the ion

2
Mois Wp =

Hg/(JEV;), € = rg/R v, is the ion collision frequency,
and C, is a positive coefficient on the order of unity.

Theauthors of [93] pointed out that, for W< (W, W),
the right-hand side of expression (12) becomes

perpendicular viscosity coefficient

GGy

W (13)

Thisvaueis negative for w/w > 0.

If so, the perturbed bootstrap current is stabilizing.
This seemstoo good to be true, and this prediction will
certainly be analyzed in more detail because any
chanceto suppressNTMsmust be utilized in tokamaks.
In any case, the above results are certainly valuable as
a first theoretical comparison of various relevant
effects.

Thetermwith C,,, in Eq. (10), whichis often called
Glasser—Greene-Johnson (GGJ) term, is frequently
ignored in calcul ations because, according to some esti-
mates, it istwo to threetimes smaller than theterm with
C,, [64]. It can be argued, however, that this term must
beretained, especialy in view of thefact that the stabil-
ity or instability of NTMs is determined by the rather
delicate balance of the opposing termsin Eq. (10).

PUSTOVITOV

It is known that toroidicity, which determines the
value of C,,, may produce a stabilizing effect on tear-
ing modes[94, 95]. Plasma shaping can be used to rein-
force this effect. The influence of plasma geometry on
NTMs was studied numerically by Kruger et al. [96].
Three tokamaks were considered: TFTR (large aspect
ratio, circular cross section), DIII-D (dlightly smaller
aspect ratio, D-shaped cross section), and Pegasus
ELART (extremely low-aspect-ratio tokamak with A <
1.2, stronger shaping). The conclusion wasthat the GGJ
term isnegligible for TFTR, but is more significant for
shaped tokamaks, though it would play littlerolein the
efforts to stabilize NTMs in DIII-D (if the shear is not
very small). Another conclusion was that, in low-
aspect-ratio devices, where the shear islow and betais
high, it might be possible to stabilize NTMs by flatten-
ing the profile of the safety factor q near low-order
rational magnetic surfaces using a combination of
shaping and localized current drive.

The latter conclusion was supported by analytical
theory [97]. It was shown that the stabilizing GGJterm
could be stronger than the bootstrap terms when

1+7,+N.+TN; [1—12+6e—85} >1.(14)

q

This formula shows that the combination of the three
factors can make the GGJ term large: small shear S at
the resonant surface, large elipticity e (related to the
elongation K by e = (K> — 1)/(K? + 1)), and large trian-
gularity &. Also, formula (14) explicitly shows the sen-
sitivity of NTMs to the equilibrium profiles: 1, = T,/T,
andn; (=0InT,; ¢/0lnn,, where T, and T, aretheion and
electron temperatures, respectively, and n, the equilib-
rium plasmadensity.

These optimistic predictions of the theory agree
well with the experimental observations in ASDEX
Upgrade [69, 70] that an increase in the plasmatriangu-
larity resulted in anincreasein 3y from 3, = 2.2-2.4 for
discharges with alow triangularity to By = 2.5-2.6 for
alarger triangularity (d,,, = 0.2 in the notation of [69,
70]). Also, there is a qualitative agreement with obser-
vationsin DI11-D that a combination of plasma shaping
and q profile modification alows one to substantially
increase the NTM beta limit [98]. Finally, this theory
gives a reasonable explanation why the onset B in
shaped tokamaks (By = 2.2-3.0) islarger than in TFTR
with circular plasma (B < 2). It should be remembered,
however, that arecent interpretation of JET resullts, stat-
ing that an increase in the triangularity raisesthe NTM
B limit while an increase in the elongation makes it
lower [99], shows that the problem still remains open.

Favorable theoretical predictions and (in general,
promising) experimental results justify the conclusion
that all studiesrelated to the stabilizing effect of plasma
shaping are to be encouraged. It is known that plasma
shaping affects the bootstrap current [17, 38, 100].
Therefore, it might be interesting to optimize shaping

3/2

€
081 S 1+71;+0.4n.-0.171n;
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in order to minimize C, and simultaneously maximize
Cowe

4. RESISTIVE WALL MODES

Severa years ago, it was demonstrated in DIII-D
experimentsthat at high 3 near the betalimit, the stabil-
ity of ideal MHD glaobal kink modes is strongly influ-
enced by the vacuum vessel [101, 102]. It is now awell
established fact that the stabilization of low-n kink
modes by a conducting wall is crucial for high-B
steady-state advanced tokamak scenarios [103]. How-
ever, areal wall with afinite conductivity can stabilize
the mode only over the time of magnetic diffusion
through thewall, t,,, which can be estimated in cylindri-
cal approximation as t,, = 4,0, dfw» Where o, 1, and
d,, are the conductivity, minor radius, and thickness of
the wall, respectively. On alarger time scale, eddy cur-
rentsthat areinduced in the wall and oppose the growth
of the mode decay and the kink modes can become
unstable. Since their growth rates are determined by T,
the modes are called resistive wall modes (RWMs).

Experiments in the DIII-D tokamak [104] have
shown that the RWM slimit the attainable 3 at thelevel

Bn=4l;, (15)

where |; is the interna inductance (it was found later
that the RWM stability limit can sometimes be even
lower). Thisvalue is known as the Troyon limit, repre-
senting the ideal MHD beta limit for tokamak dis-
charges without wall stabilization and sawtooth insta-
bility [1, 105]. Definition (8) (for circular plasmas)
showsthat larger |; values are obtained for more peaked
toroidal currents. However, advanced tokamak opera-
tion [22, 24, 31, 100, 106-108] with a low or negative
shear in the plasma center and a high bootstrap current
fraction, on the contrary, demands broad current pro-
files. Sometimes, the advanced operation even leads to
the formation of a so-called “current hole” [109-111].
In the JT-60U tokamak, a current hole, extended up to
40% of the plasmaminor radius, existed stably for sev-
eral seconds [110]. Such distributions have arelatively
small |; (say, smaller than |; = 0.5, which corresponds to
a uniform current density). In principle, the tokamak
configuration and discharge operation could be opti-
mized to maximizel, at advanced operation with aboot-
strap current fraction as high as 50-70% [112]. How-
ever, eveninthiscase, I; 01, which isarather moderate
value.

Keeping |, as high as possible, as proposed in [112],
could be a good way to increase the RWM instability
betalimit. However, it isnot yet clear whether thisidea
can be successfully realized with adesired result. Also,
evenwithl; =1, Troyon limit (15) is not high enough to
satisfy the reactor demands. In any case, one must |ook
for the possihility of stationary tokamak operation with
3 above limit (15).
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In recent years, the physics of RWMs and their sta-
bilization have been extensively studied in the DIII-D
tokamak (see [57, 103, 104, 113, 114] and references
therein). Two approaches to stabilizing RWMs have
been tested: plasma rotation and active feedback con-
trol. Thelatter approach was considered to be relatively
simple, reliable, and efficient. In reality, however, a
great deal of effort has been spent to demonstrate that it
works as expected. Finaly, reported result [114] was
impressive: the feedback system alowed RWMs in
DIlI-D to be suppressed and the discharge to be sus-
tained for amost a second at pressures approaching
twice the no-wall limit.

Feedback stabilization is, in essence, based on con-
ventional electrodynamics, electrical engineering, and
control theory. When a particular feedback algorithmis
assumed, the results of analysis may depend strongly
on the circuit characteristics and the location and prop-
erties of the probes. However, the comparison and
understanding of the results on RWM feedback stabili-
zation can be greatly eased when the simple formula
[115]

_ Bext
YT, = g+ 2m B,
is used to explain what is required from the feedback
system. Here, yisthe RWM growth rate; ', = v, T,,, With
Yo being the open-loop growth rate of the same mode;
B. 1Sthe amplitude of the radial magnetic field pertur-
bation produced by all sources outside the first wall,
including the feedback field (B.,, = 0 when the modeis
affected by the first wall only); B is the amplitude of
the total radial field perturbation at the first wall; and m
is the poloidal mode number. Stabilization is achieved
wheny < 0. Therefore, irrespective of the algorithm, the
feedback system must guarantee that the external (with
respect to the first wall) field B,,, satisfies the criterion

Bou . _To.

Bs 2m
These expressions are derived for asingle-mode pertur-
bation in the cylindrical approximation. Such an
approach iswidely used in theory, which isjustified by
a comparison of the analytic results with numerical
simulations [113, 116].

The analysis of the feedback stabilization of RWMs
issimplified by the fact that ", in Eq. (16) can be con-
sidered fixed and independent of B,,,. This quantity is
determined by the behavior of the perturbed radial field
B.(r) inside the plasma Toroidal calculations [117,
118] show that the feedback does not strongly modify
the B,(r) profilein the plasma. Thisisa so confirmed by
DIII-D experiments and related numerical analysis
[113].

In configuration with one resistive wall, B,,, is a
field produced by the feedback system: B.,, = B;. Then,
criterion (17) explicitly gives the necessary stabilizing

(16)

(17)
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field B; in terms of Bs. By definition, Bs is the radial
component of a magnetic perturbation, which can be
measured by “radial” probes. Criterion (17) shows that
knowledge of Bs is sufficient for determining B; that is
needed to suppress the mode. In other words, RWMs
can be easily stabilized by a feedback system with
radial magnetic probes. A comparison of RWM feed-
back systems with different input signals shows that
using poloidal probes alows RWM suppression at a
lower gain of the system [119]. In al other respects,
poloidal probes are no better than radial ones.

These conclusions, however, contradict the common
opinion that afeedback system with sensors measuring
the poloidal field is much better than one with radial-
field sensors. Thisopinion isbased on the solid founda-
tion of numerical calculations and experimental results
from DIII-D [113, 114, 117, 118] and cannot be
impugned.

This contradiction was resolved in [120] by noting
that analytical theory deals with a single harmonic in

poloida and toroidal angles 8 and ¢, B, =
B,(r)exp[i(mB — nl) + yt], while the frame-like correc-
tion coils used in DIII-D [5, 7, 104, 113, 114] and
assumed in numerical calculations[116-118, 121] pro-
duce additional side-band harmonics affecting the mea-
sured signal. The radial component of the magnetic
field calculated with account taken of these harmonics
can vanish at the probe position (equatorial plane)
when an RWM is not yet suppressed, thus breaking the
feedback loop. This never happens with the poloidal
component at this position.

This analysis not only explains the observed differ-
ence between feedback systems with radial and poloi-
dal probes, but also shows the great difference between
“ideal” and “conventional” systems. It seems that heli-
cal correction coils could be better than those presently
used in DII-D. Their comparison is an open issue, per-
haps, for a theoretical study only, because the experi-
mental successof DIII-D [114] issufficient proof of the
efficiency of the existing feedback system. In any case,
the problem of the “purity” of the feedback-produced
magnetic field must be examined.

Feedback “helps’ the wall to sustain the induced
currentsthat otherwise would decay because of thewall
resistivity. A second wall placed between the plasma-
facing (first) wall and the correction coils acts as a
screen distorting the feedback-produced field. When
the coupling of the feedback with the first wall becomes
weak, a dow mode can grow unstabilized [115]. This
problem first appeared because I TER has a double wall
[1] and the correction coils must be located on the out-
side. Numerical simulations [116] show that, indeed,
the double-wall structure of ITER makes the active
control of RWMs somewhat more demanding than in
tokamaks with a single wall. The problem can become
even more serious in future designs, as the need is to
keep the correction coils closer to the first wall if the
first wall isresistive.

PUSTOVITOV

5. CONCLUSIONS

In the early stages of tokamak and stellarator
research, plasma equilibrium was one of the most seri-
ous problems [2-5, 39, 42, 43, 60, 122, 123] responsi-
ble for B limitation. Now, all major equilibrium issues
have been resolved or, at least, thoroughly investigated.
It is known that equilibrium limit in toroidal systems
can be practically removed by properly optimizing the
configuration geometry. Axisymmetric plasma shaping
has become anatural element of tokamak operation and
remains a potentially useful tool for conventional stel-
larators. With more complicated 3D shaping, including
spatial deformations of the magnetic axis, stellarator
configurations can be made almost insensitive to
plasma pressure. It seems, however, that optimizing
stellarators to very high 3., generally leads to a rather
low stability limit. It is not yet clear what kind of stel-
larators might be able to combine high (,,, good con-
finement and high stability limit so that stellarators
would be competitive with the best modern tokamaks.
In general, stellarators have made great progress in
recent years, e.g., LHD operates now with 3 up to 3%
[51-53].

Tokamaks are certainly ahead of stellarators on the
road to fusion reactors. To satisfy reactor needs, toka
maks must finally demonstrate their capability for high-
B steady-state operation. This requires, in particular,
preventing NTMs and RWMs that act as factors limit-
ing B. There have been successful experiments on their
suppression [30, 31, 114, 124-126]. At the same time,
there is great uncertainty in extrapolating the existing
datato I TER-scale devices. For example, it is not clear
to what extent NTM behavior will be governed by the
mentioned unfavorable gyroradius dependence of the
onset 3 and what would be the final form of the gener-
alized Rutherford equation for NTMs. One very impor-
tant problem is the recovery of [ after stabilizing
NTMs. A more general question iswhat the upper limit
for B iswith active NTM stabilization. A similar ques-
tion for RWMs has recently been answered: calcula-
tions for high-f advanced tokamak equilibria with an
ITER shape have shown that the feedback control of
RWMsis possible for 3 up to 5, which istwice the no-
wall limit [118]. Experiment [114] confirmed this pos-
sibility, although at a lower 3. On the other hand, the
influence of plasma rotation and error fields on RWMs
[57, 114] still remains an open issue for theorists.

The step from the existing tokamaks to ITER istoo
big for confident extrapolations based on the available
data. Thisis atypical rather than dramatic situation in
science. Perhaps, JET isagood example of such astep
in fusion. In this case, a reliable theory is needed to
reduce the uncertainty. The rapid development of the
MHD theory of NTMs and RWMs reflects the impor-
tance of the subjects and the scope of this problem.
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TOKAMAKS

| dentification of the Structure of Large-Scale MHD
Perturbationsin a Tokamak from Mirnov Signals

A.M.Kakurinand I. . Orlovsky
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Abstract—An algorithm is proposed that allows one to identify the MHD mode structure in toroidal plasmas
by processing signals from Mirnov probes measuring plasma MHD activity. The algorithm differs fundamen-
tally from the diagnostic methods presently used in tokamaks, being simpler and more efficient. The algorithm
is based on constructing an analytic signal using the Hilbert transformation of the Mirnov signals at a given
instant. The phase and amplitude dependences obtained take into account the toroidal effects and allow one to
determine the number and amplitude of the excited MHD mode. The algorithm was approbated with both test
signals and actual signalsfrom MHD diagnosticsin the T-10 tokamak. It is demonstrated that the algorithm can
be used to analyze single-mode MHD instabilitiesin toroidal plasmas. © 2003 MAIK “ Nauka/l nterperiodica” .

1. INTRODUCTION

Conventional methods for studying MHD instabili-
tiesin tokamaks are based on analyzing the spatial and
temporal evolutions of the perturbations of the poloidal
magnetic field in the plasma column [1]. These pertur-
bations have the form of waves propagating in the
poloidal and toroidal directions and are usualy
detected by a set of local magnetic pick-up coils
(Mirnov probes) located near the plasma surface. The
Mirnov signals are oscillations whose frequencies and
amplitudes vary in time. The MHD instability that is
responsible for the poloidal field perturbations and is
termed “tearing-mode instability” leads to the rear-
rangement of the magnetic surfaces, which is accompa-
nied by the formation of magnetic islands rotating in
the poloidal and toroidal directions.

The island structure is uniquely identified by ana-
lyzing the spatial structure of the poloidal field pertur-
bations, which can be expanded in spatial components,
each corresponding to a specific magnetic-island struc-
ture (i.e.,, an MHD eigenmode).

The island structure in the toroidal direction can be
identified by applying the expansion in Fourier seriesin
spatial harmonics exp(ng), where n is the harmonic
number (the toroidal wavenumber) and @isthe angular
coordinate in the toroidal direction.

The identification of the island structure in the
poloidal direction is complicated by the toroidal
effects, which distort the poloidal structure of the field
perturbations. This is clearly demonstrated in Fig. 8.
This figure shows an instantaneous distribution of the
poloidal field perturbations By(0) in polar coordinates,
which is obtained by interpolating the signals from 24
Mirnov probes arranged uniformly in the poloidal
direction. The distribution has the shape of a rosette

with petal s of different width, which are spaced at irreg-
ular intervals. The number of petals corresponds to the
poloidal wavenumber m of the excited MHD mode.

For atokamak plasmawith a circular cross section,
Merezhkin [2] proposed switching from the poloidal
coordinate 8, in which the spatial phase structure of a
perturbation is distorted by toroidal effects (the pertur-
bation wavelength is not constant along the poloidal
angle 0), to the coordinate 6*,

8* = B-Asind, (1)
with

_Tr l; O
A= Rzt

90

1.6
0.8

-0.8

-1.6f
-0.8
0

0.8

1.6 240 300
270

Fig. 1. Spatia distribution of the poloidal field perturba-
tions Bg(B) = cos(mB*) with 0% = 8 — Asin(0), m=4, and A =
0.5 (the phase modulation of the fourth mode).
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Fig. 2. Spatial phase  vs. poloidal angle 6 for the distribu-
tion shown in Fig. 1.
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Fig. 4. Amplitudes of the Fourier harmonics for the distri-
butions Bg(6) and B(Y).

inwhich thetoroidal distortions are absent to first order
(the wavelength is constant along the coordinate 6%*).
Here, R is the tokamak major radius, r is the radius of
the magnetic surface on which magnetic islands arise,
By isthe poloidal beta, and [; is the internal inductance.
The angle 6 is counted from the low-field side of the
equatorial plane.

Expression (1) is complicated to use in practice
because A is difficult to determine from the experimen-
tal data. One of the versions of employing this expres-
sion is to fit the experimental data by a model MHD
perturbation with aspatial phase ¢; = m(6; — Asin6;) + J,
where 6; is the coordinate of theith probe and A, &, and
m are free parameters [3].
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Fig. 3. Splineinterpolation of the dependence B(4y), where
Y(0) isthe phase dependence shownin Fig. 2.
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Fig. 5. Spatial distribution of the poloidal field perturbation
Bg(0) = (1 + 0.5co0s(B))cos(20) (the amplitude modulation

of the second mode).

A new approach to the identification of the mode
structure of MHD perturbations is to process the
Mirnov signals by using a singular value decomposi-
tion (SVD) method or asimilar biorthogonal decompo-
sition method [5]. These methods are based on the con-
struction of a covariance matrix (see[4]) with elements
in the form of expressions composed of the signals
from different Mirnov probes at different instants. A
subsequent analysis of the covariance matrix alows
one to identify the mode structure of a perturbation.
The disadvantage of the SVD method isthe assumption
that the mode structure does not change within thetime
sample (up to several milliseconds) that is used to con-
struct the covariance matrix.

Thus, an important problem is to develop an easy to
implement and physically explicit numerical algorithm
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Fig. 6. Spatial phase | vs. poloidal angle 6 for the distribu-
tion shown in Fig. 5.

for the identification of the instantaneous poloidal
structure of an MHD mode by using only Mirnov sig-
nals, without invoking the dataon A.

2. MODE-IDENTIFICATION ALGORITHM

We consider a case with a single MHD mode. At a
given instant of time, its magnetic field By(8) is an
oscillating function of the poloidal angle 8 with spa-
tially varying period and amplitude. It is necessary to
find a function Y(0) such that the period of Bg(Y)) will
be constant over the coordinate . It is also required
that the transformation does not change the number of
maxima, minima, and zeros, which means that the
number of petals of the spatial distribution in the new
variables should be the same as that in polar coordi-
nates (Fig. 1).

We represent the initial function as a product
Bg(0) = A(B)cos((8)), where A(B) and cos((8)) are
the amplitude and phase factors, respectively. Gener-
ally, thisrepresentation is ambiguous; however, thereis
a mathematically rigorous and physically correct
method for determining the amplitude and phase of an
oscillating function by constructing the so-called ana-
Iytic signal. This method is reduced to the following
procedure. From the given dependence By(0), by using
the Hilbert transformation [6, 7], we construct the com-
plex function (the analytic signal)

Z(6) = A(B)exp(iw(8)) = Bo(0) +iH[Be(8)], (2)

where A(0) is the amplitude of the analytic signal and
(B) is the generalized phase. The Hilbert transforma:
tionisgiven by

“B
H(Bo(0)) = %[v.p. eef?dr, 3)

—c0

where v.p. isthe Cauchy principal value.
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Fig. 7. Amplitudes of the Fourier harmonics of the distribu-
tions Bg(B) and B(Y) in the case of amplitude modulation

(Fig. 5).

Thus, we have found the function Z(6), which satis-
fies the above requirements; in particular, it has a con-
stant period over the variable Y. As 6 varies within the
range 0 < 06 < 21, the generalized phase Y varieswithin
the range 0 < (B) < 2rm, where m > 0 is an integer.
Hereinafter, misidentified with the poloidal wavenum-
ber of the MHD mode.

L et us consider the algorithm for processing a set of
the experimental data. L et there be a set of the val ues of
the poloidal magnetic field perturbations By(6;) for a
given MHD mode at a given instant of time that are
obtained from Mirnov probes with coordinates 6.

By constructing a spatial analytic signal, we change
from the set {6} to the new set {Y; = Y(6;)}.

90

270

Fig. 8. Spatial distribution of the poloidal field perturbation
Bg(6) in the T-10 tokamak (spline interpolation over signals
from 24 probes taken at the 276th millisecond of shot
no. 34669).
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Using the amplitude factor of the analytic signal
A(6,), we correct the perturbation val ues of the poloidal

magnetic field to obtain the set
_ Be(8)

where [A(6,)0is the average value of A(B;) over the
interval 0 < 6; < 21 Using a one-to-one correspon-
dence between the sets{B(6;)} and {{);}, we obtain the
dependence B(). In new variables, the corrected field
perturbations have the form of oscillations with a con-
stant amplitude and period.

3. APPLICATIONS OF THE METHOD

The efficiency of the algorithm proposed was tested
by applying it to afield with agiven spatial mode struc-
ture. The field was modeled by a harmonic distribution
Bg(6*) = cos(mB*) with atoroidal correction described
by formula (1). By varying the parameter A, we intro-
duced atoroidal distortion (spatial phase modulation)
of the resulting distribution Bg(0), which was no longer
a harmonic function but contained a set of spatial har-
monics in 8. Figure 1 shows the model distribution
Bg(0) for m=4and A = 0.5, which clearly demonstrates
the difference in the petal shapes. The phase of the ana-
Iytic signal Y(08) (Fig. 2) that correspondsto this distri-
butionisnonlinear. In the distribution B(my) calculated
by the algorithm proposed (for a better visualization of
the effect, the distribution B()) is scaled down by afac-
tor of m = 4), the petals are identical in shape (Fig. 3).
Figure 4 shows the Fourier transforms of the distribu-
tions Bg(0) and B(). It can be seen that the Fourier
transform of Bg(B8) contains additional harmonics with
amplitudes of up to 60% of the fundamental harmonic,
whereas the distribution processed by the proposed
algorithm contains asingle mode with acorrectly deter-
mined mode number and amplitude (the error in deter-
mining the mode amplitude is less than 0.5%, and the
amplitude of the “false” harmonics does not exceed
1%). When applying the algorithm to distributions with
different A values (from 0 to 1), the results differed by
no more than 1%.

The applicability of this algorithm to a case with an
amplitude modulation of the signal was verified by a
model signal By(8) = (1 + 0.5cosB)cos(26), which cor-
responds to the amplitude modulation of the second
mode (Fig. 5). The phase dependence () in this case
islinear (Fig. 6). Figure 7 shows the Fourier transforms
of theinitial function By(8) and the function B({s) con-
structed using the algorithm proposed. In both cases,
the amplitude of the second mode is described cor-
rectly; however, the Fourier transform of Bg(6) contains
satellite harmonics with amplitudes that amount to
~25% of the second-mode amplitude.

The figures clearly demonstrate that the proposed
algorithm for the identification of the perturbation
PLASMA PHYSICS REPORTS  Vol. 29
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mode structure is more efficient in comparison with a
direct expansion in a Fourier series. The total error

defined as
b. 2
- i
%= |20

where by is the amplitude of the ith Fourier harmonic
and m is the mode number, is less than 0.01 for this
algorithm, whereas 6, may be larger than unity for a
direct expansion in a Fourier series (see Fig. 4). The
accuracy of this method can be enhanced by increasing
the number of interpolation points when constructing
the analytic signal (in the calculations described in this
paper, we used interpolation over 512 points).

The algorithm was also tested by processing the
experimental data from the T-10 tokamak (Fig. 8). The
results of thetest are presented in Figs. 9 and 10, which
show the dependence (8) and the spatial spectrum of

(&)
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the poloidal field perturbations. One can see that the
algorithm yields a nonlinear dependence Y(8), which
complies well with the dependence 6*(8) given by
expression (1). Some deviations (in particular, near 6 =
330°) can be attributed to the influence of the currents
that areinduced in the elements of the chamber and dis-
tort the probe signal. The results of applying the algo-
rithm clearly demonstrate that the perturbation is asso-
ciated with the m= 4 mode.

4. CONCLUSIONS

The proposed algorithm, although limited to asingle
mode, significantly simplifiesthe analysis of MHD sig-
nals, reduces the role of the human factor, and substan-
tially improves the reliability of the results obtained.
The algorithm can be extended to cases in which the
spatia structure of the poloidal magnetic field is dis-
torted not only by the toroidal effects, but also by such
factors as the displacement of the plasma column from
the center of the chamber and the deviations of the
plasma column cross section from the circular. The
algorithm can be used to analyze large-scale MHD per-
turbations of the magnetic field, such as tearing, kink,
and the resistive wall modes.

An analysis of the multimode perturbations requires
the devel opment of additional algorithmsfor mode sep-
aration. These could be methods of wavelet analysis

KAKURIN, ORLOVSKY

adapted for the poloidal angle-wavenumber coordi-
nates.
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Abstract—Caollisionless confinement of monoenergetic a particles in three-dimensional magnetic fields pro-
duced by the magnetic coils of the Large Helical Device is calculated. It is found that the inward shift of the
magnetic axis dueto the vertical field improves the a-particle confinement. In contrast to the vertical field, both
large positive and negative hexapole fields do not improve the confinement. The study of the 3 effect and Mer-
cier criterion calculations for different hexapole fields are also presented. © 2003 MAIK “ Nauka/Inter period-

ica” .

1. INTRODUCTION

The Large Helical Device (LHD) at the National
Institute for Fusion Science (Japan) isthe largest active
heliotron device. Recent work by Murakami et al. [1]
concerns the neoclassical transport optimization with
respect to the radial shift of the magnetic axis by eval-
uating the monoenergetic transport coefficient and the
effective helical ripple. The optimum configuration is
found in which the magnetic axiswith amajor radius of
3.53 mis shifted by 0.22 m inward from the standard
LHD configuration. A strong inward shift of the mag-
netic axis in the LHD can diminish the neoclassical
transport to a level typical of the so-called “advanced
stellarators,” like Wendelstein 7-X (see, e.g., [2]).

In our previous paper [3], it was shown that a quasi-
omnigenous structure of the magnetic field [4, 5] can be
achieved by optimizing the conventional inward-
shifted LHD-like heliotron configurations with an
aspect ratio of 6.5 and N = 10 periods. For the N = 10
guasi-omnigenous configuration obtained, there are
almost no lost a particles during 0.05 s of their colli-
sionless flight. However, in [3], the plasma boundary
shape was significantly modified in optimization calcu-
lations in order to achieve such a good a-particle con-
finement. In particular, the largest modification was
made for the R,;, component in the Fourier representa:
tion of the plasma boundary shape (here, 2 is the poloi-
dal index and 1 is the toroidal index, which is normal-
ized to N), which corresponds to the increase in the
rotating triangularity of the plasma shape. The question
arises from these madifications as to whether it is pos-
sible to achieve such a significant variation in the
plasma boundary shape by thereal LHD coil system. In
this paper, we explore numerically the possibl e effect of
the relevant magnetic field components on the colli-

L This article was submitted by the authorsin English.

sionless a-particle confinement, taking into account
mainly the effect of the vertical and hexapolefields pro-
duced by the real LHD coil system. We also consider
the 3 effect and the ideal Mercier criterion for the con-
figurations obtained in order to determine the possible
optimal combination of the LHD cail fields.

The paper is organized as follows. Section 2
describes the numerical tools used in the calculations.
Section 3 presents the relationships between the hexa
pole and vertical fields and the plasma boundary shape
inthe LHD. The effect of thesefields on a-particle con-
finement and the Mercier criterion is also examined.
The results obtained are reiterated in Summary.

2. NUMERICAL TOOLS

Three-dimensional numerical codes are an essential
part of stellarator theoretical achievements in recent
years. In this paper, we use KMAG [6], DESCUR [7],
VMEC [8], IMC [9], and MCT [10] numerical codes.

The KMAG is a field-line-tracing code with the
Biot—Savart law from the given coil geometry. The
hexapole and vertical fields are varied in this paper by
changing the coil current ratio (mainly currents in the
three pairs of poloidal coils).

We obtain the Fourier spectrum of the plasma-
boundary magnetic surface from 60 intersections of the
magnetic field linewith 20 toroidal cross sectionsusing
the DESCUR code.

Three-dimensional ideal MHD equilibriafor agiven
fixed boundary are calculated by the VMEC code. The
VMEC code solvesthe 3D MHD ideal inverse equilib-
rium equations by the gradient method using a repre-
sentation for the magnetic fiel d that assumes nested flux
surfaces. In this paper, we use the 5.20 version of the
VMEC code, which is suitable for stellarator systems
without net toroidal current. The modification of the

1063-780X/03/2910-0831$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Fig. 1. (@) Numbers of lost a particles in the vacuum LHD
configurations vs. magnetic axis position R,,;,, calculated
with the MCT code [10] with launching surfaces s = 0.0625
(lower points) and s = 0.240 (upper points). The total num-
ber of thefollowed a particles equal s 2000. (b) Relationship
between R, ;, and the rotating triangul arity.

VMEC code (version VMEC2000-6.80) was recently
improved to calculate plasma equilibrium for low-
aspect-ratio systems with net toroidal current, like
NCSX and QOS [11]. In these equilibrium calcula
tions, 33 flux surfaces and 113 VMEC poloidal and tor-
oidal Fourier components are used for the representa-
tion of equilibrium quantities.

The IM C code cal culates the magnetic field strength
B in Boozer coordinates [12]. The maximal poloidal
mode index in our runsis 9, and the maximal toroidal
modeindex is 8. Thetransformation fromVMEC angu-
lar variables to Boozer coordinates is helpful because
of the simplicity of the co- and contravariant vector rep-
resentations of the magnetic field. In this paper, we use
162 magnetic field components obtained from the IMC
code in Boozer coordinates. The Mercier criterion [13]
isaso calculated by the IMC code.

To check the a-particle confinement properties, the
MCT code is used, which follows 2000 collisionless
drift orbits of monoenergetic (3.52 MeV) a particles
during atypical confinement time of 0.05 sfor aplasma

ISAEV et al.

volume of 1000 m* and B, = 5 T and with a given
Boozer spectrum of the magnetic field and given pro-
files of equilibrium flux quantities.

3. EFFECT OF HEXAPOLE AND VERTICAL
FIELDS ON a-PARTICLE CONFINEMENT

We briefly describe the coil system of the LHD [14].
For the flexible currentless plasma operation of the
LHD, the magnetic field properties such as the rota-
tiona transform, plasma position and shape, and
plasma-wall clearance should be controlled by the
external coils. For these purposes, the three-layer struc-
ture of the helical coilsis adopted to adjust the helical
pitch parameter and the divertor-wall clearance. The
applied vertical magnetic field is produced by helica
and poloidal coils. Three pairs of poloidal coilsprovide
the controllability of the system, such as the adjustment
of the axis position by the dipole field component, the
triangularity by the hexapole field component, etc. The
vertical field component B, produced by poloidal coils
can be represented as the sum of the dipole (Bp), qua-
drupole (B,), and hexapole (By) components: B, = By, +
BoX +ByX? + ..., where X = (R — R is)/Rxis [15].

First, we explore the effect of the vertical magnetic
field, which changes the major radius of the magnetic
axis R,,;, and changes the triangularity of the plasma
boundary. The basic improvement of a-particle con-
finement with the more inward shifted magnetic axisis
illustrated in Fig. 1la. Here, we present pairs of points
that correspond to the number of lost o particles start-
ing from the quarter of plasmaradius (the flux surface
label s = 0.0625, lower points) and from the half of
plasma radius (the flux surface label s = 0.240, upper
points). Theerror bar shows the accuracy of these MCT
calculations based on the Monte Carlo method.

The highest losses of more than 20% are estimated
in magnetic configurations with R,,;, = 3.81 m. The
lowest losses of just afew percent werefound for R, =
3.45 m. The increase in the vertical field also leads to
the increase in rotating triangularity of the plasma
boundary R,, and results in the nonplanar magnetic
axis. TheR,, component isthe largest for R,,;, = 3.45m,
inwhich caseR,,/R,,=3.7 x 1073. For thecase of R,;; =
3.81 m, we have R,,/Ry, = —1.3 x 10 asis shown in
Fig. 1b. Here, the caculations were performed for a
low-[ currentless regime, where 3 is the volume-aver-
aged betavalue. Theseresults seem to correspond to the
tendency for a decrease in neoclassical diffusion dueto
the inward shift of the magnetic axis revealed numeri-
caly in[1] andinthe LHD experiments[16]. Here, we
have chosen the case with R,,;, = 3.60 m for further
investigations of the hexapole fields effect. In general,
the hexapole fields do not change the magnetic axis
position and the rotating triangularity R,,; however,
these fields change the so-called constant triangularity
of the plasma boundary, which is expressed by the R,,
PLASMA PHYSICS REPORTS  Vol. 29
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Fig. 2. (3) Numbers of lost a particles vs. hexapole field
amplitude for a vacuum configuration with R ;s = 3.60 m

for the same conditions as in Fig. 1. The lower and upper
points correspond to s = 0.0625 and 0.240, respectively.
(b) Relationship between the hexapole field amplitude and
the triangul arity.

component. In our computations, the component R, is
related to the minor plasma radius and is nearly con-
stant, therotating triangularity isproportional toR, R,
and the axisymmetric or the constant triangularity is
proportional to R,yR,. All variationsin the triangulari-
ties are due to the changes of the R,, and R,, compo-
nents, respectively.

The effect of the hexapolefieldsisshownin Fig. 2a.
It can be clearly seen that the optimal hexapole field
valueis H = 129%. Here, H denotes the hexapole com-
ponent produced by the poloidal coils, whichisnormal-
ized to the field of the helical coils; i.e., at H = 100%,
thetotal hexapole component is zero and thetriangul ar-
ity is also amost zero. The H = 129% value corre-
sponds to the triangularity with Ry/Ry, = 7.9 x 10+,
Both positive (H = 600% givesR,,/Ry, = 6.0 x 10-%) and
negative (H = —400% gives R,)/Ry, = —5.7 x 1073)
changes of the hexapole fields do not improve a-parti-
No. 10
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Fig. 3. The B effect on the confinement of a particles
launched at the magnetic surfaces s = (Z, 3, 5) 0.0625 and
(2, 4, 6) 0.240 in configurations with R ,;; = 3.60 m for dif-

ferent hexapole fields: H = (1, 2) —400%, (3, 4) 129%, and
(5, 6) 600%. Plasma pressure profileis given by the formula

p(s) = po(1 —)(1 — s*), where sis the flux surface label.

cle confinement. Figure 2b shows the relationship
between H and R,,/R .

Figure 3 presents the 3 effect on a-particle confine-
ment in configurations with R,,;; = 3.60 m for different
hexapolefields: H = —400, 129, and 600%. In these cal-
culations, we use the pressure profile given by the for-
mulap(s) = p(1 — s)(1 — s*), where s is the flux surface
label. Thisisatypical profile observed in LHD experi-
ments and is frequently used in the analysis. For the
hexapolefield value H = 129%, a does not substantially
change B-particle confinement. For H = —400%, the
fraction of lost particles starting from s = 0.0625
increases with increasing pressure by afactor of almost
1.5, and it is maximum for 3 = 0.036. For H = 600%,
the optimal value of B is approximately equal to 0.027;
however, the [ effect on the confinement in this caseis
not so strong. Large positive and large negative hexa
pole fields decrease the equilibrium  limit; the VMEC
equilibrium code has a poor convergence for H = 600%
and H = —400% at 3 values larger than 0.04.

We aso performed the calculations of the ideal
MHD Mercier stability criterion with the IMC code for
R s = 3.60 m and 3 = 0.01 to define the optimum value
of the hexapole field (Fig. 4). According to this figure,
the case of H = 129% is more stable than the cases with
both large positive (H = 600%) and negative (H =
—-400%) hexapole fields.

4. SUMMARY

The effect of the vertical and hexapole fields on the
collisionless a-particle confinement and the idea
MHD Mercier stability have been numerically calcu-
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Fig. 4. The Mercier criterion calculated with the IMC code
in configurations with R,;; = 3.60 m for B = 0.01 and dif-

ferent hexapole fields: H = (1) —400%, (2) 129%, and
(3) 600%. The pressure profileis the same asin Fig. 3.

lated for the LHD. A significant improvement of the
confinement in a configuration with the inward shifted
axis (R,,;, = 3.45 m) has been found. However, such a
configuration is less stable with respect to the Mercier
modes. In the configuration with R,,;; = 3.60 m, the
effects of the hexapole fields and 3 effect have been
investigated. It is found that both large positive and
large negative hexapole fields do not improve the
o-particle confinement and the stability with respect to
the Mercier modes. Variations in the 3 value only
dlightly affect the confinement in configurations with a
small hexapole field. The configurations with strong
positive or negative hexapole fields have a lower equi-
librium B limit, are more unstable, and have larger
o-particle losses. These numerical results should be
checked in LHD experiments and also can be taken into
account in calculating the new compact 6-period torsa-
tron L-V, the project of which has been designed at the
Institute of General Physics (Moscow, Russia) [17].

Large rotating triangularity (R,,/Ry, = 0.1) can min-
imize the poloidal variations in the second adiabatic
invariant on the magnetic surfaces and significantly
decrease a-particle losses. In this study, we could not
obtain such a large rotating triangularity of the plasma
boundary for the real LHD coil system. Further work
(for example, introducing additional coils) can clarify
this issue, which isimportant for future heliotron reac-
tor devices.
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Abstract—The influence of charge-exchange processes on the spectral line intensities of impurity ionsin the
edge and core plasmas of fusion devicesis considered. It isfound that, at a sufficiently high density of neutrals,
the rate at which the atomic states are populated through charge exchange becomes independent of the neutral
density, which resultsin the saturation of the spectral line intensities. This effect can substantially limit the effi-
ciency of impurity-ion spectroscopy. Conditions under which the saturation effect manifestsitself are examined
for both the edge and core plasma regions in the presence of fast neutral beams. The results of calculations for
the edge plasma are used to interpret the experimental data from the TORE SUPRA tokamak. It is shown that,
in the central plasma region, the intensities of the visible spectral lines associated with the charge exchange of
impurity ions in the course of neutral beam injection decrease (rather than increase, as was expected earlier)
with increasing ion charge. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, spectroscopic methods based on the
observations of radiative transitions between highly
excited electronic states of impurity ions have been
extensively used in plasma diagnostics. The main
mechanism for populating highly excited electronic
states of impurity ions in plasmas of magnetic fusion
devices is charge exchange with neutrals. This is true
both for the edge plasma, in which dow neutrals are
inherently present due to the plasma-wall interaction,
and for the core plasma under conditions of neutral
beam injection (NBI). The advantage of observing the
spectral lines associated with transitions between
highly excited electronic states of impurity ions is that
these lineslie in the visible spectral region.

The specific features of the population of highly
excited ion states through charge exchange in the edge
plasma are related to the fact that the charge exchange
of impurity ions with neutrals occurs not only from the
ground state of atoms, but also from the excited states
populated via electron collisions. In this case, the
charge-exchange processes and the subsequent popul a-
tion of the levelsinvolve a great number of the excited
states of both the neutrals (which serve as a population
source) and the ions populated through charge
exchange. Under these conditions, the population
kinetics of a great number of atomic levels can be
described using a universal approach [1] that takesinto

account the contributions from all of the excited states
and is based on the universal description of the kinetics
of highly excited hydrogen-like states by simple
approximating formulas. This approach was used to
develop a numerical code for calculating the popula-
tions of atomic states and, accordingly, the intensities
of atomic transitions of hydrogen-like ions. This code
was used to examine the spectra line intensities of
hydrogen-like helium ions that were measured near the
ergodic divertor of the TORE SUPRA tokamak [2].

For the core plasma, we a so have analyzed the pos-
sibility of observing the lines of impurity ions in the
spectral region corresponding to transitions between
highly excited electronic levels under NBI conditions.

In both cases, we have observed the saturation of the
lineintensities, which substantially limits the efficiency
of charge-exchange plasma diagnostics. The reason is
that, as the density of neutrals, which are the main
source for charge exchange and ion popul ation, reaches
a certain level, the density of the ions participating in
charge exchange beginsto decrease because of the shift
in their ionization equilibrium. As a result, both the
power of the effective population source and the line
intensities arrive at certain steady levels (become satu-
rated), even although the neutral density increases fur-
ther.

For the edge plasma of the TORE SUPRA tokamak,
the way in which charge exchange influences the spec-
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tral line intensity depends on which of the two experi-
mental regimes is realized: an attached plasma regime,
with a relatively low temperature and a high electron
density, or a detached plasma regime, with arelatively
high temperature and low electron density. Since the
relative neutral and electron densities differ in these
two regimes, the measured spectral line intensities of
the hydrogen-like helium ions used in diagnostics are
also different.

For a plasma core under NBI conditions, it is shown
that the saturation effect depends on the beam geome-
try, which affectsthe degree of saturation of the spectral
lineintensity in the course of charge exchange.

2. KINETIC MODEL

To calculate the populations of the atomic statesin
the central region and at the plasma periphery, it is nec-
essary to solve a self-consistent set of kinetic equations
and ionization-balance equations. Hereinafter, we use
the following notation: o is the cross section for the
process (in cm?); kK = W oLds the rate coefficient of the
process (in cm?/s); a = N,k isthe coefficient of the pro-
cess, d = N,a is the source (the number of eventsin a
unit time per unit density); and N, , are the densities of
the colliding particles (in cm™), which are different for
different processes.

In the central region of the plasmacolumn, there are
the following main sources for populating the atomic
(ionic) statesn:

(i) electron-impact excitation from the ground state
qCXC(n),

(ii) radiative recombination on impurity ions g(n),

(iii) polarization recombination on impurity ions
(),

(iv) dielectronic recombination of electrons onions
q*(n), and

(v) charge exchange from the ground state of neu-
trals g*(n).

When estimating the dielectronic recombination
rate, it is necessary to take into account the effect of the
microfield produced by the surrounding ions, the sec-
ondary ionization by electrons, etc. [3]. The process of
polarization recombination, which increases the radia-
tive recombination rate for ions that have a composite
core, is easy to take into account by introducing the
ratio R(w) of the polarization-recombination coefficient
aPr to the ordinary radiative-recombination coefficient
o [4]:

R(w) = a™'/a" = [N(w)/Z(w)]?,

where N(w) is the effective number of eectronsinside
theion core and Z(w) isthe effectiveion charge. Hence,
polarization recombination can be taken into account
by multiplying the radiative-recombination coefficient
o' by [1 + R(w)]. The factor R(w) is close to unity for

BUREEVA et al.

the small and moderate Z values that are typical of the
existing high-temperature plasma devices. Below, we
will only consider radiative recombination, keeping in
mind that the correction for the factor R(w) has already
been made.

In the edge plasma, in addition to the above pro-
cesses, we should also take into account the charge
exchange from the ground and excited states of neu-
trals, as well as their three-body recombination onto
highly excited levels.

When determining the ionization balance of impuri-
ties, wetake in to account not only the above processes,
but also electron-impact ionization.

Let us write the general set of kinetic equations

describing the population of the level n of an A*¢-D
ion. The population source q(n) has the form

q(n) = GEXtNA+(z—1)+a;eCNA+z, (1)

where o is the excitation coefficient and o, isthe

sum of the coefficients of al the recombination pro-

cesses (including charge exchange) accompanied by

the transition of an electron on to the level n (a;~ =
rr dr cX

a, +a, +0,).

The population kinetics of the levels of A*Z-1 jons
should be considered simultaneously with the ioniza-
tion balance equations relating the densities of A*#-D
and A*Zions,

~a N, +a""'N oy = 0, )
where a'c is the total (summed over n) recombination
coefficient (0™ = a" + a + a®) and ai*" isthe ioniza-
tion coefficient.

Population sources (1) should be considered simul-
taneously with balance equation (2). Determining the
density of A*Z-1 jons from Eqg. (2) and substituting it
into Eq. (1), wefind

a(n) = Nefon+a™ay™/a™]. 3)

It follows from Eq. (3) that the population source

depends on the ratio between the coefficient of recom-

bination o, onto the level n and the total recombina-

tion coefficient a~c. The relative contributions from
excitation and recombination to the population source
depend on the ion structure and plasma conditions. If
recombination is dominant, then the source is propor-
tiona to the density of A"~ ions. As the number of
recombination channels increases, both the numerator

a, - (which is responsible for the population of the

level n) and the denominator o™ (which is responsible
for the ionization balance) in the second term of Eq. (3)
increase. These two coefficients are proportional to the
density of the particles involved in recombination.
PLASMA PHYSICS REPORTS  Vol. 29
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Hence, as the density of the particles involved in
recombination increases, the ratio of these coefficients
remains unchanged; i.e., the popul ation source does not
increase. This meansthat the recombinati on-dominated
source becomes saturated.

3. POPULATION OF THE ATOMIC STATES
AND THE SPECTRAL LINE INTENSITIES
IN THE EDGE PLASMA

Let us consider the kinetic model under the edge
plasma conditions. We will take into account al the
four sources for populating the level n of A*“-1 jons
(radiative recombination includes polarization recom-
bination): g(n) = g=*(n) + g(n) + g¥(n) + g(n).

The first three populating processes are well known
[5]. Let usconsider in more detail the population dueto
charge exchange by the example of charge exchange of
impurity ions with neutral hydrogen in acertain state n
that istypical of the edge plasma conditions.

As an ion and an excited hydrogen atom come
within a distance on the order of the Bohr radius of the
electron orbit, the probahility of an electron overcom-
ing the potential barrier and falling from one potential
well to another sharply increases (~n?).

At a moderate electron temperature, the process
goes in two steps. the electron-impact excitation of
neutral hydrogen and the subsequent charge exchange
with impurity ions (see Fig. 1). In this case, in spite of
the low population of the excited states, charge
exchange from these statesis arather efficient process,
because, as was mentioned above, the charge-exchange
cross section sharply increases with increasing princi-
pal quantum number of the atomic level. We note that
charge exchange from the excited atomic statesis selec-
tive in character. The principal quantum number of the
initial atom, ny (hereinafter, the subscript H stands for
ahydrogen atom), and that of thefinal ion, n, arerelated
by the formula[6]

n=2n,.

Thus, the source of population of the level n via
charge exchange can be written in the form

q7(n) = NNy Vo, Tz, = N, 2Nk, @

CX
= N,z0,

where N; and v are the density and velocity of hydro-
gen atomsin aplasma. Remember that, at low and mod-
erate velocities of hydrogen atoms, charge exchange
occurs from both the ground state and the excited states
of hydrogen. Hence, in expression (4), N includes not
only the ground state of neutral hydrogen, but also the
densities of the excited states, whose populations are
determined by the plasma parameters. The kinetics of
populating these states can be considered in the conven-
tional radiative—collisional model. Below, however, we
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Fig. 1. Scheme of populating the excited levels of a multi-

charged ion A™Z in the course of charge exchange with a
hydrogen atom H.

will use afaster numerical code based on an analytical
representation of the Green function describing the
probability of a radiative—collisional transition from
one energy range to another within the Rydberg energy
spectrum of hydrogen-like atoms [5]. The method is
based on changing from a discrete energy spectrum of
hydrogen-like ions to a continuous spectrum according
to the formula e = 1/n%. Thus, the populations N(€) are
defined by the formula

q(ep)de,

32
2¢e,

N(e) = IG(a, €p) (5)

where G(g, ) is the Green function [1, 7] and q(g,) is
the external source responsiblefor the population of the
excited atomic states. Integration in formula (5) is per-
formed from the minimum energy €., (which is deter-

mined fromtherelatione,;,, =Z% nﬁqax ,Wheren_,. isthe
cutoff parameter for charge exchange) to acertain max-
imum energy €., corresponding to the ground-state
energy.

It follows from the aforesaid that, at low collision
frequencies, the source of population of the A*?ionsvia
charge exchange with neutral hydrogen [see EQ. (4)]
may be approximated by the formula

qcx(€A+(Z—1)")
= Nqu Ny« (N, N, To) EVO'(”H)D;)EZH* ) (6)
Ny
E\/o(nH)D:sz* 0 vHZnﬁag,

where N I isthe density of nuclei, Ny«(ng, N, To) are

the populations of the excited states of atomic hydrogen
H* in a plasma with a temperature T, and density N,,
o(ny) isthe cross section for charge exchange from the
level n, of a hydrogen atom H* onto the level n of an
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AtZion, n=Zny (see [5]), vy isthe relative velocity of
neutrals and ions, and [V o(ny) is the charge
exchange rate. The populations of the excited states of
atomic hydrogen were determined from relation (5),
where we used the sum of g*° and " as an external
source.

The dependence of the charge-exchange cross sec-
tion on the level number n was assumed to be propor-

tional to n* (see [8]), which corresponds to sgz in the

energy variables, where g, is the dimensionless energy
with respect to which integration in formula (5) is per-
formed. It can easily be verified that the integral with
respect to €, (or with respect to n) in Eq. (5) divergesas
n — oo. A similar divergence takes place also when
calculating the statistical sum of hydrogen-like systems
[9]. Hence, in expression (6), the sum over ny, which
determines the overall probability, should be cut at a
certain value n,,. This value can be found by two
methods: either from the condition of equilibrium with
continuum (see [5]) or from the detailed balance
between the neutral and charge-particle densities in
plasma (see [10]). For example, for the He* ion consid-
ered below, both methods give nearly the same value,
Niax ~ 10.

The set of equations for calculating the population
of thelevel n of the A*“~- D ions should be solved simul-
taneously with the balance equation relating the densi-
ties of the A*2-1 and A*? ions. Indeed, the population
sources taken into consideration are related to the par-
ticle densities as follows:

q°“(N) ONeN oz 5, g (MO NNz, o
7
a" (M) ONeN 2, @™(M)D NuN,,.c.

The ratio N /N, is a free parameter of the problem,
whereas N =Y and N Lz are related by the ionization
balance equation. Using Egs. (1) and (2) and taking into
account Eq. (5), expression (4) for the source associ-

ated with charge-exchange can be easily transformed
into the following form:

K Ny/N,
€ rr

cX ion
g (n)=N_.a N .
A K™+ K"+ K*Ny/N,

®)

It can be seen from relation (8) that, at large values
of the parameter N;;/N,, the source g(n) isindependent
of Ny; i.e., the population source saturates. For thisrea-
son, even when charge exchange makes a dominant
contribution to the population of atomic states, theratio
of spectral line intensities calculated disregarding
charge exchange do not differ substantially from the
results of more accurate cal culations and experiments.
However, for most lines, the temperature dependences
of thelineintensities are rather sensitiveto variationsin
the parameter Ni;/N,.

BUREEVA et al.

The basis points of the kinetic model are the follow-
ing. The full kinetic energy-balance equation for A2
ions has the form

(NA+<271)Ne Vo™ + N:+<Z—1> N - D/G(n)Eﬁ(Z“*H*)(g)
—(NooNyroifls, +N,a™ + N (@ +a™)) =0,

2 thr

NZK, o = NK™, a9 = Nk, and

N:+(z,1) accountsfor the charge exchange of the excited

where atr =

impurity ionswith protons. The parameter nﬁax , Which

is the upper limit for the summation, was found from
the balance of the neutral and charged particles by anal-
ogy to [11]. For the helium ion considered below, we

have nS. = 10.

Ignoring the three-body recombination coefficient
a® in Eq. (9), we find the following expression for
N op:

A

NA+Z = NA+(z-1)
AZ
don Ninax NA"(Z*l)(n) |j:x (10)
N Vol ey + z mNHI‘/Un horz-ne e
n>3

X

N, Vo, T +a +a
A "H
The total population rate of the level nisequal to

qA+(Zfl)(n) = NA+(271)Ne|:VO'nUQXt
(11)

d
+ NA*ZNH I:Vo-nD:izH + NA+zarr1r + NA+zanr.

We express all the quantitiesin Eq. (11) through the
density of the A*?-D jons using ionization balance
equation (10) to obtain

qA+<Z—1)(n) = N z-nNe Ij/Gn'j:Xt

X

d
+Nas(Ny(n) Vo I, +ay +ay)

o 12)
Ne D/GUAOQZ—D + Z b a-n(N)N, D/Gn[f;(z,l,*w

X n=>3
N, Vo, F5 +ao +a
A"H

where we introduce the relative level population
N +z-n(N)
NA+(Z—1)(1) .

L et us determine the dependences of the population
sources on the plasma parameters and the atomic quan-

tum numbers using the approximating formulas [5] for
the rate constants of ionization and radiative recombi-

bA+(zf1)(n) = (13)
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nation (omitting dielectronic recombination for nuclei)
as functions of these parameters. The corresponding
expressions for the probabilities of elementary pro-
cesses are given in the Appendix.

Using these dependences, we can describe the pop-
ulation sources as functions of the given parametersin
the explicit form

—8NA +(2Z~ 1)Ne 1

P
I:II%EIDDI:I

q,.en(n) = 10 —:C(Be V(B n’)
[l
[l
O
+ 2 |j\||-qj 2x10° 7 H
Mo 0
[1+ B z bt ”(n)}%
y EG(Bl)e 0
[Nig 2% 10° v B
[“ N Dsl/\(sl)z b } :

where the main dependences on the atomic and plasma
parameters are separated out and the results of numeri-
cal approximations are taken into account by the func-
tion G() and the lowly varying functionsV, ', and A,
which are defined by relations given in the Appendix.

Let usanalyze expression (14) for the case of helium
nuclei (Z = 2), which is of interest for experimental
applications. It can be seen from expression (14) that
the population source g depends strongly on the two
parameters n,,,, and Ny /N,. Figure 2 demonstrates the
sensitivity of the calculated relative popul ations b(n) of
the excited levels of helium ions to variations in the
parameter Ny/N,. In the calculations, we used expres-
sion (14), in which the parameter N;/N, controls the
population source related to the charge exchange of
helium ionswith neutrals. It can be seen that the contri-
bution from charge exchange becomes significant for
Nu/N. = 1073, However, as the neutral density increases
further, the population source related to charge
exchange (and, accordingly, the population b(9)) does
not increase because of the simultaneous shift of the
ionization equilibrium; i.e., the population source
becomes saturated.

The model described was used to calculate the pop-
ulations of the excited levels and the spectral line inten-
sities of helium ionsin a hydrogen plasmain the TORE
SUPRA tokamak. We calculated the intensity ratios for
the 54, 74, and 94 helium-ion transitions (which
depend on the populations of the 5th 7th, and 9th levels,
respectively) and the intensities of the 4-3 transition
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Fig. 2. Relative population b of the level n=9 of helium as
a function of the ratio Ny/N, of the neutral density to the

plasma electron density.
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Fig. 3. Temperature dependences of theintensity ratio of the
4-3 and 54 transitions: (a) without and (b) with allowance
for charge exchange. The solid lines show the measured
dependences [2].

(which depends on the population of the 4th level). The
calculated intensity ratios are shown in Figs. 3b, 4b,
and 5b along with the experimental results. Figures 3a,
4a, and 5a show the corresponding ratios calculated
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temperature regions are calculated with the parameter
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without alowance for charge exchange; in this case,
electron-impact excitation from the ground state makes
the main contribution to the population of the excited
states. These results coincide with similar calculations
from [2]; however, they do not allow one to distinguish
between two different edge plasma regimes (the
attached and detached plasma regimes), although the
experimental data indicate the existence of these
regimes.

Taking into account the charge exchange of ions
with neutral hydrogen (see Figs. 3b, 4b, 5b) allows us
to capture a certain difference between these regimes.
Charge exchange influences the intensity ratio, because
the observed transitions correspond to highly excited
ion states, for which the population through charge
exchange dominates over the electron-impact popula-
tion.

As is seen from expression (14), the contribution
from charge exchange to the total population source of
the helium levels is determined by the neutral density,
which is characterized by the parameter Ny/N,. The
measured temperature dependence of the electron den-
sity isshownin Fig. 6. The neutral density asafunction
of the temperature was not measured directly; however,
in view of the existence of two plasma regimes, we can
suppose that the temperature dependence of the param-
eter Ny/N, is different for these two regimes.

Within arelatively narrow temperature range (from
10 to 60 eV), the neutral density near the plates of the
ergodic divertor of the TORE SUPRA tokamak is pri-
marily determined by neutral fluxes from the wall and,
thus, varies more slowly than the electron density.
Therefore, the curve Ni(T) should be flatter than the
curve Ng(T). It follows from thisthat, in aregion with a
low temperature and high plasma density (the attached
plasma regime), the value of the parameter Ng/N,
should be smaller than in aregion with a high tempera-

N,, cm™3

3.0x 1013
2.5 x1083F
2.0x 1083t
1.5x 1083
1.0 x 1013+

0.5 % 1031

1 1 |
0 10 20 30 40 50 60 70
T, eV

Fig. 6. Measured dependence [2] of the plasma electron
density Ng on the temperature T,
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ture and low density (the detached plasma regime).
Hence, the contribution from charge exchange in the
detached plasma regime is greater than in the attached
plasmaregime.

The results of calculations depend on the choice of
the free parameter Ny/N.. However, the value of this
parameter must be the same for al of the lines
observed, which imposes restrictions on the choice of
this parameter. For a particular pair of lines, one can
achieve a better fit to the experiment than in Figs. 3b,
4b, and 5b; however, thiswill result in asignificant dis-
crepancy for the other lines. The data presented in
Figs. 3b, 4b, and 5b correspond to the optimum choice,
which provides the best fit to the experimental data for
all of the lines observed. Of course, the scatter in the
experimental data is rather wide and, moreover, the
neutral density distribution can vary from shot to shot.
Nevertheless, such achoice of identical dependences of
the relative neutral density Np;/N, on the temperature
enables us to find the neutral density distribution in the
edge plasma in the above two regimes. This depen-
denceis presented in Fig. 7 with the corresponding for-
mulas describing the fit curves. One can see that the
neutral density decreases more sharply in the attached
plasmaregime. Unfortunately, there are no experimen-
tal data from independent measurements of the hydro-
gen line intensities with which we could compare the
dependences shown in Fig. 7.

We note that the possibility of varying the contribu-
tion from charge exchange is substantially limited by
the saturation effect. Numerical calculations show that,
for the parameter values under consideration, the popu-
lation source related to charge exchange becomes inde-
pendent of the neutral density starting from the value
Ny/N. = 107 (see Fig. 6). Moreover, as can be seen
from Fig. 2, charge exchange significantly affects the
population of atomic levels and, consequently, the
absolute line intensities, whereas its influence on the
intensity ratio turns out to be much wesaker. Thus,
although the level populations calculated with and
without allowance for charge exchange are signifi-
cantly different (see Fig. 2), theintensity ratio isamost
the samein both cases. The saturation of the population
source makes this effect even more pronounced
because it aso reduces the influence of charge
exchange on the measured line intensity ratio.

4. SOURCES OF THE ION LEVEL POPULATION
THROUGH CHARGE EXCHANGE IN THE CORE
PLASMA

In a high-temperature core plasma, the charge
exchange of fast neutral beams occurs mainly from the
ground state. For beam energies of several hundred
kiloelectronvolts, the probability of capturing electrons
by excited impurity ionsis rather low [8].

For the core plasma, we apply the same kinetic
model as for the edge plasma and allow for the change
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Fig. 7. Approximated temperature dependence of the
parameter Nz/Ne. The symbols show the numerical results

for the detached (squares) and attached (diamonds) plasma
regimes. The solid curves are the analytical fits (1) N/Ne =
27.503T-361% and (2) Niy/N, = 4.5835T 2% for the low-
and high-temperature ranges, respectively.

in the charge-exchange rate constants at high neutral—
impurity ion collision velocities that are characteristic
of NBI experiments. At the same time, it is of interest
to take into account the beam geometry in expression (5)
by introducing a geometric factor g < 1 characterizing
the plasma region occupied by the beam,

CX
i K. N./N
qcx(n):NA+(z_1)a'°nN n_"H e

. . (5)
KT+ K"+ gk NG/N,

Thisfactor accounts for the fact that the neutral density
inthe interaction region differsfrom the averaged (over
the entire plasma) neutral density, which determinesthe
shift of theionization balance (in the previous case, this
was unimportant because of the absence of beams).

Using Eq. (15), we write the expression for the pop-
ulation rate or the level n of an A*¢-D jonin the form

0,(n)
(16)

rr dr cX
= N NG| K+ K" En T K T K NH/NQ}
A+ e n

- .
K +K™ + gk Ny/N,

In expression (16), as in the previous case, the partial
values of the rate coefficients enter in the numerator,
whereas the total values summed over all n enter in the
denominator.
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Substituting typical values of the collisiona rates estimate for the total population source of the excited

from [8] into expression (16), we find the following

—14

4 ext ion 10

states of impurity ions:

(Z+ 1)ny(ny/n)° + (NL/Ng) x 10 (Z + 1)°/25°0

q(n) = NA+(Z—1)Ne%Kn TK

wheren, isthe principal quantum number of the ground
state (below, n, = 1, 2), and g is the geometric factor

determining the contribution of charge exchange to the

ionization balance.

-14 -5 3 SD’
107(Z + 1)n, + g(Nu/N,) x 0.5 x 107°(Z + 1)%/25°0

(17)

Factoring out the ionization cross section and taking
into account expressions (15) and (16), we find that

q(n) [em™s™] = Bg*(n), (18)
where

B = 10°N e yNe(Z + 1) °G((Z + 1) Ry/n; T)exp[~(Z + 1)°Ry/m;T)],

v, 107z + 1)n,(n,/n)> + (NG/N,) x 107°(Z + 1)%/25°

gr(n) = OnC

and the functions G(x) and V are defined in the Appen-
dix.

For the parameters characteristic of the core plasma,
we calculated the influence of the saturation effect on
theintensities of the spectral lines of ionswith different
charges Z at different values of the NBI geometric fac-
tor. The saturation effect is clearly demonstrated in
Figs. 8 and 9. It can be seen that this effect is more pro-
nounced for high-Z ions. Thisresult correlates with the
experimental observations: as the ion charge increases,
the role of charge exchange increases, but the intensity
of the populated lines decreases because of the satura-

q (Nu/N,)
1.2

0.9

0.6

0.3

log(Ny/N,)

Fig. 8. Dependence of the source g*(n) on the parameter
Ng/Ne for g = 1 and different values of the ion charge num-

ber: Z= (1) 2, (2) 6, (3) 10, and (4) 30.
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10™(Z + 1)n, + g(NL/N,) x 0.5 x 107°(Z + 1)*/25°

tion effect. Probably, that is why the line emission of
low-charge (lithium) ionsis only observed in the LHD
device (see[12]).

A comparison of Figs. 8 and 9 showsthat taking into
account the geometric factor g leads to a stronger
dependence of the population source on theratio Ni/N,,
which is explained by a smaller shift of the ionization
equilibrium in plasmaunder the action of neutral beams
with smaller values of the geometric factor. In the lim-
iting case of aninfinitely small geometric factor (which
corresponds to narrow diagnostic beams), the local
charge-exchange effect increases proportionally to the

q (Nu/N,)
6.0

4.5

-10 -8

Fig. 9. Sameasin Fig. 8 for g=0.2.
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neutral beam density without appreciably reducing the
number of charge-exchange ions. Of course, the
observed signal decreases with decreasing geometric
factor. Hence, taking into account the geometric factor
isimportant for analyzing the spectral lineintensities of
impurity ionsin plasma.

5. DISCUSSION AND CONCLUSIONS

The spectral line intensities of impurity ions
observed in the edge and central regions of a tokamak
plasma have been examined using self-consistent solu-
tionsto the equationsfor the ionization equilibrium and
the population kinetics of atomic levels.

It has been shown that the population through
charge exchange significantly affects the spectral line
intensities of impurity ions in a hydrogen plasma. An
expression has been derived for the total population rate
of the level n as a function of the electron temperature
and therelative neutral density Ny /N.. It hasbeen found
that, at high values of the ratio Ny /N,, the contribution
from charge exchange to the population rate does not
depend on the neutral density (the so-called “ saturation
effect”). Thereason isthat the line intensities are deter-
mined by the product of the neutral density and the den-
sity of charge-exchange nuclei. When charge exchange
makes the main contribution to recombination, the den-
sity of nuclei is inversely proportiona to the neutral
density, so that their product isindependent of the neu-
tral hydrogen density. In other words, the increase in
the population and the shift of the ionization equilib-
rium (both caused by charge exchange) balance each
other; as aresult, the line intensities become indepen-
dent of the neutral density in the system. Thiseffect can
substantialy limit the efficiency of the charge-
exchange plasma diagnostics under NBI conditions.

The intensities of the experimentally observed lines
associated with transitions between the states of hydro-
gen-like He* atoms in the edge plasma of the TORE
SUPRA tokamak have been calculated. Taking into
account charge-exchange processes makes it possible
to qualitatively explain the experimentally observed
fact that the dependences of the intensity ratios of the
spectral lines on the temperature are different in differ-
ent plasmaregimes. It has been shown that, in the edge
plasmatoo, the saturation effect can limit the efficiency
of charge-exchange diagnostics.

The results obtained allow us to conclude that it
makes no sense to increase the neutral density in the
device aboveacertainlevel inorder to moreclearly dis-
play the effect of charge exchange with neutras
because, after reaching this critical value, the results
will not change.
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APPENDIX

The general expressionsfor the rates of main atomic
processes have the form [5]

t_ 1 [RYEID
o[ = 10° ST T 1CAEEL G'(B)e”, (A.1)
where
. _AVB(B+1) o _AE_ 2o 1
G'(z>1) = v B=%=2 RyHL el
o, = 10°=L QDﬂDgG(B)eB 2
T 21+ 1Y'HE, [P '
where
G(Z>1)_B+X! B_ T - n2T1
1
o = ﬂa"ﬁgzmgi (A.3)
3./3m(137)

x[In(1.78B,) - Ei(-B) L + ﬁ—ﬂ = Non i—: ,

where N ,'for isthe Kramersradiative-recombination rate
coefficient [1], x and X' are numerical factors, 3, =

Z° Ry
an

The charge-exchange rate with allowance for the
relation between quantum numbers of the initia and
final statesisequal to

canebH[ﬂj
VHO0 167 G
After substituting all the main dependences, the

expression for the total population rate of the level n
takes the form

,andn, =

o = o = maiZ. (A.4)
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:
ThefunctionsV, G, I, and A, which enter in expres-
sions (14) and (18), have the form

G- &

V(B n2) - 1 n en i

v 1D§ G(B.) ’
A

n

(A.5)

[31

eEl B]D

O

JB.A n

B+ B
= In(L.78B,) —€ Ei (<By) (L +By):

_Z°Ry
Bl - T .

M(B,n°) = -

G(B.) =

A(B)

The functions V, N, and A are slowly varying func-
tions of the temperature and are on the order of unity.
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Abstract—A study is made of the modification of the spectra of electron cyclotron emission from an ECR
heated plasmain atoroidal magnetic confinement system into which the heating radiation islaunched from the
low-field side. It is shown that, at frequencies close to the heating frequency, cyclotron emission can become
more intense because of the deformation of the distribution function of the resonant electrons. This effect can
be used to diagnose the dlightly pronounced quasilinear perturbations of the electron distribution in the thermal
energy range, which aretypical of experimentson ECR plasma heating. Results of aqualitative analysis carried
out for model electron distribution functions are presented, and examples of three-dimensional numerical sim-
ulations of acircular tokamak are described. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The modification of the electron distribution func-
tion during electron cyclotron resonance (ECR) absorp-
tion of microwaves in toroidal plasmas is most pro-
nounced in experiments on ECR current drive with
high-field-side (HFS) or oblique launch of microwave
radiation. In this case, the microwave power is depos-
ited in high-energy suprathermal electrons. In experi-
ments on ECR heating, microwaves are usually
launched in a quasi-transverse direction from the low-
field side (LFS). In an optically thick plasma column,
the microwave power is deposited mainly in the low-
energy electrons, whose distribution only slightly devi-
ates from an equilibrium distribution because of the
efficient Coulomb collisions between plasma particles.
Consequently, under the conditions prevailing in
present-day experiments on ECR plasma heating, the
perturbation of the distribution function of the resonant
electrons leads merely to a dight displacement and
expansion of the energy deposition region and does not
have any significant influence on the formation of the
global density and temperature profiles. Nevertheless,
such effects can play a decisive role in auxiliary ECR
heating aimed at suppressing MHD instahilities of the
plasma column, in which case the position of the
energy deposition region should be controlled with a
high degree of accuracy.

The interaction of an intense microwave field with
the plasma el ectrons perturbs the electron velocity dis-
tribution function and, as a result, modifies the spectra
of the electron cyclotron emission (ECE) from the
plasma. We can cite the following three main effects
responsible for this modification:

(i) The formation of a high-energy tail in the distri-
bution function leads to the appearance of the electrons
whose cyclotron emission is weakly absorbed by the

plasma because of the relativistic shift of the resonance
frequency. This results in a nonthermal feature in the
emission spectrum in the frequency range below the
heating frequency [1, 2].

(ii) The formation of the so-called quasilinear pla-
teau (i.e., the flattening of the distribution function of
the resonant electrons due to their interaction with the
microwave field) leads to the degradation of the reso-
nant absorption at frequencies close to the heating fre-
guency. Because of the appearance of a peculiar trans-
parency window in the spectrum of electron cyclotron
absorption at the fundamental frequency, the intensity
of emission from the plasmalayer in the corresponding
frequency range becomes higher than the thermal level.
It isimportant to note that the increase in the emission
intensity above the thermal level isobserved even when
the total number of resonant electrons deviates only
dlightly from the equilibrium value.

(iii) The steep gradients of the electron distribution
function that form at the boundaries of the resonance
region in velocity space can lead to an effect opposite
to effect (ii), specifically, a decrease in the intensity of
plasma emission because of an enhanced electron
cyclotron absorption of microwavesin acertain narrow
frequency range.

In this paper, we discuss the possibility of measur-
ing the quasilinear modification of the electron distribu-
tion function during the ECR heating of the main
plasma component when microwave energy is depos-
ited inthe low-energy thermal electrons. The diagnostic
method proposed hereis based on measurements of the
spectraof cyclotron emission from atoroidal plasmain
arange of frequencies that are close to the heating fre-
guency and at which the ECE intensity can increase
(regardless of the presence of high-energy electronsin
the plasma) because of the deformation of the distribu-
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tion function of the resonant electrons. We will focus
below on an analysis of effect (ii), which is associated
with the quasineutral transparency window and is most
pronounced when the fraction of suprathermal elec-
tronsis small. Effect (iii) is presumably too weak to be
detected by conventional methods. Effects (ii) and (iii)
werefirst noted by Giruzzi [3], who carried out afairly
detailed numerical calculation of the nonequilibrium
ECE spectrafor experimental conditions close to those
in the T-10 tokamak. To the best of our knowledge, itis
only recently that the first experimental results in the
FTU device have been obtained showing that the peak
of the ECE at frequencies close to the heating fre-
guency can be interpreted as being caused by kinetic
effect (ii) rather than by the local heating of the micro-
wave power deposition region [4-6].

Conceptually, our study is close to paper [3]. In[7],
it was shown, however, that the quasilinear diffusion
operator used in that paper is, generaly speaking,
incorrect. We will use a simpler quasilinear operator
obtained from the general expression[7, 8] inthe “rect-
angular magnetic well” approximation. That this
approximation is workable was demonstrated, e.g., by
Timofeev and Tokman [7], who applied it to the cur-
rent-drive problem. Using asimplified kinetic model of
the microwave heating made it possible to analyze the
problem qualitatively and to obtain simple analytic esti-
mates.

The expected maximum increase in the radiation
temperature T, can be roughly estimated by assuming
that resonant absorption tendsto zero due to quasilinear
effects, provided that the number of resonant electrons
is essentially unchanged. The result is formally the
same as that for an optically thin plasma slab:

T, =14T,, D

where 1, is the optical depth of the dab in which the
electrons obey a Maxwellian velocity distribution with
the temperature T.. Under the condition that Coulomb
collisions do not hinder the formation of aplateauinthe
electron distribution function, this formulais valid for
any value of the parameter 1. We can see that the effect
in question can be important when the optical depth of
the plasmais sufficiently large.

In order to simplify the formulas, we consider the
case in which the heating radiation and detected cyclo-
tron emission both propagate strictly transverse to the
toroidal magnetic field and correspond to an extraordi-
nary wave at the second cyclotron harmonic. Our paper
is organized as follows. In Section 2, we describe the
set of quasilinear equations used to determine the elec-
tron vel ocity distribution function at each magnetic sur-
face with allowance for Coulomb collisions and the
interaction of resonant electrons with the heating
microwavefield. In Section 3, we consider the equation
of radiation transfer and use this equation to evaluate
the perturbations of the ECE spectra in two typical
cases: the collisionless distribution function and the

SHALASHOV, SUVOROV

distribution function corresponding to perturbations in
anarrow resonance region in velocity space. In Section
4, we present examples of numerical calculations of the
modified ECE spectrain a circular tokamak. The most
laborious analytic manipulations are given in the
Appendix.

2. MODEL OF ECR PLASMA HEATING
BY MONOCHROMATIC RADIATION
IN A TOROIDAL MAGNETIC DEVICE

In order to consider ECR heating of the electron
plasma component in a toroidal magnetic device, we
formulate a boundary-value problem in which a quasi-
steady finite-aperture monochromatic microwave beam
is launched into the plasma from the low-field side.
Under the assumption that the characteristic time scale
of the propagation of perturbations along the magnetic
field lines is much shorter than the time scales of the
processes that will be considered below, the electron
distribution function averaged over high-frequency
oscillations in a microwave field can be treated as uni-
form at each magnetic surface.

Under the combined action of the magnetic field
nonuniformity and rotational transform, the nature of
the electron cyclotron absorption in a toroidal system
changes in a specific manner. When moving over a
magnetic surface, an electron repeatedly crosses the
microwave beam, the magnetic field strength being dif-
ferent at each crossing. Under ECR conditions, this
leadsto afinite spread in frequency detuningsand even-
tually resultsin astochastization of theinteraction of an
electron ensemble with monochromatic radiation. If the
relative change in the velocity of an electron that has
crossed the microwave beam is small, then, after aver-
aging over many revolutions along thetorus, we can say
that the electrons in velocity space become subject to a
kind of Brownian motion, in which case their distribu-
tion function is described by a Fokker—Planck diffusion
equation. Following [10, 11], we assume that, at each
magnetic surface, the process just described is in a
sense analogous to electron heating in a homogeneous
magnetic field by radiation with a finite-width spec-
trum. This assumption allows us, first, to work with the
variation of the frequency of the external radiation
rather than the variation of the gyrofrequency at a cer-
tain magnetic surface in the heated region and, second,
instead of considering the problem of atoroidal plasma,
to consider the problem for a plane slab geometry, in
which case the electron distribution function at the sur-
faces of a constant magnetic field is uniform, but the
effective heating radiation has a finite-width noisy
(d-correlated) frequency spectrum because every elec-
tron repeatedly crosses the microwave field region with
random phases. As aresult, the problem can be treated
in the standard quasilinear theory describing the
dynamics of the electron distribution on time scales
much longer than the period of electron oscillations in
amicrowave field, the period of electron gyration, and
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the period of electron drift motion along the magnetic
field lines (the bounce period).

When the width of the microwave power deposition
region is much smaller than the mgjor radius of the
plasma column, we can assume that the magnetic field
depends linearly on the coordinate. Let the magnetic
field increase linearly in space in a certain direction z,,

H(2) = (1+Z/Ly)Ho HoUz 2

and let the heating radiation propagate in the positive
direction of the z axis, which is perpendicular to the
magnetic field. In this case, the cyclotron resonance
condition, which is determined by the relativistic
dependence of the electron mass on energy, aso
depends on the z coordinate:

We(z V) = sooH(z)A/l—vzlc2
= swy(0)(1+ /Ly, — v2/2c?),

where s is the number of the cyclotron harmonic,
wy(2) = eH(2)/mc is the nonrdativistic electron gyrof-
requency, Vv is the electron velocity, and c is the speed
of light in free space. The approximate equality in con-
dition (3) is obtained for |z|/Ly < 1 and v/c < 1. The
energy of the electronsinteracting resonantly with radi-
ation at a fixed frequency increases as the spatial point
under consideration is shifted along the z axis in the
HFS direction.

The effective spectrum of the heating radiation is
determined by the distribution of the electromagnetic
field intensity in a microwave beam. To simplify the
mathematics, we make the following three assump-
tions: (i) in the region where the radiation is launched
into the chamber, the microwave intensity distribution
over the beam cross section (whose planeis perpendic-
ular to the magnetic field) isrectangular; (ii) every time
an electron crosses the heated region, it can pass
through any point of the cross section of the magnetic
surface with equal probability; and (iii) theray trajecto-
ries of the beam are straight and its cross sectionislarge
enough that most of its spatial Fourier harmonics prop-
agate almost transverse to the magnetic field. Under
these assumptions, the effective spectral radiation
intensity at the entrance to the energy deposition region
(z= z,) can be described by the following distribution
[10, 11]:

3)

0 = Oo®P(w), 0O (ay wy+Aw)

w

Ep, WO (wy, W+ Aw),
_ I::’inp

|, = —IB
07 AW’

where P, isthetotal input power of theincident micro-

wave radiation and Sis the area of the magnetic surface

at which the radiation begins to be absorbed. The char-
acteristic frequency of the effective spectrum, wy, =

)
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swy(1 + zy/Ly), is related to the coordinate z, of the
starting point of the cyclotron interaction region, and
the effective spectrum width Aw = SAwy, is determined
by the variation Awy, of the resonant electron gyrofre-
guency at the intersection of the magnetic surface with
a finite-aperture quasi-optical microwave beam. The
form factor ®(w) is determined by the geometry of the
magnetic surfaces in the heated region. Thus, when a
microwave beam launched into the device is symmetric
about the equatorial plane and the beam cross sectionis
sufficiently small, so that the circular cross section of
the magnetic surface can be regarded as parabolic, we

have ®(w) = . /Aw/(w— wy), which indicates that the

form factor has a singularity because, in the equatorial
plane, the electrons cross the microwave beam at an
essentially constant magnetic field. When the power
deposition region is outside the equatorial plane of the
torus and the cross sections of the magnetic surface in
the heated region can be regarded as straight lines, we
have ®(w) = 1. Note that the intensity |, of effective
spectrum (4) can be obtained from the following simple
considerations: since the energy acquired by the elec-
trons in a microwave field is rapidly redistributed over
the magnetic surfaces, we can assume that, regardless
of the actual cross section of the microwave beam, the
total microwave power is uniformly launched through
the surface of a certain effective torus of area S.

The evolution of the electron distribution function
f(t, z v) isdescribed by the following set of quasilinear
equations:

eff

quf+|—cf1 al_‘*’ = eff

of _ |
az W w "

5 "
Here, Ly is the quasilinear diffusion operator deter-

&)

mined by the spectral intensity Iif (t, z, w) of the heat-
ing radiation at each spatia point; L. is the Coulomb
collision integral; and p, is the electron cyclotron
absorption coefficient calculated for the instantaneous
distribution function f(t, z, v). Thefirst of Egs. (5) isthe
kinetic equation describing the electron distribution
function with allowance for ECR heating (in the quasi-
linear approximation) and the subsequent redistribution
of the absorbed energy due to Coulomb collisions
between the electrons. The second of Egs. (5) is the
radiation transfer equation, which describes the spatial
distribution of the heating radiation intensity, thereby
providing the coupling between the solutions to the
kinetic equation that correspond to different magnetic
surfaces. Since plasma emission is very sensitive to the
spatial structure of the plasma dab, it is essential to
self-consistently take into account the dynamics of the
distribution function and heating radiation when calcu-
lating the ECE from the plasma.

Taking into account the fact that, during microwave
heating of the electrons, the perturbations of their dis-
tribution function are usually not so strong and local-



848

ized in phase space, we use the linear Coulomb colli-
sion operator. Assuming that the collisional relaxation
of the perturbed distribution function is governed
exclusively by collisions with the bulk electrons, which
obey a Maxwellian velocity distribution, and by the
angular scattering of the electrons by immobile ions,
we can reduce the Landau collision integral to the form
[12]

10 2D f sa 2, 0f
26u EDCQ) +2uf% Ve S(1—5)68,(6)

u

e dx
f Ty ’

L.f =

Dc(u) = )

S Dl 1 2 —x
v, = Zy+—[le " + 2—u’)[x’e d>Cl] 8)
u 55 “* e )I [

Here, u = v/v, is the absolute value of the electron
velocity normalized to the thermal velocity v, =

/2T /m, of the background electrons, s= cosf is the
cosine of the electron pitch angle, v, =

4TIE4Neln/\e/m§ vg is the effective collision frequency
of the thermal electrons, and Z; is the effective ion
charge number. The temperature T, and density N, of
the background electrons are assumed to be fixed,
ensuring that quasilinear equations (5) will have a sta-
tionary solution corresponding to a nonzero absorbed
microwave power and a given finite energy of the elec-
tron plasma component. For simplicity, we assume that
the parameters of the background electron distribution
are uniform over the region of microwave heating.

When the heating radiation propagates transverse to
the external magnetic field, the cyclotron interaction of
the electrons with a high-frequency noisy field gives
rise to a quasilinear diffusion in the direction of their
transverse velocity. In spherical coordinates, the corre-
sponding diffusion operator has the form [13—-15]

Lo f

ql

109 f
—ZD—[U (1- s)Dqlmau

Pu

_0[ 24 2 ruof  ofg
as[s (1-8)Bargg, - aéﬂ

Safg}
uas

c

€))

The quasilinear diffusion coefficient D is proportional
to the heating radiation intensity at the resonant fre-

quency, Dy O Iif (t, Z W(Z W). We express the solu-
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tion to the radiation transfer equation in terms of the
optical depth t to obtain

res)

Vqlcb((or%) Dql(u S) )

‘ (10)
1(t,z, W) = J’uw(t,z',w)dz',

Dq(t,z,u,s) =

where v isthe characteristic quasilinear frequency and

Dy determines the explicit dependence of the diffu-

sion coefficient on the electron velocity (see, e.g., [16]).
Obvioudly, the quasilinear diffusion coefficient is non-
zero only in the local region of the phase space defined
by the condition w,.,(z, u) O (wy, Wy, + Aw). Theinterval
of resonance energies of the electrons involved in
cyclotron interaction is different at different points of
the coordinate space. As the point shifts in the HFS
direction, thisinterval shifts toward higher energies.

From the general expression for the absorption coef-
ficient in the case of an arbitrary eectron velocity dis-
tribution [16], we obtain the following relationship for
the case of strictly transverse propagation:

2.~ 0f of
=)D 1] 5353

© 1
T —J’du J'ds%f(l
0 0 D (1 1)
O
x 8( W0~ Wes(2 U)) ]

Here, the proportionality coefficient can be determined
from the condition that, for a Maxwellian distribution,
this formula should lead to the known expressions for
the optical depth 1, of an equilibrium plasma dlab in a
linearly nonuniform magnetic field [11].

We integrate three-dimensional equations (5) with
operators (6) and (9) over the region determined by the
inequalities0 <u< o, 0 <s< 1, and z> Z,. The condi-
tions at the boundaries of thisregion are as follows:

=12, (12)

In deriving these conditions, we took into account the
facts that, in the case at hand, the distribution function
is even over the electron pitch angle and that the radia-
tion begins to be absorbed resonantly only at a certain
boundary z, of the interaction region. At the boundaries
u=0ands=1 (which arise because we are working in
spherical coordinates), the only requirement is that the
derivatives of the distribution function should be finite.
The numerical code used in our simulations was
devised to solve an initial-value evolutionary problem.
However, we are interested here in stationary solutions
to Egs. (5), so that, for our purposes, it is sufficient to
prescribe only the electron density N, at theinitial time.

fl,ee =0, 0f/ds|,_, =0, |

eff
) |z=zo
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QUASILINEAR MODIFCATION OF THE SPECTRA

As an example, we present the expressions for v,

Dq » and T, for two cases that are most important for
practical application: heating by an extraordinary wave
at the second cyclotron harmonic (an X2 mode) and
heating by an ordinary wave at the fundamental cyclo-
tron harmonic (an O1 mode). If we assume that each of
these modes propagates transverse to alocally uniform
magnetic field, then, for v/c < 1, we obtain [11, 13]

_ e’ Pinp D = UZEH—SZ for the X2 mode
q = ’ q = y
c3m§ SAw & for the O1 mode

_ T 2Wply (13)

TO_Z e ¢

Here, q= oorf/oo,i (0), with wy, the electron plasma fre-
guency, and . = v./c. For an ordinary wave, we have
n = n, where nisthe refractive index. For an extraordi-
nary wave, the expression for n also includes the mode
polarization effect: n = n(3 — g/2)%(3 — Q)%

We now qualitatively describe the character of the
solutions to Egs. (5). When the heating radiation is
launched from the low-field side, the microwave power
begins to be deposited in those regions of the plasma
column in which the radiation interacts resonantly with
low-energy electrons. Because of the absorption of the
microwave field, the distribution of the resonant elec-
trons over transverse energies is smoothed out; as a
result, the microwave power absorbed at agiven spatial
point decreases and the heating radiation penetrates
into the region of a stronger magnetic field. During the
formation of a quasilinear plateau in the distribution
function, the energy deposition region is displaced in
space, which corresponds to energy transfer to elec-
trons with increasingly higher energies. In the absence
of Coulomb collisions, this process will lead to a spe-
cific steady state in which the plasma column becomes
fully transparent to microwave radiation and ECR heat-
ing terminates. Under the combined action of the reso-
nant field and Coulomb collisions of resonant electrons
with nonresonant ones, a quasi steady distribution of the
resonant electrons forms that ensures the absorption of
afinite (but different from that in equilibrium) fraction
of the incident microwave power. Note that the model
under consideration is applicable only when the rays
forming the microwave beam are not tangent to the
magnetic surfaces in the energy deposition region, i.e.,
when the el ectrons are heated simultaneously at several
neighboring magnetic surfaces.

3. QUALITATIVE THEORY
OF THE MODIFICATION OF THE ECE SPECTRA

The quasilinear deformation of the electron distribu-
tion function modifies the ECE spectranear the heating
frequency and its harmonics. We consider only that
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ECE component whose polarization and harmonic
number coincide with those of the heating radiation,
namely, emission at the second harmonic of an extraor-
dinary wave propagating transverse to the magnetic
field. In this case, the emission line is broadened dueto
therelativistic dependence of the mass of an electron on
its energy; the Doppler broadening of the line can be
ignored when the width of the radiation pattern of a
receiving antennais sufficiently small, 8, < 3¢/n [11].
We characterize plasma emission by the effective
radiation temperature T,, which isrelated to the spectral
radiation intensity by the Rayleigh-Jeans formula and
is determined from the general equation of radiation
transfer along the rays of a microwave beam [17],

dT 21m)°c? Ece
d_lr = Au)_UmTri Tr = (nz()DZ Ioo

(14)

Here, Y, is the absorption (reabsorption) coefficient
and A, isthe properly normalized plasmaemissivity for
agiven normal mode,

Ay

o 1

O 2TeIdu IdS{ u*(1-5") Dy (00— wes(z, U))} ()
0 0

where the proportionality coefficient isthe same asthat
in relationship (11). Note that for a Maxwellian distri-
bution function, expressions (11) and (15) yield a

Kirchhoff's law relating the emissivity Ag to the
absorptivity pg) in an equilibrium medium:

A, = Tello. (16)

The radiation transfer equation for the spontaneous
emission from an infinite plasma slab has the solutions

ao [X(z) = T(e0 )]
o o= J’Aw(Zl)EXpD ! 0dz,,
oro 2 0 —W(z) O

(17)

4

W(z) = Iuw(zi)dZ'l,

where the temperatures T, and T, characterize radia-
tion propagating in the positive and negative directions
of the z, axis and 1(z)) is the optical depth of afinite
plasma slab. For further analysis, we choose the z, axis

in such away that Tr+ and T, are, respectively, thetem-

peratures of radiation propagating in the HFS and LFS
directions.

Of course, the detected electron cyclotron radiation
from the plasma does not generally propagate along the
same geometric optical path as the incident microwave
radiation. In this section, however, we assume for sim-
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plicity that the z and z, axes coincide, which indicates
that the emitted radiation propagates along the axis of
the heating beam. For estimates, this assumption is
quite justified because quasilinear effects have the
greatest impact on ECE from the heated region, in
which the resonant electrons, whose frequency satisfies
the condition wy.(z, U) = w, are responsible for both the
emission of radiation and absorption of the heating
microwave field. For convenience in further calcula
tions, we represent this condition in the dimensionless
form:

{-Q-u’=0, = ZZZL_—ZO,
+
o Be(Ly +20) (18)
Q=222
Bewo

wherethevariables { and Q arethe dimensionless coor-
dinate and dimensionless frequency, respectively. In
terms of these variables, the boundaries of the reso-
nance region w,.(z, u) 0 (wy,, W, + Aw) can be defined
as

U susu,, U = J/max(0,{-AQ),
u, = Jmax(0, q),

where AQ = 2Aw/B2 W, isthe normalized width of the
effective spectrum of the heating radiation.

(19)

3.1. Emission from a Collisionless Plasma

For the above-described hypothetical steady-state
electron distribution, whichisformed asaresult of qua-
silinear relaxation in the absence of Coulomb colli-
sions, the spectrum of ECE at the frequency of the
monochromatic heating wave isthe easiest to calcul ate.
Let f(up, Uy be the electron distribution function over
the transverse and longitudinal (with respect to the
magnetic field) components of the dimensionless elec-
tron velocity. During the collisionless relaxation, the
number of resonant electrons with a given longitudinal
momentum is conserved:

I f(ug, u”)dué = const. (20)

2 2 2 2
upSug Uy,

In asteady state, the distribution function f,, isindepen-
dent of the transverse electron vel ocity in the resonance
region. The distribution function at the initial time is

assumed to be Maxwellian, f, = ff,, exp(—ué - u|2|).

Consequently, using the law of conservation of the
number of resonant electrons, we can see that, over
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almost the entire resonance region, the electron distri-
bution function is independent of velocity:

fy=Kfue" for luy| < uy,
K = (6" =1)/AQ.

Thisexpression failsto hold for resonant el ectrons with
high longitudinal velocities, u; < |yj| < u,; however,
when the resonance region is sufficiently narrow, we
can ignore emission from these electrons and assume
that expression (21) is valid over the entire region of
resonant velocities.

Outside the resonance region, the steady-state distri-
bution function remains Maxwellian; consequently, at
frequencies Q 0 (0, AQ) (i.e., w O(w,, Wy, + Aw)), the
ECE spectrum is thermal. The spectrum is modified at
frequencies Q O (0, AQ), at which the emissivity and
absorptivity of the medium are determined by the dis-
tribution function of the resonant electrons. Substitut-
ing distribution function (21) into general formula (15),
we can express the emissivity corresponding to thisdis-
tribution in terms of the equilibrium emissivity:

21

A, = K Teg, (22)
where pg is the equilibrium absorptivity. This expres-
sion can easily be derived using resonance condition
(18) by making the replacement { — Q + W in this
way, the distribution function is expressed in terms of
the Maxwellian distribution function multiplied by a
frequency-independent coefficient:

f, — ke, (23)

Since, after the formation of aquasilinear plateau, there
is no absorption at frequencies corresponding to the
perturbed spectrum, the total radiation intensity is
deduced by simply integrating expression (22) over the
entire plasma slab. As aresult, we obtain

o)

. [Ke T, for QUO(0,AQ)

@ =0 .
OT(1—-e °) for QO(0,AQ),

where 1, is the optical depth of the equilibrium plasma
slab. Note that this expression was derived without
specifying the type of normal mode and the cyclotron
harmonic number (it is only necessary that they be the
same for the ECE and the heating radiation). The spec-
trum obtained is discontinuous at the frequencies Q = 0
and AQ because, in the absence of collisions, the distri-
bution function undergoes jumps at the boundaries of
the resonance region.

There are two effects that perturb the ECE: quasilin-
ear weakening of the cyclotron absorption and addi-
tional increase in the transverse energy of the electrons
in their interaction with the microwave field. In expres-
sion (24), thefirst effect isdescribed by the factor 1, and

the second effect is accounted for by the factor ke

(24)
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Since, in experiments, even a very low-density plasma
is opticaly thick to the heating radiation, the quasilin-
ear modification of the ECE spectra could be quite
readily observable provided that it were possible to
achieve a collisionless regime of microwave absorp-
tion. Additional acceleration of resonant electrons in
the transverse direction is unlikely to play a significant
role in the formation of the emission spectrum from the
heated region, because, under typical experimental
conditions, the spectrum at low electron cyclotron har-
monic frequenciesis very narrow, AQ < 1, which cor-
respondsto ke = 1.

The emission from noneguilibrium electrons with
increased transverse energies manifests itself in a very
rare situation when the resonance region is so wide that
it is also necessary to take into account the anisotropy
of the distribution of the resonant el ectrons. Inthiscase,
the shape of the spectral lineisdescribed by fairly com-
plicated expressions involving the polarization of the
emitted radiation. However, the final result remains the
same: the spectral intensity decreases monotonically
over the frequency interval Q 0O (0, AQ). As an exam-
ple, we present exact expressions for the maximum
emission intensity, which is achieved at the frequency
Q=0

—AQ

TF = 1,T(1+AQ/2)(1+AQ%2—¢
for the X2 mode,

Qe

—AQ

T, = 1,T(1+A8Q%—e™%)/AQ for theO1 mode.(26)

By comparing these expressions with the estimate

T, =«K1,T, Which was obtained for an isotropic distri-
bution function, we can determine the applicability
conditions for expression (24): a deviation of less than
10% from the isotropic distribution corresponds to
AQ < 1 for an extraordinary wave and to AQ < 0.6 for
an ordinary wave.

3.2. Role of Coulomb Caollisions

When Coulomb collisions between plasma particles
are taken into account, the shape of the spectral line
cannot be determined analytically. However, it is possi-
ble to estimate the characteristic maximum of the spec-
tral intensity for a sufficiently narrow resonance plasma
region. It has been shown above that, in a collisionless
plasma, the steady-state distribution function is aniso-
tropic only in a relatively small part of the resonance
region; therefore in the case of a narrow resonance
region, the emission spectra from a plasma can be cal-
culated without taking into account anisotropy. Cou-
lomb collisions lead to additional isotropization of the
distribution function; moreover, thisisotropization pro-
cess can be intensified by elastic collisions between
electrons and ions with large charge numbers (Z. > 1).
Consequently, we can assume that the perturbed distri-
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bution function isisotropic. Under this assumption, the
perturbed distribution function at each spatial point can
be determined from a one-dimensional kinetic equation
obtained by averaging operators (6) and (9) over the
electron pitch angles. In the steady-state case, this
equation implies that there are no particle fluxes in
velocity space:

f ., Of
Dc(u)%+2uf5+ D (W = o,

1 227)
5= J’(l—sz)Dq,ds,
0

where D;] isthe quasilinear diffusion coefficient aver-
aged over pitch angles. During the formation of a qua-
silinear plateau in a fairly narrow resonance energy
range, the electron distribution function changes insig-
nificantly and is close to a Maxwellian function fy,. In
contrast, the derivative of the distribution function in
the resonance region can change substantially: for f =
fu, EQ. (27) yields the estimate

of _ 1 dfy
Ou 1+ Dj(u)/De(u) du’

(28)

Accordingly, at frequencies close to the heating fre-
guency, the plasmaemissivity isclosetoitsequilibrium
value, whereas the absorptivity is lower than the equi-

librium absorptivity ug:

1

- (29)
1+ Dq| (ures)/DC(ureS)

0
He»

Ay=Tellg, Ho=

where U, = /(—Q . Itis easy to see that, if Q O (0,
AQ), then, by virtue of the resonance condition, thefre-
guency enters into relationships (29) only through the
combination { — Q, which redefines the spatial coordi-
nate. Consequently, as in the equilibrium case, the fre-
guency should drop out of thefinal formulafor the ECE
from an infinite plasmaslab. Therefore, in the approach
at hand, we cannot determine the shape of the spectral
line perturbed in a narrow range Q [0 (0, AQ) because,
for an arbitrary frequency, the approximate equality f =
fyy and its consequences—relationships (29)—are valid
to first order in AQ. Thus, at u = u,, the steady-state
collisionless eectron distribution function deviates
from a Maxwellian function by the amount (f, —
fu)/fu = 1 — Kexp(—Q); accordingly, we can see that the
error is minimum (equal to zero) at a certain fixed fre-
guency Q = Ink = AQ/2 in the vicinity of the center of
the spectral line. It is clear that taking collisions into
account cannot significantly change this estimate.

At a fixed spatia point, the quasilinear diffusion
coefficient depends on the absorption of the heating
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Fig. 1. Steady-state profiles of the plasma absorption coef-
ficient (solid curve) and emissivity (dashed curve) calcu-
lated from the solutionsto Eq. (30) for the same value of the
power parameter (Q = 0.5) but for different optical thick-
nesses 1, = 5 (on top) and 1 = 15 (on bottom). The profiles
are normalized so asto coincide for a Maxwellian plasma.

radiation in the previous regions along the beam. Con-
sequently, in the self-consistent formulation of the
problem, the expression for the absorptivity, i.e., the
second of expressions (29), yields the following closed
equation for the optical depth t(0):

dt _ ToM(C)
d¢  1+Qo(Qexp(-1)’

(30)

5/2
e_Z ,

- _8
u(Q) = 15ﬁ2

= (31)
Sﬁ 5/2DZ 12 - '
= 4 xe
]

.U
(P(Z)-E d)%.

Here, we have introduced the new parameter Q =v/V,
and the dimensionless functions ¢(¢) and (), which

characterize the profiles of the ratio Dg /D, and the

absorptivity for a Maxwellian electron distribution.
Formulas (31) present the functions ¢ and p for the
extraordinary wave at the second cyclotron harmonic.
For the ordinary wave at the fundamental harmonic, the
numerical coefficient in the expression for @isequal to

2./1/15, the remaining part of the expression being the
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same. The formulas were derived under the assumption
that the spectrum form factor is equal to unity, ®(w) =
1 (because numerical calculations showed that the ECE
spectra are weakly sensitive to the value of the form
factor). Substituting the optical depth 1({) obtained
from Eq. (30) into solutions (17), we can determine
how emission from the plasma slab at frequencies close
to the heating frequency depends on the parameters T,
and Q. For magnetic fusion experiments, the character-
istic values of these parametersaret,= 1-10and Q< 1.

A fairly detailed analysis of Egs. (17) and (30) is
presented in the Appendix. Here, we will outline the
results obtained and give their physical interpretation.
Depending on the value of the optical depth T, two typ-
ical cases can be distinguished. For small values of the
optical depth, the power deposition profileis broad and
nonthermal radiation is emitted mainly by moderate-
energy suprathermal electrons, for which the cyclotron
interaction regionisshifted inthe HFS direction. In this
region, the degradation of the absorption coefficient is
most pronounced, which is accounted for by the mono-
tonically increasing factor @) in formula (30). As a
result, the total radiation emitted from resonant elec-
trons in the HFS direction is absorbed less intensely
than that emitted in the opposite direction (i.e., in the
LFSdirection). Consequently, the intensity of radiation
emitted inthe HFSdirectionishigher. Thiscaseisillus-
trated in the upper plot in Fig. 1, which shows the
absorptivity and emissivity profiles corresponding to
the solutionsto Eq. (30). Asthe optical depth increases,
the peak in the absorption profile shiftstoward the start-
ing point of the cyclotron interaction region. In this
case, the main contribution to nonthermal radiation
comes from the deformation of the el ectron distribution
function in the range of low energies: the factor e in
formula (30) indicates that the transparency region is
displaced in the LFS direction, so that the emission in
this direction becomes dominant (see the lower plot in
Fig. 1). As the optical depth increases further, the
region occupied by the microwave field narrows, the
energy is deposited in progressively lower-energy elec-
trons, and the role played by Coulomb collisions
increases. This is why, as the parameter 1, tends to
infinity, thelevel of the emission from the plasmain any
optically thick direction approaches the thermal equi-
librium level.

Figure 2 shows how the emission intensities in the
LFS and HFS directions depend on the equilibrium
optical depth at a certain fixed value of the power
parameter Q. Note that the actual optical depth of a
plasma slab with a perturbed el ectron distribution func-
tion differsfrom the equilibrium thickness t,,. However,
asisshown in the Appendix, this differenceis small for
a wide range of parameters of a collision-dominated
plasma. For T, — 0, the curvesin Fig. 2 asymptoti-
cally approach the level corresponding to a collision-

lessplasma, T = 1,T,. For T, —» o, theradiation tem-
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perature approaches the local electron temperature,

T, —» T, There exists an optimum value of the

parameter 1, at which the ECE spectrum in a given
direction is perturbed to the greatest extent at a given
heating intensity (in Fig. 2, the quantities correspond-
ing to these maxima are marked by the tilde). Because
of the asymmetry of the absorption profile (see the pre-
vious paragraph), the emission intensities in the LFS
and HFS directions depend on the optical depth in dif-
ferent ways: the intensity of radiation emitted in the

HFSdirection (i.e., the radiation temperature T, ) hasa
larger maximum value, but decreases more sharply as
the optical depth increases. IntheAppendix, itisshown
that the intensity of radiation emitted in the LFS direc-
tion approaches the thermal level according to a power
law, while the law by which the intensity of radiation
emitted in the opposite direction approaches the ther-
mal level isexponential.

The maximum values of the effective radiation tem-
perature, :Fri , and the values of the optical depth at

which these maxima are reached, Tg, depend linearly

with ahigh degree of accuracy on the second parameter
of the problem (the power parameter) over awiderange
of itsvalues, 0.1 < Q < oo:

T

12+320Q, T, = 28+6.4Q,

T, = 15+550Q, 2.8+7.90Q.

The coefficients in these expressions were obtained by
numerically approximating the solution to Egs. (17)
and (30). An asymptotic analysis presented in the
Appendix yields analogous results. Returning to the
dimensional plasma parameters, it can be shown that,
under the conditions that are most favorable for obser-
vations of the effect of quasilinear transparency win-
dow, the following relationship between the electron
density and temperature should be satisfied:

(32)

~+
T =

N.T, = a+bTZ?/(N,T,), (33)
where the constants a and b are determined by the
remaining parameters of the problem. From this rela-
tionship, it can be inferred that the optimum density, as
a function of temperature, has a minimum, while the
product N, T, increases monotonically with increasing
temperature. The example given in the next section
shows that the optimum values of the density and tem-
perature can be achieved in the parameter range charac-
teristic of present-day magnetic fusion experiments.

Above, we have analyzed the limiting case AQ —
0. To carry out calculationswith allowance for thefinite
width AQ of the resonance region and to refine the
shape of the perturbed spectral line, it is necessary to
numerically solve quasilinear equations (5) and radia-
tion transport equations (14). In the next section, we
will present examples of such calculations for a toka-
No. 10
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Fig. 2. ECE temperature normalized to the electron tempe-
rature as a function of equilibrium optical depth 1. The
solid curve presents radiation emitted in the LFS direction,
and the dashed curve correspondsto radiation emitted in the
HFS direction. The curves are obtained from the solutions
a Q=0.5and AQ — 0.

Absorption
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Microwave
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Fig. 3. Schematic view of ECR heating and ECE detecting
geometry in apoloidal cross section of atoroidal device.

mak with circular magnetic surfaces. The method by
which the kinetic equation was solved numerically was
described in our earlier paper [15].

4. CALCULATION OF THE ECE
FROM THE PLASMA OF A CIRCULAR
CROSS-SECTION TOKAMAK

The transformation from toroidal geometry to the
plane slab model described by Egs. (5) can be consid-
erably simplified by assuming that the magnetic sur-
faces in the poloidal cross section of the torus form a
system of nested concentric circles (the circular toka-
mak model without the Shafranov shift). The poloidal
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Fig. 4. Steady-state ECE spectra emitted in the LFS (on the left) and HFS (on the right) directions for the detection angles ¢ = 0,
20, 40, 60, and 80° with respect to the equatorial plane. The absorption region isdisplaced by z, =—2.5 cm. Thevalues of theremain-
ing plasma parameters correspond to the basic set of parameter values. The zero of frequency f correspondsto a 140-GHz microwave

frequency.

cross section in the ECR heating region in such adevice
is illustrated schematicaly in Fig. 3. Let a heating
microwave beam be injected into the tokamak plasma
symmetrically about the equatorial plane and propagate
along astraight line. Let the starting point of the cyclo-
tron interaction region be shifted a distance z, from the
center of the toroidal chamber along the major radius.
Finally, let the basic set of parameter values be typical
of experimentson ECR heating of alow-density plasma
in the T-10 tokamak:

Pip =600 KW,  T.=2keV,
Ne=2x108Bcm3, Zg=1,
wy/21=140 GHz, L,=R=150cm,
Zy=-3.5cm, Ly=3.6cm.

The distance z, is chosen to satisfy the condition for the
applicability of the plane plasma slab model: |z)| >
Az, L2, where Az, is the characteristic length of
the absorption region. This length can be considered to
be equivalent to the thickness of aplasmasdlabin which
the optical depth increases from zero to unity. Thus, for
a Maxwellian electron distribution, we have Az, =

Bi R/To2 " = 0.6 cm; for the parameter values adopted

here, accounting for quasilinear effects increases the
absorption length by no more than 15%. For simplicity,
weignore the density and temperature variationsin the
plasma, in which case the ECE spectra can only be cal-
culated for frequencies very close to the heating fre-
guency (or its harmonics). With the above parameter
values, the parameters of a plane plasma slab are equal

t0 Q=0.9,T,= 10, and AQ = L2 /4z,RB|= 0.7.

The ECE spectra are calculated under the assump-
tion that the emitted radiation propagates along the

minor radius of the torus at a certain angle ¢ to the
equatoria plane (Fig. 3); the angle ¢ = 0° corresponds
to the case considered in the previous section. The sym-
metry of the magnetic surfaces with respect to the equa-

torial plane implies that T (¢p) = T, (-¢). Conse-
quently, it is sufficient to consider the angular range
0° < ¢ < 90°.

Note that the perturbation of the emission spectrum
and its variations over the cross section of a quasiopti-
cal beam can be of the same order of magnitude. Con-
sequently, the correct calculation of the antenna
response requires integration over the set of rays mod-
eling the directional pattern of the receiving antenna.
The results that will be presented below were obtained
for radiation emitted along the central ray under the
assumption that the effects of the finite width of the
directional pattern of the receiving antennado not influ-
ence the central ray and lead merely to a slight broad-
ening of thewings of the spectraof therecorded signals
[for model spectrum (24), this assumption can be
proved rigorously].

Figure 4 illustrates the results of calculating the
steady-state ECE spectra detected at different angles .
The two characteristic peaks in the spectra of radiation
emitted in the LFS direction (see the left plot in Fig. 4)
result from the fact that, in the model under consider-
ation, there are two diametrically opposite regions
wheretheray trajectories cross the magnetic surfaces at
which the distribution function is perturbed. The spec-
tra of radiation emitted from the absorption region at
frequencies close to the heating frequency are seen to
be perturbed to the largest extent (in the geometry cho-
sen above, this corresponds to detection angles of ¢ <
10°). Moreover, the shape of the central peak coincides
approximately with that given by expression (24); this
indicates that Coulomb collisions do not lead to any
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TJT,

T,, keV

Fig. 5. Maximum spectral intensity of the ECE emitted along the equatorial plane (¢ = 0) inthe LFS (solid curves) and HFS (dashed
curves) directions as a function of the incident microwave power, the position of the absorption region, the electron temperature,
and the plasma density. The values of the parameters that are not varied correspond to the basic set of parameter values.

significant broadening of the spectra. We can see that
the larger the detection angle, the larger the shift of the
central peak along the frequency axis and the smaller
the peak intensity. The peaks in the ECE spectra emit-
ted in the LFS and HFS directions shift in opposite
directions along the frequency axis. The additional
peak that corresponds to emission from the diametri-
cally opposite zone is barely noticeable and, for z, < 0,
isseento form only at the spectrum of radiation emitted
in the LFS direction.

We now present the results of a parametric study of
the perturbation of the ECE spectraat frequencies close
to the heating frequency. Figure 5 shows how the max-
imum spectral intensity of the emitted radiation
depends on the main experimental parameters: incident
microwave power, position of the absorption region,
electron temperature, and plasma density. Variationsin
these experimental parameters lead to the following
variationsin the dimensionless parameters of the prob-
lem:

variationsin the input power give Q [ P,,;

variations in the displacement of the resonance
. . -1

region give AQ O z,7;
variationsin the electron density give 1, 0 N, and Q

O N;l;and

PLASMA PHYSICS REPORTS Vol. 29 No. 10 2003

variations in the electron temperature give t, O T,,
QUITY andaQ O T, .

For the above parameters, quasilinear effects
become pronounced when the incident microwave
power is between 300 and 400 kW. For an incident
power of about 1 MW, the emission intensity saturates
and approaches a quasilinear level given by theoretical
limit (25). Variations in the emission intensity with the
position z, of the absorption region are associated
solely with a change in the width of the resonance
region because the optical depth and the power param-
eter Q both remain unchanged (the parameter z, enters
into the expression for Q only through the combination
Z,Aw = congt). Since the optical depth of the plasma
dlab is proportional to the product N, T, the profiles of
the ECE intensity as functions of temperature and den-

sity follow the theoretical profiles Tf (Ty), which are

plotted in Fig. 2. Up to a certain critical value of the
temperature or density, the ECE intensity increases
monotonically, in which case the emission intensity in
the HFS direction is somewhat larger than that in the
LFS direction. However, for higher temperatures or
densities, theintensity of emissioninthe HFS direction
falls off sharply. Note that the above basic set of param-
eter values corresponds to the optical depth for which
the emission in the HFS direction dominates. The
dependence on the plasma density is stronger than that
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Fig. 6. Maximum spectral intensity of the ECE emitted in
the LFS (solid curve) and HFS (dashed curve) directions as
a function of the angle at which the radiation is detected.
The values of the plasma parameters correspond to the basic
set of parameter values.

on the electron temperature because the power parame-
ter decreaseswith increasing density and increases with
increasing temperature, so that the effect of theincrease
in optical depth is partially canceled.

Figure 6 shows how the spectral intensity depends
on the angle ¢ at which radiation is detected. The
change in the detection angle does not change the three
parameters Q, 1, and AQ but changes the resonance
condition for the emitting electrons. In terms of dimen-
sionless variabl es, resonance condition (18) can be rep-
resented in the form

22,

2
e

¢ecosdh —Q —u’ = (1—cosd) = const. (34)

H

It is clear that, since the resonance conditions for the
heating radiation and the detected emission are differ-
ent, quasilinear effects are suppressed when cos¢ dif-
fers considerably from unity. We can show that, when
cos¢ is close to unity, the main effect is the renormal-

ization of the optical depth, 1§ = Ty/|cosd|, which
takesinto account the increase in the scale on which the
magnetic field varies along an obliquely passing ray. In
this case, the dependence of the ECE intensity on the
renormalized optical depth 15 is qualitatively similar
in shape to the curves plotted in Fig. 2. If the value of
15 is at the rising dopes of these curves, then the

increase in the optical depth with increasing difference
between cos$ and unity compensatesfor the slipping of
the emitting electrons out of resonance with the heating
radiation. This effect explains why the emission some-
what intensifies at small values of the angle ¢ (which
can be seen in Fig. 6) and why there is a fairly wide
range of valuesof theangle ¢ (¢ < 40°) over which qua-
silinear effects are not suppressed.

SHALASHOV, SUVOROV

Above, we considered the case z, < 0, in which the
absorption region is displaced from the center of the
toroidal chamber toward the stronger magnetic field
(the case of plasma heating in the outer part of the
torus). In the case of plasma heating at the same mag-
netic surfaces but in the inner (rather than outer) part of
the torus (the parameter z, changes sign), the central
frequencies of the two perturbed lines in the ECE spec-
trum interchange places, the intensity of the lines and
their shapes being unchanged.

Note that radiation from atoroidal plasma possesses
the same symmetry properties as the set of magnetic
surfaces in a tokamak. Consequently, the ECE receiv-
ing system can be shifted in the toroidal direction with
respect to the power deposition region (in a tokamak,
this shift can be arbitrary while, in a stellarator, the tor-
oidal angle corresponding to this shift should be amul-
tiple of the period of the toroidal magnetic field). It is
expected that the most perturbed ECE spectraare those
that are emitted at frequencies close to the heating fre-
guency and that come from the power deposition region
and the equivalent regions displaced in the toroidal
direction. By detecting radiation emitted from the latter
regions, it is possible to protect the diagnostic equip-
ment from direct illumination by the heating radiation.
If, in this case, the spectral perturbations at frequencies
close to the heating frequency are difficult to record
because of the presence of intense background radia-
tion at the frequency of the heating radiation, then the
plasma can be diagnosed by recording |less intense per-
turbations of the spectra of the ECE from the regions
with the shifted electron gyrofrequency. It is clear that,
on the one hand, quasilinear effects associated with
emissions from such regions manifest themselves at
frequencies differing from the heating frequency and,
on the other hand, they are suppressed because of the
disruption of spatial synchronization between the reso-
nance conditions for the heating radiation and the
detected ECE.

To conclude this section, we note that ECE from the
plasmaisrather sensitiveto the quasilinear deformation
of the electron distribution function: in the examples
considered above, the extent to which the absorption
region is modified and the total deposited microwave
power is degraded is no larger than 10-15% in compar-
ison with those in an equilibrium plasma. In this case,
however, the intensity of perturbations of the ECE
spectra is severa times or even several tens of times
higher than the thermal level.

5. CONCLUSIONS

In this paper, we have considered the perturbations
of the ECE and absorption spectrain atoroidal plasma
due to the quasilinear modification of the electron dis-
tribution function under ECR heating conditions when
the heating radiation is launched from the low-field
side. This modification shows up as a dlight flattening
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of the distribution function of the resonant electrons
over the velocity component transverse to the magnetic
field, in which case the resonant el ectrons are not accel-
erated to any significant extent. The distribution func-
tion deviates from an equilibrium function only
dlightly, because the interaction islocalized in the ther-
mal energy range in which quasilinear effects are sup-
pressed by Coulomb collisions.

We have shown that, when the plasma column is
optically thick to the recorded radiation, the ECE spec-
trum at frequencies close the heating frequency is
highly sensitive to perturbations of the distribution
function. For amodd situation in which the emissivity
profile coincideswith the thermal emissivity profile and
there is no absorption at a certain frequency, we can
obtain the following estimate for the maximum possi-
ble amount by which the radiation intensity can exceed

the thermal level: T, =1,T, > T, for T, > 1. However,

the total spontaneous emission from the plasmaslab is
restricted by reabsorption within the slab. Thus, for an

equilibrium dlab, we have TX = T(1 — € °) < T,
because, by Kirchhoff’s law, the absorption intensity
profile is similar to the emissivity profile. This clearly
indicates that, for T, > 1, even a small imbalance
between the emissivity and absorptivity of a unit
plasma volume can substantially change the total emis-
sion from the slab; moreover, the larger the optical
depth of the plasma, the larger the possible change. On
the other hand, the larger the plasma optical depth with
respect to the heating beam, the smaller the quasilinear
modifications of the radiation transport coefficients,
because the energy is transferred to electrons with
increasingly lower energies. Nevertheless, our analysis
has shown that the perturbation of the ECE spectrais
most pronounced in an optically thick plasmasliab with
T, = 3-10.

The perturbations of the ECE spectrum due to mod-
ification of the thermal part of the electron distribution
function look like one or two spectral spots correspond-
ing to the intersections of the beam with the magnetic
surfaces at which the plasma is heated. In principle,
such perturbations can be detected by receiving equip-
ment with a sufficiently high spectral resolution in a
wide variety of the operating modes of present-day
controlled fusion devices with ECR plasma heating.
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APPENDIX

ELECTRON CYCLOTRON EMISSION
FROM A PLASMA SLAB WITH ALLOWANCE
FOR COULOMB COLLISIONS

Here, we analyze solutions (17) to the radiation
transport equation with coefficients (29) by taking into
account Egs. (30) and (31) for the self-consistent opti-
cal depth of the plasma slab in different limiting cases.

Asymptotics at Large Q Values

For Q — o, we can ignore unity in the denomina-
tor of expression (30) for the optical depth, in which
case the equation obtained has an el ementary solution:

10 = -Inf- 20 W@ = I“(X)dx. 35)

Substituting this solution into Egs. (17), we find the
total intensity of emission from the plasma dlab:

T = LR -85 o= [uQOuQd; 36
0
Q-ToYo
TUT, = [l Qg g e
I (0 )
W, = Y(to) = Wi

Each of these expressions has a maximum with respect
to the variable t1,,. At the extreme point, the following
equalities are satisfied:

wo -1
Tr e — 401Q Tp = Z_CI]_
) ) 1 o (38)
() = —|n%l—ﬁwﬂ,
1-a,y,
T, = jazu(o%dm, -

To = 0,Q, T(w) = —In(l-a,,,),

where the constant a, is the only nonzero root of the
equation

C 1205, +ady, $(@),
u(Q)
{ (1-a,W(0))?

The tilde in these equalities indicates the quantities at
the extreme point.

Inserting numerical values a, = 0.08 and o, =7.72
into equalities (38) and (39), we arrive at the following

d¢ = 0. (40)
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expressions, which agree well with those obtained from
general formula (30):

T/T,=31Q, T1;=620Q, T(x)=10; (41)

T /T,=54Q, 15=77Q, T(x)=15. (42)

It should be stressed that these expressions also remain
valid in the range Q ~ 1, in which al the functions are
essentially linear [see expressions (32)]. The approxi-
mation considered above is valid in the range T, S T;
and failsto hold for T, — o, when the emission inten-
sity approaches the thermal level.

Asymptoticsat Q —= O andat 1, — o
for a Fixed Q Value
For Q —= 0, we can develop a perturbation method

under the assumption that the optical depth is nearly
equilibrium. We set

4

(@) = Q) +A1(Q), ™(Q) = ToIH(X)dX- (43)

Regarding At as a small perturbation, we obtain from
Eq. (30) the expression

AT(R) = T6QU(¥)9(X) e “ax. (44)

We expand solutions (17) in powers of At to arrive at
the following relationship for radiation emitted in the
LFSdirection:

- _ . —ATE —Tm
T, /T, = —J’e dZe d¢
° (45)

00

T —2Ty
=l-e +T0qucpe dc.

For 1, < 10, the last integral can be replaced with good
accuracy by an exponential. To do this, we factor the
slowly varying function out of the integral sign and
obtain

00

jucpe

0

—21\ () Tm (Zo

dg jcpdz ae ",

(46)
a;=40, o,=16,

where {, = 4.9 isthe value at which the function p@is
maximum. Analogous calculations for radiation emit-
ted in the direction in which the magnetic field
increases yield a simpler relationship,

T T.=1-€ “+a,7e Q. (47)
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Formulas (44) and (45) arealso valid at T, —» o for
a fixed value of the parameter Q because, in this limit,
the perturbations of the optical depth and radiation
spectra are, as before, small. In calculating the asymp-
totic behavior of the last integral in relationship (45) at
T, — o, We can see that the main contribution to the
integral comes from the point { = 0, in the vicinity of
which the functions pg and t,, can be replaced with the
corresponding power series expansions:

00

21 (2) 32 "2 ep ] 32T Lz, . a7
J’ d¢ ~I75 5105ﬁz mdd=0asT
0 (48)

5~1.1.

Hence, at 1, —» oo, the perturbations of thetotal optical
depth and radiation emitted in the LFS direction both
fall off according to a power law:

TIT.=1-e °*+Q/t,
AT(w) = -2.1Q/(14/2)”"

In thislimit, the perturbation of radiation emitted in the
HFSdirection is also described by formula (47), which
impliesthat the radiation intensity approaches the ther-
mal level according to an exponential law. The above
expressions remain valid only in the range |At| < 1, Or
Q < (1,/2)°".

(49)
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Abstract—Results are presented from laboratory studies of the radiation transport from a transmitting to a
receiving antenna in a cold magnetoactive plasma in the upper hybrid frequency range. In the low-frequency
part of this range, sharp maxima of the transmission coefficient are recorded in the resonant directions. In the
high-frequency part, abeamed radiation along the external magnetic field is observed. An analysis of the exper-
iments shows that the Q factor of the angular resonances is primarily limited by the phase effects caused by
weak spatial dispersion. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Itiswell known that the propagation of electromag-
netic waves in a magnetoactive plasmais characterized
by not only frequency resonances, but also directional
(or angular) resonances. In certain ranges of the param-
eters, the refractive index n,,, of adispersion branch can
sharply increase as the angle 6 between the wave vector
k and the external magnetic field B, approachestheres-
onant value 6.. When dissipation is neglected, the
refractive index in the angular resonance tendsto infin-
ity: N0 — 6, — o [1, 2]. It should be noted that,
in this case, the components of the permittivity tensor
&;(w) have no singularities.

This paper is devoted to an experimenta study of
the radiation transport from a transmitting to a receiv-
ing antennain the upper hybrid (UH) range of parame-
ters, in which the extraordinary mode has an angular
resonance. The radiation frequency w in this range is
higher than both the electron plasma and electron
cyclotron frequencies (w, and wy, respectively), but is
lower than the upper hybrid resonance frequency

_ 2 2
Wy Wy <W< Oy = W, + Wy

In the plane of dimensionless parameters u = oo,i/oo2

and v = oof,/mz, the UH range occupies a triangular
domain (see Fig. 1) that is bounded from above by the
plasma resonance (v = 1), from the right by the cyclo-
tron resonance (u = 1), and from below by the upper
hybrid resonance (u + v = 1). The electron and ion tem-
peratures (T, and T,) in the experimental device were
below 1 eV, and the characteristic parameter of spatial
dispersion (the ratio of the electron thermal energy to
the electron rest energy) was: ? = T,/m.c? < 1075. Such
a plasma can be regarded as cold, and its dispersion

properties are described by the following equation for
the refractive index:

An*+Bn’+C = 0,
where
A= (1-u)(l-v)cos’6—(u+v—1)sin’e,
B=(u+ v—l)(l—v)cosze

(1.1)
+[v(l—v)+u+v—1]s§n0,

C=—-(1-v)[v(l-v)+u+v-1].

If the factor by the highest power of nin Eq. (1.1) tends
to zero, then the refractive index of one of the normal
modes (for the UH range, this is the extraordinary
mode) tends to infinity (A— 0 O n — ). The
value of the angle 6, at which this resonance occursis
determined from the relationship

2 _ (1=u)(1-v)
tan'Q, = ==, (1.2)

\%
1.0

3

% 1
0.5+
0 0.25 0.50 0.75 1.00

Fig. 1. Upper hybrid range.
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The sections of the wave-vector surfaces of the ordi-
nary (O) and extraordinary (X) modes are shown in
Fig. 2. The closed surface for the O mode has no singu-
laritiesin the UH range (in what follows, we do not dis-
cuss the dispersion properties of these waves).

Asthe angle 6 between the wave vector k of aplane
extraordinary wave and the magnetic field B, tends to
its resonant value 6, (or to Tt— 6.), the group velocity v,
vanishes, whereas the angle W between the unit vector
Vy/Vqand B, tendsto 6, + 172 (or to 172 - 6,). The cone
produced by the generatrix inclined at the angle W, =
172 — 6, to the magnetic field B, is usualy called the
resonant cone. A plane wave propagating in the reso-
nant direction degenerates to electrostatic oscillations
(E — Ek/k, B — 0) that do not transfer energy.
However, thisis only true for plane waves.

The Green’s function (i.e., the radiation field) of an
elementary dipole p®exp(iwt)d(r) (see Fig. 3) has a
nonintegrable singularity on the resonant cone|[3, 4]. At
angles close to the resonant one (AW =W - W, < 1),
the fields E and B, as well as the energy flux density S
depend on the detuning AW asfollows:

EO@W) %,

sO(Aw)

B (AW) r,
-5/2, 2
fre.

Of course, actual currents cannot radiate an infinite
power. This means that, in an ideal cold magnetoactive
plasma, it is impossible to excite elementary extrane-
ous currents with a finite amplitude in an infinitely
small spatial region. On the other hand, the radiation
field of an elementary dipole with an infinitely small
amplitude is finite on the resonant-cone surface and
vanishes outside of it. Such a dipole can be thought of
as a supergain antenna with an infinite radiation resis-
tance (R4 —> ).

In real physical systems, there are always factors
smoothing out all types of resonances and making their
Q factors finite. By analogy to usual frequency reso-
nances, the Q factor of the angular resonance may be
defined as the ratio of the total solid angle to the solid
angle AQ into which one-half of the power is emitted:
Q = 417AQ. The angular resonance can be smoothing
out due to collisional and collisionless energy dissipa-
tion, spatial dispersion, finite emitter size, plasma non-
uniformity and unsteadiness, thermal fluctuations,
finite width of the radiation frequency spectrum, etc. If
all these factors are small enough, then the Q factor of
theresonanceishigh (Q > 1); i.e, theradiation emitted
by a small-size source is concentrated within a small
solid angle near the resonant (group) cone. Along al
other directions, energy transfer isnot impossible but is
suppressed by the angular resonance. The 3D directiv-
ity diagram of a small-size electric dipole with a finite
Q factor of the angular resonanceis shown in Fig. 4.

These specific features of angular resonances make
them attractive for various scientific and technol ogical
PLASMA PHYSICS REPORTS  Vol. 29
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\ q
/ 0
Fig. 2. Wave-vector surfaces (p = K/ky, q= kyky, n =
m) foru=0.32and v =0.74.

\
/

Fig. 3. Section of the directivity diagram of an infinitely
small dipole orthogonal to the plane of the figure (u= 0.32,
v =0.74).

LIJres

applications, in particular, for directional energy trans-
fer and nonintrusive plasma diagnostics. In addition,
waves propagating in the resonant directions have very
low phase vel ocities and can be excited by fast charged-
particle beams or, vice versa, can accelerate charged
particles. Consequently, these resonances can play a
part in the dynamics of plasmaturbulenceinthe Earth’s
ionosphere and magnetosphere.

It is still very hard to calculate the parameters of
actual antennasin areal plasma. Therefore, experimen-
tal studies are of especial importance. Among these, we
note the space experiment reported in[5]. Two satellites
bound with arope rotated slowly around their common
center of mass. When the satellites occurred on the
same generatrix of the resonant cone, spikes of the
transmission coefficient of electromagnetic radiation
were observed. The angular structure of the resonant
cones was studied in detail in laboratory experiments
[6-9]; however, the excitation efficiency of these cones
was very low.

The prime objective of the laboratory experiments
described in this paper was to determine the range of
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Fig. 4. Directivity diagram of an electric dipole in the case
of ahigh (but finite) Q factor of the angular resonance.

) )

Fig. 5. Positions of the (1) transmitting and (2) receiving
antennas.

plasma parameters within which the angular resonance
can reliably be observed. The experiments showed that,
in domain 7 in Fig. 1, the Q factor of the resonance is
fairly high: the radiation field has a sharp maximum
near the resonant cone, whereas it remains at a noise
level in other directions. However, thisdomain does not
cover the entire upper hybrid range shown in thisfigure.
As the parameters u and v decrease (domain 2), the
transmission aong the resonant directions is sup-
pressed; however, a beamed radiation along the mag-
netic field is observed in this case. A theoretical analy-
sis has revealed the dominant mechanism for suppress-
ing resonance in our experiments, namely, the phase
effects caused by weak spatial dispersion. Thiswas not

KOSTROV et al.

apriori evident because the characteristic parameter of
spatial dispersion seemed to be negligibly small.

2. EXPERIMENTAL LAYOUT

The experiments were carried out in achamber with
thelength L = 1.2 m and diameter D = 1 m. The pump-
ing system maintained the residual gas pressure in the
chamber at alevel of P, = 10~ torr. The working gas
was helium.

The magnetic field was produced by three coilswith
the diameters D, = 0.8 m and lengths L = 0.35 m. The
length of the region in which the magnetic field was
amost uniform (AB/B,, < 0.5%) was|, = 1.2 m, and the
characteristic time scale on which the magnetic field
varied was several hundred milliseconds. The experi-
ments were carried out with the magnetic field in the
range from 30 G to 1 kG.

The plasma was created by an inductive discharge
(the generator frequency was 5 MHz, and the rf pulse
duration was 2 ms). During the discharge, the plasma
density reached a value of ~10'3 cm. The maximum
electron temperature was T, ~ 8 €V. After the inductor
was switched off, the el ectron temperature decreased to
theion temperature T; ~ 0.5 eV in atime of 1.5 msand
then remained constant (the working timeinterval). The
plasmadensity in the working interval decreased expo-
nentially from 10" to 106 cm.

The radiation frequency varied in the range from
300 MHz to 3 GHz. The radiation was transmitted and
received by two stub antennaswith thelengths| =8 mm
and diametersd = 0.2 mm. The antennas stubs were ori-
ented across the magnetic field and were parale to
each other. The transmitting antenna was immovable,
and the receiving antenna was displaced (from shot to
shot) in the plane perpendicular to the antenna stubs
around a circle of radius 4.3 cm (see Fig. 5). Such an
orientation of the antennas was chosen in order for the
waves excited along the resonant direction to be as
short as possible, the maximum wavenumber being

kmax ~ l/d

Therefore, the radiation directivity was examined
within arather wide range of the plasma parameters:

0.06<u<l, 1-u<v<l 02 <kmaxg)C <5,

where p, = Vr/wy isthe electron gyroradius.

In each shot, we measured the time dependence of
the intensity of the received signa I(t) in the working
time interval. The high reproducibility of the plasma
parameters from shot to shot made it possible to recal-
culate these parametersto the dependences of theinten-
sities on the angle 6, between the group velocity of the
excited waves and the external magnetic field B, at
fixed values of uand v.
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Fig. 6. Transmission coefficient K as a function of the propagation direction and plasma density for different magnetic fields: u =

(a) 0.82, (b) 0.59, (c) 0.4, and (d) 0.35.

3. EXPERIMENTAL RESULTS

The experiments clearly demonstrated the excita-
tion of waves propagating along the resonant direc-
tions. It was found, however, that these waves were
excited only in region / in Fig. 1, rather than in the
entire range of the parameters u, v under study.

Figure 6 shows the coefficient of transmission K
from the transmitting antenna to the receiving one as a
function of the angle 8, (I (0°, 180°) and the parameter
v O (1 —u, 1) for different magnitudes of the external
magnetic field (the parameter u). It can be seen that the
waves propagating along the resonant cones are excited
only at u> 0.43 and in the upper part of the range of the
parameter v (Figs. 6a—6¢). In the lower parts of the
ranges of the parameters u and v, one can see another
resonant response corresponding to the longitudinal
propagation. Since beamed radiation along the mag-
netic field should not occur in a cold plasma, the exper-
iments indicate the important role of thermal correc-
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tions to the dispersion relation, although these correc-
tionswould seem to be negligibly small (remember that
the characteristic parameter of spatial dispersionin our
experiments was on the order of 10-°).

The characteristic domains in the plane of the
parameters u and v in the upper hybrid range are sepa-
rated in Fig. 1 by the curve. Above the curve (domain /),
the radiation is concentrated in the vicinity of the reso-
nant cones. Below the curve (domain 2), we observed
beamed radiation along the magnetic field. No angular
resonances were observed at frequencies above the sec-
ond harmonic of the electron cyclotron frequency
(u<0.25; domain 3).

We note that the design of both the receiving and
transmitting antennas was not adapted to study the
transmission of signals along the magnetic field and at
small anglestoit. In particular, no measures were taken
to suppress currents flowing along the external screen
of the coaxia cable. For instance, in Fig. 6a, one can
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see a spike of the transmission coefficient at 6 — 0,
whereas such a spike is absent at 6 — 180°. There-
fore, the results concerning the longitudinal propaga-
tion call for additional verification.

4. INTERPRETATION
OF EXPERIMENTAL DATA

The experimentally observed beamed radiation
along the external magnetic field (i.e.,, within the
“shadow” region in the cold plasma approximation)
indicates that the Q factor of the angular resonance is
limited, first of al, by weak kinetic effects that deform
the wave-vector surface. If energy dissipation is
ignored, then the dispersion relation with allowance for
weak thermal corrections takes the form [2]

5+ An*+Bn°+C = 0,
where

= —[32v EB(l —u) cos'0
0
4.1)

2
_ ) . O
+63$2usm26cosze+ sn'e
(1-u) 1-4u N

and %> = T/m.c?. Equation (4.1) isvalid when
2 2 2
B°n"cos 92 <
(1-mJu)
which impliesthat collective losses of the wave energy
are small [2]. Outside the cyclotron resonances at the
harmonics of the electron gyrofrequency (u= 1, u =

0.25), condition (4.2) practically coincides with the
requirement krp << 1, where rp is the Debye radius.

1, m=123.. 4.2)
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Dispersion relation (4.1) describes three branches:
ordinary waves (the warm corrections to ng are small,
so that we will not discuss them); extraordinary waves,
which are modified in the vicinity of the angular reso-
nance; and short-wavel ength plasmawaves. Therefrac-
tive index of the latter waves n,, outside the “cold” res-
onant cone (JA| ~ 1) is approximately equal to n, =

~—A/d . Obvioudly, condition (4.2) in this case is not
satisfied, and plasmawaves are damped at distances on
the order of their wavelength. The situation is different
in the vicinity of the resonance along the directions at
which A— 0. Inthis case, we have n, = (-B/3)'; i.e.,

anﬁ ~ B < 1. Inthevicinity of the cold resonant cone,

the extraordinary and plasma modes form a common
weakly damped hybrid branch.

Even very small thermal corrections smooth out the
cold resonant cone. However, according to dispersion
relation (4.1), anew (warm) resonance cone (n, —» )
formally appearsat 6 —~ 6, where

_ (6=3u+u’)(4u-1)

tanzeW >
6(1-u) “3)
(6-3u+u)(4u-1)71, . _
+J[ 6(1—u)2 } +(1-u)(4u-1).

For u — 1, we have 8,, — 172, whereas for u —
0.25, we have 8,, — 0 (for the group-velocity cone
angle, the reverse holds). For u < 0.25 (frequencies
above the second harmonic of the electron gyrofre-
guency), the warm resonant cone is absent.

We notethat, in our experiments, we did not observe
any transmission along the warm resonant cone of
plasmawaves. Thisisnot surprising, because collective
energy losses at this cone are high. However, the topol-
ogy of the wave-vector surfaces of the observed hybrid
electromagnetic—plasma waves substantially depends
on the ratio between the cone angles of the cold and
warm resonant cones (6, and 6,,, respectively).

Figure 7 shows the wave-vector surfacesin the case
8, < 8,,. The wave-vector surface of the hybrid branch
(which is close to the extraordinary wave in the long-
wavelength limit and to the plasma wave in the short-
wavelength limit) is closed. The cold resonant cone of
the extraordinary waves is transformed into a surface
with an inflection line. The wave-vector surface of the
plasma waves is open and tends asymptotically to a
cone with the angle 6,, However, this branch is not
observed in experiments because of strong absorption
due to the Landau damping. A circle depicted by the
light linein Fig. 7 correspondsto krp ~ 0.2. Outsidethis
circle, waves are damped at a distance on the order of
their wavelength.

Figure 8 shows a large-scale plot of the weakly
damping hybrid dispersion branch, whose wave-vector
surface has an inflection line. On such surfaces, there
PLASMA PHYSICS REPORTS  Vol. 29
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Fig. 10. Toroidal wave-vector surface (u=0.32, v = 0.74).

aredirections[4] (in our case, the direction making the
angle W, with respect to the magnetic field) along
which the radiation field falls off as r=/. The field
structure across the resonant cone is described by the
Airy function (generaly of the complex argument, if
one takes absorption into account).

Hence, in the parameter range
1-u

u>0.25, —_—,
1—ucos (6,)

v >
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(Fig. 1, domain 1), kinetic processes do not destroy the
resonant cones completely. For the radiation field of a
short antenna, thereisasingularity along the directions
making the angle W, with respect to the magnetic
field. However, this singularity is integrable; i.e., the
power emitted along the resonant cone by an rf current
with a given amplitude isfinite. The solid angle within
which this power is concentrated decreases with dis-
tanceas AQ ~ 1/r'5,

Figure 9 shows the wave-vector surfaces for the
opposite case 6. > 6,, (Fig. 1, domain 2).

The hybrid branch (which is shown on alarge scale
in Fig. 10) takes the form of a toroida surface lying
under the cold cone (without touching it). A character-
istic feature of such surfaces is the presence of modes
of internal conical refraction: the entire wave-vector
cone corresponds to the same direction of the group
velocity, specifically, the direction along the magnetic
field. The amplitude of the conical-refraction mode

decreases with distance from the source as 1/./r , and
the field structure across it is described by a Bessel
function [4].

Another specific feature of the conical-refraction
mode, which was (to all appearances) observed in our
experiments, isthat its group velocity is directed oppo-
sitely to the wave vector; i.e., this mode is a backward
wave. Since this wave is slow, it can be easily excited
by an el ectron beam whose vel ocity is somewhat higher
than the wave phase vel ocity. Probably, a sort of such a
backward-wave tube can operate in the Earth’s iono-
sphere and magnetosphere. However, to assert thiswith
certainty, it is necessary to perform calculations of the
threshold currents and carry out the relevant laboratory
experiments.

5. CONCLUSIONS

Our laboratory experiments have demonstrated the
efficient transmission of radiation within anarrow solid
angle in the vicinity of the resonant cone. However, the
parameter range within which such transmission is
observed turns out to be somewhat narrower than what
followsfrom the analysis of the dispersion properties of
a cold magnetized plasma. Weak spatial dispersion
results in the suppression of the angular resonance at
w> 1.5wy,. Inthisfrequency range, however, the hybrid
mode of the internal conical refraction, which propa
gates along the magnetic field, is efficiently excited.
This mode is a low backward wave and can be gener-
ated by an electron beam synchronous with it. The
experimental results presented in this paper can be used
to develop active satellite diagnostics of near-Earth
plasma[10-12] and reveal the mechanismsfor genera-
tion of high-frequency ionospheric noise and plasma
turbulence.
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Abstract—The effect of the Debye layer on the absorption of an electromagnetic surface wave propagating
along the plasma—dielectric interface is considered. The electric field distribution in the Debye layer and the
energy absorbed by the plasma electrons in this layer are determined. It is shown that the ratio of the rate at
which surface waves are damped due to Cherenkov absorption by the electrons reflected from the electric field
potential in the transition layer to their frequency is on the order of the ratio of the electron thermal velocity to
the wave phase vel ocity. © 2003 MAIK “ Nauka/Interperiodica” .

1. Electromagnetic surface waves are widely
employed for the creation and heating of plasmas and
the amplification of microwaves[1, 2]. The damping of
these waves may be caused by such factors as particle
collisions, the local enhancement of the electric field in
the plasma resonance region, collisonless Landau
damping, and collisions of electrons with thewall [1-4].

The absorption of surface waves due to the specular
or diffuse reflection of electrons from the wall was
studied in [5—7]. In the plasma, surface waves whose
amplitude is proportional to ~exp(iky) are exponen-
tially damped according to the law exp(-KyX) (where

Kp= A/(=€p/€)K) With increasing distance from the
plasma—dielectric interface. Consequently, their Fou-
rier spectrum in x contains harmonics with all possible
wavenumbers k,, including those corresponding to
short-wavel ength modes whose phase velocities in the
x direction are on the order of the electron thermal
velocity (wk, ~ vyo). Since such electrons are very
numerous, the damping rate of the surface wavesison
the order of the ratio of the amplitude of the harmonic
with k, ~ w/ v, to the amplitude of the fundamental har-
monic with k, ~ K, ~ K; i.€., Y/ ~ V1e/Vy,, Where vy, =
w/k.

In this paper, we investigate the absorption of a sur-
face wave due to the interaction of plasma electrons
with the electric field of the wavein the transition layer
that forms near the plasma—diel ectric interface because
the electrons escape preferential ly from the plasmavol-
ume onto the dielectric surface, thereby producing a
positive space charge. As a result, the density of the
electrons in the transition layer becomes lower than
their density n, far from the interface. The thickness of
the transition layer is on the order of the screening
radius rp (the Debye—Hickel radius). The electrons
moving in the space charge electric field are decel erated

and are reflected from the turning points when their
energy islower than thewall potential, or from the wall
in the opposite case.

In the transition layer, the normal component of the
electric field of a surface wave varies on a scale on the
order of several screening radii. This indicates that the
effective wavenumber in the direction of nonuniformity
(the x direction) is about 1/rp. If the frequency of the
surface waveison the order of the Langmuir frequency,
then the bulk electrons, whose velocity is on the order
of the thermal velocity vy, can efficiently interact with
the normal component of the wave electric field,
thereby absorbing the wave energy. Since the field of a
surfacewaveislocalized in aregion with athicknesson
the order of ~1/k (where k is the wavenumber in the
wave propagation direction) and the characteristic fre-
quencies are on the order of ~w,, the fraction of the
wave energy carried away by the bulk electronsis about
Q ~ V1/Vgn Where vy, = wk is the phase velocity of the
surface wave. For vy, < vy, the thickness of the transi-
tion layer is much less than the distance on which the
surface wave is damped; so that the quantity Q is low.
For w < w,, the wave phase velocity is close to the
speed of light and we have Q ~ vy,/C, in which case the
damping coefficient for the surface wave is of the same
order of magnitude asthat for awave that propagatesin
the dielectric at an angle to the plasma—dielectric inter-
face and is reflected from the plasma [8]. The phase
velocity of a surface wave with a frequency near the
limiting frequency is much lower than the speed of
light; as a result, the wave damping is substantially
stronger than that in the previous case.

Below, we will take akinetic approach to determine
the damping of the surface wave due to the absorption
of itsenergy by plasma electrons interacting resonantly
with the normal (perpendicular to the plasma—dielectric

1063-780X/03/2910-0867$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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interface) component of thewave electricfieldin atran-
sition layer.

2. We consider an electromagnetic surface wave
propagating aong a plasma—dielectric interface. The
half-space x < O is filled with a dielectric with the per-
mittivity €,, and the half-space x > 0 is filled with a
plasma. The frequency of the electromagnetic surface
wave is lower than the critical frequency, w < W, =

Whe/ /1 + €y, Where w, is the plasma frequency. In the
dielectric (x < 0), the electric and magnetic fields of the
surface wave, E, and B, have the form

Eo(t, X, y) = Eoexp[Kox +i(ky —wt)],

Bo(t, X, ¥) = Boexp[KoX +i(ky—wt)], )

wherek, isthe spatial damping rate of the surface wave
in the dielectric. The only nonzero components of the
wave electric field are the x and y components, and the
wave magnetic field has one nonzero component,
directed along the z axis.

Since the plasma el ectrons are far more mobile than
the ions, they are concentrated near the plasma—diel ec-
tric interface, forming a layer with a negative potential
[9], which is discernibly different from zero at dis-
tances from the interface that are on the order of several
screening radii ~rp. Outside the transition layer (x = a),
the plasma is homogeneous and the wave field compo-
nents decrease exponentially according to the law

Ei(t, x,y) = Erexp[—Kpx+i(ky—owt)],

Bi(t, x,y) = Biexp[—Kpx+i(ky—wt)]. @

We represent the wave electromagnetic field in the
transition layer 0 < x < ain the form

E(t, x,y) = E(x)exp[i(ky—owt)],
B(t, x,¥) = B(x)exp[i(ky—owt)].

For further analysis, we choose the layer thickness a so
asto satisfy theinequalitiesa> rp andk,a < 1. Inwhat
follows, we will show that, in the layer, the y-compo-
nent of the wave electric field remains constant to
within terms on the order of ~v./vy, < 1, whereasthe
x component of the electric field changes substantially.

3)

In the absence of the wave, the vel ocity distributions
of the charged particles are described by the Maxwell—
Boltzmann formula fy,; ~ exp(-€/T), where € =

(1/2)me'ivf F ep(x), my;, and Fe are the mass and
charge of an electron and an ion, respectively; and T is
the temperature. In this case, the charged particle den-
sitiesare equal to ng ; (X) = Nyexp(xep(x)/T). The poten-
tial $(x) can be found from Poisson’s equation Ad(x) =
41e(Ng(X) — N; (X)). We introduce the dimensionless vari-
ables d(x) = ed(X)/T and x — x/rp (Where rp =

LELEKO, STEPANOV

A/T/8ne2no is the Debye—Huckel radius) to rewrite
Poisson’'s equation as
2
)
dx
Since dd/dx —= 0 as® — 0, we obtain

%’ = J2(cosh®—1), In|coth(®/4)| = x+C.

The integration constant C can be determined from the
condition for the electron and ion currentsto thewall to
be the same. To within a factor on the order of unity
within the logarithm, the wall potential is equal to [9]

@, O(V/2) In(m/my). “)

Taking into account secondary electron emission does
not change the order of magnitude of the quantity ®,
[9]. With alowance for expression (4), we get

®(x) = In(tanh’[(x+ C)/2]), C= In|coth(Dy/4)|.

&)

The perturbation of the distribution function, f,(t,

y) ~ exp(vt + i[ky — wt]), is described by the kinetic
equation

o , e 0¢ 0 ;o0 _ _2e(vE)
pr+mvxaxavx IvEfl(t’r’V)_ vaﬁefo’(@

where w, = w—-Kkv, +iv, vfe = (2T/m), and v isthe col-
lison frequency (v — +0). We rewrite Eq. (6) in the
form

Ud . w O 2e(v(X)E(x))
O —1—70 1t X, V(X)) = ————5=1,,(7)
mx v, (g v oomvZ,
where
d_0, ed0d v, _ edp
dx dx mv,dxdv, 9x  mv,ox’
SE%mvf—eq)(x)

Here, by v, we mean v (x) = (2/m)J/e+ed(x). The
general solution to Eq. (7) can be represented as
2ef, . YE(X
el Ly =
MV ez X
X ' X' (8)
il dx" dx' [
x eX D w " - 1 D7
i {vax) Jv«xJD
where X, is determined from the condition € + ep(x,) =
0 for electrons with energies € < —e$(0). For electrons
with energies € > —ed(0), we have x,, = 0. The integra-
tion constant x, can be found from the boundary condi-
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tions. For particles moving toward thewall (v, < 0), we
use the condition that f, isfinite asx — oo to obtain

(—) — ZefOJ—d ' x(X')Ex(Xl) + VyEy(X')

el V(%)

x expli[G(x) -G(X)]} ,

©))

where

X

G() =, jvdx"

10
05) 1o

In order to determine x, for v, > 0, we use the condition
for the reflection from the wall and turning points to be
specular,

v, v, v, x=x
1( X y z m) (11)

— £ —
= f17(=Vy Vyy Vi X = Xp).

Using relationships (9) and (11), we arrive at the fol-
lowing correction to the distribution function:

f(+)(x, Vy(X), V)

2ef, Vi (X)Ex(X) =V E,(X)
mvTe[]Id V(X)
x exp{i[G(x) + G(X)]}

VX)ELX) + v E(X)
Vi(X)

(12)

exp{i[G(9) — GX)]} El

—Jx'dx'

The longitudinal current density j, =-e[__ v, f; (X

v)dv can be found by integrating over v, and v, passing
over to the dimensionless variables @ —» Wy, V —>
V/Vie, € —= &[T, Ey — Ey/Egy, X —= X/rp, and
@ =ed/T; and making the replacement v, —= v, =

JE+ D(X):

iy = dee *OfdX'E,(x)€ X sinG(x)
4’ cp'!;) D[

X

+ J’dx‘ E,(X)e

(13)

iG(x)

: O
snG(x) O
0

In thefirst term in the integrand in expression (13), we
integrate over X from a to infinity (i.e., to distances at
which the plasma is homogeneous and the field distri-
bution is known). We introduce the small parameter
Vre/Vpn << 1, With respect to which the power series
expansions are to be carried out. Ignoring the terms on
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the order of ~v+/v,, and ignoring collisionsin expres-
sion (13), we change the order of integration over x and
€ to obtain the following final expression for the current
density component j,(X) in the transition layer:

41 . 1 Da
—j = —OfdX'E,(X
wwpej 5 DX[ (x)

X I dee [ cosG(x) SiNG(x) + i sinG(X) sinG(X)]

[P

+ [dX'E,(X')
'! (14)

X I dee [ sinG(X) cosG(x) + i SinG(X) sSinG(X)] E
U

[®(x)l

N ZE_jf;[) [ de/ee " [-SnG(a) SnG(x)

D ()|
+icosG(a)sinG(x)].

They component of the current density isderivedin an
analogous way. However, we will not use the current
density component j,(x) (or, more precisely, the electric
induction component D) to evaluate the field Ey(x),
because, aswill be seen below, it entersinto Maxwell’s
equations as a product with the small parameter
VTe/ Voh

In order to determine the electric field amplitude
E(x) in the transition layer (0 < x < @) from representa-
tions (3), we turn to Maxwell’s equations, which imply
that V x V xE — (w/c)’D = 0, where D =E + (411 /w)j
is the electric induction. We thus arrive at the set of
equations

09 ¢ 0,0~ _
|kE +| D =0,
X e
S , (15)
99 _pdy9y -
< ChxEY IKE+ ksz 0.

Integrating the first of Egs. (15) over dx yields
X 2 X

E/(x) = Ey(O)+ikIEX(x)dx+ik%ZIDx(x)dx. (16)
0 0

We pass over to the dimensionless variables X — x/rp
and w — Wy, (Where ooﬁe = 4TENy/M, IpWye =
V1/2, and v = ./2T/m,) and normalize the fields to
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Fig. 1. Dependence of (1) Re E,(X)/Eg, and (2) Im Ex(x)/EOy

on the coordinate x/rp inthetransition Iayer for w/epe=0
g=1=1anda=13rp.

the amplitude E(x = 0) of the y component of the elec-
tric field of the surface wave to write

X

E,(x) = Ey(0)+ivV—Th%) E, (x)dx
° (17)
VT w(|8p| 80)

+j—
Von  2€0[€|

IDX(x)dx

In deriving the third (small) term on theright-hand side
of expression (17), wetook into account the fact that, in
the zeroth approximation (i.e., when the higher order
terms are neglected), the wavenumber k and frequency
w are related by the following dispersion relation for
the surface wave:

k = ’ 80|8 |

| p| _50
Thefirst term on the right-hand side of expression (17)
ismuch larger than the second and third terms. An anal -
ogous procedure can be applied to the second of
Egs. (15). As a result, we can expand the solution to
Egs. (15) in powers in the small parameter v/, In
the above dimensionless variables, Egs. (15) have the
form

(18)

o VTeOO O, VTew(lel ) _
I E ——P__=p, =0,
Cox ¥~ ph2 ol vph 2€0|€,
0 0 (ley) 1
900 Vrewr ), Vre(lEd =€)y _
oxox ! phZEE v2 Agle b, =0
ph

To within terms on the order of ~v/vy,, Egs. (19)
yield

ve. O (g —¢€o) ogx U
E, = A+ —iF ——_%%yp 4+ XrE (x)dxD,
1T Ty BT 2fB00%G
(20)
D, = B- i_i D,(x)dx,
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where A and B are integration constants. Using the
boundary conditions E |-y, E/k-+0» Dxlk=o =
Dxlx=+00 and_Eylx:_a—O = Eylx: a+0 Dx|x='a—0_ =Dyl-a+0
and the relationships between the electric field compo-
nentsintheregionsx<0and x> a,

Eoy = i(K/K)Eoe Epy = —i(K/KE;,  (21)

and omitting terms on the order of ~ v/Vvyy, (Which cor-
responds to ignoring the effects associated with the
finite thickness of the transition layer), we arrive at dis-
persion relation (18) for a surface wave in the zeroth
approximation. Then, the expressions for K, and K, the
formulas for the constants A and B, and the relation-
ships between the wave field amplitudes in the dielec-
tric and in the plasmatake the form

Ko = Jeollggks K, = I l/E0k, (22)
A = Ey, B =g,E,, (23)
= —i,/|e)|/€0Eoy,  Eix = i/€0/|€ Eoy.  (24)

The x component of the wave electric field in the
region 0 < x<acan befound from the second of expres-
sions (20) by omitting terms on the order of ~V/Vy:

Dy(x) = (25)

Using expression (25) for D, = E, + (211 /w)j, and tak-
ing into account expression (14), we obtain the follow-
ing integral equation for the field distribution E, in the
transition layer:

£,E1,.

a

Ex(x)+J’dx'K(x, X)E(X) = R(X), (26)
0

where the kernel K(x, X') has the form

0

1 ¢ .
—— dee [ cosG(X')sinG(x)
wld,

+isinG(x)sinG(x)]
(X' >Xx),

K(x, X) =

(27)

K(x, X) = —=— [ deeSnG(x)c0sG(x)
LN
+isinG(X)sinG(x)]
(X' <x),
and the freeterm is equal to

O j e .
R(x) = [£p+i I de/Jee“[sinG(a)sinG(x)
O w“/ﬁw(x)\
(28)
+icosG(a)sinG(x)] EElX.
O
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Integral equation (26) was solved numerically. For
Kpd < 1 and rp < a, the field profile E,(x) should be
independent of the choice of the value of the parameter a.
Theresults of calculations for the parameter valuesa =
13rp; €= 1; T= 10 eV; and w/w,, = 0.1, 0.3, 0.5, and
0.7 are shown in Figs. 1-4. From these figures, we can
see that the field component E,(x) varies on a scale on
the order of severa Debye radii and, for x ~ a,
approaches the value E,, given by expression (24). For
a = 13rp, the discrepancy (AE, < 10%) stems from the
above choice of the approximation for the field compo-
nent E,(X) inside the transition layer.

3. Here, we estimate the absorbed electromagnetic
wave energy from the change in the energy of the
plasmaelectrons during their reflection from thewall or
from the potential barrier. The velocity of an electron
has the form

t
— — _E L) 1
V(1) = v (—) mJ’dt E,(t', X), (29)
and the changein its kinetic energy is equal to
2 2 2
Amvx — mvx(+°°)_mvx(_°°). (30)

2 2 2

Averaging expression (30) over thetimet, and omitting
terms on the order of ~ v/v,,,, we obtain

2 2
mv _ e 2
where
,X) = J’ X( ) c SG(g, X) —

The quantlty L(g, x) in expression (31) isrepresented in
the dimensionless variables X — X/rp, W — W Wy,
and € — ¢/T. In order to find the total energy acquired
by the plasma electrons per unit area in unit time, we
multiply expression (31) by the electron flux through a
unit area of the interface and integrate over the entire
vel ocity space. Then, wedividethe resulting expression
by the period-averaged energy of the surface wave per
unit area of the interface and determine the absorption
coefficient:

Q_wWJ A

2

*fo(v)dv, (32)

where

Wy = IEE EE* 0 [ws( w] +B EB*Ddx (33)

161t

After integration in formula (33), we obtain the foll ow-
ing expression for the mean energy of a surface wave
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Fig. 2. Sameasin Fig. 1, but for w/o,e = 0.3.
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Fig. 3. Sameasin Fig. 1, but for w/o,e = 0.5.
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Fig. 4. Sameasin Fig. 1, but for w/ty,e=0.7.

per unit area of the plasma—did ectric interface:
2+ gy + e%

Thefirst and second terms in parenthesesin expression
(34) describe the energy densities of the surface wave
in a dieectric (x < 0) and in a homogeneous plasma
(x> a), respectively. The term describing the energy

Ws 1611
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Fig. 5. Absorption coefficient Q vs. frequency w for g, = 1
and a=13rp.

density of the surface wave in theregion 0 < x< ais
eliminated because it is as small as vo/Vyy, in compari-
son with the other two. From expression (34), we can
see that, for w — ), the wave energy density in the
plasma is three times higher than that in the dielectric
(& =1).

Substituting formulas (31) and (34) into expression
(32) and changing the order of integration over x and €
yields the following expression for the absorption coef-
ficient in the above dimensionless variables:

= Vre Jeoled ™
Vo JTI(| & + £0) (&4 + £0)
Here,

M(w). (35

M (w)
e "cosG(x)cosG(x')

Da a 00
= ofdxfdx , X d
BO[ x{ X'H(x x)mj EJs+¢(x)Je+¢(x’)

h dee_acosG(x)sinG(a)
1,5 rew

P 0
+i2H(a, a) J’ dee“sin’G(a) [
w () U

(36)

4a
—adeH(x, a)
0

where

H(X, y) =[ReE,(X)ReE,(y) + IME(X)ImE,(y)],

and
cl)min = CD(X)
q:)min = CD(X')
Note that the wall potentia is high in comparison
with the mean electron energy, which is about the tem-
perature ~T. That is why only a few electrons (about

0.31% for a hydrogen plasma) overcome the potential
barrier, and, consequently, their role in the absorption

for xX<X,

for x> X.
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of the wave power isinsignificant. For the same reason,
the electron density at the plasma—dielectric interface
(x=0) is exponentialy low (about 2.3% of n, for a
hydrogen plasma). Hence, for plasmas of real gases
with M; > 10°m,, it isimpossibleto pass over to thelimit
inwhich ®,=0and practically al of the electronsinci-
dent on the wall are reflected from it.

The damping coefficient for the surface wave is
equal in order of magnitudeto Q ~ Ve/V,. The absorp-
tion coefficient given by expression (35) was calculated
numerically forg,=1,a=13rp, and T=10¢€V and for
different values of the parameter ww,.. The depen-
dence of Q on w/w, isillustrated in Fig. 5. In the fre-
quency range such that w/w,. < 0.6, the absorption
coefficient Q is seen to increase monotonically from
about ~10~ to about ~10-2. Near the critical frequency,

Wy /0e = 1/4/2 = 0.7071, the absorption coefficient Q
increases sharply. In the frequency range w/uy, = 0—
0.275, the quantity M(w) given by expression (36)
decreases abruptly from 2 x 10° to 28. In the range
W/ = 0.275-0.7, this quantity variesin the range 22—
28. In the frequency range wyw,, = 0-0.15, the second
factor on the right-hand side of expression (35) issmall
(from 7 x 10* to 5 x 10™); in the range w/wy, = 0.15-
0.7, itincreases monotonically from 5 x 10#t00.14. In
deriving integral equation (26) for the field component
E«(X), we ignored the changes in E(x) and Dy(x) inside
the transition layer; in other words, we in fact used the
boundary conditions E(0) = Ef(a) and D,(0) = Dy(a).
Actually, the quantities E,(x) and D,(x) inside the layer
vary approximately as exp(—KgX). Ignoring this circum-
stance leads to an error in determining the absorbed
wave power. This error is on the order of 2ka and
amounts to 30% for wyw, = 0.7 and a = 13rp. At the
rightmost point W, = 0.7 in Fig. 5, the parameters
V1e/Ven and K,aare quite small (Vre/Vy, =0.0316 < 1 and
Ked = 0.147 < 1), which justifies the validity of the
above assumptions.

4. Our analysis has shown that an electromagnetic
surface wave propagating along a plasma—dielectric
interface is absorbed by the electrons that are deceler-
ated in a transition layer and are reflected from the
potentia barrier inthelayer or from theinterface. Inthe
transition layer, the plasma density decreases from the
density n, of a homogeneous plasma to a density of
about nyexp(®P,) = ny(m./m)"?> and the electric field
component in the direction of nonuniformity, E,(X),
changeson ascale of about Ax ~ (2-5)rp. Thisindicates
that the characteristic wave vector corresponding to the
Fourier component E(k,) of the wave electromagnetic
field is about k, ~ 1/Ax, the wave phase velocity being
w/ky ~ Ve Such waves are strongly absorbed by ther-
mal plasma electrons. Since the thickness Ax of this
interaction regionissmall in comparison with the depth
1/K,, to which the wave penetrates into the plasma, the
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Abstract—The dynamic processes by which an electrostatic plasma lens with a wide-aperture ion beam and
electrons produced from the secondary ion—electron emission relaxes to a steady state is investigated for the
first time by the particle-in-cell method. The parameters of atwo-dimensional mathematical model were chosen
to correspond to those of actual plasma lenses used in experimental studies on the focusing of high-current
heavy-ion beams at the Institute of Physics of the National Academy of Sciences of Ukraine (Kiev, Ukraine)
and the Lawrence Berkeley National Laboratory (Berkeley, USA). It isrevealed that the ion background plays
afundamental role in the formation of a high potential relief in the cross section of a plasmalens. It is estab-
lished that, in the volume of the plasma lens, a stratified electron structure appearsthat is governed by the non-
uniform distribution of the external potential over the fixing electrodes and the insulating magnetic field. The
stratification is very pronounced because of the finite sizes of the cylindrical fixing electrodes of thelens. It is
shown that the presence of such a structure limits the maximum compression ratio for an ion beam to values

that agree with those observed experimentally. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The development of plasma optics as a branch of
plasma dynamics was initiated by A.l. Morozov [1],
who wasthefirst to formulate the fundamental physical
principles for introducing steady-state electric fields
into a plasma penetrated by an intenseion beam. These
principles are based on the ideas of the magnetic insu-
lation of the electrons neutralizing the beam space
charge and the equipotentialization of magnetic field
lines. These ideas turned out to be highly fruitful and
were soon implemented in a number of experimental
works [2—4]. At the same time, it became clear that an
adequate analytic theory of plasmalenses (PLs) isvery
difficult to construct because the set of self-consistent
equations describing the processes in the lens is both
nonlinear and inhomogeneous. The reason is that none
of the parameters of a PL configuration with acurvilin-
ear geometry of the magnetic field lines can be regarded
as small. That is why PLs were analyzed theoretically
under assumptions that greatly simplify the problem,
such as zero electron mass approximation, cylindrical
coordinate system, and the ignoring of initial condi-
tions. These restrictions, being consistent with the fun-
damental principles of plasma optics, provided a good
basis for the interpretation of the main experimental
results; however, they weretoo crudeto serveasabasis
for the elaboration of an algorithm for creating plasma
optics systems with specified properties.

With the development of computer technology and
the methods of computational physicsin thelate 1970s,
it became possible to numericaly model physical pro-
cesses in plasma optics systems. Volkov and Yakunin
[5] proposed a mathematical model of the steady-state
processesin an electrostatic PL and computed the equi-
potential surfaces of the electric field. It was found that

the magnetic field lines deviate from these surfaces as
the electron temperature increases. This model was
non-self-consistent because it did not take into account
the distribution of the external electric potential deter-
mined by the fixing electrodes of a PL. Of course, the
model proposed in [5] reflected the computer’s techno-
logical level at that time.

Further development of PLs was spurred by
advances in the production of wide-aperture repetitive
pulsed beams in the ampere range. In the 1980s, such
beams found application, first, in injectors for fusion
devices and, then, in high-current accel erators of heavy
ions and high-dose ion implanters.

A seriesof experimentscarried out at the Institute of
Physics of the National Academy of Sciences of
Ukraine (IP NASU) revealed new regular features in
the behavior of electrostatic PLs during the focusing of
such beams [6-8]. It was found that the current of a
passing ion beam significantly affects the steady-state
and dynamic parameters of the PL. The maximum com-
pression ratio for a dlightly divergent laminar beam at
the focus is determined by the potential distribution
over the fixing electrodes, aswell as the strength of the
insulating magnetic field and its configuration. It
became clear that such high-current PLs are most suit-
able for focusing and controlling the beams of moder-
ate-energy (10-100 keV) ions of high-Z chemical ele-
ments. Optimizing the parameters of the PL at IP
NASU made it possible to achieve a maximum com-
pression ratio of 25 at the focus of a copper ion beam
with a current of 700 mA, an energy of up to 25 keV,
and an initial radius of 5.6 cm [9, 12]. In analogous
experiments at the Lawrence Berkeley National Labo-
ratory (LBNL), maximum compression ratios of up to
40 were achieved at the foci of heavy-ion (Ta, Bi, Pb)
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Fig. 1. Schematic of aplasmalensfor focusing charge-neutralized ion beams: (M) ring magnet with magnetized tips, which produce
the magnetic field in the lens; (1) ion current (the arrows in the right part of the electrode system indicate electron emission fluxes);
and (1, 2) possible trgjectories of the secondary electrons. The horizontal arrowsin theright part of the electrode show the emission

region.

beams with an initial diameter of d = 10 cm and ener-
gies of up to 50 keV [8, 12].

Estimates of the maximum compression ratio for
wide-aperture beams of heavy ions generated by vac-
uum arcsin cathode-material vapors show that the lim-
itations associated with the beam emittance, the
moment aberrations of aPL, and the field of an unneu-
tralized space charge of the beam at the focus may be
important for compression ratios of up to 1000.

Further search of the methods for eliminating PL
spherical aberrations, which adversely affect the maxi-
mum compression ratio of the beam at the focus, and
optimizing the PL parameters requires complementary
numerical experiments drawing on the resources of
modern computational techniques. At this point, it is
worth noting that Morozov and Savel’ ev [10] were the
first to study the self-consistent electron dynamicsin a
system similar to the plasma optics one, namely, a
plasma accelerator with closed electron drift and an
extended acceleration region.

In the present paper, we report the results of thefirst
numerical experiments aimed at modeling the relax-
ation of ahigh-current PL to asteady state and estimat-
ing the effect of this state on the focusing of a wide-
aperture PL.

Let us briefly review the principles of operation of a
PL, which were first described by Morozov and Lebe-
dev [2]. The lens consists of a system of coaxial cylin-
drical electrodes of radius R (Fig. 1) held at different
electric field potentias. The potential is maximum at
the center of the lensand is zero at the outermost elec-
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trodes. A given step profile of the potential at the cylin-
drical surfacer = Ris symmetric with respect tothez=
0 plane and can be approximated by a smooth profile
U(z r =R), asinFig. 1.

As afunction of the variable z, the potentia U(z r)
also has a maximum in the central cross section of the
lens, in which case, however, we have U(0, 0) < U(0,
R). Consequently, in the absence of amagneticfield, we
deal with the simplest electrostatic lens. An ion flow
entering the lens from the right (Fig. 1) is displaced
toward the lens axis by the radial component of the
electricfield E =-V¢. It isassumed that theion charge
density is low and the distribution U(z, r) is distorted
insignificantly. However, in actuality, the problem isto
focus ion beams with high space charge densities. In
this case, the beam charge is neutralized to a great
extent by an electron cloud that is trapped by the beam
in the stage of its formation and prevents the beam ions
from flying apart under the action of Coulomb forces.
Such a neutralized ion beam (NIB) is a medium in
which the electron conductivity is high and which
expels external electric fields from its interior. That is
why an NIB cannot be focused by an electrostatic lens.

The above effect of a complete screening of the
external electric fields can be eliminated by applying an
external magnetic field,! the typical configuration of
which is shown in Fig. 1. In such a lens, the focusing
process can be briefly described asfollows. Only afrac-

1An azimuthally symmetric magnetic field with the desired line
pattern is created by a system of electromagnets or by ring mag-
nets with cylindrical tips of specially shaped cross sections.
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tion of the electronsthat neutralize theion beam charge
enter the working volume of the lensin the axial region.
The remaining beam charge is neutralized by the emis-
sion electrons that are knocked out of the electrodes by
the beam ions in the so-called “licking” regime (see
[2]). Although these secondary electrons neutralize the
beam charge, they are incapable of screening the exter-
nal electric field, because, in amagnetic field in which
the electron gyroradius is much less than the electrode
radius (r, <€ R), the electron conductivity across the
magnetic field is zero. However, the potential distribu-
tion over the working volume of the lens will differ
from that in the electrostatic anal ogue described above.
The reason is that the electrons move freely along the
magnetic field lines and thus tend to smooth out varia-
tions in the potential along the lines and to make the
lines equipotential. If thisisthe case, the magnetic field
lines that cross the rightmost electrode will transport
the zero potential toward the axis of the system. Itisin
this sense that the electric field within the working vol-
ume is nevertheless pushed aside. The penetration
depth of the electric field into the working volume is
controlled by the magnetic field and is on the order of
R. As aresult, the potential difference U(0, R-U(0, 0)
is higher than that in the purely electrostatic analogue
and, accordingly, the compression ratio of anion beam
at the exit from the focusing system is larger.

That the magnetic field lines can be equipotential
was asserted by A.l. Morozov in his papers. The equa-
tions of the two-fluid hydrodynamic model of a plasma
with zero electron temperature and mass in the absence
of electron-ion collisions has the stationary solution

1
E = _E[VeH]f (D
where E isthe electric field in the plasma and v, is the
hydrodynamic velocity of the electron gas. Solution (1)
implies that there is no component of the electric field
in the magnetic field direction and that the electrons
drift azimuthally at arate of about cE/H.

In reality, the gyroradius of the electrons and their
temperature are both finite; hence, the magnetic field
lines can be expected to be nonequipotential. In addi-
tion, the fact that the potential distribution depends on
the ion current density (see [6-8]) is not described by
solution (1). Thisis why it is important to carry out a
more complete numerical investigation of the relax-
ation of the plasmato a steady electron statein the lens
volume. It is this problem that is the subject of our
paper, in which we will use the methods of mathemati-
cal modeling of dynamic phenomenain plasma media.

The geometric dimensions of the electrodes and the
magnetic field structurein the lens shown in Fig. 1 cor-
respond to those in the plasma lens that was used in
experiments at the IP NASU and in which the magnetic
field is produced by a constant ring magnet with cylin-
drical tips. The shape of the tips was chosen so that the
outermost magnetic field line that goes through the
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electrodes held at a zero potential passes at the shortest
possible distance from the lens center. This choice was
made through a computer simulation of the magnetiza-
tion of thetips. Another lens version corresponds to the
plasma lens that was used in experiments at the LBNL
and is based on a 14-cm-long system of electrodes
10cm in diameter. The numerical results reported
below were obtained for these two types of focusing
devices.

2. NUMERICAL MODEL

The operating modes of the PL were simulated by
the particle-in-cell (PIC) method under the assumption
that the plasma s collisionless [11]. The density of the
electron emission current from the surfaces of the elec-
trodes was assumed to be uniform and egual to aJ;
(where a is the emission coefficient and J; is the ion
current density at the entrance to the lens). It was
assumed that the secondary electrons are emitted in the
region z= 1, whereas, at smaller z, the secondary elec-
trons are not generated because the ion beam begins to
be compressed there. It was al so assumed that theinitial
electron energies are distributed uniformly over the
interval 6-10 eV and that the angles between the direc-
tions in which the secondary electrons are emitted and
the norma to the surface of the electrodes range
between 0° and 70°. After each time step AT (in sSimu-
lations, it waschosentobe AT =7 x 107! s), N new par-
ticles with charge q and mass m (the charge-to-mass
ratio being g/m= e/m,, where m, isthe mass of an elec-
tron) were injected into the lens. The quantities N, AT,
and q satisfy the relationship Ng/AT = aJ; S, where S,
is the area of the surface from which the secondary
electrons are emitted. Theinitial conditions for each of
the particles were imposed with the help of a random
number generator.

The motion of the electrons (and, thereby, the parti-
cleswith which the electrons were modeled) in the lens
volume was described by the equation

dVe _ 1 0
mem = —eai + E[VeH]D, ()
where E and H are the electric and magnetic field
strengths and v,, is the electron vel ocity.

Equation (2) for both the new particles and the par-
ticles already present in the lens volume was integrated
with atime step At < AT. After each time step AT, the
distribution of the electron space charge density was
calculated from the coordinates of all the particles by
the PIC method. It was assumed that the distribution of
the ion space charge is uniform and correspond to a
givenion energy and agivenion current density J,. This
approach isjustified in studying the general features of
the relaxation of a PL to steady-state operating modes.

The potential U(z r) was calculated from the distri-
bution of the total space charge density p(z r). Since
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the potential in the lens was given only at the electrode
surfaces, it was determined using the following proce-
dure. The set of equations

00 = ff S e

(where U(r;) are the potentials of the electrodes at the
points with the position vectors r; and the integrals are
taken over the surface of the electrodes and the lensvol-
ume) was used to determine the surface change density
o(r) at the electrodes in the form of a discrete set o,.
Then, the right-hand side of Egs. (3) was calculated at
the mesh pointsr;, of the spatial grid covering the lens
volume. Further, the equations of motion for the parti-
cles were again solved but for the corrected electric
field. Next, a new group of the emission electrons was
injected. This procedure was repeated until the poten-
tia in the lens relaxed to a quasi-steady distribution
self-consistent with the electron motion. The self-mag-
netic field of the moving electrons wasignored because
their current density islow.

In asteady state, the number of electronsin thelens
volume was (1.5-3) x 10°. Thelosses of electrons were
determined by their escape from the computation
region through the ends of the lens and, to a far more
substantial extent, toward the electrodes. The electrons
can be classified by their trgjectoriesinto two types (see
Fig. 1; curves I, 2). The motion of the electrons of the
first type along the magnetic field lines is regular: on
time scales of about (1-2) x 108 s, these electrons|eave
the lens volume. The electrons of the second type are
trapped by the magnetic field of the lens and move sto-
chastically between the lens ends for afairly long time
T.. It isthese electronsthat are responsiblefor therelax-
ation to a steady-state potential distribution in the lens.
A statistical analysis of the electron lifetime 1, was not
carried out. At the sametime, calculations of individual
test electron trajectories in fixed electric and magnetic
fields yielded lifetimes of about T.= (2-8) x 107 s.
Note that, in numerical experiments, the relaxation to
steady states occurred on time scales of about 5 x 1077 s.

Hence, we numerically investigated collective phe-
nomena in a statistical particle-field model. All the
applicability conditions of the model were satisfied. In
particular, the electric field was recalculated on atime
interval AT that was much shorter than the plasma
period.

3)

3. RESULTS OF COMPUTER SIMULATIONS

Numerical experiments answered a number of ques-
tions about the regular features of the formation of
space charge within the lens volume.

(i) The important role of the ion background was
revealed. Physically, it is clear that the total electron
charge in the working volume exceeds the total ion
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charge. According to experimental estimates [6, 7] and
our numerical results, the excess electron charge can
amount to 10-14%. However, it is incorrect to assume
that the positive and negative charge densities at each
point of the lens volume satlsfy the relationship
PZ I =p(Zr)—p«z 1)< 0.2If the regions dominated
by the positive charge do not form, the lens is insuffi-

ciently filled with the emission electrons and numerical
experiments areincapable of capturing the potential dis-
tributions observed experimentaly in the lens volume.
When the ion background is taken into account, these
distributions become dependent on the beam ion den-
sity. In contrast, the traditional approach (the zero tem-
perature approximation) yields the same solution
regardless of the magnitude of theion current density J;.

(i) Thedistribution of the space charge in the radial
direction has a stratified structure. The space charge
possesses a radially stratified structure even when the
potential distribution over the electrodes is smooth
(rather than steplike). We carried out simulations for
different potential distributions over thelenselectrodes.
The distributions were modeled by the functions of the
form

f(2) = U(z R)/U(O, R).

Figure 2 presents the profiles f(z) used to simulate a
lens with the geometric parameters givenin Fig. 1.

For a given magnetic field structure and a given
function f(2), the assumption of precise equipotential-
ization allows us to readily calculate the potential dis-
tribution ¢(z r) over the lens volume and the corre-
sponding space charge density p(r): Ad = —41p For a
step potential profile at the electrodes (Fig. 2, curve 1),
cylindrical regions with constant potentials U; appear
within the lens. The inner and outer boundaries of each
arethe surfaces generated by rotating the magnetic field
lines that pass through the ends of theith ring electrode
about the lens axis. As a consequence, the space charge
inthe lensvolume will be nonzero only within the tran-
sition regions between the surfaces with different
potentials, thereby forming a pronounced stratified
structure in the cross section passing through the lens
axis. Such stratified structures are actually observed in
numerical experiments for step potential profiles at the
lens electrodes. However, they are also captured in sim-
ulations with smooth profiles f(2). The reason is that
stationary solution (1) is unrealistic. This solution,
which is in fact the equipotentiality condition, was
obtained without using the boundary conditions and
thus cannot clarify the physical reason for a significant
difference in the number of electrons moving aong dif-
ferent magnetic field lines. In an actual lens, the phases
of the electrons moving along thefield lines should sat-
isfy certain relationships in order for the electrons to

2such an assumption would allow us to exclude the ion back-
ground from consideration and to calculate only the dynamics of
the excess electron charge in the lens.
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Fig. 2. Potential profiles at the electrodes of the lens that
were used in simulations: (1) step profile corresponding to
the experimental conditions in which the electrodes were
separated by adistance of 1.5 mm; (2) f(z) =1 for z< 0.75
and exp(—z/1.3) for z> 0.75; (3) f(2) = exp(=2/7); and (4)
linear profile over the region 0.75 < z< 5 such that f(z2) =0
forz>5.

undergo multiplereflections from the el ectrode regions.
It isonly in this case that the space charge of the elec-
trons will be large enough to neutralize the ion beam
charge. The only electronsthat can be trapped by a self-
consistent electric field are those moving along certain
magnetic field lines, which explains the stratified struc-
ture of the space charge density in the radial direction.
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(iii) Efficient ion focusing can be achieved in rela-
tively weak magnetic fields such that theion gyroradius
is comparable to the lens radius. In this case, the space
charge distribution is unstratified. In the central region,
theradial electric field increases linearly away fromthe
axis. Sincethe magnetic field is approximately constant
over the cross section of the lens, the angular velocity
of the azimuthal drift motion depends weakly on the
radius. Such an operating mode should be free of insta-
bilities that worsen the parameters of the ion focusing.

We now present numerical results that illustrate the
above conclusions. First, we show that the ions play an
extremely important role in the dynamics of the forma-
tion of both the space charge in the lens and the high
potential relief. Assuming that, at each spatial point, the
space charge density of the el ectrons exceedsthat of the
ions, we can formally set the background ion density
equal to zero. In this case, our numerical model will
describe only the distribution of the excess electron
charge. However, the results of solving the problem as
formulated disagree with the experimental data
(Fig. 3a). The potential at the center of the lens does not
become lower than 600 V/cm even when the secondary
emission current is substantially increased. The reason
for this lies in the formation of an electron cloud near
the emitting electrodes. in the self-consistent steady-
state regime, the electrons flow from the cloud into the
lens volume and return from the volume to the elec-
trodes. In adynamic equilibrium state, the total number
of electrons within the lens remains essentialy the
same over awide range of secondary electron flux den-
sities. As the electrons fill the axial region, they give
rise to a retarding potential (Fig. 3a, the vicinity of

(b)
pP.(2=0,71)
L \/ " 5
- - P S -1
3 ':
1 L 1 1 1 |
0 05 10 15 20 25 3.0 35
-

Fig. 3. (a) Spatial distribution of the potential in aplasmalensin the model in which the working volume has an excess of electrons
at each point. The calculations were carried out for U(0, R) = 3kV, H(0, 0) =360 Oe, and f(2) = exp(—22/7), the secondary electron
emission coefficient being a = 3. The emission flux density corresponds to theion current density J; = 3 mA/cm?. The arrow at the
center indicates a decrease in the potential with respect to itsinitial value. Point M indicates the onset of the retarding potential.
(b) Radial profiles of the absolute value of the electron charge density (in electrostatic units) in the central cross section of thelens.
Curves I and 2 were calculated for | = 120 and 180 mA, respectively. Curves I' and 2' show the ion background levelsin these two
cases. Curve 3istheradial profile of the absolute value of the electron charge density in the model of Fig. 3a.
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point M), that prevents the secondary electrons from
moving along the magnetic field lines from the outer-
most electrode toward the axis of the system. If we
assumethat regions dominated by positive space charge
do formin thelensvolume and take into account theion
background3 in the numerical model, then we find that
the retarding potential does not arise. The excess nega-
tive space charge in the axial region increases, thereby
lowering the potential over the entire lens volume and
increasing the time during which the electrons move
along the magnetic field lines. All these processes
occurring in the lens lead to aradical rearrangement of
the electron density distribution (Fig. 3b) and an
increase in the total excess negative charge in the sys-
tem. This is in agreement with the experimental data
(Fig. 4), according to which the measured potential at
the center of the lensis always lower than 50 V. In our
model of the lens, we ignore the electrons that enter
(together with an ion beam) the axial region, where the
radial magnetic field is weak. As a consequence, the
axial region in Fig. 3b is dominated by the ion charge;
however, the error introduced by thisignoring is unim-
portant in seeking the optimum modes of the lens oper-
ation.

Notethat, for all thef(z) profilesshowninFig. 2, the
potential distributions are closeto that in alens version
with equipotential magnetic field lines. However, the
structure of the space charge distributions differ
strongly from that obtained from the classical solution
[1, 2]. Thus, for a Gaussian potentia profile at the elec-
trodes (Fig. 2, curve 3), the space charge in the last case
will be negative at each point within the lens volume.
Although this stationary solution is formally allowed
by our task, it is neverthelessunredistic: if wetakeinto
account the boundary conditions, we see that this solu-
tion does not correspond to any real situations occur-
ring when the lensisfilled by the emission electrodes.

We now discuss the structure of the space charge
distribution. Since the equipotentiality condition for the
magnetic field linesis satisfied fairly well for anonzero
electron temperature, the stratified nature of the distri-
bution of p(r) for a step profile of the function f(2)
(Fig. 2) has a physically clear meaning. However, the
dtratification occurs also for a smooth f(z) profile
(Fig. 5). Let us examine this point in more detalil.

Since the electrons that undergo a single-pass
motion along the magnetic field lines” (i.e., along tra-

3 For abeam of singly charged copper ions with the current density
J = 3mA/cm? (in which case the total ion current in the lens is
120 mA) and at the potential U = 12 kV, the ion density isn; =

9.8 x 108 cm™3, which corresponds to the ion space charge den-
sity pj = 0.47 esu. For atotal ion current of 180 mA, we haven; =

1.47 x 10° cm™ and p; = 0.7 esu. Our simulations were carried
out precisely for these parameter values.

4 We mean here the trajectories that liein the (z, r) plane. In three-
dimensional space, the electron motion is also characterized by
the drift of the guiding centers of their Larmor orbits in the azi-
muthal direction.
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Fig. 4. Radia profiles of the potential at the central cross
section of the lens for a Gaussian potentia profile at the
electrodes. The dashed and solid curves were calculated for
Jj=3and 4.5 mA/cm?, respectively. The curve that bounds
theregion shaded in light gray isthe solution to the problem
with a precise equipotentialization of the magnetic field
lines.

jectories analogousto curve I in Fig. 1) live for only a
short time in the lens volume, they cannot produce a
significant space charge. The potential distribution over
the volume is rearranged by the trapped (long-lived)
electrons that move stochastically along the magnetic
field lines. The question then naturally arises as to the
factors that determine the probability for the electrons
to be trapped within the lens volume.

The first factor is the presence of regions near the
electrodes in which the potential is highly nonuniform.
An €electron that starts from some point at a certain
potential and moves along an orbit with finite Larmor
radiuswill reach the electrodes near the opposite end of
the magnetic field line at a point at which the potential
differsfrom that at the starting point. When the gradient
of the potential at the electrodesislarge, thereisafairly
large probability that an electron will enter a region
wherethe potential islower than that at its starting point
and will be reflected by this region. The electrons that
are trapped in this manner form the space charge in the
bulk of the lens volume. For a step potentia profile
(Fig. 2, curve 1), cylindrical layers with an elevated
electron density originate and end up at the interelec-
trode gaps.

The second factor is the presence of regions with
nonuniform magnetic fields near the lensends. Near the
outermost electrodes (z = 6), the electrons move in a
magnetic field with an alternating component H, and a
rapidly varying component H,. The redistribution of
energy between the rotational motions (along the orbits
with finite Larmor radii) and translational motions
resultsin chaotic reflections of the electrons not only in
the regions near the electrodes but also within the lens
volume (Fig. 1, trgjectory 2). Trapped electrons of this
type, which were taken into account in the classical
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Fig. 5. Structure of the spatial distribution of the electron charge density for an exponential profile of the potential at the electrodes
of thelens (Fig. 2, curve 2). The beam current is| = 180 mA. Theregions shaded in light gray are those in which the charge density
of theionsis higher than that of the electrons. The“islands’ in these regions are dominated by electrons. Shades of gray correspond
to eight levels of the space charge density, from 0.7 esu for the ion background to an electron charge density equal to 1 esu. The

regions where the charge density is higher than 1 esu are hatched.

solution to the problem in the zero temperature approx-
imation [1, 2], produce jumps in the excess electron
charge in the axia region (see Figs. 3b, 5), where the
space charge density p(z, r) should be minimum for the
given f(2) profile, provided that the magnetic field lines
are equipotential.

In contrast to the situation with a step potential pro-
file, the situation with an exponential profile f(2)
(Fig. 2, curve 2) is more difficult to interpret (Fig. 5).
The formation of the outer and inner (axial) space
charge layers is consistent with the ideas arising from
our model. These effects stem from the distinctive fea-
tures of the potential distribution over the electrodes
(thebresk inthef(z) profileat z= 0.75; see Fig. 2, curve2)
and the magnetic field near the lens ends (Fig. 1). The
formation of two additional space charge layers
between the outer and inner layersisdueto the effect of
the beam ions. It has been pointed out above that the
ions play an especially important role in the relaxation
to the steady-state operating modes of the lens. The
results shown in Fig. 5 illustrate the effect quantita-
tively. Numerical experiments carried out for smooth
f(2) profiles show that the higher the ion current, the
more pronounced the stratification and the larger the
number of space charge layers. In this case, the electric
field penetrates deeper into the working volume and its
radial component at the beam periphery becomes
weaker, which reduces the focusing efficiency in the
regions crossed by the majority of the beam ions.

The above distributions of the space charge in the
stratified structure can give rise to various plasmainsta-
bilities that may degrade the quality of the focused
beam. Low-noise aberration-free focusing regimes
should be sought only in the range of weak magnetic
fields [13]. Below, we present numerical results
obtained for alenswith aradius of 3.6 cm (see Fig. 1),
the magnetic field strength at the center being H,(0, 0) =
100 Oe. In simulations, the dependence of H,0, r) on

theradial coordinater was approximated by aquadratic
parabola such that H,(0, R) = 170 Oe. The potential at
the central electrode was 3 kV. The values of f(2) at the
electrodes are given by curve [ in Fig. 2. It was
assumed that the secondary electrons are emitted only
from the region 1 < z < 6 on the surface of the elec-
trodes. The electrons that enter the volume of the lens
through its ends were ignored. The ion energy was
12 keV and the beam current was 100 mA, the corre-
sponding ion space charge density being p = 0.394 esu.

Figure 6 displaysthe spatial structure of the electron
space charge. Because of the increase in the character-
istic Larmor radius, the electron space charge density
does not possess a pronounced stratified structurein the
central part of the working volume. The radial profiles
of the potential and electric field in the z= 0 plane are
amost ideally suited for providing aberration-free
beam focusing (see the region between the dashed ver-
tical linesin Fig. 7).

Near the central electrode (i.e., in the region where
the magnetic field increases to 170 Oe), the electron
density evolves to a highly nonuniform distribution
(Fig. 6), which leads to distortions of the linear radial
dependence E, (0, r) shown in Fig. 7a. Of course, the
electric field distribution in the central cross section of
the lens does not give information about the global
electric field structure over the entire lens volume
(Fig. 7b), in which case the calculated ion trgjectories
provide evidence that the focusing is not ideal because
of the presence of spherical aberrations. Thus, during
thefocusing of theionsinjected parallel to thelensaxis,
the maximum mean ion current density at a collector of
radius 1 cmisapproximately J;. = 34J; and isreached at
a distance of about |z| = 15 cm from the central cross
section of the lens.

The results of numerical experiments carried out
based on the model developed here agree well with the
PLASMA PHYSICS REPORTS  Vol. 29
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Fig. 6. Distribution of the electron space charge density in alens with the central magnetic field H0, 0) = 100 Oe. In the hatched
regions, the space charge of the electronsis higher than that of theions by afactor of 1.5 and more. The regions where the electron
space chargeis lower than the ion space charge are shaded in light gray. The solid curve is one of the possible electron trajectories

in the lens version in question.
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Fig. 7. (a) Radial profiles of the potential (solid curve) and radial electric field (dashed curve) at the central cross section of alens
with H,(0, 0) = 100 Oe. (b) Potential distribution over the volume of alens with the central potentia ¢(0, 0) =24 V.

data from actual laboratory experiments. This allowed
us to employ a specially devised computer code® to
optimize the parameters of aplasmalenswith a14-cm-
long system of electrodes 10 cm in diameter. Such a
lens was used in experiments at the LBNL [12]. The
magnetic field strength at the lens center was 300 Oe,
and the potential at the central electrodewasupto 7 kV.
We simulated the focusing of a beam of bismuth ions
with an energy of 34 keV and a total current of about
200 mA and found a nonmonotonic potential profile at

5 In the numerical model, we took into account additional electron
fluxes from the lens ends. The radius of the regions from which
these fluxes are emitted is 1.5 cm and the starting positions of the
electrons at the z axis (z = 6.3 cm) coincide with those at which
the magnetic field component H, vanishes at the lens ends. The
current density of the additional éectrons is0.1 of theion current
density.

PLASMA PHYSICS REPORTS Vol. 29 No. 10 2003

the electrodes (Fig. 8) for which the density of the cur-
rent to atarget 3 mm in diameter reaches a maximum
value of 45 mA/cm?, which corresponds to a beam
compression ratio higher than 30.

The results shown in Fig. 8 clearly illustrate a fun-
damental principle of plasmaoptics: intheregion of the
interelectrode gap, the potential profile f(z = 3.6) is
highly nonuniform; however, the electrons that move
along the magnetic field lines passing through this
region are not trapped. This conclusion is not surpris-
ing, especially in view of the equipotentialization prin-
ciple for the magnetic field lines. In fact, the charge
localized along these magnetic field lines should be
positive, because, along the lines, we have Adp(z r) <0
by virtue of ajump in the potential, df/dz> 0. However,
the physical mechanism of the phenomenon under con-
sideration liesinitsremarkable capability for self-orga-



882

GORSHKOV et al.

Fig. 8. Structure of the spatial distribution of the electron charge density in alensin which the height of the stepsin thef(z) profile
at the electrodes (from the center to the edge) are equal to 1, 0.74, 0.09, 0.2, and O (top). The background level of the ion charge
density is0.43 esu. The regions where p, = 0.86 esu are hatched. In unshaded regions, the electron charge density is higher than the
ion charge density. In the regions shaded in light gray, the charge density of the electronsislower than 10% of that of theions. The
symbol h denotes the space charge layer formed by the electrons reflected from the regions of the strong radial magnetic field near

thelens ends (see Fig. 1).

nization. Since the pattern of the trgectories of the
trapped electrons is consistent with the potential distri-
bution over the lens volume, these electrons cannot be
reflected from the electrode regions (z = 3.6 cm), in
which the potential is highly nonuniform.

In conclusion, we note that, on the whole, the poten-
tial distribution in the plasma lens corresponds to the
equipotentialization principle for the magnetic field
lines. In reality, however, the distribution of the electric
field strength (the potential gradient) can deviate appre-
ciably from that given by the classical solution, espe-
cialy when the dependence f(2) is nonmonotonic. That
iswhy it often happensthat the “optimal” potential dis-
tribution over the electrodes in a prescribed magnetic
field obtained by the method of precise equipotential-
ization is not actually the optimal one.
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Abstract—A computer model is devised for aMorozov plasmalens, in which the magnetic surfaces are equi-
potential surfaces of the electric field. Results are presented from numerical modeling of the focusing of ions
with alowance for their longitudinal, radial, and azimuthal motions. The strengths and spatial distributions of
the magnetic and electric fields are optimized. The methods for removing moment, geometric, and chromatic
aberrations are analyzed. The effect of a discrete distribution of the potentials on ion focusing is modeled,
and the related aberrations are examined. A computer model of an achromatic two-lens system is considered.

© 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, there is a great need to further develop
the physics and technology of intenseions and electron
beams (see, e.g., [1-3]). The problems associated with
the focusing, transport, and separation of such beams
are important for plasma physics, controlled fusion
research, nuclear physics, accelerator physics and
designs, radiation therapy, isotope separation, and
beam technologies. An essential feature of the focus-
ing, transport, and separation of intense ion beams is
that, in order to prevent Coulomb instability, the ion
space charge should be neutralized by electrons. For
these purposes, it is expedient to use plasma-optic
focusing devices (lenses) [1, 3], whose devel opment was
initiated by A.l. Morozov and his collaborators [3-5]
and, in recent years, has been continued by A.A. Gon-
charov and his group [6-8].

In contrast to vacuum lenses, plasma-optic focusing
systems are capable of operating with high ion currents
(up to hundreds of amperes or higher) over a wide
energy range [3]. Such systems have high focusing
power and can both focus and defocus beams. The
plasma in the lenses can be created by focused beams
asaresult of ionization of the residual gas or secondary
electron emission from the electrodes and from the wall
[6-8]. It can also be created by external sources, which
is even better from the standpoint of optimization. In
plasma-optic systems, any aberrations can, in principle,
be eliminated by properly adjusting the distributions of
the magnetic and electric fields.

Themain goal of this paper, which isa continuation
of [9-11], isto carry out computer simulations aimed at
analyzing the possibility of eliminating different types
of aberrations in lens systems for focusing wide-aper-
ture (nonparaxial) charge-neutralized ion beams. We

will be interested in the following types of aberrations:
moment aberrations, which are due to the azimuthal
particle motion; geometric aberrations, which depend
on the radius and angle at which the ions are injected
and also on the spatial distribution of the focusing
fields; and chromatic aberrations, which are associated
with the longitudinal momentum of the beam particles.
The aberrations resulting from the dynamics of the
focusing fields (e.g., from their instabilities) are not
considered here; the related problems are touched onin
[3,6].

2. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

Axisymmetric lenses were investigated theoreti-
cally and experimentally in [3-11]. In such lenses, the
vector potential of the magnetic field has the only azi-
muthal component A,. For theoretica analyss, it is
expedient to introduce the so-called magnetic flux func-
tion [5]

Y(r,z) = rAy(r,2), )
in which case the magnetic surfaces are described by
the equation [12]

rA, = const. )

For a Morozov lens, the electric field potential &(r,
2) isrelated to the magnetic flux function Y(r, 2) by

D(r, 2) = F[Y(r, 2)], 3)
where the function F is determined by (or is chosen to
satisfy) the optimum focusing conditions.

We express the components of the electric and mag-
netic fields in terms of Y and F and substitute these
componentsinto Newton's equations of particle motion

1063-780X/03/2910-0883%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic of the Morozov lens: (1) central current
loop, (2) side current loops, and (3) reference electrodes.

writtenin cylindrical coordinates. Asaresult, we obtain
the following equations for calculating the particle tra-
jectoriesin alens[10]:

dvi _ qowrt,, _ dFn V¢
Gt mroreve” dLLD+ “)
dv, _ an dyn VV¢
at _mcrglzaz rarll” Ty )
V. __eoppdr 1,0
T omr az%dw c ¢D’ ©

where c is the speed of light and g, m, and V are the
charge, mass, and velocity of the focused particles,
respectively.

In [6-8], experiments were carried out with a mag-
netic field configuration produced by three short sole-
noids carrying opposite currents, which made it possi-
ble to localize the so-called reference el ectrodes (used
to apply the electric potentials to the plasma) near the
central plane of alens. In simulations, we modeled this
electrode system by three coaxial loops of the same
radius; the currents in the side loops were opposite to
the current in the central loop. The magnetic field gen-
erated by the current J,, in aloop of radius a;, with its
center at the point |,, on the z axis, is described by the
azimuthal component of the vector potential (see [12,

13)):

K(kn) E(kn)}
@)

(a+ Ir) + (Z—ln)

whereK and E are complete eliptic integrals of thefirst
and second kinds, respectively, and n is the number of
the loop. By the superposition principle, the total mag-
netic field of a solenoid consisting of n current loopsis

determined by the vector potential A, = z Ay

A schematic of the lensis shown in Fig. 1. The cen-
tral loop (1) islocated at z= 0, and the sideloops (2) are
placed at z, = +5 cm or at z, = £10 cm. We calculated

BUTENKO, IVANOV

the magnetic surface topography for different ratios
between the opposite currents in the central loop (J.)
and in two side loops (J5). The numerical results pre-
sented below were obtained for J. = —1.5J;, which
makesthe magnetic field line topography (shown by the
dashed curvesin Fig. 1) in the lens volume adequate for
our purposes. In modeling the focusing process, we
assumed that the lens volume and the region through
which an ion beam propagates are filled with a plasma
whose density and other parameters are sufficient to
neutralize the beam space charge completely and to
produce the required focusing fields. (In a sufficiently
large volume, a highly homogeneous, high-density
plasmawith high degree of ionization can be created by
alaser, see, e.q., [14].) In the central region (2.8 cm <
z<28cmforz,=+5cm, or 5.6 cm<z<5.6 cm for
z.=+10 cm) of the lens, i.e., in the region between the
separatrices (at which the longitudinal magnetic field
vanishes), the magnetic surfaces pass through the refer-
ence electrodes (3) and are held at their potential. The
potentials at the magnetic surfaces to the left and right
of the central region are assumed to be zero.

Based on Egs. (4)—(6) and formulas (1)—(3) and (7),
we developed a computer model of the Morozov
plasma lens. The model makes it possible to trace the
particle trgjectories and optimize the lens parameters,
in particular, to remove different types of aberrations.
In the model, Egs. (4)—(6) are solved by the Adams
method of fourth-order accuracy.

3. MOMENT ABERRATIONS

An analysis of the results from the computer model-
ing of theion trajectoriesthat was carried out in our ear-
lier paper [10] shows that the moment aberrations
increase as the beam injection radius and the magnetic
field of alens increase and as the ion injector is dis-
placed toward the lens. Along the calculated ion trajec-
tories, the conservation lawsfor thetotal energy and the
moment of the generalized momentum were found to
be satisfied to within five significant decimal digits.
Here, we are interested not in the trgjectories but in the
conditions under which the moment aberrations are
negligible. Performing the corresponding manipula-
tions with Eq. (5) for the azimuthal ion motion, we can
obtain the following conservation law for the moment
M, of the generalized momentum of anion with respect
tothelens axis:

My = r(mV, +gAy/c) = Myo. 8)

This law implies that the necessary and sufficient
condition for the absence of moment aberrations during
the focusing of a particle beam is that the initial value
My, is zero. Since, in experiments, the beam particles
are injected at a zero initial azimuthal velocity (Vy, =
0), a sufficient condition for the absence of moment
aberrations is that the magnetic field in the ion injector
be zero, Ay, = 0.
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4. GEOMETRIC ABERRATIONS IN A LENS
WITH A CONTINUOUS DISTRIBUTION
OF THE FOCUSING POTENTIAL

4.1. Focusing of the Particles Injected
from a Point Source

The particles injected from a point source placed at
the lens axis are subject to spherical aberrations, which
are a particular case of geometric aberrations. It iswell
known (see, e.g., [15, 16]) that, in vacuum lenses,
spherical aberrations are, in principle, unavoidable. In
[3], it was shown theoretically that they can be elimi-
nated in a thin electrostatic plasmalens in the paraxial
approximation. Here, we investigate the possibility of
removing spherical aberrationsin a more general case.
Specifically, spherical aberrationsin aMorozov plasma
lens can be removed by passing the particles to be
focused through extraneous charges with a controlled
density distribution.

As an example, we present the results from a com-
puter modeling of the focusing of aproton beam for the
following parameter values (which are comparable to
those in [6]): the proton energy is W = 20 keV, the
radius of the reference electrodes is 3.7 cm, the radius
of the current loopsis a. = 6.5 cm, the coordinate of the
proton injector is z, =—30 cm, and the proton beam cur-
rentis 0.1 A. (In this series of simulations, the magni-
tude of the proton current is needed merely to deter-
mine the compression ratio of the focused beam and is
unimportant in other respects becauseit is assumed that
the beam chargeis neutralized by the plasmaelectrons.)
The beam divergence angle is 0.1 rad, so that, at the
center of the lens, the beam radius is no larger than
3.0 cm. The central loop isplaced at z= 0, and the side
loops are placed at z, = +5 cm.

Asin our earlier papers[9-11], the boundary condi-
tionswere stated in the form of aradial potential profile
in the plane of the central loop, ®(r, 0) = B,r? + B,r* +
B,r¢ + ..., which was optimized by adjusting the values
of the dimensional coefficients B, so asto minimize the
aberrations (i.e., to maximize the proton current density
at thelensaxisin thefocal region). When necessary, the
radial potential profile could be recalculated into a
potential profile ®(R, z) over acylindrical surface. Note
that successful optimization of the potential profile
requires the use of a high-precision noncontact method
for measuring the spatial distribution of the electric
field strength in the plasma.

In the lens under consideration, the minimum spher-
ical aberrations are produced by the electric field poten-
tial (in electrostatic units) having the following opti-
mized radia profile:

®(r, 0) = 1.2r> - 0.0180r* + 0.000228r°. ©)]

For this profile, we calcul ated the proton trajectories
(in Fig. 2, they are shown in the focal region) and then
determined the proton current density in thefocal plane
(at z = 27.18 cm), which was found to be 7.5 kA/cn?,
PLASMA PHYSICS REPORTS  Vol. 29
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Fig. 2. Trajectories of protons injected from a point source
in the focal region.

the mean radius of the focal spot being 0.002 cm.
Hence, we have demonstrated that the spherical aberra-
tions of athick plasmalenswith nonparaxial beams can
be eliminated almost completely.

4.2. Focusing of a Parallel Beam

Theion trgjectories during the focusing of aparallel
beam were modeled for the following parameter values
(which are close to those in the experiments of [8]): the
radius of the injected beam of tantalum ionsisr, =
5 cm, the radius of the reference electrodes is 5.1 cm,
the radius of the current loopsis a. = 6.5 cm, the side
loopsareplaced at z= +10 cm, the coordinate of theion
injector is z, = -50 cm, the potential at the injector is
23 kV, the ion current is 0.5 A, and the energy of the
ions with the charge number Z = 3isW =69 keV. It is
well known that the focal distance in electrostatic
lenses depends on the ratio of the injector potentia to
the lens potential and is independent of the ion charge
(see, eg., [15, Section 4.7]). In the Morozov lens, the
focusing effect of the electric field is much stronger
than that of the magnetic field; consequently, it is expe-
dient to choose the charge number of tantalum ionsthat
corresponds to the maximum in their distribution over
the charge numbers. In the case at hand, this charge
number isZ = 3.

We supplement Egs. (4)—<6) and formulas (1)—3)
and (7) with the boundary conditions describing the
injection of a homogeneous monoenergetic ion beam
into the lens parallel to its axis:

V=V, Vi =V =0,2=7(z<0),r =t

at=0, (10)

where z isthe coordinate of the end of the injector and
the radius r; at which anion isinjected is varied from
zero to a value somewhat smaller than the radius R of
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Fig. 3. Trgjectories of Ta*> ions in alens with the potential
distribution ® O B,.
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Fig. 4. Radial profile of the ion current density in the focal
planein alens with an optimized potential profile.

U,kV

3.6r

24rF

1.2

| | | | |
0 1 2 3 4 5

Z,cm

Fig. 5. Optimized potential profile along thelensaxisin the
region of the reference electrodes.

Z,cm

Fig. 6. Trajectories of Ta*> ionsin alens with a smoothed
potential profile, the distance between the reference elec-
trodes being 1.6 mm.

the reference el ectrodes, which, in turn, is smaller than
the radius a, of the current loops.

In [8], the ion beams were best focused (the com-
pression ratio being about 30 at a total ion current of
0.24 A) in experiments in which the potentia profile
over acylindrical surface was proportional to the mag-
netic field strength at the lens axis. For this potential
distribution, we numerically traced the ion trajectories
(Fig. 3) and computed the radial profile of the ion cur-
rent density in the focal plane. The current density at
thefocuswas calculated to bej,,,, = 20A/cm?, the mean
beam radius being 0.05 cm and the compression ratio
being about 3140. These results are much better than
the experimental data but are significantly worse than
the optimized results presented below. It should be
noted that, in the experiments of [6-8], the potentials
were distributed over the reference electrodesin adis-
crete and stepwise fashion, which substantially
degraded the focusing conditions (see below).

Inthe casein question, the geometric aberrationsare
minimal when the potential (in electrostatic units) has
the optimized radial profile

®(r, 0) = 0.6r2 — 0.002r* — 7.5 x 10515, (11)

This optimized profile was used to calculate theion
trajectories and the radial profile of theion current den-
sity in the focal region (see Fig. 4). The maximum cur-
rent density was found to be j,,, = 2.1 kA/cm?. As a
result of the optimization, the beam compression ratio
became as large as 3.3 x 10°. The optimum potential
profile is fairly sensitive to the values of the coeffi-
cients. The maximum current density calculated from
formula (11), in which the last coefficient was equal to
B, =7.0 x 107, was found to be ., = 1.5 kA/cm?; the
same formula but with B; = 8.0 x 107 yielded .« =
1.7 KAlcm?.

For convenience in comparing our results with the
experimental data, we recalculated radial potential pro-
file (11) in the plane of the central loop into an opti-
mized profile along the cylindrical surface of radiusR =
5.1 cm, at which the reference el ectrodes were arranged
(see Fig. 5). In this case, the recalculated profile is
almost linear, which isfavorable for the optimization of
the focusing conditions in alens with a discrete profile
of the focusing potentials (see Section 5.2).

5. GEOMETRIC ABERRATIONS OF A LENS
WITH A DISCRETE PROFILE OF THE FOCUSING
POTENTIALS

5.1. Sep Profile of the Focusing Potentials

All numerical results reported above were obtained
for a continuous distribution of the focusing potential
over the coordinates. However, in the experiments of
[6-8], the potentials were applied to the plasma by a
finite number (five or nine) of cylindrical electrodes.
Here, we consider a lens with nine electrodes. In this

PLASMA PHYSICS REPORTS Vol. 29 No. 10 2003
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Table
Gap between the electrodes, mm 16 31 4.3 10
jmax & the focus, Alcm? 0.12 0.14 0.15 0.19

case, it is sufficient to specify six discrete values of the
potential within the lens volume such that the sixth
value corresponds to a zero potential at the axis. The
experiments of [8] were carried out with electrodes of
finite length, producing a step potential profile, which
was somewhat smoothed out in the plasma. The radius
of the electrodes was 51 cm, their length was 12 mm,
and the gap between them was 1.5 mm. Thetotal length
of the electrode system was 120 mm. In our calcula-
tions carried out for the above parameters, the poten-
tias of the electrodes were determined by third-order
B-splines. In this case, the number of control pointswas
set equal to the number of electrodestimestheorder k =
3 of the B-spline, and the potential at each of the three
control point was set equal to the potential of the corre-
sponding electrode. In every third interval determining
the effective length of the corresponding electrode,
thereareregionsin which thisB-splineisparallel to the
zaxis. The degree of smoothness was determined by
the ratio of the effective lengths of the electrodesto the
gaps between them, the total length of the electrode
system being unchanged (for information about
splines, see, eg., [17]; for the expediency of using
splines to approximate the fields in particle lenses, see
[15]). Figure 6 displays ion trajectories calculated for
electrodes separated by effective gaps of 1.6 mm (asis
the case in [8]) and held at discrete potentials corre-
sponding to the optimum potential profile shown in
Fig. 5. The relevant maximum in the radia profile of
the ion current density in the focal plane is j,.. =
0.13 A/cm? (cf. .. = 2.1 kA/cm? for the optimum con-
tinuous potential profile). From Fig. 6, we can see that,
in apotential having a step profile, the ions on the gen-
tle slopes of the steps are underfocused or even are not
focused at all, whereas the ions on the steep slopes are
overfocused. The reason is that, at the gentle slopes,
we have [V®| < E,, (where E,,(r) is the optimum
electric field strength), while, at the steep slopes, we
have [V®|> E,,. A similar situation takes place when
the potential profile along a cylindrical surface is pro-
portional to the strength of the longitudinal magnetic
field at the axis (see [8]). Simulations show that the
beam focusing depends on the degree to which the steps
are smoothed out (see table). It is clear from the table
that the quality of beam focusing is poor and depends
weakly on the degree of smoothness (and, presumably,
on the smoothing method). The half-width of the focal
spot (about 1 cm) and the current density (about
0.1 A/cm?) agree with the experimental data obtained
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in [8]. Additional information on the subject can be
found in [11].

5.2. Piecewise-Linear Profiles
of the Focusing Potentials

Here, we discuss the problem of optimizing the
focusing potentials in the Morozov lens. We begin by
noting that, in such alens, the trajectories of the elec-
trons moving in crossed electric and magnetic fieldsin
the azimuthal direction are trochoids and the guiding
centers of the electrons move along certain magnetic
surfaces. The characteristic size of the trochoidsisd =

Vy/w, = cVCD/(oocA/Hr2 + HZZ), where V, is the electron
drift velocity and w; is the electron gyrofrequency; for
typical lens parameters, we have d~ 0.1-1 mm. In order
for the length Az of an electrode not to influence the
formation of the optimum potential profile (asin Sec-
tion 5.1), it should be smaller than the cycle of the tro-
choid (Az < d) or, in any case, much smaller than the
distance between the electrodes (Az < d).

To optimize the focusing, we consider a piecewise-
linear (rather than step) profile of the focusing poten-
tials. A potential having a piecewise-linear profile can
be produced by a system of reference electrodesin the
form of aset of metal washerswith athickness of about
0.1-1 mm, separated by dielectric bushings. A linear

j, Alem?

300
200

100

1
0.02 0.04 0.06 r,cm

Fig. 7. Radial profile of the current density of Ta*3 ionsin
thefocal plane (z = 17.27 cm) in alenswith nine electrodes
in the case of a piecewise-linear approximation to the opti-
mum potential profilein the z-direction.
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Fig. 8. Scheme for eliminating chromatic aberrations.

potentia profile between the neighboring electrodes is
ensured by aresistive film deposited onto the inner sur-
faces of the washers and onto their ends. The inner
diameter of this electrode system is sufficient for the
beam to pass through.

In the case considered in Section 4.2, the desired
potential profile along the z axis is amost linear (see

U,kV
1.5F
1.0F
0.5
1 1 1 1
0 0.5 1.0 1.5 2.0
Z, cm

Fig. 9. Optimized longitudinal potentia profile in the sec-
ond lens.

r, cm
0.06
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0.04

0.03

0.02

0.01

78 79 80 81 82

Fig. 10. Proton trajectories in the focal region under the
conditions of Fig. 9.

Fig. 5), which facilitates the optimization of the focus-
ing. Figure 7 showstheradial profile of the current den-
sity of Ta** ionsin alens with a piecewise-linear z pro-
file of the potential of nine electrodes. One can seethat,
in this case, the ion current density at the focus is as
high as 400 A/cm?, indicating that the focusing is sig-
nificantly better than that in alens with a step potential
profile. As is expected, a lens with a larger number of
electrodes (19 in place of 9) provides even better focus-
ing: the ion current density at the focus amounts to
1.6 KA/cm?.

If (asin the case at hand) the desired potential pro-
file along the zaxisis close to alinear profile, thenit is
possibleto useasmall number of el ectrodes; otherwise,
the number of electrodes should be larger in order for
the piecewise-linear approximation to the potential pro-
fileto give asatisfactory result. It should be emphasized
that, in the experimental implementation of the optimi-
zation method proposed here, it is necessary to control
the optimum distribution of the electric field strength
within the lens volume by measuring the electric fields
in the plasmawith sufficiently high precision.

6. CHROMATIC ABERRATIONS

In axisymmetric vacuum lenses, chromatic aberra-
tions can never be eliminated (see, e.q., [15, 16]). The
possibility of removing such aberrationsin a system of
two electrostatic plasmalenses in the paraxial approxi-
mation was shown theoretically by Morozov and L ebe-
dev [5].

Figure 8 illustrates how chromatic aberrations can
be eliminated in a system of two Morozov lenses for
focusing annular ion beams. The coordinate of the
injector is z = —70 cm, the initial radius of an annular
proton beam being 3.5 cm. The parameters of the first
lens, which ensures the radia separation of a nonmo-
noenergetic beam at the entrance to the second lens, are
asfollows: the radius of the electrodesis5 cm, the max-
imum potential is2.8 kV, theradius of the current loops
is 6.5 cm, the current in the central loop is 30 kA, the
coordinate of the central loop is z= 0, and the coordi-
nates of the side loops are z= +5 cm. The potentia dis-
tribution within thefirst lensis unimportant for our pur-
poses: in the case at hand, it is chosen to be @ [kV] =
2.8cos(1T1Z/5.6).
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The parameters of the second lens are the following:
the radius of the electrodes is 2 cm, the maximum
potential is 1.5 kV, the radius of the current loops is
4 cm, the current in the central loop is 30 kA, the coor-
dinate of the central loop isz= 35 cm, and the coordi-
nates of thesideloopsarez= 35 =5 cm. Figure 9 shows
the potential distribution within the second lens (here,
the point z = 0 corresponds to the front of the second
lens). This distribution was chosen so as to minimize
the dependence of the focal distance on the proton
energy in the range 16-21 keV. The potential distribu-
tion was approximated by third-order B-splines with
n =11 control pointson theleft half of the system of the
reference electrode. Figure 10 shows proton trajectories
in the focal region. We can see that, at afocal distance
of 80.2 cm, all protonswith energiesfrom 16 to 21 keV
(the related energy spread being £13.5%) are focused
into a spot of radius 0.03 cm (the compression ratio in
the radial direction being equal to 117).

Hence, we have proposed and analyzed the methods
for the aimost complete elimination of geometric,
moment, and chromatic aberrations in magnetoel ectro-
static Morozov plasma lenses for focusing wide-aper-
ture (nonparaxial) charge-neutralized ion beams.
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Abstract—The electromagnetic instability of a relativistic space plasmais considered. The instability mani-
fests itself during transverse oscillations in an anisotropic plasma either when the wavelength is sufficiently
long and the vel ocity distribution isfixed or when the plasmais strongly anisotropic and the wavel ength isfixed.
The critical wavenumber is estimated for avelocity distribution in the form of an oblate ellipsoid of revolution.
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1. INTRODUCTION

Over the past decade, theoretical and observational
studies have focused much attention on such sources of
high-energy particles as active galactic nuclei, quasars,
and black holes. Although the accuracy and resolution
of modern astronomical observations are becoming
increasingly higher, they do not provide detailed and
comprehensive information about the structure of such
space objects. As for theoretical modeling, one has to
choose between plausible physical models[1, 2], keep-
ing in mind that not all of them are entirely realistic
because they do not take into account the onset of pos-
sible instabilities. The instability of relativistic objects
has received insufficient study. This circumstance was
pointed out in a recent paper by Heinz and Syunyaev
[3], who mentioned only one specific isotropization
factor—the instability of two overlapping plasmaflows
(which hardly exhausts the subject)—and found it nec-
essary to continue research in this field. In particular,
the electromagnetic instability of a laboratory plasma
dueto the anisotropy of the velocity distribution should
play amore important role at relativistic plasma veloc-
ities. Thisiswhy it isdesirable to investigate thisinsta-
bility under the conditions encountered in quasars and
anal ogous objects with high energy densities.

The aim of this paper is to study the stability of a
homogeneousrelativistic plasmawith agenerally aniso-
tropic velocity distribution. If such aplasmaisunstable,
then it will rapidly become isotropized even in the
absence of collisions. This isotropization should be
taken into account in atheoretical analysisof themodels
of the astrophysical objects mentioned above [4].

To simplify the mathematics, we first consider dis-
crete beams with certain momenta and then turn to a
plasma with a continuous velocity distribution. This
approach, which, of course, yields the same formulas

and conclusions as that based on the initially continu-
ous distributions, is sometimes more efficient, espe-
cialy inview of the fact that discrete beams can consist
of particles of different origin [5—7]. (Note that discrete
injected beams find many technical applications[8].)

2. BASIC EQUATIONS

We will work in a moddl of a homogeneous plasma
consisting of the particleflowsdesignatedasi =1, 2, ...,
N, with the corresponding velocity vectors V; (u;, v;, W),
gpatial densities n;, masses m, and charges . The
model also assumes a background with a spatial charge
density of opposite sign:

y = —Zniei.

We consider the propagation of awave in the linear
approximation, assuming that the z axis points along
the wave vector k and al of the linearized perturbed
guantities are proportional to the factor exp(At + ikz)
wheret isthetime and A is the growth rate.

If there were no perturbation, each particle would
move by inertia, r = ry + V;t. In order to linearize the
equations of motion

dp; VX H

dt_e'BE-F c U

(where cisthe speed of light), we take into account the
algebraic relationships between the velocity and
momentum,

2
p:_mv, V:—p , m%,B:T (1)
B 2 c2 B
2+ P
m+—§
C
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(where B = J1-V7/c® and B, = /1—V’Ic%). After

some simple manipulations, we arrive at the equations

oV, = —e'B.i v, = —e'Bi SV.
m(A +ikw;) m (A +ikw,)
Here, we have introduced the notation

+Vi xh (ViLe)V;
c c?

vV =E§¢E

’

in which € and h are the perturbations of the electric
field E and magnetic field H, respectively.

Summing the contributions of all the particles, we
obtain the linearized current density:
N e?
S n(viki—ikViv, LB, (ReA>0). (2)
i=1
whereL; = 1/(A + ikw;). Notethat, if the quantitiesk and

A are of the same order of magnitude, then the current
density isinversely proportional to k.

Current densities (2) are substituted into Maxwell’'s
equationsto yield

A . A
Ehx = IkEy, Eh =

o =

y —ike,,

: A 4, .
|khy+68x+?61x =0, 3)

A
™

A

. 4T, . arm. .
—ikh, + +?61y =0, Esz+?6jz =0

3. DERIVATION AND ANALYSIS
OF THE DISPERSION RELATION

Here, we are interested in ultrarelativistic space
plasmas. Inthiscase, in formulas(3), it isconvenient to
pass over from the velocities again to the momenta. In
order of magnitude, we set

2
kohg €nB
c Acm

which corresponds to millimeter wavelengths and, as
will be shown at the end of the paper, to very short
(from an astrophysical point of view) time scales of the
instability.

Inrelationships (1), we neglect the quantity munder
the sguare root symbol in comparison with p/c. We
express §j in terms of the particle momenta p, and aso,
using formulas (3), express the perturbed magnetic
field h in terms of the perturbed electric field €. We
restrict ourselves to considering a particular case in
which the particle momentum distribution is symmetric
with respect to al three coordinate planes. In this case,
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some of the sums vanish by symmetry. We single out
the x and y components of the electric field to obtain

N 2 .
anc’y ?.'_n_iLi[sx—ICpZ(; <Ky _(PLE)Ps
= pi p p
+7\2+k2c2
)

3 =0,

p

where the quantity L; now takes the form
_ o Pt
L, = %\chp_D :

Heppp D), |

After some explicit cancellations, the equation for the x
component becomes

N 2 2 2 2, .2
amcy ﬂ{l_w} +A*+Kc® = 0. (4)
L P (pPA +ikep,)” |

They component of the electric field satisfies an analo-
gous equation. Singling out the z component resultsin
the equation

2 2
n Pi —Pqi

o 2
en.
4rmc z et + 1 = Q.
' : 2
i=1 P (pi)\+|kcpzi)

&)

As an example, we consider an ellipsoidal velocity
distribution,

0  pc.ps. pd
d(pw Py, P,) = FOL+ = + =2+ =[],
Y O A% B? c%

aspecial case of which, with an exponential function F,
is often used in model calculations [9, 10].

Inwhat follows, we will omit the subscript i, assum-
ing that all the particles are of the same species.

We use dispersion relation (4) and introduce the
polar coordinates through the relationships

Pe_ gnocost, P = snesing, Pz -
p p p

coso.

In extending the model step by step, we first con-
sider avelocity distribution that is symmetric under the
operations of rotations, A= B. (It isphysically clear that
a spherically symmetric distribution is stable.) Switch-
ing from summation to integration, using a particular
expression of ¢, and integrating over p and &, wereduce
Eqg. (4) to

(M kzcz)sinze}

21'[2ce2d>0 I [2 >
5 (A +ikccos) ©)

in’o coszaj1
x BLE+ 222 singde +A° +kc” = 0,
A*C
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where

bo = J;F(x)dx-

Since the explicit expression for the remaining inte-
gra is somewhat involved, we restrict ourselves to cal-
culating the left-hand side of Eq. (6) at A = 0:

41'[2C€2¢0A2(2L|J cot2y —1)

+ kZCZ%Z <A % = cosq%,

2 2 2 (7)
41t ce oA (2tcoth2t —1)

+ kZCZB: > A, % = coshr%.

AsA — oo, the left-hand side approaches +. The
second of expressions (7) isaways positive by virtue of
theinequality 21 > tanh2t . The quantity in parentheses
in the first of expressions (7) is negative because 2 <
tan2y ; hence, at small k values, we deal with theinsta-
bility of avelocity distribution in the form of an oblate
spheroid, C < A. The vanishing of the first of expres-
sions (7) gives the stahility boundary. As the deviation
of the distribution from a spherical shape decreases
(i.e., as Y reduces) at A = congt, this boundary shifts
progressively toward smaller values of k (i.e., toward
longer wavelengths).

Itisof interest to consider the limit A — oo at con-
stant C. The numerator of the fraction in the integrand
in Eq. (6) can be represented as the sum

2 2 2
2+E_}\ +I2< c
0 A
0.
+()\2+k2c2)[—1—2———————1—————-—2}[5|n29.
A" (A +ikcosB)™- O

After the replacement 8 — 11— 6 and the correspond-
ing symmetrization in 6 at A = o, the quantities cos?0
cancel each other out, so that the contribution of the last
term to the integral can be calculated directly. In the
remaining terms, we perform integration and replace
arccos C/A with 172 to obtain the approximate disper-
sion relation

2 2, ~2[TA kZCZD
2mce ¢,C [—C— - 20

2 2 2
+4—-———-————0‘ +)\k3 c )kcarctanlj\—c} +A°+Kc’ = 0.
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We can readily see that, in the limit A —» o, the
solution behaves asymptoticaly as A = k¢, which indi-
cates instability, in complete agreement with the above
analysis. This asymptotic behavior is valid under the
conditions A > C and

Kc
ez¢0

the latter of which implies that the wavelength should
be quite long.

In three-dimensional geometry, the mathematics is
somewhat more laborious. To integrate over p in the
three-dimensional generalization of Eq. (4) is an easy
task. In order to determine the sign of the left-hand side
at A —= 0, weintegrate by partsover thevariable 6. As
a result, the singularity in the denominator (A +
ikccos )% isremoved and A = 0 can be inserted directly
into the resulting integral. Finally, straightforward inte-
gration over ¢ inthe double integral transformsthe dis-
persion relation into

AC >

1 1
4n2ce2¢ 0= _ =0
g A

h sin*0do

XI L2 2 32 . 2 2 1/2 (8)
0[s|n6+cosaj [sn6+cosaj
O A2 cz 0 Op? c2 U

+A+Kc® = 0.

For B > C, the first term is negative; hence, for suf-
ficiently small k values (writing the relevant exact con-
dition involves fairly complicated dliptic integrals and
doing so goes beyond the scope of this paper), the sys-
temisunstable. Thus, at long wavelengths, any ellipsoi-
dal velocity distribution is unstable [the only exception
tothisisaspherica (degenerate) distribution], because
the wave vector can always be turned about the axes of
the ellipsoid so asto satisfy the condition B > C. Inthis
case, however, the instability boundary again shifts
toward longer wavelengths as the deviation of the dis-
tribution from a spherical shape decreases, and, in the
limit B = C, the critical wavelength becomes infinitely
long. We thus have considered the instability of aveloc-
ity distribution having a prolate spheroidal shape (A =
B > C). This distribution is a particular case of the dis-
tribution whose instability has just been analyzed.
However, avelocity distribution intheform of an oblate
spheroid (A= B < C) isalso actually unstable, provided
that the wave vector has a different orientation (i.e., is
perpendicular to the major axis of the ellipsoid of revo-
[ution).

In the context of the astrophysical applications in
guestion, we are dealing with ultrarelativistic objects.
However, objects with nonrdativistic velocities can
also be subject to the same electromagnetic instability
[11, 12]. In our case too there is only one instability
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region for an anisotropic velocity distribution of non-
relativistic particles, although, in [11], it was pointed
out that theinstability occursintwo forms. Infact, if, in
formula (31.12) from [11], we retain only the electron
term and consider exclusively the instability boundary
(at which the oscillation frequency is zero, w = 0), we
then obtain
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where T and T are the longitudinal and transverse
temperatures, respectively, and w, isthe gyrofrequency.
Asin our case, Eg. (9) yields a unified dependence of
the critical wavelength on the anisotropy parameter,
provided that thefirst term in the first of expressions(7)
is equated to zero.

We now are left with the problem of analyzing

K’c? = wﬁﬂ-r_ﬂ_lg’ ©) Eq.(5). Substituting the momentum distribution
DT” d(px. Py, p,) adopted above into Eq. (5) yields
j sin’6de
2mce’d, ——+1=0.
o(\ +|kccose)2[$m ’0 . cos aj [;sm e cos §7]

Integration of this equation by parts putsit into theform

2nce2<|>0n sinBcos’ 0 [;sm e cos 67>
c’ )\+kccose c* U
el 6 cos' B
|j Az Cz 0

a+1=0.

[sm GDi + %E+ ZCOS 0
A B c’

For A\? > 0, the left-hand side of this equation is obvi-

ously positive, indicating that, at least, aperiodic insta-

bility is absent.

Hence, in the case of an anisotropic relativistic
velocity distribution, transverse oscillations are subject
to an aperiodic instability, in whose development an
important role is played by the magnetic field. In con-
trast, longitudinal Langmuir oscillations are not subject
to aperiodic instability, asisthe case when the particles
do not fall into sharply separated flows (see, e.g., [8] for
details).

4. DISCUSSION
We have shown that ultrarelativistic and nonrel ativ-
istic plasmas with anisotropic particle vel ocity distribu-
tions are both unstable on short time scales.

In an unstable plasma, the critical wavenumber is
determined from dimensionality considerations:

D
k* Oe |2
€V AC’

where we have introduced the spatial density of the par-
ticles,

(10)

D = °A’Co,.
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It should be noted that formula (10) refers to a
strongly anisotropic plasma and, as has been said
above, when the degree of anisotropy B/C — 1 in disper-
sion relation (8) reduces, the critical wavenumber k
decreases to zero (for an isotropic distribution). How-
ever, for rough estimates, this circumstance is not so
important: in any case, alow degree of anisotropy can
neither affect the evolution of the system nor manifest
itself in the observational results.

Numerical estimates can be taken from the paper by
Nobili et al. [13], who theoretically considered the con-
ditions near the accretion disk surrounding a black
hole. In that paper, the hydrogen density near the event
horizon was estimated to be between 5 x 10® and 2.5 x
10+ cm3 and the hydrogen temperature was estimated
as T ~ 109 K. Inserting these values into formula (10)
gives a critical wavelength of about one millimeter, the
time scale of the instability being about 1013 s. In other
words, the instability islocal and develops practically
instantaneously. This indicates that the plasma evolu-
tion cannot lead to any significant degree of anisotropy;
consequently, the calculation of the growth rate is
important merely from the formal point of view. The
evolution of the plasma should be calculated by using
anisotropic plasmamodel (in which the plasmamay or
may not relax to a Maxwellian distribution). It should
also be stressed that, in astrophysical problems, the sys-
tem isusually large enough for its linear dimensionsto
be treated as effectively infinite compared to the spatial
scales of the electromagnetic instability.

The question about the stability of the systems of
cosmic rays, which also belong to the class of relativis-
tic systems, has not received a wholly satisfactory
answer because the actual structure of the spatial and
angular distributions of rays is very complicated [14].
Note that, in the simplest models we have analyzed
above, the perturbations of systems of cosmic rays
inevitably interact with interstellar gas and, therefore,
arerapidly damped.
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