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Abstract—This paper continues a series of review papers devoted to the physics of complex plasmas, in which
one of the components (dust) is in a crystalline or liquid state, while the others (electron, ions, and neutral
atoms) are in a gaseous state. This review is devoted to the experimental investigations of new phenomena in
complex plasmas. The experiments are explained using estimates based on the theory of elementary processes
in complex plasmas, including the new phenomena considered in the previous parts of the review. The paper
describes (i) the experiments on multilayer plasma crystals, including the study of their structure and phase
transitions; (ii) the experiments on dust monolayer crystals; (iii) the experiments on plasma clusters formed by
small number of dust grains; (iv) the experiments on dust ion-sound waves, dust acoustic waves, dust lattice
waves, and dust shear waves; (v) the experiments on shock waves; (vi) the experiments on the ionization insta-
bilities and the creation of dust voids and dust clumps; and (vii) the experiments on Mach cones excited either
by fast grains or laser radiation. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

Complex plasma, as was described in [1, 2], is a
state of matter composed of dust grains, electrons, ions,
and neutral atoms with one of the components (dust)
being in a strongly coupled state, while the others are
coupled weakly. This is possible because dust grains in
plasma can have rather large charges and low tempera-
tures. In the previous parts of this review [1, 2], we
emphasized the main differences of complex plasmas
as a state of matter compared to the usual state of matter
and the difference between dust–dust interactions and
the ordinary Coulomb and Yukawa interactions.

We showed (i) that a new feature of complex plas-
mas is the long-range nonscreened interaction of dust
grains both of the repulsive and attractive types and that
the simple screened Coulomb interaction operates in
exclusive cases; (ii) that the nonlinearity in screening is
large, at least for the low ion-to-electron temperature
ratio encountered in present laboratory experiments;
(iii) that the high plasma absorption on the grains
related to the charging process (continuously operating
to support the large grain charges) requires the contin-
uous presence of ionization, which, together with the
absorption on grains, changes the ground state of a
complex plasma system; (iv) that the collective dust–
dust interactions (where the interaction of two grains is
determined by the density of all other grains) can be
substantial for the dust densities used in present exper-
iments and that the collective interaction changes the
grain fields, thus creating a series of attraction mini-

1 This article was submitted by the authors in English.
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mums; and (v) that the complex plasma is an actually
open system, to which the concept of free energy is,
strictly speaking, inapplicable.

To estimate the role of the new processes in complex
plasmas, we have given a list of the elementary pro-
cesses in complex plasmas (see [2]) in such a form that
they can be simply used by experimentalists to interpret
the new phenomena observed. The reason for concen-
trating on the primary interactions and elementary pro-
cesses in complex plasmas was to provide a basis for
describing the most important processes that play a role
in collective interactions and lead to strongly coupled
and strongly correlated states and plasma condensation,
which is one of the main topics of this review. Unfortu-
nately, the theoretical understanding of the transition to
a strongly correlated state of complex plasma is still
poor, and it is hardly probable that the experiments in
this field will provide new results in the near future. The
processes listed in the previous parts of the review can
only give some indication of the physics of the transi-
tion to a strongly coupled state of complex plasma. We
will, therefore, use the previously given material to
make some theoretical estimates, among which the
most important are the estimates of collective dust–dust
interactions discussed in detail in [2]. Keeping in mind
that a detailed theory is still in the initial stage of devel-
opment, we hope that these theoretical estimates will
provide a deeper understanding of the existing observa-
tions and will determine the direction in which the the-
ory could further be developed. Thus, we will indirectly
provide some proposals for future theoretical work
based on these estimates. For the phenomena for which
003 MAIK “Nauka/Interperiodica”
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theoretical models are already available, such as linear
mode propagation, we will discuss the observations,
compare them with the existing theoretical models, and
discuss what is necessary and possible to perform in
future theoretical and experimental approaches.

At present, there exist several types of experiments
with crystalline structures, namely, the experiments
with multilayer plasma crystals, monolayer 2D crys-
tals, and dust clusters containing a rather small number
of dust grains. In efforts to make estimates for the inter-
pretation of these experiments, the two following gen-
eral aspects of observations should be taken into
account:

(i) For the plasma crystals observed, the size of the
experimental installation L is usually much larger than
both the ion–neutral mean free path and the ion–dust
mean free path (see below). The latter inequality is

expressed as L @ Lcr = /aP0, where λDi is the ion
Debye length, a is the dust size, and P0 = ndZd/n0. This
estimate suggests that the concept of collective dust–
dust attraction (see [2]) should be used for interpreting
the experimental results, rather than that of the noncol-
lective interactions that occur when the opposite rela-
tion between the ion–dust mean free path and the instal-
lation size is satisfied.

(ii) The size of the dust clusters observed in experi-
ments usually satisfies the opposite inequality, L ! Lcr,
and the dust grain interaction can be considered as the
sum of all the possible noncollective pair dust interac-
tions (the same as for ordinary matter with Coulomb or
Yukawa interactions). The difference between the non-
collective dust–dust pair interaction and Coulomb and
Yukawa interactions was considered in detail in [2].

Two comments should be made concerning the par-
ticle distributions in a complex plasma when using the
estimates based on the results presented in [2]:

(i) The high rate of plasma absorption on dust in the
existing experiments is usually compensated for by the
local ionization. Under these conditions, the thermal
electron and ion distributions are not established
because the necessary condition for reaching thermal
distributions, ZdP0 ! 1, is not fulfilled. One should note
that the ionization process always produces nonthermal
distributions and the dust charging process makes the
electrons and ions nonthermal (depletes the high-
energy tail of the electrons and the low-energy compo-
nent of the ions). Strictly speaking, any theoretical esti-
mate should use a kinetic description. However, such an
approach is rather complicated and the full kinetic the-
ory is still in the stage of development (only the first
steps toward its development are presently being made;
see below). Therefore, we use here the estimates of the
elementary processes from [2] for the thermal electron
and ion distribution, keeping in mind that the expres-
sions for the parameters in those estimates contain inte-
grals of the whole distributions of the electrons and ions
and that the nonthermal part of the distributions can

λDi
2

change the numerical results by a factor of the order of
unity.

(ii) According to the existing observations and also
according to the theoretical estimates of the existing
kinetic theory, dust grains are usually distributed ther-
mally. The existing theory predicts that, taking into
account all new types of dust–dust interactions related
to the collective effects, the dust distribution becomes
thermal in a rather short time interval. This is also due
to the high rate of dust–dust collisions with all collec-
tive effects included. Even for nonthermal electron and
ion distributions, the existing theory (which will be dis-
cussed in the next part of the review) predicts that the
distribution of the dust grains should be thermal (the
dust–dust collision integral will contain only the inte-
gral over the ion and electron distributions as a com-
mon coefficient in front of the expressions, vanishing
for the dust thermal distribution in the dust–dust colli-
sion integral). The experiments on plasma crystal melt-
ing (which we will discuss in detail below) also indicate
that, after the melting of the crystal, the dust component
has a thermal distribution. The dust–neutral collisions
also thermalize the dust distribution if the neutral com-
ponent is thermal. Therefore, there is good reason to
assume in the estimates that the dust grains have a ther-
mal distribution.

We will thus use the estimates based on the thermal
distributions for all the complex plasma components in
the form given in [2].

There are three important issues for both the theory
and experiments on strong coupling in complex plas-
mas: (i) the physics of the complex plasma state before
condensation, (ii) the physics of the strongly correlated
and strongly coupled state of complex plasma after
condensation, and (iii) the transition processes to the
state with strong coupling and strong correlations (the
phase transition).

The most complicated of these is the transition prob-
lem, which should be understood and described theo-
retically in a manner different from that used in study-
ing usual matter. The condensed states—the plasma
crystals and liquids—are also different from crystals
and liquids in usual matter. New approaches should be
used for their description. The complexity of the transi-
tion problem is related to the fact that (as opposed to
ordinary matter) the concept of free energy is not
always applicable to complex plasmas. Therefore, the
Landau theory of phase transitions [3], which uses an
expansion of the free energy with respect to the param-
eter of order η and associates the phase transition with
the point where this parameter becomes finite is gener-
ally inapplicable for complex plasmas.

This does not mean that the parameter of order can-
not be introduced in complex plasmas. Moreover, one
can introduce it in a rather general way if the transition
is reached from the gaseous state, which can be
described in the simplest way. Let us examine a typical
example. The phase transition should correspond to a
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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certain instability, the threshold of which can be, in
principle, found in the gaseous state. We will demon-
strate below that, in the gaseous state, there exists a uni-
versal instability and that, under certain conditions, one
periodical mode can be excited at the threshold of this
instability. The appearance of a periodicity in distur-
bances at the threshold can serve as an indication that
the system will start to have a periodical distribution of
grains or, in other words, can be regarded as the appear-
ance of a crystalline state. Of course, it is not sufficient
to do a linear analysis of such a problem, but one can at
least start with such an instability as a candidate for the
description of the phase transition. In the case this
mode is found to be responsible for the phase transition,
its amplitude in the nonlinear stage of the instability can
serve as parameter of order for the system. Of course,
the scheme presented here is only one of the possible
scenarios for future research and, at present, there does
not exist a detailed approach based on such a scenario.

Keeping in mind the many new features discussed
previously, it seems that, in complex plasmas, the most
important method for studying the transition to a
strongly correlated state and the formation of a con-
densed state is the investigation of the pair correlations
as a function of the parameter of order. We will, there-
fore, concentrate on the problems of the change in the
pair correlation function during the transition stage and
in the condensed phase of complex plasmas. The value
of the parameter of order at which long-range correla-
tions appear should correspond to the phase transition
condition. Such an approach is obviously more sophis-
ticated than the Landau approach, but it can also be
used under the conditions where the concept of free
energy is not applicable. We will not go here into the
details of this problem and note only the existing diffi-
culties and one way they could be resolved. In the next
part of the review, we will give a more detailed descrip-
tion of such an approach. It is desirable that the new
theory includes the possibility of using the scale invari-
ance approach to find the universal indexes for fluctua-
tions at the critical point.

Note that the term “strong coupling” does not really
express the meaning of the state to which complex
plasma can condensate. In ordinary matter, the transi-
tion to the crystalline or liquid state is indeed related to
the strong coupling at which the electrostatic energy
substantially exceeds the kinetic energy of the interact-
ing grains. The basic requirements for producing liquid
and crystalline states under laboratory conditions were
discussed in [1, 2]. Obviously, there exist many possi-
ble parameters on which, in particular, the attraction
forces depend (such as the grain size, the parameter P,
the intergrain distance, etc.). One of our most important
results is the experimental measurements of the cou-
pling constant Γcr for the transition, which depends on
the dust charge, dust temperature, intergrain distance,
and dust shielding. To reach the transition, Γ should
exceed the critical value Γcr, for which different theo-
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
retical approaches give somewhat different values. In
experiments, Γcr, as well as its dependence on different
parameters, is measured. Usually, the Γcr value should
be large enough for the transition to occur. To obtain
such large values of Γ, we need to have high grain
charges (i.e., large electron and low ion temperatures
and a large dust size) and small kinetic grain tempera-
tures. In most cases, the experimentally obtained Γcr

does not correspond to the value given by the one-com-
ponent plasma (OCP) approach (see [1, 2]).

In ordinary matter, strong coupling leads to strong
correlations, namely to the appearance of long-range
correlations (long-scale order in crystals and short-
scale order in liquids). In complex plasma, the relation
between the strong coupling and long-range correla-
tions is not obvious. For example, long-range correla-
tions can be related to dust attraction when the kinetic
energy of a dust grain is not too large (of the order of
the attraction potential well). Then, under conditions
where the long-range correlations are present, we will
deal not with strong interaction but with middle-range
interaction. Thus, strictly speaking, for condensation to
appear, it is required only that the long-range correla-
tions start to form. The level of interdust interaction
corresponding to the appearance of strong correlations
should be the subject of both theoretical and experi-
mental work. As in [1, 2], we can also introduce the
parameter Γ, which, under the conditions where the
transition to a strongly correlated state occurs, can be
large. However, since the physics of transition is differ-
ent from the physics of transitions in ordinary matter or
in the system of Yukawa interacting grains, this param-
eter can be determined by physical effects other than
those in ordinary matter. Therefore, the intergrain dis-
tance entering into this parameter and the ratio of the
intergrain distance to the screening length could be not
the only parameters determining the phase transition.

After these introductory comments, we will now
turn to the description of the experimental results and
perform some estimates, using the description of the
elementary processes in complex plasmas given in [2].
These theoretical estimates can serve only as a first
approximation of the problem, and a detailed theory is
still waiting to be developed. We postpone the discus-
sions of the existing theoretical approaches, correlation
effects, and other collective effects to the next part of
the review, in which we will consider the present
achievements and the outlook for future theoretical
research. In the next part of the review, we will also dis-
cuss the value of Γcr found in several theoretical models
and make some comments on the applicability of the
existing models to real complex plasma experiments.
Here, we mainly focus on the experimental results on
pair correlation functions and the values of Γcr that
demonstrate the presence of long-range correlations
after the transition.
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2. PLASMA CRYSTALS

2.1. Crystalline Structures Observed under Different 
Conditions

Plasma crystals2 and long-range correlations in
complex plasmas were observed under quite different
experimental conditions—different temperatures,
charge component densities, gas pressures, and dust
sizes. In addition, the dc floating-potential electric
fields of the walls and other types of forces are impor-
tant in establishing the dust force balance and the for-
mation of plasma crystals. Therefore, the main ques-
tions are the following: What do experiments per-
formed under quite different experimental conditions
have in common? Are the values of parameter Γ of the
same order of magnitude or they are quite different in
different experiments? Is the parameter P0, which
determines collective dust interaction, of the same
order in different experiments, or its value is quite dif-
ferent in different experiments? Is the ratio of the dust
size to the screening length different? How important is
the ionization power? Not all of these parameters are
available from the experimental data, but some esti-
mates can be made using the estimates of the elemen-
tary processes in complex plasmas [1, 2].

Observations of plasma crystals under quite differ-
ent experimental conditions have certain advantages for
a deeper understanding of the physics related to the
observed plasma condensation. We start with listing
some of the observations and then describe in more
detail the particular case of the radio-frequency (RF)
discharge plasmas that are most often used in experi-
ments.

There are several types of plasma devices that pro-
vide the conditions for the observation of long-range

2 This term is widely used by experimentalists to denote the crys-
tals formed by dust grains in a plasma.

Fig. 1. Distribution of dust grains in a plasma crystal
obtained in an RF discharge plasma [4].
correlations in complex plasmas. There are RF plasmas
[4–7], low-power dc plasmas [8], high-pressure com-
bustion plasmas [9], inductive plasmas [10], and radio-
active plasmas [9]. All these plasmas have been used
successfully in the generation of strongly coupled or
long-range correlated complex plasma states [11–15].
Most of the existing experiments were devoted to RF
plasmas and also to dc plasmas. These experiments pro-
duced the largest amount of information and will be,
therefore, described in more detail.

Here, we start with an illustration of how different
were the conditions at which plasma crystals were
observed. In RF discharges (see Fig. 1), the grain size
ranged from 3 to 10 µm, the krypton gas pressure was
in the range 1–2 Torr, the ionization was homogeneous
and produced by an RF field, ion density was 5 ×
108 cm–3, the dust averaged spacing was 260 µm, the
dust charge was Zd ≈ 104, and the dust density was nd =
(1–2) × 104 cm–3. The electric field in the plasma sheath
was 50–100 V/cm and could support rather heavy dust
grains against the pull of gravity. The parameter Γ in
this case was 104 (much larger than the OCP critical
value).

In dc glow discharge plasmas (Fig. 2) [8], the con-
figuration of the electric field in striations was three-
dimensional. Apart from the field along the discharge,
the floating-potential field of the cylindrical wall was
important; on average, the field in striations was
10 V/cm (much lower than for RF plasmas near the
electrodes). The ionization was supported by a dc cur-
rent of several amperes, and the pressure ranged from
0.1 to 1 Torr. The grain charge was as high as Zd ≈ 106,
and the size of the grains ranged from 2 to 63 µm. Nev-
ertheless, the intergrain distance in the crystalline state
was 300–400 µm (similar to that in RF discharges), the
grain density was 104 cm–3, and Γ ~ 160–850 (as com-
pared to (2–10) × 104 in RF discharges). Although the
electric field in the stratum, as well as the value of the
ion drift velocity caused by the electric field, was inho-
mogeneous, the intergrain distance in the crystalline
state was almost constant. In both mentioned types of
experiments, the ion-to-electron temperature ratio was
very small, τ ≈ (1–2) × 10–2.

In a high-density atmospheric-pressure plasma in
which the ion-to-electron temperature ratio was of the
order of unity [16] (see Fig. 3), a regular structure was
observed in the boundary region between the combus-
tion plasma and its condensation region. In this case,
the dust density was 106–107 cm–3, and the temperature
was in the range 1900–2000 K. No external electric
field was applied. The parameter was Γ ≈ 0.5–18, the
electron density was (0.3–3) × 1010 cm–3, and the dust
charge was Zd ≈ 500–700.

Another experiment involving the observation of
dust structures at atmospheric pressure was performed
for a nuclear excited plasma where the source of ioniza-
tion was the radioactivity of nuclei with a source local-
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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ized in space and with large fluctuations of the densities
of the ionized electrons and ions as functions of the dis-
tance from the source. The grains had the size 1.8–
4.8 µm, the grain charge was about Zd ≈ 103, and Γ was
about 30, while the spacing between the grains was
again of the order of that in all previously mentioned
experiments (about 200 µm).

In glow discharges, structures with the simultaneous
presence of the crystalline, liquid, and gaseous states
were also observed (see Fig. 4).

Thus, under different experimental conditions, the
measured values of the parameter Γ differ substantially
and can even be of the order of or less than unity. Nev-
ertheless, the value of the parameter P0 in all experi-
ments was of the order of unity. This should be taken
into account in theoretical models that are used to
explain the results of observations. Here, we mention
only that the use of the collective dust–dust interactions
(including long-range attraction and repulsion), which
were described in detail in [2], is able to explain quali-
tatively the difference in the values of Γ observed in dif-
ferent experiments. We will return to this problem in
the next part of the review.

(b)

(‡)

Fig. 2. Typical distributions of dust grains in a plasma crys-
tal obtained in striations of a dc discharge plasma at a cur-
rent of 1 mA and pressure 0.2 Torr [8]: (a) distribution in the
horizontal plane and (b) distribution in the vertical plane.
The bars correspond to 1 mm.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
Let us now describe in more detail the experiments
in RF discharge plasmas.

2.2. Observational Techniques

The physical situation is the simplest in RF dis-
charge plasmas, since the crystals are formed in the
electric field of the plasma sheath, where the only
important forces in the vertical direction are the force of
gravity, the electric force of the sheath, and the drag
force of the ions accelerated towards the wall by the
electric field of the sheath. These are external forces in
the absence of dust, and they can be, in principle, mea-
sured. The presence of dust can substantially alter
them; when this happens, the interdust interaction
forces can be important. These effects are of interest in
investigations of crystal formation.

The suspension of dust grains against the pull of
gravity is realized either electrostatically in the sheath
or by neutral gas drag. The latter, of course, is much
more difficult to control.

In RF plasmas, the electron temperature is usually
~2 eV, the ion temperature is mostly much lower (by a
factor of about 100). The grain kinetic temperature is
governed by collisions with neutral gas particles, which
are usually at room temperature (in the case of combus-
tion plasmas, the gas temperature may be, of course,
substantially higher).

Fig. 3. Regular structure observed in the boundary region
between the combustion plasma and its condensation region
[9].
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The optical detection system used to locate dust
grains is similar in all the systems employed so far. It is
shown in Fig. 5 for an RF device as a representative
case [11].

The principle is straightforward. The grains are illu-
minated by a narrow sheet of laser light (e.g., a He–Ne
laser) with a thickness of 100 µm and are detected via
scattered light using a CCD camera. The optics used to

Fig. 4. Structure with the simultaneous presence of crystal,
liquid, and gaseous states, observed in a glow discharge [9].
produce the sheet of laser light can vary; commonly,
however, this is a combination of cylindrical lenses and
reflection mirrors. The thickness of the sheet is smaller
than the two lattice plane separations, which makes it
possible to pick out a single lattice plain. This system
works very well, as shown in the figures above. The
laser sheet can be arranged horizontally and viewed
from the top, or vertically and viewed from the side, or
both. In general, the frame speed of CCD cameras of
about 50 Hz is sufficient for most of the processes
investigated so far. The reason for this is the slowing-
down of the processes due to the large mass (and, thus,
inertia) of the dust grains (of course, this does not apply
to pure ion or electron modes). The so-called “dust-
plasma frequency,”

(1)

is much lower than the ion plasma frequency ωpi, since
the grain masses are usually 100 billion times larger
than the ion mass

(2)

In an extreme case, where the electron density is low
(ni @ ne) and P ≈ 1, we obtain

(3)
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Fig. 5. Schematic of an optical detection system used to locate dust grains (as an example, the system used in an RF device is shown) [11].
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Fig. 6. Images of (a) body centered cubic (bcc) and (b) hexagonal vertically stacked (hvs) systems in a 3D plasma crystal formed
by 9.4-µm-diameter polymer spheres in a krypton discharge at a pressure of 1.4 Torr [17]. In each image, one horizontal plane and
one vertical cross section are shown; the insets show the vertical plane viewed from above. The data present a stack of the horizontal
planar images resolved by selective illumination by a 90-µm-thick swept ribbon laser beam. The grain images appear to be longer
in the vertical direction due to the infinite thickness of the laser beam.
which is 10–4 or less under typical experimental condi-
tions. Since the ion plasma frequency in a typical RF
plasma (under the conditions used for complex plasma
investigations) is ≈1 MHz, we see that, up to the dust
plasma frequency, the processes are readily observable
using conventional CCD cameras. For more detailed
applications, cameras with a much higher frame rate are
available too.

By scanning through the system, it is possible to
study the full 3D structure. This technique has been
successfully employed in experiments on plasma crys-
tals [4–7, 10–15]; however, it is still too slow for 3D
observations of phase transitions. Hence, one of the
main research goals—the 3D investigation of critical
processes (such as melting or sublimation) at the
kinetic level and the comparison of the experimental
results with the macroscopic properties of complex
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
plasma—has not yet been reached. Two-dimensional
investigations of the melting transitions have already
been made and will be discussed later.

2.3. Crystal Structure

Most experiments have resulted in the observation
of dust grains arranged in a simple hexagonal structure
where the grains are arranged horizontally on a triangu-
lar lattice with one grain above another vertically. The
early investigation in [3] reported the simultaneous
coexistence of the body-centered cubic (bcc) and face-
centered cubic (fcc) crystalline structures under certain
experimental conditions. These results are based on the
visual observation of various lattice planes coming into
view while adjusting the microscope focus.
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The first determination of the 3D structure of plasma
crystals with the use of separate horizontal and vertical
laser sheets was performed in [5] (see Fig. 6). These
results were obtained in 1.4-Torr krypton plasmas
formed by applying a 13.56-MHz RF voltage with a
power of 2.3 W with nearly monodisperse (9.4 ±
0.3 µm) spherical polymer dust grains injected into the
discharged volume. The measured electron temperature
was 8 eV, while the electron density varied from 3.2 ×
108 to 1.8 × 109 cm–3. The bcc and hexagonal vertical
stacked (hvs) structures (no fcc structures) were
observed. These structures can coexist under certain
conditions; under other conditions, the entire volume is
occupied by either bcc or hvs structures. The free
energy of different types of structures is different, and
the possibility of their coexistence is apparently related
to the inapplicability of the concept of free energy to
complex plasmas. The latter is also confirmed by the
observations of hvs structures. The parameters impor-
tant for estimating the possible physical reason for the
vertical stacking are the size of the dust cloud, which
was 2 mm, and the average intergrain spacing in the
horizontal direction, which was 195 ± 1 µm. These
investigations [17] suggested that the plasma crystal
structure can often be an hvs structure; this is an unex-
pected state for ordinary crystals, since the minimum
free energy principle suggests that fcc or bcc structures
should be formed in ordinary crystals. This is con-
firmed by molecular dynamic simulations [17, 18]. The
observations imply that an additional energy source is
required to keep the plasma crystal in the hvs state
(which is an excited state for thermal systems). On the
other hand, this is what can be expected for complex
plasmas. We emphasized earlier that complex plasmas
are open systems, and it is not surprising that, in open
systems, the crystal structure in the ground state is dif-
ferent from ordinary matter. There should always exist
energy source in complex plasmas. It can be identified
as the energy flux of plasma ions in the sheath, resulting
in anisotropic screening [19–29], or as an energy source
due to ionization, as discussed before for the homoge-
neous ground state of complex plasmas. In fact, the two
energy sources have the same origin, since the ion flow
appears in the sheath due to the constant volume ioniza-
tion maintained by the RF power. Thus, one can regard
the basic state as that discussed in [2]; one must, how-
ever, account for the inhomogeneous conditions related
to the wall sheath. Here, we will assess which of the
two possible anisotropy effects are important: the
anisotropy due to the single-grain wake-field effect or
the anisotropy due to the collective wake-field [2].
Obviously, a crystal is formed by many grains. By the
term single-grain effect, we mean that the interactions
of many grains can be considered as a sum of the pair
interactions of each grain with all others. In this case,
the assessments can be made by considering a single
grain (or, more exactly, the interaction of a pair of iso-
lated grains) and then summing up the result obtained
over many grains. Note that, in this case, the flow pro-
duces a drag force, anisotropic screening, and an
induced component dipole (in addition to the electro-
static charge monopole field of the grain itself) due to
the concentration of ion charge behind the grain in the
direction of the ion flow. With two grains, the interac-
tion becomes much more complicated.

In the case of collective effects, even two-grain
interaction depends on the average dust density in the
system and the dust–dust interaction becomes collec-
tive (as was demonstrated in [2]). Both the collective
[29] and the noncollective [20–29] wake-field interac-
tions lead to an anisotropy that is higher in the collec-
tive case than in the noncollective case.

Let us consider in more detail why in the noncollec-
tive case the dust–dust interactions can be different
along the direction of the ion flow and perpendicular to
this direction. The noncollective case corresponds to a
dust cloud of small size: L < Lcr, where Lcr is the size at
which noncollective pair interactions are substituted
with collective interactions. For most of the experi-
ments discussed above, this criterion is not fulfilled,
while it is fulfilled for the dust clusters discussed below.
Nevertheless, it is reasonable to discuss the conditions
under which the interactions can be regarded as the sum
of pair dust interactions and the concept of nearest
neighbors can be introduced (at least for not long-range
interactions). Generally, the interaction of two dust
grains is mediated by the complete plasma response
and is affected by nonlinear effects. If a grain is not iso-
lated, the nearest neighbors interact in six different
ways. Denoting the grains by p and the screening cloud
by s, we obtain the following interactions: p1p2, s1s2,
p1s1, p2s2, p1s2, and p2s1. Also, the neighboring grains
partially shield one another from the collisions with
ions and neutrals with the net effect of either a noncol-
lective or a collective force. All these forces can play a
role in the formation of a crystalline structure or small-
size clusters.

The situation becomes even more complicated if the
ion flow is supersonic or even subsonic, when the drift
velocity is close to the speed of sound. The perturbation
of the flow (and the associated potential) by the
“upstream” grain can then be readily communicated to
the “downstream” grain, but not vice versa, provided
that the information is transferred by ion-acoustic wave
(for the supersonic case) or Landau damping (for the
subsonic case). Hence, there is a fundamental asymme-
try in a complex plasma system with ion drift, which is
ultimately caused by gravity. The reason for this is that
the grains require the sheath electric field determined
by md f = Qd E for suspension (levitation in the gravity
field). The same electric field causes the ion flow
toward the lower electrode and, hence, provides the
source of energy and the openness of the system. The
situation is further complicated by large dust grains
making the responses nonlinear. In this case, the linear
ion dielectric constant can be used only at rather large
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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distances from the grains (larger than the ion Debye
length or even larger than the electron Debye length).

For the noncollective case, the numerical results for
the interaction of two grains in the presence of an ion
flow [28] confirm the presence of asymmetry and the
formation of a positive ion charge behind the grain,
which can serve as a potential well for another grain.
This mechanism was checked experimentally in [24]
for the interaction of two grains. The main question for
the interpretation of experiments is: Are these types of
interactions relevant in the formation of a crystal or
should other interactions (such as collective attraction)
be substituted for the wake interactions? The collective
wake also produces an asymmetry; however, this effect
is weaker and can produce only the alignment of grains
along the ion flow, while the other (collective) effects
produce the main potential well forming the crystal.
Certainly, the presence of a crystalline structure per-
pendicular to the flow cannot be explained by this
asymmetry. Thus, the use of the attraction forces seems
to be necessary for the explanation of the effects
observed.

For our estimates, we will use the relations for the
elementary physical processes in complex plasmas [2].
Assuming that the ion temperature corresponds to the
room temperature (Ti = 0.025 eV), the ion Debye length
is ~35 µm. A criterion for the collective interaction to
operate is that the size of the dust cloud L be larger than

Lcr = /aP0. From the data of [17], we can assume
P0 = ndZd/ni ≈ 0.3 and λDi ≈ 35 µm. Thus, we obtain
Lcr ≈ 0.43 mm, whereas the size of the dust cloud was
~2 mm, which means that the collective interactions
were dominant. However, the ion temperature in the
existing experiments is not well known; hence, if we
assume to be larger, it could be that the conditions of
[17] were on the border between the collective and non-
collective cases. (At least they are closer to the collec-
tive case than to the noncollective one.) In [17], the esti-
mates were made using the noncollective case. For both
cases, the anisotropy needed for an hvs structure to
exist is predicted.

Our estimates of the noncollective interaction do not
yield an intergrain distance in the plane perpendicular
to the flow, which agrees with observations. In the non-
collective case, it should be larger than the electron
Debye length λDi ≈ 450 µm, whereas the observations
give ≈200 µm, which is about half as much as that esti-
mated by the noncollective effects. The discrepancy is
not large; nevertheless, the electron temperature and the
electron density are well measured, and to stretch the
parameters in order to reduce the Debye length twice is
not easy. For the collective case, the simplest is to esti-
mate the effect in both extreme cases: when the collec-

tive parameter ηcoll = /(1 + z0)  (see
[2, 30]) is small and when it is large. In the case ηcoll @
1, the grain–grain interaction is determined by collec-
tive effects and the intergrain distance should be on the

λDi
2

a
2
P0

2
z0

2αdrα ch λDi
2 τ
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order of λDe/  ≈ 800 µm, while the observed spacing
is ≈200 µm. In the opposite case, ηcoll ! 1, the collec-
tive effects do not change the screening but are still
dominant in the dust–dust attraction; hence, the inter-
grain distance should be ≈160 µm, i.e., less than that
observed. An estimate of the ηcoll for the data of this
experiment is ηcoll = 0.615 (for the dimensionless
charge in Xe plasma z0 ≈ 2.5 and for τ ≈ 0.006); i.e., it
corresponds to an intermediate case.

Both estimates for the collective and noncollective
cases are rough, since they do not take into account the
nonlinearities that could be of importance.

The alignment in the presence of an ion flow is not
observed in some experiments. An example of this is
the observation of the crystal structure under gravity
conditions in the sheath in the presence of an ion flow
[26]. The experiments were performed in a symmetri-
cally driven directly coupled RF discharge in argon at a
pressure of 0.47 mbar (see Fig. 7). The 3D structure
was determined by scanning a vertical laser beam hori-
zontally across the system and recording the position of
each grain with a CCD camera in x, y, and z. The diam-
eter of dust grains was 3.375 ± 0.102 µm. The scanning
speed of the laser beam (and the CCD camera) was
0.30 mm/s. The total scan took 18.3 s. The experiment
showed that the plasma crystal is very stable at these
conditions.

Due to the finite width of the laser beam, the dust
grains are typically seen on 15 consecutive video images.
This is the reason why, in the horizontal image, the grains
are apparently elongated. The actual grain position is
located at the center of the elongated light trace.

Grains with a size of 3.7 µm were injected into an
argon plasma at a pressure of 0.47 µbar. The size of the
dust cloud was about 3 cm. The total number of grains
was 2 × 104, which corresponded to the average density
2 × 103 cm–3 and P0 ≈ 0.04–0.05. The critical length
was Lcr ≈ 0.7 cm, which was substantially smaller than
the size of the dust cloud. Thus, in this case, collective
interaction should be dominant. However, due to the
small value of P0, the collective parameter is small,
ηcoll  ≈  10–3; hence, in the perpendicular direction,
where the influence of the ion flow is small, the inter-
grain distance estimated from collective attraction is
≈λDiln(1/ηcoll) ≈ 242 µm. The observed intergrain dis-
tances are presented in Fig. 8 [26].

In [26], the noncollective interaction was estimated
in the model of the shielded Debye potential. In this
case, one should keep in mind that λDi ≈ 35 µm, while
λDe ≈ 350 µm. With allowance for the ion flow, which
makes the shielding equal to or larger than the electron
Debye length, the value of the latter is somewhat larger
than that observed. Gravity influences the structure
since, with an increase in the vertical distance z, the
spacing between grains increases. In the framework of
the model of collective attraction, this could be related
to the decrease in the ion density in the sheath region

P0



904 THOMAS et al.
Fig. 7. Schematic of a symmetrical plane-parallel reactor installed in a glass cylinder [26]. A piston covered by a 20-µm wire mesh
operates as a dust dispenser. The piston is inserted in the center of the lower electrode. Monodisperse polymer grains 14.9 µm in
diameter are injected into the plasma by a remote command. The pressure of the working gas (krypton) is 0.4 mbar. The RF power
can be varied. The grains are illuminated by a vertically arranged ribbon laser beam with a thickness of about 100 µm and are imaged
using a CCD video camera. Both the camera and laser can be moved horizontally to obtain a 3D image of the plasma cloud. The
field of view covers roughly one-fourth of the cylindrically symmetric plasma column. A similar device was used in microgravity
experiments carried out both in parabolic flights and onboard the International Space Station (the description of these experiments
and the corresponding references are given in Section 6).
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with increasing height. Estimates show [26] that gravity
can operate as an additional pressure produced by the
upper layers. This effect could explain the change of
separation between the planes, but not inside the
planes. In contrast to the ion density, the electron den-
sity in the sheath decreases with height; therefore, the
presence of an ion flow in the noncollective model can-
not be responsible for such dependences of the grain
separation in the plane. Besides this, the ion flow seems
not to influence the crystal structure much and is not
able to produce an alignment in the vertical direction as
in [17]. This is illustrated by Figs. 9 and 10 [26].

The fcc and hexagonal closely packed (hcp) lattices
are shown to coexist in the crystal, while the bcc struc-
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Fig. 8. (1) Vertical distance ∆t between the horizontal planes
and (2) the mean intergrain distance ∆x, y in each plane as
functions of the vertical position z [26].
ture and vertically aligned structure were not detected.
The absence of alignment in the observed lattice struc-
ture indicates that the effect of an ion flow on the inter-
grain interaction is weak. This could be due to the fact
that the alignment is determined by the collective wake
interaction, which is proportional to the square of the
dust size a2 (the area of the dust surface) and the square
of the dust charge (another a2). In the experiments in
[26], as compared to the experiments in [17], the dust
size was 3.2 times smaller, which decreased the collec-
tive wake effect by two orders of magnitude.

An important characteristic of the plasma crystalline
state is the binary correlation function defined by the
relation

(4)

This correlation function gives the probability of find-
ing two grains at a distance determined by the vector r.
Another correlation function g(r) can be introduced
that describes the probability of finding two grains at
the absolute value of distance r independently of the
angle between the grains (independently of the direc-
tion of the vector r). This correlation function g(r)
describes the radial (pair) density distribution and mea-
sures the translational order in the structure. For an
ideal crystal at zero temperature, g(r) is a series of δ
functions whose positions and heights can be deter-
mined from the grain separations in a perfect lattice.
Another type of correlation function is the so-called
bound orientational function g6 defined in terms of the
nearest neighbor bound angle of the lattice. In a perfect

g r( ) δnd R( )δnd R r+( )〈 〉 .=
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hexagonal lattice, all bounds should have the same
angle modulo π/3 with respect to an arbitrary axis. For
a perfect hexagonal crystal at zero temperature, g6 is a
constant equal to unity, while for other phases, it decays
with r. It is accepted for ordinary matter that, in the
crystalline phase, g(r) ∝  r–η(T), η(T) < 1/3, and g6 =
const, while in the liquid state, both correlation func-
tions decay with distance exponentially, with a factor in
the exponent which characterizes the degree of the
translational and orientational order.

From the early (basically two-dimensional) mea-
surements in [27], it was possible to calculate the 2D
pair correlation function g(r) in a given horizontal
plane. One such result is shown in Fig. 11, which shows
the normalized pair correlation function versus the nor-
malized distance.

To fit the measurements, it was assumed that the δ
functions are Gaussians attenuated by an overall envelope:

(5)g r( ) g0 r/ξ–( ).exp=
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Fig. 9. Top view of three superimposed crystal layers near
the bottom of the crystal: (a) the fourth (squares), fifth (tri-
angles), and the sixth (circles) layers (counted from the bot-
tom) form a hcp structure; (b) the first (closed circles), sec-
ond (asterisks), and third (crosses) form either a fcc or bcc
structure with the (111) plane parallel to the electrodes [26].
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In Fig. 11, the triangles show the measured values of
the pair correlation function, while the solid line shows
their least squares fit. The locations of the peaks
expected for a perfect hexagonal lattice are indicated by
the vertical lines, whose lengths correspond to the rela-
tive heights of the peaks. The fit yields the mean inter-
grain spacing ∆ = 270 µm, η = 0.059, and the Debye–
Waller factor b = 0.013 (see below).

The decay of the translational order can be
expressed as an exponential decay factor exp(–η∆).
Here, ∆ is the mean grain separation and 1/η is the cor-
relation decay length. The transition between the
ordered (η∆ ! 1) and disordered (η∆ @ 1) states occurs
at η∆ ≈ 1 [27]. In the example shown in Fig. 11, η∆ ≈
1.6 × 10–3, which signifies a high degree of order. The
Debye–Waller factor b is 0.013. The measured correla-
tion function g6 is presented in Fig. 12. Fitting g6(r) by
an exponentially decaying function ∝ exp(–r/ξ6) yields
the scale length ξ6 = (1.4 ± 0.1)∆, while fitting by a
power-law function ∝ r–η leads to the coefficient η =
1.05 ± 0.05 as displayed in Fig. 12.

The pair correlation functions were measured in
[26]. Figure 13 clearly shows the presence of both the
fcc and hcp phases, but not the bcc phase. This obser-
vation is not surprising because of the openness of the
system and the fact that the results of simulations pre-
dicting a bcc lattice structure are inapplicable for suffi-
ciently large values of Γ. The detailed investigation
shows that both the fcc and the hcp crystalline struc-
tures occur in different regions (domains) of the plasma
crystal separated by some unidentified intermediate
structure [30].

Figure 14 shows the result of the first observations
of a bcc lattice [5]. The 3D structure was measured
using a revolving mirror to sweep the sheet of laser
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Fig. 10. Determination of the lattice type seen in Fig. 9. The
region is shown with an undefined lattice type (fcc or bcc)
that is rotated from the (111) plane (x, y) to the (001) plane
(x', y'). It is seen that the grains with the first (closed circles),
second (asterisks), and third (crosses) planes form an fcc
lattice [26].
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light across the system and, thus, to consecutively illu-
minate different lattice planes.

The largest 3D plasma crystal observed in the labo-
ratory so far has 19 vertical planes and about 40 hori-
zontal planes [27]. By normal crystal standards, this is
still quite small; the system contains only about 3 × 104

grains. Nevertheless, it marks major progress in this
field.

At the end of this description, we list the major char-
acteristics of the observed plasma crystals with the hvs
lattice structure.

Wigner–Seitz cell (2D): (2D), AS =  ≈ 3.5 ×

10–4 cm–2.

Wigner–Seitz radius (2D): (2D), rS =  ≈

0.019 cm.

Wigner–Seitz cell (3D): (3D), VS =  ≈ 6.9 ×

10–6 cm–3.

Wigner–Seitz radius (3D): (3D), rS =  ≈

9 × 10–3 cm.

Separation of the lattice planes: d =  ≈ 0.017 cm.

Ion Debye length: λDi ≈ 0.0035 cm.
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Fig. 11. Pair correlation function g normalized to the aver-
age surface density of the grains (1200 cm–2) vs. normal-
ized distance r/∆ [27]. The experimental results are shown
by the symbols, while the solid curve shows the best fit cor-
relation function. The segments of vertical lines on the
abscissa show the correct positions and relative heights of
the correlation peaks in a perfect crystal. The mean inter-
grain spacing and the correlation length yielded by the fit
are ∆ = 290 µm and ξ = 2∆, respectively.
Electron Debye length: λDe ≈ 0.03 cm.

Lattice wave speed: vL =  ≈ 5 cm/s (defi-
nition of α* see below).

Debye frequency: νD = vL/π∆ ≈ 80 s–1.
Gruneisen constant: γ = (∆/cL)dcL/d∆.

Compressibility: β = .

Of course, for other lattice structures, the geometry
and, hence, the characteristic parameters will be
slightly different.

More sophisticated experiments can be carried out
as the understanding of these newly discovered plasma
states grows and the advanced technology for their
investigation is being developed [9, 11, 27, 30–32].

Let us emphasize the main unusual aspects in the
physics of complex plasma condensation and the exist-
ing understanding of the observations of plasma crystal
formation.

(i) Strong coupling in usual matter can be achieved
due to the presence of chemical bindings. For small
particle kinetic energy, these bindings can result in
long-range interactions and the formation of usual crys-
tals. In the absence of molecular attraction, free-bound-
ary crystals are difficult (and may be impossible) to cre-
ate in usual matter.

(ii) In complex plasmas, the molecular binding is
negligible and collective and noncollective attraction
can serve as mechanisms for the formation of plasma
crystals. The criterion that the kinetic grain energy is
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Fig. 12. Bond angle correlation function g6 vs. normalized
distance r/∆ [27]. The experimental results are shown by the
symbols. The solid curves show the exponential and power-
law fits, ξ6 and η, respectively.
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small as compared to the Coulomb interaction energy is
insufficient to provide crystal formation. Numerical
simulations using periodic boundary conditions seems
to be inadequate for complex plasmas. A free-boundary
Coulomb system without attraction is always unstable
and cannot be in the crystalline state; however, in com-
plex plasmas, free-boundary crystals can be created.

(iii) Most of the experiments in which plasma crys-
tals were observed correspond to the case of collective
attraction where the interaction with remote grains
influences the interaction between neighbor grains,
which is quite unusual.

(iv) The openness of complex plasma systems intro-
duces a fundamentally new physics in which the collec-
tive plasma flux, which provides both the attraction
between each pair of grains and the self-confinement of
a system with a collective flux, plays a major role. The
coexistence of different crystalline structures can be
explained by the presence of external sources providing
a flow of energy into the system.

(v) It is quite probable that plasma crystals, when
not confined externally, are limited in their size.

(vi) The free energy concept used in the ordinary
crystal problem often does not operate in complex plas-
mas, due to the openness of the system.

We should make some remarks in connection with
these statements.

The first point is that most of the processes dis-
cussed in the previous parts of this review [1, 2] and
related to the openness of the system can play a signif-
icant role in the formation of a plasma crystal. How-
ever, we were able to give here only a rough estimate
using the described elementary processes in complex
plasmas. Detailed theoretical models are still waiting to
be developed in order to make a final conclusion on the
role of the attraction forces in complex plasmas. Future
experiments are also necessary in which many impor-
tant parameters can be varied, such as the grain size (to
make the crystal formation independent of the grain
weight, the grains should be hollow), the ion tempera-
ture, and the parameter P0. The only conclusion that is
generally clear is that the ground state should be deter-
mined experimentally and can be different for different
plasma sources. In this sense, the observed structures
correspond to the ground state for the particular sources
used in particular experiments.

The second point is the observed inhomogeneity of
plasma crystal structures. The volume of a crystal actu-
ally scanned is shown schematically in Fig. 15. Only
about one-half of the cylindrical system was actually
measured. The approximate location of the observed
fcc and hcp zones is marked. There is some tendency
for the fcc structure to be located in the central region
of the system, whereas the hcp structure is at the periph-
ery. This points to a radial variation (albeit a subtle one)
in the crystal ordering parameters. Presumably, there
are radial pressure gradients in addition to the observed
vertical gradients; i.e., the crystal is inhomogeneous.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
This is not surprising, since the state preceding the
crystal has the general properties to form an inhomoge-
neous state (see Section 4.4, devoted to the structuriza-
tion and instabilities of complex systems). Also, the
forces between dust grains can be different because of
the different values of the drift velocity at the center and
the periphery (note that in the case where gravity plays
an important role, the change in the drift velocity can
result in a state with different plasma parameters). The
ratio of the intergrain forces to the vertical bulk forces
are different at the center and at the periphery. The bulk
forces are always needed to suspend the grains by elec-
trostatic fields (the drag force acts at the lower plate
sheath in the same direction as gravity). In the horizon-
tal direction, the balance of the bulk field does not play
a significant role or is much smaller if the drag and elec-
tric fields are not strictly vertical. This seems to be sig-
nificant enough to influence rather subtle energy differ-
ences between fcc, hcp, and bcc lattices. In other words,
the center and the periphery could be in different exter-
nal source conditions. The questions naturally arise as
to whether this inhomogeneity will increase with
increasing the crystal size and whether a very large
plasma crystal can be created. This point has not yet
been investigated experimentally. If the size of the
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Fig. 14. Microphotographs and sketches of different crystalline structures: (a) hvs, (b) bcc, and (c) fcc [5]. The central column cor-
responds to the structures observed in the microphotographs. The shaded area in the sketches is normal to the optical axis. The bars
correspond to 200 µm. The circles show the grains located in the (1) first, (2) second, and (3) third layers.
plasma crystal is universally limited, the situation will
be different from ordinary matter, in which there are no
obvious limitations on the crystal size (although an
increase in crystal defects can limit the maximum pos-
sible size). Obviously, this is an experimental problem,
which is, however, also of general physical interest,
since solving this problem will allow one to answer the
question of whether there are general physical pro-
cesses that restrict the existence of large-size plasma
crystals.

Let us discuss the topics that are of interest for
future research and that can be formulated now by
using the results of the existing experiments:

(i) It is important to investigate the transition regions
between different lattice structures on the microscopic
(the kinetic) level, the geometry of the structural transi-
tion, its stability and dynamics, and its responses to sev-
eral types of small vibrational perturbations (e.g., to
answer the question as to whether 3D annealing is pos-
sible).

(ii) It of important to investigate how the change of
the global energy supply can change the type of the
crystal structure (possibilities include altering the rate
of gas cooling or the RF power). Is it possible that, by
changing the energy supply, the region occupied by one
type of lattice will grow, and finally only one type of
structure will be present. In this case, it would be of
interest to study how the growth of crystals occurs.

(iii) It was established that the observed lattice
structure should be considered as a ground state of a
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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crystal in an open system and that this structure
depends strongly on the energy sources. The question
is, how the crystal structure will depend on the ground
state of the complex plasma system.

(iv) Is it possible to determine time scales for the
propagation of, for instance, fcc/hcp transition fronts,
and to investigate how such propagation depends on the
external experimental parameters determining the
energy supply to the system.

(v) A very interesting research topic is the investiga-
tion of “force-free” crystals under microgravity condi-
tions. The microgravity excludes the gravity field from
the bulk balance equation and does not need the electric
field to support the grains against gravity. Thus, in the
balance equation, only one term will be absent, namely,
the gravity term. Therefore, no electric field is needed,
but the force-free conditions require also that the other
two terms, namely, the drag force and the electric field
force, be absent. This means that the grains should also
be far away from the walls. However, any experiments
in microgravity conditions will include walls of the
chamber. The first microgravity experiments, which
were only recently performed, will be discussed at the
end of this part of the review. They show the simulta-
neous presence not only of the plasma crystal discussed
above, but also of the void structures and convection
structures discussed below.

(vi) It would be of interest to find the conditions
under which the grains that start to form the crystal are
far away from the walls and far from any other electric
fields, which will cause the ion drift and the ion drag
forces. In this case, the complete force-free conditions
will be reached. The main requirement is that the grav-
ity, electric field, and drag force have a weak influence
on the intergrain interactions. Somehow, the grains
should be confined in this region by some forces, and
the question is whether these forces will alter the inter-
action. Thus, the problem is not so simple; however,
from the physical standpoint, it seems to be solvable.
The physics lie in the presence of a collective flux cre-
ated by all the grains forming a crystal. This flux can
create, in principle, a sufficient ram pressure to confine
the system. This will be a natural self-confinement. A
crystal of this kind should be called a free-boundary
crystal. It would be of interest to investigate whether
free-boundary plasma crystals can be created and what
type of crystalline structures they will have.

(vii) It is very important to investigate experimen-
tally the details of the dynamics of the crystalline state
on the kinetic level.

Note finally that comprehensive experimental inves-
tigations of a recently discovered new plasma state,
such as plasma crystals, also benefit other related
research, as has often happened in the past.
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2.4. Dislocations and Defects in Plasma Crystals

The crystalline plasma states exhibit crystal defects
and dislocations in a way similar to that which their bet-
ter known “normal” crystalline counterparts in ordinary
matter do. We mentioned this in the previous chapter, in
connection with the transition from the fcc crystalline
structure to the hpc structure (see Fig. 15).

A self-consistent 3D analysis of crystal defects
remains to be done; however, there is a large amount of
available experimental data on 2D- and 2.5D-dimen-
sional plasma crystals (see, e.g., [11, 26, 30]).

In 2D crystals, in which lattice planes are usually
horizontal, the well-known hexagonal structures domi-
nate. The lattice defects involve a local breakup of this
hexagonal structure, the most common (and simplest)
defect being the “7/5 defect,” in which two interlocking
cells represent a septagon and a pentagon.

Such lattice defects occur at the ends of the so-
called “lattice line.” Other lattice defects involving only
two cells are possible in principle (e.g., 6/4 defects), but
they are not favored in terms of energy (when speaking
about energetic favoring in an open system, we mean
the total energy spent on the formation of a dislocation,
including the external energy; for instance, the ioniza-
tion source energy). In this sense, defects involving
three interlocking cells (e.g., 7/5/7 or 5/7/5 defects) are
more probable.

So far, no systematic investigations of the energetics
of defects have been performed. These should be very
precise investigations that include measurements of the
vibrational energy of the grains in defect cells, the mea-
surements of the change in the defect cells, and the
measurements of the energy supplied from an external
source, as compared to its mean value without defects.
It has been noted that the grains in defects tend to be
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Fig. 15. Coexistence of fcc (dark) and hcp (light) lattices in
the middle of a plasma crystal (from the eighth to tenth hor-
izontal layers) [26].
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more excited (in terms of their vibrational energy) than
on average in the crystal, which could be an indication
that the external energy supply at the location of the
defects might be larger. Local defects can probably be
created by a local change of external energy supply,
such as a local change of ionization. Such experiments
have not been performed so far. Also, the energy states
of the observed lattice defects have not yet been com-
puted or measured.

The first, rather promising step in this direction is
the investigation of the deformation energy of small
systems involving small numbers of grains. The tech-
nique, which was employed for the first time in [33], is
to “push” individual grains through radiation pressure
using a laser beam and to determine the conditions at
which slippage occurs, i.e., the system no longer rotates
as a solid body. The measurements show that a small
system containing magic numbers (12, 19, …) of grains
has a greater binding energy than the others. The reason
lies in the sixfold symmetry. This latter point will be
discussed later in connection with “ordering rules”
[34]. The question as to how this ordering can be influ-
enced by the change in the external source was not
investigated, but it is clear that this problem can be
more relevant for a set of several separated small sys-
tems that do not form together a crystal, or small sys-
tems coexisting against a homogeneous background of
a “sea” of other (smaller or larger) dust grains forming
or not forming a strongly correlated state. It is clear,
however, that this problem, namely, the microscopic

Fig. 16. An example of 14-mm-diameter single-layer
plasma crystal formed in a parabolic well above the lower
electrode [36]. The total number of grains is 434, the power
deposited in the plasma is 4 W, the pressure is 100 mTorr,
and a = 0.5 µm.
study of defects at the kinetic level, including the defect
migration and annealing using periodic changes in the
energy source (e.g., using a chopping laser sheet [35]),
is a very promising field for future research. The appli-
cation of the results obtained to systems in ordinary
matter may be beneficial for other fields of science.
This may be of particular relevance for surface physics
involving monolayers (see below about monolayer
plasma crystal). In addition, the 3D nature of the
observed dislocations, i.e., the length of the dislocation
lines and their (probably fractal) structure, has not been
investigated so far. Here, we have to await the planned
microgravity experiments (low-stress or “force-free”
experiments), whilst systems experiencing compara-
tively high gravitational stresses can be investigated
quite soon.

2.5. Monolayer Plasma Crystals

There are two studies that can be performed using
complex plasma monolayers. First, there are the studies
of isolated monolayers, suspended electrostatically
against the force of gravity. Most of the present mono-
layer experiments are of this type. They include wave
propagation and dispersion analysis, melting and subli-
mation experiments, and crystal defect studies.

Second, there are the studies of attached monolayers
(e.g., those consisting of smaller grains) located at the
top of another monolayer (of larger grains), or at the top
of a system containing several lattice planes (of larger
grains), or a system of larger grains in an uncorrelated
state. Experiments of the second type have not been
reported in the literature so far, but promise to be very
interesting from the standpoint of basic physics.

At present, the formation of a monolayer crystal
requires grains in a very narrow mass range because of
the vertical force balance dictated by the presence of
gravity. In addition, the equipotential horizontal planes
of the levitating field should be significantly extended
in order to produce large systems. RF and inductive dis-
charges appear to be best suited for the latter require-
ment, and the experiments reported on monolayer
investigations utilize such plasma devices [36, 37]. Fig-
ure 16 shows the structure of a monolayer crystal
observed in [36].

Monolayers possess a number of specific features:
(i) Wake fields generated by the ions accelerated in

the sheath do not play any significant role in grain inter-
actions. In particular, if the ion flow is supersonic,
information about the ion focusing in the wake below
the grain cannot propagate upstream or in the perpen-
dicular plane.

(ii) Parasitic charge depletion is not important, since
the supply of electrons and ions comes from the top or
bottom (i.e., in the direction perpendicular to the plane
of the monolayer). This means that the grain charge
should not vary systematically (e.g., in large 3D sys-
tems, one might expect a reduced value of the charge at
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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the center of the system). The reduction of the charges
due to their mutual interaction in the plane survives, but
this is a part of the dust–dust interactions resulting in a
strongly correlated state.

(iii) In the case of a monolayer located on the same
equipotential surface, the plasma parameters of rele-
vance, e.g., the Debye length, the temperatures of ions
and electrons, the ion flow velocity, etc., should be the
same everywhere. Of course, this homogeneity
depends on the quality of the plasma chamber design.

(iv) A dust grain monolayer will not modify the
electron and ion components of the plasma as much as
a system containing many layers. Hence, these species
may to a large extent be treated separately. In particular,
this means that the sheath models calculated without
the presence of dust grains retain their usefulness to a
significant extent.

(v) Monolayers are easy to manipulate in a con-
trolled way, e.g., using lasers. In particular, this is due
to the lack of interactions with neighboring dust layers,
as well as to the smaller total mass of dust grains
involved.

All this makes monolayers particularly interesting
from the point of view of their application for con-
trolled deposition. From the standpoint of basic phys-
ics, active experiments, e.g., experiments on waves,
shocks, shear flows, etc. (see below) are of particular
interest.

In the first deposition experiments, a monolayer
crystalline structure of melanin-formaldehyde grains
was formed in suspension and was then deposited on
the substrate by simply turning the plasma source off.
In this case, the deposition accuracy is about 15 µm.

Let us consider the problem of the constancy of the
grain charge in a monolayer. There is a simple experi-
mental test for this. We have already referred to the
equilibrium condition for the levitation of charged
grains in the electrostatic field of the sheath and the
drag force field of the ion flow in the sheath, particu-
larly in connection with the determination of the form
of the shielded potential around the grains used in col-
lision experiments. One of the earliest techniques for
determining the grain charge was to excite vertical
oscillations [37]. The method is as follows. Assuming,
as in [37], that the drag force is small, we obtain for the
equilibrium position x0 of a grain

(6)

For small deviations from x0, we may expand the
electric field in powers of x – x0:

(7)

where the higher order terms are ignored and the deriv-
ative ∂E/∂x is assumed to be constant. If the grain
charge Q is constant, then the electric and gravitational
forces form a parabolic potential well,

mdg QE x0( ).=

E E x0( ) ∂E
∂x
------ x x0–( ) …,+ +=
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(8)

which has a resonance frequency

(9)

Modulation of the lower electrode potential with
variable frequency ω excites the forced harmonic oscil-
lations of the suspended grains. The damping of these
oscillations is caused by friction with a neutral gas.
Having measured ω0, one can then either use the sheath
model to determine ∂E/∂x at x0 or measure the ion den-
sity and relate it to the field gradient via Poisson’s equa-
tion. In either case, one can obtain the Q value [38]. In
the sheath, the drag force contributes to a degree com-
parable to that of the electric field force. Indeed, using
the expression for the drag force and assuming as ear-
lier that the dust grain charge is constant, we find that
the oscillations will be determined by an effective
potential in such a manner that, in expression (8), the
derivative ∂Eeff /∂x should be substituted for ∂E/∂x,
where (this expression is obtained here for the first time
by using the results of [2])

(10)

where M(z0) is the local Mach number of the ion flow
in the sheath, which is known to be on the order of unity
(note that, for monolayers, the dust changes the struc-
ture of the sheath insignificantly). We also note that, in
expression (10), the notation of [1, 2] is used and that
z0 = –Qe/Tea is the dimensionless dust charge at the
position x0. We give this analytic expression for deter-
mining the equilibrium position of a grain with the drag
force included in order to show that ignoring the drag
force (as was done in [39]) is, strictly speaking, incor-
rect because, by the order of magnitude, the drag force
makes the same contribution to the frequency as the
electric field force. Indeed, roughly estimating the elec-
tric field in the sheath as the ratio of the wall potential
to the sheath distance gives E ≈ Te/eλDe. The coefficient
by the drag force is of the same order of magnitude in
the case where the characteristic inhomogeneity scale
of the Mach number and the ion-to-electron density
ratio in the sheet is on the order of the inhomogeneity
scale of the electric field. Up to now, this effect has not
been taken into account, but the changes introduced by
the drag force in the estimate of the charge Q yield a
factor on the order of unity. Keeping in mind that when-
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ever we use one model of the sheath or another, there is
always an amount of uncertainty involved, the estimate
of the absolute value of Q cannot be made more accu-
rate than in [39]. In the future, the role of the drag force
should be investigated in more detail. The further dis-
cussions deal with relative effects and do not depend on
the absolute value of the measured dust charge.

Experiments have shown that the vertical resonance
frequency ω0 is practically the same for a single grain,
a chain of grains, and a monolayer [40]. All the parti-
cles oscillate up and down at the same phase; hence,
the longitudinal coupling effects are small (if the
amplitudes and phases were exactly the same, the hor-
izontal coupling would not be affected at all). An
example of the resonance curve obtained in [40] is
shown in Fig. 17.

This observation supports our statements about the
specific features of monolayers. It also implies that any
systematic charge variations across a homogeneous
monolayer are small; otherwise, the resonance fre-
quency would be position sensitive. We will return to
monolayers later when discussing wave propagation
and the instabilities in them.

2.6. Complex Plasma Clusters—Small Systems
with Ordering Rules

In complex plasmas, as in ordinary matter, one of
the most interesting questions in homogeneous nucle-
ation is the transition from a molecule (an ordinary
molecule in ordinary matter or a molecule formed by
two grains in a complex system [41]) to a cluster of
molecules (ordinary clusters [42–44] or clusters of
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Fig. 17. Measured resonance curves of dust grains obtained
by (1) the sinusoidal modulation of the electrode voltage
and (2) pulse-periodic laser excitation at a pressure of 20 Pa
[40]. The solid lines are the least squares fits of the response
functions.
either grain molecules or individual grains in complex
plasma [45]) to a solid or crystalline state. In a cluster
or molecules, binary interactions between the small
finite numbers of components dominate the physics
(and also the chemistry), whereas the collective and
surface effects dominate in solids. Of course, “small”
volumes of complex plasmas are not analogous to small
volumes in ordinary matter, and the physics of transi-
tion from Coulomb clusters to plasma crystals in com-
plex plasmas possesses a number of specific features.
We have here one of the rare possibilities to observe this
transition at the kinetic level, to measure the binary
binding energy and its dependence on the source
parameters (for instance, ionization intensity), to deter-
mine the relationships between this energy and the
shear modules, the global modes of cluster oscillations,
the compressibility, elasticity, etc. In addition, the inter-
action forces between grains in small clusters are usu-
ally the noncollective binary interactions, including
long-range attraction and repulsion. These interactions
are more complicated than the screened Coulomb inter-
actions or hard-sphere interactions, which play a dom-
inant role in ordinary matter. Interactions in complex
plasma clusters can be determined directly from exper-
iments. The problem with applying these results to
clusters with a large number of particles is that the
forces determined from experiments with small clusters
differ from those for big clusters or plasma crystals,
since the collective effects alter these interactions as
was discussed in [2]. Thus, the interactions in small
monolayer clusters can differ from the interactions in
volume crystals. In monolayer crystals in the plasma
sheath, cluster formation occurs in the direction per-
pendicular to the ion flow. Nevertheless, the ion flow
can modify the attraction potential well inside the plane
of a monolayer. In general, the problem of a continuous
transition from small dust clusters including a small
number of grains to 3D or 2D crystals including many
grains is a separate field of research with its own prob-
lems, even when the interaction between the particles is
a simple Coulomb or Yukawa interaction [42–46] as in
ordinary matter.

The investigation of clusters formed in ordinary
matter is a wide field of research. These clusters are
usually confined in special traps. In the case of ordinary
particles, their interaction is a simple Coulomb interac-
tion, and such clusters are called Coulomb clusters. 3D
ion Coulomb clusters were observed in Paul and Pen-
ning traps [47, 48] and 2D clusters formed by electrons
were found in liquid helium [49] and colloidal suspen-
sions [50]. Liquid colloidal suspensions are not suitable
for investigating the dynamic processes in clusters
because of the large overdamping due to the interaction
with electrolyte.

In complex plasmas, not only the new types of inter-
actions are important, but the dust–neutral collisions as
well. The latter can alter the properties of the clusters in
two aspects. First, they can damp the dust motion, caus-
ing some of the cluster configurations that are unstable
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 18. A schematic of the experimental setup and images of the equilibrium clusters consisting of three, four, and seven grains [44].
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in the absence of dust–neutral collisions to be stable in
the presence of dust–neutral collisions. Second, they
may cause the damping of the cluster eigenmodes,
which, however, is much weaker than that in colloids.
The frequencies of the cluster modes are directly
related to the form of the interdust interaction potential
and, therefore, can be used to determine the potential of
dust–dust interaction in complex plasmas. The point is
that the number of grains in the clusters is not large and,
therefore, the collective effects in dust–dust interaction
may be unimportant. In this case, one can expect that
the pair dust–dust interaction will not depend on the
average density of other dust grains, and one can apply
the model that takes into account all pair interactions of
every dust grain with every other dust grains.

The conclusion that there are attraction shadow
forces present between two grains opens up the new
possibility of forming dust molecules that was first
mentioned in [41], in which it was recognized that this
can create in the future a new area of research such as
superchemistry, where the attraction between grains
can result in more complex molecules and, finally, clus-
ters. However, noncollective attraction is not the only
type of new interaction in complex plasmas. The others
are nonlinearity in shielding and the forces related the
bombardment of dust grains by neutral particles and
their attachment to the grains (see [2]).

Purely Coulomb 2D systems of grains that interact
via the Coulomb potential and are confined in the plane
of a monolayer by the external parabolic potential were
investigated theoretically in [45]. It was found that, at a
low kinetic energy, the clusters have a shell structure
and that the increase in the kinetic energy leads to the
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
instability related to the appearance of intershell rota-
tion. A further increase in the number of grains in the
shell, as well as an increase in their kinetic energy,
results in an increase in the intershell diffusion and,
finally, the formation of a Wigner lattice. The case cor-
responding to the Yukawa interaction (i.e., screened
Coulomb interaction) was not investigated in such
detail, and the problem of interaction with the potential
corresponding to the dust–dust interaction in complex
plasma was not investigated at all.

Recently, a general theory was developed for the
case of 2D clusters in which the interaction between
components is described by arbitrary forces, while the
system is confined in the plane by an external parabolic
potential well [51]. This allows one to analyze the
experimental data for arbitrarily charged or uncharged
grains in clusters that have both attraction and repulsion
interactions and makes it possible to experimentally
evaluate the type of interdust forces by analyzing the
global modes of the clusters, their stability, and the fre-
quencies of the global oscillations. This theory can be
applied to complex plasma clusters and opens up the
unique possibility of investigating the binary dust–dust
interaction in complex systems in the future.

The collective effects and collective attraction can
appear in a case where these clusters have as a back-
ground a homogeneous complex plasma (with the grain
sizes different from those of the dust grains in the clus-
ter). It is hoped we will be able in the future to extend
such research to the 3D case (mainly by performing
microgravity experiments [52]) and, probably, to create
a general 3D theory (at present, this seems to be a rather
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complicated task, but the initial efforts have already
been started).

2D clusters in complex plasmas were experimen-
tally observed only in a few experiments [42–44].
Today, 2D monolayer clusters have been investigated
and compared with the results of the screened potential
model. In [43], damped cluster modes were observed
for small numbers of grains. A scheme of the experi-
ment and the observed damped oscillations are shown
in Figs. 18 and 19.

Figure 20 shows the results of estimating the param-
eter K = ∆/λD for the Debye screened model. Shown are
the normalized frequencies versus the intergrain distance
in units of the screening length for clusters consisting of
N = 4 (on the left) and N = 7 (on the right) grains.

It appears that, for different clusters, different values
of K fit the experimental results. This is most pro-
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nounced for antisymmetric cluster modes for which the
observed parameter K is rather large. One conclusion
that can be drawn from this result is that the screened
Coulomb potential, as well as the Yukawa potential,
does not fit the observations. This is not surprising
because, as was shown in [2], the interactions in com-
plex plasmas are more complicated than those
described by the screened Coulomb potential; in partic-
ular, the attraction potential and the nonscreened repul-
sion potential cannot be ignored.

It was found that, in 2D systems, the subsequent
cluster shells have magic numbers of grains [10], as in
the Mendeleev Periodic Table of Elements. For 2D dusty
clusters, these numbers can differ from those for Cou-
lomb clusters. Figures 21 and 22 [42] illustrate struc-
tures with different sets of magic numbers observed in
clusters with different total numbers of dust grains N. In
Fig. 22, the difference between the configurations of
dust clusters and Coulomb clusters is clearly seen.

Figure 23 [46] shows the “ordering rule” according
to which 2D plasma clusters are built up. Shown is the
number of grains in the respective shells and the order-
ing into magic numbers, which is caused by the ener-
getics (including those of external sources) of the struc-
tures produced.

These magic numbers resemble the Mendeleev Table
rules in ordinary chemistry [53], and we can say that
they are as important in the superchemistry of plasma
clusters as Mendeleev rules are in ordinary matter.

In [46], a comparison was made between the mea-
sured plasma cluster structures and hard-sphere config-
urations (both are located in a quadratic external poten-
tial well). The difference was obvious and probably
reflected the effect of the long-range nonscreened
potential or the presence of the attraction forces.

Calculations of the molecular dynamics in these 2D
systems [13] result in configurations similar to those
observed, including the slight compression of the cen-
tral region of the plasma cluster. Preferably, one should
also use for comparison the general theory in [51], first
identifying the different types of interactions between
the grains by measuring the global cluster oscillations
or the equilibrium conditions. The more sophisticated
codes needed for complex plasma simulations should
also be developed. It is unlikely, however, that the sim-
ple molecular dynamic simulations of fixed-charge
grains with a fixed screening length (without account
taken of the screening nonlinearities), with collective
attraction ignored, and, consequently, with a given cou-
pling potential, will be sufficient to model and to under-
stand 3D plasma clusters.

Figure 24 [42] presents the first measurements of the
stability of 2D plasma clusters. The criteria of stability
were also given in the general theory [51]. These crite-
ria, however, can contradict the experimental results,
because, in the experiments, the shear was induced
using laser light pressure and also because the general
theory (without dust–neutral damping included) pre-
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 21. Microphotographs of typical cluster structures at different numbers of grains N (the structures are shown on different spatial
scales) [42]. The characteristic intergrain spacing is 0.3–0.7 mm.
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dicts [51] the instability of any clusters with N > 6. The
instability observed during the transition from the N =
19 to N = 20 structure is related to the rotation of the
inner shell with respect to the outer shell.

It is easy to see that configurations with a hexagonal
structure, which are the preferred from the energy
standpoint, are more difficult to dislodge than config-
urations that are already in an elevated energy state.
Moving onto larger systems, the point to note is that
the geometry of the confining force (cylindrical in
this case) begins to assert itself more and more. One
way to quantify this is to calculate the rms deviation
∆r of n outermost grains from the best fit circle (of
radius r0):

(11)∆r
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Fig. 22. (a) Typical cluster configurations observed at dif-
ferent numbers of grains N and (b) three different structures
obtained in 2D simulations for the unshielded Coulomb
repulsion in a circular parabolic potential well [43]. The tri-
angular lattices are plotted to illustrate the deviation from
the central symmetry. The small triangles and squares in a
few images show the fivefold and sevenfold dislocation
defects, respectively.
The study of plasma clusters (both two- and three-
dimensional) promises to be a very interesting field,
one which has only just begun. Apart from the current
investigations into homogeneous clusters, work should
proceed in the investigation of clusters of grains with
one size in a homogeneous “sea” of grains with another
(probably lower) size to measure the role of the collec-
tive attraction produced in complex plasmas, as well as
in the investigation of binary mixtures (clusters with
grains of different size), inhomogeneous clusters, and
the influence of the confining potential (in the plane of
a 2D cluster) on the cluster structure.

Purely Coulomb clusters (without plasma) have
been produced in Paul traps with supercooled Mg+ ions
[47, 48]. These structures are a result of the pure Cou-
lomb interactions between the ions and the external
coupling potential. Such structures can probably be
described by the OCP model.

Returning to complex plasmas, we note that the better
we understand such systems as plasma clusters (which
can be observed at the kinetic level), the better we will be
able to understand other systems and utilize them.

3. PHASE TRANSITIONS IN PLASMA CRYSTALS

3.1. General Description of Phase Transitions 
in Complex Plasmas

It is well known that ordinary matter can be in the
solid, liquid, and gaseous states. Analogous transitions
are possible in complex plasmas; however, the physics
of such transitions can be quite different. In usual mat-
ter, these states are characterized by macroscopic state
variables (e.g., the pressure P and temperature T for
gases), which can be considered as the appropriate inte-
grals of the kinetic particle properties. One of the most
fascinating problems is the understanding of the transi-
tions between the states (in particular, the melting tran-
sitions) at the kinetic level. In ordinary matter, observa-
tions at the kinetic level (i.e., the observations of indi-
vidual atoms or molecules) are generally impossible;
hence, in ordinary matter, a direct comparison of
kinetic theory and experiments is ruled out.

As was already noted above, this is not the case for
plasma crystals. Here, one component (the most mas-
sive and energetically dominant) can be observed at the
kinetic level with sufficiently high time and spatial res-
olutions, so that kinetic theory and experiments are, for
the first time, on a roughly equal footing. Unfortu-
nately, due to the openness of complex plasmas, the
theory of such transitions is still waiting to be formu-
lated (some theoretical approaches using the Van der
Waals equation in complex plasmas will be given in the
next part of the review). Of course, we can do this (in
principle) for the few special plasma crystal systems for
which external energy sources are known and well ana-
lyzed both experimentally and theoretically.

Nevertheless, the accessible ranges of physically
different systems is quite broad. We can investigate
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 23. CCD camera snapshots of clusters in the plasma sheath (N is the number of grains in the cluster) [46].
homogeneous (glassy) systems with several sorts of
dust grains, or anisotropic systems consisting of
microrods (with additional rotational degrees of free-
dom). We can, in principle, investigate a broad range of
parameters (Γ, K, P0, a/λDi, etc.) in both stressed (in the
presence of gravity) and stress-free (under micrograv-
ity conditions) systems. Of course, such experiments
are quite demanding and the level of sophistication in
the data analysis is quite high, too. It is not surprising,
therefore, that so far only four experiments have been
performed [53–56]. All three experiments were carried
out with at most 10 horizontal lattice planes, and all of
them were restricted to 2D diagnostics. This implies
that grains leaving or entering a particular horizontal
lattice plane could be observed, but the broader 3D pic-
ture is still unknown.

3.2. Phenomenological Description of Phase 
Transitions in Complex Plasmas

Whilst in [53] great emphasis was placed, in partic-
ular, on the migration of lattice defects during the pre-
liminary stages of the melting transition, the other
research concentrated more on the phenomenology of
the transition: the changes in the 2D correlation function
(translational order) and the variations in the temperature
(velocity distribution), orientational order, self-diffusion,
and viscosity of dust grains [57] (see Fig. 25).

The melting transition can be initiated and con-
trolled by lowering the gas pressure in the plasma
SMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 25. Measurements of grain self-diffusion during the melting of a plasma crystal at different pressures [57].
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chamber. This has several consequences. First, it
reduces the friction damping of the grains; second, it
increases the collisional mean free path of ions and
electrons; and finally, it lowers the plasma ion and elec-
tron densities and increases the sheath width. All these
processes act in a complicated way to decrease the cou-
pling parameter Γ and to initiate melting.

The transition from the crystalline to the liquid state
is accompanied by an increase in the vibrational excita-
tion of grains at the lattice defects, followed by defect
migration (see Fig. 26).

This behavior is expected from the studies of classi-
cal annealing and is confirmed at a microscopic level
for complex systems. Next, grain migrations across
horizontal lattice planes become more frequent.
Whether this is a response to a structural realignment in
the vertical direction is still unknown. Of interest is the
asymmetric response to the vertical grain migration.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 26. Appearance of crystal defects [56].
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Fig. 28. Evolution of the transitional order parameter η∆ (triangles) and the orientational order parameter g6(0) (squares) during the
phase transitions caused by varying the neutral gas pressure [57]. The domains corresponding to the crystalline state (p ≥ 0.42 mbar),
the vibrational phase (p ≈ 0.32 mbar), and the disordered state (p ≤ 0.245 mbar) are hatched. The intermediate flow-and-floe phase
occurs at p ≈ 0.36 mbar.
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When a grain enters a horizontal lattice plane, it natu-
rally leads to a displacement of its nearest neighbors
(see Fig. 27). Observations show that, in this case, only
the grains in adjacent cells are involved. This adjust-
ment might be expected to proceed at the propagation
speed of the dust lattice wave; however, it is found to be
about two orders of magnitude slower.

When a grain leaves a horizontal lattice plane, again
a readjustment of the nearest neighbors takes place. In
contrast to the symmetric displacement of the nearest
neighbors (which is observed when a grain is added to
the lattice), a disappearing grain produces a direct flow
along a given lattice string, which may extend over
many (up to 10) neighboring cells (see Fig. 27).

Thus, there is a fundamental asymmetry in the read-
justment of grains in a given horizontal lattice to the
addition or loss of a grain.

Next, it was found that parts of the system started to
“flow.” Although it is not yet confirmed experimentally,
the conception is that these flow regions could look like
miniconvection cells involving two or three horizontal
lattices. At the same time, other regions retained quite
stable crystalline domains of varying size (typically, 10
to 50 Wigner–Seitz cells in one lattice plane). This
structure is reminiscent of a classical first-order phase
transition, e.g., water and ice, where liquid and solid
phases coexist. It was named the “flow-and-floe” phase.
Its appearance is related to certain neutral gas pressure
and is shown in Fig. 28 together with other phase states
(see below).

It was natural to expect that this melting process
would simply proceed as follows: the “floes” should get
smaller until the entire system becomes liquid. However,
the expected development did not happen. Instead of liq-
uefying further, the complex plasma acquired a new (and
unexpected) intermediate state. Starting in a few loca-
tions that were not obviously associated with lattice
defects (this evidence is in part circumstantial and not
100% certain, since only one lattice plane was observed
and information about neighboring planes and their
defects is lacking), individual grains began to vibrate
with substantial amplitudes up to about 10% of the initial
lattice separation (see Figs. 29, 30). The associated
increase in the kinetic energy was a factor of 10 or more.

Subsequently, as the melting transition proceeded
further, more grains started to vibrate and the vibration
amplitudes increased. This stage of the phase transition
had the appearance of a classical Lindermann picture,
with the grains vibrating in their lattice sites around
their equilibrium positions. The vibration amplitude
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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increases until the system eventually passes to a disor-
dered (fluid or gaseous) state (see Figs. 30–32).

From the top view (Fig. 30), we can see the basic
crystal-like structure, in which some grains oscillate
with substantial amplitudes along circular, oval, or lin-
ear trajectories and some appear not to vibrate. This
could be due to the projection effect, as shown in the
side view (Fig. 31). A cursory “head count” of the dif-
ferent orientations of vibration planes shows that the
vibration is essentially isotropic, which means that
either the energization process is not directional or
there is a process that rapidly randomizes the grains.
Observations of the individual grains show that the
vibrational orientation is conserved over a few vibra-
tion periods until the directional information is lost.

Note that, in the vibrational state, the orientational
order is more pronounced than in the flow-and-floe
state. This will be discussed in greater detail later. In the
disordered state, the grains move very fast, with a
kinetic energy far exceeding 1 eV. Consequently, the
grain trajectories are visible as “lines” in individual

(‡)

(b)

Fig. 29. Images (each presenting two consecutive video
frames overlaid) corresponding to the beginning (a) and the
end (b) of the vibrational phase (pressures of 0.32 and
0.29 mbar, respectively) [56]. In the marked window in
image (a), the vibrations are first observed; they then spread
throughout the crystal.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
video frames (see Fig. 31). Also clearly seen are sudden
“kinks” in the grain trajectories, probably caused by
Coulomb collisions. In principle, the statistics of such
collisions could be used for diagnostic purposes, but
this has not been attempted so far.

3.3. Translational and Orientational Orders 
in Phase Transitions in Complex Plasmas

The standard techniques for quantifying crystalline
structures are the determination of translational and ori-
entational orders [58].

For the former, one usually employs the radial pair
correlation function g(r), fitted to the appropriate lattice
structure (in our case, hexagonal), normalized to the
mean lattice separation ∆, and broadened by the so-
called Debye–Waller factor. This factor accounts, in
particular, for thermal broadening, but one should
expect that the broadening in the case of a plasma crys-
tal will not be thermal. Since the correlations generally
decrease with increasing distance r, the decay of the
translational order can be expressed through the expo-
nential decay factor exp(–η∆), where ∆ is the lattice
separation and η–1 is the correlation decay length.
Clearly, the smaller η∆, the greater the translational
order. The transition from the ordered (η∆ ! 1) to dis-
ordered (η∆ @ 1) state occurs at η∆ ~ 1 [11, 27].

For the orientational order, the bond orientational
correlation function g6(r) is usually taken. This is
defined in terms of the nearest neighbor bond angles
and, in our case, measures the sixfold symmetry in the
structure [59]. Only the nearest neighbors were used in

Fig. 30. Side view of a plasma crystal in the vibrational
state. The figure illustrates that the grain vibrations are
essentially isotropic [58]. At the bottom of the crystal, melt-
ing is seen to start.
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[59] to evaluate g6(0) by averaging over all the grains.
Hence, in [59], only the very local orientational order
was determined. Clearly, in a crystal, this parameter is
most sensitive to dislocations, e.g., if there appears a
pentagon or septagonal structure instead of the usual
hexagonal structure. However, it is also sensitive to sta-
tistical variations in grain positions as a result of fluctu-
ations of the grain charge and plasma parameters or
other collective variations (note that the averaging of
the grains positions over time was not performed in
[59]). The higher orientational order corresponds to the
larger value of g6(r), the maximum being equal to unity.

The translational and orientational order parameters
are plotted in Fig. 28 as functions of the gas pressure
[60], which was used as a control parameter in studying
the phase transition. The crystalline, vibrational, and
disordered states are hatched. The flow-and-floe state
occurs in the intermediate region between the crystal-
line and vibrational states. It develops more or less con-
tinuously from the fully crystalline state to the mainly
crystalline state with migrating defects and, then to
crystalline islands in viscous liquid until the vibrational
state is reached.

It is interesting to note that the onset of the vibra-
tional state is indicated in both ordering parameters by
a return to a more ordered structure.

3.4. Dust Grain Temperature in Phase Transitions 
in Complex Plasmas

Since the dust component of the complex plasma
can be visualized with a high time resolution at the
kinetic level, it is possible to measure the velocity dis-

Fig. 31. Beginning of the disordered state (p = 0.13 mbar)
[55, 56]. The image was taken with an exposure time of
0.02 s. The area shown is 3.9 × 4.1 mm2.
tribution function of dust grains directly. This distribu-
tion function can then be compared, for instance, with
a Maxwell distribution, or one may take moments to
identify the flow velocities, etc. According to a visual
inspection, there are indeed stages during the phase
transition when the directed flows occurred. A suitable
analysis had to be made to quantify these flows. Fig-
ure 33 shows the unidirectional velocity distribution
function fd(vx), which is compared with the best Max-
wellian fit (solid line) at different neutral gas pressures
[56]. The correlation function measured during the
phase transition is shown in Fig. 34 [57].

The results of [53–61] can be formulated as follows:

(i) In the crystalline state (p ≥ 0.42 mbar), the grains
have a Maxwellian velocity distribution with a temper-
ature of 0.036 eV (slightly above room temperature).
The system is clearly in equilibrium (some kind of ther-
modynamics can probably be used to describe this
state, although the concept of free energy is inapplica-
ble).

(ii) In the flow-and-floe state (p ≈ 0.36 mbar), the
velocity distribution of grains is still well described by
a Maxwellian distribution with a temperature of
0.037 eV and is close (within the allowable errors) to
that in the crystalline state.

(iii) In the vibrational state (p ≈ 0.32 mbar), there is
clear evidence for bi- or multi-Maxwellian distribu-
tions. The best fit with a single temperature of 0.073 eV
is clearly inadequate. A bi-Maxwellian fit with 60% of
the grains at 0.04 eV and 40% at 0.9 eV is much better.
This indicates that, at this stage, many grains have
made the transition to the vibrational dynamics.

Fig. 32. Grain motion in the disordered state [57].
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 33. Change of the dust grain distribution over vx with pressure on the course of crystal melting [56]. The solid curves show
Maxwellian fits with the dust temperature T; 〈v1〉  and 〈v2〉  are the chaotic and regular drift velocities, respectively.
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(iv) In the disordered state (p ≤ 0.245 mbar), the dis-
tribution function is again almost Maxwellian with a
temperature of 4.43 eV. This is more than two orders of
magnitude higher than the equilibrium value observed
in the crystalline state. Considering only gas friction
(Epstein drag; see [2]), this implies that, in order to
maintain the grain temperature at this level, a power
≈3.0 eV/s per grain has to be provided. This means that
an external power of few watts is required to maintain
the plasma. Thus, the external energy source plays an
important role in the transition. We mention also that
the kinetic theory predicts that, in the gaseous state, the
complex plasma can rapidly reach a thermal equilib-
rium [62, 63] and that the grain distribution can be ther-
mal (the thermal distribution satisfies the dust–dust col-
lision integral for all attraction interactions included).
Thus, there is some theoretical basis for the grain distri-
bution to quickly reach the thermal distribution, at least
in the disordered state (there is no theoretical predic-
tions for other states in phase transitions).

As was mentioned earlier, the ion and electron dis-
tributions are usually not thermal, which can cause the
existence of directed dust flows in the intermediate
regimes of phase transitions. Such flows can occur, for
instance, during the annealing of lattice defects, but
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
they also manifested themselves (in a much more dom-
inant way) during the flow-and-floe phase.

4. WAVES AND INSTABILITIES 
IN CRYSTALLINE AND DISORDERED STATES 

OF COMPLEX PLASMAS

4.1. Change of the Dispersion Relations
in Complex Plasmas

Complex plasmas, as a new state of matter, should
have new waves and instabilities due to the openness of
the system, the large rate of dissipation of plasma par-
ticles on grains, and the presence of external sources. In
the first approximation, these waves and instabilities
can be described by linear responses and linear disper-
sion relations and can then be treated nonlinearly by
using nonlinear responses. To find these responses, it is
necessary to specify the external sources, since the
responses are different for different sources. The linear
and the nonlinear waves in complex plasmas have been
the subject of experimental investigations. We start
with the simplest disordered gaseous state of complex
plasmas, where it is simpler to qualitatively formulate
how the presence of the dust component changes the
modes, and when these changes are substantial. From
the physical standpoint, one can estimate the ranges of
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Fig. 34. Evolution of the pair correlation function g(r) during melting caused by varying the gas pressure [57].
wavenumbers and frequencies in which linear modes in
a complex plasma will change. This estimate will be the
same for all kinds of external sources, although the dis-
persion relation depends on the source. Indeed, the fre-
quencies at which the changes are big should be less

than either the charging frequency νch ≈ vTia/  or the
frequency of collisional friction of the plasma particles
on dust grains νchP0 (see [2]). The latter is of the same
order of magnitude as the charging frequency if P0 is on
the order of unity. The wavenumber domain where the
changes occur should correspond to wavenumbers less
than νch/vTi or νch/vTiP0. This is a very broad range in
the (ω, k) plane, where all low-frequency responses are
usually located. This is because the charging frequency
is only a factor of a/λDi less than the ion plasma fre-
quency. All the classical theory of waves and instabili-
ties in ordinary plasmas written in textbooks (see, e.g.,
the monograph by Mikhailovskii [64]) should be
revised in this range of the wavenumbers and frequen-
cies. Although the work on renewing this “table” of the
waves and instabilities has not yet been completed, it is
clear in general that all the so-called negative energy
waves (among them are all beam modes and drift
waves) will be much more unstable in complex plasma
than in ordinary plasma. The reason for this is that, for
negative energy waves to grow, it is necessary to have
the dissipation of the disturbances, and the complex

λDi
2

plasma provides a very efficient mechanism of dissipa-
tion via charging and the friction on grains. Without
going into details, we will mention, for instance, that
the investigations of drift waves [65] show that, in com-
plex plasma, both the threshold of the drift instability
decreases and its growth rate increases. The same is
true of the beam instabilities, i.e., instabilities related to
the propagation of the electron and the ion beams in
plasmas. What is most important is not only that the
known waves and instabilities change but also that new
modes and instabilities appear. Thus, in the liquid and
the gaseous states of complex plasmas, dust acoustic
waves (DAWs) exist. The theoretical investigation of
the latter was started with a modification of the known
results [64] for a multicomponent plasma in which dust
is simply one of the heavy components [66–70]. How-
ever, such an approach is not appropriate, as can be seen
from the discussion of the elementary processes in
complex plasmas [2] (see also a detailed discussion of
this problem in [71, 72]). The relevant experiments will
be considered later in the context of a description of
DAWs with allowance for charging processes, as well
as descriptions of dust ion sound waves (DISWs),
which are the low-frequency branch of the usual ion-
sound waves in plasma [73]; gravitation-like electro-
static instability (GLEI) [74], which is related to the
noncollective dust attraction and is similar to the gravi-
tational instability in usual gravitating systems; and
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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structurization instability (SI) [74], which is related to
the collective dust attraction and describes the clump-
ing of a complex plasma in dust-containing structures
and dust-free regions (dust voids). Recently, another
type of wave has also been discussed, namely, dust
Coulomb waves (DCWs) in a system of strongly inter-
acting grains. These modes are the most important new
waves in the disordered state. In the plasma crystalline
state, new wave phenomena include dust lattice waves
(DLWs) [75] and dust shear waves (DSWs) [76, 77].
These are peculiar only to strongly coupled crystalline
systems and are absent in the liquid or the gaseous
states. These waves may be excited in 1D “string” sys-
tems, 2D planar lattices, and 3D crystals. Their solid
analogs are the crystal sound and shear waves.

Under the Earth’s gravitational conditions, we have
to bear in mind that there is a fundamental asymmetry
for dust grains located in the plasma sheath. This asym-
metry is caused by the ion flow, although, as was noted
above, this effect is smeared out (not completely) by
collective charging effects. This causes some anisot-
ropy in the interaction among the grains. We recall that
experiments exist which illustrate that there is a close
coupling between vertically aligned grains, such that,
when the upper grain is shifted, the interaction is
clearly observed, while the coupling is absent when the
lower one is shifted. However, these observations were
performed for two interacting grains. In the presence of
many grains, this effect is smeared, but some asymme-
try survives. For these reasons, our main attention will
be focused on monolayer systems and horizontal inter-
actions.

For simplicity, we will first consider the gaseous
state and will find simple linear relations from the
forces acting on the electrons, ions, and grains, adding
to the force balance equations the terms with the time
derivative ∂/∂t and then linearizing the system as was
done in [2] (see also [72]). The applicability of such an
approach is justified by the fact that we are dealing here
with low-frequency and long-wavelength perturba-
tions, and the electron and ion distributions are
assumed to be thermal. As was discussed earlier, the
latter is not a good assumption; however, the full kinetic
treatment of the new modes is still waiting to be per-
formed, and this assumption will allow us at least to
illustrate the main features of these modes by introduc-
ing the temperatures Te, i, d as certain averaged particle
energies. Another simplification is the assumption that
the long-wavelength perturbations are quasineutral; in
this case, we do not need to solve Poisson’s equation.

4.2. Experiments on Dust Ion-Sound Waves

DISWs, which are an analogue of ordinary ion-
sound waves in the absence of dust, are substantially
modified by the presence of the dust component. The
wave as linear perturbation can exist only against some
ground state, which, in the absence of dust, requires
only the charge balance, while in the presence of dust,
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
it requires also the power balance for frequencies lower
than the frequencies of charging and dust–ion colli-
sions, and for wavelengths longer than those corre-
sponding to these frequencies. For τ = Ti/Te ! 1, the
frequency related to the scattering of ions on dust grains
is a factor of lnΛ/τ higher than the charging frequency
(where lnΛ is the Coulomb logarithm modified with
allowance for collective effects and large-angle scatter-
ing). In experiments, this frequency is on the order of
107 s–1, which corresponds to a time scale on the order
of 0.1 µs. The charging frequency is on the order of 2 ×
105 s–1, and the corresponding time scale is on the order
of 5 µs. The ions are absorbed on the latter time scale;
however, in experiments, the external source is kept
constant at time scales much longer than those related
to both charging or ion–dust scattering. Therefore, one
can assume that the power balance is kept in the entire
range of DISW frequencies. Although the frequency
related to dust–ion collisions does not determine the
power balance, it should enter into the dispersion rela-
tion, somewhat modifying it at high frequencies. As
was demonstrated in [2], the power balance in the basic
state has two consequences: (i) the basic state is gov-
erned by a single parameter P0 (which determines the
electron-to-ion density ratio and the dust charge z0 for a
given dust size and given values of τ and ion mass) and
(ii) the perturbations of the basic state (including those
related to DISWs) are highly dissipative.

The linear dispersion relation for DISWs is easy to
obtain using the linearized expressions written in [2].
They describe the perturbations of the balance of the
basic state; the perturbations of the ion momentum bal-
ance with allowance for the change of the dust drag,
dust thermal pressure, ion inertia, and electric field; and
the adiabatic perturbations of the electron density. The
calculations are rather simple [72], and the exact deri-
vation of the dielectric constant with the use of the
results given in [2] is straightforward. Here, we start
with presenting some simple estimates. For high fre-
quencies, only the contribution of dust in the charge
balance equation of the ground state is important and
the electron-to-ion density ratio entering the dispersion
relation is equal to 1 – P0. Thus, we obtain

(12)

Note that the charging frequency is much less than
the ion–dust collision frequency and, in the case where
the frequency of the wave is larger than the ion–dust
collision frequency νid, the variation of charges in a
DISW can be ignored in first approximation. Since νid ≈

P0z0vTia/  (see [2]), we find that expressions (12) are
valid only if kλDe @ P0z0a/τλDi. The exact condition

ωDISW kv DISW, v DISW
Te
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found in [72] determines only the numerical coefficient
in this inequality, which reads

(13)

Under the conditions of the experiments in which
the conversion to the plasma crystalline state was
observed, a/λDi ≈ 1/10, τ = 0.02, and lnΛ ≈ 3. In this
case, the right-hand side of inequality (13) is larger than
unity, while the linear relation between the wave fre-
quency and the wavenumber is valid only for kλDe ! 1.
Thus, the range where expressions (12) are valid is
absent. This result is important because the nonlinear
steepening of the waves and the formation of a shock
wave is possible only for an approximately linear rela-
tion between the frequency and the wavenumber. The
question is whether the linear relation (with the only
change of the DISW phase velocity) can survive in the
case opposite to inequality (13). As was found in [72],
such a linear relation does not survive and the disper-
sion relation in this case describes a purely damped per-
turbation with a damping rate close to the frequency of
ion–dust collisions νid:

(14)

kλDe @ P0z0 Λ 1

3 2π
-------------- a

λDiτ
----------.ln

Im ω P0z0 Λv Ti
a

3 2πλDi
2 τ

-------------------------.ln–=

1.5

1.0

4

3

2

1
0

(‡)

(b)

0.5 1.0
η

(δ/λ)d/(δ/λ)nd

vph(η)/vph(1)

Fig. 35. (a) Phase velocity and (b) spatial damping rate
(squares) of DISWs vs. parameter η = 1 – P0 [80]. The solid
curves in plot (a) are the results of calculations by the fluid
theory with allowance for the drift along the magnetic field
for three values of the drift velocity: (1) 0, (2) cs, and (3) 2cs
(where cs is the ion acoustic speed). The solid curve in plot
(b) is obtained by taking into account the Landau damping
only.
Thus, the linear dispersion occurs only for rather
small a/λDi values or small P0. Special experiments
need to be performed to satisfy condition (13). There
are several experiments in which DISW shocks and
DISW linear waves were observed [78, 79]. We mention
that, in [79], the ratio a/λDi was in the range 3 × 10–3 to
10−2 and the effect of damping described by Eq. (14)
was not large. However, in [69, 80], λDi varied from
30 µm to 1 cm, while the dust size varied from 1 to
10 µm. The ratio a/λDi could be on the order of 0.3;
however, no investigations were made on the depen-
dence of the damping rate on the dust size, which is pre-
dicted by Eq. (14).

Let us discuss this point in more detail for the exper-
imental conditions of [80]. In [80], experiments were
carried out in a Q-machine dusty plasma device with
almost equal electron and ion temperatures (Te ≈ Ti ≈
0.2 eV) and plasma densities in the range from 105 to
1010 cm–3. Dust grains fell with velocities of about
30 cm/s, which is smaller than the estimated DISW
velocity, therefore, the dust motion was unimportant.
For equal temperatures, the Landau damping should be
large; however, an important point is that the DISW
phase velocity can be larger than the ion thermal veloc-
ity, due to the factor 1 – P0 in the denominator of the
second expression in (12). Thus, the presence of dust
can substantially reduce the Landau damping if P0
approaches unity. In [80], the dependences of the phase
velocity and spatial damping of DISWs on the parame-
ter η = 1 − P0 were determined (see Fig. 35).

The authors of [80] suggest that the main damping
mechanism is the Landau damping, which depends cru-
cially on the phase velocity of the waves. Under condi-
tions where the ion and electron temperatures are equal,
the DISW dispersion relation should include the ion
pressure term. In this case, in the expression for the

DISW phase velocity, instead of the factor 1/
(see (12)), there should be the factor

(15‡)

and the relative change of the spatial Landau damping
is described by the additional factor

(15b)

Figure 36 shows these factors as functions of the
parameter 1 – P0. Qualitatively, they correspond to the
experimental data shown in Fig. 35. For a more detailed
comparison with the experimental curves, it is neces-
sary to take into account the damping due to ion–dust
collisions given by Eq. (14) and to investigate the
dependence of dumping on the dust size. The damping
(14) does not allow the wave to propagate if its wave-
number is less than that determined by inequality (13).
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This effect depends strongly on the ratio a/λDi and the
wavelength. It can manifest itself under the experimen-
tal conditions of [80]; however, no information about
the observation of the cutoff or the absence of waves
with wavenumbers less than those determined by the
inequality that is the opposite of inequality (13) is pre-
sented in [80]. In the future, not only the threshold for
the existence of DISWs but also the damping caused by
ion–dust collisions in the range of the parameters where
the DISW exist should be examined experimentally.
For this purpose, it is more suitable to use complex
plasmas with τ ! 1 (this condition is often met in com-
plex plasma experiments). For the future experiments,
we give the corrections for both the real and imaginary
parts of the DISW frequency, which determine, respec-
tively, the phase velocity and damping of DISWs in the
range where these waves exist and are weakly damped.
We mention that the Landau damping of DISWs is usu-
ally small if τ ! 1; the exception are experiments car-
ried out in Q machines [81], in which the Landau damp-
ing on ions is of importance due to the low phase veloc-
ity of the waves for equal ion and electron
temperatures. The Landau damping on electrons is usu-
ally small due to the large ion-to-electron mass ratio
mi/me for the gases with heavy ions often used in low-
temperature experiments. Under conditions where the
damping is small, the effects due to the damping caused
by charging and ion–dust collisions, and the effect due
to the Landau damping, make an additive contribution
to the frequency. Therefore, we give here only the cor-
rections to the phase velocity due to charging and ion–
dust collisions in the range of weakly damped DISWs
by using the general dispersion relation found in [72] in
the limit τ ! 1:

(16)

These dispersion corrections are small: the first term
is small in view of condition (13) for the existence of
DISWs, and the second term is small because the wave-
length should be longer than the electron Debye length
in order for the deviations from quasineutrality to be
small. However, the first term, which is inversely pro-
portional to k2, can compete with the second term,
which is proportional to k2, and this can be checked
experimentally. The charging effect changes the damp-
ing slightly [72]:

(17)

When the dusty plasma is perturbed by a large dis-
turbance and the dispersion of DISWs is linear (the fre-
quency is proportional to the wavenumber), the steep-
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ening of the profile of the perturbation and formation of
a shock is usually expected. To form the shock, the
damping should be small. In the experiments per-
formed in the Q-machine device with equal electron
and ion temperatures [78], this condition can be satis-
fied only for large values of P0. In the experiments of
[81], which were performed in a device similar to that
of [80], the steepening of a disturbance created by
launching a rectangular voltage pulse to the plasma grid
was observed for P0 ≥ 0.75. The plasma density was
lower than 107 cm–3, and the plasma Debye length was
0.3 cm. Therefore, the ratio a/λD was small (on the
order of 10–3) and the wavelength at which the ion–dust
collisions become important was about 10 m (larger
than the device size), while the steepening was
observed at distances of 30–40 cm. It can be seen from
Fig. 37 that, without dust, the applied pulse spreads as
the distance from the grid increases, while in the pres-
ence of dust, the steepening of the pulse and the shock
formation is observed at P0 ≈ 0.75. Obviously, the
thickness of the shock front (see Fig. 38), which is
about 40 cm, cannot be explained by the dissipation due
to either charging or ion–dust collisions (according to
the list of the elementary process in complex plasma

[2], it should be on the order of  ≈ 5 m) and can be
explained only by the Landau damping of ion-sound
perturbation on ions. The dust only increases the phase
velocity of the wave and leads to steepening of its pro-
file, but the dust still cannot be the main cause of dissi-
pation in the shock.

In experiments of [79, 81, 82], linear DISWs, DISW
solitons, and DISW shocks were observed in a low-
temperature plasma under conditions close to those for
the plasma crystal formation, but still not at such low
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Fig. 36. Functions ReF (solid curve) and ImF (dashed
curve) vs. parameter η = 1 – P0 [see Eqs. (15a), (15b)].
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values of τ as in plasma crystal experiments. First, we
consider the experimental conditions and the data
obtained, and then give some estimates using the table
of elementary processes in complex plasma [2] and dis-
cuss how the theory can be formulated.

The experiments were performed in a double-
plasma device. The electron temperature was about 1–
1.5 eV, and the ion temperature was about 0.1 eV, which
corresponds to τ ≈ 0.1. The electron density was in the
range 108 < ne < 109 cm–3, and the ion Debye length was
in the range 90–230 µm. The dust size was about 9 µm.
For the Ar gas used, this corresponds to z0 ≈ 3.2. The
parameter P0 varied from 0.3 to 0.4. Under these condi-
tions, inequality (13), which determines the range of
the existence of DISWs, takes the form kλDe = k/ke >

2V
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Fig. 37. Observation of the appearance of an oscillatory
structure after the steepening of the wave profile for nd =

(a) 0 and (b) 5 × 104 cm–3 (λD = 0.06 cm, ωpd = 3 × 105 s–1)
[81].
0.1. It is this range of wavenumbers that was investi-
gated experimentally in [79–82]. This is not surprising
because, in the other ranges, the DISWs should not
exist. The gas pressure was about 10–4 Torr, and the
mean free path for collisions with neutral atoms was
about 300 cm, which was larger than the discharge tube
length. Thus, the only important collisions were the
ion–dust collisions. The experiments are able, in princi-
ple, to check the theoretical values of the frequency of
ion–dust collisions. The mean free path for ion dust col-
lisions λid can be estimated from Eq. (14) as

vTi/2Imω ≈  ≈ 2500–500 µm
for P0 = 0.1–0.4, which is 20 times less than that
claimed by these experiments (see [81]). This estimate
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Fig. 38. Variations in the plasma density at different dis-
tances from the grid (a) in the absence of dust and (b) in the
presence of dust with P0 ≈ 0.75 [80]. The horizontal seg-
ments of the curves correspond to uppermost values of n at
different z. The top square wave is the pulse applied to the
grid. The dashed lines mark the advancement of the leading
and the trailing edges of the pulses. In plot (a), the dashed
lines diverge, indicating that the pulse front spreads out,
whereas in plot (b), the lines converge, indicating the steep-
ening of the pulse front.
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is important because the hydrodynamic concepts for
ion–dust collisions (such as ion viscosity) can be used
only for λ @ λid. At ni ≈ 108 cm–3, the wavelength of the

observed waves varied from 0.6λid  ≈ 227–
420 µm to the values five times larger (1135–2100 µm)
as the parameter P0 varied in the range 0.1 < P0 < 0.4.
For the densities ni ≈ 109 cm–3, the corresponding wave-
lengths are shorter by a factor of 3.3. Using both the
theoretical and the experimental estimates of the mean
free path for ion–dust collisions, we find that it is much
larger than the wavelength, and the concept of viscosity
cannot be used in analyzing the observations (as was
done in [81]). We mention that the estimate of the mean
free path equal to 1.2 cm, which is needed to fit the
experimental results, was obtained by adding the vis-
cosity term. Under the conditions where the wavelength
is much less than the mean free path, the viscosity
should be considered to be zero. The observations of
the linear dispersion [81] should be compared with the
linear dispersion curves in which the viscosity is
ignored. Such a comparison shows that the theoretical
estimates agree qualitatively with the dependences
obtained experimentally. The experimental results are
shown in Fig. 39, where k = kr + iki . The authors claim
that the damping in the absence of dust is not related to
the Landau damping. We note, however, that it is the
experimental data that are of importance, rather than
their comparison with the linear theory that includes
viscosity.

In the nonlinear case, the DISWs convert into soli-
tons [82] and shock waves [81]. In comparing the
experimental results with the theoretical predictions,
one should use an appropriate nonlinear description.
The simplest description is based on the Korteweg–de
Vries (KdV) equation in dusty plasma [81] under the
assumption that the nonlinearity is weak. The usual
expression for the nonlinear term in the KdV equation
is ∝φ∂φ /∂x. In complex plasmas, the coefficient in front
of the nonlinear term depends on P0 and τ, as well as on
the phase velocity, which is determined by the linear
part of the equation. It is clear that, under conditions
where the ground state of the complex plasma is deter-
mined by the balance of ionization and absorption on
dust, a new nonlinear term will appear from the pertur-
bations in the ion continuity equation, containing the
nonlinearity of the type n∂u/∂x and u∂n/∂x, which can
be converted into the φ∂φ/∂x nonlinearity by using the
linear relations between n, u, and φ. Thus, in complex
plasmas, the numerical factor by the nonlinear term in
the KdV equation should be different from that in the
usual KdV equation used in [81] to interpret the exper-
imental data. In the future, the observations should be
analyzed using this more appropriate theoretical model.

Here, we mention the main qualitative results of the
observations [82] and their qualitative interpretation:

(i) The Mach number M as at a fixed soliton height
decreases with increasing dust density. This can be

1 P0–( )/τ
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explained as follows. Since, in the usual KdV equation,
the soliton height is proportional to (M – 1)v s and since,

in presence of dust, v s ∝  1/ , the value of M

should be proportional to the height times  and,
thus, should decrease with increasing P0.

(ii) The width of the soliton increases with increas-
ing dust density. This can be understood from the
known dependence of the width of a KdV soliton on its
height, namely, from the fact that the soliton width is
inversely proportional to the square root of the height.
Since the soliton height decreases with increasing dust
density, its width should increase.

(iii) The damping of solitons is approximately pro-
portional to the dust density. This can be explained by
the fact that the damping is produced by ion–dust colli-
sions whose frequency is proportional to P0.

Thus, the experimental results are qualitatively
understood, while the detailed comparison with the the-
ory appropriate for complex plasmas is still the subject
of future investigations. A similar statement can be
made for the shock wave structures observed in [81].
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Fig. 39. (a) Measured values of the imaginary part of the
DISW wavenumber vs. frequency ω for different dust den-
sities nd. The solid curves show theoretical estimates
obtained with allowance for ion–dust collisions using the
corresponding fitting parameters for each curve. (b) Mea-
surements of the dispersion relation for DISWs. The solid
curves (from bottom to top) are the theoretical results
obtained for η = 1 – P = 0.27, 0.1, 0.063, and 0.052, respec-
tively [81].
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Some general remarks should be made in connec-
tion with these observations.

(i) It is obvious that the use of devices with a higher
(as compared to the plasma crystal experiments) ion
temperature (up to τ ≈ 0.1) was an important feature of
the experiments on DISW waves and shocks. The
higher ion temperature is related to the lower pressure
of neutral atoms, which cannot equalize their tempera-
ture with ions. The high ion temperature leads to the
existence of a range of wavenumbers where DISWs are
not heavily damped. Thus, these experiments are not
dealing with the usual low-temperature plasmas in
which the pressure is 3–4 orders of magnitude higher
and τ ≈ 0.01–0.02. Under such conditions, one can hope
to observe DISWs only for rather small dust sizes,
a/λDi ≤ 10–3, at which the dust grain charges are not so
big and the plasma condensation does not occur.

(ii) The above experiments allow the direct mea-
surements of the ion–dust collision frequency; how-
ever, under conditions close to plasma condensation,
the frequency of these collisions can differ from that in
the low-density limit.

(iii) Although linear DISWs cannot exist when con-
dition (13) is violated, strong nonlinear perturbations
can exist and propagate. In this case, nonlinear struc-
tures excited and supported by external sources can also
exist even when the frequency of ion–dust collisions is
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Fig. 40. Strongly nonlinear dissipative structure showing
the necessity of applying an external electric field to support
a DISW shock wave [83]. The curves are obtained by
numerically solving the hydrodynamic balance equations
for a structure propagating with a constant velocity u0 in the
absence of an external electric field. The profiles are shown

of (1) the normalized ion drift velocity u = , (2)
the ion density n = ni/n0, (3) the electron density ne = ne/n0,

(4) the self-generated electric field E = , and (5)

the dust charge z = Zde2/aTe, where n0 is the ion density in
the absence of a wave, λDi is the ion Debye length, Te is the
electron temperature, and a is the grain radius. The Mach
number is M = –u0/  = 1 (the wave propagates from
right to left; the curves are drawn in the reference frame
moving with the wave).
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high. Such strongly dissipative structures require a sep-
arate experimental study. From the theoretical point of
view, the nonlinear set of equations for these structures
can easily be formulated by taking nonlinearities into
account exactly (not only weak nonlinearities as in the
above KdV approach). For this purpose, one can
assume that the nonlinear wave propagates with a con-
stant velocity determined by the Mach number M. In
this case, the equations can be converted into 1D equa-
tions, which can be solved numerically. These equa-
tions are the equation of ion motion and the ion conti-
nuity equation, including variations in the dust charge
but assuming that the dust is at rest. These equations
were written in [2], where no assumptions on the weak-
ness of the nonlinearities was made. An example of a
strong dissipative structure obtained in this way is pre-
sented in Fig. 40, which demonstrates a quite unusual
distribution of the parameters and electric fields in such
a structure [83]. The structure propagates from right to
the left with a Mach number of M = 3. At the far left
from the front, the complex plasma is assumed to be
unperturbed, and the usual force balance for the ground
state is valid. The ion density in the structure is much
enhanced, and the ion dust collision frequency is some-
what decreased because the charge of dust grains is
decreased, but the dissipation (per unit length) is highly
increased because of the enhanced ion density in the
structure.

(iv) In general, ion-sound shock waves as steady-
state nonlinear steplike structures with different values
of the ion drift velocity on both sides of the shock front
cannot exist in complex plasmas. Indeed, in the case of
nonmoving dust (which is the case of ion-sound pertur-
bations), the ion motion is stopped by the ion–dust col-
lisions and the ion drift velocity cannot be constant
behind the shock even when it is zero in front of the
shock. This means that such structures, if observed,
should be either supported externally (for example, by
some external electric field behind the shock) or they
should be nonstationary.

(v) Different theoretical approaches used to describe
DISWs (except that used in [72]) do not take into
account the power balance in the ground state (see [2]).
To take into account the power balance is the only way
to determine the state against which the linear perturba-
tion develops. The homogeneous power balance, which
is the simplest to analyze, defines completely the basic
state by a single parameter P0. This allows less flexibil-
ity in choosing the complex plasma parameters and
makes the consideration quite general. The simplest
way to obtain the general dispersion relation for DISWs
in such a formulation of the problem is to use the force
balance equations, the continuity equations, and the
charging equation, as well as the linearized expressions
for ion and electron densities in Poisson’s equation.
Simple algebra then leads directly to the dielectric
function, which should be used for the description of
DISWs. We will here give this expression, from which
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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one can easily obtain all the approximate dispersion
relations and the damping of DISWs used above in our
discussion:

(18)

where ω =  is the dimensionless fre-
quency and ωac is the actual frequency.

4.3. Dust Acoustic Waves

The first attempt to describe dust acoustic waves
was made in [66, 67] using the known theory of waves
in multicomponent plasma (see also [68–70]) in which
dust serves as one of the heavy components. Such
waves in a usual multi-ion plasma have long been
known [64] and were investigated in detail both exper-
imentally and theoretically. The difference between the
approaches of [67] and [64] is only in the mass of heavy
ions (i.e., the dust grain mass), since the dust compo-
nent is extremely heavy as compared to the ions in
usual plasma. However, as was already mentioned, all
the waves in complex plasma change completely in the
low-frequency and small-wavenumber range. These
changes were not taken into account in [64, 66–70], and
an attempt to take them into account was made in [71,
72, 84, 85]. The charging process as a damping mecha-
nism of DAWs was considered for the first time in [85],
but the ion–dust collisions were not included. The first
kinetic description of DAWs was performed in [71],
where the external source maintaining the complex
plasma was considered to be independent of the plasma
parameters. The full hydrodynamic description with a
source proportional to the electron density was formu-
lated in [72]. In that paper, it was shown that both the
real frequency and the damping of DAW in a complex
plasma is quite different from those in a usual multi-
component plasma (a similar result, but without the
inclusion of, ion–dust collisions was obtained in [85]).
In particular, the DAW frequency ωDAW = kVDAW
(where VDAW is the DAW phase velocity) obtained in
[71, 72, 84] depends strongly on the parameter P0, and
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coincides approximately with the expression given in
the multicomponent approach only at large wavenum-
bers and in the limit P0  0, i.e., when the dust is
almost absent. In [71], by a kinetic consideration, it was
also found that, in the low-frequency range ω ! νchP0,
the damping rate of DAWs can be estimated as Imω ~

, which is very similar to the damping
rate of acoustic waves in ordinary neutral gas, Imω ~

.

Here, we will not consider in detail the kinetic
description of DAWs [71], since such a description also
needs a generalization for the case of a source depend-
ing on the plasma parameters. Instead, we will give an
extremely simple description of DAWs using the results
of [2] (here, we follow [72]). Contrary to [71], where
the external source was assumed to be independent of
the plasma parameters, we will use the ground state
with a source proportional to the electron density. Such
a model is more adequate in describing the experimen-
tal conditions corresponding to ionization by an RF
field. In this case, we can use static expressions for the
low-frequency electron and ion responses obtained in
[2], which substantially simplifies all the results [72].
We will also assume that the power balance in the
ground state is satisfied, which is necessary in any for-
mulation of the linear theory. In some cases, the dis-
charge chamber walls, where the ionized component
can recombine, can make a significant contribution to
this power balance. This can happen only if the size of
the system is less than the mean free path for plasma

absorption on dust grains, /aP0 (see [2]). Since the
opposite is valid for most of the experiments in com-
plex plasmas, we will assume the presence of the power
balance in the ground state between ionization and
absorption on dust (the dispersion of DAW without
such a balance was obtained in [86, 87] and differs from
that discussed in [72]).

The frequency of DAWs is much less than both the
charging frequency and the frequency of ion–dust col-
lisions. The phase velocity of DAWs is much less than
the ion and electron thermal velocities, but is much
larger than the dust thermal velocity. The speed of these
waves (due to the large dust charges Zd @ 1) is always

larger than , which is close to the dust thermal
velocity if the ion temperature is close to the dust tem-
perature. The only expression that we need to describe
DAWs is the response of the dust. The dust response is
determined only by the dust inertia, the dust pressure,
and the Epstein drag force on neutral atoms [2]. The lin-
earization of these equations and simple algebra gives
the dielectric constant that describes DAWs. This dis-
persion relation is quite different from that used in the
first considerations of acoustic waves in the framework
of the multicomponent plasma approach (henceforth,
these waves will be referred to as multicomponent
acoustic waves (MCAWs)).
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We will give the expression for the dielectric con-
stant at the end of this section and start here with
emphasizing the difference of the dispersion of DAWs
for real complex plasmas from the dispersion of
MCAWs in a multicomponent plasma. In a complex
plasma, perturbations caused by a DAW inevitably lead
to variations in the dust charges, which turn out to be
different in different parts of the wave. The DAW dis-
persion is also related to the disbalance of the ground
state by the DAW perturbations. The latter affects the
DAW in such a way that the linear dispersion of DAWs
(i.e., the linear dependence of the wave frequency of the
wave number) is valid only for large wavenumbers sat-
isfying the inequality

(19)

It is important to note that criterion (19) depends on
the product of the charging and drag coefficients.
Therefore, the simultaneous presence of charging and
drag is crucial for calculating responses in complex
plasma (remind that αdrαch ≈ lnΛ/3π [2]). When condi-
tion (19) is valid, the dispersion relation for DAWs has
the form

ωDAW = kvDAW, (20)

with

(21)

If one simply (without any justification) ignores the
dust charge variations, one gets the expression obtained
in the multicomponent model:

ωMCAW = kvMCAW, (22)

where

(23)

Although vMCAW substantially differs from vDAW, in
the first experiments on DAWs [88], the comparison
was made with Eq. (23). Note that, in most of the exper-
iments, P0 was on the order of unity, in which case the
difference between expressions (21) and (23) is rather
large. In the limit τ ! 1, we obtain

(24)

For expressions (24) to be valid, it is necessary that,

besides restriction (19), the inequality k !  ≈ 
be satisfied. The latter inequality is violated when the
wave frequency reaches the dust plasma frequency

(25)
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Thus, linear relation (20) for DAWs can exist only
for sufficiently small dust size grains,

(26)

The deviations from the linear dependence occur
due to both the deviations from quasineutrality and the
disturbances of the ground state, which result in correc-
tions that are small by virtue of inequality (19):

(27)

Let us briefly discuss the damping of DAWs. Note
that, for a system externally driven at a frequency ω, the
wave frequency is real and the wavenumber is complex,
k = kr + iki . The wavelength is related to kr, and the
damping (or growth) is related to ki . The dispersion
equation can be solved for k2 as a function of ω2. When
the damping is small, it is characterized by ki/kr ≈ γ/ω.

When analyzing the damping of DAWs, it is neces-
sary to take into account the following circumstances:

(i) The presence of the large factor Zd @ 1 in the
expression for the DAW phase velocity makes it much

larger than the dust thermal speed vTd = . Thus,
the Landau damping on dust grains, which is propor-

tional to exp(– ) ≈ exp(– ), is
usually negligible. For example, under typical experi-
mental conditions (a ≈ 3 µm, τ ≈ 0.02), the DAW speed
is VDAW ≈ 1–2 cm/s, while the dust thermal speed at
room temperature is 3 × 10–4 cm/s (i.e., it is four orders
of magnitude lower).

(ii) Landau damping on ions (which is much stron-
ger than that on electrons) is on the relative order of

ωDAW/kvTi ≈ vDAW/vTi =  and is also very
small, due to the large dust-to-ion mass ratio.

(iii) The two effects related to the charging pro-
cesses contribute to damping. One of them is directly
related to the charging, which is modified by the change
of the ground state, while the other is related with the
dissipation due to both the disbalance of the ground
state and dust–neutral collisions. The first effect is on
the relative order of ωDAW/νch ! ωpd/νch ! 1, while the
second effect is due to the mutual influence of drag and
charging and is proportional to the product of the charg-
ing and the drag coefficients. An important point is that,
in the range of existence of DAWs, the latter effect is
related only to a small correction to dispersion relation
(27) (the second term in parentheses, which is always
small in the considered range of the linear DAW disper-
sion) and is proportional to the small factor on the order
of ωDAW/νch, which is less than ωpd/νch ≈

 ! 1 (see [2]). Note again that the
difference between these two damping mechanisms is
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that the first one is proportional only to the charging
coefficient, while the second one is proportional to both
the charging and drag coefficients. Both of these mech-
anisms become of the same order of magnitude at the
lowest possible frequency in the range of existence of
DAWs (see (19)).

(iv) The damping of DAW can be related to colli-
sions with neutral atoms. This mechanism seems to be
most important in experiments. Nevertheless, the corre-
sponding ratio ki/kr ≈ νnd/2ωDAW is also small if k !
kn = νdn/vDAW. For typical experimental conditions and
a pressure of several tenths of a millibar, this corre-
sponds to wavelengths of λn = 2π/kn ≈ (1–6) × 10–2 cm,
while the wavelength is usually equal to fractions of a
centimeter.

We will, therefore, focus our attention on the gen-
eral expression for the real part of the DAW frequency
(27), which also takes into account the dust charge vari-
ations and the deviation of the DAW dispersion from
the linear law.

The first observations of DAWs in laboratory dusty
plasmas were reported shortly after the discovery of
plasma crystals [89]. Since then, such observations
have been reported in many experiments [89–92].
Clearly, one of the important tasks for the future is the
investigation of instabilities leading to the excitation of
these waves.

Figure 41 shows schematically the glow discharge
device used in [89–92], while Fig. 42 shows the results
of observations of compressional DAWs in a dc dis-
charge plasma. The peaks and rarefactions of the dust
grain density are easily recognized. In these experi-
ments, the ion density was ni ≈ (4–8) × 108 cm–3, the ion
temperature was 0.03–0.1 eV, and the electron temper-
ature was 2.5 eV, which corresponded to τ ≈ 0.013–
0.043 and λDi ≈ 360–640 µm. Since the dust size was
0.7 µm, the ratio of the dust size to the Debye length
was a/λDi ≈ (1–2) × 10–3 and condition (26) was satis-
fied. The measured wavelengths were in the range 5–
15 cm–1, which corresponded to kλDi ≈ 0.1–0.3. The
working gas was nitrogen; in this case, for the given
values of the dust size and electron temperature, we
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
have z0 ≈ 2, Zd ≈ 2 × 103, and nd ≈ 105 cm–3, which
means that P0 ≈ 0.3–0.5. For these parameters, the sec-
ond term in parentheses in dispersion relation (27) is
approximately 0.1 for the lowest measured wavenum-
ber k ≈ 5 cm–1, while the third term is 0.01. Thus, the
dispersion is related to the second term. This can be
seen from the experimentally measured dispersion rela-
tion presented in Fig. 43.

The open circles in Fig. 43 correspond to the exper-
imentally measured values, while the curve corre-
sponds to the MCAW dispersion described by Eq. (22).
It can be seen from Eq. (24) that the DAW phase veloc-
ity should have a lower value and the straight line cor-
responding to the theoretical prediction should go
higher than that in the figure. For z0 = 2 and P0 ≈ 0.5,
the decrease in the phase velocity is only 8%, but it fits
the observations better and suggests directly that the
dispersion is determined by the second term in paren-
theses in Eq. (27); i.e., it is the opposite of the usual dis-
persion of sound waves in plasma. It would, of course,
be desirable to take more precise measurements in the
future to check all the new features of DAWs.

Experiments in which waves were excited exter-
nally (either by applying a sinusoidally varying poten-
tial to a wire located in the discharge chamber or by
chopped laser light pressure) were first reported in [92].
These experiments initiated a highly successful and
growing research technology employing so-called
“active manipulation.” We will not describe these
experiments in detail here, but will instead refer to them
in the following sections in the context of DLWs and
DSWs.

Let us note here the main important points related to
the DAW experiments:

(i) Investigations of DAW dispersion can serve as an
efficient method for determining the parameters of
complex plasmas. Generally, this includes the investi-
gation of the DAW damping. The results of [2] allow
one to find directly and in the simplest way the dielec-
tric response functions, which include all the dispersion
and damping effects
(28)
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(ii) The real part of Eq. (29) completely describes
the DAW dispersion (which was only approximately
described by relation (27)) and takes into account

Fig. 41. Schematic of the glow discharge device used to trap
negatively charged dust grains [89].

B
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exactly the dispersion related to the change of the bal-
ance in the ground state.

(iii) The imaginary part in the second and third
terms in braces describes the effect of damping caused
by charging [84], but in contrast to [84], generalizes
this effect by taking into account the dispersion pro-
duced by the change of the ground state. In [92], this
damping was named “Tromso damping.”

(iv) In Eq. (28), the damping related to both the
charging and the drag effect enters only into the disper-
sion terms proportional to 1/k2 and is determined by the
product of the charging and drag coefficient (this means
that, in the absence of one of these effects, both the dis-
persion and the damping related to the change of the
background state disappear). The damping described
by these terms can be named a “creation damping”
(term used in [92]), meaning that the plasma particles,
which are continuously absorbed by dust grains, should
be replaced by some “new” ions injected in the dis-
charge volume. The exact formulation of this effect can
be made only if one initially starts with a formulation of
16 Hz

22 Hz

30 Hz

3 cm210

Fig. 42. Compressional DAWs in a dc discharge plasma (several dust acoustic fronts are shown) [89].
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the basic state by using the power and particle balance
equations as we have done here. Thus, expression (28)
serves as an explicit and exact mathematical formula-
tion of the “creation damping” mentioned in [92].

(v) The most important effect introduced by the
basic state variations and “creation damping” is that
DAWs do not exist (or are strongly damped) for small
wavenumbers satisfying the inequality opposite to ine-
quality (19). Expression (29) can be used to find the
precise value of the critical wavenumber. The impossi-
bility of the existence of low-frequency DAWs should
be checked in future experiments.

4.4. Universal Instabilities in Complex Plasmas: 
Structurization, Gravitation-Like, 
and Crystallization Instabilities

In ordinary plasmas, instabilities appear in the pres-
ence of some nonequilibrium distributions such as the
anisotropy of particle distributions, the inhomogeneity
of the system, etc. A specific feature of complex plas-
mas is that instabilities can develop in the absence of
such nonequilibrium distributions. The source of these
is the energy and particle supply in the ground state. In
this sense, they are universal instabilities (UIs) of com-
plex plasma. The physical reason for the appearance of
the instability is the possibility of attraction for like-
charged grains in complex plasma. When the growth
rate is large enough, only the ions are involved in these
instabilities, and the dust grains are not able to follow
the development of the instability because of their large
mass. When the growth rate is sufficiently small, the
dust grains can follow the development of the instabil-
ity (the electrons are always adiabatic). In some sense,
this is similar to two types of waves in dusty plasma:
DISWs (in which the dust motion is not included) and
DAWs (in which the dust motion is included).

The physics of such instabilities is related to the
charging and friction (ion friction is described by the
drag coefficient). The perturbations arising in the
course of these instabilities are almost quasineutral.
Assume, for example, that due to fluctuations, the ion
density in a particular region of space becomes larger
than in other regions. The electron density is then also
increased in this region and the ionization rate becomes
larger, more ion–electron pairs are produced in this
region, and the ion density increases further. The effect
that does not allow the ions to escape freely from the
region with an enhanced ion density is the friction of
ions on the dust grains. This friction allows the ions to
leave the region with an enhanced ion density, with a
finite velocity determined by friction. Thus, for a suffi-
ciently large size of the region with an enhanced ion
density, the escape of ions from this region cannot bal-
ance the increase in the ion density due to ionization;
this results in the onset of instability. To estimate the
critical length or the critical wavenumber at which the
instability starts to develop, we notice that, in any dis-
sipative system, resistance creates an electric field.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
Hence, the ion flux, being resisted by dust, creates an
electric field which can be estimated using the results of
[2]. In dimensionless units, this field will be on the
order of E ≈ –αdrP0uz0. On other hand, the presence of
the electric field creates an electron density gradient
(due to the adiabatic behavior of electrons, we have
dne/dx ≈ –E ≈ αdrP0uz0). The ion flux is proportional to
the electron density, du/dx ≈ αchP0ne (the coefficient in
front of ne is taken from the condition of the balance of
the ionization and absorption on dust grains in the
ground state, and we ignore for a moment the absorp-
tion of the ion flux on dust grains). Since the dimen-
sionless length is in units of the charging length λch, we
find from here a simple estimate for the characteristic
length Lcr at which instability starts to develop:

(λch/Lcr)2 ≈  (we recall that λch ≈ ).
This estimate shows that, the effect is indeed deter-
mined by the product of the charging and drag coeffi-
cients. This estimate is rough because it ignores the
absorption of the ion flux on the dust grains, assuming
that it is just of the same order of magnitude as the
change in the ion density due to ionization. Direct cal-
culations using dielectric functions (28) give

(30)

The instability has a property similar to the gravita-
tional instability because the collective ion attraction
(see [2]) results in the enhancement of the ion density,
and the collective attraction force is proportional to
αdrαch, which determines the threshold of the instabil-
ity. For P0  0, the critical wavenumber decreases as

, i.e., much faster than in the case of the previous
rough estimate. The character of the instability depends
on whether or not the time is sufficient for dust to react.
When the instability is fast enough, the correspondent
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Fig. 43. Measured dispersion relation for DAWs [89–93].
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growth rate has a maximum at k = 0, i.e., at the largest
possible size in the system, similarly to the gravita-
tional instability. The growth rate γ in this case was first
found in [75], and for P0 ! 1, it is described by the sim-
ple expression

(31)

Recall that the expression in the denominator of the
left-hand side of Eq. (31) is on the order of the charging

frequency and that αch = 1/2 . In the opposite case
(P0  1), the factor 1 + z0 on the right-hand side of
Eq. (31) can be omitted.

In the case of slow instability, when the dust grains
are able to be driven by the instability, they are removed
from the region of enhanced ion density by the ion drag
force, thus forming a dust rarefaction. The complex
plasmas are then divided into dust clumps and dust
depletions. The dispersion relation for this case can be
found from expression (24) for the dielectric permittiv-
ity in the limit opposite to inequality (19), which deter-
mines the range in which DAWs can exist [72]:

(32)

In this case, the maximum growth rate corresponds
to the wavenumber close to kcr (see (30)).

Both types of instabilities are substituting the DAW
and DISWs in the range of small wavenumbers (smaller
than the critical value kcr) and can be classified as struc-
turization instabilities (SIs) [75]. Therefore, we can
conclude that the formation of structures is one of the
main properties of complex plasmas. There is no direct
way to stabilize these instabilities by the ion pressure or
the ion friction on neutral gas. Indeed, the instability
appearing as a continuation of the DISWs to the range
of small wavenumbers is created by the drag force.
Therefore, adding friction on neutrals will even
increase the growth rate of the instability. The ion pres-
sure effect is proportional to k2; thus, the SI survives in
the limit k  0, where the growth rate is maximal.
The same is true for the instability that is the continua-
tion of the DAW branch. An analysis of dispersion rela-
tions (18) and (28) (neglecting the dust pressure effects
and the dust–neutral collisions) confirms this state-
ment.

For the UI or SI, the critical wavenumber deter-
mined by expression (30) depends substantially on P0.
Note that, in several experiments, the value of P0 was
specially made close to unity. In this case, the growth
rate of the instability is rather large and the main ques-
tion concerns the critical wavenumber determined by
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expression (30). In the existing experiments on DISWs
and DAWs, this critical wavenumber was not reached.
However, it is not difficult to reach it for other dust sizes
and other Debye lengths. Indeed, for the typical param-
eters of the plasma crystal experiments (a/λDi ≈ 0.1,
P0 = 0.6, z0 = 3, and lnΛ = 3), we have kcr /λDi = 0.037
and, for λDi = 36 µm, we find kcr ≈ 9 cm–1, which is
inside the range of wavenumbers usually measured in
the existing experiments. Thus, the UI can be observed
at these and smaller wavenumbers. Under usual exper-
imental conditions (τ ! 1), there exist a range of wave-
numbers between that determined by expression (19)
(at which DAWs and DISWs start to be strongly
damped) and the critical wavenumber determined by
expression (30). This range can be also covered in
future experiments. The continuation of the DISW
branch to this range can be easily obtained from
Eq. (18) and the continuation of the DAW branch can
be easily obtained from Eq. (28). In the former case, we
obtain a pure damped mode with a frequency deter-
mined by ion diffusion due to ion–dust collisions, ω ∝
–ik2/νid, and, in the latter case, we obtain a weakly
damped mode related to charging:

(33)

When condition (26) is satisfied, the frequency of
this mode is smaller than the dust plasma frequency.
The frequency of mode (33) can easily be made in the
range of experimentally measured frequencies if the
dust size is sufficiently large. Thus, both the UI and new
dust modes could be the subject of future investigation.
These modes can be excluded either by choosing the
size of the system L to be less than that determined by
the critical wavenumber or by some nonlinear stabiliza-
tion. For the former case, we have

(34)

This condition, nevertheless, does not completely
exclude the existence of instability. Indeed, condition
(34) can be compared with the condition at which the
noncollective attraction dominates (see [2]),

, (35)

which was obtained from the physical considerations
that the size of the system should be less than the mean
free path for the ion absorption on the grains. There-
fore, one may expect that condition (34) expresses
more exactly condition (35), which was obtained from
simple physical considerations. Thus, under condition
(34), the noncollective attraction is dominant and the
attraction force is proportional to 1/r2, as is the case of
gravitation attraction. As is well known, the latter
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Fig. 44. Void structure observed experimentally in [95].
creates gravitational instability, which is described by
the relation

(36)

where v s is the sound speed and G is the gravitational
constant. Thus, one can assume that, in complex plas-
mas, the gravitation-like electrostatic instability
(GLEI) due to the noncollective dust attraction can
develop. We can estimate the growth rate of this insta-

bility by putting in Eq. (36)  ≈  instead of

, the expression

instead of G (see [2]), and ndmd instead of nm. We

obtain kcr ≈ , which corresponds to the char-
acteristic size at which the noncollective attraction
starts to operate. This size in complex plasma is analo-
gous to the Jeans length in gravitating systems. The
GLEI was first considered in [74], and the detailed
numerical results where dispersion (similar to that of
DAWs) is taken into account were obtained in [93]. The
self-contraction of small dust clouds described by this
instability has not yet been investigated experimentally,
but the self-contraction was observed numerically in
simulations of the formation of dust clouds with only
noncollective attraction included [94]. The final stage
observed numerically was a free-boundary plasma
cluster, which means that the plasma crystal can form
not only when the collective attraction between dust
grains is dominant but also when the noncollective
attraction is operating.

The nonlinear stage of UI and GLEI depends on
such parameters as the ionization rate, the dust pres-
sure, and the neutral gas pressure. One possibility is
that the dust rarefaction grow until the full separation of
dust-containing regions (dust clumps or dust structures)
and regions where the dust is completely absent (dust
voids). Another possibility is that, in the nonlinear
stage, only the fastest growing mode dominates and
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either filamentary structures or plasma crystals are
formed. The void structures were first observed in [95,
96], and the nonlinear theory of them was considered in
[97–99]. When voids develop, the quasineutrality con-
dition can be violated in the nonlinear stage close to the
void surface, which gives rise to an additional ion flux
toward the dust condensation. Figure 44 presents the
dust void structure obtained experimentally in [95]
under the Earth’s gravity conditions. The gravity force
in those experiments was small because rather small
dust grains (a ≈ 0.3 µm) were used. The void was 100%
free from dust and had very sharp edges with an abrupt
jump of the dust density at the boundary. This phenom-
enon was predicted theoretically in [100, 101]. An
important point in the void creation is that the drag
force on dust grains in the vicinity of the void surface
mainly acts on the first dust layer and shifts it stronger
than the subsequent layers, where the drag force is
depleted due to the absorption on dust. This creates
large dust density gradients, and the edges of the void
should be rather sharp [102]. This is what was observed
in experiments where the voids were discovered for the
first time [95], as well as in experiments carried out
under microgravity conditions [96] (see Fig. 45).

The sharp void edges and sharp dust density jump
appear while all other complex plasma parameters
(such as the electron and the ion densities and the ion
flux velocity) are continuous. Such a boundary presents
a new type of discontinuity in complex plasmas. Recall
that, in DISW shocks, the dust density is continuous
while the other parameters change at the shock front. A
moving void can be considered as a kind of DAW
shock, but the real dust shock corresponds to the case
where all the other plasma parameters behind the shock
front relax to the new values (this relaxation length
describes the thickness of a DAW shock).

The theoretical description of voids [97–99] is
based on elementary processes described in [2], includ-
ing all the nonlinear processes. The size of the void can
be determined from the continuity of the electric field
and the dust grain charge at the boundary of the void.
This gives not only the size of the void as a function of
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5 mm
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Fig. 45. Cross-sectional view through a dust plasma condensation formed under microgravity conditions in the experiment [96].
The power introduced in the plasma is 0.045 W. The figure is obtained by superimposing 150 video frames with a total exposure of
3.0 s. The dust cloud is rotationally symmetric about the chamber axis and contains 106 dust grains with a mean separation of
300 µm. In the center of the chamber, there is a spherical dust void, which contains no grains.
the degree of ionization, the ion and electron densities
at the void surface, and the dust charge at the surface,
but also the value of the jump of the dust density and the
ion drift velocity at the surface of the void. Two cases
were examined, namely, the case where the size of the
void was less than the ion–neutral collision mean free
path [97] and the case where the size of the void was
larger than the ion–neutral collision mean free paths
[98]. In the latter case, the theory predicts that the size
of the void should increase with increasing the degree
of ionization, which agrees with observations.

Dust voids not only exist as separate structures, but
also surround the dust clumps. The formation of voids
is usually accompanied by dust clumping. In the plane
geometry, this corresponds to the dust layer formation
observed in [103]. The ion flux created outside the
structure can compress it. If the UI develops to its non-
linear stage, it can create dust clumps that self-confine
dust grains inside the structure. It was proved in [100,
102] that the boundary between the dust-containing
region and the void is nevertheless continuous, but is
always relatively sharp as compared to the size of the
void and the size of the dust clump if Td ! TeZd, which
is the case of most experiments with complex plasmas.
This unusual conclusion follows directly from the force
balance equation with the use of Poisson’s equation.
Thus, one can say that it is a direct consequence of the
electrostatic balance in a complex plasma. One can
imagine (although the whole temporal evolution of the
complex plasma starting from the onset of instability up
to its nonlinear stage was not fully analyzed) that the
result of the development of UI can be a complete struc-
turization of the complex plasma, i.e., its division into
dust structures and voids. Therefore, in [75], this insta-
bility was classified as a structurization instability. The
characteristic size of the structures and voids is deter-
mined by the critical wavenumber (30); i.e., for P0 on
the order of unity, it is on the order of the charging
length (more exactly, it is on the order of the charging
length divided by ). We emphasize this point
because, after melting of a crystal, the complex plasma
should convert itself into this structurized state or,
before crystallization, the complex plasma should be in
a structurized state. The voids also appear in the plasma
sheath near the wall [104]. In microgravity experi-
ments, it is necessary to form inside the chamber a
structure surrounded by a void and a wall (preferably of
spherical geometry). The theoretical possibility of the
existence of such a nonlinear structure was investigated
in [105], where the conditions of its existence, as well
as the number of the maximum possible confined dust
grains, were found. In [105], restrictions were found
according to which, in order to avoid the void formation
in the center of the chamber, the ionization rate should
be less than a certain critical value, the ion and electron
densities should be in certain ranges, etc. It was also
found that, for the ion–neutral mean free paths usually
encountered in experiments, the total number of dust
grains cannot exceed of several millions. The question
as to whether a dust structure or a dust void will form is
one of the most important to be resolved in micrograv-
ity experiments on dust crystal formation. Figure 46
schematically shows the combinations of dust struc-
tures and dust voids investigated so far.

In dust-containing regions, dust convection was
observed, which seems to be a general phenomenon for
most of the possible combinations of voids and struc-
tures. In [106], the linear stage of dust convection was
explained by the convection instability in which the
dust mainly takes part, while the perturbations of other
plasma components (electrons and ions) are small. This
phenomenon of dust convection is new because it dif-
fers from the usual convection in gases in that the dust
charging processes play an important role in the forma-
tion of convection cells.

There is also another possibility for the nonlinear
stage of the UI, namely that, in the nonlinear stage, the

P0
3/2
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Fig. 46. Examples of structures containing dust clumps and voids that were investigated numerically by solving the exact hydrody-
namic balance equations [101, 102, 105].

Fig. 47. Sketch of an apparatus for the excitation of longitudinal DLWs by a laser pulse in (a) a linear chain and (b) a monolayer
plasma crystal [111].
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perturbation converts into a single sinusoidal mode.
One could expect that it can lead directly to the crystal
formation because the periodic distribution of dust
grains corresponds to a crystalline structure. Indeed,
such a possibility exists because the growth rate tends
to infinity as k  kcr, which can lead to the excitation
of a single mode with k close to kcr. However, this is not
guaranteed because, in the nonlinear stage, either a
broad spectrum will be created leading to the void
structure formation or a single mode will dominate.
Both cases are well known in nonlinear physics. In fact,
the growth rate determined by Eq. (32) cannot be infi-
nite because it is restricted by the inertia of the charging
process. Nevertheless, the growth rate will be maxi-
mum at k close to kcr, which means that, in the linear
stage, almost a single mode can be excited. The maxi-
mum growth rate can be found from Eq. (32) if one
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
takes into account the inertia of dust charging and sub-
stitutes in Eq. (32) 1 + z0 – iω/αch for 1 + z0. It is easy
to find that dust–neutral collisions cannot stabilize this
instability. Indeed, for ω ! νdn, one should substitute in
(28) ω(ω + iνdn) for ω2. In this case, for k < kcr, we get
the dissipative instability. As was shown in [72], the
only effect that can stabilize the instability is the dust
pressure. It is found in [72] that the instability is stabi-
lized if

(37)
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By assuming that the charging and drag coefficients
and z0 are on the order of unity, we get the dependence
of the critical temperature on the parameters of the sys-
tem:

(38)

By using the data that are usually found in the exist-
ing experiments (τ = 0.02, Zd = 103, P0 ≈ 1, and md/mi ≈
1010), we found from Eq. (38) that Td > Ti . Keeping in
mind the roughness of this estimate, we can conclude
that the criterion obtained agrees with the results of
experiments in which phase transitions were observed.

Several points should be mentioned in connection
with the problems raised in this section:

(i) The dust cluster self-contraction is a general phe-
nomenon and can occur both for large and small dust
clouds. In the first case, the collective dust attraction
can be responsible for the UI formation of dust clusters,
while in the second case, the noncollective attraction
can be responsible for the GLEI formation of dust clus-
ters.

(ii) When investigating the phenomenon of crystal-
lization in complex plasma, one cannot avoid the initial
structurization that can cause the appearance of crystal
defects.

Td cr, Ti
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Fig. 48. Excitation of waves in a linear chain: a series of 15
snapshots taken at 100 ms intervals [110].
(iii) It is unlikely that monocrystals with sizes larger
than the initial structure size can be created in micro-
gravity experiments. In this case, it is more probable
that these crystals will be polycrystals (a mixture of
small crystals).

(iv) A theoretical concept can be further developed
according to which the crystal formation is a result of
the excitations of a single-mode UI. In this case, the
amplitude of this nonlinear wave can be regarded as a
parameter of order and the scale invariance approach
can be used.

(v) More detailed investigations (both experimental
and theoretical) of the thresholds and nonlinear evolu-
tion of UI can provide the desired information to
resolve the dilemma concerning the crystal or void–
clump structure formation.

(vi) There is a wide field for future investigations of
the phenomenon of dust convection.

4.5. Dust Lattice Waves

When dust grains are packed into a crystal lattice
(plasma crystal), their direct Coulomb or collective
interactions dominate and DLWs can propagate in com-
plex plasma. These waves are in a sense a continuation
of DAWs less disturbed by dissipation, as compared to
the waves in a gaseous state. The dispersion relation for
DLWs can easily be derived following the classical
“linear chain” model [107, 108]. For simplicity, only
nearest neighbor interactions and neutral gas friction
will be taken into account. Of course, the dust–dust
interactions are much more complicated (see [2]), espe-
cially if one takes into account long-range collective
interactions. However, even for these interactions, the
subsequent potential energy minimums are smaller
than the first, and we can assume that only the nearest
grains make the main contribution. The Yukawa poten-
tial (or the Debye screened potential) is an oversimpli-
fication, and we will use it here only as an illustration.
Assuming that the neutrals are at rest, we derive the
force acting on the nth grain in the chain. We define the
grain’s deviation as δn and introduce the quantity xn ≡
δn/∆, where ∆ is the mean lattice spacing. Then, in limit
of xn ! 1, we find

(39)

where the coupling constant α is determined by the
interaction potential of two grains. In particular, assum-
ing for simplicity that the grain charge is constant and
the grains interact through a screened Coulomb poten-
tial (V = (Q2/r)exp(–r/λD)), we have

(40)

md∆ d
2

dt
2

-------xn = α xn 1– 2xn– xn 1++( ) νndmd∆ d
dt
-----xn,–

α Q
2

∆2
------ K–( ) 1 K+( )2

1+[ ] ,exp≡
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003



COMPLEX PLASMAS: III. EXPERIMENTS ON STRONG COUPLING 941
where K ≡ ∆/λD. If we take some other type of interac-
tions listed in [2], we will obtain a similar expression,
but with another coupling constant. Making use of
Bloch’s condition, i.e., the fact that, in a regularly
spaced array of particles the distance of a particle from
the origin position r0 is determined in the zero approx-
imation by the lattice vector l = nD (rn = r0 + nD), we
get xn = exp(ik · l)x0, where k is a given wave vector. In
an infinite lattice, the origin position is arbitrary; hence,
we can take the position of the nth grain as the origin.
We will also assume that the wave vector is directed
along the chain. Then, we get xn – 1 = x0exp(–ik∆), xn =
x0, xn + 1 = x0exp(+ik∆), and Eq. (39) takes the form

(41)

From here, we obtain the dispersion relation

(42)

where β2 = 4α/md∆. We mentioned earlier that for an
externally driven system, the frequency ω is real and
the wavenumber k has a real and an imaginary compo-
nent. Hence, in order to compare the “active manipula-
tion” experiment (see below) with the theory, we have
to derive the spatial damping rate of the wave as it prop-
agates through the crystal. From Eq. (42), we get

(43)

where k = kr + iki . For small k values, the spatial damp-
ing rate is given by

(44)

In the high-frequency limit (νnd/ω ! 1), this expression
reduces to ki∆ = νnd/β, i.e., to a constant (frequency-
independent) spatial damping. In the low-frequency

limit (νnd/ω @ 1), we get ki∆ = ; i.e., the spa-
tial damping rate is proportional to the square root of
the frequency.

Long-wavelength DLWs, such that k∆ ! 1 (but, at
the same time, ω @ νnd) are weakly dissipative and pos-
sess linear dispersion (ω ∝  k). The phase velocity of
these waves is equal to

(45)

Here, the product α∆ plays a role of the effective
temperature (or effective energy) determining the wave
phase velocity. Generalizing the above consideration to
a 2D lattice (monolayer) and taking into account more
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than just the nearest neighbors, we arrive at the follow-
ing equation of motion:

(46)

where the wave is taken to propagate in the x direction
and δxjl are the displacements of a grain jl, which is nor-
mally located at the lattice site with the unperturbed
positions xjl, 0 and yjl, 0. The coupling between the grain

mn and the grain jl is described by the operator ,
which, in the case of the screened Coulomb potential, is
equal to

(47)

with r being the distance between the grain mn and the
grain jl. Representing the solution in the form δxjl ∝
exp[i(kxjl, 0 – ωt)], we obtain the dispersion relation

(48)

The result for the linear chain can be recovered by set-
ting Nn = 0 in Eq. (48).

The measurements of periodical perturbations prop-
agating in plasma crystals have been performed by a
few research groups using different techniques. Such
perturbations are simple to produce experimentally by
using a sinusoidal voltage applied to a wire located in
the plasma near the plasma crystal [109]. A disadvan-
tage of this method is that the perturbing potential also
modifies the ion and electron flows, which, in turn, may
influence the dynamics of the plasma crystal; i.e., the
system becomes too complicated. From the experimen-
tal standpoint, the perturbations introduced by using the
light pressure of a laser beam [110] are preferable.

Figure 47 shows a schematic of the experimental
setup intended to investigate linear chains and mono-
layer plasma crystals [111]. The experiments were per-
formed in a plane-parallel RF discharge (f =
13.56 MHz). The diameter of the lower electrode was
170 mm. The upper electrode was a grounded grid. The
two electrodes were separated by a 65-mm gap. The
working gas was helium at a pressure in the range of
10–100 Pa. A light inert gas was chosen in order to
reduce the frictional damping as much as possible and,
thus, to allow the dust lattice waves to propagate. The
discharge power was in the range of 5–10 W. The grains
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were monodisperse melamine formaldehyde grains
9.47 µm in diameter. The diameter variations were a
few percent. The grains in a linear chain were pushed
periodically at a given frequency using the radiation of
a laser diode focused on the end grain. Since the grains
in this device could only be pushed (not pulled), a con-
fining box potential was produced using an elevated
barrier on the lower electrode. The inner dimensions of
the barrier were 90 × 20 mm, and the height was 4 mm,
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Fig. 49. Measured dispersion relations for a chain of dust
grains [111]. A comparison with the theory takes into
account only the screened Coulomb potential and does not
take into account any other forces; that is why the theoreti-
cal curves are given for three values of the fitting parameter
in the screened Coulomb potential: K = (1) 0.7, (2) 1.1, and
(3) 1.5 (∆ is the intergrain spacing).
which was comparable to the characteristic length of
the sheath. This barrier allowed the grains to relax back
when the radiation force was switched off.

The measurement results for a linear chain are
depicted in Fig. 48 [110] as a series of fifteen snapshots
taken with 100 ms intervals. The displacement of the
grains in the right part of the chain is clearly seen, as
well as the increased brightness of the end grain during
the illumination phase, when the laser diode is switched
on. It can also be seen that the damping is substantial
(due to friction by the neutral gas). Using these data, it
is possible to determine both the real part of the wave-
number kr and the spatial damping rate ki as functions
of the frequency and, thereby, to obtain the dispersion
relation. The measured dispersion curves are shown in
Fig. 49, in which the theoretical curves [111] calculated
for different shielding parameters K = ∆/λD are also
depicted. The best fit is obtained for K = 1.1 ± 0.4.

The results obtained for a monolayer plasma crystal
are shown in Fig. 50 [111]. It can be seen that the fitting
of the experimental results by the theoretically pre-
dicted 2D dispersion relation for Yukawa interactions
yields a shielding parameter of K = 0.8 ± 0.4, which is
somewhat less than in the case of a linear chain.

DLWs with a wavelength much larger than the inter-
grain distance can be described by KdV equation [112],
in which the DLW phase velocity, the linear dispersion
term, and the nonlinear term are functions of the cou-
pling constant, which is related to the interaction poten-
tial of two neighboring grains. Nonlinear soliton waves
are known to be standard solutions of the KdV equa-
tion. Indeed, in [112], solitons were observed experi-
mentally with an amplitude inversely proportional to
the square of the soliton width, as it should be accord-
ing to the KdV description. An advantage of the exper-
imental investigation of DLW solitons is the possibility
of determining the type of interaction between strongly
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Fig. 50. Measured dispersion of longitudinal DLWs in a monolayer crystal [111]. The solid curves show the results of calculations
with allowance for the screened Coulomb potential for three values of the fitting parameter: K = (1) 1.2, (2) 0.8, and (3) 0.4.
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coupled grains in complex plasmas. This possibility has
not yet been used. Up to now, only the screened Cou-
lomb interaction has been used and no attempts were
made to fit the experimental results by using the theo-
retical curves with other types of interaction, although
it is obvious that the screened Coulomb potential is not
proper for describing collective and nonlinear interac-
tions, as well as the charging processes.

No theoretical efforts have been made so far to
describe DLWs with allowance for interactions other
than the screened Coulomb interaction, although there
are no principal difficulties for doing this, since taking
these interactions into account in the dispersion relation
and in nonlinearities will change only the DLW phase
velocity in such a way that it will depend only on the
value of the potential interaction and its derivatives. At
present, only a comparison with the screened Coulomb
potential has been performed, and the value of the
parameter K was extracted from the experimental data.
An important question is whether other interactions and
the nonlinearity in screening might significantly affect
the theoretical predictions. The experimental results of
[107, 111] mean that both the experiments are compat-
ible for shielding parameters in the range 0.7 ≤ K ≤ 1.2.
It seems also that K is in fact smaller for monolayers.
The physical arguments for this can be the following:

(i) In the plane perpendicular to the ion flow, all the
grains should have the same charge. The removal of
plasma particles (ions and electrons) is unlikely to play
an important role in monolayers under this geometry,
since the supply from the main plasma is plentiful and
each grain is directly accessible to the ion flow. This
means that the charge modification by this effect is of
minor importance and, hence, the charges of all the
grains should be the same, provided that the plasma
conditions (i.e., the pressure, RF power, etc.) and the
ion drift velocity are kept constant.

(ii) Introducing a larger number of grains into a
fixed-geometry potential well does change such an
important parameter as the dust pressure. This suggests
that, in the equilibrium state, the system with a larger
number of grains will be more compressed, since the
ram pressure produced by the plasma flux increases
with an increase in the number of grains. Bearing this
in mind, it is quite reasonable to conclude that a more
tightly packed 2D system should exhibit a systemati-
cally smaller K value than a loose 1D chain. Some sup-
port is given to this from the fact that, in equilibrium
linear chains (without a lattice wave excited), the spac-
ing between grains at the end of the chain [111] is often
larger than in the (more compressed) central region.

(iii) This effect can also take place if the plasma is
inhomogeneous and the screening length varies in an
appropriate way. Such an inhomogeneity can be pro-
duced by the chain itself and is related to its self-con-
traction.

(iv) At present, we can only estimate the role of
other forces between the grains that may be responsible
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
for changing DLWs. Note that, in the analysis, we can-
not directly refer to the dust collision experiments that
show that the interaction corresponds to screening
Debye potential [113], because in [113] the ratio a/λD

was 10–4, whereas in the experiments of [111], which
we are discussing here, this ratio was a/λDi ~ 0.3. On
the other hand, the noncollective attraction is propor-
tional to (a/λDi)2. Since, in collision experiments [113],
the screening length was close the electron Debye
length λDe, which is approximately seven times larger
than λDi, we have for the experimental conditions of
[113] the estimate (a/λDi)2 ≈ 5 × 10–3. This estimate
shows that, in [111], the attraction forces are expected
to be 20 times larger than in [113]. In [111], the attrac-
tion forces should occur at distances close to the elec-
tron Debye length, which is close to the intergrain dis-
tance under the given conditions. One cannot therefore
exclude the possible role of these forces in the differ-
ence observed in [111] between the values of K for a 1D
chain and a monolayer. On other hand, one should keep
in mind that the experiments with 1D chains and mono-
layers, as well as the collision experiment [113], were
performed in the sheath in presence of an ion flow,
when the anisotropy in screening can play an important
role.

(v) Strictly speaking, expressions for the collective
attraction forces [2] cannot be directly applied to 1D
chains and monolayers, because these expressions were
derived for the 3D case. The theoretical analysis of the
collective attraction for the 1D and 2D cases still is
waiting to be performed. Certainly, from what we know
from the 3D case, the collective attraction is much
stronger than the noncollective one and, therefore, it
may be very important for the observed compression of
1D and 2D dusty structures. From the physical stand-
point, we can expect that the collective effects in attrac-
tion will be larger in the 2D case than in the 1D case
(i.e., the K value should be less in the 2D case than in
the 1D case). This is qualitatively what is observed, but
quantitative estimates of this phenomenon are still
absent. 

We emphasize once again that the performing of 3D
experiments seems to be very important. A topological
transition from 1D and 2D structures to 3D structures
depends on the compressibility of the plasma crystal,
i.e., on the strength of the intergrain forces. In this case,
the attraction forces (specially the collective attraction
forces) should play the most important role. The self-
confinement effects, which are related to the collective
flux, and the effects of self-organization and structur-
ization, should be more pronounced in 3D systems. A
systematic investigation of the dependence of K on the
number of the grains in the confining well, including
the above-mentioned topological transitions, will prob-
ably shed some light on the basic self-organization pro-
cesses in static equilibrium open systems.
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4.6. Stimulated Plasma Crystal Sublimation

An improvement of the radiation-pressure active
manipulation technique is to “guide” the grains in a
controlled way using two lasers. This makes the active
control independent of the geometry of the potential
field and the characteristic relaxation time scales. Such
improved control can be used, for instance, to extend
the frequency range to the crystal Debye frequency.
Theoretically, at that frequency (corresponding to the
dust acoustic wavelength equal to twice the grain sepa-
ration, λ = 2∆), the propagation of information
becomes impossible (at least for acoustic modes). This
result can immediately be seen from Eq. (42) and is
well known in crystal physics. However, it is possibile
that the energy may be converted to other wave modes
or that the crystal may be destroyed due to parametric
instabilities or other nonlinear effects. To observe this
at the kinetic level in a model system is clearly one of
the most exciting topics for future research.

Preliminary experiments on wave excitation in a
dusty plasma by applying an ac voltage to a wire were
reported in [112]. However, as was mentioned above,
the interactions are very complicated and, accordingly,
the experiments are very difficult to interpret. For this
reason, we restrict ourselves to the presentation of the
observations at this stage, which is only a heuristic
attempt at interpretation. The grain motion in the hori-
zontal plane is initially just noticeable (practically ther-
mal). As the frequency increases from 34 to 35 Hz, one
of the grains acquires at some point a large horizontal
momentum. Its energy is in excess of 3 eV, which is
three orders of magnitude higher than in the previous
video image, taken at 0.02 s earlier. This grain then
plunges through the crystal and disrupts it, leading to
complete sublimation in a time scale of 0.1 s. Of course,
this disruption is not possible through the dissipation of
the initial energy of a single grain. Each of the sublimed
(disordered) grains has an energy in excess of 10 eV;
therefore, the single “trigger” grain merely liberates the
energy stored in the system. There are two kinds of
stored energy: the energy of vertical oscillations and the
potential (electrostatic) energy. Note that the crystal is
moving up and down as a solid body with a relatively
large amplitude of about 500 µm and the stored energy
amounts to about 20 eV per grain. Thus, the disruption
of the crystal by a single grain liberates this energy and
thermalizes it.

The following questions therefore arise:
(i) What leads to the “breakout” of the trigger grain

from the crystal?
(ii) Is it a purely statistical effect and is there always

only one grain that starts the process?
(iii) Is there a systematic change in the crystal struc-

ture that facilitates the process?
(iv) Which processes are responsible for the collec-

tive crystal vibrations and what are their stability crite-
ria?
To answer these (and many others) questions, much
more research needs to be done.

Regarding possible systematic changes in the crys-
tal structure just prior to the sublimation transition, an
intriguing observation has been made. The grain sepa-
rations are initially almost the same (except for the
edge, as was noted earlier). As the wave frequency is
slowly increased to the critical value at which sublima-
tion sets in, it was noted in [112, 114] that the structure
of the crystal undergoes a systematic change so that
short separations alternate with long ones. This corre-
sponds to a compressional (sound) wave with the wave-
length λ = 2∆ (twice the lattice separation). Although
this can be, in principle, an accidental coincidence, this
is nevertheless sufficiently intriguing to follow up with
a systematic investigation.

At 44 Hz, recrystallization is observed. Hence, the
width of the sublimation resonance is ~9 Hz.

4.7. Dust Shear Waves

An ordinary plasma does not support shear waves.
However, in plasma crystals, there should exist so-
called dust shear waves (DSW). Indeed, such waves
have recently been observed experimentally [114, 115].
As was noted above, a specific feature of such experi-
ments (which is related to the necessity of the electro-
static suspension of dust grains against the action of
gravity) is their fundamental asymmetry, which can
substantially affect the wave propagation. Let us briefly
discuss the conditions of these experiments:

(i) In RF discharges, the dust grains are suspended
in horizontal layers and the supporting electrostatic
field of the sheath is directed downward (towards the
lower electrode). The ion flow is also directed down-
ward. Electrostatic focusing by the negatively charged
grains leads to an enhanced ion density in the wake gen-
erated below the grain (although, as was mentioned
above, the collisional or collisionless dissipative pro-
cesses somewhat smear out this wake). The system
“grain + wake” may be thought as a vertically aligned
asymmetric “charge + dipole” system. In the presence
of many grains, due to a change in dust interactions, the
picture changes substantially and, generally speaking,
cannot be regarded as a collection of charge + dipole
components. Nevertheless, for simplicity, we will
speak below about the dipole component, which leads
to asymmetric nonlinear collective screening.

(ii) In considering horizontally propagating DLWs,
we ignored the dipole component (although we applied
the argument that the presence of the ion flow substan-
tially changes the screening in the horizontal direction).
When the waves are excited with laser light pressure,
the wake just follows the disturbed grain. If the waves
are excited electrostatically using a wire, then the neg-
atively charged grains and their positively charged
wakes are accelerated in the opposite directions, which
leads to additional complexity.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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Fig. 51. (a) Sketch of an apparatus used to measure DSWs, (b) the cross-sectional view of the electrode system, and (c) a monolayer
plasma crystal formed of negatively charged grains levitating above the lower electrode (between the crystal and the electrode, there
are a few fast grains moving in the horizontal plane) [117].
(iii) When horizontally polarized DSWs are excited
with laser light pressure, we may assume that the wake
interaction is marginal. However, in the case of verti-
cally polarized DSWs (the second type of DSWs,
which can be called “bending waves” because they
bend the monolayers out of its original plane), the inter-
action with the wakes cannot be ignored if the ampli-
tudes are sufficiently large.

(iv) In dc discharges, it is possible to produce long
vertical strings of grains suspended in the electrostatic
field of striations. In this case, the ion wake is again
located below the grains; however, the dipoles are now
aligned with the grain strings. As a result, only one type
of DSWs exists, which, however, differs from the shear
waves discussed above. There can be an asymmetry for
waves propagating downward and upward, since the
wake is located downstream from its grain.
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(v) DLWs will also be modified by the aligned
dipoles. To investigate the influence of the wake in such
a system, it is necessary to perform special experi-
ments.

(vi) A scenario with dipoles is a very rough picture
for strongly screened and strongly coupled systems.
The full description of all the modes, including DSWs,
requires considering the linear perturbations of a non-
linear stationary initial state, finding the dielectric ten-
sor ei, j, ω, k, and solving the corresponding dispersion
relation [116]. This approach has not been used so far.

Figure 51 shows a schematic of the experimental
device, and while Fig. 52 presents the results of the first
observations of DSWs [117] (see also [118]).

Due to the small amplitude of the laser field exciting
the shear waves, many data sets have to be superposed
to extract the systematic grain motion from the random
thermal noise. So great care is to be taken, both with the
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measurements and the data analysis. The verification of
the existence of these very slowly propagating DSWs is
quite exciting (note that the measurements were per-
formed for horizontally polarized DSWs mentioned
above), since this technique can in principle be
improved to investigate bending waves, as well as
waves in a system with aligned dipoles.

The theoretical dispersion relation was derived in
[116, 119]. Considering only “nearest neighbor” inter-
actions in a linear chain, the transverse mode dispersion
relation reads [116]

(49)ω ω iνnd+( ) ωs
2 1

π
---ωpd

2
K–( ) k∆

2
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Fig. 52. Dispersion relation for DSWs [117]: (a) experi-
mentally measured values of kr (closed circles) and ki (open
circles) (the solid line indicates the sound speed) and (b)
theoretical curves calculated for the screened Coulomb
potential at three values of the fitting parameter K.
where

(50)

Equation (49) is similar to the dispersion relation for

DLWs. The main difference is the term , which
merely reflects the normal mode oscillations in the con-
fining potential (e.g., for a single undamped grain, we
have ω = ωs).

A comparison of the observations [115] with the
theory [116] showed, however, that using the shielding
parameter K as a fitting parameter does not allow one to
achieve a satisfactory agreement between theory and
experiment.

In conclusion of this section, we note the following:
(i) Generally, it is impossible to cover all the aspects

of wave propagation, mode coupling, stability criteria,
damping, specific effects related to nonlinearities in
screening, charge variations, dust–dust interactions,
and other effects specific for complex plasmas.
Although the literature here is already very large, no
systematic consideration has yet been performed for
either the linear or the nonlinear dispersion. Conse-
quently, we are only able to summarize some results
and refer the reader to original references from where
research can be continued.

(ii) It should be noted that there are many theoretical
works in which the relations known for multicompo-
nent plasma are simply “transferred” to a dusty plasma,
merely changing the notation for heavy ions to be the
dust component. This is irrelevant for complex plasmas
because the charging processes and the absorption of
electrons and ions by dust substantially change the dis-
persion relation in a very broad range of frequencies

(ω < ωpia/λDiP) and wavenumbers (k < ). In
fact, it is this range of frequencies and wavenumbers
that is of interest for the existing experiments. On the
other hand, the dispersion relation in this low-fre-
quency and long-wavelength range also depends on the
external source (for instance, on the type of the ioniza-
tion source used). There are only a few papers that ade-
quately take into account the effect of the source on the
dispersion relation.

(iii) It was shown in [120] that, under certain condi-
tions, charge fluctuations can lead to the excitation of
lattice oscillations. However, there is still no experi-
mental confirmations of this effect.

(iv) Apart from these phenomena, there are a num-
ber of other publications devoted to the propagation,
scattering, and damping of waves in dusty plasmas. In
particular, the effect of the concentration of nonlinear
electron and ion polarization charges around the grains
has been addressed. In this context, the local enhance-
ment of the ion density in a Debye sphere around a neg-
atively charged dust grain may be of particular impor-
tance.
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(v) Another interesting physical phenomenon that
has been discussed in connection with the grain oscilla-
tions in RF discharge plasmas is the existence of reso-
nance frequencies, which can be used to probe the
sheath (or determine the grain charge) and to study cou-
pled systems, parametric instabilities, charge delay
effects, etc., in dusty plasmas. We do not give here the
references to the corresponding papers in which these
problems were only touched upon, since comprehen-
sive consideration still remains a great problem for
future research.

(vi) From expressions (18) and (28) for the dielec-
tric constant, it is clear that the interaction between two
grains depends strongly on the parameters P0, kcr, and
τ, as well as on the charging and drag coefficients and
the distance between the grains. Estimates show that
the distance at which the dielectric constant changes
substantially is on the order of the distance between the
grains in the crystalline state. Of course, expressions
(18) and (28) were derived for a gaseous state, but all
the processes that were taken into account in deriving
these expressions (such as charging and the ion drag)
are also present in the crystalline state. These processes
will substantially modify the potential of interaction
between the grains and, accordingly, both the DLW and
DSW dispersions (as they modified the DAW disper-
sion). Therefore, it is obvious that the screened Cou-
lomb potential used in deriving the dispersion relations
for these waves can serve only as a rough and prelimi-
nary estimate.

(vii) Clearly, in order to achieve an adequate theo-
retical description of linear waves and instabilities in
complex plasmas, comprehensive investigations must
be performed with allowance for all elementary pro-
cesses described in [2], with special emphasis on col-
lective dust–dust interactions.

5. MACH CONES IN COMPLEX PLASMAS

5.1. Mach Cones: General Remarks

It is well known that mach cones are excited in any
material by objects moving faster than the phase veloc-
ity of the waves in the system. For charged particles in
ordinary matter, this corresponds to the Cherenkov
emission of waves by particles [121]. It was first pro-
posed in [122, 123] to use Mach cones for diagnosing
the dusty plasma parameters, in particular, to determine
the parameters of Saturn’s rings by observations of
Mach cones created in dusty plasmas by a big boulder
moving in the ring. At present, Mach cones are
regarded as a possible diagnostic tool in thin-film dep-
osition technology [124] and other technological appli-
cations of dusty plasmas [117, 125–127].

Mach cones can be considered as a composition of
linear waves if their source is not strong, or as a nonlin-
ear wave (or even a shock wave) if the source is strong.
If a large grain moves through a uniform complex
plasma that is in the gaseous state, a DAW is excited.
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
Simple kinematics then gives the known relation for the
Mach cone angle

(51)

where v  is the velocity of the fast grain, θ is the angle
between v and the wave vector k of the emitted wave,
and µ is the angle between the Mach cone front and the
grain velocity. Of course, the velocity of the fast grain
should be larger than the DAW speed to satisfy relation
(51). The Mach cone is simply described by the kine-
matics of emission, but the intensity of emission
depends on the interaction of the fast grain with the
complex plasma. There are several complications in the
Mach cone effect for complex plasmas, as compared to
the standard Cherenkov emission of waves that create
Mach cones in ordinary matter:

(i) The first is related to the intensity of the waves
emitted. As we already emphasized, close to the grain,
the field is nonlinear (and for a large grain this nonlin-
earity is even more important). The linear mechanism
for the excitation of DAWs operates only if the contri-
bution from nonlinear excitation is small at distances on
the order of the wavelength of the emitted wave. The
general consideration of this kind should be made, first,
for the case of weak nonlinearities, which requires a
knowledge of the first-order nonlinear responses. At
least, one hopes that it can provide a criterion showing
where the results of the linear approximation can be
used. Nevertheless, some information can be obtained
using the standard linear approach in deriving the dis-
tribution of the intensity of the emitted waves over
wavenumbers or the wavelengths. In the linear approx-
imation, the power I emitted by a charge Zde moving in
an infinite (with a size much larger than the wavelength
of the emitted waves) complex plasma with dielectric
constant (28) is

(52)

(53)

where kdrch(0) is the value of kdrch at ω = 0 [see relations
(29)]. In Eqs. (52) and (53), we ignored the dust–neu-
tral friction and considered k ! 1/λDi (i.e., ω ! ωpd).
The critical wavenumber kcr is given by expression
(30). As was pointed out above, the waves with k < kcr
do not exist and they are not emitted. The largest emis-
sion intensity corresponds to the largest k (the shortest
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wavelengths), which is on the order of . Expres-
sions (52) and (53) serve only as an illustration
because, for short wavelengths, the nonlinearities cer-
tainly play a role.

(ii) The dispersion of the waves can result in the
Mach cone broadening, since waves with different
wavelengths are emitted at different angles. For exam-

ple, expression (51) is valid only for k2 @ ,
while in the opposite limit and for k @ kcr, we get from
Eq. (29)

(54)

A strong dispersion of Mach cone directions can be rec-
ognized in this case.

(iii) It is known that Mach cones are excited in a
media if the source (here, a fast grain) is moving in the
channel with a size less than the emitted wavelength
[121]. The fast grain creates the channel itself, but can
collect other grains when moving through the system.
As a result, its size and charge increase [124] and the
Mach cones become “dynamic Mach cones” (DMC),
which can also be used for diagnostic purposes. Note
that, if the size of the channel is less than the emitted
wavelength, the Mach cone is the same as in the
absence of a channel [121].

(iv) It is also well known that Mach cones can be
excited not only by a source moving inside the medium,
but also by a source moving close to the surface of the
medium if the distance between the source and the sur-
face is less than the wavelength of the excited waves
[121]. As the distance between the fast grain and the
surface increases, the waves with a wavelength larger
than this distance are only excited. This can serve also
as a powerful diagnostic method for the measurement
of the spectra of the waves emitted because, in the
plasma sheath, the distance of the fast grain from the
surface is usually determined by its mass (the heavier
grains move below the surface at larger distances from
the surface due to the balance of the gravity and electric
forces). Mach cone measurements in complex plasmas
can also serve as an efficient mechanism for the diag-
nostics of the plasma crystalline state and its transi-
tions. In this case, Mach cones can be excited by a fast
grain moving below the crystal with a velocity larger
than the phase velocity of DAW, DLW, or DSW.

(v) The restrictions on the maximum possible wave-
length of DLWs and DSWs still need to be investigated
in a way similar to that described above for DAWs. An
important point of research is to find how close to the
crystal surface the grain should move to excite the
Mach cone. The answer will allow one to determine the
maximum wavelength of DLWs or DSWs. At present,
there is still no theory of these waves with all necessary
effects included (as it is for DAWs). Thus, there is a
wide field for experimental investigations.
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(vi) As was shown in [2], specific conditions appear
in the plasma sheath because the ion flow can change
the drag coefficient and create a collective wake. Under
these conditions, the dispersion relations and the Mach
cones can differ from those considered above in the
case of a screened Coulomb potential.

(vii) The determination of the maximum possible
wavelength of the emitted wave in monolayer crystals
is more complicated because, in this case, the descrip-
tion of the collective dielectric response and its depen-
dence on the surface density of grains differs from
those obtained for 3D distributions of grains. The col-
lective attraction also changes in this case. The mea-
surements of the maximum distance at which the Mach
cone is excited when a fast grain is moving close to the
crystal surface is thus of special interest for estimating
the forces acting between the grains.

(viii) Another important point is the possibility of
exciting Mach cones close to the surface of a void. The
presence of voids with sharp boundaries was demon-
strated experimentally. In this case, the grain size is not
limited by the conditions to have a large grain charge,
as it is in the case of plasma condensation (remember
that the grain charge is approximately proportional to
the grain size).

5.2. Observation of DLW Mach Cones

Mach cones excited in a monolayer plasma crystal
by a fast charge moving below the dust layer were
observed experimentally in [117, 125]. The crystal was
located in an RF discharge with an electron temperature
of ≈1 eV and ion density of ni ≈ (1–5) × 109 cm–3. The
grain size was 8.9 and 4.8 µm. The working gas was
Xe, Kr, or Ar. The grain separation in the crystal was
about 400 µm. Fast dust grains moved below the plane
of the crystal at a distance of 200 µm from its surface
with a speed of 30–60 mm/s and formed the second
dust layer below the one already existing. A grain mov-
ing with a velocity exceeding the speed of DLWs and
DSWs excited the DLW and DSW Mach cones. The
crystal was located at a relative large distance from the
electrode (about 8 mm), which is much larger than the
electron Debye length. The value of ion drift velocity at
the position of the crystal was not measured. The dust
charges were about Zd ≈ 104. The Mach cones were
identified on the grain speed map and on the grain den-
sity map (see Fig. 53).

The fast grain usually excites two cones: the first is
a compression wave and the second (which follows the
first one) is a rarefaction wave. Figure 54 shows the val-
ues of the acoustic velocity derived from the Mach cone
condition (51).

In the experiments of [117], it was observed that the
Mach cones corresponded to the shocks excited in the
crystals. The Mach cone can serve as a diagnostic
method for determining the parameters of a crystal by
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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adjusting the results to the theoretical model (in [117],
it was the Yukawa model). This method allows one to
determine two parameters: the charge and the ratio of
the intergrain distance to the screening length. Usually,
one also needs to take into account other forces (see
[2]).

In the experiments of [126], using a similar device,
the Mach cones were excited by a laser beam whose
focus moved with a supersonic velocity. The action of
the laser beam on the grains in a monolayer crystal was
due to the radiation pressure of the focused beam. A
multiple Mach cone structure was observed with at
least three distinct Mach cones (see Fig. 55).

The Mach angle relation (51) was satisfied in a wide
range of Mach numbers for both the first and the second

Fig. 53. Mach cones in a dusty plasma with 8.8-µm grains
(a krypton discharge, the input power is 100 W) [125]. A
supersonic grain moves from right to left: the grain velocity
vector map derived from the grain positions in two consec-
utive frames (a) and the gray scale maps of the grain veloc-
ity (b) and number density (c), obtained by averaging over
20 frames.
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cones. The sound speed measured from the first Mach
angle was found to increase with the dust number den-
sity (Fig. 56). A comparison of the results obtained with
the theory of DLWs with the use of two interaction
parameters in the Yukawa model allowed one to deter-
mine the screening length and the dust charge.

In conclusion of this section, we make the following
remarks:

(i) Mach cones are an effective diagnostic method
for studying dust crystals, especially when using a
more refined theoretical model.

(ii) The determination of the distributions of the
emission intensity over wavelengths is still an open
experimental task for future investigations.
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Fig. 54. Mach number (1/sinµ) vs. supersonic grain velocity
determined for (a) the first and (b) the second cone at differ-
ent discharge conditions: (1) Ar, 50 W; (2) Ar, 100 W;
(3) Kr, 50 W; (4) Kr, 100 W; (5) Xe, 50 W; and (6) Xe,
100 W [117]. The grain size is 8.9 µm. The straight lines
correspond to the averaging over all the experimental
points. The acoustic velocity is the same for all the dis-
charge conditions.
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Fig. 55. Gray scale maps of the grain velocity v  = |v | for different speeds of the laser spot V [126]. The darker regions correspond
to higher grain velocities (black corresponds to ≈4 mm/s). The numbers in the boxes indicate the speed of the laser spot in mm/s.
The dark spot in the lower left corner is an artifact and is unrelated to the Mach cones.
6. PLASMA CRYSTALS OBSERVED 
IN MICROGRAVITY EXPERIMENTS

Two types of microgravity experiments have been
performed. One type was performed in parabolic flights
[128] with only 30-s time available for microgravity to
exist, and the other type was performed onboard a space
station (the PKE-Nefedov experiments [129, 130]). In
both cases, very complicated dust structures were
observed, including dust voids, dust convection, and
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Fig. 56. Measurements of the sound speed as a function of
the grain number density [126]. The solid and dashed lines
correspond to different regions of the same lattice in the
same discharge. A higher number density corresponds to a
higher sound speed.
regions with plasma crystals. Plasma crystals in the
microgravity experiments were first observed in the
PKE-Nefedov experiments onboard the space station
[129, 130]. The crystal was embedded in liquid or gas-
eous component of the complex plasma system con-
taining a large dust void and several dust vortices [129,
130] (see Fig. 57).

In Fig. 58, the part of the system where the crystal
was observed is marked by a square [130]. The grains
were 6.9 µm in size, and the pressure was between 0.1
and 1 mbar. The crystal was observed not in the center
but at the wall side, which suggests the presence of an
ion drift that diminishes the drag and the charging coef-
ficients. The value of P0 was rather low (about 0.1),
which corresponds to small ηcoll values and large Γcr
values. From the theory based on the Van der Waals
approach, it follows that the latter is about 104, whereas
the observed value is about 3 × 104. Note that, in dust
crystals formed in microgravity experiments onboard
the space station, regions with bbc, fcc, and hcp crystal
lattices were simultaneously observed.

Two conclusions can be made from these observa-
tions:

(i) The observation of the simultaneous presence of
not only bcc and fcc structures, but also hcp structures
(which are not favorable thermodynamically because of
their larger free energy) is surprising only at first
glance. In ground-based experiments, a similar anom-
aly was also observed (and this point was discussed
above in detail). However, in ground-based experi-
ments, this anomaly can be attributed to gravity, which
provides additional stress energy. Looking now at the
microgravity system, one has the impression that the
appearance of energetically unfavorable crystal struc-
tures could be a general phenomenon of complex plas-
mas. This is what could be indeed expected in open sys-
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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10 mm
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Fig. 57. Complicated dusty structure and grain motion observed in PKE-Nefedov experiments [129, 130].
tems, which are favorable for self-organization (all liv-
ing things are also energetically unfavorable). As was
emphasized many times above, the energy flux through
the system always exists in complex plasmas, and the
concept of free energy does not operate. Observations

Fig. 58. Plasma crystal observed in PKE-Nefedov experi-
ments [130]. In the region marked by the rectangle, a crys-
talline structure is observed. 
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[129] give further experimental support to the last state-
ment. Hence, in this case, the principles of self-organi-
zation [131] should be used.

(ii) The experiments support the general statement
that the complex plasmas are universally unstable
against the appearance of various structures. Thus, in
experiments of [129, 130], plasma crystals, dust voids,
and dust vortices were simultaneously observed.

7. CONCLUSIONS

It is certain that the experiments are ahead of the
theory in the general description of this new state of
matter (in both numerical simulations and kinetic
description). Nevertheless, even in the framework of
the existing simplified approach, many assessments can
be easily made, such as taking into account various
forces in the wave description, the construction of the
theory of the equilibrium stability and the oscillations
of clusters with arbitrary forces, the general description
of the modes in complex plasmas in an external mag-
netic field, the molecular-dynamics numerical simula-
tions with allowance for the real forces encountered in
complex plasmas, etc. The general breakthrough in this
area already exists, but a final complete description that
can be used in experiments is still unavailable. It will be
the subject of intense research in the near future. The
experiments already performed should be repeated as
soon as a better understanding of the processes
becomes available. The future theoretical description
can be formulated at present, but this is only one half of
the theoretical problem, since a complete theoretical
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description will take a great deal of time. It is clear that
the experiments also will be done in a number of differ-
ent directions, especially those that have industrial
applications and are designed to resolve new general
physical problems. Hopefully, the future theory will be
compatible with the coming new experiments and
explain in detail their exciting observations.
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Abstract—Diffusion equations are considered that differ substantially in structure from classical ones. A
description of diffusion under strongly nonequilibrium conditions in a highly turbulent plasma requires the use
of equations that take into account memory effects and the nonlocal nature of transport. Different methods are
developed for constructing such equations, ranging from those in the quasilinear approximation to those with
fractional derivatives. It is emphasized that the theoretical concepts underlying the equations proposed are com-
mon for a very wide variety of specific physical problems. The ways of applying theoretical probabilistic ideas
are demonstrated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The equations describing diffusion phenomena are
among the key tools for investigating transport pro-
cesses in plasmas. The ever-increasing complexity of
the problems requires the development of more and
more elaborate and diverse diffusion models. The rela-
tion between heat conduction and random-walk pro-
cesses was established as early as the beginning of the
20th century [1–6]. In the first stage of research in this
field, the main problem was that of calculating the dif-
fusion coefficient (thermal conductivity). Investigation
of turbulent diffusion in an atmosphere led to new equa-
tions that differ substantially in structure from the clas-
sical diffusion equation [7–9]. It was revealed that
transport processes in turbulent plasmas are nondiffu-
sive in nature. New forms of equations describing trans-
port processes have constantly been sought since the
first studies on quasilinear theory [10–11]. The descrip-
tion of diffusion under strongly nonequilibrium condi-
tions in a highly turbulent plasma required the use of
equations that take into account memory effects and the
nonlocal nature of transport processes [12–19].

The objective of this paper is to consider different
methods for constructing such equations, ranging from
those in the quasilinear approximation to those with
fractional derivatives. The topics to be discussed
include the telegraph equation, the Levy–Khintchine
distribution, and the Kohlrausch slow relaxation law.
Use will be made of some important notions belonging
to the theoretical probabilistic analysis: the return prob-
ability, the self-intersection probability, and the proba-
bility of staying in a trap. The issues addressed in the
paper can be conditionally divided into four groups:

(i) the quasilinear approximation and renormaliza-
tion,

(ii) the Markov equations and nonlocality,
(iii) memory effects in diffusion problems, and
(iv) correlations and the role of returns.
1063-780X/03/2911- $24.00 © 0955
This formal division is based on which analysis
method dominates each of the groups. However, it is
impossible to draw a rigid distinction between these
groups. The material will be presented in a physically
precise way and will be exemplified by reference to the
description of turbulent diffusion. For brevity, many
interesting points had to be omitted because the scien-
tific problem under discussion has a hundred year his-
tory of research. Despite a host of works on the prob-
lem, it is still far from being completely resolved. Var-
ious aspects of the subject have been elucidated in a
number of brilliant monographs and reviews [12–19].

2. QUASILINEAR APPROXIMATION

The great importance of the quasilinear approxima-
tion was stressed in the Introduction. Quasilinear equa-
tions were first considered in [10, 11] in connection
with the problem of describing diffusion in phase space
due to the interaction between waves and particles. For
our purposes, it is sufficient to consider only some of
the ideas advanced in the cited papers, namely, those
associated with the averaging of the quasilinear equa-
tions [20–22].

We consider the continuity equation for the density
of a passive scalar characterizing an incompressible
flow:

(1)

where n(x, t) is the spatial density of the passive scalar
and v (t) is the random velocity field. We use the
method of averaging over the ensemble of realizations
for Eq. (1), assuming that the density field can be rep-
resented as a sum of the mean density n0(x, t) = 〈n〉 and
the fluctuation component n1 = n – 〈n〉,

(2)

∂n
∂t
------ v

∂n
∂x
------+ 0,=

n n0 n1.+=
2003 MAIK “Nauka/Interperiodica”
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We also set 〈n1〉  and v  = v 0 + v 1, where v 0 = const and
〈v 1〉  = 0. As a result, after simple manipulations (which
are frequently used in the literature [20–22]), we arrive
at the following two equations:

(3)

(4)

We assume that the fluctuations n1 and v 1 are as small
as δ in comparison with the mean density n0 and retain
the terms on the order of δ2 in Eqs. (3) and (4). The qua-
silinear character of the approximation indicates that, in
Eq. (3) for n0, we keep the nonlinear term on the order
of δ2 but, in Eq. (4) for n1, we keep only the terms that
are of the first order in δ. At this point, such assump-
tions and transformations are justified because, on the
one hand, we wish to see how the equation for n0
changes when fluctuations are taken into account and,
on the other, we wish to obtain a solvable equation for
n1. As a result, the transformations put Eq. (4) for n1
into the form

(5)

We solve Eq. (5) by the method of Green’s functions.
We consider Eq. (5) as a first-order linear hyperbolic

equation with the source term I(x, t) = –v 1 , where

the derivative  is the parameter of the equation. We

also supplement the equation with the uniform initial
condition n1(x, 0) = 0. Then, we consider the equation
for the Green’s function G:

(6)

It is easy to solve this equation by applying the Laplace
transformation in the time t and the Fourier transforma-
tion in the spatial coordinate x:

. (7)

Here and below, the tilde marks the Fourier- or
Laplace-transformed quantities. The solution has a sim-
ple physical meaning: it describes perturbation propa-
gating along the characteristic z = x – v 0(t – t1):

, (8)

where we have used the notation h(t) for the Heaviside
function. The sought solution n1(x, t) has the form

(9)

∂n0

∂t
-------- v 0

∂n0

∂x
-------- v 1

∂n1

∂x
--------+ + 0;=

∂n1

∂t
-------- v 0

∂n1

∂x
-------- v 1

∂n0

∂x
-------- v 1

∂n1

∂x
-------- v 1

∂n1

∂x
--------–+ + + 0.=

∂n1

∂t
-------- v 0

∂n1

∂x
--------+ v 1

∂n0

∂x
--------.–=

∂n0

∂x
--------

∂n0

∂x
--------

∂G
∂t
------- v 0

∂G
∂x
-------+ δ x x1–( )δ t t1–( ).=

Gk s,
t1s–( )exp

s ikv 0+
------------------------ ikx( )exp=

≈

G x t x1 t1, , ,( ) δ x x1– v 0 t t1–( )–( )h t t1–( )=

n1 x t,( ) v 1 t1( )
∂n0 z t,( )

∂z
-------------------- t1.d

0

t

∫–=
We substitute this expression for n1 into Eq. (3) and per-
form simple manipulations [20–22] to obtain

(10)

The integral nature of Eq. (10) reflects the
Lagrangian character of the relationships between the
derivatives of n0(x, t). In this respect, the continuity
equation at hand is quite different from the fundamen-
tally local continuity equation. The characteristic that
appeared in our analysis relates the derivatives at differ-
ent times. The left-hand side of Eq. (10) contains the
partial derivatives with respect to x and t. On the right-

hand side, we sum the values of the derivative  cal-

culated along the characteristic with a weighting factor
C, which is the autocorrelation function of velocity,

(11)

It is because of the wide variety of correlation
effects that there exist a large number of models for
describing different aspects of random-walk processes.
In the case of a steady-state random process, the func-
tion C(t, t1) ≈ C(t – t1) in the equation under analysis
plays the role of the memory function. It is the function
C(τ) that will be used in further analysis. The particular
form of the equation is governed by the choice of the
memory function C(τ). In the following three sections,
we will consider three different situations in each of
which the nonlocal equation assumes its familiar form.

3. THE CASE OF SHORT-RANGE 
CORRELATIONS

In the simplest physically meaningful case, Eq. (10)
reduces to the classical diffusion equation

(12)

This is possible only if the main contribution to the
integral on the right-hand side of Eq. (10) comes from
a short interval (t – t0, t) such that t0 ! t. The quantity t0
can be estimated as

(13)

If the second derivative changes insignificantly over the
short interval, we obtain

(14)

∂n0

∂t
-------- v 0

∂n0

∂x
--------+ v 1 t( )v 1 t1( )〈 〉

∂2
n0 z t1,( )
∂z∂x

------------------------ t1.d
0

t

∫=

∂2
n0

∂x
2

----------

C t t1,( ) v 1 t( )v 1 t1( )〈 〉 .=

∂n0

∂t
-------- v 0

∂n0

∂x
--------+ D

∂2
n0 x t,( )

∂x
2

-----------------------.=

t0
1

C 0( )
------------ C t( ) t.d

0

∞

∫≈

v t( )v t1( )〈 〉
∂2

n0 z t,( )
∂z∂x

---------------------- t1d

0

t

∫

≈
∂2

n0 x t,( )

∂x
2

----------------------- C t t1–( ) t1.d

t t0–

t

∫
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In fact, we are assuming that the correlations are short-
range. Thus, in this approximation, we arrive at the
familiar Kubo–Green formula for the diffusion of a pas-
sive impurity [5]:

. (15)

In terms of the δ correlations [2],

, (16)

which are often used in theoretical analysis, the local
representation for quasilinear equation (10) takes the
form

(17)

where the diffusion coefficient is estimated from the
formula D = C0τ ≈ V2τ. This result corresponds to the
expected diffusion effect, which arises when the pertur-
bation field is taken into account.

4. THE CASE OF LONG-RANGE 
CORRELATIONS

In the case of long-range correlations such that C ≈
const for t1 @ 0, Eq. (10) can be reduced to

(18)

In turn, this equation can be further simplified by using
the properties of the characteristic z. Differentiating
Eq. (18) with respect to x gives

(19)

Differentiating Eq. (18) with respect to t gives

(20)

Eliminating the integral in Eqs. (19) and (20) yields

(21)

This equation differs markedly from the classical
diffusion equation. For C0 > 0, it is a hyperbolic equa-
tion, possessing the corresponding properties. Thus, a
complete solution to this equation can be represented as
a superposition of two initial distributions n0(x, 0) mov-
ing at different velocities. As is well known, the fact
that hyperbolic equations have characteristics opens up
new possibilities for describing nonlocal effects. It
should be noted, however, that, from the mathematical
point of view, the above passage from a parabolic to a

D C τ( ) τd

0

∞

∫ v 0( )v t( )〈 〉 td

0

∞

∫= =

C t t1–( ) C0τδ t t1–( )≈

∂n0

∂t
-------- v 0

∂n0

∂x
--------+ C0τ

∂2
n0 x t,( )

∂x
2

-----------------------,=

∂n0

∂t
-------- v 0

∂n0

∂x
--------+ C0

∂2
n0 z t1,( )
∂z∂x

------------------------ t1.d

0

t

∫=

∂2
n0

∂t∂x
----------- v 0

∂2
n0

∂x
2

----------+ C0

∂3
n0 z t1,( )

∂x
3

------------------------ t1.d

0

t

∫=

∂2
n0

∂t
2

---------- v 0

∂2
n0

∂x∂t
-----------+ C0

∂2
n0

∂x
2

---------- v 0

∂3
n0 z t1,( )

∂x
3

------------------------ t1.d

0

t

∫–=

∂2
n0

∂t
2

---------- 2v 0

∂2
n0

∂x∂t
----------- v 0

2
C0–( )

∂2
n0

∂x
2

----------+ + 0.=
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hyperbolic equation is incorrect. The Cauchy problems
for these two types of equation are radically different.
Nevertheless, interest in such passages can be traced
back to Hadamard. In the case at hand, we can draw an
analogy with the Hadamard hyperbolic equation

(22)

For ε  0, this equation reduces to the classical diffu-
sion equation. According to Hadamard’s ideas [2], any
parabolic problem can be considered as a limiting case
of the corresponding hyperbolic problem. However, in
the case at hand, the analogy between Eq. (21) and the
telegraph equation

(23)

has the deepest physical meaning. The telegraph equa-
tion was one of the first so-called nondiffusion equa-
tions that were applied to describe the turbulent trans-
port of passive impurities.

5. TELEGRAPH EQUATION

In the theory of random processes [2, 6], one of the
most widely used correlation functions is an exponen-
tial one:

This choice is quite natural because it is in this form
that the correlation function is used in the Langevin
model of random-walk processes. With the help of this
exponential function, we can transform integral equa-
tion (10) into a partial differential equation. To do this,
we set

. (24)

Differentiating Eq. (10) with respect to x gives

(25)

Differentiating Eq. (10) with respect to t gives

∂n0

∂t
--------– ε

∂2
n0

∂x∂t
-----------

∂2
n0

∂x
2

----------+ + 0.=

∂n
∂t
------ τ∂2

n

∂t
2

--------+ D
∂2

n

∂x
2

--------=

C t( ) C0
t
τ
--– 

  .exp=

C t t1,( ) C t t1–( )=

∂2
n0

∂t∂x
----------- v 0

∂2
n0

∂x
2

----------+ C t t1–( )
∂3

n0 z t1,( )

∂x
3

------------------------ t1.d

0

t

∫=

∂2
n0

∂t
2

---------- v 0

∂2
n0

∂t∂x
-----------+ C0

∂2
n0

∂x
2

----------=

–
1
t0
--- C t t1–( )

∂2
n z t1,( )

∂x
2

---------------------- t1d

0

t

∫

– v 0 C t t1–( )
∂3

n0 z t1,( )

∂x
3

------------------------ t1.d

0

t

∫
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Eliminating the integral in these two equations yields

(26)

In accordance with the hyperbolic nature of the prob-
lem, we introduce the new variables

(27)

to obtain

(28)

where  is the propagation velocity of the perturba-
tions. This is actually the telegraph equation (22) in a
frame of reference related to coordinates (27).

Davydov [8] was the first to apply the telegraph
equation to turbulent diffusion. His idea was to describe
rapid transport processes by including additional partial
derivatives in the classical diffusion equation. This
problem turned out to be particularly important in con-
nection with the investigations of turbulent diffusion
that were carried out in 1926 by Richardson [7], who
revealed that the laws of atmospheric diffusion differ
significantly from the classical law:

or  (29)

The studies by Richardson undoubtedly opened up
an entirely new area of study and made a significant
impact on the further development of the theory of
transport processes. At this point, it should be noted
that scaling (29) refers to the relative diffusion of
Lagrangian particles, or actually to their evolution aver-
aged over the ensemble of realizations. This feature of
Richardson’s diffusion model was widely discussed in
the literature [7].

Davydov used the following phenomenological set
of equations for the particle density n(x, t):

(30)

where q0 = –D .

Formal manipulations with this set of equations
yield telegraph equation (23). He suggested using
Eq. (23) to take into account the finite particle velocity
v  during the molecular diffusion. The classical para-
bolic diffusion equation follows from telegraph equa-
tion (23) in the limit

τ  0; D ≈ v 2τ  const. (31)

∂n0

∂t
-------- v 0

∂n0

∂x
--------+

+ t0
∂2

n0

∂t
2

---------- 2v 0

∂2
n0

∂x∂t
----------- v 0

2
C0–( )

∂2
n0

∂x
2

----------+ + 0.=
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R
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t
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 @ t∝ D

R
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t
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4/3
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------+ 0;

∂q
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q0 q–
τ

--------------,= =
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∂x
------
The physical meaning of the representation proposed
by Davydov for the particle flux q can be easily clarified
by writing the formal solution

(32)

Obviously, such an expression for the particle flux takes
into account memory effects. After Davydov, this for-
mula was generalized in many studies in such a way as
to replace the exponential function by an arbitrary
memory function M(t – t '):

(33)

in which case the general diffusion equation becomes

. (34)

Later, the telegraph equation in form (34) was often
applied to describe turbulent diffusion [9, 23–26].

6. DIFFUSION APPROXIMATION 
FOR CORRELATION EFFECTS

The obvious drawback of the quasilinear theory is
that the nonlinear term in the equation for n0 is retained,
while the nonlinear terms in the equation for n1 are
omitted. There are a large number of papers whose
authors try to refine the quasilinear approximation. A
detailed analysis of such papers was carried out in [15,
22]. The most interesting papers in this area were writ-
ten by Dupree [27–29], who conceived the idea of dif-
fusive spreading of the particle trajectories, which is
physically close to the assumption made by Corrsin
[30]. In fact, the equation for n1 is linear and hyper-
bolic; therefore, it keeps the Lagrangian character of
the correlations. This opens up the possibility of
describing the omitted correlation effects—the combi-

nation  –  in Eq. (4)—by supplementing

the equation for perturbations with the additional diffu-

sion term .

In this context, it is expedient to present some of the
results obtained by Kadomtsev and Pogutse [31] on
anomalous electron transport in a magnetic field. They
considered a three-dimensional problem of transport in
a strong constant field B(0, 0, B0) pointing along the z
direction in the presence of a weak random field B'(Bx,
By, 0). As usual, the quasilinear representation is valid
only when the diffusion-related displacement in the
transverse direction is much smaller than the transverse
correlation length. Kadomtsev and Pogutse also consid-

q q0 t t '–( )–( ) t 'd
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0

t
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∂n1
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∂n1
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D
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2
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PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003



DIFFUSION EQUATIONS AND TURBULENT TRANSPORT 959
ered the opposite case. They introduced the continuity
equation for the density of the magnetic field lines,

(35)

and represented nb as a sum of the mean density n0 =
〈nb〉  and the fluctuation component n1,

The problem as formulated is close to problem (3) and
(4) of the quasilinear diffusion of a passive scalar. In
fact, the authors of [31] wrote the equation for n0 in tra-
ditional form:

(36)

However, in the equation for n1, they replaced the sec-
ond-order terms (which were omitted in earlier studies)
by a diffusion term. In essence, they followed Dupree’s
ideas and related the discarded correlation effects with
the diffusive spreading of the trajectories:

(37)

Thus, they kept the equations linear but passed from
a hyperbolic equation of form (5) to parabolic equation
(37). Applying the mathematical apparatus of Green’s
functions to Eq. (37), we obtain

(38)

Kadomtsev and Pogutse derived the following equation
for n0:

(39)

with

(40)

For ∆kz > DF, they got the quasilinear expression
[20–22]

(41)

where ∆z is the longitudinal correlation length.

In the case of strong correlations (∆kz < DF), they
arrived at the following result, which is similar to that
obtained by Howells [32]:

(42)
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This results of Kadomtsev and Pogutse once again
showed, on the one hand, that it is important to take into
account the correlation effects that are ignored in the
quasilinear approach and, on the other, that these corre-
lation effects are closely related to the problem of how
different spatial scales should be treated in turbulent
transport theory.

In the context of the problem considered in [31], we
should mention the well-known papers by Rechester
and Rosenbluth [33, 34], who raised the question of
incorporating the effect of divergence of the neighbor-
ing magnetic field lines in the problem of anomalous
electron heat conduction. Those papers, together with
[31], have played a very important role in developing
the modern theory of transport in a stochastic magnetic
field.

7. BASIC EQUATION FOR MARKOVIAN 
PROCESSES

It has been shown above that a host of different
effects has gone unstudied in the theory based on the
classical diffusion equation. On the other hand, very
many phenomenological assumptions were made in
order to refine the diffusion equation. Consequently,
sophisticated transport models should be constructed
based on the fundamental ideas of transport processes.
These ideas are provided by the theoretical probabilis-
tic approach to the problems of random-walk pro-
cesses. For our purposes, the most important method
for deriving equations is that of constructing a func-
tional equation for the probability density (a chain
equation). As early as 1905, Albert Einstein obtained a
functional equation for the particle density solely on the
basis of the general ideas about the process of random
walk [1]:

(43)

where W(∆) is the density of the probability of under-
going a jump ∆. This fundamentally nonlocal equation
can be made local by reducing it to a diffusion equation.
Assuming that the time scale τ is short and the jump ∆
is small, Einstein arrived at the classical diffusion equa-
tion. In this way, he used the expansions

(44)

(45)

n x t τ+,( ) W ∆( )n x ∆– t,( ) ∆,d

∞–

+∞

∫=

n x t τ+,( ) n x t,( ) ∂n
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------τ … ,+ +=
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------∆ ∆2

2
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n

∂x
2
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Simple calculations yield

(46)

Assuming that the function W is symmetric,

(47)

and specifying the normalization condition,

(48)

we obtain the equation

(49)

Note that the number of terms in expansions (44) and
(45) was chosen in a physically meaningful way. Based
on the relationship characterizing the average behavior
of Brownian particles, R2 ∝ t, we can estimate the
orders of the terms in the expansions as follows:

t  ∞.

However, retaining only two terms in each of the
expansions (44) and (45) results in a telegraph equa-
tion. However, this does not indicate that the telegraph
equation is invalid. The reason is that, in this case, the
effects of finite propagation velocity of the perturba-
tions come into play.

The integral approach was further developed in
papers by Smoluchowski, Chapman, and Kolmogorov
[1–5, 35]. A key element in their approach is Markov’s
postulate—that the length of the jump, ∆, is indepen-
dent of the prehistory of motion.

8. LEVY–KHINTCHINE DISTRIBUTION

In probability theory, ideas about the form of equa-
tion describing random-walk processes have evolved
considerably: it is the integral form of the equation
which eventually became dominant. Using expansion
(44) of functional (43), we can readily obtain the
Smoluchowski equation [1–5]

(50)
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∫

Here, K(x, x')dxdx' is the probability for a particle at the
position x at the time t to pass over to the interval x' +
dx' during the time interval dt. We introduce the func-
tional

(51)

For a homogeneous isotropic medium, we have G(x' –
x) = G(|x – x' |). In the simplest case under consider-
ation, this functional has the form

(52)

Here, it is more convenient to switch to the Fourier rep-
resentation for n(x, t) in the variable x. Formal manipu-
lations yield the equation

(53)

which indicates that the Fourier harmonics do not
exhibit memory effects. Corresponding to the classical
diffusion equation is the functional

(54)

In the case of telegraph equation (22), the memory
effects were taken into account [see Eq. (34)]:

(55)

where the asterisk indicates the convolution operation.
Applying the Laplace transformation in time, we

obtain the following functional for the telegraph equa-
tion with memory:

(56)

It is an easy matter to combine the memory and nonlo-
cality effects into a common expression containing a
convolution:

Performing the Laplace transformation in time yields

−Dk2  –k2 (k, w). In the theoretical probabilis-
tic approach, however, this heuristic method is unsatis-
factory. Below, we will consider this point in more
detail.
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The approach based on Eq. (53) was developed by
Levy and Khintchine [36], who used the approximate
equation of the form

(57)

It is easy to see that, for α = 2, we are dealing with a
Gaussian distribution (corresponding to a conventional
diffusion equation). Some other analytic distributions
are also known. For α = 1, we obtain the Cauchy distri-
bution. For α = 3/2, we arrive at the familiar Holtsmark
distribution [4]. In this context, it is important to note
that all the probability densities with α < 2 have power-
law tails. Another important property is that the second
and higher moments of the distributions with 1 ≤ α < 2
and all moments of the distributions with 0 < α < 1
diverge.

9. LEVY DISTRIBUTION FOR TURBULENT 
DIFFUSION

Monin [9] used the Einstein–Smoluchowski func-
tional given in Eqs. (53) and (57) to describe turbulent
diffusion in the atmosphere. That paper anticipated the
development of modern ideas of using additional frac-
tional partial derivatives in diffusion equations. Monin
was guided by Kolmogorov’s ideas about the universal
properties of well-developed isotropic turbulence [14].
In the corresponding formulation of the problem, all
statistical parameters are determined exclusively by the

scale length lk ≈  and the mean energy dissipation rate

ε = . Based on dimensionality considerations,

Monin obtained the following expression for the kernel
of the nonlocal functional describing turbulent diffu-
sion:

(58)

This representation is consistent with the results
derived in 1926 by Richardson [7] under the assump-

tion that, if , then

(59)

Also, in modern terminology [17, 19], the equation

(60)

is one with a fractional derivative with respect to x:

 ∝   ∝  kαn, where α = 2/3 [see formula (58)].

Monin was the first to obtain this equation for the prob-
ability density on the basis of physical considerations.
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He solved this equation and wrote the solution in terms
of the Whittaker functions. The solution in question

behaves asymptotically as n(x  ∞) ∝ . The
problem of the relaxation to a self-similar regime was
discussed in detail in [14, 17].

However, Monin was unsatisfied with the above
form of the equation. In fact, he derived the following
equation with fractional derivatives:

It is only recently that the idea of using fractional deriv-
atives has come to be recognized [17]. In an effort to
derive an equation that would be as clear as the tele-
graph equation, Monin differentiated his equation twice
with respect to time and obtained

(61)

It is now known that, for many years after the publi-
cation of theoretical works of Davydov and Monin, dif-
fusion equations has often been supplemented with dif-
ferent partial derivatives,

(62)

in order to describe nonlocality and memory effects
[17, 19, 37–41]. Moreover, this approach was used not
only for diffusion equations in coordinate space but
also for those in velocity space.

10. RANDOM-WALK PROCESSES
IN CONTINUOUS TIME

As has already been discussed, the Smoluchowski–
Chapman–Kolmogorov approach, although fairly gen-
eral, does not exhibit memory effects [see Eq. (55)].
Montroll and Weiss [42] were the first (1965) to suc-
cessfully overcome this serious drawback. A careful
analysis of the problems of random-walk processes
shows that a fundamentally important role is played by
the transition probability density. In Markov’s
approach, the transition probability density is assumed
to depend on the spatial variable, W(∆), where ∆ is a
spatial step. Montroll and Weiss used a fundamentally
different dependence: they assumed that the transition
probability density depends on time, Ψ(t). They also
introduced a physically clear quantity: the probability
of not undergoing a transition from a point y to any
other point during the time t:

(63)
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The function Φy(t) reflects the relaxation properties of
the system. In the simplest case, the function Φy(t) is
represented in the form of the Poisson distribution

(64)

where τ is the mean time between transition events. The
function Φy(t) is also being represented in some other
forms capable of reflecting the characteristic behavior
of relaxing systems:

(65)

(66)

(67)

In the Montroll–Weiss theory, the function Φy(t) plays
the governing role. Prior to this, the subscript y in the
functions Φ and Ψ served merely to mark an arbitrarily
chosen point. The authors of [42] succeeded in writing
an elegant chain equation for the probability for a ran-
domly walking particle to occur at the point x at the
time t:

(68)

The functions on the right-hand side of this equation
have essentially the same physical meaning as the func-
tion Ψ [see definition (63)]. Consider the point x1 and
let the function  be represented as a sum of the
probability densities for transitions from the point x1 to
all allowed points x. We then have (t) =

(x1  x, t) and, consequently,

(69)

where Ψ(x1  x, t) is the probability density for a
transition from the point x1 to the point x at the time t.
Note that the function Ψ depends not only on the time t
but also on the relative spatial positions of the points x1
and x, in which case we have

,

where R(x, t) is the probability for transitions from
other points to the point x during the time interval (t; t +
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the Kohlrausch relaxation function
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the algebraic relaxation function

Φy t( ) α t( ) γ–
,=

the Montroll function
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dt). The probability density P(x, t) is related to the par-
ticle density by

(70)

where N is the total number of particles and δV = (δx)d

is a volume element. Applying the Laplace transforma-
tion in time and the convolution theorem, we obtain
from expressions (68) and (69) the equation

(71)

where, in accordance with expression (68),  and 
are related by

(72)

Then, returning to the physical variables, we arrive at
the Montroll–Weiss equation

(73)

where the memory function F is defined in terms of its
Laplace transform,

. (74)

In what follows, we are interested in the functions that
depend only on the difference between x and x1, which
corresponds to a homogeneous medium:

F(x1  x, s) = F(x – x1, s). (75)

Assuming that the variable x takes on continuous val-
ues, we can generalize Eq. (73) to a sort of Smolu-
chowski–Chapman–Kolmogorov equation (52) with
memory effects:

(76)

where Q is expressed in terms of Laplace transforms as
follows:

(77)
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The assumption that the memory function is of a multi-
plicative nature yields

(78)

Switching now to Fourier transforms in x and Laplace
transforms in t, we arrive at the following equation for
the particle density [see relationship (70)]:

(79)

It is easy to draw an analogy between this equation and
Eq. (53). Obviously, under the conditions

(80)

the Montroll–Weiss equation is transformed into the
Smoluchowski–Chapman–Kolmogorov equation. In
fact, choosing the Poisson distribution (64) for the
function Φ(t) ensures the required limiting transition
for an equation with memory effects.

In [42–44], telegraph equation (23) was derived for
the exponential memory function M(t) = exp(–αt) and

for a Gaussian memory function with 1 – (k) = –Dk2.
It is interesting to note that, although the equation con-
sidered above and the memory function M(t) both have
simple form, the expression for Φ(t) is fairly compli-
cated in structure [43, 44].

Hence, we see that it is necessary to choose different
test functions for different physical situations. In some
cases, the choice is conveniently based on the probabil-
ity functions Φ(t) and Ψ(t) and, in other cases, it would
be worthwhile to choose the memory function M(t).

11. FRACTIONAL DERIVATIVES
IN AN EQUATION WITH MEMORY

An important physical quantity in the description of
random walk processes with memory is the mean wait-
ing time 〈t 〉  until an event occurs:

This time is an analogue of the mean length of the jump
in the theory of Markovian processes. This is not sur-
prising because, in the approach based on memory
effects, the transition probability density Φ(t) is an ana-
logue of the function W(∆). For Poisson distribution
(64), we have 〈t 〉  = τ.

An important particular case of relaxation functions
is represented by those that decrease according to the
power law

(81)

In this case, the mean waiting time until an event occurs
tends to infinity,
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  ∞. (82)

Relaxation functions (81) were found to provide an effi-
cient tool for the analysis of transport processes [43,
44]. For long times t, simple manipulations yield the

following expression for (s):

(83)

where Γ(z) is Euler’s gamma function. The equation
describing memory effects takes the form

(84)

The expression (s) (k, s) ≈ sγ (k, s) can be inter-
preted as a time derivative of order γ [17]:

(85)

Representing the results in such a manner facilitates
interpretation of the scaling relations of the form R(t) ∝

, which have found increasingly wider application in
the analysis of fractional derivatives

The problem of solving equations with fractional deriv-
atives was recently examined in detail in [17, 45], in
which the question about the existence of self-similar
solutions was also discussed.

To conclude this section, we introduce one more
quantity that is often used in the literature to character-
ize the anomalous nature of transport. Specifically, we
define the Herst power index H by the relationship

.

For Levy–Khintchine distributions, the Herst power

index is equal to H = , and, for the telegraph equation,

it is equal to H = 1.

12. SCALINGS FOR DIFFUSION
IN A MEDIUM WITH TRAPS

On the basis of the well-known paper by Balagurov
and Vaks [46], we will analyze a particular physical
model of diffusion in a medium with traps. Using theo-
retical probabilistic estimates, we can derive scaling
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relations, which can conveniently be interpreted on the
basis of relaxation functions. On long time scales, the
diffusion of particles in a medium with traps is gov-
erned by the fluctuating character of the appearance and
disappearance of regions free of traps. We introduce the
trapping probability (i.e., the probability for a particle
to be captured into a trap) in terms of the Poisson dis-
tribution:

(86)

Here, τD ≈  is the characteristic time scale on which

a particle diffuses through a medium until it reaches the
boundary of a trap-free region of radius R and D is the
local diffusion coefficient. We assume that trap-free
regions obeys the Poisson distribution,

(87)

where R0 is the mean radius of the trap-free regions in
a space of dimension d. Now, we can estimate how the
radius R(t) of the trap-free region should change in time
in order for the survival probability to be the highest:

(88)

Calculating the time derivative of the argument of the
first of the exponential functions in this estimate, we
obtain

(89)

For d > 0, the diffusion described by this scaling is
obviously slower than that described by the classical
diffusion scaling

. (90)

In the language of fractional derivatives, this indicates
that Eq. (84) with a fractional derivative with respect to
time can serve as a model equation for describing dif-
fusion in the situation at hand:

(91)

Note that the problem about diffusion in a medium
with traps is not necessarily related to such issues as
condensed states or chemical reactions. The ideas asso-
ciated with traps are also used in the study of particle
trapping by vortices in order to describe the behavior of
a passive scalar in a turbulent field [47–50] or in the
analysis of the correlation functions of a turbulent field.
In what follows, we will consider the problem in which

Pc
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traps in a medium manifest themselves in particle dif-
fusion in a magnetic field with “braided” force lines.

13. KOHLRAUSCH FUNCTION 
AND LEVY DISTRIBUTION

In the previous section, we considered the model
describing slowed particle diffusion. In this model, the
estimate of the probability for a particle to survive
yields

(92)

For d = 2, this formula is the familiar Kohlrausch relax-
ation law [see formula (65)]. Of particular interest is the
fact that the Kohlrausch slowed relaxation law is related
to the Laplace transformation of the familiar Levy’s law
for jumps with the power index α = 1/2:

(93)

This simple formula clearly shows a close relationship
between the memory and nonlocality effects. Physi-
cally, this relationship is not surprising. A particle that
stays in a trap in phase space is not involved in events
(does not undergo collisions). However, in conven-
tional coordinate space, such a collisionless particle is
transported over a large distance during the time it stays
within the trap. In this sense, collisionless particles can-
not be regarded as being involved in a conventional dif-
fusion process, in contrast to the particles that undergo
collisions.

The physical meaning of formal relationship (93)
can easily be understood by treating its integral part as
an averaging procedure for the Poisson law:

As an example, let us consider the case x = V and s =
1/V0 ≈ t/L, where V is the particle’s velocity and L is the
size of the region over which the averaging is per-
formed. In this case, we have

(94)

As a result, we see that the Kohlrausch relaxation law
describes Poisson’s probability for a particle not to
undergo collision in a region of size L during the time t,
averaged by means of a Levy distribution with α = 1/2:

(95)
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It should be noted in this context that ideas concerning
the use of fractional derivatives are now being actively
developed by theoreticians [39, 40]. For strongly non-
equilibrium systems in which an important role is
played by accelerating and trapping mechanisms, it is
clearly necessary to take nondiffusion effects into
account in describing the processes in phase space.

14. RETURNS AND SELF-INTERSECTIONS
IN DIFFUSION PROBLEMS

In the previous sections, we have often used ideas
about the transition probability density that reflect the
essential features of the problem of random-walk pro-
cesses. We have also touched on some questions con-
cerning the relationship between the diffusion coeffi-
cient and correlations. Now, we analyze the effect
underlying the notion of correlations—return of a ran-
domly moving particle to the initial point. This is best
illustrated by considering the problem of one-dimen-
sional random walks at the very beginning of the pro-
cess. In the problem as formulated, the particle can def-
initely return to its initial position, thereby providing a
clear realistic interpretation of the abstract notion of
correlations. Rigorous analysis of returns on compli-
cated spatial grids is necessarily based on the chain
equation for the return probability P0(t). Recall that
most of the fundamental problems in the theory of ran-
dom-walk processes can be formulated in terms of
chain equations. However, we restrict ourselves here to
estimating the effects of returns.

Simple estimates for these effects can be obtained
from the Poisson solution to the equation for the prob-
ability density function describing the random walks of
a particle. For a space of dimension d, we obtain

(96)

in which case the probability for a particle to return to
the point x = 0 at the time t has the form

. (97)

Generally, this simple (although rather efficient) for-
mula, serves merely to obtain estimates [51, 52]. It has
the same drawbacks as the simple diffusion model,
namely, those associated with the infinite propagation
velocity of perturbations and the presence of a δ-shaped
particle-source term. The problem can be solved com-
pletely by using the chain equation for the probability
P0(N) for a particle to return to the initial point after N
random walks. For our purposes, this solution is impor-
tant because it provides evidence that the dimension of
the space, d, which was used above as a formal param-
eter, plays a more significant role. It turns out [45] that,
for grids of dimension d ≤ 2, the particle will inevitably
return to its initial position; i.e., the return probability is

ρ x t,( ) 1

4πDt( )d /2
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P0(N) = 1. For grids with d > 2, the particle can execute
random walks without returning. To be specific, for d =
3, we have P0(N) ≈ 1/3. We thus see that the case d = 2
is intermediate and, as such, attracts much attention
among mathematicians.

Along with the return probability P0, use is made of
the number of returns and the number of visited grid
points. Usually, the task is to express these numbers as
certain scalings and to establish their relationships to
other scalings [52].

Using the notion of return, we derive an important
scaling relation for particles executing random motion
with no self-intersections. We introduce the probability
p(N) of self-intersection after N random walks,

, (98)

where R2(N) is the root-mean-square displacement, d is
the dimension of the space, and N = t/τ is the number of
random walks. In fact, we are assuming that the proba-
bility for the particle trajectory to intersect itself is pro-
portional to the number density of visited grid points
within the region of random particle motion. The prob-
ability for a particle to execute N non-self-intersecting
random walks can then be estimated as

(99)

Taking into account the fact that the relationship
between the quantities R and N is of a diffusive nature,
we can estimate the effective probability of non-self-
intersecting random walks by averaging the probability
Ps(N):

(100)

We assume that the main contribution to the integral
comes from the extremum of the integrand,

(101)

and perform simple manipulations to obtain

(102)

for d ≤ 3. Here, we must take into account the fact that,
in a space of dimension d = 1, non-self-intersecting ran-
dom walks can occur only for the particles moving in
one direction, which indicates that R ∝ t. We see that
estimate (102) satisfies this condition automatically.
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This scaling, which was first obtained in the theory
of polymers by Flory [53–55], is very important in
describing the properties of turbulent flows. One of the
most interesting lines of research on the subject
involves analysis of the stochastic properties of an
ensemble of vortices. The vortex lines can be consid-
ered as self-intersecting trajectories from the model of
random-walk processes. We can take into account the
contribution of vortex lines to the energy spectrum by
using the following scaling, which was derived in the
so-called β-model—a fractal model of isotropic turbu-
lence [56]:

. (103)

Here, the correcting factor for the Kolmogorov–
Obukhov spectrum is related to the fractal dimension dF

of the space of random walks of a vortex line. For scal-
ing (102), we have

because, by definitions in fractal geometry, the fractal
dimension for random walks is determined by the for-

mula N ∝ t/τ ∝ . As a result, we arrive at the follow-
ing estimate for the energy spectrum:

Turbulence spectra of roughly the same form were ana-
lyzed as early as 1950s in the context of the ideas about

E k( ) k
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k

d dF–

3
---------------–

∝

dF
2 d+

3
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R
dF
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Fig. 1. Dreœzin–Dykhne model for anisotropic superdiffu-
sion: D0 is the seed diffusion coefficient, V0 is the velocity
of the transverse pulsations, and a is the transverse dimen-
sion of pulsations.
dissipation spots in a turbulent fluid [14] and interest in
them has persisted to the present day [56–62].

15. RETURNS AND SUPERDIFFUSION

In a report on probabilistic problems suggested by
turbulence [63], Corrsin formulated several challenging
problems. One of them is the problem of how to take
returns of the particles diffusing in a turbulent flow into
account [52]. At approximately the same time, Dreœzin
and Dykhne published their paper [64], in which they
proposed and analyzed a physically clear model for the
behavior of a particle that is subject to strongly aniso-
tropic diffusion. Let us consider this model in order to
illustrate the efficiency of an approach based on the
ideas of returns.

We choose a longitudinal direction (e.g., the direc-
tion of the magnetic field) and assume that the particles
are subject to a seed longitudinal diffusion with the
coefficient D0. In the transverse direction, diffusing par-
ticles are subject to random pulsations generating nar-
row convective flows with the velocity V0 and width a
(see Fig. 1). Dreœzin and Dykhne proposed a simple
model formula for calculating the transverse diffusion
coefficient D⊥ :

(104)

where  Here, P = δN/N is the fraction of

uncompensated pulsations, and N ≈  is the
number of flows (each of width a) the particle has
crossed. Using Gaussian statistical methods, the

authors of [64, 65] obtained the estimate δN ≈  and,
as a consequence,

(105)

In fact, estimate (105) refers to a superdiffusion regime:

(106)

In order to explain this result, Dreœzin and Dykhne con-
sidered the Euler correlation function

(107)

where

(108)

This representation agrees exactly with Corrsin’s idea
about the diffusive nature of correlations [30].
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However, the most widely held hypothesis in the
description of the anomalous nature of diffusion is that
about the significant role of returns [52] in the diffusion
model at hand. As a case in point, consider the limit
z  0, in which

(109)

We now perform all the necessary manipulations and
arrive at result (59):

(110)

The above analysis and calculations permit us to see
that the nature of superdiffusion in the Dreœzin–Dykhne
model [64, 65] is associated with the important role of
returns, which give rise to correlations between the
motions of a diffusing particle in different directions.

Taking into account the results of the above analy-
sis, we can single out the effects of returns:

(111)

where λ0 is the displacement of a particle in one flow

(see Fig. 1) and N(t) ≈  is the number of visited
flows. With allowance for the number NB of returns to a
given flow, the displacement λ0 is estimated as λ0 ≈

V0τ0NB(t). Finally, setting τ0 ≈  and NB(τ) ≈

, we arrive at estimate (110).

At this point, it is expedient to make the following
remark about the results obtained in [64]. A closer look
at formula (62) shows that it explicitly contains the
number of returns for a particle executing random
walks along a straight line:

(112)

This allows us to try to generalize Dreœzin and
Dykhne’s model (109) to a more general topology of
flows in a space of dimension d > 1:

(113)

Simple manipulations with this formula make it possi-
ble to derive other scalings describing superdiffusion.
Thus, for d ≥ 2, the well-known estimate NB ∝ t2/3 [51–
55] yields the scaling x ∝  t2/3, which agrees well with
the so-called self-organized criticality model, proposed
for describing anomalous transport in plasmas [66–68].
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16. SUPERDIFFUSION AND CORRELATIONS

The Dreœzin–Dykhne model considered in the previ-
ous section can be described in terms of the diffusion
equation with memory. Applying the ideas of the quasi-
linear theory, Chukbar [65] averaged the equations
describing pulsating flows in the Dreœzin–Dykhne
model in plane geometry:

(114)

where D0 is the seed diffusion coefficient. The set of
equations obtained in [65],

(115)

(116)

is somewhat analogous to the set of Kadomtsev–
Pogutse renormalized equations (37). In fact, in com-
parison with conventional hyperbolic equation (5), the
equation for perturbations contains the diffusive correc-
tion term, which has a clear physical meaning. Accord-
ing to the analysis carried out by Dreœzin and Dykhne,
this term describes the diffusive nature of returns, gov-
erning the diffusive behavior of the particles. Since the
returns occur along the z direction, the diffusive term

has the form D0 .

Applying the Laplace transformation in the time t
and the Fourier transformation in the spatial coordinate
z, we obtain

(117)

(118)

where the integral is calculated under the condition
z  z'. We thus arrive at the following equation,
which contains fractional derivatives of order γ = 3/2
and describes the Dreœzin–Dykhne model:

(119)

The solution to this equation and its self-similar behav-
ior were analyzed in detail in [65]. Note, however, that
Eq. (119) does not contain the term accounting for lon-
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gitudinal diffusion. In the notation of Chukbar [65], this

term should have a nonphysical form, D0 .

It should also be noted that the superdiffusion effect,
which is based on the effects of returns, occurs only on
spatial scales no longer than the longitudinal correla-
tion length a. This restriction, which was discussed
already by Dreœzin and Dykhne [64] and, later, by
Chukbar [65] in analyzing quasi-diffusion in striplike
flows, has the form

For time scales t > τC, we deal with conventional dif-

fusion, D⊥  ∝  .

17. COMPOUND DIFFUSION AND RIPPLED 
STRUCTURES

One of the first simple scalings in the anisotropic
diffusion model has the form [69, 70]

. (120)

This scaling, which is of the nature of a subdiffusion,
was derived based on the following estimate for the
magnetic diffusion coefficient Dm:

(121)

where ∆⊥  is the transverse displacement of a magnetic
field line in moving along a magnetic field with the spa-
tial scale L||. If we assume that the longitudinal motion
is also diffusive in nature (the diffusion coefficient
being D0), then, using scaling (120), we obtain

(122)

The subdiffusion can be avoided by assuming that the
motion along the magnetic field is ballistic, L|| ≈ Vt. In
their well-known paper [31], Kadomtsev and Pogutse
considered precisely this kind of diffusion in a braided
magnetic field. Another way of passing over to the con-
ventional diffusion was proposed by Zybin and Istomin
[71], who set L|| ≈ V0t, where V0 is a certain propagation
velocity of perturbations along the field. In such a for-
mulation of the problem, the longitudinal diffusion can
be considered using telegraph equation (23), which
describes diffusion, R ∝  t, in the case of perturbations
propagating with a finite velocity.

The most efficient mechanism for destroying com-
pound diffusion is associated with the exponential
divergence of the neighboring lines of a stochastic mag-
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netic field. This effect was first considered in the above-
cited papers by Rechester and Rosenbluth [33, 34]. It is
worth noting that the nonstatic nature of a stochastic
magnetic field also has a destructive effect on com-
pound diffusion.

Compound diffusion can be examined more care-
fully. Recall that Dreœzin and Dykhne’s idea about the
renormalization of the transverse displacement,

V0t  V0t , implies that the returns should be taken

into account when considering random walks in the
longitudinal direction. Using an analogous approach,
we can clarify the physical meaning of the subdiffusive
nature of compound diffusion [17]. According to ele-
mentary estimates (122), the particle is subject to trans-
verse diffusion for a time shorter than the total diffusion
time t. In modern terminology, this is referred to as dif-
fusion in a medium with traps [42–45]. Such situations
are described by introducing the notion of the probabil-
ity Φ(τ) of staying in a trap for a time τ. If the probabil-
ity Φ(τ) is represented in the form of scaling,

(123)

then, for γ < 1, the time interval during which the parti-
cle is actually involved in the diffusion process is of the
nature of a fractal of dimension dF = γ. In fact, we can
use Dreœzin and Dykhne’s model and take into account
specific relationships from [69, 70] to obtain

(124)

τ|| is the longitudinal correlation time, and D⊥  is the
transverse diffusion coefficient. Then, after substitu-
tion, we arrive at

(125)

Turning to the above notation D⊥  ≈ Dm  and D0 ≈ 

and performing all the necessary manipulations, we get

(126)

In the case of compound diffusion, we have γ = dF = 1/2,
which yields expression (122). The cases in which dF =
d/2 are frequently encountered in studies on the subject.
Thus, in the percolation models of turbulent diffusion
[16], the relative amount of the percolative current lines
is estimated in a similar way:
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The diffusion equation corresponding to a particular
fractional value of γ [see relationship (123)] has the
form of Eq. (91) with fractional derivatives. Conse-
quently, using the definition of the Herst power index
H, we obtain

(128)

The above assumptions concerning the quantity
Φ(t) enable us to use the diffusion approximation for
the trap effects:

. (129)

In fact, we associate the probability for a particle to stay
in a trap with the return probability used in the Dreœzin–
Dykhne model. A trap can be regarded as an individual
ripple in a rippled structure (see Fig. 2). In the limit in
which the length of the ripples approaches infinity, rela-
tionship (129) for the function Φ(t) is quite adequate.
The rippled structure model can naturally be general-
ized to models with ripples of finite length and ripples
in the form of fractals.

18. CONCLUSIONS

The significant deviation of transport processes
from classical transport necessitates a search for new
types of equations. From theoretical probabilistic anal-
ysis, it is evident that, in random-walk models, the non-
locality and memory effects can be taken into account
by modifying diffusion equations. However, these
models should be continuously improved because of
the ever-growing number of experimental scalings.
Intense development of the theory of renormalizations
[14] and correlation-related ideas [62, 68], as well as
investigations on Levy distributions [72–75], offer
greatly expanded opportunities for future theoretical
research on the subject.
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Abstract—Evolution of the extreme ultraviolet (XUV) and soft X-ray (SXR) emission in the 50- to 2000-eV
photon energy range from a plasma corona formed by loading a relatively thick Cu wire (with an initial diameter
of 120 µm) was observed in a Z-pinch discharge with a maximum current of 2 MA and current rise time of
100 ns. A diagnostic complex consisting of a five-channel SXR polychromator, a four-frame X-ray pinhole
camera, and a mica crystal spectrograph shows that double-humped emission pulses in the XUV and SXR spec-
tral ranges are generated 70–130 ns after the onset of the discharge current. The total energy of the pulses is
5 kJ, and the maximum power is 60 GW. A part of the observed kiloelectronvolt X-ray emission from three to
five spots with diameters of 1–2 mm consists of the Cu K- and L-shell lines. © 2003 MAIK “Nauka/Interperi-
odica”.
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1. INTRODUCTION

One of the well-known applications of Z-pinches is
the generation of intense X-ray emission. The high
intensity and large X-ray yield in a wide spectral range
makes Z-pinches unique sources that have various
applications in science and technology, including
lithography, spectroscopy, and X-ray microscopy. One
of the ways of solving the problem of inertial confine-
ment fusion is the use of fast liners generating the radi-
ation needed to ignite a hohlraum-type target, in which
a hard X-ray emission is converted into a soft one. At
present, a technique that is applied for the generation of
relativistic electron beams is widely used in liner-
implosion experiments. This technique allows one to
carry out experiments at a power level of 1013–1014 W
[1, 2]. In such experiments, wire arrays made of high-Z
materials or annular gas puffs are usually employed. At
proper Z-pinch parameters, a plasma with a tempera-
ture from a few hundred electronvolts up to 1 keV is
produced. The conversion efficiency of the liner kinetic
energy into X-ray emission may attain 40–70%, the
emission power and the total emission energy being
100 TW and 2 MJ, respectively.

A large number of experiments using the high-cur-
rent REB generator technique have studied the plasma
implosion dynamics. The experiments were carried out
at currents of 1 MA that flowed through 10- to 100-µm
wires made of high-Z elements (Z ≥ 10). Interest in
those experiments was caused by the fact that the wires
turned out to be sources of high-intensity X-ray emis-
1063-780X/03/2911- $24.00 © 20971
sion [3–6] in a wide photon energy range. Such sources
may be used to produce a plasma with highly-ionized
ions that enables one to study X-ray spectra [7, 8]. The
high-density plasma corona formed by the wire explo-
sion may be regarded as an active medium for X-ray
lasing [9]. An attractive aspect of such investigations is
the possibility of obtaining an extreme state of matter
due to the high degree of plasma compression after the
wire explosion. In those experiments, the plasma
parameters in constrictions were almost the same as
those obtained in vacuum spark discharges [10]. In
addition, the most important features of constriction
development—the time instants and positions at which
hot spots (HSs) develop [5, 6, 11], the character of the
HS motion along the pinch axis [12], the HS fine struc-
ture [13], and the spectrum of HS emission [4, 5, 8,
14]—were investigated.

It was shown that, after the wire explosion, a heter-
ogeneous structure is formed that consists of a cold
dense core and a hot rarefied corona that contains 3–
10% of the wire mass [6] and carries most of the current
[15]. An analysis of the experimental data [11] shows
that the observed HS generation is related to the com-
pression of the overheated annular structures that form
in the corona of the plasma channel. Most of the radia-
tive losses in the ≤1-keV photon energy range are from
the hot rarefied corona, whereas the main wire mass is
concentrated near the pinch axis and contributes insig-
nificantly to the pinch radiation. In experiments carried
out at the Module A5-01 facility [6] at currents of up to
003 MAIK “Nauka/Interperiodica”
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500 kA, the soft X-ray (SXR) power attained 1011 W
and the total SXR energy was 2.5 kJ. Most of the radi-
ation energy was concentrated in the range E ≤ 1 keV,
whereas the radiative losses in the range E > 1 keV were
less than 100 J.

Experiments with megaampere currents revealed
new interesting features in the dynamics of the plasma
of the exploding wires and in the character of the gen-
eration of extreme ultraviolet (XUV) and SXR emis-
sion. In [16], the results are presented from XUV diag-
nostics of the corona formed around a thicker Al wire at
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Fig. 1. Waveforms of (6) the discharge current and the emis-
sion power S divided by the bandwidth of the polychroma-
tor channel (in eV) for photon energies of (1) 60, (2) 120,
(3) 220, (4) 340, and (5) 600 eV.
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Fig. 2. Emission power S divided by the bandwidth of the
polychromator channel (in eV) as a function of time and
photon energy ε.
the S-300 facility at currents of 2–3 MA. The large wire
diameter enables the formation of a wire corona with a
higher plasma density. In this case, the wire material at
the wire axis remains in a solid state and the plasma
evolution occurs primarily in the wire corona. In [9,
17], some interesting features of Z-pinch discharges
(such as helical structures, stability and oscillations in
the second pinch phase, second pinching, and confine-
ment of the exploding plasma) were interpreted as
being associated with the generation of the axial com-
ponent of the magnetic field. Some important features
of the corona evolution are probably, related to the
transformation and dissipation of the axial magnetic
field. High-energy particles can be accelerated by a
strong electric field that is induced due to the fast pen-
etration of the magnetic field into the plasma and its
dissipation there. In the experiment performed at the
S-300 facility and described in this paper, a relatively
thick Cu wire (120 µm in diameter) was used as a load.
The corona evolution during the X-ray pulse was
investigated using shadowgraphy and X-ray pinhole
imaging.

2. EXPERIMENTAL SETUP 
AND DIAGNOSTIC EQUIPMENT

The high-power pulsed S-300 facility (I = 4 MA,
τ = 70 ns), which was designed and built at the RRC
Kurchatov Institute, is a convenient tool for performing
liner-implosion and wire-explosion experiments with
the purpose of developing bright X-ray sources. The
current flowing through a wire with a fairly high induc-
tance reaches 2 MA during a rise time of 100 ns. The
experiments were performed by loading of a copper
wire with a diameter of 120 µm and length of 8 mm.

2

2000 400 600

4

6

8

10

ε, eV

W, J/eV

Fig. 3. Emitted energy W per 1 eV as a function of the pho-
ton energy.
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The complex information about the pinch behavior
was obtained with the following set of diagnostics
arranged in the plane perpendicular to the wire axis:

(i) The temporal evolution of the corona diameter
was observed using a visible-light streak camera. The
slit of the streak camera was aligned perpendicular to
the wire axis, which allowed us to observe the wire
region 4-mm distant from the both electrodes. Three
frame image converters grabbed plasma images with an
exposure time of 3 ns and 10- to 15-ns intervals
between the images.

(ii) A microchannel-plate (MCP) detector divided
into four frames and providing images with an expo-
sure time of 2 ns and 10-ns intervals between the
images was used for SXR photography in the photon
energy range higher than 600 eV. 100-µm-diameter
pinhole cameras filtered with 10-µm Be foils were used
to produce X-ray images at the detector.

(iii) The X-ray spectrum was measured with a con-
vex mica crystal spectrometer with one-dimensional
spatial resolution.

(iv) Five-frame shadow imaging with an exposure
time of 1 ns and 10-ns intervals between the images was
performed using the second harmonic of a neodymium
laser (λ = 532 nm).

(v) The SXR spectrum was measured with a five-
channel absolutely calibrated polychromator providing
time-resolved measurements of the X-ray intensity in
five photon energy ranges with central energies of 60,
120, 220, 340, and 600 eV. X-ray PIN detectors with a
time resolution of 1.5–3.0 ns and plane multilayer mir-
rors were used for the energy separation of photons.

(vi) The dose was measured with filtered thermolu-
minescent dosimeters.

3. EXPERIMENTAL RESULTS

Experimental results show that the Z-pinch develop-
ment can differ substantially in different shots. To thor-
oughly investigate the plasma evolution in each shot,
we used a diagnostic facility with a temporal, spatial,
and spectral resolution. Figures 1–7 and 9 present a
temporally correlated set of plots and images for shot
no. 0 204 302.

The results of SXR measurements with the use of a
polychromator are presented in Figs. 1–4 and Table 1.
Figure 1 shows the waveforms of the discharge current
and the spectral power of XUV–SXR emission (the
emission power divided by the polychromator channel
bandwidth) in five photon energy ranges. The spectral
power of XUV–SXR emission as a function of time and
photon energy is shown in Fig. 2. The spectral power
reaches its maximum (100–200 MW/eV) in the photon
energy ranges 75–120 eV and near 600 eV about 80 and
105 ns after the onset of the discharge current. The data
presented in Table 1 show a decrease in the full width
at half-maximum (FWHM) of the pulse with increasing
photon energy. The emission in the 50- to 75-eV range
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
continues from the onset of the current until its maxi-
mum, whereas the emission pulse in the kiloelectron-
volt range is much shorter (about 15 ns). Figure 3
shows the emitted energy per 1 eV as a function of the
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Fig. 4. Time dependence of total emitted power P.
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Fig. 5. MCP frames at the instants 34, 54, and 64 ns.
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Fig. 6. Visible-light streak image obtained with a slit ori-
ented perpendicular to the wire axis.
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photon energy. The first maximum is higher due to the
longer emission time. In Fig. 4, one can see two emis-
sion peaks with a power of 50–60 GW in the entire pho-
ton energy range (50–900 eV). The total emitted energy
in this range is estimated at 3 kJ in the first maximum
and 1.5 kJ in the second maximum.

Figure 5 shows three frames obtained with the MCP
and pinholes filtered with 10-µm Be foils. One can see
the images of an X-ray source emitting in the photon
energy range higher than 600 eV during the time inter-
val corresponding to the onset of the first SXR peak
(namely, 34, 54, and 64 ns after the onset of the dis-
charge current). The diameter of the spherical emitting
spots is 1–2 mm. The number, diameter, and total inten-
sity of these spots increase during the observation time
interval (30 ns). It follows from these frames that the
typical emission time of one spot is on the order of
10 ns.

8 mm

Fig. 7. Visible-light image at the instant 64 ns.

40 ns

50 ns

60 ns

70 ns

80 ns

Fig. 8. Shadow images at the instants 40, 50, 60, 70, and
80 ns (shot no. 0205292).
The temporal evolution of the wire corona diameter
in the visible region can be evaluated from the streak
image presented in Fig. 6. The emission arises 50 ns
after the onset of the discharge current. At this time, the
corona diameter rapidly increases to 1.5 mm. During
the next 20 ns (from 50 to 70 ns), the corona diameter
increases with a velocity varying from 2 × 106 to 3 ×
106 cm/s, whereas during the SXR pulse, the corona
expansion velocity reaches 7 × 106 cm/s. Figure 7
shows a visible-light image of the corona at 64 ns, when
its diameter is 2–3 mm.

The shadow images presented in Fig. 8 show the
surface of the dense corona within the time interval of
from 40 to 80 ns after the onset of the discharge current
(shot no. 0205292). Here, one can see the onset of insta-
bilities: the ejection of plasma jets (filaments) from the
corona surface. Due to the high mass of Cu ions, the
velocity of the ejected filaments is relatively low (about
3 × 107 cm/s) and their surface is fairly sharp. It can be
seen from first and second frames that the propagation
direction of the plasma jets escaping from the corona
changes from radial to axial, and, in the third frame, the
plasma jets seem to be directed back to the wire.

Figure 9 presents the shadow images of the surface
of the dense corona at 57, 67, 87 and 97 ns after the
onset of the discharge current (shot no. 0205302). The
time dependence of the corona diameter was deter-
mined from an image obtained with the visible-light
streak camera. The velocity of the corona expansion
estimated from this image is 106–107 cm/s.

5 mm 57 ns

67 ns

77 ns

87 ns

97 ns

Fig. 9. Shadow images at the instants 57, 67, 77, 87, and
97 ns (shot no. 0205302).
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Table 1.  FWHMs of SXR pulses in different photon energy ranges

Photon 
energy, eV 60 120 220 340 600

FWHM, ns 120 100 50 24 20
Energy resolution, % 17 7.8 3.8 3.3 2.0
According to Fig. 10, which shows the X-ray emis-
sion spectrum, the lines in the photon energy range 1–
2 keV belong to the L shell of Cu ions. This time-inte-
grated spectrum was recorded on a DEF X-ray film.
The spectral lines belong to the Cu ions with charge
numbers of 23, 21, 20, and 19. The spectral lines listed
in Table 2 were identified using the dispersion charac-
teristic of the spectrograph and the tabulated wave-
lengths [18]. The first, second, third, and fourth reso-
nant lines of the He-like Cu ions correspond to the third
and fifth spectroscopic orders, whereas the other lines
correspond to the first order.

4. DISCUSSION AND CONCLUSIONS
The evolution of a corona formed around a copper

wire differs from the evolution of the aluminum wire
corona described in [9]. After the onset of the current, a
plasma corona is formed around the wire. The corona
expands with an average velocity of 106–107 cm/s and
is characterized by a high plasma density gradient near
its surface and by the emission of double-humped
pulses in the XUV–SXR spectral range.

The XUV emission arises 40–50 ns after the onset
of the discharge current. The maximum photon energy
in the two peaks generated at 80 and 120 ns is 120 eV,
the maximum emission power is 50 GW, and the total
emission energy is 3 kJ. The plasma temperature esti-
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
mated from the XUV spectrum according to the Plank
law turns out to be higher than 40 eV.

The peaks of SXR emission with a maximum pho-
ton energy higher than 600 eV are generated at the same
instants 80 and 120 ns and have the same maximum
power of 50 GW. The total energy of the SXR pulses is
600–800 J; however, the FWHMs of the SXR peaks are
smaller (10–20 ns).

The diameter of the simultaneously radiating spher-
ical spots is 1–2 mm, and their lifetime is ~10 ns. The
plasma temperature estimated from the SXR spectrum
is 150 eV. The K- and L-shell lines of Cu ions are emit-
ted from the spherical spots during the SXR pulse. The
plasma temperatures estimated from the emission spec-
tra in the ranges corresponding to the L- and K-shell
lines are 400 and 2000 eV, respectively.

In experiments with copper wires, the helical
plasma structures that were detected in [9] in both the
visible and X-ray spectral ranges were observed during
the XUV and SXR pulses. This can be explained as fol-
lows. First, in our experiments, the X-ray image con-
verters were equipped with filters that transmit radia-
tion in the photon energy range hν > 600 eV (in contrast
to [9], in which filters that transmit in the range hν >
10 eV were used), which did not allow us to observe the
formation of such structures in the copper wire corona.
Second, we used more sensitive visible-light image
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Fig. 10. Photographic blackening D vs. wavelength λ.
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Table 2.  List of Cu lines from Fig. 10

Peak
no.

λ, nm
Charge number Peak

no.

λ, nm
Charge number

observed tabulated observed tabulated

1 0.1479 0.1478 27; 3rd order 17 1.0380 1.0392 20

1 0.1486 0.1485 27; 3rd order 1.0400 23

2 0.1540 0.1542 Cu Kα; 3rd order 1.0438 21

3 0.1475 0.1478 27; 5th order 18 1.0592 1.0551 21

3 0.1485 0.1485 27; 5th order 1.0599 19

4 0.1538 0.1542 Cu Kα; 5th order 1.0645 1.0653 19

0.8080 0.8070 19 19 1.0856 1.0799 21

5 0.8158 0.8158 21 1.0800 20

6 0.8275 0.8275 21 1.0858 20

0.8334 0.8330 19 1.0893 20

7 0.8395 0.8395 19 20 1.0995 1.0971 20

0.8440 0.8444 19 1.1002 20

8 0.8687 0.8691 20 1.1014 20

0.8755 0.8754 20 1.1026 20

9 0.8824 0.8808 20 1.1064 1.1065 20

? 0.9016 21 1.1118 1.1097 20

10 0.9113 0.9102 19 1.1114 20

11 0.9232 0.9233 19 1.1136 20

0.9233 25 1.1198 1.1198 21

12 0.9345 0.9371 19 1.1239 1.1229 20

13 0.9545 0.9522 19 22 1.1385 1.1386 19

14 0.9745 0.9737 25 1.1416 21

15 0.9979 0.9961 20 23 1.1597 1.1573 21

0.9982 23 1.1597 19

1.0057 20 24 1.1750 1.1737 19

16 1.0142 1.0103 23 1.1774 17

1.0121 20 25 1.1832 1.1830 20

1.0311 1.0316 20 26 1.2149 1.2140 20

1.0316 21 1.2165 20

1.0350 1.0354 20 27 1.2574 1.2573 19

1.0356 21 28 1.2829 1.2830 19
converters than those in [9]; therefore, we could observe
only the outer corona region, which had a diameter
much larger than the helical structure diameter.
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the Spectroscopic Measurements of ArII Line Emission
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Abstract—A collisional radiative model for an ArII ion is constructed. The populations of the excited states of
ArII ions in a plasma of a magnetic confinement system are calculated. It is shown that, in such a plasma, the
populations of metastable states are independent of the electron density but, at the same time, are fairly sensitive
to the electron temperature. These results allow one to estimate the electron temperature from the measurements
of the Doppler profiles of the spectral lines by the laser fluorescence diagnostics. The populations of nonmeta-
stable states calculated as functions of the plasma parameters also make it possible to estimate the electron tem-
perature from passive spectroscopy measurements. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, there has been growing interest in
the injection of argon (or neon) into high-temperature
plasma devices with magnetic thermal insulation in
order to achieve “radiatively improved” operating
modes in which the line emission redistributes energy
fluxes over the vacuum chamber wall in a more uniform
fashion [1]. This concept was also adopted for the pro-
jected ITER-FEAT tokamak. Another modern-day
application of an argon plasma is its use in plasma neu-
tralizers for stripping high-energy D– ion beams [2].
Measurements of plasma parameters by spectroscopic
methods require the development of atomic-kinetics
models for different atoms and ions. In the present
paper, we begin work in this area by constructing the
relevant model for an ArII ion.

The operating conditions of a plasma neutralizer are
such that the plasma parameters should be controlled
with sufficient precision. The typical values of the
plasma parameters correspond to electron densities of
1010–1012 cm–3 and electron temperatures of 5–30 eV.
The spectroscopic diagnostics are based on measure-
ments of the absolute intensities of argon spectral lines
in the visible region. The specific feature of the spectral
lines of an ArII ion is associated with the presence of
metastable energy levels. This is why, even for a plasma
with a relatively low electron density, the populations
of these levels should be calculated by using a suffi-
ciently comprehensive collisional radiative model for
populating the excited states of the ion in question. It
should be expected that the populations of the metasta-
ble states are weakly sensitive to the electron density
because the rates of the processes of their radiative
decay are rather low, so that the population and depop-
ulation of these states are governed only by electron–
electron collisions.
1063-780X/03/2911- $24.00 © 0978
The accuracy of calculations is restricted by the
available data on the oscillator strengths for transitions
between different excited states [3]. As for collisional
transitions, they will be described by using the data
obtained in [4] on the basis of the Born–Coulomb
approximation, which has been found to produce fairly
realistic results in calculating the rates of collisional
transitions in ions. In the case under consideration, it is
rather difficult to use approximating formulas because
of the complex nature of electron coupling in view of
the presence of a large number of equivalent electrons.
This is why, in what follows, we choose several basic
excited configurations that make the main contribution
to the processes under discussion and for which there
are fairly reliable spectroscopic data.

2. KINETIC MODEL

The emission intensity at a certain transition fre-
quency ωij is given by the formula

where W(i  j ) is the probability of a radiative tran-
sition from the ith to the jth state and N(i) is the popu-
lation of the initial state.

The populations of the excited levels satisfy the fol-
lowing balance equations:

Iij "ωijW i j( )N i( ),=

dN i( )
dt

------------- = N j( )Ne v σ j i,〈 〉 exc
N j( )W j i( )

j i>
∑+

j

∑

+ N
Ar

++

1( )Ne v σi〈 〉 DR
v σi〈 〉 RR

+( )

+ δ1 i, N
Ar

j( )Ne v σ j〈 〉 Ar
ion

j

∑
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where 〈v σij〉exc is the excitation rate in collisions with
electrons, 〈v σi 〉DR is the dielectronic recombination
rate, 〈v σi 〉RR is the radiative recombination rate, and
〈v σi 〉 ion is the collisional ionization rate.

Since the concentration of ArII ions is unknown a
priori and is determined by the ionization balance equa-
tions, it is natural to eliminate the population of the
ground state from the set of model equations and calcu-
late the populations of the excited states relative to that
of the ground state, regarding the latter as a population
“reservoir.” Moreover, since we are considering a
steady-state problem, the time derivative of the popula-
tions can be set at zero.

Hence, we are using the following population equa-
tions with the source q, which describes excitations
from the ground state:

3. CALCULATION SCHEME

In our calculations, we took into account six excited
states corresponding to the sublevels of the fine struc-
ture:

(i) 3s23p4(1D)4s 2D 3/2 18.42655
(ii) 3s23p4(1D)4s 2D 5/2 18.45412
(iii) 3s23p4(1D)3d 2G 9/2 19.11607
(iv) 3s23p4(1D)3d 2G 7/2 19.11886
(v) 3s23p4(1D)4p 2F 5/2 21.12704
(vi) 3s23p4(1D)4p 2F 7/2 21.14308
This scheme can be extended substantially to

include other excited states (see Fig. 1); however, a seri-
ous obstacle to this extension is a lack of reliable infor-
mation on the lifetimes of the excited states and the
excitation cross sections. Below, for the probabilities of
radiative transitions, we will use the data from the NIST
chemical kinetic database1 and also the data from [3].

The rates of collisional transitions of electrons with
the same spin between the excited states are given by
the formulas [4]

1 http://physics.nist.gov/cgi-bin/AtData/lines_form 
http://physics. nist.gov/cgi-bin/AtData/levels_form

– N i( )W i j( )
j 1=

i 1–

∑ N i( )Ne v σi〈 〉 ion
,–

N i( )W i j( )
j 1=

i 1–

∑ N i( )Ne v σi〈 〉 ion
+

– N j( )Ne v σ j i,〈 〉 exc
N j( )W j i( )

j i>
∑–

j

∑ qi.=

v σa0a1
〈 〉 10

8– Ry
∆E
------- 

 
3/2 E1

E0
----- 

 
3/2Qkmin

a0 a1,( )
2l0 1+

-----------------------------e
β–
G β( ),=

β ∆E/T ,=
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Here, a0 and a1 are the configurations of the initial and
final states, respectively; l0 and l1 are the angular
moments of an emitting electron in the initial and final
states; and A and χ are the adjusting parameters, which
were calculated in [4]. The above formulas also contain
the Q factor, which depends on a particular transition and
determines the scheme for summing the angular
momenta of the initial and final configurations. In our
model, we use the following expressions for the Q factor.

(i) For transitions from a shell with equivalent elec-
trons (the excitation from the ground state), we have

a0 =  and a1 = , and the Q factor
has the form

where the genealogical coefficient  is equal to

 for the ArII ion under consideration.

(ii) For transitions that do not involve equivalent
electrons (transitions between the excited states), the Q
factor has the form

.

These expressions for the Q factor do not take into
account the fine structure. In order to incorporate the
fine-structure splitting into J components, it is neces-
sary to use the following additional expression for the
Q factor:

where the 6-j-symbols are calculated from the formulas
[5]

G β( ) A
β 1+( ) β

β χ+
-------------------------,=

kmin l0 l1– .=

l0
m

L0S l0
m 1–

LpSp[ ] l1L1S
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=  m GLpSp
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24.82597 3s23p4(1D)4d 2F 5/2

24.81407 3s23p4(1D)4d 2F 7/2

24.79462 3s23p4(1D)4d 2D 3/2

24.75715 3s23p4(1D)4d 2D 5/2

24.62378 3s23p4(1D)4d 2G 9/2

24.62265 3s23p4(1D)4d 2G 7/2

24.28440 3s23p4(1D)5s 2D 3/2

24.28414 3s23p4(1D)5s 2D 5/2

337.7406
Aki = 1.5 × 108

336.6493
Aki = 0.13 × 108

336.2713

Aki = 0.039 × 108

335.1895
Aki = 0.039 × 108

341.5440

Aki = 0.077 × 108

343.0599

Aki = 0.22 × 108

338.0546
Aki = 0.32 × 108

354.6856

Aki = 3.9 × 108

356.3206

Aki = 4 × 108

392.6833

Aki = 1.4 × 108

394.7210

Aki = 1.4 × 108

356.3206

Aki = 0.15 × 108 21.14308 3s23p4(1D)4p 2F 7/2

611.4923

Aki = 0.2 × 108

612.3362

Aki = 0.009 × 108

617.2278

Aki = 0.2 × 108

21.12704 3s23p4(1D)4p 2F 5/2

3s23p4(1D)3d 2G 7/2 19.11886

3s23p4(1D)3d 2G 9/2 19.11607

3s23p4(3P)3d 2D 5/218.73244

3s23p4(3P)3d 2D 5/218.65652

3s23p4(3P)3d 2F 5/218.61594

3s23p4(1D)4s 2D 5/2 18.45412

3s23p4(1D)4s 2D 3/2 18.42655

460.9567

Aki = 0.789 × 108

463.8532

Aki = 0.071 × 108

493.7447

Aki = 0.007 × 108

517.7660

Aki = 0.017 × 108

514.3209

Aki = 0.081 × 108

501.8548

Aki = 0.207 × 108

490.6109

Aki = 0.037 × 108

458.9898
Aki = 0.664 × 108

3s23p5 1/22P 0.177493

3s23p5 3/22P 0.000000

67.9401

Aki = 1.52 × 108

fij = 2.1 × 10–2

67.286

Aki = 0.203 × 108

fij = 1.38 × 10–3

67.1851

Aki = 3.26 × 108

fij = 3.3 × 10–2

Fig. 1. Full scheme of the levels of an ArII ion. The scheme of levels used in the model is indicated by heavy lines.
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with summation over the integer values of z at which
the arguments of the factorial functions in the denomi-
nators are nonnegative.

The deexcitation rate is calculated based on the rela-
tionship between the rates of the mutually inverse pro-
cesses [4]:

where g is the statistical weight of an excited state.

The ionization rate is calculated from the familiar
Lotz formula [4]

where |Ei(–β)| is the integral exponent and β = I/T is the
parameter containing the ionization potential I of a
given state.

∆ abc( ) a b c–+( )! a b– c+( )! a– b c+ +( )!
a b c 1+ + +( )!

----------------------------------------------------------------------------------------
1/2

,=

w
j1 j2 j3

l1 l2 l3 
 
 

1–( )z
z 1+( )!

z
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× z j1– j2– j3–( )! z j1– l2– l3–( )![
× z l1– j2– l3–( )! z l1– l2– j3–( )!

× j1 j2 l1 l2 z–+ + +( )! j2 j3 l2 l3 z–+ + +( )!

× j3 j1 l3 l1 z–+ + +( )! ] 1–
,

gk v σki〈 〉 gi v σik〈 〉 e
β–
, β ∆E/T ,= =

v σi〈 〉 6 10
8– Ry

Ez

------ 
  3/2

β1/2
Ei β–( ) ,×=

0.010

20 4 6 8 10
0.005

0.015

0.020

0.025
3s2 3p4(1D)3d 2G9/2 (19.118 eV)
3s2 3p4(1D)3d 2G7/2 (19.116 eV)

Relative population

Ne, 1011 cm–3

Fig. 2. Dependence of the populations of the metastable
states of an ArII ion (relative to the population of the ground
state) on the electron density at the electron temperature T =
10 eV.
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4. CALCULATED RESULTS
The results of our calculations of the populations of

the excited states as functions of the plasma parameters
are shown in Figs. 2–5.

As can be seen from Fig. 2, the populations of the
metastable states are almost independent of the electron
density in the range of plasma parameters under consid-
eration. As was already mentioned, this is explained by
the fact that these states are not depopulated by radia-
tive processes. As a result, the electron density in the
numerator of the population source term exactly can-
cels that in the denominator of the depopulation source
term. From Fig. 4, we can see that the population of the
nonmetastable state depends linearly on the electron
density.

0.005

10
0

15 20 25 30

0.010

0.015

0.020

0.025

0.030

5

3s2 3p4(1D)3d 2G9/2 (19.118 eV)
3s2 3p4(1D)3d 2G7/2 (19.116 eV)

Relative population

T, eV

Fig. 3. Dependence of the populations of the metastable
states of an ArII ion (relative to the population of the ground
state) on the electron temperature at the electron density
Ne = 1010 cm–3.

1

20 4 6 8 10

2

3

4

5

Ne, 1011 cm–3

Relative population × 106

Fig. 4. Dependence of the population of the metastable state
3s23p4(1D)4p 2F of an ArII ion (relative to the population of
the ground state) on the electron density at the electron tem-
perature T = 10 eV.
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In contrast, in the electron temperature range at
hand, the populations of metastable states depend sen-
sitively on the electron temperature; this dependence is
governed primarily by the excitation function for the
atomic states.

5. CONCLUSIONS

We have found that the populations of the metasta-
ble states calculated for the range of plasma parameters
under consideration are very sensitive to the electron
temperature and are almost independent of the electron

2.0

105 15 20 25 30
1.5

2.5

3.0

3.5

4.0

4.5

5.0
Relative population × 108

T, eV

Fig. 5. Dependence of the population of the metastable state
3s23p4(1D)4p 2F of an ArII ion (relative to the population of
the ground state) on the electron temperature at the electron
density Ne = 1010 cm–3.
density. In this situation, the plasma temperature can be
determined by measuring the absolute intensities of the
spectral lines produced by transitions from the metasta-
ble states excited by laser light or electron impacts.

In addition, if the electron temperature near the wall
of the device is known, then, under conditions such that
the ion density varies insignificantly in the radial direc-
tion, the electron temperature at the axis of the plasma
column can be determined (or at least estimated) from
the data from passive spectroscopy measurements and
laser fluorescence diagnostics, in which case it is nec-
essary to take into account the dependence of the pop-
ulations of the excited states on the electron density.
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Abstract—The parameters of the plasma of a microwave electrode discharge in hydrogen at pressures of 1–
8 torr and incident powers of 20–80 W are measured by the so-called “relative intensity” method. The method
allows one to determine the electron density and electric field in plasma by measuring the relative intensities of
the çα, çβ, and 763.5-nm Ar line emission and calculating the electron-impact rate constants from the homo-
geneous Boltzmann equation. The measurements show that there are regions in the discharge where the electron
density is higher (a bright electrode sheath) and lower (a spherical region) than the critical density for the fre-
quency 2.45 GHz (ncr ~7 × 1010 cm–3). Inside the spherical region, the electric field varies slightly over the
radius and the electron density increases as the discharge boundary is approached. The observed discharge
structure can be attributed to the presence of a self-sustained discharge zone (electrode sheath); a non-self-sus-
tained discharge zone (spherical region); and a decaying plasma region, which is separated from the active dis-
charge zone by an electric double layer. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microwave plasma structures arising near the elec-
trode under conditions such that the characteristic
plasma dimensions are smaller than the discharge
chamber size are a striking example of plasma self-
organization. Discharges in molecular gases consist of
a thin bright electrode sheath and a surrounding spher-
ical glow, separated from the dark outer space by a
sharp boundary [1–4] (Fig. 1). To date, the plasma
parameters of such discharges have been poorly stud-
ied. The measurements of the electric field and charged
particle densities in the active (glowing) discharge
region are of special interest because they allow one to
determine the mechanisms responsible for the physical
processes in a discharge. Since the discharge plasma is
nonuniform, these measurements should be spatially
resolved. In [1], probe measurements were performed
in the discharge chamber outside the glowing part of an
electrode hydrogen discharge and the spatial distribu-
tion of the microwave electric field was determined
from the measured electron temperature by numerically
solving the Boltzmann equation. In particular, it was
shown that the field decreases exponentially with
radius; such behavior corresponds to the surface wave
structure. In [5], the parameters of the electron compo-
nent of nitrogen plasma were determined by the double
probe method. It was shown that the electron density is
uniform in the active discharge region and drops
sharply at the boundary of the glowing region. In [6], an
electrode discharge was modeled in the quasistatic
approximation.
1063-780X/03/2911- $24.00 © 0983
Microwave electrode discharges have proven to be
efficient in plasmachemical technologies (e.g., in dia-
mond film deposition and nanotube production) [7–9].
An advantage of microwave electrode discharges is the

Fig. 1. Photograph of an electrode discharge in hydrogen at
a pressure of 1 torr and an incident power of 120 W. The
exposure time is 0.25 ms.
2003 MAIK “Nauka/Interperiodica”
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absence of electrode erosion, which distinguishes them
from discharges operating at lower frequencies.

In our study, a method based on measuring the rela-
tive spectral line intensities is employed for noncontact
measurements of the electric field and electron density
in plasma. The measurements are carried out in the
active region of a microwave electrode discharge in
hydrogen. The results of spectroscopic measurements
are compared with the data from probe measurements
and numerical simulations performed in the quasistatic
approximation.

2. EXPERIMENTAL SETUP

The measurements were carried out in a hydrogen
discharge at a pressure of 1–8 torr and an incident
microwave power of 20–80 W, the absorbed power
being 2–12 W. A microwave oscillator with a maximum
output power of 170 W operated at a frequency of
2.45 GHz. The discharge chamber was a metal cylinder
8.5 cm in diameter (see [1–3] for details). The micro-
wave antenna (a cylindrical stainless-steel tube 6 mm in
diameter) was inserted in the chamber through its end
via a vacuum joint. The antenna was a part of a coaxial-
to-waveguide converter, which was adjusted with the
help of a shorting plunger. The experiments were car-
ried out in a gas flow. The gas was supplied through a
3-mm-diameter channel in the upper wall of the dis-
charge chamber and pumped out through a channel in
the lower wall. The working gas was hydrogen with a
5% admixture of argon. Argon was added for diagnos-
tic purposes and had practically no effect on the prop-
erties of the hydrogen plasma.

The discharge was ignited around the antenna (the
exciting electrode). The discharge dimensions were
much less than the chamber diameter and the distance
from the lower end of the chamber. The discharge emis-
sion was output through a window on the side wall of
the discharge chamber. The spatial resolution of the
measurements was about 0.5 mm. Plasma emission in
the spectral range of 400–800 nm was studied using an
MDR-23 monochromator. An FEU-79 photomultiplier
was used as an emission detector. The optical system
was calibrated with the help of an SI-8-200 tungsten
band lamp.

3. MEASUREMENT TECHNIQUE

We developed a method for determining the electric
field and the plasma density in the discharge from the
measured relative intensities of the spectral lines. In [3],
it was shown that the degree of dissociation of hydro-
gen in the discharge under study was low and the
hydrogen emission lines çα and çβ (656.3 and
486.1 nm, respectively) were excited via the dissocia-
tive electron-impact excitation of ç2 molecules. The
argon line emission (in particular, the 763.5-nm line
used in this study) occurs due to the direct electron-
impact excitation from the ground state. In this case, we
have

(1)

(2)

(3)

where kÄr,  and  are the rate constants for the
direct excitation of argon and the dissociative excitation
of the atomic hydrogen states emitting in the Hα and Hβ

lines, respectively;  and  are the measured emis-
sion intensities of the Hα and Hβ lines; and νAr, να, and
νβ are the frequencies of the characteristic line emission
of argon, Hα line, and Hβ line, respectively.

From the measured line emission intensities, we
determined the ratios of the rate constants for the exci-
tation of the Hα and Hβ hydrogen lines to the rate con-
stant for the excitation of an Ar line [see Eq. (3)]. We
then found the electric fields  and  correspond-

ing to the obtained ratios /kÄr and /kÄr by
numerically solving the Boltzmann kinetic equation.
Finally, from the obtained values of  and , we
calculated the rate constants for the excitation of the Hα
and Hβ lines and found the corresponding electron den-
sities by the formula

(4)

To calculate the microwave electric field, we used a
homogeneous Boltzmann equation [10] in which the
terms with the electron density gradient and the electric
field gradient were neglected. This imposes certain
restrictions on the degree of plasma nonuniformity at
which the proposed method can be applied. Since the
excitation threshold for the Hα line differs from that for
the Hβ line, a criterion for the applicability of this
method could be the coincidence of the densities and
fields calculated from the measured Hα and Hβ line
intensities. In fact, this is a criterion for the applicability
of the homogeneous Boltzmann equation.

The error in determining the electric field by the
method described is 25–30%, and the error in determin-
ing the electron density is as high as a factor of 2. Obvi-
ously, such an error in determining the electron density
is rather large. However, to gain a general idea of the
physical processes in the discharge, it is sufficient to
know the ratio between the measured plasma density
and the critical electron density. The above accuracy in
determining the electron density turned out to be quite
sufficient in order to confidently establish that the elec-

kHα Hβ, H2[ ] ne IHα Hβ, /hνα β, ,=

kAr Ar[ ] ne IAr/hνAr,=

kHα Hβ,

kAr
-------------

H2[ ]
Ar[ ]

-----------
IHα Hβ,

IAr
-------------

νAr

να β,
---------,=

kHα
kHβ

IHα
IHβ

EHα
EHβ

kHα
kHβ

EHα
EHβ

neHα Hβ,
IHα Hβ,

hνα β, kHα Hβ, H2[ ]
---------------------------------------.=
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tron density in the spherical region of the discharge is
lower than the critical density.

4. RESULTS AND DISCUSSION

4.1. Spatial Distribution of the Line Emission
in a Hydrogen Discharge

We measured the spatial distributions of the intensi-
ties of the çα 656.3-nm and çβ 486.1-nm lines of the
Balmer series of atomic hydrogen (with dissociative
excitation thresholds of 17 and 17.66 eV, respectively),
the Ar 763.5- and 737.2-nm lines (with thresholds of
13.17 and 14.76 eV, respectively), and the ç2 622.4-nm
molecular band (with a threshold of 14.4 eV) of the Q
branch of the diagonal band (with the vibrational quan-
tum numbers of the upper and lower states V ' = V '' = 2)

of the Fulcher α system (d3Πu   transition).
The spatial distributions of the intensities of all these
lines and bands are similar in shape and coincide with
the spatial distribution of the integral intensity of the
discharge emission.

Figure 2 presents the radial profiles of the line inten-
sities normalized to their maximum values. It can be
seen that the profiles of the relative intensities coincide
near their maxima and diverge away from the maxima,
being arranged in the order of their line excitation
thresholds. Obviously, if these lines are excited by elec-
tron impacts from the ground states of a molecule or an
atom, then, in the regions where the intensity of the
lines with lower thresholds exceeds the intensity of
those with higher thresholds, the electric field is lower
than that in the region of the maximum line intensity
and vice versa in the regions where the intensity of the
lines with higher thresholds exceeds the intensity of
those with lower thresholds.

Thus, the ratios of the spectral line intensities allow
one to gain a general idea of the spatial distribution of
the electric field in plasma.

4.2. Spatial Distributions of the Electric Field 
and Electron Density in a Discharge

Figure 3 shows the electric field and electron density
profiles determined using the method described in Sec-
tion 3 for a pressure of 1 torr and an incident power of
80 W. Some data are presented in the table. Based on
these data, the following conclusions can be drawn:

(i) The values of  and  (as well as  and

) coincide in the spherical region of the discharge
and differ in the electrode glow region. This means that
the method used for determining the plasma parameters
is applicable only in the spherical region surrounding
the electrode plasma sheath.

(ii) At a pressure of 1 torr, the electric field in the
spherical region is nearly uniform and increases

a
3Σg

+

EHα
EHβ

nHα

nHβ
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slightly with increasing incident power (from 75–
90 V/cm at 20 W to 90–120 V/cm at 80 W).

(iii) The electron density in the spherical region
reaches (2–4) × 1010 cm–3 at a certain distance from the
discharge center, independently of the incident power.
On the discharge axis, the electron density is much
lower (ne = (0.5–2) × 109 cm–3). This difference is espe-
cially pronounced at high powers, when the discharge
dimensions are large. The axial depression in the elec-
tron density is accompanied by a severalfold decrease
in the emission intensity on the discharge axis. In the
region surrounding the electrode sheath, the distribu-
tions of both the emission intensity and the electron
density are in the shape of a sphere. Along the sphere,
the electron density is nearly constant. Inside the
sphere, the electron density increases monotonically

0.01

0.001

0.1

1

I/Imax

656.3 nm
486.1 nm
763.5 nm
622.4 nm

0.1

0.20 0.4 0.6 0.8 1.0 1.2 1.4
0.01

656.3 nm
486.1 nm
763.5 nm
622.4 nm

R, cm

(b)

(‡)

1

Fig. 2. Radial profiles of the spectral line intensities normal-
ized to their maximum values in the planes located at a dis-
tance of (a) 1.4 and (b) 9.2 mm below the edge of the 6-mm-
diameter tube electrode for a discharge in the ç2 + 5% Ar
mixture at a pressure of 1 torr and an incident power of
80 W.
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Fig. 3. Radial profiles of the (a, c, e) electric field and (b, d, f) electron density determined from the intensities of the Hα (closed
triangles) and Hβ (open triangles) lines for different positions of the measurement plane: Z = (a, b) 0.6, (c, d) –1.6, and (e, f) –9.4 mm.
The coordinate Z is counted from the edge of the 6-mm-diameter tube electrode (Z = 0) toward the microwave oscillator. The dis-
charge in the ç2 + 5% Ar mixture took place at a pressure of 1 torr and an incident power of 80 W.
with radius. After reaching its maximum at the bound-
ary of the spherical region, the electron density
decreases sharply (by one order of magnitude at a dis-
tance of 2–3 mm). This decrease is accompanied by an
exponential decrease in the emission intensity.

(iv) At a constant incident power (80 W), the electric
field in the spherical region increases slightly with pres-
sure (from 90–120 V/cm at 1 torr to 90–140 V/cm at
8 torr), while the electron density varies in the range
(0.5–2) × 1010 cm–3.

(v) As the electrode layer is approached, the electric
field significantly increases. At an incident power of
80 W and pressures of 1–8 torr, the electric field in the
discharge cross section located 1.6 mm below the elec-
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trode increases from ≈80 V/cm at the periphery up to at
least ≈180 V/cm in the central region (in the applicabil-
ity region of the method). At lower incident powers and
a pressure of 1 torr, the increase in the field is somewhat
lower.

(vi) In the electrode sheath, the above method for
determining the plasma parameters is generally inappli-
cable. The calculations according to the intensities of
the çα and çβ lines give different results. This can be
related to the presence of the large field gradients in this
region, which are not taken into account when solving
the homogeneous Boltzmann equation. In this region,
various factors that are not taken into consideration can
play a significant role (see below).

(vii) In some cases (e.g., at a pressure of 1 torr and
an incident power of 80 W 0.6 mm above the electrode
edge and 20 W 0.5 mm under the electrode edge), we
succeeded in diagnosing the electrode sheath plasma. It
turned out that the electron density in the sheath
attained (1–3) × 1011 cm–3.

(viii) In the regions where the method concerned is
inapplicable, the power and pressure dependences of
the maximum electric field in the electrode sheath can
be estimated by employing the çα line only. Such esti-
mates show that, at a constant pressure of 1 torr, the
field increases with incident power (from ≈150 V/cm at
20 W to ≈200 V/cm at 80 W) and, at a constant incident
power of 80 W, it increases with pressure (from
≈250 V/cm at 1 torr to ≈460 V/cm at 8 torr).

Let us analyze in more detail the problem of the
applicability of the method proposed, since it is related
to certain physical processes in the discharge (in partic-
ular, to the resonance phenomena).

When solving the homogeneous Boltzmann equa-
tion in the local approximation, we took into account
that the electron energy distribution function (EEDF)
was formed due to electron heating in a uniform electric
field and the loss of electron energy due to elastic colli-
sions with heavy particles and the excitation of the rota-
tional, vibrational, and electronic states of these parti-
cles, as well as their dissociation and ionization. Inside
the electron subsystem of the plasma, the energy is
redistributed due to electron–electron collisions. In
molecular gases, this channel for energy redistribution
can be ignored if the degree of ionization is lower than
~10–3. That is why we did not take into account elec-
tron–electron collisions when solving the Boltzmann
equation.

The nonlocal character of the EEDF manifests itself
when the characteristic electron energy relaxation
length λε exceeds the characteristic plasma size Λ [11].
In the diffusion-controlled regime of discharge, the
relaxation length is λε ~ (Daτε)1/2 and τε = 1/νε ~ 1/δνef
(these are the conditions that usually occur in experi-
ments). Here, Da is the coefficient of ambipolar diffu-
sion, δ is the average energy fraction that is lost by an
electron in one collision with a heavy particle, and νef is
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
the effective frequency of electron collisions with
heavy particles. At a pressure of 1 torr, we have νef ~
109 s–1, δ ≥ 10–2, Da ~ 104 cm2/s, and λε < 1 mm. The
characteristic radius of the spherical region is Λ ~
10 mm; hence, we have λε ! Λ. At higher pressures,
this condition is satisfied by an even larger margin. This
means that, under conditions of our experiments, the
nonlocal character of the EEDF can be ignored.

The above estimates also show that the EEDF
becomes isotropic at distances much shorter than
1 mm. This confirms the applicability of the two-term
expansion of the EEDF in spherical harmonics and
means that any deviations of the EEDF from being iso-
tropic (e.g., due to the resonance phenomena or plasma
inhomogeneity) relax at distances shorter than the spa-
tial resolution of the method employed.

In a quasi-uniform alternating field, an electron
acquires energy only in collisions with heavy particles
(the so-called Ohmic or Joule heating with Pabs =

e2 νtr/0.707(ω2 + )). This mechanism is typical of
medium- and high-pressure plasmas.

In low-pressure plasmas (ω @ νtr), there are narrow
plasma resonance regions (with a characteristic size ∆),
in which the electric field can be very high. In such a
highly nonuniform field, there is an additional mecha-
nism for accelerating and heating thermal electrons
passing through the resonance region (the so-called sto-
chastic heating). This process is characterized by the

frequency ν* ≈ /∆3ω2, where  is the electron ther-
mal velocity. In order to take into account this heating,
the electron collision frequency in the formula for the
absorbed power must be replaced by the effective fre-
quency νef = νtr + ν*. This process leads to the enrich-
ment of the EEDF with fast electrons in comparison to
a uniform plasma. This effect was indeed observed in
the experiments. It disappears at pressures higher than
50 mtorr [12, 13].

Thus, under our experimental conditions, the sto-
chastic heating of electrons is of minor importance;
accordingly, we took into account only Joule heating.

E0
2 ν tr

2

v e
3 v e

Electric field E and electron density ne in the non-self-sus-
tained discharge region at different values of the pressure P
and incident power W

P, torr W, W ne , 1010 cm–3 E, V/cm

1 20 0.5–1 75–90

40 2–4 85–100

60 2–3 85–100

80 1.5–2.5 90–120

2

80

0.7–1.5 100–110

4 ~0.7 95–120

8 ~1 100–140
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The role of the resonance phenomena was analyzed
in [6], based on the self-consistent simulations of a
coaxial plasma system in the quasistatic approxima-
tion. It was shown that, at a pressure of 1 torr, the
plasma resonance significantly affects the electric field
structure and the electron density distribution, whereas
at pressures of 3–4 torr, the field structure almost
already coincides with that in a system filled with an
ordinary dielectric. Hence, at least in the upper range of
the pressures under study, the role of plasma resonances
is insignificant.

Note that the above criterion for the applicability of
the proposed method is, in fact, opposite to that used in
finding the self-consistent set of cross sections for elec-
tron collisions that are employed when solving a homo-
geneous Boltzmann equation. Indeed, a set of cross sec-
tions is constructed at which the computed electron dif-
fusion coefficient and the first Townsend coefficient
match the measured values in a wide range of the
parameter E/N. We employed a known set of the cross
sections for a homogeneous Boltzmann equation, but
checked whether the use of this equation was justified.
For this purpose, we used the rate constants for the pro-
cesses governed by the high-energy part of the EEDF,
which is the most sensitive to the effects that lead to the
enrichment of the EEDF with fast electrons and that are
ignored in our model. On the other hand, it is this part
of the EEDF that is of interest for analyzing plasma
processes because ionization is, in fact, produced by
fast electrons.

Thus, the proposed method for determining the
plasma parameters is directly related to the physical
processes in the plasma of an electrode discharge.
Obviously, the use of an inhomogeneous Boltzmann
equation could significantly widen the applicability
range of the method. However, this would require the
self-consistently determination of the spatial distribu-
tions of the plasma parameters, which would make the
problem much more difficult to solve and, thus, would
reduce to zero the advantages of the method proposed.
On the other hand, the experimental evidence of the
applicability of the homogeneous Boltzmann equation
indicates that the physical processes leading to the
EEDF peculiarities (e.g., resonance phenomena) are of
minor importance in the plasma region under study.
Obviously, these processes can play an important role
in the regions where this method is inapplicable. How-
ever, these regions are beyond the scope of this study.

4.3. Discussion

As was noted above, the electric field increases
sharply when approaching the electrode, whereas it is
nearly constant over the radius in the spherical region
6–10 mm below the electrode edge. The electric field
distribution is similar to the known field distribution
near a biased rod located above a grounded plane [14].
In a plane located near the electrode edge, the field
sharply decreases with radius, whereas in a plane
located somewhat below the electrode (at a distance of
one to one-and-a-half rod diameter), the field is almost
constant over the radius.

An analysis of the literature data on the plasmas of
self-sustained microwave discharges (see. e.g., [15])
shows that the plasma electron density, as a rule,
exceeds the critical density for the field frequencies that
are usually used to excite self-sustained microwave dis-
charges. The only exception is the discharge plasma in
high-Q cavities, in which the plasma only slightly
affects the field distribution [16].

In the spherical region, the electron density (5 × 109–
3 × 1010 cm–3) is much lower than the critical density for
the given field frequency (ncr ≈ 7 × 1010 cm–3), is nearly
constant in space, and changes slightly with incident
power. The obtained values of the electron density at
the plasma boundary quantitatively agree with the
results from probe measurements [1].

It is known (see, e.g., [17]) that, in the plasma of a
non-self-sustained microwave discharge, the electron
density is lower than the critical density. This circum-
stance allows one to consider the spherical region as a
zone of a non-self-sustained discharge. The volume of
this region increases with incident power, whereas the
values of E and ne change slightly. Inside the glowing
sphere (in the dark space), the electron density
decreases severalfold. It follows from the above analy-
sis that the resonance phenomena are of minor impor-
tance in this region. At the outer boundary of the spher-
ical region, ne sharply decreases (by one order of mag-
nitude at a distance of 2–3 mm).

Earlier, based on the measurements of the electron
density and the electric field in the plasma of an elec-
trode microwave discharge, it was concluded that the
most probable reason for the existence of a sharp outer
boundary of the discharge is the presence of an electric
double layer [5, 18]. The reason for the origin of the
sharp boundary of an electrode microwave discharge,
as well as the position and properties of this boundary,
requires future study.

5. CONCLUSIONS

A method has been developed for determining the
electron density and electric field in plasma by measur-
ing the relative spectral line intensities (the çα, çβ, and
763.5-nm Ar lines) and calculating the electron-impact
rate constants from the homogeneous Boltzmann equa-
tion. The method is used to study the spatial distribu-
tions of the plasma parameters in a microwave elec-
trode discharge in hydrogen at pressures of 1–8 torr and
incident powers of 20–80 W.

The measurements have shown that there are
regions in the discharge where the electron density is
higher (the bright electrode sheath) and lower (the
spherical region) than the critical density for the fre-
quency 2.45 GHz (ncr ≈ 7 × 1010 cm–3). Inside the
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
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spherical region, the electric field varies slightly over
the radius, and the electron density increases as the dis-
charge boundary is approached.

An analysis of the literature data on microwave dis-
charges allows us to conclude that the observed dis-
charge structure can be attributed to the presence of a
self-sustained discharge zone (electrode sheath); a non-
self-sustained discharge zone (spherical region); and a
decaying plasma region that is separated from the
active discharge region by an electric double layer.
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Abstract—The parameters of a repetitive volume discharge in CF2Cl2 (CFC-12) and its mixtures with argon at
pressures of P(ëF2Cl2) ≤ 0.4 kPa and P(Ar) ≤ 1.2 kPa are studied. The discharge was ignited in an electrode
system consisting of a spherical anode and a plane cathode by applying a dc voltage Uch ≤ 1 kV to the anode.
The electrical and optical characteristics of a volume discharge (such as the current–voltage characteristics; the
plasma emission spectra; and the waveforms of the discharge voltage, the discharge current, and the total inten-
sity of plasma emission) are investigated. It is found that, by shunting the discharge gap with a pulsed capacitor
with a capacitance of C0 ≤ 3.5 nF, it is possible to control the amplitude and duration of the discharge current
pulses, as well as the characteristics of the pulsed plasma emission. The increase in the capacitance C0 from 20
to 3500 pF leads to a significant increase in the amplitude and duration of the discharge current pulses, whereas
the pulse repetition rate decreases from 70 to 3 kHz. The glow discharge exists in the form of a domain with a
height of up to 3 cm and diameter of 0.5–3.0 cm. The results obtained can be used to design an untriggered
repetitive germicidal lamp emitting in the Cl2(257/200 nm) and ArCl (175 nm) molecular bands and to develop
plasmachemical methods for depositing amorphous fluorocarbon and chlorocarbon films. © 2003 MAIK
“Nauka/Interperiodica”.
Repetitive volume discharges in fluorocarbons and
chlorocarbons (CCl4, CF4, etc.), as well as in pure chlo-
rine, are efficient sources of short-wavelength radiation
(λ = 190–280 nm) [1–3], which is of significant interest
for the sterilization of medical instrumentation, air dis-
infection, surface activation, and other applications in
high-energy chemistry and microelectronics. At
present, plasmas of the chlorofluorocarbon (CFC)
decomposition products are considered to be a promis-
ing means for depositing thin amorphous carbon-con-
taining insulating films in VLSICs [4]. Because of the
high electronegativity of CFCs, the excitation of spa-
tially homogeneous discharges in them encounters dif-
ficulties, some of which can be overcome by operating
with nanosecond volume discharges [5]. However, the
ignition of such discharges requires the application of
high-voltage modulators. Hence, it is of interest to
develop a method for obtaining a low-pressure volume
discharge in CFC-12 with a dc power supply, such that
the repetitive operation mode is enabled by the onset of
discharge instability. Numerical simulations of a low-
pressure glow discharge in a model electronegative gas
[6] showed that, due to the redistribution of the electric
field along the discharge gap, the discharge operates in
a repetitive mode (f ≤ 10 kHz). In [7], we experimen-
tally observed and studied this operational mode of a
low-pressure glow discharge in a Kr/Cl2 mixture. The
possibility of controlling the parameters of such a dis-
charge in CF2Cl2 and its mixtures with rare gases has
not yet been examined. In [8], it was shown that, based
on a volume discharge with a dc power supply in a
1063-780X/03/2911- $24.00 © 20990
grid–plate electrode system, it is possible to create a
planar Xe/Cl lamp operating with Xe/Cl2(HCl) mix-
tures at pressures of P ≤ 2 kPa; however, neither the
parameters of this type of a pulsed discharge nor the
possibility of controlling them have been considered.

In this paper, we study the characteristics of a repet-
itive volume discharge in CFC-12 and its mixtures with
argon.

The discharge operated in an electrode system con-
sisting of a spherical anode and a plane cathode with an
interelectrode distance of 3 cm. A dc voltage was
applied to the anode through a ballast resistance of
20 kΩ . The average discharge current was in the range
2–50 mA. The partial pressures of CFC-12 and Ar were
varied in the ranges 50–300 Pa and 100–1200 Pa,
respectively. The electrode system was mounted in a
10-l buffer chamber. A description of the experimental
facility is given in [2, 7]. In order to control the dis-
charge parameters, a set of KVI-3 and KVI-2 pulsed
capacitors with a total capacitance of 200–3500 pF was
connected in parallel to the discharge gap, whose intrin-
sic capacitance (together with the parasitic wiring
capacitance) was ≤10–20 pF.

The volume discharge had the shape of a truncated
cone. The small (upper) base of the plasma domain was
adjacent to the anode, whereas its lower base was
spherical in shape and was separated from the cathode
by a 1- to 7-mm dark space. The diameters of the lower
and upper bases of the plasma domain was as high as
3.0 and ≤2.0 cm, respectively. As the pressure of CFC-
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12 or the Ar/CF2Cl2 mixture increased, the transverse
size of the plasma decreased by a factor of 3 to 5.

The static current–voltage characteristic of the dis-
charge corresponded to the normal mode of discharge
ignition. The average voltage at the anode did not
exceed 1 kV. The initial part of the dynamic current–
voltage characteristic corresponded to the abnormal
stage of a glow discharge [9]. The discharge current
then reached its maximum and began to decrease
(although the discharge voltage kept increasing), which
resulted in the formation of a negative-slope branch of
the current–voltage characteristic.

An analysis of the plasma emission spectra showed
that the main fraction of the total emission intensity
(≥70%) was concentrated in the 150- to 300-nm spec-
tral range. The emission spectrum from a discharge in
pure CFC-12 consisted of broad overlapping bands
with maxima at 257 and 200 nm. This emission can be
attributed to the emission bands of ël2 molecules (D' –
A' and (Σ – Σ) transitions) and CCl* radicals.

Figure 1 presents the waveforms of the discharge
voltage and current and the total emission intensity
from a discharge in pure CFC-12 for different CFC-12
pressures; average discharge currents; and capacitances
C0, shunting the discharge gap. At the minimum capac-
itance, the total duration and amplitude of the discharge
current pulses were minimum (∆t ≤ 50 ns and Imax ≤
1.5 A, respectively). Pulsed emission with a duration of
~300 ns occurred in the early afterglow of discharge
current. The pulse amplitude decreased with increasing
average current. As the capacitance C0 increased to
900 pF, the current pulse duration increased twofold
and the current amplitude increased to 25 A. The cur-
rent reached its maximum value at the leading edge of
the discharge voltage pulse. At low CFC-12 pressures,
the discharge current and the emission intensity
reached their maxima simultaneously. Within the time
interval t = 100–200 ns, the current flowed against the
applied voltage. This was related to the instability of the
cathode sheath of a short-lived glow discharge, which is
similar in nature to a Trichel pulse [10, 11]. The dura-
tion of the emission pulse attained 500 ns. Under these
conditions, the diameters of the plasma domain were
1.5 cm near the anode and 2.0 cm near the cathode, and
the discharge was homogeneous. As P(CF2Cl2)
increased to 0.4 kPa, the domain remained homoge-
neous only in the anode part with a diameter of 0.5 cm,
whereas its cathode part acquired a form of a bundle of
thin streamer channels with a total diameter of 2.0 cm.
In this case, the emission pulse had two maxima and its
duration increased by a factor of 2.0–2.5. The first of
these maxima occurred at the leading edge of the cur-
rent pulse, and the second one occurred at the trailing
edge. The shape of the voltage pulse changed only
slightly.

Figure 2 shows the waveforms of the current and the
emission intensity from a volume discharge in
Ar/CF2Cl2 mixtures for different partial argon pressures
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
and average discharge currents. For Ar/CF2Cl2 mix-
tures with a low partial argon pressure, the emission
intensity was maximum at low average discharge cur-
rents. As Ich increased, the current pulse duration
decreased. The increase in P(Ar) to 1.33 kPa led to an
increase in the current pulse duration and a decrease in
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Fig. 1. Waveforms of the (1) discharge voltage, (2) dis-
charge current, and (3) emission intensity from a volume
discharge in CFC-12 for (a) P(CF2Cl2) = 160 Pa, C0 = 20 pF,
and Ich = (2, 3) 10 and (2', 3') 30 mA; (b) P(CF2Cl2) = 80 Pa,
C0 = 900 pF, and Ich = 30 mA; and (c) P(CF2Cl2) = 400 Pa,
C0 = 900 pF, and Ich = (1, 3) 6 and (2', 3') 30 mA.
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the amplitude and duration of the emission pulse. In
this case, the integral emission pulse shifted in time
toward the leading edge of the discharge current pulse.

The estimated total power of UV–XUV emission
from the entire surface of the radiation source attained
1–2 W, the efficiency being ≤5%.

Thus, we have studied the parameters of a short-
lived glow discharge in CFC-12 and its mixtures with
argon at pressures of P ≤ 1.33 kPa. The discharge was
fed from a dc power supply and was not confined by
dielectric walls. It has been found that such a discharge
operates in a repetitive mode and acts as a selective
source of UV–XUV radiation from the transitions of
ël2 and ArCl* molecules. Shunting the discharge gap
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Fig. 2. Waveforms of the (1) discharge current of and (2)
total emission intensity from a volume discharge in
Ar/CF2Cl2 mixtures for (a) P(Ar)/P(CF2Cl2) =
160 Pa/120 Pa and Ich = (1, 2) 6 and (1', 2') 30 mA and
(b) P(Ar)/P(CF2Cl2) = 1330 Pa/120 Pa and Ich = (1, 2) 6 and
(1', 2') 30 mA.
with a capacitance (C0 ≤ 2–3 nF) allows one to control
the parameters of the repetitive discharge. The shunting
capacitance acts as an energy storage bank, whereas the
discharge itself is self-induced. This type of a glow dis-
charge can be used to design a simple repetitive low-
pressure germicidal lamp and to develop new methods
for depositing amorphous carbon-containing films.
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Derek Robinson and Historical Experiment
in Magnetic Fusion Research
It has been one year since Prof. Derek Robinson,
prominent fusion research scientist, a leading figure in
the UK Fusion Research Program, and Director of the
UKAEA Culham Science Centre, died at the age of 61.
He was a key person in the historical experiment on
local measurement of the electron temperature by the
Thompson scattering technique in the T-3 tokamak
(Kurchatov Institute) in the second half of 1969. This
experiment convinced the international fusion commu-
nity of the validity of information presented 35 years
ago at the 3rd IAEA Conference (Novosibirsk) by Aca-
demician L.A. Artsimovich, the leader of the Soviet
fusion research program, who reported that a quasi-
steady plasma with an unprecedented (for that time)
temperature of about 1 keV had been obtained in the T-
3 tokamak. This implied that enhanced (Bohm) plasma
diffusion, which had been observed in Princeton stellar-
ators and which did not allow one to increase the
plasma temperature at a given heating power, was not a
universal phenomenon and, therefore, was not an insu-
perable obstacle in creating a fusion reactor. The major-
ity of participants at the Novosibirsk conference lis-
tened to Artsimovich’s report skeptically. One of those
who took the report seriously was Prof. R.S. Pease, the
Director of the Harwell Plasma Labortatory. He was the
first Western scientist to recognize the critical mind and
physical intuition of Artsimovich a few years before the
Novosibirsk conference, after he had found in Artsimo-
vich’s book Controlled Thermonuclear Reactions, pub-
lished in 1961, a valid interpretation of the results of the
Livermore experiment (performed in late 1960) on
repeated plasma compression in an open confinement
system (later, the authors of the experiment corrected
their interpretation of the results obtained). Aware of
the importance of increasing the plasma temperature in
fusion devices, Prof. Pease agreed with Artsimovich’s
proposal on the necessity of independently checking
the T-3 plasma parameters. At that time, Dr. Robinson
and his colleagues were involved in investigations of
the relation between plasma turbulence and the profiles
of the magnetic field and electron temperature in the
ZETA device. To measure the distribution of the plasma
electron temperature, a diagnostic technique based on
the Thomson scattering of a ruby laser had been cre-
ated. A group of English physicists headed by N.J. Pea-
cock arrived at the Kurchatov Institute with this appa-
ratus. At the height of the Cold War, it was no easy mat-
ter to organize such a visit of British scientists and
technicians, equipped with an experimental facility
1063-780X/03/2911- $24.00 © 20993
with a total mass of 5 t. Like Soviet scientists travelling
abroad, their British colleagues would also obey certain
requirements. In particular, as Prof. Pease remembered,
the visit of Dr. Robinson to the USSR would have been
impossible had he not gotten married a year before.

Derek Robinson was born on May 27, 1941, in Dou-
glas, on the Isle of Man. In 1965, he graduated from
Manchester University and, as a talented student, was
sent to work at the Atomic Centre in Harwell. There, he
investigated plasma turbulence in the ZETA toroidal
device, in which large-scale plasma instabilities related
to the toroidal electrical current were stabilized (in con-
trast to tokamaks) by a relatively weak toroidal mag-
netic field, decreasing practically to zero at the plasma
edge. Dr. Robinson found that small-scale plasma tur-
bulence was suppressed (the so-called “quiescent”
regime) when the direction of the toroidal magnetic
field outside of the main current channel was reversed,
whereas the total toroidal magnetic flux was conserved
due to the high electric conductivity of the vacuum ves-
sel. Systems of this type were called reversed field
pinches (RFPs). Such systems are a remarkable exam-
ple of plasma self-organization: the macroscopic stabil-
ity of the plasma in an RFP is provided by supplying
power to maintain the current pulse continuously gen-

Fig. 1. Derek Robinson. Report at the Dubna workshop,
1969.
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erating a toroidal magnetic field with the radial profile
that is necessary for macroscopic plasma stability. In
addition to experimental investigations, Dr. Robinson
performed a number of theoretical studies on plasma
stability in ZETA-type systems. In particular, he calcu-
lated the maximum possible ratio of the plasma pres-
sure to the magnetic field pressure and the plasma den-
sity profiles stable against ideal magnetohydrodynamic
perturbations. In experiment, he was the first to imple-
ment a technique for measuring the electron tempera-
ture by Thomson scattering. It is this technique with
which the British scientists performed the above exper-
iment to determine the electron temperature in the T-3
tokamak. As V.V. Sannikov, a Soviet participant of this
experiment, remembered, his British colleagues first
used a ruby laser in the free-generation mode with a
pulse duration of ∆t = 1 ms and a pulse energy of E =
50 J. The use of such pulses seemed to be attractive due
to their large energy, since, in this case, the number of
scattered photons was expected to be fairly large. How-
ever, the amount of radiation emitted by the plasma
itself over a time of 1 ms also turned out to be very
large. Since the cross section for the scattering by elec-
trons is very small, σ ≅  6.6 × 10–25 cm2, the integral sig-

Fig. 2. During Dr. Robinson’s historical report. The person
on the left is L.A. Artsimovich, the chairman of the session.
nal from spontaneous plasma emission exceeded that
from the scattered laser radiation. For this reason,
Dr. Robinson employed a Q-switched laser generating
a giant pulse with a duration of ∆t ≈ 10–9 s and an
energy of E ≈ 3 J; i.e., the integration time was
decreased by a factor of 105. Although, in this case, the
laser energy decreased by more than one order of mag-
nitude, the signal-to-noise ratio increased to about 10.
This made it possible to record the scattered signals
with an accuracy of 7–10%.

The results of this joint Soviet–British experiment
were reported by Dr. Robinson at the Second Interna-
tional Workshop on Toroidal Systems, held in Dubna,
near Moscow, in 1969 (the first workshop was held at
Princeton in 1965), and were then published in Nature
(1969, vol. 224, p. 488).

This experiment convinced the international fusion
community of the fact that an electron temperature one
order of magnitude higher than in other contemporary
devices had indeed been achieved in a tokamak. For this
reason, in the 1970s, studies on magnetic plasma con-
finement all over the world began to switch over to
tokamaks. The subsequent continuous progress in
increasing the plasma parameters showed that the tur-
bulent processes in a tokamak plasma aggravate plasma

Fig. 3. After the report by Dr. Robinson. The person on the
right is L.A. Artsimovich; at the center is V.V. Sannikov, the
Soviet participant of the joint experiment.
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thermal insulation to a lesser extent than in RFPs,
which are conceptually rather similar to tokamaks. This
convinced scientists of the possibility of achieving the
plasma parameters required for a fusion reactor. In fact,
the a transition from tokamaks with a small plasma
radius of a = 0.15 m to those with a radius of a ≅  0.4 m,
and then with a ≅  1 m, resulted in experiments with
plasma parameters at which the power released in D-T
thermonuclear reactions was comparable to the input
power. The continuous progress in increasing the
plasma parameters in these devices has finally led to the
elaboration of an international project: the International
Thermonuclear Experimental Reactor (ITER).

Dr. Robinson contributed greatly to all stages of this
progress toward his final goal. He actively participated
in the JET (the largest all-European tokamak) and
PLASMA PHYSICS REPORTS      Vol. 29      No. 11      2003
ITER programs and gave lectures on controlled fusion
research in a number of developing countries. In addi-
tion to his participation in designing large devices, he
continued searching for alternative approaches to mag-
netic plasma confinement. Thus, he was the first to
implement the model of a conceptually new, extremely
compact tokamak with an aspect ratio R/a only slightly
larger than unity.

The name of Derek Robinson, a remarkable scientist
and a highly intelligent, considerate, and kind man, will
remain forever in the history of controlled fusion
research.

V. D. Shafranov
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