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Abstract—A possible mechanism for the generation and motion of so-called blobs—peculiar perturbations
that are observed in a tokamak edge plasma—is proposed. It is suggested that blobs are self-contracting plasma
filaments generated either by the thermal-radiative instability of a plasma with impurities or by the nonradiative
resonant charge-exchange instability resulting from the presence of neutral hydrogen atoms near the tokamak
wall. Instability occurs in a narrow temperature range in which pressure is a decreasing function of density.
Under these conditions, the most typical perturbations are the local ones that originate spontaneously in the
form of separate growing hills and wells in the density. The temperature at the centers of the hills is lower than
that in the surrounding plasma, but they are denser and, consequently, brighter than the background. The
(denser) hills should move (“sink”) toward the separatrix, while the (less dense) wells should “rise” in the oppo-
site direction, as is observed in experiments. It may even be said that they behave in accordance with a peculiar
Archimedes’ principle. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Observations in some tokamaks have revealed fila-

ments—commonly referred to as “blobs”—that
appeared sporadically in the edge plasma, were
stretched along the main magnetic field, and moved
toward the chamber wall. Figure 1, borrowed from the
paper by Marmar [1], presents six successive film
frames of an individual blob that moved at a speed of
2 km/s toward the edge of the plasma column in the
Alcator C-Mod tokamak (the frames were taken with
an exposure time of 4 µs). Blobs have also been
observed in the DIII-D tokamak, whose cross section is
shown in Fig. 2, in which the arrow indicates the obser-
vation region.

From Fig. 1, we can see that, as a blob crosses the
separatrix magnetic surface, it breaks into two parts,
one of which stays inside the separatrix and the other
passes through the separatrix and continues to move
toward the wall. Blobs originate in the edge plasma, in
which neutral impurities play an important role. In
1063-780X/03/2910- $24.00 © 20803
some papers, it was pointed out that the temperature at
the center of a blob is close to 20 eV, which seems to be
more than mere coincidence. The fact that a blob
divides into two parts in crossing the separatrix likely
provides evidence for its double structure.

The mechanism by which blobs move was consid-
ered by Krasheninnikov [2], who supposed that a blob
is a magnetic tube that becomes polarized in a nonuni-
form peripheral tokamak magnetic field by the differ-
ence between the gradient drifts of the electrons and
ions and then continues to move with the velocity V =
cE/B toward the wall, while at the same time being
spread out by diffusion. However, in [2], nothing was
said about the mechanism by which blobs originate.

In the present paper, we consider possible causes of
the generation of blobs and the mechanism for their
motion. Although the mechanism of motion to be con-
sidered here differs somewhat from that proposed in
[2], it yields the same motion picture of the blobs.
2 cm

∆t = 4 µs

Fig. 1. Six successive frames of a blob in the Alcator C-Mod tokamak. The dashed curve shows the separatrix.
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Fig. 2. Cross section of the DIII-D tokamak. The arrow indi-
cates the region where the blobs are observed.
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Fig. 3. Factor Q(T) for C, O, Fe, Mo, and W impurities.
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2. THERMAL-RADIATIVE INSTABILITY

We think that one of the possible mechanisms for
the generation of blobs is thermal-radiative instability,
during which the plasma heating power W is balanced
by the power Wrad of radiative losses from impurities
arriving from the chamber wall. In this case, the pres-
sure p, as a rule, becomes a decreasing function of den-
sity, thereby giving rise to the instability.

It is important to note that, in such specific unstable
media (in [3, 4], they were called “quasi-Chaplygin
media”), there are no running waves that causally con-
nect the neighboring regions. Consequently, more typi-
cal disturbances in these media are individual local per-
turbations that are spontaneously generated and grow
until they reach their saturation level. These perturba-
tions qualitatively resemble blobs. In addition, the
blobs observed in experiments originate in a rather nar-
row temperature range around a value of ~20 eV. It is
noteworthy that the model based on the thermal-radia-
tive instability gives the same temperature value. Note
that thermal-radiative instability is also referred to as
radiative condensational instability and, in the particu-
lar case of Joule heating, is called thermal-ionizational
instability [5].

Let us discuss this hypothesis in more detail. The
inductive voltage around the circumference of the torus
is approximately equal to V [V] ≈ 3.6/B|| [T] [6], so that
the longitudinal electric field can be assumed to be con-
stant during the discharge, E|| = const. The Joule heating
power WJ = E2η is deposited in the central plasma and
heats it. However, blobs originate in the scrape-off
layer (SOL) plasma, in which an important role is
played by impurities arriving from the tokamak wall.

This is why, in considering the first illustrative
example, we assume that the electrical conductivity in
the peripheral plasma is created by collisions of elec-
trons with neutral atoms and is described by the formu-
las

(2.1)

where σea is the cross section for collisions and vTe is
the electron thermal velocity.

In the SOL plasma, impurity atoms are ionized and
become ions with a certain density nZ . The electrons
recombine with impurity ions, emitting radiation with
the specific power Wrad = nenZQ. The dependence of the
factor Q on the electron temperature Te for typical
impurities (such as C, O, Fe, Mo, and W) is shown in
Fig. 3, borrowed from [7].

We can see that, for heavy impurities, this factor is
nearly constant and is approximately equal to Q ≈
10−17 [cm3 erg/s]. In the simplest model at hand, the

η e
2
ne/meνea, νea naσeav Te,= =

σea πa
2
, v Te Te/me,= =
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equality WJ = Wrad yields the dependence nZ  = C1 =

 = const.

If we introduce the ratio of the density of impurity
ions to the electron density, nZ/ne = α, and take into
account the electron pressure p = neTe, then we arrive at
the following inverse dependence of the pressure of the
electrons on their density:

(2.2)

It is this inverse dependence that leads to a peculiar
kind of quasi-Chaplygin instability, which will be ana-
lyzed below.

3. THEORY OF QUASI-CHAPLYGIN 
INSTABILITIES

Here, the theory of quasi-Chaplygin instabilities,
which was presented in detail in [3, 4], is described
only briefly. We begin with the conventional hydrody-
namic equations

(3.1)

but supplement them with an unusual equation of state
in which the pressure decreases according to a power
law as the density increases, p = p0(ρ/ρ0)–|s |, where p0
and ρ0 are the unperturbed pressure and density of a
homogeneous background medium, respectively. Intro-
ducing the dimensionless density ρ∗  = ρ/ρ0, we find it
expedient to rewrite the equations as

(3.2)

where c0 =  is the growth rate of the perturba-
tions and the parameter µ = –1/(1 + |s |) will be referred
to as the azimuthal number.

In a linear approximation such that ρ∗  = 1 + Ψ and
Ψ ! 1, the parameter µ drops out of Eqs. (3.2). If we
pass over from the time t to the time τ = c0t (having the
dimensionality of length), then we reduce these two

equations to the equation ∆Ψ +  = 0. As a result, in
one-, two-, and three-dimensional geometries, the cor-
responding Laplace equations have the form

(3.3)

Te

E||
2
e

2
/naσeaQ me

p
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α
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∂
∂t
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The simplest solutions to Eqs. (3.3) are those describ-
ing spatially periodic standing perturbations that grow
exponentially in time: Ψ(t, r) ~ exp(γt + ikr). However,
these perturbations can only originate from spatially
periodic seeds, which, in turn, cannot appear for no rea-
son whatever because, in such media, there are no run-
ning waves that causally connect the neighboring
regions. That is why the most interesting solutions are
those corresponding to spontaneous local perturba-
tions. We require that these solutions vanish at an infi-
nitely distant past (t  –∞), thereby modeling the
property of perturbations to originate spontaneously
and grow progressively.

Thus, in three-dimensional spherical geometry, in
which Ψ(t, x, y, z) = ψ(R)exp(γt) (where R =

), we obtain the following equation and
local solution for ψ(R):

(3.4)

where k = γ/c0 = 2π/λ. At the center R = 0, the dimen-
sionless density changes according to the law ρ∗  = 1 +
Ψ ≈ 1 + Aexp(γt), so that there is no perturbation at
t  –∞. However, as time elapses, the perturbation
grows progressively, forming either a hill (at A > 0) or
a well (at A < 0) in the density.

In one-dimensional geometry, in which ρ∗  = ρ∗ (t, x),
nonlinear Eqs. (3.2) can be solved exactly. Figure 4
shows two examples of exact solutions in the form of a
local density hill and a local density well, which
develop against the background of an initially homoge-
neous medium.
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Fig. 4. Density profiles in an individual well and an individ-
ual hill that develop spontaneously against the background
of an initially homogeneous medium (borrowed from [3,
4]). Curves 1 refer to t = –∞. The evolution proceeds from
curves 2 to curves 3.
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In the next section, we will consider exact solutions
typical of two- and three-dimensional geometries.

4. TWO- AND THREE-DIMENSIONAL MODELS 
OF THE BLOBLIKE OBJECTS

In the above illustrative example with Q = const,
|s | = 1, and µ = –1/2, we can construct a two-dimen-
sional solution describing an object whose cross sec-
tion partially resembles that of a blob. Specifically, we
consider a solution of the form

(4.1)

where the three functions a, b, and ρ0 depend on the
time t. We rewrite the continuity equation as

, (4.2)

in which we substitute expressions (4.1) to obtain the
relationship abρ0 = M∗  = const. The two components of
the vector equation for the velocity v yield the follow-
ing two equations for the functions a(t) and b(t):

(4.3)

Hence, the function Ueff might be considered as an
effective potential energy for the motion of a “test par-
ticle” of unit mass (m = 1) in the (a, b) plane, in which
case the “total energy” of the particle is conserved,

 +  + C∗ (ab)2 = const.

Note that the two equations (4.3) can be solved only
numerically. In the particular case a = b, we arrive at the

equation  = – , whose solution is

an elliptic cosine function.
For the elliptic solution, dimensionless density (4.1)

becomes

. (4.4)

As may be seen, this density is maximum at the origin
of the coordinates, x = y = 0. Since, in our model, the

density is related to the temperature by n = const/ ,
the temperature distribution has the form of a parabo-
loid with an elliptical cross section,

(4.5)
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where CT = const. In the simplest model at hand, the
contours of the same value of density, pressure, and
temperature are ellipses (x/a)2 + (y/b)2 = f(t). It is
important to stress that, although the temperature in the
central region of the ellipses is the lowest, radiation
from this region is most intense because of the elevated
density. This unusual situation is likely to take place in
the observed blobs.

In three-dimensional geometry, we also can obtain
an exact nonlinear ellipsoidal solution

(4.6)

in which the three semiaxes of the ellipsoid, ai (i = 1, 2, 3),
decrease with time according to the equations

(4.7)

We can see that a test particle starting from a point with
coordinates (a1, a2, a3) should slide down the slope of
the potential energy well and, at a certain time, should
occur in the plane a1 = 0, or in the plane a2 = 0, or in the
plane a3 = 0. This indicates that the self-contraction of
the ellipsoid parallel to one of its axes has come to an
end. In attempting to apply this theoretical model to
actual blobs, it is necessary to take into account addi-
tional dissipative effects that are capable of preventing
the ellipsoid from being completely self-contracted.

Such dissipative effects are not incorporated into
our model equations (3.1). However, for the case |γ| = 1
and µ = –1/2, we can construct an even more general
self-similar solution of the form v i = Mikxk (with sum-
mation over k), in which the off-diagonal elements of
the matrix Mik(t) describe the rotation of the ellipsoid.
In turn, the rotation may counteract the self-contraction
and may even stop it.

We see that the above illustrative model with the
Joule heating of neutrals, which leads to the Chaplygin
adiabatic equation of state p ~ 1/ρ, reflects important
features of the behavior of actual blobs in tokamaks, in
particular, the spontaneity of the onset of individual
local density hills and wells of different sizes λ and
their growth on time scales of τ ~ λ/2πc0.

Near the tokamak wall, however, the current density
is comparatively low and the SOL plasma is heated not
by the Joule mechanism but by thermal conduction
from the central region of the plasma column. Hence, a
more complicated model is to be constructed, capable
of explaining why the temperature at the centers of the
blobs remains essentially constant in time. To do this,
we consider the emission from impurities in tokamaks
in more detail.

ρ
A0

a1a2a3 1 x/a1( )2
y/a2( )2

z/a3( )2
+ + +

----------------------------------------------------------------------------------------------,=

A0 const,=

ȧ̇i
∂

∂ai

-------Ueff, Ueff– C* a1a2a3( )2
0,>= =

C* const.=
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5. RESONANT EMISSION FROM CARBON 
ATOMS

The main impurity ions in a tokamak plasma are
carbon ions with the atomic number Z = 6 and different
charge numbers. Their density nC is about α ≈ 10–4 of
the electron density ne. Near the wall, however, the den-
sity of carbon ions can be markedly higher, although,
their density at the wall is, of course, zero, while the
density of the influx of neutral atoms from the wall is
nonzero.

For the power Wrad = nenCQ radiated by carbon ions,
the dependence of the factor Q(Te) on the electron tem-
perature is already presented in Fig. 3; however, in
order to provide a better insight into the subject, this
dependence is also shown in Fig. 5, which is borrowed
from the familiar paper by Post et al. [7].

The factor Q is seen to have a narrow resonance
peak: it reaches a maximum, Qmax ≈ 10–18 [cm3 erg/s],
at Tm = 7 eV and is already two orders of magnitude
smaller at T ≈ 20 eV. These theoretical estimates were
obtained in the average-ion approximation by using the
coronal equilibrium model. However, as was pointed
out, e.g., in [8], taking diffusive fluxes into account
should lead to a deviation of the distribution of impurity
ions from being coronal and to a corresponding change
in the total radiation intensity. In this case, according to
[8], the maximum value of the factor and the half-width
of the peak both remain the same, but the maximum
should occur at a temperature of Tmax = 20 eV (see
Fig. 7, curve c), which corresponds approximately to
electron temperatures observed at the centers of blobs.
Strictly speaking, in considering such rapidly moving
objects as blobs, it is necessary to account for a delay in
the formation of the distribution of impurity ions over
the charge states, as was done, in particular, by Krash-
eninnikov et al. [9]. Also, radiative instabilities are
known to be highly sensitive to the magnetic field
strength. However, these effects are not expected to
qualitatively change blob behavior.

If further experiments will confirm that it is indeed
the manifestation of this strange “law of temperature
conservation at the centers of blobs” that has been
noticed in observations, then, in our opinion, its expla-
nation lies just in the resonant nature of (i.e., the narrow
peak in) the intensity of emission from carbon impuri-
ties (for oxygen ions, the dependence Q(T) is also of a
resonant nature, but these ions are practically absent in
large tokamaks). In particular, the narrowness of the
peak in the function Q(T) allows us to rule out the above
assumption that the radiation power Wrad = nenZQ is
balanced exclusively by the Joule heating power.

It would be more correct to assume that, in toka-
maks, the power of radiative losses from impurities is
balanced by the power of the heat flux from the central
region of the plasma column. From the heat-conduction
equation (3neT  = WT = — · (k—T) ≈  we can see)t' kTrr''
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Fig. 5. Factor Q(T) for carbon ion impurities (borrowed
from [7]).
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that WT > 0, provided that  > 0. Figure 6 presents the
density (ne) and temperature (Te) profiles that were
observed experimentally around the separatrix and near
the wall in the DIII-D tokamak (see [10]). We can see
that, in the separatrix region,  > 0; i.e., the heat is
released there. In steady state, the power of the heat flux
from the central region of the tokamak plasma should
be balanced by the radiative loss power, indicating that
the relationship WT = Wrad, which is not associated with
the electric conductivity η and currents, is satisfied.

In this model, blobs do not carry filamented cur-
rents; nevertheless, in a certain narrow temperature
range δT around the peak in the function Q(T), they
may behave as unstable self-contracting objects.

6. A QUASI-CHAPLYGIN SITUATION
AROUND THE EMISSION PEAK

It is important to point out the following circum-
stance. If we assume that the generation of blobs is
associated with the presence of carbon ions that come
from the wall, reach the separatrix, and penetrate the
plasma to a certain depth, then a quasi-Chaplygin situ-
ation, which gives rise to the thermal-radiative instabil-
ity, inevitably occurs in the emitting layer, regardless of
the way in which heat is supplied to it. In this case, the
heating power W may be pumped into the plasma by
any means: by the injection of fast particle beams; by
the electron-cyclotron, ion-cyclotron, or lower hybrid
heating; etc.

In the quasi-Chaplygin situation, the equation for
the local heat balance in the emitting layer, W = Wrad =
nenZQ(T), yields a certain relationship between the
electron density ne and the factor Q(T), which should
have the form

(6.1)

Trr''

Trr''

ne ni N w T,( )Q
s
,= =

–18.0
y

–18.2

–18.4

–18.6

–18.8

–19.0
–2.4 –2.2 –2.0 –1.8 –1.6 –1.4

b

c

‡ ‡

x

Fig. 7. Factor Q(T): (a) Post’s curve, (b) approximation by
a parabola proposed here, and (c) shifted parabola.
where the factor N(w, T) depends on both the heating
method, symbolized by the letter w, and temperature.
Since the factor Q(T) exhibits a sharp peak at T = T∗ ,
we can insert this peak temperature into N(w, T) and
assume that N = N∗  is constant, which gives ne = N∗ Qs,
where s is a certain positive (s = |s |) or negative (s =
−|s |) power index.

For example, for s = 1, the density and pressure are
described by the parametric formulas n = N∗ Q(T) and
p = nT = N∗ TQ(T). We can see that, as the temperature
T > T∗  increases at the right slope of the peak, the den-
sity decreases but the pressure can increase in a certain
narrow temperature range; this indicates that we are
dealing with an unstable quasi-Chaplygin situation
(symbolically, p ~ 1/n). In the opposite case (s = –1), we
have n = N∗ /Q(T) and p = N∗ T/Q(T). We see that, as the
temperature decreases from the peak value T∗  leftward,
the density increases, but the pressure can decrease in a
certain temperature range, which again indicates an
unstable quasi-Chaplygin situation.

Let us illustrate these general qualitative consider-
ations about the role of the carbon peak by a specific
example. In [7], the function Q(T) for carbon ions near
the first maximum in the temperature range 3–20 eV
was approximated by the fifth-degree polynomial y(x) =

103 , where y =  [cm3 erg/s]); x =

 [keV]); and the six coefficients are equal to
a0  = 1.965300, a1 = 4.572039, a2 = 4.159590, a3 =
1.871560, a4 = 0.4173889, and a5 = 0.03699382.

The plot of the function y(x) is shown by curve ‡ in
Fig. 7. Near the maximum, the function is well approx-
imated by the parabola y ≈ ymax – a(x – xmax)2; for the
parameter values adjusted above, namely, ymax =
−18.08, a = 9, and xmax = , the parabola is
shown by curve b in Fig. 7.

In [7], numerical calculations were carried out in
terms of the coronal equilibrium model. However,
coronal equilibrium is distorted by anomalous diffusive
fluxes. In [8], it was pointed out that, even when these
fluxes are taken into account only approximately, the
entire curve is shifted rightward so that its maximum
occurs at xmax = , the values of the parame-
ters ymax and a being unchanged. This shifted parabola
is shown by curve c in Fig. 7. For a = 9, it corresponds
to the following mutually inverse formulas:

(6.2)

where Qmax = 10–18.08 [cm3 erg/s], β = 3.9, and the peak
temperature is set to be T∗  = 20 eV. The plus and minus

akx
k

k 0=
5∑ Q(log

Te(log

0.0065( )log

0.020( )log

Q Qmax β T
T*
------ln 

  2

– ,exp=

T T*
1
β
---

Qmax

Q
-----------ln± ,exp=
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signs refer to the right and left slopes of the peak,
respectively.

We now can draw the following hypothetical sce-
nario of the generation of blobs. Hot plasma diffuses
from the center toward the periphery and progressively
cools down. Close to the separatrix, this plasma enters
the wall layer of carbon impurities. If the plasma tem-
perature by that time has approached the peak value T∗
from the right, the emission from this layer increases
abruptly. Then, as was described above, the balance
between the heating power and the radiative loss power
will lead to a state characterized by a certain relation-
ship n = N∗ Qs.

7. TWO REGIONS OF THE “CARBON” 
INSTABILITY

Next, we consider the following two cases: s = |s| > 0
and s = −|s | < 0. In the first case, we obtain the relation-

ship n = const · exp  (where βs = |s |β > 0),

which indicates that taking into account the power
index |s | will merely change the parameter β. In other
words, we are dealing with two situations: for |s | > 1,
the half-width of the peak decreases and, for |s | < 1, the
half-width of the peak increases. Presumably, the latter
situation more closely corresponds to the experimental
conditions, because blobs can originate at higher
plasma temperatures, i.e., deeper within the plasma
and, accordingly, farther from the separatrix. So, for the
right slope of the peak (T > T∗ ), formulas (6.2) with n ~
Q|s | can be rewritten as

(7.1)

where nmax is a new constant. Then, setting, e.g., |s | =
1/2 and βs = |s |β = 3.9/2 = 1.95, we arrive at the follow-
ing dependence of the density on pressure:

(7.2)

The function P(1)(ν) is plotted in Fig. 8a. We see that the
pressure decreases with increasing density only at the
right edge of the plot, in a narrow range of temperatures
(T(ν) ~ 20–25 eV), densities (ν ~ 0.9–1), and pressures
(P(1)(ν) ~ 1.134–1); it is in this range that the quasi-
Chaplygin instability can develop.

We now analyze the second case, in which the
power index is negative, s = – |s | < 0; i.e., n ~ Q–|s |. In

βs
T

T*
------ln 

  2

–

ν n
nmax
--------- βs

T
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------ln 

  2

–exp 1,<= =

T
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1
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---lnexp 1,>=

p 2nT 2nmaxT*P
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1( ) ν( ) ν 0.71 1
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  .exp=
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this case, instead of formulas (7.2), we deal with the
formulas

(7.3)

where nmin is a new constant. In formulas (7.3), we have
n > nmin and T < T∗ , which corresponds to the left slope
of the peak. This is why we have chosen the minus sign
(–) in front of the square-root sign in the exponential
function for the temperature. The dependence of the
density on pressure has the form

(7.4)

The function P(2)(ν) is plotted in Fig. 8b. Again, we see
that the pressure decreases with increasing density, but
only at the left edge of the plot in a narrow range of tem-
peratures (T(ν) = 16–20 eV), densities (ν = 1–1.1), and
pressures (P(2)(ν) = 0.88–1), precisely where quasi-
Chaplygin instability can develop. In the two cases at
hand, we have n(1) ~ Q|s | and n(2) ~ Q–|s |. This indicates
that, if the parameters of the medium lie within the
parameter range of the quasi-Chaplygin instability,
then the thermal-radiative instability (which is also
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Fig. 8. Dependence of the pressure and temperature on the
density: (a) at the right slope of the peak, P(1)(ν), and (b) at
the left slope of the peak, P(2)(ν).
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called radiative condensational instability) can occur.
For both of the approximating profiles P(ν) obtained
above, the nonlinear equations cannot be solved analyt-
ically, but it is easy to see that their solutions are unsta-
ble. Note that the above instability range near the peak
is fairly narrow, which agrees well with observations of
the distinctive properties of blobs. In some papers (see,
e.g., [11]) devoted to radiative condensational instabil-
ity, different heating models yielded a wider instability
range, 7–50 eV, which agrees less closely with the
observational data on blobs. However, in the range 30–
50 eV, the instability is likely to be suppressed by
plasma heat conduction.

It is also important to stress that the presence of a
sharp peak in the emission intensity stops the self-con-
traction process and produces a peculiar effect—the
flattening of perturbations. This effect is hard to calcu-
late numerically but, at a qualitative level, it can be
described as follows. If the temperature goes beyond
the instability range, the perturbations stop growing
and saturate at a certain level. However, the perturba-
tions in the neighboring regions of the medium should
continue to grow to this level and inevitably result in the
formation of a flat-top hill in the density or a density
well with a flat bottom, resembling lunar craters. The
effect of flattening the perturbations is well illustrated
by a number of numerical solutions given by Meerson
in his review [12] on the radiative condensational insta-
bility. Although Meerson also presented some analytic
solutions, he said nothing about our simplest bloblike
ellipsoidal solutions (4.1), (4.6), and (9.3), which, how-
ever, were mentioned in [3, 4].

The fact that blobs can have different sizes (see [2])
provides indirect evidence that the flattening effect is
indeed possible, provided that the blobs originate at dif-
ferent distances from the separatrix and thus differ in
their “ages of formation.”

Let us, however, consider another possible quasi-
Chaplygin instability that is not associated with the
emission of radiation.

8. NONRADIATIVE CHARGE-EXCHANGE 
INSTABILITY

We assume that there are no impurities and set ne = ni

and Te = Ti. In this case, the thermal energy of a unit

plasma volume is equal to w = (ne + ni)T, and its time

derivative obviously has the form

(8.1)

We also assume that, near the separatrix, the density n0
of the neutral hydrogen (or deuterium) atoms that come
from the wall and enter the plasma is sufficiently high.
In this case, because of the resonant charge exchange of

3
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∂
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3
2
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∂t
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3
2
---T

∂
∂t
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∂
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the plasma ions with neutrals, the density of the hot ions
will decrease according to the equation

(8.2)

where τcx = 1/n0σvTi is the charge-exchange time and σ
is the cross section for resonant charge exchange. It is
well known that this cross section is nearly constant: for
ion temperatures of 10–100 eV, it decreases gradually
from σ = (3.6–2.6) × 10–15 to 2.6 × 10–15 cm2 (see [13]).
Hence, instead of the power of recombination losses
(i.e., the power of radiation emitted by the recombining
carbon ions, Wrad = nenZQrad(T)), we can consider the
power lost in nonradiative charge-exchange processes,

Wcx = nen0Qcx(T), where the factor Qcx = TσvTi plays

the same role as the factor Qrad used above.

It has already been shown that the emission intensity

exhibits a sharp peak,  = 10–18 [cm3 erg/s], at T∗  =
20 eV. The charge exchange–related factor for hydro-
gen atoms can be expressed by the formula Qcx =
10−18(T eV/20)3/2 [cm3 erg/s]. We can see that this factor
exceeds the emission–related factor everywhere except
at the peak, at which they are equal. We thus can con-
clude that hot charge-exchange neutrals produced near
the separatrix fly away to the nearby wall almost instan-
taneously, thereby carrying energy outward from the
plasma.

On the other hand, cold neutrals that are knocked
out of the wall surface fly into the SOL plasma and
become ionized in charge-exchange processes. The
depth to which cold neutrals penetrate into the plasma
can be estimated from the formula L0 = v 0τcx =
v 0/n0σvTi , which can be rewritten as L0n0σ = v 0/vTi =

. The temperature of the charge-exchanged ions
is approximately equal to Ti ~ 100–200 eV and the tem-
perature of the wall is about T0 ~ 1000 K = 0.1 eV, so
that we have v 0/vTi ≈ 1/45. Setting L0 = 10 cm and σ =
3 × 10–15 cm2, we arrive at the estimate n0 ~ 7 × 1011 cm–3

for the neutral density in the region in front of the sep-
aratrix, where blobs are thought to originate. At such a
density of the neutrals, charge exchange–related heat
losses from a unit volume would be equal to

(8.3)

Under the assumption that the thickness of the charge
exchange–dominated wall layer is approximately equal
to 10 cm, the heat flux to the entire wall surface can be
estimated at 7 W/cm2, which corresponds to a power
flux of 700 W to a surface 10 × 10 cm in area (figura-
tively speaking, this is the power of an ordinary flat-
iron).
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The above situation with charge exchange–related
heat losses does not yet have features peculiar to the
quasi-Chaplygin instability (specifically, the decrease
in pressure with increasing density). There are also cer-
tain difficulties associated with the absence of a reso-
nance peak analogous to the peak in the intensity of
emission from carbon impurities. As was seen above,
the presence of such a peak allows us to expect that a
quasi-Chaplygin situation inevitably occurs in a certain
narrow range of the parameters ne and Te of the back-
ground plasma, regardless of how heat is supplied to the
emitting layer, provided that it is transported in such a
way that the background parameters in question fall
within the “dangerous” instability range.

For instance, at a high heating power in the JT-60U
tokamak, the electron plasma density ne is maintained
at a fairly low level by injecting high-energy neutrals.
As a result, the temperature at the center of the plasma
column is approximately 40 keV and, even near the
separatrix, the temperature is as high as about 4 keV.
Under these conditions, blobs are not generated, pre-
sumably because the background parameters do not fall
in the dangerous range.

At the same time, blobs are observed in the DIII-D
tokamak, in which the plasma is also heated by neutral
beam injection but the plasma density is extremely high
(i.e., is close to the familiar Greenwald density limit;
see [14]) and the temperature at the separatrix is equal
to 40 eV (see Fig. 6). We think that it is these conditions
that correspond to the quasi-Chaplygin instability
range, in which blobs can originate.

In this section, however, we are assuming that the
mechanism for generating blobs is associated not with
emission from carbon impurities but with the power
lost in nonradiative resonant charge-exchange processes,
Wex = nin0Qcx, where the charge exchange–related fac-
tor is equal to Qcx = 10–18 (T [eV]/20)3/2 [cm3 erg/s].
In this case, even in the absence of a narrow peak, we
can nevertheless arrive at an unstable quasi-Chaplygin
situation if we assume that the power of charge-
exchange losses is balanced by a constant power con-
tinuously supplied to the plasma, W0 = const, which
depends neither on the plasma density nor on the
plasma temperature.

In particular, this situation occurs in a plasma heated
by neutral beam injection (as well as by any other
means) in such a way that the power fed into the plasma
is constant and is high enough to provide efficient oper-
ation of a tokamak in a steady mode. In the phenome-
nological approach at hand, we do not specify the
mechanism by which heat is transported from the injec-
tion region to our hypothetical “charge-exchange layer”
(it may be heat conduction, diffusion, convection, or
some other mechanism) and merely assume that Wcx =
W0 = const. If we further assume that α = n0/ne = const,
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
then we obtain the desired quasi-Chaplygin relation-
ships

(8.4)

in which the pressure decreases with increasing density,
and thus again arrive at instability, as will be clear later.

9. NONLINEAR SOLUTIONS 
FOR ARBITRARY µ VALUES

If, as before, we introduce the dimensionless density
ρ∗  = n/n0, then we can write the equations of motion in
the standard quasi-Chaplygin form:

(9.1)

where  = p0/3ρ0 > 0. The azimuthal number is equal
to µ = –3/4 < 0, which is close to the value of this
parameter in the first example with Joule-heated neu-
trals, µ = –1/2 < 0. Consequently, the overall pattern of
the instability due to charge-exchange losses is qualita-
tively very similar to that of the instability in the first
example.

In a linear approximation such that ρ∗  = 1 + Ψ with
Ψ ! 1, the azimuthal number drops out, leaving the
equations

(9.2)

to describe the growing standing perturbations. In a
nonlinear approximation with µ = –3/4 < 0, we can, as
before, construct a self-similar two-dimensional ellip-
soidal solution. Moreover, as will be shown below, such
a solution can also be constructed for arbitrary values of
the azimuthal number µ.

To do this, we seek a self-similar solution in the
form

(9.3)

In this case, the first of Eqs. (9.1), namely, the continu-
ity equation, gives the relationship A(t) = C∗ (ab)–1/µ,
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where C∗  > 0 is a constant, and the second of Eqs. (9.1)
yields the equations

(9.4)

where the function Ueff = U(a, b) plays the role of the
potential energy of a “test” particle of unit mass moving
in the (a, b) plane. For negative azimuthal numbers
(µ < 0), this energy is maximum at the lines a = b = 0,
toward which the test particle should tend during the
self-contraction of the ellipsoid.

By analogy, it is easy to construct a solution describ-
ing the self-contraction of a three-dimensional ellipsoid
parallel to one of its axes. We thus see that solutions
describing self-contracting blobs can also be con-
structed in the model with nonradiative charge
exchange losses.

We now consider the motion of the blobs.

10. POSSIBLE MECHANISM
FOR BLOB MOTION

As has already been noted, the mechanism for blob
motion was described by Krasheninnikov [2] (see also
[14]), who considered a blob as a magnetic tube in a
magnetic field Bϕ decreasing toward the plasma edge.
The difference between the gradient drifts of the elec-
trons and ions polarizes the magnetic tube and produces
a polarization electric field E, in which charged parti-
cles drift with the velocity V = cE × B/B2.

Our quasi-Chaplygin model is also capable of
describing blob motion; moreover, it provides a simpler
motion pattern than do the models developed in [2, 14],
because it is based on the one-fluid MHD approxima-
tion, which makes no distinction between plasma ions
and electrons. The equation of blob motion obtained in
our model makes it possible to draw an analogy with
Archimedes’ principle: the (denser) hills in the plasma
density “sink toward the bottom” (i.e., toward the toka-
mak chamber wall), while the (less dense) wells “rise
upward” (from the wall toward the plasma center). The
same effect was captured in [2, 14] and was also
observed experimentally. In this respect, the two
approaches are equivalent. There is, however, prelimi-
nary information that blobs were observed both on the
inner and outer sides of the torus. If this information
finds further confirmation in experiments, then the
models developed by Krasheninnikov and others need
to be improved.

We now describe the motion of blobs in our model
in more detail. The plasma motion in a tokamak can be
divided into three stages. First, the plasma diffuses
from the central regions toward the periphery and cools
down. Near the separatrix, the plasma parameters fall in
the dangerous instability range; this is followed by the

ȧ̇
∂

∂a
------Ueff, ḃ̇–

∂
∂b
------Ueff,–= =

Ueff 2µ2
c0

2
C* ab( ) 1/µ–

,=
second stage—the generation of blobs. In this stage, the
density ne = ni of the plasma and its temperature Te = Ti

are such that the growing perturbations of the plasma
density in the form of hills and wells of different sizes
(which depend on the sizes of the initial spontaneous
seed perturbations) can be generated. The perturbations
continue to grow and develop until the plasma within
them behaves in accordance with the quasi-Chaplygin
equation of state p ~ ρ–|γ|. However, at a certain time, the
temperature of the blobs goes beyond the dangerous
range and the plasma enters a third stage.

In this final stage, a blob that has already been
formed can be regarded as a small ball (in a three-
dimensional model) or a thin magnetic tube (in a two-
dimensional model) whose interior is fully ionized
plasma obeying the conventional adiabatic equation of
state with a positive power index, p ~ ρ5/3.

The motion of this (perfectly conducting) plasma in
a magnetic field is described by the standard equation
of motion

(10.1)

where fm is the magnetic Ampère force. In the equato-
rial plane z = 0 of a tokamak, the radial component of
the Ampère force is equal to

(10.2)

It should be mentioned parenthetically that jz =
(c/4πr)∂(rBϕ)/∂r at z = 0. In equilibrium, we obviously
have dp/dr = fr . Let us, however, consider a two-dimen-
sional, fully developed blob as a magnetic tube that has
a small cross-sectional area S and is stretched along the
tokamak magnetic field. The mass m1 = Sρ per unit
length of the tube should be regarded as being con-
served during its small displacements near the separa-
trix.

Then, multiplying Eq. (10.1) by S, we write the fol-
lowing equation for radial motion of the tube in the sep-
aratrix region:

(10.3)

where mi is the mass of an ion. On the right-hand side
of the equation, the first term, which is the gradient of
the enthalpy, describes the force that pushes the tube
toward the separatrix (toward the bottom). The second
term describes the magnetic force

(10.4)

(where Jϕ = jϕS and Ψϕ = BϕS), which pushes the tube
away from the separatrix. On the one hand, the mag-
netic flux Ψϕ = BϕS through the cross section of the tube
is frozen in the plasma and, therefore, does not change
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during displacements of the tube. On the other hand, the
current Jϕ = jϕS flowing in the tube can also be regarded
as being conserved. Consequently, we can assume that
the net magnetic force Fr is constant. It is also impor-
tant to note that this net force is independent of the mass
per unit length of the blob, m1 = ρS, but depends on its
cross-sectional area S.

It is easy to see that Eq. (10.3) is equivalent to
Archimedes’ principle. In a coordinate system in which
the z axis points downward along the gravity force g,
the motion of a massive cylinder of mass m1, cross-sec-
tional area S, and length L1 in water is obviously
described by the equation

(10.5)

where ρw is the water mass density and FA is the buoy-
ancy force. This analogy implies that the denser blobs
(hills) should “sink toward the bottom” (i.e., toward the
separatrix and farther toward the wall or the divertor),
while the less dense blobs (wells) should “rise upward”
(from the separatrix toward the plasma center).

This motion pattern can apparently provide a realis-
tic interpretation of Fig. 1, which presents six succes-
sive film frames of a moving blob. It is reasonable to
assume that the blob shown in the frames in Fig. 1 is a
hill (rather than a well) approaching the separatrix.
When the separatrix is reached, the blob breaks into
two parts. The lighter (substantially depleted) part,
which is more likely to be a well (rather than a hill) in
the plasma density, stops moving inside the separatrix
and gradually dissipates. The heavier (far more mas-
sive) part, which is more likely to be a hill, passes
through the separatrix and continues to move toward
the wall, in which case, however, it is dissipated by the
divertor and, accordingly, is progressively slowed
down.

11. ROTATION OF DENSER BLOBS

Our nonlinear quasi-Chaplygin model is also capa-
ble of describing the rotation of blobs that has been
observed in some tokamak experiments. This can be
done by taking into account the off-diagonal elements
of the matrix Mik(t) in the self-similar solutions v i =
Mikxk. In this case, the equation of motion with γ = –1
yields the relationships

(11.1)
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which allow us to look for an ellipsoidal solution such
that

(11.2)

Using relationships (11.2), we can express the matrix

 in terms of the matrix , Bij = –(A(t)/c0)2(  +
MikMkj). In this way, the continuity equation leads to
the following two equations:

(11.3)

in which summation is implied over the repeated indi-
ces.

To illustrate this point, we consider a simple two-
dimensional cylinder rotating as a solid body. In this
case, we have

(11.4)

and, therefore, M11 = M22 = 0, M12 = –ω, and M21 = ω.

The first of Eqs. (11.3) yields  = 0 and A = A0 = const,
and the second gives Bik ~ δik and, consequently, S =
Bikxixk ~ r2. If we write the final solution in the form of
a hill in the density,

(11.5)

then we can readily see that this hill can be in equilib-
rium only when it rotates as a solid body with a certain
angular frequency, ω = c0/aA0, such that centrifugal
forces prevent its quasi-Chaplygin self-contraction. At
large radial distances r, however, this exact nonlinear
solution decreases too gradually (as ρ* ≈ c0/ωr) and,
therefore, can hardly be said to correspond to actual
blobs. This remark also applies to all of the above exact
nonlinear solutions in the form of collapsing ellipsoids.

In real situations, the rotation of blobs can be attrib-
uted to the fact that, outside the separatrix, their edges
are in contact with the limiters or with the divertor
plates, which primarily absorb electrons. The remain-
ing (excess) ions create a positive space charge within
the blob filament, so that it begins to rotate about its
axis because of the electric drift in the toroidal mag-
netic field B||.

Experiments show that blobs moving in the radial
direction and approaching the wall are also displaced
poloidally just downward from the equatorial plane z =
0, i.e., in a direction opposite to that of the gradient drift
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of the ions (see Fig. 2). That the blobs move in this
direction may be qualitatively explained by assuming
that, near the wall, the blob filament, rotating counter-
clockwise, interacts directly with the SOL plasma and
rolls down the layer like a toothed wheel, clinging to
the wall but with a certain sliding factor ksl < 1.

This vivid picture, which is illustrative in character,
makes it possible to obtain a rough estimate for the
poloidal velocity of blobs. Thus, if the radial electric
field within a blob filament is 100 V/cm, then, in the
magnetic field B = 20 kG, the filament rotates about its
axis with the angular velocity Vrot = cE/B = 5 km/s and
slides down the wall with the poloidal velocity v p =
kslVrot . The experimentally observed values of the
poloidal velocities, v p ~ 500 m/s [10], show that, in this
case, the sliding factor is approximately equal to
ksl ~ 1/10. The development of a more exact theory of
the poloidal motion of rotating charged blobs may
require the inclusion of the transverse viscosity of the
SOL plasma, in the spirit of the formulas that were used
in the cited papers by Krasheninnikov et al. to describe
nonrotating blobs.

12. CONCLUSIONS

In conclusion, we summarize the results obtained.
We have discussed the following distinctive features of
observed blobs:

(i) the randomness (spontaneity) of their onset,
(ii) their local nature (blobs are individual local per-

turbations),
(iii) the presence of wells and hills in the plasma

density,
(iv) great diversity in size (0.3–3 cm), and
(v) motion in accordance with Archimedes’ princi-

ple (the hills sink to the separatrix, while the wells rise
in the opposite direction).

These features allow us to conclude that blobs may
be thought of as a kind of so-called quasi-Chaplygin
medium and thus should be described by the corre-
sponding equations. In our model, blobs are considered
as self-contracting plasma objects. In order for the self-
contraction of local blobs to occur, certain conditions
must be met, specifically, the equation of state of the
blob matter should describe such a situation that, as the
density n increases, the pressure p = nT decreases
because of an even faster decrease in the blob tempera-
ture due to some particular mechanism for heat removal
from the blob.

In our opinion, a mechanism for the self-contraction
of blobs may be associated either with the nonradiative
resonant charge-exchange instability, resulting from
the presence of cold neutral hydrogen (deuterium)
atoms near the tokamak wall, or with thermal-radiative
instability, driven by the presence of carbon or oxygen
impurities in the plasma. Note that thermal-radiative
instability is also referred to as radiative condensational
instability, the theory for which was formulated in [3, 4]
and in [11, 12, 15, 16].

A characteristic feature of carbon and oxygen impu-
rities is that their emission spectra exhibit sharp peaks
(maxima) at certain (comparatively low) temperatures
near the tokamak wall. Of course, additional experi-
mental investigations are needed to make the final
choice between the above two possible self-contraction
mechanisms—nonradiative charge exchange with neu-
trals and radiation from impurities.

In this context, we should mention tokamak experi-
ments performed by Lazarev et al. [17], who observed
the sporadic appearance of small plasma bunches that
were carried away from the plates of a lithium divertor
and manifested themselves as individual small bright
spots at the plates. These plasma bunches might have
developed from lithium blobs.

If future experiments on different tokamaks will
confirm that such impurities as carbon and oxygen
(with the corresponding spectral lines) are indeed
present in a blob, then the phenomenon of blobs may
turn out to be closely akin to the MARFE phenomenon,
since it is commonly accepted that MARFEs originate
from the thermal-radiative instability of carbon impuri-
ties. Note, however, that MARFEs have been observed
to be comparatively long-lived (on time scales of about
τ ~ 1000 µs) immobile bright formations occurring on
the inner side of the torus. As for blobs, they rapidly (at
a velocity of about several kilometers per second) move
through the SOL plasma toward the wall and last for
much shorter times (τ ~ 50–100 µs). In most of the
papers on the subject, it is reported that blobs are
observed on the outer side of the torus; however, some
papers reported the occurrence of blobs on the inner
side. We thus can conclude that MARFEs and blobs are
likely to have very different properties.
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Abstract—Equilibrium effects, neoclassical tearing modes, and resistive wall modes are discussed as phenom-
ena limiting attainable plasma pressure, with emphasis on the current progress in theoretical studies at the Kur-
chatov Institute. The review is based on the results presented at the 11th International Congress on Plasma Phys-
ics (Sydney, 2002). © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-β steady-state operation is a long-run objec-
tive of fusion research (here, β ≡ 2 /B2 is the ratio of
the averaged plasma pressure  to the magnetic field
pressure B2/2). There are two distinct mechanisms of β
limitation in toroidal systems: those related to MHD
equilibrium and MHD stability. In general, equilibrium
issues can be more easily resolved. However, the stabil-
ity problem remains critical for toroidal systems,
though considerable progress has been gained in toka-
mak operation [1]. The range of MHD phenomena that
can result in β limitation in toroidal systems is rather
wide. This topic was thoroughly discussed in the funda-
mental work [1], which gives an excellent review of the
today’s physics of tokamaks. Here, we discuss the equi-
librium and stability effects that can influence the β
limit, with emphasis on recent theoretical results, in
particular, on neoclassical tearing modes (NTMs) and
resistive wall modes (RWMs), since they can put the
most severe β limitations for large long-pulse ITER-
like tokamaks. One goal of these theoretical studies is a
more precise calculation of the balance between stabi-
lizing and destabilizing effects for NTMs, the contribu-
tions from the bootstrap current and the polarization
current in the generalized Rutherford equation. Another
goal is the analysis of the feedback suppression of
RWMs. This includes the study of double-wall effects
on RWMs, the modeling of ideal and conventional
feedback systems, and the comparison between feed-
back algorithms with different input signals.

2. EQUILIBRIUM

The plasma equilibrium in magnetic confinement
systems is described by the equations

(1)

(2)

Here, p is the plasma pressure, j is the current density,
and B is the magnetic field.

p
p

0 —p– j B,×+=

j — B, — B⋅× 0.= =
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Equation (1) multiplied by —r and integrated over
the plasma volume (assuming p = 0 at the boundary)
gives

(3)

where r is the radius in the cylindrical coordinates r, ζ,
and z, attached to the main axis of the system. The first
term in this integral equilibrium condition describes the
ballooning force, which increases with plasma pres-
sure. The equilibrium limit is the maximum pressure at
which the electromagnetic force j × B is still able to
oppose this ballooning force.

Analytical estimates lead to the following scaling
for the equilibrium β limit for a large-aspect-ratio
(R/b @ 1) circular plasma in tokamaks and stellarators
[2, 3]:

(4)

Here, µ is the rotational transform and b and R are the
minor and major radii, respectively.

This formula shows that βeq is larger in systems with
a smaller aspect ratio R/b (compact systems) and/or
with a larger rotational transform. However, the range
µ > 1 is a dangerous area because the µ = 1 surface in
the plasma makes it unstable against the m/n = 1/1
mode, which strongly affects the overall performance.
This is equally true for tokamaks [1, 4, 5] and stellara-
tors [6–8].

In addition to high βeq, compact systems have other
advantages and are attracting increased interest [9–15].
Spherical tokamaks have already demonstrated their
ability to operate with β up to 20 and even 30% [10–
12]. Recent results from the NSTX spherical torus were
presented by Maingi at the 11th International Congress
on Plasma Physics (Sydney, 2002) [16]. Here, we dis-
cuss only conventional tokamaks and stellarators.

Another way of increasing βeq in toroidal systems is
plasma shaping, mainly the vertical elongation of the
plasma cross section. It is known that, besides increas-

p
r
--- Vd∫ j B×( )∫ —r Vd⋅+ 0,=

βeq µ2 b
R
---.∝
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ing βeq, the plasma shaping in tokamaks has great many
other advantages. Proper shaping improves plasma sta-
bility and energy confinement [1, 17–26]. The benefits
of plasma shaping were widely recognized long ago,
and tokamaks (including the mentioned spherical toka-
maks) now operate with noncircular (D-shaped)
plasma.

In conventional stellarators, similar shaping allows
the increase in βeq by a factor of 1.5–2, depending on
the rotational transform [27, 28]. Estimates for large-
aspect-ratio configurations with K = const show that
[27]

(5)

where K is the toroidally averaged plasma elongation.
The formula can be applied to tokamak and stellarator
configurations without shear. It shows that a double
increase in βeq is achieved at K = 2. This value is quite
reasonable. For comparison, K = 1.7 in JET [29], K ≤
1.8 in ASDEX Upgrade [30] and JT-60U [31], K = 1.85
in DIII-D [32], 1.1 < K < 2.8 in the TCV tokamak [23,
26], and K = 1.7–2.0 in ITER [33]. A remarkable fea-
ture of stellarators with shear is a much stronger depen-
dence of βeq on the plasma elongation than that
described by formula (5). Therefore, the elongation K =
1.2–1.3 may be sufficient to double βeq in stellarators
[27]. This conclusion is valid for conventional stellara-
tors with planar circular axis; typical representatives of
this family are CHS [34] and LHD [35].

In contrast to tokamaks, conventional stellarators
have not yet used the tokamak-like plasma shaping as a
standard technique. However, this possibility was ana-
lyzed and even tested in experiments in the ATF torsa-
tron [36–38]. When stellarators face the problem of
achieving β several times higher than values typical for
present-day experiments, plasma shaping must be
accepted as a natural way of expanding the capabilities
of stellarators.

Plasma shaping allows the combined improvement
of several important properties, whereas some other
means of increasing βeq can actually bring severe limi-
tations on β due to the deterioration of plasma stability.
An example is the inward (high-field-side) shift of the
plasma column in conventional stellarators. In princi-
ple, this method allows the suppression of the Pfirsch–
Schlüter current [39] to such an extent that the configu-
ration can become almost independent of the plasma
pressure (in some cases, theoretically, completely inde-
pendent) [40, 41]. Such a configuration was first
described by Greene and Johnson in 1961 [42], and
another example was given in 1966 [43]. The described
configurations looked rather exotic (R/b = 100 and
100 periods of the helical field in [43]), independence
from the plasma pressure was never observed in con-
ventional stellarators, and there was no convincing the-
ory explaining the underlying physics and relations

βeq K( )
βeq 1( )
----------------

3K
2

1+
4

------------------- 2K

K
2

1+
--------------- 
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between the main parameters. That is why the unusual
predictions of [42, 43] remained unnoticed and unex-
plained for a long time. Interest revived when experi-
ments on Heliotron E produced some results [44, 45]
that contradicted the expectations based on customary
notions. It was proved later [40, 41] that these results
were a manifestation of the same mechanism that was
responsible for the pressure independence in [42, 43].
Theory [40, 41] also explained why the pressure inde-
pendence was never observed experimentally and pre-
dicted that it could be achieved in Heliotron E, though
in a regime rather far from the standard operation. It
was a real success that, afterwards, the experiment [46]
indeed demonstrated the predicted phenomenon. Later,
the analytical predictions [40, 41] and the experimental
results [46] were confirmed by precise numerical calcu-
lations [47, 48]. Complete agreement between different
theoretical approaches and experimental results was an
impressive demonstration of the predictive power of the
MHD equilibrium theory.

It is known that inward shifting also improves the
neoclassical transport and confinement of high-energy
particles in stellarators. On the other hand, the inward
shift deteriorates MHD stability [49–53]. The very low
stability limit in strongly inward-shifted stellarator con-
figurations makes them unpractical. To be precise, we
should note that these statements about stability are pri-
marily based on theoretical knowledge. At the same
time, some experimental results from LHD seem to
demonstrate a better stability of inward-shifted config-
urations than was expected from theory.

Stellarators are inherently three-dimensional sys-
tems. When 3D shaping is allowed, it is possible to
optimize a system in such a way that the Pfirsch–
Schlüter current is much lower than that in conven-
tional stellarators. Accordingly, βeq becomes very large.
For example, Nührenberg and Zille numerically found
a configuration [54] that was almost insensitive to the
plasma pressure even at β = 50% (which implies that
βeq > 50%). The reduction of the Pfirsch–Schlüter cur-
rent became one of the key elements in the concept of
the W7-X stellarator [55, 56].

High βeq has many advantages: the Shafranov shift
and variations in the rotational transform profile are
small, and the plasma pressure affects the shape of the
plasma boundary only slightly. It seems, however, that
high βeq is always related to a relatively low stability
limit. Even in the perfectly optimized W7-X stellarator,
this limit is below 5% [55, 56].

The above is true for the static equilibrium
described by Eqs. (1) and (2). However, tokamaks and
stellarators sometimes operate with rotating plasma.
For example, in the DIII-D tokamak, the toroidal veloc-
ity reaches 300 km/s [57]. The related centrifugal force
increases the ballooning expansion of the plasma.
Therefore, one could expect that the rotation would
lower the equilibrium β limit. This can be analyzed
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using the formula of [58] for the Shafranov shift [2, 59]
with plasma rotation taken into account,

(6)

where

(7)

is a “static” part of ∆' [2, 59], the prime denotes d/da, a
is the minor radius of a magnetic surface, R is the major
radius of the torus, Bθ(a) = J/(2πa) is the field produced
by the longitudinal current J flowing through the tube
a = const, the bar stands for cross-sectional averaging,
ρ is the plasma mass density, v t is the toroidal velocity,
and

(8)

is the internal inductance of the plasma tube a = const
per unit length.

It is clear that  is negative for radially decreasing
p(a). Equation (6) shows that the rotation with a

decreasing profile of  increases |∆' |; consequently,
the shift ∆ becomes larger. On the other hand, one can

reduce |∆' | by making  a growing function of a so

that  < . Both of these conclusions were
clearly formulated in [58]. However, the reduction of
|∆' | in the central part of the plasma column does not yet
guarantee an increase in the equilibrium pressure limit.
A complete solution of the equilibrium problem must
include integration of ∆' with proper boundary condi-
tions. Finally, for a free-boundary equilibrium with p

and  vanishing at the boundary, the effect of toroi-
dal plasma rotation on the equilibrium β limit can be
estimated as [60, 61]

(9)

where B0 is the toroidal field at the axis. The last term
here is small, so that the decrease in the equilibrium β
limit due to the toroidal plasma flow is negligible for
typical plasma parameters [61]. Therefore, for fusion
plasmas, the plasma rotation effects in global equilib-
rium can be ignored. The same is true for poloidal rota-
tion under reasonable conditions. Note that Eqs. (6) and
(7) show a simple way to generalize the results of the
classical theory of plasma equilibrium in tokamaks to
the case with a toroidal rotation: in expressions
obtained with the use of Shafranov’s formula (7), it is

sufficient to replace 2p by 2p + .
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One may conclude that toroidal magnetic configura-
tions can be optimized in such a way that plasma equi-
librium is possible, theoretically, up to rather high β.
However, only stable equilibria can be realized. There
are a lot of instabilities that can destroy equilibrium at
β < βeq [1, 4, 5, 39, 62, 63]. We consider here the stabil-
ity limitations related to NTMs and RWMs. A potential
danger of these instabilities was recognized quite
recently, and these fields are now being extensively
studied.

3. NEOCLASSICAL TEARING MODES
During the past decade, NTMs have been identified

as one of the most serious potential limitations on the
attainable plasma pressure in long-pulse tokamak dis-
charges [1, 64, 65]. It was found that the critical β for
the onset of the m/n = 3/2 mode (often called a soft beta
limit) is

βN < 2 in TFTR (supershot) [66],
βN = 2.3 in DIII-D (long-pulse ELMy H-mode) [67],
βN = 2.5 in JT-60U (long-pulse ELMy H-mode)

[68],
βN = 2.2–2.6, depending on the plasma shape, in

ASDEX Upgrade (ELMy H-mode) [69, 70], and
βN = 2.5–2.6 in JET (ITER-like discharges, ELMy

H-mode) [71].
The normalized beta, sometimes called Troyon β, is

defined as

where I is the plasma current and B is the magnetic
field.

For a tokamak-reactor, the attractive range is 3 <
βN < 4 [1]. Sometimes, even higher βN (up to βN = 6
[72]) are mentioned. That is why NTMs, which have a
relatively low onset limit, became a concern for the
fusion community. The problem is aggravated by the
fact that, in experiments, the dependence of the onset
βN on ρ* (the ion gyroradius normalized to the plasma
column radius) is unfavorable for large tokamaks. Ear-
lier observations provided the following scalings for
the onset of the m/n = 3/2 mode:

βN ∝  ρ* in ASDEX Upgrade [73],
βN ∝  (ρ*)0.13(ν*)0.32 in DIII-D [64], and
βN ∝  (ρ*)0.64(ν*)–0.1 in JET [74].

Here, ν* is the collision frequency normalized to the
bounce frequency (see [1], p. 2144). These scalings are
clearly incompatible. However, experimental progress,
the accumulation of data, and their comparison and
analysis have recently led to the opinion [75] (in con-
trast to earlier conclusions) that the NTM data from
DIII-D and JET are, nevertheless, consistent with the
linear scaling of the onset βN on ρ* observed in
ASDEX Upgrade. Although there is a substantial scat-

βN β %[ ] b m[ ]  B T[ ]
I  MA[ ]

-------------------------------,=
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ter in the JET data in the plot βN vs. ρ*, the correlation
and scatter are substantially improved when using local
parameters [76]. A linear scaling was also observed in
JT-60U [77]: βN ∝  ρ*(ν*)0.36.

If the linear scaling could be valid for much smaller
ρ* than that in the existing devices (e.g., by factor of 3),
the critical βN in ITER with ρ* ≈ 2 × 10–3 might be
about 0.5 [65], which is far below the acceptable level.

This number is just an estimate based on an incom-
plete theory and insufficient data. NTMs are a rather
complicated phenomenon involving several competing
processes. Therefore, all theoretical predictions remain
uncertain and somewhat restricted even for present-day
tokamaks. A great deal of work is needed to develop a
reliable predictive theory.

The existing theory of NTMs is based on the gener-
alized Rutherford equation for the time evolution of the
width W of a magnetic island (see, e.g., [64, 78, 79]):

(10)

Here τs = µ0 /(1.22η) is the resistive time at the reso-
nant surface of radius rs, η is the neoclassical resistivity,
∆' is the conventional tearing parameter (do not confuse
this with equilibrium ∆' in the previous section), βp is
the poloidal beta at the resonant surface, W0 is the char-
acteristic island width below which the cross-field
transport dominates over parallel transport and equal-
izes the plasma pressure along the island, the term with
Cb accounts for the destabilizing neoclassical bootstrap
drive, the term with Cmw is related to the stabilizing
effect of the magnetic well, the term with Cp describes
the effect of the so-called polarization currents induced
by the diamagnetic motion of the island through the
plasma, and the last term with CCD is associated with
the stabilizing effect of a properly localized current
drive.

The term with Cp is usually considered to be stabi-
lizing: Cp > 0. A model based on this assumption with
Cp ∝ (ρ*)2, which is known as the ion polarization cur-
rent model, is frequently used to estimate βN. It was
asserted that experimental observations of tearing
modes in ASDEX Upgrade could be satisfactorily
explained by the ion polarization current model [73,
80]. However, some data from other devices demon-
strated somewhat different behavior [81]. Also, there is
an obvious disagreement between the semiempirical
models and the theoretical predictions [82]. Neverthe-
less, there is a general tendency to accept the polariza-
tion current model as superior in predicting the scaling
and magnitude of the critical β [75].

τ s
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Waelbroeck and Fitzpatrick pointed out [83] that the
true value and even the sign of Cp may differ from the
generally accepted ones. Evident theoretical contradic-
tions stimulated further studies [84] that led to the con-
clusion [85] that, although the analysis of [83], which
was based on a simplified model, is somewhat ambigu-
ous, the statement that the polarization current in the
absence of drift effects is destabilizing (Cp < 0) is cor-
rect. However, the question remained as to whether the
models used were adequate.

The dilemma whether the effect of the polarization
current on NTMs is stabilizing or destabilizing and the
origin of these contradictions were discussed in [86,
87], where it was shown that a less restrictive model
gives a stabilizing polarization current. Favorable pre-
dictions about the role of the polarization current were
obtained in [87, 88], where different profile functions
were used to describe the electrostatic potential and
density perturbations instead of the common profile
function used in the existing theory. For example, with
an assumption; drift effects taken into account, the
result is [88]

(11)

where ω is the island rotation frequency in the reference
frame with a vanishing equilibrium radial electric field,
ω∗ i is the ion drift (diamagnetic) frequency, and k∗  is a
positive number.

One can see that Cp < 0 when the ratio ω∗ i /ω is
small, which agrees with the results of [83, 89]. It is
known, however, that in DIII-D [75] and JT-60U [90],
the mode rotates in the ion diamagnetic direction. In the
DIII-D tokamak, the observed island rotation frequency
lies in the range 0 < ω < ω∗ i [75]. Under this condition,
Cp > 0 and the term with Cp is stabilizing. Recent theory
shows that it can also be stabilizing even in the absence
of the ion drift effects due to the shear of the plasma
flow [87].

The discussion about the sign of Cp reflects the fact
that Cp “oscillates” around zero. Since the sign of Cp

can be easily changed in a narrow range of ω, one can
conclude that Cp should be small. If so, its stabilizing
role cannot be substantial. This is however, it is also
supported by the detailed NTM analysis that takes into
account the finite ratio of the ion gyroradius to the mag-
netic island width, ρi/W [91]. It is shown in that paper
that both Cb and Cp are actually smaller than the values
used in the existing theory, developed in the approxima-
tion ρi/W  0. What is surprising is that, according to
[91], the dependence of Cp on ρi/W cannot be ignored
even at ρi/W = 10–1–10–2 (remember that ρi = 1 cm at
T = 10 keV and B = 1 T). The conclusion is that the
onset β can be one-half of the traditionally estimated
NTM limit. This result of [91] is most unfavorable for
large tokamaks, which again demonstrates that the
problem is rather complicated and challenging.

Cp ω*i ω–( ) ω k*ω*i+( ),∝
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The destabilizing effect of the bootstrap current
depends not only on Cb in Eq. (10), but also on the value
of W0. The larger the W0, the smaller the destabilizing
term. In the generally accepted model [64], W0 is
related to the competition of the perpendicular and par-
allel heat transport inside the island, which results in
the weakening of the perturbed bootstrap current.
Recently, a generalized transport threshold model of
NTMs in tokamaks was proposed in [92, 93]. In addi-
tion to transverse and parallel heat transports, the model
takes into account several other mechanisms opposing
the instability drive. According to [92, 93], with
account taken of the parallel convection and magnetic
island rotation, the equation for the island width evolu-
tion has the same form as Eq. (10). However, in these
cases, the value of W0 may be different, since it is deter-
mined by the smallest value of the characteristic scales
related to the above three mechanisms. This means that
W0 may sometimes be smaller than the value used in the
existing theory. Accordingly, the stability β limit must
again be lower.

Incorporation of the perpendicular viscosity
changes the structure of the equation for W. It is shown
in [93] that, in this case, one should make a substitution
in Eq. (10):

  (12)

where Wµ is the characteristic length related to the ion

perpendicular viscosity coefficient µ⊥ i ,   ≈

µ⊥ i/( ), ε = rs/R, νi is the ion collision frequency,
and Cµ is a positive coefficient on the order of unity.

The authors of [93] pointed out that, for W < (W0, Wµ),
the right-hand side of expression (12) becomes

(13)

This value is negative for ω/ω∗ i > 0.

If so, the perturbed bootstrap current is stabilizing.
This seems too good to be true, and this prediction will
certainly be analyzed in more detail because any
chance to suppress NTMs must be utilized in tokamaks.
In any case, the above results are certainly valuable as
a first theoretical comparison of various relevant
effects.

The term with Cmw in Eq. (10), which is often called
Glasser–Greene–Johnson (GGJ) term, is frequently
ignored in calculations because, according to some esti-
mates, it is two to three times smaller than the term with
Cb [64]. It can be argued, however, that this term must
be retained, especially in view of the fact that the stabil-
ity or instability of NTMs is determined by the rather
delicate balance of the opposing terms in Eq. (10).
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It is known that toroidicity, which determines the
value of Cmw, may produce a stabilizing effect on tear-
ing modes [94, 95]. Plasma shaping can be used to rein-
force this effect. The influence of plasma geometry on
NTMs was studied numerically by Kruger et al. [96].
Three tokamaks were considered: TFTR (large aspect
ratio, circular cross section), DIII-D (slightly smaller
aspect ratio, D-shaped cross section), and Pegasus
ELART (extremely low-aspect-ratio tokamak with A ≤
1.2, stronger shaping). The conclusion was that the GGJ
term is negligible for TFTR, but is more significant for
shaped tokamaks, though it would play little role in the
efforts to stabilize NTMs in DIII-D (if the shear is not
very small). Another conclusion was that, in low-
aspect-ratio devices, where the shear is low and beta is
high, it might be possible to stabilize NTMs by flatten-
ing the profile of the safety factor q near low-order
rational magnetic surfaces using a combination of
shaping and localized current drive.

The latter conclusion was supported by analytical
theory [97]. It was shown that the stabilizing GGJ term
could be stronger than the bootstrap terms when

(14)

This formula shows that the combination of the three
factors can make the GGJ term large: small shear S at
the resonant surface, large ellipticity e (related to the
elongation K by e = (K2 – 1)/(K2 + 1)), and large trian-
gularity δ. Also, formula (14) explicitly shows the sen-
sitivity of NTMs to the equilibrium profiles: τi ≡ Ti/Te

and ηi, e ≡ ∂lnTi, e/∂lnn0, where Ti and Te are the ion and
electron temperatures, respectively, and n0 the equilib-
rium plasma density.

These optimistic predictions of the theory agree
well with the experimental observations in ASDEX
Upgrade [69, 70] that an increase in the plasma triangu-
larity resulted in an increase in βN from βN = 2.2–2.4 for
discharges with a low triangularity to βN = 2.5–2.6 for
a larger triangularity (δtop ≈ 0.2 in the notation of [69,
70]). Also, there is a qualitative agreement with obser-
vations in DIII-D that a combination of plasma shaping
and q profile modification allows one to substantially
increase the NTM beta limit [98]. Finally, this theory
gives a reasonable explanation why the onset βN in
shaped tokamaks (βN = 2.2–3.0) is larger than in TFTR
with circular plasma (βN < 2). It should be remembered,
however, that a recent interpretation of JET results, stat-
ing that an increase in the triangularity raises the NTM
β limit while an increase in the elongation makes it
lower [99], shows that the problem still remains open.

Favorable theoretical predictions and (in general,
promising) experimental results justify the conclusion
that all studies related to the stabilizing effect of plasma
shaping are to be encouraged. It is known that plasma
shaping affects the bootstrap current [17, 38, 100].
Therefore, it might be interesting to optimize shaping
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in order to minimize Cb and simultaneously maximize
Cmw.

4. RESISTIVE WALL MODES

Several years ago, it was demonstrated in DIII-D
experiments that at high β near the beta limit, the stabil-
ity of ideal MHD global kink modes is strongly influ-
enced by the vacuum vessel [101, 102]. It is now a well
established fact that the stabilization of low-n kink
modes by a conducting wall is crucial for high-β
steady-state advanced tokamak scenarios [103]. How-
ever, a real wall with a finite conductivity can stabilize
the mode only over the time of magnetic diffusion
through the wall, τw, which can be estimated in cylindri-
cal approximation as τw = µ0σwdwrw, where σw, rw, and
dw are the conductivity, minor radius, and thickness of
the wall, respectively. On a larger time scale, eddy cur-
rents that are induced in the wall and oppose the growth
of the mode decay and the kink modes can become
unstable. Since their growth rates are determined by τw,
the modes are called resistive wall modes (RWMs).

Experiments in the DIII-D tokamak [104] have
shown that the RWMs limit the attainable βN at the level

(15)

where li is the internal inductance (it was found later
that the RWM stability limit can sometimes be even
lower). This value is known as the Troyon limit, repre-
senting the ideal MHD beta limit for tokamak dis-
charges without wall stabilization and sawtooth insta-
bility [1, 105]. Definition (8) (for circular plasmas)
shows that larger li values are obtained for more peaked
toroidal currents. However, advanced tokamak opera-
tion [22, 24, 31, 100, 106–108] with a low or negative
shear in the plasma center and a high bootstrap current
fraction, on the contrary, demands broad current pro-
files. Sometimes, the advanced operation even leads to
the formation of a so-called “current hole” [109–111].
In the JT-60U tokamak, a current hole, extended up to
40% of the plasma minor radius, existed stably for sev-
eral seconds [110]. Such distributions have a relatively
small li (say, smaller than li = 0.5, which corresponds to
a uniform current density). In principle, the tokamak
configuration and discharge operation could be opti-
mized to maximize li at advanced operation with a boot-
strap current fraction as high as 50–70% [112]. How-
ever, even in this case, li ≅ 1, which is a rather moderate
value.

Keeping li as high as possible, as proposed in [112],
could be a good way to increase the RWM instability
beta limit. However, it is not yet clear whether this idea
can be successfully realized with a desired result. Also,
even with li = 1, Troyon limit (15) is not high enough to
satisfy the reactor demands. In any case, one must look
for the possibility of stationary tokamak operation with
β above limit (15).

βN 4li,≈
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In recent years, the physics of RWMs and their sta-
bilization have been extensively studied in the DIII-D
tokamak (see [57, 103, 104, 113, 114] and references
therein). Two approaches to stabilizing RWMs have
been tested: plasma rotation and active feedback con-
trol. The latter approach was considered to be relatively
simple, reliable, and efficient. In reality, however, a
great deal of effort has been spent to demonstrate that it
works as expected. Finally, reported result [114] was
impressive: the feedback system allowed RWMs in
DIII-D to be suppressed and the discharge to be sus-
tained for almost a second at pressures approaching
twice the no-wall limit.

Feedback stabilization is, in essence, based on con-
ventional electrodynamics, electrical engineering, and
control theory. When a particular feedback algorithm is
assumed, the results of analysis may depend strongly
on the circuit characteristics and the location and prop-
erties of the probes. However, the comparison and
understanding of the results on RWM feedback stabili-
zation can be greatly eased when the simple formula
[115]

(16)

is used to explain what is required from the feedback
system. Here, γ is the RWM growth rate; Γ0 = γ0τw, with
γ0 being the open-loop growth rate of the same mode;
Bext is the amplitude of the radial magnetic field pertur-
bation produced by all sources outside the first wall,
including the feedback field (Bext = 0 when the mode is
affected by the first wall only); BΣ is the amplitude of
the total radial field perturbation at the first wall; and m
is the poloidal mode number. Stabilization is achieved
when γ < 0. Therefore, irrespective of the algorithm, the
feedback system must guarantee that the external (with
respect to the first wall) field Bext satisfies the criterion

. (17)

These expressions are derived for a single-mode pertur-
bation in the cylindrical approximation. Such an
approach is widely used in theory, which is justified by
a comparison of the analytic results with numerical
simulations [113, 116].

The analysis of the feedback stabilization of RWMs
is simplified by the fact that Γ0 in Eq. (16) can be con-
sidered fixed and independent of Bext. This quantity is
determined by the behavior of the perturbed radial field
Br(r) inside the plasma. Toroidal calculations [117,
118] show that the feedback does not strongly modify
the Br(r) profile in the plasma. This is also confirmed by
DIII-D experiments and related numerical analysis
[113].

In configuration with one resistive wall, Bext is a
field produced by the feedback system: Bext = Bf . Then,
criterion (17) explicitly gives the necessary stabilizing

γτw Γ0 2m
Bext

BΣ
--------+=

Bext

BΣ
--------

Γ0

2m
-------–<
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field Bf in terms of BΣ. By definition, BΣ is the radial
component of a magnetic perturbation, which can be
measured by “radial” probes. Criterion (17) shows that
knowledge of BΣ is sufficient for determining Bf that is
needed to suppress the mode. In other words, RWMs
can be easily stabilized by a feedback system with
radial magnetic probes. A comparison of RWM feed-
back systems with different input signals shows that
using poloidal probes allows RWM suppression at a
lower gain of the system [119]. In all other respects,
poloidal probes are no better than radial ones.

These conclusions, however, contradict the common
opinion that a feedback system with sensors measuring
the poloidal field is much better than one with radial-
field sensors. This opinion is based on the solid founda-
tion of numerical calculations and experimental results
from DIII-D [113, 114, 117, 118] and cannot be
impugned.

This contradiction was resolved in [120] by noting
that analytical theory deals with a single harmonic in

poloidal and toroidal angles θ and ζ,  =
Br(r)exp[i(mθ – nζ) + γt], while the frame-like correc-
tion coils used in DIII-D [5, 7, 104, 113, 114] and
assumed in numerical calculations [116–118, 121] pro-
duce additional side-band harmonics affecting the mea-
sured signal. The radial component of the magnetic
field calculated with account taken of these harmonics
can vanish at the probe position (equatorial plane)
when an RWM is not yet suppressed, thus breaking the
feedback loop. This never happens with the poloidal
component at this position.

This analysis not only explains the observed differ-
ence between feedback systems with radial and poloi-
dal probes, but also shows the great difference between
“ideal” and “conventional” systems. It seems that heli-
cal correction coils could be better than those presently
used in DIII-D. Their comparison is an open issue, per-
haps, for a theoretical study only, because the experi-
mental success of DIII-D [114] is sufficient proof of the
efficiency of the existing feedback system. In any case,
the problem of the “purity” of the feedback-produced
magnetic field must be examined.

Feedback “helps” the wall to sustain the induced
currents that otherwise would decay because of the wall
resistivity. A second wall placed between the plasma-
facing (first) wall and the correction coils acts as a
screen distorting the feedback-produced field. When
the coupling of the feedback with the first wall becomes
weak, a slow mode can grow unstabilized [115]. This
problem first appeared because ITER has a double wall
[1] and the correction coils must be located on the out-
side. Numerical simulations [116] show that, indeed,
the double-wall structure of ITER makes the active
control of RWMs somewhat more demanding than in
tokamaks with a single wall. The problem can become
even more serious in future designs, as the need is to
keep the correction coils closer to the first wall if the
first wall is resistive.

B̃r
5. CONCLUSIONS

In the early stages of tokamak and stellarator
research, plasma equilibrium was one of the most seri-
ous problems [2–5, 39, 42, 43, 60, 122, 123] responsi-
ble for β limitation. Now, all major equilibrium issues
have been resolved or, at least, thoroughly investigated.
It is known that equilibrium limit in toroidal systems
can be practically removed by properly optimizing the
configuration geometry. Axisymmetric plasma shaping
has become a natural element of tokamak operation and
remains a potentially useful tool for conventional stel-
larators. With more complicated 3D shaping, including
spatial deformations of the magnetic axis, stellarator
configurations can be made almost insensitive to
plasma pressure. It seems, however, that optimizing
stellarators to very high βeq generally leads to a rather
low stability limit. It is not yet clear what kind of stel-
larators might be able to combine high βeq, good con-
finement and high stability limit so that stellarators
would be competitive with the best modern tokamaks.
In general, stellarators have made great progress in
recent years; e.g., LHD operates now with β up to 3%
[51–53].

Tokamaks are certainly ahead of stellarators on the
road to fusion reactors. To satisfy reactor needs, toka-
maks must finally demonstrate their capability for high-
β steady-state operation. This requires, in particular,
preventing NTMs and RWMs that act as factors limit-
ing β. There have been successful experiments on their
suppression [30, 31, 114, 124–126]. At the same time,
there is great uncertainty in extrapolating the existing
data to ITER-scale devices. For example, it is not clear
to what extent NTM behavior will be governed by the
mentioned unfavorable gyroradius dependence of the
onset β and what would be the final form of the gener-
alized Rutherford equation for NTMs. One very impor-
tant problem is the recovery of β after stabilizing
NTMs. A more general question is what the upper limit
for β is with active NTM stabilization. A similar ques-
tion for RWMs has recently been answered: calcula-
tions for high-β advanced tokamak equilibria with an
ITER shape have shown that the feedback control of
RWMs is possible for βN up to 5, which is twice the no-
wall limit [118]. Experiment [114] confirmed this pos-
sibility, although at a lower βN. On the other hand, the
influence of plasma rotation and error fields on RWMs
[57, 114] still remains an open issue for theorists.

The step from the existing tokamaks to ITER is too
big for confident extrapolations based on the available
data. This is a typical rather than dramatic situation in
science. Perhaps, JET is a good example of such a step
in fusion. In this case, a reliable theory is needed to
reduce the uncertainty. The rapid development of the
MHD theory of NTMs and RWMs reflects the impor-
tance of the subjects and the scope of this problem.
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Identification of the Structure of Large-Scale MHD 
Perturbations in a Tokamak from Mirnov Signals

A. M. Kakurin and I. I. Orlovsky
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Abstract—An algorithm is proposed that allows one to identify the MHD mode structure in toroidal plasmas
by processing signals from Mirnov probes measuring plasma MHD activity. The algorithm differs fundamen-
tally from the diagnostic methods presently used in tokamaks, being simpler and more efficient. The algorithm
is based on constructing an analytic signal using the Hilbert transformation of the Mirnov signals at a given
instant. The phase and amplitude dependences obtained take into account the toroidal effects and allow one to
determine the number and amplitude of the excited MHD mode. The algorithm was approbated with both test
signals and actual signals from MHD diagnostics in the T-10 tokamak. It is demonstrated that the algorithm can
be used to analyze single-mode MHD instabilities in toroidal plasmas. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Conventional methods for studying MHD instabili-
ties in tokamaks are based on analyzing the spatial and
temporal evolutions of the perturbations of the poloidal
magnetic field in the plasma column [1]. These pertur-
bations have the form of waves propagating in the
poloidal and toroidal directions and are usually
detected by a set of local magnetic pick-up coils
(Mirnov probes) located near the plasma surface. The
Mirnov signals are oscillations whose frequencies and
amplitudes vary in time. The MHD instability that is
responsible for the poloidal field perturbations and is
termed “tearing-mode instability” leads to the rear-
rangement of the magnetic surfaces, which is accompa-
nied by the formation of magnetic islands rotating in
the poloidal and toroidal directions.

The island structure is uniquely identified by ana-
lyzing the spatial structure of the poloidal field pertur-
bations, which can be expanded in spatial components,
each corresponding to a specific magnetic-island struc-
ture (i.e., an MHD eigenmode).

The island structure in the toroidal direction can be
identified by applying the expansion in Fourier series in
spatial harmonics exp(nφ), where n is the harmonic
number (the toroidal wavenumber) and φ is the angular
coordinate in the toroidal direction.

The identification of the island structure in the
poloidal direction is complicated by the toroidal
effects, which distort the poloidal structure of the field
perturbations. This is clearly demonstrated in Fig. 8.
This figure shows an instantaneous distribution of the
poloidal field perturbations Bθ(θ) in polar coordinates,
which is obtained by interpolating the signals from 24
Mirnov probes arranged uniformly in the poloidal
direction. The distribution has the shape of a rosette
1063-780X/03/2910- $24.00 © 20826
with petals of different width, which are spaced at irreg-
ular intervals. The number of petals corresponds to the
poloidal wavenumber m of the excited MHD mode.

For a tokamak plasma with a circular cross section,
Merezhkin [2] proposed switching from the poloidal
coordinate θ, in which the spatial phase structure of a
perturbation is distorted by toroidal effects (the pertur-
bation wavelength is not constant along the poloidal
angle θ), to the coordinate θ*,

(1)

with

θ* θ λ θ,sin–=

λ r
R
--- βp

li

2
--- 1+ + 

  ,=
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Fig. 1. Spatial distribution of the poloidal field perturba-
tions Bθ(θ) = cos(mθ*) with θ* = θ – λ sin(θ), m = 4, and λ =
0.5 (the phase modulation of the fourth mode).
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in which the toroidal distortions are absent to first order
(the wavelength is constant along the coordinate θ*).
Here, R is the tokamak major radius, r is the radius of
the magnetic surface on which magnetic islands arise,
βp is the poloidal beta, and li is the internal inductance.
The angle θ is counted from the low-field side of the
equatorial plane.

Expression (1) is complicated to use in practice
because λ is difficult to determine from the experimen-
tal data. One of the versions of employing this expres-
sion is to fit the experimental data by a model MHD
perturbation with a spatial phase ϕi = m(θi – λsinθi) + δ,
where θi is the coordinate of the ith probe and λ, δ, and
m are free parameters [3].
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Fig. 2. Spatial phase ψ vs. poloidal angle θ for the distribu-
tion shown in Fig. 1.
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Fig. 4. Amplitudes of the Fourier harmonics for the distri-
butions Bθ(θ) and B(ψ).
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A new approach to the identification of the mode
structure of MHD perturbations is to process the
Mirnov signals by using a singular value decomposi-
tion (SVD) method or a similar biorthogonal decompo-
sition method [5]. These methods are based on the con-
struction of a covariance matrix (see [4]) with elements
in the form of expressions composed of the signals
from different Mirnov probes at different instants. A
subsequent analysis of the covariance matrix allows
one to identify the mode structure of a perturbation.
The disadvantage of the SVD method is the assumption
that the mode structure does not change within the time
sample (up to several milliseconds) that is used to con-
struct the covariance matrix.

Thus, an important problem is to develop an easy to
implement and physically explicit numerical algorithm
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Fig. 3. Spline interpolation of the dependence B(4ψ), where
ψ(θ) is the phase dependence shown in Fig. 2.
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Fig. 5. Spatial distribution of the poloidal field perturbation
Bθ(θ) = (1 + 0.5cos(θ))cos(2θ) (the amplitude modulation
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for the identification of the instantaneous poloidal
structure of an MHD mode by using only Mirnov sig-
nals, without invoking the data on λ.

2. MODE-IDENTIFICATION ALGORITHM

We consider a case with a single MHD mode. At a
given instant of time, its magnetic field Bθ(θ) is an
oscillating function of the poloidal angle θ with spa-
tially varying period and amplitude. It is necessary to
find a function ψ(θ) such that the period of Bθ(ψ) will
be constant over the coordinate ψ. It is also required
that the transformation does not change the number of
maxima, minima, and zeros, which means that the
number of petals of the spatial distribution in the new
variables should be the same as that in polar coordi-
nates (Fig. 1).

We represent the initial function as a product
Bθ(θ) = A(θ)cos(ψ(θ)), where A(θ) and cos(ψ(θ)) are
the amplitude and phase factors, respectively. Gener-
ally, this representation is ambiguous; however, there is
a mathematically rigorous and physically correct
method for determining the amplitude and phase of an
oscillating function by constructing the so-called ana-
lytic signal. This method is reduced to the following
procedure. From the given dependence Bθ(θ), by using
the Hilbert transformation [6, 7], we construct the com-
plex function (the analytic signal)

(2)

where A(θ) is the amplitude of the analytic signal and
ψ(θ) is the generalized phase. The Hilbert transforma-
tion is given by

(3)

where v.p. is the Cauchy principal value.

Z θ( ) A θ( ) iψ θ( )( )exp Bθ θ( ) iH Bθ θ( )[ ] ,+= =

H Bθ θ( )( ) 1
π
---v.p.
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------------- τ ,d
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Fig. 6. Spatial phase ψ vs. poloidal angle θ for the distribu-
tion shown in Fig. 5.
Thus, we have found the function Z(θ), which satis-
fies the above requirements; in particular, it has a con-
stant period over the variable ψ. As θ varies within the
range 0 ≤ θ ≤ 2π, the generalized phase ψ varies within
the range 0 ≤ ψ(θ) ≤ 2πm, where m > 0 is an integer.
Hereinafter, m is identified with the poloidal wavenum-
ber of the MHD mode.

Let us consider the algorithm for processing a set of
the experimental data. Let there be a set of the values of
the poloidal magnetic field perturbations Bθ(θi) for a
given MHD mode at a given instant of time that are
obtained from Mirnov probes with coordinates θi .

By constructing a spatial analytic signal, we change
from the set {θi} to the new set {ψi = ψ(θi)}.
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Fig. 7. Amplitudes of the Fourier harmonics of the distribu-
tions Bθ(θ) and B(ψ) in the case of amplitude modulation
(Fig. 5).
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Fig. 8. Spatial distribution of the poloidal field perturbation
Bθ(θ) in the T-10 tokamak (spline interpolation over signals
from 24 probes taken at the 276th millisecond of shot
no. 34669).
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003



IDENTIFICATION OF THE STRUCTURE OF LARGE-SCALE MHD PERTURBATIONS 829
Using the amplitude factor of the analytic signal
A(θi), we correct the perturbation values of the poloidal
magnetic field to obtain the set

(4)

where 〈A(θi)〉  is the average value of A(θi) over the
interval 0 ≤ θi ≤ 2π. Using a one-to-one correspon-
dence between the sets {B(θi )} and {ψi}, we obtain the
dependence B(ψ). In new variables, the corrected field
perturbations have the form of oscillations with a con-
stant amplitude and period.

3. APPLICATIONS OF THE METHOD

The efficiency of the algorithm proposed was tested
by applying it to a field with a given spatial mode struc-
ture. The field was modeled by a harmonic distribution
Bθ(θ*) = cos(mθ*) with a toroidal correction described
by formula (1). By varying the parameter λ, we intro-
duced a toroidal distortion (spatial phase modulation)
of the resulting distribution Bθ(θ), which was no longer
a harmonic function but contained a set of spatial har-
monics in θ. Figure 1 shows the model distribution
Bθ(θ) for m = 4 and λ = 0.5, which clearly demonstrates
the difference in the petal shapes. The phase of the ana-
lytic signal ψ(θ) (Fig. 2) that corresponds to this distri-
bution is nonlinear. In the distribution B(mψ) calculated
by the algorithm proposed (for a better visualization of
the effect, the distribution B(ψ) is scaled down by a fac-
tor of m = 4), the petals are identical in shape (Fig. 3).
Figure 4 shows the Fourier transforms of the distribu-
tions Bθ(θ) and B(ψ). It can be seen that the Fourier
transform of Bθ(θ) contains additional harmonics with
amplitudes of up to 60% of the fundamental harmonic,
whereas the distribution processed by the proposed
algorithm contains a single mode with a correctly deter-
mined mode number and amplitude (the error in deter-
mining the mode amplitude is less than 0.5%, and the
amplitude of the “false” harmonics does not exceed
1%). When applying the algorithm to distributions with
different λ values (from 0 to 1), the results differed by
no more than 1%.

The applicability of this algorithm to a case with an
amplitude modulation of the signal was verified by a
model signal Bθ(θ) = (1 + 0.5cosθ)cos(2θ), which cor-
responds to the amplitude modulation of the second
mode (Fig. 5). The phase dependence ψ(θ) in this case
is linear (Fig. 6). Figure 7 shows the Fourier transforms
of the initial function Bθ(θ) and the function B(ψ) con-
structed using the algorithm proposed. In both cases,
the amplitude of the second mode is described cor-
rectly; however, the Fourier transform of Bθ(θ) contains
satellite harmonics with amplitudes that amount to
~25% of the second-mode amplitude.

The figures clearly demonstrate that the proposed
algorithm for the identification of the perturbation

B θi( )
Bθ θi( )
A θi( )
--------------- A θi( )〈 〉 ,=
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mode structure is more efficient in comparison with a
direct expansion in a Fourier series. The total error
defined as

(5)

where bi is the amplitude of the ith Fourier harmonic
and m is the mode number, is less than 0.01 for this
algorithm, whereas δs may be larger than unity for a
direct expansion in a Fourier series (see Fig. 4). The
accuracy of this method can be enhanced by increasing
the number of interpolation points when constructing
the analytic signal (in the calculations described in this
paper, we used interpolation over 512 points).

The algorithm was also tested by processing the
experimental data from the T-10 tokamak (Fig. 8). The
results of the test are presented in Figs. 9 and 10, which
show the dependence ψ(θ) and the spatial spectrum of
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Fig. 9. Spatial phase ψ vs. poloidal angle θ for the experi-
mental distribution shown in Fig. 8.
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the poloidal field perturbations. One can see that the
algorithm yields a nonlinear dependence ψ(θ), which
complies well with the dependence θ*(θ) given by
expression (1). Some deviations (in particular, near θ =
330°) can be attributed to the influence of the currents
that are induced in the elements of the chamber and dis-
tort the probe signal. The results of applying the algo-
rithm clearly demonstrate that the perturbation is asso-
ciated with the m = 4 mode.

4. CONCLUSIONS

The proposed algorithm, although limited to a single
mode, significantly simplifies the analysis of MHD sig-
nals, reduces the role of the human factor, and substan-
tially improves the reliability of the results obtained.
The algorithm can be extended to cases in which the
spatial structure of the poloidal magnetic field is dis-
torted not only by the toroidal effects, but also by such
factors as the displacement of the plasma column from
the center of the chamber and the deviations of the
plasma column cross section from the circular. The
algorithm can be used to analyze large-scale MHD per-
turbations of the magnetic field, such as tearing, kink,
and the resistive wall modes.

An analysis of the multimode perturbations requires
the development of additional algorithms for mode sep-
aration. These could be methods of wavelet analysis
adapted for the poloidal angle–wavenumber coordi-
nates.
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Abstract—Collisionless confinement of monoenergetic α particles in three-dimensional magnetic fields pro-
duced by the magnetic coils of the Large Helical Device is calculated. It is found that the inward shift of the
magnetic axis due to the vertical field improves the α-particle confinement. In contrast to the vertical field, both
large positive and negative hexapole fields do not improve the confinement. The study of the β effect and Mer-
cier criterion calculations for different hexapole fields are also presented. © 2003 MAIK “Nauka/Interperiod-
ica”.
1 1. INTRODUCTION

The Large Helical Device (LHD) at the National
Institute for Fusion Science (Japan) is the largest active
heliotron device. Recent work by Murakami et al. [1]
concerns the neoclassical transport optimization with
respect to the radial shift of the magnetic axis by eval-
uating the monoenergetic transport coefficient and the
effective helical ripple. The optimum configuration is
found in which the magnetic axis with a major radius of
3.53 m is shifted by 0.22 m inward from the standard
LHD configuration. A strong inward shift of the mag-
netic axis in the LHD can diminish the neoclassical
transport to a level typical of the so-called “advanced
stellarators,” like Wendelstein 7-X (see, e.g., [2]).

In our previous paper [3], it was shown that a quasi-
omnigenous structure of the magnetic field [4, 5] can be
achieved by optimizing the conventional inward-
shifted LHD-like heliotron configurations with an
aspect ratio of 6.5 and N = 10 periods. For the N = 10
quasi-omnigenous configuration obtained, there are
almost no lost α particles during 0.05 s of their colli-
sionless flight. However, in [3], the plasma boundary
shape was significantly modified in optimization calcu-
lations in order to achieve such a good α-particle con-
finement. In particular, the largest modification was
made for the R21 component in the Fourier representa-
tion of the plasma boundary shape (here, 2 is the poloi-
dal index and 1 is the toroidal index, which is normal-
ized to N), which corresponds to the increase in the
rotating triangularity of the plasma shape. The question
arises from these modifications as to whether it is pos-
sible to achieve such a significant variation in the
plasma boundary shape by the real LHD coil system. In
this paper, we explore numerically the possible effect of
the relevant magnetic field components on the colli-

1 This article was submitted by the authors in English.
1063-780X/03/2910- $24.00 © 20831
sionless α-particle confinement, taking into account
mainly the effect of the vertical and hexapole fields pro-
duced by the real LHD coil system. We also consider
the β effect and the ideal Mercier criterion for the con-
figurations obtained in order to determine the possible
optimal combination of the LHD coil fields.

The paper is organized as follows. Section 2
describes the numerical tools used in the calculations.
Section 3 presents the relationships between the hexa-
pole and vertical fields and the plasma boundary shape
in the LHD. The effect of these fields on α-particle con-
finement and the Mercier criterion is also examined.
The results obtained are reiterated in Summary.

2. NUMERICAL TOOLS

Three-dimensional numerical codes are an essential
part of stellarator theoretical achievements in recent
years. In this paper, we use KMAG [6], DESCUR [7],
VMEC [8], JMC [9], and MCT [10] numerical codes.

The KMAG is a field-line-tracing code with the
Biot–Savart law from the given coil geometry. The
hexapole and vertical fields are varied in this paper by
changing the coil current ratio (mainly currents in the
three pairs of poloidal coils).

We obtain the Fourier spectrum of the plasma-
boundary magnetic surface from 60 intersections of the
magnetic field line with 20 toroidal cross sections using
the DESCUR code.

Three-dimensional ideal MHD equilibria for a given
fixed boundary are calculated by the VMEC code. The
VMEC code solves the 3D MHD ideal inverse equilib-
rium equations by the gradient method using a repre-
sentation for the magnetic field that assumes nested flux
surfaces. In this paper, we use the 5.20 version of the
VMEC code, which is suitable for stellarator systems
without net toroidal current. The modification of the
003 MAIK “Nauka/Interperiodica”
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VMEC code (version VMEC2000-6.80) was recently
improved to calculate plasma equilibrium for low-
aspect-ratio systems with net toroidal current, like
NCSX and QOS [11]. In these equilibrium calcula-
tions, 33 flux surfaces and 113 VMEC poloidal and tor-
oidal Fourier components are used for the representa-
tion of equilibrium quantities.

The JMC code calculates the magnetic field strength
B in Boozer coordinates [12]. The maximal poloidal
mode index in our runs is 9, and the maximal toroidal
mode index is 8. The transformation from VMEC angu-
lar variables to Boozer coordinates is helpful because
of the simplicity of the co- and contravariant vector rep-
resentations of the magnetic field. In this paper, we use
162 magnetic field components obtained from the JMC
code in Boozer coordinates. The Mercier criterion [13]
is also calculated by the JMC code.

To check the α-particle confinement properties, the
MCT code is used, which follows 2000 collisionless
drift orbits of monoenergetic (3.52 MeV) α particles
during a typical confinement time of 0.05 s for a plasma
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Fig. 1. (a) Numbers of lost α particles in the vacuum LHD
configurations vs. magnetic axis position Raxis, calculated
with the MCT code [10] with launching surfaces s = 0.0625
(lower points) and s = 0.240 (upper points). The total num-
ber of the followed α particles equals 2000. (b) Relationship
between Raxis and the rotating triangularity.
volume of 1000 m3 and B0 = 5 T and with a given
Boozer spectrum of the magnetic field and given pro-
files of equilibrium flux quantities.

3. EFFECT OF HEXAPOLE AND VERTICAL 
FIELDS ON α-PARTICLE CONFINEMENT

We briefly describe the coil system of the LHD [14].
For the flexible currentless plasma operation of the
LHD, the magnetic field properties such as the rota-
tional transform, plasma position and shape, and
plasma-wall clearance should be controlled by the
external coils. For these purposes, the three-layer struc-
ture of the helical coils is adopted to adjust the helical
pitch parameter and the divertor-wall clearance. The
applied vertical magnetic field is produced by helical
and poloidal coils. Three pairs of poloidal coils provide
the controllability of the system, such as the adjustment
of the axis position by the dipole field component, the
triangularity by the hexapole field component, etc. The
vertical field component BZ produced by poloidal coils
can be represented as the sum of the dipole (BD), qua-
drupole (BQ), and hexapole (BH) components: BZ = BD +
BQX + BHX2 + …, where X = (R – Raxis)/Raxis [15].

First, we explore the effect of the vertical magnetic
field, which changes the major radius of the magnetic
axis Raxis and changes the triangularity of the plasma
boundary. The basic improvement of α-particle con-
finement with the more inward shifted magnetic axis is
illustrated in Fig. 1a. Here, we present pairs of points
that correspond to the number of lost α particles start-
ing from the quarter of plasma radius (the flux surface
label s = 0.0625, lower points) and from the half of
plasma radius (the flux surface label s = 0.240, upper
points). The error bar shows the accuracy of these MCT
calculations based on the Monte Carlo method.

The highest losses of more than 20% are estimated
in magnetic configurations with Raxis = 3.81 m. The
lowest losses of just a few percent were found for Raxis =
3.45 m. The increase in the vertical field also leads to
the increase in rotating triangularity of the plasma
boundary R21 and results in the nonplanar magnetic
axis. The R21 component is the largest for Raxis = 3.45 m,
in which case R21/R00 = 3.7 × 10–3. For the case of Raxis =
3.81 m, we have R21/R00 = –1.3 × 10–3 as is shown in
Fig. 1b. Here, the calculations were performed for a
low-β currentless regime, where β is the volume-aver-
aged beta value. These results seem to correspond to the
tendency for a decrease in neoclassical diffusion due to
the inward shift of the magnetic axis revealed numeri-
cally in [1] and in the LHD experiments [16]. Here, we
have chosen the case with Raxis = 3.60 m for further
investigations of the hexapole fields effect. In general,
the hexapole fields do not change the magnetic axis
position and the rotating triangularity R21; however,
these fields change the so-called constant triangularity
of the plasma boundary, which is expressed by the R20
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
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component. In our computations, the component R10 is
related to the minor plasma radius and is nearly con-
stant, the rotating triangularity is proportional to R21R10,
and the axisymmetric or the constant triangularity is
proportional to R20R10. All variations in the triangulari-
ties are due to the changes of the R21 and R20 compo-
nents, respectively.

The effect of the hexapole fields is shown in Fig. 2a.
It can be clearly seen that the optimal hexapole field
value is H = 129%. Here, H denotes the hexapole com-
ponent produced by the poloidal coils, which is normal-
ized to the field of the helical coils; i.e., at H = 100%,
the total hexapole component is zero and the triangular-
ity is also almost zero. The H = 129% value corre-
sponds to the triangularity with R20/R00 = 7.9 × 10–4.
Both positive (H = 600% gives R20/R00 = 6.0 × 10–3) and
negative (H = –400% gives R20/R00 = –5.7 × 10–3)
changes of the hexapole fields do not improve α-parti-
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Fig. 2. (a) Numbers of lost α particles vs. hexapole field
amplitude for a vacuum configuration with Raxis = 3.60 m
for the same conditions as in Fig. 1. The lower and upper
points correspond to s = 0.0625 and 0.240, respectively.
(b) Relationship between the hexapole field amplitude and
the triangularity.
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cle confinement. Figure 2b shows the relationship
between H and R20/R00.

Figure 3 presents the β effect on α-particle confine-
ment in configurations with Raxis = 3.60 m for different
hexapole fields: H = –400, 129, and 600%. In these cal-
culations, we use the pressure profile given by the for-
mula p(s) = p0(1 – s)(1 – s4), where s is the flux surface
label. This is a typical profile observed in LHD experi-
ments and is frequently used in the analysis. For the
hexapole field value H = 129%, α does not substantially
change β-particle confinement. For H = –400%, the
fraction of lost particles starting from s = 0.0625
increases with increasing pressure by a factor of almost
1.5, and it is maximum for β = 0.036. For H = 600%,
the optimal value of β is approximately equal to 0.027;
however, the β effect on the confinement in this case is
not so strong. Large positive and large negative hexa-
pole fields decrease the equilibrium β limit; the VMEC
equilibrium code has a poor convergence for H = 600%
and H = –400% at β values larger than 0.04.

We also performed the calculations of the ideal
MHD Mercier stability criterion with the JMC code for
Raxis = 3.60 m and β = 0.01 to define the optimum value
of the hexapole field (Fig. 4). According to this figure,
the case of H = 129% is more stable than the cases with
both large positive (H = 600%) and negative (H =
−400%) hexapole fields.

4. SUMMARY

The effect of the vertical and hexapole fields on the
collisionless α-particle confinement and the ideal
MHD Mercier stability have been numerically calcu-
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Fig. 3. The β effect on the confinement of α particles
launched at the magnetic surfaces s = (1, 3, 5) 0.0625 and
(2, 4, 6) 0.240 in configurations with Raxis = 3.60 m for dif-
ferent hexapole fields: H = (1, 2) –400%, (3, 4) 129%, and
(5, 6) 600%. Plasma pressure profile is given by the formula
p(s) = p0(1 – s)(1 – s4), where s is the flux surface label.
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lated for the LHD. A significant improvement of the
confinement in a configuration with the inward shifted
axis (Raxis = 3.45 m) has been found. However, such a
configuration is less stable with respect to the Mercier
modes. In the configuration with Raxis = 3.60 m, the
effects of the hexapole fields and β effect have been
investigated. It is found that both large positive and
large negative hexapole fields do not improve the
α-particle confinement and the stability with respect to
the Mercier modes. Variations in the β value only
slightly affect the confinement in configurations with a
small hexapole field. The configurations with strong
positive or negative hexapole fields have a lower equi-
librium β limit, are more unstable, and have larger
α-particle losses. These numerical results should be
checked in LHD experiments and also can be taken into
account in calculating the new compact 6-period torsa-
tron L-V, the project of which has been designed at the
Institute of General Physics (Moscow, Russia) [17].

Large rotating triangularity (R21/R00 ≈ 0.1) can min-
imize the poloidal variations in the second adiabatic
invariant on the magnetic surfaces and significantly
decrease α-particle losses. In this study, we could not
obtain such a large rotating triangularity of the plasma
boundary for the real LHD coil system. Further work
(for example, introducing additional coils) can clarify
this issue, which is important for future heliotron reac-
tor devices.
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Abstract—The influence of charge-exchange processes on the spectral line intensities of impurity ions in the
edge and core plasmas of fusion devices is considered. It is found that, at a sufficiently high density of neutrals,
the rate at which the atomic states are populated through charge exchange becomes independent of the neutral
density, which results in the saturation of the spectral line intensities. This effect can substantially limit the effi-
ciency of impurity-ion spectroscopy. Conditions under which the saturation effect manifests itself are examined
for both the edge and core plasma regions in the presence of fast neutral beams. The results of calculations for
the edge plasma are used to interpret the experimental data from the TORE SUPRA tokamak. It is shown that,
in the central plasma region, the intensities of the visible spectral lines associated with the charge exchange of
impurity ions in the course of neutral beam injection decrease (rather than increase, as was expected earlier)
with increasing ion charge. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, spectroscopic methods based on the
observations of radiative transitions between highly
excited electronic states of impurity ions have been
extensively used in plasma diagnostics. The main
mechanism for populating highly excited electronic
states of impurity ions in plasmas of magnetic fusion
devices is charge exchange with neutrals. This is true
both for the edge plasma, in which slow neutrals are
inherently present due to the plasma–wall interaction,
and for the core plasma under conditions of neutral
beam injection (NBI). The advantage of observing the
spectral lines associated with transitions between
highly excited electronic states of impurity ions is that
these lines lie in the visible spectral region.

The specific features of the population of highly
excited ion states through charge exchange in the edge
plasma are related to the fact that the charge exchange
of impurity ions with neutrals occurs not only from the
ground state of atoms, but also from the excited states
populated via electron collisions. In this case, the
charge-exchange processes and the subsequent popula-
tion of the levels involve a great number of the excited
states of both the neutrals (which serve as a population
source) and the ions populated through charge
exchange. Under these conditions, the population
kinetics of a great number of atomic levels can be
described using a universal approach [1] that takes into
1063-780X/03/2910- $24.00 © 0835
account the contributions from all of the excited states
and is based on the universal description of the kinetics
of highly excited hydrogen-like states by simple
approximating formulas. This approach was used to
develop a numerical code for calculating the popula-
tions of atomic states and, accordingly, the intensities
of atomic transitions of hydrogen-like ions. This code
was used to examine the spectral line intensities of
hydrogen-like helium ions that were measured near the
ergodic divertor of the TORE SUPRA tokamak [2].

For the core plasma, we also have analyzed the pos-
sibility of observing the lines of impurity ions in the
spectral region corresponding to transitions between
highly excited electronic levels under NBI conditions.

In both cases, we have observed the saturation of the
line intensities, which substantially limits the efficiency
of charge-exchange plasma diagnostics. The reason is
that, as the density of neutrals, which are the main
source for charge exchange and ion population, reaches
a certain level, the density of the ions participating in
charge exchange begins to decrease because of the shift
in their ionization equilibrium. As a result, both the
power of the effective population source and the line
intensities arrive at certain steady levels (become satu-
rated), even although the neutral density increases fur-
ther.

For the edge plasma of the TORE SUPRA tokamak,
the way in which charge exchange influences the spec-
2003 MAIK “Nauka/Interperiodica”
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tral line intensity depends on which of the two experi-
mental regimes is realized: an attached plasma regime,
with a relatively low temperature and a high electron
density, or a detached plasma regime, with a relatively
high temperature and low electron density. Since the
relative neutral and electron densities differ in these
two regimes, the measured spectral line intensities of
the hydrogen-like helium ions used in diagnostics are
also different.

For a plasma core under NBI conditions, it is shown
that the saturation effect depends on the beam geome-
try, which affects the degree of saturation of the spectral
line intensity in the course of charge exchange.

2. KINETIC MODEL

To calculate the populations of the atomic states in
the central region and at the plasma periphery, it is nec-
essary to solve a self-consistent set of kinetic equations
and ionization-balance equations. Hereinafter, we use
the following notation: σ is the cross section for the
process (in cm2); κ = 〈v σ〉 is the rate coefficient of the
process (in cm3/s); α = N1κ is the coefficient of the pro-
cess; q = N2α is the source (the number of events in a
unit time per unit density); and N1, 2 are the densities of
the colliding particles (in cm–3), which are different for
different processes.

In the central region of the plasma column, there are
the following main sources for populating the atomic
(ionic) states n:

(i) electron-impact excitation from the ground state
qexc(n),

(ii) radiative recombination on impurity ions qrr(n),
(iii) polarization recombination on impurity ions

qplr(n),
(iv) dielectronic recombination of electrons on ions

qdr(n), and
(v) charge exchange from the ground state of neu-

trals qcx(n).
When estimating the dielectronic recombination

rate, it is necessary to take into account the effect of the
microfield produced by the surrounding ions, the sec-
ondary ionization by electrons, etc. [3]. The process of
polarization recombination, which increases the radia-
tive recombination rate for ions that have a composite
core, is easy to take into account by introducing the
ratio R(ω) of the polarization-recombination coefficient
αplr to the ordinary radiative-recombination coefficient
αrr [4]:

where N(ω) is the effective number of electrons inside
the ion core and Z(ω) is the effective ion charge. Hence,
polarization recombination can be taken into account
by multiplying the radiative-recombination coefficient
αrr by [1 + R(ω)]. The factor R(ω) is close to unity for

R ω( ) α prl
/α rr

N ω( )/Z ω( )[ ] 2
,= =
the small and moderate Z values that are typical of the
existing high-temperature plasma devices. Below, we
will only consider radiative recombination, keeping in
mind that the correction for the factor R(ω) has already
been made.

In the edge plasma, in addition to the above pro-
cesses, we should also take into account the charge
exchange from the ground and excited states of neu-
trals, as well as their three-body recombination onto
highly excited levels.

When determining the ionization balance of impuri-
ties, we take in to account not only the above processes,
but also electron-impact ionization.

Let us write the general set of kinetic equations
describing the population of the level n of an A+(Z – 1)

ion. The population source q(n) has the form

(1)

where  is the excitation coefficient and  is the
sum of the coefficients of all the recombination pro-
cesses (including charge exchange) accompanied by

the transition of an electron on to the level n (  =

 +  + ).

The population kinetics of the levels of A+(Z – 1) ions
should be considered simultaneously with the ioniza-
tion balance equations relating the densities of A+(Z – 1)

and A+Z ions,

(2)

where αrec is the total (summed over n) recombination
coefficient (αrec = αrr + αdr + αcx) and αion is the ioniza-
tion coefficient.

Population sources (1) should be considered simul-
taneously with balance equation (2). Determining the
density of A+(Z – 1) ions from Eq. (2) and substituting it
into Eq. (1), we find

(3)

It follows from Eq. (3) that the population source
depends on the ratio between the coefficient of recom-

bination  onto the level n and the total recombina-
tion coefficient αrec. The relative contributions from
excitation and recombination to the population source
depend on the ion structure and plasma conditions. If
recombination is dominant, then the source is propor-
tional to the density of A+(Z – 1) ions. As the number of
recombination channels increases, both the numerator

 (which is responsible for the population of the
level n) and the denominator αrec (which is responsible
for the ionization balance) in the second term of Eq. (3)
increase. These two coefficients are proportional to the
density of the particles involved in recombination.

q n( ) αn
ext

N
A

+ Z 1–( ) αn
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N
A

+Z,+=

αn
exc αn
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αn
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αn
rr αn

dr αn
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α rec
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A
+Z– α ion

N
A

+ Z 1–( )+ 0,=
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ext α ionαn
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+[ ] .=

αn
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Hence, as the density of the particles involved in
recombination increases, the ratio of these coefficients
remains unchanged; i.e., the population source does not
increase. This means that the recombination-dominated
source becomes saturated.

3. POPULATION OF THE ATOMIC STATES 
AND THE SPECTRAL LINE INTENSITIES

IN THE EDGE PLASMA

Let us consider the kinetic model under the edge
plasma conditions. We will take into account all the
four sources for populating the level n of A+(Z – 1) ions
(radiative recombination includes polarization recom-
bination): q(n) = qexc(n) + qrr(n) + qdr(n) + qcx(n).

The first three populating processes are well known
[5]. Let us consider in more detail the population due to
charge exchange by the example of charge exchange of
impurity ions with neutral hydrogen in a certain state n
that is typical of the edge plasma conditions.

As an ion and an excited hydrogen atom come
within a distance on the order of the Bohr radius of the
electron orbit, the probability of an electron overcom-
ing the potential barrier and falling from one potential
well to another sharply increases (~n4).

At a moderate electron temperature, the process
goes in two steps: the electron-impact excitation of
neutral hydrogen and the subsequent charge exchange
with impurity ions (see Fig. 1). In this case, in spite of
the low population of the excited states, charge
exchange from these states is a rather efficient process,
because, as was mentioned above, the charge-exchange
cross section sharply increases with increasing princi-
pal quantum number of the atomic level. We note that
charge exchange from the excited atomic states is selec-
tive in character. The principal quantum number of the
initial atom, nH (hereinafter, the subscript H stands for
a hydrogen atom), and that of the final ion, n, are related
by the formula [6]

Thus, the source of population of the level n via
charge exchange can be written in the form

(4)

where NH and v  are the density and velocity of hydro-
gen atoms in a plasma. Remember that, at low and mod-
erate velocities of hydrogen atoms, charge exchange
occurs from both the ground state and the excited states
of hydrogen. Hence, in expression (4), NH includes not
only the ground state of neutral hydrogen, but also the
densities of the excited states, whose populations are
determined by the plasma parameters. The kinetics of
populating these states can be considered in the conven-
tional radiative–collisional model. Below, however, we

n ZnH.≈

q
cx

n( ) N
A

+Z NH v σn
cx〈 〉 A

+Z
H N

A
+Z NHκn

cx
= =

=  N
A

+Zαn
cx

,
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will use a faster numerical code based on an analytical
representation of the Green function describing the
probability of a radiative–collisional transition from
one energy range to another within the Rydberg energy
spectrum of hydrogen-like atoms [5]. The method is
based on changing from a discrete energy spectrum of
hydrogen-like ions to a continuous spectrum according
to the formula ε = 1/n2. Thus, the populations N(ε) are
defined by the formula

(5)

where G(ε, εp) is the Green function [1, 7] and q(εp) is
the external source responsible for the population of the
excited atomic states. Integration in formula (5) is per-
formed from the minimum energy εmin (which is deter-

mined from the relation εmin = Z2/ , where nmax is the
cutoff parameter for charge exchange) to a certain max-
imum energy εmax corresponding to the ground-state
energy.

It follows from the aforesaid that, at low collision
frequencies, the source of population of the A+Z ions via
charge exchange with neutral hydrogen [see Eq. (4)]
may be approximated by the formula

(6)

where  is the density of nuclei, NH*(nH, Ne, Te) are

the populations of the excited states of atomic hydrogen
H* in a plasma with a temperature Te and density Ne,
σ(nH) is the cross section for charge exchange from the
level nH of a hydrogen atom H* onto the level n of an

N ε( ) G ε εp,( )
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Fig. 1. Scheme of populating the excited levels of a multi-
charged ion A+Z in the course of charge exchange with a
hydrogen atom H.
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A+Z ion, n = ZnH (see [5]), vç is the relative velocity of
neutrals and ions, and 〈v σ(nH)〉cx is the charge-
exchange rate. The populations of the excited states of
atomic hydrogen were determined from relation (5),
where we used the sum of qexc and qrr as an external
source.

The dependence of the charge-exchange cross sec-
tion on the level number n was assumed to be propor-

tional to n4 (see [8]), which corresponds to  in the
energy variables, where εp is the dimensionless energy
with respect to which integration in formula (5) is per-
formed. It can easily be verified that the integral with
respect to εp (or with respect to n) in Eq. (5) diverges as
n  ∞. A similar divergence takes place also when
calculating the statistical sum of hydrogen-like systems
[9]. Hence, in expression (6), the sum over nH, which
determines the overall probability, should be cut at a
certain value nmax. This value can be found by two
methods: either from the condition of equilibrium with
continuum (see [5]) or from the detailed balance
between the neutral and charge-particle densities in
plasma (see [10]). For example, for the He+ ion consid-
ered below, both methods give nearly the same value,
nmax ~ 10.

The set of equations for calculating the population
of the level n of the A+(Z – 1) ions should be solved simul-
taneously with the balance equation relating the densi-
ties of the A+(Z – 1) and A+Z ions. Indeed, the population
sources taken into consideration are related to the par-
ticle densities as follows:

(7)

The ratio NH/Ne is a free parameter of the problem,
whereas  and  are related by the ionization

balance equation. Using Eqs. (1) and (2) and taking into
account Eq. (5), expression (4) for the source associ-
ated with charge-exchange can be easily transformed
into the following form:

(8)

It can be seen from relation (8) that, at large values
of the parameter NH/Ne, the source qcx(n) is independent
of NH; i.e., the population source saturates. For this rea-
son, even when charge exchange makes a dominant
contribution to the population of atomic states, the ratio
of spectral line intensities calculated disregarding
charge exchange do not differ substantially from the
results of more accurate calculations and experiments.
However, for most lines, the temperature dependences
of the line intensities are rather sensitive to variations in
the parameter NH/Ne.
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The basis points of the kinetic model are the follow-
ing. The full kinetic energy-balance equation for A+Z

ions has the form

(9)

where αtbr = , αrr = Neκrr, αdr = Neκdr, and

 accounts for the charge exchange of the excited

impurity ions with protons. The parameter , which
is the upper limit for the summation, was found from
the balance of the neutral and charged particles by anal-
ogy to [11]. For the helium ion considered below, we

have  = 10.

Ignoring the three-body recombination coefficient
αtbr in Eq. (9), we find the following expression for

:

(10)

The total population rate of the level n is equal to

(11)

We express all the quantities in Eq. (11) through the
density of the A+(Z – 1) ions using ionization balance
equation (10) to obtain

(12)

where we introduce the relative level population

(13)

Let us determine the dependences of the population
sources on the plasma parameters and the atomic quan-
tum numbers using the approximating formulas [5] for
the rate constants of ionization and radiative recombi-
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nation (omitting dielectronic recombination for nuclei)
as functions of these parameters. The corresponding
expressions for the probabilities of elementary pro-
cesses are given in the Appendix.

Using these dependences, we can describe the pop-
ulation sources as functions of the given parameters in
the explicit form

(14)

where the main dependences on the atomic and plasma
parameters are separated out and the results of numeri-
cal approximations are taken into account by the func-
tion G(β) and the slowly varying functions V, Π, and Λ,
which are defined by relations given in the Appendix.

Let us analyze expression (14) for the case of helium
nuclei (Z = 2), which is of interest for experimental
applications. It can be seen from expression (14) that
the population source q depends strongly on the two
parameters nmax and NH/Ne. Figure 2 demonstrates the
sensitivity of the calculated relative populations b(n) of
the excited levels of helium ions to variations in the
parameter NH/Ne. In the calculations, we used expres-
sion (14), in which the parameter NH/Ne controls the
population source related to the charge exchange of
helium ions with neutrals. It can be seen that the contri-
bution from charge exchange becomes significant for
NH/Ne = 10–5. However, as the neutral density increases
further, the population source related to charge
exchange (and, accordingly, the population b(9)) does
not increase because of the simultaneous shift of the
ionization equilibrium; i.e., the population source
becomes saturated.

The model described was used to calculate the pop-
ulations of the excited levels and the spectral line inten-
sities of helium ions in a hydrogen plasma in the TORE
SUPRA tokamak. We calculated the intensity ratios for
the 5–4, 7–4, and 9–4 helium-ion transitions (which
depend on the populations of the 5th 7th, and 9th levels,
respectively) and the intensities of the 4–3 transition
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(which depends on the population of the 4th level). The
calculated intensity ratios are shown in Figs. 3b, 4b,
and 5b along with the experimental results. Figures 3a,
4a, and 5a show the corresponding ratios calculated
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4 × 10–9

2 × 10–9

b(9)
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Fig. 2. Relative population b of the level n = 9 of helium as
a function of the ratio NH/Ne of the neutral density to the
plasma electron density.
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Fig. 3. Temperature dependences of the intensity ratio of the
4–3 and 5–4 transitions: (a) without and (b) with allowance
for charge exchange. The solid lines show the measured
dependences [2].
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Fig. 4. Same as in Fig. 3 for the intensity ratio of the 4–3 and
7–4 transitions. The theoretical curves for low- and high-
temperature regions are calculated with the parameter
NH/Ne best fitted to the experiment.
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9–4 transitions.
without allowance for charge exchange; in this case,
electron-impact excitation from the ground state makes
the main contribution to the population of the excited
states. These results coincide with similar calculations
from [2]; however, they do not allow one to distinguish
between two different edge plasma regimes (the
attached and detached plasma regimes), although the
experimental data indicate the existence of these
regimes.

Taking into account the charge exchange of ions
with neutral hydrogen (see Figs. 3b, 4b, 5b) allows us
to capture a certain difference between these regimes.
Charge exchange influences the intensity ratio, because
the observed transitions correspond to highly excited
ion states, for which the population through charge
exchange dominates over the electron-impact popula-
tion.

As is seen from expression (14), the contribution
from charge exchange to the total population source of
the helium levels is determined by the neutral density,
which is characterized by the parameter NH/Ne. The
measured temperature dependence of the electron den-
sity is shown in Fig. 6. The neutral density as a function
of the temperature was not measured directly; however,
in view of the existence of two plasma regimes, we can
suppose that the temperature dependence of the param-
eter NH/Ne is different for these two regimes.

Within a relatively narrow temperature range (from
10 to 60 eV), the neutral density near the plates of the
ergodic divertor of the TORE SUPRA tokamak is pri-
marily determined by neutral fluxes from the wall and,
thus, varies more slowly than the electron density.
Therefore, the curve NH(T) should be flatter than the
curve Ne(T). It follows from this that, in a region with a
low temperature and high plasma density (the attached
plasma regime), the value of the parameter NH/Ne

should be smaller than in a region with a high tempera-
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Fig. 6. Measured dependence [2] of the plasma electron
density Ne on the temperature Te.
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ture and low density (the detached plasma regime).
Hence, the contribution from charge exchange in the
detached plasma regime is greater than in the attached
plasma regime.

The results of calculations depend on the choice of
the free parameter NH/Ne. However, the value of this
parameter must be the same for all of the lines
observed, which imposes restrictions on the choice of
this parameter. For a particular pair of lines, one can
achieve a better fit to the experiment than in Figs. 3b,
4b, and 5b; however, this will result in a significant dis-
crepancy for the other lines. The data presented in
Figs. 3b, 4b, and 5b correspond to the optimum choice,
which provides the best fit to the experimental data for
all of the lines observed. Of course, the scatter in the
experimental data is rather wide and, moreover, the
neutral density distribution can vary from shot to shot.
Nevertheless, such a choice of identical dependences of
the relative neutral density NH/Ne on the temperature
enables us to find the neutral density distribution in the
edge plasma in the above two regimes. This depen-
dence is presented in Fig. 7 with the corresponding for-
mulas describing the fit curves. One can see that the
neutral density decreases more sharply in the attached
plasma regime. Unfortunately, there are no experimen-
tal data from independent measurements of the hydro-
gen line intensities with which we could compare the
dependences shown in Fig. 7.

We note that the possibility of varying the contribu-
tion from charge exchange is substantially limited by
the saturation effect. Numerical calculations show that,
for the parameter values under consideration, the popu-
lation source related to charge exchange becomes inde-
pendent of the neutral density starting from the value
NH/Ne = 10–3 (see Fig. 6). Moreover, as can be seen
from Fig. 2, charge exchange significantly affects the
population of atomic levels and, consequently, the
absolute line intensities, whereas its influence on the
intensity ratio turns out to be much weaker. Thus,
although the level populations calculated with and
without allowance for charge exchange are signifi-
cantly different (see Fig. 2), the intensity ratio is almost
the same in both cases. The saturation of the population
source makes this effect even more pronounced
because it also reduces the influence of charge
exchange on the measured line intensity ratio.

4. SOURCES OF THE ION LEVEL POPULATION 
THROUGH CHARGE EXCHANGE IN THE CORE 

PLASMA

In a high-temperature core plasma, the charge
exchange of fast neutral beams occurs mainly from the
ground state. For beam energies of several hundred
kiloelectronvolts, the probability of capturing electrons
by excited impurity ions is rather low [8].

For the core plasma, we apply the same kinetic
model as for the edge plasma and allow for the change
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
in the charge-exchange rate constants at high neutral–
impurity ion collision velocities that are characteristic
of NBI experiments. At the same time, it is of interest
to take into account the beam geometry in expression (5)
by introducing a geometric factor g < 1 characterizing
the plasma region occupied by the beam,

(15)

This factor accounts for the fact that the neutral density
in the interaction region differs from the averaged (over
the entire plasma) neutral density, which determines the
shift of the ionization balance (in the previous case, this
was unimportant because of the absence of beams).

Using Eq. (15), we write the expression for the pop-
ulation rate or the level n of an A+(Z – 1) ion in the form

(16)

In expression (16), as in the previous case, the partial
values of the rate coefficients enter in the numerator,
whereas the total values summed over all n enter in the
denominator.
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Fig. 7. Approximated temperature dependence of the
parameter NH/Ne. The symbols show the numerical results
for the detached (squares) and attached (diamonds) plasma
regimes. The solid curves are the analytical fits (1) NH/Ne =

27.503T–3.6196 and (2) NH/Ne = 4.5835T–2.9498 for the low-
and high-temperature ranges, respectively.
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Substituting typical values of the collisional rates
from [8] into expression (16), we find the following

estimate for the total population source of the excited
states of impurity ions:

(17)

where n1 is the principal quantum number of the ground
state (below, n1 = 1, 2), and g is the geometric factor
determining the contribution of charge exchange to the
ionization balance.

Factoring out the ionization cross section and taking
into account expressions (15) and (16), we find that

(18)
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and the functions G(x) and V are defined in the Appen-
dix.

For the parameters characteristic of the core plasma,
we calculated the influence of the saturation effect on
the intensities of the spectral lines of ions with different
charges Z at different values of the NBI geometric fac-
tor. The saturation effect is clearly demonstrated in
Figs. 8 and 9. It can be seen that this effect is more pro-
nounced for high-Z ions. This result correlates with the
experimental observations: as the ion charge increases,
the role of charge exchange increases, but the intensity
of the populated lines decreases because of the satura-
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Fig. 8. Dependence of the source q*(n) on the parameter
NH/Ne for g = 1 and different values of the ion charge num-
ber: Z = (1) 2, (2) 6, (3) 10, and (4) 30.
tion effect. Probably, that is why the line emission of
low-charge (lithium) ions is only observed in the LHD
device (see [12]).

A comparison of Figs. 8 and 9 shows that taking into
account the geometric factor g leads to a stronger
dependence of the population source on the ratio NH/Ne,
which is explained by a smaller shift of the ionization
equilibrium in plasma under the action of neutral beams
with smaller values of the geometric factor. In the lim-
iting case of an infinitely small geometric factor (which
corresponds to narrow diagnostic beams), the local
charge-exchange effect increases proportionally to the
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Fig. 9. Same as in Fig. 8 for g = 0.2.
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neutral beam density without appreciably reducing the
number of charge-exchange ions. Of course, the
observed signal decreases with decreasing geometric
factor. Hence, taking into account the geometric factor
is important for analyzing the spectral line intensities of
impurity ions in plasma.

5. DISCUSSION AND CONCLUSIONS

The spectral line intensities of impurity ions
observed in the edge and central regions of a tokamak
plasma have been examined using self-consistent solu-
tions to the equations for the ionization equilibrium and
the population kinetics of atomic levels.

It has been shown that the population through
charge exchange significantly affects the spectral line
intensities of impurity ions in a hydrogen plasma. An
expression has been derived for the total population rate
of the level n as a function of the electron temperature
and the relative neutral density NH/Ne. It has been found
that, at high values of the ratio NH/Ne, the contribution
from charge exchange to the population rate does not
depend on the neutral density (the so-called “saturation
effect”). The reason is that the line intensities are deter-
mined by the product of the neutral density and the den-
sity of charge-exchange nuclei. When charge exchange
makes the main contribution to recombination, the den-
sity of nuclei is inversely proportional to the neutral
density, so that their product is independent of the neu-
tral hydrogen density. In other words, the increase in
the population and the shift of the ionization equilib-
rium (both caused by charge exchange) balance each
other; as a result, the line intensities become indepen-
dent of the neutral density in the system. This effect can
substantially limit the efficiency of the charge-
exchange plasma diagnostics under NBI conditions.

The intensities of the experimentally observed lines
associated with transitions between the states of hydro-
gen-like He+ atoms in the edge plasma of the TORE
SUPRA tokamak have been calculated. Taking into
account charge-exchange processes makes it possible
to qualitatively explain the experimentally observed
fact that the dependences of the intensity ratios of the
spectral lines on the temperature are different in differ-
ent plasma regimes. It has been shown that, in the edge
plasma too, the saturation effect can limit the efficiency
of charge-exchange diagnostics.

The results obtained allow us to conclude that it
makes no sense to increase the neutral density in the
device above a certain level in order to more clearly dis-
play the effect of charge exchange with neutrals
because, after reaching this critical value, the results
will not change.
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APPENDIX

The general expressions for the rates of main atomic
processes have the form [5]

(A. 1)

where

(A. 2)

where

(A. 3)

where  is the Kramers radiative-recombination rate
coefficient [1], χ and χ' are numerical factors, β1 =

, and n1 = 1.

The charge-exchange rate with allowance for the
relation between quantum numbers of the initial and
final states is equal to

(A. 4)

After substituting all the main dependences, the
expression for the total population rate of the level n
takes the form
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The functions V, G, Π, and Λ, which enter in expres-
sions (14) and (18), have the form

(A. 5)

The functions V, Π, and Λ are slowly varying func-
tions of the temperature and are on the order of unity.
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Abstract—A study is made of the modification of the spectra of electron cyclotron emission from an ECR
heated plasma in a toroidal magnetic confinement system into which the heating radiation is launched from the
low-field side. It is shown that, at frequencies close to the heating frequency, cyclotron emission can become
more intense because of the deformation of the distribution function of the resonant electrons. This effect can
be used to diagnose the slightly pronounced quasilinear perturbations of the electron distribution in the thermal
energy range, which are typical of experiments on ECR plasma heating. Results of a qualitative analysis carried
out for model electron distribution functions are presented, and examples of three-dimensional numerical sim-
ulations of a circular tokamak are described. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The modification of the electron distribution func-
tion during electron cyclotron resonance (ECR) absorp-
tion of microwaves in toroidal plasmas is most pro-
nounced in experiments on ECR current drive with
high-field-side (HFS) or oblique launch of microwave
radiation. In this case, the microwave power is depos-
ited in high-energy suprathermal electrons. In experi-
ments on ECR heating, microwaves are usually
launched in a quasi-transverse direction from the low-
field side (LFS). In an optically thick plasma column,
the microwave power is deposited mainly in the low-
energy electrons, whose distribution only slightly devi-
ates from an equilibrium distribution because of the
efficient Coulomb collisions between plasma particles.
Consequently, under the conditions prevailing in
present-day experiments on ECR plasma heating, the
perturbation of the distribution function of the resonant
electrons leads merely to a slight displacement and
expansion of the energy deposition region and does not
have any significant influence on the formation of the
global density and temperature profiles. Nevertheless,
such effects can play a decisive role in auxiliary ECR
heating aimed at suppressing MHD instabilities of the
plasma column, in which case the position of the
energy deposition region should be controlled with a
high degree of accuracy.

The interaction of an intense microwave field with
the plasma electrons perturbs the electron velocity dis-
tribution function and, as a result, modifies the spectra
of the electron cyclotron emission (ECE) from the
plasma. We can cite the following three main effects
responsible for this modification:

(i) The formation of a high-energy tail in the distri-
bution function leads to the appearance of the electrons
whose cyclotron emission is weakly absorbed by the
1063-780X/03/2910- $24.00 © 20845
plasma because of the relativistic shift of the resonance
frequency. This results in a nonthermal feature in the
emission spectrum in the frequency range below the
heating frequency [1, 2].

(ii) The formation of the so-called quasilinear pla-
teau (i.e., the flattening of the distribution function of
the resonant electrons due to their interaction with the
microwave field) leads to the degradation of the reso-
nant absorption at frequencies close to the heating fre-
quency. Because of the appearance of a peculiar trans-
parency window in the spectrum of electron cyclotron
absorption at the fundamental frequency, the intensity
of emission from the plasma layer in the corresponding
frequency range becomes higher than the thermal level.
It is important to note that the increase in the emission
intensity above the thermal level is observed even when
the total number of resonant electrons deviates only
slightly from the equilibrium value.

(iii) The steep gradients of the electron distribution
function that form at the boundaries of the resonance
region in velocity space can lead to an effect opposite
to effect (ii), specifically, a decrease in the intensity of
plasma emission because of an enhanced electron
cyclotron absorption of microwaves in a certain narrow
frequency range.

In this paper, we discuss the possibility of measur-
ing the quasilinear modification of the electron distribu-
tion function during the ECR heating of the main
plasma component when microwave energy is depos-
ited in the low-energy thermal electrons. The diagnostic
method proposed here is based on measurements of the
spectra of cyclotron emission from a toroidal plasma in
a range of frequencies that are close to the heating fre-
quency and at which the ECE intensity can increase
(regardless of the presence of high-energy electrons in
the plasma) because of the deformation of the distribu-
003 MAIK “Nauka/Interperiodica”
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tion function of the resonant electrons. We will focus
below on an analysis of effect (ii), which is associated
with the quasineutral transparency window and is most
pronounced when the fraction of suprathermal elec-
trons is small. Effect (iii) is presumably too weak to be
detected by conventional methods. Effects (ii) and (iii)
were first noted by Giruzzi [3], who carried out a fairly
detailed numerical calculation of the nonequilibrium
ECE spectra for experimental conditions close to those
in the T-10 tokamak. To the best of our knowledge, it is
only recently that the first experimental results in the
FTU device have been obtained showing that the peak
of the ECE at frequencies close to the heating fre-
quency can be interpreted as being caused by kinetic
effect (ii) rather than by the local heating of the micro-
wave power deposition region [4–6].

Conceptually, our study is close to paper [3]. In [7],
it was shown, however, that the quasilinear diffusion
operator used in that paper is, generally speaking,
incorrect. We will use a simpler quasilinear operator
obtained from the general expression [7, 8] in the “rect-
angular magnetic well” approximation. That this
approximation is workable was demonstrated, e.g., by
Timofeev and Tokman [7], who applied it to the cur-
rent-drive problem. Using a simplified kinetic model of
the microwave heating made it possible to analyze the
problem qualitatively and to obtain simple analytic esti-
mates.

The expected maximum increase in the radiation
temperature Tr can be roughly estimated by assuming
that resonant absorption tends to zero due to quasilinear
effects, provided that the number of resonant electrons
is essentially unchanged. The result is formally the
same as that for an optically thin plasma slab:

(1)

where τ0 is the optical depth of the slab in which the
electrons obey a Maxwellian velocity distribution with
the temperature Te. Under the condition that Coulomb
collisions do not hinder the formation of a plateau in the
electron distribution function, this formula is valid for
any value of the parameter τ0. We can see that the effect
in question can be important when the optical depth of
the plasma is sufficiently large.

In order to simplify the formulas, we consider the
case in which the heating radiation and detected cyclo-
tron emission both propagate strictly transverse to the
toroidal magnetic field and correspond to an extraordi-
nary wave at the second cyclotron harmonic. Our paper
is organized as follows. In Section 2, we describe the
set of quasilinear equations used to determine the elec-
tron velocity distribution function at each magnetic sur-
face with allowance for Coulomb collisions and the
interaction of resonant electrons with the heating
microwave field. In Section 3, we consider the equation
of radiation transfer and use this equation to evaluate
the perturbations of the ECE spectra in two typical
cases: the collisionless distribution function and the

T r τ0Te,≈
distribution function corresponding to perturbations in
a narrow resonance region in velocity space. In Section
4, we present examples of numerical calculations of the
modified ECE spectra in a circular tokamak. The most
laborious analytic manipulations are given in the
Appendix.

2. MODEL OF ECR PLASMA HEATING
BY MONOCHROMATIC RADIATION

IN A TOROIDAL MAGNETIC DEVICE

In order to consider ECR heating of the electron
plasma component in a toroidal magnetic device, we
formulate a boundary-value problem in which a quasi-
steady finite-aperture monochromatic microwave beam
is launched into the plasma from the low-field side.
Under the assumption that the characteristic time scale
of the propagation of perturbations along the magnetic
field lines is much shorter than the time scales of the
processes that will be considered below, the electron
distribution function averaged over high-frequency
oscillations in a microwave field can be treated as uni-
form at each magnetic surface.

Under the combined action of the magnetic field
nonuniformity and rotational transform, the nature of
the electron cyclotron absorption in a toroidal system
changes in a specific manner. When moving over a
magnetic surface, an electron repeatedly crosses the
microwave beam, the magnetic field strength being dif-
ferent at each crossing. Under ECR conditions, this
leads to a finite spread in frequency detunings and even-
tually results in a stochastization of the interaction of an
electron ensemble with monochromatic radiation. If the
relative change in the velocity of an electron that has
crossed the microwave beam is small, then, after aver-
aging over many revolutions along the torus, we can say
that the electrons in velocity space become subject to a
kind of Brownian motion, in which case their distribu-
tion function is described by a Fokker–Planck diffusion
equation. Following [10, 11], we assume that, at each
magnetic surface, the process just described is in a
sense analogous to electron heating in a homogeneous
magnetic field by radiation with a finite-width spec-
trum. This assumption allows us, first, to work with the
variation of the frequency of the external radiation
rather than the variation of the gyrofrequency at a cer-
tain magnetic surface in the heated region and, second,
instead of considering the problem of a toroidal plasma,
to consider the problem for a plane slab geometry, in
which case the electron distribution function at the sur-
faces of a constant magnetic field is uniform, but the
effective heating radiation has a finite-width noisy
(δ-correlated) frequency spectrum because every elec-
tron repeatedly crosses the microwave field region with
random phases. As a result, the problem can be treated
in the standard quasilinear theory describing the
dynamics of the electron distribution on time scales
much longer than the period of electron oscillations in
a microwave field, the period of electron gyration, and
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the period of electron drift motion along the magnetic
field lines (the bounce period).

When the width of the microwave power deposition
region is much smaller than the major radius of the
plasma column, we can assume that the magnetic field
depends linearly on the coordinate. Let the magnetic
field increase linearly in space in a certain direction z0,

(2)

and let the heating radiation propagate in the positive
direction of the z axis, which is perpendicular to the
magnetic field. In this case, the cyclotron resonance
condition, which is determined by the relativistic
dependence of the electron mass on energy, also
depends on the z coordinate:

(3)

where s is the number of the cyclotron harmonic,
ωH(z) = eH(z)/mec is the nonrelativistic electron gyrof-
requency, v  is the electron velocity, and c is the speed
of light in free space. The approximate equality in con-
dition (3) is obtained for |z |/LH ! 1 and v /c ! 1. The
energy of the electrons interacting resonantly with radi-
ation at a fixed frequency increases as the spatial point
under consideration is shifted along the z axis in the
HFS direction.

The effective spectrum of the heating radiation is
determined by the distribution of the electromagnetic
field intensity in a microwave beam. To simplify the
mathematics, we make the following three assump-
tions: (i) in the region where the radiation is launched
into the chamber, the microwave intensity distribution
over the beam cross section (whose plane is perpendic-
ular to the magnetic field) is rectangular; (ii) every time
an electron crosses the heated region, it can pass
through any point of the cross section of the magnetic
surface with equal probability; and (iii) the ray trajecto-
ries of the beam are straight and its cross section is large
enough that most of its spatial Fourier harmonics prop-
agate almost transverse to the magnetic field. Under
these assumptions, the effective spectral radiation
intensity at the entrance to the energy deposition region
(z = z0) can be described by the following distribution
[10, 11]:

(4)

where Pinp is the total input power of the incident micro-
wave radiation and S is the area of the magnetic surface
at which the radiation begins to be absorbed. The char-
acteristic frequency of the effective spectrum, ω0 =

H z( ) 1 z/LH+( )H0, H0 z0⊥=

ωres z v,( ) sωH z( ) 1 v
2
/c

2
–=

≈ sωH 0( ) 1 z/LH v
2
/2c

2
–+( ),

Iω
0 I0Φ ω( ), ω ω0 ω0 ∆ω+,( )∈

0, ω ω0 ω0 ∆ω+,( ),∉



=

I0

Pinp

S∆ω
-----------,=
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sωH(1 + z0/LH), is related to the coordinate z0 of the
starting point of the cyclotron interaction region, and
the effective spectrum width ∆ω = s∆ωH is determined
by the variation ∆ωH of the resonant electron gyrofre-
quency at the intersection of the magnetic surface with
a finite-aperture quasi-optical microwave beam. The
form factor Φ(ω) is determined by the geometry of the
magnetic surfaces in the heated region. Thus, when a
microwave beam launched into the device is symmetric
about the equatorial plane and the beam cross section is
sufficiently small, so that the circular cross section of
the magnetic surface can be regarded as parabolic, we

have Φ(ω) ≈ , which indicates that the
form factor has a singularity because, in the equatorial
plane, the electrons cross the microwave beam at an
essentially constant magnetic field. When the power
deposition region is outside the equatorial plane of the
torus and the cross sections of the magnetic surface in
the heated region can be regarded as straight lines, we
have Φ(ω) ≈ 1. Note that the intensity I0 of effective
spectrum (4) can be obtained from the following simple
considerations: since the energy acquired by the elec-
trons in a microwave field is rapidly redistributed over
the magnetic surfaces, we can assume that, regardless
of the actual cross section of the microwave beam, the
total microwave power is uniformly launched through
the surface of a certain effective torus of area S.

The evolution of the electron distribution function
f(t, z, v) is described by the following set of quasilinear
equations:

(5)

Here, Lql is the quasilinear diffusion operator deter-

mined by the spectral intensity (t, z, ω) of the heat-
ing radiation at each spatial point; Lc is the Coulomb
collision integral; and µω is the electron cyclotron
absorption coefficient calculated for the instantaneous
distribution function f(t, z, v). The first of Eqs. (5) is the
kinetic equation describing the electron distribution
function with allowance for ECR heating (in the quasi-
linear approximation) and the subsequent redistribution
of the absorbed energy due to Coulomb collisions
between the electrons. The second of Eqs. (5) is the
radiation transfer equation, which describes the spatial
distribution of the heating radiation intensity, thereby
providing the coupling between the solutions to the
kinetic equation that correspond to different magnetic
surfaces. Since plasma emission is very sensitive to the
spatial structure of the plasma slab, it is essential to
self-consistently take into account the dynamics of the
distribution function and heating radiation when calcu-
lating the ECE from the plasma.

Taking into account the fact that, during microwave
heating of the electrons, the perturbations of their dis-
tribution function are usually not so strong and local-

∆ω/ ω ω0–( )

∂f
∂t
----- Lql f Lc f ,

∂Iω
eff

∂z
----------+ µωIω

eff
.–= =

Iω
eff
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ized in phase space, we use the linear Coulomb colli-
sion operator. Assuming that the collisional relaxation
of the perturbed distribution function is governed
exclusively by collisions with the bulk electrons, which
obey a Maxwellian velocity distribution, and by the
angular scattering of the electrons by immobile ions,
we can reduce the Landau collision integral to the form
[12]

(6)

(7)

(8)

Here, u = v /ve is the absolute value of the electron
velocity normalized to the thermal velocity ve =

 of the background electrons, s = cosθ is the
cosine of the electron pitch angle, νc =

4πe4NelnΛe/  is the effective collision frequency
of the thermal electrons, and Zeff is the effective ion
charge number. The temperature Te and density Ne of
the background electrons are assumed to be fixed,
ensuring that quasilinear equations (5) will have a sta-
tionary solution corresponding to a nonzero absorbed
microwave power and a given finite energy of the elec-
tron plasma component. For simplicity, we assume that
the parameters of the background electron distribution
are uniform over the region of microwave heating.

When the heating radiation propagates transverse to
the external magnetic field, the cyclotron interaction of
the electrons with a high-frequency noisy field gives
rise to a quasilinear diffusion in the direction of their
transverse velocity. In spherical coordinates, the corre-
sponding diffusion operator has the form [13–15]

(9)

The quasilinear diffusion coefficient Dql is proportional
to the heating radiation intensity at the resonant fre-

quency, Dql ∝ (t, z, ωres(z, u)). We express the solu-
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tion to the radiation transfer equation in terms of the
optical depth τ to obtain

(10)

where νql is the characteristic quasilinear frequency and

 determines the explicit dependence of the diffu-
sion coefficient on the electron velocity (see, e.g., [16]).
Obviously, the quasilinear diffusion coefficient is non-
zero only in the local region of the phase space defined
by the condition ωres(z, u) ∈ (ω0, ω0 + ∆ω). The interval
of resonance energies of the electrons involved in
cyclotron interaction is different at different points of
the coordinate space. As the point shifts in the HFS
direction, this interval shifts toward higher energies.

From the general expression for the absorption coef-
ficient in the case of an arbitrary electron velocity dis-
tribution [16], we obtain the following relationship for
the case of strictly transverse propagation:

(11)

Here, the proportionality coefficient can be determined
from the condition that, for a Maxwellian distribution,
this formula should lead to the known expressions for
the optical depth τ0 of an equilibrium plasma slab in a
linearly nonuniform magnetic field [11].

We integrate three-dimensional equations (5) with
operators (6) and (9) over the region determined by the
inequalities 0 < u < ∞, 0 < s < 1, and z > z0. The condi-
tions at the boundaries of this region are as follows:

(12)

In deriving these conditions, we took into account the
facts that, in the case at hand, the distribution function
is even over the electron pitch angle and that the radia-
tion begins to be absorbed resonantly only at a certain
boundary z0 of the interaction region. At the boundaries
u = 0 and s = 1 (which arise because we are working in
spherical coordinates), the only requirement is that the
derivatives of the distribution function should be finite.
The numerical code used in our simulations was
devised to solve an initial-value evolutionary problem.
However, we are interested here in stationary solutions
to Eqs. (5), so that, for our purposes, it is sufficient to
prescribe only the electron density Ne at the initial time.
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As an example, we present the expressions for νql ,

, and τ0 for two cases that are most important for
practical application: heating by an extraordinary wave
at the second cyclotron harmonic (an X2 mode) and
heating by an ordinary wave at the fundamental cyclo-
tron harmonic (an O1 mode). If we assume that each of
these modes propagates transverse to a locally uniform
magnetic field, then, for v /c ! 1, we obtain [11, 13]

(13)

Here, q = / (0), with ωp the electron plasma fre-
quency, and βe = v e/c. For an ordinary wave, we have

 ≈ n, where n is the refractive index. For an extraordi-
nary wave, the expression for  also includes the mode
polarization effect:  ≈ n(3 – q/2)2/(3 – q)2.

We now qualitatively describe the character of the
solutions to Eqs. (5). When the heating radiation is
launched from the low-field side, the microwave power
begins to be deposited in those regions of the plasma
column in which the radiation interacts resonantly with
low-energy electrons. Because of the absorption of the
microwave field, the distribution of the resonant elec-
trons over transverse energies is smoothed out; as a
result, the microwave power absorbed at a given spatial
point decreases and the heating radiation penetrates
into the region of a stronger magnetic field. During the
formation of a quasilinear plateau in the distribution
function, the energy deposition region is displaced in
space, which corresponds to energy transfer to elec-
trons with increasingly higher energies. In the absence
of Coulomb collisions, this process will lead to a spe-
cific steady state in which the plasma column becomes
fully transparent to microwave radiation and ECR heat-
ing terminates. Under the combined action of the reso-
nant field and Coulomb collisions of resonant electrons
with nonresonant ones, a quasisteady distribution of the
resonant electrons forms that ensures the absorption of
a finite (but different from that in equilibrium) fraction
of the incident microwave power. Note that the model
under consideration is applicable only when the rays
forming the microwave beam are not tangent to the
magnetic surfaces in the energy deposition region, i.e.,
when the electrons are heated simultaneously at several
neighboring magnetic surfaces.

3. QUALITATIVE THEORY
OF THE MODIFICATION OF THE ECE SPECTRA

The quasilinear deformation of the electron distribu-
tion function modifies the ECE spectra near the heating
frequency and its harmonics. We consider only that
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--- ñqβe

2ω0LH

c
-------------.=

ωp
2 ωH

2

ñ
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ECE component whose polarization and harmonic
number coincide with those of the heating radiation,
namely, emission at the second harmonic of an extraor-
dinary wave propagating transverse to the magnetic
field. In this case, the emission line is broadened due to
the relativistic dependence of the mass of an electron on
its energy; the Doppler broadening of the line can be
ignored when the width of the radiation pattern of a
receiving antenna is sufficiently small, θr ! βe/n [11].

We characterize plasma emission by the effective
radiation temperature Tr, which is related to the spectral
radiation intensity by the Rayleigh–Jeans formula and
is determined from the general equation of radiation
transfer along the rays of a microwave beam [17],

(14)

Here, µω is the absorption (reabsorption) coefficient
and Aω is the properly normalized plasma emissivity for
a given normal mode,

(15)

where the proportionality coefficient is the same as that
in relationship (11). Note that for a Maxwellian distri-
bution function, expressions (11) and (15) yield a

Kirchhoff’s law relating the emissivity  to the

absorptivity  in an equilibrium medium:

(16)

The radiation transfer equation for the spontaneous
emission from an infinite plasma slab has the solutions

(17)

where the temperatures  and  characterize radia-
tion propagating in the positive and negative directions
of the z1 axis and τ(z1) is the optical depth of a finite
plasma slab. For further analysis, we choose the z1 axis

in such a way that  and  are, respectively, the tem-
peratures of radiation propagating in the HFS and LFS
directions.

Of course, the detected electron cyclotron radiation
from the plasma does not generally propagate along the
same geometric optical path as the incident microwave
radiation. In this section, however, we assume for sim-
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plicity that the z and z1 axes coincide, which indicates
that the emitted radiation propagates along the axis of
the heating beam. For estimates, this assumption is
quite justified because quasilinear effects have the
greatest impact on ECE from the heated region, in
which the resonant electrons, whose frequency satisfies
the condition ωres(z, u) = ω, are responsible for both the
emission of radiation and absorption of the heating
microwave field. For convenience in further calcula-
tions, we represent this condition in the dimensionless
form:

(18)

where the variables ζ and Ω are the dimensionless coor-
dinate and dimensionless frequency, respectively. In
terms of these variables, the boundaries of the reso-
nance region ωres(z, u) ∈ (ω0, ω0 + ∆ω) can be defined
as

(19)

where ∆Ω = 2∆ω/  is the normalized width of the
effective spectrum of the heating radiation.

3.1. Emission from a Collisionless Plasma

For the above-described hypothetical steady-state
electron distribution, which is formed as a result of qua-
silinear relaxation in the absence of Coulomb colli-
sions, the spectrum of ECE at the frequency of the
monochromatic heating wave is the easiest to calculate.
Let f(u⊥ , u||) be the electron distribution function over
the transverse and longitudinal (with respect to the
magnetic field) components of the dimensionless elec-
tron velocity. During the collisionless relaxation, the
number of resonant electrons with a given longitudinal
momentum is conserved:

(20)

In a steady state, the distribution function fst is indepen-
dent of the transverse electron velocity in the resonance
region. The distribution function at the initial time is

assumed to be Maxwellian, fM = exp(–  – ).
Consequently, using the law of conservation of the
number of resonant electrons, we can see that, over
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almost the entire resonance region, the electron distri-
bution function is independent of velocity:

(21)

This expression fails to hold for resonant electrons with
high longitudinal velocities, u1 ≤ |u||| ≤ u2; however,
when the resonance region is sufficiently narrow, we
can ignore emission from these electrons and assume
that expression (21) is valid over the entire region of
resonant velocities.

Outside the resonance region, the steady-state distri-
bution function remains Maxwellian; consequently, at
frequencies Ω ∉  (0, ∆Ω) (i.e., ω ∉  (ω0, ω0 + ∆ω)), the
ECE spectrum is thermal. The spectrum is modified at
frequencies Ω ∈ (0, ∆Ω), at which the emissivity and
absorptivity of the medium are determined by the dis-
tribution function of the resonant electrons. Substitut-
ing distribution function (21) into general formula (15),
we can express the emissivity corresponding to this dis-
tribution in terms of the equilibrium emissivity:

(22)

where  is the equilibrium absorptivity. This expres-
sion can easily be derived using resonance condition
(18) by making the replacement ζ  Ω + u2; in this
way, the distribution function is expressed in terms of
the Maxwellian distribution function multiplied by a
frequency-independent coefficient:

fst  κe–ΩfM. (23)

Since, after the formation of a quasilinear plateau, there
is no absorption at frequencies corresponding to the
perturbed spectrum, the total radiation intensity is
deduced by simply integrating expression (22) over the
entire plasma slab. As a result, we obtain

(24)

where τ0 is the optical depth of the equilibrium plasma
slab. Note that this expression was derived without
specifying the type of normal mode and the cyclotron
harmonic number (it is only necessary that they be the
same for the ECE and the heating radiation). The spec-
trum obtained is discontinuous at the frequencies Ω = 0
and ∆Ω because, in the absence of collisions, the distri-
bution function undergoes jumps at the boundaries of
the resonance region.

There are two effects that perturb the ECE: quasilin-
ear weakening of the cyclotron absorption and addi-
tional increase in the transverse energy of the electrons
in their interaction with the microwave field. In expres-
sion (24), the first effect is described by the factor τ0, and
the second effect is accounted for by the factor κe–Ω.
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Since, in experiments, even a very low-density plasma
is optically thick to the heating radiation, the quasilin-
ear modification of the ECE spectra could be quite
readily observable provided that it were possible to
achieve a collisionless regime of microwave absorp-
tion. Additional acceleration of resonant electrons in
the transverse direction is unlikely to play a significant
role in the formation of the emission spectrum from the
heated region, because, under typical experimental
conditions, the spectrum at low electron cyclotron har-
monic frequencies is very narrow, ∆Ω ! 1, which cor-
responds to κe–Ω ≈ 1.

The emission from nonequilibrium electrons with
increased transverse energies manifests itself in a very
rare situation when the resonance region is so wide that
it is also necessary to take into account the anisotropy
of the distribution of the resonant electrons. In this case,
the shape of the spectral line is described by fairly com-
plicated expressions involving the polarization of the
emitted radiation. However, the final result remains the
same: the spectral intensity decreases monotonically
over the frequency interval Ω ∈ (0, ∆Ω). As an exam-
ple, we present exact expressions for the maximum
emission intensity, which is achieved at the frequency
Ω = 0:

(25)

 for the O1 mode.(26)

By comparing these expressions with the estimate

 = κτ0Te, which was obtained for an isotropic distri-
bution function, we can determine the applicability
conditions for expression (24): a deviation of less than
10% from the isotropic distribution corresponds to
∆Ω < 1 for an extraordinary wave and to ∆Ω < 0.6 for
an ordinary wave.

3.2. Role of Coulomb Collisions

When Coulomb collisions between plasma particles
are taken into account, the shape of the spectral line
cannot be determined analytically. However, it is possi-
ble to estimate the characteristic maximum of the spec-
tral intensity for a sufficiently narrow resonance plasma
region. It has been shown above that, in a collisionless
plasma, the steady-state distribution function is aniso-
tropic only in a relatively small part of the resonance
region; therefore in the case of a narrow resonance
region, the emission spectra from a plasma can be cal-
culated without taking into account anisotropy. Cou-
lomb collisions lead to additional isotropization of the
distribution function; moreover, this isotropization pro-
cess can be intensified by elastic collisions between
electrons and ions with large charge numbers (Zeff @ 1).
Consequently, we can assume that the perturbed distri-
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bution function is isotropic. Under this assumption, the
perturbed distribution function at each spatial point can
be determined from a one-dimensional kinetic equation
obtained by averaging operators (6) and (9) over the
electron pitch angles. In the steady-state case, this
equation implies that there are no particle fluxes in
velocity space:

(27)

where  is the quasilinear diffusion coefficient aver-
aged over pitch angles. During the formation of a qua-
silinear plateau in a fairly narrow resonance energy
range, the electron distribution function changes insig-
nificantly and is close to a Maxwellian function fM. In
contrast, the derivative of the distribution function in
the resonance region can change substantially: for f ≈
fM, Eq. (27) yields the estimate

(28)

Accordingly, at frequencies close to the heating fre-
quency, the plasma emissivity is close to its equilibrium
value, whereas the absorptivity is lower than the equi-

librium absorptivity :

(29)

where ures = . It is easy to see that, if Ω ∈ (0,
∆Ω), then, by virtue of the resonance condition, the fre-
quency enters into relationships (29) only through the
combination ζ – Ω , which redefines the spatial coordi-
nate. Consequently, as in the equilibrium case, the fre-
quency should drop out of the final formula for the ECE
from an infinite plasma slab. Therefore, in the approach
at hand, we cannot determine the shape of the spectral
line perturbed in a narrow range Ω ∈ (0, ∆Ω) because,
for an arbitrary frequency, the approximate equality f ≈
fM and its consequences—relationships (29)—are valid
to first order in ∆Ω. Thus, at u = ures, the steady-state
collisionless electron distribution function deviates
from a Maxwellian function by the amount (fst –
fM)/fM = 1 – κ exp(–Ω); accordingly, we can see that the
error is minimum (equal to zero) at a certain fixed fre-
quency Ω = lnκ ≈ ∆Ω/2 in the vicinity of the center of
the spectral line. It is clear that taking collisions into
account cannot significantly change this estimate.

At a fixed spatial point, the quasilinear diffusion
coefficient depends on the absorption of the heating
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radiation in the previous regions along the beam. Con-
sequently, in the self-consistent formulation of the
problem, the expression for the absorptivity, i.e., the
second of expressions (29), yields the following closed
equation for the optical depth τ(ζ):

(30)

(31)

Here, we have introduced the new parameter Q = νql/νc
and the dimensionless functions φ(ζ) and µ(ζ), which

characterize the profiles of the ratio /Dc and the
absorptivity for a Maxwellian electron distribution.
Formulas (31) present the functions φ and µ for the
extraordinary wave at the second cyclotron harmonic.
For the ordinary wave at the fundamental harmonic, the
numerical coefficient in the expression for φ is equal to

2 /15, the remaining part of the expression being the
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Fig. 1. Steady-state profiles of the plasma absorption coef-
ficient (solid curve) and emissivity (dashed curve) calcu-
lated from the solutions to Eq. (30) for the same value of the
power parameter (Q = 0.5) but for different optical thick-
nesses τ0 = 5 (on top) and τ0 = 15 (on bottom). The profiles
are normalized so as to coincide for a Maxwellian plasma.
same. The formulas were derived under the assumption
that the spectrum form factor is equal to unity, Φ(ω) =
1 (because numerical calculations showed that the ECE
spectra are weakly sensitive to the value of the form
factor). Substituting the optical depth τ(ζ) obtained
from Eq. (30) into solutions (17), we can determine
how emission from the plasma slab at frequencies close
to the heating frequency depends on the parameters τ0
and Q. For magnetic fusion experiments, the character-
istic values of these parameters are τ0 ≈ 1–10 and Q ≤ 1.

A fairly detailed analysis of Eqs. (17) and (30) is
presented in the Appendix. Here, we will outline the
results obtained and give their physical interpretation.
Depending on the value of the optical depth τ0, two typ-
ical cases can be distinguished. For small values of the
optical depth, the power deposition profile is broad and
nonthermal radiation is emitted mainly by moderate-
energy suprathermal electrons, for which the cyclotron
interaction region is shifted in the HFS direction. In this
region, the degradation of the absorption coefficient is
most pronounced, which is accounted for by the mono-
tonically increasing factor φ(ζ) in formula (30). As a
result, the total radiation emitted from resonant elec-
trons in the HFS direction is absorbed less intensely
than that emitted in the opposite direction (i.e., in the
LFS direction). Consequently, the intensity of radiation
emitted in the HFS direction is higher. This case is illus-
trated in the upper plot in Fig. 1, which shows the
absorptivity and emissivity profiles corresponding to
the solutions to Eq. (30). As the optical depth increases,
the peak in the absorption profile shifts toward the start-
ing point of the cyclotron interaction region. In this
case, the main contribution to nonthermal radiation
comes from the deformation of the electron distribution
function in the range of low energies: the factor e–τ in
formula (30) indicates that the transparency region is
displaced in the LFS direction, so that the emission in
this direction becomes dominant (see the lower plot in
Fig. 1). As the optical depth increases further, the
region occupied by the microwave field narrows, the
energy is deposited in progressively lower-energy elec-
trons, and the role played by Coulomb collisions
increases. This is why, as the parameter τ0 tends to
infinity, the level of the emission from the plasma in any
optically thick direction approaches the thermal equi-
librium level.

Figure 2 shows how the emission intensities in the
LFS and HFS directions depend on the equilibrium
optical depth at a certain fixed value of the power
parameter Q. Note that the actual optical depth of a
plasma slab with a perturbed electron distribution func-
tion differs from the equilibrium thickness τ0. However,
as is shown in the Appendix, this difference is small for
a wide range of parameters of a collision-dominated
plasma. For τ0  0, the curves in Fig. 2 asymptoti-
cally approach the level corresponding to a collision-

less plasma,  ≈ τ0Te. For τ0  ∞, the radiation tem-T r
±
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perature approaches the local electron temperature,

  Te. There exists an optimum value of the
parameter τ0 at which the ECE spectrum in a given
direction is perturbed to the greatest extent at a given
heating intensity (in Fig. 2, the quantities correspond-
ing to these maxima are marked by the tilde). Because
of the asymmetry of the absorption profile (see the pre-
vious paragraph), the emission intensities in the LFS
and HFS directions depend on the optical depth in dif-
ferent ways: the intensity of radiation emitted in the

HFS direction (i.e., the radiation temperature ) has a
larger maximum value, but decreases more sharply as
the optical depth increases. In the Appendix, it is shown
that the intensity of radiation emitted in the LFS direc-
tion approaches the thermal level according to a power
law, while the law by which the intensity of radiation
emitted in the opposite direction approaches the ther-
mal level is exponential.

The maximum values of the effective radiation tem-

perature, , and the values of the optical depth at

which these maxima are reached, , depend linearly
with a high degree of accuracy on the second parameter
of the problem (the power parameter) over a wide range
of its values, 0.1 < Q < ∞:

(32)

The coefficients in these expressions were obtained by
numerically approximating the solution to Eqs. (17)
and (30). An asymptotic analysis presented in the
Appendix yields analogous results. Returning to the
dimensional plasma parameters, it can be shown that,
under the conditions that are most favorable for obser-
vations of the effect of quasilinear transparency win-
dow, the following relationship between the electron
density and temperature should be satisfied:

(33)

where the constants a and b are determined by the
remaining parameters of the problem. From this rela-
tionship, it can be inferred that the optimum density, as
a function of temperature, has a minimum, while the
product NeTe increases monotonically with increasing
temperature. The example given in the next section
shows that the optimum values of the density and tem-
perature can be achieved in the parameter range charac-
teristic of present-day magnetic fusion experiments.

Above, we have analyzed the limiting case ∆Ω 
0. To carry out calculations with allowance for the finite
width ∆Ω of the resonance region and to refine the
shape of the perturbed spectral line, it is necessary to
numerically solve quasilinear equations (5) and radia-
tion transport equations (14). In the next section, we
will present examples of such calculations for a toka-
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mak with circular magnetic surfaces. The method by
which the kinetic equation was solved numerically was
described in our earlier paper [15].

4. CALCULATION OF THE ECE
FROM THE PLASMA OF A CIRCULAR 

CROSS-SECTION TOKAMAK

The transformation from toroidal geometry to the
plane slab model described by Eqs. (5) can be consid-
erably simplified by assuming that the magnetic sur-
faces in the poloidal cross section of the torus form a
system of nested concentric circles (the circular toka-
mak model without the Shafranov shift). The poloidal
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0 4 8 12 16
τ0

Tr/Te

τ0

1–exp(–τ0)
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HFS
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– τ̃0
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+ τ̃0
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Fig. 2. ECE temperature normalized to the electron tempe-
rature as a function of equilibrium optical depth τ0. The
solid curve presents radiation emitted in the LFS direction,
and the dashed curve corresponds to radiation emitted in the
HFS direction. The curves are obtained from the solutions
at Q = 0.5 and ∆Ω  0.
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Fig. 3. Schematic view of ECR heating and ECE detecting
geometry in a poloidal cross section of a toroidal device.
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Fig. 4. Steady-state ECE spectra emitted in the LFS (on the left) and HFS (on the right) directions for the detection angles ϕ = 0,
20, 40, 60, and 80° with respect to the equatorial plane. The absorption region is displaced by z0 = –2.5 cm. The values of the remain-
ing plasma parameters correspond to the basic set of parameter values. The zero of frequency f corresponds to a 140-GHz microwave
frequency.
cross section in the ECR heating region in such a device
is illustrated schematically in Fig. 3. Let a heating
microwave beam be injected into the tokamak plasma
symmetrically about the equatorial plane and propagate
along a straight line. Let the starting point of the cyclo-
tron interaction region be shifted a distance z0 from the
center of the toroidal chamber along the major radius.
Finally, let the basic set of parameter values be typical
of experiments on ECR heating of a low-density plasma
in the T-10 tokamak:

Pinp = 600 kW, Te = 2 keV,

Ne = 2 × 1013 cm–3, Zeff = 1,

ω0/2π = 140 GHz, LH = R = 150 cm,

z0 = –3.5 cm, L⊥  = 3.6 cm.

The distance z0 is chosen to satisfy the condition for the
applicability of the plane plasma slab model: |z0 | >
∆zabs, L⊥ /2, where ∆zabs is the characteristic length of
the absorption region. This length can be considered to
be equivalent to the thickness of a plasma slab in which
the optical depth increases from zero to unity. Thus, for
a Maxwellian electron distribution, we have ∆zabs ≈

 ≈ 0.6 cm; for the parameter values adopted
here, accounting for quasilinear effects increases the
absorption length by no more than 15%. For simplicity,
we ignore the density and temperature variations in the
plasma, in which case the ECE spectra can only be cal-
culated for frequencies very close to the heating fre-
quency (or its harmonics). With the above parameter
values, the parameters of a plane plasma slab are equal

to Q ≈ 0.9, τ0 ≈ 10, and ∆Ω ≈ /|4z0R | ≈ 0.7.

The ECE spectra are calculated under the assump-
tion that the emitted radiation propagates along the

βe
2
R/τ0

2/7

L⊥
2 βe

2

minor radius of the torus at a certain angle ϕ to the
equatorial plane (Fig. 3); the angle ϕ = 0° corresponds
to the case considered in the previous section. The sym-
metry of the magnetic surfaces with respect to the equa-

torial plane implies that (ϕ) = (–ϕ). Conse-
quently, it is sufficient to consider the angular range
0° ≤ ϕ ≤ 90°.

Note that the perturbation of the emission spectrum
and its variations over the cross section of a quasiopti-
cal beam can be of the same order of magnitude. Con-
sequently, the correct calculation of the antenna
response requires integration over the set of rays mod-
eling the directional pattern of the receiving antenna.
The results that will be presented below were obtained
for radiation emitted along the central ray under the
assumption that the effects of the finite width of the
directional pattern of the receiving antenna do not influ-
ence the central ray and lead merely to a slight broad-
ening of the wings of the spectra of the recorded signals
[for model spectrum (24), this assumption can be
proved rigorously].

Figure 4 illustrates the results of calculating the
steady-state ECE spectra detected at different angles ϕ.
The two characteristic peaks in the spectra of radiation
emitted in the LFS direction (see the left plot in Fig. 4)
result from the fact that, in the model under consider-
ation, there are two diametrically opposite regions
where the ray trajectories cross the magnetic surfaces at
which the distribution function is perturbed. The spec-
tra of radiation emitted from the absorption region at
frequencies close to the heating frequency are seen to
be perturbed to the largest extent (in the geometry cho-
sen above, this corresponds to detection angles of ϕ <
10°). Moreover, the shape of the central peak coincides
approximately with that given by expression (24); this
indicates that Coulomb collisions do not lead to any
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Fig. 5. Maximum spectral intensity of the ECE emitted along the equatorial plane (ϕ = 0) in the LFS (solid curves) and HFS (dashed
curves) directions as a function of the incident microwave power, the position of the absorption region, the electron temperature,
and the plasma density. The values of the parameters that are not varied correspond to the basic set of parameter values.
significant broadening of the spectra. We can see that
the larger the detection angle, the larger the shift of the
central peak along the frequency axis and the smaller
the peak intensity. The peaks in the ECE spectra emit-
ted in the LFS and HFS directions shift in opposite
directions along the frequency axis. The additional
peak that corresponds to emission from the diametri-
cally opposite zone is barely noticeable and, for z0 < 0,
is seen to form only at the spectrum of radiation emitted
in the LFS direction.

We now present the results of a parametric study of
the perturbation of the ECE spectra at frequencies close
to the heating frequency. Figure 5 shows how the max-
imum spectral intensity of the emitted radiation
depends on the main experimental parameters: incident
microwave power, position of the absorption region,
electron temperature, and plasma density. Variations in
these experimental parameters lead to the following
variations in the dimensionless parameters of the prob-
lem:

variations in the input power give Q ∝ Pinp;

variations in the displacement of the resonance

region give ∆Ω ∝ ;

variations in the electron density give τ0 ∝ Ne and Q

∝ ; and

zo
1–

Ne
1–
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variations in the electron temperature give τ0 ∝ Te,

Q ∝ , and ∆Ω ∝ .

For the above parameters, quasilinear effects
become pronounced when the incident microwave
power is between 300 and 400 kW. For an incident
power of about 1 MW, the emission intensity saturates
and approaches a quasilinear level given by theoretical
limit (25). Variations in the emission intensity with the
position z0 of the absorption region are associated
solely with a change in the width of the resonance
region because the optical depth and the power param-
eter Q both remain unchanged (the parameter z0 enters
into the expression for Q only through the combination
z0∆ω ≈ const). Since the optical depth of the plasma
slab is proportional to the product NeTe, the profiles of
the ECE intensity as functions of temperature and den-

sity follow the theoretical profiles (τ0), which are
plotted in Fig. 2. Up to a certain critical value of the
temperature or density, the ECE intensity increases
monotonically, in which case the emission intensity in
the HFS direction is somewhat larger than that in the
LFS direction. However, for higher temperatures or
densities, the intensity of emission in the HFS direction
falls off sharply. Note that the above basic set of param-
eter values corresponds to the optical depth for which
the emission in the HFS direction dominates. The
dependence on the plasma density is stronger than that

Te
3/2

Te
1–

T r
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on the electron temperature because the power parame-
ter decreases with increasing density and increases with
increasing temperature, so that the effect of the increase
in optical depth is partially canceled.

Figure 6 shows how the spectral intensity depends
on the angle ϕ at which radiation is detected. The
change in the detection angle does not change the three
parameters Q, τ0, and ∆Ω but changes the resonance
condition for the emitting electrons. In terms of dimen-
sionless variables, resonance condition (18) can be rep-
resented in the form

(34)

It is clear that, since the resonance conditions for the
heating radiation and the detected emission are differ-
ent, quasilinear effects are suppressed when cosϕ dif-
fers considerably from unity. We can show that, when
cosϕ is close to unity, the main effect is the renormal-
ization of the optical depth,  = τ0/ |cosϕ|, which
takes into account the increase in the scale on which the
magnetic field varies along an obliquely passing ray. In
this case, the dependence of the ECE intensity on the
renormalized optical depth  is qualitatively similar
in shape to the curves plotted in Fig. 2. If the value of

 is at the rising slopes of these curves, then the
increase in the optical depth with increasing difference
between cosϕ and unity compensates for the slipping of
the emitting electrons out of resonance with the heating
radiation. This effect explains why the emission some-
what intensifies at small values of the angle ϕ (which
can be seen in Fig. 6) and why there is a fairly wide
range of values of the angle ϕ (ϕ < 40°) over which qua-
silinear effects are not suppressed.
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Fig. 6. Maximum spectral intensity of the ECE emitted in
the LFS (solid curve) and HFS (dashed curve) directions as
a function of the angle at which the radiation is detected.
The values of the plasma parameters correspond to the basic
set of parameter values.
Above, we considered the case z0 < 0, in which the
absorption region is displaced from the center of the
toroidal chamber toward the stronger magnetic field
(the case of plasma heating in the outer part of the
torus). In the case of plasma heating at the same mag-
netic surfaces but in the inner (rather than outer) part of
the torus (the parameter z0 changes sign), the central
frequencies of the two perturbed lines in the ECE spec-
trum interchange places, the intensity of the lines and
their shapes being unchanged.

Note that radiation from a toroidal plasma possesses
the same symmetry properties as the set of magnetic
surfaces in a tokamak. Consequently, the ECE receiv-
ing system can be shifted in the toroidal direction with
respect to the power deposition region (in a tokamak,
this shift can be arbitrary while, in a stellarator, the tor-
oidal angle corresponding to this shift should be a mul-
tiple of the period of the toroidal magnetic field). It is
expected that the most perturbed ECE spectra are those
that are emitted at frequencies close to the heating fre-
quency and that come from the power deposition region
and the equivalent regions displaced in the toroidal
direction. By detecting radiation emitted from the latter
regions, it is possible to protect the diagnostic equip-
ment from direct illumination by the heating radiation.
If, in this case, the spectral perturbations at frequencies
close to the heating frequency are difficult to record
because of the presence of intense background radia-
tion at the frequency of the heating radiation, then the
plasma can be diagnosed by recording less intense per-
turbations of the spectra of the ECE from the regions
with the shifted electron gyrofrequency. It is clear that,
on the one hand, quasilinear effects associated with
emissions from such regions manifest themselves at
frequencies differing from the heating frequency and,
on the other hand, they are suppressed because of the
disruption of spatial synchronization between the reso-
nance conditions for the heating radiation and the
detected ECE.

To conclude this section, we note that ECE from the
plasma is rather sensitive to the quasilinear deformation
of the electron distribution function: in the examples
considered above, the extent to which the absorption
region is modified and the total deposited microwave
power is degraded is no larger than 10–15% in compar-
ison with those in an equilibrium plasma. In this case,
however, the intensity of perturbations of the ECE
spectra is several times or even several tens of times
higher than the thermal level.

5. CONCLUSIONS

In this paper, we have considered the perturbations
of the ECE and absorption spectra in a toroidal plasma
due to the quasilinear modification of the electron dis-
tribution function under ECR heating conditions when
the heating radiation is launched from the low-field
side. This modification shows up as a slight flattening
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
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of the distribution function of the resonant electrons
over the velocity component transverse to the magnetic
field, in which case the resonant electrons are not accel-
erated to any significant extent. The distribution func-
tion deviates from an equilibrium function only
slightly, because the interaction is localized in the ther-
mal energy range in which quasilinear effects are sup-
pressed by Coulomb collisions.

We have shown that, when the plasma column is
optically thick to the recorded radiation, the ECE spec-
trum at frequencies close the heating frequency is
highly sensitive to perturbations of the distribution
function. For a model situation in which the emissivity
profile coincides with the thermal emissivity profile and
there is no absorption at a certain frequency, we can
obtain the following estimate for the maximum possi-
ble amount by which the radiation intensity can exceed

the thermal level:  = τ0Te @ Te for τ0 @ 1. However,
the total spontaneous emission from the plasma slab is
restricted by reabsorption within the slab. Thus, for an

equilibrium slab, we have  = Te(1 – ) ≤ Te,
because, by Kirchhoff’s law, the absorption intensity
profile is similar to the emissivity profile. This clearly
indicates that, for τ0 @ 1, even a small imbalance
between the emissivity and absorptivity of a unit
plasma volume can substantially change the total emis-
sion from the slab; moreover, the larger the optical
depth of the plasma, the larger the possible change. On
the other hand, the larger the plasma optical depth with
respect to the heating beam, the smaller the quasilinear
modifications of the radiation transport coefficients,
because the energy is transferred to electrons with
increasingly lower energies. Nevertheless, our analysis
has shown that the perturbation of the ECE spectra is
most pronounced in an optically thick plasma slab with
τ0 ≈ 3–10.

The perturbations of the ECE spectrum due to mod-
ification of the thermal part of the electron distribution
function look like one or two spectral spots correspond-
ing to the intersections of the beam with the magnetic
surfaces at which the plasma is heated. In principle,
such perturbations can be detected by receiving equip-
ment with a sufficiently high spectral resolution in a
wide variety of the operating modes of present-day
controlled fusion devices with ECR plasma heating.
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APPENDIX

ELECTRON CYCLOTRON EMISSION 
FROM A PLASMA SLAB WITH ALLOWANCE 

FOR COULOMB COLLISIONS

Here, we analyze solutions (17) to the radiation
transport equation with coefficients (29) by taking into
account Eqs. (30) and (31) for the self-consistent opti-
cal depth of the plasma slab in different limiting cases.

Asymptotics at Large Q Values

For Q  ∞, we can ignore unity in the denomina-
tor of expression (30) for the optical depth, in which
case the equation obtained has an elementary solution:

(35)

Substituting this solution into Eqs. (17), we find the
total intensity of emission from the plasma slab:

(36)

(37)

Each of these expressions has a maximum with respect
to the variable τ0. At the extreme point, the following
equalities are satisfied:

(38)

(39)

where the constant α2 is the only nonzero root of the
equation

(40)

The tilde in these equalities indicates the quantities at
the extreme point.

Inserting numerical values α1 ≈ 0.08 and α2 ≈ 7.72
into equalities (38) and (39), we arrive at the following
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expressions, which agree well with those obtained from
general formula (30):

(41)

(42)

It should be stressed that these expressions also remain
valid in the range Q ~ 1, in which all the functions are
essentially linear [see expressions (32)]. The approxi-

mation considered above is valid in the range τ0  
and fails to hold for τ0  ∞, when the emission inten-
sity approaches the thermal level.

Asymptotics at Q  0 and at τ0  ∞ 
for a Fixed Q Value

For Q  0, we can develop a perturbation method
under the assumption that the optical depth is nearly
equilibrium. We set

(43)

Regarding ∆τ as a small perturbation, we obtain from
Eq. (30) the expression

(44)

We expand solutions (17) in powers of ∆τ to arrive at
the following relationship for radiation emitted in the
LFS direction:

(45)

For τ0 ≤ 10, the last integral can be replaced with good
accuracy by an exponential. To do this, we factor the
slowly varying function out of the integral sign and
obtain

(46)

where ζ0 ≈ 4.9 is the value at which the function µφ is
maximum. Analogous calculations for radiation emit-
ted in the direction in which the magnetic field
increases yield a simpler relationship,

(47)
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Formulas (44) and (45) are also valid at τ0  ∞ for
a fixed value of the parameter Q because, in this limit,
the perturbations of the optical depth and radiation
spectra are, as before, small. In calculating the asymp-
totic behavior of the last integral in relationship (45) at
τ0  ∞, we can see that the main contribution to the
integral comes from the point ζ = 0, in the vicinity of
which the functions µφ and τM can be replaced with the
corresponding power series expansions:

(48)

Hence, at τ0  ∞, the perturbations of the total optical
depth and radiation emitted in the LFS direction both
fall off according to a power law:

(49)

In this limit, the perturbation of radiation emitted in the
HFS direction is also described by formula (47), which
implies that the radiation intensity approaches the ther-
mal level according to an exponential law. The above
expressions remain valid only in the range |∆τ| ! τ0 or
Q ! (τ0/2)9/7.
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Abstract—Results are presented from laboratory studies of the radiation transport from a transmitting to a
receiving antenna in a cold magnetoactive plasma in the upper hybrid frequency range. In the low-frequency
part of this range, sharp maxima of the transmission coefficient are recorded in the resonant directions. In the
high-frequency part, a beamed radiation along the external magnetic field is observed. An analysis of the exper-
iments shows that the Q factor of the angular resonances is primarily limited by the phase effects caused by
weak spatial dispersion. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the propagation of electromag-
netic waves in a magnetoactive plasma is characterized
by not only frequency resonances, but also directional
(or angular) resonances. In certain ranges of the param-
eters, the refractive index nm of a dispersion branch can
sharply increase as the angle θ between the wave vector
k and the external magnetic field B0 approaches the res-
onant value θc. When dissipation is neglected, the
refractive index in the angular resonance tends to infin-
ity: nm(θ  θc)  ∞ [1, 2]. It should be noted that,
in this case, the components of the permittivity tensor
εij(ω) have no singularities.

This paper is devoted to an experimental study of
the radiation transport from a transmitting to a receiv-
ing antenna in the upper hybrid (UH) range of parame-
ters, in which the extraordinary mode has an angular
resonance. The radiation frequency ω in this range is
higher than both the electron plasma and electron
cyclotron frequencies (ωp and ωH, respectively), but is
lower than the upper hybrid resonance frequency

In the plane of dimensionless parameters u = 

and v  = , the UH range occupies a triangular
domain (see Fig. 1) that is bounded from above by the
plasma resonance (v  = 1), from the right by the cyclo-
tron resonance (u = 1), and from below by the upper
hybrid resonance (u + v  = 1). The electron and ion tem-
peratures (Te and Ti) in the experimental device were
below 1 eV, and the characteristic parameter of spatial
dispersion (the ratio of the electron thermal energy to
the electron rest energy) was: β2 = Te/mec2 < 10–6. Such
a plasma can be regarded as cold, and its dispersion

ωp ωH ω ωUH< <, ωp
2 ωH

2
+ .=

ωH
2

/ω2

ωp
2
/ω2
1063-780X/03/2910- $24.00 © 20860
properties are described by the following equation for
the refractive index:

where

(1.1)

If the factor by the highest power of n in Eq. (1.1) tends
to zero, then the refractive index of one of the normal
modes (for the UH range, this is the extraordinary
mode) tends to infinity (A  0 ⇒ n  ∞). The
value of the angle θc at which this resonance occurs is
determined from the relationship

(1.2)
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Fig. 1. Upper hybrid range.
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The sections of the wave-vector surfaces of the ordi-
nary (O) and extraordinary (X) modes are shown in
Fig. 2. The closed surface for the O mode has no singu-
larities in the UH range (in what follows, we do not dis-
cuss the dispersion properties of these waves).

As the angle θ between the wave vector k of a plane
extraordinary wave and the magnetic field B0 tends to
its resonant value θc (or to π – θc), the group velocity v g

vanishes, whereas the angle Ψ between the unit vector
vg/v g and B0 tends to θc + π/2 (or to π/2 – θc). The cone
produced by the generatrix inclined at the angle Ψres =
π/2 – θc to the magnetic field B0 is usually called the
resonant cone. A plane wave propagating in the reso-
nant direction degenerates to electrostatic oscillations
(E  Ek/k, B  0) that do not transfer energy.
However, this is only true for plane waves.

The Green’s function (i.e., the radiation field) of an
elementary dipole peexp(iωt)δ(r) (see Fig. 3) has a
nonintegrable singularity on the resonant cone [3, 4]. At
angles close to the resonant one (∆Ψ = Ψ – Ψres ! 1),
the fields E and B, as well as the energy flux density S,
depend on the detuning ∆Ψ as follows:

Of course, actual currents cannot radiate an infinite
power. This means that, in an ideal cold magnetoactive
plasma, it is impossible to excite elementary extrane-
ous currents with a finite amplitude in an infinitely
small spatial region. On the other hand, the radiation
field of an elementary dipole with an infinitely small
amplitude is finite on the resonant-cone surface and
vanishes outside of it. Such a dipole can be thought of
as a supergain antenna with an infinite radiation resis-
tance (Rrad  ∞).

In real physical systems, there are always factors
smoothing out all types of resonances and making their
Q factors finite. By analogy to usual frequency reso-
nances, the Q factor of the angular resonance may be
defined as the ratio of the total solid angle to the solid
angle ∆Ω into which one-half of the power is emitted:
Q = 4π/∆Ω. The angular resonance can be smoothing
out due to collisional and collisionless energy dissipa-
tion, spatial dispersion, finite emitter size, plasma non-
uniformity and unsteadiness, thermal fluctuations,
finite width of the radiation frequency spectrum, etc. If
all these factors are small enough, then the Q factor of
the resonance is high (Q @ 1); i.e., the radiation emitted
by a small-size source is concentrated within a small
solid angle near the resonant (group) cone. Along all
other directions, energy transfer is not impossible but is
suppressed by the angular resonance. The 3D directiv-
ity diagram of a small-size electric dipole with a finite
Q factor of the angular resonance is shown in Fig. 4.

These specific features of angular resonances make
them attractive for various scientific and technological

E ∆Ψ( ) 3/2–
/r, B ∆Ψ( ) 1–

/r,∼ ∼

S ∆Ψ( ) 5/2–
/r

2
.∼
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applications, in particular, for directional energy trans-
fer and nonintrusive plasma diagnostics. In addition,
waves propagating in the resonant directions have very
low phase velocities and can be excited by fast charged-
particle beams or, vice versa, can accelerate charged
particles. Consequently, these resonances can play a
part in the dynamics of plasma turbulence in the Earth’s
ionosphere and magnetosphere.

It is still very hard to calculate the parameters of
actual antennas in a real plasma. Therefore, experimen-
tal studies are of especial importance. Among these, we
note the space experiment reported in [5]. Two satellites
bound with a rope rotated slowly around their common
center of mass. When the satellites occurred on the
same generatrix of the resonant cone, spikes of the
transmission coefficient of electromagnetic radiation
were observed. The angular structure of the resonant
cones was studied in detail in laboratory experiments
[6–9]; however, the excitation efficiency of these cones
was very low.

The prime objective of the laboratory experiments
described in this paper was to determine the range of

q θc

vg

p

x
O

Fig. 2. Wave-vector surfaces (p = k⊥ /k0, q = k||/k0, n =

) for u = 0.32 and v  = 0.74.p
2

q
2

+

B

ψres

k

Fig. 3. Section of the directivity diagram of an infinitely
small dipole orthogonal to the plane of the figure (u = 0.32,
v  = 0.74).
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plasma parameters within which the angular resonance
can reliably be observed. The experiments showed that,
in domain 1 in Fig. 1, the Q factor of the resonance is
fairly high: the radiation field has a sharp maximum
near the resonant cone, whereas it remains at a noise
level in other directions. However, this domain does not
cover the entire upper hybrid range shown in this figure.
As the parameters u and v  decrease (domain 2), the
transmission along the resonant directions is sup-
pressed; however, a beamed radiation along the mag-
netic field is observed in this case. A theoretical analy-
sis has revealed the dominant mechanism for suppress-
ing resonance in our experiments, namely, the phase
effects caused by weak spatial dispersion. This was not

p

B

Fig. 4. Directivity diagram of an electric dipole in the case
of a high (but finite) Q factor of the angular resonance.

B

(1)(2)

Fig. 5. Positions of the (1) transmitting and (2) receiving
antennas.
a priori evident because the characteristic parameter of
spatial dispersion seemed to be negligibly small.

2. EXPERIMENTAL LAYOUT

The experiments were carried out in a chamber with
the length L = 1.2 m and diameter D = 1 m. The pump-
ing system maintained the residual gas pressure in the
chamber at a level of P0 = 10–5 torr. The working gas
was helium.

The magnetic field was produced by three coils with
the diameters DL = 0.8 m and lengths L = 0.35 m. The
length of the region in which the magnetic field was
almost uniform (∆B/B0 < 0.5%) was l0 = 1.2 m, and the
characteristic time scale on which the magnetic field
varied was several hundred milliseconds. The experi-
ments were carried out with the magnetic field in the
range from 30 G to 1 kG.

The plasma was created by an inductive discharge
(the generator frequency was 5 MHz, and the rf pulse
duration was 2 ms). During the discharge, the plasma
density reached a value of ~1013 cm–3. The maximum
electron temperature was Te ~ 8 eV. After the inductor
was switched off, the electron temperature decreased to
the ion temperature Ti ~ 0.5 eV in a time of 1.5 ms and
then remained constant (the working time interval). The
plasma density in the working interval decreased expo-
nentially from 1011 to 106 cm–3.

The radiation frequency varied in the range from
300 MHz to 3 GHz. The radiation was transmitted and
received by two stub antennas with the lengths l = 8 mm
and diameters d = 0.2 mm. The antennas stubs were ori-
ented across the magnetic field and were parallel to
each other. The transmitting antenna was immovable,
and the receiving antenna was displaced (from shot to
shot) in the plane perpendicular to the antenna stubs
around a circle of radius 4.3 cm (see Fig. 5). Such an
orientation of the antennas was chosen in order for the
waves excited along the resonant direction to be as
short as possible, the maximum wavenumber being
kmax ~ 1/d.

Therefore, the radiation directivity was examined
within a rather wide range of the plasma parameters:

where  = VTe/ωH is the electron gyroradius.

In each shot, we measured the time dependence of
the intensity of the received signal I(t) in the working
time interval. The high reproducibility of the plasma
parameters from shot to shot made it possible to recal-
culate these parameters to the dependences of the inten-
sities on the angle θg between the group velocity of the
excited waves and the external magnetic field B0 at
fixed values of u and v.

0.06 u 1, 1 u– v 1, 0.2 kmax c 5,< < < < < <ζρ

cζρ
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Fig. 6. Transmission coefficient K as a function of the propagation direction and plasma density for different magnetic fields: u =
(a) 0.82, (b) 0.59, (c) 0.44, and (d) 0.35.
3. EXPERIMENTAL RESULTS

The experiments clearly demonstrated the excita-
tion of waves propagating along the resonant direc-
tions. It was found, however, that these waves were
excited only in region 1 in Fig. 1, rather than in the
entire range of the parameters u, v  under study.

Figure 6 shows the coefficient of transmission K
from the transmitting antenna to the receiving one as a
function of the angle θg ∈ (0°, 180°) and the parameter
v  ∈ (1 – u, 1) for different magnitudes of the external
magnetic field (the parameter u). It can be seen that the
waves propagating along the resonant cones are excited
only at u > 0.43 and in the upper part of the range of the
parameter v  (Figs. 6a–6c). In the lower parts of the
ranges of the parameters u and v, one can see another
resonant response corresponding to the longitudinal
propagation. Since beamed radiation along the mag-
netic field should not occur in a cold plasma, the exper-
iments indicate the important role of thermal correc-
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
tions to the dispersion relation, although these correc-
tions would seem to be negligibly small (remember that
the characteristic parameter of spatial dispersion in our
experiments was on the order of 10–6).

The characteristic domains in the plane of the
parameters u and v  in the upper hybrid range are sepa-
rated in Fig. 1 by the curve. Above the curve (domain 1),
the radiation is concentrated in the vicinity of the reso-
nant cones. Below the curve (domain 2), we observed
beamed radiation along the magnetic field. No angular
resonances were observed at frequencies above the sec-
ond harmonic of the electron cyclotron frequency
(u < 0.25; domain 3).

We note that the design of both the receiving and
transmitting antennas was not adapted to study the
transmission of signals along the magnetic field and at
small angles to it. In particular, no measures were taken
to suppress currents flowing along the external screen
of the coaxial cable. For instance, in Fig. 6a, one can
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see a spike of the transmission coefficient at θ  0,
whereas such a spike is absent at θ  180°. There-
fore, the results concerning the longitudinal propaga-
tion call for additional verification.

4. INTERPRETATION 
OF EXPERIMENTAL DATA

The experimentally observed beamed radiation
along the external magnetic field (i.e., within the
“shadow” region in the cold plasma approximation)
indicates that the Q factor of the angular resonance is
limited, first of all, by weak kinetic effects that deform
the wave-vector surface. If energy dissipation is
ignored, then the dispersion relation with allowance for
weak thermal corrections takes the form [2]

where

(4.1)

and β2 = T/mec2. Equation (4.1) is valid when

(4.2)

which implies that collective losses of the wave energy
are small [2]. Outside the cyclotron resonances at the
harmonics of the electron gyrofrequency (u = 1, u =
0.25), condition (4.2) practically coincides with the
requirement krD ! 1, where rD is the Debye radius.
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Fig. 7. Wave-vector surfaces in the coordinates p = k⊥ /k0 as
abscissa and q = k||/k0 as ordinate in the case of θc < θw
(u = 0.4, v  = 0.7, Te = 1 eV).
Dispersion relation (4.1) describes three branches:
ordinary waves (the warm corrections to nO are small,
so that we will not discuss them); extraordinary waves,
which are modified in the vicinity of the angular reso-
nance; and short-wavelength plasma waves. The refrac-
tive index of the latter waves np outside the “cold” res-
onant cone (|A | ~ 1) is approximately equal to np ≈

. Obviously, condition (4.2) in this case is not
satisfied, and plasma waves are damped at distances on
the order of their wavelength. The situation is different
in the vicinity of the resonance along the directions at
which A  0. In this case, we have np ≈ (–B/δ)1/4; i.e.,

 ~ β ! 1. In the vicinity of the cold resonant cone,
the extraordinary and plasma modes form a common
weakly damped hybrid branch.

Even very small thermal corrections smooth out the
cold resonant cone. However, according to dispersion
relation (4.1), a new (warm) resonance cone (np  ∞)
formally appears at θ  θw, where

(4.3)

For u  1, we have θw  π/2, whereas for u 
0.25, we have θw  0 (for the group-velocity cone
angle, the reverse holds). For u < 0.25 (frequencies
above the second harmonic of the electron gyrofre-
quency), the warm resonant cone is absent.

We note that, in our experiments, we did not observe
any transmission along the warm resonant cone of
plasma waves. This is not surprising, because collective
energy losses at this cone are high. However, the topol-
ogy of the wave-vector surfaces of the observed hybrid
electromagnetic–plasma waves substantially depends
on the ratio between the cone angles of the cold and
warm resonant cones (θc and θw, respectively).

Figure 7 shows the wave-vector surfaces in the case
θc < θw . The wave-vector surface of the hybrid branch
(which is close to the extraordinary wave in the long-
wavelength limit and to the plasma wave in the short-
wavelength limit) is closed. The cold resonant cone of
the extraordinary waves is transformed into a surface
with an inflection line. The wave-vector surface of the
plasma waves is open and tends asymptotically to a
cone with the angle θw. However, this branch is not
observed in experiments because of strong absorption
due to the Landau damping. A circle depicted by the
light line in Fig. 7 corresponds to krD ~ 0.2. Outside this
circle, waves are damped at a distance on the order of
their wavelength.

Figure 8 shows a large-scale plot of the weakly
damping hybrid dispersion branch, whose wave-vector
surface has an inflection line. On such surfaces, there
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are directions [4] (in our case, the direction making the
angle Ψres with respect to the magnetic field) along
which the radiation field falls off as r–5/6. The field
structure across the resonant cone is described by the
Airy function (generally of the complex argument, if
one takes absorption into account).

Hence, in the parameter range

u 0.25, v
1 u–

1 u θw( )cos
2

–
---------------------------------,> >

p

c

vg

q

Fig. 8. Hybrid branch with an inflection line (u = 0.72, v  =
0.34, Te = 1 eV).
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Fig. 9. Wave-vector surfaces in the case of θc < θw) (u = 0.4,
v  = 0.65, Te = 1 eV).
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Fig. 10. Toroidal wave-vector surface (u = 0.32, v  = 0.74).
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(Fig. 1, domain 1), kinetic processes do not destroy the
resonant cones completely. For the radiation field of a
short antenna, there is a singularity along the directions
making the angle Ψres with respect to the magnetic
field. However, this singularity is integrable; i.e., the
power emitted along the resonant cone by an rf current
with a given amplitude is finite. The solid angle within
which this power is concentrated decreases with dis-
tance as ∆Ω ~ 1/r1/3.

Figure 9 shows the wave-vector surfaces for the
opposite case θc > θw (Fig. 1, domain 2).

The hybrid branch (which is shown on a large scale
in Fig. 10) takes the form of a toroidal surface lying
under the cold cone (without touching it). A character-
istic feature of such surfaces is the presence of modes
of internal conical refraction: the entire wave-vector
cone corresponds to the same direction of the group
velocity, specifically, the direction along the magnetic
field. The amplitude of the conical-refraction mode

decreases with distance from the source as 1/ , and
the field structure across it is described by a Bessel
function [4].

Another specific feature of the conical-refraction
mode, which was (to all appearances) observed in our
experiments, is that its group velocity is directed oppo-
sitely to the wave vector; i.e., this mode is a backward
wave. Since this wave is slow, it can be easily excited
by an electron beam whose velocity is somewhat higher
than the wave phase velocity. Probably, a sort of such a
backward-wave tube can operate in the Earth’s iono-
sphere and magnetosphere. However, to assert this with
certainty, it is necessary to perform calculations of the
threshold currents and carry out the relevant laboratory
experiments.

5. CONCLUSIONS

Our laboratory experiments have demonstrated the
efficient transmission of radiation within a narrow solid
angle in the vicinity of the resonant cone. However, the
parameter range within which such transmission is
observed turns out to be somewhat narrower than what
follows from the analysis of the dispersion properties of
a cold magnetized plasma. Weak spatial dispersion
results in the suppression of the angular resonance at
ω > 1.5ωH. In this frequency range, however, the hybrid
mode of the internal conical refraction, which propa-
gates along the magnetic field, is efficiently excited.
This mode is a slow backward wave and can be gener-
ated by an electron beam synchronous with it. The
experimental results presented in this paper can be used
to develop active satellite diagnostics of near-Earth
plasma [10–12] and reveal the mechanisms for genera-
tion of high-frequency ionospheric noise and plasma
turbulence.

r
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Abstract—The effect of the Debye layer on the absorption of an electromagnetic surface wave propagating
along the plasma–dielectric interface is considered. The electric field distribution in the Debye layer and the
energy absorbed by the plasma electrons in this layer are determined. It is shown that the ratio of the rate at
which surface waves are damped due to Cherenkov absorption by the electrons reflected from the electric field
potential in the transition layer to their frequency is on the order of the ratio of the electron thermal velocity to
the wave phase velocity. © 2003 MAIK “Nauka/Interperiodica”.
1. Electromagnetic surface waves are widely
employed for the creation and heating of plasmas and
the amplification of microwaves [1, 2]. The damping of
these waves may be caused by such factors as particle
collisions, the local enhancement of the electric field in
the plasma resonance region, collisionless Landau
damping, and collisions of electrons with the wall [1–4].

The absorption of surface waves due to the specular
or diffuse reflection of electrons from the wall was
studied in [5–7]. In the plasma, surface waves whose
amplitude is proportional to ~exp(iky) are exponen-
tially damped according to the law exp(−κpx) (where

κp = ) with increasing distance from the
plasma–dielectric interface. Consequently, their Fou-
rier spectrum in x contains harmonics with all possible
wavenumbers kx, including those corresponding to
short-wavelength modes whose phase velocities in the
x direction are on the order of the electron thermal
velocity (ω/kx ~ vTe). Since such electrons are very
numerous, the damping rate of the surface waves is on
the order of the ratio of the amplitude of the harmonic
with kx ~ ω/vTe to the amplitude of the fundamental har-
monic with kx ~ κp ~ k; i.e., γ/ω ~ vTe/v ph, where v ph =
ω/k.

In this paper, we investigate the absorption of a sur-
face wave due to the interaction of plasma electrons
with the electric field of the wave in the transition layer
that forms near the plasma–dielectric interface because
the electrons escape preferentially from the plasma vol-
ume onto the dielectric surface, thereby producing a
positive space charge. As a result, the density of the
electrons in the transition layer becomes lower than
their density n0 far from the interface. The thickness of
the transition layer is on the order of the screening
radius rD (the Debye–Hückel radius). The electrons
moving in the space charge electric field are decelerated

εp/ε0–( )k
1063-780X/03/2910- $24.00 © 20867
and are reflected from the turning points when their
energy is lower than the wall potential, or from the wall
in the opposite case.

In the transition layer, the normal component of the
electric field of a surface wave varies on a scale on the
order of several screening radii. This indicates that the
effective wavenumber in the direction of nonuniformity
(the x direction) is about 1/rD. If the frequency of the
surface wave is on the order of the Langmuir frequency,
then the bulk electrons, whose velocity is on the order
of the thermal velocity vTe, can efficiently interact with
the normal component of the wave electric field,
thereby absorbing the wave energy. Since the field of a
surface wave is localized in a region with a thickness on
the order of ~1/k (where k is the wavenumber in the
wave propagation direction) and the characteristic fre-
quencies are on the order of ~ωpe, the fraction of the
wave energy carried away by the bulk electrons is about
Q ~ vTe/vph, where vph = ω/k is the phase velocity of the
surface wave. For vTe ! vph, the thickness of the transi-
tion layer is much less than the distance on which the
surface wave is damped; so that the quantity Q is low.
For ω ! ωpe, the wave phase velocity is close to the
speed of light and we have Q ~ vTe/c, in which case the
damping coefficient for the surface wave is of the same
order of magnitude as that for a wave that propagates in
the dielectric at an angle to the plasma–dielectric inter-
face and is reflected from the plasma [8]. The phase
velocity of a surface wave with a frequency near the
limiting frequency is much lower than the speed of
light; as a result, the wave damping is substantially
stronger than that in the previous case.

Below, we will take a kinetic approach to determine
the damping of the surface wave due to the absorption
of its energy by plasma electrons interacting resonantly
with the normal (perpendicular to the plasma–dielectric
003 MAIK “Nauka/Interperiodica”



 

868

        

LELEKO, STEPANOV

                                                        
interface) component of the wave electric field in a tran-
sition layer.

2. We consider an electromagnetic surface wave
propagating along a plasma–dielectric interface. The
half-space x < 0 is filled with a dielectric with the per-
mittivity ε0, and the half-space x > 0 is filled with a
plasma. The frequency of the electromagnetic surface
wave is lower than the critical frequency, ω < ωcr ≡
ωpe/ , where ωpe is the plasma frequency. In the
dielectric (x < 0), the electric and magnetic fields of the
surface wave, E0 and B0, have the form

(1)

where κ0 is the spatial damping rate of the surface wave
in the dielectric. The only nonzero components of the
wave electric field are the x and y components, and the
wave magnetic field has one nonzero component,
directed along the z axis.

Since the plasma electrons are far more mobile than
the ions, they are concentrated near the plasma–dielec-
tric interface, forming a layer with a negative potential
[9], which is discernibly different from zero at dis-
tances from the interface that are on the order of several
screening radii ~rD. Outside the transition layer (x ≥ a),
the plasma is homogeneous and the wave field compo-
nents decrease exponentially according to the law

(2)

We represent the wave electromagnetic field in the
transition layer 0 ≤ x ≤ a in the form

(3)

For further analysis, we choose the layer thickness a so
as to satisfy the inequalities a @ rD and κpa ! 1. In what
follows, we will show that, in the layer, the y-compo-
nent of the wave electric field remains constant to
within terms on the order of ~vTe/v ph ! 1, whereas the
x component of the electric field changes substantially.

In the absence of the wave, the velocity distributions
of the charged particles are described by the Maxwell–
Boltzmann formula f0e, i ~ exp(–ε/T), where ε ≡
(1/2)   eϕ(x), me, i, and  are the mass and
charge of an electron and an ion, respectively; and T is
the temperature. In this case, the charged particle den-
sities are equal to ne, i(x) = n0exp(±eϕ(x)/T). The poten-
tial ϕ(x) can be found from Poisson’s equation ∆ϕ(x) =
4πe(ne(x) – ni(x)). We introduce the dimensionless vari-
ables Φ(x) ≡ eϕ(x)/T and x  x/rD (where rD ≡

1 ε0+

E0 t x y, ,( ) E0 κ0x i ky ωt–( )+[ ] ,exp=

B0 t x y, ,( ) B0 κ0x i ky ωt–( )+[ ] ,exp=

E1 t x y, ,( ) E1 κ px– i ky ωt–( )+[ ] ,exp=

B1 t x y, ,( ) B1 κ px– i ky ωt–( )+[ ] .exp=

E t x y, ,( ) E x( ) i ky ωt–( )[ ] ,exp=

B t x y, ,( ) B x( ) i ky ωt–( )[ ] .exp=

me i, v x
2

+− e+−
 is the Debye–Hückel radius) to rewrite
Poisson’s equation as

Since dΦ/dx  0 as Φ  0, we obtain

The integration constant C can be determined from the
condition for the electron and ion currents to the wall to
be the same. To within a factor on the order of unity
within the logarithm, the wall potential is equal to [9]

(4)

Taking into account secondary electron emission does
not change the order of magnitude of the quantity Φ0
[9]. With allowance for expression (4), we get

(5)
The perturbation of the distribution function, f1(t,

y) ~ exp(νt + i[ky – ωt]), is described by the kinetic
equation

(6)

where ω1 ≡ ω – kv y + iν,  ≡ (2T/m), and ν is the col-
lision frequency (ν  +0). We rewrite Eq. (6) in the
form

(7)

where

Here, by v x we mean v x(x) = (2/m) . The
general solution to Eq. (7) can be represented as

(8)

where xm is determined from the condition ε + eϕ(xm) =
0 for electrons with energies ε < –eϕ(0). For electrons
with energies ε > –eϕ(0), we have xm = 0. The integra-
tion constant x1 can be found from the boundary condi-

T /8πe
2
n0

d
2Φ

dx
2

---------- Φ.sinh=

dΦ
dx
------- 2 Φcosh 1–( ), Φ/4( )cothln x C.+= =

Φ0 1/2( ) me/mi( ).ln≅

Φ x( ) x C+( )/2[ ]tanh
2( ), Cln Φ0/4( )coth .ln≡=

∂
∂x
------

e
mv x

----------∂ϕ
∂x
------ ∂

∂v x

--------- i
ω1

v x

------–+
 
 
 

f 1 t r v, ,( ) = 
2e vE( )

v xmv Te
2

------------------- f 0,–

v Te
2

d
dx
------ i

ω1

v x x( )
--------------–

 
 
 

f 1 t x v x( ), ,( ) 2e v x( )E x( )( )
v x x( )mv Te

2
---------------------------------- f 0,–=

d
dx
------ ∂

∂x
------

e
mv x

----------∂ϕ
∂x
------ ∂

∂v x

---------,
∂v x

∂x
---------+≡ e

mv x

----------∂ϕ
∂x
------,=

ε 1
2
---mv x

2
eϕ x( ).–≡

ε eϕ x( )+

f 1

2e f 0

mv Te
2

------------- x'
v x'( )E x'( )

v x x'( )
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x1

x
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× iω1
x''d

v x x''( )
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x

∫ x''d
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 
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tions. For particles moving toward the wall (v x < 0), we
use the condition that f1 is finite as x  ∞ to obtain

(9)

where

(10)

In order to determine x1 for v x > 0, we use the condition
for the reflection from the wall and turning points to be
specular,

(11)

Using relationships (9) and (11), we arrive at the fol-
lowing correction to the distribution function:

(12)

The longitudinal current density jx = −e (x,

v)dv can be found by integrating over vy and v z; passing
over to the dimensionless variables ω  ω/ωpe, v  
v /vTe, ε  ε/T, Ex, y  Ex, y/E0y, x  x/rD, and
Φ ≡ eϕ/T; and making the replacement v x  v x =

:

(13)

In the first term in the integrand in expression (13), we
integrate over x' from a to infinity (i.e., to distances at
which the plasma is homogeneous and the field distri-
bution is known). We introduce the small parameter
vTe/v ph ! 1, with respect to which the power series
expansions are to be carried out. Ignoring the terms on

f 1
–( ) 2e f 0

mv Te
2

------------- x'
v x x'( )Ex x'( ) v yEy x'( )+

v x x'( )
----------------------------------------------------------d

x

∞

∫=

× i G x( ) G x'( )–[ ]{ } ,exp

G x( ) ω1
x''d

v x x''( )
----------------.

xm

x

∫≡

f 1
+( )

v x v y v z x = xm, , ,( )

=  f 1
–( )

v x– v y v z x = xm, , ,( ).

f 1
+( )

x v x x( ) v y, ,( )

=  
2e f 0

mv Te
2

------------- x'
v x x'( )Ex x'( ) v yEy x'( )–

v x x'( )
---------------------------------------------------------d

xm

∞

∫



× i G x( ) G x'( )+[ ]{ }exp
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v x x'( )Ex x'( ) v yEy x'( )+

v x x'( )
------------------------------------------------------ i G x( ) G x'( )–[ ]{ }expd
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x
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


.

v x f 1∞–
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ε Φ x( )+

jx

iωpe

4π3/2
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ε–
x'Ex x'( )e
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the order of ~vTe/v ph and ignoring collisions in expres-
sion (13), we change the order of integration over x and
ε to obtain the following final expression for the current
density component jx(x) in the transition layer:

(14)

The y component of the current density is derived in an
analogous way. However, we will not use the current
density component jy(x) (or, more precisely, the electric
induction component Dy) to evaluate the field Ex(x),
because, as will be seen below, it enters into Maxwell’s
equations as a product with the small parameter
vTe/v ph.

In order to determine the electric field amplitude
E(x) in the transition layer (0 ≤ x ≤ a) from representa-
tions (3), we turn to Maxwell’s equations, which imply
that — × — × E – (ω/c)2D = 0, where D ≡ E + (4πi/ω)j
is the electric induction. We thus arrive at the set of
equations

(15)

Integrating the first of Eqs. (15) over dx yields

(16)

We pass over to the dimensionless variables x  x/rD

and ω  ω/ωpe (where  = 4πe2n0/m, rDωpe =

vTe/2, and vTe ≡ ) and normalize the fields to

4πi
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1

ω π
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the amplitude Ey(x = 0) of the y component of the elec-
tric field of the surface wave to write

(17)

In deriving the third (small) term on the right-hand side
of expression (17), we took into account the fact that, in
the zeroth approximation (i.e., when the higher order
terms are neglected), the wavenumber k and frequency
ω are related by the following dispersion relation for
the surface wave:

(18)

The first term on the right-hand side of expression (17)
is much larger than the second and third terms. An anal-
ogous procedure can be applied to the second of
Eqs. (15). As a result, we can expand the solution to
Eqs. (15) in powers in the small parameter vTe/v ph. In
the above dimensionless variables, Eqs. (15) have the
form

(19)

To within terms on the order of ~vTe/v ph, Eqs. (19)
yield

(20)

Ey x( ) Ey 0( ) i
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v ph

--------ω
2
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Fig. 1. Dependence of (1) ReEx(x)/E0y and (2) ImEx(x)/E0y
on the coordinate x/rD in the transition layer for ω/ωpe = 0.1,
ε0 = 1 = 1, and a = 13rD.
where A and B are integration constants. Using the
boundary conditions Ey |x = –0, Ey |x = +0, Dx |x = –0 =
Dx |x = +0, and Ey |x = a – 0 = Ey |x = a + 0, Dx |x = a – 0 = Dx |x = a + 0
and the relationships between the electric field compo-
nents in the regions x < 0 and x > a,

(21)

and omitting terms on the order of ~vTe/v ph (which cor-
responds to ignoring the effects associated with the
finite thickness of the transition layer), we arrive at dis-
persion relation (18) for a surface wave in the zeroth
approximation. Then, the expressions for κ0 and κp, the
formulas for the constants A and B, and the relation-
ships between the wave field amplitudes in the dielec-
tric and in the plasma take the form

(22)

(23)

(24)

The x component of the wave electric field in the
region 0 ≤ x ≤ a can be found from the second of expres-
sions (20) by omitting terms on the order of ~vTe/vph:

(25)

Using expression (25) for Dx = Ex + (2πi/ω)jx and tak-
ing into account expression (14), we obtain the follow-
ing integral equation for the field distribution Ex in the
transition layer:

(26)

where the kernel K(x, x') has the form

(27)

and the free term is equal to

(28)
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Integral equation (26) was solved numerically. For
κpa ! 1 and rD ! a, the field profile Ex(x) should be
independent of the choice of the value of the parameter a.
The results of calculations for the parameter values a =
13rD; ε0 = 1; T = 10 eV; and ω/ωpe = 0.1, 0.3, 0.5, and
0.7 are shown in Figs. 1–4. From these figures, we can
see that the field component Ex(x) varies on a scale on
the order of several Debye radii and, for x ~ a,
approaches the value E1x given by expression (24). For
a  = 13rD, the discrepancy (∆Ex ≤ 10%) stems from the
above choice of the approximation for the field compo-
nent Ex(x) inside the transition layer.

3. Here, we estimate the absorbed electromagnetic
wave energy from the change in the energy of the
plasma electrons during their reflection from the wall or
from the potential barrier. The velocity of an electron
has the form

(29)

and the change in its kinetic energy is equal to

(30)

Averaging expression (30) over the time t0 and omitting
terms on the order of ~vTe/v ph, we obtain

(31)

where

The quantity L(ε, x) in expression (31) is represented in
the dimensionless variables x  x/rD, ω  ω/ωpe,
and ε  ε/T. In order to find the total energy acquired
by the plasma electrons per unit area in unit time, we
multiply expression (31) by the electron flux through a
unit area of the interface and integrate over the entire
velocity space. Then, we divide the resulting expression
by the period-averaged energy of the surface wave per
unit area of the interface and determine the absorption
coefficient:

(32)

where

(33)

After integration in formula (33), we obtain the follow-
ing expression for the mean energy of a surface wave
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per unit area of the plasma–dielectric interface:

(34)

The first and second terms in parentheses in expression
(34) describe the energy densities of the surface wave
in a dielectric (x < 0) and in a homogeneous plasma
(x > a), respectively. The term describing the energy
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Fig. 2. Same as in Fig. 1, but for ω/ωpe = 0.3.
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density of the surface wave in the region 0 < x < a is
eliminated because it is as small as vTe/vph in compari-
son with the other two. From expression (34), we can
see that, for ω  ωcr, the wave energy density in the
plasma is three times higher than that in the dielectric
(ε0 = 1).

Substituting formulas (31) and (34) into expression
(32) and changing the order of integration over x and ε
yields the following expression for the absorption coef-
ficient in the above dimensionless variables:

. (35)

Here,

(36)

where

and

for x < x',

for x > x'.

Note that the wall potential is high in comparison
with the mean electron energy, which is about the tem-
perature ~T. That is why only a few electrons (about
0.31% for a hydrogen plasma) overcome the potential
barrier, and, consequently, their role in the absorption
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Fig. 5. Absorption coefficient Q vs. frequency ω for ε0 = 1
and a = 13rD.
of the wave power is insignificant. For the same reason,
the electron density at the plasma–dielectric interface
(x = 0) is exponentially low (about 2.3% of n0 for a
hydrogen plasma). Hence, for plasmas of real gases
with Mi > 103me, it is impossible to pass over to the limit
in which Φ0 = 0 and practically all of the electrons inci-
dent on the wall are reflected from it.

The damping coefficient for the surface wave is
equal in order of magnitude to Q ~ vTe/v ph. The absorp-
tion coefficient given by expression (35) was calculated
numerically for ε0 = 1, a = 13rD, and T = 10 eV and for
different values of the parameter ω/ωpe. The depen-
dence of Q on ω/ωpe is illustrated in Fig. 5. In the fre-
quency range such that ω/ωpe ≤ 0.6, the absorption
coefficient Q is seen to increase monotonically from
about ~10–4 to about ~10–2. Near the critical frequency,

ωcr/ωpe = 1/  = 0.7071, the absorption coefficient Q
increases sharply. In the frequency range ω/ωpe = 0–
0.275, the quantity M(ω) given by expression (36)
decreases abruptly from 2 × 105 to 28. In the range
ω/ωpe = 0.275–0.7, this quantity varies in the range 22–
28. In the frequency range ω/ωpe = 0–0.15, the second
factor on the right-hand side of expression (35) is small
(from 7 × 10–8 to 5 × 10–4); in the range ω/ωpe = 0.15–
0.7, it increases monotonically from 5 × 10–4 to 0.14. In
deriving integral equation (26) for the field component
Ex(x), we ignored the changes in Ey(x) and Dx(x) inside
the transition layer; in other words, we in fact used the
boundary conditions Ey(0) = Ey(a) and Dx(0) = Dx(a).
Actually, the quantities Ey(x) and Dx(x) inside the layer
vary approximately as exp(–κpx). Ignoring this circum-
stance leads to an error in determining the absorbed
wave power. This error is on the order of 2κpa and
amounts to 30% for ω/ωpe = 0.7 and a = 13rD. At the
rightmost point ω/ωpe = 0.7 in Fig. 5, the parameters
vTe/vph and κpa are quite small (vTe/vph = 0.0316 ! 1 and
κpa ≈ 0.147 ! 1), which justifies the validity of the
above assumptions.

4. Our analysis has shown that an electromagnetic
surface wave propagating along a plasma–dielectric
interface is absorbed by the electrons that are deceler-
ated in a transition layer and are reflected from the
potential barrier in the layer or from the interface. In the
transition layer, the plasma density decreases from the
density n0 of a homogeneous plasma to a density of
about n0exp(Φ0) ≈ n0(me/mi)1/2 and the electric field
component in the direction of nonuniformity, Ex(x),
changes on a scale of about ∆x ~ (2–5)rD. This indicates
that the characteristic wave vector corresponding to the
Fourier component Ex(kx) of the wave electromagnetic
field is about kx ~ 1/∆x, the wave phase velocity being
ω/kx ~ vTe. Such waves are strongly absorbed by ther-
mal plasma electrons. Since the thickness ∆x of this
interaction region is small in comparison with the depth
1/κp to which the wave penetrates into the plasma, the

2
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absorption coefficient turns out to be on the order of the
ratio of the thickness of the transition layer to the pen-
etration depth, Q ~ vTe/v ph.
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Abstract—The dynamic processes by which an electrostatic plasma lens with a wide-aperture ion beam and
electrons produced from the secondary ion–electron emission relaxes to a steady state is investigated for the
first time by the particle-in-cell method. The parameters of a two-dimensional mathematical model were chosen
to correspond to those of actual plasma lenses used in experimental studies on the focusing of high-current
heavy-ion beams at the Institute of Physics of the National Academy of Sciences of Ukraine (Kiev, Ukraine)
and the Lawrence Berkeley National Laboratory (Berkeley, USA). It is revealed that the ion background plays
a fundamental role in the formation of a high potential relief in the cross section of a plasma lens. It is estab-
lished that, in the volume of the plasma lens, a stratified electron structure appears that is governed by the non-
uniform distribution of the external potential over the fixing electrodes and the insulating magnetic field. The
stratification is very pronounced because of the finite sizes of the cylindrical fixing electrodes of the lens. It is
shown that the presence of such a structure limits the maximum compression ratio for an ion beam to values
that agree with those observed experimentally. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of plasma optics as a branch of
plasma dynamics was initiated by A.I. Morozov [1],
who was the first to formulate the fundamental physical
principles for introducing steady-state electric fields
into a plasma penetrated by an intense ion beam. These
principles are based on the ideas of the magnetic insu-
lation of the electrons neutralizing the beam space
charge and the equipotentialization of magnetic field
lines. These ideas turned out to be highly fruitful and
were soon implemented in a number of experimental
works [2–4]. At the same time, it became clear that an
adequate analytic theory of plasma lenses (PLs) is very
difficult to construct because the set of self-consistent
equations describing the processes in the lens is both
nonlinear and inhomogeneous. The reason is that none
of the parameters of a PL configuration with a curvilin-
ear geometry of the magnetic field lines can be regarded
as small. That is why PLs were analyzed theoretically
under assumptions that greatly simplify the problem,
such as zero electron mass approximation, cylindrical
coordinate system, and the ignoring of initial condi-
tions. These restrictions, being consistent with the fun-
damental principles of plasma optics, provided a good
basis for the interpretation of the main experimental
results; however, they were too crude to serve as a basis
for the elaboration of an algorithm for creating plasma
optics systems with specified properties.

With the development of computer technology and
the methods of computational physics in the late 1970s,
it became possible to numerically model physical pro-
cesses in plasma optics systems. Volkov and Yakunin
[5] proposed a mathematical model of the steady-state
processes in an electrostatic PL and computed the equi-
potential surfaces of the electric field. It was found that
1063-780X/03/2910- $24.00 © 20874
the magnetic field lines deviate from these surfaces as
the electron temperature increases. This model was
non-self-consistent because it did not take into account
the distribution of the external electric potential deter-
mined by the fixing electrodes of a PL. Of course, the
model proposed in [5] reflected the computer’s techno-
logical level at that time.

Further development of PLs was spurred by
advances in the production of wide-aperture repetitive
pulsed beams in the ampere range. In the 1980s, such
beams found application, first, in injectors for fusion
devices and, then, in high-current accelerators of heavy
ions and high-dose ion implanters.

A series of experiments carried out at the Institute of
Physics of the National Academy of Sciences of
Ukraine (IP NASU) revealed new regular features in
the behavior of electrostatic PLs during the focusing of
such beams [6–8]. It was found that the current of a
passing ion beam significantly affects the steady-state
and dynamic parameters of the PL. The maximum com-
pression ratio for a slightly divergent laminar beam at
the focus is determined by the potential distribution
over the fixing electrodes, as well as the strength of the
insulating magnetic field and its configuration. It
became clear that such high-current PLs are most suit-
able for focusing and controlling the beams of moder-
ate-energy (10–100 keV) ions of high-Z chemical ele-
ments. Optimizing the parameters of the PL at IP
NASU made it possible to achieve a maximum com-
pression ratio of 25 at the focus of a copper ion beam
with a current of 700 mA, an energy of up to 25 keV,
and an initial radius of 5.6 cm [9, 12]. In analogous
experiments at the Lawrence Berkeley National Labo-
ratory (LBNL), maximum compression ratios of up to
40 were achieved at the foci of heavy-ion (Ta, Bi, Pb)
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of a plasma lens for focusing charge-neutralized ion beams: (M) ring magnet with magnetized tips, which produce
the magnetic field in the lens; (I) ion current (the arrows in the right part of the electrode system indicate electron emission fluxes);
and (1, 2) possible trajectories of the secondary electrons. The horizontal arrows in the right part of the electrode show the emission
region.
beams with an initial diameter of d = 10 cm and ener-
gies of up to 50 keV [8, 12].

Estimates of the maximum compression ratio for
wide-aperture beams of heavy ions generated by vac-
uum arcs in cathode-material vapors show that the lim-
itations associated with the beam emittance, the
moment aberrations of a PL, and the field of an unneu-
tralized space charge of the beam at the focus may be
important for compression ratios of up to 1000.

Further search of the methods for eliminating PL
spherical aberrations, which adversely affect the maxi-
mum compression ratio of the beam at the focus, and
optimizing the PL parameters requires complementary
numerical experiments drawing on the resources of
modern computational techniques. At this point, it is
worth noting that Morozov and Savel’ev [10] were the
first to study the self-consistent electron dynamics in a
system similar to the plasma optics one, namely, a
plasma accelerator with closed electron drift and an
extended acceleration region.

In the present paper, we report the results of the first
numerical experiments aimed at modeling the relax-
ation of a high-current PL to a steady state and estimat-
ing the effect of this state on the focusing of a wide-
aperture PL.

Let us briefly review the principles of operation of a
PL, which were first described by Morozov and Lebe-
dev [2]. The lens consists of a system of coaxial cylin-
drical electrodes of radius R (Fig. 1) held at different
electric field potentials. The potential is maximum at
the center of the lens and is zero at the outermost elec-
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
trodes. A given step profile of the potential at the cylin-
drical surface r = R is symmetric with respect to the z =
0 plane and can be approximated by a smooth profile
U(z, r = R), as in Fig. 1.

As a function of the variable z, the potential U(z, r)
also has a maximum in the central cross section of the
lens, in which case, however, we have U(0, 0) < U(0,
R). Consequently, in the absence of a magnetic field, we
deal with the simplest electrostatic lens. An ion flow
entering the lens from the right (Fig. 1) is displaced
toward the lens axis by the radial component of the
electric field E = –—ϕ. It is assumed that the ion charge
density is low and the distribution U(z, r) is distorted
insignificantly. However, in actuality, the problem is to
focus ion beams with high space charge densities. In
this case, the beam charge is neutralized to a great
extent by an electron cloud that is trapped by the beam
in the stage of its formation and prevents the beam ions
from flying apart under the action of Coulomb forces.
Such a neutralized ion beam (NIB) is a medium in
which the electron conductivity is high and which
expels external electric fields from its interior. That is
why an NIB cannot be focused by an electrostatic lens.

The above effect of a complete screening of the
external electric fields can be eliminated by applying an
external magnetic field,1 the typical configuration of
which is shown in Fig. 1. In such a lens, the focusing
process can be briefly described as follows. Only a frac-

1 An azimuthally symmetric magnetic field with the desired line
pattern is created by a system of electromagnets or by ring mag-
nets with cylindrical tips of specially shaped cross sections.
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tion of the electrons that neutralize the ion beam charge
enter the working volume of the lens in the axial region.
The remaining beam charge is neutralized by the emis-
sion electrons that are knocked out of the electrodes by
the beam ions in the so-called “licking” regime (see
[2]). Although these secondary electrons neutralize the
beam charge, they are incapable of screening the exter-
nal electric field, because, in a magnetic field in which
the electron gyroradius is much less than the electrode
radius (rL ! R), the electron conductivity across the
magnetic field is zero. However, the potential distribu-
tion over the working volume of the lens will differ
from that in the electrostatic analogue described above.
The reason is that the electrons move freely along the
magnetic field lines and thus tend to smooth out varia-
tions in the potential along the lines and to make the
lines equipotential. If this is the case, the magnetic field
lines that cross the rightmost electrode will transport
the zero potential toward the axis of the system. It is in
this sense that the electric field within the working vol-
ume is nevertheless pushed aside. The penetration
depth of the electric field into the working volume is
controlled by the magnetic field and is on the order of
R. As a result, the potential difference U(0, R)–U(0, 0)
is higher than that in the purely electrostatic analogue
and, accordingly, the compression ratio of an ion beam
at the exit from the focusing system is larger.

That the magnetic field lines can be equipotential
was asserted by A.I. Morozov in his papers. The equa-
tions of the two-fluid hydrodynamic model of a plasma
with zero electron temperature and mass in the absence
of electron–ion collisions has the stationary solution

(1)

where E is the electric field in the plasma and ve is the
hydrodynamic velocity of the electron gas. Solution (1)
implies that there is no component of the electric field
in the magnetic field direction and that the electrons
drift azimuthally at a rate of about cE/H.

In reality, the gyroradius of the electrons and their
temperature are both finite; hence, the magnetic field
lines can be expected to be nonequipotential. In addi-
tion, the fact that the potential distribution depends on
the ion current density (see [6–8]) is not described by
solution (1). This is why it is important to carry out a
more complete numerical investigation of the relax-
ation of the plasma to a steady electron state in the lens
volume. It is this problem that is the subject of our
paper, in which we will use the methods of mathemati-
cal modeling of dynamic phenomena in plasma media.

The geometric dimensions of the electrodes and the
magnetic field structure in the lens shown in Fig. 1 cor-
respond to those in the plasma lens that was used in
experiments at the IP NASU and in which the magnetic
field is produced by a constant ring magnet with cylin-
drical tips. The shape of the tips was chosen so that the
outermost magnetic field line that goes through the

E
1
c
--- veH[ ] ,–=
electrodes held at a zero potential passes at the shortest
possible distance from the lens center. This choice was
made through a computer simulation of the magnetiza-
tion of the tips. Another lens version corresponds to the
plasma lens that was used in experiments at the LBNL
and is based on a 14-cm-long system of electrodes
10 cm in diameter. The numerical results reported
below were obtained for these two types of focusing
devices.

2. NUMERICAL MODEL
The operating modes of the PL were simulated by

the particle-in-cell (PIC) method under the assumption
that the plasma is collisionless [11]. The density of the
electron emission current from the surfaces of the elec-
trodes was assumed to be uniform and equal to αJi

(where α is the emission coefficient and Ji is the ion
current density at the entrance to the lens). It was
assumed that the secondary electrons are emitted in the
region z ≥ 1, whereas, at smaller z, the secondary elec-
trons are not generated because the ion beam begins to
be compressed there. It was also assumed that the initial
electron energies are distributed uniformly over the
interval 6–10 eV and that the angles between the direc-
tions in which the secondary electrons are emitted and
the normal to the surface of the electrodes range
between 0° and 70°. After each time step ∆T (in simu-
lations, it was chosen to be ∆T = 7 × 10–11 s), N new par-
ticles with charge q and mass m (the charge-to-mass
ratio being q/m = e/me, where me is the mass of an elec-
tron) were injected into the lens. The quantities N, ∆T,
and q satisfy the relationship Nq/∆T = αJiSe, where Se

is the area of the surface from which the secondary
electrons are emitted. The initial conditions for each of
the particles were imposed with the help of a random
number generator.

The motion of the electrons (and, thereby, the parti-
cles with which the electrons were modeled) in the lens
volume was described by the equation

(2)

where E and H are the electric and magnetic field
strengths and ve is the electron velocity.

Equation (2) for both the new particles and the par-
ticles already present in the lens volume was integrated
with a time step ∆t ! ∆T. After each time step ∆T, the
distribution of the electron space charge density was
calculated from the coordinates of all the particles by
the PIC method. It was assumed that the distribution of
the ion space charge is uniform and correspond to a
given ion energy and a given ion current density Ji . This
approach is justified in studying the general features of
the relaxation of a PL to steady-state operating modes.

The potential U(z, r) was calculated from the distri-
bution of the total space charge density ρ(z, r). Since

me

dve

dt
-------- e E

1
c
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the potential in the lens was given only at the electrode
surfaces, it was determined using the following proce-
dure. The set of equations

(3)

(where U(ri) are the potentials of the electrodes at the
points with the position vectors ri and the integrals are
taken over the surface of the electrodes and the lens vol-
ume) was used to determine the surface change density
σ(r) at the electrodes in the form of a discrete set σk.
Then, the right-hand side of Eqs. (3) was calculated at
the mesh points rik of the spatial grid covering the lens
volume. Further, the equations of motion for the parti-
cles were again solved but for the corrected electric
field. Next, a new group of the emission electrons was
injected. This procedure was repeated until the poten-
tial in the lens relaxed to a quasi-steady distribution
self-consistent with the electron motion. The self-mag-
netic field of the moving electrons was ignored because
their current density is low.

In a steady state, the number of electrons in the lens
volume was (1.5–3) × 106. The losses of electrons were
determined by their escape from the computation
region through the ends of the lens and, to a far more
substantial extent, toward the electrodes. The electrons
can be classified by their trajectories into two types (see
Fig. 1; curves 1, 2). The motion of the electrons of the
first type along the magnetic field lines is regular: on
time scales of about (1–2) × 10–8 s, these electrons leave
the lens volume. The electrons of the second type are
trapped by the magnetic field of the lens and move sto-
chastically between the lens ends for a fairly long time
τe. It is these electrons that are responsible for the relax-
ation to a steady-state potential distribution in the lens.
A statistical analysis of the electron lifetime τe was not
carried out. At the same time, calculations of individual
test electron trajectories in fixed electric and magnetic
fields yielded lifetimes of about τe ≈ (2–8) × 10–7 s.
Note that, in numerical experiments, the relaxation to
steady states occurred on time scales of about 5 × 10–7 s.

Hence, we numerically investigated collective phe-
nomena in a statistical particle–field model. All the
applicability conditions of the model were satisfied. In
particular, the electric field was recalculated on a time
interval ∆T that was much shorter than the plasma
period.

3. RESULTS OF COMPUTER SIMULATIONS

Numerical experiments answered a number of ques-
tions about the regular features of the formation of
space charge within the lens volume.

(i) The important role of the ion background was
revealed. Physically, it is clear that the total electron
charge in the working volume exceeds the total ion

U ri( ) σ r'( )
ri r'–
---------------- S 'd

S

∫∫ ρ r'( )
ri r'–
---------------- Vd∫

V

∫∫+=
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charge. According to experimental estimates [6, 7] and
our numerical results, the excess electron charge can
amount to 10–14%. However, it is incorrect to assume
that the positive and negative charge densities at each
point of the lens volume satisfy the relationship
ρ(z, r) = ρi(z, r) – ρe(z, r) < 0.2 If the regions dominated
by the positive charge do not form, the lens is insuffi-
ciently filled with the emission electrons and numerical
experiments are incapable of capturing the potential dis-
tributions observed experimentally in the lens volume.
When the ion background is taken into account, these
distributions become dependent on the beam ion den-
sity. In contrast, the traditional approach (the zero tem-
perature approximation) yields the same solution
regardless of the magnitude of the ion current density Ji.

(ii) The distribution of the space charge in the radial
direction has a stratified structure. The space charge
possesses a radially stratified structure even when the
potential distribution over the electrodes is smooth
(rather than steplike). We carried out simulations for
different potential distributions over the lens electrodes.
The distributions were modeled by the functions of the
form

Figure 2 presents the profiles f(z) used to simulate a
lens with the geometric parameters given in Fig. 1.

For a given magnetic field structure and a given
function f(z), the assumption of precise equipotential-
ization allows us to readily calculate the potential dis-
tribution ϕ(z, r) over the lens volume and the corre-
sponding space charge density ρ(r): ∆ϕ = –4πρ. For a
step potential profile at the electrodes (Fig. 2, curve 1),
cylindrical regions with constant potentials Ui appear
within the lens. The inner and outer boundaries of each
are the surfaces generated by rotating the magnetic field
lines that pass through the ends of the ith ring electrode
about the lens axis. As a consequence, the space charge
in the lens volume will be nonzero only within the tran-
sition regions between the surfaces with different
potentials, thereby forming a pronounced stratified
structure in the cross section passing through the lens
axis. Such stratified structures are actually observed in
numerical experiments for step potential profiles at the
lens electrodes. However, they are also captured in sim-
ulations with smooth profiles f(z). The reason is that
stationary solution (1) is unrealistic. This solution,
which is in fact the equipotentiality condition, was
obtained without using the boundary conditions and
thus cannot clarify the physical reason for a significant
difference in the number of electrons moving along dif-
ferent magnetic field lines. In an actual lens, the phases
of the electrons moving along the field lines should sat-
isfy certain relationships in order for the electrons to

2 Such an assumption would allow us to exclude the ion back-
ground from consideration and to calculate only the dynamics of
the excess electron charge in the lens.

f z( ) U z R,( )/U 0 R,( ).=
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undergo multiple reflections from the electrode regions.
It is only in this case that the space charge of the elec-
trons will be large enough to neutralize the ion beam
charge. The only electrons that can be trapped by a self-
consistent electric field are those moving along certain
magnetic field lines, which explains the stratified struc-
ture of the space charge density in the radial direction.

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6
z

f(z)

4

3

2

1

Fig. 2. Potential profiles at the electrodes of the lens that
were used in simulations: (1) step profile corresponding to
the experimental conditions in which the electrodes were
separated by a distance of 1.5 mm; (2) f(z) = 1 for z < 0.75
and exp(–z/1.3) for z > 0.75; (3) f(z) = exp(–z2/7); and (4)
linear profile over the region 0.75 ≤ z ≤ 5 such that f(z) = 0
for z > 5.
(iii) Efficient ion focusing can be achieved in rela-
tively weak magnetic fields such that the ion gyroradius
is comparable to the lens radius. In this case, the space
charge distribution is unstratified. In the central region,
the radial electric field increases linearly away from the
axis. Since the magnetic field is approximately constant
over the cross section of the lens, the angular velocity
of the azimuthal drift motion depends weakly on the
radius. Such an operating mode should be free of insta-
bilities that worsen the parameters of the ion focusing.

We now present numerical results that illustrate the
above conclusions. First, we show that the ions play an
extremely important role in the dynamics of the forma-
tion of both the space charge in the lens and the high
potential relief. Assuming that, at each spatial point, the
space charge density of the electrons exceeds that of the
ions, we can formally set the background ion density
equal to zero. In this case, our numerical model will
describe only the distribution of the excess electron
charge. However, the results of solving the problem as
formulated disagree with the experimental data
(Fig. 3a). The potential at the center of the lens does not
become lower than 600 V/cm even when the secondary
emission current is substantially increased. The reason
for this lies in the formation of an electron cloud near
the emitting electrodes: in the self-consistent steady-
state regime, the electrons flow from the cloud into the
lens volume and return from the volume to the elec-
trodes. In a dynamic equilibrium state, the total number
of electrons within the lens remains essentially the
same over a wide range of secondary electron flux den-
sities. As the electrons fill the axial region, they give
rise to a retarding potential (Fig. 3a, the vicinity of
å
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Fig. 3. (a) Spatial distribution of the potential in a plasma lens in the model in which the working volume has an excess of electrons
at each point. The calculations were carried out for U(0, R) = 3 kV, H(0, 0) = 360 Oe, and f(z) = exp(–z2/7), the secondary electron
emission coefficient being α = 3. The emission flux density corresponds to the ion current density Ji = 3 mA/cm2. The arrow at the
center indicates a decrease in the potential with respect to its initial value. Point M indicates the onset of the retarding potential.
(b) Radial profiles of the absolute value of the electron charge density (in electrostatic units) in the central cross section of the lens.
Curves 1 and 2 were calculated for I = 120 and 180 mA, respectively. Curves 1' and 2' show the ion background levels in these two
cases. Curve 3 is the radial profile of the absolute value of the electron charge density in the model of Fig. 3a.
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point M), that prevents the secondary electrons from
moving along the magnetic field lines from the outer-
most electrode toward the axis of the system. If we
assume that regions dominated by positive space charge
do form in the lens volume and take into account the ion
background3 in the numerical model, then we find that
the retarding potential does not arise. The excess nega-
tive space charge in the axial region increases, thereby
lowering the potential over the entire lens volume and
increasing the time during which the electrons move
along the magnetic field lines. All these processes
occurring in the lens lead to a radical rearrangement of
the electron density distribution (Fig. 3b) and an
increase in the total excess negative charge in the sys-
tem. This is in agreement with the experimental data
(Fig. 4), according to which the measured potential at
the center of the lens is always lower than 50 V. In our
model of the lens, we ignore the electrons that enter
(together with an ion beam) the axial region, where the
radial magnetic field is weak. As a consequence, the
axial region in Fig. 3b is dominated by the ion charge;
however, the error introduced by this ignoring is unim-
portant in seeking the optimum modes of the lens oper-
ation.

Note that, for all the f(z) profiles shown in Fig. 2, the
potential distributions are close to that in a lens version
with equipotential magnetic field lines. However, the
structure of the space charge distributions differ
strongly from that obtained from the classical solution
[1, 2]. Thus, for a Gaussian potential profile at the elec-
trodes (Fig. 2, curve 3), the space charge in the last case
will be negative at each point within the lens volume.
Although this stationary solution is formally allowed
by our task, it is nevertheless unrealistic: if we take into
account the boundary conditions, we see that this solu-
tion does not correspond to any real situations occur-
ring when the lens is filled by the emission electrodes.

We now discuss the structure of the space charge
distribution. Since the equipotentiality condition for the
magnetic field lines is satisfied fairly well for a nonzero
electron temperature, the stratified nature of the distri-
bution of ρ(r) for a step profile of the function f(z)
(Fig. 2) has a physically clear meaning. However, the
stratification occurs also for a smooth f(z) profile
(Fig. 5). Let us examine this point in more detail.

Since the electrons that undergo a single-pass
motion along the magnetic field lines4 (i.e., along tra-

3 For a beam of singly charged copper ions with the current density
Ji = 3 mA/cm2 (in which case the total ion current in the lens is
120 mA) and at the potential U = 12 kV, the ion density is ni =

9.8 × 108 cm–3, which corresponds to the ion space charge den-
sity ρi = 0.47 esu. For a total ion current of 180 mA, we have ni =

1.47 × 109 cm–3 and ρi = 0.7 esu. Our simulations were carried
out precisely for these parameter values.

4  We mean here the trajectories that lie in the (z, r) plane. In three-
dimensional space, the electron motion is also characterized by
the drift of the guiding centers of their Larmor orbits in the azi-
muthal direction.
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jectories analogous to curve 1 in Fig. 1) live for only a
short time in the lens volume, they cannot produce a
significant space charge. The potential distribution over
the volume is rearranged by the trapped (long-lived)
electrons that move stochastically along the magnetic
field lines. The question then naturally arises as to the
factors that determine the probability for the electrons
to be trapped within the lens volume.

The first factor is the presence of regions near the
electrodes in which the potential is highly nonuniform.
An electron that starts from some point at a certain
potential and moves along an orbit with finite Larmor
radius will reach the electrodes near the opposite end of
the magnetic field line at a point at which the potential
differs from that at the starting point. When the gradient
of the potential at the electrodes is large, there is a fairly
large probability that an electron will enter a region
where the potential is lower than that at its starting point
and will be reflected by this region. The electrons that
are trapped in this manner form the space charge in the
bulk of the lens volume. For a step potential profile
(Fig. 2, curve 1), cylindrical layers with an elevated
electron density originate and end up at the interelec-
trode gaps.

The second factor is the presence of regions with
nonuniform magnetic fields near the lens ends. Near the
outermost electrodes (z ≈ 6), the electrons move in a
magnetic field with an alternating component Hz and a
rapidly varying component Hr. The redistribution of
energy between the rotational motions (along the orbits
with finite Larmor radii) and translational motions
results in chaotic reflections of the electrons not only in
the regions near the electrodes but also within the lens
volume (Fig. 1, trajectory 2). Trapped electrons of this
type, which were taken into account in the classical
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Fig. 4. Radial profiles of the potential at the central cross
section of the lens for a Gaussian potential profile at the
electrodes. The dashed and solid curves were calculated for
Ji = 3 and 4.5 mA/cm2, respectively. The curve that bounds
the region shaded in light gray is the solution to the problem
with a precise equipotentialization of the magnetic field
lines.
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Fig. 5. Structure of the spatial distribution of the electron charge density for an exponential profile of the potential at the electrodes
of the lens (Fig. 2, curve 2). The beam current is I = 180 mA. The regions shaded in light gray are those in which the charge density
of the ions is higher than that of the electrons. The “islands” in these regions are dominated by electrons. Shades of gray correspond
to eight levels of the space charge density, from 0.7 esu for the ion background to an electron charge density equal to 1 esu. The
regions where the charge density is higher than 1 esu are hatched.
solution to the problem in the zero temperature approx-
imation [1, 2], produce jumps in the excess electron
charge in the axial region (see Figs. 3b, 5), where the
space charge density ρ(z, r) should be minimum for the
given f(z) profile, provided that the magnetic field lines
are equipotential.

In contrast to the situation with a step potential pro-
file, the situation with an exponential profile f(z)
(Fig. 2, curve 2) is more difficult to interpret (Fig. 5).
The formation of the outer and inner (axial) space
charge layers is consistent with the ideas arising from
our model. These effects stem from the distinctive fea-
tures of the potential distribution over the electrodes
(the break in the f(z) profile at z = 0.75; see Fig. 2, curve 2)
and the magnetic field near the lens ends (Fig. 1). The
formation of two additional space charge layers
between the outer and inner layers is due to the effect of
the beam ions. It has been pointed out above that the
ions play an especially important role in the relaxation
to the steady-state operating modes of the lens. The
results shown in Fig. 5 illustrate the effect quantita-
tively. Numerical experiments carried out for smooth
f(z) profiles show that the higher the ion current, the
more pronounced the stratification and the larger the
number of space charge layers. In this case, the electric
field penetrates deeper into the working volume and its
radial component at the beam periphery becomes
weaker, which reduces the focusing efficiency in the
regions crossed by the majority of the beam ions.

The above distributions of the space charge in the
stratified structure can give rise to various plasma insta-
bilities that may degrade the quality of the focused
beam. Low-noise aberration-free focusing regimes
should be sought only in the range of weak magnetic
fields [13]. Below, we present numerical results
obtained for a lens with a radius of 3.6 cm (see Fig. 1),
the magnetic field strength at the center being Hz(0, 0) =
100 Oe. In simulations, the dependence of Hz(0, r) on
the radial coordinate r was approximated by a quadratic
parabola such that Hz(0, R) ≈ 170 Oe. The potential at
the central electrode was 3 kV. The values of f(z) at the
electrodes are given by curve 1 in Fig. 2. It was
assumed that the secondary electrons are emitted only
from the region 1 ≤ z ≤ 6 on the surface of the elec-
trodes. The electrons that enter the volume of the lens
through its ends were ignored. The ion energy was
12 keV and the beam current was 100 mA, the corre-
sponding ion space charge density being ρ = 0.394 esu.

Figure 6 displays the spatial structure of the electron
space charge. Because of the increase in the character-
istic Larmor radius, the electron space charge density
does not possess a pronounced stratified structure in the
central part of the working volume. The radial profiles
of the potential and electric field in the z = 0 plane are
almost ideally suited for providing aberration-free
beam focusing (see the region between the dashed ver-
tical lines in Fig. 7).

Near the central electrode (i.e., in the region where
the magnetic field increases to 170 Oe), the electron
density evolves to a highly nonuniform distribution
(Fig. 6), which leads to distortions of the linear radial
dependence Er(0, r) shown in Fig. 7a. Of course, the
electric field distribution in the central cross section of
the lens does not give information about the global
electric field structure over the entire lens volume
(Fig. 7b), in which case the calculated ion trajectories
provide evidence that the focusing is not ideal because
of the presence of spherical aberrations. Thus, during
the focusing of the ions injected parallel to the lens axis,
the maximum mean ion current density at a collector of
radius 1 cm is approximately Jic ≈ 34Ji and is reached at
a distance of about |z | ≈ 15 cm from the central cross
section of the lens.

The results of numerical experiments carried out
based on the model developed here agree well with the
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
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Fig. 6. Distribution of the electron space charge density in a lens with the central magnetic field Hz(0, 0) = 100 Oe. In the hatched
regions, the space charge of the electrons is higher than that of the ions by a factor of 1.5 and more. The regions where the electron
space charge is lower than the ion space charge are shaded in light gray. The solid curve is one of the possible electron trajectories
in the lens version in question.
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Fig. 7. (a) Radial profiles of the potential (solid curve) and radial electric field (dashed curve) at the central cross section of a lens
with Hz(0, 0) = 100 Oe. (b) Potential distribution over the volume of a lens with the central potential ϕ(0, 0) = 24 V.
data from actual laboratory experiments. This allowed
us to employ a specially devised computer code5 to
optimize the parameters of a plasma lens with a 14-cm-
long system of electrodes 10 cm in diameter. Such a
lens was used in experiments at the LBNL [12]. The
magnetic field strength at the lens center was 300 Oe,
and the potential at the central electrode was up to 7 kV.
We simulated the focusing of a beam of bismuth ions
with an energy of 34 keV and a total current of about
200 mA and found a nonmonotonic potential profile at

5 In the numerical model, we took into account additional electron
fluxes from the lens ends. The radius of the regions from which
these fluxes are emitted is 1.5 cm and the starting positions of the
electrons at the z axis (z ≈ 6.3 cm) coincide with those at which
the magnetic field component Hz vanishes at the lens ends. The
current density of the additional electrons is 0.1 of the ion current
density.
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the electrodes (Fig. 8) for which the density of the cur-
rent to a target 3 mm in diameter reaches a maximum
value of 45 mA/cm2, which corresponds to a beam
compression ratio higher than 30.

The results shown in Fig. 8 clearly illustrate a fun-
damental principle of plasma optics: in the region of the
interelectrode gap, the potential profile f(z ≈ 3.6) is
highly nonuniform; however, the electrons that move
along the magnetic field lines passing through this
region are not trapped. This conclusion is not surpris-
ing, especially in view of the equipotentialization prin-
ciple for the magnetic field lines. In fact, the charge
localized along these magnetic field lines should be
positive, because, along the lines, we have ∆ϕ(z, r) < 0
by virtue of a jump in the potential, ∂f/∂z > 0. However,
the physical mechanism of the phenomenon under con-
sideration lies in its remarkable capability for self-orga-
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Fig. 8. Structure of the spatial distribution of the electron charge density in a lens in which the height of the steps in the f (z) profile
at the electrodes (from the center to the edge) are equal to 1, 0.74, 0.09, 0.2, and 0 (top). The background level of the ion charge
density is 0.43 esu. The regions where ρe ≥ 0.86 esu are hatched. In unshaded regions, the electron charge density is higher than the
ion charge density. In the regions shaded in light gray, the charge density of the electrons is lower than 10% of that of the ions. The
symbol h denotes the space charge layer formed by the electrons reflected from the regions of the strong radial magnetic field near
the lens ends (see Fig. 1).
nization. Since the pattern of the trajectories of the
trapped electrons is consistent with the potential distri-
bution over the lens volume, these electrons cannot be
reflected from the electrode regions (z ≈ 3.6 cm), in
which the potential is highly nonuniform.

In conclusion, we note that, on the whole, the poten-
tial distribution in the plasma lens corresponds to the
equipotentialization principle for the magnetic field
lines. In reality, however, the distribution of the electric
field strength (the potential gradient) can deviate appre-
ciably from that given by the classical solution, espe-
cially when the dependence f(z) is nonmonotonic. That
is why it often happens that the “optimal” potential dis-
tribution over the electrodes in a prescribed magnetic
field obtained by the method of precise equipotential-
ization is not actually the optimal one.
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Abstract—A computer model is devised for a Morozov plasma lens, in which the magnetic surfaces are equi-
potential surfaces of the electric field. Results are presented from numerical modeling of the focusing of ions
with allowance for their longitudinal, radial, and azimuthal motions. The strengths and spatial distributions of
the magnetic and electric fields are optimized. The methods for removing moment, geometric, and chromatic
aberrations are analyzed. The effect of a discrete distribution of the potentials on ion focusing is modeled,
and the related aberrations are examined. A computer model of an achromatic two-lens system is considered.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there is a great need to further develop
the physics and technology of intense ions and electron
beams (see, e.g., [1–3]). The problems associated with
the focusing, transport, and separation of such beams
are important for plasma physics, controlled fusion
research, nuclear physics, accelerator physics and
designs, radiation therapy, isotope separation, and
beam technologies. An essential feature of the focus-
ing, transport, and separation of intense ion beams is
that, in order to prevent Coulomb instability, the ion
space charge should be neutralized by electrons. For
these purposes, it is expedient to use plasma-optic
focusing devices (lenses) [1, 3], whose development was
initiated by A.I. Morozov and his collaborators [3–5]
and, in recent years, has been continued by A.A. Gon-
charov and his group [6–8].

In contrast to vacuum lenses, plasma-optic focusing
systems are capable of operating with high ion currents
(up to hundreds of amperes or higher) over a wide
energy range [3]. Such systems have high focusing
power and can both focus and defocus beams. The
plasma in the lenses can be created by focused beams
as a result of ionization of the residual gas or secondary
electron emission from the electrodes and from the wall
[6–8]. It can also be created by external sources, which
is even better from the standpoint of optimization. In
plasma-optic systems, any aberrations can, in principle,
be eliminated by properly adjusting the distributions of
the magnetic and electric fields.

The main goal of this paper, which is a continuation
of [9–11], is to carry out computer simulations aimed at
analyzing the possibility of eliminating different types
of aberrations in lens systems for focusing wide-aper-
ture (nonparaxial) charge-neutralized ion beams. We
1063-780X/03/2910- $24.00 © 20883
will be interested in the following types of aberrations:
moment aberrations, which are due to the azimuthal
particle motion; geometric aberrations, which depend
on the radius and angle at which the ions are injected
and also on the spatial distribution of the focusing
fields; and chromatic aberrations, which are associated
with the longitudinal momentum of the beam particles.
The aberrations resulting from the dynamics of the
focusing fields (e.g., from their instabilities) are not
considered here; the related problems are touched on in
[3, 6].

2. FORMULATION OF THE PROBLEM 
AND BASIC EQUATIONS

Axisymmetric lenses were investigated theoreti-
cally and experimentally in [3–11]. In such lenses, the
vector potential of the magnetic field has the only azi-
muthal component Aϕ. For theoretical analysis, it is
expedient to introduce the so-called magnetic flux func-
tion [5]

(1)

in which case the magnetic surfaces are described by
the equation [12]

(2)

For a Morozov lens, the electric field potential Φ(r,
z) is related to the magnetic flux function ψ(r, z) by

Φ(r, z) = F[ψ(r, z)], (3)

where the function F is determined by (or is chosen to
satisfy) the optimum focusing conditions.

We express the components of the electric and mag-
netic fields in terms of ψ and F and substitute these
components into Newton’s equations of particle motion

ψ r z,( ) rAϕ r z,( ),=

rAϕ const.=
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written in cylindrical coordinates. As a result, we obtain
the following equations for calculating the particle tra-
jectories in a lens [10]:

, (4)

, (5)

, (6)

where c is the speed of light and q, m, and V are the
charge, mass, and velocity of the focused particles,
respectively.

In [6–8], experiments were carried out with a mag-
netic field configuration produced by three short sole-
noids carrying opposite currents, which made it possi-
ble to localize the so-called reference electrodes (used
to apply the electric potentials to the plasma) near the
central plane of a lens. In simulations, we modeled this
electrode system by three coaxial loops of the same
radius; the currents in the side loops were opposite to
the current in the central loop. The magnetic field gen-
erated by the current Jn in a loop of radius ac, with its
center at the point ln on the z axis, is described by the
azimuthal component of the vector potential (see [12,
13]):

(7)

where K and E are complete elliptic integrals of the first
and second kinds, respectively, and n is the number of
the loop. By the superposition principle, the total mag-
netic field of a solenoid consisting of n current loops is

determined by the vector potential Aϕ = .

A schematic of the lens is shown in Fig. 1. The cen-
tral loop (1) is located at z = 0, and the side loops (2) are
placed at zs = ±5 cm or at zs = ±10 cm. We calculated
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Fig. 1. Schematic of the Morozov lens: (1) central current
loop, (2) side current loops, and (3) reference electrodes.
the magnetic surface topography for different ratios
between the opposite currents in the central loop (Jc)
and in two side loops (Js). The numerical results pre-
sented below were obtained for Jc = –1.5Js, which
makes the magnetic field line topography (shown by the
dashed curves in Fig. 1) in the lens volume adequate for
our purposes. In modeling the focusing process, we
assumed that the lens volume and the region through
which an ion beam propagates are filled with a plasma
whose density and other parameters are sufficient to
neutralize the beam space charge completely and to
produce the required focusing fields. (In a sufficiently
large volume, a highly homogeneous, high-density
plasma with high degree of ionization can be created by
a laser, see, e.g., [14].) In the central region (–2.8 cm <
z < 2.8 cm for zs = ±5 cm, or –5.6 cm < z < 5.6 cm for
zs = ±10 cm) of the lens, i.e., in the region between the
separatrices (at which the longitudinal magnetic field
vanishes), the magnetic surfaces pass through the refer-
ence electrodes (3) and are held at their potential. The
potentials at the magnetic surfaces to the left and right
of the central region are assumed to be zero.

Based on Eqs. (4)–(6) and formulas (1)–(3) and (7),
we developed a computer model of the Morozov
plasma lens. The model makes it possible to trace the
particle trajectories and optimize the lens parameters,
in particular, to remove different types of aberrations.
In the model, Eqs. (4)–(6) are solved by the Adams
method of fourth-order accuracy.

3. MOMENT ABERRATIONS

An analysis of the results from the computer model-
ing of the ion trajectories that was carried out in our ear-
lier paper [10] shows that the moment aberrations
increase as the beam injection radius and the magnetic
field of a lens increase and as the ion injector is dis-
placed toward the lens. Along the calculated ion trajec-
tories, the conservation laws for the total energy and the
moment of the generalized momentum were found to
be satisfied to within five significant decimal digits.
Here, we are interested not in the trajectories but in the
conditions under which the moment aberrations are
negligible. Performing the corresponding manipula-
tions with Eq. (5) for the azimuthal ion motion, we can
obtain the following conservation law for the moment
Mϕ of the generalized momentum of an ion with respect
to the lens axis:

(8)

This law implies that the necessary and sufficient
condition for the absence of moment aberrations during
the focusing of a particle beam is that the initial value
Mϕ0 is zero. Since, in experiments, the beam particles
are injected at a zero initial azimuthal velocity (Vϕ0 =
0), a sufficient condition for the absence of moment
aberrations is that the magnetic field in the ion injector
be zero, Aϕ0 = 0.

Mϕ r mVϕ qAϕ /c+( ) Mϕ0.= =
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4. GEOMETRIC ABERRATIONS IN A LENS
WITH A CONTINUOUS DISTRIBUTION 

OF THE FOCUSING POTENTIAL

4.1. Focusing of the Particles Injected 
from a Point Source

The particles injected from a point source placed at
the lens axis are subject to spherical aberrations, which
are a particular case of geometric aberrations. It is well
known (see, e.g., [15, 16]) that, in vacuum lenses,
spherical aberrations are, in principle, unavoidable. In
[3], it was shown theoretically that they can be elimi-
nated in a thin electrostatic plasma lens in the paraxial
approximation. Here, we investigate the possibility of
removing spherical aberrations in a more general case.
Specifically, spherical aberrations in a Morozov plasma
lens can be removed by passing the particles to be
focused through extraneous charges with a controlled
density distribution.

As an example, we present the results from a com-
puter modeling of the focusing of a proton beam for the
following parameter values (which are comparable to
those in [6]): the proton energy is W = 20 keV, the
radius of the reference electrodes is 3.7 cm, the radius
of the current loops is ac = 6.5 cm, the coordinate of the
proton injector is z0 = –30 cm, and the proton beam cur-
rent is 0.1 A. (In this series of simulations, the magni-
tude of the proton current is needed merely to deter-
mine the compression ratio of the focused beam and is
unimportant in other respects because it is assumed that
the beam charge is neutralized by the plasma electrons.)
The beam divergence angle is 0.1 rad, so that, at the
center of the lens, the beam radius is no larger than
3.0 cm. The central loop is placed at z = 0, and the side
loops are placed at zs = ±5 cm.

As in our earlier papers [9–11], the boundary condi-
tions were stated in the form of a radial potential profile
in the plane of the central loop, Φ(r, 0) = B1r2 + B2r4 +
B3r6 + …, which was optimized by adjusting the values
of the dimensional coefficients Bn so as to minimize the
aberrations (i.e., to maximize the proton current density
at the lens axis in the focal region). When necessary, the
radial potential profile could be recalculated into a
potential profile Φ(R, z) over a cylindrical surface. Note
that successful optimization of the potential profile
requires the use of a high-precision noncontact method
for measuring the spatial distribution of the electric
field strength in the plasma.

In the lens under consideration, the minimum spher-
ical aberrations are produced by the electric field poten-
tial (in electrostatic units) having the following opti-
mized radial profile:

Φ(r, 0) = 1.2r2 – 0.0180r4 + 0.000228r6. (9)

For this profile, we calculated the proton trajectories
(in Fig. 2, they are shown in the focal region) and then
determined the proton current density in the focal plane
(at zf = 27.18 cm), which was found to be 7.5 kA/cm2,
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
the mean radius of the focal spot being 0.002 cm.
Hence, we have demonstrated that the spherical aberra-
tions of a thick plasma lens with nonparaxial beams can
be eliminated almost completely.

4.2. Focusing of a Parallel Beam

The ion trajectories during the focusing of a parallel
beam were modeled for the following parameter values
(which are close to those in the experiments of [8]): the
radius of the injected beam of tantalum ions is r0 =
5 cm, the radius of the reference electrodes is 5.1 cm,
the radius of the current loops is ac = 6.5 cm, the side
loops are placed at z = ±10 cm, the coordinate of the ion
injector is z0 = –50 cm, the potential at the injector is
23 kV, the ion current is 0.5 A, and the energy of the
ions with the charge number Z = 3 is W = 69 keV. It is
well known that the focal distance in electrostatic
lenses depends on the ratio of the injector potential to
the lens potential and is independent of the ion charge
(see, e.g., [15, Section 4.7]). In the Morozov lens, the
focusing effect of the electric field is much stronger
than that of the magnetic field; consequently, it is expe-
dient to choose the charge number of tantalum ions that
corresponds to the maximum in their distribution over
the charge numbers. In the case at hand, this charge
number is Z = 3.

We supplement Eqs. (4)–(6) and formulas (1)–(3)
and (7) with the boundary conditions describing the
injection of a homogeneous monoenergetic ion beam
into the lens parallel to its axis:

Vz = V0, Vr = Vϕ = 0, z = zi (zi < 0), r = ri

at t = 0, (10)

where zi is the coordinate of the end of the injector and
the radius ri at which an ion is injected is varied from
zero to a value somewhat smaller than the radius R of

0.02

27.026.5 27.5 28.0

0.04

0.06

0.08

r, cm

z, cm

Fig. 2. Trajectories of protons injected from a point source
in the focal region.
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Fig. 6. Trajectories of Ta+3 ions in a lens with a smoothed
potential profile, the distance between the reference elec-
trodes being 1.6 mm.
the reference electrodes, which, in turn, is smaller than
the radius ac of the current loops.

In [8], the ion beams were best focused (the com-
pression ratio being about 30 at a total ion current of
0.24 A) in experiments in which the potential profile
over a cylindrical surface was proportional to the mag-
netic field strength at the lens axis. For this potential
distribution, we numerically traced the ion trajectories
(Fig. 3) and computed the radial profile of the ion cur-
rent density in the focal plane. The current density at
the focus was calculated to be jmax = 20 A/cm2, the mean
beam radius being 0.05 cm and the compression ratio
being about 3140. These results are much better than
the experimental data but are significantly worse than
the optimized results presented below. It should be
noted that, in the experiments of [6–8], the potentials
were distributed over the reference electrodes in a dis-
crete and stepwise fashion, which substantially
degraded the focusing conditions (see below).

In the case in question, the geometric aberrations are
minimal when the potential (in electrostatic units) has
the optimized radial profile

Φ(r, 0) = 0.6r2 – 0.002r4 – 7.5 × 10–5r6. (11)

This optimized profile was used to calculate the ion
trajectories and the radial profile of the ion current den-
sity in the focal region (see Fig. 4). The maximum cur-
rent density was found to be jmax = 2.1 kA/cm2. As a
result of the optimization, the beam compression ratio
became as large as 3.3 × 105. The optimum potential
profile is fairly sensitive to the values of the coeffi-
cients. The maximum current density calculated from
formula (11), in which the last coefficient was equal to
B3 = 7.0 × 10–5, was found to be jmax = 1.5 kA/cm2; the
same formula but with B3 = 8.0 × 10–5 yielded jmax =
1.7 kA/cm2.

For convenience in comparing our results with the
experimental data, we recalculated radial potential pro-
file (11) in the plane of the central loop into an opti-
mized profile along the cylindrical surface of radius R =
5.1 cm, at which the reference electrodes were arranged
(see Fig. 5). In this case, the recalculated profile is
almost linear, which is favorable for the optimization of
the focusing conditions in a lens with a discrete profile
of the focusing potentials (see Section 5.2).

5. GEOMETRIC ABERRATIONS OF A LENS 
WITH A DISCRETE PROFILE OF THE FOCUSING 

POTENTIALS

5.1. Step Profile of the Focusing Potentials

All numerical results reported above were obtained
for a continuous distribution of the focusing potential
over the coordinates. However, in the experiments of
[6–8], the potentials were applied to the plasma by a
finite number (five or nine) of cylindrical electrodes.
Here, we consider a lens with nine electrodes. In this
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
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Table

Gap between the electrodes, mm 1.6 3.1 4.3 10

jmax at the focus, A/cm2 0.12 0.14 0.15 0.19
case, it is sufficient to specify six discrete values of the
potential within the lens volume such that the sixth
value corresponds to a zero potential at the axis. The
experiments of [8] were carried out with electrodes of
finite length, producing a step potential profile, which
was somewhat smoothed out in the plasma. The radius
of the electrodes was 51 cm, their length was 12 mm,
and the gap between them was 1.5 mm. The total length
of the electrode system was 120 mm. In our calcula-
tions carried out for the above parameters, the poten-
tials of the electrodes were determined by third-order
B-splines. In this case, the number of control points was
set equal to the number of electrodes times the order k =
3 of the B-spline, and the potential at each of the three
control point was set equal to the potential of the corre-
sponding electrode. In every third interval determining
the effective length of the corresponding electrode,
there are regions in which this B-spline is parallel to the
z axis. The degree of smoothness was determined by
the ratio of the effective lengths of the electrodes to the
gaps between them, the total length of the electrode
system being unchanged (for information about
splines, see, e.g., [17]; for the expediency of using
splines to approximate the fields in particle lenses, see
[15]). Figure 6 displays ion trajectories calculated for
electrodes separated by effective gaps of 1.6 mm (as is
the case in [8]) and held at discrete potentials corre-
sponding to the optimum potential profile shown in
Fig. 5. The relevant maximum in the radial profile of
the ion current density in the focal plane is jmax =
0.13 A/cm2 (cf. jmax = 2.1 kA/cm2 for the optimum con-
tinuous potential profile). From Fig. 6, we can see that,
in a potential having a step profile, the ions on the gen-
tle slopes of the steps are underfocused or even are not
focused at all, whereas the ions on the steep slopes are
overfocused. The reason is that, at the gentle slopes,
we have |—Φ| ! Eopt (where Eopt(r) is the optimum
electric field strength), while, at the steep slopes, we
have |—Φ| @ Eopt. A similar situation takes place when
the potential profile along a cylindrical surface is pro-
portional to the strength of the longitudinal magnetic
field at the axis (see [8]). Simulations show that the
beam focusing depends on the degree to which the steps
are smoothed out (see table). It is clear from the table
that the quality of beam focusing is poor and depends
weakly on the degree of smoothness (and, presumably,
on the smoothing method). The half-width of the focal
spot (about 1 cm) and the current density (about
0.1 A/cm2) agree with the experimental data obtained
PLASMA PHYSICS REPORTS      Vol. 29      No. 10      2003
in [8]. Additional information on the subject can be
found in [11].

5.2. Piecewise-Linear Profiles 
of the Focusing Potentials

Here, we discuss the problem of optimizing the
focusing potentials in the Morozov lens. We begin by
noting that, in such a lens, the trajectories of the elec-
trons moving in crossed electric and magnetic fields in
the azimuthal direction are trochoids and the guiding
centers of the electrons move along certain magnetic
surfaces. The characteristic size of the trochoids is δ =

Vd/ωc = c—Φ/(ωc ), where Vd is the electron
drift velocity and ωc is the electron gyrofrequency; for
typical lens parameters, we have δ ~ 0.1–1 mm. In order
for the length ∆z of an electrode not to influence the
formation of the optimum potential profile (as in Sec-
tion 5.1), it should be smaller than the cycle of the tro-
choid (∆z < δ) or, in any case, much smaller than the
distance between the electrodes (∆z ! d).

To optimize the focusing, we consider a piecewise-
linear (rather than step) profile of the focusing poten-
tials. A potential having a piecewise-linear profile can
be produced by a system of reference electrodes in the
form of a set of metal washers with a thickness of about
0.1–1 mm, separated by dielectric bushings. A linear
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Fig. 7. Radial profile of the current density of Ta+3 ions in
the focal plane (zf = 17.27 cm) in a lens with nine electrodes
in the case of a piecewise-linear approximation to the opti-
mum potential profile in the z-direction.
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potential profile between the neighboring electrodes is
ensured by a resistive film deposited onto the inner sur-
faces of the washers and onto their ends. The inner
diameter of this electrode system is sufficient for the
beam to pass through.

In the case considered in Section 4.2, the desired
potential profile along the z axis is almost linear (see
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Fig. 10. Proton trajectories in the focal region under the
conditions of Fig. 9.
Fig. 5), which facilitates the optimization of the focus-
ing. Figure 7 shows the radial profile of the current den-
sity of Ta+3 ions in a lens with a piecewise-linear z pro-
file of the potential of nine electrodes. One can see that,
in this case, the ion current density at the focus is as
high as 400 A/cm2, indicating that the focusing is sig-
nificantly better than that in a lens with a step potential
profile. As is expected, a lens with a larger number of
electrodes (19 in place of 9) provides even better focus-
ing: the ion current density at the focus amounts to
1.6 kA/cm2.

If (as in the case at hand) the desired potential pro-
file along the z axis is close to a linear profile, then it is
possible to use a small number of electrodes; otherwise,
the number of electrodes should be larger in order for
the piecewise-linear approximation to the potential pro-
file to give a satisfactory result. It should be emphasized
that, in the experimental implementation of the optimi-
zation method proposed here, it is necessary to control
the optimum distribution of the electric field strength
within the lens volume by measuring the electric fields
in the plasma with sufficiently high precision.

6. CHROMATIC ABERRATIONS

In axisymmetric vacuum lenses, chromatic aberra-
tions can never be eliminated (see, e.g., [15, 16]). The
possibility of removing such aberrations in a system of
two electrostatic plasma lenses in the paraxial approxi-
mation was shown theoretically by Morozov and Lebe-
dev [5].

Figure 8 illustrates how chromatic aberrations can
be eliminated in a system of two Morozov lenses for
focusing annular ion beams. The coordinate of the
injector is z = –70 cm, the initial radius of an annular
proton beam being 3.5 cm. The parameters of the first
lens, which ensures the radial separation of a nonmo-
noenergetic beam at the entrance to the second lens, are
as follows: the radius of the electrodes is 5 cm, the max-
imum potential is 2.8 kV, the radius of the current loops
is 6.5 cm, the current in the central loop is 30 kA, the
coordinate of the central loop is z = 0, and the coordi-
nates of the side loops are z = ±5 cm. The potential dis-
tribution within the first lens is unimportant for our pur-
poses: in the case at hand, it is chosen to be Φ [kV] =
2.8cos(πz/5.6).
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The parameters of the second lens are the following:
the radius of the electrodes is 2 cm, the maximum
potential is 1.5 kV, the radius of the current loops is
4 cm, the current in the central loop is 30 kA, the coor-
dinate of the central loop is z = 35 cm, and the coordi-
nates of the side loops are z = 35 ± 5 cm. Figure 9 shows
the potential distribution within the second lens (here,
the point z = 0 corresponds to the front of the second
lens). This distribution was chosen so as to minimize
the dependence of the focal distance on the proton
energy in the range 16–21 keV. The potential distribu-
tion was approximated by third-order B-splines with
n = 11 control points on the left half of the system of the
reference electrode. Figure 10 shows proton trajectories
in the focal region. We can see that, at a focal distance
of 80.2 cm, all protons with energies from 16 to 21 keV
(the related energy spread being ±13.5%) are focused
into a spot of radius 0.03 cm (the compression ratio in
the radial direction being equal to 117).

Hence, we have proposed and analyzed the methods
for the almost complete elimination of geometric,
moment, and chromatic aberrations in magnetoelectro-
static Morozov plasma lenses for focusing wide-aper-
ture (nonparaxial) charge-neutralized ion beams.
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Abstract—The electromagnetic instability of a relativistic space plasma is considered. The instability mani-
fests itself during transverse oscillations in an anisotropic plasma either when the wavelength is sufficiently
long and the velocity distribution is fixed or when the plasma is strongly anisotropic and the wavelength is fixed.
The critical wavenumber is estimated for a velocity distribution in the form of an oblate ellipsoid of revolution.
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1. INTRODUCTION

Over the past decade, theoretical and observational
studies have focused much attention on such sources of
high-energy particles as active galactic nuclei, quasars,
and black holes. Although the accuracy and resolution
of modern astronomical observations are becoming
increasingly higher, they do not provide detailed and
comprehensive information about the structure of such
space objects. As for theoretical modeling, one has to
choose between plausible physical models [1, 2], keep-
ing in mind that not all of them are entirely realistic
because they do not take into account the onset of pos-
sible instabilities. The instability of relativistic objects
has received insufficient study. This circumstance was
pointed out in a recent paper by Heinz and Syunyaev
[3], who mentioned only one specific isotropization
factor—the instability of two overlapping plasma flows
(which hardly exhausts the subject)—and found it nec-
essary to continue research in this field. In particular,
the electromagnetic instability of a laboratory plasma
due to the anisotropy of the velocity distribution should
play a more important role at relativistic plasma veloc-
ities. This is why it is desirable to investigate this insta-
bility under the conditions encountered in quasars and
analogous objects with high energy densities.

The aim of this paper is to study the stability of a
homogeneous relativistic plasma with a generally aniso-
tropic velocity distribution. If such a plasma is unstable,
then it will rapidly become isotropized even in the
absence of collisions. This isotropization should be
taken into account in a theoretical analysis of the models
of the astrophysical objects mentioned above [4].

To simplify the mathematics, we first consider dis-
crete beams with certain momenta and then turn to a
plasma with a continuous velocity distribution. This
approach, which, of course, yields the same formulas
1063-780X/03/2910- $24.00 © 0890
and conclusions as that based on the initially continu-
ous distributions, is sometimes more efficient, espe-
cially in view of the fact that discrete beams can consist
of particles of different origin [5–7]. (Note that discrete
injected beams find many technical applications [8].)

2. BASIC EQUATIONS

We will work in a model of a homogeneous plasma
consisting of the particle flows designated as i = 1, 2, …,
N, with the corresponding velocity vectors Vi(ui, v i, wi),
spatial densities ni , masses mi, and charges ei . The
model also assumes a background with a spatial charge
density of opposite sign:

We consider the propagation of a wave in the linear
approximation, assuming that the z axis points along
the wave vector k and all of the linearized perturbed
quantities are proportional to the factor exp(λt + ikz)
where t is the time and λ is the growth rate.

If there were no perturbation, each particle would
move by inertia, r = r0i + Vi t. In order to linearize the
equations of motion

(where c is the speed of light), we take into account the
algebraic relationships between the velocity and
momentum,
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(where β =  and βi = ). After
some simple manipulations, we arrive at the equations

Here, we have introduced the notation

,

in which e and h are the perturbations of the electric
field E and magnetic field H, respectively.

Summing the contributions of all the particles, we
obtain the linearized current density:

, (2)

where Li = 1/(λ + ikwi). Note that, if the quantities k and
λ are of the same order of magnitude, then the current
density is inversely proportional to k.

Current densities (2) are substituted into Maxwell’s
equations to yield

(3)

3. DERIVATION AND ANALYSIS 
OF THE DISPERSION RELATION

Here, we are interested in ultrarelativistic space
plasmas. In this case, in formulas (3), it is convenient to
pass over from the velocities again to the momenta. In
order of magnitude, we set

which corresponds to millimeter wavelengths and, as
will be shown at the end of the paper, to very short
(from an astrophysical point of view) time scales of the
instability.

In relationships (1), we neglect the quantity m under
the square root symbol in comparison with p/c. We
express δj in terms of the particle momenta pi and also,
using formulas (3), express the perturbed magnetic
field h in terms of the perturbed electric field ε. We
restrict ourselves to considering a particular case in
which the particle momentum distribution is symmetric
with respect to all three coordinate planes. In this case,
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some of the sums vanish by symmetry. We single out
the x and y components of the electric field to obtain

where the quantity Li now takes the form

After some explicit cancellations, the equation for the x
component becomes

(4)

The y component of the electric field satisfies an analo-
gous equation. Singling out the z component results in
the equation

(5)

As an example, we consider an ellipsoidal velocity
distribution,

a special case of which, with an exponential function F,
is often used in model calculations [9, 10].

In what follows, we will omit the subscript i, assum-
ing that all the particles are of the same species.

We use dispersion relation (4) and introduce the
polar coordinates through the relationships

In extending the model step by step, we first con-
sider a velocity distribution that is symmetric under the
operations of rotations, A = B. (It is physically clear that
a spherically symmetric distribution is stable.) Switch-
ing from summation to integration, using a particular
expression of ϕ, and integrating over p and ξ, we reduce
Eq. (4) to

(6)
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where

Since the explicit expression for the remaining inte-
gral is somewhat involved, we restrict ourselves to cal-
culating the left-hand side of Eq. (6) at λ = 0:

(7)

As λ  ∞, the left-hand side approaches +∞. The
second of expressions (7) is always positive by virtue of
the inequality 2τ > . The quantity in parentheses
in the first of expressions (7) is negative because 2ψ <

; hence, at small k values, we deal with the insta-
bility of a velocity distribution in the form of an oblate
spheroid, C < A. The vanishing of the first of expres-
sions (7) gives the stability boundary. As the deviation
of the distribution from a spherical shape decreases
(i.e., as ψ reduces) at A = const, this boundary shifts
progressively toward smaller values of k (i.e., toward
longer wavelengths).

It is of interest to consider the limit A  ∞ at con-
stant C. The numerator of the fraction in the integrand
in Eq. (6) can be represented as the sum

After the replacement θ  π – θ and the correspond-
ing symmetrization in θ at A = ∞, the quantities cos2θ
cancel each other out, so that the contribution of the last
term to the integral can be calculated directly. In the
remaining terms, we perform integration and replace
arccos C/A with π/2 to obtain the approximate disper-
sion relation
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We can readily see that, in the limit A  ∞, the
solution behaves asymptotically as λ ≈ kc, which indi-
cates instability, in complete agreement with the above
analysis. This asymptotic behavior is valid under the
conditions A @ C and

the latter of which implies that the wavelength should
be quite long.

In three-dimensional geometry, the mathematics is
somewhat more laborious. To integrate over p in the
three-dimensional generalization of Eq. (4) is an easy
task. In order to determine the sign of the left-hand side
at λ  0, we integrate by parts over the variable θ. As
a result, the singularity in the denominator (λ +
ikccosθ)2 is removed and λ = 0 can be inserted directly
into the resulting integral. Finally, straightforward inte-
gration over ξ in the double integral transforms the dis-
persion relation into

(8)

For B > C, the first term is negative; hence, for suf-
ficiently small k values (writing the relevant exact con-
dition involves fairly complicated elliptic integrals and
doing so goes beyond the scope of this paper), the sys-
tem is unstable. Thus, at long wavelengths, any ellipsoi-
dal velocity distribution is unstable [the only exception
to this is a spherical (degenerate) distribution], because
the wave vector can always be turned about the axes of
the ellipsoid so as to satisfy the condition B > C. In this
case, however, the instability boundary again shifts
toward longer wavelengths as the deviation of the dis-
tribution from a spherical shape decreases, and, in the
limit B = C, the critical wavelength becomes infinitely
long. We thus have considered the instability of a veloc-
ity distribution having a prolate spheroidal shape (A =
B > C). This distribution is a particular case of the dis-
tribution whose instability has just been analyzed.
However, a velocity distribution in the form of an oblate
spheroid (A = B < C) is also actually unstable, provided
that the wave vector has a different orientation (i.e., is
perpendicular to the major axis of the ellipsoid of revo-
lution).

In the context of the astrophysical applications in
question, we are dealing with ultrarelativistic objects.
However, objects with nonrelativistic velocities can
also be subject to the same electromagnetic instability
[11, 12]. In our case too there is only one instability
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region for an anisotropic velocity distribution of non-
relativistic particles, although, in [11], it was pointed
out that the instability occurs in two forms. In fact, if, in
formula (31.12) from [11], we retain only the electron
term and consider exclusively the instability boundary
(at which the oscillation frequency is zero, ω = 0), we
then obtain

, (9)k
2
c

2 ωL
2 T ⊥

T ||
------ 1– 

 =
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where T|| and T⊥  are the longitudinal and transverse
temperatures, respectively, and ωL is the gyrofrequency.
As in our case, Eq. (9) yields a unified dependence of
the critical wavelength on the anisotropy parameter,
provided that the first term in the first of expressions (7)
is equated to zero.

We now are left with the problem of analyzing
Eq. (5). Substituting the momentum distribution
ϕ(px , py , pz) adopted above into Eq. (5) yields
2πce
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θ θdsin
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-----------------------------------------------------------------------------------------------------------------------------
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π
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Integration of this equation by parts puts it into the form

For λ2 ≥ 0, the left-hand side of this equation is obvi-
ously positive, indicating that, at least, aperiodic insta-
bility is absent.

Hence, in the case of an anisotropic relativistic
velocity distribution, transverse oscillations are subject
to an aperiodic instability, in whose development an
important role is played by the magnetic field. In con-
trast, longitudinal Langmuir oscillations are not subject
to aperiodic instability, as is the case when the particles
do not fall into sharply separated flows (see, e.g., [8] for
details).

4. DISCUSSION

We have shown that ultrarelativistic and nonrelativ-
istic plasmas with anisotropic particle velocity distribu-
tions are both unstable on short time scales.

In an unstable plasma, the critical wavenumber is
determined from dimensionality considerations:

(10)

where we have introduced the spatial density of the par-
ticles,
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It should be noted that formula (10) refers to a
strongly anisotropic plasma and, as has been said
above, when the degree of anisotropy B/C – 1 in disper-
sion relation (8) reduces, the critical wavenumber k
decreases to zero (for an isotropic distribution). How-
ever, for rough estimates, this circumstance is not so
important: in any case, a low degree of anisotropy can
neither affect the evolution of the system nor manifest
itself in the observational results.

Numerical estimates can be taken from the paper by
Nobili et al. [13], who theoretically considered the con-
ditions near the accretion disk surrounding a black
hole. In that paper, the hydrogen density near the event
horizon was estimated to be between 5 × 10–8 and 2.5 ×
10–4 cm–3 and the hydrogen temperature was estimated
as T ~ 1010 K. Inserting these values into formula (10)
gives a critical wavelength of about one millimeter, the
time scale of the instability being about 10–13 s. In other
words, the instability is local and develops practically
instantaneously. This indicates that the plasma evolu-
tion cannot lead to any significant degree of anisotropy;
consequently, the calculation of the growth rate is
important merely from the formal point of view. The
evolution of the plasma should be calculated by using
an isotropic plasma model (in which the plasma may or
may not relax to a Maxwellian distribution). It should
also be stressed that, in astrophysical problems, the sys-
tem is usually large enough for its linear dimensions to
be treated as effectively infinite compared to the spatial
scales of the electromagnetic instability.

The question about the stability of the systems of
cosmic rays, which also belong to the class of relativis-
tic systems, has not received a wholly satisfactory
answer because the actual structure of the spatial and
angular distributions of rays is very complicated [14].
Note that, in the simplest models we have analyzed
above, the perturbations of systems of cosmic rays
inevitably interact with interstellar gas and, therefore,
are rapidly damped.
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